
Secure and Robust Censorship-Resistant
Publishing Systems

by

Marc Waldman

A dissertation submitted in partial ful�llment

of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science

New York University

May 2003

David Mazi�eres

c
 Marc Waldman

All Rights Reserved 2003

For Mom, Dad and my sister, Dr. Meryl Waldman. Thanks for

the unconditional love and support.

iii

Acknowledgments

If the journey is the reward, then I have been handsomely rewarded. I �rst stepped

into the Courant Institute of Mathematical Sciences (CIMS) 20 years ago, during

the summer of 1983. I had just �nished my freshman year in high school and

had been selected to participate in the summer computer-programming course

sponsored by NYU CIMS. The course was truly a wonderful experience. I enjoyed

the course so much that I became actively involved with it for the following seven

summers. I co- taught the course for several summers. Since that summer of 1983,

I have been fortunate enough to meet many people at NYU who helped guide me

on this journey. Below, I wish to thank several of them.

Professor David Mazi�eres has been much more than a great advisor, he has

also been a good friend. His door was always open to discuss any problem that

happened to arise. David's enthusiasm and energy is infectious. I deeply appreciate

the guidance and inspiration he has provided to me.

Professor Avi Rubin �rst introduced me to the area of computer security and

censorship-resistant publishing. I cannot begin to express my gratitude to him.

Working with Avi while designing and building Publius was a fantastic learning

experience, one that I will never forget. One could not ask for a better role model.

Professor Dennis Shasha supported me during my �rst year of full-time study

at NYU. He had great faith in me and for this I am eternally grateful. Working

iv

with him on KLint and Plinda were some of the highlights of my academic career

at NYU. Dennis is one of the brightest and kindest individuals I have ever met. It

was a privilege to have worked with him.

Professor Zvi Kedem provided me with feedback on the Tangler design and

was a member of my committee. I would be remiss if I didn't thank him for all

his e�ort. In addition, I found Zvi to be one of the most dedicated and caring

professors at NYU. When Zvi told the class that he would do something, you

could depend on him to do it.

Henry Mullish ran the summer high school program that started me on this

journey. He is truly one of the nicest people I have ever met. During my under-

graduate years at NYU, I do not think a single week went by that I did not stop by

his oÆce to discuss some aspect of computing or the summer high school program.

He has had a tremendous positive in
uence on me.

I must thank Anina Karmen and Rosemary Amico for all their help throughout

the years.

On April 30th, 2003, I successfully defended my thesis. Shortly after this great

event, I walked to Tisch Hall and visited room LC- 10. This is the room where

the high school program �rst met during the summer of 1983. Although the room

had been remodeled, it still brought back a
ood of fond memories. It is hard to

believe it has been 20 years. Yes, the journey is the reward.

v

Contents

Dedication iii

Acknowledgments iv

List of Figures xi

List of Tables xii

1 Introduction 1

1.1 Problem Statement . 3

1.2 Dissertation outline . 4

2 Design Challenges 5

2.1 Design Issues . 6

2.2 Storage Servers . 7

2.3 Naming and Tamper Protection . 7

2.4 Data Storage . 8

2.5 Untraceable Communication Channel 9

vi

3 Related Work 10

3.1 Censorship Resistant Systems . 10

3.1.1 Usenet Eterntiy . 10

3.1.2 Freenet . 11

3.1.3 Intermemory . 12

3.1.4 Janus and Rewebber . 13

3.1.5 Free Haven . 14

3.1.6 Dagster . 15

3.2 Connection-Based Anonymity . 16

3.2.1 Anonymizer . 16

3.2.2 Crowds . 17

3.2.3 Buses for Anonymous Communication 18

3.3 Integrity and Availability Schemes 20

3.3.1 SFSRO and CFS . 20

3.3.2 Secure Replicated Data . 22

3.3.3 Secure State Machine Replication 23

4 Publius 25

4.1 Overview . 26

4.2 Publish . 27

4.3 Retrieve . 29

4.4 Delete . 29

4.5 Update . 31

4.6 Maintaining a consistent state . 33

vii

4.7 Implementation . 34

4.7.1 Publius URLs . 34

4.7.2 Server software . 37

4.7.3 Client software . 38

4.7.4 Publishing mutually hyperlinked documents 39

4.7.5 Publishing a directory . 40

4.7.6 Publius content type . 43

4.7.7 User interface . 43

4.7.8 Proposed Publication Mechanism 44

4.8 Limitations and threats . 46

4.8.1 Share deletion or corruption 46

4.8.2 Update �le deletion or corruption 46

4.8.3 Denial of service attacks . 48

4.8.4 Threats to publisher anonymity 49

4.8.5 \Rubber-Hose cryptanalysis" 50

4.9 Publius Live Trial . 51

4.9.1 Server Volunteers . 51

4.9.2 Proxy Volunteers . 52

4.9.3 Publius Usage . 53

4.9.4 Issues Raised . 54

4.10 Discussion . 55

5 Tangler 56

5.1 Design Goals . 57

viii

5.2 Tangler Overview . 59

5.3 System and Adversary Model . 61

5.4 Tangler document collections . 63

5.4.1 Collections . 63

5.4.2 Hash trees . 64

5.4.3 Server Blocks . 65

5.5 Publish . 66

5.5.1 Reconstruction . 68

5.5.2 Update . 69

5.6 Entanglement . 69

5.6.1 Secret Sharing . 70

5.6.2 Entanglement Algorithm . 70

5.6.3 Reconstruction Algorithm 72

5.6.4 Bene�ts and Limitations . 72

5.7 Tangler network . 73

5.7.1 Rounds . 74

5.7.2 Tangler Servers . 74

5.7.3 Join and Leave Protocols . 75

5.7.4 Faulty Servers . 76

5.7.5 Membership Changes . 77

5.7.6 Block-to-server mapping . 78

5.7.7 Storage Tokens . 80

5.7.8 Publishing Clients . 81

5.7.9 Block Storage . 82

ix

5.7.10 Storage receipts . 84

5.7.11 Storage commitment . 84

5.8 Implementation and Performance 86

5.8.1 Collection Data Structures 86

5.8.2 Tangler URLs . 89

5.8.3 Hash Trees . 91

5.8.4 Entanglement . 93

5.8.5 Byzantine Agreement . 95

5.8.6 Anonymous Communication Channel 98

5.8.7 Tangler Client Implementation 98

5.8.8 Tangler Server Implementation 106

5.9 Discussion and Future Work . 109

6 Conclusion 111

x

List of Figures

4.1 Publish Algorithm . 27

4.2 Retrieve Algorithm . 28

4.3 Publishing Mutually Hyperlinked Documents 41

4.4 Publius Publish Screen . 45

5.1 Tangler Collections . 61

5.2 Publish Algorithm . 67

5.3 Consistent Hashing . 80

5.4 Initial Inode Structure . 87

5.5 Secondary Inode Structure . 88

5.6 Collection Root Structure . 89

5.7 Collection Tangler URL . 89

5.8 Hash Tree of Order 3 . 92

5.9 Dolev-Strong Byzantine Agreement Algorithm 97

5.10 Tangler Publish Screen . 101

5.11 Storage Coupon Message Format 103

xi

List of Tables

5.1 Certifying Path Creation Time and Size (order 10) 90

5.2 Certifying Path Creation Time and Size (order 100) 90

5.3 Hash Tree Build Time In Seconds 93

5.4 Average Entanglement and Reconstruction Time In Seconds 95

5.5 Token Operation Performance In Milliseconds 106

xii

Chapter 1

Introduction

In many cases, censoring documents on the Internet is a fairly simple task. Almost

any published document can be traced back to a speci�c host, and from there

to an individual responsible for the material. Someone wishing to censor this

material can use the courts, threats, or other means of intimidation to compel

the relevant parties to delete the material or remove the host from the network.

Even if these methods prove unsuccessful, various denial of service attacks can be

launched against a host to make the document diÆcult or impossible to retrieve.

Unless a host's operator has a strong interest in preserving a particular document,

removing it is often the easiest course of action.

A censorship-resistant publishing system allows an individual to publish a doc-

ument in such a way that it is diÆcult, if not impossible, for an adversary to

completely remove, or convincingly alter, a published document. One useful tech-

nique for ensuring document availability is to replicate the document widely on

servers located throughout the world. However, replication alone does not block

1

censorship. Replicas need to be protected from accidental or malicious corruption.

In addition, a censorship-resistant publishing system needs to address a number of

other important issues, including protecting the publisher's identity while simul-

taneously preventing storage
ooding attacks by anonymous users.

This dissertation presents the design and implementation of two very di�erent

censorship-resistant publishing systems. The �rst system, Publius, is a web-based

system that allows an individual to publish, update, delete and retrieve documents

in a secure manner. Publius's main contributions include a URL based tamper

checking mechanism, a method for updating or deleting anonymously published

documents and a method for publishing mutually hyperlinked documents.

The second system, Tangler, is a peer-to-peer system whose contributions in-

clude a unique publication mechanism and a dynamic self-policing network. The

bene�ts of this new publication mechanism include the automatic replication of

previously published content and an incentive to audit the reliability with which

servers store content published by other people. In part through these incentives,

the self-policing network identi�es and ejects servers that exhibit faulty behavior.

An important aspect of both systems is that the servers storing the published doc-

uments do not know the content of documents being stored. In Publius, each server

stores encrypted documents. In Tangler, this is taken a step further|each server

is storing blocks that have no meaning unless they are combined, in well-de�ned

ways, with other blocks stored on the servers.

2

1.1 Problem Statement

In this dissertation, we will refer to the party wishing to censor documents as

the adversary, and to the party wishing to publish documents as the publisher.

All published documents reside on one or more servers that are connected to the

Internet. Interested third parties, called readers, connect to these servers in order

to retrieve and read the documents stored on them.

Censorship on the Internet exists in two main forms. Both forms attempt to

prevent the readers from retrieving and reading documents stored on the servers.

In the �rst form of censorship, the adversary attempts to prevent the reader from

contacting the servers. This is usually accomplished by using some sort of block-

ing software such as a �rewall. This form of censorship is practiced by many

governments, including China, Saudi Arabia and Vietnam [58]. A number of soft-

ware tools have been developed that attempt to circumvent this form of censor-

ship [61, 26]. These tools were designed to route documents in a censorship-

resistant manner|documents are routed through networks that are not blocked

by the adversary.

In the second form of censorship, the adversary attempts to remove or modify

documents stored on the servers. It is this form of censorship that this dissertation

addresses. More speci�cally, this dissertation focuses on the design of censorship-

resistant publishing systems. Such systems allow the publisher to publish a doc-

ument in such a way that it is diÆcult, if not impossible, for the adversary to

completely remove, or convincingly alter, a document stored on the servers. We

say that such systems are robust if the document cannot be erased|the system

3

provides reliability. We say that a censorship-resistant publishing system is secure

if the protocols can't be subverted to hide the document|the system provides

availability.

1.2 Dissertation outline

This rest of this thesis is organized as follows.

Chapter 2: The issues and design challenges one must face when building a

censorship-resistant publishing system.

Chapter 3: Related work.

Chapter 4: The design and implementation of Publius, a web-based censorship-

resistant publishing system.

Chapter 5: The design and implementation of Tangler, a peer-to-peer-based

censorship-resistant publishing system.

Chapter 6 (Conclusion): A brief summary of the contributions of Publius and

Tangler.

4

Chapter 2

Design Challenges

Much of the early work in censorship resistant publishing has been done in the

context of building a system to realize Anderson's Eternity Service [4]. The goal of

the Eternity Service is to provide a server-based storage medium that is resistant

to denial of service attacks and destruction of most participating �le servers. An

individual wishing to publish a document simply submits it to the Eternity Service

along with an appropriate fee. The Eternity Service then copies the document onto

a random subset of participating servers. Once submitted, a document cannot

be removed from the Eternity Service. Therefore, an author cannot be forced,

even under threat, to delete a document published on the Eternity Service. In

his Eternity Service paper Anderson didn't specify the underlying algorithms and

protocols needed to construct such a system. This has led several individuals and

research groups to design and implement a variety of systems whose goals closely

mirror or were inspired by the Eternity Service. In this chapter we examine the

issues and design challenges one must face when building a censorship-resistant

5

publishing system.

2.1 Design Issues

The brief description of the Eternity Service gives us some idea of the architectural

and design issues that must be addressed in order to build such a system. The

most obvious issue is that of storage. We need a suÆcient number of servers to

participate so that published documents can be replicated. Once these servers

have been procured, additional issues such as naming and storage policy must be

addressed. Simply naming the documents via a publisher-provided �xed length

string could cause problems if two documents are named the same. An adversary

could publish a document with a speci�c name in order to prevent others from

publishing under that same name. We need a storage policy to determine which

servers will store the document. Does the document get stored on only a handful

of servers or all participating servers? Storing the document on all participating

servers could potentially make the document more censorship-resistant but may

not make e�ective use of the system's limited disk space. If some of the servers

could be run by potential adversaries, a mechanism will be needed to protect the

integrity of the published document and possibly to protect the identity of the

publisher. In the following sections, we brie
y discuss each of these design issues

in very general terms. Speci�c algorithms, protocols and cryptographic primitives

are described in later sections.

6

2.2 Storage Servers

Clearly, a robust censorship-resistant system needs to consist of a collection of

servers. A single server is vulnerable not only to a potential adversary but also to

mother nature, the electric company and the network connectivity provider. An

adversary can use threats, the law or other means to force the relevant parties

to remove the server from the network. Ideally, the servers would be located

throughout the world, in di�erent judicial domains. This would make judicial

attacks harder and probably make threat-based attacks more expensive.

All of the censorship-resistant publishing systems described in this dissertation

employ a volunteer-based storage system in which individuals contribute space

on their own servers. The notion of volunteering of one's computer resources for

the bene�t of others is well established and has been successfully applied to such

areas as anonymous remailers [39] and distributed computing [57, 10]. However,

allowing anyone to join the system makes it possible for adversaries to join the

system. These adversaries can collude to manipulate the system in various ways.

For example, a group of adversaries could attempt to censor, or expose the author

of, a particular document.

2.3 Naming and Tamper Protection

Some mechanism is needed to name published documents. One possible scheme is

�rst-come-�rst-served, but this scheme could lead to so called \name-squatting"

attacks wherein an adversary publishes a document with a given name in order to

prevent others from publishing under the same name. One way to prevent such

7

attacks is to name documents with the help of a cryptographic transform that

cannot be easily forged (such as a hash or public key). Unfortunately, this method

of naming documents usually prevents a publisher from associating a \meaningful

name" with his published document. However, it does allow the publisher to embed

tamper protection within the document's name. For example, a document could

be named by the cryptographic hash of the document's content. An individual

retrieving the document from a server can compute the cryptographic hash of the

retrieved document and compare it against the hash used to name the document.

If they are di�erent, the individual knows the document has been modi�ed. The

individual can then attempt to retrieve the document from a di�erent server.

2.4 Data Storage

There are a number of ways to store documents on the servers. The most obvious

is simple replication|the document is copied to some subset of servers. However,

this is not the only option. Documents can be broken into blocks and these blocks

can be stored on the servers. Various transforms, such as encryption or error-

correction encoding, can be applied to the document and the resultant data can

be stored on the servers. We call this resultant data the processed document.

Several censorship-resistant publishing systems encrypt documents before storing

them on the servers. This is done to prevent the server's owner from knowing

what content his server is storing. If a server owner does not know what content

his server is storing, he may be less likely to censor or be held responsible for that

content.

8

Another important issue is that of processed document placement|deciding

which servers will store the processed document. The most widely used schemes

rely on applying a function to the processed document. The output of this func-

tion determines which servers should be responsible for storing the document or

fragments of the document. For example, distributed hash tables built using con-

sistent hashing [35] map the processed document to the servers by applying the

SHA-1 cryptographic hash to the processed document.

2.5 Untraceable Communication Channel

Censoring a document is sometimes easier if the adversary knows the identity of

the publisher. The adversary may be able to use various legal and illegal threats

to force the publisher, or relevant third parties, to remove the document or other-

wise make it unavailable. Therefore, an untraceable communication channel is an

important part of a censorship-resistant publishing system. It allows the publisher

to protect his identity from the adversary. Untraceable communication channels

typically allow two parties to anonymously communicate with each other|at least

one of the parties does not know the true identity of the other party.

These channels can also be used to protect the identity of the reader. The

reader retrieves a copy of the document. The adversary may wish to �nd and

delete all copies of the document|this makes the reader a possible target of the

adversary. Using the anonymous communication channel the reader can hide his

true identity. In addition, the reader may be more comfortable reading a particular

document if he knows his identity is protected.

9

Chapter 3

Related Work

In this section we survey previous work related to censorship-resistant publish-

ing systems. Section 3.1 brie
y describes several previously proposed censorship-

resistant publishing systems. Section 3.2 examines the design of the untraceable

communication channels that were described in Section 2.5. The last section de-

scribes systems that attempt to securely replicate data. While these systems were

not designed to be censorship-resistant, secure replication is an important compo-

nent of censorship-resistant publishing.

3.1 Censorship Resistant Systems

This section surveys previously proposed censorship-resistant publishing systems.

3.1.1 Usenet Eterntiy

Usenet Eternity [8] is a Usenet-based censorship-resistant publishing system. Using

PGP [69], the publisher formats and signs the document to be published. The for-

10

matted document is then posted to the alt.anonymous.messages newsgroup. The

Usenet NNTP protocol propogates the document to all subscribing news servers.

This clearly leads to robust replication of the document as thousands of Usenet

news servers exist worldwide [62]. However, using Usenet as the replication mech-

anism is not without problems. Usenet news servers typically store articles for

only a short period of time. In addition, a posting can be locally censored by

the news administrator or by someone posting cancel or supersede requests [62].

This latter problem is minimized by the fact that many Usenet news sites ignore

cancel requests [25]. A piece of client software called the Eternity Server is used to

read the anonymously posted articles in the alt.anonymous.messages newsgroup.

The Eternity Server is capable of caching some newsgroup articles. This helps

prevent the loss of a document when it is deleted from Usenet. The signature

that is included with the posted document allows the reader to tamper check the

document.

3.1.2 Freenet

Freenet [18] is composed a collection of volunteer servers that store published

documents. Servers can join and leave the system at will. Each server maintains a

database that \characterizes" the documents stored on some of the other servers

in the network. This characterization is essentially a range of SHA-1 hash values.

Documents are named by the SHA-1 hash of their content. The publisher connects

to a server and submits a document for publication. The document is then stored

on several Freenet servers. Exactly which servers will store the document depends

on the database entries of the various servers. The database entries determine

11

which servers will be contacted when a retrieve or storage request is received.

The reader contacts a server and requests a document by its SHA-1 hash. If

the requested document is already on the server, the document is returned to

the reader. Otherwise, the server forwards the request to another server. Each

server forwards the request until either the document is found or the message is

considered timed-out. If the document is found it is passed back through the

chain of forwarding servers. Each server in this chain can cache the document

locally. It is this caching that plays the main role in dealing with the censorship

issue. The local caching increases the number of copies of the document, thereby

making the job of the adversary a bit harder. Popular �les will be retrieved, and

therefore cached, more frequently. The main problem with Freenet is that there is

no guarantee that one will actually be able to �nd the document. The database

stored at each machine merely provides hints as to where a particular document

might reside. A request for a �le may time-out before it arrives at the server

holding the �le.

3.1.3 Intermemory

Intermemory [29] is a system for achieving an immense, self-replicating distributed

persistent RAM using a set of networked servers. The publisher joins the Inter-

memory by donating some disk space, for an extended period of time, in exchange

for the right to store a much smaller amount of data in the Intermemory. Each do-

nation of disk space is incorporated into the Intermemory. Documents stored on the

Intermemory are broken into blocks. An erasure-code transform (a form of error-

correcting codes) is applied to each block resulting in a collection of smaller blocks

12

that are suitable for storage on the Intermemory. Only a small portion of these

smaller blocks are needed to reconstruct the original block. A small Intermemory

prototype is described in [17]. The security and cryptographic components of the

system were not fully speci�ed in either paper, therefore it is diÆcult to comment

on its security or anonymity properties.

3.1.4 Janus and Rewebber

Janus [20] and Rewebber [32] take a very di�erent approach to censorship resistant

publishing. Rather than attempting to highly replicate a document both systems

attempt to hide the true location of a web-based document by utilizing a URL

rewriting scheme. With Janus, the publisher submits URL U to the server and

receives a Janus URL in return. This Janus URL has the following form

http://www.janus.de/surf-encrypted/Ek(U)

Where Ek(U) represents URL U encrypted with Janus's public key. This new URL

hides U's true value and therefore may be used as an anonymous address for URL

U. Upon receiving a request for a Janus URL, Janus simply decrypts the encrypted

part of the URL with its private key. This reveals the Web page's true location

to Janus. Janus now retrieves the page and sends it back to the requesting client.

Just before Janus sends the page back to the client each URL contained in the

page is converted into a Janus URL. The problem with the Janus solution is that

the Janus server itself can easily censor the document|either by not retrieving it

or rewriting the content before being sent back to the requesting node.

Rewebber consists of a collection of volunteer servers, each of which runs an

HTTP proxy server and possesses a unique public/private key pair. Each HTTP

13

proxy server is addressable via a unique URL. The publisher, who wishes to hide

the true location of WWW accessible �le f, �rst decides on a set of Rewebber

servers through which a request for �le f is to be routed. Using an encryption

technique similar to the one used in onion routing (Section 3.2.1), the URLs of

these Rewebber servers are encrypted to form a URL U. Upon receiving an HTTP

GET request for URL U, the Rewebber proxy uses its private key to peel away

the outermost encryption layer of U. This decryption reveals only the identity of

the next Rewebber server that the request should be passed to. Therefore only

the last Rewebber server in the chain knows the true location of f. The problem

with this scheme is that if any of the Rewebber servers along the route crashes,

or is operated by an adversary, then �le f cannot be found. Only the crashed,

or adversarial, server possesses the private key that exposes the next server in

the chain of Rewebber servers that eventually leads to �le f. The use of multiple

Rewebber servers and encryption leads to long URLs. In order to associate a

meaningful name with these long URLs the TAZ server was devised. TAZ servers

provide a mapping of names (ending in .taz) to URLs in the same way that a DNS

server maps domain names to IP addresses.

3.1.5 Free Haven

Free Haven [21] is unique among all the previously described systems in that it

requires the participating servers to monitor each other's behavior. Published �les

are named by a public key and broken into blocks using Rabin's Information Dis-

persal Algorithm (a type of error-correcting code) [48]. The individual blocks are

stored on participating servers. The Free Haven servers trade the blocks of pub-

14

lished �les and communicate using anonymous remailers. The trading of blocks

induces trust relationships that are developed over time. Violations of trust are

broadcast to other servers in the Free Haven network allowing each server to adjust

its trust ratings. In order to reconstruct a �le, a server broadcasts a request for

all the component blocks of the �le. Each server that possesses one of the com-

ponent blocks sends it back to the requesting server via the anonymous remailer.

The frequent trading of blocks and the use of anonymous remailers makes it dif-

�cult for the adversary to determine the actual location of the component blocks.

Free Haven has not been fully speci�ed or implemented, therefore it is diÆcult to

comment on its robustness properties.

3.1.6 Dagster

The publication scheme described in [65] shares some of the goals of the entan-

glement scheme described in Section 5.6. The term \intertwine" is used to de-

scribe the XORing of newly published documents with previously published doc-

uments. Newly published documents are \intertwined" with previously published

ones. However, in order to read a published document one must retrieve all of the

documents that were intertwined with it. This is not the case with entanglements.

Although XORing is more eÆcient than our entanglement scheme, we believe that

entanglement is a more robust scheme due to the fact that not all \intertwined"

documents need to be available to recover a published document. Dagster was in-

tentionally designed to be brittle in order to dissuade the censorship of intertwined

documents. Censoring an intertwined document could prevent other, perhaps more

popular, documents from being read.

15

3.2 Connection-Based Anonymity

Connection-based anonymity tools are meant to provide an untraceable communi-

cation channel of the kind that was described in Section 2.5

Several anonymity tools have been developed around the concept of mix net-

works [15]. A mix network is a collection of routing nodes, called mixes, that

use a layered encryption technique to encode the path that a message should take

through a network. This layered encryption technique prevents individual routing

nodes along the path from determining the content and ultimate destination of the

enclosed message. Traditional mixes, also known as Chaumian mixes, use batch-

ing and message reordering to obscure the correlation between messages entering

and exiting the mix network. Due to the batching, message delivery times are

unpredictable and often lengthy. To address these problems a number of so-called

real-time mix networks have been developed. These mixes provide quick message

delivery at the expense of decreased protection against traÆc analysis aimed at

discovering which parties are communicating. One possible defense against this

type of traÆc analysis is to generate dummy traÆc that is indistinguishable from

regular messages that enter the mix network.

3.2.1 Anonymizer

The Anonymizer [5] provides connection based anonymity for HTTP requests. An

individual wishing to anonymously retrieve a web page simply sends a request for

that page to the Anonymizer. The Anonymizer then retrieves the page and sends

it back to the individual who requested it. The Anonymizer simply acts as a proxy

16

for the requesting client. Clearly, the Anonymizer does not really o�er any sort of

robust anonymity. The proxy system knows the identity of the requesting client

and therefore could potentially divulge the identity of the requesting client to a

third party.

Onion Routing and Freedom

Onion Routing [50] is a real-time, mix based system for anonymous and encrypted

Internet connections. An Onion Routing user creates a layered data structure

called an onion that speci�es the encryption algorithms and keys to be used as

data is transported to the intended recipient. As the data passes through each

onion-router along the way, it is decrypted and padded to a �xed size. All data

received within a brief period of time is batched and reordered before being sent

to the next onion router [66]. The data arrives at the recipient in plain text.

Onion routing proxies have been developed for several application level protocols

including HTTP and rlogin.

The Freedom anonymity system [31] provides an anonymous Internet connec-

tion that is similar to Onion Routing; however, it is implemented at the IP layer

rather than the application level. This allows Freedom to easily support transport

and application-layer protocols.

3.2.2 Crowds

Crowds [53] is a real-time anonymity system based on the idea that people can be

anonymous when they blend into a crowd. As with mix networks, Crowds users

need not trust a single third party in order to maintain their anonymity. Crowds

17

users submit their requests through a crowd, a group of web clients running the

Crowds software. Crowds users forward HTTP requests to a randomly-selected

member of their crowd. A crowd member, upon receiving an HTTP request from

another crowd member, can forward the request to yet another member of the

crowd or retrieve the document associated with the HTTP request. The crowd

members that forwarded the HTTP request essentially form a path from the re-

quest initiator to the server storing the requested document. Notice that each

member of this path cannot determine which crowd member initiated the request.

Each member of the path is simply forwarding the request and can convincingly

deny generating the request. Once the requested document is received from the

HTTP server it is passed back over the same crowd members that forwarded the

request. The main di�erence between a mix network and Crowds is in the way

paths are determined and packets are encrypted. In mix networks, packets are

encrypted according to a pre-determined path before they are submitted to the

network; in Crowds, a path is con�gured as a request traverses the network and

each crowd member encrypts the request for the next member on the path. Crowds

also utilizes eÆcient symmetric ciphers and was designed to perform much better

than mix-based solutions.

3.2.3 Buses for Anonymous Communication

When discussing the design of mix based communication systems we mentioned

that various precautions needed to be taken in order to prevent traÆc analysis.

One such precaution was the generation of dummy traÆc. Beimel and Dolev in [11]

describe a communication channel that uses a unique mechanism to prevent traÆc

18

analysis. A variation on this design, that is also presented in the paper, allows

sender-anonymous communication. The design was inspired by the operation of a

city bus. The bus makes various stops (nodes) on a circular path and individuals

(messages) get o� the bus depending on their intended destination. The protocol

assumes all communicating nodes have a unique public/private key pair and know

the unique predetermined circular path of the bus. Each communicating node

knows the address and public key of every other participating node. The protocol

also assumes a global clock with a global pulse such that a message can be delivered

from one node to its neighboring node in one clock pulse. The bus arrives at a

node at the beginning of a clock pulse.

The simplest version of the protocol does not provide sender anonymity. How-

ever we will brie
y describe this protocol as it forms the foundation for the version

of the protocol that does provide sender anonymity. The role of the bus is very

similar to that of the token in the token ring network protocol. The node that the

bus stops at is the only node that can send a message. The bus contains n2 seats

where n is the total number of nodes participating in the system. Once the bus

stops at node i then node i can send a message to node j by simply placing the

message in seat (i; j). Node i can write to any seat in row i in order to send a

message to the node represented by the corresponding column. Before the message

to node j is placed in seat (i; j) it is encrypted with the public key of j. In order

to thwart traÆc analysis node i places an encrypted message in every seat in row

i. Encrypted dummy messages are placed in seats for nodes that i does not wish

to send a message to. The encryption mechanism gives no hint to an adversary as

to the type of message (legitimate or dummy) being sent. Therefore an adversary

19

cannot learn which nodes are communicating. Every pair of nodes is equally sus-

pect. When the bus arrives at node k, node k decrypts every message in column

k with its private key and discards any dummy messages.

To support sender anonymity fewer seats can be utilized|that is fewer seats

are placed in each column. When node i wishes to send a message to node j it

randomly writes into one of the seats in column j. The problem is that this random

writing could lead to a situation in which one message overwrites another. The

paper discusses some ways of improving the performance of this scheme.

3.3 Integrity and Availability Schemes

As stated in Section 2.2, replication is one of the major components of a censorship

resistant system. Therefore we brie
y survey some related work in the area of

systems speci�cally targeting replication.

3.3.1 SFSRO and CFS

SFSRO [28] is a read-only �le system that allows an individual to widely replicate

�les on untrusted servers. Files to be replicated are broken into data blocks. Each

data block is named by the SHA-1 hash of the block's content. A data block's

name is called its handle. Inodes are built to allow the reconstruction of �les from

data blocks. Each inode stores the handles of the data blocks that are needed to

reconstruct the associated �le. Directory data structures are created to link �le

names to inodes. The handle of an inode and directory is the same as that of a

data block|the SHA-1 hash of its content. Files published together are named

20

by a public key. A root data structure is formed to hold this public key as well

as information about the published �les. The root data structure plays the same

role as the root in a Merkle Hash Tree [40]. The leaves of the tree are the handles

of the �les, inodes and directories of the �le system. Once the integrity of the

root data structure has been veri�ed one can verify the integrity of any �le system

component. The blocks and root data structure are packaged into a database

that is replicated on many untrusted servers. The untrusted servers do not have

access to the private key used to sign the root data structure. This means that

an adversary cannot convincingly modify any part of the �le system. The worst

an adversary can do is simply delete the content thereby forcing a client to �nd

another server that is hosting the database.

The Cooperative File System (CFS) [19] replaces the SFSRO replicated database

with a scalable peer-to-peer distributed hash table. Individual data blocks are

stored on a dynamic set of servers. Each server is named by the SHA-1 hash of

its IP address. This hash is called the server's handle. Note that this is the same

naming mechanism that was used by SFSRO to name data blocks and associated

data structures. EÆcient organization of participating servers is achieved using

Chord [64]. Using the server handles, Chord essentially organizes the participat-

ing servers into an addressable virtual ring. The ring is traversed in a clockwise

manner and therefore each server has a unique successor server. A data block's

handle value determines the server, s, that will store the block. In order to achieve

a measure of fault tolerance the block is also stored on the k servers that follow

s in a clockwise traversal of the ring. Locating a particular block requires about

log(N) servers to be contacted, where N is the number of participating servers.

21

CFS utilizes a caching mechanism to speed up queries for popular blocks. Once a

block is retrieved it is replicated on the log(N) servers that were initially needed

to locate the block. This allows faster future lookups as requests for a block may

be satis�ed from a server's local cache. Cached blocks are replaced using a least

recently used replacement mechanism.

3.3.2 Secure Replicated Data

In [34] Herlihy and Tygar describe a method for replicating data on a collection

of untrusted servers in such a way that fewer than t colluding servers cannot

determine the content of the �les being stored. The replication scheme requires

a dealer, D, that creates a secret key, k, that will be used to encrypt data that

will be stored on the servers. Using Shamir's secret sharing scheme [59], the dealer

creates n shares such that any t shares can be used to reconstruct k. A single

share is stored on each server. Authenticated clients contact t servers for shares

and reconstruct k which can be used to encrypt �les to be stored on the server

and decrypt data coming from the server. The technique can also be used with

public key cryptography|shares can be created for the public and private key.

Using public key cryptography the dealer can create di�erent share thresholds for

encryption and decryption (i.e. three shares of the public key, pk, need to be

combined to form pk and seven shares of the private key, sk, need to be combined

to form sk). The technique is described in a quorum based distributed computing

environment. In such an environment client requested operations do not need

to take place on all participating servers. Rather operations are performed on a

quorum of servers. A quorum is a subset of all participating servers. As long as

22

one of the quorum servers is contacted during subsequent operations the system

can be kept in a consistent state.

3.3.3 Secure State Machine Replication

State machine replication is a general method for implementing a fault tolerant

service by replicating the service and coordinating client interaction with server

replicas [54]. A service is implemented by a collection of servers, each of which pro-

vides the same interface to clients. The replication allows the service to continue

operation even when some servers crash, loose network connectivity or behave in

a Byzantine manner. The challenge in state machine replication is to make sure

that all participating servers execute the same sequence of instructions so that

client queries are answered consistently across all servers. This level of consistency

is not necessary for the censorship-resistant publishing systems described in this

dissertation. However, the underlying techniques and algorithms could be of use

to maintain the consistency of propogated information, such as the system mem-

bership. Indeed, some of these techniques were considered during the initial design

of Tangler.

Each of the state machine based systems described below implement the notion

of a view|a listing of the servers known to be participating in the system. The view

may periodically change due to new servers being added or servers being removed.

Rampart [52, 51] and BFS [14] were both developed to provide the foundation

for programmers who are building Byzantine fault tolerant systems based on the

�nite state machine replication technique. BFS builds on the work of Rampart,

however the underlying BFS protocols and algorithms are more eÆcient, simpler

23

to implement and don't rely on synchrony assumptions for safety. Therefore our

discussion below will focus on BFS. The BFS system consists of a �xed collection

of servers called replicas. The replicas are uniquely numbered 1:::n where n is the

number of replicas. At any time one replica is designated is the primary. The

primary is responsible for ordering the requests made by clients. Upon receipt of a

client request the primary initiates a three phase protocol to atomically multicast

the request to all replicas. This ensures that all non-faulty replicas execute the

client instructions in the same order. If any of the replicas believe that the primary

is faulty it can begin a view change protocol that requires 2f + 1 replicas to agree

the primary is faulty (f is the maximum number of faulty replicas the system can

tolerate). The view change protocol moves the system to a the next view. Views

are sequentially numbered which allows the primary to be inferred automatically

from the view number|the primary for view v is replica number v mod n where

n is the number of replicas.

24

Chapter 4

Publius

Publius was designed to be an easy-to-use, web-based, robust censorship-resistant

publishing system. It incorporates a number of features that were either lacking,

or poorly integrated into, previously implemented censorship-resistant publishing

systems. These features include a secure update and delete mechanism, a web URL

based tamper-check mechanism and the ability of publish and retrieve mutually

hyperlinked content. This chapter describes the design and implementation of

Publius. The last section of this chapter describes the large scale trial of Publius

that was conducted during the summer of 2000.

The name Publius was �rst used by the authors of the Federalist Papers,

Alexander Hamilton, John Jay, and James Madison. This collection of 85 arti-

cles, published pseudonymously under the pen name Publius, was in
uential in

convincing New York voters to ratify the proposed United States constitution [46].

25

4.1 Overview

Publius assumes that there is a system-wide list of available, geographically dis-

persed, volunteer servers. Published documents are encrypted by the publisher

and copied to some of the servers. Therefore, each server has no idea what type

of document it is hosting|it simply stores random looking encrypted data. The

publish operation is robust|even if an adversary controls a majority of the servers

storing the document, the document can still be retrieved. The publication process

produces a special URL, called a Publius URL, that allows a reader to retrieve,

decrypt and tamper check the published document.

Once in possession of the Publius URL, the reader can retrieve the encrypted

document from one of the servers. The reader then uses the information embedded

in the Publius URL to decrypt and tamper check the document. If the tamper

check fails, the reader can repeat the process with an encrypted document retrieved

from one of the other storing servers. Published documents are crytographically

tied to their Publius URLs. Any modi�cation to the stored document results in a

failed tamper check.

Publius also provides a way for publishers (and nobody else) to update or delete

their published docments. In the next several sections, we describe the design and

implementation of Publius. Almost all of the examples and pseudocode presented

in this chapter assume the publisher wishes to publish a single HTML document.

Publishing more complicated content, such as multiple web pages that have links

to each other, is covered in Section 4.7.

26

Procedure Publish (Document D, ServerList serverList, integer n, integer k)
Generate symmetric key K
fDgK=Encrypt D under key K
shares[1..n]=From K create n shares such that k shares are needed to re-form K
storingServers[1..n]=DetermineStoringServers(serverList)
for i in [1..n]:

dirName=MD5(D � shares[i])
store fDgK and shares[i] on server storingServers[i] in directory dirName

publiusURL=formPubliusURL(D)
return publiusURL

End Publish

Figure 4.1: Publish Algorithm

4.2 Publish

The following text describes the publish pseudocode of Figure 4.1. For each docu-

ment, D, to be published a symmetric key, K, is generated. In the initial design of

Publius this key was generated from a combination of the SHA-1 and MD5 hash

of M . SHA-1 and MD5 are collision-resistant hash functions that produce a �xed

length output from an arbitrary-length input. Finding any two inputs of SHA-1 or

MD5 that produce the same output is believed to be computationally intractable.

Document D is then encrypted, using the Blow�sh symmetric cipher [55], to pro-

duce fDgK, D encrypted under K.

Using Shamir's secret sharing [59], key K is split into n shares such that any k

of them can re-form K. Combining fewer than k shares reveals nothing about K.

The values of n and k specify the robustness property of the published document|

the encrypted document is stored on n servers such that k of these servers must be

available to read the document. In the initial release of Publius the default values

were n = 10 and k = 3, however, each value could be changed by the publisher.

27

Procedure Retrieve (PubliusURL u)
parsedURL=parsePubliusURL(u)
servers=parsedURL.getServers()
hash=parsedURL.getTamperCheck()
k=parsedURL.getNumRequiredShares()
serversToContact=set of all unique k-subsets of the elements in servers
while (serversToContact != fg):

s=serversToContact.removeAndReturnRandomElement()
shares=fg
for each server in s:

shares.add(retrieve appropriate share from server)
encryptedDocument=retrieve encrypted document from random server in s
K=form encryption key from shares
document=decrypt encryptedDocument using key K
documentHash=cryptographicHash(document)
if (documentHash==hash) return document

return \Document could not be retrieved"
End Retrieve

Figure 4.2: Retrieve Algorithm

Recall that each publisher possesses a list of the available Publius servers. From

this list n random servers are chosen. The encrypted document and one share are

stored on each of these randomly selected servers. Each server stores a unique

share. On the server, the encrypted document and share are stored in a directory

named from the MD5 hash of the concatenation of the document and the share.

Once the encrypted document and shares have been stored on the servers, a Publius

URL is formed. This URL speci�es which servers contain a copy of the encrypted

document and a share. In addtion, the URL contains a cryptographic hash of the

original document D. As described in Section 4.3, this hash allows the reader to

tamper check the document. The exact form of the Publius URL is described in

Section 4.7.1.

28

4.3 Retrieve

The following text describes the retrieve pseudocode of Figure 4.2. A reader must

possess the Publius URL of the document he wishes to read. Given a Publius

URL, u, the retrieve algorithm parses u to determine the servers that are storing

the document, the cryptographic hash that is needed for the tamper check, and

the number of shares needed to form the decryption key. Let k be the number of

shares needed to form the decryption key.

The retrieve program generates the set of all unique k-server subsets|each of

the k-subsets speci�es k servers that can be contacted to retrieve the shares needed

to reconstruct the decryption key. In addition, the encrypted document can be

retrieved from any of these k servers. Once the shares and encrypted document

have been retrieved, the shares are combined to form the decryption key, K. Using

K, the encrypted document is decrypted. The cryptographic hash of the decrypted

document is compared with the hash that was stored in the Publius URL. If they

match, the document is returned to the reader. If not, the process is repeated with

a new k-subset. If no match if found after all k-subsets have been tried, a failure

message is returned to the reader.

4.4 Delete

It is sometimes desirable for a publisher to be able to delete previously published

documents from all servers, while nobody else should be able to delete these docu-

ments. To achieve this, the publisher enters a password, PW , during the publica-

tion process. With the addition of this password the publication process involves

29

sending the encrypted document, share and H(server domain name �PW) to the

servers that will be storing the published document. Let H(server domain name �

PW) be the MD5 hash of the concatenation of the server domain name and the

password PW . The server stores this hash value in the same directory as the

encrypted �le and the share, in a �le called password. The reason this value is

stored as opposed to just the PW or H(PW), is that it prevents a malicious server

from learning the password and deleting the associated encrypted document from

all other servers that are storing it. Even though the password itself is not stored

on the server one must still choose this password carefully. A carefully chosen

password is necessary because this storage scheme is vulnerable to a dictionary

attack.

An adversary, possessing a Publius' password �le and associated server IP ad-

dress, can perform the password transformation on an arbitrary list of words. In

particular the adversary can perform the password transformation on a list of

guessed passwords (perhaps a whole dictionary). Once this list of passwords has

been transformed into the Publius password format, the adversary can compare

the list to the entry in the document's password �le. If a match is found then

either the adversary has found the password or he has found a collision in the

hash function H. In the former case, the adversary can now update or delete the

document on all servers storing the document. The IP address of all servers can

be determined from the Publius URL. In order to prevent the dictionary attack

the system allows the publisher to specify that a particular �le is undeleteable.

A publisher, at the time of publication, has the option of specifying that a

document should be undeleteable. Specifying this \do not delete" option tells the

30

hosting servers not to create the password �le. The lack of the password �le causes

all delete and update (Section 4.5) requests to fail. Of course this doesn't prevent

a server administrator from deleting the document from his server, however it

does prevent someone from trying to delete the document via the Publius Delete

protocol. This makes a brute force password guessing attack a waste of time as no

password will delete the �le.

To delete a published document, the client sends H(server domain name �

PW), along with the name of the directory that is storing the document to delete.

The server compares the password received to the one stored, and if they match,

removes the directory matching the and all of the �les in it.

4.5 Update

Publius provides a mechanism for a publisher to update a document that he pre-

viously published. The previously described password mechanism is utilized to

protect the document against malicious update. Thus, only the individual poss-

esing the proper password can update a previously published document. The idea

is to enable the publisher to change content without changing the URL, because

others may have linked to the original URL. After the update, anyone retrieving

the original URL receives the newly updated document.

To update a document the publisher supplies the update program with the

name of the �le containing the newly updated document, the Publius URL of the

document to be updated, the original password, PW , and a new password, NPW .

The update program �rst publishes the new document using the publish algorithm

31

described in Section 4.2. The new password, NPW , is the update and delete

password for the newly published document. This publication process results in

a Publius URL, newURL. The update program then parses the original URL to

determine which server are storing the original document. Each of these servers

is sent a message specifying the name of the directory that contains the �le to

update, the associated hashed password H(server domain name � PW), and the

Publius URL of the updated document, newURL. Each server then places the

new URL in a �le called update. This �le is stored in the same server directory

that contains the document to be updated.

When a reader requests the encrypted �le or a share, if the update �le exists,

the server returns the update URL (located in the update �le). The readers's client

software receives the update URL from k servers and compares them, if they are

all equal, then the new URL is retrieved instead. If the k URLs do not match, the

client software tries contacting the other servers until it receives k matching URLs

or k shares. If neither of these occur then the document cannot be retrieved.

Although the update mechanism is very convenient it leaves Publius content

vulnerable to a redirection attack. In this attack several malicious server admin-

istrators collaborate to insert an update �le in order to redirect requests for the

Publius content. A mechanism exists within Publius to prevent such an attack.

During the publication process the publisher has the option of declaring a Publius

URL as nonupdateable. When a Publius client attempts to retrieve Publius con-

tent from a nonupdateable URL all update URLs are ignored. See Section 4.7.1

for more information about nonupdateable URLs.

Another problem with update is that it allows servers to discover what they are

32

storing. During the update process the entire Publius URL is stored at each server.

Once in possession of the URL each server can decrypt the associated document

and learn its content.

4.6 Maintaining a consistent state

The distributed nature of Publius means that at any particular time some set

of servers may be temporarily unavailable. A server can be down for mainte-

nance, network problems may prevent communication or the server may have sim-

ply crashed. Publius was designed to with this type of environment in mind|the

multiple shares and redundant storage of the encrypted �les ensure that Publius

content can be retrieved even when a majority of the servers are unavailable.

In an environment where servers may be temporarily unavailable the application

of either the delete or update command could leave Publius documents in an

inconsistent state. For example suppose a document is published on 10 servers and

that 3 shares are required to form the decryption key. At some later point in time

the publisher of this document issues the update command. Unfortunately only 5

of the original servers can be contacted at the time of the update. Eventually all 10

servers become available and someone attempts to retrieve the published document.

Depending on which servers are contacted either the original or updated document

will be returned. The published document is in an inconsistent state. This same

sort of inconsistent state can arise with the delete command|only a fraction of

the servers may delete the requested document. Publius does not directly deal

with this problem. Instead the client software displays a message detailing the

33

outcome of the requested operation on each server. Each time a server performs

a Publius operation it sends an HTTP status code back to the requesting client.

Any status code other than 200 (the HTTP \OK" status code) is considered an

error. A description of the error is placed in the body of the response. These error

descriptions along with server time-out error messages are displayed after every

Publius operation.

Both the update and delete operations are idempotent. This means that there

is no harm in re-updating a previously updated site or trying to delete previously

deleted content. Therefore if an update operation fails on a set of servers the

update operation can be performed again at some later point in time. Hopefully

this second update operation will be issued to the previously unavailable servers.

The same can be said for the delete command.

4.7 Implementation

In this section we describe the software components of Publius and how these

components implement Publius functions. The Publius protocol is implemented

on top of HTTP.

4.7.1 Publius URLs

Each successfully published document is assigned a Publius URL. The desire to

remain compatible with older WWW browsers in
uenced the design of the Publius

URL. Many older browsers enforce the rule that a URL can contain a maximum

of 256 characters. This limit necessitated the need for the Publius server list.

34

Embedding the domain name of each Publius server in the URL would have been

far too costly in terms of character usage. Even if text compression techniques

were used the number of server names that would �t into the 256 character limit

would have been far too small for our intended purposes. However, almost all

current browsers essentially have no limit on the size of the URL. This allows us

to embed the server names in the Publius URL, e�ectively eliminating the need

for the server list. Simply embedding the domain name of the server is not enough

as we need to know the location of the server's CGI script as well. This script

provides the required Publius server functionality. This may seem unnecessary as

we could simply ask all server administrators to install the CGI script in a speci�c

directory (e.g. cgi-bin/publius). Such a system is very in
exible and may require

recon�guring the web server or obtaining greater access privileges. Therefore the

full URL (without the \http://" pre�x) would need to be stored.

Since the initial design of Publius, a more eÆcient and simpli�ed document

publication mechanism has been developed. Although this mechanism has not been

implemented, its bene�ts are clear. This new publication mechanism utilizes the

embedded server name URL format that was just described. This new publication

mechanism is described in Section 4.7.8. The original Publius URL is described in

this section.

A Publius URL has the following form

http : ==!publius!=options= encode(name1) : : : encode(namen)

The options section of the Publius URL is made up of 9 characters that de�ne

35

how the Publius client software interprets the URL. The options section encodes

four �elds { the Publius version number, the number of shares needed to form the

decryption key, the size of the server list and �nally the update
ag. The version

number allows the addition of new features to future versions of Publius while at

the same time retaining backward compatibility. It also allows Publius clients to

warn a user if a particular URL was meant to be interpreted by a di�erent ver-

sion of the client software. The next �eld identi�es the number of shares needed

to form the decryption key K. When publishing a document an individual can

specify the number of shares needed to re-form the document decryption key. This

value also indicates the number of update URLs that must match before the client

will retrieve the update URL returned by the servers. The update
ag determines

whether or not the update operation can be performed on the Publius document

associated with the URL. If the update
ag is set to 1 then the retrieval of updated

content will be performed in the manner described in Section 4.5. However if the

update
ag is 0 then the client will ignore update URLs sent by servers in response

to share and encrypted �le requests. The update
ag's role in preventing certain

types of attacks is described in Section 4.8.

Each of the URLs namei values consists of the MD5 hash of the concatena-

tion of the published document (prior to encryption) and share i of the encryption

key. A document published with 10 shares will have 10 namei values. The encode

function is the Base64 encoding function [1]. The Base64 encoding function gen-

erates an ASCII representation of the namei value. Note that the namei values

are dependent on every bit of document D.

The namei values are used to determine which servers are hosting the encrypted

36

document(and associated share) and to perform the tamper check on the decrypted

document. As you will recall, each publisher and reader has the list of Publius

servers. Assume this list has m entries. The retrieve algorithm parses the Publius

URL to determine the individual namei values. For each of the namei values the

retrieve algorithm performs the following calculation

locationi = (namei mod m)

Each locationi value yields a unique integer that is used as pointer into the Publius

server list. Each locationi value points to the Publius server that is storing one

copy of the encrypted �le and the ith share.

To tamper check the document, the retrieve algorithm computes the MD5 hash

of the concatenation of the unencrypted document and the ith share. If this hash

value is equal to namei then the document has passed the tamper check.

Here is an example of a Publius URL:

http://!publius!/010310023/VYimRS+9ajc=

B20wYdxGsPk=kMCiu9dzSHg=xPTuzOyUnNk=

O5uFb3KaC8I=MONUMmecuCE=P5WY8LS8HGY=

KLQGrFwTcuE=kJyiXge4S7g=6I7LBrYWAV0=

4.7.2 Server software

To participate as a Publius server, one only needs to install the Publius CGI script.

This CGI script constitutes the server software. The client software communicates

37

with the server by executing an HTTP POST operation on the server's CGI URL.

The requested operation (retrieve, update, publish or delete), the �le name, the

password and any other required information is passed to the server in the body of

the POST request. The server then attempts to perform the requested operation

and sends back a status code indicating the success or failure of the operation.

The CGI script has a number of con�gurable parameters. The server adminis-

trator may specify the maximum number of Publius �les that may be stored on the

server. Once this number has been reached the server will refuse any future publish

requests and reply to such with requests with an appropriate error code. Successful

delete requests free disk space and lower the published �le count thereby allowing

a previously \full" server to continue satisfying publish request. The maximum

size, in kilobytes, of a Publius �le is another parameter that can be set. The server

will refuse to store any �le larger than this speci�ed maximum and will return an

appropriate error code to the publishing client.

4.7.3 Client software

The client software consists of an HTTP proxy that implements all of the Publius

operations. Therefore the terms client software and proxy will be used inter-

changeably. The proxy easily interfaces with standard web browsers. The proxy

transparently sends non Publius URLs to the appropriate servers and passes the

returned content back to the browser.

Most browsers that support HTTP proxies allow one to specify which URLs

should not be sent to the proxy. This mechanism can be used to prevent non-

Publius URLs from using the proxy and thereby escape the slight performance

38

degradation one would expect from the use of an HTTP proxy.

The proxy performs all Publius operations and is therefore the intermediary

between the user and the Publius servers. The proxy can be run remotely or on

the same host as the browser. This is covered in greater detail in Section 4.9.2.

Upon receiving a retrieve request for a Publius URL the proxy �rst retrieves the

encrypted document and shares as described in Section 4.3 and then takes one of

three actions. If the decrypted document successfully veri�es, it is sent back to

the browser. If the proxy is unable to �nd a document that successfully veri�es an

HTML based error message is returned to the browser. If the requested document

is found to have been updated then an HTTP redirect request is sent to the browser

along with the update URL.

4.7.4 Publishing mutually hyperlinked documents

Suppose the publisher wishes to anonymously publish HTML documents C and

D. Document C has a hyperlink to document D and document D has a hyperlink

to document C. The publisher now faces the dilemma of having to decide which

document to publish �rst. If document C is published �rst then the publisher can

change D's hyperlink to C but cannot change C's hyperlink to D because C has

already been published. A similar problem occurs if the document D is published

�rst.

The problem for the publisher is that a published document is cryptographically

tied to its Publius URL|changing the document in any way changes its Publius

URL. This coupled with the fact that �le C and �le D contain hyperlinks to each

other generates a circular dependency { each document's Publius URL depends

39

on the other's Publius URL. What is needed to overcome this problem is a way

to break the dependency of the Publius URL on the �le's content. This can be

accomplished using the Publius Update mechanism described in Section 4.5. The

update mechanism adds a level of indirection which can be used to publish mutually

hyperlinked documents. Figure 4.3 illustrates the process of publishing mutually

hyperlinked content.

4.7.5 Publishing a directory

Publius contains a directory publishing tool that automatically publishes all �les

in a directory. In addition, if some �le, f, contains a hyperlink to another �le, g,

in that same directory, then f 's hyperlink to g is rewritten to re
ect g's Publius

URL. Mutually hyperlinked HTML documents are also dealt with in the manner

described in Section 4.7.4.

The Publisher could solve this problem by publishing all the �les in the direc-

tory, rewriting the appropriate URLs within those �les and then using the update

mechanism to republish the �les. This would certainly work but it would be

ineÆcient|publication and update are an expensive operations. Clearly, when

publishing a directory, it pays to minimize the number of publish and update op-

erations we perform. A more eÆcient directory publish mechanism is described

below.

The �rst step in publishing a directory, D, is to publish all of D's non-HTML

�les and record, for later use, each �le's corresponding Publius URL. All HTML

�les in D are then scanned for hyperlinks to other �les within D. If a hyperlink, h,

to a previously published non-HTML �le, f, is found then hyperlink h is changed to

40

C

D

C'

D'

hyperlink

hy
pe

rlin
k

update

update

1

2

3

4

5

6

Figure 4.3: Publishing mutually hyperlinked documents C and D

1) Publish C, this generates C's Publius URL

2) Publish D, this generates D's Publius URL

3) Modify document C to re
ect D's Publius URL, Call this document C 0, Publish C 0

4) Modify document D to re
ect C's Publius URL, Call this document D0, Publish D0

5) Update C's URL to point to C 0. All requests for C are redirected to C 0

6) Update D's URL to point to D0. All requests for D are redirected to D0

41

the Publius URL of f. Information concerning hyperlinks between HTML �les in

directory D is recorded in a data structure called a dependency graph. Dependency

graph, G, is a directed graph containing one node for each HTML �le in D. A

directed edge (x,y) is added to G if the HTML �le x must be published before �le

y. In other words, the edge (x,y) is added if �le y contains a hyperlink to �le x. If,

in addition, �le x contains a hyperlink to �le y the edge (y,x) would be added to the

graph causing the creation of a cycle. Cycles in the graph indicate that we need

to utilize the update mechanism for publishing mutually hyperlinked documents.

This mechanism was described in Section 4.7.4.

Once all the HTML �les have been scanned the dependency graph G is checked

for cycles. All HTML �les involved in a cycle are published and their Publius

URLs recorded for later use. Any hyperlink, h, referring to a �le, f, involved in a

cycle, is replaced with f 's Publius URL. All nodes in the cycle are removed from

G leaving G cycle-free. A topological sort is then performed on G yielding R, the

publishing order of the remaining HTML �les. For example, if �le B contains a

hyperlink to �le A then �le A will be listed before �le B in the output of the

topological sort. Therefore, �le A will be published before �le B. Formally, the

result of a topological sort of a directed acyclic graph (DAG) is a linear ordering of

the nodes of the DAG such that if there is a directed edge from vertex i to vertex

j then i appears before j in the linear ordering [2]. The HTML �les are published

according to order R. After each �le, f, is published, all hyperlinks pointing to f

are modi�ed to re
ect f 's Publius URL. Finally the update operation is performed

on all �les that were part of a cycle in G.

42

4.7.6 Publius content type

The �le name extension of a particular �le usually determines the way in which

a Web browser interprets the �le's content. For example, a �le that has a name

ending with the extension \.htm" usually contains HTML. Similarly a �le that has

a name ending with the extension \.jpg" usually contains a JPEG image. The

Publius URL does not retain the �le extension of the �le it represents. Therefore

the Publius URL gives no hint to the browser, or anyone else for that matter, as to

the type of �le it points to. However, in order for the browser to correctly interpret

the byte stream sent to it by the proxy, the proxy must properly identify the type

of data it is sending. Therefore before publishing a �le we prepend the �rst three

letters of the �le's name extension to the �le. An alternative implementation could

store the actual MIME type prepended with two characters that represented the

length of the MIME type string. The �le is then published as described in Section

4.2. When the proxy is ready to send the requested �le back to the browser the

three letter extension is removed from the �le. This three letter extension is used by

the proxy to determine an appropriate MIME type for the document. The MIME

type is sent in an HTTP \Content-type" header. If the three letter extension is

not helpful in determining the MIME type a default type of \text/plain" is sent

for text �les. The default MIME type for binary �les is \octet/stream".

4.7.7 User interface

In order to use Publius an individual sets their web browser to use the client

software (proxy) as their HTTP proxy. A Publius document can be retrieved in

the same manner in which one retrieves any other web based document. The URL

43

can be entered into the browser or one can click on a preexisting hyperlink. A web

based interface to the update,delete and publish operations has been developed

(See Figure 4.4). This interface allows one to select the Publius operation (update,

publish or delete) and enter the operation's required parameters such as the URL

and password. Each Publius operation is bound to a special !publius! URL that is

recognized by the proxy. For example the publish URL is !publius!PUBLISH. The

operation's parameters are sent in the body of the HTTP POST request to the

corresponding !publius! URL. The proxy parses the parameters and executes the

corresponding Publius operation. An HTML based message indicating the result

of the operation is returned.

4.7.8 Proposed Publication Mechanism

As described in Section 4.7.1, current browsers essentially have no limit on the size

of the URL. This allows us to dispense with the server list and embed the stor-

ing server information directly into the Publius URL. In addition, the document's

MIME type, decryption key and MD5 hash can also be placed into the URL. This

simpli�es the retrieval algorithm and tamper check process. One server can be ran-

domly selected from the URL and the encrypted document can be retrieved from

the server. The encrypted document can then be decrypted using the decryption

key stored in the URL. The MD5 hash of the decrypted document can then be

compared to the MD5 hash stored in the URL. If the tamper check fails, another

copy of the encrypted document can be retrieved from one of the other servers.

If the tamper check succeeds, the unencrypted document can be returned to the

reader.

44

Figure 4.4: Publius Publish Screen In addition to the password, a publisher can

specify the update and delete options that can be applied to the document. The number

of shares needed to reconstruct the document can also be set.

This simpli�ed design is clearly more eÆcient than the previous design as less

servers need to be contacted|there is no need to contact additional servers to

acquire the additional shares that make up the decryption key. Note that due

to the presence of the version number �eld in the original Publius URL both

schemes can be accommodated in future versions of Publius. The version number

determines which retrieve algorithm is appropriate for the URL.

45

4.8 Limitations and threats

In this section we discuss the limitations of Publius and how these limitations could

be used by the adversary to censor a published document, disrupt normal Publius

operation, or learn the identity of the publisher of a particular document. Possible

countermeasures for some of these attacks are also discussed.

4.8.1 Share deletion or corruption

As described in Section 4.2, when a document is successfully published a copy of

the encrypted document and a share are stored on n servers. Only one copy of the

encrypted document and k shares are required to recover the original document.

Clearly, if all n copies of the encrypted �le are deleted, corrupted or otherwise

unretrievable then it is impossible to recover the original document. Similarly if

n � k + 1 shares are deleted, corrupted or cannot be retrieved it is impossible to

recover the key. In either case the published document is e�ectively censored. This

naturally leads to the conclusion that the more we increase n, or decrease k, the

harder we make it for an individual, or group of individuals, to censor a published

document.

4.8.2 Update �le deletion or corruption

As stated in Section 4.5, if a server receives a request for a published document

that has an associated update �le, the URL contained in that �le is sent back to

the requesting proxy.

We now describe three di�erent attacks on the update �le that could be used by

46

an adversary to censor a published document. In each of these attacks the adver-

sary has read/write access to all �les on a server hosting the published document

P, he wishes to censor.

In the �rst attack we describe, P does not have an associated update �le.

That is, the publisher of P has not executed the update operation on P's URL.

The adversary could delete P from one server, but this does not censor the content

because the document is available on other servers. Rather than censor the Publius

content, the adversary would like to cause any request for P to result in retrieval

of a di�erent document, Q, of his choosing. The Publius URL of Q is Qurl. The

adversary now enters Qurl into a �le called \update" and places that �le in the

directory associated with P. Now whenever a request for P is received by the

adversary's server, Qurl is sent back. However, a single Qurl received by the client

does not fool it into retrieving Qurl. Therefore the adversary enlists the help of

several other Publius servers that store P . The adversary's friends also place Qurl

into an \update" �le in P 's directory. The adversary succeeds if he can get an

update �le placed on every server holding P. If the implementation of Publius only

requires that k shares be downloaded, then the adversary does not necessarily need

to be that thorough. When the proxy makes a request for P, if the adversary is

lucky, then k matching URLs are returned and the proxy issues a browser redirect

to that URL. If this happens the adversary has essentially censored P by essentially

rerouting the request to a di�erent document. This motivates higher values for k.

The update
ag described in Section 4.7.1 is an attempt to combat this attack. If

the publisher turned the update
ag o� when the document was published then

the Publius client interpreting the URL will refuse to accept the update URLs for

47

the document. Although the document might now be considered censored, the

reader is not duped into believing that an updated �le is the originally published

document or a publisher authorized update of it.

In the second attack, P has been updated and there exists an associated update

�le containing a valid Publius URL that points to a published document U. To

censor the document, the adversary must corrupt the update �le on n � k + 1

servers. Now there is no way for the reader to retrieve the �le correctly. If the

adversary can corrupt that many servers, he can censor any document by simply

deleting the shares of the decryption key. This motivates higher values for n and

lower values for k.

4.8.3 Denial of service attacks

Publius, like almost all web services, is susceptible to denial of service attacks. An

adversary could use Publius to publish content until the disk space on all servers is

full. This could also a�ect other applications running on the same server. We take

a simple measure of limiting each publishing command to 100 KB and allowing

each server administrator to limit the number of published �les that the server

will store. A better approach would be to charge for space using some anonymous

e-cash system.

An interesting approach to this problem is a CPU cycle based payment scheme

known as Hash Cash [7]. The idea behind this system is to require the publisher

to do some work before publishing. Thus, it requires more work and time for

the adversary to completely �ll the server's disk. Hopefully, the attack can be

detected before the disk is full. In Hash Cash, a publisher wishing to store a �le

48

on a particular server �rst requests a challenge string c and a number, b, from that

server. The client must �nd another string, s, such that at least b bits of H(c � s)

match b bits of H(s) where H is a secure hash function such as MD5 and \�" is

the concatenation operator. That is, the client must �nd partial collisions in the

hash function. The higher the value of b, the more time the client requires to �nd

a matching string. The client then sends s to the server along with the �le to be

stored. The server only stores the �le if H(s) passes the b bit matching test on

H(c � s).

Another scheme worth considering is to limit, based on client IP address, the

amount of data that a client can store on a particular Publius server within a

certain period of time. While not perfect, this raises the bar a bit, and requires

the attacker to exert more e�ort. The IP addresses would only be stored for a

short period of time|permanently storing the addresses could allow an adversary

to track publish requests if he compromised the server. However, one would expect

publishers to use an anonymizing proxy or other anonymizing technology to publish

documents. Under these circumstances the reader's identity would be protected

and the publishing limit would be placed upon the IP address of the anonymizing

proxy.

We have not yet implemented either of these protection mechanisms. Other

schemes designed to thwart denial of service attacks are described in [24, 44, 68].

4.8.4 Threats to publisher anonymity

Although Publius was designed as a tool to be used for anonymous censorship-

resistant publishing, there are several ways in which the identity of the publisher

49

could be revealed.

Obviously if the publisher leaves any sort of identifying information in the

published �le he is no longer anonymous. Publius does not anonymize hyperlinks

in a published HTML �le. Therefore if a published HTML page contains hyperlinks

back to the publisher's web server then the publisher's anonymity could be in

jeopardy.

Publius by itself does not provide any sort of connection based anonymity.

This means that an adversary eavesdropping on the network segment between

the publisher and the Publius servers could determine the publisher's identity. If

a server keeps a log of all incoming network connections then an adversary can

simply examine the log to determine the publisher's IP address. To protect a

publisher from these sort of attacks a connection based anonymity tool, such as

those described in Section 3.2, should be used.

4.8.5 \Rubber-Hose cryptanalysis"

Unlike Anderson's Eternity Service [4] Publius allows a publisher to delete a previ-

ously published document. An individual wishing to delete a document published

with Publius must possess the document's URL and password. An adversary who

knows the publisher of a document can apply so called \Rubber-Hose" Cryptanal-

ysis [56] (threats, torture, blackmail, etc) to either force the publisher to delete the

document or reveal the document's password. If the �le in question was published

with the \Do Not Delete" option (See Section 4.4) then this password-based attack

will not work as the publisher cannot delete the �le.

Of course the adversary could try to force the appropriate server administrator,

50

or other relevant parties, to delete a particular document or remove the hosting

server from the network. However when the published document is distributed

across servers located in di�erent countries and/or jurisdictions such an attack can

be very expensive or impractical.

4.9 Publius Live Trial

In early August 2000 we ran a 2 month trial of the Publius system. A month prior

to the start of the trial we sent a request for participation letter to security and

cryptography related Usenet news groups and mailing lists. We requested that

server volunteers meet the following 4 conditions:

1. Be connected to the Internet 24 hours, 7 days a week

2. Have the Perl scripting language and a web server installed

3. Set aside 100 MB of disk space for the storage of Publius content

4. Be willing to run the Publius server CGI script (approximately 300 lines of Perl

code).

4.9.1 Server Volunteers

Exactly 100 individuals volunteered their servers. Although the requirements to

run Publius were relatively minor we asked the prospective volunteers to install a

small test CGI script that spoke an abbreviated version of the Publius protocol.

The purpose of this script was to insure that the proper Perl libraries were installed,

and to allow us to actually attempt communication with the server. Fifty three

51

individuals successfully installed the test script. We sent the full Publius server

script to these individuals. We are not sure why only 53 of the 100 individuals

installed the script. Only about 4 of the remaining 47 individuals ever contacted

us again. Miscon�gured servers accounted for most of the problems encountered

during the test script phase of the project. Incorrect �le permission settings came

in a close second.

Eventually 39 individuals successfully installed the full Publius server script.

These server volunteers made up the �rst Publius server list. Over the next several

weeks another 6 individuals successfully installed the server script and were added

to the list. These servers were added to the to the list as the trial progressed. As

of December 2000, Publius servers exist in several countries including Denmark,

England, the Netherlands, Poland and the United States.

4.9.2 Proxy Volunteers

In addition to server volunteers we also asked for proxy volunteers. Proxy Volun-

teers run the client software on their computer for the express purpose of allowing

others to use it. We call these proxies, remote proxies. The client software was

written to support multiple users at once|just like a traditional server process.

Installing and running a proxy is much more involved than just running a server.

The proxy is a program that is meant to be run all the time|just like a Unix

daemon process. In addition, the proxy required installing the freely available

crypto++ library [60]|no easy feat on some operating systems involved in the

trial. Initially 33 individuals volunteered to host Publius proxies. Of these only 8

installed the software. The reason for this rather low installation rate had to do

52

mainly with performance, security and network bandwidth considerations. Only

three of the 33 individuals had problems installing crypto++. The rest were wor-

ried that hosting a Publius proxy would either saturate their network connection,

degrade server performance or open their server up to some sort of attack. As of

December 2000 there were 11 Publius proxies available for individuals to connect

to. The three additional proxies were added after the trial began.

The main problem with using a remote proxy is that you must completely trust

it. The remote proxy sees the Publius commands and associated parameters. This

means that a malicious proxy can refuse to publish or retrieve certain material. In

addition, retrieved or published material can be arbitrarily modi�ed by the proxy

before it is sent to the appropriate server or browser. The easiest way to avoid

these problems is to run the proxy locally. However, if this is not an option, one

can try to publish or retrieve from multiple proxies, using one proxy to verify the

actions of the other.

4.9.3 Publius Usage

The Publius software was purposely distributed without any logging capability

built in. This made it diÆcult to determine the extent to which Publius was

being used. Therefore at the end of trial we sent a questionnaire to the original

39 Publius server administrators asking them for counts of the various �les they

were storing. Shell commands were provided that made the counting procedure

very easy. Twenty seven individuals responded to the questionnaire. The highest

reported number of published �les was 92. The average was 60. An average of 4

documents per site were published with the \Do Not Delete" option. By default,

53

Publius publishes a document so that it can be deleted or updated by the publisher.

As this is the default option the small number of �les published with the \Do Not

Delete" option is not surprising. All the administrators reported either light or

steady usage|several mentioned they had even forgotten that the software was

installed. Four administrators reported keeping usage logs. These logs indicated

that far more people attempted to read Publius material than published. A web

page containing hyperlinks to some previously published Publius content was made

available on the Publius web site so that individuals could test the system. This

is probably the reason for the rather high read to write ratio.

Almost all Publius server administrators expressed willingness to continue host-

ing content after the trial had ended. Several new hosts and proxy volunteers were

added after the trial had ended.

4.9.4 Issues Raised

A few individuals had problems with using Publius because of �rewalls. Publius

proxies by default run on port 1787|the year that articles contained in the Fed-

eralist Papers �rst appeared. An individual reported being unable to connect to

proxies because of corporate �rewall policy of not allowing connections to ports

other than the \well-known" ports. In addition �rewalls prevented two individuals

from volunteering to host Publius proxies as incoming connections to ports other

than port 80 were not allowed. Other individuals couldn't use the proxy because

ISP or corporate policy dictated that all web traÆc be funneled through a speci�c

proxy, eliminating the option of specifying an alternate proxy.

Both of the previously described problems could be solved by replacing the

54

proxy with a CGI script. The requested operation and parameters would be sent

as parameters to the CGI script which would perform the corresponding Publius

operation (retrieve, publish, delete and update). While this not as convenient as

the proxy it does clear up the �rewall and proxy problem as all traÆc goes over

the standard HTTP port 80.

4.10 Discussion

Publius can be improved in a number of ways. The design proposed in Section

4.7.8 would improve Publius's performance and manageability. Fewer network

connections would be needed to read a document and reader's would no longer

need the Publius server list. Work remains to be done on deterring denial of

service attacks aimed at �lling up the disk drives of the hosting servers. Some

sort of anonymous e-cash payment scheme is one possible solution. Krawczyk [36]

describes how to use Rabin's information dispersal algorithm to reduce the size of

the encrypted �le stored on the host server. I believe this scheme could be easily

and fruitfully added to Publius.

Publius's main contributions beyond previous anonymous publishing systems

include an automatic tamper checking mechanism, a web URL-based method for

updating or deleting anonymously published material, and methods for publishing

mutually hyperlinked content in a censorship-resistant publishing system.

55

Chapter 5

Tangler

Tangler is a peer-to-peer-based censorship-resistant publishing system. Like other

censorship-resistant publishing systems it attempts to prevent the adversary from

altering or completely removing a published document. However, Tangler uses a

number of unique mechanisms to accomplish this. Chief among these is its publi-

cation mechanism, called entanglement, and its self-policing storage network. The

bene�ts of entanglement include the automatic replication of previously published

content and an incentive to audit the reliability with which servers store content

published by other people. In part through these incentives, the self-policing net-

work identi�es and ejects servers that exhibit faulty behavior. As in Publius,

Tangler servers do not know the content of documents that are being stored. How-

ever, while in Publius, each server stores encrypted documents, Tangler takes this

a step further|servers store blocks that have no meaning unless they are com-

bined, in well de�ned ways, with blocks from other servers. Combining the blocks

in di�erent ways creates di�erent documents.

56

The �rst half of this chapter describes the high-level design of Tangler. The

second half describes the implementation and performance of Tangler.

5.1 Design Goals

The following design goals were important in shaping the design of Tangler.

Dynamic server participation. New volunteer servers should be allowed to join

and participating servers allowed to leave. These servers will store the blocks of

published documents.

Document and block decoupling. The blocks stored on the servers should not

be associated with any particular document. Rather, each block should able to be

used in the reconstruction of several documents. The particular document formed

depends on how the various blocks are combined. Therefore, the servers are just

holding blocks|meaningful documents are created by individuals who request and

combine blocks from the various servers.

Previous document replication. The replication of previously published ma-

terial should be an integral part of the publication process. This increases the

number of replicas of previously published documents and therefore makes the

censor's work a bit harder.

Publisher and reader anonymity. The system should provide a degree of

anonymity to both document readers and publishers.

57

Secure update. Once a document has been published, only its publisher can

update it.

Publisher caching incentive. The publisher of a document has some incentive to

cache and reinject the blocks belonging to previously published documents. This

leads to greater replication.

Publishing limit. A server can publish no more than a certain fraction of what

he is willing to store. This is intended to limit the damage done by malicious

publishers trying to �ll up all available space|a denial of service attack.

Location-independent naming. The name of a document should not be tied to

a speci�c network address. This helps prevent adversarial attacks against speci�c

network locations that are holding the published material. It also allows published

material to be relocated.

Self-policing. As long as a majority of the participating servers are honest, mis-

behaving nodes can be identi�ed and temporarily ejected from the system. The

reason for the \temporarily" quali�er is that misbehaving nodes can always reap-

pear under a new name (IP address and public key), and can therefore rejoin the

system.

Useful work outweighs adversarial behavior. Before being allowed to join the

system a server must perform some useful work for the system. This work may

include redundantly storing or indexing documents. This ensures that a server

58

bent on adversarial behavior still performs useful work before being allotted full

access to the system. Once adversarial behavior is detected the server is scheduled

for ejection from the system.

Document links. Similar to the World Wide Web's hyperlinks, there should be a

method of linking to previously published documents. These links should be able

to point to the latest version of the particular document and contain an embedded

tamper-check mechanism. This mechanism is used to tamper-check the retrieved

document.

Dynamic Address Space. With high probability, no minority set of servers can

control access to a particular document. This helps to minimize attacks in which

adversarial servers are added to the system for the purpose of targeting a speci�c

document.

5.2 Tangler Overview

This section describes the high-level design of Tangler. Tangler was designed to

consist of a small group of servers (� 100), called the Tangler servers, operated by

volunteers around the world. Over time, servers will leave and new ones will join.

Like Usenet, we assume that the servers have large storage capacities and good

network connectivity, and each server stores an important fraction of the content

of the entire system.

There is consensus among all participating servers as to which other servers

are members of Tangler. In addition, each participating server knows the public

59

key and capacity of every other Tangler server. This public key is needed to

authenticate messages exchanged between participating servers.

The Tangler servers respond to requests from clients. Publishers are clients

that can store data blocks on the servers. Readers are clients that request data

blocks from servers. The reader combines these data blocks to form a document.

To publish a new document, d, the publisher �rst retrieves random data blocks

from the servers. These data blocks belong to previously published documents.

The publisher then divides document d into equal sized data blocks and combines

these blocks with the previously retrieved data blocks. The process of combining

the data blocks of new documents with those of previously published documents is

called entanglement. Entanglement has several nice properties that include making

the replication and veri�cation of previously published content an inherent part of

the publication process. The output of the entanglement process is a set of blocks.

These blocks, which can be used to reconstruct one or more documents, are stored

on the Tangler servers. The servers make the blocks available to clients.

In order to store blocks on the servers, publishers need to obtain storage tokens.

Storage tokens can be acquired from the servers. These tokens are dispensed at the

discretion of servers. In the current version of Tangler, publisher's authenticate

with a particular server. However, di�erent servers can have di�erent policies. For

example, some servers could charge e-cash for tokens or require that the client

perform some sort of work [44, 68]. Once in possession of a token, the publisher

can anonymously store a block on a server. The use of storage tokens prevents

an adversary from attempting to completely �ll all available storage|a storage

ooding attack.

60

Directory

server
block

server
block

server
block

server
block

hard link

Collection A Collection B

hard link hard linkhard link

soft link

hard link

Doc1 Doc3Doc2

Directory
Doc4 Doc6Doc5

Figure 5.1: Collections can be made up of �les (hard links) and links to other collections

(soft links)

Each Tangler server monitors all other servers in order to determine which, if

any, are faulty or adversarial. An adversarial server is one that fails to follow,

or attempts to subvert, the Tangler protocols. If a majority of servers agree that

a particular server is faulty or adversarial then that server is ejected from the

system. All Tangler servers will refuse to communicate with a server once it has

been ejected. This monitoring and ejection mechanism forms the basis of Tangler's

self-policing mechanism.

5.3 System and Adversary Model

As previously stated, Tangler is composed of a collection of volunteer servers. We

will call these servers the Tangler servers. These servers communicate over the

Internet. Some of the volunteer servers may fail, potentially in a Byzantine way.

61

Byzantine servers may collude in various ways in an attempt to disrupt or otherwise

break the system or its various protocols. For example, Byzantine servers could

attempt to limit access to speci�c documents or try to discover who published

or read a particular document. Nodes that fail in a benign or Byzantine manner

are said to be faulty. In a networked environment it is certainly possible that a

particular server may be non-faulty but, due to a fault in the communication links,

be unable to communicate with any other server. As all other participating servers

cannot di�erentiate between a faulty server and one that is out of contact, we treat

communication link failures as server faults [33]. Non-faulty nodes have not failed

and follow the Tangler protocols.

In order to ful�ll the security and robustness properties of Tangler we assume

that the majority of Tangler servers are non-faulty and that failures are uniformly

distributed. We believe this is a reasonable assumption due to the fact that volun-

teer servers reside on di�erent network segments and are managed independently.

Tangler uses TCP, a reliable transport, to provide a virtual connection between

any two communicating hosts. However, an adversary can eavesdrop or attempt

to interfere with communication by modifying or dropping packets in transit or

replaying old packets. We assume an adversary can delay messages being sent to

or sent by a particular node. However, we assume an adversary cannot deprive a

server of communication (sending and receiving of messages) inde�nitely.

The Tangler design makes a number of synchrony assumptions that distinguish

it from the secure state machine systems described in Section 3.3. In Tangler,

published material expires over time and previously used disk space needs to be

reclaimed so that new or republished material can be stored. In order to fairly

62

treat all published material we assume all non-faulty servers keep time to within

m = 5 minutes of the correct time. As described in Section 5.7.1, this can be

accomplished by having every server run NTP [42]. Timing constraints are needed

to preserve liveness and to eliminate faulty nodes that attempt to abuse the system

by refusing to answer queries made by other participating servers. These timing

constraints also place Tangler in the synchronous message passing communication

model.

5.4 Tangler document collections

This section explains Tangler's approach to document naming and content authen-

tication, and describes how Tangler transforms published content into �xed-size

blocks suitable for storage on the Tangler servers. These �xed-size blocks are

constructed so that they can potentially belong to multiple documents, the prop-

erty we call entanglement. Section 5.6 describes the algorithm used to entangle

blocks. Section 5.7 describes the design of Tangler's self-policing mechanism that

can survive certain
ooding attacks and the existence of corrupt servers.

5.4.1 Collections

Every document in Tangler is published as part of one or more collections. A

collection is a group of documents that are published together by the same person.

Collections are published anonymously and named by a public key. The person

who published a collection can later update it. Thus, anonymous collections may

build reputations (the associated public key provides the publisher with linkable

63

anonymity [30]). A collection can consist of a single document, multiple documents,

or links to documents in other collections. One can think of a collection as a

directory containing a group of �les, subdirectories, and links. For example, a

collection may contain a group of technical reports, the �les that make up a web

site, or an index of other collections.

Each collection is named by a public key, K. The corresponding private key

is used to sign the collection. The signing process is described in more detail in

Section 5.5.

As previously stated, collections consist both of documents and links to doc-

uments in other collections. Links to documents in other collections are referred

to as soft links. Links to documents within a particular collection are known as

hard links. Two di�erent collections may actually contain hard links to the same

document and share the same entangled blocks for reconstituting the document.

However, if one collection is updated by linking the naming public key to a new

set of documents, the other hard linked collection will not re
ect the change. Hard

links are useful to preserve a document if one fears the collection it was published

in may change or disappear. See Figure 5.1.

5.4.2 Hash trees

Tangler makes extensive use of the SHA-1 [45] cryptographic hash function. SHA-1

is a collision-resistant hash function that produces a 20-byte output from an

arbitrary-length input. Tangler treats SHA-1 hashes as unique, veri�able iden-

ti�ers for published document blocks.

Tangler also relies on Hash Trees [40]. Hash trees allow one to specify or commit

64

to large amounts of data with a single cryptographic hash value. Using hash trees,

an individual can eÆciently verify small regions of the data without needing access

to all of it. In a hash tree, the data being certi�ed or committed to �lls the leaves

of an n-ary tree. Each internal node of the tree stores the cryptographic hashes

of it's child nodes. Assuming no hash collisions, then, the hash value of the tree's

root speci�es the entire contents of the tree. One can prove the integrity of any

leaf of the hash tree to someone who knows the root by producing the values of

intermediary nodes from the root to the leaf. This proof is called the certifying

path [41].

5.4.3 Server Blocks

In order to publish a collection, C, one runs a publish program that takes as input

a public/private key pair, and the group of �les, directories and links that make

up the collection. The program breaks the �les into �xed-sized data blocks and

entangles them with blocks that have been randomly retrieved from the various

Tangler servers. These randomly chosen blocks are actually the blocks of previ-

ously published documents. This entanglement procedure produces new blocks

that are stored on the servers. Section 5.7 describes how this random fetching is

implemented. Finally, using the private key, it signs a collection root data struc-

ture. Thus, one must have C's private key to publish or update the collection.

Once entangled, C depends inextricably on the randomly chosen, previously pub-

lished, blocks for the reconstruction of its �les. The publisher of C needs to assure

availability of both the blocks just created and the ones with which her collection is

entangled. Thus, republishing others' documents is an inherent part of publishing.

65

The entangled output blocks of the publish program are suitable for storage

on the Tangler servers. We call these blocks server blocks to di�erentiate them

from the �le data blocks that were initially created by the publish program. Tan-

gler names server blocks by the SHA-1 hash value of the block's content. The

collection's SHA-1 hash values are recorded in metadata structures (inodes, direc-

tories, and collection roots) so that the retrieval program can later reconstruct the

collection from the component blocks.

Each collection has a root. This root functions much as a root directory in a �le

system|it de�nes a starting point in the search for �les. The one exception to the

SHA-1 hash addressing scheme is the addressing of the collection root. Recall that

a collection is named by a public key. This public key also names the collection's

root block, and therefore must be present within that block. Thus, the Tangler

servers support the retrieval of blocks by public key as well as by SHA-1 hash value.

As a collection can be updated, two or more collection roots with the same public

key, but di�erent SHA-1 hash values, may appear on the servers. To disambiguate

the blocks, a version �eld is present within all collection roots. The version �eld

is incremented each time a collection is republished.

5.5 Publish

The �rst step of the publish program is to entangle each member �le in a collection.

Each �le is split into �xed-size data blocks. The last data block may need to be

padded to achieve the �xed size. Each data block is then entangled using the

algorithm described in Section 5.6.2. The entanglement algorithm takes as input

66

Proc Publish (Collection C, PublicKey pk, PrivateKey sk)
c=new CollectionRoot()
for each �le, f , in the post-order traversal of C:

i=new Inode(f)
for each data block, b, in f :

p1=random server block selected from Tangler Servers
p2=random server block selected from Tangler Servers
(e1; e2)=entangle(b, p1, p2)
store server blocks (p1, p2, e1, e2) on Tangler Servers
r=random permutation(p1, p2, e1, e2)
record b's dependency on (r) in i

=� entangle the inode �=
p3=random server block selected from Tangler Servers
p4=random server block selected from Tangler Servers
(e3; e4)=entangle(i, p3, p4)
r=random permutation(p3, p4, e3, e4)
=� r stores the reconstruction address for inode i �=
record (f; r) in collection root

c.name=pk
c.version=1
digest=SHA 1(name, version, �lenames, inodes)
c.sig=sign(digest, sk)

End Publish

Figure 5.2: Publish Algorithm

two random blocks from the Tangler servers and the data block from the �le

being published. It outputs two new server blocks, which when combined with the

previously randomly selected blocks can reconstitute the original data block. Thus,

for every data block a publisher entangles, she becomes interested in ensuring the

availability of four server blocks in the Tangler network. A data block can actually

be reconstructed from any three of its four associated server blocks, adding some

fault-tolerance (see Section 5.6.3). Notice that we do not inject data blocks in the

storage network, only server blocks.

Every entangled �le has an associated inode data structure that records the

SHA-1 hashes of the server blocks needed to reconstruct the �le's data blocks.

Once all the data blocks of a particular �le have been entangled and the names

67

of the associated server blocks recorded in an inode, the inode itself is entangled.

This entanglement produces the names of four server blocks that can be used to

reconstruct the inode. These four server block names are recorded, along with

the associated �le's name in the collection root. The collection root essentially

provides a mapping between �le names and inodes. The inodes, in turn, provide

the information necessary to reconstruct the associated �le. Collection roots also

record the collection's soft links. Figure 5.2 shows the pseudocode for the publish

algorithm.

A digitally signed collection root is padded to the same size as a server block.

Collection roots can therefore become entangled just like other server blocks. Soft

links not only contain a target collection's public key, but also the target's version

number at the time of publication, and its root block hashes (the result of entan-

gling the collection root). The version number ensures that a soft link will never

be interpreted to point to an older version of the collection than the one visible

to the publisher. The addition of the root block hashes ensure that the collection

root can be reconstructed even if it cannot be found, via public key lookup, on the

Tangler servers.

5.5.1 Reconstruction

In order to reconstruct a collection, a collection's server blocks must be retrieved

from the Tangler servers. Server blocks retrieved from the servers are tamper-

checked by simply computing the SHA-1 hash of the block's content. This hash

value must be the same as the hash value used to retrieve the block. Similarly, the

signatures on collection roots are veri�ed.

68

Once in possession of a veri�ed collection root, a reader can attempt to recon-

struct any of the �les stored in (or named by) the collection. The name of the

server blocks needed to reconstruct a �le's inode are listed in the collection root.

The �le's inode contains the names of all of the server blocks needed to reconstruct

the �le. Only a portion of the blocks listed in the inode will be needed. In our

current entanglement scheme only three fourths of the server blocks listed in the in-

ode are needed. Once the necessary server blocks are retrieved, the reconstruction

algorithm (Section 5.6.3) is applied to the blocks.

5.5.2 Update

In order to update a collection one simply republishes it using the same pub-

lic/private key pair that was used to originally publish the collection, but with a

higher version number. Files that have not changed since the previous version of

a collection do not need to be reentangled. If a server holds two or more collection

roots possessing the same public key, the server must return the root with the

latest version number.

5.6 Entanglement

In this section we detail the block entanglement and reconstruction algorithms. As

the entanglement process relies on Shamir's secret sharing algorithm, we begin by

brie
y describing that algorithm.

69

5.6.1 Secret Sharing

Shamir [59] described a method of dividing up a secret, s, into n pieces such that

only k � n of them are necessary to later re-form the secret. Any combination of

fewer than k pieces reveals nothing about the secret. The pieces are called shares

or shadows. The secret and shares are elements over a �nite �eld.

To form a set of n shares one �rst constructs a polynomial of degree k � 1

such that s is the y intercept of the polynomial. The coeÆcients of the polynomial

are randomly chosen. So, for example, if our secret was the element 6 2 Z11 and

k equals 3 then one appropriate polynomial would be y(x) = 7x2 + 4x + 6. To

form the n shares we evaluate this polynomial n times using n di�erent values of

x. Each (x; y) pair formed from the evaluation of the polynomial forms a share.

Of course, the x value of a share must never be 0 as that share would reveal the

secret.

Performing interpolation on any of the k shares allows us to re-form the polyno-

mial. This polynomial can then be evaluated at 0, revealing the secret. Combining

fewer than k shares, in this manner, gives no hint as to the true value of the secret.

5.6.2 Entanglement Algorithm

In our discussion of secret sharing we stated that each share consisted of an (x; y)

pair. In our entanglement system the server blocks play the role of the shares.

A �le to be published is divided into �xed sized data blocks. The last data block

may need to be padded to achieve the �xed size. We view each of these data blocks

as a y value. Since each share consists of an (x; y) pair we assign an x value of zero

to each of the data blocks. With this addition, the data block becomes a server

70

block. Call the �rst such server block f0. We now randomly select b (b = 2 in the

current implementation of Tangler) server blocks from the servers. Each of these

selected blocks consists of an (x; y) pair. We then perform Lagrange interpolation

on the b server blocks and f0. This forms a polynomial, p, of degree b. We can

now evaluate p at random nonzero integers to obtain new server blocks. Each new

server block is of the form (x; p(x)), where x is the nonzero random integer value.

We then store these new server blocks on the servers. One could conceivably store

f0 on the servers as well, however one of the goals of Tangler is to dissociate stored

blocks from documents. Storing f0 would be in direct con
ict with this goal as f0

clearly belongs to a speci�c document. In addition, in a censorship resistant system

one would usually not store f0 as it consists of plaintext and therefore is an easy

target of the censor. The server blocks, being shares, are information-theoretically

unrelated to all other published blocks.

This procedure must be done for every data block of the �le to be published.

An inode is created to record which server blocks are needed to re-form the orig-

inal data blocks and therefore the published �le. The Tangler publish algorithm

entangles the inode as well.

In the current implementation of Tangler each x value is an element over the

�nite �eld GF (216). For eÆciency, each y value (the data block) is processed in

16 bit chunks, each chunk is treated as an element over the �nite �eld GF (216).

Therefore each server block consists of a single x value and many y values. The

entanglement implementation is fully described in Section 5.8.4.

71

5.6.3 Reconstruction Algorithm

In order to reconstruct a data block of a �le we need to retrieve at least k of

the appropriate shares (server blocks). Any k of the n shares will do. Lagrange

interpolation is performed on these shares producing polynomial p. Evaluation of

this polynomial at zero produces the server block corresponding to our original

data block. This is repeated for every data block of the �les and inodes that we

wish to reconstruct.

5.6.4 Bene�ts and Limitations

Entanglement has three bene�cial consequences. The �rst is that it promotes the

replication of blocks of previously published documents (the blocks stored on the

servers). A publisher could easily generate random server blocks to entangle with,

or else entangle exclusively with blocks of his own previously published documents.

However, neither of these alternatives is as bene�cial as using the blocks of doc-

uments published by others. If we assume that an individual who publishes a

document has a direct interest in caching, replicating and monitoring availability

of it, then his actions are indirectly helping all documents entangled with it.

The second consequence is that each server block now \belongs" to several

documents|those documents that have become entangled with the server block.

This means that there is a decoupling between blocks and documents. A particular

block can be used create many documents. Servers are simply hosting blocks that

can be combined in di�erent ways to produce di�erent documents.

The third bene�t of entanglement is the incentive to cache the server blocks

published by others. If a set of entangled blocks are necessary to reconstruct your

72

own document then you have some incentive to retain and replicate these blocks.

We believe the entanglement process provides several bene�ts and can be prof-

itably grafted onto many censorship-resistant systems. However the system is not

perfect. Below we outline a potential limitations of the technique.

The bene�ts of entanglement don't come without some cost. The entanglement

algorithm does increase the amount of time it takes to publish and re-form a doc-

ument. Section 5.8.4 describes the performance of the entanglement algorithm. In

addition, there is a storage and bandwidth overhead associated with the entan-

glement mechanism. For each data block that is entangled, the publisher needs

to assure that at least three server blocks are stored on the servers. To achieve

a degree of of fault tolerance at least four server blocks need to be stored on the

servers. Two of the four server block are new. Therefore, entanglement doubles

the storage and triples the bandwidth of the reader.

5.7 Tangler network

The Tangler network consists of a collection of volunteer block servers, called the

Tangler servers. These servers store and serve the blocks of published collections.

In addition, each server monitors the other Tangler servers to ensure that they

are complying with the Tangler protocols. This monitoring forms the basis of the

self-policing network that attempts to identity and eject faulty or malicious servers.

73

5.7.1 Rounds

Server blocks published on Tangler servers do not persist inde�nitely. The blocks

expire after a predetermined amount of time. In Tangler, time is divided into

rounds. A round consists of a 24 hour period. Therefore we say that published

server blocks persist for a speci�ed number of rounds. As stated in Section 5.3, all

non-faulty servers have their local clocks synchronized to within 5 minutes of the

current time. This requirement can be ful�lled by having the servers run the NTP

daemon [47]. NTP security issues are addressed in [42, 43]. A server that does

not synchronize its clock in this manner will be out-of-step with the other Tangler

servers|a problem that could lead to the ejection of the server. We arbitrarily

start round zero at January 1st, 2002 (12:00AM) UTC. A new round starts every

day at 12:00AM UTC. This implies that any participating server can determine

the current round number without the need to interact with other servers. We call

14 consecutive rounds an epoch.

5.7.2 Tangler Servers

The Tangler model assumes a collection of servers around the world, run by volun-

teers opposed to censorship. Clients publish documents by anonymously submit-

ting server blocks to the Tangler servers. Each server has a long-lived public key,

used for authentication. Servers can communicate with each other both directly

and anonymously (using an anonymous communication channel). Di�erent servers

may dedicate di�erent amounts of storage to Tangler, but each publicly commits

to providing a certain capacity. There is a general consensus on the public keys

and capacities of available servers. We describe the certi�cation, consensus and

74

communication process in the following subsections.

In Section 5.1 we stated that one of the goals of Tangler was to allow new

servers to join and to allow old servers to leave. A server may wish to leave if,

for example, the server's administrator no longer wishes to participate. Ejection

of a server requires a majority of the participating servers to agree that a server

is faulty. This implies that a majority of the Tangler servers must be non-faulty

if we wish to prevent a group of cooperating faulty servers from ejecting non-

faulty servers|e�ectively taking control of the Tangler network. Therefore we

cannot simply allow all volunteers to join the Tangler network at once. Instead

of automatic join mechanism, we propose a two-layered membership system that

allows a server to fully participate in the Tangler network once it has completed

a probational service obligation. We describe this membership system in the next

section.

5.7.3 Join and Leave Protocols

In a Byzantine environment in which every node is a possible adversary a funda-

mental problem is that of resource discovery. More speci�cally, the problem is one

of learning the addresses of the currently running Tangler servers. An adversary

could simply set up a collection of servers in an attempt to spoof [27] the Tangler

network. Clearly, this problem has no satisfactory solution as any information

sources could be adversarial. Therefore we simply assume that the list of Tangler

servers can be obtained from a trusted Tangler server, web server, usenet group, or

some other out-of-band means. Similar techniques have been successfully used for

anonymous remailers. Once in possession of this information a node pmay attempt

75

to join the Tangler network. De�ne the view for round r as the list of servers (and

associated public keys) that are members of the Tangler network during round r.

Once in possession of the view for round r, node p can attempt to join the Tangler

network by contacting each server in turn and sending its listening port number,

public key and the number of megabytes of disk storage it will be donating to the

Tangler network. This join message must be signed by the corresponding private

key. All servers join as probational servers. Probational servers simply store server

blocks and respond to client queries for these blocks. A probational server earns

the right to become a full-
edged Tangler server after it has been a probational

server for two consecutive epochs and has not been ejected, by the Tangler servers,

due to faulty behavior. The block storage process is described Section 5.7.7.

A Tangler server can leave the network gracefully by sending a signed leave

message to all Tangler servers. A server may send this message if the server's

administrator no longer wishes to participate in Tangler.

5.7.4 Faulty Servers

In Tangler we want to handle servers that exhibit either fail-stop or Byzantine

behavior. However, a server exhibiting Byzantine faults is usually far more detri-

mental to the system than a server exhibiting fail-stop behavior. Therefore we wish

to identify and isolate these servers quickly. Some forms of Byzantine behavior can

be identi�ed by a succinct proof. A succinct proof usually takes the form of two

contradictory messages signed by a particular server. Examples of succinct proofs

are described in Section 5.7.11). Once collected, this proof is sent to all Tangler

servers. Each server then validates this proof and then schedules the faulty server

76

for ejection.

Other forms of misbehavior require witness servers to certify faulty behavior.

A witness server is just another Tangler server. Witnesses are enlisted when a

particular server, f , fails to properly answer a request within a speci�c amount of

time. The witness re-issues the same request. If the witness request succeeds, the

result is sent back to the node that enlisted the witness. As Tangler requests are

idempotent, any number of witnesses can be enlisted to re-issue the request. If the

witness requests fail, then the witness internally
ags f as faulty. Once a majority

of the servers have certi�ed that a particular a server is faulty, it can be ejected.

The ejection process is described in Section 5.7.5. This ejection mechanism also

applies to probational servers.

A server that doesn't respond to a request may simply be down for a short

amount of time. Therefore an unresponsive server is not immediately considered

for ejection. An unresponsive server can only be ejected once it is unresponsive for

3 or more rounds during a window period of 14 rounds (the length of an epoch).

Unresponsive probational servers are ejected in the same manner.

5.7.5 Membership Changes

At the midpoint of every round each Tangler server has the opportunity to vote-out

other servers. If a majority of servers vote-out a particular server, that server is

essentially ejected from the system|other Tangler servers will no longer commu-

nicate with the voted-out server or accept messages that it has signed. However,

in an environment where servers can be adversarial an algorithm is needed to pre-

vent an adversarial server from sending di�erent votes to di�erent servers. This

77

is accomplished using a Byzantine agreement algorithm [22, 37]. In a Byzantine

agreement algorithm a node, called the leader, sends a message (his vote) to all

other nodes. These nodes, in turn, send messages among themselves to verify that

the leader did indeed send each of them the same vote. If these nodes determine

that the leader has sent di�erent votes to di�erent nodes then the leaders votes are

discarded. In Tangler, rather than wait for each node to take its turn being the

leader, all servers execute the agreement algorithm concurrently. That is each Tan-

gler server acts as both a leader (voter) and veri�er of votes. The implementation

of this algorithm is discussed in Section 5.8.5.

Rather than simply voting-out servers, each leader votes on which servers should

remain a member of the Tangler network. Only servers that receive a majority vote

remain part of the Tangler network. This design was adopted because it allows

membership changes to be made independent of previous rounds|a server that

misses the votes of other Tangler servers due to a communication outage will learn

the membership of the Tangler network during the next round. If we adopted a

vote-out strategy then a server that missed the votes would need to contact other

servers to determine which servers were ejected during the previous round.

5.7.6 Block-to-server mapping

The Tangler network uses consistent hashing [35] to map blocks to servers. In

consistent hashing the 160-bit output of the SHA-1 hash function is mapped onto

points of a circle. The circle is made up of 2160 addressable points. Each server

block is assigned the point on the circle corresponding to the SHA-1 hash value

of its content. Collection root blocks are assigned the point on the circle corre-

78

sponding to a hash of their public key. Each server is also assigned a number of

points on the circle proportional to its stated capacity|one point per 100 MBytes

of storage. A server's points are calculated from its public key, K, and the current

round number, d. We want each server to have, with very high probability, a new

set of points every 14 rounds(one epoch). Therefore each server, A, with N points

and public key KA is assigned the values:

SHA-1 (KA; bdN=14c) ; SHA-1 (KA; bdN=14c � 1) ;

: : :SHA-1 (KA; bdN=14c � (N � 1))

Thus, during each round roughly 1=14 of a server's points change.

Each block is stored on the servers immediately clockwise from it on the circle.

Figure 5.7.6 gives a simpli�ed example, using a 6-bit hash function. There are three

servers in the example, A, B, and C, each with four points on the circle. A server

block with hash 011001 is represented as a black triangle. Going clockwise from

the block's position, we cross points belonging �rst to server A, then to server C.

Thus, if we are replicating blocks twice, the block will be stored on servers A and C.

Since server public keys and the round number are well-known information,

anyone can compute the current set of points on the circle. To retrieve a block

given its hash (or public key, for collection roots), one must contact the server

corresponding to that block's successor on the circle, trying subsequent points if

the immediate successor is unavailable, faulty, or simply does not have the block.

Note that it is up to clients to publish blocks on the servers where readers

will look for those blocks. Tangler does not prevent users from publishing blocks

elsewhere. However, since storage priveledges are limited (see Section 5.7.7), it

79

A

B

C

servers:

block

000000

010000

100000

110000

011001

Figure 5.3: Use of consistent hashing to distribute server blocks among servers.

is in a client's best interest to store blocks wisely. As server points move around

the circle, users will need to republish server blocks. The main impetus behind

this address space design is to prevent an adversary from dominating parts of

the address space for any extended period of time. As time and Tangler server

membership changes, so does the address space. The addition or subtraction of

a server can change the successor server for a particular server block or collection

root.

5.7.7 Storage Tokens

Publishers need storage tokens to store blocks on the Tangler servers. Each storage

token is good for the storage of one server block for one epoch (14 rounds) from

the round that the token was �rst issued. Storage tokens are issued by servers.

Recall that every Tangler server donates disk space for use by Tangler. This

disk space is used to store server blocks. In return for the disk space donation,

80

each server is entitled to a number of storage tokens from every other server.

The number of storage tokens a server is entitled to is proportional to its disk

space contribution. A server that has contributed p percent of the total disk space

available to Tangler is entitled to p percent of the storage tokens available on every

other server. The number of storage tokens available on a speci�c server is simply

the amount of disk space the server has donated divided by the size of a server

block (16KB in the current version of Tangler). For example, suppose the total

disk contribution of all the servers is 100 GB and that server S has contributed

2 GB. Then server S is entitled to 2=100 of the storage tokens available on each

of the Tangler servers. Assume server B has donated 800 MB of disk space to

Tangler. Server S is entitled to 2 � 800=100 = 16 MB worth of storage tokens on

server B. Sixteen MB represents 1000 storage tokens (16 MB/16KB = 1000).

Storage tokens are nothing more than digital signatures of server block names

(SHA-1 hashes), blinded [16] so that servers do not know for what server blocks

they are issuing tokens. At the beginning of every round, each server, S, creates a

round-speci�c temporary public key, KTS, for signing storage tokens. The server

certi�es the key for use in round d with its long-lived public key KS, producing

ftoken-key; d;KTSgK�1S
. A server must certify exactly one such temporary key

per round and must not reuse keys; two round d token-key certi�cates bearing

di�erent public keys is succinct proof of a faulty server.

5.7.8 Publishing Clients

For the purposes of publishing, we classify clients as either server-based clients or

external clients. Server-based clients are run by individuals or organizations that

81

are hosting a Tangler server. As every Tangler server is entitled to a certain number

of storage tokens, these clients have direct access to storage tokens. External clients

are not directly aÆliated with any server and therefore need to �nd some server

that is willing to give them storage tokens. How a server allocates storage tokens is

entirely at the discretion of its operator. The current implementation authenticates

clients but other servers might allocate tokens in exchange for e-cash payments.

Another might charge hashcash [7]. Another might charge for publication in human

time|posing challenges that could not be answered by automatic \spamming"

programs [44, 68]. Alternatively, a server might only give tokens to particular

pseudonyms, or from members of some organization

5.7.9 Block Storage

Recall that every Tangler server knows the amount of disk space that all other

servers have contributed to Tangler. This means that every server can calculate

the number of storage tokens it is entitled to and the number of storage tokens it

must give to all other servers.

The Tangler block storage protocol is meant to allow a publishing client to

anonymously store blocks on the Tangler servers while at the same time prevent

adversaries from �ling all available storage by anonymously publishing bogus server

blocks|a storage
ooding attack. The Tangler protocol consists of two phases.

In the �rst phase the publishing client acquires signed storage coupons from a

server, S. Each coupon contains the name of a speci�c Tangler server, R, and the

number of storage tokens, n, that the redeemer of the coupon is entitled to. The

client presents this coupon to server R. Server R veri�es the authenticity of the

82

coupon by checking S's signature. In addition R makes sure that server S is indeed

entitled to at least n storage tokens. Every redeemed coupon reduces the number

of tokens that server S is entitled to. If the coupon is valid, server R creates n

storage tokens and sends them to the client.

In the second phase of the storage protocol, the client attempts to store server

blocks on server R by sending the server blocks, and corresponding storage tokens,

to server R. The clients sends the blocks and storage tokens over the anonymous

communication channel. In response to a valid storage token and server block

combination, server R sends a storage receipt back to the client.

If server R refuses to give the client tokens or refuses to store a block, the client

can enlist witness servers who will re-issue the requests on behalf of the client. If

server R still refuses to honor the valid storage coupon or storage token then the

witness servers will label server R as faulty and schedule the server for ejection.

Storage coupons and tokens are server block speci�c. Each storage coupon

contains a list of n blinded server block names (SHA-1 hashes). The client sends

the list of blinded server block names to the server. The coupon-issuing server

incorporates these names into the coupon. The blinding prevents the coupon-

issuing server from knowing what server blocks the client wishes to store. The

same holds true for the server that will grant the storage tokens in exchange for

the coupon. The storage tokens are created from the blinded list of server block

names stored in the coupon. Once the client acquires the signed storage tokens,

the client unblinds them and uses them to anonymously store server blocks.

83

5.7.10 Storage receipts

Once the client has obtained a storage token|say from server A for block m|the

client sends m and the associated unblinded storage token over the anonymous

communication channel. Server A, if non-faulty, replies with a signed storage

receipt, freceipt; sha-1(m); dgK�1A
where d is the current round number and K�1

A

is A0s temporary private key for round d. If A refuses to issue a storage receipt, the

client anonymously enlists Tangler servers as a witnesses. Each witness presents A

with m and the storage token. If A still refuses to acknowledge receipt, the witness

internally marks the server as faulty. If a majority of the Tangler servers agree

that server A is faulty, it will be scheduled for ejection.

5.7.11 Storage commitment

At the end of a round, each server commits to its newly received blocks and

sends a signed storage commitment certi�cate to all other Tangler servers. This

commitment consists of the current round number, the root of a balanced hash tree

and the number of elements in the tree. The leaves of this tree contain a sorted list

of hashes of every block the server is serving. A similar tree is constructed for the

public keys naming the collection roots that the server is storing. The root of this

tree is also part of the round commitment. A non-faulty server must never sign

more than one storage commitment per day. Two distinct commitments signed by

the same server for the same round constitute proof of a faulty server.

Storage commitments prevent servers from discarding or suppressing blocks

they have agreed to publish. Every block lookup becomes a possible audit of a

server's behavior. For example a Tangler server can query another Tangler server,

84

S, for block m. If server S is non-faulty and is storing block m, it will return a

certifying-path that shows m is a member of S's hash tree. If server S does not

have the block it will send a certifying-path showing that m is not in S's hash tree.

Of course server S could simply have refused to answer or send illegible messages.

In this case the witness servers can be employed to attempt to label server S as

faulty. If a majority of servers become convinced, after being enlisted as witnesses

or through direct contact, that server S is faulty it will be scheduled for ejection.

The hash tree created during storage commitment also plays an important role

in the publication process. Clients publishing documents use the hash trees to

select random blocks to entangle with. To retrieve a random block, a user �rst

selects a random Tangler server A. The client knows A's block capacity, cA, and

so can simply pick a random n, 0 � n < cA, and request the server block located

in position n in the hash tree. Server A must respond with the server block, b and

a certifying path that proves that block b is indeed the nth block. Veri�cation of

this certifying path is easy because the tree is balanced and the number blocks in

the root hash is known (it is part of the round commitment). Of course, requests

for random blocks are sent over the anonymous communication channel so that

servers cannot identify publishers by the blocks they have entangled with.

The collection root hash tree in the storage commitment can be used to detect

new collections. A search engine could make use of this information to index

Tangler collections.

85

5.8 Implementation and Performance

This section describes the Java (version 1.4) based implementation and perfor-

mance of Tangler. All performance measurements were made on Linux based 1.1

GHz workstations with 512 MB of memory.

5.8.1 Collection Data Structures

This subsection describes the basic collection data structures that are needed to

publish and retrieve collections. These data structures are created during the

publication process that was described in Section 5.5.

Server Blocks

The server block is the Tangler unit of storage. Each server block is 16 KB bytes

in size. The �rst two bytes of the server block are reserved and used to encode

information about the server block. Currently, only the �rst byte is actually used

to encode information. A server block with a �rst byte value of one indicates

that the server block contains a collection root. As described in Section 5.8.3, the

collection root is treated specially by the Tangler servers.

Inodes

During the publication process, each entangled �le is broken into equal-sized data

blocks. Each of these data blocks is entangled to produce four server blocks. The

names of these server blocks are stored in an inode. As you will recall, the name

of a server block is the SHA-1 hash of the block's content. Inodes are the same

86

struct initialInode f
long �leSizeInBytes;
ReconstructionHandles nextInode;
ReconstructionHandles rh[203];

g

Figure 5.4: Initial Inode Structure

size as server blocks and can therefore become entangled just like any other server

block. Each SHA-1 hash value is 20 bytes in length. Four hash values need to be

stored for each entangled data block. We call these four SHA-1 hash values the

reconstruction handles. An inode can hold a maximum of n = b16384=80c = 204

reconstruction handles. This means that each inode holds enough reconstruction

handles to entangle a �le of approximately 3.2 MB in size. To accomodate larger

�les, we allow one of the reconstruction handles to specify an entangled inode.

Tangler has two slightly di�erent inode formats. The �rst, shown in Figure 5.4,

is called the initial inode. It contains a �eld that records the size, in bytes, of

the associated �le (prior to entanglement), and a �eld that identi�es the next

entangled inode. The �leSizeInBytes �eld allows us to determine if the nextInode

�eld is meaningful|if the �leSizeInBytes �eld contains a value greater than 3.2

MB then we know the nextInode is meaningful. With the addition of these �elds,

the inode has enough room to store 203 reconstruction handles. The second inode

format, shown in Figure 5.5, is used to store reconstruction handles that do not �t

in the initial inode. Notice that this second inode format also contains a nextInode

�eld. This allows us to entangle a �le of any size|the necessary inodes are all

linked by the nextInode �eld. Our inode structures di�er from those found in a

traditional UNIX system. In particular we have not implemented single, double

87

struct secondaryInode f
ReconstructionHandles nextInode;
ReconstructionHandles rh[203];

g

Figure 5.5: Secondary Inode Structure

and triple indirect pointers [6]. While these pointers are useful for random access

of �les, their implementation in Tangler would require additional entanglements

with little added bene�t. Tangler does not currently support random access within

entangled �les.

Collection Roots

In Section 5.5 we brie
y described the collection root as the data structure that

held the public key that named the collection, and provided a mapping between

�le names and inodes. While this is essentially true, the collection root performs

a number of other functions. The collection root structure is shown in Figure 5.6.

The public key that names the collection is stored in the namingPublicKey �eld.

The signature of the data structure is stored in the signatureOfCollectionRootCon-

tent �eld.

In order to support di�erent entanglement algorithms, in the future, we specify

a transformation name in the collection root. This �eld tells Tangler the type of

transform that was applied to the collection. The default transformation name is

\Entanglement.3.4"|the entanglement scheme that requires 3 of 4 server blocks to

recover the original data block. The rootInodeReconstructionHandles specify the

reconstruction handles for the root directory of the collection. Although Tangler

does support anonymous publication, a publisher may wish to specify a contact

88

struct collectionRoot f
PublicKey namingPublicKey;
Signature signatureOfCollectionRootContent;
integer collectionVersionNumber;
String transformationName;
ReconstructionHandles rootInodeReconstructionHandles;
String optionalEmailAddress;
String commaSeperatedKeywords;
String collectionDescription;

g

Figure 5.6: Collection Root Structure

tangler://collection/collectionPublicKey/version/reconstructionHandles/�lePath

Figure 5.7: Collection Tangler URL

e-mail address in the optionalEmailAddress �eld. Of course, the publisher could

specify an anonymous remailer address in this �eld. The last two �elds in the

structure are meant to assist readers and possibly Tangler based search engines.

The publisher of a collection can include keywords and a description of the collec-

tion. The total size of the collection root cannot exceed 16 KB|the size of a server

block. All collection roots are padded to 16 KB to allow them to be entangled just

like any other server block.

5.8.2 Tangler URLs

The output of the publish program is a Tangler URL. This URL provides a stan-

dard form for specifying and linking to Tangler collections and �les. Figure 5.7

shows the structure of a Tangler URL. The Tangler URL �rst identi�es the URL

89

Num. Blocks Create Time In ms Size In Bytes

10,000 (160 MB) 6 17,141

100,000 (1.6 GB) 12 17,326

312,500 (5 GB) 19 17,397

625,000 (10 GB) 19 17,457

Table 5.1: Certifying Path Creation Time and Size (order 10)

Num. Blocks Creation Time In ms Size In Bytes

10,000 (160 MB) 12 20,365

100,000 (1.6 GB) 12 20,553

312,500 (5 GB) 17 20,993

625,000 (10 GB) 23 21,613

Table 5.2: Certifying Path Creation Time and Size (order 100)

type|in this case it is a collection. Other types are possible. A Tangler URL

can also specify a �le or directory. However, since the URL format for these types

is similar to the collection URL we will just describe the collection URL. The

collectionPublicKey �eld contains the public key that names the collection. The

version �eld speci�es the version of the Tangler collection. The next �eld speci�es

the reconstruction handles needed to the reconstruct collection root if it cannot

be found, via public key lookup, on the Tangler servers. Lastly, the �lePath �eld

speci�es an optional path, from the collection root directory, to a �le or directory

within the collection. This is useful for useful for specifying soft-links.

90

5.8.3 Hash Trees

Tangler servers accept new server blocks during each round. At the end of every

round, each server must commit to these blocks, as well as its previously stored

unexpired blocks. The committment process entails building a Merkle Hash Tree,

the leaves of which hold the names (SHA-1 hash values) of the server blocks the

server is committing to. The commitment certi�cate actually contains the roots

of two di�erent hash trees. One hash tree commits the stored server blocks, the

other commits the server blocks that represent collection roots. The second hash

tree is necessary in order to ensure that servers are responding properly to queries

for public keys (collection roots). A Tangler server that does not have a particular

server block or public key must return a certifying path, thereby proving that it

has not committed to the server block or public key. This proof mechanism is

described in more detail in Section 5.8.7. Both hash trees are constructed from

B-trees. Each internal and leaf node of the tree is named by the SHA-1 hash of its

content. The order(branching factor) of each tree is 10. The order of the trees is an

important issue due to the fact that certifying paths must be built to full�ll certain

hash tree queries. The size of the certifying is proportional to (logrN)(r�1) where

r is the order of the tree and N is the number of server blocks in the the hash tree.

The height of the tree is (logrN) and (r�1) is the number of hash tree entries that

need to be included in the certifying path, per tree level. Table 5.1 and 5.2 shows

the cost, in milliseconds, and size, in bytes, of certifying path creation. Note that

the size of the certifying path in these tables include the 16 KB server block that

is being certi�ed.

Figure 5.8 shows a hash tree of order 3. Each leaf contains the names (SHA-1

91

Figure 5.8: Hash Tree of Order 3 The names (SHA-1 hashes) of the server blocks are

stored in the leaves. Each internal node contains the SHA-1 hash of each of its children.

hashes) of 3 server blocks. Let Hi, Hi+1 and Hi+2 be the names of the three server

blocks stored in a leaf. The tree is built such that the server block names stored

in the leaves are in sorted order, Hi � Hi+1 � Hi+2. Each internal node contains

the SHA-1 hashes of its children. The SHA-1 hash of the root node is the value

that each server must commit to in the commitment certi�cate.

If a server is called upon to prove that it has indeed committed to the server

block with name H5 then it must supply a certifying path to the verifying agent

(client or other Tangler server). The certifying path for H5 consists of H4, the

server block named by H5, H6, the SHA-1 hash of the left and right child of

internal node 1, and the SHA-1 hash of internal node 2 and internal node 3. Given

these values the verifying agent can derive the SHA-1 hash of the root. This hash

92

Number Server Blocks Average Time In Seconds

10,000 (160 MB) 1.02

100,000 (1.6 GB) 8.19

312,500 (5 GB) 25.12

625,000 (10 GB) 51.34

Table 5.3: Hash Tree Build Time In Seconds

value must match the value that the server has committed to in the commitment

certi�cate. Otherwise, the certifying path is invalid.

At the end of each round, each server completely rebuilds the hash tree. A

fraction of the blocks stored in each hash tree will expire at the end of each round.

These blocks need to be removed to create room for the set of blocks that will

be stored during the next roun. Server blocks are stored on disk and placed in

di�erent directories based on the �rst two bytes of their SHA-1 hash values. Each

directory contains a �le that records the expiration round of every server block in

the directory. Every time a server block is stored in one of these directories, the

expiration information is updated. As is shown in table 5.3, building the server

block hash tree is not a terribly expensive operation, especially in light of the fact

that the tree is rebuilt only once every 24 hours.

5.8.4 Entanglement

Entanglement and reconstruction consist of a server block interpolation followed

by evaluation of the associated polynomial. In this section we look at the cost, in

terms of interpolation, of the entanglement and reconstruction scheme.

Given a 16K data block, d, we entangle it to produce 4 shares (server blocks),

93

any 3 of which determine d. Two of these four shares come directly from the

Tangler servers. Data block d is �rst converted into a server block. The x value of

this server block is 0 and the 16 KB data block forms the 8192, 16-bit, y values.

We perform Lagrange interpolation on these three server blocks (the two from the

Tangler servers and the converted data block). Below is the Lagrange interpolation

formula [63] for the unique polynomial a(x) of degree at most t. The value t is

three in our scheme.

a(x) =
tX

j=1

yij
Y

1�k�t;k 6=j

x� xik
xij � xik

We must perform interpolation once for each (x; y) pair in the server block. This

means that we must perform interpolation (and an evaluation) 8192 times per

block. However, this operation can be heavily optimized as the x value remains

the same. Below we show the computation necessary for interpolating three (x; y)

pairs. Let (x1; y1), (x2; y2) and (x3; y3) denote the three points to be interpolated.

Note (x1; y1) and (x2; y2) denote points in the two blocks taken from the Tangler

servers and (x3; y3) denotes the point from the data block d. All arithmetic is done

over the �nite �eld GF (216).

a(x) = y1

�
x� x2
x1 � x2

��
x� x3
x1 � x3

�

+ y2

�
x� x1
x2 � x1

��
x� x3
x2 � x3

�

+ y3

�
x� x1
x3 � x1

��
x� x2
x3 � x2

�

The entanglement procedure produces two new server blocks. Each new block is

formed by evaluating a(x) 8192 times with x assigned a random nonzero element

from GF (216). Notice that the x values do not change, only the y values change.

94

Size Of File Avg. Time To Entangle Avg. Time To Reconstruct

682 KB 2.84 0.49

1.6 MB 6.92 1.15

18 MB 67.32 13.71

42 MB 172.77 52.88

Table 5.4: Average Entanglement and Reconstruction Time In Seconds

Therefore we only need to compute the fractional x terms once per server block.

Our interpolation is now reduced to three multiplications and three additions|

certainly not prohibitive. As the computation is done over the �nite �eld GF (216)

the addition and subtraction operations are the XOR operation. Multiplication

and division consists of three tabular lookups and one addition (for multiplication),

or a subtraction (for division). All relatively inexpensive operations.

Table 5.4 shows the average time to entangle and reconstruct �les of various

sizes. The measurements were taken with an on-disk server block cache|all of the

random blocks used for entanglement were taken from this cache. As we would

expect, reconstruction is much faster than entanglement. Both of these operations

are done by a background thread in the client, therefore an individual can continue

to use the client software while a publish or retrieve operation is in progress.

5.8.5 Byzantine Agreement

As stated in Section 5.7.5, the Tangler network attempts to eject faulty servers

and allows the addition of new servers. This membership change mechanism is

democratic|a majority of servers must elect to add or eject a server. This voting

mechanism is accomplished using the Dolev-Strong authenticated byzantine agree-

95

ment algorithm described in [22]. Figure 5.9 shows this algorithm. The algorithm

shown is a slightly modi�ed version of the one that appears in [49]. The algorithm

has been modi�ed for readability and applicability to Tangler.

The Dolev-Strong byzantine algorithm algorithm is synchronous, requiring that

time be divided into a series of phases. The number of phases required by the

algorithm is t + 1 where t represents the maximum number of faulty nodes the

system can tolerate. The Tangler design assumes that a majority of servers are

non-faulty, therefore if we have n servers, we need b(n � 1)=2c + 1 phases. The

Internet is an asynchronous communication network which means we must simulate

the phases of the algorithm. In order to do so, we must place an upper bound on

the amount of time needed by each Tangler server to process and send the various

messages generated during each phase. Tangler adopts the simple phase model

described in [67]. In this phase model each phase takes (1+ �)(Æmax + Æ+
) clock

time per pulse. This model assumes that the processors have clocks that are Æ-

synchronized, have �-bounded drift and that Æmax and
 are upper bounds on the

message delay and local computation in a phase, respectively.

As stated in 5.7.1, each Tangler server is synchronized to within �ve minutes of

the current time. This �xes the value of Æ to 5 minutes. In a network as large and

complex as the Internet determing the appropriate value of Æmax is a very diÆcult

task [9, 3]. Message latency between various nodes is a�ected by such issues as

routing, network traÆc and network hardware. Therefore we are quite generous

in assigning values to the variables in our phase model. If we also assume a Æmax

and
 value of 5 minutes and 20 second value of � then each phase requires 20

minutes. A Tangler network of 100 servers (the maximum envisioned number)

96

During phase 1:
Leader server S0 signs its vote and sends it to servers S1::n�1

During phase k, 1 � k � t+ 1:
when server Si (i 2 1; 2; : : : ; n� 1) receives a vote v bearing k signatures do:

Vi:=Vi [fvg
if (v is one of the �rst two distinct votes received) and
(server Si has not already sent v to all other servers) then

add signature to vote v
send v to all servers that have not yet signed it

At end of phase t+ 1:
8i 2 1; 2; : : : ; n� 1:

if cardinality(Vi = 1) then
Server Si records the leader's vote as v

else:
Server Si records the leader's vote the null vote

Figure 5.9: Dolev-Strong Byzantine Agreement Algorithm

would require 51 phases which would take 17 hours. If we begin the byzantine

agreement algorithm at six hours into the round we have more than enough time

to complete the phases.

At the start of this voting mechanism, each server sends its signed vote to all

other Tangler servers. This vote contains a list of all Tangler servers that the

voting server believes should remain in the Tangler network. Notice that we are

not explicetly voting-out servers, but rather voting-in Tangler servers. This design

was adopted because it allows membership changes to be made independent of

previous rounds|a server that misses the votes of other Tangler servers due to a

communication outage will learn the membership of the Tangler network during

the next round. If we adopted a vote-out strategy then a server that missed the

votes would need to contact other servers to determine which servers were ejected

during the previous round.

97

The Tangler voting mechanism actually consists of n concurrent invocations of

the authenticated byzantine agreement algorithm, where n is the number of Tangler

servers. In a single byzantine agreement invocation, a speci�c node, called the

leader, sends its vote to all other participating nodes. During future phases, these

nodes exchange signed messages to verify the value sent by the leader. However,

in the case of Tangler, we want each server to vote at the same time|each node

should be the leader. This is accomplished through n concurrent invocations of

the authenticated byzantine agreement algorithm. Each invocation is identi�ed

by round and leader, thereby overcoming the impossiblity result of [38]. A server

remains in the Tangler network only if it receives a majority of votes. A Tangler

server ignores the �nal results of the vote if it doesn't receive votes from a majority

of the servers or if a majority of the servers are voted out. Both of these conditions

violate the assumptions under which the Tangler network was constructed.

5.8.6 Anonymous Communication Channel

Some of the protocols used within Tangler require an anonymous communication

channel. The current implementation of Tangler utilizes the Java Anon Proxy [12].

The Java Anon Proxy is a \real-time" mix-net designed to support anonymous web

browsing. Tangler takes advantage of this by sending all anonymous published

messages on top of HTTP. Replies are also sent back using HTTP.

5.8.7 Tangler Client Implementation

The Tangler client software is responsible for publishing, and retrieving collections

and contacting Tangler servers to act as witnesses. On startup the client must

98

have access to a �le called the round-info �le that contains the domain name, port

numbers, public key, and disk space contribution size of every server participating

in the Tangler network. We assume the client can get this �le from some trusted

source (web site, usenet news, known Tangler server, etc).

Once the round-info �le is read, a number of threads are started. These threads

are described below.

Block Manager Thread

The block manager thread is responsible for maintaining the local server block

cache. This cache of blocks is used by the client during the publication (entan-

glement) process. Each server block is used only once during the entanglement

process, therefore the block cache must be refreshed periodically. This refresh

period is triggered once the number of blocks in the block cache falls below a par-

ticular watermark. The block manager requests random blocks from participating

Tangler servers. The requests are made in a round-robin fashion. In order to

prevent the server from selecting the random block, the block manager thread re-

quests blocks by their position in the server's server block hash tree. For example,

suppose Tangler server S is listed in the round-info �le as donating enough disk

space to hold 1000 server blocks. The block manager thread generates a random

number, n, between 0 and 999 and sends this number, in a properly formatted

request message, to server S. Server S returns the nth server block in its server

block hash tree along with the certifying path for this server block. The certifying

path is sent in order to prove that the block is indeed the nth block. This ensures

that all server blocks have the same probability of being retrieved and used for en-

99

tanglement. All client block requests are done over an anonymous communication

channel to prevent the server from identifying which client is requesting the block.

Tangler servers also periodically request blocks in this same manner. This is done

to ensure that other Tangler servers are not refusing to serve speci�c blocks. A

server that repeatedly fails to serve a requested block is marked, by the requesting

server, as a candidate for ejection.

Publisher Thread

The publisher thread is responsible for maintaining a list, called the block-publish-

list, of server blocks that need to be stored on the Tangler servers. All server

blocks belonging to collections that the client wants to publish are maintained

on this list. Although, some collections may share server blocks, only a single

entry is kept for each server block. Associated with each server block on the list

is a reference count that records the number of collections that entangle with the

particular server block. When the client no longer wishes to maintain a speci�c

collection, the reference counts associated with the collection's entangled server

blocks are decremented. If the reference count of a server block reaches zero it is

removed from the list. Every time a new set of collection server blocks are added

to the list, the publisher thread saves the list to disk. This allows the client to

recover the list following a crash. Figure 5.10 shows the Tangler Collection Publish

Screen.

100

Figure 5.10: Tangler Collection Publish Screen File, Directories and Tangler URLs

can be added to the collection.

Token Manager Thread

The token manager thread is responsible for acquiring the storage tokens needed to

store the server blocks listed in the block-publish-list. Acquisition of these tokens

is done di�erently depending on the type of client that wishes to store the blocks.

As described in Section 5.7.8, there are two di�erent types of publishing clients.

The �rst type of client, called the server-based client, is run by an individual that

101

is hosting a Tangler server. The second type of client, called the external client, is

not associated with a Tangler server but still wishes to store or retrieve collections

from the Tangler network. Both types of clients need to acquire storage coupons

that are presented to servers in exchange for storage tokens. Mechanisms by which

external clients can obtain storage coupons are described in Section 5.7.8. Below

we describe how a server-based client acquires storage tokens.

The server-based client can easily generate storage coupons for itself as it has

access to the server's private key. The client can then send these coupons to the

appropriate Tangler server. The client calculates the number of server blocks it is

entitled to|the calculation is based on the associated server's disk space donation

(as described in Section 5.7.7). Let entitlementNumber(s) be the number of storage

tokens that the server-based client is entitled to on server s. The token manager

thread creates a list of size entitlementNumber(s) for each server s in the Tangler

network. The thread then traverses the block-publish-list and determines which

server to publish each server block on. A server block to be stored on server s

is placed in one slot of the list corresponding to that server. A server block is

only added to the list if the list has an open slot. The consistent hashing based

algorithm described in Section 5.7.6 dictates which list the server block will be

placed in. If a server block cannot be placed on a particular list, the block is

placed on the list of a successor server. If the thread reaches the bottom of the

block-publish-list, and there are still open slots in the server lists, the process is

repeated|for each server block in the block-publish-list, the thread �nds the most

appropriate server list that does not already contain the server block. Eventually,

either all the server-block-list slots are �lled or all the server blocks in the block-

102

message CouponMessage f
Long roundNumber;
String issuingServerID;
String redeemingServerID;
LinkedList blindedShaHashes;
Signature issuingServerSignature;

g

Figure 5.11: Storage Coupon Message Format

publish list can no longer be placed on the lists without adding redundant entries.

In either case, the thread keeps a pointer into the server-block-list. This pointer

points to the last server block added to an empty slot in the server lists. During

the next round, the storage token creation process begins from that pointer. This

gives every server block the opportunity to eventually be stored.

Once the token manager thread has determined where the blocks should be

stored, the storage coupons are created. The format of a storage coupon is shown

in Figure 5.11. The issuingServerID �eld identi�es the Tangler server that has

signed the message and also designates which server should be \billed" for these

tokens. Recall that each server must grant storage tokens to other servers. The

number of storage tokens is proportional to the amount of storage a server has

donated for use by the Tangler network. Every server keeps track of the number of

storage tokens it has granted during the round. When a server receives a storage

coupon it decrements the number of tokens that the issuing server is entitled to

for that round|this is why we used the term \billed." Notice that the last �eld

requires the client to sign the message using the private key of the issuing server.

This is not a problem because the server-based client has direct access to the

server's private key.

103

Once the storage coupon is constructed, the coupon is sent to the appropriate

server. If the server does not answer, the coupon is added to a retry queue.

When all coupons have been sent, all entries on the retry queue are sent again. If

the server refuses to answer for the second time the client contacts each Tangler

server, in turn, in order to enlist them as witnesses. If any of the witnesses are

successful in procuring the signed tokens, the client stops enlisting witnesses for

that request. All requests for tokens and witnesses are made over the anonymous

communication channel. Table 5.5 shows the amount of time that is needed for

various token operations including blinding and verifying tokens.

Once the client receives the signed storage tokens back from the server, or via

a witness, it can start storing the blocks. The block and the signed token are

sent to the appropriate server over the annonymous communication channel. If a

server refuses to store a block, the client enlists witness servers that attempt the

storage operation on the client's behalf. The client contacts witnesses using the

anonymous communication channel.

The client must be careful in the way it redeems the storage tokens. A server

that receives a request for tokens and then a short period later, receives a block

storage request, will likely be able to correlate the token request with the storage

request. This can degrade client anonymity. This is especially a problem for the

server-based client as the client and server are essentially operated by the same

individual or organization and storage coupons are signed by corresponding server.

To prevent this form of correlation, a round is divided into a token acquisition phase

and a token spend phase. During the token acquisition phase the client requests

tokens from the servers and enlists witnesses against servers that do not provide

104

the tokens. During the token spend phase clients send the blocks and tokens to

the appropriate servers and enlist witnesses when a server refuses to store a block.

All clients choose a random point within the phases to begin|the clients do not

operate in lock-step requesting tokens and storing blocks at the same time. The

token acquisition phase starts at the beginning of a new round and ends at the

midpoint of the round. The storage phase starts at the round midpoint and lasts

until the end of the round.

Unfortunately, there is another attack on client anonymity that is not thwarted

by the addition of the token acquisition and token spend phases. An adversarial

server can attempt to learn which server blocks correspond to a particular storage

coupon. In this attack, the adversarial server only grants storage tokens to a

single client. Once the token spend phase begins the client will send the tokens

and corresponding blocks to the server. Since the server only granted tokens to a

single client the correspondence between the request and blocks is obvious. Once

again, this attack is mainly a problem for server-based clients|the server signed

the client's storage coupon. Notice that by refusing to grant storage tokens the

adversarial server has put its Tangler membership in jeapardy. Clients that didn't

receive storage tokens in response to their requests contacted witness servers. These

witness servers recorded the fact that the adversarial server refused to give tokens.

This will lead the servers to eject the adversarial server. However, this doesn't

protect the client. Therefore, prior to beginning the storage phase, each client

asks every Tangler server for the list of servers that have refused to issues tokens

during the round. If a majority of servers claim a particular server did not issue

tokens then the client will not attempt to store blocks on that server. This prevents

105

Token Operation Avg. Time Per 1000 Tokens

Blind Token 2,621

Sign Blinded Token 66,476

Verifying Token Signature 1,133

Verifying Token Signature and Unblind 1,289

Table 5.5: Token Operation Performance In Milliseconds

the adversarial server from matching token and storage requests.

5.8.8 Tangler Server Implementation

Upon startup, each Tangler server attempts to locate a �le, called round-info,

that speci�es the members of the Tangler network. In order to bootstrap the

Tangler network, we assume this �le is initially created by the individuals that

are organizing the Tangler network. This �le contains the domain name, port

numbers, public key, and disk space contribution size of every server participating

in the Tangler network. If a server does not �nd itself listed in the round-info �le,

the server ceases operation and records the failure in a local log �le. The round-

info �le is round speci�c|a new �le is created for each round. The following

subsections describes the important threads that are running within the server.

Server Thread

The Tangler server consists of two main threads that run concurrently. The �rst,

called the Server Thread, is responsible for interacting with other Tangler servers.

The second thread, called the Client Thread, is responsible for interaction with

clients. The operation of the Client Thread is described in the next subsection.

106

All communication between Tangler servers is conducted over long-lived au-

thenticated bi-directional communication channels. The �rst task of the server

thread is to setup these channels. The thread sorts the round-info entries by pub-

lic key and attempts to open a socket connection to all servers that follow its entry

in the sorted list. This is done to allow each server to have a single bi-directional

authenicated connection to every other server.

The Server Thread is responsible for keeping track of the current round number

and the server members of the round. At the end of a round the Server Thread

signals the Client Thread (see Section 5.8.8 to commit all newly acquired server

blocks by rebuilding the server block and collection public key hash trees. Once

these trees have been built the Server Thread forms a new commitment certi�cate.

The commitment certi�cate contains the roots of the two hash trees (server block

and collection public key) and also contains the new temporary round-key that

will be used by the server to sign tokens. This commitment certi�cate is sent to

all other servers.

In order to prevent a server from sending two di�erent commitment certi�cates

during a particular round, each server echoes every commitment certi�cate that it

receives. The echo mechanism is utlized once per unique commitment certi�cate|

every time a new commitment certi�cate is seen by the server it is sent to all other

servers. As every commitment certi�cate is signed, two commitment certi�cates,

for the same round, bearing di�erent values is succinct proof of a faulty server.

This proof is sent to all other servers so that the faulty server can be scheduled for

ejection.

The Server Thread keeps track of which servers it has deemed faulty. At the

107

appropriate time the Byzantine Agreement based voting algorithm is run. The

server sends its vote and tally's the votes of others. A server that is voted-out

writes an appropriate log message to the system logger and exits.

Client thread

The �rst task of the Client Thread is to build the server block and collection root

hash trees. Recall that one of the �elds of the round-info �le records the amount

of disk space that each server is willing to donate to the Tangler network. This

disk space donation translates into a �xed number of server blocks. A Tangler

server must ensure that it is always hosting at least this many server blocks. The

Client Thread may need to generate random server blocks in order to meet this

requirement. The reason for the requirement is that Tangler clients request blocks

from the Tangler servers. These blocks may ultimately be used during the entan-

glement process. The generation of random server blocks, is done prior to building

the server block hash tree. Once all the necessary server blocks have been gen-

erated the Client Thread sorts the server block by their SHA-1 hash values and

builds the server block and collection root hash trees. The sorting is performed

to enable the client thread to generate certifying paths as described in subsection

5.8.7.

The Client Thread, as its name suggests, handles all client requests. It accepts

requests for server blocks, creates certifying paths, accepts new server blocks, cre-

ates storage tokens, accepts server join requests and acts as a witness at the request

of a client.

108

5.9 Discussion and Future Work

Once a server is ejected there is a risk of revealing which blocks that server's

tokens have supported|those blocks will slowly disappear unless the user is able

to publish them through another server. Other possible attacks include reducing

performance by acting correctly but deliberately slowly.

Possible enhancements to Tangler include mechanisms to resist traditional de-

nial of service attacks, such as a
ood of block lookup requests. Conventional

defenses such as hashcash are adequate for many attacks, but anonymity makes it

harder to trace bad users. In addition, Tangler needs better mechanisms to resist

being taken-over by a majority of adversarial servers. The easiest mechanism to

employ is to limit the number of Tangler servers that can join from an particu-

lar subnet. However, this mechanism is relatively easy to defeat [23]. Another

way of dealing with this problem is to simply form a new Tangler network when

it appears the network has been taken-over by some adversary. Therefore many

Tangler networks could exists simultaneously. Clients simply use the network that

they trust.

Tangler's Byzantine Agreement algorithm is synchronous and therefore requires

that time be divided into a series of phases. Each phase takes a speci�c amount

of time. Asynchronous agreement algorithms such as those described in [14, 13]

would, in most circumstances, allow the Tangler servers to come to agreement much

quicker. However, these algorithms are quite complex and diÆcult to implement.

The Tangler protocols we have proposed provide anonymity for publishing while

preventing storage-based
ooding attacks. Though blocks are dispersed untrace-

109

ably across all servers, no server can consume more than its fair share of storage.

Because di�erent servers employ di�erent client association policies, it is unlikely

that an attacker could simultaneously monopolize all servers' available storage to-

kens. The Tangler protocol also implicitly audits servers' behavior at many stages,

ensuring that faulty servers can be ejected. By disallowing servers from publishing

during their probationary period, the protocol ensures that even bad servers do

more good than harm.

110

Chapter 6

Conclusion

Publius and Tangler have made important contributions to the area of censorship-

resistant publishing systems and are among the few systems to have actually been

implemented.

An important aspect of both systems is that the servers storing the published

documents do not know what type of documents are being stored. In Publius,

each server stores encrypted documents. In Tangler, this is taken a step further|

each server is storing blocks that have no meaning unless they are combined, in

well-de�ned ways, with other blocks stored on the servers.

Publius's main contributions beyond previous anonymous publishing systems

include a URL based tamper checking mechanism, a method for updating or delet-

ing anonymously published material, and methods for anonymously publishing

mutually hyperlinked content.

We believe Tangler is the �rst implemented censorship-resistant publishing sys-

tem to attempt to identify and eject adversarial members of the system. The Free

111

Haven system (Section3.1.5) attempts to utilize a \reputation system" to iden-

tify and penalize adversarial servers. However, the Free Haven design has never

been fully speci�ed or prototyped and therefore it unclear whether this system is

practical.

Tangler's entanglement mechanism is the �rst implemented fault-tolerant pub-

lishing mechanism that provides a publisher with some incentive to cache and rein-

ject the blocks of documents belonging to others. The entanglement mechanism

also disperses the responsibility for serving documents as it breaks the one-to-one

correspondence between data blocks and documents|a particular data block can

be used to reconstruct more than one document. While we believe entanglement

could be fruitfully utilized by other censorship resistant publishing systems it is

particularly well suited for use with Tangler's self-policing mechanism. Both mech-

anisms work to ensure that previously published documents remain accessible.

Tangler's other contributions include a design and implementation of a dynamic

address space and a solution for storage based denial-of-service attacks. Tangler's

dynamic address space attempts to prevent a minority of malicious servers from

gaining permanent control over a particular document. Tangler's token storage

mechanism allows a system to support anonymous publication and yet still prevent

an adversary from �lling all available storage.

Tangler is the �rst censorship-resistant publishing system in which participating

servers are truly prevented from suppressing information. Tanger servers have no

control over which blocks they store, and a server that drops even a small fraction

of its blocks will be ejected with high probability.

Perhaps more interestingly, Tangler is the �rst system that completely disso-

112

ciates the contents of stored data from any published documents. This has not

only technical but also interesting legal implications, as questions of responsibility

and liability for published content are far from clear-cut. As the system gains use,

some of these questions may be resolved, and future systems may need to adapt

to the changing legal landscape. However, ultimately we believe that the Internet

will remain a place in which, through one mechanism or another, people can widely

distribute content despite any e�orts to silence them.

113

Bibliography

[1] RFC 1521. http://www.ietf.org/rfc/rfc1521.txt [cited 2/5/2003].

[2] Alfred V. Aho, John E. Hopcroft, and Je�rey D. Ullman. Data Structures

And Algorithms. Addison-Wesley Publishing Company, 1983.

[3] Yair Amir and Avishai Wool. Evaluating quorum systems over the internet. In

Proceedings of Annual International Symposium on Fault-Tolerant Computing

(FTCS), pages 26{35, 1996.

[4] Ross Anderson. The eternity service. In Proceedings of Pragocrypt 1996, 1996.

[5] Anonymizer. http://www.anonymizer.com [cited: 5/1/2002].

[6] Maurice J. Bach. The Design Of The Unix Operating System. Prentice Hall,

1990.

[7] Adam Back. Hash cash: A partial hash collision based postage scheme. http:/

/www.cypherspace.org/~adam/hashcash/ [cited: 5/1/2002].

[8] Adam Back. The eternity service. Phrack Magazine, 7(51), 1997. http://

www.cypherspace.org/~adam/eternity/phrack.html [cited: 5/1/2002].

114

[9] Omar Bakr and Idit Keidar. Evaluating the running time of a communication

round over the internet. In Proceedings of the Twenty-First Annual Symposium

on Principles of Distributed Computing, pages 243{252. ACM Press, 2002.

[10] Arash Baratloo, Mehmet Karaul, Zvi M. Kedem, and Peter Wycko�. Char-

lotte: Metacomputing on the web. In Proceedings of the Ninth International

Conference on Parallel and Distributed Computing Systems, 1996.

[11] Amos Beimel and Shlomi Dolev. Buses for anonymous message delivery. In

Second International Conference on FUN with Algorithms, pages 1{13, Elba,

Italy, May 2001. Carleton Scienti�c.

[12] Oliver Berthold, Hannes Federrath, and Stefan Kopsell. Web mixes: A system

for anonymous and unobservable internet access. In Workshop on Design Is-

sues in Anonymity and Unobservability, pages 115{129. Springer-Verlag, 2000.

[13] Christian Cachin, Klaus Kursawe, and Victor Shoup. Random oracles in con-

stantipole: practical asynchronous byzantine agreement using cryptography

(extended abstract). In Proceedings of the nineteenth annual ACM symposium

on Principles of distributed computing, pages 123{132. ACM Press, 2000.

[14] Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance. In

Proceedings of the Third Symposium on Operating Systems Design and Im-

plementation (OSDI '99), New Orleans, Louisiana, February 1999. USENIX

Association.

[15] David Chaum. Untraceable electronic mail, return adresses, and digital

pseudonyms. Communications of the ACM, 24(2):84{88, February 1981.

115

[16] David Chaum. Blind signature system. In Advances in Cryptology: Proceed-

ings of Crypto '83, page 153, 1983.

[17] Yuan Chen, Jan Edler, Andrew Goldberg, Allan Gottlieb, Sumeet Sobti, and

Peter Yianilos. A prototype implementation of archival intermemory. In

Proceedings of ACM Digital Libraries. ACM, August 1999.

[18] Ian Clarke, Oskar Sandberg, Brandon Wiley, and Theodore W. Hong. Freenet:

A distributed anonymous information storage and retrieval system. In Pro-

ceedings of the Workshop on Design Issues in Anonymity and Unobservability,

2000.

[19] Frank Dabek, M. Frans Kaashoek, David Karger, Robert Morris, and Ion

Stoica. Wide-area cooperative storage with CFS. In Proceedings of the 18th

ACM Symposium on Operating Systems Principles (SOSP '01), Chateau Lake

Louise, Ban�, Canada, October 2001.

[20] Thomas Demuth and Andreas Rieke. On securing the anonymity of content

providers in the world wide web. In Proceedings of SPIE '99, volume 3657,

pages 494{502, 1999.

[21] Roger Dingledine, Michael J. Freedman, and David Molnar. The Free Haven

Project: Distributed anonymous storage service. In Proceedings of the Work-

shop on Design Issues in Anonymity and Unobservability, 2000.

[22] Danny Dolev and H. Raymond Strong. Authenticated algorithms for byzantine

agreement. SIAM Journal of Computing, 12(4):656{666, 1983.

116

[23] John R. Douceur. The sybil attack. In Proceedings of the 1st International

Workshop on Peer-to-Peer Systems (IPTPS '02), 2002.

[24] Cynthia Dwork and Moni Naor. Pricing via processing or combatting junk

mail. In Advances in Cryptology: Proceedings of Crypto '92, pages 139{147.

Springer-Verlag, 1992.

[25] Tera News Usenet News FAQ. http://www.teranews.com/faq.html [cited

4/4/2003].

[26] Nick Feamster, Magdelena Balazinska, Greg Harfst, Hari Balakrishnan, and

David Karger. Infranet: Circumventing web censorship and surveillance. In

Proceeding of the 11th USENIX Security Symposium, San Francisco, Califor-

nia, August 2002. ACM Press.

[27] Edward W. Felten, Dirk Balfanz, Drew Dean, and Dan S. Wallach. Web

spoo�ng: An Internet con game. Technical Report TR-540-96, Princeton

University, Princeton, New Jersey, December 1996.

[28] Kevin Fu, M. Frans Kaashoek, and David Mazi�eres. Fast and secure dis-

tributed read-only �le system. In Proceedings of the 4th USENIX Symposium

on Operating Systems Design and Implementation (OSDI 2000), San Diego,

California, October 2000.

[29] Andrew V. Goldberg and Peter N. Yianilos. Towards and archival intermem-

ory. In Proc. IEEE International Forum on Research and Technology Advances

in Digital Libraries (ADL'98), pages 147{156. IEEE Computer Society, April

1998.

117

[30] Ian Goldberg. A pseudonymous communications infrastructure for the in-

ternet. PhD thesis, Computer Science Department, University of California,

Berkeley, 2000.

[31] Ian Goldberg and Adam Shostack. Freedom network 1.0 architecture. Novem-

ber 1999.

[32] Ian Goldberg and David Wagner. TAZ servers and the rewebber net-

work: Enabling anonymous publishing on the world wide web. First Mon-

day, 3, 1998. http://www.firstmonday.dk/issues/issue3 4/goldberg/

index.html [cited: 5/1/2002].

[33] Li Gong, Patrick Lincoln, and John Rushby. Byzantine agreement with au-

thentication: Observations and applications in tolerating hybrid and link

faults. In Proceedings of the 5th IFIP Working Conference on Dependable

Computing for Critical Applications, pages 79{90, Urbana-Champaign, Illi-

nois, 1995.

[34] Maurice P. Herlihy and J.D. Tygar. How to make replicated data secure. In

Advances In Cryptology: Proceedings of Crypto '87, pages 379{391. Springer

Verlag, 1988. Lecture Notes in Computer Science No. 293.

[35] David Karger, Eric Lehman, Tom Leighton, Matthew Levine, Daniel Lewin,

and Rina Panigrahy. Consistent hashing and random trees: Distributed

caching protocols for relieving hot spots on the world wide web. In Pro-

ceedings of the 29th Annual ACM Symposium on Theory of Computing, pages

654{663, 1997.

118

[36] Hugo Krawczyk. Secret sharing made short. In Advances in Cryptology:

Proceedings of Crypto '93, pages 136{143. Springer-Verlag, 1993.

[37] Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine gen-

erals problem. ACM Transactions on Programming Languages and Systems,

4(3):382{401, 1982.

[38] Yehuda Lindell, Anna Lysyanskaya, and Tal Rabin. On the composition of

authenticated byzantine agreement. In Proceedings of the Thirty-Fourth An-

nual ACM symposium on Theory of Computing, pages 514{523. ACM Press,

2002.

[39] David Mazi�eres and M. Frans Kaashoek. The design, implementation and

operation of an email pseudonym server. In Proceedings of the Fifth ACM

Conference on Computer and Communications Security, pages 27{36. ACM

Press, 1998.

[40] Ralph Merkle. A digital signature based on a conventional encryption function.

Advances in Cryptology: Proceedings of Crypto '87, pages 369{378, 1987.

[41] Silvio Micali. CS proofs. SIAM Journal on Computing, 30(4):1253{1298, 2000.

[42] David L. Mills. Network time protocol (version 3) | speci�cation, implemen-

tation and analysis. RFC 1305, March 1992.

[43] David L. Mills. Public key cryptography for the network time protocol. Tech-

nical Report 00-5-1, Electrical Engineering Dept., University of Delaware,

Newark, Delaware, May 2000.

119

[44] Moni Naor. Veri�cation of a human in the loop or identi�cation via the

turing test. Unpublished draft http://www.wisdom.weizmann.ac.il/~naor/

PAPERS/human abs.html [cited: 5/1/2002], 1996.

[45] National Institute of Standards and Technology. Secure hash standard, 1995.

[46] U.S. Library of Congress. About the federalist papers. http://

lcweb2.loc.gov/const/fed/abt fedpapers.html [cited 5/1/2002].

[47] Network Time Protocol. http://www.ntp.org [cited: 5/1/2002].

[48] Michael O. Rabin. EÆcient dispersal of information for security, load balanc-

ing, and fault tolerance. Journal of the ACM, 36(2):335{348, 1989.

[49] Michel Raynal. Distributed Algorithms and Protocols. John Wiley & Sons,

Inc., 1988.

[50] Michael G. Reed, Paul F. Syverson, and David M. Goldschlag. Proxies for

anonymous routing. In Proceedings of the 12th Annual Computer Security

Applications Conference, pages 95{104. IEEE Computer Society, December

1996.

[51] Michael K. Reiter. Distributing trust with the rampart toolkit. Communica-

tions of the ACM, 4(39):71{74, April 1996.

[52] Michael K. Reiter. A secure group membership protocol. IEEE Transactions

on Software Engineering, 1(22):31{42, January 1996.

[53] Michael K. Reiter and Aviel D. Rubin. Crowds: Anonymity for web transac-

tions. ACM Transactions on Information System Security, 1(1), April 1998.

120

[54] Fred B. Schneider. Implementing fault-tolerant services using the state ma-

chine approach: A tutorial. ACM Computing Surveys, 22(4):299{319, 1990.

[55] Bruce Schneier. Description of a new variable-length key, 64-bit block ci-

pher (Blow�sh). In Fast Software Encryption, Cambridge Security Workshop

Proceedings, Cambridge, England, December 1993. Springer-Verlag.

[56] Bruce Schneier. Applied Cryptography. John Wiley and Sons, 1996.

[57] SETI@Home Software. http://setiathome.berkeley.edu/ [cited:

5/1/2002].

[58] Noah Shachtman. Why countries make sites unseen. July 2002. http://

www.wired.com/news/politics/0,1283,53933,00.html [cited: 2/5/2003].

[59] Adi Shamir. How to share a secret. Communications of the ACM, 22:612{613,

November 1979.

[60] Crypto++ Web Site. http://www.eskimo.com/~weidai/cryptlib.html

[cited: 2/5/2003].

[61] Peek-A-Booty Web Site. http://www.peek-a-booty.org/ [cited: 2/5/2003].

[62] Tim Skirvin. Usenet cancel faq v1.75. September 1999.

[63] Douglas Stinson. Cryptography: Theory and Practice. CRC Press, Inc, 1995.

[64] Ion Stoica, Robert Morris, David Karger, and M. Frans Kaashoek. Chord: A

scalable peer-to-peer lookup service for internet applications. In Proceeding of

ACM SIGCOMM 2001, pages 149{160, San Deigo, California, August 2001.

121

[65] Adam Stubble�eld and Dan S. Wallach. Dagster: Censorship-resistant pub-

lishing without replication. Technical Report TR01-380, Rice University,

Houston, Texas, July 2001.

[66] Paul F. Syverson, Gene Tsudik, Michael G. Reed, and Carl E. Landwehr.

Towards an analysis of onion routing security. In Workshop on Design Issues

in Anonymity and Unobservability, pages 96{114. Springer-Verlag, 2000.

[67] Gerard Tel. Introduction to Distributed Algorithms, Second Edition. Cam-

bridge University Press, 2000.

[68] Luis von Ahn, Manuel Blum, Nicholas Hopper, and John Langford. Captcha:

Using hard AI problems for security. Advances in Cryptology: Proceedings of

Crypto '03, 2003.

[69] Phil Zimmerman. PGP user's guide. December 4, 1992.

122

