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Abstract

Firms are now able to collect unprecedented amounts of data. This wealth of data
provides new opportunities and capabilities for the firm to better solve classical problems
within operational and marketing contexts, such as customer segmentation and demand
learning. At the same time, the data imposes new challenges. In addition to its large-scale
nature which creates computational issues, the data comes from a diversity of sources, varying
in their respective measurement scales (e.g., clicks, ratings, purchase signals, etc.), and is
typically sparse, containing a large fraction of missing observations. The diversity in the data
makes it hard to directly compare different observations (clicks vs purchases, for instance)
and the severe sparsity precludes any meaningful imputations of unobserved entries. The
data also comes from unreliable sources, which introduce both unintentional and deliberate
errors. The identities of such sources is very often unknown, which makes it difficult to
determine which sources to trust.

These data challenges require a rethink of traditional techniques for customer segmentation
and demand learning. Given their importance and widespread use, this dissertation revisits
the classical problems of customer segmentation and demand learning but in the presence of
sparse, diverse, and large-scale data. The key contribution of the dissertation is a suite of
novel methodologies to deal with the challenges described above.

Part I of the dissertation focuses on the problem of customer segmentation. In Chapter
1, we consider the problem of segmenting (or clustering) a large population of customers
based on their preferences, when the preference signals (e.g., clicks, ratings, etc.) come from
a multitude of diverse data sources and each customer provides only a few observations.
These data characteristics preclude the applicability of traditional marketing techniques
as well as standard clustering approaches in machine learning. We propose a model-based
embedding technique which takes the customer observations and a probabilistic model class
generating the observations as inputs, and outputs an embedding—a low-dimensional vector
representation in Euclidean space–for each customer. We then cluster the embeddings to
obtain the segments. We show that our segmentation technique can be used to generate
highly accurate personalized recommendations in two real-world case studies, including upto
8% improvement over the existing approach on an eBay dataset consisting of millions of
customers and items. In addition, it outperforms (both in speed and accuracy) standard
techniques in marketing and machine learning.

In Chapter 2, we turn our attention to the domain of crowdsourced labeling, which provides
a low-cost, easy and scalable way to collect labels from the crowd—composed of “workers”—
which are then aggregated and used as inputs for training machine learning applications. The
main challenge is that workers are often unreliable, and therefore can introduce unintentional
or even intentional errors into the labels. The reliabilities of the workers are a priori unknown,
so correctly aggregating the labels becomes difficult. We propose algorithms to separate
the worker population into two segments, what we call “honest” and “adversarial” workers.
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Honest workers can provide incorrect labels, but their errors are probabilistic and therefore,
can be corrected. Adversarial workers, on the other hand, adopt arbitrary labeling strategies
(whether deterministic or probabilistic) and therefore, their labels cannot be trusted. We
demonstrate that discarding the labels provided by even a few adversarial workers can
significantly improve the accuracy of several existing approaches for aggregating the labels in
real-world crowdsourcing datasets.

Part II is devoted to demand learning. In Chapter 3, we consider the problem of learning
customer demand for a set of substitutable products. Within operations, the customer
demand is typically modeled using a mixture of logit models, which can capture heterogeneity
as well as rich substitution patterns in customer preferences. The mixture model is fit to
historical sales transactions and inventory data, and the fitted model is used to inform pricing
and assortment decisions. We propose a novel nonparametric estimator for the mixture of
logit models, providing the ability to make effective use of the large amounts of transaction
data that firms have access to. By contrast, most existing techniques impose parametric
assumptions—usually driven by tractability considerations—on the mixing distribution, and
consequently can suffer from model misspecification issues. We show that our estimator is
able to recover good approximations of different ground-truth mixing distributions—despite
having no knowledge of their underlying structure—and outperforms the standard expectation-
maximization (EM) benchmark in predictive and decision accuracies, while being an order of
magnitude faster.
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Introduction

Firms are increasingly able to collect large amounts of data about their customers.
Consider the example of eBay, an e-commerce platform allowing people to buy and sell
merchandize. From the perspective of buyers,1 eBay has access to the complete browsing
activity of its customers—which products they have viewed in the past, along with fine-grained
interactions like clicks, purchases, and product ratings/reviews that directly reveal their
underlying preferences. It is able to collect such data via multiple channels like the eBay.com
website and the eBay mobile app. In addition, it also has access to demographic information
like age, gender, income, education, etc. This wealth of data provides opportunities for eBay
to provide a more engaging and highly customized experience for its customers. For instance,
eBay can leverage this data to predict what kinds of products customers will like to purchase
and either recommend them directly, or with associated promotions/discounts to induce
the customer to purchase. It can also create personalized home pages for the customers in
order to increase engagement and eventually drive more number of purchases and higher
revenues. Further, with growing computational capabilities, these decisions can be made
both in real-time when the customer visits the website or mobile app, and offline which can
then be sent in targeted e-mails, app notifications, etc.

However, the large amounts of data also poses several challenges in extracting the
critical information needed to make such decisions. In order to highlight the concrete set
of challenges, lets look at a specific task that eBay is interested in: recommending buyers
“similar” products for purchase.2 When a customer visits a product page on eBay, he/she is
recommended “similar” products, which are shown below the viewed product. For instance, in
Figure 1, the customer is currently viewing a pair of sneakers—called the “seed product”—and
recommended below are other pairs of shoes on eBay which the customer might also be
interested in purchasing—the exact same pair sold by a different seller (at a cheaper price),
different color variants, another style within the same brand, and so on. eBay designed a
scalable architecture and system to provide these recommendations in real-time, however,

1In a similar vein, eBay has information about sellers such as the set of products they have sold, their
feedback scores, etc. The applications we consider are more from a buyer’s viewpoint, and therefore we focus
our discussion on the buyers.

2We discuss this problem in greater detail in Section 1.6.
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Example of similar product recommendation on eBay

 Seed product

Recommended
products

Figure 1: The seed product is a pair of sneakers that the user is currently viewing, and the
recommended products at the bottom are other pairs of shoes similar to the seed product.

they would provide the same set of recommendations for a given viewed product, regardless
of which customer was viewing it. Since customers typically have heterogeneous preferences
for different product features—for instance, some customers might really like the red color of
the sneakers and only want to see other red colored shoes, whereas other customers might
be brand loyal and only want to be shown other styles in the same brand—eBay wanted
to segment (or cluster) the customers according to their preferences, and personalize (or
customize) the recommendations to each segment.

Despite the fact that eBay has access to large amounts of data about various interactions
(such as clicks, purchases, etc.) from its customers, determining whether two customers
actually have similar preferences and therefore, should be placed in the same segment, is
extremely non-trivial. First, the large-scale nature of the data—eBay has millions of customers
and millions of products in its catalog—imposes computational challenges, resulting in the
need for clustering algorithms that can scale to such large data sizes. Second, the observed
interactions come from diverse sources encompassing views, clicks, ratings, purchases, etc. and
are represented on different measurement scales, which makes it difficult to directly compare
different signals. If a customer provides a 5-star rating for a product and another customer
purchases the same product, it is unclear if the two customers have similar preferences.
Similarly, it is unclear whether a click provides the same customer intent as a purchase—
people typically don’t mind clicking on products just to explore, but are much more cautious
when it comes to actually purchasing the product. Third, for an individual customer, there

2



are typically very few observations. In other words, the data is highly sparse. For instance,
in our sample dataset consisting of customer interactions during a two-week period (see
Section 1.6), a customer on average interacted with only 5 out of 4.2M products. As a result,
two customers may have no overlap in the set of products they interact with, again making
it challenging to determine if the customers have similar preferences. In addition, many of
the products are unstructured, i.e. lacking well-defined or consistent feature representations,
which limits the ability to extrapolate customer preferences. For example, eBay has a large
collection of antique and collectible items in its catalog, which lack any reasonable feature
structure. Finally, the preference observations can come from unreliable sources, which
introduce both unintentional and intentional errors. For instance, fraudulent buyers can
provide bad/negative feedback scores for sellers, despite having a smooth experience with
their purchase.3 Similarly, many of the products in eBay’s catalog are associated with false or
misleading description about their authenticity (replicas, counterfeits, etc.) and/or features.4

Consequently, not all of the data can be trusted, and eBay needs mechanisms to filter out
data from unreliable sources.

The above data characteristics also impose challenges on another classical problem faced
by firms: learning the customer demand. For instance, retailers like Walmart, Target, Zara,
and numerous others, want to be able to predict demand for different products that they offer
to the population, and these demand predictions are used as inputs for key decisions like the
assortment, i.e. set of products, to carry in a particular store and the prices to charge for the
offered products, which products to recommend to new customers, introducing a new product
to, or discontinuing an existing product from the market, and so on. To capture substitution
behavior of customers between different products (if the product of choice is not available,
or stocked-out, when the customer visits the store, he/she can instead purchase another
“similar” product that is in stock), the standard approach in the operations and marketing
literature is to specify a choice model—a probabilistic model that relates product attributes
like price, brand, etc. and the set of offered products to the probability of purchase—and fit
the model to historical sales transactions—which provide information on which products were
purchased— and inventory data—which provide information on which other products were
offered to the customer when a purchase was made—collected by the firm. The most popular
choice model used in the literature is the mixture of logit model (also referred to as the mixed
logit [RT98] model), which can capture heterogeneity as well as rich substitution patterns in
customer preferences. It has been shown that the mixture of logit model can approximate a
wide class of choice models [MT00] and it has been successfully applied in practice. However,
a key challenge in fitting the mixture of logit model is that the structure of the mixing
distribution—which models the distribution of preferences in the customer population—is
not known in practice. Existing approaches typically impose parametric assumptions on the
mixing distribution—usually driven by tractability considerations—which can result in model

3https://community.ebay.com/t5/Archive-The-Front-Porch/EBAY-IS-FILLED-WITH-FRAUDULENT-

BUYERS/td-p/24847360
4https://www.ebay.com/help/policies/prohibited-restricted-items/fake-items-policy?id=

4276
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misspecification, i.e. the true distribution does not belong to the chosen parametric family.
Model misspecification can result in biased estimates for parameters of interest [Tra08] as
well as poor goodness-of-fit measures [FKRB11], leading to sub-optimal decisions. Further,
these kind of issues are exacerbated when firms have access to large amounts of transaction
data, often coming from different geographic and/or demographic regions, resulting in highly
diverse and dynamic customer choice behavior that need not necessarily be explained by
distributions belonging to the same parametric family. In particular, parametric estimators
do not scale with the amount of data or “information” available and therefore, are not able
to make effective use of the large-scale transaction data that firms have access to nowadays.

The aforementioned data challenges require a rethink of traditional techniques for customer
segmentation and demand learning. Given their importance and widespread use, this
dissertation revisits the classical problems of customer segmentation and demand learning
but in the presence of sparse, diverse, and large-scale data. The key contribution of the
dissertation is a suite of novel methodologies to deal with the challenges described above.

Our Contributions

This dissertation contains two parts: In Part I, we study the problem of customer segmen-
tation, and Part II is devoted to learning customer demand. Under customer segmentation,
we focus on two problems: (i) segmenting customers based on their preferences, where we
address the challenges of diversity, sparsity and scale in the observed preference signals
and (ii) segmenting crowd workers based on their reliability, where we deal with the issue
of unreliability in the observed data. Under demand learning, we consider the problem
of estimating a mixture of logit models from large-scale historical sales transactions and
inventory data.

Segmenting customers based on their preferences

In Chapter 1, we consider the problem of segmenting (aka clustering) a large population
of customers based on their preferences over a large collection of items, when the preference
signals (e.g., clicks, purchases, ratings, etc.) come from a multitude of diverse data sources
and each customer may provide only a few observations. Further, the items may lack any
reasonable feature structure, making it difficult to extrapolate customer preferences. These
data characteristics limit the applicability of existing techniques in marketing and machine
learning. To overcome these limitations, we propose a model-based embedding technique which
takes the customer observations and a probabilistic model class generating the observations
as inputs, and outputs an embedding—a low-dimensional vector representation in Euclidean
space—for each customer. We then cluster the embeddings (using a standard clustering
technique such as k-means) to obtain the segments.

The key novelty of our approach is generating the embedding, which leverages the proba-
bilistic model to convert a categorical observation like click or purchase into its corresponding
(log-)likelihood value under the model. We estimate the model parameters by pooling together
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the data from all customers and ignoring the possibility that different customers may have
different model parameters. This results in a model that describes a ‘pooled’ customer—a
virtual customer whose preferences reflect the aggregated preferences of the population.
The likelihood transformations then measure how much a particular customer’s preferences
differ from those of the population’s. Our theoretical analysis shows that under reasonable
assumptions, customers from different segments will have different (log-)likelihood values
under the pooled model—allowing us to separate them out.

We outline our contributions below:

1. Novel segmentation algorithm. Our algorithm is designed to operate on large customer
populations and large collections of (unstructured) items. Moreover, it is (a) principled,
reducing to standard algorithms in machine learning in special cases; (b) fast, with an
order of magnitude speedup compared to benchmark latent class models because it
requires fitting only one model (as opposed to a mixture model); and (c) flexible, allowing
practitioners to systematically incorporate problem-dependent structures through the
probabilistic model class, providing a way to take advantage of the rich literature in
marketing proposing models for individual customer behavior. We refer the reader to
Section 1.2 for the detailed description of the algorithm.

2. Analytical results. Under a standard latent class model for customer observations, we
derive necessary and sufficient conditions for asymptotic recovery of the true segments.
Specifically, we bound the asymptotic misclassification rate, defined as the expected
fraction of customers incorrectly classified, of a nearest-neighbor classifier trained on
customer embeddings obtained from the embed step in our algorithm. Given a universe
of n items such that each customer provides at least log n observations, we show that

the misclassification rate scales as O

(
n−

2Λ2α2
min

81

)
where 0 < αmin,Λ < 1 are constants

that depend on the underlying parameters of the model. In other words, when each
customer provides O(log n) observations, our algorithm correctly classifies all customers
into their respective segments, as n → ∞. The formal statements of the results are
presented in Section 1.3. Our results are similar in spirit to the conditions derived in
existing literature for Gaussian mixture models [AM05, KSV05].

3. Empirical results. We conducted three numerical studies to validate our methodology:

(a) Using synthetic data (see Section 1.4), we show that our method obtains more
accurate segments, while being upto 17× faster, than the standard latent class
(LC) benchmark.

(b) On the publicly available MovieLens dataset [HKBR99], we apply our segmen-
tation method to solve the classical cold-start problem in recommender systems,
specifically, the problem of recommending new movies to customers. We show
that segmenting customers using our method and customizing recommendations
to each segment improves the recommendation accuracy by 48%, 55%, and 84%
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for movies in drama, comedy, and action genres, respectively, when compared to a
baseline method that treats all customers as having homogeneous preferences. It
also outperforms the standard LC (by upto 13%) and empirical bayesian (by upto
19%) benchmarks used for capturing heterogeneity in the marketing literature, as
well as common clustering techniques in the machine learning literature. Refer to
Section 1.5 for the details.

(c) On a real-world dataset from eBay (see Section 1.6), we apply our segmentation
methodology for personalizing similar product recommendations. We show that
segmenting the population using our approach and customizing recommendations to
each segment can result in upto 8% improvement in the recommendation accuracy,
when compared to treating the population as having homogeneous preferences.
The improvement of 8% is non-trivial because before our method, eBay tried
several natural ways to segment (by similarity of demographics, frequency/recency
of purchases, etc.), but the best of them resulted in ∼ 1% improvement.

Segmenting crowd workers based on their reliability

In Chapter 2, we consider the problem of segmentation in the presence of unreliable data.
In particular, we focus on the domain of crowdsourced labeling, which provides a low-cost,
easy and scalable way to collect labels from the crowd—composed of “workers”—which are
then aggregated and used as inputs for training machine learning applications. The key
challenge here is that workers are often unreliable, and therefore can introduce unintentional
or even intentional errors into the labels. The reliabilities of the workers are a priori unknown,
so correctly aggregating the labels becomes difficult. Most existing studies assume that
the worker labels are generated according to specific probabilistic models; however, recent
evidence shows the presence of workers adopting non-random or even malicious strategies.
To account for such workers, we suppose that the worker population comprises a mixture of,
what we call, honest and adversarial workers. Honest workers may be reliable or unreliable
(i.e., they can also provide incorrect labels), but they provide labels according to an unknown
but explicit probabilistic model. Adversarial workers, on the other hand, adopt labeling
strategies different from those of honest workers, whether probabilistic or not. However,
the identities (honest or adversarial) of individual workers are unknown. We propose two
reputation algorithms (that only use the observed worker labels) to separate out unreliable
honest workers and adversarial workers in the population. Our algorithms assume that
honest workers are in the majority, and they classify workers with outlier label patterns as
adversaries.

Specifically, we make the following contributions:

1. Reputation algorithms. We propose a reputation-based algorithm to identify outlier
worker labeling patterns. The algorithm takes as inputs a set of workers, a set of
labeling tasks having (unknown) true labels in {−1,+1}, and binary (+1 and −1)
labels provided by the workers. Each worker may label only a subset of the tasks.
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Our algorithm makes no specific assumptions on the worker labeling strategies and
identifies outliers by penalizing workers for the number of “conflicts” they are involved
in. Specifically, suppose each task receives both +1 and −1 labels from the workers.
For each task t, the algorithm maintains the number d+ of +1 labels, number d− of −1
labels, and a penalty budget of 2. Intuitively, if d+ > d−, then the worker assigning
label −1 to task t is “more” of an outlier than a worker assigning label +1. Accordingly,
the algorithm makes the following decisions: (a) how much of the penalty budget to
allocate to each worker labeling a given task, and (b) how to aggregate the penalties
allocated to each worker (across all tasks assigned to the worker) to arrive at the final
reputation score. We outline two algorithms that differ in how they make these two
decisions: soft-penalty and hard-penalty. Both penalty assignments are based on the
intuition that when there are more honest workers than adversaries in the population,
the former are more likely to agree with the majority label on a given task and therefore
receive lower penalties. Refer to Section 2.3 for the formal description of the algorithms.

2. Analytical results. We analyze our reputation algorithms under three settings: (a) there
are no adversaries in the population and honest workers adopt the standard “one-coin”
model, which assumes that each worker w provides the correct label to an assigned task
with probability pw and the incorrect label with probability 1− pw (the parameter pw
thus measures the reliability of worker w), to generate the labels; (b) honest workers
adopt the one-coin model and adversaries, the Uniform strategy in which they label
all assigned tasks +1; and (c) honest worker labels are generated according to the
spammer-hammer model [KOS11] and the adversaries are sophisticated, having infinite
computational capacity as well as knowledge of the honest workers’ labels, and therefore
capable of executing arbitrary labeling strategies.

For the first two settings, we consider a standard crowdsourced labeling setup in which
each worker labels the same number l of tasks and each task is assigned to r workers.
For the first setting, we show that the penalties assigned by the soft-penalty algorithm
are consistent with worker reliabilities in the one-coin model—the higher the reliability,
the lower is the penalty. For the second setting, we derive necessary and sufficient
conditions under which the soft-penalty algorithm assigns lower (expected) penalties to
honest workers than to adversaries, and bound the asymptotic misclassification rate of
a threshold classifier—given a penalty threshold θ, the threshold classifier classifies a
worker as honest if its penalty is less than or equal to θ and as adversarial otherwise—
showing that it correctly classifies all adversaries and honest workers with above average
reliabilities.

For the last setting, we make no assumptions on the structure of the task assignment to
the workers. This setup is reflective of public crowdsourced settings (such as Amazon,
Yelp, etc.) in which workers choose which tasks to label and the assumption of
sophisticated adversaries is most relevant, and we derive performance guarantees based
on the resulting assignment structure. We show that the hard-penalty algorithm is
robust to sophisticated adversary strategies but the soft-penalty algorithm is vulnerable.
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In particular, we propose an aggregation algorithm that utilizes the worker penalties
computed by the hard-penalty algorithm, and establish the existence of an upper bound
on the worst-case number of tasks whose true label is incorrectly inferred by this
aggregation algorithm, under any adversary strategy. See Section 2.4 for the detailed
description of the results.

3. Numerical results. We conducted two numerical studies to demonstrate the practical
value of our reputation algorithms. The first study shows, on five real-world crowd-
sourcing datasets, that discarding the labels provided by adversaries identified by our
algorithms allows all of the following standard label aggregation algorithms to infer true
task labels more accurately: (a) simple majority, (b) expectation-maximization (EM)
for the two-coin model [RY12], (c) KOS [KOS11], (d) a normalized variant of KOS, (e)
spectral EM [ZCZJ14], and (f) regularized minimax conditional entropy [ZLP+15]. In
particular, we show that by filtering out even a few workers (upto at most 10), our
methods can improve the accuracy of the inferred task labels by 9.8% on average. These
improvements suggest that the label patterns of discarded workers do not conform to
standard probabilistic models assumed in prior works. Refer to Section 2.5.1 for the
details.

The second study (see Section 2.5.2) is designed to complement our theoretical analysis.
By using synthetic data, we show that both the soft- and hard-penalty algorithms
successfully identify Uniform adversaries (who label all assigned tasks +1) and low-
reliability honest workers, when the number of tasks a worker labels has a power-law
distribution. This scenario commonly arises in crowdsourcing settings where workers
organically choose which tasks to label, with some workers labeling many tasks and
some tasks receiving many labels [FKK+11]. The study also offers insights into the
settings under which the soft- or hard-penalty algorithm is appropriate; we observe
that the soft-penalty (hard-penalty) algorithm is more appropriate when the number of
tasks that an adversary labels is low (high).

Nonparametric estimator for mixture of logit models

Mixture of logit models are commonly used for modeling customer demand in econometrics,
operations and marketing. A key challenge in estimating the mixture model is that the
structure of the mixing distribution is often unknown in practice. Most existing techniques
impose parametric assumptions—usually driven by tractability considerations—on the mixing
distribution, and consequently can suffer from model misspecification issues. These issues
are exacerbated when firms have access to large amounts of data, reflecting highly diverse
and dynamic choice behavior from different subpopulations of customers, since parametric
estimators do not scale with the amount of data that is available. This motivates the need
for designing nonparametric estimators that can automatically adapt and learn the customer
choice behavior from the observed data.

In Chapter 3, we propose a novel nonparametric method for estimating a mixture of
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logit models from large-scale historical sales transactions, and inventory data, which provides
information on product availability. Together, these data specify the number of sales for
each product as a function of the offer-set, i.e. the subset of products offered to the customer
population, for a collection of offer-sets. Our estimation technique finds the best fitting
distribution to the data, where the fit is measured through a convex loss function, amongst
the class of all possible mixing distributions. We formulate the estimation problem as a
constrained convex program and leverage the conditional gradient (aka Frank-Wolfe) algorithm
to solve it, showing that it iteratively recovers the support of the mixing distribution. The
recovered mixing distribution is discrete, with each component in the support representing a
particular ‘customer type’. The conditional gradient (CG) algorithm has received a lot of
attention in the machine learning literature recently, with many variants being proposed for
solving large-scale optimization problems, and our estimation method can also leverage these
developments for effectively learning the customer demand from large-scale transaction data.

We summarize our key contributions below:

1. Novel mixture estimation methodology. Our estimator is (a) general-purpose: can be
applied with little to no customization for a broad class of loss functions; (b) fast:
order of magnitude faster than the benchmark EM algorithm; and (c) nonparametric:
makes no assumption on the mixing distribution and estimates customer types in the
population in a data-driven fashion. We refer the reader to Section 3.2 for the problem
setup and detailed formulation of our approach.

2. Analytical results. We obtain two key theoretical results:

(i) We provide convergence guarantees for our CG-based estimator, for both the log-
likelihood and squared loss functions (see Theorem 3.2 in Section 3.4.1). For the
squared loss, we obtain a sublinear convergence rate of O(1/k) after k iterations,
which follows directly from applying existing results in our context. But, for the
log-likelihood loss, existing results don’t apply because the gradient of the loss
function blows up at the boundary of the constraint region of the convex program.
We address this issue by showing that the iterates produced by the fully corrective
variant of the CG algorithm (the one that we implement) are strictly bounded away
from the boundary. We then adapt and extend existing arguments to establish
the same sublinear convergence guarantee, as for the squared loss.

(ii) We characterize the structure of the mixing distribution recovered by our estimator.
Our method recovers two kinds of customer types: what we call, (a) non-boundary
and (b) boundary types. A non-boundary type is described by a standard logit
model with a parameter vector ω—see Section 3.2 for the precise form of the logit
model we consider. The boundary types, on the other hand, are limiting logit
models that result from unbounded solutions in which the parameter vector ω is
pushed to infinity. We show that each boundary type can be described by two
parameters (ω0,θ). The parameter vector θ induces a (weak) preference order
over the set of products and determines a consideration set the customer forms,
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when given an offer-set. The parameter vector ω0 then determines the logit choice
probabilities from within the consideration set. The detailed results are presented
in Sections 3.4.2 and 3.4.3.

3. Empirical results. We conducted three numerical studies to validate our methodology:

(a) Using synthetic data (see Section 3.5), we show that our estimator is robust to
several complex ground-truth mixing distributions and consistently recovers a good
approximation to the underlying distribution. This is despite our estimator having
no knowledge of the structure of the true mixing distribution. In particular, its
performance is significantly better than a standard benchmark method imposing
a parametric assumption on the mixing distribution, and highlights the potential
impact of model misspecification in practice.

(b) On the SUSHI Preference Dataset [KKA05] consisting of preference orderings given
by customers for different sushi varieties, we show that our method achieves superior
in-sample loss as compared to a latent class MNL (LC-MNL) model [Bha97]
fit using the EM algorithm—while using the same (or even fewer) number of
customer types—for both the log-likelihood (24% better) and squared (58% better)
loss functions, with 16× speedup in the estimation time. The CG algorithm
iteratively adds customer types that explain the observed choice data to the
mixing distribution, which results in a much better fit as compared to the EM
algorithm that updates all customer types together in each iteration. Our approach
also achieves better predictive accuracy than EM, with an average 28% and 16%
reduction in the RMSE (root mean square error) and MAPE (mean absolute
percentage error) metrics for predicting market shares on new assortments.

We also use the fitted mixture model to solve the assortment optimization decision,
i.e. determining the subset of products to offer to the population that maximizes
revenue, and show that our estimation technique can extract around 23% more
revenue from the population, compared to the EM benchmark. This is an important
finding because note that we are fitting the exact same model (mixture of logit)
in both scenarios and are only changing the estimation technique, and highlights
the amount of money that a sub-optimal method can leave on the table. Refer to
Section 3.6.1 for the precise details.

(c) On the IRI Academic Dataset [BKM08] which contains real-world sales trans-
action data from different grocery stores, we show that our method achieves
upto 8% and 7% improvement in the in-sample log-likelihood and squared loss
respectively, compared to the EM benchmark. Similarly, we achieve upto 7%
and 5% reduction in out-of-sample log-likelihood and squared loss, respectively.
In particular, our method outperformed EM-based estimation in all 5 product
categories—shampoo, toothbrush, household cleaner, yogurt, and coffee—that we
focused on. Section 3.6.2 reports the detailed results.
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Part I

Customer Segmentation
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Chapter 1

Segmenting customers based on their
preferences

1.1 Introduction

‘Customer segmentation’ is the practice of grouping customers into non-overlapping
segments (or clusters1) such that customers in the same segment have similar needs and
preferences. It is now a ubiquitous practice carried out by firms. It allows them to effectively
customize their product offerings, promotions, and recommendations to the particular prefer-
ences of each segment [Smi56]. Segmentation also subsumes personalization as a special case
by placing each customer into a separate segment of her own. Personalization has gained
a lot of traction recently. Yet, in most settings, customizing offerings to coarser segments
is more meaningful than personalizing to individual customers simply because firms lack
sufficient data for each customer. For example, in the sample dataset we use for our case
study (in Section 1.6) on eBay, we see that customers often interact with less than 5 items,
of eBay’s massive online catalog consisting of more than 4M items.

The biggest challenge to carrying out segmentation is precisely this data sparsity. This
challenge has become even more severe with firms being able to collect increasingly fine-grained
observations such as direct purchases, ratings, and clicks, in addition to any demographic
data such as age, gender, income, etc. These data are not only “big” (consisting of millions of
customers and items), but also “complicated” in that they are (a) diverse, including actions
that are represented on different scales (a click is not the same as a purchase is not the same
as a rating), (b) highly sparse, spanning only a small fraction of the entire item universe, and
(c) unstructured, with the items lacking well-defined feature information. Going back to the
example above, eBay has a large and diverse product catalog consisting of products ranging
from a Fitbit tracker or iPhone (products with well-defined attributes) to obscure antiques
and collectibles (that lack any reasonable feature structure). Of these, each customer may
click, purchase, or rate only a few items.

1We use the terms “segmentation” and “clustering” interchangeably.
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In this chapter, we revisit the problem of segmentation but in the context of “big” and
“complicated” data. These data characteristics pose new and unique challenges. First,
traditional techniques within marketing don’t apply. They assume that both customers
and items have well-defined and consistent feature representations and often analyze small
samples of customer populations. But, when the item universe is large and unstructured,
customers can only be represented as large vectors with millions of entries, where each entry
captures an action (say, purchase) taken on an item. These representations ‘as is’ are often
meaningless for the purposes of segmentation. Almost all of their entries are missing and
the lack of consistent feature representations of items means that missing entries can’t be
meaningfully imputed—for instance, a customer’s purchase of an iPhone may reveal nothing
about her propensity to purchase a particular antique. Existing techniques also become
computationally intractable when classifying large populations of customers into segments.
Second, the diversity of the types of actions captured in the vectors and their incompleteness
make it difficult to assess similarity of customers. If a customer has clicked an item but
another has purchased it, are they similar? How about customers who have purchased
completely different subsets of items? This difficulty in obtaining a meaningful similarity
measure precludes the application of standard clustering techniques in machine learning,
despite being able to scale to large datasets.

To overcome the above challenges, we propose a model-based embedding technique that
extends extant clustering techniques in machine learning to handle categorical observations
from diverse data sources and having (many) missing entries. We focus on the setting where
the objective of segmentation is to improve the performance on a prediction task. The precise
prediction task depends on the application at hand, and includes predicting the probability
of a customer clicking, purchasing, or liking an item. The algorithm takes as inputs the
observations from a large population of customers and a probabilistic model class describing
how the observations are generated from an individual customer. The choice of the model
class is determined by the corresponding prediction task, as described below, and provides
a systematic way to incorporate domain knowledge by leveraging the existing literature
in marketing, which has proposed rich models describing individual customer behavior.
It outputs an embedding for each customer—a vector representation in a low-dimensional
Euclidean space whose dimension is much smaller than the number of items in the universe.
The vector representations are then clustered, using a standard technique such as k-means,
spectral clustering, mean-shift clustering, etc., to obtain the corresponding segments.

Put together, the algorithm proceeds in two sequential steps: embed and cluster. The
embed step addresses the issue of diversity of the observed signals by first transforming the
categorical observations into a continuous scale that makes different observations (such as
purchases and ratings) comparable. It then deals with the issue of missing data by projecting
the transformed observations onto a low-dimensional space, to obtain a vector representation
for each customer. The cluster step then clusters the resulting vector representations to
obtain the segments.

The key novelty of our algorithm is the embed step, which uses a probabilistic model to
convert a categorical observation into its corresponding (log-)likelihood value under the model.
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For example, if a customer likes an item with probability α ∈ [0, 1], then a “like” observation
is transformed into logα and “dislike” observation is transformed into log(1−α). We call our
algorithm model-based because it relies on a probabilistic model; Section 1.5 presents a case
study in which we illustrate the choice of the model when the objective is to accurately predict
if a new movie will be liked by a customer. We estimate the model parameters by pooling
together the data from all customers and ignoring the possibility that different customers
may have different model parameters. This results in a model that describes a ‘pooled’
customer—a virtual customer whose preferences reflect the aggregated preferences of the
population. The likelihood transformations then measure how much a particular customer’s
preferences differ from those of the population’s. The theoretical analysis in Section 1.3 shows
that under reasonable assumptions, customers from different segments will have different
(log-)likelihood values under the pooled model—allowing us to separate them out.

Our algorithm is inspired by existing ideas for clustering in the theoretical computer
science literature. It also systematically generalizes algorithms that are popular within the
machine learning community. Particularly, when customer observations are continuous-valued,
a model is not necessarily needed to transform them into a comparable scale. Then, when
there are no missing entries, our segmentation algorithm with the appropriate cluster step
reduces to the standard spectral projection technique [AM05, KSV05] for clustering real-
valued observations. When there are missing entries, the embed step reduces to matrix
factorization, which is commonly used in collaborative filtering applications [KBV+09].

1.1.1 Relevant literature

Our work has connections to literature in both marketing and machine learning.
Marketing. Customer segmentation is a classical marketing problem, with origins dating
back to the work of [Smi56]. Marketers classify various segmentation techniques into a priori
versus post-hoc and descriptive versus predictive methods, giving rise to a 2× 2 classification
matrix of these techniques [WK00]. Our algorithm is closest to the post-hoc predictive
methods, which identify customer segments on the basis of the estimated relationship
between a dependent variable and a set of predictors. The traditional method for predictive
clustering is automatic interaction detection (AID), which splits the customer population
into non-overlapping groups that differ maximally according to a dependent variable, such
as purchase behavior, on the basis of a set of independent variables, like socioeconomic
and demographic characteristics [Ass70, MJ81]. However, these approaches typically require
large sample sizes to achieve satisfactory results. [Oga87] and [Kam88] proposed hierarchical
segmentation techniques tailored to conjoint analysis, which group customers such that the
accuracy with which preferences/choices are predicted from product attributes or profiles is
maximized. These methods estimate parameters at the individual-level, and therefore are
restricted by the number of observations available for each customer. Clusterwise regression
methods [WK89, WS89] overcome this limitation, as they cluster customers such that the
regression fit is optimized within each cluster.

Latent class (or mixture) methods offer a statistical approach to the segmentation problem,
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and belong to two types: mixture regression and mixture multidimensional scaling models.
Mixture regression models [WD94] simultaneously group subjects into unobserved segments
and estimate a regression model within each segment, and were pioneered by [KR89] who
propose a clusterwise logit model to segment households based on brand preferences and
price sensitivities. This was extended by [GC94] who incorporated demographic variables
and [KKL96] who incorporated differences in customer choice-making processes, resulting in
models that produce identifiable and actionable segments. Mixture multidimensional scaling
(MDS) models [DMM94] simultaneously estimate market segments as well as preference
structures of customers in each segment, for instance, a brand map depicting the positions of
the different brands on a set of unobserved dimensions assumed to influence perceptual or
preference judgments of customers.

The purpose of the above model-based approaches to segmenting customers is funda-
mentally different from our approach. These methods focus on characterizing the market
segments in terms of product and customer features (such as prices, brands, demograph-
ics, etc.) by analyzing structured products (i.e. having well-defined attributes) and small
samples of customer populations; consequently, they do not scale to directly classifying a
large population of customers. Our algorithm is explicitly designed to classify the entire
customer population into segments, and can be applied even when the data is less-structured
or unstructured (refer to the case study in Section 1.6). Another distinction is that we can
provide necessary and sufficient conditions under which our algorithm guarantees asymptotic
recovery of the true segments under a latent class model, which is unlike most prior work. In
addition, our algorithm can still incorporate domain knowledge by leveraging the rich models
describing customer behavior proposed in existing literature.
Machine Learning. Clustering is defined as the problem of partitioning data objects into
groups, such that objects in the same group are similar, while objects in different groups are
dissimilar. The literature on clustering is vast; see [XW05] and [Jai10] for excellent reviews.
The most popular type of clustering approaches specify a distance/similarity measure between
data points and determine the segments by optimizing a merit function that captures the
“quality” of any given clustering. The popular k-means (and its variants k-medians, k-medoids,
etc.), hierarchical clustering [RM05], and spectral clustering [SM00, NJW01] are notable
examples. However, as mentioned earlier, the diversity and sparsity in observations make it
challenging to construct a meaningful similarity measure and limit the direct applicability
of such techniques for clustering the customer population. At the same time, any of these
techniques can be used in the cluster step of our algorithm (see Section 1.2.3), which enables us
to tap into this vast literature. In contrast to the above similarity-based clustering approaches,
model-based clustering techniques [FR02, ZG03] assume that each cluster is associated with
an underlying probabilistic model and different clusters differ on the parameters describing
the model. They estimate a finite mixture model [MP00] to the data and classify customers
based on the posterior membership probabilities. Our segmentation approach is closer to these
techniques. The key distinction however is that these techniques estimate the parameters
for each mixture component and can suffer when the number of samples available is limited,
resulting in inaccurate segment classifications (see Section 1.4). Our approach, on the other

15



hand, fits only a single model, the pooled model, and therefore is more robust to sparsity in
the customer observations and at the same time, achieves significant computational speedup.

Our work also has methodological connections to work in the theoretical computer
science literature on learning mixture models. Specifically, our model-based embedding
technique extends existing techniques for clustering real-valued observations with no missing
entries [AM05, KSV05] to handle diverse categorical observations having (many) missing
entries. Finally, method-of-moment based techniques with strong theoretical guarantees have
recently been proposed for learning specific mixture models [HK13, AGH+14]. However,
these approaches require the lower-order moments to possess specific structures, which do
not hold in our setting.

1.2 Setup and Algorithmic Framework

Our goal is to segment a population [m]
def
= {1, 2, . . . ,m} of m customers comprised of a

fixed but unknown number K of non-overlapping segments. To carry out the segmentation,
we assume access to individual-level observations that capture differences among the segments.
The observations may come from diverse sources—organically generated clicks or purchases
during online customer visits; ratings provided on review websites (such as Yelp, TripAdvisor,
etc.) or recommendation systems (such as Amazon, Netflix, etc.); purchase attitudes and
preferences collected from a conjoint study; and demographics such as age, gender, income,
education, etc. Such data are routinely collected by firms as customers interact through
various touch points. Without loss of generality, we assume that all the observations are
categorical—any continuous observations may be appropriately quantized. The data sources
may be coarsely curated based on the specific application but we don’t assume access to
fine-grained feature information.

To deal with observations from diverse sources, we consider a unified representation where
each observation is mapped to a categorical label for a particular “item” belonging to the

universe [n]
def
= {1, 2, . . . , n} of all items. We use the term “item” generically to mean different

entities in different contexts. For example, when observations are product purchases, the
items are products and the labels binary purchase/no-purchase signals. When observations
are choices from a collection of offer sets (such as those collected in a choice-based conjoint
study), the items are offer sets and the labels are IDs of chosen products. Finally, when
observations are ratings for movies, the items are movies and the labels star ratings. Therefore,
our representation provides a compact and general way to capture diverse signals. We index
a typical customer by i, item by j, and segment by k.

In practice, we observe labels for only a small subset of the items for each customer.
Because the numbers of observations can widely differ across customers, we represent the
observed labels using an edge-labeled bipartite graph P , defined between the customers and
the items. An edge (i, j) denotes that we have observed a label from customer i for item j,
with the edge-label xij representing the observed label. We call this graph the customer-item
preference graph. We let xi denote the vector of observations for customer i with xij = φ
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if the label for item j from customer i is unobserved/missing. Let N(i) denote the set of
items for which we have observations for customer i. It follows from our definitions that N(i)
also denotes the set of neighbors of the customer node i in the bipartite graph P and the

degree di
def
= |N(i)|, the size of the set N(i), denotes the number of observations for customer

i. Note that the observations for each customer are typically highly incomplete; therefore,
di � n and the bipartite graph P is highly sparse.

We assume that a customer’s observations are generated according to an underlying
parametric model from a pre-specified model class F(Ω) = {f(x;ω) : ω ∈ Ω}, where Ω is
the space of latent preference parameters, x = (x1, x2, . . . , xn) ∈ B := X1 × · · · × Xn is the
vector of item labels, and f(x;ω) is the probability of observing the item labels x from a
customer with model parameter ω. Here, Xj is the domain of possible categorical labels
for item j. When all the labels are binary, Xj = {0, 1} and B = {0, 1}n. The choice of the
parametric model class depends on the application context and the prediction task at hand.
For instance, for the task of predicting whether a customer likes a movie or not, F can be
chosen to be the binary logit model class; for the task of predicting movie ratings (say, on a
5-star scale), F can be the ordered logit model class; and for the task of predicting which
item will be purchased, F can be the multinomial logit (MNL) model class. Depending on
the application, other models proposed within the marketing literature may be used. We
provide concrete illustrations as part of case studies in the MovieLens dataset (Section 1.5)
and eBay dataset (Section 1.6).

In order to segment the customer population, we assume that the population is heteroge-
neous, comprising different segments. Each segment is distinguished by its latent preference
parameters, so that a population consisting of K segments is described by K distinct models
f1, f2, · · · , fK with corresponding latent preference parameters ω1, ω2, · · · , ωK , respectively.
Customer i in segment k generates the label vector xi ∼ fk, and we observe the labels xij for
all the items j ∈ N(i), for some preference graph P . For ease of notation, we drop the explicit
dependence of models in F on the parameter ω in the remainder of the discussion. Let

xobs
i

def
= (xij)j∈N(i) denote the observed label vector from customer i and define the domain

B(i) = {(xj)j∈N(i) | x ∈ B}. Given any model f ∈ F , we define f (i)(y)
def
=
∑
xmis
i
f(y,xmis

i )

for each y ∈ B(i), where xmis
i represent the missing labels vector for customer i and the

summation is over all feasible missing label vectors when given the observations y. Observe
that f (i) defines a distribution over B(i). Finally, let

∣∣xobs
i

∣∣ denote the length of the vector
xobs
i ; we have

∣∣xobs
i

∣∣ = |N(i)|.
Under the above setup, we adopt the algorithmic framework presented in Algorithm 1

for segmenting the customers. The algorithm takes as inputs the observed customer labels,
a model class F specifying how the labels are generated, and the number of segments, K,
and outputs a clustering of the population into K segments. Our framework proceeds in two
sequential steps. The first step embeds the customers into a low-dimensional Euclidean space,
and the second step clusters the resulting embeddings to obtain the underlying segments.
Our key contribution is the embedding algorithm, and therefore, we focus this section on
describing the embedding algorithm. Once the embeddings are obtained, any of the existing
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Algorithm 1 Algorithmic Framework for Segmenting Customers

1: Input: observed labels xobs
1 ,xobs

2 , . . . ,xobs
m ; model class F ; the number of segments K

2: (v1, . . . ,vm)← Embed(xobs
1 ,xobs

2 , . . . ,xobs
m ,F); vi is customer i’s embedding

3: (ẑ1, . . . , ẑm)← Cluster(v1, . . . ,vm, K); ẑi ∈ [K]
def
= {1, 2, . . . , K} is customer i’s segment

label

4: Output: Segment labels (ẑ1, . . . , ẑm)

algorithms can be used to cluster the embeddings—we provide specific recommendations
towards the end of the section.

We describe two variants of our embedding algorithm. The first variant assumes that
the model class F is fully-specified—that is, for a given value of ω ∈ Ω, the model f(·;ω)
completely specifies how an observation vector x is generated. The second, more general,
variant allows the model class to be only partially specified.

1.2.1 Embedding algorithm for fully specified model class

For ease of exposition, we describe the algorithm separately for the cases with equal and
unequal customer degrees in the preference graph P. We start with the equal degree case
and then deal with the more general unequal degree case.

Equal customer degrees. In this case, all customers have the same number of obser-
vations. The algorithm takes the observations in the form of the preference graph P and
the model class F as inputs and outputs a unidimensional embedding of each customer. It
proceeds as follows. Starting with the hypothesis that the population of customers is in
fact homogeneous, it looks for evidence of heterogeneity to refute the hypothesis. Under
the homogeneity hypothesis, it follows that the m observations xobs

1 ,xobs
2 , . . . ,xobs

m are inde-
pendent and identically distributed (i.i.d.) samples generated according to a single model
in F . Therefore, the algorithm estimates the parameters of a ‘pooled’ model fpool ∈ F by
pooling together all the observations and using a standard technique such as the maximum
likelihood estimation (MLE) method. As a concrete example, consider the task of predicting
whether a segment of customers likes a movie or not, so that F is chosen to be the binary
logit, or logistic regression, model class where movie j is liked with probability eωj/(1 + eωj),
independent of the other movies. Then, the parameters of the pooled model can be estimated
by solving the following MLE problem:

max
ω1,ω2,...,ωn

m∑
i=1

∑
j∈N(i)

log

(
e1[xij=+1]·ωj

1 + eωj

)
,

where xij = +1 if customer i likes movie j and −1 otherwise, and 1[A] is the indicator
variable taking value 1 if A is true and 0 otherwise. Because the objective function is separable,
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the optimal solution can be shown to be given by ω̂j = log
(∑

i:j∈N(i) 1[xij=+1]∑
i:j∈N(i) 1[xij=−1]

)
for all items

j ∈ [n].
Once the pooled model is estimated, the algorithm assesses if the hypothesis holds by

checking how well the pooled model explains the observed customer labels. Specifically, it
quantifies the model fit for customer i by computing the (normalized) negative log-likelihood

of observing xobs
i under the pooled model, i.e., vi

def
= 1

di
·
(
− log f

(i)
pool(x

obs
i )
)

. A large value of vi

indicates that the observation xobs
i is not well explained by the pooled model or that customer

i’s preferences are “far away” from that of the population. The value vi is a unidimensional
representation or embedding of customer i in the Euclidean space. We term it the model-based
embedding score of the customer because it is obtained by transforming the observations xobs

i

into a real number by means of a model. The entire process is summarized in Algorithm 2.

Algorithm 2 Embedding algorithm with degree normalization

1: Input: observed labels xobs
1 ,xobs

2 , . . . ,xobs
m where

∣∣xobs
i

∣∣ = di ∀ i, model class F

2: fpool ← estimated pooled model in F

3: For each customer i with observation xobs
i , the embedding vi ← 1

di
·
(
− log f

(i)
pool(x

obs
i )
)

4: Output: embedding scores {v1, v2, . . . , vm}

We make the following remarks. First, our embedding algorithm is inspired by the classical
statistical technique of analysis-of-variance (ANOVA), which tests the hypothesis of whether
a collection of samples are generated from the same underlying population or not. For that,
the test starts with the null hypothesis that there is no heterogeneity, fits a single model by
pooling together all the data, and then computes the likelihood of the observations under
the pooled model. If the likelihood is low (i.e., below a threshold), the test rejects the null
hypothesis and concludes that the samples come from different populations. Our algorithm
essentially separates customers based on the heterogeneity within these likelihood values.

Second, to understand why our algorithm should be able to separate the segments,
consider the following simple case. Suppose a customer from segment k likes any item
j with probability fk(like) = αk and dislikes it with probability fk(dislike) = 1 − αk for
some αk ∈ [0, 1]. Different segments differ on the value of the parameter αk. Suppose qk
denotes the size of segment k, where

∑
k qk = 1 and qk > 0 for all k. Now, when we pool

together a large number of observations from these customers, we should essentially observe

that the population as a whole likes an item with probability fpool(like)
def
=
∑

k qkαk and

dislikes an item with probability fpool(dislike)
def
= 1 − fpool(like); this corresponds to the

pooled model. Under the pooled model, we obtain the embedding score for customer i as
1

|N(i)|
∑

j∈N(i)− log fpool(xij) where each xij ∈ {like, dislike}. Now assuming that |N(i)| is
large and because the xij’s are randomly generated, the embedding score should concentrate
around the expectation EXi∼fk [− log fpool(Xi)] where the random variable Xi takes value
“like” with probability αk and “dislike” with probability 1− αk, when customer i belongs to
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segment k. The value EXi∼fk [− log fpool(Xi)] is the cross-entropy between the distributions
fk and fpool. Therefore, if the cross-entropies for the different segments are different, our
algorithm should be able to separate the segments.2 We formalize and generalize these
arguments in Section 1.3.

Third, our algorithm fits only one model—the ‘pooled’ model—unlike a classical latent
class approach that fits, typically using the expectation-maximization (EM) method, a mixture
distribution g(x) =

∑
k qkfk(x), where all customers in segment k are described by model

fk ∈ F and qk represents the size (or proportion) of segment k. This affords our algorithm
two advantages: (a) speed: up to 17× faster than the latent class benchmark (see Section 1.4)
without the issues of initialization and convergence that are typical of EM-methods; and (b)
flexibility: allows for fitting models from complex parametric classes F that more closely
explain customer observations.

Unequal customer degrees. We now generalize our embedding algorithm to the case
when customers may have unequal degrees in the preference graph P. The issue here is
that of normalization—the log-likelihood values − log f

(i)
pool(x

obs
i ) depend on the number of

observations di and should be appropriately normalized in order to be meaningfully compared
across customers. It is natural to normalize the log-likelihood values by the corresponding
degrees, resulting in Algorithm 2 but applied to the unequal degree setting. Such degree
normalization is appropriate when the labels across items are independent, so that the pooled
distribution fpool(x) has a product form fpool,1(x1) · fpool,2(x2) · · · fpool,n(xn). In this case, the

log-likelihood under the pooled model becomes log f
(i)
pool(x

obs
i ) =

∑
j∈N(i) log fpool,j(xij), which

scales in the number of observations di.
Degree normalization, however, does not account for dependence structures that may be

present in the item labels. For instance, in the extreme case when the observations across all
items are perfectly correlated, such that customers either like all items or dislike all items with
probability 0.5 each, the log-likelihood value does not depend on the number of observations.
Yet, degree normalization divides the value by the degree, unfairly penalizing customers with
only a few observations. To address this issue, we use entropy normalization:

vi =
− log f

(i)
pool(x

obs
i )

H(f
(i)
pool)

=
− log f

(i)
pool(x

obs
i )

−
∑
y∈B(i) f

(i)
pool(y) log f

(i)
pool(y)

(1.1)

where H(f
(i)
pool) denotes the entropy of distribution f

(i)
pool. When the labels across items

are i.i.d., it can be seen that entropy normalization reduces to degree-normalization, upto
constant factors. In addition, if the population has homogeneous preferences, all the customer
embeddings concentrate around the value 1 (see Section 1.3.1). Therefore, deviations of
embeddings from 1 indicates heterogeneity in customer preferences, allowing us to separate
the different segments.

2Note that the cross-entropy is not a distance measure between distributions unlike the standard KL
(Kullback-Leibler) divergence. Consequently, even when fk = fpool for some segment k, the cross-entropy is
not zero. Our algorithm relies on the cross-entropies being distinct to recover the underlying segments.
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Entropy normalizations have been commonly used in the literature for normalizing mutual
information [SG02]—our normalization is inspired by that. In addition to accounting for
dependency structures within the pooled distribution, it has the effect of weighting each
observation by the strength of the evidence it provides. Because the log-likelihood value
− log f

(i)
pool(x

obs
i ) only provides incomplete evidence of how well fpool captures the preferences

of customer i when there are missing observations, we assess the confidence in the evidence
by dividing the log-likelihood value by the corresponding entropy H(f

(i)
pool) of the distribution

f
(i)
pool. Higher values of entropy imply lower confidence. Therefore, when entropy is high, the

embedding score is low, indicating that there is insufficient evidence to conclude that customer
i’s observations are not well-explained by fpool. Algorithm 3 summarizes our embedding
algorithm with entropy normalization.

Algorithm 3 Embedding algorithm with entropy normalization

same as Algorithm 2 except replace step 3 with:

Compute the embedding vi of customer i via equation (1.1)

Entropy may be difficult to compute because, in general, it requires summing over
an exponentially large space. For such cases, either the entropy computation may be
approximated using existing techniques for (approximate) inference in probabilistic graphical
models [WJ08] or degree normalization of Algorithm 2 may be used as an approximation.

1.2.2 Embedding algorithm for partially specified model class

The discussion so far assumed that the model class F is fully-specified with f(·;ω)
specifying the complete joint distribution of each observation x. In many practical settings,
specifying the complete joint distribution structure is difficult especially when the item
universe is large (for instance, millions in our eBay case study) and there are complex
cross-effects among items, such as the correlation between the rating and purchase signal for
the same item or complementarity effects among products from related categories (clothing,
shoes, accessories, etc.). To handle such situations, we extend our embedding algorithm to
the case when the model is only partially specified.

The precise setting we consider is as follows. The universe [n] of items is partitioned into

B > 1 “categories” {I1, I2, . . . , IB} such that Ib is the set of items in category b ∈ [B]
def
=

{1, 2, . . . , B}. A model describing the observations within each category is specified, but
any interactions across categories are left unspecified. We let Fb(Ωb) = {f(xb;ω) : ω ∈ Ωb}
denote the model class for category b, so that segment k is characterized by the B models
(fk1, fk2, . . . , fkB) with fkb ∈ Fb for all 1 ≤ b ≤ B. Further, xobs

ib denotes the vector of
observations of customer i for items in category b; if there are no observations, we set
xobs
ib = φ.

Under this setup, we run our embedding algorithm (Algorithm 2 or 3) separately for
each category of items. This results in a B-dimensional vector vi = (vi1, vi2, . . . , viB) for each
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customer i, where vib is the embedding score computed by our algorithm for customer i and
category b. When xobs

ib = φ, we set vib = φ. These vectors are compactly represented as the
following m×B matrix with row i corresponding to customer i:

V =


v11 v12 . . . v1B

v21 v22 . . . v2B
...

...
. . .

...
vm1 vm2 . . . vmB


When matrix V is complete, the algorithm stops and outputs V with vi representing the em-
bedding vector for customer i. Instead, if there are missing entries, we obtain the embeddings
for the customers using low-rank matrix decomposition (or factorization) techniques, similar
to those adopted in collaborative filtering applications [KBV+09]. These techniques assume
that the matrix V with missing entries can be factorized into a product of two low-rank
matrices—one specifying the customer representation and the other the item category repre-
sentation, in a low-dimensional space. The low-rank structure naturally arises from assuming
that only a small number of (latent) factors influence the cross-effects across categories. With
this assumption, we compute an r-dimensional representation ui ∈ Rr for each customer i
and yb ∈ Rr for each item category b by solving the following optimization problem:

min
U ,Y

m∑
i=1

B∑
b=1

1[vib 6= φ] ·
(
vib − u>i yb

)2
(1.2)

where row i of matrix U ∈ Rm×r is u>i and row b of matrix Y ∈ RB×r is y>b . Note that
the rank r � min(m,B). The embedding vector for customer i is then given by u>i Y>.
Algorithm 4 summarizes the above process.

Algorithm 4 Embedding algorithm for a partially specified model class F
1: Input: observed labels xobs

1 ,xobs
2 , . . . ,xobs

m , item partitioning {I1, . . . , IB}, model class

Fb for each category b ∈ [B], the rank r � min(m,B) of low-rank decomposition

2: fpool,b ← estimated pooled model in Fb for all 1 ≤ b ≤ B

3: Compute vib for each customer i and category b using Algorithm 2 or 3 whenever xobs
ib 6= φ,

otherwise set vib = φ

4: Create the m×B matrix V with row i given by the vector vi = (vi1, vi2, . . . , viB)

5: If V is incomplete, compute rank r-factorization V ≈ UY> where U ∈ Rm×r,Y ∈ RB×r

by solving optimization problem (1.2)

6: Output: V if it is complete and UY> otherwise
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We conclude this subsection with a discussion of some practical issues regarding the
implementation of Algorithm 4. First, the algorithm assumes that the item categories are
specified as input—they could correspond to a well-defined partitioning of the items, such as
movie genres, product categories, etc., but this is not necessary and the categories can be
customized based on the particular application context. See Section 1.3.2 for some examples.
As an extreme, each item could belong to its own category, in which case the algorithm reduces
to the standard matrix factorization technique (when the matrix V is incomplete). Second,
in most real-world settings, V will be incomplete, so that the low-rank decomposition step
will be executed. Since our focus is on segmenting large customer populations, m will often
be large (ranging from thousands to even millions, as in our eBay case study in Section 1.6),
and the number of categories B can also be large—for instance, eBay has hundreds of
product categories. Consequently, we require scalable techniques to compute the low-rank
factorization, for which we can tap into the machine learning literature that has proposed
numerous algorithms in the past decade or so; see for instance [MS07, TPNT09, MHT10].
Third, a standard way of choosing the rank r is via cross-validation, but there is also some
recent work that can automatically determine the “right” rank [BLMK12, TF13]. Finally, as
discussed in Section 1.1, an individual customer might interact with only a tiny fraction of
the item universe, as a result of which the matrix V will contain a large number of missing
entries, significantly more than in Netflix-like rating systems (refer to Section 1.6 for some
concrete numbers). Consequently, traditional matrix factorization techniques can be prone to
overfitting, and the literature has proposed bayesian methods [SM08, IR10] that automatically
control the model capacity and result in improved prediction performance.

1.2.3 Clustering the embeddings to obtain segments

The final step is to cluster the customer embeddings to obtain the different segments.
This step requires the choice of a clustering algorithm and the number of segments, K.

Clustering algorithm. Since the embeddings are vectors in the Euclidean space, any
of the existing techniques designed for clustering real-valued vectors may be used. Popular
candidates include k-means, mean-shift, kernel k-means [DGK04], spectral clustering and
spectral projection techniques. The choice of the technique depends on the specific application
context and the corresponding strengths and weaknesses of the different clustering techniques.
The k-means algorithm is the most popular candidate. It iteratively chooses a set of centroids
and partitions the data points by assigning each point to its closest centroid. It is widely used in
practice and can scale to large numbers of data points. When the embedding is unidimensional,
the mean-shift algorithm [CM02] may be used. It can identify clusters of arbitrary shape by
means of an appropriately chosen kernel and also automatically determines the number of
clusters. Spectral clustering [NJW01] and spectral projection techniques [AM05, KSV05] are
preferred candidates when the embeddings are “high” dimensional because they first project
the vectors to a low-dimensional space before clustering. Another approach to deal with high-
dimensional embeddings is to employ variable selection methods [GKT95, LFJ04, RD06], such
as imposing automatic relevance determination (ARD) priors [RL04, YH11] that automatically
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select the subset of features that are most relevant for clustering the data points. Finally,
hierarchical clustering [Jai10] algorithms may be used if a particular application calls for
nested clusters.

Number of segments. Any of the numerous techniques proposed in the literature
including cross-validation [Wan10] and information-theoretic measures [MP00] like the AIC,
BIC, etc. can be used to pick the appropriate number of clusters K. In addition, nonpara-
metric bayesian methods like the dirichlet process mixture model [Ras00, GR10, Teh11] can
automatically infer the number of clusters from the data, and provide the ability to adapt
the number of active segments as more data (for instance, from new customers) is fed into
the model over time. When the embeddings are unidimensional, our technique also provides
data-driven guidance on choosing a set of possible numbers of segments. Our theoretical
analysis in Section 1.3 shows that unidimensional embeddings of customers in the same
segment concentrate around the same value, whereas those of customers in different segments
concentrate around distinct values, provided we have sufficient number of observations from
each customer. Consequently, if we estimate the empirical distribution of the embeddings,
using a general purpose technique like kernel density estimation (KDE), then the number of
modes of the distribution should correspond to the underlying number of clusters.3 Since the
modes are sometimes difficult to distinguish, this approach provides us with a set of candidate
numbers of segments. The precise number K may then be picked through cross-validation.
But this approach does not scale to higher-dimensional embeddings.

1.3 Theoretical Results

Our segmentation algorithm is analytically tractable and in this section, we derive
theoretical conditions for how “separated” the underlying segments must be to guarantee
asymptotic recovery using our algorithm. Our results are similar in spirit to existing theoretical
results for clustering observations from mixture models, such as mixture of multivariate
Gaussians [AM05, KSV05].

For the purposes of the theoretical analysis, we focus on the following standard setting—
there is a population of m customers comprising K distinct segments such that a proportion
qk > 0 of the population belongs to segment k, for each k ∈ [K]; we have that

∑
k∈[K] qk =

1. Segment k is described by distribution πk : {−1,+1}n → [0, 1] over the domain B :=
{−1,+1}n. Note that this corresponds to the scenario when Xj = {−1,+1} for all items j
(see the notation in Section 1.2). We sometimes refer to +1 as like and −1 as dislike in the
remainder of the section. Customer i’s latent segment is denoted by zi ∈ [K], so that if zi = k,
then i samples a vector xi ∈ B according to distribution πk, and then assigns the label xij
for item j. We focus on asymptotic recovery of the true segment labels z = (z1, z2, . . . , zm),
as the number of items n→∞.

The performance of our algorithm depends on the separation among the hyper-parameters

3This is also the idea behind the mean-shift clustering algorithm which clusters data points by assigning
them to the nearest mode of the KDE.
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describing the segment distributions πk, as well as the number of data points available per
customer. Therefore, we assume that the segment distributions are “well-separated” (the
precise technical conditions are described below) and the number of data points per customer
goes to infinity as n→∞. The proof of all results are given in Appendix A.1.

1.3.1 Fully specified model class: independent item preferences

We first consider the case where πk belongs to a fully specified model class F(Ω), and
customer labels across items are independent. More precisely, we consider the following
generative model:

Definition 1.1 (latent class independent (LC-IND) model). Each segment k is described by
distribution πk : {−1,+1}n → [0, 1], which is such that item labels {xj}j∈[n] are independent
and identically distributed. Let αk = Px∼πk [xj = +1] for all items j ∈ [n], i.e. αk is the
probability that a customer from segment k likes an item. Customer i in segment k samples
vector x̃i according to distribution πk and provides label x̃ij for item j.

We assume that the segment parameters are bounded away from 0 and 1, i.e. there
exists a constant αmin > 0 such that 0 < αmin ≤ αk ≤ 1 − αmin < 1 for all segments
k ∈ [K]. Further, let H(β1, β2) = −β1 log β2 − (1 − β1) log(1 − β2) denote the cross-
entropy between the Bernoulli distributions Ber(β1) and Ber(β2), with 0 ≤ β1, β2 ≤ 1, and
H(α) = −α log(α)− (1− α) log(1− α) denote the binary entropy function, where 0 ≤ α ≤ 1.
Let Vi denote the unidimensional embedding score computed by Algorithm 3, note that it is
a random variable under the generative model above.

Given the above, we derive necessary and sufficient conditions to guarantee (asymptotic)
recovery of the true customer segments under the LC-IND model.

Necessary conditions for recovery of true segments. We first present an important
result concerning the concentration of the customer embeddings computed by our algorithm.

Lemma 1.1 (Concentration of embedding scores under LC-IND model). Suppose that the
preference graph P is `-regular, i.e. di = ` for all customers 1 ≤ i ≤ m. Define the quantity

αpool
def
=
∑K

k=1 qkαk. Then given any 0 < ε < 1, the embedding scores computed by Algorithm 3
are such that:

P
[ ∣∣∣∣Vi − H(αzi , αpool)

H(αpool)

∣∣∣∣ > ε
H(αzi , αpool)

H(αpool)

]
≤

4 exp

(
−2`ε2α2

min

81

)
+ 12 exp

(
−2m · ` · ε2ᾱ2

pool log2 (1− ᾱpool)

81 ·
(
1− log (1− ᾱpool)

)2

)

where ᾱpool
def
= min (αpool, 1− αpool). In other words, the embedding scores of customers in

segment k concentrate around the ratio
H(αk,αpool)

H(αpool)
, with high probability as the number of

observations from each customer `→∞.
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Lemma 1.1 reveals the necessary conditions our algorithm requires to recover the true
customer segments. To understand the result, first suppose that αpool 6= (1/2). Then,
the above result states that the model-based embedding scores of customers in segment

k concentrate around
H(αk,αpool)

H(αpool)
which is proportional to −αk log

αpool

1−αpool
− log(1 − αpool).

Consequently, we require that αk 6= αk′ whenever k 6= k′ to ensure that the embedding
scores of customers in different segments concentrate around distinct values. The result also
states that the embedding scores of customers with similar preferences (i.e., belonging to the
same segment) are close to each other, i.e. concentrate around the same quantity, whereas
the scores of customers with dissimilar preferences (i.e. belonging to different segments) are
distinct from each other. For this reason, although it is not a priori clear, our segmentation
algorithm is consistent with the classical notion of distance- or similarity-based clustering,
which attempts to maximize intra-cluster similarity and inter-cluster dissimilarity. When
αpool = (1/2), it follows that H(αk, αpool) = H(αpool) for any 0 ≤ αk ≤ 1, and therefore all
the customer embedding scores concentrate around 1. In this scenario, our algorithm cannot
separate the customers even when the parameters αk of different segments are distinct. Note
that αpool =

∑
k qkαk, which is the probability that a random customer from the population

likes an item. Therefore, when αpool = (1/2), the population is indifferent in its preferences
for each item, resulting in all the customers being equidistant from the pooled customer.

The above discussion leads to the following theorem:

Theorem 1.2 (Necessary conditions for recovery of true segments under LC-IND model).
Under the setup of Lemma 1.1, the following conditions are necessary for recovery of the true
customer segments:

1. All segment parameters are distinct, i.e. αk 6= αk′ whenever k 6= k′, and 2. αpool 6= 1
2
.

It is easy to see that the first condition is necessary for any segmentation algorithm. We
argue that the second condition, i.e. αpool 6= 1

2
, is also necessary for the standard latent class

(LC) segmentation technique. Specifically, consider two segments such that q1 = q2 = 0.5
and let α1 = 1, α2 = 0. Then, it follows that αpool = q1α1 + q2α2 = 1

2
· 1 + 1

2
· 0 = 1

2
. Let us

consider only a single item, i.e. n = 1. Then, under this parameter setting, all customers in
segment 1 will give the label +1 and all customers in segment 2 will give label −1. Recall
that the LC method estimates the model parameters by maximizing the log-likelihood of the
observed labels, which in this case looks like:

logL =
m

2
log (q1α1 + q2α2) +

m

2
log (q1 · (1− α1) + q2 · (1− α2))

Then it can be seen that the solution q̂1 = q̂2 = 0.5 and α̂1 = α̂2 = 0.5 achieves the optimal
value of the above log-likelihood function, and therefore is a possible outcome recovered by
the LC method. This shows that the condition αpool 6= 1

2
is also necessary for the standard

LC method.
We also note that our results can be extended to the case when P is not `-regular but

with additional notation.
Sufficient conditions for recovery of true segments. Having established the neces-

sary conditions, we now analyze the asymptotic misclassification rate, defined as the expected
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fraction of customers incorrectly classified, of our algorithm. In particular, we consider the
following nearest-neighbor (NN) classifier Î(·), where customer i is classified as:

Î(i) = arg min
k=1,2,...,K

|Vi −Hk|
Hk

where Hk
def
=

H(αk,αpool)

H(αpool)
. Given the necessary conditions established above and to ensure that

we can uniquely identify the different segments, we assume that the segments are indexed
such that α1 < α2 < . . . < αK . Then, we can establish the following recoverability result:

Theorem 1.3 (Asymptotic recovery of true segments under LC-IND model). Under the setup
of Lemma 1.1, suppose 0 < αmin ≤ α1 < α2 < · · · < αK ≤ 1− αmin and αpool 6= 1

2
. Further,

denote λ = mink=1,2,...,K−1(αk+1 − αk). Given any 0 < δ < 1, suppose that

` ≥ 648

λ2
·
(

logαmin

log(1− αmin) · αmin

)2

· 1

log2 αpool

1−αpool

· log(16/δ)

Then, it follows that
1

m

m∑
i=1

P
[
Î(i) 6= zi

]
< δ

Further, when ` = log n and m ≥
(

1−log(1−ᾱpool)

log(1−ᾱpool)

)2

, we have:

1

m

m∑
i=1

P
[
Î(i) 6= zi

]
= O

(
n−

2Λ2α2
min

81

)
where the constant Λ

def
=
λ

2
·


∣∣∣log

αpool

1−αpool

∣∣∣
|logαmin|


Theorem 1.3 provides an upper bound on the misclassification rate of our segmentation

algorithm in recovering the true customer segments. The first observation is that as the
number of labels from each customer `→∞, the misclassification rate of the NN classifier
goes to zero. The result also allows us determine the number of samples ` needed per customer
to guarantee an error rate δ. In particular, ` depends on three quantities:

1. 1
λ2 where λ is the minimum separation between the segment parameters. This is
intuitive—the “closer” the segments are to each other (i.e. smaller value of λ), the more
samples are required per customer to successfully identify the true segments.

2. 1

log2 αpool
1−αpool

where recall that αpool is the probability that a random customer from the

population likes an item. If αpool ≈ 1
2
, then log2 αpool

1−αpool
≈ 0 so that we require a large

number of samples per customer. As αpool deviates from 1
2
, the quantity log2 αpool

1−αpool

increases, so fewer samples are sufficient. This also makes sense—when αpool = (1/2),
our algorithm cannot identify the underlying segments, and the farther αpool is from
(1/2), the easier it is to recover the true segments.
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3. αmin, where as αmin → 0, the number of samples required diverges. Note that αmin

(resp. 1−αmin) specifies a lower (upper) bound on the segment parameters αk—a small
value of αmin indicates that there exists segments with values of αk close to either 0
or 1; and since the number of samples required to reliably estimate αk (resp. 1− αk)
grows as 1

α2
k

(resp. 1
(1−αk)2 ), ` must diverge as αmin → 0.

Our result shows that as long as each customer provides at least log n labels, the mis-
classification rate goes to zero, i.e. we can accurately recover the true segments with high
probability, as the number of items n→∞. Although the number of labels required from
each customer must go to infinity, it must only grow logarithmically in the number of items
n. Further, this holds for any population size “large enough”.

Note that the NN classifier above assumes access to the “true” normalized cross-entropies
Hk. In practice, we use “empirical” NN classifiers, which replace Hk by the corresponding
cluster centroids of the embedding scores. Lemma 1.1 guarantees the correctness of this ap-
proach under appropriate assumptions, because the embedding scores of segment k customers
concentrate around Hk.

1.3.2 Partially specified model class: independent
within-category item preferences

We can extend the results derived above to the case when the distributions πk belong to
a partially specified model class, as discussed in Section 1.2.2. Specifically, suppose that the
item set [n] is partitioned into B > 1 (disjoint) categories: I1∪· I2 · · ·∪· IB. The preferences of
customers vary across the different categories, specifically we consider the following generative
model:

Definition 1.2 (latent class independent category (LC-IND-CAT) model). Each segment k is
described by distribution πk : {−1,+1}n → [0, 1], which is such that labels {xjb}jb∈Ib for items
within a single category b ∈ [B] are independent and identically distributed; but labels for
items in different categories can have arbitrary correlations. Let αk = (αk1, αk2, · · · , αkB) be
such that Px∼πk [xjb = +1] = αkb for each item jb ∈ Ib and each category b ∈ [B]. Customer i
in segment k samples vector x̃i according to distribution πk and provides label x̃ij for each
item j.

The above model is general and can be used to account for correlated item preferences
(as opposed to independent preferences considered in Section 1.3.1). As a specific example,
suppose that for each item, we have two customer observations available: whether the item
was purchased or not, and a like/dislike rating (note that one of these can be missing). Clearly
these two observations are correlated and we can capture this scenario in the LC-IND-CAT
model as follows: there are two item “categories”—one representing the purchases and the
other representing the ratings. In other words, we create two copies of each item and place
one copy in each category. Then, we can specify a joint model over the item copies such
that purchase decisions for different items are independent, like/dislike ratings for different
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items are also independent but the purchase decision and like/dislike rating for the same
item are dependent on each other. Similar transformations can be performed if we have
more observations per item or preferences are correlated for a group of items. Therefore, the
above generative model is fairly broad and captures a wide variety of customer preference
structures.

As done for the LC-IND model, we assume that the underlying segment parameters are
bounded away from 0 and 1, i.e. there exists constant αmin > 0 such that 0 < αmin ≤ αkb ≤
1− αmin < 1 for all segments k ∈ [K], and all item categories b ∈ [B]. Let dib be the number

of observations for customer i in category b and let
−→
Vi denote the embedding vector computed

by Algorithm 4 for customer i, note that it is a B-dimensional random vector under the
generative model above.

Necessary conditions for recovery of true segments. We first state an analogous
concentration result for the customer embedding vectors computed by our algorithm.

Lemma 1.4 (Concentration of embedding vectors under LC-IND-CAT model). Suppose that
the preference graph P is such that each customer labels exactly `b > 0 items in category b, i.e.

dib = `b for all 1 ≤ i ≤ m. Define the quantities αb,pool
def
=
∑K

k=1 qkαkb for each item category

b, `min
def
= minb∈[B] `b, and α̂pool

def
= minb∈[B] ᾱb,pool where ᾱb,pool

def
= min (αb,pool, 1− αb,pool).

Then given any 0 < ε < 1, the embedding vectors computed by Algorithm 4 are such that:

P
[
‖
−→
Vi −Hzi‖1 > ε‖Hzi‖1

]
≤

4B · exp

(
−2`minε

2α2
min

81

)
+ 12B · exp

(
−2m · `min · ε2α̂2

pool log2(1− α̂pool)

81
(
1− log(1− α̂pool)

)2

)

In the result above, Hk = (Hk1, Hk2, · · · , HkB) is a B-dimensional vector such that

Hkb =
H(αkb,αb,pool)

H(αb,pool)
(recall notation from Section 1.3.1) and ‖·‖1 denotes the L1-norm.

Lemma 1.4 implies the following necessary conditions:

Theorem 1.5 (Necessary conditions for recovery under LC-IND-CAT model). Under the
setup of Lemma 1.4, the following conditions are necessary for recovery of the true customer
segments:

1. αb,pool 6= 1
2

for some category b ∈ [B].

2. Let B′ = {b ∈ [B] : αb,pool 6= 1
2
} and let (αkb)b∈B′ be the subvector of αk consisting of

components corresponding to item categories B′. Then (αkb)b∈B′ 6= (αk′b)b∈B′ whenever
k 6= k′.

Similar to the LC-IND model case, αb,pool = (1/2) for all item categories implies that the
population is indifferent in its preferences for each item in each category. However, we require
the population to have well-defined preferences for at least one category in order to be able
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to separate the segments. Further, since Hkb ∝ −αkb log
αb,pool

1−αb,pool
− log(1− αb,pool), we need

αkb 6= αk′b for at least one item category b where αb,pool 6= 1
2

to ensure that the vectors Hk

and Hk′ are distinct, for any two segments k 6= k′.
Sufficient conditions for recovery of true segments. As for the case of the LC-IND

model, we consider another NN classifier, Î2(·), to evaluate the asymptotic misclassification
rate of our segmentation algorithm, where customer i is classified as:

Î2(i) = arg min
k=1,2,...,K

‖
−→
Vi −Hk‖1

‖Hk‖1

Given the above necessary conditions, we can establish the following recoverability result:

Theorem 1.6 (Asymptotic recovery of true segments under LC-IND-CAT model). Suppose
that the conditions in Theorem 1.5 are satisfied. Denote w = (w1, w2, · · · , wB) with wb =∣∣∣log

αb,pool

1−αb,pool

∣∣∣ and γ = mink 6=k′‖w � (αk − αk′)‖1 where � represents element-wise product.

Under the setup of Lemma 2 and given any 0 < δ < 1, suppose that

`min ≥
648B2

γ2
·
(

logαmin

log2(1− αmin) · αmin

)2

log(16B/δ)

Then, it follows that
1

m

m∑
i=1

P
[
Î2(i) 6= zi

]
< δ

Further, when `min = log n and m ≥
(

1−log(1−α̂pool)

log(1−α̂pool)

)2

, for fixed B we have:

1

m

m∑
i=1

P
[
Î2(i) 6= zi

]
= O

(
n
−2Γ2α2

min
81

)
where the constant Γ

def
=

γ

2B
·
∣∣∣∣ log(1− αmin)

logαmin

∣∣∣∣
We make a few remarks about Theorem 1.6. First, as `min →∞, i.e. the number of labels

in each item category `b → ∞, the misclassification rate of the NN classifier goes to zero.
Second, to achieve misclassification rate of at most δ, the number of samples `min scales as

1. 1
γ2 where γ is the minimum weighted L1-norm of the difference between the parameter
vectors of any two segments. This is similar to a standard “separation condition”—
the underlying segment vectors αk should be sufficiently distinct from each other, as
measured by the L1-norm. However, instead of the standard L1-norm, we require a
weighted form of the norm, where the weight of each component is given by wb =∣∣∣log

αb,pool

1−αb,pool

∣∣∣. If αb,pool ≈ 1
2
, then wb ≈ 0 so that the separation in dimension b is

weighed lower than categories where αb,pool is sufficiently distinct from 1
2
. This follows

from the necessary condition in Theorem 1.5 and is a consequence of the simplicity of
our algorithm that relies on measuring deviations of customers from the population
preference.
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2. B2, this is expected—as the number of categories increases, we require more samples to

achieve concentration in all dimensions of the embedding vector
−→
Vi.

3. αmin, the dependence on which is similar to the LC-IND model case, but with an extra
factor of log2(1− αmin) in the denominator, indicating a more stronger dependence on
αmin.

Finally, it follows that a logarithmic number of labels in each category is sufficient to guarantee
recovery of the true segments with high probability as the total number of items n → ∞,
provided the population size m is “large enough”.

1.4 Computational study: Accuracy of model-based

embedding technique

The theoretical analysis above provides asymptotic recovery guarantees for our approach
when all customers have equal degrees in the preference graph P and customer degrees
grow to infinity. This section supplements our theoretical results with the results from a
computational study that tests the performance of our technique when customer degrees
are unequal and finite. The study analyzes the misclassification rate of our algorithm when
provided synthetic observations generated on a preference graph P with fixed numbers of
customers and items. Our results show that as the average customer degree decreases, the
misclassification rate of our algorithm increases, as expected. However, the error increases at
a much smaller rate compared to a standard latent class (LC) benchmark, which classifies
customers using the estimated posterior membership probabilities in different segments
(details below). Specifically, our results show that compared to the LC benchmark, our
approach is (1) 28% more accurate in recovering the true customer segments and (2) faster,
with average 17× speedup in computation time.

Setup. We chose m = 2, 000 customers and n = 100 items and considered the following
standard latent class generative model: The population consists of K customer segments
with qk denoting the proportion of customers in segment k; we have qk > 0 for all k ∈ [K]
and

∑K
k=1 qk = 1. The preference graph is generated according to the standard Erdős-Rényi

(Gilbert) model with parameter 0 < p < 1: each edge (i, j) between customer i and item j
is added independently with probability p. The parameter 1− p quantifies the sparsity of
the graph: higher the value of 1− p, sparser the graph. All customers in segment k ∈ [K]
generate binary labels as follows: given parameter αk ∈ (0, 1), they provide rating +1 to item
j with probability αk and rating −1 with probability 1− αk.

We denote each ground-truth model type by the tuple: (K, 1−p). We generated 15 models
by varying K over the set {5, 7, 9} and 1− p over the set {0, 0.2, 0.4, 0.6, 0.8}. For each value
of K, we sampled the segment proportions from a Dirichlet distribution with parameters
β1 = β2 = · · · = βK = K + 1 which tries to ensure that all segments have sufficiently large
sizes by placing a large probability mass on equal proportions. Similarly, for each K, the
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parameters αk are chosen as αk = 0.05 + 0.9(k − 1)/(K − 1) (i.e., K uniformly spaced points
in the interval [0.05, 0.95]) for all 1 ≤ k ≤ K.

For each ground-truth model type, we randomly generated 30 model instances as follows:
(a) randomly partition the customer population into K segments with segment k having
proportion qk; (b) randomly generate the customer-item preference graph by adding edge
(i, j) between customer i and item j with probability p; and (c) for each edge (i, j) in the
preference graph, assign rating +1 with probability αk and −1 with prob. 1 − αk where
customer i belongs to segment k.

LC benchmark. Given the preference graph P and associated ratings xobs
1 ,xobs

2 , · · · ,xobs
m ,

the LC method estimates the model parameters via MLE (see Appendix A.2 for the details).
To ensure that the results for the LC benchmark are robust to how the parameters are
estimated, we solved the MLE problem using two different methods: (a) the popular EM
algorithm and (b) Sequential Least Squares Programming (SLSQP)4—a standard off-the-shelf
solver. After the model parameters are obtained, customers are assigned to the segment
for which the posterior probability of membership is the largest. Note that the LC method
estimates a total of 2 ·K parameters.

Model-based embedding algorithm. We compute the embedding scores of the cus-
tomers using Algorithm 3. The pooled model fpool is described by a single parameter:

αpool =

∑m
i=1

∑
j∈N(i) 1[xij = +1]∑m
i=1 |N(i)|

.

We then cluster the embedding scores using the k-means algorithm to obtain the segments,
and call our approach α-embed.

Results and Discussion. We measure the quality of the recovered clusters in terms of
accuracy, defined as

Accuracyalgo = 100×

(
1

m

m∑
i=1

1[ẑalgoi = zi]

)
,

where zi is the true segment of customer i, ẑalgoi is the segment label assigned by method algo,
and algo ∈ {LC, α-embed}. We label the true segments such that α1 < α2 < · · · < αK . Then,
for the LC method, we assign the segment labels in order of the estimated alpha parameters
α̂k, so that α̂1 < α̂2 < · · · < α̂K . For the α-embed method, recall from Lemma 1.1 that
the embedding scores of customers in segment k concentrate around H(αk, αpool)/H(αpool).
Since H(αk, αpool) = −αk log

αpool

1−αpool
− log(1 − αpool), it follows that H(αk, αpool) is either

increasing or decreasing in αk depending on whether αpool <
1
2

or > 1
2
. Therefore, we assign

the segment labels in the increasing (resp. decreasing) order of the customer embedding
scores when αpool <

1
2

(resp. αpool >
1
2
).

Table 1.1 reports the accuracy of the LC and α-embed methods. Since there is no model
misspecification, the LC method is statistically optimal and we see that it is able to recover the

4Specifically, we used Python SciPy library’s minimize interface: https://docs.scipy.org/doc/scipy/
reference/generated/scipy.optimize.minimize.html#scipy.optimize.minimize
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Percentage accuracy in recovering true segments for different parameter
settings

LC % improvement average speedup (x)

K 1− p EM SLSQP α-embed over EM over SLSQP over EM over SLSQP

5

0.0 99.0 99.0 98.7 −0.3∗∗ −0.3∗∗

20 251
0.2 98.1 97.9 97.5 −0.6∗∗ −0.4∗∗

0.4 96.2 96.0 95.1 −1.1∗∗ −0.9∗∗

0.6 91.8 91.3 89.2 −2.8∗∗ −2.3∗∗

0.8 75.7 79.2 75.9 0.3 −4.2∗∗

7

0.0 92.9 92.7 92.1 −0.9∗∗ −0.6∗∗

16 216
0.2 89.3 89.4 88.3 −1.1∗∗ −1.2∗∗

0.4 82.5 84.1 83.1 0.7 −1.2∗∗

0.6 71.9 72.2 74.6 3.8∗∗ 3.3∗

0.8 54.2 49.2 61.4 13.3∗∗ 24.8∗∗

9

0.0 72.5 81.2 80.8 11.4∗∗ −0.5

15 324
0.2 65.7 71.2 75.6 15.1∗∗ 6.2∗∗

0.4 58.3 58.1 70.4 20.7∗∗ 21.2∗∗

0.6 47.9 47.9 61.5 28.4∗∗ 28.4∗∗

0.8 39.1 35.2 49.1 25.6∗∗ 39.5∗∗

Table 1.1: The parameters are K—number of customer segments and (1− p)—sparsity of
the preference graph. Each observation above is an average over 30 experimental runs.
∗∗ 1% and ∗ 5% significance level according to a paired samples t-test.
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true customer segments accurately when the preference graph is dense, but its performance
suffers as the sparsity, 1− p, increases. As sparsity increases, the number of data points per
customer decreases, so the LC method encounters insufficient data to reliably estimate the
2K model parameters, particularly for larger values of K. The α-embed method, on the
other hand, has comparable performance when there is enough data relative to the number of
parameters being estimated. But it significantly outperforms the LC benchmark, by upto 28%,
as the level of sparsity increases. The reason is that since the α-embed method estimates
only a single parameter, it can make more efficient use of available data to determine the
true segments. We also note that the performance improvement of α-embed over the LC
benchmark is robust to the specific optimization method used for estimating the parameters
of the LC model, be it EM or SLSQP.

Finally, as reported in Table 1.1, the fact that we estimate only a single model as opposed
to K models results in an average 17× speedup compared to the EM method,5 which is
also sensitive to the initialization of the model parameters. This speedup becomes more
significant when we have millions of customers and items, such as in our case-study at
eBay (see Section 1.6), where the LC method is too computationally expensive and becomes
infeasible to implement in practice.

1.5 Case study 1: Cold start recommendations in

MovieLens dataset

Using the popular MovieLens [HKBR99] dataset, we now illustrate how our segmentation
methodology can be applied to solve the classical cold-start problem in recommendation
systems. This problem involves recommending new movies to users.6 It is challenging because,
by definition, new movies do not have any existing ratings. Yet, we need to account for
heterogeneity in user preferences and personalize the recommendations. The baseline approach
assumes that the population has homogeneous preferences and recommends the same set of
movies to all the users. Compared to this benchmark, we show that segmenting the user
population using our approach and customizing the recommendations to each segment can
result in upto 48%, 55% and 84% improvements in the recommendation accuracy for drama,
comedy, and action movies, respectively. In addition, compared to standard benchmarks used
for capturing heterogeneity, our method outperforms: (1) latent class (LC) method by 8%,
13% and 10% and (2) empirical bayesian (EB) technique by 19%, 12% and 8%, respectively
for the three genres. In addition, we achieve 20× speedup in the computation time over the
LC benchmark.

Data Processing. The MovieLens dataset consists of 1M movie ratings (on 1-5 scale)
from 6, 040 users for 3, 952 movies. For our analysis, we choose the three genres with the
most number of movies in the dataset—drama, comedy, and action. We pose the new

5SLSQP takes significantly longer to converge, resulting in an average 264× speedup.
6To be consistent with the standard terminology in this problem context, we refer to customers as “users”

in the remainder of the chapter.
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movie recommendation task as the following prediction problem: given a movie, what is the
probability that the user likes the movie? We say that a user likes a movie if the rating for
the movie is greater than or equal to the average rating of the user across all the movies she
rated, and dislikes the movie otherwise. Since the prediction task is only concerned with
a binary (like/dislike) signal, we transform the raw user ratings to a binary like (+1) and
dislike (−1) scale. Therefore, the preference graph consists of users on the left, movies on the
right and the binary like/dislike ratings representing the edges.

We solve the prediction problem separately for each genre since user preferences can vary
across different genres (see Appendix A.3.2 for the case when movies of different genres are
considered together, where we also showcase the application of our technique when the model
generating user ratings is only partially specified as discussed in Section 1.2.2). Further,
since our goal is to recommend new movies to users (which have no or only a few ratings in
practice), we select movies, for each genre, that have been rated by at least 30 users as part
of the training set, and all others as part of the test set. Statistics for the training and test
datasets are given in Table 1.2.

Methods and Metrics. The cold-start problem [SPUP02] has been studied extensively
in the recommendation systems literature with solutions utilizing user-level and item-level
attributes [PC09, ZTZX14] as well as social connections such as Facebook friends/likes or
Twitter followers [LSKC13, SSB+14]. For our case study, the only information we use are the
(transformed) user ratings and the genre of the movies. Consequently, existing collaborative
filtering techniques are not directly applicable. In addition, the preference graph contains
many missing ratings7 and therefore, existing similarity-based clustering techniques that
compute a similarity measure between users perform poorly (refer to Appendix A.3.1 for
concrete numbers). However, our segmentation approach is precisely designed to handle
sparsity in user observations and make it a natural choice in this context.

Recall that the goal is to predict the probability that a user gives +1 rating to a movie. To
determine the benefits of segmentation for solving this prediction problem, we contrast two
approaches—(1) population model : the user population is homogeneous so that all users have
the same probability α for liking any movie; and (2) segmentation model : the population
is composed of K segments, such that users in segment k have probability αk of liking any
movie. We first estimate the model parameters in both approaches using the training data
and then, based on the estimated parameters, predict the ratings given by each user for
movies in the test set. Let U denote the set of all users, and N train(i) and N test(i) denote
respectively the set of movies in the training and test set rated by user i. For the population
model approach, which we call POP, the maximum likelihood estimate (MLE) for parameter
α is obtained by pooling all the ratings:

αpool =

∑
i∈U
∑

j∈Ntrain(i) 1[rij = +1]∑
i∈U |N train(i)|

,

where rij is the rating given by user i for movie j. For the segmentation model approach, we
use our model-based embedding technique α-embed, described earlier in Section 1.4, which

7The average sparsity, i.e. # edges/ (# users · # movies) is ∼ 7%; see Table 1.2.
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computes user embeddings based on the estimated pooled model αpool and then clusters
the embeddings using k-means to obtain the segments. Then, we compute each segment
parameter as

αembed
k =

∑
i∈U 1[ẑembedi = k] ·

(∑
j∈Ntrain(i) 1[rij = +1]

)
∑

i∈U 1[ẑembedi = k] · |N train(i)|

where ẑembedi ∈ [K] represents the assigned segment label for user i.
Given the above, the prediction for user i and new movie jnew is carried out as follows:

1. For the POP method, r̂POP
ijnew

= +1 if αpool ≥ 0.5, else r̂POP
ijnew

= −1.

2. For the α-embedmethod, r̂embedijnew
= +1 if αembed

k̂
≥ 0.5, else r̂embedijnew

= −1 where

k̂ = ẑembedi .

We also compare our approach to two standard benchmarks that capture heterogeneity
in user preferences: the LC method and the EB approach [RAM05] commonly used in the
marketing literature. Refer to Appendix A.3.1 for details on these benchmarks.

There are many metrics to evaluate recommendation quality [SG11]. Since we are dealing
with binary ratings, a natural metric is accuracy, i.e. the fraction of ratings that are predicted
correctly. More precisely, let U test denote the set of all users in the test set, note that
U test ⊆ U . Then for each user i ∈ U test, we compute the individual accuracy as:

Accuracymethod
i =

1

|N test(i)|
∑

jnew∈Ntest(i)

1[rijnew = r̂method
ijnew

],

where method ∈ {POP,LC,EB,embed}. The aggregate accuracy is then computed as

Accuracymethod = 100×

(
1

|U test|
·
∑
i∈Utest

Accuracymethod
i

)
.

In the same manner, we can also compute the aggregate accuracy for a given segment k of
users (identified by the α-embed method):

Accuracymethod
k = 100×

 1

|{i ∈ U test : ẑembedi = k}|
∑

i∈Utest:ẑembedi =k

Accuracymethod
i


Results and Discussion. Figure 1.1 shows the kernel density estimate of the user

embeddings computed by our method for each genre. As noted in Section 1.2.3, our approach
provides data-driven guidance on choosing a set of possible numbers of segments based on the
number of modes in the estimated density; we try values of K ∈ {2, 3, 4, 5} and choose the
one that maximizes accuracy on a validation set8—a subset of the training data consisting

8This is standard practice in the machine learning literature; see for instance Section 4.3 in [AMMIL12].
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Training/test data statistics and aggregate rating prediction accuracy for the
different genres

Accuracy

Train Data Test Data Benchmarks

Genre Users Movies Ratings Movies Ratings POP EB LC α-embed

Action (K = 2) 6,012 453 257K 42 403 30.7 47.6 51.2 56.4
Comedy (K = 4) 6,031 945 354K 218 2,456 37.7 52.4 51.8 58.4
Drama (K = 4) 6,037 1,068 350K 425 4,627 38.6 53.2 53.0 57.2

Table 1.2: The number in parentheses represents the number of segments determined for
each genre.

of movies that have relatively “small” number of ratings, i.e. at most 50 ratings. After
segmenting the users, we predict their ratings for new movies as outlined above and compute
the accuracy metrics for the different approaches.

Table 1.2 reports the aggregate accuracy of all the methods for each of the genres. The
benefits of segmentation can be seen across all the genres, with improvements upto 84% (for
the action genre) in the prediction accuracies. The population model treats the preferences
of all users as being the same and performs poorly since it ends up recommending the same
set of movies to all the users. The segmentation model, on the other hand, makes different
recommendations to the different user segments, and consequently performs significantly
better. Furthermore, using our segmentation algorithm performs better than both the LC
(upto 13% for the comedy genre) and EB (upto 19% for the action genre) methods. This
suggests that a discrete form of heterogeneity, resulting from a “hard” separation of the
users into distinct segments, is better than a continuous or “soft” form of heterogeneity (as
considered by the benchmarks) for the cold-start recommendation problem. In addition, our
method is upto 20× faster than the LC method9 when the population is grouped into K = 4
segments, again highlighting the fact that our algorithm is fast and can scale better to larger
datasets.

To understand where the accuracy improvements come from, Table 1.3 displays the
accuracy of the POP and α-embedmethods, broken down by individual user segments
computed by the α-embedmethod. Also shown are the estimated pooled model αpool and
segment parameters αembed

k . Now observe that for segments 1 & 4 in the drama and comedy
genres, the estimated parameters αembed

k are furthest from the pooled parameter αpool. In
other words, these segments contain users whose preferences are very different from that of
the population, i.e. esoteric preferences, which are not captured well by the pooled model
αpool. Using the segment parameters αembed

k for the rating predictions results in significant
improvements in the accuracy for segment 4 users—upto 1.8× and 2.5× increase for the

9We use the EM algorithm to estimate the model parameters.
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Comparison of rating prediction accuracy of population model and our
model-based embedding technique by individual user segments

Genre αpool User Segments αembed
k AccuracyPOP

k Accuracyembed
k % increase

Action 0.537
Segment 1 (2,900) 0.658 35.6 35.6 —
Segment 2 (3,112) 0.441 26.9 73.1 171.7

Comedy 0.543

Segment 1 (941) 0.749 45.2 45.2 —
Segment 2 (2,062) 0.631 45.9 45.9 —
Segment 3 (1,869) 0.495 33.2 66.8 101.3
Segment 4 (1,159) 0.360 26.4 73.6 178.7

Drama 0.545

Segment 1 (1,164) 0.736 50.1 50.1 —
Segment 2 (1,975) 0.620 43.5 43.5 —
Segment 3 (1,769) 0.485 36.1 63.9 77.0
Segment 4 (1,129) 0.342 22.5 77.5 244.4

Table 1.3: The numbers in parentheses represent the size of each user segment. “% increase”
denotes the percentage improvement in accuracy of our segmentation approach over the
population model.

comedy and drama genres respectively. Note that we do not observe any improvement for
segment 1 users, this is because of our experimental setup which involves a coarse-grained
rating prediction based on a threshold of 0.5 (see “Methods and Metrics” above). The users in
the intermediate segments 2 & 3, on the other hand, have preferences that are very similar to
those of the population, i.e mainstream preferences. However, we are still able to distinguish
between users in these segments resulting in improved rating prediction accuracy for segment
3 users. The improvements are lower than for the esoteric segments, since the pooled model is
already able to capture the preferences of the mainstream users. The story is similar for the
action genre where segment 1 (resp. 2) behaves as the mainstream (resp. esoteric) segment.

1.6 Case study 2: Personalized Recommendations on

eBay

In this section, we use our segmentation methodology to personalize similar product
recommendations on eBay. When a user is on a product page, eBay recommends products
that are “similar” to the product being viewed (the seed product); see Figure 1.2 for an
example. The recommended products are shown below the seed product, but above the fold.10

Even without personalization, determining similar products is a challenging task because the

10Above the fold refers to the portion of the webpage that is visible without scrolling.
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Example of similar product recommendation on eBay

 Seed product

Recommended
products

Figure 1.2: The seed product is a pair of sneakers that the user is currently viewing, and the
recommended products at the bottom are other pairs of shoes similar to the seed product.

product listings offered on the eBay marketplace are diverse. They range from Fitbit tracker
or iPhone (products with well-defined attributes) to obscure antiques and collectibles that
are highly unstructured, and they can also have multiple conditions—new, used, refurbished,
etc.—and selling formats—fixed price vs auction. In addition, many products tend to be
short-lived—they surface on the site for one week and are never listed again. Nevertheless,
[BJS+16] were able to address these challenges in a scalable recommendation system they
implemented at eBay. While their approach resulted in positive lift in critical operational
metrics, it does not take into account heterogeneous user preferences—for a given seed product
every user is recommended the same set of products. Personalizing the recommendations
to individual users is however challenging because most users interact with only a small
fraction of the catalog—in our sample dataset below, a user on average interacted with only
5 out of ∼ 4.2M items. Such sparsity makes it hard to determine individual preferences and
limits the application of traditional collaborative filtering algorithms. We are able to use
our segmentation methodology to address this challenge. We show that segmenting the user
population using our technique and personalizing the recommendations to each segment can
result in upto 8% improvement in the recommendation accuracy. It matters how we obtain
the segments because other natural approaches to segmentation that are based on similarity
in demographics (age, gender, income, etc.) and aggregate purchase behavior resulted at best
in only ∼ 1% improvement.

Data. The raw data consist of impressions collected over a two-week period in the summer
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of 2016. An impression is generated whenever a user interacts, either by clicking or clicking
and then purchasing, with a recommended product on a product page. The impression
contains information on the user, the seed product, the recommended (reco) products, and
the actions (clicks and purchases) taken by the user on the reco products. The data provided
to us were a random subset of all impressions that had at least one click on a reco product.
We transform these data into a preference graph as follows. For each impression, we extract
the user and the set of (seed, reco) product pairs. We assign the users to the nodes on the
left and the (seed, reco) pairs to the item nodes on the right. We add an edge from a user
node to a (seed, reco) node if there is an impression in which the user has taken an action
on the (seed, reco) pair, and assign a binary label to the edge: the +1 label if the user
clicked and then purchased the reco product and the −1 label if the user did not purchase
the reco product, irrespective of whether it was clicked or not. The resulting preference graph
consists of ∼ 1M users, ∼ 4.2M items, i.e. (seed, reco) product pairs, and ∼ 4.5M edges
across different product categories on eBay. For our analysis, we focus on the two categories
with the most numbers of purchases—Clothing, Shoes and Accessories (CSA) and Home

& Garden (HG). In each category, we randomly split all the binary purchase/no-purchase
signals into training (80%) and test (20%) sets. Table 1.4 reports the summary statistics of
the data.

Current approach. [BJS+16] transformed the problem of generating similar recommen-
dations into the following prediction problem: for a fixed seed product, what is the probability
that a candidate reco product is purchased? The candidate recommendations are then ranked
(in real-time) according to the probability of being purchased. The prediction problem was
solved by learning a classifier on the above purchase/no-purchase user interaction data. In
particular, they assumed that the population is homogeneous and therefore estimate a single
logistic regression classifier11 on the user interaction data.

The authors performed feature engineering to ensure the classifier had good performance;
refer to [BJS+16] for more details. Let U denote the set of all users and N train(i) denote the
set of items that user i ∈ U has interacted with in the training data. Let ys,r ∈ RD represent
the feature vector corresponding to item (s, r) where s is the seed product and r is the reco
product. Further, let xi,(s,r) ∈ {−1,+1} denote the binary purchase (+1) or no-purchase
(−1) signal associated with a user i that interacted with item (s, r). Then, logistic regression
estimates a parameter vector ωpool ∈ RD by solving:

min
ω

∑
i∈U

∑
(s,r)∈Ntrain(i)

−1[xi,(s,r) = +1] · log ps,r(ω)− 1[xi,(s,r) = −1] · log (1− ps,r(ω)) ,

where ps,r(ω) = exp(ω>ys,r)
1+exp(ω>ys,r)

represents the probability of purchase signal on item (s, r) under

parameter ω. We call this approach the population model, fpool.
Our approach: capturing heterogeneity through segmentation. The extreme

11The authors tried out several different binary classifiers and observed that a logistic regression model
achieves comparable performance to more sophisticated methods like random forests and boosted decision
trees, and consequently, decided to pick the logistic regression classifier for its simplicity and scalability.
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Density of user embedding scores for CSA (Left) and HG (Right) categories
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Figure 1.3: The x-axis, representing the user embedding scores, is cutoff at 5 so that the
two modes above can be visualized better. The largest embedding score is 28.3 for the CSA

category and 25.6 for the HG category

sparsity12 of the preference graph limits the applicability of most existing clustering techniques.
We applied our model-based embedding technique to segment the user population using the
preference graph constructed above. The pooled model corresponds to the aforementioned
logistic regression classifier fpool; then we apply Algorithm 3 to compute the embeddings of
each user i:

vi =

∑
(s,r)∈Ntrain(i)−1[xi,(s,r) = +1] · log ps,r(ωpool)− 1[xi,(s,r) = −1] · log (1− ps,r(ωpool))∑

(s,r)∈Ntrain(i) H (ps,r(ωpool))

where H(·) is the binary entropy function introduced in Section 1.3.1. We perform k-means
clustering on the embeddings to obtain the different segments. Once we obtain the segments,
we estimate a separate parameter ωk for each segment k by fitting a logistic regression
classifier fk using only the interactions of users in segment k.

Results and Discussion. Figure 1.3 shows the kernel density estimate of the user
embeddings computed by our algorithm. While one can visually see two modes in the density
plots, we also observed a long tail and consequently, chose K = 3 segments to account for
those users. Brovman et al. used the area-under-the-curve (AUC) metric13 to evaluate the
performance of the logistic regression classifier. For each user segment k, we compare the
AUC of the population model fpool with that of the segment-specific classifier fk, on the test
set. Table 1.4 shows the percentage improvement in AUC of the segment-specific classifiers
across each category.

12The average sparsity in our dataset is ∼ 0.0007% which is orders of magnitude smaller than in our
MovieLens case study as well as the typical sparsity in Netflix-like rating systems [BK07].

13AUC measures classifier performance as equal to the likelihood that the classifier will rank (based on
the probability of positive class label) a randomly chosen positive example higher than a randomly chosen
negative example.

42



AUC improvements of segment-specific logistic regression classifiers over
population model

Product Train Data Test Data Time to

Category Users Items Edges Items Edges Segments % AUC imp. segment

CSA 172K 534K 561K 116K 118K
Segment 1 (120K) -0.27

∼6 minsSegment 2 (46K) 0.54
Segment 3 (6K) 5.78

HG 129K 432K 458K 100K 102K
Segment 1 (78K) 0.08

∼5 minsSegment 2 (45K) -0.37
Segment 3 (6K) 7.95

Table 1.4: The numbers in parentheses denote the size (in thousands) of each user segment.

We observe that our segmentation technique can lead to significant improvements in the
AUC—upto 6% in category CSA and 8% in category HG. The improvements are the largest for
segment 3 or the esoteric segment, which consists of users having the highest embedding scores.
This, in turn, means that they deviate most from the population preferences and therefore
the population model is not able to capture the preferences of these users. Segment 1 or the
mainstream segment, consists of users having the lowest embedding scores; their preferences
are captured well by the population model and therefore the benefit from segmentation is
negligible.14 Segment 2 consists of users who have “intermediate” preferences; they agree
with the population on some items but deviate on other items. Their preferences are partially
captured by the population model and depending on whether they have more mainstream or
esoteric preferences, treating such users separately can result in loss (as for HG category) or
gain (as for CSA category) in performance.

The above improvement obtained using our segmentation technique is non-trivial consid-
ering the fact that we also tried several natural approaches such as segmentation based on
similarities in demographics (age, gender, income, etc.) and aggregate purchase statistics
(number of transactions and/or amount spent in the last year, etc.). But the best of these
resulted in around 1% improvement in AUC for any user segment, compared to the population
model. Such approaches implicitly assume that similarity in demographics or aggregate
purchase behavior implies similarity in preferences, which might not be the case in practice.
Instead, focusing on fine-grained user interactions such as click and purchase signals can help
to directly capture their preferences. However, a major challenge in using such data is that it
is extremely sparse; for instance, in the dataset above, users had only 4-5 observations on
average and consequently, most of the users do not have any overlap in the observations that
they generate. This makes it hard to determine whether two users have similar preferences.

14For CSA, the AUC is (slightly) lower and we attribute this to having smaller number of samples in the
training data for the segment-specific classifier.
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Further, existing techniques like the LC method are prohibitively slow for such a large dataset.
Table 1.4 also shows the time taken to segment the population using our technique, without
any optimizations or parallel processing. We believe our implementation can be easily ported
to large-scale distributed data processing frameworks like Apache Spark to obtain further
speedups. This shows that our segmentation technique can scale to large datasets and work
directly with fine-grained user observations (such as click and purchase signals) to generate
personalized product recommendations.
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Chapter 2

Segmenting crowd workers based on
their reliability

2.1 Introduction

The growing popularity of online crowdsourcing services like Amazon Mechanical Turk
and CrowdFlower has made it easy to collect low-cost labels from the crowd to generate
training datasets for machine learning applications. Unfortunately, these labels are typically
of low quality because of unintentional or intentional inaccuracies introduced by unreliable
and malicious workers [KCS08, LEHB10]. Determining correct labels of tasks from such
noisy labels is challenging because the reliabilities or qualities of workers are often unknown.
While one may use “gold standard” tasks—whose true label is already known—to identify
low-reliability workers [SOJN08, DHSC10, LEHB10], accessing true labels for a sufficient
number of tasks can be difficult and expensive. To address these challenges, a common
solution is to use redundancy [SPI08], that is, collecting multiple labels for each task and
assigning multiple tasks to each worker. Given the redundant labels, most existing studies
make specific probabilistic assumptions on how individual workers provide labels and propose
techniques to infer true task labels given workers’ responses. Common probabilistic models
include the one-coin model [ZCZJ14], two-coin model [RY12], and the general Dawid-Skene
model [DS79]. For example, the “one-coin” model assumes that each worker w provides the
correct label to an assigned task with probability pw and (an) incorrect label with probability
1− pw. The parameter pw thus measures the reliability of worker w.

While most existing work relies on explicit probabilistic models, recent studies [VdVE11,
DDCM12] and anecdotal evidence show that worker labeling strategies may not be proba-
bilistic in practice. For instance, for binary classification tasks, workers may adopt strategies
that: (a) uniformly label all tasks +1 if it is known that +1 labels are more prevalent than −1
among true labels in the corpus of tasks;1 (b) provide accurate labels to the first few tasks and
random labels to remaining ones; and (c) systematically provide +1 labels to certain types of

1Note that the one-coin model cannot capture this strategy, but the more general two-coin model [RY12]
can.

45



tasks and −1 to other types. [VdVE11] recently provided real-world empirical evidence of
similar worker strategies. In addition, workers may be malicious and may adopt sophisticated
strategies for explicitly altering inferred labels of tasks. For instance, [WWZZ14] showed that
malicious crowdsourcing campaigns, called “crowdturfing”, are increasing in popularity in
both dedicated and generic crowdsourcing websites [MML+11, WWZ+12]. Further, evidence
indicates the presence of malicious users in online content rating systems (such as Digg,
Amazon, and Yelp) in which users can choose items to rate and the ratings are public.
Specifically, users have been observed to explicitly alter the popularity of advertisements and
phishing articles [TMLS09] and collaboratively target products on Amazon [MLG12].

This chapter focuses on the problem of explicitly identifying unreliable and adversarial
workers in crowdsourced labeling tasks by using only the labels provided by workers as
an input. We consider a general crowdsourcing setting in which users/workers provide
labels to items/tasks. The setting may be a crowdsourced classification application (such
as Mechanical Turk) in which labels are collected for tasks by assigning2 them to workers;
or a public crowdsourcing system (such as Digg, Amazon, or Yelp) in which users provide
labels/ratings to a collection of items they choose. For brevity, we use the generic terms
“worker” and “task” for both types of applications. We make the following assumptions.
The tasks have binary true labels in the set {−1,+1}; for cases in which the notion of
true task labels is subjective, we consider it to be the population’s majority opinion. We
distinguish between two types of workers: honest and adversarial. The population of workers
is mostly honest, with adversaries comprising a “small” fraction. Honest workers provide
responses according to a well-defined probabilistic model, say, M̂ (e.g. the one-coin model
introduced above), and therefore, they can make mistakes. However, the model M̂ is not
known. Motivated by the presence of non-random worker strategies, we go beyond standard
probabilistic models and consider a much broader class of adversarial worker strategies.
Specifically, adversaries adopt strategies different from those of honest workers, whether
probabilistic or not, that is, their responses are not generated according to model M̂ . Further,
different adversaries may adopt distinct strategies.

Our work is different from most prior literature [DS79, SFB+95, WRW+09, RYZ+10,
WBBP10, GKM11, KOS11, LPI12, ZBMP12, DDKR13, ZCZJ14] that primarily focused on
designing label aggregation algorithms to maximize the accuracy of recovered task labels.
Only a few studies have explicitly focused on identifying unreliable workers based on their
responses; these either relied on access to true task labels [SOJN08, DHSC10, LEHB10] or
did not assume any form of adversarial behavior [VdVE11, RY12, HBKVH13]. We aim to
identify unreliable and adversarial workers using only their responses and do not assume
access to any true task labels. Furthermore, to the best of our knowledge, we are unaware
of previous studies that have addressed the problem of identifying adversarial workers who
can adopt arbitrary strategies in crowdsourcing systems. Refer to Section 2.1.1 for further
discussion on this aspect.

For the above setting, we design a scoring algorithm that computes “reputation scores”

2Workers can still choose from among assigned tasks; however, the assignment can be done to ensure that
the graph representing workers’ assignment to tasks has particular structures—see Section 2.4.1.
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for workers to indicate the degree to which their labeling patterns are adversarial. We base
our algorithms on the intuition that as the population is mostly honest and adversaries’
labeling patterns differ from those of honest workers, adversary labeling patterns should
be statistical outliers. The reputation score then indicates the degree to which a worker’s
labeling pattern is a statistical outlier. The adversaries identified by our algorithms may
be discarded or processed separately depending on the application. Section 2.5 shows that
discarding adversary labels can enable standard label aggregation algorithms to infer true
task labels more accurately.

We note that the problem of identifying unreliable honest workers and adversaries from
only their responses is nontrivial, especially because we cannot access true labels for any of
the tasks. In particular, even in the simple and commonly observed case where adversaries
always provide the label +1, the natural approach of classifying workers who only give +1
labels as adversaries can have arbitrarily bad performance (see Lemma 2.1). Furthermore,
because we do not restrict the adversary strategy in any way, differentiating them from honest
workers can be difficult. In fact, we show (see Theorem 2.10) that by carefully choosing their
responses, sophisticated adversarial workers can render themselves indistinguishable from
honest ones and ensure that the true labels of some fraction of tasks cannot be inferred better
than a random guess.

2.1.1 Related Work

Our work is part of the literature on crowdsourcing that proposes statistical techniques
to exploit the redundancy in collected labels to simultaneously infer the latent reliabilities
of workers and true task labels. In particular, our work is related to three broad streams.
The first stream focuses on “crowdsourced classification”, namely, inferring underlying true
labels of tasks when workers adopt specific probabilistic labeling strategies. Our reputation
algorithm can work in conjunction with any of these methods, possibly by filtering out low
reputation workers. The second stream proposes methods to explicitly filter out low-reliability
workers; it is similar in spirit to our approach. The third stream focuses on methods to
address sophisticated attacks in online settings; it is related to our treatment of sophisticated
adversaries.
Crowdsourced classification. The literature on crowdsourced classification is vast. Most
studies are based on the worker model proposed by [DS79], which is a generalization of the
one-coin model to tasks with more than two categories. The standard solution is to use
the expectation-maximization (EM) algorithm (or its variants) to estimate worker reliability
parameters and true task labels [SFB+95, RYZ+10]. The methods proposed in [LPI12] and
[CLZ13] take a Bayesian approach by assuming different priors over the worker reliability
parameters. [WRW+09] included task difficulty as an additional parameter in the model,
and [WBBP10] studied a model with multi-dimensional latent variables for each worker, such
as competence, expertise, and bias. [ZBMP12, ZLP+15] introduced a natural generalization of
the Dawid-Skene model that captures tasks with differing difficulties and proposed a minimax
entropy based approach which works well in real datasets. Although most of these approaches
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show improved performance on real-world datasets, they offer no theoretical guarantees on
the resulting estimates of true task labels and model parameters.

From a theoretical perspective, the crowdsourced classification problem has been studied
in two distinct regimes: dense and sparse. In the dense regime, it is assumed that each worker
has a certain probability of labeling each task. As the problem size (or number of workers)
increases, each task receives an increasing number of responses; therefore, the true labels of
all tasks are eventually identified correctly (with high probability). The theoretical analysis
therefore focuses on identifying the rate at which the algorithm estimates converge to the true
task labels under different settings. The dense regime was first studied by [GKM11], who
proposed a spectral method to infer task labels. More recently, [GZ16] studied the minimax
optimal error rate of a projected EM algorithm under the one-coin model, and [LY14] provided
upper bounds on the error rate of weighted majority voting algorithms for the Dawid-Skene
model. [ZCZJ14] showed that the EM algorithm for the Dawid-Skene model achieves the
optimal convergence rate when initialized using a spectral method.

In the sparse regime, each task is assigned a “small” number of workers, that is, of size
O(1), so that the accuracy does not increase with problem size. [KOS14] were the first to
analyze this scenario; they proposed an iterative message-passing algorithm for estimating
true task labels as well as a task assignment scheme that minimizes the total price that must
be paid to achieve an overall target accuracy. They showed that their algorithm is optimal by
comparing it against an oracle estimator that knows the reliability of every worker. [DDKR13]
proposed methods based on singular-value decomposition (SVD) and analyzed the consistency
of their estimators for the one-coin model. Recently, [KO16] analyzed the “Generalized
Dawid-Skene Model” introduced by Zhou et al. and showed that spectral approaches achieve
near-optimal performance, whereas [OOSY16] proved that belief propagation (BP) is optimal,
that is, it matches the performance of the MAP estimator, under the one-coin model when
each worker is assigned at most two tasks. In our theoretical analysis, we focus on this regime.
The key distinction of our work from previous studies is that we focus on characterizing the
misclassification rate of our algorithm in classifying workers, as opposed to the accuracy of
recovering true task labels.

Detecting Unreliable/Adversarial workers. Some studies have aimed to explicitly de-
tect and/or remove unreliable workers based on observed labels. One approach is to use
“gold standard” tasks, that is, tasks whose true labels are already known, to identify low-
reliability workers [SOJN08, DHSC10, LEHB10]. However, accessing true task labels can
be difficult and might involve additional payment. In this work, we do not assume access
to any gold standard tasks and identify adversarial workers based only on the provided
labels. [VdVE11] defined scores customized to specific adversary strategies to identify and
remove them. Similarly, [HBKVH13] modeled the worker population as consisting of two
types—those who always provide the correct label and spammers who provide uniformly
random labels—and estimated each worker’s trustworthiness by using the observed labels.
In contrast to these studies, we allow adversaries to adopt arbitrary strategies. [IPW10]
proposed a method for quantifying worker quality by transforming the observed labels into
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soft posterior labels based on the estimated confusion matrix [DS79]. Similar to our work,
their approach computes an expected cost for each worker, where the higher the cost, the
lower is the worker’s quality. [RY12] proposed an empirical Bayesian algorithm to eliminate
workers whose labels are not correlated with the true label (called spammers), and estimated
consensus labels from the remaining workers. Both of these works rely on the Dawid-Skene
model, whereas our algorithms do not assume knowledge of the probabilistic model used
by workers. Some studies have tried to quantify the price of having adversarial workers
under some restricted settings. [GKM11] (in the dense regime) and [KOS13] (in the sparse
regime) considered malicious workers who can collude and provide arbitrary responses to
degrade the performance of the aggregation algorithms and showed that their approaches are
robust to manipulation by a small constant fraction of such adversaries. However, both these
works assume specific structures on the worker-task assignment graph and do not consider
adversaries who can adapt their responses based on the labels submitted by honest workers.
Our analysis considers arbitrary worker-task assignment graphs, and we allow adversaries to
choose their labels based on observed honest workers’ responses.

Sybil attacks. Finally, our work is also broadly related to the rich literature on identifying
Sybil identities in online social networks. Most such schemes [YKGF06, YGKX08, DM09,
TLSC11, VMG+12] use the graph (or trust) structure between users to limit the corruptive
influences of Sybil attacks (see [VPGM10] for a nice overview). In our context, there is no
information about the network structure or trust relationships between workers, and because
most crowdsourcing tasks involve some form of payment, it is harder to launch Sybil attacks
by forging financial credentials like credit cards or bank accounts.

2.2 Problem Setup

We consider the following broad setting. There is a set T = {t1, t2, . . . , tm} of m tasks
such that each task tj is associated with a latent ground-truth binary label yj ∈ {−1,+1}.
We elicit binary labels for these tasks from a set W = {w1, w2, . . . , wn} of n workers. Each
worker typically labels only a subset of the tasks, and we generically say that the subset of
tasks is assigned to the worker. We represent this assignment by using a bipartite graph
B = (W ∪ T , E) with workers on one side, tasks on the other side, and an edge (wi, tj) ∈ E
indicating that task tj is assigned to worker wi. We call B the worker-task assignment graph
and suppose that the assignment is pre-specified.

Each worker wi provides a binary response3 wi(tj) ∈ {−1,+1} for each task tj assigned
to it. We encode the responses as the response matrix L ∈ {−1, 0,+1}|W |×|T | such that
Lij = wi(tj), for all 1 ≤ i ≤ n and 1 ≤ j ≤ m, where we set wi(tj) = 0 for any task tj not
assigned to worker wi. Wj ⊆ W denotes the set of workers who labeled task tj and Ti ⊆ T ,
the set of tasks assigned to worker wi. Let d+

j (resp. d−j ) denote the number of workers
labeling task tj as +1 (resp. −1).

3We use the terms “label” and “response” interchangeably.
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Worker model. We assume that the population of workers comprises two disjoint classes:
honest and adversarial. That is, W = H ∪ A with H ∩ A = ∅, where H is the set of honest
workers and A, the set of adversarial workers. The class memberships of the workers are
latent, so we do not know whether a worker is honest. Honest workers provide (noisy) labels
according to an unknown but explicit probabilistic model (such as the one-coin model).
Adversarial workers are those whose labeling strategy does not conform to this probabilistic
model; they can adopt arbitrary (deterministic or probabilistic) strategies. If honest workers
adopt the one-coin model, example adversary strategies include (a) the uniform strategy,
in which the worker arbitrarily provides uniform responses +1 or −1 to all assigned tasks
irrespective of the true label; (b) smart strategy, in which the adversary is smart and chooses
the uniform label in accordance with the population prevalence of the true labels so that
if more than 50% of tasks are a priori known to have label −1, then the worker chooses
−1 as the uniform label and vice-versa; or (c) sophisticated strategy, in which the worker
adopts strategies specifically designed to cause the maximum “damage” (see Section 2.4.2 for
details).

Most existing works only focus on honest workers, whereas our approach also considers
adversarial workers. Furthermore, our definition of “adversary” is intentionally broader than
common definitions to accommodate a wide range of labeling strategies. In fact, some of the
abovementioned example adversary strategies may be accommodated by extensions of the
one-coin model; for example, the uniform strategy is captured by the two-coin model [RY12],
and the smart strategy can be accommodated by allowing worker reliability parameters to
depend on the population prevalence of the task labels. While such case-by-case extensions are
feasible in theory, they do not extend to general adversary strategies, including sophisticated
strategies specifically designed to inflict the maximum “damage”.

Given the broad definition of adversaries, our approach is to design a general algorithm
to identify adversarial workers, given access to only the response matrix L . The adversaries
identified using our algorithm may be filtered out or investigated further, depending on the
application. We describe a reputation-based algorithm that only relies on the response matrix
L to adversaries. The algorithm relies on detecting workers whose labeling patterns are
statistical outliers among the population of workers.

2.3 Reputation Algorithms

We now describe the proposed algorithm for identifying adversarial workers given the
response matrix L. We suppose that no side information is available on the workers’ identities
(e.g., a social network or worker-level demographic information), and therefore, the algorithm
must solely rely on the response patterns given by workers. Our approach is to compute
a “reputation” or “trust” score for each worker as a measure of the degree to which their
response pattern is a statistical outlier or an anomaly. Workers with low reputation scores
are significant outliers and are identified as adversaries.

To compute a worker’s reputation, the algorithm relies on the number of conflicts the
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worker is involved in. A worker is involved in a conflict if its response to an assigned task is
in disagreement with those of other workers. Note that tasks with a consensus opinion, that
is, those having all +1 or −1 labels, do not provide any discriminative information about
the workers who labeled the task. In other words, we cannot distinguish between honest
and adversarial workers from just this specific task. Therefore, we focus on tasks that lack
consensus, that is, those having a mix of +1 and −1 labels. We call this subset of tasks the
conflict set Tcs, and workers who respond to tasks in this set are all involved in conflicts. A
conflict typically indicates the presence of low-reliability honest workers (who tend to make
mistakes) or adversaries. In the ideal case, when all honest workers are perfectly reliable, a
conflict necessarily means the presence of an adversarial worker. In this case, the number of
conflicts a worker is involved in can serve as a rough indicator of the possibility of this worker
being an adversary. However, when honest workers are not perfect and make mistakes, a
conflict indicates only a chance of the presence of an adversary. Then, simply counting the
number of conflicts may over-penalize honest workers who label a large number of tasks.

To overcome this issue, we propose two penalty allocation techniques, resulting in two
variants of our algorithm: (a) soft-penalty and (b) hard-penalty.

2.3.1 Soft-Penalty Algorithm

In the soft-penalty algorithm (see Algorithm 5), for any task tj in the conflict set, we
allocate a penalty of 1/d+

j and 1/d−j to all workers who provide the label +1 and −1 for tj,
respectively. Then, for each worker, we compute the net penalty by averaging the penalties
across all assigned (conflict) tasks.

The above allocation of penalties implicitly rewards agreements among worker responses
by making the penalty inversely proportional to the number of other workers that agree with
a worker. In particular, if a worker agrees with the majority opinion on some task, then it is
allocated a lower penalty than a worker who disagrees with the majority. Further, averaging
normalizes for the number of tasks labeled by any worker. The algorithm relies on the
following intuition for allocating penalties: assuming the average reliability of honest workers
to be > 1

2
, we expect that honest workers provide the correct response to the assigned tasks

on average. Furthermore, because there are more honest workers than adversaries, we expect
the majority response to be the same as the true label of the task for most tasks. Therefore,
we expect that the above allocation of penalties assigns lower penalties to high-reliability
honest workers and higher penalties to low-reliability honest and adversarial workers. We
formalize this intuition in Section 2.4.1, where we prove theoretical guarantees for the soft-
penalty algorithm. We show that the soft-penalty algorithm performs well in identifying
low-reliability honest workers as well as adversarial workers employing deterministic strategies
(see Theorems 2.4 and 2.7). Our results demonstrate the asymptotic consistency of the
soft-penalty algorithm in identifying adversaries under standard assumptions on the structure
of the worker-task assignment graph.
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Algorithm 5 soft-penalty

1: Input: W , T , and L

2: For every task tj ∈ Tcs, allocate

penalty sij to each worker wi ∈ Wj

as follows:

sij =


1
d+
j

, if Lij = +1

1
d−j
, if Lij = −1

3: Output: Net penalty of worker wi:

pen(wi) =

∑
tj∈Ti∩ Tcs sij

|Ti ∩ Tcs|

Algorithm 6 hard-penalty

1: Input: W , T , and L

2: Create bipartite graph Bcs as follows:

(i) Each worker wi ∈ W is represented by

a node on the left (ii) Each task tj ∈ Tcs
is represented by two nodes on the right,

t+j and t−j (iii) Add the edge (wi, t
+
j ) if

Lij = +1 or edge (wi, t
−
j ) if Lij = −1

3: Compute optimal semi-matching M on

Bcs

4: Output: Net penalty of worker wi:

pen(wi) = degM(wi)

Although the soft-penalty algorithm can successfully identify adversarial workers adopt-
ing certain types of strategies, its performance depends on the complexity of these strategies.
If adversarial workers are non-colluding and adopt non-deliberate strategies, then the soft-
penalty algorithm can identify them from the observed responses. However, this algorithm
could be manipulated by more sophisticated adversaries who can collude together and adapt
their labeling strategy to target certain tasks to lower their penalty scores. In particular, the
soft-penalty algorithm treats each task in isolation when assigning penalties; therefore, it
is susceptible to attack by determined adversaries who can cleverly decide their responses
based on honest workers’ labels and the structure of the worker-task assignment graph to
cause maximum “damage”. For example, suppose that the subgraph of B between honest
workers and tasks is r-right regular, that is, each task receives labels from exactly r honest
workers (such graphs are commonly used in practice, see [KOS14] and [OOSY16]), and all
honest workers are perfectly reliable. Now, suppose that there are k > r adversaries and
that each adversary provides the incorrect response to all tasks. Then, every task has r
correct responses, all provided by honest workers, and k incorrect responses, all provided by
adversaries, resulting in net penalties of 1/r for each honest worker and 1/k for each adversary
(note that the degree of the workers does not affect the net penalty because the penalty
received from each task is the same). Because k > r, adversaries receive lower penalties
than do honest workers. Therefore, filtering out k workers with the highest penalties will
always filter out honest workers. Furthermore, natural aggregation algorithms (such as simple
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majority or weighted majority with penalties as weights) result in incorrect labels for all
tasks (see Lemma 2.9). In fact, for such worst-case adversaries, we can establish the following
result:
Theoretical Result (Refer to Theorem 2.10 for the formal statement). Given any
collection of honest worker responses, there exists an adversary strategy that can achieve a
lower bound on the fraction of tasks whose true labels cannot be inferred correctly (better than
a random guess) by any label aggregation algorithm that is agnostic to the worker and task
identities.

The proof relies on the fact that sophisticated adversaries can render themselves indis-
tinguishable from honest workers by carefully choosing their responses. This shows that
identifying such worst-case adversarial workers can be difficult. To deal with such adversarial
behavior, we use the hard-penalty algorithm.

2.3.2 Hard-Penalty Algorithm

To deal with sophisticated adversaries, we propose a hard penalty allocation scheme
(Algorithm 6) in which the penalty allocation for a particular task takes into account the
structure of the worker-task assignment graph and the responses of other workers on all other
tasks. In particular, instead of distributing the penalty evenly across all workers that respond
to a given task, this algorithm chooses two “representative” workers to penalize for each
conflict task: one each among those who provide the label +1 and −1. The representative
workers are chosen in a load-balanced manner to “spread” the penalty across all workers and
thereby avoid over-penalizing workers who provide labels for a large number of tasks. The
net penalty of each worker is the sum of penalties accrued across all (conflict) tasks assigned
to this worker. Intuitively, such a hard allocation of penalties will penalize workers with
higher degrees (i.e. large number of assigned tasks) and many conflicts (who are potential
worst-case adversaries), thereby leading to a low reputation.

To choose representative workers in a load-balanced fashion, we use the concept of optimal
semi-matchings [HLLT03] in bipartite graphs. For a bipartite graph G = (V1 ∪ V2, E), a
semi-matching in G is a set of edges M ⊆ E such that each vertex in V2 is incident to exactly
one edge in M (note that vertices in V1 could be incident to multiple edges in M). A semi-
matching generalizes the notion of matchings on bipartite graphs. An optimal semi-matching
is the semi-matching with the minimum cost. We use the common degree-based cost function
defined as follows: for each u ∈ V1, let degM (u) denote the degree of u, that is, the number of
edges in M that are incident to u, and let costM(u) be defined as

costM(u) :=

degM (u)∑
i=1

i =
degM(u) · (degM(u) + 1)

2

Then, an optimal semi-matching is one that minimizes
∑

u∈V1
costM(u).4 Intuitively, an

optimal semi-matching fairly matches V2 vertices across V1 vertices such that the “load” on

4The optimal semi-matching need not be unique; for our purposes, we use any semi-matching that
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any V1 vertex is minimized. The above notion of cost is motivated by the load balancing
problem for scheduling tasks on machines. Specifically, consider a set of unit-time tasks V1

and a set of machines V2. Suppose that each task can be processed on a subset of machines;
this can be specified as a bipartite graph between V1 and V2. On any given machine, the tasks
are executed one after the other in series. An optimal semi-matching can be thought of as an
assignment of tasks to the machines such that the flow-time, that is, average completion time
of a task, is minimized. See [HLLT03] for more details.

To determine the representative workers for each task, we compute the optimal semi-
matching in the following augmented worker-task assignment graph: we split each task tj into
two copies, t+j and t−j , and connect worker wi to t+j or t−j depending on whether this worker
labeled the task +1 or −1, respectively. By definition, the optimal semi-matching yields
two representative workers for each task tj—one connected to t+j and the other connected
to t−j . As in the soft-penalty algorithm, we only consider conflict tasks when creating this
augmented bipartite graph. The worker degrees in the optimal semi-matching then constitute
their net penalties. Algorithm 6 describes the hard-penalty algorithm.

2.3.3 Connection between soft- and hard-penalty algorithms

Although the soft- and hard-penalty algorithms appear different on surface, the former
can be interpreted as a random, normalized variant of the latter. Specifically, suppose we
choose a random semi-matching M in the augmented worker-task assignment graph Bcs,
defined in Algorithm 6, and assign the penalty degM(wi)/degBcs(wi) to worker wi, where
degBcs(wi) is the degree of worker wi in Bcs. When the random semi-matching is constructed
by mapping each copy t+j (or t−j ) of task tj uniformly at random to a worker connected to
it, the probability that it will be mapped to worker wi ∈ Wj is equal to 1/degBcs(t

+
j ) (or

1/degBcs(t
−
j )), or equivalently, 1/d+

j (or 1/d−j ). Therefore, the expected degree E[degM(wi)]
of worker wi is equal to

∑
tj∈Ti∩Tcs sij, where sij = 1/d+

j if Lij = +1 and 1/d−j if Lij = −1.

Because the degree degBcs(wi) of worker wi is equal to |Ti ∩ Tcs|, it follows that the expected
penalty of worker wi is equal to E[degM(wi)]/degBcs(wi) =

∑
tj∈Ti∩Tcs sij/ |Ti ∩ Tcs|, which is

exactly the penalty allocated by the soft-penalty algorithm. It thus follows that the expected
penalties under the above random, normalized variant of the hard-penalty algorithm are equal
to the penalties allocated by the soft-penalty algorithm. When all workers are assigned the
same number of tasks, the expected penalty assigned by the random hard-penalty algorithm
is equal to the penalty assigned by the soft-penalty algorithm, but scaled by a constant factor.

With the above interpretation of the soft-penalty algorithm, it follows that the hard-
penalty algorithm differs from the soft-penalty algorithm in two key aspects: it (a) does
not normalize the penalties by degrees and (b) uses optimal semi-matchings as opposed to
random semi-matchings. The absence of degree-based normalization of the penalties results in
significant penalization of high-degree workers. The use of the optimal semi-matching results
in a more balanced allocation of penalties by optimizing a global objective function. Both

minimizes the cost. In Section 2.4.2, we show that the worst-case performance of the hard penalty algorithm
is agnostic to the choice of the optimal semi-matching.
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of these effects make the hard-penalty algorithm conservative and robust to sophisticated
adversary strategies, as established theoretically in Section 2.4. The above connection also
suggests that the random, normalized variant of the hard-penalty algorithm should have
performance similar to that of the soft-penalty algorithm. We explore this aspect theoretically
at the end of Section 2.4.1.

2.4 Theoretical Results

Our reputation algorithms are analytically tractable, and we establish their theoretical
properties below. Our analysis is aimed at deriving the conditions under which our algorithms
separate adversaries from honest workers. We use uppercase boldface letters (say, X) to
denote random variables, unless it is clear from the context. The proofs of all results are
given in Appendix B.

2.4.1 Soft-penalty algorithm: common adversary strategies

First, we analyze the performance of the soft-penalty algorithm. We assume that honest
workers adopt the one-coin model, where each worker w is characterized by parameter
µw ∈ [0, 1] that specifies the probability that w provides the correct response for any task.
We choose this model because it is the simplest non-trivial model to analyze, and it has been
widely studied in existing literature [GKM11, DDKR13, KOS14, ZCZJ14, GZ16]. We focus
on two settings: (a) the classical setting in which there are no adversaries (A = ∅) and (b)
the setting in which adversaries adopt the Uniform strategy.

Definition 2.1 (Uniform strategy). Every adversarial worker provides the same +1 response
to all tasks assigned to it.

We consider the Uniform strategy because of its ubiquity and simplicity. It is commonly
observed in practice [VdVE11], and our analysis of real-world datasets (discussed in detail in
Section 2.5) reveals that a significant fraction of workers (≈ 30%, 17%, and 9% of workers in
the stage2, task2, and temp datasets, respectively) provide uniform labels for all assigned
tasks. Note that it is not captured by the standard one-coin model, in which workers assign
the label yj or −yj to task tj, where yj is the true label. It can be adopted by both “lazy”
and “smart” adversaries. Lazy workers adopt this strategy to maximize the number of
tasks they label and the corresponding payment they obtain. Smart adversaries adopt this
strategy if it is known a priori that the prevalence (or proportion) γ of tasks with true labels
+1 is large, say, above 90%. For instance, medical images showing tumors contain a large
proportion of benign ones and a correspondingly small proportion of malignant ones, leading
a “smart” worker to label all assigned images as benign without carefully considering each
image. Therefore, the Uniform strategy actually comprises a spectrum of strategies of varying
degrees of “smartness”, with higher values of γ indicating smarter strategies.

A natural way to identify adversaries who adopt the Uniform strategy is to classify all
workers who have labeled all assigned tasks +1 as adversaries. However, we show that this
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T1

T2

Adv.
(A)

Honest
(H2)

Honest
(H1)

-1 true labels

+1 true labels

Figure 2.1: Example where filtering workers who provide only +1 labels performs poorly

approach can have arbitrarily large misclassification rate, because it may misclassify almost
all (asymptotic fraction approaching 1) perfectly reliable honest workers as adversarial.

Lemma 2.1 (Hardness of identifying Uniform adversarial workers). Consider a simple binary
classifier Înatural(·) as follows:

Înatural(wi) =

{
adversarial, if wi gives all + 1 labels

honest, o.w.

Then, the misclassification rate, that is, fraction of incorrectly classified workers, of the above
classifier can be arbitrarily close to 1.

Proof. Suppose the collection of tasks partitions into two sets, T1 and T2, consisting of tasks
that have true labels −1 and +1, respectively (see Figure 2.1). The adversary A follows the
Uniform strategy and labels all tasks in T1 as +1. There are two groups of honest workers—H1

and H2—who are perfectly reliable, that is, they always provide the correct label. The
workers in H1 label all tasks in T1 ∪ T2, and workers in H2 label only the tasks in T2. Now,
because honest workers H2 give only +1 labels, the classifier Înatural misclassifies all honest
workers in H2 as adversaries. In other words, we have

1

|H1 ∪H2|
∑

h∈H1∪H2

1
[
Înatural(h) 6= honest

]
=

|H2|
|H1 ∪H2|
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where 1[·] denotes the indicator function. Suppose H2 comprises a large fraction of honest
workers, that is, |H2| = (1− ρ) |H1 ∪H2| for some “small” ρ > 0. Then, it follows from the
above equation that the misclassification rate of the natural classifier Înatural(·) is 1−ρ, which
can be arbitrarily close to 1.

The above result shows that the problem of identifying adversaries is nontrivial even for
the Uniform strategy case, and our analysis below provides precise conditions under which
we can identify such adversarial workers. In particular, for the scenario outlined in the
proof above, our soft-penalty algorithm assigns a penalty of 1

|A| to adversaries, 1
|H1| to honest

workers in H1, and zero penalty to honest workers in H2 (because they are not part of any
conflicts). Consequently, as long as |H1| > |A|, our algorithm correctly separates out honest

workers from adversaries by choosing a threshold θ ∈
(

1
|H1| ,

1
|A|

)
and classifying all workers

with penalty > θ as adversarial.
Because the performance of the algorithm depends on the specific crowdsourced clas-

sification instance (worker-task assignment graph, true task labels, reliabilities of honest
workers), we conduct a probabilistic analysis under a natural generative model. For our
analysis, we focus on worker-task assignment graphs B that are (l, r)-regular, in which each
worker is assigned l tasks and each task is labeled by r workers. These assignment graphs are
analytically tractable and have been shown in [KOS14] to achieve order-optimal performance
(with respect to the best combination of task assignment and inference algorithm) when
given a certain budget for task assignment. To generate the crowdsourcing instance, we
use the probabilistic model of crowdsourced labeling proposed in [KOS14] but extended to
incorporate adversarial workers:
Generative model. Suppose the fraction q ∈ (0, 1] of honest workers, number of tasks m,
number of workers n, worker degree l > 1, and task degree r > 1 are fixed. Let γ ∈ [0, 1]
denote the prevalence (or proportion) of tasks with true labels +1 and F (·), the cumulative
distribution function (CDF) of the honest worker reliabilities under the one-coin model, with
µ ∈ [0, 1] denoting the mean. Sample a crowdsourced classification instance as follows:

1. Worker-task assignment graph: Assign m tasks to n workers using the configuration
model—take n · l half-edges for worker nodes and m · r half-edges for the task nodes,
pick a random permutation of worker half-edges, and map them to task half-edges.

2. True task labels: For each task tj, sample the true label Yj ∈ {−1,+1} independently
according to the Bernoulli distribution with P[Yj = +1] = γ.

3. Worker identities: For each worker wi, set its identity to honest with probability q and
adversarial with probability 1− q.

4. Honest worker reliabilities and responses: If wi is honest, sample its reliability Mi = µi
from the distribution F (·). For each task tj assigned to wi, set the response wi(tj) to
Yj with probability µi and −Yj with probability 1− µi.
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5. Adversarial worker responses: If wi is adversarial, set the response wi(tj) = +1 for all
tasks tj assigned to wi.

The above generative model may be justified as follows. First, the configuration model is
a simple random construction to generate graphs that is popular in random graph litera-
ture [Bol01]. It may result in a graph with multi-edges (where two nodes are connected by
more than one edge); however, the number of double-edges converges to a Poisson distribution
with mean (l− 1)(r− 1)/2 (see [Bol01]). Therefore, the proportion of nodes with multi-edges
is ≈ lr/n, which tends to zero as n→∞ as long as l = o(n) and r is constant.

The model for true task labels, worker identities, and reliabilities may be justified by
supposing that the m tasks T = {t1, . . . , tm} are drawn from a “large” population of tasks
with a prevalence γ of +1 tasks and workers are drawn from a “large” population with a
proportion 1− q of adversaries and a proportion q of honest workers, whose reliabilities have
the distribution F (·). Then, the distributional assumptions for the true task labels, worker
identities, and honest worker reliabilities will be met when the task assignment is randomized
and there is no distinction between sampling with and without replacement because of the
large population sizes. The model for generating honest worker responses is the standard
one-coin model. See [KOS14] for a detailed discussion of the settings under which the above
probabilistic model is reasonable.

For our theoretical analysis, we assume that non-conflict tasks (with all +1 or −1 labels)
are not ignored/dropped for the purposes of penalty computation. This assumption makes
the analysis less cumbersome and may be justified by noting that for a large enough r,
the probability that a task will be non-conflict is low. Even if a task is non-conflict, we
expect little impact from its inclusion because the penalty from this task will be 1/r, which
is negligible for large values of r. We also tested this assertion numerically and observed
negligible differences in the performances of the two variants (with and without dropping
high-degree non-conflict tasks) of the soft-penalty algorithm (see Section 2.5).

Analysis of expected penalties. We first analyze the expected penalties received by
honest and adversarial workers under the abovementioned generative model and identify the
conditions for population parameters q, µ, and γ under which honest workers receive lower
expected penalties. Let PENi denote the penalty assigned by the soft-penalty algorithm to
worker wi; note that it is a random variable under the abovementioned generative model.

First, we focus on the classical setting in which there are no adversarial workers; therefore,
A = ∅. We obtain the following result:

Theorem 2.2 (Reputations consistent with reliabilities). When q = 1 (i.e., there are no
adversarial workers) and µ > 1

2
, we have

E [PENi |Mi = µ1] < E [PENi |Mi = µ2] ⇐⇒ µ1 > µ2

for any worker wi.

Theorem 2.2 shows that the expected reputation scores are consistent with honest workers’
reliabilities: as the honest worker’s reliability decreases, the expected penalty increases, that
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is, the expected reputation score decreases. As honest worker reliabilities capture their
propensities to make mistakes, our algorithm flags workers who are prone to making mistakes,
as desired. Consequently, filtering out low-reputation workers filters out workers with low
reliabilities (we make this claim precise in Theorem 2.4 below).

Next, we consider the case in which A 6= ∅ and there is a fraction 1− q of workers who
are adversarial and adopt the Uniform strategy. Let ph and pa denote the expected penalties
that a worker receives conditioned on being honest and adversarial, respectively, that is,

ph = E [PENi | wi is honest ] and pa = E [PENi | wi is adversarial ]

Because of symmetry, these expectations do not depend on worker indices. Then, we obtain
the following result:

Theorem 2.3 (Penalties under Uniform strategy). When q < 1, µ > 1
2
, and the adversaries

adopt the Uniform strategy, we obtain

ph < pa ⇐⇒
(
qµ >

1

2
and

µ

1− µ
· h(µ, q) >

γ

1− γ

)
where h(µ, q) is a strictly increasing function in q for a fixed µ, and it is defined as

h(µ, q) =
g(1−Q)− g(Q)

g(P )− g(1− P )
where P := qµ+ (1− q), Q := 1− qµ, and g(x) :=

1− xr

r · (1− x)
.

The above result reveals the conditions for the parameters q, µ, and γ under which the
soft-penalty algorithm is successful in assigning lower penalties to honest workers than to
adversaries.

To understand this, we first focus on the condition qµ > 1/2. Note that because µ ≤ 1, this
condition implies that the population must consist of more honest workers than adversaries
(q > 1/2). This is because our algorithm is designed to identify “outlier” response patterns—
those which deviate from the majority—and for adversaries to be declared outliers, they must
necessarily be in the minority.

Furthermore, note that the necessary condition µ > 1/(2q) implies that for our algorithm
to be successful, the average reliability µ of the honest workers must be “large enough”;
specifically, it must exceed 1

2q
(for a fixed q). To obtain an intuitive understanding of this

condition, note the following. Consider a task with true label +1. Then, in expectation,
there are rqµ honest workers and (1− q) · r adversaries who provide the response +1 and
rq · (1−µ) honest workers who provide the response −1. Now, the adversaries will agree with
the majority if and only if r · (qµ+ (1− q)) ≥ rq · (1− µ), that is, µ ≥ 1− 1/(2q). Similarly,
when the true label of a task is −1, then in expectation, there are r · (q · (1− µ) + (1− q))
workers providing +1 label and rqµ workers providing −1 label. Again, the adversaries will be
in the majority in expectation if and only if µ ≤ 1/(2q). It thus follows that if µ ∈ [1− 1

2q
, 1

2q
],

then the adversaries are always in majority in expectation, and therefore, they will receive a
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lower penalty. Because µ > 1/2 and 1− 1
2q
≤ 1/2, a necessary condition for the worker to

receive a lower penalty when being honest is therefore µ > 1
2q

, that is, qµ > 1
2
.

Now assuming that the first condition is met, that is, qµ > 1/2, we focus on the second
condition: µ

1−µ · h(µ, q) > γ
1−γ . When γ = 1, this condition is not met (unless µ = 1), and

therefore, honest workers receive higher expected penalties than adversaries. This is because if
all tasks have a true label +1, then in expectation, there is a fraction qµ+1−q > 1/2 (because
qµ > 1/2) of workers providing the label +1 to each task, implying that the adversaries
always agree with the majority label for each task. As a result, our algorithm filters out
honest workers; however, it must be noted that adversaries actually have higher (perfect)
reliabilities in this special case. Similarly, when µ = 1, that is, honest workers are perfectly
reliable, the condition is always met because honest workers are in the majority at each task
(in expectation); specifically, when the true label is +1, all responses are +1, and when the
true label is −1, all honest workers (a fraction q > 1/2) provide the label −1.

Next, we investigate the performance of our algorithm as the adversary strategies become
“smarter”. As noted above, the Uniform strategy comprises a spectrum of strategies of varying
degrees of “smartness”, with higher values of γ indicating smarter strategies.

Corollary 2.3.1 (Penalties under smarter adversary strategies). Suppose µ > 1
2

is fixed and
qµ > 1

2
. Then, it follows that

ph < pa ⇐⇒ q > h−1
µ

(
γ

1− γ

)
where hµ(q) := µ

1−µ ·h(µ, q) and h−1
µ (·) is the inverse of hµ(·). In other words, for fixed µ > 1

2
,

we require a minimum fraction of honest workers to ensure that adversaries receive a higher
penalty than honest workers, and this fraction increases as γ increases.

The above result shows that as the adversary strategies become smarter, it becomes more
difficult to distinguish them from honest workers. Specifically, because h−1

µ (·) is a strictly
increasing function, we require honest workers to have a larger majority as γ increases to
ensure that they receive lower expected penalties than adversaries.

Asymptotic identification of adversaries and honest workers. Assuming that
the expected penalties of adversaries and honest workers are separated, we now derive the
asymptotic error rates, defined as the expected fraction of errors, of the soft-penalty algorithm
as n→∞ when (1) there are no adversaries and (2) adversaries adopt the Uniform strategy.

To analyze the error rates, we consider the following threshold-classifier Îθ(·) based on
the soft-penalty algorithm: given a penalty threshold θ ∈ R, define the binary classifier

Îθ(wi) =

{
honest, if PENi ≤ θ

adversarial, o.w.

Let I(wi) denote the latent true identity of worker wi. Note that both I(wi) and Îθ(wi) are
random variables under our generative model.
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Case 1: no adversaries. We first consider the case in which there are no adversaries, that
is, q = 1, so that I(wi) = honest for all workers wi. In this case, Theorem 2.2 shows that
workers with higher reliabilities receive lower expected penalties. Furthermore, we now show
that the threshold classifier correctly classifies high-reliability workers as honest with high
probability as n→∞:

Theorem 2.4 (Identification of high-reliability workers). Suppose q = 1 and µ > 1
2
. Given

θ ∈ (0, 1) and ε ∈ (0, 1√
2
) such that θ − ε ∈ (g(1− µ), g(µ)), define µ̂(θ) := g(µ)+ε−θ

g(µ)−g(1−µ)
, where

the function g(·) was defined in Theorem 2.3. Then, under the generative model, we obtain

1

n

n∑
i=1

P
(
Îθ(wi) 6= I(wi) and Mi > µ̂(θ)

)
≤ l2r2

n− 1
+ exp

(
− 2lε2

(1− 1/r)2

)
When l = log n and r is fixed, we obtain

1

n

n∑
i=1

P
(
Îθ(wi) 6= I(wi) and Mi > µ̂(θ)

)
= O

(
1

n2ε2

)
as n→∞

Theorem 2.4 provides an upper bound for the error rate or misclassification rate of the
threshold classifier. We say that the classifier makes an error if it classifies a worker whose
reliability is higher than µ̂(θ) as adversarial, and the misclassification rate is defined as the
expected fraction of errors. As n→∞, the first term, l2r2/(n− 1), in the error bound goes
to 0 as long as l = o(

√
n). With the task degree r fixed, the second term goes to zero as

long as l →∞ when n→∞. Upon combining these two observations, it follows that taking
l = log n yields the error bound of O(1/n2ε2) for a fixed ε ∈ (0, 1√

2
) and r, as n → ∞. In

other words, our result shows that as long as we collect log n labels from each worker and a
fixed number of labels for each task, we will classify workers with reliabilities higher than
µ̂(θ) as honest with a high probability as n→∞. Although the number of labels collected
from each worker must tend to infinity, it must only grow logarithmically in the total number
of workers n. Finally, if the population reliability µ is known, we can determine the value of
threshold θ for a given reliability threshold µ̂(θ).

The proof of Theorem 2.4 (given in Appendix B.2.3) relies on establishing that the
worker penalties are concentrated around their respective expectations, for which we need
the worker-task assignment graph B to be locally tree-like:

Definition 2.2 (Locally tree-like assignment graphs). An (l, r)-regular worker-task assign-
ment graph B is said to be D-locally tree-like at a worker node wi if the subgraph Bwi,D,
consisting of nodes at a distance of at most D from wi, is a tree.

For our purposes, it suffices to have Bwi,2 be a tree. Note that the subgraph Bwi,2 consists
of the worker node wi; tasks labeled by wi, that is, the set Ti; and workers

⋃
j∈TiWj who

labeled the tasks in Ti. [KOS14] shows that a random construction of the assignment graph
using the configuration model ensures that Bw,2 is a tree with a high probability as n→∞
for a randomly chosen worker w.
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Lemma 2.5 (Random construction ensures local tree-structure). If B is random (l, r)-regular
constructed according to the configuration model, then for a randomly chosen worker w

P (Bw,2 is not a tree) ≤ l2r2

n− 1

The proof of the above result is in Appendix B.2.1 and follows the arguments in [KOS14].
Based on the result of Lemma 2.5, the proof of Theorem 2.4 proceeds in two steps. First,
whenever the configuration model generates an assignment graph B that is not locally tree-like,
we immediately declare an error, incurring an error probability that is bounded above by
l2r2/(n−1); this yields the first term in the error bound. Note that this error bound increases
as r—the number of labels for each task—increases, since the probability that there is a cycle
in Bw,2, and therefore it is not a tree, increases as we add more edges to B. Second, when
Bwi,2 is indeed a tree, we obtain the second term in the error bound by invoking the following
concentration result:

Lemma 2.6 (Concentration of honest worker penalties). Suppose that q = 1 and Bwi,2 is a
tree. Under the generative model and for a fixed reliability Mi = µi, given any ε > 0, the
penalty assigned to honest worker wi concentrates as

P

(
PENi ≥ E[PENi |Mi = µi] + ε

∣∣∣Mi = µi

)
≤ exp

(
−2lε2

(1− 1/r)2

)
The above result holds for any fixed value of the reliability µi. The proof (given in

Appendix B.2.2) relies on expressing the penalty scores as an average of l random variables
and then invoking Hoeffding’s concentration bound. The local tree-like property of the
assignment graph B at worker node wi ensures that the l random variables are mutually
independent (which is required for Hoeffding’s inequality).

Case 2: adversaries adopt the Uniform strategy. Next, we consider the case in which there
is a fraction 1−q of workers who are adversaries and adopt the Uniform strategy. Theorem 2.3
above provides the necessary and sufficient conditions for an honest worker to receive a lower
expected penalty than an adversary, that is, for ph < pa. Under these conditions, we obtain
the following result:

Theorem 2.7 (Identification of honest and adversarial workers). Suppose ph < pa and let
θ ∈ (ph + ε, pa − ε) for some ε small enough such that 0 < ε < (pa − ph)/2. Then, under the
generative model we obtain

1

n

n∑
i=1

P
(
Îθ(wi) 6= I(wi)

∣∣∣ I(wi) = honest
)
≤ l2r2

n− 1
+ exp

(
− 2lε2

(1− 1/r)2

)
+ F (µ̂(q, θ))

1

n

n∑
i=1

P
(
Îθ(wi) 6= I(wi)

∣∣∣ I(wi) = adversarial
)
≤ l2r2

n− 1
+ exp

(
− 2lε2

(1− 1/r)2

)
where µ̂(q, θ) is such that µ̂(1, θ) = µ̂(θ) and µ̂(q, θ) < µ for all q ∈ (0, 1] and θ ∈ (ph+ε, pa−ε).
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When l = log n and r is fixed, we obtain

1

n

n∑
i=1

P
(
Îθ(wi) 6= I(wi)

∣∣∣ I(wi) = honest
)

= O

(
1

n2ε2

)
+ F (µ̂(q, θ))

1

n

n∑
i=1

P
(
Îθ(wi) 6= I(wi)

∣∣∣ I(wi) = adversarial
)

= O

(
1

n2ε2

)

The precise expression for µ̂(q, θ) is involved and is given in Appendix B.2.4. Theorem 2.7
provides the misclassification rate of our algorithm when the population parameters q, µ, and
γ satisfy the conditions of Theorem 2.3, ensuring that honest workers receive a lower expected
penalty than adversaries. Following the arguments from the discussion under Theorem 2.4
above, it can be seen that when l = log n and r is fixed, the fraction of adversaries that
is misclassified is O(1/n2ε2). On the other hand, the fraction of honest workers that is
misclassified scales as O(1/n2ε2) + F (µ̂(q, θ)). The first term tends to zero as n→∞. The
second term denotes the probability that honest worker reliability is less than or equal to
µ̂(q, θ). In other words, our algorithm misclassifies low-reliability workers as adversaries.
In the special case when all honest workers have the same reliability µ, it immediately
follows that the probability density function is a point mass at µ, from which it follows that
F (µ̂(q, θ)) = 0 because µ̂(q, θ) < µ. In this case, the misclassification error for the honest
workers also tends to zero as n→∞.

We note that the dependence of the honest worker misclassification rate on F (µ̂(q, θ))
is fundamental to our algorithm. As an example, consider the case when the reliability
distribution is a two-point distribution with probability mass µ at 1 and the remaining 1− µ
mass at 0. This distribution results in two types of honest workers: workers who always
provide the correct response and those that always provide the incorrect response. Note that
the average reliability under this distribution is µ. Let p0 and p1 denote the expected penalties
under our generative model for a worker conditioned on being honest with reliabilities 0 and
1, respectively. Then, it follows that

p1 = γ · g(1− P ) + (1− γ) · g(Q)

pa = γ · g(1− P ) + (1− γ) · g(1−Q)

p0 = γ · g(P ) + (1− γ) · g(1−Q)

From Theorem 2.3, it follows that P > 1/2 and Q < 1/2 is necessary to ensure ph < pa.
Combined with the fact that g(·) is increasing, this implies that g(Q) < g(1 − Q) and
g(1− P ) < g(P ). As a result, we obtain p1 < pa < p0. It now follows that when n→∞, the
penalties of honest workers with reliability 0 concentrate around p0, and consequently, they
are classified as adversarial whenever the threshold θ < pa, resulting in a misclassification
error of 1 − µ. However, it should be noted that honest workers classified as adversaries
indeed have low reliabilities.

Similar to the proof of Theorem 2.4 above, the proof of Theorem 2.7 proceeds in two
steps. The first term in the error bound of Theorem 2.7 comes from Lemma 2.5 because we

63



immediately declare an error whenever the assignment graph is not locally tree-like. The
second term comes from the case when Bwi,2 is indeed a tree by invoking the following
concentration result:

Lemma 2.8 (Concentration of worker penalties). Suppose that q < 1 and Bwi,2 is a tree.
Under the generative model, given any reliability value µ̂ ∈ (0, 1) and ε > 0, the penalty
assigned to worker wi concentrates as

P

(
PENi ≥ E[PENi |Mi = µ̂] + ε

∣∣∣ I(wi) = honest

)
≤ exp

(
−2lε2

(1− 1/r)2

)
+ F (µ̂)

and

P

(
PENi ≤ pa − ε

∣∣∣ I(wi) = adversarial

)
≤ exp

(
−2lε2

(1− 1/r)2

)
The proof of the above result is similar to that of Lemma 2.6. For the case of adversarial

workers, we use Hoeffding’s argument to establish the concentration. For the case of honest
workers, the first term follows directly from Lemma 2.6 when wi has reliability µi > µ̂ and
the second term is the probability that the reliability µi ≤ µ̂.

The above results establish that the soft-penalty algorithm successfully identifies low-
reliability honest workers and adversaries adopting the Uniform strategy asymptotically with
high probability. Note that all results also extend to the random, normalized variant of the
hard-penalty algorithm mentioned in Section 2.3.3, where the expectation is taken over the
generative model and the randomized hard-penalty algorithm—see Appendix B.2.6 for the
details.

We would like to end our discussion by pointing out that similar results can be derived if
it is assumed that honest workers employ the two-coin model (instead of the one-coin model
assumed in the preceding analysis), where each worker is characterized by two parameters
(αw, βw). However, the precise error bounds require significantly more notation to explain,
without adding too much in terms of insights. Instead, we evaluate the performance of our
reputation algorithms for the two-coin model in the numerical experiments and show that it is
still able to identify uniform adversaries and low-reliability honest workers (see Section 2.5.1).

2.4.2 Hard-penalty algorithm: sophisticated adversary strategies

In the preceding analysis, we focused on common adversary strategies in which adversaries
were not intentionally malicious. However, existing studies provide ample evidence for the
presence of workers with malicious intent in public crowdsourcing systems, where workers
choose which tasks to label and the worker labels are public. These workers are usually hired
online by an attacker [WWZ+12] to create fake accounts and manipulate ratings/reviews to
alter the aggregate ratings or rankings received by tasks. Specific examples include workers on
Digg altering the “popularity” of advertisements and phishing articles [TMLS09], fake review
groups collaboratively targeting products on Amazon [MLG12], workers providing fake ratings
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and reviews to alter the aggregate ratings of restaurants on Yelp [MKKSM13], and malicious
crowd behavior in online surveys [GKDD15]. Refer to recent work of [WWZZ14] for more
examples. Motivated by these examples, we study settings with sophisticated adversaries,
who are defined as follows:

Definition 2.3 (Sophisticated adversaries). Sophisticated adversaries provide labels with
the objective of maximizing the number of tasks whose inferred labels are different from the
labels the tasks would otherwise have received from a standard label aggregation algorithm.
They are computationally unbounded and colluding, and they possess knowledge about the
labels provided by honest workers; therefore, they can adopt arbitrary labeling strategies.

Our definition allows sophisticated adversaries to not just be malicious but also be
capable of executing the most complex strategies. In practice, an adversary may adopt
feasible strategies with varying complexities depending on the application context and
their objectives. Focusing on the most sophisticated adversary makes our analysis broadly
applicable, independent of the application context. Further, we do not restrict the structure
of the worker-task assignment graph because unlike in a crowdsourced-classification task, we
have no control on which tasks each worker labels.

We first note that existing label aggregation algorithms can have arbitrarily bad perfor-
mance in the presence of sophisticated adversaries, even if we assume that all honest workers
are perfectly reliable:

Lemma 2.9 (Hardness of recovering true task labels). Suppose honest workers are perfectly
reliable, that is, they always provide the correct response. Let the assignment graph between
honest workers and tasks be such that each task receives responses from at most r > 1 honest
workers. Suppose there are k > r sophisticated adversaries, and each adversary provides the
incorrect label on all tasks. Then, both the simple majority and EM (initialized by majority
estimates) label aggregation algorithms output the incorrect label for all tasks.

The above result characterizes the performance of label aggregation algorithms which are
designed to infer true task labels, as opposed to identifying adversarial workers. Because
sophisticated adversaries aim to maximize the number of tasks whose inferred labels are
incorrect, the lemma shows that for standard label aggregation algorithms like simple majority
and EM, the adversaries can cause arbitrarily bad “damage”. Consequently, in our theoretical
analysis below, we focus on the accuracy of label aggregation algorithms in the presence of
sophisticated adversaries, as opposed to the misclassification rate, as was done in Section 2.4.1.

Lemma 2.9 holds for r-right regular graphs, that is, each task receives exactly r honest
worker labels, which are commonly used in practice (see the discussion in Section 2.4.1).
Therefore, standard label aggregation algorithms can have very poor accuracy in recovering
true task labels in the presence of sophisticated adversaries. In fact, we can actually establish
something much stronger—in the presence of sophisticated adversaries, there exists a lower
bound on the number of tasks whose true label cannot be inferred correctly (better than
random guess) irrespective of the label aggregation algorithm used to aggregate the worker
responses.
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Lower bound on number of tasks that receive incorrect labels. To state our result,
we need the following additional notation. We represent any label aggregation algorithm
as a decision rule R : L → {−1,+1}m, which maps the observed response matrix L to
a set of output labels for each task. Because of the absence of any auxiliary information
about the workers or the tasks, the class of decision rules, say C, is invariant to permutations
of the identities of workers and/or tasks. More precisely, C denotes the class of decision
rules that satisfy R(P · L · Q) = R(L) · Q for any n× n permutation matrix P and m×m
permutation matrix Q. We say that a task is affected if a decision rule outputs the incorrect
label for the task, and we define the quality of a decision rule R(·) as the worst-case number
of affected tasks over all possible true labelings of the tasks and adversary strategies given
a fixed set of honest worker responses. Fixing the responses provided by honest workers
allows isolation of the effect of the adversary strategy on the accuracy of the decision rule.
Considering the worst-case over all possible true task labelings makes the quality metric
robust to ground-truth assignments, which are typically application specific.

To formally define the quality, let BH denote the subgraph of the worker-task assignment
graph restricted to honest workers H and y = (y1, y2, . . . , ym) denote the vector of true labels
for the tasks. Because the number of affected tasks depends on the actual honest worker
responses, we focus on the case when all the honest workers are perfectly reliable, that is, they
always provide the correct response. Focusing on completely reliable honest workers allows
us to isolate the impact of adversaries because any misidentification is caused by the presence
of adversaries. Finally, let Sk denote the strategy space of k < |H| adversaries, where each
strategy σ ∈ Sk specifies the k ×m response matrix given by the adversaries. Because we
do not restrict the adversary strategy in any way, it follows that Sk = {−1, 0,+1}k×m. The
quality of a decision rule R ∈ C is then defined as

Aff(R,BH , k) = max
σ∈Sk,y∈{−1,+1}m

∣∣∣{tj ∈ T : Ry,σtj 6= yj)}
∣∣∣

where Ry,σt ∈ {−1,+1} is the label output by the decision rule R for task t when the true
label vector is y and the adversary strategy is σ. Note that our notation Aff(R,BH , k) makes
the dependence of the quality measure on the honest worker subgraph BH and the number of
adversaries k explicit.

We obtain the following result, which establishes a lower bound on the quality of any
decision rule:

Theorem 2.10 (Lower bound on number of affected tasks). Suppose that |A| = k and all
honest workers provide correct responses. Let PreIm(T ′) denote the set of honest workers who
label at least one task in T ′ ⊆ T . Then, given any honest worker-task assignment graph BH ,
there exists an adversary strategy σ∗ ∈ Sk that is independent of any decision rule R ∈ C,
such that

max
y∈{−1,+1}m

Aff(R, σ∗,y) ≥ L ∀R ∈ C, where

L :=
1

2
·

 max
T ′⊆T :

|PreIm(T ′)|≤k

|T ′|
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and Aff(R, σ∗,y) denotes the number of affected tasks under adversary strategy σ∗, decision
rule R, and true label vector y (with the assumption that the maximum over an empty set
is zero). In particular, this means that Aff(R,BH , k) ≥ L for all decision rules R ∈ C. In
addition, there exist honest worker-task assignment graphs such that σ∗ renders the adversaries
A indistinguishable from a set of k honest workers, so that a random guess misclassifies 2k
workers with probability (1/2).

We describe the main idea of the proof. The proof proceeds in two steps: (i) we provide
an explicit construction of adversary strategy σ∗ that depends only on BH and (ii) we
show the existence of two possible true labelings ỹ 6= y such that R outputs exactly the
same labels in both scenarios. The adversary labeling strategy we construct uses the idea
of indistinguishability, which captures the fact that by carefully choosing their responses,
adversaries can render themselves indistinguishable from honest workers. In the simple case
when there is only one honest worker, the adversary simply flips the response provided by the
honest worker, so that each task will have two labels of opposite parity. It can be argued that
because there is no other discriminatory information, it is impossible for any decision rule
R ∈ C to distinguish the honest worker from the adversary and to therefore identify the true
label of any task (better than a random guess). We extend this to the general case, where the
adversary “targets” at most k honest workers and derives a strategy based on the subgraph
of BH restricted to the targeted workers. The resultant strategy can be shown to result in
incorrectly identified labels for at least L tasks for some ground-truth label assignment.

Note that Theorem 2.10 holds for any honest worker-task assignment graph BH . This is
particularly remarkable given that the analysis of aggregation algorithms becomes extremely
complicated for general graphs (a fact observed in previous studies; see [DDKR13]). The
bound L itself depends on the structure of BH , and therefore, it can be difficult to interpret
in general. However, it becomes interpretable for (r, γ, α)-bipartite expanders, as defined
next.

Definition 2.4 (Expanders). An honest worker-task assignment graph BH = (H ∪ T ;E),
with edges E between the honest workers H and tasks T , is (r, γ, α)-bipartite expander if (i)
BH is r-right regular, that is, each task is labeled by r honest workers and (ii) for all T ′ ⊆ T
such that |T ′| ≤ γ |T |, the pre-image of T ′ satisfies |PreIm(T ′)| ≥ α |T ′|, where PreIm(T ′)
is the set of all honest workers who label at least one task in T ′.

Note that the definition entails that α ≤ r. We have the following corollary of Theorem 2.10
when BH is (r, γ, α)-bipartite expander.

Corollary 2.10.1 (Lower bound for expanders). Suppose BH is (r, γ, α)-bipartite expander.
Then, k adversary identities can affect at least L tasks such that bk

r
c ≤ 2L ≤ d k

α
e, provided

d k
α
e+ 1 < γ · |T |. Furthermore, given any constant r, there exists γ > 0 such that a uniformly

random BH is (r, γ, r − 2)-bipartite expander with probability at least 1/2, in which case the
lower bound L = 1

2
d k
r−2
e.

The proof is provided in Appendix B.4. The above statement says that if the honest
worker-task assignment graph BH is constructed randomly, then k adversary identities can
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affect at least 1
2
bk
r
c tasks. The bound implies that the ability of the adversaries to affect

tasks increases linearly as the number of identities k increases. Further, the damage that
k adversaries can do decreases inversely with the number of honest workers r who provide
labels for each task. Both implications are intuitive. As can be seen from the proof, the lower
bound 1

2
bk
r
c on L in Corollary 2.10.1 holds for all r-right regular graphs, even if they are not

expanders.
Having established the above lower bound and in light of Lemma 2.9, the natural question

to ask is as follows: does there exist a label aggregation algorithm for which we can prove
an upper bound on the number of affected tasks, irrespective of the strategy employed by
the sophisticated adversaries? Below, we show such a label aggregation algorithm that is a
natural extension of the hard-penalty algorithm.

Accuracy of the hard-penalty algorithm. We introduce the penalty-based label
aggregation algorithm (see Algorithm 7) for our analysis, which is a natural extension of the
hard-penalty algorithm to also perform label aggregation:

Algorithm 7 penalty-based label aggregation

1: Input: W , T , and L

2: Perform steps 2 and 3 of the hard-penalty algorithm

3: For each task tj, let wt+j , wt
−
j

be worker nodes that task nodes t+j , t
−
j are respectively

mapped to in the optimal semi-matching M

4: Output

ŷj =


+1 if degM(wt+j ) < degM(wt−j )

−1 if degM(wt+j ) > degM(wt−j )

← {−1,+1} otherwise

(here ŷj refers to the output label for task tj and ← {−1,+1} means that ŷj is drawn

uniformly at random from {−1,+1})

For our analysis, we consider the following model for honest worker responses that is
based on the spammer-hammer model popularly used in previous studies [KOS11, LPI12,
OOSY16, KO16]: 0 ≤ ε < 1 fraction of honest workers are “spammers,” that is, they make
mistakes in their responses, and the remaining 1− ε fraction are “hammers,” that is, they
are perfectly reliable and always provide the correct response. In Theorem 2.11 below, BcsH
refers to the bipartite graph created as follows: (i) each honest worker h is represented by a
node on the left; (ii) each task tj ∈ T is represented by (at most) two nodes on the right, t+j
and t−j ; and (iii) add the edge (h, t+j ) (resp. (h, t−j )) if honest worker h labels task tj as +1
(resp. −1). Then, we can show the following:
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Theorem 2.11 (Accuracy of penalty-based label aggregation). Suppose that |A| = k and
let ε ∈ [0, 1) denote the fraction of honest workers who make mistakes in their responses.
Furthermore, let d1 ≥ d2 ≥ · · · ≥ d|H| denote the degrees of honest workers in the optimal
semi-matching on BcsH . For any true labeling y of the tasks and under Algorithm 7 (with the
convention that di = 0 for i > |H|):

1. If ε = 0, there exists an adversary strategy σ∗ such that the number of affected tasks is
at least 1

2

∑k−1
i=1 di

2. Assuming that each task receives at least one correct response from the honest workers,
no adversary strategy can affect more than U tasks where

(a) U =
k+ε·|H|∑
i=1

di, when at most one adversary provides correct responses

(b) U =
2k+ε·|H|∑
i=1

di, in the general case

A few remarks are in order. First, it can be shown that for any two optimal semi-matchings
for the bipartite graph BcsH , the degree sequence d1, d2, . . . , d|H| is the same and therefore,
the bounds in the result above are uniquely defined given BcsH . The result of Theorem 2.11
provides both a lower and upper bound for the number of tasks that can be affected by k
adversaries under the penalty-based label aggregation algorithm, irrespective of the adversary
strategy. This is remarkable, especially because we established that existing label aggregation
algorithms can be arbitrarily bad (Lemma 2.9). Assuming honest workers are always correct,
that is, ε = 0, our characterization is reasonably tight when all but (at most) one adversary
provide incorrect responses. In this case, the gap between the upper and a constant factor of
the lower bound is dk, which can be “small” for large enough k. However, our characterization
is loose in the general case when adversaries can provide arbitrary responses. Here, the gap
is
∑2k

i=k di; we attribute this to our proof technique and conjecture that the upper bound of∑k
i=1 di also applies to the more general case. When ε > 0, the upper bound U increases

because there are more incorrect responses and, in turn, the scope for adversaries to affect a
larger number of tasks.

One might wonder whether we could perform a similar analysis for the case when honest
workers follow the one-coin model. Given the complexity of analyzing optimal semi-matchings,
our current proof technique does not readily extend to this scenario, and therefore, there is
an opportunity to improve the analysis in future work.

Optimality of penalty-based label aggregation. We now compare the upper bound U in
Theorem 2.11 to the lower bound L in Theorem 2.10 in the case when honest workers are
perfectly reliable, that is, ε = 0. We show that when the degrees d1, d2, . . . , d|H| are all

distinct, L ≥ 1
2

∑k−1
i=1 di. Combined with Theorem 2.10, this shows that k adversaries can

affect at least 1
2

∑k−1
i=1 di tasks irrespective of the label aggregation algorithm used to aggregate

the worker responses. From Theorem 2.11, we also have that under the penalty-based label
aggregation algorithm, k adversaries can affect at most U =

∑2k
i=1 di ≤ 3(

∑k−1
i=1 di) tasks (as
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long as k ≥ 2). Therefore, our algorithm achieves constant factor optimality in recovering
the true labels of tasks irrespective of the adversary’s strategy.

2.5 Numerical Analysis

We conducted two empirical studies to demonstrate the practical value of our methods. The
first study illustrates a concrete real-world application of our methodology. By using standard
crowdsourcing datasets (as described below), it shows that filtering out the adversaries
identified by our methods allows existing label aggregation algorithms to infer true task labels
more accurately. Such improvements in accuracy by discarding labels from certain workers
suggests that their label patterns do not conform to standard probabilistic assumptions.
Although not illustrated in our study, instead of being filtered out, the adversary labels may
also be used by fitting a model different from that of honest workers in applications where such
assumptions are reasonable. The second study is designed to assess the ability of our methods
to successfully identify adversaries and low-reliability honest workers. It is a simulation study
in which we injected a standard crowdsourcing task with “spammers” (workers who label a
task +1 and −1 with probability 1/2 each irrespective of the true label) and workers adopting
the Uniform strategy. It demonstrates that both soft- and hard-penalty algorithms successfully
identify adversaries and low-reliability honest workers when the worker-task assignment graph
has a power-law degree distribution for workers and tasks, thus complementing the results in
Section 2.4.1 which focused on (l, r)-regular worker-task assignment graphs.

For the purposes of our studies, we focused on the following six label aggregation algorithms:
(a) simple majority algorithm mv; (b) em algorithm for the two-coin model [RY12]; (c) kos
algorithm [KOS11]; (d) kos(norm), a normalized variant of kos in which messages are
scaled by the corresponding worker and task degrees to account for non-regular node degrees
in the assignment graph; (e) spec-em, the spectral EM algorithm of [ZCZJ14]; and (f) mmce,
the regularized minimax conditional entropy approach of [ZLP+15]. We implemented both
variants of our reputation algorithm: (a) soft-penalty (soft) and (b) hard-penalty (hard).
As removing workers alters the penalties of the remaining workers, we filtered the workers
iteratively. In each iteration, we recomputed the penalties of the remaining workers, removed
the worker with the highest penalty, and repeated until a prespecified number of workers was
removed.5

Finally, as mentioned in Section 2.4.1, we implemented two variants of the soft-penalty
algorithm: one in which non-conflict tasks are dropped for assigning worker penalties and
another in which they are retained. The results were essentially the same, so we only report
the results for the variant in which the non-conflict tasks were dropped.

5The performance was similar for the non-iterative variant discussed in Section 2.3—we report the results
for the iterative version because it had marginally better performance.
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Dataset Workers Tasks Responses

rte 164 800 8000
temp 76 462 4620
stage2 68 711 2035
task2 386 2269 12435
tweets 66 1000 4977

Table 2.1: Statistics of real datasets used in the experiments.

2.5.1 Accuracy improvements on real crowdsourced datasets

We considered the following standard datasets:

• stage2 and task2 [TL11]: consisting of a collection of topic-document pairs labeled as
relevant or non-relevant by workers on Amazon Mechanical Turk. These datasets were
collected as part of the TREC 2011 crowdsourcing track.

• rte and temp [SOJN08]: consisting of annotations by Amazon Mechanical Turk workers
for different natural language processing (NLP) tasks. rte consists of binary judgments
for textual entailment (whether one sentence can be inferred from another) and temp

for temporal ordering of events.

• tweets [MSF+14]: consisting of sentiment (positive or negative) labels for 1K tweets.

As inferring the reliabilities of workers who labeled very few tasks6 is difficult, we preprocessed
the datasets to remove all workers who labeled less than three tasks. Table 2.1 shows summary
statistics of the datasets after our preprocessing.

Table 2.2 reports the accuracies of various label aggregation algorithms for inferring true
task labels. For each benchmark label aggregation algorithm, the column base reports
the accuracy of the algorithm in isolation. The columns soft and hard report the best
accuracy of the algorithms for filtering k = 1, 2, . . . , 10 workers using the soft- and hard-
penalty algorithms, respectively; the numbers in parentheses indicate the k value for which
we observed the best performance.7

The key conclusion we draw is that filtering out workers flagged by our algorithms
as adversaries boosts the predictive accuracy of state-of-the-art aggregation algorithms
significantly across the datasets: the average improvement in accuracy for mv is 3.7%, em is
3.4%, kos is 30.2%, kos(norm) is 4.4%, spec-em is 12.6%, and mmce is 4.7% when using
the hard-penalty algorithm. The improvement is large for kos because it is designed for

6The datasets stage2, task2, and tweets contain several workers who provided responses for only a
single task.

7The performance was robust to the choice of k. We matched or improved the accuracy of the underlying
label aggregation algorithm in 66% and 70% of cases on average for the soft- and hard-penalty algorithm,
respectively.
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regular graphs (with all workers having the same degree and all tasks having the same degree)
and suffers in performance on real-world graphs that are not regular. Second, we note that
our methods can boost the performance of the mv and kos algorithms to the level of the
popular em algorithm. The mv algorithm is simple to implement, and the kos algorithm is
designed for scenarios where the underlying assignment graph is random (l, r)-regular and has
strong theoretical guarantees and robustness to different initializations [KOS14]. Our results
suggest that implementing the mv and kos algorithms in conjunction with our reputation
algorithms can allow us to obtain their respective simplicity and robustness along with strong
practical performance (even for irregular graphs) comparable to that of the em algorithm.8

Finally, because discarding the labels of certain workers improves the predictive accuracy,
our results suggest that standard probabilistic models (including the two-coin model) are
insufficient to capture the labeling patterns of workers in real-world datasets.

To gain insights into the types of workers identified by our algorithms, we conducted a
qualitative analysis of the labeling patterns of the workers that were filtered out. We observed
the following key types:

1. Workers who labeled at least 10 tasks, of which more than 95% had the same label.
For instance, our algorithms detected six such workers in the temp dataset, five in the
task2 dataset, and one in the tweets dataset. For the stage2 dataset, we detected
two workers who gave all +1 labels and one worker who gave all but a single response
as −1; it should be noted that the empirically calculated prevalence γ of +1 tasks in
the stage2 dataset was 0.83, potentially suggesting that the two workers who gave all
+1 labels were adopting “smart” strategies.

2. Workers who provide labels independent of true task labels. For instance, we detected
four such workers in the rte dataset, seven workers in the temp dataset, seven in the
task2 dataset, three in the stage2 dataset, and one in the tweets dataset, whose
label patterns are such that the empirical fractions α̂ and β̂ of correct responses among
the tasks with true labels +1 and −1, respectively, satisfy |α̂ + β̂ − 1| ≤ 0.05. [RY12]
showed that such workers effectively assign a label of +1 with probability α̂ and −1
with probability 1− α̂ independent of the true task label.

3. Workers with skewed reliabilities. Such workers were accurate on tasks with one type
of true label, say, +1, but not on others, say, tasks with true label −1. Such label
patterns of workers may be indicative of tasks that require subjective assessments.
For instance, we found four workers in the tweets dataset and two workers in stage2

dataset that had skewed reliabilities. In the tweets dataset, workers were asked to rate
the sentiment of a tweet as being positive or negative. As the notion of tweet sentiment
can be subjective, workers with biased views of the sentiment make systematic errors on
one type of task. A similar explanation applies to the stage2 dataset, in which workers

8Note that the EM algorithm can also have theoretical guarantees with appropriate initializations
(see [GZ16] and [ZCZJ14]).
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were asked to label a topic-document pair as relevant or not, requiring a potentially
subjective assessment. See [KKH15] for more examples.

In summary, our reputation algorithms are successful in identifying adversarial workers
adopting a broad set of strategies. Furthermore, although not reported, the empirical
reliabilities of the workers filtered out using our algorithms were on average lower than
those of unfiltered workers. This suggests that the labels our algorithms discard are from
low-reliability workers who provide little to no information about the true task labels; this
explains the improved accuracy we obtain.

2.5.2 Identifying low-reliability honest workers and adversaries

We use a simulation study to show that our reputation algorithms successfully identify
low-reliability honest workers and adversaries when the worker-task assignment graphs have
power-law degree distributions for the worker and task nodes. Such graph structures are
common in many real-world crowdsourcing scenarios [FKK+11]. The results of the simulation
study complement the theoretical results presented in Section 2.4.1 for (l, r)-regular assignment
graphs, which show that the soft-penalty algorithm successfully identifies low-reliability honest
workers and adversaries adopting the Uniform strategy.

For our study, we used the following broad procedure: (a) generate a random crowdsourcing
instance from the ground-truth model, (b) generate synthetic responses from the workers for
a sample of tasks, (c) filter out workers with the highest penalties according to our reputation
algorithms, and (d) compute the precision, that is, the fraction of filtered-out workers who
are adversarial and who have low empirical reliabilities.

Setup. We considered a total of n = 100 workers. The probability q that a worker is
honest was set to 0.7; therefore, on average, there are 30 adversaries among the 100 workers.
The prevalence γ of +1 tasks was set to 0.5. We sampled worker degrees according to a
power-law distribution (with exponent a = 2.5) with the minimum degree equal to 5, and
then, we used the Python networkx library [HSS08] to generate the worker-task assignment
graph.9 Note that the number of tasks m is determined from the total number of workers
and the sampled worker degrees.

As the worker degrees are skewed, the performance of the algorithms is influenced by the
adversary degrees. To capture this, we considered two scenarios: (a) adversaries have high
degrees and (b) adversaries have low degrees, and biased the probability of a worker being an
adversary according to her degree. See Appendix B.6 for the details.

For each scenario, after the worker-task assignment graph and worker identities were
sampled, we generated the crowdsourcing instances as follows: (a) set the true label yj of
each task tj to be +1 with probability 1/2 and −1 with probability 1/2; (b) for each honest
worker w, sample its reliability µw u.a.r from the interval [0.8, 1.0), and set its response to

9Specifically, we used the following function: https://networkx.github.io/documentation/

networkx-1.10/reference/generated/networkx.algorithms.bipartite.generators.preferential_

attachment_graph.html.
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Precision of reputation algorithms when filtering 10 workers

Spammer Uniform

Low Deg High Deg Low Deg High Deg

soft 90.03 88.70 77.13 69.57
hard 89.00 93.83 73.43 76.73

Table 2.3: The rows soft and hard correspond to the soft- and hard-penalty algorithms,
respectively. Spammer and Uniform correspond to the two adversary strategies, and “Low Deg”
and “High Deg” refer to the scenarios in which low- and high-degree workers, respectively,
are more likely to be adversaries. Refer to the text for more details.

each assigned task tj to be the true label yj with probability µw and −yj with probability
1− µw; and (c) generate responses from adversarial workers according to the chosen strategy.
We focused on two adversary strategies: (a) Spammer—label each task +1 or −1 with prob.
1/2 and (b) Uniform—label every assigned task +1. The first strategy reflects the setting of
Theorem 2.2 because it is captured by the one-coin model, and the second strategy reflects
the setting of Theorem 2.3.

Results and Discussion. Table 2.3 reports the precisions of the soft and hard
algorithms when (iteratively) removing 10 workers. The precision is defined as the fraction
of filtered-out workers who are either adversarial or honest with empirical reliabilities less
than 0.85 (which is less than the mean µ = 0.9 of the honest worker reliability distribution),
where the empirical reliability of an honest worker is equal to the fraction of its responses
that were correct. The table reports the precision of the algorithms for the two adversary
strategies, Spammer and Uniform, under the two scenarios: Low Deg, in which low-degree
workers are more likely to be adversaries, and High Deg, in which high-degree workers are
more likely to be adversaries. For each combination of adversary strategy and scenario, the
reported numbers are the precision values averaged over 300 randomly generated instances.

We draw the following key conclusions. First, our algorithms have precision values > 69%
in all scenarios, indicating that they are successful in identifying adversaries and low-reliability
honest workers when the worker and task degrees have a power-law distribution. This finding
complements the results of Theorem 2.4 and Theorem 2.7, which establish a similar result
when the worker-task assignment graph is (l, r)-regular. Second, our results offer insights
into the settings under which the soft- or hard-penalty algorithm is appropriate. Generally,
we observe that the hard-penalty algorithm is more appropriate when the adversaries have
higher degrees, whereas the soft-penalty algorithm is more appropriate when the adversaries
have lower degrees. We also note that when the adversaries have labeling patterns (such
as Spammer) that are probabilistically similar to those of honest workers, the soft-penalty
algorithm has a performance comparable to that of the hard-penalty algorithm even when
the adversaries have high degrees.
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Part II

Demand Learning
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Chapter 3

Nonparametric estimation of mixture
of logit models

3.1 Introduction

Mixture models are used for modeling a wide-range of phenomena in many fields. Within
operations, they have been used to model customer demand, which changes in response to
the changes a firm makes to its product offerings. Predicting these changes allows firms
to optimize their product and price offerings, such as discontinuing low demand products
or enforcing price changes to shift demand to specific products. Demand predictions also
serve as key inputs to inventory control and price optimization models that are used in retail
operations and revenue management (RM) systems. A typical prediction problem involves
fitting a mixture model to historical sales transactions and inventory data. The most popular
model that is fit is the mixture of multinomial logit (MNL) models, also known simply as the
mixture of logit models. This model has received considerable attention in the literature and
has also been successfully applied in practice. In addition, it has been shown to approximate
a wide class of mixtures [MT00].

Because of its significance for demand modeling, we focus on the problem of estimating the
mixing distribution of a mixture of logit models, from sales transaction and inventory data.
The main challenge in this problem is that the structure of the mixing distribution is not
known in practice. A common work-around is to assume that the mixing distribution comes
from a pre-specified parametric family, such as the normal or the log-normal distribution, and
then estimate the parameters via maximum likelihood estimation [Tra09]. This approach
is reasonable when there is some prior knowledge about the structure of the underlying
mixing distribution. But when no such knowledge exists, as often happens in practice, the
ground-truth mixing distribution may very well not conform to the imposed parametric form.
This leads to model misspecification, which can result in biased parameter estimates [Tra08]
or low goodness-of-fit measures [FKRB11].

To avoid model misspecification, we take a nonparametric approach, in which we search
for the best fitting mixing distribution from the class of all possible mixing distributions.
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The challenge with this approach is a computational one. The class of all possible mixing
distributions lacks sufficient structure to allow for tractable estimation methods. One approach
in the literature has been to approximate the class of all possible mixing distributions
with another (large) class, and then search for the best fitting mixing distribution in that
approximate space. For instance, [Tra08] takes this approach, in which the space of all mixing
distributions is approximated with the class of finite mixtures of normal distributions or
the class of discrete distributions with a large support size. Such approximations allow the
application of standard optimization techniques, such as the expectation-maximization (EM)
framework. But the resulting optimization problems are still non-convex and become difficult
to solve, running into numerical issues, as the number of parameters increases.

Our main contribution in this chapter is to reformulate the nonparametric mixture
estimation problem as a constrained convex program, without resorting to any approximations
to the space of all possible mixing distributions. We pose the mixture estimation problem
as the problem of searching for the distribution that minimizes a loss function from among
the class of all possible mixing distributions. The standard log-likelihood loss (which results
in the maximum likelihood estimator) and squared loss are two example loss functions.
Then, we use the insight that the mixing distribution affects the objective function only
through the choice probabilities it predicts for the observed choices in the data; we call
the vector of these choice probabilities, the data mixture likelihood vector. Now, instead of
optimizing over the space of mixing distributions, the mixture estimation problem can be
solved by directly optimizing over the space of all possible data mixture likelihood vectors.
The constraints ensure that the mixture likelihood vector is indeed consistent with a valid
mixing distribution. We show that for the standard loss functions used in the literature,
the objective function is convex in the mixture likelihood vector. Further, although not
apriori clear, we show that the constraint set is also convex. Together, these two properties
result in a constrained convex program formulation for the mixture estimation problem. We
emphasize here that although we obtain a convex program, the constraint space lacks an
efficient description. Therefore, the resulting program, though convex, may be theoretically
hard to solve. Nevertheless, there is vast literature on solving such convex programs, which
we leverage to obtain scalable and numerically stable methods that are efficient for special
cases and result in good approximations more generally.

A more immediate concern is that simply solving the above program is not sufficient
because the optimal solution will be expressed as the mixture likelihood vector and not as
the mixing distribution. Backing out the underlying mixing distribution from the mixture
likelihood vector may again be a computationally intensive exercise. To counter this issue,
we apply the conditional gradient (a.k.a. Frank-Wolfe) algorithm to solve the above convex
program. We show that the special structure of the conditional gradient (CG) algorithm
allows it to simultaneously perform both the tasks of optimizing over the predicted choice
probabilities and recovering the best fitting mixing distribution. The CG algorithm is an
iterative first-order method for constrained convex optimization. We show that when applied
to our method, each iteration of the CG algorithm yields a single mixture component. The CG
algorithm has seen an impressive revival in the machine learning literature recently because
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of its favorable properties compared to standard projected/proximal gradient methods, such
as efficient handling of complex constraint sets. The vast literature on the CG algorithm
in the machine learning area confers two key advantages to our estimation technique: (a)
availability of precise convergence guarantees [LJJ15] and (b) scalability to large-scale and
high-dimensional settings [WSD+16].

3.1.1 Relevant literature

Our work has connections to two broad areas:
Nonparametric maximum likelihood estimation (NPMLE). Our estimation approach
generalizes the NPMLE techniques, which have a long and rich history in classical statis-
tics [Rob50, KW56]. These techniques search for a distribution that maximizes the likelihood
function from a large class of mixing distributions. In the context of studying properties of
the maximum likelihood estimator (such as existence, uniqueness, support size, etc.) for the
mixing distribution via the geometric structure of the constraint set, [Lin83] shows that when
the mixing distribution is unrestricted, the NPMLE can be formulated as a convex program.
However, such a formulation is computationally difficult to solve when the underlying param-
eter space is high dimensional. To address this issue, existing work has taken two approaches.
The first approach reduces the search space to a large (but finite) number of mixture compo-
nents, and uses the EM algorithm for estimation [Lai78]. Though now the estimation problem
is finite-dimensional, convexity is lost and standard issues related to non-convexity and finite
mixture models become a significant obstacle [MP00]. The second approach retains convexity
but gains tractability through a finite-dimensional convex approximation where the support of
the mixing distribution is assumed to be finite and pre-specified (such as a uniform grid) and
only the mixing weights need to be estimated. Fox et al. [FKRB11] specialize this approach
to estimating a mixture of logit models. However, it is unclear how to choose the support.
When the dimensionality of the parameter space is small, the authors demonstrate that a
uniform grid is sufficient to reasonably capture the underlying distribution but this approach
quickly becomes intractable for even moderately large parameter dimensions.1 Consequently,
existing techniques have usually focused on simple models with univariate or low-dimensional
(bi- and tri-variate) mixing distributions [BSL92, JZ09, FD18] to retain tractability.

In the context of the above, we avoid the issues resulting from the non-convex formulation
by retaining convexity, but at the same time we do not need access to a pre-specified
support. We leverage the conditional gradient algorithm to directly solve the seemingly
intractable convex program, which iteratively generates the support of the mixing distribution
by searching over the underlying parameter space. This allows our method to scale to
higher-dimensional settings, 5 in our SUSHI case study and 11 in the IRI case study; see
Sections 3.6.1 and 3.6.2.
Conditional gradient algorithms. The conditional gradient algorithm is one of the earliest
methods [FW56] for constrained convex optimization, and has recently seen an impressive
revival for solving large-scale problems with structured constraint sets (see [Cla10] and [Jag11]

1Indeed, their numerical experiments focus on only bivariate mixing distributions.
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for excellent overviews). The algorithm has been used in diverse domains including computer
vision [JTFF14], submodular function optimization [Bac13], collaborative filtering [JS10],
as well as inference in graphical models [KLJS15]. In addition, numerous related variants
of the algorithm have been proposed such as solving non-linear subproblems to increase
sparsity [Zha03] and incorporating regularization to improve predictive performance [HJN15].
In terms of theoretical performance, Jaggi [Jag13] gave a convergence analysis that guarantees
an error of at most O(1/t) (sublinear convergence) after t iterations for any compact convex
constraint set. Recently, Lacoste-Julien and Jaggi [LJJ15] proved that many versions of
the classical Frank-Wolfe algorithm enjoy global linear convergence for any strongly convex
function optimized over a polytope domain.

Our main contribution is leveraging the conditional gradient algorithm for estimating the
mixing distribution. We also provide a novel theoretical analysis for convergence in the case
of log-likelihood loss (see Section 3.4.1), where existing results are not applicable since the
gradient is unbounded at the boundary of the constraint domain. We also show that, under
appropriate structure in the product feature space, the algorithm converges to the optimal
solution in a finite number of iterations (see Section 3.4.3).

3.2 Problem Setup and Formulation

We consider a universe [n]
def
= {1, 2, . . . , n} of n products,2 which customers interact with

over T ≥ 1 discrete time periods. In each time period t ∈ [T ], the firm offers a subset St ⊆ [n]
of products to the customers and collects sales counts for each of the products. We let Njt

denote the number of times product j was purchased in period t, Nt
def
=
∑

j∈St Njt, the total

number sales in period t, and N
def
=
∑

t∈[T ] Nt, the total number of sales over all the time
periods. We suppose that we observe at least one sale in each period t, so that Nt > 0 for all
periods t ∈ [T ]; if there was no observed sale in a time period, then we assume that it was

already dropped from the observation periods. Let Data
def
= {(Njt : j ∈ St) | t ∈ [T ]} denote

all the observations collected over the T discrete time periods. We assume that product
j ∈ St is represented by a D-dimensional feature vector zjt in some feature space Z ⊆ RD.
Example features include price, brand, and color. Product features could vary over time; for
instance, product prices may vary because of promotions, discounts, etc. In practice, these
data are often available to firms in the form of purchase transactions, which provide sales
information, and inventory data, which provide offer-set information.

We assume that each customer makes choices according to an MNL (aka logit) model,
which specifies that a customer purchases product j from offer-set S with probability

fj,S(ω) =
exp (ω>zjS)∑
`∈S exp (ω>z`S)

, (3.1)

2We use the notation [m]
def
= {1, 2, . . . ,m} for any positive integer m in the rest of the chapter.
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where z`S is the feature vector of product ` when offered as part of offer-set S and ω is the
parameter or “taste” vector. This taste vector specifies the “value” that a customer places
on each of the product features in deciding which product to purchase. Customers often have
heterogeneous preferences over product features. To capture this heterogeneity, we assume
that the population of customers is described by a mixture of MNL models, where in each
choice instance, a customer samples a vector ω according to some distribution Q (over the
parameter space RD) and then makes choices according to the MNL model with parameter
vector ω.

Our goal is to estimate the best fitting mixture distribution Q to the collection Data of
sales observations. Before we state our mixture estimation problem formally, we describe the
traditional approaches to mixture estimation, and their limitations, to motivate the need for
our approach.

3.2.1 Traditional approaches to mixture estimation

The traditional approach assumes that the mixing distribution belongs to a family Q(Θ)

of distributions parametrized via parameter space Θ, where Q(Θ)
def
= {Qθ : θ ∈ Θ} and Qθ

is the mixing distribution corresponding to the parameter vector θ ∈ Θ. The best fitting
distribution is then obtained by solving the following likelihood problem:

min
θ∈Θ

−
T∑
t=1

∑
j∈St

Njt log

(∫
fjt(ω) dQθ(ω)

)
, (3.2)

where for brevity of notation, we let fjt(ω) denote fj,St(ω). Different assumptions for the
family Q(Θ) result in different estimation techniques.

The most common assumption is that the mixing distribution follows a multivariate
normal distribution N (µ,Σ), parametrized by θ = (µ,Σ), where µ is the mean and Σ is
the variance-covariance matrix of the distribution. The resulting model is referred to as the
random parameters logit (RPL) model [Tra09], and the corresponding likelihood problem is
given by

min
µ,Σ
−

T∑
t=1

∑
j∈St

Njt log

(∫
fjt(ω) · 1√

(2π)D |Σ|
exp

(
−1

2
(ω − µ)>Σ−1(ω − µ)

)
dω

)
.

The integral in the above problem is often approximated through a Monte Carlo simulation.
The other common assumption is that the mixing distribution has a finite support of size K.

The distribution is then parametrized by θ = (α1, . . . , αK ,ω1, . . . ,ωK), where (ω1, . . . ,ωK)
denotes the support of the distribution and (α1, . . . , αK) denote the corresponding mixture
proportions with

∑
k∈[K] αk = 1 and αk ≥ 0 for all k ∈ [K]. The resulting model is referred to

as the latent class MNL (LC-MNL) model [Bha97], and the corresponding likelihood problem
is given by

min
α1,α2,...,αK
ω1,ω2,...,ωK

−
T∑
t=1

∑
j∈St

Njt log

(
K∑
k=1

αkfjt(ωk)

)
subject to

∑
k∈[K]

αk = 1, αk ≥ 0 ∀ k ∈ [K].
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Although commonly used, these traditional approaches suffer from two key limitations:

• Model misspecification: The most significant issue with traditional approaches is model
misspecification, which occurs when the ground-truth mixing distribution is not con-
tained in the search space Q(Θ). In practice, such misspecification is common because
the selection of the search space Q(Θ) is often driven by tractability considerations as
opposed to knowledge of the structure of the ground-truth mixing distribution. Model
misspecification can result in biased parameter estimates [Tra08] and low goodness-of-fit
measures [FKRB11].

• Computational issues: Another practical issue is that, even if the model is not misspeci-
fied, the resulting likelihood problems are non-convex and therefore hard to solve in
general.

3.2.2 Our approach: mixture estimation by solving a convex
program

Our approach is designed to address the challenges described above. Broadly, it has two
key steps:

1. To overcome the model misspecification issue, we search over all possible mixing
distributions instead of restricting our search to specific parametric families.

2. To address the computational issue, we transform the mixture estimation problem into
a convex program, allowing us to tap into the vast existing literature that has proposed
efficient algorithms for convex optimization.

We now describe these steps in detail and how they result in our final formulation.
Dealing with model misspecification. We arrive at our formulation through a se-

quence of transformations starting from the traditional mixture estimation problem in (3.2).
This problem can be equivalently written as follows:

min
θ∈Θ

−
T∑
t=1

∑
j∈St

Njt log

(∫
fjt(ω) dQθ(ω)

)
≡ min

Q∈Q(Θ)
−

T∑
t=1

∑
j∈St

Njt log

(∫
fjt(ω) dQ(ω)

)
,

where recall that Q(Θ) = {Qθ : θ ∈ Θ}. This equivalence follows immediately from noting
that the parameter vector θ affects the objective function only through Qθ. In other words,
we directly search over the space of mixing distributions. To deal with model misspecification,
we relax the search to be over the family of all possible mixing distributions and focus on the
following optimization problem:

min
Q∈Q

−
T∑
t=1

∑
j∈St

Njt log

(∫
fjt(ω) dQ(ω)

)
where Q def

= {Q : Q is a distribution over RD}.
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The above optimization problem can be stated more compactly as

min
Q∈Q
−

∑
t∈[T ],j∈St

Njt log gjt(Q),

where for any t ∈ [T ] and j ∈ St, we define the mapping gjt : Q → [0, 1] as

gjt(Q) =

∫
fjt(ω) dQ(ω).

That is, gjt(Q) is the probability of choosing product j from offer-set St under the mixing
distribution Q.

So far we have assumed that our goal is to solve the likelihood problem, or minimize, what
we call, the negative log-likelihood loss. In practice, other loss functions are also commonly
used. In order to accommodate these, we consider the following general formulation. Let

M
def
= |S1| + · · · + |ST | and g : Q → [0, 1]M denote the vector-valued mapping, defined as

g(Q) = (gjt(Q) : t ∈ [T ], j ∈ St). We call g(Q) the data mixture likelihood vector or simply
the mixture likelihood vector, under mixing distribution Q. Our goal then is to solve

min
Q∈Q

loss(g(Q); Data), (Mixture Estimation)

where loss(·; Data) : [0, 1]M → R+ is a non-negative convex function. Two example loss
functions include:

• Negative log-likelihood (NLL) Loss: This loss function was introduced earlier and
is by far the most widely used in practice [Tra08]:

NLL(g(Q); Data) = − 1

N

T∑
t=1

∑
j∈St

Njt log (gjt(Q)) .

• Squared (SQ) Loss: This loss function was employed by [FKRB11]:

SQ(g(Q); Data) =
1

2 ·N

T∑
t=1

Nt ·
∑
j∈St

(gjt(Q)− yjt)2 .

where yjt
def
= Njt/Nt denotes the fraction of sales for product j in offer-set St.

We note that searching over the space of all possible mixing distributions can lead to
potential overfit issues, which we discuss in Section 3.3.1.

Formulating mixture estimation as a convex program. We now focus on solving
the Mixture Estimation problem. We show it can actually be formulated as a constrained
convex program. We observe that the objective function only depends on Q through the
corresponding mixture likelihood vector g(Q). Therefore, instead of searching over the mixing
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distributions, we directly search over the mixture likelihood vectors, obtaining the following
equivalence:

min
Q∈Q

loss(g(Q)) ≡ min
g∈{g(Q) : Q∈Q}

loss(g),

where we have dropped the explicit dependence of loss on Data for simplicity of notation.
With the above equivalence, our ability to solve the Mixture Estimation problem

depends on our ability to describe the constraint set {g(Q) : Q ∈ Q}. We show next that this
constraint set can indeed be expressed as a convex set. For that, analogous to the mixture

likelihood vector above, define the atomic likelihood vector f(ω)
def
= (fjt(ω) : t ∈ [T ], j ∈ St).

We let P = {f(ω) : ω ∈ RD} denote the set of all possible atomic likelihood vectors and P
denote its closure.3 It is clear that if Q ∈ Q is a discrete distribution with finite support
ω1,ω2, . . . ,ωK and corresponding mixing weights α1, α2, . . . , αK , then g(Q) =

∑K
k=1 αkf(ωk),

so g(Q) belongs to the convex hull, conv(P), of vectors in P , defined as

conv(P) = {
∑
f∈F

αff : F ⊂ P is finite and
∑
f∈F

αf = 1, αf ≥ 0 ∀f ∈ F}.

It can be verified that conv(P) is a convex set in RM . In other words, for any discrete
mixing distribution Q with finite support, we can express g(Q) as a convex combination of
atomic likelihood vectors {f}f∈F for some finite subset F ⊂ P. More generally, it can be
shown [Lin83] that {g(Q) : Q ∈ Q} = conv(P) when P is compact (which we establish in
Lemma 3.1 below).

Thus, instead of solving Mixture Estimation, we can equivalently solve the following
problem:

min
g∈conv(P)

loss(g) (Convex Mixture)

We now show that the above is a constrained convex program.

Lemma 3.1. For any convex function loss(·) : [0, 1]M → R+, Convex Mixture is a convex
program with a compact constraint set in the Euclidean space.

Proof. The objective function is by definition convex. Therefore, it is sufficient to show
that the constraint set conv(P) is convex. For that, we note that since all entries of f(ω)
are between 0 and 1 for any ω ∈ RD, all limit points of the set {f(ω) : ω ∈ RD} are also
bounded. Therefore, P is a bounded set in RM . As it is closed by definition, it follows from
the Heine-Borel theorem that P is compact. Further, since the convex hull of a compact
subset of the Euclidean space is compact, it follows that conv(P) is compact, and by the
definition of a convex hull it is convex. The claim then follows. �

So, our task now is to solve the Convex Mixture problem. However, solving it alone
does not provide the mixing distribution—it only provides the optimal mixture likelihood
vector. We show next that the conditional gradient algorithm is the ideal candidate to not
only obtain the optimal mixture likelihood vector, but also the optimal mixing distribution.

3For technical reasons, as will become clear in Section 3.4.2, we need to consider the closure of the set P,
which also contains all limit points of convergent sequences in the set P.
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3.3 Conditional gradient algorithm for estimating the

mixing distribution

We now apply the conditional gradient (hereafter CG) algorithm to solve the Convex
Mixture problem. The CG algorithm [FW56, Jag13] is an iterative method for solving
constrained convex programs. It has seen an impressive revival in the machine learning
literature recently because of its favorable properties compared to standard projected/proximal
gradient methods, such as efficient handling of complex constraint set (see [Jag11] for an
excellent overview). We describe here how it applies to solving ming∈conv(P) loss(g).

The CG algorithm is an iterative first-order method that starts from an initial feasible
solution, say g(0) ∈ conv(P), and generates a sequence of feasible solutions g(1),g(2), . . . that
converge to the optimal solution. In each iteration k ≥ 1, it computes a descent direction d
such that

〈
d,∇loss(g(k−1))

〉
< 0 and takes a suitable step in that direction (see for instance

[NW06]). The main distinction of the CG algorithm is that it always chooses feasible descent
steps, where by a feasible step we mean a step from the current solution towards the next
solution such that the next solution remains feasible as long as the current is feasible. By
contrast, other classical algorithms may take infeasible steps, which are then projected back
onto the feasible region after each step; such projection steps are usually computationally
expensive. To find a feasible step, the CG algorithm first obtains a descent direction by
optimizing a linear approximation of the convex loss function at the current iterate g(k−1):

min
v∈conv(P)

〈
∇loss(g(k−1)),v − g(k−1)

〉
,

where the objective function in the above subproblem describes a supporting hyperplane
to the convex loss function loss(·) at the current iterate g(k−1). The optimal solution, say,
v∗, provides the optimal direction d∗ = v∗ − g(k−1). It can be shown that d∗ is a descent
direction if g(k−1) is not already an optimal solution to the Convex Mixture problem.
The next solution g(k) is obtained by taking a step α ∈ [0, 1] in the direction of d∗, so that
g(k) = g(k−1) + αd∗ = αv∗ + (1− α)g(k−1). Since v∗ and g(k−1) both belong to conv(P) and
conv(P) is convex, it follows that g(k) ∈ conv(P) for any α ∈ [0, 1].

Solving the above subproblem is the most computationally challenging component in each
iteration of the CG algorithm. In our context, we have additional structure that we can
exploit to solve this subproblem. Specifically, the objective function is linear in the decision
variable v. And, linear functions always achieve optimal solutions at extreme points when
optimized over a convex set. Our constraint set conv(P) is the convex hull of all the atomic
likelihood vectors in P . Therefore, the set of extreme points of the constraint set is a subset
of P . It thus follows that it is sufficient to search over the set of all atomic likelihood vectors
in P , resulting in the following optimization problem:

min
f∈P

〈
∇loss(g(k−1)),f − g(k−1)

〉
(support finding step)

Our ability to solve the support finding step efficiently depends on the structure of the set P .
We discuss this aspect in our empirical studies (Sections 3.6.1 and 3.6.2). For now, suppose
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that we have access to an oracle that returns an optimal solution, say, f (k), to the support
finding step in each iteration k.

In summary, in each iteration, the CG algorithm finds a new customer type (or atomic
likelihood vector) f (k) ∈ P and obtains the new solution g(k) = αf (k) + (1 − α)g(k−1) by
putting a probability mass α on the new customer type f (k) and the remaining probability
mass 1 − α on the previous solution g(k−1), for some α ∈ [0, 1]. In other words, the CG
algorithm is iteratively adding customer types f (1),f (2), . . . to the support of the mixing
distribution. This aspect of the CG algorithm makes it most attractive for estimating mixture
distributions, and is the reason we refer to the subproblem in each iteration as the support
finding step. In particular, it has two implications: (a) by maintaining the individual customer
types and the step sizes, we can maintain the entire mixing distribution along with the current
solution g(k), in each iteration k (see below for details); and (b) since each iteration adds (at
most) one new customer type to the support, terminating the program at iteration K results
in a distribution with at most K mixture components. We use the latter property to control
the complexity, as measured in terms of the number of mixture components, of the recovered
mixing distribution (see the discussion below on “Stopping conditions”).

The standard variant of the CG algorithm does a line-search to compute the optimal
step size that results in the maximum improvement in the objective value. Instead, we
use the “fully corrective” Frank-Wolfe (FCFW) variant [SSSZ10] which after finding f (k) at
iteration k, re-optimizes the loss function loss(g) over the convex hull of the initial solution
g(0) and the atomic likelihood vectors f (1),f (2), . . . ,f (k) found so far. More precisely, the
algorithm computes weights α(k) from the (k + 1)-dimensional simplex ∆k that minimize

the loss function and obtains the next iterate g(k) := α
(k)
0 g(0) +

∑k
s=1 α

(k)
s f (s). The weights

α(k) = (α
(k)
0 , α

(k)
1 , α

(k)
2 , . . . , α

(k)
k ) represent the proportions of each of the mixture components.

This variant of the CG algorithm makes more progress in each iteration and is therefore most
suited when the subproblems in the support finding step are hard to solve. It also promotes
sparser solutions [Jag13] containing fewer mixture components. Algorithm 8 summarizes the
above procedure.
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Algorithm 8 CG algorithm for estimating the mixing distribution

1: Initialize: k = 0; g(0) ∈ P such that loss(g(0)) is bounded above and α(0) = (1)

2: while stopping condition is not met do

3: k ← k + 1

4: Compute f (k) ∈ arg minf∈P
〈
∇loss(g(k−1)),f

〉
(support finding step)

5: Compute α(k) ∈ arg minα∈∆k loss
(
α0g

(0) +
∑k

s=1 αsf
(s)
)

(proportions update step)

6: Update g(k) := α
(k)
0 g(0) +

∑k
s=1 α

(k)
s f (s)

7: end while

8: Output: mixture proportions α
(k)
0 , α

(k)
1 , α

(k)
2 , . . . , α

(k)
k and customer types

g(0),f (1),f (2), . . . ,f (k)

We make a few remarks about the algorithm. First, the algorithm outputs both the
support and the mixture proportions of the mixing distribution, as desired. Second, the
proportions update step is also a constrained convex optimization problem, but over a much
smaller domain compared to conv(P). We show below that this step can be solved efficiently.
Finally, Algorithm 8 is agnostic to the choice of the loss function loss (so long as it is convex
and differentiable) and readily applies to both the NLL and SQ loss functions.

3.3.1 Implementation Details

Here, we discuss a few key implementation details for Algorithm 8.
Solving the proportions update step. This step is itself a constrained convex program,

so we use the CG algorithm to solve it. Instead of the variant described above, we adopt
the approach of [KLJS15] who recently proposed a modified Frank-Wolfe algorithm to
approximately solve the proportions update step. In contrast to the standard CG algorithm
described above, this variant performs two kinds of steps to update the support of the mixing
distribution in each iteration: a support finding step that finds a customer type to be added
to the mixture and an “away” step [GM86] that reduces probability mass (possibly to zero)
from a customer type in the existing mixture distribution. Moreover, the support finding step
can be solved exactly by searching over the k + 1 extreme points of the (k + 1)-dimensional
simplex ∆k. The next iterate is then computed based on which step—support finding step
or away step—results in higher improvement in the objective value (see Alg. 3 in Appendix
B of [KLJS15] for the details). The presence of away steps means that we can (sometimes)
‘drop’ existing customer types from the mixing distribution, thereby resulting in solutions
with fewer number of mixture components.

Initialization. We can start with any g(0) ∈ P as the initial solution. The only caveat
is that for the NLL loss function, we need to ensure that g(0) > 0 so that the gradient
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∇NLL(g(0)) is well-defined. Since we are fitting a mixture of logit models, a natural choice is
to fit an LC-MNL model with a “small” number of classes (or even a single class MNL model)
to the data and use that as the initialization. In particular, the MNL log-likelihood objective
is globally concave in the parameter ω and there exists efficient algorithms [Hun04] for its
estimation that converge quickly in practice. In our empirical case studies, we initialize by
fitting a 2-class LC-MNL model to the data.

Stopping conditions. We can use many stopping conditions to terminate the algorithm:
(1) [Jag13] showed that if the subproblem can be solved optimally in each iteration, then
we can compute an upper bound on the “optimality gap” of the current solution g(k), i.e.
loss(g(k))− loss(g∗) where g∗ denotes the optimal solution to the Convex Mixture problem.
In this case, we can choose an arbitrarily small δ > 0 and choose to terminate the algorithm
when loss(g(k)) − loss(g∗) ≤ δ. However, this might result in overfitting—because of the
presence of a large number of mixture components—and consequently, perform poorly in out-
of-sample predictions. (2) We can utilize standard information-theoretic measures proposed in
the mixture modeling literature [MP00] such as Akaike Information Criterion (AIC), Bayesian
Information Criterion (BIC) etc. that capture model complexity as a function of the number
of mixture components and prevent overfitting. (3) Finally, a simple way to control for
model complexity is to just cap the number of iterations of the algorithm at some k = Kmax

according to the maximum number of customer types that we may be interested in finding.
This ensures that the estimated mixture is composed of at most Kmax types and we use this
stopping condition in our empirical case studies.

3.4 Theoretical analysis of the estimator

In this section, we derive the convergence rate of our estimator and also theoretically
characterize the customer types recovered by our method.

3.4.1 Convergence rate of the estimator

To state our result on the convergence rate, we need the following notation. For each

offer-set St, let yt
def
= (yjt)j∈St denote the vector of sales fractions for offer-set St. Let

H(yt)
def
= −

∑
j∈St yjt log yjt denote the entropy of the vector yt. As 0 ≤ yjt ≤ 1, H(yt) ≥ 0

for all t ∈ [T ].4 Moreover, let DKL(p‖q) def
= p log(p/q) + (1− p) log((1− p)/(1− q)) denote

the relative entropy (aka KL-divergence) between p and q for any 0 ≤ p, q ≤ 1. It is a known
fact that DKL(p‖q) ≥ 0 for all 0 ≤ p, q ≤ 1 and DKL(p‖q) = 0 if and only if p = q. Finally,

let yt,min
def
= min{yjt | j ∈ St s.t. yjt > 0} and ymin

def
= min{yt,min | t ∈ [T ]}. Then, we can

establish the following convergence guarantee:

Theorem 3.2 (Sublinear convergence). Let g∗ denote the optimal solution to the Convex
Mixture problem, and g(k) denote the kth iterate generated by Algorithm 8. Then, for the

4We use the standard convention that 0 · log 0 = 0 when computing the entropy.
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loss functions defined in Section 3.2.2, it follows

SQ(g(k))− SQ(g∗) ≤ 4

k + 2
for all k ≥ 1,

NLL(g(k))− NLL(g∗) ≤ 4

ξ2
min · (k + δ)

for all k ≥ K for some constant δ and index K,

where ξmin is the smallest ξ such that 0 < ξ ≤ ymin and

min
1≤t≤T

Nt ·DKL(yt,min‖ξmin) ≤ N · NLL(g(0))−
T∑
t=1

Nt ·H(yt).

Such a ξmin always exists.

The result above establishes an O(1/k) convergence guarantee for our estimator for both
loss functions, assuming that the support finding step in Algorithm 8 can be solved optimally.
The detailed proof is given in Appendix C.1; here, we provide a proof sketch. Our proof builds
on existing techniques developed for establishing convergence rates of the CG algorithm. This
is an active area of research with different rates having been derived for different variants of
the CG algorithm, under different assumptions for the structures of the objective function
and the constraint set [Jag13, GH15, LJJ15]. The convergence guarantee for the squared
loss function, in fact, follows directly from the existing result in [Jag13], which shows that
the CG algorithm converges at an O(1/k) rate if the so-called curvature constant is bounded
from above. If the domain is bounded and the hessian of the objective function is bounded
from above, then the curvature constant is known to be bounded from above. In our case,
the domain conv(P) is bounded (since any vector f ∈ conv(P) has entries between 0 and 1).
The hessian of the squared loss is a diagonal matrix, where each entry is bounded above by 1.
Therefore, it follows that the curvature constant is bounded from above, thus allowing us to
establish the O(1/k) guarantee by directly invoking existing results.

The hessian of the NLL loss function, on the other hand, is not bounded from above. It is
a diagonal matrix with the entry corresponding to (product, offer-set) pair (j, St) equal to
yjt/g

2
jt. Since gjt can be arbitrarily close to 0 in the domain conv(P), the diagonal entries

are not bounded from above, and thus, existing results don’t directly apply. To address this
issue, suppose that we can establish a non-trivial lower bound, say, ξ∗ > 0, for the optimal
solution g∗ so that g∗jt ≥ ξ∗ > 0 for all t ∈ [T ] and all j ∈ St. It then follows that the
hessian of the NLL loss function is bounded from above when the domain is restricted to
D̃ def

= {g ∈ conv(P) : gjt ≥ ξ∗ ∀ t ∈ [T ];∀ j ∈ St}. And, if we solve Convex Mixture over
the restricted domain D̃,5 we immediately obtain the O(1/k) convergence rate.

While solving Convex Mixture over the restricted domain D̃ is feasible in principle,
it is difficult to implement in practice because computing a good lower bound ξ∗ may not
be straightforward. Instead, we show that running the fully corrective variant of the CG
algorithm (the variant implemented in Algorithm 8), while being agnostic to a lower bound,

5It can be verified that the constraint set D̃ is still compact and convex.
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still converges at O(1/k) rate. For that, we first show that each iterate g(k) generated by
Algorithm 8 is bounded from below by ξmin, where ξmin is as defined in Theorem 3.2. Then,
we exploit this property to establish the O(1/k) convergence rate with the constant scaling
in 1/ξ2

min.
To get the best convergence rate, we need to use the tightest lower bound ξmin. Our

bound is derived for general cases, and in this generality, the bound is tight. To see that,
consider the setting when the observations consist of only market shares, so that T = 1,
S1 = [n], and the sales fractions y1 comprise the observed market shares. In this case, it can
be shown that the optimal solution g∗ = y1.6 When Algorithm 8 is initialized at g(0) = y1, it
follows from the definition that ξmin = ymin = y1,min, which is the tightest bound possible.

We can also derive a simple-to-compute (lower) bound for ξmin, as stated in the following
proposition:

Proposition 3.2.1. Let Nmin = min{Njt | t ∈ [T ]; j ∈ St s.t. Njt > 0}. Then, it follows
that

ymin ≥ ξmin ≥ ymin · exp

(
−1− N · NLL(g(0))−

∑T
t=1 Nt ·H(yt)

Nmin

)
.

When T = 1, S1 = [n], and g(0) = y1, it follows from the above proposition that
ymin ≥ ξmin ≥ ymin/e. Therefore, the simple-to-compute (lower) bound loses a factor of e in
this case.

Remark. Theorem 3.2 assumes that the support finding step in Algorithm 8 can be
solved optimally.7 In cases where the optimal solution cannot be found, a weaker conver-
gence guarantee can be established as long as the iterates are (sufficiently) improving, i.e.,
loss(g(k)) < loss(g(k−1)), for each iteration k. In this case, it follows from existing results (see
for instance [Zan69]) that the sequence of iterates converges to a stationary point, which in
the case of a convex program is an optimal solution.

3.4.2 Characterization of the recovered mixture types

We now focus on the support finding step and characterize the structure of the optimal
solution. These solutions comprise the support of the resulting mixture distribution. In each
iteration k, the support finding step involves solving the following problem:

min
f∈P

T∑
t=1

∑
j∈St

c
(k)
jt fjt,

where c
(k)
jt =

(
∇loss(g(k−1))

)
jt

. The optimal solution f (k) to the above problem lies either in

P or P \ P. If it lies in P, then (by definition) there exists a parameter vector ωk ∈ RD

6Provided the product features satisfy certain structural conditions; see Theorem 3.5.
7Actually, [Jag13] showed that solving it approximately with some fixed additive error is also sufficient to

ensure the O(1/k) convergence rate.
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such that f(ωk) = f (k), so that any such ωk may be used to describe the customer type and

make the choice probability prediction eω
>
k zjS/

(∑
`∈S e

ω>k z`S

)
for the probability of choosing

product j from some offer-set S. However, if the optimal solution f (k) lies in the boundary,
i.e. P \ P, then there is no straightforward way to characterize the customer type or make
out-of-sample predictions. To deal with this challenge, we provide a compact characterization
of what we call the boundary types, defined as follows:

Definition 3.1 (Boundary and Non-boundary types). A customer type f is called a boundary
type if f ∈ P \ P , and a non-boundary type, otherwise.

We show below that each boundary type is characterized by two parameters (ω0,θ):

Theorem 3.3 (Characterization of boundary types). Given a boundary type f in P \ P,
there exist parameters ω0,θ ∈ RD such that, for each 1 ≤ t ≤ T and j ∈ St, we have

fjt = lim
r→∞

exp
(
(ω0 + r · θ)>zjt

)∑
`∈St exp ((ω0 + r · θ)>z`t)

.

Furthermore, fjt = 0 for at least one (product, offer-set) pair (j, St).

The proof in Appendix C.2 shows how to compute the parameters (ω0,θ) given any
boundary type f ∈ P \ P. Here, we focus on understanding the implications of the above
characterization.

The key aspect of our characterization is a preference ordering over the products defined
by the parameter vector θ. This preference order determines the choice of the products
from a given offer-set. For ease of exposition, we describe the preference ordering for the
case when product features don’t change with the offer-set, so we write zj instead of zjt
for the feature vector of product j. The discussion below extends immediately to the more
general case by associating a separate product to each feature vector of interest. To describe

the preference order, define product utility uj
def
= θ>zj for product j. These utility values

can be visualized as projections of the product feature vectors zj’s onto the vector θ. They
define a preference order � among the products such that j � j′, read as “product j is
weakly preferred over product j′,” if and only if uj ≥ uj′ . The relation � is in general a
weak ordering and not a strict ordering because product utilities may be equal. In order to
explicitly capture indifferences, we write j � j′ if uj > uj′ and j ∼ j′ if uj = uj′ .

Now, when offered a set S, customers of this type purchase only the most preferred
products as determined according to the preference order �. To see that, let C(S) denote
the set of most preferred products in S, so that for all j ∈ C(S), we have j ∼ ` if ` ∈ C(S)

and j � ` if ` ∈ S \ C(S). Let u∗
def
= max{uj : j ∈ S} denote the maximum utility among

the products in S. We have that u∗ = uj for all j ∈ C(S) and u∗ > uj for all j ∈ S \ C(S).
Given this and multiplying the numerator and denominator of the choice probabilities defined
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in Theorem 3.3 by e−r·u
∗
, we can write for any product j ∈ S,

exp
(
(ω0 + r · θ)>zj

)∑
`∈S exp ((ω0 + r · θ)>z`)

=
e−r·(u

∗−uj) · exp(ω>0 zj)∑
`∈C(S) exp(ω>0 z`) +

∑
`∈S\C(S) e

−r·(u∗−u`) · exp(ω>0 z`)
.

(3.3)
When we take the limit as r →∞, each of the terms e−r·(u`−u

∗), ` ∈ S \ C(S), goes to zero,
so the denominator converges to

∑
`∈C(S) exp(ω>0 z`). The numerator converges to exp(ω>0 zj)

if j ∈ C(S) and 0 if j ∈ S \ C(S). Therefore, we obtain the following choice probability
prediction fj,S(ω0,θ) for any product j and offer-set S from Theorem 3.3:

fj,S(ω0,θ) =

{
exp(ω>0 zj)/

(∑
`∈C(S) exp(ω>0 z`)

)
, if j ∈ C(S) and

0, if j ∈ S \ C(S).

From the discussion above, we note the contrasting roles of the parameters θ and ω0. The
parameter vector θ (through the preference ordering� it induces) determines the consideration
set C(S), whereas the parameter vector ω0 determines the logit choice probabilities from
within the consideration set. The parameter vector θ dictates how a product’s features impact
its inclusion into the consideration set. For instance, suppose u∗ is the maximum utility in
offer-set S and product j with utility uj < u∗ is not in consideration now. Further, suppose
one of the features is price and the corresponding coefficient is θp < 0. Then, product j will
enter into consideration only if its price is sufficiently dropped to make its utility greater
than or equal to u∗. In other words, the price should be dropped by at least (u∗ − uj)/ |θp|
to ensure consideration of product j.

The choice behavior we identify for the boundary types is consistent with existing literature,
which establishes that customers often consider a subset of the products on offer before
making the choice [JR16]. In fact, consideration sets of the kind we identify are a special
case of the linear compensatory decision rule that has been used as a heuristic for forming
consideration sets in existing literature [Hau14]. The rule computes the utility for each
product as a weighted sum of the feature values and chooses all products that have a utility
greater than a cutoff to be part of the consideration set. Finally, multiple distinct tuples of
parameters (ω0,θ) can result in the same limiting choice probabilities f for the observed
data. Since the data do not provide any further guidance, we arbitrarily select one of them.
Studying the impact of different selection rules on the prediction accuracy is a promising
avenue for future work.

We conclude this subsection with the following systematic procedure that summarizes
our discussion for making choice predictions for a boundary type, on new product features
and/or offer-set combinations:
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Algorithm 9 Predicting choice probabilities for boundary type f(ω0,θ)

1: Input: Offer-set S ⊆ [n] with product features zjS ∈ RD for each j ∈ S

2: Compute utilities uj = θ>zjS for each j ∈ S.

3: Form consideration set C(S) = {j ∈ S | uj = max`∈S u`}

4: For any j /∈ C(S), set fj,S(ω0,θ)← 0

5: For any j ∈ C(S), set

fj,S(ω0,θ)← exp (ω>0 zjS)∑
`∈C(S) exp (ω>0 z`S)

6: Output: Choice probabilities {fj,S(ω0,θ) : j ∈ S}

3.4.3 Analysis of recovered distribution for two special cases

We now analyze scenarios under which the optimal solution to the support finding step is
indeed a boundary type. This helps in providing further insights into the structure of the
recovered mixing distribution. Solving the support finding step in the general case is a hard
problem and therefore, to keep the analysis tractable, we focus on the setting in which the
data consist of sales counts in a single time-period when all products are offered (such as
market shares data). For this case, the notation can be simplified.

Since there is only a single offer-set S1 = [n], we represent the features as zi for each
product i ∈ [n]. Further, the sales counts can be represented using a single vector y :=
(y1, y2, . . . , yn) ∈ [0, 1]n such that

∑n
i=1 yi = 1 where yi ≥ 0 is the fraction of sales for

product i. The choice probabilities f ∈ P are of the form f = (f1, f2, . . . , fn), also satisfying∑n
i=1 fi = 1. Similarly, the estimates produced by Algorithm 8 at any iteration k are of

the form g(k) = (g
(k)
1 , g

(k)
2 , . . . , g

(k)
n ), where again

∑n
i=1 g

(k)
i = 1. With this notation, the loss

functions defined in Section 3.2.2 can be written as:

NLL(g) = −
n∑
i=1

yi log (gi) ; SQ(g) =
1

2

n∑
i=1

(yi − gi)
2 , (3.4)

while the support finding step is of the form, with ci
def
= −

(
∇loss(g(k−1))

)
i

for each i ∈ [n] (we
switch to maximization to aid the analysis below):

max
f∈P

n∑
i=1

ci · fi, (3.5)

where we drop the explicit dependence of the coefficient ci on the iteration number k for
simplicity of notation. We analyze the optimal solution to the above subproblem under two
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cases: (1) all product features are continuous, and (2) some product features are binary.8

All product features are continuous. When all features are continuous, the optimal
solution to subproblem (3.5) depends on the geometric structure of the observed product
features. Specifically, we consider the (convex) polytope formed by the convex hull of the

product features z1, . . . , zn, denoted as Zn
def
= conv({z1, z2, · · · , zn}). For this polytope, we

define an extreme point as:

Definition 3.2 (Extreme points). zj is called an extreme point of the convex polytope Zn if
zj /∈ conv({zi : i 6= j}). Equivalently, extreme points correspond to vertices of Zn.

With this definition, we can establish conditions under which a boundary type is an
optimal solution to the support finding step (3.5). In particular, we have the following result:

Theorem 3.4 (Recovery of boundary types). Let jmax = arg maxj∈[n] cj. If zjmax is an
extreme point, then the boundary type f(0,θjmax) is an optimal solution to support finding
step (3.5), where θjmax is such that θ>jmaxzjmax > θ>jmaxzj for all j 6= jmax. In particular,
f(0,θjmax) is of the form:

fj(0,θjmax) =

{
1 if j = jmax

0 otherwise,

The proof in Appendix C.3 shows that such a θjmax exists, since zjmax is an extreme point
of the polytope Zn. The above result shows that our estimation method recovers boundary
types that consider only a single product amongst the offered products. The result also leads
to the following corollary:

Corollary 3.4.1 (All extreme points =⇒ Boundary types always optimal). If all product
feature vectors z1, z2, . . . , zn are extreme points of the polytope Zn, then boundary types are
always optimal solutions for the support finding step (3.5).

The above result implies that when all product features are extreme points of the polytope
Zn, the support finding step (3.5) can be solved to optimality in each iteration, where the
optimal solution corresponds to a boundary type that chooses a single product with probability
1 from amongst all offered products. Consequently, our estimation technique decomposes the
population into such boundary types to explain the observed choice data. In fact, in this
scenario, we can also establish the following convergence guarantee for the iterates generated
by Algorithm 8:

Theorem 3.5 (Convergence in finite number of iterations). Suppose that zj is an extreme
point of the polytope Zn for all j ∈ [n]. For both the NLL and SQ loss functions defined
in (3.4), the estimates g(k) produced by Algorithm 8 converge to the optimal solution g∗ in
at most n iterations. In particular, the optimal solution g∗ = y and consequently, the CG
algorithm is able to perfectly match the observed sales fractions.

8This subsumes the setting of categorical features since a categorical feature is usually transformed into a
set of binary features using an encoding scheme like dummy coding or one-hot coding.
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Due to the complexity of the resulting optimization problems, there are few convergence
guarantees for the estimation of logit models that exist in the literature. For instance,
Hunter [Hun04] presents necessary and sufficient conditions for an iterative minorization-
maximization (MM) algorithm to converge to the maximum likelihood estimate for a single
class MNL model. Recently, James [Jam17] proposed an MM algorithm for estimation of
mixed logit models with a multivariate normal mixing distribution, but did not provide any
conditions for convergence. To the best of our knowledge, our result is one of the first to
provide a convergence guarantee for general mixtures of logit models.

Some product features are binary. When some of the features are binary, the
optimal solution to the support finding step always corresponds to a boundary type, having
the following structure:

Theorem 3.6 (Binary feature =⇒ Boundary types are always optimal). For each product
` ∈ [n], let z` ∈ RD1 and b` ∈ {0, 1}D2 represent a set of continuous and binary features
respectively, where D1 + D2 = D and D1, D2 > 0. Define the binary relation ∼ on [n] as:
i ∼ j ⇐⇒ bi = bj. Since ∼ is an equivalence relation on [n], let E represent the equivalence
classes, i.e. [n] =

⋃
e∈E Se and Se1 ∩ Se2 = ∅ for all e1, e2 ∈ E such that e1 6= e2. Then, there

exists e∗ ∈ E such that the optimal solution to support finding step (3.5) is a boundary type
f(ω0,θ) where θ ∈ RD satisfies

θ>(zj ◦ bj) > θ
>(zi ◦ bi) ∀ j ∈ Se∗ ; ∀ i ∈ [n] \ Se∗

where ◦ denotes vector concatenation. In particular, fi(ω0,θ) = 0 for all i ∈ [n] \ Se∗ so that
the boundary type only considers products within subset Se∗ ⊂ [n].

The proof in Appendix C.5 shows the existence of such a θ. Theorem 3.6 establishes that
if products have certain binary features (in addition to continuous features), then the support
finding step (3.5) always has a boundary type as the optimal solution. The consideration
sets of the resulting types follow a conjunctive decision rule [Hau14], where customers screen
products with a set of “must have” or “must not have” aspects—corresponding to each
binary attribute—reflecting (strong) non-compensatory preferences. We can interpret the
above result in the context of our sushi case study (see Section 3.6.1), where the products
represent two different kinds of sushi varieties—maki and non-maki. The above result says
that we recover boundary types in each iteration, each of which only consider one kind of
sushi variety: either maki or non-maki. Note that the mixing distribution can contain more
than one boundary type with the same consideration set, as the types will be differentiated
in their choice behavior according to the parameters (ω0,θ). In particular, based on the
value of the parameter θ, even some products within subset Se∗ may not be considered by
the boundary type. We analyze the structure of the recovered mixing distribution in more
detail in the case study.
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3.5 Robustness to different ground-truth mixing

distributions

In this section, we use a simulation study to showcase the ability of our nonparametric
estimator to obtain good approximations to various underlying mixing distributions. Our
method uses only the transaction data and has no prior knowledge of the structure of
the ground-truth distribution. In our study, we generate synthetic transaction data from
three different ground-truth mixing distributions. We then compare the mixing distribution
estimated by our method to the one estimated by a standard random parameters logit (RPL)
benchmark. The benchmark is a parametric method, which makes the static assumption
that the underlying mixing distribution is multivariate normal. Our results demonstrate
the cost of model misspecification—the parametric RPL benchmark yields significantly
poor approximations to the ground-truth mixing distributions. On the other hand, our
nonparametric method is able to automatically learn from the transaction data to construct
a good approximation. This specific property of our estimator makes it very appealing in
practice, where one has little knowledge of the ground-truth mixing distribution.

Setup. So that we can readily compare our method to existing methods, we borrow
the experimental setup from Fox et al. [FKRB11] for our simulation study. They propose a
nonparametric linear regression-based estimator for recovering the mixing distribution. The
key distinction from our method is that they require knowledge of the support of the mixing
distribution, but our method does not. We discuss the implications of this difference towards
the end of this section.

The universe consists of n = 11 products, one of which is the no-purchase or the outside
option. Customers make choices according to a mixture of logit model with ground-truth
mixing distribution Q. A customer arrives in each time period t. The firm offers all the
products in the universe to the customer, but customizes the product features, offering
product j with feature vector zjt = (zjt1, zjt2) in period t. We assume that the outside option
is represented by the all zeros feature vector (0, 0). The customer makes a single choice by

first sampling a MNL parameter vector ω(t) = (ω
(t)
1 , ω

(t)
2 ) and then choosing product j with

probability9

fjt(ω
(t)) =

exp(ω
(t)
1 · zjt1 + ω

(t)
2 · zjt2)∑

`∈[n] exp(ω
(t)
1 · z`t1 + ω

(t)
2 · z`t2)

.

We consider three underlying ground-truth distributions Q:

1. Mixture of 2 bivariate Gaussians: Q(2) = 0.4 · N ([3, 0],Σ1) + 0.6 · N ([−1, 1],Σ2).
2. Mixture of 4 bivariate Gaussians:

Q(4) = 0.2 · N ([3, 0],Σ1) + 0.4 · N ([0, 3],Σ1) + 0.3 · N ([1,−1],Σ2) + 0.1 · N ([−1, 1],Σ2)

9[FKRB11] calls this individual-level choice data.
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3. Mixture of 6 bivariate Gaussians:

Q(6) = 0.1 · N ([3, 0],Σ1) + 0.2 · N ([0, 3],Σ1) + 0.2 · N ([1,−1],Σ1)

+ 0.1 · N ([−1, 1],Σ2) + 0.3 · N ([2, 1],Σ2) + 0.1 · N ([1, 2],Σ2)

where Σ1 =

[
0.2 −0.1
−0.1 0.4

]
and Σ2 =

[
0.3 0.1
0.1 0.3

]
denote the variance-covariance matrices of

the component Gaussian distributions.
We generated nine instances by varying the ground-truth mixing distribution Q over the

set {Q(2), Q(4), Q(6)} and the number of time periods T over the set {2000, 5000, 10000}. For
each combination of Q and T and time period t ∈ [T ], we generate choice data as follows: (a)
we sample product features zjtd according to the distribution N (0, 1.52) independently for
all products j ∈ [n], except the no purchase option, and for all features d ∈ {1, 2}; (b) we
sample a logit parameter vector ω(t) from the ground-truth mixing distribution Q, and then
(c) we generate a single choice j ∈ [n] with probability fjt(ω

(t)). Note that there is a single
choice observation Nt = 1 in each time period t ∈ [T ]. We replicate the above process R = 50
times. For each replication r ∈ [R], we obtain mixture cumulative distribution functions
(CDFs) F̂RPL

r and F̂CG
r by fitting the standard RPL model with a bivariate normal mixing

distribution and optimizing the NLL loss using our CG algorithm, respectively. To assess the
goodness of fit, we use the following two metrics proposed in [FKRB11]: root mean integrated
squared error (RMISE) and mean integrated absolute error (MIAE), defined as

RMISE =

√√√√ 1

R

R∑
r=1

[
1

V

V∑
v=1

(
F̂r(βv)− F0(βv)

)2
]

; MIAE =
1

V ·R

R∑
r=1

V∑
v=1

∣∣∣F̂r(βv)− F0(βv)
∣∣∣ ,

where F̂r ∈ {F̂RPL
r , F̂CG

r }, βv’s represent V = 104 uniformly spaced points in the rectangle
[−6, 6]× [−6, 6] where the CDF is evaluated10 and F0 is the CDF of the ground-truth mixing
distribution Q. Clearly, lower values are preferred.

Results and Discussion. Figure 3.1 and Table 3.1 summarize the results we obtained
when we ran our estimator for Kmax = 81 iterations. Figure 3.1 shows a bar graph comparing
our method to the RPL model on the RMISE and MIAE metrics. These metrics are
compared for the three ground-truth mixing distributions, for the case with T = 10, 000
periods. Table 3.1 shows a more complete comparison, including for the cases with T = 2, 000
and T = 5, 000 periods. We make the following observations:

1. Our nonparametric method is able to automatically construct a good approximation
of the ground-truth mixing distribution Q from the transaction data, without any
prior knowledge of the structure of Q. The benchmark RPL model, on the other hand,
performs significantly worse because of model misspecification.

10The true mixing distribution’s support lies in this region with probability close to 1.
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Error metrics for the different ground-truth mixing distributions (T = 10,000
periods)

Figure 3.1: The labels 2-mix, 4-mix and 6-mix refer, respectively, to the ground-truth mixing
distributions Q(2), Q(4) and Q(6), described in the main text. Lower values for the error
metrics are preferred.

Error metrics for the different ground-truth mixing distributions as a function
of the number of periods T

RMISE MIAE

2-mix 4-mix 6-mix 2-mix 4-mix 6-mix

T RPL CG RPL CG RPL CG RPL CG RPL CG RPL CG

2,000 0.29 0.067 0.15 0.067 0.18 0.066 0.24 0.039 0.082 0.037 0.094 0.035
5,000 0.3 0.053 0.15 0.051 0.18 0.053 0.25 0.03 0.078 0.0289 0.094 0.028

10,000 0.3 0.04 0.16 0.042 0.19 0.04 0.25 0.024 0.074 0.023 0.095 0.021

Table 3.1: The metrics for the RPL benchmark are taken from Table 3 in [FKRB11]; we
obtained similar numbers in our implementations. The labels 2-mix, 4-mix and 6-mix refer,
respectively, to the ground-truth mixing distributions Q(2), Q(4) and Q(6), described in the
main text. Lower values for the error metrics are preferred.
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2. Table 3.1 shows that our estimator becomes better as the number of periods (and
correspondingly, the samples) T increases. This improvement, which is characteristic of
nonparametric estimators, shows that our method is able to extract more information
as more data is made available. The RPL model, by contrast, does not exhibit any
such consistent pattern.

3. Although not shown in Table 3.1, we note that the errors metrics reported by Fox et al.
for their method [FKRB11, Tables 1 & 2] are comparable (or slightly worse) to those
obtained under our method. Their method, however, needs the support of the mixing
distribution as input. For their experiments under the simulation setup above, they
use a uniform discrete grid as the support of the mixing distribution. This approach,
however, does not scale to high-dimensional settings with larger D values. Our estimator
does not suffer from this limitation—we show that it scales to the feature dimensions
in real-world case studies, with D = 5 (Section 3.6.1) and D = 11 (Section 3.6.2).

3.6 Predictive performance of the estimator

We perform two numerical studies on real-world data to showcase the predictive accuracy
of our method. The first case study uses market share data, while the second study applies
our estimation technique on sales transaction data from multiple stores with varying offer-sets
and product prices.

3.6.1 Case Study 1: SUSHI Preference Dataset

In this study, we compare our CG method with the expectation-maximization (EM)
benchmark on the in-sample fit, and predictive and decision accuracies. Our results show that
when compared to the EM benchmark, the CG method achieves 24% and 58% lower in-sample
negative log-likelihood and squared loss, respectively, even when using fewer customer types.
It is more than an order of magnitude (16×) faster and is 28% more accurate, on the standard
root mean squared error (RMSE) metric, in predicting market shares when products are
dropped, added, or replaced from the existing assortment. Finally, it can extract upto
23% more revenue from the population. These improvements over the EM benchmark are
substantial, especially when it is noted that both methods are fitting the same model. They
highlight the significance of a more accurate and scalable estimation method.

We use the popular SUSHI Preference dataset [KKA05] for our study. This dataset has
been used extensively in prior work on learning customer preferences. It consists of the
preferences of 5,000 customers over 100 varieties of sushi. Each customer has provided two
preference orderings: (a) a complete ordering on the same subset of 10 sushi varieties and
(b) a rank ordering of the top-10 of her most preferred sushi varieties from among all the
100 varieties. Each sushi variety is described by a set of features like price, oiliness in taste,
frequency with which the variety is sold in the shop etc. Table 3.2 describes a subset of
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Feature Type Range

Style Binary 0 (maki) or 1 (otherwise)
Oiliness in taste Continuous [0, 4] (0: most oily)

Frequency sold in shop Continuous [0, 1] (1: most frequent)
Frequency of consumption Continuous [0, 3] (3: most frequent)

Normalized price Continuous [1, 5]

Table 3.2: Product features used from the SUSHI dataset

D = 5 features that we used in our experiments. One of the features, style, is binary valued
and the rest are continuous-valued.

Setup. We processed the data to obtain aggregate market share information as follows.
We assume that customers can choose from any of the 100 varieties of sushi and they choose
their most preferred variety. Therefore, the market share yj of sushi variety j is equal to
the fraction of customers who ranked sushi variety j at the top. Only 93 sushi varieties had
non-zero market shares, so we restrict our analysis to these varieties; therefore n = 93. We
represent the data as the empirical market shares vector y = (y1, y2, . . . , yn).

We fit a mixture of logit models to the above market share data using both our CG
estimator and the EM benchmark. We initialized the CG estimator with the output of a
2-class LC-MNL model fit using the EM algorithm. For EM, we consider 5 (for NLL loss)
and 10 (for SQ loss) different random initializations of the model parameters, and choose the
one that attains the best loss objective. To solve the optimization problem in the support
finding step, we use a heuristic algorithm that is based on our theoretical development in
Section 3.4.3. The heuristic is described in detail in Appendix C.6. It obtains an approximate
solution by exploiting the fact that the optimal solution to the support finding step must be a
boundary type because one of the features is binary-valued (see Theorem 3.6). We run the CG
algorithm for Kmax = 30 iterations so that the number of types found is at most 30. For the
EM method, we vary the number K of latent classes over the set {2, 3, 4, 5, 10, 15, 20, 25, 30}
to estimate K-class LC-MNL models.

In-sample fit and structure of recovered mixing distribution. We first discuss
the in-sample performance achieved by both methods. For the NLL loss, we measure the

performance in terms of the KL-divergence loss, defined as Dalgo
KL

def
= NLLalgo −H(y), where

H(y) = −
∑n

j=1 yj log yj is the entropy of the empirical market shares vector and represents

the lowest achievable in-sample NLL loss (by any method), and NLLalgo denotes the NLL
loss achieved by algo ∈ {EM,CG}. Figure 3.2 plots the in-sample KL-divergence loss and
squared loss as a function of the number of customer types for the EM benchmark and the
number of iterations for our CG estimator. Note that the number of iterations of the CG
method is an upper bound on the number of customer types it recovers. Therefore, in the
comparison, the CG method is allowed to use the same number of customer types as—or
even fewer than—the EM benchmark.

We make the following observations. First, the CG method consistently achieves a better
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In-sample performance on the SUSHI dataset

Figure 3.2: Each point on the EM curves reports the best loss achieved under different
random initializations—see the main text for details. The horizontal axis represents both
the number of customer types estimated by the EM benchmark, as well as the number of
iterations in the CG algorithm; since the number of iterations is an upper bound on the
number of types the CG estimator recovers, the plots represent a fair comparison between
the methods.

in-sample fit than the EM benchmark, even when using far fewer customer types. In particular,
at the end of 30 iterations, CG achieves DCG

KL = 0.0372 with K = 29 types as opposed to
DEM
KL = 0.049 with K = 30 types—a 24% reduction. For the squared loss, CG found K = 23

types with an in-sample loss of 3.49× 10−4 as opposed to 8.31× 10−4 achieved by EM with
K = 30 types—a 58% reduction. Second, the improvement in SQ loss is significantly higher
than the improvement in NLL loss. The reason is that the M-step in the EM benchmark is
non-convex when optimizing the SQ loss; consequently, it can only be solved approximately,
resulting in slow convergence and worse performance for the EM benchmark. The CG
algorithm, on the other hand, required very little customization11 showing its plug-and-play
nature when dealing with different loss functions.

We next analyze the structures of the customer types recovered by our method. For this
analysis we focus on the NLL loss. At the end of 30 iterations, the CG method recovered 29
customer types. Except for the two customer types which were part of the initial solution,
each of the remaining 27 types found by the CG method is a boundary type. These boundary
types fall into two classes: those that consider only the maki (a.k.a rolled sushi) variety
and those that consider only the non-maki variety. It follows from Theorem 3.6 that these
are the only two possible boundary types because there is only one binary-valued feature,
representing whether the sushi is maki or non-maki. Of the 93 varieties of sushi, 13 varieties
are maki and the remaining 80 are non-maki. We find that 5 customer types—comprising
2.5% of the probability mass—only consider the 13 maki varieties, so if one of the maki
varieties is stocked-out, they substitute to one of the remaining maki varieties. The remaining

11In fact, we only had to modify the objective and gradient computations.
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Heatmap of choice probabilities for each sushi variety under customer types
recovered by EM (left) and CG (right)
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Figure 3.3: Each row corresponds to a sushi variety and each column corresponds to a
customer type—for both EM and CG we choose the 10 largest types (in terms of proportions).
The top 13 rows correspond to maki style sushi varieties (sorted in decreasing order of
empirical market shares) and the remaining 80 rows correspond to non-maki style sushi
varieties (again sorted in decreasing order of market shares). The cells depict the probability
of the corresponding sushi variety being chosen by the corresponding customer type; the cells
in grey correspond to sushi varieties that are not part of the consideration set, and therefore
are never chosen.

102



22 customer types, comprising 46.1% of the probability mass, only consider the 80 non-maki
varieties. The types recovered by our method exhibit strong preferences over the sushi
varieties. In fact of the 10 customer types with the largest proportions, 6 types consider only
a single sushi variety. By contrast, the EM algorithm recovers customer types who consider
all the sushi varieties and is therefore unable to fully capture the underlying heterogeneity
in the population with the same number of customer types. Figure 3.3 depicts a visual
representation of this distinction, where we plot a heatmap of the choice probabilities for all
the 93 sushi varieties under the recovered types for both the EM and CG estimators. As can
be seen, the types recovered by EM are very similar to each other, whereas those recovered
by the CG estimator appear very distinct. In particular, for the CG estimator, customer
types 2 and 4 only consider non-maki style sushi varieties, types 5-8 and 10 consider only
a single non-maki variety whereas type 9 only considers the maki variety with the largest
market share (see the figure caption for more details).

Our theoretical characterization of the choice behavior of boundary types in Section 3.4.2
further allows managers to determine changes in sushi characteristics (such as the price)
to induce maki customer types to consider non-maki varieties and vice-versa. Finally, the
presence of customer types that only consider a single sushi variety is consistent with prior
work where customers were observed to (consider and) purchase only a single brand of
cars [LLLG95].

Predictive accuracy on new assortments. To test the predictive performance of the
recovered mixture on previously unseen assortments, we consider the following tasks:

1. Predict market shares when one existing sushi variety is dropped from the assortment.

2. Predict market shares when one new sushi variety is added to the assortment.

3. Predict market shares when one existing sushi variety is replaced by a new variety.

The above prediction tasks are motivated by real-world situations in which products
may be discontinued because of low demand and/or be unavailable due to stockouts, or new
products are introduced into the market. Being able to predict how the population reacts to
such changes can be very useful for a firm. We measured predictive accuracies in terms of
two popular metrics, mean absolute percentage error (MAPE) and root mean-square error
(RMSE), which are defined as follows: for each algo ∈ {EM,CG} and given any test offer-set
Stest, we compute

MAPEalgo = 100×
(

1

|Stest|
∑
i∈Stest

∣∣∣ŷi − ŷalgoi

∣∣∣
ŷi

)
; RMSEalgo =

√
1

|Stest|
∑
i∈Stest

(ŷi − ŷalgoi )
2
,

where ŷalgoi is the predicted market share for sushi variety i ∈ Stest under the mixture of
logit models12 estimated using algo and ŷi is the true market share computed from the test
data. We report the average error across all possible test assortments. For the first scenario

12We use the mixing distribution recovered by optimizing the NLL loss.

103



Mixture estimation times and error in market share predictions on test
assortments

Drop 1 Add 1 Replace 1

Algorithm Est. time (secs) RMSE MAPE RMSE MAPE RMSE MAPE

EM 914 4.6× 10−3 83.67 4.8× 10−3 90.23 4.8× 10−3 89.71
CG 59 3.3× 10−3 69.75 3.4× 10−3 75.06 3.5× 10−3 75.07

Improvement (%) 93.5 28.3 16.6 29.2 16.8 27.1 16.3

Table 3.3: “Drop 1”, “Add 1” and “Replace 1” refer respectively to the cases when the test
assortment is formed by dropping an existing sushi variety from the assortment, adding a new
sushi variety to the assortment, and replacing an existing sushi variety with a new variety.

when one sushi variety is dropped, there are 93 test assortments resulting from dropping
each sushi variety in turn. When one new variety is added, the training data consists of the
market shares when 92 sushi varieties are offered to the population—we consider all

(
93
2

)
= 93

training assortments—and in each case, the test data consists of only a single assortment,
containing all 93 varieties. We report the average error on this test assortment across each of
the training assortments. Similarly, when one existing variety is replaced by a new variety, the
training data consists of market shares when 92 sushi varieties are offered to the population,
and for each training assortment, there are 92 test assortments—obtained by replacing each
existing sushi variety in turn with a new sushi variety. We first compute the average test
error for each training assortment, and finally report the mean of these average test errors
across the training assortments.13

Table 3.3 reports the errors for each prediction task. For the EM algorithm, we choose
the best performing model amongst all estimated K-class LC-MNL models. It is evident that
our mixture estimation method significantly outperforms the EM benchmark across both
metrics and all prediction tasks. In particular, we notice an average of 28% reduction in
RMSE and 16% reduction in MAPE. Finally, we also observe from Table 3.3 that the CG
method is almost 16× faster than EM-based estimation, showing that it can scale better to
datasets containing large number of choice observations.

Decision accuracy. We now focus on the decision accuracies of the methods. We
consider the assortment optimization decision, which involves determining the subset of
products to offer to the population to maximize expected revenue. We find that the CG
method can extract around 23% more revenue from the population, when compared to the
EM benchmark.

setup. In order to compute the optimal assortment and ground-truth revenues, we
pre-processed the data as follows: We assume that the 93 sushi varieties with non-zero market
shares in the dataset comprise the entire sushi market. We focus on maximizing the revenue

13The improvements were similar when considering the minimum and maximum of the average test errors.
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Optimal assortment sizes and revenue generated

Algorithm # customer types recovered Optimal assortment size Revenue

EM
20 5 9.9× 103

25 5 9.9× 103

30 5 9.9× 103

CG
20 17 11.9× 103

24 20 12.1× 103

28 22 12.2× 103

Table 3.4: Note that our CG-based mixture estimation technique is able to extract around
23% more revenue compared to the EM benchmark. Here, revenue is measured in units of
the normalized price feature (see Table 3.2) of each sushi variety.

from the sale of the top-49 sushi varieties by market share. The remaining 44 varieties form
the outside option. Treating the outside option as one “product,” we obtain a total of n = 50
products. Without loss of generality, we suppose that the outside option is indexed by j = 50.
For each sushi variety j ∈ [n], we let yj denote its market share; for the outside option,
we obtain its market share by summing the market shares of all the 44 sushi varieties it
comprises. We let rj denote the price (present as the normalized price feature in the dataset)
of product j. We set the price of the outside option to 0. We suppose that the outside option
is always offered. Then, our goal is to find the subset of the remaining products to maximize
the expected revenue; that is, our goal is to solve

max
S∈[n−1]

∑
j∈S

rj · (Probability that j is chosen from S ∪ {n}) .

We fit mixtures of logit models by optimizing the NLL loss using the CG and EM
methods and then solve the above optimization problem under both the models. To solve
the optimization problem, we used the mixed-integer linear program (MILP) described
in [MDMBVZ14]. This MILP takes as input the proportions of each mixture component,
product utilities under each mixture component and the product prices, and outputs the
optimal assortment. We solved the MILPs using Gurobi Optimizer version 6.5.1. The MILPs
ran to optimality, so the recovered assortments were optimal for the given models.

Results and Discussion. We fit a K-class LC-MNL model using the EM method
and run the CG algorithm for K iterations to estimate a mixture of logit models, where
K ∈ {20, 25, 30}. Table 3.4 reports the optimal assortment sizes and the ground-truth
revenues extracted from the population. We compute the ground-truth revenue by assuming
that each of the 5, 000 customers in the dataset purchases the most preferred of the offered
products, as determined from her top-10 ranking; if none of the offered products appears in
the customer’s top-10 ranking, then we assume that the customer chose the outside option.

We note that the EM method offers only 5 sushi varieties as part of its optimal assortment.

105



The reason is that the customer types recovered by the EM method are not sufficiently
diverse because of which the MILP concludes that a small offering suffices to extract the most
revenue from the population. In fact, the MILP ends up offering the 5 sushi varieties with the
highest prices. By contrast, our method finds customer types with strong preferences who
have sufficiently different tastes, so that the MILP concludes that a larger variety (around
20), consisting of both high-priced and low-priced sushi varieties, is needed in the optimal
offering. The consequence is that we are able to extract around 23% more revenues from the
population.

3.6.2 Case Study 2: IRI Academic Dataset

We now illustrate how our method applies to a typical operations setting in which both
the offer-sets and product prices vary over time. Offer-sets vary because of stock-out events
(in retail settings) and deliberate scarcity (in revenue management settings). Prices vary
because of promotion activity or dynamic pricing policies. The results of our study show that
when compared to the standard EM benchmark, our CG method achieves upto 8% and 7%
reductions in the in-sample NLL and SQ losses, respectively, and upto 7% and 5% reductions
in the out-of-sample NLL and SQ losses, respectively.

We use real-world sales transaction data from the IRI Academic Dataset [BKM08] which
contains purchase transactions of consumer packaged goods (CPG) for chains of grocery and
drug stores. The dataset consists of weekly sales transactions aggregated over all customers.
Each transaction contains the following information: the week and store of purchase, the
universal product code (UPC) of the purchased item, quantity purchased, price of the
item, and whether the item was on price/display promotion. For our analysis, we consider
transactions for five product categories in the first two weeks of the year 2011: shampoo,
yogurt, toothbrush (toothbr), household cleaner (hhclean), and coffee. Table 3.5 describes
the summary statistics of the dataset.

Setup. We consider a setup similar to that of [JR16], who used the IRI dataset to test
the predictive power of their pricing method. We pre-process the raw transactions (separately
for each product category), as follows. We aggregate the purchased items by vendors14 to
deal with the sparsity of the data. Then, we further aggregate the vendors into n = 10
“products”—one product each for the top 9 vendors with the largest market shares and a
single product for all remaining vendors. This aggregation ensures that there is sufficient
coverage of products in the training and test offer-sets. Next, each combination of store and
week corresponds to a discrete time period t. The offer-set St is chosen as the union of all
products purchased during the particular store-week combination. Then, for each product
and offer-set pair (j, St), the number of sales Njt is computed using the observed sales for
product j in the store-week combination corresponding to St. The price pjt of product j
in offer-set St is set as the sales-weighted average of the prices of the different UPCs that
comprise the product. The number of offer-sets obtained for each product category after this

14Each purchased item in the dataset is identified by its collapsed universal product code (UPC)—a
13-digit-long code with digits 4 to 8 denoting the vendor.
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Product category # Transactions # Vendors # Offer-sets

Shampoo 235K 168 2,464
Toothbrush 163K 122 2,462

Household cleaner 236K 217 2,470
Yogurt 544K 90 2,470
Coffee 374K 290 2,470

Table 3.5: Statistics for IRI Academic Dataset. We consider transactions in the first two
weeks of the year 2011, which had a total of 1, 272 stores.

pre-processing step are listed in Table 3.5.
We assume that when offered subset St and prices (pjt : j ∈ St), each arriving customer

samples the MNL parameter vector (µ, β) according to some mixing distribution Q and
chooses product j ∈ St with probability:

fjt(µ, β) =
exp (µj − β · pjt)∑
`∈St exp (µ` − β · p`t)

.

Here, µ = (µ1, µ2, . . . , µn) ∈ Rn are the alternative specific coefficients, β ∈ R is the price
coefficient. The taste vector ω = (µ, β) ∈ RD with D = n+ 1 = 11 in this context.

We fit a mixture of logit models to the processed transaction data using both the CG and
EM methods. We initialize the CG algorithm with the output of a 2-class LC-MNL model fit
using the EM algorithm and solve the optimization problem in the support finding step using
the heuristic method described in Appendix C.6. We run the CG method for Kmax = 10
iterations, which results in a mixture with at most 10 customer types. We also fit a 10-class
LC-MNL model using the EM algorithm.

Results and Discussion. Similar to [JR16], we conduct a 2-fold cross-validation. We
randomly partition the offer-sets into two parts of roughly equal sizes, fit a mixture of
logit model to one part (the training set), and then evaluate its predictions on the other
part (the test set). We repeat this process with the train and test sets interchanged. We
report performance on both the train and test datasets—all quantities referred to below are
computed by taking an average across the two folds. For the NLL loss, we measure the
performance using the metric

∆dataset
algo = NLLdataset

algo −Hdataset,

where Hdataset is the sales-weighted entropy of the observed sales, defined as Hdataset =
− 1
N

∑T
t=1

∑
j∈St Njt log yjt, for dataset ∈ {train, test}, algo ∈ {EM,CG}, and NLLdataset

EM ,

NLLdataset
CG denote the NLL loss achieved by the EM and CG methods, respectively. In

Table 3.6, we report the percentage improvement: 100×(∆dataset
EM −∆dataset

CG )/∆dataset
EM . Similarly,

for the SQ loss, we report the percentage improvement as

100× (SQdataset
EM − SQdataset

CG )/SQdataset
EM ,
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SQ loss NLL loss

Product category Train Test Train Test

Shampoo 6.4 5.1 3.4 2.3
Toothbrush 5.3 4.3 2.4 1.3

Household Cleaner 5.3 4.1 1.9 1.2
Yogurt 7.0 5.1 8.3 7.1
Coffee 4.3 2.6 3.7 2.4

Average 5.7 4.2 3.9 2.9

Table 3.6: Percentage improvements in average train/test loss over EM benchmark.

where SQdataset
algo denotes the SQ loss achieved by algo ∈ {EM,CG} on dataset ∈ {train, test}.

Our estimator achieves better in-sample loss across all product categories and for both
loss functions—an average of 5.7% reduction for SQ loss and 3.9% for the NLL loss. The
in-sample improvement is largest for the yogurt category—we obtain 7.0% reduction for
SQ loss and 8.3% for the NLL loss. The superior in-sample fit translates to better test
performance as well, with 5.1% reduction in SQ loss for the yogurt and shampoo categories,
and 7.1% reduction in NLL loss for the yogurt category.

We also analyze the structure of the recovered mixing distribution. We recovered boundary
types in the mixing distribution for each of the product categories. The consideration sets
for the recovered boundary types were of two kinds: (a) the type never considers a particular
product (or a subset of the products) and (b) the type only considers a single product (or
subset of the products). Some examples of the θ parameters (refer to Theorem 3.3 and the
subsequent discussion) of the recovered boundary types include:

1. [0., 0., 0.,−1., 0., 0., 0., 0., 0., 0., 0.], which means that product 4 will never be considered
by this type (as long as there is another product in the offer-set).

2. [0, 0., 0., 0.5, 0.5, 0.5, 0., 0., 0., 0.5, 0.], which means that products in the set {4, 5, 6, 10}
are strictly preferred to all other products, and the type will only choose amongst them
(provided at least one of them is in the offer-set).

3. [0., 0.,−0.707, 0.,−0.707, 0., 0., 0., 0., 0., 0.] which means that product 3 and/or 5 will
never be considered by the type (as long as there is some other product in the offer-set).

3.7 Extension: accounting for endogeneity in product

features

In many applications of discrete choice modeling, a product feature may be correlated with
features not included in the model. The omitted features tend to be those that are unobserved.
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If such correlations are ignored during estimation, then the coefficient estimated for the
included feature could be biased. This phenomenon is referred to broadly as endogeneity.
The classical example is that product prices are often correlated with unobservables, such as
product quality, and ignoring such unobservables may lead one to conclude that higher prices
lead to higher demands, when in fact, the higher demand was caused by higher quality. [PT10]
offers other examples of endogeneity.

Several techniques have been proposed in existing literature to deal with the issue of
endogeneity in discrete choice models. In this section, we show how one such technique can
be incorporated into our method. We use the control function method proposed by Petrin
and Train [PT10], which generalizes the demand shocks approach proposed in [BLP95]. We
illustrate its use in our method using the following modification of the simulation setup from
Section 3.5:

Utility model. We follow the setup of Section 3.5. We fix a choice of the ground-truth
mixing distribution Q and number of time periods T . We then generate the choice data as
follows. In each period t ∈ [T ], a customer arrives and is offered all the n = 11 products,
including the no-purchase option. Instead of sampling a two-dimensional parameter vector
as before, the customer now samples a three-dimensional parameter vector (ω

(t)
1 , ω

(t)
2 , ω

(t)
3 )

according to Q and assigns the following utility to product j:

Ujt = ω
(t)
1 · xjt + ω

(t)
2 · zjt + ω

(t)
3 · µjt + εjt,

where (xjt, zjt, µjt) is the feature vector of product j in period t and (εjt : j ∈ [n]) are
independent and identically distributed standard Gumbel random variables. Customers
choose the product with the highest utility, resulting in the standard MNL choice probability.
The key difference in the utility model from the setup above is that while xjt and zjt are
observed, µjt is unobserved and is correlated with xjt. As is standard in the literature, we
assume that the endogenous feature is impacted by a set of instruments w and the exogenous
feature:

xjt = γ1 · wjt,1 + γ2 · wjt,2 + γ3 · zjt + µjt.

Control function correction. To deal with endogeneity, the control function (CF)
approach obtains a proxy for the term µjt by regressing the endogenous feature xjt on
the instruments (wjt,1,wjt,2) and the exogenous feature zjt and then plugs in the residual
µ̂jt = xjt − γ̂> (wjt,1,wjt,2, zjt), where γ̂ represents the estimated regression parameters. In
other words, the method estimates the coefficients using the following utility model:

Ûjt = ω
(t)
1 · xjt + ω

(t)
2 · zjt + ω

(t)
3 · µ̂jt + εjt.

Once we plug in the residual, the estimators are run as before. They now estimate a mixing
distribution over D = 3 parameters, where the additional random parameter is for the
unobservable µjt.

Setup. For our experiments, we sample (ω
(t)
1 , ω

(t)
2 ) according to the distribution Q(2),

which is a mixture of two bivariate Gaussians, as defined in Section 3.5. We sample ω
(t)
3

according to N (−1, 0.32), independently of ω
(t)
1 and ω

(t)
2 . For each time period t and product
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Recovery metrics under endogenous product features

RMISE MIAE

Estimator Without CF With CF Without CF With CF

RPL 0.121 0.095 0.057 0.046
CG 0.074 0.059 0.039 0.038

Table 3.7: “Without CF” refers to the case when endogeneity is ignored and “With CF” refers
to the case when control function (CF) correction is applied. All differences are statistically
significant at 1% significance level according to a paired samples t-test.

j, we sample the exogenous feature zjt according to N (0, 1.52), the instruments wjt1,wjt2

according to N (0, 1), and the unobservable µjt according to N (0, 1), all independently of
each other. We choose γ = (0.54, 0.54, 0.54) to ensure that the marginal distribution of
xjt matches the marginal distribution of the features for the case without endogeneity in
Section 3.5. Then, we generate choices for T = 15, 000 periods.

Results. Table 3.7 compares our CG method to the standard RPL model with a diagonal
variance-covariance matrix on the same RMISE and MIAE metrics, both when endogeneity
is ignored and when endogeneity is corrected using the CF approach. We compute the error
metrics only for the distribution of (ω1, ω2), and not ω3. We make the following observations:

1. Ignoring endogeneity can worsen the recovery of the underlying mixing distribution, as
is evident in the noticeably larger RMISE value for the benchmark RPL model.

2. Misspecification in the mixing distribution can impact recovery more adversely than
ignoring endogeneity. Our method without the CF correction has lower error metrics
than the benchmark with the CF correction. This shows that having the freedom of
choosing the mixing distribution can help mitigate the effects of endogeneity bias.

3. Our estimator is compatible with the CF approach, allowing one to correct for endo-
geneity and obtain a better approximation to the underlying mixing distribution.
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Conclusions and Future Directions

This dissertation revisited the classical problems of customer segmentation and demand
learning but in the presence of sparse, diverse and large-scale data, and proposed methodologies
to deal with the challenges posed by such data. We first presented a novel method to
segment (or cluster) a large population of customers based on their preferences over a large
collection of items, when the preference observations come from diverse data sources such
as purchases, ratings, clicks, etc. and are highly sparse, i.e. each customer may provide
very few observations. Then, we focused on the problem of segmentation in the presence of
unreliable data and proposed algorithms to segment workers in crowdsourced labeling tasks
based on their (unknown) reliability, using only the labels submitted by the workers. Finally,
we proposed a nonparametric estimator for the mixture of logit model—commonly used to
model the customer demand—and demonstrated its favorable properties as compared to
existing parametric estimators.

There are several opportunities and directions for future work. We outline some of them
below:

• For the problem of segmenting customers, we focused primarily on categorical labels
(clicks, purchases, like/dislikes, etc.) since most of the observations collected about
customers from firms are categorical. However, our methodology can, in principle, be ap-
plied to numerical, i.e. real-valued, observations (such as the number of clicks/purchases,
time spent browsing, dollars spent etc.) and it will be interesting to explore how our
algorithm performs when there is a mix of categorical and numerical observations.
From the analytical perspective, it will be interesting to determine other generative
models (especially from the exponential family) for customer labels under which our
algorithm can recover the true segments. For instance, we could consider mixtures of
binary logit models where each item j is represented using a vector yj in some feature
space Y . Imposing suitable constraints on the space Y as well as defining appropriate
missing data mechanisms for the customer labels will be important in this regard. More
broadly, the idea of separating customers based on their deviation from the population’s
preferences can be applied in other contexts, such as textual reviews and restaurant
photos in Yelp, to obtain interesting domain-specific notions of mainstream and esoteric
segments. Finally, it would be useful to test the effectiveness of our segmentation
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method in terms of standard marketing performance measures such as customer lifetime
value, profitability, loyalty, etc.

• To the best of our knowledge, our work was the first to consider general worker strategies
in crowdsourced labeling tasks, and has resulted in follow-up papers that explicitly
model adversarial behavior (such as correlated errors and sybil attacks) in crowdsourced
services [WWW+16, YLLZ17, KA18] as well as test the robustness of existing label
aggregation algorithms to adversarial attacks [MLS+18]. Our theoretical analysis
assumed that the tasks are homogeneous, and analyzing our reputation algorithms
under models that account for heterogeneous tasks, such as variation in task difficulty
(for example [WRW+09] and [WBBP10]) is a natural next step. Both of our penalty-
based algorithms assumed that the task labels are binary; analyzing natural extensions of
our algorithms to multi-class settings is an interesting direction. Because our algorithm
allows the identification of adversarial workers, it could be combined with adaptive
techniques to recruit more workers [RPGMP12] and identify the right workers [LZF14].
Finally, applying our reputation algorithms to ensemble learning approaches, in which
outputs from multiple learning algorithms are combined, could be a promising future
direction; indeed there has already been some work in this space [WY14].

• We focused on estimating the mixture of logit models because of its widespread use,
but our approach is directly applicable for general mixture models including other
choice model families—with the caveat that the subproblems in the conditional gradient
algorithm can be solved reasonably efficiently. Applying our nonparametric estimator
in the context of other popular choice models like the probit and Mallows models,
and deriving insights for the recovered customer types, is a promising direction for
future work. In fact, our framework can also be used to directly learn distributions over
preference orderings (or rankings) over the products, resulting in a fully nonparametric
approach. In that case, the subproblem in each iteration corresponds to finding
a single ranking which has connections to the learning to rank [Liu09] and rank
aggregation [DKNS01] literatures. In fact, [JR17] also use the Frank-Wolfe algorithm to
estimate a distribution over preference orderings, but their setup did not consider any
product features. Extending their approach to account for product features is also a
promising future direction. Finally, our estimation method currently cannot account for
fixed parameters (across customer types) in the utility specification. Incorporating fixed
effects into the estimation framework could be an important next step for promoting
more widespread adoption of our estimator.
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Appendix A

Chapter 1 Proofs and Details of
Numerical Experiments

A.1 Proofs of Theoretical Results

We begin by proving some general statements about random variables, that will be used
in the proofs later.

Lemma A.1. Let X1,X2, . . . ,Xr,Y be a collection of non-negative random variables. Let
a1, a2, . . . , ar, b be positive constants. Then, given any 0 < ε < 1 and any 1 ≤ i ≤ r, we have
that

(i) P
[ ∣∣∣∣Xi

Y
− ai

b

∣∣∣∣ > ε
ai
b

]
≤ P

[
|Xi − ai| > ε′ai

]
+ P

[
|Y − b| > ε′b

]
(ii) P

[
|XiY − aib| > εaib

]
≤ P

[
|Xi − ai| > ε′ai

]
+ P

[
|Y − b| > ε′b

]
(iii) P

[ ∣∣∣∣∣
r∑
i=1

Xi −
r∑
i=1

ai

∣∣∣∣∣ > ε ·

(
r∑
i=1

ai

)]
≤

r∑
i=1

P
[
|Xi − ai| > εai

]

(iv) P
[ r∑
i=1

|Xi − ai| > ε ·

(
r∑
i=1

ai

)]
≤

r∑
i=1

P
[
|Xi − ai| > εai

]
where ε′ = ε/3.

Proof. We prove parts (i) and (ii) assuming (w.l.o.g) that i = 1.
Part (i). Let Z1 = X1

Y
. We prove the result by contradiction. Suppose Z1 > (1 + ε)a1

b
.

Then, X1 > (1 + ε′)a1 or Y < (1− ε′)b. If not, we have the following:

X1 ≤ (1 + ε′)a1, Y ≥ (1− ε′)b =⇒ X1

Y
≤ (1 + ε′)a1

(1− ε′)b
=⇒ Z1 ≤ (1 + ε)

a1

b
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where the last implication follows from the fact that 1+ε′

1−ε′ ≤ 1+ε when ε′ = ε/3 and 0 < ε < 1.
This is a contradiction. Therefore we have that,

P
[
Z1 > (1+ε)

a1

b

]
≤ P

[
X1 > (1+ε′)a1

⋃
Y < (1−ε′)b

]
≤ P

[
X1 > (1+ε′)a1

]
+P
[
Y < (1−ε′)b

]
where the last inequality follows from the union bound. An analogous argument establishes

that

P
[
Z1 < (1− ε)a1

b

]
≤
(
P
[
X1 < (1− ε′)a1

]
+ P

[
Y > (1 + ε′)b

])
which uses the fact that 1−ε′

1+ε′
≥ 1− ε when ε′ = ε/3 and 0 < ε < 1. Combining the above

two arguments, we get

P
[ ∣∣∣Z1 −

a1

b

∣∣∣ > ε
a1

b

]
≤
(
P
[
|X1 − a1| > ε′a1

]
+ P

[
|Y − b| > ε′b

])
Part (ii). Let W1 = X1Y . Suppose W1 > (1 + ε)a1b. Then, X1 > (1 + ε′)a1 or

Y > (1 + ε′)b. If not, we have the following:

X1 ≤ (1 + ε′)a1, Y ≤ (1 + ε′)b =⇒ X1Y ≤ (1 + ε′)
2
a1b

=⇒ W1 ≤ (1 + ε)a1b

where the last implication follows because (1 + ε′)2 ≤ 1 + ε for ε′ = ε/3 and 0 < ε < 1. This
is a contradiction. Therefore,

P
[
W1 > (1+ε)a1b

]
≤ P

[
X1 > (1+ε′)a1

⋃
Y > (1+ε′)b

]
≤ P

[
X1 > (1+ε′)a1

]
+P
[
Y > (1+ε′)b

]

Combining with the symmetric case gives:

P
[
|W1 − a1b| > εa1b

]
≤
(
P
[
|X1 − a1| > ε′a1

]
+ P

[
|Y − b| > ε′b

])
Part (iii). Define Z

def
=
∑r

i=1Xi and A
def
=
∑r

i=1 ai. Suppose that Z > (1 + ε)A. Then it
follows that for some 1 ≤ i ≤ r, Xi > (1 + ε)ai. If not, we have:

X1 ≤ (1 + ε)a1, . . .Xr ≤ (1 + ε)ar =⇒
r∑
i=1

Xi ≤
r∑
i=1

(1 + ε)ai

=⇒ Z ≤ (1 + ε)A

which is a contradiction. Combining with the symmetric case and applying the union bound,
the claim follows.
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Part (iv). Let Z
def
=
∑r

i=1 |Xi − ai| and suppose Z > ε · A, where recall from part (iii)
above that A =

∑r
i=1 ai. Then it follows that for some 1 ≤ i ≤ r, |Xi − ai| > εai. If not, we

have:

|X1 − a1| ≤ εa1, . . . |Xr − ar| ≤ εar =⇒
r∑
i=1

|Xi − ai| ≤
r∑
i=1

εai

=⇒ Z ≤ ε ·

(
r∑
i=1

ai

)
= ε · A

which is a contradiction. The claim then follows from the union bound.

Lemma A.2. Let X,Y be two non-negative random variables such that 0 ≤ X,Y ≤ 1
and Y = 0 =⇒ X = 0. Suppose that 1 > E[X],E[Y ] > 0. Define the random variables
Z1 = X · (− logY ) and Z2 = X · (− logX), and the constants A1 = E[X] · (− logE[Y ]) and
A2 = E[X] · (− logE[X]). Then, given any 0 < ε < 1, we have:

P
[
|Z1 −A1| > εA1

]
≤ P

[
|X − E[X]| > ε

3
E[X]

]
+ P

[
|− logY − (− logE[Y ])| > ε

3
· (− logE[Y ])

]

P
[
|Z2 −A2| > εA2

]
≤ P

[
|X − E[X]| > ε

3
E[X]

]
+ P

[
|− logX − (− logE[X])| > ε

3
· (− logE[X])

]
Proof. Note that since X,Y ∈ [0, 1], it follows that − logX,− logY are non-negative. Also,
since Y = 0 =⇒ X = 0, the random variables Z1,Z2 are both well-defined (with the
convention that x · log x = 0 when x = 0). Further, since we also have 0 < E[X],E[Y ] < 1,
so that − logE[X] > 0 and − logE[Y ] > 0. The claims then follow from a straightforward
application of part (ii) of Lemma A.1.

Lemma A.3. Let 0 ≤ X ≤ 1 be a non-negative random variable with 1 > E[X] > 0.
Then given any 0 < ε < 1, for all values of the random variable X in the interval I :=(

(1− ε′)E[X], (1 + ε′)E[X]

)
, where ε′ = −ε logE[X]

1−ε logE[X]
, we have

|− log(X)− (− logE[X])| ≤ ε · (− logE[X])

Proof. Since 0 < E[X] < 1, it means that − logE[X] > 0 and consequently, 0 < ε′ < 1. In
addition, it can be seen that (1 + ε′)E[X] ≤ 1 for any 0 < ε < 1 and any 0 < E[X] < 1,
so that I ⊂ [0, 1]. Consider the function g(x) = − log x and note that it is continuous and
differentiable on the interval I. The Mean Value theorem says that given a differentiable
function g(·) in the interval (a, b), there exists c ∈ (a, b) such that

g(b)− g(a)

b− a
= g′(c) =

g(a)− g(b)

a− b
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where g′(·) is the derivative of g(·). Using the mean value theorem for g(x) = − log x in
the interval I, it follows that for all values of random variable X ∈ I there exists some Z
between E[X] and X such that

− logX − (− logE[X])

X − E[X]
=
−1

Z

Now since Z ∈ I, it follows that 1
Z
≤ 1

(1−ε′)E[X]
. Also, since X ∈ I, we have |X − E[X]| ≤

ε′E[X]. Then it follows:

|− logX − (− logE[X])| =
∣∣∣∣−(X − E[X])

Z

∣∣∣∣
=
|X − E[X]|

Z

≤ |X − E[X]|
(1− ε′)E[X]

≤ ε′

1− ε′
= ε · (− logE[X])

A.1.1 Proofs of Section 1.3.1

First, we introduce some additional notation. Recall from the main text that 1[A] denotes
the indicator variable taking value 1 if an event A is true and 0 otherwise. Let X+

i (resp.
X−i ) denote the number of items rated as +1 (resp. −1) by customer i. In other words,
X+

i =
∑

j∈N(i) 1[Xij = +1] and X−i =
∑

j∈N(i) 1[Xij = −1], where recall that N(i)
denotes the set of items rated by customer i. Here, Xij represents the rating provided by
customer i for item j, note that it is a random variable under the LC-IND model. Next, let

F+
0 =

∑m
i′=1X

+
i′

m·` , so F+
0 is the fraction of likes (+1s) received from the customer population.

Finally, let Bin(r, p) denote the Binomial distribution with parameters r and p.
We begin by establishing a lemma that will be used in the proof later.

Lemma A.4. Consider the random variable F+
0 =

∑m
i′=1X

+
i′

m·` . Given any t > 0, the following
facts are true:

(i) E[F+
0 ] = αpool (ii) P

[ ∣∣F+
0 − αpool

∣∣ ≥ t

]
≤ 2 exp

(
− 2m`t2

)
Proof. We begin with the expectation:

E[F+
0 ] =

∑m
i′=1 E[X+

i′ ]

m · `
=

∑m
i′=1 `αz′i
m · `

=

∑K
k′=1 qk′m · (`αk′)

m · `
=

K∑
k′=1

qk′αk′ = αpool
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where the third equality follows from the fact that proportion qk′ of the customer population
belongs to segment k′. For part (ii), observe that F+

0 can be equivalently written as:

F+
0 =

m∑
i′=1

∑
j∈N(i′)

1[Xi′j = +1]

m · `
.

In other words, F+
0 is an average of m · ` random variables, which are independent under

the LC-IND model (since each customer rates items independently). Then using Hoeffding’s
inequality we can show, for any t > 0:

P
[ ∣∣F+

0 − αpool

∣∣ ≥ t

]
≤ 2 exp

(
− 2m`t2

)
.

A.1.2 Proof of Lemma 1.1

To calculate the customer embedding scores, we first need to compute the pooled estimate.
Since the underlying LC-IND model is parameterized by a single parameter that specifies the

probability of liking any item, the pooled estimate is given by
∑m
i′=1X

+
i′

m·` = F+
0 based on our

definition earlier. Also, let us denote the fraction of likes given by customer i as F+
i

def
=

X+
i

`
.

Then, the unidimensional embedding Vi for customer i is given by:

Vi =
−
∑

j∈N(i)

(
1[Xij = +1] logF+

0 + 1[Xij = −1] log(1− F+
0 )
)

−
∑

j∈N(i)

(
F+

0 logF+
0 + (1− F+

0 ) log(1− F+
0 )
)

=
−
(∑

j∈N(i) 1[Xij = +1]
)

logF+
0 −

(∑
j∈N(i) 1[Xij = −1]

)
log(1− F+

0 )

−
(
F+

0 logF+
0 + (1− F+

0 ) log(1− F+
0 )
)
· `

=
−
(X+

i

`

)
logF+

0 −
(
1− X+

i

`

)
log(1− F+

0 )

−
(
F+

0 logF+
0 + (1− F+

0 ) log(1− F+
0 )
)

=
−F+

i logF+
0 −

(
1− F+

i

)
log(1− F+

0 )

−
(
F+

0 logF+
0 + (1− F+

0 ) log(1− F+
0 )
)

Note that when F+
0 ∈ {0, 1}, we define Vi = 0 which is the limiting value as F+

0 → 0 or
F+

0 → 1.
Concentration of F+

i . From the generative model, it follows that the random variable
representing the number of likes given by customer i is a binomial random variable, i.e.
X+

i ∼ Bin(`, αzi). Then, using Hoeffding’s inequality we can show that for any t > 0:

P
[ ∣∣F+

i − αzi
∣∣ ≥ t

]
≤ 2 exp

(
− 2`t2

)
P
[ ∣∣(1− F+

i

)
− (1− αzi)

∣∣ ≥ t

]
≤ 2 exp

(
− 2`t2

)
(A.1)
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Concentration of − logF+
0 and − log(1−F+

0 ). Lemma A.4 says that E[F+
0 ] = αpool ≥

αmin > 0 and observe that 0 ≤ F+
0 ≤ 1. So we can apply Lemma A.3 to the random variable

F+
0 , which says that given any 0 < ε < 1, for all values of random variable F+

0 in the interval(
αpool · (1− ε′), αpool · (1 + ε′)

)
with ε′ =

−ε logαpool

1−ε logαpool
, we have:

∣∣− logF+
0 − (− logαpool)

∣∣ ≤ ε · (− logαpool) (A.2)

Now, for any 0 < ε < 1, define t(ε)
def
= ε ·

(
−ᾱpool·log(1−ᾱpool)

1−log(1−ᾱpool)

)
, where recall that ᾱpool =

min{αpool, 1 − αpool}, as defined in the statement of the Lemma. It is easy to check that

0 < t(ε) ≤ αpool · ε′ where note from above that ε′ =
−ε logαpool

1−ε logαpool
. Then using Lemma A.4, we

get that

P
[ ∣∣F+

0 − αpool

∣∣ ≤ ε′αpool

]
≥ P

[ ∣∣F+
0 − αpool

∣∣ ≤ t(ε)

]
≥ 1− 2 exp

(
− 2m` · t2(ε)

)
,

where for simplicity of notation, we denote (t(ε))2 as t2(ε). Then, using equation (A.2) it
follows that

P
[ ∣∣− logF+

0 − (− logαpool)
∣∣ ≤ ε · (− logαpool)

]
≥ P

[ ∣∣F+
0 − αpool

∣∣ ≤ ε′αpool

]
≥ 1− 2 exp

(
− 2m` · t2(ε)

)
(A.3)

A similar sequence of arguments (using the random variable 1− F+
0 ) shows that for ε′′ =

−ε log(1−αpool)

1−ε log(1−αpool)
and observing that 0 < t(ε) ≤ (1− αpool) · ε′′, we get

P
[ ∣∣− log(1− F+

0 )− (− log(1− αpool))
∣∣ ≤ ε · (− log(1− αpool))

]
≥ P

[ ∣∣F+
0 − αpool

∣∣ ≤ ε′′ · (1− αpool)

]
≥ 1− 2 exp

(
− 2m` · t2(ε)

)
(A.4)

For ease of notation in the remainder of the proof, denote the embedding score Vi = Ni

Di

to specify the numerator and denominator terms.
Concentration of Ni. Let us begin with the numerator, Ni = −F+

i logF+
0 − (1 −

F+
i ) log(1 − F+

0 ). Consider the first term: F+
i · (− logF+

0 ) and note that E[F+
i ] = αzi ,

E[F+
0 ] = αpool. Then using Lemma A.2 with X = F+

i ,Y = F+
0 and denoting A1 = ĉ1

def
=
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αzi · (− logαpool), we get:

P
[ ∣∣F+

i · (− logF+
0 )− ĉ1

∣∣ > εĉ1

]
≤ P

[ ∣∣F+
i − αzi

∣∣ > ε

3
αzi

]
+ P

[ ∣∣− logF+
0 − (− logαpool)

∣∣ > ε

3
· (− logαpool)

]
≤ 2 exp

(
− 2`

ε2α2
zi

9

)
+ 2 exp

(
− 2m` · t2(ε/3)

)
{using equations (A.1) and (A.3)}

≤ 2 exp

(
− 2`

ε2α2
min

9

)
+ 2 exp

(
− 2m` · t2(ε/3)

)
{since αzi ≥ αmin} (A.5)

Similarly for the second term, observe that E[1 − F+
i ] = 1 − αzi , E[1 − F+

0 ] = 1 − αpool.

Therefore, choosing X = (1 − F+
i ),Y = 1 − F+

0 and denoting A1 = ĉ2
def
= (1 − αzi) ·

(
−

log(1− αpool)

)
in Lemma A.2, we get:

P
[ ∣∣∣∣(1− F+

i ) ·
(
− log(1− F+

0 )

)
− ĉ2

∣∣∣∣ > εĉ2

]
≤ P

[ ∣∣(1− F+
i )− (1− αzi)

∣∣ > ε

3
· (1− αzi)

]
+ P

[ ∣∣− log(1− F+
0 )− (− log(1− αpool))

∣∣ > ε

3
· (− log(1− αpool))

]
≤ 2 exp

(
− 2`

ε2(1− αzi)2

9

)
+ 2 exp

(
− 2m` · t2(ε/3)

)
{using equations (A.1) and (A.4)}

≤ 2 exp

(
− 2`

ε2α2
min

9

)
+ 2 exp

(
− 2m` · t2(ε/3)

)
{since (1− αzi) ≥ αmin} (A.6)

Combining the above two, choosing X1 = F+
i · (− logF+

0 ), X2 = (1−F+
i ) · (− log(1−F+

0 )),
a1 = ĉ1 and a2 = ĉ2 in Lemma A.1 (iii), we get:

P
[
|Ni − (ĉ1 + ĉ2)| > ε

3
· (ĉ1 + ĉ2)

]
≤ P

[ ∣∣F+
i · (− logF+

0 )− ĉ1

∣∣ > ε

3
ĉ1

]
+ P

[ ∣∣∣∣(1− F+
i ) ·

(
− log(1− F+

0 )

)
− ĉ2

∣∣∣∣ > ε

3
ĉ2

]
≤ 4 exp

(
− 2`

ε2α2
min

81

)
+ 4 exp

(
− 2m` · t2(ε/9)

)
{using equations (A.5) and (A.6)} (A.7)

Concentration of Di. Moving on to the denominator, Di = F+
0 ·(− logF+

0 )+(1−F+
0 ) ·

(− log(1 − F+
0 )). Focusing on the first term, F+

0 · (− logF+
0 ), observe that E[F+

0 ] = αpool.
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Again using Lemma A.2 with X = F+
0 and denoting A2 = b̂1

def
= αpool · (− logαpool) we get,

P
[ ∣∣∣F+

0 · (− logF+
0 )− b̂1

∣∣∣ > εb̂1

]
≤ P

[ ∣∣F+
0 − αpool

∣∣ > ε

3
αpool

]
+ P

[ ∣∣− logF+
0 − (− logαpool)

∣∣ > ε

3
· (− logαpool)

]
≤ 2 exp

(
− 2m`

ε2

9
α2

pool

)
+ 2 exp

(
− 2m` · t2(ε/3)

)
{using Lemma A.4 and eq. (A.3)}

≤ 2 exp

(
− 2m`

ε2

9
ᾱ2

pool

)
+ 2 exp

(
− 2m` · t2(ε/3)

)
{since αpool ≥ ᾱpool}

Similarly, for the second term choosing X = (1− F+
0 ) and denoting A2 = b̂2

def
= (1− αpool) ·

(− log(1− αpool)) in Lemma A.2 we get:

P
[ ∣∣∣(1− F+

0 ) · (− log(1− F+
0 ))− b̂2

∣∣∣ > εb̂2

]
≤ P

[ ∣∣(1− F+
0 )− (1− αpool)

∣∣ > ε

3
· (1− αpool)

]
+

P
[ ∣∣− log(1− F+

0 )− (− log(1− αpool))
∣∣ > ε

3
· (− log(1− αpool))

]
= P

[ ∣∣F+
0 − αpool

∣∣ > ε

3
· (1− αpool)

]
+

P
[ ∣∣− log(1− F+

0 )− (− log(1− αpool))
∣∣ > ε

3
· (− log(1− αpool))

]
≤ 2 exp

(
− 2m`

ε2

9
(1− αpool)

2

)
+ 2 exp

(
− 2m` · t2(ε/3)

)
{using Lemma A.4 and eq. (A.4)}

≤ 2 exp

(
− 2m`

ε2

9
ᾱ2

pool

)
+ 2 exp

(
− 2m` · t2(ε/3)

)
{since (1− αpool) ≥ ᾱpool}

Combining the above two, choosingX1 = F+
0 ·(− logF+

0 ), X2 = (1−F+
0 )·(− log(1−F+

0 )),
a1 = b̂1 and a2 = b̂2 in Lemma A.1 (iii), we get:

P
[ ∣∣∣Di − (b̂1 + b̂2)

∣∣∣ > ε

3
(b̂1 + b̂2)

]
≤ P

[ ∣∣∣F+
0 · (− logF+

0 )− b̂1

∣∣∣ > ε

3
b̂1

]
+ P

[ ∣∣∣∣(1− F+
0 ) ·

(
− log(1− F+

0 )

)
− b̂2

∣∣∣∣ > ε

3
b̂2

]
≤ 4 exp

(
− 2m`

ε2

81
ᾱ2

pool

)
+ 4 exp

(
− 2m` · t2(ε/9)

)
(A.8)

Concentration of Vi. Now that we have expressions for the concentration of the
numerator and denominator, we can discuss the concentration of the embedding score Vi.
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Choosing Xi = Ni, Y = Di, ai = ĉ1 + ĉ2, b = b̂1 + b̂2 in Lemma A.1 (i), we get the required
concentration bound for the unidimensional embedding of customer i:

P
[ ∣∣∣∣Vi − ĉ1 + ĉ2

b̂1 + b̂2

∣∣∣∣ > ε
ĉ1 + ĉ2

b̂1 + b̂2

]
= P

[ ∣∣∣∣Ni

Di

− ĉ1 + ĉ2

b̂1 + b̂2

∣∣∣∣ > ε
ĉ1 + ĉ2

b̂1 + b̂2

]
≤ P

[
|Ni − (ĉ1 + ĉ2)| > ε

3
· (ĉ1 + ĉ2)

]
+ P

[ ∣∣∣Di − (b̂1 + b̂2)
∣∣∣ > ε

3
· (b̂1 + b̂2)

]
≤ 4 exp

(
− 2`

ε2α2
min

81

)
+ 4 exp

(
− 2m`

ε2

81
ᾱ2

pool

)
+ 8 exp

(
− 2m` · t2(ε/9)

)
{from equations (A.7) and (A.8)}

≤ 4 exp

(
− 2`

ε2α2
min

81

)
+ 12 exp

(
− 2m` · t2(ε/9)

)
(

since
log2(1− ᾱpool)

(1− log(1− ᾱpool))2
< 1

)
Finally, note that ĉ1 + ĉ2 = H(αzi , αpool), the cross-entropy between the distributions Ber(αzi)

and Ber(αpool), and b̂1 + b̂2 = H(αpool), the binary entropy function evaluated at αpool. The
result then follows.

Proof of Theorem 1.2. The result follows directly from the fact (proved above) that

embedding scores of customers in segment k concentrate around the ratio
H(αk,αpool)

H(αpool)
; refer to

the discussion after Lemma 1.1 in the main text.

A.1.3 Proof of Theorem 1.3

We begin by proving some useful lemmas. All notations are as stated in the main text,
unless otherwise introduced.

Lemma A.5. Let k1, k2 be two arbitrary segments. Then for customer i, we have

|Vi −Hk1|
Hk1

≤ |Hk1 −Hk2|
2 ·max(Hk1 , Hk2)

=⇒ |Vi −Hk1|
Hk1

≤ |Vi −Hk2|
Hk2
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Proof. Consider the following:

|Hk1 −Hk2|
max(Hk1 , Hk2)

=
|(Hk1 − Vi) + (Vi −Hk2)|

max(Hk1 , Hk2)

≤ |Vi −Hk1 |
max(Hk1 , Hk2)

+
|Vi −Hk2|

max(Hk1 , Hk2)

(using triangle inequality)

≤ |Vi −Hk1|
Hk1

+
|Vi −Hk2 |

Hk2

≤ |Hk1 −Hk2|
2 ·max(Hk1 , Hk2)

+
|Vi −Hk2 |

Hk2

(follows from the hypothesis of the Lemma)

Therefore we have that

|Vi −Hk2|
Hk2

≥ |Hk1 −Hk2 |
2 ·max(Hk1 , Hk2)

≥ |Vi −Hk1|
Hk1

Lemma A.6. Consider the constant Λ defined in Theorem 1.3:

Λ =

∣∣∣log
αpool

1−αpool

∣∣∣ · λ
2 |logαmin|

Then, it follows that Λ ≤ mink 6=k′
|Hk−Hk′ |

2·max(Hk,Hk′ )
< 1.

Proof. Recall that Hk =
H(αk,αpool)

H(αpool)
. Then, for any two segments k 6= k′, define:

Λkk′
def
=

|Hk −Hk′|
2 ·max(Hk, Hk′)

=
|H(αk, αpool)−H(αk′ , αpool)|

2 ·max{H(αk, αpool), H(αk′ , αpool)}

Next, observe that H(αk, αpool) = −αk log
αpool

1−αpool
− log(1− αpool), so that

|H(αk, αpool)−H(αk′ , αpool)| =
∣∣∣∣log

αpool

1− αpool

∣∣∣∣ |αk − αk′|
Now suppose αpool >

1
2
, this means that H(αk, αpool) is decreasing with αk so that we have

max{H(αk, αpool), H(αk′ , αpool)} ≤ H(αmin, αpool) ≤ H(αmin, 1− αmin) ≤ − logαmin
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where the second inequality follows from the fact that αpool ≤ 1−αmin and the last inequality
from the fact that − log(1− αmin) ≤ − logαmin. Similarly, when αpool <

1
2
, we have

max{H(αk, αpool), H(αk′ , αpool)} ≤ H(1− αmin, αpool)

≤ H(1− αmin, αmin) = H(αmin, 1− αmin) ≤ − logαmin

where the second inequality is true because αpool ≥ αmin.
Combining the above observations and using the fact that |αk − αk′ | ≥ λ for all k 6= k′, we

get Λkk′ ≥ Λ for all k 6= k′. Further, observe that Λkk′ < 1 because Hk > 0 for all 1 ≤ k ≤ K.
Therefore, Λ ≤ mink 6=k′ Λkk′ < 1 and the claim follows.

Lemma A.7. Consider customer i and suppose we have the following:

|Vi −Hzi |
Hzi

≤ |Hzi −Hk′|
2 ·max(Hzi , Hk′)

∀ k′ 6= zi

Then it follows that Î(i) = zi, i.e the NN classifier Î(·) correctly classifies customer i.
Conversely, it follows that

P
[
Î(i) 6= zi

]
≤ P

[
|Vi −Hzi | > Λ ·Hzi

]
.

Proof. Using Lemma A.5 we obtain that
|Vi−Hzi |
Hzi

≤ |Vi−Hk′ |
Hk′

for all k′ 6= zi. This means that

arg mink∈[K]
|Vi−Hk|
Hk

= zi. For the second part of the claim, observe that if Î(i) 6= zi, then by

Lemma A.6 it follows that there exists some k 6= zi such that
|Vi−Hzi |
Hzi

>
|Hzi−Hk|

2·max(Hzi ,Hk)
≥ Λ. In

other words,
Î(i) 6= zi =⇒ |Vi −Hzi | > Λ ·Hzi

and the claim follows.

We now have all the ingredients for the proof. First, observe that the probability customer
i is misclassified by the nearest-neighbor classifier Î(·) is given by:

P
[
Î(i) 6= zi

]
≤ P

[
|Vi −Hzi | > Λ ·Hzi

]
(using Lemma A.7)

≤ 4 exp

(
− 2`

Λ2α2
min

81

)
+ 12 exp

(
−2m · ` · Λ2ᾱ2

pool log2(1− ᾱpool)

81
(
1− log(1− ᾱpool)

)2

)
(using result of Lemma 1.1) (A.9)

Now given any 0 < δ < 1, suppose that the number of observations from each customer
satisfies:

` ≥ 648

λ2
·
(

logαmin

log(1− αmin) · αmin

)2

· 1

log2 αpool

1−αpool

· log(16/δ)
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Then, starting from equation (A.9), it follows that

P
[
Î(i) 6= zi

]
≤ 4 exp

(
− 2`

Λ2α2
min

81

)
+ 12 exp

(
−2m · ` · Λ2ᾱ2

pool log2(1− ᾱpool)

81
(
1− log(1− ᾱpool)

)2
)

≤ 4 exp

(
− 2`

Λ2α2
min

81

)
+ 12 exp

(
−2m · ` · Λ2α2

min log2(1− αmin)

81
(
1− log(1− αmin)

)2
)

(since ᾱpool ≥ αmin)

≤ 4 exp

(
− 2`

Λ2α2
min log2(1− αmin)

81 (1− log(1− αmin))2

)
+ 12 exp

(
−2m · ` · Λ2α2

min log2(1− αmin)

81
(
1− log(1− αmin)

)2
)

(
since log2(1− αmin) < (1− log(1− αmin))2

)
≤ 16 exp

(
− 2`

Λ2α2
min log2(1− αmin)

81 (1− log(1− αmin))2

)
(since m ≥ 1)

= 16 exp

(
− `

λ2α2
min log2 αpool

1−αpool
log2(1− αmin)

162 · log2 αmin · (1− log(1− αmin))2

)
(substituting the value of Λ)

≤ 16 exp

(
− `

λ2α2
min log2 αpool

1−αpool
log2(1− αmin)

648 · log2 αmin

)
(

since αmin <
1

2
=⇒ 1− log(1− αmin) < 2

)
≤ δ(
using the bound on `

)

Next, suppose that m · log2(1−ᾱpool)(
1−log(1−ᾱpool)

)2 ≥ 1, and observe that ᾱpool ≥ αmin. Then we get,

P
[
Î(i) 6= zi

]
≤ P

[
|Vi −Hzi | > Λ ·Hzi

]
(using Lemma A.7)

≤ 4 exp

(
− 2`

Λ2α2
min

81

)
+ 12 exp

(
−2m · ` · Λ2ᾱ2

pool log2(1− ᾱpool)

81
(
1− log(1− ᾱpool)

)2

)
(using result of Lemma 1.1)

≤ 16 exp

(
− 2`

Λ2α2
min

81

)
(using the lower bounds on m and ᾱpool)

Substituting ` = log n above, we get the desired result.

124



A.1.4 Proofs of Section 1.3.2

Recall that segment k is characterized by B-dimensional vector αk such that αkb represents
the probability of liking any item j ∈ Ib. LetX+

ib denote the number of likes given by customer
i for items in category b, i.e. X+

ib =
∑

j∈Nb(i) 1[Xij = +1], where Nb(i) ⊂ Ib denotes the
collection of items in category b rated by customer i.

To calculate the embedding scores, we first need to compute the pooled estimate for each
category. Since the underlying LC-IND-CAT model is parameterized by a vector of length B

for each segment, the pooled estimate is given by
−→
F+

0 = (F+
01,F

+
02, . . . ,F

+
0B) with:

F+
0b

def
=

∑m
i′=1X

+
i′b

m · `b
∀ b ∈ [B]

where `b is the number of items in category b that each customer rates. Also, let us denote

the fraction of likes given by customer i for category b items as F+
ib

def
=

X+
ib

`b
. We first establish

a lemma that will be useful in the proof:

Lemma A.8. Given any t > 0, for each category b ∈ [B], the following facts are true:

(i) X+
ib ∼ Bin(`b, αzib)

(ii) E[F+
0b ] = αb,pool

(iii) P
[ ∣∣F+

0b − αb,pool

∣∣ ≥ t

]
≤ 2 exp

(
− 2m · `b · t2

)
Proof. Lets begin with part (i). Observe that X+

ib =
∑

j∈Nb(i)
1[Xij = +1]. Based on the

LC-IND-CAT model, we have that 1[Xij = +1] are i.i.d. such that P[Xij = +1] = αzib. The
claim follows from the definition of X+

ib .
For part (ii) observe that,

E[F+
0b ] =

∑m
i′=1 E[X+

i′b]

m · `b
=

∑m
i′=1 `bαzi′b

m · `b
=

∑K
k′=1(qk′m) · (`bαk′b)

m · `b
=

K∑
k′=1

qk′αk′b = αb,pool

where the third equality follows from the fact that proportion qk′ of the customer population
belongs to segment k′.

For part (iii), observe that F+
0b can be written as:

F+
0b =

m∑
i′=1

∑
j∈Nb(i) 1[Xi′j = +1]

m · `b

In other words, F+
0b is an average of m · `b random variables, which are independent under the

LC-IND-CAT model (since ratings for items within the same category are independent and
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the observations of different customers are generated independently). Then using Hoeffding’s
inequality we can show, for any t > 0:

P
[ ∣∣F+

0b − αb,pool

∣∣ ≥ t

]
≤ 2 exp

(
− 2m · `b · t2

)

A.1.5 Proof of Lemma 1.4

For customer i that belongs to segment k, the embedding vector computed by our

algorithm,
−→
Vi = (Vi1,Vi2, · · · ,ViB), is such that:

Vib =
−
∑

j∈Nb(i)
(
1[Xij = +1] logF+

0b + 1[Xij = −1] log(1− F+
0b)
)

−
∑

j∈Nb(i)
(
F+

0b logF+
0b + (1− F+

0b) log(1− F+
0b)
)

=
−
(∑

j∈Nb(i) 1[Xij = +1]
)

logF+
0b −

(∑
j∈Nb(i) 1[Xij = −1]

)
log(1− F+

0b)

−
(
F+

0b logF+
0b + (1− F+

0b) log(1− F+
0b)
)
· `b

=
−
(X+

ib

`b

)
logF+

0b −
(
1− X+

ib

`b

)
log(1− F+

0b)

−
(
F+

0b logF+
0b + (1− F+

0b) log(1− F+
0b)
)

=
−F+

ib logF+
0b −

(
1− F+

ib

)
log(1− F+

0b)

−
(
F+

0b logF+
0b + (1− F+

0b) log(1− F+
0b)
)

Observe that the exact sequence of arguments given in the proof of Lemma 1.1 earlier can
be repeated, for each item category b separately. Then, it follows that, given any 0 < ε < 1,
and for each b ∈ [B]:

P
[ ∣∣∣∣Vib − H(αzib, αb,pool)

H(αb,pool)

∣∣∣∣ > ε
H(αzib, αb,pool)

H(αb,pool)

]
≤ 4 exp

(
− 2`b

ε2α2
min

81

)
+ 12 exp

(
− 2m · `b · t2b(ε/9)

)
(A.10)

where tb(ε)
def
= ε ·

(
−ᾱb,pool log(1−ᾱb,pool)

1−log(1−ᾱb,pool)

)
and ᾱb,pool = min{αb,pool, 1− αb,pool}.

Then, we consider the concentration of the vector
−→
Vi. Recall the B-dimensional vector

Hk = (Hk1, Hk2, · · · , HkB) for each k ∈ [K], defined in the main text, with Hkb =
H(αkb,αb,pool)

H(αb,pool)
.
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Then, using Lemma A.1(iv) it follows that:

P
[
‖
−→
Vi −Hzi‖1 > ε‖Hzi‖1

]
= P

[ B∑
b=1

|Vib −Hzib| > ε ·

(
B∑
b=1

Hzib

)]

≤
B∑
b=1

P
[
|Vib −Hzib| > εHzib

]

≤
B∑
b=1

4 exp

(
− 2`b

ε2α2
min

81

)
+ 12 exp

(
− 2m · `b · t2b(ε/9)

)
{using equation (A.10)}

≤ 4 ·B · exp

(
− 2`min

ε2α2
min

81

)
+ 12B · exp

(
− 2m · `min · t2min(ε/9)

)
where tmin(ε)

def
= ε ·

(
−α̂pool log(1−α̂pool)

1−log(1−α̂pool)

)
and α̂pool = minb∈[B] ᾱb,pool. The last inequality follows

from the facts that `b ≥ `min and ᾱb,pool ≥ α̂pool for all b ∈ [B]. Substituting for tmin(ε) in
the equation above establishes the result.

A.1.6 Proof of Theorem 1.6

We begin by stating analogous versions of Lemmas A.5-A.7.

Lemma A.9. Let k1, k2 be any two segments and ‖·‖ be an arbitrary norm on RB. Then for
customer i, we have

‖
−→
Vi −Hk1‖
‖Hk1‖

≤ ‖Hk1 −Hk2‖
2 ·max(‖Hk1‖, ‖Hk2‖)

=⇒ ‖
−→
Vi −Hk1‖
‖Hk1‖

≤ ‖
−→
Vi −Hk2‖
‖Hk2‖

Proof. The proof follows from a similar argument as in Lemma A.5.

Lemma A.10. For the constant Γ defined in Theorem 1.6, it follows that

Γ ≤ min
k′ 6=k

‖Hk −Hk′‖1

2 ·max (‖Hk‖1, ‖Hk′‖1)
< 1.

Proof. For each k 6= k′, define the following:

Γkk′
def
=

‖Hk −Hk′‖1

2 ·max(‖Hk‖1, ‖Hk′‖1)
=

∑B
b=1

|H(αkb,αb,pool)−H(αk′b,αb,pool)|
H(αb,pool)

2 ·max(‖Hk‖1, ‖Hk′‖1)

Since Hk 6= Hk′ and ‖Hk −Hk′‖1 ≤ ‖Hk‖1 + ‖Hk′‖1 ≤ 2 ·max(‖Hk‖1, ‖Hk′‖1), it follows
that 0 < Γkk′ < 1 for all k 6= k′.

Next, observe that H(αkb, αb,pool) = −αkb log
αb,pool

1−αb,pool
− log(1− αb,pool), so that

|H(αkb, αb,pool)−H(αk′b, αb,pool)| =
∣∣∣∣log

αb,pool

1− αb,pool

∣∣∣∣ |αkb − αk′b|
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Now, note that H(αb,pool) ≤ 1 for any category b, using the definition of the binary entropy
function. Therefore, it follows that

B∑
b=1

|H(αkb, αb,pool)−H(αk′b, αb,pool)|
H(αb,pool)

=
B∑
b=1

∣∣∣log
αb,pool

1−αb,pool

∣∣∣ |αkb − αk′b|
H(αb,pool)

≥
B∑
b=1

∣∣∣∣log
αb,pool

1− αb,pool

∣∣∣∣ |αkb − αk′b|
≥ γ

where γ is as defined in the theorem. Next, consider ‖Hk‖1 for some segment k:

‖Hk‖1 =
B∑
b=1

H(αkb, αb,pool)

H(αb,pool)
≤ 1

Hmin

B∑
b=1

H(αkb, αb,pool), (A.11)

where Hmin
def
= H(αmin). The inequality above follows because αmin ≤ αb,pool ≤ 1− αmin and

the binary entropy function is symmetric around 1
2

so that H(αmin) = H(1 − αmin), from
which it follows H(αb,pool) ≥ Hmin for any category b. Further since αmin ≤ αkb ≤ 1−αmin, we
can use the argument from Lemma A.6 to obtain H(αkb, αb,pool) ≤ |logαmin| for all segments

k and item categories b. Plugging this into equation (A.11), we get ‖Hk‖1 ≤ B·|logαmin|
Hmin

for all
segments k ∈ [K]. Finally observe that Hmin = −αmin logαmin − (1− αmin) log(1− αmin) ≥
− log(1− αmin), so that ‖Hk‖1 ≤ B·|logαmin|

Hmin
≤ B·|logαmin|
|log(1−αmin)| .

Combining the above observations, we get that Γkk′ ≥ Γ for all k 6= k′. Therefore,
Γ ≤ mink 6=k′ Γkk′ < 1 and the claim follows.

Lemma A.11. Consider a customer i and suppose the following is true:

‖
−→
Vi −Hzi‖1

‖Hzi‖1

≤ ‖Hzi −Hk′‖1

2 ·max(‖Hzi‖1, ‖Hk′‖1)
∀ k′ 6= zi

Then it follows that Î2(i) = zi, i.e the NN classifier Î2(·) correctly classifies customer i.
Conversely, it follows that

P
[
Î2(i) 6= zi

]
≤ P

[
‖
−→
Vi −Hzi‖1 > Γ · ‖Hzi‖1

]
Proof. The proof follows from an identical argument as in Lemma A.7, and making use of
the results of Lemmas A.9 and A.10 above.

We are now ready to prove the theorem. The probability that a customer i is misclassified
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by the nearest-neighbor classifier Î2(·) is given by:

P
[
Î2(i) 6= zi

]
≤ P

[
‖
−→
Vi −Hzi‖1 > Γ · ‖Hzi‖1

]
(using Lemma A.11)

≤ 4 ·B · exp

(
− 2`min

Γ2α2
min

81

)
+ 12B · exp

(
−2m · `min · Γ2α̂2

pool log2(1− α̂pool)

81
(
1− log(1− α̂pool)

)2
)

(follows from Lemma 1.4) (A.12)

Now given any 0 < δ < 1, suppose that the number of observations from each customer
satisfy:

`min ≥
648B2

γ2
·
(

logαmin

log2(1− αmin) · αmin

)2

log(16B/δ)

Then, starting from equation (A.12), it follows that

P
[
Î2(i) 6= zi

]
≤ 4B · exp

(
− 2`min

Γ2α2
min

81

)
+ 12B · exp

(
−2m · `min · Γ2 · α̂2

pool log2(1− α̂pool)

81
(
1− log(1− α̂pool)

)2
)

≤ 4B · exp

(
− 2`min

Γ2α2
min

81

)
+ 12B · exp

(
−2m · `min · Γ2 · α2

min log2(1− αmin)

81
(
1− log(1− αmin)

)2
)

(since α̂pool ≥ αmin)

≤ 4B · exp

(
− 2`min

Γ2α2
min log2(1− αmin)

81 (1− log(1− αmin))2

)
+ 12B · exp

(
−2m · `min · Γ2α2

min log2(1− αmin)

81
(
1− log(1− αmin)

)2
)

(
since log2(1− αmin) < (1− log(1− αmin))2

)
≤ 16B · exp

(
− 2`min

Γ2α2
min log2(1− αmin)

81 (1− log(1− αmin))2

)
(since m ≥ 1)

= 16B · exp

(
− 2`min

γ2 · log2(1− αmin) · α2
min log2(1− αmin)

324B2 · log2 αmin · (1− log(1− αmin))2

)
(substituting value of Γ)

≤ 16B · exp

(
− `min

γ2 · log2(1− αmin) · α2
min log2(1− αmin)

648B2 · log2 αmin

)
(

since αmin <
1

2
=⇒ 1− log(1− αmin) < 2

)
≤ δ(
using the bound on `min

)

129



Finally, suppose that m · log2(1−α̂pool)(
1−log(1−α̂pool)

)2 ≥ 1, and observe that α̂pool ≥ αmin. Then, it

follows that

P
[
Î2(i) 6= zi

]
≤ P

[
‖
−→
Vi −Hzi‖1 > Γ · ‖Hzi‖1

]
(using Lemma A.11)

≤ 4B · exp

(
− 2`min

Γ2α2
min

81

)
+ 12B · exp

(
−2m · `min · Γ2 · α̂2

pool log2(1− α̂pool)

81
(
1− log(1− α̂pool)

)2
)

(follows from the result of Lemma 1.4)

≤ 16 ·B · exp

(
− 2`min

Γ2α2
min

81

)
(using the lower bounds on m and α̂pool)

Substituting `min = log n above, we get the desired result.

A.2 Computational study: EM algorithm for the LC

method

Let Θ =

[
q1, q2, · · · , qK , α1, α2, · · · , αK

]
denote the set of all parameters (refer to the

setup in Section 1.4). The total number of parameters is therefore K + K = 2 · K. Let
D = {xobs

1 ,xobs
2 , . . . ,xobs

m } be the observed rating vectors from the m customers. Then
assuming that the rating vectors are sampled i.i.d. from the population mixture distribution,
the log-likelihood of the data can be written as:

logP[D |Θ] =
m∑
i=1

log
K∑
k=1

qk ·

 ∏
j∈N(i)

α
1[xij=+1]
k · (1− αk)1[xij=−1]

 , (A.13)

where 1[·] denotes the indicator function. The LC method computes the estimates of the
parameters Θ that maximize the log-likelihood (A.13).

The MLE can be computed via the EM algorithm by introducing latent variables cor-
responding to the true segment of each customer, which we denote by z = [z1, z2, . . . , zm]
where zi ∈ [K] denotes the true segment of customer i. The complete data log-likelihood can
then be written as

logP[D, z |Θ] =
m∑
i=1

K∑
k=1

1[zi = k] · log

qk · ∏
j∈N(i)

α
1[xij=+1]
k · (1− αk)1[xij=−1]

 .

Starting from an initial estimate Θ(0) of the parameters, the EM algorithm executes the
following two steps in each iteration t ≥ 1:
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• E-step: Given the data D and the current estimate of the parameters Θ(t−1), we
compute the expected complete data log-likelihood w.r.t to the conditional distribution
z | D; Θ(t−1):

Ez | D;Θ(t−1){logP[D, z |Θ]}

=
m∑
i=1

K∑
k=1

γ
(t−1)
ik

[
log qk +

∑
j∈N(i)

1[xij = +1] logαk + 1[xij = −1] log(1− αk)

]

Here γ
(t−1)
ik = P[zi = k | D,Θ(t−1)] is the posterior probability of customer i’s latent

segment being equal to k ∈ [K], conditioned on the observed ratings and the current

model parameters. We can compute γ
(t−1)
ik using Bayes theorem as follows

γ
(t−1)
ik ∝ P[xobs

i | zi = k; Θ(t−1)] · P[zi = k |Θ(t−1)]

=

∏
j∈N(i) (α

(t−1)
k )

1[xij=+1]
· (1− α(t−1)

k )
1[xij=−1]

· q(t−1)
k∑K

k′=1

∏
j∈N(i) (α

(t−1)
k′ )

1[xij=+1]
· (1− α(t−1)

k′ )
1[xij=−1]

· q(t−1)
k′

.

• M-step: Based on the current posterior estimates of the customer segment memberships
γ

(t−1)
ik and the observed data D, the model parameters are updated by maximizing the

expected complete data log-likelihood Ez | D;Θ(t−1){logP[D, z |Θ]}, which can be shown
to be a lower bound on the (incomplete) data log-likelihood logP[D |Θ]. Taking into
account the constraint

∑K
k′=1 qk′ = 1, we get the following update for the parameter qk

q
(t)
k =

∑m
i=1 γ

(t−1)
ik

m
∀k ∈ [K]

Similarly, for the parameter αk, we get the following update

α
(t)
k =

∑m
i=1

∑
j∈N(i) γ

(t−1)
ik · 1[xij = +1]∑m

i=1

∑
j∈N(i) γ

(t−1)
ik

∀k ∈ [K]

We repeat these two steps until convergence of the log-likelihood logP[D |Θ].
Implementation specifics. We imposed a Beta(2, 2) prior on the parameters αk, and

Dir(1.5, 1.5, . . . , 1.5) prior on the proportions qk, to avoid numerical and overfitting issues
for sparse graphs. In this case, we compute the maximum a posteriori probability (MAP)
estimate of the model parameters Θ, using an EM algorithm similar to the one described
above. Further, since the log-likelihood objective in (A.13) is non-convex, the LC method is
sensitive to the initial estimates Θ(0) and consequently, we run both the EM and SLSQP
approaches 10 times with different random initializations and report the best outcome.
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A.3 MovieLens case study

A.3.1 Benchmark details.

LC method. The LC method assumes that the population is comprised of K segments
with proportion qk and probability of like αk for segment k ∈ [K]. Then, it estimates the
parameters by maximizing the log-likelihood of the observed ratings:

max
q1,q2,...,qK
α1,...,αK

m∑
i=1

log

 K∑
k=1

qk
∏

j∈Ntrain(i)

α
1[rij=+1]
k (1− αk)1[rij=−1]


s.t.

∑
k∈[K]

qk = 1, qk ≥ 0, 0 ≤ αk ≤ 1 ∀ k

We use the EM algorithm described in Appendix A.2 to estimate the parameters. Let αLC
k ,

k = 1, 2, . . . , K, denote the segment parameters estimated by the LC method and let γik
denote the posterior probability of membership in segment k for user i. Then, the predicted
rating for a new movie jnew is given by: r̂LC

ijnew
= +1 if

∑K
k=1 γikα

LC
k ≥ 0.5 else r̂LC

ijnew
= −1.

EB method. The EB method assumes that the population is described by a prior
distribution Gprior(·) over the parameter 0 ≤ α ≤ 1 where α represents the probability of
liking any item; and each individual i samples αi ∼ Gprior and uses αi to generate ratings for
the movies. Given the observed ratings, the parameters of Gprior(·) are estimated using a
standard technique like maximum likelihood or method-of-moments. Then, for each individual
i, we compute the posterior mean α̂i based on the estimated prior Ĝprior, i.e.

α̂i =

∫ 1

0

α · Ĝpost,i(α) dα,

where Ĝpost,i is the posterior distribution for αi. Since 0 ≤ α ≤ 1 and the ratings rij ∈
{+1,−1} are binary, we assume the prior is a beta distribution Beta(a, b) with a, b > 0 and
estimate the parameters a, b using the method-of-moments. Then, the posterior distribution
for αi is given by (since the beta distribution is a conjugate prior for the binomial distribution):

Ĝpost,i = Beta

a+
∑

j∈Ntrain(i)

1[rij = +1], b+
∑

j∈Ntrain(i)

1[rij = −1]


where rij is the rating given by user i for movie j and N train(i) is the set of movies rated by
user i. Consequently, we have that

α̂i =
a+

∑
j∈Ntrain(i) 1[rij = +1]

a+ b+ |N train(i)|

and given a new movie jnew, we predict r̂EB
ijnew

= +1 if α̂i ≥ 0.5 otherwise r̂EB
ijnew

= −1.
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Genre Accuracy % Improvement

k-medoids sc α-embed over k-medoids over sc

Action (K = 2) 30.7 44.9 56.4 83.7 25.6
Comedy (K = 4) 37.7 45.0 58.4 54.9 29.8
Drama (K = 4) 38.6 47.4 57.2 48.2 20.7

Table A.1: Comparison against additional benchmarks for new movie recommendations on
MovieLens dataset

Similarity-based clustering methods. We also consider two additional similarity-
based clustering benchmarks: (1) k-medoids clustering [dHINM04], an extension of the
popular k-means algorithm to handle missing entries, and (2) spectral clustering [NJW01]
which clusters data points via spectral decomposition of an affinity (or similarity) matrix.
Both of these methods take as input an appropriate similarity (or distance) measure between
any two data points; we used the standard cosine distance measure: for any two customers
i 6= i′ with rating vectors ri and ri′ (with rij = 0 if customer i did not rate item j), the cosine
similarity is defined as:

cossim(i, i′)
def
=

∑n
j=1 rij · ri′j√∑n

j=1 r
2
ij ·
√∑n

j=1 r
2
i′j

The measure is termed cosine similarity because it can be viewed as the cosine of the
angle between the vectors ri and ri′ . Observing the term

∑n
j=1 xij · xi′j in the numerator

above, we note that it is the difference between the number of agreements (i.e. both rate
+1 or −1) and disagreements (i.e. one rates +1 and other rates −1) between i and i′ for
commonly rated items. This is scaled by (square root of) the product of the number of items
rated by each customer in the denominator. Therefore, more the number of agreements,
larger is the similarity between the customers. The cosine similarity lies between −1 and 1, a
cosine similarity of 1 indicates perfect agreement and −1 indicates perfect disagreement. The
cosine distance is given by cosd(i, i′) := 1− cossim(i, i′) which lies between 0 and 2.

For both the k-medoids and spectral clustering (which we refer to as sc) methods, after
clustering the customer population, we estimate a separate parameter αk for each segment k
and predict ratings for new movies using the estimated parameters (as done for our approach
α-embed). The accuracies for the similarity-based clustering benchmarks are reported in
Table A.1. We see that they perform poorly, this is expected—these techniques rely on a
well-defined similarity measure between data points which becomes difficult to determine when
there are (many) missing entries. In particular, our method achieves upto 84% improvement
over k-medoids (for action genre) and 30% improvement over spectral clustering (for comedy
genre).

133



A.3.2 Partially specified model for ratings

We discuss here the application of our segmentation approach when the model generating
user ratings is only partially specified. We focus on movies in the three genres, action, comedy
and drama. Since movies were tagged with more than one genre in the dataset, we only
considered movies that had exactly one of these 3 genres; this left us with a total of 1,861
movies and a population of 6,040 users rating on these movies. We consider the generative
model introduced in Definition 1.2, here we have B = 3 categories and the parameter
vector αk = (αk,action, αk,comedy, αk,drama). For each genre, we separately estimated the pooled
parameters αb,pool as described in the main text, where b ∈ {action, comedy, drama}. Then,
we apply Algorithm 4 to compute a 3-dimensional embedding vector for each user. The V
matrix was incomplete, i.e., there were certain users that did not rate for movies in all 3
genres and therefore we computed a rank r = 2 factorization1 of the V matrix. Then, we
clustered the embedding vectors using the k-means algorithm into K = 5 segments, where
the choice of K was tuned using a validation set similar to the case for individual genres
discussed in the main text.

We compare our approach to a LC benchmark, and use an EM algorithm (similar to the
one derived above in Appendix A.2) for estimating the model parameters. Table A.2 reports
the accuracies as well as statistics of the training and test datasets. As expected, segmenting
the population provides significant improvements compared to the population model, which
assumes that users have homogeneous preferences. Our approach still outperforms the LC
benchmark, by upto 20% for the action genre and by 6.8% in aggregate. Further, even with
the matrix factorization step, our approach is still ∼ 3× faster as compared to EM.

1We used the ALS (Alternating Least Squares) class in pyspark.mllib.recommendation module, which
is part of Apache Spark’s python API, to compute the factorization: https://spark.apache.org/docs/

latest/api/python/pyspark.mllib.html#pyspark.mllib.recommendation.ALS.
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Appendix B

Chapter 2 Proofs and Details of
Numerical Experiments

B.1 Analysis of expected penalties under soft-penalty

algorithm

First, we introduce some additional notation. Let Pih[A] (resp. Pia[A]) denote the
probability of some eventA conditioned on the fact that worker wi is honest (resp. adversarial).
Similarly, Eih[X] (resp. Eia[X]) denotes the conditional expectation of the random variable
X given the event that worker wi is honest (resp. adversarial). Also, let f(·) denote the
probability density function (PDF) of the worker reliability distribution. Recall the definitions
P := qµ+ (1− q), Q := 1− qµ, and the function g(x) := 1−xr

r(1−x)
; observe that g(·) is strictly

increasing on (0, 1). Let 1[A] denote the indicator variable taking value 1 if the event A is
true and 0 otherwise. Let D+

j (resp. D−j ) denote the number of workers who label task tj as
+1 (resp −1). In other words, D+

j =
∑

wi∈Wj
1[Wij = +1] and D−j =

∑
wi∈Wj

1[Wij = −1],
where recall that Wj denotes the set of workers who labeled task tj . Here, Wij represents the
label assigned by worker wi to task tj , note that it is a random variable under the generative
model described in the main text. Finally, let Bin(z, p) denote the Binomial distribution with
parameters z and p.

We begin by proving some important lemmas that will be repeatedly used in the proofs
below.

Lemma B.1. Under the generative model in Section 2.4.1, the probability that worker wi
provides response +1 for a task tj is given by

P[Wij = +1 |Yj = +1] = P

P[Wij = +1 |Yj = −1] = Q

Furthermore, conditioned on Yj = +1 or Yj = −1, the random variables 1[Wij = +1]
are i.i.d. for all wi ∈ Wj. As a result, it follows that D+

j |Yj = +1 ∼ Bin(r, P ) and
D+

j |Yj = −1 ∼ Bin(r,Q).

136



Proof. Consider the case when Yj = +1:

P[Wij = +1 |Yj = +1]

= Pih[Wij = +1 |Yj = +1] · P[wi is honest |Yj = +1]

+ Pia[Wij = +1 |Yj = +1] · P[wi is adversarial |Yj = +1]

=

(∫ 1

0

Pih[Wij = +1 |Mi = µi;Yj = +1] · f(µi)dµi

)
· q + 1 · (1− q)

=

(∫ 1

0

µif(µi)dµi

)
· q + (1− q) = qµ+ (1− q) = P,

where the first term of the second equality follows from the law of total expectation, the
second term because the adversary always labels a task +1, and the third equality follows
from the definition of honest worker reliability Mi.

Furthermore, it follows from our generative process that conditioned on Yj = +1, the
labels from any two workers wi 6= wi′ for task tj are generated independently. Therefore,
we have shown that, conditioned on Yj = +1, the random variables 1[Wij = +1] are
independent and identically distributed with probability P of taking value 1. Because
D+

j =
∑

wi∈Wj
1[Wij = +1] and |Wj| = r, it follows that D+

j |Yj = +1 is a sum of r i.i.d.

Bernoulli random variables and, hence, D+
j |Yj = +1 ∼ Bin(r, P ).

A similar argument shows that P[Wij = +1 |Yj = −1] = Q and consequently D+
j |Yj =

−1 ∼ Bin(r,Q).

Lemma B.2. Under the generative model in Section 2.4.1, suppose that worker wi is honest
with a sampled reliability µi and let Sij denote the penalty received by wi from task tj ∈ Ti in
the soft-penalty algorithm. Then, we can show

Eih[Sij |Mi = µi] = γ ·
(
µi ·g(1−P )+(1−µi)·g(P )

)
+(1−γ)·

(
µi ·g(Q)+(1−µi)·g(1−Q)

)
Similarly, if worker wi is adversarial, then it follows:

Eia[Sij] = γ · g(1− P ) + (1− γ) · g(1−Q)

Proof. We begin with the case when wi is honest. Using the law of total expectation, we
have:

Eih[Sij |Mi = µi]

=
∑

v1,v2∈{−1,+1}

Eih[Sij |Mi = µi;Wij = v1;Yj = v2] · Pih[Wij = v1;Yj = v2 |Mi = µi]

We first consider the case when v1 = +1 and v2 = +1. In this case, because worker wi
assigns label +1 to task tj (i.e., Wij = +1), the penalty Sij assigned by the task to the
worker is equal to 1/D+

j . Furthermore, because Yj = +1 and 1[Wij = +1] = 1, it follows

137



from the arguments in Lemma B.1 that D+
j − 1 is distributed as Bin(r − 1, P ). Focusing on

the first term in the product, it follows

Eih[Sij |Mi = µi;Wij = +1;Yj = +1] = Eih
[
1/D+

j |Mi = µi;Wij = +1;Yj = +1

]
=

r−1∑
k=0

1

1 + k

(
r − 1

k

)
· P k(1− P )r−1−k

=
1

r
·
r−1∑
k=0

(
r

k + 1

)
· P k(1− P )r−1−k

=
1

rP
·

r∑
k′=1

(
r

k′

)
· P k′(1− P )r−k

′

=
1− (1− P )r

rP
= g(1− P ), (B.1)

where the third equality follows because 1
k+1
·
(
r−1
k

)
= 1

r
·
(

r
k+1

)
, the fifth equality follows

because
∑r

k′=0

(
r
k′

)
· P k′(1− P )r−k

′
= 1, and the last equality follows from the definition of

the function g(·).
Furthermore, for the second term:

Pih[Wij = +1,Yj = +1 |Mi = µi]

= Pih[Wij = +1 |Yj = +1;Mi = µi] · Pih[Yj = +1 |Mi = µi] = µiγ (B.2)

Combining equations (B.1) and (B.2), it follows that

Eih[Sij |Mi = µi;Wij = +1;Yj = +1] · Pih[Wij = +1;Yj = +1 |Mi = µi] = g(1− P )µiγ
(B.3)

The case when v1 = −1 and v2 = +1 (i.e., Wij = −1 and Yj = +1) follows a symmetric
argument. In particular, because worker wi assigns the label −1 to task tj, the penalty Sij
that is assigned is equal to 1/D−j . Furthermore, it follows from the arguments in Lemma B.1
that D−j − 1 is distributed as Bin(r− 1, 1− P ). Then, repeating the sequence of steps above,
we can show that

Eih[Sij |Mi = µi;Wij = −1;Yj = +1] · Pih[Wij = −1;Yj = +1 |Mi = µi] = g(P ) · (1− µi)γ
(B.4)

Replacing P by Q, µi by 1 − µi, and γ by 1 − γ in equations (B.3),(B.4) yields the
expressions for the other two cases. In particular, we have

Eih[Sij |Mi = µi;Wij = +1;Yj = −1] · Pih[Yj = −1;Wij = +1 |Mi = µi]

= g(1−Q) · (1− γ) · (1− µi)
Eih[Sij |Mi = µi;Wij = −1;Yj = −1] · Pih[Yj = −1;Wij = −1 |Mi = µi]

= g(Q) · (1− γ) · µi (B.5)
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Combining equations B.3-B.5, we obtain

Eih[Sij |Mi = µi] = γ ·
(
µi ·g(1−P )+(1−µi)·g(P )

)
+(1−γ)·

(
µi ·g(Q)+(1−µi)·g(1−Q)

)
and the first half of the claim follows.

Next, suppose that worker wi is an adversary. Because adversaries always assign the label
+1, we need to consider only two cases: Yj = +1 and Yj = −1. The conditional expectations
of the penalties in both cases are identical to those above:

Eia[Sij |Wij = +1;Yj = +1] = g(1− P )

Eia[Sij |Wij = +1;Yj = −1] = g(1−Q) (B.6)

Further, we also have

Pia[Wij = +1;Yj = +1] = γ

Pia[Wij = +1;Yj = −1] = 1− γ (B.7)

Combining equations B.6 and B.7, we obtain

Eia[Sij] = γ · g(1− P ) + (1− γ) · g(1−Q),

and the result of the lemma follows.

We are now ready to prove the theorems.

B.1.1 Proof of Theorem 2.2

First, note that if q = 1 then P = µ and Q = 1− µ. Also, since all workers are honest,
we remove the explicit conditioning on worker wi being honest. Then the expected penalty
allocated to worker wi having reliability µi:

E[PENi |Mi = µi] =
1

l

∑
j∈Ti

E[Sij |Mi = µi]

= γ ·
(
µi · g(1− P ) + (1− µi) · g(P )

)
+ (1− γ) ·

(
µi · g(Q) + (1− µi) · g(1−Q)

)
(using Lemma B.2)

= γ ·
(
µi · g(1− µ) + (1− µi) · g(µ)

)
+ (1− γ) ·

(
µi · g(1− µ) + (1− µi) · g(µ)

)
= g(µ)− µi · (g(µ)− g(1− µ))

Since g(·) is strictly increasing on (0, 1) and µ > 1
2
, we have that µ > 1− µ and consequently

g(µ)− g(1− µ) > 0. The claim then follows.
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B.1.2 Proof of Theorem 2.3

For an honest worker wi, we have that

ph := Eih[PENi]

=
1

l

∑
j∈Ti

Eih[Sij ]

=
1

l

∑
j∈Ti

∫ 1

0
Eih[Sij |Mi = µi]f(µi)dµi (law of total expectation)

=

∫ 1

0

(
γ · (µi · g(1− P ) + (1− µi) · g(P )) + (1− γ) · (µi · g(Q) + (1− µi) · g(1−Q))

)
f(µi)dµi

(using Lemma B.2)

= γ ·
(
µ · g(1− P ) + (1− µ) · g(P )

)
+ (1− γ) ·

(
µ · g(Q) + (1− µ) · g(1−Q)

)
(since

∫ 1

0
µif(µi)dµi = µ)

Similarly, when worker wi is adversarial,

pa := Eia[PENi]

=
1

l

∑
j∈Ti

Eia[Sij]

=
1

l

∑
j∈Ti

γ · g(1− P ) + (1− γ) · g(1−Q) (using Lemma B.2)

= γ · g(1− P ) + (1− γ) · g(1−Q)

Suppose qµ ≤ 1/2, then we have that Q = 1 − qµ ≥ 1/2 and P > Q ≥ 1/2. Further,
because g(·) is strictly increasing, it follows that g(1−P )−g(P ) < 0 and g(1−Q)−g(Q) ≤ 0.
Given this, and using the expressions for the expected penalty computed above, we have that:

pa − ph
= γ · (1− µ) · (g(1− P )− g(P ))︸ ︷︷ ︸

<0

+(1− γ) · µ · (g(1−Q)− g(Q))︸ ︷︷ ︸
≤0

≤ 0

Therefore, qµ > 1
2

is a necessary condition for ph < pa. Assuming this condition is met, we
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derive the second condition:

pa > ph ⇐⇒ pa − ph > 0

⇐⇒ γ · (1− µ) ·
(
g(1− P )− g(P )

)
+ (1− γ) · µ ·

(
g(1−Q)− g(Q)

)
> 0

⇐⇒ (1− γ) · µ ·
(
g(1−Q)− g(Q)

)
> γ · (1− µ) ·

(
g(P )− g(1− P )

)

⇐⇒ µ

1− µ
·

(
g(1−Q)− g(Q)

)
(
g(P )− g(1− P )

) >
γ

1− γ

(since P > qµ >
1

2
and Q = 1− qµ < 1

2
)

Consider the function h(µ, q) = g(1−Q)−g(Q)
g(P )−g(1−P )

in the regime qµ > 1
2
. Note that as q increases, Q

decreases (since ∂Q
∂q

= −µ < 0) and therefore g(1−Q)− g(Q) (strictly) increases. Similarly,

P decreases as q increases (since ∂P
∂q

= µ− 1 ≤ 0) and therefore g(P )− g(1− P ) decreases.

It follows that h(µ, q) is a strictly increasing function of q. The result of the theorem now
follows.

Proof of Corollary 2.3.1. Since qµ > 1
2
, we have that P > 1

2
and Q < 1

2
. From the

proof of Theorem 2.3 above, we have

pa > ph ⇐⇒
µ

1− µ
· h(µ, q) >

γ

1− γ
⇐⇒ hµ(q) >

γ

1− γ

⇐⇒ q > h−1
µ

(
γ

1− γ

)
(since hµ(q) is strictly increasing)

B.2 Asymptotic identification of honest and

adversarial workers

We begin with the proof of the lemma establishing the locally-tree like property of the
worker-task assignment graph.

B.2.1 Proof of Lemma 2.5

We adapt the proof from [KOS14]. Consider the following (discrete time) random process
that generates the random graph Bw,2 starting from the root node w. In the first step, we
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connect l task nodes to node w according to the configuration model, where l half-edges
are matched to a randomly chosen subset of mr task half-edges of size l. Let α1 denote
the probability that the resulting graph is not a tree, that is, at least one pair of edges are
connected to the same task node. Since there are

(
l
2

)
pairs and each pair of half-edges is

connected to the same task node with probability r−1
mr−1

, we have that:

α1 ≤
(
l

2

)
r − 1

mr − 1
≤ l2

2m
=

lr

2n

where we use the fact that (a− 1)/(b− 1) ≤ a/b for all a ≤ b and the relation mr = nl. Next,
define β2 ≡ P[Bw,2 is not a tree | Bw,1 is a tree] so that we have:

P (Bw,2 is not a tree) ≤ α1 + β2

We can similarly bound β2. For generating Bw,2 conditioned on Bw,1 being a tree, there are
lr̂ half-edges where r̂ = r − 1. Among the

(
lr̂
2

)
pairs of these half-edges, each pair will be

connected to the same worker with probability l−1
l·(n−1)−1

and therefore:

β2 ≤
l2r̂2

2

l − 1

l · (n− 1)− 1

≤ l2r̂2

2

l

l · (n− 1)
=

l2r̂2

2(n− 1)

Combining this with the above, we get that

P[Bw,2 is not a tree] ≤ α1 + β2 ≤
lr

2n
+

l2r̂2

2(n− 1)
≤ l2r2

n− 1

B.2.2 Proof of Lemma 2.6

Consider an honest worker wi with a given reliability µi. Recall that the penalty assigned
to wi is of the form:

PENi =
1

l

∑
j∈Ti

Sij,

where Sij = 1
D+
j

if Wij = +1 and Sij = 1
D−j

when Wij = −1. For any two tasks tj 6= tj′ ∈ Ti,
we claim that Wij and Wij′ are independent, conditioned on the reliability Mi. This is
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because for (v1, v2) ∈ {−1,+1}, we can show:

P[Wij = v1;Wij′ = v2 |Mi = µi]

=
∑

(x1,x2)∈{−1,+1}

P[Wij = v1;Wij′ = v2 |Mi = µi;Yj = x1;Yj′ = x2] · P[Yj = x1;Yj′ = x2]

(since the true task labels are independent of Mi)

=

(
P[Wij = v1 |Mi = µi;Yj = +1] · P[Yj = +1] + P[Wij = v1 |Mi = µi;Yj = −1] · P[Yj = −1]

)
·(

P[Wij′ = v2 |Mi = µi;Yj′ = +1] · P[Yj′ = +1] + P[Wij′ = v2 |Mi = µi;Yj′ = −1] · P[Yj′ = −1]

)
= P[Wij = v1 |Mi = µi] · P[Wij′ = v2 |Mi = µi]

Note that the third equality makes use of the fact that Wij (resp. Wij′) is independent of
all other random variables conditioned on the reliability Mi and the true label Yj (resp. Yj′).
The argument above can be extended for any subset of random variables Wij1 ,Wij2 , . . . ,Wiji .
Further, if the worker-task assignment graph is 2-locally tree-like at wi, there is no other
overlap in the set of workers labeling the tasks tj, tj′ apart from wi. This combined with
the above claim statement shows that the random variables {Sij : j ∈ Ti} are mutually
independent under our generative model. In addition, since 1

r
≤ Sij ≤ 1 for any task tj ∈ Ti,

i.e the random variables Sij are bounded, we can apply Hoeffding’s inequality to bound the
difference between PENi and E[PENi |Mi = µi] for any ε > 0:

P

(
PENi ≥ E[PENi |Mi = µi] + ε

∣∣∣Mi = µi

)
≤ exp

(
−2lε2

(1− 1/r)2

)
The result then follows.

B.2.3 Proof of Theorem 2.4

Suppose we draw a random worker w uniformly from the set of workers W . Then, we
want to compute the average error probability, which is the probability that we misclassify a
randomly chosen worker:

1

n

n∑
i=1

P
(
I(wi) 6= Îθ(wi) and Mi > µ̂(θ)

)
= P

(
I(w) 6= Îθ(w) and Mw > µ̂(θ)

)
Let PENw denote the penalty received by the worker w. Recall the expression for the

expected penalty received by an honest worker from the proof of Theorem 2.2 above:

E[PENw |Mw = µw] = g(µ)− µw · (g(µ)− g(1− µ)).

Based on the definition of µ̂(θ) in the theorem it follows that

pµ̂(θ) := E[PENw |Mw = µ̂(θ)] = θ − ε.
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We upper bound the probability P
(
I(w) 6= Îθ(w) and Mw > µ̂(θ)

)
in two steps. First,

if Bw,2 is not a tree, we suppose that the classifier always declares wi as adversarial, thereby
making an error. So, supposing Bw,2 is a tree, the probability that we misclassify w is given
by

P(PENw > θ and Mw > µ̂(θ))

= P(PENw > pµ̂(θ) + ε and Mw > µ̂(θ))

=

∫ 1

µ̂(θ)

P
(

PENw > pµ̂(θ) + ε |Mw = µ̃

)
f(µ̃)dµ̃

≤
∫ 1

µ̂(θ)

P
(

PENw > E[PENw |Mw = µ̃] + ε |Mw = µ̃

)
f(µ̃)dµ̃

(since µ̃ > µ̂(θ) =⇒ E[PENw |Mw = µ̃] < pµ̂(θ))

≤
∫ 1

µ̂(θ)

exp

(
−2lε2

(1− 1/r)2

)
f(µ̃)dµ̃

(from Lemma 2.6)

≤ exp

(
−2lε2

(1− 1/r)2

)
Then, combining the two cases, it follows that

1

n

n∑
i=1

P
(
I(wi) 6= Îθ(wi) and Mi > µ̂(θ)

)
= P

(
I(w) 6= Îθ(w) and Mw > µ̂(θ)

)
≤ P(Bw,2 is not a tree ) · 1 + P

(
I(w) 6= Îθ(w) and Mw > µ̂(θ) | Bw,2 is a tree

)
· 1

≤ l2r2

n− 1
+ exp

(
−2lε2

(1− 1/r)2

)
and the first part of the theorem follows. For the second part, when l = log n and r is fixed,
note that

exp

(
−2lε2

(1− 1/r)2

)
= exp

(
−2 log n · ε2

(1− 1/r)2

)
= exp

log

(
1

n

) 2ε2

(1−1/r)2

 = O

(
1

n2ε2

)

In addition, because ε < 1√
2

=⇒ 2ε2 < 1, it follows that log2 n·r2

n−1
= O

(
1

n2ε2

)
and the claim

follows.

B.2.4 Proof of Theorem 2.7

We follow a similar line of reasoning to the proof of Theorem 2.4. As before, if Bw,2 is
not a tree, we suppose that the worker is always misclassified.
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First, we focus on honest workers. Given a threshold θ, choose the reliability threshold
µ̂(q, θ) such that

E[PENi |Mi = µ̂(q, θ)] = θ − ε,
where the expected penalty for an honest worker with a fixed reliability was computed in
Lemma B.2. Specifically, we have the following expression for µ̂(q, θ):

γ ·
(
µ̂(q, θ) · g(1− P ) + (1− µ̂(q, θ)) · g(P )

)
+ (1− γ) ·

(
µ̂(q, θ) · g(Q) + (1− µ̂(q, θ)) · g(1−Q)

)
= θ − ε
=⇒(
γ · g(1− P )− γ · g(P ) + (1− γ) · g(Q)− (1− γ) · g(1−Q)

)
· µ̂(q, θ)

= θ − ε− γ · g(P )− (1− γ) · g(1−Q)

=⇒

µ̂(q, θ) =
γ · g(P ) + (1− γ) · g(1−Q) + ε− θ

γ · (g(P )− g(1− P )) + (1− γ) · (g(1−Q)− g(Q))

Note that such a threshold always exists since (1) θ − ε > ph = E[PENi |Mi = µ], (2)
E[PENi |Mi = µi] (strictly) increases as µi decreases, and (3) E[PENi |Mi = 0] ≥ pa >
θ > θ − ε. In particular, this means that µ̂(q, θ) < µ. Further, observe that if q = 1, then we
have µ̂(1, θ) = µ̂(θ).

Then, the probability that we misclassify a randomly chosen honest worker is given by

P(PENw > θ |w is honest ) ≤ P
(

PENw ≥ E[PENw |Mw = µ̂(q, θ)] + ε |w is honest

)
The claim then follows from the result of Lemma 2.8 below.

When w is adversarial, the probability that we misclassify w is given by

P(PENw ≤ θ | w is adversarial) ≤ P(PENw ≤ pa − ε | w is adversarial) ≤ exp

(
−2lε2

(1− 1/r)2

)
where the first inequality follows since θ < pa − ε and the second follows from the result of

Lemma 2.8 below.
Coming to the second part of the theorem, first observe that the expected penalties ph

and pa lie between 0 and 1. As a result, we have that ε < (pa − ph)/2 ≤ 1
2

=⇒ 2ε2 < 1 and
the claim follows from the sequence of arguments in the proof of Theorem 2.4 above.
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B.2.5 Proof of Lemma 2.8

Suppose that worker wi is honest and let pµ̂ = E[PENi |Mi = µ̂]. We have the following
(conditioned on Bwi,2 being a tree):

P(PENi ≥ pµ̂ + ε |wi is honest )

=

∫ 1

0

P(PENi ≥ pµ̂ + ε |wi is honest and Mi = µi)f(µi)dµi

=

∫ µ̂

0

P(PENi ≥ pµ̂ + ε |wi is honest and Mi = µi)f(µi)dµi

+

∫ 1

µ̂

P(PENi ≥ pµ̂ + ε |wi is honest and Mi = µi)f(µi)dµi

≤
∫ µ̂

0

f(µi)dµi

+

∫ 1

µ̂

P(PENi ≥ E[PENi |Mi = µi] + ε |wi is honest and Mi = µi)f(µi)dµi

(since µi ≥ µ̂ =⇒ E[PENi |Mi = µi] ≤ pµ̂)

≤ F (µ̂) + exp

(
−2lε2

(1− 1/r)2

)
(from Lemma 2.6)

When wi is an adversary, note that its responses {Wij : j ∈ Ti} are trivially independent
since adversarial workers always respond with +1 on all assigned tasks. Further, since Bwi,2
is locally tree-like, there is no other overlap in the set of workers labeling any two tasks
tj, tj′ ∈ Ti apart from wi. As a result, the assigned penalties {Sij : j ∈ Ti} are mutually
independent and using the Hoeffding’s inequality, we can establish the concentration bound
for adversarial workers:

P[PENi ≤ pa − ε |wi is adversarial] ≤ exp

(
−2l2ε2∑l

j=1 (1− 1/r)2

)
= exp

(
−2lε2

(1− 1/r)2

)

B.2.6 Extending results to random, normalized variant of
hard-penalty algorithm

Here, we show that the theoretical results proved above for the soft-penalty algorithm
extend to the random, normalized variant of the hard-penalty algorithm mentioned in
Section 2.3.3. First, we focus on the expected penalties. Since the penalty algorithm is
randomized, the expectation also takes into account the randomness in the algorithm. As
above, if Sij denotes the penalty received by worker wi from task tj, then we have that
Sij ∈ {0, 1}. Further, conditioned on the fact that Wij = +1, we have that E[Sij |Wij =
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+1] = E[ 1
D+
j

|Wij = +1] using the law of iterated expectations. Similarly, for the case when

Wij = −1. Then, using the arguments above it is easy to see that the expressions for the
expected penalties are the same.

Moving on to the concentration results, observe that Sij depends only on Wij and D+
j

(and consequently, D−j ). This is because when Wij = +1, we have

(Sij |Wij = +1) =

{
1 w.p. 1/D+

j

0 w.p. 1− 1/D+
j

Similarly, for the case when Wij = −1. Now, when B is locally tree-like at worker node
wi, the arguments in the proofs of Lemma 2.6 and 2.8 establish that the random variables
{Sij : tj ∈ Ti} are still mutually independent conditioned on the identity of worker wi (this
also relies on the fact that each task is treated independently when computing the random
semi-matching). Therefore, we can apply the Hoeffding’s bound to establish the concentration
of the penalties under the random, normalized variant of the hard-penalty algorithm around
the expected values.

B.3 Proof of Lemma 2.9

For the simple majority algorithm, it is easy to see that each task has k incorrect responses
and at most r < k correct responses and consequently, it outputs the incorrect label for all
tasks.

For the expectation-maximization (EM) algorithm, recall that the generative model for
worker ratings is as follows: the true task labels are sampled from a population with γ ∈ [0, 1]
fraction of tasks having +1 true label. Each worker wi has reliability parameter µi ∈ [0, 1],
which specifies the probability that wi provides the correct label on any task. Then, given
the response matrix L, the log-likelihood of the parameters, Θ = (µ1, µ2, · · · , µn, γ) under
this generative model can be written as:

logP[L |Θ] =
m∑
j=1

log (aj(µ) · γ + bj(µ) · (1− γ))

where aj(µ), bj(µ) are defined as (recall that Wj is the set of workers who label task tj)

aj(µ) =
∏
i∈Wj

µi
1[Lij=+1] · (1− µi)1[Lij=−1]

bj(µ) =
∏
i∈Wj

(1− µi)1[Lij=+1] · µi1[Lij=−1]

The objective is to find the model parameters Θ∗ that maximize the log-likelihood, i.e.
Θ∗ = arg maxΘ logP[L |Θ]. The EM algorithm computes the maximum likelihood estimates
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(MLE) of the model parameters by introducing the latent true label of each task, denoted by
the vector y = [y1, y2, . . . , ym]. The complete data log-likelihood can then be written as:

logP[L,y |Θ] =
m∑
j=1

(
yj log(aj(µ)γ) + (1− yj) log (bj(µ) · (1− γ))

)
(B.8)

Starting from an initial estimate Θ(0), each iteration x ≥ 1 of the EM algorithm consists
of two steps:

• E-step: Given the response matrix L and the current estimate of the model parameters
Θ(x−1), the expectation of the complete data log-likelihood (w.r.t to the conditional
distribution y | L; Θ(x−1)) is computed as

Ey | L;Θ(x−1){logP[L,y |Θ]} =

m∑
j=1

(
δ

(x−1)
j log(aj(µ) · γ) + (1− δ(x−1)

j ) log (bj(µ) · (1− γ))

)

where δ
(x−1)
j = P[yj = +1 | L; Θ(x−1)] is the current posterior estimate of the true label

of task tj being +1. Using Bayes theorem, we can compute

δ
(x−1)
j =

P[{Lij : i ∈ Wj} | yj = +1; Θ(x−1)] · P[yj = +1 |Θ(x−1)]

P[{Lij : i ∈ Wj} |Θ(x−1)]

=
aj(µ

(x−1)) · γ(x−1)

aj(µ(x−1)) · γ(x−1) + bj(µ(x−1)) · (1− γ(x−1))
(B.9)

where the first equality follows from the fact that labels for different tasks tj are
independent of each other and the second equality follows from the law of total
probability.

• M-step: Based on the current posterior estimates of the true labels δ
(x−1)
j , the model

parameters are updated by maximizing the expected complete data log-likelihood
Ey | L;Θ(x−1){logP[L,y |Θ]}, which can be shown to be a lower bound on the (incomplete)
data log-likelihood logP[L |Θ]. The prevalence of positive tasks γ is updated as:

γ(x) =

∑m
j=1 δ

(x−1)
j

m
(B.10)

Similarly, the reliability of worker wi is updated as:

µ
(x)
i =

∑
j∈Ti

(
1[Lij = +1] · δ(x−1)

j + 1[Lij = −1] · (1− δ(x−1)
j )

)
|Ti|

(B.11)

where recall that Ti is the set of tasks assigned to worker wi.
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These two steps are iterated until convergence of the data log-likelihood logP[L |Θ]. After
convergence, the true labels of the tasks are estimated as:

ŷj = 2 · 1[δ
(K)
j ≥ 0.5]− 1 (B.12)

where K is the number of iterations to convergence.
Since the original problem is non-convex, the EM algorithm converges to a local optimum

in general. Its performance critically depends on the initialization of the posterior estimates
δ

(0)
j for each task tj. A popular approach is to use the majority estimate (see [RY12]), given

by δ
(0)
j :=

∑
i∈Wj

1[Lij=+1]

|Wj | . We show that this initialization results in incorrect labels for all

the tasks.
Suppose that the true labels for all tasks are +1, i.e yj = +1 for all 1 ≤ j ≤ m. Then

all honest worker labels are +1 and adversary labels are −1. Further, since each task has
more adversary than honest labels, we have that δ

(0)
j < 0.5 for all 1 ≤ j ≤ m. Given this, it

easy to see from equation (B.11) that µ
(1)
i < 0.5 whenever wi is honest and µ

(1)
i > 0.5 for all

adversarial workers wi. In addition, we have γ(1) < 0.5 which follows from equation (B.10).
With these estimates, we update the posterior probabilities δj for each task tj. Again, it

follows that δ
(1)
j < 0.5 for all 1 ≤ j ≤ m, using the update rule in equation (B.9). The above

sequence of claims shows that δ
(x−1)
j < 0.5 for all iterations x ≥ 1 and consequently, ŷj = −1

for all tasks tj (using equation (B.12)). Therefore, the EM algorithm outputs incorrect labels
for all tasks.

Now, let us consider the general case. If we initialize using the majority estimate, we
obtain that δ

(0)
j > 0.5 for all tasks with true label yj = −1 and δ

(0)
j < 0.5 for all tasks with

yj = +1. Then, it follows from equation (B.11) that µ
(1)
i < 0.5 for all honest workers wi and

µ
(1)
i > 0.5 for adversarial workers wi. In addition, if we look at the update equations (B.10)

and (B.11) together, we can also show that µ
(1)
i ≥ max(1−γ(1), γ(1)) for all adversaries wi. To

see this, first note that adversaries label on all the tasks, so that |Ti| = m for an adversarial
worker wi. Next, let T +

i and T −i denote the set of tasks for which adversary wi labels +1 and
−1 respectively. We need to consider different cases based on whether T +

i or T −i are empty:

If T +
i is empty, then it follows that µ

(1)
i = 1− γ(1). Also, since all adversary labels are

−1, we have δ
(0)
j < 0.5 for all 1 ≤ j ≤ m and therefore γ(1) < 1− γ(1). Therefore, in this case

we have µ
(1)
i ≥ max(1− γ(1), γ(1)). A symmetric argument can be applied when T −i is empty.
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So suppose that both T +
i and T −i are non-empty, then we have from equation (B.11):

µ
(1)
i =

∑
j∈Ti

(
1[Lij = +1] · δ(0)

j + 1[Lij = −1] · (1− δ(0)
j )
)

|Ti|

=

∑
j∈T +

i
δ

(0)
j +

∑
j∈T −i

(1− δ(0)
j )

m

>

∑
j∈T +

i
δ

(0)
j +

∑
j∈T −i

δ
(0)
j

m

(since δ
(0)
j < 0.5 if adversaries label tj as − 1)

=

∑
j∈Ti δ

(0)
j

m
= γ(1)

where the last equality follows from equation (B.10). Similarly, we can show that µ
(1)
i > 1−γ(1)

and the claim follows.
Now, let W

(h)
j and W

(a)
j denote the set of honest and adversarial workers labeling task tj.

Consider a task tj for which the true label yj = −1. Now, we have two cases:

Case 1: γ(1) ≥ 0.5. First observe that since µ
(1)
i < 0.5 for all honest workers wi, we have

µ
(1)
i < 1− µ(1)

i for all honest workers wi. Similarly, we have 1− µ(1)
i < µ

(1)
i for all adversarial

workers wi. Then, we have

bj(µ
(1)) · (1− γ(1)) =

∏
i∈Wj

(1− µ(1)
i )

1[Lij=+1]
· (µ(1)

i )
1[Lij=−1]

 · (1− γ(1))

=
∏

i∈W (h)
j

µ
(1)
i ·

∏
i∈W (a)

j

(1− µ(1)
i ) · (1− γ(1))

(since honest worker response is − 1 and adversary response is + 1)

<
∏

i∈W (h)
j

(1− µ(1)
i ) ·

∏
i∈W (a)

j

µ
(1)
i · γ(1)

= aj(µ
(1)) · γ(1)

where the inequality follows from the observation above and the fact that γ(1) ≥ 0.5. Using
equation (B.9), it follows that δ

(1)
j > 0.5.

150



Case 2: γ(1) < 0.5. In this scenario, we have:

bj(µ
(1)) · (1− γ(1))

=

∏
i∈Wj

(1− µ(1)
i )

1[Lij=+1]
· (µ(1)

i )
1[Lij=−1]

 · (1− γ(1))

=
∏

i∈W (h)
j

µ
(1)
i ·

∏
i∈W (a)

j

(1− µ(1)
i ) · (1− γ(1))

=
∏

i∈W (h)
j

µ
(1)
i · (1− µ(1)

wi1
) · (1− γ(1)) ·

∏
i∈W (a)

j \{i1}

(1− µ(1)
i )

(where wi1 is some adversarial worker)

≤
∏

i∈W (h)
j

µ
(1)
i · µ(1)

wi1
· γ(1) ·

∏
i∈W (a)

j \{i1}

(1− µ(1)
i )

(
since 1− γ(1) ≤ µ(1)

wi1
because wi1 is adversarial; see discussion before Case 1 above

)
<

∏
i∈W (h)

j

(1− µ(1)
i ) · µ(1)

wi1
· γ(1) ·

∏
i∈W (a)

j \{i1}

µ
(1)
i

(from Case 1 above)

= aj(µ
(1)) · γ(1)

Consequently, in both cases, the posterior probability δ
(1)
j > 0.5 given that the true label

was yj = −1. A symmetric argument shows that δ
(1)
j < 0.5 if yj = +1. Then, the above

sequence of claims establishes that this remains true for all iterations in the future. Finally,
step (B.12) implies that the output label is incorrect for all tasks.

B.4 Proof of Theorem 2.10

We prove the result for the case when there exists at least one subset T ′ ⊆ T such that
PreIm(T ′) ≤ k. Otherwise, the lower bound L = 0 by definition and the result of the theorem
is trivially true.

Let H∗ denote the set PreIm(T ∗) where

T ∗ def
= arg max
T ′⊆T : |PreIm(T ′)|≤k

|T ′| .

We construct an adversary strategy σ∗ under which at least L tasks are affected for
some true labeling of the tasks, for any decision rule R ∈ C. Specifically for a fixed honest
worker-task assignment graph BH and ground-truth labeling y of the tasks, consider the
following adversary strategy (that depends on the obtained honest worker responses): letting
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H∗ = {h1, h2, . . . , h|H∗|} and the set of adversaries A = {a1, a2, . . . , ak}, we have (recall the
notation in Section 2.2)

ai(t) =

{
−hi(t) if t ∈ T ∗

hi(t) otherwise
∀i = 1, 2, . . . , |H∗| (B.13)

In other words, the adversaries flip the labels of the honest workers H∗ for tasks in T ∗
and copy their responses for all other tasks. Note that since |H∗| ≤ k by construction, the
above strategy is feasible. In addition, if |H∗| < k, then we only use |H∗| of the k adversary
identities. Let L(y) denote the n×m response matrix obtained for this adversary strategy,
where we explicitly denote the dependence on the true label vector y. Here, recall that, n
denotes the total number of workers.

Now consider the scenario in which the true labels of all tasks in T ∗ were reversed, let
this ground-truth be denoted as ỹ. Let h̃(t) denote the response of honest worker h for task
t in the new scenario. Since, honest workers always respond correctly, we have that:

h̃(t) =

{
−h(t) if t ∈ T ∗

h(t) otherwise
∀ h ∈ H (B.14)

Correspondingly, according to the adversary labeling strategy σ∗ described above, the adver-
sary responses would also change. In particular, using ãi(t) to denote the adversary response
in the new scenario, we have

ãi(t) =

{
−h̃i(t) if t ∈ T ∗

h̃i(t) otherwise
∀i = 1, 2, . . . , |H∗| (B.15)

Finally, let L(ỹ) denote the response matrix in this new scenario.
We now argue that L(ỹ) = P · L(y) for some n × n permutation matrix P. In order

to see this, for any worker w (honest or adversary), let r(w) and r̃(w) respectively denote
the row vectors in matrices L(y) and L(ỹ). We show that L(ỹ) can be obtained from L(y)
through a permutation of the rows.

First, for any honest worker h /∈ H∗, we must have by definition of PreIm(·) that h(t) = 0
for any t ∈ T ∗. Thus, it follows from equation (B.14) that h̃(t) = −h(t) = 0 = h(t) for
any t ∈ T ∗. Furthermore, h̃(t) = h(t) for any t /∈ T ∗ by (B.14). Therefore, we have that
r̃(h) = r(h) for any h /∈ H∗. Next, consider an honest worker hi ∈ H∗ for some i. It can
be argued that r̃(hi) = r(ai). To see this, for any task t /∈ T ∗, we have by equation (B.14)
that h̃i(t) = hi(t) = ai(t), where the second equality follows from equation (B.13). Similarly,
for any t ∈ T ∗, we have h̃i(t) = −hi(t) = ai(t) again using equation (B.13). Thus, we have
shown that the rows r̃(hi) = r(ai) for any 1 ≤ i ≤ |H∗|. A symmetric argument shows that
r̃(ai) = r(hi) for all 1 ≤ i ≤ |H∗|. Consequently, L(ỹ) is obtained from L(y) by swapping
rows corresponding to hi with ai for all i = 1, 2, . . . , |H∗|.

Next, it follows from the fact that the decision rule R ∈ C, that R (L(ỹ)) = R (L(y)).
Thus, the labels output by R for all tasks in T ∗ is the same under both scenarios. As
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a result, it follows that Aff(R, σ∗,y) + Aff(R, σ∗, ỹ) = |T ∗| = 2 ∗ L and therefore, either
Aff(R, σ∗,y) ≥ L or Aff(R, σ∗, ỹ) ≥ L. In other words, there exists a ground-truth task
labeling for which the number of affected tasks is at least L, and since we take a maximum
over all possible ground-truth labelings, the result of the theorem follows. Further, any
decision rule that breaks ties (i.e equal number of +1 and −1 responses) randomly, such as
the simple majority rule, will achieve the lower bound L.
Worker misclassification rates. Since we allow the sophisticated adversaries to adopt
arbitrary strategies, we need to assume some characteristic property that helps to identify
honest workers. In the theorem we assumed that all honest workers are perfectly reliable, so
that they agree with each other on their labels for all tasks. Any algorithm that is trying to
separate honest workers from the sophisticated adversaries will output two groups of workers,
say W (1),W (2) such that W (1) ∪W (2) = H ∪A and W (1) ∩W (2) = φ. Further, let us suppose
that the algorithm has knowledge of k—the number of sophisticated adversaries, so that
the output satisfies

∣∣W (1)
∣∣ = n− k and

∣∣W (2)
∣∣ = k where |H ∪ A| = n. We call an output

(W (1),W (2)) valid if all workers in W (1) agree with each other on their labels for all tasks.
Note that the “true” output W (1) = H and W (2) = A is valid. We argue that for the above
adversary strategy, the output W (1) = (H \H∗) ∪ A and W (2) = H∗ is also valid, where H∗

is as defined in the proof above.
To see this, first note that we can identify the set T ∗ of tasks for which there are conflicts,

i.e. both +1 and −1 labels, and use it to partition the set of workers labeling these tasks
into two groups where workers in each group agree on their label for all tasks. Now, one of
these groups comprises adversarial workers A and the other honest workers, corresponding
to the set H∗. The remaining workers correspond to the set H \H∗. Now, if we consider
the output W (1) = (H \H∗) ∪ A, any two workers in W (1) indeed agree with each other on
their labels for all tasks. This is because, by the definition of PreIm, workers in H \H∗ only
label tasks in the set T \ T ∗. Further, since adversaries agree with honest workers H∗ on
these tasks (refer to the strategy above) and honest workers are perfectly reliable, this means
that adversaries A and honest workers H \H∗ also agree with each other on their labels for
all tasks in T \ T ∗. Consequently, we have that the output ((H \H∗) ∪ A,H∗) is also valid.
Further, this is the only other valid output, since honest workers H∗ and adversaries A do
not agree with each other on their labels for tasks in T ∗ and therefore, cannot be placed
together in the same group.

Finally, since there is no other information about the worker identities, any algorithm
cannot distinguish between the two valid outputs described above, so that a random guess
will misclassify 2k workers with probability (1/2).

B.4.1 Proof of Corollary 2.10.1

We first prove that 2L ≥ bk
r
c. Consider T ′ ⊆ T such that |T ′| = bk

r
c, note that we can

always choose such a T ′ since k < |H| ≤ r · |T | =⇒ k/r < |T |. Since BH is r-right regular,
the pre-image of T ′ in BH satisfies |PreIm(T ′)| ≤ r · |T ′| = r · bk

r
c ≤ k. In other words, any

subset of tasks of size bk
r
c has a pre-image of size at most k. By the definition of L, we have
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that 2L ≥ bk
r
c.

For the upper-bound, consider any T ′ ⊂ T such that |T ′| = e where e := d k
α
e+ 1. Since

e < γ · |T |, by the expander property we have that

|PreIm(T ′)| ≥ α|T ′| = α · e ≥ α · (k
α

+ 1) > k.

This means that any subset T ′ of size at least e has a pre-image of size strictly greater than k,
since the size of the pre-image can only increase with the addition of more tasks. Therefore,
this implies that 2L ≤ d k

α
e.

For the second part of the corollary, refer to Theorem 4.4 in Chapter 4 of [Vad12].

B.5 Proof of Theorem 2.11

Before we can prove the theorem, we need the following definitions and lemmas.

Definition B.1. A bipartite graph G = (V1, V2, E) is termed degenerate if the following
condition is satisfied:

|V1| > |V2|.

Definition B.2. A bipartite graph G = (V1, V2, E) is termed growth if the following
condition is satisfied:

∀ V ⊆ V1, |V | ≤ |Img(V ), |

where Img(V ) = {v2 ∈ V2 | ∃v ∈ V s.t. (v, v2) ∈ E}, i.e. the set of neighboring nodes of V .

Lemma B.3. Any bipartite graph can be decomposed into degenerate and growth sub-graph,
where there are cross-edges only between the left nodes of the growth component and the right
nodes of the degenerate component.

Proof. Let G = (V1, V2, E) be a given bipartite graph. Define V ∗ to be the largest subset of
V1 such that |V ∗| > |ImgG(V ∗)| where ImgG denotes the image in the graph G. If no such
V ∗ exists then the graph is already growth and we are done. If V ∗ = V1 then the graph is
degenerate and again we are done. Else, we claim that the sub-graph J of G restricted to
V1 \V ∗ on the left and V2 \ ImgG(V ∗) on the right is growth. Suppose not, then there exists a
subset V ′ of nodes on the left such that |V ′| > |ImgJ(V ′)| where ImgJ(V ′) ⊆ V2 \ ImgG(V ∗)
denotes the image of V ′ in the sub-graph J . But then, we can add V ′ to V ∗ to get a
larger degenerate sub-graph in G, contradicting our choice of V ∗. Also, note that the only
cross-edges are between V1 \ V ∗ and ImgG(V ∗). The claim then follows.

Lemma B.4. Let G = (V1, V2, E) be a bipartite graph and suppose that M is any semi-
matching on G. Further, let J = (V1, V

′
2 , E

′) be the subgraph of G restricted to only the nodes
V ′2 ⊆ V2 on the right. Starting with M ′ ⊆ M , we can use algorithm ASM2 in [HLLT03] to
obtain an optimal semi-matching N for the subgraph J . Let the nodes in V1 be indexed such that
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degM(1) ≥ degM(2) ≥ . . . ≥ degM(|V1|) and indexed again such that degN (1) ≥ degN (2) ≥
. . . ≥ degN (|V1|). Then for any 1 ≤ s ≤ |V1|, we have

∑s
i=1 degN (i) ≤

∑s
i=1 degM (i), i.e. the

sum of the top s-degrees can only decrease as we go from M to N .

Proof. Note that if we restrict M to just the nodes V ′2 , we get a feasible semi-matching
M ′ on the subgraph J . Algorithm ASM2 proceeds by the iterated removal of cost-reducing
paths. Note that when a cost-reducing path is removed, load is transferred from a node with
larger degree (in the current semi-matching) to a node with strictly smaller degree. To see

this, let P̂ = (v
(1)
1 , v

(1)
2 , v

(2)
1 , . . . , v

(d)
1 ) be a cost-reducing path (see Section 2.1 in [HLLT03])

in some semi-matching M̄ on J . This means that degM̄(v
(1)
1 ) > degM̄(v

(d)
1 ) + 1. When we

eliminate the cost-reducing path P̂ , the degree of v
(1)
1 decreases by 1 and that of v

(d)
1 increases

by 1, but still the new degree of v
(d)
1 is strictly lower than the old degree of v

(1)
1 . In other

words, if dbef
1 ≥ dbef

2 ≥ . . . ≥ dbef
|V1| and daft

1 ≥ daft
2 ≥ . . . ≥ daft

|V1| be the degree sequence

(in the current semi-matching) before and after the removal of a cost-reducing path, then∑s
i=1 d

aft
i ≤

∑s
i=1 d

bef
i for any 1 ≤ s ≤ |V1|. Since this invariant is satisfied after every

iteration of algorithm ASM2, it holds at the beginning and the end, and we have

s∑
i=1

degN (i) ≤
s∑
i=1

degM ′(i) (B.16)

Finally, observe that when we restrict M to only the set V ′2 , the sum of the top s-degrees can
only decrease, i.e.

s∑
i=1

degM ′(i) ≤
s∑
i=1

degM(i) (B.17)

Combining equations (B.16) and (B.17), the result follows.

Lemma B.5. Let G = (V1, V2, E) be a bipartite graph and suppose that M is any semi-
matching on G. Further, let J = (V1 ∪· V3, V2, E

′) be the supergraph of G obtained by adding
nodes V3 on the left and edges E ′ \ E to G. Starting with M , we can use algorithm ASM2

in [HLLT03] to obtain an optimal semi-matching N for the supergraph J . Let the nodes in V1

be indexed such that degM (1) ≥ degM (2) ≥ . . . ≥ degM (|V1|) and the nodes in V1 ∪· V3 indexed
again such that degN (1) ≥ degN (2) ≥ . . . ≥ degN (|V1 ∪· V3|). Then for any 1 ≤ s ≤ |V1 ∪· V3|,
we have

∑s
i=1 degN (i) ≤

∑s
i=1 degM (i), i.e. the sum of the top s-degrees can only decrease as

we go from M to N .

Proof. Note that M is a feasible semi-matching for the graph J , with all nodes in V3

having degree 0. We can repeat the argument from the previous lemma to show that if
dbef

1 ≥ dbef
2 ≥ . . . ≥ dbef

|V1∪· V3| and daft
1 ≥ daft

2 ≥ . . . ≥ daft
|V1∪· V3| be the degree sequence (in

the current semi-matching) before and after the removal of any cost-reducing path, then∑s
i=1 d

aft
i ≤

∑s
i=1 d

bef
i for any 1 ≤ s ≤ |V1 ∪· V3|. The result then follows.

Notation for the proofs. Let T + denote the set {t+ : t ∈ T }, and similarly T − denote
the set {t− : t ∈ T }, these are “task copies”. Now partition the set of task copies T + ∪ T −
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as E ∪· F such that for any task t, if the true label is +1, we put t+ in E and t− in F ,
otherwise, we put t− in E and t+ in F . Thus, E contains task copies with true labels while
F contains task copies with incorrect labels. Let F ′ ⊆ F denote the set of tasks for which
honest workers provide incorrect responses, and denote the optimal semi-matching on the
graph BcsH by MH . Without loss of generality, suppose that honest workers are indexed such
that d1 ≥ d2 ≥ · · · ≥ d|H| where dh denotes the degree of honest worker h in semi-matching
MH .

B.5.1 Part 1: Adversary strategy that affects at least 1
2

∑k−1
i=1 di

tasks

If ε = 0, there are no conflicts in the responses provided by honest workers, and therefore
the bipartite graph BcsH contains just “true” task copies E on the right.

Given this, the adversaries target honest workers {1, 2, . . . , k − 1}: for each i, adversary
ai labels opposite to worker hi (i.e. provides the incorrect response) on every task that hi is
mapped to in the semi-matchingMH . Furthermore, the adversary uses its last identity ak to
provide the incorrect response on every task t ∈ T for which one of the first k− 1 adversaries
have not already labeled on. We argue that under the penalty-based label aggregation
algorithm, this adversary strategy results in incorrect labels for at least 1

2

∑k−1
i=1 di tasks. To

see this, first note that the conflict set Tcs = T . Further, the bipartite graph Bcs decomposes
into two disjoint subgraphs: bipartite graph Bcs(E) between H and E and semi-matching
M(F ) between A and F that represents the adversary labeling strategy (it is a semi-matching
because there is exactly one adversary that labels each task). Since the bipartite graph
Bcs decomposes into two disjoint bipartite graphs, computing the optimal semi-matching
on Bcs is equivalent to separately computing optimal semi-matchings on Bcs(E) and M(F ).
The argument above says that Bcs(E) is nothing but the graph BcsH defined in the theorem
statement and therefore MH is the optimal semi-matching on Bcs(E). Given that M(F ) is
already a semi-matching by construction, the optimal semi-matching on Bcs is the disjoint
union ofMH and M(F ). It is easy to see that in the resultant semi-matching, honest worker
hi and adversary ai have the same degrees for i = 1, 2, . . . , k − 1. Hence, for every task
mapped to honest worker hi for i = 1, 2, . . . , k−1 in the optimal semi-matching, the algorithm
outputs a random label, and therefore outputs the correct label for at most half of these tasks.
Thus, the above adversary strategy results in incorrect labels for at least 1

2

∑k−1
i=1 di tasks.

B.5.2 Part 2: Upper bound on number of affected tasks

To simplify the exposition, we assume in the arguments below that the optimal semi-
matching in the hard-penalty algorithm is computed for the entire task set and not just the
conflict set Tcs. However, the bounds provided still hold as a result of Lemma B.4 above.
Consequently, we abuse notation and use Bcs to denote the following bipartite graph in the
remainder of the discussion: each worker w is represented by a node on the left, each task t
is represented by at most two nodes on the right—t+ and t−—and we add an edge (w, t+)
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if worker w labels task t as +1 and edge (w, t−) if w labels t as −1. Then, it is easy to
see that the subgraph of Bcs restricted to just the honest workers H on the left and task
copies E ∪ F ′ on the right, is nothing but the graph BcsH defined in the theorem statement.
Consequently,MH is a feasible semi-matching for the subgraph Bcs(E∪F ′), which is obtained
by restricting Bcs to nodes E ∪ F ′ on the right. Further, we can assume that the adversary
labeling strategy is always a semi-matching, i.e. there is at most one adversary response
for any task. If the adversary labeling strategy is not a semi-matching, they can replace it
with an alternate strategy where they only label for tasks to which they will be mapped
in the optimal semi-matching (the adversaries can compute this since they have knowledge
of the honest workers’ responses). The optimal semi-matching doesn’t change (otherwise it
contradicts the optimality of the original semi-matching) and hence neither does the number
of affected tasks.

We first state the following important lemma:

Lemma B.6. For any adversary labeling strategy, let Bcs(E ∪ F ′) denote the bipartite graph
Bcs restricted to all the workers W = H ∪ A on the left and, “true” task copies E as well as
subset F ′ of the “incorrect” task copies F on the right. Let M be the optimal semi-matching
on the bipartite graph Bcs and M(E ∪ F ′) ⊂M be the semi-matching M restricted to only
the task copies E ∪ F ′. Then, M(E ∪ F ′) is an optimal semi-matching for the sub-graph
Bcs(E ∪ F ′).

Proof. First observe that if F ′ = F , then the statement is trivially true. So we can assume
F ′ ⊂ F . Suppose the statement is not true and let N (E ∪ F ′) denote the optimal semi-
matching on Bcs(E ∪F ′). We use dw(K) to denote the degree of worker w in a semi-matching
K. Note that, da(N (E ∪ F ′)) ≤ da(M(E ∪ F ′)) ≤ da(M) for all adversaries a ∈ A, where
the first inequality follows from the fact that the adversary strategy is a semi-matching and
the second inequality is true because M(E ∪ F ′) ⊂M. The adversaries who do not provide
any responses for the task copies E ∪F ′ will have degrees 0 in the semi-matchings N (E ∪F ′)
and M(E ∪ F ′) but the inequality is still satisfied. Now, since N (E ∪ F ′) is an optimal
semi-matching and M(E ∪ F ′) is not, we have that

cost(N (E ∪ F ′)) < cost(M(E ∪ F ′))⇒∑
h∈H

d2
h(N (E ∪ F ′)) +

∑
a∈A

d2
a(N (E ∪ F ′)) <

∑
h∈H

d2
h(M(E ∪ F ′)) +

∑
a∈A

d2
a(M(E ∪ F ′))

Now, consider the semi-matching N on Bcs where we start with the semi-matching N (E ∪F ′)
and then map the remaining task copies in Bcs (which belong to the set F \ F ′) to the
adversaries which they were assigned to inM. We claim that cost(N ) < cost(M) which is a
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contradiction since M was assumed to be an optimal semi-matching on Bcs. To see this:

cost(M)− cost(N )

=
∑
h∈H

d2
h(M) +

∑
a∈A

d2
a(M)−

(∑
h∈H

d2
h(N ) +

∑
a∈A

d2
a(N )

)
=
∑
h∈H

d2
h(M(E ∪ F ′)) +

∑
a∈A

(
da(M(E ∪ F ′)) + ∆a

)2
−
(∑
h∈H

d2
h(N (E ∪ F ′)) +

∑
a∈A

(
da(N (E ∪ F ′)) + ∆a

)2)
(

where ∆a
def
= da(M)− da(M(E ∪ F ′)) ≥ 0

)
=

(∑
h∈H

d2
h(M(E ∪ F ′)) +

∑
a∈A

d2
a(M(E ∪ F ′))−

∑
h∈H

d2
h(N (E ∪ F ′))−

∑
a∈A

d2
a(N (E ∪ F ′))

)
+ 2

∑
a∈A

(
da(M(E ∪ F ′))− da(N (E ∪ F ′))

)
∗∆a > 0(

since da(M(E ∪ F ′)) ≥ da(N (E ∪ F ′)) as stated above
)

Therefore, M(E ∪ F ′) is an optimal semi-matching for the sub-graph Bcs(E ∪ F ′).

Part 2(a). Adversaries only provide incorrect responses or one adversary
provides correct responses. We first prove part 2(a) in the theorem statement.

Adversaries only provide incorrect responses. Let us begin with the case when
each adversary only provides incorrect responses.

Lemma B.7. Suppose that ε = 0 and adversaries only provide incorrect responses. Let M
be an arbitrary semi-matching on the bipartite graph Bcs and suppose that this semi-matching
is used in the penalty-based label aggregation algorithm to compute the true labels of the
tasks. Further, let b1 ≥ b2 ≥ · · · ≥ b|H| denote the degrees of the honest workers in this
semi-matching where bi is the degree of honest worker hi. Then, the number of affected tasks

is at most
k∑
i=1

bi.

Proof. It follows from the assumption that ε = 0 and that adversaries only provide incorrect
responses, that there are no cross-edges between nodes H and F as well as A and E in
the bipartite graph Bcs. Thus, for any adversary labeling strategy, we can decompose Bcs
into disjoint bipartite graphs Bcs(E) and Bcs(F ), where Bcs(E) is the subgraph consisting of
honest workers H and task copies E and Bcs(F ) is the subgraph between the adversaries A
and the task copies F . This further means that the semi-matching M is a disjoint union of
semi-matchings on Bcs(E) and Bcs(F ). Let the semi-matchings on the subgraphs be termed
as M(E) and M(F ) respectively. Further, let Taff ⊆ T denote the set of tasks that are
affected under this strategy of the adversaries and when the semi-matching M is used to
compute the penalties of the workers in the penalty-based aggregation algorithm. We claim
that |Taff | ≤

∑k
i=1 bi. To see this, for each adversary a ∈ A, let H(a) ⊂ H denote the set
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of honest workers who have “lost” to a i.e., for each worker h ∈ H(a) there exists some
task t ∈ Tcs such that h is mapped to the true copy of t in M(E), a is mapped to the
incorrect copy of t in M(F ), and the degree of h in M(E) is greater than or equal to the
degree of a in M(F ). Of course, H(a) may be empty. Let Ā denote the set of adversaries
{a ∈ A : H(a) 6= ∅} and let H̄ denote the set of honest workers

⋃
a∈ĀH(a). Now define a

bipartite graph between the nodes Ā and H̄ with an edge between a ∈ Ā and h ∈ H̄ if
and only if h ∈ H(a). This bipartite graph can be decomposed into degenerate and growth
subgraphs by Lemma B.3 above. In the growth subgraph, by Hall’s condition, we can find
a perfect matching from adversaries to honest workers. Let (A1, H1) with A1 ⊆ Ā and
H1 = Img(A1) be the degenerate component. The number of tasks that adversaries in A1

affect is bounded above by
∑

h∈Img(A1) bh. Similarly, for A2 = Ā \ A1, we can match each

adversary to a distinct honest worker whose degree in M(E) is greater than or equal to the
degree of the adversary in M(F ). We can bound the number of affected tasks caused due to
the adversaries in A2 by the sum of their degrees, which in turn is bounded above by the
sum of the degrees of honest workers that the adversaries are matched to. Let H2 denote the
set of honest workers matched to adversaries in the perfect matching. Thus, we have upper
bounded the number of affected tasks by

∑
h∈H1∪H2

bh. It is easy to see that |H1 ∪H2| ≤ k.

Therefore,
∑

h∈H1∪H2
bh ≤

∑k
i=1 bi. Therefore, the number of affected tasks |Taff | is at most∑k

i=1 bi.

We now extend the above lemma to the case when ε 6= 0.

Lemma B.8. Suppose that adversaries only provide incorrect responses. Let M be an arbitrary
semi-matching on the bipartite graph Bcs and suppose that this semi-matching is used in
the penalty-based aggregation algorithm to compute the true labels of the tasks. Further, let
b1 ≥ b2 ≥ · · · ≥ b|H| denote the degrees of the honest workers in this semi-matching where bi

is the degree of honest worker hi. Then, the number of affected tasks is at most
k+ε·|H|∑
i=1

bi.

Proof. Since honest workers can make mistakes, there are cross-edges between H and F
in the bipartite graph Bcs. Observe that there are two kinds of affected tasks in this case:
(i) tasks that adversaries “win” against honest workers, say Taff(A), similar to those in the
previous lemma, and (ii) tasks that are affected when 2 honest workers are compared in
the final step of the penalty-based aggregation algorithm, say Taff(H). We can repeat the
argument from Lemma B.7 above to bound |Taff(A)| by the sum of the degrees of (some) k
honest workers, say Hk, in semi-matching M . Further, we can bound |Taff(H)| by the sum of
the degrees of honest workers who make mistakes, in the semi-matching M . By assumption,
there are at most ε · |H| such workers. Now if any of these workers belong to Hk, then we
have already accounted for their degree. Consequently, we have that |Taff(H)| + |Taff(A)|
is upper bounded by the sum of the degrees of the top k + ε · |H| honest workers in the
semi-matching M , which establishes the result.

Since the above lemmas are true for any choice of semi-matching M , they hold in particular
for the optimal semi-matching on Bcs. Therefore, it gives us an upper bound on the number
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of affected tasks when the adversaries only provide incorrect responses.

One adversary provides correct responses. Next consider the case when there is
exactly 1 adversary that provides correct responses (for some tasks) and all other adversaries
only provide incorrect responses. LetM be the optimal semi-matching on the bipartite graph
Bcs resulting from such an adversary strategy and let ā denote the adversary who provides
correct responses. Observe that we can repeat the argument from Lemma B.8 above to get
an upper bound on the number of affected tasks that the adversaries “win” against honest
workers as well as those that honest workers who make mistakes “win” against other honest
workers. Let T1 be the collection of such tasks. In the proof of Lemma B.7, there are two
possible scenarios: either we obtain a perfect matching between the k adversaries and some
k honest workers in which case we have accounted for all of the affected tasks that come
from adversaries winning (against honest workers or ā). In the other scenario, when the
degenerate component is non-empty, we have at most k − 1 honest workers on the right and
we bound the number of tasks that adversaries “win” by the sum of the degrees of these
honest workers. Note however that we may be missing out on some of the affected tasks,
namely those that the adversary ā “loses” against other adversaries (the losses against honest
workers who make mistakes are already accounted for). The tasks that we might be missing
out on correspond exactly to the task copies in E that the adversary ā is mapped to in the
optimal semi-matching M.

Next observe that in both scenarios above—all adversaries provide incorrect responses
and exactly one adversary provides correct responses—we can upper bound the total number
of affected tasks by the sum of the degrees of some k + ε · |H| workers in the optimal
semi-matchingM restricted to just the task copies E ∪ F ′ on the right (since honest workers
provide responses only on these tasks), which we denote as M(E ∪ F ′). Lemma B.6 tells us
that M(E ∪ F ′) is, in fact, the optimal semi-matching on the subgraph Bcs(E ∪ F ′) between
workers W and the task copies E ∪ F ′. In addition, Lemma B.5 tells us that this sum is at

most
k+ε·|H|∑
i=1

di (by starting with MH as a feasible semi-matching) and the bound follows.

Part 2(b). Adversaries can provide arbitrary responses. Consider the general
case when all adversaries can provide arbitrary responses. First recall that Lemma B.8 was
applicable to any semi-matching and in fact, we can use the argument even when adversaries
provide correct responses. Formally, consider an arbitrary adversary strategy resulting in an
optimal semi-matchingM on Bcs. LetM(E ∪ F ′) denote the semi-matching M restricted to
just the task copies E ∪ F ′. Suppose that the set of affected tasks Taff under this adversary
strategy is such that Taff = Taff(A1) ∪ Taff(H) ∪ Taff(A2) where Taff(A1) are the tasks that
the adversaries “win” against honest workers, Taff(H) are the tasks that honest workers who
make mistakes “win” (against other honest workers and/or adversaries) and Taff(A2) are the
tasks that are affected when 2 adversaries are compared against each other in the final step
of the penalty-based aggregation algorithm. We can then utilize the argument in Lemma B.8
to bound |Taff(H)|+ |Taff(A1)| by the sum of the degrees of (some) k + ε · |H| honest workers
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in the optimal semi-matchingM (the tasks affected when honest workers who make mistakes
win against adversaries are also accounted). Further, we can bound |Taff(A2)| by the sum of
the degrees of the adversaries in the semi-matching M(E), which is the semi-matching M
restricted to task copies E.

Let A(H) ⊆ A denote the adversaries that have non-zero degrees in semi-matchingM(E),
i.e. they are mapped to some task copy in E in semi-matching M. The above sequence
of claims implies that we can bound the number of affected tasks |Taff | by the sum of the
degrees of the top s = k + ε · |H|+ |A(H)| workers in the semi-matching M(E ∪ F ′), which
is M restricted to the task copies E ∪ F ′ (because honest workers, by assumption, only
provide responses on task copies E ∪ F ′ and the semi-matching M(E) ⊆M(E ∪ F ′)). Now,
we claim that this itself is upper bounded by the sum of the degrees of the top s honest
workers in the optimal semi-matching MH on the bipartite graph BcsH . To see this, start
with MH as a feasible semi-matching from workers W to task copies E ∪ F ′ (recall that
it is feasible since we assume that each task has at least one correct response from honest
workers). Then, Lemma B.5 tells us that the sum of the degrees of the top s workers in the
optimal semi-matching on Bcs(E ∪ F ′) is at most the sum of the degrees of the top s honest
workers inMH . Further, Lemma B.6 tells us that the optimal semi-matching on the subgraph
Bcs(E ∪ F ′) is precisely the semi-matching M(E ∪ F ′). This shows that we can bound the
number of affected tasks by

∑s
i=1 di. Finally, note that |A(H)| ≤ k ⇒ s ≤ 2k + ε · |H| and

hence, we can bound the total number of affected tasks by
∑2k+ε·|H|

i=1 di.

B.5.3 Uniqueness of degree-sequence in optimal semi-matchings

In the arguments above, we have implicitly assumed some sort of uniqueness for the
optimal semi-matching on any bipartite graph. Clearly its possible to have multiple optimal
semi-matchings for a given bipartite graph. However, we prove below that the degree sequence
of the vertices is unique across all optimal semi-matchings and hence our bounds still hold
without ambiguity.

Lemma B.9. Let M and M ′ be two optimal semi-matchings on a bipartite graph G =
(V1∪V2, E) with |V1| = n and let d1 ≥ d2 · · · ≥ dn and d′1 ≥ d′2 ≥ · · · d′n be the degree sequence
for the V1-vertices in M and M ′ respectively. Then, di = d′i ∀ 1 ≤ i ≤ n, or in other words,
any two optimal semi-matchings have the same degree sequence.

Proof. Let s be the smallest index such that ds 6= d′s, note that we must have s < n since
we have that

∑n
j=1 d

′
j =

∑n
j=1 dj. This means that we have dj = d′j ∀j < s. Without loss of

generality, assume that d′s > ds. Now, ∃p̄ ∈ N such that (d′s)
p̄ > (ds)

p̄ +
∑n

j=s+1 (dj)
p̄ and

since dj = d′j ∀j < s, we have that
∑n

j=1 (d′j)
p̄ ≥

∑l
j=1 (d′j)

p̄ >
∑n

j=1 (dj)
p̄. But, this is a

contradiction since an optimal semi-matching minimizes the `p norm of the degree-vector of
V1-vertices for any p ≥ 1 (Section 3.4 in [HLLT03]). Hence, we have that di = d′i ∀i.
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B.5.4 Relation between lower bound L and optimal
semi-matching degrees

We prove here the relationship between the lower bound L established in Theorem 2.10
and the honest worker degrees d1, d2, . . . , d|H| in the optimal semi-matching on BcsH .

Lemma B.10. Suppose that honest workers are perfectly reliable and let d1 > d2 > · · · > d|H|
denote the degrees of the honest workers in the optimal semi-matching MH on BcsH . Then the
lower bound L in Theorem 2.10 is such that L ≥

∑k−1
i=1 di.

Proof. Let T1, T2, . . . , Tk−1 denote the set of tasks that are mapped respectively to honest
workers h1, h2, . . . , hk−1 in the optimal semi-matching MH and T :=

⋃k−1
j=1 Tj. Now, we

claim that for any t ∈ T , the only honest workers that provide responses for t are amongst
h1, h2, . . . , hk. In other words, PreIm(T ) ⊆ {h1, h2, . . . , hk}. Suppose not, so that there exists
hi ∈ PreIm(T ) such that i > k. This would contradict the fact that MH is an optimal
semi-matching. Specifically, Theorem 3.1 in [HLLT03] shows that a semi-matching M is
optimal if and only if there is no cost-reducing path relative to M . A cost-reducing path
P̂ = (h(1), t(1), h(2), . . . h(z)) for a semi-matching M on BcsH is an alternating sequence of
honest workers and tasks such that t(x) is mapped to h(x) in the semi-matching M for all
1 ≤ x ≤ z − 1 and degM(h(1)) > degM(h(z)) + 1. Since i > k, we have that ds > di + 1 for
all s ∈ {1, 2, . . . , k − 1}, which introduces a cost-reducing path. Therefore, we have that
PreIm(T ) ⊆ {h1, h2, . . . , hk}. Then, it follows that

|T | =

∣∣∣∣∣
k−1⋃
i=1

Ti

∣∣∣∣∣ =
k−1∑
i=1

|Ti| =
k−1∑
i=1

di,

where we have used the property of a semi-matching that a given task is mapped to only one
worker. Using the definition of the lower bound L, it follows that L ≥ |T | =

∑k−1
i=1 di.

B.6 Details of Numerical Analysis

EM algorithm for the two-coin model. We consider the EM algorithm proposed
by [RY12]. The worker model they consider is as follows: for each worker wi, her accuracy is
modeled separately for positive and negative tasks (referred to as the “two-coin” model). For
a task tj with true label +1, the sensitivity (true positive rate) for worker wi is defined as:

αi := P[wi(tj) = +1 | yj = +1]

Similarly, the specificity (1 - false positive rate) is defined as:

βi := P[wi(tj) = −1 | yj = −1]

Let Θ = [{(αi, βi) | i ∈ [n]}, γ] denote the set of all parameters. Given the response matrix L,
the log-likelihood of the parameters Θ can be written as:
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logP[L |Θ]

=
m∑
j=1

log

∏
i∈Wj

αi
1[Lij=+1] · (1− αi)1[Lij=−1] · γ +

∏
i∈Wj

(1− βi)1[Lij=+1] · βi1[Lij=−1] · (1− γ)

 ,

where recall that Wj is the set of workers assigned to task tj. The MLE of the parameters
can be computed by introducing the latent true label of each task, denoted by the vector
y = [y1, y2, . . . , ym]. The complete data log-likelihood can then be written as:

logP[L,y |Θ] =
m∑
j=1

(
yj · log(aj(α) · γ) + (1− yj) log (bj(β) · (1− γ))

)
, (B.18)

where

aj(α) =
n∏

i∈Wj

αi
1[Lij=+1] · (1− αi)1[Lij=−1]

bj(β) =
n∏

i∈Wj

(1− βi)1[Lij=+1] · βi1[Lij=−1]

Starting from an initial estimate Θ(0), each iteration x ≥ 1 of the EM algorithm consists of
two steps:

• E-step: Given the response matrix L and the current estimate of the model parameters
Θ(x−1), the expected complete data log-likelihood (w.r.t to the conditional distribution
y | L; Θ(x−1)) is computed as

Ey | L;Θ(x−1){logP[L,y |Θ]} =

m∑
j=1

(
δ

(x−1)
j log(aj(α) · γ) + (1− δ(x−1)

j ) log (bj(β) · (1− γ))

)

where δ
(x−1)
j = P[yj = +1 | L; Θ(x−1)] is the current posterior estimate of the true label

of task tj being +1. Using Bayes theorem, we can compute

δ
(x−1)
j ∝ P[L1j,L2j, . . . ,Lnj | yj = +1; Θ(x−1)] · P[yj = +1 |Θ(x−1)]

=
aj(α

(x−1)) · γ(k)

aj(α(x−1)) · γ(x−1) + bj(β(x−1)) · (1− γ(x−1))
.

• M-step: Based on the current posterior estimates of the true labels δ
(x−1)
j , the model

parameters are updated by maximizing the expected complete data log-likelihood
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Ey | L;Θ(x−1){logP[L,y |Θ]}, which can be shown to be a lower bound on the (incomplete)
data log-likelihood logP[L |Θ]. The prevalence of positive tasks γ is updated as:

γ(x) =

∑m
j=1 δ

(x−1)
j

m

Similarly, the parameters αi, βi are updated as:

α
(x)
i =

∑
j∈Ti 1[Lij = +1] · δ(x−1)

j∑
j∈Ti δ

(x−1)
j

β
(x)
i =

∑
j∈Ti 1[Lij = −1] · (1− δ(x−1)

j )∑
j∈Ti(1− δ

(x−1)
j )

where recall that Ti denotes the set of tasks rated by worker wi.

The above two steps are iterated until convergence of the log-likelihood logP[L |Θ]. To

initialize the EM algorithm, we use the majority estimate δ
(0)
j = (

∑
i∈Wj

1[Lij = +1])/ |Wj|.
KOS algorithms. We implemented the iterative algorithm presented in [KOS11] which

we replicate below in our notation.

Algorithm 10 kos label aggregation algorithm

1: Input: response matrix L, worker-task assignment graph B = (W ∪T , E), max. number

of iterations xmax.

2: For all (wi, tj) ∈ E, initialize messages z
(0)
i→j with random Zij ∼ N (1, 1).

3: For x = 1, 2, . . . , xmax,

• For all (wi, tj) ∈ E, update z
(x)
j→i =

∑
i′ 6=i Lij · z

(x−1)
i→j

• For all (wi, tj) ∈ E, update z
(x)
i→j =

∑
j′ 6=j Lij · z

(x)
j→i

4: For all tj, compute zj =
∑n

i=1 Lij · z
(xmax)
i→j

5: Output: label for task tj as ŷj = sign(zj)

The algorithm above was specifically designed for random regular worker-task assignment
graphs and we modified it in the following way for use in non-regular graphs:
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Algorithm 11 kos(norm) label aggregation algorithm

1: Input: response matrix L, worker-task assignment graph B = (W ∪T , E), max. number

of iterations xmax.

2: For all (wi, tj) ∈ E, initialize z
(0)
i→j with random Zij ∼ N (1, 1).

3: For x = 1, 2, . . . , xmax,

• For all (wi, tj) ∈ E, update z
(x)
j→i = 1

degB(tj)

∑
i′ 6=i Lij · z

(x−1)
i→j

• For all (wi, tj) ∈ E, update z
(x)
i→j = 1

degB(wi)

∑
j′ 6=j Lij · z

(x)
j→i

4: For all tj, compute zj =
∑n

i=1 Lij · z
(xmax)
i→j

5: Output: label for task tj as ŷj = sign(zj)

We chose xmax = 100 in our experiments.

Degree bias for adversarial workers. We discuss here how we imposed the degree
bias on adversaries in our simulation study. Given a worker-task assignment graph, let dw
denote the degree of worker w and dmin, davg, dmax denote resp. the minimum, average and
maximum worker degrees.

• Adversaries are biased to have high degrees. For each worker w, we compute the
parameter qw = q · dmax−dw

dmax−davg
. Then, we sample the worker identities such that worker w

is an adversary with probability 1− qw. We claim that this process does not change
the fraction of adversarial workers in the population (in expectation). To see that, the
expected number of honest workers under this process is given by∑

w

qw =
q

dmax − davg

∑
w

(dmax − dw) = q · n.

So the expected fraction of adversarial workers is given by (n− q · n)/n = 1− q. Also,
it follows from the form of qw that workers with higher degrees (close to dmax) have
smaller qw values, which implies that they have a greater chance of being an adversary.

• Adversaries are biased to have low degrees. For each worker w, define qw = q · dw−dmin

davg−dmin
.

Again, the worker identities are sampled such that each worker w is an adversary with
probability 1− qw. The expected number of honest workers under this process is given
by ∑

w

qw =
q

davg − dmin

∑
w

(dw − dmin) = q · n,
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so that the fraction of adversarial workers remains at 1 − q. In this case, lower the
degree dw, lower is the value of qw and therefore higher the chance that worker w is an
adversary.
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Appendix C

Chapter 3 Proofs and Details of
Numerical Experiments

C.1 Proof of Theorem 3.2

We first prove the rate for the squared loss, and then consider the negative log-likelihood
loss.

C.1.1 Squared loss

For SQ loss, the convergence rate follows directly from existing results. For instance,
Jaggi [Jag13] showed, for the optimization problem minx∈D h(x) where h(·) is a differentiable
convex function and D is a compact convex set, that the iterates of the fully corrective
Frank-Wolfe variant (which is the one we consider) satisfy:

h(x(k))− h(x∗) ≤ 2 · Ch
k + 2

(C.1)

for all k ≥ 1. Here Ch is the curvature constant—a measure of the “non-linearity”—of the
function h(·) over the domain D, defined as:

Ch := sup
x,s∈D
γ∈[0,1]

r=x+γ(s−x)

2

γ2
·
(
h(r)− h(x)− 〈r− x,∇h(x)〉

)
.

Since h(·) is convex, the curvature constant Ch ≥ 0. In addition, if the function h(·) is twice
differentiable, then it can be shown [Jag11, Equation 2.12] that

Ch ≤ sup
x,s∈D

r∈[x,s]⊆D

(s− x)>∇2h(r)(s− x),

where [x, s] is the line-segment joining x and s—since D is convex, it lies within D.
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In our case, the convex objective h = SQ and the domain D = conv(P). Further, the
hessian ∇2SQ(·) is a diagonal matrix with entry corresponding to product j in offer-set St as
(∇2SQ(r))jt = Nt/N . Then, consider the following:

CSQ ≤ sup
x,s∈D

r∈[x,s]⊆D

(s− x)>∇2SQ(r)(s− x)

= sup
x,s∈D

T∑
t=1

∑
j∈St

(sjt − xjt)2 · Nt

N

=
1

N
· sup

x,s∈D

T∑
t=1

Nt ·
∑
j∈St

(sjt − xjt)2

≤ 1

N
· sup

x,s∈D

T∑
t=1

Nt ·
∑
j∈St

|xjt − sjt| (since |xjt − sjt| ≤ 1)

≤ 1

N
· sup

x,s∈D

T∑
t=1

Nt ·
∑
j∈St

(|xjt|+ |sjt|) (using triangle inequality)

=
1

N
· sup

x,s∈D

T∑
t=1

Nt · (1 + 1) (since choice probs. sum to 1 in each offer-set)

=
1

N
· 2 ·N = 2

The result then follows by plugging in CSQ ≤ 2 in equation (C.1) above.

C.1.2 Negative log-likelihood loss

We refer to the domain conv(P) as D below for succinct notation. We establish the
convergence rate assuming that yjt > 0 for all j ∈ St and all offer-sets St but the arguments
below can be extended in a straight-forward manner to the case when some of the yjt’s are
zero by dropping terms for those product, offer-set pairs when defining the NLL loss objective
(since they do not contribute anyway to the loss objective), and only maintaining the choice
probabilities for the remaining product, offer-set pairs.

The proof proceeds in the following steps:

1. We show that there exists η > 0 such that the iterates g(k) in Algorithm 8 satisfy
g

(k)
jt ≥ η for all j ∈ St and all 1 ≤ t ≤ T , and all k ≥ 0. The idea is that if any of the

iterates get too close to 0, then the objective value NLL(g(k)) will exceed the starting
objective value NLL(g(0)) which is a contradiction since the fully corrective variant of
the Frank-Wolfe algorithm produces a decreasing objective value in each iteration.

2. Utilizing the lower bound computed in Step 1, we adapt arguments from existing
work [GM86] to show that Algorithm 8 achieves O(1/k) convergence to the optimal
solution.
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We first prove Step 2 assuming the existence of a lower bound η and then compute a tight
value for η.

Step 2: convergence rate. In particular, we establish the following lemma:

Lemma C.1. Suppose there exists η > 0 such that the iterates g(k) in Algorithm 8 satisfy
g

(k)
jt ≥ η for all j ∈ St and all 1 ≤ t ≤ T , and all k ≥ 0. Then, there exists index K and

constant δ such that

NLL(g(k))− NLL(g∗) ≤ 4

η2 · (k + δ)
∀ k ≥ K.

Proof. Define D̃ = {g ∈ D | gjt ≥ η√
2
∀ j ∈ St ∀1 ≤ t ≤ T}. At any iteration k ≥ 1, let

d(k) := f (k) − g(k−1) where recall that f (k) ∈ arg minf∈P
〈
∇loss(g(k−1)),f

〉
. Now, observe

that for any k ≥ 1:

NLL(g∗)− NLL(g(k−1)) ≥
〈
g∗ − g(k−1),∇NLL(g(k−1))

〉
(since NLL(·) is convex)

≥
〈
f (k) − g(k−1),∇NLL(g(k−1))

〉
(using definition of f (k)) (C.2)

=
〈
d(k),∇NLL(g(k−1))

〉
Next, consider a step size γ ∈ [0, 1] such that g(k−1) + γ · d(k) ∈ D̃. Using second-order

Taylor series approximation of NLL(·) around the point g(k−1), we have:

NLL(g(k−1) + γ · d(k)) = NLL(g(k−1)) + γ
〈
d(k),∇loss(g(k−1))

〉
+
γ2

2
d(k)>∇2NLL(rk)d

(k),

where rk lies on the line segment [g(k−1),g(k−1) + γ · d(k)]. Since g(k−1) ∈ D̃ and g(k−1) +

γ · d(k) ∈ D̃, it implies rk ∈ D̃ and consequently rk,jt ≥ η√
2

for all j ∈ St and all 1 ≤ t ≤ T .
Then, consider the following:

NLL(g(k−1) + γ · d(k)) = NLL(g(k−1)) + γ
〈
d(k),∇NLL(g(k−1))

〉
+
γ2

2
d(k)>∇2NLL(rk)d

(k)

= NLL(g(k−1)) + γ
〈
d(k),∇NLL(g(k−1))

〉
+

γ2

2 ·N

T∑
t=1

∑
j∈St

Njt · d(k)
jt

2

r2
k,jt

≤ NLL(g(k−1)) + γ
〈
d(k),∇NLL(g(k−1))

〉
+

γ2

η2 ·N

T∑
t=1

∑
j∈St

Njt

(since
∣∣∣d(k)
jt

∣∣∣ ≤ 1 and rk,jt ≥
η√
2
∀j ∈ St ∀1 ≤ t ≤ T )

≤ NLL(g(k−1))− γ ·
(
NLL(g(k−1))− NLL(g∗)

)
+
γ2

η2

{using equation (C.2)}
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Denoting gap(g) = loss(g)− loss(g∗) as the optimality gap, and plugging it above we get

NLL(g(k−1) + γ · d(k)) ≤ NLL(g(k−1))− γ · gap(g(k−1)) +
γ2

η2
(C.3)

Now, choose γ∗ = η2·gap(g(k−1))
2

and observe that γ∗ minimizes the RHS of equation (C.3).
With this observation, we establish a sequence of claims that will lead us to the result.

Claim 1: g(k−1) + γ∗ · d(k) ∈ D̃.
This means that for any 1 ≤ t ≤ T and any j ∈ St, we need to show:

g
(k−1)
jt +

d
(k)
jt · η2

2
· gap(g(k−1)) ≥ η√

2

⇐⇒ −d
(k)
jt · gap(g(k−1)) ≤ 2 ·

(
g

(k−1)
jt − η√

2

η2

)

⇐⇒ (g
(k−1)
jt − f (k)

jt ) · gap(g(k−1)) ≤ 2 ·

(
g

(k−1)
jt − η√

2

η2

)

⇐= g
(k−1)
jt · gap(g(k−1)) ≤ 2 ·

(
g

(k−1)
jt − η√

2

η2

)
(since gap(g(k−1)) ≥ 0)

⇐⇒ 1

N

T∑
t=1

∑
`∈St

N`t log
g∗`t

g
(k−1)
`t

≤ 2

η2
−

√
2

η · g(k−1)
jt

⇐=
1

N

T∑
t=1

∑
`∈St

N`t ·

(
g∗`t

g
(k−1)
`t

− 1

)
≤ 2

η2
−

√
2

η · g(k−1)
jt

(since log z ≤ z − 1 ∀ z > 0)

⇐⇒ 1

N

T∑
t=1

∑
`∈St

N`t ·

(
g∗`t

g
(k−1)
`t

)
≤ 1 +

2

η2
−

√
2

η · g(k−1)
jt

⇐=
1

N

T∑
t=1

∑
`∈St

N`t ·
(

1

η

)
≤ 1 +

2

η2
−

√
2

η · g(k−1)
jt

(since 0 ≤ g∗`t ≤ 1 and g
(k−1)
`t ≥ η ∀` ∈ St ∀ 1 ≤ t ≤ T )

⇐=
1

η
≤ 1 +

2

η2
−
√

2

η · η
(since g

(k−1)
jt ≥ η)

⇐⇒ 0 ≤ η2 − η + 2−
√

2

The final statement is true for any η > 0 and therefore the claim follows. In addition, it is

easy to see that g(k−1) + γ · d(k) ∈ D̃ for all γ ∈ [0,mk] where mk
def
= min

(
1, η

2·gap(g(k−1))
2

)
.

Claim 2:

gap(g(k)) ≤ gap(g(k−1)) ·
(

1− mk

2

)
∀ k ≥ 1. (C.4)
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Consider the following:

NLL(g(k)) ≤ min
γ∈[0,1]

NLL(g(k−1) + γ · d(k))

(since FCFW guarantees as much progress as line-search FW)

≤ min
γ∈[0,mk]

NLL(g(k−1) + γ · d(k))

≤ min
γ∈[0,mk]

NLL(g(k−1))− γ · gap(g(k−1)) +
γ2

η2(
since g(k−1) + γ · d(k) ∈ D̃ ∀ γ ∈ [0,mk] and using equation (C.3)

)
= NLL(g(k−1))−mk · gap(g(k−1)) +

m2
k

η2

(by choice of mk)

≤ NLL(g(k−1))−mk · gap(g(k−1)) +
mk · η2 · gap(g(k−1))

2 · η2(
since mk ≤

η2 · gap(g(k−1))

2

)
= NLL(g(k−1))− mk

2
· gap(g(k−1))

Then subtracting NLL(g∗) from both sides and using the definition of mk, the claim follows.

Claim 3: limk→∞mk = 0.
Since both sequences {NLL(g(k))}k and {mk}k are non-increasing and bounded below by

zero, it follows by taking limits on both sides of equation (C.4) that:

lim
k→∞

gap(g(k)) ≤ lim
k→∞

gap(g(k−1)) ·
(

1− 1

2
lim
k→∞

mk

)
=⇒ lim

k→∞
gap(g(k)) · lim

k→∞
mk ≤ 0

=⇒ lim
k→∞

gap(g(k)) = 0 or lim
k→∞

mk = 0
(
since mk ≥ 0 and gap(g(k)) ≥ 0 ∀k

)
=⇒ lim

k→∞
mk = 0 (using definition of mk)

Given the above claims, let K be the smallest iteration number such that mK ≤ 1. Then
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from equation (C.4) it follows that

gap(g(k)) ≤ gap(g(k−1)) ·
(

1− mk

2

)
∀ k ≥ K

⇐⇒ mk+1

2
≤ mk

2
·
(

1− mk

2

)
∀ k ≥ K

⇐⇒ 2

mk+1

≥ 2

mk

· 2

2−mk

∀ k ≥ K

⇐⇒ 2

mk+1

≥ 2

mk

·
(

1 +
mk

2−mk

)
∀ k ≥ K

=⇒ 2

mk+1

≥ 2

mk

+ 1 ∀ k ≥ K (since mk ≤ 1 ∀ k ≥ K)

=⇒ 2

mk

≥ k −K +
2

mK

∀ k ≥ K

⇐⇒ mk ≤
2

k + δ̃
∀ k ≥ K

(
where δ̃ =

2

mK

−K
)

⇐⇒ gap(g(k−1)) ≤ 4

η2 · (k + δ̃)
∀ k ≥ K

⇐⇒ gap(g(k)) ≤ 4

η2 · (k + δ)
∀ k ≥ K

(
where δ = 1 +

2

mK

−K
)

from which the result follows.

Step 1: lower bound for iterates. Lemma C.1 establishes 1/k convergence rate of
Algorithm 8 given any lower bound η > 0 for the iterates g(k). We now come up with a tight
lower bound— ξmin in the main text, based on the initialization, i.e. we show that

g
(k)
jt ≥ ξmin ∀ j ∈ St ∀ 1 ≤ t ≤ T and ∀ k ≥ 0

For any vector x = (x1, x2, . . . , xm), denote xmin
def
= mini=1,2,...,m xi. Then, for any ξ ∈ (0, 1],

consider the following optimization problem:

G(ξ) ≡ min
x∈RM

NLL(x) s.t. xjt ≥ 0 ∀ j ∈ St;
∑
j∈St

xjt = 1; ∀1 ≤ t ≤ T and xmin ≤ ξ

(C.5)
We first come up with a closed-form expression for G(ξ). For each 1 ≤ t ≤ T and every
i ∈ St, define the following optimization problem:

Gi,t(ξ) ≡ min
x∈RM

NLL(x) s.t. xjt′ ≥ 0 ∀ j ∈ St′ ;
∑
j∈St′

xjt′ = 1; ∀1 ≤ t′ ≤ T and xit ≤ ξ

(C.6)
Claim 1:

G(ξ) = min
1≤t≤T

min
i∈St

Gi,t(ξ) for all ξ ∈ (0, 1]
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It is easy to see that min1≤i≤t mini∈St Gi,t(ξ) ≤ G(ξ) for any ξ ∈ (0, 1] since the optimal
solution for problem (C.5) is feasible for some product, offer-set pair (i, t).

For the other direction, suppose min1≤t≤T mini∈St Gi,t(ξ) = Gj∗,t∗(ξ) for some j∗ ∈ St∗ .
Let x∗ denote the optimal solution for Gj∗,t∗(ξ), so that x∗j∗,t∗ ≤ ξ. This also means
that x∗min ≤ ξ and consequently x∗ is a feasible solution for problem (C.5). Therefore,
G(ξ) ≤ Gj∗,t∗(ξ) = min1≤t≤T mini∈St Gi,t(ξ) and the claim then follows.

Claim 2:

Gi,t(ξ) =
1

N
·

(
Nt ·DKL(yit‖ξ) +

T∑
t′=1

Nt′ ·H(yt′)

)
∀ ξ ∈ (0, yit].

This follows because the optimal solution, say x∗, to problem (C.6) is of the form: (1)
x∗jt′ = yjt′ for all j ∈ St′ , ∀t′ 6= t (2) x∗jt =

yjt
1−yit · (1− ξ) for all j ∈ St \ {i} and (3) x∗it = ξ.

This can be verified by solving the KKT conditions for problem (C.6). In particular,
letting λt′ denote the dual variable for the constraint

∑
j∈St′

xjt′ = 1, and µ denote the dual

variable for the constraint xit ≤ ξ, the KKT conditions are given by:

Njt′

xjt′ ·N
= λt′ ∀j ∈ St′ and ∀t′ 6= t;

Njt

xjt ·N
= λt ∀j ∈ St \ {i};

Nit

xit ·N
= λt + µ (Stationarity)

µ · (xit − ξ) = 0 (Complementary slackness)

µ ≥ 0 (Dual feasibility)∑
j∈St′

xjt′ = 1; xjt′ ≥ 0 ∀j ∈ St′ ∀ 1 ≤ t′ ≤ T (Primal feasibility)

Solving these equations gives the optimal solution mentioned above. Plugging the optimal
solution x∗ into the NLL(·) loss objective, we obtain

Gi,t(ξ) =
1

N
·

−Nit log ξ −
∑

j∈St\{i}

Njt log
yjt · (1− ξ)

1− yit
−
∑
t′ 6=t

∑
j∈St′

Njt′ log
(
yjt′
)

=
1

N
·

−Nit log ξ −
∑

j∈St\{i}

Njt log
(1− ξ)
1− yit

−
∑

j∈St\{i}

Njt log yjt +
∑
t′ 6=t

Nt′ ·H(yt′)


=

1

N
·

−Nit log ξ − (Nt −Nit) log
1− ξ

1− yit
+Nit log yit +Nt ·H(yt) +

∑
t′ 6=t

Nt′ ·H(yt′)


=
Nt

N
·
(
yit log

yit
ξ

+ (1− yit) log
1− yit
1− ξ

)
+

1

N

T∑
t′=1

Nt′ ·H(yt′)

=
1

N
·

(
Nt ·DKL(yit‖ξ) +

T∑
t′=1

Nt′ ·H(yt′)

)

where DKL(yit‖ξ) is the relative entropy between yit and ξ, and H(yt′) is the entropy of
vector yt′ .
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Claim 3: For each 1 ≤ t ≤ T and any ξ ∈ (0, yt,min], it follows that

min
i∈St

Gi,t(ξ) =
1

N
·

(
Nt ·DKL(yt,min‖ξ) +

T∑
t′=1

Nt′ ·H(yt′)

)
.

This follows since ∂DKL(y‖ξ)
∂y

> 0 for any y > ξ and therefore DKL(yit‖ξ) ≥ DKL(yt,min‖ξ) for

all i ∈ St and any ξ ∈ (0, yt,min].
Now using Claims 1, 2 and 3, it follows that

G(ξ) = min
1≤t≤T

1

N
·

(
Nt ·DKL(yt,min‖ξ) +

T∑
t′=1

Nt′ ·H(yt′)

)
for any 0 < ξ ≤ ymin.

where recall that ymin = min1≤t≤T yt,min Given this, it can be verified that:

1. G(ξ) is non-increasing as ξ increases—since we are optimizing over a larger domain.

2. G(ymin) = 1
N

∑T
t′=1Nt′ ·H(yt′) ≤ F0

def
= NLL(g(0)) for any initialization g(0).

3. G(ξ)→ +∞ as ξ → 0.

The above three facts imply that there exists 0 < ξmin ≤ ymin such that

G(ξmin) ≤ F0 and G(ξmin) > F0 for all 0 < ξ < ξmin (C.7)

This establishes the definition of ξmin provided in the main text.
Given the above, we claim that for each iterate of the CG algorithm g(k), g

(k)
min ≥ ξmin.

Suppose this is not the case, i.e. g
(k)
min < ξmin for some iterate k. Then, consider the following:

g
(k)
min < ξmin =⇒ G(g

(k)
min) > F0 {from equation (C.7) above}

=⇒ NLL(g(k)) > F0 = NLL(g(0))

where the last implication follows since g(k) is feasible for problem (C.5) with ξ = g
(k)
min and

consequently, NLL(g(k)) ≥ G(g
(k)
min). However, this results in a contradiction since the FCFW

variant improves the objective value in each iteration.
Finally, the convergence result follows from choosing η = ξmin in Lemma C.1.

C.1.3 Proof of Proposition 3.2.1

From equation (C.7), it follows that

G(ξmin) ≤ F0 =⇒ min
1≤t≤T

Nt ·DKL(yt,min‖ξmin) ≤ N · F0 −
T∑
t′=1

Nt′ ·H(yt′).
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Now, suppose that min1≤t≤T Nt ·DKL(yt,min‖ξmin) = Nt∗ ·DKL(yt∗,min‖ξmin) for some 1 ≤ t∗ ≤
T . Then consider the following:

Nt∗ ·DKL(yt∗,min‖ξmin) ≤ N · F0 −
T∑
t=1

Nt ·H(yt)

⇐⇒ DKL(yt∗,min‖ξmin) ≤ N · F0 −
∑T

t=1Nt ·H(yt)

Nt∗

⇐⇒ yt∗,min log
yt∗,min

ξmin

+ (1− yt∗,min) log
1− yt∗,min

1− ξmin

≤ N · F0 −
∑T

t=1 Nt ·H(yt)

Nt∗

⇐⇒ yt∗,min log
yt∗,min

ξmin

≤ N · F0 −
∑T

t=1Nt ·H(yt)

Nt∗
+ (1− yt∗,min) log

1− ξmin

1− yt∗,min

=⇒ yt∗,min log
yt∗,min

ξmin

≤ N · F0 −
∑T

t=1Nt ·H(yt)

Nt∗
+ (1− yt∗,min) ·

(
1− ξmin

1− yt∗,min

− 1

)
(since log z ≤ z − 1 ∀ z > 0)

=⇒ yt∗,min log
yt∗,min

ξmin

≤ N · F0 −
∑T

t=1Nt ·H(yt)

Nt∗
+ yt∗,min

⇐⇒ log
yt∗,min

ξmin

≤ N · F0 −
∑T

t=1 Nt ·H(yt)

yt∗,min ·Nt∗
+ 1

⇐⇒ yt∗,min

ξmin

≤ exp

(
N · F0 −

∑T
t=1 Nt ·H(yt)

yt∗,min ·Nt∗
+ 1

)

⇐⇒ ξmin ≥ yt∗,min · exp

(
−1− N · F0 −

∑T
t=1Nt ·H(yt)

yt∗,min ·Nt∗

)

=⇒ ξmin ≥ ymin · exp

(
−1− N · F0 −

∑T
t=1Nt ·H(yt)

yt∗,min ·Nt∗

)
(since yt∗,min ≥ ymin)

=⇒ ξmin ≥ ymin · exp

(
−1− N · F0 −

∑T
t=1Nt ·H(yt)

Nmin

)
(since yt∗,min ·Nt∗ ≥ Nmin)

and the result follows.

C.2 Proof of Theorem 3.3

In the following, let ‖·‖2 and ‖·‖∞ denote the standard `2 and `∞ norms on the Euclidean
space. We first establish a few key lemmas that will be used in the proof.

Lemma C.2. Let A ∈ Rm×D and u ∈ Rm be given, for some m ≥ 1. Suppose there exists
sequence {ωr}r∈N such that limr→∞‖A · ωr − u‖∞ = 0. Then, u ∈ Range(A), i.e. u lies in
the subspace spanned by the columns of the matrix A.
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Proof. First observe that since 0 ≤ ‖A · ωr − u‖2 ≤
√
m · ‖A · ωr − u‖∞ for all r ∈ N, it

follows from the Squeeze (or Sandwich) theorem that

lim
r→∞
‖A · ωr − u‖2 = 0 (C.8)

Suppose that u /∈ Range(A) and let u := u‖ + u⊥ where u‖ denote the orthogonal
projection of the vector u onto the subspace Range(A), so that u⊥ is orthogonal to Range(A).
Since u /∈ Range(A), we have u⊥ 6= 0.

Then, for any r ∈ N it follows that

‖A · ωr − u‖2
2 = ‖

(
A · ωr − u‖

)
− u⊥‖2

2 = ‖A · ωr − u‖‖2
2 + ‖u⊥‖2

2 ≥ ‖u⊥‖2
2 > 0.

But this contradicts equation (C.8) and therefore u ∈ Range(A).

Lemma C.3. Let A ∈ Rm×D and u ∈ Rm be given, for some m ≥ 1. Suppose that there
exists ω ∈ RD such that ‖A ·ω − u‖∞ < ε for some ε > 0. Let ΠA(ω) denote the orthogonal
projection of the vector ω onto the subspace spanned by the rows of the matrix A. Then, it

follows that ‖ΠA(ω)‖2 ≤
√
m·ε+‖u‖2
σmin(A)

where σmin(A) > 0 is the smallest non-zero singular value
of the matrix A.

Proof. Let D′ ≤ min(m,D) denote the rank of matrix A. Then, using the singular value
decomposition (SVD) of A, we get

A = CΣR>,

where C ∈ Rm×D′ is such that its columns represent an orthonormal basis for the column
space of A, R ∈ RD×D′ is such that its columns represent an orthonormal basis for the row
space of A and Σ ∈ RD′×D′ is a diagonal matrix containing the (non-zero) singular values
σ1, σ2, . . . , σD′ of the matrix A. Next, represent the vector ω as ω = θ + ΠA(ω) where θ
represents the component that is orthogonal to the row space. Since ΠA(ω), by definition,
lies in the row space, we can write it as ΠA(ω) = R ·α where α ∈ RD′ . Then, it follows that

‖A · ω − u‖∞ < ε =⇒ ‖A · ω − u‖2 <
√
m · ε

=⇒ ‖A · ω‖2 <
√
m · ε+ ‖u‖2 {by (reverse) triangle inequality}

⇐⇒ ‖A · ΠA(ω)‖2 <
√
m · ε+ ‖u‖2

(since ω = θ + ΠA(ω) and A · θ = 0)
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Next, consider the following:

‖A · ΠA(ω)‖2 = ‖A · (R ·α)‖2

= ‖CΣR> · (R ·α)‖2 (using SVD of A)

= ‖(CΣ) ·α‖2 (since columns of R are orthonormal)

= ‖Σ ·α‖2 (since ‖C · x‖ = ‖x‖ for any x as C is unitary)

=

√√√√ D′∑
d=1

σ2
dα

2
d

≥ σmin(A) · ‖α‖
= σmin(A) · ‖R ·α‖ (since R is unitary)

= σmin(A) · ‖ΠA(ω)‖

The claim then follows.

Next, w.l.o.g suppose that the product features remain fixed across the offer-sets, i.e.
zjt = zjt′ for all j ∈ [n] and all t 6= t′—if features are varying across offer-sets, we can
just expand the product universe [n]. We represent the features as {z1, z2, . . . , zn} in the
remainder.

Let f ∈ P \P be any boundary type. Since RM is a metric space, P is precisely the set of
the limits of all convergent sequences in P . Therefore, there exists a sequence {ωr}r∈N ⊂ RD

such that limr→∞ f(ωr) = f . In addition, it follows that there exists a permutation π : [n]→
[n] such that there is a subsequence {ωr`}`∈N satisfying ω>r`zπ(1) ≥ ω>r`zπ(2) ≥ . . . ≥ ω>r`zπ(n)

for all ` ∈ N (this is because the set of permutations of n elements is finite). Since every
subsequence must converge to the same limit, we must have

lim
`→∞

f(ωr`) = f .

For brevity of notation, we refer to the sequence {ωr`}`∈N as the sequence {ωr}r∈N in the
remainder, and w.l.o.g assume that the products are indexed such that ω>r z1 ≥ ω>r z2 ≥ . . . ≥
ω>r zn.

We then establish the following key lemma:

Lemma C.4. Consider any offer-set St. Let it = arg minj∈St j, i.e. it is the product with
the minimum index in St. For any j ∈ St, it follows that

1. If fjt = 0, then limr→∞ω
>
r (zit − zj) = +∞.

2. If fjt > 0, then limr→∞ω
>
r (zit − zj) = uitj ≥ 0 for some finite uitj.

Proof. Note that since ω>r zit ≥ ω>r zj for all r ∈ N, it follows that fitt ≥ fjt for all j ∈ St.
Further, note that fitt > 0 otherwise fjt = 0 for all j ∈ St which is a contradiction since
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choice probabilities within each offer-set must sum to 1. Now for any j ∈ St, consider the
following:

exp
(
ω>r (zj − zit)

)
=
fjt(ωr)

fitt(ωr)

=⇒ lim
r→∞

exp
(
ω>r (zj − zit)

)
= lim

r→∞

fjt(ωr)

fitt(ωr)
=

limr→∞ fjt(ωr)

limr→∞ fitt(ωr)
=
fjt
fitt

.

From the above, it follows that if fjt = 0, then limr→∞ exp
(
ω>r (zj − zit)

)
= 0 or equivalently,

limr→∞ω
>
r (zj − zit) = −∞. When fjt > 0, then since log(·) is continuous, it follows that

limr→∞ω
>
r (zj − zit) = log

fjt
fitt
≤ 0 because fjt ≤ fitt for all j ∈ St. The claim then follows.

Finally, note that the same pair of products (i, j) could appear in two different offer-sets,
but the uniqueness of limits ensures that the sequence ω>r (zi − zj) will converge to the same
quantity in both cases.

We are now ready to prove the result. We first need some additional notation. Let
Pairst = {(it, j) | j ∈ St \ {it} and limr→∞ω

>
r (zit − zj) < ∞}, note that Pairst could

be empty for any 1 ≤ t ≤ T . Denote Pairs = ∪Tt=1Pairst. Similarly, define the set
Pairst = {(it, j) | j ∈ St\{it} and limr→∞ω

>
r (zit−zj) = +∞} and denote Pairs = ∪Tt=1Pairst.

Note that Pairst could also be empty for some t ∈ [T ], but we make the following claim:

Claim 1:
∃t′ ∈ [T ] such that Pairst′ 6= ∅.

Suppose this is not true, so that Pairs = ∪Tt=1Pairst = ∅. This means that Pairs 6= ∅
since, by definition, each product pair must belong to either Pairs or Pairs. Then, construct
the matrix APairs ∈ R|Pairs|×D where row aPairs

ij corresponding to pair (i, j) ∈ Pairs is given

by aPairs
ij = zi − zj. Similarly, let u ∈ R|Pairs| denote the vector of utilities uij for each pair

(i, j) ∈ Pairs (refer to Lemma C.4). Then it follows that limr→∞‖APairs · ωr − u‖∞ = 0.
Now, applying Lemma C.2 tells us that u ∈ Range(APairs), i.e. there exists ω0 ∈ RD such

that APairs ·ω0 = u. Then, from Lemma C.4 it follows that for any j ∈ St and any 1 ≤ t ≤ T :

fjt = exp (−uitj) · fitt (since fjt > 0)

= exp
(
ω>0 (zj − zit)

)
· fitt

(
since uitj = (zit − zj)

>ω0 as shown above
)

=⇒ fjt =
exp

(
ω>0 (zj − zit)

)
1 +

∑
`∈St\{it} exp

(
ω>0 (z` − zit)

) (since
∑
`∈St

f`t = 1)

⇐⇒ fjt =
exp

(
ω>0 zj

)∑
`∈St exp

(
ω>0 z`

) = fjt(ω0)

That is, f = f(ω0). But since f(ω0) ∈ P by definition, this means that f ∈ P which
contradicts the assumption that f is a boundary type and belongs to P \ P. The claim
then follows. In addition, if Pairst′ 6= ∅, then for any pair (it′ , j

′) ∈ Pairst′ , it follows from
Lemma C.4 that fj′t′ = 0 establishing the second part of the theorem.
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Following Claim 1, there are two cases which we deal with separately:
Case 1: Pairs = ∅. In this case, it follows from Lemma C.4 that f is a boundary type

that chooses only a single product, viz. it from each offer-set St. Based on the definition
of Pairs, we know that for any U > 0, there exists ω̃ such that ω̃>(zī − zj̄) > U for all
(̄i, j̄) ∈ Pairs. Then, it follows that the choice probabilities under the boundary type f are
equal to the limiting choice probabilities using ω0 = 0 (i.e. the all zeros vector) and θ = ω̃

‖ω̃‖ .

Case 2: Pairs 6= ∅. In this case, first we construct the matrix APairs ∈ R|Pairs|×D as
outlined above in the proof of Claim 1. Given this, we choose the parameters (ω0,θ) as
follows:

Choosing ω0. From Lemma C.4 above, it follows that limr→∞‖APairs · ωr − u‖∞ = 0.
Then, Lemma C.2 tells us that u ∈ Range(APairs), i.e. there exists ω0 ∈ RD such that
APairs · ω0 = u.

Choosing θ. Next, using the definition of Pairs and Pairs, it follows that given any ε > 0
and U > 0, there exists ω̃ such that:

ω̃>(zi − zj) < uij + ε ∀ (i, j) ∈ Pairs and ω̃>(zī − zj̄) > U ∀ (̄i, j̄) ∈ Pairs.

Fix some ε > 0. Then, the choice of ω̃ implies that ‖APairs · ω̃ − u‖∞ < ε so that we can
apply Lemma C.3 to establish that

‖ΠAPairs(ω̃)‖2 <

√
|Pairs| · ε+ ‖u‖2

σmin(APairs)
. (C.9)

Choose U such that

U >

√
|Pairs| · ε+ ‖u‖2

σmin(APairs)
·B,

where B
def
= max(̄i,j̄)∈Pairs‖zī − zj̄‖2. Next, choose θ = ω̃ − ΠAPairs(ω̃) where ΠAPairs(ω̃) is the

projection of ω̃ onto the subspace spanned by the rows of APairs. We show that θ satisfies:

(1) θ>(zi − zj) = 0 ∀ (i, j) ∈ Pairs and (2) θ>(zī − zj̄) > 0 ∀ (̄i, j̄) ∈ Pairs.

Part (1) follows since θ is orthogonal to the subspace spanned by the rows of APairs. For part
(2), consider the following, for any (̄i, j̄) ∈ Pairs:

ω̃>(zī − zj̄) > U

⇐⇒ (θ + ΠAPairs(ω̃))> (zī − zj̄) > U

⇐⇒ θ>(zī − zj̄) + ΠAPairs(ω̃)>(zī − zj̄) > U

=⇒ θ>(zī − zj̄) + ‖ΠAPairs(ω̃)‖2 · ‖zī − zj̄‖2 > U (using Cauchy-Schwarz inequality)

⇐⇒ θ>(zī − zj̄) > U − ‖ΠAPairs(ω̃)‖2 · ‖zī − zj̄‖2

=⇒ θ>(zī − zj̄) > U − ‖ΠAPairs(ω̃)‖2 ·B
(
since ‖zī − zj̄‖2 ≤ B by definition of B

)
=⇒ θ>(zī − zj̄) > U −

√
|Pairs| · ε+ ‖u‖2

σmin(APairs)
·B {using equation (C.9)}

=⇒ θ>(zī − zj̄) > 0 (by choice of U)
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Then, it is easy to see that the choice probabilities under the boundary type f are equal
to the limiting probabilities for the choice (ω0,θ) computed above.

C.3 Proof of Theorem 3.4

Define the function H : P → R such that H(f) =
∑n

i=1 cifi for each f ∈ P . Consequently,
the support finding step (3.5) can be equivalently written as:

arg max
f∈P

H(f) (C.10)

Let C∗ = maxf∈P H(f) denote the optimal objective of the above subproblem, note that this

is well-defined since H(·) is continuous and P is compact.
Without loss of generality, index the products such that c1 ≥ c2 ≥ · · · ≥ cn. Note

that C∗ ≤ c1 because the objective value in subproblem (C.10) is a convex combination of
{c1, c2, · · · , cn}. Since z1 is an extreme point, it follows from Lemma C.6 (proved below) that
e1 ∈ P , where e1 is defined as:

e1i =

{
1 if i = 1

0 otherwise.

Then it follows that

H(e1) =
n∑
i=1

cie1i = c1.

In addition, Lemma C.5 below shows the existence of θ1 ∈ RD such that θ>1 z1 > θ
>
1 zi for

all 1 < i ≤ n. Then, it is easy to see that e1 = f(0,θ1) from which the result follows.
To complete the proof, we now establish the two lemmas referenced above. The first

provides a characterization of extreme points of the polytope Zn:

Lemma C.5 (Characterization of extreme points). zj is an extreme point of the polytope
Zn if and only if there exists θ ∈ RD such that θ>zj > θ

>zi for all i 6= j.

Proof. “if” direction. If possible, suppose that zj is not an extreme point, i.e. zj ∈
conv({zi : i 6= j}) so that there exists coefficients λij ≥ 0 such that

zj =
∑
i 6=j

λijzi ;
∑
i 6=j

λij = 1 ; λij ≥ 0 ∀ i 6= j.

180



But this results in the following contradiction:

zj =
∑
i 6=j

λijzi =⇒ θ>zj =
∑
i 6=j

λijθ
>zi

=⇒ θ>zj <
∑
i 6=j

λijθ
>zj (since λij > 0 for some i)

=⇒ θ>zj < θ
>zj ·

(∑
i 6=j

λij

)
=⇒ θ>zj < θ

>zj

“only if” direction. Denote M = conv({zi : i 6= j}) and observe that M is a closed,
convex and proper subset of RD. Now since zj /∈M, it follows from the (strong) separation
theorem in convex analysis that there exists θ ∈ RD such that

θ>zj > θ
>zi ∀ i 6= j.

Next, we show that for each product feature vector that is an extreme point, there exists
a boundary type that chooses the product with probability 1 from offer-set [n]:

Lemma C.6. Suppose zj is an extreme point of the polytope Zn. Define the vector ej =
(ej1, ej2, . . . , ejn) as follows:

eji =

{
1 if i = j

0 otherwise.

Then ej ∈ P, in other words, there exists a boundary type that chooses product j with
probability 1 from offer-set [n].

Proof. Since zj is an extreme point, it follows from Lemma C.5 that

∃θ ∈ RD s.t. θ>zj > θ
>zi ∀i 6= j.

Consider the sequence {r · θ}r∈N ⊆ RD. For any i 6= j, note that:

lim
r→∞

fi(r · θ) = lim
r→∞

exp (r · θ>zi)∑n
`=1 exp (r · θ>z`)

= lim
r→∞

exp (−r · (θ>zj − θ>zi))

1 +
∑

`6=j exp (−r · (θ>zj − θ>z`))

=
0

1 + 0
= 0.

An analogous argument shows that

lim
r→∞

fj(r · θ) = lim
r→∞

exp (r · θ>zj)∑n
`=1 exp (r · θ>z`)

= 1.
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From the above statements it follows that

lim
r→∞

f(r · θ) = ej,

and since the closure contains all limit points of convergent sequences, it follows that
ej ∈ P .

C.4 Proof of Theorem 3.5

Since each zj is an extreme point, it follows from Lemma C.6 that e1, e2, . . . , en ∈ P.
Then it follows that y ∈ conv(P) since y =

∑n
i=1 yi · ei and

∑n
i=1 yi = 1. Further, it

is easy to see that SQ(y) = 0 and SQ(g) > 0 for all g 6= y. Similarly, we have that
NLL(y) = −

∑n
i=1 yi log yi and it can be shown that NLL(g) > NLL(y) for all g 6= y (using

the fact that relative entropy or KL-divergence is non-negative). Therefore g∗ = y for both
the squared and negative log-likelihood loss functions.

Now, if at some iteration 1 ≤ k ≤ n, we have
〈
∇loss(g(k−1)),f (k) − g(k−1)

〉
≥ 0, then

by convexity it follows that loss(g) ≥ loss(g(k−1)) for all g ∈ conv(P) which means that
g(k−1) = g∗ and the Algorithm terminates. So, suppose that

〈
∇loss(g(k−1)),f (k) − g(k−1)

〉
< 0

for each 1 ≤ k ≤ n, which means that f (k) − g(k−1) is a descent direction and an improving
solution can be found. The proportions update step in Algorithm 8 ensures that we have
f (k1) 6= f (k2) in any two iterations k1 6= k2 (since it optimizes over all previously found types).
In addition, Theorem 3.4 shows that we recover only boundary types in each iteration, from
which it follows that at the end of n iterations, we have found the types e1, e2, · · · , en. Now,
clearly

∑n
i=1 yi · ei = y = g∗ and since the proportions update step optimizes over the convex

hull of all previously found types, the claim follows.

C.5 Proof of Theorem 3.6

For ease of exposition, we prove the result for the case when D2 = 1, i.e. there is only a
single binary feature but the proof can be easily extended, albeit with additional notation, to
the general case. Define the function G(·) : RD1+1 → R for ω ∈ RD1 and δ ∈ R as:

G(ω, δ) =

∑n
i=1 ci exp (ω>zi + δ · bi)∑n
j=1 exp (ω>zj + δ · bj)

.

Further, let G∗ = supω∈RD1 ,δ∈RG(ω, δ); since G(·) is bounded above, G∗ is finite. Note that
in this case P = {f(ω, δ) : ω ∈ RD1 , δ ∈ R}.1

Let S0 be the set of products that have the binary feature absent, i.e. S0 = {i ∈ [n] : bi =
0} and let S1 = [n]\S0. For e ∈ {0, 1}, define the sets Pe = {f (e)(ω) : ω ∈ RD1} ⊆ [0, 1]|Se|

1To simplify notation, we denote f ((ω, δ)) as f(ω, δ).
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where f (e)(ω) =
(
f

(e)
i (ω)

)
i∈Se

and

f
(e)
i (ω) =

exp (ω>zi)∑
j∈Se exp (ω>zj)

(C.11)

In other words, P0 (resp. P1) corresponds to choice probabilities under boundary types that
do not consider any product in S1 (resp. S0). Let f (0),f (1) denote arbitrary elements in
P0 and P1 where P0 and P1 denote the closures of the sets P0 and P1 respectively. Then,
consider the following optimization problems for e ∈ {0, 1}:

(Pe) : arg max
f (e)∈Pe

He(f
(e)),

where He : Pe → R is such that He(f
(e)) =

∑
i∈Se cif

(e)
i .

Next, for any ω ∈ RD1 , define the following:

a0(ω) =
∑
j∈S0

cj exp (ω>zj); b0(ω) =
∑
j∈S0

exp (ω>zj); G0(ω) =
a0(ω)

b0(ω)
.

a1(ω) =
∑
j∈S1

cj exp (ω>zj); b1(ω) =
∑
j∈S1

exp (ω>zj); G1(ω) =
a1(ω)

b1(ω)
.

Further, let C∗(0) = supω∈RD1 G0(ω) and similarly, C∗(1) = supω∈RD1 G1(ω). Recall that

C∗ = maxf∈P H(f).

Claim 1:

(1) C∗ = G∗; (2) C∗(0) = max
f (0)∈P0

H0(f (0)) and C∗(1) = max
f (1)∈P1

H1(f (1)).

Consider part (1). First observe that, G(ω, δ) = H (f(ω, δ)) ≤ C∗ for all ω ∈ RD1 , δ ∈ R.
As supremum is the least upper bound, it follows that G∗ ≤ C∗. Next, for any f ∈ P , there
exists a sequence {(ωr, δr)}r∈N ⊂ RD1+1 such that limr→∞ f(ωr, δr) = f . Then, since H(·) is
continuous, it follows that

f = lim
r→∞

f(ωr, δr) =⇒ H(f) = lim
r→∞

H (f(ωr, δr)) = lim
r→∞

G(ωr, δr) ≤ G∗,

where the last inequality follows since G(ωr, δr) ≤ G∗ for all r ∈ N. Since f ∈ P was
arbitrary, this means that H(f) ≤ G∗ for all f ∈ P . Finally, since H(·) is continuous and P
is compact, there exists f ∗ ∈ P such that H(f ∗) = C∗. This means that C∗ = H(f ∗) ≤ G∗

and combining with G∗ ≤ C∗, the result of part (1) follows.
The above argument can be repeated while restricting to the domains P0 and P1 to

establish part (2). The claim then follows.
Claim 2:

C∗ ≤ max(C∗(0), C
∗
(1)).
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First observe that for any ω ∈ RD1 and δ ∈ R:

G(ω, δ) =

∑n
i=1 ci exp (ω>zi + δ · bi)∑n
j=1 exp (ω>zj + δ · bj)

= G0(ω) · b0(ω)

b0(ω) + eδ · b1(ω)
+G1(ω) · eδ · b1(ω)

b0(ω) + eδ · b1(ω)
.

That is, G(ω, δ) is a convex combination of G0(ω) and G1(ω) and consequently we have

∀ω ∈ RD1 ,∀δ ∈ R G(ω, δ) ≤ max (G0(ω), G1(ω)) ≤ max(C∗(0), C
∗
(1)),

where the last inequality follows from the definition of C∗(0) and C∗(1). The claim then follows

from the definition of supremum and the fact that G∗ = C∗ (from Claim 1 above).
Given Claims 1 and 2 above, there are two cases to consider: C∗(1) ≥ C∗(0) or C∗(1) < C∗(0).

We focus on the case when C∗(1) ≥ C∗(0), the other case can be dealt with a symmetric
argument:

Case 1: C∗(1) ≥ C∗(0). For each ω ∈ RD1 , define the vector f̃(ω) ∈ [0, 1]n as follows:

f̃j(ω) =

{
f

(1)
j (ω) if j ∈ S1

0 otherwise,

where f (1)(ω) ∈ P1 is as defined above in equation (C.11).

Claim 3:
f̃(ω) ∈ P ∀ ω ∈ RD1 .

Given any ω ∈ RD1 , consider the sequence {(ω, r)}r∈N ⊂ RD1+1. Now for any i ∈ S0, it
follows that

lim
r→∞

fi(ω, r) = lim
r→∞

exp (ω>zi + r · bi)∑n
`=1 exp (ω>z` + r · b`)

= lim
r→∞

exp (ω>zi)∑
j∈S1

exp (ω>zj + r) +
∑

`∈S0
exp (ω>z`)

= 0.

Similarly, for any j ∈ S1, it follows that

lim
r→∞

fj(ω, r) = lim
r→∞

exp (ω>zj + r · bj)∑n
`=1 exp (ω>z` + r · b`)

=
exp (ω>zj)∑
`∈S1

exp (ω>z`)
= f

(1)
j (ω).

From the above statements, it follows that

lim
r→∞

f(ω, r) = f̃(ω) =⇒ f̃(ω) ∈ P ,

where the implication follows since P contains the limit of all convergent sequences in P .
Claim 4:

C∗ = C∗(1).
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From Claim 3, it follows that f̃(ω) ∈ P for all ω ∈ RD1 . Then, consider the following:

C∗ ≥ H
(
f̃(ω)

)
=

n∑
`=1

c`f̃`(ω) =

∑
j∈S1

cj exp (ω>zj)∑
`∈S1

exp (ω>z`)
= G1(ω).

where the first inequality follows from the definition of C∗. Then, it follows that

G1(ω) ≤ C∗ ∀ω ∈ RD1 =⇒ C∗(1) ≤ C∗ (since C∗(1) is the supremum).

Combining with Claim 2, it follows that C∗ = C∗(1).

Next, let f (1,∗) ∈ P1 denote the optimal solution for problem (P1). Then, using the

arguments given in the proof of Theorem 3.3 above, it follows that there exists ω
(1)
0 ,θ(1) ∈ RD1

such that f (1,∗) = f (1)(ω
(1)
0 ,θ(1)) where f (1)(ω

(1)
0 ,θ(1)) are the limiting choice probabilities

given by (if f (1,∗) > 0, then we choose θ(1) = 0):

f
(1,∗)
j = f

(1)
j (ω

(1)
0 ,θ(1)) = lim

r→∞

exp {(ω(1)
0 + r · θ(1))>zj}∑

`∈S1
exp {(ω(1)

0 + r · θ(1))>z`}
∀ j ∈ S1. (C.12)

Define ω0 = ω
(1)
0 ◦ (0) where recall that ◦ denotes the concatenation operator, and

θ = θ(1) ◦ (θ1) with θ1 =
√

5 · ‖θ(1)‖ ·Zmax, where Zmax is a constant that satisfies Zmax ≥ ‖z`‖
for all ` ∈ [n]. Then, we can show the following:

Claim 5:

(1) θ>(zj ◦ bj − zi ◦ bi) > 0 ∀ j ∈ S1,∀ i ∈ S0.

(2) fi(ω0,θ) = 0 ∀ i ∈ S0.

(3) fj(ω0,θ) = f
(1,∗)
j ∀ j ∈ S1.

Proof. We start with part (1). Consider any j ∈ S1 and any i ∈ S0, then it follows

θ>(zj ◦ bj − zi ◦ bi) > 0 ⇐⇒ θ>(zj ◦ 1− zi ◦ 0) > 0

⇐⇒ θ(1)>(zj − zi) + θ1 > 0

⇐= −‖θ(1)‖ · ‖zj − zi‖+ θ1 > 0 (by Cauchy-Schwarz inequality)

⇐⇒ θ1 > ‖θ(1)‖ · ‖zj − zi‖
⇐= θ1 > ‖θ(1)‖ · (‖zi‖+ ‖zj‖) (by triangle inequality)

⇐= θ1 > 2 · ‖θ(1)‖ · max
1≤`≤n

‖z`‖

⇐= θ1 > 2 · ‖θ(1)‖ · Zmax

and the last inequality is true by the choice of θ1.
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Next, for part (2) consider the following, given any i ∈ S0:

0 ≤ fi(ω0,θ) =
exp {(ω0 + r · θ)>(zi ◦ 0)}∑n
`=1 exp {(ω0 + r · θ)>(z` ◦ b`)}

≤ exp {(ω0 + r · θ)>(zi ◦ 0)}∑
`∈S1

exp {(ω0 + r · θ)>(z` ◦ b`)}

=
exp (ω

(1)
0

>
zi)∑

`∈S1
exp {ω(1)

0

>
z` + r · θ> (z` ◦ b` − zi ◦ 0)}

Then using the Squeeze theorem and part (1), it follows that limr→∞ fi(ω0,θ) = 0.
Finally, for part (3), consider the following for any j ∈ S1:

fj(ω0,θ)

= lim
r→∞

exp {(ω0 + r · θ)>(zj ◦ 1)}∑n
`=1 exp {(ω0 + r · θ)>(z` ◦ b`)}

= lim
r→∞

exp {ω(1)
0

>
zj}∑

`∈S1
exp {ω(1)

0

>
z` + r · θ(1)>(z` − zj)}+

∑
i∈S0

exp {ω(1)
0

>
zi + r · θ> (zi ◦ bi − zj ◦ bj)}

= lim
r→∞

exp {ω(1)
0

>
zj}∑

`∈S1
exp {ω(1)

0

>
z` + r · θ(1)>(z` − zj)}+

∑
i∈S0

0
(from part (1) of Claim 5)

= f
(1,∗)
j (from equation (C.12))

Having proved Claim 5, it follows that

H (f(ω0,θ)) =
∑
j∈S1

cjf
(1,∗)
j = C∗(1) = C∗,

where the second last equality follows since f (1,∗) is an optimal solution to problem (P1) and
the last follows from Claim 4 above. This shows that f(ω0,θ) is the optimal solution to the
support finding step, which establishes the result.

Case 2: C∗(0) > C∗(1). A symmetric argument from above shows C∗ = C∗(0) in this case.

In addition, if f (0,∗) = f (0)(ω
(0)
0 ,θ(0)) denotes the optimal solution to problem (P0), where

ω
(0)
0 ,θ(0) ∈ RD1 are computed using the procedure in the proof of Theorem 3.3, then choosing

ω0 = ω
(0)
0 ◦ (0) and θ = θ(0) ◦ (θ0) with θ0 = −

√
5 · ‖θ(0)‖ · Zmax, it follows that

(1) θ>(zi ◦ bi − zj ◦ bj) > 0 ∀ j ∈ S1,∀ i ∈ S0.

(2) fj(ω0,θ) = 0 ∀ j ∈ S1.

(3) fi(ω0,θ) = f
(0,∗)
i ∀ i ∈ S0.
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and in addition,

H (f(ω0,θ)) =
∑
i∈S0

cif
(0,∗)
i = C∗(0) = C∗,

so that the optimal solution is f(ω0,θ) which is a boundary type that only considers products
in S0.

In the general case, when there is more than one binary feature, the above sequence of
arguments shows that C∗ = C∗(e∗) for some e∗ ∈ E , so that the optimal solution corresponds

to a boundary type that only considers products in the subset Se∗ . Further, if f (e∗,∗) =

f (e∗)(ω
(e∗)
0 ,θ(e∗)) denotes the optimal solution to problem (Pe), then choosing

ω0 = ω
(e∗)
0 ◦ (0, 0, . . . , 0)︸ ︷︷ ︸

D2 times

and θ = θ(e∗) ◦ θe ; θe =
√

5 · ‖θ(e∗)‖ ·Zmax ·
(

2 ·be∗ − (1, 1, . . . , 1)︸ ︷︷ ︸
D2 times

)
,

where be∗ ∈ {0, 1}D2 is the binary feature vector for products in the equivalence class Se∗ , it
follows that

(1) θ>(zj ◦ bj − zi ◦ bi) > 0 ∀ j ∈ Se∗ ,∀ i ∈ [n] \ Se∗ .
(2) fi(ω0,θ) = 0 ∀ i /∈ Se∗ .
(3) fj(ω0,θ) = f

(e∗,∗)
j ∀ j ∈ Se∗ ,

which implies that

H (f(ω0,θ)) =
∑
j∈Se∗

cjf
(e∗,∗)
j = C∗(e∗) = C∗,

so that the optimal solution to the support finding step is f(ω0,θ) which is a boundary type
that only considers products in Se∗ .

C.6 Algorithm implementation details

We discuss here our approach for solving the support finding step in the CG algorithm in
each of our numerical studies.

C.6.1 Synthetic data

For the experiments in Sections 3.5 and 3.7—since the goal is to recover the underlying
mixing distribution—we employ the standard off-the-shelf BFGS solver [NW06] to compute
a candidate solution for the support finding step, which was enough to obtain an improving
objective value in each iteration. Since the subproblem in the support finding step is non-
convex, we run the BFGS solver from 20 different (randomly chosen) starting values to ensure
that we sufficiently explore the parameter space, and choose the solution which obtains the
best objective.
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C.6.2 SUSHI dataset

As described in the main text, there were two kinds of sushi varieties—maki and non-maki,
represented using a single binary feature. Let Smaki and Snon−maki refer to the two kinds of
sushi varieties so that [n] = Smaki ∪ Snon−maki. Let zi ∈ R4 denote the remaining (non-binary)
features for each sushi variety i ∈ [n] and let Zmaki and Znon−maki denote the convex polytope
w.r.t. to these features for both kinds respectively (similar to the definition Zn in the main
text). Finally, let Jmaki and Jnon−maki denote the extreme points of the polytopes Zmaki and
Znon−maki.

We take inspiration from the results (in particular the proofs) of Theorems 3.4 and 3.6
to come up with the heuristic approach in Algorithm 12 for solving the support finding step
(refer to equation (3.5) in the main text). In particular, the types fmaki and fnon−maki are
constructed according to the arguments in the proof of Theorem 3.6 above.

Algorithm 12 Solving the support finding step for the SUSHI dataset
1: Cmaki,ext ← maxj∈Jmaki

cj ; Cnon−maki,ext ← maxj∈Jnon−maki
cj

2: Let Cmaki,BFGS and ωmaki,BFGS be the best objective and corresponding solution of the

following subproblem as returned by the standard BFGS solver

max
ω∈R4

∑
i∈Smaki

ci ·

(
exp (ω>zi)∑

j∈Smaki
exp (ω>zj)

)

Similarly, compute Cnon−maki,BFGS and ωnon−maki,BFGS.

3: Cmaki ← max (Cmaki,BFGS, Cmaki,ext) and Cnon−maki ← max (Cnon−maki,BFGS, Cnon−maki,ext)

4: If Cmaki ≥ Cnon−maki, then output type fmaki that only considers maki sushi varieties,

otherwise output type fnon−maki that only considers non-maki sushi varieties

C.6.3 IRI dataset

Since we had more than one offer-set (with varying prices), we could not utilize the
heuristic approach outlined in Algorithm 12 above for solving the support finding step. So
instead, we just used the BFGS solver to determine an approximate solution. The choice
probabilities fBFGS obtained using the BFGS solver contained entries which were very “small”
(< 10−5), indicating the (possible) presence of boundary types. Motivated by this, we
considered the heuristic approach outlined in Algorithm 13 to determine whether a recovered
type was a boundary type (which we base on the proof of Theorem 3.3 above). In particular,
let zi = ei ◦ pi denote the feature vector for product i ∈ [n], where eij = 1[j = i] and 1[·] is
the indicator variable, and pi is the price of product i. In the algorithm, similar to the proof
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earlier, we assume that the universe of products is expanded so that the same product with
different prices in two offer-sets is indexed as two distinct products.

Algorithm 13 Solving the support finding step for the IRI dataset

1: fBFGS,ωBFGS ← choice probabilities and logit parameter returned by BFGS solver

2: For each offer-set St, let it ← arg maxj∈St f
BFGS
jt

3: For each offer-set St, let Pairst ← {(it, j) | j ∈ St \ {it} and log
(
fBFGS
itt

fBFGS
jt

)
< 105} and

similarly Pairst ← {(it, j) | j ∈ St \ {it} and log
(
fBFGS
itt

fBFGS
jt

)
≥ 105}

4: Let Pairs← ∪Tt=1Pairst and Pairs← ∪Tt=1Pairst

5: Let θ (normalized to unit norm) be the solution of the following linear program (LP):

max
ω∈R11

∑
(̄i,j̄)∈Pairs

ω>(zī − zj̄)

s.t. ω>(zi − zj) = 0 ∀ (i, j) ∈ Pairs; and ω>(zī − zj̄) ≥ 0 ∀ (̄i, j̄) ∈ Pairs

6: Let ω0 ← ωBFGS − ‖ωBFGS‖ · θ

7: Compute f(ω0,θ) as the limiting choice probabilities defined in Theorem 3.3

8: If
〈
∇loss(g(k−1)),f(ω0,θ)

〉
<
〈
∇loss(g(k−1)),fBFGS

〉
, then output boundary type

f(ω0,θ), otherwise output non-boundary type fBFGS

We used Gurobi Optimizer version 6.5.1 to solve the LP in Step 5 above.
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