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Abstract

Cooperative systenare ubiquitous nowadays. In a cooperative system, end users
contribute resource to run the service instead of only vangihe service passively from
the system. For example, users upload and comment pictadeg@deos on Flicker and
YouTube, users submit and vote on news articles on Digg. Athanexample, users in
BitTorrent contribute bandwidth and storage to help eatierotlownload content. As
long as users behave as expected, these systems benefitsetyiemm user contribu-
tion. In fact, five out of the ten most popular websites arerajir@y in this cooperative
fashion (Facebook, YouTube, Blogger, Twitter, Wikipedi®jitTorrent is dominating
the global Internet traffic.

A robust cooperative system cannot blindly trust that iersisvill truthfully partic-
ipate in the system. Malicious users seek to exploit theesystfor profit. Selfish users
consume but avoid contributing resource. For example,radvies have manipulated
the voting system of Digg to promote their articles of dulsiguiality. Selfish users in
public BitTorrent communities leave the system to avoidoaging files to others, re-
sulting in drastic performance degradation for these curdestribution systems. The
ultimate way to disrupt security and incentive mechanisimeooperative systems is
using Sybil attacks, in which the adversary creates manyl &ldntities (fake identi-
ties) and uses them to disrupt the systems’ normal operdtiorsecurity and incentive
mechanism works correctly if the systems do not have a radestity management
that can defend against Sybil attacks.

This thesis provides robust identity management schemehale resilient to the
Sybil attack, and uses them to secure and incentivize usdriloation in several exam-

ple cooperative systems. The main theme of this work is terbye the social network



among users in designing secure and incentive-compatlgperative systems. First,
we develop a distributed admission control protocol, caBatekeeper, that leverages
the social network to admit most honest user identities arig few Sybil identities
into the systems. Gatekeeper can be used as a robust ideatiggement for both cen-
tralized and decentralized cooperative systems. Secongyevide a vote aggregation
system for content voting systems, called SumUp, that cavept an adversary from
casting many bogus votes for a piece of content using thd &ithck. SumUp lever-
ages unique properties of content voting systems to prosigi@ficantly better Sybil
defense compared with applying a general admission coptaibcol such as Gate-
keeper. Finally, we provide a robust reputation systented&redo, that can be used to
incentivize bandwidth contribution in peer-to-peer contistribution networks. Credo
reputation can capture user contribution, and is resilierttoth Sybil and collusion

attacks.

Vi
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Chapter 1

Introduction

Our society is entering an era in which many Internet sesvaze designed to lever-
age the cooperative nature of their users. toaperative systenend users contribute
resource in the form of contents, opinions, or physical wueses instead of simply re-
ceiving the service from the system passively. For exanugkers share and comment on
pictures (Flickr), or videos (YouTube). Users submit antevan news articles on Digg,
and answer each others’ questions on Quora. In peer-torgéeorks such as BitTor-
rent, users are contributing bandwidth and storage to fap ether download content.
As long as users behave as expected, cooperative systemeceare immense benefit
from users’ contribution and scale inexpensively. Coopeasystems are ubiquitous
today: five out of the ten most popular websites are operatitigs cooperative fashion
(Facebook, YouTube, Blogger, Twitter, Wikipedia). Bitf@nt is dominating the global
Internet traffic [69].

A robust cooperative system cannot blindly trust that itsrsisvill truthfully par-
ticipate in the system. Malicious users seek to exploit tystesn for profit. Selfish

users consume resource but avoid contribution. For exgraglersaries have manipu-



lated the voting system of Digg to promote their articlesabidus quality [73]. Selfish
users in public BitTorrent communities leave the systemoas @s they have finished
downloading a file to avoid uploading the file to others, resglin serious performance
degradation for these content distribution systems [71]roBust cooperative system
must be able to limit the amount of damage inflicted by adversand to incentivize
honest users to make adequate contribution.

The biggest threat that cooperative systems face is thd &yack [19], in which
the adversary creates many Sybil identities (fake idesiitand use them to disrupt the
systems’ normal operation. No security and incentive meisina can work correctly
if it lacks arobust identity managemetitat can defend against Sybil attacks. For ex-
ample, many systems replicate computation and storagegdifberent nodes in order
to protect data integrity (data loss) [16, 70, 8]. Others [P5& 26] divide computation
and storage tasks and assign them to different nodes in trgeotect data privacy.
In both cases, these systems achieve the security andiiptggarantees only when
independent tasks are performed by distinct users. Usim@iil attack, the adver-
sary can violate this security requirement by potentiatpteolling a majority of the
identities in [78, 36, 19]. Likewise, Sybil attacks also #imvincentive mechanisms. A
common approach to incentivize user contribution for theteay is to provide higher
guality of service (or other benefits) to users who have dautied more [54, 57, 31].
To keep track of user contribution, one can use a reputatistesr. However, the ad-
versaries or selfish users can use Sybil identities to bbest teputation easily [54],
thereby disrupting this incentive mechanism. The Syb#ddkttis not just a hypotheti-
cal threat investigated by the research community, buttisalg happening in the real
world: adversaries are using fake identities to launch spigng campaign on popular

social networks like Facebook [67] and Renren [81], and mterarticles with low qual-



ity on Digg [73]. Therefore, in order to provide security andentive guarantees for
cooperative systems, we must manage user identities iniar@ghient fashion.

Defending against the Sybil attack is challenging. ExgBgstems restrict the cre-
ation of Sybil identities by limiting one identity per IP a@ds or per solved CAPTCHA
puzzle. Unfortunately, IP addresses and CAPTCHA solutaamsbe cheap to obtain.
An ordinary human can solve a few thousands of CAPTCHA pszn®ne day in or-
der to create thousands of Sybil identities. The adversanyaiso pay for an online
service to solve CAPTCHA puzzles at a rates8ffor 1000 puzzles [4]. The adversary
can obtain different IP addresses using public proxies ordsa I[P addresses within his
institution. The latter trick was used by MIT and CMU studetat game an online poll
for "the best graduate school in computer science” [7].

This thesis provides robust identity management schemehwale resilient to the
Sybil attack, and uses them to secure and incentivize usdriloation in several exam-
ple cooperative systems. The main theme of this work is toéxtpe social relationship
among users as a form of user identity. The insight is to aastothe identity of each
user with her social links with other users. Since sociatrehships take significant
human effort to establish, the adversary is limited to a fiekd with honest users and
thus can only have a few usable identities.

In this thesis, we first develop a distributed admission@mirotocol, called Gate-
keeper, that leverages the social network to admit mostsiarser identities and only
a few Sybil identities. Gatekeeper can be used as a foum#htroechanism to ad-
mit users and nodes for both centralized and decentralizederative systems. Next,
this thesis addresses the security and incentive challeingeo specific applications:
an online content voting system and a peer-to-peer contstitbdition network (P2P

CDN). A content voting system must prevent the adversamnfeasting a large num-



ber of bogus votes to boost the ranking of low quality cont®k design a flow-based
vote aggregation system called SumUp to collect most hormss while limiting the
number of bogus votes. The defense of both SumUp and Gawkaepcurrently the
state-of-the-art in their respective problems as repdrtedrecent survey [82]. A P2P
CDN faces serious performance problems as selfish noded aptvading files after
finishing downloading them. We provide a robust reputatistem, called Credo, that
is resilient to Sybil and collusion attacks, and can be useaddentivize bandwidth con-
tribution in peer-to-peer content distribution networkaredo relies on Gatekeeper to
limit the number of Sybil identities an adversary can brimipithe system, and a "mod-
eling good behavior” technique to defend against the caliuattack in which many
adversaries collude to boost each other’s reputation.

In the rest of this chapter, we first explain the insight ofigbeetwork based Sybil
defense in Section 1.1. Next, we discuss the main findingsatékeeper, SumUp, and

Credo before summarizing the contributions of this thesiSection 1.5.

1.1 Social network based Sybil defense

In the real world, there exists a social network among peofsfeedge in this net-
work represents a friendship between two people. Becawsging and maintaining
friendships require efforts in the real world, the adversam only have a limited num-
ber of edges, which are calledtack edgesto honest users. As a result, we can view
these edges as a valuable resource for defending agair®yiiiettack.

Although the adversary only possesses a limited numberta€laedges, he can
create a large number of Sybil identities and link them thgearbitrarily to form any

topology. Nevertheless, these Sybil identities are sépafeom the honest region of the



honest node Sybil node

Sybil
region

Honest
region

|

attack edges

Figure 1.1:Sybil region and honest region are separated by a small outefib by the attack
edges as illustrated in SybilGuard [84].

social network by the cut which is formed by the attack edgeshowed in Figure 1.1.
A large Sybil region creates an abnormal feature in the dvgnaph because we expect
the social graph to be well-connected. For example, it isswmthat social graphs exhibit
the fast mixing property [49, 84], in which a random walk stag from any node reaches
its steady state quickly. To be more precise, the mixing tisrfgounded byO(logn),
wheren is the number of honest nodes in the graph. By contrast,estakong time for
arandom walk starting from the honest region in Figure 1drtive at a random node in
the Sybil-region because the walk needs to pass througitak cut. A social network
based Sybil defense mechanism exploits this abnormalidgtect and eliminate Sybil
identities from the system. As a result, the number of Sylahtities that the adversary
can bring is limited by his ability to create attack edges.

SybilGuard [84] is the first work that exploits this insigbtdesign a distributedd-
mission control protocoin 2006. An admission control protocol is expected to admit
most honest identities while limiting Sybil identities attied into a system. SybilGuard

guarantees that it only admi€3(,/nlogn) Sybil identities per attack edge with high



probability. While this bound presents an important firgfpsin limiting the number

of Sybil identities in the system, it is still big for practicsystems because the num-
ber of honest users:] can be on the order of millions for popular systems. In 2008,
the authors of SybilGuard presented a new protocol, cajddlSmit [83], which im-
proves the bound to admitting onty(logn) Sybil identities per attack edge. It has
since remained an opened question if this bound can be furtipgoved for an admis-
sion control protocol. We addressed this open challenge thé Gatekeeper protocol.
We showed that Gatekeeper admits obljfog k) Sybil identities per attack edge, where
k is the number of attack edges.

Apart from developing Sybil-resilient admission conttademe work also leverage
the social network to secure specific applications. For @t@nWhanau [36] and X-
Vine [48] provide integrity and privacy for distributed Hetgbles. SumUp [73] protects
online content voting systems. Ostra [47] and SocialFjid} mitigate spam in email
systems. Bazaar [59] alerts users about potential frantitriEnsactions in online mar-
kets.

It is worth noting that in order for social network based $yafenses to be effec-
tive, the number of attack edges must be limited. Howeveiining social links in
today’s online social networks is relatively easy compdcethat in the real world. In
order to effectively defend against Sybil attack, theseesys should derive more re-
stricted online social networks from their existing onesr Example, the system can
ask each user to select a constant number of trusted friemwfstheir friend list in or-
der to form the restricted network. A study [20] has shown ¢haormal human being
cannot manage more than0 friends efficiently. Another way is to derive the restricted

network automatically from observing the interaction agnasers as suggested in [77].



1.2 Sybil-resilient admission control

The first contribution of this thesis improves the statehef-art defense for admis-
sion control protocols. Our new admission control protpcalled Gatekeeper, exploits
the expander-like property of social graphs to achieve sebbbund: admitting only
O(log k) Sybil identities per attack edge, whekeis the number of attack edges the
adversary has. Compared to SybilLimit's boundflog n), this improvement is sig-
nificant because the number of attack edges is negligiblgpaoed with the number of
honest nodesn| in the graph. When the number of attack edges is a constate- G
keeper admits only a constant number of Sybil identitiesrahy achieving and the
optimal result for social network based Sybil defense.

Gatekeeper introduces a technique callestributed ticket distributioto admit most
honest nodes while limiting Sybil nodes. In distributeckét distribution, a source
node prepare®(n) number of "admission” tickets and distributes them in a tirea
first-search fashion. Upon receiving the tickets, each riaps one ticket to itself
and propagates the rest to its neighbors that are furthey &em the ticket source.
When the number of attack edgesg (s small, Sybil nodes are far from a randomly
chosen source with high probability because of the graptpsmeder-like property. As
a result, the number of tickets which pass through an attdgk & a constant with high
probability. In other words, the adversary only gets a camshumber of admission
tickets per attack edge, i.e. the system admits only a constamber of Sybil identity
per attack edge. In order to admit most honest nodes, Gatekeembines the results of
distributed ticket distributions at many ticket sourcegaldation shows that Gatekeeper
performs better than SybilLimit in both real world sociabghs and synthetic social

graphs.



1.3 Defending content voting systems against Sybil at-
tack

Many websites rely on users’ votes to rank user-submittedecd. Example web-
sites includes YouTube, Digg, and Reddit. A content votiygfem is susceptible to the
Sybil attack because an adversary can outvote honest usegsmany Sybil identities.
A Sybil-resilient vote aggregation system aims to collecshnwotes from honest users
and as few votes from Sybil identities as possible for eaeheof content.

One possible solution for vote aggregation is to first penfaser admission control
using Gatekeeper and then only collect votes from admitsesisu The resulting vote
aggregation system colledtt k log k) votes from Sybil identities in the face bfattack
edges. We can improve this bound further by leveraging tbetfat the number of
honest users who vote for a specific content is very small esetpwith the total number
of honest users. Therefore, a vote aggregation system neextmit fewer number
of users compared to an admission control system, which is\pler task. Our vote
aggregation system, SumUp, leverages this insight to atotiely & votes from Syabil
identities for each piece of content.

SumuUp collects votes from users by computing a set of max4fiathis on the social
graph from all voters to a known trusted identity called tlogevcollector. In order to
perform max-flow computation, we need to set the flow capadigach social link. One
possible assignment is to set the capacity of every link tortee Under such an assign-
ment, the max-flow based vote collection can bound the attapkcity make between
the set of trusted vote collectors and the adversary to bedh&er of attack edges
(k), thus collecting at most bogus votes from the adversary. However, this assignment

also prevents most honest voters from having their votdsated, as the flow capac-



ity between honest voters and trusted vote collectors igdahrby the small number of
immediate neighbors of the vote collectors. To addresdithigation, we devised an as-
signment strategy which gives links close to vote collestetatively higher capacities
than links that are far away. Such an assignment enabledlovabased vote collec-
tion to gather most honest votes while still limiting the ruen of bogus votes to be the
number of attack links with high probability. SumUp alsoangorates users’ feedback
on the validity of collected votes to further improve its fsemance. In particular, if the
adversary is found to have casted many bogus votes, SumUpuellg eliminates the
adversary from the social network. SumUp offers immediateefits to many popular
websites that currently rely on users’ votes to rank content
We applied SumUp on the social graph and voting trace of Dighfaund strong

evidence of Sybil attacks. In particular, we identified hwatl$ of suspicious articles

that have been promoted to the “popular” status on Digg bgiptessSybil attacks.

1.4 Incentivizing bandwidth contribution in P2P CDN

Apart from containing the damage of malicious activitiemerative systems must
also incentivize contribution from honest but selfish useksnong today’s coopera-
tive systems, peer-to-peer content distribution netw@> CDNSs) are particularly in
need of incentive mechanisms to encourage nodes to cowttheir upload bandwidth.
The existing BitTorrent P2P CDN only provides incentivesriodes to upload to each
other if they are actively downloading the same file. Howgasrsoon as nodes finish
downloading, they no longer have incentives to become aesestl upload to others.
Therefore, despite a large number of nodes that have prgyidawnloaded a complete

copy of the file, BitTorrent must rely on altruistic nodesyided by the content distribu-



tor to provide sufficient seeding capacity. Recently, thesesurge of private BitTorrent
communities which enforce an exclusive user membershipnaindmal contribution
requirements [71]. Our measurement shows that the averagelobd bandwidth in
private BitTorrent communities i8 to 10 times higher than that in public BitTorrent
communities because private BitTorrent communities haveerseeders [71]. This per-
formance disparity demonstrates the importance of progideeding incentives.

User reputation systems have the potential to serve as aléaricentive mecha-
nism to incentivize bandwidth contribution in P2P CDNs. tdsthat have contributed
more to the system obtain higher reputations which in tutitlethem to receive higher
quality of service. e.g. higher download speed. The exfieatthat one’s contribution
is closely tied to his future service quality can be a straragntive for contribution. Ex-
isting reputation systems suffer from two limitations.ggjthey are vulnerable to Sybil
attacks and collusion [54]. In the Sybil attack, an adversaes his Sybil identities to
report fake downloads to increase his reputation. In cauattack, many adversaries
report fake downloads from each other in order to boost edwdr’s reputation. Second,
the reputation scores calculated by existing proposaltiagturately capture a user’s
past contribution.

To address both problems, we have designed the Credo repuggstem [71] which
encourages upload contribution by providing higher dowdlgpeeds to nodes with
higher reputation scores. In Credo, a node gives creditsogetnodes that it has down-
loaded data from, and collects credits by uploading to athéredo quantifies a node’s
net contribution based on the credits that the node hasctetldrom others. By count-
ing the diversity of those credits (i.e. the number of didtiissuers of credits) rather
than quantity, Credo limits the maximum reputation scoraroddversary to the number

of his admitted Sybil identities, regardless of the numberedits issued by these Sybil
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identities. Since Credo uses Gatekeeper to manage usétielemn adversary can only
have a few Sybil identities in the system. However, this tégie alone cannot prevent
multiple adversaries from colluding and sharing their Sit@ntities with each other in
order to increase the diversity. To address this collusitatk, Credo models the distri-
bution of the amount of self-issued credits of honest usknss technique discourages
Sybil identities from issuing abnormal amounts of creddampared with the modeled
distribution. As a result, the Sybils issue similar amouwftsredits compared with hon-
est users. Therefore, each adversary in the collusion gexgives a fixed amount of
credits from the Sybils independent from the size of theusidin group.

We implemented Credo in the Azureus BitTorrent client. Ekpents on PlanetLab
have shown that Credo significantly improves the downloatesi of most nodes by
motivating nodes that have finished downloading a file to stadlge system and upload

to others.

1.5 Contributions

To summarize, this thesis makes three contributions:

e The Gatekeeper Sybil-resilient admission control protéaolimiting the num-
ber of Sybil identities admitted into a cooperative syste@atekeeper’s defense
is optimal for the case af)(1) attack edges and admits ony(1) Sybil iden-
tities (with high probability). In the face of)(k) attack edges (for any <
O(n/logn)), Gatekeeper admit3(log k) Sybils per attack edge.

e The SumUp Sybil-resilient vote aggregation system for tiimgi the number of
bogus votes collected in an online content voting systenm! Bu prevents the

adversary from having more tharof his bogus votes collected if he hasttack
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edges. Using user feedback on votes, SumUp further resthetvoting power
of adversaries who continuously misbehave to below the murabtheir attack

edges.

e The Credo credit-based reputation system for incentiginandwidth contribu-
tionin P2P CDNs. Credo reputation can capture users’ darttan precisely, and

is resilient to Sybil and collusion attacks.

1.6 Thesis organization

The rest of this thesis starts with the description of Gagpke protocol and the
comparison with SybilLimit in Chapter 2. We, then, describe SumUp online con-
tent voting system and how to use SumUp to find real world Sgtitéicks on Digg in
Section 3. We explain the Credo reputation system in Chaptefhe evaluation of
each system is presented in its corresponding chapter. Wenatize related work in

Chapter 5 before concluding and discussing future work iapfér 6.
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Chapter 2

Optimal Sybil-resilient admission

control

Open systems like Digg, Youtube, Facebook and BitTorrdota&ny user on the
Internet to join the system easily. Such lack of strong udentity makes these open
systems vulnerable to Sybil attacks [19], where an attackeruse a large number
of fake identities (Sybils) to pollute the system with bogn®rmation and affect the
correct functioning of the system. The only known promisgdejense against Sybil
attacks is to use social networks to perform user admissiotral and limit the number
of bogus identities admitted to the system [83, 84, 18, 73]jnkin the social network
between two users represents a real-world trust relatipristween the two users. It
is reasonable to assume that an attacker usually has few tinkonest users since
establishing trust links requires significant human efforTherefore Sybil-resilient
admission control can be stated as follows: Consider a social netwpdonsisting of
n honest users and arbitrarily many Sybils connected to howekes viak attack edges

(anattack edgas a link between an honest and a Sybil node). Given an home n
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acting as the admission controller, determine the set oésital be admitted so that the
vast majority of honest nodes ¢hare admitted and few Sybil nodes are admitted.

The knowledge of the social graghmay reside with a single party or be distributed
across all users. Centralized node admission assumes eenikplowledge ofj (e.g.
Sybillnfer [18] and SumUp [73]) while distributed admissicontrol only requires each
user/node to be initially aware of only its immediate neigisbin G and seeks to dis-
cover all the other honest users/nodeg/inThis paper addresses the distributed node
admission control problem.

We make a few important observations about the Sybil-esgilnode admission
problem. First, the problem is inherently probabilistiatsdefinition; hence, we seek
to admitmosthonest nodes while limiting Sybil nodes. Finding a perfégbathm that
can detect all honest nodes and reject all Sybil nodes isaiuedtally impossible. Sec-
ond, the problem makes no assumption abguhe number of honest nodesdh As
we show in our result, if the social network exhibits expargi@aph properties, one does
not require the knowledge of to solve the problem. Third, any distributed admission
control protocol can also be run in a centralized settinglesrtte is more general than
centralized admission control.

The distributed admission control problem has been studiguior work. Sybil-
Guard [84] is the first work to show an admission protocol wHimits the number of
admitted Sybil identities to b&(y/nlogn) per attack edge, whereis the number of
honest users in the social network. SybilLimit [83] sigrafitly improves over Sybil-
Guard and limits the number of Sybils admitted per attaclead@ (logn).

In this paper, we present a distributed Sybil-resilient sdion control protocol
called Gatekeeper with the following results:

Theorem: Given a social network which exhibits a random expander-graph prop-
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erty, Gatekeeper achieves the following properties wigihtgrobability:

1. In the face oft attack edges withk up to O(n/logn), Gatekeeper limits the
number of admitted Sybil identities to bElog k) per attack edge. This implies
that onlyO(1) Sybil nodes are admitted per attack edge if the attackerds

attack edges.
2. Gatekeeper admits almost all honest users.

To achieve these results, Gatekeeper uses an improvedmverfgheticket distribu-
tion algorithm in SumUp [73] to perform node admission contra mhecentralized fash-
ion. Gatekeeper executes the ticket distribution algorittom multiple randomly cho-
sen vantage points and combines the results to perform tlatieed admission control.
We prove the results under the assumption of random expamndghs, an assumption
that holds for many existing social networks. Expander lgsage by nature fast-mixing,
a common assumption made in SybilLimit and other relatetbpais [83, 84, 18, 36].

Our result establishes optimality and improves over Syhilt. by a factorlogn
in the face ofO(1) attack edges. Under constraints that attack edges are hasi t
tablish and there is only a constant number of them, Gatekdsmn optimal decen-
tralized protocol for the Sybil-resilient admission catproblem. The general re-
sult on admittingOD(log k) Sybils per attack edge in the face lofttack edges for any
k € O(n/logn) establishes a continuum across the attack capacity spectiis pro-
vides a graceful degradation with increased number oflagtdges. In the worst case
whenk = O(n/logn), Gatekeeper achieves the same level of resilience as SitilL
where both Gatekeeper and SybilLimit additlog n) Sybils per attack edge with high
probability.

We have tested our protocol experimentally on real-worldametworks and syn-
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thetic topologies for varying number of attack edges. Owyasis shows that our pro-
tocol is able to drastically limit the number of admitted $ythentities to a very small
number while admitting almost all honest identities. Evemew we significantly in-
crease the number of attack edges to ceve@’ of the nodes, the number of admitted

Sybil identities per attack edge remains very small.

2.1 System Model and Threat Model

We use a similar system model and threat model as those ugeeMious systems
(e.g. SybilLimit [83], SybilGuard [84] and Wh anau [36])hd system consists of
honest nodes belongingtdonest users. There exists an undirected social graph among
all nodes in the system. A link between two honest users tsftbe trust relationship
between those users in the real-world. The knowledge ofdbialsgraph is distributed
among all nodes. In particular, each honest node knows itgeidnate neighbors on the
social graph and may not know the rest of the graph, inclutiegvalue ofn. Each
node has a locally generated public/private key pair. A riotevs the public-keys of
its neighbors, however, there exists public-key infrastructure that allows a node to
correctly learn of all other nodes’ public-keys.

The system also has one or more malicious users and eachauslicser controls
a number of malicious Sybil nodes. All Sybil nodes may colwdth each other and
hence are collectively referred to as the adversary orkdtacHonest nodes behave
according to the protocol specification while Sybil nodes assumed to behave in a
Byzantine fashion. The attacker may know the entire socegly and is able to create
arbitrary links among his Sybil nodes. We assume the attdwk®% links with honest

users (attack edges), wherean be up t@(n/logn).
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Distributed admission control: A node acting as an admission controller deter-
mines which of the other nodes (suspect nodes) should bdtadrimito the system. The
process can either be creating a list of admitted nodes,cididg whether a particular
suspect node can be admitted or not. In the centralizedhggetine typically assumes
the existence of a trusted controller that performs admssbntrol on behalf of all
nodes. By contrast, in the distributed setting, there sxistcentralized source of trust
and each node must act as its own controller. Each contnoleds to consult other
nodes to make its admission decisions. We note that a noslasds own controller as
well as a suspect for other controllers.

Sybil-resilient node admissions:The goal of Sybil-resilient admission is two-fold
— it should accept most honest nodes and it should admit fé 8gdes. The attacker
aims to maximize the number of admitted Sybil nodes, and tormze the number of
admitted honest nodes.

It is worth emphasizing that the number of admitted Sybile®d ultimately de-
pendent ork, the number of attack edges. Specifically, since attacksedgeindistin-
guishable from honest edges, any protocol that admits nustdt nodes would admit
approximately one Sybil node per attack edge, resulting admitted Sybil nodes. The
goal of a Sybil-resilient admission protocol is to appro#uk lower bound of one ad-
mitted Sybil node per attack edge. Separate mechanismeaguiad to ensure thétis
likely to be small. Today’s popular online social networkeIFacebook do not promise
smallk. To minimizek, one can use techniques proposed in [3] and [77] to ensute tha
honest users only establish trust links with their closenftis in the real-world so that

the attacker is unlikely to possess many links to honessusesulting in a smakt.
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Figure 2.1: The ticket distribution process of a particular node S: Theber on each link
represents the number of tickets propagated via that lirtke dotted lines are links between
nodes at the same distant to the source.

2.2 Design Overview

In this section, we first describe the central component aék&eeper, thécket dis-
tribution processWe proceed to discuss the challenges involved in usingtidistribu-

tion for node admission control and explain how Gatekeegéresses these challenges.

2.2.1 Ticket Distribution

The principle building block of Gatekeeper is the tickettdimition process where
each node acting as a ticket source disseminataskets” throughout the social net-
work until a significant portion of the honest nodes recetv@s tickets. We originally
designed the distribution algorithm for SumUp [73]¢centralizedSybil-resilient vote
collection system. SumUp uses ticket distribution to assiigk capacities which are
needed for its centralized max-flow computation. As we vak $ater, Gatekeeper uses
ticket distribution completely differently.

We illustrate the ticket distribution process using thenegke of Figure 2.1 where
the ticket sourceq) intends to disseminate = 20 tickets. Tickets propagate in a

breadth-first-search (BFS) manner: Each node is placecéptmally) at a BFS-level
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according to its shortest-path distance frém.S divides the tickets evenly and sends
them to its neighbors. Each node keeps one ticket to itsdlfigstributes the rest evenly
among its neighbors at the next level. In other words, a no@s dot send tickets back
to neighbors that are at the same or smaller distance to tireesolf a node does not
have any outgoing links to the next level, it simply destrajlgemaining tickets. The
process continues until no tickets remain.

We use ticket distribution as a fundamental building blatlGatekeeper because
of two considerations. First, since each node only needw/leuye of its immediate
neighborhood to propagate tickets, the entire distrilbugimcess can be realized in a
completely distributed manner. Second, as nodes prop#igkéts in a BFS manner
from the source, edges further away from the ticket sourceive exponentially fewer
tickets. Our intuition is that, since the attacker only cotst a small number of attack
edges, a randomly chosen ticket source is relatively “faydirom most attack edges,
resulting in few tickets propagated along an attack edgea Aesult, Gatekeeper may

be able to directly use a received ticket as a token for a satkhission.

2.2.2 Our approach

The naive strategy for applying ticket distribution to assion control works as fol-
lows: each node admission controlléf) (disseminates tickets and accepts a suspect
node if and only if it has received some tickets fréimSuch a strategy has two inherent
limitations. First, it is infeasible to reach the vast m#jofe.g. > 99%) of honest nodes
by distributingn tickets from a single ticket source. For example, the sithuteexperi-
ments in [73] shows that onky 60% honest nodes receive some tickets. Second, in the
presence of a single ticket source, an attacker may be abteategically acquire some

attack edge close to the source, resulting in a large amduitkets being propagated
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to Sybil nodes via that attack edge.

The key idea of Gatekeeper is to perform distributed tickatithution frommultiple
ticket sources. In Gatekeeper, an admission controlldragtky picks m random nodes
(using the random walk technique in [83]) to act as ticketrses. Each randomly
chosen ticket source distributesickets wheret is chosen such thd} nodes receive
some tickets. Later in Section 2.5, we will show that a sowty needs to send out
t = O(n) tickets. We say that a nodersachablefrom a ticket source if it has received
a ticket disseminated by the source. The admission coatratimits a suspect node if
and only if the node is reachable from at le#st,.;; - m ticket sources, wheré,;,,.;; IS
a small constant (our evaluations suggest uging:; = 0.2).

Multi-source ticket distribution addresses both limibat associated with using a
single ticket source. The first limitation is concerned watlsingle source not being
able to reach the vast majority of honest nodes by sendingtoal ©(n) tickets. In
Gatekeeper, an honest node not reachable from one sourcéen@ached by other
sources. Ultimately, an honest node is admitted as longiasgachable by, 4,,.;; - m
sources which is a high probability event. On the other hanth a small number of
attack edges, the attacker cannot appear close-by to maapdomly chosen sources,
and thus is unlikely to receive a large number of tickets fraenmany asf,gmic - m
sources. Therefore, by admitting only nodes reachablg hy; - m sources, Gatekeeper
ensures that the number of admitted Sybil nodes per attagk iscsmall. The second
limitation is concerned with an attacker strategicallywoes some attack edge close to
a known ticket source. Gatekeeper solves this problem sedhe admission controller
explicitly picksm random ticket sources as opposed to acting as the tickatesdself.

In Section 2.5, we present a detailed analysis of thesdtimnsi

20



2.3 Gatekeeper: The protocol

The Gatekeeper protocol consists of two phasdésmaistrap phasehere each node
acts as a ticket source to dissemin@te:) tickets throughout the network and ad-
mission phas&here a node acting as the admission controller seledisket sources
and accepts another node if that node possesses tickets figm- m of them chosen

sources. Below, we describe the details of these two phases:

2.3.1 Bootstrap: decentralized ticket distribution

To bootstrap the protocol, every node performs decengdlizket distribution with
the aim of reaching more than half of the honest nodes. Sicieet distribution proceeds
in a BFS fashion, a forwarding node needs to know its neighbtevel” (i.e. the
neighbor’s shortest path distance to the ticket sourceyderoto decide whether to
forward that neighbor any tickets. In order to establishhsstwortest path knowledge,
all nodes execute a secure path-vector based routing ptoile adopt a known secure
path-vector protocol [29] where a node explicitly advesists shortest path to each
ticket source using a signature chain signed by succesentesnalong the path. As a
result, Sybil nodes cannot disrupt the shortest path catioml among honest nodes.

The number of tickets a source should dissemingtés not a fixed parameter.
Rather, each source adaptiseratively by estimating whether a sufficiently large frac
tion of nodes receive some tickets under the current value @e first describe how
a sourceS disseminates; tickets in thej-th iteration and discuss how adaptst;
later. Each ticket front consists of the current iteration numbe@ sequence number
i € [1..t;], and a message authentication code (MAC) generated ustngritrate key

of S. The MAC is verifiable by the source and is necessary to ptawenforgery and
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tampering of tickets.

A node @) receivingr tickets consumes one of them and evenly divides the other
r — 1 tickets to those neighbors at the next BFS “level”, i.e. hbwys that are further
away fromsS than@. Node( can learn which neighbors are further by requesting and
verifying its neighbors’ shortest path signatures@lhas no such neighbor, it simply
discards its remaining tickets. Whée&n sends a ticket to its neighbdt, it explicitly
transfers the ownership of that ticket by appending a tygleR) to the ticket and
signing the ticket withQ)’s private key. If() consumes a ticket, it appends its@lf«)
to denote the end of the transfer chain. The use of a signaha&i@ allows a ticket
source to detect a “double-spender”, i.e. a malicious nbdeftas sent the same ticket
to different nodes. The signature chain scheme represeet®fomany solutions for
detecting double-spenders. Alternative mechanism ircketure transferable e-cash
schemes [10]) which allow a source node to act as a “bankirigs+coins as tickets.

In order to help sourc& determine its reachable nodes, each node that has con-
sumed a ticket frony forwards its ticket in the reverse direction of the ticksignature
chain. Supposé receives a ticket consumed 6y, S must verify the validity of the
signature chain associated with that ticket. In particufachecks that the chain is not
“broken”, e.qg., (S, A), (4, B), (C, Q) is not valid because it misses the ligk, C).
Additionally, S also checks in its database of received tickets to see iétlseany
double spending. For example,Sfdiscovers two ticket$(S, A), (A, B), (B, @)) and
((S,A), (A, B), (B',Q')), it will blacklist node A as a double-spender and ignore both
tickets. IfQ’s ticket passes verificatio, records() in its database of reachable nodes.

Adjust the number of tickets distributed iteratively: After a pre-defined time
period, the ticket source terminates the currgtt iteration of ticket distribution, and

decides if it needs to proceed with the 1)-th iteration with increased number of
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tickets to be distributed. In particular, the ticket souseenples a random subsét’|

of nodes in the social network by performing a number of ramaalks. LetR be the
set of reachable nodes in the source’s database. If lesh#ibaf the sampled nodes
are within the reachable set, i.@% < 1/2, the source proceeds to the next iteration
(5 + 1) with twice the amount of ticketg, ., = 2 - ¢;.

Intuitively, when the attacker controls updtn/ log n) attack edges, only a negligi-
ble fraction of nodeso(1)) are Sybils in the sampled sét/() and the reachable sek).

As a result, if the majority of the sampled nodéE)Y are not inR, it implies that the
amount of tickets distributed in the current iteration isufficient and the source should
distribute more tickets in the next iteration. On the othemdy once the amount of tick-
ets distributed reaches(n), the majority of honest nodes become reachable, thereby
terminating the iterative process.

Our adaptive ticket adjustment process is similar to thecberarking technique
used in SybilLimit [83]. In SybilLimit, each node perforniy/n) random walks and
benchmarking is used to determine the number of random walkerform without
explicitly estimatingn. Similarly, in Gatekeeper, each ticket source adaptivelyides
on the amount of tickets to distribute £ ©(n)) without having to explicitly estimate

n.

2.3.2 Node admission based on tickets

After all ticket sources have bootstrapped, each node cay@at its own admission
control to decide upon a list of nodes to be admitted into yistesn.

To perform admission control, a controller first selegtsrandom ticket sources
by performingm random walks of lengtl(logn). In fast-mixing social networks,

a random walk of lengtlD(logn) reaches a destination node drawn from the node-
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stationary distribution. Because nodes have varying @ésgeeforwarding nodéepicks
neighbor; as the random walk’s next hop with a probability Weightmfn(dii, dij),
whered; andd; are the degree of nod&ndy, respectively. This ensures thatrandom
walks samplen nodes uniformly at random [18]. It is in the attacker’'s begerest
to claim that Sybil nodes have degree order to attract random walks into the Sybil
region. To protect an unlucky controller who is a friend oriarfd-of-a-friend of some
Sybil node, we make an exception for honest nodes to formamdam walks to its
neighbors withequalprobability during the first two hops of a random walk. We use t
same strategy in [83] to estimate the required random walitkewithout the knowledge
of n.

The controller asks each of the chosen ticket sources for its reachable node list.
The controller admits a node if and only if that node has aggzkis more thary,g,,,:: - m
reachable lists returned by thechosen ticket sources. The paraméigr,;; is setto a

fixed value0.2 in our simulations and we will analyze how to set the appriprivalue

for fu.ami: IN Section 2.5.

2.4 Protocol Message Overhead

We consider the asymptotic message overhead of Gatekeéperavery node acts
as a controller and compare to that of SybilLimit. During Ho®tstrap phase, the num-
ber of bits that need to be transferred during the ticketitistion process of a single
source i¥9(n logn) because the source sends 6ut) tickets and each ticket travels a
path of length©(logn). Therefore, in a network af ticket sources, the total message
overhead i (n*logn). In the admission phase, each controller obtaineode lists

each of sizeéd(n) from m chosen ticket sources. When each node acts as a controller,
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the total number of bits transferred during the admissiasphso(n?). Thus, the total
message overhead incurred by Gatekeep@(ig logn) + ©(n?) = ©(n?logn). This
overhead is the same as that of SybilLimit if every honeseraiths to admit every other
honest node. However, we must point out that if each comtralhly intends to admit
a small constant of honest nodes, SybilLimit incurs daly:/n logn) total overhead.
By contrast, the total overhead in Gatekeeper is alwags’ logn) regardless of the
number of honest nodes each controller intends to admit.

In some circumstances, it may be desirable to run Gatekee@ecentralized set-
ting using a single admission controller. For example, thine content voting site,
Digg.com, may run Gatekeeper on its social graph using desoantroller to decide
upon the list of nodes allowed to cast votes. In these casdskEeper’s overall runtime

is ©(nlogn), which is much better than that of SybilLimi®(rn+/n logn)).

2.5 Security Analysis

We show Gatekeeper’'s Sybil-resilience by proving thathd attacker possesses
k = O(n/logn) randomly injected attack edges, a controller admits at gktg k)
Sybil nodes per attack edge and that each controller adimtssaall honest nodes. Our
proof makes certain assumptions about the social graphefibboy honest users, denoted

by G. Specifically, we assume that:

1. G is a fixed degree sequence random graph constructed by thiegpaiethod
in [5, 43] with maximum node degrek It has been shown that the pairing method
generates an expander graph with expansion factaith high probability. In

other words, for every sét” of vertices with fewer tham/2 nodes,

NW)| >

a|W|whereN (W) denotes the set of vertices adjacentifdut do not belong to
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W [2]. Compared to previous work which only assumes fast-ngj>graphs [84,
83, 36], expanders represent a stronger assumption. Keless, expander has

been commonly used as reasonable model for large-scakd goaphs.

2. G is reasonably balanced. Lét,,(v) be the distance such thatis less than
Apar(v) distance away from more than half of the honest nodes. Irr etbeds,
Apag(v) is the BFS-level whem reaches more thaf nodes. Letist(u,v) be
the distance between v. DefineS(v) = {ulu € G, dist(u,v) < Apgp(uw)}. In
other words,S(v) represents the set of ticket sources that deess reachable.

We sayg is balanced if for almost all, &n”)' > fu, for a constant threshold value

fin < 0.5. In probabilistic termsﬁ(% < fu) for any randomly chosen
is o(1) (a function asymptotically lower than a constant). Most rearld social

graphs satisfy this balance criterion.

2.5.1 Gatekeeper admit$)(log k) Sybils per attack edge

For this proof, we proceed in two steps: first, we bound thelmenmof tickets sent to
the attacker (via attack edges) by a randomly chosen ticket souree(tolog k). Sec-
ond, we show at mos? (log k) Sybil nodes can receive tickets from more thap,;; - m
of them ticket sources using the Chernoff bound.

The more tickets a source distributes, the more ticketslitkelyy end up with the
attacker. Therefore, in order to bound the number of ticketsived by the attacker, we
must bound the number of tickets distributed by a ticket seuas described formally

by the following theorem:

Theorem 2.1. Suppose the grapf is a fixed degree sequence random graph con-

structed by the pairing method. The expected number oftsickguired by a given
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ticket source to reach more thary2 honest nodes i&[t] = ©(n). (see proof in Ap-

pendix A)

Given a ticket source, we order honest nodes from closest to farthest froat-
cording to their BFS level. Lef,,,.; be the level of thel - n-th node, where is a
small constant like).01. Let A, be the level of thgl — 1) - n-th node. In other
words,Ag,.qu, Avig are chosen so that the BFS levels of % fraction of honest nodes
fall between(A;.i, Avig]. As a result, the probability that all attack edges are at
some distance within the ran@&,,..u, Avig] is (1 — 2€)* > 1 — 2¢, which is high be-
cause of smalt. Next, we will bound the number of tickets received by thagkter
for the high probability event that all attack edges lie within ticket distribution levels
(Agmairs Abig] .

Lemma 2.2. For a given ticket source, given that allk randomly injected attack edges
are at some distance in the ranga,,,.;;, Aw,] fromu, the expected number of tickets

received by the attacker 3(k log k).

Proof. Let A; be the number ofi’s tickets that are sent from levelto level-G + 1).
Ag = t is the number of tickets distributed by the soutcelLet L; be the number of
nodes at level: We can calculate the expected number of tickets that pasgtha

random node at levél\,,,.i, Ay;,] as:

Apig

> Aict (2.1)

Asman+1 L(AS7rLall+1) +-t LAbz‘g

Ao
< A ig Asma
>~ ( big ll)L(AsmauH) + -4+ LAbig

(2.2)

By the definition ofA ;. and Ay, we know that(La,,,.,+1) + - - - + La,,,) has

greater thar(1 — %) fraction of honest nodes. Furthermoig(A4,) = E(t) = O(n)
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according to Theorem 2.1. Henczedsmamf‘j”JrL%g =0(1).

To show that Ay, — Agman) iS O(log k) we consider the two term(@\,q; r — Agpmau)
and(Ayiy; — Apar) WhereA,,, s is the level where we reach thg/2-th node in the BFS
tree ofu. Becausé; is an expander with expansion factoelacross each level, we have
£ - et~ Sematt <y /2. HenceApqr — Agnan is O(log k). Similarly, we can bound
Apig — Apnary 10 O(log k) by expanding from graph from theg: nodes farthest from to
the 5-th node. Summing up the two results, we g&%q s — Asman) @sO(log k). Hence,
we can bound the expected number of tickets received by anandde within the level
range(Agqqu, Avig) to beO(log k). Since an attack edge is connected to a random node
at level within the rangé€A,,..., Aviy|, the expected number of tickets received by an
attack edge is bounded ly(log k). Hence, withk attack edges all within this range,
the expected number of tickets received by the attack@(idog k).

O

Based on Lemma 2.2, a ticket source giv&s: log k) tickets to the attacker with
k attack edges. However, thig(k log k) bound is only in expectation and some ticket
sources may give much more than the expected number ofditikehe attacker. By
requiring each admitted node to receive tickets from attlggs,;; - m of m randomly

chosen sources, we can prove the following theorem:
Theorem 2.3.Gatekeeper admit9(log k) Sybils per attack edge with high probability.

Proof. Let Ty, T5,--- ,T,, be the random variables representing the total number of
tickets received by the attacker viaattack edges from each of the ticket sources.
SinceE(T;) = O(log k), according to Markov’s inequality, there exist constafts; 1
andr < % such thatr(7; > Sklogk) < 7. In other words, the probability that

any ticket source reaches more thinlog k& Sybil nodes is bounded by
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We define a new random variablé,, as follows:

1 if T; > Bklogk
0 if T; < Bklogk

Letz =21+ Zy+---+ Z,. SincePr(Z; = 1) < 7, using Chernoff bound, we can

show that

Pr(z > mf‘;dm“) < e D(r, Ladmit

whereD(r, %) is the Kullback-Leibler divergence function that decreaseponen-
tially with m. Hence, with high probability; < % We refer to the-th source
as type-A if Z; = 1 or as type-B ifZ; = 0. Among them sources, there aretype-A

sources andh — z type-B sources.

Supposes Sybil nodes are finally admitted. In order to be admitted heafcthe s
Sybils can present at mostickets from type-A sources. Additionallgll s Sybils can
use at mostm — z)fklog k tickets from type-B sources. Hence, the total number of
tickets that can be used for the admissiors &ybils is at mostz + (m — z)pklog k.
Sinces Sybils need at leastf,...; - m tickets for admission, we arrive at the following

inequality:

5 fadmie-m < S-z+(m—z)- Pklogk
(m — 2)
fadmit : (m - Z)
2~ foamit gy 10

Sadmit

= O(logk) O

Bklogk

[l

| W
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2.5.2 Gatekeeper admits most honest nodes

Theorem 2.4. Gatekeeper admits any honest node with high probability.

Proof. Recall our earlier definition of (v), which represents the set of potential ticket
sources that deemas reachable. Singgis balanced, the probability that a randomly
chosen ticket source can reachs at leastf;,. Since the events thatis reachable
from randomly chosen ticket sources are independent, waaly the Chernoff bound

to show that the probability is reachable from less thafy,,..; - m ticket sources is
bounded bye~-Peamit-fin) where D(-) is the Kullback-Leibler divergence function.
Thus, when choosing, ,.;; such thatf,...;: < fi, the probability that an honest node
is not admitted decreases exponentially with Hence, Gatekeeper admits an honest

node with high probability. O

Note that we have proved both Theorem 2.3 and Theorem 2.héocdse when
all m ticket sources are honest. A Sybil node may be chosen as eesibar random
walk escapes to the Sybil region of the graph. kgt be the fraction ofn sources in
the Sybil region. When the attacker controls ugto:/ logn) attack edges, with high
probability, f... is asymptotically smaller than a constant, ife,. = o(1). Our earlier
proofs can be extended to handlle. = o(1). Next, we analyze the worst case scenario

when f.,. is non-negligible.

2.5.3 Worst Case Analysis

The worst case scenario applies to those few unlucky coetsahat are extremely

close to some attack edge, resulting in a non-negligihle Letm’ be the number of
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honest sources, i.en’ = (1 — fes.) - m. We adjust the proof for Theorem 2.3 to handle
the case when only)’ sources are honest. For each of ##ybils to be admitted, it can
use at most tickets from type-A ticket sources and at m¢st’ — z) - Sklog k from
type-B sources. Additionally Sybils can uséf,,. - m from those ticket sources in the

Sybil region. Recall that < f‘”% we have:

IA

S fadmit -m gfescm + 5z + (m/ — Z)B]C logk

5((fadmit — fesc)m — Z)

N
k

IA

(m' — 2)Bklogk
(1_fesc) cm—2z
(fadmit — fesc)m —

IA

Blogk
z

Therefore, to admit at mosk(log k) Sybils per attack edge (i.é. = O(log k)), the
escape probability. .. must be small enough such thig} s,.i: — fesc) -m —2z > 0. Since
2 < daami’ \ye obtain thaff,. < pladmit,

We adjust the proof of Theorem 2.4 similarly. In order for amést node to be
admitted, it must possess tickets frofy,..; - m nodes out of then’ honest sources.

Therefore, we requir€,imic < (1 — fese) fin, 1€ fese < 1 — % In summary, to

satisfy both Theorem 2.3 and 2.4, we require that.; < min(Qf‘}fZ;Zit, 1‘?22"”'5).

We usef..mi: = 0.2 in our evaluations. Therefore, a controller adntitSog k)
Sybil nodes per attack edge as longfas < 0.11. As a concrete example, let us
consider a controller with degrelewho is immediately adjacent to the attacker. In this
case,f..c = 1/d. Hence ifd is bigger thar, f.,. will be small enough to satisfy both
Theorem 2.3 and 2.4. W is smaller tharp, the controller must be more than 1-hop

away from the attacker to ensure tlfat. is small enough.
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Figure 2.2:The number of Sybil nodes accepted per attack edge as adnmdtthe number of
attack edgesk).

Data set | Synthetic| YouTube [46]| Digg [73]
Nodes varying 446, 181 539, 242
Undirected edges varying 1,728,948 | 4,035,247
Average:median degree 6:6 7.7:2 15:2

) Table 2.1: Social graph statistics
2.6 Evaluation
We evaluate the effectiveness of Gatekeeper in both syatreiphs and real-world
social network topologies. Specifically, we show that Geggler admits most honest
nodes & 90% across different topologies) and significantly limits thamber of Sybils
admitted per attack edge to a small value even in the face arige Inumber of attack

edgesk ~ 0.02 - n).

2.6.1 Experimental Methodology

For real-world social topologies, we use the YouTube [46] &igg [73] graph.
For synthetic graphs, we generate random graphs with averade degree af. Ta-
ble 2.1 summarizes the basic graph statistics. To modelyh# &tack, we randomly
choose a fraction of nodes to collude with the attacker sbdhdahe edges of these

nodes as attack edges. The attacker optimally allocatextsito Sybils to maximize the
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Fraction of honest nodes adnmitted
o
o

Figure 2.3:Fraction of honest nodes admitted under varyfng,.;:

number of Sybils admitted. In each simulation run, we ranigaalect a controller to
perform admission control and measure the number of Sybitstéed per attack edge
and the number of honest nodes admitted. We repeat eachiragpéfor2000 runs and

compute the average and the deviation. Unless otherwiséioned, a controller uses
m = 100 ticket sources and admits another node if it has receiv&dtsdrom at least

faamie = 0.2 fraction of them sources.

2.6.2 Number of Sybils admitted

We first measure the number of Sybil nodes admitted per attdgk as a function of
the number of attack edgek)( Figure 2.2 shows the number of admitted Sybil nodes as
a function ofk for a random graph with00, 000 nodes, the YouTube graph and the Digg
graph. Our theoretical result shows that Gatekeeper adniitg: k) Sybils per attack
edge. Figure 2.2 confirms our analysis showing that the nuofi®ybils admitted per
attack edge increases very slowly witheven whenk reache2% of the network size
(i.e. £ = 10,000), the number of Sybils nodes accepted per attack edge rersiaaller

than25.

33



SybilLimit

Dataset Synthetic & = 500, 000) | YouTube| Digg
Parametemn 12 15 14
Parameter 3200 3400 5100
Sybils admitted

per attack edge 40.3 49.1 45.1

Gatekeeper

Jadmit 0.2 0.15 | 0.15
Sybils admitted

per attack edge 1.5 4.9 7.1

Table 2.2: Comparison with SybilLimit
Unlike SybilLimit, Gatekeeper’s bound on Sybils admittext pttack edgef(log k))

is independent of the network sizefor a givenk. We have verified this property by
running Gatekeeper on random graphs with different netwas.

Comparison with SybilLimit: We compare the performance of Gatekeeper and
SybilLimit under both synthetic and real graph topologigthw = 60 attack edges. In
separate experiments, we find the parameter values so tteGatekeeper and Sybil-
Limit admit > 95% honest nodes and use these values in our comparison.

Table 2.2 summarizes the parameter values used in eacltpratal the number of
Sybils admitted per attack edge. As we can see, SybilLinmititel0 — 50 Sybils per
attack edge across all the three topologies, while Gatekesgmits onlyl — 7 Sybils
nodes per attack edge. Therefore, Gatekeeper represegisf@ant improvement over
SybilLimit in practical settings.

Compared to the random graph case, Gatekeeper accepts yoradies on the
YouTube and Digg graphs because real-world graphs caniexkittain asymmetries
that are not present in a random graph. Because of this asymmere tickets are
dropped at some node with no neighbors at the next BFS-ledaling more ticket
drops in turn causes a ticket source to send more ticketslar do reach more than half

of honest nodes. As a result, attack edges also receive nokets; thereby causing
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more Sybils to be admitted.

2.6.3 Admitting honest nodes

The parameterg,,,,;; andm affect the fraction of honest nodes admitted by Gate-
keeper. Choosing the approprigtg,..;: is dependent on the balance properties of the
graph. Figure 2.3 measures the fraction of honest nodesttadnior different values
of f.ami: Under various topologies. We can see that laiger,;; results in fewer honest
nodes being admitted. On the other hand, smallgr,;; will increase the number of
Sybils admitted by a constant factor. Since syntheticadiyegated random graphs are
more balanced than YouTube and Digg graphs, Gatekeepetsadigher fraction of
honest nodes in the random graph than in YouTube and Digddoapghe same value
of fuamic- When foa: = 0.2, Gatekeeper can admit more thgo?o honest nodes in
all three graphs. Hence, we use 0.2 as the default valug fgr;.. We have also exper-
imented with varyingn and found thatn = 100 was sufficient to admit most honest
nodes across different topologies. Settingo be bigger thari00 yields diminishing

returns.

2.6.4 Worst case scenario with a close-by attacker edge

The worst case scenario happens for controllers that arensgly close to some
attack edge such that a significant fraction of theandom walks escape into the Sybil
region, causing the controller to use many Sybil nodes &ettisources. To evaluate
such worst case scenario, we ran Gatekeeper from diffeentatlers with varying
distances to some attack edge and recorded the fractioe ochttsen ticket sources that

turn out to be Sybil nodey,.,..

35



1F T T T T T T ]

r X Random —+—

0.1F \ YouTube -—-—-—-- ]

Tl Digg -~ ]

o L 4
¢ o0.01f
S o0.001F
g i
® 0.0001 F

3: I \\
le-05 P .
1e.06 L . . . ‘~;§f_—,—,—,—g?,—;;_f,»%g,—;.—:—,;

0 1 2 3 4 5 6 7
Di stance between controller and attack edge

Figure 2.4: The average random walk escape probabiljty,., as a function of the distance
between the controller and the closest attack edge

Figure 2.4 showy.,. as a function of the distance between the controller and the
closest attack edge under various graph topologies. We earnhatf.,. drops off
quickly to a negligible value as long as the controller is entiran 2 hops away from
the attacker. The worst case comes when the controller igrtihrediate neighbor of
some attack edges. We first note thafif. > f.ami, the controller may accept arbi-
trarily many Sybil nodes because tfig. - m sources can give infinitely many tickets to
Sybils. As we have discussed in Section 2.5.3, our thealdtisund only holds when
fese < % Specifically, with a default value of,4,..: = 0.2, f.sc must be smaller
than0.11. When the controller is immediately adjacent to some Sydila) the escape
probability is1/d whered is the controller's node degree. Hence, only those coetrll

with more than9 neighbors can afford to be-friend the attacker while salisfying

fese < 0.11 and achieving our proven bound.
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Chapter 3

Sybil-resilient online content voting

The Web 2.0 revolution has fueled a massive proliferatiomsei-generated content.
While allowing users to publish information has led to deratization of Web content
and promoted diversity, it has also made the Web increasingherable to content pol-
lution from spammers, advertisers and adversarial usemssimg the system. Therefore,
the ability to rank content accurately is key to the surviasadl the popularity of many
user-content hosting sites. Similarly, content ratingss andispensable in peer-to-peer
file sharing systems to help users avoid mislabeled or lovitgu@ntent [42, 22, 76].

People have long realized the importance of incorporatsgy wpinion in rating
online content. Traditional ranking algorithms such asdRank [6] and HITS [33]
rely on implicit user opinions reflected in the link struasrof hypertext documents.
For arbitrary content types, user opinion can be obtaingdarform of explicit votes.
Many popular websites today rely on user votes to rank nevigg(OReddit), videos
(YouTube), documents (Scribd) and consumer reviews (Yaipazon).

Content rating based on users’ votes is prone to vote matipal by malicious

users. Defending against vote manipulation is difficult dmehe Sybil attackwhere
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the attacker can out-vote real users by creating many Sydiitities. The popularity

of content-hosting sites has made such attacks very prigfitgbmalicious entities can
promote low-quality content to a wide audience. SuccesSyliil attacks have been
observed in the wild. For example, online polling on the lmeshputer science school
motivated students to deploy automatic scripts to voteHeirtschools repeatedly [28].
There are even commercial services that help paying cligmisiote their content to
the top spot on popular sites such as YouTube by voting froargelnumber of Sybil

accounts [63].

In this paper, we present SumuUp, a Sybil-resilient onlingtent voting system that
prevents adversaries from arbitrarily distorting votiegults. SumUp leverages the trust
relationships that already exist among users (e.g. in thma fif social relationships).
Since it takes human efforts to establish a trust link, thacler is unlikely to possess
many attack edges (links from honest users to an adversdgigity). Nevertheless, he
may create many links among Sybil identities themselves.

SumUp addresses thate aggregation problerwhich can be stated as follows:
Givenm votes on a given object, of which an arbitrary fraction mayftmm Sybil
identities created by an attacker, how do we collect votes 8ybil resilient manner?
A Sybil-resilient vote aggregation solution should satisfree properties. First, the so-
lution should collect a significant fraction of votes fromnlest users. Second, if the
attacker has 4 attack edges, the maximum number of bogus votes should belbdu
by e4, independent of the attacker’s ability to create many Sgaihtities behind him.
Third, if the attacker repeatedly casts bogus votes, higyta vote in the future should
be diminished. SumUp achieves all three properties with pigbability in the face of
Sybil attacks. The key idea in SumUp is tha@aptive vote flowechnique that appropri-

ately assigns and adjusts link capacities in the trust graglollect the net vote for an
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object.

Previous works have also exploited the use of trust netwtorksnit Sybil attacks [9,
37, 87, 84, 83, 47], but none directly addresses the voteeggtjon problem. Sybil-
Limit [83] performs admission control so that at mostlog ») Sybil identities are ac-
cepted per attack edge amamngonest identities. As SybilLimit results in 430 bogus
votes per attack edge in a million-user system [83], SumWpiges notable improve-
ment by limiting bogus votes to one per attack edge. AddailgnSumUp leverages
user feedback to further diminish the voting power of adaees that repeatedly vote
maliciously.

In SumUp, each vote collector assigns capacities to linkhéntrust graph and
computes a set of approximate max-flow paths from itself toaters. Because only
votes on paths with non-zero flows are counted, the numbeogidi9votes collected
is limited by the total capacity of attack edges instead mfdiamong Sybil identities.
Typically, the number of voters on a given object is much $enahan the total user
population ). Based on this insight, SumUp assigdiis,. units of capacity in total,
thereby limiting the number of votes that can be collectebde?’,,,... SumUp adjusts
Cnae @automatically according to the number of honest voters &heobject so that it
can aggregate a large fraction of votes from honest user§’, Asis far less tham, the
number of bogus votes collected on a single object (i.e. tiaelkacapacity) is no more
than the number of attack edges,). SumUp’s security guarantee on bogus votes is
probabilistic. If a vote collector happens to be close totsac edge (a low probability
event), the attack capacity could be much higher tharBy re-assigning link capacities
using feedback, SumUp can restrict the attack capacity teehmve 4 even if the vote
collector happens to be close to some attack edges.

Using a detailed evaluation of several existing social oéta (YouTube, Flickr),
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we show that SumUp successfully limits the number of boguesvto the number of
attack edges and is also able to collect0% of votes from honest voters. By applying
SumUp to the voting trace and social network of Digg (an anhiews voting site), we
have found hundreds of suspicious articles that have beekech&popular” by Digg.
Based on manual sampling, we believe that at 1662t of suspicious articles exhibit
strong evidence of Sybil attacks.

This chapter is organized as follows. In Section 3.1, we detfire system model
and the vote aggregation problem. Section 3.2 outlines\theath approach of SumUp
and Sections 3.3 and 3.4 present the detailed design. llbB8&x6, we describe our

evaluation results.

3.1 The Vote Aggregation Problem

In this section, we outline the system model and formalize \tbte aggregation
problem that SumUp addresses.

System model:We describe SumUp in a centralized setup where a trustedatent
authority maintains all the information in the system andfqgrens vote aggregation
using SumUp in order to rate content. This centralized mdageration is suitable for
web sites such as Digg, YouTube and Facebook, where all’wstes and their trust
relationships are collected and maintained by a singléddusntity.

SumUp leverages the trust network among users to defendsa@gibil attacks [87,
9, 37, 84, 83]. Each trust link is directional. However, tiheation of each link requires
the consent of both users. Typically, usesreates a trust link tg if < has an offline
social relationship tg. Similar to previous work [47, 83], SumUp requires that §nk

are difficult to establish. As a result, an attacker only peses a small number of attack
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edges €4) from honest users to colluding adversarial identities.efEthoughe 4 is
small, the attacker can create many Sybil identities arkdthiem to adversarial entities.
We refer to votes from colluding adversaries and their Syaihtities as bogus votes.

SumUp aggregates votes from one or more trugted collectorsA trusted collec-
tor is required in order to break the symmetry between hara$ts and Sybil nodes [9].
SumUp can operate in two modes depending on the choice ¢édruste collectors. In
personalized vote aggregatipBumUp uses each user as his own vote collector to col-
lect the votes of others. As each user collects a differentbar of votes on the same
object, she also has a different (personalized) rankingofent. Inglobal vote aggre-
gation, SumUp uses one or more pre-selected vote collectors tectaibtes on behalf
of all users. Global vote aggregation has the advantagdavfiag for a single global
ranking of all objects; however, its performance relieslmmproper selection of trusted
collectors.

Vote Aggregation Problem: Any identity in the trust network including Sybils can
cast a vote on any object to express his opinion on that objecthe simplest case,
each vote is either positive or negative (+1 or -1). Alteirrey, to make a vote more ex-
pressive, its value can vary within a range with higher valimelicating more favorable
opinions. A vote aggregation system collects votes on angblgect. Based on col-
lected votes and various other features, a separate raskstgm determines the final
ranking of an object. The design of the final ranking systenuiside the scope of this
paper. However, we note that many ranking algorithms etbiaththe number of votes
and the average value of votes to determine an object’s &ri&3]. Therefore, to en-
able arbitrary ranking algorithms, a vote aggregationesysthould collect a significant
fraction of votes from honest voters.

A voting system can also let the vote collector provigkgativefeedback on mali-
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cious votes. In personalized vote aggregation, each ¢totlgoves feedback according
to his personal taste. In global vote aggregation, the vottector(s) should only pro-
vide objective feedback, e.g. negative feedback for pasiptes on corrupted files.
Such feedback is available for a very small subset of ohjects

We describe the desired properties of a vote aggregatidarsyd etG = (V, E)
be a trust network with vote collectar € V. V is comprised of an unknown set of
honest user®), C V (includings) and the attacker controls all verticeslin\ V},, many
of which represent Sybil identities. Let; represent the number of attack edges from
honest users iy, to V' \ V},. Given that nodes i cast votes on a specific object, a

vote aggregation mechanism should achieve three progpertie
e Collect a large fraction of votes from honest users.

e Limit the number of bogus votes from the attackerehyindependent of the num-

ber of Sybil identities in/ \ V.

e Eventually ignore votes from nodes that repeatedly casti®ogtes using feed-

back.

3.2 Basic Approach

This section describes the intuition behiadaptive vote flowhat SumUp uses to
address the vote aggregation problem. The key idea of tpi®aph is to appropriately
assign link capacities to bound the attack capacity.

In order to limit the number of votes that Sybil identitiengaopagate for an object,
SumUp computes a set of max-flow paths in the trust graph flenvote collector to

all voters on a given object. Each vote flow consumes one figidpacity along each
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Figure 3.1:SumUp computes a set of approximate max-flow paths from ttesoallectors to

all voters (A,B,C,D). Straight lines denote trust links analy dotted lines represent the vote
flow paths along multiple links. Vote flow paths to honest vetare “congested” at links close
to the collector while paths to Sybil voters are also coregest far-away attack edges.

link traversed. Figure 3.1 gives an example of the resuftowgs from the collectok to
voters A,B,C,D. When all links are assigned unit capaditg,dttack capacity using the
max-flow based approach is boundedehy

The concept of max-flow has been applied in several reputatystems based on
trust networks [9, 37]. When applied in the context of votgragation, the challenge
is that links close to the vote collector tend to become “estgd” (as shown in Fig-
ure 3.1), thereby limiting the total number of votes coketto be no more than the
collector’s node degree. Since practical trust networkssparse with small median
node degrees, only a few honest votes can be collected. Wmicamply enhance
the capacity of each link to increase the number of votegctdtl since doing so also
increases the attack capacity. Hence, a flow-based votegagyn system faces the
tradeoff between the maximum number of honest votes it chaat@nd the number of
potentially bogus votes collected.

Theadaptive vote flowechnique addresses this tradeoff by exploiting two basic o
servations. First, the number of honest users voting forkgect, even a popular one, is

significantly smaller than the total number of users. Forgxa, 99% of popular arti-
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Figure 3.2:Through ticket distribution, SumUp creates a vote envelameaind the collector.
The capacities of links beyond the envelope are assigned tmé, limiting the attack capacity
to be at most one per attack edge for adversaries outsidertietope. There is enough capacity
within the envelope, such that nodes inside act like entmgtpdor outside voters.

cles on Digg have fewer that®00 votes which representss of active users. Second,
vote flow paths to honest voters tend to be only “congestedihks close to the vote
collector while paths to Sybil voters are also congested fatvaattack edges. When
e, is small, attack edges tend to be far away from the vote dolleés shown in Fig-
ure 3.1, vote flow paths to honest voters A and B are congesthd Bnk/; while paths
to Sybil identities C and D are congested at higtand attack edgg.

The adaptive vote flow computation uses three key ideast, s algorithm re-
stricts the maximum number of votes collected on an objeaMalueC,, ... AS C,,qz 1S
used to assign the overall capacity in the trust graph, al€ral results in less capacity
for the attacker. SumUp can adaptively adjUs},. to collect a large fraction of honest
votes on any given object. When the number of honest votér&i8) wherea < 1, the
expected number of bogus votes is limited te o(1) per attack edge (Section 3.3.4).

The second important aspect of SumUp relatesajoacity assignmente. how to
assign capacities to each trust link in order to collectgddraction of honest votes and
only a few bogus ones? In SumuUp, the vote collector disteibat,,,,, ticketsdown-

stream in a breadth-first search manner within the trustortwi he capacity assigned
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to a link is the number of tickets distributed along the lirlkgpone. As Figure 3.2
illustrates, the ticket distribution process introduceste enveloparound the vote col-
lectors; beyond the envelope all links have capadcityl he vote envelope containsg, .
nodes that can be viewed as entry points. There is enoughkitapdthin the envelope
to collectC,,., votes from entry points. On the other hand, an attack edgeriuethe
envelope can propagate at mastote regardless of the number of Sybil identities be-
hind that edge. SumUp re-distributes tickets based on texdio deal with attack edges
within the envelope.

The final key idea in SumUp is to leverage user feedback tolzeratack edges that
continuously propagate bogus votes. One cannot penatirgdoal identities since the
attacker may always propagate bogus votes using new Swnitifes. Since an attack
edge is always present in the path from the vote collector teahicious voter [47],
SumUp re-adjusts capacity assignment across links to ectth@éccapacity of penalized

attack edges.

3.3 SumUp Design

In this section, we present the basic capacity assignmgaititiim that achieves two
of the three desired properties discussed in Section 3)ICd¢Hect a large fraction of
votes from honest users; (b) Restrict the number of boguesuotone per attack edge
with high probability. Later in Section 3.4, we show how tqued capacity based on
feedback to deal with repeatedly misbehaved adversartiso

We describe how link capacities are assigned given a p&ati€l,... in Section 3.3.1
and present a fast algorithm to calculate approximate noax4flaths in Section 3.3.2.

In Section 3.3.3, we introduce an additional optimizatitiategy that prunes links in
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the trust network so as to reduce the number of attack edgedoimvially analyze the
security properties of SumUp in Section 3.3.4 and show hoadaptively set’,,,,. in
Section 3.3.5.

3.3.1 Capacity assignment

The goal of capacity assignment is twofold. On the one hdredassignment should
allow the vote collector to gather a large fraction of honesgés. On the other hand, the
assignment should minimize the attack capacity such@hat: e 4.

As Figure 3.2 illustrates, the basic idea of capacity assigmt is to construct a
vote envelope around the vote collector with at ledst,. entry points. The goal is to
minimize the chances of including an attack edge in the epeshnd to ensure that there
is enough capacity within the envelope so that all vote flawsifC,,,., entry points can
reach the collector.

We achieve this goal usingtiket distributionmechanism which results in decreas-
ing capacities for links with increasing distance from tbéawcollector. The distribution
mechanism is best described using a propagation model \ineneote collector is to
spread’’,,.. tickets across all links in the trust graph. Each ticketegponds to a ca-
pacity value of 1. We associate each node with a level acegrtdi its shortest path
distance from the vote collector, Nodes is at level 0. Tickets are distributed to nodes
one level at a time. If a node at levdhas received;,, tickets from nodes at levél— 1,
the node consumes one ticket and re-distributes the renggiiickets evenly across all
its outgoing links to nodes at levek 1, i.e. t,,; = t;, — 1. The capacity value of each
link is set to be one plus the number of tickets distributedhat link. Tickets are not
distributed to links connecting nodes at the same levelamfa higher to lower level.

The set of nodes with positive incoming tickets fall withiretvote envelope and thus
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Figure 3.3:Each link shows the number of tickets distributed to thak fiom s (C,,..=6). A
node consumes one ticket and distributes the remainingyevienits outgoing links to the next
level. Tickets are not distributed to links pointing to ttearee level (B~A), or to a lower level
(E—B). The capacity of each link is equal to one plus the numbéickéts.

represent the entry points.

Ticket distribution ensures that &l entry points have positive vote flows to the
vote collector. Therefore, if there exists an edge-inddpahpath connecting one of the
entry points to an outside voter, the corresponding votebeaoollected. We show in
Section 3.3.4 that such a path exists with good probabWyenc,,,... is much smaller
than the number of honest nodeg,(the vote envelope is very small. Therefore, all
attack edges reside outside the envelope, resultingin: e 4 with high probability.

Figure 3.3 illustrates an example of the ticket distribnioocess. The vote collector
(s) is to distributeC,,,.=6 tickets among all links. Each node collects tickets from
its lower level neighbors, keeps one to itself and re-distes the rest evenly across
all outgoing links to the next level. In Figure 3.8sends 3 tickets down each of its
outgoing links. Since A has more outgoing link3 than its remaining ticket], link
A—D receives no tickets. Tickets are not distributed to links®en nodes at the same
level (B—A) or to links from a higher to lower level (&B). The final number of tickets
distributed on each link is shown in Figure 3.3. Except fomediate outgoing edges

from the vote collector, the capacity value of each link isado the amount of tickets
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it receives plus one.

3.3.2 Approximate Max-flow calculation

Once capacity assignment is done, the task remains to atddile set of max-flow
paths from the vote collector to all voters on a given obj#ias possible to use existing
max-flow algorithms such as Ford-Fulkerson and Preflow ptghtpo compute vote
flows. Unfortunately, these existing algorithms requix@”) running time to find each
vote flow, whereE is the number of edges in the graph. Since vote aggregatign on
aims to collect a large fraction of honest votes, it is no&ssary to compute exact max-
flow paths. In particular, we can exploit the structure ofazafy assignment to compute
a set of approximate vote flows @A) time, whereA is the diameter of the graph. For
expander-like networkg) = O(logn). For practical social networks with a few million
usersA = 20.

Our approximation algorithm works incrementally by findioge vote flow for a
voter at a time. Unlike the classic Ford-Fulkerson algomittour approximation per-
forms a greedy search from the voter to the collectap{a\) time instead of a breadth-
first-search from the collector which takéd £') running time. Starting at a voter, the
greedy search strategy attempts to explore a node at a lewel if there exists an
incoming link with positive capacity. Since it is not alwgysssible to find such a can-
didate for exploration, the approximation algorithm altoathreshold of non-greedy
steps which explores nodes at the same or a higher level.efbiner the number of
nodes visited by the greedy search is bounde@by 2t¢). Greedy search works well in
practice. For links within the vote envelope, there is maeacity for lower-level links
and hence greedy search is more likely to find a non-zero dggaeth by exploring

lower-level nodes. For links outside the vote envelopeedyesearch results in short
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paths to one of the vote entry points.

3.3.3 Optimization via link pruning

We introduce an optimization strategy that performs linkrang to reduce the num-
ber of attack edges, thereby reducing the attack capaciyifiyy is performed prior to
link capacity assignment and its goal is to bound the in-ele@f each node to a small
value,d;, .s. AS a result, the number of attack edges is reduced if somersatval
nodes have more thah, .., incoming edges from honest nodes. We speculate that the
more honest neighbors an adversarial node has, the easietddrick an honest node
into trusting it. Therefore, the number of attack edges éngtuned network is likely to
be smaller than those in the original network. On the othadhpruning is unlikely to
affect honest users since each honest node only attempasttore vote via one of its
incoming links.

Since it is not possible to accurately discern honest itleatirom Sybil identities,
we give all identities the chance to have their votes cadécin other words, pruning
should never disconnect a node. The minimally connectedarnktthat satisfies this
requirement is a tree rooted at the vote collector. A treeltayy minimizes attack edges
but is also overly restrictive for honest nodes because radk has exactly one path
from the collector: if that path is saturated, a vote canreotdilected. A better tradeoff
is to allow each node to have at madst ;. > 1 incoming links in the pruned network
so that honest nodes have a large set of diverse paths whilely each adversarial node
to only d;,, 1.5 attack edges. We examine the specific parameter choidg 9f... in
Section 3.5.

Pruning each node to have at mdst;.... incoming links is done in several steps.

First, we remove all links except those connecting nodesater level () to neighbors
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at the next leveli(+ 1). Next, we remove a subset of incoming links at each node so
that the remaining links do not excedg, ;... In the third step, we add back links
removed in step one for nodes with fewer th&n,,,.. incoming links. Finally, we add
one outgoing link back to nodes that have no outgoing lintex atep three, with priority
given to links going to the next level. By preferentially peeving links from lower to
higher levels, pruning does not interfere with SumUp’s citgaassignment and flow

computation.

3.3.4 Security Properties

This section provides a formal analysis of the security proges of SumUp assum-
ing an expander graph. Various measurement studies hawanghat social networks
are indeed expander-like [34]. The link pruning optimiaatdoes not destroy a graph’s
expander property because it preserves the level of eaahinade original graph.

Our analysis provides bounds on the expected attack cgp@gitand the expected
fraction of votes collected if’,, ., honest users vote. The average-case analysis assumes
that each attack edge is a random link in the graph. For palized vote aggregation,
the expectation is taken over all vote collectors whichudel all honest nodes. In the
unfortunate but rare scenario where an adversarial nodess t the vote collector, we

can use feedback to re-adjust link capacities (Section 3.4)

Theorem 3.1.Given that the trust networl onn nodes is a bounded degree expander
graph, the expected capacity per attack edgﬁ%%”—) = 1+ O(“%2ex Jog Cypre,) Which is
1+ 0(1) if Chae = O(n®) fora < 1. If e4 - Cyrue < n, the capacity per attack edge is
bounded byl with high probability.

Proof. Let L; represent the number of nodes at lewsith L, = 1. Let E; be the number
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of edges pointing from level— 1 to leveli. Notice thatF; > L,. LetT; be the number
of tickets propagated from level 1 to: with Ty, = C,,.... The number of tickets at each
level is reduced by the number of nodes at the previous leeell;, = T;_, — L;_).
Therefore, the number of levels with non-zero tickets is ast®(log(C'a.)) aS L;
grows exponentially in an expander graph. For a randomligeulaattack edge, the
probability of its being at level is at mostL;/n. Therefore, the expected capacity of
a random attack edge can be calculated as); (& - 1) < 1+ 7, (& - Cpaz) —

1 4 O(%mez 1og Clrygy). Therefore, ifC = O(n®) for a < 1, the expected attack
capacity per attack edgeist o(1).

Since the number of nodes within the vote envelope is at figst, the probability
of a random attack edge being located outside the enveldpe |§n—a Therefore, the
probability that any of the:, attack edges lies within the vote envelopelis- (1 —
Umaz Jea < ACmar  Hence, ifey - Cpee = n® Wherea < 1, the attack capacity is

bounded byi with high probability.
0]

Theorem 3.1 is for expected capacity per attack edge. In treerxcase when the
vote collector is adjacent to some adversarial nodes, thekatapacity can be a signif-

icant fraction ofC,,,... Such rare worst case scenarios are addressed in Section 3.4

Theorem 3.2. Given that the trust networks on n nodes is a d-regular expander
graph, the expected number of votes that can be collectedfaut honest voters is
F(Chaz,ny) = d‘TA?M where)\, is the second largest eigenvalue of the adjacency

n

matrix of G, andn = min{C,,uz, 1. }-

Proof. SumUp creates a vote envelop consisting’gf,. entry points via which votes

are collected. To prove that there exists a large fractiorotd flows, we argue that the
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minimum cut of the graph between the set(f,., entry points and an arbitrary set of
Chae hoOnest voters is large.

Expanders are well-connected graphs. In particular, tip@Bcter mixing lemma [50]
states that for any sét and7" in a d-regular expander graph, the expected number of
edges betweefi andT' is (d — \2)|S| - |T'|/n, where), is the second largest eigenvalue
of the adjacency matrix @¥. Let .S be a set of nodes containing,,, entry points and”
be a set of nodes containing honest voters, thus'| +|7| = n and|S| > m, |T'| > m.
Therefore, the min-cut value betweSnand7 is = (d — \o)|S| - |T|/n > (d — Xg) -
m(n —m)/n. The number of vote flows betweehandT is at leastl /d of the min-
cut value because each vote flow only uses one of an honesswbiacoming links.
Therefore, the votes that can be collected is at [&g8t™ "™ WhenC,,,, > n,, i.€.

m = n,, the expected fraction of votes that can be collected out,dfonest voters is
=22 (] — "= ).For well-connected graphs like expandexsis well separated frord, so

d

that a significant fraction of votes can be collected.

3.3.5 SettingC,,., adaptively

Whenn, honest users vote on an object, SumUp should ideallg'sgt to ben,, in
order to collect a large fraction of honest votes on thatdbje practicen, /n is very
small for any object, even a very popular one. Heri¢g,, = n, < n and the expected
capacity per attack edge is 1. We note that even, itz n, the attack capacity is still
bounded byO(logn) per attack edge.

It is impossible to precisely calculate the number of horests 2,). However, we
can use the actual number of votes collected by SumUp as a lmywad estimate for

n,. Based on this intuition, SumUp adaptively séts,, according to the number of
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votes collected for each object. The adaptation works dsvisl For a given object,
SumUp starts with a small initial value f@r,,.., €.9. C,... = 100. Subsequently, if

the number of actual votes collected exceeds,.. wherep is a constant less than
SumUp doubles thé',,,.. in use and re-runs the capacity assignment and vote collec-
tion procedures. The doubling 6f,,., continues until the number of collected votes
becomes less thaaC,,, ..

We show that this adaptive strategy is robust: 1) the maxiwaiore of the resulting
Chaz Will Not dramatically exceed, regardless of the number of bogus votes cast by
adversarial nodes , 2) resultidg,,... is big enough to collect big fraction of votes, i.e.
Cnae WON't Stop early.

Resulting C,,,.. is not too big: Since adversarial nodes attempt to cast enough bogus

votes to saturate attack capacity, the number of votesatetleis at most:, + C4

whereCy = e4(1 + 2oz Jog O, ). The doubling ofC,,., stops when the number of

n

collected votes is less thait,,,... Therefore, the maximum value 6f,,,, that stops

the adaptation is one that satisfies the following inequalit

max

n, +ea(l+

lOg Cmax) < pcma:c

Sincelog C,,... < logn, the adaptation terminates witlj, . = (nv+eA)/(p—1°ﬁ).

n

Asp > loi 2, we deriveC! == /l)(nv + e4). The adaptive strategy doubl€s,,. every
iteration, hence it overshoots by at most a factor of two.rétoee, the resulting’,,....
found isC,,.. = %(nv +e4). As we can see, the attacker can only affectihg, found
by an additive factor oé 4. Sincee, is small, the attacker has negligible influence on

theC,, ., found.
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The previous analysis is done for the expected case witloraradtack edges. Even
in a worst case scenario where some attack edges are vegytalthe vote collector, the
adaptive strategy is still resilient against manipulatitmthe worst case scenario, the
attack capacity is proportional 10,,,., i.e. C4 = zC,,.,. Since no vote aggregation
scheme can defend against an attacker who controls a nigagbimhmediate links from
the vote collector, we are only interested in the case wheke 0.5. The adaptive
strategy stops increasing,,.. whenn, + 2C.. < pChaz, thus resulting inC,,,. <

;f_Lx As we can seep must be greater tham to prevent the attacker from causing

SumuUp to increasé€’,,.. to infinity. Therefore, we sei = 0.5 by default.

Resulting C,,,.... is hot too small: Suppose&’; is a constant satisfyingCy = F'(Co, n,).

We will show that the resulting,.... is at leastC,. Because”“™) is a decreasing

xT

function, whenC,,.. < Cy, we have:

F(Cy,ny) - F(Craz, o)
Co Crmaz
F(Cma:m nv)
Crmaz

pcma:c < F(Cmaxanv)

p <

Because the number of votes collected is at 1é4$t,,..., n,) by Theorem 3.2, the
condition for doublingC,,,... holds whenC,,... < Cy. When we pickp small enough
such thaty < 4=A2n=ne () = %%% > n,. Hence, the resulting,... is bigger

than number of honest voters.
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3.4 Leveraging user feedback

The basic design presented in Section 3.3 does not addeegsotist case scenario
whereC'4 could be much higher thary. Furthermore, the basic design only bounds the
number of bogus votes collected on a single object. As atiegluersaries can still cast
up toe4 bogus votes oeveryobject in the system. In this section, we utilize feedback
to address both problems.

SumUp maintains a penalty value for each link and uses thaltyein two ways.
First, we adjust each link’s capacity assignment so th&slimith higher penalties have
lower capacities. This helps redu€g when some attack edges happen to be close to
the vote collector. Second, we eliminate links whose persatiave exceeded a certain
threshold. Therefore, if adversaries continuously miglbehthe attack capacity will
drop belowe, over time. We describe how SumUp calculates and uses panatg

rest of the section.

3.4.1 Incorporating negative feedback

The vote collector can choose to associate negative fekdbdt voters if he be-
lieves their votes are malicious. Feedback may be perforimed very small set of
objects-for example, when the collector finds out that aeahg a bogus file or a virus.

SumUp keeps track of a penalty valye, for each linki in the trust network. For
each voter receiving negative feedback, SumUp increméetpénalty values for all
links along the path to that voter. Specifically, if the lindihg penalized has capacity
SumUp increments the link’s penalty lyc;. Scaling the increment by is intuitive;
links with high capacities are close to the vote collectadt Aence are more likely to

propagate some bogus votes even if they are honest linksefbine, SumUp imposes a
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lesser penalty on high capacity links.

It is necessary to penalizdl links along the path instead of just the immediate link
to the voter because that voter might be a Sybil identitytexely some other attacker
along the path. Punishing a link to a Sybil identity is uselas adversaries can easily
create more such links. This way of incorporating negateedback is inspired by
Ostra [47]. Unlike Ostra, SumUp uses a customized flow ndtyer vote collector and
only allows the collector to incorporate feedback for its@sated network in order to

ensure that feedback is always trustworthy.

3.4.2 Capacity adjustment

The capacity assignment in Section 3.3.1 lets each nod#bdist incoming tickets
evenly across all outgoing links. In the absence of feedbackreasonable to assume
that all outgoing links are equally trustworthy and hencadsign them the same number
of tickets. When negative feedback is available, a nodeldrdistribute fewer tickets
to outgoing links with higher penalty values. Such adjusthig particularly useful in
circumstances where adversaries are close to the votetlnd hence might receive
a large number of tickets.

The goal of capacity adjustment is to compute a weighy;), as a function of
the link's penalty. The number of tickets a node distributests outgoing linki is
proportional to the link’s weight, i.et; = tou * W(Pi)/ D vicnrs W(Pi). The question
then becomes how to compui€p;). Clearly, a link with a high penalty value should
have a smaller weight, i.ev(p;)<w(p;) if p;>p;. Another desirable property is that if

the penalties on two links increase by the same amount, tilbeofaheir weights remains

unchanged. In other words, the weight function should fatigp’, p;, p;, ;“EZ])) —

% This requirement matches our intuition that if two linksveaccumulated
J
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the same amount of additional penalties over a period of,time relative capacities
between them should remain the same. Since the exponantigtidn satisfies both

requirements, we use(p;) = 0.27 by default.

3.4.3 Eliminating links using feedback

Capacity adjustment cannot reduce the attack capacityltavhe, since each link
is assigned a minimum capacity value of one. To further redycwe eliminate those
links that received high amounts of negative feedback.

We use a heuristic for link elimination: we remove a link g fpenalty exceeds a
threshold value. We use a default threshold of five. Since lveady prune the trust
network (Section 3.3.3) before performing capacity agsigmt, we add back a previ-
ously pruned link if one exists after eliminating an incomlmk. The reason why link
elimination is useful can be explained intuitively: if adsaries continuously cast bogus
votes on different objects over time, all attack edges velieliminated eventually. On
the other hand, although an honest user might have one atisiing links eliminated
because of a downstream attacker casting bad votes, hekslynd experience another
elimination due to the same attacker since the attack edgeecting him to that attacker
has also been eliminated. Despite this intuitive arguntéete always exist patholog-
ical scenarios where link elimination affects some honestsj leaving them with no
voting power. To address such potential drawbacks, we aetegliminated links at a

slow rate over time. We evaluate the effect of link eliminatin Section 2.6.
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Network Nodes| Edges| Degree Directed?
x 1000 | x1000 | 50%(90%)

YouTube [47]| 446| 3,458] 2 (12) No
Flickr [45] 1,530 21,399] 1 (15) Yes
Synthetic [68]| 3000 | 24,248 6 (15) No

Table 3.1:Statistics of the social network traces or synthetic modetifor evaluating SumuUp.
All statistics are for the strongly connected componentGpC

3.5 Evaluation

In this section, we demonstrate SumUp’s security propestggureal-world social

networks and voting traces. Our key results are:

e For all networks under evaluation, SumUp bounds the avenageer of bogus
votes collected to be no more thanwhile being able to collect90% of honest

votes when less thatVi of honest users vote.

e By incorporating feedback from the vote collector, SumUsgndatically cuts down

the attack capacity for adversaries that continuouslylmagtis votes.

e We apply SumUp to the voting trace and social network of Ditjg § news ag-
gregation site that uses votes to rank user-submitted newetea. SumUp has
detected hundreds of suspicious articles that have beekethas “popular” by
Digg. Based on manual sampling, we believe at least 50% @iGoss articles

found by SumUp exhibit strong evidence of Sybil attacks.

3.5.1 Experimental Setup

For the evaluation, we use a number of network datasets fifbenaht online social

networking sites [45] as well as a synthetic social netw&® fas the underlying trust
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network. SumUp works for different types of trust networlsslang as an attacker
cannot obtain many attack edges easily in those networkde Bal gives the statistics
of various datasets. For undirected networks, we treat kaklas a pair of directed
links. Unless explicitly mentioned, we use the YouTube meknwby default.

To evaluate the Sybil-resilience of SumUp, we injegt = 100 attack edges by
adding10 adversarial nodes each with links frori random honest nodes in the net-
work. The attacker always casts the maximum bogus votesucasa his capacity. Each
experimental run involves a randomly chosen vote collemtora subset of nodes which
serve as honest voters. SumUp adaptively adjligts using an initial value ot00 and
p = 0.5. By default, the threshold of allowed non-greedy steg®isWe plot the av-
erage statistic across five experimental runs in all grapmsSection 3.5.6, we apply
SumUp on the real world voting trace of Digg to examine how Bpnean be used to

resist Sybil attacks in the wild.

3.5.2 Sybil-resilience of the basic design

The main goal of SumUp is to limit attack capacity while aliogrhonest users to
vote. Figure 3.4 shows that the average attack capacitytfamkaedge remains close
to 1 even when the number of honest voters approath&s Furthermore, as shown
in Figure 3.5, SumUp manages to collect more thé¥ of all honest votes in all net-
works. Link pruning is disabled in these experiments. Thedmetworks under evalu-
ation have very different sizes and degree distributioae {&ble 3.1). The fact that all
three networks exhibit similar performance suggests that\$p is robust against the
topological details. Since SumUp adaptively g€ts,. in these experiments, the results
also confirm that adaptation works well in findingg,,,, that can collect most of the

honest votes without significantly increasing attack capa®Ve point out that the re-
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Figure 3.4:The average capacity per attack edge as a function of thtofnaaf honest nodes
that vote. The average capacity per attack edge remains taseven if1/10 of honest nodes
vote.

sults in Figure 3.4 correspond to a random vote collectaraRaunlucky vote collector
close to an attack edge, he may experience a much largertheage attack capacity.
In personalized vote collection, there are few unluckyemithrs. These unlucky vote
collectors need to use their own feedback on bogus votesitaeeattack capacity.
Benefits of pruning: The link pruning optimization, introduced in Section 3,3.3
further reduces the attack capacity by capping the numbettatk edges an adversarial
node can have. As Figure 3.6 shows, pruning does not affedtabtion of honest votes
collected if the threshold;, .. is greater than 3. Figure 3.6 represents data from
the YouTube network and the results for other networks arglas. SumUp uses the
default thresholddj,, ;»..s) of 3. Figure 3.7 shows that the average attack capacity is
greatly reduced when adversarial nodes have more than& &ltiges. Since pruning
attempts to restrict each node to at most 3 incoming linkditaehal attack edges are

excluded from vote flow computation.
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Figure 3.8:The fraction of votes collected for different threshold fam-greedy steps. More
than70% votes are collected even with a small threshal@) for non-greedy steps.

20 T T
YouTube ——
Flickr -
Synt hetic -x--
o
2 15 f ,
= ¥
b }
g 10 L 1
j=2]
[~
T 5| . <
@
0 — 1 1 1 1
¢} 200 400 600 800 1000

Nunber of honest voters

Figure 3.9: The running time of one vote collector gathering up to 100@s0 The Ford-
Fulkerson max-flow algorithm take®) seconds to collect 1000 votes for the YouTube graph.
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3.5.3 Effectiveness of greedy search

SumUp uses a fast greedy algorithm to calculate approximatevote flows to vot-
ers. Greedy search enables SumUp to collect a majority @swhile using a small
threshold {) of non-greedy steps. Figure 3.8 shows the fraction of hova&es col-
lected for the pruned YouTube graph. As we can see, with al $hmatshold of 20, the
fraction of votes collected is more th&h%. Even when disallowing non-greedy steps
completely, SumUp manages to collectt0% of votes.

Figure 3.9 shows the running time of greedy-search for wiffe networks. The
experiments are performed on a single machine with an AMDefopt 2.5GHz CPU
and 8GB memory. SumUp takes arousrds to collect1000 votes from a single vote
collector on YouTube and Flickr. The synthetic network irscmore running time as
its links are more congested than those in YouTube and Flidle average non-greedy
steps taken in the synthetic network6i$ as opposed t0.8 for the YouTube graph.
Greedy-search dramatically reduces the flow computatioe.tiAs a comparison, the
Ford-Fulkerson max-flow algorithm requiré8 seconds to collect 1000 votes for the

YouTube graph.

3.5.4 Comparison with SybilLimit

SybilLimit is a node admission protocol that leverages thsttnetwork to allow an
honest node to accept other honest nodes with high protyabitlibounds the number
of Sybil nodes accepted to lig(logn). We can apply SybilLimit for vote aggregation
by letting each vote collector compute a fixed set of accepseis based on the trust
network. Subsequently, a vote is collected if and only ifdtnes from one of the ac-

cepted users. In contrast, SumUp does not calculate a fixed akowed users; rather,
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Figure 3.10:Average attack capacity per attack edge as a function ofsio8umUp is better
than SybilLimit in the average case.

it dynamically determines the set of voters that count toverch object. Such dynamic
calculation allows SumUp to settle on a sm@l},... while still collecting most of the
honest votes. A small’,,,.. allows SumUp to bound attack capacity dy.

Figure 3.10 compares the average attack capacity in Sumthatwf SybilLimit
for the un-pruned YouTube network. The attack capacity ibilBymit refers to the
number of Sybil nodes that are accepted by the vote colle&mce SybilLimit aims
to accept nodes instead of votes, its attack capacity remiilog ) regardless of the
number of actual honest voters. Our implementation of &yik uses the optimal
set of parameters(= 15, » = 3000) we determined manually. As Figure 3.10 shows,
while SybilLimit allows30 bogus votes per attack edge, SumUp results in approximately
1 vote per attack edge when the fraction of honest votersstlean10%. When all
nodes vote, SumUp leads to much lower attack capacity thailL8yit even though
both have the samé@(logn) asymptotic bound per attack edge. This is due to two
reasons. First, SumUp’s bound bf+ logn in Theorem 3.1 is a loose upper bound of
the actual average capacity. Second, since links pointgirigwer-level nodes are not

eligible for ticket distribution, many incoming links of adversarial nodes have zero
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Figure 3.11: The change in attack capacity as adversaries continuowasy logus votes
(YouTube graph). Capacity adjustment and link eliminativamatically reduce&’ 4, while still
allowing SumUp to collect more tha9% of the honest votes.

tickets and thus are assigned capacity of one.

3.5.5 Benefits of incorporating feedback

We evaluate the benefits of capacity adjustment and linkietitton when the vote
collector provides feedback on the bogus votes collecteguré 3.11 corresponds to
the worst case scenario where one of the vote collectorisdotgoing links is an attack
edge. At every time step, there are 400 random honest useng wn an object and
the attacker also votes with its maximum capacity. Whenrectilhg votes on the first
object at time step 1, adaption result(if.. = 5_% = 3200 becausen, = 400, p =
0.5,z = 1/4. Therefore, the attacker manages to %afégax = 800 votes and outvote
honest users. After incorporating the vote collector'sifeseck after the first time step,
the adjacent attack edge incurs a penalty @fhich results in drastically reduced,
(97). If the vote collector continues to provide feedback onianalis votes, 90% of
attack edges are eliminated after only 12 time steps. Aftetreer 10 time steps, all
attack edges are eliminated, reducirig to zero. However, because of our decision to

slowly add back eliminated links, the attack capacity dde®gmains at zero forever.

65



Number of Nodes 3,002,907

Number of Edges 5,063,244
Number of Nodes in SCC 466,326
Number of Edges in SCC 4,908,958
Out degree avg(50%, 90%) 10(1, 9)
In degree avg(50%, 90%) 10(2, 11)
Number of submitted (popular) articles 6,494,987
2004/12/01-2008/09/21 (137,480)
Diggs on all articles

avg(50%, 90%) 24(2, 15)
Diggs on popular articles

avg(50%, 90%) 862(650, 1810)

Hours since submission before a popular
article is marked as popular.

avg (50,%,90%) 16(13, 23)
Number of submitted (popular) articles 38,033
with bury data available (5,794)

2008/08/13-2008/09/15

Table 3.2: Basic statistics of the crawled Digg dataset. The strongiynected component
(SCC) of Digg consists of 466,326 nodes.

Figure 3.11 also shows that link elimination has little effeon honest nodes as the

fraction of honest votes collected always remains al36Vée.

3.5.6 Defending Digg against Sybil attacks

In this section, we ask the following questions: Is theralemce of Sybil attacks
in real world content voting systems? Can SumUp succegdioiit bogus votes from
Sybil identities? We apply SumUp to the voting trace andaawetwork crawled from
Digg to show the real world benefits of SumUp.

Digg [1] is a popular news aggregation site where any regidtaser can submit an
article for others to vote on. A positive vote on an articleatled adigg. A negative

vote is called dury. Digg marks a subset of submitted articles as “popularthasiand
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Figure 3.12:Distribution of diggs for all popular articles before beinmrked as popular and
for all articles within24 hours after submission.

displays them on its front page. In subsequent discussiwasise the termpopular
or popularity only to refer to the popularity status of an article as markgdigg. A
Digg user can create a “follow” link to another user if he vwatd browse all articles
submitted by that user. We have crawled Digg to obtain thimgdtace on all submitted
articles since Digg’s launch (2004/12/01-2008/09/21) a#l as the complete “follow”
network between users. Unfortunately, unlike diggs, batads only available as a live
stream. Furthermore, Digg does not reveal the user idehtitycast a bury, preventing
us from evaluating SumUp’s feedback mechanism. We have steemming bury data
since 2008/08/13. Table 3.2 shows the basic statisticseoDilgg “follow” network
and the two voting traces, one with bury data and one withaithough the strongly
connected component (SCC) consists of oril{; of total nodesg88% of votes come
from nodes in the SCC.

There is enormous incentive for an attacker to get a suludnétgécle marked as
popular, thus promoting it to the front page of Digg which Isaseral million page
views per day. Our goal is to apply SumUp on the voting traceetiuce the number

of successful attacks on the popularity marking mechanismigg. Unfortunately,
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Figure 3.13:The distribution of the fraction of diggs collected by Sumayer all diggs before
an article is marked as popular.

unlike experiments done in Section 3.5.2 and Section 3thdé¥e is no ground truth

about which Digg users are adversaries. Instead, we haveet&umuUp itself to find

evidence of attacks and rely on manual sampling and othestgpdata to cross check
the correctness of results.

Digg’s popularity ranking algorithm is intentionally navealed to the public in or-
der to mitigate gaming of the system. Nevertheless, we $aecthat the number of
diggs is a top contributor to an article’s popularity statbgyure 3.12 shows the distri-
bution of the number of diggs an article received before & warked as popular. Since
more than 90% of popular articles are marked as such withhmo24s after submission,
we also plot the number of diggs received within 24 hours bhsigsion for all articles.
The large difference between the two distributions indisahat the number of diggs
plays an important role in determining an article’s popityastatus.

Instead of simply adding up the actual number of diggs, whatgg uses SumUp
to collect all votes on an article? We use the identity of iKkeRiose, the founder of
Digg, as the vote collector to aggregate all diggs on anlarbefore it is marked as

popular. Figure 3.13 shows the distribution of the fractidnotes collected by SumUp
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over all diggs before an article is marked as popular. Owipus evaluation on various
network topologies suggests that SumUp should be able tectalt least 90% of all
votes. However, in Figure 3.13, there are a fair number olfaoparticles with much
fewer than the expected fraction of diggs collected. Formgda, SumUp only manages
to collect less than 50% of votes for 0.5% of popular articM& hypothesize that the
reason for collecting fewer than the expected votes is dueatiovorld Sybil attacks.

Since there is no ground truth data to verify whether feweméld diggs are indeed
the result of attacks, we resort to manual inspection. Westlaa popular article as
suspicious if its fraction of diggs collected is less thaivag threshold. Table 3.3 shows
the result of manually inspecting 30 random articles outllo§w@spicious articles. The
random samples for different thresholds are chosen indigpely. There are a number
of obvious bogus articles such as advertisements, phistitiades and obscure political
opinions. Of the remaining, we find many of them have an urlilystage fraction
(>30%) of new voters who registered on the same day as theeggtazibmission time.
Some articles also have very few total diggs since becomipglar, a rare event since
an article typically receives hundreds of votes after beihgwn on the front page of
Digg. We find no obvious evidence of attack for roughly haltloé sampled articles.
Interviews with Digg attackers [30] reveal that, althouylre is a fair amount of attack
activities on Digg, attackers do not usually promote obsipiogus material. This is
likely due to Digg being a highly monitored system with fewlean a hundred articles
becoming popular every day. Instead, attackers try to halg pustomers promote
normal or even good content or to boost their profiles withenDigg community.

As further evidence that a lower than expected fraction décted diggs signals a
possible attack, we examine Digdisiry data for articles submitted after 2008/08/13,

of which 5794 are marked as popular. Figure 3.14 plots theelaiion between the
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Threshold of the 20% | 30% | 40% | 50%
fraction of collected diggs
# of suspicious articles 41 | 131 | 300 | 800
Advertisement 5 4 2 1
Phishing 1 0 0 0
Obscure political articles 2 2 0 0
Many newly registered voters 11 7 8 10
Fewer than 50 total diggs | 1 3 6 4
No obvious attack 10 14 14 15

Table 3.3:Manual classification 080 randomly sampled suspicious articles. We use different
thresholds of the fraction of collected diggs for markingg@aious articles. An article is labeled
as having many new voters:if 30% of its votes are from users who registered on the same day
as the article’s submission date.

average number of bury votes on an artiafeer it became popular vs. the fraction of
the diggs SumUp collected before it was marked as populaFidiwge 3.14 reveals, the
higher the fraction of diggs collected by SumUp, the fewawnotes an article received
after being marked as popular. Assuming most bury votes doonehonest users that
genuinely dislike the article, a large number of bury votea igood indicator that the
article is of dubious quality.

What are the voting patterns for suspicious articles? S#38¢e diggs come from
nodes within the SCC, we expect onlg% of diggs to originate from the rest of the
network, which mostly consists of nodes with no incominddellinks. For most sus-
picious articles, the reason that SumUp collecting fewan #xpected diggs is due to an
unusually large fraction of votes coming from outside th&€€3Bmponent. Since Digg’s
popularity marking algorithm is not known, attackers might bother to connect their
Sybil identities to the SCC or to each other. Interestingkyfound 5 suspicious articles
with sophisticated voting patterns where one voter is kht@many identities+{ 30)

that also vote on the same article. We believe the many tilestoehind that single
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Figure 3.14:The average number of buries an article receiaftdr it was marked as popular
as a function of the fraction of diggs collected by Sumtigforeit is marked as popular. The
Figure cover$, 794 popular articles with bury data available.

voter are likely Sybil identities because those identitvese all created on the same day

as the article’s submission. Additionally, those ideastall have similar usernames.
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Chapter 4

Collusion-resilient credit-based
reputation for peer-to-peer content

distribution

With the recent growth in demand for high-quality multimeediontent, capacity
requirements for content distribution networks (CDNs)éawreased proportionally.
Peer-to-peer content distribution is a natural low costoopto scale distribution ca-
pacity. In a P2P CDN model, content providers serve conteimigua small number of
“official” seeder nodes and rely on participating users timag previously downloaded
content to others. By aggregating the bandwidth of thousandnillions of participat-
ing users, P2P CDNs promise extremely high capacity at \@wcbsts. However, in
order to reach their full potential, P2P CDNs must addresddhg-standing challenge
of incentivizing users to upload content to others.

The P2P incentive problem has been widely studied in the pedbrtunately, pop-

ular solutions such as the tit-for-tat mechanism providgd@kTorrent [13] and vari-
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ants [56, 38] are insufficient. BitTorrent only incentivizéhose peers that aaetively
downloading thesamefile to upload to each other. Once a user completes a download,
she has no incentive to act as a seeder and continue uplo&dlipigactice, the distribu-
tion of content on popular torrent networks such as Pirage8aften heavy-tailed, with
most files having only a few simultaneous downloaders. Asaltdit-for-tat is of little

use as an incentive mechanism in these scenarios. An iaesltime mechanism should
motivate users to contribute to the P2P CDN even after campléheir downloads.
This is sometimes referred to as teeder promotioproblem [65]).

Existing studies [44] as well as our own measurement exerissuggest that P2P
CDNs can achieve significant performance boost by addmgska seeder promotion
problem (Section 4.1). However, the current solutions édviag the seeder promotion
problem is unsatisfactory. PPLive and PPStream distriptdprietary software in that
hope that the software cannot be modified to avoid uploadiigwever, proprietary
software discourages third-party implementation and gy external code auditing.
Popular private BitTorrent communities such as Torrenthesnd What.CD maintain an
invitation-only membership. These communities keep ti@ichkembers’ self-reported
upload contribution, and kick out members that have faibethéke the required amount
of contribution. For example, in TorrentLeech, each peestreerve as a seeder for a file
for 24 hours after downloading and upload at least 0.4 tiniés downloaded amount.
Unfortunately, selfish nodes can purposefully misrepagirthpload contributions, an
attack that is becoming increasingly common in private &it&nt communities [23].
Current defenses against such attacks are very limitedraot/es banning client soft-
ware which can be modified to misreport information (e.g. &/u2eluge).

One promising direction for solving the seeder promotioobfem is to design a

robust reputation system. In such as system, a user’s tepuszore accurately reflects
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her upload contribution — to encourage contribution, P2INEDan give preferential
treatment to users with high reputation; thus the more a ga#ributes (in terms of its
uploads) the better the service (in terms of download spégd)s. The major challenge

in designing such a reputation system is ensuring a us@tgaton score accurately re-
flects their upload contribution; malicious users shouldh@oable to acquire excessively
high reputation scores via collusion or Sybil attacks. lis traper, we propose Credo,
acredit-based reputationystem that addresses both challenges and show how it can be
applied to P2P CDNs to solve the seeder promotion problem.

To track a node’s contribution in Credo, a seeder collectigaes upload receipt
whenever it uploads a chunk of data to another node. Credtogma central server to
periodically aggregate upload receipts from nodes and oteng reputation score for
each node based on these receipts.

Attacks via collusion and Sybil identities are particwachallenging for reputation
systems. Specifically, a number of colluding adversarialesomay generate a large
number of upload receipts for each other using their regme8ybil identities without
performing any actual uploads. Credo’s reputation algoriemploys two techniques
to defend against such attacks.

First, Credo bounds the reputation gain of attackers by mrgasupload contribu-
tion using the concept of credit transfers. Credo keep& wéa credit set) for each
node and transfers a credit from node A's set to B if node B Ipdsaded a data chunk
to A, as indicated by the corresponding upload receipt. Aensith many uploads will
have a large number of credits while a node with many dowrdded large number of
debits (i.e. there are many credits of that node in otherslitisets). Credo measures
a node’s reputation score by its credit setgersitywhich counts no more than a few

credits from the same node. Credit diversity allows Credodond the maximum rep-

74



utation score of colluders: fdr colluding adversaries each wittSybil identities, their
maximum reputation is only - & - s.

Second, Credo limits sustained collusion attacks wherd Bigntities continuously
generate upload receipts for colluding adversarial no8estained attacks are charac-
terized by credit sets that contain disproportionally margdits from identities with
large debits. Credo models the distribution of node delnitsfdters a node’s credit set
according to the measured distribution. The filtering steredo is important as it
ensures that an adversarial node’s reputation score vatiterally decrease after it has
downloaded a bounded amount of data from honest nodes.

We make three contributions in this paper.

e We propose the design of Credo. To the best of our knowledgpeldds the first
reputation scheme that accurately assign nodes reputstanes which reflect
their contributions while providing quantifiable guaraggdor resistance against

Sybil and collusion attacks.

e We present an analysis of Credo’s security guarantees ifatieeof % colluding
adversarial nodes each controllingybil identities. Each adversary’s reputation
score is upper bounded by % - s. Furthermore, an adversarial node can download

at mostO(s - d) data chunks wheréis the average debits of honest nodes before

its reputation score is diminished.

e We show our implementation of Credo scales to handle a langeber of peer
nodes. Simulation results based on the transfer log of atiegiP2P CDN show
that Credo can accurately capture node contribution arehdedgainst attacks in

practical workloads.
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4.1 Seeder promotion problem

The importance of seeder promotion BitTorrent’s tit-for-tat mechanism only mo-
tivates nodes that are currently downloading the same filgkoad to each other. Once
a node finishes downloading, there’s no incentive for it &y sinline and upload to oth-
ers. Despite such lack of incentive, BitTorrent works faislell in practice when there
are a few altruistic high-capacity nodes available [57]efEfiore it is worth investgat-
ing how much practical performance gain is achievable ifasoare incentivized to stay
online and become seeders after completing downloads.

In existing P2P distribution systems, most streams do net balarge number of
simultaneous downloading nodes (leechers). In fact, thenthaof data transfers>
80%) in various BitTorrent communities are between seedersleechers [44]. For
most streams, large numbers of simultaneous leechers caly during the first few
days when a very popular file initially appears. As a resudtause seeders perform
most of the uploads, the more seeders there are in the sythternetter the download
speed of leechers. Seeder promotion motivates nodes tretbepleted downloads to
stay online and act as a seeder — this leads to more seeddrsttarderformance. One
way to quantify the impact of seeder promotion is to compaeegerformance of public
BitTorrents to that of private BitTorrents. While there is mcentive for seeding in a
public BitTorrent, a private BitTorrent demands a certawel of upload contribution
from each node in order to maintain the node’s membership.

We measured the download speed in a public BitTorrent sy@eammteBay) as well
as three private BitTorrent communities (Demonoid, Whatahd TorrentLeech). Of
the three private BitTorrent communities, What.CD and dotiteech demand a certain

minimum level of upload contribution (or sharing ratio) finceach member in order to
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Figure 4.1:CDF of achieved download speeds in various BitTorrent conities. The down-
load speeds in communities that incentivized seeding éntlceech and What.CD) are signif-
icantly better than that of the public BitTorrent (PiratgB@nd the private community (De-
monoid) with no seeding incentives.

stay in the community while Demonoid has no such requiremiat each BitTorrent

community, we joined 100 recently active swarms in that camity and measured the
download speeds of nodes in the swarm by periodically camteto a node to obtain

its download progress.

Figure 4.1 shows the cumulative distribution of observedrload speed in all four
BitTorrent communities. As we can see, private communitib&h incentivizes up-
load contribution (i.e. TorrentLeech and What.CD) achiévé< the median download
speed of PirateBay (a public BitTorrent) and Demonoid (agteé community with no
upload incentive). We also found that the ratio of seedetsdohers in TorrentLeech
and What.CD is more then X0Othose in PirateBay and Demonoid; this difference in
available seeders is a large component of the performanreaaeen the private and
public systems. Our observations are similar to anothemtemeasurement study on a
different set of private BitTorrent communities [44]. Bdsm these results, we hypoth-
esize that P2P CDNs can achieve significant performancebgaaddressing the seeder

promotion problem.
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Fairness incentivizes contribution. How to motivate selfish nodes to act as seeders?
We assume that the utility of each peer is characterizedsbgvitrage download speed
and the goal of each peer is to employ a strategy that maxanitz€e€ownload speed. It

is worth pointing out that a selfish peernst necessarily interested in minimizing its
upload cost: each user has a different threshold for adokeptgload cost. This model

of selfish peers is similar to that proposed in [38]. A P2P CBNonsidered afair

if the more a peer contributes to the system (i.e. uploadadive to its consumption
(i.,e. downloads), the better average download speed itrexmpes when competing
with other downloaders. We hypothesize that, in a fair P2RNCiiibdes are motivated

to act as seeders to achieve better download speeds in.return

Achieving fairness is more flexible than enforcing a spesifiaring ratio as done in
private BitTorrent communities such as TorrentLeech. Vditspecific sharing ratio, a
peer has no incentives to upload more than its requiredreheatio. Worse yet, a peer
unable to meet the sharing ratio requirement for varioussedfish reasons (e.g. it is
seeding unpopular files or has small upload capacity cordpatiés download capacity)
risks getting expelled from the system.

Our fairness notion maps naturally to a reputation systemrg/each peer’s repu-
tation score reflects its net contribution (i.e. its uploadsus its downloads) and each
peer allocates its upload capacity to active downloadersrding to their reputation
scores. However, this reputation based approach facesramtiqal challenges: (a) how
to capture a peer’s net contribution? (b) how to defend agaittacks on the reputation
system itself? The goal of our work is design a reputationiesyghat addresses both

these challenges.
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4.2 Approach

At a high-level, Credo keeps track of each node’s uploadrimriton using signed
“receipts”: in exchange for downloading a data chunk froradez B, node A gener-
ates a signed receipd(— B) and gives it toB. Credo employs a central server to
periodically aggregate upload receipts collected by allasoand compute each node’s
reputation score based on these receipts. To promote logindn, each seeder preferen-
tially selects nodes with higher reputation scores amomgpeting download requests
to upload data to.

Credo performs Sybil-resilient member admission contooptevent an attacker
from joining the system with an arbitarily large number ob#ydentities. However,
each attacker can still participate in the system with a févgbil identities to manip-
ulate Credo’s reputation mechanism. The main contribubio€redo is a centralized
reputation algorithm that calculates a reputation score&@h node based on the col-
lection of upload receipts. The algorithm achieves quatiié security guarantees for
its defense against both Sybil and collusion attacks. Inlal$ytack, an adversarial
node uses the few Sybil identities under its control to batssbwn reputation score
without performing actual uploads. Furthermore, sevetat&ers can collude together
with their respective Sybil identities to boost each otheqsutation score. Next, we

describe the two key ideas in Credo’s reputation algorithm.

1. Measuring contribution using credit diversity. The set of receipts from all nodes
form the upload graph. Figure 4.2 shows two example graplesente linkC' — B
with weight 2 indicates thatB has uploaded 2 data chunksd@ The naive method
of measuring a nodeset contribution is to calculate the difference between a node’

weighted incoming links and its outgoing links. For exameFigure 4.2(a) A’s net
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Figure 4.2:The upload graph formed by receipts, e.g. the link B of weight2 denotes that

B has uploaded 2 data chunkd@b The naive method of measuring each node’s net contribution
by the difference between a node’s weighted incoming limd @utgoing links is vulnerable to
the Sybil attack. For example, in (b}, instructs its Sybil identity4d’ to generate a large number
of upload receipts foA.

contribution is calculated as The naive method accurately captures the net contri-
bution of honestnodes but is extremely vulnerable to Sybil and collusioackts. For
example, in Figure 4.2(b), attackérinstructs its Sybil identity’ to generate 100 up-
load receipts foily, thereby increasing the net contribution6fto 90 without having
to perform any actual uploads. How can we measure a nodesométibution while
remaining resilient to this type of attack?

Intuitively, nodeA’s upload contribution in Figure 4.2(a) is more “diverseaththat
of E in Figure 4.2(b) because the node)(that A has uploaded to has also uploaded to
other nodes while the nodé() that £ has uploaded to has made no contribution. We
capture this notion of diversity using the concept of crédihsfers. Credo’s reputation
algorithm maintains two quantities for each node: (1) thde®credit set(), repre-
sented as a multi-set. (2) the node’s dehifs (epresented as a number. For example,
Ca = {C : 1,D : 2} indicates thatd’s credit set consists of 1 credit issued ©yand
2 credits issued by). The algorithm processes every link in the upload graph by pe
forming a “credit transfer”. For example, to proce4s— B, the algorithm removes

one randomly chosen credit frodis credit set and adds it t8’s set. The issuer of a
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credit does not change as it is transferred to another geditf A’s credit set is empty,
the algorithm incrementd’s debits (/4) by 1 and adds a new credit issued Ayo B’s
credit set.

The credit-based processing causes nodes with more “divesstribution to have
credit sets with more distinct credits. For examplés credit set in Figure 4.2(a) may
becomeC, = {C : 1,B : 3,D : 1} while E’s credit set in Figure 4.2(b) is simply
Cr = {E' : 100}. We measureredit diversityby the number of distinct issuers in a
credit set. However, since a node might repeatedly uplodldet@ame node, we count
A > 1 credits from each distinct issuer. The defaultalue is 3. For example, fat, =
{C:1,B:3,D : 1}, diversity(C4) = 5. ForCg = {E’ : 100}, diversity(Cg) = 3.

A node’s reputation is calculated based on its credit dityeasd its debits:

rep = diversity(C) — d (4.1)

Credit diversity limits the maximum reputation gain of Syddtacks. If an adversar-
ial node has only Sybil identities, its maximum reputation score is only s without
performing any uploads. Moreover, even if a setkahidversaries each with Sybil
identities collude, the reputation score of each adveakaode is bounded by - k - s.

Credit diversity may under-estimate the contribution ohamest node if it repeat-
edly performs many uploads to another node who has done ditthtribution itself, a
behavior indistinguishable from that of an adversariale@adinching Sybil attack. For-
tunately such a scenario is unlikely to occur — honest nodemntially upload to the
downloaders with the highest reputation, and as high répataodes have a large and
diverse credit set themselves, an honest seeder will ablengase its credit diversity by

obtaining upload receipts from them, as our later evalnatademonstrate (Section 4.6).
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Figure 4.3: Two adversarial nodest| F') collude by obtaining from each of their respective
Sybil identities ¢’,F’) 3 upload receipts. A€ downloads from honest nodé (dotted link

E — A), E can replenish its diminished credit set by obtaining nevoagireceipts from Sybils
(dotted linksE" — E, F' — F).

Existing graph-based reputation schemes are based onvgligeri6, 31] or max-
flow computations [21, 9]. However, with Eigenvalue [6, 31¢tlmods, a node’s repu-
tation score doenot necessarily reflect its net contribution. In particular,cal@ can
improve its reputation score more by uploading the same abhufdata to those nodes
with higher reputations. Credo employs a similar credit$far mechanism as currency
systems [55, 79, 11, 65], but its use of credits is very diffier Currency systems give
the same download service to all node who possess currekegig@nd deny service
to “bankrupted” nodes. By contrast, Credo uses each nodeditcset to calculate its

reputation score and gives preferential service to thodeswwith higher reputations.

2. Credit filtering based on good behavior. Although using credit diversity limits
the maximum reputation score, each colluding adversaddercan still maintain its
maximum reputation score without any contribution no mati@v much data it has
downloaded from others. That is because every Sybil nodessame arbitrarily many
upload receipts to replenish the credit set of an advelssi@de. For example, in Fig-
ure 4.3, adversarial nodds and F' collude with their respective Sybils to achieve a
credit set of diversity. If £ downloads 6 units of data from honest nadié¢shown by

the dotted linkE — A), E’s credit set should ideally decrease by 6. Howeyecould
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easily request more upload receipts from the Sybiland F’ (shown by dotted links
E' — E, F' — F)to maintain a credit diversity df\ at all times no matter how much
data it downloads from honest nodes.

To mitigate such sustained collusion attacks, Credo’stegjmun algorithm explicitly
models the typical behavior of honest nodes. More congretted algorithm measures
the distribution of debits of all nodes. The debit distribatas observed in the credit set
of an honest node should not deviate too much from the measistibution. We use
such knowledge to filter a node’s credit set to obtain a sulfseedits,C’ C C, such that
the observed debit distribution @ conforms to the measured distribution. We augment
Equation 4.1 to use the filtered sét)(for calculating credit diversity. The filtering step
significantly limits an adversarial node’ ability to carrg sustained attacks.

Summary: The combination of ideas 1 and 2 defends against Sybil arldsioh
attacks. Specifically, credit diversity limits the maximuaputation score of an attacker.
Credit filtering ensures that an adversarial node’s refuutacore goes down after it has

downloaded a bounded amount of data from honest nodes.

4.3 Credo Design

In this section, we first describe the overall system archite including how nodes
generate upload receipts and how reputation scores aimedtilNext, we explain how

Credo computes node reputations based on aggregated uptzapts.

4.3.1 System Architecture

The Credo system consists of a trusted central server asawelllarge collection

of peer nodes. The central server performs Sybil-resileate admission control and
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is responsible for aggregating upload receipts and comguéputation for all peers.
A peer node may act as seederwho stores a complete file and uploads chunks of
it to others. A peer node may also act akeacherto download missing file chunks
from other seeders or leechers. Credo focuses on the itierdoetween seeders and
leechers which constitute the majority (¢,80%) of data feaeg44] and lets the normal
BitTorrent protocol handle data exchange among leechers.

Node admission:The central server admits a new node into the system by genera
ing a public/private key pair for the admitted node. A node peove its membership in
the system to another node by presenting its public keyficartié signed by the central
server. Credo must prevent an attacker from joining theegystith an arbitrarily large
number of Sybil identities. The central server employs texisSybil-resilient admis-
sion control methods such as schemes based on a fairly $yne@of user identity (such
as credit card numbers or cellphone numbers) or algorittassdon the social network
among users [83, 84, 72]. Sybil-resilient admission cdr@aonot prevent an adversar-
ial node from joining the system but limit each adversar@ieto a small number)
of Sybil identities.

Obtain upload receipts for seeding:A seeder gets an upload receipt after upload-
ing one data chunk (of size up to 1MB) to a leecher. For exanmpkeederA has
uploaded taB, A obtains the receipt of the formd[ «+ B, SHAl(data)ts] signed by
B’s private key. SHA1(data) is the hash of the data block bejplgaded fromA to B
andts is the current timestamp according/o

A leecher might refuse to generate the required uploadptedier downloading
data from a seeder. To deter such behavior, we borrow thexaltange protocol from
BAR Gossip [40]. Specifically, to upload datafy seede first transfers the encrypted

data chunk ta3 and then gived3 the decryption key only ifA receives a valid upload
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receipt fromB. The symmetric key used by to encrypt data is uniquely determined by
A’s private key Prv,) and the content hash of the data chunk (SHA1(data)). In-addi
tion to the encrypted datal also includes a signed tuple [SHA1(data),SHAL1(encrypted
data)] to bind its words that the encrypted data corresporitd data chunk being re-
guested B can only obtain the decryption key after sending the propérad receipt to

A. In the case thaB does not receive any valid decryption key frofafter it has sent
the upload receiptB sends the upload receipt to the central server. Since theaten
server knows all nodes’ private key, it can re-generate dueygtion key based oA’s
private key and SHA1(data) and give it I, If seederA uploads garbage data 8,

B will report A’s misbehavior to the central server with a verifiable proaiuding the
encrypted data chunk and the signed [SHA1(data),SHAlyptenl data)].

Aggregate upload receipts: Every peer node periodically transfers its newly re-
ceived upload receipts to the central server. Since all $tamades should verify every
received upload receipt, the central server only samplesadl fraction (e.g. 10%) of
aggregated receipts to check their validity. Upon detgatim invalid receipt, the server
can punish the corresponding seeder for presenting thesh@geipt by reducing its
reputation score or suspending its membership.

The central server computes a reputation score for eachexadyg few hours (de-
fault is four). Only upload receipts generated in the lagime period are used for
reputation computation. We pickto be two weeks, a period short enough so that a
node is motivated to continuously contribute to the systamhyget is also long enough
for a node’s past contribution to affect its current repotascore.

Each node can request a signed reputation certificate frenasehtral server indi-
cating its current reputation score. A leecher presentsgpetation certificate as part

of it download request to a seeder. Each seeder in Credondggsga small number of
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upload slots to serve a few leechers at a time. When there are cdownload requests
than upload slots, the seeder picks those leechers withefgation scores among all

competing requests to serve.

4.3.2 Credit-based reputation computation

The most interesting component of Credo is the algorithnd biyethe central server
to compute node reputation based on the collection of agtgdgupload receipts. As
summarized earlier in Section 4.2, the algorithm proceisesipload graph by per-
forming credit transfers between nodes. The algorithnstesigainst Sybil and collu-
sion attacks by filtering each node’s credit set accordimgddeled honest behavior and

guantifying a node’s upload contribution by its credit dsigy.

4.3.2.1 Credittransfer

The set of upload receipts form a directed graph with weigjhitkks. A cycle in the
graph with the same weight on each link represents a fairagdamong those nodes.
Therefore, the algorithm first prunes the graph by removuah<sycles. For example,
if there exist linkA — B with weight 5, link B — C with weight 2, and linkC' — A
with weight 2, the pruned graph only contains lilk— B with weight 3. Since all
cycles are removed, the pruned graph becomes a direct@agyaph (DAG).

The algorithm processes the graph in the topological sderoi.e. a node is pro-
cessed only if all of its predecessors were processed. Fonghe, nodes in the graph
of Figure 4.2(a) is processed in the order C, B, D, A and therand of processing for
Figure 4.2(b) is{E’,C}, E, B. All nodes initially have an empty credit sé& £ &) and
zero debits{ = 0). Each node is processed by examining all links pointing.tdo

process linkA — B of weightw, the algorithm first checks if the number of credits in
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Figure 4.4: Credo models the behavior dfigure 4.5:Credo limits sustained collusion
honest nodes withZ-distribution (Z is the attack using they; test. In the example, the
random variable corresponding to the numlggey bars correspond t8 of an adversarial
of self-issued credits by the issuer of a ramede. The white bars correspond to the result-
domly chosen credit). Credo represetis ing C’ that fits Z-distribution (dotted lines).
distribution usingm bins with exponentially
increasing sizes.
C4 is more thanw. If it is the case, we subtraat randomly chosen credits frond f)
and adds them t6p. If that is not the case, then we make up for the differendsy
addingzx credits issued by A t@p and incrementing A's debits hy. In Figure 4.2(a),
C ends up with credit sél; = @ andd = 2 and B has credit sélz = @ anddg = 1.
In Figure 4.2(b), B ends up with credit S8t = {E’ : 10,C : 2} anddp = 0. The
algorithm continues until it has processed all links in thE@®

After processing the graph, to calculate a node’s reputatiore, the algorithm first
filters its credit set to obtain a set of “good” credits;’ C C. It then computes the
diversity of C’ to bound the maximum reputation gain of collusion and Sytidcks.
When calculatingliversity(C’), we count no more than credits from the same node.
The final reputation score is calculateddsersity(C’') — d. In the next section, we

explain how the filtering step is performed to mitigate sinsd collusion and Syabil

attacks.
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4.3.2.2 Credit filtering

The goal of credit filtering is to choose a subset of credituch that the distribution
of the debits for the issuers of creditsG@happroximates the overall debit distribution
of honest nodes in the system. Since an adversarial noderpénty sustained Sybil
and collusion attacks ends up with a credit set that may feegnitly deviate from the
overall debit distribution, the filtering step will effeeély remove many credits from the

adversary’s credit set, leading to a diminished reputattmre.

Computing the overall debit distribution: Let X be the random variable of the debit
of a node chosen randomly among those nodes with positiviesd&ince a few Sybil
identities may skew the distribution &f with extremely large debits, we use a truncated
distribution of X that excludes a small fraction)(of nodes with the most debits. As a
result, as long as the set of colluding Sybil identities dbexzeed of all nodes, they
cannot affect the measured distributi@n

Let Z be the random variable of the debit of the issuing node fondamly chosen
credit in the credit sets of all nodes. We model an honest’satedit set as a collec-
tion of randomly chosen credits in the system. Thus, we exjpecdebit distribution
corresponding to collection of credits in an honest nodegglit set to approximate the
distribution of Z.

We can derive the distribution ¢f from that of X as follows,

_ Pr(X =)z

E(X) 4.2)

The algorithm represents the-distribution using a set of probability density bounds
that correspond ton bins, as shown in Figure 4.4. Let the range of ikl bin be

[b;,bi+1). The ranges of the bins are chosen to so that the size of siaedsns in-
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creases exponentially, |ebbi = ~ where~ is a small constant bigger than 1. Our
security bound for Credo’s collusion resilience is depenam the choice ofy (Sec-

tion 4.4). The probability density of theth bin is calculated a®r(b; < Z < b;q).

P?“(biSX<bi+1)~

Letp, = 5 % \We can see that; is the lower bound of’r(b; < Z < b;y1),

because:

Ebigxbiﬂ Pr(X=ux)-x

Pr(bi§Z<bZ-+1) E(X)

The set of lower bounds; is used to ensure that the observed debit distribution for
credits in the filtered credit set does not deviate too mumtmfthe overallZ-distribution.
In particular, letZ’ be the random variable of the debit of the issuing node fondaen

credit in a filtered credit set’, it must satisfyPr(b; < Z’ < b;1) > p; for all 4.

Filter credit set using Z-distribution: In order to extract a subset of creditswhose
debit distribution matches the overatdistribution, the algorithm chooses credits for
C’ so that the fraction of credits in theth bin exceedy,. A credit is classified to the
i-th bin if its issuer has a debit value withjity, b; ;).

When there is a sustained collusion attack, the credit sat eldversarial node con-
sists of an “unusually” large number of credits in bins walgei’s because their issuers
(Sybils) have very large debits. This causes the fractiacredits in bins with small’s
to be lower than the required lower bound. The filtering stépawict credits in the bin
of largei’s in order to increase fraction of credits in bins with sragils. Figure 4.5
gives an example. As can be seen, the original credif einsists of many credits in
bins corresponding to issuers with large debits. (the higly bar at the rightmost side).

After filtering, the number of credits accepted in that rarsggignificantly reduced (the
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white bar at the rightmost side) according to the expectegidound for each bin (the
dotted bins).
The filtering process proceeds as follows. tebe the number of credits classified

to thei-th bin. When filtering the credit set to arrive@t the algorithm ensures that:

|C|67p >1  Yie[o,m) (4.3)
We use a greedy heuristic for picking a set of credits thas fiaes test specified by
Equation 4.3. In particular, we start with the original dtesktC and check for the
validity of the test. If the test fails with theth bin having the highest value 9&7
we remove one credit from thieth bin. We prefer to remove the credit which has the
same issuer with at leastother credits in the set. If there is no such credit, we remove
a random one. We repeat this process until the test pass@&smore credits are left.

The remaining credits form the filtered Bt

4.4 Security properties

In this section, we present analysis results to quantify Rwedo limits sustained
collusion attacks. Colluding adversarial nodes exchamd@aal receipts issued by their
Sybil identities (see example in Figure 4.3). We assumecthlaiders are self-interested
individuals: they divide the Sybil-issued receipts amdmgntselves so that each adver-
sarial node is benefitted equally from the collusion. Fordingplicity of discussion, we
only show the analysis for the scenario where adversar@solo not contribute any

uploads to the system.

Theorem 4.1. Suppose there argé self-interested colluding adversarial nodes, each
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with s Sybil identities. Credo limits the maximum reputation ofaaversarial node to
be \ - k - s. More importantly, the average number of data chunks thaadversarial
node can download with the maximum reputation score is at mos d, whered is the

average debits of an honest node.

Proof. Since an adversarial node has no upload contribution, thditsrin its credit
set are belong to Sybil identities in the collusion group.néte the maximum credit
diversity ofk colluding adversaries is- & - s, resulting in maximum reputation score of
A-k-s.

Next, we prove the bound on the maximum downloads an advarsade can per-
form with maximum reputation. LeX’ be the random variable of the debit of a Sybil
identity and letZ’ be the random variable of the debit of the issuer (a Sybiltitien
of a randomly chosen credit among the credits of adversagdes. We know that
Pr(Z'=x) = W Since adversarial nodes divide the upload receipts islsyed
Sybils among themselves, the debit distribution for eacreeshry’s credit set can be
approximated by the overall distributidfi.

The filtering process ensures that the filtered credit set aidwersary passes the set

of p; tests, i.e.:

P < Pr(bz- SZ,<bZ'+1)

Prb; < X" <biy1) - bia
< E(X) (4.4)

Substitutingp; = W into Inequality 4.4 and re-arranging sides, we ob-
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tain:

Pr(b; < X' <bjyq)
Pr(b; < X < biy1)
Pr(b < X' < biy)
Pr(b < X < biy)

BX) < %p(x)

= 7 B(X)- (4.5)

In Inequality 4.5,~ is determined by the number of chosen bins) (such that
v = bbi for all 7. Moreover, Inequality 4.5 holds true for all As the last step of
simplification, we use the property that for any given pesitiumbers, by, ¢, bs, ¢a, if
a < % anda < 2, thena < 242 Applying this observation to Inequality 4.5 for al
we obtain:

BE(X") <~ - B(X) (4.6)

Because the total number of credits fréms Sybil identities isk - s - F(X’), each
adversarial node has at mest/(X') < s-v-E(X) credits in its credit set. By definition,
E(X) is the expected debits of nodes after excluding thibse nodes with the most
debits,E(X) < d whered is the expected debits of an honest node with positive debit.
Thus, we derive? (X') < s - - d.

It is interesting to note that, for a given ranfg, b,,] of the distribution of X,
the system parameter of the number of bing (iniquely determines. Specifically,
= bb—g Therefore;y decreases as we increase the number of hit)sitnproving
the bound on sustained collusion attacks. However, whas too large, we also risk

filtering out too many credits from a honest node’s crediusgtecessarily. O

4.5 Implementation

We have built the central server and the client node implé¢atiem using Java.
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Central server: Our server implementation consists 3#f00+ lines of codes. The
implementation logs upload receipts received from cliexttas to disk. Everyt hours,
the server reads all collected receipts from disk and insdlke reputation algorithm to
compute node reputation. The reputation calculation &lgoremploysi2 concurrent
threads to achieve speedup on multicore machines.

Credo client: Our client implementation is based on the open-source AruBstTor-
rent implementation. A Credo client can engage in the oalgBitTorrent protocol
with other BitTorrent clients. When two Credo clients firseen, they exchang€re-
doHandshakenessages (a new message type that we added to the exisfliogr&itt
protocol). ACredoHandshakeonsists the node public key certificate and its reputation
score signed by the central server.

After finishing handshake, if both peers are leechers, teeytle normal BitTorrent
protocol to exchange data blocks among themselves. Otberitie seeder chooses the
leecher with the highest reputation to serve. Specifically,modified the two func-
tions calculateUnchokeand getimmediateUnchokes SeedingUnchoker.java to pick
the leecher with the highest reputation to unchoke.

Once a leecher is unchoked, it senddradoRequeshessage to request a set of data
blocks. The total size of data blocks requested is less 1V (the default data size
per upload receipt in Credo). The seeder uploads encrytiedtd the leecher. After
finishing downloading, the leecher sendSr@doPaymessage with the required upload
receipt. Finally, the seeder sends backradoKeymessage that contains the decryption
key for the data. Every hour, every seeder sends its callectireceipts received in the

last hour to the central server.
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4.6 Evaluation

This section evaluates whether Credo reputation’s rejputatheme gives the right
incentive for nodes to contribute in the face of collusionl @ybil attacks. Our key

results are:

e Nodes with higher net contribution achieves faster dowsdoa Credo. Thus,

Credo gives nodes an incentive to contribute as seeders.

e Colluders who do not upload any data to the system have bdum@imum
reputation scores. Furthermore, as they download data mmest nodes, their

reputation scores decrease.

e The implementation of Credo incurs reasonable traffic amdpzdation overhead

and can potentially scale to handle a large number of peegsnod

We use a combination of simulations and experiments witlpoatotype implemen-

tations to demonstrate these results.

4.6.1 Simulations
4.6.1.1 Simulation setup

We simulate a network ¢f000 nodes for a 1 month period. We set the upload speed
limit of each node to b@€00K B per second. A node divides its upload capacity among
4 upload slots ob0K B per second each. The download speed of a noddiiees its
upload speed, i.e.M B per second. We control the upload contribution of a node by th
willingnessparameter. Whenever a seeder has a free upload slot, ieddodpload to
some leecher with a probability proportional to its willmgss. We set the willingness

of nodes in our simulation to follow the distribution of uplb capacity as measured
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Figure 4.6: Average download time as a function of a node’s net conidbut The average
download time decreases as a node’s net contribution ipesea

in [56]. Our simulations set the receipt expiration periofitp be 1 day. This is much
smaller than our defautt value of 2 weeks because our simulated network is relatively
small (» = 3000 nodes). Thus, we must use a smalteso that not many nodes can
reach the maximum reputation scorenof\ during ar time period

We inject new files 0200 B to the system sequentially: a new file is injected when
all nodes that want a particular file have finished downlogdtinNot every node wants
every file: when we inject a new file, we randomly cho86é nodes to download the
file. The probability that a node is chosen to download theidilproportional to its
demand. We model two types of demand: 1) all nodes have aémntemands, 2) the
demand of a node follows the demand distribution observatienMaze file sharing

system [80]. We also choodé random nodes as the initial seeders.

4.6.1.2 Credo incentivizes contribution

More contribution leads to faster download: Figure 4.6 plots the download time as a
function of a node’s net contribution. We measure a nodd'soetribution during the

last 7 time period as the number of its uploaded chunks minus thebeuwof its down-
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Figure 4.11:Download time of colluding adversaries and honest nodesfagadaion of net
contribution; colluding adversaries vary demand at différsimulations. As demand decrease,
adversaries’ download time decreases but it is higher tianof nodes with net contribution of
60.
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loaded chunks. We record the net contribution and downlmael &fter a node finishes
downloading a file. For the results shown in Figure 4.6, weigeal the net contribution

of different nodes into bins of siz#), and computed the average and standard deviation
of the download time in each bin.

Figure 4.6 shows that a node achieves faster download tirhes W has a higher
net contribution, for both the Maze demand model and thetid@irdemand model.

A node’s reputation reflects its net contribution: A node achieves faster downloads
when it has a higher reputation. Figure 4.7 shows a nodetgadpn as a function of its
net contribution. We recorded a node’s reputation scoreedksas its net contribution
when it finishes downloading a file. We computed the averageowtribution and
average reputation for each node and plot the two quantitieggure 4.7. We can see
the reputation increases linearly as a node’s net conimibiricreases.

To further quantify how Credo’s reputation score accuyataptures a node’s net
contribution, we calculate the standattimetric, which is defined to be the probability
that the reputation of a nodéis greater than the reputation of noBegiven thatA has
higher net contribution for two random noddsand B in the network. In Figure 4.7,
A’ = 0.95 which shows that Credo’s reputation score accurately tsfieaode’s net
contribution.

Figure 4.7 is divided into two regions: negative net conttiin on the left, and
positive net contribution on the right. We observe that thevative of the curve on the
left is approximatelyl. That is because nodes with negative net contributiony aain
credits, i.e|d(C’)| = 0. The reputation of those nodes is essentially the negatitire
debits. Figure 4.8 shows the cumulative distribution ofegjehet contribution. We can
see that more thar0% of nodes have negative net contribution in simulation witkhb

the Maze and identical demand models.
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Nodes with positive net contribution are rarely associatgld positive debits. Their
reputation is mainly the diversity of their credit sets. Tdezivative of the curve in the
positive contribution region of Figure 4.7 is only sligh8ynaller thanl. This shows
that filtering credits and measuring credit diversity do sighificantly under-estimate
the net contribution of honest nodes.

We also take a closer examination on how the reputation s¢orenodes with pos-
itive net contributions. Figure 4.9 shows credit diversi/the function of the size of
credit set at end of the simulation. We observe that credérdity is close to the size
of the credit set when the size is greater tB8A. This means that credit filtering has
little negative effect on the credit sets of honest nodek aitough upload contribution.
When the credit set size is smaller th#it), there are some sets whose credit diversity
is much smaller than their actual size. This is because whercrtedit set is small,
it is difficult to approximate the&Z-distribution. As the result, many credits have been

filtered.

4.6.1.3 Credo’s defense against colluders is robust

We evaluate how Credo performs under the collusion attadelignatind 0 nodes
as adversarial nodes. Each adversarial node cor2®idil nodes. They collude with
each other to form a collusion size 86, i.e. 1% of the system. In each interval,
the Sybil nodes issue upload receipts to optimize the amoluatedits that can pass
the filtering step and achieve the bound in Observation 4ett{@& 4.4). The credits
are divided equally to adversarial nodes. Adversaries ligset credits to download
files. We also vary the the number of files that adversaries twadownload in different
simulations.

In Figure 4.10, we plot the reputation of the adversarialesas well as honest nodes
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as a function of their net contributions. Because the adviaisnodes never upload
to other nodes, their net contribution are always negafideeir maximum reputation
score i50 because there ap® colluding Sybil nodes. As their demand of downloading
increases, adversarial nodes require Sybils to issuing rmod more upload receipts
which are eventually filtered. As a result, their reputasoores decrease.

We plot the download time as a function of the net contributar adversarial nodes
as well as honest nodes in the simulations in Figure 4.11. xfpeaed, the down-
load time increases as adversary nodes’ demand increasetheir net contribution
decreases. Even when adversarial nodes have small demaanitigir net contribution
is close to0, their download times are still longer than that of honestasowith net

contribution60. This is due to their reputation scores being bounde@loy

4.6.1.4 Credo vs Eigenvector-based reputation

An alternative way to compute nodes’ reputation at the egésgrver is finding the
eigenvector of the contribution graph induced from uploackipts. This eigenvector-
based reputation such as PageRank was originally designegeb ranking [6] but has
been used to compute node reputations in P2P systems [4¥jeudq the reputation
score of the eigenvector-based scheme is not designed tiaredpe net contribution
of a node. We show that when used in a P2P CDN, PageRank saored dccurately
reflect a node’s net contribution and is also more vulnerebé®llusion than Credo.

For real world workload, we use a Maze trace collected in Ddxsx 2005 which
records two weeks upload and download activities of nod#sisystem. A nodd that
uploadwMB to nodeB is represented by a directed edge frénto A in a graphG with
aweightw on it. We compute eigenvector-based reputation using #melatd PageRank

method. We vary the probability of resetting a random walknd find that the value
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of = 0.15 produces the best balance between defending againstioallaisd capture
net contribution. We refer to this eigenvector-based r&jmn as PageRank reputation.
To model attack, we choog$# nodes that have uploaded at least 50MB and have the
lowest net contribution as adversaries. Each adversaiydantes> more Sybils to the
graph, i.e. they form a collusion group &0 nodes. They perform collusion by having
the 50 adversaries create high weight (00, 000) edges to each other. Each pair of an
adversary and a sybil also create a pair of high weight diceetiges. Figure 4.12 shows
PageRank reputation of honest nodes and adversaries tsifdaze workload. Each
point in the graph represents a node in the system. As we eafPageRank reputation
does not reflex net contribution well{ = 0.71). Moreover, it has very poor defense
against collusion. Th&0 adversaries we choose are among the bott@% in term of
net contribution, but they can get in t@gt in term of reputation by colluding.

To compute Credo reputation, we feed the central server mgitkipts generated
from the Maze trace. The same adversaries collude by having tBg0 sybils issue
credits in an optimal way assume that they know ihdistribution. Figure 4.13 shows
the reputation of honest nodes and adversaries as a fumdtiget contribution. As we
can see, Credo reflects net contribution well £ 0.96). We notice that the reputation
of nodes that have net contribution greater thap00 are much smaller than the size
of their credit sets. That is because these nodes uploaddmgant of dataiGB) in
5 days, and they upload much more tI3\B to other nodes. The diversity technique
penalizes these nodes’ reputation because of their repeaaction with other nodes.
Nevertheless, these nodes still remain as top reputatidesaorhis graph also shows
that Credo’s defense against collusion is better than PageRThe50 adversaries re-
main in the botton22% in term of reputation even after colluding.

We also do the same comparison on a synthetic workload fraft@ nodes net-
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Figure 4.12: Eigenvector-based (PageRank) reputation of colludingeesdwies and honest
nodes as a function of net contribution on Maze workload. ekdaries who are in the bottom
0.2% of net contribution can get in the td}¥ of reputation by colluding. Eigenvector-based
reputation does not reflect net contribution well among kbnedes 4’ = 0.71).
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Figure 4.13:Credo reputation of colluding adversaries and honest nasesfunction of net

contribution on Maze workload. Adversaries who are in thiéddm 0.2% of net contribution can
only get in the to@®0—60% of reputation by colluding. Credo reputation reflects nettdbution

well among honest nodesg\( = 0.96).
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Figure 4.14 Reputation of colluding adversaries and honest nodes a&tida of net contribu-
tion on synthetic workload for both Credo and eigenvectsda reputation. Credo out-performs
eigenvector-based reputation in both reflecting net dauion and defending against collusion.

work. To generate workload, we create upload receipts irchvkihe downloader is
chosen randomly and the uploader is picked according to ttiegmess to contribute

of nodes. We set the willingness to increase linearly witde® ID. We chosel0
adversaries who uploads at lea8tchunks among those which have the worst net con-
tribution. Each adversary bring i sybils. The attack strategy is the same as in the
previous experiment. Figure 4.14 shows the reputation nébsbnodes and adversaries
in Credo and PageRank reputation. We scale the PageRartiatieptso that it can fit

to one graph with Credo reputation. Since the synthetic lwaxk has less repeat in-
teraction and are more uniform, both reputation reflect petrdoution better than in
the Maze trace. Still, Credo reputation is still better tleggenvector-based reputation
(A" =0.998 vs A’ = 0.898). Credo also has better defense against collusion. The ad-
versaries remains in bottoB9% in Credo reputation, while they can get to toj in

PageRank reputation.
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4.6.2 Experiments using Credo’s prototype
4.6.2.1 Scalability of the central server

Credo central server needs to receive upload receipts flomodes, verifies them,
and compute nodes’ reputation. We show that our implementatinning on &-core
machine (2.27GHz CPUs aridGB memory) can easily handle the traffic 20, 000
nodes in Maze network.

Bandwidth: We show that the bandwidth required for the central serveedeive up-
load receipts is modest. The aggregate traffic among Mazesia® weeks i280TB.

A fraction of this data traffic is between leechers only whildes not result in upload
receipts nor receipt upload traffic to the central servetyjhical public and private Bit-
Torrent communitiesy 80% the traffic are between seeders and leechers [44]. Even
if all of the traffic are upload from seeders to leechers, #@ral server receives only
1.4GB of uploaded receipts per day (each receiplidbyte in size and capturesidB
chunk transfer). This means the central server only needsdesh download capacity
of 130Kbps to receive upload receipts.

Storage: After verifying an upload receipt, the central server stoiteas a triple
(SH Al(data), uploaderI D, downloader1 D) which require8 bytes on disk. There-
fore, it require83GB disk space to storeweeks upload activities in order to compute
reputation.

CPU: The central server needs to verify a fraction of upload paset receives. Our
implementation can verifff00 receipts per second using a single thread 3bemillions
receipts per day. This means that a single threaded verdirehandle data traffic that is
17.5 times bigger than observed in the Maze system.

The central server also needs to compute the reputatioe $aoevery node. Our
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current implementation takéshour for the central server to process the upload receipts
corresponding to 2 weeks traffic in the Maze system. Our digfeniod for updating
reputation ist hours. Within that amount of time, our central server can jpat® repu-
tation for a network of , 000, 000 nodes whose traffic demand is similar to that observed

in the Maze system.

4.6.2.2 Deployment on Planet lab

To examine the real performance benefits when nodes ardivized to contribute,

we compare between two scenarios:

1. Every node runs the Credo client implementation Nodesnaentivized to stay

online, and serve other nodes in order to gain reputati@mn dtiwnloading a file.

2. Every node runs the original Azureus client implementati Since there is no
incentive to stay online after downloading a file, nodes gbtnef immediately

after finishing downloading the file.

We experiment with both scenarios on 210 PlanetLab nodesnj& a file to one
seeder at the beginning. We set the file siz@3IB to make the experiment finish in
a reasonable time<( 2 hours). Other nodes arrive to download the file once at a time
every15 second. We set the application limit throughput using tisérithution in [56].
The download throughput limit is times larger than upload throughput limit for every
node, in order to capture the asymmetry of upload and downllm@ughput in wide
area network.

Figure 4.15 plots the cumulative distribution of completavdload time for each
node in both scenario. We observe that both the average basibe median download

time improve significantly when nodes are incentivized &y stnline in scenario 1. The
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Figure 4.15:Cumulative distribution of download time two scenario: byles are incentivized

by Credo protocol to stay online and continue upload to sthéier downloading a file, 2) nodes
go offline immediately after getting a file. The average andiaredownload time in scenario 1
are significantly smaller than that of scenario 2.

average download time drops fropd5 seconds (scenario 2) 87 seconds (scenario
1). The median download time also drops fr688 seconds td 72 seconds.

This result shows that the aggregate capacity of the systgroves by a factor of
2.7 when nodes are incentivized to contribute. The reason idb#@use the download
capacity of nodes is higher than upload capacity, downlegacities are always under-
utilized when there is not enough seeders. There is dbrdgeder at any instance in
scenario 2. On the other hand, in scenario 2, after some rimiles downloading the
file, they contribute to the aggregate seeding capacity e@fttistem. Other nodes can

utilize their high download capacities to get the file faster
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Chapter 5

Related work

5.1 Sybil-resilient admission control

Traditionally, open systems rely on a central authority vehagploys CAPTCHA or
computational puzzles to mitigate the Sybil attack [76, BB, Unfortunately, these
solutions can only limit theate with which the attacker can introduce Sybil identities
into the system instead of the total number of such idestitieven before the recent
surge of interest in social-network-based Sybil defendesre have been attempts at
exploiting the trust graph among users to mitigate the Sgttdck: Advogato [37],
Appleseed [87] and SybilProof [9] are the most well-knowrtlegse early proposals.
However, it is not the goal of these protocols to perform Bydmilient node admission.
Rather, they aim to calculate the reputation of each usée/imoa way that prevents the
attacker from boosting its reputation using Sybil ideesti Below, we discuss recent
work in node admission control and related efforts in Syesiient Distributed Hash
Table (DHT) routing.

SybilGuard [84] has pioneered the use of fast-mixing soeédivorks for Sybil-
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resilient admission control. Using a distributed verifioatprotocol based on random
routes, SybilGuard can limit the number of Sybil nodes athdiper attack edge to
O(y/nlogn). SybilLimit [83] improves this bound to admit no more thérlogn)
Sybils per attack edge with high probability. Yu et al. claimat SybilLimit is nearly
optimal in that its security guarantee is only a factotgfog n) away from that of any
optimal protocol.

SybilGuard and SybilLimit are both designed to work in ardistted setting where
each node is initially only aware of its neighbors. By costy&ybilinfer [18] is a cen-
tralized algorithm which assumes complete knowledge ostiwal graph. Sybillnfer
uses Bayesian inference to assign each node a probabiligiofy a Sybil. The key
observation is that, if the attacker connects more Sybiits tiew attack edges, the con-
ductance of graph including the Sybil region becomes smiallihe point that the entire
graph is not fast-mixing, thereby causing the detectiomef3ybil nodes. Unlike Sybil-
Guard, SybilLimit, Gatekeeper and SumUp, Sybilinfer does aonsisder worst case
attacks and has no analytical bound on the number of Sybgsiadmitted per attack
edge. In [60], Quercia et al. propose a Sybil-defense masimefor the mobile setting
where a node collects graph information from those nodestthas previously encoun-
tered and analyzes the partial graphs to determine théhdad of a node being Sybil.
Like Sybilinfer, there is no formal bound for the algorithm[60].

Viswanath et al. [75] has performed a comparative study bilSyard, SybilLimit,
Sybilinfer and SumUp. The study reveals two potential latidns of social-network
based admission control. First, masmall social networks (up to tens of thousands
of nodes) exhibit community structure (i.e. not fast-m@jinthus causing existing pro-
tocols to falsely reject many honest nodes as Sybils. ThiBrignsuggests that Sybil-

resilient admission control must be performed on largéessacial networks: the larger
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the graph, the better connected communities are to each arllethe faster the mix-
ing time. Thus, our evaluations use real world social graphs consist of hundreds
of thousands of nodes. Second, given a known admissionatienirthe attacker can
strategically acquire attack edges close to the contrtdlgrain unfair advantage. In
Gatekeeper, we address this limitation by having a comirgklect a few random van-
tage points for ticket distribution. Viswanath’s work coanps all existing schemes in
a centralized setting even though SybilGuard and SybilLamé originally designed

to work as a distributed protocol. It is worth pointing ouatiSybil defense is more
challenging in a distributed setting than in a centralizetlisg. This is because, in a
centralized setting, the attacker must decide upon thehggtpcture of the Sybil region
before the admission algorithm starts to execute. On therdtand, in a distributed
setting, the attacker has the freedom to change the Syllred the graph arbitrarily

during protocol execution to maximize its gain. More detaih the comparision among
different social network based Sybil defenses can be foaoradrecent survey [82] by
Haifeng Yu.

A Sybil-resilient DHT [36, 17] ensures that DHT lookups seed with high prob-
ability in the face of an attacker attempting to pollute tbatmg tables of many nodes
using Sybil attacks. Danezis et al. [17] leverage the boagistee of the DHT to defend
against the Sybil attack. Two nodes in such a tree share aniedge node introduced
the other one into the DHT. The assumption is that Sybil nad&sh to the tree at a
small number of nodes, similar to the few attack edge assompt SybilGuard and
SybilLimit. Wh anau [36] uses social connections betwesemauto build routing tables
in order to perform Sybil-resilient lookups. Existing Sil@silient node admissions can
potentially simplify the construction of distributed Sibesilient protocols by bounding

the number of Sybil identities admitted in the first place.
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All of the above social network based Sybil defenses [84,78372, 18, 36] do not
consider privacy concern when using social network. Révgalll or a portion of the
social graph can help the adversary to deanonymize the g wilentity of nodes in
the graph [51]. Recently, Prateek Mittal designed a Sydsilient DHT routing proto-
col, called X-Vine [48], which considers privacy concermlide Wh anau, messages in
X-Vine only pass social links when they travel from the seutc the destination. As
a result, each node in the DHT only know its neighbors and dlsoa#ing table for

relaying messages to its successors, thereby not beingogtdeform deanonymiztion.

5.2 Sybil-resilient online content voting

Ranking content is arguably one of the Web’s most importaoblems. As users
are the ultimate consumers of content, incorporating thy@mions in the form of either
explicit or implicit votes becomes an essential ingrediemhany ranking systems. This
section summarizes related work in vote-based ranking@systSpecifically, we exam-
ine how existing systems cope with Sybil attacks [19] and gaira their approaches to

SumuUp.

5.2.1 Hyperlink-based ranking

PageRank [6] and HITS [33] are two popular ranking algorghhat exploit the im-
plicit human judgment embedded in the hyperlink structdreeb pages. A hyperlink
from page A to page B can be viewed as an implicit endorsenoentoge) of page B
by the creator of page A. In both algorithms, a page has a higin&ing if it is linked
to by more pages with high rankings. Both PageRank and HI€S@nerable to Sybil

attacks. The attacker can significantly amplify the ranlahg page A by creating many
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web pages that link to each other and also to A. To mitigatedtiack, the ranking sys-
tem must probabilistically reset its PageRank computatiom a small set of trusted
web pages with probability [52]. Despite probabilistic resets, Sybil attacks can stil
amplify the PageRank of an attacker’s page by a factar/ef[86], resulting in a big

win for the attacker becausgeas small.

5.2.2 User Reputation Systems

A user reputation system computes a reputation value fdr eksntity in order to
distinguish well-behaved identities from misbehavingsoni is possible to use a user
reputation system for vote aggregation: the voting systameither count votes only
from users whose reputations are above a threshold or wathwete using the voter’s
reputation. Like SumUp, existing reputation systems rattgattacks by exploiting two
resources: the trust network among users and explicit eseibfack on others’ behav-
iors. We discuss the strengths and limitations of existepmytation systems in the con-

text of vote aggregation and how SumUp builds upon ideas froar work.

Feedback based reputations In EigenTrust [31] and Credence [76], each user inde-
pendently computegersonalizedeputation values for all users based on past transac-
tions or voting histories. In EigenTrust, a user increasesiécreases) another user’s
rating upon a good (or bad) transaction. In Credence [76%ea gives a high (or low)
rating to another user if their voting records on the samef®éle objects are similar

(or dissimilar). Because not all pairs of users are knownacheother based on di-
rect interaction or votes on overlapping sets of objectth @yedence and EigenTrust
use a PageRank-style algorithm to propagate the repusatibknown users in order

to calculate the reputations of unknown users. As such, sygtems suffer from the
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same vulnerability as PageRank where an attacker can grtipdireputation of a Sybil
identity by a factor ofl /e.

Neither EigenTrust nor Credence provide provable guaesnta the damage of
Sybil attacks under arbitrary attack strategies. In cantr@umUp bounds the voting
power of an attacker on a single object to be no more than thdauof attack edges
he possesses irrespective of the attack strategies in useUs uses only negative
feedback as opposed to EigenTrust and Credence that usedsitive and negative
feedback. Using only negative feedback has the advantaganhattacker cannot boost
his attack capacity easily by casting correct votes on ¢bjbat he does not care about.

DSybil [85] is a feedback-based recommendation systemgitatides provable
guarantees on the damages of arbitrary attack strategi®gbilDdiffers from SumUp
in its goals. SumUp is a vote aggregation system which all@vsrbitrary ranking
algorithms to incorporate collected votes to rank objeEts. example, the ranking al-
gorithm can rank objects by the number of votes collectedohtrast, DSybil’'s recom-
mendation algorithm is fixed: it recommendsaadomobject among all objects whose

sum of the weighted vote count exceeds a certain threshold.

Trust network-based reputations A number of proposals from the semantic web
and peer-to-peer literature rely on the trust network betwasers to compute reputa-
tions [87, 37, 27, 62, 9]. Like SumUp, these proposals exphai fact that it is difficult
for an attacker to obtain many trust edges from honest ussause trust links reflect
offline social relationships. Of the existing work, Advog$87], Appleseed [87] and
Sybilproof [9] are resilient to Sybil attacks in the sensa&t tin attacker cannot boost his
reputation by creating a large number of Sybil identitiesHimd” him. Unfortunately,

a Sybil-resilient user reputation scheme does not dirécilyslate into a Sybil-resilient
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voting system: Advogato only computes a non-zero reputdbo a small set of iden-
tities, disallowing a majority of users from being able tde/o Although an attacker
cannot improve his reputation with Sybil identities in Appeéed and Sybilproof, the
reputation of Sybil identities is almost as good as that efdttacker’'s non-Sybil ac-

counts. Together, these reputable Sybil identities caincasy bogus votes.

5.2.3 Sybil Defense using trust networks

Many proposals use trust networks to defend against Sythitks in the context of
different applications: SybilGuard [84] and SybilLimit3Bhelp a node admit another
node in a decentralized system such that the admitted ndielisto be an honest node
instead of a Sybil identity. Ostra [47] limits the rate of tanwed communication that
adversaries can inflict on honest nodes. Sybil-resilienTBH.7, 35] ensure that DHT
routing is correct in the face of Sybil attacks. Kaleidose§§6] distributes proxy iden-
tities to honest clients while minimizing the chances ofasipg them to the censor with
many Sybil identities. SumUp builds on their insights andradses a different problem,
namely, aggregating votes for online content rating. Likbilkimit, SumUp bounds
the power of attackers according to the number of attacksedgeSybilLimit, each at-
tack edge results i@ (log n) Sybil identities accepted by honest nodes. In SumUp, each
attack edge leads to at most one vote with high probabiliyditionally, SumUp uses
user feedback on bogus votes to further reduce the attaekcitapo below the number

of attack edges. The feedback mechanism of SumUp is inspyré€ktra [47].
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5.3 Incentivizing bandwidth contribution in P2P systems

We survey existing proposals of P2P reputation and curregsiems and discuss
why they do not completely address the seeder promotioniggrobWe also discuss
existing work on catching misbehaving nodes.

Reputation systemsReputation systems incentivize peers to upload in ordeito g
reputation; peers with high reputation values are promisttr download performance
in the future [31, 21, 41, 57]. Most existing reputation sys$ are graph-based, where
each graph edge is formed between a pair of nodes that havdifeatl interactions.
EigenTrust [31] uses the PageRank-style [6] propagatigardhm on the interaction
graph. To reduce the chances of collusion in PageRank adilcnl[86], OneHop repu-
tation [57] and multi-level tit-for-tat [41] restrict repation propagation to one hop or a
few hops. Max-flow based calculation [21, 9] can be used terteagainst collusion.

Graph-based reputation schemes such as PageRank are igoiede® capture a
node’s net contribution in the system. In particular, a niotleng to another node with
higher reputation achieves higher reputation gain. Thesadegic peer can gain unfair
advantage by selectively contributing to certain peersaAesult, graph-based reputa-
tions do not satisfy the desired fairness property. Moredkie defense against collusion
of existing graph-based reputation systems is weak. Fanpbe colluders can increase
the net reputation of the collusion group bye, wheree is the probability of resetting a
random walk, in a PageRank-style reputation computati@gigenTrust [31] or multi-
level tit-for-tat [41]. In max-flow based reputation like 1[29], each colluders get higher
reputation by recruiting more nodes, which have interaotvdh node outside collusion
group, into the collusion group. This gives the incentivelfonest nodes to collude and

the bigger collusion group the higher reputation they geliowever, graph-based repu-
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tation can particularly advantageous in a live streamingrenment where nodes with
different capacities should be incentivized to positioentiselves in different positions
in the underlying stream distribution graph, as is done enGlontracts system [58].

Currency systems.Currency systems must maintain system liquidity according
the current demand and hoarding levels [32]. Karma [74)escalirrencies based on the
number of active nodes and Antfarm [55] adjusts the amouttdl&ns according to the
number of active nodes and the number of active swarms.

Currency systems such as Dandelion [65], BitStore [61], PACL], Antfarm [55]
and others [79, 74] incentivize peers to upload to otherge¢hange for tokens that enti-
tle them to future downloads. The tokens can be directlysfexrable among peers [79],
reclaimed by the central party upon each use [55, 79], or taeycompletely reside at
the central party link in Dandelion [65]. Credo is not a cagsystem: although it uses
the concept of credit transfer, it is only using credits tlwekate each node’s reputation
score. Existing currency system proposals enforce thet &tiownload as much as you
upload” policy where a node with no currency is not alloweddanload. Compared to
our notion of fairness, the policy enforced by currency eys is less desirable: since
all peers achieve the same download speed as long as theytwzzro currency to-
kens, a peer has no incentives to contribute more than whetdsssary to satisfy its
own demand. Moreover, currency systems face the dauntiadealge of maintaining
monetary supply according to current demand and hoardiregdeat all times [32] to
avoid undesired inflations or the bankruptcy of many nodes.

Some currency proposals such as Antfarm [55] and PACE [k laave the addi-
tional goal of improving the global efficiency of contenttdilsution. Antfarm achieves
optimal seeding capacity allocation via central managé¢rard PACE relies on peers

to set the right download prices in a currency market. Imprgwontent distribution
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efficiency is an orthogonal goal to providing uploading imbees.

Detecting and punishing deviant behaviors.lIt is not enough to just incentivize
contribution, we also need disincentives to discouragespieem cheating. BAR Gos-
sip [40] and FlightPath [39] introduce the idea of centmdizounishments based on
cryptographic proof-of-misbehavior and use it to ensuedalir exchange of data within
a single swarm. In the context of peer-to-peer storage sgstblgan et al. [53] and
Samsara [15] rely on verifiable records and periodic augltiincheck that peers indeed
store data as they claim. SHARP [24] also audits to ensuteathautonomous system
complies with its resource contract.

Credo does not need general purpose auditing becausesaeglibnly used to cal-
culate a peer’s reputation instead of serving as resoussms! We borrow the idea
of cryptographic proof-of-misbehavior from BAR Gossip [40 detect and penalize

misbehaving nodes.
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Chapter 6

Conclusion

This thesis provides robust identity managements whichresgient to Sybil at-
tacks, and illustrates how to use them to provide securitiyiacentive for cooperative
systems in various contexts. The main theme of this work iswerage the social net-
work among users in designing secure and incentive-coblpatboperative systems.
In particular, we develop a distributed admission contraltgcol, called Gatekeeper,
that leverages social network to admit most honest usetit@Enand only few Sybil
identities into the systems. Gatekeeper’s defense is apfonthe case of)(1) attack
edges and admits onty(1) Sybil identities (with high probability). In the face 6f(k)
attack edges (for any € O(n/logn)), Gatekeeper admit9(log k) Sybils per attack
edge. Gatekeeper can be used as a robust identity managemesih centralized and
decentralized cooperative systems. In the context of conting, we provide a vote
aggregation system, called SumuUp, that leverages uniqueegres of content voting
systems to provide significantly better Sybil defense caegbavith applying the gen-
eral Gatekeeper admission control. SumUp can limit the rermabbogus votes cast by

adversaries to no more than the number of attack edges (wjithpnobability), which
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is an order of magnitude better than applying general adoms®ntrol protocols to the
content voting context. Using user feedback on votes, Sufuttiper restricts the voting
power of adversaries who continuously misbehave to belemntimber of their attack
edges. We applied SumUp on the voting trace of Digg and hawedfgtrong evidence
of attack on many articles marked “popular” by Digg. The aefeof both SumUp and
Gatekeeper are currently the state-of-the-art in thepeetve problems as reported in
a recent survey [82]. Finally, we provide a robust reputatigstem, called Credo, that
is resilient to both Sybil and collusion attacks, and cand®zluo incentivize bandwidth

contribution in peer-to-peer content distribution netkgor

6.1 Future work

We believe that the work in this thesis is only an early cdmition in the research
area of security and privacy for cooperative systems. Thmomance of cooperative
systems will continue to grow in the future. There are inshegly more attractive
domains for adversaries to exploit. We expect to push thi tifrexisting designs and
to contribute new techniques in this area. Below are patehtiure research projects.

Combating information censorship:  Recent events during the so-called "Arab
Spring” have shown the power of the Internet when it comesdarzing large groups
of people for protests. Such events have also shown howngilepressive govern-
ments are to censor the Internet or to disconnect their popukrom the Internet en-
tirely such as the incidents in Egypt and Libya in early 20We believe that during
these government-imposed communication blackout perpetsple should still be able
to exchange information and organize among themselves. g@alris to design and

build a networked system to help the citizens in such coesito disseminate informa-
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tion during such blackouts in the presence of an adverggmarnment.

One promising solution is that the citizens in these coastform a cooperative
system in which citizens use their mobile devices to exchangssages with nearby de-
vices through WiFi during communication blackout. This ogpnistic communication
is promising since it is hard for the adversarial governmertilock it. However, the
adversarial government can still create Sybil identitied ase them to flood the sys-
tem with bogus (junk) messages, or confuse the citizens bgrgéing dishonest votes
on authentic messages. The defense provided by SumUp cantipdly prevent this
threat. However, SumUp requires each citizen to know thigeesdcial graph in order
to filter out bogus messages. This raises privacy concemns e government can per-
form deanonymization to ascertain the identity of the @tates, and thus to persecute
them. We are designing a enhanced version of SumUp so thaé# dot require the
knowledge of the entire social graph, thereby addressisgtivacy concern.

Reputation-based routing:  Secure routing protocols that do not rely on a public-
key infrastructure are desirable because of the relatse ebdeployment. For example,
deploying a PKI for inter-domain routing over the Interreeiserious challenge. In the
BGP setting, we can view the network of autonomous syster83 &8 a cooperative
system in which the ASes are sharing the view of the netwadutih exchanging rout-
ing tables. The relationships among ASes can also be viewvadrast graph where the
adversary has only a few links with other ASes. However, theeesary can generate
and propagate a large amount of bogus routing informaticorder to hijack traffic.
Our goal is to minimize the number of incorrectly computedtes by honest ASes
due to bogus routing information. A promising solution tiat are investigating right
now is to embed a decentralized reputation mechanism insbirx routing protocols

such as path-vector and link state protocols to reduce skefichoosing routes via the
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adversary.
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Appendix A

Proof for Theorem 2.1

Theorem A.1. Suppose the grap§f is a fixed degree sequence random graph con-
structed using the pairing method. For any ticket soutceghe expected number of

tickets that: disseminates to reach/2 nodes isE[Ay] = O(n).

Instead of directly proving this theorem, we will prove thaten a ticket source
disseminate. tickets, the expected number of reachable nodes is atﬁg%tra)n.

This mean a ticket source needs to distrifate) tickets to react®(n) nodes.

Proof. Consider a ticket source that disseminated, = n tickets. We compute how
many nodes are reachable by bounding the number of tickatath dropped at each
level. LetL; be the number of nodes at levdtom v andS; = Lo+ L, + ... + L;. Let

q; be the fraction of dead-end nodes at level i. A dead-end rodendde that does not
have a neighbor at a distance further away from the ticketcgpuie. after consuming
one ticket, a dead-end nodes will drop all the remainingetick Note that botli, and

q; are random variables. Lét; denote a configuration of all the nodes and edges from
level O to:. Similarly, Cf+1 is the configuration of all the nodes end edges at levels

7

greater than or equal to+ 1. Now, consider the case where we fix the configuration
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C; = cand(Cj,, = ¢ and only consider different variations in the edge configana
between level andi + 1. In this caseA;, S;, ¢;+1, L;y1 are fixed. LetD;,, be the
number of tickets that are dropped at level 1. We want to bound);, ;. Tickets only

get dropped by dead-end nodes. katenote the number of edges from levéb dead-

end nodes at levél+ 1 andy denote the number of edges from levé& non-dead-end
nodes at level + 1. Among thex + y edges from level, the dead-end nodes at level

can pick randomly any: edges to connect in a random graph. Therefore, the expected
number of tickets go to the dead-end nodeﬁiig_—y. We know thatr < d - q;41L;41

andy > (1 — ¢;41)L;41. Therefore,

A d- gin1

T+ (d— 1)gip
ElDip|Ci = |Ciyy =] < Ai(d - qiya)

IN

E[Di11|Ci = c|Clyy =]

By varying the configuratiod’;, ,, we have:
EDin|Ci=¢c < Aj-d-Elgi|Ci = (A1)

Next we boundE|q¢;1|C; = ¢|. For a fixed configuratio’; = ¢, we need to
construct a fixed degree random graph #for S;_; nodes for levels greater than or
equal toi. Given a random node in the set ofn. — S; nodes that have distance farther
thani; d(v) is the degree of the node Let p(v) denote the probability of one of the

edges ofv pointing to nodes at level We havep(v) < 24— < <5 Now we

n—>S;_1
" .+, pr@ll edges of v point to nodes at level i
calculate the conditional pmbab'“t#r(at least one edge of v points to node at leyel i

This conditional probability can be written a L(f(_“;?;;d(v) < p(v). Hence, we have
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E[gi+1|Ci = ] < d2:.

So, from Equation A.1, we get:

E[DZ+1|CZ = C] S Az . dz%
E[DZ'+1|CZ' = C] S AQ . dz%

E[Di] < Ag- f%
n

This formula states that the expected number of ticketsmepitally decreases when
the distance to the ticket source gets smaller. d{denote the level wher&[S;] =
mn The expected number of tickets that are dropped or consaftexdeaching

the levels is at most:

< Aod;(E[SO] + . E[Ss)) + E[S)]
< AO%2“1E[551+E[55]
< n

Hence, disseminating tickets is enough to reacfmn in expectation. Based on
this bound, we can change Gatekeeper so that each ticketesscale the number of
tickets by a constant factor to reaeji2 nodes. Hence, in expectation, we can show that

a random source needs to to distribute(a) tickets to reac /2 nodes.
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