
Exploiting Service Usage Information for
Optimizing Server Resource Management

by

Alexander Totok

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science

New York University

September 2006

Approved:

Research Advisor: Vijay Karamcheti

c© Alexander Totok

All Rights Reserved, 2006

Acknowledgments

My deepest thanks go to my advisor, Vijay Karamcheti, whose guidance, support,

and encouragement have been invaluable, and without whom this dissertation would

not have been possible. Vijay always managed to keep a perfect balance between

allowing me to explore new ideas and making sure that these ideas are realized in

concrete research accomplishments.

I would like to thank the members of my thesis proposal and dissertation defense

committees: Zvi Kedem, Dennis Shasha, Robert Grimm, Ben Goldberg, and Stefan

Tai, for their insightful opinions and suggestions that shaped this dissertation and

helped to make it better. I’m also grateful to my colleagues at New York University

for the input they provided during numerous formal and informal discussions we had,

in particular to: Tatiana Kichkaylo, Anca Ivan, Anatoly Akkerman, Nishith Krishna,

Congchun He, Eric Freudenthal, Deni Llambiri, and Alexander Bukharovich.

I am very thankful to the members of IBM T.J. Watson Research Center, with

whom I had an opportunity to work during my two summer internships there: Stefan

Tai, Isabelle Rouvellou, and Thomas Mikalsen. Their guidance and support helped

me to mature as a researcher and influenced the work I did in this dissertation.

Many thanks go to various people with whom I had a chance to discuss my re-

iii

search ideas and whose feedback and advices helped to make this dissertation better:

Arun Iyengar of IBM T.J. Watson Research Center, Lucy Cherkasova and Martin Ar-

litt of HP Labs, Diwakar Krishnamurthy of University of Calgary, Michael Carey of

BEA, Emre Kiciman and George Candea of Stanford University, and Bill Burke of

JBoss.

I would like to express my special gratitude to Ilya Lipkind, who was my depart-

mental mentor when I started the study at New York University. Himself a Ph.D. stu-

dent at that time, with a unique charisma and offbeat personality, Ilya led me through

the first hurdles of the Ph.D. program and life in New York City. His passion for com-

puter science in general, and for distributed systems in particular, and an enthusiastic

vision of the world helped to shape my research interests and positively influenced

other aspects of my student life.

I would like to thank all my friends for being a part of my life. Their continuous

interest in my research, their jokes and occasional criticism provided a fresh perspec-

tive on my work, helped me to keep a positive outlook, and reinstated my confidence

when it was needed.

I owe an endless gratitude to my parents for the love, patience, and encouragement

they showed through my entire life and through the period of my study at New York

University, in particular. They always believed in me and stood by me. This disserta-

tion would never have been completed without the continuous support I received from

them.

iv

Abstract

It is difficult to provision and manage modern component-based Internet services so

that they provide stable quality-of-service (QoS) guarantees to their clients, because:

(1) component middleware are complex software systems that expose several inde-

pendently tuned configurable application runtime policies and server resource man-

agement mechanisms, (2) session-oriented client behavior with complex data access

patterns makes it hard to predict what impact tuning these policies and mechanisms

has on application behavior, and (3) component-based Internet services exhibit com-

plex structural organization with requests of different types accessing different com-

ponents and datasources, which could be distributed and/or replicated for failover,

performance, or design purposes.

This dissertation attempts to alleviate this situation by targeting three intercon-

nected goals: (1) providing improved QoS guarantees to the service clients, (2) op-

timizing server resource utilization, and (3) providing application developers with

guidelines for natural application structuring, which enable efficient use of the pro-

posed mechanisms for improving service performance. Specifically, we explore the

thesis that exposing and using detailed information about how clients use component-

based Internet services enables mechanisms that achieve the range of goals listed

v

above. To validate this thesis we show its applicability to the following four prob-

lems: (1) maximizing reward brought by Internet services, (2) optimizing utilization

of server resource pools, (3) providing session data integrity guarantees, and (4) en-

abling service distribution in wide-area environments.

The techniques that we propose are applicable at both the application structuring

stage and the application operation stage, and range from automatic (i.e., performed

by middleware at execution time) to manual (i.e., involve the programmer, or the ser-

vice provider). These techniques take into account service usage information exposed

at different levels, ranging from high-level structure of user sessions to low level in-

formation about data access patterns and resource utilization by requests of different

types. To show the benefits of the proposed techniques, we implement various middle-

ware mechanisms in the JBoss application server, which utilizes the J2EE component

model, and comprehensively evaluate them on publicly-available sample J2EE appli-

cations Java Pet Store and RUBiS, and on our own implementation of the TPC-W web

transactional benchmark. Our experimental results show that the proposed techniques

achieve optimal utilization of server resources and improve application performance

by up to two times for centralized Internet services and by up to 6 times for distributed

ones.

vi

Table of Contents

Acknowledgments iii

Abstract v

List of Figures xiii

List of Tables xviii

1 Introduction 1

1.1 Motivation . 1

1.2 Thesis and methodology . 7

1.2.1 Maximizing reward brought by Internet services 13

1.2.2 Optimizing utilization of server resource pools 14

1.2.3 Session data integrity guarantees 16

1.2.4 Service distribution in wide-area environments 17

1.3 Contributions . 18

1.4 Dissertation organization . 21

2 Background and Related Work 22

vii

2.1 Component frameworks . 22

2.2 Java 2 Platform Enterprise Edition 24

2.2.1 3-tier architecture . 24

2.2.2 Service request execution and inter-component communication 26

2.2.3 Resource consumption and performance bottlenecks in J2EE

applications . 28

2.3 JBoss application server . 31

2.3.1 JBoss middleware architecture design 31

2.3.2 JBoss EJB invocation model 32

2.4 Sample J2EE applications . 34

2.4.1 TPC-W . 34

2.4.2 Java Pet Store . 36

2.4.3 RUBiS . 38

2.5 Web workloads . 40

2.5.1 Workload characterization 40

2.5.2 Workload simulation models 42

2.6 Performance of Internet services . 43

2.6.1 Admission control and scheduling 44

2.6.2 Service differentiation . 46

2.6.3 Analytical modeling of Internet services 47

2.7 Transaction processing and concurrency control techniques 48

2.7.1 Classical concurrency control techniques 49

2.7.2 Web sessions with data integrity constraints 50

viii

2.7.3 Advanced transaction models and concurrency control tech-

niques . 51

2.7.4 Analytical modeling of transactions 55

2.8 Content and service distribution . 56

2.8.1 Web caching and Content Distribution Networks 57

2.8.2 Distribution of dynamic content 59

2.8.3 Distribution of component-based applications 61

3 Service Access Attributes 64

3.1 Request flow . 65

3.1.1 Web session structure . 67

3.1.2 Web session structure modeling — CBMG model 68

3.1.3 Request flow properties . 71

3.1.4 Request flow modeling (web workload generation) 71

3.2 Coarse-grained resource utilization and “reward” 75

3.2.1 Coarse-grained request resource utilization 75

3.2.2 Request reward . 76

3.3 Fine-grained server resource utilization 78

3.3.1 Request execution model with 2-level exclusive resource hold-

ing . 80

3.4 Data access patterns . 82

3.4.1 OP-COP-VALP model . 83

3.5 Request profiling infrastructure . 87

3.5.1 JBoss instrumentation . 88

ix

3.5.2 Gathering and analyzing the information 91

3.5.3 Performance overheads of the profiling infrastructure 92

3.6 Summary . 94

4 Maximizing Reward Brought by Internet Services 95

4.1 Problem formulation . 96

4.2 Approach . 98

4.3 Models and assumptions . 99

4.4 Reward-Driven Request Prioritization 101

4.5 Middleware infrastructure . 106

4.6 Experimental evaluation . 107

4.6.1 Experimental setup . 107

4.6.2 Comparison of two priority schemes 113

4.6.3 Imitating the “history-based” approach 114

4.6.4 Performance of RDRP . 115

4.7 Summary . 126

5 Optimized Utilization of Server Resource Pools 128

5.1 Problem formulation . 129

5.2 Approach . 130

5.3 Request execution and database connection caching 131

5.4 Computing the optimal number of threads and database connections . 135

5.5 Experimental evaluation . 140

5.5.1 TPC-W configuration . 140

5.5.2 Costs and benefits of request-wide database connection caching142

x

5.5.3 Evaluation of the method for computing the optimal resource

pool sizes . 147

5.6 Summary . 155

6 Session Data Integrity 156

6.1 Problem formulation and our approach 157

6.2 Models and assumptions . 160

6.2.1 Session data consistency constraints 161

6.2.2 Concurrency control algorithms 163

6.2.3 Metrics of interest . 164

6.3 Analytical models . 165

6.3.1 Optimistic Validation . 169

6.3.2 Locking . 173

6.3.3 Pessimistic Admission Control 177

6.4 Middleware infrastructure for data consistency enforcement 179

6.5 Experimental evaluation . 182

6.5.1 Model validation . 182

6.5.2 Dynamic adaptation of concurrency control algorithms 193

6.6 Summary . 196

7 Application Distribution 198

7.1 Problem formulation . 199

7.2 Approach and methodology . 200

7.2.1 Network topology . 201

7.2.2 Client simulation . 202

xi

7.3 Design rules and optimizations . 205

7.3.1 Centralized application . 206

7.3.2 Remote façade . 207

7.3.3 Stateful Component Caching 211

7.3.4 Query Caching . 216

7.3.5 Asynchronous Updates . 219

7.3.6 Evaluation summary . 221

7.3.7 Pattern implementation automation 222

7.4 Summary . 225

8 Conclusions and Future Directions 226

8.1 Summary . 226

8.2 Conclusions . 228

8.3 Future Work . 230

References 233

xii

List of Figures

1.1 Relationship between the service access attributes. 9

2.1 J2EE component architecture. 24

2.2 JBoss invocation model. 33

2.3 Java Pet Store component architecture. 37

3.1 Four groups of service access attributes. 65

3.2 CBMG of a sample TPC-W buyer session. 69

3.3 CDF of the exponential and four log-normal distributions, all having

mean value 10. 73

3.4 Event arrival patterns for the three processes: Poisson (λ = 1) and

B-model (b = 0.65 and b = 0.75). 74

3.5 Request execution model with 2-level exclusive resource holding (threads

and database connections). 82

3.6 Architecture of the JBoss/Jetty profiling infrastructure. 89

4.1 The logical model of web application server architecture. 100

4.2 Logical steps of the RDRP method. 102

xiii

4.3 The graph structure of the CBMG used to represent our TPC-W brows-

ing and shopping scenario. 105

4.4 Middleware infrastructure supporting the RDRP mechanisms. 106

4.5 The server configuration used in the RDRP experiments. 108

4.6 Two CBMGs used for TPC-W workload: “Mostly Buyers” (left) and

“Mostly Browsers” (right). 110

4.7 Comparison of benefits brought by the two flavors of the RDRP method.113

4.8 Reward relative to the default no-prioritization (FIFO) scheme, for the

“smooth” client load. 116

4.9 Reward relative to the default no-prioritization (FIFO) scheme, for the

“high-bursty” client load. 117

4.10 Average request response times for sessions that bring different re-

ward, for “smooth” traffic, for the 135% server capacity overload sit-

uation. 118

4.11 Average request response times for sessions that bring different re-

ward, for “smooth” traffic, for the 170% server capacity overload sit-

uation. 119

4.12 Average request response times for sessions that bring different re-

ward, for “high-bursty” traffic, for the 135% server capacity overload

situation. 120

4.13 Average request response times for sessions that bring different re-

ward, for “high-bursty” traffic, for the 170% server capacity overload

situation. 121

xiv

4.14 Average request response times for sessions that bring different re-

ward, for ‘high-bursty” traffic, for the client load at 100% server ca-

pacity. 122

4.15 Average request response times for sessions that bring different re-

ward, for ‘high-bursty” traffic, for the client load at 80% server capacity.123

4.16 Average request response times for sessions that bring different re-

ward, for “low-bursty” traffic, for the client load at 100% server ca-

pacity. 124

4.17 Average request response times for sessions that bring different re-

ward, for “low-bursty” traffic, for the client load at 85% server capacity.125

5.1 Request execution model with 2-level exclusive resource holding. . . 132

5.2 Logical steps of the method to compute the optimal number of server

threads and database connections. 138

5.3 Breakdown of request processing time for the Search request (left col-

umn: request-wide DB connection caching, right column: transaction-

wide caching). 143

5.4 Breakdown of request processing time for the Buy Request request

(left column: request-wide DB connection caching, right column:

transaction-wide caching). 144

5.5 Breakdown of request processing time for the Buy Confirm request

(left column: request-wide DB connection caching, right column:

transaction-wide caching). 145

5.6 qi for the Search request, divided by the number of DB connections. . 148

xv

5.7 qi for the Item request, divided by the number of DB connections. . . 149

5.8 pi for the Home request. 150

5.9 λ (M,N) and λ (N), computed by our method (“λ (N) meth”) and ob-

tained experimentally (“λ (N) exp”), for the “profiling load.” 151

5.10 λ (M,N) and λ (N), computed by our method (“λ (N) meth”) and ob-

tained experimentally (“λ (N) exp”), for the “Load 1” user load. . . . 153

5.11 λ (M,N) and λ (N), computed by our method (“λ (N) meth”) and ob-

tained experimentally (“λ (N) exp”), for the “Load 2” user load. . . . 154

6.1 CBMG of a sample TPC-W buyer session with mappings of OP, COP,

and VALP to the service requests. 162

6.2 Analytical model. 166

6.3 Example of a TPC-W buyer session. 169

6.4 Middleware infrastructure for web session data consistency enforce-

ment. 181

6.5 CBMG of the TPC-W buyer session used in the experiments validat-

ing analytical models. 184

6.6 Percentage of successful sessions, for q = 0. 186

6.7 Percentage of successful sessions, for q = 6. 186

6.8 Percentage of successful sessions, for q = 30. 187

6.9 Percentage of requests belonging to successful sessions, for q = 0. . . 187

6.10 Percentage of requests belonging to successful sessions, for q = 6. . . 188

6.11 Percentage of requests belonging to successful sessions, for q = 30. . 188

xvi

6.12 Algorithm performance comparison for the percentage of successful

sessions (left) and the percentage of requests belonging to successful

sessions (right). 190

6.13 Request rate for q = 0. 191

6.14 Request rate for q = 6. 191

6.15 Request rate for q = 30. 192

6.16 Percentage of successful sessions, for the four log-normal and one

exponential distribution of session inter-request times (qi = 6). 194

6.17 Percentage of requests belonging to successful sessions, for the four

log-normal and one exponential distribution of session inter-request

times (qi = 6). 194

6.18 The buyer CBMGs used in the dynamic adaptation experiments. . . . 195

6.19 The results of the dynamic adaptation experiments. 196

7.1 Network configuration for service distribution tests. 202

7.2 Implementation of the Remote Façade design pattern. 210

7.3 Implementation of Stateful Component Caching. 215

7.4 Implementation of Query Caching. 218

7.5 Implementation of the Asynchronous Updates design optimization. . . 220

7.6 Java Pet Store session average response times. 222

7.7 RUBiS session average response times. 223

xvii

List of Tables

1.1 Service access attributes used by the problems addressed in the dis-

sertation. 12

2.1 Main TPC-W service requests. 35

2.2 Java Pet Store service requests. 36

2.3 EJBs in Java Pet Store. 38

2.4 Main RUBiS service requests. 39

3.1 Comparative performance of JBoss/Jetty web application server aug-

mented with the profiling infrastructure (original: original server ar-

chitecture, profiling: augmented with the profiling infrastructure). . . . 93

4.1 Average request response times for the TPC-W request types, when

executed in isolation. 109

4.2 Average breakdown of TPC-W sessions by request types. 111

5.1 The values of pi and qi for the TPC-W application, in the underloaded

and “max-loaded” server environments (M = N = 30). 142

xviii

5.2 Parameters of user loads used in the evaluation experiments (break-

down of load by request types (Vi) and average session length). 147

6.1 The client load of the dynamic adaptation experiments. 195

7.1 Breakdown of session requests by type, for Java Pet Store Browser. . . 204

7.2 Breakdown of session requests by type, for RUBiS Browser. 204

7.3 Average response times (in ms) for Java Pet Store Browser. 205

7.4 Average response times (in ms) for Java Pet Store Buyer. 206

7.5 Average response times (in ms) for RUBiS Browser. 207

7.6 Average response times (in ms) for RUBiS Bidder. 208

xix

Chapter 1

Introduction

1.1 Motivation

In recent years, the role of the Internet has undergone a transition from simply being

a data repository to one providing access to a variety of network-accessible services

such as e-mail, banking, on-line shopping, and entertainment. The emergence of

these web portals has marked a shift from monolithically structured web sites giv-

ing access to static read-only content, which were typical for the early Internet, to

complex distributed on-line services providing richer functionality, that dominate the

modern Internet. These services experience several commonalities in the way they

are structured and the way they are used by their clients:

• Session-oriented usage by clients. Typical interaction of users with such ser-

vices is organized into sessions, a sequence of related requests, which together

achieve a higher level user goal. An example of such interaction is an on-line

shopping scenario for an e-Commerce web site, which involves multiple re-

1

quests that search for particular products, retrieve information about a specific

item (e.g., quantity and price), add it to the shopping cart, initiate the check-out

process, and finally commit the order. The success of the whole session now

becomes the ultimate client’s goal, which contrasts with per-request success

performance metrics of the early Internet.

• Complex data access patterns. Application data no longer has read-only ac-

cess, as was typical for the older content-providing web sites. In the scenarios

such as one mentioned above, certain service requests not only read, but also

write application data. Moreover, concurrent requests coming from different

clients can access and modify shared application data. The data is no longer

static, but is rather dynamically processed and assembled from the pieces ob-

tained from the data storages, before being sent to the client. The data access

patterns get even more complicated when the application data is replicated (e.g.,

for failover purposes) or partitioned (e.g., due to business requirements). The

outcome and the complexity of a request execution may depend on the data-

sources it accesses and may get influenced by the execution of concurrent user

requests, which may change shared application data accessed in the session.

For some services, it becomes crucial to preserve the correctness of a session’s

execution, with regards to the data it accesses.

• Use of component middleware. A growing number of service providers are uti-

lizing increasingly popular commercial-off-the-shelf (COTS) component mid-

dleware as a platform for building their services. Such services are structured as

aggregations of multiple components communicating with each other and with

2

the back-end datasources, while the middleware provides commonly required

support for communication, security, persistence, clustering and transactions.

Current-day industry standard component frameworks, exemplified by OMG’s

CORBA Component Model [94], Sun Microsystems’ Java 2 Platform Enter-

prise Edition (J2EE) [120] and Microsoft’s .NET [92] frameworks significantly

reduce the effort it takes to design, implement, deploy, maintain, and upgrade

applications. Because of the application modular structure and the fact that the

middleware takes responsibility to provide some of the functionality, an appli-

cation’s behavior depends not only on the way it is programmed, but also on

the way it is assembled, deployed, and managed at run-time. As an example,

changing middleware policies such as transaction demarcation may significantly

impact not only application performance, but also certain aspects of application

logic and the correctness of data, presented to its users. This makes application

assemblers, application deployers, and system administrators, equally with ap-

plication developers, responsible for the behavior of component-based Internet

services.

These characteristics have implications for how one ensures reasonable service

quality for client requests against such services. Inadequate performance and spo-

radic incorrect behavior of an Internet service leads to user frustration, and as a con-

sequence, to lowered usage of the service and reduced revenues. Providing good per-

formance Quality of Service (QoS) has been a classical problem for web site providers,

however, the characteristics outlined above have made this problem even harder. Not

only providing any performance guarantees is affected by the increased implementa-

3

tion and structural complexity of modern Internet services, but the service provider

now also needs to take care of insuring correctness of service (application) logic and

providing expected data quality to the service clients.

Performance quality. The survey in [61] showed that around 19% of the people sur-

veyed attribute to bad performance the bad experiences they had with Internet ser-

vices. The primary performance concern for Internet service users is request re-

sponse time [103]. According to some estimates, in 1998 alone about 10 – 25% of

e-commerce transactions were aborted owing to long response delays, which trans-

lated to about 1.9 billion dollars loss of revenue [141].

The response delay of Internet service is determined by two factors: the quality of

network transmission and the processing capacity of the server. With the rapid Internet

expansion and the client base moving away from the slow dial-up connections, more

and more users nowadays have fast access to the Internet, which makes the server-

side request processing time typically a dominant factor in the overall response delay.

Therefore, fast execution of requests at the server side has become the key factor

in providing user perceivable performance. This is especially true in a situation of

service overload, when user load nears or exceeds the server capacity, which causes

request rejections and increases request response times, even in absence of network

disruptions.

To improve server performance in the situation of high load or overload, service

providers have traditionally used server-side resource management mechanisms to

improve utilization of server resources. But this is harder to do for modern Internet

services, for the following three main reasons. First, component middleware usually

4

exposes to service providers (more precisely, to system administrators) several mech-

anisms that can be independently tuned in attempt to improve server performance and

optimize server resource utilization. Such mechanisms include, for example, thread

and component pool management, data caching and request scheduling strategies.

These mechanisms do not provide a unique server configuration, which would be op-

timal for all request loads. Second, more complex session-oriented client behavior

makes it hard to predict what impact tuning of a certain server resource manage-

ment mechanism would bring on the server performance, which may vary for differ-

ent incoming request mixes. Finally, modern component-based applications exhibit

complex structural organization, where different sets of application components and

middleware services are used to execute requests of different types. Some requests,

for example, may need to access a back-end database, some may need CPU-intensive

processing, while some may need exclusive access to a component or a critical re-

source.

Inability of service providers to predict the exact effects of using the server re-

source management mechanisms on server performance for a given client load struc-

ture accounts for the fact that these mechanisms are often used in an “ad-hoc” or a

“best-guess” manner. This results in suboptimal usage of server resources, not tai-

lored for specific incoming request load, and, as a consequence, the service clients

not getting the best performance quality they potentially could get.

Service logic and data quality. Clients of an Internet service reasonably expect that

the service operates according to the advertised functionality, presents valid informa-

tion, correctly processes and stores the data submitted by its users. It is generally

5

perceived that such correctness of the service (application) logic is solely the respon-

sibility of the application developers. However, this may not hold true for modern

complex component-based applications, which are often assembled from third-party

components, and where some application functionality is delegated to the middleware.

The behavior of this latter functionality is guided by additional information provided

by application assemblers, application deployers and system administrators (through

so-called deployment descriptors and run-time application server policies). This in-

formation and run-time policies may significantly impact the application behavior and

the quality of data presented to its users, in a worst case scenario even resulting in a

critically incorrect or abnormal application execution.

An example of such an undesired service behavior is so-called “fare jumping,”

when in a shopping session scenario an item’s price increases between the time a

client first looks at it and the time he tries to checkout the order. A recent report

showed that such an issue presents a problem for the e-commerce web sites selling

airline tickets [127]. Such data quality problems stem from several facts. First, client

requests read and write shared application data, potentially invalidating the data ac-

cessed by concurrent requests of different users. Second, the application data gets

cached and replicated, which results in some requests returning out-of-date or invalid

information.

A typical approach to cope with these problems is for application developers to

try to retain as much control over application functionality and data manipulation as

possible in the application code. Another approach, employed by service providers,

is to minimize the extent to which concurrent execution of user sessions is allowed.

Similarly, data replication or distribution (e.g., for performance purposes), might be

6

limited (by employing extra “guardian” mechanisms, e.g., in additional application

functionality), which prevents undesired execution scenarios, but often also eliminates

or diminishes the benefits brought by the service replication or distribution in the first

place.

However, both of these approaches seem to be inadequate. First, they contradict

with the very concept and the nature of component middleware, where as much func-

tionality as possible is offloaded from the applications to the middleware. Second,

they place an unnatural burden on application developers, limit application modular-

ity and reuse, and undermine the potential for application evolution. And third, they

worsen the service performance or restrict the usage of the service by its clients.

In order to provide reasonable service logic and data quality guarantees, while not

limiting service performance, service providers need to precisely understand how the

data-quality-affecting server-side mechanisms they employ (e.g., transaction demar-

cation, data caching and replication) impact the application logic and the quality of

application data. On the other hand, the application developers need some guidelines

for application development and structuring that would enable efficient use of these

middleware mechanisms.

1.2 Thesis and methodology

This dissertation focuses on solutions that target the three interconnected goals de-

scribed above: (1) providing improved QoS guarantees to the clients of Internet ser-

vices; (2) achieving optimal server resource management and utilization by the service

providers; and (3) provide the application developers with the guidelines for natural

7

application structuring, that enable efficient use of the proposed mechanisms for im-

proving service performance. This dissertation explores the thesis that exposing and

using detailed information about how clients use component-based Internet services

enables mechanisms that achieve the range of goals listed above. The techniques that

we propose and evaluate take into account various aspects of service usage by clients

and are applicable at both the application structuring stage and the application oper-

ation stage.

Service usage (or service access) information can be exposed at different levels

— from high-level structure of user sessions, to low level information about resource

consumption by different request types. Some of this information can be automati-

cally obtained by request profiling, some can be obtained by statically analyzing the

application structure, while some needs to be specified by the service provider. In

this dissertation, we identify four related groups of service access attributes, that cor-

respond to different levels of service usage information. The relationship between

different service access attributes is schematically shown in Fig. 1.1.

1. Request flow. This service access attribute provides the coarse-grained infor-

mation about the requests that are being invoked against the service. The infor-

mation about an individual service request is limited to its type, session (client)

identity, and (optionally) the time of its arrival. Such information may come

in different forms. For example, it may state the rate and the arrival pattern of

the requests of a certain type as they are received by the server. Alternatively,

it may come in the form of a client session structure specification. Request

flow information may contain various timing parameters, such as session inter-

8

increasing inform
ation detail

Request flow

Coarse-grained resource utilization and “reward” specification

Fine-grained server
resource utilization

Data access patterns

user session
structure incoming

request mix
session inter-
request times

rate of
incoming new

sessions

“resource
consumption units”

for each request
type

average server
request processing

time

request “reward”
specification

application
components

traversed

middleware
services used

databases
accessed

read-write
request

attributes

effects on
shared state

data quality
tolerance

Figure 1.1: Relationship between the service access attributes.

request times, or the rate of incoming new sessions. The information provided

by the request flow service access attribute represents the highest level of ser-

vice usage information, and usually can be obtained through real-time profiling

of incoming client requests.

2. Coarse-grained resource utilization and “reward”. This service access at-

tribute contains information about high-level “cost” of execution of requests of

different types. This information can help on an approximate comparison of

resource consumption by different request types, and can be either specified by

the service provider in the form of abstract resource consumption units or deter-

mined by average request processing times. In the latter case it can be automat-

ically obtained through request profiling. The service provider may also specify

9

so-called “reward” (or “profit”) brought by each type of service request. This

is an opportunity for providers of business critical services to indicate which

requests are more valuable, according to the service logic, or to indicate which

requests are crucial for the service in bringing the profit.

3. Fine-grained server resource utilization. This service access attribute pro-

vides more detailed information about service requests of different types. It

contains the information about how requests are processed in the application

server. It may specify what application components are traversed or what mid-

dleware services are used in the execution of a request. It may also indicate

what databases a request needs to access, in what order, and how long the re-

quest spends in each of the databases, on average. The actual information about

the way a request gets processed by the server varies for different problems, QoS

targets and metrics being optimized. Information of such flavor can be obtained

through a fine-grained profiling of server-side request processing or, in some

cases, by statically analyzing the application code structure.

4. Data access patterns. This service access attribute contains the information

about how requests access application data. It may specify whether a request

is read-only, read-write, or write-only. It may specify what segments of appli-

cation data are accessed during the execution of a request, whether this data is

shared among several clients or not, and what are the consequences of access-

ing this data. It may also specify how tolerable a certain request to applica-

tion data quality — this information may be used in managing data replication

and caching. While a request’s read-write data access patterns can be obtained

10

through request profiling or static code analysis, such information as the toler-

ance to application data quality needs to be specified by the service provider,

based on some external business or QoS requirements, not “encoded” in the

application structure or logic.

To validate the thesis that service usage information can be used to improve QoS

guarantees and to better manage Internet services, we show its applicability to the

following four problems: (1) maximizing reward brought by Internet services, (2)

optimizing utilization of server resource pools, (3) providing session data integrity

guarantees, and (4) enabling service distribution in wide-area environments.

The problems were chosen to represent a wide range of challenges that service

providers face in operating modern Internet services. In each problem we show how

utilizing specific service access attributes helps to achieve the problem goal. Not all of

the service access attributes are equally useful for all problems, which utilize differ-

ent kinds of service usage information (see Table 1.1) and exhibit different amounts

of automatic exploitation of such information. The solutions and techniques pro-

posed in each problem differ, but they span a representative range of mechanisms that

researchers have proposed and used for predicting and improving performance of In-

ternet services and server resource utilization. These mechanisms and techniques in-

clude: analytical modeling, statistical methods (event profiling and information gath-

ering, Bayesian inference analysis), resource management mechanisms (admission

control, request prioritization and scheduling, concurrency control techniques), and

application restructuring.

All of the proposed mechanisms, except for application restructuring, are imple-

11

Table 1.1: Service access attributes used by the problems addressed in the dissertation.

Request flow Coarse-grained
resource uti-
lization and
reward

Fine-grained
resource
utilization

Data access
patterns

Maximizing re-
ward brought by
Internet services

X X

Optimizing uti-
lization of server
resource pools

X X

Session data
integrity guaran-
tees

X X

Enabling service
distribution in
wide area

X X

mented in a modular and pluggable fashion as middleware services, which makes

possible their voluntary use that does not require changing the original application

code of Internet services. We present these mechanisms in a centralized setting for

simplicity, in order to concentrate on the essence of the proposed techniques. We ex-

pect that these mechanisms can be successfully scaled, and that their benefits will be

also visible in a distributed setting. The application restructuring techniques, on the

contrary, are presented only in a distributed setting, where their use, as we demon-

strate it, is absolutely necessary in order to improve service performance. Application

restructuring mechanisms can be also used in a centralized setting, but their contribu-

tion in the overall QoS improvement here is not so prominent — most of the benefits

can be achieved through the proposed server resource management mechanisms.

12

We describe the four problems addressed in the dissertation in more detail below.

1.2.1 Maximizing reward brought by Internet services

In a typical setting a web application server hosting an Internet service processes the

incoming user request on a first-come-first-served basis. This approach provides fair

access to the service for all clients. When a need emerges to provide some clients

with a better service (e.g., based on their predefined customer status), the request

scheduling and processing is governed by Service Level Agreements (SLA) or other

analogous mechanisms that differentiate between different client groups. A common

element in all these schemes is that QoS received by a client is determined upfront by

its association with a client group.

While trying to provide its clients with reasonable or prenegotiated QoS, the ser-

vice provider running a commercial service also wants to boost its revenues. Different

user sessions bring different profit to the service provider. For example, in the on-line

shopping scenario introduced earlier, the service provider might be interested in giv-

ing a higher execution priority to the sessions that end up buying something (buyer

sessions), and a lower priority — to the sessions that don’t buy anything (browser ses-

sions), making sure that clients that buy something receive better QoS. However, the

information about user intentions to buy products is not encoded in its client group’s

profile, so SLA-based approaches are not as beneficial here.

To be able to provide better QoS to the sessions that bring more profit (reward),

the service provider needs tools to predict the future behavior of a session based on

the sessions’s requests seen so far. The thesis we explore in this problem is that

information about how clients used the service in the recent past may help in such

13

prediction, if the service usage patterns do not change rapidly. In this dissertation,

we propose reward-driven request prioritization schemes that use this information to

assign higher priority to the sessions that are likely to give more reward. The mech-

anisms, which are seamlessly integrated into the middleware platform, work in an

application-independent manner, based on the information exposed by the coarse-

grained resource utilization and reward service access attribute. They also automat-

ically obtain (through request profiling) and use the information about the request

structure of user sessions.

The mechanisms provide several benefits. In the situation of service underload

they give better response times to clients that bring more profit (reward) to the service,

which is a crucial thing for keeping the customers satisfied and ensuring that they will

return to the service.1 In the situation of service overload, when some of the requests

get rejected, the mechanisms ensure that sessions that bring more reward are more

likely to complete successfully and that the profit attained by the service increases

compared to other solutions, such as fair session-based admission control (SBAC).

1.2.2 Optimizing utilization of server resource pools

Modern component middleware are complex software systems that expose to service

providers several mechanisms that can be independently tuned in attempt to improve

server performance and optimize server resource utilization. Middleware itself rarely

has control over low-level OS mechanisms, such as CPU scheduling and memory

management. It rather provides control over higher-level resources, such as threads,
1Several independent studies have shown that the bulk of a service’s clients are returning clients, and that

providing good QoS to long-time clients is a key factor in a service success [96, 135].

14

database connections, component containers, etc. Some of these resources can be

shared among concurrent client requests, but some are held exclusively by a request

for the duration of its execution (or a part of it). Therefore, such non-shared resources

become bottleneck points, and failure to obtain such a resource constitutes a major

portion of request rejections under high load or overload conditions. Optimizing uti-

lization of these resources (among which the most important are threads and database

connections) becomes a high priority goal for the service provider. However, this task

proves to be nontrivial, because for different client loads different configurations of

the thread and database (DB) connection pools provide the optimal performance. This

happens because different sets of application components and middleware services are

used to execute requests of different types. Some requests need to access a database

(so they need to obtain and exclusively hold a DB connection), while some don’t.

To come up with a solution to this problem, we propose a model of request ex-

ecution with a 2-tier exclusive resource holding (1st tier — threads, 2nd tier — DB

connections). This model uses the information about fine-grained server resource uti-

lization, obtained through an instrumented request profiling in a limited set of off-line

experiments, where the actual server environment is subjected to an artificial client

load. Under the real operation conditions, the model takes as input the request flow in-

formation, obtained through on-line request profiling, and computes the configuration

of the thread and DB connection pools, which provides the best request throughput,

for a given mix of incoming client requests, thus achieving the optimal utilization of

web server threads and DB connections.

15

1.2.3 Session data integrity guarantees

This problem deals with the previously described situation of ensuring application

data quality, when multiple concurrent user sessions involve requests that read and

write shared application state and potentially invalidate each other’s data. Depend-

ing on the nature of the business represented by the service, allowing the session

with invalid data to progress might lead to financial penalties for the service provider,

while blocking the session’s progress and deferring its execution (e.g., by relaying its

handling to human) will most probably result in user dissatisfaction. A compromise

would be to tolerate some bounded data inconsistency, which would allow most of

the sessions to progress, while limiting the potential financial loss incurred by the

service. In order to quantitatively reason about these tradeoffs, the service provider

can benefit from models that predict metrics, such as the percentage of successfully

completed sessions, for a certain degree of tolerable data inconsistency.

In this dissertation, we develop analytical models of concurrent web sessions with

bounded inconsistency in shared data for three popular concurrency control algo-

rithms. The models operate in an application-independent manner using abstract data

access model. Mapping of service requests to the operations of this model is done

by the service provider, who uses the information about application data access pat-

terns, to identify how service requests access and change shared application state. The

proposed analytical models take as input request flow information obtained through

real-time profiling of incoming client requests. We illustrate our models using the

sample buyer scenario for an on-line store and validate them by showing their close

correspondence to measured results of concurrent session execution in both a simu-

16

lated and a real web server environment. We also augment our middleware server

environment with an automated decision making mechanism which is shown to suc-

cessfully choose, based on the specified performance metric, the best concurrency

control algorithm in real time in response to changing service usage patterns.

1.2.4 Service distribution in wide-area environments

Application distribution and replication has recently become a noticeable trend in the

way modern Internet services are designed and utilized. These techniques bring appli-

cation data and data processing closer to the clients and help to cope, on the network

level, with unpredictable nature of Internet traffic, especially in wide-area environ-

ments, and, on the application level, with high-volume, widely varying, disparate

client workloads.

Though nominally suitable for deployment in distributed environments, component-

based applications are traditionally deployed only in a centralized fashion in high-

performance local area networks. In the rare cases when these applications are dis-

tributed in wide-area environments, the systems tend to be highly customized and

handcrafted. When a general component application is distributed in wide area en-

vironments, inter-component communication, otherwise “invisible” in local area net-

works, becomes a key factor in dramatically increased request response times, which

eliminates the benefits of application distribution in the first place.

For an application distributed in wide area environments, response time of a re-

quest significantly depends on what components and back-end datasources are ac-

cessed during its execution. Information of this kind belongs to the fine-grained re-

source utilization service access attribute and needs to be available for the service

17

provider to be able to assess performance quality of a distributed application. On the

other hand, in order to ensure that popular or business critical service requests experi-

ence small response delays, the application should be engineered in a way that limits

unnecessary wide area inter-component communication. To achieve this, the appli-

cation developer needs to be aware of (1) the “read-write” data access behavior of

service requests; and (2) whether the application state accessed in a request is shared

among several clients or not. In other words, while developing the application, one

needs to take into account the application data access patterns.

In this dissertation, we identify and recommend for use a small set of design rules

for application development and construction, that enable beneficial and efficient ser-

vice distribution in wide area environments. We validate the applicability of the pro-

posed design rules by applying them to several sample component-based applications

and showing performance benefits of their wide area distributed deployments.

1.3 Contributions

The high-level contribution of this dissertation is a set of models, techniques, mid-

dleware mechanisms, and application design rules, showing that exposing and using

detailed information about session-oriented usage of component-based Internet ser-

vices by their clients helps to (1) improve QoS delivered to the clients; (2) optimize

server resource management and utilization; and (3) provide the application develop-

ers with the guidelines for natural application structuring that enable efficient use of

the proposed mechanisms for improving service performance.

Specifically the dissertation contributions are the following:

18

Models and techniques.

• Reward-driven session prioritization schemes, which show their utility for im-

proving the QoS delivered to users that bring the most profit to the Internet

service, and for maximizing profit attained by the service in the overload situa-

tions.

• A model of request execution with 2-tier exclusive server resource holding (threads,

database connections), which enables accurate prediction of the optimal config-

uration for the thread and database connection pools in component application

servers, for a given mix of client requests.

• Analytical models of concurrent web session execution with bounded inconsis-

tency in shared application data, which are able to accurately predict the values

of QoS metrics of interest.

Middleware mechanisms.

• Middleware request profiling infrastructure, which permits one to obtain service

usage information at different levels without imposing significant performance

overheads.

• A set of middleware decision-making mechanisms (e.g., request prioritization,

automatic concurrency control for web sessions, etc.), implemented in a mod-

ular, extensible, and pluggable fashion with minimal, backward compatible,

changes to the original web application server code. These mechanisms show

their effectiveness in making run-time resource-utilization decisions and in de-

19

termining the optimal configuration of critical server resources, without signif-

icant performance and management overheads. We have implement and evalu-

ated the mechanisms in a production-level application server JBoss [68], which

utilizes the J2EE component model [120]. However, we believe that the pro-

posed techniques and mechanisms are general enough to be applicable to web

servers utilizing other technologies.

Application design rules.

• A set of application design rules that enable beneficial and efficient distribution

of component-based Internet services in wide area environments.

Different parties involved in different stages of a component-based Internet service

lifecycle could benefit from different aspects of the work presented in this dissertation.

Application developers could benefit from using the proposed set of application de-

sign rules and optimizations for building component-based applications. Middleware

architects and developers could benefit from utilizing the set of proposed middleware

mechanisms to introduce their functionality into the middleware systems. Service

operators (e.g., system administrators) could benefit from using the proposed models

and techniques in order to boost performance of component-based Internet services

and improve their manageability, given that these mechanisms and the corresponding

functionality is provided by the underlying middleware.

20

1.4 Dissertation organization

Chapter 2 provides necessary background information. It gives a short introduction

into the area of component frameworks and applications, and specifically acquaints

the reader with the J2EE component middleware [120]. Then it discusses previous

research efforts and work related to this study in the areas of web workload mod-

eling, Internet server performance, transaction processing and service distribution.

Chapter 3 describes in greater detail the four identified service access attributes, and

how this information is obtained and abstracted into specific models of service usage

and resource utilization, used in this dissertation. The four problems (Sections 1.2.1

through 1.2.4), chosen to validate the thesis made in this dissertation, and the pro-

posed solutions, mechanisms, and techniques are separately described in Chapters 4,

5, 6, and 7. This document ends with Chapter 8, where we present conclusions and

ideas for future work.

21

Chapter 2

Background and Related Work

The dissertation focuses on Internet-accessible services implemented using compo-

nent frameworks. First, we give some background on component frameworks in gen-

eral and the J2EE platform in particular, briefly describe the structure of the JBoss

application server, and introduce sample J2EE applications used in this study. Then,

we discuss research efforts relevant to the work in this dissertation, in the fields of web

workload characterization, performance of Internet services, transaction processing,

and service distribution.

2.1 Component frameworks

Component software. Traditional software development strategies can broadly be di-

vided into two camps. At one extreme, a project is developed entirely from scratch,

with the help of only programming tools and libraries. At the other extreme, every-

thing is “outsourced”, in other words, standard software is bought and parameterized

22

to provide a solution that is “close enough” to what is needed.

The concept of component software [125] represents the middle path, where the

entire application is assembled from individual components, developed by third par-

ties. Although each component is a standardized product, with all the advantages

that brings, the process of component assembly allows the opportunity for significant

customization, thus avoiding the drawbacks of using standard monolithic software

applications. In addition, some individual components can be custom-made to suit

specific requirements or to foster strategic advantages.

Component frameworks. In its early days most of the emphasis in the develop-

ment of component software was on the construction of individual components and

on the basic “wiring” support of components, leading to specifications such as Java

RMI [121] and COM/DCOM [91]. It was highly unlikely that components developed

independently under such conditions would be able to cooperate usefully.

The inception of component frameworks was the most important step that lifted

component software off the ground. A component framework is a software system

that supports components conforming to certain standards and allows instances of

these components to be “plugged” into the component framework. The component

framework establishes environmental conditions for the components and regulates

the interactions between them. This is usually done through containers, compo-

nent holders, which often also provide commonly required support for naming, se-

curity, transactions, and persistence. Component frameworks provide an integrated

environment for component execution, as a result significantly reducing the effort it

takes to design, implement, deploy, and maintain applications. Current day indus-

23

Data TierEJB TierWeb Tier

JSP

Java
Servlet

RMI

Stateless
Session

Bean

Entity
Bean

Stateful
Session

Bean

Entity
BeanRMI

RMI

R
M

I

R
M

I

Client

HTML HTTP

Client

HTML
HTTP

session entity

JDBC Database

DatabaseJDBC

Figure 2.1: J2EE component architecture.

try component framework standards are represented by Object Management Group’s

CORBA Component Model [94], Sun Microsystems’ Java 2 Platform Enterprise Edi-

tion (J2EE) [120] and Microsoft’s .NET [92], with J2EE being currently the most

popular and widely used component framework in the enterprise arena.

2.2 Java 2 Platform Enterprise Edition

Java 2 Platform Enterprise Edition (J2EE) [120] is the widely accepted industry-level

component framework introduced by Sun Microsystems, based on the Java program-

ming language.

2.2.1 3-tier architecture

Applications developed using the J2EE framework adhere to the classical 3-tier ar-

chitecture — web tier, business tier, and data tier (see Fig. 2.1). J2EE components

belonging to each tier are developed adhering to specific J2EE standards.

24

Web tier. This tier deals with the presentation logic of the application. Components

in this tier include Java Servlets [122] and Java Server Pages (JSP) [123]. These

components are invoked to process incoming HTTP requests, and are responsible for

the generation of the response HTML pages, invoking components from the business

tier, or communicating directly with the data tier, to get application data from back-

end datasources, if necessary. Java Servlets and JSPs are stateful components and

hold HTTP session information.

Business tier. This tier, which is sometimes called middle tier or, in the J2EE realm,

also — EJB tier, consists of Enterprise Java Beans (EJB) components [113], which

have three flavors: Session, Entity, and Message Driven. Session beans usually pro-

vide generic application-wide services, and also serve as façade objects in front of

shared persistent datasources. They are either stateless or instantiated to contain ap-

plication state on a per-session basis. Stateful components holding session state (i.e.,

stateful session EJBs and web tier components) effectively act as an extension of the

client’s run-time environment on the server-side. Entity beans are transactional shared

persistent entities, representing a synchronized in-memory copy of the database in-

formation. Message driven beans are stateless components and serve the purpose of

processing incoming asynchronous JMS [117] messages.

Data tier. This tier serves the purpose of persistently storing the application data

and is usually represented by relational databases. J2EE application components

communicate with relational datasources through JDBC (Java DataBase Connectiv-

ity) [124] interfaces, or through other persistence mechanisms, such as Java Data

25

Objects (JDO) [115].

2.2.2 Service request execution and inter-component communication

Clients usually communicate with Internet-accessible services through the HTTP pro-

tocol. Although HTTP is a stateless protocol, client identity is usually maintained

with the help of HTTP cookies that are sent forth and back in every subsequent client

request. The HTTP/web server keeps track of currently active user sessions. Upon

arrival of an HTTP request at the web server, it is served by the corresponding Java

Servlet or a (set of) JSP(s), as specified in the application configuration files. These

Java Servlets and JSPs may, based on the application logic, trigger invocations of EJB

(middle tier) components, which in turn may invoke other EJB components and access

appropriate back-end datasources.

Components communicate with each other in a synchronous “request-reply” fash-

ion (except for sending and receiving JMS messages), by invoking an appropriate

components’ business methods. Entity beans are usually synchronized with the corre-

sponding database entities (an Entity bean usually corresponds to a row in a database

table) using JDBC. Most of the application servers simplify this synchronization pro-

cess by automatically generating the JDBC code, based on the information from

the so-called deployment descriptor(s) — configuration files that among other things

specify mapping of an entity beans’ persistent fields to the database schema. However,

all components may directly communicate with the database using JDBC.

J2EE components never invoke each other directly, as simple Java objects do. Ap-

plication programmers specify component references in deployment descriptors by

providing only the type (interface) and the JNDI (Java Naming and Directory Inter-

26

face) [118] name of the referenced component. To make a component invocation, the

invoking component first obtains a remote stub of the referenced component by per-

forming a JNDI lookup and then invokes a business method on it. Before delegating

the execution of a method to the referenced component object, the component con-

tainer may, for example, need to update component’s state (i.e., synchronize it with

the database), or to activate the component (if it was passivated after a long period

of inactivity). Therefore, the executed request first comes through several client- and

server-side proxies, or interceptors, which are responsible for handling various as-

pects of the method invocation, such as security, transactions, persistence, etc. And

only then is the requested method invoked on the target component object.

Some level of indirection also takes place when components communicate with

relational databases. A common way to integrate relational back-end datasources into

J2EE application servers is through the Java Connector Architecture (JCA) [114],

which defines a set of scalable, secure, and transactional mechanisms for the in-

tegration of Enterprise Information Systems (EIS) with application servers. Using

JCA allows the application server to pool database (DB) connections (for scalability

purposes) and to manage their transactional and security aspects in a standardized

fashion. To access a database, a component performs a JNDI lookup for a special

JCA adaptor object, which, upon request, supplies the component with a wrapper ob-

ject containing the actual DB connection taken from the pool. When the component

“closes” the connection wrapper object, the physical DB connection is returned to the

pool. This pooling mechanism allows one to avoid expensive operations of creating

and closing DB connections.

The same idea of resource pooling for scalability and enhanced performance is

27

also used by most HTTP/web servers in their pooling of server threads, which are

also quite expensive to create and destroy.

2.2.3 Resource consumption and performance bottlenecks in J2EE applications

There are several aspects of application structuring and particulars of the J2EE mid-

dleware platform, which influence the performance of J2EE applications.

Component invocations. As the discussion in the previous section has suggested,

component invocation is a relatively expensive operation, compared to a plain Java

object method invocation, especially in container implementations that use Java re-

flection mechanisms extensively (which is a common practice nowadays). The CPU

consumption of a service request depends on how many component invocations are

involved in its execution and on the types of the invoked components. It is generally

true that the invocation of a method on an entity EJB is more expensive, than on a ses-

sion bean (partly because of the need to synchronize an EJB’s state with the database),

and that stateful session beans are more expensive than stateless ones.

RMI serialization. Early EJB container implementations used RMI for all inter-

component communication, even for components residing within the same JVM.

This approach imposes significant RMI serialization/deserialization overheads [26,

48]. With the introduction of EJB 2.0 local interfaces, it became possible to specify

component collocation, which allows EJB containers to avoid using RMI for inter-

component communication. To reduce the cost of marshalling, some application

servers provide communication optimizations for components residing in the same

28

JVM (even if they don’t use EJB local interfaces), by using local object references

instead of going through RMI.

Communication with the database. Accessing the database also entails serializing

data back and forth from the database space to the JVM memory space. Ineffi-

ciently structured JDBC code can significantly limit application performance. The

most prominent example of this situation is synchronization of entity beans with the

database, which by default happens on every business method invoked on the entity

bean [48]. A common misconception is that the problem is bandwidth, while the

problem is the CPU overhead for writing and reading an object’s data to/from the

wire. Modern application servers provide facilities to limit unnecessary entity bean

database synchronization, for example, by updating the state of the bean only be-

fore the method call, if the call is read-only. Some application servers also provide

advanced mechanisms for caching data in entity beans.

Contention for exclusively-held server resources. Some of the server resources are

shared among requests, while some are held exclusively by a request for the whole du-

ration or a portion of it. Examples of the former include low-level OS resources, such

as CPU and memory, while the latter are represented by such middleware resources

as server threads and database connections. In the situation of server overload (static

or transient), these resources become a source of request contention, with internal re-

quest queues building up. It is sometimes the case that the application performance is

limited by such exclusively held “bottleneck” resources, even when there is enough

CPU power to process more requests.

29

Transactions. It is well known that the transaction configuration of entity EJB con-

tainers, namely their transaction commit options (i.e., the server policies for lifecy-

cle management of entity bean objects and their synchronization with the database),

has significant impact on application server performance [22]. Transaction demarca-

tion also influences the performance of J2EE applications, where longer transactions

limit application scalability. This happens, because when the execution of a business

method on an EJB is wrapped in a transaction, then, based on particular application

configuration, the component may be blocked from other invocations. This means

that other requests can’t concurrently invoke a method on the same EJB component,

which introduces a locking contention bottleneck, increasing client response times

and limiting application scalability. More fine-grained transaction demarcation, which

however preserves application correctness, boosts application performance, especially

when application logic involves sending and receiving asynchronous messages [75].

Application implementation method. The application implementation method has a

significant impact on application performance [26]. J2EE applications with session

beans perform as well as Java servlets-only applications and an order-of-magnitude

better than most of the implementations based on entity beans. The fine-granularity

access exposed by entity beans limits scalability, which however can be improved

using session façade beans. For implementations using session façade beans, local

communication cost is critically important, but EJB local interfaces (or application

server optimizations substituting the use of the latter) improve performance by avoid-

ing the RMI communication layers for local communications.

30

2.3 JBoss application server

To evaluate the cost and benefits of the server-side resource management mechanisms

proposed in this dissertation, we have implemented them in JBoss [68], an open source

J2EE application server. JBoss is an extensible, reflective, and dynamically recon-

figurable Java application server. In addition to including a set of components that

implement the J2EE specification, JBoss is open-ended middleware in the sense that

users can extend middleware services by dynamically deploying new service compo-

nents into a running server. Throughout this dissertation, if not stated otherwise, we

use JBoss version 3.2.3, which is bundled with the HTTP/web server and Servlet/JSP

container Jetty version 4.1.0 [69].

2.3.1 JBoss middleware architecture design

Modern industry-level J2EE application servers exhibit componentized architecture

designs and usually are realized as a collection of independent, but related middle-

ware services, each of which is dedicated to a particular aspect of application runtime

support, e.g. transaction coordinator, naming service, security manager, etc. JBoss

follows this approach. Its middleware architecture design is based on the Java Man-

agement Extensions (JMX) [116] specification. JMX defines an architecture, the de-

sign patterns, the APIs, and the services for management and monitoring of resources

(applications, systems, or network devices). In JMX, to instrument a resource one

has to associate one or more management components (MBeans in JMX) with the

resource.

On top of JMX, JBoss introduces its own model for middleware components [81,

31

49], centered on the concept of a service component. The JBoss service component

model extends and refines the JMX model to address some issues beyond the scope

of JMX: service lifecycle, dependencies between services, deployment and redeploy-

ment of services, dynamic configuration and reconfiguration of services, and compo-

nent packaging. Nearly all the application server functionality of JBoss is modularly

provided by service components plugged into a JMX-based server spine, following

the microkernel design principle. Service components implement every key feature

of J2EE: naming service, transaction management, security service, EJB support, JMS

messaging, and database connection pooling. They also implement important features

not specified by J2EE, like clustering and fail-over. This architecture makes it easy

to enhance the application server with the desired functionality, by implementing and

deploying additional MBeans (service components). Moreover, MBeans in JBoss are

hot-deployable.

2.3.2 JBoss EJB invocation model

As a part of the EJB invocation model, JBoss defines client-side and server-side inter-

ceptors [111, 49]. Interceptors act like pluggable aspects. When an EJB component

method is invoked, the execution control first traverses the chain of client-side inter-

ceptors in the client JVM, then, upon reaching the server JVM, it goes through the

chain of server-side interceptors (see Fig. 2.2). When the client obtains a reference

to a remote EJB, it gets a dynamic proxy object, together with a set of client-side

interceptors. One of the interesting consequences of this design is that client-side in-

terceptors may execute arbitrary Java code in the client JVM, if this is not explicitly

prevented by the Java security mechanisms. The JBoss modular remote invocation

32

EJB Client

Client Virtual Machine

MBean
Server

Server Virtual Machine

Client-Side
Proxy

Java Dynamic
Proxy

Client-Side
Interceptors

Invoker
Proxy

Invoker
MBean

EJB
Container

Container
MBean

Server-Side
Interceptors

EJB
Component

Figure 2.2: JBoss invocation model.

model also allows flexible choice of the Invoker, which is responsible for the commu-

nication mechanism between the client and server machines. The standard options in

JBoss are JRMP (based on RMI — the default option), IIOP, HTTP, and SOAP [144]

invokers.

The set of standard EJB client- and server-side interceptors can be extended and

instantiated on a per-component basis. This functionality allows us to add, as we

describe in Section 3.5.1, additional interceptors in order to gather request profiling

information and to control the flow of request execution (e.g., to reject a method

invocation).

33

2.4 Sample J2EE applications

To test the techniques proposed in this dissertation, we have used three sample J2EE

applications. One of these, an implementation of the TPC-W benchmark application,

was developed in our research group. The other two applications — Java Pet Store

and RUBiS — were developed elsewhere.

2.4.1 TPC-W

TPC-W [131] is a transactional web e-Commerce benchmark, which emulates an on-

line store that sells books. TPC-W specifies the application data structure and the

functionality of the service, however it neither provides implementation, nor limits

implementation to any specific technology. The TPC-W specification describes in

detail the 14 web invocations that constitute the web site functionality, and defines

how they change the application data stored in the database. Users can browse through

a catalog of products, search for specific items and place them in a shopping cart.

Upon indicating readiness to buy what is in the shopping cart, the application displays

a bill detailing prices and quantities. Users can also create a permanent account with

the on-line store, which includes billing and shipping information. Table 2.1 describes

the most important service requests that make up a typical TPC-W user session.

In our research group, we have developed our own implementation of the TPC-W

benchmark, realized as a J2EE component-based application [130]. The implementa-

tion utilizes the Session Façade design pattern [85]. For each type of service request

there is a separate servlet which, if necessary to generate the response HTML page,

invokes business method(s) on associated session bean(s), that in turn access applica-

34

Table 2.1: Main TPC-W service requests.

Request Functionality
Home Entry point to the application
Search Performs search for specific items and presents them
New products Presents items recently appeared in the store, for a specific category
Best Seller Presents the list of items frequently purchased lately, for a specific

category
Item Details Presents the item details, including available quantity and price
Add To Cart Adds item to the shopping cart, and displays its contents
Cart Presents contents of the shopping cart
Register Prompts user to authenticate or register itself
Buy Request Authenticates or registers user, presents the updated view of the shop-

ping cart, prompts user to submit address and credit cart information
Buy Confirm Commits the order: records the order info in the database, decrements

the available quantities for the items purchased, presents confirmation
page

tion shared data stored in the database through a set of fine-grained invocations to the

related entity EJBs.

The TPC-W specification describes in detail the application data that should popu-

late the database. The database population is defined by two parameters: NUM ITEMS

— the cardinality of the ITEM table, and NUM EBS — the number of concurrent

Emulated Browsers (EB’s), i.e., it is defined by the size of the store and size of the

supported customer population. The size of the TPC-W database tables are fixed

or depends linearly on the above two parameters. Application performance (i.e., the

speed of processing database SQL queries) depends directly on the size of the database

population.

35

Table 2.2: Java Pet Store service requests.

Request Functionality
Main Serves as an entry point to the application
Category Displays list of products associated with a particular category
Product Displays list of items associated with a particular product
Item Displays details about an item, including description, price, and the

quantity in stock
Search Displays list of products, whose names match the specified search key-

word(s)
Sign-in Prompts user to enter user ID and password
Verify Sign-in System authenticates submitted credentials
Shopping Cart Upon the user adding an item to the shopping cart, the updated cart

content is displayed
Checkout User initiates checkout process
Place Order User confirms the order
Billing and
Shipping

User confirms billing and shipping information

Commit Order User commits order; all necessary database updates happen here
Sign-out User signs out

2.4.2 Java Pet Store

Java Pet Store [119] is a best-practices sample application from the Java Enterprise

BluePrints program maintained by Sun Microsystems. It represents a typical e-Com-

merce application — an online store that sells pets (Table 2.2 describes service re-

quests of the application). Java Pet Store aims at covering as much of the J2EE com-

ponent platform as possible in a relatively small application. Its main focus is on

design patterns and industry best practices that promote code and design reuse, exten-

sibility, modularity, ease of maintenance, isolation of development tasks by skill sets,

and decoupling of code-bases with differing rates of change. Therefore, Java Pet Store

is a relatively heavy-weight application, compared to our TPC-W implementation and

36

Web Tier EJB Tier
entitysession

Account
account
 order
 orderstatus
 lineitem
category
product
item
inventory

Order

Cart

Catalog

Account

Order

Catalog

Inventory

Customer

Shopping Cart

Inventory

session statestateless shared state

Database

Figure 2.3: Java Pet Store component architecture.

the RUBiS application described next.

The fundamental design pattern used in Java Pet Store is the Model-View-Controller

(MVC) architecture [107], which decouples the application’s data structure, business

logic, data presentation, and user interaction. The Model represents the structure of

the data in the application, as well as application-specific operations on that data. The

View consists of objects that deal with presentation aspects of the application. The

implementation of the View in Java Pet Store is completely contained in the Web tier,

and is built on top of a reusable framework for web applications. The Controller

translates user actions and inputs into method calls on the Model, and selects the

appropriate View based on user preferences and Model state. Figure 2.3 shows the

component relationships among the most accessed Java Pet Store components; and

Table 2.3 describes the business function of the most important application EJBs.

37

Table 2.3: EJBs in Java Pet Store.

Name Type Description
Catalog Stateless Session

Bean
Serves as a façade to the product and inven-
tory information

Product Entity Bean Keeps product-related information for each
product line in the catalog

Item Entity Bean Keeps product-related information for each
item in the catalog

Inventory Entity Bean Keeps availability information for each
item in the catalog

ShoppingCart Stateful Session
Bean

Maintains list of items to be bought by cus-
tomer

ShoppingClient-
Controller

Stateful Session
Bean

Manages the life cycle of business objects
and processes events

SignOn Entity Bean Keeps userid/password information
Order Entity Bean Keeps order information
Account Entity Bean Keeps account information
Customer Stateless Session

Bean
Serves as a façade to Order and Account

2.4.3 RUBiS

RUBiS (Rice University Bidding System) [95] is an auction site prototype modeled

after the popular e-commerce web portal eBay.com [42]. RUBiS implements the core

functionality of an auction web site: selling, browsing and bidding on items. Visitors

can search through a catalog of items divided into several categories and belonging

to different geographical regions. They can bid on items of interest, as well as add

comments for other users. Users may also choose to sell an item, registering it and

specifying several parameters, such as action duration, and initial, reserve and buy-

now prices. All non-browsing activities require creation of a permanent account with

the web site and logging in. Table 2.4 describes the most important service requests

38

Table 2.4: Main RUBiS service requests.

Request Functionality
Main Static page; serves as an entry point to the application
Browse Static page; displays several browsing options
All Categories Displays the list of available categories
All Regions Displays the list of regions
Region Displays the list of available categories for a region
Category Displays the list of available items in a category
Category and
Region

Displays the list of available items in a category and a region

Item Displays details about an item, such as current price and number of
bids

Bids Displays the list of bids on an item
User Info Displays public information about a user, such as e-mail, current rat-

ing and the list of user comments
Put Bid Auth Prompts bidder to enter User ID and password to put bid on an item
Put Bid Form After verifying user credentials, system displays the bidding form
Store Bid The bid is accepted and stored in the database
Put Comment
Auth

Prompts user to authenticate him/herself, to proceed with writing a
comment

Put Comment
Form

After verifying user credentials, system displays the form for writing
a comment

Store Comment The comment is accepted and stored in the database

of the RUBiS application.

RUBiS was originally developed at Rice University as part of a study investi-

gating the combined effect of application implementation method, container design,

and efficiency of communication layers on the performance scalability of J2EE ap-

plications [26]. Several implementations of the application were constructed, ranging

from a servlets-only implementation, to one utilizing session and entity beans. We use

the Session Façade implementation, where each servlet has reference(s) to dedicated

stateless session bean(s) only (almost always to just one such bean), which in turn

39

access related entity beans. RUBiS does not keep per-client session state, so it neither

keeps any (HTTP session) data in the web tier, nor does it use stateful session beans

in the EJB tier. As a consequence of this design, there is no notion of a “logged in”

user session in RUBiS, i.e., sessions where the user logs in and performs an arbitrary

sequence of activities that do not require further authentication. User authentication is

required before each essential non-browsing client activity and covers only one such

activity.

2.5 Web workloads

Research studies investigating web user workloads can be divided into two groups.

The work in the first group analyzes parameters of web workloads, by statistically

processing web access logs, or using on-line profiling of incoming user requests us-

ing instrumented servers. The results of these efforts are the set of broadly adopted

assumptions or “laws” about statistical parameters and “invariants” of web user load.

The work in the second group addresses the problems of web workload simulation,

i.e., building adequate and realistic web workload models, which would be capable of

producing streams of user requests, representative of real life user load.

2.5.1 Workload characterization

Request-based workload characterization

In the early days of the Internet, research concentrated on characterizing web work-

loads composed of individual requests to web pages, without considering the correla-

tion between the requests coming from the same user. A number of studies [10, 13,

40

35, 99, 40, 23, 142] identified several characteristics, statistical properties, and invari-

ants of these web workloads. Some of the widely used characterizations include: (1)

10% of all documents account for 90% of all requests and bytes transferred; (2) web

page sizes follow a heavy-tailed Pareto distribution; (3) the web page inter-request

times are independent and exponentially distributed, assuming a Poisson arrival pro-

cess [73]; and (4) the popularity of documents served by information provider web

sites follows Zipf’s Law [23].

Session-based workload characterization

More recently, the Internet has changed from simply being a data repository and a

communication infrastructure to becoming a medium for conducting business and

selling services. This shift has resulted in changes in parameters of WWW traffic and

the characteristics of web user workloads, with session-oriented interactions of users

with Internet services becoming the norm.

The authors of [34] were among the first to acknowledge the changed nature of

web user workloads. Since then several studies have characterized web workloads

at the session level [89, 90, 11, 12, 87, 106] and have proven beneficial for research

in the area of user-oriented management and optimization of Internet services, based

on better understanding of service usage by clients. Following this path, the work

in [76] first proposed a workload characterization for e-Commerce servers, where

users followed typical sequences of URLs as they progressed towards the completion

of sessions (“transactions”). This observation led to the notion of a service access pat-

tern, a frequently executed scenario of service usage reflecting typical client behavior,

which emerged in several studies [15, 26, 82]. Among several parameters of session-

41

oriented web workloads we focus on the following two important characteristics: new

session arrivals and session inter-request times.

It is generally believed that times between new session arrivals are well modeled

by an exponential distribution, which corresponds to a Poisson arrival process and fits

well into the framework of the classic Queueing Theory [73]. Session inter-request

times is a more subtle issue. Work in [16, 35] reports that session inter-request times

follow a Pareto distribution, while [106] points that it is best captured by a log-normal

distribution. These studies analyze web access logs obtained from web servers of

educational organizations. Studies which analyze request logs of e-Commerce web

sites report that session inter-request times have either an exponential [34] or a Log-

normal [12] distribution. One could ascribe the difference in reported session inter-

request times to the nature of the service offered by a web site.

2.5.2 Workload simulation models

Utilizing synthetic web workloads is a common and widely adopted way to evalu-

ate web server performance. Although not as realistic as using real web traces, this

approach is more convenient for controlled exploration of a range of user behaviors.

Several research efforts have pursued the goal of building adequate and realistic web

workload models, which would be capable of producing streams of user requests rep-

resentative of a real-life user load. These models are usually based on detailed analy-

ses of real web access logs.

In [77] the authors propose the use of a sophisticated method of web trace gen-

eration, where user sessions consist of a controlled mix of actual session request se-

quences (sessionlets), taken from real web traces. The mix of sessionlets is adjusted

42

to meet the target values of the attributes of the combined user load, such as session

length distribution, request mix, etc. While this approach to web workload generation

may produce realistic web access logs, its applicability is limited by the necessity to

use real web traces, which are not always available in the public domain.

As a result, a dominant fraction of existing web workload models [89, 90, 25, 108,

45, 30], as well as the workload generators of web server performance benchmarks,

such as TPC-W [131], use first or higher-order Markov chains to model session struc-

tures. The authors of the Customer Behavior Model Graph (CBMG) approach [89]

were the first to introduce a first-order Markov chain to model user sessions. CBMG

is a state transition graph, where states denote results of service requests (web pages),

and transitions denote possible service invocations. Transitions in CBMG are gov-

erned by probabilities pi, j of moving from state i to state j (∑ j pi, j = 1). It was also

shown that if one uses a mix of several CBMG session structures, then the resulting

workload can approximate a given web access log as closely as desired, by appropri-

ately choosing the model parameters (i.e., the number of CBMGs and their transition

probabilities). The latter in turn can be obtained from the web access logs by using a

clustering algorithm.

2.6 Performance of Internet services

High availability (i.e., ability to serve user requests) and responsiveness (i.e., adequate

request response times) are two crucial service performance characteristics. Overload-

ing a service immediately results in increased response times and request rejections,

which leads to user dissatisfaction. On the other hand, ensuring the delivery of reason-

43

able or prenegotiated quality of service (QoS) to users proves to be a nontrivial task,

especially under high or varying user loads. The previous work addressing this prob-

lem can be roughly divided into three categories: (1) admission control and schedul-

ing, (2) service differentiation, and (3) analytical modeling of Internet services.

2.6.1 Admission control and scheduling

Various forms of admission control have been used to prevent services from be-

ing overwhelmed in the presence of persistent or transient overload. Among these,

Session-Based Admission Control (SBAC) [34] is suitable for session-oriented client

loads. SBAC methods recognize that an overloaded service can experience a severe

loss of throughput measured in completed (successful) sessions while still maintain-

ing its throughput measured in requests per second. This happens because a request

can be rejected anywhere in the session, even if the session has already had a lot of its

requests served and is very close to completion. The SBAC methods works by admit-

ting as many sessions as can be processed by the service, trying to make sure that if a

client starts a session with the service, it will be successfully completed. The strategy

is based on a self-tunable admission control function, which adjusts itself accordingly

to variations in user load.

In recent years, several researchers have investigated the effects of request schedul-

ing and prioritization on web server performance, for both web sites providing static

content [33, 36, 102] and database-driven dynamic web sites [20, 45]. It has been

shown that request response times and server throughput can be improved by employ-

ing such scheduling algorithms as Shortest Job First (SJF) [33, 36, 45] and Shortest

Remaining Processing Time First [102]. Some of these studies used request schedul-

44

ing algorithms combined with admission control policies [20, 21, 32, 45].

In web studies focusing on static content, the cost of servicing a job is usually

approximated by the size of the downloaded file. For web sites serving dynamic

content, it was noticed that request processing times depend primarily on the request

type rather than on the parameters of the request [32, 45]. Our work shares the same

observation, using fine-grained request profiling to determine first absolute and then

relative request processing times for different request types. An analogous technique

is used in [45].

A notable difference from the work in this dissertation is that for the most part, the

request scheduling studies above do not pursue the goal of increasing likelihood of

session completion (even if they take into account the session-oriented nature of client

workloads). An exception is the work of Chen et al. [30] on the Dynamic Weighted

Fair Sharing request scheduling algorithm (DWFS), which, among other goals, tries

to avoid processing of requests that belong to sessions that are likely to be aborted in

the near future.

Several previous studies have also proposed admission control and request schedul-

ing techniques that take into account application-specific information about the reward

or profit brought to the Internet service by individual request types, and try to maxi-

mize this reward. In [146], a Profit Aware QoS policy (PAQoS) is developed, aimed

at maximizing the web site’s profit under SLA (service level agreement) constraints.

The authors of [25] propose using queuing of requests based on their types, where

a reward function corresponding to the service provider’s objective is maximized us-

ing techniques for nonlinear optimization. In [108], the authors propose a combined

LIFO-Priority scheme for overload control of a retail e-Commerce web site, where

45

all service requests are divided among browser and (in their terminology) revenue-

generating transaction requests (i.e., reward-bringing requests in our terminology).

LIFO scheduling is applied to the browser requests, while the revenue-generating re-

quests are given the highest priority.

There are conceptual differences between these studies and the approach proposed

in this dissertation. In [146, 25, 108], the authors assume that reward is brought by

individual requests, rather than by completion of the whole session. In [146, 25],

they also assume a Generalized Processor Sharing (GPS) [147] model for request

execution, rather than a model of prioritized scheduling of requests to exclusively-held

resources, such as server threads and DB connections (Section 3.3.1). In our opinion,

the latter model is a closer match to existing web application server architectures.

2.6.2 Service differentiation

Policies for quality differentiation among multiple classes of service have been inves-

tigated in recent literature. In the simplest case, the service is differentiated between

two classes of clients, premium and basic, such that premium clients receive better

service than basic clients in case of overload. The authors of [44] proposed and eval-

uated policies that impose restrictions on the amount of server resources (such as

threads) available to basic clients. In [9, 1] admission control and scheduling algo-

rithms were enhanced with QoS-aware client differentiation mechanisms, to provide

premium clients with better QoS, in the context of web content hosting and multime-

dia servers, respectively.

The work in [83, 2] was innovative in that it proposed using feedback-control

theory and methodology to design an adaptive connection scheduler and process re-

46

allocation strategies to provide relative request delay guarantees for different service

classes, in the context of HTTP servers providing static web content. The authors

of [29] proposed a tiered system for serving differentiated content, which transpar-

ently routes user queries to heterogeneous web server back ends, based on explicit

user requirements for latency and quality of data.

A way to control QoS delivered to users and to efficiently manage server resources

is through service level agreements (SLA), also called resource sharing agreements.

SLA is a contract between a service user group and the service provider, establishing

the parameters of and limiting service usage by the user group. This way the service

provider can estimate the level of service usage and resource consumption. Common

to all service differentiation schemes is the consideration that the quality of service

received by a user is determined upfront by his association with a client group or by

his service membership status.

2.6.3 Analytical modeling of Internet services

Analytical modeling of the behavior of Internet applications is beneficial for the fol-

lowing reasons: (1) capacity provisioning [88], which allows one to determine how

much capacity is needed for an application to allow it to service the specified work-

load; (2) performance prediction, which enables the response time of the application

to be determined for a given workload and a given hardware and software configu-

ration; (3) application configuration, which enables various configuration parameters

of the application to be determined for a certain performance goal; and (4) bottle-

neck identification and tuning, which enables system bottlenecks to be identified for

purposes of performance tuning.

47

The vast majority of analytical models of Internet applications utilize the apparatus

of Queueing Theory [73], while some use Markov chains [86] and control-theoretical

approaches [83, 2]. Modeling of single-tier Internet applications, of which HTTP

servers are the most common example, has been studied extensively [109, 86, 41,

134]. Most of these studies also assume static web content. However, modern data-

centric applications serve dynamic web content and tend to utilize multi-tier architec-

tures (Section 2.2.1). Several recent efforts have focused on the modeling of multi-

tier applications [71, 133]. However, many of these efforts either make simplifying

assumptions or are based on simple extensions of single-tier models. A number of

papers have taken the approach of modeling only the most constrained or the most

bottlenecked tier of the application. For instance, [137] considers the problem of

provisioning servers for only the middle (EJB) tier. Other efforts have modeled the

entire multi-tier application using a single queue [112]. While these efforts have made

good progress, analytical modeling of Internet applications remains a hard problem,

because of complex structural and behavioral properties of these applications.

2.7 Transaction processing and concurrency control techniques

The field of transaction processing [58, 19] is concerned with the correctness of con-

current and distributed execution of programs accessing shared data, which relates to

our problem of providing web sessions with data integrity guarantees (Section 1.2.3).

Web sessions of Internet services where the service provider wants to limit the degree

of session data inconsistency may be viewed as long-running open-ended “transac-

tions” with specific data consistency constraints.

48

2.7.1 Classical concurrency control techniques

In the classical model of transaction processing, correct execution of transactions as-

sumes that the following four properties (ACID properties) are satisfied:

• Atomicity: Either all of the tasks of a transaction are performed or none of

them are. A transaction that executes successfully is called a committed trans-

action, while a transaction that can not be executed to preserve ACID properties

is aborted, so that all its effects are undone and are not visible at any moment to

other transactions/clients.

• Consistency: Transaction preserves the internal consistency of the database (of

course, if the submitted operations themselves do not violate database consis-

tency). This property is somewhat outdated and arises from the earlier formal

models of transaction execution, which was thought of as moving the database

from one consistent state to another. The consistency property is actually im-

plied by the existence of the other three properties and is being cited mainly due

to historical reasons.

• Isolation: A transaction executes as if it is running alone. The technical defi-

nition of isolation is serializability. The execution of a set of transactions (i.e.,

the order of execution of transactions’ operations) is said to be serializable if it

is equivalent to some serial execution (i.e., one after another — in a sequence).

This guarantees transaction isolation.

• Durability: Transaction results will not be lost in a failure. That is, if a trans-

action commits and the transaction client is notified of its success, its results are

49

durably stored in the database.

Clients explicitly specify transaction boundaries and interact with Transaction

Processing Monitors, which (1) receive transaction operations from clients; (2) re-

order, block, and buffer these operations, if necessary to avoid conflicts and to satisfy

transaction isolation properties; (3) schedule operations for actual execution; and (4)

commit or abort transactions. The process of ensuring correct execution of transac-

tions is called concurrency control and is achieved by various concurrency control

techniques. The most famous and the most used technique is Two-Phase Locking

(2PL). The idea of this technique is to lock a data item from concurrent operations

of other transactions, for the duration of the transaction accessing the data item. This

and related locking techniques are sometimes called pessimistic, because they conser-

vatively lock data items, blocking execution of operations of concurrent transactions,

until the lock is released.

2.7.2 Web sessions with data integrity constraints

Before we discuss concurrency control techniques most related to our work let us

summarize the properties of web sessions and show how concurrent web sessions

with data integrity constraints (Section 1.2.3) differ from existing transaction models.

• Web sessions do not have well defined boundaries. They are interactive, open-

ended, user-driven, often long-running activities. A session (accurately speak-

ing, its rendering in the web server) ends only by timeout.

• ACID properties: session data integrity constraints relate to the “C” and “I”

aspects of the ACID properties. We are neither concerned with atomicity, nor

50

do we care about durability, because it is the responsibility of the underlying

middleware to persistently store the results of executed requests.

• Locking concurrency control techniques assume that an operation can be ar-

bitrary blocked (e.g., buffered, waiting for a lock) before being executed. In

web sessions, inter-request times are much higher than request execution times.

Therefore, requests waiting for shared resources can not be blocked forever, as

clients, especially human ones, are typically willing to tolerate only small re-

sponse delays.

• It is highly undesirable to rollback a web session, by “undoing” its effects. It is

possible to “compensate” the results of the aborted web session (for example,

by sending an e-mail to the client). However, such behavior of the service will

most probably bring user dissatisfaction.

• Some transaction models allow automatic reexecution of aborted transactions,

or single transaction operations, by Transaction Processing Monitors on behalf

of clients. This can not be done in the context of interactive real-time client-

service communication models inherent to web sessions.

2.7.3 Advanced transaction models and concurrency control techniques

The use of transaction models in non-traditional applications has become widespread

and it has been found that classical transactions have limited applicability for these

applications. Among numerous proposed advanced transaction models [67, 17], there

are several research efforts that are relevant to our work.

51

Optimistic concurrency control techniques. Locking (pessimistic) concurrency con-

trol techniques present one end of the concurrency control spectrum. At the other

end of the spectrum lie optimistic approaches to concurrency control [78]. The main

idea of these techniques is that the operations are scheduled as they are received by

the Transaction Monitor. When a transaction wants to commit it is validated against

concurrent active transactions, to check that the resulted schedule of transaction op-

erations is serializable (i.e., no conflicts have happened). There are two main flavors

of validation: backward validation checks that the committing transaction was not in-

validated by other transactions, and if so — aborts the committing transaction; while

forward validation always commits the transaction and aborts concurrent transactions

that are invalidated by this commit. It has been acknowledged that pessimistic ap-

proaches are more suitable for transaction mixes with a high rate of conflicts, while

optimistic ones are better for lower rates of conflicts, for example for query dominated

systems.

Mixed concurrency control techniques. While optimistic and pessimistic concurrency

control techniques represent two extremes, several studies have proposed so-called

mixed or hybrid concurrency control strategies, which combine the elements of both

optimistic and pessimistic approaches. Earlier work in this direction [64] proposed

mixed concurrency control schemes where a user directly specifies which pairs of

conflicting operations should be covered by optimistic and pessimistic concurrency

control techniques. In [98], the authors explore a hybrid technique that automatically

provides locking for high conflict data items and optimistic access for the rest. The

system uses an LRU data structure called the lock buffer for data items covered by the

52

pessimistic (locking) concurrency control technique. If an item gets evicted from the

lock buffer, all transactions accessing this item “become” optimistic with respect to

the evicted data item.

Semantic-based concurrency control. Several researchers have proposed using se-

mantic knowledge of the system to determine logical correctness of transaction ex-

ecution, instead of mandating a serializable schedule. The work on semantics-based

concurrency control can be classified into two major categories. In the first cate-

gory [63, 64, 139, 14] the authors exploit the semantics of operations to increase con-

currency. Instead of using operations such as read and write, the authors propose using

higher-level operations to access data objects. Commutativity of these operations is

used to determine conflicts between transactions, resulting in more concurrency. The

work in the second category [3, 47, 55] exploits semantics of transactions to increase

concurrency, by decomposing transactions into steps and developing semantics-based

correctness criteria for transaction execution.

Relaxed consistency. Another approach to increase concurrency is to relax isolation

or consistency properties of transaction execution [143, 3, 39, 145]. The main idea

of these techniques is that transactions are allowed to conflict with each other, by ac-

cessing shared data items, but only to a certain degree. The degree of conflict between

transactions can be measured across two dimensions. The first dimension reflects

the numerical error — e.g., how can an item’s value change from its initial value

(when the item was first accessed by the transaction). One could define relative or

absolute tolerable degrees of discrepancy. The second dimension reflects the order

53

error — how many conflicting operations of other transactions can be executed. Re-

laxed consistency is best combined with optimistic concurrency approaches, when the

Transaction Manager checks during the validation phase that the transaction’s relaxed

consistency requirements are not violated. Formal models of relaxed consistency,

such as epsilon serializability (ESR) [100] have also been developed.

Long-running transactions. There are several proposals addressing transactional needs

of long-running activities and business processes [57, 56, 37, 104, 18]. Acknowledg-

ing the fact that conventional transaction models (those viewing transaction as an

indivisible process) can not be used for long-running activities, these studies focus

mainly on the aspects of dividing long-running activities into sub-transactions, and

on related problems, such as the sharing of partially committed data, multi-stage exe-

cution, recovery and compensation, etc. Web sessions share a commonality with these

transaction models in that they also can be viewed as long-running activities. How-

ever, the assumptions of these models are that long-running transactions, as classical

ones, are demarcated and divided by programmers. Web sessions don’t have well

defined boundaries and are not divided into sub-transactions.

Conversational and cooperative transactions. In some of their properties, web ses-

sions resemble advanced transaction models, such as conversational transactions [140]

and cooperative transactions [93, 70]. Conversational transactions are “chopped” into

a chain of smaller transactions, each of which corresponds to receiving a message and

sending a reply. Previous work on conversational transactions has primarily focused

on providing mechanisms to durably store and efficiently recover the conversation

54

context, rather than dealing with data conflicts; in the web sessions context, the for-

mer problem admits simple solutions such as the use of HTTP cookies (although

these are not 100% failure resilient [140]), while the latter issue has not received

as much attention. Cooperative transactions are used in systems like CAD (Com-

puter Aided Design), where several concurrent users perform different tasks with the

shared data, and are interested in sharing of (partial) results with each other, retain-

ing some of the transactional properties of the execution process. Like web sessions,

cooperative transactions are also viewed as long-running, open-ended activities with

a user-defined notion of correctness of execution. However, cooperative transactions

delegate much of the control to the clients, who explicitly manage shared resources

and transaction isolation.

2.7.4 Analytical modeling of transactions

Analytical modeling of concurrency control mechanisms is a well studied problem [126,

4, 128, 129]. However, while working on this dissertation, we were unable to find a

model for concurrency control that would specifically cover the case of web sessions

with data integrity constraints. As rightfully pointed out in [4], “nearly every study

is based on its own unique set of assumptions regarding database system resources,

transaction behavior, and other such issues.” Most previous models have focused on

modeling classical database transactions which enforce strict consistency. However

our concurrency control algorithms for web sessions with data integrity constraints

(see Section 6.2.2) have some notable differences from their classical counterparts.

In conventional database transactions, it is acknowledged that pessimistic (locking)

concurrency control approaches are more suitable for higher rates of conflicts, while

55

optimistic ones work well for lower conflict rates [4]. As we will see, in the web

sessions case, the situation is opposite. This performance difference observed in pre-

liminary simulations, also steered us to creation of our own analytical models (Sec-

tion 6.3). We believe that the difference between the classical locking and our locking

concurrency control mechanisms (Section 6.2.2) is the main reason why optimistic

and locking approaches have the opposite behavior in classical transactions and in the

case of web sessions. Interestingly, there are some similarities between our results and

the results of previous studies in the area of real-time database transactions [62, 132].

Such transactions have associated completion deadlines that they have to meet in or-

der to be successful. Real-time database transactions share a commonality with web

sessions in that optimistic approaches often outperform the locking ones.

2.8 Content and service distribution

A noticeable trend in the design and utilization of Internet services is to bring ap-

plication data and data processing closer to the clients. This is being done in order

to cope, on the network level, with the unpredictable nature of Internet traffic, es-

pecially in wide-area environments, and, on the application level, with high-volume,

widely varying client workloads. Examples of this approach vary from old-fashioned

web caching of static content to distribution of services realized as component-based

applications.

56

2.8.1 Web caching and Content Distribution Networks

Web caching

The most common approach to efficient web content delivery is the use of web caching

to improve the scalability of the web. Caches leverage the well known principle of

reference locality. There are two flavors of locality: temporal and spatial. Tempo-

ral locality means that some pieces of data (web pages, in case of web caching) are

accessed more frequently in a time period than others. Spatial locality means that

requests for certain web pages are likely to occur together.

To improve caching effectiveness, several projects have proposed cooperative web

caching [28, 46], which aims at establishing interactions among several caching peers.

Although the cache hit rate of cooperative web caching increases only to a certain

level, corresponding to a moderate population size [142], highly-scalable cooperative

systems can still increase the total system throughput by reducing server-side load.

With the growing interest in peer-to-peer systems, several projects have proposed us-

ing peer-to-peer systems for web caching [110, 105], although such systems only

benefit participating clients and thus require widespread adoption to reduce server

load.

Content Distribution Networks

Content Distribution Networks (CDN) were introduced as a natural evolution of exist-

ing web caching strategies, with the goal of further improving web scalability, reliabil-

ity, and web-page response times for users. CDN is a system of computer nodes net-

worked together across the Internet that cooperate in some fashion to deliver content

57

to end users, by transparently moving content behind the scenes to optimize the de-

livery process. Many traditional CDNs focus on serving relatively static content from

existing distribution infrastructures of participating service providers. Since the first

Content Distribution Networks appeared nearly a decade ago, this field has rapidly

grown into a successful segment of the Internet marketplace. Several commercial and

academic CDNs are available nowadays.

Akamai [6] is the most successful commercial content delivery service. It operates

thousands of dedicated servers located at network provider data centers around the

world. Akamai distributes copies of its clients’ content to these servers, and then,

uses DNS redirection to reroute user requests to the clusters of machines closest to

the user. Akamai and other commercial CDNs built on the same principles require

the deployment of large numbers of highly provisioned servers, and typically result in

very good performance (both latency and throughput) for customers.

A different approach is employed by the Coral CDN [51]. Coral is a decentralized,

self-organizing, web-content distribution network that builds upon the ideas of peer-

to-peer systems. It states the goal of allowing a user to run a web site that offers high

performance and meets huge demand virtually without any distribution costs. Coral

works by leveraging the aggregate bandwidth of volunteer sites running the Coral

software to absorb and dissipate most of the traffic for web sites using the system. In

doing so, Coral replicates content in proportion to the content’s popularity, regardless

of the publisher’s resources — in effect democratizing content publication. However,

Coral offers less aggregate storage capacity than commercial CDNs and, as a peer-to-

peer system, requires wide adoption of the system to bring substantial performance

benefits to its users.

58

2.8.2 Distribution of dynamic content

The success in distributing static web content is undermined by the increasingly large

share of dynamic and personalized content in the overall volume of the content served

on the web. Such content is dynamically generated at the original service provider

web site in response to the request parameters, and therefore can not be immediately

cached.

Caching of dynamic content

Despite the dynamically generated and personalized nature of web content, a rela-

tively large amount of such content can in fact be shared. For example, certain web

pages, although dynamically generated, present the same information to all users; a

large portion of personalized web pages contain fragments identical for all web pages

of the same type. This important observation makes it possible to reduce the load on

the main service provider web site, by caching parts of the content at the edge servers.

Commercial systems such as Akamai’s EdgeSuite [7] and IBM’s WebSphere [65]

utilize the following underlying idea: they distinguish between content generation

(which is performed on the main service web site) and content assembly (which can

be performed on the edge servers). These products rely on the Edge Side Includes

(ESI) [43] standard specification, which includes a simple markup language used to

define web page fragments and allows the dynamic assembly of these fragments into

complete web pages at the edge servers. Dynamic web page assembly improves web

site performance by caching the frequently reused and shared web page fragments at

the edge of the Internet.

59

Several other research efforts have addressed the importance of caching dynamic

content to improve system performance and scalability, even if such caching is per-

formed in a Local Area Network (LAN) setting. The authors of [27] developed an

approach for caching dynamic web data that became a critical component of the 1998

Olympic Winter Games web site. In the related study [38], database query caching

was used to improve performance of the IBM’s WebSphere application server [65].

The proposed techniques significantly reduced the number of queries to remote data-

bases. A key problem faced was how to keep the cache valid after database updates.

This was solved using Data Update Propagation (DUP) mechanism, which employed

an update strategy that considered the values of database updates in order to perform

intelligent cache invalidations.

Replication of application logic and data

A natural extension of content assembly at the edge servers is the idea of moving (or

replicating) a part of application business logic to the edge servers. Now not only

content assembly, but also content generation can be performed at the servers located

closer to the clients. However, in data-centric applications that dominate modern

Internet services, the business logic that processes user requests requires frequent ac-

cesses of shared datasources. A key challenge in systems with distributed application

logic is data replication and consistency so that application modules located at the

edge servers can manipulate shared data without incurring the availability and per-

formance penalties of accessing the centralized database. Therefore the question of

moving application logic closer to clients is in great part conditioned on the question

of efficiently ensuring consistency of replicated data.

60

The performance of a data replication algorithm is greatly affected by client be-

havior, i.e. by the nature of user request mix. Although it is impossible to simulta-

neously provide optimal consistency, availability, and performance for general-case

wide-area network replication, it is possible to provide nearly optimal behavior for

specific objects by taking advantage of a given application’s workload characteristics.

The authors of [54] propose an object-based edge server architecture with a consis-

tency model that takes advantage of service access patterns typical for e-Commerce

retail applications. They design data consistency models for each individual dis-

tributed object by using the corresponding application-specific semantics. For ex-

ample, the Catalog object is the abstraction of one-to-many updates, it accepts writes

at one place and propagates changes to multiple locations for subsequent reads; the

abstraction of the Order object is that of many-to-one updates, it gathers writes at

various locations and forwards them to a single place for reading. High availability

and efficiency of these application-specific distributed objects is achieved by slightly

relaxing data consistency. In this regard, this work builds upon the ideas developed in

the Bayou [97] and TACT [145] systems, which have explored the space of relaxed

consistency models for state replication in wide-area systems. Bayou [97] proposes

an anti-entropy protocol for flexible update propagation between weakly consistent

storage replicas, and TACT [145] investigates tradeoffs between consistency, perfor-

mance and availability of replicated services.

2.8.3 Distribution of component-based applications

Component-based applications, at a first glance, appear to be immediate candidates

for distribution and replication in attempt to bring service closer to the clients. First,

61

application components represent an indivisible unit of application logic, responsible

for a particular service function, with well defined communication and deployment

requirements. Second, most component frameworks offer mechanisms to enable dis-

tributed deployment of components, therefore application distribution would require

only minimal changes to the application, mostly dealing with the application config-

uration parameters.

Though nominally suitable for distribution, applications utilizing commercial com-

ponent models (such as J2EE [120] and CORBA [94]) are typically deployed and

replicated only in a centralized fashion in high-performance local area networks.

The replication of application components in current-day enterprise component-based

systems is primarily performed in a local scale for failover and performance pur-

poses [84, 79]. The component application servers involved in the replication are

usually tightly clustered together, and low-level LAN-specific mechanisms such as

IP broadcast, are used to synchronize among the replicas. Such tightly-coupled ap-

proaches do not scale to distributed environments, which require scalable and efficient

mechanisms for inter-component synchronization.

Researchers have been reluctant to propose commercial component frameworks

for edge service distribution. Inter-component communication and rigid specification-

imposed limitations on the component lifecycle and management seem to be the key

factor limiting the usability of these frameworks for the application distribution pur-

poses. The authors of [80] have examined an edge server architecture in which a

centralized database is shared among a number of edge servers that maintain cached

copies of transactionally-consistent EJBs (Section 2.2). The results of this study

have shown that such edge server architecture increases request latencies, which is

62

attributed to the needs of EJB synchronization with the centralized database. How-

ever, it decreases the consumed network bandwidth and increases request throughput

by offloading some of the processing from the main server to the edge servers.

In the research arena, several component frameworks have been proposed to build

scalable, flexible, and efficient distributed applications: Globus Grid [50], CANS [52],

Ninja [59], and PSF [66] are representative examples. Typical applications deployed

on these frameworks include collaborative visualization of large scientific datasets,

computational intensive scientific applications, web-based mailing systems, appli-

cations serving media content, such as video conferencing and remote video, etc.

However, other applications such as enterprise services and B2B partnerships are not

prevented from being able to operate in such environments. These component frame-

works concentrate on such issues as QoS-aware application adaptation in dynamically

changing heterogeneous environments, providing security guarantees for applications

deployed across multiple administrative domains, and maintaining data consistency

across component replicas. The latter issue relates these research efforts to the prob-

lem of efficient edge replication of data-centric Internet services.

63

Chapter 3

Service Access Attributes

Information about service usage by clients can be exposed at different levels — from

high-level structure of incoming request flow, to low level information about resource

consumption and data access patterns of different request types. Some of this infor-

mation can be automatically obtained by request profiling, some can be obtained by

statically analyzing the application structure, while some needs to be specified by the

service provider. In this dissertation, we identify four related groups of service ac-

cess attributes, that correspond to different levels of service usage information. The

relationship between different service access attributes, which are described in de-

tail below, is schematically shown in Fig. 3.1, which is taken from Section 1.2 and

reproduced here for convenience.

64

increasing inform
ation detail

Request flow

Coarse-grained resource utilization and “reward” specification

Fine-grained server
resource utilization

Data access patterns

user session
structure incoming

request mix
session inter-
request times

rate of
incoming new

sessions

“resource
consumption units”

for each request
type

average server
request processing

time

request “reward”
specification

application
components

traversed

middleware
services used

databases
accessed

read-write
request

attributes

effects on
shared state

data quality
tolerance

Figure 3.1: Four groups of service access attributes.

3.1 Request flow

This service access attribute provides the high-level information about the requests

that are being invoked against the service. The information about an individual service

request is limited to its type, session (client) identity, and (optionally) the time of its

arrival.

Request type corresponds to the functionality of a request. Typical component-

based web applications follow a principle where separate servlets are reserved for

processing requests of different functionality. Determining the servlet to use for pro-

cessing of a request is usually done based on the request’s URL pattern, hence the

type of a request can typically be determined by its URL. For example, in the TPC-W

application, HTTP request

65

http://host name/tpcw/item?id=57

would request a detailed description of the item with id 57, while HTTP request

http://host name/tpcw/cart

would request the contents of the shopping cart. A request’s URL would typically also

contain request’s parameters. In the above example of the Item Details request, the id

of the item (57 in this case) is encoded in the request’s URL. Thus, the organization

of HTTP requests makes it possible to infer a request’s type and its parameters at the

earliest stage of request execution — request preprocessing at the web tier, enabling

collection of request flow information through real-time profiling of incoming user

requests.

The most common mechanism to encode session identity in HTTP requests is

through the use of HTTP cookies. Another approach to do so is by encoding the

session identity in the requested URL. In both cases (and in their variations) session

management is performed automatically by the HTTP/web server, which keeps infor-

mation about currently active web sessions and transfers the cookie or URL encoding

information into internal programmatic representation of web sessions, used by appli-

cation programmers.

Service usage information specified in the request flow service access attribute

may come in different forms. For example, it may state the rate and the arrival pattern

of the requests of certain types as they are received by the server. It may describe

the (typical) structure(s) of incoming user sessions. Request flow information may

contain various timing parameters, such as session inter-request times, or the rate

of incoming new sessions. Models capturing the structure of request flow can be

66

used to reproduce and simulate user activities, therefore the problem of representation

of request flow information is tightly coupled with the problem of web workload

generation.

3.1.1 Web session structure

A user session consists of a sequence of service requests, issued by a single user.

These requests do not go in arbitrary order, because they adhere to the application

logic of the service. In the realm of web-based services, the set of service requests

that a user can make consists of the HTML links presented on the web page that was

last displayed to the user, that is, it depends on the result of the previous request.

Therefore generally, session structure can be captured by a state transition diagram,

where states denote results of service requests (web pages), and arrows (transitions)

denote possible service invocations. Note that this model does not capture different

client behavior, such as manually typing a URL in the address bar of the browser, be-

cause generally, service providers discourage such user behavior and often even make

it impossible, populating web links with hidden URL parameters and dynamically

generated keys.

The set of possible transitions from a given state may depend on (1) the previ-

ous requests that user made in the session, i.e., on the session state, and (2) on the

application shared state. The first category is exemplified by events such as user sign-

in/sign-out (if the user is signed in, there will be an HTML link for signing out, and

vice versa), or the contents of the shopping cart (e.g., if the shopping cart is empty,

the there will be no HTML link to start the checkout process). The second category is

exemplified by the cases such as an item being out of stock — there would normally

67

be no link allowing addition of the item into the shopping cart.

3.1.2 Web session structure modeling — CBMG model

Whereas state transition diagrams producing possible web session structures can be

arbitrarily complex, in most cases these diagrams have quite simple organization, or

can be considerably simplified by only accounting for state transitions (and so —

certain session structures) that represent typical user behavior for a given Internet

service. For example, session structures can often be represented by graphs, where

the set of possible state transitions (possible service requests) depends only on the

current state (previous request).

In this dissertation, we follow the trend to model web session structures by state

transition diagrams (see also Section 2.5.1) and adopt the Customer Behavior Model

Graph [89] approach to model user sessions. As proposed originally, Customer Be-

havior Model Graph (CBMG) is a plain state transition graph, where the set of pos-

sible transitions (service requests) does not depend on the implicit application (ses-

sion or shared) state. In the CBMG model, state transitions are governed by tran-

sition probabilities pi, j of moving from state i to state j (∑N
j=1 pi, j = 1, where N is

the number of states in the CBMG). In our model we also allow a finite number of

finite-domain attributes for each state of the CBMG. These attributes can be used

to represent session state, i.e., session events like signing-in and signing-out of an

e-Commerce Web site, or the number of items put into the shopping cart, for an on-

line store. The set of possible transitions and probabilities can in turn depend on the

values of these attributes. Since the set of attributes and their values is finite, each

extended CBMG may be reduced to an equivalent CBMG, by duplicating states for

68

Home Search
[empty cart]

Item
[empty cart]

Add To CartSearchItem

Cart Register

Buy RequestBuy Confirm

Exit
[browser]

Exit
[buyer]

pse,ie

pie,se

p
se,exitpse,se

1

pie,exit

pie,a

pie,ie

pa,r

pa,sp
c,s

p
s,c pc,r

ps,s

pi,a

pi,s

ps,i

pi,i

1 1

1

pa,i

Figure 3.2: CBMG of a sample TPC-W buyer session.

each possible combination of attribute values.

Fig.3.2 shows the CBMG of a sample buyer session for the TPC-W application

(Section 2.4.1), which we will be frequently using in this dissertation. This CBMG

produces simplified user session structures, which use only a subset of the available

TPC-W request types, but are rich enough to include essential application activities

and represent requests with a wide range of functional and execution complexity.

Each session modeled by this CBMG starts with the Home request, and may end ei-

ther after several Search and Item Details (Item in short) requests (we refer to such

sessions as browser sessions), or after putting one or more items in the shopping cart

and completing the purchase (buyer session). Note that, for simplicity, we do not

69

differentiate between the Search, New Products, and Best Sellers requests (see Sec-

tion 2.4.1) and they are represented as one state. In the TPC-W web workloads using

the presented CBMG we will be actually using the TPC-W Best Sellers request as the

CBMG request of type Search. We have one (boolean-valued) CBMG state attribute

for the Search and Item states, which denotes the presence of items in the shopping

cart, to model the assumption that once a user puts an item into the shopping cart,

he never abandons the session and eventually commits the order. This assumption is

introduced in order to stress essential buyer activities in this sample session scenario.

CBMG model can be augmented with additional information specifying parame-

ters of the requests constituting a session. For example, in the TPC-W buyer CBMG

presented above, each Item request carries an additional parameter — the itemId

of the item to be displayed. If not stated otherwise, we assume that there are S items

in the store, and that the i-th item is picked with probability pitem
i . The Add To Cart

request chooses the same item that was picked in the preceding Item request, and it

puts it in the shopping cart with quantity 1.

Timing parameters

Request flow information is often augmented with various timing parameters describ-

ing arrival patterns of service requests. In a session-oriented request flow specifica-

tion, session inter-request times and arrival patterns of new sessions are the most

commonly used timing parameters. It is usually assumed that session inter-request

time is a random variable with a certain distribution, and its mean value Tir (i.e., av-

erage session inter-request time) is one of the timing parameters of interest. For the

arrivals of new user sessions, whatever this process looks like, we are interested in the

70

average rate of incoming new sessions — λ , which reflects the intensity of the user

load.

3.1.3 Request flow properties

Different service management problems addressed in this dissertation are sensitive

to different aspects of the request flow information. Below we list the request flow

properties that we will be looking at in this dissertation.

• RATE — overall request rate; RATEi — rate of requests of a particular type i.

• Vi — average number of visits to state i (requests of type i) in a session.

• Breakdown of requests by their type: Ri — percentage of requests of type i.

• Lav — average session length (in requests).

• Timing parameters: Tir — average session inter-request time, λ — rate of in-

coming new sessions.

• Specific properties of request sequences of web sessions, e.g., the relative oc-

currence and placement of certain requests in a session.

3.1.4 Request flow modeling (web workload generation)

There are two major approaches in modeling request flow — request-oriented and

session-oriented. In this dissertation we will use both of them. Our approaches for

doing so are described below.

71

Request-oriented workload specification

This workload is used in situations, where the session identity of requests is not rele-

vant to the problem being examined. For generating this workload, we directly specify

the values of RATEi — rates of requests of different types. For each request type i,

the flow of requests of that type is modeled as a Poisson process [73] with parameter

RATEi.

Session-oriented workload specification

This web workload consists of K CBMGs: CBMG1, CBMG2, . . . , CBMGK . The

probability of a session having the structure of CBMGk is pk,∑
K
k=1 pk = 1. For a

session of structure CBMGk, the probabilities of state transitions are denoted pk
i, j.

Following the discussion in Sections 2.5.1 and 2.5.2, we model session inter-

request (user think) times as either exponentially (Exp(µ)) or log-normally (Ln(µ,σ))

distributed. In cases where the effects of having different distributions of session

inter-request times need to be compared, we use these distributions with the pa-

rameters chosen so that their mean values match (E[Exp(µ) = 1/µ]; E[Ln(µ;σ)] =

eµ+σ2/2). To give the reader a feeling of how the two distributions differ, we show in

Fig. 3.3, Cumulative Distribution Functions (CDF) of five distributions — Exp(0.1),

Ln(2.12;0.6), Ln(2.12;0.6), Ln(1.8;1), and Ln(1.58;1.2) — all having mean value

10.

When not stated otherwise, the flow of incoming new sessions is modeled as a

Poisson process with arrival rate λ . The Poisson process produces a relatively smooth

sequence of events, and fails to model inherently bursty and self-similar traffic typ-

72

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 5 10 15 20 25 30 35 40
Ln(2.12;0.6) Ln(2;0.78) Ln(1.8;1) Ln(1.58;1.2) Exp(0.1)

Figure 3.3: CDF of the exponential and four log-normal distributions, all having mean

value 10.

ically observed at web sites [138]. To better model the latter, we also use the B-

model [138], which has been shown to produce synthetic traces with burstiness match-

ing that of real web traffic. We use this model to produce load with different degrees

of burstiness (determined by the b-parameter of the B-model), and do it in a way

to only imitate local (short-lived) burstiness to avoid substantial shifting of massive

event clusters to short time intervals. Specifically, we model two types of bursty load,

one with b = 0.65 and another with b = 0.75,1 and refer to these as “low-bursty” and

“high-bursty” load respectively. In contrast with these two methods, we refer to the

Poisson arrival model as “smooth.” Fig. 3.4 shows the event arrival patterns for a Pois-
1In the original B-model study [138], the authors analyzed real web traces and inferred that the b-parameter

for those traces ranged from 0.6 to 0.8, so we felt that values 0.65 and 0.75 would be reasonably representative.

73

0

30

60

90

120

150

180

210

240

0 60 120 180 240
Time (seconds)

N
um

be
r o

f e
ve

nt
s

uniform Poisson B-model (b=0.65) B-model (b=0.75)

Figure 3.4: Event arrival patterns for the three processes: Poisson (λ = 1) and B-

model (b = 0.65 and b = 0.75).

son process (λ = 1), and for the two B-model processes (b = 0.65 and b = 0.75) with

the same average event arrival rate (1 event/s). This graph helps to visually assess the

degree of event arrival burstiness produced by different models.

The request flow parameters that we are looking at in this work (Section 3.1.3) can

be extracted from the parameters of the CBMG-based session-oriented web workload.

The values of Vi, the average number of visits to state i, can be obtained by solving the

following system of linear equations (this apparatus was originally developed in [89]): V1 = 1

Vi = ∑
N
k=1Vk · pk,i for all i = 2, . . . ,N

(3.1)

where V1 is the entry state (e.g., the Home request in the CBMG in Fig. 3.2). The

74

average session length is given by the equation

Lav =
N

∑
i=1

Vi, (3.2)

and the breakdown of requests by their type is given by

Ri =
Vi

L
(3.3)

Finally, the overall request rate and request rates for specific request types are given

by

RATE = λ ·L

RATEi = λ ·Vi for i = 1, . . . ,N
(3.4)

In case the user load consists of several CBMGs, equations (3.1) – (3.4) are gener-

alized in a straightforward manner using the probabilities associated with different

CBMGs as a weighting factor.

3.2 Coarse-grained resource utilization and “reward”

This service access attribute contains information about the high-level “cost” of exe-

cution of requests of different types and the “profit” (“reward”) that requests of dif-

ferent types bring to the service provider.

3.2.1 Coarse-grained request resource utilization

Requests of different types may exhibit different execution complexity and show dif-

ferent server resource consumption, because they tend to utilize different sets of ap-

plication components and middleware services. Some requests, for example, may

75

need to access a back-end database, while some may need CPU-intensive process-

ing. Information about the coarse-grained “cost” of a request execution can help in an

approximate comparison of the resource consumption of different requests. Usually

such cost is specified on the basis of request type. This choice has the following ra-

tionale. Processing times for individual requests in typical Internet services can vary

widely by as much as two-to-four orders of magnitude. However, there tends to be

much more variation across request types than for requests within the same type but

with different request parameters [32, 45].

Coarse-grained request resource utilization (request execution cost) can be speci-

fied by the service provider in the form of abstract resource consumption units (called

computational quantums in [32]). However, such static specification can be quite

inaccurate for the following reasons. First, request execution times tend to depend

on actual user load — request processing times under heavy load are much higher

that those measured in isolation. Second, execution of complex SQL queries in the

database, especially those involving merging and sorting, depend on the volume of

the data processed, which may vary considerably during service lifetime. An alterna-

tive approach, which we adopt in this dissertation, is to specify request execution cost

as the average request processing time of the requests of certain type. This approach

is also attractive because it allows automated collecting and updating the required

information through online request profiling in real time.

3.2.2 Request reward

Service providers of business critical services are interested in boosting service rev-

enues. However, different user sessions make different contribution to the profit at-

76

tained by the service. The specification of profit (or, generally speaking, “reward”)

brought by service requests is an opportunity for service providers to indicate which

requests are more valuable, according to the service logic, or to indicate which re-

quests are crucial for the service. This information may be used by server-side re-

source management mechanisms to preferentially allocate server resources to requests.

Let’s consider the following three examples.

• In the online shopping scenario introduced earlier (Section 1.1), the service

provider might be interested in giving a higher execution priority to the ses-

sions that have placed something in the shopping cart (potential buyer sessions),

as compared to the sessions that just browse product catalogs, making sure that

clients that buy something (and so — bring profit to the service) receive better

QoS.

• For Internet services, some of whose web pages contain third party-sponsored

advertisements, the service provider’s profits may (directly) depend on the num-

ber of visits to these pages. Consequently, the service provider may wish to

provide better QoS to the sessions that visit these pages more often.

• For many services whose client interactions involve different length sessions,

service profit may be defined in terms of the number of sessions that visit a

distinguished “success” page. In such cases, the service provider may prefer

shorter sessions visiting the success page over longer ones, because it will be

able to serve more of them.

It is the service provider’s responsibility to define the reward function associated

with the session. The model we adopt in this study is simple yet general enough to

77

encompass several possible applications: a reward value is defined for every request

type of the service. The reward of the session is the sum of rewards of the requests in

the session. The reward counts only if the session completes successfully.

To illustrate the reward formulation, let us define reward functions for the three

example scenarios presented above.

• In the on-line shopping scenario the profit of the service is reflected by the vol-

ume of items sold. One way to define a reward function for the on-line store

service is by assigning a reward value of 1 for the Add to Cart request (see

Fig. 3.2) — the shopping cart will contain as many items in it as the number of

times the Add to Cart request was executed.

• In the example of third party-sponsored advertisements, the idea of reward spec-

ification is straightforward — assign each such web page a reward value based

on the agreement between the service and the third party, e.g., based on how

much the latter pays the former for a client’s click on this page.

• In the example where the service provider wants to maximize the number of

successful sessions the reward specification is done by assigning a reward value

of 1 to the request corresponding to a visit to the “success” page.

3.3 Fine-grained server resource utilization

This service access attribute provides detailed information about how service requests

are processed in the application server. The actual information about the way a request

gets processed by the server may vary for different problems, QoS targets and metrics

78

being optimized. Here are the examples of information that could be specified in

this service access attribute and that could be useful in determining server resource

utilization by service requests.

• Components invoked during a request’s execution, their types and times spent

in each component. As we discussed in Section 2.2.2, component invocation is

a relatively expensive operation for the application server, so a requests’s server

resource consumption is directly affected by how many component invocations

are involved in the execution of a given service request.

• Communication with auxiliary middleware services, such as JNDI naming ser-

vice, Transaction Manager service, or JMS messaging service. This information

may be used in assessing the request’s resource consumption, in identifying the

middleware services required to run on a given server node, and in identifying

middleware component and performance bottlenecks.

• Datasources accessed by a request and times spent processing SQL directives.

Processing complex database queries is a major performance bottleneck in mod-

ern data-centric Internet services, therefore this information can be used in as-

sessing the execution complexity of a request.

• Request’s transactional behavior. As we discussed in Section 2.2.3, based on

the request’s transactional attributes and on the components’ deployment poli-

cies, executing a method invocation may require exclusive access to the invoked

component. This information may help in identifying the application’s locking

behavior and its lock bottlenecks.

79

The low-level information about how service requests are processed in the appli-

cation server can be obtained through a fine-grained profiling of server-side request

processing (made possible by componentized server architectures; see Section 2.2.2

for the discussion, and Section 3.5 for the description of our JBoss request profiling

infrastructure), by statically analyzing the application structure (application source

code and deployment descriptors), or by a combination of both approaches.

3.3.1 Request execution model with 2-level exclusive resource holding

In this section we present a model of request execution with 2-level exclusive resource

holding (threads and DB connections) — an example of the actual specification and

usage of information about fine-grained server resource utilization. We use this model

for optimizing utilization of server resource pools (Chapter 5).

It is often the case that middleware server performance is limited by several “bot-

tleneck” resources, that are held exclusively by a request for the whole duration or

some significant portion of it (such as server threads or database (DB) connections),

as opposed to low-level shared OS resources. In the absence of application errors,

failing to obtain such a resource is the major source of request rejection.

We advocate and use a request execution model, where a request is rejected (with

an explicit message) if it fails to obtain a critical server resource within a specified

time interval. This approach is shared by a vast majority of robust server architectures

that bound request processing time in various ways (e.g., by setting a deadline for

request completion), as opposed to a less robust approach, where a request is kept in

the system indefinitely, until it is served (or is rejected by lower-level mechanisms

such as TCP timeout). The former approach not only guarantees that a request is

80

either served within a time limit or unambiguously rejected, but also helps to more

efficiently free server resources of the requests that can not be handled due to the

server capacity limitations.

Fig. 3.5 schematically illustrates our model of request execution and the flow of a

request through the system. Requests compete for two critical exclusively-held server

resources: server threads and DB connections; these resources are pooled by the web

server and the application server respectively. If the timeout value for obtaining a

thread or a DB connection expires, the request is rejected with an explicit rejection

message. An acquired database connection is cached and is used exclusively by the

request, until it is processed (the rationale and advantages of caching will be discussed

in Section 5.3). When the request is processed, the thread and cached database con-

nections are returned to their respective pools. Note that some requests do not require

access to database(s), so they can be successfully served just by acquiring a server

thread. For the purposes of this model we also make a simplifying assumption that

there is a single database that stores the application data and that all the communica-

tion with the database required to process a service request can be made over a single

DB connection, in other words, a request requires no more than one DB connection

(see also the discussion in Section 5.3).

In this model of request processing, request execution time can be represented as

follows:

t = wTHR + p+wDB +q (3.5)

where wTHR is the time waiting for a thread, p — time doing request processing

before getting a DB connection, wDB — time waiting for a DB connection, q — time

81

Service
request

waiting
queue Thread

pool

S
c
h
e
d
u
l
e
r

wait timeout:
request rejection

request
served

(thread released)

waiting
queue Database

connection
pool

S
c
h
e
d
u
l
e
r

wait timeout:
request rejection
(thread released)

request served
(thread and DB

connection released)

with
thread

Figure 3.5: Request execution model with 2-level exclusive resource holding (threads

and database connections).

processing the request with the DB connection cached. This latest time includes the

time spent in making SQL queries, retrieving the results, processing them, and making

all other request processing while the DB connection is cached by the request. Also

note that in this dissertation we treat the database as a black box.

In Chapter 5 we will show how this model of request execution with 2-level exclu-

sive resource holding can be used to identify the optimal configuration of the thread

and DB connections pools. More specifically, achieving this becomes possible with

the knowledge of the values of p and q, which can be obtained through fine-grained

profiling of request processing.

3.4 Data access patterns

This service access attribute contains information about how service requests access

application data. The information specified at this level again varies for different

problems, QoS targets and metrics being optimized, but typically it would specify the

82

read-write behavior of a request with respect to the data it accesses, and information

about whether this data is shared among multiple users. This service access attribute

may also specify, based on the needs of a specific service management problem, more

detailed information, for example, what segment(s) of application data is (are) ac-

cessed and what are the consequences of accessing this data. It may also specify

how tolerable a certain request is to application data quality (see Section 1.1), this

information may be used in managing data replication and caching.

Below we describe a concrete example of specifying information about data access

patterns of service requests.

3.4.1 OP-COP-VALP model

In the problem of providing session data integrity guarantees (Chapter 6), information

about the business-critical shared application data that the service provider needs to

cover by data consistency constraints can not be automatically extracted from the

application structure or code — it needs to be identified by the service provider. To

this end, we propose a flexible model for specifying web session data consistency

(integrity) constraints — the OP-COP-VALP model. This model draws its ideas from

several areas of advanced transaction processing (Section 2.7.2), such as semantics-

based concurrency control and relaxed consistency but is specifically tailored for the

case of web sessions.

In the OP-COP-VALP model, potential shared data conflicts are identified by

specifying pairs of conflicting service requests (operations): OPeration (OP in short)

and Conflicting OPeration (COP in short). The relation is not symmetric apriori and

means that COP invalidates OP, that is, the COP request changes some data, that was

83

accessed or updated during the execution of an OP request by another session. One

may also associate correlation Id(s) (corr.Id in short) with both the OP and

the COP requests. corr.Id(s) is a (set of) value(s) that can be extracted from the pa-

rameters and the return value of the request. The OP and COP requests are considered

conflicting if they come from different sessions (COP after OP) and their corr.Id(s)

match (have a non-empty intersection as sets). For simplicity, one may think of OP

and COP as READ and WRITE operating with associated conflict semantics. Let’s

consider two examples, taken from an online store application:

Example 1: Item Quantity:

OP: Add To Cart request, adding an item to the shopping cart
corr.ID: itemId, a parameter specifying the ID of the item added to
the cart

COP: Commit Order request, finalizing the purchase
corr.ID(s): the set of itemIds of the items in the shopping cart

This example says that the Commit Order request conflicts with the Add To Cart

request if they involve the same item. Note that an item is added by a user to his

shopping cart based on the information about its price and available quantity. Com-

mit Order request decrements the available quantities of the items purchased, thus

potentially invalidating the information previously presented to the users who added

the corresponding items into their shopping carts.

Example 2: List Of Items:

OP: Search Items
corr.ID: category, a parameter specifying the category of items the
user looks for

COP: Insert Item, a service request, which inserts an item into the product
catalog
corr.ID: some request parameter that represents category of the in-
serted item

84

This example says that the Search Items request (which returns the set of items

belonging to a particular category) is invalidated by the Insert Item request (which

inserts a new item into the product catalog), if the inserted item belongs to the same

category. This specification of a data conflict makes sense semantically, because af-

ter such an insertion, the result of the Search Items request would be different, now

containing the newly inserted item.

Given this notion of conflicting operations, there are two ways to specify the data

inconsistency that can be tolerated by the service:

1. The Invalidation Distance approach specifies the number of COP requests from

other sessions that need to happen after the OP request, for that OP to become in-

valid. The intuition is that each COP changes the data to a certain (fixed) degree,

so data inconsistency can be measured in terms of the number of COP requests.

This measure of data inconsistency is somewhat analogous to the Order Error

used in the TACT formulation [145].

2. The Numerical Distance approach associates a numerical value (NUM VAL) with

the OP request, as a function of the request parameters and the return value; and

defines how the (correlated) conflicting COP request changes this value. The

latter is done by specifying a ChangeNumVal function for each COP operation.

Examples shown below are given in the context of the conflicting operation pairs

described earlier:

Example 1: Item Quantity:
NUM VAL: the available quantity of the item put into the shopping cart
in the Add To Cart request
ChangeNumVal(NUM VAL) = NUM VAL− i, where i is the quantity of
the item in the purchase

85

Example 2: List Of Items:
NUM VAL: the number of items returned by the Search Items request
ChangeNumVal(NUM VAL) = NUM VAL+1

Numerical Distance makes possible specifying absolute and relative tolerable

data inconsistency for the pairs of conflicting requests. Defining tolerable in-

consistency through the Numerical Distance is analogous to the Numerical Er-

ror used in the TACT formulation [145].

As we discussed in Section 2.7.2, web sessions are user-driven and open-ended.

There is no global commit for a web session, at which point the service logic could

make sure that OPs of the session have not been invalidated, and consider the session

ended. Additionally, in several situations, data consistency constraints for the session

need only be satisfied if the session reaches a certain point. For example, in the buyer

scenario one would want an item’s price and quantity not to change substantially only

if the user finally buys the item. Such events, when the service logic should validate a

session’s OPs, needs to be explicitly specified: in our model this is done by specifying

VALidation Points (VALP in short). VALP is a service request with a reference to

a set of previously defined OPs (if necessary, correlated through corr.Ids), that it

covers. The logic is that identified OPs need to be kept valid only for the time duration

between the OP and VALP requests.

Abstracting application-specific data conflicts into the OP-COP-VALP model al-

lows the application to delegate the responsibility for enforcing desired data consis-

tency constraints to the underlying middleware. Generic middleware mechanisms

could enforce data consistency constraints working only at the level of the abstract

OP-COP-VALPmodel, with mapping of requests to OPs, COPs and VALPs, and other

86

information specified by the service provider. This separation is consistent with the

middleware concept of offloading functionality from the application code to the un-

derlying server environment, and additionally permits dynamic adaptation of concur-

rency control policies to changes in parameters of service usage, in order to maximize

the specified metric.

We use the OP-COP-VALP model later in this dissertation to provide session data

integrity guarantees (Chapter 6).

3.5 Request profiling infrastructure

Tracing user requests is a well known technique and is widely used in computer sys-

tems for various purposes, such as accounting, debugging, and performance analysis.

The feature of request logging is available on all mature web servers, however, the

information traced by the standard request logging functionality has a very limited

scope. In order to be able to gather more fine-grained information about request

execution, we need an request profiling infrastructure, such as one used in a recent

study [31] for problem determination and root cause analysis in dynamic Internet ser-

vices.

In this section we present our request profiling infrastructure and describe its im-

plementation in the JBoss/Jetty web application server. The implementation takes

advantage of the microkernel architecture of JBoss (Section 2.3.1) and overall con-

tributes to less than 1% of the server codebase. The infrastructure (as well as all other

middleware mechanisms injected in JBoss) is implemented in a modular, extensible,

and pluggable fashion with minimal, backward compatible, changes to the original

87

application server code. We also show that performance overheads imposed by the

infrastructure are rather small.

3.5.1 JBoss instrumentation

Various JBoss/Jetty modules are augmented with additional functionality and execu-

tion hooks to gather information about service request execution. While a request

is being processed, all the information associated with it is kept in the local Request

Context, associated with the request through a dedicated ThreadLocal Java object

(a request is executed by a single thread). When the request completes, this data is

sent to the Request Profiling Service, where it is added to a server-wide in-memory

service usage information storage. Fig. 3.6 schematically shows the architecture of

the profiling infrastructure.

Request Profiling middleware service

The Request Profiling middleware service acts as a centralized storage of informa-

tion about completed service requests. It is implemented as a JMX MBean (Sec-

tion 2.3.1) in order to standardize access to it. The service keeps track of currently ac-

tive sessions, as well as the aggregated information about recently completed service

requests. The former is used to keep histories of session requests and inter-request

times for currently active sessions, while the latter is used to extract various parame-

ters of service usage from the history of recent requests executed against the service.

Request profiling in JBoss/Jetty is performed at all three J2EE tiers (Section 2.2.1).

The profiling functionality is injected in a modular and pluggable fashion — by sub-

stituting certain functionality modules with ones also augmented with the profiling ex-

88

Server Profiling
Interceptor

Client Profiling
Interceptor

Database
Connection

Manager

Managed
Connection Pool

Request
Context

Service

request
Request
Context

Request
Context execution

Request Profiling Service

Socket Listener

request
execution info

Figure 3.6: Architecture of the JBoss/Jetty profiling infrastructure.

ecution hooks. Only absolutely necessary changes were made to the original JBoss/-

Jetty code, which are backward compatible with the original server configuration.

Web tier profiling

Request profiling at the web tier is performed by the modified Jetty HTTP/web server.

It is used to gather high-level request flow information about incoming client requests,

which are classified by their type (based on the URL pattern) and session affilia-

tion. To inject profiling functionality, we substituted the default Jetty’s Socket Lis-

tener module, which listens for incoming user requests on a predefined TCP/IP port

and performs server thread pooling, by an augmented socket listener implementation,

which for each request creates the Request Context object and associates it with the

89

request’s thread (see also Section 4.5 for other changes introduced to the Socket Lis-

tener module). When a request completes, the information accumulated in the request

context is sent to the Request Profiling service.

EJB tier profiling

Profiling at the EJB tier is performed by adding two JBoss EJB interceptors (Sec-

tion 2.3.2) — Client Profiling Interceptor and Server Profiling Interceptor (each at

the client and the server side, correspondingly), which record in the request context

the information about components and methods invoked. The interceptors are also

responsible for propagating the request context between the JVMs by putting it in the

serializable part of the invocation object, that travels over the wire, in case of a remote

invocation.

Data tier profiling

JBoss uses the Java Connector Architecture (JCA) [114] to integrate the relational

datasources. JCA allows the application server to pool database connections and to

manage their transactional and security aspects in a standardized fashion. We in-

jected the profiling functionality into the data tier by modifying the Database Con-

nection Manager and Managed Connection Pool modules (see also Section 4.5 for

other changes introduced to these modules). This allowed us to gather information

about how database connections are assigned to requests and record various connec-

tion management events, e.g., when connections are requested from the pool, granted,

closed and returned to the pool (Section 2.2.2). We do not profile how specifically DB

connections are used by requests (i.e., what JDBC queries are executed). Such more

90

detailed information can only be obtained with additional profiling hooks injected into

the database-specific JDBC driver code. However, information gathered by our pro-

filing mechanisms is sufficient for the server resource management mechanisms we

describe in Chapter 5.

3.5.2 Gathering and analyzing the information

The Request Profiling middleware service not only gathers the information about re-

cent service requests, but also provides mechanisms to manage this information and

methods to extract parameters of service usage that we are interested in.

To keep track of only recent service usage, we implement an information gather-

ing mechanism where events are stored in so-called shifting epochs. A currently open

epoch records events (e.g., new session arrivals) either for a specified time interval or

until it accumulates a certain number of events, after which this epoch closes, a new

one opens and starts to record events, and the oldest epoch is discarded. This mecha-

nism simplifies phasing out the aging epochs, imposes a limit on the memory used for

storing the information, and also reduces data management overheads of recording an

event (one does not need to discard the oldest event on every event arrival).

To extract various service usage parameters (e.g., average session inter-request

time) we perform statistical analysis of the accumulated data. Each request for a pa-

rameter estimate indicates the number of recent epochs to be used for it, and each

calculated parameter estimate is accompanied by the confidence interval with confi-

dence level value of 95%, computed using the Student’s T-test [101]. The confidence

interval contains the actual value that we are trying to estimate with a probability of

95%. Based on the specific problem at hand, a computed parameter estimate can be

91

deemed invalid, if its confidence interval is larger than a predefined threshold (e.g.,

±0.01, or ±10% of the estimated value). In this case, the parameter estimate can be

discarded or recomputed taking into account a greater number of epochs (and a greater

number of events), which will likely decrease the computed confidence interval.

3.5.3 Performance overheads of the profiling infrastructure

To evaluate the performance overheads that our profiling infrastructure imposes we

conducted a series of experiments with two server configurations with the TPC-W ap-

plication deployed on them: (1) original JBoss/Jetty application server and (2) JBoss/-

Jetty augmented with our profiling infrastructure.

The server environment for these tests consisted of two dedicated 1GHz dual-

processor Pentium III workstations (one with JBoss/Jetty web application server, an-

other with MySQL database server), connected by a high-speed LAN. A separate

workstation was used to produce artificial session-oriented user load, with different

λ , the rate of new session arrivals (Section 3.1.4). In order to better evaluate the over-

heads of the profiling infrastructure, we used the TPC-W application configuration

with the smallest database population size, and therefore with the highest sustainable

request throughput: NUM EBS = 1, NUM ITEMS = 100 (Section 2.4.1). For the

same purpose, we used in-memory (HEAP) database tables in the MySQL database.

In the experiments we measured average request response times and CPU and

memory utilization. The latter two parameters were only measured for the JBoss/Jetty

server, because MySQL server performance did not depend on the presence of the

JBoss/Jetty profiling infrastructure. In both tested server configurations, the MySQL

database server was the performance bottleneck. The results of the experiments are

92

Table 3.1: Comparative performance of JBoss/Jetty web application server augmented

with the profiling infrastructure (original: original server architecture, profiling: aug-

mented with the profiling infrastructure).

User
load

Average request re-
sponse time (ms)

CPU utilization Memory utilization
(MB)

(in λ) original profiling original profiling original profiling
λ = 1 40 52 9.7% 9.9% 104 125
λ = 2 61 75 25.9% 27.4% 109 135
λ = 3 83 104 32.0% 35.9% 114 143
λ = 4 127 201 40.3% 45.1% 142 164
λ = 5 187 320 57.4% 64.2% 154 173
λ = 5.5 670 n/a 68.8% n/a 160 n/a

shown in Table 3.1.

The presence of the profiling infrastructure decreased the maximum sustainable

session throughput, but only slightly (λ = 5.5 was the approximate maximum ses-

sion throughput for the original server configuration, while λ = 5 — for the server

augmented with the profiling infrastructure). As the results show, CPU and mem-

ory overheads are small and are consistent for various user loads. Request response

times for the server with the profiling infrastructure are only marginally higher, if the

server operates well below maximum sustainable user load. The overhead margin be-

comes higher as the load approaches server capacity, but under such load the server

is anyway showing deteriorating performance, as request response times for both the

original JBoss/Jetty server configuration and the one with the profiling infrastructure

skyrocket.

93

3.6 Summary

In this chapter we have presented four related groups of service access attributes, that

correspond to different levels of service usage information, ranging from high-level

structure of user sessions, to low level information about resource consumption by

different request types. We have described specific examples of information belong-

ing to different service access attributes and have shown how this information can be

obtained and abstracted into specific models of service usage and resource utilization,

used in this dissertation.

We have also presented our request profiling infrastructure that we implemented

in the J2EE application server JBoss for automated gathering of service usage infor-

mation. We have described how execution of service requests is profiled at different

application tiers, and how the obtained information is gathered, stored and analyzed.

The results of the experiments evaluating relative performance of the original JBoss

server and JBoss augmented with the profiling infrastructure show that performance

overheads of using the infrastructure are marginal.

94

Chapter 4

Maximizing Reward Brought by

Internet Services

This chapter focuses on the problem of maximizing reward brought by Internet ser-

vices, which was introduced earlier in Section 1.2.1. In Sections 4.1 and 4.2 we

formulate the problem and present our approach to solving it. Section 4.3 briefly re-

iterates over the models used and the assumptions made, while also providing some

additional details. In Section 4.4 we describe the proposed reward-driven request pri-

oritization (RDRP) techniques. Section 4.5 details the middleware support required

by the RDRP mechanisms and Section 4.6 presents our evaluation methodology and

experimental results.

95

4.1 Problem formulation

In a typical setting a web application server hosting an Internet service processes

incoming user requests on a first-come-first-served (FIFO) basis. Although this ap-

proach provides fair access to the service for all clients, it does not work as well if

the service operates under overload conditions, whether such conditions are steady

or transient (as a result of bursty client behavior). In such situations, clients see in-

creased response times and their requests (and the containing sessions) may get re-

jected, which leads to user frustration, and as a consequence, to lowered usage of the

service and reduced service revenues.

Consequently, modern-day services may contain one or more server-side mecha-

nisms to deal with such overload situations. Session-based admission control (Sec-

tion 2.6.1) admits only as many sessions as can be served by the service. More

complex service differentiation mechanisms (Section 2.6.2) have also been used to

provide stable QoS guarantees (e.g., request throughput, response times) to different

client groups, based on prenegotiated Service-Level Agreements (SLAs). Common

to such schemes is the consideration that the QoS received by a client is determined

upfront by his association with a client group or by his service membership status.

Although they offer better performance than FIFO scheduling, the above schemes

fall short of delivering the best performance in many important scenarios. In particu-

lar, a service provider often encounters situations where it makes sense to differenti-

ate among clients based on the (dynamic) activities these clients perform in a session,

rather than on their (static) identity, in order to boost service revenues, or for other

application-specific goals. Let’s consider the following three examples.

96

• In the online shopping scenario introduced earlier, the service provider might be

interested in giving a higher execution priority to the sessions that have placed

something in the shopping cart (potential buyer sessions), as compared to the

sessions that just browse product catalogs, making sure that clients that buy

something (and so — bring profit to the service) receive better QoS.

• For Internet services, some of whose web pages contain third party-sponsored

advertisements, the service provider’s profits may (directly) depend on the num-

ber of visits to these pages. Consequently, the service provider may wish to

provide better QoS to the sessions that visit these pages more often.

• For many services whose client interactions involve different length sessions,

service profit may be defined in terms of the number of sessions that visit a

distinguished “success” page. In such cases, the service provider may prefer

shorter sessions visiting the success page over longer ones, because more of

them could be served.

These examples are unified by the idea that the service may benefit from providing

better QoS to sessions, which bring more profit (give more reward), where the notion

of profit or reward is defined in an application-specific fashion. What is important is

that the information about the client’s possible usage of a service (and its associated

contribution to service reward) is not encoded in any static profile, so application-

logic-independent SLA-based service differentiation approaches are not as beneficial

here.

Instead, to be able to provide better QoS to the sessions that bring more reward,

the service provider now needs to predict the behavior of a client. If the client is

97

a returning customer and his identity can be determined (e.g., using HTTP cookies),

than decisions on QoS provided to this client can be based on the history of his service

usage (e.g., history of previous purchases). However, the success of this per-client

history-based approach, is, not unexpectedly, highly dependent on the correlation

between the past and the future behavior of a client, and may not work well if such a

correlation is absent or weak.

4.2 Approach

Instead of focusing on individual client behavior, we advocate the approach of predict-

ing a session’s activities by associating it with aggregated client behavior or broader

service usage patterns, obtained for example through online request profiling. Specif-

ically, we introduce Reward-Driven Request Prioritization (RDRP) mechanisms that

try to maximize reward attained by the service, by dynamically assigning higher exe-

cution priority values to the requests whose sessions are likely to bring more reward.

Our methods compare the sequence of a session’s requests seen so far with aggre-

gated information about client behaviors, and use a Bayesian inference analysis to

statistically predict the future structure of a session, and so — the reward the session

will bring and the execution cost it will incur. The predicted reward and execution

cost values are used to compute each request’s priority, which is used in scheduling

“bottleneck” server resources, such as server threads and database connections, to

incoming client requests.

We have implemented our proposed methods as a set of middleware mechanisms,

which are seamlessly and modularly integrated in the open-source Java web appli-

98

cation server JBoss (Section 2.3). Our profiling infrastructure performs automatic

real-time monitoring of client requests to extract parameters of service usage and to

maintain the histories of session requests. It also performs fine-grained request pro-

filing to identify execution times for different service request types. This information

is used to compute request priorities, which in turn influence queueing behavior for

various application server resources. We evaluate our approach on the TPC-W bench-

mark application (Section 2.4.1) using CBMG-based web workloads (Section 3.1.2),

and compare it with both the session-based admission control and per-client history-

based approaches.

4.3 Models and assumptions

Component-based Internet services are usually built as complex (and often distributed)

software systems, consisting of several logical and physical tiers and accessing mul-

tiple backend datasources. We present our request prioritization algorithms in a sim-

plified centralized setting however, to focus on the benefits of the proposed request

prioritization techniques. We expect that the methods will show their utility in a dis-

tributed setting as well, where they can be independently applied at every system re-

source contention point that sees concurrent requests competing for server resources.

As everywhere throughout this dissertation, we use the request execution model

with 2-level exclusive resource holding (Section 3.3.1). Fig. 4.1 illustrates the logical

model of web application server architecture and the flow of a request through the

system. Requests compete for two critical exclusively-held server resources: server

threads and database (DB) connections; these resources are pooled by the web server

99

Session and
request type
classification

HTTP
request

Reward-
driven

request
prioritization

priority
queues

Thread
pool

S
c
h
e
d
u
l
e
r

. . .

wait timeout:
request rejection

request
served

(thread released)

priority
queues

Database
connection

pool

S
c
h
e
d
u
l
e
r

. . .

wait timeout:
request rejection
(thread released)

request served
(thread and DB

connection released)

with
thread

Figure 4.1: The logical model of web application server architecture.

and the application server respectively. Scheduling of requests to available threads and

DB connections is done according to the request priority set by the RDRP algorithm.

The request with the highest priority is served first, with FIFO used as a tiebreaking

policy. If a request is unable to obtain a thread (a DB connection) within a predefined

time interval, it is rejected with an explicit message. Note that some requests do

not require database access, so they can be successfully served just by acquiring a

server thread. See Section 4.5 for information on how these pieces of functionality is

implemented in the middleware.

Our RDRP algorithms work with the assumption that information about the re-

quest flow structure is known. Specifically, we assume that the workload consists of

K CBMGs: CBMG1, CBMG2, . . . , CBMGK (Section 3.1.2). The probability of a ses-

sion having the structure of CBMGk is pk, ∑
K
k=1 pk = 1. For the session of structure

CBMGk, the probability of transition from state i to state j is pk
i, j.

It is the service provider responsibility to define the reward function associated

with the session. The model we adopt in this dissertation was described in Sec-

tion 3.2.2: a reward value is defined for every request type of the service. The reward

of the session is the sum of rewards of the requests in the session. The reward counts

only if the session completes successfully.

100

The coarse-grained resource utilization of a session is specified in terms of the rel-

ative request execution cost costi for each request type i (Section 3.2.1). Information

about the relative execution costs permits the RDRP Bayesian inference algorithm

to be able to make adequate predictions of future server resource consumption by a

session. We define costi as the average processing time of requests of type i, without

the time spent waiting for a thread or a DB connection. This information is obtained

through fine-grained on-line request profiling (Section 3.5).

4.4 Reward-Driven Request Prioritization

The proposed RDRP mechanism works in the following way. For every incoming

request, it looks at the sequence of requests already seen in the session and compares

this sequence with the known CBMG structures of the session types comprising the

user load. A Bayesian inference analysis estimates the probability that the given ses-

sion is of type CBMGk, for each k = 1, . . . ,K (step 1). For each session type CBMGk,

the algorithm computes the values of expected reward and execution cost, resulting

from the future requests of the session, assuming it had the structure CBMGk (step

2). This information is used to get the non-conditional values of expected reward and

execution cost of the future session’s requests (step 3). These values are used then to

define the priority of the request (step 4), which governs the scheduling of available

server threads and DB connections to incoming requests (see Fig. 4.1). The logical

sequence of the RDRP algorithm steps is depicted in Fig. 4.2 and is explained in detail

below.

101

request
+

session
history

Service usage information

CBMGK
CBMG2

CBMG1

{pi} {costi}
Step 1

Step 2

prob that the session
is of type CBMGk

expected_reward and
expected_cost,

if the session of type CBMGk

Step 3
expected_reward and

expected_cost Step 4
request
priority

Figure 4.2: Logical steps of the RDRP method.

Step 1. Pr{CBMGk | req hist}, the Bayesian estimate that the session is of certain

type CBMGk (for a given history of session requests) is given by the following for-

mula:

Pr{CBMGk | req hist}=
Pr{req hist | CBMGk} · pk

K
∑

i=1
Pr{req hist | CBMGi} · pi

(4.1)

where Pr{req hist | CBMGk} is the probability of having a certain sequence of L re-

quests {i1, i2, . . . , iL} in a session of type CBMGk and is determined as

Pr{req hist | CBMGk}=
L−1

∏
j=1

pk
i j,i j+1

(4.2)

Timing parameters. In the basic Bayesian analysis of distinguishing among possible

session types (equations (4.1) and (4.2)), we took into account only the CBMG state

transition information. However, if session inter-request user think times differ for

sessions of various CBMG types, than this additional information can be used in an

attempt to make the Bayesian inference analysis more accurate. Imagine that we know

the distribution of user think times for each CBMG session type comprising the load,

in particular their PDF functions, PDFk(x), k = 1, . . . ,K (PDFk(x) = Pr{time < x},

for CBMGk), and that the observed session inter-request times are t1, . . . , tL−1 (L is the

102

number of requests seen in the session). Then equation (4.2) can be substituted with

the following one:

Pr{req hist, t1, . . . , tL−1 | CBMGk}=
L−1

∏
j=1

pk
i j,i j+1

·
L−1

∏
j=1

PDFk(t j) · (∆t)L−1 (4.3)

where the infinitesimal time interval ∆t appears in the equation, because the session

inter-request times have supposedly continuous distributions. When equation (4.3) is

substituted in equation (4.1), the infinitesimal value (∆t)L−1 appears in both the nu-

merator and the denominator, and cancels each other out. We call the basic method

“RDRP(state)”, and the RDRP scheme that involves inter-request timing considera-

tions “RDRP(state+time)”.

Step 2. To compute rew exp{CBMGk}, the value of reward expected from the ses-

sion’s future requests, assuming it is of particular type CBMGk, we just need to know

the expected number of future session requests, for each request type (i.e., the ex-

pected number of future visits to each of the session’s CBMG states). This infor-

mation, combined with the assumption that reward is brought by individual requests

allows us to compute the expected reward for the session. The expected number of

future visits to a CBMG state is a Markov property of the CBMG and is determined

only by the current state (i.e., by the current request) and the CBMG’s state transition

probabilities. For example, in our sample TPC-W shopping scenario, where reward

is brought by the Add To Cart request (Section 3.2.2), we have to compute Ai — the

expected number of future visits to the Add To Cart state, if the current state is i.

These values are determined by a set of linear equations, involving CBMG transition

probabilities and can be computed mechanically [89]. For the sample TPC-W CBMG

103

structure shown in Fig. 4.3, the values of Ai are given by the following expressions:

Aregister = Abuy req = Abuy conf = 0

Asearch = Pi,aPs,i
(1−Ps,s−Ps,cPc,s)·(1−Pi,i−Pi,aPa,i)−Pi,sPs,i−Pi,aPa,sPs,i

Aadd = Asearch ·
(

Pa,s + Pa,i·(1−Ps,s−Ps,cPc,s)
Ps,i

)
Aitem = Asearch ·

1−Ps,s−Ps,cPc,s
Ps,i

Acart = Asearch ·Pc,s

Ahome = Asearch e.c. =
(1+Aadd)·Pie,aPse,ie

(1−Pse,se)·(1−Pie,ie)−Pie,sePse,ie

Aitem e.c. = Asearch e.c. ·
1−Pse,se

Pse,ie

We refer the reader to the original work [89], where the notion of CBMG was intro-

duced and the CBMG apparatus for extracting various CBMG’s Markov properties

was developed. The values of expected execution cost from the session’s future re-

quests are computed in a similar way.

Step 3. The (non-conditional) values of expected reward and execution cost of the

future session’s requests are computed as a linear combination of the corresponding

conditional values (i.e., for specific CBMG session types) weighted with the proba-

bilities that the session is of that particular type:

rew exp =
K

∑
k=1

rew exp{CBMGk} ·Pr{CBMGk | req hist}

cost exp =
K

∑
k=1

cost exp{CBMGk} ·Pr{CBMGk | req hist}

Step 4. The underlying idea of request prioritization is very simple — give higher

priority to requests from sessions that are expected to bring more reward, while con-

suming less server resources. We use two different schemes to define request priority

104

Home Search
[empty cart]

Item
[empty cart]

Add To Cart
(reward=1)SearchItem

Cart Register

Buy RequestBuy Confirm

Exit
[browser]

Exit
[buyer]

pse,ie

pie,se

p
se,exitpse,se

1

pie,exit

pie,a

pie,ie

pa,r

pa,sp
c,s

p
s,c pc,r

ps,s

pi,a

pi,s

ps,i

pi,i

1 1

1

pa,i

Figure 4.3: The graph structure of the CBMG used to represent our TPC-W browsing

and shopping scenario.

— one takes into account the cost of the requests seen in the session (we call this

scheme RDRP-1), and the other (RDRP-2) does not:

priority1 =
rew attained+ rew exp

cost incurred+ cost exp
(4.4)

priority2 =
rew attained+ rew exp

cost exp
(4.5)

rew attained and cost incurred are the reward and the execution cost of the requests

already seen in the session. In Section 4.6.2 we motivate the differences in the two

priority formulations and compare their performance.

105

Jetty Web Server JBoss JCA

service

request
RDRP

Socket Listener Database Connection Manager

priority
queues

Thread
pool

S
c
h
e
d. . .

priority
queues

DB
conn.
pool

S
c
h
e
d. . .

getThread
(priority,
timeout)

getDBConn
(priority,
timeout)

request

execution

Request Profiling Service

Figure 4.4: Middleware infrastructure supporting the RDRP mechanisms.

4.5 Middleware infrastructure

We have implemented the RDRP methods as a set of middleware mechanisms, which

are seamlessly and modularly integrated in the open-source Java web application

server JBoss (Section 2.3). Fig. 4.4 shows the middleware infrastructure supporting

the RDRP mechanisms.

The Request Profiling Service (Section 3.5) performs automatic real-time moni-

toring of client requests to extract parameters of service usage and to maintain the

histories of session requests. It also performs fine-grained profiling of request pro-

cessing by the server. This information is used to periodically update the values of

relative request execution cost costi in the RDRP algorithm, defined as the average

request processing time, without the time spent waiting for a thread or a DB connec-

tion.

106

After the initial processing of an incoming HTTP request and determining its type

and session identity, the request is assigned the priority value computed by the RDRP

module, according to the algorithms described in Section 4.4 and utilizing the service

usage information gathered by the Request Profiling Service.

Request priorities are used for scheduling of requests to the available server threads

and DB connections. The request with the highest priority is served first, with FIFO

used as a tiebreaking policy. To enable such prioritized scheduling, necessary changes

have been introduced into the JBoss’ Socket Listener module, which performs pooling

and scheduling of threads, and into the Database Connection Manager module, which

performs pooling and scheduling of DB connections. Additional functionality is put

in place to enable the robust request execution model with explicit request rejections

(Section 3.3.1). Default timeout values for obtaining a thread and a DB connection are

set to be 10s. If this timeout expires, the request is rejected with an explicit message.

4.6 Experimental evaluation

We start by describing the experimental setup and then present an evaluation of RDRP

against alternative server-side schemes for managing application server resources.

4.6.1 Experimental setup

Server configuration

As was stated earlier, we present our RDRP algorithms in a simplified centralized

setting in order to focus on the benefits of the request prioritization techniques. Our

experimental infrastructure consists of a JBoss web application server and a sepa-

107

JBoss/Jetty
Web server MySQLClient

simulator LAN LANRequest profiling
+ RDRP

Figure 4.5: The server configuration used in the RDRP experiments.

rate database server, each running on a dedicated 1GHz dual-processor Pentium III

workstation, connected by a high-speed local-area network (Fig. 4.5). A separate

workstation is used to produce client load and to gather statistics.

We use MySQL version 4.1.1 with transactional InnoDB tables, for the database

server. The database is treated as a black box and its configuration is kept default, with

the exception of switching off database query caching.1 We set the size of the server

thread pool and the DB connection pool to 70 and 30 respectively (see Fig. 4.4).

TPC-W application

We test the request prioritization mechanisms on the sample TPC-W benchmark appli-

cation (Section 2.4.1). The TPC-W database population parameters, which influence

application performance, are chosen so as to achieve diverse execution complexity

for different request types involved in the simulated sessions. We use the following

values: NUM ITEMS = 10000, NUM EBS = 10. Table 4.1 shows average request

response times for the TPC-W request types, when executed in isolation (only one

request is processed by the server at a time). This information is presented to il-
1This was done intentionally to eliminate the effects of repeated request patterns in the synthetic workload,

which resulted in non-uniform request processing performance in the presence of database query caching.

108

Table 4.1: Average request response times for the TPC-W request types, when exe-

cuted in isolation.

Request type Response time (ms)
Home 30
Search 450
Item 15
Add To Cart 20
Cart 5
Register 5
Buy Request 150
Buy Confirm 100

lustrate the relative execution complexity of requests, which range from very light

(Register request, does not require database access and involves only simple appli-

cation logic) to very heavy (Search request, performs execution of complex database

queries). When executed concurrently, the requests see larger response times, be-

cause of queueing delays for critical server resources (threads and DB connections)

and possible database contention.

As described in Section 3.2.2, in the online shopping scenario the profit of the

service is reflected by the volume of items sold. In the TPC-W application, we assume

that reward is brought by the Add To Cart request — the shopping cart will contain

as many items in it as the number of times the Add to Cart request was executed.

Therefore, we assign a reward value of 1 for the Add to Cart request and 0 to all other

request types.

109

Home Search
[empty cart]

Item
[empty cart]

Add To CartSearchItem

Cart Register

Buy RequestBuy Confirm

Exit
[browser]

Exit
[buyer]

0.75

0.1

0.05

0.2

1

0.05

0.6

0.25

0.6

0.2

0.4

0.6

0.4
0.2

0.3

0.3

0.4

0.4

1 1

1

0.2

Home Search
[empty cart]

Item
[empty cart]

Add To CartSearchItem

Cart Register

Buy RequestBuy Confirm

Exit
[browser]

Exit
[buyer]

0.6

0.33

0.05

0.35

1

0.05

0.02
0.6

0.4

0.3

0.4

0.5
0.5

0.2

0.05

0.35

0.4

0.6

1 1

1

0.3

Figure 4.6: Two CBMGs used for TPC-W workload: “Mostly Buyers” (left) and

“Mostly Browsers” (right).

Client load

Our workload for the TPC-W application is a 50%/50% mix of the two CBMGs shown

in Fig. 4.6. Both of the CBMGs use the same graph structure, but with different tran-

sition probabilities. The “Mostly Buyers” CBMG produces user sessions that tend to

buy products, while the “Mostly Browsers” CBMG produces more browsing-biased

sessions. This results in different frequencies of requests being invoked by the two

kinds of sessions (Table 4.2). Note that not all “Mostly Buyers” sessions result in a

purchase, and analogously, not all “Mostly Browsers” sessions just browse the prod-

uct catalog. The 50%/50% mix of the given “Mostly Buyers” and “Mostly Browsers”

sessions results in approximately 52% of sessions finishing with a purchase. This

value may be higher than what most retail e-Commerce web sites see in real life,

however such client behavior may be more characteristic of web sites providing on-

line brokerage services, where a greater portion of user sessions results in completion

110

Table 4.2: Average breakdown of TPC-W sessions by request types.

Request type Session request breakdown
Mostly Buyers Mostly Browsers

Home 10.0% 5.2%
Search 24.0% 36.0%
Item 24.7% 53.5%
Add To Cart 11.6% 1.2%
Cart 3.9% 1.1%
Register 8.6% 1.0%
Buy Request 8.6% 1.0%
Buy Confirm 8.6% 1.0%

of reward-bringing transactions of selling and buying stocks. We introduce this bias

towards purchasing sessions to highlight the benefits of our request prioritization ap-

proach. However, we expect our methods to exhibit the same relative improvements

even in workloads with fewer purchasing sessions.

New session arrivals and session inter-request user think times are modeled as

described in Section 3.1.4. We model session inter-request times as exponentially

distributed with mean 5s for the “Mostly Buyers” sessions and 10s for the “Mostly

Browsers” sessions. We use both “smooth” (Poisson) and “bursty” (using the B-

model) arrival patterns for new session arrivals.

The maximum sustainable request rate of the server configuration under the re-

sulted request mix is approximately 20 req/s, with the bottleneck being the MySQL

database server.2 The overall load produced on the system is determined by the ar-
2This seemingly low server throughput is attributed, first, to the underprovisioned one generation old machines

we were using for the experiments, and second, to the fact that we did not perform scrutinized database and TPC-W

application tuning. However, we expect the relative performance improvements achieved by the RDRP methods

to be similar in more powerful server environments.

111

rival rate of new sessions. We use different values of this parameter to generate server

overload as well as underload conditions and report the load measured as a percent-

age of the system processing capacity. Each test run generates approximately 5000

sessions, with statistics gathered from the middle 80% portion of the run time to cut

off warm-up and cool-down regions.

Reported metrics

For each experiment, we measure the reward attained by the service (i.e., number of

items bought by successfully completed sessions) and average request response times

for sessions bringing different reward. We do not report the reward metric for the

server underload situation, because in this situation all sessions complete success-

fully, and each request scheduling algorithm produces the same reward value. Where

absolute values of reward are reported, they are counted per incoming user session.

This is done to show how close the employed algorithms are to the ideal situation,

when all the buying sessions complete successfully, which brings the average per-

session reward of 0.7 (this value is determined by the mix and the structure of the

involved CBMGs shown in Fig. 4.6). In some of the experiments we show attained

reward measured as a percentage of the reward value produced by the default FIFO

request scheduling algorithm. This is done to emphasize the relative benefits that

the request prioritization methods bring, compared with the default web application

server policies.

112

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

135% 170% 200% 250%

Load (% of server capacity)

R
ew

ar
d

(#
 o

f i
te

m
s

bo
ug

ht
) p

er
 s

es
si

on

RDRP-1 (state) RDRP-1 (state+time) RDRP-2 (state) RDRP-2 (state+time)

Figure 4.7: Comparison of benefits brought by the two flavors of the RDRP method.

4.6.2 Comparison of two priority schemes

We ran a set of experiments comparing the performance of the RDRP-1 and the

RDRP-2 methods, corresponding to the two priority formulations in equations (4.4)

and (4.5), under various load conditions. Figure 4.7 compares the performance of

the two methods under different amounts of server overload, for “smooth” session

arrivals. The RDRP-2 method outperforms RDRP-1 in all scenarios, but especially

under high client load. To informally understand this outcome, consider a session that

is just one or two steps away from its completion (e.g., it is in the Register state in

the CBMG of Fig. 4.6). The RDRP-2 method, according to equation (4.5), gives this

request a higher priority than RDRP-1 (equation (4.4)), because it does not count the

cost already incurred by the session. Consequently, under RDRP-1, the request might

113

get rejected due to a low priority value, which will waste all the effort it took to bring

the session to its nearly complete state. A careful examination of the logs produced

during the experiments supports this explanation: the primary reason for the poor

performance of RDRP-1 is the fact that some sessions are rejected with one or two

requests left to complete the session, a phenomenon that never happens with RDRP-2.

By ignoring the cost already incurred by the session, the RDRP-2 method appears to

increase the likelihood of session completion as compared to its RDRP-1 counterpart.

This also agrees with economics theory, which argues that sunk costs (i.e., costs that

have already been incurred and which cannot be recovered, like cost incurred in equa-

tion (4.4)), should not be taken into account when making rational decisions [136]. In

the rest of the experiments we used only the RDRP-2 algorithm, and refer to it from

now on as simply the RDRP method.

4.6.3 Imitating the “history-based” approach

As stated in Section 4.1, an alternative method to prioritize client requests to improve

service reward is by using a per-client history-based approach. Broadly considered,

such an approach models the behavior of any application-specific technique in which

all requests of a session are assigned a constant priority value and are scheduled ac-

cording to this priority. The priority assignment can have arbitrary logic, for example,

it can be done in an attempt to predict the client’s future behavior based on the his-

tory of the client’s previous purchases, or it can be determined solely by the client’s

membership status.

The success of such approaches is determined, of course, by how good they are in

predicting the client’s behavior or, more precisely, the statistical correlation between

114

assigned session priority and the actual reward brought by this session. To the best

of our knowledge, prior work on workload characterization has not addressed such

correlation in behavioral patterns (especially with the information that we need). We

therefore employed the following scheme for producing a predefined correlation be-

tween the assigned session priorities and the actual rewards brought by the sessions.

Each session announces in advance the reward it would bring, enabling the session

prioritization mechanism to set the session’s priority so that the statistical correla-

tion (parameter c) between the assigned priorities and the sessions’ rewards meets the

predefined value. A value of c = 1.0 brings the best performance because the prioriti-

zation algorithm always assigns to requests from the session, a priority value in direct

correspondence with the reward the session will bring.

4.6.4 Performance of RDRP

We compare the relative costs and benefits of RDRP mechanisms against the follow-

ing alternative server-side request scheduling and overload protection methods:

• Default FIFO request scheduling with no request prioritization.

• Session-Based Admission Control (SBAC), which admits approximately as many

sessions as can be processed by the server capacity; all of the admitted sessions

are allowed to complete successfully. This method is used only in the server

overload situation.

• The per-client “history-based” approach described in Section 4.6.3. We run five

sets of experiments with c = 0,0.25,0.5,0.75, and 1.0.

115

0%

50%

100%

150%

200%

250%

300%

350%

135% 170% 200% 250%
Load (% of server capacity)

R
el

at
iv

e
re

w
ar

d
pe

r u
se

r s
es

si
on

no prioritization SBAC history-based (c=0)
history-based (c=0.25) history-based (c=0.50) history-based (c=0.75)
history-based (c=1.0) RDRP (state) RDRP (state+time)

Figure 4.8: Reward relative to the default no-prioritization (FIFO) scheme, for the

“smooth” client load.

• Our RDRP(state) and RDRP(state+time) methods, described in Section 4.4.

Server overload

First, we evaluate the behavior of the methods in server overload situations. We run

four sets of experiments, modeling loads of 135%, 170%, 200%, and 250% of server

capacity, for both the “smooth” (Poisson) and “high-bursty” (B-model with b = 0.75)

client loads (Section 3.1.4). Figures 4.8 and 4.9 show the reward attained by the

service (number of items bought by successfully completed sessions, per user ses-

sion), relative to the performance of the default FIFO request scheduling mechanism.

Figures 4.10, 4.11, 4.12, and 4.13 show average request response times for sessions

116

0%

25%

50%

75%

100%

125%

150%

175%

200%

225%

135% 170% 200% 250%
Load (% of server capacity)

R
el

at
iv

e
re

w
ar

d
pe

r u
se

r s
es

si
on

no prioritization SBAC history-based (c=0)
history-based (c=0.25) history-based (c=0.50) history-based (c=0.75)
history-based (c=1.0) RDRP (state) RDRP (state+time)

Figure 4.9: Reward relative to the default no-prioritization (FIFO) scheme, for the

“high-bursty” client load.

bringing different reward, for the “smooth” and “high-bursty” client loads. In each

experiment, number of rejected requests, as expected, corresponds to the overload pa-

rameter of the client load used in the experiment. Response times of rejected requests

are counted towards average request response times presented in the charts. Several

conclusions can be drawn from the results of these experiments.

Reward attained. As expected, the default FIFO request scheduling policy shows

the worst performance, because a request may get rejected anywhere in the session,

which results in low successful session throughput. The SBAC method works better,

because it at least allows the sessions that have started to complete successfully, how-

117

0

1000

2000

3000

4000

5000

6000

7000

8000

0 1 2 3 4 5
Number of items bought in the session (reward)

A
ve

ra
ge

 re
qu

es
t r

es
po

ns
e

tim
es

SBAC history-based (c=0) history-based (c=0.25)
history-based (c=0.50) history-based (c=0.75) history-based (c=1.0)
RDRP (state) RDRP (state+time)

40% reduction

28% reduction

Figure 4.10: Average request response times for sessions that bring different reward,

for “smooth” traffic, for the 135% server capacity overload situation.

ever it does not try to necessarily admit those sessions that bring the greatest reward.

The history-based approach shows an increase in reward attained with an increase of

the correlation between assigned session priorities and sessions’ rewards. Note that

even with values of c = 0.25, this method already outperforms the SBAC algorithm.

Finally, both RDRP methods significantly boost reward attained by the service. The

RDRP(state+time) method works slightly better than RDRP(state), because it takes

into account the inter-request time differences between more-profitable “Mostly Buy-

ers” sessions and less-profitable “Mostly Browsers” sessions and better distinguishes

between them. The theoretically best history-based (c = 1.0) method, of course,

shows the best performance, however the history-based approach matches the per-

118

0

1000

2000

3000

4000

5000

6000

7000

8000

0 1 2 3 4 5
Number of items bought in the session (reward)

A
ve

ra
ge

 re
qu

es
t r

es
po

ns
e

tim
es

SBAC history-based (c=0) history-based (c=0.25)
history-based (c=0.50) history-based (c=0.75) history-based (c=1.0)
RDRP (state) RDRP (state+time)

29% reduction

18% reduction35% reduction

Figure 4.11: Average request response times for sessions that bring different reward,

for “smooth” traffic, for the 170% server capacity overload situation.

formance of the RDRP algorithms, only for values of c≥ 0.75.3 The performance of

all algorithms goes down, when the client load experiences bursty behavior, because

under bursty conditions the queues for critical server resources are more susceptible

to rapid build-ups, which results in higher rates of request rejections. However, the

relative advantages of RDRP over the other methods stay the same.

Request response times. All algorithms that perform request/session prioritization,

and manage to correctly guess (at least to a certain degree) the session’s reward, de-
3Whether such good prediction is possible in real life, remains an open question, due to the lack of publicly

available information with such statistics.

119

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 1 2 3 4 5
Number of items bought in the session (reward)

A
ve

ra
ge

 re
qu

es
t r

es
po

ns
e

tim
es

SBAC history-based (c=0) history-based (c=0.25)
history-based (c=0.50) history-based (c=0.75) history-based (c=1.0)
RDRP (state) RDRP (state+time)

39% reduction

33% reduction

67% reduction

Figure 4.12: Average request response times for sessions that bring different reward,

for “high-bursty” traffic, for the 135% server capacity overload situation.

crease request response times for sessions that bring non-zero reward, as compared

to the SBAC method. Both RDRP methods perform on par with the history-based

approach for values of c ≥ 0.5. For the “smooth” client load, the RDRP algorithms

reduce response times by up to 40% compared to SBAC, and show up to 28% lower

response times than the history-based approach with c = 0 and c = 0.25. For bursty

client load, the difference is more pronounced: response times from the RDRP meth-

ods are lower than that from SBAC and the history-based approach with c = 0 and

c = 0.25 by up to 72%, 45%, and 36%, respectively.

Note, that for “smooth” client load, the sessions with zero reward (i.e., browsing

sessions) see significantly increased response times, when the history-based approach

120

0

1000

2000

3000

4000

5000

6000

0 1 2 3 4 5
Number of items bought in the session (reward)

A
ve

ra
ge

 re
qu

es
t r

es
po

ns
e

tim
es

SBAC history-based (c=0) history-based (c=0.25)
history-based (c=0.50) history-based (c=0.75) history-based (c=1.0)
RDRP (state) RDRP (state+time)

72% reduction45% reduction

36% reduction

Figure 4.13: Average request response times for sessions that bring different reward,

for “high-bursty” traffic, for the 170% server capacity overload situation.

with c = 1.0 is applied (Figures 4.10 and 4.11). This happens, because with the

history-based approach, all browsing sessions (48% of all sessions, see Section 4.6.1

for the explanation) get the same (zero) priority, because the priority is defined as

the session’s reward, while the remaining 52% of sessions get a higher execution

priority. Being all stuck in a single lowest-priority queue (with a FIFO tiebreaking

policy), browsing sessions see higher rates of request rejections. This in turn produces

higher response times for the session because a rejected request spends at least 10s in

the system (before experiencing a timeout). Interestingly, this effect is reduced with

bursty session arrivals (Figures 4.12 and 4.13).

121

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 1 2 3 4 5
Number of items bought in the session (reward)

A
ve

ra
ge

 re
qu

es
t r

es
po

ns
e

tim
es

no prioritization history-based (c=0) history-based (c=0.25)
history-based (c=0.50) history-based (c=0.75) history-based (c=1.0)
RDRP (state) RDRP (state+time)

80% reduction

58% reduction

46% reduction

Figure 4.14: Average request response times for sessions that bring different reward,

for ‘high-bursty” traffic, for the client load at 100% server capacity.

Server underload

For server underload situations, we ran experiments with both “smooth” (Poisson)

and bursty client loads. The Poisson-modeled web workload generated such a smooth

flow of request arrivals, that all request scheduling algorithms showed more or less the

same performance. This happened because the server queues for the critical resources

(threads and DB connections) almost never built up, and requests were immediately

scheduled to available server threads and DB connections.

Experiments with the bursty client load showed very different behavior. Fig-

ures 4.14, 4.15, 4.16, and 4.17 show average request response times for sessions

122

0

500

1000

1500

2000

2500

3000

3500

4000

0 1 2 3 4 5
Number of items bought in the session (reward)

A
ve

ra
ge

 re
qu

es
t r

es
po

ns
e

tim
es

no prioritization history-based (c=0) history-based (c=0.25)
history-based (c=0.50) history-based (c=0.75) history-based (c=1.0)
RDRP (state) RDRP (state+time)

62% reduction

32% reduction

Figure 4.15: Average request response times for sessions that bring different reward,

for ‘high-bursty” traffic, for the client load at 80% server capacity.

bringing different reward, for the two bursty client loads.4 Several conclusions can be

drawn from the results of these experiments.

The RDRP methods (as well as the history-based approaches) decrease request

response times for the sessions that bring non-zero reward. This happens because

with bursty arrivals (unlike the smooth arrival case described above), the queues for

the critical server resources (server threads and DB connections) occasionally build

up, and the request prioritization mechanisms minimize the queueing delays seen by
4The experiments labeled as “100% of server capacity” were actually ran at a rate slightly lower than the server

capacity, which experienced slight variations because of the non-deterministic behavior of the web application

server. This ensured that our experiments did not slide into the overload mode of server operation.

123

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

0 1 2 3 4 5
Number of items bought in the session (reward)

A
ve

ra
ge

 re
qu

es
t r

es
po

ns
e

tim
es

no prioritization history-based (c=0) history-based (c=0.25)
history-based (c=0.50) history-based (c=0.75) history-based (c=1.0)
RDRP (state) RDRP (state+time)

66% reduction
47% reduction

34% reduction

Figure 4.16: Average request response times for sessions that bring different reward,

for “low-bursty” traffic, for the client load at 100% server capacity.

the sessions that bring more reward by assigning their requests higher priorities. For

“high-bursty” traffic, the effects of request prioritization are visible for loads above

approximately 70% of server capacity (we show only experiments with the load of

100% and 80% of server capacity), while for the “low-bursty” traffic, the effects are

visible for the load in the range of 85%–100% of server capacity.

As in the server overload situation, the performance of the RDRP methods is

matched by the history-based approach only for values of c ≥ 0.5. Under “high-

bursty” traffic, RDRP outperforms the history-based method by up to 58% (for c = 0)

and 46% (for c = 0.25). This advantage of RDRP over the history-based approach

diminishes a bit under “low-bursty” traffic conditions (Figures 4.16 and 4.17). The

124

0

300

600

900

1200

1500

1800

2100

2400

0 1 2 3 4 5
Number of items bought in the session (reward)

A
ve

ra
ge

 re
qu

es
t r

es
po

ns
e

tim
es

no prioritization history-based (c=0) history-based (c=0.25)
history-based (c=0.50) history-based (c=0.75) history-based (c=1.0)
RDRP (state) RDRP (state+time)

44% reduction30% reduction

20% reduction

Figure 4.17: Average request response times for sessions that bring different reward,

for “low-bursty” traffic, for the client load at 85% server capacity.

default FIFO method performs worst of all. It is interesting to note that even the

history-based approach with c = 0, which is not supposed to ever correctly guess the

session’s reward, gives lower response times (for all reward values, including 0) than

the default FIFO request scheduling scheme.

To our understanding, this behavior happens for the following reason. The request

scheduling algorithm we adopt to imitate a history-based approach with c = 0 works

by uniformly assigning priorities to sessions as integer values in the range of 0 to 100

(this process does not correlate with the session reward, therefore corresponds to c =

0). Some sessions get higher priorities than the other, and all sessions are uniformly

sorted into a discrete number of priority buckets. Unlike the FIFO scheduling case,

125

where all requests have to wait in one long queue produced by a traffic burst, the

uniform session prioritization scheme permits some sessions to sneak ahead of other

sessions. This perturbs the waiting times seen by requests sufficiently so as to achieve

an average response time lower than that seen by the FIFO case.

4.7 Summary

In this chapter we have presented Reward-Driven Request Prioritization (RDRP) — a

server-side resource management mechanism, which maximizes the reward attained

by an Internet service by dynamically assigning higher execution priorities to the re-

quests whose sessions are likely to bring more profit (or any other application-specific

reward) to the service. The mechanisms work in an application-independent manner,

utilizing the information exposed by the request flow (Section 3.1) and coarse-grained

resource utilization and reward (Section 3.2) service access attributes. Namely, the

mechanisms use the information about the request structure of user sessions, rela-

tive request execution costs, and “rewards”, for requests of different types. We im-

plemented the proposed methods as pluggable middleware mechanisms in the J2EE

application server JBoss (Section 2.3), and tested them on the TPC-W benchmark

application (Section 2.4.1).

Our experiments showed that RDRP techniques yield benefits in both underload

and overload situations, for both smooth and bursty client behavior, against state-of-

the-art alternatives such as session-based admission control and history-based session

prioritization approaches. In the situation of service underload, the proposed mech-

anisms gave better response times for the clients that brought more reward. In the

126

situation of service overload, the mechanisms ensured that sessions that brought more

reward were more likely to complete successfully and that the aggregate profit at-

tained by the service increased compared to other solutions. Additionally, we showed

that the history-based approach matched performance of our RDRP mechanisms only

if the correlation between the clients’ past and future behavior reached the mark of

75% for the reward attained, and 50% for the request response times.

127

Chapter 5

Optimized Utilization of Server

Resource Pools

This chapter focuses on the problem of optimizing utilization of server resource pools,

a topic introduced earlier in Section 1.2.2. In Sections 5.1 and 5.2 we formulate

the problem and present our approach to solving it. Section 5.3 presents the request

execution model with 2-level exclusive resource holding, which forms the basis for

the techniques described in this Chapter. In Section 5.4 we describe the method for

computing the optimal number of server threads and database connections assuming

this model, and Section 5.5 presents our evaluation methodology and experimental

results.

128

5.1 Problem formulation

Modern component middleware are complex software systems that expose to service

providers several mechanisms that can be independently tuned to improve server per-

formance and optimize server resource utilization. The middleware layer itself rarely

has control over low-level OS mechanisms, such as CPU scheduling and memory

management. Instead, it provides control over higher-level resources, such as threads,

database connections, component containers, etc. Some of these resources can be

shared among concurrent user requests, but some are held exclusively by a request

for the duration of its execution (or some significant part of it). Therefore, such non-

shared resources become bottleneck points, and failure to obtain such a resource con-

stitutes a major portion of request rejections under high load or overload conditions.

Optimizing the utilization of these resources therefore becomes a high priority goal

for the service provider.

The most important of such exclusively held server resources in J2EE-like compo-

nent frameworks are server threads and database (DB) connections. The application

server creates and pools a limited (predefined) number of threads and DB connec-

tions and schedules them to the incoming user requests. The pooling mechanism

avoids expensive operations for creating and closing of these server resources (Sec-

tion 2.2.2). The main question that the service provider (or the system administrator)

faces in this context is what is the optimal number of threads and database connec-

tions that achieve the highest request throughput? Using more threads and database

connections allows for increased execution parallelism, but may result in degraded

performance due to thread context switching and increased data and locking con-

129

tention in the database. The task of identifying the optimal number of threads and

database connections is further complicated by the fact that for different user loads,

different configurations of the thread and database connection pools provide the op-

timal application performance. This happens because different sets of application

components and middleware services are used to execute requests of different types.

Some requests, for example, need to access a database (so they need to obtain a DB

connection), while some don’t (Section 2.2.3).

5.2 Approach

To come up with a solution to this problem, we propose a methodology that computes

the optimal number of threads and DB connections for a given application, its server

and database environment, and specific user load (request mix). The methodology is

built on a model that we propose for request execution with 2-tier exclusive resource

holding (1st tier — threads, 2nd tier — DB connections), and works as follows.

• First, a limited set of off-line experiments are conducted, where the actual appli-

cation (Internet service) and its server environment are subjected to an artificial

user load. We use a different number of threads and DB connections for each test

run, and only a subset of possible values for these resources is used throughout

the experiments. During this series of “profiling tests”, information about fine-

grained server resource utilization is obtained through the instrumented profil-

ing of request execution. More specifically, we are interested in the times spent

by the requests of different types in the different stages of request processing.

• Second, the obtained values for these timing parameters (considered as func-

130

tions of the number of threads and DB connections) are used as data points

for function interpolation to get the values of these parameters for all possible

combinations of the number of threads and DB connections.

• Third, under real operating conditions, the proposed request execution model

takes as input these interpolated functions and the information about actual re-

quest flow (request mix), obtained through on-line request profiling, and com-

putes the number of threads and DB connections, which provides the best re-

quest throughput, thus achieving optimal utilization of web server threads and

DB connections.

We discuss and justify the request execution model with 2-level exclusive resource

holding in Section 5.3, while in Section 5.4 we present in greater detail the three

steps comprising the method for computing the optimal number of threads and DB

connections.

5.3 Request execution and database connection caching

As we previously stated in Section 3.3.1, in this dissertation we adopt the follow-

ing model of request execution by the application server. Requests compete for two

critical exclusively-held server resources: server threads and DB connections; these

resources are pooled by the web server and the application server respectively. If the

timeout for obtaining a thread or a DB connection expires, the request is rejected with

an explicit rejection message. An important detail is that the database connection ob-

tained by a request remains available for exclusive use by the request until the request

is processed. After that the thread and the database connection(s) cached by it are

131

Service
request

waiting
queue Thread

pool

S
c
h
e
d
u
l
e
r

wait timeout:
request rejection

request
served

(thread released)

waiting
queue Database

connection
pool

S
c
h
e
d
u
l
e
r

wait timeout:
request rejection
(thread released)

request served
(thread and DB

connection released)

with
thread

Figure 5.1: Request execution model with 2-level exclusive resource holding.

returned to their respective pools. Fig. 5.1 (taken from Section 3.3.1 and reproduced

here for convenience) schematically illustrates the 2-level model of request execution

and the flow of a request through the system.

The rationale for caching DB connections for the duration of request execution

is as follows. To access a database a request obtains a database connection from the

DB connection pool. After the required work (i.e., communication with the database)

is done over this DB connection, the latter is returned to the pool. The particulars

of the J2EE platform are such that a DB connection may be requested from the pool

(and returned there) up to several dozen times during the execution of a single service

request. For example, each business method invoked on an Entity EJB (Section 2.2)

usually requires synchronization with the database (before or after the method invo-

cation, or both). This results in a DB connection being requested (and returned) from

the pool up to three times just during one EJB method invocation (if the synchro-

nization is performed before the EJB method invocation, the additional EJB-specific

ejbFindByPrimaryKey() method accounts for the third request [113]).

Most JDBC drivers (Section 2.2.1) additionally require that all database accesses

132

on behalf of a single database transaction be performed over a single DB connec-

tion (to ease the implementation of transaction rollback and commit). To implement

this requirement, application server JCA resource adaptors (Section 2.2.2), while per-

form DB connection pooling, cache DB connections for active transactions and return

them to the pool only after the transaction completes. This approach, of course, re-

duces the number of times a DB connection is redundantly revoked and returned to

the pool during the execution of a single request, but only for the requests associ-

ated with a transactional context. However, it is a common practice to make as few

service requests transactional as possible, and usually only those that update back-

end databases. Given that modern Internet services typically exhibit dominant non-

transactional read-only data access patterns, the majority of service requests can not

benefit from the approach of transaction-wide caching of database connections.

Similarly, in the situation of server overload (steady or transient), when DB con-

nections become a scarce resource, concurrent requests compete for DB connections,

experiencing queueing delays while trying to get them from the pool. The application

performance can potentially deteriorate, because the same request has to get a con-

nection from the pool several times. It not only increases request processing times,

but also aggravates the situation by making requests that wait for a DB connection

waste other exclusively held resources, such as server threads.

To alleviate this problem, we propose a DB connection pooling mechanism that

caches database connections for the duration of the service request execution. This

mechanism, in addition to caching DB connections for active transactions, caches at

least one DB connection for each request that has requested a DB connection previ-

ously. Note that this does not guarantee that all the database activities for a single

133

request can be performed over a single DB connection. If a request accesses two

databases, or starts two transactions, or interleaves non-transactional activities with

transactional ones, then these communications with the database(s) need to be per-

formed over different DB connections. For the purposes of this chapter we however

make a simplifying assumption that there is a single database that stores the appli-

cation data and that all the communication with the database, required to process a

single service request, can be made over a single DB connection.

Of course, the approach of request-wide database connection caching may have its

own drawbacks. Imagine, that between periods of communication with the database,

a request performs some CPU-intensive processing of the application data. Return-

ing the cached DB connection to the pool in this situation would allow some other

requests to progress and would increase parallelism. While possible, we feel that this

concern is not as relevant for the heavy database-centric applications that this disser-

tation targets, such as TPC-W, Java Pet Store, and RUBiS (Section 2.4), where there

is little data manipulation between accesses of the database.

We implement request-wide DB connection caching by augmenting the JBoss’

Web/HTTP server Jetty and JBoss JCA resource adaptor with additional functional-

ity (see Sections 2.2.2 and 2.3 for relevant background information). Section 5.5.2

presents the relative overheads and performance evaluation of the approach.

134

5.4 Computing the optimal number of threads and database con-

nections

The goal of the proposed method is to compute the number of threads M and the num-

ber of DB connections N (M≥N), that would maximize request (session) throughput,

for a given incoming request mix. The information about the latter comes in the spec-

ification of Vi — average number of requests of type i in a session (Section 3.1.3).

The method works with the assumption that the underlying hardware and middleware

environments, as well as application configuration parameters are fixed.

In our 2-level model of request processing with request-wide DB connection caching

(Sections 3.3.1 and 5.3), request execution time can be represented as follows:

t = wTHR + p+wDB +q (5.1)

where wTHR is the time spent by the request in waiting for a thread, p is the time

the request spends on processing before getting a DB connection, wDB is the time

spent by the request in waiting for a DB connection, and q is the time the request

spends processing with a DB connection in its possession. The latter includes the

time spent in making SQL queries, retrieving the results, processing them, and other

request processing while the DB connection is cached by the request. In this chapter,

we treat the database as a black box and do not track database activities performed

over database connections. Note that for requests that do not access the database,

wDB = q = 0.

The maximum sustainable request throughput depends on the values of p and q,

which are different for different request types. The main assumption we make is

135

that under the maximum server load, pi(M,N) and qi(M,N) — the average times

spent processing requests of type i before obtaining a DB connection and with a DB

connection, respectively — depend only on MMM and NNN, and on the request mix (the

values of Vi).1 We also assume that the dependence of pppiii(((MMM,,,NNN))) and qqqiii(((MMM,,,NNN)))

on the incoming request mix (VVV iii) is very weak, that is, the values of pi(M,N)

and qi(M,N) change insignificantly when the request load parameters Vi stay close

enough to their initial values. These assumptions are justified by the results of the

initial experiments that we conducted while working on this problem.

In an optimal server configuration we would want to achieve a balanced utilization

of server threads and database connections. This means that under maximum sus-

tained user load, we would want all threads and DB connections to be fully utilized

(they may be idle for some short periods of time, due to inevitable request burstiness,

but the ideal situation is that all threads and DB connections are always “busy” pro-

cessing requests). Having a noticeable number of idle threads or idle DB connections

in situations where DB connections or threads (respectively) become the resource

bottleneck is a waste of server resources and will cause performance degradation.

Assume for now, that we know the functions pi(M,N) and qi(M,N). With only N

DB connections we can not process, on average, more than

λDB(M,N) =
N

∑iViqi
(5.2)

sessions per unit time, because incoming sessions have a certain number of requests

that require database processing. For the same reason, with only M threads, we can
1Of course, they depend on the application configuration, the hardware and the middleware, but those are fixed.

136

not process more than

λTHR(M,N) =
M

∑iVi(pi +qi)
(5.3)

sessions per unit time, and this value is achievable if requests don’t wait for DB con-

nections (i.e., wDB
i = 0). If we measure the throughput in number of sessions pro-

cessed per unit time, than the maximum sustainable session throughput is given by

the equation:

λ (M,N) = min{λDB(M,N),λTHR(M,N)}. (5.4)

The best configuration of server resource pools (i.e., the values of M and N) is

the one, which maximizes the value in equation (5.4). The value in equation (5.4)

has a global maximum inside a bounded region of possible values of M and N. In-

deed, λDB(M,M) > λTHR(M,M), since if numbers of threads and DB connections

are equal, threads present the “scarce” resource, because some requests do not re-

quire database access and DB connections may have idle periods. In comparison,

λDB(M,1) ≤ λTHR(M,1) (i.e., DB connections are the “scarce” resource), when M

is big enough, because one DB connection can only do a limited amount of work.

With M and N growing, the performance of the server deteriorates, and the values of

both λDB(M,N) and λTHR(M,N) go down. The situation when values of λDB(M,N)

and λTHR(M,N) are equal represents an optimal correspondence of the number of

threads to the number of DB connections, which is a desirable situation. If sessions

are coming with the rate of λDB(M,N) = λTHR(M,N) and if there is no burstiness in

the request arrival pattern, then in an ideal processing environment all the requests will

get served, with all the threads and DB connections being constantly busy processing

the incoming requests.

137

Values of pi(M,N)
and qi(M,N) for

Step 1

Off-line “profiling
tests” with artificial

(representative)
load {Vi},

for M,N=1,5,10,15,…
(M≥N)

Actual incoming
request mix – {Vi}

Step 3
(real time)

Model with
2-level

exclusive
resource
holding

M,N=1,5,10,15,…
(M≥N)

Step 2

Interpolation of
functions

pi(M,N) and
qi(M,N)/N

pi(M,N) and qi(M,N)

Functions Function
 (M,N)λ

Figure 5.2: Logical steps of the method to compute the optimal number of server

threads and database connections.

These considerations lead us to the method, which consists of several steps schemat-

ically shown in Fig 5.2.

Step 1. Because of the assumptions we made earlier in this Section, we may consider

pi(M,N) and qi(M,N) as two-dimensional functions, defined for the triangular grid

of integer arguments (M,N), M ≥ N > 0. The goal of this step is to obtain the values

of pi and qi for some subset of possible values of M and N. These data points will

be used for the interpolation of functions pi(M,N) and qi(M,N) on their domain. We

choose the data points as a sub-grid of the functions’ domain, for example: M,N =

1,5,10,15, . . . (M ≥ N).

To obtain the values of pi and qi, for each interpolation point (M,N) we subject

the actual server environment with an artificially induced user load slightly surpassing

the server capacity. For this series of “profiling tests” we choose the parameters of

the request mix (Vi) representative of the actual user load, or close to the load that we

expect the system will see during its real-life operation. Due to the server overload

138

conditions, either just one of the two, or both pooled server resources (threads and

DB connections) will be used to their full capacity, and request queues will build up

for threads, or DB connections, or both. However, if the overload is not too big, this

overflow will be handled by the server in a graceful manner, because of our request

processing mechanism that explicitly rejects requests, which can not obtain a thread

or a DB connection within a predefined time interval. During these tests we obtain the

values of pi(M,N) and qi(M,N) through fine-grained profiling of request execution,

using our request profiling infrastructure (Section 3.5). Aborting some requests (and

so — some sessions) will alter a bit the mix of served requests (as compared with the

mix of requests submitted to the system), but as we stated earlier, the dependance of pi

and qi on the request mix is very weak, so the measurements will produce very close

to the correct values.

Step 2. The obtained data points for functions pi(M,N) and qi(M,N) are used for the

interpolation of these functions on their domain (M ≥ N > 0). To get a smooth inter-

polation we use the method of two-dimensional piecewise bi-cubic interpolation [72].

Instead of interpolating function qi(M,N) we interpolate the function qi(M,N)/N —

this function turns out to be smoother and it is easier to interpolate than qi(M,N).

It also has a meaningful interpretation — it is the inverse of the database through-

put seen by requests of type i. We refer the reader to Section 5.5.3 for examples of

interpolated functions pi(M,N) and qi(M,N).

Step 3. This step, unlike the first two ones, is performed in operating conditions and

in real time, when the server environment is subjected to actual user load. The pa-

139

rameters of incoming request mix — the values of Vi — are obtained through online

request profiling. As long as they stay close enough to the values used in the pre-

liminary “profiling tests” (step 1), this method can be used to compute the optimal

number of threads and DB connections. Substituting obtained values Vi and the val-

ues of pi(M,N) and qi(M,N), obtained in step 2, into the equations (5.2), (5.3), and

(5.4), we get the value of maximum sustainable session throughput λ (M,N), for ev-

ery possible combination of M and N. Given that parameters M (the number of server

threads) and N (the number of database connections) are discrete and have a limited

(and rather small) set of possible values, it is possible to iterate over this set in order

to, first, determine the optimal number of threads for a given number of DB connec-

tions, and vice versa, and second, find the pair of parameters (M,N) that achieve the

highest session (request) throughput.

5.5 Experimental evaluation

In this section we present the evaluation of the proposed method for computing the

optimal number of threads and database connections. Before proceeding to the eval-

uation of the method itself, we first present the details of the TPC-W application

configuration used in the experiments, and second, evaluate the costs and benefits of

the request-wide caching mechanism for database connections.

5.5.1 TPC-W configuration

In the standard TPC-W configuration with a typical database population, the perfor-

mance bottleneck of our server environment is always the MySQL database server

140

(Section 4.6.1). In order to evaluate our model, we need an application that would

equally stress the application server and the database server. To achieve this, we

choose TPC-W configuration parameters and make some changes to the TPC-W ap-

plication code to make the application less database-centric and remove request pro-

cessing focus from SQL query processing.

First, we use the smallest database population size: NUM EBS = 1, NUM ITEMS =

100 (see Section 2.4.1 for the details of TPC-W configuration and the description of

service request types). Second, we use in-memory (HEAP) database tables in the

MySQL database, which further speeds up SQL query processing. Third, we remove

presentation of randomly chosen advertisements from the Home page, so that this

request now does not require database access. And finally, we insert into the ap-

plication code CPU-consuming code snippets, which are designed to imitate some

CPU-intensive application server processing (for example, SSL processing) before

the request obtains a DB connection (so it increases the values of pi). These artificial

code snippets produce different load for different request types (measured in execution

cycles; each execution cycle is approximately 1 ms of execution time on our server

environment, if request is executed in isolation): Home, Buy Request, Buy Confirm:

100 cycles, Search: 50, Add To Cart: 25, Item: 10, Cart, Register: 1. Table 5.1 shows

pi and qi for the underloaded server (when only one request is executed at a time),

and for the server stressed to its maximum load capacity (“max-loaded” server), with

M = N = 30. It shows how pi and qi change when the load on the server increases.

141

Table 5.1: The values of pi and qi for the TPC-W application, in the underloaded and

“max-loaded” server environments (M = N = 30).

Request type pi under-
loaded (ms)

qi under-
loaded (ms)

pi “max-
loaded” (ms)

qi “max-
loaded” (ms)

Home 97 0 235 0
Search 46 50 101 646
Item 9 9 26 311
Add To Cart 24 5 61 227
Cart 2 0 8 0
Register 2 0 7 0
Buy Request 94 59 205 940
Buy Confirm 93 112 230 1165

5.5.2 Costs and benefits of request-wide database connection caching

In this section we evaluate the proposed mechanism for request-wide caching of

database connections (Section 5.3) by comparing its performance with the perfor-

mance of the default transaction-wide DB connection caching. We test our TPC-W

application with various levels of bursty user load (Section 3.1.4) and measure the

times that requests spend in different stages of their execution.

Figs. 5.3, 5.4, and 5.5 show the breakdown of request processing times for the

Search, Buy Request, and Buy Confirm TPC-W requests respectively, for various lev-

els of user load measured in percentage of server capacity. The left columns show re-

sults for our request-wide DB connection caching mechanism, while the right columns

show results for the default transaction-wide DB connection caching mechanism. We

distinguish among the following phases of request execution: waiting for thread (the

time spent waiting for a thread to process the request), with thread w/o DB connection

(the time spent processing the request without holding a DB connection), waiting for

142

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

60% 70% 80% 90%

User load (% server capacity)

R
eq

ue
st

 p
ro

ce
ss

in
g

tim
e

(m
s)

With DB conn active With DB conn idle Waiting for DB conn
With thread w/o DB conn Waiting for thread

Figure 5.3: Breakdown of request processing time for the Search request (left column:

request-wide DB connection caching, right column: transaction-wide caching).

DB connection (the time spent waiting for a DB connection, i.e. while being blocked

on the Datasource.getConnection() call),2 with DB connection active (the

time spent working with the DB connection, i.e. between the return of the call Da-

tasource.getConnection() and the call to Connection.close()),3 and
2The call to Datasource.getConnection() requests a DB connection from the pool, if one is not

cached by the request.
3The call to Connection.close() is actually performed on a wrapper object, so it does not close the

connection, but signals to the Database Connection Manager that the service request has finished working with

the connection. The latter then is either kept cached for the request or returned to the pool (see Section 2.2.2 for

details). We don’t track database activities performed over database connections and the periods of “working with

a DB connection” are demarcated by the calls to Datasource.getConnection() (start) and Connecti-

143

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

60% 70% 80% 90%

User load (% server capacity)

R
eq

ue
st

 p
ro

ce
ss

in
g

tim
es

 (m
s)

With DB conn active With DB conn idle Waiting for DB conn
With thread w/o DB conn Waiting for thread

Figure 5.4: Breakdown of request processing time for the Buy Request request

(left column: request-wide DB connection caching, right column: transaction-wide

caching).

with DB connection idle (the time spent processing the request with an idle DB con-

nection cached).4 Note that in the case of request-wide DB connection caching, wait-

ing for thread corresponds to wTHR
i , with thread w/o DB connection — to pi, waiting

for DB connection — to wDB
i , and with DB connection active and with DB connection

idle, combined, constitute qi.

To better understand the relative performance of the two connection caching meth-

on.close() (end).
4That is, when the connection is cached for the request between the call to Connection.close() and the

next call to Datasource.getConnection() or the end of request execution.

144

0

500

1000

1500

2000

2500

3000

3500

4000

4500

60% 70% 80% 90%

User load (% server capacity)

R
eq

ue
st

 p
ro

ce
ss

in
g

tim
es

 (m
s)

With DB conn active With DB conn idle Waiting for DB conn
With thread w/o DB conn Waiting for thread

Figure 5.5: Breakdown of request processing time for the Buy Confirm request

(left column: request-wide DB connection caching, right column: transaction-wide

caching).

ods, it is important to know how many times a DB connection is requested from the

pool, for different request types. During the execution of the Search request a DB

connection is requested from the pool 101 times (one time for the SQL query that re-

turns IDs of certain 50 items, and 2 times for an EJB method invocation on each of the

50 Entity Beans, see explanation in Section 5.3). Buy Request results in 10 requests

for a DB connection, and Buy Confirm incurs 1 request for a DB connection, because

this service request is transactional, and the obtained DB connection is cached even

in the default transaction-wide DB connection caching mechanism.

145

The first thing to notice is that with DB connection idle times are very small

and are negligible compared with with DB connection active times (they aren’t even

seen on some charts). This means that request-wide DB connection caching does not

waste much DB connection resources. Individual times of waiting for DB connection

are larger in request-wide connection caching (than in transaction-wide connection

caching), but this effect is compensated by the fact that a service request has only to

endure one such waiting time period. Request-wide connection caching is beneficial

for service requests that obtain (and return) DB connection from the pool many times

— compare waiting for DB connection times for the Search and Buy Confirm service

requests, which obtain DB connection from the pool 101 times and 1 time, respec-

tively. The time to process a request after it was assigned to a thread, for the Search

request, is significantly larger in default transaction-wide connection caching, because

of the aforementioned effect. Given that Search requests constitute a large portion of

user load that we used (namely, 32%), the average time requests (of all types) spend

with a thread assigned is larger and, as a consequence, waiting for thread times are

larger for all request types. This results in larger overall request processing times

for all request types, in transaction-wide connection caching, compared with request-

wide DB connection caching.

The main conclusion that we can draw by analyzing the relative performance of

both connection caching methods, is that request-wide DB connection caching is ben-

eficial in situations where a large portion of service requests is comprised of non-

transactional requests implemented in a way that DB connections are requested from

the pool many times per single service request execution. This characteristic is typical

of the applications and workloads we target in this dissertation.

146

Table 5.2: Parameters of user loads used in the evaluation experiments (breakdown of

load by request types (Vi) and average session length).

Request type “Profiling load” (step 1) “Load 1” “Load 2”
Home 6.82% 5.53% 5.37%
Search 31.93% 30.31% 48.07%
Item 42.73% 57.73% 41.55%
Add To Cart 4.76% 1.76% 1.39%
Cart 2.03% 0.7% 0.53%
Register 3.58% 1.32% 1.03%
Buy Request 3.58% 1.32% 1.03%
Buy Confirm 3.58% 1.32% 1.03%
Total 100% 100% 100%
Average session length (req) 14.67 18.07 18.62

5.5.3 Evaluation of the method for computing the optimal resource pool sizes

We evaluate the proposed method for computing the optimal number of server threads

and DB connections on the TPC-W application, which is configured as described in

Section 5.5.1.

In step 1, the values of pi and qi are gathered through the request execution profil-

ing support using the user load parameters shown in Table 5.2 (“Profiling load” col-

umn). We use the following data points: all pairs (M, N), where M = 5,10,15,20,30,50,

N = 1,2,4,5,10,15,20,30,40, and M ≥ N. Reasonable application performance was

achieved with 5≤M ≤ 30, so we concentrate on this region. The server configuration

used in the tests is the same as in the RDRP experiments (Section 4.6.1).

In step 2, we interpolate functions pi(M,N) and qi(M,N) for the region 5 ≤ M ≤

30, 0 ≤ N ≤ M. Figs. 5.6, 5.7, and 5.8 show examples of interpolated functions —

qi(M,N)/N for the Search and Item requests, and function pi(M,N) for the Home

147

30

32

34

36

38

40

42

44

46

48

50

52

54

56

58

60

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
DB connections (N)

q/
N

 (m
s)

5 6 7 8 9 10 11 12 13 14 15 16 17
18 19 20 21 22 23 24 25 26 27 28 29 30

threads (M)

M = 5

M = 30

Figure 5.6: qi for the Search request, divided by the number of DB connections.

request, respectively. Each curve on these charts corresponds to the function with

fixed M (number of threads), M = 5, . . . ,30, and is parameterized by N (number of

DB connections).

The shapes of the function curves may be quite complex. They reflect the behavior

of different request types, relative to the sizes of the thread and DB connection pools,

and show how requests scale with increased number of threads and DB connections.

Obviously, functions pi(M,N) and qi(M,N) depend on hardware, middleware, and

database configurations. But most notably, we believe, they depend on the functional-

ity and the implementation of the service requests, i.e., on the nature of the underlying

work being done by the requests, on the way low-level resources (such as CPU, mem-

148

11

12

13

14

15

16

17

18

19

20

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
DB connections (N)

q/
N

 (m
s)

5 6 7 8 9 10 11 12 13 14 15 16 17
18 19 20 21 22 23 24 25 26 27 28 29 30

threads (M)

M = 5

M = 30

Figure 5.7: qi for the Item request, divided by the number of DB connections.

ory, IO) are used, and on the way concurrent requests interfere with each other (i.e.,

database locking and data contention issues). For example, the Search request, which

performs complex read-only database queries, scales well and enjoys better perfor-

mance with increased degree of parallelism (Fig 5.6), while the Item request shows

the best performance with relatively small number of threads and DB connections

(M,N = 5, . . . ,8, see Fig. 5.7).

In step 3 we get the values of maximum sustainable session throughput λ (M,N),

for every combination of M and N. We compute these values for the same load as we

used in the “profiling tests” (Table 5.2). Fig. 5.9 shows function λ (M,N), computed

by our method.

We define λ (N) as the maximum sustainable session throughput as a function of

149

120

140

160

180

200

220

240

260

280

300

320

340

360

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

DB connections (N)

p
(m

s)

5 6 7 8 9 10 11 12 13 14 15 16 17
18 19 20 21 22 23 24 25 26 27 28 29 30

threads (M)

M = 5

M = 30

Figure 5.8: pi for the Home request.

N, where M is chosen to achieve the best throughput for a given N:

λ (N) = λ (M0,N) |M0 = argmax
M

λ (M,N) (5.5)

Fig. 5.9 also shows λ (N) computed by our method (“λ (N) meth”), and obtained

experimentally (“λ (N) exp”). To obtain the latter, for each optimal pair of (M0, N)

computed by the method (M0 defined by equation (5.5)) we run tests with (M0− 1,

N), (M0, N), (M0 + 1, N), and (M0− 2, N), (M0 + 2, N) if needed, to determine the

maximum session throughput in each case and confirm that M0 is indeed the optimal

for a given N.

As a matter of fact, it is difficult to tell the exact throughput of a server config-

150

2.2

2.25

2.3

2.35
2.4

2.45

2.5

2.55

2.6

2.65

2.7

2.75
2.8

2.85

2.9

2.95

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
DB connections (N)

5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 la(N): me la(N): exp

threads (M)

(N) meth (N) exp

M = 5

M = 30

Figure 5.9: λ (M,N) and λ (N), computed by our method (“λ (N) meth”) and obtained

experimentally (“λ (N) exp”), for the “profiling load.”

uration due to non-determinism in its behavior, especially for user loads that we use

(Poisson session arrivals, random inter-request times, see Section 3.1.4). One can tell

only approximate request (session) throughput, which can be defined, for example, as

the maximum λ , at which 60% of test runs complete with a request success rate of

100%. Therefore, the values of λ (session arrival rate) used in the tests determining

the actual maximum session throughout are incremented with a granularity of 0.05

(e.g., 2.65, 2.70, 2.75, . . .).

Our method succeeds in determining the value of M that achieves the highest

throughput for a given N (also referred to as “the optimal M for a given N”), and

151

vice versa. However, it might not be exactly precise in determining the value of actual

maximum session throughput, which may well happen to be a little lower than pro-

jected by the method. This effect can be attributed to the thread and DB connection

“context switching”5 and to the burstiness of the incoming user requests. However,

the actual session throughput (determined by the experiments) always lies within a

5% error margin of the value predicted by the method.

It is interesting to notice that the optimal pairs of (M,N) are ones where N is

very close to M, e.g., (8,6), (14,11), (30,26). This means that only a few additional

threads are needed to do processing of requests that do not access the database. This

is also seen in the fact that under load the values of qi’s increase much higher than do

the values of pi’s (Table 5.1). This indicates that requests, after being assigned to a

server thread, spend a dominant portion of their processing time working with the DB

connection.

In the next series of experiments we tested the ability of our method to work with

user loads that differ from the one used in the “profiling tests.” In preliminary tests

we noticed that the dependence of pi’s and qi’s on the incoming request mix (Vi) is

very weak, i.e., their values change insignificantly when the request load parameters

Vi stay close enough to their initial values. This suggests that it might be possible to

gather the values of pi’s and qi’s for some average (representative) user load, and later

use them to compute the optimal number of threads and DB connections for loads that

differ from the one used in the “profiling tests.”
5A thread that releases a DB connection notifies the next waiting thread, and it may take some CPU cycles

before the waiting thread grabs the released DB connection; in other words, a DB connection occurs to be occupied

for a slightly greater time, than can be recorded.

152

1.9
1.95

2
2.05

2.1
2.15

2.2
2.25

2.3
2.35

2.4
2.45

2.5
2.55

2.6
2.65

2.7

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
DB connections (N)

5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 la(N): me la(N): exp

threads (M)

(N) meth (N) exp

M = 5

M = 30

Figure 5.10: λ (M,N) and λ (N), computed by our method (“λ (N) meth”) and ob-

tained experimentally (“λ (N) exp”), for the “Load 1” user load.

To verify this, we test our method on two user loads that differ from the “profiling

load”, but stay relatively close to it (with the values of Vi varying by no more than

±15-20%). In computations, we use the same pi’s and qi’s obtained for the “profiling

load”. The parameters of these loads (“Load 1” and “Load 2”) are shown in Table 5.2.

As the “profiling load,” these two loads are chosen to be representative of real-life

shopping scenarios, where Search and Item requests dominate all other request types.

The chosen loads represent the two extremes of the load spectrum — “Load 1” has

a dominant portion of Item requests, while “Load 2” has a greater number of Search

requests.

153

1.5

1.55

1.6

1.65

1.7

1.75

1.8

1.85

1.9

1.95

2

2.05

2.1

2.15

2.2

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

DB connections (N)
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 la(N): me la(N): exp

threads (M)

(N) meth (N) exp

M = 5

M = 30

Figure 5.11: λ (M,N) and λ (N), computed by our method (“λ (N) meth”) and ob-

tained experimentally (“λ (N) exp”), for the “Load 2” user load.

As with the “profiling load,” we use our method to compute the values of λ (M,N)

and λ (N), and perform a series of test runs to obtain the values of λ (N) experimen-

tally. Figs. 5.10 and 5.11 show the results of these computations and experiments

for “Load 1” and “Load 2,” respectively. As we see, the method works for both user

loads. The method is able to compute the optimal number of threads and DB connec-

tions and the actual values of session throughput lie within a 5% margin of the values

predicted by the method.

154

5.6 Summary

In this chapter we presented the method that computes the optimal number of threads

and database connections for a given application, its server and database environment,

and specific user load (request mix). The methodology is built on a model for request

execution with 2-tier exclusive resource holding (1st tier — threads, 2nd tier — DB

connections). This method uses information about fine-grained server resource uti-

lization (Section 3.3), obtained through profiling of request execution in a limited set

of off-line (“profiling”) experiments, where the actual server environment is subjected

to an artificial user load. Under real operating conditions, the method takes as input

the request flow information (Section 3.1), obtained through on-line request profiling,

and computes the maximum sustainable session throughput for a given number of

threads and DB connections, and the mix of incoming user requests.

We evaluate the proposed methodology by testing it on the TPC-W application.

The method is shown to be able to compute the values of the maximum sustained ses-

sion throughput, which lie within a 5% error margin of the actual throughput achieved

by the application under actual user load. Moreover, the method works for user loads,

which differ from the load used in the “profiling tests,” but are close to it. By being

able to predict the session throughout for any input values of the number of threads

and DB connections, the method gives a way to compute the number of threads and

DB connections that maximize session throughput, thus enabling optimal utilization

of these two pooled server resources.

155

Chapter 6

Session Data Integrity

This chapter focuses on the problem of providing session data integrity guarantees,

which was introduced earlier in Section 1.2.3. In Section 6.1 we formulate the prob-

lem and present our approach to solving it. Section 6.2 talks about the models used

and the assumptions made, and among other issues introduces the three concurrency

control algorithms for web sessions, which are used to provide session data integrity

guarantees. In Section 6.3 we present our analytical models for concurrent web ses-

sions with bounded inconsistency in shared data, which allow us to reason about var-

ious performance metrics achieved by the three algorithms. Section 6.4 describes our

middleware infrastructure for data consistency enforcement and Section 6.5 presents

our evaluation methodology and experimental results.

156

6.1 Problem formulation and our approach

As described earlier, the typical interaction of users with modern Internet services is

organized into sessions. In the on-line shopping scenario for an e-Commerce web site

introduced earlier, the multiple requests (1) search for particular products, (2) retrieve

information about a specific item (e.g., quantity and price), (3) add it to the shopping

cart, (4) initiate the check-out process, and (5) finally commit the order.

In scenarios of this kind, session requests can both read and write application

data shared among several users of the service. Thus, execution of concurrent client

sessions may affect each other by changing the shared application state. In the above

example, the client’s decision to commit the order (buying an item in step 5) is based

on the information presented in step 2. Thus, if the quantity or price of the item has

changed (as a result of concurrent client activities), it might be undesirable to allow

the client to commit the order (step 5) based on incorrect information. At this point the

service provider needs to make a decision of whether to proceed with the execution

of the request: allowing the session with invalid data to progress can lead to potential

financial penalties incurred by the service (e.g., selling an item which has become

out of stock, or selling it at a lower price), while blocking the session’s execution

might result in user dissatisfaction and can lead to a drop in user loyalty. In the latter

case the session execution is deferred, and handling of the case is relayed to customer

service or awaits the intervention of system administrators, based on the nature of the

business represented by the service.

A compromise would be to tolerate some bounded degree of shared data incon-

sistency [100, 143], denote it q (measured in some units, e.g., price or item quantity

157

difference), which would allow more sessions to progress, while limiting the potential

financial loss by the service. The current dominant approach in web-based shopping

systems is to satisfy the client at all costs and never defer its session (which corre-

sponds to tolerating q = ∞), but one could envision scenarios where imposing some

limits on the tolerable session data inconsistency (and so — limiting the possible fi-

nancial loss) at the expense of a small number of deferred sessions might be a more

preferable alternative. Besides on-line shopping, examples of the systems where such

tradeoffs might prove beneficial, are on-line trading systems and auctions.

To enforce that the chosen degree of data consistency is preserved, the service can

rely on different concurrency control algorithms. Several such algorithms have been

developed in the context of classical database transaction theory and for advanced

transaction models (see Section 2.7). However, these algorithms need to be modi-

fied to be able to enforce session data consistency constraints, because of substantial

differences between classical transactions and web sessions, which we discussed in

Section 2.7.2.

In this dissertation, we consider three concurrency control algorithms for web ses-

sions — Optimistic Validation, Locking, and Pessimistic Admission Control. The al-

gorithms work by rejecting the requests of the sessions for which they can not provide

data consistency guarantees (so these sessions become deferred). However, they uti-

lize different strategies in doing so, which leads to different number of deferred ses-

sions, not known to the service provider in advance. In order to meaningfully trade off

having to defer some sessions for guaranteed bounded session data inconsistency, the

service provider can benefit from models that predict metrics such as the percentage of

successfully completed sessions (as opposed to the percentage of deferred sessions),

158

for certain degree of tolerable data inconsistency (the value of q), based on service

particulars and information about how clients use the service.

To this end, we develop analytical models that characterize execution of con-

current web sessions with bounded shared data inconsistency, for each of the three

discussed concurrency control algorithms. We present our models in the context of

the sample buyer scenario for the TPC-W e-Commerce benchmark application (Sec-

tion 2.4.1). We compare the results of our analytical models with the results of con-

current web session execution in a simulated, and in a real web application server

environment.

Besides allowing one to quantitatively reason about tradeoffs between the bene-

fits of limiting tolerable session data inconsistency and the drawbacks of necessarily

deferring some sessions to enforce this data consistency, the models also permit com-

parison between concurrency control algorithms, with regards to the chosen metric

of interest. In particular, since the proposed models use as input service usage pa-

rameters that are easily obtained through profiling of incoming client requests, one

can build an automated decision making process as a part of the underlying middle-

ware platform, that would choose an appropriate concurrency control algorithm in

real time, in response to changing service usage patterns.

To test this claim we augment our middleware infrastructure implemented in the

application server JBoss (Section 2.3) with the session data consistency enforcement

capabilities and automated decision making functionality described above. Session

data consistency is enforced by the means of intercepting (and so — rejecting, if

need be) service requests. The decision of which concurrency control method to use

is made automatically, based on the analytical models and the parameters of service

159

usage, obtained by the request profiling service.

6.2 Models and assumptions

The analytical models take as input information about user request flow structure,

which comes in the form of the CBMG model (Section 3.1.2). We present the mod-

els in the context of the sample buyer scenario for the TPC-W transactional web

e-Commerce benchmark application (Section 2.4.1), whose sessions adhere to the

CBMG shown in Fig. 3.2. Each session starts with the Home request, and may end

either after several Search and Item requests (we refer to such sessions as browser ses-

sions), or after putting a (number of) item(s) in the shopping cart and completing the

purchase (buyer session). To stress essential buyer activities in this sample scenario,

we assume that once a user puts an item into the shopping cart, he never abandons

the session and eventually commits the order. Each Item request carries an additional

parameter — the itemId of the item to be displayed. We assume that there are S

items in the store, and that the i-th item is picked with probability pitem
i . The Add To

Cart request chooses the same item that was picked in the preceding Item request, and

it puts it in the shopping cart with quantity 1.

As discussed in Section 3.1, we assume that new sessions arrive as a Poisson pro-

cess [73] with arrival rate λ and that session inter-request times are independent with

mean 1/µ , that is, requests from a session form a random process with the event

arrival rate µ (see Section 3.1.4). When we state this explicitly, we assume a spe-

cific distribution of session inter-request times. We also discuss the affect of specific

distributions of session inter-request times in Section 6.5.

160

When developing the models, we assume that a request is served immediately and

is either admitted and processed by the service, or rejected, which in turn terminates

that session. Request processing time, including serialization delays in the underlying

database, is assumed to be negligible compared to the average session inter-request

time. In Section 6.5 we discuss the motivation behind this assumption.

6.2.1 Session data consistency constraints

Information about the business-critical shared data that the service provider wants to

cover by data consistency constraints can not be automatically extracted from the ap-

plication structure or code — it needs to be identified by the service provider. To

do this, we use the flexible application-generic OP-COP-VALP model for specifica-

tion of conflicting operations and validation points, presented in Section 3.4.1. We

will illustrate our analytical models for concurrent web sessions in the context of the

following data consistency constraint specification for the TPC-W application:

For each session, the quantity of an item (with id i) seen in the Buy

Request state which presents an updated view of the shopping cart, can

differ by no more than qi units from the value seen by the Add To Cart

request which inserted the item into the shopping cart. qi may be different

for different items in the store.

The mapping of this specification to the OP-COP-VALP model is the following

(see also Fig. 6.1):

• OP is the Add To Cart request, with corr.Id being its itemId parameter;

COP is the Buy Confirm request (which completes the purchase, records the

161

Home Search
[empty cart]

Item
[empty cart]

Add To Cart
(OP)SearchItem

Cart Register

Buy Request
(VALP)

Buy Confirm
(COP)

Exit
[browser]

Exit
[buyer]

pse,ie

pie,se

pse,se

ph,se

pie,a

pie,ie

pa,r

pa,s

pc,r
ps,s

pi,a

pi,s

ps,i

pi,i

pbc,exit pbr,bc

pr,br

p
se,exit pie,exit

p
s,c

p
c,s

Figure 6.1: CBMG of a sample TPC-W buyer session with mappings of OP, COP, and

VALP to the service requests.

order information, and decrements the items’ quantities), with corr.Ids being

the set of itemIds of the items in the shopping cart.

• NUM VAL of the OP (Add To Cart) request is the available quantity of the

item. The COP (Buy Confirm) request changes the correlated NUM VAL value

by decrementing it by the quantity of the item in the purchase (itemIds and

quantities of the items in the purchase are all parameters of the Buy Confirm re-

quest). Thus, q is the relative inconsistency of NUM VAL, that the service wishes

to tolerate.

• Buy Request corresponds to a VALP which covers all OPs of the session.

162

6.2.2 Concurrency control algorithms

Concurrency control techniques in transaction processing theory can be classified into

two categories: locking techniques and validation techniques. The spirit of the first

is to lock shared resources, preventing concurrent processes from accessing a locked

entity until a certain safe point of execution is reached (e.g., transaction commit).

The approach in the second camp is to let concurrent processes execute in parallel,

accessing shared resources, and to validate execution in the end, hoping that conflicts

either did not happen or canceled each other out. Although these mechanisms are

not directly applicable to web sessions, one can come up with similar concurrency

control algorithms for web sessions with data consistency constraints. The algorithms

determine whether to allow execution of a request (with all possible effects on shared

application state) or to reject it. Once a request from the session has been rejected,

the whole session is deemed deferred, with no additional requests coming from that

session. In this dissertation, we work with the following three natural algorithms,

which are based on the OP-COP-VALP model for specification of data consistency

constraints:

• Optimistic Validation: admit all OP and COP requests; when a VALP request

arrives, validate the OPs that it covers — and admit or reject the VALP request

accordingly. This technique resembles backward validation of classical trans-

actions.

• No-Waiting Locking (Locking): this technique is applicable if every COP re-

quest in a session is preceded by a correlated OP request (think of OP and COP

as READ and WRITE of the same data item). Assign a logical lock to each value

163

of the corr.Id, and make the OP request obtain this lock when admitted and

release the lock after the completion of the COP request. If OP can not obtain

the lock it is immediately rejected (hence the name of the algorithm). Note that

this technique has somewhat different semantics from the classical “no-waiting”

locking — if the request is rejected the session is not restarted.

• Pessimistic Admission Control: admit OPs and VALPs; when a COP arrives,

admit it only if it would not potentially invalidate OPs of other concurrent ses-

sions. This technique resembles forward validation of classical transactions.

Note that these web session concurrency control algorithms build on top of seri-

alization support of the underlying database and do not substitute conventional trans-

actions — if the service logic requires it, the ACID properties of individual OP, COP,

and VALP requests are guaranteed by the underlying middleware transaction service.

6.2.3 Metrics of interest

As client interaction with the service is organized in sessions and a client is satisfied

only if its session successfully completes (i.e., it is not deferred), the measure of

success of a particular concurrency control algorithm should be viewed in light of

how many sessions have completed successfully. Therefore, we consider percentage

of successful sessions as the main service performance metric throughout the chapter.

Another metric that we consider is the percentage of requests belonging to suc-

cessful sessions, or simply percentage of successful requests, as a measure of what

portion of system resources did good for clients, and what portion was wasted serving

requests of deferred sessions. As we will see, the two metrics are not the same. While

164

the first metric can be viewed as a business or client satisfaction metric, the second

one is clearly a system metric.

Different concurrency control algorithms defer unsuccessful sessions at different

stages of session execution, so the actual load on the service (e.g., request rate), pro-

duced by different algorithms is different. Therefore, another system metric we look

at is the effective request rate seen by the service, measured in number of requests

served per unit time (we count rejected requests too, because they also consume sys-

tem resources).

6.3 Analytical models

In this section we present three analytical models, one for each concurrency control

algorithm (Section 6.2.2). The models compute the three chosen metrics of interest

(Section 6.2.3), based on the parameters of service usage. The models, although

somewhat different, rely on the following three key modeling techniques, used in

other modeling studies as well [126, 4, 128, 129]:

1. Approximating independence assumptions. Execution of multiple concurrent

web sessions is a compound random process, comprised of multiple inter-depen-

dent finite-living random processes representing each session, which are in turn

spawned by the Poisson process of new session arrivals. The inter-dependence

is complicated further by the presence of session data consistency constraints.

To simplify analysis, we assume that certain events are independent and approx-

imatable as a Poisson process. The main such assumption is that COP requests

form a Poisson process (with arrival rate η) which is independent of the Poisson

165

Sess. i-1
req. 1

COP COP

Time

Sess. i
req. 1

Sess. i
req. 2

Sess. i
req. k-1

COP

Sess. i
req. k

λ µ µ

η η

Figure 6.2: Analytical model.

process of incoming new sessions (see Fig. 6.2). Some of these assumptions

are justified by the memorylessness property of Poisson process, in other cases

they are not precisely correct, because requests originate from slightly corre-

lated processes. However, as our validation results in Section 6.5 show, these

assumptions prove a good approximation.

2. Session enumeration technique. In order to compute some probabilistic pa-

rameters, when it is difficult to do so purely analytically, we use the computa-

tional approach of session enumeration. We compute the value of the desired

parameter for a session that has a particular known structure (sequence of re-

quests). The final value of the parameter is the summation (over all possible

sessions) of values obtained for individual sessions, weighted by the probabil-

ity of the session having a specific structure. The number of possible session

structures is, of course, infinite, but in the adopted CBMG session model, the

probability of a session having length greater than Lmax decreases exponentially

with growing Lmax. For reasonably structured sessions with probabilities of

166

transitions reflecting real-life service usage, it is sufficient to count all sessions

of length less than 2 to 3 times the average session length (i.e., involving on the

order of 30 – 40 requests), to cover, say, 96-97% of all sessions, probability-

wise. This makes it computationally feasible to implement the technique, which

runs over the “majority” of session structures, and expect the running time of the

modeling algorithm to be in the order of minutes, not hours. The enumeration

algorithm also computes the probability space covered and specifically adjusts

the computed value to account for sessions not enumerated.

3. Fixed point iteration over an unknown value. Due to the complex inter-

dependent nature of concurrent session execution, it often happens that in order

to compute a certain parameter P through the session enumeration technique, we

need to know the value of some other parameter, say R, which in turn depends

on P. To break this loop, we assume some value for P, use computation tech-

niques to find R (and so P as well), and iterate the procedure until convergence

to a fixed point.

Although we illustrate our models using the CBMG and associated data consistency

constraints of our sample TPC-W buyer scenario (Fig. 3.2), we note that the approach

itself is general enough to be tailored to other CBMGs and associated session data

consistency constraints.

Recall that our TPC-W sessions are divided between browser and buyer sessions.

A browser session becomes a buyer session when it moves from the Item [empty cart]

state to the Add To Cart state (Fig. 3.2). The probability that a session eventually

makes this transition (Pbuy) is easily computable from the state transition probabilities

167

pi, j (this apparatus was developed in the CBMG model [89]). This gives us the rate of

incoming buyer sessions λbuy = λPbuy. The rest of the chapter will concentrate on the

buyer sessions. To clarify the presentation, we use small letters to denote probability

values that are given by the model, e.g., pi, j, and capital letters to denote values that

we introduce and that need to be computed, e.g., Pbuy.

In our TPC-W buyer session, OPs are Add To Cart requests, each adding one item

to the shopping cart with quantity 1. Recall that we have S items in the store, and

probability of picking the i-th item is pitem
i . The corr.Id associated with each OP

request is the itemId of the item put into the shopping cart. If a session has K OP

requests (i.e., K items are put into the shopping cart, counting their quantities), we

denote their corr.Ids (i.e., itemIds) as i1, i2, . . . , iK . Each OP request has an as-

sociated NUM VAL value — the available quantity of the item at the moment of the

request. Each individual COP with the same corr.Id i decreases this value by 1.

The session is successful, if NUM VAL decreases by no more than qi, between the OP

(Add To Cart) and the VALP (Buy Request) requests. A Buy Confirm request, if ad-

mitted, decrements the available quantities of items that were purchased. We view the

Buy Confirm request as a set of unit decrements, as many of them for each itemId as

was the quantity of the item in the purchase. With this notation, an admitted Buy Con-

firm request produces the set of individual COPs (K of them in total) with corr.Ids

matching those of the OP requests in the session — i1, i2, . . . , iK . Throughout the rest

of the chapter we will refer to the session in Fig. 6.3, as an example of a specific

session structure. Note, that this session has two OPs with corr.Ids i1 and i2.

In all three analytical models, the first two percentage metrics — probability of

session success (P) and percentage of requests belonging to successful sessions (REQ)

168

ADD
i_1 SEARCH ITEM ADD

i_2 REGIS. BUY
REQ.

... BUY
CONF.

Figure 6.3: Example of a TPC-W buyer session.

— are computed by the session enumeration method, in which we actually enumerate

not only session structures, but also all possible assignments of corr.Ids to OPs:

P = ∑
all sessions and

corr.Id assignments

Psess ·Psucc (6.1)

REQ =

∑
all sessions and

corr.Id assignments

Psess ·Psucc ·Lsucc

Lav
(6.2)

Psess, the probability of a session having a particular sequence of requests k1,k2, . . . ,kL

and corr.Ids i1, i2, . . . , iK assigned to its OPs is given by the formula:

Psess =
L−1

∏
j=1

pk j,k j+1 ·
K

∏
j=1

pitem
i j

(6.3)

Psucc is the probability of a particular session completing successfully. Lsucc is the

number of requests in a particular session, when it is successful. Lav is the average

number of requests in a session. The third metric — request rate (RATE) — is given

by the formula:

RATE = λ ·Lav (6.4)

6.3.1 Optimistic Validation

The Optimistic Validation algorithm works by validating VALP requests (a single

Buy Request in our case). The analytical model is built by assuming that we know

the value of η — the arrival rate of COPs. Using the value of η we compute the

169

probability of the Buy Request validation for a particular session structure. Using

the session enumeration technique we compute the two percentage metrics (formulae

(6.1) and (6.2)), along with η . Fixed point iteration over unknown η completes the

process. In developing this model for Optimistic Validation we assume that session

inter-request times are exponentially distributed (with parameter µ).

If a session is validated, its Buy Confirm request produces a set of K COPs. So the

expression for η , used by the session enumeration technique, is:

η = λbuy ∑
all sessions and

corr.Id assignments

Psess ·Psucc ·K (6.5)

where the value of Psess is given by (6.3). To compute Psucc — the probability of

validating a session with a specific structure and a set of corr.Ids — we look at

how many distinct corr.Ids are in the session (i.e., distinct items are in the cart),

based on the known values of i1, i2, . . . , iK . For each distinct corr.Id i, all OPs

with this corr.Id are validated, if the corresponding NUM VAL value (i.e., available

quantity of the item) decreases by no more than qi between the first OP (i.e., Add To

Cart) and the VALP (i.e., Buy Request) requests. We assume, that validations of OPs

with distinct corr.Ids are independent, so

Psucc = ∏
distinct i∈{i1,i2,...,iK}

Pvalid:corr.Id=i,

where Pvalid:corr.Id=i — the probability of validating OP with corr.Id i, and with a

specific distance between OP and VALP, which is inferred from the session structure.

For example, in the session shown in Fig. 6.3 if the first item put into the cart has

itemId 1 and the second has itemId 4, then the probability of session validation

is the product of two validation probabilities: the first one — for OP with corr.Id

170

1 and a distance between OP and VALP of 5 requests, and the second — for OP with

corr.Id 4 and a distance between OP and VALP of 2 requests.

We assume, that the portion of COPs with a particular corr.Id is proportional to

the number of OPs with the same corr.Id, because if the session is validated, every

OP is eventually followed by the COP with the same corr.Id. OP has corr.Id i

with probability pitem
i . This means that the flow of COPs with a particular corr.Id

i, if viewed as a Poisson process, has arrival rate ηi = η · pitem
i . Thus, computation of

Pvalid:corr.Id=i reduces to the following problem.

Given two Poisson processes, the first with arrival rate µ (session requests

between OP and VALP), the other with arrival rate ηi (the flow of COPs

with specific corr.Id i), find the probability that M requests from the

first flow (M being the distance between OP and VALP, known from

the session structure) come earlier than Q requests from the second flow

(Q being actually qi +1, where qi is the tolerable inconsistency, because

the qi + 1-st COP will invalidate OP). This probability (let’s denote it

Psucc(µ,M,ηi,Q)) is exactly Pvalid:corr.Id=i.

The probability that exactly k requests arrive in a Poisson process with arrival

rate µ in the interval (0, t): P(µ,k, t) = (µt)k

k! e−µt . The PDF of the random variable

representing the time of the M-th request arrival is

pdfµ,M(t) = lim
∆t→0

P{Mth req. arr. in (t, t +∆t)}
∆t

=

= lim
∆t→0

P(µ,M−1, t) ·P(µ,1,∆t)
∆t

=
(µt)M−1 ·µ · e−µt

(M−1)!

171

Psucc(µ,M,ηi,Q) is obtained as the convolution of the PDF pdfµ,M(t) of the time

of the M-th request arrival in the first process and the probability that by that time there

will be less than Q requests that would have arrived in the second Poisson process,

P(ηi,< Q, t). The latter is equal to ∑
Q−1
k=0 P(ηi,k, t) = ∑

Q−1
k=0

(ηit)k

k! e−ηit , and thus (we

omit some details for brevity):

Psucc(µ,M,ηi,Q) =
∫

∞

0
P(ηi,< Q, t) ·pdfµ,M(t)dt =

=
∫

∞

0

(
Q−1

∑
k=0

(ηit)k

k!
e−ηit

)
(µt)M−1 ·µ · e−µt

(M−1)!
dt = . . .

=
Q−1

∑
k=0

ηk
i ·µM

k! · (M−1)! · (µ +ηi)k+M

∫
∞

0
tk+M−1 · e−tdt =

=
µM

(M−1)! · (µ +ηi)M

Q−1

∑
k=0

ηk
i

k! · (µ +ηi)k Γ(k +M) (6.6)

where Γ(z) =
∫

∞

0 tz−1 ·e−tdt is the Gamma function [5], defined for complex values z,

and known for positive integer k: Γ(k) = (k−1)!. Substituting this into equation (6.6)

gives the final expression for Psucc(µ,M,ηi,Q):

µM

(M−1)! · (µ +ηi)M

Q−1

∑
k=0

(k +M−1)! ·ηk
i

k! · (µ +ηi)k

Finding P and REQ is completed by the fixed point iteration process over un-

known η . The value given by r.h.s. of (6.5), if viewed as a function of η is a strictly

decreasing function, because the greater the argument (the assumed value of η), the

fewer the number of validated sessions, and, in turn, the less the value of the r.h.s.

of (6.5). Finding the intersection of a strictly decreasing positive function with the

function y = x is straightforward.

To compute effective request rate (RATE) by formula (6.4), we need to know Lav.

If sessions are allowed to progress till the end, then the average session length (Lideal
av)

172

can be easily computed from the CBMG state transition probabilities pi, j (see Sec-

tion 3.1.4, formulae (3.1) and (3.2)). The presence of the concurrency control algo-

rithm makes some sessions shorter, because they are rejected. Identifying the points

in a session’s structure when the session can be rejected and comparing its length with

the length of the same session running in the absence of any concurrency control al-

gorithms, shows how Lav relates to Lideal
av . In the case of Optimistic Validation method

and the particular CBMG of the TPC-W session we consider, we conclude that ev-

ery unsuccessful session is one request shorter than when it is successful, because

the Buy Request is rejected and there is no final Buy Confirm request. Therefore,

Lav = Lideal
av +P−1.

The complexity of the algorithm is linear in qi, polynomial in S and the number

of states in the CBMG, and exponential in Lmax (the maximum length of sessions

counted in the session enumeration technique). The latter parameter contributes the

most to the complexity of the computation, but as we pointed out earlier (during the

discussion of the session enumeration technique), being on the order of several dozens

for reasonably structured real-life sessions, it makes it computationally feasible to use

the algorithm.

6.3.2 Locking

Recall, that the Locking algorithm works by assigning qi + 1 logical locks to each

corr.Id value i, where qi is the tolerable NUM VAL inconsistency. Each OP tries to

obtain a lock associated with the OP’s corr.Id. If it does not succeed, the request

is rejected, the session is considered aborted, and the locks held by the session are

released. All locks are released after the COP request.

173

In the model for the Locking algorithm we assume that we know the values of

Plock — the probability that OP (regardless of its corr.Id) succeeds in obtaining

a lock and T — the average time the lock is held for. Plock is then used to compute

λOP — the arrival rate of OPs. All three values are used to compute the probability

of a particular session’s success (Psucc), which is used by the session enumeration

technique to compute all three metrics of interest (formulae (6.1), (6.2) and (6.4)),

along with the values of Plock and T . Fixed point iteration over unknown Plock and T

completes the model.

A session is successful if it acquires the lock on every OP request, so

Psucc =
K

∏
j=1

Plock:i j (6.7)

where Plock:i is the probability of obtaining the lock for corr.Id i (we assume that

the probabilities of obtaining locks for different corr.Ids are independent).

Finding Plock:i is the cornerstone of the model. To achieve this, we need λOP — the

arrival rate of OP requests. Using the probabilities of state transitions pi, j it is easy to

compute Pret — the probability that after visiting the Add To Cart state a session will

return to it again (see [89]). In the Locking algorithm, the progress of a buyer session

is conditional on it being admitted in every Add To Cart request, so the probability

of returning to the Add To Cart state is equal to PlockPret. In addition to the first OP

request in each buyer session, which contributes an arrival rate portion of λbuy towards

λOP, there is the flow of second OPs with arrival rate λbuyPlockPret, the flow of third

OPs with arrival rate λbuy(PlockPret)2, and so on. Therefore,

λOP = λbuy

∞

∑
k=0

(PlockPret)k =
λbuy

1−PlockPret
(6.8)

174

The overall flow of OPs divides into S subflows of requests with a particular

corr.Id i, with arrival rates λOP · pitem
i . For each corr.Id i, we consider OP

requests as “customers”, qi + 1 locks as qi + 1 “servers” and the time between an

OP request and the corresponding COP request (during which the lock is held) in a

session as “customer service time”. Then the qi + 1-lock algorithm of the Locking

method introduces the virtual queueing system M/G/qi+1/qi+1 [60], with the arrival

rate of “customers” being λOP · pitem
i . The number of “customers” in such a system in

the steady state — random variable ξ — depends only on the expected value of the

distribution G (which represents “customer service time”), i.e., only on the average

time of holding a lock — T . It is possible to obtain the lock only if the corresponding

queueing system is not full, i.e., there are fewer than qi +1 “customers” in the system,

therefore,

Plock:i = pr(ξ < qi +1) = 1−
(λOP·pitem

i ·T)qi+1

(qi+1)!

∑
qi+1
k=0

(λOP·pitem
i ·T)k

k!

(6.9)

Imagine that we know the values of Plock and T . Equation (6.8) gives us the

value of λOP. Then, in the session enumeration phase we compute the metrics of

interest, using (6.7) and (6.9). The value of Plock is computed by observing that

Plock = ∑
S
i=1 pitem

i ·Plock:i.

T is also computed by the session enumeration technique:

T = ∑
all sessions and

corr.Id assignments

Psess ·Tsess,

where Tsess is the average time a lock is held in a particular session. The value of Psess,

the probability of a session having a particular structure and a particular corr.Id

assignments to its OPs, is given by (6.3). In the M/G/c/c system, customer service

175

time is counted only for the customers admitted to the system. The zero time of a

customer discarded without serving due to the limited server capacity does not count

towards average customer service time. Therefore, in the computation of Tsess, we

count only non-zero locking time periods, and among all K + 1 possible lock acqui-

sition outcomes we consider only the K outcomes that start with the first OP having

obtained its lock. For each outcome, we know the position of its OP — COP periods

(when the locks are acquired and released) and their average duration. For example,

if both OPs obtain locks in the example in Fig. 6.3, then we have two locking periods,

the first lasting for 6/µ , on average, the second for 3/µ , with the average of 4.5/µ for

this outcome (1/µ is the average session inter-request time). If the second OP fails in

obtaining the lock, we end up having only one locking period (between the first and

the second OPs) lasting for 3/µ , on average. So for the session example in Fig. 6.3

we have: Tsess = Plock:i2(4.5/µ)+(1−Plock:i2)(3/µ).

The average number of requests in a session (Lav), used to compute REQ in (6.2)

and RATE in (6.4), is also computed using the session enumeration technique in a

manner analogous to computing Tsess — for each possible lock acquisition outcome

we know the number of requests in the session.

The Locking algorithm model is completed by fixed point iteration over the pair of

unknown (Plock,T). Specifically, we start by assigning Plock any value, say 0.5, and T

— its lower bound, the average value of just one inter-request time period (1/µ), and

compute new values of Plock and T by session enumeration. These new values serve

as input for the next iteration, and the process repeats. Our experiments show that

this process converges very quickly to the fixed point. The complexity of the whole

algorithm is analogous to that of the Optimistic Validation algorithm.

176

6.3.3 Pessimistic Admission Control

This algorithm gives the worst performance with regards to the metrics of interest

(we defer discussion of the reasons to Section 6.5), so models for it are irrelevant

if one’s goal is to maximize the metrics. We present it in the dissertation only for

completeness, restricting our attention to only the strict consistency case — q = 0.

Recall, that the Pessimistic Admission Control algorithm works by admitting the COP

requests that are not going to potentially invalidate other sessions.

Unlike the first two models, the model for the Pessimistic Admission Control al-

gorithm does not require a fixed point iteration. First, we compute T — the average

time between an OP and a VALP requests in a session. This value is used in the ses-

sion enumeration to compute Psucc for a particular session, to get the first two metrics

— P and REQ (formulae (6.1) and (6.2)). For the particular CBMG of the TPC-W

session we consider, the number of requests in a session does not depend on its suc-

cess, because possible request rejection only happens in the last request of the session

— the Buy Confirm request. Therefore, the average session length (Lav) is the same

as in the absence of any concurrency control algorithms — Lideal
av , which is computed

from pi, j (see [89]). This observation completes the model by computing the RATE

metric (equation (6.4)). The complexity of the whole algorithm is analogous to that

of the Optimistic Validation algorithm.

We compute T , the average time between an OP and the VALP requests in a ses-

sion, in a separate session enumeration pass. The value of T for a particular session is

immediately seen from the session’s structure. For the session in Fig. 6.3, it is equal

to 3.5/µ , because there are two OP — VALP periods, of 5 and 2 inter-request times,

177

respectively. Note that in general, T depends solely on the structure of CBMG and its

state transition probabilities pi, j.

In the TPC-W buyer session, the COP (i.e., Buy Confirm) request is admitted,

if all individual COPs, comprising it, are admitted. In the strict consistency case

(q = 0), if an individual COP performing a unit decrement of NUM VAL for a par-

ticular corr.Id is admitted from a session, this implies that no concurrently active

sessions involve that corr.Id. Therefore, an arbitrary number of additional COPs

for the same corr.Id from the same session can also be admitted at the same time.

Therefore,

Psucc = ∏
distinct j∈{i1,i2,...,iK}

Padmit: j

where Padmit: j is the probability that COP with corr.Id j is admitted (we assume

independence for different corr.Ids).

To compute Padmit: j, we need to know λOP — the arrival rate of OP requests. Each

session produces, on average, Vadd number of OP requests, where Vadd is the average

number of visits to the Add To Cart state (easily computable from pi, j [89]). There-

fore, λOP = λbuyVadd. The arrival rate of OPs with corr.Id i is λOP · pitem
i . For

each corr.Id i, we consider the following virtual queueing system: OP requests are

“customers”, the “customers” are “served” while the session is between the OP and

the VALP requests. There are an infinite number of “servers” in the system, because

all sessions are allowed to progress between an OP and the VALP. The queueing sys-

tem described is M/G/∞ [60] with the arrival rate of customers being λOP · pitem
i . The

number of customers in the system in the steady state is a random variable (denoted

by ξi for corr.Id i). An individual COP with corr.Id i is admitted if there are no

178

concurrently active sessions that involve the same corr.Id i, i.e., ξi = 0. Therefore,

Padmit:i = pr(ξi = 0) =
(λOP · pitem

i ·T)k

k!
e−λOP·pitem

i ·T

where T is the expected value of distribution G (representing customer service time),

i.e., the average time between an OP and a VALP requests in a session, which was

computed earlier.

6.4 Middleware infrastructure for data consistency enforcement

The middleware mechanisms enforce session data consistency constraints working

only at the level of the abstract OP-COP-VALP model, with mapping of service

requests to OPs, COPs and VALPs, and other information specified by the service

provider. The benefits of this approach are that (1) the application code does not con-

tain any concurrency control functionality and does not need to be changed to allow

data consistency enforcement, and (2) this approach permits dynamic adaptation of

concurrency control policies to changes in parameters of service usage, in order to

maximize the metric of interest.

We augmented the middleware infrastructure that we implemented in the appli-

cation server JBoss (Section 2.3) with the dynamic web session concurrency control

capabilities described above. Session data consistency is enforced by the means of

intercepting (and so — rejecting, if need be) service requests. This interception and

interpretation of service requests is done at the EJB tier level, i.e. at the level of in-

vocations to middle tier components (Section 2.2.1), rather that at the web tier level,

i.e. at the level of HTTP requests. Recall, that concurrency control algorithms may

179

require the knowledge of a request’s parameters and its return value, in order to corre-

late the request and to compute the Numerical Distance in the OP-COP-VALP model

(Section 3.4.1). At the web tier level, a request’s parameters are encoded in the re-

quest’s URL, and the request return value is the whole HTML page, while at the EJB

tier level they are represented by convenient Java objects.

There are several reasons for choosing the EJB tier to intercept client requests.

First, objects facilitate simple and type-safe extraction and manipulation of the appli-

cation data, as opposed to cumbersome and error-prone parsing of URLs and HTTP

pages. Second, the URL of the request may not provide sufficient information to

identify what happened with the application state: for example, the URL of the TPC-

W Buy Confirm request (http://host name/tpcw/buy confirm) does not

contain any information about which items were bought — this information is stored

in the session state and is revealed at the EJB tier level, when corresponding EJB

components are invoked, as a part of the request execution.

The interception of user requests at the EJB tier level is enabled by the JBoss’

EJB invocation model (Section 2.3.2), which allows insertion of additional client-side

and server-side request interceptors in order to control the flow of request execution

(e.g., to reject a method invocation). We add a client-side interceptor Client Con-

currency Control Interceptor, which intercepts user requests, based on the predefined

mapping of EJB invocations to OPs, COPs and VALPs. Fig. 6.4 shows the structural

organization of our concurrency control infrastructure, which consists of the follow-

ing submodules, each of which is implemented as a JMX MBean (Section 2.3.1) in

order to standardize access to it and facilitate inter-module communication.

180

Request Profiling
Service

Concurrency
Control Service

Analytics
Service

Decision
Making
Service

EJB container

Client
Concurrency

Control
Interceptor

do concurrency
(request

control
info) ch

an
ge

 C
C

m
et

ho
d

get
service
usage
info

calculate
analytical
models

Figure 6.4: Middleware infrastructure for web session data consistency enforcement.

Request Profiling Service. Performs automatic real-time monitoring of client requests

to extract parameters of service usage and to maintain the histories of session requests

(Section 3.5.1). Produces estimates on the service usage parameters (i.e., λ , µ , pitem
i ,

and the CBMG state transition probabilities pi, j), based on the observed history of

client requests. The produced parameter estimates are accompanied with the 95%

confidence intervals (see details in Section 3.5.2).

Concurrency Control Service. Performs actual concurrency control for web sessions

according to the employed algorithm, by rejecting appropriate client requests, which

are intercepted by the EJB Client Concurrency Control Interceptor. The algorithms

are tailored to be able to switch concurrency control methods on the fly and still

enforce data consistency for older sessions that started before the switch.

181

Analytics Service. Computes the analytical models, for a given input of model pa-

rameters: S, qi (specified by the service provider) and λ , µ , pitem
i , and the CBMG state

transition probabilities pi, j (obtained by the Request Profiling Service). This service

runs on a separate application server because of its CPU intensive nature.

Decision Making Service. This is the main control module that orchestrates actions

of the other infrastructure services. It periodically extracts the model parameters from

the Request Profiling Service, computes the models using the Analytics Service and

decides to switch to the better concurrency control algorithm if that shows metric

benefits greater than a predefined threshold. Care is taken to avoid switching the

algorithm due to a transient fluctuation in service usage (Section 3.5.2).

6.5 Experimental evaluation

First, we validate that our analytical models produce results that match the metric

values obtained in a real world concurrent execution of web sessions. Second, we

evaluate the behavior of and the benefits from dynamic adaptation of concurrency

control algorithms.

6.5.1 Model validation

To validate our models we conducted the following two sets of experiments:

1. Execute concurrent TPC-W sessions with bounded data inconsistency in a sim-

ulation environment, implemented in Java and consisting of a virtual server with

a logical rendering of TPC-W (with no actual database accesses) and a driver to

182

simulate client load. This simulation represents an ideal rendering of the pro-

cess, with resource contention limited only to Java synchronization, and request

response times being effectively zero.

2. Run concurrent sessions against the TPC-W application deployed in a real web

server environment. For these tests, we used the following TPC-W configura-

tion values: NUM ITEMS = 1000, NUM EBS = 10 (Section 2.4.1). The server

testbed configuration was the same as in the RDRP experiments (Fig. 4.5). The

maximum sustainable request rate of the web application server was approxi-

mately 40 req/s.

The parameter space of the sample TPC-W buyer CBMG with the specified data

consistency constraints is very large — it consists of pi, j (state transition probabili-

ties), S (number of items in the on-line store), pitem
i (probability of picking the i-th

item), λ , µ (client load parameters), and qi (tolerable consistency). We conducted the

experiments for several sets of values, varying parameters in all dimensions of this

space. All of them showed that the analytical models produce results closely corre-

sponding to those of the simulation and the real web server environment experiments.

We will show and discuss the results of experiments for a “typical” on-line store work-

load, in which we fix all parameters except λ , which varies to present different client

load, and qi, for which we report on three sets of experiments: the strict consistency

case (qi = 0, for all items) and two relaxed consistency ones (qi = 6 and qi = 30).

As we discussed in Section 2.5.1, session inter-request (user think) times for e-

Commerce web sites are reported to have either an exponential or a log-normal dis-

tribution. In most of our experiments we use exponentially distributed session inter-

183

Home Search
[empty cart]

Item
[empty cart]

Add To Cart
(OP)SearchItem

Cart Register

Buy Request
(VALP)

Buy Confirm
(COP)

Exit
[browser]

Exit
[buyer]

0.5

0.25

0.5

1

0.5

0.25

0.5

0.5

0.5
0.5

0.4

0.3

0.25

0.3

1 1

1

0 0

0.25

0.5

Figure 6.5: CBMG of the TPC-W buyer session used in the experiments validating

analytical models.

request times. Later in the section we study how our results would differ if session

inter-request times instead followed a log-normal distribution. The values of CBMG

state transition probabilities pi, j for the chosen web workload are shown in Fig. 6.5 –

note that the given CBMG has only buyer sessions. The other parameters are: S = 5;1

pitem
i = 0.2 for i = 1 . . .5; µ = 0.1, (it corresponds to an average session inter-request

time of 10s). We have assumed for our models that request processing times are neg-

ligible compared to session inter-request times. This assumption is based on the fact

that user think time is generally much higher (in order of tens of seconds) than users
1Having S = 5 does not mean that the store has only 5 items. A model’s items may correspond to only those

specific hot-spot items, for which the service provider wants to guarantee bounded data inconsistency.

184

are willing to wait for request response (several seconds). In our JBoss/MySQL tests,

request response times were generally in the 20-100ms span, reaching 350ms under

the maximum load (compare it to 10s of average session inter-request time).

Figs. 6.6, 6.7, 6.8, 6.9, 6.10, and 6.11 compare the results of the two main met-

rics — the percentage of successful sessions and the percentage of requests belong-

ing to successful sessions — for the three algorithms — Optimistic Validation (OP),

Locking (LO), and Pessimistic Admission Control (PE), obtained in the simulation

experiments (simul), in the JBoss/MySQL web server tests (jboss), and by the

analytical models (model). We do not include in the charts the analytical model

results for Pessimistic Admission Control, because it is always outperformed by the

other two algorithms. The charts are also missing the JBoss test results for λ greater

than 2.56, which we were unable to run due to limited server capacity.

The first observation is that the results of the models closely match both the sim-

ulation and the real web server environment results, which validates our proposed

models. The models do sometimes have a little discrepancy with the experimental

results, which tends to grow towards the ends of the λ/µ spectrum (note that λ/µ

determines the “conflict rate” — the greater the value, the greater the number of con-

current sessions running, the more data conflicts they see, the less the values of the

two percentage metrics of interest). However, it often happens that at the ends of

the spectrum we have a clear algorithm winner, so discrepancy between the model

and measurements does not hamper choosing the best concurrency control method.

For example, with a large conflict rate (at the right end of the spectrum), Optimistic

Validation always performs better than the other two algorithms.

185

0

10

20

30

40

50

60

70

80

90

100

0.02 0.03 0.045 0.067 0.1 0.15 0.225 0.337 0.5 0.76
λ

OP simul OP jboss OP model LO simul
LO jboss LO model PE simul PE jboss

Figure 6.6: Percentage of successful sessions, for q = 0.

0

10

20

30

40

50

60

70

80

90

100

0.1 0.15 0.225 0.337 0.5 0.76 1.14 1.7 2.56 3.84
λ

OP simul OP jboss OP model LO simul
LO jboss LO model PE simul PE jboss

Figure 6.7: Percentage of successful sessions, for q = 6.

186

0

10

20

30

40

50

60

70

80

90

100

0.76 1.14 1.7 2.56 3.84 5.76 8.65 13 19.5 29.2
λ

OP simul OP jboss OP model LO simul
LO jboss LO model PE simul PE jboss

Figure 6.8: Percentage of successful sessions, for q = 30.

0

10

20

30

40

50

60

70

80

90

100

0.02 0.03 0.045 0.067 0.1 0.15 0.225 0.337 0.5 0.76
λ

OP simul OP jboss OP model LO simul
LO jboss LO model PE simul PE jboss

Figure 6.9: Percentage of requests belonging to successful sessions, for q = 0.

187

0

10

20

30

40

50

60

70

80

90

100

0.1 0.15 0.225 0.337 0.5 0.76 1.14 1.7 2.56 3.84
λ

OP simul OP jboss OP model LO simul
LO jboss LO model PE simul PE jboss

Figure 6.10: Percentage of requests belonging to successful sessions, for q = 6.

0

10

20

30

40

50

60

70

80

90

100

0.76 1.14 1.7 2.56 3.84 5.76 8.65 13 19.5 29.2
λ

OP simul OP jboss OP model LO simul
LO jboss LO model PE simul PE jboss

Figure 6.11: Percentage of requests belonging to successful sessions, for q = 30.

188

Pessimistic Admission Control. This algorithm always performs worse than the other

two, with respect to both percentage metrics. This happens, to our understanding,

because of the “altruistic” nature of the method — sessions are rejected on COPs to

give way to concurrent ones which otherwise would have been invalidated, but some

of those sessions will also end up getting rejected, so some sessions are sacrificed in

vain.

Optimistic Validation vs. Locking. These two methods compete to achieve the best

value for the metrics. Optimistic Validation’s “selfish” approach seems to work better

for higher rates of conflicts. The Locking algorithm is more “thoughtful” in that it

works by rejecting sessions earlier (on OP requests), when it just sees the possibility

of later conflicts. It may reject some sessions prematurely, but it lets other sessions

run in a less competitive environment. And it seems to work, especially for higher

values of qi, where for lower rates of conflicts the Locking method outperforms its

rival in both percentage metrics. The algorithm also works better for the percentage

of successful requests metric, than it does for the percentage of successful sessions.

The reason for this lies in the nature of the algorithm — it rejects unsuccessful sessions

earlier in their lifetime, which makes them considerably shorter than successful ones.

This, in turn, increases the portion of requests that belong to successful sessions.

To summarize the differences in performance of the Optimistic Validation and the

Locking algorithms, we identify the regions where one algorithm works better than

the other, according to the analytical models. Note that in the ideal setting, the “rate of

conflicts” (and so — both of the metrics) depend only on the ratio of λ and µ . As in

the previous experiments, we fixed the values of all the parameters except λ ,µ and qi.

189

0

5

10

15

20

25

30

0 3 6 9 12 15 18 21 24 27 30

Tolerable discrepancy q

λ/
µ

LO better than OP

Both metrics
greater than 98%

0

20

40

60

80

100

0 3 6 9 12 15 18 21 24 27 30

Tolerable discrepancy q

λ/
µ

LO better than OP

Figure 6.12: Algorithm performance comparison for the percentage of successful ses-

sions (left) and the percentage of requests belonging to successful sessions (right).

Gray areas in Fig. 6.12 show the regions where the Locking algorithm outperforms the

Optimistic Validation, for the percentage of successful sessions (left chart), and the

percentage of requests belonging to successful sessions (right chart). In both charts,

the X axis plots the value of tolerable inconsistency qi (equal for all items), from 0 to

30, and the Y axis plots the ratio λ/µ . We only considered the cases where at least

one of the metrics lies in the interval of 2% – 98%. The dark gray area in the left chart

shows the region where the metrics for both algorithms are greater than 98%.

Effective request rate. Fig. 6.13, 6.14, and 6.15 show the results for the third metric

of interest — effective request rate. Note that for greater values of λ , request rates of

the web server experiments are a little bit lower than the predicted and the simulation

ones. This happens because under normal load, request response times are in the order

of 20–100ms span, which is indeed negligible compared to the session inter-request

times (10s on average). However, under higher load, response times become higher

(and reach 300–350ms for λ = 2.56). These increased response times start making

a slightly noticeable contribution to the interval between sending the requests, which

190

0

1

2

3

4

5

6

7

8

9

10

11

0.15 0.225 0.337 0.5 0.76
λ

R
eq

ue
st

 ra
te

 (r
eq

/s
)

PE simul PE jboss LO simul LO jboss LO model
OP simul OP jboss OP model

Figure 6.13: Request rate for q = 0.

0

5

10

15

20

25

30

35

40

45

50

55

0.76 1.14 1.7 2.56 3.84
λ

R
eq

ue
st

 ra
te

 (r
eq

/s
)

PE simul PE jboss LO simul LO jboss LO model
OP simul OP jboss OP model

Figure 6.14: Request rate for q = 6.

191

0

5

10

15

20

25

30

35

40

45

50

55

0.76 1.14 1.7 2.56 3.84
λ

R
eq

ue
st

 ra
te

 (r
eq

/s
)

PE simul PE jboss LO simul LO jboss LO model
OP simul OP jboss OP model

Figure 6.15: Request rate for q = 30.

become higher, so the effective request rate decreases.

Server capacity considerations. Operating under higher user loads also reveals an-

other major difference between the Optimistic Validation and the Locking algorithms

— the Locking method produces lower request rates on the service. This happens

because of the shorter sessions in the Locking algorithm, which stems from the al-

gorithm’s main policy — stop executing potential unsuccessful sessions earlier. This

difference may become important if the service operates under server capacity limi-

tations — the algorithm may become preferable over the Optimistic Validation tech-

nique, as one producing lesser load on the service, or with request rates better match-

ing prescribed quotas. For example, we generally were unable to conduct experiments

with λ being 3.84 and higher, because the projected request rates surpassed the capa-

192

bility of our web application server environment (∼ 40 req/s).

Log-normal distribution of session inter-request times. By default, we used exponen-

tially distributed session inter-request times in our experiments, but as we discussed

in Section 2.5.1, some analyses of web traces shows that they actually might resem-

ble more a log-normal distribution. To find out how the metrics of interest depend

on the session inter-request times, we conducted additional simulations with four dif-

ferent log-normal distributions used as the session inter-request times: Ln(2.12;0.6),

Ln(2.12;0.6), Ln(1.8;1), and Ln(1.58;1.2), chosen so that their mean values were 10s,

matching that of the exponential distribution Exp(0.1) used in the previous simula-

tions (see Section 3.1.4 for additional details). Fig. 6.16 and 6.17 show the two main

percentage metrics, for the case of qi = 6. As we can see, the metrics are quite in-

sensitive to the actual distribution of session inter-request times (but rather depend on

its mean value), as was also suggested by our analytical models; only the model for

Optimistic Validation used a specific distribution of session inter-request times.

6.5.2 Dynamic adaptation of concurrency control algorithms

To evaluate the behavior and the benefits of the dynamic adaptation of concurrency

control algorithms, we conducted three experiments with our infrastructure. The first

two fixed the concurrency control algorithm (Optimistic Validation and Locking), and

the third tested automatic adaptation, with the objective of maximizing the percentage

of successful sessions. All three experiments used the same client load and service-

specific parameters, which consisted of the 5 phases shown in Table 6.1 (the two CB-

MGs used for the client load — “Buyer-1” and “Buyer-2” — are shown in Fig. 6.18).

193

0

10

20

30

40

50

60

70

80

90

100

0.1 0.15 0.225 0.337 0.5 0.76 1.14 1.7 2.56 3.84λ

%
 o

f s
uc

ce
ss

fu
l s

es
si

on
s

PE exp PE ln_1 PE ln_2 PE ln_3 PE ln_4
LO exp LO ln_1 LO ln_2 LO ln_3 LO ln_4
OP exp OP ln_1 OP ln_2 OP ln_3 OP ln_4

Figure 6.16: Percentage of successful sessions, for the four log-normal and one expo-

nential distribution of session inter-request times (qi = 6).

0

10

20

30

40

50

60

70

80

90

100

0.1 0.15 0.225 0.337 0.5 0.76 1.14 1.7 2.56 3.84λ

%
 o

f s
uc

ce
ss

fu
l r

eq
ue

st
s

PE exp PE ln_1 PE ln_2 PE ln_3 PE ln_4
LO exp LO ln_1 LO ln_2 LO ln_3 LO ln_4
OP exp OP ln_1 OP ln_2 OP ln_3 OP ln_4

Figure 6.17: Percentage of requests belonging to successful sessions, for the four

log-normal and one exponential distribution of session inter-request times (qi = 6).

194

Table 6.1: The client load of the dynamic adaptation experiments.

Phase Phase 1 Phase 2 Phase 3 Phase 4 Phase 5
Model
pa-
rame-
ters

Buyer-1,
S = 5,
pitem

i = 0.2,
λ = 3,
qi = 10

Buyer-1,
S = 5,
pitem

i = 0.2,
λλλ === 111,
qi = 10

Buyer-2,
S = 5,
pitem

i = 0.2,
λλλ === 000...555,
qi = 10

Buyer-2,
S = 5,
pitem

i = 0.2,
λ = 0.5,
qqqiii === 333

Buyer-2, S = 5, pppitem
iii ===

{000...888,,,000...111,,,000...000444,,,000...000333,,,000...000333},
λ = 0.5, qi = 3

Home Search
[empty cart]

Item
[empty cart]

Add To Cart
(OP)SearchItem

Cart Register

Buy Request
(VALP)

Buy Confirm
(COP)

Exit
[browser]

Exit
[buyer]

0.7

0.15

0.3

1

0.7

0.15

0.7

0.3

0.7
0.2

0.2

0.6

0.2

0.2

1 1

1

Buyer-1

0 0

0.3

0.6

Home Search
[empty cart]

Item
[empty cart]

Add To Cart
(OP)SearchItem

Cart Register

Buy Request
(VALP)

Buy Confirm
(COP)

Exit
[browser]

Exit
[buyer]

0.5

0.4

0.5

1

0.3

0.3

0.5

0.5

0.5
0.3

0.3

0.4

0.3

0.3

1 1

1

Buyer-2

0
0

0.5

0.4

Figure 6.18: The buyer CBMGs used in the dynamic adaptation experiments.

The value of µ is always 0.1, as in all our experiments. Each phase generates 2700

sessions, and differs from the previous one in one or two parameters (highlighted in

the table). Each phase is divided into 9 epochs with 300 sessions each, for which the

results are shown in Fig. 6.19.

Our experiments show that the infrastructure is always able to pick-up the best al-

gorithm, so during the test run with the dynamic adaptation in place, the infrastructure

achieves a higher percentage of successful sessions (75.6%) compared to the Locking

(67.1%) and the Optimistic Validation (70.2%) tests, where the algorithms are fixed.

195

0

10

20

30

40

50

60

70

80

90

100

Phase_1 Phase_2 Phase_3 Phase_4 Phase_5

%
 o

f s
uc

ce
ss

fu
l s

es
si

on
s

LO jboss OP jboss ADAPT jboss LO model OP model

Figure 6.19: The results of the dynamic adaptation experiments.

6.6 Summary

In this chapter we have presented analytical models that characterize concurrent exe-

cution of web sessions with bounded inconsistency in shared data. The models pre-

dict the performance of the three concurrency control algorithms for web sessions

— Optimistic Validation, No-Waiting Locking, and Pessimistic Admission Control

— by computing the chosen metrics of interest, based on the information exposed

by the request flow (Section 3.1) and data access patterns (Section 3.4) service ac-

cess attributes. Namely, the models use as input the information about the CBMG

request structure of user sessions and various timing parameters, which is gathered

in real time by the Request Profiling Service. The information about the business-

196

critical shared application data that the service provider needs to cover by data con-

sistency constraints is specified by the service provider using the proposed flexible

OP-COP-VALP model.

We augmented our JBoss middleware infrastructure with the web session concur-

rency control mechanisms, which enforce session data consistency constraints work-

ing only at the level of the abstract OP-COP-VALP model, with mappings of service

requests to model operations specified by the service provider. This approach avoids

the need to put concurrency control functionality in the application code and, more

importantly, permits dynamic adaptation of concurrency control policies to changes

in parameters of service usage, in order to maximize the metric of interest.

We have illustrated our models using the sample buyer scenario from the TPC-W

e-Commerce benchmark, and have validated them by showing their close correspon-

dence to measured results of concurrent session execution in both a simulated and

a real web application server environment. We have also shown that our automated

decision making middleware service is able to successfully choose, for the specified

performance metric, the best concurrency control algorithm in real time in response

to changing service usage patterns.

197

Chapter 7

Application Distribution

This chapter is focused on the problem of using component-based applications as the

basis for distributed wide-area (edge) service deployment, a topic introduced earlier

in Section 1.2.4. In Section 7.1 we formulate the service distribution problem in more

detail. Section 7.2 presents our approach and methodology for addressing this prob-

lem. In Section 7.3 we describe the identified set of design rules and optimizations

that enable beneficial and efficient distribution of component-based applications in

wide area environments. These design rules rely upon the knowledge of fine-grained

resource utilization and data access patterns of different service request types and

reflect manual application of this knowledge during the process of application devel-

opment in order to enable service distribution in wide-area networks. We present these

design rules in an incremental fashion and show performance improvements achieved

after each step.

198

7.1 Problem formulation

Application distribution and replication has become a noticeable trend in the way

modern Internet services are designed and utilized. These techniques bring applica-

tion data and data processing closer to the clients and help to cope, on the network

level, with the unpredictable nature of Internet traffic, especially in wide-area envi-

ronments, and, on the application level, with high-volume, widely varying, disparate

client workloads. Examples of this approach vary from old-fashioned web caching of

static content, to web content delivery using content-distribution networks (CDN), to

distributed (edge) service deployment (Section 2.8).

Internet services built as component-based applications are natural candidates for

service distribution, because component frameworks offer mechanisms enabling dis-

tributed application deployments. Despite their nominal suitability, component-based

applications are traditionally deployed only in a centralized fashion in high-performance

local area networks. In the rare cases when these applications are distributed in wide-

area environments, the systems tend to be highly customized and handcrafted.

The advantages of distributing and replicating components across wide area en-

vironments are several. Cacheable components can be positioned in edge nodes, ef-

fectively bringing the service closer to clients, and thus improving not only client

perceived latency, but also overall service availability since client requests can uti-

lize several entry points into the service. Furthermore, specific “hot” components

can be replicated and/or redeployed on-demand in new physical nodes in response

to higher client loads or congested network links. Although component frameworks

offer mechanisms to enable the distributed deployment of components, the primary

199

challenge that needs to be addressed before wide-area deployments of general ap-

plications become commonplace is: how should component-based applications be

engineered to enable efficient service distribution in heterogonous and high-latency

network settings?

7.2 Approach and methodology

When a general component application is distributed in wide area environments, inter-

component communication, otherwise “invisible” in local area networks, results in

dramatically increased request response times, whose impact on overall application

performance depends on what components and back-end datasources are accessed

during a request’s execution. Information of this kind belongs to the fine-grained

resource utilization service access attribute (Section 3.3) and needs to be available

for the service provider to be able to assess the performance quality of a distributed

application.

On the other hand, in order to ensure that popular or business critical service re-

quests experience small response delays, the application should be engineered in a

way that limits unnecessary wide area inter-component communication. To achieve

this, the application developer needs to be aware of (1) the “read-write” data access

behavior of service requests; and (2) whether or not the application state accessed in

a request is shared among several clients. In other words, while developing the appli-

cation, the developer needs to take into account the application data access patterns.

Our approach to enabling beneficial and efficient distribution of component-based

applications in wide-area environments is to (1) take into account the information

200

about read-write shared data access patterns and fine-grained resource utilization by

service requests of different types and (2) based on this information, provide guide-

lines for application (re)structuring, which limits wide-area inter-component com-

munication. To this end, we identify and recommend for use a small set of de-

sign rules and optimizations for application structuring that enable distribution of

component-based applications: (1) Remote Façade design pattern, (2) Stateful Com-

ponent Caching; (3) Query Caching, and (4) Asynchronous Updates.

We validate the applicability of these design rules by applying them to two sam-

ple J2EE component-based applications: Java Pet Store (Section 2.4.2) and RUBiS

(Section 2.4.3). We deploy Java Pet Store and RUBiS in a fixed, simulated wide-area

environment, apply the design patterns and optimizations in an incremental fashion,

and after each step measure the performance of the application and draw conclusions

about the impact of the changes.

7.2.1 Network topology

Our network topology aims at capturing a simple scaled-down wide-area distributed

deployment of the test applications. The system consists of three JBoss application

servers (see Section 2.3; we used JBoss version 2.4.4 with Jetty 3.1.3 web server,

for the Java Pet Store tests and JBoss version 3.0.3 with Jetty 4.1.0, for the RUBiS

tests) and a single database server (MySQL version 4.0.12), each running on a dedi-

cated 1GHz dual-processor Pentium III workstation. An emulated wide-area network

(WAN) separates the three application servers. One of the application servers is lo-

cated in the same LAN as the database server, hence acting as the main server of

the system. Two other application servers act as edge servers. In addition, 9 client

201

Edge AS

Main AS

RDBMS

Remote
clients

Local
clients

WAN

LAN

LAN
Edge AS

LAN

Figure 7.1: Network configuration for service distribution tests.

machines were used to generate client load, three for each application server. Clients

machines are collocated with the corresponding server (sitting on the same LAN),

emulating client load coming from users “close” to that server. The network topology

was emulated by connecting all of the above nodes using a software router built using

the Click modular router infrastructure [74]; traffic shaping components were used

to simulate 100 ms latency each way in the WAN links, with 100 Mbit/s maximum

combined network bandwidth (Fig. 7.1). In this dissertation we don’t address security

issues, so we assume that edge servers are trusted entities.

7.2.2 Client simulation

While the overall performance of a component-based Internet service depends on its

component distribution and combined client load, response times observed by clients

also significantly depend on client behavior, as different types of users tend to access

different web pages and, as a consequence, different sets of service components are

involved in a request’s execution (Section 2.2.2). We divide all clients between two

202

different service usage (access) patterns (Section 2.5.1): Browser and Buyer for Java

Pet Store, and Browser and Bidder for RUBiS. Intuitively, the Browser pattern corre-

sponds to read-only activities, while the Buyer/Bidder patterns are involved in read-

write sessions. Considering different service usage patterns, first, helps to identify,

which groups of clients benefit most from certain service distribution and replication,

and second, provides an application deployer with the knowledge of how applications

should be distributed and/or replicated, in order to be adapted to the needs of certain

client groups.

Java Pet Store Browser. This pattern represents a user that merely browses the appli-

cation web site in search of items of interest. This user neither logs in, nor buys any

products. During our tests, we used Java Pet Store browser sessions consisting of 20

requests divided among the request types described in Table 7.1. Each session is a

logically organized sequence of requests starting with the Main request. For example,

an Item request always follows a Product request, with the requested item belonging

to the previously requested product and category (see Section 2.4.2 for the description

of application request types).

Java Pet Store Buyer. This pattern represents the behavior of a client who already

knows what item(s) to buy. A buyer logs in, finds item(s) of interest, probably access-

ing a few product-related pages, puts desired items into the shopping cart, and checks

them out. For the purpose of our tests, we organized Java Pet Store buyer sessions as

a sequence of requests emphasizing a buyer’s essential activities: Main, Signin, Verify

Signin, Shopping Cart, Checkout, Place Order, Billing and Shipping, Commit Order,

203

Table 7.1: Breakdown of session
requests by type, for Java Pet
Store Browser.

Request type Session
request
breakdown

Main 5%
Category 15%
Product 30%
Item 45%
Search 5%

Table 7.2: Breakdown of session requests by
type, for RUBiS Browser.

Request type Session
request
breakdown

Main 2.5%
Browse 2.5%
All Categories 2.5%
All Regions 2.5%
Region 2.5%
Category 7.5%
Category and Region 7.5%
Item 42.5%
Bids 15%
User Info 15%

and Signout.

RUBiS Browser. This pattern represents, as in Java Pet Store, a user that merely

browses the RUBiS web site and never bids on items. Our tests use RUBiS browser

sessions of length 40, made up of individual requests with the weights shown in Ta-

ble 7.2. Each session is a logically organized sequence of requests starting with the

Main request (see Section 2.4.3 for the description of application request types).

RUBiS Bidder. Unlike in Java Pet Store, where there is only one type of “write”

activity — buying an item, in RUBiS, a user can bid on an item and put a comment

for another user. For our tests, we organized RUBiS bidder sessions as a sequence of

requests emphasizing these activities. A bidder bids on an item and leaves a comment

204

Table 7.3: Average response times (in ms) for Java Pet Store Browser.

Request

Configuration Client Main Category Product Item Search

Centralized Pet Store Local 87 95 94 88 106
(section 7.3.1) Remote 488 492 492 486 496

Remote façade Local 64 78 80 72 82
(section 7.3.2) Remote 72 387 389 373 384

Stateful component Local 55 82 84 55 77
caching (section 7.3.3) Remote 55 394 390 57 393

Query caching Local 56 50 51 54 87
(section 7.3.4) Remote 55 51 51 55 481

Asynchronous updates Local 61 54 53 57 92
(section 7.3.5) Remote 59 51 53 58 459

for the seller of the item, with typical sessions involving the following requests: Main,

Put Bid Auth, Put Bid Form, Store Bid, Put Comment Auth, Put Comment Form,

and Store Comment.

In our tests, clients were divided between Browsers and Buyers/Bidders in the

proportion of 80%/20%. We set the parameters of new session arrivals and inter-

request times so that the combined client load remained steady at 30 requests per

second, equally divided among all client groups. Each test lasted for approximately

one hour, preceded by several minutes of system “warm-up,” if needed.

7.3 Design rules and optimizations

Tables 7.3, 7.4, 7.5, and 7.6 show average response times per request for the five Java

Pet Store and RUBiS configurations described below, for the four types of clients de-

scribed above — Java Pet Store Browser and Buyer and RUBiS Browser and Bidder

205

Table 7.4: Average response times (in ms) for Java Pet Store Buyer.

Request

Configuration Client M
a
in

S
/
in

V
er

if

C
ar

t

C
h
/
o
u
t

P
l.
O

r.

B
il
l

C
o
m

m
it

S
/
o
u
t

Centralized Pet Store Local 98 78 89 120 76 70 70 158 90
(section 7.3.1) Remote 489 480 482 658 477 646 482 708 447

Remote façade Local 61 52 63 85 54 51 54 134 54
(section 7.3.2) Remote 60 54 630 407 61 57 61 500 63

Stateful component Local 60 51 65 77 53 50 55 584 54
caching (section 7.3.3) Remote 68 52 629 80 50 49 53 950 62

Query caching Local 58 51 61 70 50 50 54 614 52
(section 7.3.4) Remote 61 49 638 69 51 52 53 966 54

Asynchronous updates Local 61 53 64 75 53 53 56 195 56
(section 7.3.5) Remote 59 48 632 69 50 50 50 536 52

(for request descriptions refer to Tables 2.2 and 2.4). Both remote group of clients

(connecting to the edge servers) observed, as one would expect, practically equal re-

sponse times, within a small error margin. Bold numbers indicate significant changes

in performance, as compared to configurations appearing earlier in the table.

7.3.1 Centralized application

In the first experiment, we ran the centralized undistributed versions of Java Pet Store

and RUBiS. In this configuration, the main server served all requests, whereas the

edge servers were not used at all. This configuration represents the low end of the dis-

tribution spectrum, where effectively no distribution takes place. As seen in the first

two rows of Tables 7.3 – 7.6, accessing the service from a WAN link incurs approx-

imately an extra 400 ms, which is due to two round trips: one for TCP handshaking

and another for the HTTP request (we did not use keep-alive HTTP connections in

206

Table 7.5: Average response times (in ms) for RUBiS Browser.

Request

Configuration Client M
a
in

B
ro

w
se

A
ll

C
a
te

g

A
ll

R
eg

io
n
s

R
eg

io
n

C
a
te

g
or

y

C
a
te

g
&

R
eg

It
em

B
id

s

U
se

r
In

fo

Centralized Local 14 12 33 26 35 43 21 27 40 43
RUBiS Remote 421 414 434 438 434 649 426 430 446 452

Remote Local 10 11 27 30 34 35 19 24 35 34
façade Remote 4 3 424 407 399 499 265 275 300 379

Stateful comp. Local 13 16 29 32 39 38 23 19 30 31
caching Remote 3 3 423 463 435 526 279 7 323 404

Query Local 9 12 12 15 17 16 12 15 16 16
caching Remote 5 4 7 7 7 6 5 8 8 8

Asynchronous Local 12 12 9 9 11 13 13 14 15 15
updates Remote 4 5 9 7 6 6 4 7 10 10

our tests).

7.3.2 Remote façade

The centralized configuration suffers from two major problems. First, the system does

not utilize all of its resources, since the edge servers are not being used at all. Second,

HTTP requests going to the main server from remote clients incur significantly higher

response times in comparison to local client requests. Both of these problems can be

addressed by migrating part of the application components into the edge server.

The second configuration in our experiments was obtained by deploying all web

components (JSPs and servlets) and stateful session components in all three servers.

This configuration addresses the problems of the previous centralized configuration

by making better use of available resources and also bringing some of the application

207

Table 7.6: Average response times (in ms) for RUBiS Bidder.

Request

Configuration Client Main

Put

Bid

Auth

Put

Bid

Form

Store

Bid

Put

Comment

Auth

Put

Comment

Form

Store

Comment

Centralized Local 12 13 32 36 13 25 35
RUBiS Remote 419 419 439 437 414 432 432

Remote Local 10 13 30 30 14 26 30
façade Remote 4 3 408 284 3 284 282

Stateful comp. Local 10 15 23 372 14 22 377
caching Remote 4 4 450 680 4 303 628

Query Local 9 10 15 377 9 16 374
caching Remote 3 3 7 798 3 6 729

Asynchronous Local 10 15 15 32 9 10 34
updates Remote 5 4 9 421 4 12 419

components closer to remote clients. However, wide-area HTTP requests are now

substituted by possibly multiple wide-area inter-component RMI calls.

In addition to contributing to less maintainable, less reusable, and tightly cou-

pled code, repeated fine-grained invocations of core components, such as entity EJBs,

from front-end components (web tier) add the overhead of multiple network calls,

and reduce concurrency at the server-side, since transactions effectively take longer to

complete. A superior alternative is to wrap the domain model, typically implemented

as a collection of possibly related entity beans, with a new thin layer of façade ob-

jects [53, 85]. Clients, who have access only to the façade, can delegate the execution

of use cases in just one network call to the remote façade, which in turn can perform

multiple local calls needed to execute the use case against co-located domain objects.

Besides reducing the number of remote method invocations, the façade provides a

208

single entry point into the domain model, enabling improved transactional and secu-

rity control. The pattern does not suggest a singleton façade responsible for the entire

application; instead, multiple façade objects should be created to serve collections of

related use cases. We discuss in more detail below, the modifications that were made

to the test applications.

Java Pet Store. Pet Store uses stateful session beans (ShoppingCart and Shop-

pingClientController), which get deployed together with the stateless web

components in all three servers. In the original Pet Store application, Category, Prod-

uct, Item and Search requests present product information to end users, retrieving

information from the Product database directly via JDBC. The lifecycle of opening,

managing, and properly recycling database connections, as well as traversing query

results demands verbose communication with the database server, resulting in over-

whelmingly degraded performance when the web tier and database are separated by

a high-latency network. As stated earlier, such scenarios can be easily avoided by

directing client requests to a façade that is co-located with the database server. In our

case, we substituted all direct database accesses from the web layer with calls to the

Catalog bean that served as a façade. Furthermore, for all the request types used

in our experiments, we rewrote the application code so that every request included in

the experiment incurs no more than one RMI call to shared components. The only

exception is the Verify Signin request, which makes two RMI calls, one to create a

Customer session bean for the customer that logged in, and another for retrieving

the customer’s profile for future use.

To further reduce the number of remote method invocations, we used the façade

209

product.jsp
productdetails.jsp

CatalogWebImpl
<<JavaBean>>

product.jsp
productdetails.jsp

CatalogWebImpl
<<JavaBean>>

Catalog
<<SessionEJB>>

(Facade)
WAN

Edge Server Main Server

RDBMS
JD

BC

Figure 7.2: Implementation of the Remote Façade design pattern.

pattern in conjunction with caching of home and remote RMI stubs. Home stubs were

always cached to avoid unnecessary trips to the local JNDI tree (EJBHomeFactory

design pattern [85]). In the case of stateless remote façades, remote stubs were pooled

as well on the client side to avoid the penalty incurred by the RMI call that initially

creates the remote stub. Fig. 7.2 illustrates an example of the use of the façade pattern

for Java Pet Store (for brevity, in the rest of the chapter, we will show such examples

only for the Java Pet Store application).

RUBiS. RUBiS does not use stateful session beans, so only web components were

deployed in the edge servers. RUBiS required fewer code modifications because it

already employed the Session Façade design pattern. Execution of use cases is del-

egated by web components to the façade session beans, collocated with the entity

beans. Most of the changes resulted from the implementation of the EJBHomeFac-

tory design pattern. Servlets now cached remote stubs of stateless session beans, while

the latter cached home stubs of related entity beans, to reduce unnecessary lookups in

210

the JNDI tree of the main server.

The average client response times for this configuration for the two applications

are shown in Tables 7.3 – 7.6 (rows 3 and 4). Several points stand out from the

measurements of this configuration:

• Many requests can be served completely using only session information stored

in the edge server. This is particularly prominent in the case of the Pet Store

buyer, where six out of nine requests can be served locally.

• If serving a request from a remote client requires going to the main server,

a wide-area HTTP request in this configuration is substituted by one inter-

component RMI call. In this case the façade design pattern does not itself

significantly improve request response time, but it makes it minimal, keeping

the number of wide-area RMI calls as small as possible.

• RMI can require more than one round trip for a single method invocation. It

has been pointed out elsewhere that these shortcomings are mainly due to ping

packets and distributed garbage collection [24]. Therefore, generally speaking,

the benefits of the façade pattern are slightly diminished since RMI can incur

more than one round trip per method invocation.

• The response times of local clients went down due to better load distribution.

7.3.3 Stateful Component Caching

In the previous configuration, all session-oriented stateful components were deployed

in both servers, improving locality and load distribution. However, requests that trig-

211

ger invocations on stateful components that are shared across multiple sessions did

not gain much benefit from this approach. In the third configuration, we turn our at-

tention to these shared stateful components, exemplified in J2EE by entity EJBs and

relational database sources.

Our experience suggests that entity beans are excellent at handling heavy, concur-

rent transactional accesses, but they can be quite inefficient when used as data caches.

As a matter of fact, this is clearly manifested in the lifecycle and transactional man-

agement specifications of entity beans, and it simply reflects design choices made by

the EJB architects. However, data locality is critical when it comes to efficient wide-

area service partitioning. Fortunately, entity beans can be easily transformed into data

caches by minor modifications to their lifecycle definition. As a matter of fact, most

application server vendors already support some form of read-only entity beans with a

timeout invalidation mechanism, and in some cases they also support a programmatic

invalidation interface.

Common to all the current approaches for updating read-only beans is that, upon

invalidation, the read-only bean refreshes itself with the database using a pull proto-

col. This approach works well in a local-area setting, where the read-only bean com-

munication overhead with the database is negligible, but as stated earlier, it results in

unacceptable performance in the wide-area. To avoid opening and maintaining remote

database connections, read-only beans can efficiently refresh their content by query-

ing a remote façade upon the first business method call after the invalidation. Another

approach would be to push the updated state to read-only beans, with the updated

state specified as a parameter of the invalidation call. This push-based scheme has

the major advantage that clients of read-only beans would always see local response

212

times, which is not the case with the pull-based approach. At first sight, it might seem

that since the push-based scheme is not demand-driven, it can result in sending super-

fluous updates. However, the number of RMI calls is the same in both cases, because

the invalidation call has to be made anyway. The push-based scheme ends up transfer-

ring more data, but this is a small price to pay for significantly improving the response

time of remote clients. Furthermore, several simple and effective optimizations can be

applied, such as: transferring only the changes instead of the entire bean’s state (i.e.,

fields that were modified), and compressing large fields for better bandwidth utiliza-

tion. Moreover, in most cases the bandwidth problem is not as relevant, since more

than half of the data traffic incurred by RMI ends up being due to distributed garbage

collection [24].

The above insights can be materialized in a version of the so-called Read-Mostly

Pattern [75] where transactional operations are sent to the read-write version of the

bean, which is typically co-located with the datasource; non-transactional read oper-

ations are handled locally by the read-only cache. In addition, upon write operations,

the read-write components push the updates across the wide-area to the edge read-

only beans. In this configuration we strive for zero staleness: read-write entity beans

block while the update is pushed to the read-only beans, hence a read operation that

arrives after a previous write has committed, will always read the correct value.

Java Pet Store. The following changes were made to Java Pet Store in addition to

the last façade configuration, to implement stateful component caching:

• Three new read-write entity beans were introduced: Category, Product,

and Item. These beans implement functionality that was previously handled

213

by the Catalog bean, which accessed the product database directly via JDBC.

• Read-only versions of Category, Product, Item, and Inventory beans

were introduced.

• A blocking push-based update mechanism was implemented between read-write

beans and their read-only counterparts. The updates make use of a remote façade

so that each update incurs only one RMI call.

• The Catalog bean delegates to the newly introduced entity beans.

• The read-only beans and the Catalog bean were also deployed on the edge

servers. The edge Catalog bean also has a reference to the central Catalog

bean. If a request that comes to the edge Catalog bean cannot be served

locally by delegating to the read-only beans, it would be dispatched to the central

Catalog bean, which is co-located with the database. For example, aggregate

queries are always delegated to the central Catalog bean since they need to be

executed in the database server.

Analogous code modifications, introducing read-only versions of Entity EJBs and

a blocking push-based update mechanism, were introduced into RUBiS. Figure 7.3

illustrates the read-mostly pattern for the Item EJB of the Java Pet Store application.

Average response times for this configuration are shown in Tables 7.3 – 7.6 (rows 5

and 6). Several conclusions can be drawn from the measurements of this configura-

tion:

• Zero staleness for browsers comes at a performance price for buyers/bidders,

since they have to block while the updates are being pushed across the wide-area

214

Edge Server

product.jsp
productdetails.jsp

CatalogWebImpl
<<JavaBean>>

product.jsp
productdetails.jsp

CatalogWebImpl
<<JavaBean>>

Catalog
<<SessionEJB>>

(Facade)

WAN

Main Server

RDBMS

JD
B

C

Catalog
<<SessionEJB>>

(Facade)

ItemRO
<<EntityEJB>>

ItemRO
<<EntityEJB>>

Updater
<<SessionEJB>>

(Facade)

Updater
<<SessionEJB>>

(Facade)

ItemRW
<<EntityEJB>>

CM
P

WAN

Figure 7.3: Implementation of Stateful Component Caching.

to the edge servers. More specifically, in Java Pet Store, the Commit request of

the buyer session updates the Inventory bean and hence the response time

for this request is significantly higher than in the previous configuration for both

local and remote buyers. The same effect is seen for the Store Bid and Store

Comment requests of the RUBiS bidder session.

• Even though the Pet Store buyer response time for the Commit request is higher,

the overall average is not affected so much since the buyer’s Shopping Cart re-

quest can be served locally by the newly introduced read-only beans. In contrast,

the RUBiS bidder average response time increased, because the bidder does not

benefit from read-only beans, but needs to block on the Store Bid and Store

Comment requests.

215

• The Item request of both Pet Store and RUBiS browser sessions makes full use

of read-only entity beans and so has local response time, but the other requests

still need to go to the main server to execute aggregate SQL queries.

• The response time for the Pet Store and RUBiS Item request is slightly improved

for the local browser due to read-only bean caching, which replaces database

access in the original configuration.

7.3.4 Query Caching

Entity bean instances typically correspond to rows in a database table, implying that

aggregate queries can only be executed by a relational database system. The root of

the problem is the well-known incompatibility (impedance mismatch) between object-

oriented languages and SQL. In Java Pet Store and RUBiS, as in most web-based e-

Commerce applications, aggregate queries constitute a large part of application data

retrievals, and hence caching of query results in edge servers can further reduce the

number of remote method invocations to components that are co-located with central-

ized database servers. The benefits of caching query results in a local scale are less

important because modern database servers are typically equipped with sophisticated

query caching mechanisms, and possess all the information needed to make optimal

caching decisions.

A general problem with caching query results is determining which queries are

affected by changes that occur to the database. This is a well-researched problem [38]

and we do not make any contribution to this field, nor try to incorporate any advanced

query caching techniques in our experiments. Our focus is on the benefits of caching

216

aggregate SQL query results at edge servers to avoid expensive trips to remote data

centers. A straightforward implementation would be to use a demand-driven, pull-

based update mechanism, whereby upon receiving the first read request after invalida-

tion, the query cache manager gets the latest updates by re-executing the query in the

remote database. Alternatively, a push-based protocol can be used that eagerly sends

updates to the query cache manager. This scheme has the following benefits over the

pull-based approach: (1) query readers are not penalized, because they never trigger

requests to the remote database; (2) updates are typically small (usually involving sin-

gle rows), hence making it easier to propagate only partial information [38] instead of

re-sending the entire query result, effectively reducing bandwidth consumption.

Java Pet Store. We cache the results of two queries in the Java Pet Store applica-

tion: the set of products for a given category, and the set of items belonging to a

given product. These queries are heavily used by the Category and Product requests

of the browser session, and hence caching them in the edge server avoids remote

method invocations to the main server. The query result cache was incorporated in

the Catalog bean. For simplicity, we implemented the pull-based update mecha-

nism for caching query results. However, the impact of invalidations is not visible in

our test results, because the catalog of Java Pet Store is read-only.

RUBiS. We implemented caching of all queries involved in the processing of all

requests in our browser and bidders sessions. The query result caches were naturally

incorporated in those stateless session beans that make corresponding finder method

invocations (queries) on entity bean home interfaces. A push-based query update

217

product.jsp
productdetails.jsp

CatalogWebImpl
<<JavaBean>>

product.jsp
productdetails.jsp

CatalogWebImpl
<<JavaBean>>

Catalog
<<SessionEJB>>

(Facade)

WAN

Edge Server Main Server

RDBMSJD
B

C

Catalog
<<SessionEJB>>

(Facade)
Query Cache

Manager

Updater
<<SessionEJB>>

(Facade)

Updater
<<SessionEJB>>

(Facade)

ItemRW
<<EntityEJB>> CM

P

WAN

Query Cache
Manager

Figure 7.4: Implementation of Query Caching.

mechanism was implemented, and it makes use of the remote façade design pattern,

namely updates to read-only beans and query caches are made in one bulk RMI call

from the main server.

Figure 7.4 shows relevant components deployed on the main and edge servers,

for the Java Pet Store application. Average response times for this configuration are

shown in Tables 7.3 – 7.6 (rows 7 and 8). The following observations can be made

from the measurements of this configuration:

• As expected, query result caching lowers both Java Pet Store and RUBiS remote

browser response times. This is especially seen in the performance of RUBiS re-

mote browser, now indistinguishable from the local browser. Also query caching

has a positive local effect, since it reduces required database accesses.

218

• The Java Pet Store Search request performs a keyword query, which is not

cached, and hence it still incurs the cost of the remote call to the database façade.

• Pet Store buyer’s and RUBiS bidder’s performance does not improve because

they still block on updates.

7.3.5 Asynchronous Updates

Achieving zero staleness for browsers penalizes the buyer/bidder, who blocks while

the update is propagated across the wide-area to the edge read-only beans. This ap-

proach also suffers from severe scalability issues, since the response time for write

operations is proportional to the number of individual fine-grained updates triggered

by a single façade call. As a matter of fact, this is the case with the Pet Store buyer’s

Commit Order request, which causes writes to the Inventory EJB for each item

in the user’s shopping cart. This negative effect is not noticeable in our test results,

because we never put more than one item in the shopping cart.

Pushing updates in an asynchronous fashion eliminates this performance bottle-

neck. Upon transaction commit, updates are asynchronously pushed across the wide-

area to the edge read-only components. But is the staleness of asynchronous updates

acceptable? Read-only beans and aggregate SQL query results typically contain data,

which is displayed to the user in a tabular format. Even if the web tier components ob-

tained this data from the transactional read-write version of the bean or the database,

the information will likely be stale due to the incurred communication overhead, user

think time, and other concurrent server activity. In a sense, the staleness of shared

presentation data is unavoidable, and the asynchronous updates design optimization

219

Edge Server

product.jsp
productdetails.jsp

CatalogWebImpl
<<JavaBean>>

product.jsp
productdetails.jsp

CatalogWebImpl
<<JavaBean>>

Catalog
<<SessionEJB>>

(Facade)
WAN

Main Server

RDBMS

JDBC
Catalog

<<SessionEJB>>
(Facade)

ItemRO
<<EntityEJB>>

ItemRO
<<EntityEJB>>

UpdateSubscriber
<<MDB>>
(Facade)

UpdateSubscriber
<<MDB>>
(Facade)

ItemRW
<<EntityEJB>>

C
M

P

UpdatePublisher
Updates

Topic
publish()

JMS Provider

onMessage()onMessage()

Remote
JMS

Provider
WAN

Figure 7.5: Implementation of the Asynchronous Updates design optimization.

takes advantage of this fact to significantly improve response times.

The only change from the last configuration was to substitute the synchronous up-

date façade with an asynchronous message-driven bean (MDB) façade that propagates

updates to both read-only beans and query caches. The read-write beans publish their

updates in a local topic, where multiple edge cache updaters are subscribed. This ap-

proach completely avoids the blocking problem and its scalability is limited only by

the messaging middleware.

Figure 7.5 shows a partial snapshot of the Java Pet Store component graph. Av-

erage response times for this configuration are shown in Tables 7.3 – 7.6 (rows 9 and

10). Some remarks about the numbers follow:

220

• The most noticeable impact of asynchronous updates as compared to the pre-

vious configuration is improved Pet Store buyer and RUBiS bidder response

times.

• The remote buyer/bidder still incurs wide-area latencies in some of the requests

since it requires read-write access to shared components residing in the main

server. However, these are unavoidable and typically represent only a very small

fraction of the overall request mix.

7.3.6 Evaluation summary

Figures 7.6 and 7.7 summarize the results obtained from our tests. The last con-

figuration achieves the best overall performance and scalability by accumulating all

improvements. The Remote Façade design pattern avoids unnecessary remote method

invocations and implicitly defines the optimal application partitioning granularity.

The use of this pattern is required if communicating components are separated by

a wide-area network, regardless of the nature of user requests served by these com-

ponents. Read-only entity beans and query caches deployed in edge servers absorb

the load generated by remote clients and save expensive trips to centralized data cen-

ters. Asynchronous propagation of updates achieves scalability and guarantees that

updaters are not penalized by blocking on write operations.

The overall effect of applied design patterns and optimizations is two-fold. First

and foremost, remote clients are almost completely insulated from wide-area effects.

In the few cases when remote clients incur wide-area inter-component RMI calls, the

communication overhead is as small as possible due to the façade pattern. Secondly,

221

0

100

200

300

400

500

600

Local Browser Local Buyer Remote Browser Remote Buyer

A
v
e
ra

g
e
 r

e
s
p

o
n

s
e
 t

im
e
 (

m
s
)

Centralized Pet Store

Remote Façade

Stateful Component Caching

Query Caching

Asynchronous Updates

Figure 7.6: Java Pet Store session average response times.

both local and remote clients experience improved performance due to aggressive

caching of stateful components.

7.3.7 Pattern implementation automation

Whereas the correct implementation of the façade pattern largely remains the respon-

sibility of application developers, container environments can and should automate

transparent caching of stateful shared components. The system infrastructure for this

purpose should consist of (1) extended deployment descriptors specification and (2)

general and flexible container environments supporting this specification and imple-

menting its functionality.

Let us revisit the example of read-only entity beans optimization (Section 7.3.3).

222

0

50

100

150

200

250

300

350

400

450

500

Local Browser Local Bidder Remote Browser Remote Bidder

A
ve

ra
ge

 re
sp

on
se

 ti
m

e
(m

s)

Centralized RUBiS

Remote Façade

Stateful Component Caching

Query Caching

Asynchronous Updates

Figure 7.7: RUBiS session average response times.

The extended deployment descriptor of an entity bean should specify whether the

bean is deployed in read-write or read-only mode. In the latter case, the deployment

descriptor should identify the updater read-write bean and the method of update (syn-

chronous vs. asynchronous). Any application-specific relaxed consistency parameters

(Section 2.7.3) should also go here. The container infrastructure in turn should trans-

parently link the read-write entity bean containers with the corresponding read-only

containers to enable propagation of updates.

The caching of query results can also be automated by container infrastructures.

Currently, EJB containers do not support query caching, as that is typically left to

database servers. Even though it is natural to let the database server transparently

handle query caching, this approach does not improve data locality across wide-area

223

environments. The problem is exacerbated due to the so-called n+1 database calls

problem [85], which reflects the fact that with certain EJB implementations, execut-

ing a single aggregate query that returns n rows could require n+1 database calls

(see also Section 5.3). Due to the unacceptable incurred overhead caused by this

impedance mismatch issues, it is desirable to have separate containers for handling

read-only aggregate queries. These containers should handle query result caching and

invalidation transparently using application-specific information from extended de-

ployment descriptors. This information should identify the queries to be cached and

the invalidation mechanism. Moreover, operations (of possibly other components)

that cause query result invalidations/updates should be specified as well.

As a result of pattern implementation automation, application developers would

be freed from implementing tricky update mechanisms that require the deployment

of additional auxiliary components such as message-driven beans and JMS topics,

needed for example, for the implementation of the Asynchronous Updates optimiza-

tion (Section 7.3.5). Another advantage of this approach is that it would allow dy-

namic adaptation of component-based applications achieved through demand-driven

(re)deployment of additional application components as appropriate for changing en-

vironment conditions and service usage patterns. However, in order to achieve such

dynamic adaptation, one needs robust mechanisms that would automate the process

of application component deployment/undeployment. Our work in [8] addressed this

aspect, by introducing an infrastructure for automatic dynamic deployment of J2EE

applications in distributed environments.

224

7.4 Summary

In this chapter we have discussed the problem of using component-based applications

for distributed wide-area (edge) service deployments. We have identified and rec-

ommended for use a small set of generally-applicable design rules for orchestrating

inter-component interactions and managing component state, which limits wide-area

inter-component communication and therefore enables beneficial and efficient service

distribution in wide area environments: (1) Remote Façade design pattern, (2) Stateful

Component Caching; (3) Query Caching, and (4) Asynchronous Updates.

We have validated the applicability of the proposed design rules by applying them

to several prototypical J2EE component-based applications in an incremental fashion

and showing achieved performance improvements. Our test results present strong ex-

perimental evidence that component-based applications can be efficiently distributed

in wide-area environments. More specifically, applications whose typical user ses-

sions do not require heavy transactional access to centralized data and involve user

think time can be engineered so that the cost of remote service accesses is absorbed by

edge deployment of stateful session components and shared non-transactional caches.

In all cases, the identified design optimizations and their use in particular applica-

tion scenarios are driven by the information about data access patterns (Section 3.4)

and fine-grained resource utilization (Section 3.3) by service requests of different

types.

225

Chapter 8

Conclusions and Future Directions

This chapter summarizes the work presented in this dissertation and identifies some

directions for future work.

8.1 Summary

There are several reasons why it is difficult to provision and manage modern compo-

nent-based Internet services so that they provide stable quality-of-service (QoS) guar-

antees to their clients. First, component middleware are complex software systems

that expose several configurable application runtime policies and server resource

management mechanisms, which can be independently tuned to improve service per-

formance and optimize server resource utilization. Second, session-oriented client

behavior with complex data access patterns makes it hard to predict what impact

tuning these policies and mechanisms has on application behavior. Finally, mod-

ern component-based applications themselves exhibit complex structural organization

226

with requests of different types using different middleware services and accessing dif-

ferent application components and datasources; moreover, these components could be

distributed and/or replicated for failover, performance, or business purposes.

This dissertation has proposed solutions that alleviate this situation by targeting

three interconnected goals: (1) providing improved QoS guarantees to the clients of

component-based services; (2) optimizing server resource utilization; and (3) provid-

ing application developers with guidelines for natural application structuring, which

enable efficient use of the proposed mechanisms for improving service performance.

Specifically, this dissertation has explored the thesis that exposing and using detailed

information about how clients use component-based Internet services enables mech-

anisms that achieve the range of goals listed above. We validated this thesis by show-

ing its applicability to the following four problems: (1) maximizing reward brought

by Internet services, (2) optimizing utilization of server resource pools, (3) providing

session data integrity guarantees, and (4) enabling service distribution in wide-area

environments.

The techniques that we have proposed and evaluated are applicable at both the

application structuring stage and the application operation stage, and range from au-

tomatic (i.e., performed by middleware in real time) to manual (i.e., involve the pro-

grammer, or the service provider). These techniques take into account service usage

information exposed at different levels, ranging from high-level structure of user ses-

sions to low level information about resource consumption by different request types.

We have identified four related groups of service access attributes, that correspond

to different levels of service usage information: (1) request flow, (2) coarse-grained

resource utilization and “reward,” (3) fine-grained server resource utilization, and (4)

227

data access patterns. Some of this information can be automatically obtained by re-

quest profiling, some can be obtained by statically analyzing the application structure,

while some needs to be specified by the service provider.

Together, these pieces of information help to (1) achieve optimal utilization of

pooled server resources; (2) enable automated middleware decision making processes

that choose an appropriate resource management mechanism in real time, in response

to changing service usage patterns; and (3) improve performance by up to two times

for centralized applications and by up to 8 times for distributed ones.

8.2 Conclusions

This work has presented a set of models, techniques, middleware mechanisms, and

application design rules, showing that exposing and using detailed information about

session-oriented usage of component-based Internet services by their clients helps to

improve performance and manageability of these services. Specifically, the contribu-

tions of this work are the following:

Models and techniques.

• Reward-driven session prioritization schemes, which show their utility for im-

proving the QoS delivered to users that bring the most profit to the Internet

service, and for maximizing profit attained by the service in the overload situa-

tions.

• A model of request execution with 2-tier exclusive server resource holding

(threads, database connections), which enables accurate prediction of the op-

228

timal configuration for the thread and database connection pools in component

application servers, for a given mix of client requests.

• Analytical models of concurrent web session execution with bounded inconsis-

tency in shared application data, which are able to accurately predict the values

of QoS metrics of interest.

Middleware mechanisms.

• Middleware request profiling infrastructure, which permits one to obtain service

usage information at different levels without imposing significant performance

overheads.

• A set of middleware decision-making mechanisms (e.g., request prioritization,

automatic concurrency control for web sessions, etc.), implemented in a mod-

ular, extensible, and pluggable fashion with minimal, backward compatible,

changes to the original web application server code. These mechanisms show

their effectiveness in making run-time resource-utilization decisions and in de-

termining the optimal configuration of critical server resources, without sig-

nificant performance and management overheads. We have implemented and

evaluated the mechanisms in a production-level application server JBoss, which

utilizes the J2EE component model.

Application design rules.

• A set of application design rules that enable beneficial and efficient distribution

of component-based Internet services in wide area environments.

229

Different parties involved in different stages of a component-based Internet service

lifecycle could benefit from different aspects of the work presented in this dissertation.

Application developers could benefit from using the proposed set of application de-

sign rules and optimizations for building component-based applications. Middleware

architects and developers could benefit from utilizing the set of proposed middleware

mechanisms to introduce their functionality into the middleware systems. Service

operators (e.g., system administrators) could benefit from using the proposed models

and techniques in order to boost performance of component-based Internet services

and improve their manageability, given that these mechanisms and the corresponding

functionality is provided by the underlying middleware.

For demonstration and evaluation purposes, in this dissertation we have used the

J2EE component framework, which is currently the most popular and widely used

component framework in the enterprise arena. However, we believe that most of the

proposed techniques and mechanisms are applicable to other component frameworks

as well, such as the CORBA Component Model (CCM) and .NET. Moreover, certain

techniques and mechanisms proposed in this work, such as for example, Reward-

Driven Request Prioritization, are general enough to be applicable to web servers and

middleware utilizing other technologies.

8.3 Future Work

Given that the internal complexity of data-centric Internet services and their host-

ing environments will likely only grow in the future, the only way to render efficient

management and beneficial utilization of these systems is to curtail their external com-

230

plexity, as it is exposed to the system administrators. One way to limit the exposed

management complexity of the service is to automate some of the service manage-

ment aspects, which contrasts with current primarily manual approaches for the same

task.

Such automation is impossible without additional information of some kind that

could be used to “drive” or “guide” the service management process. As the work in

this dissertation has shown, a great deal of such information can be extracted from

service usage information. There is a benefit in thinking of the use of this information

along a continuous spectrum, ranging from fully automatic techniques to fully manual

ones. We feel (and believe that this is supported by this dissertation) that the most

useful techniques would lie somewhere in the middle of the spectrum, representing

semi-automatic service management techniques.

Some specific directions for future research are described below.

• One future direction is to look at how one could automate the service distribution

process. In this dissertation, we have shown that a set of reusable application

design rules and optimizations, based on generic data access patterns, can be

applied to enable efficient and beneficial service distribution. However, the im-

plementation of these policies is left to the application programmer. We believe

that some of the service distribution decisions can be automated (at least partly)

through some combination of profile-based learning and template-based code

generation, where the application programmer would need only to write the

“skeletons” of application components, and the middleware would instantiate

the actual component “realizations” based on the data access patterns, typical

231

for the specific application and the execution environment.

• One of the characteristics of modern Internet services is the gap between the

level at which user objectives, expectations and goals are expressed or speci-

fied, and the level at which the mechanisms that achieve these goals operate.

For example, the level of QoS specification (e.g., request response times, re-

quest throughput) is not compatible with the level of server resource manage-

ment (e.g., thread and database connection pool size, caching policies, etc.), that

influences QoS. We believe that bridging this gap requires a combination of an-

alytical modeling of the kind presented in this dissertation, and the design of

appropriate mechanisms and policies to automate application configuration and

management decisions.

• Modern Internet services are typically expected to be running for long periods of

time, during which the client behavior can change significantly. It is impossible

to find the configuration of the service that would perform optimally during

the whole duration of service uptime. There is a need to “continuously refine”

the performance of the service. We believe that this is possible to do based

on logging of various user actions. One can think of a service that starts off

with a default configuration, but after some time recognizes which management

policies are more beneficial for service performance and converges to these. Of

interest here is the possibility that one can “actively probe” how certain service

management policies are performing. Designing such probes and finding ways

to use the inferred information in a way that avoids exhaustive search of the best

policies, represent interesting and challenging problems.

232

References

[1] T. F. Abdelzaher and K. G. Shin. QoS provisioning with qContracts in web and

multimedia servers. In Proceedings of the IEEE Real-Time Systems Symposium

(RTSS’99), December 1999.

[2] T. F. Abdelzaher, K. G. Shin, and N. Bhatti. Performance guarantees for web

server end-systems: A control-theoretical approach. IEEE Transactions on

Parallel and Distributed Systems, 13(1):80–96, 2002.

[3] D. Agrawal, A. El Addadi, and A. K. Singh. Consistency and orderability:

Semantics-based correctness criteria for databases. ACM Transactions On

Database Systems, 18(3):460–486, 1993.

[4] R. Agrawal, M. Carey, and M. Livny. Concurrency control performance mod-

eling: Alternatives and implications. ACM Transactions on Database Systems,

12(4):609–654, 1987.

[5] L. V. Ahlfors. Complex Analysis. McGraw–Hill, 1979.

[6] Akamai Technologies Inc. http://www.akamai.com/.

233

[7] Akamai Technologies Inc. EdgeSuite Enterprise Edition. http://www.

akamai.com/en/html/services/edgesuite.html.

[8] A. Akkerman, A. Totok, and V. Karamcheti. Infrastructure for automatic dy-

namic deployment of J2EE applications in distributed environments. In Pro-

ceedings of the 3rd International Working Conference on Component Deploy-

ment (CD’2005), November 2005.

[9] J. Almedia, M. Dabu, A. Manikntty, and P. Cao. Providing differentiated levels

of service in web content hosting. In Proceedings of the First Workshop on

Internet Server Performance, June 1998.

[10] V. Almeida, M. Crovella, A. Bestravos, and A. Oliveira. Characterizing ref-

erence locality in the WWW. In Proceedings of the IEEE/ACM International

Conference on Parallel and Distributed Information Systems (PDIS’96), De-

cember 1996.

[11] M. Arlitt. Characterizing web user sessions. In Proceedings of the Performance

and Architecture of Web Servers Workshop, June 2000.

[12] M. Arlitt, D. Krishnamurthy, and J. Rolia. Characterizing the scalability of a

large web-based shopping system. ACM Transactions on Internet Technology,

1(1):44–69, 2001.

[13] M. Arlitt and C. Williamson. Web server workload characterization. In Pro-

ceedings of the ACM SIGMETRICS Conference on Measurement and Modeling

of Computer Systems, May 1996.

234

[14] B. R. Badrinath and K. Ramamritham. Semantics-based concurrency control:

Beyond commutativity. ACM Transactions on Database Systems, 17(1):163–

199, 1992.

[15] P. Barford, A. Bestravos, A. Bradley, and M. Crovella. Changes in web client

access patterns: Characteristics and caching implications. World Wide Web

Journal, 2(1):15–28, 1999.

[16] P. Barford and M. Crovella. Generating representative web workloads for net-

work and server performance evaluation. In Proceedings of the ACM SIGMET-

RICS Conference on Measurement and Modeling of Computer Systems, June

1998.

[17] N. S. Barghouti and G. E. Kaiser. Concurrency control in advanced database

applications. ACM Computing Surveys, 23(3):269–317, 1991.

[18] B. Bennett, B. Hahm, A. Leff, T. Mikalsen, K. Rasmus, J. Rayfield, and I. Rou-

vellou. A distributed object-oriented framework to offer transactional sup-

port for long-running business processes. In Proceedings of the 2nd ACM/I-

FIP/USENIX International Middleware Conference, April 2000.

[19] P. Bernstein and E. Newcomer. Principles Of Transaction Processing. Morgan

Kaufmann Publishers, 1997.

[20] N. Bhatti and R. Friedrich. Web server support for tiered services. IEEE Net-

work, 13(5):64–71, 1999.

[21] P. Bhoj, S. Ramanathan, and S. Singhal. Web2K: Bringing QoS to web servers.

HP Laboratories Technical Report HPL-2000-61, May 2000.

235

[22] P. Brebner and S. Ran. Entity bean A, B, C’s: Enterprise JavaBeans commit op-

tions and caching. In Proceedings of the 3rd ACM/IFIP/USENIX International

Middleware Conference, November 2001.

[23] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker. Web caching and

Zipf-like distributions: Evidence and implications. In Proceedings of the IEEE

Conference on Computer Communications (INFOCOM’99), March 1999.

[24] S. Campadello, O. Koskimies, K. Raatikainen, and H. Helin. Wireless Java

RMI. In Proceedings of the 4th International Enterprise Distributed Object

Computing Conference (EDOC’00), September 2000.

[25] J. Carlstrom and R. Rom. Application-aware admission control and scheduling

in web servers. In Proceedings of the IEEE Conference on Computer Commu-

nications (INFOCOM’02), June 2002.

[26] E. Cecchet, J. Marguerite, and W. Zwaenepoel. Performance and scalability

of EJB applications. In Proceedings of the 17th ACM Conference on Object-

Oriented Programming, Systems, Languages and Applications (OOPSLA’02),

November 2002.

[27] J. Challenger, P. Dantzig, and A. Iyengar. A scalable and highly available

system for serving dynamic data at frequently accessed web sites. In Proceed-

ings of the High Performance Networking and Computing Conference (SC’98),

November 1998.

[28] A. Chankhunthod, P. Danzig, C. Neerdaels, M. Schwartz, and K. Worrell. A

236

hierarchical internet object cache. In Proceedings of the USENIX Annual Tech-

nical Conference, January 1996.

[29] H. Chen and A. Iyengar. A tiered system for serving differentiated content.

World Wide Web Journal, 6(4):331–352, 2003.

[30] H. Chen and P. Mohapatra. Session-based overload control in QoS-aware web

servers. In Proceedings of the IEEE Conference on Computer Communications

(INFOCOM’02), June 2002.

[31] M. Chen, E. Kiciman, E. Fratkin, E. Brewer, and A. Fox. Pinpoint: Problem

determination in large, dynamic, Internet services. In Proceedings of the In-

ternational Conference on Dependable Systems and Networks (DSN’02), June

2002.

[32] X. Chen, H. Chen, and P. Mohapatra. An admission control scheme for pre-

dictable server response time for web accesses. In Proceedings of the Interna-

tional World Wide Web Conference (WWW’01), May 2001.

[33] L. Cherkasova. Scheduling strategy to improve response time for web appli-

cations. In Proceedings of the International Conference on High Performance

Computing and Networking (HPCN Europe’98), April 1998.

[34] L. Cherkasova and P. Phaal. Session-based admission control: A mechanism

for peak load management of commercial web sites. IEEE Transactions on

Computers, 51(6):669–685, 2002.

[35] M. Crovella and A. Bestavros. Self-similarity in World Wide Web traffic: Ev-

237

idence and possible causes. In Proceedings of the ACM SIGMETRICS Confer-

ence on Measurement and Modeling of Computer Systems, May 1996.

[36] M. Crovella, R. Frangioso, and M. Harchol-Balter. Connection scheduling in

web servers. In Proceedings of the USENIX Symposium on Internet Technolo-

gies and Systems (USITS99), October 1999.

[37] U. Dayal, M. Hsu, and R. Ladin. A transactional model for long-running ac-

tivities. In Proceedings of the 17th International Conference on Very Large

Databases (VLDB’91), September 1991.

[38] L. Degenaro, A. Iyengar, I. Lipkind, and I. Rouvellou. A middleware system

which intelligently caches query results. In Proceedings of the 2nd ACM/I-

FIP/USENIX International Middleware Conference, April 2000.

[39] L. C. DiPippo and V. F. Wolfe. Object-based semantic real-time concur-

rency control with bounded imprecision. Knowledge and Data Engineering,

9(1):135–147, 1997.

[40] F. Douglis, A. Feldmann, B. Krishnamurthy, and J. Mogul. Rate of change and

other metrics: A live study of the World Wide Web. In Proceedings of the

USENIX Symposium on Internet Technologies and Systems (USITS’97), De-

cember 1997.

[41] R. Doyle, J. Chase, O. Asad, W. Jin, and A. Vahdat. Model-based resource

provisioning in a web service utility. In Proceedings of the USENIX Symposium

on Internet Technologies and Systems (USITS’03), March 2003.

238

[42] eBay Inc. http://www.ebay.com.

[43] Edge Side Includes (ESI). http://www.esi.org/.

[44] L. Eggert and J. Heidemann. Application-level differentiated services for web

servers. World Wide Web Journal, 3(2):133–142, 1999.

[45] S. Elnikety, E. Nahum, J. Tracey, and W. Zwaenepoel. A method for transparent

admission control and request scheduling in dynamic e-Commerce web sites.

In Proceedings of the International World Wide Web Conference (WWW’04),

May 2004.

[46] L. Fan, P. Cao, J. Almeida, and A. Z. Broder. Summary cache: a scalable

wide-area web-cache sharing protocol. Technical Report 1361, CS Department,

University of Wisconsin, Madison, February 1998.

[47] A. A. Farrag and M. T. Ozsu. Using semantic knowledge of transactions to

increase concurrency. ACM Transactions On Database Systems, 14(4):503–

525, 1989.

[48] M. Fleury. JBoss Blue Paper. http://www.jboss.org/blue.pdf.

[49] M. Fleury and F. Reverbel. The JBoss extensible server. In Proceedings of the

4th ACM/IFIP/USENIX International Middleware Conference, June 2003.

[50] I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the Grid: Enabling

scalable virtual organizations. The International Journal of High Performance

Computing Applications, 15(3):200–222, 2001.

239

[51] M. J. Freedman, E. Freudenthal, and D. Mazieres. Democratizing content pub-

lication with Coral. In Proceedings of the USENIX Symposium on Networked

Systems Design and Implementation (NSDI’04), March 2004.

[52] X. Fu, W. Shi, A. Akkerman, and V. Karamcheti. CANS: Composable adaptive

network services infrastructure. In Proceedings of the USENIX Symposium on

Internet Technologies and Systems (USITS’01), March 2001.

[53] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements

of Reusable Object-Oriented Software. Addison-Wesley, New York, 1994.

[54] L. Gao, M. Dahlin, A. Nayate, J. Zheng, and A. Iyengar. Application specific

data replication for edge services. In Proceedings of the International World

Wide Web Conference (WWW’03), May 2003.

[55] H. Garcia-Molina. Using semantic knowledge for transaction processing in a

distributed database. ACM Transactions On Database Systems, 8(2):186–213,

1983.

[56] H. Garcia-Molina, D. Gawlick, J. Klein, K. Kleissner, and K. Salem. Modeling

long-running activities as nested sagas. Data Engineering, 14(1):14–18, 1991.

[57] H. Garcia-Molina and K. Salem. Sagas. In Proceedings of the ACM Interna-

tional Conference on Management of Data (SIGMOD’87), May 1987.

[58] J. Gray and A. Reuter. Transaction Processing: Concepts And Techniques.

Morgan Kaufmann Publishers, 1993.

240

[59] S. Gribble, M. Welsh, R. von Behren, E. Brewer, D. Culler, N. Borisov, S. Czer-

winski, R. Gummadi, J. Hill, A. Joseph, R. Katz, Z. M. Mao, S. Ross, and

B. Zhao. The Ninja architecture for robust Internet-scale systems and services.

Computer Networks, 35(4):473–497, 2001.

[60] D. Gross and C.M. Harris. Fundamentals of Queueing Theory. John Wiley &

Sons, 1974.

[61] GVU’s WWW User Surveys. http://www.gvu.gatech.edu/user_

surveys/.

[62] J. R. Haritsa, M. J. Carey, and M. Livny. On being optimistic about real-time

constraints. In Proceedings of the 9th Symposium on Principles of Database

Systems (PODS’90), April 1990.

[63] M. Herlihy. Extending multiversion time-stamping protocols to exploit type

information. IEEE Transactions on Computers, 36(4):443–448, 1987.

[64] M. Herlihy. Apologizing versus asking permission: Optimistic concurrency

control for abstract data types. ACM Transactions on Database Systems,

15(1):96–124, 1990.

[65] IBM corporation. WebSphere Platform. http://www.ibm.com/

websphere.

[66] A.-A. Ivan, J. Harman, M. Allen, and V. Karamcheti. Partitionable Services:

A framework for seamlessly adapting distributed applications to heteregeneous

environments. In Proceedings of the 11th IEEE International Symposium on

High Performance Distributed Computing (HPDC’02), July 2002.

241

[67] S. Jajodia and L. Kerschberg. Advanced Transaction Models And Architectures.

Kluwer Academic Publishers, 1997.

[68] JBoss Java Application Server. http://www.jboss.org.

[69] Jetty HTTP Server and Servlet Container. http://jetty.mortbay.org.

[70] G. E. Kaiser. Cooperative transactions for multiuser environments. In Won

Kim (Ed.), Modern Database Systems: The Object Model, Interoperability, and

Beyond, pages 409–433. ACM Press and Addison-Wesley, 1995.

[71] A. Kamra, V. Misra, and E. Nahum. Yaksha: A self-tuning controller for man-

aging the performance of 3-tiered web sites. In Proceedings of the 12th IEEE

International Workshop on Quality of Service (IWQoS’04), June 2004.

[72] D. R. Kincaid and E. W. Cheney. Numerical Analysis: Mathematics of Scien-

tific Computing. Brooks Cole, 2001.

[73] L. Kleinrock. Queueing Systems. John Wiley & Sons, 1975.

[74] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek. The Click mod-

ular router. ACM Transactions on Computer Systems, 18(3):263–297, 2000.

[75] S. Kounev and A. Buchmann. Improving data access of J2EE applications by

exploiting asynchronous messaging and caching services. In Proceedings of the

28th International Conference on Very Large Databases (VLDB’02), August

2002.

[76] D. Krishnamurthy and J. Rolia. Predicting the performance of an e-Commerce

242

server: Those mean percentiles. In Proceedings of the ACM SIGMETRICS

Workshop on Internet Server Performance, June 1998.

[77] D. Krishnamurthy, J. Rolia, and S. Majumdar. Synthetic workload generation

for session-based systems. In submission. 2006.

[78] H. T. Kung and J. T. Robinson. On optimistic methods for concurrency control.

Transactions on Database Systems, 6(2):213–226, 1981.

[79] A. Leff and J. T. Rayfield. Improving application throughput with Enterprise

JavaBeans caching. In Proceedings of the 23rd International Conference on

Distributed Computing Systems (ICDCS’03), May 2003.

[80] A. Leff and J. T. Rayfield. Alternative edge-server architectures for enterprise

JavaBeans applications. In Proceedings of the 5th ACM/IFIP/USENIX Inter-

national Middleware Conference, October 2004.

[81] J. Lindfors, M. Fleury, and The JBoss Group. JMX: Managing J2EE with Java

Management Extensions. SAMS, January 2002.

[82] D. Llambiri, A. Totok, and V. Karamcheti. Efficiently distributing component-

based applications across wide-area environments. In Proceedings of the 23rd

International Conference on Distributed Computing Systems (ICDCS’03), May

2003.

[83] C. Lu, T. Abdelzaher, J. Stankovic, and S. Son. A feedback control approach

for guaranteeing relative delays in web servers. In Proceedings of the IEEE

Real-Time Technology and Applications Symposium (RTAS’01), June 2001.

243

[84] V. Marangozova and D. Hagimont. An infrastructure for CORBA component

replication. In Proceedings of the First International IFIP/ACM Working Con-

ference on Component Deployment (CD’02), June 2002.

[85] F. Marinescu. EJB Design Patterns. John Wiley & Sons, 2002.

[86] D. Menascé. Web server software architectures. IEEE Internet Computing,

7(6):78–81, 2003.

[87] D. Menascé, B. Abrahao, D Barbara, V. Almeida, and F. Ribeiro. Characteriz-

ing e-Business workloads using fractal methods. Journal of Web Engineering,

1(1):74–90, 2002.

[88] D. Menascé and V. Almeida. Capacity Planning for Web Performance: Met-

rics, Models, and Methods. Prentice Hall, 1998.

[89] D. Menascé, V. Almeida, R. Fonseca, and M. Mendes. A methodology for

workload characterization of e-Commerce sites. In Proceedings of the ACM

Conference on Electronic Commerce, November 1999.

[90] D. Menascé, V. Almeida, R. Riedi, Fl. Ribeiro, R. Fonseca, and W. Meira Jr.

In search of invariants for e-Business workloads. In Proceedings of the ACM

Conference on Electronic Commerce, October 2000.

[91] Microsoft Corporation. Component Object Model (COM) technologies.

http://www.microsoft.com/com/.

[92] Microsoft Corporation. Microsoft .NET. http://www.microsoft.com/

net/.

244

[93] M. H. Nodine and S. B. Zdonik. Cooperative transaction hierarchies: Transac-

tion support for design applications. In Proceedings of the 16th International

Conference on Very Large Databases (VLDB’90), August 1990.

[94] Object Management Group. CORBA Component Model (CCM).

http://www.omg.org/technology/documents/formal/

components.htm.

[95] ObjectWeb Consortium. RUBiS: Rice University Bidding System. http://

rubis.objectweb.org/.

[96] D. K. Pecaut, M. J. Silverstein, and P. Stanger. Winning the online consumer:

Insights into online consumer behavior. Boston Consulting Group, March 2000.

http://www.bcg.com.

[97] K. Petersen, M. J. Spreitzer, D. B. Terry, M. M. Theimer, and A. J. Demers.

Flexible update propagation for weakly consistent replication. In Proceedings

of the 16th ACM Symposium on Operating Systems Principles (SOSP’97), Oc-

tober 1997.

[98] S. H. Phatak and B. R. Badrinath. Bounded locking for optimistic concurrency

control. Rutgers University CS Technical Report DCS-TR-380, 1996.

[99] J. Pitkow. Summary of WWW characterizations. World Wide Web Journal,

2(1–2):3–13, 1999.

[100] K. Ramamritham and C. Pu. A formal characterization of epsilon serializabil-

ity. Knowledge and Data Engineering, 7(6):997–1007, 1995.

245

[101] G. G. Roussas. A Course in Mathematical Statistics. Academic Press, 1997.

[102] B. Schroeder and M. Harchol-Balter. Web servers under overload: How

scheduling can help. CMU Computer Science Technical Report CMU-CS-02-

143, May 2002.

[103] P. Selvridge, B. Chaparro, and G. Bender. The World Wide Wait: Effects of

delays on user performance. International Journal of Industrial Ergonomics,

29(1):15–20, 2001.

[104] D. Shasha, F. Llirbat, E. Simon, and P. Valduriez. Transaction chopping: Al-

gorithms and performance studies. ACM Transactions on Database Systems,

20(3):325–363, 1995.

[105] W. Shi, K. Shah, Y. Mao, and V. Chaudhary. Tuxedo: a peer-to-peer caching

system. In Proceedings of the International Conference on Parallel and Dis-

tributed Processing Techniques and Applications (PDPTA’03), June 2003.

[106] W. Shi, R. Wright, E. Collins, and V. Karamcheti. Workload characterization

of a personalized web site – and its implications for dynamic content caching.

In Proceedings of the 7th International Workshop on Web Caching and Content

Distribution (WCW’02), August 2002.

[107] I. Singh, B. Stearns, M. Johnson, and the Enterprise Team. Designing Enter-

prise Applications with the J2EE Platform. Addison-Wesley, 2002.

[108] N. Singhmar, V. Mathur, V. Apte, and D. Manjunath. A combined LIFO-

priority scheme for overload control of e-Commerce web servers. In Pro-

246

ceedings of the International Survivability Workshop at IEEE-RTSS, December

2004.

[109] L. Slothouber. A model of web server performance. In Proceedings of the

International World Wide Web Conference (WWW’96), May 1996.

[110] T. Stading, P. Maniatis, and M. Baker. Peer-to-peer caching schemes to address

flash crowds. In Proceedings of the 1st International Workshop on Peer-to-Peer

Systems (IPTPS’02), March 2002.

[111] S. Stark and The JBoss Group. JBoss Administration and Development. JBoss

Group, LLC, September 2002.

[112] C. Stewart and K. Shen. Performance modeling and system management for

multi-component online services. In Proceedings of the USENIX Symposium

on Networked Systems Design and Implementation (NSDI’05), May 2005.

[113] Sun Microsystems. Enterprise JavaBeans (EJB) technology. http://java.

sun.com/products/ejb/.

[114] Sun Microsystems. J2EE Connector Architecture (JCA). http://java.

sun.com/j2ee/connector/.

[115] Sun Microsystems. Java Data Objects (JDO) technology. http://java.

sun.com/products/jdo/.

[116] Sun Microsystems. Java Management Extensions (JMX). http://java.

sun.com/products/JavaManagement/.

247

[117] Sun Microsystems. Java Message Service (JMS). http://java.sun.

com/products/jms/.

[118] Sun Microsystems. Java Naming and Directory Interface (JNDI). http://

java.sun.com/products/jndi/.

[119] Sun Microsystems. Java Pet Store sample J2EE application. http://java.

sun.com/developer/releases/petstore/.

[120] Sun Microsystems. Java Platform Enterprise Edition (J2EE). http://java.

sun.com/javaee/.

[121] Sun Microsystems. Java Remote Method Invocation (Java RMI). http://

java.sun.com/products/jdk/rmi/.

[122] Sun Microsystems. Java Servlet Technology. http://java.sun.com/

products/servlet/.

[123] Sun Microsystems. JavaServer Pages (JSP) technology. http://java.

sun.com/products/jsp/.

[124] Sun Microsystems. JDBC technology. http://java.sun.com/

products/jdbc/.

[125] C. Szyperski. Component Software. Addison-Wesley, 2002.

[126] Y. C. Tay, R. Suri, and N. Goodman. A mean value performance model for

locking in databases: The no-waiting case. Journal of the ACM, 32(3):618–

651, 1985.

248

[127] B. Tedeschi. Glitches in booking first class online, The New York Times, April

10, 2005, Travel Section, page 6.

[128] A. Thomasian. Two-phase locking performance and its thrashing behavior.

ACM Transactions on Database Systems, 18(4):579–625, 1993.

[129] A. Thomasian. Concurrency control: Methods, performance, and analysis.

ACM Computing Surveys, 30(1):70–119, 1998.

[130] TPC-W-NYU. A J2EE implementation of the TPC-W benchmark.

http://www.cs.nyu.edu/˜totok/professional/software/

tpcw/tpcw.html.

[131] Transaction Processing Performance Council. TPC-W: Transactional Web e-

Commerce Benchmark. http://www.tpc.org/tpcw/.

[132] O. Ulusoy and G. G. Belford. Real-time transaction scheduling in database

systems. Information Systems, 18(8):559–580, 1993.

[133] B. Urgaonkar, G. Pacifici, P. Shenoy, M. Spreitzer, and A. Tantawi. An analyt-

ical model for multi-tier internet services and its applications. In Proceedings

of the ACM SIGMETRICS Conference on Measurement and Modeling of Com-

puter Systems, June 2005.

[134] B. Urgaonkar and P. Shenoy. Cataclysm: Handling extreme overloads in inter-

net services. In Proceedings of the 23rd Annual ACM SIGACT-SIGOPS Sym-

posium on Principles of Distributed Computing (PODC’04), July 2004.

249

[135] S. VanBoskirk, C. Li, and J. Parr. Keeping customers loyal. Forrester Research,

May 2001. http://www.forrester.com.

[136] H. R. Varian. Intermediate Microeconomics: A Modern Approach. W. W. Nor-

ton & Company, Seventh edition, 2005.

[137] D. Villela, P. Pradhan, and D. Rubenstein. Provisioning servers in the applica-

tion tier for e-Commerce systems. In Proceedings of the 12th IEEE Interna-

tional Workshop on Quality of Service (IWQoS’04), June 2004.

[138] M. Wang, N.H. Chan, S. Papadimitriou, C. Faloutsos, and T. Madhyastha. Data

mining meets performance evaluation: Fast algorithms for modeling bursty

traffic. In Proceedings of the 18th International Conference on Data Engi-

neering (ICDE’02), February 2002.

[139] W. E. Weihl. Commutativity-based concurrency control for abstract data types.

IEEE Transactions on Computers, 37(12):1488–1505, 1988.

[140] G. Weikum and G. Vossen. Transactional Information Systems. Morgan Kauf-

mann Publishers, 2002.

[141] T. Wilson. E-Biz bucks lost under SSL strain, Internet Week Online, May 20

1999. http://www.internetweek.com/lead/lead052099.htm.

[142] A. Wolman, G. M. Voelker, N. Sharma, N. Cardwell, A. Karlin, and H. M.

Levy. On the scale and performance of cooperative web proxy caching. In

Proceedings of the 17th ACM Symposium on Operating Systems Principles

(SOSP’99), December 1999.

250

[143] M. H. Wong and D. Agrawal. Tolerating bounded inconsistency for increasing

concurrency in database systems. In Proceedings of the 11th Symposium on

Principles of Database Systems (PODS’92), June 1992.

[144] World Wide Web Consortium. Simple Object Access Protocol (SOAP).

http://www.w3.org/TR/soap/.

[145] H. Yu and A. Vahdat. Design and evaluation of a continuous consistency model

for replicated services. In Proceedings of the 4th Symposium on Operating

Systems Design and Implementation (OSDI’00), October 2000.

[146] Q. Zhang, E. Smirni, and G. Ciardo. Profit-driven service differentiation in

transient environments. In Proceedings of the 11th IEEE International Sympo-

sium on Modeling, Analysis, and Simulation of Computer and Telecommunica-

tions Systems (MASCOTS’03), October 2003.

[147] Z. L. Zhang, D. F. Towsley, and J. F. Kurose. Statistical analysis of generalized

processor sharing scheduling discipline. IEEE Journal on Selected Areas in

Communications, 13(6):1071–1080, 1995.

251

