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Abstract

Edge detection is a fundamental problem of computer vision and has been widely

investigated. We propose a new framework for edge detection based on edge profiles.

Our model, based on one-dimensional qualitative edge profile fitting and edge

consistency, will produce one continuous edge from an initial seed point. A “pro-

file” is defined as a finite cross-section of a two-dimensional image along a line

segment. “Edge consistency” means that all the profiles on the same edge should

be consistent.

Appropriate evaluation functions are needed for different types of edge profiles,

such as step edges, ramp edges, etc. An evaluation function must meet the require-

ment that it will produce local minima at the positions where edges of a given type

occurs in the profile. Instead of subjective thresholding, image noise is measured

statistically and used as a systematic way of filtering false edges. We describe our

method as “qualitative edge profile fitting” because it is not based on arbitrary

thresolding. Once an edge point is localized, it can be extended into an edge by

matching compatible profiles. Two profiles are considered compatible as long as

their average difference is within the noise measurement. Another feature of our

approach is its subpixel accuracy. The utilization of profiles and noise-induced

threshold selection make tasks such as joining broken edges more objective.

We develop the necessary algorithms and implement them. Different evaluation

functions are constructed for different edge models and experimented on different
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one-dimensional profiles. The edge detector, using these evaluation functions, is

then examined using different images and under different noise conditions.
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Chapter 1

Introduction

Edges in an image provide a representation of object boundaries within that im-

age. Therefore, edge detection is an essential component in many computer image

processing operations such as stereopsis, calibration, motion analysis and recog-

nition. From a pixel level perspective, edges can be viewed as the regions of an

image where the image values undergo a sharp variation. Normally, such regions

form lines, curves and contours, which represent outlines of solid objects, marks on

surfaces, and shadows. Moreover, line drawings are common and suggestive images

for humans. Notice that image noise too causes intensity variations. Noise is among

the most significant obstacles of edge detection. Another factor that complicates

the edge detecting operation is digitization. A wide edge in a digital image would

have the appearance of a staircase, and might be interpreted as multiple edges. In

this thesis, we introduce a new approach of edge detection which employs mini-

mization of the evaluation of profiles in edge localization, and consistency of an

edge in edge linking process.
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1.1 Problem Definition

In spite of our familiarity with the concept of an edge, there is no widely accepted

rigorous definition for it. More precisely, the concept of edges we use is abstract,

and can have different meanings in different contexts. Therefore, different edge

detectors can produce edges in different forms of representation, while each detector

can be accepted as a genuine edge detector. For example, in the edge detecting

techniques mentioned in previous section, an edge could be considered as a pixel

with local discontinuity in image intensity, a contour that connects such pixels

and forms a outline of object, or a boundary that separates two or more objects.

Although various definitions of an “edge” could be accepted in human perception,

their complexity varies, and the way how edges are processed and represented in

computers are all different.

Most of the edge detectors only produce points at the positions of edges of

images. The results generally consist of a quantitive value for each pixel, and

an orientation. Normally, a threshold is applied to determine whether a pixel is

on an edge or not, and results in a binary image indicating the position of the

edges of the original image. Usually the results are examined by human eyes by

comparing against the original image to determine if the outputs are acceptable or

not. Nevertheless, the application of these detectors are limited, First, the points

are not linked, therefore, we do not have any relation among the points. Such

linking process can by performed, for example, Hough transform[19, 26]. However,

except for straight edges, the linking process is far from perfect. More precisely,

if the purpose of edge linking is to join edge points into groups, and eliminate

isolated points which are not related to another points, in other words, a part of

2



noise reduction process, then the existing linking methods are adequate. However,

if the purpose is to find an edge as complete as possible, or to distinguish different

edges, then none of them is a good candidate, since few of the edge linking methods

use any characteristics of the edge points other than their positions, orientations

and strengths.

Even if all the points are linked into curves properly, these curves alone are

still not sufficient for most of higher level image processing operations. These edge

curves do not have such information since the curves are composed by edge points

only, no color information is included. There is no guarantee that all the linked

edge points really belong to the same edge curve without additional verification.

Such verification is not trivial, especially with the presence of image noise, and

alignment. Of the images in Figures 1.1 and 1.2, we demonstrate the reason why

profile of edges should be considered during edge linking process. One of the images

is the result of Canny’s detector, with hysteresis threshold for linking. The other is

obtained by using profile-based edge linking process we developed. For comparison,

only one edge is detected starting from the same initial point. In Figure 1.1, it is

arguable that the two results, while different, are both reasonable. In Figure 1.2,

the result from the linker without profile-consistency is less desirable. While the

Canny’s detector does not focus on edge linking, since its hysteresis threshold is

more about noise elimination than about edge linking, these figures manifest the

merit of using profiles in edge linking process. Generally, for edge linking with

any junctions, this kind of arbitrariness will always happen, unless the background

is well defined. Someone might claim that the result of Canny’s detector is more

desirable than ours, since it does describe the outline of a floor tile. The problem

3



(a) An image of random blobs (b) Canny’s output of part of the image with

blobs

(c) Profile-based detector’s output of part of

the image with blobs

Figure 1.1: Comparing the results of edge linkers with and without consideration of

profile, using a synthetic image.
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(a) An image of a box on floor (b) Canny’s output of part of the image

(c) Profile-based detector’s output of part of

the image

Figure 1.2: Comparing the results of edge linkers with and without consideration of

profile, using a real image.
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is that the linking process could just as reasonably have picked up the outline of

the adjacent tile. Instead of defining a better linking mechanism at the junctions,

we will simply enforce the consistency of the profiles and reply on a higher level

linking mechanism to decide on forming edges with non-constant profiles.

Another problem we address in this thesis is thresholding. Edge detectors gener-

ally give a quantitive value for each pixel as the strength of edges. Some techniques

such as non-maximum suppression or zero-crossing may reduce the necessity

of threshold. Nevertheless, with the presence of noise, threshold is still required

to distinguish real edges from noise. Normally, a threshold value is found using

a trial-and-error process and then applied to all edges in the given image. How-

ever, since the threshold depends on the edge characteristics as well as the detector

been used [12, 52, 54], it is not easy to find a single threshold value for an image,

even when such value does exist, which is not always true. While the threshold

value is detector-dependent, few detectors come with a threshold selecting method.

Although robust threshold selection algorithms do exist, many of them can be ap-

plied to image segmentation using statistical characteristics of the image such as

the histogram. Therefore it may not work well for the output of the edge detectors.

Moreover, a single optimal threshold value may not exist, and different threshold

values may be needed for different regions of the same image. In the end, unless

there is some measurement of performance of an arbitrary threshold value, such

that the best threshold value can be found by its optimal performance, the deci-

sion of the threshold value will have to depend on the judgment of human eyes.

One of our goals is to eliminate the usage of thresholding, or at least provide some

mechanism that would generate a reasonable threshold value from the information

6



gathered locally from the image.

1.2 Terminology

As mentioned, different edge detectors use different definitions of “edges”. There-

fore, a precise definition of how the term edge is used in this thesis is as follows.

(a) Ramp Profile (b) Ridge Profile

Figure 1.3: (a) Ramp Profile (b) Ridge Profile

For the purposes of this introduction, we will assume that an “edge” is, among

other things, associated with a curve γ that represents a similar form of disconti-

nuity on an image. We call γ an edge curve. Mathematically, we may assume

a curve is a continuous, piecewise smooth function γ : [0, 1] → R2. The minimal

information that we expect in the output of a true edge detector is a collection of

edge curves in an image.

One of our main motivations is to insist that an integral part of the concept

of an edge is its “profile”. For instance, at the simplest level, a curve should only

be regarded as an “edge” when it possesses a consistent profile of some sort of

one-dimensional edge. Intuitively, a profile is a one-dimensional image, and a curve

determines a family of such profiles obtained as the local cross section of the image

7



along a normal to the curve. For instance, many edge detectors are tuned to detect

the step profile, or more generally, a ramp profile. Some other detectors are

specific for line edges which can be viewed as ridge profiles. See Figure 1.3 for

these two common types of profiles.

For the present discussion, we use the following simple definition for a profile:

a profile is a C1 function φ : [−a, b] → R, where a, b are positive reals that define

the boundaries of the profile. Generally, a and b are set to an initial constant

value T , though each could be adjusted to a more suitable boundary value later

in the process. More parameters may be added to the profile. Although these

additional parameters may provide better description of an edge, they are simply

derived information from φ. Oftentimes, the term “profile” in this thesis referring

the C1 function unless stated otherwise. If a profile φ0 is called an edge profile,

that means φ0(0) is the center of an edge. For a step edge, the center of the edge

means the position with the discontinuity of color/grayscale values. Otherwise,

a transient region is present between two regions with constant color/grayscale

values. The two regions will be called left stable region and right stable region

respectively. The center of this edge will be the middle of this transient region.

The ”left” and ”right” of the stable regions are relative terms depending on the

orientation of the profile sampled from the image, and can be interchanged as long

as needed.

By using profiles, we could convert a two-dimensional edge detecting problem

into a one-dimensional signal processing problem which has been studied longer

and more thoroughly in the past. We can also use the profiles to classify different

edges into categories. Also, with this definition of edges, if we can find all edges

8



in an image, we can usually use these edges to represent the whole image.

We will assume that the edge curve γ is piecewise smooth, so that for all ex-

cept finitely many values of t, the normal direction n(t) at γ(t) is well-defined.

More precisely, if γ(t) = (x(t), y(t)) then n(t) = (−y′(t), x′(t)), assuming that γ is

parameterized by arc length. Let θ(t) = arctan−x′(t)/y′(t) ∈ [0, π) be the orien-

tation of n(t). The direction perpendicular to the normal direction is called edge

direction, which is defined by the orientation arctan y′(t)/x′(t). For any t0 ∈ [0, 1],

we call the pair (γ(t0), θ(t0)) an edge point. In general, an oriented point is a

pair (p, θ) where p ∈ R2 and θ ∈ [0, π). Thus, an edge point is simply an oriented

point that is “derived” from an edge. Just as an edge has its profile, an oriented

point can have a profile. The profile of an oriented point comprises of a collection

of sampled pixel values from an image, at the position of the oriented point along

its orientation. And if an oriented point has a profile that fits the criteria of an

edge profile, the oriented point is an edge point. The profile of an edge is in fact

the collective term of the profiles of all the edge points on that edge.

Many edge detectors actually only produce edge points for a given image, some

of them without the orientation information. In order to distinguish our work from

these detectors, we will name these detectors edge point detectors.

we need to define more terms to be used later. The neighbor edge points are

the oriented points that are on both sides of the edge direction of a selected edge

point at some specific distance d away. For example, for an edge point γ0(t0) from

the edge γ0(t), its neighbor edge points are (x(t0)± d sinu(t0), y(t0)± d cosu(t0)).

They are used to locate the real edge points that are adjacent to the edge point. In

our work, d is chosen between one to three pixels. If it is too small, the interference
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between an edge point and its neighbor edge points would be too large to locate a

new edge point accurately. On the other hand, if d is too large, we may miss some

sharp corners.

1.3 Thesis overview

In this thesis, we describe a profile-based edge detecting technique to produce edges

with sub-pixel accuracy. One of our goals is to produce enough abstract information

of edges that could be used to represent an image. There are three key concepts in

our approach: edge profile localization, edge profile verification, and edge continuity.

“Edge profile localization” is the process that the candidate edge point is se-

lected based on the profiles from the neighborhood of an initial oriented point. An

evaluation function is applied to these profiles, and the profile with a local minimum

value will be chosen as the candidate edge point.

“Edge profile verification” means that for every candidate edge point, a verifica-

tion process is performed to either validate it or reject it as noise. This verification

process can be part of the evaluation function, or another independent function.

“Continuity of edges” means that once an edge point is labeled, we could “grow”

the point into a curve by repeatedly extending the edge along the edge directions

by finding new oriented points with profiles similar to the original edge point. The

growth of the edge curve will continue until the profile of the new extended point

does not match the original one.

The development of our edge detecting algorithm is a three-step process. The

first step of our edge detection is to create edge point profile for a given oriented

point (x, y, θ). Next we change its position and direction by (t cos θ, t sin θ, δ), where

10



t ∈ [−T, T ], δ ∈ [−∆, ∆]; T and ∆ are some small predefined values. Our goal is

to get the profiles of these shifted oriented points, and find the locally optimized

position and direction of the edge point with these profiles. The detail of this step

is covered in Chapter 3.

Chapter 4 describes the second step which would grow an edge from an edge

point derived from the first step. With the normal direction of the edge point, the

position and normal direction of a nearby edge point can be estimated, and the

result of the growing by the profiles of these edge points will then be fine-tuned and

verified. This step is repeated until the new edge points on both ends of the edge

are rejected. Additional processing can be performed after the growth stopped.

For example, if two endpoints of the edge are very close, it is possible to close the

edge as a loop. If an endpoint is close to an endpoint of another edge, there is

possibility that these two edges can be joined if the profiles of the two edges match.

Moreover, a smoothing process can be performed over the edge to damp the effect

of digitalization.

The third step is to find all the edges from the image. This is done by traversing

the image. For every unvisited point, we will try to find an edge point and grow an

edge out of it. Precaution should be taken since our algorithm detects edge point

positions at subpixel level, tracing the visited points is no longer trivial. In our test

program, the combination of a sorted linked list and an accumulating array is used

to emulate a hash table that keeps track of all the detected edge points.

After the mentioned three steps, certain post-processing can be applied. For

example, the edges can be sorted by their edge magnitudes, and edges can be

further categorized according to their edge types, or the similarity of the profiles.
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Figure 1.4: The interface of the software developed. A bounding box is used to limit the

region for edge detecting process.

The post-processing tends to be application-dependent, so we will only discuss this

part briefly.

1.4 Software and Data Availability

The software that is to achieve the results in this thesis, the experimental data, as

well as the various tools developed to visualize and analyze them, are available on

the web at

http://cs.nyu.edu/visual/yentj/dissertation/

This software is developed for visualizing images and edge detection results as

well as capturing these results for printing. Zooming and panning are supported
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Figure 1.5: The interface of the software developed. The same image as in Figure 1.4 is

used, with different resolution. Position and orientation of each edge point is shown as

well.

Figure 1.6: An example of the window showing the profile information.
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so the detail in subpixel level can be observed. An additional window is used to

display the profile information of a selected edge point. The main interface is shown

in Figures 1.4 – 1.5, and the window displaying the profile information is shown in

Figure 1.6.

Although the official version of this thesis is in black and white, the full color

version of most of our images are available in the electronic copy of the thesis in

PDF format, which is available at the following URL:

http://cs.nyu.edu/visual/yentj/dissertation/thesis.pdf
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Chapter 2

Background

2.1 Properties of Edge Detectors

As mentioned in the previous chapter, edge detection is an essential component in

many computer image processing operations. During the history of image process-

ing, many edge detectors have been introduced for different purposes, using different

approaches. Still, edge detection can be separated into three stages. These three

stages are:

Smoothing. At this stage, image noise is removed as much as possible, without

damaging the real edges too much. Generally, smoothing is achieved by filter-

ing the image function with a low-pass filter. It could reduce the additive noise

since noise is generally high frequency signal. On the other hand, the edges

are also high frequency signals, thus will be removed as well. A smoothing

process is a trade-off between information preservation and noise reduction.

A parameter is usually associated with a smoothing operator to control the

scale of the smoothing.
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Edge enhancement. An edge enhancement filter is applied to the image. The

requirement of the filter is that it should generate some specific response at

the positions of edges, Edges are generally high frequency signals. Thus a

high-pass filter is usually used to localize the edges. A differential operator is

usually used as such filter.

Edge localization. Identify the edges, according to the type of the edge-enhancing

filter applied. When a first-derivative operator is used, local maxima are

expected. For a second-derivative operator, the zero-crossings are marked.

This stage also determines which responses are caused by noise and most be

removed. Thresholding techniques are generally used for such tasks.

2.2 Survey of Edge Detectors

Some of the earliest works of edge detection employ small convolution masks to

approximate either the first derivative or the second derivative of an image; for

example, Roberts filter, Sobel filter, Prewitt filter, and Laplacian filter. They fo-

cus on the “edge enhancement” part of edge detection, with none or very little

“smoothing”. A threshold is then applied to the output of these filters to iden-

tify the edge points. These filters, though easy to implement and generally with

the advantage of speed over later edge detectors, provide very little control over

smoothing and edge localization, by which noise is reduced. Therefore, these filters

are very noise-sensitive.

Marr and Hildreth [34, 18] have proposed the use of zero-crossings of the Lapla-

cian of Gaussian. Using the fact that a step edge corresponds to a sharp change
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in the image, the first derivative of the image should have an maximum at the po-

sition corresponding to an edge in the image, and so the second derivative should

be zero at the same position. Obvious, it is easier to find a zero-crossing than a

local maximum in a two-dimensional function. On the other hand, the higher-order

derivatives are also more sensitive to noise. In order to reduce noise, the image has

to be smoothed. When choosing a smoothing filter, two criteria should be fulfilled

[34]. First, the filter should be smooth and roughly band-limited in the frequency

domain to reduce the number of frequencies at which image function changes can

take place. Secondly, the constraint of spatial localization requires the response of

a filter to be from nearby points in the image. These two criteria are conflicting,

and the Gaussian filter

G(x, y) = e−
x2+y2

2σ2 (2.1)

is an compromise between spatial and frequential criteria. The edge detection

operator is the second derivative of a smoothed two-dimensional image function

f(x, y), which is

∇2(G(x, y; σ) ∗ f(x, y)). (2.2)

It is usually called LoG as an abbreviated of Laplacian of Gaussian where the

Laplacian operator

∇2 =
∂2

∂x2
+

∂2

∂y2

is the second-derivative operator which can be represented numerically as the linear

operator 
0 −1 0

−1 4 −1

0 −1 0

 .
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The order of differentiation and Gaussian smoothing is interchangeable because of

the derivative property of convolution 1. Therefore, the operator in Equation (2.2)

can be rewritten as

(∇2G(x, y; σ)) ∗ f(x, y). (2.3)

The filter now can be written as ∇2G.

Poggio et al. [46] introduced a cubic spline filter. The image is smoothed by a

cubic spline filter before differentiation. It was shown that the results of the cubic

spline filter is very similar to Gaussian smoothing.

Canny described a widely used edge detecting algorithm [7] which is optimal to

step edges corrupted by noise. Three criteria were defined for the optimality edge

detection:

Good Detection. The detector must minimize the probability of false edges

caused by noise, as well as missing real edges.

Good Localization. The edges detected must be as close as possible to the true

edges.

Single Response. The detector must return one point only for each true edge

point.

These criteria and their variations are also widely used in other research. First

two criteria are then developed quantitatively into a set of functions with mini-

1Derivative property of convolution. If the signal x(t) has an ordinary first derivative ẋ(t), the

convolution x(t) ∗ v(t) has an ordinary first derivative,

d

dt
[x(t) ∗ v(t)] = ẋ(t) ∗ v(t) = x(t) ∗ v̇(t).

18



mal and maximal constraints. A closed form solution was found using variational

calculus. Without the third criterion, the optimal detector for a step edge

G(x) =


0 x < 0

A x ≥ 0

is f(x) = −G(x) in [−W, W ], assuming the filter width is 2W . Therefore, the

optimal, one-dimensional step edge detector is a truncated step. Unfortunately,

this filter contains a very high bandwidth and tends to produce many maxima with

noisy step edges. If the third criterion is added, the optimal solution may be found

by numerical method. The result filter can be approximated with error less than

20% by the first derivative of a Gaussian smoothing filter. This is similar to Marr-

Hildreth edge detector [34] which is based on the Laplacian of a Gaussian. The

detector is then generalized to two-dimensions. Non-maximum suppression is

then applied on the results of the filter to thin wide edges in order to produce 1-

pixel wide edges. It is done by finding local maxima in the direction perpendicular

to the edges. Finally, weak edges are removed using thresholding. The thresh-

olding is applied with hysteresis. Edges contours are processed as units, and two

threshold values are defined; each contour must have at least one point with gra-

dient magnitude above the higher threshold, while all points in the contours must

not go below the lower threshold. Canny also proposed feature synthesis which

is a multiple-scale approach where the standard deviation σ of the Gaussian are

used as the scaling factor. All significant edges from the operator with the smallest

scale are marked first, and the edges for larger scale are synthesized from these

marked edges and then compared to the actual detector output. Additional edges

are marked only if they have a significantly stronger response than that predicted
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by the synthetic response. Many researchers were inspired by Canny’s work. For

example, Deriche [13] extended Canny’s initial filter to two-dimensions and imple-

mented it using recursive filtering. Petrou and Kittler [45] derived another optimal

detector for a blurred step edge model using criteria similar to those by Canny.

Canny’s feature synthesis is not the first attempt to detect edges using differ-

ent scale parameters. Marr and Hildreth [34] has suggested to obtain a description

of an image at different scales by applying a feature detector at different scales

and combining the edge information. If one creates a series of images It(x, y, t)

from original image I0(x, y) by convolving I0(x, y) with a Gaussian kernel G(x, y; t)

with variance t, as pointed out by Koenderink [29] and Hummel [23], this family of

images can be viewed as the solution of the isotropic diffusion equation

dI

dt
= ∇2I =

∂2I

∂x2
+

∂2I

∂y2

with the initial condition I(x, y, 0) = I0(x, y), the original image. One disadvantage

of linear isotropic diffusion is that the diffusion would blur features as well as smooth

noise. An isotropic diffusion method was introduced by Perona and Malik [44]. A

nonlinear diffusion equation is used:

dI

dt
= ∇ · (c(x, y, t)∇I) = c(x, y, t)∇2I +∇c · ∇I (2.4)

where c(x, y, t) is chosen as

c(x, y, t) = g(∇I(x, y, t)) (2.5)

and g is a nonnegative monotonically decreasing function with g(0) = 1. A dif-

ferent function g would generate different scale-spaces, though they turn out to

be perceptually similar. This way, the points with strong features, i.e., with high

20



|∇I| values, would have less diffusion effect than other points, thus retain most of

the features in the image. To make the diffusion anisotropic, the function c(x, y, t)

should be directional and is perpendicular to the orientation of the gradient of the

image. The nonlinear diffusion methods process an image with different smoothing

parameters such that it could blur noise and at the same time keep the edges sharp.

Another approach of edge detection is parametric fitting. This involves fitting

the image with an edge model with parameters, then finding the parameters that

minimize the fitting error. The Hueckel edge detection [22, 20, 21] is an example

of the parametric fitting method. A two-dimensional step edge model in a circular

window is fitted to each image pixel. The parameters of the edge model are the gray

scale values, the edge orientation, and the distance from the center of the window

to the edge. An edge is detected if the fit is accurate enough, while the accuracy

of edge fitting is measured in terms of the mean square error. Hueckel introduced

a polar Fourier expansion and used the first eight Fourier coefficients in the fitting

process in order to reduce the computation. Experimental results indicated that

Hueckel operator performs well in noisy and highly textured environments, though

no analysis of the operator in presence of noise is documented.

Some other detectors that can be categorized as parametric fitting approach are

proposed by O’Gorman [40], Hummel [23], Tabatabaui and Mitchell [51], Hartley

[17], Nalwa and Binford [38], and Lyvers et al. [32]. Moreover, this approach is also

used to detect other features. Hueckel [21] used the same model to detect line edges,

and Rohr [49] and Parida et al. [31] used it to detect corners. Since this approach

uses a rich description of the image structure, edge detectors using this approach

could provide edge attributes such as position with subpixel accuracy, contrast, blur,
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and width. In other words, this approach could provide more thorough description

of the edges. One problem of this approach is that it is not easy to provide a two-

dimensional edge model with an arbitrary-shaped curve. Most edge detectors use

a straight edge model. For some complex features such as a corner, or more than

one edges within the window, the detectors can still pick the accurate parameter

set that minimizes the edge fitting error. Therefore the value of the edge fitting

error will be increased, and the edge might be rejected once the error exceeds the

default threshold.

Some edge detecting techniques convert the edge detecting problem into energy

functions, then find the optimal edges by minimizing the energy functions. Two

examples of such techniques are deformable contours [27], and the Mumford-

Shah theory [37].

The deformable contour technique employs energy minimization to shift an ini-

tial line segment, which is called the deformable contour, the active contour,

or the snake, into a curve that would adhere to an edge of the given image. For

edge detecting purposes, two forms of energy are involved: an internal energy that

generates a force keeping the curve continuous and smooth, and an image energy

that move the curve towards edge points on the image. The Euler equation is used

to minimize the energy function. When the energy is minimized, the two forms of

energy are at balance. Therefore, the deformable contour is attached to an edge,

and is smoothed so it is not zigzag due to digitization or noise. Deformable contours

are usually used in motion analysis, and stereopsis, not in single stationary image.

This is because this technique requires a proper initial line segment or closed curve

to begin with. Without some external input, this technique does not work for a
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single image. However, in a motion pictures, or in an image pair, outlines of objects

can usually be detected by finding the difference of two images. Those outlines can

be used as the initial line segments for deformable contours. There are different

extensions of this model, include [42, 43, 1].

Mumford and Shah[37] proposed another form of energy minimizing to detect

boundary of noisy images. For a given image g : R → R, the energy functional E

for a boundary B and smoothed image f is

E(f, B) = µ2
∫

R
(f − g)2︸ ︷︷ ︸

Data Fidelity

+
∫

R−B
‖∇f‖2︸ ︷︷ ︸

Smoothness Constraint

+ µν|B|︸ ︷︷ ︸
Edge Penalty

(2.6)

where R is the region of the image, f : R → R is the smoothed ideal image,

B : R → {0, 1} is the binary edge process, µ and ν are scalar parameters. |B| is

the volume of B. For two-dimensional images, |B| is the length of the edges and

R−B denotes the region R excluding the edges.

The Mumford-Shah energy E(f, B) formalizes a tradeoff between noise removal

and edge detection. However, this functional lacks a practical means to find the

smoothed image f , and the binary edge process B that minimize the energy function

E(f, B). Many methods have been proposed to simplify the minimization of the

functional. In one of them, [2], the binary edge process, B, of the energy function

(2.6) is replaced by a continuous edge field. The energy functional would become

E(f, v) =
∫

R

µ (f − g)2︸ ︷︷ ︸
Data Fidelity

+ α(1− v)2‖∇f‖2︸ ︷︷ ︸
Smoothness Constraint

+
β

2
‖∇v‖2 +

v2

2β︸ ︷︷ ︸
Edge Penalty

 (2.7)

which is called the Ambrosio-Tororelli functional. The g : R → R denotes the given

image, f : R → R the piecewise smoothed image, v : R → [0, 1] the corresponding
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continuous edge strength of the image, R the image domain, and α, β and µ are

scalar parameters. This functional could be minimized using the Euler equation.

2.3 Edge Linking

Of all the mentioned edge detecting methods, most of them yield only the points

at the positions of edges on an image, instead of curves. The only exceptions are

from the parametric fitting methods, and active contour model. To link the points

into curves, an additional stage should be added to the three-step process of edge

detection: edge linking. The purpose of edge linking is to group the edge points

into continuous curves, using certain criteria such as closeness or some specific

models such as straight lines or circles.

The method of linking edge points by closeness is straightforward. Generally,

all adjacent points are joined together into curves, or tree structures. There are

some other edge linking methods that link edge points by closeness such as:

• Graph search or tree search

• Dynamic programming

• Contour finding

Another approach of edge linking is to group the edge points by certain con-

straint of similarity. This type of edge linkers is called global edge linkers. Hough

transform [19] is an example of global edge linkers. This method transforms all edge

points from spatial space into parameter space. For example, to look for straight

edges, the form y = ax + b is used. For an edge point (x0, y0), all possible sets of
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(a, b) in parameter space that satisfy the equation y = ax + b are marked. For any

point (p, q) in the parameter space, the number of its occurrences is the number

of points that are on the line y = px + q. Therefore, the higher the number, the

more likely this straight line is an edge. Other objects used are circles and ellipses.

Arbitrary shapes can be used in Hough transform as well[5], though this gener-

alized Hough transform is used for matching predefined shapes rather than edge

detection. In general, Hough transform is used in linking straight lines and circles

only. The Hough transform has some advantages such as:

1. It can handle occlusion effectively.

2. It is relatively robust to noise. This is because the parameter space is dis-

cretized.

3. It detects multiple lines in a single pass.

Its disadvantages include:

1. If the dimension of the parameter space becomes larger, it would increase the

complexity of the calculation rapidly. That’s why it is used mostly to find

lines and circles, since they at most three parameters.

2. Different edges will be treated as the same edge if they share the same pa-

rameter space even when they are separate.

3. It might mistake low-curvature curves as straight lines because of the dis-

cretization of the parameter space.

4. It cannot be applied to general, non-parametric curves.
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The deformable contour models and the Mumford-Shah theory described in the

previous section, also perform edge linking. Both of them employ the approach of

energy minimization. As mentioned, the Mumford-Shah theory does not provide

a practical algorithm to minimize the energy function. While some simplifications

are provided to make the minimization applicable, such modification only perform

the task of image segmentation. The minimization of the energy function in the

deformable contour model are achieved by discrete Euler equation, which involves

iterative computations.

Another approach of the deformable contour model, is to form this problem

as a two-dimensional graph search problem, using dynamic programming(Dijkstra

[14]), as in [3, 10], the “live-wire” in [15], and “intelligent scissors” in [35, 36]. This

approach gives the user a larger control over the segmentation process. Once a start

point is selected, an optimal path can be computed and drawn in real time between

the start point and any given position. In the “intelligent scissors” model, the user

is given some control during the curve extraction through “training” process.

Generally, the edge linking methods described in this section are more related to

image segmentation than edge detection. While these two different processes

have some common ground, they are not equivalent. While regions are bounded by

edges, there are edges that does not bound any regions. Moreover, the deformable

contour models do not provide a verification mechanism. While they may produce

the most likely results, they could not verify the accuracy of results. Even when

there is no edge in the image, this model will still produce a minimum-energy yet

meaningless contour.
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Chapter 3

Edge Point Profile

An edge point has two principle directions, the edge normal direction, and edge

direction. These two directions are introduced in Section 1.2. The edge direction

indicates the continuity of the edge, while the edge normal direction yields an edge

profile. In this chapter, we will describe the process of localizing an edge point in

the vicinity of a given point.

The detection of the first edge point is one of the most critical steps, since with-

out any prior knowledge of the edge, choosing an optimal edge profile is difficult, and

sometimes impossible. For example, given a point that forms a complicated edge

profile, in other words, it is composed of multiple step/ramp profiles. Determining

whether this point belongs to an edge with that complicated profile, or multiple

edges with simple profiles is impossible without the global view of the edge curves.

Sometimes multiple interpretations are equally valid. Sometimes, the consistency

of the profiles along the edge curve can be used to identify the best interpretation

among the different valid ones. If the edge curves with simple profiles are parallel,

we may be able to use one edge curve with composite profile to replace all these
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edges. On the other hand, sometimes the decision cannot be performed without

prior knowledge, which is beyond the scope of our work. In this chapter, we will

not address this issue at all, since it cannot be solved in this stage. We will come

back to this problem in the next chapter.

One of the key structures of our edge detector is profiles. As mentioned in

Chapter 1, a profile is an one-dimensional image extracted from a two-dimensional

image along a line segment. The position of the profile is subpixel-level precision.

Since the pixel values in profiles are sampled with subpixel-level precision, the choice

of subpixel-level precision of the positions does not increase the complexity of the

process of edge detection at all. Moreover, it can reduce the zigzag effect caused by

the digitization of the images. Although such effect is not very significant, and the

choice of subpixel-level precision will not remove it completely. The difference is still

visible as shown in Figure 3.1. As it shows, the curves generated by a subpixel-level

edge detector appear smoother, and more natural. While it is possible to perform

curvature smoothing on the outputs of pixel-level edge detectors and achieve similar

visual results as the subpixel-level detectors, precaution has to be taken in order to

keep the smoothed curves remain attached to edges on the image. There is also the

fact that smoothing tends to remove some fine detail, in this case, sharp corners

might be removed accidentally.

To detect edges with our profile-based approach, some functions should be pro-

vided for different “classes” of edges. For example, there should be functions for

step edges, ramp edges, and ridge edges. Such functions will take a profile as in-

put, and yield a value to indicate the credulity that the input profile is an edge

profile. They should also produce some abstract edge properties such as the edge

28



(a) Canny’s output of the picture of

Mickey Mouse

(b) Our profile-based detector’s out-

put of the picture of Mickey Mouse

(c) Canny’s output of the picture of a

flower

(d) Our profile-based detector’s out-

put of the picture of a flower

(e) Canny’s output of the picture of a

butterfly

(f) Our profile-based detector’s out-

put of the picture of a butterfly

Figure 3.1: Comparing the results of a pixel-level edge detector with a subpixel-level edge

detector on 3 images. (The pixel-level edge detector used is Canny’s detector, and the

subpixel-level edge detector is our profile-based edge detector.)
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width and colors on both sides of the edge. Such properties can then be used in

edge linking process, because all the edge points on the same edge share many of

these properties. A candidate edge point would be the oriented point whose profile

yields a local minimum among its neighborhood according to a specific function.

The minimization will reduce the necessity of a threshold, but cannot remove it

completely. In the case where there is no edge point except random noise, a local

minimum should not validate a false edge point. Therefore, a threshold is still

required for the purpose of validation. As mentioned in Chapter 1, if thresholding

cannot be avoided, we should at least make the selection of the threshold reason-

able. Since the major purpose of thresholding is to distinguish real edges from

edges caused by noise, the verification of the profile can be done by comparing the

noise magnitude and the edge magnitude. The measurement of noise magni-

tude of an image is usually performed by calculating the standard deviation over

the colors of quasi-constant regions. For a profile, this could be the stable regions

we defined in Section 1.2. As of the edge magnitude, the standard deviation of the

transient region of the profile should be adequate. While both magnitude values

might not be very accurate since the data size is too small for statistic calculation,

it does provide intuitive reason: if the transient region of a profile is no more

fluctuating than both stable regions of the profile, then the edge centered at the

transient region cannot be distinguished from noise. The ratio of the signal and

the noise, as known as SNR, is widely used in signal process. Some edge detection

methods, such as Canny’s detector and other extended works [7, 13, 45], use SNR

as one of the factors of edge detection. The SNR we measure would be more likely

smaller than the real SNR, because of the additional effect of alignment. Yet, the
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alignment effect itself could be considered as part of noise because our detector is

subpixel-level.

The noise magnitude measured here not only contributes to SNR calculation.

During the edge linking process, the noise magnitude is also used as the threshold

value when profiles of two adjacent oriented points or two adjacent endpoints of

different edges are compared. Moreover, in the post-processing stage, edges can be

grouped as the same category of edges if their profiles are similar. Again, the noise

magnitude is the main factor of determining the threshold value.

3.1 Edge Point Profiles and Evaluation Functions

The profile for an oriented point (x0, y0, θ0) of a digital image I(x, y) could be

defined as I ′(x0 + t cos θ, y0 + t sin θ), where t ∈ [−T, T ], T is the default size of

the profile, and I ′ is a interpolated image of I. We do not specify the method

of interpolation. In practice, we choose “bi-linear interpolation” for its simplicity.

On the other hand, it also removes some high frequency information, resulting in

some degree of smoothing in the profile. To reduce such effect, other interpolation

methods such as “bi-cubic” or some other spline-based interpolations might yield

better interpolated results.

Some evaluating functions are required to perform the verification of a given edge

point. The requirement of such a function f is that the function should be locally

extremized if the edge point corresponds to an “actual edge” in the image. Since we

do not give a formal notion of an “actual edge” for a profile, we will be contented

to let the function f be the arbiter of “edge”. However, f can be optimized to

favor certain profiles such as step edges. Of course, humans can still judge the
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appropriateness of any proposed f by comparing its performance against the human

consensus. Here “extremized” means either maximized or minimized, depending

on the function. For simplicity, we will assume a function should minimize with

the input of an edge profile.

Many functions can satisfy such a criterion. For those detectors using first

derivatives of images, local maxima are guaranteed at the edges. Most of these

edge detectors are specific for step edges. One of the reasons that we do not use

these detectors as the evaluation functions is that for these detectors, real edges

and false edges caused by noise are separated by some arbitrary threshold whose

value cannot be found in a systematic way.

Therefore, we will have to rely on some mechanism that allows us to distinguish

the edges from noise. Some properties which could be used in such a function f to

evaluate edges are listed below:

1. Constancy of the stable regions of edge profiles. The stable regions of

the profiles of an edge do not really belong to the edge, but rather represent

the regions this edge separates. On the other hand, these regions make the

localization of an edge point possible. The pixel values on both regions should

be “quasi-constant”. It is “quasi-constant” since noise is to be considered.

Once the transient region of an edge is bounded, we can use the standard

deviations of each side to define the magnitude of local noise. There is the issue

of interaction between edges here. When two edges get close, unless we reduce

the sizes of the stable regions of the profiles, the edges would interfere with

each other. Such interference will make the measurement of noise magnitude

unreliable.
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2. Edge magnitude. The magnitude of an edge in a profile is intuitively clear

in the standard examples of a ramp or a ridge. This property is important

because the noise magnitude should be smaller than edge magnitude. Other-

wise, the edge cannot be distinguished from image noise. Generally, the larger

the magnitude of the profile is, the more significant the edge is. On the other

hand, if the magnitude of an edge profile is very close to the scale of noise

magnitude in the vicinity of that edge point, this edge will be considered to be

induced by the image noise. For a ramp profile, the edge magnitude is the the

difference of the two stable regions of the profile. For a ridge profile, it is the

maximum rise of the two sides of the profile. In general, we can use the stan-

dard deviation of the transient region of the edge as the edge magnitude. This

is not as intuitive as how we measure the magnitude for a ramp edge or a ridge

edge. Moreover, standard deviation measures only the statistic information of

the input, not momentum information. For example, the two series 1, 2, 3, 4, 5

and 1, 4, 2, 3, 5 have the same standard deviation value, but if they are the

values from transient regions of two edges, the latter would be more visually

significant since it contains higher frequency data. However, since standard

deviation is also used in measuring the noise magnitude, the comparison be-

tween the noise magnitude and the edge magnitude becomes comparing the

standard deviations between the stable region and the transient region.

3. The sharpness of the edge. The sharpness is defined by the width of the

transient region of the profile. The narrower this transient region is, the better

defined the edge point will be. This property serves two purposes. First, it

defines the boundaries between the transient region and the stable regions.
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Second, while profiles sampled from different orientations at the position of

an edge point will all show proper edge profiles. Yet, the one with the edge

normal direction will have thinnest transient region. On the other hand, the

difference of the widths of these profiles is minimal and hard to measure. For

example, for a ramp edge with a width of 2 pixels, if we take a profile P0

centered at a point on the edge along the normal direction of the edge point,

the sharpness of P0 is 2 pixels. If another profile P1 is taken at the same point,

but with an orientation 5◦ apart from P1. the sharpness of P1 will be about

2.008 pixels. Even with sub-pixel precision, 0.008 pixel cannot be measured.

Even if we increase the difference in orientation to 30◦, the difference will

still be only 0.31 pixel, which is barely noticeable. Moreover, when the same

edge profile is measured in different orientations, the width of the transient

region will be different because of digitization. Therefore, even though the

width of the edge will be minimum when the orientation of the oriented point

matches the edge normal direction theoretically, it is not practical to detect

the edge normal direction by minimizing the widths of the transient regions

of the profiles. Here we seem to downplay the importance of this property.

However, for a profile, increasing the width of transient region into the regions

that should belong to stable regions might increase the standard deviation of

the transient region. Therefore, it will be important to keep the transient

region bounded as tight as possible.

4. Edge continuity. Edge continuity refers to the “continuity” of edge points

that form an edge. When one looks at an edge, a single edge point is not very

significant. What is important is the persistence of the profiles along the edge
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curve. The length of an edge should also be taken into consideration. Isolated

edge points exist, but they are best ignored or treated as noise since they offer

very little information. Once an edge point is located, each of its neighbor

edge points should be very near a decent edge point and could be the proper

location to initiate another search for the next edge point. Furthermore,

the profiles of the edge points on the same edge should have many shared

properties. The colors on left and right stable regions should be consistent.

An issue is texture, which is usually anisotropic and might be considered

repetitive only when sampled with the same orientation and specific interval,

while our edge profiles are sampled from different directions, with a location

of sub-pixel precision. Two profiles from the same edge could be completely

different in a texture-rich image. Therefore, unless some texture-specific filters

are used to pre-process the image, our profile-based technique would not work.

More issues of “edge continuity” will be discussed in Chapter 4.

Note that the parameters of the signal-to-noise ratio (SNR), namely the edge

magnitude and noise magnitude, can be used to represent the first and the second

edge properties respectively. The continuity of the edge is arguably more important

than the rest of the other properties, yet it only works when there exists one valid

profile to compare with. Therefore, it seems that with the first two edge properties

would form a good measurement of the edge. However, the measurement of the

edge magnitude and the noise magnitude depends on the accuracy of the boundaries

between the transient region and the stable regions. Moreover, the continuity of an

edge cannot be well preserved unless these boundaries can be estimated correctly.

While the localization of these boundaries seems straightforward to human eyes,
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it requires more than just the maximization of SNR. Take a perfect step edge for

example, as long as the discontinuity is included within the transient region, the

SNR is maximized. It does not matter whether the discontinuity is at the center of

the transient region or not. This will make the localization of the edge impossible.

If noise is taken into consideration, then the criterion of maximization of SNR

might cause the transient region to be expanded and the stable regions to shrink

to minimize the measured noise. Therefore, the minimization of the edge width is

to bound the transient region such that the noise will not be taken as part of edge,

and to measure the center of the edge profile correctly.

Note that in the description of edge magnitude, a method of identifying true

edges is presented. While the noise magnitude measured from the constant part of

a profile may not be very accurate with the limited size of data, the fact that if

the deviation of noise is in the vicinity of the measured edge magnitude, the edge

cannot be distinguished and should be discarded. In other words, the ratio of the

magnitude of the noise and the magnitude of the edge is measured, and only when

the ratio is smaller than one, the profile is accepted as an edge profile. Another

reason to measure the noise magnitude is that since Gaussian noise is assumed, it

is isotropic. This noise magnitude can then be used not only within the profile, but

also between two adjacent profiles. If difference between two edge point profiles is

much higher than the noise magnitude, these two profiles can be considered to be

from different edges. This can be used to ensure the continuity of an edge.

For this purpose, we divide a profile into three parts: left stable region, tran-

sient region, and right stable region as mentioned in Section 1.1. Left stable

region and right stable region are supposed to be associated with some constant
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values, with additive noise, and the transient region, at the center of the profile,

supposed to be the region with discontinuity, defines the magnitude of the edge.

The magnitude of noise can be determined statistically by the two stable regions,

and the edge magnitude can be retrieved from the transient region. The problem

becomes how to determine the range of the three regions of a given profile. The

outcome depends on the type of the edge to be detected.

If the type of the edges is known in advance, edge detection would be easier be-

cause there are more specific features available. We will first give some examples of

specific edge types, followed by an example of a more generalized profile evaluation

function.

3.2 Constructing An Evaluation Function for Step Edge

Profile

A step edge profile is the simplest kind. It is very easy to describe: flat on each

side, the pixel values of the two sides are different, and there is no intermediary

region between the two sides. A one dimensional step edge can be described as the

function

Pstep(x) =


h if x0 − w

2
< x < x0

h + k if x0 ≤ x < x0 + w
2
,

where h, k, x0, w are constants. Of these constants parameters, h is the background

intensity, k the edge magnitude, x0 the edge position, and w the window size of the

profile. The window size w can be seen as the scale parameter in the multiple-scale

approach.

To incorporate noise, the edge magnitude k should be greater than the mag-
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nitude of the noise. Without prior knowledge of noise, Gaussian noise is usually

assumed. Gaussian noise is characterized by a zero mean and its standard devia-

tion. Assuming the edge position is at x = 0, one possible evaluation function for

step edge could be described as:

fstep(P ) =
max(std P (−w/2, 0), std P (0, w/2)) +

√
w/2

|Pavg(−w/2, 0)− Pavg(0, w/2)|+ 1
(3.1)

where P is the profile, w the window size of P , Pavg(a, b) the average of P (x)

between a and b, which is defined as∫ b
a P (x)dx

b− a
,

and std P (a, b) the standard deviation of P (x) between a and b:√√√√∫ b
a (P (x)− Pavg(a, b))2

b− a
,

which can be written as √√√√∫ b
a (P (x))2

b− a
− (Pavg(a, b))2.

As we can see from (3.1), the denominator of fstep could be described as the

edge magnitude of the step edge, while the numerator could be seen as the noise

magnitude. Intuitively this function fstep(P ) is inversely proportional to SNR of P .

Since SNR will be maxima at edge points, fstep(P ) will be minimum when P is the

profile of an edge. The 1 added to the denominator is to ensure the denominator

is not zero. This might not be necessary since if the denominator is zero, it would

mean that there is no discontinuity at the center of the profile, which leads to the

fact that the profile does not have an edge at the center. The
√

w/2 added to the

numerator, on the other hand, is a boundary condition to make sure this function
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continuous for a step edge without noise. In fact, it is not necessary either. The

only purpose it serves is to improve the output.

The results of fstep applied to various synthetic edges are demonstrated in Figure

3.2. A step edge, some ramp edges with different parameters, a ridge edge, and two

step edges with large magnitude of noise are experimented with. Two samples with

pure noise are also included for comparison. For purpose of visual comparison,

the results of the Canny detector, that is, the first derivative of Gaussian, are

also presented. The magnitude of the edges are the same, which is two hundred.

These results show that this function fstep will minimize at the center of step edge.

For a ramp edge, the minimum exists, though a window size smaller than the

transient region might cause some problem to pinpoint a single local minimum.

In the example of a ridge edge in Figures 3.2(m)-(o) on page 44, which could be

considered as two close step edges, smaller window size works better when two step

edges are close to each other. On the other hand, larger window size is generally

less sensitive to noise, and could work with ramp edges better. Otherwise, the

results from different window sizes are generally consistent. For a noisy step edge,

the response from this evaluation function is pretty chaotic. Still, most of such

confusion can be cleaned up after applying the criterion that the magnitude of

noise should be smaller than the magnitude of the step which is represented as the

regions under the dotted lines in the figures. Note that for a step edge, the function

generally yields consistent local minimum with different window sizes. Therefore,

if we take average of the results from different window sizes, such local minimum

should still be consistent. The false edges produced by the noise-sensitive smaller

window size will be filtered away. One of the drawbacks of the averaging method, is
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(a) A step edge
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(b) First derivative of Gaussian applied to the

edge
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(c) Step edge evaluation function fstep applied

to the edge

Figure 3.2: A step edge, and the results obtained when first derivative of Gaussian and

fstep are applied to this edge.
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(d) A ramp edge
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(e) First derivative of Gaussian applied to the

edge
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(f) Step edge evaluation function fstep applied

to the edge

Figure 3.2: (cont.) A ramp edge, and the results obtained when first derivative of Gaus-

sian and fstep are applied to this edge.
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(g) A smoothed ramp edge
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(h) First derivative of Gaussian applied to the

edge
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(i) Step edge evaluation function fstep applied to

the edge

Figure 3.2: (cont.) A smoothed ramp edge, and the results obtained when first derivative

of Gaussian and fstep are applied to this edge.
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(j) A wide ramp edge
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(k) First derivative of Gaussian applied to the

edge
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(l) Step edge evaluation function fstep applied

to the edge

Figure 3.2: (cont.) A wide ramp edge, and the results obtained when first derivative of

Gaussian and fstep are applied to this edge.
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(m) A ridge edge, which consists of two step

edges
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(n) First derivative of Gaussian applied to the

ridge edge
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(o) Step edge evaluation function fstep applied

to the ridge edge

Figure 3.2: (cont.) A ridge edge, and the results obtained when first derivative of Gaussian

and fstep are applied to this edge.
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(p) A step edge with Gaussian noise, σ = 20
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(q) First derivative of Gaussian applied to the

edge
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(r) Step edge evaluation function fstep applied

to the edge

Figure 3.2: (cont.) A noisy edge, and the results obtained when first derivative of Gaus-

sian and fstep are applied to this edge.
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(s) A step edge with Gaussian noise, σ = 40
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(t) First derivative of Gaussian applied to the

edge
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(u) Step edge evaluation function fstep applied

to the edge

Figure 3.2: (cont.) Another noisy edge, and the results obtained when first derivative of

Gaussian and fstep are applied to this edge.
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(v) A profile with Gaussian noise, σ = 10
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(x) Step edge evaluation function fstep applied

to this profile

Figure 3.2: (cont.) The results when first derivative of Gaussian and fstep are applied to

a given profile with Gaussian noise.
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that for some edges, which can only be detected with specific window size, will not

be detected. An example of such an edge is the ridge edge in Figure 3.2(o). From

empirical data, we conclude that if geometric mean is used instead of arithmetic

mean, the accuracy is improved slightly in some cases. Such outcome is expected

since our evaluation function is a ratio, and geometric mean generally works better

for mean of ratios.

In comparison, the Canny detector, although showing better visual results, has

trouble distinguishing between weak edges and strong noise. While the response

from the edge is obvious much greater than those responses from noise, it is also

obvious the magnitude of the correct response depends on the slope of the edge,

as well as the smoothing parameter σ. Thus, the decision will rely on thresholding

without a reliable threshold value that can be obtained from σ and the input signal.

Our detector, on the other hand, while appearing chaotic in the presence of noise,

provides very good localization of the edge generally. With the simple criterion of

noise magnitude, most of the false edges induced by noise can be removed.

3.3 Constructing An Evaluating Function for Ramp Edges

We will use a ramp edge as another example for evaluation function construction(see

Figure 1.3(a) for a ramp edge). As shown in Figure 3.2, the evaluation function

constructed for step edge works pretty well for a ramp edge. However, for a wide

ramp edge, larger window size w is required in order to get a local minimum.

Moreover, such local minima usually vary very little within its neighborhood. Also,

in order to get better estimate of the noise magnitude, which is useful in later

stage, the transient region should be taken into account. Therefore, an evaluation
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function can be constructed specifically for a ramp edge.

Note that a ramp edge can be described as a smoothed step edge or an interpo-

lated one. Detectors designed for step edges usually work for ramp edges as well.

For a natural image, step edges do not exist since the pixel value of each pixel is

actually the value for the region of the pixel instead of the pixel value for one single

point when an image is captured by an digitization device. Therefore, the pixel

values at edges should be some interpolation between two sides of the edges. The

difference between a ramp edge and a step edge is that the former has a transient

region between two sides. This transient region is normally either monotonic in-

creasing or monotonic decreasing. If we consider the ramp edge to be a blurred

step edge, we could also assume that the intermediary region will be anti-symmetric

since the blurring operators are usually isotropic. Therefore, the anti-symmetricity

of step edges will be preserved in ramp edges.

We will use the aforementioned features to construct our evaluation function by

first defining the feature of anti-symmetry. The basic definition of anti-symmetry

is that if f(x + c) = −f(c − x), then f is anti-symmetric about x = c. Since the

pixel values are always positive for a digital image, we will change the definition

by shifting the function values so that if g(c + x) − g(c) = g(c) − g(c − x), g is

anti-symmetric at x = c. Therefore, the equation∫ xmax

0
k(x)|g(c + x) + g(c− x)− 2g(c)|dx

will be a reasonable way to measure the anti-symmetry given a function g and

a center c. The parameter k(x) are the weights of the sum and xmax is the size

of the window of a profile. For a perfect ramp edge profile, the parameter k(x)

does not matter as long as it is a non-zero function, because we will get 0 at the
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center of the ramp edges. Even when the edge profile is noisy, we will still get

minimum near the center. However, if there are other edges present in the profile,

the result will be unpredictable. In order to prevent that, the weights near the

center should be increased. Therefore, the only criteria we set for k(x) is that it

should be a monotonic decreasing positive function, and the normalizing condition∫ xmax
0 k(x) = 1. Since we get the profiles by sampling the image, these profiles are

discrete functions instead of continuous ones. Therefore, we rewrite our evaluation

function of anti-symmetry as

fanti−sym(g) =
xmax∑
i=0

ki|g(c− x) + g(c + x)− 2g(c)|.

The function above should measure anti-symmetry pretty well. However, anti-

symmetry alone would not make a ramp edge. One can easily construct a function

that has the anti-symmetric property, but not a ramp edge. For example, any

constant function f(x) = a would fit the anti-symmetry well even though there

is no edge. In order to identify ramp edges more precisely, we should incorporate

other properties such as the monotonic property and the constance on both sides

of the edges.

Even though it is easy to understand the monotonic property, measuring it

quantitatively is not trivial. We will have to measure the “quantity” of the mono-

tonicity of the edge profile. Due to the presence of noise and other close edges,

it would make the confirmation of the monotonic property impractical. A simple

measurement of monotonicity of a function g(x) could be defined as

fmonotonicity(g) =
min(

∫ wc
−wc

g′(x)g′(x)>0dx,−
∫ wc
−wc

g′(x)g′(x)<0dx)∫ wc
−wc

|g′(x)| dx

which measures the occurrences of the part that g′(x) is positive and the part that

50



x
-w_l -w_c w_c w_r

Figure 3.3: Example of an ramp edge profile with center width w c and side boundaries

w l and w r.

g′(x) is negative. Here wc is a boundary we will mention later. The positive part

means where g(x) is increasing, while the negative part means where g(x) is de-

creasing. Therefore, if the given function g(x) is monotonic, then fmonotonicity(g) = 0

since the smaller part is always 0.

The measurement of the constancy on both sides of the profiles is pretty straight-

forward. We could simply modify the evaluation function for step edges. The mod-

ification is to define the range of each side. If we use the whole profile, the transient

region as well as some close-by edges would cause some interference. This approach

introduces three unknown parameters into the image and further complicate the

computation. For a profile P , we will need the center width wc, left boundary wl,

right boundary wr, as seen in Figure 3.3. Then the way to measure the constancy

on both sides would be

fwc,wl,wr

smooth (P ) = max
(std P (−wl,−wc), std P (wc, wr)) +

√
w

|Pavg(−wc, 0)− Pavg(0, wc)|+ 1
(3.2)

where w is half of the window size and the maximum for wl and wr, std P (i, j) and

Pavg(i, j) have the same definitions as in (3.1).

51



−40 −30 −20 −10 0 10 20 30 40
0

2

4

6

8

10

12

width=2
width=8
width=14
width=20

Figure 3.4: The evaluation function framp applied to the step edge in Figure 3.2(a).

In order to get the measurement of the constancy of each side of profile P

without pre-defined values of wc, wl, and wr, a straightforward method is to first

calculate fwc,wl,wr

smooth (P ) for all possible combinations of wc, wl, and wr, then find the

minimum. However, this approach will not work without other constraints. For

example, when wc = wl = wr, we can always produce a minimum for fsmooth(P ).

Therefore, we will have to find a local minimum with some constraints instead.

First constraint is that wc should be as small as possible. Because once we get the

real width of the edge wc,0, any wc > wc,0 will have a similar fwc,wl,wr

smooth (P) value.

The values of both wl and wr should be as large as possible, for the similar reason

of the constraint on wc. In other words, we want to minimize wc and fwc,wl,wr

smooth (P )

while maximizing wl and wr at the same time.

A linear combination of these three evaluation functions should capture a ramp

edge profile pretty well. For simplicity, we can replace wl and wr by a single

parameter wb. Generally, as we mentioned, a ramp edge can usually be detected by

a step edge detector. Therefore, because of its additional complexity, this detector
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Figure 3.5: The evaluation function framp applied to the ramp edge in Figure 3.2(d).
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Figure 3.6: The evaluation function framp applied to the smoothed ramp edge in Figure

3.2(g).
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Figure 3.7: The evaluation function framp applied to the wide ramp edge in Figure 3.2(j).
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Figure 3.8: The evaluation function framp applied to the ridge edge in Figure 3.2(m).

54



−40 −30 −20 −10 0 10 20 30 40
0

5

10

15

20

25

30
width=2
width=8
width=14
width=20

Figure 3.9: The evaluation function framp applied to the noisy step edge in Figure 3.2(p).
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Figure 3.10: The evaluation function framp applied to the noisy step edge in Figure 3.2(s).
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Figure 3.11: The evaluation function framp applied to the random noise in Figure 3.2(v).

is not as useful as the simpler detector for step edges. Moreover, with three

unrelated terms, it would be difficult to make a proper trade-off among the minima

of these terms. Our approach is to find the local minima of the combination of the

anti-symmetry and the monotonicity first, then verify these minima using fsmooth.

Nevertheless, the proper combination parameters for the anti-symmetric term and

the monotonic term are still required. Because these two terms are not related, the

proper parameters for such combination cannot be determined without the trial-

and-error process which is the exact reason we want to avoid in thresholding. To

remove such guesswork, the simplest solution is to use only one of the terms and

ignore the other. The monotonicity requirement is arguably the more important

one. On the other hand, it cannot identify center of the edge given a perfect step

edge since the whole input profile is monotonic. Therefore we keep anti-symmetric

term for our evaluation function of ramp edges framp, it is a two-step operation:

framp =


fanti−sym if fsmooth < 1

∞ otherwise.
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The results of this framp are shown in Figures 3.4– 3.11. Although the results

are already filtered by the fsmooth, which is very similar to fstep, the ability of framp

to locate edges seems less satisfactory when compared to fstep. This is because

we simplify the function in order to visualize the results. The parameters wc is

the width in the figures, while wl and wr are combined into a hidden boundary

parameter wb. Each value in the figures actually comes from the minimal value with

different wb ranged from wc + 1 to wc + 5. Recall the definition of this evaluation

function, we have to minimize both framp and wc. The separation of different wc

values in these figures are to demonstrate the different behaviors of this evaluation

function with different wc. It is more obvious in framp than in fstep that smaller

window sizes will perform better in localizing edges, but also more vulnerable to

noise.

Similar to fstep, different window sizes for framp produce consistent results for

perfect edges. Therefore, it will be easier and simpler taking average of different

wc results, rather than trying to minimize both wc and framp.

3.4 Constructing A Generalized Evaluation Function for

Edges

We have described a example on how to construct evaluation functions for a step

edge and a ramp edge. Now we will demonstrate on how to construct an evaluation

function that could be used to detect as many types of edges as possible. For a

more generalized edge, we cannot longer detect more specific features other than

the four properties described earlier in this chapter. See Figure 3.12 for one example
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Figure 3.12: Example of an generalized edge profile with center w c width and side

boundaries w l and w r.

of an edge that cannot be categorized into some specific type of edges. While this

edge can still be described as combination of multiple “sub-edges”, which can be

step edges or ramp edges. There are no stable regions for most of these sub-edges,

therefore these sub-edges cannot be detected by using our evaluation function for

step edges. The simple evaluation function for step edges is described in Equation

(3.2), wherein the principle of signal-to-noise ratio is applied. However, unlike

step edges or ramp edges, the edge magnitude of a generalized edge is not necessarily

defined by the difference of the two sides of the edge. For example, the magnitude

of a ridge edge should instead be defined by the difference between the center of

the edge and the stable regions of the edge. Therefore, the denominator of that

function need to be modified to reflect the change of the definition of the edge

magnitude.

A preferable approach to measure the edge magnitude is to use the discontinuity
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of the edge. In other words, the transient region at the center of the edge. The

discontinuity can be measured by calculating the standard deviation of the center

of the profile. It is obvious the standard deviation of the center of an edge should

be larger than the standard deviation of either side of the edge. Therefore, if we

define

fwc,wl,wr

general (P ) =
max(std P (−wl,−wc), std P (wc, wr))

std P (−wc, wc)
, (3.3)

The same constraint fgeneral(P ) < 1 is still hold. As long as fgeneral(P0) is local

minimum, at the same time smaller than 1, then P0 can be accepted as an edge

profile.

Shown in Figures 3.13 – 3.20 are the results obtained from the same sample

profiles used in the previous sections. For sample profiles without noise, the results

are as expected. Especially for the result of ridge edge, as depicted in Figure

3.17. For smaller windows, the ramp edge is treated as two step edges. For larger

windows, it is then treated as a single edge. However, the results get erratic as noise

is introduced. A local minimum can appear near the center of the edge. However,

we have a lot of local minima induced by noise as well. Some of the minima caused

by noise are even more significant than the minimum for the real edge when noise

gets stronger. Though if the same trick in previous two sections can be applied by

taking average of the results from different wc parameters, the results will still be

acceptable.

3.5 Edge Point Detection

In the previous section, a few evaluation functions have been introduced. The

functionalities of these evaluation functions are to evaluate profiles based on some
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Figure 3.13: The evaluation function fgeneral applied to the step edge in Figure 3.2(a).
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Figure 3.14: The evaluation function fgeneral applied to the ramp edge in Figure 3.2(d).
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Figure 3.15: The evaluation function fgeneral applied to the smoothed ramp edge in Figure

3.2(g).
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Figure 3.16: The evaluation function fgeneral applied to the wide ramp edge in Figure

3.2(j).
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Figure 3.17: The evaluation function fgeneral applied to the ridge edge in Figure 3.2(m).
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Figure 3.18: The evaluation function fgeneral applied to the noisy step edge in Figure

3.2(p).
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Figure 3.19: The evaluation function fgeneral applied to the noisy step edge in Figure

3.2(s).
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Figure 3.20: The evaluation function fgeneral applied to the random noise in Figure 3.2(v).
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properties of edges. In addition to providing the estimates of the boundaries of

the profiles and the noise magnitude, an evaluation function is expected to yield

a value which will be a local minimum if the profile is an edge profile centered at

x = 0. The real detection requires evaluating the local area of the initial oriented

point to find an oriented point that gives minimal value.

The local area of an oriented point is more complicated than the local area of

a point. Since an oriented point is defined by a position and an orientation, the

range of the search for local minimum is three-dimensional. Moreover, if we choose

the local area of an oriented point (x0, y0, θ0) to be (x0 + xd, y0 + yd, θ0 + θd), where

xd ∈ [−T, T ], yd ∈ [−T, T ], θd ∈ [−φ, φ], and T, φ are small values defining the

size of the local area, there would be more than one edge points of the same edge

within the region no matter how small the local area is. A local minimum will not

work properly since many edge points from the same edge exist within this area.

In order to get all the edge points within such definition of local area, thresholding

has to be used, without any guideline of the selection of the threshold value. Since

we are against the use of arbitrary thresholding by other edge detectors, we will try

to avoid such problem here. Therefore, the local area has to be carefully redefined.

Consider the given oriented point (x0, y0, θ0), if the image is sampled

one-dimensionally along the orientation θ0 and centered at (x0, y0), while there

may be more than one edges in the sampled one-dimensional signal, one obtains

a single edge by adjusting the boundaries of the sampling. The local minimum

can be used to identify the position of an edge point. Here we assume that the

profile sampled from a two-dimensional edge have an edge profile no matter what

the sampling orientation is. This assumption is generally true except for the edge
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direction. Therefore, the local area concept is divided into two-part operation,

the first part to locate the location of edge point, and the second part to find the

orientation of edge point.

The first part of edge point detection is to find local minimum of local area

(x0 + t cos θ0, y0 + t sin θ0, θ0), where t ∈ [−T, T ]. Once the oriented point (x1, y1, θ0)

with local minimum is found, the next part of edge point localization would be

finding local minimum of in another local area (x1, y1, θ0 + θd) where θd ∈ [−φ, φ].

The second part is more problematic. As stated previously, once the position of

an edge point is located, profile taken from any orientation would produce an edge

profile.

As previously mentioned, a single edge detector would not be able to detect

all possible edges. Our detector is actually a framework of multiple edge detectors

where each is served by an evaluation function. If an evaluation function cannot

detect an edge point from the vicinity of an initial point, other evaluation functions

may be applied one by one until some specific evaluation function confirms a certain

edge point. The evaluation function for step edges is the natural candidate as

the first evaluation function since almost all types of edges can be derived from

step edges. With the requirement of the stable regions, some of the degenerated

step edges that form more complex edges will not be detected and require some

more specific evaluation function such as the generalized evaluation function. This

provides more flexibility to our detector since newer designs of evaluation functions

can be added to provide better detection of edges that cannot be detected before.
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3.6 Initial Edge Points And Follow-up Edge Points

There is difference between the detection of the initial edge points, and of the follow-

up edge points. First of all, there is no prior knowledge for the initial edge points.

Therefore, it is necessary to search through all possible combinations of variant

boundaries for the transient region and the stable regions to get the optimal profile

settings. It is more straightforward for the follow-up edge points, since almost all

the profile settings can be inherited from the profile of the edge point it follows. The

use of profile evaluation functions for each case will be discussed in the following.

3.6.1 Using Evaluation Functions for Initial Edge Points

Without prior knowledge about the profile boundaries, an exhaustive search is

almost guaranteed. As noted, all evaluation functions have some parameters for

boundaries of the transient region and the stable regions. Yet, so far we have not

provided any guidance for choosing the parameters. In fact, there are some simple

guidelines for the selection of the boundary parameters, not only for initial edge

points, but all edge points:

• The transient region should be always at the center of the profile.

• The transient region should be as thin as possible. This does not apply to

the evaluation function for step edges, since step edges do not have transient

regions. More precisely, their transient regions have always one-pixel width

containing the discontinuity.

• The stable regions should be as wide as possible. After all, the stable regions

are used to measure noise statistically. If the stable regions are too small, the
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Figure 3.21: A profile whose center is away from the position of an edge.

noise measurement might be unreliable, so are the other measurement derived

from the noise measurement, including the SNR.

Therefore, for the detection of an initial edge point, the evaluation of each

candidate profile (recall that the localization of an edge point requires the evaluation

of the whole local area then finds the minimum) would have to search exhaustively

for all different boundaries. For those boundaries that satisfy the SNR requirement,

additional adjustments are performed before the minimization:

1. The width of the transient region is added as part of a penalty function. The

larger the transient region, the larger the penalty.

2. The widths of both stable regions are also taken into consideration for the

adjustment. The smaller the width, the larger the penalty.

3. Another penalty is called erosion penalty. This is the penalty to prevent

the transient region from expansion which converts part of the stable regions
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into the transient region. Starting from the boundaries between the transient

region and the stable regions, the color of each point within the transient

region is compared with the color of the stable region it is adjacent to. If the

difference is smaller than the noise magnitude, it would mean the boundary

is not correctly marked, and a penalty is used. Moreover, if such penalties on

both sides are not equal, as shown in Figure 3.21, it would mean the center

of the profile is misplaced, and should be shifted.

The forming of the penalty function is empirical. While the reasons behind the

penalty are sound, we are unable to arrive at an analytic conclusion on the optimal

penalty function. In our experiment, the penalty function in the form of

fpenalty =

√
wc

wl + wr

+ (el + er)/2

does produce acceptable results. Here wc, wl, and wr are the values defining bound-

aries as described in the sections of evaluation functions, and el and er are the values

of erosion penalty on each side.

The result of the evaluation function will be determined by the boundary settings

whose NSR (noise-to-signal ratio, the inverse of SNR) multiplied by fpenalty yields

minimal value. The computation for the noise magnitude and edge magnitude for all

possible combination of transient regions and stable regions is very time-consuming.

3.6.2 Using Evaluation Functions for Follow-up Edge Points

While all the profiles can be evaluated the same way as described in the previous

section, it is time-consuming. Once an initial edge point is found, the rest of the

edge points on the same edge can actually take advantage of the existing profile
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information. Among the derived profile information: the average colors on both

stable regions, noise magnitude and edge magnitude are all very useful information.

While the boundaries are not so reliable due to alignment, they are still useful. The

transient region is not as useful due to its higher noise magnitude.

We start out by setting the boundaries between the transient region and the

stable regions the same as those of the template profile. Then the colors of the

pixels in left and right stable regions of current profile are compared with the

average colors of left and right stable regions of the template profile. Using the

noise magnitude as the threshold, we can find the outer boundaries of both stable

regions. The next step is to fine-tune the boundaries of the transient region. It

is done by comparing the color on the boundaries with the colors of the stable

regions. If each side has similar color with the stable region, the boundaries are

shifted inward, and new comparison on the boundaries is repeated. If only one side

has such similarity, then the center of the profile is not on an edge, and the “erosion

penalty” is applied instead. Once all the boundaries are properly formed, the other

derived information of the profile can be calculated easily.

3.7 Detection of the Orientation of An Edge Point

In the previous sections, we have described several evaluation functions and how to

use these function to localize an edge point. However, these functions are not very

useful at finding a correct orientation. Once the center of an edge point is located,

any orientation would give a suitable edge profile. The width of the center of the

edge would be the minimum for the optimal orientation. However, the difference

is very small, and could not be measured precisely. In other words, the profile
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Figure 3.22: Example of some notations used for edge points. Note that the gray area is

the digitized form of a straight edge.

of an edge point is not sufficient to determine the orientation of the edge point.

In fact, in our introduction, we have already mentioned that for an edge curve

γ(t) = (x(t), y(t)), the edge normal θ(t) is arctan−x′(t)/y′(t). Therefore, the edge

normal of an edge point P0 is decided by the position of the adjacent edge points

of P0.

In order to get the orientation, we have to consider the local area around the

point. The most widely used method in finding edge point orientation is to take

the direction of the gradient of the point, which involves its four neighboring pixels.

Taken the edge in Figure 3.22 as example, gradients could only give approximate

orientations. While smoothing filters can increase the accuracy of the gradients,

there are limits what a smoothing filter can do before destroying the edge itself.

In order to get better estimate of edge orientations, a larger neighboring region is

required.

Consider a straight edge such as the one in Figure 3.22 first. If e(x0, y0, θ0) is an
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accurate edge point, then its neighbor edge points (x0∓d sin θ0, y0±d cos θ0, θ0)

will also be correct edge points, too. Therefore, one could find the correct orien-

tation by the following approach: with a given initial orientation θ1, applying an

evaluation function on both neighbor edge points with some variation of θ1, sum-

ming them up, then finding the orientation that produces the local minimum. It is

more involved to generalize this approach to curved edges. Note that the direction

of an edge point is the slope of the edge at that point, and the slope is determined

by its two adjacent edge points. Therefore, we could experiment with various ori-

entations to find the optimal one. With each orientation the chosen evaluation

function will be applied to both neighbor edge points, and local minimum on each

side can be found. These two local minima will determine the positions of the

adjoint edge points, therefore the orientation of current edge point. In other words,

after the positions of the two adjacent edge points are determined, the edge normal

direction can be found by the positions of these points.
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Chapter 4

Edge Tracking

In the previous chapter, we demonstrate how to localize an edge point from an

arbitrary oriented point with a specific evaluation function. Some evaluation func-

tions are constructed and tested upon a set of synthetic edge profiles. The results

from these tests show that most of them could perform well even with very noisy

profiles. In most cases, with the criterion regarding the magnitude of noise, most

of noise-induced false edge points can be removed, and edge points can be localize

without using any arbitrary thresholding.

However, a profile alone is not sufficient. As previously mentioned, a main

characteristic of a two-dimensional edge is its continuity. A single edge point, or

even all the edge points in an given image, will not be able to present this property.

In order to describe this characteristics, the edge points need to be linked into edge

curves. Moreover, any evaluation function can at best remove “almost all” noise-

induced response, not all of them. The continuity of the edges can be viewed as

another approach remove noise response, since random noise will not be able to form

any continuous consistent profiles. However the continuity of an edge cannot be
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measured by profile evaluation functions. A long edge is definitely more significant

than a shorter one, and an edge point with a profile of strong contrast is generally

of no importance if no other point with similar profile can be found in the vicinity

of this edge point.

Most of the earlier works in edge linking only involve the continuity of the

positions and orientations of the edges, no other property is employed. Except for

the parametric fitting method and the image segmentation approach, edge detectors

do not retrieve most of the important edge attributes such as colors values, and

widths of edges.

Therefore, we incorporate the edge linking into our edge detection approach by

extending an initial detected edge point into a group of edge points that form an

edge. Since the profile of each edge point carries most of the edge attributes, if the

edge points are linked only if they have similar edge attributes, continuity derived

is much better than the results using only positions and orientations.

There are three stages in our edge tracking process:

1. Initialization. The initialization stage ensures the existence of an edge in

the vicinity of an initial point. A certain number of adjacent edge points

with a consistent edge profile is required. Otherwise, the initial edge point is

considered as an isolated edge point and is thus ignored.

2. Extension. Once the presence of an edge is confirmed by its initial length,

both ends of the edge will continue to extend. This stage ends when no

further edge point with compatible profile can be found, or the new point is

near some other existing edge point with similar edge profile. Prediction of

new edge points according to the existing edge points can speed up the edge
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growing process, and reduce the effect of noise and occlusion. A simplest and

most obvious example of such prediction is for the case of straight edges.

3. Refining. Once the edge stops growing, some refining processes can be per-

formed. If the two endpoints of the edge are very close, these two points can

be joined to form a loop. If one endpoint is very close to an edge point of

another edge, and these two edges have similar profile, these two edges might

be joined into one single edge.

Edge growing process is required in the first two stages. The only difference is

that in the first stage, the growth will stop once the requirement of the length is

satisfied. If the requirement is not satisfied, the edge is discarded. We will first

describe this process before going into details of these three stages.

4.1 Edge Growing Process

The edge growing process refers to the way we extend the edge point by point,

beginning from a selected and then refined initial edge point. Two edge points will

grow from this initial edge point. Two more new points will derived from these two

points, as edge growing process grows outwards. This process repeats until certain

situation occurs that would stop the growth.

There are two cases for edge growing process:

• The given edge point is an initial edge point and is not attached to any point

yet. This point will be the first point of the edge. Two edge points are

expected to grow from this point.
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• The given edge point is grown from some other edge point. Only a new edge

point is expected to grow from this point, in the opposite direction from where

the point grown from.

Both cases are treated similarly. We will discuss the first case first. With the

initial edge point, (x0, y0, θ0), as well as the positions of two neighbor edge points

(x1, y1), (x2, y2), where x1 = x0 − k sin θ0, y1 = y0 + k cos θ0, x2 = x0 + k sin θ0,

y2 = y0 − k cos θ0, and k a pre-defined distance between the two edge points, the

oriented points (x1, y1, θ0) and (x2, y2, θ0) can be used to search for two more edge

points (for explanation of neighbor edge points, see Section 3.7). The process is to

locate the new edge points according to the attributes of the initial edge point. A

prototype edge profile can be constructed from information such as the colors on

both sides and the noise magnitude to localize the new edge points,

New edge points can then be localized by searching the vicinity of the neighbor

edge points of the initial edge point. Because a template profile is available, the

process described in Section 3.6.2 can be used to construct the prototype edge

profile.

The new edge point for each side is chosen as the point with a maximal SNR

among those points in the vicinity of the neighbor point which pass the validating

process. The vicinity of the neighbor point (x1, y1, θ0) is defined as (x0− k sin(θ0 +

ρ), y0 +k cos(θ0 +ρ), θ0 +ρ), where ρ ∈ [−ρ0, ρ0], and ρ0 a constant. In other words,

it is an arc centered at the initial point (x0, y0). The orientation of this point is

then refined as described in Section 3.7.

Once the maximal SNR is smaller than one, no eligible edge point can be found

in the vicinity. Therefore, the edge growing process stops. Another condition
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that will stop the edge growing process is when a new edge point is close to another

existing edge point with a similar profile. This condition is set to prevent redundant

growing. If the existing edge point is from the same edge, the edge can be closed

into a loop. If that point belongs to a different edge, it is possible that these two

edges can be joined together to form a single edge. The closing and joining process

will be discuss later.

For an edge point P which has already been attached to another edge point

P−, the new point P+ grown from P will be on the other side of P−. The angle

between
−−−→
P−P and

−−−→
PP+ should be sharp. Therefore, only one of the two neighbor

edge points will be used to grow an edge point. The purpose of this constraint of

the angle is to disallow sharp change of curvature direction during edge growing

process. This prevents sharp corners in the edge detection. While this might cause

some inconvenience since sharp corners, which do not occur very frequently, are

not very rare either. Such inconvenience can be handled by allowing joining two

separate edges together later. With the exception that only one edge point is grown,

the growing process is exactly the same as the process from the initial edge points.

4.2 Edge Initialization

The initialization of an edge is to produce a short line segment as the initial edge

curve. This procedure could be considered as part of the noise eliminating process.

Only the edge point that can be extended to an edge curve of specific length will

be accepted. To a certain degree, this procedure is similar to Canny’s hysteresis

threshold process [7] as they both try to eliminate weak edges caused by image

noise. Instead of filtering edges by their maximum strength, our process focuses on
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the length. This required minimal length of the edge curve can be a pre-determined

constant, which can be presented as some function of the edge profile. For example,

an edge profile with lower contrast may require a longer length to be verified. More-

over, a profile with complex transient region may require more consistent profile

matching to ensure this is really a single composite edge instead of multiple step

edges. On the other hand, the choice of the length is pretty subjective, and varies in

different situations. In certain cases, such as OCR(optical character recognition),

any constraint of edge length might result in losing some important features. For

the time being, this threshold of minimal edge length is set to a small constant

value whose value is about six to ten pixels.

We can use the hysteresis method to improve the selection of the threshold of

minimal edge length. A high threshold and a low threshold for the edge length are

defined in advance. Presently, the high threshold is five pixels and the low threshold

is three pixels. Our process of edge initialization can be described as follows:

1. In order to find the position and orientation which yields minimum with the

given evaluation function, one can shift and rotate the given initial oriented

point in its neighborhood. The evaluation function will produce abstract

profile information such as the color information and noise measurement of

both sides of the profile of the initial edge point. If no valid edge point can

be found, the edge initialization process fails.

2. Using the abstract profile information of the initial edge point, grow the edge

on either side of the initial edge point according to the edge growing process

described in the previous section.
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3. If the length of the edge could not even reach the low threshold, the edge

initialization process fails. A special case is when both sides stop because

they reach the vicinity of some other edge points with similar profile. In this

case, this edge initialization process is considered partially successful, and will

move directly to the edge refining process so it can be joined with another edge.

4. If the length reach the high threshold, the edge initialization process is suc-

cessful.

5. If the length is between two threshold values, the initial edge point is replaced

by one endpoint, and the high threshold is reduced by one. If it is smaller

than the low threshold, the edge initialization process fails, otherwise it is

start over from step 2.

The last step requires some explanation. As our edge detection is subpixel-level

based, a slight change of the initial oriented point may yield completely different

set of edge points. Most of time, the two edges look exactly the same, just with

edge points of different positions. However, sometimes one edge might be shorter

than the other because of noise or digitalization. In other words, a change of initial

condition might have some unpredictable result. Therefore, it is expected that the

change of the initial edge point will end up in either step 3 or step 4.

The result of this initialization process either succeeds or fails. If it succeeds,

the initial edge curve is passed to the edge extension process. If it fails, no edge is

marked.
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4.3 Edge Extension

As the name of this process suggests, it will extend the initial edge curve of both

ends. This process is quite straightforward. Both sides will be extended using the

edge growing process mentioned in Section 4.1, where the stop conditions are also

defined.

4.4 Edge Refining

This is the most involved process. In fact, there are countless processes that can

be considered as part of the edge refining process. We will only discuss three of the

most fundamental processes: edge closing, edge joining, and edge smoothing.

4.4.1 Edge Closing

When two end points of an edge are close enough, it might mean that this edge

form a closed loop. To verify the possibility of a closed edge, the middle point of the

two edge points becomes the position of a new oriented point, while the orientation

of this new oriented point is set to be perpendicular to the line segment formed by

the two points. The profile of this new oriented point is then compared with the

profile of the edge. If they are similar enough, then this oriented point is added to

both ends of the edge, thus the edge is closed to form a loop.

Sometimes, due to image noise or digitalization, a few end points might need

to be removed before the loop-closing is performed. Figure 4.1 shows one of the

situations that requires further processing before the closing. The points to be

removed are determined by the smoothness of the curvature around the closing.

80



(a) part of Figure 3.1(f).

(b) Magnified part of Figure 4.1(a) at the bottom-left

corner.

Figure 4.1: An edge loop that requires removal of some edge points at the endpoints

before closing.
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(a) Closed loop from the same edge in Figure 4.1(a).

(b) Magnified part of Figure 4.2(a).

Figure 4.2: The closed edge loop, after removal of one edge point.

82



Edge 1
Edge 2

Objective left side
of edge 1

Objective left side
of edge 2

Figure 4.3: Definition of objective left side of an edge endpoint during an edge joining

operation.

For the edge points Pi’s, i = 1 . . . n, of the edge e, we will remove n − m points

at the end, to make sure that the the angles between vectors
−−→
P2P1 and

−−−→
P1Pm and

between vectors
−−−→
P1Pm and

−−−−−→
PmPm−1 are small.

4.4.2 Edge Joining

Due to noise or occlusion, an edge might be broken into separate edges. While it is

possible to enforce the edge continuity, there are too many cases which prevent the

edge continuity to be established. A reasonable approach is to join broken edges

back. Without the edge profile information, this is very challenging. Two edge

curves with close endpoints may or may not belong to the same edge, depending on

their profiles. The most important information of the edge profile in this process

are

• Colors on both stable regions of the edge. They are the most significant

information of an edge. If these colors on the two edges are similar, then the

two edges might be joinable.
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• Noise magnitude of the edge. This is the parameter used to determine if the

colors of two edges are similar or not. If their difference is below the noise

magnitude, they are similar.

• Edge normal directions and edge directions of the endpoints. The edge direc-

tion of an endpoint is defined by the direction from the edge point adjacent

to this endpoint to this endpoint. The edge normal direction is defined as

the orientation of each edge point. In profiles, we have left color and right

color. However, left and right are defined relative to the orientation of the

edge point. The same profile will be obtained if the orientation of the edge

point is rotated by 180◦, however, the definition of the left side and right side

are now reversed. In order to establish some common ground for two edges,

we will define a more objective term of edge normal directions from the edge

direction. As the edge directions of the two would-be-joined endpoints should

face each other, the objective left side of one edge is compared against the

objective right side of the other edge, and vise versa. Here the objective

left side should be the direction that is counterclockwise perpendicular to

the edge direction, and the objective right side clockwise perpendicular.

See Figure 4.3 for the definition of the objective left side of an edge endpoint.

The normal direction marks the direction from the left side to right side of

the profile. If the left side and the objective left side contradict each other,

the left side and the right side of the profile should be inverted before the

comparison.

In most cases, a closed edge will not join with another edge, since technically

a closed loop does not have end points. Therefore, an closing process is performed
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on an edge first. If it is a closed edge, no joining is required.

The edge joining process consists of the following steps:

1. Find all the edge points near one endpoint p1 of the given edge.

2. For each edge point p2 found, if it belongs to the given edge, or a closed edge,

it is ignored.

3. If p2 is an endpoint of edge e2,

(a) find its edge direction, then its objective left side and objective right side;

(b) compare the color on the objective left side of p2 to the objective right

side of p1, then the objective right side of p2 to the objective left side of

p2. If the difference is within the range of the noise magnitude in both

comparison, p1 and p2 might be eligible to be joined. Otherwise, the

joining fails.

(c) If the distance between p1 and p2 is smaller than one, let p+
2 be the edge

point adjacent to p2. Otherwise p+
2 is the same as p2.

(d) Get the point pc at the center between p1 and p+
2 . Let the orientation be

clockwise perpendicular to the vector for p1 to p+
2 . Compare the profile of

pc and the edge profile of the given edge. If they are similar, the joining

process can be performed.

4. If p2 is not an endpoint, but only an edge point of e2, then points on one side

of p2 might need to be removed before joining the two edges (see Figure 4.4

for an example).

85



p 1

p
2

(a) Two separated edges can be

joined, though some points should

be removed to make a smoothed

joining.

(b) Two joinable edges

(c) Magnified of part of Figure 4.4(b)

Figure 4.4: One of the problems in edge joining process.
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(a) The edge direction of p2 has to be defined. First compare the left color

of p2 with the objective right color of p1, then right color of p2 with the

objective left color of p1. If the difference is within the range of the noise

magnitude, the left side is defined as the objective left side. Otherwise,

check if the right side can be defined as the objective left side. If the

objective left side cannot be defined, the joining process fails.

(b) With objective left side defined, edge direction can be derived as the

direction clockwise perpendicular to the objective left side. Now p2 is

considered as an endpoint of e2, and all edge points beyond p2 are ignored

for the joining purpose. Perform continuity verification similar to the

steps 3c to 3d.

5. If an edge point p+
2 is considered joinable with p1, add all edge points of e2

up to p+
2 . Then the edge e2 is removed, and the joining process is successful.

Otherwise, try to join the next near-by edge point.

4.4.3 Edge Smoothing

Unless the edge points of an edge are obtained using some specific parametric

forms such as straight lines, circles, or ellipses, the effect of digitization of an image

would make the edge zigzag. Even subpixel-level edge detectors would only damp

the degree of zigzag, not remove it completely. A straightforward approach to

smooth a curve is to straight the curve locally. That is, for each edge point P (i) =

(x((i), y(i)), i = 1 . . . n, move its position toward the middle of its two neighbors

points, which is (P (i−1)+P (i+1))/2. This process should be performed repeatedly,

since the oscillation of the curves are not necessary one pixel. The process can be
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written as

Pt+1(i) = (1− α(i))Pt(i) + α(i)
Pt(i− 1) + Pt(i + 1)

2
, (4.1)

where α(i) ∈ (0, 1) is the parameter that control the degree of smoothing, and t is

the number of iterations. For this iterating model, a few problems should be noted.

• This smoothing process smoothes not only zigzag, not also real corners.

• This process by itself would converge into a straight line eventually.

The “active contour” model [27] would be more appropriate in the aspect. While

this model requires some proper initial edge curve and makes it not as widely used

in edge detection of single image as in motion picture. Such limit is no longer a

problem since we have already obtained the edge curve as the initial condition. On

the other hand, assuming that the edge points are of subpixel-level accuracy, and

only require minimal adjustment, then this model is not suitable since the image

energy is not effective in subpixel-level, only internal energy remains effective.

Therefore the degree of smoothing only depends on the curvature of each edge

points.

Equation 4.1 can be modified, so it is applicable for the purpose of edge smooth-

ing. To keep the real corners, there are two possible approaches. This first ap-

proach would be setting α(i) as a decreasing function of the distance of P (i) and

(P (i − 1) + P (i + 1))/2. In other words, the larger the curvature, the less the

smoothing is performed. The other approach is to re-calculate the evaluation func-

tion every time an adjustment of edge point is made. Once the evaluation function

determines the new adjustment is invalid, the smoothing stops. In fact, there is no

conflict in these both approaches so they can be used at the same time.
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The energy minimization concept of “active contour” model is also useful. It can

be applied by separating each iteration of smoothing into two stages: smoothing

and measuring. The smoothing stage generates the new edge points, while the

measuring stage validates the new set of edge points. In the smoothing stage,

the new edge points are calculated according to Equation 4.1. In the measuring

stage, two sets of energy are calculated: profile energy and internal energy. The

internal energy is similar to the internal energy in active contour model, and the

profile energy is the sum of the evaluated values of all the edge points according

to the evaluation function. Since the profile energy is not differentiable, Euler

equation used in active contour model is not applicable. Therefore, in the measuring

stage, we simply compare the total energy before smoothing with the total energy

after smoothing. The smoothing process will continue as long as the total energy

decreases.

A disadvantage of this smoothing model in comparison with the active contour

model is that the former does not have the ability to adjust edge points locally.

Unlike the active contour model which adjusts each point according to the feedback

of the energy function, our smoothing process only uses the sum of the energy along

the edge to decide whether to make more adjustment or not. It is possible that

some part of the edge will not be smoothed properly because further smoothing

will move another part of the edge curve away from the edge in the image.

In order to address such problems, we further modify our smoothing approach to

smooth edges piecewisely. A smoothing process now will only process a small piece

of an edge curve each time, and move on to the next piece once the smoothing of

the current piece is complete. Note that there should be some overlap between two
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pieces of edge segments to ensure the smoothness between pieces. To summarize

the smoothing process, the steps are as follows:

1. The process begins from the first point as the initial smoothing point.

2. Select the next n edge points starting from the initial smoothing point and

label them as P1, P2, . . . , Pn. In our experiment, n = 8.

3. Calculate the internal energy

Einternal =
n−1∑
i=1

|Pi+1 − Pi|+
n−2∑
i=1

|Pi+2 − 2Pi+1 + Pi|

and the profile energy

Eprofile =
n∑

i=1

Feval(Pi),

where Feval is the chosen evaluation function.

4. Combine Einternal and Eprofile into total energy

Etotal = aEinternal + bEprofile,

where a and b are the control parameters. Because Eprofile tends to have larger

magnitude than Einternal, a is assigned a larger value to balance the effect of

the two energy functions.

5. For the point Pi, i = 2 . . . n− 1, calculate the new edge points

P+
i = (1− α)Pi + α

Pt(i− 1) + Pt(i + 1)

2
,

where

α = e−d/2/2,
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(a) An edge before smoothing. (b) The same edge after smoothing.

Figure 4.5: The outcome of an edge smoothing process

and the distance between old edge point and new edge point

d =

∥∥∥∥∥Pi −
Pt(i− 1) + Pt(i + 1)

2

∥∥∥∥∥ .

Make P+
1 = P1, and P+

n = Pn.

6. Calculate the evaluated values for all P+
i ’s, if any of the values is greater than

the threshold value 0, reduce the magnitude of adjustment by replacing α by

α/2 and repeat the previous step, unless a valid edge point is found, or α is

too insignificant. If no valid edge point can be found for P+
i , P+

i = Pi.

7. Get the total energy E+
total for the newly generated edge points. If E+

total ≤

Etotal, replace Pi with P+
i , Etotal with E+

total, then go back to step 5. Other-

wise, the smoothing of this piece of edge curve is finished. Move the initial

smoothing point n/2 points forward, then go back to step 2 to smooth the

next piece.

Note that this modified smoothing process would only move each edge point

toward the center of its two neighbor edge points. In other words, its only purpose
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(a) Magnified part of Figure 3.1(f). (b) Magnified part of Figure 3.1(b).

Figure 4.6: Two figures with phantom edges. The one in (a) is completely stand-alone,

while the one in (b) is extended from a real edge.

is smoothing. If the original curve is incorrect, this process might not move toward

the real edge, as in the case of the active contour model. An example of the outcome

of smoothing is shown in Figure 4.5.

4.5 Problems of Edge Growing

In most cases, the outcome of the edge growing process depends on the evaluation

functions, the edge growing process itself seems more straightforward. However,

certain details need to be defined:

1. When to stop growing? Even though in the previous section, the conditions

to stop the edge growing have been defined, no all possible cases are covered.

For example, one of the conditions is that the colors on both sides of the edge

do not match, with tolerant value twice the noise magnitude. For a color

image, we notice that if the tolerant value is applied to the difference of three

color channels separately, the edge will tend to be fragile. However, if we take
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the average of the difference of the three color channels instead, the result

would be much better since single channel noise would be smoothed by the

other two channels. Another example is the tolerant value for the width of

the transient region. In our experiment, we limit it to vary within one pixel

width. However, such limit is merely from empirical result. Greater tolerance

tends to make the detected edges move away from the center of the edges,

while smaller tolerance will likely break the edges.

2. Another problem plagues this edge growing process is the phantom edges.

This usually happens when the generalized evaluation function (see Section

3.4) is applied, or when the results of more than one evaluation functions are

combined. Two unrelated ramp edges might be treated as a single ridge edge

if they are close to each other. As long as the two ramp edges do not suddenly

depart away each other, this ridge edge will be extended. Two examples of

such phantom edges are shown in Figure 4.6. In Figure 4.6(a), an edge is

grown between the two parallel edges. The other example is shown in the

circled region in Figure 4.6(b), a valid edge is grown into a region between

two unrelated edges, and the edge transforms from a ramp edge category into

a ridge edge category. Since the transient region is ignored due to its noisy

situation, such transform is unnoticed by the tracker. To reduce the number of

occurrences of the phantom edges of the type shown in Figure 4.6(b), one can

enforce consistency within the transient regions of all the profiles on the same

edge. However, this will cause problems for the dotted outlines appearing

in the same image since the outlines are not very consistent when we view

it closely, not to mention the effect of digitization. Another solution is to
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Figure 4.7: An edge detected from an image

remove every ridge edge that is parallel to some other edge with overlapped

boundary. This will remove the case for the phantom edges of the type as

depicted in Figure 4.6(a). If we remove part of all ridge edges that is parallel

to some other edges with overlapped boundary, most of the phantom edges

can be removed.

4.6 Edge Profiles

As the edges are collections of edge points, an edge profile can be considered as

the collective representation of the profiles of the edge points on the edge. An edge

profile provides a simplified description of the edge. Such description can be used

as the base for low-level image processing tasks such as joining edges separated by

image noise, or higher-level tasks such as categorizing edges on an image, or even

multiple images.

Conceptually, the edge profile is the average of the edge point profiles along the
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Red

Green

Blue

Bounaries

(a) The profile of one endpoint of the edge in Fig-

ure 4.7.

Red

Green

Blue

Bounaries

(b) The profile of another endpoint of the edge in

Figure 4.7.

Figure 4.8: Compare the profiles of two different edge points on the same edge.
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edge. In a real image, it probably is over-simplified. The approximation of other

edges, the alignment of digitization, the image noise, among other effects, will

eventually reduce the accuracy of most of the characteristics of the edge instead of

emphasizing them. For example, we take two profiles from the same edge as shown

in Figure 4.7. The profiles on the two endpoints are shown in Figure Figure 4.8. In

this example, only one side of stable regions remain consistent. Moreover, since the

width of the transient region has also changed, by the edge point profiles themselves,

these two profiles should not be together.

Here we will give the edge profiles a more abstract form than the profiles of

edge points. Most of the raw data in the profiles are discarded. What remain in an

edge profile are the processed data such as the color values on both sides, the width

of transient region, the noise magnitudes on both sides, and the edge magnitude.

These data are obtained by averaging the respective fields in the profiles of edge

points on the edge. Such abstract information is usually enough for the purpose of

comparing profiles. In some sense, our edge profile approach is very similar to those

of parametric fitting edge methods. The major difference is that our approach is

one-dimensional based. The rationale of the choice of one-dimensional profile is

described in the previous chapter. For models using the two-dimensional profile,

oftentimes, they cannot handle corners or even curvature edges very well, especially

for in choosing of threshold of the fitting error. On the other hand, in most cases,

one-dimensional model fails to determine the edge orientations precisely. Still, the

edge orientations can be approximated by the image gradient, and adjusted from

the positions of the adjacent edge points.

During the edge growing process, the edge profile is updated for every new grown
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edge point by taking average of the parameters from the profiles of all edge points

on the edge, and with the exception of the first few points, the edge profile is used

to be compared with the profile of the candidate edge point, instead of the profile

from the previous edge point. The reason that the edge profile replaces the profile

of the previous edge point is obvious. Since the parameters profile comparison,

such as left colors and right color, are calculated statistically from pixel values of

the image, and the source of an edge profile comes from those of multiple profiles

of edge points, the edge profile is more reliable statistically.

The edge profile also includes some additional parameters that are not part of

an edge point profile. Among them is the length of the edge. As noted previously,

a longer edge is generally more significant than a shorter one. Therefore, the length

of an edge is always an important factor when judging the importance of the edge.

Another useful parameter is the list of adjacent edges at the end points, which

can be used when joining edges, or defining borders of objects. Since this parameter

is not complete until all the edges in the image are identified, we will discuss it in

the chapter about post-processing of the edges.

4.7 Straight Edges and Prediction of New Edge Points

Straight edges are special cases for edge detection. Many edge detection methods

focus on straight edges since once an edge is known to be straight, it can be mea-

sured very accurately even with the presence of image noise and alignment. Hough

transform [19] is one of the well-known methods, even it is not designed specifically

for edge detection.

To take advantage of straight edges in our profile-based edge detection model,
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edge smoothing process should be utilized first. Fortunately, since our edge smooth-

ing process can be done piecewisely, it can be performed during the edge extending

process. If the piece of edge curve at the edge point becomes almost straight after

smoothing, we can predict the new point by extrapolating the straight line. In the

case that the extrapolated point has a compatible profile, the local minimization

of vicinity profile evaluation can be omitted.

Since each step of the minimization of the profile evaluation requires the sam-

pling and evaluation of multiple profiles, a successful extrapolation will greatly

improve the performance of the edge detection by reducing the complexity of com-

putation. Moreover, since the extrapolation is calculated from the smoothed edge

points, the extrapolated point is smoothed by default, unaffected by any noise.

To incorporate this straight edge extrapolation process, which we call edge

point prediction, the process of the edge growing will be modified. In our orig-

inal model, the the three steps for edge growing are: initializing, extending, and

refining. Smoothing is part of the refining step that is performed once the edge

growing process has completed. The modification is to move the edge smoothing

into the edge extending step. For every other new grown edge point, a piecewise

smoothing is performed at the edge endpoint. Once the smoothing finishes, a sim-

ple check of straightness is performed. The edge piece is straight if their directions

are consistent. If it is considered straight, an extrapolated point is generated along

the straight line, then its profile is compared to the edge profile. If the profiles are

compatible, the edge growing process is omitted and another extrapolated point is

generated. The extrapolation stops when an extrapolated point is not acceptable.

The edge growing process then resumes its minimization process.
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Certain curvatures other than straight lines can be extrapolated as well. A

circle, or part of it, for example, can be extrapolated easily, since as long as the

distance between two adjacent edge points are constant, the angular difference of

the edge directions between two adjacent edge points is consistent. While planar

circles are not as common in the real world as other curves such as ellipses and

parabola, small pieces of such curves can usually be matched to circles, with very

little errors.

The edge point prediction can easily be extended to be applicable by other

shapes. However, allowing too many such extension in the approach introduces se-

vere performance degradation, which may compromise the advantage offered by the

edge point prediction. Therefore, we will apply only linear and circular prediction

models along with the edge growing process.

4.8 Edge Detection of the Whole Image

With all the edge growing processes mentioned in this chapter, we can localize an

edge with a given initial oriented point. However, to detect edges in a given image

using this approach without any user-input, one has to traverse the whole image,

using every pixel as an initial point and try to grow an edge from it. An optional

threshold may be applied to the image gradient. Only the pixels with gradient value

greater than the threshold value will be used as the initial points. This improves

the performance of the speed, at the cost of missing weak edges.

This process is very similar to normal edge linkers. However, instead of linking

existing points as in most edge linkers, in our approach, the points “grown” from

the initial points are calculated on the fly. This process is not by any mean original,
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as an almost identical edge-tracking process has been described in [22]. However,

since edge linking is seldom performed at the same stage as the edge localization,

such method is not widely used in edge detection. Another major difference is that

this growing process uses subpixel level precision. The reason behind the subpixel

level precision is mentioned at the beginning of Chapter 3. The use of subpixel level

precision increases the complexity of the image traversal. As mentioned briefly in

Section 1.3, a hash table is used to keep track of all edge points added. When a

pixel is traversed, a test of approximation is performed in the vicinity of that pixel.

Only if no existing edge point is near that pixel, a new edge can be grown from

that pixel. Moreover, this hash table allows us to find edges that close to a certain

edge for edge joining, in addition to remove redundant edges.

Some results of such processing are already shown in Figures 3.1 (b), (d), and

(f). More results are shown in Figures 4.9–4.15. All except Figure 4.9 are detected

by the step edge detector. The only exception is for Figure 4.9, which is detected

using the generalized edge detector. The reason we choose the step edge detector

is for its simplicity. There are fewer arbitrary conditions that generate phantom

edges. The detector performs well when texture is not a problem, and when there

is no obvious illuminating effect such as shadow, such as in Figures 4.11, 4.12,

4.14. In Figure 4.11, the unfocused background makes the localization harder, and

some of the edges are detected twice, though. For the Lenna image in Figure 4.10,

because of illumination, a few weak and generally unnecessary edges, most of them

on the face and the shoulder, are detected. In Figure 4.13, the refection on the

smooth surface of a canbinet is located. The edge caused by shadow at the bottom-

right corner is also detected. However, because this edge is wider than general step
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(a) An image with a box on floor. (b) Edges detected from Figure 4.9(a).

(c) Detected edges in Figure 4.9(b) super-imposed

on the original image in Figure 4.9(a).

Figure 4.9: A result of the edge detection.
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(a) The Lenna image. (b) Edges detected from Figure 4.10(a).

(c) Detected edges in Figure 4.10(b) super-

imposed on the original image in Figure 4.10(a).

Figure 4.10: A result of the edge detection.
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(a) The image of a butterfly.

(b) Edges detected from Figure 4.11(a). (c) Detected edges in Figure 4.11(b) super-

imposed on the original image in Figure 4.11(a).

Figure 4.11: A result of the edge detection.
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(a) The image of a flower.

(b) Edges detected from Figure 4.12(a). (c) Detected edges in Figure 4.12(b) super-

imposed on the original image in Figure 4.12(a).

Figure 4.12: A result of the edge detection.
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(a) The image of a corner of a canbinet (note

the reflection).

(b) Edges detected from Figure 4.13(a).

(c) Detected edges in Figure 4.13(b) super-

imposed on the original image in Figure 4.13(a).

Figure 4.13: A result of the edge detection.
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(a) The image scanned from a map. (b) Edges detected from Figure 4.14(a).

(c) Detected edges in Figure 4.14(b) super-

imposed on the original image in Figure 4.14(a).

Figure 4.14: A result of the edge detection.
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(a) The image a picture with mountains and a val-

ley.

(b) Edges detected from Figure 4.15(a).

(c) Detected edges in Figure 4.15(b) super-

imposed on the original image in Figure 4.15(a).

Figure 4.15: A result of the edge detection.
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edges, the localization is not performed very well for our step edge detector. The

mountain image in Figure 4.15, however, is the major challenge. It is a very texture-

rich image. Almost all the trees are neglected, not that we expect a better result

in this aspect. As all the trees have similar colors, an edge between two trees can

be distinguished from both global texture pattern (as the almost parallel vertical

lines), and the slightly different illumination. Our detector is not sophisticated

enough to handle either.
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Chapter 5

Further Analysis

In earlier chapters, the architecture of our edge detector is described. We now

discuss some possible concerns regarding our edge detector.

• The first concern is the robustness of our detector under different noise con-

ditions. We will compare our detector to Canny’s in this regard.

• The second concern is the presence of implicit parameters in our edge detector.

All edge detectors have such parameters. One of our goals is to minimize the

dependence on such parameters, which makes the edge detection process as

automatic as possible (otherwise users will have to “tune” our detector for each

application). Our built-in noise measurement feature is a major contributor

to this automation. The facade of the automaton is partly achieved by several

implicit parameters which we occasionally mentioned. For instance, we have

pre-defined values for the required minimal edge length and the gap between

successive samples in a profile. We will investigate the behavior of our edge

detector when these implicit parameters are varied. One such parameter is
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the influence of various interpolation schemes used by our sampling process.

5.1 Image Noise

Image noise is always an important issue for edge detection. Considerable effort

is usually required to reduce false edges induced by noise. More precisely, of the

three stages of edge detection, namely, smoothing, enhancement and localization,

the major task of both the smoothing and localization stage is noise removal.

(a) A generated noisy image from Figure 3.1(a) (b) A generated noisy image from Figure 3.1(e)

Figure 5.1: Two noisy images for test.

In our edge detector, there is no smoothing stage. Nevertheless, a considerable

portion of our detector can be described as noise handling. Our detector estimates

local noise, upon which all other operations depend. For instance, identifying edges

and comparing two profiles for similarity are among such operations. Therefore our

detector is expected to perform well with the presence of noise. While weak edges

may still go undetected due to noise, the possibility of false edges caused by image

noise is minimal. Note that it is not likely to derive continuous edge points with
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(a) Edges detected from Figure 5.1(a) (b) Edges detected from Figure 5.1(b)

Figure 5.2: Edges from noisy images detected using our edge detector.

(a) Edges detected from Figure 5.1(a) (b) Edges detected from Figure 5.1(b)

Figure 5.3: Edges in Figure 5.2 super-imposed on the noisy images.
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(a) Edges detected from Figure 3.1(a) (b) Edges detected from Figure 3.1(e)

Figure 5.4: Edges from original images detected using our edge detector.

(a) Edges detected from Figure 3.1(a) (b) Edges detected from Figure 3.1(e)

Figure 5.5: Edges in Figure 5.4 super-imposed on the original images.
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(a) Edges detected from Figure 5.1(a) using

Canny’s detector, σ = 1, th = 36, tl = 5

(b) Edges detected from Figure 5.1(a) using

Canny’s detector, σ = 2, th = 22, tl = 5

Figure 5.6: Results from Canny’s detector for one of the noisy images.

consistent profiles from random noise. The following experiments will bear this out.

Images with heavy noise are generated for this demonstration. Starting from

the images in Figures 3.1(a) and 3.1(e), we add a Gaussian noise with σ = 40 on all

three color channels, producing the noisy images in Figures 5.1(a) and 5.1(b). The

results of our edge detector on these noisy images are in Figure 5.2. The evaluation

function for step edge is used. For comparison, the results for the original images

are in Figure 5.4. Figures 5.3 and 5.5 display the same edges super-imposed on

the images. Other than the low-contrast regions, such as the wizard hat in the

Micky Mouse image, edges are well preserved even with heavy noise. We can also

notice that there is no obvious false edges. There is still limit in the ability the edge

detector can cope with noise. Once the added noise magnitude exceeds σ = 50,

some of the significant edges begin to break up. Moreover, while our detector can

filter noise, the process is time-consuming. The additional time spent comes from

the evaluation and linking of false edges. For example, the original Micky Mouse
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(a) A noisy image (b) Edges detected from Figure 5.7(a)

Figure 5.7: Edges detected from a noisy image.

image takes the detector about 2 minutes, and the noisy one in Figure 5.1(a) takes

more than 4 minutes under the same condition to complete the detection. For

comparison, we also perform Canny’s edge detector on the same noisy images.

While it is still possible to detect edges as well as our detector, it requires proper

settings for both the smoothing parameter σ and the hysteresis threshold values th

and tl. Figure 5.6 shows some of the results by Canny’s detector.

Image smoothing is one of the widely used methods for noise removal. While

our edge detector performs well with noisy images, we also experimented with

smoothed images, using both Gaussian smoothing, and an anisotropic smoothing

method which is loosely based on the nonlinear anisotropic diffusion introduced

by Perona and Malik [44]. The purpose of this experiment is to observe the effect

of image smoothing upon our edge detecting process. The noisy image and some

edges detected are shown in Figure 5.7. And the smoothed images and their results

are shown in Figure 5.8 and 5.9.

As expected, the edges detected from the smoothed images are smoother than
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(a) A smoothed image of Figure 5.7(a) using

Gaussian smoothing with σ = 1

(b) Edges detected from Figure 5.8(a)

Figure 5.8: Edges detected from a Gaussian smoothed image.

(a) A smoothed image of Figure 5.7(a) using

anisotropic diffusion

(b) Edges detected from Figure 5.9(a)

Figure 5.9: Edges detected from an anisotropically smoothed image.
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the noisy image, and the performance is better in general. However, there is also

slight degeneration and displacement of the edges in the smoothed image. For

example, proximate edges will interfere each other, and make the consistence of the

profiles hard to maintain. This is shown in the results in Figures Figure 5.8(b) and

Figure 5.9(b) as broken edge contours, and misconnected edges.

Therefore, while image smoothing is an efficient noise removal method, it also

degenerates the profile information. The degeneration of the edge itself is not very

serious, since the noise itself is also reduced, and the two effects cancel each other

out. Image smoothing also makes the interference between two proximate edges

more severe.

5.2 Interpolation

When profiles are sampled from images with oriented points with arbitrary positions

and orientations, grid points are no longer guaranteed. To get pixel values with

non-integer coordinates, interpolation is a common solution. In our experiment,

three different approaches are used:

• No interpolation is used. Pixel values are taken from the nearest grid points.

• The linear interpolation is applied.

• The cubic B-spline interpolation is applied.

The properties of different interpolation approaches have already been well stud-

ied. We will only show the results of these different interpolation methods applied

to different type of images. The images used in this experiment are the butterfly
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(a) An image of a butterfly. (b) Edges detected from Figure 5.10(a) with-

out interpolation.

(c) Edges detected from Figure 5.10(a) with

linear interpolation.

(d) Edges detected from Figure 5.10(a) with

cubic interpolation.

Figure 5.10: A real image and the edges detected using different interpolation methods.
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(a) An image of Micky Mouse. (b) Edges detected from Figure 5.11(a) with-

out interpolation.

(c) Edges detected from Figure 5.11(a) with

linear interpolation.

(d) Edges detected from Figure 5.11(a) with

cubic interpolation.

Figure 5.11: A drawn image and the edges detected using different interpolation methods.
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(a) A map image. (b) Edges detected from Figure 5.12(a) with-

out interpolation.

(c) Edges detected from Figure 5.12(a) with

linear interpolation.

(d) Edges detected from Figure 5.12(a) with

cubic interpolation.

Figure 5.12: A map image and the edges detected using different interpolation methods.
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image, the Micky Mouse image, and a scanned map image. The first image repre-

sents a “real” image that is captured by optical device. The second one represents

an artificial image, with no image noise, but with some thin black outlines. The

third one represents another artificial image, with moderate amount of texture. In

order to make the comparison clearer, the curvature smoothing of edge refinement

in Section 4.4.3 is not performed. The results are shown in Figures 5.10–5.12. All of

the edges are super-imposed on the images except the ones in Figure 5.12 because

the context in the map image might make the edges hard to observe.

From these results, it seems that in general the methods of interpolation do not

affect the accuracy of the edge detection. Even if no interpolation is used, the re-

sults are still quite accurate. Yet, interpolation does provide moderately improved

results, which amounts to better connected and smoother edges. The cubic inter-

polation produces the best results of all three approaches in most cases. However,

the speed of the detection is also an important factor to be considered. Linear

interpolation takes more than twice the time required to perform the detection

without interpolation. Cubic interpolation suffers more than 200% performance

degradation when compared with linear interpolation. As mentioned in the previ-

ous section, a noisy image also takes additional time. Therefore, even though cubic

interpolation usually yields the best results, interpolation is not used in most of the

edge detection experiments in this thesis. Moreover, the edge smoothing process

would significantly reduce the advantage of the interpolation.
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Chapter 6

Conclusion and Future Work

The major purpose of this dissertation research is to propose a new approach to

the edge detecting and edge linking process. We advocate associating profile infor-

mation with an edge to make the edge detection more useful not only for higher

level image processing, but for the accuracy as well.

We have demonstrated a framework for edge detection based on profiles. A

strength of our framework is its flexibility. Various evaluation functions can be at-

tached to the framework, as demonstrated in Chapter 3. Furthermore, this frame-

work utilizes the measurement of local image noise as the parameter for thresholding

in both edge labeling and edge refinement.

While our edge joining process is still far from perfect, it nevertheless demon-

strates the advantage of integrating profiles with edges. Though closeness and

compatible edge direction may suggest the possibility of joining of two edges, it

would be difficult to verify such possibility without comparing their profiles. More-

over, the judgment on similarity between two profiles requires some threshold value.

Without a robust threshold selection, it is difficult to determine objectively whether
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two edges have similar profiles or not.

There are problems in our model. First of all, the measurement of the noise is

crucial in our approach. The noise is used as a parameter in edge localization, as

well as most of the edge refinement process. And the measurement of the noise is

derived from the stable regions of profiles. Any outside turbulence in the stable

region would cause problem for our noise measurement. The outside turbulence

can come from the interference from proximate edges, or texture. While texture

may be treated as part of image noise, their tendency to be directional makes the

measurement anisotropic. Since our noise-induced threshold values are used for

both edge normal direction and edge direction, the anisotropic noise measurement

does not work well for our model. Furthermore, it might be impossible to find a

stable region when texture is involved. This problem is beyond our scope since

Gaussian noise is assumed in our model. While only statistic information such as

averages and standard deviations of the regions with a profile are calculated, and no

properties of Gaussian distribution is utilized. However, a implicit “double of the

standard deviation” rule is used as a threshold value in more than one places, and

it is based on the Empirical Rule of Gaussian distribution that 95% of the values

fall within 2 standard deviations of the mean. While this detector may still work

with the presence of noise with other distributions, unfortunately, the accuracy

will decrease. As for problem about texture, it is a segmentation issue rather than

an edge detection issue. For the treatment for textures, other measurement than

noise magnitude can be used when constructing evaluation functions. Examples

of such measurements are entropy, moments, and homogeneity. Efficiency of these

measures highly depends on the types of texture.
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Another potential issue is the phantom edges described in Section 4.5. So far,

we cannot completely remove either kind of phantom edges without affecting the

accuracy of the edge detection. Normally, each phantom edge is usually paired with

two other edges that are parallel to it. This makes it a good candidate for phantom

edge removal. However, by no means imply that every edge bounded by a pair of

edges parallel to it is by default a phantom edge. The judgment of whether an edge

is a phantom edge is very subjective. For example, in the image of Figure 4.6(a),

we labeled the edge at the center as a phantom edge because it does not look like a

real edge. Especially when compared with other edges in the same image. In fact,

this perspective is true only if we consider the black color as the background. The

edge would be a valid line edge if the black color is considered as the foreground.

Last but not least: the speed of the edge detection. For an image with size

about 200 × 200, it takes a few second for normal edge point detectors. Edge

linking takes even longer. With Canny’s detector and the hysteresis threshold, it

takes about 20 seconds to detect edges in the image in Figure 5.10(a), whose size

is 230 × 173. For our detector, it takes 112 seconds to detect all the edges. The

situation worsens if more noise is added or time-consuming interpolation method

is used. In the worst case, it would take more than 15 minutes to complete the

detection. Since our detector does produce additional information, 2+ minutes

might be acceptable, but 10+ minutes for a single image might be considered as

unbearable. The edge point prediction in Section 4.7 is one of the attempts

to reduce the time needed. The performance improvement is substantial. Using

same image in Figure 5.10(a), if no prediction is performed, the time required for

the edge detection of the whole image would take 137 seconds. In other words, it
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is about 20% improvement. The performance gain is not always that significant,

good. On the average, it can achieve 10% performance enhancement. Though this

prediction process is the best we can find to speed up the edge detection. While

it is still possible to optimize the testing program for speed, the main issue lies in

the framework. In order to localize a valid edge point, many profiles around that

points have to be evaluated. This is the main factor that slows down our edge

detectors. To be more specific, a lot of calculations are required in finding the

correct edge normal direction. Since our profile is one-dimensional, a lot of profiles

with different orientations have to be first sampled from the same point and then

evaluated. A two-dimensional model of profiles may be more efficient. However, as

mentioned in Chapter 1, it is non-trivial to describe an edge which is not straight in

the two-dimensional model. For a curve edge, the set of parameters that minimize

the fitting error can still be identified. The minimal fitting error, equivalent to our

noise magnitude definition, becomes less reliable when a non-0straight edge is fit

into a straight edge model. If this issue can be resolved, and parameters can be fit

from the image pixel values, the performance can be greatly improved.

There is another issue. Since our detector produces edges with subpixel-level

positions, the results are not very stable. With two initial points with slight different

positions, their results may and may not look different. It is because some of local

noise may affect one of the edge but not the other. In other words, some initial

oriented point cannot produce the optimal result, and the edge growing process

would stop before the edge really ends. Yet, since there are almost infinite possible

initial edge points on an edge, it is impossible to use exhaustive search just for a

single edge. In fact, one of the reason we construct the edge joining process is try
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Figure 6.1: The detected edges of Figure 4.10(a) with edge magnitude greater than 16.

to minimize such effect. An edge might break due to noise, but we still can try to

grow another edge on the other size, then join these two edges together.

6.1 Future Work

There are some possible extensions of this work. First, the edges can be sorted

by their significance. The simplest measurement of the strength of an edge is

generally judged by its edge magnitude or its length. However, other measurements

such as noise magnitude could also be involved. A threshold value can be used to

filter the edges out with strength less than the threshold value. While we consider

thresholding on the output of edge detector a poor practice, there is merit showing

only the edges with specific strength, especially we threshold the strength of edges

instead of individual edge points. Moreover, no additional detection has to be

performed if another threshold value is selected. For example, for the edges in

Figure 4.10(b), if a threshold value 16 is applied to the edge magnitude, the result

is shown in Figure 6.1. This result is more acceptable in certain aspect than the
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result before thresholding. However, in this example, we do not take the edge length

into consideration. In order to efficiently perform threshold with multiple control

values, the interaction among these control values will have to be studied.

Another extension is to categorize edges by the colors of their stable regions. The

colors on two sides of an edge are compared using different color space models other

than RGB, such as YIQ, CMY and HSV, and the channels with major contribution

to the edge may be identified. While this step may not always yield meaningful

results, there are some special cases that can be identified. For example, the edges

caused by shadow tend to differ in the illumination channel, but very little in the

hue channel.

Because edges are associated with their profiles, it is possible to reconstruct

an image from the edges. While this reconstructed image will be abstract, and

may lose some detail, it might be easier to process this abstract image than the

original one. Image segmentation process can perform the same task. However,

our approach offers better control. For example, by utilizing the thresholding of

the sorted edges, an arbitrary threshold can be set to remove weak edges. With

our edge detecting approach, only one pass is required to produce different scales

of abstract images.

A possible extension is to apply multiple edge detectors together. While this

approach is already possible in our framework by utilizing different evaluation func-

tions, it also creates some arbitrary situations that make the combination of the

results of different detectors difficult. For example, edges from different detectors

may all be valid, but only under different situations. Different sets of edges may

conflict to each other if shown at the same time. An example is the phantom edge
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Figure 6.2: A mistaken joined edge.

in Figure 4.6(a). While the phantom edge seems to be wrong, it does make sense

when the resolution of the image decreases, and in that case, the “correct” edges

might become insignificant.

Joining two edges broken by occlusion is another possible task. With our edge

joining process, and the edge point prediction process described in Section 4.7,

we should already be able to perform it. However, we still cannot produce a reliable

verification mechanism yet. Even in current state of our edge joining process would

make mistakes such as in Figure 6.2 where the gap is only one pixel, a larger gap

would increase the possibility of such mistakes, unless a more reliable confirmation

method can be performed.
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