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Abstract

This thesis is a collection of theoretical results on the topic of approximation
algorithms and hardness of approximation. The results presented here use a
combination of classical and modern techniques to achieve better approximation
algorithms and hardness results for some pivotal NP-hard problems and their
variants. We study CSPs from a multi-objective point of view, with the goal of
simultaneous optimization of multiple instances over the same set of variables,
with MAX-CUT as the central focus. We provide an approximation algorithm that
is near optimal assuming the unique games conjecture. We also study PCPs and
their role in hardness of approximation, and present a hardness result for 3-LIN
in the sub-constant soundness regime. Lastly, dictatorship testing is a property
testing problem with significant applications in proving hardness results, and
we present an improvement on the soundness of the k-bit dictatorship test with

perfect completeness.
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Chapter 1

Introduction

Many fundamental optimization problems are known to be NP-hard, efficient
polynomial time algorithms to solve these problems exactly don’t exist unless P =
NP. One approach to tackle these problems is to design algorithms that give sub-
optimal solutions, but with provable guarantees. Such algorithms, commonly
referred to as approximation algorithms, run in time polynomial in input size,
and return a valid solution which is bounded in terms of the optimal solution.
If the solution to a minimization problem given by an approximation algo-
rithm is a multiplicative factor of c away from the optimal solution in the worst
case, the algorithm is called an c-approximation algorithm. For maximization
problems, a c-approximation algorithm guarantees a solution of at least 1/c times
the optimal value. In the realm of NP-hard problems, the best known approxi-
mation factor for various problems varies greatly, i.e. we know of problems for
which the best known approximation algorithms give a guarantee of (1 + ¢) for
all € > 0, to problems for which we can only achieve approximation factor that

degrades with the size of input. The question that immediately follows would



be to know what’s the best approximation we can hope to achieve. Therefore,
a search for limits of approximability is an equally important question to fully
understand a problem. Over the past two decades, using fairly involved reduc-
tions starting from the PCP theorem, the approximability of several important

computational problems have been resolved.

1.1 SDP Hierarchies

Convex programming relaxations and rounding schemes are a powerful tool to
design approximation algorithms. Most combinatorial optimization problems
have a discrete solution space and allow for the problem to be modeled as an
Integer program. Since it is NP-hard to solve integer programs exactly, the
integral constraints are relaxed in order to get a program that can be solved in
polynomial time. The resulting solution is then rounded to achieve a valid if not
exact solution to the set of constraints, to give an approximation algorithm.
One such relaxation is the Semidefinite Programming relaxation. Here, the
variables are relaxed to have vector values, and the goal is to optimize a linear
objective function. A Semidefinite Program is an optimization problem of the

form

Minimize Cc-X
s. t AZXZZ)Z,ZZ]_,,TI’L
X>0

The above relaxation can be viewed as a basic SDP relaxation. For a number



of combinatorial optimization problems, the basic SDP relaxation yields opti-
mal approximation algorithms. On the other hand, for some other problems,
adding more constraints to the relaxation and gives better approximation guar-
antees. One systematic way to add contraints to SDPs was defined by Parrilo and
Lasserre. They obtain a sequence of increasingly powerful relaxations, termed
as the Lasserre Hierarchy of convex relaxations. One of the basic ingredients
underlying mathematical programming relaxation hierarchies for combinatorial
optimization problems is the idea of expanding the search space, from the dis-
crete space of pure assignments to the continuous space of distributions over
assignments. The 7-th level hierarchy typically has n®(") additional constraints
and can be solved in time n°®).

We give a more detailed explanation of the Hierarchy and how we use it to

achieve a better approximation algorithm for simultaneous MAX-CUT in Chapter

3.

1.2 Probabilistically checkable proofs

Probabilistically checkable proofs [AS98, ALM*98] offer a robust classification
of NP and is a central technique in hardness of approximation results. A PCP
system for a language consists of a verifier that runs in polynomial time, and
has oracle access to a “proof”. Given an input, the verifier makes a sequence
of queries to access various proof locations and decides on the membership of
the input. The verifier is required to satisfy completeness and soundness, the
former is the requirement that if the input belongs to the language, the verifier

will always accept for some proof string. Soundness states that if the input does



not belong to the language, irrespective of the proof, the verifier accepts the input
with probability at most 3. The complexity class PC'P(r, q) consists of languages
captured by a PCP system that uses at most r bits of randomness and queries the
proof in at most ¢ locations. The PCP theorem states that NP is exactly the set
of languages which have a PCP verifier that asks a constant number of queries

using a logarithmic (in the size of input) number of coin tosses.
Theorem 1.2.1 (PCP Theorem) NP = PCP(logn,O(1))

The PCP theorem has lead to many inapproximability results for various

optimization problems.

1.2.1 Label Cover

Definition 1.2.2 (LABEL COVER) An instance of LABEL COVER contains a regular
bipartite multi- graph G = (A, B, E) and two finite sets ¥ 4 and X, where |X 4| = |Xp|.
Every vertex in A is supposed to get a label in ¥ 4, and every vertex in B is supposed
to get a label in ¥ . For each edge e € E there is a projection 7. : ¥4 — Y. Given a
labeling to the vertices of the graph, i.e., functions ¢ : A — X4 and ¢p : B — X, an
edge e = (a,b) € E is said to be “satisfied” if m.(¢a(a)) = ¢p(b). For1 > c> s> 1,
GAP LABEL COVER(c, s) is the problem if distinguishing whether the given instance

of LABEL COVER is at least c-satisfiable or at most s-satisfiable.

The PCP Theorem is equivalent to the following inapproximability of LABEL

COVER.

Theorem 1.2.3 There exists a constant ¢ < 1 such that given an instance of LABEL

COVER, it is NP-hard to distinguish between two cases



o There exists an assignment satisfying all the edges.

o No assignment satisfies more than c fraction of constraints.

1.3 Overview of our Results

In this section, we present a brief overview of results that will be a part of the

thesis.!

1.3.1 Simultaneous Approximation of Maxcut

Multiobjective optimization is an area of optimizing over more than one objective
function where all the objective functions share the same solution space. In a
joint work with Bhangale, Khot, Kopparty, and Sachdeva [BKK+16], we consider
the well known optimization problem, MAX-CUT, from a multiobjective point
of view, which we call Simultaneous MAX-CUT. The Simultaneous MAX-CUT
problem is defined as follows. We are given multiple graphs {Gj, ..., G} on
the same vertex-set VV and their edge weights are given by functions £, ..., E,
mapping each pair of vertices to the weight. We call each graph an instance. The
goal is to partition V' into 2 sets such that across all the graphs, the minimum cut-
weight is maximized. Our notion of an approximate solution to this problem is a
very natural notion, given constants c;, ¢, ..., ¢ such that there is an “optimal”
partition that has cut weight of ¢; in graph G;, an o approximate algorithm would
achieve a partition that would cut at least « - ¢; in graph G,.

Since Simultaneous MAX-CUT is a generalization of MAX-CUT, we cannot

The original papers, jointly written with co-authors, described our work in the best way I
know of. Therefore, parts of this section, while rephrased, are similar to the constituent papers.



hope to achieve a better approximation algorithm than the best known algo-
rithm for MAX-CUT which achieves a 0.878 approximation factor[ GW95]. We
also know that for MAX-CUT, this approximation factor is tight assuming the
Unique Games Conjecture. We improved the approximation ratio of simultane-
ous Max-CUT problem from 1/2 [BKS15] to very close to [GW95], in fact our
approximation factor matches theirs up to 3 decimal places, although it was
achieved by computer assisted techniques. This improved algorithm uses the

Lasserre Hierarchy.

1.3.2 Improved Hardness for 3LIN via Linear Label Cover

An instance of 3-LIN constitutes a system of linear equations such that there
are at most 3 variables in each equation. We prove that for every constant ¢
and ¢ = (logn)~¢, there is no polynomial time algorithm that when given an
instance of 3-LIN with n variables where an (1 — ¢)-fraction of the clauses are
satisfiable, finds an assignment that satisfies atleast (% + ¢)-fraction of clauses
unless NP < BPP. The previous best hardness using a polynomial time reduction
achieves ¢ = (loglogn)~¢, which is obtained by the LABEL COVER hardness of
Moshkovitz and Raz [MRO08] followed by the reduction from LABEL COVER to
3-LIN of Hastad [Has01].

Our main idea is to prove a hardness result for LABEL COVER similar to
Moshkovitz and Raz where each projection has a linear structure. This linear
structure of LABEL COVER allows us to use Hadamard codes instead of long
codes, making the reduction more efficient. For the hardness of LINEAR LABEL
COVER, we follow the work of Dinur and Harsha [DH13] that simplified the

construction of Moshkovitz and Raz [MR08], and observe that running their



reduction from a hardness of the problem LIN(of unbounded arity) instead of
the more standard problem of solving quadratic equations ensures the linearity

of the resultant LABEL COVER.

1.3.3 k-bit dictatorship test with perfect completeness

Dictatorship tests are central in proving many hardness results for constraint
satisfaction problems. It falls under the category of property testing for Boolean
functions, where given query access to a boolean function, we have to decide
if the function satisfies a property or if it is “far” from it. The objective is to
minimize the number of queries required to achieve this. The quality of a test
is determined by two important factors - completeness and soundness. Com-
pleteness is the probability with which the test accepts if the function satisfies the
property, and soundness is the probability with which the test (erroneously) ac-
cepts a function that is “far” from the property. A test with perfect completeness
is one that always accepts a function that satisfies the property.

A boolean function is called a dictator if it depends on exactly one variable,
Le

f(x17$27 7xn) = Z;

for some i € [n]. In joint work with Bhangale and Khot, we give a randomized
dictatorship test with perfect completeness which is restricted to make only

k queries to f, with an improved soundness. The soundness probability we

2k+1

achieve is at most =3;

+ O(¢). The previous work [TY15] required the queried
bits to satisfy pairwise independence condition, we improve on it and design a

test which lacks pairwise independence condition but still proves the required



soundness guarantee.

1.4 Organization

In chapter 2 we introduce some preliminaries and notations that we use in the
thesis. In Chapter 3 we describe the near optimal approximation algorithm
simultaneous MAX-CUT. In Chapter 4, we prove an improved hardness result
for 3-LIN in the subconstant soundness regime, and in Chapter 5 we present an

improved k-bit dictatorship test with perfect completeness.



Chapter 2

Preliminaries

2.1 Information Theory

In this section, we define and state some facts about entropy and mutual infor-

mation between random variables.

Definition 2.1.1 (Entropy) Let X be a random variable taking values in [q] then,

entropy of X is defined as:

1

H(X):= ) Pr[X =] logm.
i€lq]

Definition 2.1.2 (Conditional Entropy) Let X, Y be jointly distributed random
variables taking values in |q| then, the conditional entropy of X conditioned on 'Y
is defined as:

H(X|Y) = EiqH(X|Y = ).

The following observations can be made about entropy of a collection of

random variables.



Entropy of a collection of random variables cannot exceed the sum of their

entropies.
Fact2.1.3 H(X, Xy,...,X,) <> H(X,).

Entropy never decreases on adding more random variables to the collection.
Fact2.1.4 H(Xy, XolY) = H(X4|Y).

Conditioning can only decrease the entropy.

Fact2.1.5 H(X|Y)— H(X|Y,Z) = 0.

Definition 2.1.6 (Mutual Information) Let X, Y be jointly distributed random vari-
able taking values in [q| then, the mutual information between X and Y is defined

| Pr[X =i,V = j]
Pr[X = | Pr[Y = j]

I(X;Y):= > Pr[X =i,Y = j]log

i,j€ld]
Theorem 2.1.7 (Data Processing Inequality) If X,Y, W, Z are random variables such
that X is fully-determined by W and Y is fully-determined by Z, then

I(X,Y) < I(W,2).

2.2 Analysis of Boolean Function over Probability
Spaces

For a positive integer k, we will denote the set {1,2,. .., k} by [k]. For a distribu-

tion y, let u®" denotes the n-wise product distribution.

10



For a function f : {0,1}" — R, the Fourier decomposition of f is given by

@)= 3 F(T)xr(e) where xr(a) == [ [(-)" and [(T) = B fla)xr(o).
Tc[n]

T ze{0,1}m

The Efron-Stein decomposition is a generalization of the Fourier decomposition to

product distributions of arbitrary probability spaces.

Definition 2.2.1 Let (Q, i) be a probability space and (2™, u®™) be the corresponding
product space. For a function f : (1" — R, the Efron-Stein decomposition of f with

respect to the product space is given by

fan ) = ) fola),
where fs depends only on x; fori € Band forall B 2 B,ae Q¥

E [fs(z) |z =a] =0

zep®n
Let | fl, := Exepon[|f(2)[P]"7 for 1 < p < o0 and | f[o, := max,eqen | f(2)] -

Definition 2.2.2 For a multilinear polynomial f : R™ — R and any D € |n] define

T<([n],|T|<D

ie. fSPisdegree D part of f. Also define f>P = f — f<P.

Definition 2.2.3 For i € [n]|, the influence of the ith coordinate on f is defined as

11



follows.

Infi[f] := E Varg, [f(z1, - 20)] = D [ f5l3.
B8

L1y Ti—1,Ti+1,""" Tn i€

For an integer d, the degree d influence is defined as

Inf= (/1= >, Ifsl.

Biep,|l<d

It is easy to see that for Boolean functions, the sum of all the degree d influences
is at most d. A dictator is a function which depends on one variable. Thus, the
degree 1 influence of any dictator function is 1 for some i € [n]. We call a function
far from any dictator if for every i € [n], the degree d influence is very small for

some large d. This motivates the following definition.

Definition 2.2.4 ((d, 7)-quasirandom function) A multilinear function f : R" —

R is said to be (d, T)-quasirandom if for every i € [n] it holds that

> fer<r

iesc[n],|S|<d
We recall the Bonami-Beckner operator on Boolean functions.

Definition 2.2.5 For v € [0, 1], the Bonami-Beckner operator T’ _,, is a linear operator
mapping functions f : {0,1}" — R to functions T1_,f : {0,1}" - Ras T;_, f(x) =
E,|f(y)] where y is sampled by setting y; = x; with probability 1 — ~ and y; to be

uniformly random bit with probability ~ for each i € [n] independently.

We have the following relation between the fourier decomposition of 7’ f

and f.

12



T| £ )
Fact2.2.6 T, f = > ipcp, (1 — N (T)xr

13



Chapter 3

Simultaneous Max-Cut

3.1 Introduction

In this paper, we give near-optimal approximation algorithms for the simulta-
neous MAX-CUT problem. Here we are given a collection of weighted graphs
G1, Gy, . .., G on the same vertex set V' of size n. Our goal is to find a partition of
the vertex set V' into two parts, such that in every graph, the total weight of edges
going between the two parts is large. The k = 1 case is the classical MAX-CUT
problem, and the approximability of this problem has been extensively stud-
ied [FL92, GW95, Has01, KKMOO07, MOOO05, OWO08]. This paper studies the
approximability of this problem for constant k.

We fix some convenient notation. Let the weighted graphs G,...,Gj be
given by weight functions &, .. ., &, which assign to each pair in (})) a weight
n [0,1]. We assume that for each i € [k], the total weight of all edges under
& equals 1. Let f : V — {0,1} be a function, which we view as a partition of

the vertex set. We define val(f, &;) to be the total weight (under &;) of the edges

14



cut by the partition f. Given this setup, we can formally state the notions of

approximation that we consider.

e a-minimum approximation: Let ¢ be the maximum, over all partitions
f*:V —{0,1}, of the quantity min;cpz val(f*, &;). The goal is to output an
[V —{0,1} such that min,p val(f, &) = a - c

e a-Pareto approximation: Let ¢, co, ..., c; be given such that there exists
f*:V —{0,1} with val(f*,&;) = ¢; for each i € [k]|. The goal is to output
an f :V — {0,1} such thatval(f,&;) > a - ¢; for all i € [k].

For k = 1, there is a celebrated polynomial time agy = 0.8786... factor
(Pareto) approximation algorithm by Goemans and Williamson [GW95]. This
approximation is in both the minimum and Pareto senses. Furthermore, it is
Unique-Games hard to achieve a better approximation factor [KKMOO07], and
the entire polynomial time “approximation curve” is also known.

For larger (but constant) k, far less is understood. Clearly, the hardness results
from the k = 1 case carry over, and thus it is UniqueGames hard to approximate
this to a factor better than aqy . [ABG06] gave a polynomial time 0.439-Pareto ap-
proximation algorithm for this problem for the case £ = 2. Subsequently, [BKS15]
gave a polynomial time (1/2 — ¢)-Pareto approximation algorithm for this prob-
lem. For the case of unweighted graphs', [BKS15] showed that there is a poly-
nomial time (1/2 4+ Q(1/k?))-minimum approximation algorithm. Furthermore,
[BKS15] gave a matching integrality gap of (1/2 + O(1/k?)) for a natural SDP

relaxation of the minimum approximation problem.

'We call an instance of simultaneous MAX-CUT unweighted if for any i, all the nonzero weight
edges under &; have the same weight.

15



Our main result is a polynomial time 0.8780-factor Pareto approximation

algorithm for simultaneous MAX-CUT for arbitrary constant k.

Theorem 3.1.1 For all constant k and ¢ > 0, given weighted graphs (G:(V,&;))¥_,
with |V| = n and where all non-zero edge weights are lower bounded by exp(—n®), there
is a poly(n) time algorithm which computes a 0.8780-factor Pareto approximation (and

hence min approximation) to the simultaneous MAX-CUT problem with k instances.

Remark 3.1.2 We assume that the non-zero edge weights are lower bounded by
exp(—|V|¢) for some constant ¢ > 0. We are interested in an algorithm which runs in
time polynomial in |V'| and hence it is natural to assume the edge weights are lower
bounded by exp(—|V'|°) as otherwise the bit complexity of the input will be super poly-

nomial in |V|.

Remark 3.1.3 Our approximation ratio matches the Goemans-Williamson constant
acw = 0.8786... up to three decimal places. It might be possible to improve the
approximation ratio through small modifyications our rounding procedure. However,
we believe that getting the exact agw-approximation (if it exists) might require new

techniques. See Remark 3.2.12 for more details.

We give a brief overview of ideas involved in our algorithm next. The main
ingredients of the algorithm are: a sum-of-squares hierarchy SDP relaxation, a
generalization of the [RT12], [ABG12] approach to rounding such relaxations,
and some ideas from [BKS15].

16



3.1.1 Overview of the algorithm

We begin by considering the unweighted case; later we will discuss how to
remove this restriction. One crucial observation about the unweighted case is
that if there are enough edges in every graph (as a function of k), then a random
cut simultaneously cuts a constant fraction of edges from each graph with high
probability. Thus, we can always assume that each target value is ¢; = (1),
which is a constant for a constant k.

There is a natural SDP relaxation for the simultaneous MAX-CUT problem,
generalizing the Goemans-Williamson SDP for the k& = 1 case. If we solve this
SDP and round the resulting vector solution using the Goemans-Williamson
hyperplane rounding procedure, this gives us a distribution of partitions of the
vertex set V, such that for each i € [k], the total weight of edges cut in instance
i is at least agy times the corresponding SDP cut value. However, unlike in
the k = 1 case, this does not guarantee the existence of a single partition of
which is achieves a large cut value for all the % instances simultaneously! This
distinction between distributions of solutions which are good in expectation for
each instance and single solutions that are simultaneously good for all instances is
at the heart of the difficulty in designing simultaneous approximation algorithms.

One of the basic ingredients underlying mathematical programming relax-
ation hierarchies for combinatorial optimization problems is the idea of ex-
panding the search space, from the discrete space of pure assignments to the
continuous space of distributions over assignments. For simultaneous approx-
imation of MAX-CUT beyond a factor 1/2, this idea alone is not enough. An
example from [BKS15] shows that there are cases of simultaneous MAX-CUT on

k-instances, for which there is a distribution of partitions of V' cutting (1 — 7)-

17



fraction of edges in expectation for each instance, but for which any single partition
of V, there is an instance i € [k], such that at most 1/2 of the edges in instance i
are cut by the partition. This is where the sum-of-squares SDP hierarchy comes
in — even though it is also modeled on the idea of expanding the search space
to distributions of assignments — it allows us to condition on partial assighments
and impose a constraint that the SDP cut value is large in expectation for each
instance and for every possible conditioning on a small number of variables.
This is what allows us to overcome the aforementioned obstacle.

Having formulated the SDP relaxation, we now discuss the rounding pro-
cedure. The motivating observation is this: if the rounding procedure is such
that for each instance the expected cut value is large, and further the cut value
is concentrated around its expectation with high probability, then by a union
bound, the rounding procedure will produce a cut that is simultaneously good
for all instances. The rounding procedure we will use will be closely related to
the Goemans-Williamson rounding (but different — it was found by computer
search given various technical conditions required by the rest of the algorithm).
Our algorithm now tries to improve the concentration of the cut-value produced
by the rounding procedure, via a beautiful information-theoretic approach of
Raghavendra-Tan [RT12]. If the cut-value for a certain instance turns out to
be not concentrated under the rounding procedure, then it must be because of
high correlation between many pairs of edges of that instance (more precisely,
correlation between the events that the edge is cut). This in turn means that
conditioning on the variables in a random edge should significantly decrease the
amount of entropy of the rounded cut. Iterating this several times, and using

the fact that the initial entropy is not too large, we conclude that conditioning

18



on a small number of variables leads to good concentration for the rounding
procedure. The key point is that the sum-of-squares SDP relaxation we use gives
us access to a vector solution for the conditioned SDP, with the promise that
the SDP cut-value (and hence the expected integral cut-value) is still large. By
the concentration property and a union bound, we get a simultaneously good
cut.This completes the description of the algorithm in the unweighted case.

To handle the general weighted case, we essentially need to overcome few
technical obstacles. Following [BKS15], we add a preprocessing and postpro-
cessing phase. The preprocessing phase identifies “wild” instances, i.e. those
instances with an abnormally large number of high (weighted-)degree vertices
(which would increase the variance of the cut value of that instance under ran-
dom rounding). Then the SDP based algorithm described above is run only on
the “tame” instances.

With conditioning on constantly many variables, we can only manage to bring
the variance down to arbitrarily small constant. Hence, in order to use second
moment method to get concentration, we would need a good lower bound on
the expected value of a cut given by our rounding procedure. If the graphs are
weighted then it is not necessarily true that the simultaneous cut value is large
for all instances. One important property of the tame instances we used is that
they have a good simultaneous MAX-CUT value. We crucially use this property
while formulating the SDP for tame instances.

Finally in the postprocessing phase, we find suitable assignment to the high
degree vertices of the wild instances to ensure that those instance have a large
cut value (without spoiling the large cut value of the tame instances that the

SDP guaranteed) — this uses a new and much simpler perturbation argument

19



compared to [BKS15].

This concludes the high-level description of the algorithm.

3.1.2 Note about the rounding procedure

We mentioned earlier that our SDP solution after conditioning on a small num-
ber of variables is rounded by a rounding algorithm similar to the Goemans-
Williamson rounding algorithm, but is different. We discuss this rounding
procedure here, and compare it to the previous results that used similar rounding
procedures.

For convenience, we switch the notation from 0/1 to +1, —1, such that any
function f : V — {—1, +1} defines a cut in a natural way. Define the bias of a
{+1,—1} random variable z as E[z]. The SDP solution induces a consistent local
distribution on every set of variables of size at most some constant r, and we
define the SDP-bias of a variable as the bias with respect to this local distribution.
For a given rounding procedure, we define the rounding-bias of a variable as the
bias with respect to the rounding procedure. Note that in the original hyperplane
rounding of Goemans-Williamson, the rounding-bias of each vertex is 0.

In the rounding procedure for the MAX-BISECTION from [RT12], the round-
ing bias for each variable induced by the rounding procedure is the same as
the SDP-bias. Their algorithm gave a 0.85 approximation for MAX-BISECTION,
and using the same bias function for the rounding along with the analysis of
our algorithm, we can get 0.85 approximation for simultaneous MAX-CUT as
well (See Section 3.2.3.6 for more details). The approximation factor given by
[RT12] was subsequently improved in [ABG12] to 0.8776, where they used new

techniques to relax the restriction on the choice of the bias function. Nevertheless,
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the rounding procedure was still quite constrained by the need to maintain the
balance of the cut, as required by the MAX-BISECTION problem.

In our setting, we do not need equal sized partition of the vertex set, we have
more freedom in our rounding procedure with respect to the rounding-bias. It
turns out that we only have to ensure that when the bias of a variable is high,
the side of the cut it falls on is almost fixed (that this condition suffices heavily
depends on features of our algorithm and its analysis). This helps us achieve an
improved approximation factor of 0.8780. The rounding function we come up
with was arrived at by computer search (along with some trial-and-error).

The approximation ratio for our rounding procedure is proved by a computer

assisted prover, using techniques similar to those of [Sjo09] and [ABG12].

3.1.3 Other related work

The simultaneous MAX-CUT problem is a special case of the simultaneous ap-
proximation problem for general constraint satisfaction problems. This general
problem was studied in [BKS15], where it was shown that there is a polynomial
time constant factor Pareto approximation algorithm for every simultaneous CSP
(with approximation factor independent of k). The algorithm there was based on
understanding the structure of CSP instances whose value is highly concentrated
under a random assignment to the variables, in addition to linear-programming.
It was also observed that there are CSPs for which the best polynomial time
approximation factor for the simultaneous version (with k£ > 1) is different from
the best polynomial time approximation factor achievable in the standard & = 1
case (assuming P # N P). This makes the study of simultaneous approximation

factors very interesting.
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The simultaneous MAXSAT problem was studied in [GRW11], where a 1/2-
Pareto approximation algorithm was given. For bounded width MAXSAT, the
approximation factor was improved to (3/4 — ¢) in [BKS15].

It remains an open and very interesting problem to determine for which CSPs
the simultaneous approximation problem for £ > 1 is harder than the classical

k = 1 case.

3.2 Algorithm for simultaneous weighted MAX-CUT

In this section, we give our approximation algorithm for simultaneous weighted

MAX-CUT and the analysis.

3.2.1 Notation

We use the same notation as in [BKS15], which we reproduce here. Let £ = (‘2/)
be the set of all possible edges. Given an edge ¢ and a vertex v, wesay v € eif v
appears in the edge e. For an edge ¢, let e, e; denote the endpoints of e (arbitrary
order). Let f : V — {0, 1} be an assignment. For an edge e € £, define e(f) to be
1 if the edge e is cut by the assignment f, and define e(f) = 0 otherwise. Note

that an assignment cuts an edge if it assigns different values to the end points.

Then, we have the following expression for the cut value of the assignment:

val(f,€) = Y £(e) - e(f).

ec€

A partial assignment h : S — {0, 1} is an assignment to S where S < V. We

say an edge is active with respect to S if at least one of the end vertices is not in
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S. We denote by Active(S) the set of all edges which are active with respect to S.
For two edges e, e’ € £, we say e ~g €' if they share a vertex that is contained in
V\S. Note that if e ~5 ¢/, then ¢, ¢’ are both in Active(S), and also e ~g5 ¢, Ve € £.
Let actdists(¢) denote the distribution over Active(.S), obtained by renormalizing
& to have total weight 1 over Active(.S).

Define the active degree given S of a variable v € V\ S for instance ¢ by:

actdeggq(v, () &f Z Ele).

ecActive(S),esv

We then define the active degree of the whole instance ¢ given S:

actdegg (/) def Z actdegq (v, /).
veV\S

Note that we count weight of an active edge in actdegq(¢) at most twice. For a

partial assignment h : S — {0, 1}, we define

val(h, &) & D1 &ile) - e(h)

eef
e¢Active(S)

which is the total weight of non-active edges cut by the partial assignment .
Thus, for an assignment g : V\S — {0, 1}, to the remaining set of variables, we

have the equality:

val(hu g,&) —val(h,&) = > &fe)-e(huyg).
ecActive(S)
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3.2.2 Algorithm

In Figure 3.1 and 3.2, we give the algorithm for Simultaneous MAX-CUT. The
input to the algorithm consists of an integer k£ > 1, ¢ € (0,/s], k instances of
MAX-CUT, specified by weight functions &, . .., &, and k target objective values

Cly.e..,Ck.
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Input: £ instances of MAX-CUT, with weights defined by &, .. ., & on the set
of variables V, target objective values ¢y, ..., ¢, and € € (0, /5].
Output: An assignment to V.

2.2
. __ 1 _ & _ 2k 21 TE, 60
Parameters: 6y = 57,60 = 5,1 = = log <7> T =¢6,7=—".

Pre-processing:

1. Initialize S «— .
2. For each instance ¢ € [k], initialize count, < 0 and flag, < TRUE.
3. Repeat the following until for every ¢ € [k], either flag, = FALSE or

county, = t:

(a) For each ¢ € [k], compute Uvar, = 3] Eu(e)Eu(e).

e~ge’

(b) For each ¢ € [k] compute Lmean, e Dechctive(s) Ee(€)-

(c) For each ¢ € [k], if Uvar, > §yc2 - Lmean?, then set flag, = TRUE, else
set flag, = FALSE.

(d) Choose any ¢ € [k], such that count, < t AND flag, = TRUE (if any):

i. Find v € V such that actdegg(v, ¢) = 7 - actdegg(?).

ii. Set S — S u {v}. We say that v was brought into S because of
instance /.

iii. Set count, « count, + 1.
4. After exiting the loop:

e Let £ denote the set of all ¢ € [k] for which flag, is set to FALSE (these
will be called “low-variance” instances).

e Let H denote the set of all ¢ € [k] for which count, = t (these will be
called “high-variance” instances).

Figure 3.1: Part 1 of Algorithm ALG-SIM-MAXCUT for approximating weighted
simultaneous MAX-CUT
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Main algorithm:
1. For each possible partial fixing h : S — {0, 1} do the following
(a) Solve the SDP given in Figure 3.4 (Refer Section 3.2.3.3).

(b) Follow the procedure in Figure 3.5 to make the solution locally
independent. (Refer Section 3.2.3.4)

(c) Round the solution based on the rounding procedure described
in Figure 3.6 to get a partial assignment ¢g : V\S — {0,1}. (Refer
Section 3.2.3.5)

(d) Post-processing step: For every assignment &' : S — {0, 1}, com-

/ . . .
pute min %ZW and return the assignment /' U g that maximizes

this.

Figure 3.2: Part 2 of Algorithm ALG-SIM-MAXCUT for approximating weighted
simultaneous MAX-CUT
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3.2.3 Analysis of the Algorithm

The algorithm broadly proceeds in 3 sections, the pre-processing step, the SDP
step and the post processing step. The pre-processing step consists of identifying
a small subset S < V carefully. We then attempt all assignments to vertices in S
by brute force iteratively and use SDP with the partial assignment followed by a
rounding to assign vertices in V\S. The post-processing step involves perturbing
the assignments to the vertices in ., the need for which is explained in detail in
Section 3.2.3.7.

In what follows, we stick to the following notation. Let S* denote the final set
S that we get at the end of Step 3. of ALG-SIM-MAXCUT. Let f*: V' — {0, 1} be
the assignment that achieves val(f*, &) > ¢, forall [ € [k] and h* be the restriction

of f* to the set S™.

3.2.3.1 Pre-processing: Low and High variance instances

Definition 3.2.1 (7-smooth distribution) A distribution D on {0,1} is called -
smooth if

xfig[x 1] =, IFN’%[:L' 0] >

Let h: S — {0,1} be an arbitrary partial assignment to the vertices in S. Let
g : V\S — {0, 1} be the random assignment such that each of the marginals g(v)

is T-smooth. For an instance ¢, define the random variable

y, & val(h v g, &) —val(h, &) = Z Eile) - e(hug).

ecActive(S)

Y, measures the total active edge weight cut by the assignment in the instance /.
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Consider the two quantities defined in Step 3. of the algorithm. They depend
only on S (and importantly, not on &), which will be useful in controlling the

expectation and variance of Y;. The first quantity is an upper bound on Var[Y;]:

Uvar, & Z Eu(e)Eu(e).

e~ge’

The second quantity is a lower bound on E[Y;]:

Lmeangdzefr- Z Ele).

ecActive(S)

Lemma 3.2.2 Let S < V be a subset of vertices and h : S — {0, 1} be an arbitrary

partial assignment to S. Let Yy, Uvar,, Lmean, be as above.
1. If Uvar, < 6pe2 - Lmeany, then Pr[Y, < (1 — &) E[YZ]] < do.

2. If Uvar, = 8o - Lmean?, then there exists v € V\S such that

1
actdegg(v,l) = 1725360 - actdegg (/).

We defer the formal proof to Section 3.4.2. The first part is a simple application
of the Chebyshev inequality. For the second part, we use the assumption that
Uvar, is large, to deduce that there exists an edge e such that the total weight of
edges adjacent to the vertex/vertices in e that belong to V\S, i.e., >, . E(ea),
is large. It then follows that at least one variable v € e must have large active
degree given S.

The above lemma (Lemma 3.2.2) ensures that Step 3.(d)i in the algorithm
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always succeeds in finding a variable v. Next, we note that Step 3. always
terminates. Indeed, whenever we find an instance ¢ € [k] in Step 3.d such that
count, < t and flag, = TRUE, we increment count,. This can happen only ¢k times
before the condition count, < ¢t fails for all ¢ € [k]. Thus the loop must terminate
within ¢k iterations.

To analyze the approximation guarantee of the algorithm, we classify in-

stances according to how many vertices were brought into S* because of them.

Definition 3.2.3 (Low and High variance instances) At the completion of Step 3.d in
Algorithm ALG-SIM-MAXCUT, if ¢ € |k] satisfies count, = t, we call instance { a

high variance instance. Otherwise we call instance ¢ a low variance instance.

The next two sections describes the SDPs that we formulate and solve for
just the low variance instances. The claim that step 1d of the algorithm shown
in Figure 3.2 handles the high variance instances is discussed and proved in

Section 3.2.3.7.

3.2.3.2 Warmup: Basic SDP formulation for simultaneous MAX-CUT.

Our algorithm involves formulating a Lasserre Hierarchy SDP relaxation of the
residual MAX-CUT problem after giving a partial assignment A : S* — {0, 1}. In
this section, as a warmup to its analysis, we present and study the basic version
of that SDP.

We write the SDP* for simultaneous MAX-CUT problem, after the partial
tixing given by pre-processing step, as in Figure 3.3. Let £ denote the set of
indices of the low variance instances. We have vectors vr,,, for all 7"and « where

T is a subset of V' of size at most 2, and « is an assignment to the vertices in 7.
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Y Ele)vig, oyl

e={i,j}e&;
lvi6i.g),0n13) = (1 =3e)er  VEe[k], (3.2.1)
<'U{i,0}7 ’U{i71}> =0 Vi e [n],
[V 0102} | = Wi} Vi) Vg € [1]
and by, b, € {0, 1}
H'U{T,Q}HZ = <'U{T,a}, U@> VT <V, ’T’ <2,a€ {0, 1}|T|
Vg = Vg Vie S*,b=h(i)
lvg|* =1
>, Ele)(lvag,oapla+
e={i,j}eActive(S*)
HU{(i,j),(l,O)}Hg) > ¢/3.actdegg.(¢) Yle L (3.2.2)

Figure 3.3: SDP*(h : S* — {0, 1}) for simultaneous MAX-CUT with partial fixing

If we consider the SDP* without the constraint (3.2.2), it is easy to see that
this is a relaxation. Given a partition (U, U) of V that achieves a simultaneous
optimum, we can set vectors vr,, = vy if the pair (7, «) is consistent with 1,
(i.e. 1y assigns o to T') and vr o = 0 otherwise. vy can be viewed as a vector that
denotes 1.

A part of our analysis require that for every low variance instance, the ex-
pected weighted fraction of active edges that we cut is at least a constant fraction
of its active degree. An optimal SDP solution without constraint (3.2.2) may not
guarantee this condition (for the rounding procedure we choose). Hence, we
force the SDP solution to satisfy this property by adding constraint (3.2.2). We
need to relax constraint (3.2.1) to make sure that there is a solution that satisfies

all the constraints.
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We now prove that SDP*, in its present form, has feasible solutions.

Lemma 3.2.4 SDP*(h*) shown in Figure 3.3 has a feasible solution.

Proof: To show that SDP™ has a feasible solution, it suffices to show that there
exists an integral solution that satisfies the constraints.

Fix an optimal assignment f* : IV — {0, 1} to the simultaneous instance. f*
satisfies V/ € [k], val(f*,&;) = ¢,. Consider the following random assignment:
Forall v e V\S*

f*(v) with probability (1 —¢)
r(v) =

f*(v) otherwise

where f*(v) is f*(v) flipped. For v € S*, set r(v) = f*(v). Now, for any ¢ € L, let

Y, denote the random variable

vi— 3 &le) ).

ecActive(S*)

We have E[e(r)] = ¢, hence E[Y/] = ¢/2 - actdegg. (¢). Also,

Elval(r.&)]= > &le)-Ele(r)]+ >,  &le)-Ele(r)]

T

e¢Active(S*) ecActive(S*),
e(f*)=1
= > &le)-e(fH+ D Ele) min((l-e)’+e%1-¢)
e¢Active(S*) ecActive(S*),
e(f*)=1

>(1-2) ). &le)

31



Thus, we have,
1. E[Yr] = ¢/2 - actdegg. ().
2. E[val(r,&)] = (1 — 2¢)cy.

Recall that the SDP* involves only the low variance instances. Also, the
assignment r is e-smooth on the set 1/\S*. Therefore, we have concentration

guarantees as given by point 1 of Lemma 3.2.2.

Pr[Ye < (1 — ) E[Yi]] < do
Prlval(r, &) < (1 — &o) E[val(r, &)]] < do.

Hence, with probability at least 1 — 29y, we have Y; > (1 — ¢/2) - /2 - actdegg. (¢) =
¢/3 - actdegg. () and val(r, &) = (1 —¢/2)(1 — 2¢)cp = (1 — 3¢)cy.

Now we do union bound over all low variance instances, we get with a
probability at least 1 — 2 - §, - £ = 4/5, all the SDP constraints are satisfied by
integral solution r. Thus, there exists an integral solution which satisfies all

SDP*(h*) constraints and hence is feasible. n

3.2.3.3 Lasserre Hierarchy SDP formulation.

We now describe the r*"-level Lasserre SDP for the SDP in Figure 3.3.

The SDP formulation has vectors vz, for all 7' < V such that |7 < r and
a € {0, 1}IT1, In terms of local distribution, the SDP solution consists of consistent
local distribution on every set T' of size at most r (denoted by pr). The random
variable corresponding to set T is denoted by X distributed over {0, 1}/7]. The

vector solution and the local distribution are related as follows: Suppose 7" and
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Z (Eole)(lvisotigyacoyl VSV, S| <r—2,

e:{iyj}egf

+visogigac@onl3) ) Vo e {0, 13151,
> (1—3e)er]|vis,e? vl e [k] (3.2.3)
> (Ee(e)(|visotigyasonl VS eV |Sl<r-2,
e={i,j}eActive(S*)
+visogigac@orl3) ) Vo e {0,135,
> ¢/s.actdegg. (0)|v(s,0y | Vie L (3.2.4)

<'U{S,a}7 ’U{T,ﬁ}> = HU{SUT,aoﬂ}H% VS, T <V, |S U T| <7,
ae {0,119, ge {0, 1},

(3.2.5)
(Vga,vrp) =0 VS, TSV, |SuT|<r,
ae {0,119 g e {0, 1},
st Qysar # Bisar (3.2.6)

lvreyl? = Wigay,vg) VT SV, |T| <rae{0,1}7
(Wis,ap Viipy) = Wisap, gy VS SV, [S|<r—1ae{0,1}

Vie S*,b = h(i) (3.2.7)
lvgl* =1

Figure 3.4: r-round Lasserre lift of SDP*(h : S* — {0,1}) for simultaneous
MAX-CUT with partial fixing

U are subsets of V such that [T U U| < r and the assignments « € {0, 1}!"l and

B € {0,1}IVI are consistent on T' n U then

(ra,vup) = Pr (Xr=a, Xy =3).
HTOU

To ensure the consistency among local distributions, we have to add the
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constraints 3.2.5 and 3.2.6 to the SDP in Figure 3.4. Here if a € {0,1}/*l is
an assignment to the vertices in S, and if S’ = S, s € {0, 1}/l denotes the
assignment « restricted to the vertices in S’. Also, if & and /5 are assignments to
sets S and 7" agreeing on S N T, then we denote a o 3 an assignment to S U T'.
We also add the set of constraints (Equation 3.2.7 in Figure 3.4) to capture the
partial assignment h : S* — {0, 1} given by pre-processing.

With these definitions and constraints, the objective is to ensure that for all

Ce k],

D, &le)Pr[Xg = (0,1) v Xg 5y = (1,0)]

€= {17_]}65[

= (1 — 38)0@

A simple way to capture this would be to write the objective of the SDP
solution similar to the basic SDP formulation, as follows.
D0 Ele) (ool + lvg,aol3)
e={i=j}ege

= (1 — 35)@
Lemma 3.2.5 r-round Lasserre SDP shown in Figure 3.4 has a feasible solution.

Proof: Note that the feasible solution given for the basic SDP in Lemma 3.2.4 is
integral. Therefore, we can directly conclude that the Lasserre lift of the SDP is
feasible, as the same solution can be extended to the Lasserre SDP.

Assign vg , to vy if in the integral solution, the vertices in the set S were

assigned to «a in that order, otherwise assign vg , to 0. [
In order to make the solution locally independent, we will need to condition
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based on the local distribution (Refer Section 3.2.3.4). Therefore, we need to re-
write the objective so that it is satisfied (w.r.t the conditioned local distribution)
even after conditioning on at most r variables, as shown in Equation 3.2.3 in the
SDP formulation.

Also, similar to the previous case, we need to ensure that the solution post-
conditioning still cuts at least a constant fraction of the active edges, which is
ensured by adding the set of constraints specified in Equation 3.2.4 in the SDP.

We observe that solving the SDP using ellipsoid method can result in a small
additive error, and if actdegg. (¢) is small compared to this additive error, the
error would be significant. This will not cause any issues and we elaborate on
this more. We can solve the SDP using ellipsoid method with an error of ¢ in time
polynomial in n and log(1/¢). Therefore, we can take ¢ to be exp(—poly(n)) and
still solve the SDP in time polynomial in n. We assumed that the non-zero edge
weights are at least exp(—n°) for some constant ¢ > 0. Therefore, if the active
degree is non-zero, it is at least exp(—n°). If we take ¢ = exp(—n®) for ¢ >> ¢,
we can solve the SDP in time polynomial in » and get a vector solution which
satisfies all the constraints upto additive error ¢ which is upto multiplicative
factor of (1 + o(1)). This will not have a major effect on our analysis and hence
we assume from here onward that the vector solution that we get satisfies the all

the constraints exactly.

3.2.3.4 Obtaining independent local solution

The notion of an independent solution (which is formalized below in Defini-
tion 3.2.6) that we need is different from [RT12]. Following procedure in Fig-

ure 3.5 is used to achieve the kind of independence we need.
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Definition 3.2.6 A Lasserre solution is 6-independent if it satisfies the following condi-

tion.

Vie L, E D I(Xa; X)) | <6

a,b~actdistgx (£) ijet1,2)

Input: » + 2 round Lasserre solution of a given simultaneous MAX-CUT in-

stance, § > %

Output: 2-independent 2-round Lasserre solution.

1. Forall ¢y,...,¢,» € £, and for all edges €’ € actdistg: (¢;) for all i € [r/2].

o Let S = Ujepyg{el, b} be the endpoints of all the edges from (1).

e For every a € {0, 1}/ such that Pr[Xs = a] > 0 in the local discti-
bution:

— Condition the SDP solution on the event Xg = a.
— Output if conditioned solution if it is 2-independent.

Figure 3.5: Making locally independent solution

Lemma 3.2.7 Forall § > 0, there exists t < 2k/§ and edges e, €2, ..., e' € € such that

Vie L, (3.2.8)

E [](Xa17Xa2;Xb17Xb2|

a,b~actdistgx (£)

X1, X

617 627"

'aXe’i?Xt)] <0

Proof:

Consider the following potential function,

¢:Z E H(XanXtm)'

er, @cactdistgx )]
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As entropy of a bit is at most 1, clearly ¢ < 2k. We have the following identity for
each ¢ € £ which follows from conditional entropy and linearity of expectation
E [H<Xa1’Xa2|Xb1’Xb2)]
a,beactdistgx (£)

= E [H(XauXaz)]_

a€cactdistgx (£)

E ](XalaXaz;XqubQ)

a,beactdistgx (£)

This identity suggests that if for some ( € £, Eq peactdistsx (¢) L (Xa1, Xag: Xp,, Xp,) >
d then there exists a conditioning which reduces the potential function by at least
0. Thus, either the current conditioned solution satisfies (3.2.8) in which case
we are done or there exists an edge b such that if we condition the SDP solution
based on the value of its endpoints (b;, b) according to the local distribution then
the potential function decreases by at least ¢. So, if we fail to achieve (3.2.8) then ¢
decreases by at least . As entropy is always non-negative and conditioning never
increases entropy (Fact 2.1.5), this process cannot go beyond 2k /6 conditioning.

Thus, before at most 2k/§ conditioning, we are guaranteed to achieve (3.2.8).

The following fact follows from the data processing inequality given earlier

(Theorem 2.1.7).

Fact 3.2.8 If X;, X,,Y; and Y; are random variables then for i, j € {1, 2}, we have

[(X;Y)) < 1(X1, Xo; Y1, Ya).

The following corollary follows from Lemma 3.2.7 and Fact 3.2.8.
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Corollary 3.2.9 For all § > 0, there exists t < %, and edges e',e? ... €' € &, such

that

Vle L,

E Z I(Xai;ij‘

a,b~actdistgx (£) ijet1,2)

X1 Xel,...,Xet—l,Xet—l) < 4
2 1 2

€1’

Lemma 3.2.10 There exists a fixing of at mos variables such that the conditioned

k
i
solution is ¢ /2 independent as well as satisfies all constraints from SDP*(h*). In par-
ticular, the algorithm in Figure 3.5 returns such a §/2 independent solution. Also, the

running time is bounded by n°(").

Proof: /2 independence follows from Corollary 3.2.9 for ¢ = £ and Fact 3.2.8.
Also, we can verify if a given SDP solution is §/2-independent or not in time
polynomial in n. We now prove the later part.

As the conditioning maintains the marginal distribution of variables and
because of the the Inequality (3.2.3) and (3.2.4), the constraints about the SDP
cut value as well as the fraction of active edges that are cut remain valid in the

conditioned solution. Hence, from Lemma 3.2.4 SDP*(h*) remains feasible. m

3.2.3.5 Rounding Procedure

In this section, we describe the rounding procedure for variables in 1\ S*. The
input to this procedure is 2 round Lasserre solution which is j-independent.
We use a slight variation of GW rounding procedure to round the SDP vector

solution. In particular, we want to maintain the bias of heavily biased random
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variable in our rounding procedure.

SDP gives the vector solution v; o, v; 1 for all i € [n]. Let u; = 2E[X;] — 1, the
expectation is according to the local distribution. Define v; = v;1 — v; 0. These
? — 2<U¢0, Uz‘1> =

Pr[X; = 0] + Pr[X; = 1] — 0 = 1). Let w; be component of v; orthogonal to vy

” ?+ [vio

? = v

v; are the unit vectors (as |v;[|* = [|vi,1 — vio
(vi = vy + w;), |wills = /1 — p?. Let w; be the normalized unit vector of w;.
The rounding procedure is applied on vectors w; along with the “bias” of each

variable (v;, vy). The rounding procedure is shown in Figure 3.6.

Input: /-independent 2 round Lasserre solution, biases p; € [—1,+1] and a
function fr : [-1,1] — [—1, 1] which is bounded by above and below with
some constant degree polynomials

Output: A partition of V.

1. Pick a random Gaussian vector g orthogonal to vy with each co-ordinate
distributed as (0, 1).

2. For eachi € [n]

e Calculate & = (g, w;).

o Letr; — fr(u)
o Sety; = 1if & < ®71(r;/2 + 1/2), otherwise set y; = —1. (Here, ® is
the Gaussian CDF)

Figure 3.6: Rounding procedure

3.2.3.6 Analysis of the rounding procedure

We use the notation poly_, (x) to denote a “polynomial” in = with exponents as
real numbers in (0, 1), such that poly_,(z) — 0 as z — 0.
Note that if we simply use the rounding function fr(z) = z as used in

[RT12] the we get for each instance, in expectation the cut produced by the
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rounding procedure is at least 0.85 times the SDP value (and hence eventually
0.85 approximation for simultaneous MAX-CUT). Here, we leverage the fact that
the constraints on what rounding functions are good for us are mild compared

to [RT12] as explained in Section 3.1.2.

Lemma 3.2.11 For a fixed low variance instance, the rounding procedure described in

Figure 3.6 gives an approximation ratio 0.878001(1 — 3¢) in expectation for the following
fR/

fr(r) =0.79 -2 +0.07-2° +0.14 - 2"

Proof: The proof of this lemma is numerical. We arrive at a informal approx-
imate value for the bound using Matlab code (0.878001) and verify it using
computer assisted techniques. The multiplicative loss of (1 — 3¢) is because of
using SDP*. We elaborate on the exact constant 0.878001 that we get next. The
probability p;; that a given edge (i, j) is cut by the rounding procedure is a func-
tion of y; and p;, whereas its SDP contribution is a quantity ¢;; := 1 — (v;, v;)/2.
Thus to show a lower bound on approximation ratio it is sufficient to prove
the same lower bound on p; ;/g;; for all possible valid configurations of vectors.
The program works in a recursive fashion, by continuously splitting the cube
(all possible valid configuration) into sub-cubes. In each sub-cube, the program
checks if either across all points in the region, the lower bound on a exceeds the
approximation ratio we try to prove or if the upper bound on « is lower than
the approximation ratio we try to prove. It proceeds with further division into
smaller sub-cubes until one of the above is satisfied. If the latter is true at any

point, the code returns a failure, and it returns a success if the entire region can be
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proved to come under the former case. The prover was adapted from [ABG12]
and modified to suit our rounding procedure. For more details on the workings

of the prover, refer [ABG12]. [ ]

Remark 3.2.12 It seems possible to improve the constant 0.878001 by using a different
fr which is continuous and satisfies fr(1) = 1 and fr(—1) = —1 However we suspect

that a serious new idea would be needed to get a gy -approximation algorithm.
We need the following lemma from [RT12].

Lemma 3.2.13 ([RT12]) Let v; and v; be the unit vectors, w; and w; be the compo-

nents of v; and v; that are orthogonal to vg. Then [(w;, wj)| < 21(X;; Xj;).

Above lemma along with Lemma 3.2.10 implies that if we sample an edge

(i1,12), (J1,J2) ~ actdistg«(¢) then we have on average,

|<wi17wj1>| + |<wi17wj2>| + |<wi2>wj1>| + |<w'i27wj2>| < 0.

The rounding procedure is assigning values +1 to variables y; where y; is the
variable for vertex i € V' and its value decides on which side of cut the vertex
i is present in the final solution. Thus y; is a random variable taking values
in {+1, —1}. We now wish to prove similar guarantee as the following lemma
from [RT12], which relates the mutual information between the pair of rounded

variables with the inner product of the corresponding vectors w.

Lemma 3.2.14 ([RT12]) For fr such that fr(x) = =z, if Kw;,w;)| < § then

I(yi;y;) < 513,
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In our case, we need that the mutual information between the events that a
pair of edges are cut is small on average. Thus, our notion of local independence

will be useful in proving this guarantee about mutual information.

Lemma 3.2.15 Fix f to be the rounding function given by Lemma 3.2.11. For a pair of
edges (i1, 12) and (j1, j2), suppose the vectors w corresponding to their endpoints satisfy

the following condition,

|<wi1 ,’le1>| + |<wi1>wj2>|+

’<wi27wj1>| + ‘<wi2awj2>| <0

then 1(yi, Yi»; YjrYj») < poly<1(9).
Proof: Since w; is a normalized vector of w; and |w;| = /1 — u?, we have

3

NCE RV R B
+\/1 — /%21 -\/1 — ,ujgé - [<(wy, , Wy, )|
Wl 2 \/1 — 12, (Wi, W)
Ui 1= g2, |, ,)] |

- < 6. (3.2.9)

Since the total sum is bounded and each quantity is non-negative, at least
one of the three quantities in each summand is at most §/3. We use two crucial

properties of the rounding procedure:

e For the heavily biased variable according to the local distribution, the

rounding procedure also keeps the rounded value heavily biased and

e If two vectors w; and w; are nearly orthogonal, corresponding rounded

values y; and y; are nearly independent.
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We need following claim which we prove in Section 3.4.

Claim 3.2.16 If all these quantities |[{w;,, w;, )|, |[{w;,, W;, )|, |{W;,, w;, )|, and |{w,,,
w;, )| are upper bounded by 63, then we can upper bound I(yi,,yi,); (Ui, Vjn)) <

p0|y<1(5)'

We now formally prove the upper bound on I(y;,vi,: v;,y;,) by case analysis.

We use the following upper bound which follows from data processing inequality.

[(yh Yios yjlyj2) < [(yh ) yiz); (yj1? yjz))'

We now bound the right hand side based on following case analysis.

e Case 1: If all these quantities |[(w;,, w;, )|, |{w;,, w),)|, [{w;,, W;,)|, [{Wi,,
w;, )| are upper bounded by §/? then using Claim 3.2.16, we can upper

bound I(yi,, ¥i,); (Yjr, Yj,)) < poly_,(6)

e Case 2: Consider the case when both the endpoints of an edge (w.l.o.g. of
(i1,42)) have large biasie. , /1 — p2 < 63,4 /1 — p2 < §'3. It implies,

mln(“ - :uh‘? |1 + Mu’) < 61/3

mm(]l - Mi2‘> ’1 + :ulz‘) < (51/3

Assume both p;, , 1;, > 0 (there cases can be handled in a similar way). Then
we have, 1 — p;, < 03 and 1 — y;, < 6Y%. Since the rounding procedure

maintains the bias of a variable for a heavily biased variables, up to some
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constant polynomial factor, we have,

I((Wir s Yia): (Y15 U3)
< H(yi, Yir)
< H(yi,) + H(yi,)
= O(=(1 — poly_; (ki) log(1 — poly ; (pi,))) +
O(—=(1 — poly ; (i, )) log(1 — poly  (i,)))

< pOIY<1(5)'

e Case 3: Consider the case when exactly two non-endpoints of an edge
(w.lo.g. of (i1, j;)) have large bias. This implies that (w;,,w;,) < §/3.
Using the analysis of the previous case we have H(y;, ), H(y;,) < poly_;(9).

Mutual information can be bounded as follows:

I((Yir, Yi); (W Yiz))
< H((Yi1,¥2)) = H((Wirs Y )| (Y515 ¥32))
< H(yi,) + H(yi,) = H(Yio| (Y5, v52))
= H(yi,) + 1((y5, Y5); Yin) (3.2.10)

= p0|y<1(5) + I((yjm ij); yiQ)' (3211)
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Now,

I((Yj1s Y32): i)
= H((W,952)) = H((W51, Y5 |iz)
< H(yj) + H(y) — H(Yplvi)
= H{(y;,) + 1(yj.; ¥io)

= poly_1(0) + 1(Yj,; Uin)-

Therefore, we have

[(yilin; Yij yjz) < p0|y<1(5) + [(ng; yiQ)'

From Claim 3.2.16, I(y;,; vi,) is bounded above by poly_, () as (w;,, w,,) <
51,

e Case 4: Consider the only remaining case in which exactly one variable,
say X;,, has a large bias i.e. /1 — p? < 6'/3. From (3.2.9), it implies that
pairwise inner products of w,,, w; and w;,, are at most §*/°. Hence by

Claim 3.2.16, we have I(v;,; (y;,,Y;,)) < poly_,(d). As before from (3.2.10),

](yi17yi2); (yjmyjz)) < H(yn) + ]((yjmyjz);yiz)

< poly_(9).

We can now upper bound the variance of a cut produced by the randomized

rounding in graph ¢ € L. Define Y, to be a random variable which is equal to the
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total weight of active edges cut by the rounding procedure.

o= D>, &(Oelg).

CeActive(S*)
Lemma 3.2.17 Fix a rounding function fr given in Lemma 3.2.11 and let the SDP
solution is  independent then

| 0
Var(¥;) < %@1() E[Y/]”.

Proof: Let a := 0.8780. Note that by Lemma 3.2.11, we have for an active edge
€(i7 .])’
I- i) Vg
Prle(i,j)iscut] = a - % (3.2.12)

We now lower bound the expected value of V5.

E[Y = Y,  &fe)- Prle(i, j)is cut]

ecActive(S*)

(from (3.2.12))

>a Y £4le) - L0 v0)

, 2
ecActive(S*)

=a- Y &le)([vanom3 + lvigwonl?)
ecActive(S*)

( from (3.2.2))

> - ¢/3 - actdegg. (¢)
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We can now bound the variance as follows:

Var(Yy) =

N

N

N

<

<

<

1 — w1 — Uiy
Z E(1)E(5)Cov [ y“ym, 3/]1%2]

1,j€Active(S*) 2 2

Z (9@(2)5@(]) (}1 : COV[yilyi2>yj1yj2]>

i,j€Active(S*)

Z ge(i)ge(j)[O(\/[(ynyig; YiYi))])  (from Lemma 3.2.15)

i,j€Active(S*)

>, EDEGRoly | D, Kwa, we)l

i,j€Active(S*) a6§i1,i2 }}7
be{j1,j2

(from Lemma 3.2.13)

Y, &@&Gpolys, | E - [1(Xe X))
i,jeActive(S*) %:811322}}

actdegg. (£)* x E poly., E [I(XuXp)]
i,j~actdistgx (£) a~{i1,i2},
b~{j1.52}

(from concavity of poly_;)

actdegg. (£)*x poly_, i E {E' } [1(Xa; Xp)]
11,12), . a~11,22y,
(j17j2)~actd|st5* 0 be{j1 2}

poly_; () - actdegg. (¢)?,

Thus, we have

Corollary 3.2.18 If we set r := poly(k,/c) then for every low variance instance { €

[k],with probability at least 1 — 1/10k we have val(h* U g) = (0.878001 — 4¢)cy.
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Proof: Choosing r a large constant (and thus § very small), by Lemma 3.2.17
and application of Chebyshev’s Inequality, we can deduce that with probability
at least 1 — 1/10k, we have Y; > (1 — ¢) E[Y;]. Thus, with probability at least
1 — 1/10k, we have,

val(h* U g, &) = val(h*, &) + Y,
> val(h*, &) + (1 —¢) E[Y/]
> (1 —¢)-Elval(h", &) + Y]
= (1—¢)-E[val(h* v g, W,)]
> (1—¢)-0.878001 - (1 — 3¢) - ¢

> (0.878001 — 4e) - ¢4,

where we have used Lemma 3.2.11 for the lower bound E[val(h* U g, W,)] >
0.878001 - (1 — 3€)cy, n
3.2.3.7 Post-Processing
Lemma 3.2.19 For all high variance instances ( € k], we have

1. actdegq.(¢) < 2(1 —~)

2. For each of the first t/2 variables that were brought inside S* because of instance
¢, the total weight of edges from &, incident on each of that variable and totally

contained inside S* is at least 20 - actdegg. (¢).

Proof: Consider any high variance instance ¢ € [k]. Initially, when S = &, we

have actdeg (&) < 2 since the weight of every edge is counted at most twice,
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once for each of the 2 active vertices of the edge, and ), . &(e) = 1. For every v,
note that actdegg, (v, &) < actdegg, (v, &) whenever S; < 5.

Let u be one of the vertices that ends up in S* because of instance /. Let
S, denote the set S = S* just before u was brought into S*. When u is added
to S., we know that actdegg, (u, &) > 7 - actdegg, (¢). Hence, actdegg, ,(¢) <
actdegg (¢) — actdegg, (u,&;) < (1 —y) - actdegg (¢). Since ¢ vertices were brought
into S* because of instance /, and initially actdeg(¢) < 2, we get actdeg. (¢) <
2(1 — )"

Now, let u be one of the first #/2 vertices that ends up in S* because of in-
stance /. Since at least ¢/2 vertices are brought into S* because of instance /,
after u, as above, we get actdegg. () < (1 — 7)”* - actdegg (¢). Combining with
actdegg (u,&) > 7 - actdegg ({), we get actdegg (u, &) = v(1 — )~ "actdegg. (£),
which is at least 21 - actdegg. (¢), by the choice of parameters. Since any edge
incident on a vertex in V\\S* contributes its weight to actdegg. (¢), the total weight
of edges incident on u and totally contained inside S* is at least 20 - actdegg. (¢)

as required. =

We now describe a procedure PERTURB (see Figure 3.7) which takes h* : S* —
{0,1} and ¢ : V\S* — {0, 1}, and produces a new h : S* — {0, 1} such that for
all (low variance as well as high variance) instances ¢ € k], val(h U g, &) is not
much smaller than val(h* U ¢, &), and furthermore, for all high variance instances
(e [k],val(h U g, &) is large. The procedure works by picking a special vertex in
S* for every high variance instance and perturbing the assignment of 2* to these
special vertices. The partial assignment % is what we will be using to argue that
Step 1d of the algorithm produces a good Pareto approximation. More formally,

we have the following Lemma.
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Input: 4* : S* — {0,1} and g : V\S* — {0, 1}
Output: A perturbed assignment » : S* — {0, 1}.

1. Initialize h < h*.

2. For¢ =1, ...k, ifinstance ¢ is a high variance instance case (i.e., count, =
t), we pick a special variable v, € S* associated to this instance as follows:

(@) Let B ={veV |3le[k]with } ..., Ele) e(hug) =g -vallhu
g,&r)}. Since the weight of each edge is counted at most twice, we
know that |B| < %.

(b) Let U be the set consisting of the first ¢/2 vertices brought into S*
because of instance /.

(c) Since {2 > |B| + k, there exists some u € U such that u ¢ B u
{v1,...,v-1}. We define v, to be w.

(d) By Lemma 3.2.19, the total £ weight of edges that are incident on v,
and only containing vertices from S* is at least 20 - actdegg. (¢). We
update h by setting h(v,) to be that value from {0, 1} such that at
least half of the &, weight of these edges is satisfied.

3. Return the assignment h.

Figure 3.7: Procedure PERTURB for perturbing the optimal assignment
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Lemma 3.2.20 For the assignment h obtained from Procedure PERTURB (see Fig-
ure 3.7), for each { € [k], val(h U ¢,&) = (1 —¢/2) - val(h* U g,&). Furthermore,

for each high variance instance &, val(h U g, &) > 8 - actdegq. ({).

Proof: Consider the special vertex v, that we choose for high variance instance
¢ e [k]. Since v, ¢ B, the edges incident on v, only contribute at most a ¢/2x
fraction of the objective value in each instance. Thus, changing the assignment
v can reduce the value of any instance by at most a ;- fraction of their current
objective value. Also, we pick different special variables for each high variance
instance. Hence, the total effect of these perturbations on any instance is that it

e

reduces the objective value (given by h* U g) by at most 1 — (1 — £)* <

o fraction.

2
Hence for all instances ¢ € [k], val(h U ¢, &) = (1 —¢/2) - val(h* U g, &).
For a high variance instance ¢ € k], since v, € U, the vertex v, must be one of the
first ¢/2 variables brought into S* because of /. Hence, by Lemma 3.2.19 the total
weight of edges that are incident on v, and entirely contained inside S* is at least
20 - actdegg. (). Hence, there is an assignment to v, that satisfies at least at least
half the weight of these MAX-CUT constraints in /. At the end of the iteration
when we pick an assignment to vy, we have val(h U g, &) = 10 - actdegg. (¢). Since
the later perturbations do not affect value of this instance by more than ¢/2 fraction,

we get that for the final assignment &, val(h U g,&;) > (1 —¢/2) - 10 - actdegg. (¢) >

8 - actdegg. (¢). u

Theorem 3.2.21 Suppose we're given ¢ € (0, /5], k simultaneous MAX-CUT instances
&1, ..., & on nvariables, and target objective value c,, . . ., ¢, with the guarantee that
there exists an assignment f* such that for each { € k], we have val(f*, &) = c4. Then,

the algorithm ALG-SIM-MAXCUT runs in time exp(+°/e2 log(¥/e2)) - nP oly®) and with
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probability at least 0.9, outputs an assignment f such that for each ¢ € [k|, we have,
val(f, &) = (0.878001 — 5¢) - c.

Proof: Let o := 0.878001. By Corollary 3.2.18 and a union bound, with probabil-
ity at least 0.9, over the choice of g, we have that for every low variance instance
Ce k], val(h* U g,&) = (o — 4e) - ¢,. Henceforth we assume that the assignment
g sampled in Step 1c of the algorithm is such that this event occurs. Let  be the
output of the procedure PERTURB given in Figure 3.7 for the input 2* and g. By

Lemma 3.2.20, h satisfies
1. For every instance ¢ € [k], val(h U g,&) = (1 —¢/2) - val(h* U ¢, &).
2. For every high variance instance /¢ € [k], val(h U ¢, &) = 8 - actdegg. (¢).

We now show that the desired Pareto approximation behavior is achieved when
h is considered as the partial assignment in Step 1d of the algorithm. We analyze
the guarantee for low and high variance instances separately.

For any low variance instance ¢ € [k], from property 1 above, we have val(h U
g,&) = (1 —¢/2) -val(h* U g, &). Since we know that val(h* U g,&) = (o — 4e) - ¢,

we haveval(h U ¢g,&) = (a — 5e) - ¢4.

For every high variance instance ¢ € k], since h* = f*|s-, for any g we must

have,

val(h* U g, &) = val(f*, &) — actdegg. (¢)

> ¢, — actdegg. (¢)
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Combining this with properties 1 and 2 above, we get,

val(h u g, &)
> (1 —¢/2) - max{c, — actdegg. ({), 8 - actdegg.(¢)}

= (a—e¢)- .

Thus, for all instances /¢ € [k], we get val(h U g) = (o — 5¢) - ¢;. Since we are
taking the best assignment h U g at the end of the algorithm ALG-SIM-MAXCUT,

the theorem follows.

Plugging the appropriate value of € in Theorem 3.2.21 completes the proof of
0.8780-factor Pareto approximation (and hence min approximation) for simulta-

neous MAX-CUT for arbitrary constant k.

3.3 Open Questions

The main open question we would like to highlight is the question of deter-
mining optimal approximability and inapproximability results for simultaneous
approximation of constraint satisfaction problems (CSPs). In particular, it would
be very interesting to develop techniques for showing nontrivial hardness of

approximation in this context.
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3.4 Deferred Proofs

3.4.1 Proof of Claim 3.2.16

We need following bounds on the gaussian random variables.

Claim 3.4.1 Forall x > 0, Pryn01)[]g] > 2] < o

Claim 3.4.2 Forall 1 >z > 0, Prg_yon|g] < 2] < .

Random process P: Let w;, w,y, w3, ws € R* be unit vectors and iy, pta, i3, 114
be any real numbers. Consider the following random variables (y1, y2, Y3, Y1)
where y; € {—1,+1} which are sampled as follows: Pick a random vector g :=

(91, g2, 93, 1) € R* with each entry distributed as N(0,1). Set

yi = —1 if{g,w;) <,

= +1 otherwise.

The following lemmas gives sufficient conditions when I(y1, y2; ys, y4) is small.
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Lemma 3.4.3 Suppose [(w;, w;)| < § forall i,j € [4], i # j and y;s are sampled

according to the random process P, then for all b € {—1, +1}*, we have

Pr[(y1, 92, 55,94) = b] — | | Prlyi = bi]| = O(5™),

1<i<4

In fact, the joint distribution on any subset of variables is close to its product distribution

pointwise with an additive error of at most O(6"*).

Proof: Assume that 0 < ¢ < 100 (otherwise, the lemma is trivial). Let e; is a
unit vector with 1 in the i coordinate. By rotational symmetry, we can assume
that (w;, e;) > 1— 206 for all .. We can write vector w; = 4/1 — &;e; ++/9;n; where
7; is a unit vector orthogonal to e;. The conditions on inner products therefore
imply each §; < 405. We will prove the lemma for b = (—1, —1, —1, —1) (all other

cases are similar). We have,

Prly; = —1,Vi € [4]] = Pr[Vi, (g, wi) < p]

— Pr[Vi,n/T — 6,9 + \/:{g,m;) < pi]

Let B be the following event,

B : There exists 1 < i < 4, such that [(g,n;)| = Y/s"4.
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By union bound,

B] = Y Prllg.mo| > o]
<4-Pr[[{g,m)| = /5]

=4. > 1/sla
P llgl > e]

where last inequality uses Claim 3.4.1. Now,

Prly;, = —1,V1 < i€ [4]] = Pr[B] - Prly; = —1,Vi € [4]|B]+
Pr[B] - Pry; = —1,Vi € [4]| B]

<de 35 -1+ Pry; = —1,Vi e [4]|B), (3.4.1)

We now estimate the probability conditioned on event B.

Prly; = —1,Vi € [4]|B] = Pr[Vi, /1 = 6;g: + \/0:(g,m:) < ;| B]
1
Pr[Vi, A/1 — 8;9; < p1i +/0; - M] (g; independent)

= HPr[ 1—06;9; < i + \/@ #] (using 6; < 400)
< H Pr[v/1 — 6;g; < i + /405" (using 6; < Y/2)

HPr (1 + 6) (s +/405"1)] (using 6; < 1/2)
S HPT[Qz‘ < i + Gipti + 2 - V406"

H Prlg; < (s + 0ipas + 1567)].
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We now analyse the above probability in cases, and show the following:
Pr[gi < W+ 5#/4‘ + 1551/4)] < HPI‘[QZ‘ < ,UJZ‘] + 0(51/4) (342)
Notice that

/’1'
1<i<4

(from Claim 3.4.2) < ( H Prly; = b;] + 051/4)
)

< | Prly: = bi] + O(s"

1<i<4

(3.4.3)

e Case 1: u; <O.

In this case, we can directly say the following.
[ TPrlg: < pitoims + 1587 < [ [ Prlgs < i + 156].

o Case2: 0 <y < 513_?4 We can say the following because §; < 400.

[ [Prlg < ps + Sips + 156"] < [ [ Prlgs < i + O(5")]

o Case 3: u; > 513% In this case, since y; is large, we have the following from

Claim 3.4.1.
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Therefore,
[ [Prlg: < i + Sipi +156") < 1< [ [ Prlgs < ] + 0(6")
Form (3.4.1), (3.4.2) and (3.4.3) we get

Prl(y1, 42,43, 9a) = bl — [ [ Prly: = bi] < O(5™).

1<i<4

The other direction can be shown in an analogous way. n

We can now bound the Mutual information between (y;, y2) and (ys, y4) if the

vectors w; satisfy the condition from Lemma 3.4.3

Lemma 3.4.4 Suppose [(w;, w;)| < ¢ forall i,j € [4] and i # j, then I((y1,y2) ;

(y3,ya)) < poly_,(0), where y; are sampled according to the random process P.

Proof: The lemma follows from Lemma 3.4.3 as the distribution is close to the
product distribution.

To formally prove the lemma, first we assume that each of the random vari-
ables y; is not heavily biased i.e. Prly; = —1] € [6Y/1% 1 — §¥/1%0]. Using the

definition of mutual information,

I((y1,y2); (y3.ya))

Prly = b]
= rly =15]-1
bl,bgz,bg,b4 [P [y ] o8 Pr[<y17y2) = (51>b2)] : PT[(?J&?M) = (53, 54)]
{—1+1}
(3.4.4)
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Form Lemma 3.4.3, we have

Pr((y1,y2) = (b1, b2)] = Prlys = b1] Py = ba] — O(6™*)

Pr[(ys, ya) = (b3, ba)] = Prlys = bs] Pr[ys = ba] — O(6"")

Plugging in and simplifying (3.4.4), we get

H1<‘<4 Pr[yi = bi] + 0(51/4)
I((y1,2); (ys,a) < Y, Pr[y = b]-log == ;
b1,ba,b3,ba{—1+1} ngig4 Pr[yz - bl] B 0(5 /4)

As each variable is not heavily biased, we have [],_,., Pry; = b;] = §"/?* and

§1/25LO(5'4)

hence the log in the above expression can be upper bounded by log B0

which is at most log(1 + O(§'/1%)) < O(§'/1°). Hence we have

I((y1, y2); (Y3, ya)) < O(6Y1°).

If a variable is heavily biased, suppose say y; has large bias, then we can claim
I((y1,92); (y3,ya)) < poly_1(0) + I(y2; (y3,ys)) using derivation similar to ( 3.2.11)
and then proceed by upper bounding 7 (ys; (y3,y4)) in a similar fashion as above.

Proof of Claim 3.2.16: The proof follows from Lemma 3.4.4 noting the fact that

the upper bound is independent of ;.

3.4.2 Proof of Lemma 3.2.2

Proof: Item 1 of the lemma follows from Chebyshev’s inequality. We now focus

59



on the proof of Item 2. We have

2 2
Uvary > dpg;; - Lmeany

= Z Ei(e)Ei(€)) = dpel - Lmean]

e~ge'

Let eg be an edge in Active(S) that maximizes )| Ev(e). We can now upper

e~geq

bound the expression on the left as follows

de Ele) < D Ele)- ) 54()

e~ge! e~gsep ecActive(S

Therefore, we have

Z Ele) - 2 Ei(e) = 6ol - Lmean;

e~sep ecActive(S)
2
> doen - T2 - Z Ele)
ecActive(S)
= Z Ele) = doep - 7% Z Ele)
e~geq ecActive(S)

Let v be the end vertex of ¢, that has greater weight of active edges adjacent to it,

v e V\S. We can say the following

1
actdegg (v, () = = - foeg - 72 - 2 Eile).

ecActive(S)

\)

From the definition of actdegg(¢), we can say the following

actdegg(¢) < 2- Z Ele),

ecActive(S)
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as each edge could contribute at most twice to the sum, once for each end vertex.

This gives us the following required result.

actdegq (v, £) = ~ - Soeg - 72 - actdegg ().

A
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Chapter 4

Improved Hardness for 3LIN

41 Introduction

In this paper, we study the 3-LIN problem. An instance of 3-LIN consists of a set
of n variables over F;, and a set of m equations that contain at most three variables
each, and the goal is to find an assignment to the n variables that satisfies
the most number of equations.! If the given set of linear equations admits an
assignment that satisfies every equation, then one such assignment can be found
in polynomial time by Gaussian elimination. However, the general problem of
finding the most of number of equations is NP-hard when the instance does not
admit a satisfying assignment, and a large amount of research has been done on
the limit of polynomial time approximation algorithms.

Assigning random values satisfies exactly half the equations in expectation,
and gives a /2-approximation algorithm. Hastad and Venkatesh [HV02] get

an approximation factor of /2 + 1/o(ym), which was improved by Khot and

1This maximization version is also known as MAX 3-LIN in the literature.
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Naor [KNO7] to 1/2 + O(y/legn/n).

From the hardness side, there are strong hardness results even when the
instance is almost-satisfiable. For 1 > ¢ > s > 0, let GAP 3-LIN(c, s) denote
the problem of distinguishing whether the given instance of 3-LIN is at least
c-satisfiable or at most s-satisfiable. Hastad’s classic hardness results [Has01]

show the following.
Theorem 4.1.1 ([Has011) The following hardness results for GAP 3-LIN hold.

1. For any constant ¢ > 0, GAP 3-LIN(1 — ¢, Y2 + ¢) is NP-hard.

2. There exists a constant ¢ > 0 such that for ¢ = 1/(ogn)°, there is no poly-
nomial time algorithm that solves GAP 3-LIN(1 — ¢,1/2 + ¢) unless NP <

DTIME[nCUcglosn)],

Hastad’s results are proved by giving the reduction from LABEL COVER to
3-LIN. LABEL COVER is a common starting point for hardness results, and we

define the optimization problem below.

Definition 4.1.2 (LABEL COVER) An instance of LABEL COVER contains a regular
bipartite multi- graph G = (A, B, E) and two finite sets ¥ 4 and X5, where |¥ 4| = |Xp|.
Every vertex in A is supposed to get a label in 3 4, and every vertex in B is supposed
to get a label in X . For each edge e € E there is a projection 7, : ¥4 — Xp. Given a
labeling to the vertices of the graph, i.e., functions ¢4 : A — Y s and ¢p : B — X, an
edge e = (a,b) € E is said to be “satisfied” if m.(¢a(a)) = ¢p(b). For1 > c> s> 1,
GAP LABEL COVER(c, s) is the problem if distinguishing whether the given instance

of LABEL COVER is at least c-satisfiable or at most s-satisfiable.

The aforementioned Hastad’s theorem can also be re-stated in terms of a

reduction from GAP LABEL COVER(1, 9) as follows.
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Theorem 4.1.3 ([Has01]) For every € € (0, 1) and positive integer (, there exists a
§ = poly(e) and a poly(n, 2, 2")-time reduction to GAP 3-LIN(1 — ¢, /2 + ) from

n-sized instances of GAP LABEL COVER(1, 0) with label size .

When [Hés01] was published, the hardness of LABEL COVER was achieved
by the PCP theorem [AS98, ALM*98] and parallel repetition [Raz98]. More pre-
cisely, GAP LABEL COVER(1, ¢) with label size poly(1/§) was NP-hard under
poly(n'°81/%)-time reductions. The two results of Hastad stated in Theorem 4.1.1
follow from this hardness of GAP LABEL COVER and Theorem 4.1.3 by setting
J to be an arbitrarily small constant and /og» respectively. Since achieving a
subconstant soundness for LABEL COVER by parallel repetition requires a super-
polynomial blowup in the instance size, € > 0 could not be taken to subconstant
under polynomial time reductions. Later in a celebrated paper, Moshkovitz and
Raz [MRO08] gave an improved hardness of LABEL COVER that achieves sub-
constant error under polynomial time reductions. Their main result can be stated

as follows.

Theorem 4.1.4 ((MRO08, Theorem 11]) For every n, and every 6 > 0 (that can be any
function of n), 3-SAT on inputs of size n can be reduced to GAP LABEL COVER(L, ¢)
when LABEL COVER instance has n**+°M) - poly(1/s) vertices and | 4| < exp(poly(1/s)),

%8| < poly(log 1/5).

A corollary of the above result, obtained by combining it with Hastad’s
reduction from Theorem 4.1.3, is that given a system of linear equations, it
is NP-hard to distinguish between cases where 1 — o(1) fraction of equations
are satisfied vs at most /2 + o(1) fraction are satisfied, where the o(1) term is

1/(log logn)—2(1),
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Theorem 4.1.5 (IMRO08]) There exists a constant ¢ > 0 such that for ¢ = 1/(oglogn)e,
GAP 3-LIN(1 — ¢, Y2 + ¢) is NP-hard.

Later, an improved parallel repetition by Dinur and Steurer [DS14] allowed ¢
to be an arbitrary constant.

The above route prove hardness of 3-LIN is restricted by the large size of
the alphabet in the resulting LABEL COVER instance in Theorem 4.1.4. Quan-
titatively, the alphabet size is exponential in poly('/:). The fact that the long
code in Hastad’s reduction has size exponential in the alphabet size restricts
£ = L/(loglogn)0.

Our main contribution for 3-LIN is to bring ¢ in the above result down
to Y/(ogn)e for any constant ¢, while keeping the size of the reduced instance

polynomial (albeit the reduction becomes randomized).

Theorem 4.1.6 (Main) For any constant ¢ > 0 and € = 1/(10gn)°, there is no polynomial

time algorithm for GAP 3-LIN(1 — ¢,1/2 + ¢) unless NP < BPP.

We get around the above alphabet barrier by starting with a reduction that
would make the resulting LABEL COVER linear, and use Hadamard codes instead
of long codes. Since the Hadamard code keeps the reduction size polynomial in
the alphabet size, we can take ¢ = 1/(1ogn)2™. A similar idea was previously used

by Khot [KhoO1]. We define LINEAR LABEL COVER as follows.

Definition 4.1.7 (LINEAR LABEL COVER) A LINEAR LABEL COVER is a special
case of LABEL COVER where the alphabets are of the form £, = F5, X = F} where
a, b are natural numbers. Each projection 7 : F3 — F is affine in the sense that

m(z) = ax + 3 for some a € Fy**, 3 € FS.
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For1 > ¢ > s > 0, the GAP LINEAR LABEL COVER(c, s) is defined similarly to

GAP LABEL COVER(c, s).

We prove the following hardness result for LINEAR LABEL COVER, which

may be of independent interest.

Theorem 4.1.8 (Hardness of Linear Label Cover) For any constant ¢ > 0, for § =
Y(ogn)e, there is no polynomial time algorithm for GAP LINEAR LABEL COVER(1 —

9,0) unless NP < BPP, when LABEL COVER instance has poly(n) vertices and

34| = poly(n),|EXp| = polylog(n).

41.1 Proof Ideas

Our main technical contribution is Theorem 4.1.8 for LINEAR LABEL COVER, es-
sentially proving a linear analogue of the Moshkovitz-Raz PCP [MRO08] followed
by the Dinur-Steurer parallel repetition [DS14]. The proof is given through a

long sequence of reductions. We split them in 3 major steps.

1. Interestingly, the starting point of our reduction is again the hardness of
(not necessarily linear) LABEL COVER proved by Moshkovitz and Raz
[MRO8] augmented by Dinur and Steurer [DS14], proving NP-hardness
of GAP LABEL COVER(1, Yiog¢n) for any ¢ > 0, while keeping the reduction
size and the alphabet size polynomial. In Section 4.2, we give a randomized
reduction from this LABEL COVER to GAP LIN(1 — Viog®n, 0.9). This style
of reduction appeared previous from LABEL COVER to CLOSEST VECTOR
PROBLEM [Kho10]. Note that the standard proof of the PCP theorem en-
codes 3-SAT (or CIRCUIT SAT) by solving quadratic equations over F5,

and this is essentially the only place that needs where nonlinearity occurs.
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Our hardness result for solving linear equations with completeness very
close to (but not exactly) 1 allows us to follow previous PCP constructions
that will ensure linearity of the LABEL COVER instance in the subsequent

steps.

. To prove the hardness of LINEAR LABEL COVER given the above hardness
of LIN, we closely follow the steps of Dinur and Harsha [DH13], who
gave a simpler and modular proof of [MR08]. The two basic building
blocks in their proof are robust PCPs and decodable PCPs. Robust PCPs
are PCPs where in the soundness case, for any proof and most random
choices of the verifier, not only are the local views non-accepting, but
they are also very far from any accepting string. It is indeed equivalent
to LABEL COVER. Using our previous hardness for LINas the starting
point and following the standard robust PCP construction (e.g., low-degree
extension and sum-check protocol), we can prove a polynomial time re-
duction to LINEAR LABEL COVER(1 — 1/log“n, 1/logn) for any ¢ > 1, but
the alphabet size will be always exp(log® n) for some ¢, > 1, which is

superpolynomial.

. The second building block, decodable PCP, is similar to robust PCP with the
additional requirement that the prover is given a position 7 in the original
string and supposed to output the value of the ith position if the given
proof is a honest encoding of a valid original string. The main idea of
Dinur and Harsha [DH13] is to iteratively compose a robust PCP with a
suitable decodable PCP, where the composed PCP is another robust PCP

that consists of a decodable PCP for each constraint of the original robust
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PCP. This iteratively reduces the query complexity and the alphabet size of
the robust PCP, which is related to the alphabet size of the equivalent LABEL
CoOVER instance. This iterative composition is interleaved and preprocessed
by technical operations that reduce the alphabet size of the robust PCP and

make it regular.

Once these two building blocks are linear, the operations of [DH13] can
be used verbatim in our construction. Our main observation is that every
step of this construction preserves (1) the robust completeness 1 — ¢§ for
some J = Y/polylog(n), and (2) the linearity, which were not issues in [DH13].
In Section 4.3, we introduce the basic building blocks and these operations,
and show how they preserve robust completeness and linearity. These
iterative operations will eventually reduce the alphabet size of the LINEAR

LABEL COVER polynomial, proving Theorem 4.1.8.

After the hardness of LINEAR LABEL COVER is proved, we give a reduction

from LINEAR LABEL COVER with the above parameters to 3-LIN with the re-

quired parameters. We do this by composing with the Hadamard Code to get a

(1 —¢) vs (Y2 4+ ¢) NP-hardness result for 3LIN. Similar PCP constructions based

on Hadamard codes were presented in [KhoO1]. Details of this step can be found

in Section 4.4.

4.2 Reduction to System of Linear Equations

In this section, we first prove the hardness of approximate solving linear equa-

tions over large fields, where each equation can involve as many variables as

possible. It will serve as the starting point towards proving hardness of LINEAR
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LABEL COVER.

Theorem 4.2.1 For any constant ¢ > 0, ¢ = Y(ogn)®, GAP LIN(1 — Y(0gn)°, 0.9) is

NP-hard under polynomial time randomized reductions.

Proof: The proof starts from the following hardness of LABEL COVER, which is
obtained by combining the main result of Moshkovitz and Raz [MRO08] with the

parallel repetition of Dinur and Steurer [DS14].

Theorem 4.2.2 ((MRO08, DS14]) For any constant ¢ > 0, and for § = 1/(ogn)°, when
the LABEL COVER instance satisfies | 4|, || < |A|+|B|, GAP LABEL COVER(L, ¢)

is NP-hard.

Let G = (A, B, E), ¥4, ¥, and {7.}.cr be an instance of LABEL COVER. We

show a reduction to LINover Fy where

_ 1
[Zal

e If all LABEL COVER edges are satisfiable, at least (1 ) fraction of

equations are satisfiable.

e If at most ¢ fraction of LABEL COVER edges are satisfiable, at most (1 —

1 . . Lo
—szD) fraction of equations are satisfiable.

For each vertex v € ¥4 U X and possible label ¢ on the Label Cover instance,
we have a variable z, ; in the LIN instance. Let n = |A||X4|+|B||X5| = poly(|A|+
| B|) be the number of variables. Consider the following four kinds of equations.

Recall that every arithmetic is performed over F,.
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(1) Z Ty =1 Voe A

leX 4
(2) Z%,@Zl Yve B
ZEEB
(3) Z Ly = Ty V(u, U) S E,Vﬁ € EB

Py (1) =~

(4) xyp =0 V(v,0) e Ax X4

In our final LINinstance, we treat (1), (2), and (3) as hard constraints that need
to be always satisfied, and find « that always satisfies all hard constraints and
as many constraints in (4) as possible. Also note that in (4), we only consider
vertices in A.

This is equivalent to the usual LINproblem with hard constraints by folding.
Formally, let V' be the set of assignments that satisfy (1), (2), and (3). If V' is empty,
we can conclude that the LABEL COVER instance is unsatisfiable. Otherwise,
there exist ¢ € N and c linearly independent vectors yo, ..., y. € FgAXEA)U(BXEB)
such that V' = {yo + X, ¥izi : #1,..., 2. € Fa}. This gives an one-to-one corre-
spondence between F§ and V/, so we can treat 21, . . ., z. as the variables of LINand

write the fourth constraints x,, = 0 in terms of z, which gives an instance of

LINwithout hard constraints.

Completeness. If the LABEL COVER instance is satisfiable, =, , = 1 if and only
if v is assigned with ¢ gives an assignment that satisfies (1), (2), and (3), and

violates one equation in (4) for each v € A.
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Soundness. Let z be an assignment that satisfies (1), (2), and (3). Forve Au B,
let L, := {¢: z,, = 1}. Since (1) and (2) require >, z,, = 1 foreveryv e Au B,
L, is not empty for every v.

Consider the randomized strategy for LABEL COVER where eachve AU B
is assigned with a uniform random label from L, independently. For (u,v) € E
withu e A,v € B, by (3), x,¢ = 1 for some { € ¥z implies that there exists r € ¥4
with 7,,(r) = ¢ such that z,,, = 1. This implies (u, v) is satisfied with probability
at least ‘L—lu‘ by the randomized strategy. Then the expected fraction of the LABEL

COVER constraints satisfied by the strategy is at least

Al
ueA |Lu| /EuEAHLuH

Therefore, if at most ¢ fraction of LABEL COVER constraints are simultaneously

satisfiable, we can conclude that

1
0> ———
EueAHLUH

| =

L,|| =
< BllL

So in total, at least m fraction of equations are violated.

Gap Amplification. We have a hardness of LINover F, where the completeness

value is at least 1 — ﬁ and the soundness value is at most 1 — m Consider
a new system of linear equations where we sample m linear equations indepen-
dently, where each new equation randomly chooses ¢ - |¥ 4| old equations and
takes a random linear combination of them. In the completeness case, at least an
(1 —0(0)) fraction of new equations can be satisfied by a good assignment to old

equations.
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In the soundness case, fix an assignment to n possible variables. (There are

2" of them.) It satisfies at most an 1 — m fraction of old equations. Note that

if a new equation chooses an old equation not satisfied by the assignment, it is

satisfied with probability exactly 1/2. Therefore, the expected number of new

equations satisfied by this fixed assignment is at most

1 sza 1 1 1
(1= —]<m-{-+=) <0 .
me (0 G ™ e g) < (G ) <0

For a given c € N, let 6 = !/log°n. By taking sufficiently large m = O(n), we can
apply the Chernoff and union bound to conclude that no assignment satisfies
more than a 0.9 fraction of new equations. So we reduce from LABEL COVER to

GAP LIN(1 — O(0),0.9), which finishes the proof. |

We remark that the sampling performed above is the only step in our reduc-

tion involving randomization.

4.3 Reduction to Linear Label Cover

In this section, we show for any ¢ > 0, there is no polynomial time algorithm
for GAP LINEAR LABEL COVER(1 — ¢,¢) with € = V(ogn)c unless NP < BPP,
proving Theorem 4.1.8.

The construction we employ is almost identical to that of Dinur and Har-
sha [DH13], except that the basic building blocks (robust PCP and decodable
PCP) try to prove (almost) satisfiability of linear equations instead of standard
quadratic equations. They are introduced in Sections 4.3.1 and 4.3.2.

After constructing the building blocks, the result of [DH13] is proved by
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iterative composition of them followed by technical steps including alphabet and
degree reduction. Our main observation in this part is that each of the steps in the
construction preserves linearity so that the final LABEL COVER instance produced
also has a liear structure. We present them in Section 4.3.3 and Section 4.3.4.

Finally, Section 4.3.5 shows how to combine all these steps to prove Theorem 4.1.8.

4.3.1 Robust PCPs

In this subsection, we define robust PCPs. For two strings x, y of the same length
n, let agr(z,y) denote the relative agreement of the strings x, y, defined as

Pr [z; = yi]

- i€[n]

agr(z,y) :

If S is a set of strings, agr(x, S) is defined as max,cs{agr(z,y)}.

Definition 4.3.1 (Robust PCPs) For functions r,q,m,a,s : N - Nand ¢,§ : N —
[0, 1], a verifier V' is a robust probabilistically checkable proof (robust PCP) system
for a promise problem L = (Lygs, Lno) with randomness complexity r, query complexity
q, proof length m, alphabet size a, robust completeness ¢, and robust soundness error § if
V' is a probabilistic polynomial-time algorithm that behaves as follows: On input x of
length n and oracle access to a proof string m € ¥™™ over the (proof) alphabet Y. where
|X| = a(n), V reads the input x, tosses at most r = r(n) random coins, and generates a
sequence of locations I = (iy, ... ,i,) € [m]9"™ and a predicate f : ¥9 — {0, 1}, which

satisfy the following properties.
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Robust Completeness. If x € Lygs then there exists m such that

E [agr(7, fH1)] = c (4.3.1)
(Z,f)

Robust Soundness. If x € Lno then for every m,

E [agr(7, f7H(1))] < 6, (4.3.2)
(L)

where the distribution over (I, f) is determined by x and the random coins of V.
We say that V is linear if ¥ = F% for some b and for every f, the accepting sets of
the predicate f, i.e., f~'(1), forms an affine subspace of ©.9 = F over the field F.

Robust completeness and soundness must be contrasted with (regular) com-
pleteness and soundness of standard PCP verifiers in which the expression for
completeness and soundness given in (4.3.1) and (4.3.2) respectively are replaced

as follows:

Completeness: 113]1;[f(71'1) =1]>¢,

Soundness: F}I;[f(m) =1] <6é.

In fact, this is the only difference between the above definition and the stan-
dard definition of a PCP system. The robust soundness states that not only does
the local view violate the local predicate f, but in fact has very little agreement
with any of the satisfying assignments of f (and thus is a strengthening of stan-
dard robustness). Robust completeness on the other hand is a weakening of
standard completeness.

Another crucial aspect of robust PCP is its equivalence to LABEL COVER.
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Namely, existence of robust PCP for L with parameters r,q, m,a,s, c,d is equiva-
lent to existence of a reduction from L to GAP LABEL COVER(c, §) where |A| =
2" |B] = m,|X4| < a%|Xp| = aand each v € A has degree q. See Lemma 2.5
of [DH13]. Also note that the definition of linearity is equivalent in robust PCP

and LABEL COVER.

Theorem 4.3.2 (Robust PCP, Analogous to [DH13, Theorem 6.4]) Constants b,
by > 0, ¢o > 1 exist such that for any ¢ > ¢y and € = 1ogn, GAP LIN(1 — ¢, 0.9) with
n variables has a linear robust verifier with robust completeness 1 — ¢, robust soundness
error €, query complexity 1/, proof length poly(n), randomness complexity O(logn),
and proof alphabet size at most 1/".

Equivalently, there is a (deterministic) polynomial time reduction from GAP LIN
(1 —£,0.9) to GAP LINEAR LABEL COVER(1 — ¢,0.9), where the LABEL COVER
instance has poly(n) veritces, |X4| < exp(1/e" log(1/e")), |Xp| < 1/¢%2, and each

v € A has degree 1/

The proof of this theorem is identical to that of [DH13, Theorem 6.4] and
omitted here. The only difference is that our starting point is GAP LINg, (1 —¢,¢)
with ¢, 1/e = log®“) n instead of standard quadratic equations when performing
the low degree-extension and the sum-check protocol. The theorem follows by
observing that all the operations are linear and hence the final predicate is also
linear. The completeness of the robust PCP is dictated by the completeness value
in Theorem 4.2.1.

Combining this reduction and randomized reduction from Theorem 4.2.1, we

obtain the following theorem (which is a more formal version of Theorem 4.1.8).

Theorem 4.3.3 (Hardness of Linear Label Cover) There exist constants by, by > 0,
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co > 1 such that for any ¢ > cq and € = Y)iog°n, unless NP < BPP, there is no
polynomial time algorithm for GAP LINEAR LABEL COVER(1 —¢, €) where the LABEL
COVER instance has poly(n) veritces, |X 4| < exp(1/e" log(1/e%)), |Xp| < 1/, and

each v € A has degree 1/£".

4.3.2 Decodable PCPs

We now discuss the decodable PCP (dPCP), which differs from a PCP in that it
has a decoder as opposed to a verifier. A decoder is similar to a verifier in that
it checks whether a string is in the given language or not by probabilistically
checking a small number of positions in the proof, but it is additionally supposed
to return the ith position of the original string for given i.

For ¥ = F4 for some a € N, let LI Ny, denote the problem of solving linear
equations where an instance consists of £ variables that can have a value from
¥, and a system of linear equations C' on k - a variables over F, canonically
represented by the £ variables over X. It is equivalent to LINover F; on k - a
variables, except that we consider each block of a variables as one variable that

can take a value from Y. We define a decoder for LI Ny, below.

Definition 4.3.4 (Decoder for LINy) Let ¥ = F$ and o = F% for some a and b.
A decoder for LINy, over a proof alphabet o with parameters m,q,r : N — Nisa
probabilistic polynomial-time algorithm D. It is given a system of linear equations C
on n variables over ¥, and an index j € |n] as input, and oracle access to a proof 7 of
length m(n) over proof alphabet o. It tosses r = r(n) random coins and generates (1)
a sequence of q = q(n) locations I = (iy,...,iq) and (2) a (local decoding) function

f 09— X u{L}. Dis called linear if for every f, P := f~'(X) is an affine space of
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0% = (FP) and f : P — X is an affine function over the base field F.

Now we define a dPCP for LI Ns,. The dPCP in [DH13] is defined for CIRCUIT
SAT, whereas ours is for LI Ny. Note that unlike in [DH13], the dPCP we will
construct does not imply any computational hardness, because it only proves
whether the given system of linear equations is perfectly satisfiable or not, which
is a computationally easy problem. The key point is it proves the system is
satisfiable using a proof which is in some sense “locally decodable”. The dPCP
will then be composed with the previous linear robust PCP, which is a system of

linear equations with imperfect completeness, to reduce the query complexity.

Definition 4.3.5 (Decodable PCPs for LI Ny) For functions 6 : N — [0,1] and
L : N — N, we say that a PCP decoder D is a decodable probabilistically checkable
proof (dPCP) system for LI N, with perfect completeness, soundness 6 and list size L
if the following completeness and soundness properties hold for every system of linear

equations C on n variables over ¥.

Completeness. Forany y € X" that satisfies every equation in C, there exists a proof

m € o™, also called a decodable PCP, such that

Pr[f(mr) = y;] =1,

BLf

where j € [n] is chosen uniformly at random and I, f are distributed according to C. j,

and the verifier’s random coins.
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Soundness. Forany w € o™, there is a list of 0 < ¢ < L strings y',...,y", where

each y' satisfies all equations in C, such that

Prf(nn) ¢ Lk ul] <0

Robust soundness. We say that D is a robust dPCP system for LI N, with robust
soundness error ¢, if the soundness criterion above can be strengthened to the following

robust soundness criterion,

E [agr(m, BAD(f))] <9,

j’I7f

where

BAD(f) i= {we 0% : f(w) ¢ {L,yl....y'}}.
The dPCP result we use is the following.

Theorem 4.3.6 (APCP, Analogous to [DH13, Theorem 6.5]) There exist constants
a, 7y > 0 such that for every 6 = n™“ and input alphabet size ¥ of size at most n”, LI Nx;
has a linear robust decodable PCP system with perfect completeness, robust soundness

1/8

error 6 > 0 and list size ConjSAT-LP < 2/6, query complexity n'/®, proof alphabet o of

size n", proof length poly(n), and randomness complexity O(logn).

The proof of this theorem is identical to that of [DH13, Theorem 6.5], except
that the initial starting point is LI Ny, instead of CIRCUIT SATy,. Since the starting
point is linear and all transformations are linear, the final object is also linear.
The perfect completeness is also maintained. As mentioned before, the dPCP

constructed here does not imply any computational hardness unlike in [DH13].
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4.3.3 Composition

After having building blocks, Dinur and Harsha [DH13] show how to compose
those blocks iteratively to reduce the query complexity and the alphabet size.
Each composition involves several other operations including alphabet and
degree reductions. While the soundness analyses for them are already proved
in [DH13], we show that all of their operations preserve linearity and robust

completeness.

Efficient Composition ((DH13, Theorem 4.2]). In the composition, given a
regular robust linear PCP verifier V' and a robust linear PCP decoder D, the
composed verifier V' expects a decodable PCP for each constraint of V. Recall
that the linearity of V' is equivalent to the fact that each constraint of V' is a
system of linear equations over F,, which is exactly what D expects. An informal

description of the composed verifier is as follows:

1. Randomly choose a location i of the proof for V. Let C},...,Cp be the

constraints of V' containing the location.

2. Using a (¢,e%)-sampler ([ D], [D], E) and a random s € [D], choose a subset
S < {1,...,D} and run the inner PCP decoder D for each C; with j € S to

decode the ith symbol in the original proof.
3. Accept if all the values returned by the PCP decoders are the same.

For the second step above, we use (¢, £2)-samplers given in [Gol11]. Theorem
4.2 of [DH13] shows the soundness of the composed verifier 1/, yielding Table 4.1
below (Table 4.2 in [DH13]).

We check this composition preserves robust completeness and linearity.
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| [V [D] 4
proof alphabet X |o o
randomness complexity | R | r | log M +r +log D
query complexity Q| q 4/et - q
proof degree D |d d
proof length M | m 2R . m
robust soundness error | A | § AL +4Le + 6
list size - L -

Table 4.1: Parameters for Composition.

e Linearity: Linearity (over F) is preserved if both V and D are linear, since
the only additional check we perform is to check whether the returned

values are equal.

e Robust completeness: Suppose there exists a proof II for V' that achieves
the robust completeness of at least 1 — £. Recall that the composed veri-
tier expects, for each constraint of the outer PCP, a satisfying assignment
encoded by the inner dPCP. The proof for the composed verifier is the
concatenation of all these encodings. Consider the proof to the composed
verifier constructed by the honest encoding of the assignment that achieves
the robust completeness for the outer PCP verifier. We will show that this

proof achieves robust completeness 1 — &.

Let i be a proof location in the outer PCP and (1, ..., Cp be the constraints
involving 7. Furthermore, let &; be the fraction of these constraints violated
by the proof. Since Il is at least (1 —&)-robustly complete, we have E;[¢] < &.
For each sample s chosen in the sampler, let ; ; be the fraction of constraints
in S (chosen by sampler) that are violated. By regularity of sampler, we

have E;[&; 5] <&.

A local view of the composed verifier (corresponding to ¢, s and the inner
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dPCP randomness) comprises of the concatenation of the local views of
the dPCP encodings corresponding to the constraints in S. Since the the
inner dPCP has perfect completeness we have the following. Whenever the
constraint is satisfied, the corresponding inner dPCP’s encodings satisfies
all constraints while we have no guarantee when the constraint is not
satisfied. Since for each (4, s), the fraction of violated constraints is ¢, ;, we
have that at least (1 — &; ;)-fraction of the local inner views corresponding
to (i, s) are satisfying and furthermore they all decode to the same I1(i).
Hence, the local view of the composed verifier corresponding to (i, s) is at
least (1 — &; 5)-close to a satisfying view. Hence, the robust completeness of

this honest proof is at least E; s[1 — & 5] > 1 — &

4.3.4 Label Cover Operations

After the composition, the alphabet reduction step is applied to ensure that
the alphabet size is polynomial in the query complexity and the inverse of
the soundness. Also, since the basic robust PCP given in Theorem 4.3.2 is not
necessarily regular, we also need to show how to make the initial robust PCP
regular. This subsection introduces various such operations and explains why

they preserve robust completeness and linearity.

Degree Reduction ((DH13, Theorem 5.1]) If we are given an instance of LABEL
COVER G = (4, B, E), the degree reduction makes the instance right regular by
appropriately duplicating right vertices and each edge exactly the same number
of times. Theorem 5.1 of [DH13] ensures that by increasing robust soundness by

441 additively, we can ensure that the right degree is 4/u* for all right vertices. We
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check that this operation preserves linearity and robust completeness.

e Linearity: Linearity is obviously preserved, because there is no change in

the constraint.

e Robust completeness: Since each edge is duplicated the same number of

times, robust completeness does not decrease.

Alphabet Reduction ([DH13, Theorem 5.5]) If we are given an instance of
LABEL COVER G = (A, B, E) where ¥4 and ¥ are the alphabet set of the left
(bigger) side and the right (smaller) side respectively, the alphabet reduction
replaces X by a smaller set o by finding a suitable linear code C': ¥5 — o* and
replacing each vertex b € B by k vertices by, ..., b;. Then assigning x € ¥p to
b corresponds to assigning (C(z)); to by, ..., b;. Theorem 5.5 of [DH13] ensures
that if C' has a relative distance 1 — 7%, this operation increases robust soundness
by at most 3n additively. We check that this operation preserves linearity and

robust completeness.

e Linearity: Linearity over F, is preserved if the code C' : ¥5 — o* is linear
with 0 = Fy. as the base field for some a € N. The code used in Remark 5.4

of [DH13] is already linear.

e Robust completeness: If an edge (a, b) of the original LABEL COVER instance
is preserved and the new instance follows the honest encoding, all £ edges
of the new instance corresponding to (a,b) will be satisfied. Therefore,

robust completeness cannot decrease.
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Flip Sides ([DH13, Section 5.3]). Given an instance of LABEL COVER G =
(A, B, E) where each right vertex b € B has degree d, the flip side is achieved by
flipping A and B, and assigning each v € B a label from X%, which is supposed
to denote the assignments to its neighbors in the original instance. If v € B has
uy,...,uq € Aasneighbors, (v, u;) in the new instance is satisfied (i) if the label
(ay,...,aq) € X4 for v has b € ¥ such that the label pair (a;, b) satisfies the edge
(u;,v) in the old instance, and (ii) if a; is equal to the label assigned to u;. This
obviously does not change the robust soundness. We check that it also preserves

linearity and robust completeness.

e Linearity: Linearity is preserved, because for each v € B, the set of (a4,
...,aq) satisfying (i) above is an affine subspace of (X4)¢, and the new

constraint is merely a projection.

e Robust completeness: Cannot decrease since if v € B was assigned b € Xp
in the original instance, it can be assigned (ay,...,a4) € ¥4 such that (i)
T(usw)(a;) = b, and (ii) a; was assigned to u; if (u;, v) was satisfied in the

original instance.

We use a combination of the above 3 operations to get a regular LABEL COVER
instance, as shown in Table 4.2.

Given an ¢ > 0, by using (O(¢), O(e?))-samplers in the composition and
doing the above operations with n = O(¢g), d = O(1/¢*), distance 1 — O(e?),
lo| = O(1/<%),k = O(1/£%) - |¥'] < O(1/£%) - q|3|, we can deduce the following

lemma.

Lemma 4.3.7 (IDH13, Lemma 5.7]) Forall ¢ : N — [0, 1], suppose L has a robust

linear PCP verifier V with randomness complexity r, query complexity q, proof length
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LABEL COVER I Degree Flip Degree Alphabet
(Robust PCPs) Red. (— d) Red. (— d) | Red. (— o)
# left vertices n n mDp mDp mDp
(randomness)
# right vertices m mDp n nD ad nD sdk
(proof length)
left degree D% dD* d d? d?k
(query complexity)
right degree D% d D pd* d d
(proof degree)
left alphabet Y4 I x4 x4 x4
(# accepting conf.)
right alphabet ) B X4 X4 o
(proof alphabet)
soundness error ) 0+ 4u 0+ 4p 0+ 8u 0+ 8u+3n
(rob. soundness error)
robust completeness | 1 —¢& 1-¢ 1-¢ 1-¢ 1-¢
(rob. completeness)

Table 4.2: Sequence of steps to regularize the LABEL COVER instance. * denotes irregular
instances where the number denotes the average degree.

m, average proof degree D p, robust completeness c, robust soundness error § over a proof

alphabet X. Then L has a reqular reduced linear robust PCP verifier, which we shall
denote by regular (V') with

o randomness complexity logm + log Dp,

e query complexity O(qlog|3|/e™),

proof length O(¢*2" log || /£'°),

proof degree O(1/e?),

proof alphabet o of size at most O(1/¢°),

robust completeness c,

and robust soundness ¢ + <.
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4.3.5 Putting things together

Finally we prove Theorem 4.1.8 on the hardness of LINEAR LABEL COVER. Let
¢ > 0 be an arbitrary constant. Let D be the PCP decoder from Theorem 4.3.6 and
V be the robust PCP from Theorem 4.3.2 with robust completeness 1 — ¢ with
d = log®n, robust soundness error ¢ = 1ogc0 n for some ¢, > 1, query complexity

1/e°1), randomness complexity O(logn) and proof length poly(n).

Lemma 4.3.8 ([DH13, Lemma 6.6]) Let D, V, ¢, 0 be as defined above and set ¢; =
(e)V 3" There exist constants cy, ¢1, c3 > 0 such that for every i = 0 as long as ¢; < c,
the following holds. GAP LIN(1 — 6,0.9) has a regular linear robust PCP verifier V;
with query complexity 1/<7", robust completeness 1 — 6, robust soundness error 2¢;, proof

alphabet 3; of size c3/e;°, randomness complexity O(logn) and proof length poly(n).

Proof: The proof is similar to [DH13], and is a sequence of compositions. We
start with the regularized robust verifier given by applying the sequence of
steps given in Table 4.2 to the robust PCP verifier given in Theorem 4.3.2. In
each subsequent step, we compose the robust verifier obtained in the previous
step with a dPCP, and apply the alphabet reduction (Theorem 5.5 of [DH13]) to
reduce the size of the alphabet to ¢3/c%, ;. All the parameters remain the same as
in [DH13], and we only need to focus on the two additional properties we need,
linearity and robust completeness.

Recall that a PCP with robust completeness 1—¢§, when composed with a dPCP
with perfect completeness, yields a composed PCP with robust completeness
1 — 4. In each step the inner PCP decoder has perfect completeness, therefore the
robust completeness of the composed PCP is preserved. Recall that the alphabet

reduction step also doesn’t affect the perfect completeness.
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Linearity is also preserved because all basic components are linear and all
steps (e.g., composition, alphabet reduction, and regularization) preserve linear-

ity as previously discussed. n

The above lemma shows that we can iteratively reduce the query complexity
until some absolute constant while maintaining the soundness and the alphabet
size polynomial in the query complexity.(And the total size of the instance always
remains polynomial in n.) Only a constant number of iterations is needed until
(proof alphabet Size)(query complexity), an upper bound on the size of alphabet
in the equivalent LABEL COVER instance, becomes polynomial in n. This proves

our main Theorem 4.1.8 for LINEAR LABEL COVER.

Proof: [Proof of Theorem 4.1.8] Set 7 from Theorem 4.3.8 so that

(proof alphabet size)(query complexity) _ (cs/eS) Ve

1
= exp (871 -log (C—:é))

Iop;

7 7

< poly(n).

This ensures that &; = 1/iog®t n for some ¢, > 0. Using the equivalence between
LABEL COVER and robust PCP, we have a hardness of LABEL COVER where
the number of vertices and the size of label are bounded by poly(n), and the
completeness is at least 1 — !/1og° n, the soundness is 1/1og°+ n. Applying the parallel
repetition of [DS14] O(c/c4) times to reduce the soundness to 1/og° » finishes the

proof. n
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4.4 Reduction from Linear Label Cover to 3LIN

In this section, we prove our main Theorem 4.1.6 for 3-LIN. Recall that for any
constant ¢ > 0, Theorem 4.3.3 shows a randomized polynomial reduction from
3-SAT to GAP LINEAR LABEL COVER(1 — log®n,log®n) where the number of
vertices as well as the number of labels are bounded by a polynomial. Therefore,
the following theorem finishes the proof of Theorem 4.1.6. The main idea is to
use Hadamard codes instead of long codes using the fact that the LABEL COVER

instance is linear. A similar argument was used in [KhoO1].

Lemma 4.4.1 There exists a reduction from GAP LINEAR LABEL COVER(1 — 4, s) fo
GAP 3-LIN(1 — 0, Y2 + v3/2) that runs in polynomial time, where the size of the 3-LIN
instance is polynomial in the number of vertices and the size of label in the LABEL

COVER instance.

Proof: LetG = (A, B, E), X4, ¥p, and {r.}.r be an instance of GAP-LINEAR
LABEL COVER (1 — ¢, s). Moreover, since the label cover is linear, let the labels
to left hand side vertices come from Fg and the right hand side vertices from Fi,
and the mapping on each edge is an affine mapping. Our reduction is described

by the following test.

Test

e Consider an edge (u,v). The labels x € F5, y € F} corresponding to the

vertices have to satisfy = = Ay + b.

e From the proof, we randomly sample the Hadamard code of x at location

a, and that of y at locations 3 and 3 + v, where v = AT - a.
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e Checkif (o, x) + {B,y) +{B+ 7,y) = {a, b)

Completeness. In the completeness case, if the labels z, y satisfy the edge in

the LINEAR LABEL COVER, then we can see that the test will pass.

{o, ) + B, y) + B+, )
=(a, Ayy +{a, by +{B,y) + B+, )
=, Ay) + (o, b) + (AT, )

:<047 b>

Therefore, if 1 — 6 edges are satisfiable in the linear LABEL COVER, at least 1 — ¢

fraction of 3LINconstraints are satisfied.

Soundness. Consider the case where at most s fraction of edges can be satisfied
for any labeling in the LINEAR LABEL COVER. Let the Hadamard code encoding
function for the left vertices be L and right vertices be R. Consider their Fourier

transforms,

L(@) = Y L) (@)

R(B) = > R(y)xy(B)
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Let’s fix an edge, and analyze the probability that the test will accept. We switch

to a -1,+1 notation for convenience.

Pr[Test accepts] = P};[<a, ) +{B, ) + (B + ATa,y) + {a,b) = 0]

= Pr[(_]_)<0‘7$>+<ﬁ7y>+<,3+ATa,y>+<a,b> _ 1]
a’/B

_ 1+ Eag [L@)R(B)R(B + ATa)(-1) V]
2

Consider the expectation on the right hand side of the above equation.

335 [L(a)R(B)R(B + ATa)(—1)¥] (4.4.1)

< L L@RE) B Pl B8+ ATa)(-1)"]

x?y

< ) LRy

z,y,x=Ay+b

< | > Rw?r | > LRy

I,y,,I:Ay-'rb x,y,x:Ay-i-b

In the above equation, the first term is bounded by 1, and therefore,

(a4 < [ Y L(2)?R(y)

x?y77x:Ay+b

Consider a random assignment where a left vertex gets a label x with probabil-
ity L(x)? and a right vertex gets a label y with probability R(y)2. The probability

that such a random assignment would satisfy the edge, and therefore the ex-
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pected fraction of edges satisfied, is exactly

Y, L@?hy)?

z,y,x=Ay+b

If at most s fraction of edges can be satisfied by any assignment, then

s> > L(x)’R(y)* > (2- Pr[Test accepts] — 1)

z,y,x=Ay+b

or

Pr[Test accepts| < - +

DN | —
ol
V)

Therefore, the expected fraction of 3LIN constraints satisfied is at most 5 + ‘/75
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Chapter 5

Dictatorship Test with perfect

completeness

5.1 Introduction

Boolean functions are the most basic objects in the field of theoretical computer
science. Studying different properties of Boolean functions has found appli-
cations in many areas including hardness of approximation, communication
complexity, circuit complexity etc. In this paper, we are interested in studying
Boolean functions from a property testing point of view.

In property testing, one has given access to a function f : {0,1}" — {0, 1} and
the task is to decide if a given function has a particular property or whether it is
far from it. One natural notion of farness is what fraction of f’s output we need
to change so that the modified function has the required property. A verifier
can have an access to random bits. This task of property testing seems trivial if

we do not have restrictions on how many queries one can make and also on the
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computation. One of the main questions in this area is can we still decide if f is
very far from having the property by looking at a very few locations with high
probability.

There are few different parameters which are of interest while designing such
tests including the number of random bits used, the number of locations queried,
the amount of computation the verifier is allowed to do etc. The test can either
be adaptive or non-adaptive. In an adaptive test, the verifier is allowed to query a
function at a few locations and based on the answers that it gets, the verifier can
decide the next locations to query whereas a non-adaptive verifier queries the
function in one shot and once the answers are received makes a decision whether
the function has the given property. In terms of how good the prediction is we

want the test to satisfy the following two properties:

e Completeness: If a given function has the property then the test should

accept with high probability

e Soundness: If the function is far from the property then the test should

accept with very tiny probability.

A test is said to have perfect completeness if in the completeness case the test

always accepts. A test with imperfect completeness (or almost perfect completeness)

accepts a dictator function with probability arbitrarily close to 1. Let us define

the soundness parameter of the test as how small we can make the acceptance
probability in the soundness case.

A function is called a dictator if it depends on exactly one variable i.e f(z1, 2,

.., Zn) = x; for some i € [n]. In this work, we are interested in a non-adaptive test

with perfect completeness which decides whether a given function is a dictator
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or far from it. This was first studied in [BGS98, PRS02] under the name of
Dictatorship test and Long Code test. Apart from a natural property, dictatorship
test has been used extensively in the construction of probabilistically checkable
proofs (PCPs) and hardness of approximation.

An instance of a Label Cover is a bipartite graph G((A, B), E) where each
edge e € E is labeled by a projection constraint 7, : [L] — [R]. The goal is to
assign labels from [L] and [R] to vertices in A and B respectivels so that the
number of edge constraints satisfied is maximized. Let GapLC(1, ¢) is a promise
gap problem where the task is to distinguish between the case when all the
edges can be satisfied and at most ¢ fraction of edges are satisfied by any assign-
ment. As a consequence of the PCP Theorem [ALM 98, AS98] and the Parallel
Repetition Theorem[Raz98], GapLC(1, ¢) is NP-hard for any constant ¢ > 0. In
[H&s01], Hastad used various dictatorship tests along with the hardness of Label
Cover to prove optimal inapproximability results for many constraint satisfaction
problems. Since then dictatorship test has been central in proving hardness of
approximation.

A dictatorship test with £ queries and P as an accepting predicate is usually
useful in showing hardness of approximating Max-P problem. Although this
is true for many CSPs, there is no black-box reduction from such dictatorship
test to getting inapproximability result. One of the main obstacles in converting
dictatorship test to NP-hardness result is that the constraints in Label Cover
are d-to-1 where the the parameter d depends on ¢ in GapLC(1,¢). To remedy
this, Khot in [Kho02] conjectured that a Label Cover where the constraints are
1-to-1, called Unique Games, is also hard to approximate within any constant.

More specifically, Khot conjectured that GapUG(1 — ¢, €), an analogous promise
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problem for Unique Games, is NP-hard for any constant € > 0. One of the
significance of this conjecture is that many dictatorship tests can be composed
easily with GapUG(1 — ¢, ¢) to get inapproximability results. However, since the
Unique Games problem lacks perfect completeness it cannot be used to show
hardness of approximating satisfying instances.

From the PCP point of view, in order to get k-bit PCP with perfect complete-
ness, the first step is to analyze k-query dictatorship test with perfect complete-
ness. For its application to construction PCPs there are two important things
we need to study about the dictatorship test. First one is how to compose the
dictatorship test with the known PCPs and second is how sound we can make
the dictatorship test. In this work, we make a progress in understanding the
answer to the later question. To make a remark on the first question, there is a

20_(k1/3)
2k

dictatorship test with perfect completeness and soundness and also a way
to compose it with GapLC(1, <) to get a k-bit PCP with perfect completeness and
the same soundness that of the dictatorship test. This was done in [Hual3] and

is currently the best know k-bit non-adaptive PCP with perfect completeness.

Distance from a dictator function: There are multiple notions of closeness to
a dictator function. One natural definition is the minimum fraction of values we
need to change such that the function becomes a dictator. There are other relaxed
notions such as how close the function is to juntas - functions that depend on
constantly many variables. Since our main motivation is the use of dictatorship
test in the construction of PCP, we can work with even more relaxed notion
which we describe next: For a Boolean function f : {0,1}" — {0, 1} an influence

of i'" variable is the probability that for a random input z € {0, 1}" flipping the
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i coordinate flips the value of the function. Note that a dictator function has
a variable whose influence is 1. The influence of i’ variable can be expressed
in terms of the fourier coefficients of f as inf;[f] = > isc,)jics f(S)2. Using this,
a degree d influence of f is inf~[f] = 25 n]lics,|s|<d f(5)2. We say that f is far
from any dictator if for a constant d all its degree d influences are upper bounded
by some small constant.

In this paper, we investigate the trade-off between the number of queries and
the soundness parameter of a dictatorship test with perfect completeness w.r.t
to the above defined distance to a dictator function. A random function is far
from any dictator but still it passes any (non-trivial) k-query test with probability

at least 1/2%. Thus, we cannot expect the test to have soundness parameter less

than 1/2*. The main theorem in this paper is to show there exists a dictatorship

test with perfect completeness and soundness at most 251

Theorem 5.1.1 Given a Boolean function f : {0,1}" — {0, 1}, for every k of the form

2™ — 1 for any m > 2, there is a k query dictatorship test with perfect completeness and

2k+1

soundness =5;—.

Our theorem improves on the result of Tamaki-Yoshida[TY15], which had a

soundness of

2k+3
2k *

Remark 5.1.2 Tamaki-Yoshida [TY15] studied a k functions test where if a given set of
k functions are all the same dictator then the test accepts with probability 1. They use
low degree cross influence (Definition 2.4 in [TY15]) as a criteria to decide closeness
to a dictator function. Our whole analysis also goes through under the same setting as

that of [TY15], but we stick to single function version for a cleaner presentation.
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5.1.1 Previous Work

The notion of Dictatorship Test was introduced by Bellare et al. [BGS98] in the
context of Probabilistically Checkable Proofs and also studied by Parnas et al.
[PRS02]. As our focus is on non-adpative test, for an adaptive k-bit dictatorship
test, we refer interested readers to [ST09, HW03, HK05, EHO8]. Throughout this
section, we use k to denote the number of queries and ¢ > 0 an arbitrary small
constant.

Getting the soundness parameter for a specific values of £ had been studied
earlier. For instance, for £ = 3 Hastad [Has01] gave a 3-bit PCP with complete-
ness 1 — ¢ and soundness 1/2 + ¢. It was earlier shown by Zwick [Zwi97] that
any 3-bit dictator test with perfect completeness must have soundness at at least
5/8. For a 3-bit dictatorship test with perfect completeness, Khot-Saket [KS06]
acheived a soundness parameter 20/27 and they were also able to compose their
test with Label Cover towards getting 3-bit PCP with similar completeness and
soundness parameters. The dictatorship test of Khot-Saket [KS06] was later im-
proved by O’Donnell-Wu [OW09a] to the optimal value of 5/8. The dictatorship
test of O’'Donnell-Wu [OW(9a] was used in O’Donnell-Wu [OW09b] to get a con-
ditional (based on Khot'’s d-to-1 conjecture) 3-bit PCP with perfect completeness
and soundness 5/8 which was later made unconditional by Hastad [Has14].

For a general k, Samorodensky and Trevisan [ST00] constructed a k-bit PCP
with imperfect completeness and soundness 22V* /2. This was improved later
by Engebretsen and Holmerin [EHO08] to 2@/ 2% and by Hastad-Khot [HKO05]
to 24V /2F with perfect completeness. To break the 20(V¥) /2% barrier, Samoro-
densky and Trevisan [ST(09] introduced the relaxed notion of soundness (based

on the low degree influences) and gave a dictatorship test (called Hypergraph
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dictatorship test) with almost perfect completeness and soundness 2k/2" for
every k and also (k + 1)/2* for infinitely many k. They combined this test with
Khot’s Unique Games Conjecture [Kho02] to get a conditional k-bit PCP with
similar completeness and soundness guarantees. This result was improved by
Austrin-Mossel [AM09] and they achieved k + o(k)/2* soundness.

For any k-bit CSP for which there is an instance with an integrality gap of ¢/s
for a certain SDP, using a result of Raghavendra [Rag08] one can get a dictatorship
test with completeness ¢ — € and soundness s + . Getting the explicit values of ¢
and s for a given value of £ is not clear from this result and also it cannot be used
to get a dictatorship test with perfect completeness. Similarly, using the charac-
terization of strong approximation restance of Khot et. al [KTW14] one can get a
dictatorship test but it also lacks peferct completeness. Recently, Chan [Chal3]
significantly improved the parameters for a k-bit PCP which achieves soundness
2k/2" albeit losing perfect completeness. Later Huang [Hua13] gave a k-bit PCP
with perfect completeness and soundness 20" 2k,

As noted earlier, the previously best known result for a k-bit dictatorship test

with perfect completeness is by Tamaki-Yoshida [TY15]. They gave a test with

2k+3

soundness =

for infinitely many &.

5.2 Proof Overview

Let f : {-1,41}" — {-1,+1} be a given balanced Boolean function !. Any
non-adaptive k-query dictatorship test queries the function f at £ locations and

receives k bits which are the function output on these queries inputs. The verifier

'Here we switch from 0/1 to +1/ — 1 for convenience. With this notation switch, balanced
function means E[f(x)] =0

97



then applies some predicate, let’s call it P : {0,1}* — {0, 1}, to the received bits
and based on the outcome decides whether the function is a dictator or far from
it. Since we are interested in a test with perfect completeness this puts some
restriction on the set of k£ queried locations. If we denote x1, s, ..., ) as the
set of queried locations then the i" bit from (z;, x,, . .., x;) should satisfy the
predicate P. This is because, the test should always accept no matter which
dictator f is.

Let 1 denotes a distribution on P~!(1). One natural way to sample (1,
Xy, ..., xy) such that the test has a perfect completeness guarantee is for each
coordinate i € [n] independently sample (x;, o, ..., x;); from distribution .
This is what we do in our dictatorship test for a specific distribution ;. supported
on P~!(1). It is now easy to see that the test accepts with probability 1 of f is an
i" dictator for any i € [n].

Analyzing the soundness of a test is the main technical task. First note that
the soundness parameter of the test depends on P! (1) as it can be easily verified
that if f is a random function, which is far from any dictator function, then
the test accepts with probability at least ”9_2—1;@(1)‘- Thus, for a better soundness
guarantee we want P to have as small support as possible. The acceptance

probability of the test is given by the following expression:

Pr[Test accepts f] = E[P(f(x1), f(x2), -, f(xk))]
I

SC[k], S+ icS
Thus, in order to show that the test accepts with probability at most W +e€

it is enough to show that all the expectations Eg := | E|[[ [,.s f(;)]| are small
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if f is far from any dictator function. Recall that at this point, we can have
any predicate P on k bits which the verifier uses. As we will see later, for the
soundness analysis we need the predicate P to satisfy certain properties.

For the rest of the section, assume that the given function f is such that the
low degree influence of every variable i € [n] is very small constant 7. If f is
a constant degree function (independent of n) then the usual analysis goes by
invoking invariance principle to claim that the quantity Eg does not change by
much if we replace the distribution y to a distribution { over Gaussian random
variable with the same first and second moments. An advantage of moving to
a Gaussian distribution is that if 4 was a uniform and pairwise independent
distribution then so is { and using the fact that a pairwise independence implies a
total independence in the Gaussian setting, we have Eg ~ | [ [,.q E[f(g:)]]. Since
we assumed that f was a balanced function we have E[f(g;)]| = 0 and hence we
can say that the quantity Fg is very small.

There are two main things we need to take care in the above argument. 1)
We assumed that f is a low degree function and in general it may not be true.
2) The argument crucially needed p to satisfy pairwise independence condition
and hence it puts some restriction on the size of P~!(1) (Ideally, we would like
|P~1(1)| to be as small as possible for a better soundness guarantee). We take
care of (1), as in the previous works [TY15, OW09a, AM09] etc., by requiring the
distribution p to have correlation bounded away from 1. This can be achieved
by making sure the support of p is connected - for every coordinate i € [k] there
exists a, b € P~1(1) which differ at the i*" location. For such distribution, we can
add independent noise to each co-ordinate without changing the quantity Eg by

much. Adding independent noise has the effect that it damps the higher order
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fourier coefficients of f and the function behaves as a low degree function. We
can now apply invariance principle to claim that Es ~ 0. This was the approach
in [TY15] and they could find a distribution ; whose support size is 2k + 3 which
is connected and pairwise independent.

In order to get an improvement in the soundness guarantee, our main tech-
nical contribution is that we can still get the overall soundness analysis to go
through even if 1« does not support pairwise independence condition. To this end,
we start with a distribution ;o whose support size is 2k + 1 and has the property
that it is almost pairwise independent. Since we lack pairwise independence, it
introduces few obstacles in the above mentioned analysis. First, the amount of
noise we can add to each co-ordinate has some limitations. Second, because of
the limited amount of independent noise, we can no longer say that the function
f behaves as a low degree function after adding the noise. With the limited
amount of noise, we can say that f behaves as a low degree function as long as
it does not have a large fourier mass in some interval i.e the fourier mass corre-
sponding to f(T)? such that |T| € (s, S) for some constant sized interval (s, S)
independent of n. We handle this obstacle by designing a family of distributions
f, po, - - ., i for large enough r such that the intervals that we cannot handle
for different 1;’s are disjoint. Also, each yi; has the same support and is almost
pairwise independent. We then let our final test distribution as first selecting
i € [r] u.a.r and then doing the test with the corresponding distribution ;. Since
the total fourier mass of a —1/ + 1 function is bounded by 1 and f was fixed
before running the test it is very unlikely that f has a large fourier mass in the
interval corresponding to the selected distribution y;. Hence, we can conclude

that for this overall distribution, f behaves as a low degree function. We note that

100



this approach of using family of distributions was used in [Has14] to construct a
3-bit PCP with perfect completeness. There it was used in the composition step.

To finish the soundness analysis, let f be the low degree part of f. The
argument in the previous paragraph concludes that Es ~ | E[] [;.s f(x)]]. As
in the previous work, we can now apply invariance principle to claim that
Es ~ |E[[ [ .5 f(gi)]| where the i coordinate (g1, gs, - - -, gx): is distributed ac-
cording to { which is almost pairwise independent. We can no longer bring the
expectation inside as our distribution lacks independence. To our rescue, we
have that the degree of f is bounded by some constant independent of n. We
then prove that low degree functions are robust w.r.t slight perturbation in the
inputs on average. This lets us conclude E[[ [,.q f(gi)] ~ E[[ [,os f(h:)] where
(h1, hs, ..., hy); is pairwise independent. We now use the property of indepen-

dence of Gaussian distribution and bring the expectation inside to conclude that

Es ~ | E[[ L,cs f(h)]| = [T T,es ELf (Rs)]| = 0.

5.3 Query efficient Dictatorship Test

We are now ready to describe our dictatorship test. The test queries a function at
k locations and based on the k bits received decides if the function is a dictator
or far from it. The check on the received £ bits is based on a predicate with few

accepting inputs which we describe next.

5.3.1 The Predicate

Let £ = 2™ — 1 for some m > 2. Let the coordinates of the predicate is indexed

by elements of F5"\0 =: {w;,ws, ..., wsm_1}. The Hadamard predicate Hj has
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following satisfying assignments:

Hy ={zxe{0,1}*3a e F"\0s.tVie [k],z; = a-w;}

We will identify the set of satisfying assignments in H;, with the variables h4, hs,
ooy P

Our final predicate Py is the above predicate along with few more satisfying

assignments. More precisely, we add all the assignments which are at a hamming

distance at most 1 from 0* i.e. P, = H;, U¥_, e; U OF.
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5.3.2 The Distribution Dy, .

For 0 < ¢ < 5, consider the following distribution Dy, on the set of satisfying

assignments of P, where o := (k — 1)e.

Probabilities =~ Assignments

Dk’E <« { Xy To - Tp
1 1
—a\ms1 @ 0 0 - vn-- 0
h
1 1 < ha
l—a\k+1
\ hk
10 v 0
c 0 1 «cvnn- 0
-«
(00 1,
where each h; gets a probability mass ;== (47 — ¢) and each e; gets weight

. The reasoning behind choosing this distribution is as follows: An uniform
distribution on Hj, U 0 has a property that it is uniform on every single co-
ordinate and also pairwise independent. These two properties are very useful
proving the soundness guarantee. One more property which we require is
that the distribution has to be connected. In order to achieve this, we add k&

extra assignment {e;, es, . .., e;} and force the distribution to be supported on all

Hjy ¥, e; U 0%. Even though by adding extra assignments, we loose the pairwise
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independent property we make sure that the final distribution is almost pairwise
independent.
We now list down the properties of this distribution which we will use in

analyzing the dictatorship test. This is proved in Section 5.5.2.

Observation 5.3.1 The distribution Dy, . above has the following properties:

1. Dy is supported on Py
2. Marginal on every single coordinate is uniform.

3. Fori # j, covariance of two variables x;, x; sampled form above distribution is:

2(15—04) ’

Covlz;, x| = —

4. If we view Dy as a joint distribution on space [[;_, X where each X =
2(1—a)?"

{0,1}, then for all i € [k], p (X(i),]_[je[k]\{i} X(j);Dk@) <1— 5. (See
Definition 5.5.1 for the definition of p.)

5.3.3 Dictatorship Test

We will switch the notations from {0, 1} to {+1, —1} where we identify +1 as 0
and —1las 1. Let f: {—1,4+1}" — {—1,+1} be a given boolean function. We also
assume that f is folded i.e. for every « € {—1, +1}", f(x) = — f(—x). We think of
Py, as a function Py, : {—1,+1}* — {0, 1} such that P(z) = 1 iff z € P;. Consider

the following dictatorship test:
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Test 7y, 5

1. Sample @, @, - -,z € {—1,+1}" as follows:

(a) For each i € [n], independently sample ((x1);, (2):,- - , (xx):)

according to the distribution Dy, .

2. Check if (f(.’.l?l), f(wg), s ,f(:ck)) S Pk

The final test distribution is basically the above test where the parameter ¢ is

chosen from an appropriate distribution. For a given 1 > ¢ > 0, let err = 52%5 and
k
st
define the following quantities : ¢; = e and for j > 0, g;4; = err- 2 (6"353' > .

Test 7, .

1. Setr = (£)2
2. Select j from {1,2,...,r} uniformly at random.

3. Setd = €j

4. Run test T 5.

We would like to make a remark that this particular setting of ;. is not
very important. For our analysis, we need a sequence of ¢;’s such that each

subsequent ¢; is sufficiently small compared to ¢;_;.
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5.4 Analysis of the Dictatorship Test

Notation: We can view f : {—1,+1}" — {—1,+1} as a function over n-fold
product set X} x Xy x - - - x X, where each X; = {—1, +1}{¥}. In the test distribution
Tk,s, we can think of ; sampled from the product distribution on Xl(i) X XQ(i) XX
Xéi). With these notations in hand, the overall distribution on (1, xs, - - , xy),

from the test 7y 5, is a n-fold product distribution from the space
[1(11%")-
j=1 \i=1

where we think of [, X j(i) as correlated space. We define the parameters for

the sake of notational convenience:

1. B;:= k(,f—il)sj be the minimum probability of an atom in the distribution

Dy
2. Sj+1 = 10g(£>€% and Sj = Sj+1 for 0 g] <.
J

3. o= (k—1)g; forje|[r],

54.1 Completeness

Completeness is trivial, if f is say ith dictator then the test will be checking the

following condition

(1), (22)i5 -+, (1)) € Pr

Using Observation 5.3.1(1), the distribution is supported on only strings in Py.

Therefore, the test accepts with probability 1.
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5.4.2 Soundness

Lemma 5.4.1 For every 5 > ¢ > 0 there exists 0 < 7 < 1,d € N* such that

the following holds: Suppose f is such that for all i € [n], infS%(f) < 7, then the

test T, accepts with probability at most 251 + . (Note: One can take T such that

TQk(err/IOST log(1/8r)) <errand d = 11005((11//5))')

Proof: The acceptance probability of the test is given by the following expres-

sion:

Pr[Test accepts f] = 7]_5) [Pr(f (1), f(22), -, f(2h))]

k,

After expanding P, in terms of its Fourier expansion, we get

Pr[Test accepts f] = 2k + 1 + E Z Pu(S) Hf(wz)

k 7
2 Tie | Sclhl.s+2 icS
2k + 1 .
= o Z Pe(S) E [H f(wz)]
SClk].S+& Tie |ies
2k + 1 [ ] .
<o > B |[[f@) (IPe(S) < 1)
scik),s#a | e |ies |
2k + 1 [ |
sclil1s1=2 | Tke Lies ]

In the last equality, we used the fact that each x; is distributed uniformly in
{—1,+1}" and hence when S = {i}, E[f(z;)] = f(&) = 0. Thus, to prove the
lemma it is enough to show that for all S < [k] such that |S| > 2, E (] [,.s f(:)]

< 2% This follows from Lemma 5.4.2. ]

Lemma 5.4.2 Forany S < |k] such that |S| = 2,
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E E[Hf(wi)] <

gelrl | DR [ies

The proof of this follows from the following Lemmas 5.4.3,5.4.4, 5.4.5.

Lemma 5.4.3 Forany j € [r] and for any S < [k], |S| = 2 such that S = {{4, (s, . ..
Et}/

’

. [n<mjf><dw<m] <rerik [ S RO

where v; = < and d;; is a sequence given by d;; = 21 1o (L) and d;; = (d;1)’

T ks; err err

forl<i<t.

Lemma 5.4.4 Let j € [r] and v; be a distribution on jointly distributed standard
Gaussian variables with same covariance matrix as that of Dy, .,. Then for any S < [k],

|S| = 2 such that S = {{,0s, ..., 0},

L [H(Tl—wf)gdj’i(wei)] - E [H(Tl—wf)gdj’i(gi)] < err

5 &
Dk,Zj 4;eS 91,92,.96)~V5" | peS

where d;; from Lemma 5.4.3 and erry = 75%(i/108(1/8)) (Note: Q(.) hides a constant

depending on k).

Lemma 5.4.5 Let k > 2 and S < [k] such that |S| = 2 and let f : R — R bea

multilinear polynomial of degree D > 1 such that | f|, < 1. If G be a joint distribution
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on k standard gaussian random variable with a covariance matrix (1 + 6)I — 6J and ‘H

be a distribution on k independent standard gaussian then it holds that

Qk)QkD

sl

€S

Ji]

€S

Proofs of Lemma 5.4.3 , 5.4.4, 5.4.5 appear in Section 5.5.1. We now prove

Lemma 5.4.2 using the above three claims.

Proof of Lemma 5.4.2: Let S = {{1,(s,...,{;}. We are interested in getting an

upper bound for the following expectation:

j 'f'

S

waz] <k [waz]
0;€8 €lr] s 0;€8

err

Let us look at the inner expectation first. Let v, = and the sequence d;; be

from Lemma 5.4.3. We can upper bound the inner expectat1on as follows:

sl

[ (T, )= dw(mg)] +2 etk | Y f(T)

;€8 DP2 | s s;<|T|<S;
(by Lemma 5.4.3)
< E H(Tl,,yjf)gdjvi (gi) ||+ (by Lemma 5.4.4)
(91,925-,9K)~VE" | 15
errg +2-err+ k Z F(T)? (5.4.1)
s;<|T|<S;

where erry = 7(3/1°601/5)) and v; has the same covariance matrix as Dj.,. If we

let 0; = 12_23_ then using Observation 5.3.1(3), the covariance matrix is precisely
(14 6;)I —0;J (note that we switched from 0/1 to —1/ + 1 which changes the

covaraince by a factor of 4). Each of the functions (T}_,,f)<S% has ¢, norm
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upper bounded by 1 and degree at most d;;. We can now apply Lemma 5.4.5 to

conclude that

<

E [H(T 1 f) S (gi)]

(91,92, gk)NVj®n 0;€8

B [H(Tl_wffdf«i(hi)]

+ ;- (2k) it (5.4.2)

where h;’s are independent and each h; is distributed according to N(0,1)".

Thus,

= (0 D=(@)) = (f@) =0, (543

where we used the fact that f is a folded function in the last step. Combining

(5.4.1), (5.4.2) and (5.4.3), we get

<

k,Ej ZiES

0; - (2k)?kdie) 4 (70Cu/1osWBD)) 4 9 err 4 k f(T)? (5.4.4)
J

55 <|T|<5;

We now upper bound the first term. For this, we use a very generous upper
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bounds d;; < £ = and g < 4e;.

8; - (2k)* %4t < (dej - (2k)2F)
10 k
<oy 2(#)

(#25)
. - 3.
< err. using €; = err-2 \“"%-1

The second term in (5.4.4) can also be upper bounded by err by choosing small

enough 7.

J

Finally, taking the outer expectation of (5.4.4), we get

'Hfﬂ')g] <4-err+kE 2 F(T)?
€lr] D®n £;eS

€
< - s <|T|<S;

Using Cauchy-Schwartz inequality,

Z Z A 1
~ T 2 < -,
f( Pl s 'E[)] 5;<|T|<S T = NG

je[ s;<|T|<S; JEelr

where the last inequality uses the fact that the intervals (s;, .S;) are disjoint for
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je[rland |f|2 = 3, f(T)? < 1. The final bound we get is

as required. n

5.5 Deferred proofs

5.5.1 Proofs of Lemma 5.4.3,5.4.4 & 5.4.5

In this section, we provide proofs of three crucial lemmas which we used in
proving the soundness analysis of our dictatorship test. We start with some more

preliminaries.

5.5.1.1 Correlated Spaces

Let ©; x €, be two correlated spaces and i denotes the joint distribution. Let y;
and p» denote the marginal of 1« on space €2, and (2, respectively. The correlated
space p(£2; x Qy; 1) can be represented as a bipartite graph on (€24, (2;) where
x € )y is connected to y € € iff pu(x, y) > 0. We say that the correlated spaces is
connected if this underlying graph is connected.

We need a few definitions and lemmas related to correlated spaces defined

by Mossel [Mos08].
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Definition 5.5.1 Let (£2; x s, 1) be a finite correlated space, the correlation between

Q4 and )y with respect to . us defined as

p(21, Qo3 ) = max E [lf(2)g)].
(Q1, Qo5 1) PO (WMH (x)g(w)l]
9:Q2—R,E[9]=0,E[¢%]<1

The following result (from [Mos08]) provides a way to upper bound correlation

of a correlated spaces.

Lemma 5.5.2 Let (2; x o, 11) be a finite correlated space such that the probability of

the smallest atom in Q0 x Qy is at least o > 0 and the correlated space is connected then
p(Q, Qs 1) < 1—a?/2

Definition 5.5.3 (Markov Operator) Let (€2 x Qo, p1) be a finite correlated space, the
Markov operator, associated with this space, denoted by U, maps a function g : Q23 — R

to functions Ug : 1y — R by the following map:

Ug)(x) = E [g(Y)[X =z].

(va)"’u

In the soundness analysis of our dictatorship test, we will need to understand
the Efron-Stein decomposition of Ug in terms of the decomposition of g. The

following proposition gives a way to relate these two decompositions.

Proposition 5.5.4 ([Mos08, Proposition 2.11]) Consider a product correlated space
(T, O x [T, 9P 1T, ). Let g« T, Q% — R be a function and U be the
Markov operator mapping functions form space [ [;_, QZ@) to the functions on space

[T, le). If g = gc 9s and Ug = X 5.,/ (Ug)s be the Efron-Stein decomposition
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of g and U g respectively then,

(Ug)s = Ulgs)
i.e. the Efron-Stein decomposition commutes with Markov operators.

Finally, the following proposition says that if the correlation between two spaces
is bounded away from 1 then higher order terms in the Efron-Stein decomposition
of Ug has a very small ¢, norm compared to the ¢, norm of the corresponding

higher order terms in the Efron-Stein decomposition of g.

Proposition 5.5.5 ((Mos08, Proposition 2.12]) Assume the same setting as that of
M O

(2 7

Proposition 5.5.4 and furthermore assume that p(§2

for all g it holds that

s 11;) < pforall i € [n], then

1U(gs)]2 < o gs]2.

5.5.1.2 Hypercontractivity

Definition 5.5.6 A random variable r is said to be (p, q, n)-hypercontractive if it satis-
fies

la+mnrly < lla+rl,

forall a € R.

We note down the hypercontractive parameters for Rademacher random

variable (uniform over +1) and standard gaussian random variable.

Theorem 5.5.7 ((Wo0l071[O1e03]) Let X denote either a uniformly random +1 bit, a

standard one-dimensional Gaussian. Then X is (2, q, ﬁ)—hypercontmctive.
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The following proposition says that the higher norm of a low degree function
w.r.t hypercontractive sequence of ensembles is bounded above by its second

norm.

Proposition 5.5.8 ((MOOO5]) Let x be a (2, q, n)-hypercontractive sequence of ensem-

bles and () be a multilinear polynomial of degree d. Then

|Q@)l, < 17| Q)2

5.5.1.3 Invariance Principle

Let 1 be any distribution on {—1,+1}*. Consider the following distribution
on &1, &s,...,x; € {—1,+1}" such that independently for each i € [n], ((x1);,
(2)i, ..., (@g);) is sampled from p. We will denote this distribution as p®".
We are interested in evaluation of a multilinear polynomial f : R® — R on
(1,2, ..., x)) sampled as above.

Invariance principle shows the closeness between two different distributions
w.r.t some quantity of interest. We are now ready to state the version of the

invariance principle from [Mos08] that we need.

Theorem 5.5.9 ([Mos08]) Forany o > 0,¢ > 0,k € N* there are d, 7 > 0 such that

the following holds: Let yu be the distribution on {+1, —1}* satisfying
1. Ez~pulzi] = 0 for every i € k]
2. p(z) = aforevery x € {—1,+1}* such that p(x) # 0
Let v be a distribution on standard jointly distributed Gaussian variables with the

same covariance matrix as distribution u. Then, for every set of k (d, T)-quasirandom
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multilinear polynomials f; : R® — R, and suppose Var[f79] < (1 —~)* for0 <y < 1
it holds that

k
- [H fl(wl)] e ~--9k)~”®" [H Mo ]

(Note: one can take d = 110287) and 7 such that ¢ = 790/108(/2) where Q(.) hides

constant depending only on k.)

5.5.1.4 Moving to a low degree function

The following lemma, at a very high level, says that if change f to its low degree

noisy version then the loss we incur in the expected quantity is small.

Lemma 5.5.10 (Restatement of Lemma 5.4.3) Forany j € [r| and for any S < [k],
|S| = 2 such that S = {{1,0s, ..., 0},

B [H(Tl_wfﬁdj»i(m] <2ertk | > f(D2

eiES

D®g [H f wz

where y; = £ and d;; is a sequence given by d;, = S] log (£) and d;; = (dj,)*

forl<i<t.

Proof: The proof is presented in two parts. We first prove an upper bound on

[waz

L;eS

- E [H(Tl_wfxwi)] <er+k [ ) J(T)

n
DRl |ies 5;<|T|<5;

V€5

D®"

€5

(5.5.1)
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and then an upper bound on

N=|E [H(Tl_vjfx:nzi) - E H(Tl_wfﬁdw(mi)] <er.  (552)
D% | es we, Lties

Note that both these upper bounds are enough to prove the lemma.

Upper Bounding I'y: The following analysis is very similar to the one in [TY15],
we reproduce it here for the sake of completeness. The first upper bound is
obtained by getting the upper bound for the following, for every a € [t].

Fl,a = E

&
g

[H f(wfz) H(Tlf’yj f)(wfz)]

H f(a:zl) H(Tlf'yjf) (w@z)] o Dg A ]
) (5.5.3)

mn
1=a 1<a k.e;

Note that by triangle inequality, I't < X c( I't.0-

(5.5.3) = | E (f(w5a>Tl%f(mfa»l_[f(m&)n(Tl“/;f)(w&)]|

®n ” ”
Dk,ej | i>a i<a

®n ’ ’
Dk,ej | i>a i<a

- E (idT1w)f(wea)nf(wzi)n(ﬂwfxwfi)'

®n . ;
Dk,sj i>a i<a

= | E U ((id=Ti ) H@picigan) | [ F@e) | [(Tisy f )(wei)]

(5.5.4)

where U is the Markov operator for the correlated probability space which maps
functions from the space X“«) to the space [ ], () X*). We can look at the

above expression as a product of two functions, F' = [[,_, f[[,_.(T1—, f) and

i<a
G = U(id —T1_,,) f). From Observation 5.3.1( 4), the correlation between spaces

2
<X(z‘l)a [ Licppiay XW) is upper bounded by 1 — <lf—ﬂa])

N

1 —¢e? =: p;. Taking
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the Efron-Stein decomposition with respect to the product distribution, we have

the following because of orthogonality of the Efron-Stein decomposition,

(5.5.4) = Dgn ; 2 [Gr x Fr]
(by Cauchy-Schwartz) < | > |Frl3 [ Y [Gr[3 (5.5.5)

where the norms are with respect to D,?Zj ’s marginal distribution on the product
distribution [ [,y () ). By orthogonality, the quantity />, | Fr[3 is just
|F'||2. As F'is product of function whose range is [—1, +1], rane of F is also

[—1,+1] and hence | F| is at most 1. Therefore,

(55.5) < | Z [rey: (5.5.6)

We have Gy = (UG")r, where G' = (id — Tl_%.)f. In G/, the Efron-Stein
decomposition is with respect to the marginal distribution of DP” on X%,
which is just uniform (by Observation 5.3.1(2)). Using Proposition 5.5.4, we have
Gr=UGT = U(id — T\ _,,) fr. Substituting in (5.5.6), we get

(5.5.6) = | > |UGf —Tioy,) fr)l3 (5.5.7)

T<[n]

We also have that the correlation is upper bounded by p;. We can therefore

apply Proposition 5.5.5, and conclude that for each T < [n],

|U(id — Ty, frlz < P (id — Tios,) frlo
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where the norm on the right is with respect to the uniform distribution. Observe

that

[(id = Tio)) frlls = (1= (1= 7)™ F(T)

Substituting back into (5.5.7), we get

(55.7) < 2 pi (1= (1= )" (T)? (5.5.8)

J

g

Term(ej,v;,T)

We will now break the above summation into three different parts and bound

each part separately.

= 2 Term(gj,%-,T) Oy = 2 Term(sja7j7T)
|T'|<s; s;<|T[<S;
Z Term(e;,v;,T)
T<[n],
|T|=5;

e Upper bounding O;:

Z Term(€j7 Yis T)

T<[n],
IT|<s;

Z P (L — (1= ) T2 H(T)?

|T‘<57

< Z (1— (1 —)™M2f(1)2
iy
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For every |T| < s; we have 1 — (1 — v;)IT! < err;/k. Thus,

() 3 o

|T‘<S]

e Upper bounding O;:

S Term(e;, ;. T)
T<[n],
|T)=S;

- 3 A=)

\T|>S

|T|=5;

For every |T'| > S; we have pgﬂ < (1 -9 < erry/k. Thus,

O3 < <%1)2Tc[n] F(T)2.

IT|=

k\glq

Substituting these upper bounds in (5.5.8),

ro< |(B2) X dmps Ny

T<S[n, c
‘T|<S]‘O’I"T|>Sj Sj<‘T‘<Sj
err 2 . .
< f) + Z F(T)? (since >, f(T)* < 1)
5;<|T|<S;
< T \/s ; f(T)2. (using concavity)
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The required upper bound on I'y follows by using I'y < Zae[t] I'y , and the above
bound.

Upper Bounding I';: We will now show an upper bound on I's. The approach is
similar to the previous case, we upper bound the following quantity for every

a € [t]

B [H(le (@, H(Tlf“/j fgdj’i)(wzi)]

@n | - ;
Dk 1=a 1<a

- E [H(Tl—“/jf) (x¢,) H(Tl—vjfsdj’i)(wa] I

Xn . "
D e Li>a 1<a

= | E | (Timy, f(@e,) = Timn, £S5 (@0,)) | [ Ticny £ (200) | [(T1s, fgdj’i)(wei)]

ch®,gj | i>a i<a
- :(g) (Tl 'YJ >d] a .’,Cg H T1 'YJ iBg H (TI—’Y]' fgdj’i) (wfi )] (559)
Dk,gj | i>a i<a

By using Holder’s inequality we can upper bound (5.5.9) as:
(5.5.9) < |Tiyy 75 o | TIT1m F 2ty | [ 171y £S5 2o ), (5.5.10)

where each norm is w.r.t the uniform distribution as marginal of each z,, is

uniformin {+1, —1}". Now, |[T1_,, f|2¢-1) < 1 astherangeif T}, f isin [—1, +1].

To upper bound |Ty_,, f<%[5,—1), we use Proposition 5.5.8 and using the fact
that {—1, +1} uniform random variable is (2, ¢, 1/y/q — 1) hypercontractive (The-

orem 5.5.7) to get

T2, 55
J

) < (26— 3)be

o < (2t) %

Tlf'yj dej,z’
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Plugging this in (5.5.10), we get

(5510) < ‘|T1_’ij>dj’aH2 H(2t>dj,i < (1 _ ,yj>dj,a . n(2t)d7,1

i<a 1<a

< e~ Vdia . (2k)Fda-t

err

<e kb (9pykdian

Now,
dj 1° dj,a—l - d] a
2k% . k
% IOg (_) dj a—1 dga
err err
k2 k 2.5, k
5 log <—> + i log (—) dja—1 < djg,
err err err err
2 . .
ks log (ﬁ) + b5 -log(2k) - dja1 < dja
err err err
k’ . Sj k
orr . <10g (7) + ]{7 . dj,a—l 10g(2k3)> = dj,a
k - Sj k ked.;
-] — (2 jra—1 — .
er 8 <err( k) ) dia
This implies

k err
log [ — (2k)Fdie—1) = —— . d;,
o8 (err( ) ) ks;

= E pyitians = e
err

EPRTRES (2k)Fdia—1 = er

(5.5.11)

Thus from (5.5.11), we have I'; , < §*. To conclude the proof, by triangle inequal-

ity we have I'; < Zae[t] Iy, <err.
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5.5.1.5 Moving to the Gaussian setting

We are now in the setting of low degree polynomials because of Lemma 5.4.3.
The following lemma let us switch from our test distribution to a Gaussian

distribution with the same first two moments.

Lemma 5.5.11 (Restatement of Lemma 5.4.4) Let j € [r] and v; be a distribution
on jointly distributed standard Gaussian variables with same covariance matrix as that

of Dy, Then for any S < [k], |S| = 2 such that S = {{1, (s, ... {4},

E [H(lef)gdj’i(wei)] - E [H(Tlvjf)gdj’i(gi)] <erry

Dk®,2j b (91,92, gk)~V3'®n 0;€8

where d;; from Lemma 5.4.3 and erry = 7%0i/108(1/5)) (Note: Q(.) hides a constant

depending on k).

Proof: Using the definition of (d, 7)-quasirandom function and Fact 2.2.6, if f is

(d,7)- quasirandom then so is 77, f for any 0 < v < 1. Also, T;_, f satisfies

Var[Ti, 7% = Y (=) MAT)? < (1= > f(T) < (1-9)*
=

T<(n]
|T|>d |T|>d
The lemma follows from a direct application of Theorem 5.5.9. n

5.5.1.6 Making Gaussian variables independent

Our final lemma allows us to make the Gaussian variables independent. Here
we crucially need the property that the polynomials we are dealing with are low

degree polynomials. Before proving Lemma 5.4.5, we need the following lemma
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which says that low degree functions are robust to small perturbations in the

input on average.

Lemma 5.5.12 Let f : R" — R be a multilinear polynomial of degree d such that
If]2 < 1 suppose x, z ~ N(0,1)" be n-dimensional standard gaussian vectors such

that E|z;z;| = 1 — 0 forall i € [n]. Then

E[(f(z) — f(2))"] < 20d.

Proof: For T < [n], we have

E[xr(z)xr(2)] = l_[E[x,zz] > 1_[(1 —8)=(1- 5)\T\

€T €T

We now bound the following expression,
E[(f(x) - [(2))’] = E[f(2)* + [(2)* — 2 ()z(z)]
= F(T)*(2 = 2E[xr(z)xr(2)])
<2 3 f@ra-a-a

<2 F(T)%8|T)|

where the last inequality uses | f|2 < 1. |
We are now ready to prove Lemma 5.4.5.
Lemma 5.5.13 (Restatement of Lemma 5.4.5) Let k > 2 and 2 < t < k and let
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f : R" — R be a multilinear polynomial of degree D > 1 such that | f|, < 1. If G
be a joint distribution on k standard gaussian random variable with covariance matrix
(14 0)I — 6J and H be a distribution on k independent standard gaussian then it holds
that

< 8- (2k)*PF,

E [H f(gi)] - E [H f(hz-)]
i€(t] i€(t]

Proof: LetX = (1 + §)I — 0J be the covariance matrix. Let M = (1 — ¢’)((1 +
B)I — 5J) be a matrix such that M? = 3. There are multiple M which satisfy
M? = 3. We chose the M stated above to make the analysis simpler. From the
way we chose M and using the condition M? = 3, it is easy to observe that

and ¢’ should satisfy the following two conditions:

s 1 (k_2)52_25__
e ™ dreooe -0

Since H is a distribution of k£ independent standard gaussians, we can generate
a sample z ~ G by sampling y ~ H and setting + = My. In what follows, we
stick to the following notation: (hi, hs, ..., hy) ~ H®" and (g1,92,...,9k); =
M(hy, hs, ..., hy); for each j € [n].

Because of the way we chose to generate gs, we have for all i € [k] and j € [n],
E[(g:);(h;);] = 1-¢" = 1—kj?. To get an upper bound on 3, notice that 3 is a root
of the quadratic equation (k +dk —§ —2)3*— 28+ = 0. Let k' = (k+ 0k — 0 —2),
if 31, B2 are the roots of the equation then they satisfy: k'f; + k'82 = 2 and
(K'B1)(K'By) = 0k" and (31, B > 0. Thus, we have min{k'f;, &'z} < 0k’ and hence,
we can take 3 such that § < 4.

We wish to upper bound the following expression:
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I''=|E

HEn

|

i€[t]

Define the following quantity

Hf(gi) - Hf(hi)

I

i€[t]

i1 t i ¢
L= |E Hﬂmﬂlmm—ﬂﬂmu1f@1+
Hom | ST i =1 j=it1
By triangle inequality, we have I' < >}, ;. We now proceed with upper

bounding I'; for a given i€ [t].

7

- g | T Ta) - T 11 s |
=£nmw—ﬂm»fﬂmujﬂm”
<%%W@wﬂmmf}gmmWﬂw%fh%mmwﬂwm

where the last step uses Holder’s Inequality. Now, the marginal distribution on

each h; and g; is identical which is A/(0, 1)"

i</ B L) -

%%W@%

< f(hi))?]-

, we have

melfthI

Jj=i+1

(U f 2=y

Since a standard one dimensional Gaussian is (2, ¢, 1/4/q — 1)-hypercontractive

(Theorem 5.5.7), from Proposition 5.5.8 , || f|2¢—1) < (v2t — 3)P|| f]2 <

< (2t)P/2. Thus,

(v2t = 3)P

e e
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Now, each g;, h; are such that such that E[(g;); - (h;);] =1 -0 > 1 — ké? for
every j € [n]. We can apply Lemma 5.5.12 to get Exen[(f(g:) — f(h;))?] < 2ké%D.

Hence, we can safely upper bound I'; as

I, < (2)PED2 . 2k6D.

Therefore, I' < Y, T; <t - (2t)P*~1/2. 215D which is at most 2k25D - (2k)P*/? <

§ - (2k)*P* as required. ]

5.5.2 Proof of Observation 5.3.1

Observation 5.5.1 (Restatement of Observation 5.3.1) The distribution Dy, . above has

the following properties:

1. Dy is supported on Py,
2. Marginal on every single coordinate is uniform.

3. Fori # j, covariance of two variables x;, x; sampled form above distribution is:

e
2(1—a)"

COV[.TZ',ﬁj] = —

4. If we view Dy as a joint distribution on space [[;_, X where each X =

{0,1}, then for all i € [k], p (X(i),]_[je[k]\{i} XU);Dk,5> < 1— 55— (See

2(1—a)?"

Definition 5.5.1 for the definition of p.)

Proof: We prove each of the observations about the distribution. The first
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property is straight-forward. To prove (2), we compute E[z;] as follows.

1 1 1 €
E[ﬂ”i]:Wl)‘m(m—’f)'é*l_a
l—e(k+1)+2¢
B 2(1 — a)

1
2

Consider the quantity E [z;z;]. If  is sampled from 0’s or e;’s, the value is 0.
Dk,a
Moreover, we know that if it is sampled uniformly from Hj, u 0%, it is 1/4 because

of pairwise independence and the above fact. Therefore, we can write

E [wi2;] = (b + 1)— ( 1 g)i

Dpc l—a\k+1

We know that E [z;| = E [z;| = 1/2. Therefore,
D J

Dk,a k,e

Cov|z;, x;] = DE [z;2;] — E [2:] E [2;]

2(1 — «)

We now show that the bi-partite graph G (X(i), [ Ticprp sy €9, E) where (a, b)
€ X x [T icpup sy AV is an edge iff Pr(a,b) > 0, is connected. To see that the
graph is connected, note that for both 0 and 1 on the left hand side, 0Flis a
neighbor on the right hand side as the distribution’s support includes e; for all i,

and 0F. From the distribution, we see that the smallest atom is at least ——, since

1—a’

e < 1/k* We now use Lemma 5.5.2 to get the required result. n
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