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Abstract

This thesis is a collection of theoretical results on the topic of approximation

algorithms and hardness of approximation. The results presented here use a

combination of classical and modern techniques to achieve better approximation

algorithms and hardness results for some pivotal NP-hard problems and their

variants. We study CSPs from a multi-objective point of view, with the goal of

simultaneous optimization of multiple instances over the same set of variables,

with MAX-CUT as the central focus. We provide an approximation algorithm that

is near optimal assuming the unique games conjecture. We also study PCPs and

their role in hardness of approximation, and present a hardness result for 3-LIN

in the sub-constant soundness regime. Lastly, dictatorship testing is a property

testing problem with significant applications in proving hardness results, and

we present an improvement on the soundness of the k-bit dictatorship test with

perfect completeness.
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Chapter 1

Introduction

Many fundamental optimization problems are known to be NP-hard, efficient

polynomial time algorithms to solve these problems exactly don’t exist unless P =

NP. One approach to tackle these problems is to design algorithms that give sub-

optimal solutions, but with provable guarantees. Such algorithms, commonly

referred to as approximation algorithms, run in time polynomial in input size,

and return a valid solution which is bounded in terms of the optimal solution.

If the solution to a minimization problem given by an approximation algo-

rithm is a multiplicative factor of c away from the optimal solution in the worst

case, the algorithm is called an c-approximation algorithm. For maximization

problems, a c-approximation algorithm guarantees a solution of at least 1{c times

the optimal value. In the realm of NP-hard problems, the best known approxi-

mation factor for various problems varies greatly, i.e. we know of problems for

which the best known approximation algorithms give a guarantee of p1` εq for

all ε ą 0, to problems for which we can only achieve approximation factor that

degrades with the size of input. The question that immediately follows would
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be to know what’s the best approximation we can hope to achieve. Therefore,

a search for limits of approximability is an equally important question to fully

understand a problem. Over the past two decades, using fairly involved reduc-

tions starting from the PCP theorem, the approximability of several important

computational problems have been resolved.

1.1 SDP Hierarchies

Convex programming relaxations and rounding schemes are a powerful tool to

design approximation algorithms. Most combinatorial optimization problems

have a discrete solution space and allow for the problem to be modeled as an

Integer program. Since it is NP-hard to solve integer programs exactly, the

integral constraints are relaxed in order to get a program that can be solved in

polynomial time. The resulting solution is then rounded to achieve a valid if not

exact solution to the set of constraints, to give an approximation algorithm.

One such relaxation is the Semidefinite Programming relaxation. Here, the

variables are relaxed to have vector values, and the goal is to optimize a linear

objective function. A Semidefinite Program is an optimization problem of the

form

Minimize C ¨X

s. t Ai ¨X “ bi,i “ 1, ...,m

X ě 0

The above relaxation can be viewed as a basic SDP relaxation. For a number
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of combinatorial optimization problems, the basic SDP relaxation yields opti-

mal approximation algorithms. On the other hand, for some other problems,

adding more constraints to the relaxation and gives better approximation guar-

antees. One systematic way to add contraints to SDPs was defined by Parrilo and

Lasserre. They obtain a sequence of increasingly powerful relaxations, termed

as the Lasserre Hierarchy of convex relaxations. One of the basic ingredients

underlying mathematical programming relaxation hierarchies for combinatorial

optimization problems is the idea of expanding the search space, from the dis-

crete space of pure assignments to the continuous space of distributions over

assignments. The r-th level hierarchy typically has nOprq additional constraints

and can be solved in time nOprq.

We give a more detailed explanation of the Hierarchy and how we use it to

achieve a better approximation algorithm for simultaneous MAX-CUT in Chapter

3.

1.2 Probabilistically checkable proofs

Probabilistically checkable proofs [AS98, ALM`98] offer a robust classification

of NP and is a central technique in hardness of approximation results. A PCP

system for a language consists of a verifier that runs in polynomial time, and

has oracle access to a ”proof”. Given an input, the verifier makes a sequence

of queries to access various proof locations and decides on the membership of

the input. The verifier is required to satisfy completeness and soundness, the

former is the requirement that if the input belongs to the language, the verifier

will always accept for some proof string. Soundness states that if the input does
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not belong to the language, irrespective of the proof, the verifier accepts the input

with probability at most 1
2
. The complexity class PCP pr, qq consists of languages

captured by a PCP system that uses at most r bits of randomness and queries the

proof in at most q locations. The PCP theorem states that NP is exactly the set

of languages which have a PCP verifier that asks a constant number of queries

using a logarithmic (in the size of input) number of coin tosses.

Theorem 1.2.1 (PCP Theorem) NP “ PCP plog n,Op1qq

The PCP theorem has lead to many inapproximability results for various

optimization problems.

1.2.1 Label Cover

Definition 1.2.2 (LABEL COVER) An instance of LABEL COVER contains a regular

bipartite multi- graphG “ pA,B,Eq and two finite sets ΣA and ΣB , where |ΣA| ě |ΣB|.

Every vertex in A is supposed to get a label in ΣA, and every vertex in B is supposed

to get a label in ΣB. For each edge e P E there is a projection πe : ΣA Ñ ΣB. Given a

labeling to the vertices of the graph, i.e., functions φA : AÑ ΣA and φB : B Ñ ΣB, an

edge e “ pa, bq P E is said to be “satisfied” if πepφApaqq “ φBpbq. For 1 ě c ą s ą 1,

GAP LABEL COVERpc, sq is the problem if distinguishing whether the given instance

of LABEL COVER is at least c-satisfiable or at most s-satisfiable.

The PCP Theorem is equivalent to the following inapproximability of LABEL

COVER.

Theorem 1.2.3 There exists a constant c ă 1 such that given an instance of LABEL

COVER, it is NP-hard to distinguish between two cases
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• There exists an assignment satisfying all the edges.

• No assignment satisfies more than c fraction of constraints.

1.3 Overview of our Results

In this section, we present a brief overview of results that will be a part of the

thesis.1

1.3.1 Simultaneous Approximation of Maxcut

Multiobjective optimization is an area of optimizing over more than one objective

function where all the objective functions share the same solution space. In a

joint work with Bhangale, Khot, Kopparty, and Sachdeva [BKK+16], we consider

the well known optimization problem, MAX-CUT, from a multiobjective point

of view, which we call Simultaneous MAX-CUT. The Simultaneous MAX-CUT

problem is defined as follows. We are given multiple graphs tG1, ..., Gku on

the same vertex-set V and their edge weights are given by functions E1, ..., Ek,

mapping each pair of vertices to the weight. We call each graph an instance. The

goal is to partition V into 2 sets such that across all the graphs, the minimum cut-

weight is maximized. Our notion of an approximate solution to this problem is a

very natural notion, given constants c1, c2, ..., ck such that there is an ”optimal”

partition that has cut weight of ci in graphGi, an α approximate algorithm would

achieve a partition that would cut at least α ¨ ci in graph Gi.

Since Simultaneous MAX-CUT is a generalization of MAX-CUT, we cannot

1The original papers, jointly written with co-authors, described our work in the best way I
know of. Therefore, parts of this section, while rephrased, are similar to the constituent papers.
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hope to achieve a better approximation algorithm than the best known algo-

rithm for MAX-CUT which achieves a 0.878 approximation factor[GW95]. We

also know that for MAX-CUT, this approximation factor is tight assuming the

Unique Games Conjecture. We improved the approximation ratio of simultane-

ous Max-CUT problem from 1/2 [BKS15] to very close to [GW95], in fact our

approximation factor matches theirs up to 3 decimal places, although it was

achieved by computer assisted techniques. This improved algorithm uses the

Lasserre Hierarchy.

1.3.2 Improved Hardness for 3LIN via Linear Label Cover

An instance of 3-LIN constitutes a system of linear equations such that there

are at most 3 variables in each equation. We prove that for every constant c

and ε “ plog nq´c, there is no polynomial time algorithm that when given an

instance of 3-LIN with n variables where an p1 ´ εq-fraction of the clauses are

satisfiable, finds an assignment that satisfies atleast p1
2
` εq-fraction of clauses

unless NP Ď BPP. The previous best hardness using a polynomial time reduction

achieves ε “ plog log nq´c, which is obtained by the LABEL COVER hardness of

Moshkovitz and Raz [MR08] followed by the reduction from LABEL COVER to

3-LIN of Håstad [Hås01].

Our main idea is to prove a hardness result for LABEL COVER similar to

Moshkovitz and Raz where each projection has a linear structure. This linear

structure of LABEL COVER allows us to use Hadamard codes instead of long

codes, making the reduction more efficient. For the hardness of LINEAR LABEL

COVER, we follow the work of Dinur and Harsha [DH13] that simplified the

construction of Moshkovitz and Raz [MR08], and observe that running their
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reduction from a hardness of the problem LIN(of unbounded arity) instead of

the more standard problem of solving quadratic equations ensures the linearity

of the resultant LABEL COVER.

1.3.3 k-bit dictatorship test with perfect completeness

Dictatorship tests are central in proving many hardness results for constraint

satisfaction problems. It falls under the category of property testing for Boolean

functions, where given query access to a boolean function, we have to decide

if the function satisfies a property or if it is “far” from it. The objective is to

minimize the number of queries required to achieve this. The quality of a test

is determined by two important factors - completeness and soundness. Com-

pleteness is the probability with which the test accepts if the function satisfies the

property, and soundness is the probability with which the test (erroneously) ac-

cepts a function that is “far” from the property. A test with perfect completeness

is one that always accepts a function that satisfies the property.

A boolean function is called a dictator if it depends on exactly one variable,

i.e

fpx1, x2, ..., xnq “ xi

for some i P rns. In joint work with Bhangale and Khot, we give a randomized

dictatorship test with perfect completeness which is restricted to make only

k queries to f , with an improved soundness. The soundness probability we

achieve is at most 2k`1
2k
`Opεq. The previous work [TY15] required the queried

bits to satisfy pairwise independence condition, we improve on it and design a

test which lacks pairwise independence condition but still proves the required
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soundness guarantee.

1.4 Organization

In chapter 2 we introduce some preliminaries and notations that we use in the

thesis. In Chapter 3 we describe the near optimal approximation algorithm

simultaneous MAX-CUT. In Chapter 4, we prove an improved hardness result

for 3-LIN in the subconstant soundness regime, and in Chapter 5 we present an

improved k-bit dictatorship test with perfect completeness.
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Chapter 2

Preliminaries

2.1 Information Theory

In this section, we define and state some facts about entropy and mutual infor-

mation between random variables.

Definition 2.1.1 (Entropy) Let X be a random variable taking values in rqs then,

entropy of X is defined as:

HpXq :“
ÿ

iPrqs

PrrX “ is log
1

PrrX “ is
.

Definition 2.1.2 (Conditional Entropy) Let X, Y be jointly distributed random

variables taking values in rqs then, the conditional entropy of X conditioned on Y

is defined as:

HpX|Y q “ EiPrqsHpX|Y “ iq.

The following observations can be made about entropy of a collection of

random variables.
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Entropy of a collection of random variables cannot exceed the sum of their

entropies.

Fact 2.1.3 HpX1, X1, . . . , Xnq ď
řn
i“1HpXiq.

Entropy never decreases on adding more random variables to the collection.

Fact 2.1.4 HpX1, X2|Y q ě HpX1|Y q.

Conditioning can only decrease the entropy.

Fact 2.1.5 HpX|Y q ´HpX|Y, Zq ě 0.

Definition 2.1.6 (Mutual Information) Let X, Y be jointly distributed random vari-

able taking values in rqs then, the mutual information between X and Y is defined

as:

IpX;Y q :“
ÿ

i,jPrqs

PrrX “ i, Y “ js log
PrrX “ i, Y “ js

PrrX “ isPrrY “ js
.

Theorem 2.1.7 (Data Processing Inequality) If X, Y,W,Z are random variables such

that X is fully-determined by W and Y is fully-determined by Z, then

IpX, Y q ď IpW,Zq.

2.2 Analysis of Boolean Function over Probability

Spaces

For a positive integer k, we will denote the set t1, 2, . . . , ku by rks. For a distribu-

tion µ, let µbn denotes the n-wise product distribution.
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For a function f : t0, 1un Ñ R, the Fourier decomposition of f is given by

fpxq “
ÿ

TĎrns

pfpT qχT pxqwhere χT pxq :“
ź

iPT

p´1qxi and pfpT q :“ E
xPt0,1un

fpxqχT pxq.

The Efron-Stein decomposition is a generalization of the Fourier decomposition to

product distributions of arbitrary probability spaces.

Definition 2.2.1 Let pΩ, µq be a probability space and pΩn, µbnq be the corresponding

product space. For a function f : Ωn Ñ R, the Efron-Stein decomposition of f with

respect to the product space is given by

fpx1, ¨ ¨ ¨ , xnq “
ÿ

βĎrns

fβpxq,

where fβ depends only on xi for i P β and for all β1 Ğ β , a P Ωβ1 ,

E
xPµbn

rfβpxq | xβ1 “ as “ 0

Let }f}p :“ ExPµbnr|fpxq|
ps1{p for 1 ď p ă 8 and }f}8 :“ maxxPΩbn |fpxq| .

Definition 2.2.2 For a multilinear polynomial f : Rn Ñ R and any D P rns define

fďD :“
ÿ

TĎrns,|T |ďD

f̂pT qχT

i.e. fďD is degree D part of f . Also define fąD :“ f ´ fďD.

Definition 2.2.3 For i P rns, the influence of the ith coordinate on f is defined as
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follows.

Infirf s :“ E
x1,¨¨¨ ,xi´1,xi`1,¨¨¨ ,xn

Varxirfpx1, ¨ ¨ ¨ , xnqs “
ÿ

β:iPβ

}fβ}
2
2.

For an integer d, the degree d influence is defined as

Infďdi rf s :“
ÿ

β:iPβ,|β|ďd

}fβ}
2
2.

It is easy to see that for Boolean functions, the sum of all the degree d influences

is at most d. A dictator is a function which depends on one variable. Thus, the

degree 1 influence of any dictator function is 1 for some i P rns. We call a function

far from any dictator if for every i P rns, the degree d influence is very small for

some large d. This motivates the following definition.

Definition 2.2.4 (pd, τq-quasirandom function) A multilinear function f : Rn Ñ

R is said to be pd, τq-quasirandom if for every i P rns it holds that

ÿ

iPSĎrns,|S|ďd

f̂pSq2 ď τ

We recall the Bonami-Beckner operator on Boolean functions.

Definition 2.2.5 For γ P r0, 1s, the Bonami-Beckner operator T1´γ is a linear operator

mapping functions f : t0, 1un Ñ R to functions T1´γf : t0, 1un Ñ R as T1´γfpxq “

Eyrfpyqs where y is sampled by setting yi “ xi with probability 1 ´ γ and yi to be

uniformly random bit with probability γ for each i P rns independently.

We have the following relation between the fourier decomposition of T1´γf

and f .
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Fact 2.2.6 T1´γf “
ř

TĎrnsp1´ γq
|T |f̂pT qχT .

13



Chapter 3

Simultaneous Max-Cut

3.1 Introduction

In this paper, we give near-optimal approximation algorithms for the simulta-

neous MAX-CUT problem. Here we are given a collection of weighted graphs

G1, G2, . . . , Gk on the same vertex set V of size n. Our goal is to find a partition of

the vertex set V into two parts, such that in every graph, the total weight of edges

going between the two parts is large. The k “ 1 case is the classical MAX-CUT

problem, and the approximability of this problem has been extensively stud-

ied [FL92, GW95, Hås01, KKMO07, MOO05, OW08]. This paper studies the

approximability of this problem for constant k.

We fix some convenient notation. Let the weighted graphs G1, . . . , Gk be

given by weight functions E1, . . . , Ek, which assign to each pair in
`

V
2

˘

a weight

in r0, 1s. We assume that for each i P rks, the total weight of all edges under

Ei equals 1. Let f : V Ñ t0, 1u be a function, which we view as a partition of

the vertex set. We define valpf, Eiq to be the total weight (under Ei) of the edges

14



cut by the partition f . Given this setup, we can formally state the notions of

approximation that we consider.

• α-minimum approximation: Let c be the maximum, over all partitions

f˚ : V Ñ t0, 1u, of the quantity miniPrks valpf˚, Eiq. The goal is to output an

f : V Ñ t0, 1u such that miniPrks valpf, Eiq ě α ¨ c.

• α-Pareto approximation: Let c1, c2, . . . , ck be given such that there exists

f˚ : V Ñ t0, 1u with valpf˚, Eiq ě ci for each i P rks. The goal is to output

an f : V Ñ t0, 1u such that valpf, Eiq ě α ¨ ci for all i P rks.

For k “ 1, there is a celebrated polynomial time αGW “ 0.8786 . . . factor

(Pareto) approximation algorithm by Goemans and Williamson [GW95]. This

approximation is in both the minimum and Pareto senses. Furthermore, it is

Unique-Games hard to achieve a better approximation factor [KKMO07], and

the entire polynomial time “approximation curve” is also known.

For larger (but constant) k, far less is understood. Clearly, the hardness results

from the k “ 1 case carry over, and thus it is UniqueGames hard to approximate

this to a factor better than αGW . [ABG06] gave a polynomial time 0.439-Pareto ap-

proximation algorithm for this problem for the case k “ 2. Subsequently, [BKS15]

gave a polynomial time p1{2´ εq-Pareto approximation algorithm for this prob-

lem. For the case of unweighted graphs1, [BKS15] showed that there is a poly-

nomial time p1{2` Ωp1{k2qq-minimum approximation algorithm. Furthermore,

[BKS15] gave a matching integrality gap of p1{2 ` Op1{k2qq for a natural SDP

relaxation of the minimum approximation problem.

1We call an instance of simultaneous MAX-CUT unweighted if for any i, all the nonzero weight
edges under Ei have the same weight.
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Our main result is a polynomial time 0.8780-factor Pareto approximation

algorithm for simultaneous MAX-CUT for arbitrary constant k.

Theorem 3.1.1 For all constant k and c ą 0, given weighted graphs pGipV, Eiqqki“1

with |V | “ n and where all non-zero edge weights are lower bounded by expp´ncq, there

is a polypnq time algorithm which computes a 0.8780-factor Pareto approximation (and

hence min approximation) to the simultaneous MAX-CUT problem with k instances.

Remark 3.1.2 We assume that the non-zero edge weights are lower bounded by

expp´|V |cq for some constant c ą 0. We are interested in an algorithm which runs in

time polynomial in |V | and hence it is natural to assume the edge weights are lower

bounded by expp´|V |cq as otherwise the bit complexity of the input will be super poly-

nomial in |V |.

Remark 3.1.3 Our approximation ratio matches the Goemans-Williamson constant

αGW “ 0.8786 . . . up to three decimal places. It might be possible to improve the

approximation ratio through small modifyications our rounding procedure. However,

we believe that getting the exact αGW -approximation (if it exists) might require new

techniques. See Remark 3.2.12 for more details.

We give a brief overview of ideas involved in our algorithm next. The main

ingredients of the algorithm are: a sum-of-squares hierarchy SDP relaxation, a

generalization of the [RT12], [ABG12] approach to rounding such relaxations,

and some ideas from [BKS15].
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3.1.1 Overview of the algorithm

We begin by considering the unweighted case; later we will discuss how to

remove this restriction. One crucial observation about the unweighted case is

that if there are enough edges in every graph (as a function of k), then a random

cut simultaneously cuts a constant fraction of edges from each graph with high

probability. Thus, we can always assume that each target value is ci “ Ωkp1q,

which is a constant for a constant k.

There is a natural SDP relaxation for the simultaneous MAX-CUT problem,

generalizing the Goemans-Williamson SDP for the k “ 1 case. If we solve this

SDP and round the resulting vector solution using the Goemans-Williamson

hyperplane rounding procedure, this gives us a distribution of partitions of the

vertex set V , such that for each i P rks, the total weight of edges cut in instance

i is at least αGW times the corresponding SDP cut value. However, unlike in

the k “ 1 case, this does not guarantee the existence of a single partition of V

which is achieves a large cut value for all the k instances simultaneously! This

distinction between distributions of solutions which are good in expectation for

each instance and single solutions that are simultaneously good for all instances is

at the heart of the difficulty in designing simultaneous approximation algorithms.

One of the basic ingredients underlying mathematical programming relax-

ation hierarchies for combinatorial optimization problems is the idea of ex-

panding the search space, from the discrete space of pure assignments to the

continuous space of distributions over assignments. For simultaneous approx-

imation of MAX-CUT beyond a factor 1{2, this idea alone is not enough. An

example from [BKS15] shows that there are cases of simultaneous MAX-CUT on

k-instances, for which there is a distribution of partitions of V cutting p1 ´ 1
k
q-
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fraction of edges in expectation for each instance, but for which any single partition

of V , there is an instance i P rks, such that at most 1{2 of the edges in instance i

are cut by the partition. This is where the sum-of-squares SDP hierarchy comes

in – even though it is also modeled on the idea of expanding the search space

to distributions of assignments – it allows us to condition on partial assignments

and impose a constraint that the SDP cut value is large in expectation for each

instance and for every possible conditioning on a small number of variables.

This is what allows us to overcome the aforementioned obstacle.

Having formulated the SDP relaxation, we now discuss the rounding pro-

cedure. The motivating observation is this: if the rounding procedure is such

that for each instance the expected cut value is large, and further the cut value

is concentrated around its expectation with high probability, then by a union

bound, the rounding procedure will produce a cut that is simultaneously good

for all instances. The rounding procedure we will use will be closely related to

the Goemans-Williamson rounding (but different – it was found by computer

search given various technical conditions required by the rest of the algorithm).

Our algorithm now tries to improve the concentration of the cut-value produced

by the rounding procedure, via a beautiful information-theoretic approach of

Raghavendra-Tan [RT12]. If the cut-value for a certain instance turns out to

be not concentrated under the rounding procedure, then it must be because of

high correlation between many pairs of edges of that instance (more precisely,

correlation between the events that the edge is cut). This in turn means that

conditioning on the variables in a random edge should significantly decrease the

amount of entropy of the rounded cut. Iterating this several times, and using

the fact that the initial entropy is not too large, we conclude that conditioning
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on a small number of variables leads to good concentration for the rounding

procedure. The key point is that the sum-of-squares SDP relaxation we use gives

us access to a vector solution for the conditioned SDP, with the promise that

the SDP cut-value (and hence the expected integral cut-value) is still large. By

the concentration property and a union bound, we get a simultaneously good

cut.This completes the description of the algorithm in the unweighted case.

To handle the general weighted case, we essentially need to overcome few

technical obstacles. Following [BKS15], we add a preprocessing and postpro-

cessing phase. The preprocessing phase identifies “wild” instances, i.e. those

instances with an abnormally large number of high (weighted-)degree vertices

(which would increase the variance of the cut value of that instance under ran-

dom rounding). Then the SDP based algorithm described above is run only on

the “tame” instances.

With conditioning on constantly many variables, we can only manage to bring

the variance down to arbitrarily small constant. Hence, in order to use second

moment method to get concentration, we would need a good lower bound on

the expected value of a cut given by our rounding procedure. If the graphs are

weighted then it is not necessarily true that the simultaneous cut value is large

for all instances. One important property of the tame instances we used is that

they have a good simultaneous MAX-CUT value. We crucially use this property

while formulating the SDP for tame instances.

Finally in the postprocessing phase, we find suitable assignment to the high

degree vertices of the wild instances to ensure that those instance have a large

cut value (without spoiling the large cut value of the tame instances that the

SDP guaranteed) – this uses a new and much simpler perturbation argument
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compared to [BKS15].

This concludes the high-level description of the algorithm.

3.1.2 Note about the rounding procedure

We mentioned earlier that our SDP solution after conditioning on a small num-

ber of variables is rounded by a rounding algorithm similar to the Goemans-

Williamson rounding algorithm, but is different. We discuss this rounding

procedure here, and compare it to the previous results that used similar rounding

procedures.

For convenience, we switch the notation from 0{1 to `1,´1, such that any

function f : V Ñ t´1,`1u defines a cut in a natural way. Define the bias of a

t`1,´1u random variable x as Erxs. The SDP solution induces a consistent local

distribution on every set of variables of size at most some constant r, and we

define the SDP-bias of a variable as the bias with respect to this local distribution.

For a given rounding procedure, we define the rounding-bias of a variable as the

bias with respect to the rounding procedure. Note that in the original hyperplane

rounding of Goemans-Williamson, the rounding-bias of each vertex is 0.

In the rounding procedure for the MAX-BISECTION from [RT12], the round-

ing bias for each variable induced by the rounding procedure is the same as

the SDP-bias. Their algorithm gave a 0.85 approximation for MAX-BISECTION,

and using the same bias function for the rounding along with the analysis of

our algorithm, we can get 0.85 approximation for simultaneous MAX-CUT as

well (See Section 3.2.3.6 for more details). The approximation factor given by

[RT12] was subsequently improved in [ABG12] to 0.8776, where they used new

techniques to relax the restriction on the choice of the bias function. Nevertheless,
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the rounding procedure was still quite constrained by the need to maintain the

balance of the cut, as required by the MAX-BISECTION problem.

In our setting, we do not need equal sized partition of the vertex set, we have

more freedom in our rounding procedure with respect to the rounding-bias. It

turns out that we only have to ensure that when the bias of a variable is high,

the side of the cut it falls on is almost fixed (that this condition suffices heavily

depends on features of our algorithm and its analysis). This helps us achieve an

improved approximation factor of 0.8780. The rounding function we come up

with was arrived at by computer search (along with some trial-and-error).

The approximation ratio for our rounding procedure is proved by a computer

assisted prover, using techniques similar to those of [Sjo09] and [ABG12].

3.1.3 Other related work

The simultaneous MAX-CUT problem is a special case of the simultaneous ap-

proximation problem for general constraint satisfaction problems. This general

problem was studied in [BKS15], where it was shown that there is a polynomial

time constant factor Pareto approximation algorithm for every simultaneous CSP

(with approximation factor independent of k). The algorithm there was based on

understanding the structure of CSP instances whose value is highly concentrated

under a random assignment to the variables, in addition to linear-programming.

It was also observed that there are CSPs for which the best polynomial time

approximation factor for the simultaneous version (with k ą 1) is different from

the best polynomial time approximation factor achievable in the standard k “ 1

case (assuming P ‰ NP ). This makes the study of simultaneous approximation

factors very interesting.
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The simultaneous MAXSAT problem was studied in [GRW11], where a 1{2-

Pareto approximation algorithm was given. For bounded width MAXSAT, the

approximation factor was improved to p3{4´ εq in [BKS15].

It remains an open and very interesting problem to determine for which CSPs

the simultaneous approximation problem for k ą 1 is harder than the classical

k “ 1 case.

3.2 Algorithm for simultaneous weighted MAX-CUT

In this section, we give our approximation algorithm for simultaneous weighted

MAX-CUT and the analysis.

3.2.1 Notation

We use the same notation as in [BKS15], which we reproduce here. Let E “
`

V
2

˘

be the set of all possible edges. Given an edge e and a vertex v, we say v P e if v

appears in the edge e. For an edge e, let e1, e2 denote the endpoints of e (arbitrary

order). Let f : V Ñ t0, 1u be an assignment. For an edge e P E , define epfq to be

1 if the edge e is cut by the assignment f , and define epfq “ 0 otherwise. Note

that an assignment cuts an edge if it assigns different values to the end points.

Then, we have the following expression for the cut value of the assignment:

valpf, Eq def
“

ÿ

ePE
Epeq ¨ epfq.

A partial assignment h : S Ñ t0, 1u is an assignment to S where S Ď V . We

say an edge is active with respect to S if at least one of the end vertices is not in
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S. We denote by ActivepSq the set of all edges which are active with respect to S.

For two edges e, e1 P E , we say e „S e1 if they share a vertex that is contained in

V zS. Note that if e „S e1, then e, e1 are both in ActivepSq, and also e „S e, @e P E .

Let actdistSp`q denote the distribution over ActivepSq, obtained by renormalizing

E` to have total weight 1 over ActivepSq.

Define the active degree given S of a variable v P V zS for instance ` by:

actdegSpv, `q
def
“

ÿ

ePActivepSq,eQv

E`peq.

We then define the active degree of the whole instance ` given S:

actdegSp`q
def
“

ÿ

vPV zS

actdegSpv, `q.

Note that we count weight of an active edge in actdegSp`q at most twice. For a

partial assignment h : S Ñ t0, 1u, we define

valph, E`q
def
“

ÿ

ePE
eRActivepSq

E`peq ¨ ephq

which is the total weight of non-active edges cut by the partial assignment h.

Thus, for an assignment g : V zS Ñ t0, 1u, to the remaining set of variables, we

have the equality:

valphY g, E`q ´ valph, E`q “
ÿ

ePActivepSq

E`peq ¨ ephY gq.
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3.2.2 Algorithm

In Figure 3.1 and 3.2, we give the algorithm for Simultaneous MAX-CUT. The

input to the algorithm consists of an integer k ě 1, ε P p0, 1{5s, k instances of

MAX-CUT, specified by weight functions E1, . . . , Ek, and k target objective values

c1, . . . , ck.
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Input: k instances of MAX-CUT, with weights defined by E1, . . . , Ek on the set
of variables V, target objective values c1, . . . , ck, and ε P p0, 1{5s.
Output: An assignment to V.
Parameters: δ0 “

1
10k

, ε0 “
ε
2
, t “ 2k

γ
¨ log

´

21
γ

¯

, τ “ ε, γ “ τ2ε20δ0
4

.
Pre-processing:

1. Initialize S ÐH.

2. For each instance ` P rks, initialize count` Ð 0 and flag` Ð TRUE.

3. Repeat the following until for every ` P rks, either flag` “ FALSE or
count` “ t:

(a) For each ` P rks, compute Uvar` “
ř

e„Se1
E`peqE`pe1q.

(b) For each ` P rks compute Lmean`
def
“ τ

ř

ePActivepSq E`peq.

(c) For each ` P rks, if Uvar` ě δ0ε
2
0 ¨ Lmean2

` , then set flag` “ TRUE, else
set flag` “ FALSE.

(d) Choose any ` P rks, such that count` ă t AND flag` “ TRUE (if any):

i. Find v P V such that actdegSpv, `q ě γ ¨ actdegSp`q.

ii. Set S Ð S Y tvu. We say that v was brought into S because of
instance `.

iii. Set count` Ð count` ` 1.

4. After exiting the loop:

• Let L denote the set of all ` P rks for which flag` is set to FALSE (these
will be called “low-variance” instances).

• LetH denote the set of all ` P rks for which count` “ t (these will be
called “high-variance” instances).

Figure 3.1: Part 1 of Algorithm ALG-SIM-MAXCUT for approximating weighted
simultaneous MAX-CUT

25



Main algorithm:

1. For each possible partial fixing h : S Ñ t0, 1u do the following

(a) Solve the SDP given in Figure 3.4 (Refer Section 3.2.3.3).

(b) Follow the procedure in Figure 3.5 to make the solution locally
independent. (Refer Section 3.2.3.4)

(c) Round the solution based on the rounding procedure described
in Figure 3.6 to get a partial assignment g : V zS Ñ t0, 1u. (Refer
Section 3.2.3.5)

(d) Post-processing step: For every assignment h1 : S Ñ t0, 1u, com-
pute min

`

valph1Yg,E`q
c`

and return the assignment h1 Y g that maximizes

this.

Figure 3.2: Part 2 of Algorithm ALG-SIM-MAXCUT for approximating weighted
simultaneous MAX-CUT
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3.2.3 Analysis of the Algorithm

The algorithm broadly proceeds in 3 sections, the pre-processing step, the SDP

step and the post processing step. The pre-processing step consists of identifying

a small subset S Ď V carefully. We then attempt all assignments to vertices in S

by brute force iteratively and use SDP with the partial assignment followed by a

rounding to assign vertices in V zS. The post-processing step involves perturbing

the assignments to the vertices in S, the need for which is explained in detail in

Section 3.2.3.7.

In what follows, we stick to the following notation. Let S‹ denote the final set

S that we get at the end of Step 3. of ALG-SIM-MAXCUT. Let f ‹ : V Ñ t0, 1u be

the assignment that achieves valpf ‹, E`q ě c` for all l P rks and h‹ be the restriction

of f ‹ to the set S‹.

3.2.3.1 Pre-processing: Low and High variance instances

Definition 3.2.1 (τ -smooth distribution) A distribution D on t0, 1u is called τ -

smooth if

Pr
x„D

rx “ 1s ě τ, Pr
x„D

rx “ 0s ě τ.

Let h : S Ñ t0, 1u be an arbitrary partial assignment to the vertices in S. Let

g : V zS Ñ t0, 1u be the random assignment such that each of the marginals gpvq

is τ -smooth. For an instance `, define the random variable

Y`
def
“ valphY g, E`q ´ valph, E`q “

ÿ

ePActivepSq

E`peq ¨ ephY gq.

Y` measures the total active edge weight cut by the assignment in the instance `.
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Consider the two quantities defined in Step 3. of the algorithm. They depend

only on S (and importantly, not on h), which will be useful in controlling the

expectation and variance of Y`. The first quantity is an upper bound on VarrY`s:

Uvar`
def
“

ÿ

e„Se1

E`peqE`pe1q.

The second quantity is a lower bound on ErY`s:

Lmean`
def
“ τ ¨

ÿ

ePActivepSq

E`peq.

Lemma 3.2.2 Let S Ď V be a subset of vertices and h : S Ñ t0, 1u be an arbitrary

partial assignment to S. Let Y`,Uvar`, Lmean` be as above.

1. If Uvar` ď δ0ε
2
0 ¨ Lmean2

` , then PrrY` ă p1´ ε0qErY`ss ă δ0.

2. If Uvar` ě δ0ε
2
0 ¨ Lmean2

` , then there exists v P V zS such that

actdegSpv, `q ě
1

4
τ 2ε2

0δ0 ¨ actdegSp`q.

We defer the formal proof to Section 3.4.2. The first part is a simple application

of the Chebyshev inequality. For the second part, we use the assumption that

Uvar` is large, to deduce that there exists an edge e such that the total weight of

edges adjacent to the vertex/vertices in e that belong to V zS, i.e.,
ř

e2„Se
Epe2q,

is large. It then follows that at least one variable v P e must have large active

degree given S.

The above lemma (Lemma 3.2.2) ensures that Step 3.(d)i in the algorithm
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always succeeds in finding a variable v. Next, we note that Step 3. always

terminates. Indeed, whenever we find an instance ` P rks in Step 3.d such that

count` ă t and flag` “ TRUE, we increment count`. This can happen only tk times

before the condition count` ă t fails for all ` P rks. Thus the loop must terminate

within tk iterations.

To analyze the approximation guarantee of the algorithm, we classify in-

stances according to how many vertices were brought into S‹ because of them.

Definition 3.2.3 (Low and High variance instances) At the completion of Step 3.d in

Algorithm ALG-SIM-MAXCUT, if ` P rks satisfies count` “ t, we call instance ` a

high variance instance. Otherwise we call instance ` a low variance instance.

The next two sections describes the SDPs that we formulate and solve for

just the low variance instances. The claim that step 1d of the algorithm shown

in Figure 3.2 handles the high variance instances is discussed and proved in

Section 3.2.3.7.

3.2.3.2 Warmup: Basic SDP formulation for simultaneous MAX-CUT.

Our algorithm involves formulating a Lasserre Hierarchy SDP relaxation of the

residual MAX-CUT problem after giving a partial assignment h : S‹ Ñ t0, 1u. In

this section, as a warmup to its analysis, we present and study the basic version

of that SDP.

We write the SDP‹ for simultaneous MAX-CUT problem, after the partial

fixing given by pre-processing step, as in Figure 3.3. Let L denote the set of

indices of the low variance instances. We have vectors vT,α for all T and α where

T is a subset of V of size at most 2, and α is an assignment to the vertices in T .
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ÿ

e“ti,juPE`

E`peqp}vtpi,jq,p0,1qu}22`

}vtpi,jq,p1,0qu}
2
2q ě p1´ 3εqc` @` P rks, (3.2.1)

xvti,0u,vti,1uy “ 0 @i P rns,

}vtpi,jq,pb1,b2qu}
2
“ xvti,b1u,vtj,b2uy @i, j P rns

and b1, b2 P t0, 1u

}vtT,αu}
2
“ xvtT,αu,vHy @T Ă V, |T | ď 2, α P t0, 1u|T |

vti,bu “ vH @i P S‹, b “ hpiq

}vH}
2
“ 1

ÿ

e“ti,juPActivepS‹q

E`peqp}vtpi,jq,p0,1qu}22`

}vtpi,jq,p1,0qu}
2
2q ě

ε{3.actdegS‹p`q @` P L (3.2.2)

Figure 3.3: SDP‹ph : S‹ Ñ t0, 1uq for simultaneous MAX-CUT with partial fixing

If we consider the SDP‹ without the constraint (3.2.2), it is easy to see that

this is a relaxation. Given a partition pU, Ūq of V that achieves a simultaneous

optimum, we can set vectors vT,α “ vH if the pair pT, αq is consistent with 1U

(i.e. 1U assigns α to T ) and vT,α “ 0 otherwise. vH can be viewed as a vector that

denotes 1.

A part of our analysis require that for every low variance instance, the ex-

pected weighted fraction of active edges that we cut is at least a constant fraction

of its active degree. An optimal SDP solution without constraint (3.2.2) may not

guarantee this condition (for the rounding procedure we choose). Hence, we

force the SDP solution to satisfy this property by adding constraint (3.2.2). We

need to relax constraint (3.2.1) to make sure that there is a solution that satisfies

all the constraints.
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We now prove that SDP‹, in its present form, has feasible solutions.

Lemma 3.2.4 SDP‹ph‹q shown in Figure 3.3 has a feasible solution.

Proof: To show that SDP‹ has a feasible solution, it suffices to show that there

exists an integral solution that satisfies the constraints.

Fix an optimal assignment f ‹ : V Ñ t0, 1u to the simultaneous instance. f ‹

satisfies @` P rks, valpf ‹, E`q ě c`. Consider the following random assignment:

For all v P V zS‹

rpvq “

$

’

’

&

’

’

%

f ‹pvq with probability p1´ εq

f ‹pvq otherwise

where f ‹pvq is f ‹pvq flipped. For v P S‹, set rpvq “ f ‹pvq. Now, for any ` P L, let

Y` denote the random variable

Y` “
ÿ

ePActivepS‹q

E`peq ¨ eprq.

We have Ereprqs ě ε, hence ErY`s ě ε{2 ¨ actdegS‹p`q. Also,

E
r
rvalpr, E`qs ě

ÿ

eRActivepS‹q

E`peq ¨ Ereprqs `
ÿ

ePActivepS‹q,
epf‹q“1

E`peq ¨ Ereprqs

“
ÿ

eRActivepS‹q

E`peq ¨ epf ‹q `
ÿ

ePActivepS‹q,
epf‹q“1

E`peq ¨minpp1´ εq2 ` ε2, 1´ εq

ě p1´ 2εq
ÿ

e:epf‹q“1

E`peq

“ p1´ 2εqvalpf ‹, E`q

ě p1´ 2εqc`.
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Thus, we have,

1. ErY`s ě ε{2 ¨ actdegS‹p`q.

2. E
r
rvalpr, E`qs ě p1´ 2εqc`.

Recall that the SDP‹ involves only the low variance instances. Also, the

assignment r is ε-smooth on the set V zS‹. Therefore, we have concentration

guarantees as given by point 1 of Lemma 3.2.2.

PrrY` ď p1´ ε0qErY`ss ď δ0

Prrvalpr, E`q ď p1´ ε0qErvalpr, E`qss ď δ0.

Hence, with probability at least 1´ 2δ0, we have Y` ě p1´ ε{2q ¨ ε{2 ¨ actdegS‹p`q ě

ε{3 ¨ actdegS‹p`q and valpr, E`q ě p1´ ε{2qp1´ 2εqc` ě p1´ 3εqc`.

Now we do union bound over all low variance instances, we get with a

probability at least 1 ´ 2 ¨ δ0 ¨ k “ 4{5, all the SDP constraints are satisfied by

integral solution r. Thus, there exists an integral solution which satisfies all

SDP‹ph‹q constraints and hence is feasible.

3.2.3.3 Lasserre Hierarchy SDP formulation.

We now describe the rth-level Lasserre SDP for the SDP in Figure 3.3.

The SDP formulation has vectors vtT,αu for all T Ď V such that |T | ď r and

α P t0, 1u|T |. In terms of local distribution, the SDP solution consists of consistent

local distribution on every set T of size at most r (denoted by µT ). The random

variable corresponding to set T is denoted by XT distributed over t0, 1u|T |. The

vector solution and the local distribution are related as follows: Suppose T and
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ÿ

e“ti,juPE`

p E`peqp}vtSYti,ju,α˝p0,1qu}22 @S Ď V, |S| ď r ´ 2,

`}vtSYti,ju,α˝p1,0qu}
2
2q q @α P t0, 1u|S|,

ě p1´ 3εqc`}vtS,αu}
2

@` P rks (3.2.3)
ÿ

e“ti,juPActivepS‹q

p E`peqp}vtSYti,ju,α˝p0,1qu}22 @S Ď V, |S| ď r ´ 2,

`}vtSYti,ju,α˝p1,0qu}
2
2q q @α P t0, 1u|S|,

ě ε{3.actdegS‹p`q}vtS,αu}
2

@` P L (3.2.4)

xvtS,αu,vtT,βuy “ }vtSYT,α˝βu}
2
2 @S, T Ď V, |S Y T | ď r,

α P t0, 1u|S|, β P t0, 1u|T |,
(3.2.5)

xvS,α,vT,βy “ 0 @S, T Ď V, |S Y T | ď r,

α P t0, 1u|S|, β P t0, 1u|T |,

s.t. α|SXT ‰ β|SXT (3.2.6)

}vtT,αu}
2
“ xvtT,αu,vHy @T Ď V, |T | ď r, α P t0, 1u|T |

xvtS,αu,vti,buy “ xvtS,αu,vHy @S Ď V, |S| ď r ´ 1, α P t0, 1u|S|

@i P S‹, b “ hpiq (3.2.7)
}vH}

2
“ 1

Figure 3.4: r-round Lasserre lift of SDP‹ph : S‹ Ñ t0, 1uq for simultaneous
MAX-CUT with partial fixing

U are subsets of V such that |T Y U | ď r and the assignments α P t0, 1u|T | and

β P t0, 1u|U | are consistent on T X U then

xvT,α,vU,βy “ Pr
µTYU

pXT “ α,XU “ βq.

To ensure the consistency among local distributions, we have to add the
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constraints 3.2.5 and 3.2.6 to the SDP in Figure 3.4. Here if α P t0, 1u|S| is

an assignment to the vertices in S, and if S 1 Ă S, α|S1 P t0, 1u|S
1| denotes the

assignment α restricted to the vertices in S 1. Also, if α and β are assignments to

sets S and T agreeing on S X T , then we denote α ˝ β an assignment to S Y T .

We also add the set of constraints (Equation 3.2.7 in Figure 3.4) to capture the

partial assignment h : S‹ Ñ t0, 1u given by pre-processing.

With these definitions and constraints, the objective is to ensure that for all

` P rks,

ÿ

e“ti,juPE`

E`peqPr
“

Xti,ju “ p0, 1q _Xti,ju “ p1, 0q
‰

ě p1´ 3εqc`

A simple way to capture this would be to write the objective of the SDP

solution similar to the basic SDP formulation, as follows.

ÿ

e“ti,juPE`

E`peq
`

}vtpi,jq,p0,1qu}
2
2 ` }vtpi,jq,p1,0qu}

2
2

˘

ě p1´ 3εqc`

Lemma 3.2.5 r-round Lasserre SDP shown in Figure 3.4 has a feasible solution.

Proof: Note that the feasible solution given for the basic SDP in Lemma 3.2.4 is

integral. Therefore, we can directly conclude that the Lasserre lift of the SDP is

feasible, as the same solution can be extended to the Lasserre SDP.

Assign vS,α to vH if in the integral solution, the vertices in the set S were

assigned to α in that order, otherwise assign vS,α to 0.

In order to make the solution locally independent, we will need to condition
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based on the local distribution (Refer Section 3.2.3.4). Therefore, we need to re-

write the objective so that it is satisfied (w.r.t the conditioned local distribution)

even after conditioning on at most r variables, as shown in Equation 3.2.3 in the

SDP formulation.

Also, similar to the previous case, we need to ensure that the solution post-

conditioning still cuts at least a constant fraction of the active edges, which is

ensured by adding the set of constraints specified in Equation 3.2.4 in the SDP.

We observe that solving the SDP using ellipsoid method can result in a small

additive error, and if actdegS‹p`q is small compared to this additive error, the

error would be significant. This will not cause any issues and we elaborate on

this more. We can solve the SDP using ellipsoid method with an error of ε in time

polynomial in n and logp1{εq. Therefore, we can take ε to be expp´polypnqq and

still solve the SDP in time polynomial in n. We assumed that the non-zero edge

weights are at least expp´ncq for some constant c ą 0. Therefore, if the active

degree is non-zero, it is at least expp´ncq. If we take ε “ expp´nc
1

q for c1 ąą c,

we can solve the SDP in time polynomial in n and get a vector solution which

satisfies all the constraints upto additive error ε which is upto multiplicative

factor of p1` op1qq. This will not have a major effect on our analysis and hence

we assume from here onward that the vector solution that we get satisfies the all

the constraints exactly.

3.2.3.4 Obtaining independent local solution

The notion of an independent solution (which is formalized below in Defini-

tion 3.2.6) that we need is different from [RT12]. Following procedure in Fig-

ure 3.5 is used to achieve the kind of independence we need.
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Definition 3.2.6 A Lasserre solution is δ-independent if it satisfies the following condi-

tion.

@` P L, E
a,b„actdistS‹ p`q

»

–

ÿ

i,jPt1,2u

IpXai ;Xbjq

fi

fl ď δ.

Input: r ` 2 round Lasserre solution of a given simultaneous MAX-CUT in-
stance, δ ě 32k

r

Output: δ
2
-independent 2-round Lasserre solution.

1. For all `1, . . . , `r{2 P L, and for all edges ei P actdistS‹p`iq for all i P rr{2s.

• Let S “ YiPrr{2stei1, ei2u be the endpoints of all the edges from p1q.

• For every α P t0, 1u|S| such that PrrXS “ αs ą 0 in the local discti-
bution:

– Condition the SDP solution on the event XS “ α.
– Output if conditioned solution if it is δ

2
-independent.

Figure 3.5: Making locally independent solution

Lemma 3.2.7 For all δ ą 0, there exists t ď 2k{δ and edges e1, e2, . . . , et P E such that

@` P L, (3.2.8)

E
a,b„actdistS‹ p`q

rIpXa1 ,Xa2 ;Xb1 , Xb2 |

Xe11
, Xe12

, . . . , Xet1
, Xet2

qs ď δ

Proof:

Consider the following potential function,

φ “
ÿ

`PL
E

aPactdistS‹ p`q
HpXa1 , Xa2q.
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As entropy of a bit is at most 1, clearly φ ď 2k. We have the following identity for

each ` P Lwhich follows from conditional entropy and linearity of expectation

E
a,bPactdistS‹ p`q

rHpXa1 , Xa2 |Xb1 , Xb2qs

“ E
aPactdistS‹ p`q

rHpXa1 , Xa2qs´

E
a,bPactdistS‹ p`q

IpXa1 , Xa2 ;Xb1 , Xb2q

This identity suggests that if for some ` P L, Ea,bPactdistS‹ p`q IpXa1 , Xa2 ;Xb1 , Xb2q ą

δ then there exists a conditioning which reduces the potential function by at least

δ. Thus, either the current conditioned solution satisfies (3.2.8) in which case

we are done or there exists an edge b such that if we condition the SDP solution

based on the value of its endpoints pb1, b2q according to the local distribution then

the potential function decreases by at least δ. So, if we fail to achieve (3.2.8) then φ

decreases by at least δ. As entropy is always non-negative and conditioning never

increases entropy (Fact 2.1.5), this process cannot go beyond 2k{δ conditioning.

Thus, before at most 2k{δ conditioning, we are guaranteed to achieve (3.2.8).

The following fact follows from the data processing inequality given earlier

(Theorem 2.1.7).

Fact 3.2.8 If X1, X2, Y1 and Y2 are random variables then for i, j P t1, 2u, we have

IpXi;Yjq ď IpX1, X2;Y1, Y2q.

The following corollary follows from Lemma 3.2.7 and Fact 3.2.8.
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Corollary 3.2.9 For all δ ą 0, there exists t ď 2k
δ

, and edges e1, e2, . . . , et P E , such

that

@` P L,

E
a,b„actdistS‹ p`q

«

ÿ

i,jPt1,2u

IpXai ;Xbj |

Xe11
, Xe12

, . . . , Xet´1
1
, Xet´1

2
q

ff

ď 4δ

Lemma 3.2.10 There exists a fixing of at most 32k
δ

variables such that the conditioned

solution is δ{2 independent as well as satisfies all constraints from SDP‹ph‹q. In par-

ticular, the algorithm in Figure 3.5 returns such a δ{2 independent solution. Also, the

running time is bounded by nOprq.

Proof: δ{2 independence follows from Corollary 3.2.9 for t “ 16t
δ

and Fact 3.2.8.

Also, we can verify if a given SDP solution is δ{2-independent or not in time

polynomial in n. We now prove the later part.

As the conditioning maintains the marginal distribution of variables and

because of the the Inequality (3.2.3) and (3.2.4), the constraints about the SDP

cut value as well as the fraction of active edges that are cut remain valid in the

conditioned solution. Hence, from Lemma 3.2.4 SDP‹ph‹q remains feasible.

3.2.3.5 Rounding Procedure

In this section, we describe the rounding procedure for variables in V zS‹. The

input to this procedure is 2 round Lasserre solution which is δ-independent.

We use a slight variation of GW rounding procedure to round the SDP vector

solution. In particular, we want to maintain the bias of heavily biased random
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variable in our rounding procedure.

SDP gives the vector solution vi,0,vi,1 for all i P rns. Let µi “ 2 ErXis ´ 1, the

expectation is according to the local distribution. Define vi “ vi,1 ´ vi,0. These

vi are the unit vectors (as }vi}2 “ }vi,1 ´ vi,0}2 “ }vi,1}2 ` }vi,0}2 ´ 2xvi0, vi1y “

PrrXi “ 0s ` PrrXi “ 1s ´ 0 “ 1). Let wi be component of vi orthogonal to vH

(vi “ µivH `wi), }wi}2 “
a

1´ µ2
i . Let wi be the normalized unit vector of wi.

The rounding procedure is applied on vectorswi along with the “bias” of each

variable xvi,vHy. The rounding procedure is shown in Figure 3.6.

Input: δ-independent 2 round Lasserre solution, biases µi P r´1,`1s and a
function fR : r´1, 1s Ñ r´1, 1s which is bounded by above and below with
some constant degree polynomials
Output: A partition of V .

1. Pick a random Gaussian vector g orthogonal to vH with each co-ordinate
distributed as N p0, 1q.

2. For each i P rns

• Calculate ξi “ xg,wiy.

• Let ri Ð fRpµiq

• Set yi “ 1 if ξi ď Φ´1pri{2` 1{2q, otherwise set yi “ ´1. (Here, Φ is
the Gaussian CDF)

Figure 3.6: Rounding procedure

3.2.3.6 Analysis of the rounding procedure

We use the notation polyă1pxq to denote a “polynomial” in x with exponents as

real numbers in p0, 1q, such that polyă1pxq Ñ 0 as xÑ 0.

Note that if we simply use the rounding function fRpxq “ x as used in

[RT12] the we get for each instance, in expectation the cut produced by the
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rounding procedure is at least 0.85 times the SDP value (and hence eventually

0.85 approximation for simultaneous MAX-CUT). Here, we leverage the fact that

the constraints on what rounding functions are good for us are mild compared

to [RT12] as explained in Section 3.1.2.

Lemma 3.2.11 For a fixed low variance instance, the rounding procedure described in

Figure 3.6 gives an approximation ratio 0.878001p1´3εq in expectation for the following

fR,

fRpxq “ 0.79 ¨ x` 0.07 ¨ x3
` 0.14 ¨ x7

Proof: The proof of this lemma is numerical. We arrive at a informal approx-

imate value for the bound using Matlab code (0.878001) and verify it using

computer assisted techniques. The multiplicative loss of p1 ´ 3εq is because of

using SDP‹. We elaborate on the exact constant 0.878001 that we get next. The

probability pij that a given edge pi, jq is cut by the rounding procedure is a func-

tion of µi and µj , whereas its SDP contribution is a quantity qij :“ 1´ xvi,vjy{2.

Thus to show a lower bound on approximation ratio it is sufficient to prove

the same lower bound on pi,j{qij for all possible valid configurations of vectors.

The program works in a recursive fashion, by continuously splitting the cube

(all possible valid configuration) into sub-cubes. In each sub-cube, the program

checks if either across all points in the region, the lower bound on α exceeds the

approximation ratio we try to prove or if the upper bound on α is lower than

the approximation ratio we try to prove. It proceeds with further division into

smaller sub-cubes until one of the above is satisfied. If the latter is true at any

point, the code returns a failure, and it returns a success if the entire region can be
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proved to come under the former case. The prover was adapted from [ABG12]

and modified to suit our rounding procedure. For more details on the workings

of the prover, refer [ABG12].

Remark 3.2.12 It seems possible to improve the constant 0.878001 by using a different

fR which is continuous and satisfies fRp1q “ 1 and fRp´1q “ ´1 However we suspect

that a serious new idea would be needed to get a αGW -approximation algorithm.

We need the following lemma from [RT12].

Lemma 3.2.13 ([RT12]) Let vi and vj be the unit vectors, wi and wj be the compo-

nents of vi and vj that are orthogonal to vH. Then |xwi,wjy| ď 2IpXi;Xjq.

Above lemma along with Lemma 3.2.10 implies that if we sample an edge

pi1, i2q, pj1, j2q „ actdistS‹p`q then we have on average,

|xwi1 ,wj1y| ` |xwi1 ,wj2y| ` |xwi2 ,wj1y| ` |xwi2 ,wj2y| ď δ.

The rounding procedure is assigning values ˘1 to variables yi where yi is the

variable for vertex i P V and its value decides on which side of cut the vertex

i is present in the final solution. Thus yi is a random variable taking values

in t`1,´1u. We now wish to prove similar guarantee as the following lemma

from [RT12], which relates the mutual information between the pair of rounded

variables with the inner product of the corresponding vectors w.

Lemma 3.2.14 ([RT12]) For fR such that fRpxq “ x, if |xwi,wjy| ď δ then

Ipyi; yjq ď δ1{3.
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In our case, we need that the mutual information between the events that a

pair of edges are cut is small on average. Thus, our notion of local independence

will be useful in proving this guarantee about mutual information.

Lemma 3.2.15 Fix fR to be the rounding function given by Lemma 3.2.11. For a pair of

edges pi1, i2q and pj1, j2q, suppose the vectors w corresponding to their endpoints satisfy

the following condition,

|xwi1 ,wj1y| ` |xwi1 ,wj2y|`

|xwi2 ,wj1y| ` |xwi2 ,wj2y| ď δ

then Ipyi1yi2 ; yj1yj2q ď polyă1pδq.

Proof: Since wi is a normalized vector of wi and }wi} “
a

1´ µ2
i , we have

b

1´ µ2
i1
¨

b

1´ µ2
j1
¨ |xwi1 ,wj1y|

`

b

1´ µ2
i1
¨

b

1´ µ2
j2
¨ |xwi1 ,wj2y|

`

b

1´ µ2
i2
¨

b

1´ µ2
j1
¨ |xwi2 ,wj1y|

`

b

1´ µ2
i2
¨

b

1´ µ2
j2
¨ |xwi2 ,wj2y|

,

/

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

/

-

ď δ. (3.2.9)

Since the total sum is bounded and each quantity is non-negative, at least

one of the three quantities in each summand is at most δ1{3. We use two crucial

properties of the rounding procedure:

• For the heavily biased variable according to the local distribution, the

rounding procedure also keeps the rounded value heavily biased and

• If two vectors wi and wj are nearly orthogonal, corresponding rounded

values yi and yj are nearly independent.
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We need following claim which we prove in Section 3.4.

Claim 3.2.16 If all these quantities |xwi1 ,wj1y|, |xwi1 ,wj2y|, |xwi2 ,wj1y|, and |xwi2 ,

wj2y| are upper bounded by δ1{3, then we can upper bound Ipyi1 , yi2q; pyj1 , yj2qq ď

polyă1pδq.

We now formally prove the upper bound on Ipyi1yi2 ; yj1yj2q by case analysis.

We use the following upper bound which follows from data processing inequality.

Ipyi1yi2 ; yj1yj2q ď Ipyi1 , yi2q; pyj1 , yj2qq.

We now bound the right hand side based on following case analysis.

• Case 1: If all these quantities |xwi1 , wj1y|, |xwi1 , wj2y|, |xwi2 , wj1y|, |xwi2 ,

wj2y| are upper bounded by δ1{3 then using Claim 3.2.16, we can upper

bound Ipyi1 , yi2q; pyj1 , yj2qq ď polyă1pδq

• Case 2: Consider the case when both the endpoints of an edge (w.l.o.g. of

pi1, i2q) have large bias i.e.
b

1´ µ2
i1
ď δ1{3,

b

1´ µ2
i2
ď δ1{3. It implies,

minp|1´ µi1 |, |1` µi1 |q ď δ1{3

minp|1´ µi2 |, |1` µi2 |q ď δ1{3

Assume both µi1 , µi2 ą 0 (there cases can be handled in a similar way). Then

we have, 1 ´ µi1 ď δ1{3 and 1 ´ µi2 ď δ1{3. Since the rounding procedure

maintains the bias of a variable for a heavily biased variables, up to some
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constant polynomial factor, we have,

Ippyi1 , yi2q; pyj1 , yj2qq

ď Hpyi1 , yi2q

ď Hpyi1q `Hpyi2q

“ Op´p1´ polyă1pµi1qq logp1´ polyă1pµi1qqq`

Op´p1´ polyă1pµi2qq logp1´ polyă1pµi2qqq

ď polyă1pδq.

• Case 3: Consider the case when exactly two non-endpoints of an edge

(w.l.o.g. of pi1, jiq) have large bias. This implies that xwi2 ,wj2y ď δ1{3.

Using the analysis of the previous case we have Hpyi1q, Hpyj1q ď polyă1pδq.

Mutual information can be bounded as follows:

Ippyi1 , yi2q; pyj1 , yj2qq

ď Hppyi1 , yi2qq ´Hppyi1 , yi2q|pyj1 , yj2qq

ď Hpyi1q `Hpyi2q ´Hpyi2 |pyj1 , yj2qq

“ Hpyi1q ` Ippyj1 , yj2q; yi2q (3.2.10)

“ polyă1pδq ` Ippyj1 , yj2q; yi2q. (3.2.11)
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Now,

Ippyj1 , yj2q, yi2q

“ Hppyj1 , yj2qq ´Hppyj1 , yj2q|yi2q

ď Hpyj1q `Hpyj2q ´Hpyj2 |yi2q

“ Hpyj1q ` Ipyj2 ; yi2q

“ polyă1pδq ` Ipyj2 ; yi2q.

Therefore, we have

Ipyi1yi2 ; yj1yj2q ď polyă1pδq ` Ipyj2 ; yi2q.

From Claim 3.2.16, Ipyj2 ; yi2q is bounded above by polyă1pδq as xwi2 ,wj2y ď

δ1{3.

• Case 4: Consider the only remaining case in which exactly one variable,

say Xi1 , has a large bias i.e.
b

1´ µ2
i1
ď δ1{3. From (3.2.9), it implies that

pairwise inner products of wi2 ,wj1 and wj2 are at most δ1{3. Hence by

Claim 3.2.16, we have Ipyi2 ; pyj1 , yj2qq ď polyă1pδq. As before from (3.2.10),

Ipyi1 , yi2q; pyj1 , yj2qq ď Hpyi1q ` Ippyj1 , yj2q; yi2q

ď polyă1pδq.

We can now upper bound the variance of a cut produced by the randomized

rounding in graph ` P L. Define Y` to be a random variable which is equal to the
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total weight of active edges cut by the rounding procedure.

Y` “
ÿ

CPActivepS‹q

E`pCqepgq.

Lemma 3.2.17 Fix a rounding function fR given in Lemma 3.2.11 and let the SDP

solution is δ independent then

VarpY`q ď
polyă1pδq

ε2 ErY`s
2.

Proof: Let α :“ 0.8780. Note that by Lemma 3.2.11, we have for an active edge

epi, jq,

Prrepi, jq is cut s ě α ¨
1´ xvi,vjy

2
. (3.2.12)

We now lower bound the expected value of Y`.

ErY`s“
ÿ

ePActivepS‹q

E`peq ¨ Prrepi, jq is cuts

p from p3.2.12qq

ě α
ÿ

ePActivepS‹q

E`peq ¨
1´ xvi,vjy

2

“ α ¨
ÿ

ePActivepS‹q

E`peqp}vtpi,jq,p0,1qu}22 ` }vtpi,jq,p1,0qu}22q

p from p3.2.2qq

ě α ¨ ε{3 ¨ actdegS‹p`q
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We can now bound the variance as follows:

VarpY`q “
ÿ

i,jPActivepS‹q

E`piqE`pjqCov

„

1´ yi1yi2
2

,
1´ yj1yj2

2



“
ÿ

i,jPActivepS‹q

E`piqE`pjq
ˆ

1

4
¨ Covryi1yi2 , yj1yj2s

˙

ď
ÿ

i,jPActivepS‹q

E`piqE`pjqrOp
b

Ipyi1yi2 ; yj1yj2qqsq (from Lemma 3.2.15)

ď
ÿ

i,jPActivepS‹q

E`piqE`pjqpolyă1

¨

˚

˚

˝

ÿ

aPti1,i2u,
bPtj1,j2u

|xwa,wby|

˛

‹

‹

‚

(from Lemma 3.2.13)

ď
ÿ

i,jPActivepS‹q

E`piqE`pjqpolyă1

¨

˚

˝ E
a„ti1,i2u,
b„tj1,j2u

rIpXa;Xbqs

˛

‹

‚

ď actdegS‹p`q
2
ˆ E

i,j„actdistS‹ p`q
polyă1 E

a„ti1,i2u,
b„tj1,j2u

rIpXa;Xbqs

(from concavity of polyă1)

ď actdegS‹p`q
2
ˆ polyă1

¨

˚

˝ E
pi1,i2q,
pj1,j2q

„actdistS‹ p`q

E
a„ti1,i2u,
b„tj1,j2u

rIpXa;Xbqs

˛

‹

‚

ď polyă1 pδq ¨ actdegS‹p`q
2,

Thus, we have

VarpY`q ď
polyă1pδq

ε2 ErY`s
2.

Corollary 3.2.18 If we set r :“ polypk, 1{εq then for every low variance instance ` P

rks,with probability at least 1´ 1{10k we have valph‹ Y gq ě p0.878001´ 4εqc`.
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Proof: Choosing r a large constant (and thus δ very small), by Lemma 3.2.17

and application of Chebyshev’s Inequality, we can deduce that with probability

at least 1 ´ 1{10k, we have Y` ě p1 ´ εqErY`s. Thus, with probability at least

1´ 1{10k, we have,

valph‹ Y g, E`q “ valph‹, E`q ` Y`

ě valph‹, E`q ` p1´ εqErY`s

ě p1´ εq ¨ Ervalph‹, E`q ` Y`s

“ p1´ εq ¨ Ervalph‹ Y g,W`qs

ě p1´ εq ¨ 0.878001 ¨ p1´ 3εq ¨ c`

ě p0.878001´ 4εq ¨ c`,

where we have used Lemma 3.2.11 for the lower bound Ervalph‹ Y g,W`qs ě

0.878001 ¨ p1´ 3εqc`,

3.2.3.7 Post-Processing

Lemma 3.2.19 For all high variance instances ` P rks, we have

1. actdegS‹p`q ď 2p1´ γqt.

2. For each of the first t{2 variables that were brought inside S‹ because of instance

`, the total weight of edges from E` incident on each of that variable and totally

contained inside S‹ is at least 20 ¨ actdegS‹p`q.

Proof: Consider any high variance instance ` P rks. Initially, when S “ H, we

have actdegHpE`q ď 2 since the weight of every edge is counted at most twice,
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once for each of the 2 active vertices of the edge, and
ř

ePE E`peq “ 1. For every v,

note that actdegS2
pv, E`q ď actdegS1

pv, E`qwhenever S1 Ď S2.

Let u be one of the vertices that ends up in S‹ because of instance `. Let

Su denote the set S Ď S‹ just before u was brought into S‹. When u is added

to Su, we know that actdegSupu, E`q ě γ ¨ actdegSup`q. Hence, actdegSuYtuup`q ď

actdegSup`q ´ actdegSupu, E`q ď p1´ γq ¨ actdegSup`q. Since t vertices were brought

into S‹ because of instance `, and initially actdegHp`q ď 2, we get actdegS‹p`q ď

2p1´ γqt.

Now, let u be one of the first t{2 vertices that ends up in S‹ because of in-

stance `. Since at least t{2 vertices are brought into S‹ because of instance `,

after u, as above, we get actdegS‹p`q ď p1 ´ γqt{2 ¨ actdegSup`q. Combining with

actdegSupu, E`q ě γ ¨ actdegSup`q, we get actdegSupu, E`q ě γp1 ´ γq´t{2actdegS‹p`q,

which is at least 21 ¨ actdegS‹p`q, by the choice of parameters. Since any edge

incident on a vertex in V zS‹ contributes its weight to actdegS‹p`q, the total weight

of edges incident on u and totally contained inside S‹ is at least 20 ¨ actdegS‹p`q

as required.

We now describe a procedure PERTURB (see Figure 3.7) which takes h‹ : S‹ Ñ

t0, 1u and g : V zS‹ Ñ t0, 1u, and produces a new h : S‹ Ñ t0, 1u such that for

all (low variance as well as high variance) instances ` P rks, valphY g, E`q is not

much smaller than valph‹Yg, E`q, and furthermore, for all high variance instances

` P rks, valphY g, E`q is large. The procedure works by picking a special vertex in

S‹ for every high variance instance and perturbing the assignment of h‹ to these

special vertices. The partial assignment h is what we will be using to argue that

Step 1d of the algorithm produces a good Pareto approximation. More formally,

we have the following Lemma.
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Input: h‹ : S‹ Ñ t0, 1u and g : V zS‹ Ñ t0, 1u
Output: A perturbed assignment h : S‹ Ñ t0, 1u.

1. Initialize hÐ h‹.

2. For ` “ 1, . . . , k, if instance ` is a high variance instance case (i.e., count` “
t), we pick a special variable v` P S‹ associated to this instance as follows:

(a) Let B “ tv P V | D` P rkswith
ř

ePE,eQv E`peq ¨ ephY gq ě ε
2k
¨ valphY

g, E`qu. Since the weight of each edge is counted at most twice, we
know that |B| ď 4k2

ε
.

(b) Let U be the set consisting of the first t{2 vertices brought into S‹

because of instance `.

(c) Since t{2 ą |B| ` k, there exists some u P U such that u R B Y
tv1, . . . , v`´1u. We define v` to be u.

(d) By Lemma 3.2.19, the total E` weight of edges that are incident on v`
and only containing vertices from S‹ is at least 20 ¨ actdegS‹p`q. We
update h by setting hpv`q to be that value from t0, 1u such that at
least half of the E` weight of these edges is satisfied.

3. Return the assignment h.

Figure 3.7: Procedure PERTURB for perturbing the optimal assignment
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Lemma 3.2.20 For the assignment h obtained from Procedure PERTURB (see Fig-

ure 3.7), for each ` P rks, valph Y g, E`q ě p1 ´ ε{2q ¨ valph‹ Y g, E`q. Furthermore,

for each high variance instance E`, valphY g, E`q ě 8 ¨ actdegS‹p`q.

Proof: Consider the special vertex v` that we choose for high variance instance

` P rks. Since v` R B, the edges incident on v` only contribute at most a ε{2k

fraction of the objective value in each instance. Thus, changing the assignment

v` can reduce the value of any instance by at most a ε
2k

fraction of their current

objective value. Also, we pick different special variables for each high variance

instance. Hence, the total effect of these perturbations on any instance is that it

reduces the objective value (given by h‹Y g) by at most 1´ p1´ ε
2k
qk ď ε

2
fraction.

Hence for all instances ` P rks, valphY g, E`q ě p1´ ε{2q ¨ valph‹ Y g, E`q.

For a high variance instance ` P rks, since v` P U, the vertex v` must be one of the

first t{2 variables brought into S‹ because of `. Hence, by Lemma 3.2.19 the total

weight of edges that are incident on v` and entirely contained inside S‹ is at least

20 ¨ actdegS‹p`q. Hence, there is an assignment to v` that satisfies at least at least

half the weight of these MAX-CUT constraints in `. At the end of the iteration

when we pick an assignment to v`, we have valphY g, E`q ě 10 ¨ actdegS‹p`q. Since

the later perturbations do not affect value of this instance by more than ε{2 fraction,

we get that for the final assignment h, valphY g, E`q ě p1´ ε{2q ¨ 10 ¨ actdegS‹p`q ě

8 ¨ actdegS‹p`q.

Theorem 3.2.21 Suppose we’re given ε P p0, 1{5s, k simultaneous MAX-CUT instances

E1, . . . , Ek on n variables, and target objective value c1, . . . , ck with the guarantee that

there exists an assignment f ‹ such that for each ` P rks, we have valpf ‹, E`q ě c`. Then,

the algorithm ALG-SIM-MAXCUT runs in time exppk3
{ε2 logpk{ε2qq ¨npolypkq, and with
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probability at least 0.9, outputs an assignment f such that for each ` P rks, we have,

valpf, E`q ě p0.878001´ 5εq ¨ c`.

Proof: Let α :“ 0.878001. By Corollary 3.2.18 and a union bound, with probabil-

ity at least 0.9, over the choice of g, we have that for every low variance instance

` P rks, valph‹ Y g, E`q ě pα´ 4εq ¨ c`. Henceforth we assume that the assignment

g sampled in Step 1c of the algorithm is such that this event occurs. Let h be the

output of the procedure PERTURB given in Figure 3.7 for the input h‹ and g. By

Lemma 3.2.20, h satisfies

1. For every instance ` P rks, valphY g, E`q ě p1´ ε{2q ¨ valph‹ Y g, E`q.

2. For every high variance instance ` P rks, valphY g, E`q ě 8 ¨ actdegS‹p`q.

We now show that the desired Pareto approximation behavior is achieved when

h is considered as the partial assignment in Step 1d of the algorithm. We analyze

the guarantee for low and high variance instances separately.

For any low variance instance ` P rks, from property 1 above, we have valphY

g, E`q ě p1´ ε{2q ¨ valph‹ Y g, E`q. Since we know that valph‹ Y g, E`q ě pα´ 4εq ¨ c`,

we have valphY g, E`q ě pα ´ 5εq ¨ c`.

For every high variance instance ` P rks, since h‹ “ f ‹|S‹ , for any g we must

have,

valph‹ Y g, E`q ě valpf ‹, E`q ´ actdegS‹p`q

ě c` ´ actdegS‹p`q
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Combining this with properties 1 and 2 above, we get,

valphY g, E`q

ě p1´ ε{2q ¨maxtc` ´ actdegS‹p`q, 8 ¨ actdegS‹p`qu

ě pα ´ εq ¨ c`.

Thus, for all instances ` P rks, we get valph Y gq ě pα ´ 5εq ¨ c`. Since we are

taking the best assignment hY g at the end of the algorithm ALG-SIM-MAXCUT,

the theorem follows.

Plugging the appropriate value of ε in Theorem 3.2.21 completes the proof of

0.8780-factor Pareto approximation (and hence min approximation) for simulta-

neous MAX-CUT for arbitrary constant k.

3.3 Open Questions

The main open question we would like to highlight is the question of deter-

mining optimal approximability and inapproximability results for simultaneous

approximation of constraint satisfaction problems (CSPs). In particular, it would

be very interesting to develop techniques for showing nontrivial hardness of

approximation in this context.
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3.4 Deferred Proofs

3.4.1 Proof of Claim 3.2.16

We need following bounds on the gaussian random variables.

Claim 3.4.1 For all x ą 0, Prg„N p0,1qr|g| ą xs ď e´x
2
{2.

Claim 3.4.2 For all 1 ą x ą 0, Prg„N p0,1qr|g| ă xs ď x.

Random process P : Let w1,w2,w3,w4 P R4 be unit vectors and µ1, µ2, µ3, µ4

be any real numbers. Consider the following random variables py1, y2, y3, y4q

where yi P t´1,`1u which are sampled as follows: Pick a random vector g :“

pg1, g2, g3, g4q P R4 with each entry distributed as N p0, 1q. Set

yi “ ´1 if xg,wiy ď µi,

“ `1 otherwise.

The following lemmas gives sufficient conditions when Ipy1, y2; y3, y4q is small.
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Lemma 3.4.3 Suppose |xwi,wjy| ď δ for all i, j P r4s, i ‰ j and yis are sampled

according to the random process P , then for all b P t´1,`1u4, we have

ˇ

ˇ

ˇ

ˇ

ˇ

Prrpy1, y2, y3, y4q “ bs ´
ź

1ďiď4

Prryi “ bis

ˇ

ˇ

ˇ

ˇ

ˇ

“ Opδ
1{4
q,

In fact, the joint distribution on any subset of variables is close to its product distribution

pointwise with an additive error of at most Opδ1{4q.

Proof: Assume that 0 ă δ ă 1{100 (otherwise, the lemma is trivial). Let ei is a

unit vector with 1 in the ith coordinate. By rotational symmetry, we can assume

that xwi, eiy ě 1´20δ for all i. We can write vectorwi “
?

1´ δiei`
?
δiηi where

ηi is a unit vector orthogonal to ei. The conditions on inner products therefore

imply each δi ă 40δ. We will prove the lemma for b “ p´1,´1,´1,´1q (all other

cases are similar). We have,

Prryi “ ´1, @i P r4ss “ Prr@i, xg,wiy ď µis

“ Prr@i,
a

1´ δigi `
a

δixg,ηiy ď µis

Let B be the following event,

B : There exists 1 ď i ď 4, such that |xg,ηiy| ě 1{δ1{4.
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By union bound,

PrrBs “
ÿ

i

Prr|xg,ηiy| ě 1{δ1{4s

ď 4 ¨ Prr|xg,η1y| ě 1{δ1{4s

“ 4 ¨ Pr
g„N p0,1q

r|g| ě 1{δ1{4s

ď 4e
´ 1

2
?
δ ,

where last inequality uses Claim 3.4.1. Now,

Prryi “ ´1, @1 ď i P r4ss “ PrrBs ¨ Prryi “ ´1, @i P r4s|Bs`

PrrBs ¨ Prryi “ ´1, @i P r4s|Bs

ď 4e
´ 1

2
?
δ ¨ 1` Prryi “ ´1, @i P r4s|Bs, (3.4.1)

We now estimate the probability conditioned on event B.

Prryi “ ´1, @i P r4s|Bs “ Prr@i,
a

1´ δigi `
a

δixg,ηiy ď µi|Bs

ď Prr@i,
a

1´ δigi ď µi `
a

δi ¨
1

δ1{4
s (gi independent)

“
ź

i

Prr
a

1´ δigi ď µi `
a

δi ¨
1

δ1{4
s (using δi ď 40δ)

ď
ź

i

Prr
a

1´ δigi ď µi `
?

40δ
1{4 (using δi ď 1{2)

ď
ź

i

Prrgi ď p1` δiqpµi `
?

40δ
1{4
qs (using δi ď 1{2)

ď
ź

i

Prrgi ď µi ` δiµi ` 3{2 ¨
?

40δ
1{4
qs

ď
ź

i

Prrgi ď pµi ` δiµi ` 15δ
1{4
qs.
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We now analyse the above probability in cases, and show the following:

Prrgi ď µi ` δiµi ` 15δ
1{4
qs ď

ź

i

Prrgi ď µis `Opδ
1{4
q (3.4.2)

Notice that

ź

i

Prrgi ď µi ` cδ
1{4
s ď

ź

i

Prrgi ď µis ` Prr|gi| ď cδ
1{4
s

pfrom Claim 3.4.2q ď

˜

ź

1ďiď4

Prryi “ bis ` cδ
1{4

¸

ď
ź

1ďiď4

Prryi “ bis `Opδ
1{4
q (3.4.3)

• Case 1: µi ă 0.

In this case, we can directly say the following.

ź

i

Prrgi ď µi`δiµi ` 15δ
1{4
qs ď

ź

i

Prrgi ď µi ` 15δ
1{4
s.

• Case 2: 0 ď µi ď
10
δ3{4 We can say the following because δi ă 40δ.

ź

i

Prrgi ď µi ` δiµi ` 15δ
1{4
s ď

ź

i

Prrgi ď µi `Opδ
1{4
qs

• Case 3: µi ą 10
δ3{4 In this case, since µi is large, we have the following from

Claim 3.4.1.

ź

i

Prrgi ď µis ě 1´ opδ
1{4
q
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Therefore,

ź

i

Prrgi ď µi ` δiµi ` 15δ
1{4
s ď 1 ď

ź

i

Prrgi ď µis ` opδ
1{4
q

Form (3.4.1), (3.4.2) and (3.4.3) we get

Prrpy1, y2, y3, y4q “ bs ´
ź

1ďiď4

Prryi “ bis ď Opδ
1{4
q.

The other direction can be shown in an analogous way.

We can now bound the Mutual information between py1, y2q and py3, y4q if the

vectors wi satisfy the condition from Lemma 3.4.3

Lemma 3.4.4 Suppose |xwi,wjy| ď δ for all i, j P r4s and i ‰ j, then Ippy1, y2q ;

py3, y4qq ď polyă1pδq, where yi are sampled according to the random process P .

Proof: The lemma follows from Lemma 3.4.3 as the distribution is close to the

product distribution.

To formally prove the lemma, first we assume that each of the random vari-

ables yi is not heavily biased i.e. Prryi “ ´1s P rδ1{100, 1 ´ δ1{100s. Using the

definition of mutual information,

Ippy1, y2q; py3, y4qq

“
ÿ

b1,b2,b3,b4
t´1`1u

«

rPrry “ bs ¨ log
Prry “ bs

Prrpy1, y2q “ pb1, b2qs ¨ Prrpy3, y4q “ pb3, b4qs

ff

(3.4.4)
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Form Lemma 3.4.3, we have

Prrpy1, y2q “ pb1, b2qs ě Prry1 “ b1sPrry2 “ b2s ´Opδ
1{4
q

Prrpy3, y4q “ pb3, b4qs ě Prry3 “ b3sPrry4 “ b4s ´Opδ
1{4
q

Plugging in and simplifying (3.4.4), we get

Ippy1, y2q; py3, y4qq ď
ÿ

b1,b2,b3,b4t´1`1u

Prry “ bs ¨ log

ś

1ďiď4 Prryi “ bis `Opδ
1{4q

ś

1ďiď4 Prryi “ bis ´Opδ
1{4q

As each variable is not heavily biased, we have
ś

1ďiď4 Prryi “ bis ě δ1{25 and

hence the log in the above expression can be upper bounded by log δ1{25`Opδ
1{4q

δ1{25´Opδ1{4q

which is at most logp1`Opδ1{10qq ď Opδ1{10q. Hence we have

Ippy1, y2q; py3, y4qq ď Opδ1{10
q.

If a variable is heavily biased, suppose say y1 has large bias, then we can claim

Ippy1, y2q; py3, y4qq ď polyă1pδq ` Ipy2; py3, y4qq using derivation similar to ( 3.2.11)

and then proceed by upper bounding Ipy2; py3, y4qq in a similar fashion as above.

Proof of Claim 3.2.16: The proof follows from Lemma 3.4.4 noting the fact that

the upper bound is independent of µi.

3.4.2 Proof of Lemma 3.2.2

Proof: Item 1 of the lemma follows from Chebyshev’s inequality. We now focus
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on the proof of Item 2. We have

Uvar` ě δ0ε
2
0 ¨ Lmean2

`

ñ
ÿ

e„Se1

E`peqE`pe1q ě δ0ε
2
0 ¨ Lmean2

`

Let e0 be an edge in ActivepSq that maximizes
ř

e„Se0
E`peq. We can now upper

bound the expression on the left as follows

ÿ

e„Se1

E`peqE`pe1q ď
ÿ

e„Se0

E`peq ¨
ÿ

ePActivepSq

E`peq.

Therefore, we have

ÿ

e„Se0

E`peq ¨
ÿ

ePActivepSq

E`peq ě δ0ε
2
0 ¨ Lmean2

`

ě δ0ε
2
0 ¨ τ

2
¨

¨

˝

ÿ

ePActivepSq

E`peq

˛

‚

2

ñ
ÿ

e„Se0

E`peq ě δ0ε
2
0 ¨ τ

2
¨

ÿ

ePActivepSq

E`peq

Let v be the end vertex of e0 that has greater weight of active edges adjacent to it,

v P V zS. We can say the following

actdegSpv, `q ě
1

2
¨ δ0ε

2
0 ¨ τ

2
¨

ÿ

ePActivepSq

E`peq.

From the definition of actdegSp`q, we can say the following

actdegSp`q ď 2 ¨
ÿ

ePActivepSq

E`peq,
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as each edge could contribute at most twice to the sum, once for each end vertex.

This gives us the following required result.

actdegSpv, `q ě
1

4
¨ δ0ε

2
0 ¨ τ

2
¨ actdegSp`q.
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Chapter 4

Improved Hardness for 3LIN

4.1 Introduction

In this paper, we study the 3-LIN problem. An instance of 3-LIN consists of a set

of n variables over F2 and a set ofm equations that contain at most three variables

each, and the goal is to find an assignment to the n variables that satisfies

the most number of equations.1 If the given set of linear equations admits an

assignment that satisfies every equation, then one such assignment can be found

in polynomial time by Gaussian elimination. However, the general problem of

finding the most of number of equations is NP-hard when the instance does not

admit a satisfying assignment, and a large amount of research has been done on

the limit of polynomial time approximation algorithms.

Assigning random values satisfies exactly half the equations in expectation,

and gives a 1{2-approximation algorithm. Håstad and Venkatesh [HV02] get

an approximation factor of 1{2 ` 1{Op
?
mq, which was improved by Khot and

1This maximization version is also known as MAX 3-LIN in the literature.
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Naor [KN07] to 1{2`Op
a

logn{nq.

From the hardness side, there are strong hardness results even when the

instance is almost-satisfiable. For 1 ě c ą s ą 0, let GAP 3-LINpc, sq denote

the problem of distinguishing whether the given instance of 3-LIN is at least

c-satisfiable or at most s-satisfiable. Håstad’s classic hardness results [Hås01]

show the following.

Theorem 4.1.1 ([Hås01]) The following hardness results for GAP 3-LIN hold.

1. For any constant ε ą 0, GAP 3-LINp1´ ε, 1{2` εq is NP-hard.

2. There exists a constant c ą 0 such that for ε “ 1{plognqc, there is no poly-

nomial time algorithm that solves GAP 3-LINp1 ´ ε, 1{2 ` εq unless NP Ď

DTIMErnOplog lognqs.

Håstad’s results are proved by giving the reduction from LABEL COVER to

3-LIN. LABEL COVER is a common starting point for hardness results, and we

define the optimization problem below.

Definition 4.1.2 (LABEL COVER) An instance of LABEL COVER contains a regular

bipartite multi- graphG “ pA,B,Eq and two finite sets ΣA and ΣB , where |ΣA| ě |ΣB|.

Every vertex in A is supposed to get a label in ΣA, and every vertex in B is supposed

to get a label in ΣB. For each edge e P E there is a projection πe : ΣA Ñ ΣB. Given a

labeling to the vertices of the graph, i.e., functions φA : AÑ ΣA and φB : B Ñ ΣB, an

edge e “ pa, bq P E is said to be “satisfied” if πepφApaqq “ φBpbq. For 1 ě c ą s ą 1,

GAP LABEL COVERpc, sq is the problem if distinguishing whether the given instance

of LABEL COVER is at least c-satisfiable or at most s-satisfiable.

The aforementioned Håstad’s theorem can also be re-stated in terms of a

reduction from GAP LABEL COVERp1, δq as follows.
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Theorem 4.1.3 ([Hås01]) For every ε P p0, 1q and positive integer `, there exists a

δ “ polypεq and a polypn, 2`, 21{εq-time reduction to GAP 3-LINp1 ´ ε, 1{2 ` εq from

n-sized instances of GAP LABEL COVERp1, δq with label size `.

When [Hås01] was published, the hardness of LABEL COVER was achieved

by the PCP theorem [AS98, ALM`98] and parallel repetition [Raz98]. More pre-

cisely, GAP LABEL COVERp1, εq with label size polyp1{δq was NP-hard under

polypnlog 1{δq-time reductions. The two results of Håstad stated in Theorem 4.1.1

follow from this hardness of GAP LABEL COVER and Theorem 4.1.3 by setting

δ to be an arbitrarily small constant and 1{logn respectively. Since achieving a

subconstant soundness for LABEL COVER by parallel repetition requires a super-

polynomial blowup in the instance size, ε ą 0 could not be taken to subconstant

under polynomial time reductions. Later in a celebrated paper, Moshkovitz and

Raz [MR08] gave an improved hardness of LABEL COVER that achieves sub-

constant error under polynomial time reductions. Their main result can be stated

as follows.

Theorem 4.1.4 ([MR08, Theorem 11]) For every n, and every δ ą 0 (that can be any

function of n), 3-SAT on inputs of size n can be reduced to GAP LABEL COVERp1, δq

when LABEL COVER instance has n1`op1q ¨ polyp1{δq vertices and |ΣA| ď expppolyp1{δqq,

|ΣB| ď polyplog 1{δq.

A corollary of the above result, obtained by combining it with Håstad’s

reduction from Theorem 4.1.3, is that given a system of linear equations, it

is NP-hard to distinguish between cases where 1 ´ op1q fraction of equations

are satisfied vs at most 1{2 ` op1q fraction are satisfied, where the op1q term is

1{plog lognq´Ωp1q.

64



Theorem 4.1.5 ([MR08]) There exists a constant c ą 0 such that for ε “ 1{plog lognqc,

GAP 3-LINp1´ ε, 1{2` εq is NP-hard.

Later, an improved parallel repetition by Dinur and Steurer [DS14] allowed c

to be an arbitrary constant.

The above route prove hardness of 3-LIN is restricted by the large size of

the alphabet in the resulting LABEL COVER instance in Theorem 4.1.4. Quan-

titatively, the alphabet size is exponential in polyp1{εq. The fact that the long

code in Håstad’s reduction has size exponential in the alphabet size restricts

ε “ 1{plog lognqOp1q.

Our main contribution for 3-LIN is to bring ε in the above result down

to 1{plognqc for any constant c, while keeping the size of the reduced instance

polynomial (albeit the reduction becomes randomized).

Theorem 4.1.6 (Main) For any constant c ą 0 and ε “ 1{plognqc, there is no polynomial

time algorithm for GAP 3-LINp1´ ε, 1{2` εq unless NP Ď BPP.

We get around the above alphabet barrier by starting with a reduction that

would make the resulting LABEL COVER linear, and use Hadamard codes instead

of long codes. Since the Hadamard code keeps the reduction size polynomial in

the alphabet size, we can take ε “ 1{plognqΩp1q. A similar idea was previously used

by Khot [Kho01]. We define LINEAR LABEL COVER as follows.

Definition 4.1.7 (LINEAR LABEL COVER) A LINEAR LABEL COVER is a special

case of LABEL COVER where the alphabets are of the form ΣA “ Fa2,ΣB “ Fb2 where

a, b are natural numbers. Each projection π : Fa2 Ñ Fb2 is affine in the sense that

πpxq “ αx` β for some α P Fbˆa
2 , β P Fb

2.
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For 1 ě c ą s ą 0, the GAP LINEAR LABEL COVERpc, sq is defined similarly to

GAP LABEL COVERpc, sq.

We prove the following hardness result for LINEAR LABEL COVER, which

may be of independent interest.

Theorem 4.1.8 (Hardness of Linear Label Cover) For any constant c ą 0, for δ “

1{plognqc, there is no polynomial time algorithm for GAP LINEAR LABEL COVERp1 ´

δ, δq unless NP Ď BPP, when LABEL COVER instance has polypnq vertices and

|ΣA| “ polypnq, |ΣB| “ polylogpnq.

4.1.1 Proof Ideas

Our main technical contribution is Theorem 4.1.8 for LINEAR LABEL COVER, es-

sentially proving a linear analogue of the Moshkovitz-Raz PCP [MR08] followed

by the Dinur-Steurer parallel repetition [DS14]. The proof is given through a

long sequence of reductions. We split them in 3 major steps.

1. Interestingly, the starting point of our reduction is again the hardness of

(not necessarily linear) LABEL COVER proved by Moshkovitz and Raz

[MR08] augmented by Dinur and Steurer [DS14], proving NP-hardness

of GAP LABEL COVERp1, 1{logc nq for any c ą 0, while keeping the reduction

size and the alphabet size polynomial. In Section 4.2, we give a randomized

reduction from this LABEL COVER to GAP LINp1´ 1{logc n, 0.9q. This style

of reduction appeared previous from LABEL COVER to CLOSEST VECTOR

PROBLEM [Kho10]. Note that the standard proof of the PCP theorem en-

codes 3-SAT (or CIRCUIT SAT) by solving quadratic equations over F2,

and this is essentially the only place that needs where nonlinearity occurs.
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Our hardness result for solving linear equations with completeness very

close to (but not exactly) 1 allows us to follow previous PCP constructions

that will ensure linearity of the LABEL COVER instance in the subsequent

steps.

2. To prove the hardness of LINEAR LABEL COVER given the above hardness

of LIN, we closely follow the steps of Dinur and Harsha [DH13], who

gave a simpler and modular proof of [MR08]. The two basic building

blocks in their proof are robust PCPs and decodable PCPs. Robust PCPs

are PCPs where in the soundness case, for any proof and most random

choices of the verifier, not only are the local views non-accepting, but

they are also very far from any accepting string. It is indeed equivalent

to LABEL COVER. Using our previous hardness for LINas the starting

point and following the standard robust PCP construction (e.g., low-degree

extension and sum-check protocol), we can prove a polynomial time re-

duction to LINEAR LABEL COVERp1´ 1{ logc n, 1{ logc nq for any c ą 1, but

the alphabet size will be always expplogc0 nq for some c0 ą 1, which is

superpolynomial.

3. The second building block, decodable PCP, is similar to robust PCP with the

additional requirement that the prover is given a position i in the original

string and supposed to output the value of the ith position if the given

proof is a honest encoding of a valid original string. The main idea of

Dinur and Harsha [DH13] is to iteratively compose a robust PCP with a

suitable decodable PCP, where the composed PCP is another robust PCP

that consists of a decodable PCP for each constraint of the original robust
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PCP. This iteratively reduces the query complexity and the alphabet size of

the robust PCP, which is related to the alphabet size of the equivalent LABEL

COVER instance. This iterative composition is interleaved and preprocessed

by technical operations that reduce the alphabet size of the robust PCP and

make it regular.

Once these two building blocks are linear, the operations of [DH13] can

be used verbatim in our construction. Our main observation is that every

step of this construction preserves (1) the robust completeness 1 ´ δ for

some δ “ 1{polylogpnq, and (2) the linearity, which were not issues in [DH13].

In Section 4.3, we introduce the basic building blocks and these operations,

and show how they preserve robust completeness and linearity. These

iterative operations will eventually reduce the alphabet size of the LINEAR

LABEL COVER polynomial, proving Theorem 4.1.8.

After the hardness of LINEAR LABEL COVER is proved, we give a reduction

from LINEAR LABEL COVER with the above parameters to 3-LIN with the re-

quired parameters. We do this by composing with the Hadamard Code to get a

p1´ εq vs p1{2` εqNP-hardness result for 3LIN. Similar PCP constructions based

on Hadamard codes were presented in [Kho01]. Details of this step can be found

in Section 4.4.

4.2 Reduction to System of Linear Equations

In this section, we first prove the hardness of approximate solving linear equa-

tions over large fields, where each equation can involve as many variables as

possible. It will serve as the starting point towards proving hardness of LINEAR
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LABEL COVER.

Theorem 4.2.1 For any constant c ą 0, ε “ 1{plognqc, GAP LINp1 ´ 1{plognqc, 0.9q is

NP-hard under polynomial time randomized reductions.

Proof: The proof starts from the following hardness of LABEL COVER, which is

obtained by combining the main result of Moshkovitz and Raz [MR08] with the

parallel repetition of Dinur and Steurer [DS14].

Theorem 4.2.2 ([MR08, DS14]) For any constant c ą 0, and for δ “ 1{plognqc, when

the LABEL COVER instance satisfies |ΣA|, |ΣB| ď |A|`|B|, GAP LABEL COVERp1, δq

is NP-hard.

Let G “ pA,B,Eq, ΣA, ΣB, and tπeuePE be an instance of LABEL COVER. We

show a reduction to LINover F2 where

• If all LABEL COVER edges are satisfiable, at least p1 ´ 1
|ΣA|
q fraction of

equations are satisfiable.

• If at most δ fraction of LABEL COVER edges are satisfiable, at most p1 ´

1
pδ|ΣA|q

q fraction of equations are satisfiable.

For each vertex v P ΣA Y ΣB and possible label ` on the Label Cover instance,

we have a variable xv,` in the LIN instance. Let n “ |A||ΣA|`|B||ΣB| “ polyp|A|`

|B|q be the number of variables. Consider the following four kinds of equations.

Recall that every arithmetic is performed over F2.
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p1q
ÿ

`PΣA

xv,` “ 1 @v P A

p2q
ÿ

`PΣB

xv,` “ 1 @v P B

p3q
ÿ

r:πuvprq“`

xv,r “ xu,` @pu, vq P E,@` P ΣB

p4q xv,` “ 0 @pv, `q P Aˆ ΣA

In our final LINinstance, we treat (1), (2), and (3) as hard constraints that need

to be always satisfied, and find x that always satisfies all hard constraints and

as many constraints in (4) as possible. Also note that in (4), we only consider

vertices in A.

This is equivalent to the usual LINproblem with hard constraints by folding.

Formally, let V be the set of assignments that satisfy (1), (2), and (3). If V is empty,

we can conclude that the LABEL COVER instance is unsatisfiable. Otherwise,

there exist c P N and c linearly independent vectors y0, . . . , yc P F
pAˆΣAqYpBˆΣBq
2

such that V “ ty0 `
řc
i“1 yizi : z1, . . . , zc P F2u. This gives an one-to-one corre-

spondence between Fc
2 and V , so we can treat z1, . . . , zc as the variables of LINand

write the fourth constraints xv,` “ 0 in terms of z, which gives an instance of

LINwithout hard constraints.

Completeness. If the LABEL COVER instance is satisfiable, xv,` “ 1 if and only

if v is assigned with ` gives an assignment that satisfies (1), (2), and (3), and

violates one equation in (4) for each v P A.
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Soundness. Let x be an assignment that satisfies (1), (2), and (3). For v P AYB,

let Lv :“ t` : xv,` “ 1u. Since (1) and (2) require
ř

` xv,` “ 1 for every v P A Y B,

Lv is not empty for every v.

Consider the randomized strategy for LABEL COVER where each v P AYB

is assigned with a uniform random label from Lv independently. For pu, vq P E

with u P A, v P B, by (3), xv,` “ 1 for some ` P ΣB implies that there exists r P ΣA

with πuvprq “ ` such that xu,r “ 1. This implies pu, vq is satisfied with probability

at least 1
|Lu|

by the randomized strategy. Then the expected fraction of the LABEL

COVER constraints satisfied by the strategy is at least

E
uPA

„

1

|Lu|



ě
1

EuPAr|Lu|s
.

Therefore, if at most δ fraction of LABEL COVER constraints are simultaneously

satisfiable, we can conclude that

δ ě
1

EuPAr|Lu|s
ô E

uPA
r|Lu|s ě

1

δ
.

So in total, at least 1
pδ|ΣA|q

fraction of equations are violated.

Gap Amplification. We have a hardness of LINover F2 where the completeness

value is at least 1´ 1
|ΣA|

and the soundness value is at most 1´ 1
pδ|ΣA|q

. Consider

a new system of linear equations where we sample m linear equations indepen-

dently, where each new equation randomly chooses δ ¨ |ΣA| old equations and

takes a random linear combination of them. In the completeness case, at least an

p1´Opδqq fraction of new equations can be satisfied by a good assignment to old

equations.
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In the soundness case, fix an assignment to n possible variables. (There are

2n of them.) It satisfies at most an 1´ 1
pδ|ΣA|q

fraction of old equations. Note that

if a new equation chooses an old equation not satisfied by the assignment, it is

satisfied with probability exactly 1{2. Therefore, the expected number of new

equations satisfied by this fixed assignment is at most

m ¨

ˆ

`

1´
1

pδ|ΣA|q

˘δ¨|ΣA|
`

1

2

˙

ď m ¨

ˆ

1

e
`

1

2

˙

ď 0.87m.

For a given c P N, let δ “ 1{logc n. By taking sufficiently large m “ Opnq, we can

apply the Chernoff and union bound to conclude that no assignment satisfies

more than a 0.9 fraction of new equations. So we reduce from LABEL COVER to

GAP LINp1´Opδq, 0.9q, which finishes the proof.

We remark that the sampling performed above is the only step in our reduc-

tion involving randomization.

4.3 Reduction to Linear Label Cover

In this section, we show for any c ą 0, there is no polynomial time algorithm

for GAP LINEAR LABEL COVERp1 ´ ε, εq with ε “ 1{plognqc unless NP Ď BPP,

proving Theorem 4.1.8.

The construction we employ is almost identical to that of Dinur and Har-

sha [DH13], except that the basic building blocks (robust PCP and decodable

PCP) try to prove (almost) satisfiability of linear equations instead of standard

quadratic equations. They are introduced in Sections 4.3.1 and 4.3.2.

After constructing the building blocks, the result of [DH13] is proved by
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iterative composition of them followed by technical steps including alphabet and

degree reduction. Our main observation in this part is that each of the steps in the

construction preserves linearity so that the final LABEL COVER instance produced

also has a liear structure. We present them in Section 4.3.3 and Section 4.3.4.

Finally, Section 4.3.5 shows how to combine all these steps to prove Theorem 4.1.8.

4.3.1 Robust PCPs

In this subsection, we define robust PCPs. For two strings x, y of the same length

n, let agrpx, yq denote the relative agreement of the strings x, y, defined as

agrpx, yq :“ Pr
iPrns

rxi “ yis

If S is a set of strings, agrpx, Sq is defined as maxyPStagrpx, yqu.

Definition 4.3.1 (Robust PCPs) For functions r, q,m, a, s : N Ñ N and c, δ : N Ñ

r0, 1s, a verifier V is a robust probabilistically checkable proof (robust PCP) system

for a promise problem L “ pLYES, LNOqwith randomness complexity r, query complexity

q, proof length m, alphabet size a, robust completeness c, and robust soundness error δ if

V is a probabilistic polynomial-time algorithm that behaves as follows: On input x of

length n and oracle access to a proof string π P Σmpnq over the (proof) alphabet Σ where

|Σ| “ apnq, V reads the input x, tosses at most r “ rpnq random coins, and generates a

sequence of locations I “ pi1, . . . , iqq P rmsqpnq and a predicate f : Σq Ñ t0, 1u, which

satisfy the following properties.
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Robust Completeness. If x P LYES then there exists π such that

E
pI,fq
ragrpπI , f

´1
p1qqs ě c. (4.3.1)

Robust Soundness. If x P LNO then for every π,

E
pI,fq
ragrpπI , f

´1
p1qqs ď δ, (4.3.2)

where the distribution over pI, fq is determined by x and the random coins of V .

We say that V is linear if Σ “ Fb
2 for some b and for every f , the accepting sets of

the predicate f , i.e., f´1p1q, forms an affine subspace of Σq “ Fbq
2 over the field F2.

Robust completeness and soundness must be contrasted with (regular) com-

pleteness and soundness of standard PCP verifiers in which the expression for

completeness and soundness given in (4.3.1) and (4.3.2) respectively are replaced

as follows:

Completeness: Pr
I,f
rfpπIq “ 1s ě c,

Soundness: Pr
I,f
rfpπIq “ 1s ď δ.

In fact, this is the only difference between the above definition and the stan-

dard definition of a PCP system. The robust soundness states that not only does

the local view violate the local predicate f , but in fact has very little agreement

with any of the satisfying assignments of f (and thus is a strengthening of stan-

dard robustness). Robust completeness on the other hand is a weakening of

standard completeness.

Another crucial aspect of robust PCP is its equivalence to LABEL COVER.
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Namely, existence of robust PCP for L with parameters r, q,m, a, s, c, δ is equiva-

lent to existence of a reduction from L to GAP LABEL COVERpc, δq where |A| “

2r, |B| “ m, |ΣA| ď aq, |ΣB| “ a and each v P A has degree q. See Lemma 2.5

of [DH13]. Also note that the definition of linearity is equivalent in robust PCP

and LABEL COVER.

Theorem 4.3.2 (Robust PCP, Analogous to [DH13, Theorem 6.4]) Constants b1,

b2 ą 0, c0 ą 1 exist such that for any c ą c0 and ε “ 1{logc n, GAP LINp1´ ε, 0.9q with

n variables has a linear robust verifier with robust completeness 1´ ε, robust soundness

error ε, query complexity 1{εb1 , proof length polypnq, randomness complexity Oplog nq,

and proof alphabet size at most 1{εb2 .

Equivalently, there is a (deterministic) polynomial time reduction from GAP LIN

p1 ´ ε, 0.9q to GAP LINEAR LABEL COVERp1 ´ ε, 0.9q, where the LABEL COVER

instance has polypnq veritces, |ΣA| ď expp1{εb1 logp1{εb2qq, |ΣB| ď 1{εb2 , and each

v P A has degree 1{εb1 .

The proof of this theorem is identical to that of [DH13, Theorem 6.4] and

omitted here. The only difference is that our starting point is GAP LINFqp1´ε, εq

with q, 1{ε “ logOpcq n instead of standard quadratic equations when performing

the low degree-extension and the sum-check protocol. The theorem follows by

observing that all the operations are linear and hence the final predicate is also

linear. The completeness of the robust PCP is dictated by the completeness value

in Theorem 4.2.1.

Combining this reduction and randomized reduction from Theorem 4.2.1, we

obtain the following theorem (which is a more formal version of Theorem 4.1.8).

Theorem 4.3.3 (Hardness of Linear Label Cover) There exist constants b1, b2 ą 0,
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c0 ą 1 such that for any c ą c0 and ε “ 1{logc n, unless NP Ď BPP, there is no

polynomial time algorithm for GAP LINEAR LABEL COVERp1´ε, εq where the LABEL

COVER instance has polypnq veritces, |ΣA| ď expp1{εb1 logp1{εb2qq, |ΣB| ď 1{εb2 , and

each v P A has degree 1{εb1 .

4.3.2 Decodable PCPs

We now discuss the decodable PCP (dPCP), which differs from a PCP in that it

has a decoder as opposed to a verifier. A decoder is similar to a verifier in that

it checks whether a string is in the given language or not by probabilistically

checking a small number of positions in the proof, but it is additionally supposed

to return the ith position of the original string for given i.

For Σ “ Fa
2 for some a P N, let LINΣ denote the problem of solving linear

equations where an instance consists of k variables that can have a value from

Σ, and a system of linear equations C on k ¨ a variables over F2 canonically

represented by the k variables over Σ. It is equivalent to LINover F2 on k ¨ a

variables, except that we consider each block of a variables as one variable that

can take a value from Σ. We define a decoder for LINΣ below.

Definition 4.3.4 (Decoder for LINΣ) Let Σ “ Fa
2 and σ “ Fb

2 for some a and b.

A decoder for LINΣ over a proof alphabet σ with parameters m, q, r : N Ñ N is a

probabilistic polynomial-time algorithm D. It is given a system of linear equations C

on n variables over Σ, and an index j P rns as input, and oracle access to a proof π of

length mpnq over proof alphabet σ. It tosses r “ rpnq random coins and generates (1)

a sequence of q “ qpnq locations I “ pi1, . . . , iqq and (2) a (local decoding) function

f : σq Ñ Σ Y tKu. D is called linear if for every f , P :“ f´1pΣq is an affine space of
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σq “ pFqb
2 q and f : P Ñ Σ is an affine function over the base field F2.

Now we define a dPCP for LINΣ. The dPCP in [DH13] is defined for CIRCUIT

SAT, whereas ours is for LINΣ. Note that unlike in [DH13], the dPCP we will

construct does not imply any computational hardness, because it only proves

whether the given system of linear equations is perfectly satisfiable or not, which

is a computationally easy problem. The key point is it proves the system is

satisfiable using a proof which is in some sense “locally decodable”. The dPCP

will then be composed with the previous linear robust PCP, which is a system of

linear equations with imperfect completeness, to reduce the query complexity.

Definition 4.3.5 (Decodable PCPs for LINΣ) For functions δ : N Ñ r0, 1s and

L : N Ñ N, we say that a PCP decoder D is a decodable probabilistically checkable

proof (dPCP) system for LINΣ with perfect completeness, soundness δ and list size L

if the following completeness and soundness properties hold for every system of linear

equations C on n variables over Σ.

Completeness. For any y P Σn that satisfies every equation in C, there exists a proof

π P σm, also called a decodable PCP, such that

Pr
j,I,f
rfpπIq “ yjs “ 1,

where j P rns is chosen uniformly at random and I, f are distributed according to C, j,

and the verifier’s random coins.
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Soundness. For any π P σm, there is a list of 0 ď ` ď L strings y1, . . . , y`, where

each yi satisfies all equations in C, such that

Pr
j,I,f
rfpπIq R tK, y

1
j , . . . , y

`
jus ď δ.

Robust soundness. We say that D is a robust dPCP system for LINΣ with robust

soundness error δ, if the soundness criterion above can be strengthened to the following

robust soundness criterion,

E
j,I,f
ragrpπI ,BADpfqqs ď δ,

where

BADpfq :“ tw P σq : fpwq R tK, y1
j , . . . , y

`
juu.

The dPCP result we use is the following.

Theorem 4.3.6 (dPCP, Analogous to [DH13, Theorem 6.5]) There exist constants

α, γ ą 0 such that for every δ ě n´α and input alphabet size Σ of size at most nγ , LINΣ

has a linear robust decodable PCP system with perfect completeness, robust soundness

error δ ą 0 and list size ConjSAT-LP ď 2{δ, query complexity n1{8, proof alphabet σ of

size nγ , proof length polypnq, and randomness complexity Oplog nq.

The proof of this theorem is identical to that of [DH13, Theorem 6.5], except

that the initial starting point is LINΣ instead of CIRCUIT SATΣ. Since the starting

point is linear and all transformations are linear, the final object is also linear.

The perfect completeness is also maintained. As mentioned before, the dPCP

constructed here does not imply any computational hardness unlike in [DH13].
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4.3.3 Composition

After having building blocks, Dinur and Harsha [DH13] show how to compose

those blocks iteratively to reduce the query complexity and the alphabet size.

Each composition involves several other operations including alphabet and

degree reductions. While the soundness analyses for them are already proved

in [DH13], we show that all of their operations preserve linearity and robust

completeness.

Efficient Composition ([DH13, Theorem 4.2]). In the composition, given a

regular robust linear PCP verifier V and a robust linear PCP decoder D, the

composed verifier V 1 expects a decodable PCP for each constraint of V . Recall

that the linearity of V is equivalent to the fact that each constraint of V is a

system of linear equations over F2, which is exactly whatD expects. An informal

description of the composed verifier is as follows:

1. Randomly choose a location i of the proof for V . Let C1, . . . , CD be the

constraints of V containing the location.

2. Using a pε, ε2q-sampler prDs, rDs, Eq and a random s P rDs, choose a subset

S Ď t1, . . . , Du and run the inner PCP decoder D for each Cj with j P S to

decode the ith symbol in the original proof.

3. Accept if all the values returned by the PCP decoders are the same.

For the second step above, we use pε, ε2q-samplers given in [Gol11]. Theorem

4.2 of [DH13] shows the soundness of the composed verifier V 1, yielding Table 4.1

below (Table 4.2 in [DH13]).

We check this composition preserves robust completeness and linearity.
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V D V 1

proof alphabet Σ σ σ
randomness complexity R r logM ` r ` logD

query complexity Q q 4{ε4 ¨ q
proof degree D d d
proof length M m 2R ¨m

robust soundness error ∆ δ ∆L` 4Lε` δ
list size - L -

Table 4.1: Parameters for Composition.

• Linearity: Linearity (over F2) is preserved if both V and D are linear, since

the only additional check we perform is to check whether the returned

values are equal.

• Robust completeness: Suppose there exists a proof Π for V that achieves

the robust completeness of at least 1 ´ ξ. Recall that the composed veri-

fier expects, for each constraint of the outer PCP, a satisfying assignment

encoded by the inner dPCP. The proof for the composed verifier is the

concatenation of all these encodings. Consider the proof to the composed

verifier constructed by the honest encoding of the assignment that achieves

the robust completeness for the outer PCP verifier. We will show that this

proof achieves robust completeness 1´ ξ.

Let i be a proof location in the outer PCP and C1, . . . , CD be the constraints

involving i. Furthermore, let ξi be the fraction of these constraints violated

by the proof. Since Π is at least p1´ξq-robustly complete, we have Eirξs ď ξ.

For each sample s chosen in the sampler, let ξi,s be the fraction of constraints

in S (chosen by sampler) that are violated. By regularity of sampler, we

have Esrξi,ss ď ξi.

A local view of the composed verifier (corresponding to i, s and the inner
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dPCP randomness) comprises of the concatenation of the local views of

the dPCP encodings corresponding to the constraints in S. Since the the

inner dPCP has perfect completeness we have the following. Whenever the

constraint is satisfied, the corresponding inner dPCP’s encodings satisfies

all constraints while we have no guarantee when the constraint is not

satisfied. Since for each pi, sq, the fraction of violated constraints is ξi,s, we

have that at least p1´ ξi,sq-fraction of the local inner views corresponding

to pi, sq are satisfying and furthermore they all decode to the same Πpiq.

Hence, the local view of the composed verifier corresponding to pi, sq is at

least p1´ ξi,sq-close to a satisfying view. Hence, the robust completeness of

this honest proof is at least Ei,sr1´ ξi,ss ě 1´ ξ.

4.3.4 Label Cover Operations

After the composition, the alphabet reduction step is applied to ensure that

the alphabet size is polynomial in the query complexity and the inverse of

the soundness. Also, since the basic robust PCP given in Theorem 4.3.2 is not

necessarily regular, we also need to show how to make the initial robust PCP

regular. This subsection introduces various such operations and explains why

they preserve robust completeness and linearity.

Degree Reduction ([DH13, Theorem 5.1]) If we are given an instance of LABEL

COVER G “ pA,B,Eq, the degree reduction makes the instance right regular by

appropriately duplicating right vertices and each edge exactly the same number

of times. Theorem 5.1 of [DH13] ensures that by increasing robust soundness by

4µ additively, we can ensure that the right degree is 4{µ4 for all right vertices. We
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check that this operation preserves linearity and robust completeness.

• Linearity: Linearity is obviously preserved, because there is no change in

the constraint.

• Robust completeness: Since each edge is duplicated the same number of

times, robust completeness does not decrease.

Alphabet Reduction ([DH13, Theorem 5.5]) If we are given an instance of

LABEL COVER G “ pA,B,Eq where ΣA and ΣB are the alphabet set of the left

(bigger) side and the right (smaller) side respectively, the alphabet reduction

replaces ΣB by a smaller set σ by finding a suitable linear code C : ΣB Ñ σk and

replacing each vertex b P B by k vertices b1, . . . , bk. Then assigning x P ΣB to

b corresponds to assigning pCpxqqi to b1, . . . , bi. Theorem 5.5 of [DH13] ensures

that if C has a relative distance 1´ η3, this operation increases robust soundness

by at most 3η additively. We check that this operation preserves linearity and

robust completeness.

• Linearity: Linearity over F2 is preserved if the code C : ΣB Ñ σk is linear

with σ “ F2a as the base field for some a P N. The code used in Remark 5.4

of [DH13] is already linear.

• Robust completeness: If an edge pa, bq of the original LABEL COVER instance

is preserved and the new instance follows the honest encoding, all k edges

of the new instance corresponding to pa, bq will be satisfied. Therefore,

robust completeness cannot decrease.
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Flip Sides ([DH13, Section 5.3]). Given an instance of LABEL COVER G “

pA,B,Eq where each right vertex b P B has degree d, the flip side is achieved by

flipping A and B, and assigning each v P B a label from Σd
A, which is supposed

to denote the assignments to its neighbors in the original instance. If v P B has

u1, . . . , ud P A as neighbors, pv, uiq in the new instance is satisfied (i) if the label

pa1, . . . , adq P Σd
A for v has b P ΣB such that the label pair pai, bq satisfies the edge

pui, vq in the old instance, and (ii) if ai is equal to the label assigned to ui. This

obviously does not change the robust soundness. We check that it also preserves

linearity and robust completeness.

• Linearity: Linearity is preserved, because for each v P B, the set of pa1,

..., adq satisfying (i) above is an affine subspace of pΣAq
d, and the new

constraint is merely a projection.

• Robust completeness: Cannot decrease since if v P B was assigned b P ΣB

in the original instance, it can be assigned pa1, . . . , adq P ΣA such that (i)

πpui,vqpaiq “ b, and (ii) ai was assigned to ui if pui, vq was satisfied in the

original instance.

We use a combination of the above 3 operations to get a regular LABEL COVER

instance, as shown in Table 4.2.

Given an ε ą 0, by using pOpεq, Opε2qq-samplers in the composition and

doing the above operations with η “ Opεq, d “ Op1{ε4q, distance 1 ´ Opε3q,

|σ| “ Op1{ε6q, k “ Op1{ε6q ¨ |Σ1| ď Op1{ε6q ¨ q|Σ|, we can deduce the following

lemma.

Lemma 4.3.7 ([DH13, Lemma 5.7]) For all ε : N Ñ r0, 1s, suppose L has a robust

linear PCP verifier V with randomness complexity r, query complexity q, proof length
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LABEL COVER I Degree Flip Degree Alphabet
(Robust PCPs) Red. (Ñ d) Red. (Ñ d) Red. pÑ σq

# left vertices n n mDB mDB mDB

(randomness)
# right vertices m mDB n nDAd nDAdk
(proof length)

left degree D˚A dD˚A d d2 d2k
(query complexity)

right degree D˚B d DAd
˚ d d

(proof degree)
left alphabet ΣA ΣA Σd

A Σd
A Σd

A

(# accepting conf.)
right alphabet ΣB ΣB ΣA ΣA σ

(proof alphabet)
soundness error δ δ ` 4µ δ ` 4µ δ ` 8µ δ ` 8µ` 3η

(rob. soundness error)
robust completeness 1´ ξ 1´ ξ 1´ ξ 1´ ξ 1´ ξ
(rob. completeness)

Table 4.2: Sequence of steps to regularize the LABEL COVER instance. * denotes irregular
instances where the number denotes the average degree.

m, average proof degree DB , robust completeness c, robust soundness error δ over a proof

alphabet Σ. Then L has a regular reduced linear robust PCP verifier, which we shall

denote by regularεpV q with

• randomness complexity logm` logDB,

• query complexity Opq log |Σ|{ε14q,

• proof length Opq22r log |Σ|{ε10q,

• proof degree Op1{ε4q,

• proof alphabet σ of size at most Op1{ε6q,

• robust completeness c,

• and robust soundness δ ` ε.
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4.3.5 Putting things together

Finally we prove Theorem 4.1.8 on the hardness of LINEAR LABEL COVER. Let

c ą 0 be an arbitrary constant. Let D be the PCP decoder from Theorem 4.3.6 and

V be the robust PCP from Theorem 4.3.2 with robust completeness 1 ´ δ with

δ “ logc n, robust soundness error ε “ 1{logc0 n for some c0 ą 1, query complexity

1{εOp1q, randomness complexity Oplog nq and proof length polypnq.

Lemma 4.3.8 ([DH13, Lemma 6.6]) Let D, V , ε, δ be as defined above and set εi “

pεq1{3
i . There exist constants c0, c1, c3 ą 0 such that for every i ě 0 as long as εi ă c0,

the following holds. GAP LINp1 ´ δ, 0.9q has a regular linear robust PCP verifier Vi

with query complexity 1{εc1i , robust completeness 1´δ, robust soundness error 2εi, proof

alphabet Σi of size c3{εi
6, randomness complexity Oplog nq and proof length polypnq.

Proof: The proof is similar to [DH13], and is a sequence of compositions. We

start with the regularized robust verifier given by applying the sequence of

steps given in Table 4.2 to the robust PCP verifier given in Theorem 4.3.2. In

each subsequent step, we compose the robust verifier obtained in the previous

step with a dPCP, and apply the alphabet reduction (Theorem 5.5 of [DH13]) to

reduce the size of the alphabet to c3{ε
6
i`1. All the parameters remain the same as

in [DH13], and we only need to focus on the two additional properties we need,

linearity and robust completeness.

Recall that a PCP with robust completeness 1´δ, when composed with a dPCP

with perfect completeness, yields a composed PCP with robust completeness

1´ δ. In each step the inner PCP decoder has perfect completeness, therefore the

robust completeness of the composed PCP is preserved. Recall that the alphabet

reduction step also doesn’t affect the perfect completeness.

85



Linearity is also preserved because all basic components are linear and all

steps (e.g., composition, alphabet reduction, and regularization) preserve linear-

ity as previously discussed.

The above lemma shows that we can iteratively reduce the query complexity

until some absolute constant while maintaining the soundness and the alphabet

size polynomial in the query complexity.(And the total size of the instance always

remains polynomial in n.) Only a constant number of iterations is needed until

(proof alphabet size)(query complexity), an upper bound on the size of alphabet

in the equivalent LABEL COVER instance, becomes polynomial in n. This proves

our main Theorem 4.1.8 for LINEAR LABEL COVER.

Proof: [Proof of Theorem 4.1.8] Set i from Theorem 4.3.8 so that

(proof alphabet size)(query complexity)
“ pc3{ε

6
i q

1{ε
c1
i

“ exp

ˆ

1

εc1i
¨ log

`c3

ε6
i

˘

˙

ď polypnq.

This ensures that εi “ 1{logc4 n for some c4 ą 0. Using the equivalence between

LABEL COVER and robust PCP, we have a hardness of LABEL COVER where

the number of vertices and the size of label are bounded by polypnq, and the

completeness is at least 1´ 1{logc n, the soundness is 1{logc4 n. Applying the parallel

repetition of [DS14] Opc{c4q times to reduce the soundness to 1{logc n finishes the

proof.
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4.4 Reduction from Linear Label Cover to 3LIN

In this section, we prove our main Theorem 4.1.6 for 3-LIN. Recall that for any

constant c ą 0, Theorem 4.3.3 shows a randomized polynomial reduction from

3-SAT to GAP LINEAR LABEL COVERp1 ´ logc n, logc nq where the number of

vertices as well as the number of labels are bounded by a polynomial. Therefore,

the following theorem finishes the proof of Theorem 4.1.6. The main idea is to

use Hadamard codes instead of long codes using the fact that the LABEL COVER

instance is linear. A similar argument was used in [Kho01].

Lemma 4.4.1 There exists a reduction from GAP LINEAR LABEL COVERp1´ δ, sq to

GAP 3-LINp1´ δ, 1{2`
?
s{2q that runs in polynomial time, where the size of the 3-LIN

instance is polynomial in the number of vertices and the size of label in the LABEL

COVER instance.

Proof: Let G “ pA,B,Eq, ΣA, ΣB, and tπeuePE be an instance of GAP-LINEAR

LABEL COVER (1´ δ, s). Moreover, since the label cover is linear, let the labels

to left hand side vertices come from F`2 and the right hand side vertices from Fr2,

and the mapping on each edge is an affine mapping. Our reduction is described

by the following test.

Test

• Consider an edge pu, vq. The labels x P F`2, y P Fr2 corresponding to the

vertices have to satisfy x “ Ay ` b.

• From the proof, we randomly sample the Hadamard code of x at location

α, and that of y at locations β and β ` γ, where γ “ AT ¨ α.
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• Check if xα, xy ` xβ, yy ` xβ ` γ, yy “ xα, by

Completeness. In the completeness case, if the labels x, y satisfy the edge in

the LINEAR LABEL COVER, then we can see that the test will pass.

xα, xy ` xβ, yy ` xβ ` γ, yy

“xα,Ayy ` xα, by ` xβ, yy ` xβ ` γ, yy

“xα,Ayy ` xα, by ` xATα, yy

“xα, by

Therefore, if 1´ δ edges are satisfiable in the linear LABEL COVER, at least 1´ δ

fraction of 3LINconstraints are satisfied.

Soundness. Consider the case where at most s fraction of edges can be satisfied

for any labeling in the LINEAR LABEL COVER. Let the Hadamard code encoding

function for the left vertices be L and right vertices be R. Consider their Fourier

transforms,

Lpαq “
ÿ

x

L̂pxqχxpαq

Rpβq “
ÿ

y

R̂pyqχypβq
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Let’s fix an edge, and analyze the probability that the test will accept. We switch

to a -1,+1 notation for convenience.

PrrTest acceptss “ Pr
α,β
rxα, xy ` xβ, yy ` xβ ` ATα, yy ` xα, by “ 0s

“ Pr
α,β
rp´1qxα,xy`xβ,yy`xβ`A

Tα,yy`xα,by
“ 1s

“
1` Eα,β

“

LpαqRpβqRpβ ` ATαqp´1qxα,by
‰

2

Consider the expectation on the right hand side of the above equation.

E
α,β

“

LpαqRpβqRpβ ` ATαqp´1qxα,by
‰

(4.4.1)

ď
ÿ

x,y

L̂pxqR̂pyq2 E
α,β

“

χxpαqχypβqχzpβ ` A
Tαqp´1qxα,by

‰

ď
ÿ

x,y,x“Ay`b

L̂pxqR̂pyq2

ď

d

ÿ

x,y,,x“Ay`b

R̂pyq2
d

ÿ

x,y,x“Ay`b

L̂pxq2R̂pyq2

In the above equation, the first term is bounded by 1, and therefore,

p4.4.1q ď

d

ÿ

x,y,,x“Ay`b

L̂pxq2R̂pyq2

Consider a random assignment where a left vertex gets a label xwith probabil-

ity L̂pxq2 and a right vertex gets a label y with probability R̂pyq2. The probability

that such a random assignment would satisfy the edge, and therefore the ex-
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pected fraction of edges satisfied, is exactly

ÿ

x,y,x“Ay`b

L̂pxq2R̂pyq2

If at most s fraction of edges can be satisfied by any assignment, then

s ě
ÿ

x,y,x“Ay`b

L̂pxq2R̂pyq2 ě p2 ¨ PrrTest acceptss ´ 1q2

or

PrrTest acceptss ď
1

2
`

?
s

2

Therefore, the expected fraction of 3LIN constraints satisfied is at most 1
2
`
?
s

2
.
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Chapter 5

Dictatorship Test with perfect

completeness

5.1 Introduction

Boolean functions are the most basic objects in the field of theoretical computer

science. Studying different properties of Boolean functions has found appli-

cations in many areas including hardness of approximation, communication

complexity, circuit complexity etc. In this paper, we are interested in studying

Boolean functions from a property testing point of view.

In property testing, one has given access to a function f : t0, 1un Ñ t0, 1u and

the task is to decide if a given function has a particular property or whether it is

far from it. One natural notion of farness is what fraction of f ’s output we need

to change so that the modified function has the required property. A verifier

can have an access to random bits. This task of property testing seems trivial if

we do not have restrictions on how many queries one can make and also on the
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computation. One of the main questions in this area is can we still decide if f is

very far from having the property by looking at a very few locations with high

probability.

There are few different parameters which are of interest while designing such

tests including the number of random bits used, the number of locations queried,

the amount of computation the verifier is allowed to do etc. The test can either

be adaptive or non-adaptive. In an adaptive test, the verifier is allowed to query a

function at a few locations and based on the answers that it gets, the verifier can

decide the next locations to query whereas a non-adaptive verifier queries the

function in one shot and once the answers are received makes a decision whether

the function has the given property. In terms of how good the prediction is we

want the test to satisfy the following two properties:

• Completeness: If a given function has the property then the test should

accept with high probability

• Soundness: If the function is far from the property then the test should

accept with very tiny probability.

A test is said to have perfect completeness if in the completeness case the test

always accepts. A test with imperfect completeness (or almost perfect completeness)

accepts a dictator function with probability arbitrarily close to 1. Let us define

the soundness parameter of the test as how small we can make the acceptance

probability in the soundness case.

A function is called a dictator if it depends on exactly one variable i.e fpx1, x2,

. . . , xnq “ xi for some i P rns. In this work, we are interested in a non-adaptive test

with perfect completeness which decides whether a given function is a dictator
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or far from it. This was first studied in [BGS98, PRS02] under the name of

Dictatorship test and Long Code test. Apart from a natural property, dictatorship

test has been used extensively in the construction of probabilistically checkable

proofs (PCPs) and hardness of approximation.

An instance of a Label Cover is a bipartite graph GppA,Bq, Eq where each

edge e P E is labeled by a projection constraint πe : rLs Ñ rRs. The goal is to

assign labels from rLs and rRs to vertices in A and B respectivels so that the

number of edge constraints satisfied is maximized. Let GapLCp1, εq is a promise

gap problem where the task is to distinguish between the case when all the

edges can be satisfied and at most ε fraction of edges are satisfied by any assign-

ment. As a consequence of the PCP Theorem [ALM`98, AS98] and the Parallel

Repetition Theorem[Raz98], GapLCp1, εq is NP-hard for any constant ε ą 0. In

[Hås01], Håstad used various dictatorship tests along with the hardness of Label

Cover to prove optimal inapproximability results for many constraint satisfaction

problems. Since then dictatorship test has been central in proving hardness of

approximation.

A dictatorship test with k queries and P as an accepting predicate is usually

useful in showing hardness of approximating Max-P problem. Although this

is true for many CSPs, there is no black-box reduction from such dictatorship

test to getting inapproximability result. One of the main obstacles in converting

dictatorship test to NP-hardness result is that the constraints in Label Cover

are d-to-1 where the the parameter d depends on ε in GapLCp1, εq. To remedy

this, Khot in [Kho02] conjectured that a Label Cover where the constraints are

1-to-1, called Unique Games, is also hard to approximate within any constant.

More specifically, Khot conjectured that GapUGp1 ´ ε, εq, an analogous promise
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problem for Unique Games, is NP-hard for any constant ε ą 0. One of the

significance of this conjecture is that many dictatorship tests can be composed

easily with GapUGp1´ ε, εq to get inapproximability results. However, since the

Unique Games problem lacks perfect completeness it cannot be used to show

hardness of approximating satisfying instances.

From the PCP point of view, in order to get k-bit PCP with perfect complete-

ness, the first step is to analyze k-query dictatorship test with perfect complete-

ness. For its application to construction PCPs there are two important things

we need to study about the dictatorship test. First one is how to compose the

dictatorship test with the known PCPs and second is how sound we can make

the dictatorship test. In this work, we make a progress in understanding the

answer to the later question. To make a remark on the first question, there is a

dictatorship test with perfect completeness and soundness 2Õpk
1{3q

2k
and also a way

to compose it with GapLCp1, εq to get a k-bit PCP with perfect completeness and

the same soundness that of the dictatorship test. This was done in [Hua13] and

is currently the best know k-bit non-adaptive PCP with perfect completeness.

Distance from a dictator function: There are multiple notions of closeness to

a dictator function. One natural definition is the minimum fraction of values we

need to change such that the function becomes a dictator. There are other relaxed

notions such as how close the function is to juntas - functions that depend on

constantly many variables. Since our main motivation is the use of dictatorship

test in the construction of PCP, we can work with even more relaxed notion

which we describe next: For a Boolean function f : t0, 1un Ñ t0, 1u an influence

of ith variable is the probability that for a random input x P t0, 1un flipping the
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ith coordinate flips the value of the function. Note that a dictator function has

a variable whose influence is 1. The influence of ith variable can be expressed

in terms of the fourier coefficients of f as infirf s “
ř

SĎrns|iPS f̂pSq
2. Using this,

a degree d influence of f is infďdi rf s “
ř

SĎrns|iPS,|S|ďd f̂pSq
2. We say that f is far

from any dictator if for a constant d all its degree d influences are upper bounded

by some small constant.

In this paper, we investigate the trade-off between the number of queries and

the soundness parameter of a dictatorship test with perfect completeness w.r.t

to the above defined distance to a dictator function. A random function is far

from any dictator but still it passes any (non-trivial) k-query test with probability

at least 1{2k. Thus, we cannot expect the test to have soundness parameter less

than 1{2k. The main theorem in this paper is to show there exists a dictatorship

test with perfect completeness and soundness at most 2k`1
2k

.

Theorem 5.1.1 Given a Boolean function f : t0, 1un Ñ t0, 1u, for every k of the form

2m ´ 1 for any m ą 2, there is a k query dictatorship test with perfect completeness and

soundness 2k`1
2k

.

Our theorem improves on the result of Tamaki-Yoshida[TY15], which had a

soundness of 2k`3
2k

.

Remark 5.1.2 Tamaki-Yoshida [TY15] studied a k functions test where if a given set of

k functions are all the same dictator then the test accepts with probability 1. They use

low degree cross influence (Definition 2.4 in [TY15]) as a criteria to decide closeness

to a dictator function. Our whole analysis also goes through under the same setting as

that of [TY15], but we stick to single function version for a cleaner presentation.
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5.1.1 Previous Work

The notion of Dictatorship Test was introduced by Bellare et al. [BGS98] in the

context of Probabilistically Checkable Proofs and also studied by Parnas et al.

[PRS02]. As our focus is on non-adpative test, for an adaptive k-bit dictatorship

test, we refer interested readers to [ST09, HW03, HK05, EH08]. Throughout this

section, we use k to denote the number of queries and ε ą 0 an arbitrary small

constant.

Getting the soundness parameter for a specific values of k had been studied

earlier. For instance, for k “ 3 Håstad [Hås01] gave a 3-bit PCP with complete-

ness 1 ´ ε and soundness 1{2 ` ε. It was earlier shown by Zwick [Zwi97] that

any 3-bit dictator test with perfect completeness must have soundness at at least

5{8. For a 3-bit dictatorship test with perfect completeness, Khot-Saket [KS06]

acheived a soundness parameter 20{27 and they were also able to compose their

test with Label Cover towards getting 3-bit PCP with similar completeness and

soundness parameters. The dictatorship test of Khot-Saket [KS06] was later im-

proved by O’Donnell-Wu [OW09a] to the optimal value of 5{8. The dictatorship

test of O’Donnell-Wu [OW09a] was used in O’Donnell-Wu [OW09b] to get a con-

ditional (based on Khot’s d-to-1 conjecture) 3-bit PCP with perfect completeness

and soundness 5{8 which was later made unconditional by Håstad [Hås14].

For a general k, Samorodensky and Trevisan [ST00] constructed a k-bit PCP

with imperfect completeness and soundness 22
?
k{2k. This was improved later

by Engebretsen and Holmerin [EH08] to 2
?

2k{2k and by Håstad-Khot [HK05]

to 24
?
k{2k with perfect completeness. To break the 2Op

?
kq{2k barrier, Samoro-

densky and Trevisan [ST09] introduced the relaxed notion of soundness (based

on the low degree influences) and gave a dictatorship test (called Hypergraph
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dictatorship test) with almost perfect completeness and soundness 2k{2k for

every k and also pk ` 1q{2k for infinitely many k. They combined this test with

Khot’s Unique Games Conjecture [Kho02] to get a conditional k-bit PCP with

similar completeness and soundness guarantees. This result was improved by

Austrin-Mossel [AM09] and they achieved k ` opkq{2k soundness.

For any k-bit CSP for which there is an instance with an integrality gap of c{s

for a certain SDP, using a result of Raghavendra [Rag08] one can get a dictatorship

test with completeness c´ ε and soundness s` ε. Getting the explicit values of c

and s for a given value of k is not clear from this result and also it cannot be used

to get a dictatorship test with perfect completeness. Similarly, using the charac-

terization of strong approximation restance of Khot et. al [KTW14] one can get a

dictatorship test but it also lacks peferct completeness. Recently, Chan [Cha13]

significantly improved the parameters for a k-bit PCP which achieves soundness

2k{2k albeit losing perfect completeness. Later Huang [Hua13] gave a k-bit PCP

with perfect completeness and soundness 2Õpk
1{3q{2k.

As noted earlier, the previously best known result for a k-bit dictatorship test

with perfect completeness is by Tamaki-Yoshida [TY15]. They gave a test with

soundness 2k`3
2k

for infinitely many k.

5.2 Proof Overview

Let f : t´1,`1un Ñ t´1,`1u be a given balanced Boolean function 1. Any

non-adaptive k-query dictatorship test queries the function f at k locations and

receives k bits which are the function output on these queries inputs. The verifier

1Here we switch from 0{1 to `1{ ´ 1 for convenience. With this notation switch, balanced
function means Erfpxqs “ 0
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then applies some predicate, let’s call it P : t0, 1uk Ñ t0, 1u, to the received bits

and based on the outcome decides whether the function is a dictator or far from

it. Since we are interested in a test with perfect completeness this puts some

restriction on the set of k queried locations. If we denote x1,x2, . . . ,xk as the

set of queried locations then the ith bit from px1,x2, . . . ,xkq should satisfy the

predicate P . This is because, the test should always accept no matter which

dictator f is.

Let µ denotes a distribution on P´1p1q. One natural way to sample px1,

x2, . . . ,xkq such that the test has a perfect completeness guarantee is for each

coordinate i P rns independently sample px1,x2, . . . ,xkqi from distribution µ.

This is what we do in our dictatorship test for a specific distribution µ supported

on P´1p1q. It is now easy to see that the test accepts with probability 1 of f is an

ith dictator for any i P rns.

Analyzing the soundness of a test is the main technical task. First note that

the soundness parameter of the test depends on P´1p1q as it can be easily verified

that if f is a random function, which is far from any dictator function, then

the test accepts with probability at least |P
´1p1q|
2k

. Thus, for a better soundness

guarantee we want P to have as small support as possible. The acceptance

probability of the test is given by the following expression:

PrrTest accepts f s “ ErPpfpx1q, fpx2q, ¨ ¨ ¨ , fpxkqqs

“
|P´1p1q|

2k
` E

»

–

ÿ

SĎrks,S‰H

P̂pSq
ź

iPS

fpxiq

fi

fl

Thus, in order to show that the test accepts with probability at most |P
´1p1q|
2k

` ε

it is enough to show that all the expectations ES :“ |Er
ś

iPS fpxiqs| are small
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if f is far from any dictator function. Recall that at this point, we can have

any predicate P on k bits which the verifier uses. As we will see later, for the

soundness analysis we need the predicate P to satisfy certain properties.

For the rest of the section, assume that the given function f is such that the

low degree influence of every variable i P rns is very small constant τ . If f is

a constant degree function (independent of n) then the usual analysis goes by

invoking invariance principle to claim that the quantity ES does not change by

much if we replace the distribution µ to a distribution ξ over Gaussian random

variable with the same first and second moments. An advantage of moving to

a Gaussian distribution is that if µ was a uniform and pairwise independent

distribution then so is ξ and using the fact that a pairwise independence implies a

total independence in the Gaussian setting, we have ES « |
ś

iPS Erfpgiqs|. Since

we assumed that f was a balanced function we have Erfpgiqs| “ 0 and hence we

can say that the quantity ES is very small.

There are two main things we need to take care in the above argument. 1q

We assumed that f is a low degree function and in general it may not be true.

2q The argument crucially needed µ to satisfy pairwise independence condition

and hence it puts some restriction on the size of P´1p1q (Ideally, we would like

|P´1p1q| to be as small as possible for a better soundness guarantee). We take

care of p1q, as in the previous works [TY15, OW09a, AM09] etc., by requiring the

distribution µ to have correlation bounded away from 1. This can be achieved

by making sure the support of µ is connected - for every coordinate i P rks there

exists a, b P P´1p1q which differ at the ith location. For such distribution, we can

add independent noise to each co-ordinate without changing the quantity ES by

much. Adding independent noise has the effect that it damps the higher order

99



fourier coefficients of f and the function behaves as a low degree function. We

can now apply invariance principle to claim that ES « 0. This was the approach

in [TY15] and they could find a distribution µ whose support size is 2k` 3 which

is connected and pairwise independent.

In order to get an improvement in the soundness guarantee, our main tech-

nical contribution is that we can still get the overall soundness analysis to go

through even if µ does not support pairwise independence condition. To this end,

we start with a distribution µ whose support size is 2k ` 1 and has the property

that it is almost pairwise independent. Since we lack pairwise independence, it

introduces few obstacles in the above mentioned analysis. First, the amount of

noise we can add to each co-ordinate has some limitations. Second, because of

the limited amount of independent noise, we can no longer say that the function

f behaves as a low degree function after adding the noise. With the limited

amount of noise, we can say that f behaves as a low degree function as long as

it does not have a large fourier mass in some interval i.e the fourier mass corre-

sponding to f̂pT q2 such that |T | P ps, Sq for some constant sized interval ps, Sq

independent of n. We handle this obstacle by designing a family of distributions

µ1, µ2, . . . , µr for large enough r such that the intervals that we cannot handle

for different µi’s are disjoint. Also, each µi has the same support and is almost

pairwise independent. We then let our final test distribution as first selecting

i P rrs u.a.r and then doing the test with the corresponding distribution µi. Since

the total fourier mass of a ´1{ ` 1 function is bounded by 1 and f was fixed

before running the test it is very unlikely that f has a large fourier mass in the

interval corresponding to the selected distribution µi. Hence, we can conclude

that for this overall distribution, f behaves as a low degree function. We note that
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this approach of using family of distributions was used in [Hås14] to construct a

3-bit PCP with perfect completeness. There it was used in the composition step.

To finish the soundness analysis, let f̃ be the low degree part of f . The

argument in the previous paragraph concludes that ES « |Er
ś

iPS f̃pxiqs|. As

in the previous work, we can now apply invariance principle to claim that

ES « |Er
ś

iPS f̃pgiqs| where the ith coordinate pg1, g2, . . . , gkqi is distributed ac-

cording to ξ which is almost pairwise independent. We can no longer bring the

expectation inside as our distribution lacks independence. To our rescue, we

have that the degree of f̃ is bounded by some constant independent of n. We

then prove that low degree functions are robust w.r.t slight perturbation in the

inputs on average. This lets us conclude Er
ś

iPS f̃pgiqs « Er
ś

iPS f̃phiqs where

ph1,h2, . . . ,hkqi is pairwise independent. We now use the property of indepen-

dence of Gaussian distribution and bring the expectation inside to conclude that

ES « |Er
ś

iPS f̃phiqs| “ |
ś

iPS Erf̃phiqs| “ 0.

5.3 Query efficient Dictatorship Test

We are now ready to describe our dictatorship test. The test queries a function at

k locations and based on the k bits received decides if the function is a dictator

or far from it. The check on the received k bits is based on a predicate with few

accepting inputs which we describe next.

5.3.1 The Predicate

Let k “ 2m ´ 1 for some m ą 2. Let the coordinates of the predicate is indexed

by elements of Fm
2 z0 “: tw1, w2, . . . , w2m´1u. The Hadamard predicate Hk has
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following satisfying assignments:

Hk “ tx P t0, 1u
k
|Da P Fm

2 z0 s.t @i P rks, xi “ a ¨ wiu

We will identify the set of satisfying assignments in Hk with the variables h1, h2,

. . ., hk.

Our final predicate Pk is the above predicate along with few more satisfying

assignments. More precisely, we add all the assignments which are at a hamming

distance at most 1 from 0k i.e. Pk “ Hk Y
k
i“1 ei Y 0k.
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5.3.2 The Distribution Dk,ε

For 0 ă ε ď 1
k2 , consider the following distribution Dk,ε on the set of satisfying

assignments of Pk where α :“ pk ´ 1qε.

Probabilities Assignments

Dk,ε Ð
"

x1 x2 ¨ ¨ ¨ ¨ ¨ ¨ xk

1

1´ α

ˆ

1

k ` 1
´ α

˙

Ð

"

0 0 ¨ ¨ ¨ ¨ ¨ ¨ 0

1

1´ α

ˆ

1

k ` 1
´ ε

˙

Ð

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

h1

h2

...

hk

ε

1´ α
Ð

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

1 0 ¨ ¨ ¨ ¨ ¨ ¨ 0

0 1 ¨ ¨ ¨ ¨ ¨ ¨ 0

...

0 0 ¨ ¨ ¨ ¨ ¨ ¨ 1,

where each hi gets a probability mass 1
1´α
p 1
k`1

´ εq and each ei gets weight

ε
1´α

. The reasoning behind choosing this distribution is as follows: An uniform

distribution on Hk Y 0k has a property that it is uniform on every single co-

ordinate and also pairwise independent. These two properties are very useful

proving the soundness guarantee. One more property which we require is

that the distribution has to be connected. In order to achieve this, we add k

extra assignment te1, e2, . . . , eku and force the distribution to be supported on all

Hk Y
k
i“1 eiY 0k. Even though by adding extra assignments, we loose the pairwise
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independent property we make sure that the final distribution is almost pairwise

independent.

We now list down the properties of this distribution which we will use in

analyzing the dictatorship test. This is proved in Section 5.5.2.

Observation 5.3.1 The distribution Dk,ε above has the following properties:

1. Dk,ε is supported on Pk.

2. Marginal on every single coordinate is uniform.

3. For i ‰ j, covariance of two variables xi, xj sampled form above distribution is:

Covrxi, xjs “ ´
ε

2p1´αq
.

4. If we view Dk,ε as a joint distribution on space
śk

i“1X piq where each X piq “

t0, 1u, then for all i P rks, ρ
´

X piq,
ś

jPrksztiuX pjq;Dk,ε
¯

ď 1 ´ ε2

2p1´αq2
. (See

Definition 5.5.1 for the definition of ρ.)

5.3.3 Dictatorship Test

We will switch the notations from t0, 1u to t`1,´1u where we identify `1 as 0

and ´1 as 1. Let f : t´1,`1un Ñ t´1,`1u be a given boolean function. We also

assume that f is folded i.e. for every x P t´1,`1un, fpxq “ ´fp´xq. We think of

Pk as a function Pk : t´1,`1uk Ñ t0, 1u such that Pkpzq “ 1 iff z P Pk. Consider

the following dictatorship test:
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Test Tk,δ

1. Sample x1,x2, ¨ ¨ ¨ ,xk P t´1,`1un as follows:

(a) For each i P rns, independently sample ppx1qi, px2qi, ¨ ¨ ¨ , pxkqiq

according to the distribution Dk,δ.

2. Check if pfpx1q, fpx2q, ¨ ¨ ¨ , fpxkqq P Pk.

The final test distribution is basically the above test where the parameter δ is

chosen from an appropriate distribution. For a given 1
k2 ě ε ą 0, let err “ ε{5

2k
and

define the following quantities : ε0 “ ε and for j ě 0, εj`1 “ err ¨ 2
´

ˆ

k10

err3εj

˙k

.

Test T 1k,ε

1. Set r “
`

k
err

˘2

2. Select j from t1, 2, . . . , ru uniformly at random.

3. Set δ “ εj

4. Run test Tk,δ.

We would like to make a remark that this particular setting of εj`1 is not

very important. For our analysis, we need a sequence of εj’s such that each

subsequent εj is sufficiently small compared to εj´1.
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5.4 Analysis of the Dictatorship Test

Notation: We can view f : t´1,`1un Ñ t´1,`1u as a function over n-fold

product set X1ˆX2ˆ¨ ¨ ¨ˆXn where each Xi “ t´1,`1utiu. In the test distribution

Tk,δ, we can think of xi sampled from the product distribution onX piq1 ˆX piq2 ˆ¨ ¨ ¨ˆ

X piqn . With these notations in hand, the overall distribution on px1,x2, ¨ ¨ ¨ ,xkq,

from the test Tk,δ, is a n-fold product distribution from the space

n
ź

j“1

˜

k
ź

i“1

X piqj

¸

.

where we think of
śk

i“1X
piq
j as correlated space. We define the parameters for

the sake of notational convenience:

1. βj :“
εj

1´pk´1qεj
be the minimum probability of an atom in the distribution

Dk,εj .

2. sj`1 :“ logp k
err
q 1
ε2j

and Sj “ sj`1 for 0 ď j ď r.

3. αj :“ pk ´ 1qεj for j P rrs,

5.4.1 Completeness

Completeness is trivial, if f is say ith dictator then the test will be checking the

following condition

ppx1qi, px2qi, ¨ ¨ ¨ , pxkqiq P Pk

Using Observation 5.3.1(1), the distribution is supported on only strings in Pk.

Therefore, the test accepts with probability 1.
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5.4.2 Soundness

Lemma 5.4.1 For every 1
k2 ě ε ą 0 there exists 0 ă τ ă 1, d P N` such that

the following holds: Suppose f is such that for all i P rns, infďdi pfq ď τ , then the

test T 1k,ε accepts with probability at most 2k`1
2k

` ε. (Note: One can take τ such that

τΩkperr{10sr logp1{βrqq ď err and d “ logp1{τq
logp1{βrq

.)

Proof: The acceptance probability of the test is given by the following expres-

sion:

PrrTest accepts f s “ E
T 1k,ε
rPkpfpx1q, fpx2q, ¨ ¨ ¨ , fpxkqqs

After expanding Pk in terms of its Fourier expansion, we get

PrrTest accepts f s “
2k ` 1

2k
` E

T 1k,ε

»

–

ÿ

SĎrks,S‰H

P̂kpSq
ź

iPS

fpxiq

fi

fl

“
2k ` 1

2k
`

ÿ

SĎrks,S‰H

P̂kpSq E
T 1k,ε

«

ź

iPS

fpxiq

ff

ď
2k ` 1

2k
`

ÿ

SĎrks,S‰H

ˇ

ˇ

ˇ

ˇ

ˇ

E
T 1k,ε

«

ź

iPS

fpxiq

ff
ˇ

ˇ

ˇ

ˇ

ˇ

(|P̂kpSq| ď 1)

“
2k ` 1

2k
`

ÿ

SĎrks,|S|ě2

ˇ

ˇ

ˇ

ˇ

ˇ

E
T 1k,ε

«

ź

iPS

fpxiq

ffˇ

ˇ

ˇ

ˇ

ˇ

.

In the last equality, we used the fact that each xi is distributed uniformly in

t´1,`1un and hence when S “ tiu, Erfpxiqs “ f̂pHq “ 0. Thus, to prove the

lemma it is enough to show that for all S Ď rks such that |S| ě 2, E r
ś

iPS fpxiqs

ď ε
2k

. This follows from Lemma 5.4.2.

Lemma 5.4.2 For any S Ď rks such that |S| ě 2,
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ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

E
jPrrs

»

– E
Dbnk,εj

«

ź

iPS

fpxiq

ff

fi

fl

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď
ε

2k

The proof of this follows from the following Lemmas 5.4.3 , 5.4.4, 5.4.5.

Lemma 5.4.3 For any j P rrs and for any S Ď rks, |S| ě 2 such that S “ t`1, `2, . . . ,

`tu,

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

E
Dbnk,εj

«

ź

`iPS

fpx`iq

ff

´ E
Dbnk,εj

«

ź

`iPS

pT1´γjfq
ďdj,ipx`iq

ff

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď 2 ¨ err ` k

d

ÿ

sjď|T |ďSj

f̂pT q2.

where γj “ err
ksj

and dj,i is a sequence given by dj,1 “
2k2¨sj
err

log
`

k
err

˘

and dj,i “ pdj,1qi

for 1 ă i ď t.

Lemma 5.4.4 Let j P rrs and νj be a distribution on jointly distributed standard

Gaussian variables with same covariance matrix as that of Dk,εj . Then for any S Ď rks,

|S| ě 2 such that S “ t`1, `2, . . . , `tu,

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

E
Dbnk,εj

«

ź

`iPS

pT1´γjfq
ďdj,ipx`iq

ff

´ E
pg1,g2,...,gkq„ν

bn
j

«

ź

`iPS

pT1´γjfq
ďdj,ipgiq

ff

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď err2

where dj,i from Lemma 5.4.3 and err2 “ τΩkpγj{ logp1{βjqq (Note: Ωp.q hides a constant

depending on k).

Lemma 5.4.5 Let k ě 2 and S Ď rks such that |S| ě 2 and let f : Rn Ñ R be a

multilinear polynomial of degree D ě 1 such that }f}2 ď 1. If G be a joint distribution
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on k standard gaussian random variable with a covariance matrix p1` δqI´ δJ andH

be a distribution on k independent standard gaussian then it holds that

ˇ

ˇ

ˇ

ˇ

ˇ

E
Gbn

«

ź

iPS

fpgiq

ff

´ E
Hbn

«

ź

iPS

fphiq

ff
ˇ

ˇ

ˇ

ˇ

ˇ

ď δ ¨ p2kq2kD

Proofs of Lemma 5.4.3 , 5.4.4, 5.4.5 appear in Section 5.5.1. We now prove

Lemma 5.4.2 using the above three claims.

Proof of Lemma 5.4.2: Let S “ t`1, `2, . . . , `tu. We are interested in getting an

upper bound for the following expectation:

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

E
jPrrs

»

– E
Dbnk,εj

«

ź

`iPS

fpx`iq

ff

fi

fl

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď E
jPrrs

»

–

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

E
Dbnk,εj

«

ź

`iPS

fpx`iq

ff

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

fi

fl .

Let us look at the inner expectation first. Let γj “ err
ksj

and the sequence dj,i be

from Lemma 5.4.3. We can upper bound the inner expectation as follows:
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

E
Dbnk,εj

«

ź

`iPS

fpx`iq

ff

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

E
Dbnk,εj

«

ź

`iPS

pT1´γjfq
ďdj,ipx`iq

ff

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

` 2 ¨ err ` k

d

ÿ

sjď|T |ďSj

f̂pT q2

(by Lemma 5.4.3)

ď

ˇ

ˇ

ˇ

ˇ

ˇ

E
pg1,g2,...,gkq„ν

bn
j

«

ź

`iPS

pT1´γjfq
ďdj,ipgiq

ff
ˇ

ˇ

ˇ

ˇ

ˇ

` (by Lemma 5.4.4)

err2 ` 2 ¨ err ` k

d

ÿ

sjď|T |ďSj

f̂pT q2 (5.4.1)

where err2 “ τΩkpγj{ logp1{βjqq and νj has the same covariance matrix as Dk,εj . If we

let δj “
2εj

1´αj
then using Observation 5.3.1(3), the covariance matrix is precisely

p1 ` δjqI ´ δjJ (note that we switched from 0{1 to ´1{ ` 1 which changes the

covaraince by a factor of 4). Each of the functions pT1´γjfq
ďdj,i has `2 norm
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upper bounded by 1 and degree at most dj,t. We can now apply Lemma 5.4.5 to

conclude that

ˇ

ˇ

ˇ

ˇ

ˇ

E
pg1,g2,...,gkq„ν

bn
j

«

ź

`iPS

pT1´γjfq
ďdj,ipgiq

ff
ˇ

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ˇ

E
ph1,h2,...,hkq

«

ź

`iPS

pT1´γjfq
ďdj,iphiq

ffˇ

ˇ

ˇ

ˇ

ˇ

` δj ¨ p2kq
2kdj,t , (5.4.2)

where hi’s are independent and each hi is distributed according to N p0, 1qn.

Thus,

E
ph1,h2,...,hkq

«

ź

`iPS

pT1´γjfq
ďdj,iphiq

ff

“
ź

`iPS

E
hi

“

pT1´γjfq
ďdj,iphiq

‰

“

´

{pT1´γjfq
ďdj,ipHq

¯t

“ pf̂pHqqt “ 0, (5.4.3)

where we used the fact that f is a folded function in the last step. Combining

(5.4.1), (5.4.2) and (5.4.3), we get

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

E
Dbnk,εj

«

ź

`iPS

fpx`iq

ff

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď

`

δj ¨ p2kq
2kdj,t

˘

`
`

τΩkpγj{ logp1{βjqq
˘

` 2 ¨ err ` k

d

ÿ

sjď|T |ďSj

f̂pT q2 (5.4.4)

We now upper bound the first term. For this, we use a very generous upper
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bounds dj,1 ď k5

err3
1

ε2j´1
and δj ď 4εj .

δj ¨ p2kq
2kdj,t ď

`

4εj ¨ p2kq
2dj,kk

˘

ď εj ¨ 2

ˆ

k10

err3εj´1

˙k

ď err.

˜

using εj “ err ¨ 2
´

ˆ

k10

err3εj´1

˙k¸

The second term in (5.4.4) can also be upper bounded by err by choosing small

enough τ .

max
j
t
`

τΩkpγj{ logp1{βjqq
˘

u ď
`

τΩkpγr{ logp1{βrqq
˘

ď err.

Finally, taking the outer expectation of (5.4.4), we get

E
jPrrs

»

–

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

E
Dbnk,εj

«

ź

`iPS

fpx`iq

ff

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

fi

fl ď 4 ¨ err ` k E
jPr

»

–

d

ÿ

sjď|T |ďSj

f̂pT q2

fi

fl .

Using Cauchy-Schwartz inequality,

E
jPrrs

»

–

d

ÿ

sjă|T |ăSj

f̂pT q2

fi

fl ď

g

f

f

f

e E
jPrrs

»

–

ÿ

sjă|T |ăSj

f̂pT q2

fi

fl ď
1
?
r
,

where the last inequality uses the fact that the intervals psj, Sjq are disjoint for
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j P rrs and }f}22 “
ř

T f̂pT q
2 ď 1. The final bound we get is

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

E
jPrrs

»

– E
Dbnk,εj

«

ź

`iPS

fpx`iq

ff

fi

fl

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď E
jPrrs

»

–

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

E
Dbnk,εj

«

ź

`iPS

fpx`iq

ff

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

fi

fl

ď 4 ¨ err `
k
?
r

ď 5.err

ď
ε

2k

as required.

5.5 Deferred proofs

5.5.1 Proofs of Lemma 5.4.3 , 5.4.4 & 5.4.5

In this section, we provide proofs of three crucial lemmas which we used in

proving the soundness analysis of our dictatorship test. We start with some more

preliminaries.

5.5.1.1 Correlated Spaces

Let Ω1 ˆ Ω2 be two correlated spaces and µ denotes the joint distribution. Let µ1

and µ2 denote the marginal of µ on space Ω1 and Ω2 respectively. The correlated

space ρpΩ1 ˆ Ω2;µq can be represented as a bipartite graph on pΩ1,Ω2q where

x P Ω1 is connected to y P Ω2 iff µpx, yq ą 0. We say that the correlated spaces is

connected if this underlying graph is connected.

We need a few definitions and lemmas related to correlated spaces defined

by Mossel [Mos08].
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Definition 5.5.1 Let pΩ1 ˆ Ω2, µq be a finite correlated space, the correlation between

Ω1 and Ω2 with respect to µ us defined as

ρpΩ1,Ω2;µq :“ max
f :Ω1ÑR,Erf s“0,Erf2sď1
g:Ω2ÑR,Ergs“0,Erg2sď1

E
px,yq„µ

r|fpxqgpyq|s.

The following result (from [Mos08]) provides a way to upper bound correlation

of a correlated spaces.

Lemma 5.5.2 Let pΩ1 ˆ Ω2, µq be a finite correlated space such that the probability of

the smallest atom in Ω1 ˆ Ω2 is at least α ą 0 and the correlated space is connected then

ρpΩ1,Ω2;µq ď 1´ α2
{2

Definition 5.5.3 (Markov Operator) Let pΩ1ˆΩ2, µq be a finite correlated space, the

Markov operator, associated with this space, denoted by U , maps a function g : Ω2 Ñ R

to functions Ug : Ω1 Ñ R by the following map:

pUgqpxq :“ E
pX,Y q„µ

rgpY q | X “ xs.

In the soundness analysis of our dictatorship test, we will need to understand

the Efron-Stein decomposition of Ug in terms of the decomposition of g. The

following proposition gives a way to relate these two decompositions.

Proposition 5.5.4 ([Mos08, Proposition 2.11]) Consider a product correlated space

p
śn

i“1 Ω
p1q
i ˆ

śn
i“1 Ω

p2q
i ,

śn
i“1 µiq. Let g :

śn
i“1 Ω

p2q
i Ñ R be a function and U be the

Markov operator mapping functions form space
śn

i“1 Ω
p2q
i to the functions on space

śn
i“1 Ω

p1q
i . If g “

ř

SĎrns gS and Ug “
ř

SĎrnspUgqS be the Efron-Stein decomposition
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of g and Ug respectively then,

pUgqS “ UpgSq

i.e. the Efron-Stein decomposition commutes with Markov operators.

Finally, the following proposition says that if the correlation between two spaces

is bounded away from 1 then higher order terms in the Efron-Stein decomposition

of Ug has a very small `2 norm compared to the `2 norm of the corresponding

higher order terms in the Efron-Stein decomposition of g.

Proposition 5.5.5 ([Mos08, Proposition 2.12]) Assume the same setting as that of

Proposition 5.5.4 and furthermore assume that ρpΩp1qi ,Ω
p2q
i ;µiq ď ρ for all i P rns, then

for all g it holds that

}UpgSq}2 ď ρ|S|}gS}2.

5.5.1.2 Hypercontractivity

Definition 5.5.6 A random variable r is said to be pp, q, ηq-hypercontractive if it satis-

fies

}a` ηr}q ď }a` r}p

for all a P R.

We note down the hypercontractive parameters for Rademacher random

variable (uniform over ˘1) and standard gaussian random variable.

Theorem 5.5.7 ([Wol07][Ole03]) Let X denote either a uniformly random ˘1 bit, a

standard one-dimensional Gaussian. Then X is
´

2, q, 1?
q´1

¯

-hypercontractive.
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The following proposition says that the higher norm of a low degree function

w.r.t hypercontractive sequence of ensembles is bounded above by its second

norm.

Proposition 5.5.8 ([MOO05]) Let x be a p2, q, ηq-hypercontractive sequence of ensem-

bles and Q be a multilinear polynomial of degree d. Then

}Qpxq}q ď η´d}Qpxq}2

5.5.1.3 Invariance Principle

Let µ be any distribution on t´1,`1uk. Consider the following distribution

on x1,x2, . . . ,xk P t´1,`1un such that independently for each i P rns, ppx1qi,

px2qi, . . . , pxkqiq is sampled from µ. We will denote this distribution as µbn.

We are interested in evaluation of a multilinear polynomial f : Rn Ñ R on

px1,x2, . . . ,xkq sampled as above.

Invariance principle shows the closeness between two different distributions

w.r.t some quantity of interest. We are now ready to state the version of the

invariance principle from [Mos08] that we need.

Theorem 5.5.9 ([Mos08]) For any α ą 0, ε ą 0, k P N` there are d, τ ą 0 such that

the following holds: Let µ be the distribution on t`1,´1uk satisfying

1. Ex„µrxis “ 0 for every i P rks

2. µpxq ě α for every x P t´1,`1uk such that µpxq ‰ 0

Let ν be a distribution on standard jointly distributed Gaussian variables with the

same covariance matrix as distribution µ. Then, for every set of k pd, τq-quasirandom
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multilinear polynomials fi : Rn Ñ R, and suppose Varrfądi s ď p1´ γq
2d for 0 ă γ ă 1

it holds that

ˇ

ˇ

ˇ

ˇ

ˇ

E
px1,x2,...,xkq„µbn

«

k
ź

i“1

fipxiq

ff

´ E
pg1,g2,...,gkq„νbn

«

k
ź

i“1

fipgiq

ff
ˇ

ˇ

ˇ

ˇ

ˇ

ď ε

(Note: one can take d “ logp1{τq
logp1{αq

and τ such that ε “ τΩpγ{ logp1{αqq, where Ωp.q hides

constant depending only on k.)

5.5.1.4 Moving to a low degree function

The following lemma, at a very high level, says that if change f to its low degree

noisy version then the loss we incur in the expected quantity is small.

Lemma 5.5.10 (Restatement of Lemma 5.4.3) For any j P rrs and for any S Ď rks,

|S| ě 2 such that S “ t`1, `2, . . . , `tu,

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

E
Dbnk,εj

«

ź

`iPS

fpx`iq

ff

´ E
Dbnk,εj

«

ź

`iPS

pT1´γjfq
ďdj,ipx`iq

ff

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď 2 ¨ err ` k

d

ÿ

sjď|T |ďSj

f̂pT q2.

where γj “ err
ksj

and dj,i is a sequence given by dj,1 “
2k2¨sj
err

log
`

k
err

˘

and dj,i “ pdj,1qi

for 1 ă i ď t.

Proof: The proof is presented in two parts. We first prove an upper bound on

Γ1 :“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

E
Dbnk,εj

«

ź

`iPS

fpx`iq

ff

´ E
Dbnk,εj

«

ź

`iPS

pT1´γjfqpx`iq

ff

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď err ` k

d

ÿ

sjď|T |ďSj

f̂pT q2

(5.5.1)
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and then an upper bound on

Γ2 :“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

E
Dbnk,εj

«

ź

`iPS

pT1´γjfqpx`iq

ff

´ E
Dbnk,εj

«

ź

`iPS

pT1´γjfq
ďdj,ipx`iq

ff

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď err. (5.5.2)

Note that both these upper bounds are enough to prove the lemma.

Upper Bounding Γ1: The following analysis is very similar to the one in [TY15],

we reproduce it here for the sake of completeness. The first upper bound is

obtained by getting the upper bound for the following, for every a P rts.

Γ1,a :“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

E
Dbnk,εj

«

ź

iěa

fpx`iq
ź

iăa

pT1´γjfqpx`iq

ff

´ E
Dbnk,εj

«

ź

iąa

fpx`iq
ź

iďa

pT1´γjfqpx`iq

ff

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

(5.5.3)

Note that by triangle inequality, Γ1 ď
ř

aPrts Γ1,a.

p5.5.3q “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

E
Dbnk,εj

«

`

fpx`aq ´ T1´γjfpx`aq
˘

ź

iąa

fpx`iq
ź

iăa

pT1´γjfqpx`iq

ff

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

E
Dbnk,εj

«

`

id´ T1´γj

˘

fpx`aq
ź

iąa

fpx`iq
ź

iăa

pT1´γjfqpx`iq

ff

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

E
Dbnk,εj

«

U
`

pid´ T1´γj

˘

fqpxt`i:iPrtsztauuq
ź

iąa

fpx`iq
ź

iăa

pT1´γjfqpx`iq

ff

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

(5.5.4)

where U is the Markov operator for the correlated probability space which maps

functions from the space X p`aq to the space
ś

iPrtsztauX p`iq. We can look at the

above expression as a product of two functions, F “
ś

iąa f
ś

iăapT1´γjfq and

G “ Upid´ T1´γjqfq. From Observation 5.3.1( 4), the correlation between spaces
´

X p`aq,
ś

iPrtsztauX p`iq
¯

is upper bounded by 1 ´
´

εj
1´αj

¯2

ď 1 ´ ε2
j “: ρj . Taking
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the Efron-Stein decomposition with respect to the product distribution, we have

the following because of orthogonality of the Efron-Stein decomposition,

p5.5.4q “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

E
Dbnk,εj

rGˆ F s

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

TĎrns

E
Dbnk,εj

rGT ˆ FT s

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

(by Cauchy-Schwartz) ď
d

ÿ

TĎrns

}FT }22

d

ÿ

TĎrns

}GT }
2
2 (5.5.5)

where the norms are with respect to Dbnk,εj ’s marginal distribution on the product

distribution
ś

iPrtsztauX p`iq. By orthogonality, the quantity
b

ř

TĎrns }FT }
2
2 is just

}F }2. As F is product of function whose range is r´1,`1s, rane of F is also

r´1,`1s and hence }F }2 is at most 1. Therefore,

p5.5.5q ď

d

ÿ

TĎrns

}GT }
2
2 (5.5.6)

We have GT “ pUG1qT , where G1 “ pid ´ T1´γjqf . In G1T , the Efron-Stein

decomposition is with respect to the marginal distribution of Dbnk,εj on X p`aq,

which is just uniform (by Observation 5.3.1(2)). Using Proposition 5.5.4, we have

GT = UG1T “ Upid´ T1´γjqfT . Substituting in (5.5.6), we get

p5.5.6q “

d

ÿ

TĎrns

}Upif ´ T1´γjqfT q}
2
2 (5.5.7)

We also have that the correlation is upper bounded by ρj . We can therefore

apply Proposition 5.5.5, and conclude that for each T Ď rns,

}Upid´ T1´γjqfT }2 ď ρ
|T |
j }pid´ T1´γjqfT }2

118



where the norm on the right is with respect to the uniform distribution. Observe

that

}pid´ T1´γjqfT }
2
2 “ p1´ p1´ γjq

|T |
q
2f̂pT q2

Substituting back into (5.5.7), we get

p5.5.7q ď

g

f

f

e

ÿ

TĎrns

ρ
2|T |
j p1´ p1´ γjq

|T |
q
2f̂pT q2

loooooooooooooooomoooooooooooooooon

Termpεj ,γj ,T q

(5.5.8)

We will now break the above summation into three different parts and bound

each part separately.

Θ1 :“
ÿ

TĎrns,
|T |ďsj

Termpεj, γj, T q Θ2 :“
ÿ

TĎrns,
sjă|T |ăSj

Termpεj, γj, T q

Θ3 :“
ÿ

TĎrns,
|T |ěSj

Termpεj, γj, T q

• Upper bounding Θ1:

Θ1 “
ÿ

TĎrns,
|T |ďsj

Termpεj, γj, T q

“
ÿ

TĎrns,
|T |ďsj

ρ
2|T |
j p1´ p1´ γjq

|T |
q
2f̂pT q2

ď
ÿ

TĎrns,
|T |ďsj

p1´ p1´ γjq
|T |
q
2f̂pT q2.
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For every |T | ď sj we have 1´ p1´ γjq
|T | ď err1{k. Thus,

Θ1 ď

´err1

k

¯2 ÿ

TĎrns,
|T |ďsj

f̂pT q2.

• Upper bounding Θ3:

Θ3 “
ÿ

TĎrns,
|T |ěSj

Termpεj, γj, T q

“
ÿ

TĎrns,
|T |ěSj

ρ
2|T |
j p1´ p1´ γjq

|T |
q
2f̂pT q2

ď
ÿ

TĎrns,
|T |ěSj

ρ
2|T |
j f̂pT q2.

For every |T | ě Sj we have ρ|T |j ď p1´ ε2
jq
|T | ď err1{k. Thus,

Θ3 ď

´err1

k

¯2 ÿ

TĎrns,
|T |ěSj

f̂pT q2.

Substituting these upper bounds in (5.5.8),

Γ1,a ď

g

f

f

f

e

´err1

k

¯2 ÿ

TĎrns,
|T |ďsjor|T |ěSj

f̂pT q2 `
ÿ

TĎrns,
sjă|T |ăSj

f̂pT q2

ď

d

´err1

k

¯2

`
ÿ

sjă|T |ăSj

f̂pT q2 (since
ř

T f̂pT q
2 ď 1)

ď
err1

k
`

d

ÿ

sjă|T |ăSj

f̂pT q2. (using concavity)
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The required upper bound on Γ1 follows by using Γ1 ď
ř

aPrts Γ1,a and the above

bound.

Upper Bounding Γ2: We will now show an upper bound on Γ2. The approach is

similar to the previous case, we upper bound the following quantity for every

a P rts

Γ2,a

:“

ˇ

ˇ

ˇ

ˇ

ˇ

E
Dbnk,εj

«

ź

iěa

pT1´γjfqpx`iq
ź

iăa

pT1´γjf
ďdj,iqpx`iq

ff

´ E
Dbnk,εj

«

ź

iąa

pT1´γjfqpx`iq
ź

iďa

pT1´γjf
ďdj,iqpx`iq

ff
ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

E
Dbnk,εj

«

`

T1´γjfpx`aq ´ T1´γjf
ďdj,apx`aq

˘

ź

iąa

T1´γjfpx`iq
ź

iăa

pT1´γjf
ďdj,iqpx`iq

ff

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

E
Dbnk,εj

«

`

T1´γjf
ądj,apx`aq

˘

ź

iąa

T1´γjfpx`iq
ź

iăa

pT1´γjf
ďdj,iqpx`iq

ff

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

(5.5.9)

By using Holder’s inequality we can upper bound (5.5.9) as:

p5.5.9q ď }T1´γjf
ądj,a}2

ź

iąa

}T1´γjf}2pt´1q

ź

iăa

}T1´γjf
ďdj,i}2pt´1q, (5.5.10)

where each norm is w.r.t the uniform distribution as marginal of each x`i is

uniform in t`1,´1un. Now, }T1´γjf}2pt´1q ď 1 as the range if T1´γjf is in r´1,`1s.

To upper bound }T1´γjf
ďdj,i}2pt´1q, we use Proposition 5.5.8 and using the fact

that t´1,`1u uniform random variable is p2, q, 1{
?
q ´ 1q hypercontractive (The-

orem 5.5.7) to get

}T1´γjf
ďdj,i}2pt´1q ď p2t´ 3qdj,i}T1´γjf

ďdj,i}2 ď p2tq
dj,i .
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Plugging this in (5.5.10), we get

p5.5.10q ď }T1´γjf
ądj,a}2

ź

iăa

p2tqdj,i ď p1´ γjq
dj,a ¨

ź

iăa

p2tqdj,i

ď e´γjdj,a ¨ p2kqk¨dj,a´1

ď e
´ err
ksj
¨dj,a

¨ p2kqk¨dj,a´1 (5.5.11)

Now,

dj,1 ¨ dj,a´1 “ dj,a

2k2 ¨ sj
err

log

ˆ

k

err

˙

¨ dj,a´1 “ dj,a

k2 ¨ sj
err

log

ˆ

k

err

˙

`
k2 ¨ sj

err
log

ˆ

k

err

˙

¨ dj,a´1 ď dj,a

k ¨ sj
err

log

ˆ

k

err

˙

`
k2 ¨ sj

err
¨ logp2kq ¨ dj,a´1 ď dj,a

k ¨ sj
err

¨

ˆ

log

ˆ

k

err

˙

` k ¨ dj,a´1 logp2kq

˙

“ dj,a

k ¨ sj
err

¨ log

ˆ

k

err
p2kqk¨dj,a´1

˙

“ dj,a

This implies

log

ˆ

k

err
p2kqk¨dj,a´1

˙

“
err

ksj
¨ dj,a

ñ
k

err
p2kqk¨dj,a´1 “ e

err
ksj
¨dj,a

ñ e
´ err
ksj
¨dj,a

¨ p2kqk¨dj,a´1 “
err

k
.

Thus from (5.5.11), we have Γ2,a ď
err
k

. To conclude the proof, by triangle inequal-

ity we have Γ2 ď
ř

aPrts Γ2,a ď err.
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5.5.1.5 Moving to the Gaussian setting

We are now in the setting of low degree polynomials because of Lemma 5.4.3.

The following lemma let us switch from our test distribution to a Gaussian

distribution with the same first two moments.

Lemma 5.5.11 (Restatement of Lemma 5.4.4) Let j P rrs and νj be a distribution

on jointly distributed standard Gaussian variables with same covariance matrix as that

of Dk,εj . Then for any S Ď rks, |S| ě 2 such that S “ t`1, `2, . . . , `tu,

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

E
Dbnk,εj

«

ź

`iPS

pT1´γjfq
ďdj,ipx`iq

ff

´ E
pg1,g2,...,gkq„ν

bn
j

«

ź

`iPS

pT1´γjfq
ďdj,ipgiq

ff

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď err2

where dj,i from Lemma 5.4.3 and err2 “ τΩkpγj{ logp1{βjqq (Note: Ωp.q hides a constant

depending on k).

Proof: Using the definition of pd, τq-quasirandom function and Fact 2.2.6, if f is

pd, τq- quasirandom then so is T1´γf for any 0 ď γ ď 1. Also, T1´γf satisfies

VarrT1´γf
ąd
s “

ÿ

TĎrns
|T |ąd

p1´ γq2|T |f̂pT q2 ď p1´ γq2d ¨
ÿ

TĎrns
|T |ąd

f̂pT q2 ď p1´ γq2d.

The lemma follows from a direct application of Theorem 5.5.9.

5.5.1.6 Making Gaussian variables independent

Our final lemma allows us to make the Gaussian variables independent. Here

we crucially need the property that the polynomials we are dealing with are low

degree polynomials. Before proving Lemma 5.4.5, we need the following lemma
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which says that low degree functions are robust to small perturbations in the

input on average.

Lemma 5.5.12 Let f : Rn Ñ R be a multilinear polynomial of degree d such that

}f}2 ď 1 suppose x, z „ N p0, 1qn be n-dimensional standard gaussian vectors such

that Erxizis ě 1´ δ for all i P rns. Then

Erpfpxq ´ fpzqq
2
s ď 2δd.

Proof: For T Ď rns, we have

ErχT pxqχT pzqs “
ź

iPT

Erxizis ě
ź

iPT

p1´ δq ě p1´ δq|T |

We now bound the following expression,

Erpfpxq ´ fpzqq
2
s “ Erfpxq

2
` fpzq2 ´ 2fpxqzpxqs

“
ÿ

TĎrns,|T |ďd

f̂pT q2p2´ 2 ErχT pxqχT pzqsq

ď 2 ¨
ÿ

TĎrns,|T |ďd

f̂pT q2p1´ p1´ δq|T |q

ď 2 ¨
ÿ

TĎrns,|T |ďd

f̂pT q2δ|T |

ď 2δd ¨
ÿ

TĎrns,|T |ďd

f̂pT q2 ď 2δd,

where the last inequality uses }f}2 ď 1.

We are now ready to prove Lemma 5.4.5.

Lemma 5.5.13 (Restatement of Lemma 5.4.5) Let k ě 2 and 2 ď t ď k and let
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f : Rn Ñ R be a multilinear polynomial of degree D ě 1 such that }f}2 ď 1. If G

be a joint distribution on k standard gaussian random variable with covariance matrix

p1` δqI´ δJ andH be a distribution on k independent standard gaussian then it holds

that
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

E
Gbn

»

–

ź

iPrts

fpgiq

fi

fl´ E
Hbn

»

–

ź

iPrts

fphiq

fi

fl

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď δ ¨ p2kq2Dk.

Proof: Let Σ “ p1 ` δqI ´ δJ be the covariance matrix. Let M “ p1 ´ δ1qpp1 `

βqI ´ βJq be a matrix such that M2 “ Σ. There are multiple M which satisfy

M2 “ Σ. We chose the M stated above to make the analysis simpler. From the

way we chose M and using the condition M2 “ Σ, it is easy to observe that β

and δ1 should satisfy the following two conditions:

1´ δ1 “
1

a

1` pk ´ 1qβ2
and

pk ´ 2qβ2 ´ 2β

1` pk ´ 1qβ2
“ ´δ.

SinceH is a distribution of k independent standard gaussians, we can generate

a sample x „ G by sampling y „ H and setting x “ My. In what follows, we

stick to the following notation: ph1,h2, . . . ,hkq „ Hbn and pg1, g2, . . . , gkqj “

Mph1,h2, . . . ,hkqj for each j P rns.

Because of the way we chose to generate g1is, we have for all i P rks and j P rns,

Erpgiqjphiqjs “ 1´δ1 ě 1´kβ2. To get an upper bound on β, notice that β is a root

of the quadratic equation pk` δk´ δ´ 2qβ2´ 2β` δ “ 0. Let k1 “ pk` δk´ δ´ 2q,

if β1, β2 are the roots of the equation then they satisfy: k1β1 ` k1β2 “ 2 and

pk1β1qpk
1β2q “ δk1 and β1, β2 ą 0. Thus, we have mintk1β1, k

1β2u ď δk1 and hence,

we can take β such that β ď δ.

We wish to upper bound the following expression:
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Γ :“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

E
Hbn

»

–

ź

iPrts

fpgiq ´
ź

iPrts

fphiq

fi

fl

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

.

Define the following quantity

Γi :“

ˇ

ˇ

ˇ

ˇ

ˇ

E
Hbn

«

i´1
ź

j“1

fphjq
t
ź

j“i

fpgjq ´
i
ź

j“1

fphjq
t
ź

j“i`1

fpgjq

ff
ˇ

ˇ

ˇ

ˇ

ˇ

.

By triangle inequality, we have Γ ď
ř

iPrts Γi. We now proceed with upper

bounding Γi for a given i P rts.

Γi “

ˇ

ˇ

ˇ

ˇ

ˇ

E
Hbn

«

i´1
ź

j“1

fphjq
t
ź

j“i

fpgjq ´
i
ź

j“1

fphjq
t
ź

j“i`1

fpgjq

ffˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

E
Hbn

«

pfpgiq ´ fphiqq ¨
i´1
ź

j“1

fphjq
t
ź

j“i`1

fpgjq

ffˇ

ˇ

ˇ

ˇ

ˇ

ď

c

E
Hbn
rpfpgiq ´ fphiqq2s ¨

i´1
ź

j“1

E
Hbn
rfphjq

2pt´1q
s

1
2pt´1q

t
ź

j“i`1

E
Hbn
rfpgjq

2pt´1q
s

1
2pt´1q ,

where the last step uses Holder’s Inequality. Now, the marginal distribution on

each hj and gj is identical which is N p0, 1qn, we have

Γi ď
c

E
Hbn
rpfpgiq ´ fphiqq2s ¨

i´1
ź

j“1

}f}2pt´1q

t
ź

j“i`1

}f}2pt´1q

ď

c

E
Hbn
rpfpgiq ´ fphiqq2s ¨ p}f}2pt´1qq

t´1

Since a standard one dimensional Gaussian is p2, q, 1{
?
q ´ 1q-hypercontractive

(Theorem 5.5.7), from Proposition 5.5.8 , }f}2pt´1q ď p
?

2t´ 3qD}f}2 ď p
?

2t´ 3qD

ă p2tqD{2. Thus,

Γi ď p2tq
Dpt´1q{2

¨

c

E
Hbn
rpfpgiq ´ fphiqq2s
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Now, each gi,hi are such that such that Erpgiqj ¨ phiqjs “ 1 ´ δ1 ě 1 ´ kδ2 for

every j P rns. We can apply Lemma 5.5.12 to get EHbnrpfpgiq ´ fphiqq
2s ď 2kδ2D.

Hence, we can safely upper bound Γi as

Γi ď p2tq
Dpt´1q{2

¨ 2kδD.

Therefore, Γ ď
ř

i Γi ď t ¨ p2tqDpt´1q{2 ¨ 2kδD which is at most 2k2δD ¨ p2kqDk{2 ď

δ ¨ p2kq2Dk as required.

5.5.2 Proof of Observation 5.3.1

Observation 5.5.1 (Restatement of Observation 5.3.1) The distribution Dk,ε above has

the following properties:

1. Dk,ε is supported on Pk.

2. Marginal on every single coordinate is uniform.

3. For i ‰ j, covariance of two variables xi, xj sampled form above distribution is:

Covrxi, xjs “ ´
ε

2p1´αq
.

4. If we view Dk,ε as a joint distribution on space
śk

i“1X piq where each X piq “

t0, 1u, then for all i P rks, ρ
´

X piq,
ś

jPrksztiuX pjq;Dk,ε
¯

ď 1 ´ ε2

2p1´αq2
. (See

Definition 5.5.1 for the definition of ρ.)

Proof: We prove each of the observations about the distribution. The first
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property is straight-forward. To prove (2), we compute Erxis as follows.

Erxis “ pk ` 1q ¨
1

1´ α

ˆ

1

k ` 1
´ ε

˙

¨
1

2
`

ε

1´ α

“
1´ εpk ` 1q ` 2ε

2p1´ αq

“
1

2

Consider the quantity E
Dk,ε
rxixjs. If x is sampled from 0’s or ei’s, the value is 0.

Moreover, we know that if it is sampled uniformly from Hk Y 0k, it is 1{4 because

of pairwise independence and the above fact. Therefore, we can write

E
Dk,ε
rxixjs “ pk ` 1q

1

1´ α

ˆ

1

k ` 1
´ ε

˙

1

4

We know that E
Dk,ε
rxis “ E

Dk,ε
rxjs “ 1{2. Therefore,

Covrxi, xjs “ E
Dk,ε
rxixjs ´ E

Dk,ε
rxis E

Dk,ε
rxjs

“
1

4p1´ αq
´
εpk ` 1q

4p1´ αq
´

1

4

“
´ε

2p1´ αq

We now show that the bi-partite graph G
´

X piq,
ś

jPrksztiuX pjq, E
¯

where pa, bq

P X piq ˆ
ś

jPrksztiuX pjq is an edge iff Prpa, bq ą 0, is connected. To see that the

graph is connected, note that for both 0 and 1 on the left hand side, 0k´1 is a

neighbor on the right hand side as the distribution’s support includes ei for all i,

and 0k. From the distribution, we see that the smallest atom is at least ε
1´α

, since

ε ď 1{k2. We now use Lemma 5.5.2 to get the required result.
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[HW03] JOHAN HÅSTAD and AVI WIGDERSON. Simple analysis of graph tests for linearity and

PCP. Random Structures & Algorithms, 22(2):139–160, 2003. 95

[Kho01] SUBHASH KHOT. Improved inapproximability results for maxclique, chromatic number

and approximate graph coloring. In 42nd Annual Symposium on Foundations of Computer

Science, FOCS 2001, 14-17 October 2001, Las Vegas, Nevada, USA, pages 600–609. 2001.

doi:10.1109/SFCS.2001.959936. 64, 67, 86

[Kho02] SUBHASH KHOT. On the power of unique 2-prover 1-round games. In Proceedings of

the Thiry-fourth Annual ACM Symposium on Theory of Computing, STOC ’02, pages

767–775. ACM, New York, NY, USA, 2002. doi:10.1145/509907.510017. 92, 96

[Kho10] SUBHASH KHOT. Inapproximability results for computational problems on lattices, vol-

ume 10 of Information Security and Cryptography, pages 453–473. Springer Interna-

tional Publishing, 2010. doi:10.1007/978-3-642-02295-1_14. 65

131

http://doi.acm.org/10.1145/227683.227684
http://doi.acm.org/10.1145/227683.227684
http://dx.doi.org/10.1145/227683.227684
http://dx.doi.org/10.1145/502090.502098
http://dx.doi.org/10.1002/rsa.20031
https://doi.org/10.1109/SFCS.2001.959936
https://doi.org/10.1109/SFCS.2001.959936
http://dx.doi.org/10.1109/SFCS.2001.959936
http://doi.acm.org/10.1145/509907.510017
http://dx.doi.org/10.1145/509907.510017
http://dx.doi.org/10.1007/978-3-642-02295-1_14


[KKMO07] SUBHASH KHOT, GUY KINDLER, ELCHANAN MOSSEL, and RYAN O’DONNELL.

Optimal inapproximability results for max-cut and other 2-variable csps? SIAM J. Comput.,

37(1):319–357, April 2007. doi:10.1137/S0097539705447372. 14, 15

[KN07] SUBHASH KHOT and ASSAF NAOR. Linear equations modulo 2 and the L1 diameter

of convex bodies. In 48th Annual IEEE Symposium on Foundations of Computer Science

(FOCS 2007), October 20-23, 2007, Providence, RI, USA, Proceedings, pages 318–328.

2007. doi:10.1109/FOCS.2007.20. 62

[KS06] SUBHASH KHOT and RISHI SAKET. A 3-query non-adaptive PCP with perfect complete-

ness. In 21st Annual IEEE Conference on Computational Complexity (CCC’06), pages

11–pp. IEEE, 2006. 95

[KTW14] SUBHASH KHOT, MADHUR TULSIANI, and PRATIK WORAH. A characterization of

strong approximation resistance. In Proceedings of the 46th Annual ACM Symposium on

Theory of Computing, pages 634–643. ACM, 2014. 96

[MOO05] ELCHANAN MOSSEL, RYAN O’DONNELL, and KRZYSZTOF OLESZKIEWICZ. Noise

stability of functions with low influences: invariance and optimality. In 46th Annual IEEE

Symposium on Foundations of Computer Science (FOCS’05), pages 21–30. IEEE, 2005. 14,

114

[Mos08] ELCHANAN MOSSEL. Gaussian bounds for noise correlation of functions and tight analysis

of long codes. In 2008 49th Annual IEEE Symposium on Foundations of Computer Science,

pages 156–165. Oct 2008. doi:10.1109/FOCS.2008.44. 111, 112, 113, 114

[MR08] D. MOSHKOVITZ and R. RAZ. Two query pcp with sub-constant error. In 2008 49th

Annual IEEE Symposium on Foundations of Computer Science, pages 314–323. Oct 2008.

doi:10.1109/FOCS.2008.60. 6, 63, 64, 65, 66, 68

[Ole03] KRZYSZTOF OLESZKIEWICZ. On a nonsymmetric version of the khinchine-kahane in-

equality. In Stochastic inequalities and applications, pages 157–168. Springer, 2003.

113

[OW08] RYAN O’DONNELL and YI WU. An optimal sdp algorithm for max-cut, and equally

optimal long code tests. In Proceedings of the Fortieth Annual ACM Symposium on

132

http://dx.doi.org/10.1137/S0097539705447372
http://dx.doi.org/10.1137/S0097539705447372
https://doi.org/10.1109/FOCS.2007.20
https://doi.org/10.1109/FOCS.2007.20
http://dx.doi.org/10.1109/FOCS.2007.20
http://dx.doi.org/10.1109/FOCS.2008.44
http://dx.doi.org/10.1109/FOCS.2008.60
http://doi.acm.org/10.1145/1374376.1374425
http://doi.acm.org/10.1145/1374376.1374425


Theory of Computing, STOC ’08, pages 335–344. ACM, New York, NY, USA, 2008.

doi:10.1145/1374376.1374425. 14

[OW09a] RYAN O’DONNELL and YI WU. 3-Bit Dictator Testing: 1 vs. 5/8, pages 365–374. Society

for Industrial and Applied Mathematics, 2009. arXiv:https://epubs.siam.org/

doi/pdf/10.1137/1.9781611973068.41, doi:10.1137/1.9781611973068.41. 95,

98

[OW09b] RYAN O’DONNELL and YI WU. Conditional hardness for satisfiable 3-CSPs. In Proceed-

ings of the forty-first annual ACM symposium on Theory of computing, pages 493–502.

ACM, 2009. 95

[PRS02] MICHAL PARNAS, DANA RON, and ALEX SAMORODNITSKY. Testing basic Boolean

Formulae. SIAM Journal on Discrete Mathematics, 16(1):20–46, 2002. 92, 95

[Rag08] PRASAD RAGHAVENDRA. Optimal algorithms and inapproximability results for every

CSP? In Proceedings of the 40th annual ACM symposium on Theory of computing,

STOC ’08, pages 245–254. ACM, New York, NY, USA, 2008. doi:10.1145/1374376.

1374414. 96

[Raz98] RAN RAZ. A parallel repetition theorem. SIAM J. Comput., 27(3):763–803, June 1998.

doi:10.1137/S0097539795280895. 63, 92

[RT12] PRASAD RAGHAVENDRA and NING TAN. Approximating csps with global cardinality

constraints using sdp hierarchies. In Proceedings of the twenty-third annual ACM-SIAM

symposium on Discrete Algorithms, pages 373–387. SIAM, 2012. 16, 18, 20, 34, 37, 38,

39, 40

[Sjo09] HENRIK SJOGREN. Rigorous analysis of approximation algorithms for max 2-csp. Master’s

thesis, 2009. 21

[ST00] ALEX SAMORODNITSKY and LUCA TREVISAN. A PCP characterization of NP with

optimal amortized query complexity. In Proceedings of the thirty-second annual ACM

symposium on Theory of computing, pages 191–199. ACM, 2000. 95

[ST09] ALEX SAMORODNITSKY and LUCA TREVISAN. Gowers uniformity, influence of variables,

and PCPs. SIAM Journal on Computing, 39(1):323–360, 2009. 95

133

http://dx.doi.org/10.1145/1374376.1374425
https://epubs.siam.org/doi/abs/10.1137/1.9781611973068.41
http://arxiv.org/abs/https://epubs.siam.org/doi/pdf/10.1137/1.9781611973068.41
http://arxiv.org/abs/https://epubs.siam.org/doi/pdf/10.1137/1.9781611973068.41
http://dx.doi.org/10.1137/1.9781611973068.41
http://doi.acm.org/10.1145/1374376.1374414
http://doi.acm.org/10.1145/1374376.1374414
http://dx.doi.org/10.1145/1374376.1374414
http://dx.doi.org/10.1145/1374376.1374414
http://dx.doi.org/10.1137/S0097539795280895
http://dx.doi.org/10.1137/S0097539795280895


[TY15] SUGURU TAMAKI and YUICHI YOSHIDA. A query efficient non-adaptive long code test

with perfect completeness. Random Structures & Algorithms, 47(2):386–406, 2015. 7,

94, 96, 98, 99, 116

[Wol07] PAWEL WOLFF. Hypercontractivity of simple random variables. Studia Mathematica,

180(3):219–236, 2007. 113

[Zwi97] URI ZWICK. Approximation Algorithms for Constraint Satisfaction Problems Involving

at Most Three Variables per Constraint. In In Proceedings of the 9th Annual ACM-SIAM

Symposium on Discrete Algorithms. 1997. 95

134


	Dedication
	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	Introduction
	SDP Hierarchies
	Probabilistically checkable proofs
	Overview of our Results
	Organization

	Preliminaries
	Information Theory
	Analysis of Boolean Function over Probability Spaces

	Simultaneous Max-Cut
	Introduction
	Algorithm for simultaneous weighted Max-Cut
	Open Questions
	Deferred Proofs

	Improved Hardness for 3LIN
	Introduction
	Reduction to System of Linear Equations
	Reduction to Linear Label Cover
	Reduction from Linear Label Cover to 3LIN

	Dictatorship Test with perfect completeness
	Introduction
	Proof Overview
	Query efficient Dictatorship Test
	Analysis of the Dictatorship Test
	Deferred proofs

	Bibliography

