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Abstract

Autoregressive neural networks have shown great success as part of the sequence to sequence

framework solving a diverse set of sequence generation tasks. These tasks include machine trans-

lation, dialogue modeling, question answering, text summarization, and sequence completion. In

spite of the visible success, many challenges remain to be solved and are reported across these

tasks. These challenges are usually discussed as visible deviations in the predicted sequence com-

pared to the given reference. It is, however, not always possible to do the comparison, because

interactive tasks, such as dialogue modeling, do not come together with reference sequences in

the middle of the conversation at the test time. We refer to such deviations as degeneracies which

result in degenerate sequences. In this thesis, we work on reducing widely reported degeneracies

within speci�c tasks or in text generation in general. To do so, we often �rst need to formulate

the degeneracy in a measurable way and hypothesize what is the major cause behind it.

We investigate the issue of oversmoothing, where the model assigns high probability to overly

short sequences. We address this degeneracy from the learning aspect by proposing a novel regu-

larization which minimizes the newly proposed oversmoothing rate directly. We show the e�ec-

tiveness of the proposed method in the context of neural machine translation. Still concentrating

on the learning aspect, we next address the problem of repetition in the context of sequence com-

pletion, where the generated sequences have unreasonably many repetitive substrings compared

to the ones we see in the data. We propose a novel unlikelihood training procedure which allows

to penalize undesired continuations, such as repetitive substrings. Unlikelihood training signi�-
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cantly reduces the number of repetitions and improves the naturalness of the generated contin-

uations. One issue with the repetition degeneracy is that it can also lead to non-termination. We

study if the original model is able to terminate the repetitive loop itself even if we do not enforce

the maximum generated length during decoding. We connect this problem of non-termination

with the consistency of the distribution induced by the chosen decoding algorithm. After proving

that an incomplete decoding algorithm, such as beam search, may induce the inconsistent distri-

bution when paired with a consistent model, we propose an alternative parametrization which

guarantees the decoding-induced distribution to be consistent. After that, we switch to a more

complicated scenario of conversation modeling, where the model has to generate a response in

a multi-turn setting. We investigate the issue of unengaging or dull responses by highlighting

the importance of the decoding algorithm. We observe a low diversity of beam search candidates

compared to iterative beam search which explores a wider search subspace via e�cient pruning.

We �nd that the selection criterion is as important as the decoding strategy. Along the way, we

stress the importance of careful human evaluation in the presence of annotator bias and calibrate

the observed scores using Bayesian inference. While we address di�erent kinds of degeneracy,

the list we tackle is not exhaustive. For instance, neural machine translation is known to produce

hallucinated translations or copy large parts of the input sentence. Furthermore, degeneracies

exist past autoregressive modeling in both non-autoregressive and semi-autoregressive settings.

We believe our contributions will be helpful for future research solving new problems.
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1 | Introduction

1.1 Neural autoregressive text generation is the basis of

many NLP tasks

We start this thesis by discussing general terms which we use repeatedly throughout this

work. First, we discuss the place of text in sequence modeling. Second, we explain the notion of

autoregressive generation in the context of discrete sequences. After that, we present where neu-

ral networks come in the process of model parametrization. Finally, we discuss similarities and

di�erences between NLP tasks, which we consider in the context of the "sequence to sequence"

[142] approach.

1.1.1 Symbolic representation of a natural language using a seqence

of tokens

Widely used natural languages provide a way to write the meaning of a thought in the form

of a sequence. Here we casually refer to the result of this process as a piece of text. We think of a

text as a sequence of tokens or small units composed in a prede�ned order which depends on the

language. All possible tokens of a given language form a vocabulary. The size of the vocabulary

varies signi�cantly depending on what is the smallest unit or token we consider, e.g., a character

or a word.
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For a moment, let us consider a sentence written in English. Such a sentence consists of

words and punctuation marks. Every word can be seen as a sequence of syllables or characters.

Furthermore, every character is presented digitally as a sequence of bits. In the case of bits, the

vocabulary size equals two (zero and one) regardless of the language. As we go higher in the

hierarchy, the vocabulary size may grow to hundreds of thousands of words.

The symbolic representation of a text allows us to convert any piece of text into a vector

of indices, where every index maps to a token from the vocabulary. We discuss this process of

tokenization as part of data collection in Section 2.2.1. We refer readers to the extensive study of

di�erent tokenization schemes in Mielke et al. [91] to learn more about it.

1.1.2 Autoregressive modeling

We assume a probabilistic view of sequence modeling in this thesis, because it helps to take

the uncertainty into account. For instance, the same input sentence written in one language may

have multiple translations which are correct. In addition, the noise is likely to be presented in the

data, resulting in uncertainty as well. In this work, we consider the autoregressive decomposition

of a multivariate random variable which represents a sequence of tokens y. We assume there ex-

ists an unknown target distribution ?∗(y). Our goal then is to estimate a model ? (y;\ ) such that

it closely follows the unknown distribution. Given a sequence of tokens y = (~1, . . . , ~) ), autore-

gressive decomposition allows us to rewrite the joint distribution ? (~1, . . . , ~) ;\ ) as a product of

conditional distributions:

? (~1, . . . , ~) ;\ ) =
)∏
C=1

? (~C |~<C ;\ ),

where~<C = (~1, . . . , ~C−1) is a pre�x of all tokens up to time C−1. Here we assume the left-to-right

monotonic dependency, but in general this can be any order traversing this set of tokens. Chan
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et al. [18] and Welleck et al. [151] investigate di�erent ways to learn the ordering as part of the

modeling process.

The "neural" part of the title of this thesis means that we use a neural network de�ned with

parameters \ to parametrize each conditional distribution ? (~C |~<C ;\ ). In Section 2.3 we give

more details and provide references to speci�c types of neural networks which we use in this

work.

1.1.3 Seq2seq approach applied to different NLP tasks

We consider a diverse set of NLP tasks, such as machine translation, dialogue modeling, and

sequence completion. These tasks can be characterized by the properties of the input and target

sequences used to estimate the resulting model. In sequence completion, the input is a pre�x of

some text sequence, and the target is a continuation or su�x of the same sequence. In machine

translation, the target sequence represents the meaning of the input sequence translated to a

di�erent language. In open-ended dialogue modeling (chit-chat), the target sequence forms a

reasonable response to the input utterance or the dialogue history including multiple utterances.

Table 1.1 shows examples of such sequences for every task we discussed above. The amount

of grounding information between the target sequence and the source sequence depends on the

task. For instance, the target sequence from the dialogue modeling in Table 1.1 has positive

sentiment and a clarifying question. Alternative sequences which include positive sentiment

with other auxiliary information can be seen as a suitable response too. In contrast, the machine

translation example shows a stronger connection between source and target sentences. We expect

this, because translating a sentence from one language to the other requires to keep as much

information from the source sentence as possible. Nevertheless, machine translation involves

ambiguity in the space of possible translations too, but it is still lower compared to other tasks.
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Task Source Target

Machine translation Washington Square and Greenwich Village Вашингтон сквер и Гринвич виллейдж сосредо-
have been hubs of cultural life in New York City тачивают культурную жизнь Нью-Йорка
since the early 19th century. с начала 19-ого века.

Dialogue modeling Do you want to meet near the WSP after school? Sounds good! Are we going to any speci�c place there?

Sequence completion Washington Square and Greenwich Village have been hubs of cultural life in New York City since the
early 19th century.

Table 1.1: Examples of input and target sequences for tasks we consider in this thesis.

1.2 Statistical text generation before seq2seq

While we exclusively rely on sequence to sequence modeling approach in this thesis, a lot

of work has been done on other methods for generating a text in a probabilistic way. Machine

translation was one of the main tasks attracting a lot of researchers since 1980s. Early systems,

such as IBM-1,2, performed word-based translation following the noisy channel approach. The

posterior ? (y|x) can be rewritten using the Bayes rule:

? (y|x) = ? (y) · ? (x|y)
? (x) ,

where y is the translated sentence and x is the input sentence.

In the probabilistic setting, we want to choose the translation ywhich maximizes the posterior

above:

ŷ = arg max
y∈Y

? (y) · ? (x|y)
? (x) = arg max

y∈Y
? (y) · ? (x|y),

where Y is the set of all possible sentences in the target language, ? (y) is the language model,

? (x|y) is the backward translation model. A particular advantage of this modeling design is the

ability to use the language model on the target side. IBM translation models specify the way to

parametrize the backward translation model ? (x|y) using the idea of alignments between words
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in input and target sequences. We encourage readers to read Collins [25] to learn more details

about these models.

Phrase-based statistical machine translation [63] is an advancement of the earlier word-based

models. In contrast to the word-based alignments, they allowed many-to-many mappings be-

tween phrases written in di�erent languages [103]. Phrase-based systems included extra fea-

tures in addition to language and translation models and combined it altogether in the form of a

log-linear model:

ŷ = arg max
y∈Y

#∑
8=1

F8 · log 58 (y, x),

where F8 is a weight of feature 8 out of # feature models. Estimation of weights F8 was an

active research question itself [102]. Instead of feature engineering and composing many di�erent

models together, sequence to sequence approach with autoregressive decomposition allows us to

compute the posterior ? (y|x) directly.

1.3 Degeneracy in text generation

As the title of this thesis says, our main research e�ort is concentrated on characterizing and

resolving degeneracies. We thus must explain what degeneracy means in the context of text

generation. We say that the generated sequence is degenerate if its content or form deviates

from the one we expect based on the available observations. We do not attempt to categorize

every visible deviation ever existed in text generation. Instead, we study widely reported issues

which lack a clear understanding of the cause behind it. Our goal is to understand which part

of the learning pipeline (Section 2.1) is the most responsible for the degeneracy to appear. Such

understanding allows us to propose a solution and to check how well it overcomes the issue.

Next, we highlight the degeneracies we addressed in this thesis and discuss the e�ectiveness of
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the proposed solution. This discussion is a brief overview of the following chapters of the thesis.

1.3.1 The issue of oversmoothing

In Chapter 3 we thoroughly describe the problem when the autoregressive model assigns an

unreasonably high probability to an overly short sequence compared to the ground-truth one. We

scrutinize the subset of sequences which are (1) shorter than the ground-truth sequence and (2)

form pre�x sequences of it. We study this issue in the context of machine translation and con�rm

a high degree of oversmoothing across a diverse set of task con�gurations. While this problem

was widely reported, it was not addressed directly due to the lack of a concrete measure to work

with. In earlier work [97, 110, 134], this problem was tackled from di�erent aspects including

tokenization, model parametrization, and decoding.

We de�ne the oversmoothing rate and suggest to directly minimize it during training to over-

come the degeneracy directly. To do so, we construct a convex upper bound on the oversmoothing

rate and augment the negative log-likelihood loss with it during �ne-tuning. We thus address this

degeneracy using an alternative learning objective. Experimental results show high e�ectiveness

of the proposed approach in reducing the oversmoothing rate while the language modeling per-

formance of the decoder remains intact. Minimizing the oversmoothing loss leads to a signi�cant

decrease of both probability and rank of 〈eos〉 token at undesired positions. Finally, the reduced

oversmoothing rate correlates with improved length modeling and translation quality when de-

coding is performed using larger beam sizes. We refer reader to Chapter 3 to learn more details

about our �ndings. This work was done jointly with Maksim Eremeev and Kyunghyun Cho. We

released it as a preprint on Arxiv [66].
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1.3.2 The issue of repetitive content in a generated seqence

Despite the importance of 〈eos〉 token in modeling sequence lengths, it is a common practice

to train large language models using streams of text without the notion of the end of sequence.

Such models, e.g., GPT-2 [116] and GPT-3 [17], are later used as the initialization to estimate a

model to solve downstream tasks [125, 163]. These approaches use a variant of stochastic sam-

pling as part of generation process, because the deterministic decoding (Section 2.5.1) is known

to produce highly repetitive, degenerate sequences [52]. In Chapter 4, we address the repetition

degeneracy in the context of sequence completion task (Section 2.2.2) when the model is paired

with deterministic decoding, such as beam search.

We suggest to augment the training objective with an auxiliary part called unlikelihood loss.

Our suggestion is based on the fact that the negative log-likelihood loss alone has no explicit

signal, which prevents repetition to have a high probability under the model distribution. We

train several language models and show a signi�cant decline in the number of repetitions pro-

duced by the models trained with the proposed objective. We conduct a human evaluation to

see which model is able to produce sequences which resemble more natural continuations. Re-

sults reveal that our models are able to produce more natural continuations compared to strong

opponent models which use repetition blocking heuristics during the generation process. Please

refer to Chapter 4 to �nd more details about this project. This work was done jointly with Sean

Welleck, Stephen Roller, Emily Dinan, Kyunghyun Cho, and Jason Weston. It is published in the

proceedings of ICLR 2020 [150].

1.3.3 The problem of non-terminating generation

After substantial improvements in the problem of repetitive sequences, we seek for a deeper

understanding of the nature behind such repetitive loops. In particular, is it theoretically possi-

ble for the model paired with a decoding algorithm to never terminate the generation process?

7



In Chapter 5, we study the discrepancy between the model distribution over sequences and the

one induced by the decoding strategy coupled with that model. To do so, we extend the no-

tion of consistency [19] of a recurrent language model that includes the context distribution. We

prove that widely used models, such as LSTMs and transformers, induce consistent distributions.

Furthermore, we show that incomplete decoding algorithms, such as beam search, may induce

inconsistent distributions when paired with a consistent recurrent language model. We address

this degeneracy using an alternative parametrization. It ensures that the probability of 〈eos〉

token increases monotonically between generation steps. We �nd that the proposed method sig-

ni�cantly reduces the empirical proxy of the number of non-terminated sequences. However, the

proposed approach must be used with caution, because it slightly reduces the language modeling

performance in terms of perplexity with both smaller and larger models. This work was done

jointly with Sean Welleck, Richard Pang, Jaedeok Kim, and Kyunghyun Cho. It is published in

the proceedings of EMNLP 2020 [148].

1.3.4 Low diversity problem in multi-turn dialogue modeling

We investigate the issue of a dull response in the open-ended dialogue modeling task or the

task of predicting the next utterance (Section 2.2.4). One of the main aspect of a good conver-

sational agent is how engaging its responses are. The degeneracy we tackle here is named as "I

don’t know" problem in some literature [75, 77]. We connect this issue to the de�ciency of the

search algorithm, such as beam search, as it is unable to uncover more engaging responses in the

search space due to its approximation.

We show that the widely used beam search produces a hypothesis space approximation (Sec-

tion 2.5.1) with low diversity. To do so, we compare it with an alternative decoding algorithm

called iterative beam search which returns candidates with higher n-gram diversity. Despite the

set of candidates with higher diversity, the resulting human evaluation does not show signi�cant

improvement in the engagingness of the resulting model measured during human evaluation.

8



We hypothesize that the reason is behind the decision rule which selects the candidate with the

highest probability, and a dull response in the candidate set tends to have a higher probability. In

addition to the importance of the search strategy and the �nal decision rule, we show the evidence

of annotator bias which results in high variance of the human evaluation scores. We propose a

Bayesian calibration which assumes the latent system’s score and infer it using the observed data

coming from biased human annotators. This work was done jointly with Alex Miller, Kyunghyun

Cho, and Jason Weston. It is published in the proceedings of INLG 2019 [69].
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2 | Background

This chapter aims to familiarize the reader with the background of autoregressive text gen-

eration and provides references which can �ll the gaps to understand the following chapters.

This thesis includes discussions of several natural language processing tasks, such as Machine

Translation, Sequence Completion, and Dialogue Modeling. Therefore, the background chapter

includes examples which apply to either each of those or to some speci�c task in that scope.

2.1 Learning pipeline of autoregressive text generation

We start by describing a generic pipeline applicable to the NLP tasks we consider in this

thesis. We �rst explain why do we require such a pipeline and what is the common high-level

goal across these tasks? We need to obtain a generator returning an output sequence given the

input sequence. The way we choose the model architecture and parametrization, the choice of

learning parameters, and decoding settings form what we call the learning pipeline. In other

words, by the pipeline we mean a sequence of stages where the output of one stage can be used

as is in the following stage. For ease of describing the background, we assume that there are no

feedback loops in the pipelines we consider, but they exist in the real world systems.

Data collection is the �rst stage of the pipeline, resulting in a data distribution or dataset.

The dataset can be seen as the empirical distribution of the unknown target distribution. The

dataset comprises pairs of labeled observations which are used to train the model. The goal of

10



training is to estimate a model as close as possible to the unknown distribution approximated via

the dataset used during training. After training, the model is used to make a prediction given the

unseen input with an expectation of high quality prediction regarding a task metric. Evaluation

stage helps to answer multiple questions. Given a single model, it helps to judge the approximate

model performance we may expect after deploying the system. In addition, it helps to perform

model selection when we have several models trained di�erently and wish to choose the best

one. We can see the pipeline described above in tasks beyond text generation, such as general

multiclass classi�cation. Autoregressive text generation, however, introduces distinct properties

to every stage of the pipeline, which we discuss in more detail below.

2.2 Data collection

We use the term data collection to identify the stage when relevant pairs of input and output

samples are collected. The amount of annotation e�ort di�ers depending on the task, where

machine translation requires hiring professional translators, but sequence completion does not

need that. Despite of these di�erences among tasks, in the end we observe structured sequences

of natural language text where the task de�nes both structure and constraints.

2.2.1 Tokenization: representing natural text mathematically

The essential �rst step of data preprocessing is tokenization. Given sequence of bytes b,

tokenization scheme or tokenizer) is a mapping b→ s where s is a sequence of indices mapping

to discrete symbols from the �nite vocabulary set + :

b = A sentence written in English.

s = (2, 5, 6, 8, 10, 1),
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where the punctuation is separated from neighboring words �rst, and then the tokenizer splits

the sentence by space and maps every word to its corresponding index from vocabulary. Creation

of vocabulary is optional and can be done as part of tokenization on newly scraped data.

One of hyper-parameters of a tokenizer is granularity, or what is the smallest piece it consid-

ers. This includes sentences, phrases, words, syllabus, subword units, characters, and even bytes.

Intuitively, as smaller units occur more frequently, this results in smaller sizes of vocabulary.

Choice of tokenization hyper-parameter and how it a�ects task performance is an active area of

research across all tasks we consider in this thesis [15, 55, 113, 147, 156]. Mielke et al. [91] study

the history and motivation behind commonly used tokenization practices in the context of NLP

tasks. The de facto standard choice of the tokenization scheme is a variant of Byte-Pair Encoding

(BPE) [128]. It compresses the size of the vocabulary by joining together the most frequent pairs

of subword units appearing in the data. One of the bene�ts of such subword tokenization is the

better ability to handle out of vocabulary (oov) words.

We add special tokens during tokenization to meet speci�c properties of a given model or to

make the computation more e�cient. For instance, 〈pad〉 token is a placeholder token used to

combine variable length sequences in one minibatch of the same length, which makes training

on GPUs much more e�cient. This token is never predicted or used as input for the model during

learning. The 〈eos〉 token denotes the end of sequence and plays an important role at modeling

the length distribution. We discuss the role of 〈eos〉 in the context of oversmoothing and non-

termination degeneracies in more detail in Chapters 3 and 5.

2.2.2 Seqence completion data

The sequence completion task can be seen as the interpretation of many di�erent NLP tasks

if the sequence we consider has speci�c properties. Lets consider dialogue modeling: if the se-

quence is a pair of the dialogue history and the next response, then we can see it as an example of

a sequence completion task. Nevertheless, we consider sequence completion in the most generic

12



sense without hard constraints of the text domain or structure. This allows us to investigate the

issues of completing a sequence in general, which are likely to be transported to more speci�c

tasks, such as machine translation.

Sequence completion or open-ended text generation is the only task in this thesis which does

not necessarily require an extra human in the loop for annotation during data collection. It mainly

requires some collection of natural text sequences originally written by humans in natural lan-

guage. Because of this apparent simplicity in terms of data preprocessing, extremely large scale

models have been trained on massive amounts of data crawled from web [116]. The ease of data

collection process brings in the non-trivial amount of noise and other biased data which may

hurt the model performance in di�erent ways [11]. Careful data �ltering and initial collection

was recently shown to provide signi�cant improvements to completions quality [73].

2.2.3 Machine translation data

As we mentioned earlier, the machine translation task usually involves collecting professional

translations of a large set of sentences. Di�erent benchmark tasks specify the domain of text

where the data is being collected, such as sport, politics, or education. In addition to content-

level domains, there exist di�erences in the language setting. For instance, shared tasks from

IWSLT conference [4] study the translation of spoken language which exhibits more challenges

compared to the written one. In addition, the text modality may be switched to audio, resulting

in the speech translation task.

High/low resource MT One of the important descriptive axes in MT is how large or low

resource a given language pair is. Large resource language pair is one which is known to have

massive amounts of training data available to use, such as English and German. In contrast, low

resource language pairs have data scarcity and requires more e�ort to achieve the translation

quality of the former.
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Multi-lingual setting In general, multi-lingual machine translation models require parallel

sentences written in multiple languages. The idea behind multi-lingual design is to obtain a single

model which is able to cover diverse set of language pairs [37]. For example, Aharoni, Johnson,

and Firat [2] introduced the model covering 59 languages in 116 directions. Collecting parallel

corpora for this large number of languages is hardly tractable. This opens room for research

about combining sparse multi-lingual parallel corpus with larger bilingual corpora [165].

2.2.4 Dialogue modeling data

Dialogue modeling or conversation modeling has a variety of subclasses, and each subclass

may di�er in a way of how the data collection process looks like. In this thesis, we only consider

the grounded, open-ended conversation modeling aka "chit-chat". There exists both automati-

cally collected tasks and ones which were speci�cally gathered by hiring people who conducted

the conversation by following a set of constraints. Automatically collected datasets include the

Ubuntu dialogue corpus and Movie-DiC [9, 84]. More complicated, externally annotated datasets

include Persona Chat, Wizard of Wikipedia, and Dialogue NLI [31, 149, 161]. This thesis uses

the latter type where the grounding information consists of personalized attributes or properties

of the agent. An alternative to open-ended conversation modeling is task-oriented conversation

modeling. The main goal behind it is to conduct a conversation which results in a successful

completion of the task, such as hotel booking or deal negotiation. Task-oriented tasks are out of

scope for this thesis.

2.3 Model parametrization

Model parametrization de�nes the way we compute a score, such as the probability, for a

given pair of input and output sequences. In this thesis, we consider a probabilistic setting such

that we can compute the conditional probability ? (y|x) exactly. We rely on locally normalized
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modeling, where the probability of a given token at time C , conditioned on the target sequence

pre�x and the input sequence, is computed using the softmax function:

?\ (~C = E |~<C , x) =
exp(5 (~<C , x;\ ) [E])∑

E
′∈+ exp(5 (~<C , x;\ ) [E ′]) ,

where 5 returns a vector of logits ; ∈ R|+ | . In our work, 5 is constructed using a neural network,

such as recurrent or feed-forward one.

This allows us to compute the probability of the entire sequence using the autoregressive

decomposition:

?\ (y, x) =
|y|∏
C=1

?\ (~C |~<C , x).

Alternatively to the locally normalized model, the globally normalized modeling computes the

probability of a sequence at once:

?\ (y, x) =
exp(5 (y, x;\ ))∑

y′∈Y exp(5 (y′, x;\ )) ,

where 5 computes a single score, and theY is the set of all possible target sequences for the given

input sequence in the context of the given task. Computing the denominator exactly is usually

intractable, thus some approximations are used. Bakhtin et al. [8] and Goyal, Dyer, and Berg-

Kirkpatrick [42] study globally-normalized autoregressive sequence modeling in the context of

sequence completion and machine translation.

Encoder, decoder and end-to-end learning Here we brie�y present ideas behind the encoder-

decoder type of the model. Sequence to sequence modeling assumes direct prediction of the

output sequence given the observed input one. In this context, the encoder encodes the input se-

quence and produces the encoder representation. The encoder does not need to be autoregressive
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as it does not generate a sequence, but extracts features which are relevant for the generating pro-

cess. That is, the decoder takes the encoded representation as input and learns to use it at every

step of the generation.

The major bene�t of this modeling approach is the ability to be trained end-to-end. That is,

given the training objective of predicting the ground-truth sequence, both the decoder and the

encoder parameters are updated during gradient-based optimization. The separate encoding part

is not strictly necessary for all tasks. For instance, sequence completion and language modeling

in general do not use any encoder, but only use the decoder to generate a sequence. In Chapters 4

and 5 we use decoder-only architectures.

Parametrization with neural networks As pointed earlier, we rely on neural networks

to design 5 , and we later train these models such that it satis�es our training criteria. We use

recurrent based LSTM neural networks [49] in Chapters 5 and 6 and transformer based neural

networks [143] in Chapters 3 to 5. As it appears from the name, the recurrent neural network

computes the representation of a sequence by recurrently updating its internal state step by step:

ℎC = 5 (GC , ℎC−1;\ ),

where GC is the current input, and the ℎC−1 is the immediate hidden state predecessor. Recurrent

neural networks (RNN) can handle sequences of arbitrary length. It is, however, not trivial to

e�ectively utilize the sequence content as its length grows while the model capacity remains the

same [107]. We refer readers to Gre� et al. [45] to learn more details about the LSTM variants as

well as alternative RNN designs, such as Gated Recurrent Unit (GRU) [22].

The transformer neural network [143] does not involve recurrence as the RNN does, but it re-

lies on the self-attention mechanism to learn dependencies between token-level representations.

Self-attention alone can’t introduce the position information at a particular time step, thus some

variant of special positional tokens with corresponding embeddings is used to meet this goal.
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2.4 Training the model

Training the model usually means solving an optimization problem. It aims to �nd the most

optimal con�guration of parameters \ used by the model. In this thesis, we rely on gradient-based

optimization to estimate parameters \ with respect to the given training objective � . We assume

that the objective is di�erentiable and the gradient (or the subgradient) can be computed using

the backpropagation algorithm [123].

Maximum likelihood estimation The usual choice for the training criterion is the maximum

likelihood estimator. This means we aim to pick the parameters \mle that assign the highest

probability to the training set. This can be formulated equivalently as minimizing the negative

log-likelihood loss. The log-likelihood is a function of the parameters \ . It says how likely we

can observe the data given \ :

� (� ;\ ) = −
|� |∑
==1

log?\ (y= |x=) = −
|� |∑
==1

|y= |∑
C=1

log?\ (~C,= |~<C,=, x=),

where � is the training dataset. This de�nition assumes that the training pairs were sampled

independently from the same unknown distribution.

We use stochastic gradient descent (SGD) [119] to update \ iteratively using a reasonably

sized minibatch of samples:

\C+1 = \C − `C · ∇\ � (�C ;\ ),

where `C is the step size at time C and �C is a minibatch of samples from � . Gradient descent may

have an undesirable convergence rate, and alternative optimizers, such as Adam [59] or LAMB

[158], are used to overcome such issues.
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Teacher forcing and exposure bias Lets consider a pair (y∗, x∗) ∈ � , the log-likelihood of

these target tokens equals
∑|y∗ |
C=1 log?\ (~∗C |~∗<C , x∗). At time step C , the model does not necessarily

predicts the ground-truth token ~∗C . Then what should we use as the pre�x history at time step

C +1? The teacher forcing approach suggests to feed only the tokens from the ground-truth pre�x

during training. This introduces a discrepancy between training and decoding, because the model

is likely to produce a pre�x which it has never seen during training. Scheduled sampling [12, 92]

is one example of how to interpolate between ground-truth history and model predictions during

training. We discuss this discrepancy in detail in the context of repetition degeneracy in Chapter 4

and propose sequence-level objective which utilizes decoding during training. Edunov et al. [32]

analyze classical sequence-level objectives with sequence to sequence models.

Regularization and stopping criteria Picking parameters \ with the lowest negative log-

likelihood loss may result in over�tting to the training dataset. Regularization techniques, such

as dropout [137], are used to regulate the training, so over�tting can be partially mitigated. In

addition to that, we early-stop [114] the training once the stopping criterion is met. The stopping

criterion value is usually chosen in an ad-hoc fashion. For instance, it can be the gap between

training and validation losses. Once the validation loss becomes higher than that computed dur-

ing training, we early-stop and return the latest best parameters in terms of the validation loss.

2.5 Searching for a prediction given an unseen input

Once the model is trained, we use it to generate a sequence such that it has high quality

with respect to the task and evaluate it against a given reference sequence if it is available. For

example, in machine translation, we seek for a sequence which resembles the correct translation

of the input sentence. In dialogue modeling, we expect the dialogue response which will engage

a dialogue partner to continue the conversation. There are far fewer constraints on the desired
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output in open-ended sequence completion. In this case, the predicted sequence is expected to

resemble a continuation from the underlying unknown target distribution.

There are many ways to describe the process of �nding or generating a prediction. In this

chapter, we describe it on the high level as given the input sequence x we search for the best

candidate h out of �nite hypothesis space � using some scoring function ( (h, x):

ŷ = arg max
h∈�

( (h, x), (2.1)

which we name the maximum score decision rule. In other words, the score function ( re-ranks

sequences from � according to itself. We use the model to construct � and ( and doing so

recovers commonly used decoding strategies and decision rules across NLP tasks. Terms "search

algorithm", "decoding strategy" and "decision rule" are sometimes used interchangeably, so it is

important to bear in mind the di�erence between the way to approximate � and the way we

choose the best candidate from it using the scoring function ( .

2.5.1 Approximating hypothesis space �

The trivial and virtually intractable way of representing � is to assume the entire space of all

possible sentences up to some prede�ned length. In addition, the majority of hypotheses in� will

be completely irrelevant to the input sequence x. Alternatively, the ideal way to de�ne� is to use

high-likely candidates with respect to the real target distribution, which is unavailable to start

with. Fortunately, we may rely on the model which is trained to match the empirical data distri-

bution as closely as possible. Here we divide commonly used decoding strategies approximating

� into deterministic and stochastic algorithm groups.
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Deterministic decoding Beam search and greedy search (a special case of beam search with

beam size 1) are the most widely used decoding strategies. Given a model distribution ?\ , beam

search approximately solves the following optimization problem:

ℎbeam = ŷbeam ≈ arg max
y∈Y

?\ (y|x),

whereY is the set of all sequences with non-zero probability under the model distribution. Beam

search can be seen as a truncated variant of breadth-�rst search where the breadth at every step

is truncated to the given beam size. Beam size controls how large is the search space and the

resulting candidate set� which is usually set to be equal to the beam size. While it may seem that

we want to use as large beam size as possible, in reality sequences with the highest probability

may not be that representative in terms of the performance metrics [62, 138]. We discuss one

of such examples in the context of neural machine translation in Chapter 3. A more detailed

de�nition of beam search in the context of sequence completion and conversation modeling is

given in Chapter 5 and Chapter 6, respectively.

Stochastic decoding In contrast to deterministic decoding approximately maximizing the

probability of a candidate, the stochastic variant aims to sample a sequence from the model dis-

tribution or some truncated variant of it. For example, the ancestral sampling procedure gives an

unbiased sample from an autoregressive model by sampling each token step-by-step:

ℎanc = ŷanc ∼ ?\ (y|x),

~̂anc,C ∼ ?\ (~C |~̂anc,<C , x),
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where ~̂anc,<C is the so far sampled pre�x of tokens. This algorithm constructs the sequence can-

didate by sampling a token step by step following the autoregressive decomposition discussed

earlier. By sampling a large number of sequences, we can form a group of representative samples

of the given model. For example, sampling-based minimum Bayes risk decoding uses such an

approach to construct � as well as to construct ( [33, 39].

Ancestral sampling may produce sequences that are too random or irrelevant with respect

to the given input [52]. Lowering the temperature of a token-level softmax distribution (thus

altering the sequence-level model distribution) is one way of preventing such rare outcomes to

be sampled. Alternatively to the temperature tuning, nucleus sampling [52] and top-k sampling

[35] truncates the tail of the token-level distribution in a speci�c way. We discuss these algorithms

in detail later in Chapter 5.

2.5.2 Scoring functions (

Here we highlight some relevant scoring functions which are used at the decoding stage across

di�erent NLP tasks. We use maximum a posteriori (MAP) scoring in this thesis, while minimum

Bayes risk (MBR) and external reranking functions have received attention in the context of ma-

chine translation recently [39, 72].

Maximum a posteriori (MAP) scoring Maximum a posteriori naming comes from the sta-

tistical estimator named the same way. In our context, we do not directly deal with the prior

distribution and the likelihood to compute the posterior, as in the Bayesian view. Here the pos-

terior is the model ?\ (y|x), i.e., what is the probable sequence y given the observation x? The

scoring function then is written as:

(MAP(h, x) = ?\ (y = h|x).
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In the literature, we can often �nd the term "MAP decoding" which attributes to beam search and

MAP scoring combined in the decision rule [33, 138].

Minimum Bayes risk (MBR) scoring Minimum Bayes risk scoring computes the negative Bayes

risk �, where negative sign is introduced so that the scoring function can be used with max scor-

ing rule we de�ned earlier in Equation (2.1). The underlying idea is to compute the expected

risk with respect to the unknown target distribution ?∗. The unknown ?∗ is then approximated

using the model distribution ?\ . Finally, the expectation is approximated using the Monte-Carlo

estimator, because computing the expectation exactly is hardly feasible given the model size and

the sequence space size. The MBR scoring function is then written as:

(MBR(h, x) = −�(h, x) = −Ey′∼?∗* (h, y′)

≈ −Ey′∼?\* (h, y′) ≈ −
1
|Ω |

|Ω |∑
==1

* (h, y=),

where * (h, y′) is a function which computes some distance on the sequence-level between the

hypothesis h and the sample from the model y′.

2.6 Evaluation

As we discussed earlier, the evaluation stage is necessary to quantify the performance of a

given model or to choose the �nal model among a larger set. Let’s consider the machine transla-

tion task. Ideally, we want to hire professional translators and ask them to judge the translations

given by our models. How would they do that? For instance, they translate the input sentence

on their own and compare it with the model output. Even in this case there can be ambiguity:

di�erent translators are likely to come up with slightly di�erent translations given the same input
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sentence. Freitag et al. [38] investigate this uncertainty in detail. More interactive tasks can be

even harder to evaluate. In Chapter 6, we discuss the importance of careful human evaluation in

multi-turn dialogue modeling and show the evidence of annotator bias.

Let’s assume we can obtain human judgement scores. It would be pretty expensive to hire

translators to evaluate every single model we produce as part of a research project or other de-

velopment. To overcome this, the research community comes up with automatic evaluation tools

which are expected to correlate with human judgement. The de facto standard machine transla-

tion metric is BLEU [106]. It is based on the n-gram overlap between the model’s translation and

the generated one. Neural based metrics, such as BertScore, BLEURT, and COMET, have become

more popular recently [118, 127, 162]. These neural metrics were shown to correlate better with

human judgement compared to overlap-based metrics.
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3 | Characterizing and addressing the

issue of oversmoothing

3.1 Introduction

Neural autoregressive sequence modeling is a widely used scheme for conditional text gen-

eration. It is applied to many NLP tasks, including machine translation, language modeling, and

conversation modeling [17, 21, 121, 142]. Despite the substantial success, major issues still exist,

and it is still an active area of research. Here we highlight two major issues which have been

discussed extensively.

The �rst issue is the model assigning too high a probability to a sequence which is unrea-

sonably shorter than a ground-truth sequence. Stahlberg and Byrne [138] report evidence of an

extreme case where the model frequently assigns the highest probability to an empty sequence

given a source sequence in machine translation. In addition, Koehn and Knowles [62] demon-

strate that the length of generated translation gets shorter with better decoding (i.e., beam search

with a larger beam.)

In the second issue, which is more often observed in open-ended sequence generation tasks,

such as sequence completion, generated sequences often contain unreasonably many repetitions

[52, 150]. This phenomenon was partly explained in a recent year by Welleck et al. [148], as

approximate decoding resulting in an in�nitely long, zero-probability sequence.
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In this work, we tackle the �rst issue where the model prefers overly short sequences com-

pared to longer, often more correct ones. We assume that any pre�x substring of a ground-truth

sequence is an unreasonably short sequence and call such a pre�x as a premature sequence. This

de�nition allows us to calculate how often an unreasonably short sequence receives a higher

probability than the original, full sequence does. This value quanti�es the degree to which the

probability mass is oversmoothed toward shorter sequences. We call this quantity an oversmooth-

ing rate. We empirically verify that publicly available, well-trained translation models exhibit

high oversmoothing rates.

We propose to minimize the oversmoothing rate during training together with the negative

log-likelihood objective. Since the oversmoothing rate is di�cult to minimize directly due to its

construction as the average of indicator functions, we design its convex relaxation, to which we

refer as an oversmoothing loss. This loss is easier to use with gradient-based learning.

We apply the proposed regularization to neural machine translation using IWSLT’17 and

WMT tasks and observe promising �ndings. We e�ectively reduce the oversmoothing rate by

minimizing the proposed oversmoothing loss across all tasks we consider. We see the narrowing

gap between the length distribution of generated sequences and that of the reference sequences,

even when we increase the beam size, with a lower oversmoothing rate. Finally, by choosing the

strength of the proposed regularization appropriately, we improve the translation quality when

decoding with large beam sizes. We could not, however, observe a similar improvement with a

small beam size.

3.2 Background: Neural autoregressive seqence modeling

We study how a neural sequence model assigns too high probability to unreasonably short

sequences due to its design and training objective. We do so in the context of machine translation

in which the goal is to model a conditional distribution over a target language given a source
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sentence. More speci�cally, we consider a standard approach of autoregressive neural sequence

modeling for this task of neural machine translation, where the conditional probability of a target

sentence given a source sentence is written down as:1

? (y|x) =
|y|∏
C=1

? (~C |~<C , x;\ ), (3.1)

where ~<C is a sequence of tokens up to (and not including) step C . \ refers to the parameters

of an underlying neural network that computes the conditional probability. Each of the source

and target sentences ends with a special 〈eos〉 token indicating the end of the sequence. As was

demonstrated by Newman et al. [98], this 〈eos〉 token is used by an autoregressive neural network

to model the length of a sequence.

Given this parametrization, we assume a standard practice of maximum likelihood learning

which estimates the parameters \ that maximizes the following objective function:

!(\ ) = 1
|� |

#∑
==1

log? (y= |x=;\ ) + R(\ ).

R is a regularization term that prevents over�tting, such as weight decay.

Once training is done, we use this autoregressive model as a translation system by approxi-

mately solving the following optimization problem:

ŷmap = arg max
y

? (y|x;\ ).

We often resort to greedy decoding or beam search, both of which belong to a family of incomplete

decoding algorithms [148].
1In the rest of the chapter, we often omit - for brevity.
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3.3 Oversmoothing: the issue of premature seqences

In this section, we carefully describe the issue of premature translation or premature sequence

in autoregressive modeling, which has more often been referred to casually as the issue of over-

smoothing in earlier studies [see, e.g., 134]. To do so, we �rst de�ne formally what we mean by a

‘premature sequence’. A premature sequence is a length-C pre�x of an original sequence, where

C is smaller than the length of the original sequence. In other words, length-C pre�x is de�ned as:

De�nition 3.3.1 (Length-C pre�x). Given an original sequence y = (~1, ~2, . . . , ~) = 〈eos〉), the

length-C pre�x is y≤C = (~1, ~2, . . . , ~C−1, 〈eos〉), where 1 ≤ C < ) .

With this de�nition, we make a reasonable assumption that most of such premature sequences

are not valid sequences on their own. In the case of natural language processing, for instance,

these premature sequences correspond to sentences that suddenly terminate in the middle. Only

a few of these premature sequences may be a coherent, well-formed text.

A good autoregressive language model should then assign a lower probability to such an ill-

formed premature sequence than that assigned to a well-formed original sequence. That is, it

must satisfy:

)∏
C ′=1

? (~C ′ |~<C ′)︸           ︷︷           ︸
=? (y)

> ? (〈eos〉 |~<C )
C−1∏
C ′=1

? (~C ′ |~<C ′)︸                              ︷︷                              ︸
=? (y≤C )

(3.2)

which is equivalent to

)∏
C ′=C

? (~C ′ |~<C ′) > ? (〈eos〉 |~<C ),

because of the autoregressive formulation.

In order for this inequality to hold, the probability assigned to the 〈eos〉 must be extremely
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small, as the left-hand side of the inequality is the product of many probabilities. In other words,

the dynamic range of the 〈eos〉 token probability must be signi�cantly greater than that of any

other token probability, in order for the autoregressive language model to properly capture the

ill-formed nature of premature sequences.

It is, however, a usual practice to treat the 〈eos〉 token just like any other token in the vocab-

ulary, which is evident from Equation (3.1). This leads to the di�culty in having a dramatically

larger dynamic range for the 〈eos〉 probability than for other token probabilities. In other words,

this limited dynamic range due to the lack of special treatment of 〈eos〉 is what previous studies

[134] have referred to as “oversmoothing”, and this leads to the degeneracy in length modeling.

Under this observation, we can now quantify the degree of oversmoothing2 by examining

how often the inequality in Eq. (3.2) is violated:

De�nition 3.3.2 (Oversmoothing rate). The oversmoothing rate of a sequence is de�ned as

Aos(y) =
1

|y| − 1

|y|−1∑
C=1

1
( |y|∏
C ′=C

? (~C ′ |~<C ′) < ? (〈eos〉 |~<C )
)
, (3.3)

where 1 is an indicator function returning 1 if true and otherwise 0.

With this de�nition, we can now quantify the degree of oversmoothing and thereby quantify

any improvement in terms of the issue of oversmoothing by any future proposal, including our

own in this chapter.

Because premature sequences may be well-formed, it is not desirable for the oversmoothing

rate to reach 0. We, however, demonstrate later empirically that this oversmoothing rate is too

high for every system we considered in this work.
2To be strict, this should be called the degree of ‘smoothing’, but we stick to oversmoothing to be in line with

how this phenomenon has been referred to in previous studies [134].
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3.3.1 Minimizing the oversmoothing rate

The oversmoothing rate above is de�ned as the average of indicator functions, making it chal-

lenging to directly minimize. We instead propose to minimize an upper bound on the original

oversmoothing rate, that is di�erentiable almost everywhere and admits gradient-based optimiza-

tion:

De�nition 3.3.3 (Oversmoothing loss). Given a sequence y, the oversmoothing loss is de�ned as

;os(y) =
1
|y|

|y|∑
C=1

max

(
0, log? (〈eos〉 |~<C ) −

|y|∑
C ′=C

log? (~C ′ |~<C ′) +<
)
,

which is an upper bound of Aos(~) with< ≥ 1.

We use this oversmoothing loss as a regularization term and augment the original objective

function with it. We use U ∈ [0, 1) to balance the relative strengths of these two terms:

; (y) = (1 − U) · ;nll(y) + U · ;os(y),

where ;nll(y) = −
∑|y|
C=1 log? (~C |~<C ).

When the inequality in Eq. (3.2) is satis�ed at step C with the log-probability di�erence be-

tween the l.h.s. and r.h.s. at least as large as<, the oversmoothing loss disappears, implying that

the step C does not contribute to the issue of oversmoothing. When this loss is activated at step C ,

we have two terms, excluding the constant margin<, the log-probability of incorrect 〈eos〉 given

the context ~<C and the negative log-probability of the correct su�x given the same context.

Minimizing the �rst term explicitly prevents a premature sequence y≤C from being a valid se-

quence by lowering the probability ~C being 〈eos〉 even further compared to the other tokens

in the vocabulary. The second term on the other hand prevents the premature sequence by
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ensuring that the full sequence y = (~< |~ |, 〈eos〉) is more likely than the premature sequence

y≤C = (~<C , 〈eos〉). In short, the proposed oversmoothing loss addresses both of these scenarios

which lead to oversmoothing. Finally, only when both of these factors are suppressed enough,

the loss vanishes.

The second scenario above, i.e., increasing the probability of a su�x at each position C , has

the e�ect of greatly emphasizing the latter part of the sequence during training. This can lead to

a degenerate case in which the earlier part of a sequence cannot be modeled by an autoregressive

sequence modeling, if the strength of the proposed oversmoothing loss is too large. We thus use

this loss together with the original negative log-likelihood loss (U > 0) only after pretraining a

model with the negative log-likelihood loss only (U = 0).

3.4 Related work

The issue of generating sequences that are shorter than the ground-truth one has been studied

from various aspects including model parametrization, data collection, and decoding. Here we

highlight some of these projects in the context of our work.

On the aspect of model parametrization, Peters and Martins [110] suggest using sparse trans-

formation of the next-token distribution rather than the usual way of using softmax. Such a

model is then able to assign zero probability to short sequences more readily and thereby reduce

the oversmoothing rate. Their approach, however, does not explicitly encourage 〈eos〉 tokens to

be assigned zero probability, unlike ours where 〈eos〉 is treated specially. Shi, Xiao, and Knight

[134] embed the 〈eos〉 token with a distinct vector at each position within the sequence. This

was shown to help the probability of empty sequence, although they do not report its impact on

translation quality at all.

On data collection, Nguyen, Murray, and Chiang [100] analyze data collection and show that

data augmentation techniques altering sequence length may address the issue of oversmoothing
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and improve translation quality. Their work is however limited to low-resource tasks. With re-

spect to decoding, Murray and Chiang [97] designed a decoding algorithm that learns to correct

the underestimated length. Alternative decoding algorithms, such as minimum Bayes risk decod-

ing [33, 96], have been shown to alleviate the length mismatch to a certain extent when compared

to beam search.

These earlier approaches do not attempt at formally characterizing the cause behind the issue

of oversmoothing. This is unlike our work, where we start by formalizing the issue of over-

smoothing and propose a way to alleviate this issue by directly addressing this cause.

3.5 Experimental Setup

We follow a standard practice to train our neural machine translation models, following [105],

using the FairSeq framework [104]. We use BPE tokenization via either fastBPE [128] or Senten-

cePiece [65], depending on the dataset. Although it is not required for us to use state-of-the-art

models to study the issue of oversmoothing, we use models that achieve reasonable translation

quality. The code implementing FairSeq task with the oversmoothing rate metric, oversmoothing

loss, and experimental results is available on Github.3

3.5.1 Tasks and Models

We experiment with both smaller datasets using language pairs from IWSLT’17 and larger

datasets using language pairs from WMT’19 and WMT’16. In the latter case, we use publicly

available pretrained checkpoints in FairSeq. We execute �ve training runs with di�erent random

initialization for every system. These language pairs and checkpoints cover di�erent combina-

tions of languages and model sizes. This allows us to study the oversmoothing rate under a

variety of di�erent settings.
3https://github.com/uralik/oversmoothing_rate
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IWSLT’17 {De,Fr,Zh}→En: We adapt the data preprocessing procedure from FairSeq IWSLT

recipe and use SentencePiece tokenization. The training sets consist of 209K, 236K, and 235K

sentence pairs for De→En, Fr→En, and Zh→En, respectively. We use the TED talks 2010 devel-

opment set for validation, and the TED talks 2010-2015 test set for testing. The development and

test sets, respectively, consist of approximately 800 and 8,000 sentence pairs for all tasks.

We use the same architecture named transformer_iwslt_de_en in FairSeq for each language

pair. It consists of 6 encoder and decoder layers with 4 self-attention heads followed by feed-

forward transformations. Both encoder and decoder use embeddings of size 512 while the input

and output embeddings are not shared. Both the encoder and decoder use learned positional

embedding. We early-stopping training based on the validation set. Evaluation is done on the

test set.

WMT’16 En→De: We prepare the data following the recipe from FairSeq Github.4 The training

set has 4.5M sentence pairs. Following Ott et al. [105], we use newstest13 as the development set

and newstest14 as the test set, they contain 3K sentence pairs each. We �ne-tune the pretrained

checkpoint which was originally released by Ott et al. [105] and is available from FairSeq. The

recipe uses a transformer architecture based on Vaswani et al. [143]. Di�erent from all other

models considered in this work, this architecture shares vocabulary embeddings between the

encoder and the decoder.

WMT’19 Ru→En, De↔En We closely follow Ng et al. [99] in preparing data, except for �ltering

based on language identi�cation. We use the subset of WMT’19 training set consisting of news

commentary v12 and common crawl resulting in slightly more than 1M and 2M training sentence

pairs for Ru→En and De↔En pairs, respectively. We �ne-tuned single model checkpoints from

Ng et al. [99].5 We early-stop training on the o�cial WMT’19 development set. For evaluation,
4https://git.io/JDqB2
5https://git.io/JDqBo
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we use the o�cial WMT’19 test set.

3.5.2 Training

We use Adam optimizer [58] with V1 = 0.9 and V2 = 0.98. We use the inverse square root

learning scheduler with 4,000 warm-up steps. We use the initial learning rate of 5×10−4, dropout

rate of 0.3 [137] , and weight decay with its rate set to 10−4. We use label smoothing with 0.1 of

probability smoothed uniformly during pretraining with NLL loss and turn it o� after starting to

use the oversmoothing loss. We vary the oversmoothing loss weight U from 0.0 to 0.95 with a

step size of 0.05. We use a �xed margin< = 10−4 whenever we use the oversmoothing loss.

Early stopping We use early stopping for model selection based on the value of the objective

function computed on the development set. We evaluate the model on the development set every

2K updates for IWSLT (∼2K tokens per update) and WMT (∼9K tokens per update) systems.

We stop training when the objective has not improved over more 5 consecutive validation runs.

We �ne-tune models around 5K updates for IWSLT’17 DE-EN and ZH-EN, and 7K updates for

IWSLT’17 FR-EN. As for WMT’19, it takes approximately 45K updates for DE-EN and EN-DE

language pairs to early-stop, and 76K updates for RU-EN model, and 12K updates for WMT’16.

3.5.3 Decoding

To test translation quality, we translate a test set with beam search decoding, as implemented

in FairSeq. We vary beam sizes to study their e�ect in-depth. We set the lower- and upper-bound

of a generated translation to be, respectively, 0 and 1.2 ·;G +10, where ;G is the length of the source

G . We do not use either length normalization nor length penalty, in order to study the impact of

oversmoothing on decoding faithfully. We compute and report BLEU scores using sacreBLEU on

detokenized predictions.
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Figure 3.1: Average oversmoothing rate is going down as we increase contribution of the oversmoothing
loss during fine-tuning. Filled regions denote the standard deviation across training runs according to
Section 3.5.

3.6 Experiments

As we pointed out earlier, publicly available translation systems exhibit a high degree of over-

smoothing. See the left-most part of Figure 3.1, where U = 0. In particular, this rate ranges from

34% (WMT’19 DE→EN) up to 56% (IWSLT’17 ZH→EN).

According to Section 3.3.1, the oversmoothing rate should decrease as we increase the relative

strength of the oversmoothing loss. To verify this, we �ne-tune these models while varying the

coe�cientU . In Figure 3.1 we demonstrate the oversmoothing rate reduces all the way down to 3%

(WMT’19 DE→EN) and 17% (IWSLT’17 ZH→EN) as we increase the strength of the regularizer.

The oversmoothing rate monotonically decreases for every system we consider, as we increase U

up to 0.95.
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Figure 3.2: (a) Log-probabilities of 〈eos〉 token within length-C prefixes averaged across all positions per
translation and then averaged across all translations. (b) Normalized rank of 〈eos〉 token within length-C
prefixes averaged across all positions C per translation and then averaged across all translations. 1 means
the lowest rank within the vocabulary. Filled regions denote the standard deviation across training runs
according to Section 3.5.

3.6.1 Regularization and 〈eos〉 token

Minimizing the proposed oversmoothing loss minimizes the log-probability of 〈eos〉 token at

the end of every length-C pre�x unless it is already low enough. We analyze how the strength

of regularization a�ects the average log-probability of 〈eos〉 token measured at the end of each

premature translation. As presented in Figure 3.2 (a), the log-probability of 〈eos〉 at the end of

premature sequences decreases monotonically as the oversmoothing rate decreases (i.e., as the

strength of the oversmoothing loss increase, as evident from Figure 3.1).

Although the log-probability of 〈eos〉 is an important factor in oversmoothing, Welleck et al.

[148] claim that it is the rank of 〈eos〉 token that matters when using an incomplete approximate

decoding strategy, such as beam search, for generation. We thus look at the average normalized

rank of 〈eos〉 token at the end of every length-C pre�x in Figure 3.2 (b). The rank drops rapidly

and almost monotonically as we add more regularization. The e�ect of regularization is more

visible with the rank than with the log-probability, especially when U is small.

Although the proposed regularization reduces the probability of 〈eos〉 token where it is not
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Figure 3.3: Perplexity measured on reference translations remains stable as we increase the strength of
the regularization. Filled regions denote the standard deviation across training runs according to Sec-
tion 3.5.

supposed to be, we observe that the performance of the system as a language model does not

degrade much regardless of the chosen value of U . This is evident from the �at lines in Figure 3.3

where we plot the perplexity of each model while varying U . This demonstrates that there are

many di�erent ways to minimize the negative log-likelihood, and some of those solutions exhibit

a higher level of oversmoothing than the others. The proposed oversmoothing loss is an e�ective

way to bias the solution toward a lower level of oversmoothing.

3.6.2 Oversmoothing rate and decoding

Earlier Koehn and Knowles [62] noticed this issue of oversmoothing by observing that the

length of generated sequences dramatically dropped as the beam width increased. We con�rm

the decreasing length of generated translation as the beam size increases in Figure 3.4 when U = 0.

We study the change of this length as we add more regularization and calculate the sequence-level

length ratio in Figure 3.4.
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Figure 3.4: Sentence-level length ratio is 1
|�test |

∑ |�test |
8=1 |yref

8 |/|ybeam
8 |, where ybeam

8 is generated translation

using beam search for 8-th input sentence from the test set �test, and yref
8 is the corresponding reference

translation. Filled regions denote the standard deviation across training runs according to Section 3.5.

When �ne-tuned with the proposed oversmoothing loss, the length ratio degrades signif-

icantly less, as we increase the beam size during decoding, than without. For instance, with

U ≥ 0.8 the length ratio remains more or less constant with respect to the size of the beam.

Despite the observed robustness, decoding with a smaller beam size produces translations with
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Figure 3.5: BLEU score is measured on corresponding test sets. Decoding is done using beam search
with beam sizes given in the legend. Section 3.5 provides more details on test sets and decoding hyper-
parameters. Filled regions denote the standard deviation across training runs according to Section 3.5.

lengths which match reference lengths better regardless of the strength of regularization.
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Translation qality The quality of the produced translation is directly related to its length,

because this length needs to closely match the length of the reference translation. However,

the length information is not su�cient to make a conclusion about the translation quality. We

quantify the quality of the translation by calculating the corpus-level BLEU score. The scores in

Figure 3.5 indicate that the reduced degradation of length modeling does correlate with the im-

provements in translation quality, although the degree of such correlation varies across language

pairs and beam widths. We highlight two major aspects of the e�ect of regularization on the

translation quality. First, the impact of regularization is only visible when the beam size is sub-

stantially larger than what is commonly used in practice. Second, the degradation of translation

quality with a larger beam size lessens as oversmoothing does as well, but it does not eliminate

the degradation fully. These observations imply that the e�ectiveness of approximate decoding

in neural machine translation remains unsolved, despite our successful attempt at addressing the

issue of oversmoothing.

3.7 Conclusion

In this work, we tackled a well-reported issue of oversmoothing in neural autoregressive

sequence modeling, which has evaded rigorous characterization until now despite of its ubiquity.

We characterized it by de�ning the oversmoothing rate. It computes how often the probability

of the ground-truth sequence is lower than the probability of any of its pre�xes. We con�rmed

that the oversmoothing rate is too high among well-trained neural machine translation systems

and proposed a way to directly minimize it during training. We designed a di�erentiable upper

bound of the oversmoothing rate called the oversmoothing loss. We experimented with a diverse

set of neural machine translation systems to study the e�ect of the proposed regularization.

The experiments revealed several �ndings and takeaways. First, the oversmoothing loss is

e�ective: we were able to monotonically decrease the oversmoothing rate by increasing the
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strength of the loss. Second, we found that this regularization scheme signi�cantly expands the

dynamic range of the log-probability of 〈eos〉 token and has even greater impact on its rank,

without compromising on sequence modeling. Third, the proposed approach dramatically alters

the behaviour of decoding when a large beam width was used. More speci�cally, it prevents the

issue of degrading length ratio and improves translation quality. These e�ects were not as appar-

ent with a small beam size though. The proposed notion of oversmoothing explains some of the

degeneracies reported earlier, and the proposed mitigation protocol alleviates these degenera-

cies. We, however, �nd that the proposed approach could not explain a more interesting riddle,

that is, the lack of improvement in translation quality despite lower oversmoothing when beam

search with a smaller beam was used. This unreasonable e�ectiveness of beam search continues

to remain a mystery and needs to be investigated further in the future.
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4 | Neural text generation with

unlikelihood training

4.1 Introduction

Neural text generation is a vital tool in a wide range of natural language applications. How-

ever, the standard approach – training a sequence to sequence model, e.g., Transformer [143], to

maximize log-likelihood and approximately decoding the most likely sequence – is known to be

�awed. Generated text in open-ended applications such as language modeling or dialogue has

been observed to be dull, with high frequency tokens used too often and interesting content words

used too rarely [30, 52]. Moreover, the models repeat themselves at the token, phrase, and sen-

tence levels, and statistics comparing a set of human-generated utterances and model-generated

responses indicate a discrepancy between the human and model word distributions. This does

not appear to be recti�ed by training on more data [116]. Recent �xes involve modifying the

decoding strategy using sampling or more sophisticated beam search variants. However, these

decoding strategies do not address the core issue: the model’s underlying sequence probabilities

are clearly not correct.

Several reasons for exactly why neural text is degenerate have been posited, with the cause

currently unknown. Possible candidates include the problem being (i) a by-product of the model

architecture, e.g., the Transformer architecture preferring repeats [52, 144], (ii) an intrinsic prop-
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erty of human language [52] rather than a modeling de�ciency, or that (iii) a training objective

relying on �xed corpora cannot take into account the real goal of using the language [23]. Our

work shows that, while the above may be factors, a primary factor is the use of the likelihood

objective itself, as we demonstrate that degeneration is alleviated if we replace the likelihood

objective with our proposal.

While low perplexity in the limit should lead to predicting the correct next target word, there

are two major �aws of the likelihood objective: (i) it pays relatively little attention to the argmax

or the top of the ranked list of next token probabilities, instead optimizing the likelihood of the

entire distribution; (ii) it is not focused on optimizing sequence generation, only on producing

the next token. The �rst issue means that greedy or beam search decoding, which rely on the

top of the list to generate, are not optimized – there is a discrepancy between maximizing the

log-probability of a ground-truth token and ensuring the rank of the ground-truth token to be

one. The second issue means that during sequence generation, any imperfection in next token

prediction leads to error accumulation that is not addressed by likelihood training.

In this work, we introduce unlikelihood training, an approach that addresses the two afore-

mentioned issues. It combines two types of updates: a likelihood update on the true target tokens

so that they are assigned high probability, and an unlikelihood update on tokens that are other-

wise assigned too high a probability. We can collect these unlikely token candidates either during

next-token prediction or from generated sequences, allowing us to train at both the token and

sequence levels. Both token and sequence level unlikelihood training are shown to improve met-

rics that measure dullness and repetition of the model, while maintaining performance in other

metrics such as perplexity or token accuracy compared to the maximum likelihood baseline. Fi-

nally, we assess our models using human evaluations. We �nd that our generations have vastly

improved quality compared to likelihood trained models when both models use beam search de-

coding. Moreover, our approach when using beam search also signi�cantly improves over like-

lihood trained models using either beam blocking or nucleus sampling, thus outperforming the
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current state-of-the-art.

4.2 Related Work

Neural Text Degeneration Recently, several papers have observed various forms of neural

text degeneration, especially in open-ended generation tasks. In dialogue, it has been shown that

there is a mismatch between model and human word distributions, where generative models are

more likely to output frequent words, but less likely to produce rare words compared to humans.

For example, this was observed across all generative models submitted to the ConvAI2 NeurIPS

2018 competition [30]. In language modeling, the work of [52] highlighted problems with the

word frequency distribution and level of repetition in model generations compared to human

text. These issues are not remedied by simply increasing the amount of the training data; e.g.,

large-scale GPT-2 language models [116] display the same issues.

Improved Decoding Algorithms Several methods have been proposed to rectify these issues.

The primary ones involve changing the decoding method to a sophisticated beam search variant

or to stochastic decoding, e.g., sampling. Di�erent variants of beam search have been explored

[51, 69, 145] which can decrease a model’s level of repetition by selecting candidates that are

unlike previously chosen ones. Separately, hard or soft beam blocking has been investigated

[61, 108], whereby previously generated =-grams are blocked from subsequent generation. This

approach is often used in dialogue generation, �xing some token or phrase level repetitions but

removing repetitions that would naturally occur in human text.

The second major approach is that of sampling from the model at generation time. Top :-

sampling [36] and nucleus sampling [52] are two methods that sample sequences based on a

function of the predicted next token probability distribution given by the model. Both approaches

vastly improve the repetition issue, as the randomization often reduces the number of duplicate
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tokens in a decoded sequence, even if highly scored paths under the model (represented by beam

search candidates) contain repetitions. However, as the underlying model is unchanged, it often

prefers semantically similar phrasing, depending on the temperature parameter of the sampling

[52]. Furthermore, this solution is less relevant in less open-ended tasks such as machine trans-

lation, where beam search variants are the preferred method. Ideally we would like a model that

can work with both beam and sampling decoding methods.

Improved Learning Algorithms The proposed learning criteria are closely related to struc-

tured output prediction methods in which the goal is to increase the scores assigned by a model

to true examples while decreasing those assigned to negative examples often generated by the

model itself. Some representative algorithms include structured perceptron [24], energy-based

models [71] and more recently re�ective likelihood [29]. A particular variant in this family of

algorithms, called negative training, was recently used by He and Glass [47] to prevent generic

and malicious responses in dialogue models. Similarly, these structured prediction algorithms

with neural language models have been applied to machine translation in recent years by Shen

et al. [132] and Edunov et al. [32].

4.3 Neural Text Generation

Language Modeling In language modeling, our goal is to model a probability distribution

?∗(x) over variable-length text sequences x = (G1, . . . , G |x|) composed of tokens from a vocab-

ulary, GC ∈ V . We wish to �nd a model ?\ (x) which resembles ?∗(x), meaning that samples

Ĝ ∼ ?\ are similar to samples from ?∗, and ?\ (x) ≈ ?∗(x) for all x. When ?\ (x) is parameterized

by a neural network, we call ?\ a neural language model. We assume that ?\ takes the form

?\ (x) =
∏|x|
C=1 ?\ (GC |G<C ).

The de facto approach to training such a model is to �nd parameters \ that maximize the
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log-likelihood of a �nite set of samples D from ?∗ by minimizing:

LMLE(?\ ,D) = −
|D|∑
8=1

|x(8) |∑
C=1

log?\ (G (8)C |G
(8)
<C ). (4.1)

Seqence Completion A closely related problem consists of sampling a sub-sequence, or pre-

�x, x1:: ∼ ?∗, then using ?\ to conditionally decode a continuation, x̂:+1:# ∼ ?\ (·|x1::). We

now want the resulting completion (G1, . . . , G: , Ĝ:+1, . . . , Ĝ# ) to resemble a sample from ?∗.

We use sequence completion as a setting to study the behavior of neural language models due

to its generality. For instance, sequence completion encompasses story generation [36], contex-

tual text completion [116], language modeling (for : = 0), and dialogue modeling [161] where

x1:: is a dialogue history and a continuation is a next utterance.

Given ?\ and a pre�x x1:: , �nding the optimal continuation is not tractable, so in practice

approximate deterministic or stochastic decoding strategies are used to generate continuations.

Deterministic Decoding Widely used deterministic decoding algorithms are greedy search

and beam search. The former can be seen as a special case of the latter. Greedy search selects

the highest probability token at each time step: GC = arg max?\ (GC |G<C ). Beam search maintains a

�xed-size set of partially-decoded sequences, called hypotheses. At each time step, beam search

forms new hypotheses by appending each token in the vocabulary to each existing hypothesis,

scoring the resulting sequences As we describe in Section 4.4, these deterministic decoding strate-

gies, which depend highly on underlying model probabilities, expose issues with conventionally

trained neural language models.

Stochastic Decoding An alternative is to sample from a model-dependent distribution at each

step, GC ∼ @(GC |G<C , ?\ ). In order to prevent sampling low probability tokens, a typical approach
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is to restrict sampling to a subset of the vocabulary* ⊂ V at each step:

@(GC |G<C , ?\ ) =


?\ (GC |G<C )// GC ∈ *

0 otherwise,

where / =
∑
G∈* ?\ (G |G<C ). The top-k sampler restricts sampling to the : most-probable tokens;

i.e. * is the size : subset ofV which maximizes
∑
G∈* ?\ (G |G<C ) [36]. The nucleus sampler instead

restricts sampling to the smallest set of tokens with total mass above a threshold ? ∈ [0, 1]; i.e.

* is the smallest subset with
∑
G∈* ?\ (G |G<C ) ≥ ? [52].

4.4 Neural Text Degeneration

In this section we discuss two degenerate properties that frequently occur in conventional

neural language models trained with the maximum likelihood objective (Equation (4.1)).

Repetition First, model-generated continuations exhibit sequence-level repetition, especially

with deterministic decoding. The problem is seen by observing samples in Table 4.1, which shows

completions from the state-of-the-art GPT-2 language model [116]. Greedy decoding as well

as top-k and nucleus sampling exhibit degenerate repetition (with a certain hyper-parameter

setting), although greedy decoding shows the worst degradation. Using a Transformer language

model trained with maximum likelihood (Section 4.6), we �nd that the average percentage of

repeated n-grams in model continuations with greedy decoding (43%) far exceeds that of humans

(0.5%), computed over pre�xes drawn from a validation corpus.

Unlike previous work which only focused on degenerate sequence-level repeats [52], we addi-

tionally observe that neural language models exhibit substantially more repetition in next-token
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Pre�x Lyrically the song has excerpts of di�erent languages including French , Spanish ,
GPT2-greedy German , Italian , Portuguese , Spanish , Portuguese , Portuguese , Portuguese

, Portuguese , Portuguese , Portuguese , Portuguese , Portuguese , Portuguese ,
Portuguese , Portuguese , Portuguese , Portuguese , ...

GPT2-top3 German , Italian , Portuguese , Spanish , Portuguese , Portuguese, Italian and
Spanish. It is also available in English, French and Spanish. In addition to its
lyrics, the album features a number of original songs, ...

GPT2-nucleus-0.3 German , Italian , Portuguese , Spanish , Portuguese , Italian , Portuguese , Span-
ish , Portuguese , Spanish , Portuguese , Spanish , Portuguese , Spanish , Por-
tuguese , Spanish , Portuguese , Spanish , Portuguese , Spanish , Portuguese ,
...

Pre�x The �rst pair of pereiopods is armed with a large , asymm
GPT2-greedy etrical, and long-range laser cannon. The second pair is armed with a large

, asymmetrical, and long-range laser cannon. The third pair is armed with a
large , asymmetrical, and long-range laser cannon. The fourth pair is armed
with a large ...

GPT2-top3 etrical, and highly mobile head, and the second pair has a small , asymmetrical,
and highly mobile head. The second pair has a large and highly mobile head,
and the third pair is armed with a large and highly mobile head. The �rst pair
...

GPT2-nucleus-0.3 etrical head and a large body. The �rst pair of pereiopods is armed with a large ,
asymmetrical head and a large body. The �rst pair of pereiopods is armed with
a large , asymmetrical head and a large body. The �rst pair of pereiopods is
armed ...

Table 4.1: Top: Degenerate repetition in completions from a state-of-the-art large-scale language model
[116]. The examples contain single-word repetitions, phrase-level repetitions, and structural repetitions
where some tokens within a repeating phrase vary. Recently proposed stochastic samplers (top-: , nucleus)
exhibit degeneration based on hyper-parameter se�ings.

prediction compared to human text:

Pr (Ĝ:+1 = arg max?\ (G |x1::) ∈ x1::) > Pr (G:+1 ∈ x1::) . (4.2)

For instance, the Transformer language model (Section 4.6) predicted next-tokens that appeared

in the preceding 128 words 62% of the time, versus 49% in ground-truth text. This is especially con-

cerning since the maximum-likelihood objective focuses on optimizing next-token conditional

distributions.
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Token Distribution Mismatch Second, both greedy continuations and next-token predic-

tions from conventional neural text generators have di�erent token distributions from human

text. As demonstrated by Holtzman et al. [52], such models with greedy or beam search tend to

produce high frequency tokens too often and low frequency tokens too rarely, where frequency is

de�ned by the human token distribution. With the Transformer language model (Section 4.6), the

set of next-token greedy predictions on a held-out validation set had roughly 40% fewer unique

tokens than the ground-truth tokens (11.6k vs. 18.9k), and overproduced frequent tokens as seen

in Figure 4.1. Such behavior has been linked to generations being judged as dull by humans

because rare words can add engaging speci�city [126, 152].

4.5 The Unlikelihood training objective

We now describe unlikelihood training for neural language models, then in Section 4.6 demon-

strate empirically that our proposal substantially improves neural text degeneration (Section 4.4).

4.5.1 Unlikelihood Training

The key idea behind unlikelihood training is decreasing the model’s probability of certain

tokens, called negative candidates. Given a sequence (G1, . . . , G) ) and a set of negative candidate

tokens CC = {21, . . . , 2<}, where each 2 9 ∈ V , we de�ne the unlikelihood loss for step C as:

LCUL(?\ (·|G<C ), C
C ) = −

∑
2∈CC

log(1 − ?\ (2 |G<C )) .

The loss decreases as ?\ (2 |G<C ) decreases. We incorporate the unlikelihood loss into a token-

level unlikelihood objective which augments each time-step of maximum likelihood training:
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LCUL-token(?\ (·|G<C ), C
C ) = −U ·

∑
2∈CC

log(1 − ?\ (2 |G<C ))︸                       ︷︷                       ︸
unlikelihood

− log?\ (GC |G<C )︸           ︷︷           ︸
likelihood

. (4.3)

As candidates, we use previous context tokens:

CCprev-context = {G1, . . . , GC−1} \ {GC }. (4.4)

Intuitively, minimizing the unlikelihood loss with this candidate set makes (i) incorrect repeating

tokens less likely, as the previous context contains potential repeats, and (ii) frequent tokens less

likely, as these tokens appear often in the previous context. These candidates are e�cient to

compute, without requiring additional supervision.

Gradient analysis Let G∗C be the true next-token (index 8∗ ∈ V) at step C , and let Gneg be

a negative candidate (index 8neg). Let ? = ? (GC |G<C ) ∈ RV be the output of softmax(0) where

0 ∈ RV . The (negative) token-level loss with a single candidate is,

LC = log? (G∗C |G<C ) + U · log(1 − ? (Gneg |G<C )),

and its gradient with respect to a logit 08 is:

mL
m?8

m?8

m08
= (I[8 = 8∗] − ?8) − U

?neg

1 − ?neg

(
I[8 = 8neg] − ?8

)
.

We consider the gradient when 8 is the true next-token, a negative-candidate, and any other token.
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True Next-Token (8 = 8∗)

mL
m?∗

m?∗
m08∗

= (1 − ?∗) − U
?neg

1 − ?neg
(0 − ?∗)

= 1 − ?∗(1 − U
?neg

1 − ?neg
).

Negative Candidate (8 = 8neg)

mL
m?neg

m?neg

m0neg
= (0 − ?neg) − U

?neg

1 − ?neg
(1 − ?neg)

= −?neg(1 + U).

Other Token (8 ∉ {8∗, 8neg})

mL
m?̃8

m?̃8

m08
= (0 − ?̃8) − U

?neg

1 − ?neg
(0 − ?̃8)

= −?̃8 (1 − U
?neg

1 − ?neg
).

Combining the three cases above, we get:

∇L0 = G∗ −< � ?, (4.5)

where G∗ ∈ {0, 1}+ is 1 at index 8∗ and 0 otherwise, and< ∈ R+ is:

<8 =


(1 − U ?neg

1−?neg
) 8 ≠ 8neg

(1 + U) 8 = 8neg. �

(4.6)

In general the objective considers multiple candidates:
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LCUL-token(?\ (·|G<C ), C
C ) = −U ·

∑
2∈CC

log(1 − ?\ (2 |G<C ))︸                       ︷︷                       ︸
unlikelihood

− log?\ (GC |G<C )︸           ︷︷           ︸
likelihood

.

We regroup the token-level objective to be a weighted sum of per-candidate objectives:

−LCUL-token(?\ (·|G<C ), C
C ) = 1
|CC |

∑
2∈CC

(
log?\ (GC |G<C ) + U2 · log(1 − ?\ (2 |G<C ))

)
where U2 = U · |CC |.

Now the gradient can be generalized to multiple candidates, in which case the gradient takes

the same form as Equation (4.6), but with U2 in place of U .

This unlikelihood gradient (Equation (4.5)) di�ers from the likelihood gradient, (G∗ − ?), due

to the term < which varies based on the hyper-parameter U and the model’s negative candi-

date probability, ?neg. At the ground-truth token index 8∗, the unlikelihood gradient is positive,

increasing the ground-truth token’s probability with a magnitude that grows with ?neg. Con-

versely, at the negative candidate index 8neg the gradient is negative. At all other token indices

8 ∉ {8∗, 8neg}, the gradient moves from negative to positive as ?neg increases. For instance, with

U = 1.0 the gradient increases the probability of each token G8 when the model assigns high

probability to the negative candidate (?neg > 0.5).

4.5.2 Seqence-Level Unlikelihood Training

While the token-level unlikelihood objective e�ciently augments maximum likelihood train-

ing with token-level penalties, it is limited to pre�xes drawn from the training distribution. The

resulting distribution mismatch between training sequences and generated sequences is a known

issue with maximum-likelihood training, motivating objectives that operate on model-generated
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sequences [27, 117, 122, 159].

We thus propose a sequence-level unlikelihood objective which uses unlikelihood on

decoded continuations. That is, given a pre�x (G1, . . . , G:) ∼ ?∗, we decode a continuation

(G:+1, . . . , G:+# ) ∼ ?\ (·|G1, . . . , G:), construct per-step negative candidate sets (C:+1, . . . , C:+# ),

and de�ne each per-step sequence-level loss for C ∈ {: + 1, . . . , : + # } as:

LCULS(?\ (·|G<C ), C
C ) = −

∑
2∈CC

log(1 − ?\ (2 |G<C )) . (4.7)

Intuitively, the negative candidates can identify problematic tokens for the loss to penalize. We

choose to penalize repeating n-grams in the continuation:

CCrepeat-n = {GC } if (GC−8, . . . , GC , . . . , GC+ 9 ) ∈ G<C−8 for any ( 9 − 8) = =, 8 ≤ = ≤ 9, (4.8)

which says that GC is the (single) negative candidate for step C if it is part of a repeating n-gram.

An alternative we tried is to choose a penalization probability ?penalize, and use GC as the single

negative candidate for time C when IC ∼ Bernoulli(?penalize) is 1, and no negative candidate for

time C otherwise; this approach was e�ective but under-performed the Crepeat-n candidates as we

discuss further in Section 4.6.4.

In our experiments we apply this sequence loss in two ways: (i) using it to �ne-tune a standard

MLE baseline; and (ii) using it to �ne-tune an unlikelihood model trained at the token level,

LUL-token. We refer to the former as LUL-seq and the latter as LUL-token+seq. In both cases, �ne-

tuning is done by equally mixing sequence-level unlikelihood updates (Equation (4.7)) and the

token-level loss from which it was initially trained (either likelihood updates (Equation (4.1)) or

token-level unlikelihood updates (Equation (4.3))).

Efficiency Any objective that requires explicitly decoding a sequence is constrained by sample

e�ciency when decoding is slow; if sample e�ciency is low, the total decoding time is too large

52



for practical use. In our experiments we show that when used for �ne-tuning, the sequence-level

unlikelihood objective substantially reduced degeneration in under 1,500 updates, rendering it

practical for modern large-scale neural models, even with high decoding costs.

4.6 Experiments

We follow a standard language modeling setup from Baevski and Auli [5] and evaluate our

method on the task of sequence completion, detailed below.1

Model Architecture Recent large-scale language models are based on the Transformer archi-

tecture, a multi-layer feed-forward network with self-attention [143]. We use a 16-layer Trans-

former with 8 attention heads, embedding dimension 1024, and fully-connected dimension 4096;

the architecture is based on Baevski and Auli [5] but with standard embedding and softmax lay-

ers. Our proposed method is architecture agnostic; we choose this one as a representative of

recent large-scale language models, e.g., Radford et al. [116].

Dataset We use the Wikitext-103 dataset [90], a large-scale collection of Wikipedia articles

containing over 100 million words and 260 thousand unique tokens. As a document-level dataset,

Wikitext-103 is an open-source representative of recent datasets used for large-scale language

modeling [5, 116]. We perform experiments at the word level.

Training We train on �xed-length contiguous sequences, in our case of length 1,536, which

was selected based on GPU memory constraints. For the token-level losses (LMLE, LUL-token), we

train each model on 8 GPUs for a maximum of 150k updates, evaluating on the validation set and

saving the model state every 10k updates. For the experiments below, we select the saved model

state with the best validation perplexity.
1Our code is available at https://github.com/facebookresearch/unlikelihood_training; implemented

with Fairseq [104].
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seq-rep-4

Pre�x ... Lyrically the song has excerpts of di�erent languages including French , Spanish
LMLE , Italian , Spanish , Italian , Spanish , Italian , Spanish , Spanish , Portuguese , Portuguese , Portuguese , Portuguese

, Portuguese , Portuguese , Portuguese , Portuguese , Portuguese , Portuguese , Portuguese , Portuguese , Spanish
, Portuguese , Portuguese , Portuguese , Portuguese , Portuguese

0.744

LUL-token+seq , and German . In the �rst verse , the protagonist sings about being a “ girl who ’s been in love with someone
else " , while the second verse describes the relationship between the protagonist and her lover . In the third
verse , the protagonist sings

0.063

Pre�x ... starboard engines and was going to crash . “ We ’re going in ,"
LMLE he said . “ We ’re going to crash . We ’re going to crash . We ’re going to crash . We ’re going to crash . We ’re

going to crash . We ’re going to crash . We ’re going to crash . We ’re going to
0.787

LUL-token+seq Hood said . “ I ’m going to make sure we ’re going to get back to the water . " The order to abandon ship was
given by Admiral Beatty , who ordered the remaining two battlecruisers to turn away . At 18 : 25 , Hood turned
his

0.000

Pre�x ... career - high 27 points on 8 - for - 11 shooting with three rebounds
LMLE and two assists . On January 3 , 2012 , he was named to the 2012 – 13 All - Atlantic 10 �rst team . On February

3 , 2012 , he was named to the Atlantic 10 �rst team . On February 5 , 2012 , he was named
0.277

LUL-token+seq and a career - high 7 assists against the Minnesota Timberwolves . On February 3 , 2012 , he was named to the
2012 All - NBA First Team . On March 7 , 2012 , he was named one of �ve �nalists for the Naismith Award ,
which is

0.064

Table 4.2: Example greedy completions showing representative examples of the MLE model’s degenerate
single-token repetition (top), phrase-level repetition (middle), and ‘structural’ repetition (bo�om), as well
as the proposed method’s ability to fix these degenerate behaviors.

Sequence-level �ne-tuning begins with the model state selected based on the validation per-

plexity. Models are �ne-tuned for 1,500 total updates. With probability 0.5 an update uses LULS

and otherwise uses the token-level loss with which the model was trained. For a LULS update, we

split each training sequence and greedily decode continuations (details below). The experiments

use a pre�x length : = 50 and continuation length # = 100 for �ne-tuning.

Completions We evaluate a model on sequence completion by using the model to decode con-

tinuations of pre�xes derived from the validation (or test) set. Speci�cally, the validation (or test)

set is �rst partitioned into sequences of 1,536 tokens, as in training. Then we split each sequence

into a batch of pre�xes of length : (discarding extra tokens), and decode a continuation of length

# for each pre�x. The experiments below use : = 50 and # = 100 for evaluation. For deter-

ministic decoding we use greedy search and beam search with beam size 10, and for stochastic

decoding we use top-: sampling with : ∈ {3, 50} and nucleus sampling with ? ∈ {0.3, 0.9}.
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4.6.1 Evaluation Metrics

Repetition As a token-level metric for repetition, we use the fraction of next-token (top-1)

predictions that occur in the previous ℓ tokens (rep/ℓ); given a set D of length-) sequences,

rep/ℓ =
1
|D|)

∑
x∈D

)∑
C=1
I [arg max?\ (G |x<C ) ∈ xC−ℓ−1:C−1] . (4.9)

A predicted token is called a “single-token repeat” when I [·] is 1. Some of these single-token

repeats also occur in the human-generated sequences, we thus report a variant which only counts

single-token repeats that are additionally not equal to the ground-truth next-token (wrep/ℓ).

We use the portion of duplicate =-grams (seq-rep-n) in a generated sequence to measure

sequence-level repetition. That is, for a continuation x:+1::+# we compute,

seq-rep-n = 1.0 − |unique n-grams(x:+1::+# ) |
|n-grams| , (4.10)

and average over continuations. seq-rep-n is zero when the continuation has no repeating n-

grams, and increases towards 1.0 as the model repeats. We compute seq-rep-n on the continua-

tion.

Token Distribution We quantify a model’s predicted token distribution using the number of

unique tokens. As a token-level metric (uniq), we use the number of unique next-token predic-

tions on a validation or test setD, i.e. |{arg max? (GC |G<C ) | G<C ∈ D}|. As a sequence-level metric

(uniq-seq) we use the number of unique tokens in continuations of validation or test pre�xes

(Section 4.6).
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Model search seq-rep-4 uniq-seq ppl acc rep wrep uniq

LMLE
greedy .429 10.6k 24.59 .401 .619 .346 11.6kbeam .495 9.4k

LUL-token
greedy .274 12.6k 25.62 .396 .569 .305 12.5kbeam .327 11.2k

LUL-seq
greedy .130 12.7k 24.28 .406 .603 .329 12.4kbeam .018 16.8k

LUL-token+seq
greedy .051 14.8k 25.37 .401 .551 .287 13.4kbeam .013 17.6k

Human - .005 18.9k - - .479 - 18.9k

Table 4.3: Results for token-level objectives (upper) and sequence-level fine-tuning (lower) according to
sequence-level (le�) and token-level (right) metrics using the validation subset of wikitext-103.

Language Modeling �ality We use perplexity (ppl), and next-token prediction accuracy

(acc), de�ned as

1
#
|{arg max? (GC |G<C ) = G∗C | G<C ∈ D}|,

with # pre�xes G<C and true next tokens G∗C .

4.6.2 Results

Token-level and sequence-level results on the test and valid sets are in Table 4.4 and Table 4.3,

respectively.

Baseline The baseline model trained with maximum likelihood (LMLE) achieved 25.64 test per-

plexity, comparable to a current state-of-the-art system [5] (24.92). However, the greedy base-

line’s seq-level repeats (seq-rep-4 .442) and single-token repeats (rep .627) far exceed those in

human text (.006, .487 respectively). The baseline continuations have far fewer unique tokens

than human text (uniq-seq 11.8k vs 19.8k), with a high rate of frequent tokens (Figure 4.1).
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Model search seq-rep-4 uniq-seq ppl acc rep wrep uniq

LMLE
greedy .442 10.8k 25.64 .395 .627 .352 11.8kbeam .523 9.5k

LUL-token
greedy .283 13.2k 26.91 .390 .577 .311 12.7kbeam .336 11.7k

LUL-seq
greedy .137 13.1k 25.42 .399 .609 .335 12.8kbeam .019 18.3k

LUL-token+seq
greedy .058 15.4k 26.72 .395 .559 .293 13.8kbeam .013 19.1k

Human - .006 19.8k - - .487 - 19.8k

Table 4.4: Results for token-level objectives (upper) and sequence-level fine-tuning (lower) according to
sequence-level (le�) and token-level (right) metrics using the test subset of Wikitext-103.

Token-Level Objective The proposed token-level unlikelihood objective (LUL-token) reduced

next-token wrong repetition (wrep .311 vs. .352) while increasing the number of unique next-

tokens (uniq 12.7k vs. 11.8k) compared to the baseline (LMLE). Perplexity and accuracy were

similar.

Importantly, the token-level unlikelihood objective yielded substantial improvements in gen-

erations on the sequence-level. With greedy search, token-level unlikelihood training improved

the 4-gram repetition in continuations by 36% (seq-rep-4 .283 vs. .442) while generating roughly

22% more unique tokens than the baseline (uniq-seq 13.2k vs. 10.8k), and a more favorable rate

of infrequent tokens (Figure 4.1).

With beam search, unlikelihood training showed similar improvements over the baseline.

Seqence-Level Objective The sequence level �ne-tuning (LUL-token+seq) yielded further im-

provements, with a 97% reduction in 4-gram repetitions (seq-rep-4 .013 vs. .442) from the base-

line level (greedy LMLE), and 77% more unique tokens (uniq-seq 19.1k vs. 10.8k) with beam

search.

Compared to the token-level unlikelihood model (LUL-token) which was the starting point of

�ne-tuning, the �ne-tuned model’s repetition substantially improved (seq-rep-4 .058 vs. .283),
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(b) Unlikelihood vs. stochastic decoding

Figure 4.1: Sequence-level token distribution using the test subset of Wikitext-103. Nucleus sampling
(? = 0.9) and beam blocking (= = 4) are used with the maximum likelihood baseline (LMLE).

unique tokens increased (uniq-seq 15.4k vs. 13.2k), and token-level metrics such as perplexity

improved (ppl 26.72 vs. 26.91), despite using only 1,500 updates. The token distribution improved,

with infrequent tokens produced more often than the baseline, and frequent tokens approaching

the human level (Figure 4.1). Finally, after sequence-level �ne-tuning, beam search out-performed

greedy search.

To visualize how these improvements in metrics translate to generation quality, Table 4.2

shows greedy completions that characterize the baseline’s degeneration and LUL-token+seq’s im-

proved behavior.

GPT-2 Fine-Tuning In the preceding experiment, sequence-level �ne-tuning alone (LUL-seq)

showed substantial improvements over the baseline using a small number of updates. This indi-

cates that the proposed sequence-level �ne-tuning can be a cheap, e�ective way to improve exist-

ing pre-trained language models. We demonstrate this by �ne-tuning a pre-trained GPT-2 [116]

language model with sequence-level unlikelihood, using a comparable experimental setup to Sec-

tion 4.6. We evaluated the GPT-2 medium pre-trained model (‘GPT-2’) and two separate �ne-

tuning variants on Wikitext-103. The �rst variant (‘GPT-2MLE’) was �ne-tuned using maximum
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likelihood; we select the model state with the lowest validation perplexity. The second model

(‘GPT-2UL-seq’) was �ne-tuned using the sequence-level unlikelihood objective (Section 4.5.2). For

both evaluation and sequence-level tuning, we used a pre�x length of 50 BPE tokens and a con-

tinuation length of 100 BPE tokens. In order to train on a single GPU, we used a batch-size of 1024

tokens for MLE updates, and 300 pre�x tokens for unlikelihood updates. Due to the smaller batch

size and single-GPU setting, we used 10,000 updates during sequence-level �ne-tuning, compa-

rable to the 1,500 updates in the main experiment (Section 4.6) in terms of the total number of

tokens. Fine-tuning with unlikelihood yielded similar improvements in sequence-level repetition

(seq-rep-4 .042 vs. .506) to those observed in Table 4.3, while maintaining language modeling

quality according to perplexity and accuracy (see Table 4.5).

Model search seq-rep-4 ppl acc rep wrep uniq

GPT-2 greedy .506 20.75 .430 .589 .306 13.3k
GPT-2MLE greedy .460 15.82 .464 .612 .305 11.8k
GPT-2UL-seq greedy .042 18.49 .444 .613 .317 11.3k

Human - .005 - - .407 - 17.7k

Table 4.5: GPT-2 results according to sequence-level and token-level metrics using the validation subset
of wikitext-103. seq-rep-4 is computed on the word level; ppl, acc, rep, wrep are computed on the BPE
level.

Stochastic Decoding Although we have focused on deterministic decoding, we also con�rm

that a model trained with the proposed unlikelihood objectives may still be used with stochastic

decoders. Table 4.7 provides automatic metrics for top-: and nucleus sampling (called top-?) on

the Wikitext-103 test set. These can be compared with the main results of the chapter in Table 4.4.

In general, sampling methods yield worse next-token predictions than deterministic approaches

(0.302 vs. 0.394 acc for top-k-50 vs. greedy MLE, where acc for stochastic decoding measures

the probability that the decoding strategy chooses the ground truth word given a ground truth

context). As the choice of sampling hyperparameter gets closer to greedy (i.e. lower values of
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: and ?) next token accuracy improves, eventually approaching the greedy MLE results. The

unlikelihood-trained sampling models have similar next token accuracy (acc) to their likelihood-

trained counterparts, but exhibit fewer repetitions. For lower values of ? and : the improvements

of unlikelihood training are larger, e.g., 0.277 reduced to 0.0041 for 4-gram sequence repetitions

(seq-rep-4) using top-p-0.3. At higher levels of ? and : , for all methods the continuations contain

more unique tokens than that of humans, meaning those values may be too high.

4.6.3 Human Evaluation

We perform a crowdworker evaluation to judge the quality of the generations of our proposed

models compared to each other, the baseline, two other generation methods, and the reference.

We employ a pairwise setup: an evaluator is presented with a pre�x and shown continuations

from two di�erent models and asked to select which continuation they found more natural.

Figure 4.2: Screen shot of the user interface used in the human evaluation.

�ality control Following Li, Weston, and Roller [79], we �lter workers using quality con-

trol questions and limit the number of annotations that they may complete. We require workers

to correctly answer two quality control questions for their evaluations to be included. Both qual-

ity controls compare the true completion against a greedy baseline model. Following [79], we
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informed workers that they must provide reasoning for their choices. We �ltered workers who

did not provide reasoning for at least 80% of their choices. 63% of workers fail at least one of our

three quality control mechanisms (2 quality control metrics, and failing to give reasons). 61% fail

at least one quality control question; 16% of workers fail both; 4% of workers fail to give reasoning

for their choices.

Crowdworkers Experts

Winner Loser Win rate W–L Win rate W–L

LUL-token

beats

LMLE baseline 57% 17–13
LUL-seq LMLE baseline *71% 41–17
LUL-token+seq LMLE baseline *82% 41–9
LUL-token+seq LUL-token *75% 56–19
LUL-token+seq LUL-seq 59% 38–27

LUL-token+seq beats
Nucleus 59% 47–33 *83% 30–6

LUL-token+seq Beam blocking 60% 50–34 *74% 25–9

Reference

beats

LMLE baseline *85% 17–3
Reference Nucleus *69% 38–17
Reference Beam blocking *68% 48–23
Reference LUL-token *73% 44–16
Reference LUL-seq 50% 30–30
Reference LUL-token+seq *64% 46–26

Table 4.6: Human evaluation results. * denotes statistical significance (2-sided binomial test, ? < .05).
W/L denotes raw number of wins and loses by each comparison.

Human evaluation results Prompts are from the Wikitext-103 test set. All models used beam

search (beam size 10) for generation, except for those that use stochastic decoding. We report the

win rates for each pairwise comparison. The results are presented in Table 4.6. We �nd that all

proposed models are preferred over the baseline, and that congruent with automatic metrics, win

rates improve after adding the sequence level objective. Our best model also outperforms the

baseline used with either nucleus sampling or beam blocking.

We also collected limited annotations from other NLP researchers. These Expert annotators
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Search Model seq-rep-4 uniq-seq ppl acc rep wrep uniq

top-k-3

LMLE .0991 14.7k 25.70 .350 .597 .355 12.6k
LUL-token .0491 16.4k 27.02 .344 .539 .306 13.6k
LUL-seq .0068 17.9k 25.11 .353 .581 .341 13.6k

LUL-token+seq .0087 15.2k 26.84 .347 .524 .292 14.6k

top-k-50

LMLE .0165 21.9k 25.70 .302 .511 .303 16.1k
LUL-token .006 23.5k 27.02 .286 .440 .247 17.8k
LUL-seq .0005 25.7k 25.11 .291 .497 .291 17.3k

LUL-token+seq .0009 23.7k 26.84 .289 .430 .238 18.8k

top-p-0.3

LMLE .273 13.6k 25.70 .264 .339 .154 12.6k
LUL-token .101 16.5k 27.02 .247 .290 .121 13.9k
LUL-seq .0033 20.8k 25.11 .266 .327 .145 13.6k

LUL-token+seq .0041 19.1k 26.84 .250 .284 .116 14.9k

top-p-0.9

LMLE .0154 26.9k 25.70 .288 .462 .263 18.6k
LUL-token .004 30.2k 27.02 .266 .381 .202 22.3k
LUL-seq .0003 34.7k 25.11 .290 .450 .254 19.6k

LUL-token+seq .0007 32.4k 26.84 .269 .376 .198 22.7k

Human - .006 19.8k - - .487 - 19.8k

Table 4.7: Stochastic decoding results according to sequence-level (le�) and token-level (right) metrics
using the test subset of Wikitext-103.

were given the same UI as the crowdworkers, and not told about models they were evaluating, but

all annotators were familiar with language models. As shown in Table 4.6, theLUL-token+seq model

signi�cantly outperforms both nucleus sampling and beam blocking according to the experts.

4.6.4 Seqence-level random candidates

In Section 4.5.2 we described a way to penalize tokens that occurred in a n-gram repetition.

One alternative is to penalize a random subset of the generated sequence. That is, given a con-
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tinuation GC+1, . . . , GC+ , we now de�ne per-step candidates (C:+1, . . . , C:+# ) as:

CCrandom-seq =


{GC } if IC = 1

∅ if IC = 0,

for each C ∈ {: + 1, . . . , : + # }, where IC ∼ Bernoulli(?penal), and ?penal ∈ [0, 1] is a �xed hyper-

parameter. Intuitively, these candidates identify random tokens in the generated sequence (hence

‘random-seq’), which are then penalized by the sequence-level loss (Equation (4.7)).

Results with di�erent values of ?penal are shown in Table 4.8. Penalizing 10% of the generated

tokens led to substantial improvements in seq-rep-4 for both greedy and beam search compared

to the baseline (e.g., 41% for LUL-seq greedy, 73% for LUL-tok+seq greedy), though using n-gram

repetition candidates yielded further improvements (Section 4.5.2, Table 4.3). Improvements in

single-token metrics were similar to those from the n-gram repetition candidates (e.g., wrep .287).

These results with random-seq candidates demonstrate that sequence �ne-tuning can yield im-

provements without explicitly using the notion of repetition for candidate selection. We also �nd

that penalizing 90% of the generated tokens yields substantial improvements in beam search, but

not greedy search; investigating this is left as future work.

4.7 Conclusion

We described unlikelihood training, an approach to training neural language models. We ob-

served that state-of-the-art models trained to maximize likelihood exhibit neural text degener-

ation, which we characterized and quanti�ed in terms of repetition and token distribution mis-

match. Our results show that the likelihood objective is not constrained enough, in the sense that

two models with the same perplexity can exhibit wildly di�erent generation performance. We

empirically showed that unlikelihood training - both at the token and sequence levels - substan-

tially reduced degeneration according to automatic metrics, and outperformed likelihood-trained
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Model ?penal search seq-rep-4 uniq-seq ppl acc rep wrep uniq

LMLE
- greedy .429 10.6k 24.590 .401 .619 .346 11.6k- beam .495 9.4k

LUL-seq 0.1 greedy .253 9.9k 24.329 .404 .602 .330 12.3kbeam .274 13.1k

LUL-seq 0.9 greedy .434 5.3k 26.519 .399 .600 .330 12.2kbeam .231 13.5k

LUL-tok+seq 0.1 greedy .116 12.5k 25.518 .399 .551 .287 13.2kbeam .146 14.2k

LUL-tok+seq 0.9 greedy .423 6.7k 26.629 .396 .551 .288 13.2kbeam .080 16k

Human - - .005 18.9k - - .479 - 18.9k

Table 4.8: Results for sequence-level fine-tuning using random-seq candidates according to sequence-
level (le�) and token-level (right) metrics using the validation subset of wikitext-103.

models with various decoding methods according to human evaluation, being superior to the cur-

rent state-of-the-art approaches.

4.8 Developments since chapter release

We have published our work in the proceedings of ICLR 2020 [150]. In addition to this work,

we have applied the unlikelihood training framework in the context of dialogue modeling to

address a similar kind of degeneracy [81]. In particular, we have shown that unlikelihood training

can be used with external negative candidates to reduce inconsistency in the form of contradiction

with the context.

Our �ndings gained attention and further work was built on top of it. Fu et al. [40] have done a

theoretical analysis of a repetition problem and propose a novel encoding approach which reduces

context-level ambiguity of a next token prediction. Su et al. [139] used unlikelihood training for

non-autoregressive text generation, where the repetition degeneracy exhibits itself even more

due to conditional independence approximation. Bahuleyan and Asri [7] applied our proposed

framework to increase diversity of the keyphrase generation model.
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Other works proposed alternative variants of training objectives and decoding algorithms

addressing this repetition issue. Lin, Han, and Joty [82] altered cross-entropy gradient with the

’ScaleGrad’ modi�cation. They showed that it facilitates the model to use more novel tokens

during generation. Jiang et al. [56] proposed a new objective called ’TLDR’ which stands for

"Token Loss Dynamic Reweighting". It increases the error signal contribution for ’hard to learn’

tokens. The level of hardness was approximated via the value of per token objective during

training. Similarly to the nucleus sampling from Holtzman et al. [52], Martins, Marinho, and

Martins [86] proposed to sample from the model parametrized with the entmax transformation

[111]. In that case, the process of truncating the tail of the distribution is not needed, because the

model induces a sparse distribution by design.
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5 | Non-termination, consistency, and

incomplete decoding

5.1 Introduction

Neural sequence models trained with maximum likelihood estimation (MLE) have become

a standard approach to modeling sequences in a variety of natural language applications such

as machine translation [6], dialogue modeling [146], and language modeling [115]. Despite this

success, MLE-trained neural sequence models have been shown to exhibit issues such as length

bias [136, 138] and degenerate repetition [52]. These issues are suspected to be related to the

maximum likelihood objective’s local normalization, which results in a discrepancy between the

learned model’s distribution and the distribution induced by the decoding algorithm used to gen-

erate sequences [3, 70]. This has prompted the development of alternative decoding methods [52,

154] and training objectives [97, 150]. In this chapter, we formalize and study this discrepancy

between the model and the decoding algorithm.

We begin by formally de�ning recurrent neural language models, a family that encompasses

neural models used in practice, such as recurrent neural networks [22, 34, 48], and transformers

[143]. Next, we formally de�ne a decoding algorithm – a function that induces a distribution

over sequences given a recurrent language model and a context distribution – which is used to

obtain probable sequences from a model. In this chapter, we show that the distribution induced
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by a decoding algorithm can contradict this intended use; instead, the decoding algorithm may

return improbable, in�nite-length sequences.

Our main �nding is that a sequence which receives zero probability under a recurrent lan-

guage model’s distribution can receive nonzero probability under the distribution induced by a

decoding algorithm. This occurs when the recurrent language model always ranks the sequence

termination token outside of the set of tokens considered at each decoding step, yielding an

in�nite-length, zero probability sequence. This holds whenever the decoding algorithm is incom-

plete, in the sense that the algorithm excludes tokens from consideration at each step of decoding,

which is the case for common methods such as greedy search, beam search, top-: sampling [36],

and nucleus sampling [52]. We formalize our main �nding using the notion of consistency [19] –

whether a distribution assigns probability mass only to �nite sequences – and prove that a con-

sistent recurrent language model paired with an incomplete decoding algorithm can induce an

inconsistent sequence distribution.

Based on the insight that inconsistency occurs due to the behavior of the termination token

under incomplete decoding, we develop two methods for addressing inconsistency. First, we

propose consistent sampling methods which guarantee that the termination token is not excluded

from selection during decoding. Second, we introduce a self-terminating recurrent language model

which ensures that the termination token is eventually ranked above all others, guaranteeing

consistency under incomplete decoding.

To empirically measure inconsistency, we decode sequences from trained recurrent language

models and measure the proportion of sequences with lengths far exceeding the maximum train-

ing sequence length. Our experiments on the Wikitext2 dataset [90] suggest that inconsistency

occurs in practice when using incomplete decoding methods, while the proposed consistent sam-

pling methods and self-terminating model parametrization prevent inconsistency and maintain

language modeling quality.

The theoretical analysis reveals defects of existing decoding algorithms, providing a way to
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develop future models, inference procedures, and learning algorithms. We present methods re-

lated to sampling and model parametrization, but there are more directions for future investiga-

tion; we close with directions related to sequence-level learning.

5.2 Background

We begin our discussion by establishing background de�nitions. First, we de�ne a sequence

which is the main object of our investigation.

De�nition 5.2.1 (Sequence). A sequence . is an ordered collection of items from a prede�ned

�nite vocabulary+ . A sequence of �nite length always ends with a special token 〈eos〉 ∈ + that only

appears at the end of a sequence.

Each model we consider generates a sequence conditioned on context information, such as a

pre�x in sentence completion. To consider this, we de�ne a context distribution.

De�nition 5.2.2 (Context distribution). A context distribution ? (�) is a probability distribution

de�ned over a set C. An element � ∈ C is called a context.

5.2.1 Recurrent Language Models

A recurrent language model is an autoregressive model of a sequence distribution, where each

conditional probability is parameterized with a neural network. Importantly, we assume that all

tokens in a sequence are dependent on each other under a recurrent language model. This allows

us to avoid cases in which the model degenerates to a Markovian language model, such as an

=-gram model with a �nite =.

De�nition 5.2.3 (Recurrent language model). A recurrent language model ?\ is a neural network
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that computes the following at each time step:

?\ (~C = E |~<C ,�) =
exp(D>E ℎC + 2E )∑

E ′∈+ exp(D>
E ′ℎC + 2E ′)

,

where ℎC = 5\ (~C , ℎC−1) and ℎ0 = 6\ (�), and D, 2, \ are parameters. A recurrent language model

thereby computes the probability of a sequence . = (~1, . . . , ~) ) by

?\ (. |�) =
)∏
C=1

?\ (~C |~<C ,�),

where ~<C = (~1, . . . , ~C−1). This distribution satis�es ~8 6⊥⊥ ~ 9 |�, ∀8 < 9 .

Practical variants of the recurrent language model di�er by the choice of transition function

5\ [22, 34, 48, 143]. The use of softmax [16] implies that every unique token in the vocabulary is

considered at every location of a sequence.

Remark 5.2.1. Under the conditional distribution of a recurrent LM, every token E ∈ + is assigned

a positive probability, implying that 0 < ?\ (E |~<C ,�) < 1. Any �nite sequence is probable under a

recurrent LM under any context, i.e., ?\ (. |�) > 0 for any sequence . of �nite length.

5.2.2 Decoding Algorithms

Because it is intractable to decode the most probable sequence in general, it is necessary in

practice to use an approximate decoding algorithm.

De�nition 5.2.4 (Decoding algorithm). A decoding algorithm F (?\ ,�) is a function that generates

a sequence .̃ given a recurrent language model ?\ and context � . Let @F denote the distribution

induced by the decoding algorithm F .

We consider two families of decoding algorithms. In our analysis we only consider algorithms

that decode in a single pass, forward in time, without modifying previously selected tokens.
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Stochastic decoding. The �rst family consists of stochastic algorithms. Among them, ances-

tral sampling is asymptotically unbiased and can be used for �nding the most probable sequence,

although with high variance.

De�nition 5.2.5 (Ancestral sampling). Ancestral sampling Fanc generates a sequence from a recur-

rent language model ?\ given context� by recursively sampling from ?\ (~C | ~̃<C ,�) until ~̃C = 〈eos〉:

~̃C ∼ ?\ (~C | ~̃<C ,�).

To avoid the high variance, two approximate stochastic decoding algorithms have recently

been proposed and tested with recurrent language models. Top-: sampling considers only a

subset of the : most probable tokens from the vocabulary at a time, while nucleus sampling

considers only the minimal subset of most probable tokens whose total probability is higher than

a prede�ned threshold.

De�nition 5.2.6 (Top-: sampling [36]). Top-: sampling Ftop-k generates a sequence from a recur-

rent language model ?\ given context � by recursively sampling from:

@(E) ∝


?\ (E |~<C ,�), if E ∈ +: ,

0, otherwise.

where +: = arg top-k
E ′

?\ (E′ |~<C ,�).

De�nition 5.2.7 (Nucleus sampling [52]). Nucleus sampling Fnuc-` generates a sequence from a

recurrent language model ?\ given context � by recursively sampling from the following proposal

distribution. Let E1, . . . , E |+ | denote tokens in+ such that ?\ (E8 |~<C ,�) ≥ ?\ (E 9 |~<C ,�) for all 8 < 9 ,

and de�ne

@(E) ∝


?\ (E |~<C ,�), if E ∈ +`,

0, otherwise,
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where +` =
{
E1, · · · , E:`

}
with

:` = min

{
:

����� :∑
8=1

?\ (E8 |~<C ,�) > `

}
.

Deterministic decoding. The other family consists of deterministic decoding algorithms,

where a token is selected deterministically according to a rule at each decoding step. The most

naive algorithm, called greedy decoding, simply takes the most probable token at each step.

De�nition 5.2.8 (Greedy decoding). Greedy decoding Fgreedy generates a sequence from a recurrent

language model ?\ given context � by recursively selecting the most likely token from ?\ (~C |~̃<C ,�)

until ~̃C = 〈eos〉:

~̃C = arg max
E∈+

log?\ (~C = E | ~̃<C ,�).

In contrast to greedy decoding, beam search with width : , Fbeam-k, operates on the level of

partial sequences or pre�xes.

De�nition 5.2.9 (Pre�x). A pre�x dC is an ordered collection of items from+ . The score of a pre�x

is

B (dC ) =
C∑
g=1

log?\ (~g = dC [g] | dC [< g],�),

where dC [g] is a token at time g from dC .

Starting from a set of empty pre�xes, at each iteration a new pre�x set is formed by expanding

each pre�x, then choosing the : highest scoring expanded pre�xes.

De�nition 5.2.10 (Beam search). Beam search with width : , Fbeam−: , generates a sequence from

a recurrent language model ?\ by maintaining a size-: pre�x set Ptop
C . Starting with % C>?0 = ∅, at

each iteration C ∈ {1, 2, . . .} beam search forms a new pre�x set Ptop
C by expanding the current set,
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PC =
⋃
d∈Ptop

C−1
{d ◦ E | E ∈ + } (where d ◦ E is concatenation), then choosing the : highest scoring

elements: Ptop
C = arg top-k

d∈PC
B (d). Any d ∈ Ptop

C ending with 〈eos〉 is restricted from being expanded

further, and is added to a set ( . Beam search ends when ( contains : sequences, and returns the

highest scoring sequence in ( .

Incompleteness. Other than ancestral sampling, the decoding algorithms above are incomplete

in that they only consider a strict subset of the full vocabulary + at each time step, aside from

the trivial case of : = |+ |.1

De�nition 5.2.11 (Incomplete Decoding). A decoding algorithm F is incomplete when for each

context � and pre�x ~<C , there is a strict subset + ′C ( + such that

∑
E∈+ ′C

@F (~C = E |~<C ,�) = 1.

5.3 Consistency of a Decoding Algorithm

Definition of consistency. A recurrent language model ?\ may assign a positive probability

to an in�nitely long sequence, in which case we call the model inconsistent. This notion of

consistency was raised and analyzed earlier, for instance by Booth and Thompson [14] and Chen

et al. [19], in terms of whether the distribution induced by ?\ is concentrated on �nite sequences.

We extend their de�nition to account for the context � .

De�nition 5.3.1 (Consistency of a recurrent language model). A recurrent language model is

consistent under a context distribution ? (�) if ?\ ( |. | = ∞) = 0. Otherwise, the recurrent language

model is said to be inconsistent.

Any sequence decoded from a consistent model for a given context is guaranteed to terminate.
1Nucleus sampling is incomplete when for every context � and pre�x ~<C , minE∈+ ?\ (E |~<C ,�) < 1 − `.
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Lemma 5.3.1. If a recurrent LM ?\ is consistent, ?\ ( |. | = ∞ |�) = 0 for any probable context � .

Proof. Suppose there exists a probable context �̃ such that ?\ ( |. | = ∞ | �̃) > 0. Then

?\ ( |. | = ∞) = E [?\ ( |. | = ∞ |�)] ≥ ? (�̃)?\ ( |. | = ∞ | �̃) > 0,

which contradicts the consistency of the model ?\ . �

Next, we establish a practical condition under which a recurrent language model is consistent.

Lemma 5.3.2. A recurrent LM ?\ is consistent if ‖ℎC ‖? is uniformly bounded for some ? ≥ 1.

Proof. Let � > 0 be an upper bound such that ‖ℎC ‖? < � for all C . Let @ be the conjugate of ?

satisfying 1/? + 1/@ = 1. Then we have from Hölder’s inequality, for all E ∈ + and C ,

D>E ℎC ≤ ‖D>E ℎC ‖1 ≤ ‖ℎC ‖? ‖DE ‖@ < �D+,

where D+ = maxE∈+ ‖DE ‖@ . Note that

log
∑
E∈+

4D
>
E ℎC+2E ≤ log

(
max
E∈+

4D
>
E ℎC+2E × |+ |

)
≤ max

E∈+
{D>E ℎC + 2E } + log |+ |

< �D+ + 2+ + log |+ |,

where 2+ = maxE∈+ 2E . For a given ~<C and context � ,

log?\ (〈eos〉 |~<C ,�) = (D>〈eos〉ℎC + 2 〈eos〉) − log
∑
E∈+

4D
>
E ℎC+2E

> (−�D+ + 2 〈eos〉) − (�D+ + 2+ + log |+ |) > −∞,
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and it follows that ?\ (〈eos〉 |~<C ,�) > b > 0 for some strictly positive constant b . Then

?\ ( |. | = ∞) = lim
C→∞

?\ ( |. | > C) = lim
C→∞
E [?\ ( |. | > C |�)]

= E
[

lim
C→∞

?\ ( |. | > C |�)
]
≤ E

[
lim
C→∞
(1 − b)C

]
= 0,

and hence ?\ is consistent. �

Although this condition is practical because layer normalization or bounded activation func-

tions [22, 34, 143] result in bounded ℎC , we show that even if a recurrent language model is

consistent, a decoding algorithm may produce an in�nite-length sequence. We formalize this

discrepancy using the consistency of a decoding algorithm.

De�nition 5.3.2 (Consistency of a decoding algorithm). A decoding algorithm F is consistent

with respect to a consistent recurrent language model ?\ under a context distribution ? (�) if the

decoding algorithm F preserves the consistency of the model ?\ , that is, @F ( |. | = ∞) = 0.

When a consistent recurrent language model ?\ and a decoding algorithm F induce a con-

sistent distribution @F , we say that ?\ paired with F is consistent. For instance, any consistent

recurrent language model paired with ancestral sampling is consistent, because the induced dis-

tribution @Fanc is the same as the distribution of the original model. We also have an analogue of

Lemma 5.3.1.

Lemma 5.3.3. A consistent decoding algorithm with respect to a consistent recurrent LM decodes

only probable sequences. That is, if @F (. |�) > 0, then ?\ (. |�) > 0 for any probable context � .

Proof. Suppose there exists a decoded sequence .̃ byF and probable context �̃ such that@F (.̃ | �̃) >

0 but ?\ (.̃ | �̃) = 0. By Remark 2.1, the sequence .̃ is of in�nite length and thus@F ( |. | = ∞ | �̃) ≥

@F (.̃ | �̃) > 0, which contradicts the consistency of @F by Lemma 3.1. �
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Figure 5.1: A depiction of the model’s sequence distribution (light grey, solid border) and the decoder’s
induced sequence distribution (dark grey, do�ed border). The white and black rectangles depict the set of
all finite and infinite sequences, respectively. We prove that under practical conditions, any incomplete
decoding algorithm may be inconsistent with respect to a consistent model, as depicted.

Inconsistency of incomplete decoding. Any incomplete decoding algorithm (De�nition 5.2.11)

can be inconsistent regardless of the context distribution, because there is a recurrent LM that

places 〈eos〉 outside of + ′C at every step of decoding. To show this, we construct a consistent

recurrent language model whose distribution induced by an incomplete decoding algorithm is

inconsistent.

Theorem 5.3.1 (Inconsistency of an incomplete decoding algorithm). There exists a consistent

recurrent LM ?\ from which an incomplete decoding algorithm F , that considers only up to ( |+ |−1)-

most likely tokens according to ?\ (~C |~<C ,�) at each step C , �nds an in�nite-length sequence .̃ with

probability 1, i.e., @F ( |. | = ∞) = 1.

Proof. We prove this theorem by constructing a tanh recurrent network. We de�ne the recurrent

function 5\ as

ℎC = 5\ (~C , ℎC−1) = tanh
©­­«

,ℎ 0

0 �

 ℎC−1 +


0

4 (~C )


ª®®¬ ,
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where 4 (~C ) ∈ R|+ | is a one-hot representation of ~C , ,ℎ ∈ R3×3 where every entry is positive,

and � is an identity matrix of size |+ | × |+ |. ℎ0 = 6\ (�) is constructed to consist of positive values

only. Because each element of |ℎC | is bounded by 1, the constructed recurrent language model ?\

is consistent by Lemma 5.3.2.

We set DE (see De�nition 5.2.3) to

DE =


D̄E

4 (E)

 , D〈eos〉 =


D̄〈eos〉

4 (〈eos〉)

 ,
where E ≠ 〈eos〉, all elements of D̄E are positive, all elements of D̄〈eos〉 are negative, and 4 (E) is a

one-hot representation of E . 2E is set to zero.

This de�nes a valid recurrent language model (De�nition 5.2.3), since the conditional distri-

bution at each time C is in�uenced by all the previous tokens. More speci�cally, the logit of a

token E depends on
∑C
C ′=1 1(~C ′ = E), where 1 is an indicator function.

This recurrent language model always outputs positive logits for non-〈eos〉 tokens, and out-

puts negative logits for the 〈eos〉 token. This implies ? (〈eos〉 |~<C ,�) < ? (E |~<C ,�) for all

E ∈ + \ {〈eos〉}. This means that 〈eos〉 is always ranked last at each time step, so an incom-

plete decoding algorithm that considers at most ( |+ | − 1) most probable tokens at each time step

from ?\ (~C |~<C ,�) cannot decode 〈eos〉 and thus always decodes an in�nitely long sequence .̂ ,

i.e., @F ( |. | = ∞ |�) = 1 for any context � . It yields @F ( |. | = ∞) = 1, while ?\ ( |. | = ∞) = 0 due

to consistency of the model ?\ . �

Greedy decoding, beam search, top-: sampling, and nucleus sampling are all inconsistent

according to this theorem.
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5.4 Fixing the inconsistency

In this section, we consider two ways to prevent inconsistency arising from incomplete decod-

ing algorithms. First, we introduce consistent versions of top-: and nucleus sampling. Second,

we introduce the self-terminating recurrent language model, which is consistent when paired with

any of the decoding algorithms considered in this chapter.

5.4.1 Consistent Sampling Algorithms

The proof of Theorem 5.3.1 suggests that the inconsistency of incomplete decoding algorithms

arises from the fact that 〈eos〉 may be excluded inde�nitely from the set of top-ranked tokens.

We propose a simple modi�cation to top-: and nucleus sampling that forces 〈eos〉 to be included

at each step of decoding. First, we give a condition for when a particular model ?\ paired with a

decoding algorithm F is consistent.

Theorem 5.4.1. Suppose a recurrent LM ?\ has uniformly bounded ‖ℎC ‖? for some ? ≥ 1. If a

decoding algorithm F satis�es@F (〈eos〉 |~<C ,�) ≥ ?\ (〈eos〉 |~<C ,�) for every pre�x~<C and context

� , then the decoding algorithm F is consistent with respect to the model ?\ .

Proof. By Lemma 5.3.2 the model ?\ is consistent and ?\ (〈eos〉 |~<C ,�) > b for some positive

value b . Thus, @F (〈eos〉 |~<C ,�) ≥ ?\ (〈eos〉 |~<C ,�) > b . For C ≥ 1,

@F ( |. | > C |�) = @F (~1 ≠ 〈eos〉 , · · · , ~C ≠ 〈eos〉 |�) ≤ (1 − b)C .

Taking the limit C →∞ and expectation over � , we have

@F ( |. | = ∞) = E�
[

lim
C→∞

@F ( |. | > C |�)
]
≤ lim
C→∞
(1 − b)C = 0,

from which the decoding algorithm is consistent. �
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We de�ne consistent variants of top-: and nucleus sampling which satisfy this condition.

De�nition 5.4.1 (Consistent top-: sampling). Consistent top-: sampling is top-: sampling with

the following modi�ed proposal distribution:

@(E) ∝


?\ (E |~<C ,�), if E ∈ + ′,

0, otherwise,

where + ′ = {〈eos〉} ∪ arg top-k
E ′

?\ (E′ |~<C ,�).

De�nition 5.4.2 (Consistent nucleus sampling). Consistent nucleus sampling is nucleus sampling

with the following modi�ed proposal distribution:

@(E) ∝


?\ (E |~<C ,�), if E ∈ +` ∪ {〈eos〉},

0, otherwise.

The induced probability of 〈eos〉 under these two algorithms is always equal to or larger than

the model’s probability. By Theorem 5.4.1, these algorithms are consistent with respect to any

consistent recurrent language model.

5.4.2 Self-Terminating Recurrent LM

Although these consistent sampling algorithms can be used with any recurrent language

model, their stochastic nature may not be suitable for �nding a single, highly probable sequence.

To avoid this limitation, we propose the self-terminating recurrent language model (STRLM).

De�nition 5.4.3 (Self-terminating recurrent language model). A self-terminating recurrent lan-
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Figure 5.2: The self-terminating recurrent LM uses the layer shown in grey instead of the standard
so�max layer. The layer takes logits (D>· ℎC ), the previous step’s 〈eos〉 probability (? 〈eos〉

C−1 ), and a hyper-
parameter n ∈ (0, 1). The layer computes U using Definition 5.4.3, which determines the 〈eos〉 probability
(? 〈eos〉
C ∈ (n, 1)), and guarantees that ? 〈eos〉

C > ?
〈eos〉
C−1 . The remaining probability mass is allocated to the

non-〈eos〉 tokens.
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guage model computes the following conditional probability at each time step:

?\ (E |~<C ,�) =


1 − U (ℎC ), E = 〈eos〉 ,

U (ℎC ) exp(D>E ℎC+2E)∑
E′∈+ ′ exp(D>

E′ℎC+2E′)
,

U (ℎ0) = f (D>〈eos〉ℎ0),

U (ℎC ) = f (D>〈eos〉ℎC ) [1 − ?\ (〈eos〉 |~<C−1,�)] ,

with f : R→ [0, 1 − Y] and Y ∈ (0, 1). ℎC is computed as in the original recurrent LM.

The underlying idea is that the probability of 〈eos〉 increases monotonically, since

?
〈eos〉
C = 1 −

C∏
C ′=0

f (D>〈eos〉ℎC ′).

Consequently, the STRLM is consistent when paired with greedy decoding or beam search as we

show in the following theorems.

Theorem 5.4.2. Greedy decoding is consistent with respect to any self-terminating recurrent LM.

Proof. Let ? 〈eos〉
C denote ?\ (〈eos〉 |~<C ,�) and 0〈eos〉

C denote D>〈eos〉ℎC + 2 〈eos〉 . By De�nition 5.4.3 we

have

?
〈eos〉
C = 1 − f (0〈eos〉

C ) (1 − ? 〈eos〉
C−1 )

= 1 −
C∏

C ′=0
f (0〈eos〉

C ′ ) ≥ 1 − (1 − n)C+1.

Take � = − log 2/log(1 − n). We then have ? 〈eos〉
C > 1/2 for all C > �, which implies that 〈eos〉 is

always the most probable token after time step �. Hence, the sequence length is less than � with

probability 1. �

Theorem 5.4.3. Beam search with width : , Fbeam−: , is consistent with respect to any STRLM.
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Proof. Let ( (d) be the size-: set of sequences kept by Fbeam−: that start with a pre�x d .

Take � = − log 2/log(1 − n) as in the proof of Theorem 4.2. Suppose that there exists at least

one pre�x d̂ ∈ % top
�

which does not end with 〈eos〉.

We �rst want to show that d̂ induces at most : more steps in beam search with width : , that

is, . ∈ ( (d̂) implies |. | ≤ � + : .

We know from the proof of Theorem 4.2 that an STRLM ?\ satis�es: for any context � and

E ∈ + \ {〈eos〉},

?\ (〈eos〉 | d̂,�) > ?\ (E | d̂,�).

For any subsequence ~ = (~1, . . . , ~; ) with ~1 ≠ 〈eos〉,

?\ (d̂ ◦ ~ | d̂,�) =
;∏
8=1

?\ (~8 | d̂ ◦ ~<8,�)

≤ ?\ (~1 | d̂,�)

< ?\ (〈eos〉 | d̂,�).

Thus, d̂ ◦ 〈eos〉 is the most probable sequence among sequences starting with the pre�x d̂ , and it

follows that d̂ ◦ 〈eos〉 ∈ ( (d̂).

Thus, in ( (d̂), there are (: − 1) sequences starting with d̂ ◦ E for E ∈ + \ {〈eos〉}. By the same

argument, at each step at least one sequence ending with 〈eos〉 is added to ( (d̂), and therefore at

time step (� + :), : sequences ending with 〈eos〉 are in ( (d̂).

Note that the result set ( by Fbeam−: (De�nition 2.11) satis�es

( ⊆
⋃
d∈% top

�

( (d).

81



Since each d ∈ % top
�

induces sequences of length at most � + : , we have

?\ ( |. | > � + : |�) = 0.

Taking the expectation over � yields the consistency of the model ?\ . �

5.5 Empirical Validation

The theoretical results rely on the existence of a model that results in inconsistency; it remains

to be shown that inconsistency with respect to incomplete decoding occurs with recurrent lan-

guage models encountered in practice. Moreover, while the proposed methods carry theoretical

guarantees in terms of consistency, we must check whether they retain language modeling qual-

ity. To do so, we perform experiments using a sequence completion task. In each experiment, we

use the beginning of a sequence as context, then decode continuations from a trained recurrent

LM and measure the proportion of non-terminated sequences in order to approximately measure

inconsistency. The �rst experiment (Section 5.5.1) shows that inconsistency occurs in practice,

and the second experiment (Section 5.5.2) shows the e�ectiveness of the proposed approaches.

Our third experiment (Section 5.5.3) shows that inconsistency also occurs frequently in GPT-2, a

large-scale transformer language model.2

Seqence completion. We evaluate recurrent language models on a sequence completion task,

which has previously been used to evaluate the e�ectiveness of sequence models, e.g., Graves [44],

Holtzman et al. [52], Radford et al. [115], Sutskever, Martens, and Hinton [141], and Welleck et al.

[150]. Sequence completion is a general setting for studying the behavior of language models,

encompassing machine translation [6], story generation [36], and dialogue modeling [146]. The

task consists of decoding a continuation .̂ ∼ F (?\ ,�) given a length-: pre�x � = (21, . . . , 2:),
2Code available at https://github.com/uralik/consistency-lm.
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resulting in a completion (21, . . . , 2: , ~̂1 . . . , ~̂) ).

Dataset. Our �rst two experiments use Wikitext2 [90], which consists of paragraphs from

English Wikipedia, since it has frequently been used to evaluate language models [43, 88, 89].

We consider both word and BPE3 tokenization. We split each paragraph into sentences using

Spacy4. We split each sequence, using the �rst : tokens as a context and the remaining tokens

as a continuation. To ensure that each sequence contains a pre�x, we prepend padding tokens to

make it length : . Special 〈bos〉 and 〈eos〉 tokens are inserted at the beginning and end of each

sequence. We use : = 10. Table 5.5 contains dataset statistics.

Context distribution. We de�ne empirical context distributions with pre�xes from the train,

valid, and test sets: ? (�;D) = 1
|D|

∑|D|
==1 1(� = � (=)), whereD = {(� (=), . (=))}#==1 is a dataset split.

Evaluation metrics. We use �nite sequences to approximately measure the consistency of a

model paired with a decoding algorithm, since decoding an in�nite-length sequence is impossible.

We use the proportion of decoded continuations that are longer than a prede�ned limit,

A! =
1
|D|

|D|∑
==1

1( |.̂ (=) | ≥ !),

where .̂ (=) ∼ F (?\ ,� (=)) for each context � (=) in D. We call A! the non-termination ratio of the

decoding algorithm F for an underlying model and context distribution. A value of A! greater

than zero means that some sequences did not terminate within ! steps. When ! is in�nity, this

implies that the model paired with the decoding algorithm is inconsistent. In practice, we use a

�nite ! that is substantially larger than the maximum training sequence length, and we interpret

a non-zero A! as evidence that the model paired with the decoding algorithm is inconsistent. We

use ! = 1500, more than 10 times the max training sequence length.
3github.com/huggingface/tokenizers
4https://spacy.io/
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In each experiment, we report the mean and standard deviation of metrics across 10 indepen-

dent initializations. Unless speci�ed otherwise, we report metrics using the test context distribu-

tion, since the train, valid, and randomly generated context distributions had similar results.

Training. We train recurrent language models for sequence completion with maximum likeli-

hood, using the lossL(?\ , . ) = −
∑)
C=1 log?\ (~C |~<C , 21, . . . , 2:), where. = (21, . . . , 2: , ~1, . . . , ~) ).

This amounts to running the full training sequence through a recurrent model and zeroing the

loss for the �rst : tokens, so that the �rst : steps correspond to learning a 6\ that encodes the

context.

model context perplexity

tanh-RNN train 61.20 ± 1.2
tanh-RNN test 186.44 ± 1.4

LSTM-RNN train 72.72 ± 2.4
LSTM-RNN test 178.39 ± 1.2

Table 5.1: Perplexities of trained recurrent language models (BPE tokenization).

model context perplexity

tanh-RNN train 91.54 ± 7.9
tanh-RNN test 136.57 ± 1.8

LSTM-RNN train 45.80 ± 2.5
LSTM-RNN test 91.86 ± 0.4

Table 5.2: Perplexities of trained recurrent language models (word tokenization).

Models. We consider recurrent neural networks with hyperbolic tangent activations [tanh-

RNN; 34] and LSTM units [LSTM-RNN; 48]. We perform an initial hyper-parameter sweep (see

Tables 5.3 and 5.4 for hyper-parameter ranges) and select the best set of hyper-parameters for

each of tanh-RNN and LSTM-RNN based on the validation perplexities. With this best set of

hyperparameters, we train each of these models with 10 di�erent initializations. The choice of
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Parameter Values

Hidden Size {256, 512, 1024}
Dropout {0.1, 0.3, 0.5}
Embedding Weight Tying {True, False}

Table 5.3: Grid search specification. The values selected for the LSTM-RNN and tanh-RNN models are
shown in bold and italics, respectively (word tokenization).

Parameter Values

Hidden Size {256, 512, 1024}
Dropout {0.1, 0.3, 0.5}
Embedding Weight Tying {True, False}

Table 5.4: Grid search specification. The values selected for the LSTM-RNN and tanh-RNN models are
shown in bold and italics, respectively (BPE tokenization).

tanh and LSTM RNNs implies that all of the recurrent language models that we train are consistent

according to Lemma 5.3.2. Perplexities with models trained with word and BPE tokenization are

presented in Tables 5.1 and 5.2. Our LSTM models achieve similar test perplexity (91.86 ± 0.4,

word tokenization) to those reported in previous work [89].

Additionally, we train self-terminating tanh-RNN and LSTM-RNN variants (De�nition 5.4.3)

at various values of Y, which controls a lower bound on the termination probability at each step.

We use f (G) = (1 − Y) · sigmoid(G). We use the hyper-parameters selected in the preceding grid

search. Below, we consider BPE tokenization; similar conclusions held for word tokenization.

5.5.1 Inconsistency of Recurrent LMs

In this experiment, we demonstrate evidence of inconsistency with incomplete decoding

methods. Table 5.6 shows non-termination ratios for the recurrent language models using the

decoding algorithms considered in this work. Decoding with ancestral sampling always resulted

in sequences that terminated within ! steps, since the induced distribution is the same as that of

the consistent model. On the other hand, the non-zero non-termination ratios for the incomplete
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Type # Train # Valid # Test |+ | Avg. len

Word 78274 8464 9708 33182 24
BPE 83344 8721 10156 19483 28

Table 5.5: Wikitext2 statistics.

tanh-RNN LSTM-RNN

ancestral 0.00 ± 0.0 0.00 ± 0.0

greedy 12.35 ± 5.18 1.53 ± 1.41
beam-2 1.38 ± 0.95 0.07 ± 0.06
beam-4 0.25 ± 0.19 0.00 ± 0.01

topk-2 0.01 ± 0.01 0.01 ± 0.01
topk-4 0.00 ± 0.0 0.00 ± 0.01
nucleus-0.2 0.06 ± 0.02 0.13 ± 0.15
nucleus-0.4 0.04 ± 0.02 0.02 ± 0.01

consistent topk-2 0.00 ± 0.0 0.00 ± 0.01
consistent topk-4 0.00 ± 0.0 0.00 ± 0.0
consistent nucleus-0.2 0.04 ± 0.02 0.01 ± 0.01
consistent nucleus-0.4 0.02 ± 0.02 0.01 ± 0.01

Table 5.6: Non-termination ratio (A! (%)) of decoded sequences using ancestral sampling, incomplete,
and consistent decoding methods.

decoding algorithms suggest inconsistency with respect to each algorithm, providing evidence

for Theorem 5.3.1.

Using greedy decoding, roughly 12% of all contexts resulted in a non-terminating continuation

with the tanh-RNN, and roughly 1% with the LSTM-RNN. Nucleus sampling also produced non-

terminating sequences with the tanh-RNN (0.06%, nuc-0.2) and LSTM-RNN (0.13%, nuc-0.2). Top-

: sampling yielded a small number of non-terminating samples. In general, non-termination

approaches zero as : and ` increase, since 〈eos〉 has a lower chance of being excluded.

Beam search produced non-terminating sequences with both the tanh-RNN and LSTM-RNN

models. This means that 〈eos〉 was outside of the top tokens (determined by the beam width)

considered at each step, since in our experiments we terminated the beam search when a single
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beam pre�x contained 〈eos〉. Larger beam widths reduce non-termination, similar to increasing

: or `.

Pre�x One Direction delivered a performance of “ Kiss You
nucleus ” , and the album ’s second album , “ The X @-@ Files ” , “ The A. ” , “ The Preder ” , “ We ’ve Have

You ” , “ I ’ve You Wanna Stay ” , “ The Dream ” , “ The Bide ” , “ My Achievement ”, “ The B. B. ” , “ A
Life ” . . .

c-nucleus ” , and “ My Boo ” was released on September 29 , 2010 . 〈eos〉
Pre�x Boulter starred in two �lms in 2008 ,
nucleus and the band ’s music , and “ The Rise of Monkey ” , “ The One With the Way ” , “ The “ Always ” , ” “

Always Your ” , “ The Wift ” , “ The Baste ” , “ The Special With ” , “ The Way ” , “ The Special With
You ” . . .

c-nucleus and the latter was released in the United States . 〈eos〉
Pre�x This period of unhappiness was the making of
Baseline the “ most important " of the “ mad " , and the “ “ most important " of the ” “ ” , “ the most important "

, and the “ devil " , “ The " , “ The One " , “ The One " , “ The One " , “ The One " , “ The One " , “ The
One " , “ The One " , “ The One " , “ The One " , “ The One " , “ The One " , “ The One " , “ The One " , “
The One " . . .

STRLM the �rst commandment of the poem . 〈eos〉
Pre�x Du Fu ’s mother died shortly after he was
Baseline a member of the Order of the Order of the Order of the Order of the Order of the Order of the Order of

the Order of the Order of the Republic of the Republic of the Republic of the Republic of the Republic
of . . .

STRLM a member of the Order of the British Empire . 〈eos〉

Table 5.7: Continuations with consistent nucleus sampling (` = 0.2) and self-terminating LSTM (n =

10−3).

5.5.2 Consistency of the Proposed Methods

Consistent sampling. Table 5.6 shows that consistent nucleus and top-: sampling (Section 5.4.1)

resulted in only terminating sequences, except for a few cases that we attribute to the �nite limit

! used to measure the non-termination ratio. Consistent nucleus paired with tanh-RNN did not

reduce A! as much as when it was paired with LSTM-RNN. Example continuations are shown in

Table 5.7. On pre�xes that led to non-termination with the baseline method, the quality tends to

improve with the consistent variant since the continuation now terminates. Note that since the

model’s non-〈eos〉 token probabilities at each step are only modi�ed by a multiplicative constant,

the sampling process can still enter a repetitive cycle (e.g., when the constant is close to 1), though
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ST n A! (%) perplexity

ta
nh

-R
N

N ! 10−2 00.00 ± 0.0 229.09 ± 9.2
! 10−3 00.00 ± 0.0 191.63 ± 1.4
! 10−4 00.02 ± 0.02 188.36 ± 2.2
7 – 12.35 ± 5.2 186.44 ± 1.4

LS
TM

! 10−2 0.00 ± 0.0 219.71 ± 9.2
! 10−3 0.00 ± 0.0 186.04 ± 1.6
! 10−4 0.18 ± 0.35 183.57 ± 2.3
7 – 1.48 ± 1.43 178.19 ± 1.3

Table 5.8: Non-termination ratio (A! (%)) of greedy-decoded sequences and test perplexity for STRLMs.

it is guaranteed to terminate.

Self-terminating RLM. As seen in Table 5.8, the self-terminating recurrent language models

are consistent with respect to greedy decoding, at the expense of perplexity compared to the

vanilla model. The value of Y from De�nition 5.4.3, which controls a lower-bound on termination

probability at each step, in�uences both A! and perplexity. When Y is too large (Y = 10−2), per-

plexity degrades. When Y is too small (Y = 10−4), the lower-bound grows slowly, so 〈eos〉 is not

guaranteed to be top-ranked within ! steps, resulting in a positive A! . An Y of 10−3 balanced con-

sistency and language modeling quality, with a zero non-termination ratio and perplexity within

8 points of the baseline.

As shown in Figure 5.3, the self-terminating model matches the data length distribution better

than the baseline. Example decoded sequences are shown in Table 5.7. For pre�xes that led

to non-termination with the baseline, the self-terminating models yields �nite sequences with

reasonable quality. The examples suggest that some cases of degenerate repetition [52, 150] are

attributed to inconsistency.
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ST n A! (%) perplexity

ta
nh

-R
N

N ! 10−2 0.00 ± 0.0 150.07 ± 2.7
! 10−3 0.00 ± 0.0 138.01 ± 0.6
! 10−4 1.04 ± 0.6 138.67 ± 1.8
7 – 6.07 ± 5.6 136.57 ± 1.8

LS
TM

! 10−2 0.00 ± 0.0 101.24 ± 0.3
! 10−3 0.00 ± 0.0 94.33 ± 0.6
! 10−4 0.94 ± 0.5 94.15 ± 0.8
7 – 1.03 ± 0.3 91.86 ± 0.4

Table 5.9: Non-termination ratio (A! (%)) of greedy-decoded sequences and test perplexity for self-
terminating recurrent models (word tokenization).

Figure 5.3: Lengths of generated sequences using greedy decoding from vanilla and self-terminating
LSTMs.

5.5.3 Inconsistency of GPT-2

We perform a �nal experiment with GPT-2 117M, a transformer language model pre-trained

with maximum likelihood on WebText, a collection of scraped web pages (see Radford et al. [116]).

GPT-2 has been observed to produce repetitive text with greedy and beam search [52].
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Experimental setup. We use the Wikitext-103 dataset [90], a large-scale collection of Wiki

articles with over 100 million words and 260 thousand unique tokens. We split the dataset into

sequences according to the dataset’s newline boundaries, then split each sequence into a context

� and continuation . , resulting in a dataset of (�,. ) pairs. Each continuation ends in a special

〈eos〉 token. We use a context size of : = 10 tokens, and discard sequences that are length : or

shorter. The resulting dataset contains 874,556 training, 1,896 validation, and 2,162 test pairs.

We �ne-tune the pre-trained GPT-2 model using maximum likelihood for 400k steps, and

select the model state with the lowest validation perplexity (evaluated every 5k steps). Each

training batch contains a maximum of 1024 total tokens. We use the implementation and default

hyper-parameters from the transformers library [153]. We �ne-tune the self-terminating GPT-

2 models in a similar manner, starting from the pre-trained GPT-2 model and using the same

hyper-parameters.

Each model is evaluated using greedy decoding with a maximum sequence length of 500,

which was selected so that each decoded validation batch could �t in GPU memory. We de�ne

the non-termination ratio (A!) using ! = 500; this limit is more strict than the limit used in the

preceding experiments (1500), yet still allows us to see large di�erences in generation behavior

between the model and the ground truth (e.g., see Figure 5.4).

Results. Table 5.10 shows the non-termination ratio and perplexity of the baseline and self-

terminating GPT-2 models. The self-terminating variant prevents non-termination, at the cost of

perplexity. The model here uses n = 2.5 × 10−3, which we selected after observing that at higher

values of n , e.g., 1.0× 10−3, the self-terminating model generated sequences longer than the limit

used to determine termination (500). Figure 5.4 shows the length distributions of the baseline

GPT-2 continuations and those of the self-terminating GPT-2. The GPT-2 117M model generates

many sequences at or near the maximum sequence length (500), unlike the ground-truth data.

Introducing self-termination shifts the mass towards shorter sequences, whose lengths are also
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A! (%) perplexity

GPT2-117M 37.91 20.92
GPT2-117M ST 00.00 27.25

Table 5.10: Non-termination ratio (A! (%)) of greedy-decoded sequences and perplexity for GPT2-117M
and the self-terminating variant (ST) on Wikitext-103.

present in the ground-truth data.

Figure 5.4: Lengths of ground-truth and greedy-decoded continuations from the baseline GPT-2 117M
and self-terminating GPT-2 117M models (n = 0.0025).

5.6 Future Directions

The methods we proposed in this chapter resolve inconsistency by changing the decoding

algorithm or model parametrization. Another approach is to address inconsistency in the learn-

ing phase. One interesting direction is to investigate whether the lack of decoding in maximum

likelihood learning is a cause of inconsistency. Maximum likelihood learning �ts the model ?\

using the data distribution, whereas a decoded sequence from the trained model follows the dis-

tribution @F induced by a decoding algorithm. Sequence-level learning, however, uses a decoding
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algorithm during training (e.g., Ranzato et al. [117]), which we hypothesize can result in a good

sequence generator that is consistent with respect to incomplete decoding.

5.7 Conclusion

We extended the notion of consistency of a recurrent language model put forward by Chen

et al. [19] to incorporate a decoding algorithm, and used it to analyze the discrepancy between

a model and the distribution induced by a decoding algorithm. We proved that incomplete de-

coding is inconsistent and proposed two methods to prevent this: consistent decoding and the

self-terminating recurrent language model. Using a sequence completion task, we con�rmed

that empirical inconsistency occurs in practice, and that each method prevents inconsistency

while maintaining the quality of the generated sequences. We suspect the absence of decoding in

maximum likelihood estimation as a cause behind this inconsistency, and suggest investigating

sequence-level learning as an alternative.
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5.8 Developments since chapter release

We have published this work in the proceedings of EMNLP 2020 [148]. After the study of the

non-termination issue and the analysis of consistency of the decoding-induced distribution, we

attempted to characterize the discrepancy between the distributions induced by every stage of the

learning pipeline [68]. In the context of mode-seeking decision rule, we proposed a novel mode

recovery cost to quantify this discrepancy between any pair of sequence-level distributions e.g.,

the empirical data distribution and the model distribution. We, however, limited our experiments

within a tractable toy setup, because the proposed measure is not computationally tractable with

real-world distributions. In contrast to our work measuring the termination statistics, Pillutla

et al. [112] designed "MAUVE" metric which measures the overlap between sequence-level dis-

tributions induced by large language models.

93



6 | Importance of search and

evaluation strategies in neural

dialogue modeling

6.1 Introduction

There are three high-level steps to building a neural autoregressive sequence model for dialog

modeling, inspired by work of Vinyals, Quoc, and Le [146]. First, decide on a network architec-

ture which will consume previous utterances as well as any extra information such as speaker

identi�ers. Second, choose a learning strategy. Finally, decide on a search algorithm, as neural

autoregressive sequence models do not admit a tractable, exact approach for generating the most

likely response.

Recent research in neural dialogue modeling has often focused on the �rst two aspects. A

number of variants of sequence-to-sequence models [21, 57, 142] have been proposed for dia-

logue modeling in recent years, including hierarchical models [131] and transformers [87, 157].

These advances in network architectures have often been accompanied by advanced learning al-

gorithms. Serban et al. [129] introduce latent variables to their earlier hierarchical model and

train it to maximize the variational lower bound, similar to Zhao, Zhao, and Eskenazi [164] who

propose to build a neural dialogue model as a conditional variational autoencoder. Xu et al. [155]
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and Li et al. [78] train a neural dialogue model as conditional generative adversarial networks [95].

These two learning algorithms, variational lower-bound maximization and adversarial learning,

have been combined into a single model by Shen et al. [133], which has been followed by Gu et al.

[46].

Despite abundant endeavors on modeling and learning, the search has received only a little

attention [30]. Most of the work on search has focused on training an additional neural network

that provides a supplementary score to guide either greedy or beam search. Li et al. [77] propose

a maximum mutual information criterion for decoding using a reverse model. This has been

extended by Li, Monroe, and Jurafsky [76], where an extra neural network is trained to predict an

arbitrary reward given a partial hypothesis and used during decoding. Similarly, Zemlyanskiy and

Sha [160] train a neural network that predicts the other participant’s personality given a partial

conversation and use its predictability as an auxiliary score for re-ranking a set of candidate

responses. None of these approaches study how the choice of the underlying search algorithm,

rather than its scoring function, a�ects the quality of the neural dialogue model.

In this paper, we investigate the e�ects of varying search and selection strategies on the qual-

ity of generated dialogue utterances. We start with an attention-based sequence-to-sequence

model [6] trained on the recently-released PersonaChat dataset [161]. We evaluate three search

algorithms: greedy search, beam search, and iterative beam search, the last of which we design

based on earlier works by Batra et al. [10]. These algorithms are qualitatively di�erent from each

other in the size of the subspace over which they search for the best response.

We compare all of these alternatives using two families of metrics. First, we use human evalu-

ation of a full, multi-turn conversation. The resulting distribution of annotator’s scores has huge

variance that is rarely discussed nor analyzed by other groups. This variance comes from each

annotator’s individual attitude towards and understanding of the task, which we call annotator

bias. To address this bias, we propose model-based Bayesian calibration that explicitly factors in

each annotator’s bias and the algorithm’s underlying score, and report the posterior mean and

95



variance of each algorithm’s score. Additionally, we also compare automatic metrics that capture

the model’s intrinsic preference (log-probability) and the diversity of responses (distinct-=).

We make two key observations from the experiments. A better search strategy can indeed

generate responses that are both intrinsically preferred by the underlying model and diverse,

without re-designing or re-training the neural dialogue model. However, this observation does

not necessarily carry over to human evaluation, as the best performing strategy according to

these automatic metrics was not the best strategy according to human annotators. These results

highlight both the importance of search algorithms as well as the di�culty in evaluating neural

dialogue systems in a realistic, full conversation setup.

Trained models, code and human evaluation transcripts publicly available1.

6.2 Neural dialogue modeling

Since Vinyals, Quoc, and Le [146], a neural autoregressive sequence model based on sequence-

to-sequence models Cho et al. [21] and Sutskever, Vinyals, and Le [142] have become one of the

most widely studied approaches to dialogue modeling [see, e.g., 46, 75, 76, 78, 94, 129, 131, 133,

155, 160, 161, 164]. In this approach, a neural sequence model is used to model a conditional

distribution over responses given a context which consists of previous utterances by both itself

and a partner in the conversation as well as any other information about the speaker.

6.2.1 Neural autoregressive seqence modeling

A neural autoregressive sequence model learns the conditional distribution over all possible

responses given the context. Each conditional distribution is modelled by a neural network, and

popular choices include recurrent neural networks [6, 21, 93, 142], convolutional networks [28,

41] and self-attention [140, 143]. We explore search strategies and �x the model to a recurrent
1https://github.com/uralik/beamdream
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neural network.

Learning: Maximum Likelihood Each example in the training set � consists of auxiliary in-

formation or context* (such as a persona pro�le or external knowledge context) and a sequence

of utterances, each of which is marked with a speaker tag, i.e., � = (* , (.01 , .11 , . . . , .0! , .
1
!
) ∈ � ,

where . B
;

is the utterance from the ;-th turn by a speaker B . The conditional log-probability as-

signed to this example given by a neural sequence model is then written as

log? (�) =
∑

B∈{0,1}

!∑
;=1

log? (. B
;
|. B

<;
, . B̄≤; ,* ), (6.1)

where B̄ = 0 if B = 1 and otherwise B̄ = 1.

Learning maximizes the log-probabilities of all conversations in the training set:

! =
1
|� |

∑
�∈�

log? (�), (6.2)

and is often done using stochastic gradient descent with backpropagation [123].

6.2.2 Inference (generation)

In this paper, we generate a response to the current state of the conversation (but do not

attempt to plan ahead to future exchanges), maximizing

log? (. |. B
<;
, . B̄

<;
,* ) =

)∑
C=1

log? (~C |~<C , . B<; , .
B̄
<;
,* ).

Unfortunately, it is usually intractable to solve this problem due to the exponentially growing

space of all possible responses w.r.t. the maximum length ) . It is thus necessary to resort to

approximate search algorithms.
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Greedy search Greedy search has been the search algorithm of choice among the recent papers

on neural dialogue modeling [46, 152, 155, 161, 164]. It moves from left to right selecting one token

at a time, simply choosing the most likely token at the current time step:

~̂C = arg max
E∈+

log? (~C = E |~̂<C , . B<; , .
B̄
<;
,* ).

Greedy search has been found signi�cantly sub-optimal within the �eld of machine transla-

tion [see, e.g., Table 1 in 20], where similar neural sequence models are frequently used.

Beam search Instead of maintaining a single hypothesis at a time, as in greedy search above,

at time step C beam search maintains a set of  hypothesesHC :

HC = {(~1
1, . . . , ~

1
C ), . . . , (~ 1 , . . . , ~ C )}. (6.3)

Each hypothesis ℎ8
~8C
, 8 ∈ {1, . . . ,  } fromHC is expanded with all possible next tokens E from the

vocabulary + to form candidate hypotheses. Each candidate is in the form of

ℎ̃8E = ℎ
8
~C
‖(E) = (~81, . . . , ~8C , E), (6.4)

and is assigned a score:

B (ℎ̃8E ) = B (ℎ8~8C ) + log? (E |~8≤C ). (6.5)

The new hypothesis set of  hypotheses is then constructed as

HC+1 = arg-top-:
8,E

B (ℎ̃8E ). (6.6)

From the new hypothesis set, we �nd and copy �nalized hypotheses (sequences ending with
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the special token 〈eos〉 for “end of sequence”) to a candidate sequence setMC . That is,

MC =
{
ℎ8E ∈ HC+1 |E = 〈eos〉

}
.

Beam search terminates when |∪C
C ′=1MC | ≥  ′, where ′ is the maximum number of candidate

sequences to be returned, or when C ≥ !max, where !max is the maximum length allowed for

each candidate sequence. When terminated, beam search returns all the candidate sequences in

M = ∪C
C ′=1MC .

One can increase the size of the subspace over which beam search searches for a response

and size of M by changing hyper-parameters  , ′, !max. However, beam search is known to

su�er from the problem that most of the hypotheses discovered inM are near each other in the

response space [75, 77]. For tasks such as dialogue modeling, which are much more open-ended

than, e.g., machine translation, this is particularly troublesome as many high-quality responses

may be missing in the beam.

Final seqence selection We consider search strategies to produce a set of candidate re-

sponses for the model to choose from. While greedy search provides only a single possible se-

quence, beam search generates a candidate set of size |M|. It is usual practice to use the score

B (ℎ) used during the search to select the �nal sequence, but it is an open question whether there

are better selection strategies for choosing between these �nal candidate responses.

Avoiding repeating =-grams Although this has not been reported in a formal publication in

the context of neural dialogue modeling, to our knowledge, Paulus, Xiong, and Socher [108] and

Klein et al. [60] implement so-called =-gram blocking. In =-gram blocking, a hypothesis in a beam

HC is discarded if there is an =-gram that appears more than once within it.
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6.3 Uncovering hidden responses

We now propose an improved search strategy. To address the locality issue in beam search,

we propose an iterative beam search to radically increase the size of the search space without

introducing much computational overhead, inspired by earlier work on diverse beam search [10,

75, 145].

6.3.1 Iterative beam search

The search space over which beam search has operated can be characterized by the union of

all partial hypothesis sets HC in Equation (6.3): S0 = ∪)C=1HC , where we use the subscript 0 to

indicate that beam search has been done without any other constraint. Re-running beam search

with an increased beam width  would result in the search space that overlaps signi�cantly with

S0, and would not give us much of a bene�t with respect to the increase in computation.

Instead, we keep the beam size  constant but run multiple iterations of beam search while

ensuring that any previously explored space S̄<; = ∪;−1
; ′=0S; ′ is not included in a subsequent iter-

ation of beam search. This is done by setting the score of each candidate hypothesis B (ℎ̃8C+1) in

Equation (6.5) to negative in�nity, when this candidate is included in S̄<; . We relax this inclusion

criterion by using a non-binary dissimilarity metric, and say that the candidate is included in S̄<; ,

if

min
ℎ∈S̄<;

Δ(ℎ̃8C+1, ℎ) < n, (6.7)

where Δ is a string dissimilarity measure, such as Hamming distance used in this work, and n is

a similarity threshold.

This procedure ensures that the new partial hypothesis set of beam search in the ;-th itera-

tion minimally overlaps with any part of the search space explored earlier during the �rst ; − 1
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iterations of beam search. By running this iteration multiple times, we end up with a set of top

hypotheses from each iteration of beam search, from which the best one is selected according to,

for instance, the log-probability assigned by the model. We build a �nal candidate setM as a set

of all these best hypotheses from beam search iterations.

Practical implementation A major issue with iterative beam search in its naive form is that

it requires running beam search multiple times, when even a single run of beam search can be

prohibitively slow in an interactive environment, such as in dialogue generation. We address this

computational issue by performing these many iterations of beam search in parallel simultane-

ously. At each time step in the search, we create sets of candidate hypotheses for all iterations in

parallel, and go through these candidate sets in a sequence from the (; = 0)-th iteration down to

the last iteration, while eliminating those candidates that satisfy the criterion in Equation (6.7).

We justify this parallelized approach by de�ning the similarity measure Δ to be always larger

than the threshold n when the previous hypothesis ℎ is longer than ℎ̃8C+1 in Equation (6.7).

6.4 Dialogue evaluation

Broadly, there are two ways to evaluate a neural dialogue model. The �rst approach is to use

a set of (often human-generated) reference responses and compare a single generated response

against them [83, 130]. There are several methods for this comparison: (1) measure the perplex-

ity of reference responses using the neural dialogue model, (2) compute a string match-based

metric of a generated response against reference responses, and (3) use human annotators to

compare model-generated responses against reference or other models’ responses. None of these

approaches capture the e�ectiveness of a neural sequence model in conducting a full conversa-

tion, because the model responses are computed given a human-written context, i.e., it does not

see its own responses in the dialogue history, but gold responses only.
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We concentrate on a second approach for evaluation where a neural dialogue model has a

multi-turn conversation with a human partner (or annotator) [30, 152, 160, 161]. Unlike other

approaches, it requires active human interaction, as a conversation almost always deviates from

a previously collected data even with the same auxiliary information (* in Equation (6.1)). This

evaluation strategy re�ects both how well a neural dialogue model generates a response given a

correct context as well as how well it adapts to a dynamic conversation—the latter is not measured

by the �rst strategy, where the model only has to generate a single response.

6.4.1 Human evaluation of a full conversation

An annotator is asked to make a conversation with a randomly selected model (search strat-

egy) for at least �ve turns. At the end of the conversation, we ask the annotator three sets of

questions:

1. Overall score ({1, 2, 3, 4})

2. Marking of each good utterance-pair ({0, 1})

3. Marking of each bad utterance-pair ({0, 1})

The �rst overall score allows us to draw a conclusion on which algorithm makes a better

conversation overall. We use a 4 point scale in order to avoid having a “catch-all” category in the

answer [26]. The latter two questions are collected to investigate the relationship between the

overall impression and the quality of each utterance-pair.

6.4.2 Bayesian calibration

Although human evaluation is desirable, raw scores collected by annotators are di�cult to

use directly due to the annotator bias. Some are more generous while others are quite harsh,

as recently reported in Zemlyanskiy and Sha [160] and Zhang et al. [161]. We propose using
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Figure 6.1: Graphical model used for Bayesian Calibration. " annotators participated such that in total
# observed scores are presented.

Bayesian inference as a framework to account for the bias of each annotator and describe two

instances of this framework.

1-4 star rating of a conversation We treat both the unobserved score "8 of each model, in

our case each search algorithm, and the unobserved bias � 9 of each annotator as latent variables.

The score of the 8-th model follows the following distribution: `8 ∼ U(1, 4) and "8 ∼ N(`8, 12),

whereU and N are uniform and normal distributions. It states that a priori each model is likely

to be uniformly good or bad. The annotator bias � 9 follows � 9 ∼ N(0, 12), where we are assuming

that each annotator does not have any bias a priori.

Given the model score"8 and annotator bias � 9 , the conditional distribution over an observed

score (8 9 given by the 9-th annotator to the 8-th model is then:

(8 9 ∼ N("8 + � 9 , 12).

Due to the nature of human evaluation, only a few of (8 9 ’s are observed. Figure 6.1 shows the

graphical model described above.
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The goal of inference in this case is to infer the posterior mean and variance:

E["8 |
{
(8 9 |(8 9 ∈ O

}
], (6.8)

V["8 |
{
(8 9 |(8 9 ∈ O

}
],

where O is a set of observed scores.

Binary rating of an utterance When an annotator labels pairs of utterances from the con-

versation with a binary score {0, 1} (such as whether that pair was a “good” exchange), we need

to further take into account the turn bias ): : ): ∼ N(0, 12). As we will use a Bernoulli distribu-

tion for each observed score rather than a 1-4 rating, we modify the prior of the model scores

accordingly: "8 ∼ N(0, 12).

The distribution of an observed utterance-pair score is then (8 9: ∼ B(sigmoid("8 + � 9 +):)),

where B is a Bernoulli distribution. The goal of inference is then to compute

E"8 |{(8 9: |(8 9:∈O} [sigmoid("8)] , (6.9)

V"8 |{(8 9: |(8 9:∈O} [sigmoid("8)] ,

which estimate the average number of positively labelled utterance-pairs given the 8-th model

and the uncertainty in this estimate, respectively.

Inference We use no-u-turn (NUTS) sampler [50] for posterior inference in Pyro [13].
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6.5 Experiment Settings

6.5.1 Data: Persona-Chat

We use Persona-Chat, released recently by Zhang et al. [161] and the main dataset for the

Conversational Intelligence Challenge 2 (ConvAI2),2 to train a neural dialogue model. The dataset

contains dialogues between pairs of speakers randomly assigned personas from a set of 1,155, each

consisting of 4-5 lines of description about the part they should play, e.g., “I have two dogs” or “I like

taking trips to Mexico”. The training set consists of 9,907 dialogues where pairs of partners play

their roles, and a validation set of 1,000 dialogues. The ConvAI2 test set has not been released.

Each dialogue is tokenized into words, resulting in a vocabulary of 19,262 unique tokens. See

Zhang et al. [161] for more details.

6.5.2 Neural dialogue modeling

Model We closely follow Bahdanau, Cho, and Bengio [6] in building an attention-based neural

autoregressive sequence model. The encoder has two bidirectional layers of 512 LSTM [49] units

each direction-layer, and the decoder has two layers of 512 LSTM units each. We use global gen-

eral attention as described by Luong, Pham, and Manning [85]. We use the same word embedding

matrix for both the encoder and decoder, which is initialized from 300-dimensional pretrained

GloVe vectors [109] for the 97% of the vocabulary which overlaps with GloVe. We allow word

embedding weights to be updated during the training.

Learning We use Adam [58] with the initial learning rate set to 0.001. We apply dropout [137]

between the LSTM layers with the dropout rate of 0.5 to prevent over�tting. We train the neural

dialogue model until it early-stops on the validation set.3

2http://convai.io/
3When the validation loss does not improve for twelve epochs, we early-stop.
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Figure 6.2: The distribution of averaged overall scores given by annotators to greedy search (greedy).
Each row plots scores given by a single annotator over multiple conversations. Counts show how many
dialogues each annotator performed.

The perplexity of trained model on the ConvAI2 validation set is 24.84, which is competitive

compared to the other entries on the competition’s leaderboard.4 Our model serves well as an

underlying system for investigating the e�ect of search algorithms.

6.5.3 Search Strategies

We test three search strategies; greedy and beam search from Section 6.2.2, and iterative

beam search (iter-beam) from Section 6.3.1.

Beam search (beam) uses beam size  = 5 and  ′ = 15. This decision is based on preliminary

experiments where we found that smaller beam sizes work better than larger ones do. We use

the length penalty, described by Wu et al. [154] and =-gram blocking from Section 6.2.2.

Iterative beam search (iter-beam) uses 15 iterations of beam search with beam size 5 result-

ing in a candidate set of size 15. We use the same length penalty and =-gram blocking as in

beam search (beam). Given the hyper-parameters above both beam and iter-beam produce 15

candidates and selects the �nal response based on log-probability.
4https://github.com/DeepPavlov/convai/blob/master/leaderboards.md
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Search log-p↑ Overall Score (1-4)↑ % Good Pairs↑ % Bad Pairs↓
strategy Raw Calibrated Raw Calibrated Raw Calibrated
greedy -9.66±2.73 2.56±0.98 2.30±0.24 0.45 0.28±0.07 0.38 0.54±0.07
beam -7.26±2.28 2.67±0.86 2.70±0.27 0.58 0.44±0.08 0.35 0.27±0.01

iter-beam -5.95±1.35 2.80±0.90 2.67±0.23 0.58 0.45±0.08 0.31 0.32±0.03

human -42.95±18.87 3.62±0.71 3.37±0.22 0.76 0.76±0.06 0.07 0.04±0.003

Table 6.1: The average log-probabilities and model scores (average±standard deviation) assigned to the
responses during human evaluation. Be�er search algorithms find responses with higher log-probabilities
according to the model. Without observing standard deviations and calibrated scores one can make erro-
neous conclusions.

6.5.4 Evaluation

Human evaluation We use ParlAI [94] which provides seamless integration with Amazon

Mechanical Turk (MTurk) for human evaluation. A human annotator is paired with a model

with a speci�c search strategy, and both are randomly assigned personas out of a set of 1,155,

and are asked to make a conversation of at least either �ve or six turns (randomly decided). We

allow each annotator to participate in at most six conversations per search strategy and collect

approximately 50 conversations per search strategy and additional human-human test.5 Each

conversation is given a single overall score and two sequences of binary utterance-pair �ags, as

described in Section 6.4.1.

Bayesian calibration In order to address annotator bias or inter-annotator variability, we use

Bayesian calibration from Section 6.4.2. We take 50 warm-up steps and collect 150 samples using

NUTS sampler for inferring the posterior mean and variance of the model score in Equation (6.8).

We use 30 warm-up steps and 100 samples for inferring the mean and variance of the average

portion of positively or negatively labelled utterance-pairs in Equation (6.9).6

5Some conversations were dropped due to technical errors, resulting in total 50, 51, 49 and 53 conversations for
greedy, beam, iter-beam and humans, respectively.

6Variances of inferred posterior distribution and original data distribution are not comparable, as the former
re�ects the uncertainty in posterior inference rather than the spread of scores.
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Automatic metrics In addition to human evaluation, we compute automatic metrics to quan-

titatively characterize each search algorithm. First, we report the log-probability of a generated

response assigned by the model which is a direct indicator of the quality of a search algorithm.

Second, we compute the average number of unique =-grams generated per conversation normal-

ized by the number of generated tokens in the conversation, called distinct-= from [77], with

= = 1, 2, 3.

We compute distinct-= in two di�erent settings. First, we compute distinct-= over the candi-

date setM given by the search algorithm. Second, we compute distinct-= over the �nal selected

responses for each search strategy. The former shows diversity within the possible response

candidates, while the latter shows diversity among the actual selected dialogue outputs.

6.6 Result

6.6.1 Human Evaluation

Annotator bias In Figure 6.2, we plot the averaged scores provided by the human annotators

for one search strategy (greedy), where each row corresponds to each annotator. Consider three

annotators with id 3, 4, 10. Their means are clearly separated from each other, which points to the

existence of annotator bias. This observation supports the necessity of the Bayesian calibration

described in §6.4.2.

Human evaluation In Table 6.1, we present the scores from human evaluation. In total, 41

unique annotators participated within 201 collected conversations. We make a major observation

which is that greedy search (greedy), which has been the search algorithm of choice in neural

dialogue modeling, signi�cantly lags behind the variants of beam search (beam, iter-beam) in

all metrics. This stark di�erence is worth our attention, as this di�erence is solely due to the

choice of a search algorithm and is not the result of di�erent network architectures nor learning
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distinct-= ↑
Search = = 1 = = 2 = = 3

strategy post pre post pre post pre
greedy 0.47 - 0.61 - 0.62 -
beam 0.56 0.06 0.69 0.12 0.63 0.18

iter-beam 0.59 0.18 0.68 0.41 0.60 0.58

human 0.66 - 0.85 - 0.82 -

Table 6.2: Measuring the diversity of di�erent search and selection strategies. Both beam and iter-
beam produce up to 15 hypotheses each. Column post is distinct-= measured over the final selected
output responses given by the model and allows us to compare the diversity of the best responses each
search procedure produces. Column pre is distinct-= measured over the candidate setM given by the
search algorithm and allows us to compare diversity generated within the search.

algorithms. In fact, this cannot even be attributed to di�erent parameter initialization, as we use

only one trained model for all of these results.

The model scores assigned to human conversations (humans) are far superior to all search

strategies. It is clear with both overall score and utterance pairs proportion scores. This tells us

that there are many open questions how to improve neural dialogue models.

6.6.2 Automatic Metrics

Search qality: log-probability (log-p) Better search algorithms �nd responses with higher

log-probability according to the model, as shown in Table 6.1. This is a natural consequence of

exploring a larger subset of the search space.

A notable observation from Table 6.1 is that the neural sequence model assigns very low log-

probabilities to human responses. This implies that there is a limit to improving this speci�c

neural dialogue model by using a better search algorithm and instead there is more room to

improve the model and learning algorithms to place a high probability on human responses. It is

necessary to test the proposed search strategies with new models and we leave this for the future.
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Beam search Iterative beam search

do you have any pets ? that ’ s cool , what do you like to eat ?
what is your favorite animal ? do you have a favorite color ? mine is pink .
i like to talk about strangers . what do you like to eat ?
do you like animals ? i don ’ t like �sh , but my favorite color is pink .
do you like animals ? i want to live at the beach . what color is your hair ?
do you like animals ? i ’ ve a pet . that does sound good , i like to go alone .
do you like animals ? i want to live on the beach . i would love to eat �sh .
do you like animals ? i want to live at the beach that makes sense , do you have any hobbies ?
do you like animals ? i ’ ve a monkey . i hear you , my favorite color is pink .
do you like animals ? i want to be a monkey . i want to be a yoga instructor .
do you like animals ? i want to live at the beach , but love it . i did not eat meat , but my favorite color is pink .
do you like animals ? i want to live at the beach , but love monkeys . what are your favorite foods ? mine is pink .
do you like animals ? i want to live at the beach , but they are my favorite . what does your favorite color ? mine is pink .
do you like animals ? i want to live at the beach , but have a monkey . what type of food do you like ?
do you like animals ? i want to live at the beach , but they are my favorite i spend a lot of time alone .

Table 6.3: beam and iter-beam candidate setsM. These are from one turn of one randomly selected
conversation from human evaluation. iter-beam produces more diverse responses.

Diversity: distinct-= The diversity metric is measured before (pre) and after (post) selecting

the �nal response from the candidate setM for both beam search and iter-beam search. Since

greedy and humans produce only a single response, we compute the diversity metric only using

those �nal responses for both greedy search and humans. In both pre and post settings, the

normalization is done per each conversation.

As well as in human evaluation, greedy has lower diversity compared to all other strategies

as shown in Table 6.2. We see large gap in pre-selection distinct-= for all = between beam and

iter-beam while the di�erence is small in post-selection distinct-=. In other words, while pro-

viding more diverse set of candidates, the �nal selected output response with iter-beam is not

particularly diverse. This agrees well with human evaluation, where both iter-beam and beam

model scores were indistinguishable, as annotators could only see the �nal response after select-

ing from the candidate set. Table 6.3 shows pre-selection candidate sets for both beam search and

iterative beam search.

Finally, we observe a signi�cant gap between the best search strategy and humans in these

diversity metrics. Together with the gap we observed in human evaluation scores, we suspect

that the lack of diversity in the output responses is a major factor behind the low performance of

the tested neural dialogue model in the human evaluation.
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6.7 Conclusion and Discussion

We have performed a realistic human evaluation of the neural dialogue model to validate

the importance of exploring better search strategies. We observed that careful design of human

evaluation is necessary to properly evaluate the ability of the neural dialogue model to conduct a

conversation with a human. The proposed Bayesian calibration of model scores helps to account

the annotator bias observed in human evaluation.

Extensive analysis reveals that greedy search, which has been the inference algorithm of

choice in neural dialogue modeling, signi�cantly lags behind more sophisticated search strategies

such as beam search and iterative beam search.

We have proposed the iterative beam search which produces a more diverse set of candi-

date responses w.r.t. pre-selection distinct-= metric. Post-selection �nal responses with iterative

beam search have higher log-probability compared to other search strategies. In spite of this,

there is only a marginal di�erence between iterative beam search and beam search w.r.t. scores

from human evaluation and post-selection distinct-=. This suggests that the �nal response selec-

tion strategy is as important as the search strategy being used and can be a major factor in the

inference pipeline of the neural dialogue model. We leave improving this strategy to future work.

Finally, the model assigns a lower probability to the reference responses, which implies sub-

optimality in the current neural dialogue model. It is necessary in the future to test the proposed

search strategies with new models.

6.8 Developments since chapter release

We have published this work in the proceedings of INLG 2019 [69]. As a follow-up, we de-

signed an alternative search algorithm called multi-turn beam search which aims at �nding the

best response in the context of rolled out future responses [67]. The task of modeling the partner
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persona has shown to be hard and requires further investigation. Common choices for model de-

sign and search strategy in open-ended dialogue modeling have drastically changed since then,

but challenges remain. Large pretrained language models become the de facto standard initializa-

tion scheme of such systems [120]. The common choice for decoding strategy involves stochastic

sampling, because the deterministic algorithms, such as beam search, produce dull and degen-

erate responses [1]. While the problem of a dull response is somewhat alleviated via stochastic

sampling during search, the issue of contradictions in responses is still there [135]. Nie et al. [101]

design a new task concentrating on this issue of contradictions directly.

Regarding the human evaluation, other groups suggested alternative protocols and methods

to conduct the evaluation. For instance, Li, Weston, and Roller [80] suggest to do model judge-

ment via pair-wise dialogue selection based on a set of questions which are optimized to max-

imize the robustness of judgements across di�erent annotators. Sedoc and Ungar [124] employ

item response theory (IRT) in the context of dialogue model evaluation. Importance of human

evaluation protocol is actively studied beyond dialogue modeling. Howcroft et al. [54] discussed

common practices which may lead to confusions during Natural Language Generation systems

comparison. Howcroft and Rieser [53] proposed to use ordinal mixed e�ects models to analyze

ordinal observations opposed to mapping those points on the interval scale.
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7 | Conclusion

In this work, we addressed degeneracies in autoregressive text generation from di�erent as-

pects of the learning pipeline. We conclude that the widely used algorithms and techniques have

practical issues resulting in degenerate predictions. During the analysis of these issues, we ob-

served that some of the proposed solutions lack principled reasoning behind the issue’s cause.

We consider several types of degeneracy and demonstrate e�ective ways to mitigate by address-

ing the hypothetical cause. Every solution we propose is connected to some part of the learning

pipeline: model parametrization, training, or decoding. We have addressed the oversmoothing

problem, the problem of non-termination, the issue of repetition, and studied the lack of diver-

sity in dialogue modeling. In addition to the proposed solutions, we provide new formulations,

measures, and theoretical motivation behind some of these problems. Each of these contributions

paves the way for future research. Next, we speculate on what future directions are promising in

our view given the results we obtained so far.

Regarding the oversmoothing problem, our experiments are limited to the scope of machine

translation. We encourage future work on studying the issue of oversmoothing with other text

generation tasks. For instance, it is an open question whether the degree of oversmoothing de-

pends on the amount of information in the input sequence. The unreasonable e�ectiveness of

beam search with smaller beam size remains to be studied in the future.

Unlikelihood training can e�ectively reduce the number of repetitions in the generated se-

quences. As we discussed earlier and studied in Li et al. [81], the unlikelihood framework is
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applicable beyond the repetition issue. Future work may consider a more generic way of �nding

useful negative candidates. Even though the solution we proposed is e�ective, the question of

why exactly the maximum likelihood learning results in repetition loops is still actively studied

[40].

We have provided a theory behind the non-termination issue. It demonstrates the incon-

sistency of the decoding-induced distribution when the decoding algorithm is incomplete. By

altering the model with self-terminating softmax, we make this distribution consistent with the-

oretical guarantees. The proposed solution has a hyper-parameter de�ning the lower bound on

the probability of termination. While we used the same lower bound across all sentences, it is

not necessarily the best way to go. We encourage future work on learning to compute this lower

bound based on the current input sequence. Other than that, we confess that our approach puts a

very rigid constraint on the probability of termination. The question of more �exible parametriza-

tion with consistency guarantees remains to be open for future research.

The multi-turn setting of text generation is even more challenging as the model obtains new

user input as well as its own predictions. One of the promising recent directions is the retrieval

augmented generation [74] which has been studied in dialogue modeling too. For instance,

Komeili, Shuster, and Weston [64] suggest to augment a dialogue response generator with the

internet-based context retriever compared to the usual �xed cache. We found that more likely

responses were not more engaging in the end. One future direction is to consider alternative

decision rules with di�erent scoring or reranking methods, because scaling the model alone does

not completely eliminate inconsistencies in generated responses.
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