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ABSTRACT

As a tumor grows, it rapidly outstrips its blood supply, leaving portions of tumor that
undergo hypoxia. Hypoxia is strongly correlated with poor prognosis as it renders
tumors less responsive to chemotherapy and radiotherapy. During hypoxia, HIFs up-
regulate production of glycolysis enzymes and VEGF, thereby promoting metabolic
heterogeneity and angiogenesis, and proving to be directly instrumental in tumor
progression. Prolonged hypoxia leads to necrosis, which in turn activates inflamma-
tory responses that produce cytokines that stimulate tumor growth. Hypoxic tumor
cells interact with macrophages and fibroblasts, both involved with inflammatory
processes tied to tumor progression. So it is of clinical and theoretical significance to
understand: Under what conditions does hypoxia arise in a heterogeneous cell popu-
lation? Our aim is to transform this biological origins problem into a computational
inverse problem, and then attack it using approaches from computer science. First,
we develop a minimal, stochastic, spatiotemporal simulation of large heterogeneous
cell populations interacting in three dimensions. The simulation can manifest stable
localized regions of hypoxia. Second, we employ and develop a variety of algorithms
to analyze histological images of hypoxia in xenographed colorectal tumors, and ex-
tract features to construct a spatiotemporal logical characterization of hypoxia. We
also consider characterizing hypoxia by a linear regression functional learning mech-
anism that yields a similarity score. Third, we employ a Bayesian statistical model
checking algorithm that can determine, over some bounded number of simulation

executions, whether hypoxia is likely to emerge under some fixed set of simulation



parameters, and some fixed logical or functional description of hypoxia. Driving the
model checking process is one of three adaptive Monte Carlo sampling algorithms
we developed to explore the high dimensional space of simulation initial conditions
and operational parameters. Taken together, these three system components formu-
late a novel approach to the inverse problem above, and constitute a design for a tool
that can be placed into the hands of experimentalists, for testing hypotheses based
upon known parameter values or ones the tool might discover. In principle, this de-
sign can be generalized to other biological phenomena involving large heterogeneous

populations of interacting cells.
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INTRODUCTION

1.1 PROBLEM STATEMENT

At the tissue level, what are the origins of localized hypoxia within tumors?

1.2 BIOLOGY BACKGROUND & LITERATURE REVIEW

1.2.1  Hypoxia

As a tumor grows, it rapidly outstrips its blood supply. High proliferation causes
high cell density that overtaxes local oxygen supply. This leaves portions of the tumor
with an oxygen concentration significantly lower than in healthy tissues. This stress
condition is tumor hypoxia. Hypoxia is strongly correlated with poor prognosis as
it renders tumors less responsive to chemotherapy and radiotherapy [65, 145, 57].
Hypoxia-inducible factors (HIFs) are transcription factors that respond to changes
in available oxygen in the cellular environment, specifically to hypoxia. When ac-
tivated, HIF-1 upregulates several genes to promote survival in low-oxygen condi-
tions. These include glycolysis enzymes that allow cells to synthesize ATP in an
oxygen-independent manner; and vascular endothelial growth factor (VEGF) that
cells release to promote angiogenesis. So hypoxia is directly instrumental in tumor
progression. Prolonged or extreme hypoxia can lead to necrosis, and tumors often

have central regions called necrotic cores. Necrosis in turn activates inflammatory
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responses that produce cytokines that stimulate tumor growth [57]. Recent research
has been investigating the interactions between hypoxic tumor cells and immune cells
(tumor-associated macrophages [116]) and cells that synthesize extracellular matrix
(tumor-associated fibroblasts [52, 22]). Both are involved with inflammatory processes
tied to tumor progression. In the context of the tumor microenvironment, these inter-
actions regulate tumor properties like spatial patterns of cell localization, angiogene-
sis, and collective invasion and migration [132, 21]. So it is of critical theoretical and
clinical significance to understand how, and under what conditions, hypoxia arises

in tumors.

1.2.2  Tumor heterogeneity

Tumors are disorganized, heterogeneous tissues, consisting of many distinct cell
types in spatially complex arrangements. Besides the polyclonal proliferating cancer
cell population undergoing somatic evolution [111], tumors include non-proliferating
stromal cells, fibroblasts, immune cells, extracellular matrix, collagen, blood vessels,
and other structures and cell types [61, 62, 57]—these include “normal” cells that are
conscripted by transformed cells to play collaborative roles in the neoplastic agenda.
So there is a large degree of genotypic and phenotypic heterogeneity composing
a tumor. Since tumors originate in physiological structures that range from simple
epithelial sheets to ducts to neural and muscle tissue, and often invade neighboring
tissues and then metastasize, colonizing distant tissues, the spatial situations and geo-
metric structural relationships of tumors are themselves complex and heterogeneous.
Add to this the dynamic character of the microenvironment, from high frequency

variations in oxygen, nutrient, and signaling molecule concentrations, to longer time
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scale processes like the synthesis of extracellular matrix and blood vessels during

angiogenesis.

1.2.3 Metabolic heterogeneity

We are especially interested in metabolic heterogeneity [69]. In tumors, while we ob-
serve the Warburg effect [151, 150] commonly arise, aerobic glycolysis is not the only
metabolic program cancer cells follow. In fact, there are experiments and mathemat-
ical models to suggest the metabolic strategies tumors use, when considered as a
whole, is quite dynamic [146, 98, 79]. As a tumor progresses, it negotiates a course
of barriers to proliferation [61, 47, 62]. Its gain of oncogenic function [157, 25, 26, 156,
44, 108, 160, 96], and loss of tumor suppressor function [78, 102, 127], give rise to
changing bioenergetic and biosynthetic requirements for proliferation in the face of
the new obstacles [79]. So the tumor cells” metabolic programs are varied and in flux,

following from this coevolution.

1.2.4 Hypoxia and metabolic heterogeneity

The somatic evolution of early carcinogenesis feeds on sources of phenotypical varia-
tion present in tumor and surrounding stromal tissue, including metabolic variation.
Hypoxia plays an important role in producing intra-tumor metabolic heterogene-
ity, as chronic hypoxia produces sustained conditions of metabolic stress that lead
to phenotypical adaptation and oncogenic transformation that support growth and

proliferation [81], and intermittent hypoxia produces cyclic conditions of oxygen de-
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privation and reoxygenation that are only recently being detected and investigated

[20].
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1.2.5 The cancer metabolism Renaissance

aerobic conditions

1 glucose glycolysis =92 pyruvate
mitochondrion
2 Acetyl-CoA

K
TCA cycle
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Figure 1: Nontransformed cells use mitochindrial oxidative phosphorylation to support their
largely bioenergetic needs of cellular maintenance and homeostasis. When these
cells consume glucose (glu), it enters the glycolytic metabolic pathway and is trans-
formed into pyruvate; it subsequently enters the TCA cycle in the mitochondria
where it is further transformed into Acetyl-CoA and CO,. When these cells con-
sume oxygen (0O3), it enters the TCA cycle with the Acetyl-CoA and CO; to pro-
duce H;O and CO;, eventually released by the cell, and produce ATP that the
cell uses. With respect to energy production (output molecules of ATP per input
molecules of glu and O3), this process is an order of magnitude more efficient than
aerobic glycolysis (Figure 2).
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anaerobic conditions
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Figure 2: Tumor cells often use anaerobic glycolysis even in the presence of oxygen (“aero-
bic glycolysis”) to support their proliferative requirements (Warburg effect). Where
glucose (glu) consumption supports bioengetic needs, glutamine (gln) consump-
tion supports biosynthetic needs (for carbon backbones, etc.). When these cells con-
sume glu, it enters the glycolytic metabolic pathway and is transformed into pyru-
vate (pyr) that is subsequently reduced to lactate (lac), eventually released by the
cell, and ATP that the cell uses—circumventing the mitochondria. Separately, when
these cells consume glutamine (gln), it enters the TCA cycle in the mitochondria
and after donating its carbon, the cell eventually releases glutamate (gla). Together,
glutamic and lactic acids lower the pH of the cell’s microenvironment. With respect
to energy production (output molecules of ATP per input molecules of glu), this
process is an order of magnitude less efficient than mitochondrial oxidative phos-
phorylation (Figure 1).
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Figure 3: Whole-body 2D PET/CT scan using 18E-FDG. A patient with malignant gastroin-
testinal stromal tumors was infused with '8F-FDG, a glucose analog, and then
scanned on a hybrid PET/CT scanner before (left) and after (right) 4 weeks of
administering the tyrosine kinase inhibitor sunitinib. Before therapy, bright regions
show the increased uptake of glucose by the tumors (T). Excess '8F-FDG is excreted
into the urine, thereby migrating and collecting in the kidneys (K) and bladder (B),
which also show bright regions in left and right images. In the case shown here, the
decrease in metabolism of glucose by the tumors predicts the patient’s response to
anticancer therapy. [Image taken from [64].]

The past decade has seen a Renaissance in the study of cancer cell metabolism [91],
challenging and extending Warburg’s original observation of pervasive anaerobic
glycolysis in tumor tissue even in the presence of oxygen [151, 150]—please refer

to Figure 1 and Figure 2. Between their celebrated syntheses of 2000 [61] and 2011
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[62], Hanahan & Weinberg updated their cancer hallmarks to include metabolic re-
programming. The new frontier has been pushed by a group of research laboratories,
headed by Craig Thompson, Matthew Vander Heiden, Lewis Cantley, David Saba-
tini, Ralph DeBerardinis, Eileen White, Joshua Rabinowitz, Chi Dang, and Tak Mak,

among others.

1.2.5.1  The primacy of metabolism

If we take Craig Thompson to be the frontier’s leading spokesperson, then a central
aim of the research programme is to give causal primacy to cancer cell metabolism
in the process of tumorigenesis [152]. In 2012, one of the first symposia on cancer
metabolomics, hosted by the New York Academy of Sciences, presented the research
of many of these laboratories [112]. During his keynote address, Craig Thompson
remarked, “A decade ago, if a paper appeared with the phrase ‘anaplerotic” in the
title it would’ve been summarily rejected by the major journals...not the case any
longer.” It seems clear the subfield has burst from its chrysalis. Several good reviews
of this research have been published over the past decade [46, 16, 154, 88, 28, 31, 30,
68, 78, 64, 80, 101, 87, 18, 19, 152, 29, 27].

1.2.5.2 Ras and Myc

Some research has focused on specific oncogenes, usually Ras and Myc, and their
roles in transforming glucose and glutamine metabolism, respectively. On the Ras
front, one study builds a case for the hypothesis that oncogenic K-Ras decouples
glucose and glutamine metabolism to support cancer cell growth [44], while another
builds a case for the hypothesis that oncogenic K-Ras maintains pancreatic tumors

through regulation of anabolic glucose metabolism [160]. One study examines the
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consequences of enhanced cell-autonomous glutamine metabolism [96]. On the Myc
front, one particularly compelling line of research investigates a phenomenon known
as “glutamine addiction,” where cancer cells acquire an exquisite sensitivity to the
concentration of glutamine, and even slight deprivation leads to widespread apopto-
sis [157, 25, 156, 26, 108]—yet another “Achilles” heel” of cancer to exploit therapeu-

tically.

1.2.5.3 Metabolic enzymes

Much recent research has focused on the transformative effects of mutations in metabolic
enzymes. One of the key players under active investigation is isocitrate dehydroge-
nase [122, 17]. In addition to isocitrate dehydrogenase, in the context of the most ex-
perimentally studied metabolic pathways supporting cancer cells—glycolysis, TCA
cycle, pentose phosphate, glutaminolysis, and oxidative phosphorylation—other key
players include: lactate dehydrogenase, pyruvate dehydrogenase, fumarate dehydro-
genase, succinate dehydrogenase, and ATP-cytrate lyase. Modeling and predicting
the effects of their mutation or disruption on the network of cancer metabolic path-
ways is the focus of other research [123]. Other studies focus on the proliferative and

pro-survival roles played by specific metabolites, like glysine and serine [140, 72, 97].

1.2.5.4 The embryonic program

One frequently hears comparisons between the heightened proliferation in cancer
and the deregulated embryonic growth program, often referred to as “reversion
to the embryonic state.” At least one study has examined metabolic regulation in
pluripotent stem cells during reprogramming and self-renewal [161]. Another study

investigated the Warburg effect in the developing retina [43].
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1.2.5.5 Hypoxia and metabolic reprogramming

A number of studies have investigated the relationship of cancer cell metabolic repro-
gramming to hypoxia, including the role HIF-1 plays upstream and downstream of
cancer metabolism [129, 130], and consideration of the triad of oxidative stress, tumor

microenvironment, and metabolic reprogramming [42].

1.2.6  Cell-autonomous versus non-cell-autonomous

Most of this intense investigation has focused on the cell-autonomous view of cancer
cell metabolic reprogramming. But as discussed above, a complimentary view is tak-
ing shape that tumor progression does not depend exclusively on cell-autonomous
properties of the cancer cells, but also on properties that can only be observed, simu-
lated, and analyzed at the tissue-scale of whole tumor cell population. With respect

to this latter view, we seek to explore the hypoxia origin question computationally.

1.2.6.1  Specific hypotheses

Certain non-cell-autonomous hypotheses are being investigated that could explain
observations related to evolving cancer cell metabolism in specific situations.

One is the so-called “metabolic symbiosis” between hypoxic and aerobic tumor
cells, where lactate produced by hypoxic cells is taken up by aerobic cells, which
use it as their principal substrate for oxidative phosphorylation. The two cell types
thereby mutually regulate their access to energy metabolites [128, 136, 41, 84].

Another is the so-called “reverse Warburg effect,” where epithelial cancer cells in-
duce aerobic glycolysis in neighboring stromal fibroblasts. These cancer-associated fi-

broblasts then undergo myo-fibroblastic differentiation, and secrete lactate and pyru-

10



1.2 BIOLOGY BACKGROUND & LITERATURE REVIEW

vate, energy metabolites resulting from aerobic glycolysis. Epithelial cancer cells
could then take up these energy-rich metabolites and use them in the mitochon-
drial TCA cycle, thereby promoting efficient energy production—ATP generation via
oxidative phosphorylation—resulting in a higher proliferative capacity [118, 137].
Still another is the so-called “secondary senescence,” where non-cell-autonomous
interactions between tumor cells and nonmalignant bystander cells add to cell-au-
tonomous modes of tumor suppression during tumor development and progression.
In this scenario, stroma or host immune cells convert tumor-generated signals into
a response that feeds back to the tumor cell population. In particular, suppose Myc
plays a primary role promoting apoptosis in a subset of the tumor cell population,
which leads to the attraction of macrophages; these subsequently engulf the apoptotic
remainders. Phagocytosis-activated macrophages, in turn, exhibit strongly increased
secretion of various cytokines, among them transforming growth factor beta to an

extent that is capable of inducing cellular senescence in surrounding malignant cells

[57, 121, 34].

1.2.7  Cancer metabolomics

For a long time, there was no systematic characterization of metabolic pathways ac-
tive in transformed cells, so the contribution of these pathways in promoting rapid
cancer cell proliferation was unclear. But in 2012, Jain, et al [140, 72] produced a
comprehensive metabolite profile for each of the NCI-60' cancer cell lines. To sys-
tematically characterize cancer cell metabolism, they created cellular consumption

and release (CORE) profiles of 219 metabolites spanning the major pathways of in-

The NCI-60 is comprised of sixty well-characterized primary human cancer cell lines
established from nine common tumor types.
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termediate metabolism. The study contains some compelling findings?, but we were
particularly encouraged by the conceptual approach Jain, et al undertook in their
methods, namely, that cancer cell metabolic reprogramming manifests as altered nu-
trient uptake and release. In other words, the gross quantitative properties of cellular
consumption rate and release rate of metabolites (and other particles, like gasses and
signaling molecules) is sufficient to characterize and distinguish cancer cell metabolic

phenotypes from an extracellular perspective.

1.2.8 Returning to Hypoxia

The phenomena of cancer cell metabolic reprogramming and hypoxia can be studied
separately. However, as noted above, hypoxia plays a role in creating the metabolic
heterogeneity we see in tumors. We believe the emergence of hypoxia ought to be
studied from a non-cell-autonomous perspective, as discussed above in the context
of cancer metabolism. Further, we believe the two phenomena can shed light upon
each other, and so we set out to create a computational framework that is flexible
enough to model both. That said, it is the emergence of hypoxia that is the central

focus of this dissertation and the concrete test case of our approach.

1.3 PROBLEM CONVERSION

Our aim is to transform this cell-population biological origins problem into a compu-
tational inverse problem, and then attack it using approaches from computer science.

We envision a system that will drive an in silico model forward, from some set of ini-

2 The study implicates a role for glycine in rapid cancer cell proliferation.
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tial conditions and operational parameters, to a recognizable, well-characterized state
of hypoxia formation. In general, a mathematical model takes the form G(m) = d,
where G is usually an ODE, PDE, or algorithm, m is the model, and d is the data. In
the real world, d = G(Mm¢rue) + M, where 1 is noise. The forward problem is to find d
given m, by computing G(m) (by solving an ODE or PDE, or running a simulation).
The inverse problem is to find m given d. When m and d are continuous functions
of time and space, the task of estimating m from d is a continuous inverse prob-
lem. These can often times be well approximated by discrete inverse, or parameter
estimation, problems, where model and data are vectors of parameters, m and &,

respectively.

1.4 PROBLEM RESTATEMENT

With this in mind, we restate the biological origins problem of hypoxia as a com-
putational inverse problem: Given data in the form of histology images from which
we may formally characterize the phenomenon of hypoxia (d), and given an in silico
model in the form of a stochastic, spatially-resolved simulation of a heterogeneous
population of cells (G), what set of model parameters (1) will drive the simulation
from its initial state to one that corresponds with sufficient similarity to the formal

characterization of the data?

1.5 COMPUTATIONAL BACKGROUND & LITERATURE REVIEW

In the context of systems biology, and in general, we believe, it is useful to distinguish

between parameter estimation from experimental data sets, and qualitative inverse prob-
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lems that aim to reverse engineer bifurcation patterns and other kinds of desired
qualitative behavior [39]. Parameter estimation attempts to either provide values (or
bounds on values) for unknown or difficult to determine parameters, or to determine
insensitivities of data sets to certain parameters, which then are not accessible from
the given data and require additional experimental information for their determina-
tion. Qualitative inverse problems attempt to explore the areas in parameter space
that give rise to a given qualitative behavior, like multiple steady-state solutions, os-
cillations, or deterministic chaos. Our inverse problem is of the qualitative type, and
our given qualitative behavior is characterized by analyzing experimental histological
image data.

Outside of biology, the geosciences are the crucible for inverse problems. A review
by Mosegaard, et al [109], gives numerous examples of qualitative inverse problems in
the geosciences that are tackled with Monte Carlo methods, similar to our approach.
One particularly intriguing study by Wijns, et al [155] is focused on qualitative inverse
modeling in the absence of established numerical criteria to act as inversion targets.
They employ a method of interactive evolutionary computation that provides for the
inclusion of qualitative geological expertise within a rigorous mathematical inversion
scheme, by asking an expert user to evaluate a sequence of forward geological mod-
els. The traditional numerical misfit is replaced by a human appraisal of misfit. They
use this interactive technique to successfully invert a geodynamic model for a con-
ceptual pattern of fault spacing during crustal extension. Though we are interested
in developing an automated method for our problem, we recognize that integrating
human expertise and evaluation, even if occasionally, can make for a more robust

solution. We will consider exploring this in future work.
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Most of the examples of biological inverse problems we find in the literature, in-
cluding this review by Engl, et al, are parameter estimation problems. The examples
of qualitative inverse problems in biology that we find [94, 100, 60] consist in much
smaller dimensions than ours, are formulated as inverse bifurcation problems, and
are based on ODE methods that neglect the rich spatial structure of their systems
and do not handle stochastic system behavior. We have found no studies involving
qualitative inverse problems related to hypoxia emergence. Nor have we found any
approaches that use our combination of computational methodologies.

The closest approach we found to what we envision, is a study by Grosu, et al [58],
who use model checking with a temporal logical characterization to tackle the prob-
lem of learning and detecting emergent behavior in networks of cardiac myocytes.
They develop a hybrid-automata network environment called CellExcite [10] for the
efficient simulation of excitable cells. They perform discrete mode abstraction and
hierarchical superposition of the elementary units by employing a quad-tree decom-
position [56]. At each time step of their simulation, this abstract representation, Q is
compared to their Linear Spatial-Superposition Logic (LSSL) formula, @, that char-
acterizes spatial patterns such as spirals (learned through a classification process).
If there is a finite path, 7, in Q that satisfies @, then their system detects the emer-
gence of spiral patterns and hence the approaching state of fibrillation. While this
approach demonstrates the validity and effectiveness of using temporal logic and
model checking for the problems of specification and detection of an emerging com-
plex biological property, it is not so much concerned with their version of the longer
time scale computational inverse problem: what initial conditions and operational
parameters drive simulated cardio myocytes to a likely state of spiral waves followed

by fibrillation. And the traditional model checking approach they have taken does
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not lend itself well to stochastic models—the motivation for developing the statistical

model checking approach.

1.6 OUR MATERIALS & METHODS

Our approach rests on three “pillars,” or general system components, which are
independent of, yet related to, each other in ways we shall elaborate on shortly. The

approach we take within each pillar is constrained by its defining problem statement.

1.6.1  Pillar 1

PROBLEM STATEMENT Implement a spatially-resolved simulation framework for
modeling the emergence of localized regions of hypoxia within a tissue-scale mixed
population of cells. Cellular fitness should be locally determined. Cells should con-
sume and release diffusible particles that represent metabolites, gasses, signaling
molecules, etc. These constitute a complex spatial universe of heterogeneous infor-
mation, stress, and reward, to which cells may adapt using either their type-defined
default behaviors, or type-defined conditionally invoked behaviors that override their
default behaviors. The simulator should be algorithmically simple and efficient. It
should be fully specified by an input vector of numbers that code for initial con-
ditions and operational parameters. Its data structures should be amenable to in-
terrogation and decomposition for the purposes of run-time feature measurers and
the hypoxia detector that integrates them, as specified by Pillar 2. Accordingly, the

simulator should output either {o,1}, if the detector embeds a spatiotemporal logical
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proposition integrator /detector, or a numerical value in [o0,1], if the detector embeds

a learned functional form integrator/detector.

OUR APPROACH We develop such a framework. It is situated in a 3D regular lat-
tice and obeys basic properties of a cellular automaton. Cells of various types occupy
lattice points at every time step, are affected by diffusing concentrations of diffusing
particles of various types, and undergo local-fitness-based probabilistic reproduction.
Using the Cleveland, et al framework as a conceptual starting point, we then extend
it in significant and novel ways to further suit our needs. First, we can support any
number of cell types and any number of particle types (each with its own diffu-
sion rate). Second, each cell type has default behaviors and conditionally-invoked
behaviors, which can implement phenotypical adaptations and mutations, and state
machines composed of two or more cell types. Third, initial, and upper- and lower-
bounded basal concentrations can be set for each particle type. Fourth, each cell type
can be replaceable or not, and reproductive or not. Fifth, initial lattice occupation can
be delayed to establish complex diffusion gradients to form prior to simulation. The
3D lattice data structure is simple, regular, and easy to interrogate for the purposes
of feature measurer and feature integrator modules we can later implement to de-
tect emergent phenomena, such as necrotic core formation and stable local regions of

hypoxia like we observe in xeno-graphed hypoxic tumor histology.

1.6.2 Pillar 2

PROBLEM STATEMENT Derive a spatiotemporal characterization of hypoxia in

human tumor tissue from a set of histological images.
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OUR APPROACH Our concrete focus into the phenomenon of tumor cell hypoxia
begins with an experiment where human colon tumor cells were xeno-graphed into
a nude mouse, and upon subsequent analysis were determined to exhibit localized
regions of hypoxia. This data is in the form of histology images taken from anti-
pimonidazol stained tumor sections. Our approach consists in extracting qualitative
and quantitative features from these histology images. We classify these as: (1) fea-
tures that derive from segmenting the image into the three tissue types depicted:
viable tumor cells, hypoxic tumor cells, and necrotic tumor cells; (2) features related
to the intra-lesion hypoxia gradient, as measured from radial distance away from
the nearest vessel; (3) features that derive from multiscale analysis; and (4) features
that relate to qualitative generalities about bounded and nested structure. Once we
specify a set of features, we proceed in two separate but related directions. First,
we attempt to construct a logical proposition to describe hypoxia in space and time
using a simple spatiotemporal logic (also expressible as a model logic [70]) whose
primitives are image feature predicates. This is a human-driven process, following
from human learning and generalization. Second, we attempt to construct a linear re-
gression function that learns what hypoxia is in terms of estimated linear coefficients
on the image feature terms. This is an machine-driven process, kept on the rails by a
combination of false-positive and false-negative control, and feature dimensionality

reduction where possible.

1.6.3 Pillar 3

PROBLEM STATEMENT Identify the initial conditions and operational parameters

of an in silico model (simulation) that result in hypoxia, as characterized by Pillar 2.

18



1.6 OUR MATERIALS & METHODS

OUR APPROACH The nature and extent of the simulation parameter space de-
rives from the algorithmic specification given in Pillar 1. A number of parameters
define any given simulation, those that specify initial conditions and those that spec-
ify the entities that operate in the simulation. Initial condition parameters specify:
the initial positions in the 3D lattice of the cells of various types; the initial and basal
upper- and lower-bound concentrations of the various particle types; and the delay
time indicating when to place the cells in their initial positions. Operational param-
eters specify: each particle type’s diffusion rate; the consumption and release rates
and impact factors of each cell type for each particle type; whether each cell type is
replaceable and whether its reproductive; and the conditional behaviors for each cell
type. Together, these constitute a high dimensional parameter space.

For our problem, we will assume that in the absence of simplifying factors or ex-
pert knowledge of the biology, each parameter should be modeled as a random vari-
able having a uniform, independent probability distribution. Our aim here is modest:
sample the large parameter space using a vanilla Monte Carlo algorithm [105] and
accumulate families of nearby solutions. We do attempt to make this process more
efficient by learning from each sample’s truth outcome if it is in 0,1, or branching-and-
bounding sampled subspaces where the sample values are in [o,1]. In this way, we
propose two simple “adaptive Monte Carlo” methods, MC-Boost and MC-Walk, that
employ boosting of the independent probability distributions upon successful sam-
ples, and constrained random walks around successful samples, respectively. And
we propose a simple adaptation to the traditional branch-and-bound algorithm, MC-
Branch-and-Bound: instead of systematically exploring a subspace of problems, we

employ constrained Monte Carlo sampling of each subspace.
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Our model (simulation), once specified by a coordinate from the high dimensional
parameter space, is still stochastic, owing to the cells’ manner of probabilistic repro-
duction. Suppose a feature integrator/detector is embedded in the simulator that
decides when the formal characterization of hypoxia—be it a spatiotemporal logical
proposition, ¢, or a learned linear function, f—is satisfied. It will then enable the
simulator to return a value in {o,1} or [0,1], respectively, where the first is a the evalu-
ation of a logical proposition, and the second is a normalized similarity score. Thus,
depending on the detection scheme being implemented, the simulator’s outcome can
be modeled as either a Bernoulli random variable or a numerical random variable.
The first case is the province of statistical model checking. Jha, et al [77] give the
Bayesian statistical model checking algorithm we employ here. It runs the simulator
some bounded number of times until enough confidence accrues to the null hypoth-
esis (the simulator satisfies, within some bounded probability, the spatiotemporal
logical proposition describing hypoxia), or its alternative hypothesis (it does not).
This verdict constitutes the Bayesian-tested outcome of the simulation with respect
to satisfying ¢. In a similar, and perhaps trivial, sense, the numerical [0,1] outcome
of the simulation should be tested repeatedly until some threshold on the numeri-

cal stability of its mean value is surpassed. Here the simple approach we use is to

o

examine its mean and standard deviation, and apply a threshold to its CV = &

This pillar presents two distinct ways of implementing a two-level simulation
driver. The top level explores by sampling the high dimensional parameter space,
testing a coordinate in that space by passing control down to the lower level that
repeatedly runs the specified simulation until a stable outcome is achieved. It then
passes the binary verdict up to the top level that records and eventually responds to

the coordinate’s computed truth value.
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1.6.4 System description

Now we describe how we organize the three pillars above into a solution to the com-
putational inverse problem stated above. We show this in three views, corresponding
to: the problem stages, the system relationships established during the design phase,

and the structure of the system’s run time execution.

1.6.4.1 Problem view

In the problem view shown in Figure 4, we depict the problem dependencies and
methods for the computational solution presented here. Solving the inverse problem
depends on exploration of the simulation configuration space, accomplished by the
adaptive sampling methods of Pillar 3. Exploration depends on robust detection of
the hypoxia characterizations being satisfied in the simulation, accomplished by ei-
ther the Bayesian statistical model checking or the mean-variance thresholding meth-
ods of Pillar 3 that drive the simulations to a stable result. Detection depends on a
description of hypoxia derived from the available evidence, accomplished by either
the spatiotemporal logical or linear regression functional characterization methods of
Pillar 2. And description depends on analysis and synthesis of the histology images,

accomplished by the image analysis methods of Pillar 2.
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1.6.4.2  Design-time view

At design time, the components of the system either specify or inform some of the
others, as shown in Figure 5.

A number of requirements inform the design of the simulator. If we are computa-
tionally constrained, then we cap the number of parameters by which the simulator
may be configured by some constant . For efficiency as an “inner loop” in the overall
system execution, we require the simulator halts once the embedded logical feature
integrator detects hypoxia, and that o or 1 then be returned. The embedded feature
measurers require the simulator use data structures that are easy to interrogate and
decompose. Lastly, the feature integrator requires the simulator to return o or 1, or a
real value in [0,1], depending on whether the feature integrator is logical or functional
in nature.

As mentioned, the simulator embeds feature measurers and feature integrators/de-
tectors. The simulator specifies its data structures, D, and its configuration parame-
ter space, C. The configuration parameter space informs the adaptive sampler, along
with any expert biology knowledge, K, which can prune and constrain C prior to its
exploration. The data structures specify the set of simulator features, Fs, that may be
implemented. These in turn inform the hypoxia characterization process, since we
must try to do this in terms of possible features, which may be defined as, Fs N'F;,
the intersection of simulator features and the image features. The image features, F;,
are specified by image analysis that is informed by the images themselves, I, which
are specified by biological experiment. Hypoxia characterization specifies the inter-
section of features and subsequently informs the design of feature measurers, the
spatiotemporal logical characterization, and the linear regression functional charac-

terization. Spatiotemporal logical characterization specifies the proposition ¢, which
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then specifies the logical feature integrator/detector. Linear functional characteriza-
tion specifies the functional form f, which then specifies the functional feature inte-
grator /detector.

By execution time, we assume the system design has been settled and imple-

mented.
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Figure 5: Design-time view. System design inputs and specifications for the computational
solution presented here.
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1.6.4.3 Run-time view

We show the two possible execution paths of the system in Figure 6. These correspond
to the choice of whether to use a logical or functional characterization/detection
scheme.

In the logical scheme, we assume three global parameters: the configuration pa-
rameter space, C, a probability threshold, 6, and a simulation time threshold, T. The
adaptive Monte Carlo sampling method selects a ¢ € C and calls the Bayesian sta-
tistical model checker with ¢ and 0. This then calls the simulator with c, thereby
configuring the simulator for an execution. The simulator embeds the logical feature
integrator/detector and feature measurers, together which implement ¢. The simu-
lator either halts early, returning 1, or runs its full course (to time T), returning o.
Depending on this outcome, the Bayesian statistical model checker decides whether
or not to execute another simulation of c. Once it halts, the Bayesian statistical model
checker returns its binary verdict to the adaptive Monte Carlo sampler, which records
this evaluation and adapts its subsequent sampling on the basis of it.

In the functional scheme, we assume three global parameters: the configuration
parameter space, C, a coefficient of variation threshold, T, and a simulation time
threshold, T. The Monte Carlo branch-and-bound sampler selects a ¢ € C and calls
the mean-variance thresholder with ¢ and t. This then calls the simulator with c,
thereby configuring the simulator for an execution. The simulator embeds the func-
tional feature integrator/detector and feature measurers, together which implement
f. The simulator halts at T and returns its “high water mark” normalized similarity
score, a real number in [0,1]. Depending on this outcome, the mean-variance thresh-
older decides whether or not to execute another simulation of c. Once it halts, the

mean-variance thresholder returns its binary verdict to the Monte Carlo branch-and-
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bound sampler, which records this evaluation and adapts its subsequent sampling

on the basis of it.
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Figure 6: Run-time view. System execution calls and returns for the computational solution
presented here.

1.6.5 The pillars in detail

We have designed a modular system; the three pillars may stand independently from

the others, then be coordinated at design time. Should we find a better simulation

framework, we can replace the current one and it will not jeopardize (though it will

distinctly inform the design of) the other system components. Likewise for replac-

ing the type of data used for characterization. Likewise for replacing the algorithms
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employed to sample high dimensional space and ascertain stability of the stochastic
simulator. These may be replaced without destroying the overall system design. The
system is also extensible and scalable, especially the components using feature-based
characterization, since one may select an arbitrary number of features. Taken together,
these three system components formulate a novel approach to the inverse problem
stated above, and constitute a design for a tool that can be placed into the hands
of experimentalists, for testing existing and new hypotheses, either based on known
parameter values, or on ones the tool discovers. In principle, this design can be gener-
alized to other biological phenomena involving large heterogeneous populations of
interacting cells.

Now let us consider each of the pillars in detail over the course of the next three

chapters.
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SIMULATION FRAMEWORK

2.1 INTRODUCTION

2.1.1 Problem statement

Implement a spatially-resolved simulation framework for modeling the emergence of
localized regions of hypoxia within a tissue-scale mixed population of cells. Cellular
fitness should be locally determined. Cells should consume and release diffusible par-
ticles that represent metabolites, gasses, signaling molecules, etc. These constitute a
complex spatial universe of heterogeneous information, stress, and reward, to which
cells may adapt using either their type-defined default behaviors, or type-defined
conditionally invoked behaviors that override their default behaviors. The simulator
should be algorithmically simple and efficient. It should be fully specified by an in-
put vector of numbers that code for initial conditions and operational parameters. Its
data structures should be amenable to interrogation and decomposition for the pur-
poses of run-time feature measurers and the hypoxia detector that integrates them,
as specified by Chapter 3. Accordingly, the simulator should output either {o,1}, if
the detector embeds a spatiotemporal logical proposition integrator/detector, or a
numerical value in [o,1], if the detector embeds a learned functional form integra-

tor/detector.
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2.1.2  Background & literature review

2.1.2.1  Canonical model designs and their trade-offs

When one is deciding how to create a computational model of a cell population, the
primary choice is whether it should be continuous or discrete (or a hybrid). Usually,
this breaks out into two canonical design dimensions’. In the first, one can represent
cells as points, or as being composed of sub-elements. In the second, cells can occupy
positions on a fixed, regular lattice, or positions off-lattice.

The lattice-gas cellular automata model [63] is an example of cells-as-points on a
lattice. Hatzikirou, et al. use it to model cell migration in directional and oriented
fields. It uses channels to alleviate the problem of collisions found in classical cellular
automata models. Many individuals can move synchronously in each time step. It
accomplishes this using a two-step transition rule. First, interaction: update channels
and particles in each node. Second, propagation: deterministically move the particles
based on their direction and velocity.

The off-lattice hybrid discrete-continuum model [76] is an example of cells-as-
points off-lattice. Jeon, et al. use it to model tumor growth. It models cells as dis-
crete points. They migrate using random and biased movement; internal and exter-
nal forces determine their motion; and they grow, proliferate, die, become quiescent,
and mutate. It models chemical fields as continuous functions of space and time. One
can thus model extracellular matrix density, and concentrations of matrix degrading

enzymes and nutrients. Cellular forces include: cell-cell soft sphere repulsion force,

I would like to gratefully acknowledge Terri Grosso at the CUNY Graduate Center for
giving a review presentation on 26 June 2012 of these canonical modeling dimensions,
and providing the example models, in the context of her research into computational
modeling of cell migration.
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haptotactic force, and cell-cell adhesion force. In terms of the chemical gradients:
the extracellular matrix degrades based on its concentration and that of the matrix-
degrading enzymes, and the rate enzyme-matrix degradation; matrix-degrading en-
zyme concentration depends on diffusion through the extracellular matrix, produc-
tion by cells, and its natural decay rate; and nutrient concentration depends on diffu-
sion, concentration of extracellular matrix, and cell consumption and natural decay.

The cellular Potts model [13] is an example of cells composed of sub-elements on
a lattice. Bauer, ef al. use it to model tumor-driven angiogenesis and the transwell
migration assay. It was developed to study bubbles and other surface-energy-driven
processes. It conceives of cells as fluid droplets. A cell is a contiguous set of lattice
locations that share a unique index. The lattice evolves as a succession of attempts
to exchange neighboring lattice site indices. It accomplishes this by step-wise, syn-
chronous minimizing the total energy of the system, accepting those proposed lattice
site index exchanges that do this with a Boltzmann probability. The model represents
the total energy of the system as a function of cell-cell adhesion, cells’ current and
target volumes, and other energy terms, like chemotaxis.

The sub-cellular viscoelastic model [73] is an example of cells composed as sub-
elements off-lattice. Jamali, et al. use it to model emergent and complex cellular mor-
phology. The model aims to represent the internal structure of the cell and then
model cellular processes such as: adhesion, growth, mitosis, migration, polarization,
a distinct nucleus, cell-environment interactions, and biomechanical behavior. Cells
are modeled as an approximately circular membrane and an internal nuclear mem-
brane; the cell is then divided into some number of segments, and the mass of the
cytoskeleton and nucleus are divided between the segments. Points are connected by

Voigt subunits, where purely viscous elements are a damper, purely elastic elements
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are a spring, and units are connected in parallel. Total force on the cell is computed
as the sum of forces exerted: from inner structure of the cell; from interaction with
other cells; from interaction with the extracellular matrix; from external sources; and
from contractility during cell division.

Considering again the canonical modeling dimensions, one should weigh several
trade-offs. When one models cells as points, one can represent large numbers of cells
in a computationally efficient manner; but the model is coarse-grained, neglecting cell
mechanics and other biophysical considerations. When one models cells composed of
sub-elements, one can better represent cell shape, cytoskeleton, and internal structure;
but this requires more computation and one can therefore represent fewer objects.
Lattice-based models are computationally efficient and afford a simpler algorithmic
design; but the complexity depends on lattice size, not the number of objects, and the
rigid structure of the lattice can affect morphology and behavior. Off-lattice models
have a complexity that depends on the number of objects being modeled, and one
can model cell movement and morphology continuously; but collision detection is
computationally expensive, and interactions between nearby elements can be more

expensive than using a lattice.

2.1.2.2  Biophysically realistic models

Plank, et al. [119] compare lattice-based and lattice-free approaches to the problem
of modeling collective cell behavior with crowding effects in individual-based (agent-
based) models. They note that lattice-based models implicitly assume a proliferative
population will always eventually fill the lattice. They develop their own individual-
based lattice-free model that incorporates cell crowding effects, where the confluent

cell density is not predefined as with a lattice-based model, but is instead an emergent
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model property. As a consequence of the more realistic, irregular configuration of
cells in the lattice-free model, the population growth rate is much slower at high
cell densities, and the population cannot reach the same confluent density as an
equivalent lattice-based model.

Xavier, et al. [159] developed an elaborate simulation framework for multidimen-
sional modeling of activity and structure of multi-species biofilms. This integrates
concepts from previous biofilm models into a realistic biophysical simulation that
runs in a 2D or 3D off-lattice environment. They pay much attention to biomass com-
putation, as this is one of the principal concerns in biofilm modeling. In the particular
simulations they show, they use 25 model parameters that pertain to: solute species,
particulate species, yield coefficients, rate parameters, and computation parameters.
The simulation proceeds as a cycle over the following steps: (1) determine the time
step, At, for the current iteration at time t; (2) grow every biomass agent, dividing if
its radius surpasses a threshold, and excreting extracellular polymeric substances if
these surpass a threshold; (3) spread the cellular constituents, resettling them accord-
ing to a global energy minimization, advancing the biofilm front; (4) detach biomass,
including erosion and sloughing; (5) update the bulk concentration of solutes, per-
forming global mass balances for solutes with dynamic behavior; (6) update the spa-
tial concentration fields of solutes to steady state; (7) advance the simulation time to
t 4+ At. One can easily define a stoichiometric table for one’s simulation, specifying
the constituents, reactions, and rate expressions in a concise manner. Notably, the sim-
ulation cannot explicitly perform apoptosis, nor can it implement conditional logic.
It is a deterministic framework as it implements reactions as ODEs and numerically

solves PDEs for the spatially resolved particle concentrations.
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2.1.2.3 Multiscale models

In addition to the models described above, there is an extensive literature on multi-
scale cancer modeling [24, 32]. These models aim to incorporate biological properties
that range in length and time scales pertaining to molecules, cells, tissues, organs,
and whole organisms. We laud this effort; cancer is a systems disease that requires
the unified consideration of a broad set of structures and environments that span
many scales. Often these models, some of which are rigorously derived [24], are
complicated and computationally expensive. While cancer metabolism is a multi-
scale phenomenon [91], we restrict our attention to the scales that define a large
tumor cell population within a single tissue. While we do not seek to completely
neglect biophysical detail in our model, we do seek a coarse-grained, minimal model
that can capture at least some of the qualitative features that define local regions of
hypoxia in histological evidence from in vivo experiments. For our purposes here,
we also seek a model that is computationally efficient, since in the broader context
of this dissertation, we understand it will be the “inner loop” of a large processing
regime to (at least partially) solve the inverse problem of hypoxia formation. With all
of this under consideration, we chose to implement our simulation representing cells

as points based on a lattice.

2.1.2.4 Cancer metabolism models

Astanin, et al. [3] develop a mathematical model of the Warburg effect in tumor cords.
It links two approaches: a continuous medium to describe the movement and the me-
chanical properties of the tissue, and a population dynamics approach to represent
tumor-intrinsic heterogeneity and instability. While one can use their framework to

build models which cover several stages of tumor progression, they focus on describ-
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ing the transition from oxidative phosphorylation to purely glycolytic metabolism in
tumor cords. Growth and decay of the cells and uptake of the nutrients are related
through ATP production and energy costs of the cellular processes. Intriguingly, they
assume the Warburg effect is an irreversible, all-or-nothing event triggered by hy-
poxia. Mathematically, this model leads to a free boundary problem where domains
in contact are characterized by different sets of equations. They accurately stitch to-
gether the solution by developing a modified ghost fluid method. They employ PDE
models for studying the boundary shape changes, exploring growth rates and result-
ing spatial structure of the glycolytic and oxidative phosphorylation subpopulations
over a range of various parameter values. Consequently, the model is determinis-
tic, and spatial heterogeneity can be modeled only to a limited extent, where sub-

populations are contiguous and occupy adjacent layers [158].

2.1.2.5 Game theory cancer models

There is a growing literature of game theory models of cancer population dynamics
[141, 142, 124, 8, 9, 49, 50, 48, 45, 103, 7, 12, 11]. Most of these early studies model
tumor-tumor or tumor-stromal cell interactions in a generic way, or explore evolu-
tionary dynamics of tumorigenesis, or the emergence of tumor invasiveness. None of

them address cancer metabolism explicitly.

2.1.2.6  Well-mixed models

One recent study, by Kareva [82], develops a mathematical model based on game
theory to investigate cancer metabolism. It is well understood that glycolysis is ener-
getically inefficient relative to oxidative phosphorylation, producing 2 versus 30-36

ATP molecules, respectively, for each molecule of glucose. And glycolysis secretes 2
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molecules of lactic acid for each molecule of glucose as a byproduct. The ensuing acid-
ification is toxic for healthy tissues, enabling glycolytic cells to be better competitors
at the cost of their being energetically inefficient. However, a single cell is unlikely
to secrete enough lactic acid to cause significant changes to the microenvironment.
The core population of glycolytic cells needs to be large enough to gain this com-
petitive advantage. Kareva casts the problem as a prisoner’s dilemma game: from
the perspective of metabolic payoffs, it is better for cells to cooperate and become
better competitors, but neither cell metabolic phenotype has an incentive to unilat-
erally change its metabolic strategy—they are in a Nash equilibrium [110], and it
can be argued that metabolically, oxidative phosphorylation is an evolutionary stable
strategy [134, 135] that cannot be “invaded” by the glycolytic strategy. In this for-
mulation, Kareva addresses the question of how such a glycolytic population could
arise. One intriguing aspect of the game theory perspective is the notion of “public
goods” in the cell ecology. For example, intracellular stores of nutrients can be recy-
cled by neighboring cells [37, 38, 83]. She shows that changing the environment can
take cells out of their Nash equilibrium, and that it is cooperation [6, 5, 4, 114] that
can lead to the cell population committing “evolutionary suicide.” The author devel-
ops an ODE model for studying the population dynamics governed by the prisoner’s
dilemma payoff matrix, exploring growth rates of the glycolytic and oxidative phos-
phorylation subpopulations over a range of various parameter values. Consequently,
the model is deterministic and assumes a well-mixed population, neglecting spatial
modeling properties altogether [158]. For the purposes of this dissertation, we restrict

our focus to spatiotemporal, mixed-population models of cancer metabolism.
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2.1.2.7  Spatially-resolved models

We further restrict our focus to individual-based, spatially-resolved, diffusive models
that can represent the gross metabolic phenotypical properties measured by Jain, et al.
[140, 72], namely distinct consumption and release profiles, and particle types with
distinct diffusion rates. This brings us to the simulation framework developed by
Cleveland, et al. [23]. They examine from a game theoretical perspective the popula-
tion dynamics of “cooperator” and “cheater” cells under metabolic stress conditions
and high spatial heterogeneity. In general, cooperators obey rules of communal sur-
vival, and cheaters do not. In a cancer setting, cooperators are the highly adapted and
differentiated cells that make up the body under normal conditions, while cheaters
are the rapidly proliferating cells inside a tumor. The authors are not interested in
how cheaters become cheaters, but instead seek to examine the dynamics once the de-
fection to cheat has occurred. Their ultimate aim is to understand the movement and
growth of a mixed tumor cell population in a complex landscape where metabolic
stress is a strong function of position. They draw upon their prior work to use a sim-
ple bacterial model to gain insights into the evolution of resistance to drugs under
competitive and metabolic stress conditions.

In three ways their approach is similar to that of Kareva. First, they cast the inter-
action dynamics between the two cell types—be they wild-type or GASP (Growth
Advantage in Stationary Phase) mutant bacteria, or distinct metabolic phenotypes—
as a prisoner’s dilemma game, governed by a prototypical payoff matrix. Interactions
between players are matrix operations composed of: each player’s consumption and
release rates of the different particle types, local normalized concentrations of those
particle types, and the quantified impacts those particle types upon each player. Sec-

ond, they are interested in modeling “public goods”. Here they cite the research
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C. Athena Aktipis has done in game theoretic agent-based modeling in spatially-
resolved environments [1, 2], which implements a “walk away” strategy where a
player cells leave a region after they determine that neighboring cells fail to pro-
duce sufficient “public goods”; this allows cooperators to gather together rather than
with selfish agents, and thereby the population can avoid annihilating the cooper-
ative subpopulation. Third, they are interested in discovering emerging patterns of
cooperation between the two cell types.

In contrast to Kareva, they claim this will happen when the traditional game the-
oretic framework is modified to account for heterogeneous stress patterns, like in
their spatially-resolved simulation; so while Kareva developed a well-mixed, non-
spatial ODE model to study this phenomenon, Cleveland, et al. believe the spatial
modeling properties are elemental to the phenomenon. Here they cite the seminal
study of Nowak & May [115]—which discusses the effects of spatial resolution on
the evolution of cooperation—to make a point that spatially-resolved models and
their well-mixed counterparts often produce very different outcomes: diversity and
coexistence result from spatial models, while homogeneous populations result from
well-mixed models. They also cite a study by Kerr, et al. [85], to make the related point
that in spatially-resolved models, fitness is determined locally by neighborhood in-
teractions and stresses, rather than globally by uniform stresses; and their simulation
results concur with those two studies that the more localized fitness is determined,
the more cooperative the outcome, while the more globally fitness is determined, the
more zero-sum the outcome.

Despite the appeal of implementing advanced strategies like “walk away,” which
require agents explicitly model their migration, the authors found that approach to

be more deterministic than what their present Markovian approach based on pure
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statistics aimed to implement, though they did impose spatial gradients of externally
applied “public goods” in their model by introducing special “reservoir” cells that

function like vessels.

2.1.3 Our materials & methods

We found the authors” simple, Markovian, spatially-resolved simulation framework
to be well suited to our needs for a fast, minimal simulation of a metabolically
and spatially heterogeneous cell population with diffusible metabolites, gasses, and
signaling molecules, where we might see important emergent phenomena such as
necrotic core formation, and stable local regions of hypoxia like we observe in xeno-
graphed hypoxic tumor histology. We know their framework can implement simple
game theoretic strategies and give rise to emergent cooperation—as evinced in their
study of coexisting subpopulations—so we can exploit this extensibility in future
work that explores evolutionary game theory [134, 6, 135, 5, 66, 4, 113, 114, 53] and
signaling games [95, 133]. The 3D lattice data structure is simple, regular, and easy
to interrogate for the purposes of feature measurer and feature integrator modules
we can later implement to detect emergent phenomena. Using the Cleveland, ef al.
framework as a starting point, we then extend it in significant and novel ways to fur-
ther suit our needs. First, we can support any number of cell types and any number
of particle types (each with its own diffusion rate). Second, each cell type has default
behaviors, as before, and conditional behaviors, which can implement phenotypical
adaptations and mutations, and state machines composed of two or more cell types.
Third, initial, and upper- and lower-bounded basal concentrations can be set for each

particle type. Fourth, each cell type can be replaceable or not, and reproductive or
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not. Fifth, initial lattice occupation can be delayed to establish complex diffusion

gradients to form prior to simulation.

2.2 MATERIALS & METHODS

2.2.1  Cellular automaton

The universe of the simulation is a 2D or 3D cellular automaton [148]. Hereafter,
for the sake of defining the simulation, we shall assume a 3D configuration, though
many of the examples appearing on the page will naturally lend themselves better to
a 2D presentation. A cellular automaton works according to the following principles.
Each box inside a regular 3D lattice represents a cell, whose position is specified by a
three-tuple, (i,j, k). Each cell is one of a finite number of states. For simplicity, let us
assume these states are “on” and “off.” Each cell has a well-defined neighborhood of
adjacent cells, where neighborhood can be defined in a flexible way, most commonly
immediate neighbors. All cells are initialized to some state at time = o. Then, at
each subsequent time step (time = 1, 2, ...), the cells’ states are updated according
to fixed rules that determine the new state of the cell as a function of the cell’s
current state and those of its neighbors. The state update rules are applied uniformly
and simultaneously to the whole lattice of cells. In this way, the cellular automaton
evolves as a whole, and patterns in the population of cells emerge over time that

cannot be predicted without performing the requisite computation.
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2.2.2  The spatial simulation

In the context of simulating large, heterogeneous cell populations, we need a flexible
and extensible framework. We first specify the dimensions of our universe as x_dim,
y_dim, and z_dim parameters—running examples will execute on a 40 x 40 X 40
lattice—and the total running time of the simulator, where time steps are in arbitrary
time units, and can be scaled using a time parameter, T. We want to simulate M
typesof cell: T ={v,¢,, 3,7,9,...}, where v and ¢ are special types related to a blood
vessel and empty (unoccupied) space, respectively. We want to simulate N types of
diffusible particles that cells can consume and release. At any given time, each (i, j, k)
is occupied by some t € T. Each cell type, t € T\{v, ¢}, has a two sets of parameters
that specify its behavior.

First are the default parameters. These include: ¢, the consumption rate of par-
ticle type p; T¢,p, the release rate of particle type p; o, the impact factor of each
particle type p; whether or not t is replaceable; and whether or not t is reproductive.
These can be thought of as implementing the cells” genotypical (native) behaviors, as
viewed from an outside, cell population perspective.

Second are the conditional parameters. These are formulated as trigger-action pairs.
A trigger is a set of one or more predicates that are based on particle concentrations,
as measured by the cell in its locality. All trigger predicates must be true to execute
the associated action. An action is a set of commands which are executed sequentially.
The possible commands include: apoptosis; become (“jump to”) another cell type,
t" € T\{v, ¢, t}; set the consumption rate of particle type p to a target value; set the
release rate of particle type p to a target value; set the impact factor of particle type p

to a target value; set the Boolean condition of being replaceable; and set the Boolean
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condition of being reproductive. This conditional degree of flexibility grants us the
ability to implement cell mutational events (the action to become another cell type)
and the cells’” phenotypical response behaviors (all of the actions), again as viewed
from an outside, cell population perspective.

The initial cell population in the lattice constitutes another set of parameters. The
default cell type for the lattice is empty (¢). One can manually specify cell types at
individual locations, or can algorithmically do this, using arbitrary functions, includ-
ing stochastic ones, to specify the initial population. An initialization delay parameter
specifies when the all-empty lattice is replaced by its initial configuration. Its default
value is o, but can be set to any future time step, to allow, for example, one to es-
tablish a concentration gradient (or set of gradients), that may take many time steps,
prior to introducing the cells into it.

Each time step drives the simulation through four phases. Particles are consumed
and released according to the cell type’s consumption and release rates, respectively,
for that particle type. Particles continually diffuse in R® according to the particle
type’s diffusion rate. A cell’s fitness is first individually computed as a function of
impinging concentrations of the particles in combination with the cell type’s impact
factors corresponding to each particle type. Then its fitness is computed from the
titness scores of individuals in its neighborhood, according to their cell types. This
defines a distribution that will be statistically sampled to determine what cell type

each lattice location will contain in the next time step.
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2.2.3  DPhase 1: consume and release particles

Let P denote the set of particle types, and py(i,j, k) denote the normalized concen-
tration of particle type p € P at location (i,j, k). Concentrations of particles evolve
at each time step by the following. For each particle type p € P, for each cell type

t e T\{v, ¢}, set

pp (l/j/k) = pp (il j/ k) : (] - Ct,p +Tt,p)‘ (1)

Note that cell type v (vessel) has some special default properties related to particles.
These defaults implement an assumption we make that a vessel is a perfect source for
certain particles (releasing them to full concentration) and a perfect sink for others
(consuming them to zero concentration). That is, if location (i,j, k) contains cell type
v, thenVt:Vp € P,r,p =1:pp(i,j, k) =Tand VT :Vp € P,cyp =1:pp(i,j,k) =0.
These default properties can be overridden by specifying non-unity vessel consump-
tion and release rates for each particle type.

The simulator has additional parameters related to particle concentrations. Initial
concentrations, and basal upper and lower bounds, can be set for each particle type.
For the latter, the simulator enforces the bounds in this phase at each time step: those
concentrations falling below the lower bound are set to the lower bound; those rising

above the upper bound are set to the upper bound.
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2.2.4 Phase 2: diffuse particles

At each time step, each lattice point’s concentration of the particles it contains is
updated according to the diffusion rate, Dy, of each particle type p. Each particle
type’s concentration field, p,,, undergoes an isotropic 3D Gaussian convolution, using

a 5 x 5 x 5 mask with o0 = |/2D,. The n-dimensional Gaussian kernel is defined as

|X

(2)

Gn(X, 0)

1
N

We assume input array values outside the bounds of the array are equal to the
nearest array border value. We accomplish the convolution using Matlab’s imfilter
command.

Equivalently, consider each individual particle taking a random walk in each of the
three dimensions [67]. Let q be a number drawn from a standard normal distribution,
q ~N(0,1), and T be a scaled time variable with respect to the simulation’s clock tick
value. Concentrations of particles diffuse at each time step by the following. For each

particle p’ of type p € P,

Axpr = Aypr = Azpr = q\/2D7- (3)
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2.2.5 Phase 3: compute fitness scores

For each location in the lattice (i,j, k), and for each cell type t € T\{v, ¢}, let us define

a local fitness function

ft (1/)/k) - [Gt,1 * P (l/J/k) + Gt,z *P2 (1/]/k) +...+ Gt,TL : pn(lr)/k)] : jt/ (4)

where pp, (i, j, k) denotes the normalized concentration of particle type p at location
(i,j,k); ot,p denotes the impact of particle type p on t; and J; denotes the indicator
function that is true if and only if location (i, j, k) is occupied by cell type t, reflecting
the simulator design assertion of exclusive occupancy of one cell type per location.
We define f.(i,j,k) = 0.

After we compute these individual fitness scores for each lattice location, we use
them to decide probabilistically what cell type each location (i,j, k) should contain
in the next time step. For each location in the lattice (i,j, k), and for each cell type

t € T\{v}, let us define a neighborhood fitness function

.. 1 o
Ft(llllk) — N o Z ft(llr]//k/)/ (5)
(i’,j’,k")Eneighbors
where Fi(1,j, k) denotes the probability that the cell at location (i, j, k) becomes cell
type t; and N denotes the number of neighbors in the sum. Note that since (i,j, k)
may reside on an edge or corner of the lattice, the number of its immediate neighbors

is bounded from above by 8 (in 2D) and 26 (in 3D).
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2.2.6  Phase 4: reproduce probilistically

Each cell’s immediate neighbors give a distribution from which to draw the target
cell type. Let S(i,j,k) = ZteT\{v}FL(i,j,k). In this scheme, if S(i,j,k) > 1, then we
normalize it to 1; and if S(i,j,k) < 1 then there is some probability that location
(1,j, k) will become empty (t = ¢) in the next time step.

We accomplish this as follows. Let shrinkage factor A = ﬁ For each t €
T\{v}, shrink each cell type’s probability contribution: F¢(i,j,k) = A-F¢(i,j, k). We
can represent each F((i,j, k) as a subinterval of the unit interval. We place them side
by side to cover the unit interval. Then we draw a random number, r, uniformly in
[0, 1]; whichever cell type’s interval r resides in determines the target cell type of
(1,j, k) for the next time step.

Note that cell type v (vessel) defaults to being neither replaceable (its fate is exempt)
nor reproductive (it casts no vote), so it is effectively neutral with respect to this

reproduction phase of the simulation. Vessels are static features of the spatiotemporal

landscape.

2.2.7  Computing and plotting statistics

Between phases 3 and 4, the simulator computes and displays a number of useful
statistics for the user. These are organized into a console style grid of plots as follows.
Since we can often get a good sense of what is happening by examining 2D slices
of our 3D world, and because rendering 3D plots is computational expensive, the

dashboard consists of mostly 2D plots, and defaults to showing 2D slices on the
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2.dIm plane; for a 40 X 40 x 40 simulation, for example, the 2D plots show the plane

z = 20.

On the first row, in column:
1. Spatial organization of all cell types: 2D slice, color coded

2. Time series plot of the wall clock seconds elapsed at each time step (perfor-

mance diagnostic)
On the second row, in column:

1. Spatial organization of individual fitness of cell type 1: 3D scatter plot, color

coded, intensity level denotes fitness
2. same as above for cell types 2, ..., M —1

3. Spatial organization of individual fitness of cell type M: 3D scatter plot, color

coded, intensity level denotes fitness
4. Time series plot of each cell type’s population at each time step, color coded
On the third row, in column:

1. Spatial organization of individual fitness of cell type 1: 2D slice, color coded,

intensity level denotes fitness
2. same as above for cell types 2, ..., M — 1

3. Spatial organization of individual fitness of cell type M.: 2D slice, color coded,

intensity level denotes fitness

4. Time series plot of each cell type’s mean individual fitness (+ standard devia-

tion) at each time step, color coded
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On the fourth row, in column:

1. Spatial organization of neighborhood fitness of cell type 1: 2D slice, color coded,

intensity level denotes fitness
2. same as above for cell types 2, ..., M — 1

3. Spatial organization of neighborhood fitness of cell type M: 2D slice, color

coded, intensity level denotes fitness

4. Time series plot of each cell type’s mean neighborhood fitness (+ standard

deviation) at each time step, color coded
On the fifth row, in column:
1. Time series plot of cell type 1’s x,y, z extents, color coded
2. same as above for cell types 2, ..., M —1
3. Time series plot of cell type M’s x,y, z extents, color coded

4. Time series plot of each cell type’s whole-image Euler-Poincare characteristic

(see Chapter 3) at each time step, color coded
On the sixth row, in column:
1. Particle type 1 concentration: 2D slice, mesh plot
2. same as above for particle types 2, ..., N —1
3. Particle type N concentration: 2D slice, mesh plot

Figure 7 and Figure 8 show these as they appear in the simulator console for 2D

and 3D simulations, respectively.
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Figure 7: Simulator console displaying an evolving necrotic core in a 40 x 4o lattice. The
simulation consists of four cell types—empty, viable, /1ypoxic, and necrotic—and one
particle type, O3. In row 1, column 1, the cell population at this point in the simu-
lation consists of all cell types. In rows 2-5, columns 1-3, all cell types except empty
have fitness and other spatial statistics reported. In row 6, the concentration of O,
is reported. In column 4, rows 2-5, aggregate cell type statistics are reported in time

series.
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Figure 8: Simulator console displaying evolving regions of stable hypoxia with many vessels
in a 40 X 40 x 4o lattice. The simulation consists of five cell types—vessel (white),
empty, viable, hypoxic, and necrotic—and one particle type, O2. In row 1, column 1,
the cell population at this point in the simulation consists of /iypoxic and necrotic
cells. In rows 2-5, columns 1-3, all cell types except vessel and empty have fitness
and other spatial statistics reported. In row 6, the concentration of O; is reported.
In column 4, rows 2-5, aggregate cell type statistics are reported in time series.
Components of the console displaying 2D plots show the plane z = 20.
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2.3 RESULTS & DISCUSSION

2.2.8 Code

The simulator was coded in Matlab. The complete code listing is given in Appendix B.
It depends on three modules: Colormap and Colorbar Utilities* (to stabilize col-
ormaps in multi-plot figures), freezeColors/unfreezeColors3 (to stabilize colorbars
in multi-plot figures), and Geometric Measures in 2D/3D Images* (for computing

Minkowski functionals and the Euler-Poincaré characteristic—see Chapter 3).

2.3 RESULTS & DISCUSSION

A large set of simulation results and related discussions are listed in Appendix A.

2.4 CONCLUSIONS & FUTURE WORK

2.4.1  Conclusions

2.4.1.1  Our contributions

We have created a spatially-resolved, mixed-population simulation which is minimal,
fast, extensible, and adaptable. First, we can support any number of cell types and
any number of particle types (each with its own diffusion rate). Second, each cell type

has default behaviors, as before, and conditional behaviors, which can implement

http:/ /www.mathworks.com /matlabcentral/fileexchange /24371-colormap-and-
colorbar-utilities-sep-2009

http:/ /www.mathworks.com/matlabcentral/fileexchange /7943-freezecolors-
unfreezecolors

http:/ /www.mathworks.com /matlabcentral/fileexchange /33690-geometric-
measures-in-2d3d-images
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phenotypical adaptations and mutations, and state machines composed of two or
more cell types. Third, initial, and upper- and lower-bounded basal concentrations
can be set for each particle type. Fourth, each cell type can be replaceable or not,
and reproductive or not. Fifth, initial lattice occupation can be delayed to establish

complex diffusion gradients to form prior to simulation.

2.4.1.2  Our findings

Regarding the simulation, we find that with a few simple ingredients—space; distinct
particle types with their own diffusion rates; distinct cell types with default consump-
tion and release profiles; and conditional logic to implement cell-type-specific local
adaptation—we can capture a number of interesting features and phenomena. First,
in Section A.3, we observe sustained coexistence of two populations; one is dominant
but does not drive the other to extinction. Second, in Section A.6, we observe emer-
gent spatial self-organization among hypoxic and aerobic cells into a stable striation
pattern (without conditional logic), followed by population size rebalancing. Third,
in Section A.7, we are able to implement a functioning system of autocrine and re-
ciprocal paracrine signaling. Fourth, in Section A.9 and Section A.12, we observe
emergent 2D and 3D necrotic cores, respectively. Fifth, in Section A.10, Section A.11,
Section A.13, and Section A.14, we observe the emergent formation of local regions
of spatially and numerically stable viable-hypoxic cell populations that are concentri-
cally oriented, in 2D and 3D, over different vascular densities. In terms of relative
orientation, composition, and dimensions, these simulated formations are similar to
what we observe in the anti-pimonidazole stain images. This is especially true where
the randomized vasculature is more dense, thereby breaking diffusion symmetries

and giving rise to more realistic viable-hypoxic agglomerations.
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Regarding the biology of hypoxia, in Section A.10, Section A.11, Section A.13, and
Section A.14, we find there is an instability in the viable-hypoxic cell population bal-
ance. Either over-oxygenation eventually converts all hypoxic cells to viable cells, or
under-oxygenation does the reverse and then eventually these hypoxic cells become
necrotic cells. The oxygenation balance derives from three rates related to O: vessel
release rate, the local population’s average consumption rate, and the diffusion rate.
There seem to be two possibilities: (1) the histology shows a delicate balance that
is stable, and therefore in evidence everywhere; or (2) it is a transient phenomenon,
and our histology happens to have caught one early stage. But which is it? In other
words, what is the relationship between tumor age and average intra-tumor hypoxia?
We know tumor age correlates positively with degree of vasculature, and therefore

density of oxygenation, so we can perform experiments to address this question.

2.4.2  Future work

2.4.2.1 To interface

With respect to the overarching aims of this dissertation, once we have a stable charac-
terization of hypoxia in terms of spatiotemporal features, either as a spatiotemporal
logical proposition or as a learned similarity score function, then we must implement
feature measurers correspond to each proposition feature predicate, or to each score
function feature, respectively. These measurers will perform live measurements on
the evolving simulator data structures and report their Boolean or numerical results
to a live integrator/detector function that logically or functionally relates them, re-
spectively. In the case of the spatiotemporal logical proposition, upon an integrated

truth value, the simulation will terminate and return true; otherwise it will run to
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the end and return false. In the case of the similarity score function, the integrator’s
high water mark will be maintained throughout the course of the entire simulation,
then returned as a numerical value in [0,1]. We assume these modules would be
embedded in the simulator for fast execution.

One likely set of feature measurers, related to 2D and 3D Minkowski functionals,
including the Euler-Poincaré characteristic, is already implemented [93] as the im-
Minkowski Matlab library. Once specified, the remaining feature measurers, so far as
they could not be trivially obtained by direct interrogation into the simulator’s data
structures, would require implementation.

Aside from this, we would need to modify the simulator’s functional interface to
accept a vector of arguments that codify initial condition parameters, and default and

conditional operational parameters.

2.4.2.2 To extend and enhance

We consider three extensions to our conditional logic handling that would enhance
the simulator.

First, implement a trigger-true temporal predicate. For convenience, let us illustrate
using an English language example: “If a viable cell’s local concentration of oxygen
is less than 0.05 for more than 15 clock ticks, then jump to hypoxic.” In this example,
each viable cell would have a local clock associated with each trigger set, including
one for “local concentration of oxygen is less than 0.05”. If the local concentration
were to become less than 0.05, then that clock would begin running, and would run
so long as the local concentration of oxygen stayed less than 0.05. If that clock reaches
15 ticks, then that viable cell would become hypoxic; otherwise, if before that local

clock were to reach 15 clock ticks, the local concentration of oxygen were to become
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greater than 0.05, then that clock would reset and become inactive. Modeling dura-
tion of certain local conditions, like oxygenation, would enable affected cells to adapt
their behavior according to whether pO; levels exhibit “chronic,” vessel-dominant,
radially-distributed hypoxia, or “intermittent,” periodic, fluctuating hypoxia, as dis-
cussed by Cardenas-Navia, et al. [20].

Second, implement a cell-age temporal predicate. For convenience, let us illustrate
using an English language example: “If a viable cell’s local concentration of oxygen is
less than 0.05 and the affected cell is more than 100 ticks old, then jump to hypoxic.”
At birth, each cell’s local age clock would initialize to zero, then advance along with
the global simulator clock. In this example, if the local concentration of oxygen were
to become less than 0.05, then that cell’s local age clock would be consulted to evalu-
ate the cell-age predicate. If it too is true, then that viable cell would become hypoxic.
Modeling local adaptations as a function of cell-age, like sensitivity to certain gradi-
ents, may capture some significant features related to the emergence of hypoxia.

Both of these temporal predicates depend on cell’s having a unique identity, which
our simulator does not use. So we would have to implement this too.

Third, implement probabilistic actions. For convenience, let us illustrate using an
English language example: “If a viable cell’s local concentration of oxygen is less than
0.05, then jump to hypoxic with a probability of 0.6.” Or “...then jump to hypoxic by
drawing from a Beta distribution, parameterized by....” Implementing this is trivial
and would immediately give the simulator an added dimension of stochasticity, to
better model natural degrees of variance in a cell population.

Another such dimension is easy to add. Instead of representing each cell type’s
default parameters as constants, we could represent them as, say, mean-variance pairs.

This way, each newly created cell of that type would draw its parameter values from,
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say, Gaussian distributions. This too would better model natural degrees of variance
in a cell population.

Given the current state of the conditional logic handling, we could attempt to
crudely implement certain phenomena like angiogenesis as, say, a probabilistic jump-

ing from empty to vessel, given sufficient concentration of VEGF particles.

2.4.2.3 To explore

We would like to explore a number of research directions related to our modeling
and simulation.

First, our findings related to local, stable regions of hypoxia, namely the balance of
rates, points to the importance of vessel density in the tissue. This compels us to ex-
plore modeling neovasculature as an explicit growth process related to tumor growth.
There is a broad literature on neovasculature modeling, for example, branching and
anastomosis [13], and among the multiscale models [32]. Vessel cells should respond
to appropriate growth factor signaling from tumor cells, like VEGF signaling, and its
growth should be geometrically constrained to one-dimensional branching embed-
ded in three dimensions, oriented along these growth factor gradients. In addition,
vessel flow rates should vary. If embedded in a lattice, like our simulation, then one
need not explicitly model vessel volume, since this is abstracted away, but one can
easily vary vessel flow rates according to a statistical distribution that reflects in vivo
physiological norms in the model system.

Second, it may turn out that a lattice-based simulation is too limited to capture
properties related to cell crowdedness, which is arguably essential for modeling
density-derived control of tumor cell population growth, and emergent geometric

and spatial organization. It may also have significance for modeling emerging local,
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stable regions of hypoxia. Without an explicit notion of crowdedness, one cannot
correctly model contact inhibition or anoikis, for example, and how such mecha-
nisms constrain growth rates and spatial patterns. While one could use our condi-
tional logic apparatus to exploit an as yet unimplemented local-density predicate to
crudely model constrained growth, Plank, et al. argue that since lattice-based meth-
ods implicitly assume uniform density, among other limitations, properly modeling
crowdedness requires a lattice-free setting [119].

Third, we may wish to explicitly model individual cell migration. Our simulation
presently uses a simple statistical mechanism to implement fitness-based local cell
type regional takeover. As mentioned earlier, this implies that individual cells do not
possess a unique identity. While distinct cell types can respond to local concentra-
tions, and locally adapt to their environment using their conditional logic, they do so
in a manner that ignores their individuality. In other words, our world is lattice-state-
centric rather than cell-identity-centric. In the end, this may be too abstract a setting
to properly model individual cell migration in a way that can be configured by its
own set of parameters. This area too has a broad literature, for example [63, 73, 76].
The relationship between cell migration and emerging local, stable regions of hypoxia
is presently unclear to us, but may well prove worth exploring.

Fourth, in a longer time scale, evolutionary dynamics with respect to phenotypical
strategies, for example, complex, mixed metabolic strategies, may become important
to model. As such, we would like to investigate modeling a mixed metabolic popula-
tion based on the principles of evolutionary game theory [134, 135, 6, 5, 4, 114]. As
we discussed at length beginning in Section 2.1.2.5, there is a broad literature on can-
cer game theory modeling, but little it seems has been done in the area of metabolic

mixed populations. Another related direction is to model emergent signaling conven-
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tions and cellular coordination and teamwork based on signaling games [95, 133].
Two particularly interesting dimensions of this are meaning and credibility in “cheap-
talk” games, and the emergence of “neologism-proof” signaling conventions that
are robust to “deceptive” signaling [40]. How does a tumor cell population foil this
mechanism, to move the game-playing dynamics to a novel, malignant Bayesian equi-
librium? As with cell migration, the relationship between game theoretic strategies
for coordination, and emerging local, stable regions of hypoxia is presently unclear to
us, but may well prove worth exploring. (Bud Mishra and Andreas Witzel, personal
communications, 2011-2013.)

To balance matters, let us conclude with an appreciation for parsimony. Although
each of these four areas of exploration merit consideration, in the scope and context
of modeling emerging local, stable regions of hypoxia, our present minimal model al-

ready captures some of the salient spatial and dynamic features of the phenomenon.
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HISTOLOGICAL IMAGE ANALYSIS AND CHARACTERIZATION
OF HYPOXIA

3.1 INTRODUCTION

3.1.1 Problem statement

Derive a spatiotemporal characterization of hypoxia in human tumor tissue from a

set of histological images.

3.1.2  Background & literature review

3.1.2.1  Biological experiments & histological images

EXPERIMENTAL PROTOCOL Our study concerns an experiment that demonstrates
hypoxia arising in human colon cancer. In this experiment, 2 x 10 human colon can-
cer cells were injected into both flanks of nude mice. When the tumor volume reached

~1500 mm? (~ 4 weeks post-injection), pimonidazole was administered via intraperi-
toneal injection. Ninety minutes after pimonidazole administration mice were eutha-

nized, the tumors were excised and immediately fixed in formalin. Slides were then

I would like to gratefully acknowledge the experimental work performed by Elda
Grabocka, a postdoctoral fellow in the laboratory of Dafna Bar-Sagi, in her ongo-
ing research into the relationship between hypoxia and the formation of stress gran-
ules. This experimental work provided the tumor section slides—stained by H&E,
trichrome, and anti-pimonidazole—from which we took the images that our study
depends on for characterization of hypoxia.
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prepared from sections 10 um apart, alternating between H&E and anti-pimonidazole

stains.

H&E STAINING Hematoxylin and eosin stain (or “H&E stain”) is a common
staining method in histology. The staining method applies hemalum, which colors
cell nuclei blue; it also colors blue some calcified material. The method then coun-
terstains with an aqueous or alcoholic solution of eosin Y, which colors non-nuclear,
eosinophilic structures various shades of red, pink, and orange. In our study, we use
H&E stains of the tumor tissue for the primary purpose of locating blood vessels and
for discriminating collagen. Blood vessels appear within the boundary of the tissue
as open lumens (white) populated with several to many red blood cells (small, bright
pink spheroids). Collagen deposits appear as continuous structures (light pink) that
infuse the tumor lesions and usually do not extend into the necrotic tissue (lightest
pink, with interstitial spacing and much smaller, unenclosed nuclei). See Figure 9 for

an example H&E stain image of one of our study’s canonical tumor sections.
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Figure 9: An H&E stain of one of our study’s canonical tumor sections.

TRICHROME STAINING Masson’s trichrome is a three-color staining protocol
used in histology. The usual formulation stains keratin and muscle fibers red, col-
lagen and bone either blue or green, cytoplasm wither light red or pink, and cell
nuclei some gradation of dark brown to black. In our study, we use the trichrome
stain to verify the presence of collagen in the tumor tissue. In Figure 10, for exam-
ple, we see three lumen filled with clusters of red blood cells, indicating a transverse
sectioning of three blood vessels, and a tumor lesion completely suffused with colla-

gen. This produces a common complication in our study for two reasons that we can
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see here: it spatially partitions the lesion, and it may compartmentalize (in 3D) and

thereby affect oxygenation within the lesion.

Fig