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Chapter 1

Introduction

1.1 Preliminaries

Visual experience forms a tremendously large part of our everyday sensory perception. Visual

information is utilized to a surprisingly high extent to conduct everything from daily chores to

complicated activities like 
ying a �ghter aircraft. It has even been shown that suggestions from

the visual experience supersede those from other sources like inertial inputs [40]. A vast amount

of information is contained in the visual imagery obtained by motion. It is the processing of visual

motion information that is the central concern of this thesis.

Let us consider visual motion perception. The motion of a sensor alone or its motion combined

with the motion of other objects in the world gives rise to imagery that is rich in information about

the world and the motion itself. Seeing an object hurled towards the observer provides enough

data for the observer to avoid or catch the object! In less dramatic circumstances, we are able to

navigate around obstacles by observing their relative motion as we walk.

Human beings and other organisms equipped with visual perception utilize changing information

in the environment to judge self-motion [50] and to characterize the objects in the scene [76,34].

Technologically, the interest is to be able to provide robots with such a visual capability to enable

them to navigate in known as well as unknown environments. This requires the ability to process

the changing image of the environment. Thus the �eld of visual motion analysis is about analyzing

sequences of images to determine egomotion and to extract information from the scene.

Research in motion analysis has been focussed on the problems of estimating the structure of

the environment (structure from motion) and in computing the three-dimensional motion of the

sensor (egomotion estimation, or passive navigation). The analysis is typically broken down into

two stages. In the �rst stage, the motion of intensity points or feature points is computed. For

this purpose, one can talk about small-scale motion and large-scale motion. Small-scale motion is

the case where the motion in the image is small, i.e., comparable to the inter-pixel distance on a

discrete image. On the other hand, large displacements result in large-scale motion. It has been

suggested that the human visual system might have two di�erent mechanisms to deal with these
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two di�erent kinds of motion [73].

For the small-scale motion, the instantaneous motion of the intensity patterns can be de�ned;

the vector �eld denoting the motion is termed the optical 
ow. For the large-scale motion, one can

compute the displacements of important features in the image, and is termed the correspondence.

The second stage of the analysis makes use of one of these two (optical 
ow or the correspondence)

to estimate the structure and the motion parameters.

In this thesis, we are concerned with the situation where the optical 
ow has already been

computed and we are interested in determining the egomotion parameters. The problem is rendered

di�cult because of the following two reasons [4]:

� The relationship between the three-dimensional motion parameters and the optical 
ow is

nonlinear, and

� the space of unknowns has a dimensionality of �ve.

In other words, the straightforward methods to solve the problem are non-linear and involve min-

imization in a �ve-dimensional space. In developing our algorithms, we exploit the fact that even

though the relationship between the parameters and the optical 
ow is nonlinear, it is actually

bilinear (in some parameters). Certain observations about the structure of the equations that de-

scribe this relationship enable us to reduce the dimensionality of the search space to two. We also

provide approximate algorithms that involve no search. One important feature of all the algorithms

is that they are global; that is, they use all the available information in the image optical 
ow data

to compute the parameters of motion.

1.2 Global methods

Methods to compute useful information from images can be either local or global. Local methods

use local information, i.e., from a pixel or from a small neighborhood of a pixel, in order to determine

the desired information. For example, edge detectors (algorithms to compute \edge points" in an

image) use local information such as the pointwise derivatives of the image intensity function. On

the other hand, Hough transform techniques use global information to determine the parameters

of interest. Global methods are more robust, compared to local methods. We proceed to consider

some standard image processing techniques.

Edge detection: This is a local process. Typically, �rst order derivatives of the image intensity

function are used to determine the magnitude and the orientation of the edge. The process is

sensitive to noise and can give very unstable results unless the image has been presmoothed.

Hough transform: This is a global process in which the parameters of a curve that we are

2



looking for are obtained by using all available data. It is a very robust method that has been used

in numerous applications.

Contour following: Local process; unstable.

Optical 
ow using the motion constraint equation: Local process; very unstable. It requires

global smoothing techniques to obtain stable (but possibly incorrect) solutions.

Motion from correspondence: Linear algorithms exist but are very unstable. Use of global

information makes it stable, but not completely.

Structure from motion: Local process; very unstable.

Stereo depth computation: Local process; very sensitive to noise unless there is a prior model

of the environment.

Relaxation methods: Local iterative process that eventually integrates global information. For

typical parameter values, the process is global, and produces stable results.

Calibration: Global processes used in calibration are robust, but tedious.

Object recognition: Global methods, such as geometric hashing, have also been shown to perform

well [58].

Surface reconstruction: Global methods that use regularization are robust, but local methods

are not.

Least squares methods: Least squares error methods which use redundant (globally) well-

distributed data produce more robust results than those that use the minimum data required, with

noisy data.

In summary, techniques that are global are more tolerant to noisy inputs, as opposed to local

techniques which tend to be sensitive. This is only to be expected because errors arising due to

(unsystematic) noise tend to cancel out when a large region of the image is used in the analysis.

For the case of a sensor moving in a static environment, information about the motion param-

3



eters is contained throughout the image. A change in the parameters a�ects the perceived motion

everywhere. Thus instead of moving forwards, if the sensor moves sideways, the perception changes

completely everywhere. On the other hand, structure (depth) information is contained locally; i.e.,

the depth to a scene structure a�ects the perceived motion (on the image plane) in a local fashion,

namely, only the part of the image onto which the structure is projected. Thus, it is necessary to

do local processing if the goal is to compute the structure of the scene. However, if we need to

compute the motion parameters, it is to our advantage to make use of all the available information;

such a global process will be more robust than a local process that uses only a few points.

Note that if self-moving objects are present in the scene, the algorithms presented here are not

directly applicable. There is a need to segment the image (
ow) into regions of same relative motion.

This problem is not addressed in this thesis. However, if the segmented 
ow �eld is available, the

algorithms can be applied to each of the regions to obtain the relative motion parameters.

1.3 Overview of the thesis

In this thesis, we present the results of algorithms to compute the parameters of the sensor motion.

In particular, we describe the 
ow circulation algorithm to determine the rotational parameters

using the curl of the optical 
ow �eld (a vector �eld of the instantaneous image motion), which

under many conditions is approximately a linear function. The coe�cients of the linear function

are the desired rotational parameters. Instead of the curl values, we can use circulation values,

de�ned to be contour integrals of the optical 
ow �eld on the image plane, resulting in robustness.

We also describe a second algorithm that determines the translational parameters of the motion.

The inner product of the optical 
ow �eld and a certain circular vector �eld gives rise to a scalar

function that is of a particular quadratic polynomial form when the center of the circular �eld is

chosen appropriately. This correct choice of the center is related to the translational parameters

and can be found by projecting the inner product function onto suitable subspaces determined by

the quadratic polynomial form.

A wire diagram representing the contents of this thesis is shown in Fig. (1.1). The motion

parameter estimation is shown divided into two: rotational parameter estimation and translational

parameter estimation. The di�erent methods developed here appear at the leaves of the wire

diagram.

In Chapter 2, we present a review of existing methods for motion analysis. In Chapter 3,

we develop the relationship between the motion of a point in the three-dimensional scene and

the instantaneous vector that is observed on the image plane. In Chapter 4, we present the 
ow

circulation algorithm, a method to determine the rotational motion of the sensor. In Chapter 5,

we describe methods to estimate the translational motion of a sensor; these methods constitute the

FOE search algorithm. In Chapter 6, we analyze the applicability of the various methods presented

in the thesis, considering various scene and motion situations. In Chapter 7, experimental results

with synthetic data are presented. In Chapter 8, we present experimental results using real data,
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and �nally provide a summary and directions for possible future work in Chapter 9.
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Chapter 2

Review of Previous Work

2.1 Introduction

The problem of analyzing visual motion has attracted the attention of a lot of researchers.

It will be noted that a great majority of the work in visual motion analysis has been with the

extraction of structural information (structure from motion, or SFM). It is di�cult to do justice to

the numerous publications in this area. We will brie
y survey the results that are relevant to the

material presented in this thesis. An extensive review of visual motion algorithms can be found

in [3]. A recent analysis of optical 
ow computation techniques is in Barron et. al. [7].

2.2 Problem statement

Our concern here is the situation where the sensor is in motion and the objects in the environment

are rigid and stationary; we would like to determine the motion of the camera. The other problem

of interest is to determine the structure of the environment. A more general scenario is one in

which not only the sensor is in motion, but some objects in the scene are also moving, as in the

case of driving on a busy highway; in addition, the objects in the scene could be non-rigid, like

clouds or people. It has been noted [72] that the imposition of the rigidity constraint is one way of

dealing with the ill-posedness of the problem. In our algorithms, we will restrict our attention to

the case of rigid, static objects.

Formally, the problem is, given a sequence of images, we would like to determine the motion

parameters (the translational and rotational velocities of the sensor). This is typically done in two

stages. In the �rst stage, a representation of the motion of image features is computed. This could

be in the form of a dense vector �eld denoting the instantaneous motion of intensity points. This

vector �eld is the optical 
ow �eld. Alternatively, one could compute the corresponding points in

two consecutive images. This is usually a sparse representation. In the second stage, the parameters

of motion and the structure of the scene are computed, using the representation produced by the

�rst stage. We begin by reviewing the methods for computing the optical 
ow; then we look at
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Figure 2.1: Optical 
ow �eld created due to forward motion of the sensor.

methods that use optical 
ow or correspondence to compute motion and structure.

2.3 Optical 
ow computation

Optical 
ow is an instantaneous representation. It is a two-dimensional vector �eld denoting

the instantaneous motion of intensity points in the image. For instance, a forward motion of the

camera results in an optical 
ow �eld such as the one shown in Fig. (2.1). In the next chapter, we

will illustrate the relationship between the motion of the camera and the resulting optical 
ow. Of

particular interest is the Focus of Expansion (FOE) which is a point in the image towards (or from)

which features in the image seem to move. In Fig. (2.1), it is located at the middle of the image.

Several methods are available for the computation of optical 
ow and for �nding correspondence.

We will review some of them here. Our interest in optical 
ow data arises since the algorithms

proposed in this thesis make use of the optical 
ow �eld in order to determine the camera motion.

There are gradient-based methods and energy model-based methods to compute optical 
ow.

2.3.1 Gradient-based methods

The gradient-based methods depend on the image motion constraint equation. If the intensity

function is represented by E(x; y; t), assuming that the motion can be viewed as a local translation

of intensity patches, we have, for such a patch,

dE

dt
= 0 (2:1)
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Figure 2.2: The gradient direction

Equivalently,
@E

@x

dx

dt
+
@E

@y

dy

dt
+
@E

@t
= 0:

Or, simply,

Exu+Eyv = �Et (2:2)

where Ex; Ey and Et are the partial derivatives of E and (u; v) is the optical 
ow at a point. This is

the motion constraint equation [29]. Two assumptions have been made in writing down Eqn. (2.2).

The �rst one is that the intensity function can be approximated well by the linear terms in its

Taylor series expansion (in other words, E is locally planar). We note here that this assumption is

violated at locations with strong intensity gradients that occur in places like object boundaries and

textured regions. The second assumption is that the motion can be locally modeled as translation.

Again, violations occur at locations of motion transparency (two motions at the same point) and

near motion boundaries.

From Eqn. (2.2) we can compute the projection of the optical 
ow in the direction (Ex; Ey) (see

Figure 2.2) because we can readily estimate Ex, Ey and Et from two or more consecutive image

frames.

There are two unknowns u and v, but there is only one equation. This is one manifestation of

the aperture problem which says that only that component of velocity in the direction (Ex; Ey) of

the intensity gradient can be estimated. The other component { the one in the orthogonal direction

{ cannot be computed directly. This is a loss of information. Thus, what we have is a raw optical


ow (also called normal 
ow) which needs to be processed further to get the actual optical 
ow.

One can try to recover this lost information by making some assumptions on the structure of the

solution. One such assumption is that the velocity can only vary smoothly. Horn and Schunk
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minimize the function

�2 =
Z Z

[(Exu+ Eyv +Et)
2 + �2((

@u

@x
)2 + (

@u

@y
)2 + (

@v

@x
)2 + (

@v

@y
)2)]dxdy: (2:3)

This function is a measure of the deviations from both the smoothness and the motion constraints;

�2 controls the relative cost of the two. The hope is that minimizing �2 would recover the correct

velocity. This results in a pair of equations for each point in the image and an iterative method is

used to obtain a solution. Horn and Schunk [30] show some experimental results using simulated

data.

Hildreth [27] �rst �nds contours in the image. Then she calculates the optical 
ow only along

these contours using Eqn. (2.2). The resulting optical 
ow is smoothed along the contours using

a conjugate gradient technique. The assumption here is that the velocity is smooth along the

boundary of a body.

The contours are found by convolving with a r2G operator and selecting the zero-crossing

contours. The normal component of velocity, namely the one that can be found using Eqn. (2.2),

is computed along points on these contours. The next step is to compute the actual 
ow. This is

done by assuming that the velocity varies smoothly along the contours. Also, the resulting velocity

�eld should have normal components that are as close to the computed values as possible. These

two constraints are captured in the function

� =
Z
[(
@Vx

@s
)2 + (

@Vy

@s
)2]ds+ �

Z
[V � u? � v?]2ds

where the symbols have meanings as shown in Figure 2.3. Here, V = (Vx;Vy) is the velocity

vector �eld. The partial derivatives of the function are with respect to the arclength parameter

s that is along the contour. That is, the partial derivatives give the rate with which the velocity

components change as one marches along the contour. The symbol u? is the unit vector normal
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Figure 2.4: Orientation in spatiotemporal domain

to the contour and v
? is the computed normal component. Thus, the �rst integral measures the

departure from smoothness and the second integral measures the deviation from �delity to the

computed normal components. The value � is a weighting factor which can be adjusted depending

on the con�dence on the computed normal components.

Hildreth [27] gives a discrete formulation of this function and uses a conjugate gradient algorithm

to minimize this function. Some examples using real images are given. She also demonstrates that

the algorithm is consistent with psychophysical results by applying the algorithm on examples from

perceptual experiments. Other gradient-based methods can be found in [44,49].

2.3.2 Energy model-based methods

Adelson and Bergen [1] (also see [12]) point out that translation appears as orientation in the

x-y-t (spatiotemporal) domain, and that the translation can be detected as such. This is quite easy

to see. Consider the picture of a line moving to the right, as shown in Figure 2.4(a). Figure 2.4(b)

shows the orientation in the x-y-t space. The velocity varies inversely with the slope of this plane.

So, by measuring this slope, or orientation, we can compute the velocity. Filters can be designed

to detect any particular orientation. However, it is desirable that such �lters be spatiotemporally

separable; these are simpler not only for processing images on a machine but also to construct out

of simple neural mechanisms. In particular, Adelson and Bergen [1] develop the model with the

latter goal in mind.

A problem with spatiotemporally oriented �lters is that they are phase-sensitive. This means

that an input containing a drifting sine wave would induce an output that swings between positive,

zero and negative values, even though the sine wave is moving with a constant velocity. This would

be the case with any linear �lter. A way of overcoming this problem is by using two linear �lters
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whose responses are 90 degrees out of phase { called a quadrature pair { and by taking the sum of

squares of their outputs. An example of such a quadrature pair is a set of oriented Gabor �lters,

one with a cosine phase and the other with a sine phase.

The key observation behind another energy model is that the Fourier transform energy of a

translating image lies on a plane whose slope depends on the velocity of the movement. This can

be derived quite easily [60]. The idea behind Heeger's algorithm [22] is to estimate the orientation

of this plane by sampling the energy of the Fourier transform and by �tting a plane.

The sampling is done by Gabor �lters. A one-dimensional sine-phase Gabor �lter is given by

g(t) =
1p
2��

exp(
�t

2

2�2
) sin(2�!t)

The power spectrum is a pair of gaussians centered at ! and �!. Convolving this �lter with an

one-dimensional function is equivalent to multiplying their Fourier transforms. The result is a

sampling of the power spectrum of that function around ! and �!, yielding the Gabor energy.

Such a �lter is called a Gabor-energy �lter.

A sine-phase �lter and a cosine-phase �lter are convolved with the image sequence. The power

outputs are squared and added. This quadrature pair is employed to avoid the phase-dependency,

as outlined earlier in this section. The model uses a family of Gabor-energy �lters; the motion

energy is predicted by computing the response of the �lters to a random-dot texture translating

with velocity (u; v). This is an analytical expression involving u and v. The computed motion

energy has to be close to this predicted value if the pattern is moving with velocity (u; v). Thus, a

least-squares estimate for (u; v) can be found by minimizing some measure of the di�erence between

the computed and predicted motion energies. This amounts to �nding the plane that best �ts the

computed energy in the three dimensional Fourier space.

Other methods using spatiotemporal �ltering can be found in [62,15,18].

2.4 Correspondence computation

Many algorithms have been developed to solve the matching problem in stereo vision, where

there are two pictures of the same scene taken from two di�erent camera positions. This can be

considered equivalent to a camera motion; that is, the camera took the picture from one position

and then moved to the other position to take the second picture. However, this is only a particular

case of camera motion. In general, the camera could have a rotational movement; and it might

translate towards the objects. Also, objects in the scene might move. Thus, when compared to

stereo, the matching problem for motion applications is more di�cult. Matching can be done over

two frames at a time or over more frames. We describe a correlation based scheme [5] that computes

dense correspondence (i.e., for each pixel). We make use of an implementation of this scheme to

compute the optical 
ow �eld data for our motion computation.

Anandan's algorithm [5] matches features at multiple resolutions using a Laplacian pyramid

[11,10]. He �rst matches at the coarsest level where even a large-scale movement will be seen as
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a sub-pixel displacement. The result is then passed onto �ner levels by an overlapped pyramid

projection scheme. The coarse estimate is used at the �ner level to get a better estimate of the

motion. The �nal estimates are obtained at the �nest level.

The Laplacian pyramid [10] can be constructed by �rst building a Gaussian low-pass-�lter

pyramid from the input image and then by computing the di�erence between adjacent levels of

the Gaussian pyramid. The result is a set of band-pass-�ltered images. The matching starts from

the coarsest level where the �ner details are not present. The matching is done using a correlation

scheme based on the minimization of the sum of squared di�erences (SSD) [59]. For every pixel

of the �rst image, a candidate pixel on the other image is found by using the results from the

coarser level. The SSD for this pair is a Gaussian weighted sum of the squared di�erences between

the values of the corresponding pixels in the 5 � 5 windows centered around the source and the

candidate pixels.

A pixel at level l in the pyramid passes its estimates to all the pixels in a 4� 4 area in the next

�ner level l+1. Thus each pixel receives estimates from 4 parents above (hence the name overlapped

pyramid projection scheme) , and the SSD measure is minimized over these. A con�dence measure

is established by observing the following: the location of the minimum of the SSD which is supposed

to give the disparity is frequently not at the exact disparity. Its distance from the actual disparity

depends on the type of surface being matched: the best is for unoccluded corner points and the

worst for homogeneous surfaces and occluded corner points. The accuracy of the match can be

estimated by �nding the local curvature of the SSD surface. The larger the curvature, the more

accurate the answer is. This con�dence measure, which is useful in the smoothing process, consists

of two magnitudes (cmax and cmin) and two direction vectors (emax and emin, which are the unit

vectors along the principal axes of the SSD surface). The magnitudes are given by

cmax =
Cmax

k1 + k2Smin + k3Cmax

and

cmin =
Cmin

k1 + k2Smin + k3Cmin

where k1, k2 and k3 are normalization parameters, Smin is the SSD value corresponding to the best

match, and Cmax and Cmin are the curvatures of the SSD surface along the axes of maximum and

minimum curvature.

If we assume rigid object motion, we can alter the displacements with low con�dence measure

by getting information from those with high con�dence measure. The idea is to �nd a vector �eld

fug such that the quadratic functional

E(fug) = Esm(fug) + Eap(fug)
is minimized. The smoothing part is based on the error formulation

Esm(fug) =
Z Z

[(
@u

@x
)2 + (

@u

@y
)2 + (

@v

@x
)2 + (

@v

@y
)2)]dxdy: (2:4)
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where fug is the set of the displacement vectors u(x; y) = (u(x; y); v(x; y)). The function in

Eqn. (2.4) is the same as in Eqn. (2.3), except that Esm(fug) contains only the smoothness con-

straint. The approximation error Eap measures how well the computed �eld approximates the

measured displacement �eld:

Eap(fug) =
X
x;y

[cmax(u � emax� d � emax)
2 + cmin(u � emin � d � emin)

2]

where d gives the match estimate at each point. Minimizing the error function E(fug) in discrete

form results in a system of coupled linear equations and is solved using the Gauss-Seidel relaxation

algorithm. After the displacements and the associated con�dences are computed within each level,

the displacement �eld is smoothed before it is projected to the next level in the pyramid.

This algorithm gives good qualitative results in most regions of images [5], but has problems with

occluded regions and at motion boundaries. For instance, displacements in areas of background

near the boundary of a moving object are in
uenced by the moving object; occluded areas do

not have reliable local estimates, and so the more reliable estimates from the neighborhood are

propagated into these areas.

Barnard and Thompson [6] give an iterative relaxation algorithm which tries to �nd the best

possible match for two sets of points (features) in two images. First, a set of candidate points are

chosen from each image by using some interest point detection technique, such as the Moravec's

operator [48]. The next step is to determine the matching. For each point Pi in the �rst image,

a set of candidate points are chosen from the second image as those within some distance from Pi

(compute this distance by imagining that Pi is in the second image). With each Pi, we associate a

set Li of labels. Each label l is either a disparity vector or a distinguished symbol l�. Each label

is a potential disparity for that point; l� means that no match in the second image and hence no

disparity can be assigned to the point. Initially Li contains only a l
�. In addition, there is a number

pi(l) associated with each label l which can be interpreted as the probability that the point Pi has

disparity l. A relaxation procedure iteratively modi�es all these probabilities so that for each point

one of the probabilities, say, that of label l1 is expected to dominate while the others tend to zero.

This suggests that l1 is the disparity for that point.

The algorithm proposed by Sethi and Jain [61] uses more than two images in a time sequence to

�nd matching points. The main idea is path coherence which says that the trajectory traced by a

point is smooth. The trajectory of a point is the curve connecting it through all its matching points

in the sequence. The fundamental assumption here is that objects are in constant motion, without

undergoing sudden changes in their movements. A measure of the smoothness of the trajectory is

de�ned and it is minimized to get the best match satisfying path coherence.

An algorithm that combines both a gradient-based method and a feature-based method has

been proposed by Heitz and Bouthemy [25]. It is based on a Bayesian formulation using Markov

random �elds. The motion constraint in Eqn. (2.2) is used to compute 
ow, simultaneously with a

Moving Edge constraint described in [8]. Validation factors are de�ned for each of these constraints.
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Figure 2.5: The Planarity Constraint

The distribution of observations (provided by the constraints) and motion labels (the 
ow �eld and

motion discontinuities) is speci�ed using a coupled MarkovRandom Field (MRF)model. Associated

with the distribution is the energy function of the MRF. Finding the Maximum A Posteriori (MAP)

estimate is equivalent to minimizing this global energy function. The energy minimization is done

using a deterministic relaxation procedure. Extension to multiresolution and experimental results

are presented in [25]. An implementation of this algorithm has been used to compute optical 
ow

�elds used in some of the experiments whose results are presented in this thesis. An empirical

comparison of various optical 
ow computation techniques can be found in [7].

2.5 Parameter estimation: previous work

One of the most important applications of motion analysis is considered to be the computation

of the depths of the various points in the scene. The interest in reconstructing the structure of the

scene from motion information has captured the attention of lot of researchers. It is well known

that with a single camera, it is only possible to estimate depths up to a scale factor because two

features, one twice as big as the other, twice as far, and twice as fast, will give rise to the same

motion (on the image plane) under perspective projection.

It is of equal interest to determine the parameters of motion of the sensor. Two approaches are

possible in this regard. The �rst is to attempt to recover the structure of the scene; this involves

local processing because depth information is local. We will note that most algorithms take this

route. The second approach is to compute the motion parameters (the translation and rotation of

the sensor) �rst. This is non-local information; so we can expect to obtain more robust methods

when compared to the �rst approach. Examples of the second approach are the methods presented

in this thesis.

Most algorithms assume that either the correspondence or the optical 
ow �eld is available. The
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algorithm of Longuet-Higgins [41] (see also [71],[13] and [80] ) assumes that the correspondence of

points between two consecutive frames is available. The quantities computed are the translation ~t

and the rotation R for moving the camera from C1 to C2 (see Fig. (2.5)). The constraint for every

matching pair (for instance, m1 and m2 in Fig. (2.5)) is that the lines of projection for these two

image points meet in space (simply because they are the images of the same world point). This

planarity constraint can be expressed as follows:

~C1m1 � ~t �R ~C2m2 = 0 (2:5)

Equivalently,
~C1m1 � TxR ~C2m2 = 0

where Tx is a matrix formed out of the elements of ~t. The constraint, applied to each pair of

corresponding points, results in an equation linear in the elements of the matrix E = TxR. With

correspondence for eight points, we obtain eight equations as in Eqn. (2.5) and we can solve for the

elements of the matrix E. From E, we can compute the translation vector ~t and the rotation matrix

R, as described in [41] or in [13]. The algorithm in [13] is more robust because it uses redundancy

to combat noise. That is, it uses more than eight points in solving for E. A cogent presentation of

the method can be found in [80].

Another algorithm, based on optical 
ow �eld input, is described by Heeger and Jepson [24].

This makes use of the bilinear form of the optical 
ow equations:

~�(x; y) = A(x; y; T )p(x; y)+ B(x; y)~! (2:6)

where ~�(x; y) is the optical 
ow at (x; y), T is the three parameters of the translation of the camera

and ~! is the vector of rotations with respect to the three axes. The 2� 3 matrix B depends only

on the image position (x; y) and the 2 � 1 matrix A depends only on the image position and the

translation T . The inverse depth is denoted by p(x; y). By choosing the optical 
ow at �ve points,

the Eqn. (2.6) can be rewritten in the form

~� = C(T )~r

where ~� is a 10� 1 vector of optical 
ow at the �ve points, C(T ) is a 10� 8 matrix depending on

the translation T and ~r is a 8 element vector consisting of the inverse depths of the �ve points and

the three axis rotations. Since ~� has to be in the range of the matrix C(T ), the appropriate value

of T can be determined by minimizing the projection of ~� on the space which is the orthogonal

complement to the range of C(T ). Knowing T , the rotations can also be computed [23]. We will

return to this algorithm again to point out the similarity it bears to some methods described in

this thesis.

Analysis of the optical 
ow �eld, also called the motion parallax �eld, has received considerable

research attention. J. J. Gibson, in 1950, discussed the motion parallax �eld, and de�ned and
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discussed the importance of the focus of expansion [16]. Even earlier, Helmhotz had noted that the

image 
ow �eld contained information about the depths to the objects [75]. Subsequent work by

Gibson considered further the extraction of structural information of the scene from the 
ow �eld;

for example, for the case of a pilot landing a plane, there is essentially no rotational component,

and so the extraction of structure from the 
ow �eld due to translation is possible [17]. In a series

of papers, Koenderink and Van Doorn study properties of the image 
ow �eld [36,37]. Their work

begins the practice of analyzing the 
ow �eld induced on imaged surfaces of particular form, such

as planar surfaces or gaussian protuberances. The goal is to produce local measurements that are

invariantly related to properties of the surface shape.

In a famous paper, Longuet-Higgins and Prazdny[43] show that, in principle, the motion pa-

rameters and local surface curvature of an imaged surface may be determined from the local 
ow

values and values of the spatial derivatives of the local 
ow �eld up to second order. The unknown

parameters are the translation and rotation velocities and the surface normal at any given point.

The focus of expansion is located using the residual 
ow �eld after subtracting the 
ow �eld due

to rotation. There are special di�culties with the solution method when the imaged surface is

planar, and it is clear that measurements of the second order derivative, in particular, will be noisy.

However, since the computations at each point should yield the same motion parameters (and

varying surface normals), the computations are redundant, and thus one can hope that stabilized

algorithms are possible.

In a series of subsequent papers, Prazdny o�ered a variety of other algorithms for motion

determination. In [54], a precursor to the FOE search algorithms presented in this thesis (also

see [31,66]) appears. In this algorithm, the best rotation parameters are sought such that the 
ow

�eld that remains after subtracting the vector �eld corresponding to the rotation parameters yields

a pure expansion or pure contraction �eld, as will occur for the 
ow �eld due to translation only.

The algorithm then simply involves a nonlinear minimization. More recent work by Burger and

Bhanu [9] extends the Prazdny search algorithm to search for a \fuzzy" focus of expansion region.

In [53], Prazdny shows how the computation of the translational and rotational velocities can be

obtained from the 
ow velocities at a collection of distinct points (�ve of them are required), by

solving a system of three cubic polynomial equations in three unknowns. An iterative method is

used, and a good initial guess is required. The intention is that the processing should be local,

although the equations hold for any distinct set of �ve points. A good survey and history of results

until that point is provided in a separate paper by Prazdny [55]. The idea of searching over the

possible focus of expansion points, instead of searching over the rotation parameters, as in the FOE

search algorithms presented in this thesis, was introduced by Adiv [2]. The algorithm presented by

Heeger and Jepson [24,19,21,32] uses a variant of the same error function as in Adiv [2]. Another

related approach was presented by Maybank [46,45].

Nearly all researchers in motion parameter estimation realize that once one has some informa-

tion, such as the location of the focus of expansion, or the value of the rotation parameters, all
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other parameters are easily obtained. Hence there is considerable motivation for separating the


ow �eld due to rotational parameters from the 
ow �eld due to translational parameters. Already

noted by Helmholtz [75] and mentioned by Longuet-Higgins and Prazdny[43] is the idea of making

use of either depth discontinuities or motion parallax of a translucent surface (such as a dusty

window). In these cases, the di�erence or jump in the 
ow velocities cancels the 
ow component

due to the rotational parameters, leaving a 
ow dependent only on translational parameters. Pro-

viding there are enough such points, then the focus of expansion, and hence all other parameters,

may be determined. Lawton and Rieger exploit this idea to build a system based on di�erences of

neighboring 
ow velocities [57]. Unfortunately, noise tends to make this method rather unreliable.

Lawton built another system that assumes that the rotational parameters are nearly zero, and thus

�nds the focus of expansion by means of a \Hough transform" technique [39]. A solution method

that assumes that the translational parameters are zero would be quite easy; the 
ow circulation

method presented in this thesis (also in [68]) provides an exact procedure, and other methods are

straightforward.

In a series of papers, Waxman and collaborators revisited the problem of motion parameter

estimation and local surface structure determination from local 
ow parameters (i.e., values of the


ow velocities and derivatives of the 
ow velocities through second order). A solution method is

presented for the case of planar surface patches and quadratic 
ow velocity �elds [65] together

with an analysis of the ambiguities, followed by a new method for quadratic surfaces and quadratic

velocity �elds [77] which improves upon an earlier method of Waxman and Ullman [78]. More detail

and extensions to binocular image 
ows are given in [82]. In all of these works, the structure of the

surface and the motion parameters are considered as the unknowns relative to a single image point.

That is, the analysis is local. Measurements must be given of derivatives of 
ow velocity values

through second order, in which case it is possible to solve for local surface structure up to a second

order Taylor expansion. The curl of the 
ow �eld is one of the twelve \deformation parameters"

(D6 to be exact), and the \kinematic relation" for this parameter is precisely the equation that we

require for the 
ow circulation algorithm. However, since the problem that Waxman addresses is

the exact computation of motion parameters coupled with surface parameters based upon local data

(deformation data at a single point), the approximations and the global method leading to the 
ow

circulation algorithm is missed. Using instead correspondences of curves, the local quadratic nature

of the velocity �eld can be obtained providing a su�cient number of curves are matched, as studied

by Wohn [79,82] (who also makes use of some temporal smoothing). Solution methods based on

the use of a su�cient number of correspondences of points, without involving explicit derivatives

of the 
ow �eld, and without explicit representation of surface parameters, are provided by Jerian

and Jain [33]; their work, like that of Tsai and Huang [71] is directed for the case of determining

rotation and translation parameters from correspondences, as opposed to rotation and translation

velocities from an image velocity 
ow �eld. An approach to factor a matrix of motion measurements

into two matrices that represent shape and motion, for the case of orthographic projection has been
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proposed by Tomasi and Kanade [70]. Direct methods for recovering the motion parameters have

been described by Horn and coworkers [28,52]. The direct methods apply only for restricted kinds

of motion, such as pure translation.

Clearly, the surface parameters, to the extent that they can be recovered, must be based on

local measurements. The motion parameters, however, are global. Most researchers have noted

that their methods provide redundant computation of motion parameters, providing a test for

the rigidity assumption. Unfortunately, many of the algorithms forgo the stability that can be

obtained by deriving the motion parameters from an integrative approach i.e., by making use of

the constancy over the image. Of course, if one's focus is on surface parameter reconstruction, then

local processing is essential. However, if one �rst derives the motion parameters, and then uses

knowledge of the motion parameters to assist in surface depth estimates, then global methods may

be used for motion parameter estimation. Methods that can potentially make use of distributed

information include those of Prazdny [53], Adiv [2], and Heeger and Jepson [21].

The curl of the 
ow �eld, which is the basis of our 
ow circulation algorithm, has long been

recognized as an important property of the motion �eld. However, the observation that the curl

of the �eld is approximated by a linear function, and the use of that approximation to determine

the rotational parameters, appears to be new. Koenderink and Van Doorn [36] calculate explicitly

the curl (and other functionals). We begin with their computation of the curl (converted to planar

image coordinates as opposed to polar coordinates), but make use of the function to solve for the

rotational parameters. They instead studied the properties of these elementary �elds in the case of

an observer moving with respect to a plane [37,38]. The existence of receptive �elds sensitive to the

curl (and also to the divergence) was hypothesised by Koenderink and Van Doorn [36] and Longuet-

Higgins and Prazdny [43], but the motivation is for surface structure determination, and not for

global synthesis of motion parameters. Regan and Beverly [56] followed up on the hypothesis of

Longuet-Higgins and Prazdny by conducting psychophysical experiments, and concluded that the

existence of vorticity receptors is plausible. Cell recordings in the dorsal part of MST of Macaque

monkeys suggest cells tuned to expansion/contraction and other cells sensitive to rotation [69].

More recently, Werkhoven and Koenderink [81] have considered methods for directly computing


ow �eld invariants, including the curl, from time-varying image irradiance data. The considerable

interest and evidence for the importance of the curl of the 
ow �eld, or equivalently, the circulation

values, lends credence to the 
ow circulation algorithm presented in this thesis.

In the next chapter we relate the optical 
ow �eld to the motion parameters of the sensor. The

model so obtained would enable us to point out how one can estimate the motion parameters by

suitably processing the optical 
ow �eld.
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Chapter 3

The Optical Flow Equations

3.1 Introduction

We consider the imagery that is produced by a moving sensor. The sensor produces images whose

contents are altered over time due to either the motion of the sensor, or the motion of objects in

the scene, or both. Thus, two kinds of motion are possible: sensor motion and object motion. The

sensor could move about in its environment. A camera mounted on an Autonomous Land Vehicle

is one example. On the other hand, objects in the scene could move. In general, both kinds of

motion can happen simultaneously. Mathematically, it is natural to consider the relative motion

between the sensor and each of the objects in the scene. The prerequisite for using relative motion

in image processing is the availability of segmented images, namely, the segregation of the di�erent

objects in each image. This would conceivably be done at an earlier stage of processing, using

either a static segmentation technique operating on each image in turn or a dynamic method using

the motion information obtained from more than one image.

Optical sensors like the retina or a camera �lm are sensitive to illumination; so, the motion

information is available as changes in the illumination intensity patterns falling on the sensor array.

The instantaneous movement of the intensity pattern on the sensor array can be represented by

a vector �eld; the vector �eld value at location P represents the instantaneous motion of the

pattern at the point P . The vector �eld is referred to as the optical 
ow �eld, or simply, the 
ow

�eld. It is customary to assume that the 
ow �eld represents a projection of the instantaneous

three-dimensional motion even though this is not always true [74].

We need to model the 
ow �eld in terms of the parameters of the real world motion and the

structure of the environment, in order to interpret the 
ow �eld. The aim of this chapter is to

present a model of the 
ow �eld as a set of equations that relate the 
ow �eld to the motion

parameters and the scene structure, and to make certain observations about the form of these

equations.

One of the issues in the modeling is the choice of a coordinate system. The coordinate system

can be either ego-centric or exo-centric. The ego-centric system is one in which the coordinate
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system is �xed with respect to the sensor (typically, the origin will be located within the sensor).

This means that the coordinates of a point that is not rigidly attached to the sensor will change

with time as the sensor moves. In the exo-centric system, the coordinate system is located outside

the sensor, usually in a static location or object.

A second, less critical choice concerns the representation which is typically either cartesian or

spherical. The cartesian coordinate system is a natural choice for cameras with a planar imaging

array, and the spherical coordinate system is the best choice for the human eye because the retina

is roughly spherical.

In this chapter, we derive the optical 
ow equations for an ego-centric cartesian coordinate

system and observe some of the properties of these equations. The results could be derived in other

coordinate systems, but would be more complicated.

3.2 The coordinate systems

The optical 
ow equations for the perspective projection of a scene on a planar imaging sensor are

well-known and understood. We provide here an independent derivation, similar to the development

in [21,29,43]. We will adopt the cartesian coordinate system and the motion parameters as shown in

Fig. (3.1). The three-dimensional coordinate system is centered at the camera's center of projection

and the coordinates are denoted using upper-case letters X , Y and Z. This is the sensor coordinate

system. The imaging surface is a plane located at Z = f , f being the focal length. The x and y

coordinate axes lie on this plane, with the origin at the center of the image. The transformation

from spatial coordinates to the image coordinates is given by the equations of perspective projection

which can be easily derived using a pin-hole approximation to the lens:

x = fX=Z; y = fY=Z

where (X; Y; Z) = (X(x; y); Y (x; y); Z(x; y)) is the position of the point in three-dimensional space

that is imaged at (x; y). We assume that the objects in the scene are �xed and rigid. We want

to determine the 
ow �eld which is observed due to the motion of the sensor, as a function of the

image coordinates x and y.

The camera moves with a translational velocity of T = (v1; v2; v3) and a rotational velocity of

! = (!1; !2; !3). The values v1, v2 and v3 are the X , Y and Z components of the instantaneous

vector describing the translation of the sensor. The rotation that the sensor coordinate system

undergoes can be described either using a rotation matrix R, or equivalently, by the angular velocity

magnitude M! about an axis of rotation A!. In the latter case, one can simplify the details by

de�ning an angular velocity vector ! that has magnitude M! and direction A!. Again, !1, !2 and

!3 are the components of !.

The optical 
ow V = (u; v) at the image point (x; y) can be obtained by projecting the three-

dimensional relative velocity of the feature point X imaged at (x; y) onto the image plane. The
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Figure 3.1: The coordinate systems and the parameters

relative velocity of a point X with respect to the coordinate system has two parts; one is due to

the translation T of the coordinate system, and the other is due to the angular velocity vector !.

The three-dimensional velocity of the feature point X = (X; Y; Z) can be easily seen [63] to be

_X = �T � ! �X: (3:1)

Here we use the convention _X to denote the temporal derivative of X (i.e., @X
@t

). In terms of the

component values,

_X = �v1 � !2Z + !3Y;

_Y = �v2 � !3X + !1Z;

_Z = �v3 � !1Y + !2X:

The 
ow on the image plane is

(u; v) = ( _x; _y):

Thus,

u =
f _X

Z
�
fX _Z

Z2

= (�
fv1
Z
� !2f + !3y)� x(�

v3
Z
�
!1y

f
+
!2x

f
);

v =
f _Y

Z
�
fY _Z

Z2

= (�
fv2
Z
� !3x+ f!1)� y(�

v3
Z
�
!1y

f
+
!2x

f
):
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Making explicit the dependence on the image coordinates and rearranging terms, we get

u(x; y) = 1
Z(x;y) [�fv1 + xv3] + !1

h
xy
f

i
� !2

h
f + x2

f

i
+ !3y;

v(x; y) = 1
Z(x;y) [�fv2 + yv3] + !1

h
f + y2

f

i
� !2

h
xy
f

i
� !3x:

(3:2)

Here, u(x; y) and v(x; y) are the x and y components of the optical 
ow �eld V (x; y).

In a similar fashion, one can derive the equations of the 
ow �eld for a spherical imaging surface.

All procedures that work in the cartesian coordinate system can be transformed to work in the

spherical coordinate system.

3.3 Observations on the equations

The equations in (3.2) have certain properties that we note here. The 
ow equations may be

grouped into the sum of two terms, as is noted, for example, in [43]: the �rst term gives the 
ow

�eld due to the translational components, and is modulated by the inverse depths, and the second

term is a 
ow �eld due to the rotational components, and is independent of the depths. Thus,

V (x; y) =

"
u(x; y)

v(x; y)

#
= Vv(x; y) + V!(x; y); (3:3)

with (for the case v3 6= 0)

Vv(x; y) = v3�(x; y)

"
x � �

y � �

#
;

� =
fv1
v3

; � =
fv2
v3

; �(x; y) =
1

Z(x; y)
(3.4)

and

V!(x; y) = !1

"
xy
f

f + y2

f

#
+ !2

"
�f � x2

f
�xy
f

#
+ !3

"
y

�x

#
: (3:5)

The 
ow due to the translational components has a radial structure, expanding or contracting

about a focus of expansion at location (�; �) and with a magnitude modulated by the distance from

the focus of expansion, the component of translation in the viewing direction (v3), and the inverse

depth to the point imaged at each pixel, �(x; y) = 1=Z(x; y). In the case v3 = 0, the situation is

nearly the same, except that Vv is now a parallel vector �eld:

Vv(x; y) = �f�(x; y)

"
v1
v2

#
(v3 = 0); (3:6)

in the direction of the translational velocity, modulated by inverse depths as before. In both cases,

the 
ow due to the rotational components is the linear combination of three �xed 
ow �elds,

weighted by the angular (rotational) velocity components.
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The rotational part, namely V!, is linear (see Eqn. (3.5)) in the rotational parameters ! =

(!1; !2; !3). On the other hand, the translational part Vv(x; y) is bilinear, i.e., linear in �(x; y) for

�xed translation T and linear in T for �xed inverse depths �(x; y). In essence, the translational

parameters appear in product form with the inverse depth values (note the forms v1
Z
, v2

Z
and v3

Z

appearing in Eqn. (3.2)). We can multiply both the translation vector T and the depth function

Z(x; y) by the same factor, say a constant k, and the equations (3.2) will still hold. Thus, it is

not possible to recover the absolute values of the translational parameters and the absolute inverse

depths. They can be estimated only up to a scale factor; only relative depths can be computed from

a monocular image sequence, and only two translational parameters can be recovered. There is a

need to choose a unit of measure. A good choice for the unit of distance measure is the translation

vector; the depth value corresponding to a feature point in units of the translation vector indicates

how long it will take for the camera to hit that feature point if moving towards it. For such a choice,

the translation vector is necessarily of unit length (i.e., with its tip on a unit sphere). Heeger and

Jepson [20] make use of this normalization and search for the translation vector by tessellating the

surface of a unit sphere.

Another possible normalization is to set one of the motion parameters to be unity. For instance,

if we choose v3 to be unity (for v3 6= 0), the other two are measured in terms of v3. The focus of

expansion (FOE) is precisely this. Recall from Eqn. 3.4 that the FOE is de�ned by (� = fv1
v3
; � =

fv2
v3

), for the case v3 6= 0, and (� = fv1; � = fv2), for v3 = 0. We will adopt this choice and in a

later chapter present methods to compute the FOE.

If the structure of the scene (and hence �(x; y)) is known, the optical 
ow equations are linear

in all the motion parameters and can be easily solved, given a su�cient number of 
ow vectors.

However, it is seldom the case that �(x; y) is known except in certain controlled situations. Alter-

natively, if the translation T is known, then one can solve for the rotational parameters ! and the

scene structure because the equations will now be linear in the unknowns. In a general situation

where none of these quantities is known, it is possible to consider a collection of 
ow vectors re-

sulting in a system of nonlinear equations and solve for the unknowns. Note that we obtain two

equations per 
ow vector. The unknowns are the �ve motion parameters and one inverse depth per


ow vector position. Thus, given the 
ow vectors at �ve or more points, it is possible to solve for all

the unknowns. However, solving the set of nonlinear equations is non-trivial and the performance

of procedures to do this rely on a good initial guess. Some methods along these lines are presented

by Horn [29].

The �nal comment here concerns the appropriateness of using measured optical 
ow in con-

junction with the model in Eqns. (3.2). The optical 
ow that is induced on the imaging surface

is treated as a vector �eld that is a projection of the three-dimensional velocity of the feature in

motion. The optical 
ow does not necessarily always correspond to such a projection. One example

where such a correspondence does not hold is that of a rotating, featureless sphere. Optically, no

motion is seen even though there is physical movement. A formal treatment of the distinction
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between the projection and the optical 
ow was done by Verri and Poggio [74]. They use the term

\motion �eld" to denote the projection of the three-dimensional velocity vectors, and point out that

the motion �eld and the optical 
ow are same only under certain conditions such as high contrast.

However, note that only the optical 
ow can be computed from the intensity images whereas the

motion �eld is the one that is easier to model. Also, modeling the optical 
ow requires assumptions

about illumination and surface re
ectance properties; it is hard to choose the right assumptions.

Therefore, it is customary to assume that the motion �eld and the optical 
ow are the same, as we

do here.

In the approaches presented in this thesis, we will attempt to cancel out the contribution from

either the translation or the rotation, thus enabling us to estimate the other. The 
ow circulation

algorithm presented in the next chapter eliminates the translational part of the 
ow �eld in order

to estimate the rotational parameters. The FOE search algorithms presented in a later chapter

cancel the rotational part to estimate the focus of expansion. The focus of expansion is directly

related to the translational parameters.
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Chapter 4

Rotational parameter estimation

4.1 Introduction

An object in motion can have both translational and rotational motion. For many applications,

it is necessary to determine the translational and rotational velocity. For instance, the sensor

on a spinning satellite may need to determine the angular velocity to adjust the motion of the

satellite. The source of a sensor's rotational velocity may be due to an intentional movement,

or due to vibrations. A helicopter in a turning 
ight has a rotational velocity that is nonzero.

A camera mounted on a vehicle that is moving on a rough terrain could experience vibrations

that produce an e�ect as though the camera is rotating about an axis that is changing rapidly.

In either case, it is important to determine the instantaneous rotational parameters. In the case

of the helicopter, the rotational parameters provide valuable information about the motion itself

while in the latter case, the estimated rotational parameters will be useful to eliminate the \jitter"

produced by the vibrations. In general, it is well known that estimation of the rotational parameters

helps to eliminate the rotational component of the 
ow �eld; this leaves behind the translational

component from which the translational parameters and the depth map can be computed by simple

algorithms. While this observation is theoretically sound, errors introduced in the estimation of

one set of parameters compound the errors that appear in the second stage of processing, namely

in estimating the other set of parameters.

Presented in this thesis are two independent algorithms, one to estimate the rotational param-

eters and the other to estimate the translational parameters, providing independent pathways to

estimate the di�erent parameters, thus eliminating the compounding of errors. We begin by �rst

presenting an algorithm to determine the rotational parameters.

We should note here that the rotational parameters depend on the choice of the origin. If the

location of the motive power for the physical rotation is known, one can choose that location to be

the origin of the model. In such a case, pure rotation (i.e., no translation) will be estimated as pure

rotation with respect to an axis passing through the chosen origin. However, if the mechanism for

the source of rotation is unknown, the natural choice for the origin is the focal point of the sensor.
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In such a case, if the rotation axis does not pass through the origin, the rotation will be seen as a

combination of a rotation with respect to an axis through the chosen origin and a translation. Note

that once the quantities are estimated with respect to one choice of the origin, they can always be

transformed for another choice; the judgement of egomotion is thus una�ected by the choice.

The angular velocity ! of the sensor induces an image 
ow �eld that depends only on the

physical location of the image points and not on their depths. It is the 
ow �eld due to the

translation that depends on the depth to scene points. Looking at the equations of optical 
ow,

u(x; y) = 1
Z(x;y) [�fv1 + xv3] + !1

h
xy
f

i
� !2

h
f + x2

f

i
+ !3y;

v(x; y) = 1
Z(x;y) [�fv2 + yv3] + !1

h
f + y2

f

i
� !2

h
xy
f

i
� !3x;

(4:1)

we again note that the optical 
ow �eld is a vector sum of two 
ow �elds, one arising due to the

translation and the other arising due to the rotation:

V (x; y) = V v(x; y) + V !(x; y):

Also, note the linearity of the 
ow �eld in !. The method described here attempts to cancel the

contribution from translation and the depth values, while still retaining the linearity in !. We

show here that under certain assumptions, this is exactly possible, and under other conditions, it

is achieved in a global approximate sense. We provide the background mathematics, the technical

derivation and a description of the algorithm which will be called the 
ow circulation algorithm.

An analysis of the e�ect of violations of the assumptions is contained in Chapter 6. Experimental

results are presented in Chapters 7 and 8.

4.2 Curl and circulation values

The main observation behind the algorithm is that the curl of the 
ow vector �eld produces two

terms: A term that is linear in the rotational parameters, and a term that is dependent on the

translational parameters as well as the depth gradient. Under suitable conditions, we argue that

the latter contribution can be ignored, yielding an approximate linear method to determine the

rotational parameters.

We begin by reviewing the curl of a vector function and a related theorem which will be useful

to us. The curl of a two-dimensional vector �eld V (with u and v as the x and y components),

also denoted by r�V, is de�ned as

r�V =
@v

@x
�

@u

@y
:

To be precise, this is the pointwise magnitude of a vector �eld in a direction orthogonal to the

two-dimensional plane containing the vector �eld V. Since the whole (curl) �eld is pointed in the

same direction, we will use the curl as though it is a scalar function. If the vector �eld V lies on a
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spherical retina instead of a planar surface, then the curl values will point in a direction orthogonal

to the spherical surface. Here we are concerned only with the planar imaging surface.

An important property of the curl of a vector �eld is provided by Stoke's theorem [26]:

Z Z
D

r�V dx dy =
I
@D

V � ds; (4:2)

where the right hand side, which we will call the circulation of the 
ow about the circuit @D,

denotes the contour integral of the vector �eld about the boundary of D. The theorem is quite

general, requiring only certain di�erentiability conditions on V and the boundary of the domain D.

Note that the contour integral is independent of the parameterization of the contour. For example,

when D is a disk of radius r about an image point (x0; y0), the circulation may be calculated from

I
@D

V � ds =

Z 2�

0
V (x0 + r cos �; y0 + r sin �) � (�r sin �; r cos �)d�:

Mitiche, Grisell and Aggarwal [47] provide a discrete version of Stoke's theorem, and discuss its use

for smoothing 
ow �eld data given time-varying intensity image data; we need only the continuous

version, for smoothing the curl of the 
ow �eld information.

Interestingly, by using Stoke's theorem, we will not lose any precision, nor do we require any

approximations, in order to take advantage of the smoothing. Although the circulation feature

values are obtained more stably than would be curl (vorticity) values of the 
ow �eld, they are just

as useful to the 
ow circulation algorithm.

4.3 Rotation from curl

Applying the curl to Eqn. (4.1),

r�V (x; y) = v3 �

�
@�

@x
� (y � �)�

@�

@y
� (x� �)

�
�

1

f
[x!1 + y!2 + 2f!3] : (4:3)

We want to show that the �rst term on the right hand side of Eqn. (4.3) can be neglected, and thus

the curl values lie on a linear surface de�ned by the function g(x; y) = �(x!1+ y!2+2f!3)=f . We

begin by computing the curl that results at a point where an analytic surface element is imaged.

Suppose that (x0; y0) is the image of an analytic surface point P (X0; Y0; Z0) and the analytic surface

is described (implicitly) by the equation

n1(X �X0) + n2(Y � Y0) + n3(Z � Z0) +
X
j�j�2

(X �X0)
�1(Y � Y0)

�2(Z � Z0)
�3 = 0:

In this, � is a multi-index with integer components �i, and j�j is the order of the multi-index, i.e.,

the sum of the components. Any analytic surface can be locally described this way. The tangent

28



P

P

R

y

z

x
R

Figure 4.1: Two analytic surfaces and their associated R values

plane to this surface has the normal n = (n1; n2; n3), which we may assume is a unit normal. We

set

R = n1X0 + n2Y0 + n3Z0;

which is the distance, at the point of closest approach, between the tangent plane to the surface

and the focal point of the imaging system (see Fig. 4.1).

Using the projective geometry equations, and the de�nition that �(x; y) = 1=Z(x; y), one can

easily show that
@�

@x
(x0; y0) =

n1
R
;
@�

@y
(x0; y0) =

n2
R
:

After substitution into Eqn. (4.3), we obtain

r�V (x0; y0) = v3

�
n1
R
(y0 � �)�

n2
R
(x0 � �)

�
�

1

f
[x0!1 + y0!2 + 2f!3] : (4:4)
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Regrouping terms and using the de�nitions of � and �, we get

r�V (x0; y0) =

�
1

f

�
x0

�
!1 +

n2v3
R

�
+ y0

�
!2 +

n1v3
R

�
+

�
2f!3 +

n1v2 � n2v1
R

��
: (4.5)

If we now allow (x0; y0) to vary and denote the point by (x; y), regarding (n1; n2; n3) as a function

of (x; y), we conclude from Eqn. (4.4) and the equivalent Eqn. (4.5) that the curl

r�V (x; y) =
�1

f
(x!1 + y!2 + 2f!3) ; (4:6)

whenever any of the following conditions holds true:

� If v1 = v2 = v3 = 0, then Eqn. (4.6) holds everywhere. Note that this is a particularly trivial

case since the original equations for u(x; y) and v(x; y) (see Eqn. (4.1)) will themselves be

linear in the rotational parameters.

� At any point (x; y) such that n1 = n2 = 0. The condition that n1 = n2 = 0 is equivalent

to saying that the tangent plane to the surface imaged at (x; y) lies normal to the viewing

direction. In particular, the condition holds true for any frontal planar surface.

� At any point where the vector to the focus of expansion (� � x; � � y) is proportional to the

tilt of the tangent plane to the surface imaged at (x; y) (the tilt is de�ned as (n1; n2)), then

clearly the �rst term on the right hand side of Eqn. (4.4) vanishes, and Eqn. (4.6) holds.

Eqn. (4.6) will hold approximately if the distance R from the tangent plane to the focal point

is large relative to the translational velocity jjvjj (note that the components of n satisfy jnij � 1,

since n is a unit normal), or if the rotational components of velocity ! are quite large compared to

the translational components v, and assuming that the R value is bounded from below.

It is interesting to note that the R value becomes small whenever a surface lies nearby, and

also whenever a surface is oriented so that the tangent plane passes close to the focal point. Even

when the errors are such that Eqn. (4.6) does not hold approximately pointwise, it is still possible

that Eqn. (4.6) holds in a globally approximate sense. This will happen, for example, if the surface

tilts n1 and n2 are random and well distributed. Because the algorithm is global, the global

approximation condition su�ces.

Also, even though we have used an analytic surface to point out the conditions under which the

algorithm is useful, note that the algorithm is as useful for general surfaces as long as Eqn. (4.6) is

approximately true in a global sense.

The algorithm will use feature data to �t a linear function of the form g(x; y) = ax+ by + c to

the data, and then !1, !2, and !3 may be determined directly from a, b, c respectively. However,

using Stoke's theorem, we show that we do not have to rely on samples of the curl of the 
ow

�eld: we may instead use circulation values.
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Figure 4.2: A collection of cycles and their centroids, where data for the 
ow circulation algorithm is

collected. The algorithm will simply �t a linear function to the circulation values given at each centroid.

Consider a region of the image domain D (not necessarily circular), such that at most of the

points (x; y) in D, one of the above conditions holds true. We do not require that D be a small

region, nor do we require that the same condition hold true over all of D, nor are we concerned

about substantial violations as long as the average of the violations is small. We will average the

values of the curl over D:
1

jDj

Z Z
D

r�V dx dy �
1

jDj

Z Z
D

�
1

f
[x!1 + y!2 + 2f!3]dx dy

= �
1

f
[x0!1 + y0!2 + 2f!3] ; (4.7)

where (x0; y0) is the centroid in the image plane of the region D. Here, jDj refers to the area of

D in the image domain. Applying Stoke's theorem to the left hand side of (4.7), we see that the

circulation value of V about the boundary of D satis�es

1

jDj

I
@D

V � dS � �
1

f
[x0!1 + y0!2 + 2f!3] : (4:8)

4.4 The 
ow circulation algorithm

We now state the algorithm. Suppose we have a collection of image domains Di, i = 1; . . . ; N .

Suppose that we have normalized the circulation values measured for each such domain:


i =
1

jDij

I
@Di

V � ds:

Let us suppose that the centroid of each region Di is known, and is denoted by (xi; yi) (see Fig. 4.2).

From Eqn. (4.7), we know that the data (xi; yi; 
i), for i = 1; . . . ; N , satis�es, approximately,


i = axi + byi + c;
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where a = �!1=f , b = �!2=f , and c = �2!3. We can determine the coe�cients a, b, and c by

�tting a linear function to the available data. Outliers, of course, can be discarded by standard

regression methods, so that violations of the conditions are not consequential. Clearly, the rotational

parameters are determined from a, b, and c.

If the collection of centroids of regions (xi; yi) is su�ciently dense and symmetrically distributed

about the image plane origin, then the determination of the rotational parameters from the cir-

culation data becomes especially simple, since then the parameters are coe�cients of mutually

orthogonal functions, Speci�cally, a will be proportional to the average value of xi � 
i, and b will

be proportional to the average value of yi � 
i, and c will be equal to the average value of 
i. Then

!1 = �fa, !2 = �fb, and !3 = �c=2. Once again, outliers may be discarded from the averages so

as to improve the quality of the estimates.

Thus, the algorithm simply involves computing contour integrals (which might be directly pro-

vided by feature detectors) and �tting a linear surface to this data.
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Chapter 5

Translational parameter estimation

5.1 Introduction

The translation of a sensor, v = (v1; v2; v3), is an important quantity to be determined in visual

motion analysis. For instance, in navigation, it is important to determine the direction of movement

in order to avoid obstacles in the path. In turn, knowledge of the translation helps to determine

the scene structure and is useful in detecting obstacles. From monocular imagery, the translation

can be estimated only up to a scale factor, due to the combined e�ect of translation and depth

values on the 
ow �eld. One way to see this is to note that the same sequence can be produced by

a nearby point moving slowly or a distant point moving (proportionally) fast. This scale factor can

be absorbed into the unknown quantities in several ways. In particular, we will be interested in

determining the focus of expansion (FOE) which is nothing but the projection of the translational

velocity vector on the image plane.

The FOE is particularly easy to compute in the case where there is pure translation (i.e., zero

angular velocity). In such a case, the optical 
ow �eld is radially expanding or contracting, and the

FOE is found to be the point where the 
ow �eld vectors intersect. The simple-minded procedure

of �nding the FOE as the intersection point of the vectors does not work in practice for several

reasons. First, the optical 
ow �eld cannot be determined exactly, due to the aperture problem.

Secondly, noise adversely a�ects the 
ow �eld computation; and thirdly, pure translation is seldom

\pure" | there is always some rotation due to vibrations resulting in a turning of the camera

and other causes of rotation. Under such conditions, there is a need to somehow eliminate the

contribution from the rotation because the 
ow �eld is no longer of the radially expanding type.

Determination of the translation enables one to solve for the rotation and the structure of the

scene. Note that if the translation is known, then the optical 
ow equations become linear, and so

a collection of 
ow vectors provides enough information to solve for the other unknown quantities

using a linear algorithm. However, computation of the translation is made di�cult by the fact that
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in the translational part of the optical 
ow in the equations

u(x; y) = 1
Z(x;y) [�fv1 + xv3] + !1

h
xy
f

i
� !2

h
f + x2

f

i
+ !3y;

v(x; y) = 1
Z(x;y) [�fv2 + yv3] + !1

h
f + y2

f

i
� !2

h
xy
f

i
� !3x;

(5:1)

the translational parameters appear coupled with the inverse depth values. Thus, the equations in

(5.1) are bilinear as functions of T and �(x; y). In this chapter, we present a projection that achieves

two goals: (1) eliminating the contribution due to the rotation, and (2) providing a function that

has a minimum at the FOE. We present three methods that make use of this projection and point

out the features of these methods. Analysis of the methods and experimental results are provided

in separate chapters.

5.2 The circular-component function

We begin by de�ning a scalar function which is a particular projection of the optical 
ow �eld

vectors. The projection is parameterized by the center of concentric circles drawn in the image

plane. This projection, called the circular-component velocity function at a point (x; y) is obtained

from the vector dot product of the velocity 
ow �eld and the circular vector �eld that is depicted

in Fig. 5.1, centered on (x0; y0), and the magnitude of the vector �eld increases with the radius.

The formal description is as follows: For each point (x0; y0), we consider the circular component


ow �eld about (x0; y0) de�ned by:

U(x0;y0) = V (x; y) � (�y + y0; x� x0): (5:2)

The vector �eld (�y + y0; x� x0) is shown in Fig. (5.1). Since V = Vv + V!, we further de�ne

Uv
(x0;y0)

(x; y) = Vv(x; y) � (�y + y0; x� x0);

U!
(x0;y0)

(x; y) = V!(x; y) � (�y + y0; x� x0);

so that

U(x0;y0)(x; y) = Uv
(x0;y0)

(x; y) + U!
(x0;y0)

(x; y):

We calculate the second term �rst:

U!
(x0;y0)

= !1

�
�x0
f
y2 +

y0
f
xy + fx� fx0

�

+!2

�
�y0
f
x2 +

x0
f
xy + fy � fy0

�

+!3
h
�y2 � x2 + x0x+ y0y

i
: (5.3)

The important thing to note is that for �xed ! and (x0; y0), this function is a quadratic polynomial

in x and y. As for the �rst term, we have

Uv
(x0;y0)(x; y) = v3�(x; y) � [(y0 � �)x+ (�x0 + �)y + �x0 � �y0] : (5:4)
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Uv
(x0;y0)

(x; y) is not, in general, a quadratic polynomial since the inverse depth function is not

restricted. However, at the focus of expansion, when (x0; y0) = (�; �),

Uv
(�;�)(x; y) = v3�(x; y) �

"
x� �

y � �

#
� (�y + �; x� �) = 0 (5:5)

so that U(x0;y0) = U!
(x0;y0)

for (x0; y0) = (�; �). Eqn. (5.5) is merely a result of the radial structure

of the translational component of the 
ow �eld. Thus, U(x0;y0) will be a quadratic polynomial when

(x0; y0) is at the focus of expansion (�; �). At other points, U(x0;y0) is composed of the sum of a

quadratic polynomial of the form (5.3) and the function Uv
(x0;y0)

, which is in general not a quadratic

polynomial.

The de�nition of the circular-component 
ow �eld function can be extended to the case where

the candidate focus of expansion is a point at in�nity (corresponding to forward velocity v3 equal

to zero). In this case, the candidate focus of expansion is a unit direction (v1; v2), and the constant

vector �eld (�v2; v1) may replace the circular �eld (�y+ y0; x�x0) in the de�nition of the circular

component function, yielding a function Uv
(v1;v2;0)

.

5.3 Finding the FOE

The algorithm is thus the following: every candidate (x0; y0) for the focus of expansion computes

the function U(x0;y0) and then determines whether the resulting function is a quadratic polynomial

of the form (5.3). Candidate foci of expansion at in�nity can be included by considering the circular

component 
ow function Uv
(v1;v2 ;0)

for unit vectors (v1; v2). That candidate for which the resulting

function is a quadratic polynomial is declared to be the correct focus of expansion. This can be

done in several ways. We present three methods here. The �rst two methods use ways to cancel

any quadratic polynomial while the third one eliminates quadratic polynomials of the speci�c form.

The center-surround kernel method uses a convolution process to remove the contribution from

the rotational velocity. Observe that U!
(x0;y0)

(see Eqn. (5.3)), the rotational part of the circular-

component function, is in a three-dimensional subspace of all quadratic polynomial functions. This

subspace is spanned by the following functions:

�1(x; y) = �x0
f
y2 +

y0
f
xy + fx� fx0;

�2(x; y) = �y0
f
x2 +

x0
f
xy + fy � fy0;

�3(x; y) = �y2 � x2 + x0x+ y0y:

The space of all quadratic polynomial functions is, in turn, a subspace of the space of all

polynomials, which in turn is a subspace of all functions. The three-dimensional subspace of

U!
(x0;y0)

is dependent on the choice of (x0; y0). Thus, in order to eliminate the rotational part, we

could remove either the projection of the circular-component function on the space of quadratic
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polynomials in general (yielding the quadratic polynomial projection method) or the projection on

the three-dimensional subspace dependent on (x0; y0) (the subspace projection method).

5.3.1 The center-surround kernel method

We begin by presenting a method that uses convolution; a convolution procedure is desirable

because of its simplicity and its well-studied properties. We note that the Laplacian of (5.3) is a

constant:

�U!
(x0;y0)

(x; y) =

 
@2

@x2
+

@2

@y2

!
U!
(x0;y0)

=
�2x0
f

!1 � 2y0
f
!2 � 4!3:

Thus any derivative of the Laplacian of U(x0;y0) will give zero when (x0; y0) = (�; �). Rather than

taking derivatives, we advocate �ltering U(x0;y0) by a convolution kernel. We suggest three pos-

sibilities. The �rst suggested kernel is (@=@r)�G�, where G� is a Gaussian kernel with standard

deviation �, and r is a radial variable (we may regard G� as de�ned in polar coordinates). For

�xed �, in (x; y) coordinates, this kernel is proportional to

K(x; y) = (x2 + y2)
1=2

 
4� x2 + y2

�2

!
� e�(x2+y2)=2�2 : (5:6)

A cross section of this kernel is shown in Fig. 5.2. The 2-D kernel is a rotationally symmetric

version of the displayed function. The 2-D kernel is convolved with the circular-component 
ow

�eld function, and yields a zero resulting function when the candidate position is located at the

focus of expansion.

Another possibility is (@=@x)�G�. This kernel will not be circularly symmetric, but can be

implemented by di�erencing two horizontally displaced center-surround receptive �elds, as might

be found in a stereo imaging system. Convolution by this kernel is reminiscent of the receptive

�elds proposed by Nakayama and Loomis [51]. For this kernel, we have the (proportional) formula

K(x; y) = x

 
4� r2

�2

!
� e�r2=2�2 (5:7)

A three-dimensional plot of this kernel is shown in Fig. (5.3). A third possibility is to �lter U(x0;y0)

by �G�, without any derivatives. This kernel is given by

K(x; y) =

 
2� r2

�2

!
� e�r2=2�2 ; (5:8)

which is the well-known Mexican-hat function. In this case, we search for a location (x0; y0) where

the result of the �ltering operation is a constant function. By �ltering, we mean that a convolution
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Figure 5.1: The circular vector �eld used in the computation of the circular-component velocity function
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Figure 5.2: A slice of the kernel (@=@r)�G� used in the center-surround kernel method.
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Figure 5.3: A plot of the kernel in Eqn. (5.7) used in the center-surround kernel method.

is desired:

�(x0;y0)(x; y) = K � U(x0;y0)(x; y) =
Z Z

K(x0; y0)U(x0;y0)(x� x0; y � y0)dx0dy0: (5:9)

We are assured that when (x0; y0) = (�; �), �(x0;y0)(x; y) is identically zero (the zero function)

for the kernels (5.6) and (5.7) discussed above, and is constant for the kernel (5.8). A reasonable

criterion would be to search for (x0; y0) such that

E(x0; y0) =

Z Z
j�(x0;y0)(x; y)j2dxdy (5:10)

is zero, in the case of kernels (5.6) and (5.7), and where E(x0; y0) = Var(�(x0;y0)), the variance of

�(x0;y0), is zero in the case of kernel (5.8).

For the kernels in (5.6) and (5.7), the error surface E(x0; y0) can be rewritten as a quadratic

functional of the function U(x0;y0)(x; y). The quadratic functional has form

E(x0; y0) =
Z Z Z Z

R(x; y; x0; y0) �U(x0;y0)(x; y)U(x0;y0)(x
0; y0)dxdydx0dy0: (5:11)

Formulas are derived for R in the next section.

Although this provides a particularly attractive test for the focus of expansion, the problem with

the center-surround kernel is that the kernel will yield a zero convolution against many functions

other than quadratic polynomials. For example, if � is such that U(x0;y0) happens to be a harmonic

function for some (x0; y0), then E(x0; y0) will be zero. While it is not likely that � will yield
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a harmonic U(x0;y0) for general surface shapes, the test using the center-surround kernel is not

speci�c to the form of the quadratic polynomial that arises at the focus of expansion, and thus can

be considerably improved.

5.3.2 The quadratic functionals

In this section, we derive the formulas for the quadratic functionals. First, we want to show that,

given two functions K(x) and U(x) of the multivariate x, if �(x) = K �U(x), then

k�k2 =
Z
( �K �K � U(x)) � U(x)dx; (5:12)

where �K(x) = K(�x). In order to prove this, �rst note that

< A � f; g >=< f; �A � g >;

for functions A, f and g, and where < f; g > denotes the inner product of f and g. Using this, we

see that

k � k2 = kK �Uk2
= < K � U;K � U >

= < U; �K �K � U > :

Now, consider the kernel (@=@r)�G� (Eqn. (5.6)). This is a symmetric kernel ( �K(x; y) = K(x; y)).

So, from Eqn. (5.12), we have

R(x; y; x0; y0) = S(x� x0; y � y0);

where

S(x; y) = K �K
= (@2=@r2)�2Gp

2�;

for r =
p
x2 + y2. A plot of the K �K kernel is shown in Fig. (5.4). For the asymmetric kernel K

in Eqn. (5.7),

S(x; y) = �K �K
= (@2=@x2)�2Gp

2�:

A plot of �K �K is shown in Fig. (5.5).
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Figure 5.4: The autoconvolution kernel K � K, for the K in Eqn. (5.6), that may be used as the
quadratic functional kernel in the center-surround kernel method to detect whether U(x0;y0) is a quadratic
polynomial, and thus if (x0; y0) is the focus of expansion.

Figure 5.5: The �K � K that may be used as the quadratic functional kernel in the center-surround
kernel method, for the asymmetric kernel K in Eqn. (5.7).
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5.3.3 The quadratic polynomial projection method

We now present a method in which we eliminate the contribution from rotation by using a pro-

jection onto the space of quadratic polynomials. The projection can be computed if an orthonormal

basis can be found for the space of quadratic polynomials. We can �nd such a basis by starting with

a set of functions that span this space. One such set is: f1; x; y; xy; x2; y2g. An orthonormal basis

can be derived from this set using an orthogonalizing method such as the Gram-Schmidt process.

We need an inner product to be de�ned over the space in order to accomplish the orthogonalization.

De�ning the Hermite inner product to be

< f; g >=

Z Z
f(x; y)g(x; y)e(�x

2�y2)=2dxdy; (5:13)

the orthogonalizing process leads to the following polynomials:

�1(x; y) =
1p
2�

; �2(x; y) =
xp
2�

; �3(x; y) =
yp
2�

;

�4(x; y) =
xyp
2�

; �5(x; y) =
x2 � 1

2
p
�
; �6(x; y) =

y2 � 1

2
p
�
:

These are the Hermite polynomials in two variables up to degree two. The Hermite polynomials

have unit norm and are mutually orthogonal with respect to the Hermite inner product. The

function U(x0;y0) will thus be a quadratic polynomial if and only if the following function vanishes

identically:

	(x; y) = U(x0;y0)(x; y)�
6X

i=1

< U(x0;y0); �i > �i(x; y): (5:14)

The residual function 	 is the function left after eliminating from U(x0;y0) the projection on to the

space of quadratic polynomials. For the quadratic polynomial projection method, we will use the

square of the norm of this residual function as our error measure E(x0; y0):

E(x0; y0) =k 	(x; y) k2 :

The (Hermite) norm, which will be zero if and only if U(x0;y0) is a quadratic polynomial, may be

written as a quadratic functional of U(x0;y0), as derived in the following. Note that we make use of

the fact that the functions �i(x; y) are orthonormal. The derivation is done for a multivariate x:

k 	 k2 = k U k2 �
6X

i=1

k< U; �i > �i k2

= k U k2 �
6X

i=1

(< U; �i >)
2

=

�Z
U(x)e�x

2=2dx

�2
�
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6X
i=1

�Z
U(x)�i(x)e

�x2=2dx
Z
U(x0)�i(x

0)ex
02=2dx0

�

=
Z Z

�(x;x0)U(x)U(x0)e�x
2=2e�x

02=2dxdx0

�
6X

i=1

Z Z
U(x)U(x0)�i(x)�i(x

0)e�x
2=2e�x

02=2dxdx0

=

Z Z  
�(x;x0)�

6X
i=1

�i(x)�i(x
0)

!
U(x)U(x0)e�

x
2
+x

02

2 dxdx0:

In this, �(x;x0) is a delta distribution whose mass lies entirely on the slice x = x
0. Thus, the norm

may be written as a quadratic functional of U(x0;y0):

E(x0; y0) =ZZZZ
R(x; y; x0; y0) � U(x0;y0)(x; y)U(x0;y0)(x

0; y0)e�
x
2
+y

2
+x

02
+y

02

2 dxdydx0dy0: (5.15)

In this case, R is the \quadratic polynomial projection kernel," and will equal

R(x; y; x0; y0) = �(x; y; x0; y0)�
6X

i=1

�i(x; y)�i(x
0; y0):

We thus see that the test for (x0; y0) depends on a quadratic functional applied to U(x0;y0), and

that the kernel of the quadratic functional in (5.15) has the form

R(x; y; x0; y0) = �(x; y; x0; y0)� 1

2�

�
1 + xx0 + yy0 + xyx0y0

�
� 1

4�

h
(x2 � 1)(x02� 1) + (y2 � 1)(y02 � 1)

i
:

Note that the quadratic polynomial projection kernel is independent of (x0; y0).

The quadratic polynomial projection method has the property that if U(x0;y0) is a quadratic

polynomial, then (x0; y0) will be de�ned as the focus of expansion. Alas, if Uv
(x0;y0)

happens to be a

quadratic polynomial, then U(x0;y0) is simply the sum of two quadratic polynomials, and so (x0; y0)

will be erroneously identi�ed. We might assert that it is highly unlikely that the scene will be such

that Uv
(x0;y0)

gives precisely a quadratic polynomial, but unfortunately, if �(x; y) happens to be a

linear function, then Uv
(x0;y0)

is indeed a quadratic polynomial. It so happens that �(x; y) is linear

(and thus also harmonic, so the center-surround kernel method will also fail) when the surface

Z(x; y) is planar (although the entire scene will have to consist of the single planar surface). We

will demonstrate this degenerate case in the next chapter where we analyze the various methods

presented in this chapter.
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5.3.4 The subspace projection method

We note that U!
(x0;y0)

is a quadratic polynomial in (5.3) of a special form; U!
(x0;y0)

must lie in a

three dimensional subspace of quadratic polynomials spanned by the (rede�ned) basis functions

�1(x; y) = �x0
f
y2 +

y0
f
xy + fx� fx0;

�2(x; y) = �y0
f
x2 +

x0
f
xy + fy � fy0;

�3(x; y) = �y2 � x2 + x0x+ y0y:

Note that unlike the Hermite basis functions from the previous sections, these basis functions

depend on (x0; y0).

For the subspace projection method, we de�ne the error amount E(x0; y0) to be

E(x0; y0) = min
a1;a2;a3

k U(x0;y0) �
3X

i=1

ai�i k2 :

The norm is based on an inner product, and we use the Hermite inner product de�ned in Eqn. (5.13).

This is a standard least squares minimization problem, and the ai may be found as the solution to

the \normal equations"

Q

2
64
a1
a2
a3

3
75 =

2
64
< U(x0;y0); �1 >

< U(x0;y0); �2 >

< U(x0;y0); �3 >

3
75 ; (5:16)

where Q is the three by three matrix of inner products, i.e., the (i; j)th component ofQ is < �i; �j >.

For a solution set a1; a2, and a3, the minimum distance E(x0; y0) is given by the quadratic functional

formula (5.15). In the following derivation for this quadratic functional formula, for brevity, we

make use of the abbreviations

� = [�1; �2; �3] ; and � = [< U; �1 >;< U; �2 >;< U; �3 >] :

Also, observe that

��T = Q; and QT = Q:

We have

E(x0; y0) = min
a1;a2;a3

kU(x0;y0) �
3X

i=1

ai�ik2

= k U k2 � k
3X

i=1

ai�i k2

= k U k2 �

�������
�������[�1; �2; �3]Q

�1

2
64
< U; �1 >

< U; �2 >

< U; �3 >

3
75
�������
�������
2
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= k U k2 �(�TQ�1�)
T
(�TQ�1�)

= k U k2 ��T (Q�1)
T
��TQ�1�

= k U k2 ��TQ�1�

=

�Z
U(x)e�x

2=2dx

�2
�

[< U; �1 >;< U; �2 >;< U; �3 >]Q
�1

2
64
< U; �1 >

< U; �2 >

< U; �3 >

3
75

=
Z Z

�(x;x0)U(x)U(x0)e�x
2=2e�x

02=2dxdx0�

Z Z
U(x) [�1(x); �2(x); �3(x)]Q

�1U(x0)

2
64
�1(x0)
�2(x0)
�3(x0)

3
75 e�x2=2e�x02=2dxdx0:

Thus, R, the \subspace projection kernel" of formula (5.15) is now rede�ned as

R(x0;y0)(x; y; x
0; y0) = �(x; y; x0; y0)�

[�1(x; y); �2(x; y); �3(x; y)]Q
�1
(x0;y0)

2
64
�1(x

0; y0)
�2(x

0; y0)
�3(x0; y0)

3
75 ;

where we have written Q(x0;y0) in order to emphasize that the �i depend on (x0; y0). The triple

product (the second term on the right hand side) means the same thing as

3X
i=1

3X
j=1

qi;j�i(x; y)�j(x
0; y0);

where qi;j is the (i; j)th component of the inverse matrix Q
�1
(x0;y0)

. Note that Q and thus Q�1 can be
precomputed as functions of (x0; y0): they are matrices of constants that depend on (x0; y0). Using

the resulting kernel R provides the exact test, and E(x0; y0) will be zero if and only if U(x0;y0) is a

quadratic polynomial of exactly the correct form.

With some calculation, we can show that the matrix of Hermite inner products is given by

Q =

2
64
1 + 6x20 + y20 5x0y0 7x0

5x0y0 1 + x20 + 6y0 7y0
7x0 7y0 8 + x20 + y20

3
75 :
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We discover that an inverse always exists, and that the coe�cients are quotients of sixth order

polynomials (i.e., rational polynomials) in the two position values. These functions do not have to

be solved! They are merely evaluated for each (x0; y0) that is considered. The nine values qi;j of

the inverse matrix Q�1 can be computed for each (x0; y0) using the following formulas:

q1;1 = (8 + 9x20 + 7x20y
2
0 + x40 + 6y40)=P;

q2;2 = (8 + 9y20 + 7x20y
2
0 + 6x40 + y40)=P;

q3;3 = (1 + 7(x20 + y20) + 6(x40 + y40) + 12x20y
2
0)=P;

q1;2 = (�5x30y0 � 5x0y
3
0 + 9x0y0)=P;

q1;3 = �7x0(1 + x20 + y20)=P;

q2;3 = �7y0(1 + y20 + x20)=P;

(5:17)

where

P = det(Q) = 8 + 8(x20 + y20) + 12x20y
2
0 + 6(x40 + y40) + 18(x20y

4
0 + x40y

2
0) + 6(x60 + y60);

and

q3;2 = q2;3; q1;2 = q2;1; q1;3 = q3;1: (5:18)

To summarize, the task for any given point (x0; y0) is to compute the function U(x0;y0) using

(5.2) and the values of qi;j using (5.17) and (5.18), and to use these values to compose the quadratic

functional kernel, and then to compute the value of the quadratic functional applied to the function

U(x0;y0) using (5.11). The result will be zero if (x0; y0) is at the focus of expansion.

In the methods presented so far, there are two ways to compute the error surface value E(x0; y0)

from U(x0;y0)(x; y). One way is to convolve with a kernel (center-surround kernel method) or, to

compute an explicit projection on a subspace (quadratic polynomial projection method, subspace

projection method) and then to eliminate this projection from U(x0;y0)(x; y); the norm of the func-

tion left after this operation is the error surface value. The second way is to calculate the quadratic

functional kernel R(x; y; x0; y0) and then to directly compute the error value by doing a quadratic

functional computation in the four dimensional space of (x; y; x0; y0), as shown in Eqn. (5.15). If

there are n points in the discrete domain where the 
ow values are known, the latter method in-

volving a quadratic functional kernel is of complexity O(n2) and the former method is of complexity

O(n).

5.4 The quadratic error surface result

It will be shown that the error function E(x0; y0) in the case of the center-surround kernel method

and the quadratic polynomial projection method is itself a quadratic polynomial. The implication

of such a result is that one does not have to search over all possible candidate FOEs in order to

determine the minimum of the error function. Indeed, there is no need for a minimization procedure,

either. Given the values of the function E(x0; y0) at six points, the function E(x0; y0) is completely
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determined because of its quadratic nature. The coe�cients of the quadratic polynomial can be

found from the values at the six points and the minimum of the function can be expressed in closed

form in terms of these coe�cients.

5.4.1 The center-surround kernel method

For the center-surround kernel method, the function E(x0; y0) is obtained by a convolution

process. Note �rst that the function U(x0;y0)(x; y) is linear in x0 and y0:

U(x0;y0)(x; y) = V (x; y) � (�y + y0; x� x0):

Let us make explicit the linearity in (x0; y0):

U(x0;y0)(x; y) = A(x; y)x0+ B(x; y)y0 + C(x; y); (5:19)

where the functions A(x; y), B(x; y) and C(x; y) will depend on the 
ow �eld V (x; y). The convo-

lution kernel K, which is also a function of x and y, is independent of (x0; y0). So, when U(x0;y0) is

convolved with K, the resulting function �(x0;y0) is still linear in x0 and y0:

�(x0;y0)(x; y) = U(x0;y0) �K(x; y)

= (A �K(x; y))x0+ (B �K(x; y))y0+ (C �K(x; y))

= A1(x; y)x0+B1(x; y)y0+ C1(x; y);

where A1(x; y), B1(x; y) and C1(x; y) are respectively, the results of the convolution of A(x; y),

B(x; y) and C(x; y) with the kernel K(x; y). The form of �(x0;y0) is seen to be linear in x0 and

y0. Note that this observation does not depend on the choice of K, as long as K is independent of

(x0; y0). The error function E(x0; y0) is de�ned to be the norm square of �(x0;y0) (see Eqn. (5.10)):

E(x0; y0) =k �(x0;y0)(x; y) k2 :
Since we know that �(x0;y0) is linear in x0 and y0, we can show that E(x0; y0) is quadratic in x0
and y0. In the following, for simplicity, we do not show the dependence on x and y.

E(x0; y0) = k �(x0;y0) k2

=

Z Z
[A1x0 +B1y0 + C1]

2 dxdy

= kA1k2 x20+ kB1 k2 y20 + 2 kA1B1 k x0y0 + 2 kA1C1k x0
+2 kB1C1k y0+ kC1k2 : (5.20)

For the variance case,

E(x0; y0) =
Z Z

(�(x0;y0) � �a
(x0;y0)

)2dxdy (5:21)

Here �a
(x0;y0)

is the mean value of the function �(x0;y0), and is also linear in x0 and y0. Thus the

expression inside the integral in Eqn. 5.21 is linear in x0 and y0. By a development similar to the

one in Eqn. (5.20), the error function is quadratic in this case also.

Thus, E(x0; y0) is a quadratic polynomial in x0 and y0, for the center-surround kernel method.
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5.4.2 The quadratic polynomial projection method

For the quadratic polynomial projection method, the error function E(x0; y0) is obtained as the

norm of the orthogonal complement function which is the residual left after subtracting o� the

projection on to the space of quadratic polynomials. That is, E(x0; y0) is the norm of the following

function reproduced from Eqn. (5.14):

�(x; y) = U(x0;y0)(x; y)�
6X

i=1

< U(x0;y0); �i > �i(x; y):

The function U(x0;y0)(x; y) is linear in x0 and y0 (see Eqn. (5.19). We have noted that the basis

functions �i that span the space of quadratic polynomials are independent of x0 and y0. This means

that the projections

< U(x0;y0); �i > �i(x; y) = < A; �i > x0�i(x; y)+ < B; �i > y0�i(x; y)

+ < C; �i > �i(x; y)

are linear functions of x0 and y0. Here, we have used the linearity of the inner product. Continuing,

we see that the summation
6X

i=1

< U(x0;y0); �i > �i(x; y)

and so the orthogonal complement

�(x; y) = U(x0;y0)(x; y)�
6X

i=1

< U(x0;y0); �i > �i(x; y)

are also linear functions of x0 and y0. As a result the error, which is the norm square of the function

�(x; y), is quadratic in x0 and y0, as shown for the center-surround kernel method in Eqn. (5.20).

5.4.3 Invariance under noise

It can be easily seen that additive noise will contribute another linear term to the functions; thus,

the error function would still be quadratic. Let N(x; y) represent the additive noise in the optical


ow computation. We replace V (x; y) by V (x; y)+N(x; y) in the equations involving V (x; y). The

circular-component function for this noisy 
ow �eld is

U(x0;y0)(x; y) = (V (x; y) +N(x; y)) � (�y + y0; x� x0):

The function U(x0;y0)(x; y) still remains linear in x0 and y0. Thus, the reasoning for the quadratic

nature of the error function E(x0; y0) would still carry through as in the noiseless case. In general,

the vector 
ow �eld V (x; y) in the de�nition of the circular-component function can be replaced

by any arbitrary vector �eld (in particular, such a 
ow �eld can be produced by an arbitrary
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transformation of the optical 
ow �eld); but the error function E(x0; y0) would still be quadratic

in x0 and y0 by means of the same arguments we presented so far. However, the minimum of the

quadratic surface need no longer be at the correct FOE. Indeed, in general, the minimum would

occur at a location di�erent from the correct FOE because of the transformation brought upon

V (x; y). Even though the nature of the surface remains quadratic, the minimum value need no

longer be zero. The departure of the minimum value from zero is a measure of the noise in the 
ow

�eld.

5.4.4 Using the quadratic error surface result

So, the algorithm in both the center-surround kernel method and the quadratic polynomial

projection method is as follows: Choose six locations (x0i; y0i). The choice of the locations is

immaterial, and could be done at random, as long as they are in a non-degenerate con�guration.

For each (x0i; y0i), compute the error function E(x0i; y0i) by convolving or projecting the circular

component U(x0;y0)(x; y) (depending on which method is used) and then taking the norm of the

resulting function. Fit a quadratic surface to these six values of E. The quadratic surface is of the

form

E(x0i; y0i) = a1x
2
0i + a2y

2
0i + a3x0iy0i + a4x0i + a5y0i + a6:

Since we know the value of E for six (x0i; y0i), we get six linear equations in the six unknowns aj ,

1�j�6. This linear system can be solved using standard techniques. Of course, one could choose

a speci�c set of six points (x0i; y0i) in advance and precompute the inverse matrix required in the

linear system solution.

The minimum of this quadratic surface E, which is the FOE, can be easily determined as a

closed-form function of the parameters of the quadratic surface. The minimum of the surface is

located at �
2a1a5 � a3a4
a23 � 4a1a2

;
2a2a4 � a3a5
a23 � 4a1a2

�
:

as can be seen by solving for that (x0i; y0i) for which

@E

@x0i
= 0; and

@E

@y0i
= 0:

Note that the coe�cients aj are determined from the values of E at six points by solving a linear

system of equations. In this sense, no search is involved in the center-surround kernel and the

quadratic polynomial projection methods. However, the error surface in the third method (the

subspace projection method) does not have the quadratic nature because the projection itself

depends on the values of x0i and y0i. So, in this case, a good strategy for locating the minimum

would be of advantage.

Note that obtaining the values of E at more than six points is redundant. This is so because

the quadratic error surface is perfectly quadratic, irrespective of the input 
ow �eld. So, no gain is

achieved by computing the value of E at more than six points.
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5.5 A fast method: the NCC algorithm

In this section, we present a variation of the FOE search algorithm that o�ers certain compu-

tational advantages over the previous algorithms. In certain circumstances, the method performs

better. This method is an approximate method in that it requires that the rotational parameters

be small. We want to ignore the part of the 
ow �eld resulting from the rotational motion. In

other words, we require that the translational motion dominate. Then we can avoid doing one of

the steps (that of eliminating the contribution to the 
ow �eld by the rotational velocity) in the

previous methods. The result is a faster algorithm (compared to the ones presented so far) that

does very well under pure or nearly-pure translational motion. In most real-life motion there is

hardly any rotation; the fast method we present here will be useful under such conditions.

The circular component function is composed of two parts, one (Uv
(x0;y0)

) from the translational

velocity, and the other (U!
(x0;y0)

) due to the rotational velocity:

U(x0;y0)(x; y) = Uv
(x0;y0)

(x; y) + U!
(x0;y0)

(x; y):

Recall that all the FOE search methods described so far try to eliminate U!
(x0;y0)

by either convolv-

ing with a kernel (center-surround kernel method) or by projecting on to a subspace (quadratic

polynomial projection method, subspace projection method). Here we consider the option of ig-

noring the step of eliminating U!
(x0;y0)

. To this end, we de�ne an error function E(x0; y0) as the

norm of U(x0;y0)(x; y):

E(x0; y0) = kU(x0;y0)k2: (5:22)

The important observation, as noted before, is that U(x0;y0)(x; y) is linear in the parameters x0 and

y0:

U(x0;y0)(x; y) = V (x; y) � (�y + y0; x� x0);

or, more explicitly,

U(x0;y0)(x; y) = A(x; y)x0+ B(x; y)y0 + C(x; y);

where the functions A(x; y), B(x; y) and C(x; y) will depend on the 
ow �eld V (x; y). The norm

of U(x0;y0)(x; y) as shown in Eqn. (5.22) gives an error function

E(x0; y0) = k U(x0;y0)(x0; y0) k2

=

Z Z
[Ax0 +By0 + C]2 dxdy

= k A k2 x20+ k B k2 y20 + 2 k AB k x0y0
+2 k AC k x0 + 2 k BC k y0+ k C k2 :

Thus the error function de�ned in Eqn. (5.22) is quadratic in x0 and y0. The minimum of this

quadratic surface is purported to occur at the Focus of Expansion (FOE). We will justify this claim
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shortly. But �rst, if the claim is correct, we have a simple procedure [67] { the Norm of the Circular

Component (NCC) algorithm { that we describe now.

The �rst step is to choose six candidate coordinate positions (x0i; y0i) in a non-degenerate

con�guration (i.e., six points on the image plane that are not on a straight line). Next, for each of

these candidates, compute the circular component function and de�ne E(x0i; y0i) to be the norm

of that function. In a discrete setting, the error value is simply the sum of the squares of the

circular component values. Note that this can be done even in the case of a sparse 
ow �eld. The

error function values at these six points completely de�ne the error surface because of its quadratic

nature. If we write the error surface to be

E(x0i; y0i) = a1x
2
0i + a2y

2
0i + a3x0iy0i + a4x0i + a5y0i + a6;

we can solve for the unknowns aj ; 1�j�6, given the error values for the six candidates (x0i; y0i); 1�
i� 6, by solving a system of six linear equations in six unknowns. The location of the minimum

can be found using the closed-form expression�
2a1a5 � a3a4
a23 � 4a1a2

;
2a2a4 � a3a5
a23 � 4a1a2

�
;

as shown in the previous section. This location is the computed FOE. Thus the algorithm involves

computing the norm of the circular component function for six candidates, calculating the param-

eters of the quadratic error surface by solving a linear system, and then computing the FOE using

a closed form expression.

Let us now examine the claim about the minimum being at the the FOE. Note that the function

U(x0;y0)(x; y) is made up of two parts; one is the translational part shown in Eqn. (5.4), and the

other is the rotational, in (Eqn. (5.3)):

Uv
(x0;y0)

(x; y) = v3�(x; y) � [(y0 � �)x+ (�x0 + �)y + �x0 � �y0] ;

and,

U!
(x0;y0)

= !1

�
�x0
f
y2 +

y0
f
xy + fx� fx0

�

+!2

�
�y0
f
x2 +

x0
f
xy + fy � fy0

�

+!3
h
�y2 � x2 + x0x+ y0y

i
:

We can rewrite these as

Uv
(x0;y0)

(x; y) = f1x0 + f2y0 + f3;

where

f1 = v3�(x; y)(�y+ �);

f2 = v3�(x; y)(x� �); and

f3 = v3�(x; y)(�x�+ y�):
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Similarly,

U!
(x0;y0)

(x; y) = g1x0 + g2y0 + g3;

where

g1 = �!1
f
y2 +

!2
f
xy + !3x� !1f;

g2 =
!1
f
xy � !2

f
x2 + !3y � !2f; and

g3 = !1fx+ !2fy + !3(�y2 � x2):

The translational part Uv
(x0;y0)

(x; y) vanishes at the FOE, as shown in Eqn. (5.5) repeated here:

Uv
(�;�)(x; y) = v3�(x; y) �

"
x� �

y � �

#
� (�y + �; x� �) = 0;

and it is non-zero elsewhere. Thus, the norm kUv
(x0;y0)

(x; y)k2 is positive quadratic with minimum

(equal to zero) at the FOE:

k Uv
(x0;y0)

(x; y) k2 = k f1 k2 x20+ k f2 k2 y20 + 2 k f1f2 k x0y0
+ k f1f3 k x0+ k f2f3 k y0+ k f3 k2 : (5.23)

The minimum is no longer at the FOE once we add the rotational part. However, as long as the

contribution from the rotational part is small compared to that from the translational part, we can

approximate the behavior of kUv
(x0;y0)

(x; y)k2 by kU(x0;y0)(x; y)k2. We have

k U(x0;y0)(x; y) k2 = k h1 k2 x20+ k h2 k2 y20 + 2 k h1h2 k x0y0
+ k h1h3 k x0+ k h2h3 k y0+ k h3 k2; (5.24)

where

h1 = f1 + g1; h2 = f2 + g2; and h3 = f3 + g3:

The norm in Eqn. (5.24) would closely approximate the norm in Eqn. (5.23), if the following

conditions are satis�ed:

k gi k�k fi k; i = 1; 2; 3:

It is hard to give an exact interpretation of these conditions. However, the conditions are satis�ed

when the rotational 
ow magnitudes are small compared to the translational 
ow magnitudes; in

other words, translation should be the dominant cause of the 
ow �eld.

The method is exact for pure translation and is approximate when the rotation is small compared

to the translation or when the depth of objects is small (i.e., high �(x; y)) as would be the case

in indoor situations. Also, there is no apparent reason for this method to fail in the case where a
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planar surface occupies the whole �eld of view. We will show in the next chapter why the planar

surface poses problems for the other algorithms and not to the NCC algorithm.

Good results are obtained for this approximate method when tested on real image sequences.

Experimental results using this method and the other methods described in this chapter are pre-

sented in chapter 8.
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Chapter 6

Applicability of the algorithms

6.1 Introduction

In the previous chapters, we presented methods to determine the motion parameters of a moving

sensor. In this chapter, we analyze the e�ect of violating the assumptions, and point out conditions

where the algorithms are likely to perform poorly or fail completely.

There are certain intrinsic di�culties in motion analysis which we would like to point out here.

When presented with a single planar surface occupying the whole �eld of view, all the algorithms for

motion analysis fail in some way. Mathematically, such a situation produces either unconstrained

or underconstrained systems, resulting in a family of solutions. Further information is required

to constrain the solution. In general, all algorithms bene�t from a rich depth structure. Indeed,

Longuet-Higgins has shown that the planar situation is inherently ambiguous [42]. The velocity

vector and the plane normal can be interchanged, and reversed in direction, to produce the same


ow �eld.

The assumption of rigidity is quite critical for most motion algorithms. For optical 
ow-based

algorithms, the use of the optical 
ow equations (Eqn. (3.2)) automatically relies on the rigidity

assumption made in deriving the optical 
ow equations. Thus, if the objects in the scene are not

rigid, the methods presented in this thesis, as well as many other optical 
ow-based methods, will

fail, unless the nonrigidity is not apparent due to �ne temporal sampling. In that case, it would

amount to using a rigid approximation to nonrigid motion.

The rigidity constraint is implicit in the planarity constraint [41,13] and its various manifesta-

tions used in the correspondence based schemes. Violation of rigidity implies that the constraint is

no longer valid and the algorithms can be expected to fail.

Here, we analyze the methods presented so far, to identify situations that cause the methods

to fail. We start by summarizing the algorithms and then comment on their applicability.
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6.2 Flow circulation algorithm

The Flow circulation algorithm is easily understood. We choose several closed contours (or cycles)

on the image plane. Circulation values are obtained for these cycles. A circulation value is simply

a contour integral of the vector 
ow �eld around the cycle, and measures the \swirling" of the 
ow

�eld around the cycle. Mathematically, a circulation value is proportional to the average of the

curl of the vector �eld in the region enclosed by the cycle. We have shown in a Chapter 4 that

these values, taken as data points at the centroids of the regions, will approximately lie on a linear

surface: g(x; y) = ax+by+c. Thus, given such data points for several contours, by �tting a linear

surface to the given data, the parameters a; b; and c are determined. These are proportional to the

rotational parameters of motion !1, !2, and !3 respectively. Clearly, �tting a linear surface to the

data is a global process, which we believe will lead to a more stable determination of the rotational

parameters than by using local methods based on local deformation parameters (i.e., higher order

derivatives of the vector 
ow �eld). Further, �tting a linear surface is a particularly simple global

process; the coe�cients can be determined by a regression analysis that will essentially use weighted

sums of the data points.

The fact that the circulation values only approximately lie on a linear surface makes the 
ow

circulation algorithm an approximate method. Shortly, we will consider the magnitude of errors

that can result pointwise. However, the real issue is the extent of the errors in an average sense,

and there are ways that the errors can be managed so as to improve the accuracy of the globally-

obtained rotational parameters. We mention three techniques here: (1) discarding of outliers, (2)

depth �ltering, and (3) surface normal balancing. For discarding outliers, an iterative approach

may be used, which �rst �ts a linear surface, and then improves upon the parameters de�ning the

surface by discarding data that lies far from the norm. For depth �ltering, we might intentionally

discard cycles that enclose points that lie on nearby surfaces. Such surfaces are frequently located

near the periphery of the visual �eld; other nearby surfaces (that do not lie normal to the line of

sight) might be identi�ed and discarded from the 
ow circulation algorithm by independent depth

sensing mechanisms.
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Recalling the equation for the curl,

r�V (x0; y0) =

�

�
x0

�
!1 +

n2v3
R

�
+ y0

�
!2 +

n1v3
R

�
+

�
2f!3 +

n1v2 � n2v1
R

��
: (6.1)

For surface normal balancing, we note from Eqn. (6.1) that perturbations to the estimates of !1,

!2, and !3 are mediated by the values of the surface component normals n2, n1, and n1v2 � n2v1
respectively. Here, n1 and n2 are the horizontal and vertical components of the surface normal. The

vector (v1; v2) is the (orthographic) projection of the velocity vector onto the image; so, n1v2�n2v1
is the cross product of the projections on the image plane of the velocity vector (which will be in

the same direction as the FOE) and the surface normal. Thus if the circulation values obtained for

the 
ow circulation algorithm encompass elements such that the tilts (n1; n2) are balanced, then

errors will cancel. When surfaces with large tilts are present, we should choose circulation values

such that the union of the enclosed regions contains surfaces that have an even balance of tilts with

respect to the horizontal axis, the vertical axis, and the axis de�ned by the direction to the focus of

expansion. Again, independent surface structure methods, such as stereo and shading clues, may

be used to make the selection.

Now, we investigate the validity of the linearity assumption for the 
ow circulation values. We

�rst consider the situation with pointwise evaluations of the curl. Looking at Eqn. (6.1), our ability

to estimate the parameters !1, !2, and !3 will depend on the size of the remaining terms in the

corresponding coe�cients. That is, we need that the terms

n2v3
R

;
n1v3
R

;
n1v2 � n2v1

2R

be small in magnitude, respectively, relative to the expected sizes of !1, !2, and !3. In the worst

case, the magnitudes of any of these three terms can attain the respective values of

jv3j

R
;

jv3j

R
;

q
v21 + v22

2R
:

If this is all the information that is given, then we will need large values of R. Speci�cally, suppose

that a reasonable value for a rotational parameter is on the order of 0.1 or 0.2 radians per second.

Then as long as R is greater than jv3j by a factor of 50 or so, the rotational parameters !1 and !2
should be deducible to within an accuracy of 0.02 radians per second. Likewise, R should be larger

than the magnitude of the lateral velocity in the (X; Y )-plane by a factor of 25 or so. Recalling

that R is the distance from the nearest approach of the tangent plane to the focal point, we observe

that tangent planes to surfaces visible in the scene should, for the most part, stay outside of a

sphere whose radius is the distance to be traversed at the current velocity in the next 50 seconds.

This is quite a large bound, and hardly ever true in practice, unless the translational velocity is

zero. However, if the forward velocity component is zero, then accurate estimation of !1 and !2 is

assured by this method, whereas if the lateral translational velocity is zero, then !3 will be precise.
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n1/R                                                       n2/R

Figure 6.1: A plot of n1=R is seen in the left, and a plot of n2=R of the same image domain is on the

right, for a typical scene consisting of a road, imaged by a depth sensor. The depth data is used to

compute the surface normals. The values of n2=R are mostly positive, and average to 0.0103, whereas

the values of n1=R are better distributed around zero, averaging to 0.0040.
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More realistically, it is the average values of n1 and n2 throughout the image that in
uences

the accuracy of the linear regression that is used to estimate the components of !. For example, if

n1 and n2 average to 0.1, then the previous bounds may be reduced by a factor of 10. Although

typical values of the average surface normal tilts must be determined empirically, many scenes

are composed of a variety of tilt directions. Such variety makes it possible to apply the surface

normal balancing technique. Fig. (6.1) shows plots of n1=R and n2=R for a typical scene of a road,

computed using depth data. The values of n1=R are well-distributed about zero, and average to

0.0040. The values of n2=R, on the other hand, are predominantly positive, and average to 0.0103.

The result is that using this scene, the value of the horizontal rotational component !1 is likely to

be estimated with greater error when using the 
ow circulation algorithm.

We observe in this example that the rotation component about the horizontal axis, !1, is

confounded by forward velocity and horizontal surfaces with large n2=R. Likewise, rotation about

the vertical axis, !2, which would arise as a sensor rotates from left to right, is confounded by a

forward velocity and a surface patch whose tilt lies horizontally.

Consider for instance a person walking next to a vertical wall (see Fig. (6.2)). Instantaneously,

the motion �eld induced by the wall can indicate either forward velocity or rotation of the head

away from the wall. As shown in Fig. (6.2), the two instantaneous 
ow �elds are similar, although

not equal. The curl of these 
ow �elds, along the wall, are equal (equal curls do not imply equal

vector �elds). In any given vertical slice along the wall, the 
ow �elds are qualitatively extremely

similar. The sense in which they di�er is that the magnitude of the vector �eld due to forward

translation decreases with the range, so that the velocity vectors are quite small at the far end of

the wall. Since the curls are identical, the 
ow circulation algorithm will not distinguish between

the two cases. The ambiguity may easily be resolved by higher-level processing, such as analyzing

over time the scene at the gaze point. A similar analysis shows that rotation about the line of

sight (optical axis) is readily confused with lateral motion with respect to a surface such that

�n2v1 + n1v2 is large.

Our conclusion is that for some scenes, the 
ow circulation algorithm should be able to estimate

the rotational parameters correctly; for other scenes, accurate estimation of rotational parameters

from the velocity �eld using the 
ow circulation algorithm is an unstable process, and that other

processing, such as scene analysis of the gaze point or global analysis of some feature of the 
ow

�eld in addition to the curl will be necessary.

The confounding of parameters is more general than what has been presented here. It has been

observed [35,2] that by reducing the size of the �eld of view, optical 
ows from a horizontal rotation

and that from a leftward FOE can be made to look very similar. We discuss this problem, with

an example, in the next section.

One interesting observation about this algorithm is that the most favorable case for the algo-

rithm in terms of depth structure, is the frontal planar situation. This should not be surprising

because in this algorithm, the quantities being computed are the rotational parameters whose
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Left to right rotation

g

Forward translation

g

Figure 6.2: Shown on top are two situations where the curl values will be identical for speci�c choices

of the parameters. The 
ow �elds, shown in the bottom �gure, are not identical, but are very similar.
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in
uence on the overall optical 
ow does not depend on the depth structure. It is simply that

frontal planarity is the most favorable assumption for this algorithm to get rid of the translational

parameters.

6.3 The FOE search algorithms

The FOE search algorithm is an exact algorithm, in the sense that barring noise, the focus of

expansion will be found. For every candidate point, the circular-component 
ow velocity function

is computed according to Eqn. (5.2). The resulting function is used in a quadratic functional

computation, which is used to determine if the function is a quadratic polynomial of the appropriate

form. The functional is zero at the focus of expansion.

Three methods were suggested: the center-surround kernel method, the quadratic polynomial

projection method, and the subspace projection method. The methods determine, respectively,

whether the circular-component 
ow function has constant Laplacian, is a quadratic polynomial,

or is a quadratic polynomial in the proper three-dimensional subspace. Since the error surface for

the �rst two methods is itself a quadratic function, that surface is either identically zero, or there

will be at most one zero of the error surface, which, in the noise-free case, must lie at the focus of

expansion. Of the three methods suggested, the center-surround kernel method is the simplest for

determining whether the circular-component 
ow function is a quadratic polynomial.

Since U!
(x0;y0)

(Eqn. (5.3)) projects to zero (under any of the methods), errors arise solely due

to noise in the 
ow �eld. The noise is balanced against the error surface E that results from the

projection of Uv
(x0;y0)

(Eqn. (5.4)). If the scene consists solely of a plane, tilted in any direction,

then �(x; y) will be linear. This is because such a planar surface can be written as

n1X + n2Y + n3Z = R;

where R is constant, and this yields

�(x; y) =
1

Z
=

n1x+ n2y + n3
R

: (6:2)

Eqn. (5.4) is reproduced here:

Uv
(x0;y0)

(x; y) = v3�(x; y) � [(y0 � �)x+ (�x0 + �)y + �x0 � �y0] : (6:3)

Substituting the expression for �(x; y) from Eqn. (6.2) into Eqn. (6.3), we get

Uv
(x0;y0)

(x; y) =
v3(n1x+ n2y + n3)

R
[(y0 � �)x+ (�x0 + �)y + �x0 � �y0] : (6:4)

Even without going into the tedium of expanding this, one can easily see that Uv
(x0;y0)

(x; y) is a

quadratic polynomial in x and y. Thus, in this case, an attempt to cancel the quadratic polynomial

U!
(x0;y0)

(x; y) using the center-surround kernel methods or the quadratic polynomial projection
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method will not only eliminate U!
(x0;y0)

(x; y), but Uv
(x0;y0)

(x; y) as well! As a result, the function

E(x; y) will be zero everywhere for these methods. However, the subspace projection method would

still succeed because the form of the quadratic polynomial in Eqn. (6.4) is substantially di�erent

from that of U!
(x0;y0)

(x; y) in Eqn. (5.3). However, if there exist two or more planar surfaces, then

E will generally be nonzero (or non-constant for the third kernel) except at the focus of expansion,

and any of the methods can be used.

If the variation in depth is insigni�cant compared to the average depth to the objects in the

scene, a near-planarity situation arises and in practice, this causes the same problems as the pla-

narity situation discussed above.

Except for these degenerate cases, the center-surround kernel method works well in our ex-

periments. If the convolution kernel used is the radial derivative of the Laplacian of a Gaussian

(Eqn. (5.6)), then E(x0; y0) is the norm of the function

@

@r
�G� � [v3�(x; y) � ((y0 � �)x+ (�x0 + �)y + �x0 � �y0)] ;

which we rewrite as
@

@r
�G� � [v3�(x; y) � h(x; y)] : (6:5)

where h(x; y) represents the linear expression in parantheses. This function is zero when (x0; y0) =

(�; �), since h(x; y) � 0 there. For other locations of (x0; y0), we want this function to be signi�cantly

nonzero.

From elementary calculus, the Laplacian of a product of two functions u(x; y) and v(x; y) is

given by

�(u � v) = u�v + 2rurv + v�u:

Using this formula in Eqn. (6.5), and noting that

@

@r
�G� � f(x; y) = G� �

@

@r
�f(x; y);

we get

G� �
1p

x2 + y2

�
x
@

@x
+ y

@

@y

�
[h(x; y)��+ c �Dw�] ;

where Dw is a directional derivative in a �xed direction (which depends on (x0; y0)). Clearly,

discontinuities and sudden jumps in � will lead to large Laplacian and gradient values which will

contribute to the residual, and thus to E(x0; y0). We thus see that the center-surround kernel

method bene�ts from scenes with depth variations.

The quadratic polynomial and subspace projection methods have the advantage that they can

be used with sparse data, if necessary, by �tting the appropriate quadratic polynomials to the

distributed data.

As noted before, the e�ects due to the translational parameters and the rotational parameters

are not completely independent. For instance, rotation with respect to the vertical axis produces
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Figure 6.3: Two 
ow �elds, shown superimposed, one due to horizontal translation and the other, due

to rotation with respect to the vertical axis. The �eld of view is about 90 degrees. Note that near the

center, the 
ow �elds are very similar

a 
ow �eld that is similar to that produced due to a horizontal translation (leftward FOE). The

two 
ow �elds produced for these two cases are shown superimposed in Fig. (6.3). Notice that if

the �eld of view is small, it is nearly impossible to distinguish between the two 
ow �elds. In this

particular case, the depth structure was chosen to be random, the variation in depth being small

compared to the average depth. This is a nearly-planar case, and was chosen to emphasize the

similarity of the 
ow �elds produced due to the two di�erent kinds of motion. In a real situation,

even if the similarity is not as striking, qualitatively, the 
ow �elds would still remain similar, and,

with su�cient perturbation due to noise or other ill-e�ects of the 
ow �eld computation, can result

in a complete misinterpretation the 
ow �eld.

All the FOE search methods described here attempt to cancel the rotational parameters. So,

when there is a large leftward motion (high �), for small �eld-of-view, the 
ow �eld which will

look like that due to a substantial value of !2, can be interpreted so, thus missing the leftward

translation. A similar argument holds for large �. In essence, for noisy 
ow �elds and a small

�eld-of-view, the methods described here tend to push the FOE as close to the origin as possible.

This is because a portion of the contribution from the translation is erroneously removed from

consideration, having been mistaken as arising due to rotation.

61



6.4 The fast method

The fast method to locate the FOE is an approximate version of the FOE search algorithm. In

this method, the e�ect due to rotation is assumed to be small compared to that due to translation.

Eliminating the convolution/projection step of the previous methods yields this fast method. The

method involves no search because of the known form of the error surface. In this method, the

FOE is considered to be the minimum of the norm E(x0; y0) of the circular-component function

U(x0;y0)(x; y) = Uv
(x0;y0)

(x; y) + U!
(x0;y0)

(x; y):

The norm is computed for six candidate points (x0; y0) and the minimum of E(x0; y0) is found

using a closed form expression.

As before, the confounding of parameters a�ects this method, though it manifests in an indirect

way. Certain combination of the motion parameter values results in incorrect points being identi�ed

as the FOE. Recall that

Uv
(x0;y0)

(x; y) = v3�(x; y) � [(y0 � �)x+ (�x0 + �)y + �x0 � �y0] ;

and

U!
(x0;y0)

(x; y) = !1

�
�
x0
f
y2 +

y0
f
xy + fx � fx0

�

+!2

�
�
y0
f
x2 +

x0
f
xy + fy � fy0

�
+ !3

h
�y2 � x2 + x0x+ y0y

i
:

It is always possible to choose values for the parameters (v1; v2; v3), (!1; !2; !3) and �(x; y) in such

a way that U(x0;y0)(x; y) is reduced to a function of the form

h1(x; y)x0+ h2(x; y)y0

where h1(x; y) and h2(x; y) are functions that don't involve x0 or y0, while choosing an FOE that

is not (0; 0). In this case, E(x0; y0) =k U(x0;y0) k
2 will be zero at (0; 0). One example is a choice of

the following values:

v2 = 0; v3 = 1; !1 = 0; !2 = �v1; !3 = 0; �(x; y) = 1:

In this case,

U(x0;y0)(x; y) = (�y � �xy)x0 + (x� �x2)y0:

The FOE is not (0,0) for any non-zero v1 (and hence a non-zero �), but the minimum of the

U(x0;y0)(x; y) is at (x0 = 0; y0 = 0) which is incorrect. Notice that the interaction is between !2
and v1, as seen in the qualitative descriptions of the previous section. A similar situation will be

observed when !1 and v2 are related in an analogous fashion.

The performance of this algorithm is explored empirically in Chapter 8; it is found to work

satisfactorily for real sequences where translation is predominant.
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6.5 Relationship to Heeger and Jepson method

Heeger and Jepson [24] observe that for �xed (�; �), the optical 
ow equations 5.1 are linear in the

remaining collection of unknowns !, (v3 � �(xi; yi))
N
i=1. We thus have 2N linear equations in N + 3

unknowns, in the case when (�; �) is �xed. As long as N � 4, these are easily solved to give the

least mean square error, and that error is also easily determined. The residual error in the least

mean square solution can be used as a measure of the quality of the estimate (�; �) for the focus of

expansion. In noise-free circumstances, there should be zero residual error if � and � are the correct

values. Equivalently, we see that the data (u(xi; yi); v(xi; yi))
N
i=1 regarded as a vector in 2N -space,

should lie on an N+3-dimensional hyperplane de�ned by the �xed (�; �); the extent that the vector

lies o� this hyperplane measures the noise in the data and the inexactness of the (�; �) estimate.

Heeger and Jepson then simply check a large array of possible (�; �) values, computing the error at

each such position. When the error is minimized, they declare the correct (�; �) to be found.

Our FOE search algorithm is the same algorithm, but derived under the assumption that the

data is given on a continuum of points, rather than at N distinct points. In their exposition of the

algorithm, Heeger and Jepson make use of the projection on to vectors in a space orthogonal to

the range of the transformation that takes an N + 3 vector of depth values and the rotation values

[�1; �2; :::�n; !1; !2; !3]

to the vector of the 2N 
ow components. The vectors in this orthogonal space are of the form [19,32]:

	j(T ) =
NX
i=1

ci(si � T )

The cross product si � T is nothing but the circular vector �eld at the point i, because si is the

vector from the focal point to the ith point and T is the scaled translation vector (recall that the

focal point is at distance f behind the image plane on which the points lie). Thus projecting on

to the vector 	j(T ) is a discrete formulation of the inner product of the optical 
ow �eld and the

circular 
ow �eld described in our FOE search algorithm.

In a certain sense, their assumption, of a discrete collection of data, is more realistic in image

processing applications. However, the projection method is then dependent on the locations of the

distinct points, and would have to be computed for each new collection of points. The FOE search

algorithm presented here makes clearer the analytical structure of the problem, and provides a

method that is independent of the sampling locations, assuming a su�cient density of values are

obtained. When there are only a few discrete sampling locations, the FOE search algorithm may

still be used, in a modi�ed form, and will essentially be equivalent to the Heeger and Jepson

algorithm. Speci�cally, the circular-component functions may still be computed, but they will be

de�ned only at the collection of sample points. The test to determine the focus of expansion then

checks whether the discrete collection of data located at the sample points corresponds to point

evaluates of a quadratic polynomial.
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In the next two chapters, we will see the results of applying our algorithms to synthetic and

real data.
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Chapter 7

Experimental Results: Synthetic

Data

7.1 Introduction

In the previous chapters, several methods to compute the motion parameters of a moving sensor

were presented and analyzed. In this chapter, we present the implementation details of the algo-

rithms and show experimental results from synthetic data. In the next chapter, we present results

from actual image sequences.

7.2 Rotation estimation

Recall that the rotation estimation method involves the computation of curl values at several

locations on the image plane. Three kinds of experiments are possible. The �rst is to determine

circulation values, which are equivalent to the curl values of the 
ow �eld at the centroids of the

circulation contour areas. The second way is to compute the curl values directly by taking discrete

di�erences; this is possible if the 
ow �eld is synthetic or not noisy. Alternatively, one can compute

the curl values analytically if the structure of the environment is known. Here we shall present

experiments of all these three types.

The optical 
ow �eld can be generated synthetically using the equations in (3.2), providing

the depth data (Z(x; y)) and the motion parameters (T and !) are known. If depth information

is available analytically or as the output of a sensor, we can synthesize 
ow �elds by choosing

appropriate values for the motion parameters. We begin by taking an object of known shape to be

in the environment and compute the curl values analytically.

Consider the image of an ellipsoid de�ned by

�
X �X0

a

�2

+

�
Y � Y0

b

�2

+

�
Z � Z0

c

�2

= 1: (7:1)
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We assume that the ellipsoid center is 150 focal units away (along the Z-axis), and the semiradii are

50, 30 and 70 focal units respectively. We assume the ellipsoid is in front of a planar background.

Choosing an observer moving with a velocity of (0:3; 0; 0:2) focal units per second, and rotating

with an angular velocity of (0:2; 0:1; 0:5) radians per second, we can analytically compute the

curl of the 
ow �eld. This is possible since we can compute @�
@x

and @�
@y
, given the equation of the

ellipsoid in Eqn. (7.1). Recalling that � = 1=Z, x = fX=Z and y = fY=Z, multiplying both sides

of Eqn. (7.1) by f� and taking derivatives with respect to x, we get

@�

@x
(x; y) =

1

d(x; y)

�
x� f�X0

f2a2

�
;

where d(x; y) is given by

d(x; y) =

�
�+

X0(x� f�X0)

fa2
+
Y0(y � f�Y0)

fb2
+
Z0(1� �Z0)

c2

�
:

Note that the inverse depth is a function of x and y. For simplicity, we have written � instead of

�(x; y). Similarly, taking derivatives with respect to y, we get

@�

@y
(x; y) =

1

d(x; y)

�
y � f�X0

f2b2

�
:

We can compute the curl values for any (x; y) which corresponds to the projection of a surface

point on the ellipsoid, using the computed gradient of � in the equation

r�V (x; y) =
�
@�

@x
� (v3y � fv2)� @�

@y
� (v3x� fv1)

�
� 1

f
[x!1 + y!2 + 2f!3] :

Knowing the geometry of the scene, for a given point (x; y), it is straightforward to determine if

the point is on the image of the ellipsoid or the background plane. Recall that for all the other

points (corresponding to a planar background), the translational part of the curl vanishes and only

the linear, rotational part remains.

The curl will have values as graphed in Fig. (7.1). The true linear surface is seen in the

background region (which is a frontal planar surface and hence gives the exact results); the distortion

in the other regions is caused by the translational velocity in conjunction with the surface tilts.

If there is an error in the determination of the curl of the vector �eld, then the resulting surface

shown in Fig. (7.1) will be perturbed. Estimates of the linear surface will most likely be based on

averaged values over regions, and not on local gradients of the displayed surface; the least squares

error estimate of the linear surface �nds the best-�tting plane. Clearly, the best-�t linear surface to

the surface shown in Fig. (7.1) will give an accurate estimate of the parameters of the unperturbed

linear surface. For the surface shown, the estimated rotation parameters are accurate to the fourth

decimal place. This example shows that accurate results can be obtained using the method, if there

is a good distribution of the surface normals about the normal to the frontal planar surface.
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Figure 7.1: The curl of the 
ow �eld due to an imaged ellipsoid, with a sensor velocity of T = (0:3; 0; 2)
and rotational velocity ! = (0:2; 0:1; 0:5).

We next apply the algorithm to a synthetically-generated vector 
ow �eld using a scene obtained

from actual depth data. The depth data was made available by researchers at Michigan State

University, obtained by scanning several objects using a \White Scanner." Fig. (7.2) shows a gray-

scale interpretation of the raw range data of the scene. Depth data is not available throughout the

image. Black pixels correspond to points of unknown depth.

The scene contains a sphere and a cylinder; the sphere, for example, has radius of about 4 focal

units and its center is located 50 focal units from the sensor. The scene, it should be noted, is

a \foveal region," occupying an image size of 0.15 by 0.25 focal units. A simulated 
ow �eld is

computed using the depth values, as well as the projected image coordinate values, in conjunction

with a camera motion of T = (5; 2; 20) focal units per second, and ! = (0:2; 0:1; 0:5) radians per

second. An indication of the 
ow �eld is shown in Fig. (7.3).

An approximation to the curl of the 
ow �eld is computed using the 
ow �eld data (u and v)

at �ve points in the neighborhood of each discrete sample, using the following formula:

curl(i; j) =
v(i; j� 1)� v(i; j+ 1)

�x
� u(i� 1; j)� u(i� 1; j)

�y
;

where �x and �y are the sample distances in the x and y directions. The resulting curl of the 
ow

�eld is displayed in Fig. (7.4). Data is plotted only at (i; j) positions where meaningful depth data

is derived from Fig. (7.2).

Again, if there were noise in the computation of the 
ow �eld, this surface would be perturbed.
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Figure 7.2: A depth image, where lighter values represent points with smaller depth. The scene consists
of a cylinder and a sphere sitting in front of a 
at plane. Only depth values are depicted, (the sampling
rate with respect to x and y vary somewhat throughout the image).

Figure 7.3: The 
ow �eld computed using depth values of Fig. (7.2), computed analytically using a
camera motion of T = (5; 2; 20) focal units per second, and ! = (0:2; 0:1; 0:5) radians per second.
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Figure 7.4: The approximate curl values of the vector 
ow �eld that result for the scene whose depth
values are displayed in Fig. (7.2) imaged by a sensor whose translational velocity is T = (5; 2; 20), and
rotational velocity is ! = (0:2; 0:1; 0:5). Data is only shown in regions where depth values are de�ned.
Partial derivatives of the 
ow components are computed using a local regression, and the location of
the curl values are moved to approximately the correct image location. The resulting best-�t planar
surface predicts rotational parameters of (0:2126; 0:1023; 0:4982).
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View down the corridor

Back wall

Sensor

Figure 7.5: The corridor, and the view from the sensor

However, circulation values will give averages over regions, and thus will dampen the noise, pro-

viding it is uniformly distributed. It can be seen that the curl is approximately linear, as expected.

The best-�t plane (without using any bene�t of discarding outliers) is computed to the approxi-

mated curl data, over the regions where curl data has been computed, and is used to estimate the

rotational parameters. The procedure yields the estimate ! � (0:2126; 0:1023; 0:4982), which quite

accurately re
ects the true rotational velocity.

Next, we consider a typical indoor scene. This is a synthetic image of a corridor, shown in

Fig. (7.5).

The sensor moves with �xed velocity along the central line of the corridor, with a slight sideways

drift. The view down the corridor is shown in Fig. (7.5). The translational velocity satis�es

v1 = 1; v2 = 0, and v3 = 5 focal units per second, and ! = (0:2; 0:1; 0:5) radians per second.

The actual curl of the vector 
ow �eld is shown in Fig. (7.6). The curl values were computed

analytically, using the piecewise planar depth functions. On the back wall of the corridor, the

curl is precisely linear and is entirely due to the rotational parameters; on the sides, there is a

deviation due to the translational parameters and the tilt of the surfaces. In some sense, a corridor

is a worst-case scenario for the algorithm, due to the abundance of surface area with small R (see

Eqn. (4.5)). However, clearly, the use of large-scale averages, or the best �t linear surface, is likely

to lead to the correct parametric estimates. In this case, the regression �t of a surface to the

observed data leads to the estimate ! = (0:2; 0:1379; 0:5) radians per second. The inaccuracy in

the estimation of !2 is an illustration of the confounding parameters (in this case, between v1 and

!2) discussed in Section (6.2). Noise in sensing the curl values will perturb the surface shown in

Fig. (7.6). However, if circulation values are calculated about circuits, then the surface will be

locally averaged, accordingly. The accuracy in determining the rotational parameters will depend

on the accuracy with which the parameters of the plane de�ned by the surface in the central region

(where the back face of the corridor is imaged) are computed.

Next, we proceed to estimate the rotation values using circulation values, as opposed to using

local curl values. A 
ow �eld of size 512� 512 is generated for the corridor scene, for a translation

of T = (1; 0; 5) focal units per second and a rotation of ! = (0:2; 0:1; 0:5) radians per second. It
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Figure 7.6: The curl of the 
ow �eld for the corridor scene

should be noted that high sampling rates favor a good approximation to the contour integrals by

summation. We use square contours, resulting in a simple computation. The contour integral is

simply the sum of the vertical components (with appropriate sign) along the two vertical sides of

the square contour and the sum of the horizontal components along the two horizontal sides of the

square contour. In the discrete implementation, one needs to multiply the appropriate component

value at a pixel by the interpixel distance along the direction of integration, the approximation

being that the component value is constant between pixels, akin to the rectangle rule for integration.

About 960 overlapping square contours of side 200 were used for the corridor scene; the contours

were chosen randomly within the 512�512 scene. The computed rotation, (0:2007; 0:07263; 0:5023),
is quite accurate. Notice again the e�ect of the horizontal translation on the estimate of !2. The

circulation values have been plotted in Fig. (7.7). It can be seen that the surface approximates a

linear surface.

The performance of the algorithm in the presence of synthetic noise is presented in Section (7.4).

Results of applying the 
ow circulation algorithm to real data are presented in chapter 8. We will

next consider the FOE search algorithms applied to synthetic data.

7.3 Translation estimation

In the previous chapter, we presented four methods to compute the translational parameters

of a moving sensor. All the methods involve computing the circular component function whose

71



Figure 7.7: The circulation values computed from a synthetic 
ow �eld for the corridor scene. It is
approximately a linear surface.

de�nition is repeated here:

U(x0;y0) = V (x; y) � (�y + y0; x� x0): (7:2)

Note that (x0; y0) is a candidate for the FOE. The steps are as follows, assuming that the optical


ow �eld has been computed:

1. For each choice of (x0; y0),

� Compute the circular component function U(x0;y0)(x; y).

� Cancel the rotational component by convolution or projection, if the method requires it.

� Compute the error value to be the norm of the residual function.

2. Compute the FOE as the location of the minimum of the error surface.

For the center-surround kernel method, the quadratic polynomial projection method, and the

NCC method, we need to choose only six di�erent values for (x0; y0), to completely determine the

minimum of the error surface. This is due to the quadratic nature of the error surface for these

methods. For the Subspace Projection method, we need to do a search on the image domain for

the FOE. In this chapter, we will compute the error surface for each of the methods. Thus, the

emphasis will be on displaying the error surface and pointing out that the FOE is indeed located at

the minimum of the error surface. In the next chapter, we will concentrate on obtaining the FOE

by means of procedures that exploit the known shape of the error surface.
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Certain implementation details are relevant here. For the experiments, the 
ow �eld is computed

on a discrete grid. We choose the focal length to be unity, and the image to be of size 2 by 2 focal

units. This corresponds to a �eld of view of ninety degrees. This is a rather wide �eld of view.

To demonstrate the methods, we will make use of the synthetic 
ow �eld generated for the

corridor scene in Fig. (7.5).

7.3.1 Center-surround kernel method

Recall that the Center-surround kernel method is based on the observation that derivatives of

the Laplacian of the circular component function are zero at the correct FOE. This is because

at the FOE, there is no contribution to the circular component function from the translational

part of the 
ow �eld, and the contribution from the rotational part is a quadratic polynomial

that will be eliminated by any derivative of a Laplacian. The use of a convolution kernel was

suggested earlier (see Section (5.3.1)). For use with discrete images, we use the di�erence (along

the horizontal direction) of discrete Laplacians as the kernel K, which is represented up to a

constant of proportionality by the matrix:

2
64
1 3 �3 �1
4 �24 24 �4
1 3 �3 �1

3
75 : (7:3)

If this kernel is applied to point evaluates on a discrete grid of the circular-component function

U(x0;y0)(x; y) with (x0; y0) at the focus of expansion, then, despite the fact that the discrete Lapla-

cian is an approximation to the continuous Laplacian, the result should be a zero function. For

every candidate (x0; y0), we compute U(x0;y0)(i; j) and then convolve it with the �lter K, yielding

�(x0;y0). We know that for the correct FOE, this function �(x0;y0) is identically zero. To test this,

we compute

E(x0; y0) =
X
i

X
j

(�(x0;y0)(i; j))
2:

We can generate the 
ow �eld for the case where the camera is moving along the corridor

(see Fig. (7.5)) with a translational velocity T = (�4;�2; 16) and with rotational parameters

! = (0:1; 0:2; 0:035). The 
ow �eld is shown in Fig. (7.8). Each grid point is treated as the

candidate (x0; y0) and the error function is computed. A plot of the function E(x0; y0) is shown

in Fig. (7.9). The minimum of the function, which is precisely zero, occurs at the true focus of

expansion (�0:25;�0:125). As can be seen, the error function is nonzero elsewhere, and has a

quadratic behavior.

As a second example, we use the depth scene of Fig. (7.2) to compute a vector 
ow �eld, using

translational and rotational parameters of (5; 2; 20) and (0:2; 0:1; 0:5) respectively. Then we

apply the same center-surround kernel method to obtain the �(x0;y0) functions. The error function

is presented as a contour plot together with a �eld denoting the gradient of E, in order to suggest
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Figure 7.8: The 
ow �eld for the corridor scene

Figure 7.9: The error surface for the corridor scene
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Figure 7.10: The contour and gradient of the error function E(x0; y0) using the center-surround kernel
method, computed for the 
ow �eld induced when the depth image of Fig. (7.2) is imaged by a sensor
with translational velocity of (5, 2, 20) and rotational velocity of (0.2, 0.1, 0.5). The function has the
minimum at the focus of expansion at (0.25, 0.1).

the possibility of a gradient descent search for the focus of expansion. In this case, we assume that

there is a �xed-depth background behind the objects in Fig. (7.2), so that the circular-component

functions can be de�ned over the entire image. Once again, the error function correctly zeros out

at the focus of expansion, at (0.25, 0.1).

For the corridor scene, we used the Laplacian kernel (see Eqn. (5.8) convolution followed by

a variance computation. The variance is simply the mean square deviation from the mean. The

discrete Laplacian kernel used is: 2
64
1 4 1

4 �20 4

1 4 1

3
75 : (7:4)

The results are shown in the contour plot in Fig. (7.11). The FOE is located at the correct position.

7.3.2 Quadratic polynomial projection method

The center-surround kernel method will fail to work under certain pathological situations; these

are situations where the convolution eliminates not only the contribution from rotation, but also

that from translation. This happens when the whole �eld of view is occupied by a planar surface

or, in general, surfaces with depth functions that are harmonic. However, since the method works

adequately for the examples given in the previous section, we would expect the other two methods
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Figure 7.11: The contour and gradient of the error function E(x0; y0) using the center-surround kernel
method, by using a Laplacian kernel followed by a variance computation, for the 
ow �eld of the corridor
scene imaged by a sensor with translational velocity of (5, 2, 20) and rotational velocity of (0.2, 0.1, 0.5).
The function has the minimum at the focus of expansion at (0.25, 0.1).

also to work. The main issue is whether the accuracy of the localization of the focus of expansion

su�ers due to the enhanced speci�city of the determination of the quadratic polynomial nature of

the circular component functions.

For the quadratic polynomial projection method, we use orthogonal polynomials in two variables

up to degree two on a discrete domain of �nite size. Rather than using a discrete approximation

to the continuous theory presented in Section (5.3.3), we use basis functions that are de�ned and

are orthonormal on a discrete grid of size 2n + 1 by 2n + 1, with interpixel sampling distance d.

We assume that the grid is indexed by (i; j), where �n � i; j � n. The discrete basis functions are

derived by choosing a known set of functions that span the space (in this case, the functions 1, x,

y, xy, x2 and y2), and then orthogonalizing them using a standard method like the Gram-Schmidt

process [64]. Note that in this �nite discrete domain, x = j � d, and y = i � d, where �n � i; j � n.

The resulting basis functions are

�1(i; j) =
1

d(2n+ 1)
; �2(i; j) =

xp
D
; �3(i; j) =

yp
D
;

�4(i; j) =
x � y
D

; �5(i; j) =
x2 � Cp

K
; �6(i; j) =

y2 � Cp
K

;
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where D, C, and K are constants that depend only on n and d:

D =
d2n(n+ 1)(2n+ 1)2

3
; C =

n(n+ 1)

3
;

K = (2n+ 1) � d2
"
2d2

nX
i=1

i4 + (2n+ 1)C2 � 2Cn(n+ 1)(2n+ 1)

3

#
:

The constants have been chosen such that the �i functions have unit norm and are orthogonal with

respect to the inner product

< f; g >=
nX

i=�n

nX
j=�n

f(i; j)g(i; j): (7:5)

Note that we use a discrete (pointwise) inner product as opposed to a Hermite inner product. This

is possible because we are dealing with a �nite discrete domain of small size. Large or unbounded

domains require the Hermite inner product because the inner product in Eqn. (7.5) could be

unstable or unbounded over such domains. We compute

U(x0;y0)(i; j)�
6X

k=1

< U(x0;y0); �k > �k(i; j):

The squared norm of this function, based on the inner product in Eqn. (7.5), is the error measure

E(x0; y0).

We compute the error function E(x0; y0) for the 
ow �eld created when the camera moves along

the corridor (see Fig. (7.5)) with a translational velocity of (5; 2; 20) and with rotational parameters

(0:1; 0:025;�0:05). The function E(x0; y0) is shown in Fig. (7.12).

We correctly determine the focus of expansion as the zero of the error function shown in

Fig. (7.12).

7.3.3 Subspace projection method

The subspace projection method involves projecting the circular-component function on to the

space spanned by three quadratic polynomials �1(x; y), �2(x; y) and �3(x; y) of known form:

�1(x; y) = �x0
f
y2 +

y0
f
xy + fx� fx0;

�2(x; y) = �y0
f
x2 +

x0
f
xy + fy � fy0;

�3(x; y) = �y2 � x2 + x0x+ y0y:

The coe�cients of the projection are a1; a2 and a3. For the discrete case, the basis functions

�k, for k = 1; 2; 3 are simply point evaluates (on the discrete grid) of the functions de�ned by the

above equations. We compute the inner product matrix Q explicitly instead of using the analytical
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Figure 7.12: Contour and gradient plot of the error function E(x0; y0) obtained using the quadratic
polynomial projection method for the image 
ow �eld induced by a translational velocity of (5; 2; 20)
and rotational velocity of (0:1; 0:025;�0:05) for the corridor scene.

expressions given in Section. (5.3.4), again using the discrete inner product in Eqn. (7.5). Recall

that the entry qi;j is the inner product < �i; �j >. All the entries of this symmetric matrix Q can

be computed by multiplying pairwise, point evaluates of the functions �k and summing up over the

discrete grid. Here, we are using the inner product de�nition given in Eqn. (7.5). We also compute

the inner products < U(x0;y0); �k >. We solve for a1; a2 and a3 by solving the \normal equations"

(Eqn. (5.16)), repeated here:

Q

2
64
a1
a2
a3

3
75 =

2
64
< U(x0;y0); �1 >

< U(x0;y0); �2 >

< U(x0;y0); �3 >

3
75 : (7:6)

Once we have a1, a2 and a3, we can compute the error function

E(x0; y0) = kU(x0;y0) �
3X

i=1

ai�ik2:

Thus E(x0; y0) gives the norm of the residual after U(x0;y0) is di�erenced with its projection on to

the subspace spanned by the basis functions (which are quadratic polynomials) de�ned at (x0; y0).

Again, the norm is based on the inner product de�ned in Eqn. (7.5). We determine the correct

focus of expansion for the case of a camera whose motion is the same as described in Fig. (7.12).

A contour plot of E(x0; y0) is shown in Fig. (7.13). Again, the FOE is correctly located.
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Figure 7.13: Contour and gradient plot of the error function obtained using the subspace projection
method, using the scene and motion described in Fig. (7.12).

7.4 Performance with noisy data

In this section, we present results of applying the algorithms to synthetic 
ow �eld data corrupted

by noise. For this purpose, we adopt two di�erent noise models. We present the noise models �rst,

and then the experimental results.

7.4.1 Noise models

Two noise models are considered. The �rst one is additive uniform noise. The two (horizontal and

vertical) components of each 
ow vector are each perturbed by the addition of a uniform random

noise. The magnitude of this added noise is modulated by the average value of the corresponding

vector component (averaged over the entire 
ow �eld). The overall procedure is as follows:

1. Synthesize the 
ow �eld data for a suitable scene (we do it for two di�erent kinds of scenes:

random depth data and the corridor scene). Let the horizontal and vertical components be

hi;j and vi;j respectively, at the image location (i; j).

2. Compute the averages ha and va by summing over the entire 
ow �eld (of size n � n):

ha =
X
i;j

hi;j ; va =
X
i;j

vi;j :
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3. For each image location (i; j), perturb each component by a random value from a uniform

distribution, modulated by (a fraction of) the average values:

h0i;j = hi;j + f � ha � rhi;j; v0i;j = vi;j + f � va � rvi;j ;

where f is a fraction (a parameter in the experiments), and rh and rv are random values

distributed uniformly in the interval [�0:5; 0:5].

By varying the fraction f , the 
ow �eld is perturbed to varying extents and the algorithms

are tested on these 
ow �elds. For each value of f , each experiment is repeated several times (the

exact number is reported along with the results) and the error is averaged over the several runs.

The additive uniform noise model has been used before [24]. So, this method serves to compare

the results with previous ones.

The second model attempts to account for the way optical 
ow computations work. A majority

of the algorithms to compute optical 
ow use some form of regularization (smoothing), to overcome

the aperture problem. Because of this smoothing, the resulting optical 
ow, even though noisy,

tends to have noise components that are not independent identically distributed (i.i.d.), but are

correlated. To mimic this non-i.i.d. behavior, we add two di�erent noise components to the

synthetic 
ow �eld. First, we add Gaussian distributed random values to the magnitude of the


ow �eld vectors. Observation of error in real 
ow �elds suggests that Gaussian distribution is a

reasonable approximation [7,14]. Next, we add \smoothed" random values to the phase angle of the


ow �eld vectors, resulting in a systematic distortion of the 
ow �eld. Thus, the noise modulation

consists of two steps:

1. Let Mi;j and Pi;j be the magnitude and the phase angle of the (synthetic) optical 
ow vector

at image location (i; j). Add Gaussian random noise to the magnitude:

M 0

i;j =Mi;j � (1 + � � ri;j);

where ri;j is Gaussian randomly distributed with zero mean and unit variance (N(0; 1)), and

� is a fraction determining the extent of the noise modulation. Note that the additive noise

is proportional to the magnitude of individual 
ow vectors (as opposed to the average value

in the previous noise model).

2. Modulate the phase angles by a smoothed noise �eld:

P 0 = P + � � (r � s);

where r is randomly distributed noise with distribution N(0; 1), � is a fraction determining

the extent of the noise modulation, s is a smoothing �lter, and \�" indicates the convolution
operation.
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We generate synthetic 
ow �elds for both the corridor scene and random depth data. The

corridor scene is as described in Section 7.2. The random depth data is similar to the one used

in [24]; the depth values are randomly distributed uniformly between 2 units and 4 units, the unit

of measure being the focal length. The 
ow is computed over a grid of size 21�21. We next present

the results of applying the algorithms to the 
ow �elds with noise.

7.4.2 Experimental results with noisy data

We begin with experiments on the 
ow computed using random depth data. Depth values be-

tween 2 and 4 units were generated by sampling a uniform distribution. Recall (see Section 6.3)

that depth variations favor the FOE search algorithms. We synthesized 
ow �elds using a trans-

lation of v1 = 0:6, v2 = 0, and v3 = 0:8 units, and zero rotational velocity. The results are shown

in Fig. (7.14). The plots show the variation of the angular error (angle between the direction of

actual translation and the direction computed) with respect to the extent of noise, measured by

the fraction that modulates the noise amplitude.

For the uniform noise model, we note that the error is consistently the highest for the center-

surround kernel method, less for the quadratic polynomial projection method and the least for the

NCC algorithm. However, even for the value of f = 0:2, all the methods have errors below 2.5

degrees; this is quite accurate. For the smoothed Gaussian noise model, the worst performance is by

far the quadratic polynomial projection method, followed by the center-surround kernel method and

the NCC algorithm. Systematic distortions seem to be unfavorable for the quadratic polynomial

projection method. Also, all the methods have larger errors for this noise. Note that in both noise

situations, the NCC algorithm performs very well; it is to be expected, because there is no rotation,

and this is the best situation for the NCC algorithm.

In the second experiment, the parameters are the same as in the �rst, except that the rotation

is [0:0081;�0:0116;�0:0168] radians/sec (a typical angular velocity taken from an actual motion

sequence data). The results are shown in Fig. (7.15). As expected, the NCC algorithm has a

high error, even in the noise-free case (corresponding to f = 0 in the plots), but hardly degrades

with noise. The behavior of the other two methods is similar to that in the �rst experiment. In

both experiments, we see that the degradation with noise (for the noise models considered here) is

graceful. The error values are very low for the additive noise case, as in the zero angular velocity

situation. The errors are higher for the smoothed Gaussian noise, as before.

Next, we consider the corridor scene (Section 7.2). For the �rst experiment, we use a translation

of [5; 2; 20] units and zero angular velocity. The �eld of view is again about 30 degrees. The

error plots are in Fig. (7.16). The NCC algorithm has the best performance, and the quadratic

polynomial projection method has a performance comparable to the random depth data. However,

the center-surround kernel method has a much higher error rate, possibly due to the lack of large

depth variations.

Finally, we repeat the experiment for the case where the rotation is [0:0081� 0:0116� 0:0168].
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Figure 7.14: Error plots for the 
ow �elds synthesized using random depth data, with translation
(0:6; 0:0; 0:8) and zero angular velocity. The depth points were randomly distributed (uniformly) between
2 and 4 units, the unit being the focal length. The �eld of view is about 30 degrees. The plot on the
top corresponds to the additive uniform noise model and the one on the bottom corresponds to the
smoothed Gaussian noise model. The dotted line corresponds to the center-surround kernel method, the
solid line for the quadratic polynomial projection method, and the dashed line for the NCC algorithm.
Each data point is the result of averaging the error over 50 runs.
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Figure 7.15: Error plots for the 
ow �elds synthesized using random depth data, with translation
(0:6; 0:0; 0:8), and an angular velocity (0:0081;�0:0116;�0:0168) radians/sec. The depth points were
randomly distributed (uniformly) between 2 and 4 units, the unit being the focal length. The �eld of
view is about 30 degrees. The plot on the top corresponds to the additive uniform noise model and the
one on the bottom corresponds to the smoothed Gaussian noise model. The dotted line corresponds to
the center-surround kernel method, the solid line for the quadratic polynomial projection method, and
the dashed line for the NCC algorithm. Each data point is the result of averaging the error over 100
runs for the top plot and over 50 runs for the bottom plot.
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Figure 7.16: Error plots for the 
ow �elds synthesized for the corridor scene, with a translation of
(5; 2; 20) and zero angular velocity. The �eld of view is about 30 degrees. The plot on the top
corresponds to the additive uniform noise model and the one on the bottom corresponds to the smoothed
Gaussian noise model. The dotted line corresponds to the center-surround kernel method, the solid line
for the quadratic polynomial projection method, and the dashed line for the NCC algorithm. Each data
point is the result of averaging the error over 100 runs.
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The results are shown in Fig. (7.17). As before, the NCC algorithm has an error even for the

noise-free case because of the presence of rotation, but there is hardly any degradation with noise.

The center-surround kernel and the quadratic polynomial projection methods have errors increasing

with noise, but exhibiting a graceful degradation.

We now present results from the 
ow circulation algorithm obtained using noisy synthetic 
ow

�elds. Unlike the translational parameters, the rotational parameters can be estimated without

a scale factor; i.e., we can compute all the three rotational parameters. Recall that the 3-vector

! representing the rotational parameters is equivalent to an axis-magnitude representation; i.e., a

unit vector A! in the direction of ! is the axis and the magnitude M! of ! is the magnitude of

the rotational velocity. We represent error in the computed parameters by graphing the error in

the estimate of the direction and the percentage error in the magnitude. In all the cases, the 
ow

is computed over a grid of size 51� 51, and square contours of side 20 pixels were used in the 
ow

circulation algorithm.

First, we consider the additive uniform noise model. This is a zero translation case (a favorable

case for the 
ow circulation algorithm). The rotation is (0:2; 0:1; 0:5). The results are shown in

Fig. (7.18). The estimated parameters are quite accurate for the no-noise situation. The only error

is in the magnitude, due to the discrete approximation to the contour integral. The error is found

to increase gradually with the increase in added noise. In this case, the angular error is within 6

degrees for up to 20% perturbation, and the error in magnitude is within 15% in the worst case.

The zero translation case with the noise added using the smoothed Gaussian random noise

model is shown in Fig. (7.19). The errors in this case are much higher, indicating that systematic

noise is unfavorable to the 
ow circulation algorithm. However, the error increase with increasing

noise is still gradual, asserting graceful degradation of performance.

The errors are expected to increase when the translation is non-zero. Indeed, this can be seen in

the plots in Fig. (7.20), for the additive uniform noise model. Here the translation is (0:5; 0:0; 2:0).

The rotation remains the same at (0:2; 0:1; 0:5). Notice the nonzero error (and higher compared to

the non-zero translation case) of both the magnitude and the direction for the no-noise situation.

The maximum error in direction is within 8 degrees of angle and the maximum error in magnitude

is 16%. The error, however, does not climb signi�cantly with noise, indicating good tolerance of

the algorithm to this kind of additive uniform noise.

Fig. (7.21) contains the results for the same motion parameters with the noise from the smoothed

Gaussian random noise model. As before, the systematic noise model results in higher error, but

the performance still degrades gracefully with noise.

This presentation of the performance of the algorithms under no-noise and noisy situtations

indicates that with 
ow �elds of reasonable accuracy (less than 20% noise), one can expect to get

quite accurate results.
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Figure 7.17: Error plots for the 
ow �elds synthesized for the corridor scene, with a translation of
(5; 2; 20) and an angular velocity of (0:0081;�0:0116;�0:0168) radians/sec. The �eld of view is about
30 degrees. The plot on the top corresponds to the additive uniform noise model and the one on
the bottom corresponds to the smoothed Gaussian noise model. The dotted line corresponds to the
center-surround kernel method, the solid line for the quadratic polynomial projection method, and the
dashed line for the NCC algorithm. Each data point is the result of averaging the error over 100 runs.
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Figure 7.18: Error plots for the 
ow �elds synthesized for the corridor scene, with no translational
velocity and an angular velocity of (0:2; 0:1; 0:5) radians/sec. The �eld of view is about 30 degrees.
The noise is additive uniform. Each data point is the result of averaging the error over 10 runs. The
numbers on the abscissa indicate the fraction of the average velocity, used to modulate the random
noise. The top plot shows the error in the estimation of the axis of rotation, and the bottom plot shows
the percentage error in the estimation of the rotational velocity magnitude.
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Figure 7.19: Error plots for the 
ow �elds synthesized for the corridor scene, with no translational
velocity and an angular velocity of (0:2; 0:1; 0:5) radians/sec. The �eld of view is about 30 degrees.
The noise is smoothed Gaussian. Each data point is the result of averaging the error over 10 runs.
The numbers on the abscissa indicate the fraction of the velocity used to modulate the random noise.
The top plot shows the error in the estimation of the axis of rotation, and the bottom plot shows the
percentage error in the estimation of the rotational velocity magnitude.
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Figure 7.20: Error plots for the 
ow �elds synthesized for the corridor scene, with translation
(0:5; 0:0; 2:0) and an angular velocity of (0:2; 0:1; 0:5) radians/sec. The �eld of view is about
30 degrees. The noise is additive uniform. Each data point is the result of averaging the error over 10
runs. The numbers on the abscissa indicate the fraction of the average velocity, used to modulate the
random noise. The top plot shows the error in the estimation of the axis of rotation, and the bottom
plot shows the percentage error in the estimation of the rotational velocity magnitude.
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Figure 7.21: Error plots for the 
ow �elds synthesized for the corridor scene, with translation
(0:5; 0:0; 2:0) and an angular velocity of (0:2; 0:1; 0:5) radians/sec. The �eld of view is about
30 degrees. The noise is smoothed Gaussian. Each data point is the result of averaging the error over
10 runs. The numbers on the abscissa indicate the fraction of the velocity used to modulate the random
noise. The top plot shows the error in the estimation of the axis of rotation, and the bottom plot shows
the percentage error in the estimation of the rotational velocity magnitude.
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Chapter 8

Experimental Results: Real Data

8.1 Introduction

In this chapter, we present the results from applying the algorithms to real image sequences.

Two di�erent methods were used to compute the 
ow �elds. One is the multiscale matching

approach of Anandan [5], and the other is a multiscale MRF procedure [25]. Brief descriptions of

the multiscale matching method of Anandan and the multiscale MRF procedure were presented in

Section 2.4 of Chapter 2.

In most of the experiments, we compare the computed motion parameters to the parameters

available from the calibration information. The structure computation is possible only for relatively

noise-free 
ow �elds because relative depth is local information encoded in the optical 
ow vectors

in a pointwise fashion. So, in some of the experiments, we compute the relative depth (structure)

information and display the computed depth data much like a range map.

The implementation details are identical to those described in the previous chapter about ex-

periments on synthetic data, unless otherwise noted.

8.2 The Straight 
ight sequence

This sequence was shot from a helicopter 
ying in a straight line, with very little rotational

velocity. A sample picture from the sequence is shown in Fig. 8.1. The 
ow �eld was computed

using the multiscale matching method. The original images are of the size 512 � 512 pixels. The


ow �elds were computed at a lower resolution (128� 128) to save computation time and space.

The results of the Center-surround kernel method (with the horizontal di�erential of a Lapla-

cian, as in Eqn. (5.7)) are shown in Fig. (8.2). The FOEs computed using the variance of the

output of the convolution with a Laplacian kernel (Eqn. (5.8)) are shown in Fig. (8.3). The results

of the quadratic polynomial projection method, computed using the same 
ow �elds, are shown

in Fig. (8.4). The results of using the subspace projection method and the fast (approximate)

method are in Fig. (8.5) and Fig. (8.6) respectively. Angular measurements of errors are shown in
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Figure 8.1: Sample frame from the Straight 
ight sequence.
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Figure 8.2: The computed and actual FOEs for the Straight Flight sequence, using the convolution
method (using the horizontal derivative of the Laplacian). The cross denotes the position of the actual
FOE, and the square shows the position of the computed FOE. The instantaneous FOE positions for
the di�erent frames are shown in this �gure.
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Figure 8.3: The computed and actual FOEs for the Straight Flight sequence, using the variance method
(with the Laplacian kernel convolution).
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Figure 8.4: The computed and actual FOEs for the Straight Flight sequence, using the quadratic
polynomial projection method. As in Fig. 8.2, the cross denotes the position of the actual FOE, and
the square shows the position of the computed FOE. The instantaneous FOE positions for the di�erent
frames are shown in this �gure.
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Figure 8.5: The computed and actual FOEs for the Straight Flight sequence, using the subspace
projection method. As in Fig. 8.2, the cross denotes the position of the actual FOE, and the square
shows the position of the computed FOE. The instantaneous FOE positions for the di�erent frames are
shown in this �gure.
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Figure 8.6: The computed and actual FOEs for the Straight Flight sequence, using the fast method
(the NCC algorithm).
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Figure 8.7: The error plot for the Center-surround kernel method.

Figs. (8.7), (8.8), (8.9), (8.10) and (8.11). The error is measured in degrees of angle between the

direction of the actual FOE and the direction of the computed FOE. The results vary depending

on the accuracy of the method. The subspace projection method is ideally the best because it

uses the projection on to the precise three-dimensional subspace of quadratic polynomials. The

quadratic polynomial projection method is less precise because it does not make use the speci�c

form of the quadratic polynomials. The center-surround kernel methods are even less precise. The

performance of the methods are consistent with these observations, as seen from the results shown

in Figs. (8.7), (8.8), (8.9), (8.10) and (8.11). Good results are obtained by the fast method (the

NCC algorithm) because the motion is predominantly translational.

8.3 The Turning Flight sequence

This sequence was also shot from a helicopter that has a predominantly forward motion, in

addition to a signi�cant rotation about the vertical axis. This proved to be a less favorable case

for the algorithms presented here for estimating the translational motion. Indeed, errors averaging

to about 9.5 degrees are obtained using the center-surround method, and to about 8 degrees for

the subspace projection methods. However, this sequence is a good example to try the rotational

parameter estimation because of the high rotation about the vertical axis.

The implementation of the 
ow circulation algorithm uses several square contours; adding 
ow

components along each contour gives a quantity proportional to the curl at the center of the area

enclosed by the square contour. For the turning 
ight sequence, the 
ow �eld was computed
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Figure 8.8: The error plot for the Center-surround kernel method using the variance computation.
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Figure 8.9: The error plot for the Quadratic polynomial projection method.
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Figure 8.10: The error plot for the Subspace projection method.
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Figure 8.11: The error plot for the NCC algorithm.
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frame actual rotation computed rotation
!1 !2 !3 !1 !2 !3

1 -0.0077 -0.1200 -0.0287 0.0063 -0.1061 -0.0064
2 -0.0160 -0.1129 0.0287 -0.0059 -0.0990 -0.0053
3 -0.0110 -0.1204 -0.0130 0.0041 -0.1002 -0.0059
4 -0.0120 -0.1211 -0.0164 0.0079 -0.0875 -0.0053
5 -0.0172 -0.1155 0.0296 -0.0070 -0.1109 -0.0068
6 -0.0135 -0.1246 -0.0256 -0.0397 -0.0889 -0.0053
7 -0.0185 -0.1200 0.0053 -0.0028 -0.0992 -0.0057
8 -0.0179 -0.1201 0.0110 -0.0034 -0.0879 -0.0054

Table 8.1: Table showing results of applying the 
ow circulation algorithm to the 
ow �eld data from
the Turning Flight sequence.

over the 512 � 512 image using the Markov random �eld approach of Heitz and Bouthemy [25].

This computation yields a dense 
ow �eld, i.e., one 
ow vector per pixel position. Next, 5000

square contours of side 240 pixels were used to perform the linear surface �tting. The parameters

of the linear surface are proportional to the rotational parameters of the camera. The results

obtained on this sequence are shown in Table (8.3). It is seen that even though the method is

an approximate one, the estimation of the largest component of the rotational velocity, namely

the y-component, is fairly accurate in all the frames. Let us suppose that the rotation is constant

over the eight frames (which is only approximately true). Then the estimated rotation parameters

would give (�0:0051;�0:0975;�0:0058) (compared to the average of the actual rotation parameters

(�0:0142;�0:1193;�0:0011)), based on a simple average. Using this information, it is possible to

reuse the optical 
ow data to compute the FOE directly.

8.4 The Ridge sequence

The camera moves over a ridge in this sequence. An interesting feature of this sequence is that

the translation has a considerable \upward" component (as opposed to a predominantly-forward

motion). This means that the FOE is not near the center of the image but closer to the upper border.

Such sequences are known to be hard for motion parameter estimation due to the confounding of

parameters. The 
ow due to upward translation is similar to the 
ow due to rotation about the

horizontal axis. Thus, methods trying to \eliminate" the rotation would cancel out a large fraction

of the 
ow due to the upward motion, resulting in an estimation of the FOE closer to the center

of the image than it is actually the case. This interaction between the parameters is discussed in

chapter 6.

The result of such confounding can be clearly seen in the FOE estimations by the convolution
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method, shown in Figs. (8.12a), (8.12b), (8.12c), and (8.12d). However, a method that does not

attempt to eliminate the rotation, such as the NCC algorithm described in this thesis, is less likely

to be a�ected by the confounding parameters problem. This is evident from the (more accurate)

FOEs computed by the fast method, displayed in Figs. (8.13a), (8.13b), (8.13c), and (8.13d).

8.5 The Yosemite sequence

This sequence was generated using computer graphic techniques at MIT. The 
ow �eld was

computed using the markov random �eld technique in [25]. The FOE was computed using the

NCC algorithm. In this case, we demonstrate the feasibility of computing depth information, even

though computing structure is not stressed in this thesis. This is because a reasonable computation

of structure is possible only if we are able to obtain accurate 
ow �elds. On the other hand,

computation of the motion parameters is possible even if the 
ow �eld is not very accurate, because

of the global nature of the algorithms presented here.

Fig. (8.15) shows the 
ow �eld computed for a pair of images from the Yosemite sequence. A

sample image from the sequence is shown in Fig. (8.14).

The relative depth values computed using the FOE estimated using the NCC algorithm (and

assuming zero rotation) are shown as a range map in Fig. (8.16). The brighter a point, the closer

it is to the viewer. A circular portion around the FOE has been masked out because the 
ow

magnitudes are very small in the neighborhood of the FOE and hence very unstable. It can be seen

that the depth information seems to be qualitatively correct (see the intensity image in Fig. (8.14)

for comparison).
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Figure 8.12a: The computed and actual FOEs for the ridge sequence, using the convolution method
(using the horizontal derivative of the laplacian). The cross denotes the position of the actual FOE, and
the square shows the position of the computed FOE. The instantaneous FOE positions for the di�erent
frames are shown in this �gure, and continued in Figs. (8.12b), (8.12c), and (8.12d).
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Figure 8.12b: See the note in Fig. (8.12a).
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Figure 8.12c: See the note in Fig. (8.12a).
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Figure 8.12d: See the note in Fig. (8.12a).

106



Figure 8.13a: The computed and actual FOEs for the ridge sequence, using the norm of circular
components method. The cross denotes the position of the actual FOE, and the square shows the
position of the computed FOE. The instantaneous FOE positions for the di�erent frames are shown in
this �gure, and continued in Figs. (8.13b), (8.13c), and (8.13d).
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Figure 8.13b: See the note in Fig. (8.13a).
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Figure 8.13c: See the note in Fig. (8.13a).
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Figure 8.13d: See the note in Fig. (8.13a).
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Figure 8.14: A sample frame from the Yosemite sequence.
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Figure 8.15: The 
ow �eld computed using the frame in Fig. (8.14) and the subsequent frame in the
sequence.
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Figure 8.16: The relative depth map computed using the motion parameters obtained from the 
ow
�eld in Fig. (8.15) by applying the NCC algorithm. A circular area around the FOE has been masked
out because 
ow values close to the FOE are very small and hence unstable. Brighter points correspond
to smaller relative depth (nearer features).
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Chapter 9

Conclusions

We presented algorithms to compute the motion parameters of a sensor. Unlike existing alternative

methods, our methods use all available data, qualifying as global methods. These can be expected

to be more robust when compared to local methods that operate on data from a small region of

the image. This is supported by experimental results that were shown in this thesis.

The 
ow circulation algorithm computes the rotational parameters. It is based on the observa-

tion that the curl of the vector optical 
ow �eld is linear in the rotational parameters. Instead of

using the curl values, equivalently, we make use of circulation values which are contour integrals on

the image plane. The parameters of the linear �t are declared to be the rotational velocities. The

algorithm is approximate, in that the curl values are composed of not just the linear terms from

the rotational parameters, but also contain contribution from the translational parameters. The

e�ect of the translational terms is nulli�ed for pure rotation and for frontal planar surfaces; under

such conditions, the linearity is exact and we obtain the correct rotational parameters (for no-noise

situations). Under other conditions, the linearity is only approximate, and the approximation is

expected to hold well in a global sense; i.e., if we use data from all over the image, we expect the

deviations from the linearity to cancel out under typical circumstances.

From the experiments, we �nd that this is indeed the case. We obtained very accurate results for


ow �elds simulated using range data (of non-planar objects), even in the presence of translation.

Using 
ow �elds computed from a real image sequence (taken from an aircraft), we obtained

quite accurate estimates for the angular velocity. We observe from our derivations and from the

experiments that the algorithm is exact for pure rotation, and is globally approximate for typical

situations. The algorithm is very easy to implement because of the simplicity of the computations.

Integrating along square contours is particularly simple if a dense 
ow �eld is available on the

cartesian image plane. Note however, that it is su�cient to obtain a few measurements of the curl

value from areas of the image with the same relative motion parameters. This could conceivably be

done by feature detectors measuring circulation. The results from the noise experiments suggest

that the performance of the algorithm degrades gracefully with respect to noise, starting with zero

error in the case of pure rotation.
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The FOE search algorithms are also easily understood. For candidate FOEs, circular component

functions are computed; the projection of the circular component function on suitable spaces leaves

behind a residual function whose norm is a measure of the correctness of the choice of the FOE. In

particular, for the correct choice of the FOE, this norm is zero, and is non-zero for the other choices.

We provide several methods to perform this computation. Of particular interest are the methods

that exploit the known (quadratic) shape of the error surface in order to simplify the algorithms.

As a result, the center-surround kernel and the quadratic polynomial projection method involve no

search; we need to do the residue computation only for six choices of the FOE. The correct FOE is

obtained by a simple computation (a linear system solution).

The algorithms perform well on synthetic and real data. For the noise models treated here,

the degradation with increasing noise magnitude is smooth. The quadratic polynomial projection

method performs better than the center-surround kernel method. The NCC algorithm performs

better than either of these if there is little or no rotational velocity. This can be seen from the

results from both synthetic and real data. The subspace projection method involves searching

and so is not as computationally e�cient as the other methods. Also, in the experiments on real

images, the quadratic polynomial projection method seems to perform as well as the subspace pro-

jection method. The center-surround kernel method, even though fast, does not do well on real

image sequences possibly because of its local derivative operation. Thus, the quadratic polyno-

mial projection method seems to be a good compromise since it is fast and quite accurate. For

sequences where motion is known to be predominantly translational, the method of choice is the

NCC algorithm because it is the fastest one and is the most accurate for such sequences.

For the methods presented in this thesis, we have assumed that the optical 
ow �eld is given to

us. For the experiments with real image sequences, we used available code to do the computation.

Often, the optical 
ow �eld was very noisy. Obtaining noise-free optical 
ow �elds is still an elusive

issue and is provably impossible to obtain in many situations, due to the aperture problem. Any

advances in better computation methods for optical 
ow �elds will directly bene�t the algorithms

presented in this thesis.

In the methods presented in this thesis, we have ignored certain issues of visual motion analysis.

We mention them here. The judgement of egomotion and scene structure does not necessarily have

to be obtained exclusively from the optical 
ow �eld. Correspondence of features is also a powerful

clue to self-motion and structure. Also, the analysis here has been implicitly restricted to two-frame

motion. It is possible to consider several frames at once, not merely to obtain a reliable optical


ow (as attempted by Heeger [22], for example), but integration of information across time by

the use of techniques such as Kalman �ltering might be necessary to reduce the noise-sensitivity

of the computations. Future work in visual motion analysis should consider integration of the

di�erent sources of information, arising from modalities such as optical 
ow and correspondence

and temporal consistency. Other useful techniques that are likely to simplify motion analysis include

tracking, active vision, and qualitative vision.
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There is also a need to study the confounding parameters problem. As discussed in Chapter 6,

there is an interplay between the rotational parameters and the translational parameters. The

e�ect is worsened when the �eld of view is small or when the entire scene consists of planar or

nearly-planar structures. This is an issue that a�ects not only the algorithms presented here; all

the algorithms that exist to do motion parameter estimation or structure from motion are plagued

by this issue. It would be useful to �nd a di�erent set of motion parameters which does not su�er

from this problem of interaction between parameters.
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