
On the Gaussian Measure Over Lattices

by

Noah Stephens-Davidowitz

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science

New York University

September 2017

Oded Regev

Acknowledgements

I am grateful to my advisors, Oded Regev and Yevgeniy Dodis, for showing me how to be

a computer scientist. Yevgeniy introduced me to my first real research questions. He also

introduced me to many of my friends, colleagues, and co-authors in the computer science

community. In particular, Yevgeniy brought me to the 2015 Simons Institute cryptography

summer program, where I got to know some of the wonderful cast of characters in the

cryptographic community.

It would be difficult to overstate Oded’s influence on me. He introduced me to the topics

of this thesis, taught me how to think about them, and showed me their beauty. More

generally, Oded (patiently) taught me how to do research, and how to present it to others. I

am simply awestruck by Oded, and the best aspects of my work are inherited directly from

him. I hope to continue to steal as much of his insight as I can.

I thank my co-authors for the innumerable hours of fun and confusion and the occasional

epiphanies that we had together—Divesh Aggarwal, Navid Alamati, Huck Bennett, Daniel

Dadush, Yevgeniy Dodis, Sasha Golovnev, Shai Halevi, Tzipi Halevi, Ilya Mironov, Chris

Peikert, Oded Regev, Adi Shamir, Victor Shoup, and Daniel Wichs. I’m particularly thankful

for the co-authors on the works included in this thesis, Divesh Aggarwal, Daniel Dadush, and

Oded Regev.

I thank my friends and co-conspirators at NYU for the laughs, games, and adventures

that we shared; for the advice that they gave me; and for putting up with me—Azam Asl,

Huck Bennett, Sandro Coretti, Laura Florescu, Chaya Ganesh, Sasha Golovnev, Siyao Guo,

Shravas Rao, Igor Shinkar, Deva Thiruvenkatachari, and Omri Weinstein.

I am indebted to Daniel Dadush and Divesh Aggarwal, two postdocs who were at NYU

ii

when I arrived. Daniel’s three-person class (co-taught with Oded) is what originally got me

hooked on lattices, and Divesh sat next to me for two years and responded to my countless

stupid questions with thorough and seemingly judgment-free answers.

I thank Ilya Mironov for having me as his intern at Microsoft Research in the summer

of 2014, and Chris Peikert for inviting me to visit him in Michigan in the summer of 2016.

Each of them gave me far more of their time than I deserved and introduced me to new ways

of thinking.

I thank the professors at Brown who originally introduced me to the beauty and elegance

of abstract mathematics and computer science, Anna Lysyanskaya, Stephen Lichtenbaum,

Alf van der Poorten, and Michael Rosen.

I thank my friends and colleagues at IBM, Fabrice Benhamouda, Craig Gentry, Shai Halevi,

Tzipi Halevi, Justin Holmgren, Charanjit Jutla, Hugo Krawczyk, Antigoni Polychroniadou,

and Tal Rabin.

I thank my family, Mitch, Esther, Seth, and Lauren, for always encouraging me—and

also for gently discouraging me during my strange detour into the poker world. I offer mad

props to my nephew Jonah, who is cooler at two-going-on-three than I’ll ever be, and I’m

looking forward to seeing how quickly my seven-week-old niece Sasha upstages me. And, of

course, my brother-in-law Mark deserves roughly half the credit for this precocious coolness.

Lastly, I thank my committee, Daniel Dadush, Yevgeniy Dodis, Chris Peikert, Oded

Regev, and Victor Shoup.

iii

Abstract

We study the Gaussian mass of a lattice coset

ρs(L − t) :=
∑
y∈L

exp(−π‖y − t‖2/s2) ,

where L ⊂ Rn is a lattice and t ∈ Rn is a vector describing a shift of the lattice. In particular,

we use bounds on this Gaussian mass to obtain a partial converse to Minkowski’s celebrated

theorem bounding the number of lattice points in a ball.

We also consider the discrete Gaussian distribution DL−t,s induced by the Gaussian

measure over L − t, and we use procedures for sampling from this distribution to construct

the current fastest known algorithms for the two most important computational problems

over lattices, the Shortest Vector Problem (SVP) and the Closest Vector Problem (CVP).

Finally, we study ρs(L − t) and DL−t,s as interesting computational and mathematical

objects in their own right. In particular, we show that the computational problem of sampling

from DL−t,s is equivalent to CVP in a very strong sense (and that sampling from DL,s is no

harder than SVP). We also prove a number of bounds on the moments of DL−t,s and various

monotonicity properties of ρs(L − t).

iv

Contents

Acknowledgements . ii

Abstract . iv

List of Figures . vii

List of Tables . viii

What’s this? . ix

Introduction . 1

1 Preliminaries 13

1.1 Lattice basics . 14

1.2 Computational Problems . 16

1.3 Gaussian measure on lattices . 16

1.4 Miscellany . 28

2 A Reverse Minkowski Theorem 31

2.1 Introduction . 31

2.2 Preliminaries . 41

2.3 Gradients over lattices and over positions of the Voronoi cell 49

2.4 Proof of the Reverse Minkowski Theorem . 61

2.5 Bounds on ρs(L) for all parameters and point-counting bounds 68

2.6 Proof of the covering radius approximation 73

v

2.7 An optimal bound for extreme parameters 79

2.8 Tightness of our bounds . 83

3 A “Rotation” Identity and Related Inequalities 87

3.1 Introduction . 87

3.2 The main inequality (and a variant) . 89

3.3 Moments of the discrete Gaussian distribution 92

3.4 Monotonicity of the periodic Gaussian function 95

3.5 Positive correlation of the Gaussian measure on lattices 98

4 An Algorithm for DGS (and SVP and CVP) 100

4.1 Introduction . 100

4.2 Preliminaries . 111

4.3 Sampling from the discrete Gaussian . 116

4.4 Solving SVP and (approximate) CVP in 2n+o(n) time 125

4.5 Sampling 2n/2 vectors above smoothing in 2n/2 time 130

5 A Reduction from DGS to CVP (and SVP) 143

5.1 Introduction . 143

5.2 Preliminaries . 148

5.3 DGS to CVP reduction . 155

5.4 Centered DGS to SVP reduction . 161

5.5
√
n/ log n-SVP to centered DGS reduction and a lower bound 167

Bibliography . 170

vi

List of Figures

1 A discrete Gaussian and a periodic Gaussian in two dimensions. 2

2 Two discrete Gaussian distributions in two dimensions. 3

2.1 The canonical polygon of a (hypothetical) lattice L. 42

2.2 An illustration of Lemma 2.3.3. 52

3.1 fZ,s(t) for various values of s and t ∈ [0, 1]. 96

4.1 Different ways of “combining” Gaussian vectors. 106

vii

List of Tables

1 Known algorithms for sampling from the discrete Gaussian distribution. . . . 4

viii

What’s this?

Before I begin to motivate and summarize the contents of this thesis, I should make clear

that it contains no substantial original work. This is instead a new presentation (necessary

for the completion of my doctorate) of results from joint work with my co-authors from five

papers. These papers are all available on the arXiv and roughly as accessible as this thesis

[ADRS15, ADS15, Ste16a, RS17a, RS17b]. Indeed, much of this work is taken verbatim from

the original papers, so it would be perfectly reasonable for the reader to choose to read those

instead.

The most substantial differences between this thesis and the papers from which it inherits

its content come in Chapter 4. First, this chapter is a merger of two papers, one on

SVP [ADRS15] and one on CVP [ADS15]. The two original papers overlap quite a bit, so

this might prove to be beneficial.1 Second, I have modified the 2n/2+o(n)-time algorithm in

Section 4.5. Any readers looking to improve this algorithm to work below the smoothing

parameter might prefer the version in this thesis, which is a bit simpler and which gets around

one of the obstructions to doing so. (My co-authors and I have long felt that we were very

close to improving the algorithm in Section 4.5. I resisted the urge to include in this thesis a

long treatise on why we feel this way and what seemingly minor obstacles remain.)

Additional differences include (1) the omission of some of the more technical and/or less

salient proofs and results; (2) condensed and merged preliminaries in Chapter 1—including

some extra love and attention devoted to the Gaussian measure over lattices—(3) a global

introduction (below); (4) notation that is more consistent across papers; (5) extremely minor

1On the other hand, the original papers have their own benefits. The first paper [ADRS15] is a bit easier
to read because it deals only with a nice special case—the centered discrete Gaussian, as opposed to an
arbitrary discrete Gaussian—and the second paper [ADS15] is written more concisely, under the assumption
that readers interested in the smallest details will have read [ADRS15] first.

ix

improvements to some secondary results; (6) some reworded paragraphs; etc. In fact, this

exciting opportunity to unilaterally make whatever changes I saw fit to joint work with

my co-authors was remarkably fruitless—a testament to the relative skill of my co-authors,

and a bit of a bummer. I’m very much at risk of having worked hard only to have made

things worse, and any errors introduced are of course my own fault and not the fault of my

co-authors.

x

Introduction

A lattice L ⊂ Rn is the set of integer linear combinations of linearly independent basis vectors

B = (b1, . . . , bn) ∈ Rn×n,

L(B) :=
{∑

aibi : ai ∈ Z
}
.

Lattices are studied classically as natural geometric objects with connections to number theory,

convex geometry, and many other fields (see, e.g., [GL87, CS98]). More recently, computer

scientists have studied computational problems on lattices because of their applications

in integer programming [Len83, Kan87], factoring polynomials over the rationals [LLL82],

cryptanalysis [Sha84, Bri85, LO85], etc.

And, more recently still, lattice-based cryptographic constructions have revolutionized

cryptography [Ajt04, Reg09, Gen09, BV11]. (See [Pei16] for a survey.) In particular, nearly

all lattice-based cryptographic constructions come with the advantage that their security

can be based on the hardness of approximating computational lattice problems in the

worst case [Ajt04, Reg09, Pei09, BLP+13, PRS17]. And, many powerful cryptographic

primitives are only known via lattice-based constructions, such as fully homomorphic en-

cryption [Gen09, BV11, BV14]. Furthermore, by far the most well-studied public-key crypto-

graphic constructions that are thought to be secure against quantum computers are based on

lattices, and these schemes are now nearing widespread deployment in anticipation of future

developments in quantum computing [NIS16, ADPS16, BCD+16].

1

-10

0

10

-10

0

10

0.000

0.005

0.010

(a) The discrete Gaussian distribution
on Z2 with parameter s = 10.

(b) The periodic Gaussian function on
the lattice spanned by (1, 1) and (1,−1)
with parameter s = 3/4.

Figure 1

The Gaussian measure,

ρs(x) := exp(−π‖x‖2/s2)

for a vector x ∈ Rn and parameter s > 0, has become an essential tool in the study of lattices.

In particular, we are interested in the four closely related mathematical objects introduced

below.

The Gaussian mass of L − t,

ρs(L − t) :=
∑
y∈L

ρs(y − t) ,

for a lattice L ⊂ Rn and shift t ∈ Rn can be viewed as a smooth analogue of the lattice

point-counting function |L ∩ (rBn
2 + t)|, which counts the number of lattice points in a ball

of radius r around a vector t. In particular, we have the trivial inequality |L ∩ (rBn
2 + t)| ≤

exp(πr2/s2)ρs(L− t), which is often quite tight for a suitably chosen parameter s > 0.2 More

2For example, Mazo and Odlyzko showed that this inequality gives a very accurate estimate of |Zn ∩
(rBn

2 + t)| when r := Θ(
√
n) and s is chosen appropriately [MO90]. In Section 2.8, we show weaker bounds

in a more general setting.

2

-10

0

10

-10

0

10

0.000

0.005

0.010

-5

0

5 -5

0

5

0.00

0.02

0.04

0.06

Figure 2: Two rather different discrete Gaussian distributions in two dimensions. On the left
is DZ2,10. On the right is DL−t,5, where L is spanned by 3e1 and e2/2, and t = 3e1/2 + e2/4
is a “deep hole.”

generally, studying ρs(L − t) allows us to use analytic tools to understand the geometry of

L (see, e.g., [Ban93], or our treatment in Section 1.3.1). The function s 7→ ρs(L) also arises

naturally in many applications in number theory, where it is typically parametrized differently

and referred to as the lattice theta function (e.g., [Jac28, Rie57, BPY01, Mum07]).

The discrete Gaussian distribution DL−t,s is the distribution over L − t induced by the

Gaussian measure,

Pr
X∼DL−t,s

[X = y − t] :=
ρs(y − t)

ρs(L − t)
,

for y ∈ L. In particular, this distribution allows us to sample relatively short vectors x ∈ L−t,

which makes it extremely useful in cryptographic constructions [Reg09, GPV08], algorithms

for lattice problems [ADRS15, ADS15], and in worst-case to average-case reductions [MR07,

Reg09, Pei09, BLP+13, PRS17]. Indeed, there are by now many different algorithms for

sampling from DL−t,s, as well as reductions to other lattice problems. We summarize what is

known in Table 1.

The periodic Gaussian function

fL,s(t) :=
ρs(L − t)

ρs(L)

3

Shift Parameter Time Notes

Any t s ≥ γ
√

log n · λn – Reduces to γ-SVP or γ-SIVP [GPV08, BLP+13].

Any t s ≥ 2
n logn

log logn · λn poly(n) [AKS01, GPV08]
Any t s�

√
n · ηn−ω(1) – Quantum reduces to BDD or LWE [Reg09].

* Any t s ≥
√

2 · η1/2 2n/2+o(n) Outputs 2n/2 samples [ADRS15].

* Any t s > 2−
n

logn dist(t,L) 2n+o(n) Outputs many samples [ADS15].
* Any t Any s – Equivalent to CVP [Ste16a].
* Any t Any s 2n+o(n) Follows from equivalence and [ADS15].

* t = 0 Any s 2n+o(n) Outputs 2n/2 samples [ADRS15].
* t = 0 Any s – Reduces to SVP [Ste16a].

Table 1: Known results concerning the problem of sampling from DL−t,s. Lines marked
with a * are presented in this thesis. We have left out some constants and ω(1) factors for
readability.

is the probability density function of a continuous Gaussian distribution with parameter

s > 0 modulo the lattice L (up to scaling). Equivalently, it is the heat kernel on the

flat torus Rn/L. It can also be thought of as a smooth approximation of the function t 7→

exp(−π dist(t,L)2/s2), and it has therefore found applications in algorithms for approximating

dist(t,L) and for finding a close lattice vector to t [AR05, LLM06, DRS14]. It is intimately

related to the discrete Gaussian distribution, as its Fourier series is given by the discrete

Gaussian over the dual lattice (see Eq. (1.3)).

The smoothing parameter,

ηε(L) := min{s : ρ1/s(L∗) ≤ 1 + ε} ,

where

L∗ := {w ∈ Rn : ∀y ∈ L, 〈w,y〉 ∈ Z}

is the dual lattice. We are typically interested in the case when ε ∈ (0, 1), in which case ηε(L)

intuitively represents “the scale at which the discrete structure of L is no longer visible”, such

that for parameters s ≥ ηε(L) the distribution DL−t,s “behaves like a continuous Gaussian

4

distribution up to error ε.” The smoothing parameter, which was introduced by Micciancio

and Regev [MR07], takes its name from the fact that fL,s(t) is nearly constant (or “smooth”)

for s ≥ ηε(L). (See Eq. (1.4).) Both of these facts are extremely useful in applications, and

nearly all algorithmic applications of DL−t,s only work above the smoothing parameter (the

key exceptions being [ADRS15, ADS15]).

Our Contributions

In this thesis, we describe new geometric and computational applications of these objects,

and we study them as interesting mathematical objects in their own right. Below, we

summarize the contents of this thesis, which describe results that originally appeared in joint

works with Regev [RS17a, RS17b]; Aggarwal, Dadush, and Regev [ADRS15]; Aggarwal and

Dadush [ADS15]; and in a single-author paper [Ste16a].

A Reverse Minkowski Theorem

In Chapter 2, we show a partial converse to Minkowski’s Theorem (sometimes called

“Minkowski’s First Theorem”), which is the foundational result in the geometry of num-

bers [Min10]. Minkowski’s Theorem guarantees that a centered ball rBn
2 of a certain radius

r > 0 must have at least one non-zero lattice point. Below, we present a slight generalization

due to Blichfeldt and van der Corput,3

Theorem 1 ([vdC36]). For any lattice L ⊂ Rn with det(L) ≤ 1 and radius r > 0,

|L ∩ rBn
2 | ≥ 2−n · vol(rBn

2) =
1√
πn

(πer2

2n

)n/2
(1 + o(1)) .

3They actually showed the slightly stronger bound |L∩rBn
2 | ≥ 2b2−n ·vol(rBn

2)c+1. And, like Minkowski,
they considered arbitrary norms, not just `2. (See, e.g., [GL87, Thm. 1 of Ch. 2, Sec. 7].).

5

Here, the determinant of the lattice is the inverse “global density” of the lattice

det(L) := lim
r→∞

vol(Bn
2)

|L ∩ rBn
2 |
,

which can be computed as the absolute value of the determinant of any lattice basis. So,

geometrically, Minkowski’s Theorem says that “a globally dense lattice must also be locally

dense.” In terms of the Gaussian mass (which we think of as a smoothed version of the

point-counting function |L ∩ rBn
2 |), Minkowski’s theorem tells us that, e.g.,

ρ3(L) ≥ 3

2
(1)

for any lattice L ⊂ Rn with det(L) ≤ 1. I.e., η1/2(L∗) ≥ 1/3. (There is a much easier proof

of Eq. (1) that achieves a better constant. See Eq. (1.1).)

It is natural to ask whether a converse of Minkowski’s Theorem holds. I.e., must a lattice

with many points inside a relatively small ball have small determinant? If a lattice has high

Gaussian mass, does it have low determinant?

Unfortunately, the answer to these (rather naive) questions is no. If a lattice L ⊂ Rn

has a low-determinant sublattice L′ ⊂ L, then it will have many points in a small ball and

therefore large Gaussian mass, though det(L) can be arbitrarily large. For example, take

L ⊂ R2 to be the lattice generated by (e1/t, t
2e2) for some large t > 0 and L′ ⊂ L to be

the sublattice generated by e1/t. Then, det(L) = t, but |L ∩ rB2
2 | ≥ |L′ ∩ rB2

2 | ≥ rt, and

it follows that ρs(L) ≥ ρs(L′) ≥ e−πst. So, we can make the determinant and the Gaussian

mass arbitrarily large simultaneously.

Dadush conjectured that lattices like the one described in the previous paragraph are

essentially the only counterexample. I.e., he conjectured that any lattice with large Gaussian

mass must have a low-determinant sublattice [Dad12a, DR16]. In joint work with Oded

6

Regev, we proved this conjecture (written here in the contrapositive).

Theorem 2 ([RS17b]). For any lattice L ⊂ Rn with det(L′) ≥ 1 for all sublattices L′ ⊆ L,

ρ1/t(L) ≤ 3

2
,

where t := 10(log n+ 2). Equivalently, η1/2(L∗) ≤ t.

Recall from Eq.(1) that η1/2(L∗) ≥ 1/3 for any lattice with a sublattice of determinant less

than one. (Here, we use the trivial fact that η1/2(L∗) ≥ η1/2((L′)∗) for any sublattice L′ ⊆ L.)

So, (after scaling appropriately), Theorem 2 characterizes the smoothing parameter of any

lattice up to a factor of O(log n). Furthermore, we must have t ≥ η1/2(Zn) =
√

log n/π+o(1),

so that the theorem is the best possible up to a factor of O(
√

log n) in t.

Theorem 2 has many applications. In particular, we derive from it the following novel

point-counting bounds.

Theorem 3 ([RS17b, Corollary 1.4]). For every lattice L ⊂ Rn with det(L′) ≥ 1 for all

sublattices L′ ⊆ L, and every shift vector u ∈ Rn,

1. for any r ≥ 1, |L ∩ (rBn
2 + u)| ≤ 3eπt

2r2
/2;

2. for any
√
n/(2π) · t−1 ≤ r ≤

√
n/(2π) · t, |L ∩ (rBn

2 + u)| ≤ (Ctr/
√
n)n/2 for some

universal constant C > 0; and

3. for any r ≥
√
n/(2π) · t, |L ∩ (rBn

2 + u)| ≤ 2(2πer2/n)n/2,

where t := 10(log n+ 2).

In addition, Dadush and Regev presented many applications of Theorem 2 to a wide

range of areas, from complexity theory to Brownian motion on tori [DR16]. (They presented

these applications when Theorem 2 was still an unproven conjecture.)

7

This chapter is primarily based on joint work with Oded Regev, which appeared in the

Symposium on the Theory of Computing (STOC), 2017 [RS17b], and some passages have

been taken verbatim from this source.

A Rotation Identity and Related Inequalities

Chapter 3 shows a “rotation” identity concerning the Gaussian mass of lattice cosets that

is closely related to Riemann’s quartic theta identities (see, e.g., [Mum07]). (The 2n+o(n)-

time algorithm for discrete Gaussian sampling discussed in the next section is perhaps best

understood in terms of this identity.) From this identity, we derive the following “rotation

inequality” relating the periodic Gaussian function evaluated at different points.

Theorem 4 ([RS17a]). For any lattice L ⊂ Rn, parameter s > 0, and vectors t,u ∈ Rn,

fL,s(t)
2fL,s(u)2 ≤ fL,s(t + u)fL,s(t− u) .

To understand Theorem 4, we note the easy identity

ρs(t)
2ρs(u)2 = ρs(t + u)ρs(t− u) . (2)

So, Theorem 4 can be viewed as a relaxation of Eq. (2) that holds for the periodic Gaussian.

Indeed, notice that Eq. (2) is in fact a rotation identity, as it follows from the basic fact

that the vector (t + u, t− u)/
√

2 ∈ R2n is a rotation of (t,u) ∈ R2n. (This is essentially the

reason that we call Theorem 4 a “rotation inequality.”)

From the (perhaps rather opaque) inequality in Theorem 4, we derive a surprising number

of interesting corollaries about the discrete Gaussian and the periodic Gaussian function. For

example, we show that fL,s(t) is monotonic in the parameter s (answering a question asked

by Price [Pri14b]; see Proposition 3.4.1), and that the centered discrete Gaussian DL,s has

8

minimal covariance (answering a question asked by Dadush [Dad12a]; see Corollary 3.3.2).

This chapter is primarily based on joint work with Oded Regev that appeared in the

SIAM Journal of Discrete Mathematics (SIDMA), 31(2) 2017 [RS17a], and passages have

been taken verbatim from this source.

Algorithms for DGS (and CVP and SVP)

In Chapter 4, we show an algorithm that samples from the discrete Gaussian distribution and

use this to obtain the fastest known algorithms for the two most important computational

problems on lattices. As we discussed a bit above, algorithms for sampling from the discrete

Gaussian DL−t,s have played a central role in cryptographic constructions [Reg09, GPV08]

and worst-case to average-case reductions [MR07, Reg09, Pei09, BLP+13] for over a decade.

However, such algorithms previously only worked for parameters s� ηε(L). (See Table 1.)

For such parameters, DL−t,s is rather well-behaved in that it “looks like a continuous Gaussian,”

which makes it significantly easier to work with in practice. Even with this restriction, these

algorithms often required access to powerful oracles, trapdoors, and/or quantum computers.

In joint work with Aggarwal, Dadush, and Regev [ADRS15] and follow-up work with

Aggarwal and Dadush [ADS15], we show the first algorithm for sampling from the discrete

Gaussian DL−t,s for any parameter s > dist(t,L)/2o(n/ logn). (In [Ste16a], discussed in

Chapter 5, we show how to extend this to any parameter s > 0. See Theorem 5.3.6 and

Corollary 9.)

Theorem 5 ([ADRS15, ADS15]). There is a 2n+o(n)-time algorithm that takes as input a

lattice L ⊂ Rn, a shift vector t ∈ Rn, and a parameter s > dist(t,L)/2o(n/ logn) and outputs

at least one sample from DL−t,s.

Furthermore, for the special case when t = 0, the algorithm outputs 2n/2 independent

samples from DL,s (in the same running time), and for any t ∈ Rn, the algorithm outputs at

9

least

ρs(L − t)

maxc∈L/(2L) ρs(2L − c− t)
≥ 1

independent samples from DL−t,s.

Applying Theorem 5 with t = 0 more-or-less immediately yields a 2n+o(n)-time algorithm

for the most important lattice problem, the Shortest Vector Problem (SVP, which asks for a

shortest non-zero vector in a lattice), which is the current fastest known algorithm. With

quite a bit more work, in [ADS15] we are able to use Theorem 5 for arbitrary t ∈ Rn to

obtain a 2n+o(n)-time algorithm for a harder problem, the Closest Vector Problem (CVP,

which asks for the closest lattice vector to some target vector t).

Theorem 6 ([ADRS15, ADS15]). There is a 2n+o(n)-time algorithm for SVP, and a 2n+o(n)-

time algorithm for CVP.

We also show an algorithm for sampling from DL−t,s that runs in 2n/2 time but only works

above the smoothing parameter. This algorithm has a number of applications as well, which

are discussed in [ADRS15].

Theorem 7 ([ADRS15]). There is a 2n/2+o(n)-time algorithm that takes as input a lattice

L ⊂ Rn, a shift vectors t ∈ Rn, and a parameter s >
√

2η1/2(L) and outputs 2n/2 independent

samples from DL−t,s.

We are primarily interested in Theorem 7 because of the potential to extend it to arbitrary

parameters s > 0 (at least for one sample, at least in the t = 0 case). This would immediately

yield a faster algorithm for SVP. (We do not expect to obtain faster algorithms for CVP via

the methods of [ADS15], and recent work with Bennett and Golovnev [BGS17] shows some

evidence that no faster algorithms for CVP exist at all.)

This chapter is primarily based on joint work with Divesh Aggarwal, Daniel Dadush,

and Oded Regev, which appeared in the Symposium on the Theory of Computing (STOC),

10

2015 [ADRS15], and joint work with Divesh Aggarwal and Daniel Dadush, which appeared

in the Symposium on the Foundations of Computer Science (FOCS), 2015 [ADS15]. Some

passages have been taken verbatim from these sources.

Reduction(s) from DGS to CVP (and SVP)

The above shows the fastest known algorithm for CVP, which follows from an algorithm for

discrete Gaussian sampling. Indeed, there is an easy efficient, dimension-preserving reduction

from CVP to discrete Gaussian sampling. (See Corollary 1.3.11 and the discussion above it.)

So, any algorithm that allows us to sample from DL−t,s for arbitrary L ⊂ Rn, t ∈ Rn, and

s > 0 immediately implies an algorithm for CVP with essentially the same running time.4 It

is therefore natural to ask whether there is a reduction in the other direction. In [Ste16a]

and Chapter 5, we show that there is.

Theorem 8 ([Ste16a]). CVP is equivalent to sampling from the discrete Gaussian distribution

under dimension-preserving polynomial-time reductions.

In particular, this theorem suggests that our discrete-Gaussian-based techniques for solving

CVP are optimal in a certain (rather weak) sense. At the very least, it shows that we are not

solving an unnecessarily difficult problem. Together with Theorem 6, this also implies the

first algorithm for discrete Gaussian sampling with no restrictions at all on the shift t or the

parameter s > 0, as follows.

Corollary 9 ([Ste16a]). There is a 2n+o(n)-time algorithm that takes as input a lattice L ⊂ Rn,

a shift vectors t ∈ Rn, and any parameter s > 0 and outputs a sample from DL−t,s.

In contrast, the relationship between SVP and discrete Gaussian sampling is not yet

settled. Here, the right notion of discrete Gaussian sampling seems to be sampling from the

4This reduction requires a discrete Gaussian sampling oracle that works for arbitrarily small parameters
s > 0. In [ADS15] and Chapter 4, we have to work quite a bit harder because Theorem 5 works only for
s > dist(t,L)/2−o(n/ logn).

11

centered distribution DL,s, in which the shift vector t is zero. Indeed, we show a reduction

from centered discrete Gaussian sampling to SVP.

Theorem 10 ([Ste16a]). There is a dimension-preserving polynomial-time reduction from

the problem of sampling from the centered discrete Gaussian DL,s to SVP.

However, there is no known efficient reduction from SVP to sampling from DL,s, even

one that does not preserve the dimension.5 So, the complexity of sampling from the centered

discrete Gaussian DL,s is still poorly understood. In particular, we do not know whether it is

NP-hard or whether it can be placed in some complexity class that is unlikely to contain

NP-hard problems.

The techniques used to prove Theorems 8 and 10 are interesting in their own right.

In particular, we show powerful generalizations of Khot’s sparsification technique [Kho05]

(see also Dadush and Kun [DK13] and [DRS14]). Indeed, since their original publication

in [Ste16a], these techniques have found additional applications (e.g., [Ste16b, BSW16]).

This chapter is primarily based on work that appeared in the Symposium on Discrete

Algorithms (SODA), 2016 [Ste16a], and passages have been taken verbatim from this source.

5In [ADRS15], we use exponentially many samples from DL,s to solve SVP.

12

Chapter 1

Preliminaries

We use c, C, C ′, C1, C2 to denote arbitrary positive universal constants, whose value might

change from one occurrence to the next. Logarithms are base e unless otherwise specified,

and we write exp(x) := ex. Vectors x ∈ Rn are column vectors. We write ‖x‖ to represent

the Euclidean norm of x, and we write In for the identity matrix in n dimensions. For a

matrix A ∈ Rn×n, we write AT for the transpose of A. We write Bn
2 := {x ∈ Rn : ‖x‖ ≤ 1}

for the Euclidean ball in Rn. We write πS(x) for the orthogonal projection of x onto span(S)

for some S ⊆ Rn. (E.g., πy(x) = 〈y,x〉y/‖y‖2.) We write S⊥ for the subspace of vectors

orthogonal to S. For two additive subgroups S1 ⊆ Rn and S2 ⊆ Rm, their direct sum

S1 ⊕ S2 ⊆ Rn+m is {(x,y) : x ∈ S1,y ∈ S2}.

When we discuss computational problems and algorithms, we strongly prefer to avoid

getting bogged down in the nuances of how real numbers are represented computationally. In

general, we are not particularly interested in the bit length of the input, but instead only on

the dimension n. All of our results hold unambiguously if we assume that the input always

consists of rational numbers with bit length that is polynomial in the dimension n.

13

1.1 Lattice basics

A lattice L ⊂ Rn is the set

L :=
{∑

zibi : zi ∈ Z
}

of integer linear combinations of linearly independent basis vectors b1, . . . , bd. The matrix

B := (b1, . . . , bd) is a basis of the lattice, and we sometimes write L(B) to denote the lattice

generated by B. We call d the rank of the lattice and write rank(L) := d. By associating

the span of the lattice with Rd, we may always assume without loss of generality that d = n,

though it is still sometimes convenient to talk about the rank of a sublattice. (Many of the

definitions that follow only make sense for full-rank lattices.)

We write

λ1(L) := min
y∈L\{0}

‖y‖

for the length of the shortest non-zero vector in the lattice. More generally, for 1 ≤ i ≤ n, we

define the ith successive minimum,

λi(L) := min{r : dim(span(L ∩ rBn
2)) = i} .

For t ∈ Rn, we write

dist(t,L) := min
y∈L
‖y − t‖

for the distance between t and the lattice. The covering radius is then

µ(L) := max
t∈Rn

dist(t,L) ,

the farthest distance from the lattice.

14

The dual lattice is

L∗ := {w ∈ Rn : ∀y ∈ L, 〈w,y〉 ∈ Z} .

One can check that L∗ is itself a lattice with basis B−T , and therefore that (L∗)∗ = L.

The determinant of the lattice is given by det(L(B)) := | det(B)|. One can show that

the determinant is well defined (i.e., it does not depend on the choice of basis B). It follows

that, if L ⊂ Rn and A ∈ Rn×n is non-singular, then det(AL) = | det(A)| det(L), and that

det(L∗) = 1/ det(L).

A sublattice L′ ⊆ L is an additive subgroup of L. We say that L′ is primitive if

L′ = L ∩ span(L′), and we call span(L′) a lattice subspace. For a primitive sublattice

L′ ⊆ L, we define the quotient lattice L/L′ := πL′⊥(L) to be the projection of L onto

the space orthogonal to L′. In particular, L/L′ is a lattice, and we have the identities

(L/L′)∗ = L∗∩ span(L′)⊥ and det(L/L′) = det(L)/ det(L′). If L′ ⊂ L is a full-rank sublattice

(and therefore is not primitive), we write

L/L′ := {y mod L′ : y ∈ L}

for the set of cosets of L over L′. This slightly overloaded notation should not cause any

confusion, as we use the two different notions in very different contexts. And, for c ∈ L/L′

for some full-rank sublattice L′, we always write L′ + c instead of just c to make it clear that

the coset is a set (as opposed to a single vector).

Given a basis, B = (b1, . . . , bn), we define its Gram-Schmidt orthogonalization (b̃1, . . . , b̃n)

by

b̃i = π{b1,...,bi−1}⊥(bi) .

15

1.2 Computational Problems

Definition 1.2.1. For any approximation factor γ = γ(n) ≥ 1, the γ-approximate Shortest

Vector Problem (γ-SVP) is defined as follows. The input is (a basis for) a lattice L ⊂ Rn,

and the goal is to output a non-zero lattice vector y ∈ L \ {0} with ‖y‖ ≤ γ(n) · λ1(L).

Definition 1.2.2. For any approximation factor γ = γ(n) ≥ 1, the γ-approximate Closest

Vector Problem (γ-CVP) is defined as follows. The input is (a basis for) a lattice L ⊂ Rn

and a target vector t ∈ Rn, and the goal is to output a lattice vector y ∈ L with ‖y − t‖ ≤

γ(n) · dist(t,L).

When γ = 1, we often omit it and simply write SVP or CVP.

The following theorem was proven by Ajtai, Kumar, and Sivakumar [AKS01], building on

work of Schnorr [Sch87].

Theorem 1.2.3 ([Sch87, AKS01]). There is an algorithm that takes as input a lattice L ⊂ Rn

and u ≥ 2 and outputs an un/y-reduced basis of L in time exp(O(u)) · poly(n), where we say

that a basis B = (b1, . . . , bn) of a lattice L is γ-reduced for some γ ≥ 1 if

1. ‖b1‖ ≤ γ · λ1(L); and

2. π{b1}⊥(b2), . . . , π{b1}⊥(bn) is a γ-reduced basis of π{b1}⊥(L).

We will also need the following celebrated result due to Babai [Bab86].

Theorem 1.2.4 ([Bab86]). There is an efficient algorithm that solves 2n/2-CVP.

1.3 Gaussian measure on lattices

For a vector x ∈ Rn and a parameter s > 0, we write ρs(x) := exp(−π‖x‖2/s2) for the

Gaussian mass of x with parameter s. Then, for any discrete set A ⊂ Rn, we can extend this

16

notion in the natural way:

ρs(A) :=
∑
y∈A

ρs(y) .

We are particularly interested in ρs(L − t) for a lattice L ⊂ Rn and shift vector t ∈ Rn. By

the Poisson Summation Formula, we have

ρs(L) :=
sn

det(L)
· ρ1/s(L∗) . (1.1)

More generally,

ρs(L − t) :=
sn

det(L)
·
∑
w∈L∗

ρ1/s(w) cos(2π〈w, t〉) . (1.2)

In particular, ρs(L − t) ≤ ρs(L) for any t ∈ Rn with equality if and only if t ∈ L.

The discrete Gaussian distribution over L − t with parameter s > 0 is the probability

distribution DL−t,s induced by this measure. I.e., for any y ∈ L,

Pr
X∼DL−t,s

[X = y − t] = ρs(y − t)/ρs(L − t) .

The periodic Gaussian function with parameter s > 0 is defined as

fL,s(t) :=
ρs(L − t)

ρs(L)
.

The Poisson Summation Formula (Eq. (1.2)) shows that the discrete Gaussian and the

periodic Gaussian are in some sense duals of each other:

fL,s(t) := E
w∼DL∗

[cos(2π〈w, t〉)] . (1.3)

17

For ε > 0, the lattice smoothing parameter is defined as

ηε(L) := min{s : ρ1/s(L∗) ≤ 1 + ε} .

The smoothing parameter was introduced by Micciancio and Regev [MR07], and it takes its

name from Eq. (1.3), which in particular shows that for s ≥ ηε(L),

1− ε
1 + ε

≤ fL,s(t) ≤ 1 , (1.4)

so that for small ε, fL,s(t) is nearly constant or “smooth.”

Claim 1.3.1. For any lattice L ⊂ Rn, primitive sublattice L′ ⊆ L, and parameter s > 0,

ρs(L) ≤ ρs(L′)ρs(L/L′)

with equality if and only if L ∼= L′ ⊕ L/L′.

Proof. Let L̂ ⊂ Rn be a lattice such that every vector y ∈ L can be written uniquely as

ŷ + y′ with ŷ ∈ L̂ and y′ ∈ L′. (It is easy to see that such a lattice exists if and only if L′ is

primitive.) Let π := πL′ and π⊥ := π(L′)⊥ . We have

ρs(L) =
∑
y∈L

ρs(y)

=
∑
ŷ∈L̂

∑
y′∈L′

ρs(π(ŷ) + π(y′))ρs(π
⊥(ŷ))

=
∑
ŷ∈L̂

ρs(L′ + π(ŷ))ρs(π
⊥(ŷ))

≤ ρs(L′)
∑
ŷ∈L̂

ρs(π
⊥(ŷ))

= ρs(L′)ρs(L/L′) ,

18

as needed. Here, the inequality follows from Eq. (1.2) (and in particular the observation

afterwards), as does the fact that equality holds if and only if π(ŷ) ∈ L′ for all ŷ ∈ L̂, i.e., if

and only if L ∼= L′ ⊕ L/L′.

Chapters 4 and 5 will be primarily focused on the following computational problem, which

asks us to sample from DL−t,s.

Definition 1.3.2. For any ε = ε(n) ∈ (0, 1) and functions σ(L − t),m(L − t) ≥ 0 over

lattice cosets L − t, the Discrete Gaussian Sampling problem with error ε, parameter σ, and

output size m (ε-DGSmσ) is defined as follows. The input is a (basis for a) lattice L ⊂ Rn,

shift vector t ∈ Rn, and parameter s > σ(L− t). The goal is to output m̂ ≥ m(L− t) vectors

in L − t whose joint distribution is within statistical distance ε of independent samples from

DL−t,s.

This rather technical definition might be easier to understand with a few examples. A

natural value for σ(L − t) is simply σ(L − t) = ηε(L) for some ε > 0, which corresponds to

sampling “above the smoothing parameter.” One could also imagine, say, σ(L−t) := min{s :

ρs(L − t) ≥ (1− ε)ρs(L)}. In our primary example, we will have σ(L − t) = f(n) dist(t,L)

for some tiny function f(n) ≈ 2−n/ logn. (It is much less natural to take m to be a function

of L − t, but our algorithm in Chapter 4 happens to output a different number of vectors

depending on L − t.)

1.3.1 Banaszczyk’s theorem and some consequences

Here, we present Banaszczyk’s celebrated theorem (Theorem 1.3.4) [Ban93] and many of its

immediate consequences. Since these results are so important to the study of the Gaussian

measure on lattices, we are a bit pedantic, and we prove more than just what we will need in

the sequel.

19

Lemma 1.3.3 ([Ban93]). For any lattice L ⊂ Rn, parameter s ≥ 1, and shift t ∈ Rn,

ρs(L − t) ≤ snρ(L).

Proof. By Eq. (1.2), we have

ρs(L − t) =
sn

det(L)

∑
w∈L∗

ρ1/s(w) cos(2π〈w, t〉) ≤ sn

det(L)

∑
w∈L∗

ρ(w) = snρ(L) ,

where the inequality follows from the fact that cos(x) ≤ 1 and the fact that the Gaussian

measure is monotonically increasing in s.

With this, we can prove Banaszczyk’s main theorem.

Theorem 1.3.4 ([Ban93]). For any lattice L ⊂ Rn, parameter s > 0, shift t ∈ L, and

u ≥ 1/
√

2π,

ρs((L − t) \ u
√
nsBn

2) ≤ (2πeu2)n/2 · exp(−πu2n) · ρs(L)

Proof. We may assume without loss of generality that s = 1. For any σ ≥ 1, we have by

Lemma 1.3.3 that ρσ(L − t) ≤ σnρ(L). On the other hand,

ρσ(L − t) ≥
∑

y∈L\u
√
nBn2

ρσ(y − t)

≥ exp(πu2(1− 1/σ2))
∑

y∈L\u
√
nBn2

ρ(y − t)

= exp(πu2n− πu2n/σ2) · ρ((L − t) \ u
√
nBn

2) .

We therefore have

ρ((L − t) \ u
√
nBn

2) ≤ (σeπu
2/σ2

)n exp(−πu2n) .

The result follows by setting σ :=
√

2πu ≥ 1.

20

The following slightly weaker version of Theorem 1.3.4 is a bit more convenient and often

sufficient.

Corollary 1.3.5. For any lattice L ⊂ Rn, parameter s > 0, shift t ∈ Rn, and radius

r >
√
n/(2π) · s,

ρs((L − t) \ rBn
2) < exp(−πx2)ρs(L) ,

where x := r/s−
√
n/(2π).

Proof. Let

u :=
r

s
√
n

=
1√
2π

+
x√
n
.

We have

ρs((L − t) \ rBn
2)

ρs(L)
≤ (2πeu2)n/2 · exp(−πu2n)

= (1 +
√

2π/n · x)n exp(−
√

2πnx− πx2)

< exp(−πx2) .

Banaszczyk’s theorem in particular implies a bound on the smoothing parameter of the

following form.

Corollary 1.3.6. For any lattice L ⊂ Rn and ε ∈ (0, 1),

√
log(2/ε)

π
< ηε(L)λ1(L∗) <

√
n

2π
+

√
log(2/ε)

π
.

Proof. The lower bound is trivial. In particular, for any s ≤
√

log(2/ε)/π/λ1(L∗),

ρ1/s(L∗) > 1 + 2 exp(−πs2λ1(L∗)) ≥ 1 + ε .

For the upper bound, we assume without loss of generality that λ1(L∗) = 1 and notice that

21

for any s > 0,

ρ1/s(L∗)− 1 = ρ1/s(L∗ \Bn
2) .

In particular, if we take r = 1 and set

s :=

√
n

2π
+

√
log(2/ε)

π
.

then by Corollary 1.3.5, we have ρ1/s(L∗)− 1 < ερ1/s(L∗)/2. The result follows.

We get the following bound with roughly the same proof.

Corollary 1.3.7. For any lattice L ⊂ Rn and ε ∈ (0, 1),

µ(L)

ηε(L)
<

√
n

2π
+

√
log((1 + ε)/(1− ε))

π
.

Proof. By scaling the lattice, we may assume without loss of generality that ηε(L) = 1. Let

r :=

√
n

2π
+

√
log((1 + ε)/(1− ε))

π
.

By Corollary 1.3.5, for any t ∈ Rn, we have

ρ((L − t) \ rBn
2) <

1− ε
1 + ε

· ρ(L) .

On the other hand, by Eq. (1.2),

ρ(L − t) ≥ 1− ε
1 + ε

· ρ(L) > ρ((L − t) \ u
√
nBn

2) ,

so that (L − t) ∩ u
√
nBn

2 is nonempty. Since this holds for arbitrary t, we have µ(L) < r, as

needed.

22

Corollary 1.3.8. For any lattice L ⊂ Rn and ε ∈ (0, 1),

λn(L)

ηε(L)
<

√
2n

π
+ 2

√
log((1 + ε)/(1− ε))

π
.

Proof. It is easy to see that λn(L) ≤ 2µ(L). The result then follows immediately from

Corollary 1.3.7.

Corollary 1.3.9. For any lattice L ⊂ Rn,

µ(L)λ1(L∗) < n+ 10
√
n

2π
.

Proof. Let ε := 1/2. Then, we have

µ(L)λ1(L∗) <

(√
n

2π
+

√
log(3)

π

)
· ηε(L)λ1(L∗)

<

(√
n

2π
+

√
log(3)

π

)
·

(√
n

2π
+

√
log(4)

π

)

<
n+ 10

√
n

2π
.

Banaszczyk also proved the following lemma.

Lemma 1.3.10 ([Ban93]). For any lattice L ⊂ Rn, any parameter s > 0, and any shift

t ∈ Rn,

exp(−π dist(t,L)2/s2)ρs(L) ≤ ρs(L − t) ≤ ρs(L) .

Proof. The upper bound follows immediately from Eq. (1.2). For the lower bound, since the

function t 7→ ρs(L−t) is periodic over the lattice, we may assume without loss of generality that

dist(t,L) = ‖t‖ (i.e., that 0 is a closest lattice vector to t) so that exp(−π dist(t,L)2/s2) =

23

ρs(t). Then, we have

ρs(L − t) =
∑
y∈L

ρs(y − t)

=
1

2

∑
y∈L

(ρs(y − t) + ρs(−y − t))

= ρs(t)
∑
y∈L

ρs(y) cosh(2π〈y, t〉/s2)

≥ ρs(t)ρs(L) .

From this and Theorem 1.3.4, we derive the following convenient result, which shows that

samples from DL−t,s yield good approximate solutions for CVP. (We make little attempt to

optimize the parameters here.) Furthermore, notice that a single sample from DL−t,s with an

arbitrarily small parameter is sufficient to solve exact CVP for, say, rational lattices L ⊂ Qn.

(See [Ste16a]. One can make this statement more general, with the size of the necessary

parameter s > 0 depending on the specifics of the input format of the lattice. We therefore

view Corollary 1.3.11 as a simple, efficient reduction from CVP to discrete Gaussian sampling

with arbitrarily small parameters s > 0, without worrying about what conditions on the

input format are sufficient to make the bit length of the required parameter s polynomial in

the input length.)

Corollary 1.3.11. For any lattice L ⊂ Rn, parameter s > 0, shift t ∈ Rn, and radius

r >
√
n/(2π) · s, with r > dist(t,L) and

r2 > dist(t,L)2 +
ns2

π
· log(2π dist(t,L)2/(ns2)) ,

we have

Pr
X∼DL−t,s

[‖X‖ > r] < (2e)n/2+1 exp(−πy2/2) ,

24

where y :=
√
r2 − dist(t,L)2/s.

Proof. Let d := dist(t,L)/s, and

u :=
r

s
√
n

=
√

(y2 + d2)/n .

By Theorem 1.3.4, we have

ρs((L − t) \ rBn
2)

ρs(L)
≤ (2πeu2)n/2 · exp(−πu2n)

= (2πe(y2 + d2)/n)n/2 · exp(−π(y2 + d2)) .

Therefore,

ρs((L − t) \ rBn
2)

ρs(L − t)
≤ (2πe(y2 + d2)/n)n/2 · exp(−π(y2 + d2)) · ρs(L)

ρs(L − t)

≤ (2πe(y2 + d2)/n)n/2 · exp(−πy2) ,

where the last line follows from Lemma 1.3.10.

Now, we consider two cases. If d2 ≥ n/π, then the function y 7→ (2πe(d2 + y2)/n)n/2 ·

exp(−πy2/2) is decreasing in y. Since y2 = r2/s2 − d2 > n log(2πd2/n)/π, it follows that

(2πe(y2 + d2)/n)n/2 · exp(−πy2) < 5 exp(−πy2/2) .

On the other hand, if d2 < n/π, then we note that

(2πe(y2 + d2)/n)n/2 · exp(−πy2/2) ≤ 2n/2 · exp(πd2/2) < (2e)n/2 .

The result follows.

25

1.3.2 Algorithms for one-dimensional Gaussians

Brakerski, Langlois, Peikert, Regev, and Stehlé show how to efficiently sample from the one-

dimensional discrete Gaussian DZ+c,s for any c ∈ R and s > 0 [BLP+13]. For completeness,

we describe a slightly modified version of their algorithm to sample from DZ\{0},s (which we

will need in Chapter 5).

Lemma 1.3.12. There is an algorithm that samples from DZ\{0},s for any s > 0 in (expected)

polynomial time.

Proof. We describe an algorithm that samples from DZ+,s, which is clearly sufficient. Let

Z := e−π/s
2

+
∫∞

1
e−πx

2/s2dx. The algorithm outputs 1 with probability e−π/s
2
/Z. Otherwise,

it samples x from the one-dimensional continuous Gaussian with parameter s restricted to

the interval (1,∞). Let y := dxe. With probability e−π(y2−x2)/s2 , the algorithm outputs y.

Otherwise, it repeats.

On a single run of the algorithm, for any integer z ≥ 2, the probability that the algorithm

outputs z is

1

Z
·
∫ z

z−1

e−πx
2/s2 · e−π(z2−x2)/s2dx =

e−πz
2/s2

Z
.

And, the probability that the algorithm outputs 1 is of course e−π/s
2
/Z. So, the algorithm

outputs the correct distribution.

It remains to bound the expected running time. After a single run, the algorithm outputs

an integer with probability

ρs(Z+)

Z
=

ρs(Z+)

e−π/s2 +
∫∞

1
e−πx2/s2dx

≥ 1

2
.

It follows that it runs in expected polynomial time.

Brakerski et al. also noted a simple algorithm to compute ρs(Z) for arbitrary s >

0 [BLP+13]. (We do our best to avoid the question of what it means to “efficiently compute”

26

a real number. Here, we simply note a very rapidly convergent series of elementary functions,

which is more than sufficient for our purposes.)

Claim 1.3.13. There is an efficient algorithm that computes ρs(Z \ {0}) for any s > 0.

Proof. If s ≤ 1, we simply write

ρs(Z \ {0}) = 2
∑
z≥1

exp(−πz2/s2) .

Notice that this summation converges extremely rapidly. In particular, O(
√
m) terms are

sufficient to obtain m bits of accuracy. For s > 1, we apply the Poisson Summation Formula

(Eq. (1.1)) to obtain

ρs(Z \ {0}) = sρ1/s(Z)− 1 = s− 1 + 2s
∑
z≥1

exp(−πs2z2) ,

which again converges extremely rapidly.

1.3.3 Algorithms for arbitrary Gaussians with large parameters

For sampling from DL−t,s in high dimensions for large parameters s� η1/2(L), we can use

the celebrated algorithm introduced by Klein and further analyzed by Gentry, Peikert, and

Vaikuntanathan suffices [Kle00, GPV08]. For convenience, we use the following strengthening

of this result due to Brakerski et al., which provides exact samples and gives slightly better

bounds on the parameter s.

Theorem 1.3.14 ([BLP+13, Lemma 2.3]). There is a probabilistic polynomial-time algorithm

that takes as input a basis B for a lattice L ⊂ Rn, a shift t ∈ Rn, and ŝ > C
√

log n · ‖B̃‖ and

outputs a vector that is distributed exactly as DL−t,ŝ, where ‖B̃‖ := max‖b̃i‖.

27

(In [GPV08], they show that C
√

log n · ‖B̃‖ ≥ η1/2(L) for any lattice L ⊂ Rn with basis

B, so that this algorithm really does only allow sampling above the smoothing parameter.)

When instantiated with a γ-reduced basis, Theorem 1.3.14 allows us to sample with

parameter ŝ = γ · poly(n) · λn(L). After running our combiner o(n/ log n) times, this will

allow us to sample with any parameter s = γ · λn(L)/2o(n/ logn).

Corollary 1.3.15. There is an algorithm that takes as input a basis for a lattice L ⊂ Rn,

parameters u ≥ 2 and ŝ > C
√

log n · un/uλn(L), and a positive integer M , and outputs M

vectors that are distributed exactly as M independent samples from DL,ŝ in time poly(n) ·

M + poly(n) · 2O(u).

Proof. The algorithm first runs the procedure from Theorem 1.2.3 to obtain a un/u-reduced

basis B for L. It is easy to see that such a basis satisfies ‖B̃‖ ≥ un/uλn(L). We then run the

procedure from Theorem 1.3.14 M times and output the result.

Corollary 1.3.16. There is an algorithm that takes as input a basis B for a lattice L ⊂

Rn, parameters u ≥ 2 and ŝ > C
√
n log n · un/uη1/2(L), and a positive integer M , and

outputs M vectors that are distributed exactly as M independent samples from DL,ŝ in time

poly(n) ·M + poly(n) · 2O(u).

Proof. Simply combine the above corollary with Corollary 1.3.8.

1.4 Miscellany

We will need the following (weak variant of the) effective form of Stirling’s approximation

due to Robbins [Rob55], from which we derive bounds on the binomial coefficient.

Theorem 1.4.1 ([Rob55]). For any integer n ≥ 1,

√
2πn(n/e)n ≤ n! ≤ exp(1/(12n)) ·

√
2πn(n/e)n .

28

Corollary 1.4.2. For any integers n ≥ 1 and 1 ≤ k ≤ n/2,

1√
2πe1/6k

· (e1−k/nn/k)k ≤
(
n

k

)
≤ exp(k/n)√

2πk
· (en/k)k .

Proof. For the upper bound, we have

(
n

k

)
≤ exp(1/(12n)) ·

√
n

2πk(n− k)
· nn

kk(n− k)n−k

=
exp(1/(12n)√

2πk
· (n/k)k · (1− k/n)k−n−1/2

≤ exp(k/(2n) + 1/(12n))√
2πk

· (en/k)k

≤ exp(k/n)√
2πk

· (en/k)k .

For the lower bound, we have

(
n

k

)
≥ exp(−1/(12k)− 1/(12(n− k))) ·

√
n

2πk(n− k)
· nn

kk(n− k)n−k

≥ exp(−1/12− 1/(6n))√
2πk

· (n/k)k · (1− k/n)k−n−1/2

≥ exp(−1/(6n))√
2πe1/6k

· (n/k)k · exp(−k/n)k−n−1/2

≥ 1√
2πe1/6k

· (e1−k/nn/k)k .

We will also need the Chernoff-Hoeffding bound [Hoe63].

Lemma 1.4.3 (Chernoff-Hoeffding bound). Let X1, . . . , XN be independent and identically

distributed random variables with 0 ≤ Xi ≤ 1 and X := E[Xi]. Then, for s > 0

Pr
[
NX −

∑
Xi ≥ s

]
≤ exp(−s2/N) ,

29

and

Pr
[∑

Xi −NX ≥ s
]
≤ exp(−s2/N) .

30

Chapter 2

A Reverse Minkowski Theorem1

2.1 Introduction

Recall that the determinant of a lattice L ⊂ Rn with basis B, det(L) = | det(B)|, is a measure

of its global density in the sense that

det(L) = lim
r→∞

vol(rBn
2)

|L ∩ rBn
2 |
,

where rBn
2 denotes the closed Euclidean ball of radius r > 0, whose volume is equal to

(πn)−1/2(2πer2/n)n/2(1 + o(1)). Minkowski’s celebrated theorem shows that a lattice with

small determinant must have short non-zero vectors [Min10]. This is the foundational results

in the study of lattices and the geometry of numbers, and it has innumerable applications.

We consider the following point-counting form of this theorem due to Blichfeldt and van der

1This chapter is primarily based on joint work with Oded Regev, which appeared in the Symposium on
the Theory of Computing (STOC), 2017 [RS17b], and some passages have been taken verbatim from this
source. This work was supported by the National Science Foundation (NSF) under Grant No. CCF-1320188,
and the Defense Advanced Research Projects Agency (DARPA) and Army Research Office (ARO) under
Contract No. W911NF-15-C-0236. Part of this work was done while visiting Chris Peikert at the University
of Michigan and while interning at IBM.

31

Corput,2 which says that a lattice with small determinant must have many short points, or

informally, that “global density implies local density.”

Theorem 2.1.1 ([vdC36]). For any lattice L ⊂ Rn with det(L) ≤ 1 and r > 0,

|L ∩ rBn
2 | ≥ 2−n · vol(rBn

2) =
1√
πn

(πer2

2n

)n/2
(1 + o(1)) .

It is quite natural to ask whether a converse of Theorem 2.1.1 holds. In particular, if a

lattice has sufficiently many short points, does it necessarily have small determinant? Does

local density imply global density?

It is easy to see that the answer is actually no. Consider, for example, the lattice generated

by the vectors (1/t, 0) and (0, t2) for some arbitrarily large t. This lattice has at least 2btrc+1

points of norm at most r, but it has arbitrarily large determinant t. Notice, however, that

this lattice contains a sublattice generated by (1/t, 0) that does have small determinant. This

leads us to a more refined question:

If a lattice has sufficiently many short points, does it necessarily have a small-

determinant sublattice? Does local density imply global density over a subspace?

Equivalently, in the contrapositive, the question asks for an upper bound on the number of

lattice points in a ball given that there is no sublattice of small determinant.

Dadush conjectured a suitably precise answer to these questions [Dad12a]. Dadash and

Regev studied this conjecture in detail [DR16]. They showed a wide range of applications

(from computational complexity of lattice problems to Brownian motion on flat tori) and

gave some evidence for it. We refer the reader to [DR16] for a full list of their results.

Our main result is a proof of the conjecture of Dadush, which in particular implies the

applications mentioned above.

2They actually showed the slightly stronger bound |L ∩ rBn
2 | ≥ 2b2−n · vol(rBn

2)c + 1 and considered
arbitrary norms, not just `2. (See, e.g., [GL87, Thm. 1 of Ch. 2, Sec. 7].)

32

Theorem 2.1.2 (Reverse Minkowski Theorem, [RS17b]). For any lattice L ⊂ Rn with

det(L′) ≥ 1 for all sublattices L′ ⊆ L,

ρ1/t(L) ≤ 3

2
,

where t := 10(log n+ 2). In other words, for any lattice L ⊂ Rn

3ηdet(L)/2 ≤ η1/2(L) ≤ tηdet(L) ,

where

ηdet(L) := max
M⊆L∗

det(M)−1/rank(M) .

In Section 2.5, we extend Theorem 2.1.2 to obtain a bound on the Gaussian mass for all

parameters, as follows.

Theorem 2.1.3 ([RS17b]). For any lattice L ⊂ Rn with det(L′) ≥ 1 for all sublattices

L′ ⊆ L,

1. ρs(L) ≤ 1 + e−π(1/s2−t2)/2 for any s ≤ 1/t;

2. ρs(L) ≤ (Cst)n/2 for any 1/t < s < t and some universal constant C > 1; and

3. ρs(L) ≤ 2sn for any s ≥ t,

where t := 10(log n+ 2).

Theorem 2.1.3 implies the following point-counting bounds. (See Section 2.5 for the proof.)

Corollary 2.1.4. For every lattice L ⊂ Rn with det(L′) ≥ 1 for all sublattices L′ ⊆ L, and

every shift vector u ∈ Rn,

1. for any r ≥ 1, |L ∩ (rBn
2 + u)| ≤ 3eπt

2r2
/2;

33

2. for any
√
n/(2π) · t−1 ≤ r ≤

√
n/(2π) · t, |L ∩ (rBn

2 + u)| ≤ (Ctr/
√
n)n/2 for some

universal constant C > 0; and

3. for any r ≥
√
n/(2π) · t, |L ∩ (rBn

2 + u)| ≤ 2(2πer2/n)n/2,

where t := 10(log n+ 2).

In Section 2.8, we discuss the tightness of Theorem 2.1.3 and Corollary 2.1.4.

2.1.1 Approximation to the covering radius

Notice that the covering radius µ(L) of a lattice L must be at least the radius of a ball of

volume det(L), which is at least
√
n/(2πe) det(L)1/n. By considering projections, Kannan

and Lovász [KL88] improved this lower bound, as follows. Let πW⊥(L) be the projection

of the lattice onto the space W⊥ orthogonal to some lattice subspace W ⊂ Rn—a subspace

spanned by k < n linearly independent lattice vectors.3 Then clearly µ(L) ≥ µ(πW⊥(L)), and

the latter is at least (dim(W⊥)/(2πe))1/2 · det(πW⊥(L))1/ dim(W⊥). So, we obtain the lower

bound

µ(L) ≥ 1√
2πe
· µdet(L) ,

where

µdet(L) := max
W⊂Rn

√
dim(W⊥) · det(πW⊥(L))

1

dim(W⊥)

= max
M⊆L∗

√
rank(M) · det(M)−

1
rank(M) ,

with the first maximum taken over lattice subspaces W ⊂ Rn. Kannan and Lovász also

observed the upper bound

µ(L) ≤ C
√
n · µdet(L)

3The projection πW⊥(L) is a lattice if and only if W is a lattice subspace.

34

(see [DR16, Theorem 11.1] for a proof), and asked whether a better upper bound could be

found.4 In Section 2.6, we use Theorem 2.1.2 to derive the following improved bound.

Theorem 2.1.5 (Covering-radius approximation, [RS17b]). For any lattice L ⊂ Rn,

1√
2πe
· µdet(L) ≤ µ(L) ≤ 10(log n+ 10)3/2 · µdet(L) . (2.1)

We emphasize that Dadush and Regev [DR16] already proved that Theorem 2.1.5 (with

slightly weaker parameters) would follow from a proof of Theorem 2.1.2. Although our

proof is shorter and achieves slightly better parameters, it is conceptually similar to the one

in [DR16].

We note that the specific polylogarithmic factor that we obtain is likely not optimal. In

fact, in Theorem 2.6.7 we prove a bound similar to that in Eq. (2.1) that replaces the factor

10(log n + 10)3/2 by C
√

log n, assuming the celebrated Slicing Conjecture [Bou91, Kla06].

However, it is not difficult to show that this factor cannot be smaller than
√

log n/(4e)+o(1).5

Covering radius of stable lattices and Minkowski’s Conjecture. We say that a

lattice L ⊂ Rn is stable if det(L) = 1 and det(L′) ≥ 1 for all sublattices L′ ⊆ L. Stable lattices

arise in a number of contexts [HN75, Stu76, Gra84] and they play an important role in the

rest of this chapter. Shapira and Weiss showed that a tight bound of µ(L) ≤ µ(Zn) =
√
n/2

on the covering radius of stable lattices would imply a well-known conjecture attributed to

Minkowski [SW16]. (See also [Sol16].) We do not manage to prove such a tight bound, but

en route to proving Theorem 2.1.5 we do show that µ(L) ≤ 4
√
n(log n + 10) for all stable

4They also proved similar bounds for arbitrary norms [KL88, Corollary 3.11].
5Consider the lattice L generated by (e1, e2/2, 2e3/3

3/2, . . . , (n− 1)(n−1)/2en/n
n/2). It is not difficult to

verify that µdet(L) = 1, but

µ(L)2 = 1/4 +

n∑
k=2

(k − 1)k−1

4kk
= 1/4 +

n∑
k=2

(1− 1/k)k

4(k − 1)
=

n∑
k=2

1

4e(k − 1)
+O(1) =

log n

4e
+O(1) .

Therefore, µ(L) =
√

log n/(4e) + o(1).

35

lattices. (See Theorem 2.6.1.) We also observe that a very strong resolution to the Slicing

Conjecture and a better bound between two lattice parameters would yield the desired tight

bound. (See Theorem 2.6.6 and the discussion afterwards.)

2.1.2 An optimal bound on the Gaussian mass for “extreme” pa-

rameters

It is natural to ask whether ρs(L) ≤ ρs(Zn) for any lattice L ⊂ Rn such that det(L′) ≥ 1

for all sublattices L′ ⊆ L and any parameter s > 0. This would be a strict strengthening

of Theorem 2.1.3 and would obviously be the strongest possible bound with this form. The

next theorem shows that indeed ρs(L) ≤ ρs(Zn) for such lattices, but only for “extremely

low” or “extremely high” parameters s. (See Section 2.7 for the proof.)

Theorem 2.1.6 ([RS17b]). For any lattice L ⊂ Rn such that det(L′) ≥ 1 for all sublattices

L′ ⊆ L and parameter s > 0 such that either s ≤
√

2π/(n+ 2) or s ≥
√

(n+ 2)/(2π), we

have ρs(L) ≤ ρs(Zn).

We hope that the proof of Theorem 2.1.6 might provide some hints as to how to extend it to

all parameters s. We also note that Theorem 2.1.6 implies the full result in low dimensions,

as follows.

Corollary 2.1.7. For any lattice L ⊂ Rn with n ≤ 4 such that det(L′) ≥ 1 for all sublattices

L′ ⊆ L, ρs(L) ≤ ρs(Zn) for and s > 0.

2.1.3 Proof overview

In this section, we give a high-level overview of the proof of Theorem 2.1.2.

Bounding the mass of stable lattices. Recall that a lattice L is stable if det(L) = 1

and det(L′) ≥ 1 for all sublattices L′ ⊆ L. I.e., stable lattices are determinant-one lattices

36

that satisfy the assumption in Theorem 2.1.2. In this proof overview, we focus on bounding

the Gaussian mass ρs(L) of stable lattices L. The general case follows immediately from such

a bound.

Crucially, the stable lattices form a compact subset of the set of determinant-one lattices,

so that the continuous function ρs(L) must attain a global maximum over the set of stable

lattices. We may therefore restrict our attention to a lattice that corresponds to this global

maximum. If this lattice is on the boundary of the set of stable lattices, then it has a strict

sublattice L′ with determinant one. We can then “split the lattice” at L′. Namely, we can

replace the original lattice L by the direct sum L′ ⊕ L/L′. It is not difficult to prove that

ρs(L) ≤ ρs(L′ ⊕ L/L′) = ρs(L′)ρs(L/L′)

and that L′ and L/L′ are stable. So, we have reduced the question to a lower-dimensional

one. Therefore, if we could show that for any dimension, the global maximizer is on the

boundary, then we could use induction to show that the global maximizer of the Gaussian

mass is simply the integer lattice Zn = Z⊕ · · · ⊕ Z.

Indeed, this is how we prove Theorem 2.1.6 (in Section 2.7), which shows that Zn has

maximal Gaussian mass for certain “extreme” parameters s. For such parameters, by taking

the second derivative, we show that a stable lattice cannot be a local maximum over the set of

determinant-one lattices. Therefore, the global maximizer of ρs(L) over the compact subset

of stable lattices must be on the boundary, and we can perform the “splitting” procedure

described above to show by induction that ρs(L) ≤ ρs(Zn).

However, we do not know if ρs(L) can have such stable local maxima for other parameters.

As a potential way around this issue, we could use a natural and very elegant idea due

to Shapira and Weiss [SW16]—We could try to directly bound the value of ρs(L) at any

hypothetical local maximum. Then, either the global maximum of ρs(L) over the set of stable

37

lattices is one of these local maxima, in which case we can apply this bound; or it is on the

boundary, in which case we can “split the lattice” as above. (Shapira and Weiss suggested

using this approach to bound the covering radius of stable lattices to resolve Minkowski’s

Conjecture [SW16]. Interestingly, local maxima of the covering radius do exist [DSV12].)

Enter the Voronoi cell. Unfortunately, even bounding the value of ρs(L) at local

maxima seems to be beyond our grasp. So, instead of working with ρs(L) directly, we work

with a proxy for it: the Gaussian mass of the Voronoi cell of the lattice

γs(V(L)) :=

∫
V(L)/s

e−π‖x‖
2

dx ,

where the Voronoi cell is the set of all points that are closer to the origin than to any other

lattice vector

V(L) := {x ∈ Rn : ∀y ∈ L, ‖x‖ ≤ ‖y − x‖} .

An elegant proof due to Chung, Dadush, Liu, and Peikert [CDLP13] shows that ρs(L) is at

most 1/γs(V(L)). (See Lemma 2.4.1.) So, in order to prove an upper bound on ρs(L), it

suffices to prove a lower bound on γs(V(L)).

We accomplish this via the approach described above. I.e., we reduce the problem to

bounding the value of γs(V(L)) at local minima. (Here too, we do not know whether these

local minima exist.) By comparing gradients, we then show (in Section 2.3) that any lattice

corresponding to a local minimum must have a Voronoi cell V(L) such that the function

A 7→ γs(AV(L)) has a critical point at A = In, where A ∈ SLn(R) ranges over all determinant-

one matrices. Using a result due to Bobkov [Bob11], which itself follows from a deep theorem

due to Cordero-Erausquin, Fradelizi, and Maurey [CFM04],6 we can show that any such

6We note in passing that one can prove Theorem 2.1.2 (at least up to constants) without using this rather
heavy hammer by considering local maxima of the `-norm of the Voronoi cell instead of local minima of the
Gaussian mass of the Voronoi cell. (We still need the ``∗ theorem, though.)

38

critical point must actually be a global maximum of the function A 7→ γs(AV(L)). I.e., in the

language of convex geometry, the Voronoi cell is in a position that maximizes the Gaussian

mass. (Note the rather surprising jump from a presumed local minimum over the set of

determinant-one lattices to a global maximum over the set of positions of the Voronoi cell.)

Finally, we complete the proof by applying the celebrated ``∗ theorem [FT79, Lew79, Pis82].

In particular, this theorem tells us that every convex body K with vol(K) = 1 has a position

A ∈ SLn(R) such that γ1/t(AK) ≥ 2/3, with t := 10(log n + 2) as in Theorem 2.1.2. (See

Theorem 2.4.6.) Since the Voronoi cell is already in a position that maximizes the mass, we

must have γ1/t(V(L)) ≥ γ1/t(AV(L)) ≥ 2/3. We then obtain the desired bound on ρ1/t(L) by

applying the result of [CDLP13].

2.1.4 Related work

Our main theorem was originally conjectured by Dadush [Dad12a], and Dadush and Regev

described several applications of the conjecture [DR16]. In particular, they showed the con-

nection between this conjecture and the Kannan-Lovász-style covering-radius approximation

given in Theorem 2.1.5. They also used a result from convex geometry (specifically the

Milman-Pisier Theorem) as evidence for the conjecture. That theorem is related to the ``∗

theorem that we use in our proof.

The high-level outline of our proof (in which we obtain a bound on a lattice parameter by

reducing the question to stable local extrema) is due to Shapira and Weiss [SW16]. They

showed that an important conjecture attributed to Minkowski would follow if we could prove

that Zn has maximal covering radius amongst all stable lattices (i.e., that the covering radius

of an n-dimensional stable lattice is at most
√
n/2). They then observed that it would suffice

to bound the covering radius of the lattices corresponding to local maxima of the covering

radius function over the set of determinant-one lattices.

39

Stable lattices were introduced (in a more general context) by Harder and Narasimhan [HN75]

and by Stuhler [Stu76]. Our presentation more-or-less follows that of Grayson [Gra84].

2.1.5 Directions for future work

The most obvious direction for future work is to try to obtain a better value for t in

Theorem 2.1.2. As far as we know, the correct value could be as small as t = η1/2(Zn) =√
log(n)/π + o(1). Our proof seems to be loose in two places: (1) Theorem 2.4.6, which

bounds the maximal Gaussian mass of convex bodies; and (2) the induction argument in

the proof of Proposition 2.4.10. So, perhaps a different proof technique (such as the one

discussed in the next paragraph) would be preferable for this.

A more ambitious goal would be to prove that Zn is the exact maximizer of ρs(L) for all

parameters s > 0 over the set of stable lattices L. One might try to prove this by showing

that ρs(L) has no local maxima over the set of determinant-one (stable) lattices for any

parameter s > 0. Alternatively, one can try using the technique of “characterizing the local

extrema” that we use to prove Theorem 2.1.2. For this, we note that any local maximum of

ρs(L) must correspond to an “isotropic” lattice L in the sense that

∑
y∈L

ρs(y)yyT = α · In

for some scalar α > 0. So, it would suffice to show that ρs(L) ≤ ρs(Zn) for (stable) “isotropic”

lattices. Unfortunately, we do not know how to make use of this.

Theorem 2.1.2 gives quite a tight approximation to the smoothing parameter η1/2(L).

However, an analogous tightness result does not hold for Theorem 2.1.3 and Corollary 2.1.4.

Dadush and Regev therefore suggested a potential refinement that depends on “the full

spectrum of dense sublattices,” minL′⊆L, rank(L′)=k det(L′)1/k for k = 1, . . . , n, rather than just

minL′⊆L det(L′)1/rank(L′) [DR16, Section 9]. This could potentially give a tight characterization

40

of |L ∩ rBn
2 | for all radii r and all lattices L ⊂ Rn.

One can also consider generalizations of Theorems 2.1.5 and 2.1.2 to arbitrary norms,

as discussed in [KL88] and [DR16, Section 9] respectively. Extending Theorem 2.1.5 to

arbitrary norms could potentially yield faster algorithms for Integer Programming [Dad12b].

Unfortunately, a natural generalization of Theorem 2.1.2 actually fails. (See [DR16, Section

9].)

2.2 Preliminaries

A convex body K ⊂ Rn is a convex compact subset of Rn with non-empty interior. It is

symmetric if −K = K. A position of a convex body is simply AK for a determinant-one

matrix A.

2.2.1 Stable lattices

We say that a lattice L ⊂ Rn is stable if det(L) = 1 and det(L′) ≥ 1 for all sublattices

L′ ⊆ L. (Some authors call such lattices “semistable.”) Note the obvious relationship between

this notion and Theorem 2.1.2. Here, we describe the properties of stable lattices that we

will need in the sequel, and include proofs for completeness. This theory was developed

by [HN75, Stu76, Gra84]. See, e.g., [Gra84, Cas04] for a more thorough treatment.

We can in some sense “decompose” any lattice into stable lattices. To see this, we consider

the two-dimensional scatter plot with points

{(rank(L′), log det(L′)) : L′ ⊆ L} ,

for some lattice L ⊂ Rn, where we explicitly include the trivial sublattice {0} and define

log det({0}) := 0. We call this the canonical plot of L. Note that these points are bounded

41

L0 = {0}

L1

L2

L3

L5 = L

log det

rank

L4

Figure 2.1: The canonical polygon of a (hypothetical) lattice L.

from below and that the minimum log det for each fixed rank is achieved. The convex hull of

these points is therefore a degenerate polygon (bounded from below, but unbounded from

above), called the canonical polygon of L. See Figure 2.1.

We are interested in the vertices of this polygon (i.e., the extremal points), which

correspond to certain primitive sublattices of L with low determinants. (E.g., L0, . . . ,L5 in

Figure 2.1.) Each vertex corresponds to a unique sublattice, and a lattice L1 corresponding

to a low-rank extremal point is a sublattice of any lattice L2 corresponding to a higher-rank

extremal point, L1 ⊂ L2. Therefore, the extremal points define a canonical filtration of L,

{0} = L0 ⊂ L1 ⊂ · · · ⊂ Lk = L .

(E.g., the canonical filtration of Zn is trivial: {0} = L0 ⊂ L1 = Zn. Note in particular we

only include lattices that correspond to vertices in the canonical filtration, not any lattice on

the boundary.) All of the quotients Li/Li−1 of adjacent sublattices in the canonical filtration

are scalings of stable lattices. This is what we mean when we say that we can “decompose” a

lattice into a sequence of stable lattices. Following [Gra84, Cas04], we make these facts (and

more) precise in Proposition 2.2.2, which lists basic properties of the canonical filtration and

42

stable lattices. We first need the following lemma, due to Stuhler [Stu76].

Lemma 2.2.1. For any L ⊂ Rn and any two primitive sublattices L1,L2 ⊆ L,

rank(L1) + rank(L2) = rank(L1 ∩ L2) + rank(L1 + L2) ,

and

det(L1 ∩ L2) det(L1 + L2) ≤ det(L1) det(L2) ,

where we define det({0}) = 1.

Proof. The equality of ranks follows by considering the dimensions of the subspaces spanned

by L1, L2, L1 ∩ L2, and L1 + L2. For the inequality, suppose that M1,M2 ⊆ M are

sublattices such that M1 ∩M2 = {0} and M1 +M2 =M. Then, we have

det(M) = det(M1) · det(πspan(M1)⊥(M2)) ≤ det(M1) det(M2) .

Plugging in M := (L1 + L2)/(L1 ∩ L2), M1 := L1/(L1 ∩ L2) and M2 := L2/(L1 ∩ L2) gives

det(L1 + L2)/ det(L1 ∩ L2) = det((L1 + L2)/(L1 ∩ L2))

≤ det(L1/(L1 ∩ L2)) det(L2/(L1 ∩ L2))

= det(L1) det(L2)/ det(L1 ∩ L2)2 .

The result follows by rearranging.

Proposition 2.2.2. For any lattice L ⊂ Rn, let {0} = L0,L1, . . . ,Lk = L be all sublattices

corresponding to vertices of the canonical polytope, ordered by their rank. (See Figure 2.1.)

Then,

1. the Li define a filtration L0 ⊂ L1 ⊂ · · · ⊂ Lk;

43

2. the quotient lattice Li/Li−1 is a scaling of a stable lattice for 1 ≤ i ≤ k (i.e.,

det(Li/Li−1)−1/rank(Li/Li−1) · Li/Li−1 is stable); and

3. for all 1 ≤ i ≤ k − 1, det(Li/Li−1)1/rank(Li/Li−1) < det(Li+1/Li)1/rank(Li+1/Li).

Furthermore,

(i) the dual of a stable lattice is stable;

(ii) the set of all stable lattices is compact;

(iii) the direct sum of stable lattices is stable; and

(iv) a lattice L ⊂ Rn is on the boundary of the set of stable lattices if and only if L is stable

and there is a primitive sublattice L′ ⊂ L with 0 < rank(L′) < n such that L′ and L/L′

are both stable.

Proof. To prove Item 1, we first note that for any two indices i ≤ j, we can interpret

Lemma 2.2.1 in terms of the canonical plot as follows. Consider the parallelogram with

the three vertices (rank(Li), log det(Li)), (rank(Li + Lj), log det(Li + Lj)), and (rank(Li ∩

Lj), log det(Li ∩ Lj)). Lemma 2.2.1 tells us that the point (rank(Lj), log det(Lj)) lies on or

above the fourth point in this parallelogram. This contradicts the assumption that Li and

Lj are extremal points of the convex hull of the canonical plot unless the parallelogram is

degenerate—i.e., unless Li + Lj = Lj or Li ∩ Lj = Li. This happens if and only if Li ⊆ Lj,

as needed.

To prove Item 2, let L′ ⊆ Li/Li−1. Let L̂ ⊆ Li be a “lift” of L′ so that Li−1 ⊆ L̂

and L′ = L̂/Li−1. Since Li−1 and Li are vertices of the canonical polygon, the point

(rank(L̂), log det(L̂)) must lie on or above the line between (rank(Li−1), log det(Li−1)) and

44

(rank(Li), log det(Li)). Therefore,

det(L′) = det(L̂)/ det(Li−1)

≥
(det(Li)

det(Li−1)

) rank(L̂)−rank(Li−1)

rank(Li)−rank(Li−1)

= det(Li/Li−1)
rank(L′)

rank(Li/Li−1) .

I.e., if we set αi := det(Li/Li−1)−1/rank(Li/Li−1), then det(αiL′) ≥ 1. It follows that αiLi/Li−1

is stable, as claimed.

Item 3 simply says that the slopes of the lines between vertices on the canonical polytope

are strictly increasing. This is essentially just the definition of a vertex. (See Figure 2.1.)

To prove Item (i), let M ⊂ Rn be a stable lattice and let M′ ⊆ M∗ be a primitive

sublattice of the dual. We have

det(M′) =
1

det(M∗/M′)
= det((M∗/M′)∗) = det(M∩ span(M′)) ≥ 1 .

Therefore, M∗ is stable.

To prove Item (ii), it suffices to find a bounded set in Rn×n that contains a basis for every

stable lattice. Indeed, for any stable lattice M⊂ Rn, by Item (i), we know that its dual M∗

is also stable. Therefore, λ1(M∗) ≥ 1. It then follows from [LLS90] that there exists a basis

(b1, . . . , bn) of M with 1 ≤ ‖bi‖ ≤ Cn2.5 for all i, as needed.

To prove Item (iii), let M1,M2 be two stable lattices, and let M′ ⊂ M1 ⊕M2 be a

sublattice. Then, applying Lemma 2.2.1, we have

det(M′) ≥ det(M′ ∩M1) det(M′ +M1)

det(M1)
= det(M′ ∩M1) det(M′ +M1) .

Note that M′ ∩M1 is a sublattice of M1, so that det(M′ ∩M1) ≥ 1. And M′ +M1 =

45

M1⊕πspan(M2)(M′) is the direct sum ofM1 with a sublattice ofM2, so that det(M′+M1) =

det(πspan(M2)(M′)) ≥ 1 as well. The result follows.

Finally, Item (iv) follows by first noting that a stable latticeM is on the boundary if and

only if there is some strict primitive non-zero sublatticeM′ ⊂M with det(M′) = 1. Clearly,

M′ is stable, since it has determinant one and all of its sublattices are also sublattices of

M, so that they must have determinant at least one. The proof that M/M′ is stable is

essentially identical to the proof of Item 2.

2.2.2 The Voronoi cell and fundamental bodies

The Voronoi cell of a lattice L ⊂ Rn,

V(L) := {x ∈ Rn : 〈x,y〉 ≤ ‖y‖2/2, ∀y ∈ L} ,

is the set of vectors in Rn that are closer to 0 than to any other lattice vector. In fact, it is a

symmetric polytope.

A fundamental body of a lattice L ⊂ Rn is any convex body K ⊂ Rn such that K + L is

a tiling of space. Equivalently, vol(K) = det(L) and Int(K) ∩ (K + y) = ∅ for any non-zero

lattice point y ∈ L \ {0}. In particular, the Voronoi cell is a fundamental body.

Claim 2.2.3. For any lattice L ⊂ Rn, primitive sublattice L′ ⊂ Rn, fundamental body K1

of L′, and fundamental body K2 of L/L′, K := K1 × K2 is a fundamental body of L. In

particular, if {0} = L0 ⊂ L1 ⊂ · · · ⊂ Lk is a filtration of primitive sublattices, then

V
(⊕

i

Li/Li−1

)
= V(L1/L0)× · · · × V(Lk/Lk−1)

is a fundamental body of L.

46

Proof. Notice that

vol(K) = vol(K1) · vol(K2) = det(L′) · det(L/L′) = det(L) .

It therefore suffices to show that Int(K) ∩ (K + y) = ∅ for any y ∈ L \ {0}. So suppose

y ∈ L such that Int(K) ∩ (K + y) 6= ∅. Then, by projecting orthogonally to L′, we see

that Int(K2) ∩ (K2 + πspan(L′)⊥(y)) 6= ∅. Since K2 is a fundamental body of L/L′ and

πspan(L′)⊥(y) ∈ L/L′, it follows that πspan(L′)⊥(y) = 0, i.e., y ∈ L′. Intersecting with span(L′),

this implies that Int(K1) ∩ (K1 + y) 6= ∅. Since y ∈ L′ and K1 is a fundamental body of L′,

we obtain that y = 0. The result follows.

The next lemma and its corollary show that the Voronoi cell is in some sense the “optimal

fundamental body.” They are very similar to some results due to Dadush [Dad12b, Lemma

6.3.6, Corollary 6.3.7].

Lemma 2.2.4. For any lattice L ⊂ Rn, there is a map ψL : Rn → V(L) such that ‖ψL(x)‖ ≤

‖x‖, and for every fundamental body K of L, ψL restricted to Int(K) is injective and

volume-preserving.

Proof. The function ψL just maps x to the unique representative of x mod L that is in

the Voronoi cell. Specifically, let CVPL(x) := arg miny∈L ‖y − x‖ be the closest lattice

vector to x, and let ψL(x) := x− CVPL(x). By the definition of CVP, it is immediate that

‖ψL(x)‖ = miny∈L ‖y − x‖ ≤ ‖x‖.

Suppose ψL(x) = ψL(x′) for some x,x′ ∈ Int(K). I.e., x − CVPL(x) = x′ − CVPL(x′).

Rearranging, we see that y := x − x′ = CVPL(x) − CVPL(x′) is a lattice point. But,

x ∈ Int(K) ∩ (K + y). Since K is a fundamental body, it follows that y = 0. I.e., x = x′,

and ψL is injective over Int(K).

The fact that ψL is volume-preserving over Int(K) follows from the fact that it is an

47

injective piecewise combination of translations.

Corollary 2.2.5. For any non-decreasing measurable function f : R→ R, lattice L ⊂ Rn,

and fundamental body K of L,

∫
V(L)

f(‖x‖)dx ≤
∫
K

f(‖x‖)dx .

Proof.

∫
K

f(‖x‖)dx =

∫
Int(K)

f(‖x‖)dx

≥
∫

Int(K)

f(‖ψL(x)‖)dx

=

∫
ψL(Int(K))

f(‖x‖)dx

=

∫
V(L)

f(‖x‖)dx ,

where the last equality follows from the fact that ψL preserves volume and vol(Int(K)) =

vol(V(L)), so it must be the case that ψL(Int(K)) ⊂ V(L) differs from V(L) on a set of

measure zero.

2.2.3 Matrix calculus

For a function g : Rn×n → R, if for some Q ∈ Rn×n there exists an B ∈ Rn×n such that

lim
M→0

g(Q+M)− g(Q)− Tr(BTM)

‖M‖
= 0 ,

then we say that g is differentiable at Q, and we call B the gradient of g at Q,

∇Ag(A)|A=Q := B .

48

(Some authors prefer to define ∇g(A)|A=Q as BT .)

2.3 Gradients over lattices and over positions of the

Voronoi cell

The purpose of this section is to prove the following theorem. (Note that the gradient is

actually symmetric, so that the transpose in the definition of the function g is simply a matter

of convention.) The proof we give here is elementary but somewhat lengthy. In [RS17b], we

include a much shorter proof that works for monotonic f under the assumption that one

already knows that the functions g and h are differentiable.

Theorem 2.3.1 ([RS17b, Theorem 3.1]). For any continuously differentiable function f :

R≥0 → R and lattice L ⊂ Rn, let

g(A) :=
1

| det(A)|
·
∫
V(ATL)

f(‖x‖2)dx, and h(A) :=
1

| det(A)|
·
∫
AV(L)

f(‖x‖2)dx ,

where A ∈ GLn(R) ranges over the set of all non-singular matrices. Then, g and h are

differentiable at A = In, with

∇Ag(A)|A=In = ∇Ah(A)|A=In = 2

∫
V(L)

f ′(‖x‖2)xxTdx ,

where f ′(x) := d
dx
f(x).

We first compute the gradient of h, which is straightforward.

Claim 2.3.2. For any continuously differentiable function f : R≥0 → R and measurable set

U , let

h(A) :=
1

| det(A)|
·
∫
AU

f(‖x‖2)dx ,

49

where A ∈ GLn(R) ranges over the set of all non-singular matrices. Then, h is differentiable

with

∇Ah(A)|A=In = 2

∫
U

f ′(‖x‖2)xxTdx ,

where f ′(x) := d
dx
f(x), provided that this integral and h(In) are well-defined and finite.

Proof. By a change of variables, we have

h(A) =

∫
U

f(‖Ax‖2)dx .

Then, by applying an appropriate high-dimensional form of Leibniz’s integral rule (see,

e.g., [Kam16]), we may swap the gradient and the integral and write

∇Ah(A) =

∫
U

(
∇Af(‖Ax‖2)

)
dx

= 2

∫
U

f ′(‖Ax‖2)AxxTdx (Chain rule) .

2.3.1 Polytopes and “protected cones”

We define

Hw := {x ∈ Rn : 〈w,x〉 ≤ 1} .

Any convex body with 0 in its interior can be written as

K(W) :=
⋂

w∈W

Hw

for some (possibly infinite) set W ⊂ Rn. We call K(W) a polytope if the set W can be taken

to be finite. I.e., a polytope is a bounded finite intersection of half-spaces.

The facets of a polytope K(W) are the points in the polytope for which at least one

50

inequality is tight,

FW,w := {x ∈ K(W) : 〈w,x〉 = 1} ,

for w ∈ W .

A polytope has normally symmetric facets if for every w ∈ W \ {0}, x ∈ FW,w if and

only if the “reflection of x through span(w),” 2πw(x) − x, is in FW,w. In other words, a

polytope has normally symmetric facets if each facet is symmetric about the line normal to

the facet. Equivalently, if we define

RW,w := {x ∈ Rn : for all w′ ∈ W , 〈w′,x〉 ≤ 〈w,x〉} (2.2)

to be the minimal cone containing FW,w (or {0} if the facet is empty), then a polytope has

normally symmetric facets if and only if φw(RW,w) = RW,w for all w ∈ W \ {0}, where

φw(x) := 2πw(x)− x = 2〈w,x〉w/‖w‖2 − x . (2.3)

We will be interested in perturbations of polytopes. When we analyze these objects, we

will have some trouble with points x that “change cones RW,w.” The next lemma shows

how to find slightly smaller “protected cones” RW,wi,ε inside the RW,wi
so that the vectors

inside these “protected cones” do not leave the larger cone RW,wi
after a small perturbation

W → W ′. See Figure 2.2.

Lemma 2.3.3. For any finite set W := {w1, . . . ,wk} ⊂ Rn \ {0} of distinct vectors

such that K(W) is a polytope and sufficiently small ε > 0, there exist “protected cones”

RW,w1,ε, . . . , RW,wk,ε such that for any W ′ := {w′1, . . . ,w′k} ⊂ Rn with ‖w′i −wi‖ ≤ ε for all

i, we have

1. RW,wi,ε ⊆ RW ′,w′i
for all i (i.e., vectors in the protected cones “keep the same relevant

vector” after any ε perturbation of the wi);

51

0

RW,w1

RW,w2

RW,w3

RW,w4

RW,w5

RW,w6

(a) A polytope K(W) ⊂ R2 with the correspond-
ing cones RW,w1 , . . . , RW,w6 .

0

B1

RW,w1,ε

K(W)4K(W ′)

B1

(b) The “protected cone” RW,w1,ε, “bad” set
B1, and the symmetric difference K(W)∆K(W ′)
between the original polytope K(W) and its per-
turbation K(W ′).

Figure 2.2: An illustration of Lemma 2.3.3.

2. for all i, the “bad” set Bi := {x ∈ Rn : x ∈ RW,wi
\ RW,wi,ε} of points not in the

protected cone satisfies vol(Bi ∩ (K(W)∆K(W ′)) ≤ O(ε2), where the O(ε2) term hides

dependence on W (i.e., the dark red region in Figure 2.2b has volume at most O(ε2));

and

3. if φwi
(RW,wi

) = RW,wi
, then φwi

(RW,wi,ε) = RW,wi,ε.

Proof. Let

αε := max
i 6=j

2ε

‖wi −wj‖
.

We take

RW,wi,ε := {x ∈ Rn \ {0} : x + αε‖x‖Bn
2 ⊆ RW,wi

} .

Item 3 then follows from the fact that φwi
is an isometry. In particular, φwi

(x+αε‖x‖Bn
2) =

φwi
(x) + αε‖φwi

(x)‖Bn
2 .

Turning to Item 1, suppose that x ∈ RW,wi,ε, and let j 6= i. Let ŵ := (wi−wj)/‖wi−wj‖.

52

By the definition of the protected cone, we have

〈wi,x− αε‖x‖ŵ〉 ≥ 〈wj,x− αε‖x‖ŵ〉 .

Rearranging, we see that

〈wi,x〉 ≥ 〈wj,x〉+ αε‖x‖〈wi −wj, ŵ〉 = 〈wj,x〉+ αε‖x‖‖wi −wj‖ ≥ 〈wj,x〉+ 2ε‖x‖ .

Therefore, by Cauchy-Schwarz, we have

〈w′i,x〉 ≥ 〈wi,x〉 − ε‖x‖ ≥ 〈wj,x〉+ ε‖x‖ ≥ 〈w′j,x〉 .

I.e., x ∈ RW ′,w′i
, as needed.

Finally, suppose that x ∈ Bi ∩ (K(W)∆K(W ′)). We assume that x ∈ K(W) \K(W ′),

since the case where x ∈ K(W ′) \K(W) is nearly identical. Since x ∈ K(W), we have

〈wi,x〉 ≤ 1 .

Since x /∈ K(W ′), there exists a j such that

1 < 〈w′j,x〉 = 〈wj,x〉+ 〈w′j −wj,x〉 ≤ 〈wi,x〉+ ε‖x‖ ,

where we used that x ∈ RW,wi
. It follows that

|〈wi,x〉 − 1| ≤ ε‖x‖ = O(ε) . (2.4)

53

And, since x ∈ Bi, there must also be some j 6= i such that

|〈wi −wj,x〉| ≤ O(ε)‖x‖ ≤ O(ε) . (2.5)

In other words, x lies in one of finitely many intersections between a slab of width O(ε)

bounded away from 0 (defined by Eq. (2.4)), a slab of width O(ε) around 0 (defined by

Eq. (2.5)), and the bounded set K(W) ∪K(W ′). Item 2 then follows from the fact that any

such set has volume O(ε2).

The next rather technical and specific corollary shows that these protected cones in some

sense “do not distinguish between perturbations to w′i and perturbations to φwi
(w′i),” when

K(W) has normally symmetric facets.

Corollary 2.3.4. For any finite set W := {w1, . . . ,wk} ⊂ Rn \ {0} such that K(W) is a

polytope with normally symmetric facets, sufficiently small ε > 0, and W ′ := {w′1, . . . ,w′k} ⊂

Rn with ‖w′i −wi‖ ≤ ε for all i, let W ′′ := {φw1(w′1), . . . , φwk
(w′k)}. Then,

RW,wi,ε ∩K(W ′) = φwi
(RW,wi,ε ∩K(W ′′))

for all i, where RW,wi,ε is the “protected cone” from Lemma 2.3.3.

Proof. By Item 1 of Lemma 2.3.3, we have that RW,wi,ε ⊆ RW ′,w′i
∩ RW ′′,φwi (w

′
i)

. It follows

that RW,wi,ε ∩K(W ′) = RW,wi,ε ∩Hw′i
, and similarly RW,wi,ε ∩K(W ′′) = RW,wi,ε ∩Hφwi (w

′
i)

.

Noting that for any x,y ∈ Rn, 〈φwi
(y),x〉 = 〈y, φwi

(x)〉 = 〈y, φ−1
wi

(x)〉, we see that for any

y ∈ Rn,

Hφwi (y) = {x ∈ Rn : 〈φwi
(y),x〉 ≤ 1} = {x ∈ Rn : 〈y, φ−1

wi
(x)〉 ≤ 1} = φwi

(Hy) .

54

We therefore have

φwi
(RW,wi,ε ∩Hφwi (w

′
i)

) = φwi
(RW,wi,ε ∩ φwi

(Hw′i
)) = φwi

(RW,wi,ε) ∩Hw′i
,

where the last equality follows from the fact that φwi
= φ−1

wi
. The result follows by recalling

from Item 3 of Lemma 2.3.3 that φwi
(RW,wi,ε) = RW,wi,ε.

2.3.2 Perturbations of polytopes

The purpose of this subsection is to prove Lemma 2.3.8. The next claim shows that a small

change to W corresponds to a small change to K(W).

Claim 2.3.5. For any finite set W = {w1, . . . ,wk} ⊂ Rn such that K(W) is a polytope,

sufficiently small ε > 0, and any W ′ := {w′1, . . . ,w′k} ⊂ Rn such that ‖wi −w′i‖ ≤ ε,

vol(K(W)∆K(W ′)) ≤ O(ε) ,

where the O(ε) term hides factors that depend on W .

Proof. Suppose that x ∈ K(W) \K(W ′). (The case when x ∈ K(W ′) \K(W) is essentially

identical.) Then, there exists some index i such that

〈wi,x〉 ≤ 1 < 〈w′i,x〉 .

Using 〈w′i −wi,x〉 ≤ ε‖x‖ ≤ O(ε), we see that

1−O(ε) < 〈wi,x〉 ≤ 1 .

I.e., x lies in one of k slabs with width proportional to ε. The result follows by noting that

55

the intersection of any such slab with the bounded body K(W) has volume O(ε).

Claim 2.3.6. For any non-singular matrix A ∈ GLn(R) and any W ⊂ Rn, AK(W) =

K(A−TW).

Proof. It suffices to note that x ∈ AK(W) if and only if 〈w, A−1x〉 = 〈A−Tw,x〉 ≤ 1 for all

w ∈ W .

Recall that the Voronoi cell of a lattice L is given by V(L) := K(W), where W :=

{2y/‖y‖2 : y ∈ L \ {0}}. We therefore define ψ(y) := 2y/‖y‖2. We will need the following

technical claim, which shows how ψ behaves under small linear perturbations.

Claim 2.3.7. For any y ∈ Rn \ {0}, matrix M ∈ Rn×n, and sufficiently small ε > 0, we

have

‖M−1
ε ψ(y)− ψ(φy(Mεy))‖ ≤ O(ε2) ,

where Mε := In + εM and the O(ε2) notation hides dependence on y and ‖M‖.

Proof. We have

M−1
ε ψ(y) = (In − εM)ψ(y) +O(ε2) · u = 2 · y − εMy

‖y‖2
+O(ε2) · u ,

where u ∈ Rn is some unit vector that depends on y and M . Similarly, we have

ψ(φy(Mεy)) = 2 · φy(Mεy)

‖Mεy‖2

= 2 · y + 2ε〈y,My〉y/‖y‖2 − εMy

‖y‖2 + 2ε〈y,My〉+ ε2‖My‖2

= 2 · (y − εMy) · (1 + 2ε〈y,My〉/‖y‖2)

‖y‖2 · (1 + 2ε〈y,My〉/‖y‖2)
+O(ε2) · u′

= 2 · y − εMy

‖y‖2
+O(ε2) · u′ ,

where u′ is some unit vector that depends on y and M . The result follows.

56

With this, we can prove the analogue of Claim 2.3.6 for K(ψ(Y)) instead of K(W). (Note

the similarity between the set Y ′ here and the set W ′′ in Corollary 2.3.4.)

Lemma 2.3.8. For any finite set Y := {y1, . . . ,yk} ⊂ Rn \ {0} such that K(ψ(Y)) is a

polytope, linear transformation M ∈ Rn×n, and sufficiently small ε > 0,

vol
(
(MεK(ψ(Y)))∆K(ψ(Y ′))

)
≤ O(ε2) ,

where Mε := In + εM , Y ′ := {φy1
(MT

ε y1), . . . , φyk(M
T
ε yk)}, and the O(ε2) term hides

dependence on Y and ‖M‖.

Proof. By Claim 2.3.6, MεK(ψ(Y)) = K(M−T
ε ψ(Y)). And, by Claim 2.3.7, the vectors in

ψ(Y ′) differ from the vectors in M−T
ε ψ(Y) by vectors of length O(ε2). The result then follows

from Claim 2.3.5.

2.3.3 Gradient equivalence for polytopes with normally symmet-

ric facets

We can now prove a more general variant of Theorem 2.3.1.

Theorem 2.3.9 ([RS17b, Theorem 3.9]). For any continuously differentiable function f :

R≥0 → R and finite set Y := {y1, . . . ,yk} ⊂ Rn \ {0} such that K(ψ(Y)) is a polytope with

normally symmetric facets, let

g(A) :=
1

| det(A)|
·
∫
K(ψ(ATY))

f(‖x‖2)dx, and h(A) :=
1

| det(A)|
·
∫
AK(ψ(Y))

f(‖x‖2)dx .

Then, g and h are differentiable at A = In, with

∇Ag(A)|A=In = ∇Ah(A)|A=In = 2

∫
K(ψ(Y))

f ′(‖x‖2)xxTdx ,

57

where f ′(x) := d
dx
f(x).

Proof. Since f is continuous and we are only interested in its value over a bounded region,

we may assume without loss of generality that f is bounded. I.e., |f(x)| ≤ Cf for some finite

Cf > 0. We have already computed the gradient of h in Claim 2.3.2, so we only need to show

that ∇Ag(A)|A=In = ∇Ah(A)|A=In . For a convex body K ⊂ Rn, let F (K) :=
∫
K
f(‖x‖)2dx.

(E.g., g(A) = F (K(ψ(ATY)))/| det(A)| and h(A) = F (AK(ψ(Y)))/| det(A)|.)

Let ε > 0 be sufficiently small, and let M ∈ Rn×n such that ‖MTyi‖ ≤ 1 and ‖ψ(yi +

εMTyi)− ψ(yi)‖ ≤ ε for all i. Let Mε := In + εM . It suffices to show that

∣∣ det(Mε)g(Mε)− det(Mε)h(Mε)
∣∣ =

∣∣F (K(ψ(MT
ε Y)))− F (MεK(ψ(Y)))

∣∣ ≤ O(ε2) .

We first move from MεK(ψ(Y)) to K(ψ(Y ′)), where Y ′ := {φy1
(MT

ε y1), . . . , φyk(M
T
ε yk)}:

∣∣F (MεK(ψ(Y)))− F (K(ψ(Y ′)))
∣∣ ≤ Cf · vol((MεK(ψ(Y)))∆K(ψ(Y ′))) ≤ O(ε2) ,

where the last inequality follows from Lemma 2.3.8.

Let wi := ψ(yi) and W := {w1, . . . ,wk}. Since the cones RW,wi
cover space, we have

∣∣F (K(ψ(Y ′)))− F (K(ψ(MT
ε Y)))

∣∣ ≤∑
i

∣∣F (RW,wi
∩K(ψ(Y ′)))− F (RW,wi

∩K(ψ(MT
ε Y)))

∣∣ .
Let Ri := RW,wi,ε be the “protected cones” from Lemma 2.3.3. Then,

∣∣F (RW,wi
∩K(ψ(Y ′)))− F (RW,wi

∩K(ψ(MT
ε Y)))

∣∣
≤
∣∣F (Ri ∩K(ψ(Y ′)))− F (Ri ∩K(ψ(MT

ε Y)))
∣∣

+ Cf · vol
(
(RW,wi

\Ri) ∩ (K(ψ(Y ′))∆K(ψ(MT
ε Y))

)
≤
∣∣F (Ri ∩K(ψ(Y ′)))− F (Ri ∩K(ψ(MT

ε Y)))
∣∣+O(ε2) ,

58

where we have applied Item 2 of Lemma 2.3.3 by noting that

vol
(
(RW,wi

\Ri) ∩ (K(ψ(Y ′))∆K(ψ(MT
ε Y))

)
≤ vol

(
(RW,wi

\Ri) ∩ (K(ψ(MT
ε Y))∆K(ψ(Y)))

)
+ vol

(
(RW,wi

\Ri) ∩ (K(ψ(Y ′))∆K(ψ(Y)))
)

≤ O(ε2) .

Finally, we claim that

F (Ri ∩K(ψ(Y ′))) = F (Ri ∩K(ψ(MT
ε Y))) .

Indeed, by Corollary 2.3.4, we have that Ri ∩K(ψ(MT
ε Y)) = φwi

(Ri ∩K(ψ(Y ′))). (Here,

we have used the fact that φyi = φwi
together with the fact that φwi

commutes with ψ.)

Recalling that φwi
is an isometry (and that it therefore preserves volume), we have

F (Ri ∩K(ψ(Y ′))) =

∫
Ri∩K(ψ(Y ′))

f(‖φwi
(x)‖2)dx

= F (φwi
(Ri ∩K(ψ(Y ′))))

= F (Ri ∩K(ψ(MT
ε Y))) ,

as claimed. Combining everything together gives the result.

2.3.4 Proof of Theorem 2.3.1

We now prove Theorem 2.3.1 as a relatively straightforward corollary of Theorem 2.3.9. To

do this, we first recall the following well known fact.

Lemma 2.3.10. For any lattice L ⊂ Rn, the Voronoi cell V(L) has normally symmetric

facets.

59

Proof. Let W := ψ(L \ {0}) = {2y/‖y‖2 : y ∈ L \ {0}} so that V(L) = K(W), and

let y,y′ ∈ L \ {0} be distinct. Let w := 2y/‖y‖2 ∈ W , and w′ := 2y′/‖y′‖2 ∈ W be

the corresponding points in w. Suppose x ∈ RW,w. It suffices to show that 〈w′, φw(x)〉 ≤

〈w, φw(x)〉. Equivalently, it suffices to show that

〈y′, φy(x)〉
‖y′‖2

≤ 〈y, φy(x)〉
‖y‖2

.

We consider the inner product of y − y′ with x. In particular, since y − y′ is a non-zero

lattice vector and x ∈ RW,w, we have

〈y − y′,x〉 ≤ ‖y − y′‖2 · 〈y,x〉
‖y‖2

=
(

1− 2〈y,y′〉
‖y‖2

+
‖y′‖2

‖y‖2

)
· 〈y,x〉 .

Rearranging, we have

2 · 〈y,y
′〉〈y,x〉

‖y‖2‖y′‖2
− 〈y

′,x〉
‖y′‖2

≤ 〈y,x〉
‖y‖2

.

The result follows by noting that the right-hand side is equal to 〈y,φy(x)〉
‖y‖2 and the left-hand

side is equal to 〈y
′,φy(x)〉
‖y′‖2 .

With this, we can prove the theorem.

Proof of Theorem 2.3.1. Let U ⊂ GLn(R) be some bounded open neighborhood around In.

It suffices to show that there exists a finite set Y satisfying that for all A ∈ U , the Voronoi

cell V(ATL) is equal to K(ψ(ATY)). (Without the finiteness assumption, we could simply

take Y = L \ {0}.) The result then follows from Theorem 2.3.9 applied to Y together with

Lemma 2.3.10.

Note that we only need to take y ∈ Y if ‖ATy‖ ≤ 2µ(ATL) for some A ∈ U . Let

s := supA∈U µ(ATL), and notice that s < ∞ since U is bounded and the covering radius

function µ is continuous. Let α := infA∈U,x∈Rn\{0} ‖ATx‖/‖x‖. We may take U small

60

enough that α > 0. Then, let Y := (L \ {0}) ∩ (2s/α)Bn
2 and notice that it is a finite

set. If ‖ATy‖ ≤ 2µ(ATL) ≤ 2s for some A ∈ U , then ‖y‖ ≤ ‖ATy‖/α ≤ 2s/α. So,

K(ψ(ATY)) = V(ATL), as needed.

2.4 Proof of the Reverse Minkowski Theorem

In this section, we prove our main theorem, Theorem 2.1.2. Recall that the Voronoi cell V(L)

of a lattice L ⊂ Rn is the symmetric polytope of all vectors in Rn that are closer to 0 than

to any other lattice vector,

V(L) := {x ∈ Rn : ∀y ∈ L, 〈y,x〉 ≤ ‖y‖2/2} .

Also recall that for parameter s > 0, γs(·) is the Gaussian measure on Rn given by

γs(S) :=

∫
S/s

e−π‖x‖
2

dx

for any measurable set S ⊆ Rn. (Some authors prefer to parametrize γ in terms of the

standard deviation σ := s/
√

2π.) We are interested in the Gaussian mass γs(V(L)) of the

Voronoi cell because, as the following lemma due to Chung, Dadush, Liu, and Peikert shows,

this can be used to obtain an upper bound on the mass ρs(L) of the lattice itself [CDLP13].

We include a proof for completeness.

Lemma 2.4.1 ([CDLP13, Lemma 3.4]). For any lattice L ⊂ Rn and s > 0,

ρs(L) · γs(V(L)) ≤ 1 .

Proof. By scaling appropriately, we may assume without loss of generality that s = 1. Note

that the Voronoi cell tiles space with respect to L. I.e.,
⋃

y∈L(V(L) + y) = Rn, where the

61

union is disjoint except on a measure-zero set. So,

1 =

∫
Rn
e−π‖x‖

2

dx

=
∑
y∈L

∫
V(L)

e−π‖y+t‖2dt

=
∑
y∈L

e−π‖y‖
2

∫
V(L)

e−π‖t‖
2

e2π〈y,t〉dt

=
∑
y∈L

ρ(y)

∫
V(L)

e−π‖t‖
2

cosh(2π〈y, t〉)dt

≥
∑
y∈L

ρ(y)

∫
V(L)

e−π‖t‖
2

dt

= ρ(L)γ(V(L)) ,

where the fourth line follows from the fact that the Voronoi cell is symmetric.

Therefore, in order to prove Theorem 2.1.2, it suffices to show that γ1/t(V(L)) ≥ 2/3 for

every lattice L ⊂ Rn with det(L′) ≥ 1 for all sublattices L′ ⊆ L, where t := 10(log n+ 2). As

we explained in the introduction, we will reduce this to studying local minima of the function

L 7→ γ1/t(V(L)) over the set of determinant-one lattices. (We do not know whether such

local minima actually exist.)

In Section 2.4.1, we collect some facts about the Gaussian mass of convex bodies. In

Section 2.4.2, we apply these facts to the Voronoi cell to prove Theorem 2.1.2.

2.4.1 Gaussian mass of convex bodies

We say that a measurable set U ⊂ Rn is in isotropic Gaussian position for parameter s if

∫
U/s

e−π‖x‖
2

xxTdx = α · In

62

for some scalar α > 0. If s = 1, we simply say that U is in isotropic Gaussian position. Such

a position has been considered elsewhere (e.g., [Bob11]), but as far as we know, it did not

have a name before [RS17b].

The main goal of this section is to prove the following theorem. We will also include a

standard fact in Lemma 2.4.7 towards the end of this section.

Theorem 2.4.2 ([RS17b, Theorem 4.2]). For any symmetric convex body K ⊂ Rn with

vol(K) ≥ 1, if K is in isotropic Gaussian position for some parameter 0 < s ≤ 1/t, then

γs(K) ≥ 2/3 where t := 10(log n+ 2).

Our proof of Theorem 2.4.2 proceeds in two parts. The first part is a result due to

Bobkov [Bob11] (Proposition 2.4.3 below), showing that an isotropic Gaussian position of

a convex body has maximal Gaussian mass. We include a proof for completeness. In the

second part (Theorem 2.4.6 below), we show that any volume-one convex body K ⊂ Rn has

a position such that γs(K) ≥ 2/3.

Proposition 2.4.3 ([Bob11, Proposition 3.1]). For any symmetric convex body K ⊂ Rn, if

K is in isotropic Gaussian position for some parameter s > 0, then γs(K) ≥ γs(AK) for any

determinant-one matrix A ∈ SLn(R).

We start by observing that isotropic Gaussian positions correspond to critical points of

the Gaussian mass function over positions. (The simple proof appears in [RS17b].)

Fact 2.4.4. For any measurable set U ⊂ Rn, let

h(A) :=
γ(AU)

| det(A)|
,

where A ∈ GLn(R) ranges over the non-singular matrices. Then,

∇Ah(A)|A=In = −2π

∫
U

e−π‖x‖
2

xxTdx .

63

In particular, A 7→ γ(AU) has a critical point at In when restricted to determinant-one

matrices if and only if U is in isotropic Gaussian position.

We will also need the following result due to Cordero-Erausquin, Fradelizi, and Mau-

rey [CFM04], which is related to the so-called (B) conjecture due to Banaszczyk (see [Lat02]).

Theorem 2.4.5 ([CFM04]). For any symmetric convex body K ⊂ Rn, the function γ(eDK),

where D ∈ Rn×n ranges over all diagonal matrices, is log-concave.

Proof of Proposition 2.4.3. By scaling K, we may assume that s = 1. Let A = UDV be the

singular-value decomposition of A. (I.e., D is a diagonal matrix and U and V are orthogonal

matrices.) Note that the Gaussian measure is invariant under orthogonal transformations,

so that γ(AK) = γ(UDVK) = γ(DVK). Let K ′ := V K, and note that γ(K ′) = γ(K) and

that K ′ is in isotropic Gaussian position, since V is an orthogonal transformation.

Let ĥ(M) := γ(eMK ′)/| det(eM)|. By Fact 2.4.4 and the chain rule, we have

∇M ĥ(M)|M=0 = −2π

∫
K′
e−π‖x‖

2

xxTdx = −α · In

for some scalar α ∈ R, where the second equality is simply the fact that K ′ is in isotropic

Gaussian position. Let X ⊂ Rn×n be the set of trace-zero diagonal matrices. Then, the

function ĥX obtained by restricting ĥ to X has a critical point at zero, since Tr(InM) = 0

for any M ∈ X. By Theorem 2.4.5, ĥX is log-concave, so that this critical point must be a

global maximum. Therefore, γ(AK) = γ(DK ′) ≤ γ(K ′) = γ(K), as needed.

The second part of the proof of Theorem 2.4.2 requires the following theorem. The

proof is based on an important theorem that follows from the work of Figiel and Tomczak-

Jaegermann [FT79], Lewis [Lew79], and Pisier [Pis82].

64

Theorem 2.4.6. For any symmetric convex body K ⊂ Rn with volume one, there is a

determinant-one matrix A ∈ SLn(R) such that γ1/t(AK) ≥ 2/3, where t := 2
√

3e(log2 n+2) <

10(log n+ 2).

We now obtain Theorem 2.4.2 as an immediate corollary of Proposition 2.4.3 and Theo-

rem 2.4.6.

Proof of Theorem 2.4.2. By Theorem 2.4.6, there is some A ∈ SLn(R) such that γs(AK) ≥

2/3, and by Proposition 2.4.3, γs(K) ≥ γs(AK) ≥ 2/3, as needed.

2.4.1.1 Concentration of measure

We will also need a standard lemma about the concentration of Gaussian measure. Recall

that the inradius of a convex body K is defined as max{r ≥ 0 : rBn
2 ⊆ K}, i.e., the radius

of the largest ball contained in the body.

Lemma 2.4.7. If K ⊂ Rn is a convex body with γ1/t(K) ≥ 2/3 for some t > 0, then

γ1/(t+τ)(K) ≥ 1− e−πr2τ2

/3 ,

for any τ ≥ 0, where r ≥ 0 is the inradius of K.

2.4.2 Proof of Theorem 2.1.2

We now use Theorem 2.3.1 and Theorem 2.4.2 to characterize local minima of γs(V(L)).

Theorem 2.4.8 ([RS17b, Theorem 4.12]). If L ⊂ Rn corresponds to a local minimum (or

maximum) of γ1/t(V(L)) over the set of determinant-one lattices, then V(L) is in isotropic

Gaussian position with parameter 1/t, and

γ1/t(V(L)) ≥ 2/3 ,

65

where t := 10(log n+ 2).

Proof. By Theorem 2.3.1 with f(x) = tn · e−πt2x, we have

∇A

(
γ1/t(V(ATL))/| det(A)|

)
|A=In = 2

∫
V(L)

f ′(‖x‖2)xxTdx

= −2πtn+2 ·
∫
V(L)

e−πt
2‖x‖2xxTdx .

Recall that In corresponds to a local extremum of a differentiable function g(A) restricted

to the manifold of determinant-one matrices only if ∇Ag(A)|A=In is a scalar multiple of the

identity. So, the above expression must be a multiple of the identity. I.e., V(L) is in isotropic

Gaussian position. The result then follows from Theorem 2.4.2.

Before moving to the proof of our main theorem, we need the following claim.

Claim 2.4.9. For any x > 1,

e−2 log2 x + e−2 log2(x/(x−1)) < 1 .

Proof. By symmetry, we may assume that x ≥ 2. (Otherwise, we can replace x with x/(x−1).)

If 2 ≤ x ≤ 2.5, then

e−2 log2 x + e−2 log2(x/(x−1)) < e−2 log2 2 + e−2 log2(5/3) < 1 .

A similar computation works if 2.5 ≤ x ≤ e. Finally, using the fact that log(x/(x − 1)) =

− log(1− 1/x) > 1/x for x > 1, we have for any x ≥ e that

e−2 log2 x + e−2 log2(x/(x−1)) <
1

x2
+ e−2/x2

<
1

x2
+ 1− 1

x2
= 1 .

We now prove the main theorem of this chapter in the special case when L is a stable

66

lattice. The full result will follow as a relatively straightforward corollary.

Proposition 2.4.10 ([RS17b, Proposition 4.14]). For any stable lattice L ⊂ Rn, ρ1/t(L) ≤ 3
2
,

where t := 10(log n+ 2).

Proof. By Lemma 2.4.1, it suffices to show that γ1/t(V(L)) ≥ 2/3. We assume for induction

that γ1/(10(log d+2))(V(L′)) ≥ 2/3 for any stable lattice L′ of rank d < n. (A quick check

shows that this is true for d = 1.) Since the set of stable lattices is compact by Item (ii) of

Proposition 2.2.2 and the function γ1/t(V(L)) is continuous, we may assume without loss

of generality that L corresponds to a global minimum of γ1/t(V(L)) over the set of stable

lattices. If this global minimum is also a local minimum over the set of determinant-one

lattices, then by Theorem 2.4.8, γ1/t(V(L)) ≥ 2/3, and we are done.

Otherwise, L lies on the boundary of the set of stable lattices. I.e., there is some primitive

sublattice L′ ⊂ L of rank d < n such that L′ and L/L′ are stable. (See Item (iv) of

Proposition 2.2.2.) By Corollary 2.2.5 together with Claim 2.2.3, we have

γ1/t(V(L)) ≥ γ1/t(V(L/L′ ⊕ L′)) = γ1/t(V(L/L′)) · γ1/t(V(L′)) . (2.6)

Let t1 := 10(log d+ 2) and t2 := 10(log(n− d) + 2). By the induction hypothesis, we see that

γ1/t1(V(L′)) ≥ 2/3 and γ1/t2(V(L/L′)) ≥ 2/3. By Lemma 2.4.7, we therefore have

γ1/t(V(L′)) ≥ 1− 1

3
· e−2 log2(n/d), and γ1/t(V(L/L′)) ≥ 1− 1

3
· e−2 log2(n/(n−d)) ,

where we have used the fact that the inradius of the Voronoi cell is λ1(L)/2, which is at

least 1/2 for a stable lattice (and the constant in the exponent is very loose). Therefore,

67

using (2.6),

γ1/t(V(L)) ≥
(

1− 1

3
· e−2 log2(n/d)

)
·
(

1− 1

3
· e−2 log2(n/(n−d))

)
> 1− 1

3
·
(
e−2 log2(n/d) + e−2 log2(n/(n−d))

)
>

2

3
,

where the last inequality follows from Claim 2.4.9 with x := n/d.

So, for every stable lattice L, we have γ1/t(V(L)) ≥ 2/3, and the result then follows from

Lemma 2.4.1.

We now derive our main theorem as a corollary.

Proof of Theorem 2.1.2. Let {0} = L0 ⊂ · · · ⊂ Lk = L be the canonical filtration of

L. Recall from Item 2 of Proposition 2.2.2 that αi · (Li/Li−1) is a stable lattice, where

αi := det(Li/Li−1)−1/rank(Li/Li−1) ≤ 1. Therefore, by Claim 1.3.1,

ρ1/t(L) ≤ ρ1/t

(k⊕
i=1

Li/Li−1

)
≤ ρ1/t

(k⊕
i=1

αi(Li/Li−1)
)
.

By Item (iii) of Proposition 2.2.2, this direct sum of stable lattices is itself a stable lattice.

The result then follows from Proposition 2.4.10.

2.5 Bounds on ρs(L) for all parameters and point-counting

bounds

We first give the proof of Corollary 2.1.4, which follows immediately from Theorem 2.1.3.

68

Proof of Corollary 2.1.4. For any r > 0

|L ∩ (rBn
2 + u)| ≤ eπr

2/s2ρs(L − u) ≤ eπr
2/s2ρs(L) ,

where the last inequality follows from Eq. (1.2) (and in particular, the observation afterwards

that ρs(L − t) ≤ ρs(L) for all t ∈ Rn). Item 1 then follows by plugging in s = 1/t and

applying Item 1 of Theorem 2.1.3. Item 2 follows by taking s = r
√

2π/n and applying Item 2

of Theorem 2.1.3. Finally, Item 3 follows by taking s = r
√

2π/n and applying Item 3 of

Theorem 2.1.3.

We now prove Theorem 2.1.3, which gives bounds on the Gaussian mass for all parameters.

We start with Item 1, addressing parameters s ≤ 1/t. We actually prove a slightly stronger

result than the one presented in the introduction.

Theorem 2.5.1 (Slight strengthening of Item 1 of Theorem 2.1.3). For any lattice L ⊂ Rn

with det(L′) ≥ 1 for all sublattices L′ ⊆ L,

ρs(L) ≤ 1 + e−πλ1(L)2(1/s2−t2)/2 ≤ 1 + e−π(1/s2−t2)/2

for any s ≤ 1/t, where t := 10(log n+ 2).

Proof. Note that for any y ∈ L \ {0},

ρs(y) = ρ1/t(y) · e−π‖y‖2(1/s2−t2) ≤ ρ1/t(y)e−πλ1(L)2(1/s2−t2) .

The result follows by summing over all y ∈ L \ {0} and applying Theorem 2.1.2. The second

inequality uses the fact that λ1(L) ≥ 1.

We now prove the “high-parameter analogue” of Theorem 2.1.2. The proof uses Theo-

rem 2.1.2 and duality.

69

Theorem 2.5.2 (Item 3 of Theorem 2.1.3). For any lattice L ⊂ Rn with det(L′) ≥ 1 for all

sublattices L′ ⊆ L and any parameter s ≥ t, ρs(L) ≤ 2sn where t := 10(log n+ 2).

Proof. Recall the Poisson Summation Formula applied to the Gaussian mass (Eq. (1.1)):

ρs(L) =
sn

det(L)
· ρ1/s(L∗) .

Assume first that L is stable. Then, by Theorem 2.1.2 and the fact that the dual of a stable

lattice is stable (Item (i) of Proposition 2.2.2),

ρs(L) = sn · ρ1/s(L∗) ≤ sn · ρ1/t(L∗) ≤ 2sn .

For a general lattice L ⊂ Rn, let {0} = L0 ⊂ L1 ⊂ · · · ⊂ Lk = L be the canonical filtration

of L. Recall that αi(Li/Li−1) is stable for some αi ≤ 1. (See Item 2 of Proposition 2.2.2.)

Then, by Claim 1.3.1,

ρs(L) ≤ ρs

(⊕
Li/Li−1

)
≤ ρs

(⊕
αi · Li/Li−1

)
≤ 2sn ,

where the last inequality follows from the fact that the direct sum of stable lattices is stable

together with the bound proven above for stable lattices. (See Item (iii) of Proposition 2.2.2.)

The rest of this section is dedicated to the proof of Item 2 of Theorem 2.1.3. Note that we

already have a bound on ρs(L) for s ≤ 1/t and for s ≥ t, but we currently have no non-trivial

bound for intermediate parameters 1/t < s < t. To remedy this, we show in Theorem 2.5.5

below that ρeσ(L) is “approximately log-convex,” which allows us to interpolate between

these two bounds. In the proof of Theorem 2.5.5, we are unable to work with ρeσ(L) directly,

so we instead show that it can be approximated by γeσ(V(L)) (Lemma 2.5.4). We then notice

70

that the latter function is log-concave by Theorem 2.4.5.

Claim 2.5.3. For any lattice L ⊂ Rn, y ∈ L, and s > 0,

ρs(y)γs(V(L)) ≤ γs(V(L) + y) ≤ γs(V(L))

Proof. By scaling appropriately, we may assume that s = 1. We have

γ(V(L) + y) =

∫
V(L)

e−π‖x+y‖2dx

= ρ(y)

∫
V(L)

ρ(x)e−2π〈y,x〉dx

= ρ(y)

∫
V(L)

ρ(x) cosh(2π〈y,x〉)dx ,

where we have used the symmetry of the Voronoi cell in the last line. The lower bound

now follows from noting that cosh(2π〈x,y〉) ≥ 1. For the upper bound, we recall that, by

definition, any vector in the Voronoi cell x ∈ V(L) satisfies 〈y,x〉 ≤ ‖y‖2/2 for any lattice

vector y ∈ L. Therefore, cosh(2π〈y,x〉) ≤ cosh(π‖y‖2) ≤ 1/ρ(y), as needed.

Lemma 2.5.4. For any lattice L ⊂ Rn and any s > 0,

e−4n/2 ≤ γs(V(L))ρs(L) ≤ 1 .

Proof. The upper bound is Lemma 2.4.1, repeated for comparison. By scaling appropriately,

we may assume that s = 1. Recall that
∫
Rn ‖x‖

2e−π‖x‖
2
dx = n/(2π). It follows from Markov’s

inequality that
∫√

n/πBn2
e−π‖x‖

2
dx ≥ 1/2. Let

Y := {y ∈ L : (V(L) + y) ∩
√
n/πBn

2 6= ∅} .

I.e., Y is the set of vectors y ∈ L such that there exists some x ∈
√
n/πBn

2 with ‖y − x‖ ≤

71

‖y′ − x‖ for every y′ ∈ L. By taking y′ = 0, we immediately see that Y ⊆ L ∩ 2
√
n/πBn

2 .

Recalling that the Voronoi cell tiles space, we have

1/2 ≤
∫
√
n/πBn2

e−π‖x‖
2

dx

≤
∑
y∈Y

γ(V(L) + y)

≤ |Y | · γ(V(L)) (Claim 2.5.3)

≤ |L ∩ 2
√
n/πBn

2 | · γ(V(L))

≤ e4nρ(L)γ(V(L)) ,

as needed.

We now prove the “approximate log-convexity” of ρeσ(L).

Theorem 2.5.5 ([RS17b, Theorem 5.5]). For any lattice L ⊂ Rn and any t1 > s > t2 > 0,

ρs(L) ≤ 2e4nρt1(L)τρt2(L)1−τ ,

where τ := log(s/t2)/ log(t1/t2).

Proof. We have

ρs(L) ≤ 1

γs(V(L))
(Lemma 2.4.1)

≤ 1

γt1(V(L))τγt2(V(L))1−τ (Theorem 2.4.5)

≤ 2e4nρt1(L)τρt2(L)1−τ (Lemma 2.5.4) ,

as needed.

72

Corollary 2.5.6 (Item 2 of Theorem 2.1.3). For any lattice L ⊂ Rn with det(L′) ≥ 1 for all

L′ ⊆ L and any parameter 1/t < s < t, we have

ρs(L) ≤ 4(e8st)n/2 ,

where t := 10(log n+ 2).

Proof. Let τ := (1− log s/ log t)/2. Then,

ρs(L) ≤ 2e4nρ1/t(L)τ · ρt(L)1−τ (Theorem 2.5.5)

≤ 21+τe4nρt(L)1−τ (Theorem 2.1.2)

≤ 4e4nt(1−τ)n (Corollary 2.5.2)

= 4(e8st)n/2 ,

as needed.

2.6 Proof of the covering radius approximation

We now note that Theorem 2.1.2 (together with Corollary 1.3.7) immediately implies a bound

on the covering radius of stable lattices.

Theorem 2.6.1 ([RS17b, Theorem 6.2]). For any stable lattice L ⊂ Rn,

µ(L) ≤ 4
√
n(log n+ 10) .

Proof. Let t := 10(log n + 2). Since L∗ is also stable (by Item (i) of Proposition 2.2.2),

73

Theorem 2.1.2 implies that ρ1/t(L∗) ≤ 3/2. Applying Corollary 1.3.7, we have

µ(L) ≤ (
√
n/(2π) + 1) · t < 4

√
n(log n+ 10) ,

as needed.

Next, we show (Proposition 2.6.3) how to reduce the case of general lattices to the stable

case. We will need the following technical lemma, whose proof can be found in [RS17b].

Lemma 2.6.2 (Reverse AM-GM). Let 0 < a1 < · · · < ak and d1, . . . , dk ∈ N, and for

j = 1, . . . , k, define mj :=
∑

i≥j di. Then,

k∑
i=1

diai ≤ 2e · dlog(2m1)e ·max
j
mj

(∏
i≥j

adii

)1/mj
.

Recall that

µdet(L) := max
W⊂Rn

√
dim(W⊥) · det(πW⊥(L))

1

dim(W⊥) ,

where the maximum is over lattice subspaces W ⊂ Rn of L (i.e., subspaces W spanned by up

to n− 1 lattice vectors).

Proposition 2.6.3 ([RS17b, Proposition 6.4]). Let

CKL := max
d≤n

supµ(L)/
√
d ,

where the supremum is over stable lattices L ⊂ Rd. Then, for any lattice L ⊂ Rn,

µ(L) ≤
√

2edlog(2n)e · CKL · µdet(L) .

Proof. Let {0} = L0 ⊂ L1 ⊂ · · · ⊂ Lk = L be the canonical filtration of some lattice

L ⊂ Rn. Let di := rank(Li/Li−1). Note that Li/Li−1 is a scaling of a stable lattice, i.e.,

74

det(Li/Li−1)−1/di · (Li/Li−1) is stable. (See Item 2 of Proposition 2.2.2.) We therefore have

by Claim 2.2.3 and Lemma 2.2.4 that

µ(L)2 ≤ µ
(⊕

i

Li/Li−1

)2

=
∑
i

µ(Li/Li−1)2

≤ C2
KL ·

∑
i

di det(Li/Li−1)2/di . (2.7)

Next, we recall from Item 3 of Proposition 2.2.2 that ai := det(Li/Li−1)2/di is an increasing

sequence, and we note that
∑

i≥j di = rank(L/Lj−1). We may therefore use Lemma 2.6.2 to

bound Eq. (2.7) from above by

2edlog(2n)e · C2
KL ·max

i
rank(L/Li) · det(L/Li)

2
rank(L/Li)

≤ 2edlog(2n)e · C2
KL max

W⊂Rn
dim(W⊥) · det(πW⊥(L))

2

dim(W⊥) ,

as needed.

Theorem 2.1.5 now follows as an immediate corollary of the above results. In particular,

we have CKL ≤ 4(log n + 10) and therefore
√

2edlog(2n)e · CKL ≤ 10(log n + 10)3/2. The

result then follows from Proposition 2.6.3.

2.6.1 Connection with the Slicing Conjecture

In this section, we prove Theorem 2.6.7. The structure of the proof is based on the one

suggested in [SW16], as was the case for the proof of our main theorem in Section 2.4.

As in Section 2.4, we are unable to work with the lattice parameter µ(L) that interests us

75

directly.7 Instead, we work with the lattice parameter

µ(L) :=

√
1

det(L)

∫
V(L)

‖x‖2dx ,

which, as shown in Lemma 2.6.4 below, gives a good approximation to µ. We remark

that the parameter µ and various closely related parameters have been studied extensively

(e.g., [ZF96, CS98, GMR05, HLR09]).

Lemma 2.6.4 ([HLR09, Claim 3.1]). For any lattice L ⊂ Rn,

µ(L) ≤ µ(L) ≤ 2µ(L) .

Proof. Let t ∈ Rn be such that dist(t,L) = µ(L). I.e., t is a “deep hole.” For any x ∈ Rn,

we have

µ(L) = dist(t,L) ≤ dist(x,L) + dist(x + t,L)

(since by the triangle inequality, for all y, z ∈ L, ‖x− y‖+ ‖x + t− z‖ ≥ ‖t− (z − y)‖).

Integrating, we have

µ(L) ≤ 1

det(L)

∫
V(L)

dist(x,L)dx +
1

det(L)

∫
V(L)

dist(x + t,L)dx =
2

det(L)

∫
V(L)

‖x‖dx ,

where we have simply observed that the integral is invariant under shifts (and that, for

x ∈ V(L), dist(x,L) = ‖x‖ by definition). The result then follows by Jensen’s inequality,

which in particular tells us that

(1

det(L)
·
∫
V(L)

‖x‖dx
)2

≤ 1

det(L)
·
∫
V(L)

‖x‖2dx = µ(L)2 .

7 While [DSV12] give a characterization of lattices corresponding to local maxima of µ, we are unable to
obtain a sufficiently strong bound on the covering radius of these lattices. See [SW16] for more about this
question.

76

We now observe that Theorem 2.3.1 is applicable to the function µ(L)2. Recall that a

symmetric convex body K ⊂ Rn is said to be isotropic if
∫
K
xxTdx = α · In for some scalar

α > 0.

Proposition 2.6.5 ([RS17b, Proposition 6.6]). For any lattice L ⊂ Rn,

∇Aµ(ATL)2|A=In =
2

det(L)

∫
V(L)

xxTdx ,

where A ∈ GLn(R) ranges over non-singular matrices. In particular, if L corresponds to a

local maximum (or local minimum) of µ(L) over the set of determinant-one lattices, then

V(L) is isotropic.

Proof. To compute the gradient, we simply apply Theorem 2.3.1 with f(x) := x, and recall

that

µ(ATL)2 =
1

det(L)
· 1

| det(A)|

∫
V(ATL)

f(‖x‖2)dx .

The “in particular” follows from the fact that a differentiable function g(A) restricted to the

set of determinant-one matrices has a critical point at A = In if and only if ∇Ag(A)|A=In is a

scalar multiple of the identity.

We define the (symmetric) isotropic constant

L2
n := max

d≤n

1

d
· sup
K

∫
K

‖x‖2dx ,

where the supremum is taken over all isotropic symmetric convex bodies K ⊂ Rd of volume

one. It is known to satisfy 1/(2
√

3) ≤ Ln ≤ Cn1/4, and the Slicing Conjecture implies that

Ln is bounded by a universal constant [Bou91, Kla06]. (The lower bound is due to the

hypercube, [−1/2, 1/2]n.) We note in passing that we are only concerned with the isotropic

constant for Voronoi cells, which could conceivably be easier to bound than the isotropic

77

constant for arbitrary convex bodies.

Theorem 2.6.6. [RS17b, Theorem 6.7] For any stable lattice L ⊂ Rn,

µ(L) ≤ 2µ(L) ≤ 2
√
nLn .

Proof. By Lemma 2.6.4, it suffices to prove that µ(L) ≤
√
nLn. Note that this is trivially

true for n = 1. We assume for induction that µ(L′) ≤
√
dLd ≤

√
dLn for all stable lattices L′

of rank d < n. Recall that the set of stable lattices is compact (Item (ii) of Proposition 2.2.2),

so that we may assume without loss of generality that L corresponds to a global maximum of

the function µ over this set. If this is also a local maximum over the set of determinant-one

lattices, then by Proposition 2.6.5, the Voronoi cell is isotropic, and we have µ(L) ≤
√
nLn

by the definition of µ and Ln. Otherwise, L must lie on the boundary of the set of stable

lattices. I.e., there is some primitive sublattice L′ ⊂ L of rank 0 < d < n such that L′ and

L/L′ are both stable. (See Item (iv) of Proposition 2.2.2.) Applying the induction hypothesis

and Corollary 2.2.5 (together with Claim 2.2.3), we have

µ(L)2 ≤ µ(L′ ⊕ L/L′)2 = µ(L′)2 + µ(L/L′)2 ≤ dL2
n + (n− d)L2

n = nL2
n ,

as needed.

As far as we know, it is entirely possible that Ln = 1/(2
√

3), i.e., that the hypercube

[−1/2, 1/2]n is the worst symmetric body for the Slicing Conjecture. If true, this would

imply that for any stable L ⊂ Rn, µ(L) ≤ 2µ(L) ≤
√
n/3. Moreover, it is possible that the

constant 2 in Lemma 2.6.4 can be replaced with
√

3, which would be tight for Zn (this was

already mentioned in [HLR09, Conjecture 1.3]). If this is also true, then we get that for

any stable L ⊂ Rn, µ(L) ≤
√

3µ(L) ≤
√
n/2, which is tight for Zn. Apart from being an

interesting statement in its own right, it was shown by Shapira and Weiss [SW16] that such

78

a result would imply the so-called Minkowski conjecture (see there for more information).

We can now use Proposition 2.6.3 to extend Theorem 2.6.6 to all lattices L ⊂ Rn.

Theorem 2.6.7. [RS17b, Theorem 6.8] For any lattice L ⊂ Rn,

µ(L) ≤ 10
√

log n+ 1 · Ln · µdet(L) .

As we observed in Footnote 5, there are lattices with µ(L) ≥ C
√

log n · µdet(L). So,

Theorem 2.6.7 is tight up to a constant, assuming the Slicing Conjecture. (We made no

attempt to optimize the constant in Theorem 2.6.7.)

2.7 An optimal bound for extreme parameters

We now prove Theorem 2.1.6, which says that Zn has maximal Gaussian mass amongst

all lattices L with det(L′) ≥ 1 for all sublattices L′ ⊆ L, for very small parameters s ≤√
2π/(n+ 2) and for very large parameters s ≥

√
(n+ 2)/(2π). The proof is similar to that

of Theorem 2.1.2, except here we work directly with ρs(L) (instead of the proxy γs(V(L))).

Moreover, we show that ρs(L) has no stable local maxima for those values of s, which leads

to a simpler proof and the clearly tight result. In order to show that local maxima do not

exist, we will show that the Laplacian of ρs(L) is always positive when L is stable.

In more detail, for a lattice L and s > 0, let fL,s : X → R be given by

fL,s(A) := ρs(e
A/2L) =

∑
y∈L

e−πy
T eAy/s2 ,

where X ⊂ Rn×n is the linear space of all symmetric matrices with zero trace. Notice that

as A ranges over X, eA := In +
∑∞

i=1A
i/i! ranges over all determinant-one positive-definite

matrices. (In particular, eA/2L ranges over all lattices of fixed determinant, up to orthogonal

79

transformations.) See [Ter16, Section 1.1.3] for a more in-depth treatment of the space of

determinant-one matrices.

Recall that the Laplacian of a twice differentiable function g : X → R is given by

∆Xg(A) :=
∑
i

∂2

∂E2
i

g(A) ,

where the Ei form an orthonormal basis of X, and

∂2

∂M2
g(A) :=

∂2

∂r2
g(A+ rM)|r=0

is the directional second derivative of g in the M direction. One can show that the Laplacian

does not depend on the choice of basis. Clearly, if the Laplacian is positive at A, then A

cannot correspond to a local maximum of g, since there must be at least one direction in

which the second derivative is positive.

The Laplacian of fL,s is straightforward (but tedious) to calculate. It can be found, e.g.,

in the work by Sarnak and Strömbergsson [SS06] who used it to study local minima of ρs(L).

Claim 2.7.1 ([SS06, Eq. (46)]). Let X ⊂ Rn×n be the space of trace-zero symmetric matrices.

Then, for any lattice L ⊂ Rn and any parameter s > 0,

∆XfL,s(0) =
π

s2
· n− 1

n
·
∑
y∈L

ρs(y)‖y‖2
(π
s2
· ‖y‖2 − n+ 2

2

)
.

Proposition 2.7.2 ([RS17b, Proposition 7.2]). For any lattice L ⊂ Rn and

0 < s ≤
√

2π

n+ 2
· λ1(L) ,

L cannot correspond to a local maximum of ρs(L) over the set of determinant-one lattices. In

particular, since stable lattices have λ1(L) ≥ 1, a stable lattice cannot correspond to a local

80

maximum for s ≤
√

2π/(n+ 2).

Proof. It suffices to show that the Laplacian given in Claim 2.7.1 is positive for such L.

Indeed, the summand is zero for y = 0, and since

π

s2
· λ1(L)2 ≥ n+ 2

2
,

the summand is non-negative for all non-zero y ∈ L. Finally, since any lattice contains

vectors of arbitrarily large length, there must be some strictly positive terms in the sum.

Therefore, the full sum is strictly positive, as needed.

From this, we derive our main result for the special case of stable lattices.

Proposition 2.7.3 ([RS17b, Proposition 7.3]). For any 0 < s ≤
√

2π/(n+ 2) and stable

lattice L ⊂ Rn, ρs(L) ≤ ρs(Zn).

Proof. Note that the result is trivial for n = 1. We assume for induction that the result

holds for all dimensions less than n. Since the set of stable lattices is compact and ρs(L) is a

continuous function, we may assume that L corresponds to a global maximum of ρs(L) over

the set of stable lattices. By Proposition 2.7.2, this cannot be a local maximum over the set

of determinant-one lattices. So, L must be on the boundary of the set of stable lattices. I.e.,

there is a non-trivial primitive sublattice L′ ⊂ L with d := rank(L′) such that L′ and L/L′

are themselves stable lattices of rank strictly less than n. (See Item (iv) of Proposition 2.2.2.)

Applying the induction hypothesis, we have by Claim 1.3.1 that

ρs(L) ≤ ρs(L′) · ρs(L/L′) ≤ ρs(Zd) · ρs(Zn−d) = ρs(Zn) ,

where we have used the fact that s ≤
√

2π/(n+ 2) ≤ min{
√

2π/(d+ 2),
√

2π/(n− d+ 2)}

in order to apply the induction hypothesis.

81

We now “invert the parameter” using duality.

Corollary 2.7.4 ([RS17b, Corollary 7.4]). For any s ≥
√

(n+ 2)/(2π) and stable lattice

L ⊂ Rn, ρs(L) ≤ ρs(Zn).

Proof. Recall that the dual L∗ of a stable lattice is itself stable. (See Item (i) of Propo-

sition 2.2.2.) Furthermore, by the Poisson Summation Formula for the discrete Gaussian

(Eq. (1.1)),

ρs(L) =
sn

det(L)
· ρ1/s(L∗) ≤

sn

det(L)
· ρ1/s(Zn) = ρs(Zn) ,

as needed, where the inequality follows from Proposition 2.7.3, and the last equality follows

from the Poisson Summation Formula applied to Zn.

We can now prove Theorem 2.1.6.

Proof of Theorem 2.1.6. Let {0} = L0 ⊂ L1 ⊂ · · · ⊂ Lk = L be the canonical filtration of L,

and let di := rank(Li/Li−1) ≤ n. Then, by Claim 1.3.1, we have

ρs(L) ≤
∏
i

ρs(Li/Li−1) .

Note that, if s ≤
√

2π/(n+ 2), then we also have s ≤
√

2π/(di + 2) for all i. And,

αi · (Li/Li−1) is a stable lattice for some αi ≤ 1. (See Item 2 of Proposition 2.2.2.) So, in

this case we may apply Proposition 2.7.3 to obtain

ρs(L) ≤
∏
i

ρs(αi · (Li/Li−1)) ≤
∏
i

ρs(Zdi) = ρs(Zn) .

If, on the other hand, s ≥
√

(n+ 2)/(2π), then s ≥
√

(di + 2)/(2π) for all i, so we may

similarly apply Corollary 2.7.4 to obtain the same result.

82

Remark. It is possible to show that, in the setting of Theorem 2.1.6, ρs(L) = ρs(Zn) if and

only if L is an orthogonal transformation of Zn. To see this, first notice that in order to get

equality, all the αi in the proof above must be one, i.e., L must be stable. Next, we follow

the induction argument in the proof of Proposition 2.7.3, and recall the case of equality in

Lemma 1.3.1.

2.8 Tightness of our bounds

In this section, we discuss the tightness of our bounds by considering some classes of lattices

L ⊂ Rn.

2.8.1 Tightness of Item 3 of Theorem 2.1.3 for stable lattices

It is an immediate consequence of the Poisson Summation Formula (Eq. (1.1)) that ρs(L) ≥

sn/ det(L) for any s > 0 and L ⊂ Rn. Combining this with Item 3 of Theorem 2.1.3, we see

that

sn ≤ ρs(L) ≤ 2sn

for any stable lattice L ⊂ Rn and any s ≥ 10(log n+ 2). I.e., Item 3 of Theorem 2.1.3 is tight

for all stable lattices up to a factor of two in the mass.

2.8.2 The integer lattice Zn

We first prove bounds on the Gaussian mass of Zn. In particular, the lower bound in Eq. (2.8)

below shows that ρ√
π/ logn

(Zn) ≥ 3/2, so that Theorem 2.1.2 is tight for Zn up to a factor of

C
√

log n in t. Similar bounds hold for Items 1 and 2 of Theorem 2.1.3.

83

Claim 2.8.1. For any n ≥ 1 and parameter s > 0,

(
1 + 2e−π/s

2)n ≤ ρs(Zn) ≤
(
1 + (2 + s)e−π/s

2)n
, (2.8)

and

sn ·
(
1 + 2e−πs

2)n ≤ ρs(Zn) ≤ sn ·
(
1 + (2 + 1/s)e−πs

2)n
. (2.9)

Proof. Note that ρs(Zn) = ρs(Z)n. So, it suffices to bound ρs(Z). Furthermore, Eq. (2.9)

follows from Eq. (2.8) and the Poisson Summation Formula (Eq. (1.1)). So, it suffices to

prove Eq. (2.8) for the case n = 1. For the lower bound, we have

ρs(Z) = 1 + 2
∞∑
z=1

e−πz
2/s2 ≥ 1 + 2e−π/s

2

.

For the upper bound, we write

ρs(Z) = 1 + 2e−π/s
2

+ 2
∞∑
z=2

e−πz
2/s2 ≤ 1 + 2e−π/s

2

+ 2

∫ ∞
1

e−πx
2/s2dx ≤ 1 + (2 + s)e−π/s

2

,

where we have used [AS64, Eq. 7.1.13] to bound the error function.

We now bound |Zn ∩ rBn
2 |. Note that the lower bound in the next claim, which shows

that |Zn∩ rBn
2 | ≥ eCr

2 log(n/r2) for r ≤
√
n, is relatively close to the upper bound |Zn∩ rBn

2 | ≤

eC
′r2 log2 n given by Item 1 of Corollary 2.1.4. (We include a better upper bound on |Zn∩ rBn

2 |

below for completeness. In particular, the two bounds match up to a factor of 2o(r
2) for

ω(1) < r < o(
√
n). See [MO90] for tighter bounds for r = Θ(

√
n).)

Proposition 2.8.2. For any n ≥ 1 and any radius 1 ≤ r ≤
√
n/2 with r2 ∈ Z,

|Zn ∩ rBn
2 | = (2ne1+χ/r2)r

2

,

84

where

−r
2

n
− log(Cr)

r2
≤ χ ≤

√
C

log(n/r2)
.

Proof. For the lower bound, we note that the number of vectors of length r whose coordinates

lie in the set {−1, 0,+1} is

2r
2

(
n

r2

)
≥ 1√

2πe1/6r
· (2e1−r2/nn/r2)r

2

,

where we have used Corollary 1.4.2.

For the upper bound, using Eq. (2.8) with s :=
√
π/ log(2n/r2),

|Zn ∩ rBn
2 | ≤ eπr

2/s2ρs(Zn)

≤ (2n/r2)r
2 ·
(

1 +
r2(2 + s)

2n

)n
≤ (2ne1+s/2/r2)r

2

,

as needed.

2.8.3 Random lattices

There exists a unique probability measure Ln over the set of full-rank determinant-one

lattices in Rn that is invariant under SLn(R) [Sie45]. (See, e.g., [Ter16] or [GL87, Chapter 3].)

We call a random variable sampled from Ln a random lattice. The purpose of this section is

to prove the following result.

Proposition 2.8.3. For any sufficiently large n and any r ≥
√
n log n,

Pr
L∼Ln

[
L is stable and |L ∩ rBn

2 | ≥ vol(rBn
2)/2

]
≥ 1− (Cn/r2)n/2 − (C/n)n/2 ,

85

where C > 0 is some universal constant. In particular, there exists a stable lattice L satisfying

|L ∩ rBn
2 | ≥ vol(rBn

2)/2 = (4πn)−1/2(2πer2/n)n/2(1 + o(1)) , (2.10)

where the o(1) term approaches zero as n approaches ∞.

Note that the lower bound in Eq. (2.10) is within a factor of C
√
n of the upper bound in

Item 3 of Corollary 2.1.4, which applies to stable lattices.

The proof of Proposition 2.8.3 uses the following three results.

Theorem 2.8.4 ([Sie45]). For any n ≥ 2 and any measurable set S ⊂ Rn,

E
L∼Ln

[|(L \ {0}) ∩ S|] = vol(S) .

Theorem 2.8.5 ([Rog55, Sch60]; see [Gru07, Theorem 24.3]). For n ≥ 3 and any Borel set

S ⊂ Rn,

E
L∼Ln

[(
|(L \ {0}) ∩ S| − vol(S)

)2] ≤ Cvol(S) ,

where C > 0 is some universal constant.

Theorem 2.8.6 ([SW14]). For any sufficiently large n, an n-dimensional random lattice is

stable with probability at least 1− (C/n)n/2, where C > 0 is some universal constant.

Proof of Proposition 2.8.3. By Chebyshev’s inequality, Theorem 2.8.4, and Theorem 2.8.5,

there is some universal constant C > 0 such that

Pr
L∼Ln

[
|L ∩ rBn

2 | < vol(rBn
2)/2

]
≤ C

vol(rBn
2)
≤ (C ′n/r2)n/2 .

The result then follows by Theorem 2.8.6 and union bound.

86

Chapter 3

A “Rotation” Identity and Related

Inequalities1

3.1 Introduction

In spite of their importance, there is still a lot that we do not know about ρs(L− x), fL,s(t),

and DL−t,s. Here, we prove several basic inequalities concerning these objects, as described

below. All of these inequalities (with the minor exception of Theorem 3.2.2) follow without too

much effort from one main inequality (Theorem 3.2.1), which is closely related to Riemann’s

theta relations (see [Mum07]). Namely, in terms of the periodic Gaussian fL(t), our main

inequality says that

fL(t)2fL(u)2 ≤ fL(t + u)fL(t− u) .

Note that the Gaussian function ρ(t) over Rn satisfies the “rotation” identity

ρ(t)2ρ(u)2 = ρ(t + u)ρ(t− u) ,

1This chapter is primarily based on joint work with Oded Regev that appeared in the SIAM Journal of
Discrete Mathematics (SIDMA), 31(2) 2017 [RS17a], and passages have been taken verbatim from this source.
This work was supported by the National Science Foundation (NSF) under Grant No. CCF-1320188.

87

so that our main inequality can be viewed as a relaxation of this identity to the periodic case.

From this (perhaps rather opaque) inequality, we derive many natural statements concerning

ρs(L − t), fL,s(t), and DL−t,s.

First, we show in Corollary 3.3.2 that the covariance of DL−t is minimized when t = 0,

answering a natural question communicated to us by Dadush [Dad12a]. (We note in passing

that closely related questions are still open, e.g., whether EX∼DL−t
[‖X‖] is minimized when

t = 0.) Along the way, we derive an interesting inequality concerning the “shape” of fL(t)

(Proposition 3.3.1). We also analyze the fourth moment, showing in particular that the

discrete Gaussian is “leptokurtic” (Proposition 3.3.3)—i.e., its kurtosis is at least that of the

continuous Gaussian distribution.

Second, in Section 3.4, we show various monotonicity results concerning fL,s, answering

a natural open question due to Price [Pri14b] in the affirmative. In particular, in Propo-

sition 3.4.1 we show that fL,s is monotonic in s and in Proposition 3.4.2, we extend this

to the non-spherical Gaussian case. (Recently, Price showed how to derive from this an

analogous monotonicity result for Abelian Cayley graphs [Pri16]. A further extension to

arbitrary Cayley graphs, previously suggested by Peres [Per13], turns out to be false [RS16].)

Additionally, in Proposition 3.4.3, we show that fL,s is monotonic under taking sublattices of

L.

Finally, in Section 3.5, we show that sublattices of a lattice L are positively correlated

under the normalized Gaussian measure on L. This result answers another open question due

to Price [Pri14a], and was recently used by him in his work on cohomology [Pri15]. It has

a (possibly superficial) resemblance to the recently proven Gaussian correlation conjecture

on symmetric convex bodies [Roy14]. In fact, we note in passing that our main inequality

can also be viewed as a correlation result. In particular, it shows that cos(2π〈X, t〉) and

cos(2π〈X,y〉) are positively correlated when t is sampled from DL. (See Eq. 3.4e.)

88

3.2 The main inequality (and a variant)

The following is our main theorem. The proof is essentially a combination of a certain

identity related to Riemann’s theta relations (see [Mum07, Chapter 1, Section 5]) and the

Cauchy-Schwarz inequality.

Theorem 3.2.1 ([RS17a]). For any lattice L ⊂ Rn and any two vectors t,u ∈ Rn, we have

ρ(L − t)2ρ(L − u)2 ≤ ρ(L)2ρ(L − t− u)ρ(L − t + u) .

Proof. Let L⊕2 := L ⊕ L be the lattice in R2n formed by taking all pairs of lattice elements.

We can then write ρ(L − t)ρ(L − u) = ρ(L⊕2 − (t,u)). Consider the 2n× 2n matrix

T :=

 In In

In −In

 ,

where In is the n × n identity matrix. Note that T/
√

2 is an orthogonal matrix so that

‖Tx‖ =
√

2‖x‖ for any x ∈ R2n. We therefore have

ρ(L − t)ρ(L − u) = ρ√2

(
T (L⊕2 − (t,u))

)
= ρ√2

(
TL⊕2 − (t + u, t− u)

)
. (3.1)

For any y := (y1,y2) ∈ L⊕2, we have Ty = (w1,w2) where w1 := y1 + y2 and w2 :=

y1 − y2 = w1 − 2y2. It follows that

TL⊕2 = {(w1,w2) ∈ L2 : w1 ≡ w2 mod 2L}

=
⋃

c∈L/(2L)

(2L+ c)2 ,

89

where the union is disjoint. Plugging in to Eq. (3.1), we have

ρ(L − t)ρ(L − u) =
∑

c∈L/(2L)

ρ√2(2L+ c− t− u) · ρ√2(2L+ c− t + u) . (3.2)

Note that, by the right-hand side of (3.2), we can view ρ(L− t)ρ(L−u) as the inner product

of two 2n-dimensional vectors as

ρ(L − t)ρ(L − u) = 〈h(t + u),h(t− u)〉 , (3.3)

where

h(x) :=
(
ρ√2(2L+ c1 − x), ρ√2(2L+ c2 − x), . . . , ρ√2(2L+ c2n − x)

)
∈ R2n ,

for some ordering of the cosets ci ∈ L/(2L). Then, by Cauchy-Schwarz, we have

ρ(L − t)2ρ(L − u)2 ≤ ‖h(t + u)‖2‖h(t− u)‖2 = ρ(L)2ρ(L − t− u)ρ(L − t + u) ,

where the last equality follows from plugging in u = 0 to Eq. (3.3) which tells us that

‖h(t)‖2 = ρ(L)ρ(L − t).

We remark that using the same proof with other transformations T might lead to other

such inequalities. We leave this for future work, but we do note here an additional inequality

with a very similar proof that originally appeared in [ADS15] (in a less general form).

Theorem 3.2.2. For any lattice L ⊂ Rn and any two vectors t,u ∈ Rn, we have

ρ(L − t)ρ(L − u) ≤ ρ√2(L − t + u) · max
c∈L/(2L)

ρ√2(2L+ c− t− u) .

90

Proof. Recall from Eq. (3.2) that

ρ(L − t)ρ(L − u) =
∑

c∈L/(2L)

ρ√2(2L+ c− t− u) · ρ√2(2L+ c− t + u) .

In the proof of Theorem 3.2.1, we applied Cauchy-Schwarz to the right-hand side of this

equation. Here, we instead simply note the trivial inequality

ρ√2(2L+ c− t− u) ≤ max
c′∈L/(2L)

ρ√2(2L+ c′ − t− u) .

Plugging this in yields

ρ(L − t)ρ(L − u) ≤ max
c∈L/(2L)

ρ√2(2L+ c− t− u) ·
∑

c′∈L/(2L)

ρ√2(2L+ c′ − t + u)

= ρ√2(L − t + u) · max
c∈L/(2L)

ρ√2(2L+ c− t− u) ,

as needed.

3.2.1 Corollaries and reformulations

We now proceed to list a few immediate corollaries of Theorem 3.2.1.

91

Corollary 3.2.3 ([RS17a]). For any lattice L ⊂ Rn and any two vectors t,u ∈ Rn, we have

fL(t)2fL(u)2 ≤ fL(t + u)fL(t− u) (3.4a)

fL(t)4 ≤ fL(2t) (3.4b)

fL(t)fL(u) ≤ (fL(t + u) + fL(t− u))/2 (3.4c)

E
X∼DL

[cos(2π〈X, t〉)]2 E
X∼DL

[cos(2π〈X,u〉)]2 ≤ E
X∼DL

[cos(2π〈X, t〉) cos(2π〈X,u〉)]2 (3.4d)

− E
X∼DL

[sin(2π〈X, t〉) sin(2π〈X,u〉)]2

E
X∼DL

[cos(2π〈X, t〉)] E
X∼DL

[cos(2π〈X,u〉)] ≤ E
X∼DL

[cos(2π〈X, t〉) cos(2π〈X,u〉)] . (3.4e)

Proof. Eq. (3.4a) follows from the definition of fL. Eq. (3.4b) follows from plugging in u = t

to Eq. (3.4a). Eq. (3.4c) follows from the fact that
√
ab ≤ (a + b)/2 for all a, b ≥ 0. For

Eq. (3.4d), use the Poisson Summation Formula (Eq. (1.1)) to write fL∗(t) in its dual form as

fL∗(t) = E
X∼DL

[cos(2π〈X, t〉)] .

We can then apply the identity cos(a+ b) = cos(a) cos(b)− sin(a) sin(b) to derive Eq. (3.4d)

from Eq. (3.4a). Finally, Eq. (3.4e) follows from applying the same analysis to (3.4c).

3.3 Moments of the discrete Gaussian distribution

We will need the Hessian product identity

H
(
f(x)g(x)

)
= f(x)Hg(x) + g(x)Hf(x) +∇f(x)(∇g(x))T +∇g(x)(∇f(x))T . (3.5)

We next show an inequality concerning the Hessian of fL. In particular, this inequality

constrains the shape of the local maxima of fL. (In [DRS14], we showed that fL can in fact

92

have local maxima at non-lattice points.)

Proposition 3.3.1 ([RS17a, Proposition 3.1]). For any lattice L ⊂ Rn and any vector

t ∈ Rn, we have the positive semidefinite inequality

HfL(t)

fL(t)
� HfL(0) +

∇fL(t)(∇fL(t))T

fL(t)2
.

Proof. By Eq. (3.4a), we have

fL(t + u)fL(t− u)− fL(t)2fL(u)2 ≥ 0 .

Note that we have equality when u = 0. It follows that, for any t, the left-hand side has a

local minimum at u = 0, and therefore the Hessian with respect to u at 0 must be positive

semidefinite. The result follows by using Eq. (3.5) to take the Hessian and rearranging.

As a corollary, we obtain that the covariance matrix of DL−t is minimized at t = 0.

(Notice that the expectation of the centered Gaussian DL is zero because the lattice is

symmetric.) The corollary follows immediately from Proposition 3.3.1 and the following two

identities:

∇fL(t)

fL(t)
=
∇ρ(L − t)

ρ(L − t)
= −2π E

X∼DL−t

[X] , and (3.6)

HfL(t)

fL(t)
=
Hρ(L − t)

ρ(L − t)
= 4π2 E

X∼DL−t

[XXT]− 2πIn . (3.7)

Corollary 3.3.2 ([RS17a, Corollary 3.2]). For any lattice L ⊂ Rn and vector t ∈ Rn, we

have the positive semidefinite inequality

E
X∼DL−t

[XXT]− E
X∼DL−t

[X] E
X∼DL−t

[XT] � E
X∼DL

[XXT] .

93

In particular,

E
X∼DL−t

[‖X‖2]−
∥∥∥ E

X∼DL−t

[X]
∥∥∥2

≥ E
X∼DL

[‖X‖2] .

The following proposition (with u = v) implies that the one-dimensional projections of

the discrete Gaussian distribution are “leptokurtic,” i.e., have kurtosis at least 3, the kurtosis

of a normal variable. We remark that the case n = 1 follows from a known inequality related

to the Riemann zeta function [Chu76, New76] (see also [BPY01, Section 2.2]).

Proposition 3.3.3 ([RS17a, Proposition 3.3]). For any lattice L ⊂ Rn and vectors u,v ∈ Rn,

E
X∼DL

[〈X,u〉2〈X,v〉2] ≥ E
X∼DL

[〈X,u〉2] E
X∼DL

[〈X,v〉2] + 2 E
X∼DL

[〈X,u〉〈X,v〉]2 .

Proof. From Corollary 3.3.2, we have

E
X∼DL−t

[〈X,u〉2]− E
X∼DL−t

[〈X,u〉]2 − E
X∼DL

[〈X,u〉2] ≥ 0 .

The same is true if we multiply through by ρ(L − t)2, which leads to the inequality

∑
y,y′∈L

ρ(y − t)ρ(y′ − t) ·
(
〈y − y′,u〉2/2− E

X∼DL
[〈X,u〉2]

)
≥ 0 .

(To see that, use 〈y − y′,u〉 = 〈y − t,u〉 − 〈y′ − t,u〉, and expand the square.) Note that

the left-hand side equals zero when t = 0 since L = −L. Therefore, as in the proof of

Proposition 3.3.1, the Hessian of the left-hand side with respect to t at t = 0 must be positive

semidefinite. Using Eqs. (3.5), (3.6), and (3.7), we see that

H(ρ(y − t)ρ(y′ − t))|t=0 = 4π2ρ(y)ρ(y′)
(
(y + y′)(y + y′)T − In/π

)
.

94

Therefore,

0 � E
X,X′∼DL

[(
(X + X ′)(X + X ′)T − In/π

)
·
(
〈X −X ′,u〉2/2− E

X′′∼DL
[〈X ′′,u〉2]

)]
= E

X,X′∼DL

[
(X + X ′)(X + X ′)T ·

(
〈X −X ′,u〉2/2− E

X′′∼DL
[〈X ′′,u〉2]

)]
= E

X∼DL
[XXT 〈X,u〉2]− E

X∼DL
[XXT] E

X∼DL
[〈X,u〉2]− 2 E

X∼DL
[X〈X,u〉] E

X∼DL
[XT 〈X,u〉] ,

as needed.

3.4 Monotonicity of the periodic Gaussian function

The next proposition shows that fL,s(t) is non-decreasing as a function of s. This (and the

more general statement in Proposition 3.4.2) answers a question of Price [Pri14b], who proved

it for the one-dimensional case n = 1 (illustrated in Figure 3.1).

One might wonder if such a monotonicity property is specific to flat tori or whether it is a

special case of a more general phenomenon. Namely, Peres [Per13] asked whether for any vertex

transitive graph G it holds that for any two vertices u, v, the ratio Pr[Xs = v]/Pr[Xs = u] is

non-decreasing as a function of s, where Xs is a continuous-time random walk on G starting

at u after time s. Recently, using our result, Price showed how to prove this for Abelian

Cayley graphs [Pri16]. Interestingly, a further extension to arbitrary Cayley graphs turns out

to be false [RS16].

Proposition 3.4.1 ([RS17a, Proposition 4.1]). For any lattice L ⊂ Rn and vector t ∈ Rn,

d
ds
fL,s(t)

fL,s(t)
≥ s

2π
· ‖∇fL,s(t)‖

2

fL,s(t)2
.

95

Figure 3.1: fZ,s(t) for various values of s and t ∈ [0, 1].

Proof. A straightforward computation shows that

d

ds
fL,s(t) =

2πfL,s(t)

s3
· E
X∼DL−t,s

[‖X‖2]− 2πfL,s(t)

s3
· E
X∼DL,s

[‖t‖2]

≥ 2πfL,s(t)

s3

∥∥∥ E
X∼DL−t,s

[X]
∥∥∥2

,

where we have applied Corollary 3.3.2. The result then follows from the fact that (see Eq.(3.6))

∇fL,s(t)
fL,s(t)

= −2π

s2
· E
X∼DL−t,s

[X] .

We now extend this monotonicity result by replacing the scalar variance parameter s2 by

a positive-definite matrix Σ. In particular, we define

fL,Σ(t) =

∑
y∈L exp(−π(y − t)TΣ−1(y − t))∑

y∈L exp(−πyTΣ−1y)
.

Equivalently,

fL,Σ(t) = fΣ−1/2L(Σ−1/2t) ,

96

where Σ1/2 is the unique positive-definite square root of Σ.

Proposition 3.4.2 ([RS17a, Proposition 4.2]). For any lattice L ⊂ Rn, t ∈ Rn, and positive-

definite matrices Σ,Σ′ ∈ Rn×n satisfying the positive semidefinite inequality Σ′ � Σ,

fL,Σ′(t) ≤ fL,Σ(t) .

Proof. We may replace L by Σ′−1/2L, t by Σ′−1/2t, and Σ by Σ′−1/2ΣΣ′−1/2 so that we can

assume without loss of generality that Σ′ = In. Moreover, by a change of basis, we may

take Σ to be diagonal. (Here, we have used the fact that the Gaussian is invariant under

orthogonal transformations.)

So, it suffices to show that fL(t) ≤ fL,Σ(t) when Σ ∈ Rn×n is a diagonal matrix with

Σ � In. Let s2
1, . . . , s

2
n ≥ 1 be the entries along the diagonal of Σ. The proof now proceeds

nearly identically to the proof of Proposition 3.4.1. Differentiating with respect to si, we have

d

dsi
fL,Σ(t) =

2πfL,Σ(t)

s3
i

(
E

X∼D
Σ−1/2(L−t)

[X2
i]− E

X∼D
Σ−1/2L

[X2
i]
)
,

where Xi is the ith coordinate of X. The result follows by noting that Corollary 3.3.2 implies

that this derivative is positive for all si > 0, so that fL,Σ(t) is an increasing function of si.

Finally, we prove our last monotonicity result, now with respect to taking sublattices.

Proposition 3.4.3 ([RS17a, Proposition 4.3]). For any lattice L ⊂ Rn, sublattice L′ ⊆ L,

and vector t ∈ Rn,

fL′(t) ≤ fL(t) .

97

Proof.

ρ(L′ − t)ρ(L) =
∑

c∈L/L′
ρ(L′ − t)ρ(L′ + c)

≤
∑

c∈L/L′
ρ(L′)(ρ(L′ + c− t) + ρ(L′ − c− t))/2 (Eq. (3.4c))

=
∑

c∈L/L′
ρ(L′)ρ(L′ + c− t)

= ρ(L′)ρ(L+ x) .

The result follows.

3.5 Positive correlation of the Gaussian measure on

lattices

The following shows that sublattices are positively correlated under the normalized Gaussian

measure on a lattice. (Price asked whether this holds in the special case when N := L ∩ V

for some subspace V ⊆ Rn [Pri14a].)

Theorem 3.5.1 ([RS17a, Theorem 5.1]). For any lattice L ⊂ Rn and sublattices M,N ⊆ L,

ρ(M)

ρ(L)
· ρ(N)

ρ(L)
≤ ρ(M∩N)

ρ(L)
.

Proof. Note that the natural mapping from M/(M∩N) to L/N given by c 7→ N + c is

98

injective. So,

ρ(L)

ρ(N)
=
∑

c∈L/N

ρ(N + c)

ρ(N)

≥
∑

c∈M/(M∩N)

ρ(N + c)

ρ(N)

≥
∑

c∈M/(M∩N)

ρ((M∩N) + c)

ρ(M∩N)
(Prop. 3.4.3)

=
ρ(M)

ρ(M∩N)
.

The result follows by rearranging.

99

Chapter 4

An Algorithm for DGS (and SVP and

CVP)1

4.1 Introduction

The two most important computational problems on lattices are the Shortest Vector Problem

(SVP) and the Closest Vector Problem (CVP). Given a basis for a lattice L ⊆ Rn, SVP asks

us to compute a non-zero vector in L of minimal length, and CVP asks us to compute a

lattice vector nearest in Euclidean distance to a target vector t. I.e., SVP asks for a lattice

vector with length λ1(L), and CVP asks for a lattice vector y ∈ L with ‖y − t‖ = dist(t,L).

Starting with the seminal work of [LLL82], algorithms for solving these problems either

exactly or approximately have been studied intensely. Such algorithms have found applications

in factoring polynomials over rationals [LLL82], integer programming [Len83, Kan87, DPV11],

cryptanalysis [Odl90, JS98, NS01], checking the solvability by radicals [LM83], and solving

1This chapter is primarily based on joint work with Divesh Aggarwal, Daniel Dadush, and Oded Regev,
which appeared in the Symposium on the Theory of Computing (STOC), 2015 [ADRS15] and joint work with
Divesh Aggarwal and Daniel Dadush, which appeared in the Symposium on the Foundations of Computer
Science (FOCS), 2015 [ADS15]. Some passages have been taken verbatim from these sources. This material
is based upon work supported by the National Science Foundation under Grant No. CCF-1320188.

100

low-density subset-sum problems [CJL+92]. More recently, many powerful cryptographic

primitives have been constructed whose security is based on the worst-case hardness of these

or related lattice problems [Ajt04, MR07, Gen09, Reg09, BV11, BLP+13, BV14], and some

of these cryptosystems are nearing widespread deployment [ADPS16, BCD+16, NIS16].

In their exact forms, both problems are known to be NP-hard (although SVP is only known

to be NP-hard under randomized reductions), and they are even hard to approximate to within

a factor of nO(1/ log logn) under reasonable complexity-theoretic assumptions [ABSS93, Ajt98,

CN98, BS99, DKRS03, Mic01, Kho05, HR12]. CVP is thought to be the “harder” of the two

problems, as there is a simple reduction from SVP to CVP that preserves the dimension n of

the lattice [GMSS99], even in the approximate case, while there is no known reduction in the

other direction that preserves the dimension.2 Indeed, CVP is in some sense nearly “complete

for lattice problems,” as there are known dimension-preserving reductions from nearly all

important lattice problems to CVP [Mic08]. (The Lattice Isomorphism Problem [HR14] and

the related Lattice Distortion Problem [BDS16] are important exceptions.) None of these

problems has a known dimension-preserving reduction to SVP.

Exact algorithms for CVP and SVP have a rich history. Kannan initiated their study with

an enumeration-based nO(n)-time algorithm for CVP [Kan87], and many others improved

upon his technique to lower the constant in the exponent [Hel85, HS07, MW15]. Since these

algorithms solve CVP, they also imply solutions for SVP and all of the problems listed above.

(Notably, these algorithms use only polynomial space.)

For over a decade, these nO(n)-time algorithms remained the state of the art until, in

a major breakthrough, Ajtai, Kumar, and Sivakumar (AKS) published the first 2O(n)-time

algorithm for SVP [AKS01]. The AKS algorithm is based on “randomized sieving,” in which

2Since both problems are NP-complete, there is necessarily an efficient reduction from CVP to SVP.
However, all known reductions either blow up the approximation factor or the dimension of the lattice by
a polynomial factor [Kan87, DH11]. Since we are interested in an algorithm for solving exact CVP whose
running time is exponential in the dimension, such reductions are not useful for us.

101

many randomly generated lattice vectors are iteratively combined to create successively shorter

lattice vectors. The work of AKS led to two major questions: First, can CVP be solved in a

similar amount of time? And second, what is the best achievable constant in the exponent?

Much work went into solving both of these problems using AKS’s sieving technique [AKS01,

AKS02, NV08, AJ08, BN09, PS09, MV10, HPS11], culminating in a Õ(22.456n)-time algorithm

for SVP and a 2O(n)(1+1/ε)O(n)-time algorithm for (1+ε)-approximate CVP. But, algorithms

for exact CVP remained out of reach.

The celebrated algorithm of Micciancio and Voulgaris [MV13] (MV), which built upon the

approach of Sommer, Feder, and Shalvi [SFS09], addressed this issue while simultaneously

achieving a lower constant in the exponent than prior techniques. Indeed, MV showed a

deterministic Õ(4n)-time and Õ(2n)-space algorithm for exact CVP (and thus SVP as well),

using an entirely new technique based on the Voronoi cell of the lattice. Until very recently,

this algorithm had the best known asymptotic running time for both SVP and CVP. And, the

MV algorithm was the only 2O(n)-time algorithm for exact CVP. (Indeed, there are inherent

barriers to extending sieving results to exact CVP. See [ADS15] for a brief discussion.)

4.1.1 Our contribution

We show a 2n+o(n)-time (and space) algorithm for SVP (originally due to [ADRS15]) and

a 2n+o(n)-time (and space) algorithm for CVP (originally due to [ADS15]). Both of these

results follow from a new 2n+o(n)-time (and space) algorithm for discrete Gaussian sampling

(DGS) with very low parameters s > 0. A crucial property of this algorithm is that it outputs

many independent discrete Gaussian samples in 2n+o(n) (i.e., the algorithm is in some sense

amortized), and we use this property to prove our main result.

Theorem 4.1.1 ([ADRS15, ADS15]). There is a 2n+o(n)-time algorithm that takes as input a

(basis for a) lattice L ⊂ Rn, a shift vectors t ∈ Rn, and any parameter s > dist(t,L)/2o(n/ logn)

102

and outputs many independent samples from DL−t,s.

In fact, for the special case when t = 0, the algorithm outputs 2n/2 independent samples

from DL,s (in the same running time), and for any t ∈ Rn, the algorithm outputs at least

ρs(L − t)

maxc∈L/(2L) ρs(2L − c− t)
≥ 1

independent samples from DL−t,s.

It is relatively straightforward to obtain an algorithm for SVP from Theorem 4.1.1. One

simply needs to show that there exists some s > 0 such that DL,s is a shortest non-zero vector

with probability greater than 2−n/2. (See Section 4.4.)

Theorem 4.1.2 ([ADRS15]). There is a (randomized) 2n+o(n)-time algorithm for SVP.

A similar argument about the shifted Gaussian DL−t,s + t shows that Theorem 4.1.1

immediately implies a 2n+o(n)-time algorithm that approximates CVP to within any approxi-

mation factor γ with γ > 1 + 2−o(n/ logn). With a lot more work, in [ADS15] we show how

to use recursive calls to the sampler from Theorem 4.1.1 to solve exact CVP with the same

asymptotic running time.

Theorem 4.1.3 ([ADS15]). There is a (randomized) 2n+o(n)-time algorithm for CVP.

We also show a 2n/2+o(n)-time algorithm that samples from the discrete Gaussian above

the smoothing parameter.

Theorem 4.1.4 ([ADRS15]). There is a 2n/2+o(n)-time algorithm that takes as input a (basis

for a) lattice L ⊂ Rn, a shift vector t ∈ Rn, and parameter s ≥
√

2η1/2(L) and outputs 2n/2

independent samples from DL−t,s.

Theorem 4.1.4 is already enough to approximate the decision version of SVP to within a

small constant factor in 2n/2+o(n) time. (See [ADRS15].)

103

4.1.2 Our techniques

A 2n+o(n)-time combiner for DGS. Recall that efficient algorithms are known for

sampling from the discrete Gaussian at very high parameters [GPV08]. Indeed, by using prior

work, we can sample from DL−t,s in, say, 2n/10 time for any s ≥ n10 max{λ1(L), dist(t,L)}.

(This is a bit of an oversimplification. See Corollary 4.2.2.) It therefore suffices to find a

way to convert samples from the discrete Gaussian with a high parameter to samples with a

parameter lowered by a constant factor. By repeating this “conversion” many times, we can

obtain samples with much lower parameters.

Note that this is trivial to do for the continuous Gaussian: if we divide a vector sampled

from the continuous Gaussian distribution by 2, the result is distributed as a continuous

Gaussian with half the width. Of course, half of a vector in L − t is typically not contained

in L − t, so this method fails spectacularly when applied to the discrete Gaussian. In the

centered case, when t = 0, we can try to fix this by conditioning on the result staying in L.

I.e., we can sample many vectors from DL,s, keep those that are in 2L, and divide them by

two. This method does work, but it is terribly inefficient—there are 2n cosets of 2L, and for

some typical parameters, a sample from DL,s will land in 2L with probability as small as

2−n. I.e., our “loss factor,” the ratio of the number of output vectors to the number of input

vectors, can be as bad as 2−n for a single step. If we wish to iterate this k times, we could

need 2kn input vectors for each output vector, resulting in a very slow algorithm!

We can be much more efficient, however, if we instead look for pairs of vectors sampled

from DL,s whose sum is in 2L, or equivalently pairs of vectors that lie in the same coset c

mod 2L. Taking our intuition from the continuous Gaussian, we might hope that the average

of two such vectors will be distributed as DL,s/
√

2. And, this process has the additional benefit

that it has the potential to work in the general case when t 6= 0 as well. In particular, if we

take the average of vectors from DL−t,s conditioned on them lying in the same coset mod 2L,

104

the result will at least land in L− t. So, there is at least hope that the resulting distribution

will be DL−t,s/
√

2.

This suggests an amortized algorithm, in which we sample many vectors from DL−t,s,

place them in “buckets” according to their coset mod 2L, and then take the average of

disjoint pairs of elements in the same bucket. We call such an algorithm a “combiner.” The

most natural combiner to consider is the “greedy combiner,” which simply pairs as many

vectors in each bucket as it can, leaving at most one unpaired vector per bucket. Since there

are 2n cosets, if we take, say, Ω(2n) samples from DL−t,s, almost all of the resulting vectors

will be paired. A lemma due to Peikert [Pei10] shows that the resulting distribution will

be statistically close to the desired distribution, DL−t,s/
√

2, provided that the parameter s is

above the smoothing parameter. (I.e., s & η2−n(L).)

At this point, we can already build a roughly 2n-time algorithm for DGS that works

for such parameters. (Namely, use prior work to sample at some very high parameter and

iteratively apply the combiner described above.) But, in order to move below smoothing

(which is necessary, e.g., for solving SVP and CVP), we need to do something else.

In particular, below the smoothing parameter, combining discrete Gaussian vectors

“greedily” as above will not typically give a result that is statistically close to a Gaussian

distribution. However, all is not lost. Recall that our algorithm works by picking pairs of

vectors sampled independently from DL−t,s that are in the same coset c mod 2L, and then

taking the average of each pair. So, the algorithm effectively samples a vector (X1,X2) from

some distribution over a coset L − (t, t) of the 2n-dimensional lattice L of pairs of vectors

that are in the same coset mod 2L,

L := {(y1,y2) ∈ L2 : y1 = y2 mod 2L} =
⋃

c∈L/(2L)

c× c ,

and then outputs (X1 + X2)/2. We claim that assuming that that distribution is DL−(t,t),s,

105

● ●

●

● ●◆

◆

◆

◆

◆■
■

■

■
■▲

▲

▲

▲
▲

-2 -1 1 2
z

0.2

0.4

0.6

0.8

1.0

Pr(z)

● Even

◆ Odd

■ Greedy Combination

▲ Correct Distribution

Figure 4.1: The distribution of averages of pairs of integers sampled from DZ,
√

2 resulting
from taking (1) only even pairs; (2) only odd pairs; (3) even and odd pairs with “greedy”
weights proportional to ρ√2(2Z) and ρ√2(2Z + 1) respectively; and (4) even and odd pairs
with “squared” weights proportional to ρ√2(2Z)2 and ρ√2(2Z + 1)2 respectively. The fourth
distribution is exactly DZ.

the output (X1 + X2)/2 is distributed exactly as DL−t,s/
√

2. In fact, this is just a special

case of the rotation identity from Chapter 3, Eq. (3.1).

However, note that if the combiner just greedily paired as many vectors from each coset

as possible, it would not yield samples from DL−(t,t),s. In particular, the probability that a

sample from DL−(t,t),s will land in (2L+ c− t)× (2L+ c− t) for some coset c ∈ L/(2L) is

proportional to the “squared weight” of the coset ρs(2L+ c− t)2. But, the greedy approach

pairs vectors from 2L + c − t with probability essentially proportional to ρs(2L + c − t).

(Figure 4.1 shows how the resulting distributions differ in the one-dimensional case.) For

parameters above smoothing, these distributions are roughly the same, but to go below

smoothing (and to avoid the statistical error resulting from the greedy approach), we need a

way to sample pairs from this “squared distribution” directly.

In [ADRS15], we showed a generic solution for “converting any probability distribution to

its square” relatively efficiently, which we call the “square sampler.” Informally, the square

sampler is given access to samples from some probability distribution that assigns respective

106

(unknown) probabilities (p1, . . . , pN) to the elements in some (large) finite set {1, . . . , N}. It

uses this to efficiently sample a large collection of independent coin flips bi,j such that bi,j = 1

with probability proportional to pi. Then, using these coins, it applies rejection sampling to

the input samples (accepting the jth instance of input value i if bi,j = 1) in order to obtain

the desired “squared distribution.” If Pr[bi,j = 1] = Tpi for some proportionality factor T , it

is not hard to see that the expected “loss factor” of this process is T
∑
p2
i . We therefore take

T to be as large as possible by setting T ≈ 1/max pi (if we took T to be any larger, we would

need a coin that lands on heads with probability greater than one!), making the loss factor of

the square sampler approximately
∑
p2
i /max pi. (See Section 4.3.1 and Corollary 4.3.4 in

particular.)

In particular, when combining discrete Gaussian vectors, the loss factor is approximately

the collision probability over the cosets,
∑
ρs(2L+c− t)2/ρs(L− t)2, divided by the maximal

probability of a single coset. As a result, if one coset has a 2−n/2 fraction of the total weight

and the other cosets split the remaining weight roughly evenly, then the loss factor is roughly

2−n/2 for a single step of the combiner. This looks terrible for us, as it could be the case that

k applications of the combiner could yield a loss factor of 2−kn/2! Surprisingly, we show that

(1) in the centered case when t = 0, the product of all loss factors for an arbitrarily long

sequence of applications of the combiner is at worst 2−n/2 (ignoring loss due to other factors);

and (2) in the general case, the product of all loss factors is at worst 2−n times the reciprocal

of the probability of sampling the coset with maximal mass.3 As a result, our sampler always

returns many independent Gaussian samples—at least 2n/2 when t = 0; and at least the

reciprocal of the probability of the maximal coset in general.

3While the purely algebraic proofs of these facts are quite simple (see the proof of Theorem 4.3.7), we do
not yet have good intuitive understanding of it. Indeed, we have found ourselves referring to the remarkable
cancellation in these proofs as the “magic cancellation.”

107

A 2n/2+o(n)-time combiner for DGS above smoothing. We now present a faster algo-

rithm that works as long as the parameter s is just slightly above the smoothing parameter.

Here, we focus only on the centered case in which t = 0, since as we show in Section 4.5.4,

the shifted case is equivalent to the centered case above smoothing.

Recall that the general combiner described above starts with many vectors and then

repeatedly takes the average of pairs of vectors that lie in the same coset of 2L. We observed

that this combiner necessarily needs over 2n vectors “just to get started” because it works

over the 2n cosets of 2L. To get a faster combiner, we therefore try pairing vectors according

to the cosets of some sublattice 2L′ that “lies between” L and 2L such that 2L ⊆ 2L′ ⊂ L.

If we simply take many samples from DL,s, group them according to their cosets mod 2L′,

and take their average, analogy with the continuous Gaussian suggests that the resulting

vectors will be distributed as roughly DL′,s/
√

2. Note that the parameter has decreased, which

is what we wanted, but we are now sampling from a denser lattice. In particular, suppose

that we apply this combiner twice, so that in the second step we obtain vectors from some

L′′. We then expect to obtain samples from roughly DL′′,s/2. So, intuitively, if we take L′′

to be a sublattice of L/2, we have “made progress.” Our running time will be proportional

to the index of 2L′ over L (assuming that the index of 2L′′ over L′ is the same, etc.), so we

should take the index of 2L′ over L to be as small as possible. More specifically, we can build

a “tower” of progressively denser lattices (L0, . . . ,L`) with the index of 2Li over Li−1 taken

to be slightly larger than 2n/2.4 If we take L` to be the lattice from which we wish to obtain

samples with parameter s and L0 to be a sparse lattice from which we can sample efficiently

with parameter 2`/2s, we can hope that iteratively applying such a combiner “up the tower”

will yield a sampling algorithm.

As in the description of our 2n-time combiner, the lemma from [Pei10] shows that the

above approach, when instantiated with the “greedy combiner,” will yield an algorithm

4We note that Becker et al. [BGJ14] also use a tower of lattices in their heuristic algorithm.

108

that can output vectors whose distribution is statistically close to the discrete Gaussian for

parameters s that are above the smoothing parameter. Though this statistical distance can

be made small, it is large enough to break applications such as our approximation algorithm

for decision SVP.

To avoid this error, the natural hope is that the same combiner used in the 2n-time

algorithm above (the one with the “square sampler”) will suffice. Unfortunately, this gives

the wrong distribution. In particular, we obtain a distribution in which the cosets of L′ over

L have weight that is proportional to the square of their weights over the discrete Gaussian.

(See Lemma 4.5.2. Note that when L′ = L there is only one such coset, which is why our

2n-time combiner does not run into this problem.) In [ADRS15], we get around this problem

by using a “square root sampler,” in analogy to our square sampler. In this dissertation, we

observe that, since our combiner requires sampled that are “squared” over the cosets of 2L′′,

it suffices to find an algorithm that converts the “squared” distribution over the cosets of L′

to the squared distribution over the cosets of 2L′′. We show that it suffices to run the square

sampled “inside these cosets.” (See Section 4.5.) This alternative strategy seems more likely

to extend below the smoothing parameter, though we are still unable to achieve this.

Solving exact CVP. It is relatively easy to show that 2n/2 samples from DL,s for an

appropriate parameter s > 0 will contain a shortest vector. (See Section 4.4.) Similarly, if we

could obtain just one sample from DL−t,s for sufficiently small s > 0, we would easily be able

to solve exact CVP. However, we are only able to handle parameters s > 2−o(n/ logn) dist(t,L).

This immediately allows us to approximate CVP up to an extremely good approximation

factor 1 + 2−o(n/ logn), but it does not solve the exact problem. In [ADS15], we resolve this

issue by developing a recursive algorithm that uses certain special properties of our discrete

Gaussian sampler. This is outside of the scope of this dissertation, so we do not include the

details here.

109

4.1.3 Open problems and directions for future work

Of course, the most natural and important open problem is whether a faster algorithm for

these problems is possible. In recent work with Bennett and Golovnev, we showed some

(debatable, but rather convincing to the author) evidence that a 2n+o(n)-time algorithm for

CVP might be optimal [BGS17].5

In contrast, it seems very unlikely that the algorithm presented in this work is optimal for

SVP. Indeed, there exist certain reasonable heuristics that imply significantly faster sieving

algorithms. Assuming these heuristics, the current fastest running time is (3/2)n/2+o(n) ≈

20.29n [BDGL16]. Furthermore, the techniques used to prove Theorem 4.1.4 seem tantalizingly

close to yielding a provable 2n/2+o(n)-time algorithm for SVP (or perhaps SVP with a relatively

small approximation factor), though we have been unable to obtain this result thus far.

In another direction, a long-standing open problem is to find an algorithm that solves

SVP or CVP in 2O(n) time but polynomial space. Currently, the only known algorithms that

run in polynomial space are the enumeration-based method of Kannan and its variants, which

run in nO(n) time. This is part of the reason why nO(n)-time enumeration-based methods are

often used in practice to solve large instances of CVP and SVP, in spite of their much worse

asymptotic running time.

My co-authors and I are particularly interested in finding a better explanation for why

“everything seems to work out” so remarkably well in the analysis of our algorithms. It seems

almost magical that we end up with exactly as many samples as we need for our CVP to DGS

reduction to go through. We do not have a good intuitive understanding of why our sampler

returns the number of samples that it does, but it seems largely unrelated to the reason that

5In particular, in [BGS17], we proved that if the Strong Exponential-Time Hypothesis holds, then no
faster algorithm exists for CVP in the `p norm for “almost all” values of p. Unfortunately, our proof technique
cannot work for p = 2, so that it does not directly apply to the problem considered in this work. We also
provide other evidence that significantly faster algorithms—say, 22n/3-time algorithms—for CVP in the `2
norm are unlikely [BGS17].

110

our CVP algorithm needs as many samples as it does. The fact that these two numbers are

the same is remarkable, and we would love a clear explanation.6 A better understanding of

this would be interesting in its own right, and it could lead to an improved algorithm.

4.2 Preliminaries

4.2.1 Sampling with Large Parameter

If we naively applied Corollary 1.3.15 or 1.3.16 and then used the tricks in the sequel to

repeatedly lower the parameter by some constant factor, we would still necessarily arrive at

an algorithm that only worked for parameters larger than some value proportional to λn(L)

or η1/2(L). The following proposition and corollary are what allow us to obtain our main

result (Theorem 4.1.1), with a lower bound on the parameter that depends only on dist(t,L).

The trick is simply to work over a sublattice L′ ⊆ L with the property that (1) η1/2(L′) is

proportional to dist(t,L); and (2) all of the short vectors in L − t are also in L′ − t, so that

DL′−t,s ≈ DL−t,s for sufficiently small parameters s > 0.

Proposition 4.2.1 ([ADS15, Proposition 4.5]). There is an algorithm that takes as input a

lattice L ⊂ Rn, shift t ∈ Rn, r > 0, and parameter u ≥ 2, such that if

r ≥ un/u(1 +
√
nun/u) · dist(t,L) ,

then the output of the algorithm is y ∈ L and a basis B′ of a (possibly trivial) sublattice

L′ ⊆ L such that all vectors from L−t of length at most r/un/u−dist(t,L) are also contained

in L′ − y − t, and ‖B̃
′
‖ ≤ r. The algorithm runs in time poly(n) · 2O(u).

6It is worth noting that our sampling algorithm and our reduction from CVP to DGS both work over the
cosets L/(2L). But, the way in which they use these cosets seems rather different. E.g., the CVP algorithm
“views the cosets algebraically,” while the reduction “views them geometrically.” (In fact, the CVP algorithm
due to Micciancio and Voulgaris also works over the cosets L/(2L).)

111

Proof. On input a lattice L ⊂ Rn, t ∈ Rn, and r > 0, the algorithm behaves as follows. First,

it calls the procedure from Theorem 1.2.3 to compute a un/u-HKZ basis B = (b1, . . . , bn) of L.

Let (b̃1, . . . , b̃n) be the corresponding Gram-Schmidt vectors. Let k ≥ 0 be maximal such that

‖b̃i‖ ≤ r for 1 ≤ i ≤ k, and let B′ = (b1, . . . , bk). Let πk = π{b1,...,bk}⊥ and M = πk(L). The

algorithm then calls the procedure from Theorem 1.2.3 again with the same s and input πk(t)

andM, receiving as output x =
∑n

i=k+1 aiπk(bi) where ai ∈ Z, a
√
nun/u-approximate closest

vector to πk(t) inM. Finally, the algorithm returns y = −
∑n

i=k+1 aibi and B′ = (b1, . . . , bk).

The running time is clear, as is the fact that ‖B̃′‖ ≤ r. It remains to prove that L′−y− t

contains all sufficiently short vectors in L − t. If k = n, then L′ = L and y is irrelevant, so

we may assume that k < n. Note that, since B is a un/u-HKZ basis, λ1(M) ≥ ‖b̃k+1‖/un/u >

r/un/u. In particular, λ1(M) > (1 +
√
n · un/u) · dist(t,L) ≥ (1 +

√
n · un/u) · dist(πk(t),M).

So, there is a unique closest vector to πk(t) in M, and by triangle inequality, the next

closest vector is at distance greater than
√
n · un/u dist(πk(t),M). Therefore, the call to the

subprocedure from Theorem 1.2.3 will output the exact closest vector x ∈M to πk(t).

Let w ∈ L \ (L′ − y) so that πk(w) 6= πk(−y) = x. We need to show that w − t is

relatively long. Since B is a sn/s-HKZ basis, it follows that

‖πk(w)− x‖ ≥ λ1(M) > r/un/u .

Applying triangle inequality, we have

‖w − t‖ ≥ ‖πk(w)− πk(t)‖ ≥ ‖πk(w)− x‖ − ‖x− πk(t)‖ > r/un/u − dist(t,L) ,

as needed.

Corollary 4.2.2 ([ADS15, Corollary 4.6]). There is an algorithm that takes as input a lattice

L ⊂ Rn with n ≥ 2, shift t ∈ Rn, M ∈ N (the desired number of output vectors), and

112

parameters u ≥ 2 and ŝ > 0 and outputs y ∈ L, a (possibly trivial) sublattice L′ ⊆ L, and M

vectors from L′ − y − t such that if

ŝ ≥ C
√
n log n · u2n/u · dist(t,L) ,

then the output vectors are distributed as M independent samples from DL′−y−t,ŝ, and L′−y−t

contains all vectors in L − t of length at most Cŝ/(un/u
√

log n). The algorithm runs in time

poly(n) · 2O(u) + poly(n) ·M .

Proof. The algorithm first calls the procedure from Proposition 4.2.1 with input L, t, and

r :=
Cŝ√
log n

≥ un/u(1 +
√
nun/u) · dist(t,L) ,

receiving as output y ∈ L and a basis B′ of a sublattice L′ ⊂ L. It then runs the algorithm

from Theorem 1.3.14 M times with input L′, y + t, and ŝ and outputs the resulting vectors,

y, and L′.

The running time is clear. By Proposition 4.2.1, L′ − y − t contains all vectors of length

at most r/un/u − dist(t,L) ≥ Cŝ/(un/u
√

log n) in L − t, and ‖B̃
′
‖ ≤ r ≤ Cŝ/

√
log n. So, it

follows from Theorem 1.3.14 that the output has the correct distribution.

4.2.2 Some properties of Poisson distributions

Definition 4.2.3 (Poisson distribution). The Poisson distribution with parameter λ > 0 is

the distribution defined by

Pr
X∼Pois(λ)

[X = r] =
λr

r!
· e−λ

for all m ∈ N.

Intuitively, the Poisson distribution is the distribution obtained by, e.g., counting the

113

number of decay events over some fixed time period in some large, homogenous radioactive

source. The parameter λ is just the expected count.

Lemma 4.2.4 (Poisson tail bounds [Gly87]). For λ > 0 let X be a Pois(λ) random variable.

Then,

• for any 0 ≤ m < λ,

Pr(X ≤ m) ≤ exp(−λ)λm

m!(1− (m/λ))
,

• and for any m > λ− 1,

Pr(X ≥ m) ≤ exp(−λ)λm

m!(1− (λ/(m+ 1)))
.

Corollary 4.2.5. For any α > 0, there exist C1, C2 > 0 such that the following holds for all

m ≥ 1. If X is a Pois(λ) random variable for some λ < (1− α)m then

Pr(X ≥ m) ≤ C1 exp(−C2m) ,

and similarly, if λ > (1 + α)m then

Pr(X ≤ m) ≤ C1 exp(−C2m) .

Proof. Stirling’s approximation implies the inequality m! ≥ (m/e)m valid for all m ≥ 1,

which together with Lemma 4.2.4 implies in both cases the upper bound

C exp(−m(λ/m− log(λ/m) + 1)) .

The function x − log x + 1 is non-negative and strictly convex on x > 0 and obtains its

minimum of 0 at x = 1. As a result, it is uniformly bounded away from 0 for all x satisfying

114

|x− 1| ≥ α.

Lemma 4.2.6 (Multinomial to independent Poisson). Let λ > 0 and p ∈ [0, 1]N with∑
pi = 1. Consider the process that first samples r ∼ Pois(λ) and then samples X1, . . . , Xr

independently with Pr[Xj = i] = pi. For each i, let Yi be the number of occurrences of i in

the sequence X1, . . . , Xr. Then, Yi is distributed as Pois(λpi) independently of the other Yj.

Proof. Considering the joint distribution, we have

Pr[Y = a] = Pr[r = ‖a‖1] · Pr[Y = a|r = ‖a‖1]

= λ‖a‖1e−λ
∏
i

paii
ai!

=
∏
i

(
(λpi)

ai

ai!
· e−λpi

)
,

as needed.

Claim 4.2.7 (Poisson to Bernoulli). For λ ≤ 1 and κ ≥ 2, consider the procedure obtained by

sampling r from Pois(λ) and then outputting 1 with probability min{1, r/κ} and 0 otherwise.

The output of this procedure is within statistical distance 1/(bκc!) of the Bernoulli distribution

Bern(λ/κ).

Proof. If X is distributed like Pois(λ), the statistical distance is given by

E[X/κ−min{1, X/κ}] = E[max{0, X/κ− 1}]

≤ κ−1 E[1X>κ ·X]

= κ−1

∞∑
r=bκc+1

rλr exp(−λ)/r!

= κ−1λ

∞∑
r=bκc

λr exp(−λ)/r! ,

which is at most 1/(bκc!) by Lemma 4.2.4 and our choice of parameters.

115

4.3 Sampling from the discrete Gaussian

4.3.1 Sampling from the square

Recall that a naive bucketing procedure does not weight cosets in the way that we would like.

In particular, the resulting number of vectors in the cosets is distributed with probabilities

essentially proportional to ρs(2L + c − t), while we would like the probabilities to be

proportional to ρs(2L+c−t)2. Corollary 4.3.4 shows how to use samples from any multinomial

distribution to sample from the “squared distribution” (with small error).

Our presentation is slightly different than that of [ADRS15] and [ADS15]. In particular,

these prior works present Corollary 4.3.4 directly, without going through the intermediate

result in Theorem 4.3.2. However, we will need Theorem 4.3.2 later.

Proposition 4.3.1 (Estimating pmax, [ADRS15, Proposition 3.1]). There is an algorithm that

takes as input κ ≥ 1 (the confidence parameter) and a sequence of M elements from {1, . . . , N}

and outputs a value p̃max such that, if the input consists of M ≥ κ/pmax independent samples

from the distribution that assigns probability pi to element i, then

pmax ≤ p̃max ≤ 4pmax

except with probability at most C1N logN exp(−C2κ), where pmax := max pi . The algorithm

runs in time M · poly(log κ, logN).

We now wish to show that, given access to independent samples from a multinomial

distribution (p1, p2, . . . , pN) and a scaling factor 1 ≤ T ≤ 1/max pi, we can generate samples

from bi = Bern(Tpi) very efficiently. In particular, we can generate N coins b1, . . . , bN ∈ {0, 1}

(i.e., a single coin flip for each i) using just O(T) samples and essentially O(T) time. (Notice

that, in order for this to make sense when N � T , we must represent the coins b1, . . . , bN in

some sparse representation—i.e., by simply listing the indices of the non-zero entries.)

116

Theorem 4.3.2. There is an algorithm that takes as input T ≥ 1 (the scaling parameter),

κ ≥ 2 (the confidence parameter), and dκT e elements from {1, . . . , N} and outputs a (sparse)

vector b = (b1, . . . , bN) ∈ {0, 1}N , such that if the input consists of M ≥ κT independent

samples from the distribution that assigns probability pi ≤ 1/T to element i, then up to

statistical distance C1N exp(−C2κ), the bi are independently distributed with bi = Bern(Tpi/κ).

Furthermore, the algorithm runs in time T · poly(log κ, logN, log T) and a coin bi is non-zero

only if the element i appears in the input.

Proof. The algorithm first samples r according to the distribution Pois(T). It then restricts

its attention to the first r input samples. (If r > 2T , then the algorithm simply fails.) For

each i ∈ {1, . . . , N} that appears in these samples, let ai be the number of appearances. The

algorithm then sets bi to be one with probability min{1, ai/κ} and zero otherwise. (If i did

not appear in the first r samples, then bi = 0.)

The running time is clear, as is the fact that a coin bi is non-zero only if the element i

appears in the input. By Corollary 4.2.5, the probability of failure is at most C1 exp(−C2κ).

By Lemma 4.2.6, the ai are distributed exactly as Pois(Tpi). Then, by Claim 4.2.7, each

bi is within statistical distance 1/bκc! ≤ C exp(−κ) of Bern(Tpi/κ). The result follows by

applying union bound.

From this, we derive the following corollary.

Definition 4.3.3. For a vector p ∈ [0, 1]N with
∑
pi = 1, let p2 = (p2

1/pcol, . . . , p
2
N/pcol)

where pcol :=
∑
p2
i .

Corollary 4.3.4 (Square sampler, [ADRS15, Theorem 3.3]). There is an algorithm that

takes as input κ ≥ 2 (the confidence parameter) and M elements from {1, . . . , N} and outputs

a sequence of elements from the same set such that

1. the running time is M · poly(log κ, logN);

117

2. each i ∈ {1, . . . , N} appears at least twice as often in the input as in the output; and

3. if the input consists of M ≥ 10κ3/max pi independent samples from the distribution

that assigns probability pi to element i, then the output is within statistical distance

C1MN logN exp(−C2κ) of m independent samples with respective probabilities p2 where

m ≥M ·
∑
p2
i /(32κ2 max pi) is a random variable.

Proof. The algorithm uses its first M/10 samples to run the procedure from Proposition 4.3.1,

to compute p̃max such that pmax ≤ p̃max ≤ 4pmax. It then runs the procedure from Theo-

rem 4.3.2 a total of dp̃maxM/(2κ)e times, each time with T := 1/p̃max, to obtain (a sparse

representation of) coins bi,j ∈ {0, 1} for 1 ≤ i ≤ N and 1 ≤ j ≤ dp̃maxM/(2κ)e.

Finally, the algorithm looks through the next dM/(3κ)e elements, one element at a time.

When it sees element i, it adds it to its output if bi,j = 1 where j ≥ 1 is the smallest index

such that bi,j is unused (or it fails if there is no unused bi,j).

The running time of the algorithm is clear. And, since the procedure from Theorem 4.3.2

only sets bi,j = 1 if there is at least one element i in its input, it follows that there are at

least twice as many instances of i in the input to this algorithm as there are in its output.

By Proposition 4.3.1, we have pmax ≤ p̃max ≤ 4pmax except with probability at most

C1N logN exp(−C2κ). By Theorem 4.3.2 and union bound, we may assume that the bi,j

are independently distributed exactly as Bern(piT/κ), introducing statistical distance that

is at most C1NM exp(−C2κ). Then, in the final stage of the algorithm, the probability

of outputting i at each step is p2
i /(κmax pi) Hence, the output samples have the correct

distribution.

And, by the Chernoff-Hoeffding bound (Lemma 1.4.3), the number of coins bi,j used for

some fixed i will not be larger than Mpi/(2κ) ≤ Mp̃max/(2κ) except with probability at

most exp(−Cκ). It follows from union bound that the total probability of failure is at most

N exp(−Cκ).

118

Finally, by the Chernoff-Hoeffding bound again, the size of the output will be at least

M
∑
p2
i /(8κ

2p̃max) ≥M
∑
p2
i /(κ

2 max pi), except with probability at most exp(−Cκ).

4.3.2 A discrete Gaussian combiner

Ideally, we would like the average of two vectors sampled from DL−t,s to be distributed as

DL−t,s′ for some s′ < s. Unfortunately, this is false for the simple reason that the average of

two vectors in L − t may not be in L − t! The following lemma shows that we do obtain

the desired distribution if we condition on the result being in L − t. Indeed, this lemma is

simply a special case of Eq. (3.2), but we give a direct proof anyway. (Note that, for two

vectors X1,X2 ∈ L − t, we have (X1 + X2)/2 ∈ L − t if and only if X1 ≡X2 mod 2L.)

Lemma 4.3.5 ([ADS15, Lemma 4.1]). Let L ⊂ Rn, s > 0 and t ∈ Rn. Then for all y ∈ L−t,

Pr
(X1,X2)∼D2

L−t,s

[X1 + X2 = 2y | X1 ≡X2 mod 2L] = Pr
X∼DL−t,s/

√
2

[X = y] . (4.1)

Proof. Multiplying the left-hand side of (4.1) by Pr(X1,X2)∼D2
L−t,s

[X1 + X2 ∈ 2L − 2t], we

get for any y ∈ L − t,

Pr
(X1,X2)∼D2

L−t,s

[(X1 + X2)/2 = y] =
1

ρs(L − t)2
·
∑

x∈L−t

ρs(x)ρs(2y − x)

=
ρs/
√

2(y)

ρs(L − t)2
·
∑

x∈L−t

ρs/
√

2(x− y)

=
ρs/
√

2(y)

ρs(L − t)2
· ρs/√2(L) .

Hence both sides of (4.1) are proportional to each other. Since they are probabilities, they

are actually equal.

Proposition 4.3.6. There is an algorithm that takes as input a lattice L ⊂ Rn, t ∈ Rn,

119

κ ≥ 2 (the confidence parameter), and a sequence of vectors from L − t, and outputs a

sequence of vectors from L − t such that, if the input consists of

M ≥ 10κ3 · ρs(L − t)

maxc∈L/(2L) ρs(2L+ c− t)

independent samples from DL−t,s for some s > 0, then the output is within statistical distance

M exp(C1n− C2κ) of m independent samples from DL−t,s/
√

2 where m is a random variable

with

m ≥M · 1

32κ2
·

ρs/
√

2(L) · ρs/√2(L − t)

ρs(L − t) maxc∈L/(2L) ρs(2L+ c− t)
.

The running time of the algorithm is at most M · poly(n, log κ).

Proof. Let (X1, . . . ,XM) be the input vectors. For each i, let ci ∈ L/(2L) be such that

X i ∈ 2L + ci − t. The algorithm runs the procedure from Corollary 4.3.4 with input κ

and (c1, . . . , cM), receiving output (c′1, . . . , c
′
m). (Formally, we must encode the cosets as

integers in {1, . . . , 2n}.) Finally, for each c′i, it chooses a pair of unpaired vectors Xj,Xk

with cj = ck = c′i and outputs Y i = (Xj + Xk)/2.

The running time of the algorithm follows from Item 1 of Corollary 4.3.4. Furthermore,

we note that by Item 2 of the same corollary, there will always be a pair of indices j, k for

each i as above.

To prove correctness, we observe that for c ∈ L/(2L) and y ∈ 2L+ c− t,

Pr[X i = y] =
ρs(2L+ c− t)

ρs(L − t)
· Pr
X∼D2L+c−t,s

[X = y] .

In particular, we have that Pr[ci = c] = ρs(2L+c−t)/ρs(L−t). Then, the cosets (c1, . . . , cM)

satisfy the conditions necessary for Item 3 of Corollary 4.3.4.

Applying Corollary 4.3.4, up to statistical distance M exp(C1n− C2κ), we have that the

120

output vectors are independent, and

m ≥M · 1

32κ2
·

∑
c∈L/(2L) ρs(2L+ c− t)2

ρs(L − t) maxc∈L/(2L) ρs(2L+ c− t)

= M · 1

32κ2
·

ρs/
√

2(L) · ρs/√2(L − t)

ρs(L − t) maxc∈L/(2L) ρs(2L+ c− t)
,

where the equality follows from Eq. (3.2) by setting u = 0. Furthermore, we have Pr[c′i =

c] = ρs(2L+c− t)2/
∑

c′ ρs(2L+c′− t)2 for any coset c ∈ L/(2L). Therefore, for any y ∈ L,

Pr[Y i = y] =
1∑

ρs(2L+ c− t)2
·
∑

c∈L/(2L)

ρs(2L+ c− t)2 · Pr
(Xj ,Xk)∼D2

2L+c−t,s

[(Xj + Xk)/2 = y]

= Pr
(X1,X2)∼D2

L−t,s

[(X1 + X2)/2 = y | X1 + X2 ∈ 2L − 2t] .

The result then follows from Lemma 4.3.5.

We will show in Theorem 4.3.7 that by calling the algorithm from Proposition 4.3.6

repeatedly, we obtain a general discrete Gaussian combiner.

Theorem 4.3.7. There is an algorithm that takes as input a lattice L ⊂ Rn, ` ∈ N (the step

parameter), κ ≥ 2 (the confidence parameter), t ∈ Rn, and M = (32κ)2`+2 · 2n vectors in L

such that, if the input vectors are distributed as DL−t,s for some s > 0, then the output is a

list of vectors whose distribution is within statistical distance `M exp(C1n− C2κ)

m ≥

2n/2 t = 0

ρ
2−`/2s(L−t)

maxc∈L/(2L) ρ2−`/2s(2L+c−t) otherwise

independent samples from DL−t,2−`/2s. The algorithm runs in time `M · poly(n, log κ).

Proof. Let X0 = (X1, . . . ,XM) be the sequence of input vectors. For i = 0, . . . , `− 1, the

algorithm calls the procedure from Proposition 4.3.6 with input L, κ, and Xi, receiving an

121

output sequence Xi+1 of length Mi+1. Finally, the algorithm outputs the sequence X`.

The running time is clear. Fix L, s, t and `. Define θ(i) := ρ2−i/2s(L), φ(i) :=

maxc∈L/(2L) ρ2−i/2s(2L+ c− t), and ψ(i) := ρ2−i/2s(L − t).

We will first prove the result for the case t 6= 0. We wish to prove by induction that Xi is

within statistical distance iM exp(C1n− C2κ) of DMi

L−t,2−i/2s with

Mi ≥ (32κ)2`−2i+2 · ψ(i)

φ(i)
, (4.2)

for all i ≥ 1. In particular, with i = `, this implies the result.

Let

L(i) :=
θ(i+ 1)ψ(i+ 1)

ψ(i)φ(i)
,

be the “loss factor” resulting from the (i+ 1)st run of the combiner, ignoring the factor of

32κ2. By Theorem 3.2.2, we have

L(i) ≥ ψ(i+ 1)

φ(i+ 1)
· φ(i)

ψ(i)
. (4.3)

By Proposition 4.3.6, up to statistical distance M exp(C1n− C2κ), we have that X1 has the

right distribution with

M1 ≥
1

32κ2
·M0 · L(0)

≥ (32κ)2` · 2n · ψ(1)

φ(1)
· φ(0)

ψ(0)
,

where we used Eq. (4.3) with i = 0. By noting that ψ(0) ≤ 2nφ(0) (by Lemma 1.3.3), we see

that (4.2) holds when i = 1.

Suppose that Xi has the correct distribution and (4.2) holds for some i with 0 ≤ i < `. In

particular, we have that Mi is at least 10κ2ψ(i)/φ(i). This is precisely the condition necessary

122

to apply Proposition 4.3.6. So, we can apply the proposition and the induction hypothesis

and obtain that (up to statistical distance at most (i+ 1)M exp(C1n− C2κ)), Xi+1 has the

correct distribution with

Mi+1 ≥
1

32κ2
·Mi · L(i) ≥ (32κ)2`−2i · ψ(i)

φ(i)
· φ(i)

ψ(i)
· ψ(i+ 1)

φ(i+ 1)
= (32κ)2`−2i · ψ(i+ 1)

φ(i+ 1)
,

where in the second inequality we used the induction hypothesis and Eq. (4.3).

To prove that m ≥ 2n/2 when t = 0, we observe that when t = 0, θ(i) = ψ(i) and

φ(i) = maxc∈L/(2L) ρ2−i/2s(2L+ c− t) = ρ2−i/2s(2L) = ψ(i+ 2). Therefore, in this case, the

loss factor L(i) is

L(i) =
θ(i+ 1)ψ(i+ 1)

ψ(i)φ(i)
=

ψ(i+ 1)2

ψ(i)ψ(i+ 2)
.

Therefore, the product of the L(i) is a telescoping product, with

∏
i

L(i) =
ψ(2)

ψ(1)
· ψ(`+ 1)

ψ(`+ 2)
≥ 2−n/2 ,

and the result follows.

4.3.3 Finishing the proof of Theorem 4.1.1

Theorem 4.1.1 follows more-or-less immediately from Theorem 4.3.7 together with Corol-

lary 4.2.2. Here, we present a more formal version of Theorem 4.1.1.

Theorem 4.3.8 ([ADRS15, ADS15]). For any efficiently computable function f(n) ≥ nC,

let σ be the function defined by σ(L− t) := dist(t,L)/f(n) for any lattice L ⊂ Rn and t ∈ Rn,

and let

m(L − t, s) :=

2n/2 t ∈ L

ρs(L−t)
maxc∈L/(2L) ρs(2L+c−t) otherwise.

123

Then, there is an algorithm that solves ε-DGSmσ with ε(n) := 2−f(n) in time 2n+O(logn log f(n)).

Proof. We assume without loss of generality that f(n) > 10. The algorithm behaves as follows

on input a lattice L ⊂ Rn, a shift t ∈ L, and a parameter s > σ(L − t). First, it runs the

procedure from Corollary 4.2.2 with input L, t, M := (Cf(n))2`+2 · 2n with ` := Cdlog f(n)e,

u := Cn log n/ log f(n) + 2, and

ŝ := 2`s > C
√
n log n · u2n/u · dist(t,L) .

(Note that un/u ≤ f(n)C .) It receives as output L′ ⊂ Rn, y ∈ L, and (X1, . . . ,XM) ∈

L′ − y − t. It then runs the procedure from Theorem 4.3.7 twice, first with input L′, `,

κ := 10f(n), t, and the first half of the vectors, (X1, . . . ,XM/2); and next with input L′, `,

κ, t, and the second half of the vectors, (XM/2+1, . . . ,XM). Finally, it outputs the resulting

vectors. (We run the procedure twice simply to double the output size.)

The running time follows from the respective running times of the two subprocedures.

In particular, the procedure from Corollary 4.2.2 runs in time poly(n) · (2O(u) + M) =

nO(n/ log f(n)) + 2n+O(logn log f(n)) = 2n+O(logn log f(n)), and the procedure from Theorem 4.3.7

runs in time `M · poly(n, log κ) = 2n+O(logn log f(n)).

By Corollary 4.2.2, the X i are M independent samples from DL′−y−t,ŝ and L′ − y − t

contains all vectors in L − t of length at most Cŝ/(un/u
√

log n). By Theorem 4.3.7, the

output contains at least 2m(L′ − t, s) vectors whose joint distribution is within statistical

distance 2−2f(n) of independent samples from DL′−y−t,s.

We now show that DL′−y−t,s is statistically close to DL−t,s. Let d := dist(t,L) and

r :=
C2`

un/u
√
n log n

≥ f(n)C ≥ 1√
2π

.

124

The statistical distance is exactly

Pr
w∼DL−t,s

[
w /∈ L′ − y − t

]
< Pr

w∼DL−t,s

[
‖w‖ > Cŝ/(un/u

√
log n)

]
= Pr

w∼DL−t,s

[
‖w‖ > rs

√
n
]

< eπd
2/s2e−f(n)C

< ε/M ,

where we have used Corollary 1.3.11. It follows that the output has the correct size and

distribution. In particular, it follows from applying union bound over the output samples that

the joint distribution of the output samples is within statistical distance ε of independent

samples from DL−t,s, and an easy calculation shows that 2m(L′ − t, s) > m(L − t, s).

4.4 Solving SVP and (approximate) CVP in 2n+o(n) time

4.4.1 A bound on the Gaussian mass

In this section, we prove a bound on the Gaussian mass of a lattice that follows from an upper

bound on the kissing number due to Kabatjanskĭı and Levenštĕın [KL78]. In particular, we

use the following lemma from [PS09] based on [KL78]. For convenience, we define β := 20.401,

and we use this notation throughout this section.

Lemma 4.4.1 ([PS09, Lemma 3]). Let L ⊆ Rn be a lattice with λ1(L) = 1. Then for any

r ≥ 1, the number of lattice vectors of length at most r is at most βn+o(n)rn.

We now use Lemma 4.4.1 to bound ρs(L).

Lemma 4.4.2 ([ADRS15, Lemma 4.2]). Let L ⊂ Rn be a lattice of rank at least one. Then

125

for any s >
√

2π/n · λ1(L),

ρs(L) ≤ 1 +

(
β2s2n

2πe · λ1(L)2

)n/2+1

2o(n) , (4.4)

and for s ≤
√

2π/n · λ1(L), we have

ρs(L) ≤ 1 + e−πλ1(L)2/s2 · βn+o(n) . (4.5)

We note that an easy calculation shows that the right-hand side of Eq. (4.4) is never

smaller than the right-hand side of Eq. (4.5). In particular, this means that Eq. (4.4) actually

applies for all s.

Proof of Lemma 4.4.2. We assume without loss of generality that L is normalized so that

λ1(L) = 1. Let t := 1 + 1/n. For r ≥ 1, define Tr := {x ∈ Rn : r ≤ ‖x‖ < tr}. By

Lemma 4.4.1, |L ∩ Tr| ≤ βn+o(n)rn, and, for any vector y ∈ L ∩ Tr, ρs(y) ≤ e−πr
2/s2 .

Therefore,

ρs(L ∩ Tr) ≤ e−πr
2/s2 · βn+o(n) · rn .

So, we have

ρs(L) = 1 +
∞∑
i=0

ρs(L ∩ Tti)

≤ 1 + βn+o(n) ·
∞∑
i=0

e−πt
2i/s2tin

≤ 1 + (1 + s)βn+o(n) ·max
r≥1

e−πr
2/s2rn ,

where we have used the fact that e−πt
2i/s2tin decays geometrically when i is at least, say,

(1 + s) · poly(n), and so the sum up to that point is the same as the infinite sum up to a

constant factor. Note that for any a, b > 0, the maximum of e−ar
2
rb over the interval r ≥ 1

126

is obtained at r =
√
b/(2a) if this value is at least 1 or at r = 1 otherwise. The result

follows.

Proposition 4.4.3 ([ADRS15, Proposition 4.3]). Let L ⊂ Rn be a lattice of rank at least

one. Let

s =

√
2πe

β2n
· λ1(L) .

Then,

Pr
X∼DL,s

[‖X‖ = λ1(L)] ≥ e−β
2n/(2e)−o(n) ≈ 1.38−n−o(n) .

Proof. By Lemma 4.4.2, we have that ρs(L) = 2o(n). Therefore,

Pr
X∼DL,s

[‖X‖ = λ1(L)] ≥ e−π/s
2

/ρs(L) ≥ e−π/s
2−o(n) = e−β

2n/(2e)−o(n) ,

as needed.

An easy calculation shows that the probability in Proposition 4.4.3 is maximized to within

a factor of two when s = 1/η1(L∗). I.e., for any shortest non-zero vector y ∈ L,

max
s

Pr
X∼DL,s

[X = y] ≤ 2 Pr
X∼DL,1/η1(L∗)

[X = y] = exp(−πη1(L∗)2 · λ1(L)2) .

4.4.2 A reduction from SVP to DGS

Theorem 4.4.4 ([ADRS15, Theorem 4.4]). There is a reduction from SVP to 1
2
-DGS2n/2.

The reduction makes O(n) calls to the DGS oracle, preserves the dimension of the lattice,

and runs in time 2n/2 · poly(n).

Proof. Let D be an oracle solving 1
2
-DGS2n/2 . The reduction first runs the procedure from

Theorem 1.2.3 on L with r = 2. Let d be the length of the first basis vector in the output.

For i = 0, . . . , 100n, the reduction calls D on L with parameter si = 1.01−i · d. Let xi be

127

a shortest non-zero vector in the output. Finally, the reduction outputs a shortest vector

among the xi.

The running time of the reduction is clear. By Theorem 1.2.3, we have d ≤ 2n/2λ1(L). It

follows that there exists some i such that ŝ ≤ si ≤ 1.01ŝ where ŝ =
√
πe/n · 20.099 ·λ1(L) (i.e.,

ŝ is the parameter from Proposition 4.4.3). We assume that the output of D is exactly D2n/2

L,si

when called on si, incurring statistical distance at most 1/2. For such i, by Lemma 1.3.3 we

have

Pr
X∼DL,si

[‖X‖ = λ1(L)] ≥ 1.01−n · Pr
X∼DL,ŝ

[‖X‖ = λ1(L)]

≥ 1.4−n−o(n) (Proposition 4.4.3) .

The result follows by noting that 1.4 <
√

2, so 2n/2 samples from DL,si will contain a shortest

vector with probability at least 1− exp(−Ω(n)).

Corollary 4.4.5. There is an algorithm that solves SVP in time 2n+o(n).

Proof. Combine the reduction from Theorem 4.4.4 with the algorithm from Theorem 4.3.8.

4.4.3 Approximate CVP

There is no analogue of Proposition 4.4.3 for CVP. In particular, for any n ≥ 2, ε > 0, and

α > 0, there is a lattice L ⊂ Rn and target t ∈ Rn such that

Pr
X∼DL−t,α dist(t,L)

[‖X‖ = dist(t,L)] < ε .

This is because there is in general no bound on the number of γ-approximate closest vectors

for any γ > 1. (Contrast this with Lemma 4.4.1.) So, it is not immediately obvious how to

turn Theorem 4.3.8 into an algorithm for exact CVP.

128

Nevertheless, in [ADS15], we show how to obtain such an algorithm that runs in time

2n+o(n). This requires a lot more work and relies crucially on the fact that Theorem 4.3.8

guarantees many samples from DL−t,s whenever many cosets contain close vectors. This

algorithm is outside of the scope of this thesis, so here we simply observe that Theorem 4.3.8

yields an approximate CVP algorithm with an extremely good approximation factor.

Theorem 4.4.6. For any efficiently computable function f(n) ≥ nC, there is an algorithm

that solves γ-CVP in time 2n+O(log(n) log f(n)) for

γ := 1 +
2 +

√
2n/π

f(n)
.

Proof. The algorithm takes as input a lattice L ⊂ Rn and target t ∈ Rn and uses Babai’s

algorithm (Theorem 1.2.4) to find d̃ with dist(t,L) ≤ d̃ ≤ 2n/2 dist(t,L). If d̃ = 0 (i.e., if

t ∈ L), then the algorithm simply outputs t. Otherwise, for i = 0, . . . , n, let di := 2−i/2d̃ and

let si := di/f(n). For each i, the algorithm calls the procedure from Theorem 4.3.8 with

input L, t, and si. Let x ∈ L− t be the shortest vector in the output. The algorithm outputs

x + t ∈ L.

The running time is clear. Let i such that dist(t,L) < di < 2 dist(t,L). By Theorem 4.3.8,

the output of the subprocedure is at least one vector that is statistically close to DL−t,si . By

Corollary 1.3.11,

Pr
X∼DL−t,si

[‖X‖ ≤ γ‖ dist(t,L)‖] < exp(−πx2) ,

where x := (γ− 1) dist(t,L)/si−
√
n/(2π) ≥ 1. Therefore, with at least constant probability,

the output will be a solution to γ-CVP.

129

4.5 Sampling 2n/2 vectors above smoothing in 2n/2 time

In this section we present a 2n/2-time algorithm for DGSσ with σ approximately the smoothing

parameter. Here, we focus on the centered case when the shift t is zero because, as we show

in Section 4.5.4, the shifted case reduces to the centered case above smoothing.

Recall that, in Section 4.3, we showed that the average of two independent samples from

DL,s conditioned on the result landing in L is distributed exactly as DL,s/
√

2 (Lemma 4.3.5).

We then used the “square sampler” (Corollary 4.3.4) to sample efficiently from this conditional

distribution. Indeed, we observed that sampling from this conditional distribution boiled

down to sampling from the “squared” distribution, D
(2)
L,2L,s defined by

Pr
X∼D(2)

L/(2L),s

[X = y] :=
ρs(2L+ y)ρs(y)∑
d∈L/(2L) ρs(2L+ d)2

=
ρs(2L+ y)2∑

d∈L/(2L) ρs(2L+ d)2
· Pr
X∼D2L+y,s

[X = y] .

Our algorithm necessarily ran in at least 2n time because it had to work over the 2n cosets

of 2L. It is therefore natural to ask what happens when we try to work over cosets of some

sublattice with lower index. Notice that, if we take the average of two lattice vectors that are

not in the same coset of 2L, the result will lie in some superlattice L′ of L. In particular,

for some superlattice L′ ⊇ L, the average of two vectors from L will lie in L′ if and only if

they lie in the same coset mod 2L′. Furthermore, 2L′ will be a sublattice of L if and only

if L′ ⊆ L/2. So, we consider lattices L′ with L ⊆ L′ ⊆ L/2 and study the distribution of

the average of two discrete Gaussian vectors conditioned on the result landing in L′. We will

show in Section 4.5.2 that the resulting distribution is the discrete Gaussian “squared” over

the cosets of L′/L. I.e., for y ∈ L′,

Pr
X1,X2∼DL,s

[X1 + X2 = 2y | X1 ≡X2 mod 2L′] = Pr
X∼D(2)

L′,L,s/
√

2

[X = y] . (4.6)

130

Notice in particular that our 2n+o(n)-time algorithm relies on Eq. (4.6) in the special case when

L′ = L, in which case the squared distribution D
(2)
L,L,s is the same as the discrete Gaussian.

But, intuitively, as long as L′ is not too much denser than L, Eq. (4.6) should allow us to

“make progress,” in the sense that the drop in parameter by a factor of
√

2 should more than

compensate for the fact that we are now sampling over a denser lattice.

In order to sample from the conditional distribution in Eq. (4.6), it suffices to sample

from the squared distribution D
(2)
L,2L′,s. So, Eq. (4.6) gives us a way to convert samples from

D
(2)
L,2L′,s into samples from D

(2)

L′,L,s/
√

2
. If we wanted to repeat the process with some new

superlattice L′ with L′ ⊆ L′′ ⊆ L′/2, we would have to obtain samples from D
(2)

L′,2L′′,s/
√

2
.

In [ADRS15], we showed a “square root sampler,” which allowed us to convert “squared”

samples from D
(2)

L′,L,s/
√

2
to “unsquared” samples from DL′,s/

√
2. We then used the square

sampler to convert these samples into samples from D
(2)

L′,2L′′,s/
√

2
. We can then repeat this

process to keep lowering the parameter.

Here, we observe that we can move directly from D
(2)

L′,L,s/
√

2
to D

(2)

L′,2L′′,s/
√

2
, without

bothering to “take the square root” first. In particular, if we take 2L′′ ⊆ L, then L′/(2L′′) is a

refinement of L′/L. I.e., each coset c ∈ L′/(2L′′) is contained inside a coset in L′/L, 2L′′+c ⊆

L+ c. The distribution D
(2)

L′,L,s/
√

2
assigns to an element y ∈ 2L′′ + c weight proportional to

ρs/
√

2(y) · ρs/√2(L′ + c), whereas we want weight proportional to ρs/
√

2(y)ρs/
√

2(2L′′ + c). We

therefore focus on flipping coins with probability proportional to ρs/
√

2(2L′′+ c)/ρs/
√

2(L+ c).

In the next section, we make this abstract and show how to do this efficiently by using

Theorem 4.3.2.

4.5.1 Running the square sampler “inside buckets”

Consider a multinomial distribution over {1, . . . , N1} × {1, . . . , N2} that assigns to element

(i, j) probability pi,j . For such a distribution, we can think of the first index i as representing

131

a “big bucket” containing all elements (i, j). We write pi :=
∑

j pi,j for the probability of

sampling an element from the big bucket i.

In this language, the goal that we described in the previous section corresponds to

converting the distribution that assigns to (i, j) probability pipi,j/
∑

i′ p
2
i′ into the distribution

that assigns it probability p2
i,j/
∑

i′,j′ p
2
i′,j′ , which is what the following theorem accomplishes.

Equivalently, we need to show how to convert a distribution given by qi,j into one given by

q2
i,j/qi ·

∑
i′,j′ q

2
i′,j′/qi′ . Notice that “inside each bucket,” this corresponds to simply running

the square sampler from Corollary 4.3.4. The following theorem shows how to do this, by

using Theorem 4.3.2.

Theorem 4.5.1. There is an algorithm that takes as input κ ≥ 100 (the confidence parameter)

and M elements from {1, . . . , N1} × {1, . . . , N2} and outputs a sequence of elements from the

same set such that

1. the running time is M · poly(log κ, logN1, logN2);

2. each (i, j) ∈ {1, . . . , N1} × {1, . . . , N2} appears at least twice as often in the input as in

the output; and

3. if the input consists of M ≥ 10κ3/mini maxj pi,j independent samples from the distri-

bution that assigns probability pi,j to element (i, j) with p1 ≥ pi and p1,1/p1 ≥ pi,j/pi

for all i, j, then the output is within statistical distance C1N1N2 log(N2) exp(−C2κ) of

m independent samples with respective probabilities proportional to p2
i,j/pi, where

m ≥ M

Cκ2pmax

·
∑
i,j

p2
i,j

pi

is a random variable with pmax := maxi,j pi,j/pi.

Proof. Notice that the distribution given by conditioning on bucket i assigns probability

pi,j/pi to each element (i, j).

132

The algorithm uses its first dM/5e samples to estimate both pmax and pi. In particular,

it takes these samples, (i1, j1), . . . , (idM/5e, jdM/5e), and groups them according to their first

coordinate ik. For each i = 1, . . . , N1, it then runs Proposition 4.3.1 on the samples (ik, jk)

with ik = i in order to obtain an estimate p̃max,i with maxj pi,j/pi ≤ p̃max,i ≤ maxj 4pi,j/pi.

Finally, it sets p̃max := maxi p̃max,i and sets p̃i to the fraction of these samples with ik = i.

(I.e., p̃i := |{1 ≤ k ≤ dM/5e : ik = i}|/dM/5e.)

The algorithm then uses its next d2M/3e samples as follows. It again groups the elements

according to their first coordinate ik. For i = 1, . . . , N1, the algorithm uses the samples with

ik = i to run the procedure from Theorem 4.3.2 with T := 1/p̃max a total of dp̃maxp̃iM/(20κ)e

times to obtain coins bi,j,k ≈ Bern(pi,j/(κp̃maxpi)) for i = 1, . . . , N1, j = 1, . . . , N2, and

k = 1, . . . , dp̃maxp̃iM/(20κ)e. (If it ever runs out of samples, it simply fails.)

Finally, the algorithm goes through its next dM/(50κ)e samples. When it encounters a

sample (i, j), it outputs it if and only if bi,j,k = 1, where k is chosen to be minimal so that

bi,j,k has not been used previously. (If no such coin exists, the algorithm fails.)

Notice that each call to the procedure from Proposition 4.3.1 and each call to the procedure

from Theorem 4.3.2 runs in time M ′ · poly(log κ, logN1, logN2), where M ′ is the number

of input samples for this call. Since the total number of input samples used by these

subprocedures is O(M), it follows that the total running time is as claimed. Furthermore, it

is clear that the input always contains at least twice as many elements of the form (i, j) as

the output.

We now turn to proving Item 3. We first show that the estimates p̃max and p̃i obtained

from the first dM/5e samples are accurate. For each i, Proposition 4.3.1 requires κ/pmax,i

samples in the ith bucket to successfully approximate pmax,i, where pmax,i := maxj pi,j/pi. We

have at least M/5 ≥ maxi 2κ
2/(pipmax,i) samples total, so by the Chernoff-Hoeffding bound

(Lemma 1.4.3), we expect to see at least κ/pmax,i samples in the ith bucket except with

probability at most exp(−Cκ). By the union bound, this holds for all buckets simultaneously

133

except with probability at most N1 exp(−Cκ). Similarly, by Proposition 4.3.1 and union

bound, we have that pmax,i ≤ p̃max,i ≤ 4pmax,i for all i, except with probability at most

C1N1N2 log(N2) exp(−C2κ). So, we may assume that maxi,j pi,j/pi ≤ p̃max ≤ 4 maxi,j pi,j/pi.

Finally, by the Chernoff-Hoeffding bound and union bound again, we may similarly assume

that pi/2 ≤ p̃i ≤ 2pi, since this holds except with probability at most N1 exp(−Cκ).

We now show that the coins procedure from Theorem 4.3.2 generates the coins bi,j,k success-

fully Indeed, for this procedure to generate all coins for a fixed i, it requires κT dp̃maxp̃iM/(20κ)e ≤

piM/2 samples for each i. By the Chernoff-Hoeffding bound again and union bound, we

will have enough samples for each i except with probability at most N1 exp(−Cκ). There-

fore, by applying Theorem 4.3.2 and union bound, we may therefore assume that the coins

bi,j,k are distributed exactly as Bern(pi,j/(κp̃maxpi)), incurring statistical distance at most

C1N1N2M exp(−C2κ).

It follows that the output samples are distributed correctly. To see that the algorithm

rarely runs out of coins, we simply observe that by the Chernoff-Hoeffding bound, the number

of coins bi,j,k needed for any fixed pair (i, j) is at most pi,jM/(40κ) ≤ p̃maxp̃iM/(20κ) except

with probability at most exp(−Cκ). So, by union bound, the algorithm will have enough

coins for all (i, j) except with probability at most N1N2 exp(−Cκ).

Finally, notice that the algorithm outputs each element in the final step with probability

equal to ∑
i,j

pi,j ·
pi,j

κp̃maxpi
≥
∑
i,j

p2
i,j

4κpmaxpi
.

It follows from one final application of the Chernoff-Hoeffding bound that the number of

output samples is at least

M

60κ
·
∑
i,j

p2
i,j

4κpmaxpi
=

M

240κ2pmax

·
∑
i,j

p2
i,j

pi
,

134

except with probability exp(−Cκ), as needed.

4.5.2 A more efficient combiner that works above smoothing

The following lemma generalizes the first part of Lemma 4.3.5. In particular, we recover

Lemma 4.3.5 when L′ = L. (Again, this lemma follows rather directly from Eq. (3.2), but we

instead give a more direct proof.)

Lemma 4.5.2 ([ADRS15, Lemma 5.6]). Let L ⊂ Rn be a lattice, and let L′ ⊇ L be a

superlattice with 2L′ ⊆ L. Then for any y ∈ L′ and s > 0, we have

Pr
X1,X2∼DL,s

[X1 + X2 = 2y | X1 ≡X2 mod 2L′] = Pr
X∼D(2)

L′,L,s/
√

2

[X = y] .

Furthermore, ∑
c∈L/(2L′)

ρs(2L′ + c)2 =
∑

d∈L′/L

ρs/
√

2(L+ d)2 .

Proof. To prove the first equation, it suffices to show that the probability on the left-hand

side is proportional to ρs/
√

2(y)ρs/
√

2(L+ y). Indeed,

Pr
X1,X2∼DL,s

[X1 + X2 = 2y] =
1

ρs(L)2
·
∑
x∈L

ρs(x)ρs(2y − x)

=
ρs/
√

2(y)

ρs(L)2
·
∑
x∈L

ρs/
√

2(x− y)

=
ρs/
√

2(y)

ρs(L)2
· ρs/√2(L+ y) .

The second equation follows by summing the left-hand side and the right-hand side of the

above over all y ∈ L′. I.e., we have

Pr[X1 ≡X2 mod 2L′] =
∑

c∈L/(2L′)

ρs(L+ c)2

ρs(L)2
,

135

but from the above, this must also equal

∑
y∈L′

ρs/
√

2(y)

ρs(L)2
· ρs/√2(L+ y) =

∑
d∈L′/L

ρs/
√

2(L+ d)2

ρs(L)2
.

Proposition 4.5.3. There is an algorithm that takes as input three lattices L ⊆ L′ ⊆ L′′ ⊂ Rn

with 2L′ ⊆ L and 2L′′ ⊆ L, κ ≥ Cn (the confidence parameter), and a sequence of vectors

from L′ such that, if the input consists of

M ≥ 10κ3 ·
∑

c∈L/L′ ρs(L′ + c)2

minc∈L′/Lmaxd∈L/(2L′′) ρs(L+ c)ρs(2L′′ + c + d)

independent samples from D
(2)
L′,L,s for some s > 0, then the output distribution is M exp(−Cκ)-

close to m independent samples from D
(2)

L′′,L′,s/
√

2
, where

m ≥ M

Cκ2
· ρs(L)

ρs/2(L′′)
·
∑

d∈L′′/L′ ρs/
√

2(L′ + d)2∑
c∈L′/L ρs(L+ c)2

is a random variable. Furthermore, the algorithm runs in time M · poly(n, log κ).

Proof. Let (X1, . . . ,XM) be the input vectors, and for each i, let ci ∈ L′/L be the coset

of X i over L, and let di ∈ L/(2L′′) be the (unique) coset such that X i ∈ 2L′′ + ci + di.

The algorithm first applies the the procedure from Theorem 4.5.1 in a manner similar to

that of the algorithm from Proposition 4.3.6. Namely, the algorithm runs the procedure

from Theorem 4.5.1 with input κ and pairs (c1,d1), . . . , (cM ,dM), receiving output pairs

(c′1,d
′
1), . . . , (c

′
m,d

′
m). For each i = 1, . . . ,m, it chooses a pair of unpaired vectors Xj,Xk

with (cj,dj) = (ck,dk) = (c′i,d
′
i) and adds Y i = (Xj + Xk)/2 ∈ L′ to its output.

The running time of the algorithm follows from Item 1 of Theorem 4.5.1. Furthermore,

we note that by Item 2 of Theorem 4.5.1, the algorithm will always be able to find unused

136

j, k satisfying (cj,dj) = (ck,dk) = (c′i,d
′
i).

Next, we observe that the output distribution is correct. In particular, let

pc,d := Pr[ck = c and dk = d] =
ρs(L+ c)ρs(2L′′ + c + d)∑

c′∈L/L′ ρs(L′ + c′)2
.

Then, we see that the input satisfies the criteria necessary to apply Item 3 of Theorem 4.5.1.

And, by the theorem, the distribution of pairs (Xj,Xk) chosen by the algorithm will be

within statistical distance M exp(−Cκ) of the distribution given by sampling Xj and Xk

independently from the discrete Gaussian, conditioned on Xj ≡ Xk mod 2L′′. It follows

from Lemma 4.5.2 that the output distribution is correct.

Finally, again by Item 3 of Theorem 4.5.1, we see that

m ≥ M

Cκ2 maxc,d pc,d/pc
·
∑
c,d

p2
c,d

pc
.

By Proposition 3.4.3, maxc,d pc,d/pc = ρs(2L′′)/ρs(L). So, we have

m ≥ Mρs(L)

Cκ2ρs(2L′′)
·
∑
c,d

p2
c,d

pc

=
Mρs(L)

Cκ2ρs(2L′′)
·
∑

d∈L′/(2L′′) ρs(2L′′ + d)2∑
c∈L′/L ρs(L′ + c)2

=
Mρs(L)

Cκ2ρs(2L′′)
·
∑

d∈L′′/L′ ρs/
√

2(L′ + d)2∑
c∈L′/L ρs(L+ c)2

,

as needed, where the last equality follows from Lemma 4.5.2.

We presented a very general version of Proposition 4.5.3 above in the hopes that it might

help improve our algorithm to work below the smoothing parameter. However, the lower

bounds for M and m are rather unwieldy. So, below, we present a simplified version that

assumes that the parameter s > 0 is above the smoothing parameter.

137

Corollary 4.5.4. There is an algorithm that takes as input three lattices L ⊆ L′ ⊆ L′′ ⊂ Rn

with 2L′ ⊆ L and 2L′′ ⊆ L, κ ≥ Cn (the confidence parameter), and a sequence of vectors

from L′ such that, if the input consists of

M ≥ Cκ3 · |L′/(2L′′)|

independent samples from D
(2)
L′,L,s for some s ≥ max{

√
2η1/2(L′), 2η1/2(L′′)}, then the output

distribution is M exp(−Cκ)-close to m independent samples from D
(2)

L′′,L′,s/
√

2
, where

m ≥ M

Cκ2

is a random variable. Furthermore, the algorithm runs in time M · poly(n, log κ).

Proof. By Eq. (1.4), we see that

∑
c∈L′/L

ρs(L+ c)2 ≥ 1

3
· ρs(L)

∑
c∈L′/L

ρs(L+ c) =
1

3
· ρs(L)ρs(L′) .

(Here, we have used the fact that 2L′′ ⊆ L, so that η1/2(L) ≤ 2η1/2(2L′′).) We similarly have

that

min
c∈L′/L

max
d∈L/(2L′′)

ρs(L+ c)ρs(2L′′ + c + d) ≥ 1

9
· ρs(L)ρs/2(L′′) .

Therefore, it suffices to take

M ≥ Cκ3 · ρs(L
′)

ρs(2L′′)
.

Finally, we observe that

ρs(L′) =
∑

c∈L′/(2L′′)

ρs(2L′′ + c) ≤ |L′/(2L′′)|ρs(2L′′)

to obtain the final bound on M . Similar analysis shows that the lower bound on m holds as

138

well.

We are going to apply Corollary 4.5.4 repeatedly, to a “tower” of lattices (L0, . . . ,L`), as

defined next.

Definition 4.5.5. For an integer a satisfying 0 ≤ a ≤ n/2, we say that the sequence of lattices

(L0, . . . ,L`) is a tower of lattices in Rn of index 2a if for all i we have 2Li+1 ⊆ Li ⊆ Li+1,

2Li+2 ⊆ Li, and the index of Li over Li+1 is 2a.

We next observe that it is easy to construct a tower with any desired final lattice L`. In

fact, one can even choose L`−1, the second-to-last lattice in the tower.

Claim 4.5.6 ([ADRS15, Claim 5.9]). There is a polynomial-time algorithm that takes as input

integers ` ≥ 1 and 0 ≤ a ≤ n/2, as well as two lattices L and L′ satisfying 2L ⊆ L′ ⊆ L ⊂ Rn

with the index of L′ in L being 2a, outputs a tower of lattices (L0, . . . ,L`) of index 2a with

L` = L, L`−1 = L′, and L0 ⊇ 2d`a/neL.

Proof. Let b1, . . . , bn be a basis of L chosen so that 2b1, . . . , 2ba, ba+1, . . . , bn is a basis of L′.

It is not difficult to see that such a basis exists. Then define the tower by “cyclically doubling

a coordinates,” namely,

L` = L(b1, . . . , bn),

L`−1 = L(2b1, . . . , 2ba, ba+1, . . . , bn),

L`−2 = L(2b1, . . . , 2b2a, b2a+1, . . . , bn),

L`−3 = L(4b1, . . . , 4b3a−n, 2b3a−n+1, . . . , 2bn) ,

etc. It is easy to check that this satisfies all the required properties.

Corollary 4.5.7. There is an algorithm that takes as input a tower of lattices (L0, . . . ,L`) in

Rn of index 1 ≤ 2a ≤ 2n/2, κ ≥ Cn (the confidence parameter), and M = (Cκ4)` ·2n−a vectors

139

in L1 such that the algorithm runs in time M ·poly(n, log κ, `) and, if the input vectors are dis-

tributed as independent samples from D
(2)
L1,L0,s

for some s ≥ max{2(`−1)/2η1/2(L`−1), 2`/2η1/2(L`)}

, then the output will be `M exp(−Cκ)-close to 2n−a independent samples from D
(2)

L`,L`−1,2−(`−1)/2s
.

Proof. Let X1 = (X1, . . . ,XM) be the sequence of input vectors. For i = 1, . . . , `− 1, the

algorithm calls the procedure from Corollary 4.5.4 with input Li−1, Li, Li+1, κ, and Xi,

receiving output Xi+1. Finally, the algorithm outputs the first 2n−a vectors in X`.

The running time and correctness follow immediately from Corollary 4.5.4.

4.5.3 Sampling above smoothing in time 2n/2

From Corollary 4.5.7, it follows more-or-less immediately that we can obtain 2n/2 independent

samples from D
(2)
L,L′,s for any lattices L′ ⊆ L ⊂ Rn with 2L ⊆ L′ and, say, |L/L′| = 2a <

2n/2−n/ log2 n, and a parameter s ≥ max{
√

2η1/2(L′), 2η1/2(L)}, and samples from D
(2)
L,L′,s in

time 2n−a+o(n). In particular, we can set up a tower of lattices as in Claim 4.5.6, start with

samples from D
(2)

L1,L0,2(`−1)/2s
, and then run Corollary 4.5.7.

The only question is how to obtain the samples from D
(2)

L1,L0,2(`−1)/2s
. Note that, if

` � log2 n is sufficiently large, then since L0 ⊇ 2d`a/neL ⊇ 2d`/2−`/ log2 neL, it follows that

2(`−1)/2s � η1/2(L1). We will therefore be able to use Corollary 1.3.16 to obtain samples

from DL1,2(`−1)/2s. To convert these into samples from D
(2)

L1,L0,2(`−1)/2s
, we can use the square

sampler (Corollary 4.3.4).

Theorem 4.5.8. There is an algorithm that takes as input two lattices L′ ⊆ L ⊂ Rn

with 2L ⊂ L′ and |L/L′| = 2a < 2n/2, and a parameter s ≥ max{
√

2η1/2(L′), 2η1/2(L)}

and outputs 2n−a samples that are 2−n
2
-close to independent samples from D

(2)
L,L′,s in time

2n−a+O(` logn)+o(n), where ` := Cn log n/(n− 2a).

Proof. The algorithm first runs the procedure from Claim 4.5.6 to obtain a tower of lattices

(L0, . . . ,L`) of index 2a such that L` = L and L0 ⊇ 2d`a/neL.

140

Next, the algorithm runs the procedure from Corollary 1.3.16 with input L1, ŝ := 2(`−1)/2s,

u = cn (where the constant c > 0 is chosen so that the running time of the procedure is at

most poly(n)M + 2n−a+o(n)), and M := (C1n)C2`2n−a, receiving as output M samples from

DL1,ŝ The algorithm then runs the square sampler (Corollary 4.3.4) as in Proposition 4.3.6

with κ := Cn2 to convert these into M/poly(n) samples that are within statistical distance

at most exp(−Cn2) of independent samples from D
(2)
L1,L0,ŝ

. Finally, the algorithm runs the

procedure from Corollary 4.5.7 on these samples to obtain 2n−a samples that are 2−n
2
-close

to independent samples from D
(2)
L,L′,s, as needed.

The running time is clear. By Claim 4.5.6, we have that L1 ⊇ L0 ⊇ 2d`a/neL. It follows

that

ŝ = 2(`−1)/2s ≥ 2(`+1)/2η1/2(L) ≥ 2`(1/2−a/n)−1/2η1/2(L1) = poly(n)η1/2(L1) .

Therefore, the procedure from Corollary 1.3.16 will succeed. The result then follows immedi-

ately from Corollary 4.3.4 and Corollary 4.5.7.

In [ADRS15], we show a “square-root sampler,” which can be used to convert the sampled

from D
(2)
L,L′,s from Theorem 4.5.8 into pure Gaussian samples from DL,s, as claimed in

Theorem 7. In this thesis, we prefer to leave this rather tedious proof out, and we simply

observe that the distributions D
(2)
L,L′,s and DL,s are very similar when s ≥ ηε(L′).

4.5.4 Sampling from shifted Gaussians above smoothing

Here, we observe that a sampler for sampling m independent samples from centered discrete

Gaussian distributions with s ≥
√

2η1/2(L) can actually be used to obtain m samples from

the shifted discrete Gaussian DL−t,s in 2n/2+o(n) time for any parameter s >
√

2 · ηε(L)

with ε ≈ 1/2. We present a brief proof sketch here in case this finds applications in future

work. The idea is to call our centered discrete Gaussian sampler repeatedly on the lattice

L := L(b1, . . . , bn, t̄) ⊂ Rn+1, where t̄ := (−t, s) ∈ Rn+1. Note that the lattice hyperplane

141

L + t̄ ⊂ L is simply a copy of L − t shifted by sen+1, so that πRn(DL+t̄) = DL−t,s. We

therefore simply return the first n coordinates of the first m vectors in L+ t̄.

To prove that this algorithm works, we simply need to show that (1) ηε(L) > η1/2(L), so

that the call to the centered sampler will be valid as long as s >
√

2 · ηε(L); and (2) when

s is above smoothing, a vector sampled from DL,s will land in L + t̄ with relatively high

probability, so that we will not have to make too many calls to the centered sampler in order

to find m vectors in L + t̄. Both claims follow from standard calculations. (As described

above, the algorithm achieves ε ≈ 0.38 and makes a constant number of calls to the centered

DGS oracle. If we instead set t̄ := (−t, s/κ) for κ ≥ 1 and make O(κ) oracle calls, we can

obtain ε ≈ 1/2− exp(−Cκ2).)

142

Chapter 5

A Reduction from DGS to CVP (and

SVP)1

5.1 Introduction

Given the importance of discrete Gaussian sampling (DGS) in the study of classical compu-

tational lattice problems, it is natural to ask about the complexity of DGS itself. We have

seen the importance of discrete Gaussian sampling (DGS) in the study of computational

lattice problems. In particular, in Chapter 4, we showed that the fastest known algorithms

for SVP and CVP (originally from [ADRS15] and [ADS15]) both relied heavily on DGS as a

subroutine. But, intuitively, if DGS were a much harder problem than SVP and CVP, then

these techniques would seem wasteful. It is therefore natural to ask about the complexity of

DGS itself.

Prior to this work, DGS was one of the only prominent lattice problems not known to

1This chapter is primarily based on work that appeared in the Symposium on Discrete Algorithms (SODA),
2016 [Ste16a], and passages have been taken verbatim from this source. This work was done while at the
Simons Institute 2015 cryptography summer program and was partially supported by the National Science
Foundation under Grant No. CCF-1320188.

143

be reducible to CVP via a dimension-preserving reduction. (We are particularly interested

in dimension-preserving reductions because they imply quantitative relationships between

computational problems.) In fact, previously, there was simply no known algorithm that

sampled from DL−t,s for an arbitrary shift t and parameter s > 0, and it was not even

known whether sampling from the centered distribution DL,s could be efficiently reduced to

a problem in NP. (Since DGS is a sampling problem, it technically cannot be placed directly

in classes of decision problems or search problems like NP or FNP. But, we can still hope to

reduce it to such problems. See, e.g., [Aar14] for a discussion of the complexity of sampling

problems and their relationship to search problems.)

5.1.1 Our results

Our first main result is a dimension-preserving reduction from DGS to CVP. (See Theo-

rem 5.3.6.) This immediately implies two important corollaries. Together with the relatively

straightforward reduction from CVP to DGS (see Corollary 1.3.11), this shows that CVP and

DGS are equivalent via efficient dimension-preserving reductions. In particular, this suggests

that the approach of [ADS15] presented in Chapter 4 is in some (weak) sense the “correct”

way to attack CVP, since we now know that any faster algorithm for CVP necessarily implies

a similarly efficient discrete Gaussian sampler (and vice versa). Furthermore, together with

the result of [ADS15], this gives a 2n+o(n)-time algorithm for discrete Gaussian sampling that

works for any parameter s and shift t, the first known algorithm for this problem.

Our second main result is a dimension-preserving reduction from centered DGS to SVP.

(See Theorem 5.4.6.) As we describe below, this result requires quite a bit more work, and

we consider it to be more surprising, since, in a fixed dimension, an SVP oracle seems to be

significantly weaker than a CVP oracle. In contrast to the CVP case, we know of no efficient

reduction from SVP to centered DGS, and we do not even know whether centered DGS is

144

NP-hard. (While [ADRS15] use centered DGS to solve SVP, they require exponentially many

samples to do so.) We present only a much weaker reduction from γ-approximate SVP to

centered DGS for any γ = Ω(
√
n/ log n). We also show that, for any γ = o(

√
n/ log n), no

“simple” reduction from γ-SVP to centered DGS will work. (See Section 5.5.)

In [Ste16a], we also note that our proofs do not make use of any unique properties of the

discrete Gaussian or of the `2 norm. We therefore show a much more general result: any

distribution that is close to a weighted combination of uniform distributions over balls in some

norm reduces to CVP in this norm. n particular, sampling from the natural `q analogue of the

discrete Gaussian is equivalent to CVP in the `q norm, under efficient dimension-preserving

reductions. These results are outside of the scope of this thesis, so we refer the interested

reader to [Ste16a].

5.1.2 Proof overview

We now provide a high-level description of our techniques.

Reduction from DGS to CVP. Our basic idea is to sample from the discrete Gaussian

DL−t,s in two natural steps. We first sample some radius r from a carefully chosen distribution.

We then sample a uniformly random point in (L − t) ∩ rBn
2 . In particular, the distribution

on the radius should assign probability to each radius r that is roughly proportional to

exp(−πr2/s2) · |(L−t)∩rBn
2 |. (See the proof of Theorem 5.3.6 for the exact distribution.) So,

in order to reduce DGS to CVP, it suffices to show how to use our CVP oracle (1) compute

|(L− t)∩ rBn
2 | for arbitrary r, and (2) sample a uniformly random point from (L− t)∩ rBn

2 .

We actually use the same technical tool to solve both problems: lattice sparsification,

as introduced by Khot [Kho05] (though our analysis is more similar to that of Dadush and

Kun [DK13] and [DRS14]). Intuitively, sparsification allows us to sample a random sublattice

L′ ⊂ L of index p such that for any vector x ∈ L, we have Pr[x ∈ L′] ≈ 1/p. (Of course, if

145

we did exactly this, then L′ would not be a lattice.) Suppose we could find a sublattice L′

such that for the closest N ≈ p points to t in L, we have Pr[x ∈ L′] = 1/p, independently of

the other close points. Then, this would suffice for our two use cases. In particular, if the

lattice has N points in the ball of a given radius around t, then L′ − t would have a point

in this ball with probability very close to N/p. We can use a CVP oracle to approximate

this probability empirically, and we therefore obtain a good approximation for the number

of lattice points in any ball. (We achieve an approximation factor of 1 + 1/f(n) for any

f(n) = poly(n). See Theorem 5.3.5.) Similarly, if we know that the number of lattice points

in a ball of radius r around t is roughly N , then we can take p = poly(n) ·N and repeatedly

sample L′ until L′ has a point inside the ball of radius r around t. The resulting point will

be a nearly uniformly random sample from the lattice points in the ball of radius r around t.

Combining these two operations allows us to sample from the discrete Gaussian using a CVP

oracle, as described above. (See Theorem 5.3.6.)

Unfortunately, sparsification does not give us exactly this distribution. More specifically,

sparsification works as follows. Given a prime p and lattice basis B, we sample z ∈ Znp

uniformly at random and define the corresponding sparsified sublattice as

L′ := {x ∈ L : 〈z,B−1x〉 ≡ 0 mod p} . (5.1)

Then, for any vector x ∈ L, we have Pr[x ∈ L′] = 1/p unless x ∈ pL (in which case x is

always in L′). Even if we ignore the issue that points in pL do not behave properly, it is

easy to see that these probabilities are not at all independent. For example, if x = αy, then

x ∈ L′ if and only if y ∈ L′. And of course, more complex dependencies can exist as well.

Fortunately, we can get around this by using an idea from [DRS14] (and implicit in [DK13]).

In particular, we can show that the probabilities are close to independent if we also shift the

sublattice L′ by a “random lattice vector” w ∈ L. I.e., while the distribution of the points in

146

L′ ∩ (rBn
2 + t) might be very complicated, each point in L ∩ (rBn

2 + t) will land in L′ −w

with probability ≈ 1/p, and their distributions are nearly independent. (See Theorem 5.3.1

for the precise statement.) Our CVP oracle makes no distinction between lattices and shifted

lattices (we can just shift t by w), so this solution suffices for our purposes.

Reduction from centered DGS to SVP. Our reduction from centered DGS to SVP

uses the same high-level ideas described above, but the details are a bit more complicated.

As in the CVP case, our primary tool is lattice sparsification, in which we choose a sparsified

sublattice as in Eq. (5.1). As before, we wish to control the distribution of the shortest

vector in L′, and we note that, ignoring degenerate cases, x is a shortest vector of L′ if and

only if x ∈ L′ and y1, . . . ,yN /∈ L′ where the yi ∈ L are the non-zero lattice vectors shorter

than x (up to sign). However, as in the CVP case, this probability can be affected by linear

dependencies. In the CVP case, we solved this problem by considering a random shift of L′.

But, this solution clearly does not work here because an SVP oracle simply “cannot handle”

shifted lattices. We therefore have to deal explicitly with these dependencies.

The most obvious type of dependency occurs when x is not primitive, so that x = αyi for

|α| > 1. In this case, there is nothing that we can do—yi is shorter than x and yi ∈ L′ if and

only if x ∈ L′, so x will never be a shortest non-zero vector in L′. We therefore are forced

to work with only primitive vectors (i.e., lattice vectors that are not a scalar multiple of a

shorter lattice vector). Even if we only consider primitive vectors, it can still be the case that

two such vectors are scalar multiples of each other mod p, x ≡ αyi mod pL. Luckily, we show

that this can only happen if there are Ω̃(p) primitive vectors shorter than x in the lattice, so

that this issue does not affect the Ω̃(p) shortest primitive vectors. (See Lemma 5.2.10.) We

also show that higher-order dependencies (e.g., equations of the form x ≡ αyi +βyj mod pL)

have little effect. (See Lemma 5.2.8.) So, the shortest non-zero vector in the sparsified lattice

will be distributed nearly uniformly over the Ω̃(p) shortest primitive vectors in the original

147

lattice. (See Theorem 5.4.1 and Proposition 5.4.2 for the precise statement, which might be

useful in future work.)

As in the CVP case, this suffices for our purposes. In particular, if there are N primitive

lattice vectors in the ball of radius r centered at the origin for N ≤ Õ(p), then there will

be a non-zero vector in L′ ∩ rBn
2 with probability very close to N/p. With an SVP oracle,

we can estimate this probability, and this allows us to approximate the number of primitive

lattice vectors in a ball with very good accuracy. (See Theorem 5.4.5.) And, the sparsification

algorithm and SVP oracle also allow us to sample a primitive lattice vector in the ball

of radius r around the origin with nearly uniform probability, as in the CVP case. (See

Lemma 5.4.3.)

Then, the same approach as before would allow us to use an SVP oracle to sample from

the discrete Gaussian over the primitive lattice vectors. In order to obtain the true discrete

Gaussian, we first “add 0 in” by estimating the total Gaussian mass ρs(L) and returning

0 with probability 1/ρs(L). Second, after sampling a primitive vector x using roughly the

above idea, we sample an integer coefficient z ∈ Z \ {0} according to a one-dimensional

discrete Gaussian (using an algorithm introduced by [BLP+13]) and output zx. If we choose

the primitive vector appropriately, we show that the resulting distribution is DL,s.
2

5.2 Preliminaries

The following (loose version of a) lemma due to [BHW93] can be thought of as a simpler

(and asymptotically much weaker) form of Lemma 4.4.1 that is slightly easier to work with

2Interestingly, the problem of sampling from the centered discrete Gaussian over the primitive lattice
vectors, or even just the discrete Gaussian over L \ {0} might be strictly harder than centered DGS. In
particular, in Section 5.5, we show a family of lattices for which DL,s almost never returns a o(

√
n/ log n)-

approximate shortest vector. However, it is easy to see that the discrete Gaussian over the primitive lattice
vectors or even just over the lattice without 0 will output the shortest vector with overwhelming probability if
the parameter s is sufficiently small. Therefore, both of these sampling problems are actually polynomial-time
equivalent to SVP, while we have some evidence to suggest that sampling from DL,s is not. Indeed, we know
of no application of centered DGS in which non-primitive vectors are actually desirable.

148

because it does not have a factor of 2o(n).

Lemma 5.2.1. For any lattice L ⊂ Rn and r > 0,

|L ∩ rBn
2 | ≤ 1 +

(8r

λ1(L)

)n
.

For simplicity, we endeavor to ignore the specific representation of the basis vectors

b1, . . . , bn ∈ Rn. Here, we note a simple bound that applies if the basis vectors are rational

and represented in the natural way. In the sequel, we will apply this even to vectors in Rn,

with the understanding that the same corollary applies for any “reasonable” representation

of real numbers.

Corollary 5.2.2. For any lattice L ⊂ Qn with basis (b1, . . . , bn), t ∈ Qn, and r > 0, let

m be a bound on the bit length of the bi for all i in the natural representation of rational

numbers. Then,

|(L − t) ∩ rBn
2 | ≤ 1 + (2 + r)poly(n,m) .

The following lemma is actually true for “almost all lattices,” in a certain precise sense

that is outside the scope of this thesis. (See, e.g., [Sie45].)

Lemma 5.2.3. For any n ≥ 1, there is a lattice L ⊂ Rn such that for any s > 0, ρs(L) ≥

1 + sn and λ1(L) >
√
n/10.

5.2.1 Variants of DGS

We will need a slight generalization of our definition of DGS from the previous chapters. In

particular, we will add a “multiplicative error term” γ.

Definition 5.2.4. For γ ≥ 1 and ε ≥ 0, we say that a distribution X is (γ, ε)-close to a

distribution Y if there is another distribution X ′ with the same support as Y such that

149

1. the statistical distance between X and X ′ is at most ε; and

2. for all x in the support of Y , Pr[Y = x]/γ ≤ Pr[X ′ = x] ≤ γ Pr[Y = x] .

Definition 5.2.5. For any parameters ε ≥ 0 and γ ≥ 1, (γ, ε)-DGS (the Discrete Gaussian

Sampling problem) is defined as follows: The input is a basis B for a lattice L ⊂ Rn, a

shift t ∈ Qn, and a parameter s > 0. The goal is to output a vector whose distribution is

(γ, ε)-close to DL−t,s.

We also explicitly define the problem of sampling from the centered discrete Gaussian

DL,s.

Definition 5.2.6. For any parameters ε ≥ 0 and γ ≥ 1, (γ, ε)-cDGS (the centered Discrete

Gaussian Sampling problem) is defined as follows: The input is a basis B for a lattice L ⊂ Rn

and a parameter s > 0. The goal is to output a vector whose distribution is (γ, ε)-close to

DL,s.

5.2.2 Lattice vectors mod p and Znp

Our primary technical tool will be lattice sparsification, in which we consider the sublattice

L′ := {y ∈ L : 〈z,B−1y〉 ≡ 0 mod p} ,

where p is some prime, z ∈ Znp is uniformly random, and B is a basis of the lattice L ⊂ Rn.

As such, we will need some lemmas concerning the behavior of lattice vectors mod pL. We

first simply note that we can compute L′ efficiently.

Claim 5.2.7. There is a polynomial-time algorithm that takes as input a basis B for a lattice

L ⊂ Rn, a number p ∈ Z+, and a vector z ∈ Znp and outputs a basis B′ for

L′ := {y ∈ L : 〈z,B−1y〉 ≡ 0 mod p} .

150

Proof. On input B = (b1, . . . , bn), p ∈ Z+, and z = (z1, . . . , zn) ∈ Znp , if z = 0, the algorithm

simply outputs B. Otherwise, by possibly reordering the basis, we may assume without loss

of generality that zn 6= 0. The algorithm then computes B∗ := B−T = (b∗1, . . . , b
∗
n). It sets

B̂ :=
(
b∗1, . . . , b

∗
n−1,

1

p

∑
zib
∗
i

)
.

Notice that, since zn 6= 0 and B∗ is non-singular, B̂ must be non-singular. (In particular,

det(B̂) = zn det(B∗)/p.) Finally, it outputs B′ := B̂−T . A quick computation shows that B′

is indeed a basis for L′.

Since we will only be concerned with the coordinates of the vectors mod p, it will suffice

to work over Znp .

Lemma 5.2.8 ([Ste16a, Lemma 2.16]). For any prime p and collection of vectors x,v1, . . . ,vN ∈

Znp \ {0} such that x is not a scalar multiple of any of the vi, we have

1

p
− N

p2
≤ Pr

[
〈z,x〉 ≡ 0 mod p and 〈z,vi〉 6≡ 0 mod p ∀i

]
≤ 1

p
,

where z is sampled uniformly at random from Znp .

Proof. For the upper bound, it suffices to note that, since x is non-zero and p is prime, 〈z,x〉

is uniformly distributed over Zp. Therefore, Pr[〈z,x〉 ≡ 0 mod p] = 1/p. For the lower bound,

note that A := {y ∈ Znp : 〈y,x〉 ≡ 0 mod p} and Bi := {y ∈ Znp : 〈y,vi〉 ≡ 0 mod p} are

distinct subspaces of dimension n− 1. Therefore, A ∩Bi is a subspace of dimension n− 2

151

with pn−2 elements. Let B :=
⋃
Bi. It follows that

Pr
[
〈z,x〉 ≡ 0 mod p and 〈z,vi〉 6≡ 0 mod p

]
=
|A \B|
|Znp |

≥ |A| −
∑

i |A ∩Bi|
|Znp |

=
pn−1 −Npn−2

pn

=
1

p
− N

p2
.

Corollary 5.2.9 ([Ste16a, Corollary 2.17]). For any prime p, collection of vectors v1, . . . ,vN ∈

Znp , and x ∈ Znp with x 6= vi for any i, we have

1

p
− N

p2
− N

pn−1
≤ Pr

[
〈z,x + c〉 ≡ 0 mod p and 〈z,vi + c〉 6≡ 0 mod p ∀i

]
≤ 1

p
+

1

pn
,

where z and c are sampled uniformly and independently at random from Znp .

Proof. For the upper bound, it suffices to note that

Pr[〈z,x+ c〉 ≡ 0 mod p] = Pr[x+ c ≡ 0 mod p] +
1

p
Pr[x+ c 6≡ 0 mod p] =

1

p
+

1

pn
− 1

pn+1
.

Turning to the lower bound, note that for any i, we have Pr[vi + c ≡ 0 mod p] = 1/pn.

By union bound, the probability that vi + c ≡ 0 mod p for any i is at most N/pn. Now, fix

i, and note that if there exists some α ∈ Zp \ {1} such that α(vi + c) ≡ x + c mod p, then

we must have

c ≡ αvi − x

1− α
mod p .

There are therefore at most p− 1 values for c that satisfy the above—one for each value of

α. So, the probability that c will satisfy the above equation for any α is at most (p− 1)/pn.

152

Taking a union bound over all i, we see that the probability that x + c is a multiple of any

of the vi + c is at most N(p− 1)/pn. The result then follows from Lemma 5.2.8 and union

bound.

5.2.3 Primitive lattice vectors

For a lattice L ⊂ Rn, we say that y ∈ L is non-primitive in L if y = kx for some x ∈ L and

k ≥ 2. Otherwise, y is primitive in L. Let Lprim be the set of primitive vectors in L. For a

radius r > 0, let ξ(L, r) := |Lprim ∩ rBn
2 |/2 be the number of primitive lattice vectors in a

(closed) ball of radius r around the origin (counting x and −x as a single vector).

We will need the following technical lemma, which shows that relatively short primitive

vectors cannot be scalar multiples of each other mod p.

Lemma 5.2.10 ([Ste16a, Lemma 2.18]). For any lattice L ⊂ Rn with basis B, suppose

y1,y2 ∈ L are primitive with y1 6= ±y2 and ‖y1‖ ≥ ‖y2‖ such that

B−1y1 ≡ αB−1y2 mod p

for any number p ≥ 100 and α ∈ Zp. Then, ξ(L, ‖y1‖) > p/(20 log p).

Proof. Notice that α 6= 0, since otherwise y1 is not even primitive. So, we have that y1−qx2 ∈

pL \ {0} for some integer q ≡ α mod p with 0 < |q| ≤ p/2. Let x := (y1 − qy2)/p ∈ L and

note that x is not a scalar multiple of y2. It suffices to find at least dp/(20 log p)e primitive

vectors in the lattice spanned by x and y2 that are at least as short as y1.

We consider two cases. If q = ±1, then for i = 0, . . . , p − 1, the vectors ix + qy2 are

clearly primitive in the lattice spanned by x and y2, and we have

‖ix + qy2‖ = ‖iy1 + q(p− i)y2‖/p ≤ ‖y1‖ ,

153

as needed.

Now, suppose |q| > 1. Then, for i = dp/4e, . . . , bp/2c, let ki be an integer such that

|ki− iq/p| ≤ 1/2 and 0 < |ki| < i. (Note that such an integer exists, since 1/2 ≤ |iq/p| ≤ i/2).

Then,

‖ix + kiy2‖ = ‖iy1/p+ (ki − iq/p)y2‖ ≤ ‖y1‖ .

When i is prime, then since 0 < |ki| < i, we must have gcd(i, ki) = 1. Therefore, the

vector ix + kiy2 must be primitive in the lattice spanned by x and y2 when i is prime. It

follows from a suitable effective version of the Prime Number Theorem that there are at least

dp/(20 log p)e primes between dp/4e and bp/2c (see, e.g., [Ros41]), as needed.

We next show that we can find many primitive lattice vectors in a suitably large ball

around 0.

Lemma 5.2.11 ([Ste16a, Lemma 2.19]). For any lattice L ⊂ Rn and radius r ≥ λ2(L),

ξ(L, r) >
√
r2 − λ2(L)2

λ1(L)
+
⌊r − λ2(L)

λ1(L)

⌋
.

Proof. Let v1,v2 ∈ L with ‖vi‖ = λi(L) and 〈v1,v2〉 ≥ 0. Then, for k = 0, . . . , b
√
r2 − λ2(L)2/λ1(L)c,

‖v2 − kv1‖2 = λ2(L)2 + k2λ1(L)2 − 2k〈v1,v2〉 ≤ r2 .

Similarly, for k = 1, . . . , b(r − λ2(L))/λ1(L)c,

‖v2 + kv1‖ ≤ λ2(L) + kλ1(L) ≤ r

The result follows by noting that all of these vectors are distinct and primitive in the lattice

154

generated by v1,v2 (as is v1).

5.3 DGS to CVP reduction

5.3.1 Sparsify and shift

We now present the main sparsification result that we require. In particular, Theorem 5.3.1

(which is immediate from Section 5.2.2, and is presented in this form here for the reader’s

convenience) shows the generic behavior of the sparsification procedure. Proposition 5.3.2

then applies the theorem to show how sparsification interacts with a CVP oracle.

Theorem 5.3.1 ([Ste16a, Theorem 3.1]). For any lattice L ⊂ Rn with basis B, prime p, and

lattice vectors x,y1, . . . ,yN ∈ L such that B−1x 6≡ B−1yi mod p for all i, we have

1

p
− N

p2
− N

pn−1
≤ Pr[〈z,B−1x + c〉 ≡ 0 and 〈z,B−1yi + c〉 6≡ 0 mod p ∀i] ≤ 1

p
+

1

pn
,

where z, c ∈ Znp are chosen uniformly and independently at random.

Proof. Simply apply Corollary 5.2.9 to B−1x and B−1yi.

Proposition 5.3.2 ([Ste16a, Proposition 3.2]). There is a polynomial-time algorithm that

takes as input a basis B for a lattice L ⊂ Rn and a prime p and outputs a full-rank sublattice

L′ ⊆ L and shift w ∈ L such that, for any t ∈ Rn, x ∈ L with N := |L∩(‖x−t‖·Bn
2 +t)|−1 <

p, and any CVP oracle,

1

p
− N

p2
− N

pn−1
≤ Pr[CVP(t + w,L′) = x + w] ≤ 1

p
+

1

pn
.

155

In particular,

N

p
− N2

p2
− N2

pn−1
≤ Pr[dist(t + w,L′) ≤ ‖x− t‖] ≤ N

p
+
N

pn
.

Proof. On input L ⊂ Rn with basis B and p, the algorithm samples z, c ∈ Znp uniformly and

independently at random. It then returns the sublattice

L′ := {x ∈ L : 〈z,B−1x〉 ≡ 0 mod p} ,

and the shift w := Bc.

By Claim 5.2.7, the algorithm can be run in polynomial time. Let y1, . . . ,yN ∈ L be the

unique vectors such that ‖yi − t‖ ≤ ‖x− t‖ with yi 6= x. Note that CVP(L′, t + w) must

be x + w if 〈z,B−1yi + c〉 6≡ 0 mod p for all i and 〈z,B−1x + c〉 ≡ 0 mod p. We therefore

wish to apply Theorem 5.3.1, which requires showing that B−1yi 6≡ B−1x mod p for all i.

Suppose on the contrary that B−1yi ≡ B−1x mod p for some i. Then, y := yi − x ∈

pL \ {0}, and there are therefore p+ 1 lattice vectors on the line segment between yi and x

(including the two endpoints). Note that all of these vectors are at least as close to t as x.

But, there can be at most N + 1 < p+ 1 such vectors, a contradiction. Therefore, we can

apply Theorem 5.3.1, yielding the result.

As a consequence of Proposition 5.3.2, we show that we can use a CVP oracle to sample

nearly uniformly from the lattice points in a ball around t. This relatively straightforward

algorithm is the core idea behind our reduction. For simplicity, we provide the algorithm

with an estimate of the number of points inside the ball as input. (In the next section, we

show how to obtain this estimate using roughly the same techniques.)

Lemma 5.3.3 ([Ste16a, Lemma 3.3]). For any efficiently computable f(n) with 2 ≤ f(n) ≤

poly(n), there is an algorithm with access to a CVP oracle that takes as input a lattice

156

L ⊂ Rn, shift t ∈ Rn, radius r > 0, and integer N ≥ 1 and outputs a vector y such that, if

N ≤ |L ∩ (rBn
2 + t)| ≤ f(n)N ,

then the algorithm runs in expected polynomial time, and for any x ∈ L ∩ (rBn
2 + t),

γ−1

|L ∩ (rBn
2 + t)|

≤ Pr[y = x] ≤ γ

|L ∩ (rBn
2 + t)|

,

where γ := 1 + 1/f(n). Furthermore, all of the algorithm’s oracle calls are on full-rank

sublattices of the input lattice.

Proof. We assume without loss of generality that n ≥ 2. On input L ⊂ Rn, t ∈ Rn, r > 0,

and N ≥ 1, the algorithm chooses a prime p with 10f(n)N ≤ p ≤ 20f(n)N and calls the

procedure from Proposition 5.3.2 on input L and p, receiving as output a sublattice L′ ⊆ L

and a shift w ∈ L. It then calls its CVP oracle on input L′ and t + w, receiving as output

y′. If ‖y′ −w − t‖ ≤ r, it outputs y := y′ −w. Otherwise, it repeats.

From Proposition 5.3.2, we have that, after a single run of the algorithm,

1
√
γ · p

≤ 1

p
− N

p2
− N

pn−1
≤ Pr[y′ = x + w] ≤ 1

p
+

1

pn
≤
√
γ

p
.

Correctness follows immediately. Furthermore, note that the reduction outputs something on

each run with probability at least N√
γp
≥ 1

100f(n)
. So, in particular, the expected number of

runs is polynomial in n. It is clear that a single run takes polynomial time, and the result

follows.

157

5.3.2 Counting the lattice vectors in a ball

We now show how to use the sparsification algorithm to approximate the number of lattice

points in a ball, given access to a CVP oracle. We will use this both to instantiate the

procedure from Lemma 5.3.3 and directly in our DGS sampling procedure.

Definition 5.3.4. For any parameter γ := γ(n) ≥ 1, γ-GapVCP (the Vector Counting

Problem) is the promise problem defined as follows: the input is a (basis for a) lattice L ⊂ Rn,

shift t ∈ Rn, radius r > 0, and an integer N ≥ 1. It is a NO instance if |L ∩ (rBn
2 + t)| ≤ N

and a YES instance if |L ∩ (rBn
2 + t)| > γN .

Theorem 5.3.5 ([Ste16a, Theorem 3.5]). For any efficiently computable function f(n) with

1 ≤ f(n) ≤ poly(n), there is a polynomial-time reduction from γ-GapVCP to CVP where

γ := 1 + 1/f(n). The reduction only calls the CVP oracle on full-rank sublattices of the input

lattice.

Proof. We assume without loss of generality that n ≥ 20 and f(n) ≥ 20. On input a

lattice L ⊂ Rn with basis B, target t ∈ Rn, r > 0, and N ≥ 1, the reduction behaves as

follows. First, it finds a prime p with 200f(n)N ≤ p ≤ 400f(n)N . Then, for i = 1, . . . , ` :=

d100f(n)2p2/N2e, the reduction calls the procedure from Proposition 5.3.2 on L, t, and p. It

receives as output Li and wi. It then calls the CVP oracle on Li and t + wi, receiving as

output a vector whose distance from t + wi is ri. Finally, it returns yes if r ≤ ri for all but

at most `N/p+ 2
√
` values of ri and no otherwise.

It is clear that the reduction runs in polynomial time. Now, suppose |L ∩ (rBn
2 + t)| ≤ N .

By Proposition 5.3.2, we have that for each i,

Pr[ri ≤ r] ≤ N

p
+
N

pn
<
N

p
+

1

2
√
`
.

158

Then, applying the Chernoff-Hoeffding bound (Lemma 1.4.3), we have

Pr[|{i : ri ≤ r}| > `N/p+ 2
√
`] < 1/e .

So, the reduction returns the correct answer in this case with probability at least 1− 1/e.

On the other hand, suppose that |L ∩ (rBn
2 + t)| > γN . Using the lower bound in

Proposition 5.3.2,

Pr[ri ≤ r] ≥ γN

p
− γ2N2

p2
− γ2N2

pn−1
>
N

p
+

5√
`
.

Applying the Chernoff-Hoeffding bound again, we have

Pr[|{i : ri ≤ r}| ≤ `N/p+ 2
√
`] < 1/e ,

as needed.

5.3.3 The DGS algorithm

Theorem 5.3.6 ([Ste16a, Theorem 3.6]). For any efficiently computable function f(n) with

1 ≤ f(n) ≤ poly(n), there exists an (expected) polynomial-time reduction from (γ, ε)-DGS to

CVP, where ε := 2−f(n) and γ := 1 + 1/f(n). The reduction only calls the CVP oracle on

full-rank sublattices of the input lattice.

Proof. We assume without loss of generality that n ≥ 5 and s = 1. (If s 6= 1, we can simply

rescale the lattice.) On input L ⊂ Rn and t ∈ Rn, the reduction behaves as follows. It first calls

its CVP oracle to compute d := dist(t,L). For i = 0, . . . , ` := d100n2f(n)2 log(10 + 10d2/n)e,

let ri :=
√
d2 + i/(10f(n)). For each i, the reduction uses its CVP oracle together with the

procedure given in Theorem 5.3.5 to compute Ni such that γ−1/10 · |L ∩ (riB
n
2 + t)| ≤ Ni ≤

|L ∩ (riB
n
2 + t)|.

159

Let w` := e−πr
2
` , and for i = 0, . . . , `− 1, let wi := e−πr

2
i − e−πr2

i+1 . Let W :=
∑`

i=0 Niwi.

The reduction then chooses an index 0 ≤ k ≤ ` from the distribution that assigns to index i

probability Niwi/W . It then runs the procedure from Lemma 5.3.3 with input L, t, rk, and

Nk, receiving as output a vector y ∈ L ∩ (rkB
n
2 + t) whose distribution is (γ1/10, 0)-close to

the uniform distribution over L ∩ (rkB
n
2 + t). It then simply returns y.

It is clear that the reduction runs in polynomial time (subject to a suitable version of

Corollary 5.2.2 for the specific form of the input).

We now prove correctness. Let A := L∩(r`B
n
2 +t) be the support of y. By Corollary 1.3.11,

DA is within statistical distance ε of DL−t, so it suffices to show that the output of the

reduction is (γ, 0)-close to DA. In order to show this, it suffices to show that, for any x ∈ A,

Pr[y = x] is proportional to ρ(x), up to a factor of γ±1/2. Note that

Pr[y = x] =
1

W

∑
i : ri≥‖x−t‖

wiNi · Pr[y = x | k = i] . (5.2)

For any i such that x ∈ (L − t) ∩ riBn
2 , by Lemma 5.3.3 we have that

γ−1/5

Ni

≤ γ−1/10

|L ∩ (riBn
2 + t)|

≤ Pr[y = x | k = i] ≤ γ1/10

|L ∩ (riBn
2 + t)|

≤ γ1/10

Ni

.

Let j be minimal such that x ∈ (L − t) ∩ rjBn
2 . Plugging in the upper bound to Eq. (5.2),

we have

Pr[y = x] ≤ γ1/10

W
·
∑
i≥j

wi =
γ1/10

W
· e−πr2

j ≤
√
γ

W
· ρ(x) .

A nearly identical computation shows that Pr[y = x] ≥ ρ(x)/(
√
γW), as needed.

160

5.4 Centered DGS to SVP reduction

5.4.1 Sparsification

Since we are now interested in the SVP case, we can no longer handle the shifts used in

Theorem 5.3.1 and Proposition 5.3.2 (neither the input shift t nor the output shifts w and

c). As a result, we are forced to consider the effect of sparsification on primitive vectors only,

which requires new analysis. Recall that ξ(L, r) := |Lprim ∩ rBn
2 |/2 is the number of primitive

lattice vectors in a ball of radius r (counting ±x as a single vector).

Theorem 5.4.1 ([Ste16a, Theorem 4.1]). For any lattice L ⊂ Rn with basis B, primitive

lattice vectors y0,y1, . . . ,yN ∈ Lprim with yi 6= ±y0 for all i > 0, and prime p ≥ 101, if

ξ(L, ‖yi‖) ≤ p/(20 log p) for all i, then

1

p
− N

p2
≤ Pr

[
〈z,B−1y0〉 ≡ 0 mod p and 〈z,B−1yi〉 6≡ 0 mod p ∀i > 0

]
≤ 1

p
,

where z ∈ Znp is chosen uniformly at random.

Proof. Let vi := B−1yi. By Lemma 5.2.10, we have that v0 is not a scalar multiple of vi

mod p for any i > 0. The result then follows from Lemma 5.2.8.

Proposition 5.4.2 ([Ste16a, Proposition 4.2]). There is a polynomial-time algorithm that

takes as input a basis B for a lattice L ⊂ Rn and a prime p ≥ 101 and outputs a full-rank

sublattice L′ ⊆ L such that for every x ∈ L with N := ξ(L, ‖x‖) − 1 ≤ p/(20 log p) and

λ1(L) > ‖x‖/p, we have that for any SVP oracle,

1

p
− N

p2
≤ Pr[SVP(L′) = ±x] ≤ 1

p
.

In particular,

N

p
− N2

p2
≤ Pr

[
λ1(L′) ≤ ‖x‖

]
≤ N

p
.

161

Proof. On input L ⊂ Rn with basis B and p, the algorithm samples z ∈ Znp uniformly at

random. It then returns the sublattice

L′ := {x ∈ L : 〈z,B−1x〉 ≡ 0 mod p} .

It is clear that the algorithm runs in polynomial time. Since Pr[x ∈ L′] = 1/p, the upper

bound on the probability is immediate as well.

For the lower bound, let y0, . . . ,yN ∈ Lprim such that ‖yi‖ ≤ ‖x‖, yi 6= ±yj , and y0 := x.

Let vi := B−1yi. Note that, if v0 ∈ L′ and vi /∈ L′ for i > 0, then SVP(L′) = ±x. (Here, we

have used the fact that λ1(L) > ‖x‖/p.) The result then follows from Theorem 5.4.1.

Lemma 5.4.3 ([Ste16a, Lemma 4.3]). For any efficiently computable f(n) with 2 ≤ f(n) ≤

poly(n), there is an (expected) polynomial-time algorithm with access to a SVP oracle that

takes as input a lattice L ⊂ Rn, radius r > 0, and integer N ≥ 1 and outputs a vector y ∈ L

such that, if N ≤ ξ(L, r) ≤ f(n)N and λ1(L) > r/(f(n)ξ(L, r)), then for any x ∈ Lprim∩rBn
2 ,

γ−1

ξ(L, r)
≤ Pr[y = ±x] ≤ γ

ξ(L, r)
,

where γ := 1 + f(n). Furthermore, the algorithm only calls its oracle on full-rank sublattices

of L.

Proof. We assume without loss of generality that n ≥ 10. On input L ⊂ Rn, r > 0, and N ≥ 1,

the algorithm chooses a prime p with 100f(n)N log(10f(n)N) ≤ p ≤ 200f(n)N log(10f(n)N)

and calls the algorithm from Proposition 5.4.2 on input L and p, receiving as output a

sublattice L′ ⊂ L. It then calls its SVP oracle on input L′, receiving as output y. If ‖y‖ ≤ r,

it outputs y. Otherwise, it repeats.

162

From Proposition 5.4.2, we have that, after a single run of the algorithm

γ−1/2

p
≤ 1

p
− N

p2
− N

pn−1
≤ Pr[y = ±x] ≤ 1

p
.

Correctness follows immediately. Furthermore, note that the algorithm terminates after

a given run with probability at least γ−1/2N/(f(n)p) ≥ 1/(1000f(n)2 log(Nf(n))). By

Corollary 5.2.2, log(N) is polynomial in the length of the input (assuming a reasonable

representation of the input). So, in particular, the expected number of runs is polynomial in

the length of the input. It is clear that a single run takes polynomial time, and the result

follows.

5.4.2 Counting the primitive lattice vectors in a ball around the

origin

Definition 5.4.4. For any parameters β := β(n) ≥ 0, γ := γ(n) ≥ 1, (β, γ)-GapPVCP (the

Primitive Vector Counting Problem) is the promise problem defined as follows: the input is

a (basis for a) lattice L ⊂ Rn, radius r > 0, and an integer N ≥ 1. It is a NO instance if

ξ(L, r) ≤ N or if λ1(L) < βr/N and a YES instance if ξ(L, r) > γN .

Intuitively, the condition that λ1(L) < βr/N handles the degenerate case in which there

are many non-primitive vectors that may “hide” the primitive vectors in the lattice. It is

not clear that this should be treated as a degenerate case in general, but it is clear that our

methods must treat this case differently.

Theorem 5.4.5 ([Ste16a, Theorem 4.5]). For any efficiently computable f(n) with 1 ≤

f(n) ≤ poly(n), there is a polynomial-time reduction from (β, γ)-GapPVCP to SVP where

β := 1/f(n) and γ := 1 + 1/f(n). The reduction only calls the SVP oracle on full-rank

sublattices of the input lattice.

163

Proof. On input L ⊂ Rn with basis B, r > 0, and N ≥ 1, the reduction behaves as

follows. It first calls its SVP oracle on L to compute λ1(L). If λ1(L) > r or λ1(L) < βr/N ,

it returns no. The reduction then finds a prime p with 200f(n)N log(10f(n)N) ≤ p ≤

400f(n)N log(10f(n)N), and for i = 1, . . . , ` := d100f(n)2p2/N2e, it calls the procedure from

Proposition 5.4.2 on L and p, receiving as output Li. It then calls the SVP oracle on each

Li, receiving as output a vector of length ri. Finally, it returns yes if r ≤ ri for all but at

most `N/p+ 2
√
` values of ri and no otherwise.

It is clear that the reduction runs in polynomial time. We assume λ1(L) ≥ βr/N > r/p

(since otherwise the reduction clearly outputs the correct answer).

Suppose m := ξ(L, r) ≤ N . By Proposition 5.4.2, we have Pr[ri ≤ r] ≤ m
p
≤ N

p
, for each

i. Applying the Chernoff-Hoeffding bound (Lemma 1.4.3), we have

Pr
[
|{i : ri ≤ r}| > N`

p
+ 2
√
`
]
< 1/e .

So, the reduction returns the correct answer in this case with probability at least 1− 1/e.

Now, suppose ξ(L, r) > γN . We again apply Proposition 5.4.2 to obtain

Pr[ri ≤ r] ≥ γN

p
− γ2N2

p2
>
N

p
+

5√
`

Applying the Chernoff-Hoeffding bound again, we have

Pr
[
|{i : ri ≤ r}| ≤ N`

p
+ 2
√
`
]
< 1/e .

The result follows.

164

5.4.3 The centered DGS algorithm

Theorem 5.4.6 ([Ste16a, Theorem 4.6]). For any efficiently computable function f(n) with

1 ≤ f(n) ≤ poly(n), there is an (expected) polynomial-time reduction from (γ, ε)-cDGS to

SVP, where ε := 2−f(n) and γ := 1 + 1/f(n). The reduction preserves dimension and only

calls the SVP oracle on sublattices of the input lattice.

Proof. We assume without loss of generality that s = 1. (If s 6= 1, we can simply scale the

lattice.) On input L ⊂ Rn, the reduction behaves as follows. First, it computes λ1(L) using

its SVP oracle. For i = 0, . . . , ` := d200n2f(n)2e, let ri :=
√
λ1(L)2 + i/(100nf(n)). For

each i, the reduction uses its SVP oracle together with the procedure given in Theorem 5.4.5

to compute Ni such that

γ−1/10 · ξ(L, ri) ≤ Ni ≤ ξ(L, ri) , (5.3)

or Ni := 1 if λ1(L) < ri/(100n2f(n)ξ(L, ri)). Let w` := ρ1/r`(Z\{0}), and for i = 0, . . . , `−1,

let wi := ρ1/ri(Z \ {0}) − ρ1/ri+1
(Z \ {0}). (Claim 1.3.13 shows one way to compute wi

efficiently.)

Let W :=
∑`

i=0Niwi. Then, the reduction outputs 0 with probability 1/(1 + W).

Otherwise, it chooses an index 0 ≤ k ≤ `, assigning to each index i probability Niwi/W . If

Nk > 1, the reduction then calls the procedure from Lemma 5.4.3 on input L, rk, and Nk,

receiving as output a vector x ∈ Lprim that is distributed uniformly over Lprim ∩ rkBn
2 , up

to a factor of γ±1/10. If Nk = 1, the reduction simply sets x = SVP(L). Finally, it uses the

procedure from Lemma 1.3.12 to sample an integer z from DZ\{0},1/‖x‖ and returns x̄ := z ·x.

(Lemma 1.3.12 shows how to sample such an integer efficiently.)

First, we note that the reduction runs in expected polynomial time. In particular, the Ni

have polynomial bit length by Corollary 5.2.2, and the various subprocedures have expected

running times that are polynomial in the length of their input.

We now prove correctness. Let A be the set of all points that are integer multiples of a

165

lattice vector whose length is at most r` >
√
nf(n). By Theorem 1.3.4, it suffices to consider

the distribution DA, as this is within statistical distance ε of DL. Then,

ρ(A \ {0}) =
∑

y∈A\{0}

ρ(y) =
∑

y∈Lprim∩
√
nBn2

ρ1/‖y‖(Z \ {0}) .

A quick computation shows that for any y with ri−1 ≤ ‖y‖ ≤ ri, we have

ρ1/ri(Z \ {0}) ≤ ρ1/‖y‖(Z \ {0}) ≤ γ1/10 · ρ1/ri(Z \ {0}) .

Recalling the definition of the wi, it follows that

∑̀
i=0

ξ(L, ri)wi ≤ ρ(A \ {0}) ≤ γ1/10 ·
∑̀
i=0

ξ(L, ri)wi .

Now, we would like to say that Ni ≈ ξ(L, ri), as in Eq. (5.3). This is of course true by

definition except when Ni = 1 and ξ(L, ri) > 1, i.e., when λ1(L) < ri/(100n2f(n)ξ(L, ri))

and λ2(L) ≤ ri. But, in this case, a quick computation together with Lemma 5.2.11 shows

that ξ(L, ri+1) > 1/(100nf(n)λ1(L)), and therefore Nj satisfies Eq. (5.3) for all j > i. (In

other words, the Ni can only be “wrong” for at most one value of i.) It follows that, for any

i < `, we have

γ−1/5 ·
∑
j≥i

ξ(rj,Lj)wj ≤
∑
j≥i

Njwj ≤
∑
j≥i

ξ(rj,Lj)wj .

(The case N` = 1 can be handled separately. Correctness in this case follows essentially

immediately from Theorem 1.3.4.) Putting everything together, we have that

γ−1/5 · ρ(A \ {0}) ≤ W ≤ γ1/5 · ρ(A \ {0}) .

So, in particular, the probability that the reduction outputs 0 is 1/(1 +W), which is a good

166

approximation to the correct probability of 1/ρ(A).

Now, for any y ∈ Lprim, it follows from Lemma 5.4.3 and the argument above that

γ−1/2 ·
ρ1/‖y‖(Z \ {0})

ρ(A)
≤ Pr[x = ±y] ≤ γ1/2 ·

ρ1/‖y‖(Z \ {0})
ρ(A)

. (5.4)

Finally, for any w ∈ A \ {0}, let y be one of the two primitive lattice vectors that are scalar

multiples of w, and let z̄ such that w = z̄y. Then,

Pr[x̄ = w] = Pr[x = ±y] · Pr[z = z̄ | x = ±y]

= Pr[x = ±y] · ρ(w)

ρ1/‖y‖(Z \ {0})

The result follows from plugging the above equation into Eq. (5.4).

5.5
√
n/ log n-SVP to centered DGS reduction and a

lower bound

It is an immediate consequence of Theorem 1.3.4 that O(
√
n)-SVP reduces to DGS. In fact,

we can do a bit better.

Proposition 5.5.1 ([Ste16a, Proposition 6.1]). For any efficiently computable function

10 ≤ f(n) ≤ poly(n), there is a polynomial-time reduction from γ-SVP to (f, ε)-DGS, where

γ := 10
√

n
log f(n)

, and ε := 1/f(n). The reduction only calls the oracle on the input lattice.

Proof. We assume without loss of generality that n is large enough so that f(n) < 2n−1. On

input L ⊂ Rn, the reduction behaves as follows. It first uses the procedure from Theorem 1.2.3

167

to compute d̃ such that 2−n/2 · λ1(L) ≤ d̃ ≤ λ1(L). For i = 0, . . . , 100n3, let

si := (1 + 1/n2)i · d̃√
log f(n)

.

The reduction calls the DGS oracle on input L and si for each i, d100nf(n)2e times. It then

returns the shortest resulting non-zero vector.

It is clear that the reduction runs in polynomial time. Let i such that si−1 ≤ 10 λ1(L)√
log f(n)

<

si. Note that

Pr
X∼DL,si

[X = 0] <
1

1 + 4/f(n)
< 1− 2/f(n) .

By Theorem 1.3.4,

Pr
X∼DL,si

[
‖X‖ > γ · λ1(L)

]
≤ Pr

X∼DL,si
[‖X‖ > si

√
n] < 2−n .

Therefore, if the samples were truly from DL,si , each would be a valid approximation with

probability at least 2/f(n)− 2−n. It follows that each sample from the DGS oracle is a valid

approximation with probability at least 1/f(n)2 − 2−n/f(n) > 1/(2f(n)2), and the result

follows.

We now show a lower bound on the length of non-zero discrete Gaussian vectors. In

particular, for any approximation factor γ = o(
√
n/ log n), we show a lattice (technically, a

family of lattices indexed by the dimension n) such that the probability that DL,s yields a

γ-approximate shortest vector is negligible for any s. This shows that any efficient reduction

from γ-SVP to DGS with γ = o(
√
n/ log n) must output a vector not returned by the DGS

oracle and/or make DGS calls on a lattice other than the input lattice.

Theorem 5.5.2 ([Ste16a, Theorem 6.2]). For any sufficiently large n and 2 < t <
√
n/10,

168

there exists a lattice L ⊂ Rn with λ1(L) = t such that for any s > 0,

Pr
X∼DL,s

[0 < ‖X‖ ≤
√
n/10] < e−t

2

.

In particular, for any t = ω(
√

log n), DL,s will yield a
√
n/(10t)-approximate shortest vector

with at most negligible probability.

Proof. Fix n. Let L′ ⊂ Rn−1 be an (n− 1)-dimensional lattice with ρs(L′) ≥ 1 + sn−1 and

λ1(L) >
√
n− 1/10, as promised by Lemma 5.2.3. Then, let L := L′ ⊕ tZ be the lattice

obtained by “appending” a vector of length t to L′. Note that the only vectors of length at

most
√
n− 1/10 in L are those that are multiples of the “appended” vector. So,

Pr
X∼DL,s

[0 < ‖X‖ ≤
√
n− 1/10] ≤ ρs(tZ \ {0})

ρs(L′)
≤
ρs/t(Z \ {0})

1 + sn−1
.

Now, if s ≤ t, then the numerator is less than e−t
2
. If s > t, then we have

ρs/t(Z \ {0})
1 + sn−1

<
s

1 + sn−1
<

1

sn/2
<

1

tn/2
< e−t

2

,

where we have used the fact that ρs′(Z \ {0}) < s′, and the fact that 2 < t <
√
n/10.

169

Bibliography

[Aar14] Scott Aaronson. The equivalence of sampling and searching. Theory of Computing

Systems, 55(2):281–298, 2014.

[ABSS93] Sanjeev Arora, László Babai, Jacques Stern, and Z Sweedyk. The hardness of

approximate optima in lattices, codes, and systems of linear equations. In FOCS,

1993.

[ADPS16] Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe. Post-quantum

key exchange — A new hope. In USENIX Security Symposium, 2016.

[ADRS15] Divesh Aggarwal, Daniel Dadush, Oded Regev, and Noah Stephens-Davidowitz.

Solving the Shortest Vector Problem in 2n time via discrete Gaussian sampling.

In STOC, 2015.

[ADS15] Divesh Aggarwal, Daniel Dadush, and Noah Stephens-Davidowitz. Solving the

Closest Vector Problem in 2n time— The discrete Gaussian strikes again! In

FOCS, 2015.

[AJ08] Vikraman Arvind and Pushkar S Joglekar. Some sieving algorithms for lattice

problems. In FSTTCS, pages 25–36, 2008.

[Ajt98] Miklós Ajtai. The shortest vector problem in `2 is NP-hard for randomized

reductions. In STOC, 1998.

170

[Ajt04] Miklós Ajtai. Generating hard instances of lattice problems. In Complexity of

computations and proofs, volume 13 of Quad. Mat., pages 1–32. Dept. Math.,

Seconda Univ. Napoli, Caserta, 2004. Preliminary version in STOC’96.

[AKS01] Miklós Ajtai, Ravi Kumar, and D. Sivakumar. A sieve algorithm for the shortest

lattice vector problem. In STOC, pages 601–610, 2001.

[AKS02] Miklós Ajtai, Ravi Kumar, and D. Sivakumar. Sampling short lattice vectors and

the closest lattice vector problem. In CCC, pages 41–45, 2002.

[AR05] Dorit Aharonov and Oded Regev. Lattice problems in NP intersect coNP. Journal

of the ACM, 52(5):749–765, 2005. Preliminary version in FOCS’04.

[AS64] Milton Abramowitz and Irene A. Stegun. Handbook of mathematical functions

with formulas, graphs, and mathematical tables, volume 55 of National Bureau

of Standards Applied Mathematics Series. For sale by the Superintendent of

Documents, U.S. Government Printing Office, Washington, D.C., 1964.

[Bab86] L. Babai. On Lovász’ lattice reduction and the nearest lattice point problem.

Combinatorica, 6(1):1–13, 1986.

[Ban93] Wojciech Banaszczyk. New bounds in some transference theorems in the geometry

of numbers. Mathematische Annalen, 296(4):625–635, 1993.

[BCD+16] Joppe W. Bos, Craig Costello, Léo Ducas, Ilya Mironov, Michael Naehrig, Valeria

Nikolaenko, Ananth Raghunathan, and Douglas Stebila. Frodo: Take off the ring!

Practical, quantum-secure key exchange from LWE. In CCS, 2016.

[BDGL16] Anja Becker, Léo Ducas, Nicolas Gama, and Thijs Laarhoven. New directions in

nearest neighbor searching with applications to lattice sieving. In SODA, 2016.

171

[BDS16] Huck Bennett, Daniel Dadush, and Noah Stephens-Davidowitz. On the Lattice

Distortion Problem. In ESA, 2016.

[BGJ14] Anja Becker, Nicolas Gama, and Antoine Joux. A sieve algorithm based on

overlattices. LMS Journal of Computation and Mathematics, 17(A):49–70, 2014.

[BGS17] Huck Bennett, Alexander Golovnev, and Noah Stephens-Davidowitz. On the

quantitative hardness of CVP. In FOCS, 2017.

[BHW93] U. Betke, M. Henk, and J.M. Wills. Successive-minima-type inequalities. Discrete

& Computational Geometry, 9(1):165–175, 1993.

[BLP+13] Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien Stehlé.

Classical hardness of learning with errors. In STOC, pages 575–584, 2013.

[BN09] Johannes Blömer and Stefanie Naewe. Sampling methods for shortest vectors,

closest vectors and successive minima. Theoret. Comput. Sci., 410(18):1648–1665,

2009.

[Bob11] Sergey G. Bobkov. On Milman’s ellipsoids and M -position of convex bodies. In

Concentration, functional inequalities and isoperimetry, volume 545 of Contemp.

Math., pages 23–33. Amer. Math. Soc., Providence, RI, 2011.

[Bou91] Jean Bourgain. On the distribution of polynomials on high-dimensional convex

sets. In Geometric aspects of functional analysis (1989–90), volume 1469 of Lecture

Notes in Math., pages 127–137. Springer, Berlin, 1991.

[BPY01] Philippe Biane, Jim Pitman, and Marc Yor. Probability laws related to the Jacobi

theta and Riemann zeta functions, and Brownian excursions. Bull. Amer. Math.

Soc. (N.S.), 38(4):435–465, 2001.

172

[Bri85] Ernest F. Brickell. Breaking iterated knapsacks. In Advances in cryptology (Santa

Barbara, Calif., 1984), volume 196 of Lecture Notes in Comput. Sci., pages 342–358.

Springer, Berlin, 1985.

[BS99] Johannes Blömer and Jean-Pierre Seifert. On the complexity of computing short

linearly independent vectors and short bases in a lattice. In STOC. ACM, 1999.

[BSW16] Shi Bai, Damien Stehlé, and Weiqiang Wen. Improved reduction from the Bounded

Distance Decoding Problem to the Unique Shortest Vector Problem in lattices.

In ICALP, 2016.

[BV11] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryp-

tion from (standard) LWE. In FOCS, 2011.

[BV14] Zvika Brakerski and Vinod Vaikuntanathan. Lattice-based FHE as secure as PKE.

In ITCS, pages 1–12, 2014.

[Cas04] Bill Casselman. Stability of lattices and the partition of arithmetic quotients.

Asian J. Math., 8(4):607–637, 2004.

[CDLP13] Kai-Min Chung, Daniel Dadush, Feng-Hao Liu, and Chris Peikert. On the lattice

smoothing parameter problem. In CCC, 2013.

[CFM04] Dario Cordero-Erausquin, Matthieu Fradelizi, and Bernard Maurey. The (B)

conjecture for the Gaussian measure of dilates of symmetric convex sets and

related problems. J. Funct. Anal., 214(2):410–427, 2004.

[Chu76] Kai Lai Chung. Excursions in Brownian motion. Ark. Mat., 14(2):155–177, 1976.

[CJL+92] Matthijs J Coster, Antoine Joux, Brian A LaMacchia, Andrew M Odlyzko, Claus-

Peter Schnorr, and Jacques Stern. Improved low-density subset sum algorithms.

computational complexity, 2(2):111–128, 1992.

173

[CN98] J-Y Cai and Ajay Nerurkar. Approximating the SVP to within a factor (1+1/ dimε)

is NP-hard under randomized conditions. In CCC. IEEE, 1998.

[CS98] John Conway and Neil J.A. Sloane. Sphere Packings, Lattices and Groups. Springer

New York, 1998.

[Dad12a] Daniel Dadush. Private communication, 2012.

[Dad12b] Daniel Dadush. Integer Programming, Lattice Algorithms, and Deterministic

Volume Estimation. PhD thesis, Georgia Institute of Technology, 2012.

[DH11] Chandan Dubey and Thomas Holenstein. Approximating the closest vector

problem using an approximate shortest vector oracle. In Approximation, Ran-

domization, and Combinatorial Optimization. Algorithms and Techniques, pages

184–193. Springer, 2011.

[DK13] Daniel Dadush and Gabor Kun. Lattice sparsification and the approximate Closest

Vector Problem. In SODA, 2013.

[DKRS03] Irit Dinur, Guy Kindler, Ran Raz, and Shmuel Safra. Approximating CVP to

within almost-polynomial factors is NP-hard. Combinatorica, 23(2):205–243, 2003.

[DPV11] Daniel Dadush, Chris Peikert, and Santosh Vempala. Enumerative lattice algo-

rithms in any norm via M-ellipsoid coverings. In FOCS, 2011.

[DR16] Daniel Dadush and Oded Regev. Towards strong reverse Minkowski-type inequal-

ities for lattices. In FOCS, 2016. http://arxiv.org/abs/1606.06913.

[DRS14] Daniel Dadush, Oded Regev, and Noah Stephens-Davidowitz. On the Closest

Vector Problem with a distance guarantee. In CCC, 2014.

174

http://arxiv.org/abs/1606.06913

[DSV12] Mathieu Dutour Sikirić, Achill Schürmann, and Frank Vallentin. Inhomogeneous

extreme forms. Ann. Inst. Fourier (Grenoble), 62(6):2227–2255 (2013), 2012.

[FT79] T. Figiel and Nicole Tomczak-Jaegermann. Projections onto Hilbertian subspaces

of Banach spaces. Israel J. Math., 33(2):155–171, 1979.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In STOC, 2009.

[GL87] P. M. Gruber and C. G. Lekkerkerker. Geometry of numbers, volume 37 of North-

Holland Mathematical Library. North-Holland Publishing Co., Amsterdam, second

edition, 1987.

[Gly87] Peter W. Glynn. Upper bounds on Poisson tail probabilities. Oper. Res. Lett.,

6(1):9–14, 1987.

[GMR05] Venkatesan Guruswami, Daniele Micciancio, and Oded Regev. The complexity of

the Covering Radius Problem. Comput. Complex., 14(2):90–121, 2005.

[GMSS99] O. Goldreich, D. Micciancio, S. Safra, and J.-P. Seifert. Approximating shortest

lattice vectors is not harder than approximating closest lattice vectors. Information

Processing Letters, 71(2):55 – 61, 1999.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard

lattices and new cryptographic constructions. In STOC, pages 197–206, 2008.

[Gra84] Daniel R. Grayson. Reduction theory using semistability. Comment. Math. Helv.,

59(4):600–634, 1984.

[Gru07] Peter M. Gruber. Convex and discrete geometry, volume 336 of Grundlehren

der Mathematischen Wissenschaften [Fundamental Principles of Mathematical

Sciences]. Springer, Berlin, 2007.

175

[Hel85] Bettina Helfrich. Algorithms to construct Minkowski reduced and Hermite reduced

lattice bases. Theoret. Comput. Sci., 41(2-3):125–139 (1986), 1985.

[HLR09] Ishay Haviv, Vadim Lyubashevsky, and Oded Regev. A note on the distribution

of the distance from a lattice. Discrete & Computational Geometry, 41(1):162–176,

2009.

[HN75] Günter Harder and Mudumbai S. Narasimhan. On the cohomology groups of

moduli spaces of vector bundles on curves. Mathematische Annalen, 212(3):215–

248, 1975.

[Hoe63] W. Hoeffding. Probability inequalities for sums of bounded random variables.

Journal of the American Statistical Association, 58:13–30, 1963.

[HPS11] Guillaume Hanrot, Xavier Pujol, and Damien Stehlé. Algorithms for the Shortest

and Closest Lattice Vector Problems. In Coding and Cryptology, pages 159–190.

Springer, 2011.

[HR12] Ishay Haviv and Oded Regev. Tensor-based hardness of the Shortest Vector

Problem to within almost polynomial factors. Theory of Computing, 8(23):513–

531, 2012. Preliminary version in STOC’07.

[HR14] Ishay Haviv and Oded Regev. On the Lattice Isomorphism Problem. In SODA,

2014.

[HS07] Guillaume Hanrot and Damien Stehlé. Improved analysis of Kannan’s shortest

lattice vector algorithm (extended abstract). In CRYPTO, 2007.

[Jac28] C.G.J. Jacobi. Suite des notices sur les fonctions elliptiques. Journal fr die reine

und angewandte Mathematik, 3:403–404, 1828.

176

[JS98] Antoine Joux and Jacques Stern. Lattice reduction: A toolbox for the cryptanalyst.

Journal of Cryptology, 11(3):161–185, 1998.

[Kam16] Ohad Kammar. A note on Fréchet diffrentiation under Lebesgue integrals, 2016.

Note available at https://www.cs.ox.ac.uk/people/ohad.kammar/notes/

kammar-a-note-on-frechet-differentiation-under-lebesgue-integrals.

pdf.

[Kan87] Ravi Kannan. Minkowski’s convex body theorem and integer programming. Math.

Oper. Res., 12(3):415–440, 1987.

[Kho05] Subhash Khot. Hardness of approximating the Shortest Vector Problem in lattices.

Journal of the ACM, 52(5):789–808, September 2005. Preliminary version in

FOCS’04.

[KL78] G. A. Kabatjanskĭı and V. I. Levenštĕın. Bounds for packings on the sphere and

in space. Problemy Peredači Informacii, 14(1):3–25, 1978.

[KL88] Ravi Kannan and László Lovász. Covering minima and lattice-point-free convex

bodies. Ann. of Math. (2), 128(3):577–602, 1988.

[Kla06] Bo’az Klartag. On convex perturbations with a bounded isotropic constant. Geom.

Funct. Anal., 16(6):1274–1290, 2006.

[Kle00] Philip Klein. Finding the closest lattice vector when it’s unusually close. In SODA,

2000.

[Lat02] Rafa l Lata la. On some inequalities for Gaussian measures. In Proceedings of the

International Congress of Mathematicians, Vol. II (Beijing, 2002), pages 813–822.

Higher Ed. Press, Beijing, 2002.

177

https://www.cs.ox.ac.uk/people/ohad.kammar/notes/kammar-a-note-on-frechet-differentiation-under-lebesgue-integrals.pdf
https://www.cs.ox.ac.uk/people/ohad.kammar/notes/kammar-a-note-on-frechet-differentiation-under-lebesgue-integrals.pdf
https://www.cs.ox.ac.uk/people/ohad.kammar/notes/kammar-a-note-on-frechet-differentiation-under-lebesgue-integrals.pdf

[Len83] H. W. Lenstra, Jr. Integer programming with a fixed number of variables. Math.

Oper. Res., 8(4):538–548, 1983.

[Lew79] D. R. Lewis. Ellipsoids defined by Banach ideal norms. Mathematika, 26(1):18–29,

1979.

[LLL82] A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovász. Factoring polynomials with

rational coefficients. Math. Ann., 261(4):515–534, 1982.

[LLM06] Yi-Kai Liu, Vadim Lyubashevsky, and Daniele Micciancio. On Bounded Distance

Decoding for general lattices. In RANDOM, 2006.

[LLS90] J. C. Lagarias, H. W. Lenstra, Jr., and C.-P. Schnorr. Korkin-Zolotarev bases

and successive minima of a lattice and its reciprocal lattice. Combinatorica,

10(4):333–348, 1990.

[LM83] Susan Landau and Gary Lee Miller. Solvability by radicals is in polynomial time.

In STOC, 1983.

[LO85] J. C. Lagarias and A. M. Odlyzko. Solving low-density Subset Sum problems. J.

Assoc. Comput. Mach., 32(1):229–246, 1985.

[Mic01] Daniele Micciancio. The Shortest Vector Problem is NP-hard to approximate

to within some constant. SIAM Journal on Computing, 30(6):2008–2035, March

2001. Preliminary version in FOCS 1998.

[Mic08] Daniele Micciancio. Efficient reductions among lattice problems. In SODA, 2008.

[Min10] Hermann Minkowski. Geometrie der Zahlen. B.G. Teubner, 1910.

[MO90] J. E. Mazo and A. M. Odlyzko. Lattice points in high-dimensional spheres.

Monatsh. Math., 110(1):47–61, 1990.

178

[MR07] Daniele Micciancio and Oded Regev. Worst-case to average-case reductions based

on Gaussian measures. SIAM Journal on Computing, 37(1):267–302 (electronic),

2007.

[Mum07] David Mumford. Tata lectures on theta. I. Modern Birkhäuser Classics. Birkhäuser

Boston, Inc., Boston, MA, 2007. With the collaboration of C. Musili, M. Nori, E.

Previato and M. Stillman, Reprint of the 1983 edition.

[MV10] Daniele Micciancio and Panagiotis Voulgaris. Faster exponential time algorithms

for the Shortest Vector Problem. In SODA, 2010.

[MV13] Daniele Micciancio and Panagiotis Voulgaris. A deterministic single exponential

time algorithm for most lattice problems based on Voronoi cell computations.

SIAM Journal on Computing, 42(3):1364–1391, 2013.

[MW15] Daniele Micciancio and Michael Walter. Fast lattice point enumeration with

minimal overhead. In SODA, 2015.

[New76] Charles M. Newman. Fourier transforms with only real zeros. Proc. Amer. Math.

Soc., 61(2):245–251 (1977), 1976.

[NIS16] NIST post-quantum standardization call for proposals. http://csrc.nist.gov/

groups/ST/post-quantum-crypto/cfp-announce-dec2016.html, 2016. Ac-

cessed: 2017-04-02.

[NS01] Phong Q Nguyen and Jacques Stern. The two faces of lattices in cryptology. In

Cryptography and lattices, pages 146–180. Springer, 2001.

[NV08] Phong Q. Nguyen and Thomas Vidick. Sieve algorithms for the Shortest Vector

Problem are practical. J. Math. Cryptol., 2(2):181–207, 2008.

179

http://csrc.nist.gov/groups/ST/post-quantum-crypto/cfp-announce-dec2016.html
http://csrc.nist.gov/groups/ST/post-quantum-crypto/cfp-announce-dec2016.html

[Odl90] Andrew M Odlyzko. The rise and fall of knapsack cryptosystems. Cryptology and

computational number theory, 42:75–88, 1990.

[Pei09] Chris Peikert. Public-key cryptosystems from the worst-case Shortest Vector

Problem. In STOC, 2009.

[Pei10] Chris Peikert. An efficient and parallel Gaussian sampler for lattices. In CRYPTO.

2010.

[Pei16] Chris Peikert. A decade of lattice cryptography. Foundations and Trends in

Theoretical Computer Science, 10(4):283–424, 2016.

[Per13] Yuval Peres, 2013. Personal communication.

[Pis82] Gilles Pisier. Holomorphic semigroups and the geometry of Banach spaces. Ann.

of Math. (2), 115(2):375–392, 1982.

[Pri14a] Thomas McMurray Price. Inequality regarding sum of Gaussian on lattices.

MathOverflow, 2014. http://mathoverflow.net/q/160507 (version: 2014-12-

01).

[Pri14b] Thomas McMurray Price. Is the heat kernel more spread out with a smaller

metric? MathOverflow, 2014. http://mathoverflow.net/q/186428 (version:

2014-12-11).

[Pri15] Thomas McMurray Price. Numerical cohomology, 2015. http://arxiv.org/abs/

1509.05797.

[Pri16] Thomas McMurray Price. An inequality for the heat kernel on an Abelian Cayley

graph, 2016. https://arxiv.org/abs/1612.07306.

180

http://mathoverflow.net/q/160507
http://mathoverflow.net/q/186428
http://arxiv.org/abs/1509.05797
http://arxiv.org/abs/1509.05797
https://arxiv.org/abs/1612.07306

[PRS17] Chris Peikert, Oded Regev, and Noah Stephens-Davidowitz. Pseudorandomness

of Ring-LWE for any ring and modulus. In STOC, 2017.

[PS09] Xavier Pujol and Damien Stehlé. Solving the Shortest Lattice Vector Problem in

time 22.465n. IACR Cryptology ePrint Archive, 2009:605, 2009.

[Reg09] Oded Regev. On lattices, learning with errors, random linear codes, and cryptog-

raphy. Journal of the ACM, 56(6):Art. 34, 40, 2009.

[Rie57] Bernhard Riemann. Theorie der Abel’schen Functionen. Journal für die reine

und angewandte Mathematik, 54:101–155, 1857.

[Rob55] Herbert Robbins. A remark on stirling’s formula. The American Mathematical

Monthly, 62(1):26–29, 1955.

[Rog55] C. A. Rogers. Mean values over the space of lattices. Acta Math., 94:249–287,

1955.

[Ros41] Barkley Rosser. Explicit bounds for some functions of prime numbers. American

Journal of Mathematics, 63(1):pp. 211–232, 1941.

[Roy14] Thomas Royen. A simple proof of the Gaussian correlation conjecture extended to

some multivariate gamma distributions. Far East J. Theor. Stat., 48(2):139–145,

2014.

[RS16] Oded Regev and Igor Shinkar. A counterexample to monotonicity of relative mass

in random walks. Electronic Communications in Probability, 2016.

[RS17a] Oded Regev and Noah Stephens-Davidowitz. An inequality for Gaussians on

lattices. SIDMA, 2017.

181

[RS17b] Oded Regev and Noah Stephens-Davidowitz. A reverse Minkowski theorem. In

STOC, 2017.

[Sch60] Wolfgang M. Schmidt. A metrical theorem in geometry of numbers. Trans. Amer.

Math. Soc., 95:516–529, 1960.

[Sch87] C.P. Schnorr. A hierarchy of polynomial time lattice basis reduction algorithms.

Theoretical Computer Science, 53(23):201 – 224, 1987.

[SFS09] Naftali Sommer, Meir Feder, and Ofir Shalvi. Finding the closest lattice point by

iterative slicing. SIAM J. Discrete Math., 23(2):715–731, 2009.

[Sha84] Adi Shamir. A polynomial-time algorithm for breaking the basic Merkle-Hellman

cryptosystem. IEEE Trans. Inform. Theory, 30(5):699–704, 1984.

[Sie45] Carl Ludwig Siegel. A mean value theorem in geometry of numbers. Ann. of

Math. (2), 46:340–347, 1945.

[Sol16] Omri N. Solan. Intersections of diagonal orbits, 2016. https://arxiv.org/abs/

1612.08765.

[SS06] Peter Sarnak and Andreas Strömbergsson. Minima of Epstein’s zeta function and

heights of flat tori. Invent. Math., 165(1):115–151, 2006.

[Ste16a] Noah Stephens-Davidowitz. Discrete Gaussian sampling reduces to CVP and SVP.

In SODA, 2016.

[Ste16b] Noah Stephens-Davidowitz. Search-to-decision reductions for lattice problems

with approximation factors (slightly) greater than one. In APPROX/RANDOM,

2016.

182

https://arxiv.org/abs/1612.08765
https://arxiv.org/abs/1612.08765

[Stu76] Ulrich Stuhler. Eine Bemerkung zur Reduktionstheorie quadratischer Formen.

Arch. Math. (Basel), 27(6):604–610, 1976.

[SW14] Uri Shapira and Barak Weiss. A volume estimate for the set of stable lattices. C.

R. Math. Acad. Sci. Paris, 352(11):875–879, 2014.

[SW16] Uri Shapira and Barak Weiss. Stable lattices and the diagonal group. J. Eur.

Math. Soc. (JEMS), 18(8):1753–1767, 2016.

[Ter16] Audrey Terras. Harmonic analysis on symmetric spaces—higher rank spaces,

positive definite matrix space and generalizations. Springer, New York, second

edition, 2016.

[vdC36] Johannes van der Corput. Verallgemeinerung einer Mordellschen Beweismethode

in der Geometrie der Zahlen, Zweite Mitteilung. Acta Arithmetica, 2(1):145–146,

1936.

[ZF96] Ram Zamir and Meir Feder. On lattice quantization noise. IEEE Transactions on

Information Theory, 42(4):1152–1159, 1996.

183

	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	What's this?
	Introduction
	Preliminaries
	Lattice basics
	Computational Problems
	Gaussian measure on lattices
	Miscellany

	A Reverse Minkowski Theorem
	Introduction
	Preliminaries
	Gradients over lattices and over positions of the Voronoi cell
	Proof of the Reverse Minkowski Theorem
	Bounds on rho for all parameters and point-counting bounds
	Proof of the covering radius approximation
	An optimal bound for extreme parameters
	Tightness of our bounds

	A ``Rotation'' Identity and Related Inequalities
	Introduction
	The main inequality (and a variant)
	Moments of the discrete Gaussian distribution
	Monotonicity of the periodic Gaussian function
	Positive correlation of the Gaussian measure on lattices

	An Algorithm for DGS (and SVP and CVP)
	Introduction
	Preliminaries
	Sampling from the discrete Gaussian
	Solving SVP and (approximate) CVP in 2(n+o(n)) time
	Sampling 2(n/2) vectors above smoothing in 2(n/2) time

	A Reduction from DGS to CVP (and SVP)
	Introduction
	Preliminaries
	DGS to CVP reduction
	Centered DGS to SVP reduction
	sqrt(n/log n)-SVP to centered DGS reduction and a lower bound
	Bibliography

