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Abstract

Data Science and AI-driven solutions are abound today for a large variety of practical applications.

With a continuing focus on urban development and sustainability, in this thesis, I present our

attempts in addressing two prominent urban challenges – urban air pollution control and road

tra�c congestion management. For both these applications, we have developed novel methods,

such as the message-passing recurrent neural network, for predictive analytics and inference in

collaboration with economists, public policy experts and ICTD researchers.

The city of Delhi has 32 air quality monitors over an area of about 900 sq km, but we do not

have information on �ne-grained variations in air quality in the city in order to reason about

citizen exposure and identify hotspots. We have installed 28 low-cost sensors, many of them

concentrated in the south Delhi region. We have identi�ed many hotspots by studying spatio-

temporal variations from the data, further motivating the need for �ne-grained sensing. And

ultimately, we designed a novel model combining geostatistics and deep learning that is able

to make spatio-temporal pollution forecasts by the hour with an MAPE of about 10% across all

locations.

Urban tra�c management is another pressing challenge in an era where we observe increas-

ing urbanization and industrialization. Simply building new lanes and larger roads is not enough

– we need to go back to formula and understand how jams happen, and how we can e�ectively

implement tra�c control. In the �rst of our works, we show that road networks can experience

tra�c jams over prolonged periods, as high as 20 hours sometimes, due to sudden tra�c bursts
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over short time scales. We illustrate this using real data from two di�erent cities – New York

and Nairobi. We provide a formalism for understanding the phenomena of tra�c collapse and

sudden jams. In the second work, we devise a novel model called the message-passing neural

network for modeling the propagation of congestion within a road network and forecasting con-

gestion. The MPRNN achieves the lowest mean error of < 0.3 mph when predicting ahead in 10

minute intervals, for up to 3 road segments ahead (message passing across 3 hops). Finally, in

the third work, we describe an algorithm for signal control in free-�ow road networks, inspired

from congestion control in computer networks. Our proposed method signi�cantly enhances the

operational capacity of free-�ow road networks in the real world by several orders of magnitude

(between 3× and 5×) and prevents congestion collapse.
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Part I

Data Science for Countering Air Pollution
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1 | Introduction

Across the developing world, urbanization and economic growth have led to the emergence of

heavily polluted towns that are at once the focus of local economic growth, and ground-zero

for one of the most urgent public health challenges the world faces today [Alpert et al. 2012].

Over 4.5 billion people live in parts of the world where the average ambient concentration of �ne

particulate matter, the leading cause for poor air quality, is above 20 µд/m3, twice the maximum

level the World Health Organization (WHO) considers safe [WHO et al. 2006]. In 2016, the annual

average level of airborne �ne particulate matter (PM2.5) in Delhi, the capital of India, was 142

µд/m3, 14 times higher than the level deemed safe by the WHO and 4 times higher than the

least stringent interim target of 35 µд/m3 [WHO et al. 2006]. The issue is most severe in the

winter season, with PM2.5 concentration levels in ambient air soaring beyond 1000 µд/m3 on

some days. One of the most cited macro sources of air pollution in Delhi, the burning of crop

residue in the farmlands of the neighboring states of Punjab and Haryana post the harvest season

[Bikkina et al. 2019; Cusworth et al. 2018], contributes only 17-26% of the total pollution in the

winter, and about 7-12% in the summer [Sharma and Dikshit 2016]. The remaining is attributed

to a myriad of localized sources within the city, such as road dust, vehicular tra�c, domestic

emissions (from domestic activities like waste burning and cooking), construction and demolition

activities, etc [Apte et al. 2017; Sharma and Dikshit 2016]. In Delhi, municipal solid waste (MSW)

is burned across the city, especially during the winter months. Over 20% of Delhi’s air pollution is

estimated to come from waste burning and building construction, both of which are decentralized
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and dispersed sources of pollution [Sharma and Dikshit 2016]. These activities create a large

number of local spatial and temporal hotspots, many of which are unaccounted for when making

policy. Local spatial peaks can cause exposure peaks potentially hurting a vulnerable population

like those in urban slums out of proportion as compared to the average level. Even if air pollution

levels did not vary over time, levels of human exposure may vary widely depending on lifestyle

choices, localities and routes frequented [Pant et al. 2017]. Thus, identifying �ne-grained hotspots

that vary over both space and time will prove to be very valuable for targeted interventions.

Delhi has a network of air quality monitoring stations operated by three di�erent public bod-

ies – Central Pollution Control Board (CPCB), Delhi Pollution Control Committee (DPCC) and

the Indian Meteorological Department (IMD) – that provides quality-controlled public data. The

spatial monitoring resolution of this network, hereafter referred to as the “public network” or

the “government network”, despite being the densest such network in an Indian city, is still not

�ne enough to capture the more localized causes of high pollution that inform us about citi-

zen exposure. Apart from the signi�cant and documented local sources mentioned before, we

�nd evidence for even smaller and regular localized spatial pollution hotspots (Figures 1.2) that

contribute to the overall poor air quality and citizen exposure. In one experiment in 2018, we

traversed repeatedly through the roads of two di�erent neighborhoods in Delhi (area 4-5 km2

each) over a period of four hours while carrying portable handheld air quality monitors. We

were able to attribute some of these local hotspots to various local activities such as open food

carts, open ironing shop (with the traditional coal iron press), incense burning, roadside con-

struction and earth-moving activity. Some of these sources generated PM2.5 concentration in the

air upwards of 100 µд/m3 while being present up to 10 feet away from those sources. Neither

of these neighborhoods contained a government monitoring station in its vicinity, thus validat-

ing our hypothesis that localized but signi�cant sources of pollution do not get captured by the

existing public network of monitors.

The reason these observations are important is because localized sources of pollution a�ect
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narrow sections of the population that frequent those locations. There are currently 32 of these

public monitors spread over a ground area of about 858 km2 i.e. one sensor for an area of approx-

imately 26 km2, which is a rather dense network for city-level air quality monitoring, but sparse

for a reasoning about citizen exposure at the microscale. One reason for the lack of a denser

network is equipment cost. Regulatory-grade monitors, such as the ones used in the public mon-

itoring stations, are expensive high-end instruments—the cost of one �xed automated station can

reach about 12 million Indian Rupees (200,000 USD) to set up with a 10% yearly operational and

maintenance cost [Hindustan Times 2017; MOEF 2018]. We therefore augment this public net-

work with our own denser network of low-cost noisier air quality sensors in a smaller region of

the city, resulting in a total of 60 sensors (Figure 1.1).

In March 2018, we began the deployment of a network of 28 low-cost sensors, many of them

concentrated in the south Delhi area, in collaboration with Kaiterra 1, a company that makes low-

cost air quality monitors and air �lters. The sensors use light-scattering technology to measure

PM concentrations, every few minutes, which we averaged to the hour to smoothen the data and

remove noise. The data continues to be reported until the present day, January 2022. However,

for the purposes of our analyses and the spatiotemporal modeling, we chose the data over a two-

year period from May 2018 to May 2020. The main reason for this is that since the onset of the

COVID-19 pandemic in April 2020, regular maintenance and service of these sensors have been

di�cult, resulting in reduced data unavailability. These low-cost sensors both validated the air

quality from existing public monitors and provided insights on the air quality at locations without

any public monitors.

In our study, we �nd that hotspots may be short-lived, long-lived, spatially focused or spread

out, and may be transient or recurring. By plotting data at various temporal resolutions, we notice

these di�erent patterns. By placing more air quality monitors on the ground, we observed other

types of hotspots that are lesser known (Figure 1.3), such as transient hotspots, longer lived but
1https://kaiterra.com/
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Figure 1.1: List of all the sensors for our study. The 32 public fixed monitoring stations by the government
are shown in blue, and the 28 low-cost sensors that we have installed are shown in red. (The figure actually
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no PM data in the entire 30-month period of consideration, and therefore we exclude it from our analysis.

5



04:00 08:00 12:00 16:00 20:00
Timestamp

60

120

180

240

300

P
M

2
.5

 C
o

n
c
e

n
tr

a
ti
o

n
 (

µ
g
/m

3
)

(a) Jan 30, 2018

04:00 08:00 12:00 16:00 20:00
Timestamp

80

160

240

320

P
M

2
.5

 C
o

n
c
e

n
tr

a
ti
o

n
 (

µ
g
/m

3
)

(b) Feb 1, 2018

04:00 08:00 12:00 16:00 20:00
Timestamp

80

160

240

320

400

P
M

2
.5

 C
o

n
c
e

n
tr

a
ti
o

n
 (

µ
g
/m

3
)

(c) Feb 2, 2018

Figure 1.2: The plots show a sample of readings in a small neighborhood containing about 7 of our low-
cost sensors and 2 public stations for three di�erent days. Sustained fine-grained spatial variations that
are not captured by the public monitoring stations are captured by the denser low-cost sensor network.
The bold do�ed lines show the readings from the closest public monitors, and the other lines show the
readings from the rest of the sensors.

more spatially focused and so on. The variation across space can be fairly large too, as evidenced

by the heatmap showing the readings from all (low-cost and high-cost public) the monitors in

our study.

Then, we describe a methodology to model and forecast urban air quality at a �ne-grained

level using our dense and noisy low-cost sensor network. Pollution forecasting in cities with dense

populations can be critical for generating �ne-grained policy recommendations and public health

warnings [Shaddick et al. 2020; Rao et al. 2021; Geng et al. 2021]. The scale of accurate sensor

based monitoring required to achieve this can come at a huge cost and thus inhibit building

a dense �ne-grained pollution sensing map. There are two main questions we seek to answer

through this work – i) how can we use a network of low-cost and portable air quality monitors

in order to build a �ne-grained pollution heatmap in a city that provides accurate forecasting?,

ii) does it help to augment existing monitoring networks by the local governments with low-cost

air quality sensors? We develop a hybrid model that combines state-of-the-art approaches for

spatio-temporal modeling such as a spatio-temporal hierarchical model (STHM) and a message-

passing recurrent neural network (MPRNN) that models spatio-temporal interactions to predict

an accurate air pollution �eld.

The deployment of low-cost particulate matter sensors to replace or augment reference grade
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Figure 1.3: Heatmaps that show PM concentrations (in µд/m3) at various locations in space, at di�erent
temporal resolutions. More transient hotspots are observed at finer temporal resolutions such as 6H and
12H, but more longer-lived hotspots are observed at coarser resolutions such as 1D and 1W. The four maps
show the maps at various “zoom” levels in time in the month of May 2018, thus identifying that pollution
hotspots occur at varying levels of granularity.
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pollution air quality monitoring systems has been studied extensively recently, and have ad-

dressed issues of calibration [Liu et al. 2019, 2020; Giordano et al. 2021], design [Tryner et al.

2021; Prakash et al. 2021], data selection [Bi et al. 2022] and personal exposure quanti�cation

[Zusman et al. 2020; Mahajan and Kumar 2020]. However, building a highly accurate large scale

�ne-grained pollution sensing and monitoring map that leverages the size of a pollution network

has been largely unexplored. Speci�cally, modeling the behavior of noisy low-cost sensors in

cities with high pollution and population density has not been studied previously, with recent

state-of-the-art mapping approaches providing errors only in the range of 30-40% [Spyropoulos

et al. 2021; Chu et al. 2020]. This high error lends the pollution sensing map unusable for policy

making and air quality hazard detection. We build on prior work and model the pollution net-

work in its entirety, with prediction models at each sensor location based on a recurrent neural

network model dependent on sensor-reading messages sent from near-by sensor locations.

Our adaptive statistical approach can incorporate data from several noisy and low-cost sen-

sors and provides an attractive and more viable alternative. We employ a hybrid data-cum-model

driven approach, in which �rst we �t a spatio-temporal hierarchical model (STHM) to impute

missing values of sensors (due to power and network outages) and create a "baseline" spatio-

temporal �eld, then �t a cubic spline function that captures the daily and hourly mean trends,

and then �nally train a message-passing graph neural network that incorporate spatial priors

and temporal trends from nearby sensors’ data, to �t the residuals after the spline correction. We

aim to forecast a given sensor’s readings of the concentration of �ne particulate matter (PM2.5)

measured in µд/m3 using historical data of up to 8 hours from all the sensors in the network. We

make this choice because the primary advantage of low-cost sensors lies in their ability to provide

a large number of noisy measurements. By learning the variability of each of these noisy mea-

surements through message passing neural networks which have the ability to model each sensor

separately, we learn to not only separate the signal from the noise, but build an accurate sensing

network of low-cost sensors that achieves 10% Root Mean Squared Error (RMSE) in forecasting
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up to one hour in advance over a �ne-grained spatio-temporal grid as compared to baseline mod-

eling approaches that provide 30% RMSE. By using a sparse network of sensors, whose signals

are shared through neural network embeddings, we learn to capture the information from nearby

sources that might a�ect the readings of nearby sources (e.g. factory) and ignore the ones which

are heavily localized (e.g. food cart). Such an accurate �ne-grained pollution sensing map ( ≤ 10%

MAPE) is usable by policy makers in deciding which neighborhoods of the city need interven-

tions to improve the air quality and population health. Estimating such models provides a way

to e�ciently use information from several monitors to make predictions over a �ne-grained grid,

with the ability to seamlessly and �exibly incorporate low-cost sensors in developing countries.

We model the spatio-temporal forecasting problem as a graph prediction problem, where we

predict a value at every node at a certain time using as input the historical values from neighbor-

ing nodes. In our setting, each sensor locationv ∈ V is a node in an undirected graph. Assuming

that air pollutants di�use uniformly in all directions and exert their in�uence throughout our

region of interest, in this case the greater Delhi region, we make the graph complete, where an

edge exists between every pair of nodes. The end goal is to train a model that predicts at any

node, the pollution level, measured in terms of the concentration of �ne particulate matter PM2.5,

at time t given one or more readings from neighboring locations prior to t . The �rst step is to

interpolate the gaps in the data. We use a geostatistics model for this task, called the Spatio-

temporal Hierarchical Model (STHM). Then we �t a cubic spline based on daily trends at each

sensor location, and then �nally train a Message-Passing Recurrent Neural Network (MPRNN)

(§2.1.3) to predict residuals over the baseline. In order to account for the amount of in�uence

based on the pairwise distances, we include the Euclidean distance between sensors as part of

our feature embedding in our message-passing formulation. We test this model by predicting

values at locations where sensors, and therefore ground truth information, are present, but the

model is generalized enough to be used to predict at locations where there is no ground truth

data available. If yv,t is the reading of the sensor at location v , at timestamp t , and ŷv,t is our
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corresponding prediction, the forecasting model aims to minimize the mean absolute percentage

loss:

MAPE =
∑
v

∑
t

|ŷv,t − yv,t |

yv,t
(1.1)
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2 | Building Spatio-temporal Pollution

Maps

2.1 Methods

Our pollution forecasting model for estimating the PM2.5 particulate matter concentration across

space and time consists of three important steps. Given the variations in data availability across

our pollution sensors, the �rst step of our method uses a standard Spatio-Temporal Hierarchical

Model (STHM) to estimate the missing data. Our STHM model is a standard statistical model-

ing framework from geostatistics that combines multiple sources of information, accommodates

missing values and computes predictions in both space and time. A detailed description of the

STHM model is provided in the appendix (ref §A.1). Based on daily variation patterns observed

at each of the pollution sensors, the second step in our method estimates a three-way cubic spline

at each sensor location, one for each disjoint 8-hour interval in a 24-hour period (12 am to 8 am,

8 am to 4 pm and 4 pm to 12 am), representing three di�erent patterns in the PM2.5 variations.

The cubic splines for each sensor represented a baseline level of PM2.5 concentration. The cubic

splines may provide a good approximation to the overall average daily variations across sensors

but do not capture short term spatio-temporal variations represented by the residual errors in the

baseline. The �nal step of our method is to train a Message-Passing Recurrent Neural Network

(MPRNN) across the pollution monitoring points to estimate the residual errors from neighboring
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sensors. A short and general background to recurrent neural networks (RNN) is provided in the

supplementary section (ref §A.2).

2.1.1 Data

The data used for the modeling the air pollution levels in Delhi was sourced from a combination

of 32 local government monitorsand a network of 28 low-cost sensors deployed by us in various

locations of Delhi from May 2018 to May 2020. The average availability of each of these sensors

are about 90% and 30% over the measured period respectively. This disparity is attributed to

a variety of factors such as disconnection for periodic necessary calibration, network outages

and periodic servicing of sensors. The sensors are calibrated against the government sensors,

by conducting a longitudinal comparison study by measuring in proximity to the location of the

government monitoring centers. The locations and their summary statistics of the sensors by

location is given by the Tables 2.1 and 2.2, and are shown visually in the box plots in Figure 2.1.

2.1.2 Cubic Splines

We observe that on a daily basis, depending on the time of the day and the location, there is a

low-frequency component that makes up an approximate “baseline level” of PM concentration.

Based on this observation, we �t a piecewise polynomial function, called a spline, to model this

low-frequency component. We divided a single day into a number of epochs and �t a spline for

each epoch. Prior to implementing the cubic splines, we observed that the residual errors from

the MPRNN model exhibits di�erent errors at di�erent times in the day. We then proceeded to

�t cubic splines based on the daily spatio-temporal patterns per sensor and per location. For

example, if our prediction error follows a temporal pattern of say, higher prediction error in the

morning, while lower in the afternoon, we can leverage this �tting separate splines for morning

and afternoon to subtract out this component. The spline can be of any order, but given our
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Location Count Minimum Maximum Median Mean Std Dev

Anand Vihar, Delhi - DPCC 18911 0.2 985.0 79.5 122.1 120.0
Ashok Vihar, Delhi - DPCC 21278 0.2 972.0 66.0 105.9 110.6
Aya Nagar, New Delhi - IMD 20368 0.1 954.0 56.3 76.9 74.4
Burari Crossing, New Delhi - IMD 9593 0.1 989.7 85.7 125.8 121.2
CRRI Mathura Road, New Delhi - IMD 21242 0.0 973.8 64.8 97.0 97.7
Dr. Karni Singh Shooting Range, Delhi - DPCC 19908 0.1 967.5 50.0 82.1 87.1
DTU, New Delhi - CPCB 20854 0.5 968.2 67.6 105.9 102.3
Dwarka-Sector 8, Delhi - DPCC 21615 1.0 958.2 61.5 95.7 94.1
IGI Airport (T3), New Delhi - IMD 20640 0.1 867.2 52.9 79.8 79.7
IHBAS, Dilshad Garden,New Delhi - CPCB 20913 1.6 989.6 70.5 95.3 86.6
ITO, New Delhi - CPCB 19804 0.8 989.2 76.0 107.1 94.2
Jawaharlal Nehru Stadium, Delhi - DPCC 21251 0.2 929.0 55.8 90.3 95.0
Jahangirpuri, Delhi - DPCC 21414 0.2 994.0 79.0 119.3 114.3
Lodhi Road, New Delhi - IMD 20248 0.1 980.8 55.8 77.3 72.5
Major Dhyan Chand National Stadium, Delhi - DPCC 21680 0.2 985.8 59.2 86.5 81.3
Mandir Marg, New Delhi - DPCC 20839 0.3 945.0 63.8 90.5 85.0
Mundaka, Delhi - DPCC 19654 0.5 988.5 72.5 116.6 120.2
NSIT Dwarka, New Delhi - CPCB 21601 1.0 997.5 77.9 97.6 76.8
Nehru Nagar, Delhi - DPCC 21692 0.2 997.5 62.8 110.2 121.9
Okhla Phase-2, Delhi - DPCC 21474 1.0 987.0 59.2 94.3 95.6
Patparganj, Delhi - DPCC 21602 0.2 983.0 58.2 89.7 90.0
Punjabi Bagh, Delhi - DPCC 21049 0.0 988.0 63.8 103.0 112.5
Pusa, Delhi - DPCC 19142 0.2 978.0 57.5 91.9 92.6
Pusa, New Delhi - IMD 19770 0.1 986.2 52.7 77.0 77.7
R K Puram, New Delhi - DPCC 19383 0.5 877.2 63.2 92.9 93.6
Rohini, Delhi - DPCC 21310 1.0 967.0 73.0 116.7 115.2
Shadipur, New Delhi - CPCB 20937 1.0 997.2 69.2 97.6 89.3
Sirifort, New Delhi - CPCB 20735 0.2 994.2 61.8 92.8 89.9
Sonia Vihar, Delhi - DPCC 21176 0.8 984.0 64.0 99.4 97.5
Sri Aurobindo Marg, Delhi - DPCC 20116 0.2 992.8 52.5 80.6 80.4
Vivek Vihar, Delhi - DPCC 21344 1.0 957.2 63.0 101.2 104.7
Wazirpur, Delhi - DPCC 21401 1.0 969.8 74.0 118.7 117.7

Table 2.1: Summary Statistics of Government Pollution Monitors – number of readings, minimum, max-
imum, median, mean and standard deviations of the PM2.5 concentrations detected
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Location Count Minimum Maximum Median Mean Std Dev

GK-1 Pamposh Enclave 10173 2.2 959.0 66.3 113.7 113.9
Safdarjung Enclave Block B1 3804 1.5 444.7 60.0 85.9 74.5
Anand Niketan 8655 0.9 809.3 55.6 91.4 92.5
Lado Sarai 1733 7.0 617.5 112.0 135.6 99.8
Sarvodaya Enclave 810 1.0 319.0 32.2 45.1 39.8
GK-1 N Block 954 6.5 241.7 55.5 67.4 41.5
Malviya Nagar 9253 3.0 743.4 81.2 125.3 117.0
Panchsheel Park 6959 1.9 664.1 56.4 97.0 100.2
Gurugram Sector 24 2776 6.2 427.1 41.5 52.2 40.4
Malcha Diplomatic Enclave Block C 6274 2.8 1047.4 65.9 103.0 100.1
Faridabad Sector 32 13975 2.8 909.8 81.0 119.1 104.5
Aya Nagar Extension 8003 0.1 1117.4 56.5 102.8 113.7
Chhatapur 2753 9.6 1145.8 81.7 125.6 120.5
Safdarjung Enclave Block B4 6998 1.0 507.8 54.7 89.3 84.0
Fulbright House 5103 4.1 827.7 106.4 145.6 124.7
Sadiq Nagar 20079 0.3 1110.8 53.6 90.7 93.4
Hauz Khas Village 4404 0.0 487.0 50.8 87.6 88.0
Preet Vihar 11223 4.2 1142.9 69.5 114.9 114.5
Saket 859 5.3 371.1 56.3 75.1 61.1
Gurugram Sector 49 10246 1.4 696.8 62.2 97.3 90.5
US Embassy 10952 1.4 915.7 62.7 95.3 87.1
Yusuf Sarai 7220 2.1 563.0 54.7 88.0 86.2
Lajpat Nagar 6959 1.0 507.8 54.9 89.9 84.2
Defence Colony 4721 3.0 481.5 72.8 105.3 92.7
Sarvapriya Vihar 1009 13.0 274.7 63.1 72.6 41.5
Noida Sector 104 15586 0.1 954.8 63.3 99.5 94.4
Safdarjung Enclave Block B4 4538 7.8 1205.5 99.2 143.7 124.6
ISI Delhi 16075 0.3 836.4 54.8 91.0 89.5

Table 2.2: Summary statistics of low-cost pollution sensor network – number of readings, minimum,
maximum, median, mean and standard deviations of the PM2.5 concentrations detected
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Figure 2.1: Boxplots of distributions from the monitors
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residual error patterns, but we found that piecewise cubic spline works best.

Suppose at time t and locationv , the raw PM value is given byyv,t . Then, the piecewise spline

to predict y, with time period p is given by:

ŷp(v, t) = αv,p ∗ t
3 + βv,p ∗ t

2 + κv,p ∗ t + νv,p (2.1)

Note that the chosen parameters per sensor αv,p, βv,p,κv,p,νv,p , where p ∈ {“morning”, “af-

ternoon”, “evening”}, depend on the patterns in our residual errors and are �t accordingly to

minimize the root mean-squared residual error:

RMSE(v) =
∑
t

∑
p

√
(y(v, t) − ŷp(v, t))2 (2.2)

2.1.3 Message-Passing Recurrent Neural Network

Message-Passing Recurrent Neural Network (MPRNN ), based on [Iyer et al. 2020; Gilmer et al.

2017], is a neural network architecture that is applied on a graph in order to predict values at

each node in the graph. This approach enables to us incorporates spatial interactions between

each pair of nodes as “messages” that are broadcast from every node to its neighbors. Each node

has a modi�ed version of a Long Short Term Memory (LSTM) network that iterates between

message-passing and the recurrent computations.

Suppose yv,t is a quantity of interest at node v and time t , for which we would like to build

a predictive model. Mathematically, we would like to learn a function F such that, yv,t+1 =

F (v1,yv1,t ,v2,yv2,t , . . . ;vj ∈ V) where the setV denotes the set of all the nodes in the graph. A

recurrent neural network unit is assigned to each node in the graph, with each nodev maintaining

a hidden state hv,t at time t . Through a message-passing phase and a time-recurrent phase, our

model infers the next hidden state, hv,t+1 from which the PM value at v is decoded. A message-
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passing operation allows one segment to observe the hidden state of its neighboring segments.

The computation proceeds in �ve steps, as �ve layers of the neural network. In the �rst phase,

the observation phase, the input observationsYt = {yv,t |v ∈ V} at time t are encoded into hv,t by

the observation operationOv . In the second and third phases, one or more iterations of messaging

(M) and updating (U ) operations are performed to propagate the observations in the graph. In the

fourth phase, for each node, a time-recurrent operator Tv utilizing an LSTM unit takes as input

the �nal hidden state hv,t and predicts the next hidden state hv,t+1. The �nal phase is the readout

operation Rv , which decodes the hidden state to produce the output value to be predicted ŷv,t+1.

These �ve steps are shown below. The message function takes as input the hidden states of a pair

of nodes v and n and the Euclidean distance between them, dv,n as the in�uence of the pollution

at a given location on the pollution at another location would depend on the distance between

them. Hence, we include the distance in the embedding.

hv,t = Ov(hv,t−1,yv,t ) (2.3)

mv,t =
∑

n∈V−v

M(hv,t ,hn,t ,dv,n) (2.4)

hv,t = U (hv,t ,mv,t ) (2.5)

hv,t+1 = Tv(hv,t ) (2.6)

ŷv,t+1 = Rv(hv,t+1) (2.7)

For a selection of nodesW in the graph, the components of the model {Ow ,M,U ,Tw ,Rw , |w ∈

W} are de�ned. During inference, the states Ht = {hw,t |w ∈ W} are maintained at each time

step. The hidden state for each segment is initialized at t = 0 randomly during training and

evaluation hv,0 ∼ N(0, 1).
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2.1.4 Implementation

We used the data from May 1, 2018, to Nov 1, 2019, a period of 18 months, as the training period.

The number of samples we had for training were 166979 from our low-cost sensor network, and

371806 from the government network, resulting in a total of 538785 samples. The model was

trained at each sensor location, using as input data from all the other monitors except itself, over

the entire training period. We used the Adam optimizer [Kingma and Ba 2015] with a learning rate

of 0.001, and ran the training for 30 epochs to ensure a robust and well-trained model. To validate

the model, we used the remaining 6 months data from Nov 1, 2019, to May 1, 2020. The number

of ground truth samples available in this period were 20408 and 91493 in the low-cost network

and government network, respectively, resulting in a total of 111901 samples. However, only 12

out of the 28 low-cost sensors were operational in the testing phase, since many of them had

not been serviced properly, partly owing to the COVID-19 pandemic. The testing error reported

under Results (§5.4), therefore, shows the predictions tested at 12 low-cost sensor locations and

32 government monitors, a total of 44 locations combined. The MPRNN is implemented using

the Deep Graph Library [Wang et al. 2019] and PyTorch [Paszke et al. 2019] in Python.

2.2 Results

Our data consists of PM2.5 concentration data averaged to the hour from the 28 low-cost sensors

and the 32 government monitors, a total of 60 monitors, collected over a period of 24 months,

from May 1, 2018, to May 1, 2020. We use the until Oct 30, 2019 for training (75%) and hold out

the remaining (25%) for testing. We report two criteria – the root mean squared error (RMSE)

and the mean absolute percentage error (MAPE). We evaluate our models on the data from the

combined set of our 28 low-cost sensors and the 32 government monitors, as well as separately on

each set. For each of these locations, we compare our model-based predictions with the ground
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truth of the measurement of the pollution sensor.

We contrast our combined model with two alternative modeling approaches in order to set

a baseline to benchmark the MPRNN model performance. The �rst one is the STHM itself, a

state-of-the-art spatio-temporal modeling methodology. When the STHM is used solely for the

prediction, it performs poorly, as it does not model unknown non-linear spatial dependencies

due to dispersion and so on.The second baseline is an alternative neural network formulation

that collects information from a speci�ed number (K ) of nearest neighbors to a location L, and

feeds them into a trained recurrent neural network, to predict the value at L. Unlike the MPRNN,

this model does not account for explicit spatial in�uence between every pair of sensors, thus

allowing us to see how a more simpli�ed multi-variate non-linear model might perform. We call

this model the k-Nearest Neighbor (k-NN) Spatial Neural Network (refer §A.3 for more details

on this model).

Model Our sensors Govt monitors Combined
RMSE MAPE RMSE MAPE RMSE MAPE

STHM 29.5 33.2% 38.3 32.7% 31.4 37.8%
k-NN Neural Network 38.8 35.7% 69.7 52.6% 54.2 51.6%
MPRNN 37.1 34.4% 65.2 51.3% 56.3 51.6%
Per-Sensor Spline 25.1 32.8% 60.4 49.1% 47.3 36.5%
STHM + Spline 21.8 25.8% 27.2 24.9% 24.2 26.2%
k-NN Neural Network + Per-Sensor Residual Spline 11.6 16.3% 18.1 13.4% 12.8 14.7%
MPRNN + Per-Sensor Residual Spline 9.8 10.2% 13.2 11.7% 10.4 12.6%
Per-Sensor Spline + Residual MPRNN 10.1 10.5% 14.7 12.2% 10.7 13.5%
Per-Sensor Spline with STHM imputation + MPRNN 9.5 9.4% 12.6 10.5% 10.1 9.6%
MPRNN with STHM imputation + Average Residual Spline 10.1 9.8% 13.2 10.9% 11.2 10.3%

Table 2.3: RMSE and MAPE of prediction of PM concentrations, averaged across all the sensor locations.
The RMSE is in units of µд/m3. The best performing model is shown in boldface. The Per-sensor spline
with STHM imputation followed by the use of MPRNN to estimate residual errors performs the best and
has significantly lower RMSE and MAPE than any of the models that do not combine these steps. Using
just a cubic spline or STHM or MPRNN in isolation results in a significant increase in the RMSE and MAPE
errors. Replacing the per-sensor spline with an average spline does not significantly a�ect the RMSE and
MAPE errors. The STHM model is primarily useful in filling in missing values and only provides a minor
improvement to the MPRNN + per-sensor spline model. Another baseline method where we replace the
MPRNN with k-Nearest Neighbors increases the MAPE and RMSE errors.

Overall, the MPRNN model with imputed data using STHM along with the spline correction
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provides a very highly accurate estimation of the PM concentration level across all locations (ref

Table 2.3). The best performing model is able to predict PM2.5 concentrations with an average

RMSE of 10.1 µд/m3 and MAPE of 9.6% across all the locations and over the testing period. While

estimating a spline per location provides the best predictive performance, we note that using

an average spline across all observed locations only marginally increases the RMSE and MAPE

errors. The average spline is computed after averaging the data over all the locations.

Across all locations, the median RMSE and MAPE are 9.15 µд/m3 and 8.64% respectively (ref

Figure 2.2(b)). The best case values are 4.28 µд/m3 and 5.57% respectively, and the worst case

values are 24.1 µд/m3 and 19.64% respectively. The location where we have minimum MAPE

is at a location in Green Park, a very busy area of south Delhi, further validating the need for

�ne-grained pollution sensing in a large city like Delhi.

2.2.1 Effect of Spline Correction

The 3-way cubic spline �t shows a common trend of baseline pollution rising steadily up to 8 am,

then decreasing up to 4 pm and then increasing again until midnight. We note that this is the

composite polynomial model of the PM concentrations in an average day (ref Figure 2.3(d)). The

median error of this model is about 40 µд/m3 at each of the three windows, 12 am-8 am, 8 am-4

pm and 4 pm-12 am, and this is reduced to about 10 µд/m3 post the neural network model �t on

the residuals. Figures 2.3 and 2.4 show the per-sensor splines and the average spline in detail. Not

only do the per-sensor splines vary widely across space, we notice that regions with signi�cantly

high spline residual errors like the sensors A838, E8E4 and 2E9C in Figure 2.4(a), are all located in

central locations of Delhi with well established commercial activity like Connaught Place, Sardar-

jung Enclave and Lado Sarai respectively. Further, in Figure 2.4(b), the outliers with signi�cantly

high residual error splines among the government monitoring stations are Patparganj DPCC,

Punjabi Bagh DPCC and DKSSR DPCC. While Patparganj is situated next to an industrial area,

Punjabi Bagh is a well-known residential locality with established commercial activity centers,
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and DKSSR, short for Dr. Karni Singh Shooting Range, is a shooting range located in the outskirts

of Delhi next to an interstate highway. The diversity of these splines across various geographical

regions further indicate the need to model �ne-grained pollution pro�les in seemingly remote as

well as central locations of Delhi. We also note that the average spline can su�ciently operate

for bootstrapping at locations where we do not have enough sensor data to begin with.

For the most part, locations that exhibited high residual errors after MPRNN �t continued to

show high error (relative to other locations) even after spline correction, even though the magni-

tude of the residual decreases. This phenomenon is partially explained by the high baseline values

of the sensors with high residual errors, that is often coupled with high variance in measurement.

2.2.2 Effect of Network Size

The fewer the monitors we used in our hybrid model, the greater was the �nal prediction per-

formance. As �gure 2.5 shows, with only one monitor in the network, the predictive errors are

about 35 µд/m3 and 20 µд/m3, respectively, for the low-cost sensor network and government

network. However, as we include data from more nodes in the network, �nal prediction error

drops sharply to about 15% and then gradually tails o� at about 10%. The error �attens out about

30 sensors, which is approximately the number of sensors of each type that we have in our exper-

iment. We infer that having an even denser deployment likely adds little value to the predictive

performance.

2.3 Discussion

Our contributions are signi�cant when compared to the recent and fast-growing literature that

explores the use of distributed sensor networks to gather information on air pollution and other

meteorological variables in urban contexts [Liu et al. 2018; Chambliss et al. 2021; Liang et al. 2021;

Ferraro and Agrawal 2021; Ludescher et al. 2021]. Clements et al. [Clements et al. 2017] provide
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a comprehensive review of many such works. In the last few years, researchers have sought to

learn more about how pollution sensing systems of low-cost sensors may be deployed in urban

contexts [Jiao et al. 2016; Lin et al. 2015; Shusterman et al. 2016; Moltchanov et al. 2015; Sun et al.

2016; Tsujita et al. 2005; Gao et al. 2015]. With the exception of Gao et al. [Gao et al. 2015], who

examine the performance of �ne particulate sensors in Xi’an in China, most of these deployments

have occurred in areas with signi�cantly lower air pollution than the city of Delhi in India. In

this work, we provide evidence of modeling a �ne-grained low-cost pollution sensing map from

a highly polluted city like Delhi. Gao et al. [Gao et al. 2015] also point out that low-cost PM2.5

sensors may perform worse in very low pollution environments, suggesting that they may be

relatively more useful when particulate concentrations are high. While their study focused on

Xi’an, a large city (area 3,898 mi2) with only 8 low-cost sensors, we dramatically increase the

density of the deployment by 28× in Delhi (area 573 mi2) with 28 sensors. Further, the large

longitudinal dataset we have been able to capture over 2 years as compared to prior work which

captured at most a few weeks of data, allows us to model long-term seasonal changes and train

more complex neural network models that can adapt to seasonal and daily patterns and produce

signi�cantly low RMSE. Related approaches in this space can be broadly classi�ed into three

groups – spatial interpolation approaches, land-use regression and dispersion models Xie et al.

[Xie et al. 2017], Jerrett et al. [Jerrett et al. 2005]. In the case of dispersion models, they assume

that an appropriate chemical transport model is identi�ed along with their parameter values, and

a high-quality emissions inventory. In the case of land-use regression models, having access to

environmental characteristics that signi�cantly in�uence pollution is critical. This additional data

is often suited for longer range predictions, as the geographical and meteorological data vary over

a longer temporal and coarser spatial grids [Yeh et al. 2020]. For instance, in the US EPA dispersion

model, parameters are estimated on grid cell squares with a length in the order of a few kilometers

[U. S. Environmental Protection Agency (EPA) 2021], while the parameters are used for inference

of meteorological outputs at spatial resolutions of up to 500 m. Our approach, in contrast, relies
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on �ne-grained positioning of low-cost sensors and makes the case for crowdsourcing pollution

sensing. This way, we demonstrate that a collective e�ort from citizens using low cost sensors

can actually help in building a high quality pollution sensing map.

The low MAPE and RMSE across all monitors in Delhi provided by our Per-Sensor Spline+MPRNN

with STHM imputation model are signi�cant as it means that our model can detect hazardous air

quality with high precision. The RMSE error is signi�cantly lower than the observed variance in

PM2.5 concentrations in a day, making it useful for short-term and intraday analyses as well. The

WHO air quality standards prescribe that PM2.5 levels should not exceed 10 µд/m3 and 35 µд/m3

at an annual and daily average levels, while the Indian Government air quality standards pre-

scribe 40 µд/m3 and 60 µд/m3 respectively. We note that for the 60 sensors, Delhi has exceeded

these prescribed levels 371 out of the 641 days on a daily level, across 2 years of our measurement.

The 9.6 % MAPE error that we are able to achieve, corresponds to the ability to detect hazardous

air quality as per Indian government standards with 93.5% precision and 90.8% recall. This fur-

ther indicates that the low error rate we have obtained leads to an almost exact forecasting of

hazardous air quality. This enables citizen-driven sensing where pollution sensor readings can

be crowdsourced and e�ective policy interventions like clean energy policies that penalize con-

struction sites that have PM2.5 levels more than 25% higher than the nearest monitoring center

can be operationalized 1. Speci�cally, the improvement in forecasting power is achieved in spe-

ci�c pollution hotspots like bus stations, markets, etc. (Figures 2.2(c), 2.2(d)). In addition, we can

provide transparency of the overall average pollution of the city 2 and contribute towards increas-

ing the co-bene�ts of clean energy policies [Qian et al. 2021; Tibrewal and Venkataraman 2021].

The development of �ne-grained pollution sensing maps at low-costs can further catalyze the

deployment of such monitoring networks in other polluted cities, where the pollution networks

are sparse. With citizens procuring, deploying and modeling pollution of cities accurately, this
1https://indianexpress.com/article/cities/delhi/dust-management-committee-recommends-air-quality-monitors-

at-large-delhi-construction-sites-7437599/
2https://www.downtoearth.org.in/blog/air/delhi-s-air-quality-and-number-games-76214
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work provides a way forward for developing high-quality �ne-grained pollution sensing maps.
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(a) Bar plot comparing our methodology with other
competing approaches. We note that modeling
spatiotemporal interactions using a neural network
such as MPRNN and accounting for intra-day pe-
riodic pa�erns in the form of spline corrections to-
gether make a big di�erence in the performance.

(b) Distribution of MAPE for the best performing
model shown in Table 2.3 across all the locations
shown as a cumulative density function (CDF).
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(c) Prediction errors of the best performing model
(MPRNN+Spline) at every monitoring location on
the map
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(d) Errors of the final prediction zoomed into the
regions with highest concentration of sensors (New
Delhi and South Delhi)

Figure 2.2: Prediction errors of PM2.5 during the test period (Nov 1, 2019 - May 1, 2020) shown as the
Mean Absolute Percentage Error (MAPE) of the ground truth and predicted PM2.5 concentration. In this
period, the PM2.5 concentration values ranges between 0 and 1000 µд/m3, and average value being ∼130
µд/m3
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(b) Slot 2 (8 AM - 4 PM)
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(c) Slot 3 (4 PM - 12 AM)
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8 AM
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(d) Composite cubic spline
correction consisting of three
splines fi�ed for three non-
overlapping parts of the day –
midnight to early morning (12
AM to 8 AM), midday (8 AM to
4 PM) and evening to midnight
(4 PM to 12 AM)

(e) Ground truth PM2.5 (blue),
along with MPRNN prediction
(green) and final prediction af-
ter spline correction (red) at
one of our sensor locations in
Chanakyapuri in New Delhi.

(f) Ground truth PM2.5 (blue),
along with MPRNN prediction
(green) and final prediction af-
ter spline correction (red) at
the CPCB monitor at Sirifort in
South Delhi.

Figure 2.3: This figure aims to show the interpretation of the spline correction, and its e�ect on the
residual. The top two rows show the distribution of the residuals (in PM units of µд/m3) over space, before
and a�er the spline correction. Three di�erent splines were fi�ed over the residuals in three di�erent
time slots in the day. We observe that for the most part, locations that exhibited high residual errors
a�er MPRNN fit (in the upper quantiles of the residual error distribution) continued to show high error
(relative to other locations) even a�er spline correction, even though the magnitude of the residual does
decrease. This phenomenon is partially explained by the high baseline values of the sensors with high
residual errors, that is o�en coupled with high variance in measurement.
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(b) Splines for each of the government pollution monitors

Figure 2.4: The daily variations in the splines learned for each of the sensors show that there are temporal
pa�erns which when incorporated into a prediction model can significantly improve prediction accuracy.
Each color shows a di�erent sensor location. Each plot shows about 4-5 sensor locations for the sake of
readability. The first six plots show the low-cost sensor locations, and the next six show the government
monitors.
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Figure 2.5: This figure shows the impact of sensor network size on forecasting error. The blue line shows
the errors for our low-cost sensors, and the black for the government monitors. We see that the more
sensors we use in our model, the be�er the performance of the model in terms of the prediction error. The
error fla�ens out about 30 sensors, which is approximately the number of sensors of each type that we
have in our experiment. We infer that having an even denser deployment likely adds li�le value to the
predictive performance.
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3 | Introduction

Poor road tra�c management can trigger extended periods of tra�c congestion as is witnessed in

most parts of the world. As per Texas Transportation Institute’s 2009 Mobility report [Texas Trans-

portation Institute], congestion in the US has increased substantially over the last 25 years with

massive amounts of losses pertaining to time, fuel and money. In the top 10 cities with the worst

levels of congestion in the world, the average number of hours wasted per commuter per year

is over 150 hours [Friedman 2020]. When the number of hours wasted exceeds about 35 hours

per year, it is observed to a�ect the economy negatively [Badger 2013]. This kind of prolonged

tra�c congestion persists in many large urban cities [TomTom International BV], especially in

developing regions, with poorly managed road networks and freeways and this has remained

an important barrier to economic development in these regions. Reducing tra�c jams improves

quality in life also in the form of improved air quality. A report on the air quality study in Delhi

[Sharma and Dikshit 2016] attributes nearly 20% of PM concentration in the air to tra�c.

Tra�c congestion can be both good and bad [Badger 2013]. A certain level of congestion,

especially in the dense urban regions, may indicate economic prosperity and thriving economic

development, as in many major cities. However, commuters wasting away their times on the

freeways is the bad congestion. We explore the issue of sudden congestion occurrences in such

free-�ow settings, such as highways, major junctions and freeways. Contrary to the conven-

tional belief that tra�c congestion is triggered due to excessive tra�c, tra�c jams for elongated

time-periods can actually be triggered by small tra�c bursts over small time scales [Jain et al.
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2012]. The underlying cause of the tra�c jam is not due to the lack of road capacity but due to a

“spiralling e�ect” triggered by a small burst that pushes the road tra�c network to a low-capacity

operational capacity equilibrium point. This equilibrium point is highly stable that the only way

to recover from this is to dramatically reduce the input �ow into the tra�c network and drain

the congested network. This phenomenon occurs because tra�c links exhibit a tra�c curve be-

havior where the capacity of a link is variable dependent on the tra�c density on any link; any

input �ow beyond the optimal operational rate over short time that triggers the density beyond

a critical threshold automatically triggers a spiralling e�ect resulting in a tra�c jam. We refer to

any jam caused this way as a sudden tra�c jam.

Tra�c collapse results when the tra�c density on a link exceeds a certain threshold. The

operational free-�ow exit rate of the link, which determines how quickly the link is drained,

varies with the tra�c density [May 2000]. Each tra�c link reaches an optimal capacity at a

corresponding optimal operating density, beyond which the exit rate rapidly drops. In New York

City, the exit point of the Williamsburg bridge on the Manhattan side (�gure 3.1). A tra�c light

immediately follows the bridge, and a large number of vehicles are regularly stuck there for

several minutes especially during the morning and evening rush hours. The graph shown in

�gure 3.1(b) is a plot of the tra�c congestion at the exit point of the Williamsburg bridge. The y-

axis is the measure of the vehicle density, or the tra�c density, on the road. The x-axis represents

the time in seconds after 14:50:40 when the tra�c was observed. By manual inspection of the

camera feed, we are able to determine the min and max densities as well. The max density is a

density value above which there is complete congestion, whereas the min is a value below which

there is no congestion at all. In this particular example, the min and max values were determined

to be 68 and 39. The congestion can be mitigated if the input rate of the vehicles into the bridge

is controlled before it reaches the tipping point for congestion collapse.

First, we explore the concept of sudden tra�c jam, provide a formal de�nition and illustrate

occurrences of sudden jams in two cities – New York and Nairobi. We also show a connection
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(a) Still from a CCTV camera from the NYC DoT
showing congestion at the end of the Williamsburg
bridge on the Manha�an side

(b) Tra�ic density on the link shown in the image
as a function of time

Figure 3.1: Tra�ic on the Williamsburg bridge in New York City

to the tra�c curve, and how we can potentially predict a sudden jam based on road segment

characteristics. Further, we present a new take on the problem of tra�c forecasting from sparse

but easily available and accessible data such as mobility traces of public transportation vehicles.

Many popular tra�c prediction applications that are used for travel time prediction today such as

Google Maps and Waze rely on large amounts of crowdsourced data from human mobile phone

users on the road [Barth 2009]. This crowdsourced approach is typically not useful or reliable

in all but the big cities [Yuniar 2018], since data is either unavailable or stale. Such an approach

is also di�cult to implement in regions with strict regulations on free data access and privacy

concern among the public.

We demonstrate in this tra�c prediction work that it is possible to forecast road tra�c con-

ditions, in particular the level of congestion, from sparse data collected from signi�cantly fewer

input sources. Our input sources are public transportation buses �tted with location trackers. A

signi�cant di�erence from more traditional takes in this problem is the sparsity of the data in

time and space. On the space front, we note that buses typically ply only on select road segments

in a city in a predictable and repeatable fashion, covering only a fraction of all the roads in a city.
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On the time front, we note that many related works use either taxi traces [Lv et al. 2018; Cui et al.

2018; Achar et al. 2018] or data from specialized instrumentation called loop detectors [Guo et al.

2019; Yu et al. 2018; Li et al. 2018]. These data sources supply data nearly continually throughout

the day by very nature of design, whereas buses do not ply with as much temporal frequency and

spatial coverage at late nights as much as during the day times.

Accurate modeling of tra�c �ow and congestion requires additional features apart from ve-

hicle traces that directly impact tra�c �ow, such as the number of lanes, frequency of stop lights

and pedestrian density. However, the public transit authorities may either not collect such data or

may not make them available to us. Without the full set of features, forecasting road conditions

strays further from simulating a closed system and thus tra�c patterns appear highly non-linear.

In this work, we motivate Message-Passing RNN (MPRNN ) which reduces confounding e�ects

through spatial awareness and models interactions between road segments such that forecasts

are resilient to unreliable local measurements. Using the MPRNN, we are able to make longer-

term forecasts of tra�c speeds in both space and time using only limited input data from a small

number of road segments.

Our contributions in this work are three-fold from a performance point-of-view. First is the

novel application of the message-passing neural network formulation in the context of tra�c

congestion forecasting and mapping. We demonstrate improved prediction performance, as well

as better and faster modeling of spatial interactions using the MPRNN formulation. Second, we

show, for the �rst time, competitive forecasting results over a working day period (approx 12

hours). The MPRNN is able to predict next step tra�c speeds with an impressively low error

less than 0.3mph, and forecast over longer periods with an minimum error of about 1.8mph.

Third, we demonstrate the ability to forecast speeds at road segments that are not immediately

adjacent to observed road segments (“spatial” forecasting). In fact, we are able to forecast speeds

in a segment using limited data from segments up to about one kilometer (0.6 mile) away.

Finally, we propose a methodology for signal control for e�cient tra�c �ow. We observe
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that a signi�cant percentage of tra�c congestion occurs on free-�ow networks (i.e. without

explicit signal control) such as highways. The most common such scenario is the merging of

n lanes into m lanes where n > m. This reduction in the link capacities results in congestion

when the input rate exceeds a certain threshold value. By monitoring such choke points and

implementing automated signal control that utilizes known tra�c density information, we aim to

create a distributed system of tra�c signals that work to increase the overall operational capacity

of road tra�c networks and reduce instances congestion collapse. There has been a large body

of work in estimating tra�c conditions on the roads using a variety of methods such as sensors,

cameras and so on [Sen et al. 2010; Sen et al. 2011; Sen et al. 2012, 2013; Aditya et al. 2016]. Our

work builds on works like these, as we depend on the knowledge of the tra�c density at the input

links.

There are various tra�c management applications that are used or have been used in tra�c

engineering, monitoring and control, such as the VII California initiative and the Berkeley High-

way Laboratory (BHL) testbed by the California Partners for Advanced Transportation Tech-

nology (PATH) at Berkeley, TRANSYT 7F program by the McTrans Center at the University of

Florida, Synchro and SimTra�c software by Tra�cware, Quadstone Paramics, a leading micro-

scopic tra�c and pedestrian simulation software used by many planning professionals, and many

others. The Texas Transportation Institute (TTI) has developed signal control and optimization

programs for signalized arterials, such as the enhanced versions of PASSER, that are widely used

in local, state and federal levels for controlling the signal timing information. The McTrans cen-

ter at the University of Florida has made available a host of applications related to road tra�c

management, such as the Highway Capacity Software (HCS) for planning and operational level

analyses, and the microscopic tra�c simulation software package TSIS-CORSIM containing a

suite of applications including TRANSYT 7F, a signal timing optimization program.

Our idea for tra�c signaling networks di�ers in spirit from these and several other pieces of

work in the Intelligent Transportation Systems community in the sense that may be viewed as
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a network-wide generalization of the “synchronizing green signals” concept. Our design takes a

local view of the problem where tra�c signals within a small geographic area locally coordinate

among themselves in a decentralized manner, relying only on local tra�c state for controlling

signals, without making any assumptions about the tra�c �ow characteristics. Our work borrows

ideas from Internet congestion control with two di�erences – links have variable capacities and

there are no packet drops. Our signaling protocol is motivated by the concept of backpressure

algorithms [Mahajan et al. 2002; Tassiulas 1995] where every tra�c signal exerts a backpressure

on upstream tra�c signals to reduce the input rate, keep link bu�ers from reaching capacity and

thus prevent a congestion collapse.

We describe our signaling control protocol for free-�ow tra�c and show results on simu-

lation. We have written our own tra�c simulator for the purpose of evaluation, simulate the

protocol application on two real-world free-�ow road networks in the world and show signi�-

cant improvements in the operational capacity. We are able to achieve throughput increase by

several orders of magnitude (between 3× and 5×), and prevention congestion collapse in the face

of bursty tra�c conditions. Our protocol provides strong theoretical guarantees. We have proved

that scheduling based on local information is su�cient to achieve an optimized global schedul-

ing solution. Finally, our protocol can also be easily applied in practice, using CCTV cameras on

tra�c signals or other such mechanism, to estimate tra�c density.
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4 | Understanding Traffic Collapse

and Traffic Jams

4.1 Materials

4.1.1 New York City data

Data comes from the City of New York Department of Transportation (nycdot). The department

provides a website1 that publishes tra�c information for various tra�c segments throughout the

�ve boroughs of New York City; there are currently 153 such segments. Each segment has a

name, a unique identi�er, and location data. The name is a string describing the segment as most

resident travelers would, “FDR, north 25th at 63rd street,” for example. The location data consists

of a polyline, suitable for understanding the geography of the segment and placing it on a map.

Along with basic information, measurements come with a timestamp and two types of speed

data: the average vehicular speed over the segment, and the average time required to traverse the

segment. In theory, each signal is continuous—its timestamp representing a snapshot. In practice,

and due to limitations in polling, the information is updated each minute. Thus, although the

timestamp is at the granularity of seconds, it can be resampled to the granularity of minutes

without loss of generality.
1https://www1.nyc.gov/html/dot/html/about/datafeeds.shtml
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(a) Measured road segments in across the New York
City area. Segments in black are those with report-
ing times of 75 seconds or less. (use color in print)

(b) Distribution of reporting times.

Figure 4.1: Available segments in the loop detector data feed from NYC DoT. The le� plot shows the
segments on the map, color-coded by the reporting frequency, and the right side shows the distribution
of reporting frequencies.
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Figure 4.2: Cumulative distribution of hourly tra�ic speeds across all the segments in the city

Data presented in this article was collected between November 2014 through April 2016. Thus,

in theory each segment should contain approximately 740,000 measurements. However, the re-

porting reliability at each segment varies,2 so not all segments have reports for each minute.

Further, periodic system downtime, on both the reporting and collection end, prevented com-

plete continuous polling. Inter-polling statistics—the average amount of time between tra�c

measurements—is one way of describing a segments’ reliability. The average inter-polling time

across all segments was approximately 7.85 minutes, however that number is dominated by a few

very unreliable segments as the standard deviation is almost 63 minutes. In the best case, there

is a measurement every 66.88 seconds; in the worst, every 12.72 hours. Figure 4.1(b) presents a

distribution of average reporting times across the signals.
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4.1.2 Nairobi data

We analyzed the Uber Movements data for Nairobi city in Kenya to study sudden tra�c jams

[Uber Technologies]. The data has hourly average speeds in 4817 road segments in the city.

Every segment or way in the dataset is de�ned as the stretch of road between two junctions.

Each road segment has multiple nodes which are used to characterize the stops along the way, and

the dataset consists of average speed values every hour for every pair of source and destination

nodes. To calculate the average speed in a segment, we average all the individual speeds across

all consecutive pairs of source-destination nodes in the segment. Each segment corresponds to a

way in OpenStreetMap [OpenStreetMap contributors 2017], denoted by away_id , and therefore

we are able to look up these segments on a map. We analyzed the dataset from January 2018

to December 2019. Figure 4.2 shows the distribution of average speeds and max speeds of 4817

segments. As we can see from the data, only 12% of the average speed is exceeding the speed

limit of 50 km/hr [Hodge]. And the average length of such a road segment is about 80 m long

[Nesbitt and Dara-Abrams 2017]. For most of the analysis in this work, except for the clustering

of segments, we only choose a subset of 2903 segments for which data is available for at least 18

hours in a day. For the clustering, we imposed an even more strict requirement that each selected

segment should have at least one data point for every hour of the day. This gave us only 2005

segments. Additionally, many of the segments did not have contiguous data at the hour. For such

segments, we did a partial imputation of the gaps in the data, up to a maximum of 3 consecutive

hours only, using simple linear interpolation. If there were gaps longer than 3 hours in the data,

only the �rst consecutive 3 hours were �lled, and the remaining were left empty.
2On average, a segment consists of approximately 513,000 measurements (SD≈ 179, 000 minutes).
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4.2 Theory and Empirical Approximations

4.2.1 Traffic Curve and Traffic Collapse

A transportation network is a collection of segments or links, where a segment/link consists of a

set of geographic coordinates representing a polyline, and a collection of observations. Observa-

tions are a family of average speeds along and/or travel time across the polyline at an instance in

time: {(x ,y)t }t∈N, where x and y are speed and travel time, respectively. For convenience, travel

time is dropped from the formalization, allowing the speed at time t for a given segment x to be

denoted as simply xt . Every �nite stretch of road, a link, can be associated with a tra�c density,

or the fraction of the link capacity that is occupied by vehicles, at a given time. This may equiv-

alently be expressed by the bu�er size or bu�er capacity (B`), which is the number of vehicles in

the link. The exit rate or exit capacity (C`) of a link is de�ned as the number of vehicles exiting the

link per unit time. The tra�c curve captures the variation between these two parameters [Jain

et al. 2012]. At high tra�c densities (indicating tra�c jams), links have very low operational exit

capacities and at low densities, the exit rate varies linearly with the density (�gure 6.1). We de�ne

the optimal operating points of a tra�c curve based on optimal exit rate C∗` where the exit rate is

the highest and the corresponding B∗` , the optimal bu�er size atC∗` . Based on the tra�c curve, one

can de�ne the maximum exit rate of a link as a function of the current bu�er capacity as shown

in Figure 6.1. The maximum exit rate is the maximum number of vehicles that can exit the bu�er

per-unit time, C`(B`(t)).

Now, consider the case where the input rate is larger than the optimal exit rate for a short

time period, causing the link bu�er to grow. Once the bu�er size increases beyond the optimal

value B∗` , the exit rate begins to decrease, leading to a more rapid increase of the bu�er size, which

further perpetuates the cycle, until a point is reached when the bu�er is full and the exit rate is

at its lowest possible value. This is called a tra�c collapse. A very common real world example is
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Figure 4.3: Tra�ic curves showing the instantaneous exit rate (le�) and the maximum exit rate (right) as
functions of the bu�er size
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L

Figure 4.4: Merging of two freeways

two freeways merging into a single freeway. A simple example is illustrated in �gure 4.4 where

vehicles in L are merging with the stream of vehicles on H . This simple example can be viewed

in two ways: two lanes in the same freeway merging into a single lane or two separate freeways

merging or a single lane merging into a freeway. To visualize this problem from the perspective

of tra�c curves, consider three links in the setup: (a) Hbe f representing, a small segment of H

(covering a short distance of up to 0.5 miles) before the merge point; (b) a small segment L before

the merge point; (c) Haf t , representing a small segment of H after the merge point. Each of

the links can be associated with their corresponding tra�c curves. Since we are dealing with a

discrete version approximation using tra�c curve, we should choose reasonable lengths to have

meaningful bu�er values for the links. The above tra�c merging can be viewed using a simple

3-link topology where Hbe f and L merge into Haf t , and each segment has an associated tra�c

curve. We primarily concentrate on two speci�c parameters of Haf t :C∗l (Haf t ) and B∗
l
(Haf t ). If the
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sum total of the exit rates of Hbe f and L is always less than the optimal exit rate C∗
l
(Haf t ), then

the merging never faces a congestion problem. If, however, the sum of the input rates of L and

Hbe f is larger thanC∗
l
(Haf t ), then the bu�er size ofHaf t grows. If the bu�er ofHaf t grows beyond

B∗
l
(Haf t ), then the exit rate of Haf t begins to drop thereby, triggering the spiraling e�ect.

4.2.2 Identifying Sudden Jams

The phenomenon of tra�c collapse as de�ned in the previous section leads to a tra�c jam, which

is a prolonged state of very slow movement of vehicles on the road. A road segment is said to be

in a state of complete jam when the density is maximum and the average speed of vehicles in the

segment is 0 i.e. the vehicles have come to a standstill. Above a certain threshold of density, or

equivalently, below a certain threshold of the average speed of the �ow of vehicles in the segment,

the segment can be said to be approaching a jam. The choice of either threshold is based on the

range of possible speeds in the segment. We de�ne sudden jam qualitatively as the state when

we approach a jam quickly. That is, if the tra�c collapse happens over a very short time period

(typically within a matter of minutes), then we call it a sudden jam. This can happen due to a

rapid build-up in the bu�er size, in turn resulting in a rapid drop in vehicle speeds in the segment.

Sudden jams are very common in congested cities all over the world [Jain et al. 2012].

Formally, a sudden jam may be de�ned as follows. Consider a point in time t and in segment i ,

and two intervals around t ,m and n wherem < n. The prediction window is the interval (t , t +m),

and the target window is [t+m, t+n]. Further, let the observation window be an interval prior to t

that is the same size as the target window: [t −(n−m), t]. A sudden jam at time t is a condition in

which acceleration between the target and observation windows is less-than, or equal-to, some
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threshold α . Equation 4.1 shows the mathematical de�nition of the sudden jam function.

st (x ,m,n) =


1 if 1

(m−t)(n−m)

(∑t+n
i=t+m xi −

∑t
i=t−(n−m) xi

)
≤ α

0 otherwise.
(4.1)

Essentially, there is a sudden jam if the average speed of the observation window di�ers from

the average speed of the target window, hence the division by the window size n −m. The addi-

tional factor in the denominator,m− t , is the size of the target window, converting the derivation

to one of acceleration, and allowing α to be expressed as gravitational units. This not only allows

the metric to be consistent with the literature on sudden braking events [Harbluk et al. 2007;

Simons-Morton et al. 2009], but removes biases toward segments with faster free-�ows. By “nor-

malizing” with respect to deceleration, the impact that slow down has on the passenger remains

relatively constant. We apply this de�nition in our New York dataset, where we have speed data

from very selected road segments, especially freeways, bridges and tunnels, every minute, col-

lected using loop detector instrumentation, from the local transportation department (NYC DOT)

[New York City Department of Transport]. The results are shown in the next section §5.4.

4.2.3 Estimating speed-density curve

In practice, sudden jams happen over very short timescales, such as within 5 minutes [Jain et al.

2012], and we might not always have speed or density data at that �ne granularity in order

to be able to analyze them. In such situations, we cannot apply the formula from equation 4.1.

Additionally, we might not have information about the actual vehicle density on the road. In such

cases, we can make certain reasonable assumptions and estimate the speed-density curve from

the speed data alone, from which we can identify key threshold points for determining sudden

jams. We employ this approach to show evidence of sudden jams in our Nairobi dataset, since

we have speed data in Nairobi only every hour. We are able to identify potential sudden jams by
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Figure 4.5: Examples of most segments (about 2600 out of the selected 2903) where there were two clear
break points in the CDF of observed speeds. We named these break points as s1 and s2. The s1 speed
would be approximately the point at which the tra�ic crosses the “threshold” density for a jam. These
break points were obtained by fi�ing a piecewise linear model to the CDF function.
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Figure 4.6: Examples of some segments (about 300) where the speed CDFs were di�erent. There were no
two clear break points, hence not a well-defined threshold density to define a jam. Note that this is not
an artifact of the amount of available data in these segments – some of these segments had even more
data available than those in the first set.

de�ning a suitable threshold on the vehicle speed in a segment and observing any sudden drops

in the segment.

Now we describe a methodology to compute the speed-density relationship, as in �gure 6.1,

from observed hourly speed data. We begin by making a few assumptions. The �rst is that drivers

try to keep moving as fast as possible at all times, keeping with the pace of the rest of the tra�c,

while driving safely and not exceeding the speed limit. There is typically a rule that is taught

to student drivers, called the "3-second rule", which means that every driver should maintain a

certain distance to the vehicle ahead such that it takes 3 seconds to cover that distance at the

current speed of tra�c. Based on a study conducted on typically driver reaction times [Chen
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and Wang 2007], the absolute minimum spacing required between vehicles is between 0.6 and

0.9 seconds, while the typical spacing is 2 seconds and the recommended spacing is 3 seconds.

As recommended by the authors in the study, we pick 0.9 seconds as the lower limit, since 0.6

seconds is at the absolute limit for adequate human response to avert an accident. Therefore, we

assume that every driver maintains a spacing of 0.9 seconds (on average) to the vehicle ahead.

The second assumption is that we make, without a loss of generality, is that the tra�c is only

composed of cars.

The jam density is the upper limit on free-�owing tra�c density, beyond which the road

segment is said to be in the state of a jam [May 1990]. Although there is a bit of variation on

this threshold density in literature [Knoop and Daamen 2017; Wu 2002], the theory according

to May [1990] gives a value for jam density of 185 to 210 vehicles per kilometer per lane, which

translates to between 51% and 58% lane occupancy, assuming an average car length of 4.5 meters.

We assume the threshold for a jam to be 50% occupancy of the road segment. This corresponds

to a spacing of a single car between every two cars. If every driver were to maintain 0.9 second

spacing, the maximum possible speed at 50% density is 20 kph. If every driver instead maintained

2 or 3 second spacing, the corresponding speeds at the same density would be 9 kph and 6 kph,

respectively. We thus plot the max possible speed (assumed to be equal to the max exit rate) as

a function of density, for each of these cases – 0.6-second spacing, 0.9-second spacing, 2-second

spacing and 3-second spacing (�gure 4.7(a)). If the density exceeds 50%, then we are said to be in

a jam.

In reality, the perception of a “jam” would depend on the particular road segment. On a

highway, where speed limits may normally be upwards of 100 kph, drivers may perceive the

state of driving at less than, say even 40 kph, to be in a state of a jam. Whereas on a city road, the

limit is much lower. For most well-behaved segments, this limit would be approximately the �rst

break point in a cumulative distribution of the observed speeds, denoted as s1, as shown in �gures

4.5. We deduce this s1 for each segment as follows. Given the hourly speed data in a road segment
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(b) Distribution of the maximum, minimum, s1 and s2
speeds across the chosen segments. The medians for each
of the four quantities are shown at the top of the plot. We
observe that the median value of s1 corresponds to the ex-
pected value of 20-25 kph from our empirical calculations.
In practice, it would be even lower, as can be seen from the
mode of the distribution of s1, which is less than 20 kph.

Figure 4.7: Estimation of the speed-density curve and the jam threshold. (use color in print)

over a period of time, we �rst plot a distribution of all the measured/observed average vehicle

speeds as a cumulative density, which shows the distribution of speeds across all the segments in

Nairobi observed over the entire time period of two years. We then �t a 3-way piecewise linear

function to this CDF using the pwlf library in Python [Jekel and Venter 2019] to obtain the two

break points, s1 and s2. Figure 4.2 shows the distribution of the minimum, maximum, s1 and s2

speeds for 2590 segments which are “well-behaved”, in the sense of having two clear break points.

We note that the median value of s1 is about 20 kph, corresponding to the speed at the jam density

with 0.9 inter-vehicle spacing. For most urban roads in Nairobi County, the speed limit is 50 kph

[Ndubi 2019], while it is higher on some highways, and we observe this in the distribution of the

maximum speeds.

There were about 300 segments which were not well-behaved in this sense and displayed

speed distributions that were very di�erent. Two examples are shown in �gure 4.6. For these

segments, we assumed a jam density speed of 20 kph, since we are unable to compute the s1
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(a) Average number of jams, per day, per segment,
across varying prediction and target windows. Ob-
servation and target windows were held equal, de-
noted here simply as "adjacent".

(b) Average standard deviation of per day, per seg-
ment jam counts

Figure 4.8: Sudden jam characterization across all segments in the network

from the distribution. We note that this is not an artifact of the available data, as there were both

segments with more than 10000 data points in two years that did not show well-behaved CDF

and segments with just 200 data points that showed two clear break points.

4.3 Results

4.3.1 New York City

4.3.1.1 Sudden jams in practice

When characterizing sudden jams, signals with average reporting rates of 90 seconds or less were

used. Further, segments had to have a polyline component. These two conditions reduced the

total set of 153 segments to 98. Finally, to be eligible for jam classi�cation, the observation and

prediction components of a given window cannot contain missing data.

Recall that a window consists of three components—observation, prediction, and target. A

window is considered a sudden tra�c jam if the average speed between the observation and
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target portions decreases by more than a particular rate. “Prediction window” is thus the time

between the observation and target portions. Figure 4.8 presents an overview of frequency using

a �xed α = −0.002, and window sizes varying from 1 to 10 minutes. The two window portions—

observation and target—remained equal throughout. As such, they are denoted simply as “adja-

cent.” The frequency of sudden jams depends not only on the characteristics of the segment, but

on parameters to Equation 4.1; in particular, the size of the window and the choice of α .

Figure 4.8(a) outlines the inverse relationship between sudden jam frequency and respective

window sizes on a sample segment. Prediction windows range from 0 to 10, where 0 signi�es a

comparison between adjacent points in time. The adjacent windows range from 1 to 10, as a lower

bound of 0 would mean a comparison between non-existent windows. Darker cells denote higher

occurrences, with each cell annotated with the number of occurrences. The number of sudden

jams increases as the size of the adjacent window increases and as the size of the prediction win-

dow decreases. The increase across prediction windows is exponential, while the increase across

the adjacent windows is linear. With respect to the adjacent windows, this relationship is likely

due to variability in average speed. Using observation and prediction windows of size one means

that the model is taking into consideration “unsmoothed” values. In some cases, these observa-

tions may not be entirely representative of actual conditions; a result of measurement anomalies,

for example. As window sizes increase, spurious values can augment average speed such that a

sudden jam is harder to determine. With respect to prediction windows, the inverse relationship

is largely a result of the manner in which sudden tra�c is calculated: larger prediction windows

require a larger decrease in speed between the observed and target windows to be classi�ed as

tra�c events.

Figure 4.8(b) presents the average standard deviation at varying adjacent window sizes across

all segments considered. The large number of tra�c incidents shown in Figure 4.8(a) for smaller

adjacent window segments is dominated by a relatively small number of road segments. Mea-

surements across mid to large windows, while less in number, are spread more evenly.
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4.3.1.2 Characterization of Segments

Each road segment exhibits a unique behavior with respect to average speed and the variability of

those averages. This signature can be described by grouping measurements into their respective

hour of the day. Thus, each hour represents its own distribution. To formalize segment classi-

�cations in this way, each segment is described as a vector of 48 elements, where each pair of

elements represents the median speed and the standard deviation of that speed, for the respective

hour. Then, we performed an unsupervised clustering of the segments. Figure 4.9 outlines the

results of such clustering using the k-means method. Figure 4.9(b) shows the “elbow” curve for

various amounts of clustering—four seems best based on the elbow plot3 Figure 4.9(c) shows the

distribution of segments when using four clusters. The segments are plotted using their average

daily speed versus the average standard deviation of those daily speeds. Finally, Figure 4.9(a)

shows the position of each clustered segment on the New York City map. Segments that are not

operational are not displayed.

To get an idea of what the speed signatures across clustered segments, Figure 4.10 shows

an example segment from each cluster. Clusters 2 and 3 have low speed variation, but their

average speeds are near seemingly respective free �ows. Some segments in these clusters are

– the lower half of the Henry Hudson Parkway in Manhattan and the West Shore Expressway

in Staten Island. Clusters 0 and 1 show high variance—potentially good for sudden jams. There

are more segments in these clusters – Brooklyn-Queens Expressway, Verrazano-Narrows Bridge,

Van-Wyck Expressway along with other bridges and tunnels in New York. These clusters are

characterized by lower average speeds and high variance, indicating a higher frequency of sudden

jams.
3But this could be highly dependent on what we are doing with these clusters.
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(a) Operational road segments clustered by color. Cluster 0 corresponds to red, Clus-
ter 1 to blue, Cluster 2 to green, and Cluster 3 to orange. (use color in print)

(b) Elbow curve to determine the number of suitable
clusters.

(c) Distribution of road segments. Segments were
reduced from 48 dimensions to two for plo�ing pur-
poses. (use color in print)

Figure 4.9: Cluster outline.
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(a) Cluster 0: Segments with moderate to high av-
erage free-flow speeds and large changes in those
free flow speeds throughout the day.

(b) Cluster 1: Segments with moderate to high av-
erage free-flow speeds, with changes to free flow
speeds at some point during the day that are not as
significant as segments in Cluster 0.

(c) Cluster 2: Segments exhibiting higher average
speeds, with relatively li�le variation throughout
the day.

(d) Cluster 3: Segments with low average speeds
and exhibit li�le variation.

Figure 4.10: Cluster examples.
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Way ID Total hours in jams Max hours in a jam Mean hours in a jam Mode hours in a jam Mode hour of day

555497908 417 7 2.6 1.0 16:00
9931279 2246 10 2.3 1.0 06:00

678371493 1559 11 2.0 1.0 15:00
364279376 844 6 1.8 1.0 16:00
678371494 1521 6 1.8 1.0 16:00

4724017 2677 10 2.5 1.0 16:00
336067605 1842 10 2.7 1.0 17:00
39573541 688 10 1.4 1.0 15:00

580233744 715 5 1.5 1.0 17:00
4742016 1237 10 2.0 1.0 17:00

Table 4.1: Sample of 10 segments from the 6 junctions, showing total hours in jams, the max number
of hours for which a jam has lasted, the mean hours for which a jam has lasted, the mode hours (most
commonly observed jam duration) and the mode hour of day (most commonly observed time of day when
jam occurs).

4.3.2 Nairobi

4.3.2.1 Sudden jams in practice

Applying the s1 threshold on every one of the 2903 valid segments in the city, we observe that the

total number of hours spent in jams by all the tra�c in the city over the two-year period is about

2188201 hours, which translates to about 3000 hours per day, summed across all the segments.

Per segment, the average number of hours spent in jams is about 1.2 hours per day (Figure 4.11),

and the maximum is about 8 hours at a time. Figure 4.12(a) shows the mode4 number of hours

for which a jam lasts across the whole dataset. We notice that for the most part, jams last about

1 hour or less (about 2300 instances), but the next highest number of instances is for jams lasting

4 hours (about 200 instances). Figure 4.12(b) shows the distribution of number of hours of jam

over times of a day. As one would expect, this is a bimodal distribution, with a spike during the

morning rush tra�c and another spike in the evening rush. We do observe longer jams in the

evening though, based on the data.

We de�ne three di�erent phases of tra�c based on our observations – Phase 0: heavy tra�c,

speed < s1; Phase 1: light tra�c, s1 < speed < s2; Phase 2: no tra�c, speed > s2. Table 4.1 shows
4the most frequently occurring observation in a dataset; this may not be unique
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Figure 4.11: Total number of hours spent by the tra�ic in Nairobi in jams, when jam is defined as a drop
in average vehicle speed below s1
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(a) Most frequently observed jam duration
across all the segments. For each segment, we
applied the condition that speed less than s1 in-
dicates a jam, made a list of all jams (in terms
of how long was the jam in hours), computed
the modes of the list and then finally plo�ed
the counts of each mode value. Hence, this plot
shows, for example, that for most segments (ap-
prox 2200), the mode number of hours in jam is
1 hour. The next highest is 4 hours for about 200
segments.
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(b) Total number of hours in jam across the city
when the jam begins at di�erent times of the
day. As one would expect, this is a bimodal
distribution, with a spike during the morning
rush tra�ic and another spike in the evening
rush. We do observe longer jams in the evening
though, based on the data.

Figure 4.12: How long do the jams last in Nairobi and what times do they occur?
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Figure 4.13: Junction A, a 2-1 merge (use color in print)

statistics for six representative junctions in the city, covering a variety of settings – T-junctions in

the city, highway merges and roundabouts, and �gures 4.13 to 4.18 show some sample snapshots

for the six segments on various days. The faint lines show the input segments in to the output

segment(s) of interest, which are shown with thicker lines. The red color shows a jam, which is

when the speed in a segment drops below the s1 for that segment. While the low and medium

congestion clusters do not exhibit many instances of sudden jams, we observe numerous instances

in the high congestion cluster, and also jams that last for several hours at a time. The snapshots

show how the average speeds in the segments vary through the course of the day.5 We note large

number of instances of prolonged congestion (i.e. jam) in the sink segment in junctions B, D and

E. In the roundabout junctions C and F, we observe jams at one or two output sink segments.

We observe that in many cases, the jams persist over 2 to 3 hours. In the junctions B, D and E

particularly, which are all 2-1 merges, we observe that the average speed in the output segment

is below the respective s1 continuously for more than several hours on multiple days.
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Figure 4.14: Junction B, a 2-1 merge at a U-turn (use color in print)
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Figure 4.15: Junction C, a roundabout with 4 sources and 4 sinks (use color in print)
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Figure 4.16: Junction D, a 2-1 merge at a T-junction (use color in print)
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Figure 4.17: Junction E, a 2-1 merge at another T-junction (use color in print)
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Figure 4.18: Junction F, another roundabout with 4 sources and 4 sinks (use color in print)
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(a) Elbow plot of the clustering of
road segments in Nairobi
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(c) Sca�er plot of the top two
components a�er a Principal
Components Analysis (PCA) of
all the 4817 segments

Figure 4.19: Clustering of the road segments using 48-dimensional feature vectors consisting of mean and
standard deviation of speeds every hour, for 24 hours. The spread across the primary PCA component is
quite significant, that it makes sense to cluster the segments based on average observed speed. The elbow
for the clustering is at 3, shown in the first figure. The next two figures show the centroids and the sca�er
over the 2-D space of the top two principal components. (be�er use color in print)

4.3.2.2 Characterization of Segments

If the small number of segments in New York fall into 4 di�erent clusters, then we should be

able to observe a similar type of behavior in Nairobi as well. We performed an unsupervised

clustering similar to what was done in New York. We averaged the segment speeds across all the

segments over the two-year period, constructed a 48-dimensional feature vector for each segment

("way" in OpenStreetMap) consisting of average and standard deviations of the observed speeds

at each hour. We only considered those segments that had at least one data point for each hour

of the day in the two-year period. Out of 4817 segments, only 2005 satis�ed this condition, which

became our dataset. When we did a Principal Components Analysis (PCA) and plotted the top

two most signi�cant components, we observed a small clustering, especially at the higher end

of the speed distribution, indicated in �gure 4.19(c). To bring out these clusters, we performed

k-Means clustering and �gure 4.19(a) shows the elbow plot for various values of k . We see that

the elbow is at 3, compared to 4 for New York. These correspond to low-, medium- and high-
5For the sake of brevity, we only show handpicked snapshots for each of the junctions that best illustrate the

di�erent phases. We will be happy to share our analyzed data in greater detail as needed for reproduction of our
results.
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Figure 4.20: High congestion cluster – State House Road (a roundabout with three other input segments)
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Figure 4.21: Medium congestion cluster – Eastern Bypass (a long arterial road with about 30 "tribu-
tary/distributary" roads that enter/exit the main road)

congestion segments. The three clusters centroids are shown in �gure 4.19(b). It is interesting to

note that up to 1029 segments (20%) are in the low speed cluster, with average speeds of less than

20 kph through the entire day, going down as low as even 5 kph. This is a signi�cant number of

segments.

To understand why we observe this, we investigated the segments closest to the cluster cen-

troids, as shown in �gures 4.20 to 4.22. The �gure shows, for three distinct types of segments,

the location on the map and the box-whisker plot of the speed distribution through the entire

two-year period. The high congestion cluster is a roundabout at the intersection of Dennis Pritt
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Figure 4.22: Low congestion cluster – Thika Road / Eastern Bypass (a limited access highway)

Road and Woodlands Road, with median speed around 25 kph. The medium congestion cluster

is a section of the Eastern Bypass road, an arterial road in the city, with median speed between

45-50 kph. This section is interesting because although the Eastern Bypass is a wide arterial

road, the presence of many "tributary" and "distributary" style small roads entering and exiting

the main road a�ects the tra�c in the main road. Each of these input road segments would be

accounted for in the tra�c curve for the Eastern Bypass road, thereby bringing down the overall

movement speed. And the low congestion cluster is Thika Road, possibly a highway, from the

access restrictions that we can observe on the map, with a median speed of 70 kph.

The clusters are marked by di�erences such as – the number of hours for which sudden jams

last and the time of the day at which the jams occur. Figure 4.23 shows the cluster-wise di�erences

in the statistics, including of the break points in the speed distributions. Quite surprisingly, we

observe more hours of jams in the high speed cluster than in the lower speed clusters. Across

the entire two-year period, the tra�c in Nairobi spends about 845 hours stuck in jams in every

segment on average, which is about 1.2 hours per segment. When divided across clusters, the

numbers change a bit. For the lowest speed clusters, the statistic is still the same. However, for

the medium and high speed clusters, the numbers are 1207 hours and 1280 hours respectively,

which translates to about 1.7 hours per day and 1.8 hours per day respectively. This is because
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(a) Low speed cluster
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(b) Medium speed cluster
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(c) High speed cluster

Figure 4.23: Variations in the statistics across clusters due to variations in the s1 threshold. Notice the
variations in the s1 and maximum speeds in the segments in these clusters. (use color in print)

of the variation in the s1 threshold – for larger roads that have higher movement speeds, this

threshold is a little higher than for the smaller roads. For tra�c that normally moves at 100

kph, a slowdown to even 50 kph would be a “jam” since this could dramatically alter travel time

predictions.

The clusters also show marked di�erences in terms of the most frequently observed jam du-

ration, and the times of day when jams occur. Although across the board, most jams last about 1

hour, little less or little more, cluster 1 and 2 have a greater proportion of jams lasting 3, 4 and 5

hours. This seems to suggest that cluster 0, the high-congestion cluster, does not show as high a

proportion of instances of sudden jams which last for several hours, in comparison to clusters 1

and 2, the medium- and high-speed clusters. Cluster 0 shows only 5 instances of jams lasting 4

hours for 936 instances of jams lasting 1 hour. In comparison, clusters 1 and 2 show 5 instances

each of jams lasting 4 hours, for 628 and 270 instances of jams lasting 1 hour, respectively. Clus-

ters 1 and 2 also have greater proportions of jams lasting 2, 3 and 5 hours. In terms of the hour

of day, all of them show bimodal distributions. Clusters 0 and 1 show similar pro�les, with the

highest number of instances at 5 pm, whereas cluster 2 shows more jams at 7 pm. Cluster 1, the

medium cluster, also has a sizable number of instances at 7 am, possibly indicating the class of
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(b) Cluster 1 (medium-speed /
medium-congestion cluster)
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(c) Cluster 2 (high-speed / low-
congestion cluster)

Figure 4.24: How long do the jams last in Nairobi in each type of cluster? Distribution of the mode of
number of hours (in each segment) for which jams last for the di�erent clusters.
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(a) Cluster 0 (low-speed / high-
congestion cluster)
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(b) Cluster 1 (medium-speed /
medium-congestion cluster)
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(c) Cluster 2 (high-speed / low-
congestion cluster)

Figure 4.25: At what times do jams occur? Total number of hours in jam across the city when the jam
begins at di�erent times of the day for the di�erent clusters.

roads taken by most commuters.

4.4 Discussion and Conclusion

From the previous section, we note many occurrences of jams in various types of road segments,

both in New York and Nairobi. Speci�cally, we observe more instances in jams in highways,

as shown in �gure 4.24. This is evident from other published works in literature. In one study

published in 1996, the authors study tra�c jams in the Autobahn in Germany in 1992 and observe

that tra�c jams can move through highways for long periods of time over long distances [Kerner

and Rehborn 1996]. In one case, tra�c jam moved for a period of 50 minutes over the entire

stretch of 13.1 km of highway, and in another case, an almost stationary moving jam existed on

a highway. This shows that highways and other free-�ow segments are rather susceptible to

jams, and this can be attributed to the sudden bursts of tra�c entering the highway, causing the
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density to shoot up brie�y. And once the threshold density has been crossed, the queue builds up

rapidly, resulting in a jam that lasts for a long time. In another paper, the authors have shown that

tra�c jams on highways are a familiar phenomenon, and explain how jams can occur without

any bottleneck, merely due to �uctuations in the vehicle density that can grow out of control and

cause a jam that propagates through a highway [Sugiyama et al. 2008].

How do we mitigate these jams? Again, turning to the tra�c curve from §4.2.1, the key idea

is to be aware of the jam density and the threshold speed in a segment. Real time instrumenta-

tion, such as the one in New York, can inform drivers through navigation apps about impending

congestion in a segment. Such knowledge can also be used in signaling at important points such

as n-1 merges, where we observe the most instances of congestion resulting in prolonged jams.

Thus, to conclude, the key takeaways from our work are the collections of observations about

tra�c jams – they can appear in various scenarios, for various durations and can potentially

result in prolonged congestion of vehicles on the road, on many occasions lasting several hours

at a stretch. Sudden jams that appear due to an increase in vehicle density beyond the threshold

jam density are particular types of jams that last for long periods of time. We have provided a

tra�c curve formalism for understanding the phenomena of tra�c collapse leading up to sudden

jams, and a formula for sudden jams in terms of the drop in acceleration. For more sparse data

such as in Nairobi, where we do not have minute-on-minute data to use the formula, we have

proposed an alternative approach to estimating this exit rate curve (speed-density curve) from

the speed data and some basic assumptions. We compute a loose upper limit on the speed at the

jam density in a road segment from the speed distribution. This speed, called s1, the �rst break

point in the CDF distribution, ranges between 10 and 40 kph, with median approx 20 kph. The

value of 20 kph also corresponds approximately to the value of the speed at the threshold jam

density of 185 to 210 vehicles per km per lane from literature.

Then we turn our attention to the data. Using loop detector data in New York City for about 1.5

year, from November 2014 to April 2016, we observe that sudden jams are extremely frequent,
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occurring in the 100s every 10 minutes. In Nairobi, we use Uber movement speed in order to

understand tra�c jams in Nairobi. We have data over a period of two years from January 2018

to January 2020 at over 4800 road segments. We observe that on an average, vehicles are stuck

in jams for about 1.2 hours on every segment every day.

Further, we performed an unsupervised clustering to show that segments may be categorized

into multiple types based on the average speeds and variance in speeds. In New York, we observed

four clusters, and in Nairobi we observed three. Sudden jams occur frequently in Nairobi too,

especially in the 2-1 merge scenarios, many resulting in prolonged jams.
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5 | Predicting and Forecasting Traffic

5.1 Related Works

The problem of short-term road tra�c forecasting is an area replete with studies, as summa-

rized in an excellent and long review of the area [Vlahogianni et al. 2014], with discussions and

references to more than 200 works. [Seo et al. 2017] is also another good review. Traditional

approaches to travel time prediction such as ARIMA models and their variants, and Kalman �l-

ters, work well to estimate next-step future values in time series, and have been used with some

moderate success in short-term tra�c �ow prediction [Lippi et al. 2013; Liu et al. 2011]. But as

more recent works have repeatedly shown [Guo et al. 2019; Lv et al. 2018; Li et al. 2018; Cui et al.

2018; Yu et al. 2018], ARIMA and similar approaches do not model spatial dependencies between

connecting road links su�ciently, and thus not do not yield the best predictive performance. The

congestion state in a road segment depends strongly on the states upstream as well as down-

stream. Second, ARIMA methods are extremely poor at long-term forecasting. And third, they

assume that the time series data is stationary, which cannot be expected of the real tra�c speeds.

The most recent works cited here attempt to address many of these issues using di�erent deep

neural net architectures, but evaluated on datasets of a di�erent nature viz. taxi traces and loop

detector data, that are denser and richer than our dataset. We utilize a simpler architecture that

works with sparse datasets such as ours, and yielding performance comparable to [Guo et al.

2019].
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5.2 Dataset and Graphical Representation

The Metropolitan Transportation Authority (MTA) in New York City provides a raw datalog of

locations reported continually by the MTA buses. The available information is not only sparse

in space, but coarse. Each bus reports a timestamp, distance traveled in the trip, and a stop code

referring to the next bus stop. We de�ne a segment as the portion of a bus route between two

consecutive bus stops. Data entries are received at an arbitrary interval close to < 1 minute,

sometimes observed as low as 30 seconds. We utilized a downloadable historical dump [NYC

MTA 2014] of all bus locations over a continuous period of 90 days in 2014 in Manhattan. The

data contains information for about 42 di�erent bus routes, covering over 685 bus stops, across

the borough of Manhattan.

In the data preparation step, speeds are computed for each individual bus from the distance

and timestamp information. The speeds from multiple buses are then aggregated at each segment

at 10 minute intervals to create a time series for each segment. As a result of this procedure,

tra�c speed data is obtained at far greater spatial coverage than what would be obtained from

loop detectors, which are usually placed only on arterial and peripheral roads. A segment graph

is constructed with the sparse data to observe the approximate �ow of tra�c between bus stops

at a point in time. Each node in the graph represents a segment and holds the average speed in a

10 minute interval. It is a directed graph, and there exists an edge between two segments if they

share a common bus stop or, equivalently, if they are adjacent to one another. Figure 5.1 shows a

graph of the tra�c segments in Manhattan.
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Figure 5.1: Tra�ic graph defined over Manha�an divided into chunks of 5-hop subgraphs on which
models are evaluated (each color is a subgraph). 5-hop subgraphs consist of all segments within five
upstream and five downstream hops based around a selected root segment.

5.3 Approach

5.3.1 Mixed-Adjacency Recurrent Neural Net

We de�ne a Mixed-Adjacency Recurrent Neural Net (MXRNN ) to investigate the capability of

Recurrent Neural Nets to disambiguate interactions between input measurements belonging to

di�erent nodes with no knowledge of their spatial connectivity. This serves as a baseline per-

formance for us when studying neural network approaches. Measurements in each subgraph

are �attened into a 1-dimensional vector by �xing the order of nodes. As the initial choice of

ordering can be arbitrary, no prior adjacency information is given to MXRNN. In other words,

MXRNN consists of an RNN for each subgraph, with readings from all input segments �attened

out before feeding into the RNN. The spatial interactions of tra�c and dependencies are learned

during training. We use Long-Short Term Memory (LSTM) cells which aid in detecting long-term

dependencies [Hochreiter and Schmidhuber 1997a] and have been shown to work well for time

66



series prediction models.

5.3.2 Message-Passing Recurrent Neural Net

We introduce greater supervision and regularization steps to improve generalization ability from

the naïve MXRNN in the form of a “graphically aware” message-passing neural net called the

Message-Passing Recurrent Neural Net (MPRNN ). The MPRNN is a deep neural network ar-

chitecture with di�erentiable operations which iterate message-passing among connected nodes

in our tra�c graph and a recurrent architecture to detect temporal e�ects. Through tunable

model parameters, MPRNN explicitly controls the breadth of information propagation between

connected nodes in the graph and the �ow of information based on the directionality of node

adjacencies (§5.2). In our results, we observe the introduction of message-passing improves gen-

eralization over baseline models (§5.4.2).

Departing from Graph Convolution [Gilmer et al. 2017], a state-maintaining messenger and

LSTM unit is de�ned for each nodev ∈ V in the tra�c graph where one node is solely responsible

for learning the tra�c patterns in that node given neighboring states. The set of neighbors, N (v),

of a node v is the set of adjacent road segments. In evaluation, each node converses in messages

with their immediate neighbors based on the current observations, and then updates the internal

states {ht (u) | u ∈ V } in its LSTM unit. At time t + 1, the speed is predicted from the internal

state. Message-passing operates by allowing one node to observe the hidden state of its neighbors.

Performing multiple iterations of message-passing allows the propagation of information beyond

immediate neighbors.

5.3.3 Training

For both the MPRNN and MXRNN, the initial hidden state for each segment at t = 0, h0(v), is ini-

tialized randomly during training and evaluation, sampled fromN(0, 1), since the previous tra�c
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Figure 5.2: Procedural Training: Parameters trained for smaller subgraphs are transferred to initialize
training progressively larger subgraphs of k = 1 . . . 5.

conditions are unknown. In training, loss is computed using Mean-Squared Error (MSE) to obtain

a regression on predicted speeds. For all the LSTM cells, we picked 24 as the history length, or the

length of unrolled LSTM network. Empirical challenges exist with back-propagating the gradient

over exceedingly long histories, as gradients are distributed among more parameters [Hochreiter

1991]. Also, in the context of tra�c �ow, we also do not expect e�ects to be propagated signif-

icantly more than a few hours ahead in time. A history length of 24 corresponds to 4 hours of

history (at one sample every 10 minutes), which is neither too small nor too large.

We follow a training curriculum where the model is de�ned and trained on smaller subgraphs

then on increasingly larger graphs with transferred weights for previously trained nodes. Fig-

ure 5.2 shows the procedure as the number of hops-k increases. For the �rst 8 epochs, only the

parameters de�ned on nodes newly introduced from k′ − 1→ k′ hops receives gradient update.

Then, all parameters are �ne tuned in a �nal epoch. This training procedure was determined to

obtain quicker convergence for large hops and also to preserve well-performing local parameters

from becoming diluted. As all segments were ensured to have > 50% data availability, a roughly

equal volume of continuous data measurements of 18 days in the latter of the data collection

period were reserved for testing and the remaining 72 days were used in training.

Speci�c to the MPRNN implementation, one iteration of message-passing dictates the propa-

gation of one node’s state to its neighbors. Multiple iterations of message-passing allows broader
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Model k=1 k=2 k=3
Root-mean squared error (RMSE) (mph)

Linear 0.505 +− 0.7 0.647 +− 0.8 0.752 +− 1.1
MXRNN 0.283 +− 0.3 0.291 +− 0.4 0.672 +− 1.8
GCN [Kipf and Welling 2016] - 0.294 +− 0.3 0.294 +− 0.3
ASTGCN [Guo et al. 2019] 0.286 +− 0.3 0.274 +− 0.3 0.272 +− 0.2
MPRNN 0.273 +− 0.4 0.260 +− 0.3 0.272 +− 0.3

Table 5.1: Next timestep prediction (t +1) accuracy evaluated on a reserved period of 18 continuous days.
RMSE measurements are shown first, with Pearson Correlation Coe�icient below.

spread of information with tradeo�s in train-evaluation time. A �xed number of iterations occur

within each time-step, thus 3 iterations were deemed appropriate in our context. As a result,

newly obtained hidden states are intended to propagate only during the next timestep for seg-

ments more than 3-hops away.

5.4 Results

5.4.1 Next timestep Prediction

As a �rst test of performance, we predict speeds in the immediate next timestep, at a distance

of up to 3 hops (3 bus stops) away. This is approximately 1 kilometer. In this, we show the

performance of each model in predicting the tra�c speed in the test segment, 10 minutes (i.e.

one timestep) ahead, given 4 hours (24 steps) of prior history. Performances are compared across

a simple linear regression model with a bias term, the Mixed-Adjacency RNN (MXRNN ), and our

proposed Message-Passing RNN (MPRNN ), and two state-of-the-art methods that employ Graph

Convolution Networks, all trained and evaluated with history length 24.

As shown in Table 5.1, the MPRNN performs very well with a RootMean-Squared Error (RMSE)

of 0.272 mph with input from up to k = 3 neighboring hops, while the naïve LSTM approach,

MXRNN, is comparable for low k , but then rapidly degrades in performance, indicating a lack of

ability to predict at farther locations. The GCN [Kipf and Welling 2016] is a simple GCN that is
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used for supervised learning, and the ASTGCN [Guo et al. 2019] is a very recent work that beat

many other state-of-the-art methods in tra�c �ow prediction1.

The best-�t error rates are obtained by MPRNN, consistently demonstrating error lower than

the other methods. It is noted that the MXRNN shows a sharp degradation at k = 3. While

an outlier, the inconsistency in prediction behavior becomes much more apparent in forecasting

where the MXRNN exhibits higher error rates with high variance. In general, we attribute the

improvement in prediction to the regularization introduced in message-passing as spatial consis-

tency is maintained along the true layout of tra�c. This type of regularization is achieved by the

graph convolutional approaches as well, which are also resilient to the addition of more hops in

the input. In fact, the ASTGCN performs better as more hops are added. But the problem appears

in forecasting, which is a much more expensive computational operation, owing to the number of

parameters and variables involved. Thus the GCN based methods, which are much more complex

than the other methods, take prohibitively long times to produce forecasting results, and hence

we do not consider those results in our comparison.

For all implementations, we experience a tradeo� in accuracy when training for largerk-hops.

At the bene�t of observing information from more segments, the number of parameters increase

and the training objective requires the model to �t neighboring data measurements. However,

despite this, bene�t of training for larger k enables forecasting over much broader segments of

road.

5.4.2 Forecasting

Forecasting performance for subgraphs in the directed tra�c graph of Manhattan are assessed

given known values at entry and exit nodes. Experiments are performed for varying sizes of

the subgraphs of hops k = 1 . . . 3 where the tested models must propagate known observations

over an increasing sequence of intermediate segments for which observations are not available.
1Tra�c �ow prediction is a di�erent problem that tra�c speed prediction; �ow refers to volume of tra�c

70



Model k=1 k=2 k=3 k=4
Root-mean squared error (RMSE) (mph)

MXRNN 2.59 +− 1.6 2.71 +− 1.5 2.74 +− 1.8 2.85 +− 1.2
MPRNN 1.83 +− 0.3 2.13 +− 0.5 2.29 +− 0.6 2.35 +− 0.6

Pearson Correlation Coe�cient (PCC)
MXRNN 0.59 +− 0.0 0.53 +− 0.1 0.47 +− 0.1 0.47 +− 0.1
MPRNN 0.76 +− 0.0 0.64 +− 0.0 0.51 +− 0.1 0.43 +− 0.0

Table 5.2: Forecasting performance for increasing hops k = 1 . . . 4 averaged across 47 graphs which
consist the tra�ic graph of Manha�an. Variance is reported over the individual graphs.

Model k=1 k=3 k=5 k=7 k=9
Root-mean squared error (RMSE) (mph)

MXRNN 3.06 3.28 4.41 5.24 4.27
MPRNN 2.75 3.26 3.25 3.27 3.24

Pearson Correlation Coe�cient (PCC)
MXRNN 0.37 0.33 0.34 0.01 0.08
MPRNN 0.50 0.30 0.19 0.16 0.13

Table 5.3: Forecasting error for a broader range of hops k = 1 . . . 10 for a the single segment plo�ed in
Figure 5.1 (the intersection of 54th St and 7th Ave)

All forecasting errors were assessed for the reserved period of 18 days. Table 5.2 shows the

forecasting errors (RMSE) across all subgraphs in Manhattan for k = 1 . . . 3. In addition to the

RMSE metric, the Pearson Correlation Coe�cient (PCC) [Rodgers and Nicewander 1988], which

characterizes the quanti�es the correlation between the predicted and real values, is shown. For

one speci�c segment, we also show the errors for larger values of k up to 9 in table 5.3. For

the �rst available time step of each day, both MXRNNs and MPRNNs were initialized with zeros

(mean of random initialization during training). Forecasting then proceeded for all subsequent

tra�c speeds throughout the day until the last available measurement.

As can be seen from the tables, the MPRNN outperforms the MXRNN in all cases, and par-

ticularly when using larger number of hops. While the ability to forecast future values degrade

for all models, there is a more gradual degradation in error for the MPRNN (Table 5.3), where for

hops k = 9, the MPRNN still maintains an RMSE of 3.24 mph while using the MXRNN produces

an error of 4.27 mph with indications that error will continue to increase with more hops. We re-
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iterate that the MPRNN architecture only de�nes message propagation which is consistent with

the spatial layout of the tra�c graph, as opposed to MXRNN which is not regularized by spatial

information and thus de�nes arbitrary correlations with fully-connected layers over any input

measurements.

5.5 Conclusion

Highly parameterized neural nets have been applied successfully to data that is sporadic and

unidimensional, but abundant and easily collected at the same time. We examine historical travel

data of public transit vehicles in New York City which currently sees use solely to check bus

arrival times for commuters. We aggregate bus speeds into a tra�c segment graph that represents

the relationships between road segments. The MPRNN architecture is de�ned on the graphical

representation of tra�c �ow which leverages the interaction between pairs of tra�c segments

where �ow patterns of individual segments are subject to highly variable factors. Forecasting

performance is assessed on tra�c segments spanning the entirety of Manhattan. Benchmarks are

presented in �ne tuning and in close comparison with a more naïve implementation of MPRNN,

called MXRNN, resulting in a �nal model which produces meaningful forecasts several hours

ahead in time.
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6 | Implementing Signal Control for

Traffic

6.1 Signaling Control Protocol

Every �nite stretch of road, a link, is associated with a bu�er size (B`), which is the number of

vehicles in the link at a certain time. Tra�c collapse results when bu�er size in a link (the number

of vehicles) exceeds a certain threshold. The instantaneous exit rate of the link (C`), which is the

rate of exit of vehicles out of the link, varies with the tra�c density [May 2000]. The tra�c curve

(�gure 6.1) captures the variation between these two parameters [Jain et al. 2012]. Notice that

the maximum exit rateC∗` is obtained for an optimal value of bu�er size B∗` . When the bu�er size

exceeds this optimal value, the exit rate drops sharply.
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Figure 6.1: Tra�ic curve showing the instantaneous exit rate as a function of the bu�er size
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Our protocol utilizes this dependency to control input rate into the system for a desired exit

rate. For our protocol, we propose the addition of two types of processing points to existing tra�c

systems – monitoring points and signaling points. The goal of a monitoring point is to constantly

monitor the bu�er size of each link (number of vehicles in the link) and report it to the signaling

point. The signaling point, which is present for each junction or choke point in the road network,

operates the red and the green signals at the junction according to the proposed protocol, which

utilizes the bu�er information from the neighboring monitoring points.

Output Links

Input Links

Signal 

Points

Figure 6.2: Link model

Figure 6.2 shows a sample link model, where a road network is described in terms of links and

signal points. The protocol uses a backpressure algorithm that uses the local tra�c information

in the neighboring signaling points to manipulate the tra�c signal. For example, suppose tra�c

�ows from signal point A to signal point B. B has to communicate local tra�c variables to A,

and based on this information, A adapts its signal lights to change the �ow of tra�c. So, the

information is sent from a forward signal point (B) to a backward signal point (A), which depicts

the applied backpressure to the �ow of tra�c.

6.1.1 Formal description

Suppose that L = {1, 2, . . . ,L} is the set of all road links. We shall assume that each vehicle

exiting the link ` joins the link `′ with probability p``′ and leaves the network with probability
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1 −
∑
`′ p``′ . The protocol has two main parts. The �rst part is the rate control at the entry

points and the second part concerns the tra�c signal scheduling. E�ectively, all the decisions are

done every ‘signaling epoch’. Let τ ∈ N denote the index of the epoch and let b`(τ ) denote the

bu�er size (number of vehicles) of link ` in the beginning of epoch τ . The protocol will use this

information to make decisions for epoch τ + 1.

Rate control: At link `, exogenous vehicles are admitted as per rate min (w`/b`(τ ),C`/2),

wherew` is a �xed positive constant. Assuming unit size epoch, this means allowingmin (w`/b`(τ ),C`/2)

exogenous vehicles to enter1. This corresponds to restricting the maximal rate to C`/2 to avoid

oversubscription. In reality, only a few network links will have exogenous tra�c where such rate

control is needed. Most links serve internal tra�c only. For example, in �gure 6.2, there are only

four links through which exogenous tra�c enters the network.

Tra�c scheduling: At each tra�c junction, the competing links are scheduled using the

local link bu�er information in three steps – i) if there is link `′ with p``′ > 0 and the bu�er size

b`′(τ ) ≥ B∗`′ − c , link ` is non-schedulable in epoch τ + 1; ii) among remaining schedulable links,

to schedule vehicles, they are assigned priorities as described next. The vehicles with highest

priority move to the next link or move out of the system; iii) the vehicles, scheduled to move

out of a link `, exit at rate C` . This scheduling policy makes sure that the bu�er capacity almost

reaches the optimal bu�er capacity B∗` , allowing it to reach B∗` − c for a small constant c > 0. The

constant c sees to it that the bu�er capacity never reaches critical limit.

Priority: At each intersection we need to schedule certain number of vehicles from each of

the input links to move to the output links. At each step of the epoch time, the highest priority
1This corresponds to utilizing utility functionV`(z) = w` log z in optimization (V` : R+ → R is the utility function

of link ` so that its utility is V`(x`) when exogenous rate is x` . An example of a reasonable utility function arises
from proportional fair allocation (corresponds to the solution of Nash bargaining game) with V`(z) = w` log z for
�xed positive weight/constant w` .)
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vehicle is scheduled. Priority of each vehicle Pv is de�ned below.

Pv =

(
b`(τ ) −

∑
`′∈L

p``′b`′(τ )

)
(6.1)

As the vehicle’s route is unknown, we compute the priority based on the di�erence in the

input bu�er size and probability of vehicle moving to a particular output link `′ times the bu�er

size of `′. We need to have a prede�ned set of probability routing matrix for each intersection, so

that we can use this map to compute the priority of each vehicle. If the vehicle route is known,

then Pv reduces to b`(τ )−b`′(τ ), the di�erence between the current input and output link bu�ers.

We choose k eligible vehicles in each link that are near the intersection and compute priorities

of each of these vehicles. The highest priority vehicle moves to the output link `′.

Eligibility criteria: The k vehicles are chosen based on the eligibility criteria. We compute

the eligibility of the vehicles (to move from the input link to the output link) across all the input

links. A vehicle is eligible to be scheduled, if its timestamp vt is less than the schedule time t .

Based on this metric, some subset of vehicles in each input link are chosen to be eligible for

schedule.

Scheduling and signal timing control: After choosing the top priority vehicles to be sched-

uled, we compute the minimum schedule time for each vehicle given by, 1
C`

; it means the vehicle

moves out of link ` with an exit rate ofC` . The fraction of time required to schedule each vehicle

is added to the epoch time, τ = τ + 1
C`

. This minimum schedule time gives the fraction of time

the signal needs to be on, to schedule that particular vehicle. This min schedulable time is added

for each top priority vehicle in every input link. When this is done, we know for what fraction

of the epoch time τ should we schedule each input link `. The signal is turned on (green) for an

epoch τ , so that the scheduled vehicles move from ` to `′. This marks the end of an epoch and the

protocol goes back to choosing some k vehicles near the intersection based on some eligibility

criteria and then compute their priorities. At every step of the protocol, if b`′(τ ) ≥ B∗`′ − c , then
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no vehicle can move to `′ in that epoch. This helps in avoiding congestion in the output links.

We summarize the protocol in Algorithm 1.

Algorithm 1 Signaling Control Protocol
while input links not empty do

Compute eligibility of each vehicle v in each input link ` ∈ L
if vt < t then

vehicle eligible
else

vehicle not eligible
end if
while epoch time τ < 1 do

Choose the set of eligible vehicles ve in L.
Compute priority Pv of each eligible vehicle in ve .
Choose the highest priority vehicle v ∈ ve .
Apply back pressure by adapting the epoch time τ .
τ = τ + 1

C`

if τ ≥ 1 then
Turn on the signal up to time τ
Move each v ∈ ve from ` to `′

end if
end while

end while

6.2 Theory

Here we summarize somewhat idealized version of the protocol for the purpose of analysis. To

that end, let us �rst start with the rate control for the exogenous tra�c. As per the protocol

description, the rate control restricts the rate of injection to link `, x`(τ ) equals min
( w`

b`(τ )
, C`

2
)
.

For choice of utility function V`(x) = w` logx , this corresponds to the solution of the following

optimization problem.

maximize V`(x) − b`(τ )x over 0 ≤ x ≤ C`/2. (6.2)
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The tra�c links are scheduled by assigning priority to vehicles. Speci�cally, a vehicle on link

` at time τ has priority equal to b`(τ ) −
∑
`′∈L

p``′b`′(τ ). Such an assignment can be thought of as

selecting a tra�c signaling ρ among all possible allowed options Λ at time τ . Equivalently, ρ can

be though of as a solution of the following optimization problem.

maximize
∑̀
∈L

ρ`

(
b`(τ ) −

∑
`′∈L

p``′b`′(t)

)
subject to ρ ∈ Λ ∀` ∈ τ . (6.3)

Under the above protocol, the evolution of queue-sizes b`(·) for ` ∈ L can be described as

follows.

db`(τ )

dτ
=

[
x`(τ ) +

∑̀
′

p`′`ρ`′(τ ) − ρ`(τ )
]+
b`(τ )
,

where by [y]+x we mean

[y]+x =


y if x > 0,

max(0,y) if x = 0.

The above described protocol solves the following fair resource allocation problem as τ →∞.

maximize
∑̀

V`(x`) over x = (x`) ∈ R
L
+

subject to x` +
∑
`′∈L

p`′`ρ`′ ≤ ρ`

ρ` ≤ C`/2, ∀` ∈ L
ρ ∈ Λ (6.4)
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In above, Λ denotes the convex hull of the set of all tra�c junction actions. That is, Λ denotes

the e�ective capacity of the road tra�c network. In summary, the protocol implemented attempts

to achieve resource allocation among all completing incoming tra�c so that to maximize resource

utilization while being fair by maximizing the network’s utility. We show a proof of optimality

below.

6.2.1 Proof of Optimality

We start with the optimization problem of interest:

maximize
∑̀

V`(x`) over x = (x`) ∈ R
L
+

subject to x` +
∑
`′∈L

p`′`ρ`′ ≤ ρ`

ρ` ≤ C`/2, ∀` ∈ L
ρ ∈ Λ (6.5)

We shall only dualize the �rst constraint of equation 6.5 and let b` be the corresponding dual

variable with b` ≥ 0 for ` ∈ L. The corresponding Lagrangian and dual functions are below.

F (x ,b) =
∑̀

V`(x`) − b`

(
x` +

∑
`′∈L

p`′`ρ`′ − ρ`

)
(6.6)

D(b) = maximize F (x ,b) over x ∈ RL+

subject to ρ ∈ Λ,

ρ` ≤ U`, ∀` ∈ L (6.7)
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Now it is easily checked that (6.7) decomposes into two separate optimization problems. First,

for each ` ∈ L,

maximize V`(x`) − b`x` over x` ≥ 0 (6.8)

And second,

maximize
∑̀

ρ`

(
b` −

∑
`′∈L

p``′b`′

)
subject to ρ ∈ Λ, ρ` ≤ U` ∀` ∈ L (6.9)

Clearly, problem (6.8) can be solved separately for each link ` ∈ L. The problem (6.9) is

coupled by the constraint ρ ∈ Λ. But it is rather limited, since each tra�c junction’s signal

operation is done independently. Therefore, the problem (6.9) gets decoupled as follows: over the

tra�c junctions, the actions ρ are chosen so that they maximize

maximize
∑̀

ρ`

(
q` −

∑
`′∈L

p``′b`′

)
subject to ρ ∈ Λ, ∀` ∈ τ . (6.10)

Clearly, (6.10) can be solved very much locally at the tra�c junction. Let x(b), ρ(b) denote the

optimal values of x , ρ as per (6.8) and (6.10). Indeed, if b is an optimal dual assignment then x(b)

is optimal exogenous rate that solves the above optimization problem. To reach optimal b in an

iterative manner, we describe a simple dual subgradient algorithm. The idealized version of the

algorithm is given by
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db`
dτ
=

[
x` +

∑̀
′

p`′`ρ`′ − ρ`

]+
b`

. (6.11)

Essentially (6.11) tries to maintain the feasibility of x`
∑
`′ p`′`ρ`′ ≤ ρ` . Thus, the primal dual

algorithm given by (6.8), (6.10) and (6.11) leads to solution of the optimization. Note that this

primal dual algorithm is precisely the idealized protocol description given above. This establishes

that our protocol solves the optimization problem as claimed by our main result.

6.3 Evaluation

We evaluate the protocol on two real world road networks exhibiting free �ow behavior – i) Bay

Bridge in the San Francisco Bay Area, USA, and ii) Wilkinson Road-Murray Town junction in

Freetown, Sierra Leone. We demonstrate how the protocol provides signi�cant enhancements

to the operational capacity in comparison to the status quo with no signalized control. For each

network, we conducted three simulations (three variations), each 2400 seconds long, with pro-

gressively increasing input tra�c burst rates.

BayBridge: The Bay Bridge is a very complex road topology in which there are multiple input

and output links (�gure 6.4). The points marked J/M represent the junctions and the merges in

the topology. These would then be replaced by the new tra�c signaling system. This topology

has 5 sources, 3 sinks, 13 links and 6 J/Ms.

It is observed as in Figure 6.3(a) that without the proposed signaling system, the throughput

rises to a value of 100 cars per second and then falls to 10 cars per minute approximately. It

remains at that state for the remaining part of the simulation. However, with the signaling system,

the throughput reaches a maximum value of 100 cars per minute and remains at that state for the

rest of the simulation period.
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(a) Throughput at Bay Bridge
(b) Throughput at Wilkinson Town-Murray Road
Junction

Figure 6.3: Throughput plots for real world free flow networks

Wilkinson Road-Murray Town Junction: The Wilkinson Road-Murray Town junction

(�gure 6.5), is a heavily congested junction located in Freetown in Sierra Leone. Due to heavy

tra�c which �ows in this junction, it becomes congested very frequently and regularly, creating

a bottleneck in the system.

Initially, the burst rates of all the links is kept at 30 cars per minute. It is observed that in the

existing signaling system, as shown in �gure 6.3(b) the throughput rises to around 80 cars per

minute and then gradually starts dropping. It �nally settles down to around 5 cars per minute.

However, with the new signaling system, the throughput rises to around 110 cars per minute and

remains at this same level till the very end.

6.4 Conclusion

We have proposed a novel tra�c signaling network concept for free-�ow tra�c that is inspired

from the idea of backpressure-based congestion control in the Internet. The proposed protocol

uses only localized information but guarantees a global optimality. By simulations on real world

road networks, we observe that the proposed signaling control algorithm is able to achieve sig-
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Figure 6.4: Local topology around the Bay Bridge in the San Francisco Bay area, as an illustration to
show control points where signals may be inserted/controlled to prevent collapse

Figure 6.5: Wilkinson Road- Murray Town Junction

ni�cant increase in throughput compared to the free-�ow case without any signaling.
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A | Appendix

A.1 Spatio-temporal Hierarchical Model

The Spatio-Temporal Hierarchical Model (STHM) is a statistical modeling framework from geo-

statistics. It combines various sources of information, accommodates missing values and com-

putes predictions in both space and time. This statistical model is hierarchical in that it dis-

tinguishes between observed variables, such as the actual PM measurements, and underlying

processes that are not directly observed. In a state space terminology the latter are known as

unobserved states, while in some statistics literature they are known as random e�ects or latent

variables (see e.g. Harvey. [Harvey 1989]). The hierarchy is explicit since the model is de�ned

through multiple levels of equations, where a higher level typically involves variables condi-

tioned on the variables de�ned at deeper levels. This allows the important identi�cation of two

sources of error: measurement error which applies to the observations, usually at the highest

hierarchical level, and process error which enters the speci�cation of the dynamics of the un-

derlying processes at deeper levels. We refer to Cressie and Wikle [Cressie and Wikle 2011] for

details about the relevance of this hierarchical framework for spatio-temporal modeling, how it

is currently considered state-of-the-art, and for links to the geostatistics literature. In particular,

optimal spatial prediction (often referred to as Kriging) pertains to the prediction of underlying

processes and not of the noisy measurements and is addressed below.

Successful recent applications of such hierarchical models for the spatio-temporal modeling
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of air pollution include [Cameletti et al. 2011], [Cameletti et al. 2013] and [Beloconi et al. 2018].

Our model proposed below generally follows these references for the dynamics in space and time

of an underlying speci�ed random �eld modeled as a Gaussian process.

Let D ⊆ R2 denote the spatial domain of interest and Y (s, t) denote the PM2.5 concentration

in µд/m3 measured at location s and time t . The location vector s = (s1, s2)> ∈ D ⊆ R2 consists

of geographical coordinates s1 and s2 in the plane following a map projection, such as the easting

or northing in km according to the Universal Transverse Mercator (UTM) coordinate system, so

that a notion of distance h(s, s′) ∈ R can be unequivocally de�ned. Following Cameletti et al.

[Cameletti et al. 2011, 2013], the top hierarchical level of our STHM is speci�ed by the following

measurement equation.

logY (s, t) = z(s, t)>β +
J∑

j=1
αjBj(t) + X (s, t) + ϵ(s, t), (A.1)

Here t = 1, 2, . . . is a discrete representation of timestamps (regardless of the actual tempo-

ral resolution of the data), z(s, t) is a p-vector of covariates which de�nes deterministic (�xed)

e�ects along with the corresponding coe�cient β , Bj(t) for j = 1, . . . , J is a set of speci�ed

(periodic) basis functions used to model seasonality e�ects along with the corresponding basis

coe�cients αj , X (s, t) is a mean zero Gaussian process whose dependence structure in space and

time is speci�ed at the second hierarchical level, and the ϵ(s, t)’s are measurement error terms

assumed independent and identically distributed as Gaussian with mean zero and constant vari-

ance σ 2
ϵ (the latter known as the “nugget” e�ect in the geostatistics literature). As a result, the

logY (s, t)’s are independent conditionally on X (s, t), for all s ∈ D. The modeling on the natural

logarithm scale ensures the positivity of Y . We note that although deterministic e�ects enter

as a linear combination, any auxiliary information can be part of z(s, t). For instance, outputs

from a dispersion model predicting the propagation of �ne particles from various environmental
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inputs would enter the STHM through z(s, t)>β . In the application of this model to our Delhi

sensor data, we however place ourselves in a data-poor situation with no extra information other

than the air pollution measurements themselves, so that no auxiliary deterministic e�ects are

estimated and z(s, t)>β = 0 for all observations. We model daily seasonality with J = 6 quadratic

B-spline bases over four disjoint time intervals: [00:00–06:00), [06:00-12:00), [12:00–18:00) and

[18:00–00:00). This implies J − 1 = 5 �xed knots to facilitate interpretation of periodic patterns

throughout the day. The corresponding αj coe�cients are estimated from the data, but only

J − 2 = 4 are free since we enforce two constraints on the continuity and di�erentiability of the

resulting linear combination at the boundary at midnight. The intercept term (constant mean

level) is included in the B-splines linear combination.

The secppond hierarchical levels describe the temporal dynamics and spatial dependence

structure of the underlying stochastic process X . The process equation describes a stationary

autoregressive (AR) process of �rst order through time:

X (s, t) = ϕX (s, t − 1) + δ (s, t), (A.2)

for t = 1, 2, . . . and s ∈ D, where the constraint on the AR coe�cient |ϕ | < 1 ensures

stationarity, and the process error δ is distributed as Gaussian with expectation zero. The δ

terms are temporally independent but spatially dependent:

Cov[δ (s, t),δ (s′, t ′)] =


0 t , t ′

C(h(s, s′);γ ,σδ ) t = t ′,

where C is a (positive-de�nite) spatial covariance function; we set it to the stationary and

isotropic exponential spatial covariance function for simplicity:
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C(h(s, s′);γ ,σδ ) = σ 2
δ exp(−h(s, s

′)/γ ),

where h(s, s′) =
√
(s1 − s

′
1)
2 + (s2 − s

′
2)
2 is the Euclidean distance between locations s and

s′, σ 2
δ

is the process variance for h(s, s′) = 0, and γ regulates the steepness of the exponen-

tial decay of the covariance with increasing distance. The initial states X (s, 0) follow the sta-

tionary distribution, i.e. a Gaussian distribution with mean zero and covariance matrix given by

C(h(s, s′);γ ,σδ )/(1 − ϕ2) for s, s′ ∈ D.

Overall, this STHM involves (p + 8) �xed parameters: θ = (β>,α1,α2,α3,α4,σ 2
ϵ ,ϕ,γ ,σ

2
δ
)>,.

The dynamic spatial �eld X will be predicted given an estimate of θ . With the Delhi data, there

is no β to estimate so that p = 0 and only 8 parameters are estimated.

Model �tting: For a sample of T time points and n locations, let Y (t) = (Y (s1, t), . . . ,Y (sn, t))>

and X (t) = (X (s1, t), . . . ,X (sn, t))>. Following a state space terminology as in [Harvey 1989], the

measurement equation (A.1) speci�es the conditional distribution of Y (t)|X (t), while the process

equation (A.2) speci�es the Markovian dynamics of X (t)|X (t − 1). Taken together, they de�ne

the joint likelihood function

L(θ ;y,x) = f (x(0))
T∏
t=1

f (y(t)|x(t))f (x(t)|x(t − 1)),

where, by some slight abuse of notation, we use f to denote probability density functions

with the arguments lifting any ambiguity. This joint likelihood comprehensively summarizes the

model, but is not useful per se since the dynamic underlying process X is not observed. Thus, we

base estimation and inference on the marginal likelihood
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L(θ ;y) =
∫
· · ·

∫
L(θ ;y,x)dx(0) · · ·dx(T ),

where the high-dimensional integrals admit no closed form and need to be approximated.

In our implementation of this STHM within the R package Template Model Builder [TMB; Kris-

tensen et al. 2016], we rely on the Laplace approximation for integrals to evaluate such marginal

likelihood. In addition, the TMB package makes use of automatic di�erentiation, which allows

for fast and e�cient evaluation of the gradient of the Laplace-approximated marginal likelihood

with respect to θ [Griewank and Walther 2008]. This is well suited for the optimization problem

de�ning the (Laplace-approximated) maximum likelihood estimator of θ :

θ̂ = argmax
θ

logL(θ ;y).

We note that missing values iny are automatically accounted for (and accommodated) in this

likelihood optimization, up to a reasonable extent. Indeed, the observation contribution to the

joint likelihood represented by f (y(t)|x(t)) is not required to strictly follow the exact same (s, t)

indices as the underlying X process, in particular it may contain gaps in time. The “reasonable

extent” understood here is meant to exclude extreme cases, where as few as one or two loca-

tions only are available at a given time point; for such time points, a spatial model is simply not

identi�able.

Interpolation: Given θ̂ , we predict the underlying dynamic spatial �eld by maximizing the joint

log-likelihood
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X̂ (0), . . . , X̂ (T ) = argmax
x

logL(θ̂ ;y,x). (A.3)

This maximization can also be invoked for out-of-sample prediction, either for a new location,

for forecasting in time, or for both simultaneously. That is, the PM2.5 forecasting at time t + 1 for

a new location s′ is given by exp
(
z(s′, t + 1)>β̂ +

∑J
j=1 α̂jBj(t) + X̂ (s′, t + 1)

)
, where X̂ (s′, t +1) is

indeed obtained by maximizing the joint log-likelihood for given parameter estimates. To be pre-

cise, such a forecast is not a prediction of the noisy measurementY (s, t), but really a prediction of

the true underlying PM2.5 concentration represented by exp
(
z(s′, t + 1)>β +

∑J
j=1 αjBj(t) + X (s′, t + 1)

)
.

Our predictions can thus be seen as Bayesian posterior modes, while spatial prediction by Kriging

typically corresponds to posterior expectation, see Chapter 4 of Cressie et al. [Cressie and Wikle

2011] for a discussion.

For a given time point t , plotting the predicted PM2.5 concentrations as a smooth map by sim-

ple interpolation over the n measured locations likely gives rise to visual artifacts and distortions

if either n is too small or if the measured locations are not spread evenly over D. Such artifacts

happen with clusters and empty spaces, as in the application to the Delhi data. The STHM pro-

vides a natural way to “�ll-in” the spatial domainD with predictions at extra locations according

to equation (A.3). Regarding the choice of extra locations, rather than constructing an ine�cient

regular grid of points, we follow here Lindgren et al. [Lindgren et al. 2011] by using a constrained

Delaunay triangulation as implemented in the R package Integrated Nested Laplace Approxima-

tion [INLA; Rue et al. 2009]. This triangulation method allows us to tessellate D with triangles

such that their minimum interior angle is maximized under the constraint that measured loca-

tions correspond to vertices. This (constrained) maximin property ensures that the density of

vertices somewhat follows the density of measured locations (i.e. smaller triangles where sensors

are clustered) while maintaining an even spread in empty areas, including beyond the convex
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hull of all measured locations. The predictions at these extra locations can be integrated within

the �tting of the model, since they are equivalent to missing values in y (locations where no

observation is available).

A.2 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) belong to a broader family of deep neural networks which

are general function approximators [Hornik et al. 1989]. In this experiment, the purpose of using

a deep model is to model the complex nonlinear dependencies between the input and output

without the need to impose an explicit physical model. We speci�cally choose RNNs because

they are well suited for modeling sequential or time series data. The working of an RNN can

be described simply by the function Φ in the equation yt ,ht = Φ(yt−1,ht−1), where yt refers

to a label or value that is predicted by the network at time t , and ht is an internal state that

represents the “memory” of the network at time t . Given sequential data of the form y0, . . . ,yt ,

Φ is applied repeatedly to predict label yi , state hi and so on until time t . The initial internal

state h0 is assumed to be zero in most applications. The number of such recursive computations

(equivalently, the number of cells in the unraveled RNN) de�nes the length of the history that is

used in the learning process to predict the value at t+1. However, while RNNs provide a semantic

framework for prediction of sequential data, they provide no innate mechanism in deciding when

the internal state h should be modi�ed. This challenge is addressed by Long-Short Term Memory

(LSTM) cells [Hochreiter and Schmidhuber 1997b] which explicitly facilitates the persistence or

re-initialization of the internal state vector h over real sequential data. The use of LSTM cells in

RNN architectures have been empirically shown to improve predictive power in temporal data

because of their ability to learn long-term dependencies, and hence we employ them in our model.
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A.3 K-Nearest Neighbor Spatial Neural Network

Another type of neural network that we have used to model spatio-temporal interactions for

predictive modeling, in order to benchmark the MPRNN performance and contrast with it, is a

more simpli�ed neural network model in which messages are not explicitly passed between pairs

of nodes, but rather the sensor readings from a set of neighboring monitors to a locationv at time

t are directly used as input. Each node runs a neural network with an LSTM unit for predicting

future values, similar to the MPRNN. The pairwise distances and relative positions are encoded

in the feature vector along with the input sensor readings. At each node, only a certain number

of closest neighbors are used as input to model the air quality at that location, in contrast to the

MPRNN where all the other sensors are used. We call this model the K-Nearest Neighbor (K-NN)

Spatial Neural Network since the input for the prediction task at a location v is the set of sensory

readings from the K nearest monitors to v and their relative locations in terms of distances and

positions, where K is a positive number.

The equation denoting the function to approximate is similar to that for the MPRNN, ex-

cept that we restrict the number of input sensor locations to K , where K is a parameter: yv,t =

F (v1,yv1,t ,v2,yv2,t , . . . ,vK ,yvK ,t )) In this equation, vj denotes the jth nearest neighbor to v . K is

the maximum number of neighboring sensors that can provide input sensory data. Note that the

set of nearest neighbors v1,v2, . . .vK and K itself are functions of time, since at time t , these are

the sensors at which data is available and the number of such sensors, respectively. For each in-

put sensor at location vj , we add as feature the triple of the sensor reading, the geodesic distance

between v and vj , the compass bearing of vj with respect to v . The length of the feature vector

is thus 3K , where K is the number of available sensors at that time.

History length: While a recurrent neural network is capable of predicting labels on a rolling

basis, computing and backpropagating a loss function through an arbitrarily long history is not

feasible. As a result, our recurrent neural network is trained on segments of �xed history length.
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That is, the state of the neural network is persisted through a number of points equal to the history

length, and then reset. We experimented with several di�erent reasonable history lengths during

training and chose a history of 8 hours (32 measurements, at one reading per 15 minutes). Each

training example consisted of a block of history lengthH = 32 collected at time step t for a chosen

set of sensors except for the target sensor.

Training: Since neural networks take only �xed length input feature vectors, our formulation

required the training of several models, one for each value of K . We trained a total of 10 models,

for K from 1 to 10. By combining these 10 di�erent models, we obtain a master model, that gen-

eralizes to predicting yv,t at any location v at a given time, regardless of the number of available

neighboring input sensors at the time, using data from up to a maximum of 10 available input

sensors. For each value ofK , and for each sensorv in our set, we extracted blocks of available data

of length H = 32 through the entire year from the K nearest neighbors to v . Then we merged all

the blocks together for each version and each value of K , thus giving us a large dataset of train-

ing samples mapping K sensor readings to output sensor values over the history length H (i.e. a

sample consisted of a block of dimensions H ×K or H × 3K depending on the version). The list of

samples was then shu�ed prior to feeding into the neural network to reduce the chances of the

optimization algorithm becoming stuck in local optima and and also increase the test prediction

performance. We repeat this mechanism for every value ofK , giving us totally 10 models for each

version.

We needed at least 20 epochs for convergence. With a total of at least 2000 batches for every

value of K , the training for each K and version took prohibitively large amount of time (sev-

eral days). Hence we resorted to reduction of training time by selecting only a smaller number

of samples from the entire corpus of samples for each K and version The shu�ing of training

samples thus allowed us to “e�ectively” reduce our training time and yet not lose generality

since the shu�ing ensured that data from all round the year was utilized for training. We used

the pytorch [pyt] library in Python for implementing the neural network and the Adam opti-
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mizer [Kingma and Ba 2015] for training.
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