
Machine Learning Applications to
Protein Variant Effect Prediction

by

Jeff Soules

a thesis submitted in partial fulfillment
of the requirements for the degree of

Master of Science
Computer Science

New York University

May, 2019

© Jeff Soules
all rights reserved, 2019

Abstract

Proteins are microscopic machines whose activity forms the basis of all life pro-
cesses. If a mutation causes variation in the typical amino acid sequence of a
protein, the protein’s normal biological function may be compromised. Variant
Interpretation and Prediction Using Rosetta (VIPUR) uses sequence and struc-
tural data features to predict whether a mutation is deleterious to the protein’s
function.

VIPUR was originally released with a curated set of protein variants as
its training data. As released, it achieved 80% accuracy on this data set. How-
ever, the original design was tightly coupled to a logistic regression classifier, so
other machine learning techniques could not be easily tested.

The reimplementation of VIPUR presented in this work offers a modular
design that can be extended with classifiers built on any machine learning ap-
proach. It establishes a methodologically sound basis for experimentation with
new classifiers, data features, and data sets.

This work examines the predictive power of the data features in the orig-
inal VIPUR training set, and establishes a high baseline for classification perfor-
mance based on one strongly predictive feature category.

The present work includes classifier modules built with four different
machine learning approaches—logistic regression, support vector machines,
gradient-boosted forests, and neural networks. These represent the two model
types considered in the original VIPUR work, and two more recent classifier
types. The modules are trained with automated hyperparameter cross-validation
and rigorously evaluated with k-fold cross validation, establishing a baseline of
performance for future experiments.

Results show very slight improvement over the original logistic regres-
sion method, consistent with the dominance of a small handful of features in
determining classification results. Potential new data features and sources are
discussed, which can be used in the new VIPUR design without modification
while maintaining backwards compatibility with previously trained classifiers.

3

Contents

Abstract 3

Acknowledgments 8

1 Introduction 10
1.1 Background . 11
1.2 Prior Work . 15

2 Software Engineering Challenges 20
2.1 Providing Structured Data Representations 21
2.2 Applying Modularization to Classifiers and Data Formats 23
2.3 Making Use of Standardized Machine Learning Implementations . 25
2.4 Support for Multi-Learner Approaches 26

3 Analysis of the VIPUR Training Set 28
3.1 Origins of the VIPUR Training Set 29
3.2 Non-Uniformity of the VIPUR Training Set 30
3.3 Feature Selection . 33
3.4 Cross-Validation Methodology . 38

4 Baseline Classification Approaches 42
4.1 Modal, Random, and Decision Stump Baselines 43
4.2 Logistic Regression Classifier . 45
4.3 Support Vector Machines . 53

5 Comparison of New Approaches 62
5.1 XGBoost . 63
5.2 Neural Network Classifiers . 73

4

6 Results 84
6.1 Comparison of Representative Classifiers 85
6.2 Feature Selection Improves Accuracy 87
6.3 No Approach Significantly Outperforms 88

7 Conclusion and Future Work 90
7.1 Data is the Limiting Factor . 91

Appendix A Feature Selection Details 94

References 103

5

Listing of figures

2.1 An Entity-Relationship Model diagram illustrating the structure of
the modular classifiers presented in this work. Yellow lines indicate
inheritance, while red lines indicate composition. All VIPUR clas-
sifier modules must inherit from a base class which enforces a stan-
dard interface used by the training components. Additional meth-
ods may be incorporated as needed by the module. Individual clas-
sifier modules have instances of classifiers from reference implemen-
tations, or classifiers implemented locally when a pure library imple-
mentation is not available. 24

3.1 VIPUR Training Set reduced to two dimensions under Principal Com-
ponent Analysis. Principal components explain 0.099 and 0.088 of
the variation. 31

3.2 VIPUR Training Set reduced to two dimensions under Principal Com-
ponent Analysis, post-feature-selection. Principal components explain
0.17 and 0.13 of the variation. 32

4.1 An illustration of the logistic function. Values of ⟨w⃗, x⃗⟩ ∈ (−∞,∞)
are mapped to values in (0, 1) with a natural interpretation as prob-
ability values. The red dotted line indicates the value y = 0.5, and
acts as a crossover point from negative class prediction to positive
class prediction. 46

4.2 Accuracy (± 1 standard deviation) of logistic regression classifiers trained
with L1 and L2 regularization penalties, with full feature set and se-
lected feature subset. Blue line indicates decision stump baseline (75.9%
accuracy). Y-axis begins from 60%, the label bias of the sample. . 50

6

4.3 AUPR and ROC curves for logistic regression classifiers trained with
L1 regularization penalty, with and without feature selection. L1 mod-
els show slight but insignificant accuracy improvement over L2 mod-
els for either feature set. “Fold” refers to the identity of the cross-
validation test partition. 52

4.4 Optimal-margin perfectly separating hyperplane (left) and soft mar-
gin hyperplane with larger margin (right). The “supports” are the
two blue and red dots touching the grey lines; the margin is the per-
pendicular distance from black lines to grey lines. The left image shows
the largest margin that allows for perfect separation. The right im-
age shows that a much larger margin can be recovered by accepting
the misclassification of one red dot. 55

4.5 An example of projection into a higher-dimensional space. In the left
figure, the red and blue classes are obviously not linearly separable.
In the right figure, the points have been projected into a three-dimensional
space in which they can be separated by the plane z = 20. The ba-
sis function

√
(x− 50)2 + (y − 50)2 provides the z-axis value. . . 56

4.6 Accuracy of tested SVM classifiers, ± one standard deviation. Each
record is labeled with the kernel and feature set used. Poly (2) and
(3) indicate second- and third-degree polynomial kernels, respectively.
Blue line shows decision stump performance baseline. 61

5.1 Example of a simple decision tree. The first split considers feature
xi. Values less than 5 are sent to the left node. Since this node is en-
tirely blue, any test points sent to this node would be predicted blue
with 1.0 probability. Values greater than 5 are sent to the right node,
where feature x2 was found to result in the greatest separation of cat-
egory elements among the features remaining. From the distribution
of training points, any sample for which x1 < 5, x2 = 0 would be
predicted to fall into the blue class with 0.875 probability, and any
sample with x1 < 5, x2 = 1 would be predicted blue with proba-
bility 0.1. 64

5.2 Accuracy (± one standard deviation) of XGBoost models trained on
complete feature set, with 40% row data dropout per tree and max-
imum tree depth of 6, 15, or 30 nodes, against total number of trees
in the forest. Blue line indicates accuracy of decision stump baseline. 72

7

5.3 Image of a single artificial neuron. Each input value xi has its own
weight wi, which is learned during training. The neuron computes
the dot product of the input vector x⃗ and weight vector w⃗ and ap-
plies an activation function f(·) to the resulting scalar value, which
is passed on to the next neuron. 74

5.4 Image of a simple neural network with a three-dimensional input vec-
tor. The input layer is represented as three nodes, fully connected
to the four nodes in the single hidden layer (nodes in grey). The hid-
den layer nodes connect to a single output neuron which applies a
sigmoid function (hidden nodes are typically ReLU). The gradient
along the neuron connections highlights that the output of one node
becomes the input of the next layer’s nodes. 75

5.5 Best accuracy achieved by neural network models against the num-
ber of nodes in a single fully-connected hidden layer. Blue line in-
dicates decision stump baseline; orange line represents average best
accuracy achieved by the top-performing XGBoost model. Perfor-
mance initially increases rapidly with added complexity, but later im-
provement is greatly attenuated. 80

5.6 Performance of networks on validation set during training. Top plot
shows loss, while bottom plot shows accuracy. Both demonstrate no
sign of compromised generalization performance due to overtraining.
Note that the most complex networks do require somewhat more epochs
to converge. 81

5.7 Plot of neural network training loss against epoch for selected net-
works, demonstrating rapid model convergence in all cases. All net-
works consist of a single fully-connected hidden layer and single out-
put layer, with 30% dropout between the two. 82

6.1 Mean accuracy (± one standard deviation) for best-performing ex-
amples of each classifier type. Classifiers are logistic regression un-
der L1 penalty, support vector machines with a radial basis function,
XGBoost with 450 trees of maximum depth 15, and neural networks
with a single 3000-node fully connected hidden layer. All but the XG-
Boost models were trained on the feature subset. 86

6.2 AUPR and ROC curves for best-representative classifiers from all sup-
ported classifier types. 87

8

Acknowledgments

I could not have arrived at writing this thesis without the guidance and
support of many, many people. Thank you first to Prof. Rich Bonneau and
Dr. Julia Koehler Leman, for taking me on and turning me loose on such an
exciting project, and also to Dr. Vladimir Gligorijevic for very helpful method-
ological guidance. Thanks also to Profs. Iddo Drori and Ernie Davis, for giv-
ing me the machine learning and mathematical tools that are the foundation of
this project. In my non-student life I owe gratitude to Darin Phelps and Torie
Atkinson, who have, at work and at home, tolerated my absences to do this
work.

9

1
Introduction

Proteins are the foundation of nearly every life process in living things.34

A protein is a biologically functional macromolecule34 whose three-dimensional

shape and electrochemical properties determine its interactions with other or-

10

ganic and inorganic compounds, and ultimately its biological function. When

mutations arise that cause one or more constituent amino acids to be replaced

with others, the protein’s function may be affected.

VIPUR—Variant Interpretation and Prediction Using Rosetta—is a ma-

chine learning tool designed to predict whether a mutation will result in com-

promise of the protein’s function.6 VIPUR showed noticeable improvement over

alternative methods at the time of its release in 2015.5 However, computational

biology and machine learning are rapidly changing fields. Ongoing research is

needed to ensure VIPUR’s performance remains state-of-the-art, and to extend

its scope to broader classes of proteins.

The present work has three principal goals: first, to develop an improved

VIPUR tool which offers a modular platform for ongoing experimentation and

development; second, to provide methodologically sound benchmarks for the

methods considered in the original VIPUR work; and finally, as proof-of-concept,

to conduct experiments using current state-of-the-art machine learning methods

to attempt to improve upon VIPUR’s performance with its original data set.

1.1 Background

Proteins are biochemical structures consisting of long chains of 20 basic amino

acid types in combination. Chemical and electrostatic interactions along the

amino acid chain and with the immediate cellular environment cause the chain

to fold into complex shapes and adopt the protein’s characteristic three-dimensional

conformation. Mutations in the protein can cause changes in the amino acid se-

11

quence, potentially leading to conformational changes that disrupt the protein’s

typical function.

One major category of mutation is missense mutations, in which one

amino acid is substituted for another. These are distinct from silent mutations,

in which a change in DNA sequence results in the same amino acid sequence

(and thus no change to the realized protein), and nonsense mutations, which

cause premature termination of protein construction (and usually a nonfunc-

tional protein).34 VIPUR presently considers only missense mutations.

Because of their importance to biological functions, proteins are a prin-

cipal subject of study for biologists. As a result, extensive collections of amino

acid sequences are available. There also exist somewhat less extensive sources

for the resulting three-dimensional structures, although many of these are ho-

mologous models or otherwise not empirically verified. Determining form from

sequence alone is an ongoing problem. Tools such as Rosetta,28 an extremely

powerful three-dimensional protein modeling suite, can nonetheless provide in-

sight into the quality of three-dimensional models, whether verified from the

lab, predicted from homologous structures, or created de novo.

Machine learning—or, somewhat less mysteriously, applied computa-

tional statistics—is the field of computer science which studies algorithms whose

behavior depends more upon training data than on explicit instructions from a

programmer.37

Machine learning can be broadly divided into the fields of supervised

learning, in which there exists a training set of data with known-correct labels;

12

reinforcement learning, in which data is associated with some distant informa-

tion signal (reward or penalty) that falls short of an explicit label; and unsu-

pervised learning, which attempts to detect patterns in data without attaching

preconceived meanings to those patterns.35 Regardless of field, data are custom-

arily modeled as feature vectors, or collections of observed values, which char-

acterize each observation sample: such feature vectors can then be considered

points in a k-dimensional feature space.9

In the supervised learning context, a scalar (real-valued or categorical)

label value is attached to each of these points. The task of the machine learning

algorithm is then to discover a function which maps the feature vectors x⃗ ∈ Rk

to the labels y, formalized as f(x⃗) → y.37 It is generally assumed that x⃗ and y

are drawn from some joint probability distribution, so that this relationship is

consistent.

Since the space of “all functions” is both infinite and very large, most

approaches make assumptions about the class of functions f (or hypotheses29)

which may be considered. For instance, the familiar linear regression model con-

siders functions of the form f(x⃗) = w1x1 + w2x2 + . . . + wkxk = y: it is assumed

that f is a linear function of the features. This function space is still infinite,

since any values could be chosen for the coefficients w; but for many data sets

there exist principled and computable ways to determine optimal coefficients

within the class of functions.

The linear regression example above introduces a new category of un-

knowns w⃗, known as parameters (or in some contexts weights). If the family of

13

functions describing the relationship between the input data x⃗ and the output

label y is fixed, the only variable left is the values of the parameters. Finding

the optimal values for these parameters, in order to maximize correctness over

both the known training set and the unknown data encountered in the wider

world, becomes the crux of most machine learning problems.

“Optimal” implies a standard of judgment. The quality of a solution is

judged based on its error, represented as the sum of the values of a loss function

over a data set. The loss function or error function is a formula that quantifies

how wrong an answer is, by measuring the discrepancy between the value ŷ pro-

duced by the model function and the correct value y.9

Error is in turn divided into two kinds:29 empirical error, which is the

error on some known set of data, and generalization error, which is the differ-

ence between the empirical error and the expected error on any arbitrary data

set drawn from the same joint distribution. Discrepancies between the two may

arise from statistical biases—the training set may not be truly representative of

the underlying distribution—or from noise: inaccuracy in measurements and po-

tential mislabeling of data. In the worst case, it may be that there is no strong

correlation between the features and the labels.

It is desirable to have a model which will work well for future data, not

just the data already seen, or for which answers are already known. Models

which show a strong discrepancy between empirical error and (estimated) gen-

eralization error are said to suffer from overfitting: they fit the known data well,

but perform poorly in practice, because their results depend upon relationships

14

in the training set that are not consistently present in real-world data.

1.2 Prior Work

VIPUR is not unique in attempting to predict the effects of mutations. How-

ever, at the time of its release VIPUR was unusual in both attempting to gen-

eralize to non-human proteins, and in relying on a combination of sequence and

structural data.5 Most competing approaches centered on sequence-only fea-

tures, particularly variants of the PSSM.5 Of these, Provean13 and PolyPhen21

appear to have been the strongest competing approaches at the time of VIPUR’s

release. VIPUR outperformed both these tools on both Area Under Precision-

Response Curve (AUPR) and (substantially) on Receiver Operating Character-

istic (ROC) measures. Additionally, PolyPhen2 was limited to human proteins

as of the original VIPUR work.6

1.2.1 Challenges in Comparing Classifiers

This comparison raises the first significant challenge in comparing different pre-

dictors of mutation deleteriousness: each predictor is trained on its own data set

which is curated with its own standards for what mutations are given a ‘delete-

rious’ label. Some tools define deleterious to mean pathogenic, or causing dis-

ease in the organism. Others measure changes to an organism’s phenotype—

which can include disease states like diabetes, but also incidental features, like

variations in hair color. For the purposes of the VIPUR Training Set (and clas-

sifiers trained with it), the ‘deleterious’ label focuses on proteins themselves:

15

protein records are labeled deleterious if they show disrupted function, as mea-

sured in stability, changes to active site or protein-protein interfaces, or fold-

ing.6

Given the challenges in comparing across classifiers and across data sets,

the present work focuses on performance measured against the original VIPUR

tool and training set.

1.2.2 Performance of Original VIPUR

The original VIPUR work claimed generalization accuracy of 81%, rising to 94%

accuracy for very-high-confidence predictions.5 In addition to accuracy, VIPUR

was evaluated on AUPR and ROC measures. The score of the fully trained

VIPUR logistic regression classifier was found to be 0.872 AUPR and 0.831

ROC. Equivalent measurements for an optimally trained radial-basis-function

SVM were found to be 0.835 AUPR and 0.784 ROC.5 The original work used

chi-squared tests to claim that VIPUR scores did not show bias due to data

source, model source, domains, species of origin, structural context, molecular

function or biological process (as measured by Gene Ontology labels), or amino

acid transition.

The original VIPUR work attempted to estimate generalization perfor-

mance using random resampling, averaging 100 randomly-chosen 80% train/20%

test splits. The present study uses a k-fold cross-validation approach instead,

since it is more systematic, consistent, and representative. Either approach

presents a challenge in splitting the data set without causing information leak-

16

age from the test set into the training set. These challenges will be discussed

further in chapter 3.

1.2.3 Components of VIPUR

The original VIPUR consisted of four main components: (1) a well-curated,

broadly sourced training data set, the VIPUR Training Set (VTS); (2) a fea-

ture extraction pipeline which uses Rosetta28 and PROBE41 for structural fea-

tures and PSIBLAST11 for sequence features; (3) a feature selection and train-

ing pipeline using those features; and (4) a three-part classifier set, consisting of

one classifier trained on the complete feature set, one trained on the structural

features alone, and one trained on the sequence features alone.

1.2.4 VIPUR Feature Extraction

The VIPUR feature extraction pipeline generates a set of 106 features for each

protein variant input.5 Of the features, 5 are derived from the amino acid se-

quence. The other 101 are nearly all score function components from Rosetta, a

general-purpose protein structure modeling tool.28

The sequence features include 4 PSSM-based measurements derived from

PSIBLAST, and a summary amino acid dissimilarity feature new to VIPUR,

aminochange. The aminochangeterm categorizes each of the 20 amino acids

which occur in natural proteins into one of seven groupings. It assigns a 1 to

the feature if the amino acids appearing at point of variation belong to the same

group in both wild-type and variant proteins, and a 2 otherwise.

17

The Position-Specific Scoring Matrix (PSSM) is a standard measure

of sequence likelihood. It is computed from a broad sample of the amino acid

identities in a particular windowed context, and records the log-likelihood of

a particular amino acid type appearing in this context. The PSSM features

in VIPUR compare the log-likelihood of the acid at the varying position, in

both the wild-type sequence (pssm_native) and in the variant being examined

(pssm_variant), as well as pssm_differrence, the difference between the two,

and pssm_information_content, the information content of the position.

The remaining 101 features are derived from the observed or predicted

three-dimensional protein structure. 17 come from Rosetta ddg_monomer, 83
from Rosetta FastRelax, and 1 (solvent-accessible surface area (ACCP)) is gen-

erated using PROBE. The Rosetta-based features attempt to capture the rela-

tive stability between the native/wild-type protein structure and the variant’s

structure in a set of scalar measurements.26

To generate these scoring features, the protocols begin with a curated

structure for the wild-type protein. This structure is relaxed 50 times, and the

scores of the resulting models are recorded. The protocol then substitutes the

variant residue into the curated structure, and again runs 50 steps of structural

refinement. The result is a range of score term values for both the native and

wild-type protein structure. The Q1, Q2, and Q3 values of these distributions

are compared between wild-type and variant, resulting in three quartile values

for each score term. Additional terms identify proteins for which Rosetta ex-

pects the variant will cause a dramatic change in overall conformation.5

18

All features in VIPUR are normalized to zero mean and unit standard

deviation before classifier training.

These salient features of the VIPUR tool have been preserved from its

first release into the present version. The internals of the tool, however, have

been completely rewritten. The next chapter provides an overview of these

changes.

19

2
Software Engineering Challenges

One major goal of the present project is to develop VIPUR as a software

tool that is portable and easily extensible. VIPUR must support a wide array

of ongoing experiments on a methodologically sound basis. To achieve this, I

present a complete rewrite of the VIPUR training and classification engine,

20

along with pluggable modules for several classifiers, a rebuilt cross-validation

module for training and evaluation, and extensive data collection of results to

enable subsequent data analysis and graphing. Whenever possible, the classifier

modules presented here rely on standard libraries, which provide commonly ac-

cepted reference implementations of the machine learning methods used. The

new VIPUR is extensively configurable through command-line options, so be-

havior is no longer determined by hard-coded values. Finally, the new VIPUR

presented here is written in Python 3, since Python 2 will cease to be supported

at the end of 2019.

Collectively, these features simplify experimentation with different set-

tings (particularly in in cluster environments), allow backward and forward

compatibility as new data features are added, and ease adoption of VIPUR by a

broad range of new users.

2.1 Providing Structured Data Representations

The present work provides structured representations of VIPUR protein data.

Each VIPUR protein variant record consists of 106 real-valued numeric fea-

tures, identified by UniProt ID, PDB ID, and Variant ID, as well as a “delete-

rious/neutral” class label (for training data).

In the original VIPUR, a set of records was represented as a fixed matrix

of values. Features could only be identified by column order, and code in distant

parts of the application would refer to record identifier values or the class label

according to column position. This was both difficult to read, and brittle: re-

21

ordering columns in the data file would cause a saved classifier to begin report-

ing incorrect predictions. Further, representing features by column order alone

creates challenges in adding new features, which is an area of active research in

the VIPUR project.

The present VIPUR uses an object-oriented design wherever possible.

Individual data samples are now represented by a VipurFeatureVectorobject,

which stores identifying information in dedicated fields, and stores feature val-

ues in a key-value dictionary keyed by feature name. Storing features by name

instead of order offers many benefits: raw and normalized values of each feature

can be recorded and manipulated together; classifiers can explicitly check for

feature compatibility with input data (and raise a meaningful error in the event

of a mismatch); on-disk representations of data can be reformatted more safely;

and most importantly, new features can be added without invalidating existing

classifiers.

Taken altogether, these changes will facilitate adoption by a wider user

base and easier expansion of VIPUR.

Along with the named feature system, I have also introduced a new class

and file, the VipurFeatureDictionary. This is a central store for the list of fea-

tures known to a particular version of VIPUR, along with their descriptions,

and classification into the “Sequence” or “Structure” categories. This informa-

tion is used to explain VIPUR features and provide compatibility versioning.

Many hard-coded values have been replaced with enumerations. For in-

stance, the “Deleterious” and “Neutral” label classes are now represented as

22

VipurLabel.DELETERIOUSand VipurLabel.NEUTRAL. This allows developers to use

human-readable labels for hard-coded data values, which reduces programmer

error.

2.2 Applying Modularization to Classifiers and Data Formats

To allow diverse classifiers to be used interchangeably, the present version of

VIPUR establishes a loosely coupled internal interface. As illustrated in fig-

ure 2.1, all classifier modules inherit from the VipurBinaryClassifierabstract

base class, which provides a consistent interface for training and evaluation

functions. The structure of this class is partially inspired by the interface of

Scikit-Learn’s classifiers,32 with additional functionality to handle the VIPUR

three-part classifier model (in which separate classifiers are trained on structure-

only, sequence-only, and combined feature sets) and to provide integrated cross-

validation of parameters.

23

Figure 2.1: AnEntity-RelationshipModeldiagramillustratingthestructureofthemodularclassifierspresented
inthiswork.Yellowlinesindicateinheritance,whileredlinesindicatecomposition.
AllVIPURclassifiermodulesmustinheritfromabaseclasswhichenforcesastandardinterfaceusedbythe
trainingcomponents.Additionalmethodsmaybeincorporatedasneededbythemodule.Individualclassifier
moduleshaveinstancesofclassifiersfromreferenceimplementations,orclassifiersimplementedlocallywhena
purelibraryimplementationisnotavailable.

24

Any classifier extending VipurBinaryClassifieris expected to build an

appropriate set of classifiers in its constructor, and to support train, predict,
predict_proba, cross_validate_parameters, and supports_confidencemeth-

ods. The predictmethod returns a binary prediction of type VipurLabel, while
predict_probafollows SciKit-Learnin returning an array of probabilities P ,

where Pk is the classifier’s estimate of the probability that the sample belongs

to class k. supports_confidencereturns a true/false value indicating whether

the classifier is capable of providing probability estimates (and thus AUPR/ROC

metrics). Finally, the cross_validate_parametersmethod allows each classi-

fier, when supplied with an appropriately arranged data set and a configured

VipurCrossValidatorobject, to find and set optimal values for the classifier’s

hyperparameters.

2.3 Making Use of Standardized Machine Learning Implementations

Prior to the current version, VIPUR had a hard-coded logistic regression classi-

fier. While the classifier was trained with the SciKit-Learnlibrary, it was per-

sisted to disk only as a set of feature weights in feature file order, and the classi-

fication task was carried out with custom-written code, incurring a maintenance

cost and creating the possibility of coding errors.

The current implementation avoids reimplementing classifier logic when-

ever a commonly accepted reference implementation exists. To that end, the

current logistic regression classifier now uses the SciKit-Learnimplementation

throughout (not just in training). The SVM classifier also uses the SciKit-Learn

25

reference implementation. The XGBoostlibrary provides the gradient boosting

classifier, and the neural network models are implemented in PyTorch. For the
latter two classifier types, a minimal amount of additional interface code allows

the use of standard SciKit-Learntraining and cross-validation functions. Us-

ing reference implementations ensures that these algorithms are implemented

efficiently and correctly, and reduces the possibility of misleading experimental

results due to implementation error.

Finally, each classifier is now aware of the features it was trained upon.

When a persisted, pre-trained classifier set is hydrated from disk for use on new

data, it requests the features it needs from the VipurFeatureVectors it evalu-
ates. If they are not available, the classifier can proactively raise an error. This

ensures that stored classifiers are either compatible, or give useful error mes-

sages. Disk persistence is achieved through the cPickleserialization module

(standard in Python 3) which allows complex models to be written to disk and

moved between computing environments without extensive module-specific data

representation design or code.

2.4 Support for Multi-Learner Approaches

In addition to the modularization improvements described above, the current

VIPUR redesign also includes support for capturing a classifier’s predictions

(both classification and probability) on the input data. These classifier pre-

dictions can then be recorded as new features which supplement the original

data set. Adding these supplemental features to the data set allows easy use of

26

stacked multi-learner approaches, beyond individual classification modules. In

a stacking approach, the predictions of individual classifiers form a “committee

of experts” whose opinions can guide the training of a new meta-learner, which

can both make its own predictions, and learn the conditions under which indi-

vidual experts perform well.

The implementation avoids information leakage by recording predictions

on each data point while it is part of the test fold in a cross-validation scheme.

(At no point do the new features record the predictions of a model that was

trained on the specific samples it is predicting.) The resulting predictions are

stored and output as new feature columns in a separate data file, which can be

reused within VIPUR. The new data fields are also flagged so that they are not

normalized when VIPUR imports the new data file.

The present work considers ensemble methods in the form of gradient-

boosted forests, but a stacking approach using heterogeneous learners (as de-

scribed here) remains to be explored in future work.

Thanks to the improvements detailed above, the new VIPUR will smoothly

handle new data sets and new features when they become available. The exper-

iments related in the present work, however, are based on the existing Vipur

Training Set. The next chapter analyzes this data set in detail.

27

3
Analysis of the VIPUR Training Set

Creating a new set of training data for VIPUR is an ongoing project

outside the scope of the present work. Instead, the present work has focused

on building a tool which is flexible enough to evaluate classifiers trained with

new data and new features once they are available. I have applied the resulting

28

tool to benchmark the classifier types studied in the original VIPUR,6 as well

as several new methods which were not considered. The experimental results

presented in this paper rely entirely upon the VIPUR Training Set, or VTS,

introduced by Baugh.5 This chapter will explore the benefits, as well as some of

the limitations, of this data set.

3.1 Origins of the VIPUR Training Set

One of the major achievements of the original VIPUR work was the creation of

a well-curated data set for the deleteriousness-prediction problem. As discussed

in Baugh 2017,5 existing data sets, and the methods they support, suffer from

strong bias effects due to species specificity, dominance of deleterious or neutral

variants in the sample space, and even over-representation of a narrow set of in-

dividual proteins. Baugh hypothesized that loss of function should be generaliz-

able regardless of mutation source or target species, and created a data set that

drew upon diverse species and sources of variation. This data set, the Vipur

Training Set (VTS), includes protein sequences and annotations sourced from

the UniProt database,39 supplemented with structures from the Protein Data

Bank,8 ModBase,33 and SwissModel.40 The VTS looks specifically at missense

point mutations, mutations which cause the replacement of one amino acid with

another. It uses gold-standard function loss labels drawn from expert annota-

tion.

The resulting VTS is composed of roughly 1/4 variants drawn from Hum-

Div1 and 3/4 variants drawn from UniProt, making up a data set of 9,477 vari-

29

ants of 2,637 domains in 2,444 soluble proteins. As Rosetta’s scoring function

for soluble proteins was more advanced than that for membrane proteins at the

time of the VTS’ compilation, the data set excludes membrane proteins. The

VTS is comprised of 5,901 human variants, 1,635 non-human eukaryote vari-

ants, 1,725 prokaryote variants, 122 variants from archaeobacteria, and 94 viral

protein variants.

3.2 Non-Uniformity of the VIPUR Training Set

Traditional theory of supervised machine learning assumes the training data

are representative of the data which will be tested.29 This can take the form of

a strong IID assumption, asserting that all data are drawn independently and

identically distributed from the same underlying distribution; or it may be a less

rigorous assumption, with correspondingly less generalizable stated results.

The VTS is heterogeneous by design, drawing from many sources to

assemble a data set covering a wide range of organisms. The objective is to

represent the full range of proteins found in nature, rather than any specific

class of organism or area of study, so that VIPUR can learn features which

broadly characterize proteins in general, rather than being focused on any sub-

set. While diversity was one of the goals of the VTS, its internal variation has

not been studied in detail. If there are significant internal divisions within the

data set, and if they are representative of divisions within set of viable proteins

as a whole, this information could guide the development of more tailored classi-

fier models.

30

Each variant in the VTS is described by a set of 106 features. This cre-

ates a feature space of sufficiently high dimension to rule out a straightforward

unsupervised search for clusters within the data set. However, the data can

be reduced to sufficiently low dimension to visualize, through methods such as

Principal Component Analysis.25

Figure 3.1: VIPURTrainingSetreducedtotwodimensionsunderPrincipalComponentAnalysis.Principalcom-
ponentsexplain0.099and0.088ofthevariation.

Figure 3.1 shows the VTS reduced through PCA to two dimensions, with

colors showing the deleterious/neutral classification of the samples. The plot

suggests that there are at least two pronounced clusters in the VTS, and that

deleterious and neutral mutations are thoroughly mixed within both clusters.

Baugh5 found that many of the features in the VTS were correlated, and

hypothesized that dimension reduction through feature selection might improve

classifier performance. Applying the same PCA analysis to the reduced feature

31

Figure 3.2: VIPURTrainingSetreducedtotwodimensionsunderPrincipalComponentAnalysis,post-feature-
selection.Principalcomponentsexplain0.17and0.13ofthevariation.

set, as shown in figure 3.2, does show areas enriched for particular deleterious-

ness labels, especially in the upper cluster. However, the classes are obviously

not separable by a surface in this space, and the two large clusters in the data

remain unexplained.

The two principal components shown together account for 20-30% of the

total variation in the sample, so these clustering effects might disappear under

a different means of dimension reduction. It is also not clear what, if any, bio-

physical property these clusters could represent; they may be batch effects or

otherwise correlate to the data source. Further investigation is required.

Regardless of the source, the VTS is markedly non-uniform over the

VIPUR features. This implies a challenge to any classifier trained on the en-

tire data set: many methods we consider will perform less effectively on a mul-

32

timodal distribution, and unexpected complexity may be required for classifiers

which can handle such an uneven surface. This non-uniformity also offers an op-

portunity, however: if the observed clustering does represent a consistent fact

across larger sets of proteins, it could be fruitful to analyze these clusters more

thoroughly in future work, to train classifiers specific to the underlying protein

groupings.

3.3 Feature Selection

The original VIPUR work noted that many of the 106 features are correlated.

There are particularly strong correlations5 among the four PSSM-derived fea-

tures, and (unsurprisingly) among the different quartile measurements for the

structural features. To reduce the effects of training on multiple correlated fea-

tures, Baugh chose5 to perform feature selection—reducing the features actually

considered by the classifier to a subset of the ones available.

3.3.1 Feature Selection in Original VIPUR

Baugh’s method for selecting features was to train 100 classifiers on randomly

chosen 80-20 splits of the VTS. For each split, a classifier is trained on four-

fifths of the data and evaluated on the remaining fifth to estimate generalization

accuracy. The specific classifier used was a logistic regression classifier with an

L1-norm regularization penalty, which is known to promote sparsity in model

weights, resulting in feature selection.19

Baugh chose to include a total of 20 features, on the assertion that this

33

number of features proved to generalize best. The 20 features with support

(that is, with nonzero learned feature weights) in the largest number of trial

models were used as the final VIPUR feature set.

This approach to the optimal feature subset problem is nonstandard.

Additionally, no explanation is offered for the assertion that the optimal num-

ber of features is 20. Best-subset regression16—exhaustively searching all 2n

possible combinations of the n features—is the only certain way to find the op-

timal feature set, but it is computationally unfeasible for more than a few dozen

features, so it cannot be the source of the claim.

Of iterative feature selection models, the traditional alternatives to best-

subset regression are the stepwise methods: forward-stepwise regression,16 21 in

which a best-performing feature set is grown one-by-one; and recursive feature

elimination,21 in which a classifier is trained with all available features, the least

predictive features are removed one by one, and the classifier retrained, until

classifier performance degrades. However, either of these approaches would also

have yielded the set of features, not just an optimal number of features; so they,

too, cannot have been the source of the claim.

3.3.2 Feature Selection in Present Work

Feature selection is best performed by cross-validation, like any other hyper-

parameter.31 Ideally one would train the target model with different feature

subsets and evaluate the subset choice by considering the validation set per-

formance. Unfortunately, implementing feature selection of this kind for most

34

classifiers—particularly for highly parameterized neural network and regression

tree models—would result in unacceptably long training times.

Nevertheless, the original VIPUR work showed performance improve-

ment with feature selection. Thus the present work attempts two approaches to

classifier-agnostic feature selection, both using logistic regression.

In the first, I trained a classifier using a scarcity-promoting L1 regu-

larization penalty, and selected those features with support in the resulting

model. In the second, I trained a logistic regression classifier under an L2 reg-

ularization penalty, and performed feature selection using recursive feature

elimination with cross-validation as implemented in SciKit-Learn.32 For both

methods, the strength of the applied regularization is a hyperparameter set by

cross-validation. The hyperparameter space searched is constructed by an initial

round of powers-of-ten logarithmic search, followed by two rounds of refinement

search over ± half the last determined order of magnitude, which is sufficient

to see the improvement in the loss term converge below 1%. Regularization

strength is chosen separately for each of the two methods.

I tested both approaches on several different splits of the VTS, with dif-

ferent fold counts from 5 to 20. The results showed that the set of features se-

lected is highly sensitive to both the feature selection method and to the subset

of the VTS over which it is applied: feature selection is unstable over different

splits.

35

3.3.3 Feature Selection Is Unstable

To systematically investigate the sensitivity of feature selection to data splits, I

tested both the above methods over four iterations of five-fold splits, and tab-

ulated the features selected. This allowed each method the opportunity to per-

form feature selection 20 times on different subsets of the VTS. (The same four

sets of splits were used for both of the feature selection methods.)

L1-penalized logistic regression classifiers have a reputation for promot-

ing scarcity in feature sets. Despite this reputation, the L1 models in this study

retained more features than the L2 models: 40 on average for L1, vs 24 for L2.

The most common result for L1 was 25 features (occurring in 11 of 20 trials);

the remaining 9 models chose large sets of 59 or 60 features as significant. For

the L2 models, the most common number of features selected was 22 (at 5 of

20 models), while 5 models chose 18-20 features, and 8 models retained 28-30

features. (See appendix for several views of this data.)

The feature sets chosen by the two models often fail to overlap. For in-

stance, six features were retained by all 20 of the L1 models, but by none of the

L2 models. (The features in question were maxsuband some quartile measures

relating to backbone and side chain hydrogen bonding, and distribution of pro-

lines). By contrast, the maxsub2.0feature was retained by 18 of the 20 classi-

fiers trained with L2 penalty, but was retained by only 9 of the L1 classifiers. In

many instances the L1 selection retained 59-60 features, while the L2 selection

retained only 18-20 when looking at the same data. This further highlights the

instability of feature selection and its sensitivity to method.

36

Four of the five sequence-only features were retained in every classifier

model trained. The fifth, the pssm_nativefeature, was retained by every L2

model and no L1 models. This is almost certainly because of its correlation

with other PSSM metrics: given two correlated features, a model penalized with

an L1-norm regularization term can shift all the weight from one to the other.

Under an L2 regularization scheme this would result in a large penalty, so it

is more favorable to retain both features at lower weights. This is the only in-

stance I have found that suggests an influence from feature correlation.

Category Count Criteria
Most Important 15 Retained in all or nearly all models
Commonly Selected 12 Retained at least 9 times by both

models
Low Importance 32 Retained by only one model, or only

rarely
Uninformative 43 Never selected by any model

Table 3.1: Categorizationofstructuralfeaturesintogroupsbasedonthefrequencywithwhichtheyareselected
bybothfeatureselectionmethods.Thecutoffof9selectionswaschosenbecausemanymorefeatureswere
selected9timesthan10times.

Table 3.1 categorizes structural features into four groups. Roughly 15%

of the structural features fall into the “Most Important” category. The top two

categories collectively represent a quarter of the structural features.

My results do not fully support Baugh’s original feature selections.5 That

set of 20 features included all 15 of the “Most Important” features and 3 of the

“Commonly Selected” features. It also contained one feature which was selected

almost exclusively by the L1 model, and one was never retained by any of my

models at all.

37

Baugh claims that feature selection improves the model by reducing over-

fitting. Contrary to this assertion, these results demonstrate that many of the

structural features simply do not have significant predictive value.

These results are important for two reasons. They support the overall

contention that current VIPUR performance is limited more by the available

features and data than by machine learning methods. They also illustrate that

at present, any choice of features will be somewhat arbitrary. Limiting the fea-

ture set does seem to improve results, but with no principled way to choose fea-

tures automatically, I argue for treating feature selection as a pure hyperparam-

eter and not an integrated part of the VIPUR pipeline.

For the purposes of the experiments in the present work, I have chosen

to use 27 features—those categorized as “Most Important” and “Commonly

Selected”—as the selected subset of features. This seems an appropriate bal-

ance between including features with some predictive utility and excluding those

which are more marginal or which may have negative utility.

3.4 Cross-Validation Methodology

Much of the present work depends on cross-validation. As such, division of the

VTS into representative folds is of paramount importance. Baugh notes two

important requirements of cross-validation splits for the VTS: first, the label

bias must be maintained; and second, proposed splits must not include multiple

variants of the same protein in different folds (as this would unfairly bias the

results, by training on examples which are direct analogues of the test data).5

38

Standard SciKit-Learnlibrary routines exist for providing a stratified

k-fold cross validation split (which would preserve label bias) and a grouped

cross-validation split (to account for situations where samples have a natu-

ral grouping that might result in bias), but there is no easy way to combine

the two. Instead, I have implemented cross-validation split assignment in the

VipurCrossValidatorclass. My implementation groups proteins together ac-

cording to UniProt ID, then assigns the groups to different data folds in de-

creasing order of number of variants, to ensure that large groups of related pro-

teins do not dominate any individual fold. The resulting candidate splits are

then sorted according to their own label bias, and groups of proteins are swapped

from the folds whose label bias is farthest from the overall dataset’s. Because

the protein groups are chosen for swap at random from the set of inappropri-

ately biased samples, every step brings the folds more in line with the bias of

the overall data set. The result is that label bias tolerances as low as 0.5% can

be reached nearly instantaneously. The procedure will stop if offsetting groups

of proteins cannot be found past a certain limit. However, in practice this stop-

ping criterion is not needed, as the data set is sufficiently large and granular to

accommodate the swaps.

Several challenges remain, however. First, groups are identified by UniProt

ID. But there is no guarantee that UniProt IDs are assigned with sufficient rigor

to identify all related proteins; we may have variants that should travel together

which are not detectable under this system, because they have not been labeled

consistently. Second, as discussed above, the VTS is not uniform; without more

39

insight into the divisions within the VTS, we cannot to ensure both (or all?)

natural groups are represented equally in each fold. Third, it is possible the

swapping process could result in larger protein groups collecting together in

some folds (though I did not observe this). Finally, my method does on some

occasions make swaps of slightly different numbers of proteins, leading to mi-

nor drift in the total number of records appearing in each fold. The magnitude

of the drift is on the order of 1% and unlikely to have noticeable effect, but a

future revision may attempt to limit this possibility.

3.4.1 Cross-Validation and Evaluation

Given its importance in evaluating the results that follow, I will quickly review

cross-validation, and how the new VIPUR’s results are evaluated.

To ensure an accurate estimate of the classifier’s generalization perfor-

mance,9 the model should be tested on data it has not been trained against.

The natural inclination is to take a representative share of the data set, and

hold it aside as a test set, to be evaluated once we have a fully trained classifier.

However, this risks that the test set may have some systemic bias which makes

all of the estimates inaccurate or which favors certain classifiers.

Instead, we split our data into k even folds (five in the case of the present

experiments) and go through the process of optimizing hyperparameters and

training the model k times, once for each fold. This allows computation of both

average accuracy of each model, and the variance of the results obtained, which

together hopefully provide a stronger predictor of generalization performance

40

than a single holdout set could provide.

In order to provide the best model possible for each test set, we also tune

hyperparameters through cross-validation, as follows. Assuming a 5-fold split,

one split will be held out as the test set. With the remaining four folds, we can

train four models: each one will be trained on three of the four training folds

and tested on the fourth, which serves as a validation set. We can use the esti-

mate provided by the validation set to choose the optimal settings, then train a

classifier with those optimal settings using all four training folds, before finally

evaluating on the originally held-out test set. This process is repeated for each

of the k outer folds, to make sure the entire data set has been used as test.

In the present VIPUR implementation, the ‘test’ mode automates this

cross-validation process. To support this functionality, the VipurCrossValidator
class reproduces consistent train-test splits with an optional holdout, and the

VipurBinaryClassifierinterface provides a hook for each classifier to use cross-

validation to tune any hyperparameters which are relevant to it.

Having discussed the structural framework of the new, modular VIPUR,

and the data set used for experiments, I now turn to the classifier modules them-

selves. The following chapters will discuss baseline approaches and formalize the

two classifier types used in the original VIPUR, then turn to newer methods

first applied to the VTS in the present work.

41

4
Baseline Classification Approaches

The original VIPUR work considered two main types of classifiers: logistic

regression classifiers and support vector machines, both traditional approaches

to machine learning problems which have been in common use for decades. In

this chapter I present a re-evaluation of these two methods in the context of the

42

new VIPUR. First, I will discuss three very basic approaches which provide a

baseline performance against which all other classifiers should be judged.

4.1 Modal, Random, and Decision Stump Baselines

The goal of the baseline classifiers is to characterize the data itself in the ab-

sence of any sophisticated approach—since claiming 95% accuracy is much less

impressive for data with a 96% label bias. These methods do not attempt to be

strong predictors.

The specific approaches we discuss are modal selection (always return the

most commonly represented category); random selection (flip a weighted coin,

whose weight is determined by the label bias of the data); and decision stumps.

The idea behind the latter method is to always return the class suggested by

the single most-predictive feature.

The results of these methods are summarized in Table 4.1:

Classifier Avg Accuracy Std Deviation Best Feature
Modal 60.56% 0.24% n/a
Random 52.09% 0.87% n/a
Stump 75.96% 2.10% pssm_difference

Table 4.1: Performanceofbaselineestimators:modal(alwaysapplythemostfrequentclasslabel),random(coin
flipweightedbythedatalabelbias),anddecisionstump(alwayschoosethelabelpredictedbythesinglemost-
predictivefeature).

The results of the modal and random baselines are straightforward and unsur-

prising. The decision stump, however, has astonishingly high accuracy and mer-

43

its further explanation.

4.1.1 Decision Stump

The idea behind a decision stump22 is to simply follow whatever the most pre-

dictive feature says. We determine the single most predictive feature by training

a logistic regression model and choosing the feature with the largest weight as

“best.” This process is very stable; in dozens of rounds of tests it always yielded

the pssm_differenceterm as the most informative feature.

Having identified the single most significant feature, we then learn a

single-feature logistic regression classifier using it.

As table 4.1 shows, this feature is strongly predictive; a classifier built

using this single feature has an accuracy of 76% as against a modal baseline/label

bias of 60.5%. The original VIPUR work claims a generalization accuracy of 80-

81%;5 thus, three-fourths of VIPUR’s improvement over a modal classifier rests

on this one feature.

Other PSSM features seem to be similarly powerful, with all but pssm_native
appearing in every set of selected features, and pssm_nativeitself appearing

in every feature set trained using the L2 method. Additionally, repeating the

decision-stump baseline with the pssm_differencefeature deliberately excluded

always yields a different PSSM feature.

With this baseline in mind, we explore the two classifiers considered for

the original VIPUR work.

44

4.2 Logistic Regression Classifier

Logistic regression models are closely related to linear regression methods, ex-

cept with the goal of producing a binary categorical outcome rather than pre-

dicting a real value.24 In both cases, the central notion is a linear combination

of the weighted elements of the feature vector. Logistic regression then passes

the result through a function that maps the resulting score to a probability.

4.2.1 Formulation of Logistic Regression

We consider a set of data samples n, each represented as a real-valued vector of

dimension k, where k is the number of features. Thus, for the VTS, each variant

is a vector {x⃗i ∈ R106}, 1 ≤ i ≤ 9447. We represent the categorical labels

as corresponding values of y ∈ {0, 1}, where a value of 0 represents a neutral

variant and a value of 1 represents a deleterious variant. Our goal is to learn a

function f(x⃗) → y mapping feature vectors to categorical values.

“Features” may be some kind of direct measurement or observation of

the data; they may also be a different basis function 9—there is nothing prevent-

ing us from treating the square of a measurement as a feature, in place of (or

alongside) the measurement itself, for example.

Logistic regression models the probability of the data sample being cor-

rectly classed in the positive category as a weighted sum of the features, passed

through a sigmoid function, the logistic function σ(z) =
1

1 + e−z
, which converts

the corresponding value to the range (0, 1) so it can be interpreted as a proba-

bility.9

45

Formally:

P (y = 1|x⃗) = 1

1 + e−(w⃗T x⃗)

where we also assume a unit-valued “feature 0,” x0 = 1, to allow the overall

bias term to be included in the weight vector w⃗. The probability of the sample

falling into class 0 is complementary.

Figure 4.1: Anillustrationofthelogisticfunction.Valuesof⟨w⃗, x⃗⟩ ∈ (−∞,∞)aremappedtovaluesin(0, 1)
withanaturalinterpretationasprobabilityvalues.Thereddottedlineindicatesthevaluey = 0.5,andactsasa
crossoverpointfromnegativeclasspredictiontopositiveclassprediction.

Training the logistic regression classifier thus reduces to finding the opti-

mal feature weight vector w⃗ which maximizes this probability. The total prob-

ability of correctly classifying every sample in the data set can be expressed as

the product of the probability of correctly classifying each of the m samples i in

46

the data set,
m∏
i=1

P (yi)
yi (1− P (yi))

(1−yi)

where we take P (yi) = P (yi = 1|x⃗, w⃗) =
1

1 + e−w⃗T x⃗
. Exponentiation to yi

and 1 − yi selects only the probability for the correct classification of the data

point, since yi will be 0 and 1−yi will be 1 if the correct categorization is 0, and

vice-versa. Thus the term describing the model’s probability prediction for the

incorrect class is replaced with 1, and does not influence the overall product.

Because the logarithm function is monotonically increasing, the value of

x which maximizes a function is the same as the value of x which maximizes

the log of that function: argmaxx log f(x) = argmaxx f(x). So we can take the

logarithm to turn the product into a summation, and also change the sign to

yield a loss function for minimization:

L(w⃗, x⃗) = −
m∑
i=1

yi lnP (yi) + (1− yi) ln(1− P (yi))

Since we cannot change the data x⃗, the problem reduces to choosing the weight

vector w⃗ minimizing this loss.

4.2.2 Regularization

This formulation of the loss function allows a natural explanation of regulariza-

tion. The goal of regularization is to discourage overfitting, by promoting mod-

els which do not place exaggerated weights on individual feature terms. The two

simplest models of regularization are L1 and L2 regularization, which are both

47

characterized by adding a norm of the weight vector to the loss function:

L(w⃗) = −
m∑
i=1

[yi lnP (yi) + (1− yi) ln(1− P (yi))] + λ∥w⃗∥1

for L1 normalization and

L(w⃗) = −
m∑
i=1

[yi lnP (yi) + (1− yi) ln(1− P (yi))] + λ∥w⃗∥22

for L2 normalization. Here ∥ · ∥1 denotes the L1 norm, or
∑

i |wi| over the el-

ements of the vector w⃗, and ∥ · ∥2 denotes the L2 (Euclidean) norm
√∑

i w
2
i

over the elements of w⃗. In both cases, we have added a term which counts ex-

tra weight as extra loss. This causes the optimization to favor smaller weights.

Moreover, since an L1 norm penalizes the sum of all weights, it will favor re-

ducing weights of less predictive features to 0 (thus promoting scarcity and fea-

ture selection). By contrast, since each weight is squared in the L2 norm, this

formula more heavily penalizes models which concentrate weight over a small

number of features.

In both cases, the value λ is a hyperparameter set by the model designer

which determines the strength of the regularization. For the present investiga-

tion it will usually be encountered as c = 1
λ
, and will be set by cross-validation.

4.2.3 Fitness to Purpose

Logistic regresssion classifiers offer the advantages of being straightforward to

build and train, and straightforward to interpret—the weight assigned to each

48

feature specifies that feature’s importance to the final classification.

However, the logistic regression classifier also imposes certain strong as-

sumptions on the data. The most obvious is that logistic regression models are

linear in the weights of the features: the exponentiation in the sigmoid function

will always be a sum of weighted features. Capturing interdependence between

features requires extensive feature engineering to add a new feature that ex-

presses the relationship. Similarly, applying nonlinearity to individual features

would require hand-crafting an appropriate basis function.

These limitations greatly disfavor the use of categorical values for fea-

tures (since the ordering of the categories imposes strong assumptions about

how they should be weighted) and limit the usefulness of raw-data features,

which cannot directly influence the weights of other, more derived, features.

4.2.4 Performance

Table 4.2 summarizes the performance of several logistic regression classifiers.

Figure 4.2 illustrates these accuracies in the context of the data set and decision

stump baseline performance.

Table 4.2: PerformanceofthelogisticregressionclassifierunderL1orL2regularizationpenalty,withthecom-
pletefeaturesetortheselectedfeatureset.

Classifier Avg Accuracy Std Deviation C
L1, all features 79.87% 1.74% 0.014 - 0.05
L2, all features 79.84% 1.67% 0.005
L1, selected features 80.36% 1.76% 0.14 - 0.6
L2, selected features 80.29% 1.77% 0.012 - 0.05

Performance of all models is comparable within model variation. There

49

is an improvement of around four percentage points over the decision stump

baseline. Using the selected feature subset improves accuracy by around half

a percentage point. Feature selection also reduces the overall amount of reg-

ularization required for best results (lower values of C correspond to stronger

regularization).

Figure 4.2: Accuracy(±1standarddeviation)oflogisticregressionclassifierstrainedwithL1andL2regular-
izationpenalties,withfullfeaturesetandselectedfeaturesubset.Bluelineindicatesdecisionstumpbaseline
(75.9%accuracy).Y-axisbeginsfrom60%,thelabelbiasofthesample.

Figure 4.3 visualizes the AUPR and ROC curves for the L1 classifiers,

which performed slightly better than L2 classifiers for either data set. The fig-

ure highlights the variation existing in the data set, with performance on the

first fold exceeding one standard deviation from the mean.

50

The results cited here are comparable to, if slightly below, the 81% ac-

curacy quoted in Baugh’s original work.5 6 As one additional check, I reran this

test using the set of features selected in the original VIPUR work.5 The L1 clas-

sifier had a mean accuracy of 80.46% with standard deviation 1.9%, and the L2

classifier yielded average accuracy 80.5% with standard deviation 1.93%: again

comparable to, if slightly below, the originally reported accuracy.

51

Figure 4.3: AUPRandROCcurvesforlogisticregressionclassifierstrainedwithL1regularizationpenalty,with
andwithoutfeatureselection.L1modelsshowslightbutinsignificantaccuracyimprovementoverL2modelsfor
eitherfeatureset.“Fold”referstotheidentityofthecross-validationtestpartition.

52

4.3 Support Vector Machines

Support vector machines determine an optimally separating, or largest-margin,

hyperplane between two classes of data samples in some high-dimensional space.

The “support vectors” refer to the set of data points which lie on the margin

of the linear (hyperplanar) class boundary;14 essentially, the set of points from

the two classes which are closest together. In simplest terms, we want to divide

the two classes with a line that is maximally far from the nearest instances of

either class. Two relevant extensions to this framework are also discussed in the

formalization below.

4.3.1 Formulation

The goal of a support vector machine model is to determine an optimal hy-

perplane separating data points in the two classes. A hyperplane is a gener-

alization of a line to higher-dimensional space. Formally, a hyperplane in a

p−dimensional space is a “flat affine subspace of dimension p − 1.”24 (Most

of this discussion follows James et al. 2013). The hyperplane, like a line in 2D

space, is a set of points; specifically those x⃗ ∈ RP−1 for which w⃗T x⃗ = 0 (where

we again use an implicit unit value x0 = 1 so that a scalar offset can be applied

in compact form). Since the hyperplane has dimension P − 1, the remaining di-

mension becomes in effect a number line, and every sample vector in the space

falls into one of three places on that line. The sample vector either lies on the

hyperplane (in which case the equation to 0 holds), or it lies on either side of

the hyperplane (in which case the weighted element sum will be > 0 or < 0). If

53

we express the classifications as yi ∈ {−1, 1}, then this equation can be written

as yi(w⃗T x⃗) > 0, which would correspond to a hyperplane for which all samples

are correctly classified.

To find the hyperplane creating maximum margin thus means finding the

weight vector w⃗ which maximizes M for:

∥w⃗∥22 = 1

yi(w⃗
T x⃗i) ≥ M ∀i ∈ {1, . . . , n}

Normalizing the weights to 1 ensures that the left-hand side of the inequality

corresponds to the perpendicular distance of each point from the separating hy-

perplane. Thus M represents the margin, or distance between the hyperplane

and those points nearest to it on either side.

The sample vectors supporting the hyperplane (the support vectors) will

then be exactly those samples which lie on the margin: the set of samples for

which the equality holds.

The first extension to this framework is to observe that not all data sets

are actually linearly separable; even if they are, exact linear separation may re-

sult in much narrower margins than could be achieved if we ignored a few out-

liers. A wider margin is desirable because we expect that a solution with wide

margins will generalize better: by avoiding a tight fit to the available data, we

avoid overfitting as well. Figure 4.4 illustrates this idea.

The problem of tight margins due to outlying data points can be resolved

54

Figure 4.4: Optimal-marginperfectlyseparatinghyperplane(left)andsoftmarginhyperplanewithlargermargin
(right).The“supports”arethetwoblueandreddotstouchingthegreylines;themarginistheperpendicular
distancefromblacklinestogreylines.Theleftimageshowsthelargestmarginthatallowsforperfectseparation.
Therightimageshowsthatamuchlargermargincanberecoveredbyacceptingthemisclassificationofonered
dot.

by adding a misclassification error term εi which records the amount by which

each point has been misclassified:

∥w⃗∥22 = 1

yi(w⃗
T x⃗i) ≥ (M − εi)∀i ∈ {1, . . . , n}

εi ≥ 0,
∑
i

εi ≤ C

where εi measures the degree to which each sample violates the margin, and C

55

sets an overall misclassification budget (a hyperparameter indicating how flexi-

ble we will be to ensure a greater margin). This is known as the soft margin 14

support vector machine, or support vector classifier. The SciKit-Learnlibrary

used in the present work implements support-vector classifiers.32

4.3.2 Basis Functions and High-Dimension Projection

Figure 4.5: Anexampleofprojectionintoahigher-dimensionalspace.Intheleftfigure,theredandblueclasses
areobviouslynotlinearlyseparable.Intherightfigure,thepointshavebeenprojectedintoathree-dimensional
spaceinwhichtheycanbeseparatedbytheplanez = 20.Thebasisfunction√(x− 50)2 + (y − 50)2

providesthez-axisvalue.

Samples may not always be linearly separable, even with the soft margin,

and the relationship may simply not be linear in the features proper. We can

solve this problem by mapping the data points to a higher-dimensional space in

56

which they are linearly separable, through a change of basis function. As indi-

cated in the definition of features at the beginning of this chapter, features are

not restricted to direct observations of the samples, but can also be functions of

direct observations.

The addition of these new supplementary (basis-function) features is how

SVM classification can correspond to a projection into a higher-dimensional

space: the 106 features of x ∈ R106 become 212 features when the square of each

element of x is included in the feature set along with the elements themselves.

4.3.3 Kernels and the Kernel Trick

Mapping a sample to a high-dimensional space by computing many functions of

each feature can become computationally expensive. Fortunately there are a few

facts that reduce the computational burden. First, the optimization problem

(and the entire classifier) depend solely on the support vectors: samples beyond

the margin do not actually influence the classifier in any way.

Second, the solution to the optimization problems above depends only on

the inner product,14 a category of functions which map two vectors in a (pos-

sibly infinite-dimensonial) space to a scalar distance between them—the most

familiar inner product being the dot product.

With these two facts in hand, we can evaluate any support vector ma-

chine simply by taking the inner product between the new sample x being tested

and the supports xi:

f(x) = k +
∑
i∈S

αi⟨x, xi⟩

57

where ⟨·, ·⟩ corresponds to an inner product (which, again, can be understood as

a similarity function between the points), and S is the set of support vectors.

The inner product can further be replaced with a kernel function, a class

of functions extending the inner product with slightly more complex relations.

An appropriately chosen kernel will correspond to a mapping into the higher-

dimensional space discussed above, without actually projecting all the samples

into that higher-dimensional space, a technique known as the kernel trick.

Popular kernels implemented in the SciKit-Learn library include linear,

polynomial, radial-basis, and sigmoid kernels,32 formulated respectively as:

Linear: ⟨x⃗, x⃗i⟩

Polynomial: (γ⟨x⃗, x⃗i⟩+ r)d

RBF: exp
(
−γ∥x⃗− x⃗i∥2

)
Sigmoid: tanh γ⟨x⃗, x⃗i⟩+ r

Clearly there is a richer set of hyperparameters for SVM models than for logis-

tic regression models. In addition to the d, γ, and r terms above, which cor-

respond to the dimension of polynomial kernels, the locality of a data point’s

effects, and the offset, there is also the C or margin-softness term, which can

have a strong impact on the generalization of the trained model. While I have

tried to explore likely values for these, I have not tested every possible combina-

tion. Further experimentation might yield further incremental improvements in

performance, though it is unlikely to show radical improvement.

58

4.3.4 Fitness to Purpose

SVMs offer several potential advantages over conventional logistic regression

models. The most obvious differences are increased nonlinear flexibility (for a

given amount of feature engineering) and reduced computational overhead for

training and evaluating complex nonlinear relationships. In general, the code

support in SVM libraries exposes a more powerful set of classifiers—assuming

correct choice of kernel function and hyperparameters.

However, SVMs also present several drawbacks. The most obvious is the

lack of easy interpretation. In practice, since we learn weights on different sets

of inner products, rather than on features directly—and since the feature com-

parison may be in some high-dimensional space that is never explicitly referred

to—SVM models are not as straightforward to explain as logistic regression

models. SVMs also do not naturally provide probability predictions: we can tell

how far a point is from the margin to qualitatively identify confident and less

confident predictions, but it is computationally expensive and somewhat sub-

jective to quantify. Thus, precision-recall data are not natural outputs of this

classifier. Finally, the flexibility and power of the models is a two-edged sword:

more hyperparameters means more computation to search for optimal settings,

and more risk of overfitting.

Given the roughly equivalent performance, Baugh chose to use the lo-

gistic regression classifier for the original VIPUR on the grounds of easy inter-

pretability.5

Finally, while the formulation given above appears quite different from

59

that for logistic regression, there are deep similarities between the two approaches.24

(The construction of a weight vector multiplying the sample vector might al-

ready suggest this relationship.) For our purposes, the biggest difference is the

ready availability of premade kernels (and the corresponding implicit nonlinear-

ity) when working with libraries implementing SVMs.

4.3.5 Performance

Table 4.3: PerformanceofSVMclassifiers.

Classifier Avg Acc Std Dev Hyperparameters
RBF, all features 79.41% 1.17% C: 0.9 - 8, γ: 9e-4 - 1.3e-3
Sigmoid, all feats 78.90% 1.37% C: 11-600, γ: 7e-6 - 9e-5
Linear, all feats 78.89% 1.30% C: 8e-4 - 6e-3
Poly 2, all feats 71.39% 0.313% C: 9e-3 - 0.9, γ: 0.013 - 0.13
Poly 3, all feats 76.72% 1.00% C: 1.1e-3 - 800, γ: 1e-3 - 0.11
RBF, selected feats 80.42% 1.27% C: 0.8 - 100, γ: 6e-4 - 9.3e-3
Sigmoid, sel feats 79.46% 1.88% C: 1.4e-3 - 1400, γ: 3.6e-5 - 16000
Linear, sel feats 79.33% 1.54% C: 1.3e-3 - 100

Table 4.3 shows the performance of SVM classifiers. (C in this context

refers to the margin tolerance, not a regularization coefficient.) There is con-

siderable variation in the optimal hyperparameter settings between folds, often

by more than an order of magnitude. Polynomial kernels underperformed other

kernel types by such a wide margin that they were not tested with the selected

feature subset.

Figure 4.6 illustrates the performance of the different classifiers. Poly-

nomial kernels clearly underperform. There is a slight advantage for a selected

feature subset; however this results in increased variance in the resulting model

60

performance. Models trained with radial basis function kernels perform notice-

ably better than others.

Figure 4.6: AccuracyoftestedSVMclassifiers,±onestandarddeviation.Eachrecordislabeledwiththekernel
andfeaturesetused.Poly(2)and(3)indicatesecond-andthird-degreepolynomialkernels,respectively.Blue
lineshowsdecisionstumpperformancebaseline.

Without feature selection, as in Baugh’s original work, the SVM models

do not outperform logistic regression models. However, with a selected subset

of features, the best-performing radial basis function model does achieve a very

slight (0.6%) improvement over the best logistic regression model. The differ-

ence is well within the margin of error. The SVM models tested do show lower

variability than the logistic regression models.

61

5
Comparison of New Approaches

The previous chapter considered methods coming directly out of sta-

tistical analysis, which generally map features directly to classifications. This

chapter considers methods which look to more complex relationships between

data samples and classifications. These include more nonlinearity, combining

62

multiple models, and highly parameterized neural network models. These mod-

els are generally more powerful than the ones considered previously: if more

powerful hypothesis sets are capable of generating improved results on this data

set, they will be found here.

5.1 XGBoost

XGBoost12 is a departure from the models considered thus far, in two ways.

First, it belongs to a class of solutions known as ensemble methods. These are

approaches which do not try to learn a single high-performing model, but in-

stead train a series of weaker models, and treat their consensus position as a

single collective model.35

Second, the underlying classifiers trained in XGBoost are decision (or

regression) trees, which are quite different from the weighted-feature-vector ap-

proaches of the previous chapter. While logistic regression and SVM models do

one operation simultaneously on all the features and collect the result, decision

trees make a decision by looking at multiple small subsets of the features in an

ordered series of decisions,37 dividing the data set at each node into groups of

maximal homogeneity.

Below I formulate both of these concepts, then review the application of

XGBoost to the VIPUR training set.

63

5.1.1 Decision Tree Formulation

A decision tree is a structured model used for classification or regression.35 De-

cision trees are also sometimes referred to as CART or “Classification And Re-

gression Trees,” although this is properly the name of a specific formulation (the

one used in XGBoost).

Figure 5.1: Exampleofasimpledecisiontree.Thefirstsplitconsidersfeaturexi.Valueslessthan5aresentto
theleftnode.Sincethisnodeisentirelyblue,anytestpointssenttothisnodewouldbepredictedbluewith1.0
probability.Valuesgreaterthan5aresenttotherightnode,wherefeaturex2 wasfoundtoresultinthegreatest
separationofcategoryelementsamongthefeaturesremaining.Fromthedistributionoftrainingpoints,any
sampleforwhichx1 < 5, x2 = 0wouldbepredictedtofallintotheblueclasswith0.875probability,andany
samplewithx1 < 5, x2 = 1wouldbepredictedbluewithprobability0.1.

The decision tree (as in figure 5.1) categorizes data by applying simple

tests to a feature vector over multiple ordered decision points. If this model is

64

visualized as a tree, the inner nodes represent decisions, and the leaf nodes rep-

resent either a score12 or the probability of a particular categorical classifica-

tion, represented as the fraction of examples meeting the decision criteria which

fall into the class of interest.30

In learning the tree, after each split we must decide whether and how

to split further. There is clearly no need to split a node whose members are all

correctly categorized; and some implementations (like XGBoost) impose a maxi-

mum depth hyperparameter beyond which no further splits will be considered.

If these stopping criteria have not been reached, we will split the node if

doing so provides a sufficient increase in quality. Split quality can be measured

in several ways. One option is the misclassification rate (a simple proportion of

the elements in the node that are misclassified). More sophisticated approaches

use a value like information gain,30 35 equivalent to the loss in information-

theoretic entropy, over the split.

Within information theory, entropy38 is formally defined as the negative

of the probability of an outcome, times the log of this probability. Given a ran-

dom variable V with possible outcomes vk, we define entropy as:

H(V) = −
∑
k

P (vk) logP (vk)

where P (vk) is the probability of the random variable V taking on the value vk.

Effectively, this quantifies the randomness of a distribution of outcomes.

If we consider V to be the classification of a randomly chosen member

65

of the node’s set into one of the two classes, then we can express the node’s en-

tropy as the sum of the ratio of exemplars of each class to the total, times the

log of this ratio:

H(node) = −
(

p

p+ n

)
log

(
p

p+ n

)
−

(
n

p+ n

)
log

(
n

p+ n

)

where p and n indicate the number of data points at that node falling into the

positive and negative classes, respectively.

The information gain over a split is the difference between the parent

node and the entropies of the two child nodes. This provides a natural link be-

tween the increase in purity of the child nodes, and the probability of one class

label correctly describing all the elements in that node.

Most approaches to building decision trees choose to split along the fea-

ture that results in the greatest increase in node quality. There is, however, a

risk that this greedy approach will not actually result in the best-fitting pos-

sible tree: as with the optimal-feature-subset problem discussed in section 3.3,

there is always a risk that some combination of individually less-optimal fea-

tures could collectively provide better performance than one stronger feature,

but a greedy approach cannot always discover these relationships.

The same feature can appear in multiple nodes in different paths along

the decision tree; and real-valued features may have different cutoff points in

different decision nodes. This automatically incorporates non-linearity into the

model, since the exact splits being made depend on the path taken, rather than

solely on the linear change in the value of the feature.

66

5.1.2 Boosting Formulation

Unless data really are generated by a set of decision rules, it is unlikely that we

will train a single tree which makes good predictions in the general case.

Gradient boosting methods come out of the multi-learner paradigm rein-

vigorated by AdaBoost in 1997.17 This class of meta-classifier centers the obser-

vation that a diverse collection of weak, but better than random, classifiers will

converge to collectively form a strong classifier. Such a collection of classifiers is

known as an ensemble, and is usually produced by an iterative process in which

individually-weak classifiers are trained and added to the collection.

There are several methods to choose what learners to add to the ensem-

ble. In a wisdom-of-crowds sense, any collection of weak learners could lead to

improved results; but polling new models at random is inefficient. Moreover,

it has a potential flaw: to make an improved collective model, the weak mod-

els need to be complementary. Otherwise, the product is computational group-

think, where several weak learners reinforce each others’ incorrect predictions.

The original AdaBoost algorithm resolved this problem by increasing

the relative weights of those samples misclassified by the previous addition.17

This encouraged the new model to be different from, and complementary to, the

existing collection.

Subsequent work has explicitly considered the collection of learners as a

model for which a loss function can be written and optimized. Instead of train-

ing the next model on a reweighting of the data set, we can learn a model that

explicitly compensates for the discrepancies between the current ensemble’s es-

67

timates and the data.20 Formally, we add to the ensemble a tth new classifier

ft(x⃗) which minimizes the ensemble loss:

Lt =
n∑
i

l
(
yi, ŷi

(t−1) + ft(x⃗i)
)
+ γT +

1

2
λ∥w∥2

where ŷi
(t−1) is the current ensemble’s prediction for sample x⃗i, l(·, ·) is an ap-

propriately chosen residual loss function, T is the number of leaf nodes in the

new model, w is the set of scores on each leaf, and γ and λ are hyperparametric

regularization strengths.12

Instead of training directly to the loss function, under gradient boosting

we train to the gradient of the loss function with respect to the classifications,

following standard gradient descent procedures. This is the approach imple-

mented in XGBoost.12

Once a new model has been built to this target, a scaling factor is chosen

for each leaf that minimizes the loss for the samples in that leaf20 (which can be

thought of as a leaf-specific step size along the gradient). The final prediction

for any instance in one of these ensemble models is the sum of the scores of the

leaves into which the instance is placed by each of the trees.

5.1.3 Avoiding Overfitting in Complex Models

Between the native non-linearity in decision/regression trees and the power of

adding a potentially boundless number of models, gradient-boosted approaches

are at high risk for overfitting. Yet as powerful as the approach is, there is an

68

equally broad array of tools within XGBoost to combat overfitting.

I have already mentioned setting maximum tree depth, which also limits

the total number of features considered by each tree.

In addition to stopping tree growth, XGBoost also features a learning

rate parameter, which controls the extent to which new models influence the

ensemble. Learning rates below 1 (also known as a shrinking factor) effectively

slow descent along the gradients, which generally leads to better convergence.16

XGBoost also makes use of techniques common to random forest ap-

proaches:16 dropout of rows and columns from the feature matrix. In column

dropout, each new model is allowed to consider only some (hyperparametri-

cally set) fraction of the available features. Column dropout allows models to

consider features that might otherwise be eclipsed by one or two features with

coincidentally strong predictive power on the data set. Dropping out rows also

avoids overfitting by randomly removing some of the training observations. This

reduces the impact of outlying data points. Bagging,10 or bootstrap aggrega-

tion, is a particularly sophisticated approach to diversify models in ensembles:

a fraction of the data samples are removed from the training set and replaced

with randomly chosen duplicates of the other rows. This helps compensate for

outlier bias in the sample data.

Finally, model weights can be regularized under the L1 or L2 penalties

discussed previously, or an ElasticNet42 combination of the two, if desired.

69

5.1.4 Fitness to Purpose

As of this writing, the XGBoost implementation of gradient boosting is consid-

ered state-of-the-art for data sets of extracted features,12 and is an algorithm of

choice for many top performers in online machine learning competitions.20

The specific advantages of the approach include easily integrating cat-

egorical features (since splits need not depend on a linear multiple of feature

values), and naturally incorporating both nonlinearity and feature selection into

the model creation process without any special effort. Finally, these models are

very powerful: they are the only models tested which produced classifiers that

could achieve perfect accuracy on the VTS when trained on the entire VTS.

The drawback of any powerful approach is the need for careful hyperpa-

rameter tuning to avoid overfit. Moreover, while decision trees themselves give

clear explanations for their decisions, a forest of several hundred trees does not.

5.1.5 Performance

Table 5.1 presents results for the XGBoost models tested. Regularization weights,

learning rate, and per-tree column dropout rates are set using cross-validation

search for each model.

Figure 5.2 shows the accuracy of those models trained on the complete

feature set, with max tree depth of 6, 15, or 30 nodes and total forest size of

150, 300, or 450 trees. Performance differences among the models are limited,

well within the margin of error.

These models do show slight improvement in accuracy compared to the

70

Tree Count Max Depth Data Subset Avg Acc Std Dev
150 3 1 80.13% 1.38%
150 6 1 80.30% 1.70%
150 15 1 80.24% 1.56%
150 6 0.6 80.29% 1.20%
150 15 0.6 80.49% 1.11%
150 30 0.6 80.53% 1.63%
300 6 0.6 80.37% 1.57%
300 15 0.6 80.49% 1.42%
300 30 0.6 80.67% 1.74%
450 6 0.6 80.60% 1.58%
450 15 0.6 80.81% 1.62%
450 30 0.6 80.76% 1.52%
300 6 0.6 80.55% 1.49%
300 15 0.6 80.63% 1.42%
300 30 0.6 80.61% 1.49%
450 6 0.6 80.57% 1.34%
450 15 0.6 80.49% 1.35%
450 30 0.6 80.68% 1.47%

Table 5.1: PerformanceofXGBoostclassifiermodelsontheVipurTrainingSet.

logistic regression models. Sample dropout improves generalization accuracy.

Accuracy tends to improve with increased maximum tree depth, although vari-

ability of the results increases somewhat faster. Increasing the total number of

trees in the model improves accuracy, but larger forests of deep trees (max 30

nodes) show lower estimated generalization accuracy than smaller trees at this

forest size, possibly due to overfitting.

The models in the top portion of table 5.1 were trained on the complete

feature set. Those below the line were trained on the reduced feature set, often

leading to a slight (0̃.15%) improvement in accuracy. These trees are trained on

only 27 features, so few trees are likely to reach the maximum depth of 30.

71

Figure 5.2: Accuracy(±onestandarddeviation)ofXGBoostmodelstrainedoncompletefeatureset,with40%
rowdatadropoutpertreeandmaximumtreedepthof6,15,or30nodes,againsttotalnumberoftreesinthe
forest.Bluelineindicatesaccuracyofdecisionstumpbaseline.

Models trained on the reduced feature set are more accurate than their

counterparts at 300 trees, but do not benefit from larger forests. This is consis-

tent with the suggestion that many features are not strongly predictive—and

models improve by not considering them—but that some marginal features do

provide a slight amount of additional information in edge cases.

72

5.2 Neural Network Classifiers

Neural networks are general function approximators. Given enough training

data, an appropriately structured neural network can theoretically approximate

any finitely discontinuous computable function.27 In practice, discovering the

correct network structure and acquiring sufficient training data are nontrivial;

complex tasks require extensive engineering of novel architectures, which are an

area of tremendous ongoing research.

However, learning a classifier from the current VIPUR feature set is not

expected to require elaborate or novel architectures. The new VIPUR frame-

work can accommodate classifiers of arbitrary complexity, but the present inves-

tigation considers only fully connected networks with one to two hidden layers

and a single output node.

5.2.1 Formulation of Neural Networks

Neural networks consist of many interconnected artificial neurons, as illustrated

in figure 5.3. Each neuron has several inputs and a single output, which feeds

either to a terminal node or to one or more additional neurons.

The neuron’s output is determined by an activation function 9 whose in-

put is the weighted sum of the inputs (and, optionally, some retained value of

73

Figure 5.3: Imageofasingleartificialneuron.Eachinputvaluexi hasitsownweightwi,whichislearnedduring
training.Theneuroncomputesthedotproductoftheinputvector⃗xandweightvectorw⃗andappliesanactiva-
tionfunctionf(·)totheresultingscalarvalue,whichispassedontothenextneuron.

the neuron’s previous state).27 Popular activation functions include:

Linear: f(x⃗, w⃗) = w⃗T x⃗

Step: f(x⃗, w⃗) =


0 w⃗ T x⃗ ≤ k

1 w⃗ T x⃗ > k

Sigmoid: f(x⃗, w⃗) =
1

1 + exp(−w⃗ T x⃗)

ReLU: f(x⃗, w⃗) = max(0, w⃗ T x⃗)

Dennis note: The definition of the sigmoid is incorrect. As it stands, the

larger the input, the smaller the output. Nonlinearity arises from the non-linear

74

activation functions (ReLU being the most commonly used function in prac-

tice) and the complexity of the networks. Because the neurons are connected

in layers, the nonlinearity of individual activation functions combines to allow

approximation of arbitrarily complex functions. Moreover, because neurons are

typically connected to many other neurons, the network can capture joint ef-

fects among an arbitrary number of input features.

Figure 5.4: Imageofasimpleneuralnetworkwithathree-dimensionalinputvector.Theinputlayerisrepre-
sentedasthreenodes,fullyconnectedtothefournodesinthesinglehiddenlayer(nodesingrey).Thehidden
layernodesconnecttoasingleoutputneuronwhichappliesasigmoidfunction(hiddennodesaretypically
ReLU).Thegradientalongtheneuronconnectionshighlightsthattheoutputofonenodebecomestheinput
ofthenextlayer’snodes.

Figure 5.4 illustrates a single-hidden-layer fully-connected network. A

network is “fully connected” if every neuron in each layer receives input from

every neuron in the previous layer; the “hidden layer” is so called because it

does not produce output which is directly visible to the user. Networks of this

75

type (although with many more nodes in the hidden layer) are the only network

topologies explored in the present work, although the new VIPUR code can ac-

cept any network design that matches the interface.

5.2.2 Training of Neural Networks

The weights for each neuron connection are the trainable parameters for the

network. These weights are trained through a process known as backpropaga-

tion. We apply a loss function to the output layer and the known correct re-

sponse, then compute the gradient of this loss function with respect to each

neuron’s weights. Since the input of each layer is the output of the layer that

came before it, we can work backwards through the layers, finding the gradient

of the loss with respect to the prior layer by use of the chain rule.9 16 Finally, we

update the weights by subtracting the gradient times a hyperparametric learn-

ing rate factor.

The gradient may be determined, and the weights updated, based on the

average loss over the entire set of training samples (batch gradient descent), or

over a fixed number of samples (minibatch gradient descent), or even after every

training sample (stochastic gradient descent).16 The choice of update frequency

is also a hyperparameter, with smaller minibatch sizes allowing for more fre-

quent training but more risk of idiosyncratic updates due to outlier samples.

76

5.2.3 Fitness to Purpose

While neural networks are capable of learning any function, their most promi-

nent applications have been in fields where the input includes some minimally

processed form of raw data. For instance, image processing networks look di-

rectly at pixel representations and learn their own extractors to recognize shape

features.7 Modern natural language processing networks often consider words or

vector embeddings of words, alongside (or sometimes in place of) the traditional

extracted features such as part-of-speech assignment and semantic tree parsing

that characterized earlier approaches to natural language understanding.18

Applying a neural network model to an extensively feature-engineered

data set—such as the output of a Rosetta run—does not leverage the greatest

strengths of the paradigm. Networks excel at feature discovery: presenting en-

gineered features reduces the scope of this activity. Moreover, it is notoriously

difficult to provide a meaningful explanation of why a network arrived at a par-

ticular conclusion;36 the logistic regression model still has an advantage in this

area.

However, neural network models offer the potential to incorporate new,

raw-data features in future work. To the extent that there are meaningful com-

plex interactions between the features in the VTS, the neural network is best

positioned to discover them, since neural network models explicitly combine the

elements of the input feature set.

77

5.2.4 Performance

The neural network models considered in the present work are simple ones, fea-

turing one or two fully connected hidden layers with ReLU activation, and a

single-node output layer with sigmoid function activation, whose output indi-

cates a deleterious/neutral probability prediction.

Shape Dropout Mean Epochs Avg Acc Std Dev
30 0.3 50 70.51% 2.83%
70 0.3 50 74.62% 1.98%
150 0.3 50 77.31% 1.56%
200 0.3 50 77.55% 1.44%
300 0.3 50 78.64% 1.97%
500 0.3 50 78.82% 1.52%
750 0.3 50 79.25% 1.66%
1500 0.3 50 79.53% 1.61%
2000 0.3 50 79.52% 1.61%
2500 0.3 50 79.88% 1.48%
3000 0.3 50 79.59% 1.63%
3500 0.3 50 79.75% 1.76%
1500 0.5 50 79.28% 1.56%
1500 None 50 80.02% 1.84%
1500 0.3 50 80.24% 1.77%
1500 0.5 50 80.30% 1.48%
3000 0.3 50 80.47% 1.81%
3000 None 50 80.13% 1.89%

Table 5.2: AccuracyofNeuralNetworkclassifierswithasinglefully-connectedhiddenlayer.Performancecited
forfinalepochoftraining.Modelsinthefirsttwosegmentsofthetableweretrainedoverthecompletefeature
set.Modelsinthebottomsectionofthetableweretrainedwiththepost-selectionfeatureset.“Shape”refersto
thenumberofneuronsinthehiddenlayer.

Table 5.2 shows the results from the neural network structures tested.

“Shape” indicates the number of nodes in each hidden layer; “dropout” indi-

cates the proportion of nodes from the previous layer which are randomly turned

78

Shape Dropout Epochs Avg Acc Std Dev
100; 100 0.3; 0.3 50 73.70% 1.65%
150; 150 0.3; 0.3 50 74.47% 1.98%
250; 250 0.3; 0.3 50 76.63% 1.76%

Table 5.3: AccuracyofNeuralNetworkclassifierswithtwofully-connectedhiddenlayers.Performancecitedfor
finalepochoftraining.Thesemodelsunderperformsingle-layermodelsofequivalentlayersizeortotalneuron
count.“Shape”indicatesthenumberofneuronsinthefirstandsecondhiddenlayers.

off during training (to reduce overfitting); “epochs” indicates the total num-

ber of complete passes through the training data carried out over the course of

training. All models are trained using the Adagrad optimizer.

Learning rate and minibatch size are set by cross-validation. There is

considerable variation in the optimal values for these variables, consistent with

the non-uniformity of the VTS.

Figure 5.5 shows that performance increases with network complexity.

However, the benefit of using a broader hidden layer starts to taper off rapidly

once the hidden layer contains at least 1000 nodes. Values above 4000 were not

tested: while there is little sign of overfitting in the results presented, overfit be-

comes a major concern once the number of hidden nodes approaches the order

of the amount of training data, as each neuron can memorize one of the input

values.

It is expected that complex models, given enough data, will begin to

overfit if trained too long. Ordinary best practice is to monitor the performance

on the validation set and use early stopping19 to stop training the model once

signs of overfit become evident. However, for the present work, early stopping

criteria showed a very high variance in training—sometimes as much as 20 epochs

79

Figure 5.5: Bestaccuracyachievedbyneuralnetworkmodelsagainstthenumberofnodesinasinglefully-
connectedhiddenlayer.Bluelineindicatesdecisionstumpbaseline;orangelinerepresentsaveragebestac-
curacyachievedbythetop-performingXGBoostmodel.Performanceinitiallyincreasesrapidlywithadded
complexity,butlaterimprovementisgreatlyattenuated.

(of 50)—which led to variation in final model performance as a result, particu-

larly for the largest networks tested. Thus, all models presented in this work

were trained to 50 epochs. Figure 5.6 shows the average validation loss for the

models trained with early stopping; it indicates little concern about overfit.

Moreover, as figure 5.7 illustrates, all models tested showed convergence after

20-30 epochs.

Figure 5.6 deserves some further comment. Even on the validation set,

all models reach a steady-state loss level (for most models, after only one or a

handful of epochs). The models are clearly learning, as demonstrated by the

80

Figure 5.6: Performanceofnetworksonvalidationsetduringtraining.Topplotshowsloss,whilebottomplot
showsaccuracy.Bothdemonstratenosignofcompromisedgeneralizationperformanceduetoovertraining.
Notethatthemostcomplexnetworksdorequiresomewhatmoreepochstoconverge.

visible convergence path for the larger network models. However, we do not

see the subsequent increase in validation loss that would be expected from an

overfit model. The pattern most closely resembles the phenomenon of vanishing

gradients, in that the network has ceased to meaningfully update in either di-

rection. This would also be consistent with the lower performance of two-layer

networks compared to the single-layer networks shown in the figure.

The present models were trained using the Binary Cross-Entropy loss

81

function. It is possible that an updated loss function, such as losses approx-

imating the Earth-Mover Distance,4 would lead to ongoing training. Further

research is needed.

Figure 5.7: Plotofneuralnetworktraininglossagainstepochforselectednetworks,demonstratingrapidmodel
convergenceinallcases.Allnetworksconsistofasinglefully-connectedhiddenlayerandsingleoutputlayer,
with30%dropoutbetweenthetwo.

A surprising amount of model complexity is needed for these classifiers

to improve upon the decision stump baseline; over 2000 hidden-layer nodes are

required to improve upon the logistic regression classifier models.

Somewhat surprisingly, higher dropout leads to reduced performance;

and turning dropout off entirely sometimes yields improved performance. This

suggests, again, that overfitting is less of an issue in these models than the dis-

82

appearance of loss signal. Of course, it may also be a function of the complex

sample space.

83

6
Results

As the results discussed throughout this work demonstrate, all methods

explored seem to converge to an accuracy between 80-81%. This chapter com-

pares the best performers from each classifier methodology and discusses possi-

ble reasons for this convergence.

84

6.1 Comparison of Representative Classifiers

Model Avg Acc Std Dev
Decision Stump (baseline) 75.96% 2.10%
Logistic Regression, L1, selected features 80.36% 1.76%
SVM, RBF kernel, selected features 80.42% 1.27%
XGBoost, 450 trees, max depth 15, all features 80.81% 1.62%
Neural Network, 1 hidden layer of 3000 neu-
rons, 30% dropout, selected features

80.47% 1.81%

Table 6.1: Comparisonofhighest-accuracymethodsfromeachmethodology,listingaverageaccuracyoverfive
cross-validationfolds,andstandarddeviation.

Table 6.1 compares the results of the highest-accuracy classifiers from

each model type. All best performers converge around the 80% accuracy level,

and all results are within one standard deviation of each other.

The similarity of the top performers is further illustrated in figure 6.1,

which shows each top performer’s average accuracy ± one standard deviation.

The blue horizontal line indicates the decision stump baseline, and the red line

is the label bias. The left plot shows the range from from 60% to 85%, to make

standard errors visible. The right plot shows the full range, for scale.

All classifier types except for the baselines and SVM support probabil-

ity predictions. Figure 6.2 shows the AUPR and ROC results of each top per-

former on the same axes. Results are nearly indistinguishable on this metric

as well, with all curves falling within much less than one standard deviation of

each other.

One area in which these classifiers are distinct is in their tendency to-

ward false negatives and false positives. Table 6.2 illustrates these trends. A

85

Figure 6.1: Meanaccuracy(±onestandarddeviation)forbest-performingexamplesofeachclassifiertype.Clas-
sifiersarelogisticregressionunderL1penalty,supportvectormachineswitharadialbasisfunction,XGBoost
with450treesofmaximumdepth15,andneuralnetworkswithasingle3000-nodefullyconnectedhiddenlayer.
AllbuttheXGBoostmodelsweretrainedonthefeaturesubset.

collection of classifiers with roughly equivalent performance, but which make

different mistakes, suggests the possibility of training a stacked learner or meta-

learner which could outperform each of the individual classifiers. As discussed

in chapter 2, the current reimplementation of VIPUR includes functionality to

support this approach by supplementing the data set with predictions of other

classifiers; however, this approach has not yet been explored.

86

Figure 6.2: AUPRandROCcurvesforbest-representativeclassifiersfromallsupportedclassifiertypes.

6.2 Feature Selection Improves Accuracy

Operating on a selected subset of features improves accuracy—very slightly—for

three of the models studied. Table 6.3 lays out the improvement in results due

to limiting the feature subset, for the best-performing classifiers of each type.

The original VIPUR work5 showed that restricting the feature set re-

sulted in improvement in logistic regression models. SVM models also benefit

from restricting the feature set. More modern methods, such as neural network

models and XGBoost, are expected to benefit less from pre-training feature se-

lection, because selection and feature dropout are incorporated into their design.

Restricting the feature set does in fact reduce the accuracy of the XGBoost

models, while it (surprisingly) improves the performance of the neural network.

In the neural network case, reducing the size of the input layer vastly re-

duces the number of weights that must be learned, which improves the effective-

87

Classifier FP Count FN Count +/− Ratio
Decision Stump (baseline) 164.4 291.2 0.56
Logistic Regression, L1
Penalty, selected features

207.4 164.8 1.26

SVM (RBF), selected features 174.6 196.6 0.89
XGBoost, 450 trees, max depth
15, all features

192.0 171.8 1.12

Neural network, 1 fully con-
nected hidden layer of 3000
neurons, selected features

213.0 157.2 1.35

Table 6.2: Biasinfalsepositivesandfalsenegativesforthetopperformersofeachclassifiercategory.Allnon-
baselinemodelsshowbiastowardfalsepositives,exceptfortheRBFSVMclassifierandthedecisionstump.

Classifier Accuracy (All) Accuracy (Selection) Improvement
Log Reg L1 79.85% 80.36% 0.51%
SVM (RBF) 79.41% 80.42% 1.01%
XGB, 450 trees,
depth 15

80.81% 80.49% -0.32%

Neural Network, 3000
neurons

79.59% 80.47% 0.88%

Table 6.3: Improvementofperformanceduetofeatureselection.

ness of network training and the power of the network relative to the inputs. In

the case of XGBoost, feature selection reduces accuracy for larger forests (450

trees), but improves it for 300-tree forests. This is consistent with large forests

making use of some of the more marginal or situational features (see table 3.1)

toward the end of forest training.

6.3 No Approach Significantly Outperforms

The above results show, at best, only marginal improvement compared to the

original VIPUR. Modern, highly flexible machine learning frameworks do not

88

noticeably improve upon results from a logistic regression classifier. The results

discussed in section 5.2.4 and in figure 5.5 are of particular interest, showing a

quasi-asymptotic relationship between increased network power and increased

performance.

There is an open question of why these neural network models stop train-

ing. If the reason for this can be discovered and overcome, there is still hope

that this approach might produce more substantial improvement over the other

methods. Stacking solutions also remain to be tried.

Overall, though, the limited improvement from the methods discussed

above suggests that further development of VIPUR will be dependent upon im-

proved data and improved feature discovery. The final chapter explores some of

the possibilities for meeting these needs.

89

7
Conclusion and Future Work

The original VIPUR work was quite successful: its 80-81% accuracy, with

even more accurate results for the highest confidence levels, exceeded competing

methods at the time of its release. VIPUR continues to provide useful informa-

tion to guide lab research. Unfortunately, the present work suggests that apply-

90

ing more advanced machine learning techniques to the existing data will result

in at best incremental improvements over the original VIPUR.

The VIPUR project depends upon a set of strong assumptions: that

there exist features which are characteristic of all proteins generally, across

species and kingdoms; that these features can be extracted by known methods;

that these features can be isolated from individual protein structures indepen-

dently of the protein’s natural environment and context; and that these features

can be consistently interpreted in a way that leads to accurate deleteriousness

predictions. The first and fourth of these assumptions are foundational; but the

middle two offer considerable room for improvement. We can expand the meth-

ods used to extract features—possibly by incorporating structural features not

directly extracted using Rosetta—and incorporate protein interaction data to

avoid looking at proteins in isolation.

7.1 Data is the Limiting Factor

What is needed is not better methods, but better data. This includes both bet-

ter features, and more variant records.

Feature improvements can come from several sources. Improvements to

the Rosetta scoring function in the years since the VIPUR release2 may improve

the predictive power of some structure features.

We also need to explore new sets of features that have stronger and more

generally applicable predictive effects than the ones presented in the Vipur

Training Set.

91

One promising feature is whether the mutation occurred in a functional

region of the protein (defined as a region which comes into contact with an in-

teraction partner). Work in the Bonneau Lab under Vladimir Gligorijevic has

made significant progress in protein function prediction using neural networks.

It is hoped that we can use salience mapping23 to identify regions which are

significant for the network’s predictions. Predictive significance could act as a

proxy for the significance of the protein domain to its biological interactions.

Conversely, since inherently disordered regions of proteins are already

less rigidly structured than the rest of the protein,15 mutations to those regions

may be less sensitive to structural changes, and thus less sensitive to point mu-

tations. Knowing whether a mutation falls into such a region could guide the

decisions made by the rest of the classifier, if the classifier is sufficiently sophis-

ticated to capture interactions between features.

Baugh’s aminochangefeature, which looks specifically at residue identi-

ties,5 proved to be a strong predictor. Other features based on residue identity

may be similarly effective. I would like to expand this feature to look at win-

dows of residues on either side of the mutation. Julia Koehler Leman has sug-

gested the use of PSSM over a residue window, which is particularly appealing

given the demonstrated power of PSSM values at the point of mutation itself.

Beyond these summarized features, I would like to include residue iden-

tities of the mutation itself and of its neighbors as one-hot-encoded features in

the input set. This will greatly increase the number of features, and captur-

ing the complex interactions among these features is likely to require a neural-

92

network-based classifier. However, feature discovery is precisely the area where

neural networks have outperformed across diverse fields in recent work. Neural

network approaches to structure prediction problems have already been shown

to be both powerful and fast.3 Deleteriousness prediction should be no an ex-

ception.

Finally, more data is needed, from broader sources. The primary sources

of the VTS—UniProt, the PDB, and HumDiv—have continued to grow in the

years since the VTS was assembled. New databases have also been developed.

In particular, data about protein-protein interactions is available, which is es-

sential training information for some of the higher-order features discussed above.

VIPUR will be substantially improved by collecting data more broadly.

Whatever new data and features are identified, the new VIPUR in the

present work will accommodate them with minimal coding changes. As new

data is acquired, the current VIPUR implementation will be able to incorporate

them and integrate them seamlessly into both the classifiers investigated here,

and any new ones we wish to test, and evaluate the entire solution on a rigorous

and consistent basis.

93

A
Feature Selection Details

This appendix details the VIPUR features which were selected or rejected through

feature selection. Full details of the biochemical meaning of each feature are

available in Baugh 2016.5

94

Feature L1 count L2 count Total
aminochange* 20 20 40
pssm_difference* 20 20 40
pssm_information_content* 20 20 40
pssm_native 0 20 20
pssm_variant* 20 20 40

Table A.1: ListofVIPURsequencefeatures,withcountsofthenumberoftimesthefeaturewasselectedunder
eachmethodology.FeaturesmarkedwithanasteriskappearintheoriginalVIPURselectedfeatureset.

Feature L1 count L2 count Total
ddg_fa_pair* 20 20 40
ddg_fa_rep* 20 20 40
ddg_fa_sol* 20 20 40
ddg_hbond_sc* 20 17 37
probe_accp* 20 20 40
quartile_dslf_cs_angQ3* 20 20 40
quartile_gdtmm3_3Q1* 20 20 40
quartile_gdtmm4_3Q3* 20 20 40
quartile_pro_closeQ2* 20 20 40
quartile_ramaQ3* 20 19 39
quartile_scoreQ1* 20 20 40

Table A.2: ListofverycommonlyselectedVIPURstructuralfeatures,withcountsofthenumberoftimesthe
featurewasselectedundereachmethodology.FeaturesmarkedwithanasteriskappearintheoriginalVIPUR
selectedfeatureset.

95

Feature L1 count L2 count Total
ddg_dslf_ss_dst 9 9 18
ddg_hbond_bb_sc* 20 11 31
ddg_total_score* 20 9 29
maxsub2.0 9 18 27
quartile_allatom_rmsQ2 9 9 18
quartile_dslf_ca_dihQ1 9 20 29
quartile_dslf_ca_dihQ3 9 20 29
quartile_fa_pairQ1* 20 9 29
quartile_fa_solQ3 9 9 18
quartile_gdtmm7_4Q2 9 14 23
quartile_gdtmm7_4Q3 9 15 24
quartile_ramaQ1 9 14 23

Table A.3: Listof12structuralfeatureswhichwereselectedbybothmodelsatleast9timesoutof20.Theseare
consideredmoderatelyhigh-value.

Feature L1 count L2 count Total
quartile_allatom_rmsQ3 9 5 14
quartile_gdtmm1_1Q2 8 1 9
quartile_gdtmmQ2 9 1 10
quartile_p_aa_ppQ3* 20 2 22

Table A.4: Listoffeatureswhichwereselectedbybothselectionmethods,butgenerallyrarely.

96

Appearances Features
20 maxsub, quartile_fa_solQ1,

quartile_hbond_bb_scQ3, quartile_hbond_scQ3,
quartile_pro_closeQ1, quartile_pro_closeQ3

9 ddg_dslf_cs_ang, ddg_fa_atr,
ddg_hbond_lr_bb, ddg_hbond_sr_bb,
ddg_ref, quartile_dslf_cs_angQ1,
quartile_dslf_ss_dstQ1,
quartile_dslf_ss_dstQ3,
quartile_fa_intra_repQ3,
quartile_fa_repQ1, quartile_fa_repQ2,
quartile_gdtmm2_2Q2, quartile_gdtmm2_2Q3,
quartile_gdtmm3_3Q3, quartile_hbond_lr_bbQ1,
quartile_hbond_scQ1, quartile_hbond_sr_bbQ1,
quartile_hbond_sr_bbQ3, quartile_refQ1,
quartile_refQ2, quartile_refQ3

8 quartile_scoreQ2
4 quartile_hbond_scQ2
1 quartile_gdtmm1_1Q1, quartile_scoreQ3

Table A.5: Listof31structuralfeaturesthatwereonlyselectedbytheL1selectionmethod.

97

The following features were never selected by either selection method:

ddg_dslf_ca_dih, ddg_dslf_ss_dih, ddg_fa_dun, ddg_p_aa_pp, ddg_pro_close,
quartile_allatom_rmsQ1, quartile_dslf_ca_dihQ2, quartile_dslf_cs_angQ2,
quartile_dslf_ss_dihQ1, quartile_dslf_ss_dihQ2*, quartile_dslf_ss_dihQ3,
quartile_dslf_ss_dstQ2, quartile_fa_atrQ1, quartile_fa_atrQ2, quartile_fa_atrQ3,
quartile_fa_dunQ1, quartile_fa_dunQ2, quartile_fa_dunQ3, quartile_fa_intra_repQ1,
quartile_fa_intra_repQ2, quartile_fa_pairQ2, quartile_fa_pairQ3, quartile_fa_repQ3,
quartile_fa_solQ2, quartile_gdtmm1_1Q3, quartile_gdtmm2_2Q1, quartile_gdtmm3_3Q2,
quartile_gdtmm4_3Q1, quartile_gdtmm4_3Q2, quartile_gdtmm7_4Q1, quartile_gdtmmQ1,
quartile_gdtmmQ3, quartile_hbond_bb_scQ1, quartile_hbond_bb_scQ2, quartile_hbond_lr_bbQ2,
quartile_hbond_lr_bbQ3, quartile_hbond_sr_bbQ2, quartile_omegaQ1, quartile_omegaQ2,
quartile_omegaQ3, quartile_p_aa_ppQ1, quartile_p_aa_ppQ2, quartile_ramaQ2

98

References

[1] Adzhubei, I. A., Schmidt, S., Peshkin, L., Ramensky, V. E., Gerasimova,
A., Bork, P., Kondrashov, A. S., & Sunyaev, S. R. (2010). A method and
server for predicting damaging missense mutations. Nature Methods, 7(4),
248–249.

[2] Alford, R., Leaver-Fay, A., Jeliazkov, J. R., O’Meara, M. J., DiMaio,
F. P., Park, H., Shapovalov, M. V., Renfrew, P. D., Mulligan, V. K.,
Kappel, K., Labonte, J. W., Pacella, M. S., Bonneau, R., Bradley, P.,
Dunbrack, Jr., R. L., Das, R., Baker, D., Kuhlman, B., Kortemme, T.,
& Gray, J. J. (2017). The Rosetta All-Atom Energy Function for Macro-
molecular Modeling and Design. Journal of Chemical Theory and Compu-
tation, 13, 3031–3048.

[3] AlQuraishi, M. (2019). End-to-End Differentiable Learning of Protein
Structure. Cell Systems, 8.

[4] Arjovsky, M., Chintala, S., & Bottou, L. (2017). Wasserstein GAN.
arXiv:1701.07875.

[5] Baugh, E. H. (2017). Predicting the Effects of Protein Variants using
Structural Modeling, Large-Scale Data Integration, and Machine Learn-
ing. PhD thesis, New York University, New York, NY, USA.

[6] Baugh, E. H., Simmons-Edler, R., Müller, C. L., Alford, R. F., Volfovsky,
N., Lash, A. E., & Bonneau, R. (2016). Robust classification of protein
variation using structural modelling and large-scale data integration. Nu-
cleic Acids Research, 44(6), 2501–2513.

[7] Bengio, Y. (2009). Learning Deep Architectures for AI. Now Foundations
and Trends.

99

[8] Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weis-
sig, H., Shindyalov, I. N., & Bourne, P. E. (2000). The Protein Data
Bank. Nucleic Acids Research, 28(1), 235–242.

[9] Bishop, C. M. (2006). Pattern Recognition and Machine Learning. New
York, NY, USA: Springer.

[10] Breiman, L. (1996). Bagging Predictors. Machine Learning, 24(2).

[11] Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J.,
Bealer, K., & Madden, T. L. (2009). BLAST+: architecture and appli-
cations. BMC Bioinformatics, 10(421).

[12] Chen, T. & Guestrin, C. (2016). XGBoost: A scalable tree boosting sys-
tem. In Proceedings of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD ’16 (pp. 785–794). New
York, NY, USA: ACM.

[13] Choi, Y. & Chan, A. P. (2015). Provean web server: a tool to predict the
functional effects of amino acid substitutions and indels. Bioinformatics,
31(16), 2745–2747.

[14] Cortes, C. & Vapnik, V. N. (1995). Support-vector networks. Machine
Learning, 20(3), 273–297.

[15] Dunker, A. K., Silman, I., Uversky, V. N., & Sussman, J. L. (2008). Func-
tion and structure of inherently disordered proteins. Current Opinion in
Structural Biology, 18(6), 756–764.

[16] Efron, B. & Hastie, T. (2016). Computer Age Statistical Inference. Cam-
bridge University Press.

[17] Freund, Y. & Schapire, R. E. (1997). A decision-theoretic generalization of
on-line learning and an application to boosting. Journal of Computer and
System Sciences, 55(1), 119–139.

[18] Goldberg, Y. (2017). Neural Network Methods for Natural Language Pro-
cessing. Synthesis Lectures on Human Language Technologies. Morgan &
Claypool.

[19] Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT
Press. http://www.deeplearningbook.org.

100

http://www.deeplearningbook.org

[20] Gorman, B. (2017). A kaggle master explains gradient boosting. Kag-
gle.com official blog. Accessed from http://blog.kaggle.com/2017/01/23/
a-kaggle-master-explains-gradient-boosting/.

[21] Hocking, R. R. (1976). The Analysis and Selection of Variables in Linear
Regression. Biometrics, 32(1), 1–49.

[22] Iba, W. & Langley, P. (1992). Induction of One-Level Decision Trees. In
Proceedings of the Ninth International Conferece on Machine Learning
Aberdeen, Scotland: Morgan Kaufmann.

[23] Itti, L., Koch, C., & Niebur, E. (1998). A Model of Saliency-Based Vi-
sual Attention for Rapid Scene Analysis. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 20(11), 1254–1259.

[24] James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An Introduc-
tion to Statistical Learning with Applications in R. New York, NY, USA:
Springer.

[25] Jolliffe, I. T. (2002). Principal Component Analysis. New York, NY, USA:
Springer, 2 edition.

[26] Kellogg, E. H., Leaver-Fay, A., & Baker, D. (2011). Role of conformational
sampling in computing mutation-induced changes in protein structure and
stability. Proteins: Structure, Function, and Bioinformatics, 79(3), 830–
838.

[27] Kriesel, D. (2007). A brief introduction to neural networks. available at
http://www.dkriesel.com.

[28] Leaver-Fay, A., Tyka, M., Lewis, S. M., Lange, O. F., Thompson, J., Ja-
cak, R., Kaufman, K., Renfrew, P. D., Smith, C. A., Sheffler, W., Davis,
I. W., Cooper, S., Treuille, A., Mandell, D. J., Richter, F., Ban, Y.-E. A.,
Fleishman, S. J., Corn, J. E., Kim, D. E., Lyskov, S., Berrondo, M.,
Mentzer, S., Popović, Z., Havranek, J. J., Karanicolas, J., Das, R., Meiler,
J., Kortemme, T., Gray, J. J., Kuhlman, B., Baker, D., & Bradley, P.
(2011). Rosetta3: An Object-Oriented Software Suite for the Simulation
and Design of Macromolecules. Methods in Enzymology, 487, 545–574.

[29] Mohri, M., Rostamizadeh, A., & Talwalkar, A. (2012). Foundations of
Machine Learning. Cambridge, MA, USA: MIT Press, 1 edition.

101

http://blog.kaggle.com/2017/01/23/a-kaggle-master-explains-gradient-boosting/
http://blog.kaggle.com/2017/01/23/a-kaggle-master-explains-gradient-boosting/
http://www.dkriesel.com

[30] Murphy, K. P. (2012). Machine Learning: A Probabilistic Perspective.
Adaptive Computation and Machine Learning. Cambridge, MA, USA:
MIT Press.

[31] Ng, A. Y. (1998). On Feature Selection: Learning with Exponentially
many Irrelevant Features as Training Examples. In Proceedings of the 15th
International Conference on Machine Learning: Morgan Kauffman.

[32] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B.,
Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Van-
derplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duch-
esnay, E. (2011). Scikit-learn: Machine learning in Python. Journal of
Machine Learning Research, 12, 2825–2830.

[33] Pieper, U., Webb, B. M., Dong, G. Q., Schneidman-Duhovny, D., Fan,
H., Kim, S. J., Khuri, N., Spill, Y. G., Weinkam, P., Hammel, M., Tainer,
J. A., Nilges, M., & Sali, A. (2014). MODBASE, a database of annotated
comparative protein structure models and associated resources. Nucleic
Acids Research, 42, D336–346.

[34] Reece, J. B., Wasserman, S. A., Urry, L. A., Minorsky, P. V., Cain, M. L.,
& Jackson, R. B. (2014). Campbell Biology, 10th Ed. Boston, MA, USA:
Pearson, 10 edition.

[35] Russell, S. & Norvig, P. (2010). AI: A Modern Approach, 3rd Ed. Upper
Saddle River, NJ, USA: Pearson, 3 edition.

[36] Samek, W., Wiegand, T., & Müller, K.-R. (2017). Explainable Artificial
Intelligence: Understanding, Visualizing and Interpreting Deep Learning
Models. arXiv:1708.08296.

[37] Shalev-Shwartz, S. & Ben-David, S. (2014). Understanding Machine
Learning from Theory to Algorithms. New York, NY, USA: Cambridge
University Press.

[38] Shannon, C. E. (1948). A mathematical theory of communication. The
Bell System Technical Journal, 27, 623–656.

[39] UniProt Consortium (2007). The Universal Protein Resource (UniProt).
Nucleic Acids Research, 35, D193–197.

102

[40] Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumi-
enny, R., Heer, F. T., de Beer, T. A. P., Rempfer, C., Bordoli, L., Lepore,
R., & Schwede, T. (2018). SWISS-MODEL: homology modelling of pro-
tein structures and complexes. Nucleic Acids Research, 46(W1), W296–
W303.

[41] Word, J. M., C.Lovell, S., LaBeana, T. H., C.Taylor, H., E.Zalisa, M.,
K.Presley, B., S.Richardson, J., & C.Richardson, D. (1999). Visualizing
and quantifying molecular goodness-of-fit: small-probe contact dots with
explicit hydrogen atoms. Journal of Molecular Biology, 285(4), 1711–1733.

[42] Zou, H. & Hastie, T. (2005). Regularization and variable selection via the
elastic net. Journal of the Royal Statistical Society, 67, 301–320.

103

	Abstract
	Acknowledgments
	Introduction
	Background
	Prior Work

	Software Engineering Challenges
	Providing Structured Data Representations
	Applying Modularization to Classifiers and Data Formats
	Making Use of Standardized Machine Learning Implementations
	Support for Multi-Learner Approaches

	Analysis of the VIPUR Training Set
	Origins of the VIPUR Training Set
	Non-Uniformity of the VIPUR Training Set
	Feature Selection
	Cross-Validation Methodology

	Baseline Classification Approaches
	Modal, Random, and Decision Stump Baselines
	Logistic Regression Classifier
	Support Vector Machines

	Comparison of New Approaches
	XGBoost
	Neural Network Classifiers

	Results
	Comparison of Representative Classifiers
	Feature Selection Improves Accuracy
	No Approach Significantly Outperforms

	Conclusion and Future Work
	Data is the Limiting Factor

	Appendix Feature Selection Details
	References

