
Reasoning about Object Instances, Relations and Extents in

RGBD Scenes

by

Nathan Silberman

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science

New York University

January 2015

Rob Fergus

David Sontag

Dedication

To my family

iii

Acknowledgements

My work over the last few years would not have been possible without the efforts of my

PhD advisors. I would like to thank Rob Fergus and David Sontag for the many hours they

spent providing insight, advice and direction. Thanks to Rob for taking me on as a student,

helping me forge a path through 3D scene understanding and teaching me how to approach

problems in research. Thanks to David for his patience and his unrelenting ability to see

problems from different angles and propose creative solutions. I would also like to thank

Lakshmi Subramanian who opened the door to my academic career and made the choice of

starting a PhD an easier one.

Many thanks to my collaborators. In particular, thanks to Derek Hoiem for giving me a

better intuition for thinking about scene understanding and helping build the NYU Depth V2

dataset. Thanks to Pushmeet Kohli for teaching me about graphical models and providing

much insightful feedback on my work.

Many thanks to the other members of NYU’s learning and vision lab including Yann LeCun

who provided a constant source of discussion and perspective and Dilip Krishnan, Koray

Kavukcuoglu and Graham Taylor who’s advice and guidence was especially helpful when I

was just getting started. Special thanks to Matt Zeiler who made late-night hours in the lab

enjoyable through both technical and laughable discussion.

Thanks to Eyal Ofek and Ran Gal for an excellent experience at MSR and special thanks

to my MSR mentor Lior Shapira for our frequent discussions on efficacy versus elegance,

philosophizing, and life outside the lab.

Thanks to the entire Google Innerspace team for a fantastic summer and to Scott Satkin for

making it all possible.

Thanks to Raquel Urtasun, Sanja Fidler, Andreas Geiger, Antonio Torralba, Derek Hoiem

iv

and Jianxiong Xiao for helping to put together the RMRC workshops.

Finally, I’d like to thank my siblings, Debbie, Esther and Eyal for their constant encourage-

ment and my parents who continue to be a source of inspiration, stability and support in

my life.

v

Abstract

The vast majority of literature in scene parsing can be described as semantic pixel labeling

or semantic segmentation: predicting the semantic class of the object represented by each

pixel in the scene. Our familiar perception of the world, however, provides a far richer

representation. Firstly, rather than just being able to predict the semantic class of a location

in a scene, humans are able to reason about object instances. Discriminating between a

region that might represent a single object versus ten objects is a crucial and basic faculty.

Secondly, rather than reasoning about objects as merely occupying the space visible from a

single vantage point, we are able to quickly and easily reason about an object’s true extent in

3D. Thirdly, rather than viewing a scene as a collection of objects independently existing in

space, humans exhibit a representation of scenes that is highly grounded through a intuitive

model of physics. Such models allow us to reason about how objects relate physically: via

physical support relationships.

Instance segmentation is the task of segmenting a scene into regions which correspond to

individual object instances. We argue that this task is not only closer to our own perception

of the world than semantic segmentation, but also directly allows for subsequent reasoning

about a scenes constituent elements. We explore various strategies for instance segmentation

in indoor RGBD scenes.

Firstly, we explore tree-based instance segmentation algorithms. The utility of trees for

semantic segmentation has been thoroughly demonstrated and we adapt them to instance

segmentation and analyze both greedy and global approaches to inference.

Next, we investigate exemplar-based instance segmentation algorithms, in which a set of

representative exemplars are chosen from a large pool of regions and pixels are assigned to

exemplars. Inference can either be performed in two stages, exemplar selection followed by

pixel-to-exemplar assignment, or in a single joint reasoning stage. We consider the advan-

vi

tages and disadvantages of each approach.

We introduce the task of support-relation prediction in which we predict which objects are

physically supporting other objects. We propose an algorithm and a new set of features

for performing discriminative support prediction, we demonstrate the effectiveness of our

method and compare training mechanisms.

Finally, we introduce an algorithm for inferring scene and object extent. We demonstrate

how reasoning about 3D extent can be done by extending known 2D methods and highlight

the strengths and limitations of this approach.

vii

Contents

Dedication iii

Acknowledgements iv

Abstract vi

List of Figures xiii

List of Tables xv

1 Introduction 1

2 Background 6

2.1 RGBD Datasets . 6

2.2 Semantic Segmentation . 8

2.3 Instance Segmentation . 10

2.3.1 Foreground-Background Segmentation 10

2.3.2 Agglomerative Segmentation . 11

2.3.3 Segmentation Trees . 11

2.3.4 Clustering and Exemplar Based Segmentation 12

2.4 Support Reasoning . 12

2.5 Extent Inference . 13

3 NYU Depth Datasets 15

viii

3.1 Introduction . 15

3.2 Approach . 16

3.2.1 Capture Setup . 17

3.2.2 NYU Depth V1 . 17

3.2.3 NYU Depth V2 . 19

3.2.4 Pre-processing . 19

3.2.5 Semantic and Instance Annotations 20

3.2.6 Support Annotations . 22

4 Semantic Segmentation with 3D Priors 23

4.1 Introduction . 23

4.2 3D Location Prior . 24

4.3 Model . 26

4.4 Unary Potentials . 27

4.4.1 Appearance Model . 27

4.4.2 Location Prior . 29

4.5 Transition Potentials . 30

4.6 Experiments . 31

5 Tree-Based Instance Segmentation 36

5.1 Segmentation Trees . 37

5.1.1 Standard Segmentation Trees . 38

5.1.2 Biased Segmentation Trees . 38

5.2 Greedy Tree Training and Inference . 39

5.2.1 Initializing Segmentation . 40

5.2.2 Region Merging Classifier . 40

5.3 Global Tree Training and Inference . 41

ix

5.3.1 The Ground Truth Mapping Problem: 41

5.4 Creating the Segmentation Trees . 43

5.4.1 Standard Segmentation Trees . 44

5.4.2 Biased Segmentation Trees . 44

5.5 Cutting Instance Segmentation Trees . 45

5.5.1 Model . 45

5.5.2 Inference . 47

5.5.3 Learning . 48

5.6 Coverage Loss . 48

5.6.1 Integer Program Formulation with Loss Augmentation 49

5.7 Solving the Ground Truth Mapping Problem 50

5.7.1 Learning with Surrogate Labels . 51

5.8 Convolutional Network Features for Dense Segmentation 52

5.9 Experiments . 53

5.9.1 Evaluating Greedy Inference . 54

5.9.2 Evaluating Tree Proposal Methods 55

5.9.3 Evaluating CNN Features . 56

5.9.4 Segmentation . 57

6 Exemplar-based Instance Segmentation 61

6.1 Two Stage Inference . 62

6.1.1 Exempler Subselection . 63

6.1.2 Pixel Assignment . 65

6.2 Joint Exemplar Selection and Pixel Assignment 69

6.2.1 Dual Decomposition . 72

6.3 Pruning . 74

6.3.1 Exemplar Label Pruning . 74

x

6.3.2 Pixel-to-Exemplar Pruning . 75

6.4 Learning . 75

6.5 Experiments . 76

6.5.1 Stage 1: Subselection . 76

6.5.2 Stage 2: Pixel and Superpixel Assignment 77

6.5.3 Evaluating Two-Stage and Joint Inference 79

7 Inferring Physical Support Relations 82

7.1 Introduction . 82

7.2 Modeling Support Relationships . 84

7.2.1 The Model . 84

7.2.2 Integer Program Formulation . 87

7.2.3 Support Features and Local Classification 88

7.2.4 Structure Class Features and Local Classification 90

7.3 Experiments . 91

7.3.1 Evaluating Support . 91

7.3.2 Evaluating Structure Class Prediction 93

8 Extent Reasoning 96

8.1 Introduction . 96

8.2 Plane Detection and Classification . 98

8.2.1 Computing the Optimal H . 100

8.2.2 Semantic Labeling . 100

8.3 Scene Completion . 101

8.3.1 Completion as a Labeling Problem 101

8.3.2 Contour Completion Random Field 102

8.3.3 Defining Edge Groups . 103

xi

8.3.4 Hierarchical Edge Groups . 105

8.3.5 Inference with Hierarchical Edge Groups 107

8.3.6 Inferring Scene Boundaries . 108

8.3.7 Extending Planar Surfaces . 109

8.4 Augmenting the Original Volume . 109

8.5 Experiments . 110

8.5.1 Synthetic validation . 110

8.5.2 Single Frame Scene Completion . 111

8.5.3 Qualitative Analysis . 112

9 Conclusions 118

Appendix 120

A MPLP Message Passing 120

A.1 Maximizing Subproblems: Exemplar Potentials 121

A.2 Maximizing Subproblems: Pixel Potentials 121

A.3 Maximizing Subproblems: Tree Potentials 121

A.4 Maximizing Subproblems: Pixel-Exemplar Agreement 123

A.5 Maximizing Subproblems: Class-Cardinality Potentials 125

A.6 Maximizing Subproblems: Pairwise Potentials 127

A.7 Block Coordinate Update for Tree Potential’s λ Variables 127

A.8 Block Coordinate Update for Agreement Potentials λ′ Variables 129

A.9 Block Coordinate Update for Agreement Potentials δ′ Variables 129

A.10 Block Coordinate Update for Cardinality Potentials λ′′ Variables 130

A.11 Block Coordinate Update for Pairwise Potentials δ Variables 131

Bibliography 132

xii

List of Figures

1.1 An illustration of the limits of semantic segmentation 2

1.2 Choosing a scene represetation . 3

2.1 Example scenes from the Cornell RGBD dataset 7

2.2 Example scenes from the Berkeley 3-D Object Dataset 8

2.3 An exemple of Scene Collaging . 9

3.1 A typical indoor scene captured by the Microsoft Kinect 16

3.2 Our scene capture system . 18

3.3 Exemples of depth filling results . 21

3.4 Examples of physical support labels . 22

4.1 Examples of relative depth histograms . 25

4.2 Finding extremal points of a room . 25

4.3 Visualizing 3D location priors . 26

4.4 Visualizing 2D location priors . 30

4.5 Per Class improvement when using 3D location priors 33

4.6 Examples of semantic segmentation results 35

5.1 Examples of Agglomerative Segmentation . 39

5.2 The ground truth mapping problem . 43

5.3 Comparing greedy tree inference features . 54

5.4 Visualizing the effects of region merging on upper bound scores 55

xiii

5.5 Visualizing Instance Segmentation Results 60

6.1 Limitations of Learning with Coverage . 65

6.2 Visualizing Stage 1 Results . 78

6.3 Visualizing Stage 2 Results . 80

6.4 Visualizing Joint Exemplar Inference Results 81

7.1 Overview of Support Inference Pipeline . 84

7.2 Comparison of support inference algorithms 93

7.3 Accuracy of structure class prediction . 94

7.4 Examples of support and structure class inference 95

8.1 Overview of extent inference pipeline . 98

8.2 Fast Parabola Fitting . 105

8.3 Contour Completion Random Field . 106

8.4 Results of in-painting on synthetic images 114

8.5 Comparing extent inference to support surface prediction 115

8.6 Progressive surface reconstruction and scene completion 116

8.7 Examples of extent inference application to augmented reality 116

8.8 Examples of extent inference results . 117

xiv

List of Tables

3.1 Statistics of captured sequences from NYU Depth V1 18

3.2 Statistics of captured sequences from NYU Depth V2. 20

4.1 Evaluating feature descriptors for semantic segmentation 32

4.2 Evaluating location priors . 33

4.3 Evaluating spatial transition potentials . 34

5.1 Agglomerative Segmentation features . 42

5.2 Segmentation results on the testing set. 56

5.3 A comparison on region-feature descriptors on ground truth regions. 57

5.4 Segmentation results on the NYU Depth V2 Dataset 59

5.5 Evaluating the use of the Coverage Loss . 59

6.1 List of Pixel to Exemplar Unary Features . 67

6.2 List of pairwise features used for pixel assignment CRF 68

6.3 Evaluating subselection models . 76

6.4 Evaluating Pixel and Superpixel Assignment 77

6.5 Evaluating Joint Exemplar Inference . 79

7.1 Features for physical support inference . 89

7.2 Features for structure class prediction . 90

7.3 Results of physical support inference . 93

xv

8.1 Evaluating Single Frame Scene Completion 112

A.1 Transition Potentials for BP-based Tree Cutting 122

xvi

Chapter 1

Introduction

While humans expend little effort to parse and interpret complex visual scenes, state-of-the-

art computer algorithms still struggle to match such abilities. Most efforts to mimic human

visual recognition capabilities constitute of one of three tasks. Firstly, image classification

involves assigning an image to one of a number of discrete labels. Secondly, detection in-

volves placing a rectangular bounding box around an object of a predefined class. Thirdly,

semantic segmentation involves assigning each pixel in an image to one of a number of dis-

crete labels. While algorithms that perform these tasks have advanced to the point that

they are commonly and profitably used in both academia and industry, these tasks alone

still represent a poor approximation of the visual experience.

Where classification produces a single label, an image might correctly be described by various

means. Detection algorithms rely heavily on finding quantifyable objects and their geometry

but many images contain materials, (such as liquids, grass and sand) that are amorphous

and do not exhibit any typical shape. While semantic segmentation produces a map of

pixels to semantic classes, it fails to represent information about object instances and cannot

discriminate between an image that contains 1 chair and 5 chairs.

1

Figure 1.1: An illustration of the limits of semantic segmentation: (a) the input image. (b)
a perfect semantic segmentation; note all of the chair pixels are labeled blue. (c) a naive
instance segmentation in which all connected components of the same class are considered
separate instances of the chair class. (d) a correct instance segmentation, which correctly
reasons about instances within contiguous segments and across occlusions.

In constrast, instance segmentation, the task of grouping pixels together that belong to the

same object instance and labeling each region with a semantic class, is able to deal with all

of these issues. Instance segmentations can be used to describe a scene as it contains a list

of the scene’s objects. Furthermore, it’s not limited to articulated objects and can be used

to discriminate counts of objects.

Furthermore, while all of these tasks focus heavily on semantics, humans are able to reason

accurately about a scene and its parts in ways that are non semantic. Without knowing an

object’s semantic class, we are able to reason about how that object is situated in a room

and how it’s physically supported. We understand the consequences of physical interaction

and are able to determine by visual inspection alone whether an object perched on another

will likely rest safely or fall. Finally, human’s intuitive sense of geometry allows us to reason

about objects’ true extents in 3D space. Unfortunately, such tasks cannot be performed via

a classification, detection or semantic segmentation. Reasoning about both physical support

and object extent inherantly requires an instance segmentation of the scene.

Reasoning about instances, support and extent also have various practical benefits. Robotics

applications in which a single object must be grasped or moved require a clean instance

segmentation for estimating where on the object to grab or push. A robot that can only lift

2

Figure 1.2: What is the right representation for a scene? (a) A single label such as ”bed-
room” doesn’t capture the messiness and clutter of the scene while ”messy bedroom” doesn’t
describe the objects present. (b) Detection is very useful for detecting articulated objects
but is less useful for labeling the sand or water in the center image. (c) Semantic segmen-
tation can indicate the presence of cars but cannot discriminate between a single car and a
multitude of crowded cars In contrast instance segmentation provides a representation which
captures all of these elements.

a certain number of objects needs to be able to count the number of objects present before

acting. Search queries such as ”three cups in a row” require understanding the difference

between a single instance and three. Reasoning about support relations is also a critical

faculty required of robotics algorithms. If a robot aims to obtain a book supporting a cup

of hot coffee, it must first infer that the book is supporting the cup before it can decide to

move the cup first before recovering the book. Finally, extent reasoning is important for

augmented reality. Obtaining high fidelity scene geometry is important for many augmented

reality applications such as gaming, virtual furniture placement and shopping experiences

and augmented television experiences. However, collecting geometry information from a

scene is tedious for the average user and more intelligent algorithms that can infer plausible

scene geometry from a small sample will speed up the adoption and ease of use of augmented

reality games and tools.

These alternative domains of visual reasoning have attracted increased attention concurrent

with another trend in computer vision: combining RGB and depth (RGBD) inputs for visual

3

processing. With the introduction of cheap depth cameras, one is able to circumvent the

problem of reasoning about scene geometry from color alone. The depth image provided

by a depth camera provides direct access to part of the scene’s geometry and allows for

the exploration of algorithms that are able to reason about the full room geometry, ob-

ject’s true physical extents, physical support relations and improved semantic and instance

segmentation.

To help advance research in RGBD scene understanding, we introduce two new RGBD scene

datasets. Where previously proposed datasets were either too small or contained artificial

or simple objects and scenes, our datasets contain real world indoor scenes exhibiting large

amounts of clutter, occlusion and lighting variation as well as a large number of different

semantic classes. These datasets have become the de-facto standard for RGBD-based visual

recognition tasks including semantic segmentation, depth from RGB, surface normals from

RGB, 3D detection and instance segmentation.

Our first thread of investigation concerns semantic segmentation. We adapt several RGB

based features to the RGBD domain, introduce a novel 3D location prior and demonstrate

the effectiveness of the prior in improving semantic segmentation.

Next, we study the problem of tree-based instance segmentation. Segmentation trees are

commonly used by state-of-the-art methods in semantic segmentation. We demonstrate how

to adapt these trees to the task of instance segmentation and illustrate two methods of

training these trees: the first greedy and the second global.

While the use of trees makes inference efficient, tree creation is imperfect and introduces

errors from which our instance segmentation cannot recover. To address this limitation,

we investigate exemplar-based instance segmentation algorithms. In these algorithms, ex-

emplars are selected from a pool of regions and pixels are assigned to exemplars. This

process can be done in two separate stages or jointly and we analyze the advantages and

4

disadvantages of each.

We introduce the new task of support reasoning. In this task, we are given an instance

segmentation and must reason about which objects in the scene are physically supported by

which other objects. We demonstrate that a relatively simple set of hand-crafted features

allows us to train a discriminative model that performs the task of support inference with a

high degree of accuracy.

We also introduce a method for performing automatic extent inference of rooms and planar

object surfaces. While a high fidently thorough 3D mapping of an interior space would be of

great use for gaming and augmented reality, such a model is expensive and time consuming

to obtain. We introduce an algorithm that is able to reason about scene and planar surface

extents. Given a partial model obtained from a limited viewpoint, we automatically complete

the boundaries of the room and extend the planar surfaces of the scene to provide a physically

plausible 3D scene model.

5

Chapter 2

Background

2.1 RGBD Datasets

Early usage of RGBD data was heavily focused on outdoor environments. Saxena et al. [?]

[?] introduced two datasets of outdoor scenes for the purposes of depth estimation from

RGB images. Gould et al. [?] extended this work by adding semantic labels for several

classes. Munoz et al. [?] created a dataset of sparse depth and dense RGB images from a

laser scanner mounted on a driving car. In the indoor domain, Gould et al. [?] combined

laser range finder data with RGB images to create a dataset of indoor images while Quigley

et al. [?] used a laser-line scanner to create a dataset of indoor scenes with several classes to

aid a robotic door-opening task. These early works introduced the task of depth estimation

from RGB images and allowed for detection and segmentation algorithms that reasoned more

explicitely in 3D than their RGB-only counterparts. While being novel and innovate, these

datasets are either exclusively limited to outdoor scenes or capture a set of indoor scenes

with a large degree of homogeneity. Furthermore, the semantic classes captured are limited

to a very small set of objects.

6

Following the release of the Kinect, a number of RGBD datasets were released. Lai et al. [?]

introduce a dataset of single objects presented in front of a simple background. The images

contain isolated objects with uncluttered backgrounds rather than entire scenes making their

dataset qualitatively similar to COIL [?].

Figure 2.1: Example scenes from the Cornell RGBD dataset [?]. The dataset contains 24
labeled point clouds from office scenes and 28 labeled point clouds from home interiors.

Koppula et al. [?] introduce a dataset of indoor point clouds for a number of home and

office scenes. Unlike our datasets, theirs is focused on point clouds and not single images

(Figure 2.1). Karayev et al. [?] introduce a similar dataset of indoor scenes. It contains

many more object labels than previous datasets but its labels are limited to bounding boxes

(Figure 2.2 making it unsuitable to either semantic or instance segmentation. Finally Xiao

et al. [?] introduce a dataset of indoor scenes qualitatively similar to our own with indi-

vidually labeled frames that can be propagated to entire video sequences. However, theirs

currently contains only a single scene and video sequence completely labeled.

7

Figure 2.2: Example scenes from the Berkeley 3-D Object Dataset. [?]. The dataset contains
848 RGBD images but is limited to bounding box labels, rather than semantic or instance
segmentation labels.

2.2 Semantic Segmentation

The task of semantic segmentation has attracted much attention. Inspired by early work

including Kumar et al. [?], He et al. [?] and Shotten et al. [37], many semantic segmentation

algorithms follow a similar approach. First, the likelihood of each pixel taking on a particu-

lar label is determined via a classifier using local appearance information. While such early

approaches to semantic segmentation were characterized by pixel-based features and low

order potentials, various region-based features and higher order potentials have been pro-

posed leading to improved semantic segmentation results. Kohli et al [22] produce multiple

superpixelations with various parameters and introduce a higher-order terms encouraging

pixels that fall into the same superpixel regions to take on the same semantic label. Ladicky

et al. [?] use the output of a series of object detectors to create higher order potentials that

encourage the pixel-wise labeling to be consistent with the detections.

Nonparametric methods have also been proposed that transfer labels from a dataset to new

images. Liu et al. [?] create a dataset of semantic segmentations of outdoor scenes. For a

8

new image, they find a nearest neighbor match in their dataset and map the semantic labels

onto the query image by computing a flow-vector field from the dataset image to the query

image. Given a query image Isola and Liu [?] use a dictionary of scenes and regions to create

a label collage from various similar and related images in their dataset.

Figure 2.3: In the work of Isola and Liu [?] query images are assigned semantic labels by
combining labeled regions from a non-parameteric dataset of scenes.

Several approaches have explored various feature descriptors and algorithms applied to the

RGBD domain. Ren et al. [?] introduce a series of kernel descriptors which exhibit ex-

cellent performance in RGBD semantic segmentation. Couprie et al. [?] train a multiscale

convolutional neural network directly on RGBD image patches.

Once common thread in all of these methods is that they produce a semantic labeling from

which instance information cannot easily be recovered. A single cluster of contiguous pixels

taking on the same semantic label might represent any number of objects.

Various previous works use location priors to improve semantic segmentation accuracy. The

seminal work of Shotton et al. [37] use a 2D location prior that captures the likelihood

of a semantic class appearing in various parts of the image plane. Gould et al. [?] use a

2D relative location prior to encourage segmentations whose classes appear at predictable

relative positions from one another. Inspired by the work of [?], Choi et al. [?] use a relative

9

location prior by assuming a simple projective geometry based on the height of the object

in the image plane.

2.3 Instance Segmentation

2.3.1 Foreground-Background Segmentation

Instance segmentation is inherant to the task of foreground-background segmentation. In this

task, the pixels of an image are split into two sets: a foreground set of pixels and a background

set of pixels. Early work in this area [?] demonstrated that a bayesian interpretation of the

inference problem resulted in a formulation that could be optimized via max-flow min-cut

algorithms. Shi and Malik [?] introduced an alternative graph partitioning scheme that takes

both inter-group dissimilarity and intra-group similarity into account.

Subsequent work in foreground-background segmentation made much larger strides by fo-

cusing on assuming a specific semantic class [?], jointly reasoning over semantic classes and

segmentations [?] [?] or allowed the task to be performed iteratively [?] [?] [?].

Unfortunately these algorithms are not well suited for cluttered scenes as they rely on there

being a multi-model color distribution, a single large object in the foreground, or a highly

discriminative shape that may be matched by a deformable template. In contrast, our work

is able to produce an object-instance segmentation for multiple objects simultaneously. We

make no prior assumptions about how many objects there are, nor their prominance in the

scene.

10

2.3.2 Agglomerative Segmentation

Hoiem et al [17] introduced an agglomerative clustering method for greedily merging regions

that belong to the same object instance. Ren and Shakhnarovich [34] explore the effects of

using a more conservative and deeper agglomerative segmentation tree. We explore the use

of these types of trees in Chapter 5.

2.3.3 Segmentation Trees

Motivated by the observation that a single segmentation of an image is unlikely to produce a

perfect result, numerous approaches [9] [30] [35] [33] make use of multiple segmentations of an

image. These approaches differ in how they use the various segmentations and whether the

regions proposed are strictly hierarchical or structureless. Starting with [9], various efforts

[22] [24] have used multiple independent segmentations in a pixel labeling task.

Several works [6] [18] use a structureless bag of regions to perform segmentation in which

inference is composed of a search for the best non-overlapping set of regions that respects

object boundaries. However, neither work uses semantics for reasoning. Rather than use

arbitrary or structureless regions as input, an increasing number of approaches [26] [31]

[27] [11] have been introduced that utilize hierarchical segmentations to improve semantic

segmentation. These models are trained to cut a segmentation tree such that the resulting

cut produces high pixel-wise accuracy.

Higher order losses for segmentation have also been previously explored. Tarlow et al.

[40] introduce the Pascal Loss which smoothly minimizes the overlap score [10] of a single

foreground/background segmentation. The Pascal Loss is closely related to the Coverage

loss (Section 5.6).

11

A crucial difference between the two is that in the case of Pascal Loss, the best overlapping

region is specified a priori (there is only one region, the foreground), whereas in the Coverage

Loss, the best overlapping region can only be computing by jointly reasoning over every

proposed region.

2.3.4 Clustering and Exemplar Based Segmentation

Various clustering-based schemes have also been introduced that might be used to produce

object-instance segmentations. Comaniciu and Meer [8] introduced the Mean shift algorithm

to iteratively cluster pixels together based on intensity and spatial location. Givoni and

Frey presented Affinity Propagation [?] in which a subset of data points or pixels are used

as exemplars to which all other points are assigned. Kim et al [21] create a hierarchy of

segments over which a hypergraph is constructed. Each hyperedge in the graph indicates

whether or not the associated regions belong to the same object instance.

Tarlow et al [?] introduce a novel message passing scheme for incorporating priors on the

number of clusters in an exemplar-based clustering scheme. The recent work of He and

Gould [?] is similar to our own in they too cast the object-instance segmentation problem as

a labeling problem where the labels represent exemplars. However, their method assumes a

single known semantic class and cannot infer the identity of multiple classes.

2.4 Support Reasoning

The goal of inferring support relations is most closely related to Gupta et al. [?], who apply

heuristics inspired by physical reasoning to infer volumetric shapes, occlusion, and support

in outdoor scenes. Our 3D cues provide a much stronger basis for inference of support, and

12

our dataset enables us to train and evaluate support predictors that can cope with scene

clutter and invisible supporting regions. Russell and Torralba [?] show how a dataset of user-

annotated scenes can be used to infer 3D structure and support; our approach, in contrast,

is fully automatic.

2.5 Extent Inference

In recent years there have been a number of papers that reason about the scene shape or

extent. Barinova et al [?] geometrically parse a single image to identify edges, parallel lines

and vanishing point, and a level horizon. Hedau et al [?] estimate the layout of a room from

a single image, by using a generalized box detector. This approach is not well suited to

completing either highly occluded scenes or non-rectangular objects. Ruiqi and Hoiem [14]

attempt to predict occluded surfaces using a learning-based approach. This method is limited

by the number of classes which can be learned, and does not infer the extent of the hidden

objects. A more recent paper by the same authors [?] is more relevant to our approach.

They detect a set of supporting horizontal surfaces in a single-image depth frame, and their

extent is deduced using the features at each point and surrounding predictions. However,

they do not attempt to infer the full scene layout and limit themselves to support-related

objects.

Our work in extent inference is also related to scene augmnetation. Kim et al. [?] augment

and accelerate reconstruction of complex scenes by carefully scanning and modeling objects

which repeat in the scene, in advance. These objects (e.g. office chairs, monitors) are then

matched in the noisy and incomplete point cloud of the larger scene, and used to augment it.

This approach is less suited to capturing a new environment, in which we cannot model the

repeating objects independently (given that there are any). Kim et al. [?] jointly estimate

13

the 3D reconstruction of a scene, and the semantic labels associated with each voxel, on a

coarse 3D volume. Their method works best with simple occlusions and does not extend

the volume to estimate the overall shape of the room. Zheng et al. [?] employ physical

and geometrical reasoning to reconstruct a scene. Their method relies on successful object

segmentation, and a Manhattan-world assumption. They fill occluded parts of objects by

extrapolating along the major axes of the scene. However, none of these methods can handle

previously unseen object and surfaces with non-linear boundaries.

14

Chapter 3

NYU Depth Datasets

3.1 Introduction

With the introduction of the Microsoft Kinect, computer vision has exhibited a renewed

interest in RGBD based vision algorithms and 3D reasoning techniques. Where laser range

finders are expensive and often difficult to calibrate, the Kinect is cheap and easy to use.

Its adoption along with similar cameras has led to improved results in various tasks such as

pose estimation, pedestrian detection, tracking, segmentation and SLAM.

These efforts have been made possible by the release of 3D datasets that have allowed

researchers to train models requiring a significant amount of data and that permit reliable

comparison of algorithmic performance. Previous datasets (Section 2.1), however, have been

limited in several ways. Firstly, most of the images in previous datasets do not exhibit

diversity in terms of lighting conditions, object types or backgrounds. Many are taken

outdoors or are of simple indoor office scenes. Secondly, while a few of these datasets have

been annotated with semantic class labels [?] [?], these semantic classes are limited to a

very small set of classes and rarey contain pixel-wise labels. Thirdly, previous datasets failed

15

Figure 3.1: A typical indoor scene captured by the Microsoft Kinect. (a): Webcam image.
(b) Raw depth map (red=close, blue=far). (c) Labels obtained via Amazon Mechanical
Turk. (d) After a homography, followed by pre-processing to fill in missing regions, the
depth map (hue channel) can be seen to closely aligned with the image (intensity channel).

to capture real-world indoor scenes relating to everyday life (bedrooms, bathrooms, living

rooms, etc). Finally, no previous dataset recorded dense, pixel-wise semantic and instance

labels.

To address these shortcomings, we introduce two new datasets: NYU Depth V1 and NYU

Depth V2. These datasets capture a large number of varied, indoor, everyday scenes. The

images exhibit large amounts of occlusion, lighting variation and clutter not commonly found

in previous datasets of indoor scenes. In both datasets, around 1000 different semantic classes

can be found.

Both datasets have made a large impact on the field of computer vision. They are both

commmonly used for benchmarking various tasks including contour segmentation [?], [15],

[?], [?] semantic segmentation [?], [?], [?], [?], [?] 3D detection [?], depth from RGB [?], [?],

normals from RGB [?], [?], [?] and physics based reasoning [19].

3.2 Approach

Both datasets were collected using the Microsoft Kinect I sensor. This device uses structured

light methods to give an accurate depth map of the scene, which can be aligned spatially

and temporally with the device’s webcam (see Fig. 3.1).

16

3.2.1 Capture Setup

The Kinect has two cameras: the first is a conventional VGA resolution webcam that records

color video at 30Hz. The second is an infra-red (IR) camera that records a non-visible

structured light pattern generated by the Kinect’s IR projector. The IR camera’s output

is processed within the Kinect to provide a smoothed VGA resolution depth map, also at

30Hz, with an effective range of ∼0.7–6 meters. See Fig. 3.1(a) & (b) for typical output.

The Kinect requires a 12V input for the Peltier cooler on the IR depth camera, necessitating

a mains adapter to power the device (USB sockets only provide 5V at limited currents).

Since the mains adapter severely limits portability of the device, we remove it and connect a

rechargeable 4200mAh 12V battery pack in its place. This is capable of powering the device

for 12 hours of operation. The output from the Kinect was logged on a laptop carried in a

backpack, using open-source Kinect drivers [?] to acquire time synchronized image, depth

and accelerometer feeds. The overall system is shown in Fig. 3.2(a). To avoid camera shake

and blur when capturing data, the Kinect was strapped to a motion-damping rig built from

metal piping, shown in Fig. 3.2(b). The weights damp the motion and have a significant

smoothing effect on the captured video.

Both the depth and image cameras on the Kinect were calibrated using a set of checkerboard

images in conjunction with the calibration tool of Burrus [?]. This also provided the homog-

raphy between the two cameras, allowing us to obtain precise spatial alignment between the

depth and RGB images, as demonstrated in Fig. 3.1(d).

3.2.2 NYU Depth V1

We visited a range of indoor locations within a large US city, gathering video footage with

our capture rig. These mainly consisted of residential apartments, having living rooms,

17

Figure 3.2: (a): Our capture system with a Kinect modified to run from a battery pack. (b)
Our capture platform, with counterweights to damp camera movements.

bedrooms, bathrooms and kitchens. We also captured workplace and university campus

settings. From the acquired video, we extracted frames every 2–3 seconds to give a dataset of

2347 unique frames, spread over 64 different indoor environments. The dataset is summarized

in Table 3.1.

Scene class Scenes Frames Labeled Frames

Bathroom 6 5588 76

Bedroom 17 22764 480

Bookstore 3 27173 784

Cafe 1 1933 48

Kitchen 10 12643 285

Living Room 13 19262 355

Office 14 19254 319

Total 64 108617 2347

Table 3.1: Statistics of captured sequences from NYU Depth V1

18

3.2.3 NYU Depth V2

The second version of the dataset was gathered from a wide range of commercial and res-

idential buildings in three different US cities. To ensure diverse scene content and lack of

similarity to other frames, each room was scanned from several locations including its cor-

ners and center. From each room filmed, we manually selected at most three frames carefuly

chosen to ensure each image provided a distinct viewpoint of the room. A dense per-pixel

labeling was obtained for each image using Amazon Mechanical Turk. The dataset con-

tains 35,064 distinct objects, spanning 894 different classes. A breakdown of the type and

frequency of scenes captures can be found in Table 3.2.

3.2.4 Pre-processing

Following alignment with the RGB webcam images, the depth maps still contain numerous

artifacts. Most notable of these is a depth “shadow” on the left edges of objects. These

regions are visible from the depth camera, but not reached by the infra-red laser projector

pattern. Consequently their depth cannot be estimated, leaving a hole in the depth map.

A similar issue arises with specular and low albedo surfaces. The internal depth estimation

algorithm also produces numerous fleeting noise artifacts, particularly near edges.

Before extracting features for recognition, these artifacts must be removed. To do this,

we filtered each image using the cross-bilateral filter of Paris [?]. Using the RGB image

intensities, it guides the diffusion of the observed depth values into the missing shadow

regions, respecting the edges in intensity. Examples of our in-painting method are shown in

Figure 3.3.

19

3.2.5 Semantic and Instance Annotations

The selected frames from each dataset were uploaded to Amazon Mechanical Turk and

manually annotated using the LabelMe interface [?]. The annotators were instructed to

provide polygonal labels for every object instance in the scene such that no object was left

unlabeled (see Fig. 3.1(c)). Furthermore, each polygon label was named with both a semantic

class and an instance (e.g. cup1, cup2, cup3).

Scene class Scenes Frames Labeled Frames

Basement 1 2,025 7

Bathroom 57 26,331 121

Bedroom 134 101,697 383

Bookstore 3 27,173 36

Cafe 1 1,933 5

Classroom 20 13,911 49

Computer Lab 2 1,904 6

Conference Room 2 1,426 5

Dinette 1 746 4

Dining Room 37 46,973 117

Excercise Room 1 904 3

Foyer 2 727 4

Furniture Store 2 11,395 27

Home Office 14 13,367 50

Home Storage 1 1,120 5

Indoor Balcony 1 330 2

Kitchen 53 66,635 225

Laundry Room 1 472 3

Living Room 77 94,693 221

Office 26 21,068 78

Office Kitchen 3 3,117 10

Playroom 7 6,725 31

Printer Room 1 582 3

Reception Room 4 4,556 17

Student Lounge 1 1,895 5

Study 8 3,935 25

Study Room 4 3,437 7

Total 464 459077 1449

Table 3.2: Statistics of captured sequences from NYU Depth V2.

20

Figure 3.3: Examples of the results of the depth filling procedure. The first two rows
demonstate scenes with small amounts of missing depth values which are filled plausibly.
The coffee table’s depth values are entirely missing in the third row but the filled depth still
provides a plausible depth result. An example of poor depth filling is found in the fourth
row where the piano and piano seat are completely missing depth values.

21

3.2.6 Support Annotations

Along with the semantic and instance annotations, we also provide support annotations

for the NYU Depth V2 dataset. These annotations define a physical support relation type

between two objects in the scene. Specifically, a support annotations consists of a set of

3-tuples: [Ri, Rj, type] where Ri is the region ID of the supported object, Rj is the region

ID of the supporting object and type indicates whether the support is from below (e.g. cup

on a table) or from behind (e.g. picture on a wall).

Figure 3.4: An example of the support labels. Each label indicates the supported region,
the supporting region and the direction of support.

22

Chapter 4

Semantic Segmentation with 3D

Priors

4.1 Introduction

Many efforts have been expended attempting to craft useful priors for semantic segmentation.

While certain priors like co-occurance [?], [?], relative 2D locations [?] [?] or absolute 2D

location [37] have been shown to improve semantic segmentation performance, they do not

reason about the 3D locations of objects in the scene. We propose a new 3D location prior

that captures the likelihood of objects appearing in different parts of the room relative to

the room’s boundaries. We show that such a prior improves semantic segmentation accuracy

on a RGBD dataset and provides better performance than standard 2D priors.

23

4.2 3D Location Prior

Given a dataset of aligned RGB and depth frames, along with semantic labels for each

pixel, our goal is to build a 3D location prior for each semantic class. By projecting each

depth pixel out into 3D space, we can estimate the 3D position of each object in the scene.

However, since each scene has a unique size and shape, we cannot trivially combine this

position data across scenes. The design of our 3D prior is motivated by three empirical

constraints (C1-C3):

C1: While the absolute depth of an individual object in a scene is arbitrary with respect to

the location of the viewer, objects of different classes exhibit a high degree of regularity with

respect to their relative depths in a room. Figure 4.1 highlights several examples. Walls are

obviously at the farthest depths of rooms, televisions tend to placed just in front of them,

and tables and beds are much more likely to occupy regions near the center of a scene.

C2: Many objects tend to be clustered near the edges of a room, such as walls, blinds,

curtains, windows and pictures. Consequently, we want a non-linear scaling function that

places increased emphasis on depths near the boundaries of a room.

C3: While objects show regularity in relative depth, any representation of an objects prior

location must be somewhat invariant to the viewer moving around the room.

Our solution, therefore, is to normalize the depth of an object, using the depth of the room

itself. We assume that in any given column1 of the depth map, the point furthest from the

camera is on the bounding hull of the room. Figure 4.2 demonstrates the reliability of the

procedure in separating the boundaries of the room from objects of similar depth. We scale

the depths of all points in a given column so that the furthest point has relative depth z̃ = 1.

This effectively maps each room to a lie within a cylinder of radius 1. This allows us to build

1This is assisted by the pitch and roll correction made in pre-processing.

24

0.25 0.50 0.75 1
0

0.5

1

1.5

2

2.5

3

3.5

4

Relative Depth z

Pr
ob

ab
ili

ty
 D

en
si

ty

0.25 0.50 0.75 1
0

1

2

3

4

5

6

7

8

9

Relative Depth z

Pr
ob

ab
ili

ty
 D

en
si

ty

0.25 0.50 0.75 1
0

1

2

3

4

5

6

7

8

Relative Depth z

Pr
ob

ab
ili

ty
 D

en
si

ty

0.25 0.50 0.75 1
0

0.5

1

1.5

2

2.5

3

3.5

4

Relative Depth z

Pr
ob

ab
ili

ty
 D

en
si

ty

Table Television

WallBed

~ ~

~ ~

Figure 4.1: Relative depth histograms for table, television, bed and wall. As walls usually
are on the boundary, they cluster near z̃ = 1. Televisions lie just inside the room boundary,
while tables and beds are found in the room interior.

the highly regular depth profiles for each class.

Figure 4.2: A demonstration of our scheme for finding the boundaries of the room. In this
scene, the blue channel has been replaced by a binary mask, set to 1 if the depth of point
is within 4% of the maximum depth within each column (and 0 otherwise). The walls of
the room are cleanly identified, while segmenting objects of similar depth such as the fire
extinguisher and towel dispenser. On the right, the cabinets and sink are correctly resolved
as being in the room interior, rather on the boundary.

Within this normalized reference frame, we then build histograms from the 3D positions of

objects in the training set. These 3D histograms are over (h, ω, z̃) where h is the absolute

25

scene height relative to the horizon (in meters); ω is angle about the vertical axis and z̃ is

relative depth.

In addition, we use a non-linear binning for z̃. This produces very fine bins near the bound-

aries of the room, allowing us to discriminate between the many objects at the extremal

edges of the room (satisfying C2), and coarse bins at the center of the room, giving us a

degree of invariance to the camera’s position (satisfying C3).

Similar to the 2D versions, the 3D histograms are normalized so that they sum to 1/C for

each class (see Fig. 4.3 for examples). During testing, the extremal depth for each column

in the depth map is found and the relative 3D coordinate of each point can be computed.

Looking up these coordinates in the 3D histograms allows us to measure the probability of

a class label given its relative 3D location: P (yi, i).

Table
Television

ω

z = 0.21

W
all

~ z = 0.55~ z = 0.76 z = 0.87 z = 0.93 z = 0.98~ ~ ~ ~

-45 -450

0

(deg)

2

-1.5

h
(m

et
er

s)

Figure 4.3: 3D location priors for wall, television and table. Each column shows a different
relative depth z̃. For each subplot, the x-axis is orientation ω about the vertical and the
y-axis is height h (relative to the horizon). The non-linear bin spacing in z̃ gives a more
balanced distribution than linear spacing used in Fig. 4.1.

4.3 Model

We now describe the model used to measure baseline performance for the dataset. Like

many other multi-class segmentation approaches [?, ?], we model the problem of semantic

26

segmentation using a conditional random field (CRF). This formulation will allow us to

explore a variety of different potential functions and permits efficient approximate inference

[?].

Formally, given an image I with N pixels, we wish to find a labeling y = {yi ∈ C, i = 1 . . . N}

where C is the number of semantic classes. The energy of labeling is defined as:

E(y) =
∑
i∈N

φi(xi) +
∑
i,j∈N

ψij(yi, yj) (4.1)

where xi are features for pixel i, N is the set of all neighboring pixels, φi is the unary cost

function and ψij is a pairwise cost function.

4.4 Unary Potentials

The unary potential function φ is the product of two components, a local appearance model

and a location prior.

φ(xi, i|θ) = − log(P (yi|xi)︸ ︷︷ ︸
Appearance

P (yi, i)︸ ︷︷ ︸
Location

) (4.2)

4.4.1 Appearance Model

Our appearance model P (yi|xi) is discriminatively trained using a range of different local

descriptors. Rather than extract descriptors at every pixel in the image, we extract pixel-

centric descriptors (fPi) from a sample of the pixels defined by a fixed lattice. Next, we

compute a coarse superpixelation of the scene and the descriptors are aggregated over each

27

superpixel to produce a superpixel descriptor fSs for each superpixel s in the scene. Because

we seek a pixel-wise probability function, we define P (yi|xi) = P (yi|fSs) where pixel i ⊂ s.

Extracting local descriptors

Local pixel-centric descriptors are first extracted over a dense grid with stride 10. Each

descriptor fPi is extracted from a patch centered at pixel i of size 40×40. We extract several

types of local descriptors:

• RGB-SIFT: SIFT descriptors are extracted from the RGB image.

• Depth-SIFT: SIFT descriptors are extracted from the depth image. These capture

both large magnitude gradients caused by depth discontinuities, as well as small gra-

dients that reveal surface orientation. The depth image is normalized such that its

smallest value is 0 and largest value is 1.

• Depth-SPIN: Spin image descriptors [?] are extracted from the depth map. To

review, this is a descriptor designed for matching 3D point clouds and surfaces. Around

each point in the depth image, a 2D histogram is built that counts nearby points as a

function of radius and depth. The histogram is vectorized to form a descriptor.

We also propose several approach that combine information from the RGB and depth images:

• RGBD-SIFT: SIFT descriptors are extracted from both depth and RGB images. At

each location, the 128D descriptors both images are concatenated to form a single 256D

descriptor x
(s)
i at each scale s.

• RGB-SIFT/D-SPIN: Spin image descriptors are extracted from the depth map,

while SIFT is extracted from the RGB image.

28

Aggregating local descriptors

Given a collection of descriptors of a particular type, we learn a sparse coding dictionary [?]

and represent each pixel-centric descriptor fPi by its sparse coded coefficients gPi . Next, the

coefficents are aggregated over a course superpixelation (Section ??) of the image to produce

a superpixel descriptor:

fSs =

∑
i∈s f

P
i

||
∑

j

∑
i∈s f

P
ij ||

(4.3)

where j indexes the dimensions of the descriptor. The denominator has the effect of ensuring

that the sum of the dimensions of fSs is 1.

Inferring Superpixel Labels

Given a collection of superpixel descriptors fSs , we train a simple neural network with a

single hidden layer of size H(= 1000) and a soft-max output layer of dimension C, which is

interpreted as P (yi|fSs). It has parameters θ (two weight matricies of sizes (D+ 1)×H and

(H + 1)× C) which are learned using back-propagation and a cross-entropy loss function.

4.4.2 Location Prior

Our location prior P (yi, i) can take on two different forms. The first captures the 2D location

of objects, similar to other context and segmentation approaches (e.g [?]). The second is a

novel 3D location prior that leverages the depth information.

2D location priors: The 2D priors for each class are built by averaging over every training

image’s ground truth label map y∗. To provide a degree of 2D spatial invariance, we then

29

smooth the averaged map with an 11 × 11 Gaussian filter. To compute the actual prior

distribution P (yi, i), we normalize each map so it sums to 1/C, i.e.
∑

i P (yi, i) = 1/C.

Note that this assumes the prior class distribution to be uniform2. Figure Fig. 4.4 shows the

resulting distributions for 4 classes.

Picture Bed Bookshelf Cabinet

Figure 4.4: 2D location priors for select object classes.

4.5 Transition Potentials

The transition potentials term is a spatially varying Potts model [?]:

ψij(yi, yj) = η(i, j)[yi 6= yj] (4.4)

where η is a spatially varying transition term that incurs cost only when neighboring pixels

differ in their label assignments. We explore several options using a potential of the form:

η(i, j) = η0 e
−αmax(|I(i)−I(j)|−t,0) (4.5)

where |I(i)− I(j)| is gradient between adjacent pixels i, j in image I, t is a threshold and α

and η0 are scaling factors. We use η0 = 100 for all the following methods:

• None: The baseline method is to keep η(i, j) = 1 for all i, j in the CRF. The smooth-

ness of the labels y is then solely induced by the class transition potential ψ.

2In practice, if the true class frequencies are used, common classes would be overly dominant in the CRF
output.

30

• RGB Edges: We use IRGB in Eqn. 4.5, thus encouraging transitions at intensity edges

in the RGB image. α = 40 and t = 0.04.

• Depth Edges: We use IDepth in Eqn. 4.5, with α = 30 and t = 0.1. This encourages

transitions at depth discontinuities.

• RGB + Depth Edges: We combine edges from both RGB and depth images, with

η(i, j) = βηRGB(i, j) + (1− β)ηDepth(i, j) and β = 0.8.

• Super-Pixel Edges: We only allow transitions on the boundaries defined by the

super-pixels, so set η(i, j) = 1 on super-pixel boundaries and η0 elsewhere.

• Super-Pixel + RGB Edges: As for RGB-Edges above, but now we multiply

|I(i)− I(j)| in Eqn. 4.5 by the binary super-pixel boundary mask.

• Super-Pixel + Depth Edges: As for Depth-Edges above, but now we apply the

binary super-pixel boundary mask to |I(i)− I(j)|.

4.6 Experiments

We now evaluate our CRF-based model using the fully labeled set of 2347 frames. The

annotations cover over 1000 classes, which we reduce using a Wordnet synonym/homonym

structure to 12 common categories plus a generic background class (containing rare objects).

We generated 10 different train/test splits, each of which divides the data into roughly 60%

train and 40% test. The error metric used throughout is the mean diagonal of the confusion

matrix, computed for per-pixel classification over the 13 classes on the test set.

Unary Appearance

We first use our dataset to compare the local appearance models listed in Section 4.4.1, with

the results shown in Table 4.1. We show the performance of the unary potential (with no

31

location prior) in isolation, as well as the full CRF (sans spatial transition potential). The

first row in the table, which makes no use of depth information achieves 43.4% accuracy. We

note that: (i) combining RGB and depth information gives a significant performance gain

of ∼5%; (ii) the CRF model gives a gain of ∼2.5% and (iii) the SIFT-based descriptors

outperform the SPIN-based ones.

Descriptor Unary Only CRF

RGB-SIFT (SRGB) 40.9 ± 3.0 43.4 ± 3.3

RGB-SIFT (SRGBD) 40.4 ± 2.8 43.3 ± 3.1

Depth-SIFT 39.3 ± 2.2 41.1 ± 2.5

Depth-SPIN 34.0 ± 2.8 35.8 ± 3.1

RGBD-SIFT 45.8 ± 2.6 48.1 ± 2.9

RGB-SIFT/D-SPIN 42.5 ± 1.5 45.0 ± 1.6

Table 4.1: A comparison of unary appearance terms using mean per-pixel classification
accuracy. All methods in this table compute appearance using SRGBD super-pixels apart
from the 1st row.

Unary Location

We now investigate the effect of location priors in our model. Table 4.2 compares the effect

of the 2D and 3D location priors detailed in Section 4.4.2. All methods used SRGBD super-

pixels and no spatial transition potentials in the CRF. The 2D priors give a modest boost

of 2.8% when used in the CRF model. However, by contrast, our novel 3D priors give a

gain of 10.3%. We also tried bulding a prior using absolute 3D locations (3D priors (abs) in

Table 4.2), which did not use our depth normalization scheme. This performed very poorly,

demonstrating the value of our novel prior using relative depth. The overall performance

gains for each of the 13 classes, relative to the RGB-SIFT (SRGB) model (1st row of Table 4.1,

which makes no use of depth information), is shown in Fig. 4.5. Using RGBD-SIFT and 3D

priors, gains of over to 29% are achieved for some classes.

In Fig. 4.6 we show six example images, each with label maps output by the RGB-SIFT+2D

32

Descriptor Unary Only CRF

RGB-SIFT 40.9 ± 3.0 43.4 ± 3.3

RGB-SIFT+2D Priors 45.7 ± 2.8 46.2 ± 2.8

RGBD-SIFT 45.8 ± 2.6 48.1 ± 2.9

RGBD-SIFT+2D Priors 49.2 ± 2.2 49.9 ± 2.3

RGBD-SIFT+3D Priors 53.0 ± 2.2 53.7 ± 2.3

RGBD-SIFT+3D Priors (abs) 38.7 ± 3.2 39.9 ± 3.5

Table 4.2: A comparison of location priors.

−20%

0

20%

40%

class

ba
ck

gr
ou

nd be
d

bl
in

ds

bo
ok

sh
el

f

ca
bi

ne
t

ce
ilin

g

flo
or

pi
ct

ur
e

so
fa

ta
bl

e

te
le

vis
io

n

wa
ll

wi
nd

ow

m
ea

n
di

ag
on

al
 g

ai
n

RGB-SIFT + 2D prior + CRF (Mean = 46.2%)
RGBD-SIFT + CRF (Mean = 48.1%)
RGBD-SIFT + 3D prior + CRF (Mean = 53.7%)

Figure 4.5: The per-class improvement over RGB-SIFT (SRGB) + CRF (which uses no depth
information), for models that add depth and 3D location priors. The large gains benefits of
adding depth information to both the appearance and location potentials.

Priors and RGBD-SIFT+3D Priors models. The RGB model (2nd column) makes mistakes

which are implausible based on the object’s 3D location. The RGBD and 3D prior model

gives a more powerful spatial context, with its label map (3rd column) being close to that

of ground truth (4th column).

Spatial Transition Potentials

Table 4.3 explores different forms for the spatial transition potential. All methods use unary

potentials based on SRGBD super-pixels and RGBD-SIFT + 3D prior. The results show that

using an RGB-based spatial transition gives a performance gain of 2.8%. Using the depth

or super-pixel constraints does not give a significant gain however.

33

Type CRF

None 53.7 ± 2.3

RGB Edges 56.6 ± 2.9

Depth Edges 53.9 ± 3.1

RGB + Depth Edges 56.5 ± 2.9

Super-Pixel Edges 54.7 ± 2.4

Super-Pixel + RGB Edges 56.4 ± 3.0

Super-Pixel + Depth Edges 53.0 ± 3.0

Table 4.3: A comparison of spatial transition potentials. Mean per-pixel classification accu-
racy (in %).

34

Picture

BedBackground

Floor

Blind

Sofa

Window

Table

Cabinet

Television

Ceiling

Wall

Bookshelf

Image RGB+2D Priors RGBD+3D Priors Ground Truth

Figure 4.6: Six example scenes, along with outputs from 2 different models. See text for
details. This figure is best viewed in color.

35

Chapter 5

Tree-Based Instance Segmentation

Semantic segmentation models have made great strides in the last few years. From early

efforts to densely label scenes [37], numerous advances including reasoning with multiple

segmentations [26], higher-order label constraints [22] and fast inference mechanisms [27]

have advanced the state of the art considerably. One limitation in all of these methods,

however, is their inability to differentiate between different instances of the same class. This

limitation is illustrated in Figure 1.1.

The ability to differentiate between instances of the same class is important for a variety of

tasks. In image search, one needs to understanding instance information to properly under-

stand count-based searches: “three cars waiting at a light” should retrieve different results

from “a single car waiting at the light”. Robots that interact with real world environments

need to be able to understand instance information as well. For example, when grasping

a bottle from a collection of bottles, the pixels that represent the target bottle instance

must be identified as being different from those around it. Furthermore, when picking up a

box a robot needs to distinguish between a single box and a stack of them. Finally, being

able to correctly infer object instances drastically improves performance on high level scene

36

reasoning tasks such as support inference [32] or inferring object extent [14].

Unfortunately, searching over the space of all semantic and instance segmentations for a

given image is computationally infeasible and we must limit the solution space to make the

problem tractable. Like previous work in semantic segmentation [26] [31] [27] [11], we make

use of hierarchical segmentations, referred to as segmentation trees, to limit the search space

to a more manageable size.

We explore two different inference schemes for learning to cut segmentation trees to produce

instance segmentations: a greedy model and a global model. The greedy model is trained

to merge regions together that belong to the same instance. The final (coarsest) level of

the segmentation tree represents the results of segmentation inference. While the greedy

inference scheme is simple to train, it unfortunately limits our ability to (a) undo mistakes

and (b) reason about both segments and semantics at the same time. Conversely, our global

inference model is more difficult to train but it allows us to reason across levels of the

segmentation tree, simultaneously predicting both the best instance segmentation and the

appropriate semantic class for each region.

5.1 Segmentation Trees

A set of regions or segments S = {s1, . . . , sR} forms a valid segmentation tree T = {S, P}

for an image I if it satisfies the following constraints:

Completeness: Every pixel Ii is contained in at least one region of S.

Tree Structure: Each region si has at most one parent: P (si) ∈ {∅, sj}, j 6= i

Strict Nesting: If P (si) = sj, then the pixels in si form a strict subset of sj

37

A cut T (A) of the tree selects a subset SA ⊂ S of segments that form a planar segmentation,

a map M : Ii 7→ Z from each pixel Ii to exactly one region. The goal of this work is to

take as input a segmentation tree and cut it such that the resulting planar segmentation is

composed of a set of regions, each of which corresponds to a single object instance in the

input image.

We will make use of two types of segmentation trees: standard segmentation trees and biased

segmentation trees.

5.1.1 Standard Segmentation Trees

We use the term standard segmentation tree to refer to a hierarchical segmentation created

by iteratively merging similar regions together [34] [17] [3]. To summarize, given an initial

over-segmentation, adjacent regions are iteratively merged together to produce ever coarser

segmentations of the scene. The decision of whether or not to merge a pair of regions is

typically based on a classifier or series of classifiers that predict whether a pixel or edge

between regions represents an object boundary based on local appearance cues. The tree

structure is consequently defined as follows. If two regions ri and rj were merged to produce

a new region rk, then ri and rj are said to be the children of rk. If regions ri and rk were

created during the same stage, they are said to have the same height or belong to the same

level of the tree.

5.1.2 Biased Segmentation Trees

A biased segmentation tree is a tree that contains, as a possible cut a pre-specified planar

segmentation. This can be produced by (a) ensuring that the initial segmentation respects

the biasing segmentation and (b) never merging two regions if they fall into different regions

38

Figure 5.1: Segmentation Examples. We show two examples of hierarchical segmenta-
tion. Starting with roughly 1500 superpixels (not shown), our algorithm iteratively merges
regions based on the likelihood of two regions belonging to the same object instance. For
the final segmentation, no two regions have greater than 50% chance of being part of the
same object.

in the biasing segmentation. More formally, if a region ri is a subset of biasing region b1 and

region rj is a subset of biasing region b2, then ri and rj can never be merged. However, if ri

and rj are both subsets of b1 or both subsets of b2, then they are merged according to the

logic of the segmentation tree model.

5.2 Greedy Tree Training and Inference

For our greedy tree training scheme, we adapt the agglomerative segmentation model of

Hoiem et al. [17] to RGBD images. We begin with an initial fine oversegmentation of the

scene. Over a series of 5 stages, regions are iteratively merged to form coarser and coarser

segmentations culminating in a final segmentation of the scene. In each stage, a separate

classifier is trained to predict whether or not a pair of adjacent regions represent the same

object instance and thus whether the pair should be merged. Following training, regions are

merged in order of decreasing confidence until a minimum confidence threshold is reached.

39

5.2.1 Initializing Segmentation

To create an initial set of regions, we use the watershed algorithm applied to Pb boundaries,

as first suggested by Arbeleaz [?]. After fitting a series of 3D planes (Section 8.2), we force

this oversegmentation to be consistent with the detected planes. This primarily helps to

avoid regions that span wall boundaries with faint intensity edges. We also experimented

with incorporating edges from depth or surface orientation maps, but found them unhelpful,

mostly because discontinuities in depth or surface orientation are usually manifest as intensity

discontinuities. Our initial oversegmentation typically produces around 2000 regions, such

that very few regions overlap more than one object instance.

5.2.2 Region Merging Classifier

At each stage, we train a classifier to predict whether or not neighboring regions belong

to the same object instance. In particular, we train a boosted decision tree classifier as

P(yi 6= yj|xsij), where yi is the instance label of the ith region and xsij are paired region

features. The classifier is trained using similar RGB and position features to Hoiem et al. [17],

but the “geometric context” features are replaced with ones using more reliable depth-based

cues. These proposed 3D features encode regions corresponding to different planes or having

different surface orientations or depth differences are likely to belong to different objects.

Both types of features are important: 3D features help differentiate between texture and

objects edges, and standard 2D features are crucial for nearby or touching objects.

If more than two boundaries separate a pair of neighboring regions (due to earlier merging),

the composite strength is computed as the maximum of the individual boundary strengths.

As the regions grow, their features change and new features become useful. For this reason,

we estimate new boundary costs at several thresholds. In our implementation, separate

40

trained classifiers predict boundary strength for the initial superpixels and then at 5 iterative

stages. Merging at each stage stops when no boundaries remain whose merge probability is

less than some threshold (0.8 in our experiments). See Figure 5.2 for two examples of this

procedure.

5.3 Global Tree Training and Inference

By inferring the best possible cut of a segmentation tree across all levels of the hierarchy,

we have the ability to undo mistakes made in early stages of merging. Unfortunately, two

problems complicate global training: defining the ground truth and selecting the appropriate

loss function.

5.3.1 The Ground Truth Mapping Problem:

When using a reduced search space, such as one provided by a given hierarchical segmenta-

tion, it is extremely rare that the exact ground truth regions are among the set of bottom-up

proposed regions, due to mistakes made at detecting object boundaries. Therefore, during

training, we must be able to map the human-provided labels to a set of surrogate labels,

defined on the set of proposed regions.

In semantic segmentation, these surrogate labels are typically produced by simply assigning

each proposed region the semantic label of the ground truth region that it overlaps with the

most. This heuristic is easy to compute, can be performed for each region independently,

and achieves good empirical results on semantic segmentation.

Obtaining these surrogate labels is problematic for semantic-instance segmentation. The

constraint that the regions must not non-overlap means the best possible subset of regions

41

Segmentation Feature Descriptions Dims

Boundary 8
B1. Strength: average Pb value 1
B2. Length: perimeter of each region; (boundary length) / (smaller

perimeter)
3

B3. Smoothness: length / (L1 endpoint distance) 1
B4. Continuity: minimum angle difference at each junction 2
B5. Long-range: number of chained boundaries 1

Region 19
R1. Color: diff in RGB histogram entropy for separate regions vs

merged region
1

R2. Color: diff in RGB mean/std near region borders and within
region interiors; for each channel separately and overall RMS

16

R3. Area: fraction of image occupied by each region 2

3D Surface 16
S1. Normals: difference in surface normal of planes fit to each re-

gion
1

S2. Normals: diff in hist of polar coord of normals within each
region (4 inclinations, 4 azimuths)

8

S3. Planes: difference in plane labels 1
S4. Planar fit: mean/med/max diff of pt positions to other region’s

plane
3

S5. Planar fit: mean/med/max diff of pt normals to other region’s
plane

3

3D Position/Volume 14
P1. Volume: intersection / smaller volume; ratio of volumes of the

regions
2

P2. Volume distance: min dist of 3D bounding boxes; 3D centroid
dist

2

P3. Footprint overlap: intersection / smaller XY bbox area 1
P4. Footprint distance: min dist of XY bboxes; XY centroid dist 2
P5. Shape: ratio of height to footprint for each region 2
P6. Height: diff in min and max heights above ground 2
P7. Height: diff in min and max heights above ground 2
P8. Density: diff in point densities (num region pixels / volume) 1

Table 5.1: Agglomerative Segmentation features. Note: differences are all absolute
differences. Volumes and footprints are computed based on axis-aligned 3D bounding box
fits to 3D points of the region.

42

Figure 5.2: Computing the best possible set of instances that overlap with the ground truth
cannot be computed independently per ground truth region. For example, ground truth
region 2 best overlaps with proposed region A and ground truth region 1 best overlaps with
proposed region B. But both proposed regions A and B cannot be selected at the same time
because they overlap.

cannot be computed independently as the inclusion of one region may exclude the inclusion

of another (see Figure 5.2). Therefore, computing the ‘best possible’ instance segmentation

with respect to a segmentation tree is an optimization problem in its own right.

Identifying a Good Loss Function:

In semantic segmentation, it is easy to penalize mistakes: a region is either assigned the cor-

rect or incorrect label. In our setting, we require a more continous measure, since an inferred

region might not exactly match the ‘best’ region, but it might be extremely close (e.g. dif-

fering by a single pixel). Although previous continuous higher order loss functions exist

(e.g. [40]) , these loss functions cannot handle the multiple ground truth regions encountered

in complex scenes.

5.4 Creating the Segmentation Trees

When training globally, we make use of both standard and biased segmentation trees. How-

ever, we use a different methods for creating the trees than those outlined in Section 5.2.

43

5.4.1 Standard Segmentation Trees

Given an image with N pixels, we begin by producing a graph with N nodes where each

node corresponds to a pixel in the image. For each pair of neighboring pixels, an edge is

added between the corresponding graph nodes. The edge weights will indicate the probability

that each pair of neighboring pixels represents a boundary between object instances. As in

[3], the edge weights are computed by first extracting gPb features [29] and calculating the

Ultrametric Contour Map (UCM). To create a segmentation, edges lower than some threshold

are removed and the induced regions are the connected components of the resulting graph.

This process is repeated with various thresholds to create finer or coarser regions. The unique

superset of regions produced by the various thresholded region maps form a tree T such that

each region is represented as a node and any pair of region ri, rj are the children of region

rk if ri and rj were merged to produce rk.

5.4.2 Biased Segmentation Trees

To create our biased segmentation trees, we first threshold the UCM to obtain a base set

of regions. Next, we split these regions further by taking the intersection of every ground

truth region with the segmented regions. To create the segmentation tree, we use the same

algorithm as in Section 5.4.1, except that the nodes correspond to the regions and edge

weights for neighboring regions are given by the average gPb values for pixels near their

boundary. Any boundary aligned with a ground truth edge is given a weight of 0. Finally,

a coarser set of regions is obtained by repeating this process starting from the ground truth

regions.

44

5.5 Cutting Instance Segmentation Trees

Given an image and a segmentation tree, our goal is find the best cut of the tree such that

each of the resulting regions corresponds to a single instance of an object and is assigned

the appropriate semantic class.

Let a cut of the tree be represented by {A : Ai ∈ {0, 1}, i = 1..R}, a vector indicating whether

or not each of the R regions in the tree are selected. Let {C : Ci ∈ {1..K}, i = 1..R} be a

vector indicating the semantic class (out of K) of each region. Finally let y = {A,C} be

the combined output of semantic labels and region instances.

5.5.1 Model

We frame tree cutting as a structured prediction problem by optimizing over the space Y of

region selections and semantic class assignments for a given segmentation tree. Formally, we

predict using

y∗ = arg max
y∈Y

wTφ(x, y) (5.1)

where x represents the input image, y encapsulates both the region selection vector A and

class assignments C, and w represents a trained weight vector. φ is a feature function on the

joint space of x and y such that wTφ(x, y) can be interpreted as measuring the compatibility

of x and y. wTφ(x, y) can be decomposed as follows:

wTφ(x, y) = wTregφreg(x, y) + wTsemφsem(x, y) + wTpairφpair(x, y) + φtree(y) (5.2)

45

The generic region potentials encode class-agnostic appearance features of selected re-

gions:

φreg(x, y) =
R∑
i=1

f reg
i [Ai = 1] (5.3)

where f reg
i are region features extracted from region i. The semantic compatibility fea-

tures capture class-specific features of each region:

φsem(x, y) =
K∑
k=1

R∑
i=1

f sem
i [Ai = 1 ∧ Ci = k] (5.4)

where k is the semantic class and f sem
i are semantic features extracted from region i. The

pairwise features φpair(x, y) are given by

∑
ij∈E

fpair
ij [Ai = 1 ∧ Aj = 1] (5.5)

where E is the set of all adjacent regions and fpair
ij are pairwise features extracted along

the boundary between regions i and j. Finally, the tree-consistency function φtree(y)

enforces the Completeness condition of segmentation trees (Section 5.1): every pixel must

be explained by exactly one region. To satisfy this condition, the potential ensures that

exactly one region along every path from the leaf nodes to the root node of the tree is

selected:

φtree(y) =
∑
γ∈Γ

−∞
[
1 6=

∑
i∈γ

1[y.Ai = 1]
]

(5.6)

where γ is a single path in the tree: a set of regions that includes a leaf and all of its

ancestors. Γ is the set of all paths in the tree from the leaves to the root.

46

5.5.2 Inference

We first show how the inference task, arg maxy∈Y w
Tφ(x, y), can be formulated as an integer

linear program. To do so, we introduce binary variable matrices to encode the different

states of A and C and auxiliary vector variables to encode the pairwise states. Let a ∈ BR×2

encode the states of A such that ai,0 = 0 indicates that region i is not selected and ai,1 = 1

indicates that region i is selected. Let ci,k encode the states of C such that ci,k = 1 if Ci = k

and 0 otherwise. Finally, let p ∈ BE×1 be a vector which encodes whether any neighboring

pair of regions are both selected where E is the number of neighboring regions.

Our integer linear program can be stated as:

arg max
a,c,p

R∑
i=1

θr
iai,1 +

R∑
i=1

K∑
k=1

θs
i,kci,k +

∑
ij∈E

θp
ijpij (5.7)

s.t. ai,0 + ai,1 = 1 ∀ i ∈ R (5.8)

ai,0 = ci,0 ∀ i ∈ R (5.9)

K∑
k=0

ci,k = 1 ∀ i ∈ R (5.10)

∑
i∈γ

ai,1 = 1 ∀ γ ∈ Γ (5.11)

pij ≤ ai,1, pij ≤ aj,1, ai,1 + aj,1 − pij ≤ 1 ∀ i, j ∈ E (5.12)

where θr
i = wTregf

reg
i is the cost of selecting region i, θs

i,j = wTsem:kf
sem
i is the cost of assigning

region i to semantic class k and θp
ij = wTpairf

pair
ij is the cost of selecting neighboring regions i

and j. Equation 5.8 ensures that each region is either active or inactive. Equation 5.9 ensures

that if a region is inactive, then it cannot be assigned a semantic class. Equation 5.10

constrains each region to be assigned to at most a single semantic class. Equation 5.11

ensures that exactly one region in each of the paths of the tree (from each leaf to most

47

coarse node) is active. Equation 5.12 ensures that the auxiliary pairwise variable pij is on if

and only if both regions i and j are selected.

5.5.3 Learning

Let D = {(x(1), y(1)), ...(x(N), y(N))} be a dataset of pairs of images and labels where y(i) =

{A,C} comprises the best assignment of segments from the pool and semantic class labels

for image i. We use a Structured SVM [42] formulation with margin re-scaling to learn

weight vector w:

min
w, ξ≥0

1

2
wTw +

λ

N

N∑
i=1

ξi (5.13)

s.t. w · [φ(x(n), y(n))− φ(x(n), y)] ≥ ∆(y, y(n))− ξn ∀n, y ∈ Y

where ξi are slack variables for each of the training samples 1..N , and λ is a regularization

parameter. We define the loss function used in the following section.

5.6 Coverage Loss

Let a ground truth set of regions for an image be represented as G = {rG1 , ...rG|G|} and let

S = {rS1 , ...rS|S|} be a proposed set of regions, respectively. We measure the overlap of two

regions using the intersection over union score for a pair of regions ri and rj:

Overlap(ri, rj) =
ri ∩ rj
ri ∪ rj

(5.14)

48

The weighted coverage score [17] measures the similarity between two segmentations:

Coverageweighted(G,S) =
1

|I|
|
|G|∑
g=1

|rGg | max
s=1..|S|

Overlap(rGg , r
S
s). (5.15)

where |G| is the number of regions in G and |S| are the number of regions in S, |I| is the

number of pixels in the entire image and |rGg | is the number of pixels in ground truth region

rGg . We define the Coverage Loss function to be the amount of coverage score unattained by

a particular segmentation:

∆W1(y
(i), ȳ) =

1

|Ii|

|Gi|∑
g=1

|r(i)
g |
[
1− max

s:Ās=1
Overlap(r(i)

g , r̄s)
]

(5.16)

where y(i) is the ground truth label for image i and ȳ is a predicted cut and semantic

assignment for the image. The sum is computed over each of the |Gi| ground truth regions

in y(i) and the max is over each of the predicted selected regions in Ā. |Ii| is the total number

of pixels in the image and |r(i)
g | is the number of pixels in the g’th ground truth region of

image i.

5.6.1 Integer Program Formulation with Loss Augmentation

During training, most structured learning algorithms [20] [25] need to solve the loss aug-

mented inference problem, in which we seek to obtain a high energy prediction that also has

high loss:

y∗ = arg max
ȳ∈Y

∆(y(i), ȳ) + wTφ(x, ȳ) (5.17)

To solve the loss augmented inference problem, we introduce an additional auxiliary matrix

o ∈ BG×R where G represents the number of ground truth regions and R represents the

number of regions in the tree. The variable ogj will be 1 if region rj is the argmax in (5.16)

49

for the ground truth region g, and 0 otherwise. To ensure this, we add an additional set of

constraints:

ogi ≤ ai,1 ∀ g ∈ G, ∀i ∈ R (5.18)

R∑
i=1

ogi = 1 ∀ g ∈ G (5.19)

ogi + aj,1 ≤ 1 ∀g ∈ G, i, j ∈ R s.t. Overlap(sg, sj) > Overlap(sg, si) (5.20)

Equation (5.18) ensures that a prediction region i can only be considered the maximally

overlapping region with ground truth region g if it is a selected region. Equation (5.19)

ensures that every ground truth region is assigned exactly 1 overlap region. Finally, Equation

(5.20) ensures that prediction region i can only be assigned the maximal region of g if and

only if no other region j that has greater overlap with g is active.

The ILP objective is then altered to take into account the coverage loss:

arg max
a,c,p,o

R∑
i=1

θr
iai,1 +

R∑
i=1

K∑
k=1

θs
i,kci,k +

∑
ij∈E

θpijpij +
G∑
g=1

R∑
i=1

θo
giogi (5.21)

where θogi encodes the loss incurred if region i is selected and region i is the region with the

highest overlap with ground truth region g among all other ground truth regions.

5.7 Solving the Ground Truth Mapping Problem

Because the ground truth semantic and instance annotations are defined as a set of regions

which are not among our segmentation tree-produced regions, we must map the ground truth

annotations onto our segmented regions in order to learn. To do so, we build upon the ILP

formulation described in the previous section.

50

Formally, given a ground truth set of instance regions G = {rg1, ...r
g
RG
} and a proposed tree

of regions S = {r1, ...rRP
}, the cut of the tree that maximizes the weighted coverage score is

given by the following ILP:

arg min
a,o

G∑
g=1

R∑
i=1

θo
giogi

subject to ai,0 + ai,1 = 1 ∀i ∈ R,
∑

i∈γ ai,1 = 1 ∀γ ∈ Γ, and Equations (5.18),(5.19), and

(5.20).

5.7.1 Learning with Surrogate Labels

When the segmentation trees contain the ground truth regions as a possible cut, the minimal

value of the Coverage Loss (Equation 5.16) is 0. However, in practice, the segmentation

trees that we use only sample a small number of regions and it is rare that the ground truth

regions are among them. Consequently, we must learn to predict a set of surrogate labels

{z(1), ..., z(N)} instead.

We modify the loss used in training to ensure that the magnitude of the surrogate loss of a

prediction ȳi is defined relative to the best possible cut z(i):

∆W2(z
(i), ȳ) = ∆W1(y

(i), ȳ)−∆W1(y
(i), z(i)) (5.22)

Note that the first term in the loss can be pre-computed and simply serves the purpose of

modifying the scale so that getting the notation of margin is equivalent for all data points

and is with respect to the best possible cut in a given segment tree. It should be clear than

when y(i) = z(i), that ∆W2 = ∆W1 .

51

5.8 Convolutional Network Features for Dense Seg-

mentation

While Convolutional Neural Networks (CNNs) have show impressive performance in Classi-

fication [23] and Detection [36] tasks, it has not yet been demonstrated that CNN features

improves dense segmentation performance. Recently [13] showed how to use a pretrained

convolutional network to improve the ranking of foreground/background segmentations on

the PASCAL VOC dataset. Because most of the segmented objects in the PASCAL VOC

dataset occupy such a large part of the scene, it is not obvious that a similar scheme will

succeed on densely labeled scenes where many objects are so small that they require context,

and not local shape information, to identify them. Furthermore, because CNNs are generally

trained on RGB data (no RGBD data exists with enough labeled examples to properly train

these deep models) it is unclear whether CNN features provide an additionl performance

boost when combined with depth features. To investigate these unknowns, we evaluted

RGB+D features, CNN features and the combination of the two. To generate our CNN

features, we use the model from [23] extract the CNN features on sub-windows that tightly

surround a given arbitrarily shaped region. Because a particular subwindow of an image

may contain multiple objects, there is an inherent ambiguity in the use of subwindows for

computing CNN features. To deal with this ambiguity, we experimented with three types of

masking operations performed on each subwindow before the CNN features were computed.

Firstly, we perform no masking (Normal Windows). Secondly, we blur the subwindow (Mask

Blurred Windows) with a blur kernel whose radius increases with respect to the euclidean

distance from the region mask. This produces a subwindow that appears focused on the

object itself. Finally, we use the masking operation from [13] (Masked Windows) in which

any pixels falling outside the mask are set to the image means so that the background regions

have zero value after mean-subtraction.

52

While we experimented with using the final pooled convolutional layer and the two fully

connected layers, we did not observe a major difference in performance when using any of

these three. To reduce the capacity of the model, we used the first fully connected hidden

layer, which has fewer dimensions that the pooled layer, as the CNN feature vector for a

given region.

We additionally experiment with a superset of features from [15] and [32] as well as compare

the convolutional network features to Sparse Coded SIFT features from [38]. The pairwise

region features are likewise a superset of pairwise region and boundary features from [15]

[32].

5.9 Experiments

To evaluate our instance-segmentation scheme, we use the NYU Depth V2 [32] dataset.

While datasets like Pascal VOC [10], Berkeley [5] and MSRC [37] are frequently used to

evaluate segmentation tasks, MSRC does not provide instance labels and the Berkeley dataset

provides neither semantic nor instance labels. Pascal only contains a few segmented objects

per scene, mostly at the same scale. Conversely the NYU Depth dataset has densely labeled

scenes with instance masks for objects of highly varying size and shape.

While the original NYU V2 dataset has over 800 semantic classes, we mapped these each

of these classes to one of 20 classes: cabinet, bed, table, seating, curtain, picture, window,

pillow, books, television person, sink, shelves, cloth, furniture, wall, ceiling, floor, prop and

structure. We use the same classes for evaluating both the CNN features and the semantic

instance segmentation.

53

5.9.1 Evaluating Greedy Inference

To evaluate our greedy inference scheme, we analyze several properties of the inferred trees.

Firstly, we compare the results of using RGB only, Depth only and combined RGBD features.

As demonstrated in Figure 5.3, both RGB-only and Depth-only features perform similarly

RGB Features Depth Features RGBD Features
30

35

40

45

50

55

60

65

70
C

ov
er

ag
e

S
co

re

Weighted
Unweighted

Figure 5.3: Comparing the performance on greedy tree inference using RGB only, Depth
only and combined RGBD features.

with regard to unweighted performance, with its higher focus on small objects, but the

depth features do provide a boost in terms of weighted performance, with its higher focus on

larger objects like walls, floors, and furniture. Clearly, the combined set of RGBD features

are superior resulting in a weighted coverage score of 61.2 (9% higher than RGB) and an

unweighted coverage score of 47.3 (7% higher than RGB).

To understand the effects of merging regions over time, we plot the Coverage Upper Bound

(CUB) as a function of the merging stage. As Figure 5.9.1 indicates, the first two stages

result in the most substantial increases in coverage score performance but also result in the

largest decreases in CUB scores. This is due to mistakes made in the first stages of region

54

merging from which the algorithm cannot recover. Note that the upper bound scores are

computed by allowing merges across occlusion boundaries.

1 2 3 4 5
30

40

50

60

70

80

90

100

Merge Stage

C
ov

er
ag

e
S

co
re

Weighted Coverage Upper Bound
Unweighted Coverage Upper Bound
Weighted Coverage of RGBD Model
Uneighted Coverage of RGBD Model

Figure 5.4: Visualizing the effects of merging at each stage on the upper bound scores as
computed with an oracle.

5.9.2 Evaluating Tree Proposal Methods

Our loss formulation (Section 5.6) allows us to directly measure the Coverage upper bound

(CUB) scores achievable by a particular hierarchical segmentation. Consequently, we can

evaluate not only which region proposal algorithms obtain the highest CUB scores, but

also consider the trade-off between additional regions and CUB. More regions may raise the

CUB score at the expense of computational demands and any application seeking to use

segmentation trees in practice will have to evaluate the point of diminishing returns.

We evaluate several region proposal schemes in Table 5.9.2 by computing for each the sur-

rogate labels that maximize the weighted coverage score. Unsurprisingly the depth signal

raises the CUB score. Gupta et al. [15] outperforms our greedy tree inference scheme both in

55

Input Algorithm Weighted CUB Average Number of Regions

RGB Hoiem et al. [17] 50.7 117.7 ± 36.7
RGB Zhile and Shakhnarovich [34] 50.7 102.4 ± 56.4
RGB Isola et al. [?] 48.8 368.4 ± 173.6

RGB+D Tree from Greedy Tree Inference 64.1 210.0 ± 106.0
RGB+D Gupta et al [15] 70.2 195.8 ± 88.5

Table 5.2: Segmentation results on the testing set.

terms of CUB score and requires far fewer regions. Zhile et al. [34] and Hoiem et al. [17] both

achieve the same weighted CUB scores but Zhile et al. [34] is a bit more efficient requiring

fewer regions.

5.9.3 Evaluating CNN Features

To evaluate the CNN features, we used the ground truth instance annotations from the NYU

Depth V2 dataset. By evaluating on the ground truth regions, we can isolate errors inherent

in evaluating poor regions from the abilities of the descriptor as well as avoid the ground

truth mapping problem for assigning semantic labels. To prepare the inputs to the CNN

we perform the following operations: For each instance mask in the dataset (a binary mask

for a single object instance), we compute a tight bounding box around the object plus a

small margin (10% of the height and width of the mask). If the bounding box is smaller

than 140 × 140, we use a 140 × 140 bounding box and upsample to 244 × 244. Otherwise,

we rescale the image to 244 × 244. During training, we additionally include all horizontal

reflection of each window as well as several scales (1.1, 1.3, 1.5, 1.7). Finally, we ignore

regions whose original size is smaller than 20 × 20. We computed a random train/val/test

split using the original 1449 images in the dataset of equal sizes. After performing each of the

aforementioned masking operations and computing the CNN features from each subwindow,

we normalize each output feature from the CNN by subtracting the mean and diving by the

variance, across the training set. We then train a linear classifier with a softmax output and

56

Features Accuracy Conf Matrix Mean Diagonal

Normal Windows 48.8 23.5
Mask-Blurred Windows 56.6 36.8
Masked Windows [13] 60.8 42.3

RGBD Features [32] 59.9 32.1
Sparse Coded Sift + RGBD Features [38] 60.3 34.4
Unblurred Windows + RGBD Features 60.3 38.0
Mask-Blurred Windows + RGBD Features 63.1 46.1
Masked Windows + RGBD Features 64.9 46.9

Table 5.3: A comparison on region-feature descriptors on ground truth regions.

L2 regularization to predict the correct semantic labels of each instance. The regularization

parameters were chosen to maximize accuracy on the validation set and are found in the

supplementary material.

As shown in Table 5.3, the CNN features perform surprisingly well, with Masked Windows

computed on RGB only beating both RGBD Features and the combination of sparse coded

SIFT and RGBD Features. Our Mask-Blurring operation does not do as well as Masking,

with the combination of RGBD Features and CNN Features extracted from Masked regions

performing the best.

5.9.4 Segmentation

To evaluate our semantic/instance segmentation results, we use the semantic and instance

labels from [32]. We train and evaluate on the same train/test split as [32] and [19]. We

computed the surrogate labels using the weighted coverage loss and report all of the results

using the weighted coverage score. To train our model, we used the Block Coordinate Frank

Wolf algorithm [25] for minimizing the loss function, and the Gurobi [?] ILP solver for

performing inference. Loss augmented inference takes several seconds per image whereas

inference at test time takes half a second on average. Note that at test time, inference can

57

be performed instead using the graph cuts based model of [27]. If we do not use the pairwise

terms, inference can be performed extremely quickly using the algorithm for tree-cutting in

Section A.3.

Evaluating Semantic-Instance Segmentation Results

We evaluate several different types of Semantic-Instance Segmentation models. The model

SEG Trees, SIFT Features uses the standard segmentation trees with Sparse Coded SIFT

features, SEG Trees, CNN Features uses standard segmentation trees and CNN Features

using the Masking strategy, SEG + GT Trees, CNN Features uses the CNN features

as well but also trains with a set of height-1 trees created from the ground truth instance

maps. Since these height-1 trees are by definition already segmented, during training we use

the Coverage Loss for the SEG Trees and Hamming Loss on the semantic predictions for

the GT Trees. The last model we evaluated, GT-SEG Trees, CNN Features, is a model

trained on segmentation trees biased by the ground truth.

As shown in Table 5.4 our model achieves state of the art performance in segmenting the

dense scenes from the NYU Depth Dataset. While the use of SIFT features makes a negligible

improvement with regard to previous work, using convolutional features provides almost a

1% improvement. SEG + GT Trees, CNN Features, which was trained to minimize

coverage loss on the SEG trees and semantic loss on the ground truth performs slightly

better. The addition of the GT trees to the training data acts as a regularizer for the

semantic weights on the high dimensional CNN features by requiring that the weights are

both useful for finding instances of imperfectly segmented objects and correctly labeling

objects if a perfect region is made available. Qualitative results for this model are shown in

Fig. 5.9.4 along with a comparison to [19]. As these figures illustrate, the model performs

58

Algorithm Weighted Coverage

Greedy Tree Inference 61.2
Jia et al [19] 61.7
Global Tree Inference - SEG Trees, SIFT Features 61.8
Global Tree Inference - SEG Trees, CNN Features 62.5
Global Tree Inference - SEG + GT Trees, CNN Features 62.8

Global Tree Inference - GT-SEG Trees, CNN Features 87.4

Table 5.4: Segmentation results on the NYU Depth V2 Dataset

Loss Function Weighted Coverage

Hamming Loss 61.4
Weighted Coverage Loss 62.5

Table 5.5: Evaluating the use of the Coverage Loss

better on larger objects in the scene such as the couch in row 1, and the bed in row 4. Like

[19] however, it struggles with smaller objects such as the clutter on the desk in row 5.

Finally GT-SEG Trees, CNN Features is a model trained on segmentation trees biased

by the ground truth. This model achieves a coverage score of 87.4% which indicates that

while our model shows improvement over previous methods at instance segmentation, it

still does not achieve a perfect coverage score even when the ground truth is available as a

possible cut.

Evaluating the Loss function

To evaluate the effectiveness of using the Coverage Loss for instance segmentation, we use

the same model but vary the loss function used to minimize the structural SVM. We com-

pare against using the hamming loss. We use the use regularization parameter 1 for both

experiments.

1λ = .001

59

Figure 5.5: Random test images from the NYU Depth V2 dataset, overlaid with segmen-
tations. 1st column: ground truth. 2nd column: segmentations from Jia et al [19]. 3rd
colmun: our segmentations. 4th column: semantic labels, produced as a by-product of our
segmentation procedure.

60

Chapter 6

Exemplar-based Instance

Segmentation

While our greedy and global tree-based models show good performance, they are still hin-

dered by the heuristic they both employ. By reasoning over a limited set of regions to

make inference computationally feasible, they eliminate many superior solutions. Greedy

tree merging is imperfect and makes mistakes from which it can never recover. Global tree

inference does allow for reasoning across levels of the tree but it cannot undo mistakes made

in tree creation. Furthermore, tree based methods traditionally only consider merging adja-

cent reasons for computational reasons. This prohibits the algorithm from reasoning across

inter-object occlusions.

To address these concerns, we explore two exemplar-based instance segmentation algorithms.

In both methods, we select a series of exemplars from a pool of regions to which each pixel

in the scene is assigned. This approach has several advantages over tree-based methods.

Firstly, by keeping region (exemplar) selection separate from pixel assignment, we are no

longer limited to the small and static pool of regions first extracted. This is due to the fact

61

that a pixel outside an exemplar can later be assigned to it and a pixel inside the exemplar

can later be excluded from it. Secondly, by allowing any pixel to be assigned to any exemplar,

we can easily reason across occlusion boundaries.

Our first exemplar-based algorithm performs instance segmentation in two separate stages.

In the first stage, we select a series of exemplars and assign each one a semantic class. Ideally,

each object instance in the scene should be represented by a single exemplar region but not

every pixel will be represented by an exemplar. The second stage is treated as a multi-class

semantic segmentation problem. Instead of assigning each pixel to a semantic class, however,

each pixel is assigned to one of the exemplars.

Our second algorithm combines these two stages into a single joint inference operation. We

perform inference using a novel Max Product Linear Programming (MPLP) formulation.

While modeling the scene densely via both pixels and exemplars introduces a huge num-

ber of unknowns, we propose a series of efficient message updates that speed up inference.

Additionally, we use a pruning scheme that greatly reduces the number of unknowns in

practice.

6.1 Two Stage Inference

Our algorithm that performs instance segmentation in two stages proceeds as follows. In

the first stage, we seek a single representative region, or exemplar, for each object instance

in the scene. Due to the difficulty inherant in the tree proposal process (Section 5.9.2),

the exemplars that we select will be imperfect. We hope, however, that they sufficiently

approximate as many of the object instances as possible, such that the exemplars can be

corrected later. In the second stage, we assign each pixel to one of the exemplars based on a

set of features and learned weights that capture the similarity of each pixel to each exemplar.

62

6.1.1 Exempler Subselection

In the first stage of inference, our goal is to select a series of exemplars from a pool of regions

from which our second stage will then perform pixel assignment. We use a similar model

to our globally inferred instance-segmentation tree scheme (Section 5.5). To review, we are

given a tree of regions and a cut of the tree is represented by {A : Ai ∈ {0, 1}, i = 1..R},

a vector indicating whether or not each of the R regions in the tree are selected. Let

{C : Ci ∈ {1..K}, i = 1..R} be a vector indicating the semantic class (out of K) of each

region. Finally let y = {A,C} be the combined output of semantic labels and region

instances.

Inference is formulated as a structured prediction problem whereby we seek the most compat-

ible pairing of inputs x and outputs y from the space Y of all region selections and semantic

class assignments for a given segmentation tree. Formally, we predict using

y∗ = arg max
y∈Y

wTφ(x, y) (6.1)

where the compatibly function wTφ(x, y) is defined as:

wTφ(x, y) = wTregφreg(x, y) + wTsemφsem(x, y) + wTcardφcard(x, y) + φtree(y) (6.2)

where φreg are generic region potentials (Equation 5.3) and φsem are semantic region po-

tentials (Equation 5.4). The semantic cardinality potentials, φcard(x, y), are defined

as:

φcard(x, y) =
K∑
k=1

wcount(y,k) (6.3)

where count(y, k) is the number of regions assigned to semantic class k and wc is a class

specific weight vector where c indexes counts. Finally the tree consistency potential φtree(y)

63

is similar to one previously used (Equation 5.6) with one crucial difference: rather than

require that all pixels be explained by some region, we allow pixels to be unexplained.

Formally, we ensure that at most one region is selected along every path from leaf to root:

φtree(y) =
∑
γ∈Γ

−∞
[
1 <

∑
i∈γ

1[y.Ai = 1]
]

(6.4)

where γ is a path in the set Γ of all paths.

Defining the Ground Truth

Previously, we trained a tree cutting scheme to maximize the coverage score of the resulting

set of selected regions. In our two-stage segmentation scheme, however, this is not necessarily

ideal. In particular, two regions might have the same coverage score but might approximate

an object in ways that are easier or harder to correct via pixel assignment. For example, if

a region is an over-segmentation of an object instance, then the region may have somewhat

uniform appearance or texture and it should be easy for the pixel assignment stage to grow

this region. Conversely, if a region is an under-segmentation of an object instance, then the

region will contains parts of multiple objects. This situation is not only ambiguous in terms

of how the pixel assignment should proceed but also lessens the usefulness of the features as

they will be computed from a mixture of multiple objects. An example of this problem is

illustrated in Figure 6.1.

Training

The model is trained via a structured SVM and Block Coordinate Frank-Wolfe [25]. As

illustrated in Section 6.1.1, our goal in training is not to find the set of regions that maximizes

the coverage score but rather to find the set of regions that maximizes a combination of

64

Ground Truth

(a)

Overlap: 0.50
Purity: 0.73

(b)

Overlap: 0.47
Purity: 1.00

(c)

Overlap: 0.47
Purity: 0.83

(d)

Figure 6.1: Regions with the highest overlap score are not necessarily the easiest to ’correct’
via a subsequent stage: (a) A ground truth cabinet region. (b) The region with the highest
overlap also contains several additional objects. How a subsequent region should proceed is
ambiguous as it’s unclear whether the resulting region should crop the pixels belonging to
the cabinet, the printer, the stapler or the file holder. (c) A region with lower overlap but
higher purity can be unambiguously identified as a cabinet and it is clear how to grow the
region in the subsequent stage. (d) A region with lower overlap and lower purity is both
a poorer approximation of the underlying region and also is marred by the ambiguity of
determining the object instance being approximated.

coverage and purity. Consequently, rather than training using the coverage loss, we train

the subselection model using margin-rescaling and hamming loss.

6.1.2 Pixel Assignment

Following exemplar selection, a set of regions and their associated semantic classes have been

extracted from each image. To perform pixel assignment, we define a CRF over the image:

E(Y) =
∑
i∈N

φi(yi) +
∑
ij

ψij(yi, yj) (6.5)

where N is the number of pixels, φi defines the unary potentials over each pixel and ψij(yi, yj)

defines the spatially varying pairwise potential over all pairs of neighboring pixels. While

this formulation is common to semantic segmentation approaches, the labels yi are typically

semantic classes. In our case, the labels represent the exemplars from the exemplar subse-

lection stage. Formally, if R exemplars have been selected from the subselection stage for a

65

given image, then yi ∈ {1 . . . R}. Note that R will typically vary from image to image so the

solution space of Y is image dependant.

The unary features are defined as:

φi(yi) = wTc(yi)f
u
i,yi

(6.6)

where c(yi) is the semantic class of exemplar yi inferred by the first stage (Section 6.1.1), wc

are a set of learned weights for class c and fui,yi are the unary pixel features that capture the

similarity between pixel i and exemplar yi. The pairwise transition potential is defined as:

ψij(yi, yj) =


wTp f

p
ij, if yi 6= yj.

0, otherwise.

(6.7)

where wTp are a set of learned pairwise transition weights and fpij are pairwise features de-

scribing the transition between pixels i and j.

Pixel Assignment Features

The unary features in our model should capture the likelihood that a pixel belongs to the

object represented by a particular exemplar. This likelihood is based on appearance features,

such as color or texture, 3D proximity, and 3D shape information. The features used are

listed in Table 6.1.

We also extract a set of transition features that capture the likelihood of a label transition

between neighboring pixels. These features are listed in Table 6.2.

66

Pixel to Exemplar Unary Feature Descriptions Dims

2D Distance 4
D1. Is pixel part of exemplar mask 1
D2. Log, Sqrt and value of in-plane distance from pixel to exemplar

mask
3

3D Distance 8
E1. Planar disparity between pixel and planar approximation of

exemplar
1

E2. Whether or not the planar disparity is under several thresholds. 5
E3. Distance along the ground plane between the pixel and the

exemplar
1

E4. Distance along the ground plane between the pixel and the
exemplar minus outlying points

1

Color 10
C1. Mean RGB/LAB difference: pixel’s SLIC1 superpixel and ex-

emplar
2

C1. Mean RGB/LAB difference: pixel’s EGBS2 superpixel and ex-
emplar

2

C1. Mean RGB/LAB difference: pixel’s EGBS3 superpixel and ex-
emplar

2

C1. Mean RGB/LAB difference: pixel’s EGBS4 superpixel and ex-
emplar

2

C1. Mean RGB/LAB difference: pixel’s EGBS5 superpixel and ex-
emplar

2

Shape 6
S1. Normals: angular distance between pixel normal and planar

approximation of exemplar normal
1

S2. Planes: whether pixel is part of the dominant horizontal or
vertical plane of the exemplar

2

S3. Planes: whether the pixel is part of any detected horizontal or
vertical planar surface

1

S4. Cubes: whether the exemplar forms a cuboid and the pixel is
part of the cuboid

1

3D Position 2
P1. Distance from the top of the scene 1
P2. Distance from the bottom of the scene 1

Table 6.1: List of features used to capture the likelihood that a pixel belongs to a particular
exemplar of a given semantic class.

67

Pixel to Exemplar Transition Feature Descriptions Dims

RGB Features 6
R1. Exponential of difference of gaussians with several bandwidths 3
R2. Exponential of pairwise RGB differences with several band-

widths
3

Depth Features 3
D1. Exponential gradient of depth gradients with several band-

widths
3

Model Features 2
M1. Probability of Boundary Costs [15] 1
M2. Structured Forest Contours [?] 1

3D Position 2
P1. Distance from the top of the scene 1
P2. Distance from the bottom of the scene 1

Table 6.2: List of pairwise features used to penalize pixel assignment transitions.

Training the Pixel Assignment Model

We train our CRF model to perform pixel assignment using the structured SVM scheme of

[?]. We define the training set as follows. For each image, we extract a segmentation tree

(Section 5.4) but ignore the structure of the tree and consider the regions a structureless

pool. For each ground truth region in an image, we select the region from the pool that

maximizes the following:

max
s∈S

Overlap(rg, rs) + τPurity(rg, rs) (6.8)

where rg is a ground truth region, S is the pool of proposed regions and rs is one of the

regions from the pool. The Overlap score is defined as (Overlap = |rg∩rs|
|rg∪rs|), and the region

Purity captures the fraction of intersecting pixels over the size of the proposed region itself:

Purity = |rg∩rs|
|rs| . We repeat this procedure for each one of the G ground truth region of

the image which results in a set of G proposed regions which are generally not overlapping.

These regions and the semantic classes of the ground truth regions will serve as the inputs

to training from which features are extracted.

68

To define the ground truth, we simply map each pixel that belongs to a ground truth region

to the exemplar which was selected as its best approximating exemplar when creating the

input regions (Equation 6.8). More formally, if proposed region rs was selected as the best

approximating region of ground truth region rg, then yi = s ∀i ⊂ rg.

6.2 Joint Exemplar Selection and Pixel Assignment

Rather than perform exemplar selection and pixel assignment in two disjoint stages, we

can instead perform them jointly. Given an image with N pixels and M exemplars from a

segmentation tree, our goal is to assign each pixel to an exemplar and each exemplar to a

semantic class. Let E = {Em|m = 1 . . .M,Em ∈ C}} refer to the set of variables encoding

the semantic class of each exemplar where C = {0, 1 . . . K} represents the set of semantic

classes and Em = 0 indicates that exemplar Em is not used and consequently that no pixels

are assigned to it. If Em > 0, then we will refer to that exemplar as having been selected.

The cost of assigning a pixel to a particular exemplar will depend not only on the charac-

teristics of the pixel and exemplar but also on the exemplar’s semantic class. For example,

pixels that are too far from the planar fit of an exemplar will be unlikely to be assigned to

that exemplar if its semantic class is ’wall’ or ’picture’. However, the pixel might still belong

to the exemplar if its class is ’sofa’. Consequently, rather than assign each pixel directly to

an exemplar, each pixel will instead be assigned to a label in the label space of the outer

product of exemplars and semantic classes. Let L =M×C be the set of possible pixel labels

and P = {Pi|i = 1...N, Pi ∈ L} refer to the set of variables encoding the label assignments

for each pixel.

We introduce three functions to map between exemplars, semantic classes and the pixel space

L. Let µ : L → M be a function that maps pixel labels to their corresponding exemplars

69

and κ : L → C be a function that maps pixel labels to their corresponding semantic classes.

Finally, let ζ :M×C → L be the function that maps from an exemplar and semantic label

to the corresponding pixel label in L.

Given an image, we want to infer the labels Y = {P,E} that maximize the following energy

function:

E(Y) =
M∑
m=1

φex
m(Em) +

N∑
i=1

φpix
i (Pi) + φtree(E)

+
M∑
m=1

φagree
m (Em, P) +

K∑
k=1

φcard
k (E)

+
∑
ij∈N

φpair
ij (Pi, Pj)

(6.9)

The exemplar potentials φex
m(Em) incur the cost of assigning a semantic class to a partic-

ular exemplar:

φex
m(Em) =

 (wex
k)Tf ex

m if Em = k

0 if Em = 0
(6.10)

where (wex
k) are class specific exemplar weights and f ex

m are region features. The pixel

potentials φpix
i (Pi) incur the cost of assigning each pixel to a combination of exemplar and

semantic class:

φpix
i (Pi) =

 (wpix
k)Tfpix

i,m if µ(Pi) = m ∧ κ(Pi) = k

0 if Pi = 0
(6.11)

where wpix
k are class specific pixel weights and fpix

i,m are the pixel to exemplar features. The

tree potential φtree(E) ensures that the selected regions form a valid cut of the tree but

does not enforce completeness. In other words, at most a single region along each path from

leaf to root can be selected. It is defined as:

70

φtree(E) =
∑
γ∈Γ

−∞
[
1 <

∑
i∈γ

1[Em ≥ 1]
]

(6.12)

where Γ represets the set of paths (each of which are a set of regions) from leaf to root.

The pixel-exemplar agreement potentials φagree
m (Em, P) ensure that if an exemplar is

assigned a semantic class, then the pixel assignments agree with this assignment. It is defined

as:

φagree
m (Em, P) =



−∞, if Em = 0 ∧ ∃ Pi = l, µ(l) = m

−∞, if Em = c ∧ @ Pi = l, µ(l) = m,κ(l) = c

−∞, if Em = c ∧ ∃ Pi = l, µ(l) = m,κ(l) 6= c

0, otherwise

(6.13)

The first condition ensures that if the exemplar is not selected, then no pixel can be assigned

to it. The second condition ensures that if an exemplar is assigned to a semantic class, then

there must exist at least one pixel assigned to that exemplar of the same semantic class. The

third condition ensures that if the exemplar is selected and assigned to a particular semantic

class, then if a pixel is assigned to the exemplar, it must be assigned via the pixel label of the

correct semantic class. The class-cardinality potentials penalize the use of the number

of object instances of each class type:

φcard
k (E) = wb,k (6.14)

where wb,k is the weight incured for assigning b instances to semantic class k. Finally, the

71

pairwise potentials penalize transitions over all pairs of neighboring pixels ij ∈ N using

a learned spatially varying Potts model:

φpair
ij (Pi, Pj) =


wTpairf

pair
ij if Pi 6= Pj

0 if Pi = Pj

(6.15)

where wTpair are a set of learned pairwise weights and fpair
ij is a feature vector describing the

boundary between pixels i and j.

6.2.1 Dual Decomposition

Because Equation 6.9 cannot be efficiently optimized directly, we will instead optimize an

upper bound of the energy. Let the parameterized dual function L(δ, λ, λ′, λ′′) be defined

such that L(δ, λ, λ′, λ′′) ≥ E(Y). We can then optimize for the dual variables δ, λ, λ′, λ′′ that

minimize L to make the bound as tight as possible. We define the dual function as:

72

L(δ, λ, λ′, λ′′) =
M∑
m=1

max
Em

[
θex
m (Em) + λ(Em) + λ′(Em) +

K∑
k=1

λ′′km(Em)
]

+
N∑
i=1

max
Pi

[
θpix
i (Pi) +

∑
f∈F :i∈f

δfi(Pi) +
M∑
m=1

δ′mi(Pi)
]

+ max
E′

[
θtree(E ′)−

M∑
m=1

λm(E ′m)
]

+
M∑
m=1

max
E′′

m,P
′

[
θagree
m (E ′′m, P

′)− λ′m(E ′′m)−
N∑
i=1

δ′mi(P
′
i)
]

+
K∑
k=1

max
E′′′

[
θcard
k (E ′′′)−

M∑
m=1

λ′′km(E ′′′m)
]

+
∑

f∈F :ij∈f

max
P ′′
i ,P

′′
j

[
φpair
ij (P ′′i , P

′′
j)− δfi(P ′′i)− δfj(P ′′j)

]
(6.16)

where F is the set of all pairwise edges between neighboring pixels. If we were to add

constraints to ensure that E = E ′ = E ′′ = E ′′′ and P = P ′ = P ′′, we would obtain the

original energy function E(Y). By relaxing these constraints, each potential function can be

separately optimized resulting in an upper bound of the original energy.

To optimize L(δ, λ, λ′, λ′′), we use the Max Product Linear Programming (MPLP) algorithm.

This algorithm minimizes the value of the lagrangian L via block coordinate descent. During

each iteration of the algorithm, the values of the dual variables are updated in blocks such

that the dual objective after each variable block update decreases monotonically [?]. After

each update, the value of the lagrangian objective is computed to determine whether or not

the algorithm has converged.

While the block coordinate update steps, as well as the computation of the lagrangian,

involve an exponential number of states, the variable updates and lagrangian computation

can both be efficiently computed (Appendix A).

73

6.3 Pruning

In order to speed up our joint inference scheme, we reduce the solution space by pruning

the set of allowable labels. We train models to prune both the exemplar label space and the

pixel-to-exemplar label space.

6.3.1 Exemplar Label Pruning

Rather than consider all possible assignments of exemplars to semantic labels, we prune

some of the exemplar labels. To prune the exemplars, we train a series of class-specific

binary detectors via the following procedure. First, a set of exemplars are produced via two

strategies. In the first, we simply consider each ground truth region an exemplar. In the

second, we follow the algorithm of Gupta et al [15] to produce a segmentation tree from each

image using the thresholds from [?] to produce 194±90 regions per image. Exemplar features

are then extracted from each of these regions producing around 80,000 training points.

For each class, we compute the overlap between every exemplar and each ground truth region

of that class. Any exemplar with an overlap score of greater than .2 is labeled as a positive

and any exemplar with an overlap score of 0 is labeled as a negative. Exemplars with overlap

scores between 0 and .2 are discarded.

Before training, each feature descriptor is reduced in size via PCA and then normalized to

0 mean, unit variance. Finally, a logistic regressor is trained to predict each label.

During joint inference, each exemplar detector is run on each exemplar. We interpret the

output of each logistic regressor, a number between 0 and 1, to be a pruning confidence. If a

class detector’s output confidecne is below .8, then exemplar label is pruned. Note that the

joint-inference scheme requires a segmentation tree as input. It is indeed possible that the

74

pruning may force certain exemplars to be completely removed from consideration as all of

the class-specific detectors have pruned their corresponding labels. In practice, however, it

is rare that an exemplar cannot be assigned to even a single semantic class after pruning.

6.3.2 Pixel-to-Exemplar Pruning

To prune the exemplar labels, we train class-specific classifiers via the following method.

First, we extract a set of exemplars from the segmentation tree of [15]. Next, for each

image and each ground truth region, we select a single exemplar that has maximal overlap

(provided it has at least a purity score of .5 and minimum overlap of .2). Following this

procedure, for an image with 10 ground truth regions, we have at most 10 exemplars, all

of which have purity of at least .5 and overlap of at least .2 with one of the ground truth

regions. Next, we extract pixel-to-exemplar features.

To label each pixel-to-exemplar features, we consider a pixel-to-exemplar feature a positive

data point for a class if (a) the exemplar overlaps with a ground truth region of that class

and (b) if the pixel is included in the ground truth map of the corresponding ground truth

region. Otherwise, the data point is considered a negative.

For each class, we train a separate binary classifier to predict whether or not each pixel

should be assigned to a given exemplar of that class.

6.4 Learning

Learning the weights of the model jointly is difficult as it requires that we indicate a best

set of regions and their pixel assignments. In this case, its not clear how to define this

set. Furthermore, because inference is slow, training the model jointly is computationally

75

expensive. Instead, we train the components of the model piecewise and scale the weights

using a held-out validation set. The exemplar weights are trained using the subselection

training scheme (Section 6.1.1). The pixel to exemplar weights are trained using the pixel

assignment training schme (Section 6.1.2).

6.5 Experiments

6.5.1 Stage 1: Subselection

To evaluate our region subselection routine, we analyze how well our subselection routine

performs in comparison to the tree cutting algorithm previously discussed (Section 5.5).

These models differ in two respects. Firstly, the previous tree cutting model is trained to

produce a cut that is complete. That is, the result of cutting the tree is a set of regions that

explains every pixel. Conversely, the output of the subselection stage is a partial explanation

of the scene that leaves parts of the scene unexplained. Secondly, during training of the pre-

vious tree cutting model, the ground truth regions maximize the coverage score with respect

to the ground truth. Conversely, when we train our subselection model, we are maximizing

a combination of coverage and purity. Consequently, we can compare the resulting models

by evaluating both coverage and purity:

Model Weighted Coverage Unweighted Coverage Purity

Tree Cutting, Complete (Section 5.5) 62.8 47.3 73.6
Tree Cutting, Incomplete 53.3 38.6 75.5
Subselection Model 61.7 42.2 77.5

Table 6.3: Evaluating subselection models

As Table 6.3 indicates, when we relax the completeness constraints on the previously trained

tree cutting model, the results are very poor. This is not completely unexpected as the

76

weights learned for our prior model are effectively only used to rank possible cuts in the

tree. In the current task, the weights must both rank cuts in the tree and not select regions

that are of inferior quality. When we re-train a model to select the best subset of regions

and to ignore or leave blank areas without good regions, we obtain a model that produces

slightly inferior coverage scores but improved purity scores (an increase from 73.6 to 77.5).

Our ability to select only good regions comes at a cost: our ability to select small objects

drops. This is made clear by virtue of the fact that the unweighted coverage score drops

from 47.3 to 42.2. Further evidence and qualitative results are illustrated in Figure 6.5.1.

6.5.2 Stage 2: Pixel and Superpixel Assignment

To evaluate our pixel and superpixel assignment algorithms, we compare the coverage scores

of the input regions (Section 6.1.2) against the inferred regions. We also compare the effects

of using a pixel-wise assignment strategy against a superpixel assignment strategy. In these

experiments, we used SLIC superpixels with approximately 2000 superpixels per image.

Input Predictions
Model Weighted Cov. Unweighted Cov. Weighted Cov. Unweighted Cov.

Pixels 67.6 58.3 74.0 60.5
Superpixels 68.5 54.5 74.5 56.6

Table 6.4: Evaluating Pixel and Superpixel Assignment

As Table 6.4 indicates, the use of superpixels over pixels actually seems to improve the

weighted coverage but does worse in terms of unweighted performance. This is due to the

fact that the act of superpixelation often results in boundaries whose quality is proportional

to the object size. Consequently, after superpixelating the image, we reduce the quality of

any subsequent superpixelation from which the model cannot recover.

77

Figure 6.2: Random test images from the NYU Depth V2 dataset, overlaid with segmen-
tations. 1st column: RGB Image. 2nd column: Ground Truth. 3rd column: Tree Cutting
Model (Section 5.5). 4th column: Stage 1 Results. Note that the stage 1 subselection stage
does not necessarily explain every pixel. For example, part of the couch in the 3rd row, last
column is unexplained by any region as indicated by the grayscale hue.

78

6.5.3 Evaluating Two-Stage and Joint Inference

Finally, we evaluate the two stage and joint inference algorithms. For two-stage inference,

we use the retrained subselection model for the first stage and the superpixel assignments

for the second stage. Quantitative results are shown in Table 6.5 and qualitative results

are shown in Figure 6.5.3. While both the two stage algorithm and the joint inference

model perform marginally better in terms of weighted coverage, their inability to handle

small objects is a major limitation. Additionally, both algorithms suffer from the inability

to avoid selecting regions that represent the same object instance. While transition and

cardinality potentials are meant to alleviate this issue, they are not strong enough to result

in substantial improvements. Further work in the use of better higher-order potentials that

penalized multiple regions representing the same object would be a boon to these types of

algorithms.

Model Weighted Unweighted
Tree Cutting model: Greedy Inference 61.2 50.5
Tree Cutting Model: Global Inference 62.8 47.4
Two-Stage Exemplar Model 63.0 43.3
Joint Model, Unary and Agreement Potentials 62.4 42.5
Joint Model, Unary, Agreement and Pairwise Potentials 62.9 44.4

Table 6.5: Evaluating exemplar-based models using weighted and unweighted coverage
scores.

79

Figure 6.3: Visualize Stage 2 Results. 1st column: RGB Image. 2nd column: Ground Truth.
3rd column: The inputs used to train the model: regions that are decent but incomplete
approximations. 4th column: Stage 2 Results. When the regions are good approximations of
the ground truth, the model performs well. For example, the sofa in the top row and sofa chair
in the 3rd row are completed correctly. The exemplar based model allows for reasoning across
occlusion boundaries. For example, the floors in the 3rd and 4th rows are correctly completed
across occlusions. Competing regions, however, still lead to mistakes. For example, the
towel in the second row and the floor in the 5th row are incorrectly completed due to color
similarities and reflective intensity boundaries, respectively.

80

Figure 6.4: Visualizing Joint Exemplar Inference Results

81

Chapter 7

Inferring Physical Support Relations

7.1 Introduction

Traditional approaches to scene understanding aim to assign labels to each object in an

image. However, this is an impoverished description since labels tell us little about the

physical relationships between objects or possible actions that can be performed.

Many robotics and scene understanding applications require a physical parse of the scene

into objects, surfaces, and their relations. A person walking into a room, for example, might

want to find his coffee cup and favorite book, grab them, find a place to sit and then actually

perform the actions of walking over, and sitting down. These tasks require parsing the scene

into different objects and surfaces – the coffee cup must be distinguished from surrounding

objects and the supporting surface for example. Some tasks also require understanding the

interactions of scene elements: if the coffee cup is supported by the book, then the cup must

be lifted first.

To this end, our goal is to provide such a physical scene parse: to segment visible regions

82

into surfaces and objects and to infer their support relations. Our approach, illustrated in

Fig. 7.1, is to first perform an instance segmentation of the scene and then to estimate the

support relations of each object.

A strong prior on support relations exists via knowledge of an objects semantic class: a

pillow generally is supported by a bed or sofa but very rarely is a bed or sofa supported by

a pillow. While object detection is still not accurate enough to use fine grained classes, we

introduce the concept of labeling objects with a set of structural classes that reflect their

physical role in the scene: “ground”; “permanent structures” such as walls, ceilings, and

columns; large “furniture” such as tables, dressers, and counters; and “props” which are

easily movable objects. We show that these structural classes aid both segmentation and

support estimation.

To reason about support, we introduce a principled approach that integrates physical con-

straints (e.g. is the object close to its putative supporting object?) and statistical priors on

support relationships (e.g. mugs are often supported by tables, but rarely by walls). Our

method is designed for real-world scenes that contain tens or hundred of objects with heavy

occlusion and clutter. In this setting, interfaces between objects are often not visible and

thus must be inferred. Even without occlusion, limited image resolution can make support

ambiguous, necessitating global reasoning between image regions. Real-world images also

contain significant variation in focal length. While wide-angle shots contain many objects,

narrow-angle views can also be challenging as important structural elements of the scene,

such as the floor, are not observed. Our scheme is able to handle these situations by inferring

the location of invisible elements and how they interact with the visible components of the

scene.

83

Input RGB Surface Normals Aligned Normals Segmentation

Input Depth Inpainted Depth 3D Planes Support Relations

Support
Relationships

1. Major Surfaces
2. Surface Normals
3. Align Point Cloud

Image

Depth
Map

Segmentation
RGB Image

 Point Cloud

 Regions
 Feature

Extraction

Features
 Support Classification

{Xi,Ni} {Rj} {Fj}

Structure
Labels

Figure 7.1: Overview of algorithm. Our algorithm flows from left to right. Given an
input image with raw and inpainted depth maps, we compute surface normals and align
them to the room by finding three dominant orthogonal directions. We then fit planes to
the points using RANSAC and segment them based on depth and color gradients. Given the
3D scene structure and initial estimates of physical support, we then create a hierarchical
segmentation and infer the support structure. In the surface normal images, the absolute
value of the three normal directions is stored in the R, G, and B channels. The 3D planes
are indicated by separate colors. Segmentation is indicated by red boundaries. Arrows point
from the supported object to the surface that supports it.

7.2 Modeling Support Relationships

7.2.1 The Model

Given an image split into R regions, we denote by Si : i = 1..R the hidden variable repre-

senting a region’s physical support relation. The basic assumption made by our model is

that every region is either (a) supported by a region visible in the image plane, in which

case Si ∈ {1..R}, (b) supported by an object not visible in the image plane, Si = h, or (c)

requires no support indicating that the region is the ground itself, Si = g. Additionally,

let Ti encode whether region i is supported from below (Ti = 0) or supported from behind

(Ti = 1).

84

When inferring support, prior knowledge of object types can be reliable predictors of the

likelihoods of support relations. For example, it is unlikely that a piece of fruit is supporting

a couch. However, rather that attempt to model support in terms of object classes, we

model each region’s structure class Mi, where Mi can take on one of the following values:

Ground (Mi = 1), Furniture (Mi = 2), Prop (Mi = 3) or Structure (Mi = 4). We map each

object in our densely labeled dataset to one of these four structure classes. Props are small

objects that can be easily carried; furniture are large objects that cannot. Structure refers

to non-floor parts of a room (walls, ceiling, columns). We map each object in our labeled

dataset to one of these structure classes.

We want to infer the most probable joint assignment of support regions S = {S1, ...SR},

support types T ∈ {0, 1}R and structure classes M ∈ {1..4}R. More formally,

{S∗,T∗,M∗} = arg max
S,T,M

P (S,T,M|I) = arg min
S,T,M

E(S,T,M|I), (7.1)

where E(S,T,M|I) = − logP (S,T,M|I) is the energy of the labeling. The posterior dis-

tribution of our model factorizes into likelihood and prior terms as

P (S,T,M|I) ∝
R∏
i=1

P (I|Si, Ti)P (I|Mi)P (S,T,M) (7.2)

to give the energy

E(S,T,M) = −
R∑
i=1

log(Ds(F
s
i,Si
|Si, Ti) + log(Dm(Fm

i |Mi)) + EP (S,T,M). (7.3)

where F S
i,Si

are the support features for regions i and Si, and Ds is a Support Relation

classifier trained to maximize P (F S
i,Si
|Si, Ti). FM

i are the structure features for region i and

Dm is a Structure classifier trained to maximize P (FM
i |Mi). The specifics regarding training

and choice of features for both classifiers are found in sections 7.2.3 and 7.2.4, respectively.

85

The prior EP is composed of a number of different terms, and is formally defined as:

EP (S,T,M) =
R∑
i=1

ψTC(Mi,MSi
, Ti) + ψSC(Si, Ti) + ψGC(Si,Mi) + ψGGC(M). (7.4)

The transition prior, ψTC , encodes the probability of regions belonging to different structure

classes supporting each other. It takes the following form:

ψTC(Mi,MSi
, Ti) ∝ − log

∑
z∈supportLabels 1[z = [Mi,MSi

, Ti]]∑
z∈supportLabels 1[z = [Mi, ∗, Ti]]

(7.5)

The support consistency term, ψSC(Si, Ti), ensures that the supported and supporting

regions are close to each other. Formally, it is defined as:

ψSC(Si, Ti) =

 (Hb
i −H t

Si
)2 if Ti = 0,

V (i, Si)
2 if Ti = 1,

(7.6)

where Hb
i and H t

Si
are the lowest and highest points in 3D of region i and Si respectively, as

measured from the ground, and V (i, Si) is the minimum horizontal distance between regions

i and Si.

The ground consistency term ψGC encodes the hard constraint that region i does not

require support (Si = g) if and only if its structure class is ‘ground‘:

φGC(Si,Mi) =∞⇔ Si = g ∧ Mi 6= ‘ground‘ (7.7)

The global ground consistency term ψGGC(M) ensures that the region taking the floor

label is lower than other regions in the scene. Formally, it is defined as:

ψGGC(M) =
R∑
i=1

R∑
j=1

 κ if Mi = 1 ∧ Hb
i > Hb

j

0 otherwise,
(7.8)

86

7.2.2 Integer Program Formulation

The maximum a posteriori (MAP) inference problem defined in equation (7.1) can be for-

mulated in terms of an integer program. This requires the introduction of boolean indicator

variables to represent the different configurations of the unobserved variables S, M and T.

Let R′ = R+ 1 be the total number of regions in the image plus a hidden region assignment.

For each region i, let boolean variables si,j : 1 ≤ j ≤ 2R′ + 1 represent both Si and Ti as

follows: si,j : 1 < j ≤ R′ indicate that region i is supported from below (Ti = 0) by regions

{1, ..., R, h}. Next, si,j : R′ < j ≤ 2R′ indicate that region i is supported from behind

(Ti = 1) by regions {1, ..., R, h}. Finally, variable si,2R′+1 indicates whether or not region i

is the ground (Si = g).

Further, we will use boolean variables mi,u = 1 to indicate that region i belongs to structure

class u, and indicator variables wu,vi,j to represent si,j = 1, mi,u = 1 and mj,v = 1. Using this

over-complete representation we can formulate the MAP inference problem as an Integer

Program using equations 7.9-7.15.

arg min
s,m,w

∑
i,j θ

s
i,jsi,j +

∑
i,u θ

m
i,umi,u +

∑
i,j,u,v

θwi,j,u,vw
u,v
i,j (7.9)

s.t.
∑

j si,j = 1,
∑

umi,u = 1 ∀i (7.10)∑
j,u,v w

u,v
i,j = 1, ∀i (7.11)

si,2R′+1 = mi,1, ∀i (7.12)∑
u,v w

u,v
i,j = si,j, ∀u, v (7.13)∑

j,v w
u,v
i,j ≤ mi,u, ∀i, u (7.14)

si,j, mi,u, w
u,v
i,j ∈ {0, 1}, ∀i, j, u, v (7.15)

87

The support likelihood Ds (eq. 7.3) and the support consistency ψSC (eq. 7.6) terms of the

energy are encoded in the IP objective though coefficients θsi,j. The structure class likelihood

Dm (eq. 7.3) and the global ground consistency ψGGC (eq. 7.8) terms are encoded in the

objective through coefficients θmi,u. The transition prior ψTC (eq. 7.5) is encoded using the

parameters θwi,j,u,v.

Constraints 7.10 and 7.11 ensure that each region is assigned a single support, type and

structure label. Constraint 7.12 satisfies the Ground Consistency φGC term (eq. 7.7). Con-

straints 7.13 and 7.14 are marginalization and consistency constraints. Finally, constraint

7.15 ensure that all indicator variables take integral values. It is NP-hard to solve the integer

program defined in equations 7.9-7.15. We reformulate the constraints as a linear program,

which we solve using Gurobi’s LP solver, by relaxing the integrality constraints 7.15 to:

si,j, mi,u, w
u,v
i,j ∈ [0, 1], ∀i, j, u, v. (7.16)

Fractional solutions are resolved by setting the most likely support, type and structure class

to 1 and the remaining values to zero. In our experiments, we found this relaxation to be

tight in that the duality gap was 0 in 1394/1449 images.

7.2.3 Support Features and Local Classification

Our support features capture individual and pairwise characteristics of regions. Such char-

acteristics are not symmetric: feature vector F s
i,j would be used to determine whether i

supports j but not vice versa. Geometrical features encode proximity and containment, e.g.

whether one region contains another when projected onto the ground plane. Shape features

are important for capturing characteristics of different supporting objects: objects that sup-

port others from below have large horizontal components and those that support from behind

88

have large vertical components. Finally, location features capture the absolute 3d locations

of the candidate objects. Since the support classifier must classify visible regions as well as

a hidden region, we hallucinate hidden region features that would be extracted from a floor

region not visible in the image plane. A full list of support features is found in Table 7.1.

Support Feature Descriptions Dims

Geometry 8
G1. Minimum vertical and horizontal distance between the two
volumes

2

G2. Absolute distance between the volumes’ centroids 1
G3. Supported and supporting regions’ heights above the ground 2
G4. Percentage of the supporting region that is farther from the
viewer than the supported volume.

1

G5. Percentage of supported region contained inside convex hull
of supporting region’s projection onto the floor plane

1

G6. Percentage of supported region contained inside convex hull
of supporting region’s horizontal points when projected onto the
floor plane

1

Shape 7
H1. Number and percentage of horizontal pixels in the supporting
region

2

H2. Number and percentage of horizontal pixels in the supported
region

2

H3. Number and percentage of vertical pixels in the supported
region

2

H4. Chi-squared distance between histograms of each region’s
surface normals.

1

Region 260
E1. Ratio of number of pixels between the supported and sup-
porting region

1

E2. Number of neighboring regions in the image plane for the
supported region

1

E3. Whether or not the two regions are neighbors in the image
plane

1

E4. Whether or not the region is hidden 1
Non-SIFT Structure-class features for the supported region 128
Non-SIFT Structure-class features for the supporting region 128

Table 7.1: Support Features. List of features using in classifying the support relationships
between regions of the image.

To train Ds, a logistic regression classifier, each feature vector F S
i,j is paired with a label

Y S ∈ {1..4} which indicates whether (1) i is supported from below by j, (2) i is supported

89

from behind by j, (3) j represents the ground or (4) no relationship exists between the two

regions. Predicting whether j is the ground is necessary for computing Ds(Si = g, Ti =

0;F S
i,g) such that

∑
Si,Ti

Ds(Si, Ti;F
S
i,Si

) is a proper probability distribution.

7.2.4 Structure Class Features and Local Classification

Our structure class features are similar to those that have been used for object classification

in previous works [?]. They include SIFT features, histograms of surface normals, 2D and 3D

bounding box dimensions, color histograms [41] and relative depth (Section 4.2). A logistic

regression classifier is trained to predict the correct structure class for each region of the

image, and the output of the classifier is interpreted as probability for the likelihood term

Dm. A full list of the features used is found in Table 7.2.

Structure Class Feature Descriptions Dims

Color 36
C1: Color histograms: 10-bin histograms for each channel. [41] 30
C2: Mean and standard deviation of color channels 6

Shape 1086
A1: Sparse coded SIFT descriptor histograms 1000
A2: 2D Bounding box dimensions 2
A3: 3D Bounding box dimensions 3
A4: Pyramid of Surface normal histograms 78
A5: Mean, median, max of planar errors 3

Scene 6
N1: Distance to closest wall: absolute and normalized by room
size

2

N2: Relative Depth: mean and variance relative depth over the
region

2

N3: Height: minimum and maximum heights above the ground 2

Table 7.2: Structure Class Features. Used to classify each region of the image into one
of four structure classes: Ground, Furniture, Prop and Structure.

90

7.3 Experiments

In our experiments, we use the NYU Depth V2 (Section 3.2.3) dataset as it contains both

Depth information for every frame and support labels for pairs of regions. To perform

instance segmentation, we use the greedy instance segmentation tree scheme introduced in

Section 5.2.

7.3.1 Evaluating Support

Because the support labels are defined in terms of ground truth regions, we must map the

relationships onto the segmented regions. To avoid penalizing the support inference for

errors in the bottom up segmentation, the mapping is performed as follows: each sup-

port label from the ground truth region [RGT
i , RGT

j , T] is replaced with a set of labels

[RS
a1
, RS

b1
, T]...[RS

aw , R
S
bw
, T] where the overlap between supported regions (RGT

i ,RS
aw) and sup-

porting regions, (RGT
j ,RS

bw
) exceeds a threshold (.25).

We evaluate our support inference model against several baselines:

• Image Plane Rules: A Floor Classifier is trained in order to assign Si = g properly.

For the remaining regions: if a region is completely surrounded by another region in the

image plane, then a support-from-behind relationship is assigned to the pair with the

smaller region as the supported region. Otherwise, for each candidate region, choose

the region directly below it as its support from below.

• Structure Class Rules: A classifier is trained to predict each region’s structure class.

If a region is predicted to be a floor, Si = g is assigned. Regions predicted to be of

Structure class Furniture or Structure are assigned the support of the nearest floor

region. Finally, Props are assigned support from below by the region directly beneath

them in the image plane.

91

• Support Classifier: For each region in the image, we infer the likelihood of support

between it and every other region in the image using Ds and assign each region the

most likely support relation indicated by the support classifier score.

The metric used for evaluation is the number of regions for which we predict a correct support

divided by the total number of regions which have a support label. We also differentiate

between Type Agnostic accuracy, in which we consider a predicted support relation correct

regardless of whether the support type (below or from behind) matched the label and Type

Aware accuracy in which only a prediction of the correct type is considered a correct support

prediction. We also evaluate each method on both the ground truth regions and regions

generated by the bottom up segmentation.

Results for support classification are listed in Table 7.3.1. When using the ground truth

regions, the Image Plane Rules and Structure Class Rules perform well given their simplicity.

Indeed, when using ground truth regions, the Structure Class Rules prove superior to the

support classifier alone, demonstrating the usefulness of the Structure categories. However,

both rule-based approaches cannot handle occlusion well nor are they particularly good at

inferring the type of support involved. When considering the support type, our energy

based model improves on the Structure Class Rules by 9% and 17% when using the ground

truth and segmented regions, respectively, demonstrating the need to take into account a

combination of global reasoning and discriminative inference.

Visual examples are shown in Fig 7.4. They demonstrate that many objects, such as the right

dresser in the row3, column 3 and the chairs in row 5, column 1, are supported by regions

that are far from them in the image plane, necessitating non-local inference. One of the main

stumbling blocks of the algorithm is incorrect floor classification as show in the 3rd image

of the last row. Incorrectly labeling the rug as the floor creates a cascade of errors since the

walls and bed rely on this as support rather than using the true floor. Additionally, incorrect

92

Predicting Support Relationships

Region Source Ground Truth Segmentation

Algorithm Type Agnostic Type Aware Type Agnostic Type Aware

Image Plane Rules 63.9 50.7 22.1 19.4

Structure Class Rules 72.0 57.7 45.8 41.4

Support Classifier 70.1 63.4 45.8 37.1

Energy Min (LP) 75.9 72.6 55.1 54.5

Table 7.3: Results of the various approaches to support inference. Accuracy is measured by
total regions whose support is correctly inferred divided by the number of labeled regions.
Type Aware accuracy penalized incorrect support type and Type Agnostic does not.

structure class prediction can lead to incorrect support inference, such as the objects on the

table in row 4, column 1.

Image Plane Rules Structure Class Rules Support Classifier Energy Minimization

Figure 7.2: Comparison of support inference algorithms. Image Plane Rules incorrectly
assigns many support relationships. Structure Class Rules corrects several support relation-
ships for Furniture objects but struggles with Props. The Support classifier corrects several
of the Props but infers an implausible Furniture support. Finally, our LP solution correctly
assigns most of the support relationships. (→ : support from below, (: support from
behind, + : support from hidden region. Correct support predictions in green, incorrect in
red. Ground in pink, Furniture in Purple, Props in Blue, Structure in Yellow, Grey indicates
missing structure class label. Incorrect structure predictions are striped.)

7.3.2 Evaluating Structure Class Prediction

To evaluate the structure class prediction, we calculate both the overall accuracy and the

mean diagonal of the confusion matrix. As 7.3 indicates, the LP solution makes a small im-

provement over the local structure class prediction. Structure class accuracy often struggles

when the depth values are noisy or when the segmentation incorrectly merges two regions of

different structure class.

93

Predicting Structure Classes
Overall Mean Class

Algorithm G. T. Seg. G. T. Seg.

Classifier 79.9 58.7 79.2 59.0
Energy Min (LP) 80.3 58.6 80.3 59.6

Ground

Furniture

Prop

Structure

Ground Furniture Prop Structure

.68

.70

.42

.59

.04

.03

.01

.43

.24 .14

.12

.14 .12

.28 .02 .02

Predictions

La
be

ls

Figure 7.3: Accuracy of the structure class recognition.

94

Gr
ou

nd
 Tr

ut
h

 R
eg

io
ns

Se
gm

en
te

d
R

eg
io

ns

Figure 7.4: Examples of support and structure class inference with the LP solution. → :
support from below, (: support from behind, + : support from hidden region. Correct
support predictions in green, incorrect in red. Ground in pink, Furniture in Purple, Props in
Blue, Structure in Yellow, Grey indicates missing structure class label. Incorrect structure
predictions are striped.

95

Chapter 8

Extent Reasoning

8.1 Introduction

In addition to reason about support, an instance segmentation can also be used to reason

about the true 3D extent of objects in scenes. This task has traditionally been cast as

the problem of dense 3D reconstructions of scenes. Indeed the adoption of inexpensive 3D

cameras has led to much progress in recent years. The combined use of depth and colour

signals has been successfully demonstrated in the production of large-scale models of indoor

scenes via both offline [?] and online [?] algorithms. Most RGB+D reconstruction methods

require data that show the scene from a multitude of viewpoints and are not well suited

for input sequences which contain a single-view or limited number of viewpoints. Moreover,

these reconstruction methods are hindered by occlusion as they make no effort to infer the

geometry of parts of the scene that are not visible in the input sequences. Consequently, the

resulting 3D models often contain gaps or holes and do not capture certain basic elements

of a scene, such as the true extent and shape of objects and scene surfaces.

Accurate and complete surface reconstruction is of special importance in Augmented Reality

96

(AR) applications which are increasingly being used for both entertainment and commerce.

For example, a recently introduced gaming platform [?] asks users to scan an interior scene

from multiple angles. Using the densely reconstructed model, the platform overlays graphi-

cally generated characters and gaming elements. Furniture retailers (such as IKEA) enable

customers to visualize how their furniture will look when installed without having to leave

their homes. These applications often require a high fidelity dense reconstruction so that

simulated physical phenomenon, such as lighting, shadow and object interactions (e.g. col-

lisions) can be produced in a plausible fashion. Unfortunately, such reconstructions often

require considerable effort on the part of the user. Applications either demand that users

provide video capture of sufficient viewpoint diversity or operate using an incomplete model

of the scene.

Our goal is to complement the surface reconstruction for an input sequence that is limited

in viewpoint, and ”fill in” parts of the scene that are occluded or not visible to the camera.

This goal is driven by both a theoretical motivation and a practical application. Firstly,

basic scene understanding requires high level knowledge of how objects interact and extend

in 3D spaces. While most scene understanding research is concerned with semantics and

pixel labeling, relatively little work has gone into inferring object or surface extent, despite

the prevalence and elemental nature of this faculty in humans. Second, online surface re-

construction pipelines such as KinectFusion [?] are highly suitable for AR applications, and

could benefit from a scene completion phase, integrated into the pipeline.

Our approach assumes a partial dense reconstruction of the scene that is represented as a

voxel grid where each voxel can be occupied, free or its state in unknown. We use the Kinect-

Fusion [?] method to compute this reconstruction which also assigns a surface normal and

truncated signed distance function (TSDF) [?] to the voxels. Given this input, our method

first detects planar surfaces in the scene and classifies each one as being part of the scene

97

Figure 8.1: Overview of the pipeline: Given a dense but incomplete reconstruction (a) we
first detect planar regions (b) and classify them into ceiling (not shown), walls (tan), floor
(green) and interior surfaces (pink) (c) Non-planar regions are shown in light blue. Next, we
infer the scene boundaries(d) and shape of partially occluded interior objects, such as the
dining table (e) to produce a complete reconstructed scene (f).

layout (floor, walls ceiling) or part of an internal object. We then use the identities of the

planes to extend them by solving a labeling problem using our Contour-completion random

field (CCRF) model. Unlike pairwise Markov random fields, which essentially encourage

short boundaries, the CCRF model encourages the discontinuities in the labeling to follow

detected contour primitives such as lines or curves. We use this model to complete both the

floor map for the scene and estimate the extents of planar objects in the room. This provides

us with a watertight 3D model of the room. Finally we augment the original input volume

account for our extended and filled scene. The stages of our algorithm are demonstrated in

figure 8.1.

8.2 Plane Detection and Classification

We now describe how our method detects the dominant planes from the partial voxel based

reconstruction. We denote the space of all possible 3D planes by H, and the set of planes

present in the scene by H. Let the set of all 3D points visible in the scene be denoted by

P = {p1, ...pN}. We estimate the most probable labeling for H by minimizing the following

98

energy function:

H∗ = arg min
H⊂H

N∑
i=1

fi(H) + λ|H| (8.1)

where λ is a penalty on the number of planes and fi is a function that penalizes the number

of points not explained by any plane:

fi(H) = min{min
h∈H

[δ(pi, h), λb]} (8.2)

where the function δ returns a value of 0 if point pi falls on plane h and is infinity otherwise.

Minimizing the first term alone has the trivial degenerate solution where we include a plane

for every point pi in the set H. However, this situation is avoided by the second term of

the energy which acts as a regularizer and adds a penalty that linearly increases with the

cardinality of H.

Lemma 1. The energy function defined in equation (8.1) is a supermodular set function.

Proof. A set function F is super-modular if it satisfies the diminishing reduction property.

Formally,

F (A)− F (A ∪ {a}) ≤ F (B)− F (B ∪ {a}) ∀B ⊂ A (8.3)

Substituting (8.1), we see the that cardinality term evaluates to 1 on both sides and cancels

leaving us ∑
i

fi(A)−
∑
i

fi(A ∪ {a}) ≤
∑
i

fi(B)−
∑
i

fi(B ∪ {a}) (8.4)

The LHS counts the number of 3D points that did not fall in planes in A but fall on the new

plane a, while the RHS counts the number of 3D points that did not fall in planes in B but

fall on the new plane a. Since B ⊂ A, LHS lower bounds the RHS.

99

8.2.1 Computing the Optimal H

Minimization of a super-modular function is an NP-hard problem even when the set of

possible elements is finite (which is not true in our case). We employ a greedy strategy,

starting from an empty set and repeatedly adding the element that leads to the greatest

energy reduction. This method has been observed to achieve a good approximation [?]. We

begin by using the Hough transform [?] to select a finite set of planes. In our method, each

3D point and its surface normal votes for a plane equation parameterized by its azimuth θ,

elevation ψ and distance from the origin ρ. Each of these votes is accrued in an accumulator

matrix of size A×E×D where A is the number of azimuth bins, E is the number of elevation

bins and D is the number of distance bins 1. After each point has voted, we run non-maximal

suppression to avoid accepting multiple planes that are too similar.

Once we have a set of candidate planes we sort them in descending order by the number of

votes they have received and iteratively associate points to each plane. A point can be asso-

ciated to a plane if it has not been previously associated to any other plane and if its planar

disparity and local surface normal difference are small enough 2. As an additional heuristic,

each new plane and its associated points are broken into a set of connected components

ensuring that planes are locally connected.

8.2.2 Semantic Labeling

Once we have a set of planes, we classify each one independantly into one of four semantic

classes: Floor, Wall, Ceiling and Internal. To do so, we train a Random Forest Classifier

to predict each plane’s class based on a set of 3D-only features (Table 5.1), which capture

1We use A=128, E=64 and D is found dynamically by spacing bin edges of size 5cm apart between the
max and minimum points

2Planar disparity threshold=.1, angular disparity threshold = .1

100

attributes of each plane including its height in the room, size and surface normal distribution.

Planes classified as one of Floor, Wall and Ceiling will be used for inferring the floor plan

and scene boundaries (section 8.3.6), whereas Internal planes will be extended and filled in

a subsequent step (section 8.3.7).

8.3 Scene Completion

Given the set of detected and classified planes we infer the true extent of the scene, ie. obtain

a water-tight room structure, and extend interior planes based on evidence from the scene

itself.

8.3.1 Completion as a Labeling Problem

We now describe how to estimate the boundaries of planes as seen from a top-down view.

We formulate boundary completion as a pixel labeling problem. Consider a set S of nodes

that represent grid locations in the top-down view of the scene. We assume that a partial

labeling of nodes i ∈ S in the grid can be observed and is encoded by variables yi; i ∈ S

where yi = 1, yi = 0 and yi = −1 represent that i belongs to the plane, does not belong to

the plane, and its membership is uncertain respectively. Given y, we want to estimate the

true extent of the plane which we denote by x. Specifically, we will use the binary variable xi

to encode whether the plane covers the location of node i in the top-view. xi = 1 represents

that node i belongs to the plane while x1 = 0 represents that it does not.

The traditional approach for pixel labeling problems is to use a pairwise Markov Random

Field (MRF) model. The energy of any labeling y under the pairwise MRF model is defined

101

as:

E(x) =
∑
i∈S

φi(xi) +
∑
ij∈N

φij(xi, xj) (8.5)

where φi encode the cost of assigning a label xi and φij are pairwise potentials that encourage

neighboring (N) nodes to take the same label, and K is a constant. The unary potential

functions force the estimated labels x to be consistent with the observations y, ie. φi(xi) =

inf if yi 6= −1 and xi 6= yi, and φi(yi) = 0 for all other cases, while the pairwise potentials take

the form an Ising model. The Maximum a Posteriori (MAP) labeling under the model can

be computed in polynomial time using graph cuts. However, the results are underwhelming

as the pairwise model does not encode any information about how boundaries should be

completed. It simply encourages a labeling that has a small number of discontinuities.

8.3.2 Contour Completion Random Field

Unlike the standard MRF which penalizes the number of transitions in the labeling, our

Contour Completion Random Field (CCRF) model adds a penalty based on the least number

of curve primitives that can explain all the transitions. We implement this by introducing

higher order potentials in the model. These potentials are defined over overlapping sets of

edges where each set follows some simple (low-dimensional) primitive curve shape such as a

line or a circle. Formally, the energy function for the CCRF model can be written as:

E(x) =
∑
i∈S

φi(xi) +
∑
g∈G

Ψg(x) (8.6)

where Ψg are our curve completion potentials, and G is a set where each curve g represents a

set of nodes (edges) that follow a curve. The curve completion potentials have a diminishing

102

returns property. More formally,

Ψg(x) = F
(∑
ij∈Eg

ψij(xi, xj)
)
, (8.7)

where Eg is the set of edges that defines the curve or edge group g. F is a non-decreasing

concave function. In our experiments, we defined F as an upper-bounded linear function

ie. F (t) = min{λ ∗ t, θ} where λ is the slope of the function and θ is the upper-bound. It

can be seen that once a few edges are cut t ≥ θ
λ
, the rest of the edges in the group can

be cut without any penalty. This behavior of the model does not prevent the boundary in

the labeling from including large number of edges as long as they belong to the same group

(curve). The exact nature of these groups are described below.

8.3.3 Defining Edge Groups

We consider two types of edge groups: straight lines and parabolas. While previous work

has demonstrated the ability of the hough transform [?] to detect other shapes, such as

circles and ellipses, such high parameter shapes require substantially more memory and

computation and we found lines and parabolas sufficiently flexible to capture most of the

cases we encountered.

Detecting Lines To detect lines, we used a modified Hough transform to not only detect

lines in the image, but also the direction of the transition (the plane to free space or vice-

versa). We use an accumulator with 3 parameters: ρ, the distance from the origin to the line,

θ, the angle between the vector from the origin to the line and the X axis, and a quaternary

variable d, which indicates the direction of the transition (both bottom-top and left-right

103

directions) 3. Following the accumulation of votes, we run non-maximal suppression and

create an edge group for each resulting line.

Detecting Parabolas The standard Hough transform for parabolas requires 4 parameters.

To avoid the computational and memory demands of such a design, we introduce a novel

and simple heuristic illustrated in figure 8.2. First, we identify each point in the input image

(8.2(a)) which falls at the intersection of free space, occupied and unknown pixels. We refer

to these intersections as contact points. Furthermore, we will refer to all pixels occupied by

a plane and bordering free space as contour points (see figure 8.2(b)).

To close an occluded contour, a parabola either connects a set of contact points or continues

at a contact point until it reaches the end of the image. We note that only contact points

that border the same occlusion region can possibly be bridged. Therefore, we create a

set of contact point pairs ξ from which parabolas will be estimated. If multiple contact

points all border the same occlusion region, we just pair each contact point with its nearest

neighbor. For each pair of contact points, we fit a parabola to all of the contour points that

immediately border each contact point. Because the parabola may be rotated, we first rotate

these bordering contour points so that the normal of the line joining the contact points is

aligned with the Y-axis (8.2(c)). To avoid over or under fitting the contour, we sample the

contour points using several radii and keep the parabola most consistent with the observed

contour (8.2(d)-(f)). If a contact point cannot be paired, or if a pair provides only poor fits,

a parabola is fit using its immediate contour point neighbors for each side separately. This

algorithm is summarized in Algorithm 1.

3We use 400 angular bins for θ and evenly spaced bins for ρ 1 unit apart. The minimum number of votes
allowed was set to 10.

104

Figure 8.2: Our method for fast parabola fitting, as described in section 8.3.3. Starting
with an input image (a), we find the contact points (b) labeled in blue and contour edges
in orange. Next, we align the contact points (c) and fit parabola using several radii (d-f) to
find the best fit.

Data: Ternery Image Y, set of search radii T
Result: List of Edge Groups G
C = FindContactPoints(Y);
ξ = FindPairsOfContactPoints(C, Y);
for vi, vj ∈ ξ do

Initialize vote vector to all zeros;
θτ = 0 ∀ τ ∈ |T |;
for τ ∈ T do

P = FindNeighboringContourPoints(vi, vj ,τ);
P’ = RotatePoints(P);
α = LeastSquaresFit(P’);
Q’ = sampleParabola(α);
Q = rotateBackToImageCoordinates(Q);
g = defineEdgeGroup(Q);
θτ = CountVotesFromEdgeGroup(g, Y);

end
Append(G, BestParabola(θ));

end
Algorithm 1: Fast Parabola Fitting Algorithm

8.3.4 Hierarchical Edge Groups

While using detected lines or curves may encourage the correct surface boundaries to be

inferred in many cases, in others, there is no evidence present in the image of how a shape

should be completed. For example see the right side of the shape in figure 8.3 and the

synthetic examples in figure 8.4(b). Motivated by the gestalt laws of perceptual grouping,

we attempt to add edge groups whose use in completion would help provide for shapes that

exhibited simple closure and symmetry. More specifically, for each observed line detected,

105

Figure 8.3: Contour Completion Random Field: (a) A top-down view of a partially occluded
plane (b) We detect lines and parabolas along the contour of the known pixels (stippled
black lines), and hallucinate parallel lines (in red) (c) We apply CCRF inference to extend
the plane.

we add additional parallel edge groups on the occluded side of the shape.

It is clear that defining edge groups that completely cover another edge group would lead to

double counting. To prevent this, we modify the formulation to ensure that only one group

from each hierarchy of edge groups is counted. To be precise, our CCRF model allows edge

groups to be organized hierarchically so that a set of possible edges have a parent and only

a single child per parent may be active. This formulation is formalised as:

E(x) =
∑
i∈S

φi(xi) +
∑
g∈G

min
k∈c(g)

Ψk(x) (8.8)

where c(g) denotes the set of child edge groups for each parent g.

To summarize, our edge groups are obtained by fitting lines and parabolas to the input

image thus encouraging transitions that are consistent with these edges. As indicated in

Equation 8.8, not all edge groups can be active simultaneously and in particular, any line

used to hallucinate a series of edges is considered the parent to its child hallucinated lines.

Consequently, we constrain only a single hallucinated line to be active (at most) at a time.

106

8.3.5 Inference with Hierarchical Edge Groups

Inference under higher order potentials defined over edges groups was recently shown to be

NP-hard even for binary random variables by Jegelka et al. [?]. They proposed a special

purpose iterative algorithm for performing approximate inference in this model. Later, Kohli

et al. [?] proposed an approximate method that could deal with multi-label variables. Their

method transformed edge group potentials into a sum of pairwise potentials with the addition

of auxiliary variables that allowed the use of standard inference method like graph cuts.

However, both these algorithms are unsuitable for CCRF because of the special hierarchical

structure defined over our edge groups.

Inspired from [?], we transformed the higher-order curve completion potential (8.7) to the

following pairwise form:

Ψp
g(x) = T + min

hg ,z

{ ∑
ij∈Eg

θij((xi + xj − 2zij)hg − 2(xi + xj)zij + 4zij)− Thg
}
. (8.9)

where hg is the binary auxiliary corresponding to the group g, and zij,∀ij ∈ Eg are binary

auxiliary variables corresponding to the edges that constitute the edge group g. However,

this transformation deviates from the energy of the hierarchical CCRF (equation 8.8) as it

allows multiple edge groups in the hierarchy to be all active at once.

To enure that only one edge group is active in each edge group hierarchy, we introduce a

series of constraints on the binary auxiliary variables corresponding to the edge groups. More

formally, we minimize the following energy :

E(x,h) =
∑
i∈S

φi(xi) +
∑
g∈G

Ψp
g(x) s.t.∀g,

∑
k∈c(g)

hk ≤ 1 (8.10)

where c(g) denotes the set of child edge groups for each parent edge group g. The minimum

energy configuration of this formulation is equivalent to that of hierarchical CCRF (equation

8.8).

107

In order to find the MAP solution, we now need to minimize the constrained pairwise en-

ergy function (equation 8.10). We observe that on fixing the values of the group auxiliary

variable (h’s) the resulting energy becomes unconstrained and submodular, and thus, can

be minimized using graph cuts. We use this observation to do inference by exhaustively

searching over the space of edge group auxiliary variables and minimizing the rest of the

energy using graph cuts. However, we can make the algorithm even more efficient by not

allowing the activity of a child edge group to be explored if its parent is not already active.

In other words, we start by exhaustively searching over the auxiliary variables of the parent

edge groups (at the top of the hierarchy), and if a group variable is found to be active, we

check if its child variables can be made active instead of it.

8.3.6 Inferring Scene Boundaries

To extend and fill the scene boundaries, we begin by projecting the free space of the input

TSDF and the Wall planes (predicted by our classifier) onto the floor plane. Given a 2D

point cloud induced by these projections, we discretize the points to form a projection image

illustrated by figure 8.3 where each pixel yi takes on the value of free space, wall or unknown.

To infer the full scene layout, we apply the CCRF (Equation 8.6) to infer the values of the

unknown pixels. In this case, we consider free space to be the area to be expanded (yi = 1)

and the walls to be the surrounding area to avoid being filled (yi = 0). We first detect the

lines and curves of the walls to create a series of edge groups. Next, we set φi(xi = 1) =∞

if yi = 0 and φi(xi = 0) = ∞ if yi = 1. Finally, we add a slight bias [?] to assigning free

space φi(xi = 0) = ε 4.

4ε=1e-6

108

8.3.7 Extending Planar Surfaces

Once the scene boundary has been completed, we infer the full extent of internal planar

surfaces. For each internal plane, we project the TSDF onto the detected 2D plane as

follows. First we find a coordinate basis for the plane using PCA and estimate the major

and and minor axes of the plane, M and N , respectively. Next, we create an image of size

2N+1×2M+1 where the center pixel of the image corresponds to the centroid of the plane.

We sample a grid along the plane basis of size 2N + 1 × 2M + 1 where the TSDF values

sampled in each grid location are used to assign each of the image’s pixels. If the sampled

TSDF value is occupied, yi is set to 1, if its free space yi is set to 0 and if its unknown, yi is

set to -1. In practice, we also sample several voxels away from the plane (along the surface

normal direction). This heuristic has the effect of reducing the effects of sensor noise and

error from plane fitting.

Once Y has been created, we detect all lines and parabolas in the image and hallucinate the

necessary lines to create our edge groups. Next, we assign the local potentials in the same

manner as described in Section 8.3.6.

8.4 Augmenting the Original Volume

The result of our scene completion is a water-tight scene boundary, and extended interior

planes. As the final step in our pipeline we augment the original TSDF we imported. For

the scene boundary we simplify the resutling polyline representing the boundary, and sample

points along this boundary from floor to ceiling height. For the interior planes we sample

points in the extended parts of the planes. For each sampled point (sampled densely as

required, in our case γ) we traverse a bresenham-line in the volume from the voxel closest

to the point, and in two directions, its normal and the inverse to its normal. For each

109

encountered voxel, we update the TSDF value with the distance to the surface. If the

dimensions of the original volume do not suffice to hold the new scene boundaries, we create

a new larger volume and copy the original TSDF to it, before augmenting it.

The augmented TSDF, in the originating surface reconstruction pipeline, is continuously

updated with new evidence (e.g. as the user moves). Augmented areas are phased out as

the voxels which they filled become known.

8.5 Experiments

We evaluate our method in several ways. First, we demonstrate the effectiveness of the

CCRF model by comparing it to several baselines for performing in-painting of binary images.

Second, we compare our results to a recently introduced method [?] that performs extent-

reasoning. Third, we demonstrate qualitative results on a newly collected set of indoor

scenes.

8.5.1 Synthetic validation

We generated a dataset of synthetic images inspired by shapes of planar surfaces commonly

found in indoor scenes. The dataset contained 16 prototypical shapes meant to resemble

objects like desks, conference tables, beds, kitchen counters, etc. The set of 16 protypes

were first divided into training and test sets. Each of the 8 training and testing prototypes

were then randomly rotated and occluded 10 times resulting in 80 total training and 80 test

images.

Since we are primarily concerned with how these methods perform in predicting the bound-

aries of the input images, we use the evaluation metric of [22] in which we only evaluate the

110

correctness of pixels immediately near the boundary areas. We computed evaluation scores

for various widths of the evaluation region. Quantitative results can be found in Figure 8.4.

We compare against several baseline methods that are commonly used for in-painting binary

images. These include both 4 connected and 8 connected graph cuts and a non-parametric

patch-matching algorithm for in-painting. The ideal parameters for each algorithm were fine

tuned on the training set and then applied to the test set.

8.5.2 Single Frame Scene Completion

We compare our approach to the work of Ruiqi and Hoiem [?] to demonstrate its applicability

to single frame scene completion. While we produce a binary label indicating the voxels

that are occupied, [?] output a heat map. To perform a fair comparison, we followed the

following steps. For each frame of the NYU V2 dataset we computed the filled voxels using

our regular pipeline. Since KinectFusion was not designed for single image inputs, a number

of the images failed to be fused and were ignored during evaluation. For those test images

that succeeded in being fused by Kinect Fusion, we used the same metric as in [?] and report

the accuracy of [?] using the same false positive rate as in our method. The quantitative

results in Table 8.5.2 demonstrate that while our single frame scene completion ability is not

as strong as [?], our scheme does not have the benefit of using RGB data, whereas [?] do.

In particular, our method breaks down in single frame completion when a sizable portion of

the depth frame is missing due to noise or surfaces with low albedo. In these cases, we do

not detect any plane and do not fill that area. Nevertheless, even with a single frame, our

method is still very capable of inferring reasonable boundaries for the rooms, extending the

beds up to the wall, and correctly inferring the size of the sofa as shown in Figure 8.5.

111

Algorithm Accuracy

Ruiqi and Hoiem [?] 62.6
Our method 60.6

Table 8.1: Evaluating Single Frame Scene Completion

8.5.3 Qualitative Analysis

Using a Kinect Sensor attached to a notebook computer, we captured more than 100 scenes.

Each scene is a collection of color and depth frames ranging from hundreds to thousands

of frames. Each of these sequences was input into the KinectFusion pipeline, where for

a large number of scenes we performed multiple reconstructions, sharing a starting frame,

but varying in number of frames processed. This gave us a baseline for a qualitative and

progressive evaluation of our results.

For each such scene we were able to evaluate the original augmented and original reconstruc-

tion at each step. As more evidence is revealed, extended planes are replaced with their

physical counterparts, and the scene boundaries are updated to reflect reality. An example

of this progression can be seen in Figure 8.6. Further results are found in Figure 8.8(top

row).

We implemented a complete AR system in the Unity 3D framework, in which a user is able

to navigate a captured scene, place virtual objects on horizontal supporting planes, and

throw balls which bounce around the scene. As seen in figure 8.7, with scene completion,

we are able to place figures on occluded planes, and bounce balls realistically off completed

surfaces.

Failure cases may occur in different stages along our pipeline. Failure to detect or correctly

identify planes will result in the plane not being extended or not being used in the boundary

extent inference step. In some cases we received faulty volumetric information from the

Kinect sensor, mostly due to reflectance and transparencies in the scene. This causes both

112

eroneous inputs and also noisy contours which may hamper the CCRF from finding a good

line or parabola fit. Examples can be seen in the bottom row of Figure 8.8.

113

Figure 8.4: (Top) Pixel-wise classification error on our synthetic dataset. The plot demon-
strates performance as a function of the width of the evaluation region. (Bottom) Some
examples from our dataset of synthetic images showing classification results for occluded
pixels (yellow) using four methods.

114

Figure 8.5: Comparison with [?]: (a) Frames from the NYU2 dataset (b) Ground truth
support extent (c) Predicted extent from [?] (d) A top down view of our completed scene
where inferred scene boundaries are highlighted in white and extended interior objects are
highlighted in red.

115

Figure 8.6: Progressive surface reconstruction and scene completion. After 200 frames large
parts of the room are occluded, and filled in by the completion model. After 800 previously
occluded areas are observed and replace the completion, and overall the structure of the
room is more accurate.

(a) (b) (c)

Figure 8.7: We created an augmented reality application to demonstrate the efficacy of
our method. (a) a ball bouncing on an occluded floor falls through implausibly (b) a ball
bouncing on the floor in a completed scene bounces realistically (c) Virtual objects may be
placed on any surface, including occluded planes in the completed scene.

116

Figure 8.8: Example scenes: darker colors represent completed areas, hues signify plane
classification. The top row contains mostly successful completions. The bottom row contains
failure cases, on the left the room is huge due to many reflective surfaces, the middle image
is of a staircase, vertical in nature, which leads to incorrect plane classifications. And on the
right a high ceiling and windows cause misclassification of the floor plane.

117

Chapter 9

Conclusions

To promote and further research in RGBD scene understanding, we have introduced two

new indoor RGBD datasets that have become the de facto standards for RGBD scene un-

derstanding tasks.

We have introduced and explored several algorithms for performing instance segmentation in

RGBD scenes. Our greedy inference scheme is quick but makes mistakes from which it can

never recover. Our instance-segmentation trees improve upon this by allowing the model

to reason across different levels of segmentation trees but are still limited by the number

of regions that can be explored. Finally, our exemplar-based instance segmentation model

improves upon both of these models by reasoning at both the exemplar and pixel level.

Given an instance segmentation of a scene, various tasks can then be performed using the

instance segmentation as input. We have introduced the task of physical support reasoning

and demonstrated how to extend planar object instances in 3D space.

While this work has concentrated on the algorithms for instance segmentation, improvement

may be sought via better features. Deep Learning models continue to provide better feature

118

representations of regions which may lead to improved instance segmentation results. The

use of 3D object models may lead to improved reasoning about which (super) pixels belong

to which exemplars.

Furthermore, various higher-order potentials may serve to improve exemplar-based instance

segmentations. For example, learned potentials over co-planar or similar regions may inhibit

multiple exemplars that represent the same object instance from being chosen.

119

Appendix A

MPLP Message Passing

To optimize the dual objective of Equation 6.16, we use a block coordinate descent algorithm

(MPLP) in which each potential function defines a block of unknowns which are all updated

simultaneously [?].

During each iteration of MPLP, we update the values of the dual variables in blocks and then

compute the value of the dual objective in order to determine whether or not the algorithm

has converged. We present a series of algorithms that allow for efficient updates of these

variables. Furthermore, since the dual objective (Equation 6.16) is the sum of a series of

maximizations over separate variables, computing the dual can be broken up into a series of

subproblems which we refer to as maximizing subproblems.

Common to both the variable updates and maximizing subproblems are searches over two

parameterized subspaces of L. Let L1(m, c) be a subspace of L parameterized by exemplar

m and class c such that every label in L maps to either an exemplar other than m or to

exemplar m and class c. Formally, L1(m, c) = {l : (µ(l) 6= m) ∨ (µ(l) = m ∧ κ(l) = c)}.

Additionally, let L2(m) be the subspace parameterized by exemplar m such that each every

label in L2(m) maps to an exemplar other than m. Formally, L2(m) = {l : (µ(l) 6= m).

120

A.1 Maximizing Subproblems: Exemplar Potentials

The exemplar potentials’ maximizing subproblem is:

max
Em

[
θex
m (Em) + λ(Em) + λ′(Em) +

K∑
k=1

λ′′km(Em)
]

(A.1)

The maximization is trivially optimized by iterating over the possible values of Em. In

practice, we store the following variables in memory as in [?]:

θ̄ex
m = θex

m (Em) + λ(Em) + λ′(Em) +
K∑
k=1

λ′′km(Em) (A.2)

A.2 Maximizing Subproblems: Pixel Potentials

The pixel potentials maximizing subproblem is:

max
Pi

[
θpix
i (Pi) +

∑
f :i∈f

δfi(Pi) +
M∑
m=1

δ′mi(Pi)
]

(A.3)

The maximization is trivially optimized by iterating over the possible values of Pi. In prac-

tice, we store the following variables in memory as in [?]:

θ̄pix
m = θpix

i (Pi) +
∑
f :i∈f

δfi(Pi) +
M∑
m=1

δ′mi(Pi) (A.4)

A.3 Maximizing Subproblems: Tree Potentials

To maximize the tree potential (Equation 6.12), we formulate a novel labeling problem which

can be efficiently and exactly optimized using max-sum belief propagation: Let each region

121

in the tree be a node in a graph. Define edges between each parent and child region in the

graph and let each region take one of three states: (0) which indicates that a region is not

selected nor are its ancestors, (1) which indicates that an ancestor of the region is selected

and (2) the region itself is selected. The unary potentials are defined as:

φbp(xm) =


−∞, if isRoot(m) ∧ xm = 1

0, if xm 6= 2

−maxc λ(Em = c), if xm = 2

(A.5)

and the transition potentials are defined as:

Parent Label
0 1 2

0 0 −∞ −∞
Child 1 −∞ 0 0
Label 2 0 −∞ −∞

Table A.1: Transition Potential Values for our Belief-Propagation Based tree selection algo-
rithm.

As indicated in Table A.1, if the child node’s label is 0, indicating that neither the node nor

its ancestors are selected, then its parent node’s label must necessarily be set to 0 as well.

If the child node’s label is 1, indicating that an ancestor is selected, then the parent node’s

label must necessarily be set to 1 or 2. Finally, if the child node’s label is 2, indicating that

the child node is selected, then the parent node’s label must necessarily be set to 0.

Note that this tree-cutting algorithm can also be used to cut the instance segmentation trees

defined in Section 5.5.

122

A.4 Maximizing Subproblems: Pixel-Exemplar Agree-

ment

In our original Lagrangian formulation (Equation 6.16), the pixel-exemplar agreement poten-

tials are very expensive. The inclusion of duplicate variables P ′i for each of the M potentials

introduces a very large number of messages, increasing both the overhead of computing and

storing them. In particular, each potential θagree
m sends messages to every pixel in the scene

and sends a different message for each one of the possible pixel labels.

However, since each pixel-exemplar agreement potential need only ensure agreement between

the pixels and a single exemplar’s label (Em), we don’t necessarily need a distinct message

for every pixel label that is not consistent with that exemplar’s label. Formally, we don’t

necessarily need a separate message δ′mi(a) for each {a : µ(a) 6= m} which all correspond

to values which can’t possibly contradict the value of Em. Consequently, we can constrain

the Lagrangian such that δ′mi(a) = δ′mi(b)∀ {a, b : µ(a) 6= m,µ(b) 6= m}. In principle, this

can only serve to raise the value of the Lagrangian and corresponds to creating a coarse

partitioning of messages [?].

Using this partitioning, we can compute the messages for θagree
m using the following label

space: Let Qm be the set of labels {q1, ...qC , β}. Then Qm[l] is a mapping from l ∈ L to Qm

such that Qm[l] = qc ∀ l ∈ {l : µ(l) = m ∧ κ(l) = c} and Qm[l] = β ∀ l ∈ {l : µ(l) 6= m}.

Using such a partitioning of the variables we can re-express the pixel-exemplar agreement

subproblem as:

max
E′′

m,Q

[
θagree
m (E ′′m, Q)− λ′m(E ′′m)−

N∑
i=1

δ′mi(Q)
]

(A.6)

123

The pixel labeling subproblem can rewritten as:

max
Pi

[
φpix
i (Pi) +

∑
f :i∈f

δfi(Pi) +
M∑
m=1

δ′mi(Q[Pi])

]
(A.7)

While maximizing over the consistency potentials (Equation A.6) involves an exponential

number of states, it can be optimized in O(NMK +M) time.

Algorithm 2: Maximizing the Pixel-Exemplar Agreement Potential Subproblem

Data: Values δ′mi(Qi) ∀ i ∈ N, λ′m(E ′′m)
Result: Maximum value v∗ for maxQ,E′′

m

[
φagree
m (E ′′m, Q)− λ′m(E ′′m)−

∑N
i=1 δ

′
mi(Qi)

]
/* Compute the value of E ′′m = 0 */

1 v0 = −λ′m(0) +
∑N

i=1 maxl∈L2(m)−δ′mi(l)
2

/* Compute the values of E ′′m = c */

3 for c = 1 . . . K do
/* Find the pixel most likely to be assigned to m if E ′′m = c, where β

indicates the assignment of pixel i to an exemplar other than m. */

4 ρc = arg maxi
[
δ′mi(β)− δ′mi(ζ(m, c))

]
5

/* Next, compute the value of assigning E ′′m = c */

6 vc = −λ′m(c)− δ′mρc(ζ(m, c)) +
∑

j 6=ρc maxl∈L1(m,c)−δ′mj(l)
7 end
/* Finally, find the max over assignments to E ′′m */

8 v∗ = maxc∈{0,1...K} vc

The label β represents the pixel label that a pixel i would be assigned to if it were assigned

to an exemplar other than m. In other words for a pixel i, β = maxl:µ(l)6=m δ
′
mi(l). Step 1, 4,

and 6 can all be done in O(NMK) time and step 8 is O(M).

Lemma 1. The maximum value in Equation A.6 is obtained via Algorithm 2.

Proof:

Condition 1: Let {A,Em = c} be a maximizing solution not obtained by the algorithm.

124

By definition µ(Aρc) = m and κ(Aρc) = c since if it were otherwise, there would be a pixel

η such that µ(Aη) = m and κ(Aη) = c and we could swap the values of Aρc and Aη and

increase the value of the solution which contradicts our assumption that {A,Em = c} is the

maximizing solution. Furthermore, since Algorithm 2 draws all other variables Ai : i 6= ρc

from L1(m, c), then there must be a pixel Ai = l where l 6∈ L1(m, c) which would incur

the cost of −∞ (Equation A.6). In this case, we could switch the assigment of Ai to any

other label in L1(m, c) and raise the value of the solution which violates our assumption that

{A,Em = c} is the maximizing solution.

Condition 2: Let {A,Em = ∅} be a maximizing solution not obtained by the algorithm.

Because Algorithm 2 draws all values from L2(m) when Em = ∅, then there must be some

pixel assignment Ai = l where l 6∈ L2(m) which would incur the cost of −∞. If so, then we

could reassign Ai to any label in L2(m) and raise the value which contradicts the assumption

that {A,Em = ∅} is a maximizing solution.

A.5 Maximizing Subproblems: Class-Cardinality Po-

tentials

In our original formulation (Equation 6.16), each class specific cardinality potential maintains

messages for each exemplar and semantic class. However, rather than maintain K messages

for each, each potential need only maintain 2 messages for each exemplar indicating whether

or not the exemplar takes the class of the potential or not. Formally, Ak[Em] is a mapping

from {1 . . .M} to {0, 1}. Using such a partitioning of the variables, we can re-express the

class-cardinality potential subproblem as:

125

max
A

[
θcard
k (A)−

M∑
m=1

λ′′km(Am)
]

(A.8)

and the exemplar labeling subproblem can be rewritten as:

max
Em

[
θex
m (Em) + λ(Em) + λ′(Em) +

K∑
k=1

λ′′km(Ak[Em]) (A.9)

The cardinality potential subproblems (Equation A.8) can be efficiently maximized using

Algorithm 3. The algorithm is based on the efficient cardinality potential of Tarlow et al. [?].

However, rather than apply a single cardinality potential for binary segmentation, we apply

a similar algorithm to multi-class segmentation:

Algorithm 3: Maximizing the Class Cardinality Subproblem.

Data: Semantic class k, Values λ′′k ∈ RM×1

Result: Maximum value v∗ for maxA
[
φcard
k (A)−

∑M
m=1 λ

′′
k(Am)

]
/* Compute the energy differences between assigning each exemplar to the

current class k or not: */

1 for m = 1 . . .M do
2 ηm = λ′′km(0)− λ′′km(1)
3 end
/* Sort energy differences in decreasing order: */

4 π = sort(η)
/* Compute cumulative sum of assigning exemplars to current class: */

5 τ0 =
∑M

m=1 λ
′′
km(0)

6 for i = 1 . . .M do
7 τi = τi−1 − ηπ[i]

8 end
/* Accrue class-cardinality potential values (Equation 6.14) */

9 for i = 0 . . .M do
10 τi = τi + wk,i
11 end
12 v∗ = maxi τi

126

A.6 Maximizing Subproblems: Pairwise Potentials

The pairwise potential subproblem can be efficiently optimized with three linear passes by

splitting the problem into two parts: maximizing over the labels where Pi and Pj are equal

and maximizing over the labels where they are different. Algorithm 4 contains the details of

the maximization strategy.

Algorithm 4: Maximizing the Pairwise Potentials Subproblem.

Data: Values δfi, δfj

Result: Maximum value v = maxPi,Pj

[
φpair
ij (Pi, Pj)− δfi(Pi)− δfj(Pj)

]
/* Compute the maximum value where Pi = Pj: */

1 leq = arg maxl[−δfi(l)− δfj(l)]
/* Compute the top two maximizing labels for pixel i */

2 li1 = arg maxl−δfi(l)
3 li2 = arg maxl 6=li1 −δfi(l)
/* Compute the top two maximizing labels for pixel j */

4 lj1 = arg maxl−δfj(l)
5 lj2 = arg maxl 6=lj1 −δfj(l)
6 if li1 = lj1 then
7 vne = max(−δfi(li1)− δfj(lj2),−δfi(li2)− δfj(lj1))

8 v = max([−δfi(leq)− δfj(leq)], [φpair
ij (li1, lj1) + vne])

9 else

10 v = max([−δfi(leq)− δfj(leq)], [φpair
ij (li1, lj1)− δfi(li1)− δfj(lj1)])

11 end

A.7 Block Coordinate Update for Tree Potential’s λ

Variables

For the purposes of tree cutting, we need only maintain messages about whether a region

is selected or not, rather than maintain messages about each selected region’s semantic

class. Consequently, rather than have the tree potential maintain a separate variable for

each possible semantic class E ′ = {E ′m : m = 1 . . .M,E ′m ∈ {0 . . . K}}, we instead only

127

maintain binary variables F = {Fm : m = 1 . . .M, Fm ∈ {0, 1}}. Consequently, variable

Fm(0) represents the value of exemplar m not being selected in the cut and Fm(1) represents

the value of exemplar m being selected in the cut.

The block coordinate update for the tree potential variable λ(Fm) is:

λm(Fm) = −λ−mm (Fm) +
1

M
max
F\m

[
φtree(F) +

∑
m̂

λ−mm̂ (Fm̂)

]
(A.10)

where λ−mm (Fm) is defined as:

λ−mm (0) = θ̄ex
m ((0))− λm(0) (A.11)

λ−mm (1) = max
Em 6=0

θ̄ex
m (Em)− λm(Em) (A.12)

Efficiently computing the Updates

We can avoid computing maxF\m separately for each λm(Fm) via the following algorithm. Let

G = {Gm : m = 1 . . .M,Gm ∈ {0, 1, 2}} be a tree structured graph of variables representing

the segmentation tree such that each variable assignment Gm indicates whether exemplar m

is selected (Gm = 2), has an ancestor that is selected (Gm = 1) or is neither selected nor

has an ancestor that is selected (Gm = 0). Furthermore, let the each variable take on the

following costs:

Gm(0) = θ̄ex
m ((0))− λm(0) (A.13)

Gm(1) = θ̄ex
m ((0))− λm(0) (A.14)

Gm(2) = max
k=1...K

θ̄ex
m ((k))− λm(k) (A.15)

and let the edges between nodes of G be assigned costs from Table A.1. We can infer the

states with the highest cost by running Max-Sum Belief Propagation. Because the graph

128

contains no loops, the beliefs of each node in the graph are the exact marginal probabilities

of each variable. Consequently, by solving for the values of G with the highest cost once we

can compute the values of message updates from Equation A.10 in one pass. Let H ∈ RM×3

represent the max marginals (the beliefs of each variable in G produced by the message

passing of Max-Sum Belief Propagation). We can compute the updates to λm(Fm) by running

a single pass of BP and using the following equations:

λm(0) = −λ−mm (0) +
1

M
max[Hm(0), Hm(1)] (A.16)

λm(1) = −λ−mm (1) +
1

M
Hm(2) (A.17)

A.8 Block Coordinate Update for Agreement Poten-

tials λ′ Variables

The block coordinate update step for each of the λ′ variables is computed as follows:

λ′m(E ′′m) = −λ′−m
m (E ′′m) +

1

N + 1
max
Q

[
φagree
m (Q,E ′′m) +

N∑
î=1

δ
′−m
î

(Qî) + λ
′−m
m (E ′′m)

]
(A.18)

The algorithm used is the same as in Algorithm 2 except that we enforece the assignment of

E ′′m.

A.9 Block Coordinate Update for Agreement Poten-

tials δ′ Variables

The block coordinate update step for each of the δ′mi(Qi) variables is computed as follows:

129

δ′mi(Qi) = −δ′−mi (Qi) +
1

N + 1
max
Q\i,Em

[
φagree
m (Em, Q) +

N∑
î=1

δ
′−m
î

(Qî) + λ−mm (Em)

]
(A.19)

where:

δ−mi (Qi) = max
Pi∈Qi

[
φpix
i (Pi) +

∑
f :ij∈E

δfi(Pi) +
∑
m̂6=m

δ′m̂i(Pi)

]
(A.20)

The algorithm used is the same as in Algorithm 2 except that we enforce the assignment of

Qi.

A.10 Block Coordinate Update for Cardinality Poten-

tials λ′′ Variables

As previously explained (Section A.5), rather than have each cardinality potential maintain

a message for each possible value of Em for each exemplar, we maintain only two messages

for each exemplar indicating whether or not the exemplar takes the class of the potential or

not using the variable A = {Am : m = 1 . . .M,Am ∈ {0, 1}}. The block coordinate update

step for the class cardinality potentials is:

λ′′km(Ai) = −λ′′−k
m (Ai) +

1

M
max
A\m

[
φcard
k (A) +

M∑
m̂=1

λ
′′−k
m̂ (Am̂)

]
(A.21)

The algorithm for computing the max is identical that of Algorithm 3 except that in the

cases when Am = 0, we enforce that the exemplar cannot be selected and in the cases when

Am = 1, we force that the exemplar is selected.

130

A.11 Block Coordinate Update for Pairwise Potentials

δ Variables

The block coordinate update for pairwise variables is computed as:

δfi(Pi) = −δ−fi (Pi) +
1

2
max
Pj

[
φpair
ij (Pi, Pj) + δ−fi (Pi) + δ−fj (Pj)

]
(A.22)

By keeping θ̄pix
m in memory (Section A.2) each δ−fi can be computed as:

δ−fi (Pi) = θ̄pix
m ((Pi))− δfi((Pi)) (A.23)

and the update can be computed in linear time O(L).

131

Bibliography

[1] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Süsstrunk. Slic superpixels.

École Polytechnique Fédéral de Lausssanne (EPFL), Tech. Rep, 149300, 2010.

[2] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Susstrunk. Slic superpixels

compared to state-of-the-art superpixel methods. TPAMI, 2012.

[3] P. Arbelaez. Boundary extraction in natural images using ultrametric contour maps.

In Computer Vision and Pattern Recognition Workshop, 2006. CVPRW’06. Conference

on, pages 182–182. IEEE, 2006.

[4] P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik. From contours to regions: An empirical

evaluation. In Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE

Conference on, pages 2294–2301. IEEE, 2009.

[5] P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik. Contour detection and hierarchical

image segmentation. Pattern Analysis and Machine Intelligence, IEEE Transactions

on, 33(5):898–916, 2011.

[6] W. Brendel and S. Todorovic. Segmentation as maximumweight independent set. In

Neural Information Processing Systems, volume 4, 2010.

[7] J. Carreira and C. Sminchisescu. Constrained parametric min-cuts for automatic ob-

ject segmentation. In Computer Vision and Pattern Recognition (CVPR), 2010 IEEE

132

Conference on, pages 3241–3248. IEEE, 2010.

[8] D. Comaniciu and P. Meer. Mean shift: A robust approach toward feature space analy-

sis. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 24(5):603–619,

2002.

[9] A. E. Derek Hoiem and M. Hebert. Geometric context from a single image. In Inter-

national Conference on Computer Vision, 2005.

[10] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman. The pascal vi-

sual object classes (voc) challenge. International journal of computer vision, 88(2):303–

338, 2010.

[11] C. Farabet, C. Couprie, L. Najman, and Y. LeCun. Scene parsing with multiscale feature

learning, purity trees, and optimal covers. arXiv preprint arXiv:1202.2160, 2012.

[12] P. Felzenszwalb and D. Huttenlocher. Efficient graph-based image segmentation. IJCV,

59(2), 2004.

[13] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate

object detection and semantic segmentation. arXiv preprint arXiv:1311.2524, 2013.

[14] R. Guo and D. Hoiem. Beyond the line of sight: Labeling the underlying surfaces. In

ECCV, 2012.

[15] S. Gupta, P. Arbelaez, and J. Malik. Perceptual organization and recognition of indoor

scenes from rgb-d images. In Computer Vision and Pattern Recognition (CVPR), 2013

IEEE Conference on, pages 564–571. IEEE, 2013.

[16] D. Hoiem, A. A. Efros, and M. Hebert. Recovering occlusion boundaries from an image.

International Journal of Computer Vision, 91(3):328–346, 2011.

133

[17] D. Hoiem, A. A. Efros, and M. Hebert. Recovering occlusion boundaries from an image.

Int. J. Comput. Vision, 91:328–346, February 2011.

[18] A. Ion, J. Carreira, and C. Sminchisescu. Image segmentation by figure-ground com-

position into maximal cliques. In Computer Vision (ICCV), 2011 IEEE International

Conference on, pages 2110–2117. IEEE, 2011.

[19] Z. Jia, A. Gallagher, A. Saxena, and T. Chen. 3d-based reasoning with blocks, sup-

port, and stability. In Computer Vision and Pattern Recognition (CVPR), 2013 IEEE

Conference on, pages 1–8. IEEE, 2013.

[20] T. Joachims, T. Finley, and C.-N. J. Yu. Cutting-plane training of structural svms.

Machine Learning, 77(1):27–59, 2009.

[21] S. Kim, S. Nowozin, P. Kohli, and C. D. Yoo. Higher-order correlation clustering for

image segmentation. In NIPS, pages 1530–1538, 2011.

[22] P. Kohli, P. H. Torr, et al. Robust higher order potentials for enforcing label consistency.

International Journal of Computer Vision, 82(3):302–324, 2009.

[23] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep con-

volutional neural networks. In NIPS, volume 1, page 4, 2012.

[24] M. P. Kumar and D. Koller. Efficiently selecting regions for scene understanding. In

Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on, pages

3217–3224. IEEE, 2010.

[25] S. Lacoste-Julien, M. Jaggi, M. Schmidt, and P. Pletscher. Block-coordinate frank-wolfe

optimization for structural svms. arXiv preprint arXiv:1207.4747, 2012.

[26] L. Ladicky, C. Russell, P. Kohli, and P. H. Torr. Associative hierarchical crfs for object

class image segmentation. In Computer Vision, 2009 IEEE 12th International Confer-

134

ence on, pages 739–746. IEEE, 2009.

[27] V. Lempitsky, A. Vedaldi, and A. Zisserman. A pylon model for semantic segmentation.

NIPS, 2011.

[28] A. Levin, D. Lischinski, and Y. Weiss. Colorization using optimization. In SIGGRAPH,

2004.

[29] M. Maire, P. Arbeláez, C. Fowlkes, and J. Malik. Using contours to detect and localize

junctions in natural images. In Computer Vision and Pattern Recognition, 2008. CVPR

2008. IEEE Conference on, pages 1–8. IEEE, 2008.

[30] T. Malisiewicz and A. Efros. Improving spatial support for objects via multiple seg-

mentations. In BVMC, 2007.

[31] D. Munoz, J. Bagnell, and M. Hebert. Stacked hierarchical labeling. Computer Vision–

ECCV 2010, pages 57–70, 2010.

[32] P. K. Nathan Silberman, Derek Hoiem and R. Fergus. Indoor segmentation and support

inference from rgbd images. In ECCV, 2012.

[33] C. Pantofaru, C. Schmid, and M. Hebert. Object recognition by integrating multiple

image segmentations. Computer Vision–ECCV 2008, pages 481–494, 2008.

[34] Z. Ren and G. Shakhnarovich. Image segmentation by cascaded region agglomeration.

In Computer Vision and Pattern Recognition (CVPR), 2013 IEEE Conference on, pages

2011–2018. IEEE, 2013.

[35] B. C. Russell, W. T. Freeman, A. A. Efros, J. Sivic, and A. Zisserman. Using Multiple

Segmentations to Discover Objects and their Extent in Image Collections. In Computer

Vision and Pattern Recognition, 2006.

135

[36] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun. Overfeat:

Integrated recognition, localization and detection using convolutional networks. CoRR,

abs/1312.6229, 2013.

[37] J. Shotton, J. Winn, C. Rother, and A. Criminisi. Textonboost: Joint appearance,

shape and context modeling for multi-class object recognition and segmentation. In

Computer Vision–ECCV 2006, pages 1–15. Springer, 2006.

[38] N. Silberman and R. Fergus. Indoor scene segmentation using a structured light sensor.

In Proceedings of the International Conference on Computer Vision - Workshop on 3D

Representation and Recognition, 2011.

[39] D. Sontag, A. Globerson, and T. Jaakkola. Introduction to dual decomposition for

inference. In S. Sra, S. Nowozin, and S. J. Wright, editors, Optimization for Machine

Learning. MIT Press, 2011.

[40] D. Tarlow and R. S. Zemel. Structured output learning with high order loss functions.

In International Conference on Artificial Intelligence and Statistics, pages 1212–1220,

2012.

[41] J. Tighe and S. Lazebnik. Superparsing: scalable nonparametric image parsing with

superpixels. In ECCV, pages 352–365, Berlin, Heidelberg, 2010. Springer-Verlag.

[42] I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun. Large Margin Methods for

Structured and Interdependent Output Variables. J. Mach. Learn. Res., 6:1453–1484,

Dec. 2005.

[43] J. Yao, S. Fidler, and R. Urtasun. Describing the scene as a whole: Joint object

detection, scene classification and semantic segmentation. In Computer Vision and

Pattern Recognition (CVPR), 2012 IEEE Conference on, pages 702–709. IEEE, 2012.

136

	Dedication
	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	Introduction
	Background
	RGBD Datasets
	Semantic Segmentation
	Instance Segmentation
	Foreground-Background Segmentation
	Agglomerative Segmentation
	Segmentation Trees
	Clustering and Exemplar Based Segmentation

	Support Reasoning
	Extent Inference

	NYU Depth Datasets
	Introduction
	Approach
	Capture Setup
	NYU Depth V1
	NYU Depth V2
	Pre-processing
	Semantic and Instance Annotations
	Support Annotations

	Semantic Segmentation with 3D Priors
	Introduction
	3D Location Prior
	Model
	Unary Potentials
	Appearance Model
	Location Prior

	Transition Potentials
	Experiments

	Tree-Based Instance Segmentation
	Segmentation Trees
	Standard Segmentation Trees
	Biased Segmentation Trees

	Greedy Tree Training and Inference
	Initializing Segmentation
	Region Merging Classifier

	Global Tree Training and Inference
	The Ground Truth Mapping Problem:

	Creating the Segmentation Trees
	Standard Segmentation Trees
	Biased Segmentation Trees

	Cutting Instance Segmentation Trees
	Model
	Inference
	Learning

	Coverage Loss
	Integer Program Formulation with Loss Augmentation

	Solving the Ground Truth Mapping Problem
	Learning with Surrogate Labels

	Convolutional Network Features for Dense Segmentation
	Experiments
	Evaluating Greedy Inference
	Evaluating Tree Proposal Methods
	Evaluating CNN Features
	Segmentation

	Exemplar-based Instance Segmentation
	Two Stage Inference
	Exempler Subselection
	Pixel Assignment

	Joint Exemplar Selection and Pixel Assignment
	Dual Decomposition

	Pruning
	Exemplar Label Pruning
	Pixel-to-Exemplar Pruning

	Learning
	Experiments
	Stage 1: Subselection
	Stage 2: Pixel and Superpixel Assignment
	Evaluating Two-Stage and Joint Inference

	Inferring Physical Support Relations
	Introduction
	Modeling Support Relationships
	The Model
	Integer Program Formulation
	Support Features and Local Classification
	Structure Class Features and Local Classification

	Experiments
	Evaluating Support
	Evaluating Structure Class Prediction

	Extent Reasoning
	Introduction
	Plane Detection and Classification
	Computing the Optimal H
	Semantic Labeling

	Scene Completion
	Completion as a Labeling Problem
	Contour Completion Random Field
	Defining Edge Groups
	Hierarchical Edge Groups
	Inference with Hierarchical Edge Groups
	Inferring Scene Boundaries
	Extending Planar Surfaces

	Augmenting the Original Volume
	Experiments
	Synthetic validation
	Single Frame Scene Completion
	Qualitative Analysis

	Conclusions
	Appendix
	MPLP Message Passing
	Maximizing Subproblems: Exemplar Potentials
	Maximizing Subproblems: Pixel Potentials
	Maximizing Subproblems: Tree Potentials
	Maximizing Subproblems: Pixel-Exemplar Agreement
	Maximizing Subproblems: Class-Cardinality Potentials
	Maximizing Subproblems: Pairwise Potentials
	Block Coordinate Update for Tree Potential's Variables
	Block Coordinate Update for Agreement Potentials ' Variables
	Block Coordinate Update for Agreement Potentials ' Variables
	Block Coordinate Update for Cardinality Potentials '' Variables
	Block Coordinate Update for Pairwise Potentials Variables

	Bibliography

