
Acquiring Information from Wider Scope

to Improve Event Extraction

by

Shasha Liao

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science

New York University

May, 2012

Ralph Grishman

	

© Shasha Liao

All Rights Reserved, 2012

	

	
 i	

	

	

	

	

	

	

	

	

	

	

To Emma, the most incredible miracle in my life.

	
 ii	

	

ACKNOWLEDGEMENTS

This research was supported in part by the Intelligence Advanced Research

Projects Activity (IARPA) via Air Force Research Laboratory (AFRL) contract

number FA8650-10-C-7058 and via Department of Interior National Business

Center (DoI/NBC) contract number D11PC20154. The U.S. Government is

authorized to reproduce and distribute reprints for Governmental purposes

notwithstanding any copyright annotation thereon. The views and conclusions

contained herein are those of the author and should not be interpreted as

necessarily representing the official policies or endorsements, either expressed or

implied, of IARPA, AFRL, DoI/NBC, or the U.S. Government.

Foremost, I would like to thank my advisor, Ralph Grishman, for teaching me

how to do research. I have always admired and tried to learn from Ralph's

enthusiasm in pursuing all kinds of new research problems, finding connections

between different areas, and forging better abstractions and ways of understanding

results.

Next, I would like to thank other mentors. Thank you, Adam Meyers and

Satoshi Sekine, for all your helpful advice.

I would also like to thank Heng Ji, who is now in City University of New York,

with whom I have discussed about all kinds of novel research ideas, not limited to

this thesis. I also thank my co-workers, Ang Sun, Bonan Min, Wei Xu. I truly

	
 iii	

enjoyed and learned much from these enlightening conversations, and thank them

all for the many wonderful discussions and for all their hard work.

I thank my parents, Zhengtang Liao and Yaning Zhang, who first introduced me

to the world and its many exciting mysteries, for their fully understanding, love,

and sacrifices to my education abroad. This thesis would not have been possible

otherwise.

Last, but certainly not least, I thank my husband, Roger, for all his love,

support, encouragement, patience and care.

	
 iv	

ABSTRACT

Event extraction is a particularly challenging type of information extraction

(IE). Most current event extraction systems rely on local information at the phrase

or sentence level. However, this local context may be insufficient to resolve

ambiguities in identifying particular types of events; information from a wider

scope can serve to resolve some of these ambiguities.

In this thesis, we first investigate how to extract supervised and unsupervised

features to improve a supervised baseline system. Then, we present two additional

tasks to show the benefit of wider scope features in semi-supervised learning (self

training) and active learning (co-testing). Experiments show that using features

from wider scope can not only aid a supervised local event extraction baseline

system, but also help the semi-supervised or active learning approach.

	
 v	

TABLE OF CONTENTS

ACKNOWLEDGEMENTS	
 ..	
 ii	

ABSTRACT	
 ...	
 iv	

TABLE	
 OF	
 CONTENTS	
 ..	
 v	

LIST	
 OF	
 FIGURES	
 ..	
 viii	

LIST	
 OF	
 TABLES	
 ..	
 ix	

Introduction	
 ...	
 1	

Chapter	
 1	
 Task	
 Description	
 ...	
 4	

1.1	
 Automatic	
 Content	
 Extraction	
 (ACE)	
 Evaluation	
 ..	
 5	

1.2	
 ACE	
 Terminology	
 ...	
 7	

1.2.1	
 ACE	
 Event	
 Overview	
 ..	
 9	

1.2.2	
 ACE	
 Event	
 Example	
 ..	
 10	

1.2.3	
 Evaluation	
 Metric	
 ...	
 11	

Chapter	
 2	
 Baseline	
 System	
 ..	
 13	

2.1	
 Pre-­‐processing	
 Phases	
 ..	
 13	

2.2	
 Event	
 Extraction	
 Phase	
 ...	
 15	

2.3	
 Problems	
 of	
 Trigger	
 Identification	
 ..	
 17	

2.3.1	
 Word	
 Sense	
 Ambiguity	
 ...	
 19	

2.3.2	
 Argument	
 Constraint	
 ..	
 19	

2.3.3	
 Scenario	
 (Context)	
 Constraint	
 ...	
 20	

2.4	
 Problems	
 of	
 Argument	
 Identification	
 ...	
 20	

2.4.1	
 Preprocessing	
 Error	
 ..	
 21	

2.4.2	
 Structure	
 Variation	
 ..	
 22	

	
 vi	

2.4.3	
 Multi-­‐mention	
 Role	
 Problem	
 ...	
 24	

2.5	
 How	
 to	
 Solve	
 Above	
 Problems	
 ...	
 25	

Chapter	
 3	
 Document	
 Level	
 Cross-­‐event	
 Inference	
 ..	
 26	

3.1	
 Motivation	
 ..	
 30	

3.1.1	
 Trigger	
 Consistency	
 and	
 Distribution	
 ..	
 32	

3.1.2	
 Role	
 Consistency	
 and	
 Distribution	
 ..	
 34	

3.2	
 Document	
 level	
 Cross-­‐event	
 Approach	
 ...	
 35	

3.2.1	
 Confident	
 Information	
 Collector	
 ..	
 36	

3.2.2	
 Document	
 Level	
 Classifiers	
 ..	
 39	

3.2.3	
 Document	
 Level	
 Event	
 Tagging	
 ..	
 40	

3.3	
 Experiments	
 ..	
 40	

Chapter	
 4	
 Document	
 Level	
 Topic	
 Features	
 ..	
 43	

4.1	
 Problems	
 on	
 Balanced	
 Testing	
 Data	
 ...	
 44	

4.2	
 Motivation	
 ..	
 46	

4.3	
 Topic	
 Features	
 ..	
 47	

4.3.1	
 Unsupervised	
 Features	
 ..	
 48	

4.3.2	
 Supervised	
 Features	
 ..	
 49	

4.4	
 Experiment	
 ...	
 50	

4.4.1	
 Experiment	
 Setup	
 ...	
 50	

4.4.2	
 Evaluation	
 on	
 ACE	
 data	
 ..	
 51	

4.4.3	
 Evaluation	
 on	
 NYT	
 data	
 ...	
 52	

Chapter	
 5	
 Cross-­‐Document	
 IR-­‐based	
 Self-­‐training	
 ...	
 56	

5.1	
 Motivation	
 ..	
 58	

5.2	
 Cross-­‐Document	
 IR-­‐based	
 Approach	
 ...	
 60	

5.2.1	
 Self-­‐training	
 on	
 Information	
 Retrieval	
 Selected	
 Corpus	
 (ST_IR)	
 	
 61	

5.2.2	
 Self-­‐training	
 using	
 Global	
 Inference	
 (ST_GI)	
 ...	
 62	

	
 vii	

5.3	
 Experiments	
 ..	
 64	

Chapter	
 6	
 Sentence	
 Level	
 Active	
 Learning	
 ...	
 66	

6.1	
 Motivation	
 ..	
 69	

6.2	
 Pseudo	
 Co-­‐testing	
 Approach	
 ..	
 70	

6.2.1	
 Applying	
 Uncertainty-­‐based	
 Sampling	
 ..	
 72	

6.2.2	
 Problems	
 with	
 Uncertainty-­‐based	
 Sampling	
 ..	
 73	

6.2.3	
 Another	
 View	
 from	
 Sentential	
 Scope	
 ...	
 74	

6.2.4	
 Pseudo	
 Co-­‐Testing	
 ..	
 75	

6.3	
 Multi-­‐criteria-­‐based	
 AL	
 ..	
 77	

6.3.1	
 Features	
 used	
 in	
 Similarity	
 of	
 Samples	
 ...	
 78	

6.3.2	
 Representativeness	
 ..	
 78	

6.3.3	
 Diversity	
 ...	
 79	

6.4	
 Experiments	
 ..	
 80	

Chapter	
 7	
 Conclusion	
 ...	
 84	

Bibliography	
 ..	
 85	

	

	
 viii	

LIST OF FIGURES

Figure	
 2.1	
 Distribution	
 of	
 probability	
 that	
 a	
 word	
 being	
 a	
 trigger	
 for	
 Attack	
 event

	
 ..	
 18	

Figure	
 2.2	
 Precision	
 on	
 the	
 original	
 training	
 data	
 with	
 different	
 thresholds	
 	
 21	

Figure	
 2.3	
 Frequency	
 of	
 patterns	
 from	
 trigger	
 to	
 argument.	
 X	
 axis	
 is	
 the	
 pattern	

occurrence	
 frequency,	
 while	
 Y	
 axis	
 is	
 the	
 number	
 of	
 patterns	
 with	
 that	

frequency	
 ...	
 23	

Figure	
 3.1	
 Conditional	
 probability	
 of	
 the	
 other	
 32	
 event	
 types	
 in	
 documents	

where	
 a	
 Die	
 event	
 appears	
 ...	
 34	

Figure	
 3.2	
 Conditional	
 probability	
 of	
 the	
 other	
 32	
 event	
 types	
 in	
 documents	

where	
 a	
 Start-­‐Org	
 event	
 appears	
 ..	
 34	

Figure	
 3.3	
 Conditional	
 probability	
 of	
 all	
 possible	
 roles	
 in	
 other	
 event	
 types	
 for	

entities	
 that	
 are	
 the	
 Targets	
 of	
 Attack	
 events	
 (roles	
 with	
 conditional	

probability	
 below	
 0.002	
 are	
 omitted)	
 ...	
 35	

Figure	
 3.4	
 The	
 performance	
 of	
 different	
 confidence	
 thresholds	
 in	
 the	
 baseline	

system	
 	
 on	
 the	
 development	
 set	
 ..	
 37	

Figure	
 6.1	
 Diversity	
 criterion	
 in	
 batch-­‐based	
 active	
 learning	
 ..	
 80	

Figure	
 6.2	
 Performance	
 (F-­‐Measure)	
 of	
 argument	
 labeling	
 ...	
 81	

Figure	
 6.3	
 Performance	
 (F-­‐Measure)	
 of	
 role	
 labeling	
 ...	
 82	

Figure	
 6.4	
 Performance	
 (F-­‐Measure)	
 of	
 trigger	
 labeling	
 ...	
 83	

	
 ix	

LIST OF TABLES	

Table	
 1.1	
 -­‐	
 Event	
 types	
 and	
 subtypes	
 defined	
 in	
 ACE	
 2005	
 ..	
 9	

Table	
 1.2	
 -­‐	
 35	
 Argument	
 roles	
 defined	
 by	
 ACE	
 2005	
 ...	
 9	

Table	
 1.3	
 –	
 Entity	
 and	
 entity	
 mentions	
 and	
 their	
 types	
 for	
 (Ex	
 1–1)	
 	
 11	

Table	
 1.4	
 –	
 Event	
 mentions	
 and	
 their	
 types	
 for	
 (Ex	
 1–1)	
 ...	
 11	

Table	
 1.5	
 -­‐	
 The	
 elements	
 that	
 need	
 to	
 be	
 matched	
 for	
 each	
 evaluation	
 metric	
 	
 12	

Table	
 2.1	
 -­‐	
 Features	
 used	
 in	
 classifiers	
 of	
 the	
 baseline	
 system	
 	
 17	

Table	
 2.2	
 -­‐	
 Examples	
 of	
 ambiguous	
 triggers	
 ..	
 19	

Table	
 2.3	
 -­‐	
 Argument	
 roles	
 that	
 can	
 contain	
 multiple	
 mentions	
 	
 25	

Table	
 3.1	
 -­‐	
 Events	
 co-­‐occurring	
 with	
 Die	
 events	
 with	
 conditional	
 probability	
 >	

10%	
 ..	
 33	

Table	
 3.2	
 -­‐	
 Example	
 of	
 document-­‐level	
 confident-­‐event	
 table	
 (event	
 type	
 and	

argument	
 role	
 entries)	
 and	
 conflict	
 table	
 ..	
 38	

Table	
 3.3	
 -­‐	
 Overall	
 performance	
 on	
 blind	
 test	
 data	
 ..	
 41	

Table	
 4.1	
 -­‐	
 Overall	
 performance	
 on	
 ACE	
 test	
 data	
 ..	
 52	

Table	
 4.2	
 -­‐	
 Performance	
 on	
 NYT	
 collection	
 ..	
 54	

Table	
 5.1	
 -­‐	
 F-­‐score	
 with	
 different	
 self-­‐training	
 strategies	
 after	
 10	
 iterations	
 	
 65	

	

	

	
 1	

Introduction

While information is plentiful and readily available, from the Internet, news

services, media, etc., extracting the critical nuggets that matter to business or to

national security is a cognitively demanding and time consuming task. Intelligence

and business analysts spend many hours poring over endless streams of text

documents pulling out references to entities of interest (people, locations,

organizations) as well as their relationships as reported in text. However, if we can

automatically identify such information, we can eliminate or at least reduce the

human labor and speed up the process.

Information Extraction (IE) is the technique for automatically extracting

structured data from text documents. Generally speaking, there are three levels of

information extraction: entity extraction identifies all the useful snippets in text,

such as people, location, and organizations; relation extraction identifies all the

binary relations between entities, and event extraction identifies multi-way

relations among entities.

At present, the techniques developed for named entity recognition are quite

mature (Zhang et al. 2004), and the performance already achieves real practical

usability. For relation and event extraction, the performance is much lower, and

there are still a lot of issues to investigate.

Event extraction aims to extract the critical information about each event (the

agent, objects, date, location, etc.) and place this information in a set of templates

	
 2	

(data base). Most of the current systems focus on processing single documents and,

except for coreference resolution, operate a sentence at a time (Grishman et al.,

2005; Ahn, 2006; Agichtein and Gravano, 2000; Hardy et al., 2006).

However, sometimes the local information is not enough, or is hard to extract.

An event can be described in so many different ways in text, and the local context

information from an individual sentence may not suffice to extract the event

information accurately and completely. Moreover, even humans might need

information from elsewhere inside or outside a document to make confident

decisions about the information to be extracted. Thus, incorporating information

from wider scope is one important direction to investigate.

Still, there are a lot of issues to be explored. Wider scope includes sentence,

discourse, document, or cross-document levels and what kind of features can be

extracted is still being investigated. There are several recent studies using high-

level information to aid local event extraction systems. Depending on where the

features come from, we divided them into three categories:

Consistency enforcement: the “one sense per discourse” hypothesis

(Yarowsky 1995) was used to enforce consistency in the testing data. Such studies

include work from Yangarber and Jokipii (2005), Yangarber (2006), Yangarber et

al. (2007), Mann (2007), Ji and Grishman (2008), and Gupta and Ji (2009). This

hypothesis is quite simple, and no learning is needed.

Supervised features: The second category extracts supervised features from a

tagged corpus, typically, the event extraction training data. Such studies include

work from Finkel et al. (2005), Maslennikov and Chua (2007), Ji and Grishman

	
 3	

(2008), Gupta and Ji (2009) and Patwardhan and Riloff (2007, 2009). These

features are especially useful on traditional evaluations, where the training and

testing data are similar.

Unsupervised features: The third category extracts unsupervised features from

distributions in large-scale untagged corpora. Such studies include Riloff (1996),

Yangarber et al. (2000). These features are used when there is not much training

data, or the training and testing data has different distribution.

In this thesis, we first investigate how to extract supervised and unsupervised

features to improve a supervised baseline system. Then, we present two additional

tasks to show the benefit of wider scope features in semi-supervised learning (self

training) and active learning (co-testing).

The thesis is organized as follows:

Chapter 1 describes the task of event extraction, and specifically the ACE 2005

evaluation. Chapter 2 introduces NYU’s event extraction baseline system, which is

a supervised model.

Chapter 3 shows how to use document level cross-event features to improve

event extraction. Document level cross-event information was collected and

encoded into features that are used to build a set of document-level classifiers. It

was aimed to solve the cases where local (sentence level) information is not

enough and evidence from wider scope is needed.

Chapter 4 shows how to embed large-scale unsupervised topic features to

improve event extraction. Unsupervised topic models (LDA) were incorporated to

improve event extraction both on test data similar to training data, and on more

	
 4	

balanced collections. Compared to a supervised multi-label classifier, the

unsupervised approach can achieve comparable, even better, results. Also, we do

not limit our study to the corpus from the standard ACE evaluation, which is

preselected, but also investigate its performance on a regular newswire corpus.

Chapter 5 presents a self-training process for event extraction. Event-centric

entity-level Information Retrieval (IR) techniques were incorporated to provide

topic-related document clusters. Experiments showed that bootstrapping on such a

corpus performed better than that on a regular corpus. Global inference based on

the properties of such clusters was then applied to achieve further improvement.

Chapter 6 presents a pseudo co-testing method for event extraction, which

depends on one view from the original problem of event extraction, and another

view from a coarser granularity task. Moreover, multiple selection criteria were

applied to seek training examples that are informative, representative, and varied.

Chapter 7 concludes the thesis as a whole, pointing out some possible directions

for future work.

Chapter 1

Task Description

This chapter describes prior research done in information extraction (IE),

focusing on event extraction, which involves the results of other IE tasks, like

named entity recognition, entity identification and entity co-reference.

	
 5	

Event extraction (also referred to as “scenario template” extraction) involves the

identification in free text of instances of a particular type of event, and the

identification of the arguments of each such event. There is now a considerable

literature on event extraction, and in particular on supervised and semi-supervised

methods for constructing such systems for new tasks. Previous work has sought to

compare event extraction tasks by measuring the complexity of the linguistic

representation of the information to be extracted and analyzing the distribution of

information in the document1.

There are two event extraction tasks that are widely investigated: one is the

MUC event extraction tasks, including MUC-3/4 on Latin American terrorist

incidents (MUC 1991; MUC 1992), and MUC-6 on executive succession (MUC

1995); the other is the ACE 2005 (33 event types covering the most common

events of national and international news) (ACE 2005). In this thesis, we focus on

the studies on ACE event types, and all of the experiments are reported on the

ACE 2005 evaluation.

1.1 Automatic Content Extraction (ACE) Evaluation

ACE began in 2000 after MUC. “The objective of the ACE program is to

develop automatic content extraction technology to support automatic processing

of human language in text form from a variety of sources (such as newswire,

broadcast conversation, and weblogs). ACE technology R&D is aimed at
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

1 http://www.nist.gov/speech/tests/ace/

	
 6	

supporting various classification, filtering, and selection applications by extracting

and representing language content (i.e., the meaning conveyed by the data). Thus

the ACE program requires the development of technologies that automatically

detect and characterize this meaning.2”

Unlike MUC data, which was primarily extracted from newswire, ACE also

includes data from manually and automatically transcribed broadcast news,

Internet blogs, etc., thus, the text is often of poor quality when compared to MUC

data. The ACE research objectives are viewed as the detection and characterization

of Entities, Relations and Events.

Entity Detection and Recognition (EDR) is the core annotation task of ACE,

providing the foundation for all remaining tasks. This ACE task identifies seven

types of entities: Person, Organization, Location, Facility, Weapon, Vehicle and

Geo-Political Entity (GPE). Each type is further divided into subtypes. Annotators

tag all mentions of each entity within a document, whether named, nominal

(common noun) or pronominal. For every mention, the annotator identifies the

maximal extent of the string that represents the entity, and labels the head of each

mention. Nested mentions are also captured. Annotators also review the entire

document to group mentions of the same entity together (Coreference).

Relation Detection and Recognition (RDR) involves the identification of

relations between entities. As RDR is considered separate from the event

extraction task, we do not provide more details in this thesis.

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

2 http://www.nist.gov/speech/tests/ace/

	
 7	

Event Detection and Recognition (VDR). In VDR, annotators identify and

characterize eight types of events in which EDR entities participate. Targeted types

include Life, Movement, Transaction, Business, Conflict, Contact, Personnel, and

Justice. Annotators tag the textual mention or trigger for each event, and categorize

it by type and subtype. They further identify event arguments (agent, object, source

and target) and attributes (temporal, locative as well as others like instrument or

purpose) according to a type-specific template.

1.2 ACE Terminology

Event extraction depends on previous phases like name identification, entity

mention classification and coreference. Table 1.3 shows the results of this

preprocessing. Note that entity mentions that share the same EntityID are

coreferential and treated as the same object. We first present some ACE

terminology to understand this task more easily:

Entity: an object or a set of objects in one of the semantic categories of interest,

referred to in the document by one or more (coreferential) entity mentions

Entity mention: a span of text which refers to an entity. Entity mentions may

be referenced in a text by their name, indicated by a common noun or noun phrase,

or represented by a pronoun.

Value: A Value is a string that further characterizes the properties of some

Entity or Event. ACE is only interested in certain types of possible Values.

Specifically, ACE annotates NUMERIC, CONTACT-INFO, TIMEX2, JOB-

TITLE, CRIME and SENTENCE Values.

	
 8	

Timex: a time expression including date, time of the day, season, year, etc.

Timex mention: a reference to a Timex (typically, a noun phrase or specialized

time pattern)

Event: a specific occurrence involving participants. An event is something that

happens, which can frequently be described as a change of state. The ACE event

extraction task only tags a particular set of types of events.

Event mention3: a phrase or sentence within which an event is described,

including trigger and arguments. An event mention must have one and only one

trigger, and can have an arbitrary number of arguments.

Event mention trigger: the main word that most clearly expresses an event

occurrence. An ACE event trigger is generally a verb or a noun.

Event mention arguments (roles): the entity mentions that are involved in an

event mention, and their relation to the event. For example, event Attack might

include participants like Attacker and Target, or attributes like Time_Within and

Place. Arguments will be taggable only when they occur within the scope of the

corresponding event, typically the same sentence.

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

3 Note that we do not deal with event mention coreference in this thesis, so each event mention

is treated as a separate event.

	
 9	

1.2.1 ACE Event Overview
There are eight event types in ACE: Life, Movement, Transaction, Business,

Conflict, Contact, Personnel and Justice. And each event type contains one or

several subtypes (see Table 1.1).

Event Type Event Subtype

Life Be-Born, Marry, Divorce, Injure, Die

Movement Transport

Transaction Transfer-Ownership, Transfer-Money

Business Start-Org, Merge-Org, Declare-Bankruptcy, End-Org

Conflict Attack, Demonstrate

Contact Meet, Phone-Write

Personnel Start-Position, End-Position, Nominate, Elect

Justice Arrest-Jail, Release-Parole, Trial-Hearing, Charge-

Indict, Sue, Convict, Sentence, Fine, Execute, Extradite,

Acquit, Appeal, Pardon

Table 1.1 - Event types and subtypes defined in ACE 2005

Person Place Buyer Seller

Beneficiary Price Artifact Origin

Destination Giver Recipient Money

Org Agent Victim Instrument

Entity Attacker Target Defendant

Adjudicator Prosecutor Plaintiff Crime

Position Sentence Vehicle Time-After

Time-

Before

Time-At-Beginning Time-At-

End

Time-Starting

Time-

Ending

Time-Holds Time-

Within

Table 1.2 - 35 Argument roles defined by ACE 2005

	
 10	

There are a total of 35 argument roles defined for the above events (see Table

1.2). Each event type will have its own set of potential participant arguments for

the entities that occur within its scope, while there are some general roles like

Time-Arg and Place-Arg. There are two different kinds of arguments:

Event Participants: Event participants are Entities that are involved in the

event. For example, an Attack event might contain Attacker-Arg, Target-Arg, and

Instrument-Arg, which represent the attacking agent, the target of the attack, and

the instrument used in the attack.

Event Attributes: Event attributes are Values that are involved in the event.

There are two kinds of attributes: one is event-specific attributes, which includes

Crime-Arg, Sentence-Arg, and Position-Arg, which are for events Crime, Sentence,

and Personnel respectively; the other is general event attributes, which can be

applied to most (if not all) events, including Place-Arg and Time-Arg.

1.2.2 ACE Event Example
Here is an example:

(Ex 1–1) Three murders occurred in France today, including the senseless

slaying of Bob Cole and the assassination of Joe Westbrook. Bob was on his

way home when he was attacked…

In (Ex 1–1), we will have the following entity or Timex mentions, with co-

reference information (see Table 1.3). There are three Die events, which share the

same Place and Time roles, with different Victim roles. And there is one Attack

event sharing the same Place and Time roles with the Die events (see Table 1.4).

	
 11	

Entity mention Head word Entity ID Entity type

0001-1-1 France 0001-1 GPE

0001-T1-1 Today 0001-T1 Timex

0001-2-1 Bob Cole 0001-2 PER

0001-3-1 Joe Westbrook 0001-3 PER

0001-2-2 Bob 0001-2 PER

0001-2-3 He 0001-2 PER

Table 1.3 – Entity and entity mentions and their types for (Ex 1–1)

Event type Event
subtype

Trigger Role
Place Victim Time

Life Die murder 0001-1-1 0001-T1-1

Life Die death 0001-1-1 0001-2-1 0001-T1-1

Life Die killing 0001-1-1 0001-3-1 0001-T1-1

 Place Target Time

Conflict Attack attack 0001-1-1 0001-2-3 0001-T1-1

Table 1.4 – Event mentions and their types for (Ex 1–1)

	

1.2.3 Evaluation Metric
Since an ACE event contains one trigger and an arbitrary number of arguments,

its structure is somewhat complicated and it is hard to evaluate it as a whole. As a

result, we prefer to examine the system performance at three levels, the trigger

classification, the argument identification and the argument classification. The

trigger classification assesses how well the system can detect events and their

types; argument identification assesses how well the system finds arguments of the

events; argument classification assesses how well the system assign roles for the

arguments.

	
 12	

We use the precision, recall, and F-measure standard metrics to evaluate the

system performance, which are defined as follows:

Pr ecision = | system samples ∩ key samples |
| system samples |

Recall = | system samples ∩ key samples |
| key samples |

F −measure = 2*Pr ecision*Recall
Pr ecision+Recall

The three metrics define a correct instance as one matching the key with respect

to the following elements:

Evaluation metric Matched Elements

Trigger Labeling Event type and subtype

Trigger start offset

Trigger end offset

Argument

Identification

Event type and subtype

Argument head start offset

Argument head end offset

Argument

Classification

Event type and subtype

Argument head start offset

Argument end offset

Argument role

Table 1.5 - The elements that need to be matched for each evaluation metric

	
 13	

Chapter 2

Baseline System

In this section, we describe a state-of-the-art English baseline event extraction

system (Grishman et al. 2005), and possible problems in such systems. Our

English extraction system, developed over the course of the last several ACE

evaluations, includes facilities for the EDR (entity), RDR (relation), and VDR

(event) tasks. The English ACE system is built on top of the JET (Java Extraction

Toolkit), which was developed at NYU for instructional purposes and is freely

available for research purposes.

This chapter is organized as follows: section 2.1 describes the pre-processing

phases of event extraction; section 2.2 gives details on how to extract ACE events;

sections 2.3 and 2.4 discuss the problems of trigger identification and argument

identification in this baseline system.

2.1 Pre-processing Phases

Before event extraction, there are some normal pre-processing steps. For

example, we need to tokenize the words, and tag the part-of-speech. Also, since the

arguments of the event should be entities, timex expressions, or values, we need to

extract them first. We list the most important pre-processing steps below:

	
 14	

Lexical Lookup: The input text is divided into sentences and tokenized.

Tokens are looked up in a large general English dictionary that provides part-of-

speech information and the base form of inflected words.

Named Entity Analysis: Named entities are tagged using an HMM trained on

the ACE training corpora. The HMM has six states for each name type (PERSON,

GPE etc.), as well as a not-a-name state. These six states correspond to the token

preceding the name; the single name token (for names with only one token); the

first token of the name; an internal token of the name (neither first nor last); the

last token of the name; and the token following the name. These multiple states

allow the HMM to capture context information and limited information about the

internal structure of the name.

Reference resolution: Reference resolution first identifies mentions (referring

expressions) and then links co-referring expressions. Coreference resolution

proceeds incrementally. Mentions are resolved in order of appearance in the

document, and feature extraction depends on previous decisions. For each mention,

the system checks to see whether a simple, high-precision rule can resolve the

mention (whether there is an exact string match between two multi-word names,

for example), and immediately applies the rule if one is found.

ACE Entity Detection and Recognition: Given the output of reference

resolution, ACE entity detection is primarily a task of semantic classification of the

co-referring mention groups. Classification is performed differently for entities

with and without named mentions. If there is a named mention, the type of the

entity is obtained from the name tagger. The subtype is determined using a

	
 15	

MaxEnt model whose features are the individual tokens of the name, trained on the

ACE 2005 corpus. The type and subtype of a nominal mention is determined from

the head of the mention (with the exception of a small number of hand-coded

cases), with the frequencies of the types and subtypes learned from the ACE

corpus.

2.2 Event Extraction Phase

The identification of the trigger and the arguments interact: the relation between

the trigger and the argument is one essential factor to identify both the trigger and

the role of the argument. For example, if we know that the object of the word

“shoot” is a person and it has the “fire a shot” sense, we can confidently identify

the person as the Target role, and tag “shoot” as the trigger of an Attack event. As

a result, most current event extraction systems consider trigger and argument

information together to tag a reportable event.

Our baseline system is trigger-based, and combined pattern matching and

statistical models. In training, there are three steps:

Step 1: For each instance of an event, we construct the chunk patterns

representing the connection between the trigger and the event arguments. The

chunk-based pattern records the sequence of constituent heads separating the

trigger and arguments. For each argument, we record its ACE type and subtype as

well as its head.

Step 2: For each pattern, we determine the accuracy of predicting an event

given a partial match to it. We record the fraction of matches to the trigger alone

	
 16	

that predicts a correct event, and the fraction of matches to the trigger and each

argument as well. Patterns that over-generate – predicting incorrect or spurious

events most of the time – are discarded.

Step 3: Patterns are supplemented by a set of Maximum Entropy statistical

classifiers:

Argument Classifier: it is a binary classifier that distinguishes arguments of a

potential trigger from non-arguments.

Role Classifier: it is a multi-class classifier to assign each argument with its

proper role.

Reportable-Event Classifier (Trigger Classifier): Given a potential trigger,

an event type, and a set of arguments, it is a binary classifier determining whether

there is a reportable event mention.

	

Classifier	
 Features	

Argument/role classifier • Trigger word

• Event type

• Argument mention type

• Head of mention

• Head of mention coupled with event subtype

• Word preceding mention

• Chunk path

• Chunk path coupled with event type

• Distance to trigger

• Syntactic path

Trigger classifier • Trigger word

	
 17	

• Fraction of times the trigger is reportable

• Probability that it has each argument

Table 2.1 - Features used in classifiers of the baseline system

	

In the test procedure, each document is scanned for instances of triggers from

the training corpus. When an instance is found, the system tries to match the

environment of the trigger against the set of patterns associated with that trigger.

This pattern-matching process, if successful, will assign some of the mentions in

the sentence as arguments of a potential event mention. The argument classifier is

applied to the remaining mentions in the sentence; for any argument passing that

classifier, the role classifier is used to assign a role to it. Finally, once all

arguments have been assigned, the reportable-event classifier is applied to the

potential event mention; if the result is successful, this event mention is reported.4

2.3 Problems of Trigger Identification

Identifying the trigger – the word most clearly expressing the event - is essential

for event extraction. Usually, the trigger itself is the most important clue in

detecting and classifying the type of an event. For example, the word “attack” is

very likely to represent an Attack event while the word “meet” is not. However,

this is not always the case. When we collect all the words that serve as an Attack

event trigger at least once, and plot their probability of triggering an event (Figure

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

4 If the event arguments include some assigned by the pattern-matching process, the event

mention is accepted unconditionally, bypassing the reportable- event classifier.

	
 18	

2.1), we see that the probabilities are widely scattered. Some words always trigger

an event (probability = 1.0), but most are not.

Why is the trigger itself not sufficient to identify an event? If we look at all the

possible trigger words in ACE 2005, we find that a word can sometimes be a

trigger, sometime not. For example, “attack with a stone” is an Attack event, since

it might cause physical damage, while “verbal attack” is not.

	
 	

Figure 2.1 - Distribution of probability of a word being a trigger for an Attack
event

Word Event subtype

casualties Die, Injury

named Start-Position, Nominate, Elect

pay Fine, Transfer-Money, Transfer-Ownership

take Transport, Transfer-Ownership, Transfer-Money, Elect

fire End-Position, Attack

leave End-Position, Transport

become Elect, Start-Position

replace Start-Position, End-Position

	
 19	

shot Attack, Die, Execute

deliver Transport, Be-Born, Transfer-Ownership, Phone-Write

Table 2.2 - Examples of ambiguous triggers

Also, a word might trigger different types of events. To give some intuition,

Table 2.2 presents several words that might trigger different types of events in

different contexts. Below, we list some problems in trigger identification.

2.3.1 Word Sense Ambiguity
A word may be ambiguous and have several senses, only some of which

correspond to a particular event type. For example, the word “fire” can trigger

Attack or End-Position events, based on different senses it presents in different

contexts. If it means “the act of firing weapons or artillery at an enemy”, it always

triggers an Attack event; if it means “discharge from an office or position”, it

always triggers an End-Position event. Also, the sense “fire a shot”, is more likely

to trigger an Attack event, than the sense “record on photographic film”.

2.3.2 Argument Constraint
Even if the scenario is well detected, there is no guarantee of identifying the

event correctly. Think about words like “fire” or “shot”: these can only be an

Attack event when the target is a person, organization, Geo-Political Entity (GPE),

weapon or facility. If the target is, for example, an animal, it is probably not an

Attack event.

	
 20	

2.3.3 Scenario (Context) Constraint
The scenario also has subtle effects even once the correct sense is identified.

For example, if we see the word “fire” with the sense “fire a shot” in terrorist

activities, it may be an Attack event. However, the same word with the same sense

in hunting-related or shooting-contest-related activities is probably not an Attack

event.

However, we have to point out that while the above information can solve the

problem to some extent, there are always some harder cases, which even humans

cannot annotate confidently. For example, “casualties” can trigger both Die or

Injury events, and most of the time, it is mentioned briefly after the report of an

Attack event, and even a human reader cannot know whether it refers to death or

injury, or sometimes, both.

2.4 Problems of Argument Identification

Argument identification has its own problems as well, even if the trigger

identification is correct. If we look at the performance of argument identification,

we find that it is relatively low. Figure 2.2 shows that the precision using the

original training data is not very good: while precision improves with increasing

classifier threshold, about 1/3 of the roles are still incorrectly tagged at a threshold

of 0.90.

	
 21	

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Trigger Labeling

Argument Labeling

Role Labeling

Figure 2.2 – Average precision (5-folded cross-validation) of the baseline system
with different confident thresholds

There are several reasons for this:

2.4.1 Preprocessing Error
 Argument identification depends heavily on pre-processing such as EDR

(Entity Detection and Recognition). Arguments are limited to Entities, Values and

Timex which are found in previous phases. If the correct argument is not

discovered, it will be never be identified by the event extraction system. Also, if its

type and subtype are wrongly tagged, the event extraction will also be affected

because they are important features for argument /role classification. For example:

(Ex 2–1) Over 45 minutes as we watched, 32 patients were delivered here,

evaluated and nine operations started; [29: Artifact] of those delivered

[Transport], Marines involved in a firefight in the center of Baghdad.

(Ex 2–2) In the case of 1991, the task was to go in and get them out of

Kuwait, and they did it, and [they: Artifact] were properly greeted coming

back [Transport] to the United States.

	
 22	

In Ex 2–1Error! Reference source not found., the “29” should be tagged as a

PERSON entity in ACE, however, the pre-processing misses it because the word

itself is a number, and you need a inference from its context to decide it refers to

“29 patients”, which is very hard. Since the preprocessing misses this entity, we

will never be able to tag it as the Artifact role for the Transport event.

In Ex 2-2, the preprocessing wrongly tags “they” as a “GPE” because the most

recent entity mention for this pronoun is “Kuwait”, which is a GPE entity. Since

the Artifact role of Transport must be a person, the event tagger will not consider it

as an Artifact role. Preprocessing misses 24% of the arguments, and 5.7% of the

arguments’ Entity/Values/Timex types are wrongly tagged, while 9.3% of the

subtypes are wrongly tagged. Thus, the event extraction system would probably

miss or wrongly assign roles for these mentions.

2.4.2 Structure Variation
There are various ways to present an event, and the arguments can appear in

many different positions. ACE evaluation already limits the argument

identification to local context: the sentence, but that is not enough. Most event

extraction systems identify the argument of a specific event by its relation to the

trigger, for example, the chunk-based or syntax-based path from argument to

trigger. This feature is a very strong predictor to identify the argument; for

example, the subject of “kill” should fill the Agent role of a Die event, while the

object should fill the Victim role. However, one big problem with this pattern is

that people might use very different expressions and the path varies a lot. From

Figure 2.3, we can see that most chunk-based paths appear only once or twice in

	
 23	

ACE data, which means that we cannot depend on such features since their

frequency of occurrence is very low. Moreover, even if we use deeper structure,

like semantic labeling, we do not come close to solving this problem.

Figure 2.3 - Frequency of patterns from trigger to argument5

Also, there are arguments that are far from the trigger, for example, in a

different clause of the sentence. In such a case, a little difference in the sentence

might change the whole situation. Here is an example:

(Ex 2–3) He gave us a whole lot of information and then went [home:

Place] and his [father-in-law:Agent] killed[Die] [him:Victim].

(Ex 2–4) He gave us a whole lot of information and then left home and his

[father-in-law:Agent] killed[Die] [him:Victim].

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

5 Note that the argument is replaced by its ACE type (GPE, Person, Organization, etc.), and

the trigger is replaced by its event type (Attack, Die, Start-Position, etc.). X axis is the pattern

occurrence frequency, while Y axis is the number of patterns with that frequency

	
 24	

In the above examples, a Die event occurs in each sentence, and there is only

one word different for the two sentences. The annotation for trigger identification

is easy: “kill” is a very strong prediction word for event Die. Also, the Victim

argument is easy to detect since it is the object of the verb kill. However, the Place

argument is hard to detect because it is in another clause, and a different

expression might cause different results. In (Ex 2–3), a human can easily tag

“home” as the Place argument of the Die event, while in (Ex 2–4), a human would

probably not tag it as an argument of the Die event.

2.4.3 Multi-mention Role Problem
Last but still, not less important, ACE argument identification allows one event

to have more than one mention fill the same role. 16.6% of arguments share the

same role with other arguments. Also, the “multiple mention in one slot” problem

is not limited to a few roles; it appears in 28 roles (see Table 2.3) out of a total of

35 roles. Our baseline system uses a “one slot one mention” policy, and assigns the

mention with highest probability to a specific slot. We did this because we haven’t

found an efficient way to deal with the multi-mention role problem. Here is an

example:

(Ex 2–5) Clinton suffered greatly over the ［19 Rangers:Victim] that died,

[18:Victim] on the 3rd of October and [Matt Reersen:Victim] three days

later.

The baseline system can easily find “Rangers” as victim, but it will miss the

“18” and “Matt Reersen”.

	
 25	

Entity Money Destination Adjudicator

Time-Within Recipient Artifact Buyer

Victim Target Crime Prosecutor

Position Attacker Plaintiff Vehicle

Person Place Sentence Time-Holds

Giver Instrument Agent Price

Org Origin Defendant Beneficiary

Table 2.3 - Argument roles that can contain multiple mentions

	

2.5 How to Solve the Above Problems

Although the problems are clear from the above sections, how to solve them is

still under investigation. The local information can solve some of them to some

extent. For example, in the baseline system (see section 2.2), the argument mention

type is used to solve the argument constraint (see section 2.3.2). The fraction of

times when the trigger is reportable is used to figure out whether this trigger is too

ambiguous or not, which can partially solve the word sense ambiguity problem

(see section 2.3.1). The distance from argument to trigger can be used to generalize

over different structure variations (see section 2.4.2), although it might be too

general. However, to thoroughly solve all the problems might be hard or even

impossible: Word sense disambiguation is already a hard NLP task, and

normalizing different expressions is even harder. Moreover, when the training

	
 26	

data is preselected, these problems would be more severe (see details in section

4.1).

Therefore, we need to figure out some indirect but novel ways to solve the

problems. That is, how do we extract information from non-local scope to aid the

baseline system, without too much effort? In chapter 3, we will discuss how to

solve the above problems without really doing word sense disambiguation,

structure normalization, or context detection, but using some indirect information

instead. In chapter 4, we will investigate how to solve the problem when the data is

imbalanced.

At last, we have to point out we do not investigate the problem of preprocessing

error, and the multi-mention role problem in this thesis, since we do not have a

clear idea of how features from wider scope can help improve them. We just point

them out to explain why the baseline system has relatively low performance.

Chapter 3

Document Level Cross-event Inference6

Most current event extraction systems are based on phrase or sentence level

extraction. This local context may be insufficient to resolve ambiguities for both

trigger and argument identification; sometimes it is difficult even for people to

classify events from isolated sentences. However, information from a wider scope
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

6 This chapter is mainly adapted from a published paper (Liao and Grishman 2010a).

	
 27	

can serve to resolve some of these problems to some extent. For trigger

identification, wider scope, instead of the local sentence, might be a better

predictor for both word sense disambiguation or scenario detection (see section

2.3). For example:

(Ex 3–1) He left the company.

It is hard to tell whether it is a Transport event in ACE, which means that he

left the place; or an End-Position event, which means that he retired from the

company.

However, if there are similar events reported in the document, they will be good

predictors. For example, a sentence “he planned to go shopping before he went

home” would give us confidence to tag it as a Transport event; while another

sentence like “They held a party for his retirement” would lead us to tag it as an

End-Position event.

Moreover, different events are also a good predictor for a specific event. For

example, if we find a Start-Position event like “he was named president three

years ago”, we are also confident to tag (Ex 3–1) as an End-Position event.

Event argument identification also shares this benefit, especially when the

sentence structure is complicated or ambiguous (see section 2.4.2). In such cases,

obtaining more information from the sentence structure might be hard, but if we

just check the co-occurrence of other events in the document, we can acquire

evidence in a much easier way. Consider the following two sentences:

(Ex 3–2) A bomb exploded in Bagdad; seven people died while 11 were

injured.

	
 28	

(Ex 3–3) A bomb exploded in Bagdad; the suspect got caught when he tried

to escape.

If we only consider the local context of the trigger “exploded”, it is hard to

determine that “seven people” is a likely Target of the Attack event in (Ex 3–2), or

that the “suspect” is the Attacker of the Attack event, because the structures of (Ex

3–2) and (Ex 3–3) are quite similar. The only clue is from the semantic inference

that a person who died may well have been a Target of the Attack event, and the

person arrested is probably the Attacker of the Attack event. These may be seen as

examples of a broader textual inference problem, and in general such knowledge is

quite difficult to acquire and apply. However, in the present case we can take

advantage of event extraction to learn these rules in a simpler fashion, which we

present below.

As mentioned in the Introduction, there are several studies on extracting

features on wider scope. Maslennikov and Chua (2007) used discourse trees and

local syntactic dependencies in a pattern-based framework to incorporate wider

context to refine the performance of relation extraction. They claimed that

discourse information could filter noisy dependency paths as well as increasing the

reliability of dependency path extraction.

Finkel et al. (2005) used Gibbs sampling, a simple Monte Carlo method used to

perform approximate inference in factored probabilistic models. By using

simulated annealing in place of Viterbi decoding in sequence models such as

HMMs, CMMs, and CRFs, it is possible to incorporate non-local structure while

preserving tractable inference. They used this technique to augment an information

	
 29	

extraction system with long-distance dependency models, enforcing label

consistency and extraction template consistency constraints.

Ji and Grishman (2008) were inspired from the hypothesis of “One Sense Per

Discourse” (Yarowsky, 1995); they extended the scope from a single document to

a cluster of topic-related documents and employed a rule-based approach to

propagate consistent trigger classification and event arguments across sentences

and documents. Combining global evidence from related documents with local

decisions, they obtained an appreciable improvement in both event and event

argument identification.

Patwardhan and Riloff (2009) proposed an event extraction model which

consists of two components: a model for sentential event recognition, which offers

a probabilistic assessment of whether a sentence is discussing a domain-relevant

event; and a model for recognizing plausible role fillers, which identifies phrases

as role fillers based upon the assumption that the surrounding context is discussing

a relevant event. This unified probabilistic model allows the two components to

jointly make decisions based upon both the local evidence surrounding each phrase

and the “peripheral vision”.

Gupta and Ji (2009) used cross-event information within ACE extraction, but

only for recovering implicit time information for events.

However, most of the above work focuses on single event extraction, or focuses

on high-level information within a single event type (or a scenario), and does not

consider information acquired from other event types. We extend these approaches

	
 30	

by introducing cross-event information to enhance the performance of multi-event-

type extraction systems.

This chapter is organized as follows: section 3.1 will introduces the motivation

of using cross-event information, and the consistency and distribution for trigger

and argument respectively; section 3.2 will demonstrate how the cross-event

information is extracted and encoded into the baseline system; section 3.3 shows

the improvement we obtained in experiments.

3.1 Motivation

Cross-event information is quite useful: first, some events co-occur frequently,

while other events do not. For example, Attack, Die, and Injure events very

frequently occur together, while Attack and Marry are less likely to co-occur. Also,

typical relations among the arguments of different types of events can be helpful in

predicting information to be extracted. For example, the Victim of a Die event is

probably the Target of the Attack event. As a result, we extend the observation that

“a document containing a certain event is likely to contain more events of the same

type”, and base our approach on the idea that “a document containing a certain

type of event is likely to contain instances of related events”.

We analyzed the sentence-level baseline event extraction, and found that many

events are missing or spuriously tagged because the local information is not

sufficient to make a confident decision. In some local contexts, it is easy to

identify an event; in others, it is hard to do so. Thus, if we first tag the easier cases,

and use such knowledge to help tag the harder cases, we might get better overall

	
 31	

performance. In addition, global information can make the event tagging more

consistent at the document level.

Here are some examples. For trigger classification:

(Ex 3–4) The pro-reform director of Iran's biggest-selling daily newspaper

and official organ of Tehran's municipality has stepped down following the

appointment of a conservative …it was founded a decade ago … but a

conservative city council was elected in the February 28 municipal polls …

Mahmud Ahmadi-Nejad, reported to be a hardliner among conservatives,

was appointed mayor on Saturday …Founded by former mayor

Gholamhossein Karbaschi, Hamshahri…

The sentence level baseline system finds event triggers like “founded” (trigger

of Start-Org), “elected” (trigger of Elect), and “appointment” (trigger of Start-

Position), which are easier to identify because these triggers have more specific

meanings. However, it does not recognize the trigger “stepped” (trigger of End-

Position) because in the training corpus “stepped” does not always appear as an

End-Position event, and local context does not provide enough information for the

MaxEnt model to tag it as a trigger. However, in the document that contains

related events like Start-Position, “stepped” is more likely to be tagged as an End-

Position event.

For argument classification, the cross-event evidence from the document level

is also useful:

(Ex 3–5) British officials say they believe Hassan was a blindfolded woman

seen being shot in the head by a hooded militant on a video obtained but not

aired by the Arab television station Al-Jazeera. She would be the first

	
 32	

foreign woman to die in the wave of kidnappings in Iraq…she's been killed

by (men in pajamas), turn Iraq upside down and find them.

From this document, the local information is not enough for our system to tag

“Hassan” as the target of an Attack event, because it is quite far from the trigger

“shot” and the syntax is somewhat complex. However, it is easy to tag “she” as the

Victim of a Die event, because it is the object of the trigger “killed”. As “she” and

“Hassan” are co-referential, we can use this easily tagged argument to help

identify the harder one.

3.1.1 Trigger Consistency and Distribution
Within a document, there is a strong trigger consistency: if one instance of a

word triggers an event, other instances of the same word will trigger events of the

same type7.

There are also strong correlations among event types in a document. To see this

we calculated the conditional probability (in the ACE corpus) of a certain event

type appearing in a document when another event type appears in the same

document.

Event Cond. Prob.

Attack 0.714

Transport 0.507

Injure 0.306

Meet 0.164

Arrest-Jail 0.153

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

7 This is true over 99.4% of the time in the ACE corpus.

	
 33	

Sentence 0.126

Phone-Write 0.111

End-Position 0.116

Trial-Hearing 0.105

Convict 0.100

Table 3.1 - Events co-occurring with Die events with conditional probability >

10%
	

As there are 33 subtypes, there are potentially 33⋅32/2=528 event pairs.

However, only a few of these appear with substantial frequency. For example,

there are only 10 other event types that occur in more than 10% of the documents

in which a Die event appears. From Table 3.1 and Figure 3.1, we can see that

Attack, Transport and Injure events appear frequently with Die. We call these the

related event types for Die.

The same thing happens for Start-Org events, although its distribution is quite

different from Die events. For Start-Org, there are more related events like End-

Org, Start-Position, and End-Position (Figure 3.2). But there are 12 other event

types which never appear in documents containing Start-Org events.

From the above, we can see that the distributions of different event types are

quite different, and these distributions might be good predictors for event

extraction.

	
 34	

Figure 3.1 - Conditional probability of the other 32 event types in documents
where a Die event appears

	

	

Figure 3.2 - Conditional probability of the other 32 event types in documents

where a Start-Org event appears

3.1.2 Role Consistency and Distribution
Normally one entity, if it appears as an argument of multiple events of the same

type in a single document, is assigned the same role each time.8

Moreover, there is a strong relationship between the roles when an entity

participates in different types of events in a single document. For example, we
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

8 This is true over 97% of the time in the ACE corpus.

	
 35	

checked all the entities in the ACE corpus that appear as the Target role for an

Attack event, and recorded the roles they were assigned for other event types. Only

31 other event-role combinations appeared in total (out of 237 possible with ACE

annotation), and 3 clearly dominated. In Figure 3.3, we can see that the most

likely roles for the Target role of the Attack event are the Victim role of the Die or

Injure event and the Artifact role of the Transport event. The last of these

corresponds to troop movements prior to or in response to attacks.

Figure 3.3 - Conditional probability of all possible roles in other event types for
entities that are the Targets of Attack events (roles with conditional probability

below 0.002 are omitted)
	

3.2 Document level Cross-event Approach

In this section, we propose a document-level statistical model for event trigger

and argument (role) classification to achieve document level within-event and

cross-event consistency. Our event extraction system is a two-pass system where

the sentence-level system is first applied to make decisions based on local

information. Then the confident local information is collected and gives an

	
 36	

approximate view of the content of the document. The document level system is

finally applied to deal with the cases which the local system can’t handle, and

achieve document consistency. To take advantage of cross-event relationships, we

train two additional MaxEnt classifiers – a document-level trigger and argument

classifier – and then use these classifiers to infer additional events and event

arguments. In analyzing new text, the trigger classifier is first applied to tag an

event, and then the argument (role) classifier is applied to tag possible arguments

and roles of this event.

3.2.1 Confident Information Collector
To use document-level information, we need to collect information based on the

sentence-level baseline system. As it is a statistically-based model, it can provide a

value that indicates how likely it is that this word is a trigger, or that the mention is

an argument and has a particular role. We want to see if this value can be trusted as

a confidence score. To this end, we set different thresholds from 0.1 to 1.0 in the

baseline system output, and only evaluate triggers, arguments or roles whose

confidence score is above the threshold. Results show that as the threshold is

raised, the precision generally increases and the recall falls. This indicates that the

value is consistent and a useful indicator of event/argument confidence (see Figure

3.4).

	
 37	

Figure 3.4 -The performance of different confidence thresholds in the baseline
system

on the development set
	

To acquire confident document-level information, we only collect triggers and

roles tagged with high confidence. Thus, a trigger threshold t_threshold and role

threshold r_threshold are set to remove low confidence triggers and arguments.

Finally, a table with confident event information is built. For every event, we

collect its trigger and event type; for every argument, we use co-reference

information and record every entity and its role(s) in events of a certain type.

To achieve document consistency, in cases where the baseline system assigns a

word to triggers for more than one event type, if the margin between the

probability of the highest and the second highest scores is above a threshold

m_threshold, we only keep the event type with highest score and record this in the

confident-event table. Otherwise (if the margin is smaller) the event type

assignments will be recorded in a separate conflict table. The same strategy is

applied to argument/role conflicts. We will not use information in the conflict table

to infer the event type or argument/roles for other event mentions, because we

	
 38	

cannot confidently resolve the conflict. However, the event type and argument/role

assignments in the conflict table will be included in the final output because the

local confidence for the individual assignments is high.

As a result, we finally build two document-level confident-event tables: the

event type table and the argument (role) table. A conflict table is also built but not

used for further predictions (see Table 3.2).

Event type table

Trigger Event Type

Met Meet

Exploded Attack

Went Transport

Injured Injure

Attacked Attack

Died Die

Argument role table

Entity ID Event type Role

0004-T2 Die Time Within

0004-6 Die Place

0004-4 Die Victim

0004-7 Die Agent

0004-11 Attack Target

0004-T3 Attack Time Within

0004-12 Attack Place

0004-10 Attack Attacker

Conflict table

Entity ID Event type Roles

0004-8 Attack Victim, Agent

Table 3.2 - Example of document-level confident-event table (event type and

argument role entries) and conflict table
	

	
 39	

3.2.2 Document Level Classifiers
We build two document level classifiers: one for trigger, and the other for

argument.

Document Level Trigger Classifier: From the document-level confident-event

table, we have a rough view of what kinds of events are reported in this document.

The trigger classifier predicts whether a word is the trigger of an event, and if so of

what type, given the information (from the confident-event table) about other types

of events in the document. Each feature of this classifier is the conjunction of:

The base form of the word

An event type

A binary indicator of whether this event type is present elsewhere in the

document (There are 33 event types and so 33 features for each word).

Document level argument classifier: The role classifier predicts whether a

given mention is an argument of a given event and, if so, what role it takes on,

again using information from the confident-event table about other events. As

noted above, we assume that the role of an entity is unique for a specific event

type, although an entity can take on different roles for different event types. Thus,

if there is a conflict in the document level table, the collector will only keep the

one with highest confidence, or discard them all. As a result, every entity is

assigned a unique role with respect to a particular event type, or null if it is not an

argument of a certain event type. Each feature is the conjunction of:

The event type we are trying to assign an argument/role to.

One of the 32 other event types

	
 40	

The role of this entity with respect to the other event type elsewhere in the

document, or null if this entity is not an argument of that type of event

3.2.3 Document Level Event Tagging
At this point, the low-confidence triggers and arguments (roles) have been

removed and the document-level confident-event table has been built; the new

classifiers are now used to augment the confident tags that were previously

assigned based on local information.

For trigger tagging, we only apply the classifier to the words that do not have a

confident local labeling; if the trigger is already in the document level confident-

event table, we will not re-tag it.

The argument/role tagger is then applied to all events—those in the confident-

event table and those newly tagged. For argument tagging, we only consider the

entity mentions in the same sentence as the trigger word, because by the ACE

event guidelines, the arguments of an event should appear within the same

sentence as the trigger. For a given event, we re-tag the entity mentions that have

not already been assigned as arguments of that event by the confident-event or

conflict table.

3.3 Experiments

We followed Ji and Grishman (2008)’s evaluation and randomly select 10

newswire texts from the ACE 2005 training corpora as our development set, which

is used for parameter tuning, and then conduct a blind test on a separate set of 40

	
 41	

ACE 2005 newswire texts. We use the rest of the ACE training corpus (549

documents) as training data for both the sentence-level baseline event tagger and

document-level event tagger.

 performance

system/human

Trigger

classification

Argument
classification

Role

classification

 P R F P R F P R F
Sentence-level
baseline system

67.6 53.5 59.7 46.5 37.2 41.3 41 32.8 36.4

Within-event-type rules 63 59.9 61.4 48.6 46.2 47.4 43.3 41.2 42.2

Cross-event
statistical model

68.71 68.9 68.8 50.9 49.7 50.3 45.1 44.1 44.6

Human annotation1 59.2 59.4 59.3 60.0 69.4 64.4 51.6 59.5 55.3

Human annotation2 69.2 75.0 72.0 62.7 85.4 72.3 54.1 73.7 62.4

Table 3.3 - Overall performance on blind test data

To compare with previous work on within-event propagation, we reproduced Ji

and Grishman (2008)’s approach for cross-sentence, within-event-type inference

(see “within-event-type rules” in Table 3.3). We applied their within-document

inference rules using the cross-sentence confident-event information. These rules

basically serve to adjust trigger and argument classification to achieve document-

wide consistency. This process treats each event type separately: information about

events of a given type is used to infer information about other events of the same

type.

	
 42	

We report the overall Precision (P), Recall (R), and F-Measure (F) on blind test

data. In addition, we report the performance of two human annotators on 28 ACE

newswire texts (a subset of the blind test set).9

From the results presented in Table 3.3, we can see that using the document

level cross-event information, we can improve the F score for trigger classification

by 9.0%, argument classification by 9.0%, and role classification by 8.1%. Recall

improved sharply, demonstrating that cross-event information could recover

information that is difficult for the sentence-level baseline to extract; precision also

improved over the baseline, although not as markedly.

Compared to the within-event-type rules, the cross-event model yields much

more improvement for trigger classification: rule-based propagation gains 1.7%

improvement while the cross-event model achieves a further 7.3% improvement.

For argument and role classification, the cross-event model also gains 3% and

2.3% above that obtained by the rule-based propagation.

The above experiments show that document-level information can improve the

performance of a sentence-level baseline event extraction system. However, the

model presented here is a simple two-stage recognition process; nonetheless, it has

proven sufficient to yield substantial improvements in event recognition and event

argument recognition. Richer models, such as those based on joint inference, may

produce even greater gains
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

9 The final key was produced by review and adjudication of the two annotations by a third

annotator, which indicates that the event extraction task is quite difficult and human

agreement is not very high.

	
 43	

Chapter 4

Document Level Topic Features10

As discussed in section 2.3, knowledge of the scenario is essential to identify

the occurrence of an event, especially when local context is not sufficient. Given a

narrow scope of information, even a human cannot make a confident decision. For

example, for the sentence:

(Ex 4–1) So he returned to combat …

It is hard to tell whether it is an Attack event, which is defined as a violent

physical act causing harm or damage, or whether it refers to a more innocent

endeavor such as a tennis match. A broader field of view is often helpful to

understand how facts tie together. If we read the whole article, and find it to be a

terrorist story, it is easy to tag this as an Attack event; however, if it is in a tennis

article, we probably won’t tag it as an Attack event.

Most previous studies that acquire wider scope information use preselected

corpora, like (Riloff 1996); or are rule-based, like Ji and Grishman (200811); or

involve supervised learning from the same training data, like Finkel et al. (2005),

Liao and Grishman (2010a). However, such information depends mainly on the

training data. We will be concerned in this chapter with situations where the test

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

10 This chapter is mainly adapted from a published paper (Liao and Grishman, 2011b)

11 See section 5.2 for more details.

	
 44	

data may not match the training, and so we are more interested in using an

unsupervised topic model to provide such information.

There is not as much work on evaluation on a more balanced collection when

the training corpus has a different distribution. Grishman (2010) first pointed out

that understanding the characteristics of the corpus is an inherent parts of the event

extraction task. He gave a small example of the effect of applying an event

extractor to a more balanced corpus, and used a document classifier to reduce the

spurious errors.

In this section, we propose to use a topic model (LDA) to provide document

level topic information to solve this problem to some extent. In experiments, we

not only evaluate its effect on ACE cross-validation, but also on a more balanced

newswire corpus. Also, we compare this unsupervised approach to a supervised

multi-label text classifier, and show that unsupervised topic modeling can get

better results for both collections, and especially for a more balanced collection.

4.1 Data imbalance

Why are we interested in unsupervised topic features? There is a problem that

arises in the evaluation of almost all the tasks in NLP, concerning the similarity of

distribution between training and testing data. Ideally, training and testing should

be as similar as possible, but this is not always the case. In general, an effort is

made to have the test corpora be representative of the sort of texts to which the

NLP process is intended to be applied. In the case of the event extraction, this has

generally been news sources such as newswires or broadcast news transcripts.

	
 45	

However, a particular event type is likely to occur infrequently in the general

news, which might contain many different topics, only a few of which are likely to

include mentions of this event type.

As a result, a typical evaluation corpus (a few hundred hand-annotated

documents), if selected at random, would contain only a few events, which is not

sufficient for training. To avoid this, these annotated corpora are artificially

enriched through a combination of topic classification and manual review, so that

they contain a high concentration of the events of interest. For example, in the

MUC-3/4 test corpora, about 60% of the documents include relevant events, and in

the ACE 2005 training corpus 48% include Attack events.

If we train and test the event extraction system on ACE annotated corpora, the

problem is not significant because there are very few sports articles in the ACE

evaluation: 74% of the instances of the word “combat” indicate an Attack event.

However, if you extend the evaluation to a more balanced collection, for example,

the un-filtered New York Times (NYT) newswire, you will find that there are a lot

of sports articles and an event extractor will mistakenly tag lots of sports events as

Attack events. Grishman (2010) drew attention to this phenomenon, pointing out

that only about 17% of articles from the contemporaneous sample of The NYT

newswire contained attack events, compared to 48% in the ACE evaluation. In this

situation, if we apply the event extractor trained on the ACE corpus to the balanced

NYT newswire, the performance may be significantly degraded.

	
 46	

4.2 Motivation

Clearly, the topic of the document is a good predictor of particular event types.

For example, a reference to “war” inside a business article might refer to a

financial competition; while “war” inside a military article would be more likely to

refer to a physical attack event. Text classification can be used here to identify

document topic, and the final decision can be made based on both local evidence

and document relevance. However, this method has three disadvantages:

First, the event type and document topic are not always strongly connected, and

it depends significantly on what kind of event we are going to explore. If the

events are related to the main category of the article, only knowing the article

category is enough. But if they are not, treating each document as a single topic is

not enough. For example, Die events might appear in military, financial, political

or even sports articles. And most of the time, it is not the main event reported by

the article. The article may focus more on the reason for the death, the biography

of the person, or the effect of the death.

Second, when the article talks about more than one scenario, simple text

classification will basically ignore the secondary scenario. For example, if a sports

article that reported the results of a football game also mentions a fight between

the fans of two teams, the topic of the document might be “sports”, which is

irrelevant to Attack events; however, there is an Attack event, which appears in the

secondary scenario of the document.

	
 47	

Third, the category or relevance depends on the annotated data, and a classifier

may be unable to deal with articles whose topics were rarely seen in the training

data. Thus, if the category distribution of the evaluation data is different from the

training data, a text classifier might have poor performance.

To solve the first two problems, we need to treat each document as a mixture of

several topics instead of one; to solve the third problem, we want to see if

unsupervised methods can give us some guidance which a supervised method

cannot. These two goals are easily connected to a topic model, for example, Latent

Dirichlet Allocation.

4.3 Topic Features

A topic model, like Latent Dirichlet Allocation (LDA, David Blei, etc. 2003), is

a generative model that allows sets of observations to be explained by unobserved

groups. For example, if the observations are words collected into documents, it

posits that each document is a mixture of a small number of topics and that each

word is attributable to one of the document's topics. For event extraction, there is a

similar assumption that each document consists of various events, and each event

is presented by one or several snippets in the document. We want to know if these

two can be somehow connected and how one can improve the other.

We are more interested in an unsupervised approach from a large untagged

corpus. In this way, we can avoid the data bias that may be introduced by an

unrepresentative training collection, thus providing better high-level information

	
 48	

than previous approaches, especially when applied to the final target application

instead of a specially selected development or evaluation corpus.

4.3.1 Unsupervised Features
Latent Dirichlet Allocation (LDA) tries to group words into “topics”, where

each word is generated from a single topic, and different words in a document may

be generated from different topics. Thus, each document is represented as a list of

mixing proportions for these mixture components and thereby reduced to a

probability distribution on a fixed set of topics. In LDA, each document may be

viewed as a mixture of various topics. A document is generated by picking a

distribution over topics, and given this distribution, picking the topic of each

specific word to be generated. Then words are generated given their topics. Words

are considered to be independent given the topics; this is a standard bag of words

model assumption where individual words are exchangeable.

Unlike supervised classification, there are no explicit labels, like “finance” or

“war”, in unsupervised LDA. Instead, we can imagine each topic as “a cluster of

words that refers to an implicit topic”. For example, if a document contains words

like “company”, “financial”, and “market”, we assume it contains a “financial

topic” and are more confident to find events like Start-Position, End-Position,

while a document that contains “war”, “combat”, “fire”, and “force” will be

assumed to contain the “war topic”, which is more likely to contain Attack, Die, or

Injure events.

	
 49	

4.3.2 Supervised Features
As the event extraction system uses a supervised model, it is natural to ask

whether supervised topic features are better than unsupervised ones. There are

several possible approaches. For example, we can first run a topic classification

filter to predict whether or not a document is likely to contain a specific type of

event. However, because of the limited precision of a simple classifier such as a

bag-of-words MaxEnt classifier (for Attack events, the precision is around 69% in

ACE data), using it as a pre-filter will lead to event recall or precision errors.

Instead, we decide to use the topic information as features within the event

extraction system. As one document might contain several event types, we tag

each document with labels indicating the presence of one or more events of a given

type, which is a multi-label text classification problem. In this section, we build a

supervised multi-label text classifier to compare to the unsupervised topic model.

The basic idea for a multi-label classifier comes from the credit attribution

problem in social bookmarking websites, where pages have multiple tags, but the

tags do not always apply with equal specificity across the whole page (Ramage et

al. 2009). This relation between tag and page is quite similar to that between event

and document, because one document might also have multiple events of differing

specificity. For example, an Attack event may be more related to the main topic of

the document than a Meet event.

We use Labeled LDA (L-LDA) to build the multi-label text classifier, which is

reported (Ramage et al. 2009) to outperform SVMs when extracting tag-specific

document snippets, and is competitive with SVMs on a variety of datasets. L-LDA

	
 50	

associates each label with one topic in direct correspondence, and is a natural

extension of both LDA and multinomial Naïve Bayes. In our experiment, each

document can have several labels, each corresponding to one of the 33 ACE event

types. In this way, we can easily map the goal of predicting the possible events in a

document into a multi-label classification problem.

4.4 Experiment

We set up two experiments to investigate the effect of topic information.

ACE05 Experiment: A 5-fold cross-validation on the whole ACE 2005 corpus,

which contains 589 documents from June 2003.

NYT03 Experiment: An experiment to address the crucial issue of mismatch

in topic distribution between training and test corpora. In this experiment, the ACE

2005 corpus is used as the training data, and unfiltered New York Times newswire

data, a balanced corpus without pre-selection, is used for testing. The NYT corpus

comes from the same epoch as the ACE corpus. This test data contains 75

consecutive articles12.

4.4.1 Experiment Setup
Encoding topic features into the baseline system is straightforward: as the

occurrence of an event is decided in the final classifier – the trigger classifier – we

add topic features to this final classifier. Although the argument / role classifiers

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

12 We annotated the test data for the three most common event types in ACE – Attack, Die,

and Meet – and evaluated this balanced corpus on these three events.

	
 51	

have already been applied, we can still improve the argument / role classification,

because only when a word is tagged as a trigger will all the arguments/roles related

to it be reported.

The unsupervised LDA was trained on the entire 2003 NYT newswire except

for June to avoid overlap with the test data, a total of 27,827 articles; we choose

K= 30, which means we treat the whole corpus as a combination of 30 latent

topics.

The multi-label text classifier was trained on the same ACE training data as the

event extraction, where each label corresponds to one event type, and there is an

extra “none” tag when there are no events in the document. Thus, there are in total

34 labels.

For inference, we use the posterior Dirichlet parameters γ*(w) associated with

the document (David Blei, etc. 2003) as our topic features, which is a fixed set of

real-values. Thus, using the multi-label text classifier, there are 34 newly added

features; while using unsupervised LDA, there are 30 newly added features.

Stanford topic modeling software is used for both the multi-label text classifier and

unsupervised LDA.

For preprocessing, we remove all words on a stop word list. Also, to reduce

data sparseness, all inflected words are changed to their root form (e.g.

“attackers”→“attacker”).

4.4.2 Evaluation on ACE data
We might expect supervised topic features to outperform unsupervised topic

features when the distributions of the training and testing data are the same,

	
 52	

because its correlation to event type is clearer and explicit. However, it turns out

not to be true in our experiment (see Table 4.1): the unsupervised features work

better than the supervised features. This is understandable given that there are only

hundreds of training documents for the supervised topic model, and the precision

of the document classification is not very good, as we mentioned before in section

4.2. For unsupervised topics, we have a much larger corpus, and the topics

extracted, although they may not correspond directly to each event type, predicate

a scenario where a specific event might occur.

	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Performance	

System	

Trigger	

Classification	

Argument	

Classification	

Role	

Classification	

 P R F P R F P R F

Baseline system 64.3	
 51.1	
 56.9	
 69.4	
 21.8	
 33.2	
 62.8	
 19.7	
 30.0	

Multi-label classifier 66.8	
 50.0	
 57.2	
 54.4	
 25.5	
 34.7	
 48.9	
 22.9	
 31.1	

Unsupervised LDA 63.9	
 59.7	
 61.7	
 71.1	
 27.0	
 39.1	
 64.6	
 24.5	
 35.5	

Table 4.1 - Overall performance on ACE test data

4.4.3 Evaluation on NYT data
From the ACE evaluation, we can see that the unsupervised LDA works better

than a supervised classifier, which indicates that even if the training and testing

data are from the same distribution, the unsupervised topic features are more

helpful. In our second evaluation, we evaluate on a more balanced newswire

corpus, with no pre-selection.

	
 53	

First, we implement Grishman’s solution (Simple Combination) to combine the

document event classifier (a bag-of-words maximum-entropy model) with local

evidence used in the baseline system. The basic idea is that if a document is

classified as not related to a specific event, it should not contain any such events;

while if it is related, there should be such events. Thus, an event will be reported if

P(reportable_ event)×P(relevant _ document)> τ

 where P(reportable_event) is the confidence score from the baseline system,

while P(relevant_document) is computed from the document classifier.

Table 4.2 shows that the simple combination method (geometric mean of

probabilities) performs a little better than baseline. However, we find that the gains

are unevenly spread across different events. For Attack events, it provides some

benefit (from 57.9% to 59.6% F score for trigger labeling), whereas for Die and

Meet events it does not improve much. This might be because Attack events are

closely tied to a document’s main topic, and using only the main topic can give a

good prediction. But Die and Meet events are not closely tied to the document

main topic, and so the simple combination does not help much.

Unsupervised LDA performs best of all, which indicates that the real

distribution in the balanced corpus can provide useful guidance for event

extraction, while supervised features might not provide enough information,

especially when testing on a balanced corpus.

	

 Performance Trigger Argument
Classification

Role

	
 54	

System Classification Classification

 P R F P R F P R F
Baseline system 53.8 51.1 52.4 41.4 19.7 26.7 39.4 18.8 25.4

Simple Combination 63.1 47.4 54.2 41.4 19.7 26.7 39.4 18.8 25.4

Multi-label classifier 60.8 65.7 63.2 35.6 27.9 31.3 31.9 25.0 28.0

Unsupervised LDA 60.3 81.0 69.2 45.3 34.6 39.2 44.0 33.7 38.1

Table 4.2 - Performance on NYT collection

	

Our experiments indicated that an unsupervised document-level topic model

trained on a large corpus yields substantial improvements in extraction

performance and is considerably more effective than a supervised topic model

trained on a smaller annotated corpus.

Finally, let us consider some examples to show why topic information helps so

much on NYT data. First, we give an example where the supervised topics method

does not work but unsupervised does. In our baseline system, many verbs in sports

or other articles will be incorrectly tagged as Attack events. In such cases, as there

are very few sports articles in ACE training data, and there is no event type related

to sports, the supervised classifier might not capture this feature, and prefer to

connect a sports article to an Attack event in the testing phase, because there are a

lot of words like “shot”, “fight”. However, as there are a lot of sports articles in

NYT data, the unsupervised LDA can capture this topic. Here is an example:

(Ex 4–2) His only two shots of the game came in overtime and the goal was

just his second of the playoffs, but it couldn't have been bigger.

	
 55	

In (Ex 4–2), “shot” is tagged 67.5% of the time as an Attack event in training

data. We checked the data and found that there are very few sports articles in the

ACE corpus, and the word “shot” never appears in these documents. Thus, a

supervised classifier will prefer to tag a document containing the word “shot” as

containing an Attack event. However, because a sports topic can be explicitly

extracted from an unannotated corpus that contains a reasonable portion of sports

articles, the unsupervised model would be able to build a latent topic T which

contains sports-related words like “racket”, “tennis”, “score” etc. Thus, most

training documents which contain “shot” will have a low value of T; while the

sports documents (although very few), will have a high value of T. Thus, the

system will see both a positive feature value (the word is “shot”), and a negative

feature value (T’s value is high), and still has the chance to correctly tag this

“shot” as not-an-event, while in the baseline system, the system will incorrectly tag

it as an Attack event because there are only positive feature values.

The topic features can also help other event types. For Die events, consider:

(Ex 4–3) A woman lay unconscious and dying at Suburban Hospital in

Bethesda, Md.

In (Ex 4–3), the word “dying” only appears 45.5% as a Die event in the training

data, and is not tagged as a Die event by the baseline system. The reason is that

there are a lot of metaphors that do not represent true Die events, like “dying

nation”, “dying business”, “dying regime”. However, when connected to the latent

topic features, we know that for some topics, we can confidently tag it as a Die

event.

	
 56	

For Meet events, we also find cases where topic features help:

(Ex 4–4) President Bush meets Tuesday with Arab leaders in Egypt and the

next day with the Israeli and Palestinian prime ministers in Jordan,….

In (Ex 4–4), the baseline system misses this Meet event. The word “meets”

only appears 25% of the time as a Meet event in the training data, because there

are phrases like “meets the requirement”, “meets the standard” which are not Meet

events. However, adding topic features, we can correct this and similar event

detection errors.

Chapter 5

Cross-Document IR-based Self-training13

In the preceding two chapters, we focused on improving a supervised event

extraction system using information from wider scope. In this section, we

investigate the effect of wider scope information on another task: semi-supervised

learning (self-training) for event extraction. Annotating training data for event

extraction is tedious and labor-intensive. Most current event extraction tasks rely

on hundreds of annotated documents, but this is often not enough. Self-training is

one way to automatically increase the training data, which can help us improve the

event extraction system by adding more training samples.

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

13 This chapter is mainly adapted from a published paper (Shasha Liao and Ralph Grishman,

2011a)

	
 57	

Self-training is a commonly used technique, where the classifier starts with a

small amount of labeled data. The classifier is then used to classify the unlabeled

data. Typically the most confident unlabeled points, together with their predicted

labels, are added to the training set. The classifier is re-trained and the procedure

repeated.

Self-training has been applied to several natural language processing tasks. For

event extraction, there are several studies on bootstrapping from a seed pattern set.

Riloff (1996) initiated the idea of using document relevance for extracting new

patterns, and Yangarber et al. (2000, 2003) incorporated this into a bootstrapping

approach, extended by Surdeanu et al. (2006) to co-training. Stevenson and

Greenwood (2005) suggested an alternative method for ranking the candidate

patterns by lexical similarities. Liao and Grishman (2010b) combined these two

approaches to build a filtered ranking algorithm. However, these approaches were

focused on finding instances of a scenario/event type rather than on argument role

labeling. Starting from a set of documents classified for relevance, Patwardhan and

Riloff (2007) created a self-trained relevant sentence classifier and automatically

learned domain-relevant extraction patterns. Liu (2009) proposed the BEAR

system, which tagged both the events and their roles. However, the new patterns

were bootstrapped based on the frequencies of sub-pattern mutations or on rules

from linguistic contexts, and not on statistical models.

Since the criterion for selecting the most confident examples is critical to the

effectiveness of self-training, we need to first set up the metric to evaluate the

confidence of an event. An event contains one trigger and an arbitrary number of

	
 58	

roles, and it is not easy to calculate its confidence as a whole. A confident trigger

might contain some unconfident arguments, and a confident argument might refer

to an unconfident trigger. Thus, we select a part of an entire event, containing one

confident trigger and its most confident argument, to serve as one example and be

fed back to the training system. In this way, for each mention mi, its probability of

filling a role r in a reportable event whose trigger is t is computed by:

PRoleOfTrigger (mi, r, t) = PArg(mi) ⋅PRole(mi, r) ⋅PEvent (t)

 where PArg(mi) is the probability from the argument classifier, PRole(mi,r) is that

from the role classifier, and PEvent(t) is that from the trigger classifier. In each

iteration, we added the most confident <role, trigger> pairs to the training data, and

re-trained the system.

5.1 Motivation

Surprisingly, traditional self-training does not perform very well (see Table

5.1) for events. The newly added samples do not improve the system performance;

instead, its performance stays stable, and even gets worse after several iterations

(see Table 5.1).

This reminds us of two problems with traditional self-training. First, as self-

training uses its own predictions to teach itself, a classification mistake can

reinforce itself. One way to avoid this is to stop bootstrapping if the prediction

confidence drops below a threshold. However, this can only solve the problem to

some extent. Another issue with self-training is that it always looks for the samples

	
 59	

most similar to the training data, and lacks the ability to finding “novel” examples,

which can provide new information to learn.

We analyzed the data, and found that the poor performance is caused by these

two common problems. First, we checked the accuracy of the confident samples

predicted by our baseline system, and found that even the most confident samples

are not always accurate. As a result, although self-training has been successful in

other NLP tasks, like Named Entity Recognition, parsing, or part-of-speech

tagging, where the baseline systems already have good performance, its

performance on event extraction is not good, due to the baseline system’s

relatively poor performance. Thus, we need some techniques to filter the

inaccurate samples out.

The problem of nothing “novel” being added is harder to solve. Co-training is a

form of self-training which can address this problem to some extent. However, it

requires two views of the data, where each example is described using two

different feature sets that provide different, complementary information. Ideally,

the two views are conditionally independent and each view is sufficient (Zhu,

2008). Co-training has had some success in training (binary) semantic relation

extractors for some relations, where the two views correspond to the arguments of

the relation and the context of these arguments (Agichtein and Gravano 2000).

However, it has had less success for event extraction because event arguments may

participate in multiple events in a corpus and individual event instances may omit

some arguments.

	
 60	

5.2 Cross-Document IR-based Approach

Since word sense disambiguation is already a hard task, and we do not have any

annotated data to do word sense disambiguation on the event level, we want to find

another way out. Yarowsky (1995) introduced the idea of sense consistency,

declaring that the same words in the same document are likely to share the same

senses. Later, he extended this idea to operate across related documents. Yangarber

et al. (Yangarber and Jokipii, 2005; Yangarber, 2006; Yangarber et al., 2007)

applied cross-document inference to correct local extraction results for disease

name, location and start/end time. Mann (2007) encoded specific inference rules to

improve extraction of information about CEOs (name, start year, end year).

There also are some studies on using this idea to improve the performance of

event extraction. Ji and Grishman (2008) incorporated this idea to propagate

consistent triggers and arguments across topic-related documents using rule-based

inference. Gupta and Ji (2009) used a similar approach to recover implicit time

information for events. Liao and Grishman (2010a) use a statistical model to infer

the cross-event information within a document to improve event extraction.

However, these earlier studies use rule-based inference or supervised approach,

and none apply this hypothesis to aid a semi-supervised approach. In the following

sections, we will explain how the one-sense-per-discourse hypothesis can be

applied to improve the self-training and why it helps.

	
 61	

5.2.1 Self-training on Information Retrieval Selected Corpus (ST_IR)
To address the first problem (low precision of extracted events), we tried to

select a corpus where the baseline system can tag the instances with greater

confidence. Ji and Grishman (2008) have observed that the events in a cluster of

documents on the same topics as documents in the training corpus can be tagged

more confidently. Thus, we believe that bootstrapping on a corpus of topic-related

documents should perform better than a regular newswire corpus.

We followed Ji and Grishman (2008)’s approach and used the INDRI retrieval

system14 (Strohman et al., 2005) to obtain the top N related documents for each

annotated document in the training corpus. The query is event-based to insure that

related documents contain the same events. For each training document, we

construct an INDRI query from the triggers and arguments. For the following

sentence:

(Ex 5–1) Bob Cole was killed in France today; he was attacked…

query keywords will include “killed”, “attacked”, “France”, “Bob Cole”, and

“today”. Only names and nominal arguments will be used; pronouns appearing as

arguments are not included. For each argument we also add other names

coreferential with the argument.

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

14 http://www.lemurproject.org/indri/

	
 62	

5.2.2 Self-training using Global Inference (ST_GI)
Although bootstrapping on related documents can solve the problem of

“confidence” to some extent, the “novelty” problem still remains: the top-ranked

extracted events will be too similar to those in the training corpus. To address this

problem, we propose to use a simple form of global inference based on the special

characteristics of related-topic documents. Previous studies pointed out that

information from wider scope, at the document or cross-document level, could

provide non-local information to aid event extraction (Ji and Grishman 2008, Liao

and Grishman 2010a). There are two common assumptions within a cluster of

related documents:

Trigger Consistency Per Cluster: if one instance of a word triggers an event,

other instances of the same word will trigger events of the same type.

Role Consistency Per Cluster: if one entity appears as an argument of multiple

events of the same type in a cluster of related documents, it should be assigned the

same role each time.

Based on these assumptions, if a trigger/role has a low probability based on the

local context, but a high probability based on another place in the article, it means

that the local context of this trigger/role tag is not frequently seen in the training

data, but the tag is still confident. Thus, we can confidently add it to the training

data and it can provide novel information which the samples confidently tagged by

the baseline system cannot provide.

To start, the baseline system extracts a set of events and estimates the

probability that a particular instance of a word triggers an event of that type, and

	
 63	

the probability that it takes a particular argument. The global inference process

then begins by collecting all the confident triggers and arguments from a cluster of

related documents15. For each trigger word and event type, it records the highest

probability (over all instances of that word in the cluster) that the word triggers an

event of that type.

First, for each argument, within-document and cross-document coreference are

both applied to collect all instances of that entity. We use a statistical within-

document coreference system (Grishman et al. 2005) to acquire coreference inside

one document, and a simple rule-based cross-document coreference system, where

entities sharing the same names will be treated as coreferential across documents.

Then, we compute the maximum probability (over all instances) of that

argument playing a particular role in a particular event type. These maxima will

then be used in place of the locally-computed probabilities in computing the

probability of each trigger-argument pair in the formula for PRoleOfTrigger given

above16. For example, if the entity “Iraq” is tagged confidently (probability > 0.9)

as the “Attacker” role somewhere in a cluster, and there is another instance where

from local information it is only tagged with 0.1 probability to be an “Attacker”

role, we use probability of 0.9 for both instances.

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

15 In our experiment, only triggers and roles with probability higher than 0.9 will be extracted.

16 If a word or argument has multiple tags (different event types or roles) in a cluster, and the

difference in the probabilities of the two tags is less than some threshold, we treat this as a

“conflict” and do not use the conflicting information for global inference.

	
 64	

In this way, a trigger pair containing this argument is more likely to be added

into the training data through bootstrapping, because we have global evidence that

this role probability is high, although its local confidence is low. In this way, some

novel trigger-argument pairs will be chosen, thus improving the baseline system.

Here is an example:

(Ex 5-2) Miroslay Kostelka was named as new Czech defense minister

Monday…

(Ex 5-3) It was unclear how the Kostelka appointment would affect the

reform plans.

(Ex 5-4) Prime Minister Vladimir Spidla said Monday after Kostelka’s

appointment that…

Ex 5-2 is extracted from the annotated document, and thus the probability that

“Miroslay Kostelka” is the Person role of Start-Position event (triggered by

“named”) is 1.0. However, the probability that “Kostelka” is the Person role of a

Start-Position event in Ex 5-3 and Ex 5-4 is 0.745 and 0.794 respectively. Thus,

Ex 5-3 and 5-4 will not be added to the training data in bootstrapping; however,

using global information to adjust local probability, these confident and novel

samples will be selected in bootstrapping.

5.3 Experiments

We randomly chose 20 newswire texts from the ACE 2005 training corpora

(from March to May of 2003) as our evaluation set, and used the remaining

newswire texts as the original training data (83 documents). For self-training, we

	
 65	

picked 10,000 consecutive newswire texts from the TDT5 corpus from 200317 for

the ST experiment. For ST_IR (see section 5.2.1) and ST_GI (see section 5.2.2),

we retrieved the best N (using N = 25, which (Ji and Grishman 2008) found to

work best) related texts for each training document from the English TDT5 corpus

consisting of 278,108 news texts (from April to September of 2003). In total we

retrieved 1650 texts; the IR system returned no texts or fewer than 25 texts for

some training documents. In each iteration, we extract 500 trigger and argument

pairs to add to the training data.

Table 5.1 shows that bootstrapping on an event-based IR corpus can produce

improvements on all three evaluations, while global inference can yield further

gains.

 Trigger

labeling

Argument

labeling

Role

labeling

Baseline 54.1 39.2 35.4

ST 54.2 40.0 34.6

ST_IR 55.8 42.1 37.7

ST_GI 56.9 43.8 39.0

Table 5.1 - F-score with different self-training strategies after 10 iterations

	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

17 We selected all bootstrapping data from 2003 newswire, with the same genre and time

period as ACE 2005 data to avoid possible influences of variations in the genre or time period

on the bootstrapping. Also, we selected 10,000 documents because this size of corpus yielded

a set of confidently-extracted events (probability > 0.9) roughly comparable in size to those

extracted from the IR-selected corpus; a larger corpus would have slowed the bootstrapping.

	
 66	

Experiments show that using an IR-selected corpus improves trigger labeling F

score 1.7%, and role labeling 2.3%. Global inference can achieve further

improvement of 1.1% for trigger labeling, and 1.3% for role labeling. Also, this

bootstrapping involves processing a much smaller but more closely related corpus,

which is more efficient. Such pre-selection of documents may benefit

bootstrapping for other NLP tasks as well, such as name and relation extraction.

Chapter 6

Sentence Level Active Learning18

In the previous chapter, we investigated the wider scope features from a

document or cross-document level; in this chapter, we explore the usage of

features from a narrower scope: sentence level. Under this approach, we treat the

entire sentence as a whole, and introduce its effect in the active learning approach.

Active learning is a supervised machine learning technique in which the learner

is in control of the selection of data used for learning. The intent is to ask an oracle

- typically a human with extensive knowledge of the domain at hand - about the

classes of instances for which the model trained so far makes unreliable

predictions. Selective sampling methods, introduced by Cohn, Atlas and Ladner

(1994), made the learner query the oracle about data that is likely to be

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

18 This chapter is mainly adapted from a published paper (Shasha Liao and Ralph Grishman,

2011c)

	
 67	

misclassified. This is the crucial aspect of AL - finding “good” instances for a

human to annotate.

Many existing active learning methods are based on selecting the most

uncertain examples using various measures (Thompson et al. 1999; Schohn and

Cohn 2000; Tong and Koller 2001a; Tong and Koller 2001b; Engelson and Dagan

1999). (McCallum and Nigam 1998; Tang et al. 2002) proposed methods that

consider the representativeness criterion in active learning. Tang et al. (2002) used

the density information to weight the selected examples but do not use it to select a

sample. Brinker (2003) first incorporated diversity in active learning for text

classification. Shen et al. (2004) proposed a multi-criteria-based active learning

approach and applied it to named entity recognition. They jointly consider multiple

criteria, including informativeness, representativeness and diversity. Experiments

showed that incorporating all the criteria together is more efficient than single-

criterion-based methods.

Traditional active learning with redundant views splits the feature set into

several sub-sets or views, each of which is enough, to some extent, to describe the

underlying problem. Muslea et al. (2000) presented an approach in which two

classifiers are trained only on labeled data, then run over the unlabeled data. A

contention set of examples is then created, consisting of all unlabeled examples on

which the classifiers disagree. Samples are randomly selected from this set for

query, and then both classifiers are retrained.

To the best of our knowledge, there is no study yet of active learning in event

extraction. However, Patwardhan and Riloff (2009) presented a model for role

	
 68	

filling in event extraction that jointly considers both the local context around a

phrase and the wider sentential context in a probabilistic framework. They used a

sentential event recognizer and a plausible role-filler recognizer to jointly make

decisions on a sentence, and find the roles of the events. Although it is not a co-

testing process, it gave us the intuition of using a sentential view to predict

possible events in a sentence. Surdeanu et al. (2006) used a co-training strategy in

which two classifiers seek to classify documents as relevant to a particular

scenario. In his approach, a bag of words model was used to determine relevance

for event extraction. However, his work differs from ours because it involves semi-

supervised learning, and it uses a document-level classifier instead of a sentence-

level classifier. Patwardhan and Riloff (2007) presented an information extraction

system that find relevant regions of text and applies extraction patterns within

those regions. They created a self-trained relevant sentence classifier to identify

relevant regions, and use a semantic affinity measure to automatically learn

domain-relevant extraction patterns. They also distinguish primary patterns from

secondary patterns and apply the patterns selectively in the relevant regions.

After studying several sampling strategies, we settled upon a pseudo co-testing

approach where a second classifier that solves a coarser variant of the original task

is used. Furthermore, we incorporate multiple selection criteria into the pseudo co-

testing, not only selecting more informative sentences, but also considering their

distribution in the sample pool, and the diversity of the instances added to the

training set at the same time. Experiments show that a classifier for a coarser task

can provide an extra view to build a pseudo co-testing strategy. Although the

	
 69	

ultimate goal involves training the original (fine-grained) classifier, the coarser

task can provide useful information for query selection. In the special case of event

extraction, we find that a sentence classifier can help an event tagger select a better

query, because it is not only good at finding new trigger and local structures from

graded matching over a wider scope, but also provides a better way of judge the

representativeness and diversity of the samples. In our experiment, we reduced

human labor by 80.6% to 87.8%.

In particular, we apply the active learning approach to the Attack event, because

it is the most frequent event type in the ACE corpus, and is particularly

challenging because of the large number of different expressions: there are 312

different words in the corpus that serve at least once as the trigger of an Attack

event.

6.1 Motivation

Annotating a corpus in order to train an event tagger is a costly task. First of all,

event extraction is difficult and requires substantial training data. The same event

might be presented in various expressions, and an expression might represent

different events in different contexts. For example, “retire” and “resign” can both

represent an End-Position event, while “leave” can represent either an End-

Position or Move event in different contexts. Moreover, for each event type, the

event participants and attributes may also appear in multiple forms and exemplars

of the different forms may be required.

	
 70	

Furthermore, compared to other tasks like name tagging or part of speech

tagging, events of a particular type appear relatively rarely in a document. One

document might only contain one or two events of a given type, or even none at

all. For the ACE 2005 event extraction task, Attack events have the highest

frequency in the training corpus (2240 times, an average of 4 events per

document), while Start-Position events only appear 232 times (an average of 1/3

event per document). As a result, to acquire enough training samples, we need to

annotate a lot of documents. If we can predict which documents, or even which

sentences to annotate, we can save a lot of time.

Considering the complexity of event extraction and the labor of annotating an

event, providing the annotator with an informative sample to annotate is especially

important. Active learning (AL) is a good way to do so because it aims to keep the

human annotation effort to a minimum, only asking for advice where the training

utility of the result of such a query is high.

6.2 Pseudo Co-testing Approach

Active learning has been successfully applied to a number of natural language

processing tasks, such as named entity recognition (Shen et al. 2004; Hachey, Alex

and Becker 2005; Kim et al. 2006), text categorization (Schohn and Cohn 2000;

Tong and Koller 2002; Hoi, Jin & Lyu 2006), part of speech tagging (Ringger et

al. 2007), parsing (Osborne and Baldridge 2004; Becker and Osborne 2005;

Reichart and Rappoport 2007), and word sense disambiguation (Chen et al. 2006;

	
 71	

Zhu and Hovy 2007). However, there have not yet been any studies to use active

learning in event extraction.

There are several sampling methods in active learning; the most commonly

used ones include uncertainty-based sampling, committee-based sampling, and co-

testing. Co-testing Muslea et al. (2000) involves two (or more) redundant views; it

simultaneously trains a separate classifier for each view, and the system selects a

query based on the degree of disagreement among the learners. Because well-

informed classifiers for the two views should agree, co-testing will select an

example that is informative for at least one of the classifier models.

The advantage of uncertainty sampling is that it is simple and can be applied to

almost all kinds of statistical models. However, Muslea (2000) points out that

uncertainty sampling may make queries that lead to minimal improvements of the

classifier, and therefore require more queries to build an accurate classifier.

The advantage of co-testing is that it has better performance than uncertainty

based sampling. The disadvantage is that it has more constraints: the two views

should be disjoint and each sufficient to learn a classifier. As discussed above,

event extraction is complicated and involves several classifiers on different levels

interacting together. This makes it difficult to split the feature set into two views.

In particular, the identity of the trigger will be a critical feature for any successful

classifier. Committee-based sampling faces similar problem as co-testing: it is

hard to generate several classifiers that are consistent with the training set or sub-

samples of it, respectively.

	
 72	

We could do active learning at the token level – asking the oracle whether a

specific token triggers an event – but that is not very practical. Rather, for each

query, we return a sentence that might contain an event to ask the oracle to

annotate. We do so because the oracle needs to read the whole sentence to decide

whether it is a reportable event, and annotate all its arguments. Thus, a sentence-

based sampling pool is built where each sentence is treated as a sample query.

6.2.1 Applying Uncertainty-based Sampling
Event extraction is a compound classification task, which involves the

identification of arguments/roles, and the event trigger. These classifiers are

separately trained, but not independent; results from previous classifiers are used

as features for the following classifier, and the decision by the following classifier

will affect the previous results (arguments confidently tagged by the argument/role

classifier will be discarded if the trigger labeling treats it as not a event). Because

the final classifier – the trigger classifier – takes all the considerations we

mentioned above as input, and makes a final decision of a reportable event, we use

its output as the probability of the event tagger. The traditional approach in

uncertainty sampling (Lewis and Gale 1994) queries one of the samples on which

the classifier is the least confident. In our case, the greatest uncertainty regarding

the presence of an event corresponds to the trigger probability closest to 0.5. We

treat the uncertainty of the sentence as the maximum of the uncertainties of the

constituent words (i.e., the uncertainty attributable to the word with probability

closest to 0.5):

	
 73	

€

e_ Info(Si) = 1− min
w j ∈Si

0.5 − prob_e(w j)

where prob_e(wj) is the trigger probability of the word wj in Si , as returned by

the event tagger.

6.2.2 Problems with Uncertainty-based Sampling
However, the results of uncertainty-based sampling are somewhat disappointing

(see Figure 6.2, Figure 6.3 and Figure 6.4). It performs quite well at first: within a

few iterations, trigger labeling (event detection) quickly achieves a performance (F

score) of 65%, but beyond that point the gain is very slow. At this point there is

still a 7% gap between its performance and that of a classifier trained on the whole

sampling pool.

Why does uncertainty-based AL perform this way? The event tagger depends

primarily on the particular trigger and secondarily on its local structure, for

example, the potential arguments in the immediate vicinity of the trigger and the

dependency paths between them. Such information is effective at identifying the

trigger and arguments, but is responsive only to particular words and patterns.

Triggers and structures that have not been seen in the training data will be assigned

uniformly low probabilities. When trained on the whole ACE 2005 corpus (in a

supervised training scenario) this is appropriate behavior: we don’t want to report

an event in testing if we haven’t seen the trigger before.19 However, for active

learning, the inability to differentiate among potential new triggers and local

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

19 Unlike some other tasks such as named entity and part-of-speech tagging, local contextual

clues by themselves are generally not strong enough to reliably tag an event.

	
 74	

structures is critical. Only a few words ever serve as possible triggers for a

specific event type. For the Attack event, only 2.0% of the words in the ACE

training data ever act as an event trigger. The uncertainty of the event tagger, by

itself, does not provide useful guidance regarding possible additional triggers the

user should be asked about, and the system might query a lot of irrelevant

sentences with unseen words before a sentence with a new trigger is found.

We can see this as an instance of a more general problem. Our goal in AL is to

select for labeling those data points that are most likely to improve the accuracy of

the model. Methods like uncertainty-based sampling are heuristics towards that

end, but are not always effective; their success depends on characteristics of the

classifier and the feature space. For event extraction, the classifier is most likely to

benefit from finding new, frequently-occurring triggers. We need a way of

identifying likely candidates.

Furthermore, we note that – while the final trigger classifier that we train from

the labeled data must operate at the token level – we will be presenting the user

with a sentence to label, so it is sufficient for the classifier we use for AL to

operate at the sentence level.

6.2.3 Another View from Sentential Scope
Can we find a classifier that suits the needs of our active learner by identifying

sentences which are likely to contain an event? A simple (bag-of-words) classifier

based on the words in the sentence can do quite well at this task. For example, a

sentence with “troops”, “victim”, “bloody” and “soldier” might be more likely to

contain an Attack event, even if these words might not be elements of the event.

	
 75	

These bag-of-words features are not particularly helpful for the original task of

identifying an event (trigger and arguments) – they don’t pinpoint a particular

word as the trigger. But that’s not a problem if the data selection for AL is

operating at a coarser level.20

6.2.4 Pseudo Co-Testing
The sentence-level bag-of-words classifier is far from perfect – the predictions

at the sentence level are somewhat noisy. But considering that only 6.5% of the

sentences in the ACE data contain an Attack event, returning a possibly relevant

sentence is much more useful than returning a totally irrelevant sentence. If a

sentence S in the sample pool shares many words with another sentence in the

training data known to contain an event, and the event tagger does not find a

trigger word in S, there is a good chance that S contains a new (previously unseen)

trigger word and new local structure, because the two sentences may be describing

the same event, but using different verbs and word sequences.

Thus, we apply a pseudo co-testing algorithm with one view from an event

tagger based on local information, and another view, which aimed to solve an

approximate task: whether there is a possible event in a sentence.

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

20 Note that some active learners for tasks such as named entities and part-of-speech which

also train token-level annotators choose to present data to the user at the sentence level,

because it is more convenient and efficient for the user. These taggers could select data at the

token level using two views based on the identity of a token and its immediate context. We

share these user considerations, but in addition selecting data at the sentence level enables us

to create effective complementary views for event extraction not available at a finer (token)

level.

	
 76	

We call this algorithm “pseudo co-testing” because one of the views is not

sufficient to solve the target problem, but is sufficient to solve a subproblem at a

coarser granularity, in contrast to traditional co-testing. People might argue that

when a pseudo contention point is found in this algorithm, it means that at least

one of the classifiers is wrong, but we do not know (until we query the oracle)

which one. If it is the event tagger, this sample is informative for the event tagger

and adding this sample will improve the performance; if it is the sentence

classifier, it is not guaranteed that this sample is informative for the event tagger.

However, since the updated sentence classifier will serve to select subsequent

queries, samples informative for the sentence classifier should accelerate

subsequent active learning. Furthermore, the event tagger and the sentence

classifier each have their own advantages in finding an event to query. The event

tagger prefers sentences with already-known local patterns, like a trigger and its

arguments, although the overall sentence (the choice of words and wider structure)

might be very different. The sentence classifier prefers sentences sharing the same

words, but which may have different local structures. Together they offer the

potential for finding new triggers that do not appear in the existing training data

(via the sentence classifier) and then acquiring event and non-event exemplars of

these triggers (through the event tagger).

In pseudo co-testing, we use the probabilities from the event tagger and

sentence classifier to build a contention set consisting of those sentences where the

event tagger and sentential event recognizer make different predictions. Among

these sentences, we assume that the larger the margin between the event tagger and

	
 77	

sentential event recognizer, the less certain the sample is. So, instead of randomly

choosing samples from the contention set, we order the samples by their margins

between the event tagger and sentential event recognizer, and pick the ones with

largest margin:

co_ Info(Si) = Max
wj∈Si&isCP

prob_ e(wj)− prob_ s(Si)

where prob_s(Si) is the probability from the sentence classifier; while

prob_e(wj) is the trigger probability from the event tagger for the word wj in

sentence Si, and wj is a contention point (CP) where the event tagger’s prediction is

opposite that of the sentence classifier.

6.3 Multi-criteria-based AL

Normally active learning only considers the informativeness of the sample. In

uncertainty-based query, informativeness is represented by the least confident

sample; in committee-based querying, it is represented by the samples on which

the committee vote is the most equally split; in co-testing, it is represented by the

contention sample. Shen et al. (2004) pointed out that we should maximize the

contribution of the selected instances based on multiple criteria besides

informativeness. For example, the representativeness and diversity of the sentence

should also be considered. In this way, we not only consider whether the current

model contains enough information to classify this sentence (as containing an

event), but also consider the distribution of this sample in the whole sampling pool

	
 78	

(representativeness), and moreover, insure that we select different kind of samples

in a batch to make the selection more diverse (diversity).

6.3.1 Features used in Similarity of Samples
To evaluate the representativeness and diversity, we first need to calculate the

similarity between two samples, in our case, two sentences. In general, a sentence

will be represented as a vector of features

€

S1 = { f11, f12, f13,....., f1n} and the

similarity is calculated based on the feature vectors of the two sentences. Thus, the

essential problem becomes how to build the feature vector for a sentence. Since

there are two classifiers in the pseudo co-testing, we use features from both

classifiers, and measure the similarity using a cosine measure, following Shen et al

(2004):

€

Sim(S1,S2) =

sim(f i, f j)
f j ∈S2

∑
fi∈S1

∑

| S1 | | S2 |

where

€

sim(f i, f j) is 1 when

€

fi and

€

f j are the same, otherwise 0.

6.3.2 Representativeness
A few prior studies have considered this selection criterion (McCallum and

Nigam 1998; Tang et al. 2002; Shen et al. 2004). The representativeness of a

sample can be evaluated based on how many samples are similar to this sample.

Adding samples which are more representative to the training set will have an

effect on a larger number of unlabeled samples.

For every sentence in the sampling pool, we measure its representativeness

based on its average similarity to other sentences in the sampling pool:

	
 79	

€

Represent(Si) =

sim(Si,S j)
S j ∈P,i≠ j
∑

|P |−1

where P is the current sampling pool. In this way, we will filter out the samples

that are rare in the whole sampling pool, and focus our effort on the samples that

appear more frequently in the whole corpus.

In addition to favoring the most informative example, we also prefer the most

representative example. To combine scores from informativeness and

representativeness, we followed Shen et al (2004)’s metric:

Score(Si) = λ ⋅co_ Info(Si)+ (1−λ)Represent(Si)

where the relative importance of each criterion is determined by the parameter

λ (10 ≤≤ λ). In our experiment, λ is set to 0.7.

6.3.3 Diversity
The role of the diversity criterion is to maximize the training utility of a batch

of samples. As we add a batch of samples into the training data in one iteration (for

efficiency in updating the model), we want to make sure we provide various types

of sentences, which provide the most information as a whole, and avoid selecting

very similar sentences for a single batch. To this end, after we rank the sentences

in the sampling pool, based on the different strategies mentioned above, we skip

over any sentence whose similarity to one already selected in the same batch

exceeds a threshold (see Figure 6.1).

The diversity metric is involved in selecting a batch of instances, as follows:

	
 80	

Figure 6.1 - Diversity criterion in batch-based active learning
	

6.4 Experiments

In the following sections, we compare the performance of the query strategies

mentioned above – uncertainty-based query (Uncertainty), pseudo co-testing (pCT),

and multi-criteria pseudo co-testing (multi_pCT). We employ a random sampling

(Random) method as a baseline, where samples are selected randomly to add to the

training data. Also, to assess the benefit of active learning, we report the

performance from the event tagger trained on the entire ACE2005 data except for

the test set (Full_Corpus).

We use the ACE 2005 training corpus, which contains in total 598 annotated

documents, to simulate the active learning process. For evaluation, we conduct a

blind test on a set of 54 randomly chosen documents. For each active learning

strategy, we make 4 runs and use the average scores as our final results. For each

run, 10 documents are randomly chosen as the initial training data, and the rest

(534 documents) are used to build the sampling pool. Overall, the average initial

	
 81	

training set contains 369 sentences, and the sampling pool contains an average of

12074 sentences.

A Maxent model based on bag-of-words features serves as the sentence

classifier. To reduce data sparseness, all inflected words are changed to their

lemma form (e.g. “attackers”→“attacker”). A list of stop words is also applied.

In each iteration, we picked 50 sample sentences at the top of the ranked list

based on different query strategies. To simulate the user queries, annotations

extracted from the key annotations are returned as user feedback, and added into

the training data.

The performances (F-measure) of different strategies are evaluated based on

three metrics: argument/role labeling (Figure 6.2, Figure 6.3) and trigger labeling

(Figure 6.4).

Figure 6.2 - Performance (F-Measure) of argument labeling
	

	
 82	

Figure 6.3 - Performance (F-Measure) of role labeling
	

Uncertainty-based querying (Uncertainty) yields poorer results than the other

active learning strategies, because of the event tagger’s relatively rigid matching

procedure. Thus, it lacks the ability to recognize new potential triggers or patterns.

For example, if we have pattern A which is very similar to some event-bearing

patterns in the training data, and pattern B which is quite different from any pattern

in the training data, the event tagger will treat them the same. However, the

sentence classifier provides more graded matching, and gives the sentence

containing pattern A higher score because they share a lot of words. Thus, the

pseudo co-testing (pCT) would give a higher score to pattern A, and achieve better

performance. Also, we observed that multi-criteria pseudo co-testing (multi_pCT)

performs best in all three evaluations.

	
 83	

Figure 6.4 - Performance (F-Measure) of trigger labeling
	

The differences between the approaches are particularly marked for trigger

labeling after just a few iterations. Consider how much data must be annotated to

get to 95% of full corpus score for trigger labeling (F-Measure 67.5%): multi_pCT

only takes 7 iterations; pCT takes 17 iterations; Uncertainty takes 38 iterations. In

other words, 5.8%, 9.8%, 18.2% of the whole corpus needs to be annotated to

reach the same performance. Thus, using pCT is almost twice as fast as

Uncertainty to reach a reasonable performance, while multi_pCT will shorten this

process by half again. The benefits of better query selection are clearest for the

first few batches of queries, which may be the range of greatest practical import for

developers wanting to quickly add new event types.

Overall, we observe that pseudo co-testing performs better on all three

evaluation metrics than uncertainty-based active learning. Uncertainty-based active

learning requires more than 100 iterations before it reaches the level of

	
 84	

performance on all three measures achieved by the supervised system, trained on

the entire corpus (Full_Corpus). pCT takes 41 iterations to reach this level. At this

point, there are in total 369+2050 = 2419 sentences in the training data; this

represents a reduction in labor over sequential annotation of 80.6%. Applying the

multi-criteria-based strategy (multi_pCT), we can reach this point even earlier, in

iteration 23, where the labor is reduced by 87.8%21.

Chapter 7

Conclusion

In this thesis, we analyzed the effect of wider scope features on event

extraction. We mainly focused on using wider scope features to improve

supervised event extraction systems. The first feature we explored is the

supervised cross-event feature, which significantly improves the performance of a

closed evaluation on ACE05 data. Then we explored the unsupervised topic

features, which are especially useful when the testing data is a super-set of the

training data, and the statistics from the training data is not accurate. Moreover, we

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

21 We observe that the AL can perform better than training on the whole corpus; we believe

that this is a result of AL selecting more positive training data. After 50 iterations of multi-

pcT, 31.4% of the selected sentences have positive Attack examples, whereas only 6.1% of the

entire corpus has such positive examples. Separate experiments suggest that using a corpus

richer in positive examples can produce a small improvement in performance.

	
 85	

investigated how the wider scope can help semi-supervised and active learning

approaches.

From the above studies, we can conclude that information from wider scope can

aid event extraction based on local features, including different learning methods:

supervised, semi-supervised, or active learning. Also, there are different ways to

extract wider scope information from different levels, which need to be further

explored. For example, can the different features be combined together, and which

combination is the best? Can wider scope features help other NLP tasks, like

relation extraction, named entity extraction, etc.?

Bibliography

Eugene Agichtein and Luis Gravano. 2000. Snowball: Extracting relations from

large plain-text collections. In Proceedings of 5th ACM International Conference on

Digital Libraries.

David Ahn. 2006. The stages of event extraction. In Proc. COLING/ACL 2006

Workshop on Annotating and Reasoning about Time and Events. Sydney, Australia.

Markus Becker and Miles Osborne 2005. A two-stage method for active learning of

statistical grammars. In Proceedings of the Nineteenth International Joint Conference

on Artificial Intelligence. Edinburgh, Scotland, UK.

David Blei, Andrew Ng, and Michael Jordan. 2003. Latent Dirichlet Allocation.

Journal of Machine Learning Research 3: pp. 993–1022

K. Brinker. 2003. Incorporating Diversity in Active Learning with Support Vector

Machines. In Proceedings of ICML, 2003.

	
 86	

Jinying Chen, Andrew Chein, Lyle Ungar and Martha Palmer. 2006. An empirical

study of the behavior of active learning for word sense disambiguation. In Proceedings

of the HLT-NAACL 2006. New York, USA.

D. Cohn, Atlas, L., & Ladner, R. 1994. Improving generalization with active learning.

Machine Learning.

S. A. Engelson and I. Dagan. 1999. Committee- Based Sample Selection for

Probabilistic Classifiers. Journal of Artifical Intelligence Research.

J. Finkel, T. Grenager, and C. Manning. 2005. Incorporating Non-local Information

into Information Extraction Systems by Gibbs Sampling. In Proc. 43rd Annual

Meeting of the Association for Computational Linguistics, pages 363–370, Ann

Arbor, MI, June

Ralph Grishman, David Westbrook and Adam Meyers. 2005. NYU’s English ACE

2005 System Description. In Proc. ACE 2005 Evaluation Workshop, Gaithersburg,

MD.

Ralph Grishman. 2010. The impact of task and corpus on Event Extraction Systems.

In Proceedings of LREC 2010

Prashant Gupta, Heng Ji. 2009. Predicting Unknown Time Arguments based on Cross-

Event Propagation. In Proc. ACL-IJCNLP 2009

B. Hachey, B. Alex, and M Becker. 2005. Investigating the effects of selective

sampling on the annotation task.. In proceedings of the Ninth Conference on

Computational Natural Language Learning (CoNLL-2005), 144-151. ACL, Ann

Arbor, Michigan, USA.

Hilda Hardy, Vika Kanchakouskaya and Tomek Strzalkowski. 2006. Automatic Event

Classification Using Surface Text Features. In Proc. AAAI06 Workshop on Event

Extraction and Synthesis. Boston, MA.

	
 87	

Steven C.H Hoi, Rong Jin and Michael R. Lyu. 2006. Large-scale text categorization

by batch mode active learning. Proceedings of the 15th International World Wide Web

Conference (WWW 2006). Edinburgh, Scotland.

Heng Ji and R. Grishman. 2008. Refining Event Extraction through Cross-Document

Inference. In Proc. ACL-08: HLT, pages 254–262, Columbus, OH, June.

R. Jones, R. Ghani, T. Mitchell, and E. Riloff. 2003. Active Learning for Information

Extraction with Multiple View Feature Sets, ECML-03 Workshop on Adaptive Text

Extraction and Mining

Seokhwan Kim, Yu Song, Kyungduk Kim, Jeong-won Cha, and Gary Geunbae Lee.

2006. MMR-based active machine learning for bio named entity recognition. In

Proceedings of the HLT-NAACL 2006. New York, USA.

Lewis and Gale 1994. A sequential algorithm for training text classifiers. In

Proceedings of SIGIR '94, the 17th annual international ACM SIGIR conference on

Research and development in information retrieval

Shasha Liao and Ralph Grishman. 2010a. Using Document Level Cross-Event

Inference to Improve Event Extraction. In Proceedings of ACL 2010

Shasha Liao and Ralph Grishman. 2010b. Filtered Ranking for Bootstrapping in Event

Extraction. In Proc. of COLING 2010.

Shasha Liao and Ralph Grishman. 2011a. Can Document Selection help Semi-

supervised Learning? A Case Study on Event Extraction. In Proceedings of ACL

2011.

Shasha Liao and Ralph Grishman. 2011b. Acquiring Topic Features to Improve Event

Extraction: in Pre-selected and Balanced Collections. In Proceedings of RANLP 2011.

	
 88	

Shasha Liao and Ralph Grishman. 2011c. Using Prediction from Sentential Scope to

Build a Pseudo Co-Testing Learner for Event Extraction. In Proceedings of IJCNLP

2011.

Ting Liu. 2009. Bootstrapping events and relations from text. Ph.D. thesis, State

University of New York at Albany.

Gideon Mann. 2007. Multi-document Relationship Fusion via Constraints on

Probabilistic Databases. In Proceedings of HLT/NAACL 2007. Rochester, NY, US.

M. Maslennikov and T. Chua. 2007. A Multi resolution Framework for Information

Extraction from Free Text. In Proc. 45th Annual Meeting of the Association of

Computational Linguistics, pages 592–599, Prague, Czech Republic, June.

A. McCallum and K. Nigam. 1998. Employing EM in Pool-Based Active Learning for

Text Classification. In Proceedings of ICML, 1998.

MUC-4 Proceedings. 1992. Proceedings of the Fourth Message Understanding

Conference (MUC-4). Morgan Kaufmann

MUC. 1995. Proceedings of the Sixth Message Understanding Conference (MUC-6),

San Mateo, CA. Morgan Kaufmann.

I. Muslea, Minton, S., & Knoblock, C. (2000) Selective sampling with redundant

views. Proc. Of National Conference on Artificial Intelligence (pp. 621-626)

Miles Osborne and Jason Baldridge. 2004. Ensemble-based active learning for parse

selection. In Proceedings of Human Language Technology Conference- the North

American Chapter of the Association for Computational Linguistics Annual Meeting.

(HLT-NAACL 2004). Boston, Massachusetts, USA.

S. Patwardhan and E. Riloff. 2007. Effective Information Extraction with Semantic

Affinity Patterns and Relevant Regions. In Proc. Joint Conference on Empirical

	
 89	

Methods in Natural Language Processing and Computational Natural Language

Learning, 2007, pages 717–727, Prague, Czech Republic, June.

S Patwardhan and E. Riloff. 2009. A Unified Model of Phrasal and Sentential

Evidence for Information Extraction. In Proc. Conference on Empirical Methods in

Natural Language Processing 2009, (EMNLP-09).

http://projects.ldc.upenn.edu/ace/docs/English-Events-Guidelines_v5.4.3.pdf

Daniel Ramage, David Hall, Ramesh Nallapati, Christopher D. Manning 2009.

Labeled LDA: a supervised topic model for credit attribution in multi-labeled corpora.

In Proceedings of the 2009 Conference on Empirical Methods in Natural Language

Processing.

Roi Reichart and Ari Rappoport 2007. An ensemble method for selection of high

quality parses. In Proceedings of the 45th Annual Meeting of the Association for

Computational Linguistics (ACL 2007).

Ellen Riloff. 1996. Automatically Generating Extraction Patterns from Untagged Text.

In Proc. Thirteenth National Conference on Artificial Intelligence (AAAI-96), 1996,

pp. 1044-1049.

Eric Ringger, Peter McClanahan, Robbie Haertel, George Busby, Marc Carmen,

James Carroll, Kevin Seppi and Deryle Lonsdale 2007. Active Learning for part-of-

speech tagging: Accelerating corpus annotation. In proceedings of the Linguistic

Annotation Workshop. ACL, Prague, Czech Republic. 2007.

Greg Schohn and David Cohn. 2000. Less is more: Active learning with support

vector machines. In Proceedings of the Seventeenth International Conference on

Machine Learning (ICML-2000). Stanford, California, USA.

	
 90	

D Shen, J Zhang, J Su, and G Zhou. 2004. Multi-Criteria-based Active Learning for

Named Entity Recognition. Proceedings of the 42nd Annual Meeting on Association

for Computational Linguistics, 2004.

Trevor Strohman, Donald Metzler, Howard Turtle and W. Bruce Croft. 2005. Indri: A

Language-model based Search Engine for Complex Queries (extended version).

Technical Report IR-407, CIIR, UMass Amherst, US.

Mihai Surdeanu, Jordi Turmo, and Alicia Ageno. 2006. A Hybrid Approach for the

Acquisition of Information Extraction Patterns. Proceedings of the EACL 2006

Workshop on Adaptive Text Extraction and Mining (ATEM 2006)

M. Stevenson and M. Greenwood. 2005. A Semantic Approach to IE Pattern

Induction. In Proceedings of ACL 2005.

M. Tang, X. Luo and S. Roukos. 2002. Active Learning for Statistical Natural

Language Parsing. In Proceedings of the ACL 2002.

C. A. Thompson, M. E. Califf and R. J. Mooney. 1999. Active Learning for Natural

Language Parsing and Information Extraction. In Proceedings of ICML 1999.

Simon Tong and Daphne Koller 2002. Support vector machine active learning with

applications to text classification. Journal of Machine Learning 2 (Match): 45-66

S. Tong, and D. Koller. 2001a. Active learning for parameter estimation in Bayesian

networks. Advances in Neural Information Processing Systems 13 (pp. 647–653).

S. Tong, and D. Koller. 2001b. Active learning for structure in Bayesian networks.

Proceedings of the Seventeenth International Joint Conference on Artificial

Intelligence (pp. 863–869).

Roman Yangarber, Ralph Grishman; Pasi Tapanainen; Silja Huttunen. 2000.

Automatic Acquisition of Domain Knowledge for Information Extraction. In Proc.

COLING 2000.

	
 91	

Roman Yangarber. 2003. Counter-Training in Discovery of Semantic Patterns. In

Proceedings of ACL2003.

Roman Yangarber and Lauri Jokipii. 2005. Redundancy-based Correction of

Automatically Extracted Facts. In Proceedings of HLT/EMNLP 2005. Vancouver,

Canada.

Roman Yangarber. 2006. Verification of Facts across Document Boundaries. In

Proceedings of International Workshop on Intelligent Information Access. Helsinki,

Finland.

Roman Yangarber, Clive Best, Peter von Etter, Flavio Fuart, David Horby and Ralf

Steinberger. 2007. Combining Information about Epidemic Threats from Multiple

Sources. In Proceedings of RANLP 2007 workshop on Multi-source, Multilingual

Information Extractionand Summarization. Borovets, Bulgaria.

David Yarowsky. 1995. Unsupervised Word Sense Disambiguation Rivaling

Supervised Methods. In Proceedings of ACL 1995. Cambridge, MA.

Li Zhang, Yue Pan, Tong Zhang. 2004. Focused named entity recognition using

machine learning. In Proceedings of the 27th annual international ACM SIGIR

conference on Research and development in information retrieval.

Jingbo Zhu and Eduard Hovy 2007. Active Learning for word sense disambiguation

with methods for addressing the class imbalance problem. In Proceedings of the 2007

Joint Conference on Empirical Methods in Natural Language Processing and

Computational Natural Language Learning.

Xiaojin Zhu. 2008 Semi-Supervised Learning Literature Survey.

http://pages.cs.wisc.edu/~jerryzhu/research/ssl/semireview.html

	

	

