
Parsing and Analyzing POSIX API behavior on
different platforms

Savvas Savvides

Submitted in partial fulfillment of the
requirements for the degree of

Master of Science
Department of Computer Science

New York University

May 2013

Prof. Justin Cappos

Prof. Jinyang Li

c©2013
Savvas Savvides

All Rights Reserved

i

Acknowledgements

I wish to express my gratitude to my research advisor, Professor Justin Cappos who was
abundantly helpful and offered invaluable assistance and guidance. I would like to thank
Professor Phyllis Frankl for her support in this project and Professor Jinyang Li, my second
reader. Thanks also to my fellow student Eleni Gessiou for some interesting and very helpful
conversations regarding this project, without which this thesis would not have been the
same.

ii

Abstract

Because of the increased variety of operating systems and architectures, developing applica-
tions that are supported by multiple platforms has become a cumbersome task. To mitigate
this problem, many portable APIs were created which are responsible for hiding the details
of the underlying layers of the system and they provide a universal interface on top of which
applications can be built. Many times it is necessary to examine the interactions between
an application and an API, either to check that the behavior of these interactions is the
expected one or to confirm that this behavior is the same across platforms.

In this thesis, the POSIX Omni Tracer tool is described. POSIX Omni Tracer provides
an easy way to analyze the behavior of the POSIX API under various platforms. The
behavior of the POSIX API can be captured in traces during an application’s execution
using various tracing utilities. These traces are then parsed into a uniform representation.
Since the captured behavior from different platforms share the same format, they can be
easily analyzed or compared between them.

iii

Contents

1 Introduction 1

2 Related Work 2
2.1 Tracing POSIX API behavior . 2
2.2 Parsing and Analyzing System Calls . 2

3 POSIX Omni Tracer 4
3.1 Design . 4

4 Tracing POSIX API behavior 6
4.1 The POSIX API . 6
4.2 Traces . 6
4.3 Trace Capturing . 7

5 Parsing POSIX API Behavior 14
5.1 Uniform Representation . 14
5.2 Hiding format differences. 15
5.3 Masking content discrepancies. 16
5.4 Handling missing and unexpected values . 18
5.5 Forming the uniform representation . 18
5.6 Intelligent parsing . 20
5.7 Automatic content-based adaptation . 20

6 Storing the environment state. 22

7 Analyzing POSIX API Behavior 23
7.1 I/O support . 23
7.2 Network Support . 24
7.3 Security Support . 25

8 Evaluation 28
8.1 Performance . 28
8.2 Usability . 29

9 Conclusion and Future Work 32

References 33

iv

1 Introduction

In the past few years there has been a steep rise in the mobile industry, increasing the
diversity of platforms on which software is built. With several new operating systems recently
introduced (Android OS[17], Firefox OS[16, 1], Ubuntu Mobile OS[19], Chrome OS[18]) and
the traditional operating systems on laptops and desktops remaining popular, there are
nowadays a significant number of operating systems in wide use.

Application developers strive to deploy their applications on as many of these platforms
as possible, hence reaching more customers. However, the increased diversity of operating
systems and architectures makes this task hard to achieve. Over the years, several APIs were
introduced, aiming to provide a portable interface and make the task of porting applications
in multiple platforms easier and less time consuming. The job of these APIs is to abstract
the irregularities of the underlying layers and provide a universal interface for applications.
To do this, an API must mask the behavior of the operating system, the file system and
the lower level libraries of the platform. The Portable Operating System interface (POSIX)
is one such API, aiming to promote portability amongst operating systems that support it.
It does so by exposing an interface of many system calls, through which an application can
interact with the operating system.

The aim of the work described in this thesis was to come up with a way to describe the
behavior of the POSIX API during an application’s execution, so that it could be examined
and analyzed through the use of plug-ins or external applications. Furthermore, a way had to
be found that would allow this on different platforms running different Operating Systems.
Once this was achieved, a mechanism had to be provided to reform different instances of
the POSIX API behavior into a uniform representation, which would have the same format
regardless of the underlying platform that behavior was captured on. Using this uniform
representation, instances of POSIX API behavior from different platforms could not only
be analyzed individually, but also compared between them, which could potentially help in
porting an application into different platforms.

In this thesis, the development of the POSIX Omni Tracer (POT) tool is described.
POT is able to capture and reform the system calls involved in the interactions between an
application and the POSIX API, on different platforms. Various tracing utilities are used
to record these interactions, which are then combined with some additional environment
state information (section 6) to accurately capture the behavior of the POSIX API. POT
parses this behavior and generates a uniform representation which is then used to analyze
the behavior of the POSIX API.

The structure of this thesis is devided as follows. Firstly, an overview of the related work
is given in section 2. Then the general design of POT is explained in section 3. Section 4
describes the method used to trace the POSIX API behavior, followed by section 5 which
explains the mechanism used to parse the behavior captured from different systems into a
uniform representation. In section 6 the way the environment state is stored is discussed.
Then, section 7 shows ways in which the captured behavior can be analyzed and used to
extract useful information. The evaluation of this work is given in section 8 before concluding
in section 9.

1

2 Related Work

The related work of this project is given in two parts. Firstly, the existing mechanisms for
tracing the POSIX API behavior are discussed. Then, a set of tools that are able to parse
this behavior are described and compared to the functionality of POT.

2.1 Tracing POSIX API behavior

Tracing the system calls describing the behavior of a POSIX API execution can be trivially
achieved under Linux and Solaris platforms, through the use of the strace and the truss
utilities. But tracing system calls under BSD and OSX platforms is not as straightforward.
Details on how this is done are given in section 4.3 and they involve using a D script with
the dtrace framework. One such D script is dtruss [5]. dtruss tries to imitate the behavior
of the truss utility (hence the name) by producing results that resemble the truss results.
dtruss is limited in that it does not capture all the information needed to fully describe a
system call (many argument values are missing). The D script developed as part of this
work deals with these limitations by capturing all the information necessary to fully describe
a system call.

2.2 Parsing and Analyzing System Calls

Stana or the STrace ANAlyser [3] is a tool that can parse output trace files generated from
the strace utility on Linux platforms. It uses native plug-ins on top of a parser to provide
statistics about the trace. It currently supports plug-ins for summarizing the file I/O activity
and tracking the children processes of the main process.

Pystrace [2] is another parser written in python that can parse the system calls from the
output of the strace utility. The parsed system calls are then stored in a cvs file. Additionally,
pytrace can optionally track and provide time statistics (start/stop/elapsed time) for each
process that appears in the trace.

The strace analyzer [11] is another tool that explores information taken from strace out-
put files. This tool handles only very few I/O system calls and focuses on providing statistics
through which one can discover patterns related to file accessing. For example, it provides
information on how many files are read or written and the amount of data read from or
written to a file.

IOapps [7] is a very useful tool suite that provides the ioreplay and the ioprofiler tools.
As the names might suggest, these tools are used to perform certain I/O related operations.
Both of these tools are build on top of the same code base, which records the behavior of a
set of approximately 20 I/O related system calls. Like all the previous tools discussed so far,
IOapps collects these information by parsing strace traces observed during an application’s
execution. Subsequently, the ioreplay tool uses the recorded system calls to simulate (replay)
the behavior of the traced application. This is useful for example when there is a need to
carry out I/O benchmarks for an application on a system and for some reason the application
itself cannot be executed directly on that system. The ioprofiler tool is used to provide

2

statistics similar to the ones provided by the strace analyzer, but it does so through the use
of graphical user interface and uses plots to provide the results.

(POT) differs significantly from other tools. Firstly, (POT) has a widely usable parser
which can be used to parse traces coming from different utilities on different operating
systems. The input format it takes is not limited to strace. POT can also support input
from strace, truss and dtrace. This allows (POT) to analyze the POSIX API behavior
traced from a wide range of platforms, as long as they support one of these utilities.

Furthermore, (POT) is not limited in dealing with only I/O related system calls. It is
a generic parser that can handle system calls of different classifications. In fact, one of the
main aims when developing (POT), was to provide support for the most commonly used
system calls, regardless of their classification or usage. As a result, this tool can handle
system calls related to file access and file descriptor operations but it can also handle system
calls used for network access, process control and system control.

Most notably, (POT) does not merely parse a system call into its different parts (name,
arguments, return values). Instead it smartly extracts information from the system call
into a meaningful uniform representation, with each argument and return value associated
with a special class indicating its type. Because of the generic nature of (POT), and the
resulting uniform representation of the parsed traces, (POT) is not only useful in providing
statistical I/O information but can also act as the base for other applications to provide
system support, network support and security support.

3

Figure 1: The components that make up the POT tool.

3 POSIX Omni Tracer

The POSIX Omni Tracer is a universal tracer that can capture the behavior of the POSIX
API on many platforms. It currently supports any Linux, Solaris, BSD and OSX platforms
and potentially it can be expanded to support even more platforms. The POSIX API
behavior is captured in trace files using various tracing utilities. Because these trace files
come from different utilities, they have a different format. This means that an application
that wants to make use of the behavior of the POSIX API, would have to provide a different
mechanism to capture this behavior on each of the platforms it needs to support. POT
solves this problem by parsing these trace files and generating a uniform representation.
This representation extracts all the useful information from the trace files but masks format
and representation differences. The uniform representation can then be used as a generic
framework on top of which other applications can be built.

The current implementation of POT is able to intercept and examine the 55 most com-
monly used system calls. These system calls were chosen regardless of their classification,
with the aim of describing the POSIX API behavior as comprehensively as possible. Sup-
port for more system calls is constantly added making POT a more complete system. (POT
initially supported around 30 system calls and it was gradually extended to support more
system calls). Additionally, every time POT is used, it makes a note of how many times
each system call (out of all system calls) is met, so that it can identify which other system
calls are frequently used and designate which are the next system calls to add support for.

3.1 Design

Figure 1 outlines the general design of POT. Whenever an application is executed it will
interact with the operating system through the POSIX API system call interface. The set
of all system calls called during the execution of this application can be traced using a
trace utility (see section 4). Different operating systems support different tracing utilities

4

hence depending on the operating system the application was executed on, different tracing
utilities will be used. This will result in trace files of different formats. The next step is to
take these trace files and parse them into a uniform and common representation. This is
achieved through a parsing mechanism, that takes as input a trace file of any format and
uses a parsing specification to generate a uniform representation. In some cases the parser
will use information from the environment state in which the application was executed, so
that it can accurately capture the POSIX API behavior. Once the common representation
is generated, external applications can be developed that make use of this representation to
analyze the behavior of POSIX API.

5

Figure 2: The POSIX System Call Interface

4 Tracing POSIX API behavior

This section is divided in three parts. Firstly, a brief description is given about the POSIX
API and the POSIX system call interface. Then an explanation is given about traces and
how they can be used to capture the behavior of the POSIX API. Finally an extensive
analysis is given on how traces can be gathered on each platform.

4.1 The POSIX API

The Portable Operating System interface (POSIX) is a portable application program inter-
face aiming to promote portability amongst operating systems. More formally, a POSIX-
compliant application should be able to run on any POSIX- compliant operating system
without the need of changing its source. Several operating systems are considered POSIX-
compliant, with the most prominent of them being Linux, Solaris, BSD and OSX. POSIX-
compliant applications interact with the operating system through the POSIX system call
interface which is a collection of system calls, as shown in figure 2. The behavior of these
interactions should be the same across all POSIX-compliant platforms.

4.2 Traces

The POSIX API behavior can be specified in the form of traces. Every time the API is
executed a trace can be recorded describing the behavior of the API during that execution. A
trace is a collection of atomic units of behavior, called actions, where each action represents
the execution of a single system call. Actions are defined in terms of three components.
These components are the action name, which indicates which method was executed, the
action parameters (these are not necessarily the same as the system call parameters, as
explained in section 5.5), which directly affect the action’s behavior and the action result
which indicates whether the action was successful or not. The action result can also include
the return values of the system call and information about errors that occurred.

6

action = (action name, action arguments, action result)

Sometimes a system call can have side-effects that are not reflected in the action. For
example, when an open system call is executed, it is possible that a new file will be created.
Any side-effects caused by an API call which are not recorded in the action directly, will
become apparent at a later point, by observing the resulting behavior of subsequent actions.
Alternatively, some side-effects that are not realized throughout the trace will be captured
later, when the environment information is recorded (see section 6).

4.3 Trace Capturing

One of the main aims of POT was to capture the behavior of the POSIX API under the
most commonly used POSIX-compliant platforms. This behavior should only contain the
interactions between the POSIX API and the application executed. The capturing mecha-
nism itself, should not interfere with the API’s behavior nor should interactions with other
applications and the POSIX API be recorded in the trace. Therefore, a way had to be
found to generate a trace action every time a system call was executed, and also do this in
all the main POSIX-compliant platforms like Linux, Solaris, BSD and OSX. Furthermore,
each action had to include the values of all the arguments the system call used and also
its return status and its return values. Fortunately, many incarnations of Unix platforms
provide tools that allow the tracing of kernel system calls.

4.3.1 Capturing traces in Linux platforms.

Capturing traces in Linux platforms can be achieved by using the strace (system trace)
utility[12]. strace takes as arguments a command. It then runs the given command and
makes use of a specialized kernel system call, called ptrace [10] which allows it to observe
and intercept all the system calls called by that command. Then strace prints the name of
each intercepted system call, followed by its arguments and its return values to the standard
error or to a file provided as an option to strace. More importantly, strace includes a verbose
option which tells it to capture all the passed arguments and return values of a system call
unabbreviated. strace proved to be more than sufficient in providing the information needed
to form traces under Linux.

Not only does strace capture all the information that POT requires, but it does so in a
very concise and readable output format. Figure 3 shows an example of strace output. Each
line represents a recorded system call. Firstly the id of the process in which the system call
was executed is given. Then the name of the system call is given followed by the arguments
passed to the system call enclosed within brackets. Finally, the result of the system call is
given right after the “=” sign.

In this example, an open system call is firstly recorded. This system call takes as ar-
guments the string “file.txt” which is the path to the file to open, and the RD ONLY flag
telling it that the file needs to be opened only for reading. The system call succeeds and
returns a file descriptor (namely 3), pointing to the file just opened. In line 2, a read system
call is issued on this file descriptor, and the text “data” is read from “file.txt”. Note here

7

strace−output.txt Page 1

 1 28433 open("file.txt", O_RDONLY) = 3
 2 28433 read(3, "data", 32768) = 4
 3 28433 write(1, "data", 4) = 4
 4
 5 28433 open("file2.txt", O_RDONLY) = −1 ENOENT

Figure 3: Example of strace output. Lines 1 to 3 show a set of successful system calls and
line 5 shows a system call that failed with an ENOENT error.

that even though the text read from the file is the result of this system call, in the strace
output it is given as one of the input arguments of the system call. The way POT handles
this irregularity is discussed in section 5.5. In line 3, the text read from the file is written
in the standard output (file descriptor 1). The return part for both read and write system
calls indicates the number of characters read or written respectively. Overall, the system
calls displayed in lines 1 to 3 represent the strace output when tracing the command “cat
file.txt”.

Line 5 shows an attempt to open another file called “file2.txt”. In this case the open
system call fails, and instead of a valid file descriptor, the number -1 is returned. This
number is followed by the error label ENOENT which stands for “Error no entry” and it
indicates that the file attempting to open does not exist. There are several other error labels
like this one with the most common ones being EACCES which indicates that access to the
requested file is not permitted and EEXIST which indicates that the file trying to create
already exists.

All system calls share the same convention on what the format of their return part should
be. If the system call is executed correctly, a non-negative number is returned. But if an
error occurs during the execution of the system call, then the system call will return -1
followed by an error label. To be precise, not all system calls return -1 to indicate an error
per se, but at the end this convention is followed by all system calls nevertheless. This is
because of the way system calls are invoked. Generally, system calls are not called directly
but rather invoked through a system call wrapper. When a system call has an error, it
will return a negative error number (not necessarily -1) back to the system call wrapper.
When this happens, the wrapper negates the returned error number to make it positive and
copies this number to the errno special variable. Then the system call wrapper returns -1.
Subsequently, when strace or another tracing utility intercepts such system call, it will see
-1 as the return value and it will check the value of the errno variable and translate it to
the appropriate error label. Therefore, the convention of returning -1 in case of an error is
seemingly followed by all system calls.

4.3.2 Capturing traces in Solaris platforms.

Solaris platforms do not have the strace utility but instead they provide a utility called
truss [13]. truss stands for “trace user system calls and signals” and it can execute a
specified command and produce a trace containing all the system calls performed by that
command. It prints a line for each system call traced, including its arguments and return

8

truss−output.txt[+] Page 1

 1 ssize_t recvfrom(int sockfd, void *buf, size_t len, int flags,
 2 struct sockaddr *src_addr, socklen_t *addrlen);
 3
 4 2535: recvfrom(3, 0xD1D3EDA0, 512, 0, 0xD1D3EFB0, 0xD1D3EFA8) = 20
 5 2535: T r a n s m i t t e d M e s s a g e\0
 6 2535: AF_INET from = 127.0.0.1 port = 33035

Figure 4: Example of truss output. The definition of recvfrom is given in lines 1 and 2
followed by the truss output for the intercepted recvfrom system call.

values. Additionally, truss makes use of a set of system headers to display the arguments of
system calls symbolically where possible. For example numeric values representing flags are
replaced with the name of that flag. Similarly to strace, truss provides options allowing it to
record the input and output strings in read and write system calls respectively. It also has
a verbose option which if selected, it tells truss to dereference all the structures involved in
the system calls, and provide their values.

When using the truss utility to gather traces on Solaris platforms, a shortcoming of truss
was observed. Even though no documentation was found to confirm this issue, it seems
that pointers to integer values are not dereferenced and instead, the address of the value is
returned. Figure 4 shows an example of truss output which demonstrates this shortcoming.
In lines 1 and 2, the definition of the recvfrom system call is given, and below it, lines 4
to 6 show the truss output format for tracing this system call. The socket file descriptor
is given in line 4 and it is equal to 3. The value of the buffer containing the received
message is given in line 5. The length of the buffer is given as 512 and the socket address
structure is given in line 6. The last argument though, which is the length of the socket
address structure is a pointer to an integer value (socklen t * to be precise), and its value is
not dereferenced. Instead, truss returns its address 0xD1D3EFA8. To deal with this issue,
POT makes appropriate arrangements in the parsing phase, described in section 5.3. In
essence, the action with the missing value is marked so that a warning can be issued when
an application uses this action.

4.3.3 Capturing traces in BSD platforms.

Unfortunately, BSD platforms do not provide the strace utility and the truss utility they
include is a limited version of the one used in Solaris. truss on BSD fails to provide a verbose
option and as a consequence, not all structure values are displayed. For example, only four
values of the stat structure (used in stat system call) are displayed.

Since strace and truss could not be used, another way of gathering traces under BSD
systems had to be found. Firstly the ktrace [8] utility was considered as a replacement.
ktrace is a much more comprehensive utility compared to the truss implementation on BSD
and it provides most of what POT requires. For almost all the system calls POT supports,
ktrace dereferences and provides the required content. Unfortunately, ktrace fails to provide
the values of some structures in certain system calls. As an example, figure 5 shows the
ktrace output for the statfs system call. statfs is usually used to get information about a

9

ktrace−output.txt[+] Page 1

 1 22205 syscalls CALL stat(0x804df40,0xbfbfeb68)
 2 22205 syscalls NAMI "syscalls.txt"
 3 22205 syscalls STRU struct stat {dev=76, ino=151953, mode=−rw−r−−r−− , nli

nk=1, uid=0, gid=0, rdev=0, atime=1367637329, stime=1367637590, ctime=136763
7590, birthtime=1367637329, size=0, blksize=32768, blocks=0, flags=0x0 }

 4 22205 syscalls RET stat 0
 5
 6 22213 syscalls CALL statfs(0x804df40,0xbfbfe9f0)
 7 22213 syscalls NAMI "syscalls.txt"
 8 22213 syscalls RET statfs 0

Figure 5: Example ktrace output. Lines 1 to 4 show the ktrace output for the stat system
call with the values of its structure displayed. Lines 6 to 8 show the ktrace output for the
statfs system call with its structure not being dereferenced.

file system. It takes as arguments a statfs structure and if the system call succeeds, the
structure values are filled and returned. In the ktrace output shown in this figure, even if the
system call is successful, the statfs structure is not dereferenced and instead only its address
is recorded in the output file. Even though it provides most of the content needed by POT,
the few omissions it has, render ktrace unsuitable for the purposes of POT.

As a final choice dtrace [4] was considered. dtrace (Dynamic Tracing) is not a tracing
utility like the other ones described above, but rather a framework used for real time system
analysis. It provides a wide variety of features which can be explored through the use of
scripts, written in the dtrace D language, called D scripts. The D language is a subset of the
C language but it also includes functions and variables specific to tracing. Scripts in this
language make use of a set of probes provided by dtrace. Each probe represents an action,
and whenever the conditions of that action are met, the probe executes. Fortunately, dtrace
provides a probe for every system call that exists in the BSD platforms, and hence it was
adopted as the tracing utility used for gathering traces on BSD systems for this project.

A D script containing two probes for each of the 55 system calls supported by POT was
written. An “entry” probe fires once a system call is called and a “return” probe fires when
that system call returns (or when an error occurs). As shown in figure 6, within the “entry”
probe, the parameters of the system call are intercepted and recorded. The definition of the
probe given in line 7, indicates that this probe should only fire when the system call with
name connect is called. Following this definition, a predicate is given. Predicates work as
conditions through which additional restrictions can be imposed on when a probe is fired.
In this case, line 8 specifies that the entry probe of connect should only fire when the pid of
the process that executed this system call is not the pid of the dtrace D script itself. This
way the traced behavior will not contain actions from any other process except the one of
the application being traced. In line 11, a variable named “start” is initialized. This variable
will be used as a predicate for the return probe. In line 14, the socket file descriptor of the
connect system call is recorded.Similarly, in line 17 the pointer to the sockaddr structured
is recorded and in line 20 the length of this structure is stored.

Subsequently, within the “return” probe shown in figure 7 the return values and error
messages are captured and the entire action printed. Line 2 shows the predicate for this

10

probe−entry.txt[+] Page 1

 1 int connect(int sockfd, const struct sockaddr *addr, socklen_t addrlen);
 2
 3 /*
 4 * Entry probe for the connect system call. This probe fires when the
 5 * connect system call is called
 6 */
 7 syscall::connect:entry
 8 /pid != $pid/ // predicate: do not trace the dtrace process ($pid)
 9 {
 10 // mark the system call as started
 11 self−>start = timestamp;
 12
 13 // save the socket file descriptor
 14 self−>sockfd = arg0;
 15
 16 // save the pointer to the sockaddr structure
 17 self−>sockaddr_pointer = arg1;
 18
 19 // save the size of the sockaddr structure
 20 self−>sockaddr_len = arg2;
 21 }

Figure 6: Dtrace entry probe for the connect system call. For clarity line 1 gives the definition
of the connect system call. (Line 1 is not part of the D script.)

probe. Apart from checking the pid, this predicate checks if the start variable was set in the
entry probe. This ensures that the return probe will only fire if the entry probe was fired
first. Lines 5 to 18 show how the sockaddr structure is dereferenced. In lines 20 to 28 the
process id and the system call name and arguments are printed. Finally, in lines 30 to 32,
the errno special variable is checked, and if an error occurred in the execution of the system
call, an error label is printed.

A final complication that had to be dealt with before gathering traces in BSD platforms,
was the fact that the dtrace framework is not supported by the standard (GENERIC) BSD
kernel. To overcome this issue, the kernel had to be customized in order to support dtrace
before the latter could be used to gather traces. Capturing the behavior of the POSIX API
under BSD platforms took more work compared to the other operating systems. But because
of the impressive array of features dtrace provides, it allowed for an output that contained all
the information POT needed. In addition, due to the flexibility of dtrace, the output result
was formatted appropriately so that it could be handled easily when it was next needed.

4.3.4 Capturing traces in OSX platforms.

The last operating system POT had to provide support for was OSX. OSX (Darwin) is a
BSD-derived operating system and it fully supports the dtrace framework (in fact, unlike
BSD not even kernel customization is needed to run dtrace). As a result, the D Script used
to gather traces on BSD could also be used to gather traces on OSX platforms. In reality,
subtle differences between the two dtrace versions on these operating systems had to be
addressed. For example dtrace on OSX had different names for some of the probes used
in the BSD D script. Furthermore, in order for dtrace on OSX to be able to dereference
structures and display their values, the structure definitions had to be explicitly defined (not

11

probe−return.txt[+] Page 1

 1 syscall::connect:return
 2 /self−>start && pid != $pid/ // only fire if entry probe has fired
 3 {
 4 // get the sockaddr structure (dereference)
 5 this−>sockaddr = (struct sockaddr*) copyin(self−>sockaddr_pointer,
 6 sizeof(struct sockaddr));
 7 // get the socket family
 8 self−>family = this−>sockaddr−>sin_family;
 9 // get the socket port
 10 self−>port = ntohs(this−>sockaddr−>sin_port);
 11
 12 // get the socket ip address
 13 this−>a = (uint8_t *) &this−>sockaddr−>sin_addr;
 14 this−>addr1 = strjoin(lltostr(this−>a[0] + 0ULL),
 15 strjoin(".", strjoin(lltostr(this−>a[1] + 0ULL), ".")));
 16 this−>addr2 = strjoin(lltostr(this−>a[2] + 0ULL),
 17 strjoin(".", lltostr(this−>a[3] + 0ULL)));
 18 self−>ip = strjoin(this−>addr1, this−>addr2);
 19
 20 // print the process id
 21 printf("%d ", pid);
 22 // print the name of the probe function. This should be "connect"
 23 printf("%s", probefunc);
 24 // print the system call parameters
 25 printf("(%d, {sa_family=%d, sin_port=htons(%d), \
 26 sin_addr=inet_addr(\"%s\")}, %d)\t\t ",
 27 self−>sockfd, self−>family, self−>port,
 28 self−>ip, self−>sockaddr_len);
 29
 30 // translate error number to error name and print result
 31 this−>errstr = err[errno] != NULL ? err[errno] : "";
 32 printf("= %d %s\n", (int) arg0, this−>errstr);
 33 }

Figure 7: Dtrace return probe for the connect system call.

imported) in the D script, as shown in figure 8.s
A small deficiency of dtrace as opposed to the strace and truss utilities, is that the former

can only run under root privileges. This is true for both dtrace on BSD and dtrace on OSX.
Fortunately, this did not cause any complications since all the applications whose behavior
was traced could be executed as root.

12

dtrace.txt[+] Page 1

 1 struct stat {
 2 dev_t st_dev;
 3 ino_t st_ino;
 4 mode_t st_mode;
 5 nlink_t st_nlink;
 6 uid_t st_uid;
 7 gid_t st_gid;
 8 dev_t st_rdev;
 9 struct timespec st_atimespec;
 10 struct timespec st_mtimespec;
 11 struct timespec st_ctimespec;
 12 off_t st_size;
 13 quad_t st_blocks;
 14 u_long st_blksize;
 15 u_long st_flags;
 16 u_long st_gen;
 17 };
 18
 19 22884 stat("syscalls.txt", {st_dev=76, st_ino=151831, st_mode=22188,
 20 st_nlink=1, st_uid=0, st_gid=0, st_blksize=32768, st_blocks=0,
 21 st_size=0, st_atime=1081885184, st_mtime=1081885184,
 22 st_ctime=1081885184}) = 0

Figure 8: dtrace output. Lines 1 to 17 show the stat structure definition that needs to be
explicitly copied in the D script. Lines 19 to 22 show the dtrace output for the intercepted
stat system call.

13

ir−spec.txt[+] Page 1

 1 # definition of the connect system call.
 2 int connect(int sockfd, const struct sockaddr *addr,
 3 socklen_t addrlen);
 4
 5 # Specification for the connect system call.
 6 "connect": {
 7 'arguments': (Int(), Flags(), Int(), Str(), Int()),
 8 'return': (Int(), NoneOrStr())
 9 }

Figure 9: Action specification for the connect system call.

5 Parsing POSIX API Behavior

Section 4 describes how traces are gathered from different operating systems. This is achieved
through the use of various utilities that are able to interpose the interactions between an
application and the operating system kernel, and intercept the system calls involved in
that application’s execution. Because different utilities are used in each operating system,
the format of the traces captured in different platforms varies significantly. This creates a
problem when trying to reason about the behavior of these traces. To mitigate this problem
all the traces have to be parsed into a common format before they can be used.

5.1 Uniform Representation

In order to be able to examine the behavior of traces gathered in different platforms in a
similar fashion, it was necessary to come up with a uniform representation to describe the
intercepted actions. This representation would have to hide the format differences in traces
gathered from different operating systems using different utilities. Hence, after each trace was
captured, it would be parsed into a uniform representation. This representation includes all
the required information contained in the trace parsed, with the format differences abstracted
away. Therefore, after parsing traces into their uniform representation, it is impossible to
tell which platform those traces were gathered from. As a result they can be easily used by
other applications without the need of dealing with each trace format separately.

To achieve a uniform representation for all captured traces, an unambiguous format had
to be specified for all the parts that make up a trace, or in other words, all the possible
actions of a trace. For this reason, a precise parsing specification was defined. This parsing
specification is made up by a set of action specifications with each system call having its own
action specification. Action specifications specify the expected arguments and the expected
return values for the system call they represent and they impose certain requirements on
what their type and value should be. But apart from defining the way that the system calls
should be parsed, action specifications are used to associate each argument and each return
value of a system call with a special class that gives meaning to these values (see Section
5.3).

An example of such specification is shown in figure 9. In this example, lines 2 and 3
give the definition of the connect system call. connect is used to associate an address to

14

a given socket. It takes as arguments a file descriptor of a socket (this can be taken using
the socket system call), a reference to a sockaddr structure containing all the information
needed to describe an address and an integer value (socklen t) specifying the size of that
structure. Then, lines 6 to 9 give the action specification of connect. This specification
defines what types of arguments and what types of return values the trace must contain,
whenever a connect system call is parsed. Regardless of which tool was used or which
operating system a trace was gathered from, a connect action should have 5 arguments.
Note that the sockaddr structure shown in the definition of connect is made up of three
components. These components are the address family, the port and the IP. In trace files
these components are given separately. This is why the definition of connect has three
arguments and the specification of connect has five arguments. As shown in the specification,
the first argument should be an integer value (Int()) which will hold the socket file descriptor.
The second argument should be of type Flags() which will hold the socket address family
e.g AF INET. The third argument should be an integer to hold the port number of the
sockaddr structure and the forth should be a string Str() to hold the IP. Finally, another
integer argument is needed to hold the total size of the sockaddr structure.

The return values are also defined in the action specification as an Int() object followed
by a NoneOrStr() object. The Int(), NoneOrStr() combination is used for the return part of
all system calls. The return part of a system call is always a non-negative number when the
system call succeeds or a -1 followed by the error label when it fails. The Int(), NoneOrStr()
class combination tells the parser that it should expect an integer value followed by either a
None value in case the system call succeeded or a Str() value to hold the error label in case
the system call failed.

The types of all arguments and return values in the specification are defined as objects
of a special class. In this example these classes are Int(), Str(), Flags() and NoneOrStr()
but there are several others. Here Int() and Str() are not the same as the built in types int
and string. The reason why these objects are used instead of the conventional built-in types
is explained in section 5.3.

5.2 Hiding format differences.

Using the action specifications, a parser translates strace, truss and dtrace traces into the
uniform representation. To do this, the parser has to deal with many format peculiarities
of each trace type. Firstly, the parser has to rename some system calls so that actions
representing the same system call have a consistent name. For example, Linux has a system
call called statfs. In Solaris platforms, this system call uses the name statvfs (and uses the
statvfs structure instead of the statfs structure). This type of irregularity happens for a few
other system calls too (fstatfs-fstatvfs, stat-xstat, fstat-fxstat, getdents-getdirentries, etc).
Since these system calls are conceptually the same, the parser makes sure they have the same
name when parsed.

Another format difference the parser has to deal with is the fact that some truss traces
include unnecessary values in the arguments of some system calls. An example where this
format difference appears is the stat system call. stat is used to get statistics about a specific

15

format−parsing.txt[+] Page 1

 1 4328 bind(3, {sa_family=AF_INET, sin_port=htons(25588),
 sin_addr=inet_addr("127.0.0.1")}, 16) = 0

 2
 3 2535: bind(3, 0xD1D3EFC0, 16, SOV_SOCKBSD) = 0
 4 2535: AF_INET name = 127.0.0.1 port = 25588
 5
 6 ('bind_syscall', (3, ['AF_INET'], 25588, '127.0.0.1', 16), (0, None))

Figure 10: strace (line 1) and truss (lines 3 and 4) output comparison for the bind system
call and the resulting uniform representation

file. It takes as arguments a path to a file and a reference to a stat structure which will hold
the information to be returned. When this system call is traced using truss, an unnecessary
third argument is included. This argument is removed when the system call is parsed.

Figure 10 shows a comparison between the strace and the truss output for the bind system
call. The format of the two utilities is significantly different although the information they
carry is of course the same. In strace, output for a system call is given in a single line,
with structure values enclosed within angle brackets. In the truss output on the other hand,
structure values are given in a new line. Once these two formats are parsed, the resulting
uniform representation is the same for both cases. This example demonstrates another
format difference, which is the fact that the “SOV SOCKBSD” flag, which only appears in
the truss output, is removed and excluded from the uniform representation.

Format differences on the output of traced actions appear mainly between strace and
truss output. Because dtrace is flexible, its output format can be structured in the way
needed within the return probe of the D script used to trace the system calls. Therefore, the
probes used to capture the POSIX API behavior on BSD and OSX platforms, were written
so that they produce an output with the same format as the one used in strace.

5.3 Masking content discrepancies.

Format differences are not the only peculiarities of trace files that the parser needs to deal
with. The parser has to make sure that the content of actions of the same kind (actions that
represent the same system call) will contain the same set of arguments and return values. To
achieve this, a set of special classes were defined and used to make up the action specifications
as described in section 5.1. As previously mentioned, each action is defined in terms of the
action name, the action parameters and the action return values. Each individual argument
and return value is defined in terms of one of these special classes. These classes would then
enforce the expected type and format of each argument and return value of the system call.

Not only are these classes able to detect unexpected values, they are also able to detect
when a argument or return value contains the right content but in a different format. In
this case, the value will be translated to match the expected format. A case that such a
translation is required is when the system call contains flags. For example the fcntl system
call which can be used to get the file access mode, returns a set of flags describing that
mode. The strace and truss utilities use different names for the same flag. The parser is

16

flag−renaming.txt[+] Page 1

 1 # strace output
 2 11470 fcntl(4, F_GETFL) = 0x402 (flags O_RDWR|O_APPEND)
 3
 4 # truss output
 5 2361: fcntl(4, F_GETFL) = 10
 6 FWRITE|FAPPEND
 7
 8 # common representation
 9 ('fcntl_syscall', (4, ['F_GETFL']), (['O_APPEND', 'O_RDWR'], None))

Figure 11: Renaming flags to provide a consistent uniform representation
flag−translating.txt[+] Page 1

 1 # strace output
 2 12849 access("syscalls.txt", R_OK|W_OK) = 0
 3
 4 # dtrace output
 5 1128 access("syscalls.txt", 6) = 0
 6
 7 # common representation
 8 ('access_syscall', ('syscalls.txt', ['R_OK', 'W_OK']), (0, None))

Figure 12: Translating number to a list of flags

able to detect this discrepancy and amend it, as shown in figure 11. On the other hand,
dtrace does not use flag names at all, but rather gives a number in place of a flag. This
number is made up from the numeric representations of each individual flag, bitwise ORed
with each other. The parser can detect this too and translate that number into a set of flags,
by using the lexical representation of each flag taken from the Linux header files [14, 6]. This
is demonstrated in figure 12. Similarly, the parser can deal with other cases when values
have the same content but different representations, for example timestamp values.

Figure 13 shows an example of the Str() special class. This class is used to parse values
that are expected to be of string type. Lines 13 to 15 demonstrate that if the value being
parsed is not of the expected type, an exception is raised, stopping the parser from pro-
ceeding. The developer can then examine the problem that caused this exception and make
appropriate adjustments. When such an exception is raised, one of two things must have
happened. Either the parser has a bug that needs to be fixed or the trace being parsed in-
cludes a value with a format that the parser is not aware it can exist. Lines 2 and 3 show the
constructor method of this class. The constructor can optionally take a boolean argument
called “output”. How this argument is used is explained in section . Lines 6 to 11 show
how the parser deals with the fact that the value might be missing (val == None) or the
value might not have been dereferenced (val.startswith(’0x’)). These situations are further
explained in section 5.4. Finally, lines 17 to 20 show some format translations performed on
this type of values.

17

str−class.txt[+] Page 1

 1 class Str():
 2 def __init__(self, output=False):
 3 self.output = output
 4
 5 def parse(self, val=None):
 6 if val == None:
 7 return Unknown('Str', val)
 8
 9 # if the value starts with 0x it was not dereferenced.
 10 if val.startswith('0x'):
 11 return Unknown('Str', val)
 12
 13 # if the format is not the expected one, raise an exception.
 14 if not (type(val) is str or type(val) is unicode):
 15 raise Exception("Unexpected format: " + val)
 16
 17 # replace special characters.
 18 val = val.replace("\\n", "\n")
 19 # ...
 20 val = val.replace("\\0", "\0")
 21
 22 return val

Figure 13: Part of the Str() class used to parse and define objects of string type.

5.4 Handling missing and unexpected values

In some situations, the value being parsed might be missing or not be of the expected type,
but the parser can be aware that this situation can happen. Such a situation can appear for
example when an error occurs in a system call, in which case strings and structures are not
dereferenced. In this case, the trace will include the address of the string or structure rather
than their actual values. If such a vase occurs, instead of raising an exception, the parser
marks that value as an Unknown object. Therefore, before performing any future operations
on a value, the type of that value can first be examined for whether it is an Unknown object.
To avoid any false comparisons, the equality and inequality operators of the Unknown object
were overridden, as this is shown in figure 14. By using the Unknown object, the parser can
deal with the fact that some values are missing. This way, the system call can still be parsed
into an action and even if some values are missing, the action can still be used to describe
the behavior of the POSIX API.

5.5 Forming the uniform representation

The return value of all system calls is an integer value, not necessarily of type int though. In
order for a system call to pass additional values to its caller, the caller must allocate some
memory before calling the system call, and its address should be passed to the system call as
one of its arguments. For example, if the system call needs to return a structure, then that
structure needs to be initialized and a pointer to its memory location needs to be passed to
the system call. If the system call is successful (no errors occur), then the values that need
to be returned will be stored in the memory location pointed to by the address passed to
the system call.

18

unknown.txt[+] Page 1

 1 class Unknown():
 2 def __init__(self, t=None, v=None):
 3 self.expected_type = t
 4 self.given_value = v
 5
 6 # override equality
 7 def __eq__(self, other):
 8 return type(other) is type(self)
 9
 10 # override inequality
 11 def __ne__(self, other):
 12 return not self.__eq__(other)

Figure 14: The unknown object used to mark the missing values of a system call.
forming−ir.txt[+] Page 1

 1 # parsing specification of read
 2 "read": {
 3 'args': (Int(), Str(output=True), Int()),
 4 'return': (Int(), NoneOrStr())
 5 },
 6
 7 # strace output
 8 28433 read(3, "data", 32768) = 4
 9
 10 # common representation
 11 ('read_syscall', (3, 32768), (4, ('data',)))

Figure 15: Rearranging the system call arguments to accurately capture the behavior of the
POSIX API. The figure demonstrates how the “data” text was moved from the arguments
in the system call to the return part in the common representation. This was done based on
the parsing specification of the read system call (lines 1 to 5)

When tracing a system call that needs to return more than an integer value, the output
format of the traced system call is somewhat tangled. This is true for the output of all
tracing utilities used (strace, truss and dtrace). Specifically, all the returned values are
displayed in the trace output as if they were arguments passed in the the system call. This is
demonstrated by the read system call in line 2 of figure 3. Even though the text read from the
file is the return value of the read system call, it is displayed as if it is one of its arguments.
In order to correctly, capture the behavior of a system call, the uniform representation had
to be formed in a way that clearly distinguished the arguments from the return values of a
system call. This is achieved by specifying in the parsing specification which arguments of
an action are indeed arguments passed to the system call, and which are return values.

Figure 15 shows the parsing specification of the read system call. The second argument
of read is of the Str() class and it is used to hold the text read from the file. The Str() class,
and all the other parsing classes, can take an optional argument called “output”. If this
argument is set to True, it indicates that the current value is not an argument passed to the
system call but rather one of its return values. Using this information, the arguments of an
action can be rearranged so that the resulting uniform representation accurately represents

19

the behavior of the system call. As shown in this figure, even though the strace output
displays the read text as an argument of the read system call, in the uniform representation,
this text is moved to the return part.

In some cases, an argument is used for both passing some value to the system call, and
returning a value from the system call. These arguments are called value-result arguments
[9]. An example of such argument is the optlen argument of the getsockopt system call,
whose definition is given below.

int getsockopt(int sockfd, int level, int optname, void *optval, socklen t *optlen);

The getsockopt system call is used to query a socket (sockfd) about its options. optval is
a buffer in which these options will be stored once the system call is executed. The optlen
argument is initially indicating the size of the optval buffer initialized to hold the options
that getsockopt will return. Once getsockopt returns, the optlen argument indicates the
actual size of the options returned. When a system call containing a value-result argument
is traced, the resulting trace file contains only the final value of the value-result argument.
In other words, the initial value of a value-result argument cannot be inferred from the trace.
dtrace can be set to record this initial value by capturing and storing this value in the entry
probe, and subsequently passing it to the return probe where it can be printed into the trace
file. Unfortunately, strace and truss do not have this ability. In order to keep a consistent
and uniform representation, which was one of the main goals of POT, dtrace was also set to
record only the return value of all value-result arguments, hence capturing exactly the same
information that strace and truss do.

5.6 Intelligent parsing

One of the key strengths of POT is the fact that it does not simply break traces into
meaningless pieces of text but it intelligently extracts pieces of information from the traces
and uses them to form a meaningful uniform representation. Each argument and each return
value is associated with a special class that indicates its type. What this means is that one
could easily search for values of a specific type within an entire trace file (for example file
descriptors, flags, ports, IP addresses, etc) effortlessly. Other parsers would have to tediously
query each value of each system call for a specific format, in order to achieve this functionality.
This is particularly important for system calls with a varying set of arguments. For example,
system calls that take a sockaddr structure as one of their arguments, can have an IP and a
port arguments or they can have a pid and a groups arguments instead. This can be trivially
detected in POT.

5.7 Automatic content-based adaptation

In order to deal with the fact that some system calls can have a varying set of arguments,
POT extracts the contents of a system call progressively. Based on the contents already
read, it automatically adjusts the action specification of the system call being parsed, to

20

cr_adaptation.txt[+] Page 1

 1 # definition of sendto system call
 2 ssize_t sendto(int sockfd, const void *buf, size_t len, int flags,
 3 const struct sockaddr *dest_addr, socklen_t addrlen);
 4
 5 # example of strace output for sendto with AF_INET protocol family
 6 49823 sendto(3, "message", 6, 0, {sa_family=AF_INET, sin_port=htons(25588),
 7 sin_addr=inet_addr("127.0.0.1")}, 16) = 6
 8
 9 # initial action specification
 10 "sendto": {
 11 'arguments': (Int(), Str(), Int(), Flags(), Flags(), Int(), Str(), Int()),
 12 'return': (Int(), NoneOrStr()) }
 13
 14 # common representation
 15 ('sendto_syscall', (3, 'messge', 6, 0, ['AF_INET'], 25588, '127.0.0.1', 16),
 16 (6, None))
 17
 18 # example of strace output for sendto with AF_NETLINK protocol family
 19 28721 sendto(4, "messge", 6, 0, {sa_family=AF_NETLINK, pid=0,
 20 groups=00000000}, 12) = 6
 21
 22 # automatically adapted action specification
 23 "sendto": {
 24 'arguments': (Int(), Str(), Int(), Flags(), Flags(), Int(), Int(), Int()),
 25 'return': (Int(), NoneOrStr()) }
 26
 27 # common representation
 28 ('sendto_syscall', (4, 'messge', 6, 0, ['AF_NETLINK'], 0, 0, 12), (6, None))

Figure 16: Example of automatic content-based adaptation. The arguments of the action
specification of the sendto system call are automatically adjusted.

reflect the correct expected arguments. Detecting situations when this is necessary can be
achieved very easily since finding arguments of specific type is a trivial job in POT.

Figure 16 demonstrates a situation when this can happen. Lines 1 to 3 give the definition
of the sendto system call. sendto is used to send messages to other sockets. As part of its
arguments it takes a sockaddr structure which contains a flag indicating the socket family
of the sockaddr structure which is used to specify the type of communication to be carried.
If this flag is set to AF INET then the sockaddr structure will contain the IP and the port
needed to carry out an IPv4 communication. If this flag is set to AF NETLINK though,
it indicates that the communication should be between the kernel and the user process, in
which case the sockaddr structure does not need an IP and port but rather the pid and
the groups. Lines 9 to 12 show the initial action specification that expects a port number
and an IP address (Int(), Str()) and lines 22 to 25 show the automatically adjusted action
specification which requires a pid and a groups value (Int(), Int())

21

6 Storing the environment state.

Once a trace file describing an application’s execution is traced and parsed, the information
of all system calls involved during that execution are captured and used to form the uniform
representation. In some cases, this representation is not enough to fully describe the behavior
of the POSIX API. This is because the behavior of some system calls rely on state that is
predetermined before an application starts its execution. For example, the result of some
system calls can be affected by the state of the environment in which the application is
executed.

Many system calls are directly affected by the state of the file system. An application’s
behavior is often dependent on the existence of certain files. For example, the open system
call will only succeed if the file attempting to open exists. If the file does not exist, open will
fail (assuming the O CREAT flag was not set) and return an error message. In order to fully
capture the behavior of the POSIX API during an application’s execution, the environment
state has to be recorded as well. Once a trace is parsed, it is used to identify what additional
information is needed. Specifically, all the system call actions are searched for references
to files. Whenever an action having a file path in its arguments is found, that action is
examined to see if the file it refers to existed in the local file system the at time the trace
was captured. This can be achieved by examining the return value of that system call. If
the system call failed with an ENOENT error label, then the file did not exist. Otherwise,
that file must have existed and it is hence stored along with the parsed trace.

22

7 Analyzing POSIX API Behavior

Once the behavior of the POSIX API is captured and parsed in a clear and common rep-
resentation, external applications can be built to make use of this common representation
in order to analyze the POSIX behavior. As part of this work, several application plug-ins
were developed and used to generate statistics and discover patterns in the POSIX behavior.
Building these plug-ins took minimal effort. Because of the clear and easy to use format of
the POT output, useful plug-ins can be built within a few hours. Furthermore, because of
the generic nature of the uniform representation, these plug-ins can be effortlessly ported to
many platforms.

Because of the wide range of system calls POT supports, there are many areas in which
it can be used. Firstly, a set of plug-ins are explained, which make use of POT to provide
I/O statistics and I/O support. Then POT is used as the base for a plug-in used to provide
network support. Finally, the usefulness of POT is demonstrated through a plug-in that is
used to to provide security support.

7.1 I/O support

One possible way in which POT can be used, is to provide I/O statistics and I/O support.
By being able to intercept and parse several I/O related system calls, POT is able to pro-
vide a uniform representation that can be easily analyzed and used to extract useful I/O
information. To demonstrate this ability, two plug-ins were developed.

The first plug-in uses the uniform representation provided by POT to generate a set of
I/O statistics. As shown in figure 17, this plug-in can generate several different statistics.
Firstly, it counts how many times each I/O related system call occurred in the trace. This
is useful in getting a general idea on how I/O intensive the traced application was. Then it
shows the average amount of data read and written per system call, alongside the average
buffer size used in those system calls. Apart from that, a finer analysis is given on the sizes of
the data read and written. Lines 15 and 22 show the number of read and write system calls
respectively, according to the size of data read or written. This can be particularly useful
when reasoning about the performance of an application. For example if an application
performs many reads and writes in small chunks of data, it will most likely have worse
performance that if it performed less I/O calls with bigger chunks of data.

Furthermore, the number and type of errors that occurred, in all the read and write
system calls is also provided. If this number is unusually high, it could serve as a warning
that the application might be doing something wrong. Finally, this plug-in prints a list of
all the files that appear in the trace. Apart from exploring aggregated I/O statistics about
the entire trace, it is also very useful to examine the system call activity on specific files.
This idea is further explored through another plug-in explained in section 7.3

Inspired from the previous plug-in, another I/O related plug-in was developed to explore
the I/O information that POT could provide. This plug-in focuses on all the file paths that
can be found in the trace file. Using these file paths, the plug-in firstly checks whether the
files corresponding to those file paths existed at the time the trace was gathered. This is

23

io_stats.txt Page 1

 1 I/O System call count:
 2 access: 84
 3 stat: 14
 4 read: 188
 5 statfs: 1
 6 mkdir: 1
 7 write: 23
 8 rmdir: 2
 9 unlink: 3
 10 open: 196
 11
 12 − average buffer size per read syscall: 1964
 13 − average data read per read syscall: 1514
 14 Number of reads per size:
 15 <100b:32, <1000b:92, <10000b:64, >=10000b:0
 16 Number of read errors:
 17 EAGAIN : 4
 18
 19 − average buffer size per write syscall: 12
 20 − average data written per write syscall: 12
 21 Number of writes per size:
 22 <100b:23, <1000b:0, <10000b:0, >=10000b:0
 23 Number of write errors:
 24 None
 25
 26 File paths:
 27 /etc/ld.so.nohwcap
 28 /etc/ld.so.preload
 29 /etc/ld.so.cache
 30 /lib/i386−linux−gnu/libc.so.6
 31 ...

Figure 17: I/O statistics generated by analyzing the behavior of POSIX API

achieved by examining the return value of the system call the file path was taken from. If the
return value indicates that the system call was successful, then the file must have existed. If
the system call failed then the error label is further examined to see the type of error that
occurred. If for example the error label is EACCES, it indicates that the system call failed
because it did not have the required permissions to access the file. In this case the file exists,
even though the system call failed.

When the file paths are filtered and only the ones referring to an existing file are left,
they are appropriately arranged and used to construct a file hierarchy. Figure 18 shows an
example of a file hierarchy constructed using a trace gathered during the execution of the
Firefox browser under Linux and under Solaris. Lines 1 to 9 show a small part of the file
hierarchy constructed from the Linux trace and lines 11 to 23 the Solaris one. Subsequently,
these two file hierarchies can be compared, to examine the different files involved in each
operating system. Interestingly enough, the figure shows that the trace of Firefox on Linux
has a system call that makes use of the “/etc/passwd” file. In section 7.3 a plug-in is
discussed that can be used to provide security support.

7.2 Network Support

Unlike other parsers that only support I/O system calls, POT supports system calls of various
classifications. As a result, apart from I/O support, POT can also provide network support.
A plug-in was specifically developed to extract information from the network related system

24

fs_hierarchy.txt Page 1

 1 /
 2 /dev
 3 /dev/null
 4 /dev/nvidia0
 5 /dev/nvidiactl
 6 /etc
 7 /etc/ld.so.cache
 8 /etc/nsswitch.conf
 9 /etc/passwd
 10
 11 /
 12 /ICEauthority
 13 /Xauthority
 14 /dev
 15 /dev/tty
 16 /dev/udp
 17 /dev/urandom
 18 /etc
 19 /etc/default
 20 /etc/default/nss
 21 /etc/fonts
 22 /etc/fonts/conf.d
 23 /etc/fonts/conf.d/20−fix−globaladvance.conf

Figure 18: Part of the file hierarchy showing all the files involved in the interactions between
the Firefox browser and the POSIX API system call interface. Lines 1 to 9 show a small
part the file hierarchy constructed using a trace gathered in Linux and lines 11 to 23 using
a trace gathered in Solaris.

calls of a trace file and provide network statistics. Figure 19 shows the output of this plug-in.
Lines 1 to 7 show information about the sent data and lines 9 to 15 show information about
received data. Firstly the total number of recv or send system calls is given. Then an average
of the data sent/received per system call is shown followed by the average buffer size per
system call. Examining the average buffer size allocated in an application and comparing
it with the average data sent or received can be very useful. For example, if the buffer
size of the recv system calls is constantly significantly higher than the actual data received,
then that means that extra memory is unnecessary being reserved. This can potentially
hurt the performance of the application. After observing this behavior, adjustments can be
made to the application so that the allocated memory matches the needs of the application.
Another information provided by this plug-in is which socket address families were used to
carry out the communications. This information can be used for example to check whether
applications use IPv4 or IPv6.

7.3 Security Support

POT can also be used as the base for applications that aim to provide security support.
In order to demonstrate this, a final plug-in was developed. The purpose of this plug-in is
to track all the actions performed on specific files. To achieve this, the plug-in must deal
with two kinds of system calls. Firstly, it must find all the system calls that contain a file
path. This can be achieved very easily. Because of the fact that POT does not simply parse
traces into a sequence of strings but rather forms actions containing typed arguments, each
action can be trivially queried for whether it contains a file path. The second kind of system

25

net_stats.txt Page 1

 1 Total number of send syscalls: 4
 2 Average buffer size per send syscall: 14
 3 Average data sent per send syscall: 14
 4 Number of socket families used:
 5 PF_INET : 4
 6 Number of send errors:
 7 None
 8
 9 Total number of recv syscalls: 25842
 10 Average buffer size per recv syscall: 4162
 11 Average data received per recv syscall: 100
 12 Number of socket families used:
 13 PF_INET : 25842
 14 Number of recv errors:
 15 EAGAIN : 51654

Figure 19: Network statistics generated by analyzing the behavior of POSIX API

calls that this plug-in needs to deal with, are the system calls that contain a file descriptor
instead of a file path. This case is not as trivial. In order for the plug-in to extract useful
information from system calls that contain a file descriptor, it needs to keep track of all file
paths met and associate them with the correct file descriptor. This is achieved by adding a
dictionary entry whenever an open system call is found, that associates the file path with
the resulting file descriptor. Similarly, when a close system call is met, the corresponding
file path to file descriptor entry is removed from the dictionary. The current implementation
of POT does not support this functionality by default, hence this had to be explicitly dealt
with within the plug-in. This functionality is further discussed in future work in section 9.

Figure 20 shows a sample output of the plug-in discussed above. This is a small part of
the output taken by using a trace file that contained the POSIX API behavior of the useradd
command. For each file existing in the trace, a summary with all the system calls involving
that file is given. The plug-in can also be used to track the actions of a specific file as well.
The first system call tracked is usually the open system call. This is shown in lines 1, 10
and 19 of the figure. Below every open system call, there is a set of system calls involving
that file. For example, the first file tracked in the figure is the “/etc/default/useradd” file.
On this file the system calls fstat, read and close are performed.

A possible way to make use of these results is to check for potential security threats. To
further support this use, the plug-in marks some system calls whose execution can potentially
be a threat to the system. Examples of these system calls are chmod and link. chmod could
be used to change the permissions of a system file in order to compromise the system. For
example if an application executes the system call chmod(“/etc/passwd”, 0666) it should
definitely raise some suspicion. Similarly, an application could try something like this:

unlink(“/etc/passwd”)
link(“/tmp/passwd”,“/etc/passwd”)

These cases could be easily discovered through the output of this plug-in.

26

track_file.txt Page 1

 1 OPEN "/etc/default/useradd" flags: O_RDONLY|O_LARGEFILE
 2 fstat
 3 arguments: 3,
 4 return: 0, 'makedev(8, 6)', 392963, ['S_IFREG', 'S_IWUSR', ...
 5 **READ
 6 arguments: 3, 4096
 7 return: 1118, '# Default values for useradd(8)\n#\n# The ...'
 8 CLOSE FILE
 9
 10 OPEN "/etc/passwd" flags: O_RDONLY|O_CLOEXEC
 11 fstat
 12 arguments: 4,
 13 return: 0, 'makedev(8, 6)', 452759, ['S_IFREG', 'S_IWUSR', ...'
 14 **READ
 15 arguments: 4, 4096
 16 return: 1914, 'root:x:0:0:root:/root:/bin/bash\ndaemon:x: ...'
 17 CLOSE FILE
 18
 19 OPEN "/etc/passwd.374" flags: O_WRONLY|O_CREAT|O_EXCL|O_LARGEFILE
 20 write
 21 arguments: 4, '374\x00', 4
 22 return: 4, None
 23 CLOSE FILE
 24 **LINK
 25 arguments: '/etc/passwd.374', '/etc/passwd.lock'
 26 return: 0, None
 27 **UNLINK
 28 arguments: '/etc/passwd.374',
 29 return: 0, None

Figure 20: Part of the output of the plug-in used for tracking all activities per file, for all
files involved in the useradd command

27

Figure 21: Time comparison of running an application with and without a tracing utility

8 Evaluation

8.1 Performance

In order to determine the total performance impact of POT, firstly the performance of the
trace capturing mechanism had to be evaluated. With this goal in mind, a simple test
program was developed that would run the set of the 55 supported system calls hundreds
of times within a loop. This program was then executed under different platforms. In each
platform, two kinds of measurements would be made. Firstly, the performance of the test
program itself would be measured. Then this program would be traced using the available
tracing utility on that platform and the time taken for the entire procedure to complete would
be measured. Figure 21 shows a plot with the resulting measurements for each tracing utility.
The difference between the time taken for the program to execute and the time taken for
the tracing utility to trace this program is significant. This performance drawback is likely
being caused because of the high number of context switches that have to be made, in order
for the tracing utilities to be able to capture the behavior of the kernel system calls. dtrace
in particular, affected the performance of the program heavily. This is related to the fact
that the d scripts used to capture the behavior of the POSIX API, involve a lot of dtrace
probes which can affect the performance of the dtrace utility.

Once the performance of the tracing utilities was evaluated, the performance of POT had
to be tested. To achieve this, POT was used to parse trace files of various sizes. Figure 22
shows a plot of the recorded times taken to parse the behavior of trace files starting from a
thousand lines long up to a 160 thousand lines long. Because POT is an I/O intensive tool, its
performance was compared with that of the performance of the grep tool. The performance

28

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 20000 40000 60000 80000 100000 120000 140000 160000

T
im

e
(s

ec
)

Trace Size (lines)

POT
grep

Figure 22: Time comparison between POT and the grep utility.

of POT is very close to the performance of grep for trace files up to 20 thousand lines. For
bigger files, POT is a little slower. This was expected because for each line of the trace file
being parsed, POT has to do a lot more work than grep. POT has to break the system
call into its parts, extract all the arguments and return values of the system call, assign a
type to each of these values and reform the system call into a uniform representation. In
addition, POT needs to keep some state about the system calls already met, which explains
why POT ’s performance is a little worse than the performance of grep.

8.2 Usability

Before POT could be used to support real applications, it was necessary to confirm that
the tracing and parsing mechanisms were working accurately. To do that, a way had to be
found to generate simplistic trace files, to test POT with. This was achieved by developing
a C program and use it to simulate the execution of individual system calls. This program
would use the system call wrappers provided by the glibc library to invoke the kernel system
calls. Subsequently, the execution of this program would be traced using strace, truss and
dtrace to generate a simple trace file for each of the system calls supported by POT. Once
these traces were generated, POT was used to parse them into the common representation.
Then the common representation was compared with the definitions of each system call to
confirm that the format and the content of all actions in the common representation were
correct.

Figure 23 shows two snippets from the C program used to simulate the execution of
system calls. Lines 1 to 16 show the function used to simulate the lseek system call. lseek is
used to change the offset in a file so that future operations on that file (eg read and write)
will be performed starting at the new position pointed to by the offset. In this function the

29

conf_behavior.txt Page 1

 1 int execute_lseek() {
 2 // create a file and write a sample text in it.
 3 int fd = open("file.txt", O_RDWR|O_CREAT, S_IRUSR|S_IWUSR|S_IRGRP);
 4 write(fd, "abcdefghijklmnopqrstuvwxyz", 26);
 5 char buffer[10];
 6
 7 // set the offset to the second character and read 10 characters.
 8 lseek(fd, 1, SEEK_SET);
 9 read(fd, buffer, 10);
 10
 11 // set the offeset to 5 characters after the current offset and read.
 12 lseek(fd, 5, SEEK_CUR);
 13 read(fd, buffer, 10);
 14
 15 return 0;
 16 }
 17
 18 int execute_getdents() {
 19 // initialize the buffer and open the current directory.
 20 int fd, nread, BUF_SIZE = 1024;
 21 char buf[BUF_SIZE];
 22 fd = open(".", O_RDONLY | O_DIRECTORY);
 23
 24 for (; ;) {
 25 nread = syscall(SYS_getdents, fd, buf, BUF_SIZE);
 26
 27 if (nread == −1)
 28 break;
 29 if (nread == 0)
 30 break;
 31 }
 32 return 0;
 33 }

Figure 23: Simulating the behavior of system calls by using glib system call wrappers to
invoke the system calls.

lseek system call wrapper is used twice, with different values each time, in each case followed
by the read system call wrapper to confirm that the lseek system call was executed correctly.
In lines 18 to 33 the function for simulating the getdents system call is given. This function
is different than the previous one because glibc does not provide a wrapper for the getdents
system call. So in order to invoke getdents, the syscall function, which is used to indirectly
call getdents.

Once the tracing and parsing mechanisms of POT were confirmed to work correctly, POT
was used as part of a bigger system called CheckAPI. CheckAPI is a tool used for testing for
portability violations of portable APIs. It examines the interactions of an application with
an API (in this case the POSIX API) and verifies that the observed behavior matches the
specification of the API. Specifically, it makes use of the actions extracted from a trace file
using POT to simulate the expected API behavior and subsequently, discover discrepancies
between the recorded execution of the API and the simulated execution of the API. With the
help of POT, CheckAPI successfully discovered a case were a difference in the behavior of
the POSIX API on different operating systems caused a portability violation. Specifically,
the behavior of the accept system call on Linux systems is different that the one on BSD
systems. On Linux, when a new socket is returned by the accept system call, it does not
inherit the O NONBLOCK and O ASYNC flags from its parent socket. In contrast, on

30

BSD systems, these flags are inherited to the new socket returned by the accept system call.
This behavioral difference was causing the Python programming language running on a BSD
operating system to raise an error under certain conditions [15].

31

9 Conclusion and Future Work

In this thesis the POSIX Omni Tracer tool was described. A way to trace the POSIX API
behavior was explained, that is applicable in a variety of platforms. A uniform common
representation was also introduced, which is able to describe the behavior of the POSIX
API captured in any of these platforms. Finally, the usefulness and applicability of POT
was demonstrated through various plug-ins but also through applications of bigger scale.

There are a few areas in which POT could be expanded. As previously stated, the
current implementation of POT supports the 55 most frequently used system calls. In the
future POT could be expanded to support more system calls so that it can capture a more
accurate representation of the POSIX API behavior. Apart from adding support for more
system calls, POT can also be improved in parsing more information for each system call.
For example, the elapsed time for each system call can be recorded, which could be used to
generate more statistical information for an application. Another way in which POT can
be expanded is to provide support for multi- threaded applications. At this point, POT
does not record the pid of each system call. This means that it cannot differentiate system
calls executed in the main thread from system calls executed in child notes. Many useful
plug-ins could make use of this to provide analytics. Finally, POT can also be expanded
to support more platforms. Cygwin for example is a POSIX-compliant environment for
Microsoft Windows system that POT could potentially provide support for. Additionally,
Interix is another Microsoft Windows POSIX-compliant subsystem in which POT could be
used.

32

References

[1] B2G Architecture. Mozilla Wiki, https://wiki.mozilla.org/B2G/Architecture, Mar 2013.

[2] Pystrace tool. https://code.google.com/p/pystrace/, Apr 2013.

[3] STrace ANAlyzer (stana) tool. https://github.com/johnlcf/Stana/wiki, Apr 2013.

[4] The dtrace utility. https://developer.apple.com/library/mac/documentation/Darwin/Reference/ManPages/
man1/dtrace.1.html, Mar 2013.

[5] The dtruss utility. http://developer.apple.com/library/mac/documentation/Darwin/Reference/ManPages/
man1/dtruss.1m.html, Mar 2013.

[6] The fcntl header file. http://linux.die.net/include/fcntl.h, Feb 2013.

[7] The IOapps suite. http://code.google.com/p/ioapps/, Apr 2013.

[8] The ktrace utility. http://www.manpagez.com/man/1/ktrace/, Mar 2013.

[9] The manual page for the getsockopt system call. http://linux.die.net/man/2/getsockopt, Feb 2013.

[10] The ptrace system call. http://linux.die.net/man/2/ptrace, Mar 2013.

[11] The strace analyzer. Jeff Layton http://en.community.dell.com/techcenter/high-performance-
computing/w/wiki/2264.aspx, Apr 2013.

[12] The strace utility. http://linux.die.net/man/1/strace, Mar 2013.

[13] The truss utility. http://docs.oracle.com/cd/E19082-01/819-2239/truss-1/index.html, Mar 2013.

[14] The unistd header file. http://linux.die.net/include/unistd.h, Feb 2013.

[15] On mac / bsd sockets returned by accept inherit the parent’s fd flags. Accessed May 2013
http://bugs.python.org/issue7995.

[16] Griffin, M. Firefox OS. Mozilla Developer Network, https://developer.mozilla.org/en-
US/docs/Mozilla/FirefoxOS, Apr 2013.

[17] N. Gandhewar1, R. S. Google Android: An Emerging Software Platform For Mobile Devices, 2012.

[18] Pichai, S. Introducing the Google Chrome OS,. The Official Google Blog,
http://googleblog.blogspot.com/2009/07/introducing-google-chrome-os.html, Jul 2007.

[19] Vaughan-Nicholas, S. Ubuntu for android: Linux desktop on a smartphone.
http://www.zdnet.com/blog/open-source/ubuntu-for-android-linux-desktop-on-a-smartphone/10402,
Feb 2012.

33

