
Static Analysis Tools For Network-Device Stacks

by

Fabian Ruffy

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science

New York University

May, 2025

Professor Anirudh Sivaraman

© Fabian Ruffy

all rights reserved, 2025

Dedication

To my dog, my loving partner, my wonderful family, and my great friends.

iii

Acknowledgements

My academic adventure took time—five years (eight, if you count my research master’s at

UBC). It was inadvertently set in motion by my cousin, who invited me to visit Boston in

September 2014. That trip was my first time in the U.S., and by chance, I wandered into

CSAIL uninvited and found myself in a seminar by Hakim Weatherspoon (“Can you see the

IDLES?”). I thought the whole environment was fascinating—and so, I decided to go on

this little excursion into the academic world. Now I can say I have successfully concluded it.

Of course, I didn’t go on this adventure alone. Many mentors and friends helped me along

the way. Life is a series of dice rolls, and each one can be an opportunity. I’m thankful to

everyone who helped me roll the dice again and again throughout my PhD.

First, I owe much thanks to Nate Foster—without him, I would not be where I am

today. He gave me the opportunity to work at Intel, which not only supported me through

the pandemic years but was also the place where I started my second dissertation project,

P4Testgen. That work deepened my involvement with the P4 community, eventually leading

me to become its Chief Technical Architect and a member of the Technical Steering Team.

These roles opened doors for both academic collaborations and industry work, ultimately

landing me a great job after my PhD. Nate also invited me to the Bellairs workshop—twice—

hosted me at Cornell, and introduced me to colleagues who became friends. All of this taught

me much about the value of academic collaboration and mentorship.

I’m also grateful to Aurojit Panda, with whom I had countless brainstorming sessions.

iv

Panda always made time, had an open ear, gave me new ideas, and pointed me to obscure

but valuable research. He was instrumental in starting my final project, Flay. I worked on

Flay with his close and great collaborator, Gianni Antichi, who invited me to Milan to give

a talk and to drink excellent espresso—an invitation I gladly accept again :).

A big thanks to my advisor, Anirudh Sivaraman, for taking me on despite my rather un-

even test scores, for patiently tolerating my tilting at university windmills, and for giving me

the freedom to explore my work with the P4 community, Intel, and Google. His meticulous

focus on clarity, precision, and readability made me a better writer and taught me the value

of a good editor.

My UBC Master’s crew—Vaastav Anand, Amanda Levin (née Carbonari), Clement Fung,

Stewart Grant, Mihir Nanavati—and of course, my UBC advisor, Ivan Beschastnikh played

a major role in my academic journey, teaching me unwritten rules of academia that set me up

for success in my PhD. Ivan showed me the value of taking chances, helped me understand

the inner workings of American academia, and taught me how to read papers critically

(and what’s actually worth paying attention to). He also drilled into me the importance of

structure and discipline for success.

A shoutout to my conference and internship friends—Jonathan Dilorenzo, Serhat Arslan,

Steffen Smolka, Alin Tomescu, and Liangcheng Yu—for making work and conferences fun.

A special thanks to Jonathan and Steffen for giving me the opportunity to work with them

at Google. And to my NYU PhD colleagues—Haseeb Ashfaq, Jessica Berg, Xiangyu Gao,

Jinkun Lin, Cheng Tan, Tao Wang, and Eric Yu—for commiserating through the PhD grind

and keeping things light when needed.

P4 is rather central to my dissertation, and so I want to thank the P4 community,

particularly Antonin Bas, Mihai Budiu, Glen Gibb, Vladimir Gurevich, Andy Fingerhut,

Chris Dodd, and Han Wang for welcoming me as a contributor and humouring my endless

bug reports and pull requests. This openness is not guaranteed. I also want to thank

v

all the people who, in one way or another, influenced or informed my work: Boris Beylin,

Bili Dong, Ryan Goodfellow, Riff Jiang, Ali Kheradmand, Anton Korobeynikov, Prathima

Kotikalapudi, Davide Scano, Rob Sherwood, Chris Sommers, Vladimir Still, Hari Thantry,

and many more. Working with people who genuinely care about a shared goal—and often

sacrifice their free time for it—has made this work deeply rewarding.

Lastly, I want to briefly acknowledge the most important part of my life, my family and

friends, both in the Americas and back home in Germany. You bring much joy to my life,

always keep me grounded and focused on what matters, and you give me the stability to

make it through. This dissertation is dedicated to you, even though I know you will never

read it. But this does not matter because each one of you already knows how deeply grateful

I am. Thank you. I love you all.

vi

Abstract

The administration of computer networks is increasingly automated, and network devices

are becoming more programmable. The network-device stack—software layers dedicated

to forwarding packets and interpreting instructions from the network control plane—now

implements much more operational logic. The increase in complexity in logic can increase

the frequency of faults, which can have an outsized impact on a computer network. Hence,

network operators and device manufacturers are turning to static analysis to ensure that the

device stack is both well-optimized and functionally correct. The software in network-device

stacks is extensive and often written in general-purpose languages such as Python or C++.

These languages contain loops, aliasing, or indirection, which can make developing effective

static analysis techniques challenging.

In this dissertation, we explore an opportunity to build better static analysis tools for

network-device stacks. We use P4, a domain-specific language for network programming,

as our foundation. We develop an execution model for P4 that describes the behavior of a

network device, and we implement this execution model using satisfiability modulo theories

(SMT), expressed in quantifier-free bit vectors. We refine this execution model through

three distinct projects and show its utility by adopting techniques from software engineering

research that are theoretically powerful but were considered practically limited for general-

purpose languages. Applying our specialized techniques, we were able to find approximately

60 bugs in network-device stacks that cause incorrect packet processing. Furthermore, we

vii

reuse our model to optimize network programs based on their control-plane configuration,

which can reduce resource usage and increase packet-processing performance.

Our SMT-based execution model for packet processing is protocol-independent, device-

agnostic, and precise enough for bug-finding and program optimization. We attribute these

successes to tailoring our model to a DSL specialized in packet processing while also appro-

priately exploiting the restrictions of this DSL. We have contributed the tools that use this

model to open-source projects, and these tools are now in broader use by the community.

viii

Contents

Dedication iii

Acknowledgments iv

Abstract vii

List of Figures xiii

List of Tables xv

1 Introduction 1

1.1 Thesis and Contributions . 5

1.1.1 Contributions . 6

1.1.2 Open-Source Community Contributions 10

1.2 Organization Of This Dissertation . 11

I Background 12

2 Software-Defined Networking and Programmable Forwarding 13

2.1 Software-Defined Networking: Concepts . 13

2.2 Merchant Silicon and Programmable Network Devices 15

ix

2.2.1 Programmable Data-Plane Devices 16

2.3 P4 . 18

3 Network Testing Research 23

3.1 Network benchmarking . 23

3.2 Network verification . 24

3.3 Network-device verification . 25

3.4 Summary . 27

II Testing Network-Device Stacks 29

4 Gauntlet: Testing The Compiler For A Network Device 30

4.1 Overview . 31

4.2 Approaches to Testing Compilers . 33

4.3 Motivating Gauntlet’s Design . 36

4.3.1 Goals and Non-Goals . 38

4.4 Random Program Generation . 39

4.4.1 Design . 39

4.4.2 Implementation . 41

4.5 Translation Validation . 41

4.5.1 An Execution Model For P4 . 42

4.5.2 Implementation . 43

4.6 Results . 48

4.6.1 Sources of Bugs . 49

4.6.2 Performance on Large P4 Programs 51

4.6.3 Deep Dive into Bugs . 52

4.6.4 Lessons Learned . 56

x

4.7 Discussion . 57

4.7.1 Limitations of Gauntlet’s Model-Based Testing 59

4.8 Details on Bug Results . 61

5 P4Testgen: Generating Test Packets For Network-Device Stacks 67

5.1 Introduction . 68

5.2 Motivation and Challenges . 71

5.3 P4Testgen Overview . 75

5.3.1 P4Testgen in Action . 77

5.4 An Extensible Execution Model for P4 . 80

5.4.1 P4Testgen’s Abstract Machine . 80

5.4.2 The Pipeline Template . 81

5.4.3 Handling Target-Specific Behavior 83

5.4.4 Controlling Unpredictable Behavior 86

5.4.5 Supporting Complex Functions . 88

5.5 Path Selection Strategies . 89

5.6 Implementation . 91

5.6.1 P4Testgen Extensions . 91

5.7 Evaluation . 95

5.7.1 Performance . 95

5.7.2 Correctness . 96

5.7.3 Coverage . 97

5.7.4 P4Testgen in Practice . 101

5.8 Related Work . 105

5.9 Summary . 107

xi

III Optimizing Network Device Stacks 109

6 Flay: Incremental Specialization of Data-Plane Programs 110

6.1 Introduction . 111

6.2 Control-Plane-Driven Specialization . 113

6.3 Specialization Use Cases . 116

6.4 A Model For Efficient And Incremental Data-Plane Specialization 120

6.4.1 The Execution Model For The Control-Plane Interface 120

6.4.2 Evaluating Flay . 125

6.5 Related Work . 127

6.6 Discussion . 128

IV Conclusion 131

7 Limitations and Future Directions 132

7.1 Limitations . 132

7.2 Future Directions . 134

7.2.1 Better Software Testing . 135

7.2.2 Improving Compiler Optimizations 138

7.2.3 A Common Analysis Toolchain for Packet-Processing Programs . . . 140

7.3 Concluding Thoughts . 142

Bibliography 144

xii

List of Figures

1.1 Traditional network verification and network-device verification. 3

1.2 Scoping of the execution models used by the different static analysis tools. . 7

2.1 A fixed-forwarding pipeline compared to a programmable-forwarding pipeline. 17

2.2 The P4 architecture model. 20

4.1 Translation validation in Gauntlet. 42

4.2 A P4 table converted to Z3 semantics. 44

4.3 Examples of bugs that were caught by Gauntlet. 53

5.1 The P4Testgen test case generation process. 76

5.2 P4Testgen test examples. “Port” denotes the input–output port. “Size” is

the packet bit-width. 78

5.3 Execution state for P4Testgen’s abstract machine. 81

5.4 The pipeline state for the v1model architecture. Comments describe the as-

sociated P4 block. The word none indicates parameters irrelevant to the state. 82

5.5 P4Testgen’s pipeline control flow. 83

5.6 Packet-sizing for a Tofino program. 85

5.7 Average CPU time spent in P4Testgen. 95

5.8 Path selection strategy performance on simple_switch.p4. 100

xiii

5.9 Effects of preconditions on the total number of tests generated for middleblock.p4.103

6.1 Varying rate of change of network program input. 112

6.2 bf-p4c [25] compile times for Tofino P416 programs. 114

6.3 Control-plane-triggered, incremental specialization. Letters describe objects

configurable by the control plane. 116

6.4 For the program on the left, we show control-plane updates 1–5 and their

effect on data path implementation. 117

6.6 Flay’s representation of egress_port. |x| denotes a control-plane symbol;

@x@ a data-plane symbol. Entries below the dotted line are the active control-

plane assignments. 121

6.5 Flay’s design. 123

xiv

List of Tables

4.1 McKeeman’s [151] 7 levels of C compiler correctness. 34

4.2 Bug summary. Bugs that have not been fixed have been assigned. 49

4.3 Distribution of bugs in the P4 compiler front end, mid end, and the BMv2

and Tofino back ends. 49

4.4 Time needed to get semantics from a P4 program. 51

4.5 Crashes found in open-source P4C. 61

4.6 Semantic Bugs found in open-source P4C. 63

4.7 Crash Bugs found in BF-P4C (P4Studio 9.9.0). 65

4.8 Semantic bugs found in BF-P4C (P4Studio 9.9.0). 66

5.1 A collection of tna/t2a target details that require whole-program semantics. 72

5.2 A collection of v1model target details that require whole-program semantics. 73

5.3 A collection of ebpf_model target details that require whole-program semantics. 73

5.4 P4Testgen extensions. The core of P4Testgen is 12284 LoC. 92

5.5 Coverage statistics for large P4 programs using DFS (measured 2023-09-01). 98

5.6 Path selection results for 100% statement coverage on representative P4 pro-

grams for 10 different seeds. ”*” indicates that the strategy did not achieve

100% coverage within 60 minutes. 99

xv

5.7 Effect of preconditions on the number of tests generated for middleblock.p4.

Fixed packet size is 1500B. 100

5.8 BMv2 bugs found by P4Testgen. 102

5.9 Bugs in targets discovered by P4Testgen. 102

5.10 P4 tools generating input–output tests. Data plane coverage describes how

the tool measures coverage of the generated inputs. Symbex. abbreviates

symbolic execution. 104

6.1 Flay evaluation times for P4 programs. Compilation is from scratch. Flay’s

data-plane analysis step runs once and skips the parser. At runtime, Flay

only runs update analysis. 125

6.2 Influence of installed updates on Flay’s update processing times for middle-

block.p4 [9]. 127

xvi

1 | Introduction

In a packet-switched network, fixed units of data (packets) are sent independently from end

host to end host across a system of network devices. Network devices read the beginning of

the packet (the header), match this information against entries in a forwarding table, and

then forward the packet to the next device until it reaches its destination. Packet-switched

networks were introduced in the 1960s [184] and, because this design has proven itself to

be reliable and scalable, it is now the foundation of the modern Internet and data centers.

However, commensurate with the scale of these networks, their operational complexity has

increased substantially, and so network operators have started to reach for network verifica-

tion to ensure that their networks remain reliable.

Traditionally, we verify that a packet-switched network is working correctly by treating

the network as a connected graph of devices, then checking the graph for properties such as

loop-freedom (are there any cycles in the forwarding paths?), reachability (can machine A

communicate with machine B?), or stability (do the forwarding paths remain stable?). This

type of verification is effective at testing the behavior of a network as a whole, but it assumes

that individual network devices are executing forwarding rules correctly. This assumption

does not always hold—and increasingly less so—because we have started to push more and

more logic into the software stack controlling our network devices.

1

The need for network-device verification. Why is this happening? Simply put,

there is now more open-source, extensible network-device software, and this software is used

to build sophisticated network-device stacks. Further, these stacks are increasingly tailored

to packet-switched networks with particular traffic or workload patterns. Two interrelated

technological trends contribute to this development: merchant silicon [66] and programmable

forwarding chips [216]. Merchant silicon refers to barebones networking chips that provide

hardware acceleration for a suite of protocols (e.g., IP forwarding) but are otherwise not

supplied with any software. Network operators develop their own network-device stack for

merchant silicon to gain control over their networking equipment infrastructure and proto-

cols. This desire for control was then pushed to its logical conclusion with programmable

forwarding [218, 37] and the associated chips. A programmable-forwarding chip is designed

to accelerate processing for arbitrary network protocols. This is done by defining network

protocol operations in the form of a network program, which is compiled and then loaded

into a programmable section of the networking device.

But there is a downside: network operators use merchant silicon and programmable

forwarding to specialize networking infrastructure to their own requirements. With that,

the accompanying software falls under their purview. They are now responsible for ensuring

their software stack remains reliable. What makes this challenging is that the newly created

software increases the vertical depth of the stack, i.e., it adds layers of abstraction between

the intent of the operator and the actual outcome. The reason the operator is adding

these layers of abstraction is to adapt and evolve their networking infrastructure quickly.

However, to confidently do so given the increase in software complexity, they need rigorous

testing. Traditional network verification can help here, but it is routinely insufficient because

it focuses on checking distributed properties at network runtime. It is used to test packet

forwarding and protocol operations coarsely, and only after the devices are deployed [9].

At that point, software errors can already be disruptive, possibly bringing down the entire

2

Forwarding tables

Forwarding logic

Network operating system

Device API

Network configuration

Network-device verification:
Is my device correctly
processing packets?

Forwarding tables

Device configuration

Data plane

Control plane

Traditional network verification
Am I computing my network configuration correctly?

Are the forwarding tables in my devices correct?

Switch
(Smart)NICEnd host

Switch

End host

Figure 1.1: Traditional network verification and network-device verification.

network [211, 139]. Network operators such as Google, Meta, Microsoft, and Alibaba have

recognized that they must trust their network-device stack before placing it in production

and have begun to build specialized, automated testing tools for it [9, 211, 259, 139, 264].

The testing tools developed by these companies are a departure from traditional network

verification; they are specialized toward network-device verification. Here, the focus shifts to

the software stack of a single networking device. The emphasis is on functional correctness.

For a given device configuration (this could be forwarding entries, options, or state) and a

particular packet, we check whether the device behaves as expected. The goal is to capture

differences between the intent of the operator and the actual implementation outcome of the

network-device stack. Figure 1.1 illustrates the difference. Traditional network verification

checks a network horizontally, whereas network-device verification does so vertically.

The opportunity of data-plane programming languages. The challenge with

network-device verification, compared to traditional network verification, is that the soft-

3

ware we need to verify is written in general-purpose code, e.g., C++ or Python. Writing

analysis and testing software for general-purpose languages is difficult because such software

can be arbitrarily large and complex. On the other hand, we have a unique advantage when

targeting software designed for packet processing. We can test this software by exploit-

ing the data-plane programming languages intended to configure programmable-forwarding

pipelines. These domain-specific languages (DSLs) are designed to capture the network data

plane, the part of the network responsible for packet forwarding. Usually, these languages

provide a set of primitives to write custom network protocols. A developer can describe how

to extract information from a packet (e.g., the IP header) and how to use this information

to modify, drop, or forward the packet. Further, the compiler for these data-plane DSLs

enforces strict constraints to ensure that the program is executable on target devices. For

example, in the P4 [26] language, it is generally not possible to allocate memory or write

infinite loops, because the targeted device implements a run-to-completion model with strict

time bounds. Coincidentally, these constraints, encoded in the DSL, also make developing

formal methods easier, and we can reuse them for effective network-device verification.

Traditionally, the behavior of a network device was defined in standards or documentation

by the device maker. The ambiguity in these documents made it difficult to develop accurate

formal reasoning methods. In contrast, a data-plane DSL like P4 requires an execution model

that defines packet-forwarding logic at the level of bits. The program is ultimately executed

by the network device, which requires more rigorous thinking about device behavior and

its interactions with higher-level software. We can take advantage of these primitives and

constraints to develop analysis techniques that are both theoretically rigorous and practically

feasible.

We show how this can be done in this dissertation. We use data-plane DSLs as a basis to

develop methods that leverage the packet-processing computation model, adopt techniques

that are theoretically powerful but considered impractical for general-purpose languages,

4

and use these techniques for effective analysis of network-device stacks. In our work, we

use programmable-forwarding software as a basis to develop our tools and concentrate on

the lower levels of the network-device stack. Specifically, we focus on three categories: how

to test programmable-forwarding compilers, how to generate functional packet tests for net-

work devices, and how to optimize packet forwarding programs under a particular network

configuration.

1.1 Thesis and Contributions

Our thesis is as follows: We can use a restricted data-plane programming language as foun-

dation to develop effective static analysis tools for the entire network-device software stack.

We root this thesis in the following two observations: 1) We could use static analysis tools

designed for general-purpose programming languages to find bugs in network-device stacks,

but these tools are usually not effective for specialized use cases such as packet processing. For

example, the Klee [35] symbolic executor fails to find issues in data-plane programs because it

naively explores all possible program paths, and these can easily number in the billions [222].

2) Data-plane DSLs are explicitly designed to express the capabilities of programmable

devices and implicitly encode an execution model that reflects the computational constraints

of the hardware. Many network devices are pipelines designed to forward packets at wire

speed in a single pass. To make this possible, operations must have a limited time budget,

program memory must be preallocated, and floating-point operations are not supported.

Aliasing, which is known to cause undecidability in program analysis [130], is also usually

forbidden. These restrictions, particular to data-plane programming, allow us to create

more robust automated reasoning tools. When we make these restrictions explicit during

tool development, we can find bugs or analyze program correctness and resource usage at

lower computational cost.

5

The challenge, of course, is that this implicit execution model needs to be made explicit

within our static analysis tool. We need to develop a mapping from language constructs

to a representation that is amenable to formal methods, e.g., satisfiable modulo theories

(SMT) [54]. Further, while packet forwarding has a set of general behaviors, these behav-

iors can differ slightly from one network device to another. Whatever execution model we

develop, if we want to generalize our analysis technique to many devices, we need to make

this model extensible. Lastly, we want to show the utility of our approach. Hence, for any

representation of packet processing we choose, we need to pick a testing and verification tech-

nique that we believe solves a particular software development problem, e.g., bug detection

or performance optimization. We address these challenges in this dissertation and answer

some of the questions on the choice of techniques.

1.1.1 Contributions

We describe the design and implementation of three different systems—Gauntlet, P4Testgen,

and Flay. Each system has a different goal: Gauntlet finds bugs in compilers for the P4

data-plane programming language; P4Testgen produces high-fidelity input-output packet

tests for network devices; and Flay automatically simplifies P4 programs to improve the

resource usage of packet processing. For each system, we select a technique from general-

purpose programming that we believe to be effective and adapt it to the restrictions of

packet processing. Each system builds on the lessons of the previous one. From Gauntlet

to P4Testgen to Flay, we reify a progressively more comprehensive execution model within

an interpreter that can cover broader packet-processing semantics. Figure 1.2 provides an

overview of the scope of each system’s execution model. With Gauntlet, we start very small

and focus only on the model of the data-plane language itself; with P4Testgen, we expand

the model to capture device behavior. Finally, with Flay, we also model how control-plane

configuration (e.g., forwarding entries) influences packet processing at large.

6

Compiler

Programmable forwarding pipeline

Control plane interface

Device software

Data plane program

Compiler

Programmable forwarding pipeline

Control plane interface

Device software

Programmable forwarding device

Data plane program
Control plane

Gauntlet (Ch. 4) Flay (Ch. 6)

Execution model scope:

P4Testgen (Ch. 5)

Figure 1.2: Scoping of the execution models used by the different static analysis tools.

We model the behavior of a single packet traversing a forwarding pipeline and represent

the model using satisfiable modulo theories described in the quantifier-free theory of bit

vectors (QF_BV) [159], a particularly efficient representation for hardware verification [19].

In Gauntlet, we use this representation for equality checking; in P4Testgen, for constraint

solving; and in Flay, for fast expression simplification. We build our tools for the P4 lan-

guage [26] because of its extensive open-source ecosystem. Nonetheless, the underlying ideas

generalize to other data-plane DSLs, such as NPL [30], and even languages targeting the

eBPF [62] virtual machine. We describe each tool in its own chapter.

1.1.1.1 Gauntlet (Chapter 4)

Gauntlet is a collection of tools specialized to test programmable-forwarding compilers. Our

main achievement with Gauntlet is that we found over a hundred bugs in the front end of

the official P4 reference compiler [34]. Many of these bugs were crashes, which we found

7

by generating specialized input programs, but almost 40 were miscompilations, where the

compiler incorrectly transforms its input. This type of bug is usually difficult to find because

no error is thrown. We found miscompilations with a two-pronged approach. First, we built

an SMT model for the core of the P4 language that is precise enough to check whether

two P4 programs are behaviorally equivalent. Second, we automatically generate valid test

programs as inputs to the compiler that exercise “interesting” paths in the compiler code,

something existing program fuzzers (afl [260] or p4fuzz [6]) could not do at the time. We gen-

erate these valid and interesting programs by building a grammar-guided random-program

generator [261] that avoids undefined behavior and focuses on specific language constructs.

For each generated program, we check whether it compiles correctly without crashing, then

apply translation validation [172] to detect cases where the compiler miscompiles a program.

Because of P4’s language constraints, we scaled both techniques to thousands of generated

programs and ultimately found 65 crash bugs and 38 miscompilations in the compiler’s front

end. Chapter 4 describes why finding these bugs was a non-trivial effort and how we set

about developing the initial execution model.

1.1.1.2 P4Testgen (Chapter 5)

P4Testgen is a test-case oracle that produces input-output packet tests for P4-programmable

network devices. What distinguishes P4Testgen is that the tool generalizes to many differ-

ent programmable-forwarding devices and is simultaneously precise enough to find bugs in

data-plane software. We designed P4Testgen this way to address the problem that the

development of static analysis tools cannot keep up with the rate of emergence of new pro-

grammable network devices. The space of programmable forwarding is changing quickly,

and for a static analysis tool to have lasting utility, it must be adaptable. With Gauntlet,

we did not face this problem because we targeted the generic front end of the compiler. But

for P4Testgen, to generate these tests reliably, we must also accurately model the behavior of

8

the network device for which we are generating tests. We accomplished this and built a tool

that generated tests for more than eight different network devices, finding approximately

40 bugs across network-device stacks that are mature and heavily used. Our tool found

these bugs because we generated tests with better coverage. To do so, we extend Gauntlet’s

execution model such that we can express the functionality of many different programmable-

forwarding devices. Using this extensible execution model, we design a test oracle based on

symbolic execution [13] with continuation-passing style [181] that can produce input-output

tests for many different P4 programmable network devices. Notably, we can use P4Testgen

to test the behavior of any network device as long as this behavior is expressible in P4. We

describe in detail in Chapter 5 how we built this extensible execution model.

1.1.1.3 Flay (Chapter 6)

Flay specializes data-plane programs. Our insight with Flay is that a data-plane program is

not complete without its control-plane configuration; once the program is configured, there

are many opportunities to reoptimize the active data-plane program. Flay’s goal is efficiency,

and it aims to reduce the resource consumption of data-plane programs by aggressively spe-

cializing data-plane program code to the active control-plane configuration. Our preliminary

experiments already show promise; for some configurations and data-plane programs, we re-

duced the use of stages on the Tofino switch by 20% while producing a program equivalent in

behavior. Like P4Testgen, Flay builds on the previous system’s execution model. In this case,

we combine P4Testgen’s semantics for data-plane programs with semantics for control-plane

configuration. Flay can ingest a control-plane configuration specified in P4Runtime [231]

format and convert this configuration into a semantic representation that is inserted into

placeholders in our data-plane model. Using this combined representation, we can apply

partial evaluation [114] to a data-plane program. Most importantly, because our semantics

are decoupled using these placeholders, we can quickly react to changes in control-plane

9

configurations. This is how Flay distinguishes itself from previous tools. Because of a lack

of publicly available control-plane configurations, we have also developed a fuzzing tool to

generate control-plane configurations specific to different programmable-networking devices.

Chapter 6 motivates why we believe a tool such as Flay is important and how we could

potentially develop more specialization techniques.

1.1.1.4 Core Contribution

Ultimately, we demonstrate that it is possible to derive an SMT-based execution model for

packet processing that is not tied to a particular network protocol, not restricted to a specific

network device, and at the same time precise enough to find bugs and optimization opportu-

nities in network-device stacks. We attribute these successes to using a DSL specialized for

packet processing while also appropriately exploiting the restrictions of this DSL and extend-

ing it where necessary. We describe in detail in Section 3.3 how our approach distinguishes

itself from other research projects dedicated to static analysis of network-device stacks.

1.1.2 Open-Source Community Contributions

We have made all the systems presented in this dissertation available as open-source projects.

During the development of these tools, we have actively contributed to the P4 ecosystem1.

Across all repositories, we have filed 217 issues (of which 142 have been closed) and 402 pull

requests (of which 354 have been successfully merged).

Gauntlet is available at https://p4gauntlet.github.io and is running as part of the

continuous integration pipeline of the official P4 compiler (P4C) [34]2. The random-program

generator, Bludgeon, has been contributed to P4C3. We have also contributed the tests we
1https://github.com/p4lang/
2https://github.com/p4lang/p4c/pull/2458
3https://github.com/p4lang/p4c/tree/e814a334e45b78d21a2e15cd9c00e694592bb1bc/backends/p

4tools/modules/smith

10

https://p4gauntlet.github.io
https://github.com/p4lang/
https://github.com/p4lang/p4c/pull/2458
https://github.com/p4lang/p4c/tree/e814a334e45b78d21a2e15cd9c00e694592bb1bc/backends/p4tools/modules/smith
https://github.com/p4lang/p4c/tree/e814a334e45b78d21a2e15cd9c00e694592bb1bc/backends/p4tools/modules/smith

generated to test Gauntlet to P4C4.

We developed P4Testgen using P4Tools, a static analysis framework for P4 analysis

tools. We initially developed P4Tools at Intel Corporation and open-sourced it as a back

end of P4C5. P4Testgen is a P4Tools extension6. Members of the community have already

contributed extensions to P4Testgen7. Flay is an independently available P4Tools extension8.

The tool to generate random control-plane entries to test Flay is also a P4Tools extension9.

1.2 Organization Of This Dissertation

This dissertation is split into four parts. In Part I, we briefly describe Software-Defined

Networking (SDN) and how it influences the technologies for which we are building tools

(Chapter 2). We also provide a brief introduction to programmable network devices and the

P4 language. In parallel with SDN, research on testing networks evolved to use specifications

and formal methods to test network behavior [21]. In Chapter 3, we describe some of this

literature and how it relates to our work of using network programs to test network-device

stacks. We then go into detail for each of the tools we have developed, in the order they

were published. We split this description into two parts. Part II covers static analysis tools

developed for network-device testing and describes Gauntlet, published at OSDI 2020 [196]

(Chapter 4), and P4Testgen, published at SIGCOMM 2023 [195] (Chapter 5). In Part III,

we switch from testing to optimization and cover Flay, published at HotNets 2024 [197]

(Chapter 6). We conclude in Part IV by describing the general limitations of all these tools

and possible future work using our particular style of SMT-based execution model.

4https://github.com/p4lang/p4c/pull/2661/files
5https://github.com/p4lang/p4c/tree/e814a334e45b78d21a2e15cd9c00e694592bb1bc/backends/p

4tools
6https://github.com/p4lang/p4c/tree/e814a334e45b78d21a2e15cd9c00e694592bb1bc/backends/p

4tools/modules/testgen
7https://github.com/p4lang/p4c/pull/5019
8https://github.com/nyu-systems/flay
9https://github.com/nyu-systems/rtsmith

11

https://github.com/p4lang/p4c/pull/2661/files
https://github.com/p4lang/p4c/tree/e814a334e45b78d21a2e15cd9c00e694592bb1bc/backends/p4tools
https://github.com/p4lang/p4c/tree/e814a334e45b78d21a2e15cd9c00e694592bb1bc/backends/p4tools
https://github.com/p4lang/p4c/tree/e814a334e45b78d21a2e15cd9c00e694592bb1bc/backends/p4tools/modules/testgen
https://github.com/p4lang/p4c/tree/e814a334e45b78d21a2e15cd9c00e694592bb1bc/backends/p4tools/modules/testgen
https://github.com/p4lang/p4c/pull/5019
https://github.com/nyu-systems/flay
https://github.com/nyu-systems/rtsmith

Part I

Background

12

2 | Software-Defined Networking

and Programmable Forwarding

Much of our work is influenced by Software-Defined Networking (SDN). The history, mo-

tivation, and development of SDN over the past two decades have been widely discussed.

The interested reader may refer to Feamster et al., 2014 [70], Casado et al., 2019 [38], and

Sivaraman, 2017 [216, §2]. In Section 2.1, we define SDN concepts we use frequently. In

Section 2.2, we describe programmable packet forwarding, an academic progeny of SDN.

2.1 Software-Defined Networking: Concepts

The key driver behind SDN is the desire to control the packet-forwarding behavior of a

computer network as if one were writing a program on their local machine (an idealized

view of this is the one-big switch abstraction [118]). SDN is a broad term, and the research

community has proposed several “tenets” intended to make network software development

and automation easier [70]. We focus on two of these tenets: the logical split between data

and control planes, and standardized APIs to configure network devices.

Data and control planes. The data plane is the part of the network responsible for

forwarding packets as fast as possible, using rules provided by the control plane. Usually,

these rules take the form of entries in device forwarding tables. The control plane computes

13

how a packet should travel across the network using the network topology, information

provided by the data plane, and policies defined by the network operator. The control

plane communicates with the data plane via an explicit API and a specific communication

protocol (e.g., IPC, RPC, or REST). In this dissertation, we refer to any elements responsible

for processing packets as belonging to the data plane. For example, P4 is a data-plane

programming language because it allows developers to write programs to specify packet

parsing and forwarding. Tables in the P4 language represent an interface to the control

plane, accessible via a device-specific API. When we use the term data-plane target, we refer

to any device designed to implement packet forwarding. This can also extend to software. For

example, the eBPF virtual machine in the Linux kernel [62] can be considered a data-plane

target because it allows developers to write and load custom packet-processing programs at

various places in the kernel networking stack.

Standardized APIs. The second SDN tenet important to our work is making the de-

cisions of the control plane independent of the underlying physical or virtual network or

the device manufacturer. This implies that APIs exposed by the data plane to the con-

trol plane must be standardized and open. Defining an open API makes it possible to

write control-plane programs that can generalize to many different network devices. The

OpenFlow protocol [152] is an early instantiation of this idea. Its successor in spirit is the

P4Runtime specification [231] designed for the P4 data-plane programming language. In

our work, we use the P4Runtime specification to develop semantics for the control plane

and expected device behavior, precisely because it can generalize to many different types of

network devices.

14

2.2 Merchant Silicon and Programmable Network

Devices

Traditionally, a network device makes decisions on how to forward a packet using stan-

dardized protocols defined in standards such as “Request for Comments” (RFCs). For in-

stance, RFC 791 [173] specifies the IPv4 header format, while RFC 1716 [11] defines how

devices should process these headers. Since we want to process packets at the highest pos-

sible speed, we typically implement these protocols in the data plane in fixed-forwarding

pipelines—“fixed” because they support only predetermined protocol operations. For ex-

ample, Figure 2.1.A shows a hypothetical fixed-forwarding pipeline. The pipeline supports

three protocol headers (Ethernet, IPv4, and TCP) and two operations on packets with these

headers (forwarding or dropping the packet). Packets that do not match this format are

discarded. This fixed-forwarding pipeline is implemented either in hardware, within dedi-

cated network devices such as network interface cards (NICs) and hardware switches, or in

operating systems (OSs) such as Linux, with a specialized networking software stack that

steers packets to the appropriate applications. Hardware network devices are produced by

network device makers and sold to network operators.

Merchant silicon and programmable forwarding emerged because of tension between net-

work device makers and network operators [82]. The tension boils down to a difference in

objectives. A device maker strives to develop devices that reach a broad market segment

and often tries to provide an “out-of-the-box” experience with the devices they sell. The

devices they sell are tightly integrated with a proprietary software stack, which includes

fixed implementations of data-plane protocols (e.g., IP [173], MPLS [243], VXLAN [143]),

control-plane functionality (protocols such as BGP [180], VRF [247], LDP [240]), or certain

command-line interfaces (SNMP [71], OpenConfig [199], NETCONF [64]). While a device

15

maker can capture a wide range of customers with this approach, and indeed many customers

do not need anything else, it is not necessarily in the interest of network operators managing

private networks with specific traffic patterns and network structure. The constraints of

fixed-software and fixed-protocol devices can limit the ability to experiment and evolve a

network [46, 15, 167, 55].

Merchant silicon. Merchant silicon [66], as sold by companies such as Broadcom and

Marvell, consists of off-the-shelf silicon chips specialized for packet forwarding. These chips

are effectively accelerators for packet-processing tasks such as MAC or IP forwarding, tun-

neling (VXLAN, GRE), or telemetry. Unlike an out-of-the-box network device, possibly

sold by vendors such as Cisco, merchant silicon does not come with any proprietary soft-

ware and instead is supplied with a software development kit that can be used to build a

custom network-device stack. Network operators have started to build their own network-

device stacks using merchant silicon. Importantly, these stacks are often open-source, which

means they can be modified and extended. Examples of such networking-device stacks

are SONiC [229], FBOSS [46], and PINS [228], frequently packaged as part of a software-

development kit (SDK) for a network device. These kits make up the majority of what we

refer to as the network-device stack.

2.2.1 Programmable Data-Plane Devices

The responsibility of the data plane is to forward packets based on user-defined rules. This

usually involves two basic operations: 1) packet classification, i.e., parsing specific infor-

mation from packets (e.g., the Ethernet header); and 2) packet control, i.e., forwarding,

dropping, or modifying the packets. A programmable networking device contains at least

one programmable block (e.g., the match-action pipeline in Tofino [25] or eBPF hooks in

the Linux kernel). A programmable parser block might be a block in which a finite-state

16

Compiler

Control plane interface

Parsing block Control block

Control plane interface

Fixed-forwarding pipeline

Ethernet

IPv4 UDP

TCPIPv6

Forward

Drop

Control program

Packets

Device software

ProgrammableFixedLegend

Programmable-forwarding pipeline

Control plane

Control plane

Parsing program

ETH
IPv4

IPv6

UDP

TCP

Forward

Drop

Packets

Device software

Figure 2.1: A fixed-forwarding pipeline compared to a programmable-forwarding pipeline.

machine repeatedly reads bytes from the incoming packet bit stream and writes them into

header structures (e.g., IP header). A programmable control block, on the other hand, might

contain operations for manipulating these header structures (e.g., setting the TTL in the IP

header) or define lookup tables that can be manipulated by the control plane (e.g., an IP

forwarding table matching on the destination address). Programmable blocks are configured

by loading a binary produced by translating a network program written in a domain-specific

17

language such as P416 [34], eBPF written in restricted C [62], microcode [255], or NPL [30].

Network programs written in these languages also define a control-plane interface to influence

the packet-processing behavior of the program during runtime. The control-plane interface

is specific to each program. Prominent examples of this interface are tables in P4 or maps in

eBPF. Other common instances of objects that can be changed at runtime are meters, qdiscs,

or stateful registers. The intended behavior of a particular control-plane update is defined

in specifications such as P4Runtime [231], OpenFlow [152], SAI [162], or NETCONF [64].

Figure 2.1 contrasts fixed-function and programmable pipeline devices. In a fixed-forwarding

device, only the set of protocols and API functions defined by the device maker are avail-

able, whereas the programmable target does not constrain which protocols are supported

or how the control plane should interact with these protocols. A network operator can use

this to specialize packet forwarding to their own infrastructure. For example, they can ac-

celerate network functions (e.g., firewalls, load balancers) by migrating them from software

into programmable hardware, quickly roll out functional updates to the network by up-

dating the active device program, or exploit workload-specific properties to improve power

usage and performance network-wide [241, 167, 82]. Notable examples of programmable

data-plane targets are the Intel Tofino [25] and XSight Labs X2 [252] switches or AMD

Pensando [87], NVIDIA BlueField [251], Intel IPU [107], and Altera Agilex SmartNICs [108].

Programmable data-plane targets can also be found in pure software, for example in the

form of the eBPF/XDP [100] virtual machine and TC flower [95] in the Linux kernel.

2.3 P4

One approach is to write packet-processing programs within a framework in a general-purpose

language such as C, then compile and manage the programs using widely available toolchains

such as GCC [220] or LLVM [132]. Examples of such frameworks include DPDK [226],

18

VPP [230], ClickNF [84], Snabb [165], or Bess [97]. This approach can be attractive because

developers are already familiar with the programming language, the toolchains are mature,

and many testing and analysis utilities are available. However, general-purpose languages

such as C express a richer computational model than what modern packet-processing chips

are designed to support. This can create a mismatch between the programmer’s intent and

the device capabilities, which in turn can lead to correctness or performance errors. To make

programming network devices easier, data-plane programming languages have emerged.

The most prominent example is P4 [26]. P4 is a statically typed DSL designed to describe

computations on network packet headers. It has gained traction as the primary language

to both implement and specify network data-plane functionality. Proposed in 2014, the

language is now widely used in industrial networks (Alibaba [241], Baidu [45]), by packet

brokers (Extreme Networks [65], Cubro [50], Keysight [113]), and chip manufacturers (In-

tel [25], NVIDIA [124], AMD [3], Cisco [47]). We primarily use P4 in this dissertation to

build our packet-processing model, and so it is helpful to provide terminology and concepts

of the language we frequently refer to. We describe P416, the latest version of P4 [236].

Figure 2.2 summarizes the main P4 concepts, explained below.

Architectures and targets. A P4 program consists of a set of procedures; each pro-

cedure is loaded into a programmable block of the target (e.g., a switch [25], a NIC [87], or

OS networking stack). These programmable blocks correspond to various subsystems such

as the parser or the match-action pipeline. The architecture and its accompanying package

describe the available programmable blocks in a target. One example of an architecture

for a target is the v1model, which models the pipeline of a particular BMv2 [232] software

switch target, referred to as “simple switch” [74]. For simplicity, we will refer to BMv2 as

the target instead of simple switch in this dissertation. P416 can also be thought of as a

family of languages, with each architecture describing a particular dialect of the language.

19

Data plane

Control plane

Parser Control blocks

Target architecture model
(v1model, ebpf, tna,...)

Device-specific externs
(Registers, counters, meters,...)

Target-specific metadata

Match-action tables

Device-specific externs
(Registers, counters, meters,...)

Target-specific metadata

Parser graph

Deparser

Device-specific externs
(Registers, counters, meters,...)

Target-specific metadata

Parser graph Buffers /
Queues /

Replication
Engines

Control plane API

Control plane API
Compiler

Control plane applications and logic

Compile

Generate

User-developed
P4 program

Device-specific software toolchain / software-development kit

Buffers /
Queues /

Replication
Engines

Buffers /
Queues /

Replication
Engines

Figure 2.2: The P4 architecture model.

Each dialect will also need its own P416 compiler back end.

P4 compilers. A P4 compiler translates a P4 program and the target architecture model

into target-dependent instructions. These target instructions are combined with the non-

programmable blocks (e.g., a fixed scheduler) to form the target’s data plane. These instruc-

tions also specify how this data plane can be accessed and configured by the control plane

(Figure 2.2). P4C [34] is the official open-source reference compiler infrastructure of the P4

language and implements the current state of the specification.

Compiler back ends. To implement a P4 compiler for a specific target, developers write

a P4C back end. This back end uses P4C’s standard front-end and mid-end passes, adding

its own specific transformations to translate the intermediate P4 code into instructions for

the target device. Examples of production-grade P4C back ends are the back end for the

Tofino [25] programmable switch chip and the BMv2 [232] data-plane software model.

20

Parsers and control blocks. A P4 parser is a finite state machine that transforms

an incoming byte sequence received at the target into a structured representation of header

definitions. For example, incoming bytes may be parsed as packets containing Ethernet, IP,

and TCP/UDP headers. A deparser converts this representation back into a byte sequence.

Control blocks describe the per-packet operations that are performed on the input header.

These operations are expressed in the form of the core primitives of the language: tables,

actions, metadata, and extern objects.

Tables. Tables are objects in the control block similar to a Python dictionary. Table

entries are match-action pairs inserted by the control plane. When a table is applied to

a packet traversing the control block, relevant fields from the packet header are compared

against the match key of all match-action entries in the table. If any entry’s key matches the

extracted fields, the action associated with the match is executed. Actions are procedures

that can modify state and/or input headers.

Calling conventions. P4 uses “copy-in/copy-out” [236, §6.7] semantics for method

calls. For any callable object in P4, the parameter direction (also known as mode [105,

§8.2]) explicitly specifies which parameters are read-only and which parameters can be modi-

fied, with the modifications persisting after function termination. Modifiable parameters are

labeled with the direction inout or out in the definition of the procedure. Read-only param-

eters are marked in. At the start of a procedure call, the arguments are copied left-to-right

into the associated parameter slots. Parameters labeled out remain uninitialized. Once the

procedure has terminated, all procedure parameters labeled inout or out are copied back to

the original input arguments.

Metadata. Metadata is programmer-defined or target-specific data that is associated with

a packet header while it traverses the target. Examples of metadata include the packet input

21

port, packet length, queue depth, or priority; this information is interpreted by the target

according to target-specific rules. Metadata can also be modified during the execution of the

control block.

Externs. Externs are an extensibility mechanism that allows targets to describe built-in

functionality. Externs are object-like and have methods. Examples include calls to checksum

units, hash units, counters, and meters. P4’s “copy-in/copy-out” semantics allow reasoning

about externs to some degree; we can discern which input arguments might be modified by

the extern (those passed to out or inout parameters) and which are read-only (in).

22

3 | Network Testing Research

The main purpose of a computer network is to provide a communication service to its users,

even when individual components might fail [48]. This purpose has largely remained the

same over recent decades, but the operational complexity of computer networks has increased

substantially. Many services people depend on are now online, increasing the demand on

networks. A common aspirational goal for reliability is ”five nines,” with the goal to make a

network available 99.999% of the time [92]. This number corresponds to only five minutes of

downtime per year! The increase in demand and expectations placed on computer networks

necessitates better testing methodologies to ensure that networks remain reliable. Today,

network testing methodologies range from examining the outcome of sending a single packet

to a machine to correctly processing billions of packets at a global scale. In this chapter,

we provide an overview of various network testing techniques used over the decades. Much

network testing focuses on benchmarking, not necessarily functional analysis. Since we use

static analysis tools for verification and optimization, we provide only a brief overview of

benchmarking and focus instead on functional verification.

3.1 Network benchmarking

Network benchmarking largely focuses on validating performance with respect to throughput,

jitter, latency, and frame loss. RFC 1242 [28] represents an early attempt to establish a com-

23

mon terminology for evaluating the performance of networking components. Furthermore,

ITU-T Y.1564 [109], RFC 2544 [27], and RFC 2889 [145] outline procedures for testing

Ethernet and LAN devices. These standards discuss the correctness of packet processing

and expected behavior when different protocols interact, but typically in a limited form.

Correctness is usually checked by validating checksums, measuring packet loss, or checking

individual protocol fields (e.g., ensuring the MAC destination address is preserved).

3.2 Network verification

In contrast to network benchmarking, network verification checks whether a single packet

with specific values is forwarded correctly. Typically, this verification is performed globally,

across all relevant network devices.

Traditionally, network verification is classified into two categories: data-plane and control-

plane verification. Verifying the network data plane aims to ensure that packet forwarding is

working correctly across the entire network. This is typically done by retrieving a snapshot

of the forwarding tables of all network devices and checking whether these forwarding tables

violate specific properties of interest. Anteater [144], Veriflow [122], and Header Space Anal-

ysis [120] are examples of this approach. Control-plane verification focuses on the software

that instruments entries in the data plane; i.e., the goal is to ensure that the algorithms re-

sponsible for computing paths and policies in the network accurately capture the operator’s

intent, for example, by comparing network configurations against a specification. Batfish [31]

and Minesweeper [20] are prominent tools in this space. Beckett and Mahajan [21] discuss

this particular branch of network verification in depth.

24

3.3 Network-device verification

In contrast to network benchmarking, which sends many packets at once to measure perfor-

mance, and traditional network verification, which tests the functional behavior of a network

at large, network-device verification focuses on a single network device and its functional for-

warding behavior. In this section, we describe past and concurrent research and how it

differs from the type of verification we apply. Note, while this dissertation discusses the de-

velopment of general static analysis tools, we do not cover work on automatically optimizing

network programs in this section. We describe a selection of projects relevant to optimization

in Section 6.5.

Validating network protocol implementations. Packet processing is largely driven

by protocols, and so much early network-device verification focused on conformance testing

with respect to protocol stacks [178]. This work generally used model checking to test

whether a particular protocol implementation conformed to a manually written specifica-

tion. An early approach involved unique input-output sequences [200, 39]. These sequences

were produced from an abstract specification for a particular protocol; each sequence was

then converted into input-output packet test sequences. If the observed output did not

match the expected output, a flaw in the protocol implementation was likely present. Much

model checking work also validated specific TCP/IP protocol stacks. For example, Bishop

et al., 2005 [23] and Musuvathi and Engler, 2004 [156] validated the Linux kernel TCP im-

plementation by writing a TCP specification and generating tests from it. The limitation

of model-based checking approaches is that they can be difficult to scale or maintain for

a particular protocol stack. Tools such as packetdrill [36] instead adopted a test-driven

approach. packetdrill introduced a DSL of imperative commands that allows users to

write scripts that inject packets and specify expected outcomes; it was intended to test an

25

entire protocol stack. For example, one could write a script that injects a SYN packet and

expects a SYN/ACK back. This procedure already exercises much of the Linux networking

stack. With the introduction of network programmability, this type of testing also evolved

and moved away from being centered around a particular protocol stack (e.g., TCP/IP). A

notable example is the Packet Test Framework (PTF) [233], which can be used to inject and

receive packets at the bit level on arbitrary network devices (switches, NICs, OS network-

ing stacks). Note that these test frameworks still require manual creation of packet tests.

With P4Testgen, we show that we can use our model to automatically generate tests for

frameworks such as PTF.

Generating single test packets. For the most part, early checking of networks was

performed using tools such as traceroute and ping, which provided rough heuristics but

not widespread coverage [262]. With more complex networks, interest in validating coverage

and ensuring that forwarding rules across the network were working correctly grew. This

type of validation typically involves generating individual test packets and sending them

between hosts (e.g., from host A to host B). Importantly, these test packets were crafted to

achieve specific coverage of rules or behaviors in the network. For example, Automatic Test

Packet Generation (ATPG) [262] automates input packet generation to validate a configured

switch network by computing packets intended to cover every switch link and table rule. If

a packet traverses an unexpected path, some network element might be behaving incorrectly.

Monocle [168] and Pronto [263] are similar systems. The key point is that these tools generate

packets that exercise the device software stack, but they typically do so coarsely. They all

use the control-plane configuration as ground truth, which allows them to check whether

packets with the expected headers are forwarded out the correct ports. We target a richer

data plane model than these prior approaches because we use a data-plane DSL as our model.

We also focus more narrowly on a single device’s software stack, not the entire network’s

26

forwarding rules.

Verifying P4 intent. Many tools help verify P4 programs against a formal specification.

Tools in this domain usually rely on assertions that model relational properties—e.g., the

program does not read or write invalid headers [221, 212, 60, 140, 83, 59, 241, 213, 119]. Our

goals are orthogonal to these tools. We produce tests for a P4 program but do not check

the correctness of the program itself. Some of these tools [212, 140, 213, 119] can generate

concrete test inputs in the form of input packets. The observed outputs for these inputs

are then compared against developer-supplied assertions. In theory, with good assertions,

this method can also detect bugs in a given network-device software stack. P6 [212] and

Meissa [264] in particular describe “platform-dependent bugs” and “non-code” bugs, which

are comparable to network-device stack bugs.

Testing programmable-network device software. There are a variety of tools

that use data-plane programs as a source to generate tests for network infrastructure [9, 257,

29, 140, 212, 160, 129]. Since these tools are most closely related to P4Testgen, we describe

in detail in Section 5.8 how these tools differ from our testing approach. In general, we

differ by developing an execution model that can both serve as an oracle to generate tests

(many packet-generation tools require developer-written assertions) and is also extensible,

in contrast to tools such as SwitchV [9] or p4v [140], which are specialized to a particular

network device.

3.4 Summary

In this chapter, we have described the historical context of network-device verification and

how concurrent research compares to the tools we have developed. The model we present in

this dissertation differentiates itself by combining three particular traits.

27

Protocol independence. We use primitives (e.g., arithmetic, key-value lookup in the

form of tables, and registers for state) to describe network protocol operations, instead of

modeling the behavior of a single protocol.

Device independence. We do not specialize toward testing a particular device; instead,

we provide extensions that accurately model the forwarding behavior of different network

devices.

The ability to predict output. Our approach produces a test oracle. We do not

require a second compiler or device model to perform our testing. We also do not require

developer-written assertions to generate tests. For both compiler validation and test-case

generation, our execution model is sufficient to detect issues.

Our approach achieves these distinctions because we derived our SMT execution model

from the P4 language. P4 is designed to describe arbitrary packet processing without being

tied to particular network protocols or network devices. Furthermore, both the language spec-

ification [236] and the related control-plane specification, P4Runtime [231], are intentionally

device-independent and also detailed enough to construct the semantics for an oracle.

28

Part II

Testing Network-Device Stacks

29

4 | Gauntlet: Testing The

Compiler For A Network

Device

An integral part of the programmable network device stack is the compiler, which translates

the high-level intent described in the data-plane DSL to target-specific instructions. A data-

plane DSL compiler applies domain-specific optimizations, rejects programs that are not

suitable for the target, and performs appropriate resource allocation and placement.

Programmable-forwarding devices often process every packet going through the network,

which makes them a critical part of the network infrastructure. However, like any piece of

general software, a data-plane DSL compiler can have bugs that cause it to crash or even

miscompile a program. While users may consider crashes a mere nuisance, they may not

even notice a miscompiled program that persistently affects packet processing or exposes

exploitable vulnerabilities. Further, it can be hard to track down miscompilations due to the

lack of sophisticated debugging support on these targets. As programmable targets become

increasingly common, the corresponding DSL compilers will need to be as dependable as

general-purpose C compilers such as GCC [220] and LLVM [132].

In this chapter, we describe Gauntlet, a toolkit we have developed to detect bugs in

compilers for data-plane targets. We introduce domain-specific techniques to detect both

30

abnormal termination of the compiler (crash bugs) and incorrect translation (miscompila-

tions). We do so by generating targeted random programs, feeding these programs into

the compiler-under-test, and then checking whether the translated program is semantically

different from the input. We perform these checks using translation validation [172] with

an SMT-based semantic model we have developed for the P4 language. We first describe

approaches to testing compilers, then detail our method of random-program generation and

the execution model we have developed for translation validation. The original work also

used this execution model to apply a limited form of model-based testing. However, this

work has been largely superseded by P4Testgen, which we describe in Chapter 5. We omit

the description of Gauntlet’s model-based testing in this dissertation.

4.1 Overview

Bug finding in compilers is a well-studied topic, especially in the context of C [256, 134,

224, 41, 135]. Past approaches (§4.2) to bug finding in C compilers include fuzz testing by

using randomly generated C programs [256, 134], translation validation (i.e., proving that

a compiler correctly translated a given input program to an output program) [158, 172],

and verification of individual compiler passes [141]. These prior approaches have to contend

with many difficulties inherent to a general-purpose language like C, e.g., generating random

programs that avoid undefined and unspecified behavior [256, 134], providing semantics for

pointers and memory aliasing [141], and inferring loop invariants and simulation relations to

successfully perform translation validation [172].

Our key insight is that the restricted nature of a DSL such as P4 allows us to avoid

much of the complexity associated with bug finding in general-purpose language compilers.

In particular, the simpler nature of P4 (e.g., no loops or pointers) allowed us to more easily

develop formal semantics, which can then be used as the basis for automated high-accuracy

31

translation validation. We apply a two-pronged approach with Gauntlet: random program

generation and translation validation. We now describe these ideas and show how the re-

strictions of P4 allow them to be simpler than prior work.

First, we use random program generation (§4.4) to produce syntactically correct and

well-typed P4 programs that still induce P4 compiler crashes. Because P4 has very little

undefined behavior [236, §7.1.6], random program generation is considerably simpler for P4

than for C [256]. The generator does not have to painstakingly avoid generating programs

with undefined and unspecified behavior, which can be interpreted differently across differ-

ent compilers. The smaller and simpler grammar of P4 relative to C also simplifies the

development of a random program generator.

Second, we use translation validation (§4.5) [172, 158] to find miscompilations in P4

compilers where we can access the transformed program after every compiler pass. Trans-

lation validation has been used in the context of C compilers before, but has suffered one

of two shortcomings. It either needs considerable manual effort per compiler pass (e.g.,

Crellvm [117] requires several hundred lines of manual proof-generation code for each pass;

Alive [141] requires manual translation of optimizations into the Alive DSL) or suffers from

a small rate of false positives and false negatives (e.g., [98, 158]). Fundamentally, this is in-

evitable for unrestricted C: proving program equivalence in the presence of unbounded loops

is undecidable. In our case, however, the finite nature of P41 makes P4 program equivalence

decidable and addresses both shortcomings. Thus, our use of translation validation is both

precise and fully automated, requiring manual effort only to develop semantics for the P4

language—not manual effort per compiler pass.

We applied Gauntlet to 3 platforms (§4.6): (1) the open-source P4 compiler infrastructure

(P4C) [34], which serves as a common base for different P4 compiler implementations; (2)
1Finite in that input and output packets and state are finite bit vectors. Loops are bounded (parsing [236,

§12]) or forbidden (control flow [236, §13]).

32

the P4 back end for the open-source P4 behavioral model (BMv2) [232], a reference software

switch for P4; and (3) the P4 back end for Barefoot Tofino, a high-speed programmable

switching chip [25]. Across these 3 platforms, as of June 2022, we found a total of 103 new

and distinct bugs, all of which were confirmed and assigned to a compiler developer. Our

efforts also led to 6 changes [236, §A.1] to the P4 specification. 98 of these bugs have already

been fixed. We analyze these bugs in detail and describe where they were found, their root

causes, and which commits introduced them. Gauntlet has been merged into the continuous

integration pipeline of the official P4 reference compiler [185]. To our knowledge, Gauntlet

is the first example of using translation validation for compiler bug finding on a production

compiler as part of its continuous integration workflow. While Gauntlet has been very

effective, it is still restricted in the kinds of bugs, compiler passes, and language constructs

it can handle. We describe these restrictions to motivate future work (§7.1). Further, while

we developed these bug-finding techniques in the context of P4, we believe the lessons we

have learned (§4.6.4) apply beyond P4 to other DSLs with simpler semantics relative to

general-purpose languages (e.g., the HLO IR for the TensorFlow [1] XLA compiler [239]).

4.2 Approaches to Testing Compilers

Levels of compiler testing. A compiler must reject incorrect programs with an ap-

propriate error message and accurately translate correct programs. However, a program can

be correct to varying levels. McKeeman [151] provides a taxonomy of these levels in the

context of C (Table 4.1). Each level corresponds to the program getting deeper into the

compiler before it is rejected (e.g., lexer, parser, type checker, optimizer, code generator).

The difficulty of generating test programs also goes up with increasing input level. For in-

stance, while general-purpose fuzzers such as AFL [260] are sufficient to stress test the lexer,

more sophistication is required to generate syntactically correct and well-typed programs,

33

Level Input Class Example of incorrect input
1 Sequence of ASCII characters Binary files
2 Sequence of words and spaces Variable name beginning with $
3 Syntactically correct Missing semicolon
4 Type correct Adding int to string
5 Statically conforming Undefined variables
6 Dynamically conforming Program throwing exceptions
7 Model-conforming Program producing wrong outputs

Table 4.1: McKeeman’s [151] 7 levels of C compiler correctness.

which are required to test the optimizer. In the context of the P4 compiler, we observed

very limited success in bug finding using a general-purpose fuzzer such as AFL. This is be-

cause testing at the first few levels of Table 4.1 is already handled adequately by P4C’s test

suite [34, §3.4].

Hence, we only consider programs at the higher levels: static, dynamic, and model-

conforming. These are programs that pass the lexing, parsing, type checking, and semantic

analysis phases of the compiler, but still trigger compiler bugs. Like Csmith [256], we

categorize bugs into crash bugs and miscompilations. A crash bug occurs when the compiler

abnormally terminates on an input program without producing either an output program

or a useful error message. Crash bugs include segmentation faults, assertion violations,

incomplete error messages, and out-of-memory errors. A miscompilation occurs when the

compiler produces an output executable, but the executable’s behavior is different from the

input program, e.g., due to an incorrect program transformation in a compiler optimization

pass. In P4, miscompilations manifest as any packet output that differs from the expected

packet output given an input packet. Crash bugs we are interested in correspond to level 5

in Table 4.1; miscompilations correspond to levels 6 and 7.

Bug-finding strategies. We now look at how compiler bugs are found. A key challenge

in compiler bug finding is the oracle problem. Given an input program to a compiler, the

expected outcome (i.e., should it accept/reject the program and what should the output be?)

34

is unclear unless one consults an all-knowing oracle. Below, we outline the major techniques

used to approximate this oracle knowledge.

In differential testing [151], given two compilers that both receive the same input program,

if compiler A’s output (after compiling and running the program) differs from compiler

B’s output, there is a bug in one of them. This works as long as there are at least two

independent compiler implementations for the same language. Csmith [256] is one example

of this approach; it feeds the same randomly generated C program to multiple C compilers

and checks whether the outputs generated by executing the binary produced by each compiler

differ. Another example is Different Optimization Levels (DOL) [41], which selectively omits

compiler optimizations and compares compiler outputs with and without these optimization

passes. If the end result differs after specific passes have been skipped or added, it points

to a bug. This technique can be used in any compiler framework that supports selective

omission of optimizations.

Metamorphic testing [42] can serve a similar role as differential testing, especially when

multiple compilers are not readily available or optimization passes cannot be easily disabled.

Instead of feeding the same input program to different compilers, different input programs

that are expected to produce the same compiler output are fed to the same compiler. The

run-time outputs after compiling these different input programs are compared to determine

if there is a bug or not. EMI is an example of this approach [134]. Given a randomly

generated C program 𝑃 , and random input 𝐼 to this program, EMI uses the path coverage

tool gcov [88] to identify dead code in 𝑃 when run on input 𝐼 . EMI then prunes away this

dead code to produce new programs 𝑃 ′ whose output must agree with 𝑃 ’s output when run

on the input 𝐼 . Then EMI compiles and runs both 𝑃 and 𝑃 ′ to check whether they indeed

produce the same output when given 𝐼 as input.

Translation validation is a bug-finding technique that converts the program before and

after a compiler optimization pass into a logical formula and checks if both programs/for-

35

mulas are equivalent using a constraint solver [158, 172, 141, 265]. A failed check indicates

a miscompilation. Program equivalence is an undecidable problem for Turing-complete lan-

guages such as C, requiring manual assistance to perform translation validation. Typical

examples of manual assistance are (1) simulation relations, which encode correspondences

between variables in two programs; and (2) loop invariants, required to prove the equiva-

lence of programs with loops. While it is possible to just unroll loops a constant number

of times [98] or learn these relations [209, 158], these techniques are not guaranteed to be

precise and occasionally generate false alarms [117]. The occurrence of false alarms makes

translation validation an unlikely choice for recurring use in compiler testing for general-

purpose languages (e.g., for continuous integration). This is because the number of false

alarms typically exceeds compiler developer tolerance [201].

4.3 Motivating Gauntlet’s Design

Random program generation for crash bugs. From EMI and Csmith, we borrow

the idea of generating random programs that are lexically, syntactically, and semantically

correct. Unlike EMI and Csmith, however, our random program generation is simpler. It

does not have to avoid undefined behavior, which, by design, is quite limited in P416. Fur-

ther, generating programs with undefined behavior helps us flag compiler passes that might

exploit undefined behavior in counter-intuitive ways [246]. We feed these randomly gener-

ated programs to the compiler to see if it generates a crash, typically a failure of an assertion

written by the P4 compiler developers.

Translation validation for miscompilations. Differential and metamorphic test-

ing allow us to compare different run-time outputs from compiled programs to detect mis-

compilations. However, we cannot directly apply either to P4 compilers. Differential testing

36

requires two or more independent compiler implementations that are comparable in their out-

put. P416 compilers for different hardware and software targets are not comparable because

program behavior is target-dependent [34, §2.1]. Presently there aren’t multiple independent

compilers for the same target. Developing an entirely new compiler exclusively for the sake

of testing the existing compiler is not productive because it can only be reused for one target.

Metamorphic testing [134], on the other hand, requires the use of code-coverage tools such

as gcov to determine which parts of the program are touched by a given input. Concurrent

research [127] has proposed such tools for P4, but these tools were not available when we

commenced work on Gauntlet.

On the other hand, P4’s domain-specific restrictions make translation validation easier

relative to general-purpose languages such as C. P4 programs are finite-state and finite-time,

which makes program equivalence decidable at a theoretical level. At the practical level,

P4’s lack of pointers, memory aliasing, and unstructured control flow (e.g., goto) allow for

easier generation of language semantics. Furthermore, using an SMT solver together with

translation validation is more precise than randomized testing approaches such as EMI and

Csmith because the solver exhaustively searches over all packet inputs to a program to find

miscompilations.

To perform translation validation, we convert P4 programs before and after a compiler

pass into logic formulas and assert equivalence of these formulas. To do so, we could have

converted P4 programs into C code and then asserted equality using Klee’s equivalence-

checking mode [35]. However, instead, we directly converted P4 programs into logic formulas

in Z3 [53] for two reasons. First, the effort to convert P4 to semantically equivalent C is about

the same as producing Z3 formulas directly. The difficulty lies in correctly formalizing all the

language constructs of P4, not in the output format. Second, generating Z3 formulas directly

gives us more control and allows us to leverage domain-specific techniques to optimize these

formulas.

37

4.3.1 Goals and Non-Goals

Find many, but not all bugs. Our goal is to find many crash bugs and miscompilations

in the P4 compiler, but our tool is not exhaustive. Specifically, we do not intend to build

or replace a fully verified compiler like CompCert [136], given the large labor and time cost

associated with such an undertaking with respect to the breadth of P4 back ends. We want

to strengthen existing P4 compilers, not write a safe replacement.

Check the compiler, not the programmer. We are not verifying that a particular

P4 program is devoid of certain kinds of bugs. This problem is addressed by orthogonal work

on P4 program verification [140, 59, 221, 83, 63] and P4 testing [212]. Although Gauntlet

can in principle be used for verifying a P4 program, we have not designed it for such use

cases. The random programs we generate to find bugs in the P4 compiler are much smaller

and more targeted than a typical P4 switch program. Our tool does not need to be able to

generate and efficiently solve Z3 formulas for large P4 programs to tease out compiler bugs,

although it achieves acceptable performance on large programs (Table 4.4).

Unlike p4v [140] and Vera [221], whose goal is to provide semantics to find bugs in large

programs such as switch.p4, we have developed our semantics for efficient equality checks

of diverse, but relatively small, P4 programs. Because of this difference in goals, we believe

our semantics cover a broader set of P4 language constructs and corner cases than p4v and

Vera—broad enough that we have found bugs in the P4 specification.

Develop target-independent techniques. With Gauntlet we primarily target the

front end of the compiler. We designed our tools to be as target-independent as possible and

specialize them to test the front and mid ends of the compiler. While we support restricted

forms of back-end testing, we do so in a way that allows us to quickly integrate and adapt to

new back ends without having to understand detailed target-specific behavior. In particular,

38

we do not cover target-specific semantics such as externs [236, §4.3]. We do this by generating

programs that are defined in a target-neutral manner with respect to P416’s semantics, i.e.,

we avoid generating target-specific extern calls. We approach this problem with P4Testgen

in Chapter 5.

Only test mature compilers. We only test mature compilers such as P4C and the

corresponding behavioral model2 as well as the commercial Tofino compiler. For example,

P4C supports other back ends such as the eBPF [242], uBPF [164], TC [95], and PSA [163]

targets, which are pre-alpha quality and preliminary compiler toolchains. Finding bugs is

likely unhelpful for the respective compiler developers at this moment.

4.4 Random Program Generation

Gauntlet’s random program generator produces valid P416 programs to directly trigger a

crash bug. If these programs do not cause a compiler crash they serve as input for our

translation validation technique.

4.4.1 Design

We require diverse input programs to exercise code paths within many compiler passes—and

hence bugs in those passes. P4C already contains a sample of over 1000 programs as part

of its test suite. During testing, the reference outputs of each of the test programs are

textually compared to the actual outputs after the front- and mid-end passes to check for

regressions [34, §3.4]. However, this comparison technique is inadequate for miscompilations.

Further, these programs are typically used to test the lexer and parser, not deeper portions

of the compiler.
2Both have entered “permanent beta-status” since November 2019: https://github.com/p4lang/p4c/

issues/2080

39

https://github.com/p4lang/p4c/issues/2080
https://github.com/p4lang/p4c/issues/2080

P4Fuzz [6] is a tool that can generate random P4 programs. However, when we tried using

P4Fuzz, we found that the programs generated by it are not complex enough to find a large

number of new crash bugs or miscompilations. For example, P4Fuzz generates programs

with complex declarations (e.g., structs within structs), but does not generate programs

with sufficiently complicated control flow. Hence, it does not cause P4C to execute a diverse

set of compiler passes. We developed our own generator for random P4 programs that works

by generating random abstract syntax trees (ASTs). With this generator we can exercise the

majority of language constructs in P4. This leads to diverse test programs covering many

combinations of P4 expressions. We can use these test programs to find programs that lead

to unexpected crashes.

Gauntlet’s random program generator is influenced by Csmith [256] and follows its phi-

losophy of generating only well-formed input programs that pass the lexer, parser, and type

checker. The generator grows an AST corresponding to the random program by probabilisti-

cally determining what kind of AST node to add to the AST at each step. By adjusting the

probabilities of generating each AST node, we can steer the generator towards the language

constructs we want to focus on. We can also use these probabilities to keep the size of the

average generated program small, in both the number of code lines and program paths. With

this technique we can find an ample number of miscompilations while also avoiding programs

with too many paths; such “branchy” programs pose challenges for translation validation.

Undefined behavior. We differ from Csmith in the treatment of undefined behavior.

Whereas Csmith tries to avoid generating expressions that lead to undefined behavior, we

accommodate such language constructs (e.g., reading from variables that are not initialized).

We record the output affected by undefined behavior as part of the logic formulas that we

generate from P4 programs during translation validation (§4.5.2). These formulas allow

us to track changes in programs with undefined behavior across compiler passes, which we

40

use to inform compiler developers of suspicious—but not necessarily incorrect—compiler

transformations [246].

4.4.2 Implementation

We implement our random P4 program generator as an extension to P4C. The generator uses

the intermediate representation (IR) of P4C (P4C-IR) to automatically grow an abstract

syntax tree (AST) by expanding branches of the tree at random. For example, a block

statement may generate up to (say) 10 statements or declarations, which in turn may result

in further sub-nodes. The generated P4C-IR AST is then converted into a P4 program using

P4C’s ToP4 module. Our random program generator can be specialized towards different

compiler back ends by providing a skeleton of the back-end-specific P4 architecture, back-

end-specific restrictions, and which architecture blocks are to be filled in with randomly

generated program snippets. We have currently implemented two back ends for our random

program generator corresponding to the BMv2 [74] and Tofino [25] targets.

Programs generated by our random program generator are required to be syntactically

sound and well-typed. Our aim is not to test if P4C can correctly catch syntax and type

errors (levels 3 and 4 of Table 4.1). If P4C’s parser and type checker (correctly) reject a

generated program, we consider this to be a bug in our random program generator. For

example, if an action parameter has an inout or out qualifier, only writable variables may

be passed as arguments.

4.5 Translation Validation

To detect miscompilations, we employ translation validation [172], a classic technique from

the compiler literature in which an external tool certifies that a particular compiler pass has

correctly transformed a given input program.

41

P4C

generate Z3
with Gauntlet

P4 program

emit
 P4C-IR

Crash Bug

pass.p4pass.p4pass.p4
equal?

compile

Semantic bug

Bad exit code

No

Yes

Figure 4.1: Translation validation in Gauntlet.

4.5.1 An Execution Model For P4

To perform translation validation, we developed an execution model for the P416 language

in the form of an interpreter that translates P4 programs into Z3 formulas [53]. Figure 4.1

describes our workflow. To validate a P4 program, the symbolic interpreter converts the

program into a Z3 formula capturing its input-output semantics. An equivalence checker

then submits the Z3 formulas of a program before and after a compiler pass to the Z3 SMT

solver. The solver tries to find an input that violates equivalence of these two formulas. If

it finds such an input, this is a miscompilation. Translation validation has two advantages

over random testing. First, it can accurately detect subtle differences in program semantics

without any knowledge about expected input packets or table entries. Second, when we can

access intermediate P4 programs after each compiler pass, we can pinpoint the erroneous

pass.

42

4.5.2 Implementation

Like our random program generator, we wrote the interpreter as an extension to P4C. We

use the IR generated by the P4C parser to determine the semantics of a P4 program. Each

programmable block of a P4 architecture represents an independent Z3 formula. For ex-

ample, the v1model architecture [74] of the BMv2 back end has 6 different independent

programmable blocks: Parser, VerifyChecksum, Ingress, Egress, ComputeChecksum, and

Deparser. For each block, we generate a separate Z3 formula.

Developing the execution model for the symbolic interpreter. Overall, it

took us 5 months of implementation effort until our interpreter execution model was refined

enough to find new miscompilations in P4 compilers, instead of encountering false alarms

that were actually bugs in our interpreter. The fact that P4C contains a sizeable test

suite [34, §3.4] was helpful in stress testing our interpreter during development. We started

our development process by performing translation validation on programs in the P4C test

suite. A miscompilation on one of these test programs is probably a false alarm and a

bug in our interpreter. This is because it is unlikely that the compiler miscompiles test

suite programs. The reference outputs of each test after the front- and mid-end passes are

tracked as part of regression testing, and the reference outputs themselves are audited by the

compiler developers. We also continuously consulted with the compiler developers to ensure

our understanding of the language semantics was correct.

However, we quickly realized that we also needed to generate random programs to achieve

coverage and truly stress test our symbolic interpreter. Subsequently, we co-evolved the

interpreter with our generator. We attribute part of our success in finding bugs to this

development technique, since it forced us to consider many edge cases—more than P4C does.

The test suite for our interpreter now has over 1200 P4C tests plus over 100 of our own tests.

Eventually, our interpreter had become complete and trustworthy enough to perform

43

1 struct Hdr { bit<8> a; bit<8> b; }
2
3 control ingress(inout Hdr hdr) {
4 action assign() { hdr.a = 1; }
5 table t {
6 key = hdr.a : exact;
7 actions = {
8 assign();
9 NoAction();

10 }
11 default_action = NoAction();
12 }
13 apply {
14 t.apply();
15 }
16 }

(a) Simplified P4 program applying a table.

Input : t_table_key , t_action , hdr
Output : hdr_out

hdr_out =
i f (hdr . a == t_table_key) :

i f (1 == t_act ion) : Hdr (1 , hdr . b)
o therwi se : Hdr (hdr . a , hdr . b)

o therwi se : Hdr (hdr . a , hdr . b)

(b) Functional semantic representation in Z3.

Figure 4.2: A P4 table converted to Z3 semantics.

translation validation for randomly generated programs so as to trigger miscompilations in

P4C. After we had detected the first miscompilation, we randomly generated around 10000

programs every week and added the resulting compiler bugs to our backlog. Adding support

for new P4 language features as part of random program generation typically first led to a

crash in our interpreter. After we fixed our own interpreter, we were frequently able to find

new miscompilations in the P4 compiler that pertained to those language features. Because

any of the compiler passes may have bugs, our symbolic interpreter does not rely on any

compiler pass of P4C. It only relies on the P4C parser and the ToP4 module to produce

P4 code from the IR. Hence, we designed our interpreter to handle any P4 program that

successfully passed the P4C parser, i.e., before the program is desugared into any normalized

form. This allows us to detect miscompilations in the earliest front-end passes.

Converting P4 programs into Z3 formulas. We now describe our execution model

to convert a P4 program into a Z3 logic formula. Figure 4.2 shows an example. Conceptually,

our goal is to represent P4 programs in a functional form so that the input-output behavior of

44

the functional form is identical to the input-output behavior of the P4 program. To determine

function inputs and outputs, we use the parameter directions of each P4 architecture package.

Parameters with the direction inout and outmake up the output Z3 data type of the function

whereas parameters with the in and inout are free Z3 variables that represent the input of

the function.

To determine the functional form, the symbolic interpreter traverses each path through

the P4 program, maintaining expressions representing path conditions for branching. Once it

reaches a portion of the program where execution ends, it stores an if-then-else Z3 expression

with the condition set to the path condition and the return value set to a tuple consisting of

the inout and out parameters at that point. Ultimately, the interpreter will return a single

nested if-then-else Z3 expression, with each branch corresponding to a unique output from

the program under a set of conditions. Using this expression we can perform operations such

as equivalence checking between two Z3 formulas for translation validation or querying Z3

to provide an output for particular input for test case generation.

Handling tables. The contents of a table are unknown at compile-time. Since we want

to make sure we cover any possible table content, we interpret match-action pairs in ta-

bles symbolically. Figure 4.2 describes a simplified example of how Gauntlet interprets

tables within a control block. Per match-action table call, we generate one symbolic match

(t_table_key) and one symbolic action variable (t_action), which represent a single match

key and its choice of action, respectively. We compare the symbolic packet header with the

symbolic match key (hdr.a == t_table_key). If the expression evaluates to true, it implies

the execution of a specific action, which is chosen based on the value of the symbolic action

index (t_action). We express this as a series of nested if-then-else statements per action

available to the table. Finally, if the key does not match, the default action is selected. For

instance, in Figure 4.2, we execute action assign (action id 1) iff the symbolic match vari-

45

able (t_table_key) equals the symbolic header (hdr.a) and the symbolic action variable

(t_action) equals 1. With this encoding, we can avoid having to use a separate symbolic

match-action pair for every entry in the match-action table, which is a prohibitively large

number of symbolic variables.

Header validity. The P416 specification does not explicitly restrict the behavior of

header validity. We model our semantics to align with the implementation in P4C. We

clarified these assumptions with the compiler and specification maintainers [190]. If a previ-

ously invalid header is marked valid, all fields in that header are initially undefined. If an

invalid header is returned in the final output, all fields in the header are set to invalid as

well.

Interpreting function calls. Any out parameter in a function call is initially set to

undefined. If the function returns, we also generate a new free Z3 variable. In our interpreter,

externs are treated as a function call that returns an arbitrary value. In addition, each

argument for a parameter that has the label inout and out is set to a new free Z3 variable

because the behavior of externs is unknown. Copy-in/copy-out semantics, albeit necessary to

control side effects in extern objects, have been a persistent source of bugs in the compiler. A

significant portion of the miscompilations we identified were caused by erroneous passes that

perform incorrect argument evaluation and side effect ordering in relation to copy-in/copy-

out.

Checking equivalence between P4 programs. We use p4test to emit a P4 program

after each compiler pass. p4test is a P4C back-end used to test P4C. It does not produce

any executable output but exercises all the default front- and mid-end passes. We only

examine passes that actually modify the input program and ignore any emitted intermediate

program that has a hash identical to its predecessor. We explicitly reparse each emitted P4

46

file to also catch bugs in the parser and the ToP4 module.

For an input program A and the transformed output program B after a compiler pass, we

perform a pairwise equivalence check for each programmable block. We use our interpreter

to retrieve the Z3 formulas for all programmable blocks of the program architecture package

and compare each individual block of A to the corresponding block in B. The query for the

Z3 solver is a simple inequality. It is satisfiable only if there is a Z3 assignment (e.g., a packet

header input or table match-action entry) in which the Z3 formula of A produces a different

output from B.

If the inequality query is satisfiable, it produces the assignment that would lead to dif-

ferent results and saves the failed passes for later analysis. With this technique, we can

precisely pinpoint in which pass a miscompilation may have happened and we can also infer

the packet values we need to trigger the bug. If the report turns out to be a false alarm and

is not confirmed by compiler developers, this is a bug in our symbolic interpreter, which we

fix. The generated Z3 formulas could in principle be very large and checking could take a

long time. However, we use the quantifier-free theory of bit vectors (QF_BV) [159] for the

equality check, which can be solved efficiently in Z3 [53]. Even very large expression trees

can be compared in under a second.

Handling undefined behavior. We track changes in undefined behavior in which the

undefined portion of a P4 program has more restricted (less undefined) behavior after a com-

piler pass. This means we can identify scenarios where the compiler transforms a program

fragment based on undefined behavior. While not immediately harmful, such changes might

still indicate problematic behavior in the compiler that may be surprising to a program-

mer [246].

To track undefined behavior, any time a variable is affected by undefined behavior (e.g.,

a header is set to invalid and then valid) we label that variable “undefined.” This undefined

47

variable effectively acts as taint. Every read or write to this undefined variable is tainted.

When comparing Z3 formulas before and after a pass, we can choose to replace tainted

expressions with concrete values in the formula before a pass.3 With this, we can determine

if a translation validation failure was caused by undefined behavior. If we find a failure based

on undefined behavior, we classify it as unstable code [246] to avoid confusion with real bugs.

Addressing parser loops. Parser loops can recurse infinitely many times in the core

P4 language. To still terminate with our parser analysis, we assume that any well-formed

P4 program must advance the parser counter with each loop (usually this is done by parsing

the next header in a header stack). Hence, we compute our maximum bound for parser

analysis by summing up the size of all header stacks. Each time we encounter a parser state

we have already visited we increment a counter. The parser will have to advance the header

stack index at least once per loop iteration. If not, we have encountered an infinite parser

loop. If this count exceeds the maximum bound, we terminate the parser analysis and use

the generated expression for equality comparison. With this approach, we generate a very

large expression, but handle the majority, if not all, possible transformations of the parser

graph. Nonetheless, our approach is a heuristic. We have not proven that it can capture all

possible program transformation scenarios. We leave optimizations on this naive approach

as future work.

4.6 Results

We now analyze the P4 compiler bugs found by Gauntlet. A detailed breakdown can be

found in Section 4.8. The cut-off date for these results was June 14th, 2022. Our main

findings are summarized below.
3We only replace tainted expressions in the “before” formula so that we can detect compiler bugs where

a previously well-defined expression turns undefined, which is an actual compiler bug, not just an unsafe
optimization.

48

Bug Type Status P4C BMv2 Tofino

Crash
Filed 39 4 35
Confirmed 36 4 25
Fixed 36 4 20

Semantic
Filed 35 1 10
Confirmed 30 1 7
Fixed 30 1 7

Total 103 66 5 32

Table 4.2: Bug summary. Bugs that have not been
fixed have been assigned.

Location P4C BMv2 Tofino Total

Front End 42 - - 42
Mid End 24 - - 24
Back End - 5 32 37

Total 66 5 32 103

Table 4.3: Distribution of bugs in the P4 compiler
front end, mid end, and the BMv2 and Tofino back
ends.

1. We confirmed a total of 103 new, distinct bugs across the P4C framework and the BMv2

and Tofino P4 compilers. Of these bugs, 65 are crash bugs and 38 are miscompilations.

2. Our efforts led to 6 P4 specification changes [236, §A.1].

3. We achieved this in the span of only 8 months of testing with Gauntlet, and despite

only generating random programs from a subset of the P416 language.

4.6.1 Sources of Bugs

We distinguish the bugs we found into three primary sources: bugs we found in the common

P4C framework and bugs we found in the compiler back ends for BMv2 and Tofino. Both

the BMv2 and Tofino back ends use the P4C front- and mid-end passes. Hence, most bugs

detected in P4C also likely apply to these back ends. Note that since the Tofino back end is

closed-source, we don’t know which P4C passes it uses.

All miscompilations in P4C were found by translation validation because we had full

access to the compiler IR. Where applicable, we reproduced the miscompilations using model-

based testing and attached the failing input-output packet pair with our bug report. All

the miscompilations in the Tofino compiler were found with model-based testing. We do not

describe model-based testing in this dissertation, but include the bug counts for completeness

and to demonstrate that even a limited technique, such as model-based testing on the P4 DSL

49

only, is able to find bugs in device compilers. For a detailed description of our model-based

testing approach, refer to the original Gauntlet paper [196].

Distribution of Bugs. Table 4.3 lists where we identified bugs. The overall majority of

bugs were found in the P4C front- and mid-end framework, mainly because we concentrated

on these areas. The majority of the back end bugs were found in the Tofino compiler. There

are two reasons for this. First, the Tofino back end is more complex than BMv2 as it compiles

for a high-speed hardware target. Second, we did not test the BMv2 back end as extensively

as other parts of the compiler.

Bugs in the P4C infrastructure. As Table 4.2 shows, we were able to confirm 103

distinct bugs. 66 were uncovered in P4C, with a comparable distribution of crash bugs (36)

and miscompilations (30). Initially, the majority of bugs that we found were crash bugs.

However, after these crash bugs were fixed, and as our symbolic interpreter became reliable,

the miscompilations began to exceed the crash bugs.

In addition, 6 of the bugs we found led to corresponding changes in the specification as

they uncovered missing cases or ambiguous behavior because our interpretation of a specific

language construct clashed with the interpretation of the compiler developers and language

designers. We also continuously checked out the master branch to test the latest compiler

improvements for bugs. Many bugs (16 out of 66) were introduced by recent merges of

pull requests during the months in which we used Gauntlet for testing. Gauntlet was able

to quickly detect these bugs. To catch such bugs as soon they are introduced, the P4C

developers have now integrated Gauntlet into P4C’s continuous integration (CI) pipeline.

Derivative bugs. 6 of the 103 bugs we found were crash bugs that were not directly

caused by random programs generated by Gauntlet. Instead, they were caused by hand-

crafting specific P416 programs containing specific language constructs. These handcrafted

50

Program Arch LoC Time (seconds)
tna_simple_switch.p4 TNA 1555 ~0.38
switch_tofino_x2.p4 TNA 6752 ~7.54
switch_tofino2_y2.p4 TNA2 7039 ~9.06
fabric.p4 V1Model 958 ~0.45
switch.p4 (from P414) V1Model 5885 ~12.13

Table 4.4: Time needed to get semantics from a P4 program.

P416 programs were inspired by discussions related to either specification changes or compiler

bugs originally found by Gauntlet. We included these bugs in our count because even though

they were handcrafted, they were seeded by bug reports originating from Gauntlet. We also

encountered 3 new crash bugs when manually reducing our randomly generated programs

for miscompilations. For instance, we uncovered a crash bug caused by a P4 parser loop be-

cause we removed transition expressions [236, §12.5] as part of reducing one of our randomly

generated programs. However, all our miscompilations were found directly by Gauntlet.

Fixing the bugs. Out of the 103 new bugs we filed, 98 have been fixed. The remaining

bugs have been assigned to a developer, but are still open because we filed them very recently,

they required a specification change to be resolved first, or they have been de-prioritized in

favor of more pressing bug reports. We have received confirmation from the Tofino compiler

developers that 8 bugs have already been resolved; the remainder are targeted to be resolved

by the next release.

4.6.2 Performance on Large P4 Programs

We also measured the time Gauntlet currently requires to generate semantics for several large

P4 programs (Table 4.4). Generating semantics is the slowest part of our validation check;

comparing the equality of the generated formulas in Z3 is typically fast. We have observed

that retrieving semantics for a single pass takes on the order of seconds for a large program.

51

Parser branching, in particular dense branching caused by parser loops, is a scaling challenge

for our tool.

4.6.3 Deep Dive into Bugs

Ripple effects. A common crash we observed occurs because a compiler pass incorrectly

transforms an expression or does not process it at all. Back-end compiler developers rely

on the front end to correctly transform the IR of the P4 program. But, if a pass misses

a language construct it is responsible for, the back end often cannot handle the resulting

expression and generates an assertion failure. For example, in program 4.3b, the front end

SideEffectOrdering [32] pass should have converted the conditional operator in line 3 into

normal if-then-else control flow. However, because of the addition expression, the pass failed

to transform the conditional operator, which ultimately caused an assertion to fire in the

Tofino back end [189]. In another case, the InlineFunctions [32] pass did not fully inline

all function calls, causing a crash in back ends that were not able to understand function

calls and expected them to have been inlined by then [186].

Crashes in the type checker. Many of the crashes (21 out of 36) were in the type

checker infrastructure. The code in 4.3a shows an expression that crashed type checking [188].

It is not possible to shift this value since its width is unknown at compile-time. This program

was deemed illegal, but the specification did not explicitly forbid it. The type checker

tried to infer a type regardless and crashed. This bug also triggered an update to the

P416 specification [75]. In other cases, the type checker was incorrectly forbidding a valid

expression. In example 4.3c, the program was legal, but because a safety check in the

StrengthReduction [32] pass was incorrectly implemented, the resulting slice index was

overflowing and turned negative, which prompted the type checker to terminate with an

error message [188].

52

1 control ig(inout Hdr h, ...) {
2 apply {
3 h.mac_src = (1 << h.modifier)

+ 8w1;
4 }
5 }

(a) A crash in the type checker.

1 control ig(inout Hdr h, ...) {
2 apply {
3 h.mac_src =
4 (h.mac_src > 2 ? 48w1 : 48w2) + h.

mac_src;
5 }
6 }

(b) A bug caused by a defective pass.

1 control ig(inout Hdr h, ...) {
2 apply {
3 bool tmp = 1 != 8w2[7:0];
4 }
5 }

(c) An incorrect type checking error.

1 control ig(inout Hdr h, ...) {
2 action assign_eth_type(inout bit<8> val

) {
3 h.eth_type[15:8] = 0xFF;
4 }
5 apply {
6 assign_eth_type(h.eth_type[7:0]);
7 }
8 }

(d) Incorrect deletion of an assignment.
1 control ig(inout Hdr h, ...) {
2 apply {
3 h.ipv4.setInvalid();
4 h.ipv4.src_addr = 1;
5 h.eth.src_addr = h.ipv4.

src_addr;
6 if (h.eth.src_addr != 1) {
7 h.ipv4.setValid();
8 h.ipv4.src_addr = 1;
9 }

10 }
11 }

(e) An unsafe compiler optimization.

1 control ig(inout Hdr h, ...) {
2 action assign_and_exit(inout bit<16>

val) {
3 val = 0xFFFF;
4 exit;
5 }
6 apply {
7 assign_and_exit(h.eth_type);
8 }
9 }

(f) Incorrect interpretation of exit statements.

Figure 4.3: Examples of bugs that were caught by Gauntlet.

53

Handling side effects. Side effects from a function operate on the concept of copy-

in/copy-out semantics, described earlier. However, these semantics, while seemingly simple,

turn out to be hard to implement correctly in the compiler. A particularly tricky case can

be seen in 4.3d [192].

In the program, a slice of a variable is passed as an inout parameter. At the same time,

a disjoint subset of the variable is assigned within the function. The correct behavior here

is to leave the assignment unchanged, and copy back the sliced portion of the variable alone.

However, the compiler assumed that the entire variable would be copied back and removed

the assignment in line 3, an incorrect optimization.

A large subset of the miscompilations we found in P4C (at least 12 out of 30) can be traced

to incorrect handling of side effects and copy-in/copy-out. Copy-in/copy-out is difficult to

handle because for a compiler pass that reorders expressions or statements, side effects can

be translated incorrectly.

Unstable code. Even though the P416 language has limited undefined behavior, we also

found incidents of unstable code [246]. This unstable code conforms with the specification

but may lead to instability in specific back end targets. Dumitru et al., 2020 also discuss the

potential safety consequences of undefined variable access [61]. Program 4.3e is a concrete

example. The compiler collapses the assignment of line 4 into line 5, setting h.eth.src_addr,

which is still part of a valid header, to 1. All of this is legal behavior, since read and

write operations on invalid header values are undefined as part of the P4 specification. The

compiler is free to perform these optimizations. However, these changes may cause issues in

specific back ends, e.g., back ends in which assignments to invalid headers are no-ops. In

this case, the compiler has chosen a particular subset interpretation of undefined behavior,

which may clash with the expectations of programmers for that back end. We raised this

with the compiler developers, who agreed to print a warning [190].

54

Consequences of compiler changes. Once we started actively monitoring the master

branch of P4C we observed that many (19 out 66) of the bugs we filed in P4C were introduced

by recent merges into master. A notable example is a recent change to the Predication [32]

pass, which caused at least 6 (1 crash and 5 semantic) new bugs. We caught and filed

these bugs quickly during our weekly routine random code generation. The compiler pass

has become so complicated that the compiler maintainers are now relying on Gauntlet to

ensure correctness [14]. A P4 programmer also filed a bug on this issue [76]. The report

was considered a duplicate because of our earlier reports, highlighting that the bugs we find

do affect actual P4 programmers.

Specification changes. Some of our bug reports kicked off larger discussions and changes

around the P4 language specification. Our bug reports and questions have led to at least 6

distinct specification changes. For example, a concern we had about the validity of uninitial-

ized headers (at what point does a header variable become valid?) led to three clarification

pull requests on the specification and a suggestion to propose more fundamental changes for

the next language version [78].

Another prominent example was caused by ambiguity in the specification. In exam-

ple 4.3f, the RemoveActionParameters [32] compiler pass moved the statement in line 3

after the exit statement, because the assumption was that exits called within functions ig-

nore the copy-in/copy-out semantics. We instead interpreted exit statements to still respect

copy-in/copy-out semantics and caught the discrepancy. This is a significant difference. A

packet that traverses the control program could lose all the modifications that have been

written to its header, a potential security risk. We filed this as a concern with the open-

source community [187] and our interpretation was deemed reasonable, which required a

specification update [79]. The corresponding compiler changes resulted in at least 3 new

bugs, which we detected and filed.

55

Invalid transformations. Because P4C provides the option to emit transformed pro-

grams after each pass as a valid P4 program, the compiler developers maintain an invariant

that each compiler pass in the front end and mid end needs to emit syntactically correct P4.

We uncovered several bugs with how P4 code is emitted and transformed across compiler

passes. We detected these bugs by reparsing each P4 program after it had been emitted by

the ToP4 compiler module. If the emitted program cannot be reparsed, it indicates a bug

in one of three compiler components: the ToP4 module, the P4C parser, or the compiler

pass. While these bugs typically do not harm correctness, they affect compiler debugging.

Overall, we identified 4 bugs of invalid intermediate P4, all of which were fixed; these 4 are

not included in our count of 103. Additionally, because we reparse P4 after each compiler

pass, we found a case where the emitted program being parsed incorrectly was a symptom

of a larger bug in the P4C parser [191].

4.6.4 Lessons Learned

P4C debugging support. P4C has several facilities that were useful for bug finding.

The ability to dump the intermediate representation, specify which passes to dump, and

the ToP4 tool, which converts P4C-IR to P4 programs accelerated our development process.

In addition, the compiler has comprehensive assert instrumentation with distinct messages,

which we used to identify unique crash bugs and to distinguish them from valid error mes-

sages. The AST visitor library in P4C allowed us to develop extensions like our random

program generator and interpreter.

P4C’s nanopass architecture, which factors the compiler into a large number of “thin”

passes, helps with bug fixing, especially for miscompilations that were narrowed down to one

pass by translation validation. A different architecture that has fewer “thick” passes would

need more developer effort to fix miscompilations. We also observed that almost all crash

bugs were assertion violations where an invariant was violated in a particular compiler pass

56

due to an incorrect or absent compiler transformation from a previous pass. In the absence

of such assertions, these crash bugs could have easily manifested as miscompilations that are

harder to detect.

Reporting bugs. This project would not have been possible without the responsiveness

and receptiveness of the P4 community. Our questions, concerns, and bug reports were

answered within a day and in great detail. The developers were able to even dissect our initial

questions and confusions into bug reports, guiding us further in our development effort. We

were encouraged to participate in the language design working group that discusses changes

to the P4 specification.

Likewise, when we filed bugs for the closed-source and proprietary Tofino compiler, we

found the developers to be receptive and responsive. Still, the pace of bug finding and

fixing with the Tofino compiler was slower than the open-source compiler because of two

unavoidable reasons. First, we naturally did not have access to the company bug tracker

to assess the life cycle of our bug once it had been filed. Second, the official binary of the

Tofino compiler updates less frequently than P4C, which can be rebuilt from source after

every commit. Hence, we would trigger the same bugs repeatedly in our testing until a new

Tofino compiler version with a bug fix was released. Neither of these two problems would

manifest, if our tool was to be used internally as part of the compiler development process

for Tofino.

4.7 Discussion

With Gauntlet we have built an execution model for the P4 language that is target-independent

and precise enough to find bugs in the front end of a P4 compiler. To our knowledge, Gauntlet

is the first instance of translation validation running as part of a compiler’s CI infrastructure.

57

We believe this ability to exploit domain specificity for more effective compiler bug finding

will increasingly be applicable to other DSLs beyond P4. That being said, there are several

follow-ups to Gauntlet we would like to explore.

Extending translation validation to the compiler back end. So far we have

applied translation validation only to compiler front and mid ends. This is because these

passes allow us to dump the P4 program before and after the pass has run, allowing us to

compare the before and after programs for equality. The back end is typically proprietary,

inaccessible, and uses an opaque intermediate representation. To understand the constraints

of these back ends we would like to work with industry compiler developers to integrate

translation validation into their compilers. We will develop translation validation techniques

that allow us to compare a P4 program’s semantics with the semantics of a back end language

that is not P4.

Automatic test case reduction. We have not developed an automatic test case re-

duction suite (e.g., C-Reduce [179]) and reduce buggy programs manually. After our testing

pipeline has identified problematic programs in a randomly generated batch, we inspect each

P4 program individually. We prune the random P4 program that caused the bug until we

get a sufficiently small program that can be attached to a bug report. We are currently

automating this process.

Long-term study on translation validation in CI. We would like to perform

empirical, long-term studies on the utility of translation validation as a compiler testing

technique. We want to identify which passes frequently cause semantic issues and understand

why they do. We would also like to observe how developer-friendly our tool is. For example,

to avoid confusing compiler developers, we already had to make sure that Gauntlet does not

report changes in undefined behavior [77] or fails gracefully when Gauntlet does not support

58

a particular language construct [33].

Coverage metrics for random program generation. We also do not track how

much of the compiler source code we actually cover with our program generator. For future

work, we would like to measure the compiler code coverage of a generated P4 program with

gcov to understand avenues for improvement. In concurrent work, Kodeswaran et al. [127]

use the Ball-Larus encoding [17] to track the execution path of packets traversing the switch.

By inspecting this path, a developer can verify that packets have actually taken the expected

path through the P4 program. This technique is complementary to our symbolic execution

approach. We are considering using it as a path coverage tool for metamorphic testing such

as EMI [134].

4.7.1 Limitations of Gauntlet’s Model-Based Testing

Gauntlet also used model-based testing to generate input-output packet tests to find bugs

in P4C and the Tofino compiler. We list the bugs we found in Table 4.2 and Table 4.3. The

reason we are not including a description of model-based testing is that the technique, in

contrast to translation validation that runs entirely on a formal logic-based representation

of the P4 program, model-based testing had several limitations caused by needing to run

actual end-to-end tests on real targets. P4Testgen and Flay, which we describe in Chapter 5

and Chapter 6, address these limitations.

Dropped packets in the testing framework. A key assumption in the model-based

testing approach is that the generated test cases can actually be fed to the testing frame-

work of the back end. However, the semantics of the generated P4 program do not describe

hardware-specific restrictions. For example, some devices impose minimum packet size re-

quirements or drop packets with invalid MAC addresses. More generally, we have found

59

that test cases where the input packets have certain values in their headers can be dropped

silently by the back end without generating an output packet. Effectively, there is a mis-

match between the Z3 semantics, which says that a certain output packet must be produced,

and the back end’s semantics, which produces no output packet. In such cases, we have had

to discard these test cases, reducing the breadth of coverage for testing the compiler.

Unknown interfaces between programmable blocks. P4 also does not provide

semantics on the treatment of packets between the individual control or parser blocks. This

is not an issue for translation validation since we compare each programmable block individ-

ually. For an end-to-end test, however, we need to know how data is modified between these

blocks so that we know what output packet to expect.

Test case complexity. Paths with many branches can generate a large number of

distinct path conditions. Thus, millions of input-output packet pairs might be generated.

Since small programs have sufficed so far for bug finding, we have not run into these issues.

In the future, we may need an efficient path selection technique to tease out more complex

bugs on closed-source compilers.

60

4.8 Details on Bug Results

Table 4.5: Crashes found in open-source P4C.

Issue Location Compiler Stage Status

Compiler Bug: visitor returned non-Statement type (2102) 2102.p4 Mid end Fixed

Compiler Bug: no definitions (2104) 2104a.p4 Front end Fixed

Compiler Bug: no definitions (2104) 2104b.p4 Front end Fixed

Compiler Bug: no locations known for (2105) 2105.p4 Front end Fixed

InlineFunctions pass sometime seems to generate invalid

code. (2126)

2126.p4 Front end Fixed

p4c-bm2-ss crashes on undefined header conditional in

method (2148)

2148.p4 Mid end Fixed

Follow-up to issue 2104, exit also kills all variables (2151) 2151.p4 Front end Fixed

Compiler Bug: At this point in the compilation typechecking

should not infer new types anymore, but it did. (2190)

2190.p4 Front end Fixed

Compiler Bug: Null cst (2206) 2206.p4 Front end Fixed

Compiler Bug: boost::too_few_args (2207) 2207.p4 Front end Rejected

Predication pass leads to unsafe variable assignment (2248c) 2248c.p4 Mid end Fixed

Compiler Bug: Null stat (2258a) 2258a.p4 Front end Fixed

“error: Duplicates declaration” when initializing struct in

function with integer values (2261)

2261.p4 Front end Fixed

“Compiler Bug Null stat” also triggered in action properties

(2266)

2266.p4 Front end Fixed

Compiler Bug: visitor returned invalid type Vector for In-

dexedVector (2289)

2289.p4 Mid end Fixed

Compiler Bug: Unexpected type for nested headers (2290) 2290.p4 Front end Fixed

BMV2 Backend Compiler Bug unhandled case (2291) 2291.p4 Back end Fixed

Compiler Bug: Could not find type of @name (2336) 2336.p4 Front end Fixed

Continued on next page

61

https://github.com/p4lang/p4c/issues/2102
https://github.com/nyu-systems/gauntlet/tree/90234a63d56bf1028ca82a97323666898dd9717b/bugs/crash/fixed/2102.p4
https://github.com/p4lang/p4c/issues/2104
https://github.com/nyu-systems/gauntlet/tree/90234a63d56bf1028ca82a97323666898dd9717b/bugs/crash/fixed/2104a.p4
https://github.com/p4lang/p4c/issues/2104
https://github.com/nyu-systems/gauntlet/tree/90234a63d56bf1028ca82a97323666898dd9717b/bugs/crash/fixed/2104b.p4
https://github.com/p4lang/p4c/issues/2105
https://github.com/nyu-systems/gauntlet/tree/90234a63d56bf1028ca82a97323666898dd9717b/bugs/crash/fixed/2105.p4
https://github.com/p4lang/p4c/issues/2126
https://github.com/p4lang/p4c/issues/2126
https://github.com/nyu-systems/gauntlet/tree/90234a63d56bf1028ca82a97323666898dd9717b/bugs/crash/fixed/2126.p4
https://github.com/p4lang/p4c/issues/2148
https://github.com/p4lang/p4c/issues/2148
https://github.com/nyu-systems/gauntlet/tree/90234a63d56bf1028ca82a97323666898dd9717b/bugs/crash/fixed/2148.p4
https://github.com/p4lang/p4c/issues/2151
https://github.com/nyu-systems/gauntlet/tree/90234a63d56bf1028ca82a97323666898dd9717b/bugs/crash/fixed/2151.p4
https://github.com/p4lang/p4c/issues/2190
https://github.com/p4lang/p4c/issues/2190
https://github.com/nyu-systems/gauntlet/tree/90234a63d56bf1028ca82a97323666898dd9717b/bugs/crash/fixed/2190.p4
https://github.com/p4lang/p4c/issues/2206
https://github.com/nyu-systems/gauntlet/tree/90234a63d56bf1028ca82a97323666898dd9717b/bugs/crash/fixed/2206.p4
https://github.com/p4lang/p4c/issues/2207
https://github.com/nyu-systems/gauntlet/tree/90234a63d56bf1028ca82a97323666898dd9717b/bugs/crash/rejected/2207.p4
https://github.com/p4lang/p4c/issues/2248
https://github.com/nyu-systems/gauntlet/tree/90234a63d56bf1028ca82a97323666898dd9717b/bugs/crash/fixed/2248c.p4
https://github.com/p4lang/p4c/issues/2258
https://github.com/nyu-systems/gauntlet/tree/90234a63d56bf1028ca82a97323666898dd9717b/bugs/crash/fixed/2258a.p4
https://github.com/p4lang/p4c/issues/2261
https://github.com/p4lang/p4c/issues/2261
https://github.com/nyu-systems/gauntlet/tree/90234a63d56bf1028ca82a97323666898dd9717b/bugs/crash/fixed/2261.p4
https://github.com/p4lang/p4c/issues/2266
https://github.com/p4lang/p4c/issues/2266
https://github.com/nyu-systems/gauntlet/tree/90234a63d56bf1028ca82a97323666898dd9717b/bugs/crash/fixed/2266.p4
https://github.com/p4lang/p4c/issues/2289
https://github.com/p4lang/p4c/issues/2289
https://github.com/nyu-systems/gauntlet/tree/90234a63d56bf1028ca82a97323666898dd9717b/bugs/crash/fixed/2289.p4
https://github.com/p4lang/p4c/issues/2290
https://github.com/nyu-systems/gauntlet/tree/90234a63d56bf1028ca82a97323666898dd9717b/bugs/crash/fixed/2290.p4
https://github.com/p4lang/p4c/issues/2291
https://github.com/nyu-systems/gauntlet/tree/90234a63d56bf1028ca82a97323666898dd9717b/bugs/crash/fixed/2291.p4
https://github.com/p4lang/p4c/issues/2336
https://github.com/nyu-systems/gauntlet/tree/90234a63d56bf1028ca82a97323666898dd9717b/bugs/crash/fixed/2336.p4

Issue Location Compiler Stage Status

Compile-time-known and slices (2342) 2342.p4 Front end Fixed

Compiler Bug: Null cst for InfInt Parameters (2354) 2354.p4 Front end Fixed

Silent crash: Struct Parameters (2355) 2355.p4 Front end Fixed

Negative bit index in Slice after shifting function output

(2356)

2356.p4 Front end Fixed

Int as parameter and assignments (2357) 2357.p4 Front end Fixed

Mixing exits and returns in actions (2359) 2359.p4 Mid end Fixed

Another expression with side-effects in table keys and ac-

tions (2362)

2362.p4 Front end Fixed

No Definitions in Parser Loop (2373) 2373.p4 Front end Fixed

Crash when running end-to-end tests with simple switch

(2375)

2375.p4 Back end Fixed

Compiler Bug: no definitions (2393) 2393.p4 Front end Fixed

p4test: x: declaration not found (2435a) 2435a.p4 Mid end Fixed

Range starting from zero: Can not shift by a negative value

(2485)

2485.p4 Mid end Fixed

Conditional execution in actions with struct initializers

(2486)

2486.p4 Mid end Rejected

StructInitializer in Mux expressions (2487) 2487.p4 Mid end Fixed

p4c-bm2-ss: Compiler Bug: Could not convert to Json

(2495)

2495.p4 Back end Fixed

Control Inlining: Key declaration not found (2542) 2542.p4 Front end Rejected

Some problems with function calls in struct initialization

(2543a)

2543a.p4 Mid end Fixed

Some problems with function calls in struct initialization

(2543b)

2543b.p4 Front end Fixed

Compiler Bug: Could not find type of for declaration of same

name (2544)

2544.p4 Front end Fixed

Continued on next page

62

https://github.com/p4lang/p4c/issues/2342
https://github.com/nyu-systems/gauntlet/tree/90234a63d56bf1028ca82a97323666898dd9717b/bugs/crash/fixed/2342.p4
https://github.com/p4lang/p4c/issues/2354
https://github.com/nyu-systems/gauntlet/tree/90234a63d56bf1028ca82a97323666898dd9717b/bugs/crash/fixed/2354.p4
https://github.com/p4lang/p4c/issues/2355
https://github.com/nyu-systems/gauntlet/tree/90234a63d56bf1028ca82a97323666898dd9717b/bugs/crash/fixed/2355.p4
https://github.com/p4lang/p4c/issues/2356
https://github.com/p4lang/p4c/issues/2356
https://github.com/nyu-systems/gauntlet/tree/90234a63d56bf1028ca82a97323666898dd9717b/bugs/crash/fixed/2356.p4
https://github.com/p4lang/p4c/issues/2357
https://github.com/nyu-systems/gauntlet/tree/90234a63d56bf1028ca82a97323666898dd9717b/bugs/crash/fixed/2357.p4
https://github.com/p4lang/p4c/issues/2359
https://github.com/nyu-systems/gauntlet/tree/90234a63d56bf1028ca82a97323666898dd9717b/bugs/crash/fixed/2359.p4
https://github.com/p4lang/p4c/issues/2362
https://github.com/p4lang/p4c/issues/2362
https://github.com/nyu-systems/gauntlet/tree/90234a63d56bf1028ca82a97323666898dd9717b/bugs/crash/fixed/2362.p4
https://github.com/p4lang/p4c/issues/2373
https://github.com/nyu-systems/gauntlet/tree/90234a63d56bf1028ca82a97323666898dd9717b/bugs/crash/fixed/2373.p4
https://github.com/p4lang/p4c/issues/2375
https://github.com/p4lang/p4c/issues/2375
https://github.com/nyu-systems/gauntlet/tree/90234a63d56bf1028ca82a97323666898dd9717b/bugs/crash/fixed/2375.p4
https://github.com/p4lang/p4c/issues/2393
https://github.com/nyu-systems/gauntlet/tree/90234a63d56bf1028ca82a97323666898dd9717b/bugs/crash/fixed/2393.p4
https://github.com/p4lang/p4c/issues/2435
https://github.com/nyu-systems/gauntlet/tree/90234a63d56bf1028ca82a97323666898dd9717b/bugs/crash/fixed/2435a.p4
https://github.com/p4lang/p4c/issues/2485
https://github.com/p4lang/p4c/issues/2485
https://github.com/nyu-systems/gauntlet/tree/90234a63d56bf1028ca82a97323666898dd9717b/bugs/crash/fixed/2485.p4
https://github.com/p4lang/p4c/issues/2486
https://github.com/p4lang/p4c/issues/2486
https://github.com/nyu-systems/gauntlet/tree/90234a63d56bf1028ca82a97323666898dd9717b/bugs/crash/rejected/2486.p4
https://github.com/p4lang/p4c/issues/2487
https://github.com/nyu-systems/gauntlet/tree/90234a63d56bf1028ca82a97323666898dd9717b/bugs/crash/fixed/2487.p4
https://github.com/p4lang/p4c/issues/2495
https://github.com/p4lang/p4c/issues/2495
https://github.com/nyu-systems/gauntlet/tree/90234a63d56bf1028ca82a97323666898dd9717b/bugs/crash/fixed/2495.p4
https://github.com/p4lang/p4c/issues/2542
https://github.com/nyu-systems/gauntlet/tree/90234a63d56bf1028ca82a97323666898dd9717b/bugs/crash/rejected/2542.p4
https://github.com/p4lang/p4c/issues/2543
https://github.com/p4lang/p4c/issues/2543
https://github.com/nyu-systems/gauntlet/tree/90234a63d56bf1028ca82a97323666898dd9717b/bugs/crash/fixed/2543a.p4
https://github.com/p4lang/p4c/issues/2543
https://github.com/p4lang/p4c/issues/2543
https://github.com/nyu-systems/gauntlet/tree/90234a63d56bf1028ca82a97323666898dd9717b/bugs/crash/fixed/2543b.p4
https://github.com/p4lang/p4c/issues/2544
https://github.com/p4lang/p4c/issues/2544
https://github.com/nyu-systems/gauntlet/tree/90234a63d56bf1028ca82a97323666898dd9717b/bugs/crash/fixed/2544.p4

Issue Location Compiler Stage Status

Calling an extern with a local variable: read-only error

(2545)

2545.p4 Mid end Fixed

Side-effect function call in table key (2546b) 2546b.p4 Front end Fixed

Compiler Bug : Null firstCall (2597) 2597.p4 Front end Fixed

Compiler Bug: Exiting with SIGSEGV (2648) 2648.p4 Mid end Fixed

simple_switch died with return code -6 (887) 887.p4 Back end Fixed

Table 4.6: Semantic Bugs found in open-source P4C.

Issue Location Compiler Stage Status

SimplifyDefUse incorrectly removes assignment in actions

with slices as arguments (2147)

2147.p4 Front end Fixed

Switchstatement: Assignment in switch-case removed (2153) 2153.p4 Mid end Fixed

Question about parser behavior with right shifts (2156) 2156.p4 Front end Fixed

Associative order of shift operators (2161) 2161.p4 Back end Fixed

RemoveReturns deletes return in SwitchStatements (2170) 2170.p4 Mid end Fixed

Assignment removed despite conditional return (2175) 2175.p4 Front end Fixed

Question on precise behavior of copy-out (2176) 2176.p4 Front end Fixed

Compiler Bug: At this point in the compilation typechecking

should not infer new types anymore, but it did. (2190)

2190a.p4 Front end Fixed

Question on side-effect ordering (2205) 2205.p4 Front end Fixed

Clarification question on setInvalid (2212) 2212.p4 Front end Rejected

StrengthReduction ignores side-effects in function calls

(2221)

2221.p4 Front end Fixed

Calling exit in actions after an assignment (2225) 2225.p4 Mid end Fixed

Predication pass leads to unsafe variable assignment (2248a) 2248a.p4 Mid end Fixed

Predication pass leads to unsafe variable assignment (2248b) 2248b.p4 Mid end Fixed

Missed side-effect case StrengthReduction (2287) 2287.p4 Front end Fixed

SideEffectOrdering: Regression? (2288a) 2288a.p4 Front end Fixed

Continued on next page

63

https://github.com/p4lang/p4c/issues/2545
https://github.com/p4lang/p4c/issues/2545
https://github.com/nyu-systems/gauntlet/tree/90234a63d56bf1028ca82a97323666898dd9717b/bugs/crash/fixed/2545.p4
https://github.com/p4lang/p4c/issues/2546
https://github.com/nyu-systems/gauntlet/tree/90234a63d56bf1028ca82a97323666898dd9717b/bugs/crash/fixed/2546b.p4
https://github.com/p4lang/p4c/issues/2597
https://github.com/nyu-systems/gauntlet/tree/90234a63d56bf1028ca82a97323666898dd9717b/bugs/crash/fixed/2597.p4
https://github.com/p4lang/p4c/issues/2648
https://github.com/nyu-systems/gauntlet/tree/90234a63d56bf1028ca82a97323666898dd9717b/bugs/crash/fixed/2648.p4
https://github.com/p4lang/behavioral-model/issues/887
https://github.com/nyu-systems/gauntlet/tree/90234a63d56bf1028ca82a97323666898dd9717b/bugs/simple_switch/fixed/887.p4
https://github.com/p4lang/p4c/issues/2147
https://github.com/p4lang/p4c/issues/2147
https://github.com/nyu-systems/gauntlet/tree/90234a63d56bf1028ca82a97323666898dd9717b/bugs/validation/fixed/2147.p4
https://github.com/p4lang/p4c/issues/2153
https://github.com/nyu-systems/gauntlet/tree/90234a63d56bf1028ca82a97323666898dd9717b/bugs/validation/fixed/2153.p4
https://github.com/p4lang/p4c/issues/2156
https://github.com/nyu-systems/gauntlet/tree/90234a63d56bf1028ca82a97323666898dd9717b/bugs/validation/fixed/2156.p4
https://github.com/p4lang/p4c/issues/2161
https://github.com/nyu-systems/gauntlet/tree/90234a63d56bf1028ca82a97323666898dd9717b/bugs/validation/fixed/2161.p4
https://github.com/p4lang/p4c/issues/2170
https://github.com/nyu-systems/gauntlet/tree/90234a63d56bf1028ca82a97323666898dd9717b/bugs/validation/fixed/2170.p4
https://github.com/p4lang/p4c/issues/2175
https://github.com/nyu-systems/gauntlet/tree/90234a63d56bf1028ca82a97323666898dd9717b/bugs/validation/fixed/2175.p4
https://github.com/p4lang/p4c/issues/2176
https://github.com/nyu-systems/gauntlet/tree/90234a63d56bf1028ca82a97323666898dd9717b/bugs/validation/fixed/2176.p4
https://github.com/p4lang/p4c/issues/2190
https://github.com/p4lang/p4c/issues/2190
https://github.com/nyu-systems/gauntlet/tree/90234a63d56bf1028ca82a97323666898dd9717b/bugs/validation/fixed/2190a.p4
https://github.com/p4lang/p4c/issues/2205
https://github.com/nyu-systems/gauntlet/tree/90234a63d56bf1028ca82a97323666898dd9717b/bugs/validation/fixed/2205.p4
https://github.com/p4lang/p4c/issues/2212
https://github.com/nyu-systems/gauntlet/tree/90234a63d56bf1028ca82a97323666898dd9717b/bugs/validation/rejected/2212.p4
https://github.com/p4lang/p4c/issues/2221
https://github.com/p4lang/p4c/issues/2221
https://github.com/nyu-systems/gauntlet/tree/90234a63d56bf1028ca82a97323666898dd9717b/bugs/validation/fixed/2221.p4
https://github.com/p4lang/p4c/issues/2225
https://github.com/nyu-systems/gauntlet/tree/90234a63d56bf1028ca82a97323666898dd9717b/bugs/validation/fixed/2225.p4
https://github.com/p4lang/p4c/issues/2248
https://github.com/nyu-systems/gauntlet/tree/90234a63d56bf1028ca82a97323666898dd9717b/bugs/validation/fixed/2248a.p4
https://github.com/p4lang/p4c/issues/2248
https://github.com/nyu-systems/gauntlet/tree/90234a63d56bf1028ca82a97323666898dd9717b/bugs/validation/fixed/2248b.p4
https://github.com/p4lang/p4c/issues/2287
https://github.com/nyu-systems/gauntlet/tree/90234a63d56bf1028ca82a97323666898dd9717b/bugs/validation/fixed/2287.p4
https://github.com/p4lang/p4c/issues/2288
https://github.com/nyu-systems/gauntlet/tree/90234a63d56bf1028ca82a97323666898dd9717b/bugs/validation/fixed/2288a.p4

Issue Location Compiler Stage Status

SideEffectOrdering: Regression? (2288b) 2288b.p4 Front end Fixed

MoveInitializers and parser loops (2314) 2314.p4 Front end Fixed

More questions on setInvalid (2323) 2323.p4 Front end Rejected

Another issue with Predication (2330) 2330.p4 Mid end Fixed

Another missed case of StrengthReduction (2343) 2343.p4 Front end Fixed

Inlining functions and duplicate table calls (2344) 2344.p4 Mid end Fixed

Incorrect transformation in Predication pass (2345b) 2345b.p4 Mid end Fixed

Follow-up issue on exit statements (2358a) 2358a.p4 Front end Fixed

Follow-up issue on exit statements (2358b) 2358b.p4 Front end Fixed

Def-Use and exit statements (2374) 2374.p4 Front end Rejected

InlineActions also seems to handle exit statements incor-

rectly (2382)

2382.p4 Front end Rejected

Clarification question on uninitialized local headers (2383) 2383.p4 Mid end Fixed

Question on comparison to negative constants (2392) 2392.p4 Front end Fixed

Inlining controls with out parameters (2470) 2470.p4 Front end Rejected

Side effects in StructInitializers (2488) 2488.p4 Front end Fixed

Follow-up on slice arguments (2498) 2498.p4 Front end Fixed

Side-effect function call in table key (2546b) 2546b.p4 Mid end Fixed

Fix: Predication issue (2564) 2564.p4 Mid end Fixed

Fix: Issue #2004 parser duplicated matches not optimized

out (2591)

2591.p4 Mid end Fixed

Predication: Another problem (2613) 2564.p4 Mid end Fixed

StrengthReduction: Incorrect slice optimization (2614) 2614.p4 Front end Fixed

Some more predication issues (2647) 2647a.p4 Mid end Fixed

64

https://github.com/p4lang/p4c/issues/2288
https://github.com/nyu-systems/gauntlet/tree/90234a63d56bf1028ca82a97323666898dd9717b/bugs/validation/fixed/2288b.p4
https://github.com/p4lang/p4c/issues/2314
https://github.com/nyu-systems/gauntlet/tree/90234a63d56bf1028ca82a97323666898dd9717b/bugs/validation/fixed/2314.p4
https://github.com/p4lang/p4c/issues/2323
https://github.com/nyu-systems/gauntlet/tree/90234a63d56bf1028ca82a97323666898dd9717b/bugs/validation/rejected/2323.p4
https://github.com/p4lang/p4c/issues/2330
https://github.com/nyu-systems/gauntlet/tree/90234a63d56bf1028ca82a97323666898dd9717b/bugs/validation/fixed/2330.p4
https://github.com/p4lang/p4c/issues/2343
https://github.com/nyu-systems/gauntlet/tree/90234a63d56bf1028ca82a97323666898dd9717b/bugs/validation/fixed/2343.p4
https://github.com/p4lang/p4c/issues/2344
https://github.com/nyu-systems/gauntlet/tree/90234a63d56bf1028ca82a97323666898dd9717b/bugs/validation/fixed/2344.p4
https://github.com/p4lang/p4c/issues/2345
https://github.com/nyu-systems/gauntlet/tree/90234a63d56bf1028ca82a97323666898dd9717b/bugs/validation/fixed/2345b.p4
https://github.com/p4lang/p4c/issues/2358
https://github.com/nyu-systems/gauntlet/tree/90234a63d56bf1028ca82a97323666898dd9717b/bugs/validation/fixed/2358a.p4
https://github.com/p4lang/p4c/issues/2358
https://github.com/nyu-systems/gauntlet/tree/90234a63d56bf1028ca82a97323666898dd9717b/bugs/validation/fixed/2358b.p4
https://github.com/p4lang/p4c/issues/2374
https://github.com/nyu-systems/gauntlet/tree/90234a63d56bf1028ca82a97323666898dd9717b/bugs/validation/rejected/2374.p4
https://github.com/p4lang/p4c/issues/2382
https://github.com/p4lang/p4c/issues/2382
https://github.com/nyu-systems/gauntlet/tree/90234a63d56bf1028ca82a97323666898dd9717b/bugs/validation/rejected/2382.p4
https://github.com/p4lang/p4c/issues/2383
https://github.com/nyu-systems/gauntlet/tree/90234a63d56bf1028ca82a97323666898dd9717b/bugs/validation/fixed/2383.p4
https://github.com/p4lang/p4c/issues/2392
https://github.com/nyu-systems/gauntlet/tree/90234a63d56bf1028ca82a97323666898dd9717b/bugs/validation/fixed/2392.p4
https://github.com/p4lang/p4c/issues/2470
https://github.com/nyu-systems/gauntlet/tree/90234a63d56bf1028ca82a97323666898dd9717b/bugs/validation/rejected/2470.p4
https://github.com/p4lang/p4c/issues/2488
https://github.com/nyu-systems/gauntlet/tree/90234a63d56bf1028ca82a97323666898dd9717b/bugs/validation/fixed/2488.p4
https://github.com/p4lang/p4c/issues/2498
https://github.com/nyu-systems/gauntlet/tree/90234a63d56bf1028ca82a97323666898dd9717b/bugs/validation/fixed/2498.p4
https://github.com/p4lang/p4c/issues/2546
https://github.com/nyu-systems/gauntlet/tree/90234a63d56bf1028ca82a97323666898dd9717b/bugs/validation/fixed/2546b.p4
https://github.com/p4lang/p4c/pull/2564
https://github.com/nyu-systems/gauntlet/tree/90234a63d56bf1028ca82a97323666898dd9717b/bugs/validation/pull_request/2564.p4
https://github.com/p4lang/p4c/pull/2591
https://github.com/p4lang/p4c/pull/2591
https://github.com/nyu-systems/gauntlet/tree/90234a63d56bf1028ca82a97323666898dd9717b/bugs/validation/pull_request/2591.p4
https://github.com/p4lang/p4c/issues/2613
https://github.com/nyu-systems/gauntlet/tree/90234a63d56bf1028ca82a97323666898dd9717b/bugs/validation/fixed/2613.p4
https://github.com/p4lang/p4c/issues/2614
https://github.com/nyu-systems/gauntlet/tree/90234a63d56bf1028ca82a97323666898dd9717b/bugs/validation/fixed/2614.p4
https://github.com/p4lang/p4c/issues/2647
https://github.com/nyu-systems/gauntlet/tree/90234a63d56bf1028ca82a97323666898dd9717b/bugs/validation/fixed/2647a.p4

Table 4.7: Crash Bugs found in BF-P4C (P4Studio 9.9.0).

Issue Name Compiler Stage Status

1 bug1.p4 Front end Rejected

2 bug2.p4 Front end Rejected

3 bug3.p4 Back end Rejected (Front-end issue)

4 bug4.p4 Front end Rejected

5 bug5.p4 Back end Fixed

6 bug6.p4 Back end Fixed

7 bug7.p4 Back end Fixed

8 bug8.p4 Back end Fixed

9 bug9.p4 Back end Fixed

10 bug10.p4 Back end Fixed

11 bug11.p4 Back end Fixed

12 bug12.p4 Back end Confirmed

13 bug13.p4 Back end Rejected (Front-end issue)

14 bug14.p4 Back end Fixed

15 bug15.p4 Back end Fixed

16 bug16.p4 Back end Fixed

17 bug17.p4 Back end Confirmed

18 bug18.p4 Back end Fixed

19 bug19.p4 Back end Fixed

20 bug20.p4 Back end Fixed

21 bug21.p4 Back end Fixed

22 bug22.p4 Back end Confirmed

23 bug23.p4 Back end Confirmed

24 bug24.p4 Back end Fixed

25 bug25.p4 Back end Fixed

26 bug26.p4 Back end Confirmed

27 bug27.p4 Back end Rejected (Front-end issue)

Continued on next page

65

https://github.com/nyu-systems/gauntlet/tree/90234a63d56bf1028ca82a97323666898dd9717b/bugs/bf-p4c/crash/rejected/bug1.p4
https://github.com/nyu-systems/gauntlet/tree/90234a63d56bf1028ca82a97323666898dd9717b/bugs/bf-p4c/crash/rejected/bug2.p4
https://github.com/nyu-systems/gauntlet/tree/90234a63d56bf1028ca82a97323666898dd9717b/bugs/bf-p4c/missing_pass/bug3.p4
https://github.com/nyu-systems/gauntlet/tree/90234a63d56bf1028ca82a97323666898dd9717b/bugs/bf-p4c/crash/rejected/bug4.p4
https://github.com/nyu-systems/gauntlet/tree/90234a63d56bf1028ca82a97323666898dd9717b/bugs/bf-p4c/crash/fixed/bug5.p4
https://github.com/nyu-systems/gauntlet/tree/90234a63d56bf1028ca82a97323666898dd9717b/bugs/bf-p4c/crash/fixed/bug6.p4
https://github.com/nyu-systems/gauntlet/tree/90234a63d56bf1028ca82a97323666898dd9717b/bugs/bf-p4c/crash/fixed/bug7.p4
https://github.com/nyu-systems/gauntlet/tree/90234a63d56bf1028ca82a97323666898dd9717b/bugs/bf-p4c/crash/fixed/bug8.p4
https://github.com/nyu-systems/gauntlet/tree/90234a63d56bf1028ca82a97323666898dd9717b/bugs/bf-p4c/crash/fixed/bug9.p4
https://github.com/nyu-systems/gauntlet/tree/90234a63d56bf1028ca82a97323666898dd9717b/bugs/bf-p4c/crash/fixed/bug10.p4
https://github.com/nyu-systems/gauntlet/tree/90234a63d56bf1028ca82a97323666898dd9717b/bugs/bf-p4c/crash/fixed/bug11.p4
https://github.com/nyu-systems/gauntlet/tree/90234a63d56bf1028ca82a97323666898dd9717b/bugs/bf-p4c/crash/bug12.p4
https://github.com/nyu-systems/gauntlet/tree/90234a63d56bf1028ca82a97323666898dd9717b/bugs/bf-p4c/missing_pass/bug13.p4
https://github.com/nyu-systems/gauntlet/tree/90234a63d56bf1028ca82a97323666898dd9717b/bugs/bf-p4c/crash/fixed/bug14.p4
https://github.com/nyu-systems/gauntlet/tree/90234a63d56bf1028ca82a97323666898dd9717b/bugs/bf-p4c/crash/fixed/bug15.p4
https://github.com/nyu-systems/gauntlet/tree/90234a63d56bf1028ca82a97323666898dd9717b/bugs/bf-p4c/crash/fixed/bug16.p4
https://github.com/nyu-systems/gauntlet/tree/90234a63d56bf1028ca82a97323666898dd9717b/bugs/bf-p4c/crash/bug17.p4
https://github.com/nyu-systems/gauntlet/tree/90234a63d56bf1028ca82a97323666898dd9717b/bugs/bf-p4c/crash/fixed/bug18.p4
https://github.com/nyu-systems/gauntlet/tree/90234a63d56bf1028ca82a97323666898dd9717b/bugs/bf-p4c/crash/fixed/bug19.p4
https://github.com/nyu-systems/gauntlet/tree/90234a63d56bf1028ca82a97323666898dd9717b/bugs/bf-p4c/crash/fixed/bug20.p4
https://github.com/nyu-systems/gauntlet/tree/90234a63d56bf1028ca82a97323666898dd9717b/bugs/bf-p4c/crash/fixed/bug21.p4
https://github.com/nyu-systems/gauntlet/tree/90234a63d56bf1028ca82a97323666898dd9717b/bugs/bf-p4c/crash/bug22.p4
https://github.com/nyu-systems/gauntlet/tree/90234a63d56bf1028ca82a97323666898dd9717b/bugs/bf-p4c/crash/bug23.p4
https://github.com/nyu-systems/gauntlet/tree/90234a63d56bf1028ca82a97323666898dd9717b/bugs/bf-p4c/crash/fixed/bug24.p4
https://github.com/nyu-systems/gauntlet/tree/90234a63d56bf1028ca82a97323666898dd9717b/bugs/bf-p4c/crash/fixed/bug25.p4
https://github.com/nyu-systems/gauntlet/tree/90234a63d56bf1028ca82a97323666898dd9717b/bugs/bf-p4c/crash/bug26.p4
https://github.com/nyu-systems/gauntlet/tree/90234a63d56bf1028ca82a97323666898dd9717b/bugs/bf-p4c/missing_pass/bug27.p4

Issue Name Compiler Stage Status

28 bug28.p4 Back end Rejected

29 bug29.p4 Back end Rejected (Front-end issue)

30 bug30.p4 Back end Fixed

31 bug31.p4 Back end Fixed

32 bug32.p4 Back end Rejected

33 bug33.p4 Back end Fixed

34 bug34.p4 Back end Rejected (Front-end issue)

35 bug35.p4 Back end Fixed

Table 4.8: Semantic bugs found in BF-P4C (P4Studio 9.9.0).

Issue Name Compiler Stage Status

1 semantic_bug1.p4 Back end Fixed

2 semantic_bug2.p4 Back end Fixed

3 semantic_bug3.p4 Back end Fixed

4 semantic_bug4.p4 Back end Fixed

5 semantic_bug5.p4 Back end Fixed

6 semantic_bug6.p4 Back end Rejected

7 semantic_bug7.p4 Back end Fixed

8 semantic_bug8.p4 Back end Fixed

9 semantic_bug9.p4 Back end Rejected

10 semantic_bug10.p4 Back end Rejected

66

https://github.com/nyu-systems/gauntlet/tree/90234a63d56bf1028ca82a97323666898dd9717b/bugs/bf-p4c/crash/rejected/bug28.p4
https://github.com/nyu-systems/gauntlet/tree/90234a63d56bf1028ca82a97323666898dd9717b/bugs/bf-p4c/missing_pass/bug29.p4
https://github.com/nyu-systems/gauntlet/tree/90234a63d56bf1028ca82a97323666898dd9717b/bugs/bf-p4c/crash/fixed/bug30.p4
https://github.com/nyu-systems/gauntlet/tree/90234a63d56bf1028ca82a97323666898dd9717b/bugs/bf-p4c/crash/fixed/bug31.p4
https://github.com/nyu-systems/gauntlet/tree/90234a63d56bf1028ca82a97323666898dd9717b/bugs/bf-p4c/crash/rejected/bug32.p4
https://github.com/nyu-systems/gauntlet/tree/90234a63d56bf1028ca82a97323666898dd9717b/bugs/bf-p4c/crash/fixed/bug33.p4
https://github.com/nyu-systems/gauntlet/tree/90234a63d56bf1028ca82a97323666898dd9717b/bugs/bf-p4c/missing_pass/bug34.p4
https://github.com/nyu-systems/gauntlet/tree/90234a63d56bf1028ca82a97323666898dd9717b/bugs/bf-p4c/crash/fixed/bug35.p4
https://github.com/nyu-systems/gauntlet/tree/90234a63d56bf1028ca82a97323666898dd9717b/bugs/bf-p4c/semantic/fixed/semantic_bug1.p4
https://github.com/nyu-systems/gauntlet/tree/90234a63d56bf1028ca82a97323666898dd9717b/bugs/bf-p4c/semantic/fixed/semantic_bug2.p4
https://github.com/nyu-systems/gauntlet/tree/90234a63d56bf1028ca82a97323666898dd9717b/bugs/bf-p4c/semantic/fixed/semantic_bug3.p4
https://github.com/nyu-systems/gauntlet/tree/90234a63d56bf1028ca82a97323666898dd9717b/bugs/bf-p4c/semantic/fixed/semantic_bug4.p4
https://github.com/nyu-systems/gauntlet/tree/90234a63d56bf1028ca82a97323666898dd9717b/bugs/bf-p4c/semantic/fixed/semantic_bug5.p4
https://github.com/nyu-systems/gauntlet/tree/90234a63d56bf1028ca82a97323666898dd9717b/bugs/bf-p4c/semantic/rejected/semantic_bug6.p4
https://github.com/nyu-systems/gauntlet/tree/90234a63d56bf1028ca82a97323666898dd9717b/bugs/bf-p4c/semantic/fixed/semantic_bug7.p4
https://github.com/nyu-systems/gauntlet/tree/90234a63d56bf1028ca82a97323666898dd9717b/bugs/bf-p4c/semantic/fixed/semantic_bug8.p4
https://github.com/nyu-systems/gauntlet/tree/90234a63d56bf1028ca82a97323666898dd9717b/bugs/bf-p4c/semantic/rejected/semantic_bug9.p4
https://github.com/nyu-systems/gauntlet/tree/90234a63d56bf1028ca82a97323666898dd9717b/bugs/bf-p4c/semantic/rejected/semantic_bug10.p4

5 | P4Testgen: Generating Test

Packets For Network-Device

Stacks

The model we built for Gauntlet’s translation validation is effective at validating the cor-

rectness of a P4 compiler. However, it has three major limitations: 1) It only describes

the core of the P4 language, i.e., it does not cover back-end-specific behaviors and program

constructs (most importantly externs). 2) It models the programmable blocks of a device

in isolation. There are no semantics describing how these blocks are linked together, what

happens between them, and how a device may execute them. 3) The components involved

in forwarding a packet in a network device extend beyond the compiler. The control plane,

the runtime API, and the device hardware all play a role.

One pragmatic approach to ensure these components are working as intended is to apply

end-to-end tests which exercise all necessary software layers and APIs. Typically, these tests

are input-output tests which describe the expected behavior for a particular set of inputs

and configuration. We can use the P4 program as a model to generate these tests and test

our networking device. At first glance, the task of generating tests for a given P4 program

seems straightforward. Prior work on Vera [221], p4pktgen [160], P4wn [119], Meissa [264],

SwitchV [9] and others has shown that it is possible to automatically generate tests using

67

techniques from the programming languages literature [123, 206, 89]. The precise details

vary from tool to tool, but the basic idea is to first use symbolic execution [13] to traverse a

path in the program, collecting a symbolic environment and a path constraint, and then use

an SMT solver1 to compute an executable test. The SMT solver fills in the input and output

packets from the symbolic environment and path constraint, and also computes the control-

plane configuration that is needed to execute the selected path—e.g., forwarding entries for

match-action tables.

This prior work, however, does not address the first two limitations mentioned above.

Existing tools have focused on specific targets (e.g., Tofino) and abstracted away important

details (e.g., non-standard packets and other “corner cases” in the language), which limits

their applicability in practice. In contrast, our goal is to develop a general and extensible

test oracle for P4 that can be readily applied to real-world P4 programs on arbitrary targets.

This means we must extend our model to cover these cases.

5.1 Introduction

P4Testgen is an extensible test oracle for the P416 [236] language. Given a P4 program and

sufficient time, it generates an exhaustive set of tests that cover every reachable statement

in the program. Each test consists of an input packet, control-plane configuration, and the

expected output packet.

P4Testgen generates tests to validate the implementation of a P4 program. Such tests

ensure that the device executing the P4 code (which we refer to as the “target” in this

chapter) and its toolchain (i.e., the compiler [34], control plane [231, 8], and various API

layers [162, 229, 228]) implement the behaviors specified by the P4 program.

Tests generated by P4Testgen can be used by manufacturers of P4-programmable equip-
1Just as we did with Gauntlet.

68

ment to validate the toolchains associated with their equipment [25, 107, 124, 87, 47, 147],

by P4 compiler writers for debugging optimizations and code transformations [34, 90], and

by network owners to check that both fixed-function and programmable targets implement

behaviors as specified in P4, including standard and custom protocols [264, 9].

The idea of generating an exhaustive set of tests for a given P4 program is not new.

However, prior work has largely focused on a specific P4 architecture [236, §4]. For ex-

ample, p4pktgen [160] targets BMv2 [232], Meissa [264] and p4v [140] target Tofino [25],

and SwitchV [9] targets fixed-function switches. The primary reason why these tools are

so specialized is development effort. Building P4 validation tools requires simultaneously

understanding (i) the P4 language, (ii) formal methods, and (iii) target-specific behaviors

and quirks. Finding developers that satisfy this trifecta even for a single target is already

challenging. Finding developers that can design a general tool for all targets is even harder.

The unfortunate result is that developer effort has been fragmented across the P4 ecosystem.

Most P4 targets today lack adequate test tooling, and advances made with one tool are

difficult to port over to other tools.

Our position is that this fragmentation is undesirable and largely avoidable. While there

may be scenarios that warrant the development of target-specific tools, in the common case—

i.e., generating input–output pairs for a given program—the desired tests can be derived from

the semantics of the P4 language, in a manner that is largely decoupled from the details of the

target. Developing a common, open-source platform for validation tools has several benefits.

First, common software infrastructure (lexer, parser, type checker, etc.) and an interpreter

that realizes the core P4 language semantics can be implemented just once and shared across

many tools. Second, because it is open-source, improvements can be contributed back to

P4Testgen and benefit the whole community.

P4Testgen combines several techniques in an open-source tool suitable for production

use. First, P4Testgen provides an extensible execution model for the whole program (“whole-

69

program semantics”), combining the semantics of the P4 code along with the semantics of

the target on which it is executed. A P4 program generally consists of several P4 blocks

(with semantics provided by the language specification) that are separated by interstitial

architecture-specific elements (with semantics provided by the target). P4Testgen is the

first tool that provides an execution model for such whole-program semantics, using a care-

fully designed interpreter based on the open-source P4 compiler (P4C) [34]. Second, while

P4Testgen ultimately uses an SMT solver to generate tests, it also handles the “awkward

squad” of complex functions that are difficult to model using SMT—e.g., checksums, unde-

fined values, randomness, and so on. To achieve this, P4Testgen uses taint tracking, concolic

execution, and a precise model of packet sizing to model the semantics of the program

accurately and at bit-level granularity. Third, P4Testgen offers advanced path selection

strategies that can efficiently generate tests that achieve full statement coverage, even for

large P4 programs that suffer from path explosion. In contrast to prior work, these strategies

are fully automated and do not require annotations to use effectively.

We implement P4Testgen’s execution model using the following key technical innovations:

1. Whole-program semantics: Most P4 targets perform processing that is not defined

by the P4 program itself and is target-specific. P4Testgen uses pipeline templates to suc-

cinctly describe the behavior of an entire pipeline as a composition of P4-programmable

blocks and interstitial target-specific elements.

2. Target-specific extensions: Many real-world P4 targets deviate from the P416 spec-

ification in ways small and large. To accommodate these deviations, P4Testgen’s ex-

tensible interpreter supports target-specific extensions to override default P4 behavior,

including initialization semantics and an intricate model of packet-sizing, which accom-

modates targets that modify packet sizes during processing.

3. Taint analysis: Targets can exhibit non-deterministic behavior, making it impossible

to predict test outcomes. To ensure that generated tests are reliable, P4Testgen uses

70

taint analysis to track non-deterministic portions of test outputs.

4. Concolic execution: Some targets have features that cannot easily be modeled using

an SMT solver. P4Testgen uses concolic execution [89, 206] to model features such as

hash functions and checksums.

5. Path selection strategies: Real-world P4 programs often have a huge number of

paths, making full path coverage infeasible. P4Testgen provides heuristic path selection

strategies that can achieve full statement coverage, usually with orders of magnitude

fewer tests than other approaches.

To validate our design for P4Testgen, we instantiated it for 5 different real-world targets

and their corresponding P4 architecture: the v1model [74] architecture for BMv2, the ebpf_-

model [242] architecture for the Linux kernel [62], the pna [235] architecture for the DPDK

SoftNIC [58], the tna [106] architecture for the Tofino 1 chip [25], and the t2na architecture

for the Tofino 2 chip [7]. All 5 instantiations implement whole-program semantics without

requiring modification to the core parts of P4Testgen. We have tested the correctness of the

P4Testgen oracle itself by generating input–output tests for example P4 programs of all listed

architectures. Executing P4Testgen’s tests using the appropriate target toolchains, we have

found 19 bugs in the toolchain of the Tofino compiler and 8 bugs in the toolchain of BMv2.

P4Testgen is available at the following URL: https://p4.org/projects/p4testgen.

5.2 Motivation and Challenges

While prior work has shown the feasibility of automatic test generation using symbolic ex-

ecution, existing tools have focused on specific targets (e.g., Tofino) and abstracted away

important details (e.g., non-standard packets and other “corner cases” in the language),

which limits their applicability in practice. In contrast, our goal for P4Testgen is to develop

a general and extensible execution model for P4 that can be readily applied to real-world

71

https://p4.org/projects/p4testgen

tna/t2a target detail

+ tna has ~48 extern functions and 6 programmable blocks [106]. t2na has over 100 externs and 7
programmable blocks.
+ Tofino 2 adds a programmable block, the ghost thread. This block can update information related to
queue depth in parallel with the packet traversing the program.
+ In the Tofino parser, if a packet is too short to be read by an extern (extract/advance/lookahead), the
packet is dropped, unless Tofino’s ingress control reads the parser error variable. Then the packet header
causing the exception is in an unspecified state [106, §5.2.1].
+ The packet that enters the Tofino parser is augmented with additional information, which needs to
be modeled. Tofino 1 and 2 prepend metadata to the packet [106, §5.1]. A 4-byte Ethernet frame check
sequence (FCS) is also appended. The parser can parse these values into P4 data structures.
+ If the egress port variable is not set in the P4 program, the packet is practically dropped (no unicast
copy is made) [106, §5.1].
+ The value of the output port in Tofino matters. Some values are associated with the CPU port or
recirculation, some are not valid, some forward to an output port. The semantics and validity of the ports
can be configured [106, §5.7].
+ Tofino follows the Ethernet standard. Packets must have a minimum size of 64 bytes. Otherwise, the
packet will be dropped [106, §7.2]. The exception to this rule is packets injected from the Tofino CPU
PCIe port.
+ The Tofino compiler provides annotations which can affect program semantics. Some annotations can
alter the size of the P4 metadata structure. If not handled correctly, this can affect the size of the output
packet [106, §11]. Another convenience annotation will initialize all otherwise random metadata to 0.
+ The Tofino compiler removes all fields that are not read in the P4 program from the egress metadata
structure. This influences the size of the packet parsed by the egress parser.
+ Invalid access to header stacks in a parse loop will not cause a StackOutOfBounds error. Instead,
execution transitions to the control block with PARSER_ERROR_CTR_RANGE set [106, §5.2.1].
+ Control plane keys in the Barefoot Runtime (Bfrt) may contain dollar signs ($). When generating
PTF/STF tests, these must be replaced using a compiler pass.
+ Tofino has a metadata variable, which tells the traffic manager to skip egress processing entirely [106,
§5.6].
+ Tofino 2 has a metadata variable, which instructs the deparser to truncate the emitted packet to the
specified size.

Table 5.1: A collection of tna/t2a target details that require whole-program semantics.

P4 programs on arbitrary targets. Achieving this goal requires overcoming several technical

challenges, described below.

(1) Missing inter-block semantics. A P4 program only specifies the target behavior

within the P4 programmable blocks in the architecture. It does not specify the execution

order of those blocks, or how the output of one block feeds into the input of the next, i.e.,

target-specific semantics in the interstices between blocks. For instance, Tofino’s tna and

t2na architectures contain independent ingress and egress pipelines, with a traffic manager

72

v1model target detail

+ v1model has ~26 extern functions and 6 programmable blocks [73].
+ BMv2’s default output port is 0 [73]. BMv2 drops packets when the egress port is 511.
+ When using Linux virtual Ethernet interfaces with BMv2, packets that are smaller than 14 bytes
produce a curious sequence of hex output (02000000) [193].
+ BMv2 supports a special technique to preserve metadata when recirculating a packet. Only the
metadata that is annotated with field_list and the correct index is preserved [73].
+ BMv2 supports the assume/assert externs which can cause BMv2 to terminate abnormally [96].
+ BMv2’s clone extern behaves differently depending on the location where it was called in the pipeline.
If recirculated in ingress, the cloned packet will have the values after leaving the parser and will be directly
sent to egress. If cloned in egress, the recirculated packet will have the values after it was emitted by the
deparser [73].
+ BMv2 has an extern that takes the payload into account for checksum calculation. This means a
payload must always be synthesized for this extern [73].
+ A parser error in BMv2 does not drop the packet. The header that caused the error will be invalid and
execution skips to ingress [73].
+ All uninitialized variables are implicitly initialized to 0 or false in BMv2.
+ Some v1model programs include P4Constraints, which limits the types of control plane entries that
are allowed for a particular table.
+ The table implementation in BMv2 supports the priority annotation, which changes the order of
evaluation of constant table entries.

Table 5.2: A collection of v1model target details that require whole-program semantics.

ebpf_model target detail

+ ebpf_model has 2 extern functions and 2 programmable blocks.
+ The eBPF target does not have a deparser that uses emit calls. It can only filter.
+ extract or advance have no effect on the size of the outgoing packet.
+ A failing extract or advance in the eBPF kernel automatically drops the packet.

Table 5.3: A collection of ebpf_model target details that require whole-program semantics.

between them. The traffic manager can forward, drop, multicast, clone, or recirculate pack-

ets, depending on their size, content, and associated metadata. As another example, the

P4 specification states that, if extracting a header fails because the packet is too short, the

parser should step into reject and exit [236, §12.8.1]. However, the semantics after exiting

the reject state is left up to the target: some drop the packet, others consider the header

uninitialized, while others silently add padding to initialize the header. None of these be-

haviors are captured by the P4 program itself. P4Testgen offers features for describing such

inter-block semantics (§5.4).

73

(2) Target-specific intra-block semantics. Even though P4 describes the behav-

ior of a programmable block, targets may also have different intra-block semantics, i.e., they

interpret the P4 code within the programmable block differently. The P4 specification dele-

gates numerous decisions to targets, and they may not implement all parts of the specifica-

tion. For instance, hardware restrictions can make it difficult to implement parser exceptions

faithfully [94]. Match-action table execution can also be customized using target-specific

properties (e.g., action profiles) and annotations can influence the semantics of headers and

other language constructs in subtle ways. See Table 5.1, 5.2, and 5.3 for a (non-exhaustive)

list of target-specific deviations. Where possible, we cited a source. Some details are not

explicitly documented. As part of its whole-program semantics model, P4Testgen offers a

flexible abstract machine based on an extensible class hierarchy, which makes it easy to

accommodate target-specific refinements of the P4 specification.

(3) Unpredictable program behavior. Not all parts of a P4 program are well-specified

by the code. For instance, reading from an uninitialized variable may return an undefined

value. P4 programs may also invoke arbitrary extern functions, such as pseudo-random

number generators, which produce unpredictable output. To ensure that generated tests

are deterministic, P4Testgen needs facilities to track program segments that may cause un-

predictable output. P4Testgen uses taint-tracking to keep track of unpredictable bits in the

output (§5.4.4), ensuring that it never produces nondeterministic tests unless explicitly asked

to do so.

(4) Complex primitives. Like other automated test generation tools, P4Testgen relies

on a first-order theorem prover to compute input–output tests. However, not all primitives

can easily be encoded into first-order logic—e.g., checksums and other hash functions, or

programs that modify the size of the packet using dynamic values. For instance, consider a

program that uses the advance function to increment the parser cursor by an amount that

74

depends on values within the symbolic input header. Modeling this behavior precisely either

requires bit vectors of symbolic width, which is not well-supported in theorem provers, or

branching on every possible value, which is impractical. P4Testgen uses concolic execution

to accommodate computations which cannot be encoded into first-order logic (§5.4.5).

(5) Path explosion. By default, P4Testgen uses depth-first search (DFS) to select paths

throughout the P4 program. It does not prioritize any path and explores all valid paths to

exhaustion. However, real-world P4 programs often have dense parse graphs and large match-

action tables, so the number of possible paths grows exponentially [140, 221]. Achieving full

path coverage would require generating an excessive number of tests. P4Testgen provides

strategies for controlling the selection of paths, including random strategies and coverage-

guided heuristics that seek to follow paths containing previously unexplored statements.

These strategies enable achieving full statement coverage with orders of magnitude fewer

tests compared to other approaches (§5.5).

Outlook. To our knowledge, P4Testgen is the first test generation tool for P4 that meets

all of these challenges. Moreover, P4Testgen has been designed to be fully extensible, and

it is freely available online under an open-source license, as a part of P4C. P4Testgen has

become a valuable resource for the P4 community, providing the necessary infrastructure to

rapidly develop accurate test oracles for a wide range of P4 architectures and targets, and

generally reducing the cost of designing, implementing, and validating data planes with P4.

5.3 P4Testgen Overview

As shown in Fig. 5.1, we implement P4Testgen’s execution model using symbolic execution.

The tool selects a path in the program, encodes the associated path constraint in SMT

logic, and then solves the constraint using an SMT solver. If it finds a solution to the

75

P4
program

SMT solver
(Z3)

test3
test2

test1Emitted test
cases

(1) P4Testgen front end

Target program optimizations
(v1model, tna, ebpf,...)

(2) P4Testgen oracle

P4 semantics
Target semantics

(v1model, tna, ebpf,...) (3) Abstract test generator

Target test generators
(STF, PTF, Protobuf,...)

Figure 5.1: The P4Testgen test case generation process.

constraint, then it emits a test comprising an input packet, output packets, and any control-

plane configuration required to execute the path. If it finds no solution, then the path

is infeasible. Along with the generated tests, P4Testgen reports which segments of the

program (statements, externs, actions) are covered by each test. P4Testgen’s workflow can

be summarized as a three-step process.

Step 1: Translate the input program and target into a symbolically exe-

cutable representation. P4Testgen takes as input a P4 program, the target architec-

ture, and the desired test framework (e.g., STF [32] or PTF [233]). It parses the P4 program

and converts it into the P4C intermediate representation language (P4C-IR). P4Testgen

then transforms the parsed P4C-IR into a simplified form that makes symbolic execution

easier, e.g., P4Testgen unrolls parser loops and replaces runtime indices for header stacks

with conditionals and constant indices. The correctness of P4Testgen’s tests is predicated

on the correctness of the P4C front end and these transformations.

Step 2. Execute the program and generate the test case specification. Af-

ter the input program has been parsed and transformed, P4Testgen symbolically executes the

program by stepping through individual AST nodes (parser states, tables, statements). By

default, the P4Testgen interpreter provides a reference implementation for each P4 construct.

76

However, each step can be customized to reflect target-specific semantics by overriding meth-

ods in the symbolic executor. Targets must also define whole-program semantics (§5.4) that

describe how individual P4 blocks are chained together (i.e., the order in which a packet tra-

verses the P4 blocks), what kind of parsable data can be appended or prepended to packets

(e.g., frame check sequences), and how target system data (also called intrinsic metadata)

is initialized. Importantly, this target-specific information can be inferred from the doc-

umentation for the P4 architecture or the target itself. Detailed knowledge of hardware

microarchitecture is not necessary.

Step 3. Emit the test case. Once P4Testgen has executed a path, it emits an abstract

test specification, which describes the expected system state (e.g., registers and counters) and

output packets for the given packet input and control-plane configuration. This abstract test

specification is then concretized for execution on different test frameworks (STF, PTF, etc.).

5.3.1 P4Testgen in Action

As an example to illustrate the use of P4Testgen, consider two P4 programs, as shown in

Fig. 5.2, written for a fictitious, BMv2-like target with a single parser and control block.

Example 1. In the first program (Fig. 5.2a), Ethernet packets are forwarded based on

a table that matches on the EtherType field. There are four different input–output pairs

that could be generated. The first pair is a valid Ethernet packet, but no table entries are

associated with the input. Since the default action is noop, the output port of the packet

does not change. The second pair is a configuration with a table entry that executes set_out

whenever h.eth.type matches a given value. Since the program previously set h.eth.type

to 0xBEEF, the table entry must match on 0xBEEF. The output port is defined by the control

plane. The third pair is similar, except noop is chosen as the action, which does not alter

77

1 parser Parser(...) {
2 pkt.extract(hdr.eth);
3 transition accept;
4 }
5 control Ingress(...) {
6 action set_out(bit<9> port) {
7 meta.output_port = port;
8 }
9 table forward_table {

10 key = { h.eth.type: exact; @name("type") }
11 actions = { noop; // Default action.
12 set_out; }
13 }
14 h.eth.type = 0xBEEF;
15 forward_table.apply();
16 }

Size Port eth.dst eth.src eth.type
--- Test 1 ---
Input: 112 0 000000000000 000000000000 0000
Output: 112 0 000000000000 000000000000 BEEF
--- Test 2 ---
Input: 112 0 000000000000 000000000000 0000
Output: 112 2 000000000000 000000000000 BEEF
Table Config: match(type=0xBEEF),action(set_out(2))
--- Test 3 ---
Input: 112 0 000000000000 000000000000 0000
Output: 112 0 000000000000 000000000000 BEEF
Table Config: match(type=0xBEEF),action(noop())
--- Test 4 ---
Input: 96 0 000000000000 000000000000
Output: 96 0 000000000000 000000000000

(a) P4 program that forwards using the source MAC.
1 parser Parser(...) {
2 pkt.extract(hdr.eth);
3 transition accept;
4 }
5 control Verify(...) {
6 meta.checksum_err = verify_checksum(
7 hdr.eth.isValid(),
8 {hdr.eth.dst, hdr.eth.src},
9 hdr.eth.type);

10 }
11 control Ingress(...) {
12 if (meta.checksum_err == 1) {
13 mark_to_drop(); // Drop packet.
14 }
15 }

Size Port eth.dst eth.src eth.type
--- Test 1 ---
Input: 112 0 BADC0FFEE0DD F00DDEADBEEF
Output: 112 0 BADC0FFEE0DD F00DDEADBEEF
--- Test 2 ---
Input: 112 0 BADC0FFEE0DD F00DDEADBEEF FFFF
--- Test 3 ---
Input: 112 0 BADC0FFEE0DD F00DDEADBEEF 7072
Output: 112 0 BADC0FFEE0DD F00DDEADBEEF 7072

(b) P4 program that validates the Ethernet checksum.
Figure 5.2: P4Testgen test examples. “Port” denotes the input–output port. “Size” is the packet
bit-width.

78

the output port. For the last input pair, the packet is too short and the extract call

fails. Hence, the target stops parsing and continues to the control block. For this particular

target, the packet will be emitted, but forward_table will not execute because the match

key is uninitialized. P4Testgen is able to generate four distinct tests for this program. For

input–output pairs 2 and 3, P4Testgen synthesizes control plane entries, which execute

the appropriate action. For input–output pair 4, P4Testgen makes use of its packet sizing

(§ 5.4.3.1) implementation to generate a packet that is too short. P4Testgen uses taint

tracking (§ 5.4.4) to identify that h.eth.type is uninitialized. Since this target will not

match on uninitialized keys, P4Testgen does not generate an entry for forward_table.

Example 2. The second program (Fig. 5.2b) parses an Ethernet header. If it is valid (line

7), the program tests whether the checksum computed on hdr.eth.dst and hdr.eth.src

(lines 6–9) corresponds to the value in field hdr.eth.type (line 10).2 If not, meta.checksum_err

is set to true and the packet is dropped. This program produces three distinct input–output

pairs. The first pair is an input packet that is too short, which causes the Ethernet header

to be invalid. Hence, verify_checksum is not executed, the error is not set, and the packet

is forwarded. The second and third input–output pairs include a valid Ethernet header. In

the second pair, hdr.eth.type matches the computed checksum value and the packet is

forwarded. In the third pair, the value does not match and the packet is dropped. Note

that for input–output pairs 2 and 3, P4Testgen uses concolic execution (§ 5.4.5) to model

the checksum computation. P4Testgen picks a random concrete assignment to hdr.eth.dst

and hdr.eth.src, computes the checksum, and compares the result to hdr.eth.type. As

there are no other restrictions on the value of hdr.eth.dst and hdr.eth.src, P4Testgen

produces tests where the checksum either matches (test 3) or does not match (test 2).
2Note this is a non-standard use of EtherType for the sake of the example.

79

Summary. As shown, P4Testgen prefers to maximize program coverage even though it may

lead to path explosion. The behaviors exhibited by the tests in Fig. 5.2 are possible on the

underlying targets and testing them is important. Indeed, we have used P4Testgen to uncover

a variety of bugs in compilers, drivers, and software models—see §5.7 for details. Moreover,

these bugs were not for toy programs or early versions of systems under development. Rather,

they were found in production code for mature systems that had already undergone extensive

validation with traditional testing.

5.4 An Extensible Execution Model for P4

The symbolic execution of P4 programs requires a model of not only the P4 code blocks

(parsers, controls, etc.), but also the transformations performed by the rest of the target.

However, the P4 language does not specify the behavior of the target architecture (e.g.,

the order of execution of P4 programmable blocks). P4Testgen addresses this limitation

with whole-program semantics, implemented via a flexible abstract machine and pipeline

templates.

5.4.1 P4Testgen’s Abstract Machine

Fig. 5.3 summarizes the design of the abstract machine that powers P4Testgen’s symbolic

executor. It has standard elements, such as a stack frame, symbolic environment, and so

on, as well as a continuation, which encodes the rest of the computation. A full treatment

of continuations [181] is beyond the scope of our work. In a nutshell, continuations make it

easy to encode non-linear control flow such as packet recirculation, which many P4 architec-

tures support, and they also preserve execution contexts across paths, which is helpful for

implementing different path selection heuristics.

80

class ExecutionState {
// Small-step Evaluator: can be overriden by targets
friend class SmallStepEvaluator;
// Symbolic Environment: maps values to variables
SymbolicEnv env;
// Visited: previously-visited nodes for coverage
P4::Coverage::CoverageSet visitedNodes;

// Path Constraint: must be satified to execute this path
std::vector<const IR::Expression *> pathConstraint;
// Stack: tracks namespaces, declarations, and scope
std::stack<const StackFrame &>> stack;
// Continuation: remainder of the computation
Continuation::Body body;
...

}

Figure 5.3: Execution state for P4Testgen’s abstract machine.

5.4.2 The Pipeline Template

Pipeline templates are a succinct mechanism for describing the pipeline state and control

flow for an architecture—and with those two, its inter-block semantics. By default, they

capture the common case where the state associated with the packet simply flows between

P4-programmable blocks in a straightforward manner—e.g., by copying output variables of

one block to the input variables of the next. P4Testgen also handles more complicated forms

of packet flow in the architecture, such as recirculation, but this requires writing explicit

code against the abstract machine.

5.4.2.1 Pipeline State

Pipeline state describes the per-packet data that is transferred between P4-programmable

blocks. Fig. 5.4 shows the pipeline state description for the v1model in a simple C++

DSL. The objects listed in the data structure are mapped onto the programmable blocks

in the top-level declaration of a P4 program (shown in comments). The declaration order

of these objects determines the order in which the blocks are executed by default, but this

81

ArchitectureSpec("V1Switch", {
// parser Parser<H, M>(packet_in b,
// out H parsedHdr,
// inout M meta,
// inout standard_metadata_t sm);
{"Parser", {none, "*hdr", "*meta", "*sm"}},
// control VerifyChecksum<H, M>(inout H hdr,
// inout M meta);
{"VerifyChecksum", {"*hdr", "*meta"}},
// control Ingress<H, M>(inout H hdr,
// inout M meta,
// inout standard_metadata_t sm);
{"Ingress", {"*hdr", "*meta", "*sm"}},
// control Egress<H, M>(inout H hdr,
// inout M meta,
// inout standard_metadata_t sm);
{"Egress", {"*hdr", "*meta", "*sm"}},
// control ComputeChecksum<H, M>(inout H hdr,
// inout M meta);
{"ComputeChecksum", {"*hdr", "*meta"}},
// control Deparser<H>(packet_out b, in H hdr);
{"Deparser", {none, "*hdr"}}});

Figure 5.4: The pipeline state for the v1model architecture. Comments describe the associated P4
block. The word none indicates parameters irrelevant to the state.

can be overridden by the pipeline control flow based on a packet’s per-packet data values.

Arguments with the same name are threaded through the programmable blocks in execution

order. For example, the *hdr parameter in the parser is first set to undefined, as it is used

in an out position as shown in the comments in Fig. 5.4. After executing the parser, it is

copied into the checksum unit, then to the ingress control, etc.

5.4.2.2 Pipeline Control Flow

P4Testgen allows extension developers to provide code to model arbitrary interpretation of

the pipeline state. Fig. 5.5 shows an example of a P4 program snippet being interpreted in

the context of P4Testgen’s pipeline control flow. The target is a fictitious target with an

implicit traffic manager between ingress and egress pipelines. The green dashed segments in

the figure are target-defined and interpret the variables set in the Ingress control block. If

82

1 control Ingress(...) {
2 if (hdr.ip.ttl == 0) {
3 // Drop packet
4 m.drop = 1;
5 }
6 if (hdr.ip.ttl == 1) {
7 // Resubmit packet
8 resubmit.emit(m);
9 }

10 }
11 Pipeline(
12 I_Parser(), Ingress(),

I_Deparser(),
13 E_Parser(), Egress(),

E_Deparser()
14) pipe;

(a) P4 program snippet that sets metadata
state.

Traffic manager

m.drop?m.recirculate?

attach_
metadata() Parser Control Deparser

Ingress pipe

Parser Control Deparser

Egress pipe

Emit

Drop

(b) P4Testgen control-flow. Dashed segments are target-
defined. 7 is false

Figure 5.5: P4Testgen’s pipeline control flow.

m.drop is set, the packet will be dropped by the traffic manager, skipping execution of the

entire egress pipeline. If the resubmit.emit() is called, m.recirculate will implicitly be

set, causing P4Testgen to reset all metadata and reroute the execution back to the ingress

parser. We have modeled this control flow for targets such as v1model, tna, and t2na.

5.4.3 Handling Target-Specific Behavior

Targets have different intra-block semantics and diverge in their interpretation of core P4 lan-

guage constructs. P4Testgen is structured such that every function in the abstract machine

can be overridden by target extensions. For example, the v1model P4Testgen extension over-

rides the canonical P4Testgen table continuation to implement its own annotation semantics

(e.g., the “priority” annotation, which reorders the execution of constant table entries based

on the value of the annotation). Targets may also reinterpret core parsing functions (e.g.,

extract, advance, lookahead).

83

5.4.3.1 Our Approach to Packet-Sizing

One area where there is significant diversity among targets is in the semantics of opera-

tions that change the size of the packet. Some paths in a P4 program are only executable

with a specific packet size. P4 externs such as extract can throw exceptions when the packet

is too short or malformed. These packet paths are often sparsely tested when developing a

new P4 target and toolchain. Particularly on hardware targets, packets with an unexpected

size may not be parsed as expected. Correspondingly, P4Testgen must be able to control the

size of the input packet (Challenge 2). And, since some of these inputs may trigger parser

exceptions, it also needs to model the impact these exceptions have on the content and length

of the packet. P4Testgen implements packet-sizing by making the packet size a symbolic

variable in the set of path constraints. This encoding turns out to be non-trivial. Since the

required packet size to traverse a given path is now a symbolic variable, it is only known after

the SMT solver is invoked. However, at the same time, externs in P4 manipulate the size of

the packets (e.g., extract calls shorten while emit calls lengthen the packet), which requires

careful bookkeeping in first-order logic. Targets also react differently to specific packet sizes

(e.g., BMv2 produces garbage values for 0-length packets [193], whereas Tofino drops packets

smaller than 64 bytes [106, §7.2]). Lastly, some targets add and remove content from the

packet (e.g., Tofino adds internal metadata to the packet [106, §5.1]). Any packet-sizing

mechanism needs to handle these challenges, while remaining target independent.

Our approach is to model packet-sizing as described in the P4 specification. For each

program path, we calculate the minimum header size required to successfully exercise the

path without triggering a parser exception. The packet-sizing model defines and manipulates

three symbolic bit vector variables: the required input packet (𝐼), the live packet (𝐿), and
the emit buffer (𝐸). The input packet 𝐼 represents the minimum header content required

to reach a particular program point without triggering an exception. The live packet 𝐿

84

1 parser IngressParser(...) {
2 state start {
3 pkt.extract(ingress_meta);
4 pkt.extract(hdr.eth);
5 pkt.extract(hdr.ipv4);
6 }
7 }
8
9 control IngressControl(...) {

10 apply {}
11 }
12
13 control IngressDeparser(...) {
14 apply {
15 pkt.emit(ingress_meta);
16 pkt.emit(hdr.eth);
17 pkt.emit(hdr.ipv4);
18 }
19 }
20
21 parser EgressParser(...) {
22 state start {
23 pkt.extract(egress_meta);
24 pkt.extract(hdr.eth);
25 }
26 }
27
28 control EgressControl(...) {
29 apply {}
30 }
31
32 control EgressDeparser(...) {
33 apply {
34 pkt.emit(hdr.eth);
35 }
36 }
37
38 Pipeline(
39 IngressParser(), IngressControl(),
40 IngressDeparser(),
41 EgressParser(), EgressControl(),
42 EgressDeparser()
43) pipe;

(a) Extern sequence manipulating
Ethernet and IPv4 headers.

extract(hdr.eth)

extract(ingress_meta)

prepend(ingress_meta)

emit(hdr.eth)

extract(hdr.eth)

extract(egress_meta)

prepend(egress_meta)

emit(hdr.eth)

Required
input

packet
Live

packet
Emit
buffer

prepend_emit_buffer

extract(hdr.ip)

emit(hdr.ip)

prepend_emit_buffer

Egress
Pipe

Ingress
Pipe

et
h

et
h

et
h

et
h

et
h

et
h

et
h

et
h

ip
ip

ip
ip

ip
ip

ip

et
h

et
h

ip
ip

Operations

Final test
 input packet

Final test
output packet

et
h*

m
*

et
h*

ip
*

ip
*

et
h*

ip
*

ip
*

et
h*

*

ip
*

m

ip
*

 Legend
 Target-defined operation
 P4-defined operation

Steps through pipe

et
h*

et
h* ip
*

et
h*

*

(b) Change in the packet sizing variables as P4Testgen steps
through the program. Each block corresponds to a P4 header.

Figure 5.6: Packet-sizing for a Tofino program.

85

represents the packet header content available to the interpreter stepping through the P4

program, e.g., extract will consume content from 𝐿. The emit buffer 𝐸 is a helper variable

that accumulates the headers produced by emit. This is necessary to preserve the correct

order of headers, as prepending headers to 𝐿 each time emit is executed would cause it to

be inverted.

Initially, all variables are zero-width bit vectors. While traversing the program, parser

externs (e.g., extract or advance) in the P4 program slice data from the live packet 𝐿. If

𝐿 is empty (meaning we have run out of packet header data), P4Testgen allocates a new

symbolic packet header and adds it to 𝐼 . Targets may augment the input packet with custom

parsable data (e.g., metadata) that reduces the input packet needed to avoid triggering a

parser exception. Correspondingly, this content is added to the live packet variable 𝐿. Once

P4Testgen has finished executing a path, 𝐼 will denote the content of the final input packet

in the generated test. 𝐿, on the other hand, will correspond to the content of the expected

packet output. Fig. 5.6 illustrates the variables used for an example pipeline.

This design also handles multi-parser, multi-pipe targets, such as Tofino. Each Tofino

pipeline has two parsers: ingress and egress. The egress parser receives the packet (𝐿)
after the ingress pipeline and traffic manager. If the egress parser runs out of content in 𝐿,
P4Testgen must again append symbolic content to 𝐼 , increasing the size of the minimum

packet required to parse successfully.

5.4.4 Controlling Unpredictable Behavior

Many P4 programs are non-deterministic, which can lead to unpredictable outputs (Chal-

lenge 3). To avoid generating “flaky” tests, we use taint analysis [204]. As P4Testgen steps

through the program, we keep track of which bits have a known value (i.e., “untainted”),

and which bits have an unknown value (i.e., “tainted”). For example, a declaration of a

variable that is not initialized and reads from random memory will be designated as tainted.

86

The result of any operation that references a tainted variable will also be tainted. Later,

when generating tests, we use the taint to avoid generating tests that might fail—i.e., due

to testing tainted values. For example, if the output packet contains taint, we know that

certain bits are unreliable. We use test-framework-specific facilities (e.g., “don’t care” masks)

to ignore tainted output bits. On the other hand, if the output port is tainted and the test

framework does not support wildcards for the output port, P4Testgen cannot reliably predict

the output, so we drop the test and issue a warning.

Mitigating taint spread. A common issue with taint analysis is taint spread, the pro-

liferation of taint throughout the program, quickly tainting most of the state. In extreme

situations, taint spread can make test generation almost useless, as the generated tests have

many “don’t care” wildcards. To mitigate taint spread, we use a few heuristics. First, we

apply optimizations to eliminate unnecessary tainting (for example, multiplying a tainted

value with 0 results in 0). Second, we exploit freedom in the P4 specification to avoid taint.

For example, when a ternary table key is tainted, we insert a wildcard entry that always

matches. Third, we model target-specific determinism. For example, the Tofino compiler

provides an annotation that initializes all target metadata with 0. Applying these heuristics

significantly reduces taint in practice.

Applying taint analysis. In our experience, taint analysis is essential for ensuring that

P4Testgen can generate predictable tests. It substantially reduces the signal-to-noise ratio

for validation engineers, enabling them to focus on analyzing genuine bugs rather than

debugging flaky tests. And, although it was not intended for this purpose, P4Testgen’s taint

analysis can be used to track down undefined behavior in a P4 program. P4Testgen does this

by offering a “restricted mode,” which triggers an assertion when the interpreter reads from

an undefined variable on a particular path. The more “correctly” a P4 program is written

(i.e., by carefully validating headers), the less taint (and fewer assertions) it produces.

87

Prototyping extensions using taint. Another useful byproduct of taint analysis is

the ability to easily prototype a P4Testgen extension and its externs. Rather than imple-

menting the entire P4Testgen extension at once, a developer can substitute taint variables

for the parts that may need time-intensive development (a form of angelic programming [24]).

By constraining the non-determinism of the unimplemented parts of the extension, it is pos-

sible to generate deterministic tests early. We used this approach to generate initial stubs

for many externs (e.g., checksums, meters, registers) before implementing them precisely.

5.4.5 Supporting Complex Functions

To handle complex functions that cannot be easily encoded into first-order logic (Challenge 4),

P4Testgen uses concolic execution [89, 206]. Concolic execution is an advanced technique that

combines symbolic and concrete execution. In a nutshell, it leaves hard-to-model functions

unconstrained initially, and adds constraints later using the concrete implementation of the

function. The verify_checksum function described in § 5.3.1 is an example where concolic

execution is necessary. The checksum computation is too complex to be expressed in first-

order logic. Instead, we model the return value of the checksum as an uninterpreted function

dependent on the input arguments of the extern. While P4Testgen’s interpreter steps through

the program, this uninterpreted function acts as a placeholder. If the function becomes part

of a path constraint, the SMT solver is free to fill it in with any value that satisfies the

constraint.

Once we have generated a full path, we need to assign a concrete value to the result of the

uninterpreted function. First, we invoke the SMT solver to provide us with concrete values

for the input arguments of the uninterpreted function that satisfy the path constraints we

have collected on the rest of the path. Second, we use these input arguments as inputs to

the actual extern implementation (e.g., the hash function executed by the target). Third,

we add equations to the path constraints that bind all the values we have calculated to the

88

appropriate input arguments and output of the function. We then invoke the solver a second

time to assess whether the result computed by the concrete function satisfies all of the other

constraints in the path. If so, we are done and can generate a test with all the values we

calculated.

Handling unsatisfiable concolic assignments. In some cases, the newly generated

constraints cannot be satisfied using the inputs chosen by the SMT solver. In practice, retry-

ing by generating new inputs may not lead to a satisfiable outcome. Before discarding this

path entirely, we try to apply function-specific optimizations to produce better constraints

for the concolic calculation. For example, the verify_checksum function (see also §5.3.1)

tries to match the computed checksum of input data with an input reference value. If the

computed checksum does not match with the reference value, verify_checksum reports a

checksum mismatch. Instead of retrying to find a potential match, we add a new path that

forces the reference value to be equal to the computed checksum. This path is satisfiable if

the reference value is derived from symbolic inputs, which is often the case. Note that in

situations where the reference value is a constant, we are unable to apply this optimization.

5.5 Path Selection Strategies

Methodologies that assess the program coverage of tests have become standard software

engineering practice. While path coverage is often infeasible (as the number of paths grows

exponentially), statement coverage, also known as line coverage, has been proposed as a good

metric for evaluating a test suite [35]. P4Testgen allows users to pick from several different

path selection strategies to produce more diverse tests, including Random Backtracking and

Coverage-Optimized Search. As the name suggests, Random Backtracking simply jumps

back to a random known branch point in the program once P4Testgen has generated a test.

89

Coverage-Optimized Search is similar to the concept with the same name in Klee [35]. After

a new test has been generated, it selects the first path from all unexplored paths it has

seen so far that will execute P4 statements that have not yet been covered. If no path with

new statements can be found, Coverage-Optimized Search falls back to random backtracking

until a path with new statements is discovered. This greedy search covers new statements

quickly, but at the cost of higher memory usage (because it accumulates unexplored paths

with low potential) and slower per-test case performance. We measure how these strategies

perform on large P4 programs in §5.7.3. Our path selection framework is extensible, allowing

us to integrate many different selection strategies. We can easily add other success metrics,

such as table, action, or parser state coverage.

Targeted test generation with preconditions. Path selection strategies guide

test case generation towards a goal, but they do not select for a specific type of test.

P4Testgen also gives users the ability to instrument their P4 program with a custom ex-

tern (testgen_assume). This P4Testgen-intrinsic extern adds a path constraint on vari-

ables accessible within the P4 program (e.g., h.eth_hdr.eth_type == 0x0800), which forces

P4Testgen to only produce tests that satisfy the provided constraint. Assume statements

are similar to p4v’s assumptions [140], Vera’s NetCTL constraints [221], or Aquila’s LPI

preconditions [241]. We study the effect of these constraints in §5.7.3.

Instrumenting fixed control-plane configurations. Network operators generally

have restricted environments in which only a limited set of packets and control plane con-

figurations are actually valid. Similar to Meissa [264] and SwitchV [9], we are developing

techniques to instrument a particular fixed control plane configuration before generating

tests. We are looking into a specification method that allows users to only generate tests that

comply with their environment assumptions. As an initial step in this direction, P4Testgen

implements SwitchV’s P4Constraints framework (§5.6.1.1).

90

5.6 Implementation

P4Testgen is written as an extension to P4C using about 28k lines of C++ code, including

both P4Testgen core and its extensions. To resolve path constraints, P4Testgen uses the

Z3 [53] SMT solver.

Different levels of precision can lead to a highly varying number of branches being gener-

ated. A rather simple max extern, which returns the larger of two values, can be implemented

by simply picking one of the values and adding a constraint that it is larger. The function

can also be modeled to branch into three different paths instead: one where the input values

are equal, one where the first value is larger, and one where the second value is larger.

Interacting with the control plane. P4Testgen uses the control plane to trigger

some paths in a P4 program (e.g., paths dependent on parser value sets [236, §12.11], tables,

or register values). Since P4Testgen does not perform load or timing tests, the interaction

with the control plane is mostly straightforward. For each test that requires control-plane

configuration, P4Testgen creates an abstract test object, which becomes part of the final test

specification. For tables, P4Testgen creates forwarding entries, and if the test framework

provides support, it can also initialize externs such as registers, meters, counters, and check

their final state after execution. In general, richer test framework APIs give P4Testgen more

control over the target—e.g., STF lacks support for range-based match types, which means

some paths cannot be executed.

5.6.1 P4Testgen Extensions

Table 5.4 lists the targets we have instantiated with P4Testgen. We also list the LoC required

by each extension, noting that tna and t2na share a significant amount of code. Further,

v1model LoC are inflated because of the P4Constraints parser and lexer implementation

91

Architecture Target Test back end C/C++ LoC

v1model BMv2 STF, PTF, Protobuf, Meta 7651
tna Tofino 1 STF, PTF 499 (3525 shared)
t2na Tofino 2 STF, PTF 502 (3525 shared)
ebpf_model Linux Kernel STF 981
pna DPDK SoftNIC PTF, Meta 2065

Table 5.4: P4Testgen extensions. The core of P4Testgen is 12284 LoC.

specific to the v1model extension. We modeled the majority of the Tofino externs based

on the P4 Tofino Native Architecture (TNA) available in the Open-Tofino repository [106].

Each extension also contains support for several test frameworks. The v1model instance

supports PTF, STF, Protobuf [91] messages, and the serialization of metadata state. The

Tofino instance supports PTF and STF. The eBPF instance supports STF. The Portable

NIC Architecture (PNA) [235] instance only has metadata serialization.

5.6.1.1 v1model

P4Testgen supports the v1model architecture, including externs such as recirculate, verify_checksum,

and clone. The clone extern requires P4Testgen’s entire toolbox to model its behavior, so

we explain it in detail below.

Implementing clone. The clone extern duplicates the current packet and submits the

cloned packet into the egress block of the v1model target. It alters subsequent control flow

based on the place of execution (ingress vs. egress control block). Depending on whether

clone was called in the ingress vs. egress control block, the content of the recirculated

packet will differ. Further, which user metadata is preserved in the target depends on input

arguments to the clone extern.

We modeled this behavior entirely within the BMv2 extension to P4Testgen without

having to modify the core code of P4Testgen’s symbolic executor. We use the pipeline

control flow and continuations to describe clone’s semantics, concolic execution to compute

92

the appropriate clone session IDs, and taint tracking to guard against unpredictable inputs.

P4Constraints. P4Testgen’s BMv2 extension also implements the P4Constraints frame-

work [9] for v1model. P4Constraints annotates tables to describe which control plane entries

are valid for this table. P4Constraints are needed for programs such as middleblock.p4 [227],

which models an aggregation switch in Google’s Jupiter network [214] that only handles

specific entries. To generate valid tests for such programs, P4Testgen must accommodate

constraints on entries. It does so by converting P4Constraints annotations into its own in-

ternal predicates, which are applied as preconditions, restricting the possible entries, and

hence, the number of generated tests (§5.7).

5.6.1.2 tna/t2na

We have implemented the majority of externs for tna and t2na, including meters, checksums,

and hashes. For others, such as registers, we make use of rapid prototyping using taint. Our

t2na extension leverages much of the tna extension, but t2na is richer, so it took more

effort to model its capabilities. Not only does t2na use different metadata, it also adds

a new programmable block (“ghost”) and doubles the number of externs. Also, both tna

and t2na support parsing packets at line rate, which is significantly more complex than

BMv2 [106, §5].

Parsing packets with Tofino. The Tofino targets prepend multiple bytes of metadata

to the packet [106, §5.1]. As an Ethernet device, they also append a 32-bit frame check

sequence (FCS) for each packet. Both the metadata and FCS can be extracted by the parser

but are not part of the egress packet in the emit stage. If the packet is too short and

externs in the parser trigger an exception, Tofino drops the packet in the ingress parser, but

not in the egress parser [106, §5.2.1]. However, if the ingress control block reads from the

parser_error metadata variable, the packet is not dropped and instead skips the remaining

93

parser execution and advances to the ingress control block. The content of the header that

triggered the exception is unspecified in this case. We model this behavior entirely in the

Tofino instantiations of P4Testgen. We treat the metadata, padded content, and FCS as taint

variables that are prepended to the live packet 𝐿. Since Tofino’s parsing behaves differently

from the description in the P4 specification, we extend the implementations of advance,

extract, and lookahead in the Tofino extensions to model the target-specific behavior.

5.6.1.3 ebpf_model

As a proof of concept for P4Testgen’s extensibility, we also implemented an extension for

an end-host target. ebpf_model is a fairly simple target, but it differs from tna and t2na,

which are switch-based. The pipeline has a single parser and control block. The control

block is applied as a filter following the parser. There is no deparser. The eBPF kernel

target rejects a packet based on the value of the accept parameter in the filter block. If

false, the packet is dropped. As there is no deparser, we model implicit deparsing logic by

implementing a helper function that iterates over all headers in the packet header structure

and emits headers based on their validity. We were able to implement the eBPF target in

a few hours and generate input–output tests for all the available programs (30) in the P4C

repository. Because of the lack of maturity of the target, we did not track any bugs in the

toolchain.

5.6.1.4 pna

PNA [235] is a P4 architecture describing the functionality of end-host networking devices

such as SmartNICs. A variety of targets using the pna architecture have been put forward by

Xilinx [3], Keysight [113], NVIDIA [124], AMD [87], and Intel [107]. We have instantiated

a P4Testgen extension for a publicly available pna instance, the DPDK SoftNIC [58]. Since

there are no functional testing frameworks (e.g., PTF or STF) yet available for this target,

94

0 10 20 30 40 50 60 70 80 90 100

19%15%16%50%

Symbex Z3 Test Serialization Other

Figure 5.7: Average CPU time spent in P4Testgen.

we generate abstract test templates, which describe the input–output behavior and expected

metadata after each test. By generating these abstract tests, we can already perform pre-

liminary analysis on existing pna programs (§5.7.3).

5.7 Evaluation

Our evaluation of P4Testgen considers several factors: performance, correctness, coverage,

and effectiveness at finding bugs.

5.7.1 Performance

To evaluate P4Testgen’s performance when generating tests, we measured the percentage of

cumulative time spent in three major segments: 1) stepping through the symbolic executor,

2) solving Z3 queries, 3) serializing an abstract test into a concrete test. Fig. 5.7 shows

P4Testgen’s CPU time distribution for generating 10000 tests for the larger programs listed

in Table 5.5. In general, solving path constraints in Z3 accounts for around 16% of the overall

CPU time. P4Testgen spends the majority of time in the symbolic executor. This is expected,

as we prioritized extensibility and debuggability for P4Testgen’s symbolic execution engine,

not performance. We expect performance to improve as the tool matures. From informal

conversations, we are aware that P4Testgen generates tests with efficiency on the same order

as SwitchV’s p4-symbolic tool does.

95

5.7.2 Correctness

As a general test-oracle, P4Testgen is designed to support multiple targets. We consider our

design successful if a target extension is both able to generate correct test files for a wide

variety of P4 programs and produce tests that pass for complex, representative programs on

each target.

Producing valid tests for diverse P4 programs. To ensure that P4Testgen’s inter-

pretations of P4 and target semantics are correct, we generated tests for a suite of programs

and executed them on the target. For v1model, pna, and ebpf_model, we selected all the

P4 programs available in the P4C test suite. For Tofino, we used the programs available in

the P4Studio SDE and a selected set of compiler tests given to us by the Tofino compiler

team. The majority of these programs are small and easy to debug, as they are intended to

test the Tofino compiler. In total, we tested on 458 Tofino 1, 191 Tofino 2, 507 BMv2, 62

PNA, and 30 eBPF programs.

We used P4Testgen to generate 10 input–output tests with a fixed random seed for each

of the above programs. We then executed these tests using the appropriate software model

and test back ends. In fact, on every repository commit of P4Testgen, we execute P4Testgen

on all 5 extensions and their test back ends (Table 5.4), totaling more than 2800 P4 programs

and 10 tests per program. We used this technique to progressively sharpen our semantics

over the course of a year, running P4Testgen millions of times. If the execution of a test did

not lead to the output expected by P4Testgen, we investigated. Sometimes, it was a bug

in P4Testgen, which we fixed. Sometimes, the target was at fault and we filed a bug (see

§5.7.4).

Producing valid tests for large P4 programs. For the v1model, we chose two

actively maintained P4 models of real-world data planes: middleblock.p4 (§ 5.6.1.1) and

96

up4.p4 [142]. up4.p4 is a P4 program developed by the Open Networking Foundation (ONF)

that models the data plane of 5G networks. We have considered other programs but they were

either written in P414 [215] or not sufficiently complex to provide a useful evaluation [43]. For

tna/t2na, we generate tests for the appropriate version of switch.p4, the most commonly

used P4 program for the Tofino programmable switch ASIC. We execute the generated tests

on either BMv2 or the Tofino model (a semantically accurate software model of the Tofino

chip). For each target, we generate 100 PTF tests. The eBPF kernel target does not have

a suite of representative programs. Instead, we generated tests for P4C’s sample programs.

The tests we have generated pass, showing that we can correctly generate tests for large

programs. pna on the DPDK SoftNIC does not have an end-to-end testing pipeline available

yet, but we still generate tests for its programs. As a representative program, we picked

dash_pipeline.p4, which models the end-to-end behavior of a programmable data plane in

P4 [223]. dash_pipeline.p4 is still under development, but is already complex enough to

generate well over a million unique tests.

5.7.3 Coverage

When generating tests, P4Testgen tracks the statements (after dead-code elimination) cov-

ered by each test. Once P4Testgen has finished generating tests, it emits a report that details

the total percentage of statements covered. We use this data to identify any P4 program

features that were not exercised. For example, some program paths may only be executable

if the packet is recirculated.

How well does P4Testgen cover large programs? We tried to exhaustively gen-

erate tests for the programs chosen in the previous section. Table 5.5 provides an overview

of the number of tests generated for each program (this number correlates with the num-

ber of possible branches as modeled by P4Testgen) and the best statement coverage we have

97

P4 program Valid tests Time Stmts. Stmts. covered

middleblock.p4 (v1model) 74472 ~40m 150 100%
up4.p4 (v1model) 57853 ~55m 185 100%
dash_pipeline.p4 (pna) >1M ~668m 256 ~90%
simple_switch.p4 (tna) >1M ~628m 300 ~43%
switch.p4 (tna) >1M ~2653m 921 ~36%
switch.p4 (t2na) >1M ~2719m 1024 ~31%

Table 5.5: Coverage statistics for large P4 programs using DFS (measured 2023-09-01).

achieved using DFS. As expected, for the switch.p4 programs of tna and t2na, we generate

too many paths to terminate in a reasonable amount of time. For the switch.p4 programs,

we list the coverage we achieved before halting generation after the millionth test.

How does path selection help with statement coverage? Table 5.5 shows that

the number of tests generated for larger P4 programs can be overwhelming. In practice, users

want tests with specific properties, which necessitates the use of path selection strategies. We

measure the effect of P4Testgen’s path selection strategies (§5.5). We select middleblock.p4

and up4.p4 as representative sample programs for v1model. For tna and t2na, we select

simple_switch.p4, which we patched such that all statements in the program are reachable.

We have chosen simple_switch.p4 for two reasons: (i) we have not implemented all features

to fully cover switch.p4 (specific register/meter configurations, recirculation) to achieve

full statement coverage,3 and (ii) simple_switch.p4 is an open-source program available at

the OpenTofino repository [106]. simple_switch.p4 is still a complex Tofino program: it

produces over 30 million unique, valid tests. We generate tests with each strategy until we hit

100% statement coverage. We compare Random Backtracking and our Coverage-Optimized

Search to standard DFS. We measure the total number of tests needed to achieve coverage

across a sample of 10 different seeds.

Fig. 5.8 shows the mean coverage across 10 seeds over 1000 timesteps for simple_-
3We currently achieve around 90% coverage using Coverage-Optimized Search.

98

Program Metric (Median) Strategy
DFS Random Backtracking Coverage-Optimized Search

middleblock.p4
Tests 25105 956 86
Time per Test ~0.05s ~.08s ~.17s
Total time ~1321s ~81s ~11s

up4.p4
Tests 12932 2463 3581
Time per Test ~0.06s ~0.07s ~0.06s
Total time ~726s ~169s ~243s

simple_switch.p4
Tests * * 4612
Time per Test ~0.07s ~0.09s ~0.12s
Total time * * ~555s

dash_pipeline.p4
Tests * * 63
Time per Test ~0.06s ~0.13s ~0.41s
Total time * * ~22s

Table 5.6: Path selection results for 100% statement coverage on representative P4 programs for 10
different seeds. ”*” indicates that the strategy did not achieve 100% coverage within 60 minutes.

switch.p4. We stopped a heuristic if it did not achieve 100% coverage within an hour

of generating tests. Only Coverage-Optimized Search reliably accomplishes full coverage

in this time frame and outperforms Random Backtracking and DFS by a wide margin.

Coverage-Optimized Search always outperforms DFS and generally outperforms Random

Backtracking. In some cases, however, (e.g., up4.p4) Coverage-Optimized Search is not so-

phisticated enough to find the path that covers a sequence of statements. In those cases,

it will perform similarly to Random Backtracking. Table 5.6 shows detailed results for all

selected programs.

How do preconditions affect the number of generated tests? We conducted

a small experiment to measure the impact of applying preconditions and simplified ex-

tern semantics on middleblock.p4. We measured the number of generated tests when

fixing the input packet size (thus avoiding parser rejects in externs) and applying SwitchV’s

P4Constraints. Fig. 5.9 shows the results. The number of generated tests can vary widely,

based on these input parameters. Applying the input packet size and the P4Constraints ta-

ble entry restrictions can reduce the number of generated tests by as much as 71%. Adding

99

Applied precondition None Fixed-
Size
Packet

P4Constraints P4Constraints
Fixed-Size
Packet

P4Constraints,
Fixed-Size
IPv4 Packet

P4Constraints,
Fixed-Size
IPv4-TCP
Packet

Valid test paths 146784 83784 74472 42486 28216 7054
Reduction 0% ~43% ~49% ~71% ~81% ~95%

Table 5.7: Effect of preconditions on the number of tests generated for middleblock.p4. Fixed packet
size is 1500B.

testgen_assume (§5.5) statements, which mandates that we only produce packets with

TCP/IP headers, reduces the generated tests by 95%. Table 5.7 has detailed statistics.

0 10 20 30 40 50 60
Minutes

0.25

0.50

0.75

1.00

C
ov
er
ag

e

DFS Coverage-Optimized Random

Figure 5.8: Path selection strategy performance on simple_-
switch.p4.

What are the lim-

its of P4Testgen’s

statement coverage?

There are P4 programs

where P4Testgen cannot

achieve full statement cov-

erage. An example is

blink.p4 [101], a P4 pro-

gram where statement ex-

ecution depends on the

timestamp metadata field that is set by the target when a packet is received. Since P4Testgen

cannot control the initialization of the timestamp for BMv2 (yet), we are unable to cover

any statement depending on it. Other tools such as FP4 [257] and P4wn [119] are able to

cover these statements as they generate packet sequences that may eventually cause the right

timestamp to be generated. This limitation is not insurmountable. In the future, we plan

to mock timestamps using a match-action table, or add an API for controlling timestamps

directly.

100

5.7.4 P4Testgen in Practice

We tracked P4Testgen’s utility and test-case-generation capabilities for nearly a year. We

observed that compiler developers rely on P4Testgen to gain confidence in the implementa-

tion of new compiler features. For instance, they can generate tests for an existing program,

enable the new compiler feature, and check that the tests still pass. This approach identified

several flaws in new compiler targets and features during development. We have also used

P4Testgen to give users of Tofino confidence to upgrade their targets or their toolchains. In

one of our use cases, a switch vendor had reservations about migrating their P4 programs

from Tofino 1 to Tofino 2. The vendor could not ensure that the behavior of the program

remained semantically equivalent in this new environment. Using P4Testgen, we generated

a high-coverage test suite, which reassured the team that they could safely migrate to the

Tofino 2 chip.

Generating tests for abstract network-device models. An increasingly popular

use case of P4 is to use it as a modeling language to describe network data planes [9, 223].

Often, these data plane models lack tests. P4Testgen can exhaustively generate tests for

the P4 data plane model, where the tests also satisfy particular coverage criteria. Further,

because P4Testgen is extensible, a developer modeling their device can use arbitrary P4

architectures. For example, the DASH [223] and SwitchV [9] developer teams are interested in

applying P4Testgen to their data plane models written for the pna and v1model architectures.

5.7.4.1 Bugs

For any validation tool, the bottom line is whether it effectively finds bugs, particularly in

mature, well-tested systems. To evaluate P4Testgen’s effectiveness, we used the workflow

described in §5.7.2, by running P4Testgen on each program in the appropriate test suite.

Table 5.9 summarizes the bugs we found. Table 5.8 provides details on the bugs we have

101

Bug label Type Bug description

p4lang/PI/issues/585 Exception The open-source P4Runtime server
has incomplete support for the
p4runtime_translation annotation.

p4lang/behavioral-model/issues/1179 Exception BMv2 crashes when trying to add entries for
a shared action selector.

p4lang/p4c/issues/3423 Exception BMv2 crashes when accessing a header stack
with an index that is out of bounds.

p4lang/p4c/issues/3514 Exception The STF test back end is unable to process
keys with expressions in their name.

p4lang/p4c/issues/3429 Exception The output by the compiler was using an
incorrect operation to dereference a header
stack.

p4lang/p4c/issues/3435 Exception Actions, which are missing their “name” anno-
tation, cause the STF test back end to crash.

p4lang/p4c/issues/3620 Exception BMv2 cannot process structure members with
the same name.

p4lang/p4c/issues/3490 Wrong code The compiler swallowed the table.apply()
of a switch case, which led to incorrect output.

Table 5.8: BMv2 bugs found by P4Testgen.

filed for BMv2. For confidentiality reasons, we are unable to provide details on Tofino bugs.

What are the bugs we are interested in? We report only target stack bugs—i.e.,

a bug in the software or hardware stack. We consider a target stack bug any failing test

that was generated by P4Testgen but was not an issue with P4Testgen itself. This includes

Bug Type Bug Cause BMv2 Tofino Total

Exception

Untested packet path 2 7 9
Control plane 5 1 6
Untested packet size 0 2 2
Untested device function 0 1 1
Total 7 10 17

Wrong Code

Untested packet path 0 5 5
Control plane 1 2 3
Untested packet size 0 0 0
Untested device function 0 1 1
Total 1 9 10

Total 8 19 27

Table 5.9: Bugs in targets discovered by P4Testgen.

102

https://github.com/p4lang/PI/issues/585
https://github.com/p4lang/behavioral-model/issues/1179
https://github.com/p4lang/p4c/issues/3423
https://github.com/p4lang/p4c/issues/3514
https://github.com/p4lang/p4c/issues/3429
https://github.com/p4lang/p4c/issues/3435
https://github.com/p4lang/p4c/issues/3620
https://github.com/p4lang/p4c/issues/3490

compiler bugs as well as crashes of the control-plane software, driver, or software simulator.

We only count bugs that are both new, distinct (i.e., cause a new entry in the issue tracker),

and non-trivial (bugs that require either a particular packet size, control-plane configuration,

or extern to be exercised). If a bug is considered a duplicate by the developers, we only count

it once. P4Testgen revealed two types of bugs: (1) exceptions, where the combination of

inputs caused an exception or other fault; and (2) wrong code bugs, where the test inputs

did not produce the expected output.

0 30000 60000 90000 120000 150000
Number of tests

Pr
ec

on
di

tio
n

None
1500B pkt

P4Constraints
P4Constraints + 1500B pkt

P4Constraints + 1500B IPv4 pkt
P4Constraints + 1500B IPv4-TCP pkt

Figure 5.9: Effects of preconditions on the total number of tests gener-
ated for middleblock.p4.

What caused these

bugs? The causes of

the bugs found were di-

verse. Some were due

to errors in the compiler

back end, others due to

mistakes in the software

model, while still others

due to errors in the con-

trol plane software and test framework. For each bug, we filed an issue in the respective

tracker system. Several issues either anticipated a customer bug that was filed later or re-

produced an existing issue that was still open. In several instances, P4Testgen was able to

discover bugs where hand-written tests lacked coverage.

What features of P4Testgen were important for finding a bug? Eight of

the total 27 bugs we have found were triggered by P4Testgen synthesizing table and extern

configurations. Two were triggered by P4Testgen implementing a detailed model of extern

functions. Two were triggered by P4Testgen generating tests with unexpected packet sizes.

The remaining bugs were caused because P4Testgen’s generated tests exercised untested

103

Tool Input genera-
tion method

Synthesizes
control-plane?

Multi-
target?

Models
target se-
mantics?

Data plane coverage met-
ric

Meissa [264] Symbex. × × ✓ Symbolic model
SwitchV [9] Symbex. × × ✓ Symbolic model, Asser-

tions
p4pktgen [160] Symbex. ✓ × × Symbolic model
Gauntlet [196] Symbex. × ✓ × Symbolic model
PTA [29] Fuzzing × ✓ × Symbolic model (p4v)
DBVal [129] Fuzzing × ✓ × Tables, Actions
FP4 [257] Fuzzing × ✓ × Actions
P6 [212] Fuzzing × ✓ × Symbolic model
P4Testgen Symbex. ✓ ✓ ✓ Symbolic model, source

code

Table 5.10: P4 tools generating input–output tests. Data plane coverage describes how the tool
measures coverage of the generated inputs. Symbex. abbreviates symbolic execution.

program paths or esoteric language constructs (e.g., a stack-out-of-bounds error or header

union access). Overall, we found more incorrect behavior bugs with Tofino because of (i)

its complexity and (ii) the fact that we focused our bug-tracking efforts on Tofino and gave

BMv2 issues lower priority.

Reachability bugs in P4 programs. A side-effect of P4Testgen’s support for explicit

coverage heuristics is its ability to detect reachability bugs in P4 programs. In some cases,

Coverage-Optimized Search is unable to cover a particular program statement. This may be

because of failures in the heuristic, but often the code is simply non-executable—i.e., dead.

We encountered several instances of such dead code for proprietary and public production-

grade programs [194]. The developers were usually appreciative of our bug reports, which

occurred in complex programs that are difficult to debug, especially early in the development

process.

104

5.8 Related Work

Testing P4 toolchains. Other tools focus on validating P4 implementations by gener-

ating test inputs. Table 5.10 provides a summary. Compared to P4Testgen, these tools are

typically tailored to a single target or use case. P4Testgen relies on formal semantics to com-

pute inputs and outputs, avoiding running a second system to produce the output [9, 257].

In particular, developers using P4Testgen do not need to understand the semantics of the

P4 program to generate tests; P4Testgen provides these semantics as part of its tool.

p4pktgen [160] is a symbolic executor that automatically generates tests. It focuses

on the v1model, STF tests, and BMv2. In spirit, p4pktgen is close in functionality to

P4Testgen. However, the tool does not implement all aspects of the P4 language and v1model

architecture—its capabilities as a test oracle are limited. We tried to reproduce the bugs

listed in Table 5.8 using p4pktgen but were unable to. p4pktgen either was unable to

produce tests for the program or did not achieve the necessary coverage. While p4pktgen

does support a form of packet-sizing to trigger parser exceptions, its model only considers a

simple parser-control setup, not multiple subsequent parsers such as Tofino’s.

SwitchV [9] uses differential testing to find bugs in switch software. It automatically

derives inputs from a switch specification in P4, feeds the derived inputs into both the

switch and a software reference model, and compares the outputs. SwitchV uses fuzzing and

symbolic execution to generate inputs that cover a wide range of execution paths. To limit

the range of possible inputs, the tool relies on pre-defined table rules and the P4Constraints

framework. It also does not generate control-plane entries. Like p4pktgen, SwitchV is

specialized to v1model and BMv2.

Meissa [264] is a symbolic executor specialized to the Tofino target. Meissa builds on the

LPI language’s pre- and post-conditions [241] to generate input–output tests. The tool is

designed for scalability and uses techniques such as fixed match-action table rules, code sum-

105

maries for multi-pipeline programs, and path pruning to eliminate invalid paths according

to the input specification. P4Testgen’s preconditions and path selection strategies combat

the same scaling issues as Meissa. Meissa’s source code is proprietary, which precludes a

direct comparison.

PTA [29] and DBVal [129] both implement a target-independent test framework designed

to uncover bugs in the P4 toolchain. Both PTA and DBVal augment the P4 program under

test with extra assertions to validate the correct execution of the pipeline at runtime. Both

projects provide only limited support for test case generation.

FP4 [257] is a target-independent fuzzing tool that uses a second switch as a fuzzer to

test the implementation of a P4 program. FP4 automatically generates the necessary table

rules and input packets to cover program paths. To validate whether outputs are correct,

FP4 requires custom annotations instrumented by the user.

Coverage. There are important differences in how testing tools assess coverage—see Ta-

ble 5.10 for a summary. P4Testgen marks a node in the source P4 program as covered when

the symbolic executor steps through that node and generates a test. FP4 measures action

coverage by marking bits in the test packet header to track which actions were executed. As

FP4 generates packets at line rate, it achieves coverage for actions faster than P4Testgen.

p4pktgen discusses branch coverage, which can be estimated by parsing generated tests to

see which control-plane constructs (tables, actions) were executed. Meissa reports coverage

based on the branches of its own formal model of the P4 program. SwitchV also measures

branch coverage based on developer-provided goals derived from its symbolic model. Another

important consideration is whether programmers can annotate the program with constraints

or preconditions—see Fig 5.9. In many scenarios, these constraints are necessary to model

assumptions made by the overall system, but they also affect coverage since they reduce the

number of legal paths.

106

Extensibility. Petr4 [57] and Gauntlet [196] are designed to support multiple P4 targets.

Petr4 provides a “plugin” model that allows the addition of target-specific semantics. How-

ever, it does not support automatic test case generation and does not aim to provide path

coverage. Gauntlet can generate input–output tests for multiple P4 targets but it does not

model externs, nor does it implement whole-program semantics to model the tested target.

5.9 Summary

With P4Testgen, we have built a P4 test oracle that automatically generates input–output

tests for arbitrary P4 targets. P4Testgen’s success recipe is its extensible execution model.

This execution model is implemented using whole-program semantics to model the behavior

of the P4 program and combined with taint-tracking, concolic execution, and path selection

strategies to generate tests that achieve coverage. P4Testgen is intended to be a resource

for the entire P4 community. It supports input–output test generation for various open-

source P4 targets and several extensions for closed-source targets exist. By designing it as a

target-independent, extensible platform, we hope that P4Testgen will be well-positioned for

long-term success. Moreover, since P4Testgen is a back end of P4C, it should be easy for

developers to build on our tool, lowering the barrier of adoption.

P4Testgen already receives contributions from the broader community to improve and

extend its functionality. For example, two common community requests are to extend

P4Testgen with the ability (i) to generate arbitrarily many entries per table and (ii) produce

tests with a state-preserving sequence of input–output packets. In the future, to further

validate P4Testgen’s generality, we would like to complete P4Testgen extensions for the P4-

DPDK SoftNIC target and the open-source PSA [234] target for NIKSS [164], as well as

proprietary SmartNICs [107, 87, 124]. We also intend to develop additional P4 validation

tools based on P4Testgen’s framework that apply ideas from software testing in the network-

107

ing domain—e.g., random program generation, mutation testing, and incremental testing.

We are also interested in network-specific coverage notions—e.g., for parsers, tables, actions,

etc.

Software testing is always important, but testing the packet processing programs that

power our network infrastructure, processing billions of packets per second, is especially

important. In time, there will inevitably be better approaches than our P4-based, exten-

sible execution model for generating high-quality tests for packet processing systems. The

P4Testgen framework can serve as a vehicle for prototyping these approaches, and for inte-

grating them into the P4 ecosystem. Inspired by efforts from other communities [18, 125],

we envision having an open benchmark suite of standard test programs, control plane con-

figurations, and various notions of coverage to standardize comparisons between different

testing approaches—enabling more rapid progress for the whole networking community.

108

Part III

Optimizing Network Device Stacks

109

6 | Flay: Incremental

Specialization of Data-Plane

Programs

So far, we have focused on testing network-device stacks; however, we can also optimize

these stacks using our SMT-based model. More specifically, we can introduce better com-

piler optimizations. We demonstrate this with our next tool, Flay. Flay embodies a concept

more than a specific tool: an approach to specialize a data-plane program using additional

information, such as the current control-plane or environmental configuration. What distin-

guishes our type of specialization from previous approaches is its focus on handling updates

to the configuration used for specialization. This is particularly important in a network-

ing environment where a network device can receive control-plane updates on the order of

seconds. Our approach to handling configuration changes is incrementality. Incrementality

involves a three-step process for each update: (1) identify the components influenced by

this update, (2) check whether the update changes the semantics of the component, and,

if the semantics changed, (3) recompile only this component. Using this approach, we can

minimize the impact of each configuration update and avoid recompilation and changes to

the underlying data-plane program as long as possible.

We have not only designed this approach but also developed a prototype implementation,

110

Flay, which leverages our execution model. By combining P4Testgen’s model for the control-

plane interface with specific control-plane semantics, we can use an active control-plane

configuration to perform advanced program optimizations, including program specialization.

We could remove unused data-plane code (e.g., table lookups or parser paths), inline code, or

substitute better matching algorithms for a particular control-plane configuration. However,

P4Testgen’s execution model, as is, cannot be used directly for these types of optimizations.

P4Testgen was initially designed to generate only a single control-plane entry for each poten-

tial branch point. Hence, it has incomplete semantics for a control-plane configuration, i.e.,

it does not model how a device behaves when many control-plane entries are installed. It also

lacks a mechanism to relate a given control-plane configuration to its data-plane execution

model. Furthermore, control-plane configurations may change, and our current semantics

have no means to handle these changes gracefully.

In this chapter, we first introduce the motivation for incremental specialization, show

several use cases, and then demonstrate how we can extend our execution model to support

this type of specialization and implement a form of incrementality.

6.1 Introduction

Packet-processing programs on network devices (SmartNICs, switches, networking stacks)

must rapidly process packets with limited resources (e.g., tables, ALUs, cores, CPU cycles),

while simultaneously supporting many different features (e.g., ACLs, routing, NATs). Com-

pilers for packet-processing languages [100, 34, 137, 217, 86, 253, 146] play an important role

in determining the final resource requirements and performance of such programs. Typically,

compilers translate the packet-processing program into an implementation when it is first

authored, leaving the implementation unchanged over the program’s lifetime.

This “one-and-done” approach misses many opportunities to improve the implementation

111

over a program’s lifetime. In addition to the program’s source code, the program’s resource

usage is also determined by control-plane configurations (e.g., ACL or forwarding rules). For

instance, if an ACL table is empty, it can be removed, making room for additional features.

Such specializations are especially beneficial for “kitchen-sink” programs that capture the

union of all possible features [215, 227], where only a subset of features is active at any

time. Prior projects have leveraged this observation: they treat control-plane configurations

as constant inputs to a packet-processing program and introduce a specializing compiler to

further optimize the implementation of the program before it is run [2, 154, 56].

Rate of change

(5) Packets

(4) Network flows

(3) Routing/NAT/
forwarding/firewalls

(1) Data plane
 source

(2) Control plane policy
 (Encapsulation/BGP/BFD)

Days Nanoseconds

Figure 6.1: Varying rate of change of network program input.

In reality, however,

control-plane configurations

are pseudo-constant: many

parts of the control-plane

only change in response

to policy changes, main-

tenance, or failures (Fig. 6.1)

and are thus infrequent. Other parts, however, change frequently (e.g., IP routes, NATs).

Control-plane updates can also occur in bursts, with changes happening at once quickly

followed by a long quiescence [102]. Given this pattern, our core claim is that any special-

izing compiler must be able to respecialize a program quickly when control-plane constants

change. Moreover, because recompiling network programs is expensive and many control-

plane updates do not affect the program implementation, the runtime must decide when

respecialization is actually needed. Hence, to be effective, such compilers must be (1) control-

plane-triggered so that they continuously respecialize program implementations in response

to control-plane changes and (2) incremental, to perform as little processing as possible on

program sources and control-plane configurations for each update.

We describe a design sketch for such an incremental compiler, operating as a shim layer

112

between the network controller and the data plane (§6.2). We also describe several tangible

benefits enabled by this approach, such as saving hardware resources, and optimizing the

memory footprint and performance of packet classifiers. To demonstrate that our call for an

incremental specializing compiler is feasible, we build a prototype, Flay. Flay is a partial

evaluator [114] that combines several techniques (dead-code elimination, constant propaga-

tion, table inlining) to specialize P4 programs. Flay leverages the fact that P4 is a restricted

domain-specific language (DSL) with a few core primitives (e.g., tables, control programs)

to construct SMT formulae that can quickly identify when recompilation is necessary. This

allows Flay to process a control-plane update within ~100 milliseconds and avoid recompi-

lation for all control-plane updates that do not require it. By treating control variables as

pseudo-constants, Flay can also save pipeline resources for Tofino programs.

In contrast to Gauntlet and P4Testgen, we see Flay less as a concrete tool and instead as

a vehicle to explore a broader research agenda. In this chapter, we outline several concrete

avenues for future work. First, for the control-plane updates that do trigger respecialization,

we plan to use Flay as a vehicle to explore the tradeoff between recompilation time and

specialization quality. Second, during respecialization, we are still bottlenecked by exist-

ing device compilers that monolithically compile the entire program, causing much longer

compile times than necessary. We can push incremental specialization much further by (1)

rearchitecting device compilers to also operate incrementally, e.g., by only recompiling the

tables in the program that actually changed, and (2) through hardware support for partial

configuration.

6.2 Control-Plane-Driven Specialization

Our goal. We want to develop a compiler that can specialize network programs given

a control-plane configuration. This compiler must be incremental with respect to the con-

113

trol plane: The compiler must support automatic respecialization whenever control-plane

configurations change, without incurring substantial time on every update—given that most

updates do not affect program implementation. We do not consider traffic profiles when

specializing because traffic may change more rapidly than control-plane configurations [137].

Program switch [215] scion [55] Beaucoup [44] ACCTurbo [10] DTA [131]

Time 106 s 38 s 22 s 28 s 25 s

Figure 6.2: bf-p4c [25] compile times for Tofino P416 programs.

Why an incremental,

specializing compiler?

Even though control-plane

updates occur less fre-

quently than packet ar-

rivals in the data plane, they do change from time to time, often in response to external

events like routing changes, and often in bursts. At the same time, most control-plane up-

dates do not require recompilation of the specialized program because they do not change

program semantics. Existing specializing tools such as Morpheus [154], Pipeleon [251], or

ESwitch [155] approach this problem by either introducing resource-consuming fall-back

datapaths or recompiling the data-plane program every time the control plane issues an

update. When control-plane updates arrive in bursts of hundreds of rules in a few sec-

onds [110, 112, 104, 93], recompiling a network program from scratch, which can take sev-

eral tens of seconds (Tbl. 6.2), is too slow for a specializing compiler to keep up. Even more

recent incremental recompilation approaches require on the order of seconds to complete

recompilation [72, 51, 174, 250]. A specializing compiler that is unable to quickly distinguish

between a trivial update that does not need recompilation (e.g., adding a new NAT entry)

and a major data-plane change (e.g., enabling an IPv6 ACL table) will be stuck constantly

respecializing.

Our insight. In any network program, we can distinguish runtime-dependent variables

into two types: the data-plane variable, which depends on data-plane input (e.g., variables

114

parsed from a packet header), and the control-plane variable, which depends on control-plane

input (e.g., an ACL entry which decides whether a packet is forwarded or dropped). For

example, in P4, data-plane variables are sourced from the packet through parser extraction

calls, whereas control-plane variables are stored in tables and stateful registers. In eBPF,

on the other hand, data-plane variables are sourced from reads of the packet metadata

structure (e.g., sk_buff), and control-plane variables are stored in maps (e.g., BPF maps).

An incoming packet results in a concrete assignment to the data-plane variables in the

program. Similarly, a control-plane update results in an assignment to a subset of control-

plane variables.

Any control-plane update can be directly mapped to a component in the data plane (e.g.,

a table, register, or map). We can use this mapping to implement an incremental compiler.

Not every control-plane update introduces a semantic change. Many control-plane entries

just increase the likelihood for an already existing data-plane program path to be taken. This

allows us to implement a form of taint tracking, which lets us quickly identify the affected

components. Restrictions in networking DSLs, such as a lack of pointer-based indirection,

unbounded loops, or jumps, make taint tracking tractable. With a taint-tracking system in

place, we only need to check whether a particular component’s behavior has changed given

an update. The way we compute these behavioral semantics, identify affected components,

and quickly check whether a change is necessary depends on the particular incremental

specialization technique we use. We show a concrete example in §6.4.

A Control-Plane-Triggered Compiler. Fig. 6.3 shows a sketch of our proposed ap-

proach. (1) The control-plane-triggered compiler is intended to be invoked on every control-

plane update and provides feedback on whether a control-plane update requires recompi-

lation. (2) Once a new update is sent to the compiler, it identifies the affected program

components based on the control-plane variables “tainted” by the control-plane update. (3)

115

Specializing compiler

Control plane

Data planeA B C

Specializing compiler

Control plane

Data planeA B C

Specializing compiler

Control plane

Data planeA B C

Specializing compiler

Control plane

Data planeA* B C

Recompile

Affected?

Behavior change?

Control-plane update

(1) (2)

(3) (4)

(1)

Figure 6.3: Control-plane-triggered, incremental specialization. Letters describe objects configurable
by the control plane.

After identifying the affected components, the compiler checks whether the semantics of

those data-plane components change. (4) For components that do not need changes, the

compiler will forward the update to the device. If the compiler’s query indicates that the

behavior of a component in the data-plane program will change, the compiler needs to re-

compile that component before the control-plane update can be installed onto the device.

This recompilation (if needed) is done by the device-specific compiler.

6.3 Specialization Use Cases

Control-plane-triggered specialization as described in §6.2 can improve resource usage across

different network devices. We outline several kinds of specialization use cases.

116

control Ingress(...) {

 action set(bit<16> type) {

 hdr.eth.type = type;

 }

 table eth_table {

 key = {hdr.eth.dst: ternary;}

 actions = {

 set; drop; noop;

 }

 default = noop;

 }

 eth_table.apply();

}

control Ingress(...) {}

control Ingress(...) {

 hdr.eth.type = 0x800;

}

(2). Insert entry 1:
[key: 0x1, mask: 0x0] → set(0x800)

(3). Replace entry 1:
[key: 0x2, mask: 0xF] → set(0x900)

(4). Insert entry 2:
[key: 0x5, mask: 0x8] → set(0x700)

control Ingress(...) {

 action set(bit<16> type) {

 hdr.eth.type = type;

 }

 table eth_table {

 key = {hdr.eth.dst: exact;}

 actions = {

 set; drop; noop;

 }

 default = noop;

 }

 eth_table.apply();

}

control Ingress(...) {

 action set(bit<16> type) {

 hdr.eth.type = type;

 }

 table eth_table {

 key = {hdr.eth.dst: ternary;}

 actions = {

 set; drop; noop;

 }

 default = noop;

 }

 eth_table.apply();

}

(1). Initial configuration:
 empty table

A

B

C D

(5). Insert entry 3:
[key: 0x6, mask: 0x7] → set(0x200)

Figure 6.4: For the program on the left, we show control-plane updates 1–5 and their effect on data
path implementation.

Resource savings over a program’s lifetime. On RMT-style pipelines with hard

constraints on the number of computation units, tables, and stateful memories, we can

substantially save on hardware resources by specializing to control-plane configurations. As

an example, Fig. 6.4 describes how the implementation of a single P4 table can change in

response to different control-plane updates. Initially, the table is empty and can be removed

entirely (impl. A). We then insert a single entry, a ternary match with a 0 mask that

executes set(0x800) as its action. Here, we can inline the table action and save the cost of

a table lookup. We then replace the existing entry with a ternary match that uses the full

mask (impl. B). This is effectively an exact match entry. Because there is no other entry

in the table, we can change the match type of the key, saving Ternary Content Addressable

Memory (TCAM) resources. Once we insert entry 2, the table must be implemented as a

ternary table (impl. C). The last entry (3) does not change the behavior of the table, and

hence no recompilation is needed. Note that, in both implementations C and D, the unused

117

drop action is removed from the table, freeing up computation units.

Parser specializations. Several specializations are also possible for parsers in network

programs. The parse_break command in NPL [30] temporarily suspends the parser to

perform table lookups. If the accessed table is empty, we can remove entire parse branches

that depend on this particular lookup. P4 Parser value sets (PVS) [236, §12.11] serve a

similar function. We can free the TCAMs and SRAMs associated with a PVS that is not

configured. Another network-program-specific specialization is parser-tail pruning. Once we

have specialized the program, we can check whether the parser itself is doing unnecessary

work. Any header at the tail of the parser that is not accessed in the program could be

classified as payload. Reducing the number of parse calls can reduce PHV usage in Tofino

or improve packet-processing latency in OvS [166].

Savings in other hardware resources. One, the Tofino programmable switch sup-

ports the use of action profiles to support actions (e.g., setting a packet’s output port meta-

data) that are shared among tables. If an action profile is empty, an incremental compiler

can specialize the implementation of all tables associated with this action profile. Two, we

can specialize device-specific functions. Consider a hardware unit that computes a checksum

on a set of headers. Further, let us assume that one of these headers 𝐻 is set as part of some

table action 𝐴 in table 𝑇—as opposed to being parsed out of an incoming packet. If there

is no control-plane entry for 𝑇 that uses 𝐴 as its action, we know that 𝐻 is invalid, and

hence the checksum will also be invalid, allowing us to directly compute the checksum result,

saving a checksum unit. Third, if a header is only written by one action and this particular

action does not exist in the control-plane configuration, we can simply remove the header in

the RMT pipeline to free up packet-header-vector (PHV) resources.

118

Specializing packet classification. We can specialize data structures used in the

data plane to classify packets based on the actual patterns present in the active control-

plane configuration. Often, these techniques involve choosing a less expensive data structure

for the given network device. For example, a common, but expensive data structure to

classify packets is the TCAM. TCAMs allow matching on header fields based on bitmasks.

If we can tell from the current control-plane configuration that only few or no masks at all are

necessary, we can replace the TCAM with a simpler matching data structure, e.g., a Semi-

TCAM (STCAM) in AMD devices [5]. ESwitch [155] and Morpheus [154] have shown how we

can apply similar specializations to software packet-processing devices, such as Open vSwitch

(OVS) [170] and eBPF, respectively. NeuroCuts [138] and NuevoMatch [177] train neural

networks for more efficient packet classification by mapping a control-plane configuration to

an efficient lookup data structure.

How incremental compilation could help. In all of the use cases above, knowl-

edge of the currently active control-plane configurations can help a compiler specialize the

underlying implementation of the data-plane program. Further, if we had an incremental

compiler [205], it could localize the compiler’s effort to specific aspects of the data-plane

program. For instance, in Fig. 6.4, all of the control-plane updates (and hence all of the

specializations) pertain to the implementation of a single table, allowing the incremental

compiler to ignore the rest of the data-plane program. Similarly, if parser compilation were

treated independently of the rest of the program, we could specialize the parser separately

in response to which headers are accessed by control-plane entries. Finally, in the context of

packet classification, the control-plane update tells us which specific table’s implementation

to focus on, permitting us to specialize that alone.

119

6.4 A Model For Efficient And Incremental

Data-Plane Specialization

As a preliminary feasibility study, we built Flay. Flay implements incremental partial eval-

uation for P4 programs. Partial evaluation [114] is a program optimization technique which

specializes a program by treating some inputs as constants. Flay specializes P4 programs

subject to their control-plane configuration by continuously reoptimizing the running P4

program based on incoming control-plane updates. We picked partial evaluation because,

simply by eliminating newly dead code and inlining constants based on the current control-

plane configurations, we can already implement many of the resource-saving specializations

discussed in §6.3. Flay supports P4 program specialization for various targets (BMv2 [232],

Tofino [25], or Xilinx Versal [126]). We also believe that Flay can generalize to packet-

processing environments such as restricted C for eBPF [62], NPL [30], or microcode [255].

Flay is available at https://github.com/nyu-systems/flay.

6.4.1 The Execution Model For The Control-Plane Interface

We extend P4Testgen’s whole-program semantics to the interface between the data and

control planes, model the semantics of a control-plane configuration, and determine how this

configuration influences program behavior. Flay implements incremental specialization by

representing a network program as a combination of data-plane expressions and control-plane

assignments. We can ask specialization queries by substituting the control-plane assignments

into placeholders within the data-plane expressions. Fig. 6.5 shows the high-level workflow

of Flay.

120

https://github.com/nyu-systems/flay

1 control Ingress(...) {
2 action set(bit<9> port_var) {
3 egress_port = port_var;
4 }
5 table port_table {
6 key = {h.eth.dst: exact;}
7 actions = {set; noop;}
8 }
9 apply {

10 egress_port = 0;
11 port_table.apply();
12 h.eth.dst = egress_port == 0 ? 0xAAAAAAAAAAAA : 0xBBBBBBBBBBBB
13 }
14 }
15 # Symbolic value of egress_port variable after executing a line:
16 # Line 9: @egress_port@
17 # Line 10: 0
18 # Line 11: |port_table_configured| && |port_table_action| == "set" ?
19 # |port_table_var| : 0
20 # Line 12: *unchanged*

(a) P4 program setting a port variable based on a table entry.

| port_table_configured | : false

| port_table_configured | : true
| port_table_action |: @h.eth.dst@ == 0xDEADBEEFF00D ? "set" : "noop"
| port_table_port_var |: 0x1

@h.eth.dst@ == 0xDEADBEEFF00D

| port_table_port_var |: 0x1 0x0
True False

C

0x0 B

(1). Initial
configuration:
 empty table

(2). Insert entry 1:
[key: 0xDEADBEEFF00D] → set(0x01)

always false

| port_table_configured || port_table_configured |

| port_table_action | == "set" 0x0
true false

| port_table_port_var | 0x0
true false

A

(b) Value of egress_port at line 12 after each entry update.

Figure 6.6: Flay’s representation of egress_port. |x| denotes a control-plane symbol; @x@ a data-
plane symbol. Entries below the dotted line are the active control-plane assignments.

121

Data-plane expressions. Flay differs in its approach from P4Testgen, which traverses

each program path independently to generate tests. For Flay, we use a simple data-flow

analysis coupled with state-merging [16, §5.6] to generate data-plane expressions. For any

input program, Flay first computes the data-plane semantics of the program and annotates

program points of interest (e.g., if-statements, match-action table execution, map lookups,

or variable assignments) with a data-plane expression. The control-plane variables within

the expressions act as placeholders and are later substituted with control-plane assignments.

Data-plane variables can assume any value since we do not specialize based on traffic profiles.

Our state-merging approach makes any program point annotation hermetic, i.e., we can evalu-

ate queries on each annotated program point independently. Lines 15–20 in Fig. 6.6a demon-

strate how we use state-merging to annotate each program line with a snapshot of the value of

egress_port. If the table does not have a control-plane entry, port_table_configured is

false and egress_port will evaluate to 0. Hence, we can simplify the assignment on line 12

to h.eth.dst = 0xAAAAAAAAAAAA. The type of specialization we use influences the number

of program points (and hence the work required on each control-plane update). For dead-

code elimination we may just want to annotate if-statements, but for constant substitution

we may need to annotate any variable read.

Control-plane assignments. We represent control-plane entries as a set of control-

plane variable assignments. This representation implements the semantics of the control

plane as described by the appropriate specification (e.g., P4Runtime). For example, en-

tries that are duplicates or eclipsed by higher-priority entries (and thus have no effect) are

omitted in the set of control-plane assignments. To infer the initial assignment set for any

configurable data-plane element we consult the device specification. Flay maintains a map,

which associates a control-plane variable with the set of program points it can influence.

On each control-plane update, Flay retrieves all the affected program points from this map-

122

ping. For any affected program point, Flay substitutes the control-plane assignments into

the expressions associated with the point.

Annotated P4C-IR

Data-plane expressions

Control-plane entries

Control-plane assignments

Specializing compiler

Dead-code elimination

Constant propagation

Table inlining

P4 Program

Specialized P4 Program

On control-plane updateOn semantics changeOnce

Rate of change:

Figure 6.5: Flay’s design.

Specialization queries.

Once Flay has combined

the gathered data-plane

expressions with the ini-

tial control-plane assign-

ments, it specializes the

program by asking queries

on the joint representa-

tion. Typically, the query

indicates that the value

of the expression has not

changed, and Flay will forward the update directly to the network device without trigger-

ing recompilation. If any program point indicates a change in behavior, Flay must trigger

the reoptimization process for the affected data-plane components. We currently ask two

types of queries using Flay: 1) Is this particular piece of code executable? and 2) Can we

replace this program variable with a constant? Concretely, we remove unnecessary table

dependencies by deleting unused actions, inline P4 tables which always execute the same

action, simplify extern calls, and replace variables and conditions with constants. Flay then

passes the specialized program to the device-specific compiler, which optimizes it further.

We evaluate some of the benefits of these incremental specializations in §6.4.2.

An example. Fig. 6.6b shows how Flay uses a constant propagation query to compute the

value of egress_port at line 12. The data-plane model in Block A represents all the possible

values egress_port can assume at this line. After obtaining this general representation, we

123

specialize it using the initial control-plane assignment (Block B). The control-plane specifi-

cation for this device prescribes that an empty table executes the default action, which does

nothing here. Hence, the assignment sets port_table_configured to false, which causes

egress_port to be 0. After receiving an update, we can match on a key field and execute

the set(0x01) action, which sets egress_port to 1 (Block C). There are now two possible

outcomes for the value of egress_port: 0 or 1.

Processing updates quickly. Since, once computed, data-plane expressions do not

change, Flay performs extensive preprocessing on expressions to quickly compute queries

after control-plane updates. Preprocessing increases initial analysis time but greatly reduces

query time. (1) Flay reduces the expression complexity by applying constant folding, com-

mon subexpression elimination, and strength reduction. (2) Flay converts each data-plane

expression into a representation that supports fast incremental checking specialized towards

the particular query. For example, for efficient expression substitution we use Z3’s [53]

e-matching [52] implementation. Instead of e-matching, we could also use an incremental

Datalog evaluation API such as Souffle [202].

Currently, Flay does not support incrementality well in scenarios where tables with com-

plex match keys have many control-plane entries. We show an example of Flay’s performance

degradation in such scenarios in §6.4.2. The cause is an inefficient control-plane representa-

tion. Since we model the potential matches of an incoming key against all table entries as

a single and deeply nested expression, complex keys coupled with large tables can produce

a very large expression. Substituting such a complex key expression into a data-plane an-

notation and checking whether the annotation resolves to a constant can be slow. To make

reasonably fast decisions we compromise on Flay’s sensitivity. Once a certain threshold

of entries (e.g., 100) has been reached, we overapproximate: we assume the entries in the

table cover all its possible actions and action parameters. For example, in Fig 6.6b, overap-

124

P4 Program Program
statements

Compile
time

Data-plane
analysis time

Update analysis
time

scion[55] 582 38s 2s 90ms
switch [215] 786 106s 9s 90ms
middleblock [9] 346 2s 0.6s 5ms
dash [223] 509 2s 1.5s 12ms

Table 6.1: Flay evaluation times for P4 programs. Compilation is from scratch. Flay’s data-plane
analysis step runs once and skips the parser. At runtime, Flay only runs update analysis.

proximation would assign *any* to port_table_action and port_table_port_var, which

would cause the computed value of egress_port to revert to the model shown in Block A.

In practice, crossing the threshold rarely requires respecialization because tables with many

entries likely cover most of their possible paths already. We discuss ideas to improve the

performance of our control-plane representation in Sec. 6.6.

6.4.2 Evaluating Flay

We evaluate how Flay specializes the SCION [55] border router P4 programs written for

the Tofino 2 [7] switch. We chose the SCION programs for evaluation because, besides

being moderately complex (~1700 LoC), they are supplied with representative control-plane

configurations. We use this program to answer questions on specialization, incrementality

support, and analysis time.

Can specialization save resources? First, we compile the SCION program without

applying Flay’s specialization. The program requires the maximum number of Tofino 2 stages.

We then specialize the SCION program using the supplied configuration. This configuration

does not use IPv6, and all the IPv6 program paths are unused. After removing these unused

paths, the program requires 20% fewer stages.

What is the cost of initial data-plane analysis? Our state-merging data-plane

analysis is sensitive to programs with many control-flow statements [150]. The initial pass

125

through the program is cheap, but the generated data-plane expressions can become deeply

nested. Preprocessing expressions for incrementality support can quickly become slow. To

accelerate processing for large programs (e.g., switch.p4) we added an option to skip parser

analysis. Since Flay’s specializations focus on constructs in the control block, skipping the

parser has little impact on their effectiveness. We evaluate Flay’s complexity on a suite

of sample programs. The increase is exponential in terms of the number of control paths.

Nevertheless, even for large, complex programs, we can complete our initial analysis within

a few minutes (Tbl. 6.1).

What influences Flay’s update processing speed? We use a fuzzer [198] to gener-

ate 1000 unique IPv4 entries and insert the entries into the SCION IPv4 forwarding table to

test how Flay handles a burst of semantics-preserving updates. Flay can determine within

a second that the batch of updates does not require program recompilation. We then send

a batch of updates that enables the previously unused IPv6 paths in the SCION program.

Flay determines respecialization is necessary and triggers the recompilation process. After

recompilation, the SCION program requires the maximum number of stages again because

all program paths are used. Tbl. 6.1 shows that Flay is not very sensitive to program com-

plexity. While the time required to process updates increases with program complexity, it

generally stays below 100 ms.

Conversely, as discussed in §6.4, Flay slows down when a complex table has many entries.

An example of such a table is the Pre-Ingress ACL table of Google’s Middleblock P4 switch

model [9]. To characterize the slowdown, we initialize this ACL table with varying numbers

of entries, then send a single update and measure how much time Flay requires to make a

decision. Tbl. 6.2 shows the results. The precise update implementation, which evaluates

all entries, already takes 100 ms at only 100 installed entries. Once we overapproximate the

entries, update processing time becomes low again.

126

Total updates installed Analysis time for 1 incoming update
Precise Overapproximated (>100 entries)

1 ~1ms –
10 ~5ms –
100 ~100ms ~1ms

1000 ~4000ms ~1ms
10000 ~265319ms ~1ms

Table 6.2: Influence of installed updates on Flay’s update processing times for middleblock.p4 [9].

6.5 Related Work

Incremental computation [175] is a mature field with a wide range of applications [114, 115,

49, 207, 210]. Recently, work on JIT compilers [249] and feedback-directed optimization [40]

articulated the need for incremental specialization.

For network programs, many specialization frameworks use either packet traces or control-

plane configurations as input. We classify these into frameworks which specialize network

programs once before deployment (offline) and frameworks that continuously specialize the

program (online).

Offline-specialization tools. In the context of P4, P5 [2] proposes control-plane-

based optimization to simplify dependencies between P4 tables. P2GO [248] is a profile-

guided specialization tool where a profile is the combination of a packet trace and the

expected control-plane configuration. Parasol [99] uses traffic profiles to generate data

structures optimized to that profile. NFReducer [56] and PacketMill [67] specialize net-

work function chains by applying a series of framework (e.g., ClickNF [128]) optimizations

based on initial control-plane configurations. mSwitch [103] inlines switching rules within

the VALE [183] software switch. Relative to these tools, our approach is to specialize con-

tinuously, in response to every control-plane update.

127

Online-specialization tools. Bhatia et al. [22] specialize the Linux network stack

by inlining installed IPv4 routes and bridging route changes using a NAT until respecial-

ization has completed. ESwitch [155] and Hoda [166] continuously specialize OvS. ESwitch

optimizes OvS by changing packet-matching templates based on user-supplied traffic and

flow entry patterns. Hoda instead produces a new, specialized parser and megaflow cache

from existing cache rules. Pipeleon is a profile-guided specialization framework targeting P4

SmartNICs [251]. Morpheus [154] performs profile-guided optimization for eBPF. To deal

with input profile changes, these tools respecialize on each control-plane update or periodi-

cally trigger recompilation. Our approach can defer recompilation until program semantics

change.

6.6 Discussion

We have argued for control-plane-triggered and incremental compilation as a new way of

thinking about compilers for packet processing. As a proof of concept for our research

agenda, we have implemented Flay, a partial evaluation framework for the P4 language. We

extend the execution model implemented for P4Testgen with explicit semantics of control-

plane rules. Our initial results are encouraging. We are able to show that we can reduce

resource usage in data-plane programs and quickly react to configuration changes within

milliseconds. We conclude this chapter with possible future directions specific to Flay as a

partial evaluator.

Incremental compilation for data-plane programming. While we attempt to

avoid recompilation for as many control-plane updates as possible, we must eventually re-

compile when an update triggers a semantic change. In such cases, recompilation times

should ideally be low. Currently, however, we rely on device-specific compilers that treat

128

the entire program as a monolithic unit to be compiled from scratch. Recent work on mod-

ularity in network programming languages [219, 245, 68] and hardware support for partial

reconfiguration [250, 245, 258] points toward recompiling only the modules (such as specific

tables) that have changed.

A control-plane representation for faster checks. Our current representation

can significantly slow update processing when the targeted table matches on a complex key

and already contains many entries. Constructing the key expression, substituting it into the

appropriate placeholders, and checking whether the expression simplifies to a constant does

not scale well. Ideally, our representation should be compact enough to enable efficient sub-

stitution and expression rewriting. This representation differs from the packet-classification

problem [176], where the goal is to quickly determine whether a given set of values matches

another set. Instead, we focus on developing a symbolic representation that can be evalu-

ated quickly. Prior techniques for efficiently representing control-plane configurations, such

as Atomic Predicates [254], ERA [69], or Flash [93], could inform the development of a

compact control-plane representation to speed up update processing with complex configu-

rations.

Developing a similarity metric for control-plane configurations. Flay spe-

cializes P4 programs based on control-plane configurations and handles updates to these

configurations. This requires checking every update for potential respecialization, which

introduces overhead—particularly with frequent updates—and risks thrashing (i.e., cycling

between different versions of a specialized program). Defining classes of control-plane config-

urations based on a similarity metric could mitigate this issue. A program specialized for a

given class would remain valid for all configurations within that class, eliminating unneces-

sary checks or spurious respecialization. An operator could then deliberately switch between

these predefined classes (e.g., representing specific routing update patterns, BGP policies, or

129

device setups) to minimize disruptions to packet processing. The Tofino switch already pro-

vides program profiles specialized for different configurations. Concepts from configuration

generation [225, 149] and device profiles could help define the structure of these configuration

classes.

Extending Flay to more targets. We have primarily validated Flay on the Tofino

switch. Tofino uses an all-or-nothing compilation approach, guaranteeing line-rate packet

processing for any program that compiles. With Flay, we can mostly reduce program size but

cannot significantly affect packet-processing performance. This may differ for other targets.

For example, the programmable X2 switch [252] or SmartNICs [126, 107, 87] do not use

this all-or-nothing compilation approach. Further, packet-processing software frameworks

such as eBPF/XDP [100] or DPDK-based systems [230, 97, 170, 84] are heavily influenced

by compiler optimizations. We plan to extend our ideas to these programmable network

ecosystems.

Exploring the tradeoff between specialization time and specialization qual-

ity. We have implemented three specialization rewrite rules for Flay: dead-code elimina-

tion, table inlining, and constant propagation. As we add more rewrite rules, recompilation

may take longer, which could become problematic when rapid responses to control-plane

updates are required. Specialization rewrite rules are beneficial, but some may be com-

prehensive yet slow. We plan to use Flay to explore tradeoffs between specialization time

and specialization quality, with the goal of making incremental specialization a practical

technique for packet-processing compilers.

130

Part IV

Conclusion

131

7 | Limitations and Future

Directions

We describe the limitations of our particular SMT-based execution model, possible future

work, and conclude with some lessons we have learned.

7.1 Limitations

We have addressed the limitations specific to each of the tools in the appropriate chapter.

There are also limitations common to all tools.

Lack of formal semantics for the execution model. We motivated our work by

using the execution model of the P4 packet-processing language to develop analysis tools.

All three projects use SMT to encode their execution model. However, we do not provide

denotational semantics for this model. Developing denotational semantics would allow us

to describe packet processing independently of the framework we are using. Instead, our

interpretation of the P4 language is currently only available in the form of C++ code written

as part of the P4 compiler. From a practical viewpoint, our tools can be considered simulators

of device behavior, using P4 code and control-plane configurations as their input. Several

other projects have formulated denotational semantics for the P4 language specifically [121,

57, 12, 169, 244], and so we consider formulating our own semantics out of scope.

132

Our execution model is not designed to be stateful. All our work focuses on a

single packet traversing a network device in a specific state. We do not model statefulness,

i.e., what happens when a particular pipeline receives multiple packets in succession. This

can make it difficult to test some properties; for example, we cannot check whether a counter

tracks packets correctly or whether a rate-limiting algorithm actually throttles traffic. In

P4Testgen, we have worked around this limitation by assuming that any device we test can

be set to a testable state. This is not guaranteed. In contrast, tools such as FP4 [257] are

able to test more device states by generating packets at line rate, which ultimately cover

many more possible counter or rate-limiter configurations.

Our execution model does not capture concurrent access. We are not mod-

eling concurrent accesses to particular memory resources. For example, it is possible that

when memory resources are shared between packets, a compiler bug can cause write con-

flicts, which in turn leads to incorrect packet-processing outcomes. Our model is unable to

catch such behavior because we assume all memories are accessed in isolation. This problem

becomes important as more SmartNICs and switching chips are introduced which may use

concurrent processing primitives such as asynchronous execution and barriers. The P4 spec-

ification already describes a thread model and several primitives for parallel execution [236,

§17.4.1.]. We would need to extend our execution model to be able to detect bugs in this

kind of behavior.

We lack validation on complex network-device stacks. Our execution model

can be used to test network-device stacks, but we only corroborate this claim with P4Testgen.

Specifically for P4Testgen, we only tested software for the Tofino hardware switch [25], P4-

for-eBPF [242], and BMv2 [232]. To ensure that our thesis holds true, we should also apply

our testing techniques to complex real-world network device stacks, such as PINS [228] or

SONiC [229], and validate the effectiveness of our model by finding bugs there. Emulation

133

platforms such as AMD HACCS [4] or NVIDIA AIR [203] could make testing at scale possible

without requiring local access to dedicated hardware.

Extension to other data-plane programming languages. All the analysis tools

presented in this dissertation have been built for the P4 language. The language has an active

ecosystem, extensive emulation software, industrial users, and traits that are amenable to

static analysis. We presume that our techniques can also apply to other languages designed

for packet processing, but we have not proven that they can. Ideally, we should be able to

build our tooling for other available packet-processing DSLs, such as eBPF/XDP [100] or

DPDK programming frameworks [97, 84, 230], or NPL [30] to substantiate our claims.

7.2 Future Directions

In this dissertation, we have developed a representation of packet-processing programs in

SMT and adapted a variety of general-purpose techniques from programming language and

software testing research to our particular execution model. For Gauntlet, we adopted trans-

lation validation [172] and grammar-aided random-program generation [261]. In P4Testgen,

we took inspiration from symbolic execution and test generation tools such as Klee [35],

Dart [89], or CUTE [206]. With Flay, we implemented a combination of incremental compu-

tation [175] and partial evaluation [114]. This, of course, is only a small selection of possible

techniques, and there are many other techniques we can explore. We can use this repre-

sentation for a variety of follow-up work, including more verification and testing projects,

resource modeling, the development of general interpreters, or network-protocol validation.

We describe some concrete examples in this section.

134

7.2.1 Better Software Testing

By construction, Gauntlet’s translation validation is sound. When it finds a mismatch, it

is a bug in a compiler transformation. It can also be considered complete, as any semanti-

cally meaningful transformation the compiler undertakes is checked by Gauntlet. However,

Gauntlet is not complete with respect to the programs we generate to exercise the compiler,

because our fuzzer only produces a subset of all possible input programs. P4Testgen is nei-

ther sound nor complete. Because P4Testgen uses concolic execution, it may not capture

niche cases (e.g., a particular hash is calculated incorrectly). While its goal is to be complete

with respect to the P4 program, because it generates tests for any possible program path, it

is not with respect to the entire network-device stack. There are several techniques we can

use to capture bugs that Gauntlet or P4Testgen may not be able to detect.

7.2.1.1 Further Testing Techniques for Packet-Processing Compilers

Gauntlet uses random-program generation and translation validation to test packet-processing

compilers. There are more techniques we can adopt to specifically test compilers for packet

processing.

Metamorphic testing. Metamorphic testing [42] is a technique to find bugs in a tool,

without requiring knowledge about the expected output for a given input. It does so by

checking the relation between two inputs and ensuring that this relation is preserved in

the outputs. In the case of the compiler, we can modify a source program in a semantics-

preserving way (for example, reordering commutative instructions or variable assignments)

and then compare whether this modification leads to a semantic difference in compiler output.

This way, we can capture types of programs our current random-program generator is unable

to generate. For hardware compilers such as the Tofino compiler, we can use metamorphic

testing to identify problems in hardware resource usage. If there are two pieces of code that

135

are semantically equivalent but cause different resource usage, this might indicate a bug in

the compiler’s transformations or resource allocation algorithm.

Equivalence-modulo inputs. EMI checks whether code that is functionally considered

“dead” influences the execution semantics of the program. Under EMI, one picks an input,

exercises the input on the system-under-test, then removes any code pieces that should not be

exercised by this particular test. Then, the same test is run again. If the outcome of the test

changes, unexpected code has influenced the test behavior, and there might be a bug. We

initially dismissed equivalence-modulo-inputs (EMI) [134] for compiler testing in Section 4.2

because Gauntlet can identify miscompilations with higher precision. However, EMI in

combination with a test-case oracle such as P4Testgen can uncover bugs that Gauntlet may

be unable to detect. The bugs EMI can find are bugs that occur when a compiler chooses to

apply different passes based on the structure of the program. We can generate a set of tests

with P4Testgen, use the trace produced by P4Testgen, and remove all program elements

not exercised by this trace. The test generated by P4Testgen must pass on this reduced

program, as we have only removed segments that are, by definition, unused. If the compiler

applies a different set of passes for the reduced program, and one of the passes has a bug, the

test can fail. While Gauntlet technically could find this failure, Gauntlet’s random-program

generator is unlikely to produce this kind of reduced program.

Finding performance bugs. Gauntlet cannot find compiler bugs that affect perfor-

mance or resource usage of generated code. For a switching ASIC that guarantees line-rate

performance, the compiler must produce code that consumes a small number of compu-

tational and memory units [85]. For software targets where line-rate performance is not

guaranteed, the generated code must have good performance. For example, the P4-eBPF

compiler, which converts P4 to eBPF/XDP [100] bytecode, occasionally produces code with

poor performance [242]. Methods are needed to identify when a compiler pass negatively af-

136

fects performance and resource usage. We anticipate that handling such bugs would require

techniques that are conceptually different from our methods, which deal with correctness

bugs.

7.2.1.2 More Coverage of The Network-Device Toolchain

P4Testgen can generate tests comprehensively, but the number of generated tests is often

overwhelming. P4Testgen may be complete with respect to coverage for a P4 program, but

if it takes years to exercise all tests, the utility for users is low. Hence, we have introduced

path-selection strategies and preconditions to generate targeted tests. These two techniques

are not the only methods we could use to make test-case generation more targeted.

Property-based testing. We could use P4Testgen for property-based testing [81]. Pro-

perty-based testing is a test-case generation technique that checks whether a particular

function or program satisfies specific abstract properties. In the context of network-device

verification, we can use property-based testing to check whether particular protocols are

implemented correctly. For example, we could check whether the device stack implements a

particular tunneling protocol correctly. This would involve using the P4 program as a base to

generate the appropriate input packets and control-plane entries. This requires developing

a framework that translates the abstract properties into constraints for P4Testgen’s test-

case generation and maps them correctly to variables in the P4 program. If all generated

tests pass without violating any properties, the property-based test is considered successful.

Systems such as Aquila [241], FP4 [257], or Lumina [259] already implement property-based

network-device testing. We would need to compare their implementation with our tool.

Mutation testing. The goal of mutation testing [161] is to evaluate test suite quality by

checking its ability to detect artificially introduced faults (mutations). A mutation-testing

tool inserts faults (mutants) into the program based on predefined mutation operators. If a

137

test suite fails to distinguish the mutated program from the original (i.e., fails to ’kill’ the

mutant), it indicates a potential weakness in the test suite. In the context of our modeling

work, we could parse an existing packet test, infer its coverage using a tool such as P4Testgen,

and then introduce mutations into the code covered by this test. If the test still passes (i.e.,

does not kill the mutant), it suggests the test may not adequately exercise the mutated code

region.

7.2.2 Improving Compiler Optimizations

Our SMT-based model provides a fast, comprehensive way to check program equality. We

can use this model to introduce better and safer compiler optimizations.

Superoptimization. We could apply superoptimizations [148] to find the canonical, op-

timal sequence of instructions for a particular program segment. Closely related to su-

peroptimization are correct-by-construction techniques such as program synthesis [171] or

calculating compilers [153]. For all these techniques, we would impose constraints on a se-

quence of operations (e.g., this particular function should cost no more than 8 instructions)

and then try to find an operation sequence that satisfies this constraint. This is usually

done via brute-force search, but recent synthesis-based advances also make it possible to use

SMT-based techniques [116, 111]. Usually, these SMT-based techniques require translating

general-purpose code into logic suitable for posing queries. This can be a difficult process for

general-purpose languages, but not for data-plane DSLs. We already have an approach to

represent a program in the form of SMT expressions. We can use this representation to ask

superoptimization queries. Using our techniques, we are able to describe, with high fidelity,

the interfaces and arithmetic operations of a particular function. We can use this compressed

information to generate code that is optimal according to criteria that we determine, e.g.,

latency, throughput, power draw, or memory usage.

138

Supporting aggressive compiler optimizations. Similar to credible compilation [182],

we could repurpose a tool such as Gauntlet as an attachable compiler plugin to facilitate

development of experimental compiler optimizations. During compilation, if a newly added

optimization produces semantically incorrect code, Gauntlet will notify the compiler to dis-

card the optimization. With this technique, a developer can integrate potentially buggy code

into the compiler while still guaranteeing a safe compilation process. However, for the plugin

to be useful, Gauntlet’s translation validation needs to be fast enough so that compilation

time remains acceptable.

7.2.2.1 Program Specialization Up The Network-Device Stacks

With Flay, we specialize data-plane programs by identifying parts of the program that can

be changed to better utilize resources. We can also use this model to inform upper layers

about which protocols and features are actually available in the data plane. This way, we can

automatically disable certain API calls or remove unneeded protocol software implementa-

tions. The challenge here is to identify which particular segment of program code correlates

to a particular protocol in the upper layers. This mapping is not explicit, and we would

need to infer it.

7.2.2.2 Modeling Resource Usage of P4 Programs

Network devices usually have limited resources or operate under tight constraints. A particu-

lar problem a developer writing programs for these devices faces is the “fitting problem” [137],

i.e., the compiler places memory and resources of the program onto the device in ways the

developer does not understand. The fitting problem is common for the Tofino switches,

which have an all-or-nothing guarantee of compilation. If the program consumes too many

resources, it will be rejected. However, because the Tofino compiler uses certain heuristics,

it is poorly understood why it makes the decisions it does. One potential approach to this

139

problem is to provide high-level feedback early using an abstract resource allocation model.

If, for a given device resource map and a program, no placement is possible, feedback can

be provided early instead of waiting for a compiler decision. This model could also be baked

into the compiler to provide better feedback to users.

7.2.3 A Common Analysis Toolchain for Packet-Processing

Programs

We put considerable effort into ensuring that our execution model can generalize to different

network devices. We did this by developing whole-program semantics. Whole-program

semantics give us a solid foundation to expand our tooling to more areas in network-device

programming.

7.2.3.1 An IR to Represent Packet-Processing Behavior

We intend to expand our testing techniques to other ecosystems, primarily eBPF [62]. eBPF

also has an active community, existing production applications, and extensive available tool-

ing. What stands in the way of our efforts is that all our tools have been built using P4C’s

C++ framework, which we use to parse P4 code into P4C-IR. Unfortunately, the compiler

front end does not support parsing eBPF code and P4C-IR may not capture all eBPF be-

havior because it is specialized to P4 programs. We likely need a more general IR, built

to support multiple network programming languages and focused on functional analysis of

network programs. This IR does not need to capture memory or resource semantics accu-

rately. A viable starting point can be LLVM’s MLIR platform [133] that provides common

infrastructure and tooling for many languages. There are already projects such as the P4

MLIR project [238], that implements an MLIR dialect for the P4 language.

140

7.2.3.2 Extending the P4 Language to Model Network-Device Behavior

Both P4Testgen and Flay model a network device’s forwarding behavior, and they interpret

the P4 language to do so. However, while the P4 language has traits that are amenable to

formulating rigorous semantics, it also has gaps. Among others we had to develop whole-

program semantics in P4Testgen using a C++ DSL. Anyone who writes a P4Testgen or

Flay extension needs to describe the semantics using this C++ DSL, a practice that is

cumbersome and confusing. Ideally, we should be able to model an entire device’s behavior

in the P4 language without having to drop into a separate, general-purpose language. What

we believe P4 is currently missing is a way to describe control and data flow between the

programmable blocks and also higher-fidelity description of the behavior of various externs,

which execute device functionality. Work is already underway to specify P4 architectures

and their control flow in P4 [80]. We could extend P4Testgen and Flay to support these

new language constructs and check whether they capture the same behavior as our current

whole-program semantics.

A P4-based interpreter for packet processing. P4Testgen models how a packet

is processed by a network device using a P4 program as its source of truth. It does so ac-

curately enough that it could also be used as a general P4 program interpreter. Combined

with architectural P4 descriptions, P4Testgen could be extended with an interface allowing

users to query the output generated for a particular input and control-plane configuration.

A general interpreter can aid in different types of program analysis. For example, regarding

coverage, one could ask questions about which program elements are exercised by a par-

ticular packet input. Another use case is linting, where P4 programs could be annotated

with diagnostics (e.g., a warning that a particular code path is non-executable on a device).

Advanced debugging support is also possible by integrating P4Testgen’s small-step approach

with an IDE. Developers could then step through a P4 program as if they were working with

141

general-purpose code. Similar ideas have been proposed with Petr4 [57], but Petr4’s main

focus remains type-checking P4.

7.2.3.3 Formalizing RFC Standards And Protocol Interactions

Our overarching goal is to develop static analysis tools for network-device software stacks.

Often, these software stacks implement network protocols based on RFCs. However, the

problem is that these RFCs use human prose and rarely include a formal specification. These

RFCs can be ambiguous, which leads to misunderstandings and conflicts between network-

device makers and their customers—or even among device makers themselves. How RFCs

interact with each other is also poorly understood. Since data-plane languages can describe

packet-forwarding behavior using arithmetic and stateful primitives (externs or registers),

it is possible to formally specify a network protocol as a data-plane program. We can

describe the RFC and even generate tests for it using tools such as P4Testgen to ensure

compliance. Work already exists that attempts to generate specifications using NLP or

LLM-based techniques [208]. We could produce similar specifications in the form of P4

language programs for a given RFC.

7.3 Concluding Thoughts

Peter Naur once described the act of programming as a form of theory building [157]. When

we design a data-plane DSL, we inadvertently create a theory for packet forwarding at the

device level—and this theory can help us in developing tools that are simpler and more

effective. We believe our execution model would have been less effective had we built it for

general-purpose programming languages. For Gauntlet, we were able to find bugs effectively

because we exploited the constraints of the P4 language, which was deliberately designed to

be unambiguous. In P4Testgen, we were able to develop an effective test-case oracle because

142

the language had facilities that made it easier to generate input-output packet tests. For

Flay, we were able to develop a very efficient partial evaluation algorithm because we focused

on the simple language core made available by the DSL. These lessons indicate that focusing

development resources on a particular DSL can be beneficial.

Of course, many of these lessons were learned in hindsight. When we started the Gauntlet

project, we were not certain whether we would be able to capture P4’s execution model

entirely in SMT formulas. SMT encoding proved to be a great match for packet processing.

We were able to expand this encoding beyond P4 to the entire networking device, and even

to the control plane. Now we have an extensible model that can capture a wide range of

device behaviors, and we can use it for a variety of static analysis tooling.

Another factor that made the development of this model significantly easier is the avail-

ability of an open-source programming language and software stack. Historically, much

of packet-processing technology was closed off and compartmentalized, restricted to propri-

etary interfaces of expensive hardware [38, 82]. This made it difficult to collaborate and

innovate. On the other hand, recent openness has created a great environment for exper-

imentation. When we pursued our bug-finding with Gauntlet and P4Testgen, we were en-

couraged by the responsiveness of the community. And, we now have open and well-specified

data-plane programming languages in the form of P4 and eBPF with active communities,

open networking-device stacks (SONiC [229], PINS [228], FBOSS [46]), open-hardware SDKs

such as OpenTofino and its emulator [237], and even open programmable networking hard-

ware [252]. These open-source frameworks are lowering the barrier to entry into networking

research and are also democratizing access to leading-edge technology. We built much of

our analysis tools using open-source tooling such as emulators and compilers. The better

the fidelity of this tooling, the better analysis tools we can develop, and the more we will be

able to improve network packet processing at large.

143

Bibliography

[1] Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M.,

Ghemawat, S., Irving, G., Isard, M., et al. Tensorflow: A system for large-scale

machine learning. In USENIX OSDI (2016).

[2] Abhashkumar, A., Lee, J., Tourrilhes, J., Banerjee, S., Wu, W., Kang,

J.-M., and Akella, A. P5: Policy-driven optimization of P4 pipeline. In ACM

SOSR (2017).

[3] Advanced Micro Devices, Inc. AMD Alveo SN1000 SmartNIC Accelerator Card.

https://web.archive.org/web/20250226015516/https://www.amd.com/en/produ

cts/accelerators/alveo/sn1000/a-sn1022-p4.html, 2023. Accessed: 2025-05-01.

[4] Advanced Micro Devices, Inc. Heterogeneous accelerated compute clusters. ht

tps://web.archive.org/web/20250227000117/https://www.amd-haccs.io/, 2023.

Accessed: 2025-05-01.

[5] Advanced Micro Devices, Inc. Content addressable memory (CAM). https:

//web.archive.org/web/20241206222954/https://www.xilinx.com/products/in

tellectual-property/ef-di-cam.html, 2024. Accessed: 2025-05-01.

[6] Agape, A. A., Dănceanu, M. C., Hansen, R. R., and Stefan, S. P4Fuzz:

Compiler fuzzer for dependable programmable dataplanes. In ACM ICDCN (2021).

144

https://web.archive.org/web/20250226015516/https://www.amd.com/en/products/accelerators/alveo/sn1000/a-sn1022-p4.html
https://web.archive.org/web/20250226015516/https://www.amd.com/en/products/accelerators/alveo/sn1000/a-sn1022-p4.html
https://web.archive.org/web/20250227000117/https://www.amd-haccs.io/
https://web.archive.org/web/20250227000117/https://www.amd-haccs.io/
https://web.archive.org/web/20241206222954/https://www.xilinx.com/products/intellectual-property/ef-di-cam.html
https://web.archive.org/web/20241206222954/https://www.xilinx.com/products/intellectual-property/ef-di-cam.html
https://web.archive.org/web/20241206222954/https://www.xilinx.com/products/intellectual-property/ef-di-cam.html

[7] Agrawal, A., and Kim, C. Intel Tofino2–a 12.9 tbps P4-programmable ethernet

switch. In 2020 IEEE Hot Chips 32 Symposium (HCS) (2020).

[8] Ahluwalia, S. Table driven interface (TDI): Usages and advantages. https://web.

archive.org/web/20250112221624/https://opennetworking.org/news-and-eve

nts/blog/table-driven-interface-api-opens-p4-programmable-data-plane-f

eatures/, 2021. Accessed: 2025-05-01.

[9] Albab, K. D., Dilorenzo, J., Heule, S., Kheradmand, A., Smolka, S.,

Weitz, K., Tirmazi, M., Gao, J., and Yu, M. SwitchV: Automated SDN switch

validation with P4 models. In ACM SIGCOMM (2022).

[10] Alcoz, A. G., Strohmeier, M., Lenders, V., and Vanbever, L. Aggregate-

based congestion control for pulse-wave DDoS defense. In ACM SIGCOMM (2022).

[11] Almquist, P., and Kastenholz, F. Towards Requirements for IP Routers. RFC

1716, 1994.

[12] Alshnakat, A., Lundberg, D., Guanciale, R., and Dam, M. HOL4P4: Mecha-

nized small-step semantics for P4. Proceedings of the ACM on Programming Languages

(2024).

[13] Amadini, R., Gange, G., Schachte, P., Sø ndergaard, H., and Stuckey,

P. J. Abstract interpretation, symbolic execution and constraints. In Recent Devel-

opments in the Design and Implementation of Programming Languages (2020).

[14] anasyrmia. Fix: Predication issue #2345. https://github.com/p4lang/p4c/pull

/2564, 2020. Accessed: 2025-05-01.

145

https://web.archive.org/web/20250112221624/https://opennetworking.org/news-and-events/blog/table-driven-interface-api-opens-p4-programmable-data-plane-features/
https://web.archive.org/web/20250112221624/https://opennetworking.org/news-and-events/blog/table-driven-interface-api-opens-p4-programmable-data-plane-features/
https://web.archive.org/web/20250112221624/https://opennetworking.org/news-and-events/blog/table-driven-interface-api-opens-p4-programmable-data-plane-features/
https://web.archive.org/web/20250112221624/https://opennetworking.org/news-and-events/blog/table-driven-interface-api-opens-p4-programmable-data-plane-features/
https://github.com/p4lang/p4c/pull/2564
https://github.com/p4lang/p4c/pull/2564

[15] Arumugam, M., Bansal, D., Bhatia, N., Boerner, J., Capper, S., Kim, C.,

McClure, S., Motwani, N., Narasimhan, R., Panchal, U., et al. Bluebird:

High-performance sdn for bare-metal cloud services. In USENIX NSDI (2022).

[16] Baldoni, R., Coppa, E., D’Elia, D. C., Demetrescu, C., and Finocchi, I.

A survey of symbolic execution techniques. ACM Computing Surveys (2018).

[17] Ball, T., and Larus, J. R. Efficient path profiling. In IEEE MICRO (1996).

[18] Barrett, C., de Moura, L., and Stump, A. SMT-COMP: Satisfiability modulo

theories competition. In Computer Aided Verification (CAV) (2005).

[19] Barrett, C. W., Dill, D. L., and Levitt, J. R. A decision procedure for bit-

vector arithmetic. In Proceedings of the 35th Annual Design Automation Conference

(1998).

[20] Beckett, R., Gupta, A., Mahajan, R., and Walker, D. A general approach

to network configuration verification. In ACM SIGCOMM (2017).

[21] Beckett, R., and Mahajan, R. Capturing the state of research on network veri-

fication. https://web.archive.org/web/20240625135948/https://netverify.fu

n/2-current-state-of-research/. Accessed: 2025-05-01.

[22] Bhatia, S., Consel, C., Le Meur, A.-F., and Pu, C. Automatic specialization

of protocol stacks in operating system kernels. In 29th Annual IEEE International

Conference on Local Computer Networks (2004).

[23] Bishop, S., Fairbairn, M., Norrish, M., Sewell, P., Smith, M., and Wans-

brough, K. Rigorous specification and conformance testing techniques for network

protocols, as applied to TCP, UDP, and Sockets. In ACM SIGCOMM (2005).

146

https://web.archive.org/web/20240625135948/https://netverify.fun/2-current-state-of-research/
https://web.archive.org/web/20240625135948/https://netverify.fun/2-current-state-of-research/

[24] Bodik, R., Chandra, S., Galenson, J., Kimelman, D., Tung, N., Barman,

S., and Rodarmor, C. Programming with angelic nondeterminism. In ACM POPL

(2010).

[25] Bosshart, P. Programmable forwarding planes at terabit/s speeds. In 2018 IEEE

Hot Chips 30 Symposium (HCS) (2018).

[26] Bosshart, P., Daly, D., Gibb, G., Izzard, M., McKeown, N., Rexford,

J., Schlesinger, C., Talayco, D., Vahdat, A., Varghese, G., et al. P4:

Programming protocol-independent packet processors. ACM SIGCOMM Computer

Communication Review (2014).

[27] Bradner, S., and McQuaid, J. Benchmarking methodology for network intercon-

nect devices. RFC 2544, 1999.

[28] Bradner, S. O. Benchmarking Terminology for Network Interconnection Devices.

RFC 1242, 1991.

[29] Bressana, P., Zilberman, N., and Soulé, R. Finding hard-to-find data plane

bugs with a PTA. In ACM CoNEXT (2020).

[30] Broadcom, Inc. NPL: Open, high-level language for developing feature-rich solutions

for programmable networking platforms. https://web.archive.org/web/20250118

083052/https://nplang.org/, 2019. Accessed: 2025-05-01.

[31] Brown, M., Fogel, A., Halperin, D., Heorhiadi, V., Mahajan, R., and

Millstein, T. Lessons from the evolution of the Batfish configuration analysis tool.

In ACM SIGCOMM (2023).

147

https://web.archive.org/web/20250118083052/https://nplang.org/
https://web.archive.org/web/20250118083052/https://nplang.org/

[32] Budiu, M. The P416 reference compiler implementation architecture. https://gith

ub.com/p4lang/p4c/blob/03c6717fd3e6bd2db969eab8ff0e4553dd8aa26e/docs/c

ompiler-design.pptx, 2018. Accessed: 2025-05-01.

[33] Budiu, M. Tuple elim. https://github.com/p4lang/p4c/pull/2451, 2020.

Accessed: 2025-05-01.

[34] Budiu, M., and Dodd, C. The P416 programming language. ACM SIGOPS Oper-

ating Systems Review (2017).

[35] Cadar, C., Dunbar, D., Engler, D. R., et al. KLEE: Unassisted and automatic

generation of high-coverage tests for complex systems programs. In USENIX OSDI

(2008).

[36] Cardwell, N., Cheng, Y., Brakmo, L., Mathis, M., Raghavan, B.,

Dukkipati, N., Chu, H.-k. J., Terzis, A., and Herbert, T. packetdrill: Script-

able network stack testing, from sockets to packets. In USENIX ATC (2013).

[37] Casado, M., Koponen, T., Moon, D., and Shenker, S. Rethinking packet

forwarding hardware. In Proceedings of the 7th ACM Workshop on Hot Topics in

Networks (2008).

[38] Casado, M., McKeown, N., and Shenker, S. From ethane to SDN and beyond.

ACM SIGCOMM Computer Communication Review (2019).

[39] Chan, W. Y., Vuong, C., and Otp, M. An improved protocol test generation

procedure based on UIOs. ACM SIGCOMM Computer Communication Review (1989).

[40] Chen, D., Li, D. X., and Moseley, T. AutoFDO: Automatic feedback-directed

optimization for warehouse-scale applications. In Proceedings of the 2016 International

Symposium on Code Generation and Optimization (2016).

148

https://github.com/p4lang/p4c/blob/03c6717fd3e6bd2db969eab8ff0e4553dd8aa26e/docs/compiler-design.pptx
https://github.com/p4lang/p4c/blob/03c6717fd3e6bd2db969eab8ff0e4553dd8aa26e/docs/compiler-design.pptx
https://github.com/p4lang/p4c/blob/03c6717fd3e6bd2db969eab8ff0e4553dd8aa26e/docs/compiler-design.pptx
https://github.com/p4lang/p4c/pull/2451

[41] Chen, J., Hu, W., Hao, D., Xiong, Y., Zhang, H., Zhang, L., and Xie, B.

An empirical comparison of compiler testing techniques. In ACM/IEEE ICSE (2016).

[42] Chen, T. Y., Cheung, S. C., and Yiu, S. M. Metamorphic testing: A new

approach for generating next test cases. arXiv preprint arXiv:2002.12543 (1998).

[43] Chen, X. Open source P4 implementations. https://github.com/Princeton-Cab

ernet/p4-projects, 2018. Accessed: 2025-05-01.

[44] Chen, X., Feibish, S. L., Braverman, M., and Rexford, J. Beaucoup: Answer-

ing many network traffic queries, one memory update at a time. In ACM SIGCOMM

(2020).

[45] Cheng, G. P4 practice at Baidu. https://web.archive.org/web/20241203002715

/https://opennetworking.org/wp-content/uploads/2021/05/2021-P4-WS-Gan

g-Cheng-Slides.pdf, 2021. Accessed: 2025-05-01.

[46] Choi, S., Burkov, B., Eckert, A., Fang, T., Kazemkhani, S., Sherwood,

R., Zhang, Y., and Zeng, H. FBOSS: building switch software at scale. In ACM

SIGCOMM (2018).

[47] Chopra, R. Cisco Silicon One breaks the 51.2 Tbps barrier. https://web.archive.

org/web/20241212115412/https://blogs.cisco.com/sp/cisco-silicon-one-b

reaks-the-51-2-tbps-barrier, 2023. Accessed: 2025-05-01.

[48] Clark, D. The design philosophy of the DARPA internet protocols. In Symposium

proceedings on Communications architectures and protocols (1988).

[49] Consel, C., Lawall, J. L., and Le Meur, A.-F. o. A tour of Tempo: a program

specializer for the c language. Science of computer programming (2004).

149

https://github.com/Princeton-Cabernet/p4-projects
https://github.com/Princeton-Cabernet/p4-projects
https://web.archive.org/web/20241203002715/https://opennetworking.org/wp-content/uploads/2021/05/2021-P4-WS-Gang-Cheng-Slides.pdf
https://web.archive.org/web/20241203002715/https://opennetworking.org/wp-content/uploads/2021/05/2021-P4-WS-Gang-Cheng-Slides.pdf
https://web.archive.org/web/20241203002715/https://opennetworking.org/wp-content/uploads/2021/05/2021-P4-WS-Gang-Cheng-Slides.pdf
https://web.archive.org/web/20241212115412/https://blogs.cisco.com/sp/cisco-silicon-one-breaks-the-51-2-tbps-barrier
https://web.archive.org/web/20241212115412/https://blogs.cisco.com/sp/cisco-silicon-one-breaks-the-51-2-tbps-barrier
https://web.archive.org/web/20241212115412/https://blogs.cisco.com/sp/cisco-silicon-one-breaks-the-51-2-tbps-barrier

[50] Cubro. Next generation network packet broker based on latest p4 programmable

chips. https://web.archive.org/web/20240723105341/https://www.cubro.com/

en/blog/next-generation-network-packet-broker-based-on-latest-p4-progr

ammable-chips/, 2022. Accessed: 2025-05-01.

[51] Das, R., and Snoeren, A. C. Memory management in ActiveRMT: Towards

runtime-programmable switches. In ACM SIGCOMM (2023).

[52] De Moura, L., and Bjørner, N. Efficient e-matching for SMT solvers. In CADE-

21: 21st International Conference on Automated Deduction (2007).

[53] De Moura, L., and Bjørner, N. Z3: An efficient SMT solver. In International

conference on Tools and Algorithms for the Construction and Analysis of Systems

(2008).

[54] De Moura, L., and Bjørner, N. Satisfiability modulo theories: An appetizer. In

Brazilian Symposium on Formal Methods (2009), Springer.

[55] de Ruiter, J., and Schutijser, C. Next-generation internet at terabit speed:

SCION in P4. In ACM CoNEXT (2021).

[56] Deng, B., Wu, W., and Song, L. Redundant logic elimination in network functions.

In ACM SOSR (2020).

[57] Doenges, R., Arashloo, M. T., Bautista, S., Chang, A., Ni, N., Parkinson,

S., Peterson, R., Solko-Breslin, A., Xu, A., and Foster, N. Petr4: Formal

foundations for P4 data planes. In ACM POPL (2021).

[58] Dumitrescu, C. Develop your CPU network stack in P4. https://web.archive.or

g/web/20240723052907/https://opennetworking.org/wp-content/uploads/202

2/05/Cristian-Dumitrescu-Final-Slide-Deck.pdf, 2022. Accessed: 2025-05-01.

150

https://web.archive.org/web/20240723105341/https://www.cubro.com/en/blog/next-generation-network-packet-broker-based-on-latest-p4-programmable-chips/
https://web.archive.org/web/20240723105341/https://www.cubro.com/en/blog/next-generation-network-packet-broker-based-on-latest-p4-programmable-chips/
https://web.archive.org/web/20240723105341/https://www.cubro.com/en/blog/next-generation-network-packet-broker-based-on-latest-p4-programmable-chips/
https://web.archive.org/web/20240723052907/https://opennetworking.org/wp-content/uploads/2022/05/Cristian-Dumitrescu-Final-Slide-Deck.pdf
https://web.archive.org/web/20240723052907/https://opennetworking.org/wp-content/uploads/2022/05/Cristian-Dumitrescu-Final-Slide-Deck.pdf
https://web.archive.org/web/20240723052907/https://opennetworking.org/wp-content/uploads/2022/05/Cristian-Dumitrescu-Final-Slide-Deck.pdf

[59] Dumitrescu, D., Stoenescu, R., Negreanu, L., and Raiciu, C. bf4: Towards

bug-free P4 programs. In ACM SIGCOMM (2020).

[60] Dumitrescu, D., Stoenescu, R., Popovici, M., Negreanu, L., and Raiciu,

C. Dataplane equivalence and its applications. In USENIX NSDI (2019).

[61] Dumitru, M. V., Dumitrescu, D., and Raiciu, C. Can we exploit buggy P4

programs? In ACM SOSR (2020).

[62] eBPF.io. eBPF: Introduction, tutorials & community resources. https://web.arch

ive.org/web/20250321050340/https://ebpf.io/, 2022. Accessed: 2025-05-01.

[63] Eichholtz, M., Campbell, E., Foster, N., Salvaneschi, G., and Mezini, M.

How to avoid making a billion-dollar mistake: Type-safe data plane programming with

SafeP4. arXiv preprint arXiv:1906.07223 (2019).

[64] Enns, R. NETCONF configuration protocol. RFC 4741, 2006.

[65] Extreme Networks. Extreme 9920: Cloud-native network visibility platform. ht

tps://web.archive.org/web/20250125232230/https://www.extremenetworks.co

m/products/network-packet-broker/9920-hardware-platform/extreme-9920-c

loud-native-network-visibility-platform. Accessed: 2025-05-01.

[66] Farrington, N., Rubow, E., and Vahdat, A. Data center switch architecture

in the age of merchant silicon. In 2009 17th ieee symposium on high performance

interconnects (2009), IEEE.

[67] Farshin, A., Barbette, T., Roozbeh, A., Maguire Jr, G. Q., and Kostić,

D. Packetmill: toward per-core 100-gbps networking. In ACM ASPLOS (2021).

[68] Fattaholmanan, A., Baldi, M., Carzaniga, A., and Soulé, R. P4 weaver:

Supporting modular and incremental programming in P4. In ACM SOSR (2021).

151

https://web.archive.org/web/20250321050340/https://ebpf.io/
https://web.archive.org/web/20250321050340/https://ebpf.io/
https://web.archive.org/web/20250125232230/https://www.extremenetworks.com/products/network-packet-broker/9920-hardware-platform/extreme-9920-cloud-native-network-visibility-platform
https://web.archive.org/web/20250125232230/https://www.extremenetworks.com/products/network-packet-broker/9920-hardware-platform/extreme-9920-cloud-native-network-visibility-platform
https://web.archive.org/web/20250125232230/https://www.extremenetworks.com/products/network-packet-broker/9920-hardware-platform/extreme-9920-cloud-native-network-visibility-platform
https://web.archive.org/web/20250125232230/https://www.extremenetworks.com/products/network-packet-broker/9920-hardware-platform/extreme-9920-cloud-native-network-visibility-platform

[69] Fayaz, S. K., Sharma, T., Fogel, A., Mahajan, R., Millstein, T., Sekar,

V., and Varghese, G. Efficient network reachability analysis using a succinct control

plane representation. In USENIX OSDI (2016).

[70] Feamster, N., Rexford, J., and Zegura, E. The road to SDN: an intellec-

tual history of programmable networks. ACM SIGCOMM Computer Communication

Review (2014).

[71] Fedor, M., Schoffstall, M. L., Davin, J. R., and Case, D. J. D. Simple

Network Management Protocol (SNMP). RFC 1157, 1990.

[72] Feng, Y., Chen, Z., Song, H., Xu, W., Li, J., Zhang, Z., Yun, T., Wan,

Y., and Liu, B. Enabling in-situ programmability in network data plane: From

architecture to language. In USENIX NSDI (2022).

[73] Fingerhut, A. The BMv2 simple switch target. https://github.com/p4lang/be

havioral-model/blob/d12eefc7bc19fb4da615b1b45c1235899f2e4fb1/docs/simp

le_switch.md, 2016. Accessed: 2025-05-01.

[74] Fingerhut, A. Behavioral model targets. https://github.com/p4lang/behavior

al-model/blob/d12eefc7bc19fb4da615b1b45c1235899f2e4fb1/targets/README.

md, 2018. Accessed: 2025-05-01.

[75] Fingerhut, A. Forbid shifts with unknown widths. https://github.com/p4lang/

p4-spec/pull/814, 2020. Accessed: 2025-05-01.

[76] Fingerhut, A. Incorrect transformation in predication pass. https://github.com

/p4lang/p4c/issues/2345, 2020. Accessed: 2025-05-01.

[77] Fingerhut, A. Make stricter PSA tests that verify packet_path and instance fields.

https://github.com/p4lang/p4c/pull/2509, 2020. Accessed: 2025-05-01.

152

https://github.com/p4lang/behavioral-model/blob/d12eefc7bc19fb4da615b1b45c1235899f2e4fb1/docs/simple_switch.md
https://github.com/p4lang/behavioral-model/blob/d12eefc7bc19fb4da615b1b45c1235899f2e4fb1/docs/simple_switch.md
https://github.com/p4lang/behavioral-model/blob/d12eefc7bc19fb4da615b1b45c1235899f2e4fb1/docs/simple_switch.md
https://github.com/p4lang/behavioral-model/blob/d12eefc7bc19fb4da615b1b45c1235899f2e4fb1/targets/README.md
https://github.com/p4lang/behavioral-model/blob/d12eefc7bc19fb4da615b1b45c1235899f2e4fb1/targets/README.md
https://github.com/p4lang/behavioral-model/blob/d12eefc7bc19fb4da615b1b45c1235899f2e4fb1/targets/README.md
https://github.com/p4lang/p4-spec/pull/814
https://github.com/p4lang/p4-spec/pull/814
https://github.com/p4lang/p4c/issues/2345
https://github.com/p4lang/p4c/issues/2345
https://github.com/p4lang/p4c/pull/2509

[78] Fingerhut, A. Reducing requirements for initializing headers. https://github.c

om/p4lang/p4-spec/issues/849, 2020. Accessed: 2025-05-01.

[79] Fingerhut, A. Specify that copy-out behavior still occurs after return/exit state-

ments. https://github.com/p4lang/p4-spec/pull/823, 2020. Accessed: 2025-05-

01.

[80] Fingerhut, A. Specifying p4 architectures. https://github.com/jafingerhut/p

4-guide/tree/ee492b89e3e58cfe219ab843049d557ece5ed6b1/specifying-p4-a

rchitectures, 2024. Accessed: 2025-05-01.

[81] Fink, G., and Bishop, M. Property-based testing: a new approach to testing for

assurance. ACM SIGSOFT Software Engineering Notes (1997).

[82] Foster, N., McKeown, N., Rexford, J., Parulkar, G., Peterson, L., and

Sunay, O. Using deep programmability to put network owners in control. ACM

SIGCOMM Computer Communication Review (2020).

[83] Freire, L., Neves, M., Leal, L., Levchenko, K., Schaeffer-Filho, A., and

Barcellos, M. Uncovering bugs in P4 programs with assertion-based verification.

In ACM SOSR (2018).

[84] Gallo, M., and Laufer, R. ClickNF: a modular stack for custom network functions.

In USENIX ATC (2018).

[85] Gao, X., Kim, T., Wong, M. D., Raghunathan, D., Varma, A. K., Kannan,

P. G., Sivaraman, A., Narayana, S., and Gupta, A. Switch code generation

using program synthesis. In ACM SIGCOMM (2020).

153

https://github.com/p4lang/p4-spec/issues/849
https://github.com/p4lang/p4-spec/issues/849
https://github.com/p4lang/p4-spec/pull/823
https://github.com/jafingerhut/p4-guide/tree/ee492b89e3e58cfe219ab843049d557ece5ed6b1/specifying-p4-architectures
https://github.com/jafingerhut/p4-guide/tree/ee492b89e3e58cfe219ab843049d557ece5ed6b1/specifying-p4-architectures
https://github.com/jafingerhut/p4-guide/tree/ee492b89e3e58cfe219ab843049d557ece5ed6b1/specifying-p4-architectures

[86] Gao, X., Raghunathan, D., Fang, R., Wang, T., Zhu, X., Sivaraman, A.,

Narayana, S., and Gupta, A. Cat: A solver-aided compiler for packet-processing

pipelines. In ACM ASPLOS (2023).

[87] Gmitter, J. Transforming AI networks with AMD Pensando Pollara 400. https://

web.archive.org/web/20241217185814/https://community.amd.com/t5/corpora

te/transforming-ai-networks-with-amd-pensando-pollara-400/ba-p/716566,

2024. Accessed: 2025-05-01.

[88] GNU Project. gcov–a test coverage program. https://web.archive.org/web/20

250321012000/https://gcc.gnu.org/onlinedocs/gcc/Gcov.html, 1987. Accessed:

2025-05-01.

[89] Godefroid, P., Klarlund, N., and Sen, K. DART: Directed automated random

testing. In ACM POPL (2005).

[90] Goodfellow, R. Building a rack-scale computer with P4 at the core. https:

//web.archive.org/web/20241225042831/https://opennetworking.org/new

s-and-events/blog/building-a-rack-scale-computer-with-p4-at-the-core/,

2023. Accessed: 2025-05-01.

[91] Google LLC. Protocol buffers. https://web.archive.org/web/20250321035939

/https://protobuf.dev/, 2008. Accessed: 2025-05-01.

[92] Greene, W., and Lancaster, B. Carrier-grade: Five nines, the myth and the

reality. Pipeline magazine (2007).

[93] Guo, D., Chen, S., Gao, K., Xiang, Q., Zhang, Y., and Yang, Y. R. Flash:

fast, consistent data plane verification for large-scale network settings. In ACM SIG-

COMM (2022).

154

https://web.archive.org/web/20241217185814/https://community.amd.com/t5/corporate/transforming-ai-networks-with-amd-pensando-pollara-400/ba-p/716566
https://web.archive.org/web/20241217185814/https://community.amd.com/t5/corporate/transforming-ai-networks-with-amd-pensando-pollara-400/ba-p/716566
https://web.archive.org/web/20241217185814/https://community.amd.com/t5/corporate/transforming-ai-networks-with-amd-pensando-pollara-400/ba-p/716566
https://web.archive.org/web/20250321012000/https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
https://web.archive.org/web/20250321012000/https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
https://web.archive.org/web/20241225042831/https://opennetworking.org/news-and-events/blog/building-a-rack-scale-computer-with-p4-at-the-core/
https://web.archive.org/web/20241225042831/https://opennetworking.org/news-and-events/blog/building-a-rack-scale-computer-with-p4-at-the-core/
https://web.archive.org/web/20241225042831/https://opennetworking.org/news-and-events/blog/building-a-rack-scale-computer-with-p4-at-the-core/
https://web.archive.org/web/20250321035939/https://protobuf.dev/
https://web.archive.org/web/20250321035939/https://protobuf.dev/

[94] Gurevich, V. Change parser exception model and provide better controls for excep-

tional situation handling. https://github.com/p4lang/p4-spec/issues/880, 2020.

Accessed: 2025-05-01.

[95] Hadi Salim, J., Chatterjee, D., Nogueira, V., Tammela, P., Osinski, T.,

Haleplidis, E., Sambasivam, B., Gupta, U., Jain, K., and Sethuramapan-

dian, S. Introducing P4TC-a P4 implementation on linux kernel using traffic control.

In Proceedings of the 6th on European P4 Workshop (2023).

[96] Hadzic, E. Added support for assert and assume primitives in bm_sim. https:

//github.com/p4lang/behavioral-model/pull/762, 2019. Accessed: 2025-05-01.

[97] Han, S., Jang, K., Panda, A., Palkar, S., Han, D., and Ratnasamy, S.

SoftNIC: A software NIC to augment hardware. Tech. rep., University of California at

Berkeley, 2015.

[98] Hawblitzel, C., Lahiri, S. K., Pawar, K., Hashmi, H., Gokbulut, S., Fer-

nando, L., Detlefs, D., and Wadsworth, S. Will you still compile me tomorrow?

static cross-version compiler validation. In ACM ESEC/FSE (2013).

[99] Hogan, M., Loehr, D., Sonchack, J., Feibish, S. L., Rexford, J., and

Walker, D. Automated optimization of parameterized data-plane programs with

Parasol. IEEE/ACM Transactions on Networking (2024).

[100] Høiland-Jørgensen, T., Brouer, J. D., Borkmann, D., Fastabend, J., Her-

bert, T., Ahern, D., and Miller, D. The EXpress Data Path: Fast programmable

packet processing in the operating system kernel. In ACM CoNEXT (2018).

[101] Holterbach, T., Costa Molero, E., Apostolaki, M., Dainotti, A., Vissic-

chio, S., and Vanbever, L. Blink: Fast connectivity recovery entirely in the data

plane. In USENIX NSDI (2019).

155

https://github.com/p4lang/p4-spec/issues/880
https://github.com/p4lang/behavioral-model/pull/762
https://github.com/p4lang/behavioral-model/pull/762

[102] Holterbach, T., Vissicchio, S., Dainotti, A., and Vanbever, L. SWIFT:

Predictive fast reroute. In ACM SIGCOMM (2017).

[103] Honda, M., Huici, F., Lettieri, G., and Rizzo, L. mswitch: a highly-scalable,

modular software switch. In ACM SOSR (2015).

[104] Huang, D. Y., Yocum, K., and Snoeren, A. C. High-fidelity switch models for

software-defined network emulation. In Proceedings of the second ACM SIGCOMM

workshop on Hot topics in software defined networking (2013).

[105] Ichbiah, J. D., Krieg-Brueckner, B., Wichmann, B. A., Barnes, J. G.,

Roubine, O., and Heliard, J.-C. Rationale for the design of the Ada programming

language. ACM SIGPLAN notices (1979).

[106] Intel Corporation. P4-16 Intel Tofino native architecture - public version. https:

//github.com/barefootnetworks/Open-Tofino/blob/5b6ef19873698fc7d9c49cb

33fd54c5fca2ecadd/PUBLIC_Tofino-Native-Arch.pdf, 2021. Accessed: 2025-05-01.

[107] Intel Corporation. The infrastructure processing unit (IPU). https://web.arch

ive.org/web/20241127021021/https://www.intel.de/content/www/de/de/produ

cts/details/network-io/ipu.html, 2022. Accessed: 2025-05-01.

[108] Intel Corporation. Agilex 9 FPGA and soc FPGA. https://web.archive.org/

web/20250207120602/https://www.intel.com/content/www/us/en/products/det

ails/fpga/agilex/9.html, 2024. Accessed: 2025-05-01.

[109] International Telecommunication Union. Ethernet service activation test

methodology. Y.1564, 2016.

156

https://github.com/barefootnetworks/Open-Tofino/blob/5b6ef19873698fc7d9c49cb33fd54c5fca2ecadd/PUBLIC_Tofino-Native-Arch.pdf
https://github.com/barefootnetworks/Open-Tofino/blob/5b6ef19873698fc7d9c49cb33fd54c5fca2ecadd/PUBLIC_Tofino-Native-Arch.pdf
https://github.com/barefootnetworks/Open-Tofino/blob/5b6ef19873698fc7d9c49cb33fd54c5fca2ecadd/PUBLIC_Tofino-Native-Arch.pdf
https://web.archive.org/web/20241127021021/https://www.intel.de/content/www/de/de/products/details/network-io/ipu.html
https://web.archive.org/web/20241127021021/https://www.intel.de/content/www/de/de/products/details/network-io/ipu.html
https://web.archive.org/web/20241127021021/https://www.intel.de/content/www/de/de/products/details/network-io/ipu.html
https://web.archive.org/web/20250207120602/https://www.intel.com/content/www/us/en/products/details/fpga/agilex/9.html
https://web.archive.org/web/20250207120602/https://www.intel.com/content/www/us/en/products/details/fpga/agilex/9.html
https://web.archive.org/web/20250207120602/https://www.intel.com/content/www/us/en/products/details/fpga/agilex/9.html

[110] Jain, S., Kumar, A., Mandal, S., Ong, J., Poutievski, L., Singh, A.,

Venkata, S., Wanderer, J., Zhou, J., Zhu, M., et al. B4: Experience with a

globally-deployed software defined WAN. In ACM SIGCOMM (2015).

[111] Jangda, A., and Yorsh, G. Unbounded superoptimization. In Proceedings of the

2017 ACM SIGPLAN International Symposium on New Ideas, New Paradigms, and

Reflections on Programming and Software (2017).

[112] Jin, X., Liu, H. H., Gandhi, R., Kandula, S., Mahajan, R., Zhang, M.,

Rexford, J., and Wattenhofer, R. Dynamic scheduling of network updates.

ACM SIGCOMM Computer Communication Review (2014).

[113] Johansson, S. Packet deduplication in p4. https://web.archive.org/web/2024

1008234238/https://opennetworking.org/wp-content/uploads/2021/05/2021-P

4-WS-Stefan-Johansson-Slides.pdf, 2021. Accessed: 2025-05-01.

[114] Jones, N. D. An introduction to partial evaluation. ACM Computing Surveys (1996).

[115] Jones, N. D., and Glenstrup, A. J. Program generation, termination, and

binding-time analysis. In Generative Programming and Component Engineering: ACM

SIGPLAN/SIGSOFT Conference (2002).

[116] Joshi, R., Nelson, G., and Randall, K. Denali: A goal-directed superoptimizer.

ACM SIGPLAN Notices (2002).

[117] Kang, J., Kim, Y., Song, Y., Lee, J., Park, S., Shin, M. D., Kim, Y., Cho,

S., Choi, J., Hur, C.-K., et al. Crellvm: Verified credible compilation for LLVM.

In ACM PLDI (2018).

[118] Kang, N., Liu, Z., Rexford, J., and Walker, D. Optimizing the” one big

switch” abstraction in software-defined networks. In ACM CoNEXT (2013).

157

https://web.archive.org/web/20241008234238/https://opennetworking.org/wp-content/uploads/2021/05/2021-P4-WS-Stefan-Johansson-Slides.pdf
https://web.archive.org/web/20241008234238/https://opennetworking.org/wp-content/uploads/2021/05/2021-P4-WS-Stefan-Johansson-Slides.pdf
https://web.archive.org/web/20241008234238/https://opennetworking.org/wp-content/uploads/2021/05/2021-P4-WS-Stefan-Johansson-Slides.pdf

[119] Kang, Q., Xing, J., Qiu, Y., and Chen, A. Probabilistic profiling of stateful data

planes for adversarial testing. In ACM ASPLOS (2021).

[120] Kazemian, P., Varghese, G., and McKeown, N. Header space analysis: Static

checking for networks. In USENIX NSDI (2012).

[121] Kheradmand, A., and Rosu, G. P4K: A formal semantics of P4 and applications.

arXiv preprint arXiv:1804.01468 (2018).

[122] Khurshid, A., Zhou, W., Caesar, M., and Godfrey, P. B. Veriflow: Verifying

network-wide invariants in real time. In Proceedings of the First Workshop on Hot

Topics in Software Defined Networks (2012).

[123] King, J. C. Symbolic execution and program testing. Commununications of the ACM

(CACM) (1976).

[124] Kit, A. Programming the entire data center infrastructure with the NVIDIA DOCA

SDK. https://web.archive.org/web/20250117050617/https://developer.nvid

ia.com/blog/programming-the-entire-data-center-infrastructure-with-the

-nvidia-doca-sdk/, 2020. Accessed: 2025-05-01.

[125] Klees, G., Ruef, A., Cooper, B., Wei, S., and Hicks, M. Evaluating fuzz

testing. In Conference on Computer and Communications Security (CCS) (2018).

[126] Knopp, T., Chu, J., and Ahmad, S. AMD Versal AI edge series gen 2 for vision

and automotive. In 2024 IEEE Hot Chips 36 Symposium (HCS) (2024).

[127] Kodeswaran, S., Arashloo, M. T., Tammana, P., and Rexford, J. Tracking

P4 program execution in the data plane. In ACM SOSR (2020).

[128] Kohler, E., Morris, R., Chen, B., Jannotti, J., and Kaashoek, M. F. The

Click modular router. ACM Transactions on Computer Systems (TOCS) (2000).

158

https://web.archive.org/web/20250117050617/https://developer.nvidia.com/blog/programming-the-entire-data-center-infrastructure-with-the-nvidia-doca-sdk/
https://web.archive.org/web/20250117050617/https://developer.nvidia.com/blog/programming-the-entire-data-center-infrastructure-with-the-nvidia-doca-sdk/
https://web.archive.org/web/20250117050617/https://developer.nvidia.com/blog/programming-the-entire-data-center-infrastructure-with-the-nvidia-doca-sdk/

[129] Kumar, K. S., Prashanth, P., Arashloo, M. T., U, V., and Tammana, P.

DBVal: Validating P4 data plane runtime behavior. In ACM SOSR (2021).

[130] Landi, W. Undecidability of static analysis. ACM Letters on Programming Languages

and Systems (1992).

[131] Langlet, J., Ben Basat, R., Oliaro, G., Mitzenmacher, M., Yu, M., and

Antichi, G. Direct telemetry access. In ACM SIGCOMM (2023).

[132] Lattner, C., and Adve, V. Llvm: A compilation framework for lifelong program

analysis & transformation. In International symposium on code generation and opti-

mization, 2004. CGO 2004. (2004), IEEE.

[133] Lattner, C., Amini, M., Bondhugula, U., Cohen, A., Davis, A., Pienaar,

J., Riddle, R., Shpeisman, T., Vasilache, N., and Zinenko, O. Mlir: A

compiler infrastructure for the end of moore’s law. arXiv preprint arXiv:2002.11054

(2020).

[134] Le, V., Afshari, M., and Su, Z. Compiler validation via equivalence modulo

inputs. ACM SIGPLAN Notices (2014).

[135] Le, V., Sun, C., and Su, Z. Finding deep compiler bugs via guided stochastic

program mutation. In ACM OOPSLA (2015).

[136] Leroy, X. Formal certification of a compiler back-end or: Programming a compiler

with a proof assistant. In ACM POPL (2006).

[137] Li, Y., Gao, J., Zhai, E., Liu, M., Liu, K., and Liu, H. H. Cetus: Releasing p4

programmers from the chore of trial and error compiling. In USENIX NSDI (2022).

[138] Liang, E., Zhu, H., Jin, X., and Stoica, I. Neural packet classification. In ACM

SIGCOMM (2019).

159

[139] Liu, H. H., Zhu, Y., Padhye, J., Cao, J., Tallapragada, S., Lopes, N. P.,

Rybalchenko, A., Lu, G., and Yuan, L. Crystalnet: Faithfully emulating large

production networks. In ACM SOSP (2017).

[140] Liu, J., Hallahan, W., Schlesinger, C., Sharif, M., Lee, J., Soulé, R.,

Wang, H., Ca şcaval, C., McKeown, N., and Foster, N. p4v: Practical

verification for programmable data planes. In ACM SIGCOMM (2018).

[141] Lopes, N. P., Menendez, D., Nagarakatte, S., and Regehr, J. Provably

correct peephole optimizations with Alive. In ACM PLDI (2015).

[142] MacDavid, R., Cascone, C., Lin, P., Padmanabhan, B., Thakur, A., Pe-

terson, L., Rexford, J., and Sunay, O. A P4-based 5G user plane function. In

ACM SOSR (2021).

[143] Mahalingam, M., Dutt, D., Duda, K., Agarwal, P., Kreeger, L., Srid-

har, T., Bursell, M., and Wright, C. Virtual eXtensible Local Area Network

(VXLAN): A Framework for Overlaying Virtualized Layer 2 Networks over Layer 3

Networks. RFC 7348, 2014.

[144] Mai, H., Khurshid, A., Agarwal, R., Caesar, M., Godfrey, P. B., and

King, S. T. Debugging the data plane with Anteater. In ACM SIGCOMM (2011).

[145] Mandeville, R., and Perser, J. Benchmarking methodology for LAN switching

devices. RFC 2889, 2000.

[146] Mao, J., Ding, H., Zhai, J., and Ma, S. Merlin: Multi-tier optimization of eBPF

code for performance and compactness. In ACM ASPLOS (2024).

[147] Marvell. Marvell Teralynx 10 data center Ethernet switch. https://web.archive.

org/web/20250308094312/https://www.marvell.com/content/dam/marvell/en/p

160

https://web.archive.org/web/20250308094312/https://www.marvell.com/content/dam/marvell/en/public-collateral/switching/marvell-teralynx-10-data-center-ethernet-switch-product-brief.pdf
https://web.archive.org/web/20250308094312/https://www.marvell.com/content/dam/marvell/en/public-collateral/switching/marvell-teralynx-10-data-center-ethernet-switch-product-brief.pdf
https://web.archive.org/web/20250308094312/https://www.marvell.com/content/dam/marvell/en/public-collateral/switching/marvell-teralynx-10-data-center-ethernet-switch-product-brief.pdf

ublic-collateral/switching/marvell-teralynx-10-data-center-ethernet-s

witch-product-brief.pdf. Accessed: 2025-05-01.

[148] Massalin, H. Superoptimizer: a look at the smallest program. ACM SIGARCH

Computer Architecture News (1987).

[149] Matoušek, J., Antichi, G., Luč anskỳ, A., Moore, A. W., and Kořenek,

J. Classbench-ng: Recasting classbench after a decade of network evolution. In 2017

ACM/IEEE Symposium on Architectures for Networking and Communications Systems

(ANCS) (2017), IEEE.

[150] McCabe, T. J. A complexity measure. IEEE Transactions on software Engineering

(1976).

[151] McKeeman, W. M. Differential testing for software. Digital Technical Journal

(1998).

[152] McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson,

L., Rexford, J., Shenker, S., and Turner, J. OpenFlow: Enabling innovation

in campus networks. ACM SIGCOMM Computer Communication Review (2008).

[153] Meijer, H. J. M. Calculating Compilers. PhD thesis, Radboud University Nijmegen,

1992.

[154] Miano, S., Sanaee, A., Risso, F., Ré tvári, G., and Antichi, G. Domain

specific run time optimization for software data planes. In ACM ASPLOS (2022).

[155] Molnár, L., Pongrácz, G., Enyedi, G. á., Kis, Z. L., Csikor, L., Juhá sz,

F., Kőrösi, A., and Rétvári, G. b. Dataplane specialization for high-performance

openflow software switching. In ACM SIGCOMM (2016).

161

https://web.archive.org/web/20250308094312/https://www.marvell.com/content/dam/marvell/en/public-collateral/switching/marvell-teralynx-10-data-center-ethernet-switch-product-brief.pdf
https://web.archive.org/web/20250308094312/https://www.marvell.com/content/dam/marvell/en/public-collateral/switching/marvell-teralynx-10-data-center-ethernet-switch-product-brief.pdf

[156] Musuvathi, M., Engler, D. R., et al. Model checking large network protocol

implementations. In USENIX NSDI (2004).

[157] Naur, P. Programming as theory building. Microprocessing and microprogramming

(1985).

[158] Necula, G. C. Translation validation for an optimizing compiler. In ACM PLDI

(2000).

[159] Niemetz, A., and Preiner, M. Bitwuzla. In International Conference on Computer

Aided Verification (2023).

[160] Nötzli, A., Khan, J., Fingerhut, A., Barrett, C., and Athanas, P.

p4pktgen: Automated test case generation for P4 programs. In ACM SOSR (2018).

[161] Offutt, A. J., and Untch, R. H. Mutation 2000: Uniting the orthogonal. Muta-

tion testing for the new century (2001).

[162] Open Compute Project. SAI: Switch abstraction interface. https://web.archiv

e.org/web/20241210200738/https://www.opencompute.org/projects/sai, 2015.

Accessed: 2025-05-01.

[163] Orange. psabpf - in-kernel p4 software switch. https://github.com/NIKSS-vSwit

ch/nikss. Accessed: 2025-05-01.

[164] Osiński, T., Palimąka, J., Kossakowski, M., Tran, F. D., Bonfoh, E.-F.,

and Tarasiuk, H. A novel programmable software datapath for software-defined

networking. In ACM CoNEXT (2022).

[165] Pall, M., Gorrie, L., Wingo, A., Rottenkolber, M., Garcia, D. P.,

Takikawa, A., Tallon, J., Pino, D., Gall, A., et al. Snabb Reference Manual,

2019. Accessed: 2025-01-06.

162

https://web.archive.org/web/20241210200738/https://www.opencompute.org/projects/sai
https://web.archive.org/web/20241210200738/https://www.opencompute.org/projects/sai
https://github.com/NIKSS-vSwitch/nikss
https://github.com/NIKSS-vSwitch/nikss

[166] Pan, H., He, P., Li, Z., Zhang, P., Wan, J., Zhou, Y., Duan, X., Zhang,

Y., and Xie, G. Hoda: a high-performance Open vSwitch dataplane with multiple

specialized data paths. In Proceedings of the Nineteenth European Conference on

Computer Systems (2024).

[167] Pan, T., Liu, K., Wei, X., Qiao, Y., Hu, J., Li, Z., Liang, J., Cheng, T.,

Su, W., Lu, J., et al. LuoShen: A hyper-converged programmable gateway for

multi-tenant multi-service edge clouds. In USENIX NSDI (2024).

[168] Perešíni, P., Kuźniar, M., and Kostić, D. Monocle: Dynamic, fine-grained data

plane monitoring. In ACM CoNEXT (2015).

[169] Peterson, R., Campbell, E. H., Chen, J., Isak, N., Shyu, C., Doenges, R.,

Ataei, P., and Foster, N. P4Cub: A little language for big routers. In Proceedings

of the 12th ACM SIGPLAN International Conference on Certified Programs and Proofs

(2023).

[170] Pfaff, B., Pettit, J., Koponen, T., Jackson, E., Zhou, A., Rajahalme,

J., Gross, J., Wang, A., Stringer, J., Shelar, P., et al. The design and

implementation of open vswitch. In USENIX NSDI (2015).

[171] Pnueli, A., and Rosner, R. On the synthesis of a reactive module. In ACM POPL

(1989).

[172] Pnueli, A., Siegel, M., and Singerman, E. Translation validation. In Inter-

national Conference on Tools and Algorithms for the Construction and Analysis of

Systems (1998), Springer.

[173] Postel, J. Internet Protocol. RFC 791, 1981.

163

[174] Qiu, Y., Beckett, R., and Chen, A. Synthesizing runtime programmable switch

updates. In USENIX NSDI (2023).

[175] Ramalingam, G., and Reps, T. A categorized bibliography on incremental com-

putation. In ACM POPL (1993).

[176] Rashelbach, A., Rottenstreich, O., and Silberstein, M. A computational

approach to packet classification. In ACM SIGCOMM (2020).

[177] Rashelbach, A., Rottenstreich, O., and Silberstein, M. Scaling open

vswitch with a computational cache. In USENIX NSDI (2022).

[178] Rayner, D. OSI conformance testing. Computer Networks and ISDN Systems (1987).

[179] Regehr, J., Chen, Y., Cuoq, P., Eide, E., Ellison, C., and Yang, X. Test-

case reduction for C compiler bugs. In ACM PLDI (2012).

[180] Rekhter, Y., Hares, S., and Li, T. A Border Gateway Protocol 4 (BGP-4). RFC

4271, 2006.

[181] Reynolds, J. C. The discoveries of continuations. LISP and Symbolic Computation

(1993).

[182] Rinard, M. C. Credible compilation. Tech. rep., Massachusetts Institute of Technol-

ogy, 2003.

[183] Rizzo, L., and Lettieri, G. VALE, a switched ethernet for virtual machines. In

ACM CoNEXT (2012).

[184] Roberts, L. G. The evolution of packet switching. Proceedings of the IEEE (1978).

[185] Ruffy, F. Add Travis validation tests for P4C.

https://github.com/p4lang/p4c/pull/2458, 2020. Accessed: 2025-05-01.

164

[186] Ruffy, F. BMV2 backend compiler bug unhandled case. https://github.com/p4l

ang/p4c/issues/2291, 2020. Accessed: 2025-05-01.

[187] Ruffy, F. Calling exit in actions after an assignment. https://github.com/p4lan

g/p4c/issues/2225, 2020. Accessed: 2025-05-01.

[188] Ruffy, F. Compiler bug: Null cst. https://github.com/p4lang/p4c/issues/2206,

2020. Accessed: 2025-05-01.

[189] Ruffy, F. Missing StrengthReduction for complex expressions in actions. https:

//github.com/p4lang/p4c/issues/2279, 2020. Accessed: 2025-05-01.

[190] Ruffy, F. More questions on setInvalid. https://github.com/p4lang/p4c/issues

/2323, 2020. Accessed: 2025-05-01.

[191] Ruffy, F. Question about parser behavior with right shifts. https://github.com

/p4lang/p4c/issues/2156, 2020. Accessed: 2025-05-01.

[192] Ruffy, F. SimplifyDefUse incorrectly removes assignment in actions with slices as

arguments. https://github.com/p4lang/p4c/issues/2147, 2020. Accessed: 2025-

05-01.

[193] Ruffy, F. Question about expected output when all headers are invalid. https:

//github.com/p4lang/behavioral-model/issues/977, 2021. Accessed: 2025-05-01.

[194] Ruffy, F. Dead code in dash_pipeline.p4 pna version. https://github.com/sonic

-net/DASH/issues/399, 2023. Accessed: 2025-05-01.

[195] Ruffy, F., Liu, J., Kotikalapudi, P., Havel, V., Tavante, H., Sherwood,

R., Dubina, V., Peschanenko, V., Sivaraman, A., and Foster, N. P4Testgen:

An extensible test oracle for P4. In ACM SIGCOMM (2023).

165

https://github.com/p4lang/p4c/issues/2291
https://github.com/p4lang/p4c/issues/2291
https://github.com/p4lang/p4c/issues/2225
https://github.com/p4lang/p4c/issues/2225
https://github.com/p4lang/p4c/issues/2206
https://github.com/p4lang/p4c/issues/2279
https://github.com/p4lang/p4c/issues/2279
https://github.com/p4lang/p4c/issues/2323
https://github.com/p4lang/p4c/issues/2323
https://github.com/p4lang/p4c/issues/2156
https://github.com/p4lang/p4c/issues/2156
https://github.com/p4lang/p4c/issues/2147
https://github.com/p4lang/behavioral-model/issues/977
https://github.com/p4lang/behavioral-model/issues/977
https://github.com/sonic-net/DASH/issues/399
https://github.com/sonic-net/DASH/issues/399

[196] Ruffy, F., Wang, T., and Sivaraman, A. Gauntlet: Finding bugs in compilers

for programmable packet processing. In USENIX OSDI (2020).

[197] Ruffy, F., Wang, Z., Antichi, G., Panda, A., and Sivaraman, A. Incremental

specialization of network programs. In Proceedings of the 23rd ACM Workshop on Hot

Topics in Networks (2024).

[198] Ruffy, F., and Zhanghan, W. ControlPlaneSmith: Generate control-plane con-

figurations from P4 programs. https://github.com/nyu-systems/rtsmith, 2024.

Accessed: 2025-05-01.

[199] Ruffy, F., and Zhanghan, W. OpenConfig: Vendor-neutral, model-driven network

management designed by users. https://web.archive.org/web/20250319152554/h

ttps://www.openconfig.net/, 2024. Accessed: 2025-05-01.

[200] Sabnani, K., and Dahbura, A. A protocol test generation procedure. Computer

Networks and ISDN systems (1988).

[201] Sadowski, C., Aftandilian, E., Eagle, A., Miller-Cushon, L., and Jaspan,

C. Lessons from building static analysis tools at google. Communications of the ACM

(2018).

[202] Scholz, B., Jordan, H., Subotić, P., and Westmann, T. On fast large-scale

program analysis in datalog. In Proceedings of the 25th International Conference on

Compiler Construction (2016).

[203] Schuur, S. An introduction to NVIDIA Air. https://web.archive.org/web/2025

0129002635/https://developer.nvidia.com/blog/an-introduction-to-nvidi

a-air/, 2024. Accessed: 2025-05-01.

166

https://github.com/nyu-systems/rtsmith
https://web.archive.org/web/20250319152554/https://www.openconfig.net/
https://web.archive.org/web/20250319152554/https://www.openconfig.net/
https://web.archive.org/web/20250129002635/https://developer.nvidia.com/blog/an-introduction-to-nvidia-air/
https://web.archive.org/web/20250129002635/https://developer.nvidia.com/blog/an-introduction-to-nvidia-air/
https://web.archive.org/web/20250129002635/https://developer.nvidia.com/blog/an-introduction-to-nvidia-air/

[204] Schwartz, E. J., Avgerinos, T., and Brumley, D. All you ever wanted to know

about dynamic taint analysis and forward symbolic execution (but might have been

afraid to ask). In IEEE S&P (2010).

[205] Schwartz, M. D., Delisle, N. M., and Begwani, V. S. Incremental compilation

in magpie. ACM SIGPlan Notices (1984).

[206] Sen, K., Marinov, D., and Agha, G. CUTE: A concolic unit testing engine for

C. In ACM ESEC/FSE (2005).

[207] Sharif, H., Abubakar, M., Gehani, A., and Zaffar, F. TRIMMER: ap-

plication specialization for code debloating. In Proceedings of the 33rd ACM/IEEE

International Conference on Automated Software Engineering (2018).

[208] Sharma, P., and Yegneswaran, V. Prosper: Extracting protocol specifications

using large language models. In Proceedings of the 22nd ACM Workshop on Hot Topics

in Networks (2023).

[209] Sharma, R., Schkufza, E., Churchill, B., and Aiken, A. Data-driven equiv-

alence checking. In ACM OOPSLA (2013).

[210] Shen, H., Pszeniczny, K., Lavaee, R., Kumar, S., Tallam, S., and Li, X. D.

Propeller: A profile guided, relinking optimizer for warehouse-scale applications. In

ACM ASPLOS (2023).

[211] Sherwood, R., Shi, J., Zhang, Y., Spring, N., Sundaresan, S., Bagga,

J., Peddi, P., Kukkadapu, V., Shrivastava, R., Manikantan, K., et al.

Netcastle: Network infrastructure testing at scale. In USENIX NSDI (2024).

167

[212] Shukla, A., Hudemann, K., Vági, Z., Hü gerich, L., Smaragdakis, G.,

Hecker, A., Schmid, S., and Feldmann, A. Fix with P6: Verifying programmable

switches at runtime. In IEEE INFOCOM (2021).

[213] Shukla, A., Hudemann, K. N., Hecker, A., and Schmid, S. Runtime verifica-

tion of P4 switches with reinforcement learning. In Proceedings of the 2019 Workshop

on Network Meets AI & ML (2019).

[214] Singh, A., Ong, J., Agarwal, A., Anderson, G., Armistead, A., Bannon,

R., Boving, S., Desai, G., Felderman, B., Germano, P., et al. Jupiter rising:

A decade of clos topologies and centralized control in Google’s datacenter network. In

ACM SIGCOMM (2015).

[215] Sivaraman, A., Kim, C., Krishnamoorthy, R., Dixit, A., and Budiu, M.

DC.p4: Programming the forwarding plane of a data-center switch. In ACM SOSR

(2015).

[216] Sivaraman Kaushalram, A. Designing fast and programmable routers. PhD thesis,

Massachusetts Institute of Technology, 2017.

[217] Sonchack, J., Loehr, D., Rexford, J., and Walker, D. Lucid: A language

for control in the data plane. In ACM SIGCOMM (2021).

[218] Song, H. Protocol-oblivious forwarding: unleash the power of SDN through a future-

proof forwarding plane. In Proceedings of the Second ACM SIGCOMM Workshop on

Hot Topics in Software Defined Networking (2013).

[219] Soni, H., Rifai, M., Kumar, P., Doenges, R., and Foster, N. Composing

dataplane programs with 𝜇P4. In ACM SIGCOMM (2020).

168

[220] Stallman, R. M. Using and porting the GNU compiler collection. Free Software

Foundation Boston, MA, USA, 1999.

[221] Stoenescu, R., Dumitrescu, D., Popovici, M., Negreanu, L., and Raiciu,

C. Debugging P4 programs with Vera. In ACM SIGCOMM (2018).

[222] Stoenescu, R., Popovici, M., Negreanu, L., and Raiciu, C. Symnet: Scalable

symbolic execution for modern networks. In ACM SIGCOMM (2016).

[223] Sudarshan, R., and Sommers, C. P4 as a single source of truth for SONiC DASH

use cases on both softswitch and hardware. https://web.archive.org/web/202409

19194035/https://opennetworking.org/wp-content/uploads/2022/05/Reshma-S

udarshan-Chris-Sommers-Final-Slide-Deck.pdf, 2022. Accessed: 2025-05-01.

[224] Tate, R., Stepp, M., Tatlock, Z., and Lerner, S. Equality saturation: A new

approach to optimization. In ACM POPL (2009).

[225] Taylor, D. E., and Turner, J. S. Classbench: A packet classification benchmark.

IEEE/ACM transactions on networking (2007).

[226] The Linux Foundation. DPDK: The data plane development kit. https://we

b.archive.org/web/20250319144003/https://www.dpdk.org/, 2010. Accessed:

2025-05-01.

[227] The Linux Foundation. middleblock.p4. https://github.com/sonic-net/son

ic-pins/blob/3f52760f3bbaf2723bcfb2de5ca68a8a826273f1/sai_p4/instantia

tions/google/middleblock.p4, 2021. Accessed: 2025-05-01.

[228] The Linux Foundation. PINS: P4 integrated network stack. https://web.archiv

e.org/web/20250304093609/https://opennetworking.org/pins/, 2022. Accessed:

2025-05-01.

169

https://web.archive.org/web/20240919194035/https://opennetworking.org/wp-content/uploads/2022/05/Reshma-Sudarshan-Chris-Sommers-Final-Slide-Deck.pdf
https://web.archive.org/web/20240919194035/https://opennetworking.org/wp-content/uploads/2022/05/Reshma-Sudarshan-Chris-Sommers-Final-Slide-Deck.pdf
https://web.archive.org/web/20240919194035/https://opennetworking.org/wp-content/uploads/2022/05/Reshma-Sudarshan-Chris-Sommers-Final-Slide-Deck.pdf
https://web.archive.org/web/20250319144003/https://www.dpdk.org/
https://web.archive.org/web/20250319144003/https://www.dpdk.org/
https://github.com/sonic-net/sonic-pins/blob/3f52760f3bbaf2723bcfb2de5ca68a8a826273f1/sai_p4/instantiations/google/middleblock.p4
https://github.com/sonic-net/sonic-pins/blob/3f52760f3bbaf2723bcfb2de5ca68a8a826273f1/sai_p4/instantiations/google/middleblock.p4
https://github.com/sonic-net/sonic-pins/blob/3f52760f3bbaf2723bcfb2de5ca68a8a826273f1/sai_p4/instantiations/google/middleblock.p4
https://web.archive.org/web/20250304093609/https://opennetworking.org/pins/
https://web.archive.org/web/20250304093609/https://opennetworking.org/pins/

[229] The Linux Foundation. SONiC: Software for open networking in the cloud. https:

//web.archive.org/web/20250320021526/https://sonicfoundation.dev/, 2022.

Accessed: 2025-05-01.

[230] The Linux Foundation. Vector packet processing. https://github.com/FDio/vp

p/, 2024. Accessed: 2025-05-01.

[231] The P4 Langage Consortium. The P4Runtime specification, version 1.3.0. https:

//web.archive.org/web/20231129181507/https://p4.org/p4-spec/p4runtime/

v1.3.0/P4Runtime-Spec.html, 2020.

[232] The P4 Language Consortium. The reference P4 software switch. https://gi

thub.com/p4lang/behavioral-model, 2014. Accessed: 2025-05-01.

[233] The P4 Language Consortium. PTF: Packet testing framework. https://gith

ub.com/p4lang/ptf, 2015. Accessed: 2025-05-01.

[234] The P4 Language Consortium. P416 portable switch architecture (psa), version

1.1. https://web.archive.org/web/20240919101339/https://p4.org/p4-spec/

docs/PSA-v1.1.0.html, 2018.

[235] The P4 Language Consortium. P416 portable nic architecture (pna), version 0.7.

https://web.archive.org/web/20240914064108/https://p4.org/p4-spec/docs

/PNA-v0.7.html, 2022.

[236] The P4 Language Consortium. The P416 language specification, version 1.2.4.

https://web.archive.org/web/20240914072609/https://p4.org/p4-spec/docs

/P4-16-v1.2.4.html, 2023.

[237] The P4 Language Consortium. The open p4 studio. https://github.com/p4l

ang/open-p4studio, 2025. Accessed: 2025-05-01.

170

https://web.archive.org/web/20250320021526/https://sonicfoundation.dev/
https://web.archive.org/web/20250320021526/https://sonicfoundation.dev/
https://github.com/FDio/vpp/
https://github.com/FDio/vpp/
https://web.archive.org/web/20231129181507/https://p4.org/p4-spec/p4runtime/v1.3.0/P4Runtime-Spec.html
https://web.archive.org/web/20231129181507/https://p4.org/p4-spec/p4runtime/v1.3.0/P4Runtime-Spec.html
https://web.archive.org/web/20231129181507/https://p4.org/p4-spec/p4runtime/v1.3.0/P4Runtime-Spec.html
https://github.com/p4lang/behavioral-model
https://github.com/p4lang/behavioral-model
https://github.com/p4lang/ptf
https://github.com/p4lang/ptf
https://web.archive.org/web/20240919101339/https://p4.org/p4-spec/docs/PSA-v1.1.0.html
https://web.archive.org/web/20240919101339/https://p4.org/p4-spec/docs/PSA-v1.1.0.html
https://web.archive.org/web/20240914064108/https://p4.org/p4-spec/docs/PNA-v0.7.html
https://web.archive.org/web/20240914064108/https://p4.org/p4-spec/docs/PNA-v0.7.html
https://web.archive.org/web/20240914072609/https://p4.org/p4-spec/docs/P4-16-v1.2.4.html
https://web.archive.org/web/20240914072609/https://p4.org/p4-spec/docs/P4-16-v1.2.4.html
https://github.com/p4lang/open-p4studio
https://github.com/p4lang/open-p4studio

[238] The P4 Language Consortium. P4MLIR - bringing MLIR to P4. https://gith

ub.com/p4lang/p4mlir, 2025. Accessed: 2025-05-01.

[239] The XLA Team. XLA – TensorFlow compiled. https://web.archive.org/web/20

250303085610/https://developers.googleblog.com/en/xla-tensorflow-compi

led/, 2017. Accessed: 2025-05-01.

[240] Thomas, B., Andersson, L., and Minei, I. LDP Specification. RFC 5036, 2007.

[241] Tian, B., Gao, J., Liu, M., Zhai, E., Chen, Y., Zhou, Y., Dai, L., Yan,

F., Ma, M., Tang, M., et al. Aquila: a practically usable verification system for

production-scale programmable data planes. In ACM SIGCOMM (2021).

[242] Tu, W., Ruffy, F., and Budiu, M. P4C-XDP: Programming the linux kernel

forwarding plane using P4. In Linux Plumbers Conference (2018).

[243] Viswanathan, A., Rosen, E. C., and Callon, R. Multiprotocol Label Switching

Architecture. RFC 3031, 2001.

[244] Wang, Q., Pan, M., Wang, S., Doenges, R., Beringer, L., and Appel, A. W.

Foundational verification of stateful P4 packet processing. In 14th International Con-

ference on Interactive Theorem Proving (ITP 2023) (2023), Schloss-Dagstuhl-Leibniz

Zentrum für Informatik.

[245] Wang, T., Yang, X., Antichi, G., Sivaraman, A., and Panda, A. Isolation

mechanisms for high-speed packet-processing pipelines. In 19th USENIX Symposium

on Networked Systems Design and Implementation (NSDI 22) (2022).

[246] Wang, X., Zeldovich, N., Kaashoek, M. F., and Solar-Lezama, A. Towards

optimization-safe systems: Analyzing the impact of undefined behavior. In ACM SOSP

(2013).

171

https://github.com/p4lang/p4mlir
https://github.com/p4lang/p4mlir
https://web.archive.org/web/20250303085610/https://developers.googleblog.com/en/xla-tensorflow-compiled/
https://web.archive.org/web/20250303085610/https://developers.googleblog.com/en/xla-tensorflow-compiled/
https://web.archive.org/web/20250303085610/https://developers.googleblog.com/en/xla-tensorflow-compiled/

[247] Wijnands, I., Hitchen, P., Leymann, N., Henderickx, W., Gulko, A., and

Tantsura, J. Multipoint Label Distribution Protocol In-Band Signaling in a Virtual

Routing and Forwarding (VRF) Table Context. RFC 7246, 2014.

[248] Wintermeyer, P., Apostolaki, M., Dietmüller, A., and Vanbever, L.

P2GO: P4 profile-guided optimizations. In Proceedings of the 19th ACM Workshop

on Hot Topics in Networks (2020).

[249] Würthinger, T., Wimmer, C., Humer, C., Wöß, A., Stadler, L., Seaton,

C., Duboscq, G., Simon, D., and Grimmer, M. Practical partial evaluation

for high-performance dynamic language runtimes. In Proceedings of the 38th ACM

SIGPLAN Conference on Programming Language Design and Implementation (2017).

[250] Xing, J., Hsu, K.-F., Kadosh, M., Lo, A., Piasetzky, Y., Krishnamurthy,

A., and Chen, A. Runtime programmable switches. In USENIX NSDI (2022).

[251] Xing, J., Qiu, Y., Hsu, K.-F., Sui, S., Manaa, K., Shabtai, O., Piasetzky,

Y., Kadosh, M., Krishnamurthy, A., Ng, T. E., et al. Unleashing SmartNIC

packet processing performance in P4. In ACM SIGCOMM (2023).

[252] Xsight Labs. Xsight Labs announces X2 programmable SDN Ethernet switches.

https://web.archive.org/web/20241102232425/https://ai-techpark.com/xsig

ht-labs-announces-x2-programmable-sdn-ethernet-switches/, 2024. Accessed:

2025-05-01.

[253] Xu, Q., Wong, M. D., Wagle, T., Narayana, S., and Sivaraman, A. Synthe-

sizing safe and efficient kernel extensions for packet processing. In ACM SIGCOMM

(2021).

[254] Yang, H., and Lam, S. S. Real-time verification of network properties using atomic

predicates. IEEE/ACM Transactions on Networking (2015).

172

https://web.archive.org/web/20241102232425/https://ai-techpark.com/xsight-labs-announces-x2-programmable-sdn-ethernet-switches/
https://web.archive.org/web/20241102232425/https://ai-techpark.com/xsight-labs-announces-x2-programmable-sdn-ethernet-switches/

[255] Yang, M., Baban, A., Kugel, V., Libby, J., Mackie, S., Kananda, S. S. R.,

Wu, C.-H., and Ghobadi, M. Using Trio – Juniper networks’ programmable chipset

– for emerging in-network applications. In ACM SIGCOMM (2022).

[256] Yang, X., Chen, Y., Eide, E., and Regehr, J. Finding and understanding bugs

in C compilers. In ACM PLDI (2011).

[257] Yaseen, N., Yu, L., Stanford, C., Beckett, R., and Liu, V. FP4: Line-rate

greybox fuzz testing for p4 switches. arXiv preprint arXiv:2207.13147 (2022).

[258] Yu, L., Sonchack, J., and Liu, V. Mantis: Reactive programmable switches. In

ACM SIGCOMM (2020).

[259] Yu, Z., Su, B., Bai, W., Raindel, S., Braverman, V., and Jin, X. Under-

standing the micro-behaviors of hardware offloaded network stacks with lumina. In

ACM SIGCOMM (2023).

[260] Zalewski, M. american fuzzy lop. https://github.com/google/AFL, 2013.

Accessed: 2025-05-01.

[261] Zeller, A., Gopinath, R., Böhme, M., Fraser, G., and Holler, C. Fuzzing

with grammars. In The Fuzzing Book. CISPA Helmholtz Center for Information Secu-

rity, 2024. Accessed: 2025-05-01.

[262] Zeng, H., Kazemian, P., Varghese, G., and McKeown, N. Automatic test

packet generation. In ACM CoNEXT (2012).

[263] Zhao, Y., Wang, H., Lin, X., Yu, T., and Qian, C. Pronto: Efficient test

packet generation for dynamic network data planes. In 2017 IEEE 37th International

Conference on Distributed Computing Systems (ICDCS) (2017).

173

https://github.com/google/AFL

[264] Zheng, N., Liu, M., Zhai, E., Liu, H. H., Li, Y., Yang, K., Liu, X., and

Jin, X. Meissa: Scalable network testing for programmable data planes. In ACM

SIGCOMM (2022).

[265] Zuck, L., Pnueli, A., Fang, Y., and Goldberg, B. VOC: A translation validator

for optimizing compilers. Electronic notes in theoretical computer science (2002).

174

	Dedication
	Acknowledgments
	Abstract
	List of Figures
	List of Tables
	Introduction
	Thesis and Contributions
	Contributions
	Open-Source Community Contributions

	Organization Of This Dissertation

	I Background
	Software-Defined Networking and Programmable Forwarding
	Software-Defined Networking: Concepts
	Merchant Silicon and Programmable Network Devices
	Programmable Data-Plane Devices

	P4

	Network Testing Research
	Network benchmarking
	Network verification
	Network-device verification
	Summary

	II Testing Network-Device Stacks
	Gauntlet: Testing The Compiler For A Network Device
	Overview
	Approaches to Testing Compilers
	Motivating Gauntlet's Design
	Goals and Non-Goals

	Random Program Generation
	Design
	Implementation

	Translation Validation
	An Execution Model For P4
	Implementation

	Results
	Sources of Bugs
	Performance on Large P4 Programs
	Deep Dive into Bugs
	Lessons Learned

	Discussion
	Limitations of Gauntlet's Model-Based Testing

	Details on Bug Results

	P4Testgen: Generating Test Packets For Network-Device Stacks
	Introduction
	Motivation and Challenges
	P4Testgen Overview
	P4Testgen in Action

	An Extensible Execution Model for P4
	P4Testgen's Abstract Machine
	The Pipeline Template
	Handling Target-Specific Behavior
	Controlling Unpredictable Behavior
	Supporting Complex Functions

	Path Selection Strategies
	Implementation
	P4Testgen Extensions

	Evaluation
	Performance
	Correctness
	Coverage
	P4Testgen in Practice

	Related Work
	Summary

	III Optimizing Network Device Stacks
	Flay: Incremental Specialization of Data-Plane Programs
	Introduction
	Control-Plane-Driven Specialization
	Specialization Use Cases
	A Model For Efficient And Incremental Data-Plane Specialization
	The Execution Model For The Control-Plane Interface
	Evaluating Flay

	Related Work
	Discussion

	IV Conclusion
	Limitations and Future Directions
	Limitations
	Future Directions
	Better Software Testing
	Improving Compiler Optimizations
	A Common Analysis Toolchain for Packet-Processing Programs

	Concluding Thoughts

	Bibliography

