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Abstract

The Python programming language has become a popular platform for data anal-

ysis and scienti�c computing. To mitigate the poor performance of Python’s standard

interpreter, numerically intensive computations are typically o�oaded to library func-

tions written in high-performance compiled languages such as Fortran or C. When

there is no e�cient library implementation available for a particular algorithm, the

programmer must accept suboptimal performance or switch to a low-level language to

implement the routine.

This thesis seeks to give Python programmers ameans to implement high-performance

algorithms in a high-level form. We present Parakeet, a runtime compiler for an array-

oriented subset of Python. Parakeet selectively augments the standard Python inter-

preter by compiling and executing functions explicitly marked for acceleration by the

programmer. Parakeet uses runtime type specialization to eliminate the performance-

defeating dynamicism of untyped Python code. Parakeet’s pervasive use of data paral-

lel operators as a means for implementing array operations enables high-level restruc-

turing optimization and compilation to parallel hardware such as multi-core CPUs

and graphics processors. We evaluate Parakeet on a collection of numerical bench-

marks and demonstrate its dramatic capacity for accelerating array-oriented Python

programs.
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Chapter 1

Introduction

I’m not a programmer, I’m a statistician. I sit in a room with pencil and paper

coming up with new models and working out the mathematics behind them. I

only program because no one else is going to code my models for me.

— Comment on reddit.com

It is a hallmark of our data saturated age thatmany self identi�ed non-programmers

�nd themselves trying to tell a computer what to do. Scientists need to distill the nu-

merical deluge spewing from their experiments, the quants of Wall Street want to pre-

dict the movement of chaotic markets, and seemingly everyone wants to analyze your

data on the internet. Similarly, many professional programmers (who don’t identify as

scientists or statisticians) are wading into the numerical fray to �lter, transform and

summarize an increasingly quanti�ed world.

Against this backdrop of non-programmers programming and non-numericists nu-

mericizing, the Python programming language [VRDJ95] has emerged as a popular

environment for number crunching and data analysis. This may come as a surprise

since, unlike Mathematica [Wol99], Matlab [MAT10] or R [IG96], Python was not

originally conceived of as a “mathematical”, “numerical” or “statistical” programming
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language. However, by virtue of Python’s semantic �exibility and easy interoperabil-

ity with lower-level languages, Python has grown an extremely rich ecosystem of

scienti�c libraries. These include NumPy [Oli06] and Pandas [McK11], which pro-

vide expressive numerical data structures, SciPy [JOP01], a generous repository of

mathematical functions, and matplotlib [Hun07], a �exible plotting package. The ver-

satility of these tools, along with vibrancy of the communities which develop and

use them, has led to Python becoming the lingua franca in several scienti�c disci-

plines [MGS07, PGH11, Gre07, Blo03].

But isn’t Python slow? In fact, yes, the standard language implementation (a byte-

code interpreter calledCPython) can be orders ofmagnitude slower than statically com-

piled lower-level languages such as C and Fortran. If your goal is to quickly perform

some repetitive arithmetic on a large collection of numbers, then ideally those num-

bers would be stored contiguously in memory, loaded into registers in small groups,

and acted upon by a compact set of native machine instructions. The Python inter-

preter, on the other hand, represents values using bulky heap allocated objects and

even simple operations, like multiplying two numbers, are implemented using exten-

sive indirection.

If the Python interpreter’s ine�ciencies could not be somehow eliminated then

would-be users of numerical Python tools would balk at sub-standard performance. In

fact, a recent survey [PJR+11] of computational practices among scientists noted that:

Nothing evoked stronger reactions during the interviews than questions

regarding the impact of faster computation...Faster computation enables ac-

curate scienti�cmodelingwithin time scales previously thought unattainable.

The key to satisfying these performance-hungry scientists and getting good numer-

ical performance from Python is to o�-load computationally intensive tasks to lower-
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level library code. If an algorithm spends most of its time performing some common

operation through an e�cient library – matrix multiplication using ATLAS [WPD01],

or Fourier transforms through FFTW [FJ05] – then there should be no signi�cant

performance di�erence between a Python implementation and an equivalent program

using the same libraries from a more e�cient language.

The NumPy array library [Oli06] plays an important role in enabling the use of

e�cient algorithmic implementations from within Python by providing a high level

Pythonic interface around unboxed arrays. These arrays can be passed easily into pre-

compiled C or Fortran code. The NumPy array is the de facto numerical container for

Python programs, on top of which other data structures are typically constructed.

NumPy’s mode of library-centric development provides acceptable performance as

long as the algorithm you are implementing can be expressed primarily in terms of ex-

isting compiled primitives. However, a developer may need to implement a novel “in-

ner loop”, for which no precompiled equivalent exists. In this case, they are faced with

two frustrating choices: either implement their desired computation in pure Python

(and thus su�er a severe performance penalty) or write in some lower-level language,

and face a dramatic loss of productivity [Pre03]. For example, the developers of the

widely used scikit-learn [PVG+11] machine learning library spent about half a year of

development time reviewing and integrating a statically compiled implementation of

decision tree ensembles. A pure Python version would have been dramatically shorter

and simpler, but had little chance of attaining su�ciently fast performance.

To make things worse, merely moving a bottleneck into a lower-level language

is unlikely to fully utilize a computer’s available computational resources. A mod-

ern desktop computer will typically have somewhere between 2-8 cores and a graph-

ics processor (GPU) capable of general-purpose computation. GPUs are highly par-
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allel “many-core” architectures which, depending on the task, can be 10x-100x faster

than multi-core CPU algorithms [OHL+08, Kin12, KY13]. Several �elds of research,

such as deep neural networks [KSH12], have become entirely reliant on the computa-

tional power of GPUs to perform tasks which would be infeasibly slow on the CPU.

Unfortunately taking advantage of all this parallel hardware is not easy. Splitting a

computation across multiple cores necessitates either manually using a threading li-

brary [NBF96] or a parallel API such as OpenMP [DM98]. GPU acceleration necessi-

tates evenmore programmer e�ort, requiring intimate knowledge of the graphics hard-

ware and the use of a specialized language such as CUDA [Nvi11] or OpenCL [SGS10].

What may have began as an elegant prototype in Python runs the risk of devolving

into a complex and error-prone exercise in parallel programming.

In between the unsatisfactory performance/productivity pro�les of purely high

level and purely low level implementations runs the middle road of runtime compi-

lation. Common sources of ine�ciency in a high level language’s implementation –

such as dynamic dispatch and tagged heap-allocated data representations – can be by-

passed if native code gets generated at runtime, when su�cient information is present

for specialized compilation.

It may even be possible to use high level algorithmic descriptions, extracted from a

language such as Python, to generate code which is faster than an implementation in C

or Fortran. There are several factors which could contribute to a signi�cant speed-up

over manually crafted low level code:

• Pre-compiled performance primitives must be separately compiled and thus can-

not perform optimizations which arise when these routines are used together.

Thus, the composition of multiple such functions may incur wasteful overhead.

For example, a quantity may be computed repeatedly, once per function being
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called or large temporary values may be created where a more holistic view of

the code could have avoided any extra allocation or data traversal. On the other

hand, operations in a high level description of a numerical algorithm can be fused

and rearranged to ultimately attain a faster implementation.

• Implementing a performance-sensitive portion of an algorithm in C or Fortran

does not, by itself, do anything to harness the woefully underutilized parallel

hardware found in most modern machines. If, for example, a programmer wants

to move some computation to their GPU, they must learn an unfamiliar and

tricky programming model such as OpenCL [SGS10] or CUDA [Nvi11]. High

level algorithmic descriptions, on the other hand, are rife with �exible evaluation

orders and opportunities for parallel execution. If there is any hope of making

general-purpose GPU programming an easy and accessible activity, it will likely

come from the automatic translation of high level programs to the GPU.

• Since the actual values of the computational inputs are available at runtime, it is

possible to partially evaluate the programmer’s code on portions of those values

which may signi�cantly impact performance. For example, many routines in the

NumPy array library must either explicitly provide specializations for particular

data layouts or fall back upon slower layout-agnostic implementations. Runtime

value specialization, enabled in the context of a runtime compiler, allows for the

possibility of generating conservative layout-agnostic code and then specializing

it for the “array strides” of a particular input.

This thesis seeks to give Python programmers ameans to implement high-performance

parallel algorithms in a high level form. We present Parakeet [RHWS12], a runtime

compiler for an array-oriented subset of Python. Parakeet aims to allow compact high
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level speci�cation of numerically intensive algorithms which attain performance com-

parable to more verbose implementations in lower-level languages. Toward this per-

formance goal we employ type specialization and the permissive semantics of data par-

allel operators which enable sophisticated optimizations and parallel execution across

multiple cores and on the GPU.

The major contributions of this thesis are:

1. A demonstration that runtime-compiled implicitly parallel numerical program-

ming can signi�cantly outperform precompiledNumPy library functions and run

in parallel across multiple cores and on the GPU.

2. A type inference algorithm which propagates input types throughout a function

to derive specialized code.

3. A rich system of high order data parallel operators, such as the familiar Map,

Reduce, Scan but also more esoteric or previously unseen operators such as In-

dexReduce, FilterReduce, andOuterMap. Parakeet uni�es the closely related

paradigms of array languages and data-parallel programming by desugaring high

level array constructs into explicit uses of data parallel operations.

The combined e�ect of Parakeet’s typed representation, high level optimizations

and use of the GPU or multi-core parallelism is a signi�cant and consistent acceleration

of numerical Python programs. For those programs which consist primarily of calls to

NumPy library functions, Parakeet may speed them up by an order of magnitude. For

programs which perform most of their computations within the Python interpreter,

Parakeet’s speedup can reach into the tens of thousands.
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Chapter 2

Overview of Parakeet

Parakeet is a parallelizing runtime compiler which coexists with Python interpreter,

selectively taking over execution of user-speci�ed functions. If you want Parakeet to

compile a particular function, then wrap that function with the @jit function decora-

tor, such as:

@jit

def avg(X,Y):

return (X+Y) / 2.0

Listing 2.1: Averaging Two Arrays

If the decorator @jit were removed from Listing 2.2, then avg would run as ordi-

nary Python code. Without Parakeet, the function avg would execute by having the

Python interpreter would call the __add__ and __divide__ methods of array ob-

jects X. Since NumPy’s implementation of the array operations + and / are compiled

separately, they can’t help but allocate result arrays. In this case, however, an interme-

diate array is clearly wasteful since the result of x+y is immediately consumed by the
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division.

On the other hand, Parakeet specializes avg for any distinct input type, optimizes

its body into a single combined array operation (avoiding unnecessary allocation) and

executes it as parallel native code.

The @jit decorator cannot be used on any arbitrary Python function since Para-

keet is not a general-purpose compiler for all of Python. The job of the @jit decorator

is to intercept calls into a wrapped function and then to initiate the following chain of

events:

1. Translate the function into an untyped representation, from which we’ll later

derive multiple type specializations.

2. Specialize the untyped function for the current argument types, creating a typed

version of the function.

3. Aggressively optimize the typed code, leveraging the high-level intermediate

representation to perform optimizations which would be more di�cult in C or

Fortran.

4. Lower the optimized code into a parallel low-level implementation using either

OpenMP (for multi-core execution) or CUDA (for the GPU).

Parakeet only supports a handful of Python’s data types (numbers, tuples, slices,

and NumPy arrays). To manipulate these values, Parakeet lets the programmer use

any of the usual math and logic operators, along with a subset of built-in and NumPy

library functions. If your performance bottleneck doesn’t �t neatly into Parakeet’s

restrictive universe then you might bene�t from a faster Python implementation such

as PyPy [RP06], or alternatively you could outsource some of your functionality to

native code via Cython [BBC+11] or an extension module written in C or Fortran.
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2.1 Typed Intermediate Representation

Parakeet uses a typed intermediate representation: unlike Python, every variable is

annotated with a type annotation. Furthermore, operations such as adding are sig-

ni�cantly more restricted (or perhaps, “static”) than their equivalents in Python. For

example, unlike Python, the addition operator + does not signify dynamic dispatch on

the __add__ method. Rather, in Parakeet’s intermediate representation, each occur-

rence of + can only act on scalar values of a certain type. Arithmetic operators between

array values must expressed more explicitly using data parallel operators such asMap.

For example, if the function in Listing 2.2 were passed two �oat vectors, then Parakeet’s

typed intermediate representation of this would look like:

def avg(X :: array1(float32), Y :: array1(float32)):

temp :: float32 = Map(lambda xi, yi: xi + yi, X, Y)

return Map(lambda xi: xi / 2.0, temp)

Listing 2.2: Averaging Two Arrays With NumPy

2.2 Data Parallel Operators

Parallelism in Parakeet is achieved through the implicit or explicit use of data parallel

operators. Some examples of these operators are listed below:

• Map(f, X1, ..., Xn, axis=None)

Apply the function f to each element of the array arguments. By default f is

passed each scalar element of the array arguments. The axis keyword can be

used to specify a di�erent iteration pattern (such as applying f to all columns).

• Reduce(combine, X1, ...,Xn, axis=None, init=None)
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Combine all the elements of the array arguments using the binary commutative

function combine. The init keyword is an optional initial value for the reduction.

Examples of reductions are the NumPy functions sum and product.

• Scan(combine, X1, ...,Xn, axis=None, init=None)

Combine all the elements of the array arguments and return an array containing

all cumulative intermediate values of the combination. Examples of scans are the

NumPy functions cumsum and cumprod.

For each occurrence of a data parallel operator in a program, Parakeet may choose

to synthesize parallel code which implements that operator combined with its function

argument. It is not always necessary, however, to explicitly use one of these operators

in order to achieve parallelization. Parakeet implements NumPy’s array broadcasting

semantics by implicitly inserting calls toMap into a user’s code. Furthermore, NumPy

library functions are reimplemented in Parakeet using the above data parallel operators

and thus expose opportunities for parallelism.

2.3 Compilation Process

We will refer to the following code example to help illustrate the process by which

Parakeet transforms and executes code.

@jit

def norm(x):

return np.sqrt(sum(x*x))

Listing 2.3: Vector Norm in Parakeet
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When the Python interpreter reaches the de�nition of norm, it invokes the @jit

decorator which parses the function’s source and translates it into Parakeet’s untyped

internal representation. There is a �xed set of builtin functions (such as sum) and

NumPy helpers (such as np.add) primitive functions from NumPy and library, such

as np.sqrt, which are translated directly into Parakeet syntax nodes. In particular,

sum(x*x) is rewritten into Reduce(lambda acc,xi: acc+xi, Map(lambda xi,

yi: xi*yi, x, x)).

In general, the @jit decorator will raise an exception if it encounters a call to

a non-primitive function which either can’t be parsed or violates Parakeet’s semantic

restrictions. Lastly, before returning execution to Python, Parakeet converts its internal

representation to a structured form [BM94] form of Static Single Assignment [CFR+91].

2.3.1 Type Specialization

Parakeet intercepts calls to norm and uses the argument types to synthesize a typed

version of the function. During specialization, all functions called by norm are them-

selves specialized for particular argument types. In our code example, if norm were

called with a 1D float array then sum would also be specialized for the same input

type, whereas the anonymous function created to add the elements of x*x would be

specialized for pairs of scalar floats.

In Parakeet’s typed representation, every function must have unambiguous input

and output types. To eliminate polymorphism Parakeet inserts casts and Map opera-

tors where necessary. When norm is specialized for vector arguments, its use of the

multiplication operator is rewritten into a 1D Map of a scalar multiply.

The actual process of type specialization is implemented by interleaving an abstract

interpreter, which propagates input types to infer local types, and a rewrite engine
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which inserts coercions where necessary.

2.3.2 Optimization

In addition to standard compiler optimizations (such as constant folding, function inlin-

ing, and common sub-expression elimination), we employ fusion rules [AS79, JTH01,

KM93] to combine array operators. Fusion enables us to increase the computational

density of generated code and to avoid the creation of unnecessary array temporaries.

Using Parakeet can be as simple as calling a Parakeet library function from within

existing Python code. For example, the �rst call to parakeet.mean(matrix) will

compile a small program to e�ciently average the rows of amatrix in parallel. Repeated

calls will not incur further compilation costs. If a Python function is wrapped with the

@parakeet.jit decorator, then its body will be parsed by Parakeet and prepared for

later compilation. When such a function is �nally called, its untyped syntax will be

specialized for the types of the given arguments and then compiled and executed. For

example, consider the simple function shown in Figure 2.4.

@parakeet.jit

def add1(x):

return x+1

Listing 2.4: Simple Parakeet function

If add1 is called with an integer argument, then it will be compiled to return an

integer result. If, however, add1 is later called with a �oating point input then a new

native implementation will be compiled that computes a �oating point result.

This example does not make use of any data parallel operators. In fact, it is possible

to generate code with Parakeet using only its capacity to e�ciently compile loops and

scalar operations. However, even greater performance gains can be achieved through
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either the explicit use of data parallel operators or, commonly, the use of constructs

which implicitly generate data parallel constructs. For example, if you were to call

add1 with an array, then Parakeet would automatically generate a specialized version

of the function whose body contains a Map over the elements of x. This can also be

written explicitly, as shown in Figure 2.5.

@parakeet.jit
def add1_map(x):

return parakeet.map(lambda xi: xi + 1, x)

Listing 2.5: Explicit map, adds 1 to every element

2.4 Backends

Parakeet allows you to select between di�erent kinds of native code generation by set-

ting the the con�guration option parakeet.config.backend to one of the following

values:

1. “openmp”: This is the default backend, which generates translates Parakeet’s

optimized representation into C code and uses the OpenMP [DM98] to parallelize

array operations across multiple cores.

2. “cuda”: Uses NVIDIA’s CUDA [Nvi11] framework to run parallel array opera-

tions on the GPU. This is not the default since (1) not all computers have CUDA-

capable NVIDIA GPUs and (2) the compile times of NVIDIA’s nvcc compiler are

tediously long.

3. “c”: Generate sequential C code, intended for machines with compilers which

do not support the OpenMP API. This backend is also useful as a baseline for

determining the degree of speedup achieved by parallelization of other backends.
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4. “interp”: Pure Python interpreter for Parakeet’s intermediate representation, used

primarily for internal debugging purposes, in general runs signi�cantly slower

than Python.

Rather than modifying a global con�guration option, it is also possible to pass the

name of the desired backend when calling into a Parakeet function with the keyword

argument _backend.

2.5 Limitations

Parakeet is a runtime compiler for numerically intensive algorithms written in Python.

In comparison with arbitrary Python code, Parakeet programs are very constrained.

This is because Parakeet trades dynamicism and complexity for greater latitude in pro-

gram transformation and ultimately the ability to generate e�cient low-level code (we

still have high-level constructs, they’re just well behaved). The features which Para-

keet does support are chosen to facilitate array-oriented numerical algorithms such as

those found in machine learning, �nancial computing, and scienti�c simulation. The

sections of code that Parakeet accelerates must obey the following constraints:

• The only data types which can be used within code compiled by Parakeet are

tuples, scalars, slices, NumPy arrays, and the None object. Other data types, such

as sets, dictionaries, generators, and user-de�ned objects are not supported.

• Due to Parakeet’s use of a simpli�ed program representation, only “structured" [BM94]

control �ow is allowed. This precludes the use of exceptions, as well as the break

and continue statements.
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• Since Parakeet must have access to a function’s source, any compiled C exten-

sions (or functions which call C extensions) cannot be used within Parakeet.

• Parakeet treats aggregate structures such as slices and arrays as immutable and

the programmer cannot modify the values of their �elds. The data contained

within an array, however, can be modi�ed. Similarly, the value of a local vari-

able can be updated. So, though Parakeet does restrict where mutability can hap-

pen, Parakeet does not require the programmer to adhere to a purely functional

programming style (unlike Copperhead [CGK11]).

• To compile Python into native code we must assign types to each expression. We

are still able to retain some of Python’s polymorphism by specializing di�erent

typed versions of a function for each distinct set of argument types. However,

expressions whose types depend on dynamic values are disallowed (e.g. 42 if

bool_val else (1,2,3)).

• A Parakeet function cannot call any other function which violates these restric-

tions or one which is not implemented in Python. These restrictions recursively

apply down the call chain, so that the use of an invalid construct by a function

also taints any other functions which call it.

• To enable the use of NumPy library functions Parakeet must provide equiva-

lent functions written in Python. However, some NumPy functions are not yet

implemented and others use language constructs which make their inclusion in

Parakeet unlikely to ever occur. For a full listing of which NumPy functions are

supported, the programmer can look in the parakeet.mapping module.
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These restrictions would be onerous if applied to an entire program but Parakeet

is only intended to accelerate the computational core of an algorithm. All other code

is executed as usual by the Python interpreter.

2.6 Di�erences from Python

In addition to restrictions on what sort of source code will even be accepted by Para-

keet’s frontend, there are also some semantic di�erences which may result in Parakeet

computing a di�erent value from Python.

• Since Parakeet does not implement Python lists, any list literals are treated as

arrays. Similarly, list comprehensions are reinterpreted as (parallel) array com-

prehensions.

• Some expressions which seem to have conditionally dependent types will suc-

cessfully be translated into Parakeet, but only by casting both values of a con-

ditional into a single unifying type. For example, the Python expression 3 if

bool_val else 2.0will selectively return either an integer or a �oating point

value but Parakeet will upcast the 3 into a 3.0.

• Parakeet’s reimplementation of NumPy library functions does not currently sup-

port non-essential parameters such as output.

• Parakeet’s parallel backends (OpenMP and CUDA) may change the order of a

�oating-point reductions (such as summing the elements of an array), resulting

in small di�erences relative to Python due to the slight non-commutativity of

�oating point math.
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• Parakeet implements NumPy’s array broadcasting using a translation scheme

dependent on the types of arguments. For example, adding a matrix and a vector

together will be correctly translated into a Map which adds the vector to each

column of the matrix. The full semantics of broadcasting, however, also allows

for array elements to be replicated due to the values of an array’s shape, which

are not evident in the type signature. For example, adding a 200x1 matrix with a

1x300 matrix in NumPy will yield a 200x300 result. Parakeet, however, does not

implement this correctly and will give an erroneous result.

2.7 Detailed Compilation Pipeline

In this section, we follow a simple function on its journey through the Parakeet JIT

compiler to elucidate how Parakeet translates high level code into high performance,

native versions. The function we will compile is the count function shown in Figure

2.6, which sums up the number of elements in an array less than a given threshold.

We use a loop in this example rather than an adverb for now, as our focus is on the

Parakeet compilation pipeline.

@parakeet.jit
def count(values, thresh):

n = 0
for elt in values:

n += elt < thresh
return n

Listing 2.6: count: Python source

This function is simple, but it’s not an entirely contrived computation. For example,

it forms the core of a decision tree learning algorithm. Before breaking down how

Parakeet compiles count, let’s �rst look at how the original gets executed within the
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standard CPython interpreter.

The �rst thing that happens to a function on its way to being executed is parsing.

The source of count gets read as a string of characters, tokenized, and then turned

into a structured syntax tree as shown in Figure 2.7.

FunctionDef(
name=’count’,
args=arguments(args=[Name(id=’values’), Name(id=’thresh’)],

vararg=None, kwarg=None, defaults=[]),
body=[

Assign(targets=[Name(id=’n’)], value=Num(n=0)),
For(target=Name(id=’elt’), iter=Name(id=’values’), body=[

AugAssign(target=Name(id=’n’), op=Add(),
value=Compare(left=Name(id=’elt’), ops=[Lt()],

comparators=[Name(id=’thresh’)]))]),
Return(value=Name(id=’n’, ctx=Load()))])

Listing 2.7: count: Python AST

A naive interpreter would then execute the syntax tree directly. Python achieves a

minor performance boost by instead compiling to a more compact bytecode, as shown

in Figure 2.8.

The ine�ciency of tree-walking interpreters (which evaluate syntax trees) com-

pared with bytecode execution is one of the reasons that Ruby has generally been

slower than Python. Though an improvement over a naive interpreter, trying to exe-

cute this bytecode directly still results in terrible performance. If you inspect the be-

havior of the above instructions, you’ll discover that they involve repetitive un-boxing

and re-boxing of numeric values in and out of their PyObject wrappers, wasteful stack

manipulation, and a lot of other very wasteful computations. If we’re going to sig-

ni�cantly speed up the numerical performance of Python code, it’s going to have run

somewhere other than the CPython bytecode interpreter.
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0 LOAD_CONST 1 (0)
3 STORE_FAST 2 (n)

6 SETUP_LOOP 30 (to 39)
9 LOAD_FAST 0 (values)
12 GET_ITER
13 FOR_ITER 22 (to 38)
16 STORE_FAST 3 (elt)

19 LOAD_FAST 2 (n)
22 LOAD_FAST 3 (elt)
25 LOAD_FAST 1 (thresh)
28 COMPARE_OP 0 (<)
31 INPLACE_ADD
32 STORE_FAST 2 (n)
35 JUMP_ABSOLUTE 13
38 POP_BLOCK

39 LOAD_FAST 2 (n)
42 RETURN_VALUE

Listing 2.8: count: Python bytecode

2.7.1 From Python into Parakeet

When trying to extract an executable representation of a Python function, we face a

choice between using a Python syntax tree or the lower-level bytecode. There are le-

gitimate reasons to favor the bytecode – the syntax tree isn’t saved anywhere andmust

instead be regenerated from source. However, the bytecode is littered with distracting

stack manipulation and doesn’t preserve some of the higher-level language constructs.

Though it’s a better starting point than the bytecode, an ordinary syntax tree is still

somewhat clunky for program analysis and transformation. So, Parakeet starts with a

Python AST and quickly slips into something a little more domain speci�c.
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2.7.2 Untyped Representation

In Figure 2.9, we show the count function’s internal representation in Parakeet. No-

tice that the loop counter n has been split apart into three distinct names: n, n2, and

n_loop. This is because we translate the program into Static Single Assignment form.

SSA is often used in compiler IRs because it allows for simpli�ed analyses and opti-

mizations. The most important things to know about SSA are:

• Every distinct assignment to a variable in the original programs becomes the

creation of distinct variable. This is similar in style to functional programming.

• At a point in the program where control �ow could have come from multiple

places (such as the top of a loop), we explicitly denote the possible sources of a

variable’s value using a φ-node.

def count(values, thresh):
n = 0
for i in range(0, len(values), 1):

(header)
n_loop <- phi(n, n2)

(body)
elt = values[i]
n2 = n_loop + (elt < thresh)

return n_loop

Listing 2.9: count Untyped Intermediate Representation

Another di�erence from Python is that Parakeet’s representation treats many array

operations as �rst-class constructs. For example, in ordinary Python len is a library

function, whereas in Parakeet it’s actually part of the language syntax and thus can

be analyzed with higher-level knowledge of its behavior. This is particular useful for

inferring the shapes of intermediate array values.
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2.7.3 Type-specialized Representation

When you call an untyped Parakeet function, it gets cloned for each distinct set of input

types. The types of the other (non-input) variables are then inferred and the body of

the function is rewritten to insert casts wherever necessary.

def count(values :: array1(float64), thresh :: float64) =>
int64:
n :: int64 = 0 :: int64
shape_tuple :: tuple(int64) = values.shape
for i in range(0, shape_tuple[0], 1):

(header)
n_loop <- phi(0 :: int64, n2)

(body)
elt :: float64 = values[i]
less_tmp :: bool = elt < thresh
n2 :: int64 = n_loop + cast<int64>(less_tmp)

return n_loop

Listing 2.10: count: Typed Parakeet IR

A type-specialized version of count is given in Figure 2.10. Observe that the func-

tion has been specialized for input types array1(float64), float64 and that its

return type is known to be int64. Furthermore, the boolean intermediate value pro-

duced by checkingwhether an element is less than the threshold is cast to int64 before

getting added to n2.

If you use a variable in a way that defeats type inference (for example, by treating

it sometimes as an array and other times as a scalar), then Parakeet treats this as an

error.

2.7.4 Optimization

Type specialization already gives us a big performance boost by enabling the use of an

unboxed representation for numbers. Adding two �oats stored in registers is orders of
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magnitude faster than calling Python’s __add__ operation on two PyFloatObjects.

However, if all Parakeet did was specialize your code it would still be signi�cantly

slower than programming in a lower-level language. Parakeet includes many standard

compiler optimizations, such as constant propagation, common sub-expression elimi-

nation, and loop invariant code motion. Furthermore, to mitigate the abstraction cost

of array expressions such as 0.5*array1 + 0.5*array2 Parakeet fuses array op-

erators, which then exposes further opportunities for optimization. In this case, how-

ever, the computation is simple enough that only a few optimizations canmeaningfully

change it, as shown in Figure 2.11.

def count(values :: array1(float64), thresh :: float64) =>
int64:

shape_tuple :: struct(int64) = values.shape
data :: ptr(float64) = values.data
base_offset :: int64 = values.offset
for i in range(0, shape_tuple.elt0, 1):

(header)
n_loop <- phi(0 :: int64, n2)

(body)
offset :: int64 = offset + i
elt :: float64 = data[offset]
less_tmp :: bool = elt < thresh
n2 :: int64 = n_loop + cast<int64>(less_tmp)

return n_loop

Listing 2.11: count: Optimized Parakeet IR

In addition to rewriting code for performance gain, Parakeet also "lowers" higher-

level constructs such as tuples and arrays into more primitive concepts. Notice that

the code in Figure 2.11 does not directly index into n-dimensional arrays, but rather

explicitly computes o�sets and indexes directly into an array’s data pointer. Lower-

ing complex language constructs simpli�es the next stage of program transformation:

translating from Parakeet into C.
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2.7.5 Generated C code

The translation from Parakeet’s lowered intermediate representation into C is largely

mechanical. Structured data types such as array descriptors and tuples become C

structs, which due to immutability assumptions can be safely passed by value. So that

this code can be used by the Python interpreter, the entry point into a compiled C func-

tion must extract all the input values from the Python interpreter’s PyObject repre-

sentation. Similarly, the result must be packaged up as a value the Python interpreter

understands. In between, however, the Python C API is not used. The C code for the

count function is shown in Listing 2.12. In this instance, it does not matter whether

the C, OpenMP, or CUDA backend was used, due to the lack of parallel operators in

the original program, all the backends generate largely identical output.

2.7.6 Generated x86 Assembly

Once we pass the torch to the C compiler, Parakeet’s job is mostly done. The external

compiler performs its own host of optimization passes on our code and, at last, we

arrive at native code. Shown in Figure 2.13 is the assembly generated for the main loop

from the code above.

Notice that we end up with the same number of machine instructions as we orig-

inally had Python bytecodes. It’s safe to suspect that the performance might have

somewhat improved.

2.7.7 Execution Times

In addition to benchmarking against the Python interpreter (an unfair comparisonwith

a predictable outcome), let’s also see Parakeet stacks up against an equivalent function
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#include <Python.h>
#include <numpy/arrayobject.h>
#include <numpy/arrayscalars.h>
#include <stdint.h>
#include <math.h>

typedef struct float64_ptr_type {
double* raw_ptr;
PyObject* base;

} float64_ptr_type;

typedef struct array_type {
float64_ptr_type data;
npy_intp shape[1];
npy_intp strides[1];
int64_t offset;
int64_t size;

} array_type;

PyObject* count (PyObject* dummy, PyObject* args) {
PyObject* values = PyTuple_GetItem(args, 0);
npy_intp* shape_ptr = PyArray_DIMS((PyArrayObject*)values);
npy_intp* strides_bytes = PyArray_STRIDES( (PyArrayObject*)

values);
array_type unboxed_array;
float64_ptr_type data = {(double*) PyArray_DATA(((

PyArrayObject*) values)), values};
unboxed_array.data = data;
unboxed_array.strides[0] = strides_bytes[0] / 8;
unboxed_array.shape[0] = shape_ptr[0];
unboxed_array.offset = 0;
unboxed_array.size = PyArray_Size(values);
PyObject* thresh = PyTuple_GetItem(args, 1);
double thresh_2;
if (PyFloat_Check(thresh)) { thresh_2 = PyFloat_AsDouble(

thresh); }
else { PyArray_ScalarAsCtype(thresh, &thresh_2); }
npy_intp* shape = unboxed_array.shape;
int64_t len_result = shape[0];
int64_t n_loop = 0;
int64_t idx;
for (idx = 0; idx < len_result; idx += 1) {

double elt = unboxed_array.data.raw_ptr[idx];
int64_t temp = ((int64_t) (elt < thresh_2));
int64_t n_loop = n_loop + temp;

}
return (PyObject*) PyArray_Scalar(&n_loop,

PyArray_DescrFromType(NPY_INT64), NULL);
}

Listing 2.12: count: Generated C code
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;; loop entry
movq 8(%rdi), %rax
movq (%rax), %r8
xorl %eax, %eax
testq %r8, %r8
jle .LBB0_3

;; %loop_body.preheader
movq 24(%rdi), %rax
movq (%rdi), %rdx
leaq (%rdx,%rax,8), %rdx
xorl %eax, %eax
.align 16, 0x90

;; %loop_body
.LBB0_2:

ucomisd (%rdx), %xmm0
seta %cl
movzbl %cl, %esi
addq %rsi, %rax
addq $8, %rdx
decq %r8
jne .LBB0_2

.LBB0_3:
ret

Listing 2.13: count: generated x86 assembly
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implemented using NumPy primitives, shown in Figure 2.14.

In order to allow Parakeet to compile programs that look more like the NumPy

version of count, we add adverbs to the Parakeet language. In fact, adverb use is

encouraged not only because it allows the programmer to write code in a high-level

array-oriented style. In addition, Parakeet is able to optimize and parallelize adverbs

in ways that it cannot do on loops.

def numpy_count(values, thresh):

return np.sum(values < thresh)

Listing 2.14: count: NumPy

On 10 million randomly generated inputs, best average the time taken for 5 runs

each of the Python, NumPy, and two Parakeet versions is given in Table 2.1.

CPython loops NumPy Parakeet loops Parakeet high level
33.6942s 0.0325 0.0127s 0.0063s

Table 2.1: Execution Time of di�erent versions of count

Compared with CPython, both of the Parakeet implementations are several thou-

sand times faster. Perhaps surprisingly, even on such simple code Parakeet is about 3x-

5x faster than the pre-compiled NumPy library functions. The primary reason for this

is that NumPy can’t help create an array temporary for the expression x < thresh,

whereas Parakeet optimizes this temporary away. Also, the NumPy version only uses

one core, whereas the higher-level Parakeet implementation compiles to OpenMP and

uses multiple cores simultaneously. In fact, if this problem were less memory-bound

and exhibited greater computational density then Parakeet’s high-level code would be

twice faster than NumPy.
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Chapter 3

History and Related Work

In the beginning, all computing was scienti�c computing. Early general purpose com-

puters such as the ENIAC [GG46] and MESM [FBB06] were commissioned to compute

artillery trajectories, simulate nuclear detonations, and crack cryptographic codes.

These machines required a tremendous expenditure of human e�ort to correctly con-

struct and encode their programs.

In the decade that followed, computers became widely available and better ab-

stractions for programming them were eagerly sought after. As a variety of program-

ming languages were devised, a tension became apparent between attaining e�ciency

through low-level control and the expressiveness of high-level abstractions. At the

broadest scope, it is possible to distinguish two lineages of philosophy in the design

of programming languages: (1) those whose features are carefully chosen to allow for

e�cient compilation and (2) abstract models of computation which optimize for pro-

grammer e�ciency and leave e�cient implementation as a secondary goal.

Programmers who adopted languages such as Fortran [BBB+57], CPL [BBH+63],

and Algol [NBB+63], demanded low-level control over data layout and program exe-
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cution, hesitantly ceding a modicum of control over instruction selection to their com-

pilers. Most relevant to this thesis is Fortran (“Formula Translator”), which remains in

use today and has in�uenced nearly all the languages for scienti�c computing which

followed. The �rst version of Fortran provided abstractions such as loops and array

indexing, which could be compiled to a variety of hardware platforms. Great care was

given, however, to ensure that all the language’s abstractions could be e�ciently com-

piled to match the performance characteristics of hand-written assembly. Despite its

helpful abstractions, Fortran was constrained to be e�cient for the machine.

By contrast, programmers using Lisp [McC61], APL [Ive62], and the various lan-

guages that they inspired, placed their faith in an abstract model of computation far

removed from the actual hardware upon which it ran. APL gave the programmer uni-

formly typed n-dimensional arrays and collective operators over them. Lisp, on the

hand, focused the programmer on using non-uniform linked lists and functions as �rst-

class language values. These abstractions a�orded signi�cant gains in brevity, clarity

of thought, and consequently in productivity. The cost of abstraction, however, was a

signi�cant slowdown incurred from the pervasive use of data structures and operations

unfamiliar to the hardware.

Most of the raw ingredients needed for a productive and e�cient scienti�c pro-

gramming language were in the air in the �rst few decades of modern computing, but

only in piecemeal and scattered between di�erent languages. Much of the later his-

tory of languages leading to Python, NumPy, and Parakeet is the story of combining

abstractions and seeking more e�cient implementations for them.
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3.1 Array Programming

I adopted the matrix algebra used in my thesis work, the systematic use of

matrices and higher-dimensional arrays (almost) learned in a course in Tensor

Analysis rashly taken in my third year at Queen’s, and (eventually) the notion

of Operators in the sense introduced by Heaviside in his treatment of Maxwell’s

equations.

— Kenneth E. Iverson

Array Programming is a paradigm wherein the primary data structure is an n-

dimensional array and algorithms are implemented chie�y through the creation, trans-

formation, and contraction of array values. These semantics were inspired by matrix

and tensor notation, but extended to collections of numbers without any particular

linear algebraic properties. The array programming paradigm was �rst introduced by

Kenneth Iverson’s APL [Ive62], which he conceived of as a “mathematical notation” as

much as a programming language.

APL uses an extremely terse syntaxwhich is richwith di�erent array operators. For

example, summing the numbers from 0 to 99 can be expressed in APL as+/ι100. Here

the �rst-order range operator “ι” is used to create a range of values and the higher-

order reduction operator / is combined with the �rst order addition function + to

express summation. Programming in APL makes extensive use of higher-order array

operators, or in the language’s native nomenclature, “adverbs”.

The basic programming paradigm embodied by APL inspired a lineage of many

other “pure” array languages, such as Nial [JGM86], Q [Bor08], and J [HI98]. The pri-

mary implementations for array languages have all tended to be simple interpreters,

relying on e�cient precompiled primitives for performance. The preference for inter-

preter implementations arises from the di�culty of assigning precise types to APL’s

29



sophisticated notion of subtyping between arrays and scalars [Tha90]. Nonetheless,

driven by the desire for better performance, a creative variety of APL compilers were

created [Bud83, Bud84, Chi86, Ber97].

The earliest known e�ort to compile APL [Abr70] was an extremely ambitious

design for an APL virtual machine that, rather than evaluating expressions imme-

diately, instead construct lazy expression trees and compiles them on demand. This

turns out [Ayc03] to have been one of the �rst attempts at constructing a just-in-time

compiler.

The actual community of programmers using APL (and its descendants) never grew

very large, and the in�uence of array programming is felt primarily through its in-

�uence on other languages. APL directly inspired Speakeasy [CP79], which was “an

extendable computer language based, like APL, upon the concept of arrays and ma-

trices as natural entities but without the terseness of APL notation”. Speakeasy, in

turn, inspired the creation of Matlab [Mol80], which was meant to provide a high-level

interface to performance critical Fortran libraries. Fortran itself eventually borrowed

from the APL heritage, when Fortran90 [Met91] added “array expressions” to the core

language, including element-wise intrinsic functions “often based on APL operators”.

NumPy was created to bring the functionality of Matlab to Python, and thus, through

many layers, can trace its origins back to APL.

Collective operations over n-dimensional data structures have now become a ubiq-

uitous feature of high level numerical programming and the origin of this feature is

APL has been largely obscured. APL’s innovative use of higher-order array operators

is not as common as its �rst-order operators, sincemany languageswith array-oriented

features are interpreted and cannot e�ciently implement higher-order usage of user-

de�ned functions.

30



Aside from the adoption of n-dimensional arrays into dynamic languages, there

were also several attempts to close the performance gap often perceived between dy-

namic array languages and Fortran by crafting statically compiled array languages.

These include SISAL [CF90], ZPL [LS94], and Single Assignment C [Sch03].

3.2 Data Parallel Programming

A closely related paradigm is data parallel programming, which allows programmers

to express algorithms through the declarative creation and transformation of uniform

collections. For example, whereas an imperative language would require an explicit

loop to sum the elements of an array, a data parallel languagewould instead implement

summation via some form of high level reduction operator.

APL can be viewed as the �rst data parallel language, since it emphasized the col-

lective transformation of n-dimensional arrays. Though the �rst implementation of

APL was a sequential interpreter, the eminent parallelizability of the language’s core

operators was quickly recognized and parallel implementations were eventually de-

veloped. As computers with massively parallel hardware becamemore common in the

1980s many languages such as C [KRE88], Fortran [BBB+57], and Lisp [McC61], were

retro�tted with data parallel extensions (Paralation Lisp [Sab88], HPF [BCF+93]). More

recently, data parallel constructs have appeared repeatedly as core primitives for high

levelDSLswhich synthesize distributed data processing algorithms (DryadLinq [YIF+08]),

graphics card programs (Accelerator [TPO06], Copperhead [CGK11])).

The enduring appeal of data parallel constructs lies in the �exibility of their seman-

tics. A data parallel transformation only speci�es what the output should be, not how

it is computed. This makes data parallel programs amenable (as the name suggests)
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to parallelization, both in terms of coarse-grained data partitioning and �ne-grained

SIMD vectorization. In addition, the algebraic nature of data parallel operators allows

for dramatic restructuring of the program in order to improve performance. Most com-

monly, data parallel operators can be fused by applying simple syntactic rewrite rules

which results in the elimination of synchronization points, increased computational

density, and signi�cant gains in performance.

3.2.1 Collection-Oriented Languages

Another closely paradigm closely related to both array programming and data par-

allel programming is that of collection-oriented languages. By the mid-1980’s, there

was a widespread proliferation of high level languages which relied on some privi-

leged collection type as a central mechanism by which programs could be expressed.

These included array-oriented languages of the APL family, the set-oriented language

SETL [SDSD86], as well as Lisp dialects which used either conventional lists or other

more exotic data structures such as distributed mappings [SJH86]. What such lan-

guages have in common is at minimum, an apply-to-each operation which implicitly

traverses a collection (as well as often some form of reductions and scans).

Their similarities were documented by Sipelstein and Blelloch in a review named

"Collection Oriented Langauges" [SB91]. Blelloch focuses on the pervasive use of

data parallel operators such as Map and Reduce, though sometimes named di�er-

ently or entirely disguised behind the semantics of implicit elementwise function ap-

plication. This work seems to have inspired Blelloch’s nested data parallel language

NESL [BCH+94].

The data parallel programming model allows programmers to express algorithms

through the declarative creation and transformation of uniform collections. For ex-
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ample, whereas an imperative language would require an explicit loop to sum the el-

ements of an array, a data parallel language would instead implement summation via

some form of high level reduction operator.

The notion of collection-oriented languages overlaps greatly with data parallelism

but they are not identical. For example, a reduction (even when expressed in a high-

level collection-oriented form), may not be parallelizable due to the inherent sequen-

tiality of its operator.

3.3 Related Projects

Numexpr [CH] is the simplest domain-speci�c numerical compiler for Python. It takes

expressions containing simple element-wise operations, such as tanh(x**2 - 2 *

y)<= 0, and compiles them to an e�cient numerical virtual machine. This virtual

machine executes the expression using cache-friendly blocking and splits the work

across multiple cores.

Theano [BBB+10] is a library which allows programmers to construct expression

graphs for multi-dimensional array operations and then compiles those operations to

CPU or GPU code. Theano is remarkable in its ability to automatically compute gra-

dients of user-de�ned functions, and has thus become very popular for the implemen-

tation of neural networks. Theano is more general than Numexpr, but still supports a

much smaller range of expressions than Parakeet and requires encoding of programs

in its explicit syntax representation.

Copperhead [CGK11] is a Python accelerator which compiles a purely functional

data parallel subset of the language to the GPU. Copperhead repurposes Python’s list

comprehensions as a data parallel mappings and synthesizes GPU kernel templates for
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operators such as map and reduce. Copperhead is limited by its inability to express

local mutable variables and array expressions. Parakeet can be seen as an extension of

Copperhead’s ideas to a much larger swath of idiomatic programming constructs.

Pythran [GBA13] is a compiler for numerical Python which achieves impressive

performance by generating multi-core programs using OpenMP. It di�ers from Para-

keet in that it is a static compiler which requires user annotations.

Numba [Con] is the closest project to Parakeet in both its aims and internal ma-

chinery. Like Parakeet, Numba provides a function decorator which intercepts func-

tion calls and uses argument types as the basis for type specialization. Numba then

compiles type specialized programs to LLVM. Numba relies on loops for performance

sensitive code, and lacks any concept analogous to Parakeet’s higher order data parallel

operators.
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Chapter 4

Parakeet’s Intermediate

Representation

Parakeet uses a tree-structured intermediate representation where every function’s

body is a sequence of statements. Statements corresponding to loops and branches

may in turn contain their own nested sequences of statements. All control �ow in

Parakeet must be “structured”, meaning it is impossible to express arbitrary jumps be-

tween disparate parts of a program. Each structured control statement tracks the data

�ow arising from branching using SSA [CFR+89] Φ-nodes at merge points. This com-

bination is reminiscent of Oberon’s Structured SSA [BM94], which is easier to analyze

and rewrite but makes it di�cult to express constructs such as Python’s break and

continue.

When a Python function is �rst encountered by Parakeet, it is translated into Para-

keet’s intermediate representation but without any type annotations. This syntax rep-

resentation acts as an untyped function template, giving rise to multiple distinct typed

instantiations for each distinct set of input types. Later, when specializing this untyped
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template for particular input types, all syntax nodes are annotated with types and any

source of type ambiguity or potential dynamicism is translated into explicit coercions.

The two major transformations which must be performed while converting from

Python’s syntrax into Parakeet’s intermediate representation are:

• SSA Conversion. Each assignment to the same variable name is given a distinct

name. At places where a variable might take its value from multiple renamed

source (control �ow merge arising from loops and branches) explicit Φ-nodes

track the �ow of values. In Parakeet, these nodes are represented as a collection

of bindings such as xi = φ(eleft, eright), where the value of xi is selected depending

on which branch was taken.

• Lambda Lifting [Joh85] & Closure Conversion [Rey72]. Rather than allow

nested function de�nitions as statements, Parakeet gives each function a unique

identity by lifting it to the top-level scope. Any values which a de�nition closed

over are added as formal parameters and where the de�nition originally took

place a closure object is constructed instead.

4.1 Simple Expressions

This section enumerates the Parakeet expressions which are unrelated to the construc-

tion, transformation, and inspection of array values. This includes creating scalar val-

ues, tuples, closures, and slices.

• Const(value)

Constants can be booleans, signed or unsigned integers, �oating point values, or

the None object.
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• Var(name)

Variables in Parakeet’s intermediate representation must originate from a local

binding either as the input argument to a function, a single assignment state-

ment, or a φ-node associated with some control �ow statement.

• PrimCall(prim, x1, . . . xn)

Parakeet’s primitives are basic math operators such as add or divide, logical

operators such as logical_and, or transcendental math functions such as exp

or sin.

• Select(cond , trueValue , falseValue)

Returns trueValue when cond is true, and falseValue otherwise.

• Tuple(x1, . . . , xn)

Construct an n-element tuple object from the individual values x1, . . . , xn.

• TupleElt(x, i)

Extract the ith element of x. The index i must be a �xed constant and not a

dynamically varying expression. Can be denoted more compactly as xi.

• Closure(f , x1, . . . , xn)

Partially apply the arguments x1, . . . , xn to the function f , which must have

at least n + 1 inputs. The result is a closure object, which can be called like a

function.

• ClosureElt(clos, i)

Extract the ith partially applied argument from the closure value clos. The index

i must be a �xed constant and not a dynamically varying expression. Can be

denoted more compactly as clos i.
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• Call(f, x1, . . . , xn)

Calls a function or closure value with the given input x1, . . . , xn. Evaluation

semantics in Parakeet are call-by-value and functionsmust always return a result.

• Slice(start , stop, step)

Construct a slice object with the given start, stop, and step, used to implement

the Python syntax start:stop:step.

4.2 Statements and Control Flow

Statements in Parakeet bind variable names to values, initiate e�ectful computations,

and allow for branching and loops. Unlike many intermediate representations, Para-

keet’s intermediate language is not a control �ow graph [Pro59, All70], and does not

allow unstructured jumps (which are necessary for Python statements such as break

and continue).

• Assign(lhs , value)

Evaluate the right hand side value and assign it to the binding pattern lhs , which

can be the name of a variable, an array indexing expression, or a tuple of other

binding patterns.

• ExprStmt(expr)

Evaluate the given expression purely for its side-e�ects. The if the expression is

actually pure, then this statement can be safely removed.

• If(cond , trueBlock , falseBlock ,merge)

Selectively execute either the statements of either trueBlock or falseBlock de-
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pending on the value of cond . Afterwards, for each SSA variablexi = φ(vtrue, vfalse)

in merge , assign to xi the appropriate value from the branch that was taken.

• ForLoop(x , start , stop, step, body ,merge)

Repeatedly run the block of statements body for a range of values from start to

stop, incremented by step, each getting bound to the variable x . This is equiva-

lent to the Python construct for in x in xrange(start,stop,step). The

SSA control-�ow merge point, merge , is a collection of variables matched with

values �owing from before the loop has executed and after.

• WhileLoop(cond , body,merge)

Repeatedly evaluate the statements in body until the condition cond becomes

false. The SSA Φ-nodes denoted by merge are a collection of bindings xi =

φ(ebefore, eafter). Each variable xi is initialized to ebefore before the loop executes

and then updated to the value of eafter after each loop iteration.

• ParFor(f , bounds)

Evaluate the given function f for every index value between the starting tuple

(0, . . . , 0) and the stopping values (bounds1, . . . , boundsn). Unlike an ordinary

loop, this statement guarantees the lack of dependencies between loop iterations,

thus every call to f can potentially be executed in parallel. Higher order array

operators such as Map and OuterMap are are ultimately lowered into ParFor

statements.
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4.3 Array Properties

• Shape(array)

Return the shape tuple of the given array.

• Len(seq)

For an array argument, returns Shape(seq)0, whereas for a tuple this returns the

number of elements in the tuple.

• Rank(x )

The number of dimensions in a scalar. For an array this value is Len(Shape(x)),

whereas for all other types the rank if 0.

• Strides(array)

Return a tuple of integer strides for the given array. These are used to com-

pute the addresses of the array’s elements. These di�er from the strides used

by NumPy in that they scale with the number of elements in each dimension,

rather than the number of bytes. For example, the memory location accessed by

the indexing expression x[a,j,k] is:

base(x) + itemsize(x) · (Strides(x)0 · i+ Strides(x)1 · j + Strides(x)2 · k)

4.4 Simple Array Operators

These are the �rst-order array operators used to construct new arrays, views of existing

arrays, and simple transformations. Many of these operators exist only at the earlier

stages of compilation and are later lowered into some combination of computed array

views, speci�c uses of higher order array operators, and loops.
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• AllocArray(shape, τelt)

Allocate an empty array with dimensions given by the tuple shape and whose

elements are of type τelt. Equivalent to the NumPy function empty and used by

many other array operations after they are lowered.

• ConstArray(value, shape)

Construct an array of the give shape, all of whose values are the speci�ed value.

Used in the reimplementation of NumPy functions np.zeros and np.ones.

• Reshape(array , shape)

Create an array view over the same underlying data but with a new shape. The

number of elements (given by the product of the shape’s dimensions) must be

preserved.

• Transpose(array)

Create an array view with the same underlying data as array but with reversed

shape and strides tuples.

• Ravel(array)

Linearize a multi-dimensional array into a one-dimensional vector. In the case

that some dimension is of unit stride, then the returned value is a reshaped array

view. However, if this is not possible, a linearized copy is made.

• FromDiagonal(vec, shape = None, offset = 0)

Given a one-dimensional vector vec, construct a higher-dimensional array with

zeroes for all its elements except for the diagonal which will be copied from vec.

By default, the result array is a two-dimensional matrix, but this can be changed

by supplying a shape argument. If the o�set argument is positive, then the values

41



of vec are copied into a diagonal above the main diagonal. If it’s negative, then

vec gets copied below the main diagonal.

• ExtractDiagonal(array , offset = 0)

Given a multidimensional array, return a vector containing the values of its di-

agonal entries array[i+ offset , . . . , i+ offset ].

• Tile(array , reps)

Repeat the contents of the given array as many times along dimension i as given

in the tuple element reps
i
. If Len(reps) < Rank(array) then extra 1s are used to

extend reps from the left. Similarly, if Len(reps) > Rank(array) then the shape

of the array is extended with 1s.

4.5 Memory Allocation

These constructs are accessible to the programmer but are rather used by later stages

of the compilation pipeline.

• Alloc(n, τ).

Returns a pointer to a freshly allocated data bu�er with n elements of type τ ,

whose size in bytes is itemsize(τ) · n.

• Free(ptr).

Manually deallocate the data bu�er at address ptr.

• ArrayView(data, τ, shape, strides, o�set)

Create an array view over the memory address range (data + o�set) : (data +

o�set + itemsize(τ) · Πishapei). Its shape is given by the tuple argument shape

and the array strides by the tuple argument strides.
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4.6 Higher Order Array Operators

Parakeet’s representation of its data parallel operations di�ers from traditional presen-

tations in several ways.

Diversity. The biggest distinction between Parakeet and other languages which

use data parallel operators, is the dizzying menagerie of operators that Para-

keet uses internally. Many languages include generalMap and Reduce functions,

and a few even have something resembling a higher-order pre�x-scan. Parakeet,

however, also uses many other operators such as OuterMap, IndexMap, IndexRe-

duce, and Filter. None of these operators are essential, in the sense that you could

reimplement them using some combination of �rst order array constructors and

nestings of some smaller core set of higher order operators. However, in the ab-

sence of any other forms of abstract iteration, a minimalist approach results in

missed opportunities for array optimizations and sub-par performance.

Multiple Array Arguments. Data parallel operators are often presented as

consuming a single collection, which is often combined with �rst-order opera-

tors such as zip that combine the elements of multiple collections. Parakeet, on

the other, allows array operators to consume multiple array arguments directly.

Arguments can even di�er in dimensionality, so that Map(f, matrix, vector, axis

= 0) would call f with every row in matrix and every element in vector.

Axis of Traversal. Since the primary data type in Parakeet is an n-dimensional

array (and not some sort of �at sequence or stream) it is necessary for data par-

allel operators know which dimension(s) they should traverse. This is captured

with the axis property of every operator, which is either an integer constant indi-
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cating a single dimension or the wildcard None, means that the operator should

apply to every scalar element.

Additional Function Parameters. It is typical for operators such as Reduce

and Scan to be speci�ed using only a binary operator. However, this approach

breaks down with multiple array arguments. It is necessary to also specify a

transformationwhichmaps from elements of the input arrays to the accumulator

type. Additionally, Scan is equipped with an emit function which transforms

from the accumulator type to some potentially di�erent output type.

4.6.1 Mapping Operations

• Map(f, X1, ...,Xn, axis = None)

Apply the function f to each element of the array arguments. By default, the

value of axis argument is None, which means that every call to f is given scalar

elements of the array arguments. If the axis keyword is set to some integer value,

then the arguments to f will be slices along that dimension of all the arrays. This

can be used, for example, for applying f to all columns or rows of a matrix.

• OuterMap(f, X1, . . . , Xn, axis = 0). Apply the function f to all combinations

of elements between the input arrays.

• Filter(f, pred, X1, . . . , Xn, axis = 0).

For the aligned input elements X1, . . . , Xn, construct an array from the results

of f(x1, . . . , xn) when pred(x1, . . . , xn) is true and discard the values for which

the predicate is false.

• IndexMap(f, shape).
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Similar to aMap but evaluates the function f for every index tuple in the iteration

space from 0, . . . , 0 to σ1, . . . , σn.

• IndexFilter(f, pred, shape). Similar to IndexMap but uses the predicate func-

tion pred to exclude index combinations.

4.6.2 Reductions

• Reduce(f,⊕, X1, . . . , Xn, init = None, axis = None)

Combine all the elements of the array arguments using the (n+ 1)-ary commu-

tative function f . The init keyword is an optional initial value for the reduction.

Examples of reductions are the NumPy functions sum and product.

• IndexReduce(f,⊕, shape) Performs a reduction across the index space from

(0, . . . , 0) to the bounds (shape
1
, . . . , shape

n
). The function argument f converts

from an input index (i1, . . . , in) into a value compatible with combine operation

⊕.

• FilterReduce(f,⊕, pred, X1 . . .Xn). Filter the elements of the input arrays us-

ing the function pred, transform the surviving elementswith f and combine them

into a single result with the binary function ⊕.

• IndexFilterReduce(f,⊕, pred, X1 . . . Xn).

4.6.3 Scans

• Scan(f,⊕, emit, X1, . . . , Xn, init = None, axis = None)

Combine all the elements of the array arguments and return an array containing
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all cumulative intermediate values of the combination. Examples of scans are the

NumPy functions cumsum and cumprod.

• IndexScan(f,⊕, emit, shape). Perform an n-dimensional pre�x scan over all in-

dices between (0, . . . , 0) and the n-tuple shape. The function f convert from

every index input (i1, . . . , in) to an accumulator value compatible with the bi-

nary operator ⊕. The last function argument, emit, converts from intermediate

accumulator values to the output type of the array operator.

4.7 Formal Syntax

To simplify the speci�cation of type inference and various optimizing transformations,

we summarize the syntactic elements of the preceding chapters into a more compact

formal syntax in Figure 4.1.
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function f ::= λx1, ... , xn.s
+

statement s ::= x = e | x[eidx]= e

| expr e
| return e

| if e then s+ else s+ merge Φ+

| while econd do s+ merge Φ+

| for x in (estart, estop, estep) do s+ merge Φ+

| parfor(ef , ebounds)

SSA merge Φ ::= x = φ(eleft, eright)

expression e ::= x | const | prim(e1, . . . , en)
| e1 × . . .× en | proj(etuple, i)

| [e1, . . . , en] | earray[eidx]
| none | slice(estart, estop, estep)
| closure(f, e1, . . . , ek)

| ef(e1, . . . , ek)
|Mapα(ef , e1, . . . , en)

| OuterMapα(ef , e1, . . . , en)
| Filterα(ef , epred, eresult, e1, . . . , en)

| Reduceα(ef , e⊕, einit?, e1, . . . , en)
| FilterReduceα(ef , e⊕, epred, einit?, e1, . . . , en)
| Scanα(ef , e⊕, e emit, einit?, e1, . . . , en)

| IndexMap(ef , eσ)
| IndexReduce(ef , e⊕, einit?, eσ)

| IndexFilterReduce(ef , epred, e⊕, einit?, eσ)
| IndexScan(ef , e⊕, eemit, einit?, eσ)

Figure 4.1: Parakeet’s Internal Syntax
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Chapter 5

Type Inference and Specialization

Once a user-de�ned function has been translated into Parakeet’s intermediate repre-

sentation, no further actions can be taken until Parakeet encounters some particular

arguments for that function. Parakeet uses the types of function arguments as the

basis for specializing the function, meaning cloning the function body, determining a

unique type for every variable, and inserting coercions where it is necessary to convert

between types.

The process of type specialization interwines inference (performed via abstract in-

terpretation) and program rewriting (used to disambiguate dynamic features). Every

type rule in Parakeet’s inference engine consumes an untyped syntactic construction

(statement or expression) and returns an equivalent syntax element with type annota-

tions. Inference rules for statements may also destructively modify the type environ-

ment.
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5.1 Type System

Parakeet’s type system (Figure 5.1) is limited to scalars, n-dimensional arrays of scalar

elements, tuples of arbitrary values, slice values, a singleton None object, and type val-

ues (used to represent the dtype arguments of NumPy functions). This small collection

of possible types is su�cient for a large subset of the NumPy library functions. Notably

missing is support for complex numbers structured array elements, various array iter-

ators and grids, all of which would be necessary for a full-featured reimplementation

of NumPy.

scalar s ::= int8 | int16 | int32 | int64 |
uint8 | uint16 | uint32 | uint64 |
�oat32 | �oat64 | bool

type τ ::= s | array(s, k) | slice | none | τ1 × ... × τn |
closure(f , τ1 × ... × τn) | typeval(s)

Figure 5.1: Types

Parakeet’s type system has a rich subtype structure, implementing both the scalar

hierarchy of NumPy (Figure 5.2) and broadcasting/rank polymorphism [Sch03]. Sub-

typing is implemented by inserting coercions [BTCGS91] into the rewritten typed rep-

resentation of a function. These coercions can be simple casts between scalar values

or Map operators which eliminate array-oriented polymorphism.
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bool

uint8

uint16

uint32

uint64

int8

int16

int32

int64 �oat32

�oat64

Figure 5.2: Scalar Subtype Hierarchy

5.2 Type Specialization Algorithm

Parakeet’s type specializer is presented here in a stylized form as a set of mutually

recursive rewrite rules. The entry point into specialization is S(f, τ1, . . . , τn), de�ned

in Algorithm 5.1, which takes an untyped function and a sequence of input types, and

returns a rewritten type-specialized version of the function. If the function argument

to S is a closure rather than a bare function, then the underlying function is extracted

and the types of the closed-over arguments are prepended to the sequence of input

types.

The case-speci�c logic of specializing each kind of statement and expression in

Parakeet’s intermediate language is encompassed by the J·KE operation. The sub-

scripted E represents the accumulated type environment at the point where each syn-

tactic construct is encountered. A variety of helper functions (shown in Figure 5.3)
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help in compactly expressing the specialization rules.

The specialization driverS also depends on the helper routine InsertCoercions(·, E),

which is not listed here. The role of InsertCoercions(·, E) is to perform a second pass

over the freshly annotated representation of a typed function and to insert coercions

wherever the locally determined type annotation con�icts with the �nal types assigned

to all variables and return values.

Algorithm 5.1 Specialize Function for Input Types

S(λx1, . . . , xn.s1, . . . sm, τ1, . . . , τn) 
λx1 : τ1, . . . , xn : τn.s

′′
1, . . . , s

′′
m

where

⊲ Fresh type environment containing input types
E = {xi → τi}
⊲ Use special symbol to unify types of exits from function,
⊲ initialize to the unknown type ⊥
E [return] := ⊥
⊲ Specialize each statement in the function’s body
s′i = JsiKE
⊲ Rewrite statements to insert casts incorporating
⊲ global information about variable and return types
s′′i = InsertCoercions(s′i, E)

5.2.1 Specialization Rules for Statements

Algorithm 5.2 Specialize Expression Statement

Jexpr eKE  exprJeKE
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Algorithm 5.3 Specialize Assignment Statement

Jx=eKE  x : τ ′=coerce(e, τ ′)
where

e : τ = JeKE

τ ′ =

{

combine(τ, E [x]), if x ∈ E

τ, otherwise

E [x] := τ ′

Algorithm 5.4 Specialize Return Statement

Jreturn eKE  returne′ : τ ′

where

e′ : τ = JeKE

τ ′ =

{

combine(τ, E [return]), if return ∈ E

τ, otherwise

E [return] = τ ′
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Algorithm 5.5 Specialize If Statement

Jif econd then T else F merge {xi = φ(eTi , e
F
i )}KE  

if e′′cond : bool then T ′else F ′ merge {xi : τi = φ(t′i, f
′
i)}

where

e′cond : τcond = JecondKE
⊲ Condition must be a boolean
e′′cond : bool = coerce(e′cond, bool)
⊲ Specialize the statements of the true branch
sT1 , . . . , s

T
m = T

T ′ = JsT1 KE . . . Js
T
mKE

⊲ Specialize the statements of the false branch
sF1 , . . . , s

F
n = F

F ′ = JsF1 KE . . . Js
F
n KE

⊲ Unify the types of values being merged by the SSA nodes
ti : τti = JeTi KE
fi : τfi = JeFi KE

τi =

{

combine(τti, τfi, E [xi]), if x ∈ E

combine(τti, τfi), otherwise

t′i = coerce(ti, τi)

f ′
i = coerce(fi, τi)
⊲ Update environment for SSA variable types
E [xi] := τi
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5.2.2 Specialization Rules for Higher Array Operators

To simplify the speci�cation of type inference and specialization rules for array oper-

ators, we introduce several helper functions in 5.3. These are used to perform book-

keeping tasks such as increasing or decreasing the ranks of array types and construct-

ing uniform tuples. Since the logic of extracting element values for array operators

is complicated by the variety of possible axis arguments (an integer constant, a tuple

of integers, or None), we also introduce a function specializer (Algorithm 5.6) which

extracts element types of arrays depending on a given axis argument α.

Algorithm 5.6 Specialize Function for Elements of Array Arguments

Sα(f,X1, . . . , Xn) =







S(f, . . . eltype(τi) . . .), if α is None

S(f, . . . idxtype(τi, αi) . . .), if α is tuple

S(f, . . . idxtype(τi, α) . . .), otherwise
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Result type
restype(f ) = result type of the function f

Element type of array
eltype(array(s, k)) = s

eltype(τ1 × . . .× τn) = eltype(τ1)× . . .× eltype(τn)
eltype(τ ) = τ , otherwise

Array rank
rank(array(s, k)) = k

rank(τ ) = 0, otherwise

Slice type
idxtype(array(s, k), α) = array(s, k − α), if α < k

idxtype(array(s, k), α) = s, if α ≥ k
idxtype(τ1 × . . .× τn, α) = idxtype(τ1)× . . .× idxtype(τn)
idxtype(τ, _) = τ , otherwise

Increase array rank
uprank(array(s, k), n) = array(s, k + n)
uprank(s, n) = array(s, n)

uprank(τ1, . . . , τn) = uprank(τ1)× . . .× uprank(τn)

Maximum rank
maxrank(τ1, . . . , τn) = maxi{rank(τi)}

Repeat type
τ d = τ × . . .× τ

︸ ︷︷ ︸

tuple of length d

Figure 5.3: Type Inference Helpers
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Algorithm 5.7 Type Specialization For Map

JMapα(f,X1, . . . , Xn)KE  

Mapα(fτ , X
′
1 : τ1, . . . , X

′
n : τn) : τresult

where

⊲ Locally infer types of array arguments
X ′

1 : τ1, . . . , X
′
n : τn = JX1KE , . . . , JXnKE

⊲ Specialize f for types of elements/slices
fτ = Sα(JfKE , τ1, . . . , τn)

τelt = restype(fτ)
⊲ Number of outer dimensions

d =

{

maxrank(τ1, . . . , τn)), if α is None

1, otherwise

τresult = uprank(τelt, d)

Algorithm 5.8 Type Specialization For IndexMap

JIndexMap(f, σ)KE  
IndexMap(fτ , σ

′ : int64d) : τresult
where

⊲ Iteration bounds are an d-dimensional tuple of integers
σ′ : int64d = JσKE
⊲ Index values are the same type as iteration bounds
fτ = S(JfKE , int64

d)

τelt = restype(fτ)
τresult = uprank(τelt, d)
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Algorithm 5.9 Type Specialization For OuterMap

JOuterMapα(f,X1, . . . , Xn)KE  
OuterMapα(fτ , X

′
1 : τ1, . . . , X

′
n : τn) : τresult

where

X ′
1 : τ1, . . . , X

′
n : τn = JX1KE , . . . , JXnKE

fτ = Sα(JfKE , τ1, . . . , τn)
τelt = restype(fτ)

⊲ Number of outer dimensions

d =







∑

i rank(τi), if α is None
∑

i 1rank(τi)>αi
, if α is tuple

∑

i 1rank(τi)>α, otherwise

τresult = uprank(τelt, d)

Algorithm 5.10 Type Specialization For Filter

JFilterα(f, pred , X1, . . . , Xn)KE  

Filterα(fτ , pred
′
τ , X

′
1 : τ1, . . . , X

′
n : τn) : τresult

where

X ′
1 : τ1, . . . , X

′
n : τn = JX1KE , . . . , JXnKE

fτ = Sα(JfKE , τ1, . . . , τn)

pred τ = Sα(JpredKE , τ1, . . . , τn)
pred ′

τ = λx.coerce(pred ′
τ (x), bool)

τelt = restype(fτ)

d =

{

maxrank(τ1, . . . , τn), if α is None

1, otherwise

τresult = uprank(τelt, d)
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Algorithm 5.11 Type Specialization For IndexFilter

JIndexFilter(f, pred , σ)KE  
IndexFilter(fτ , pred

′
τ , σ

′ : int64d) : τresult
where

σ′ : int64d = JσKE
fτ = S(JfKE , int64

d)

pred τ = S(JpredKE , int64
d)

pred ′
τ = λi.coerce(pred ′(i), bool))

τelt = restype(fτ)
τresult = uprank(τelt, d)

Algorithm 5.12 Type Specialization for Reduce With Initial Value

JReduceα(f,⊕, init, X1, . . . , Xn)KE  
Reduceα(fτ ,⊕τ , init

′′ : τacc, X
′
1 : τ1, . . . , X

′
n : τn) : τacc

where

X ′
1 : τ1, . . . , X

′
n : τn = JX1KE , . . . , JXnKE

⊲ Specialize f for the element types of array arguments
fτ = Sα(JfKE , τ1, . . . , τn)

τelt = restype(fτ)
⊲ Infer the type of the user-supplied initial value
init ′ : τinit = JinitKE
⊲ The accumulator is the least upper bound τinit and τelt
τacc = combine(τinit, τelt)

⊕τ : τacc = S(J⊕KE , τacc, τacc)
⊲ Coerce the initial value to be compatible with accumulator type
init ′′ : τacc : coerce(init

′, τacc)
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Algorithm 5.13 Type Specialization For Reduce Without Initial Value

JReduceα(f,⊕, X1, . . . , Xn)KE  
Reduceα(f

′
τ ,⊕

′′
τ , X

′
1 : τ1, . . . , X

′
n : τn) : τacc

where

X ′
1 : τ1, . . . , X

′
n : τn = JX1KE , . . . , JXnKE

fτ = Sα(JfKE , idxtype(τ1, α), . . . , idxtype(τn, α))
τelt = restype(fτ)

⊕τ = S(J⊕KE , τelt, τelt)
τacc = restype(⊕τ)
⊲ Coerce the result of f so it’s output is the accumulator type
f ′
τ = λx1, . . . xn.coerce(fτ(x1, . . . , xn), τacc)
⊲ Re-specialize the combiner to have correct input types
⊕′

τ = S(J⊕KE , τacc, τacc)
⊲ Coerce the result of the combiner to match accumulator
⊕′′

τ = λx, y.coerce(⊕′
τ (x, y), τacc)
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Algorithm 5.14 Type Specialization for Scan With Initial Value

JScanα(f,⊕, emit, init , X1, . . . , Xn)KE  

Scanα(fτ ,⊕τ , init
′′ : τacc, X

′
1 : τ1, . . . , X

′
n : τn) : τresult

where

X ′
1 : τ1, . . . , X

′
n : τn = JX1KE , . . . , JXnKE

⊲ Specialize f for the element types of array arguments
fτ = Sα(JfKE , τ1, . . . , τn)

τelt = restype(fτ)
⊲ Infer the type of the user-supplied initial value
init ′ : τinit = JinitKE
⊲ The accumulator is the least upper bound τinit and τelt
τacc = combine(τinit, τelt)
⊕τ : τacc = S(J⊕KE , τacc, τacc)

⊲ Coerce the initial value to be compatible with accumulator type
init ′′ : τacc = coerce(init ′, τacc)
emit τ = S(JemitKE , τacc)

τemit = restype(emitτ )

d =

{

maxrank(τ1, . . . , τn)), if α is None

1, otherwise

τresult = uprank(τemit, d)
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Algorithm 5.15 Type Specialization For Scan Without Initial Value

JScanα(f,⊕, emit, X1, . . . , Xn)KE  

Scanα(f
′
τ ,⊕

′′
τ , X

′
1 : τ1, . . . , X

′
n : τn) : τresult

where

X ′
1 : τ1, . . . , X

′
n : τn = JX1KE , . . . , JXnKE

fτ = Sα(JfKE , idxtype(τ1, α), . . . , idxtype(τn, α))

τelt = restype(fτ)
⊕τ = S(⊕, τelt, τelt)
τacc = restype(⊕τ)

⊲ Coerce the result of f so it’s output is the accumulator type
f ′
τ = λx1, . . . xn.coerce(fτ(x1, . . . , xn), τacc)

⊲ Re-specialize the combiner to have correct input types
⊕′

τ = S(⊕, τacc, τacc)

⊲ Coerce the result of the combiner to match accumulator
⊕′′

τ = λx, y.coerce(⊕′
τ (x, y), τacc)

emit τ = S(JemitKE , τacc)
τemit = restype(emitτ )

d =

{

maxrank(τ1, . . . , τn)), if α is None

1, otherwise

τresult = uprank(τemit, d)
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Chapter 6

Optimizations

Parakeet aggressively optimizes its intermediate representation before attempting to

generate native code. Parakeet’s intermediate representation encodes higher-level se-

mantic properties of a user’s program which are hard to recover when translated to

a backend representation such as C, CUDA, or LLVM. These properties includes the

immutability of tuples, algebraic properties of array operators, and iteration indepen-

dence of parallel constructs such as ParFor. Optimizations which take advantage of

these properties can often have dramatic impact on overall performance. Additionally,

it is important for Parakeet to also perform more traditional compiler optimizations,

in order to better reveal opportunities for high-level restructuring.

The overall structure of Parakeet’s optimization pipeline is:

1. High Level Optimizations. Combine array operators, lower �rst-order operators

such as Range into an explicit Map or IndexMap, lift array operations out of

loops (through Loop Invariant Code Motion), specialize functions on arguments

with known scalar values. None of these optimizations should signi�cantly de-

crease the level of abstraction evident in the code.
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2. Indexify. Normalize parallel array traversals into a smaller set of constructs by

converting mapping operations such as Map, OuterMap, and IndexMap into

ParFor statements. Similarly, convertReduce into IndexReduce and Scan into

IndexScan. This simpli�es later stages of optimization and allows the backends

to consider a smaller set of parallel primitives.

3. Sequentialize. This optional stage, used only by the sequential C backend, elimi-

nates all parallel constructs and replaces them with sequential loops.

4. Lower Indexing. Transform abstract indexing expressions such as x[i,j] into

explicit dereferencing of a particular memory location determined by the data

pointer and the stride values of the array x.

5. Low-level Optimizations. At this point, allocation should happen explicitly, index-

ing transformed into explicit memory accesses and the code has been reduced to

either a canonical set of parallel operators or parallelism has been removed alto-

gether. Now perform more classical loop optimizations such as a second round

of Loop Invariant Code Motion and Scalar Replacement.

6. Runtime Value Specialization. Even after a function is fully optimized, Parakeet

will attempt to partially evaluate it for “small” inputs, meaning scalars values

equal to 0 or 1, or �elds of structures which contain those values. This can some-

times dramatically improve performance by pruning branches of control �ow or

removing costly indirection.

Parakeet implements this optimization pipeline as a directed acyclic graph of passes,

each of which can be individually deactivated and is associated with metadata such as:

• Is the optimization idempotent or is it unsafe to cache its results?
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• Should a fresh copy of a function be created before the pass modi�es it?

• Should the pass be run recursively on all referenced functions?

Once all the optimization passes have executed, the resulting code should have only

explicit allocations (no operators which implicitly produce arrays), all indexing should

occur through data pointers, and the only optimizations left to perform are those better

suited to a compiler for a low level target language.

6.1 Standard Compiler Optimizations

6.1.1 Simpli�cation

Parakeet’s simpli�er combines Common Subexpression Elimination [Coc70] and Sparse

Conditional Constant Propagation [WZ91]. This optimization requires a data-�ow

analysis to determine which expressions can be considered constants, as well as an on-

line approximation for which expressions have already been computed at each point

in the program. Along with Dead Code Elimination, the simpli�er is typically run as a

clean-up step after every other optimization in the pipeline.

6.1.2 Dead Code Elimination

If an assignment produces a variable which is never used and the computation pro-

ducing that value is known to lack side-e�ects, then the assignment can be removed.

Similarly, if an SSA Φ-node generates a variable which is never used, then it too can be

removed. In Listing 6.1, the �rst assignment in function f can be safely removed, but

the second cannot, since the function call to unsafe has an observable side-e�ect.
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def unsafe(x):
x[0] = 1
return x[1]

def f(x):
a = x[0] + 1
b = unsafe(x)

Listing 6.1: Dead Code Elimination Example

One advantage of using an intermediate representation with �rst-class array ex-

pressions is that Dead Code Elimination can be signi�cantly more powerful than usual.

For example, a simple array expression such asRange clearly has no observable side-

e�ects and is safe to delete if its result is unused. On the other hand, removing an

equivalent operation in C requires analyzing the result’s allocation separately from

the loop which �lls it, and determining that both are safe to delete.

6.1.3 Loop Invariant Code Motion

Often a loop may contain computations which evaluate to the same result for every

iteration. For example, in Listing 6.2, both the variable assignments for a and b can be

safely hoisted outside the loop.

for i in xrange(n):
a = np.sqrt(3)
b = X[0] / a
c += b

Listing 6.2: LICM example

Determining which expressions can be safely moved outside a loop requires �rst

performing a data �ow analysis which builds a set of “volatile” values which depend

on loop indices (or, recursively, on other volatile values). If an assignment is known to

not be volatile, it can safely move to the top of whatever loop it occurs in. This process
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repeats until each expression is either at the top-level scope of a function or considered

volatile.

6.1.4 Scalar Replacement

Scalar replacement [CCK90] is an optimization whereby an array index (e.g. x[i])

which is read from and written to repeatedly within a loop is replaced by a scalar vari-

able. This enhances performance both by allowing that a value to stay in a register

for longer and also enables other optimizations which only work on scalars. This op-

timization requires alias analysis to ensure safety, since two seemingly distinct values

x[i] and y[i] may in fact refer to the same location.

6.2 Fusion

In addition to the more traditional compiler optimizations described above, Parakeet

performs higher-level restructuring “fusion” optimizations that can dramatically im-

prove performance by eliminating array traversals and the creation of intermediate

array values.

In Listing6.3, we show an example of a vector distance function before the applica-

tion of array operator fusion. Notice the repeated traversals byMap operations which

create the array temporaries diff and squared. After the application of fusion, as

shown in Listing 6.4, the two Map operators have been fused into the Reduce oper-

ator, using an input transformation function mapfn. Three array traversals and two

temporaries have been fused into one traversal and no temporaries.

In a loop-oriented imperative language such as Fortran or C, the equivalent to

these optimizations would be loop fusion [Yer66]. Since Parakeet provides higher-
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def dist(X, Y):
diff = parakeet.map(f = lambda xi,yi: xi - yi, X, Y)
squared = parakeet.map(f = lambda di: di**2, diff)
total = parakeet.reduce(combine = add, squared)
return sqrt(total)

Listing 6.3: Distance before Fusion

def mapfn(xi, yi):
return (xi-yi) ** 2

def dist(X, Y):
total = parakeet.reduce(f = mapfn, combine = add, X, Y)
return sqrt(total)

Listing 6.4: Distance after Fusion

level array-traversing operations, such optimizations can be performed algebraically

using fusion rules [JTH01]. Figure 6.1 shows Parakeet’s fusion rules in a simpli�ed

form, for the special case where array operators only consume a single value. Para-

keet’s rewrite engine actually generalizes these rules to accept functions of arbitrary

input arities. Similarly, we elide any complications arising from array operator axis ar-

guments and optional initial values (for reductions), all of which must also be checked

for compatibility.

These fusion transformations are safe if the array created by the source operation

is not in any way modi�ed before the operation it is to be fused with. This must also be

true for any aliases and slices of this array (necessitating the use of alias analysis [GS97]

to determine safety). For example, the following statements would not be safe for

Fusion:

y = map(f, x)
y[0] = 0
z = map(g, y)

Listing 6.5: Unsafe for Fusion
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Parakeet’s fusion optimizations are applied greedily wherever the above safety pre-

requisites are satis�ed. A large body of previous work [AGLP01] has demonstrated that

fusion can be applied more e�ctively when choosing which statements to fuse more

with cost-directed strategies. Still, despite the simplicity of Parakeet’s approach, fusion

has proven both e�ective and absolutely critical for extracting performant compiled

code out of high-level array-oriented user programs. Fusion enables us to boost the

computational density of parallel sections, avoid the generation of unnecessary array

temporaries, and, for the GPU backend, minimize the number of kernel launches.

6.2.1 Nested Fusion

In addition to “vertical” fusion, where values �ow from one statement to another in

the same function, it is also desirable to combined nested operators. For example, if

the parameterizing function of a Map also performs a (nested) Map, then it might be

possible to �atten these two array operators into a single OuterMap. A sketch of the

nested fusion rules is shown in Figure 6.2. The actual implementation, however, is

greatly complicated by the axis parameters, closure arguments, multiple array argu-

ments, and the need to sometimes permute the order arrays to make them compatible

with a particular function.

6.2.2 Horizontal Fusion

The previously discussed fusion optimizations have all involved “vertical” data �ow

from one operator into another. Typically the result of the �rst operator will no longer

be needed after the fusion optimization is applied. In certain cases, it is possible to

take two unrelated computations which traverse the same data or indices and combine

them into a single array operator. This is done by “tupling” the function parameters of
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Map Fusion
Map(g,Map(f,X)) Map(g ◦ f,X)

IndexMap Fusion
Map(g, IndexMap(f, σ)) IndexMap(g ◦ f, σ)
where σ is a shape tuple indicating the index space

OuterMap Fusion
OuterMap(g,Map(f,X1), X2, . . . , Xn) 
OuterMap(λx1, . . . , xn.g(f(x1), x2, . . . , xn), X1, . . . , Xn)

Reduce-Map Fusion
Reduce(g,⊕,Map(f,X)) Reduce(g ◦ f,⊕, X)

Reduce-IndexMap Fusion
Reduce(g,⊕,Map(f, σ)) IndexReduce(g ◦ f,⊕, σ)

Map-Filter Fusion
Map(g, Filter(f, pred, X)) Filter(g ◦ f, pred, X)

Filter-Map Fusion
Filter(g, pred,Map(f, x)) Filter(g ◦ f, pred ◦ f,X)

Filter-Filter Fusion
Filter(g, p2, Filter(f, p1, X)) Filter(g ◦ f, (p2 ◦ f) ∧ p1, X)
where ∧ combines predicates by returning the conjunction of their re-

sults

Reduce-Filter Fusion
Reduce(g,⊕, Filter(f, p,X)) FilterReduce(g ◦ f,⊕, p,X)

Map-Scan Fusion
Map(g, Scan(f,⊕, ǫ, X)) Scan(f,⊕, g ◦ ǫ,X)
where ǫ is the function that generates elements of the result

Scan-Map Fusion
Scan(g,⊕, ǫ,Map(f,X)) Scan(g ◦ f,⊕, ǫ, X)

Figure 6.1: Fusion Rules

69



reductions, allowing us to construction a single reduction which returns two or more

results.

As an example, let’s look at Listing 6.6, where two reductions both traverse the

same input array.

a = parakeet.reduce(f, add, X)
b = parakeet.reduce(g, multiply, Y)

Listing 6.6: Before Horizontal Fusion

After Horizontal Fusion (Listing 6.7), we are left with only a single reduction which

performs the work of both original operators.

def fused_map(xi, yi):
return f(xi), g(yi)

def fused_combine((xacc, yacc), (x, y)):
return (xacc + x), (yacc * y)

a,b = parakeet.reduce(fused_map, fused_combine, X, Y)

Listing 6.7: After Horizontal Fusion

6.3 Symbolic Execution and Shape Inference

Parakeet’s shape inference is an abstract interpretation which computes symbolic rela-

tionships between local variables and the scalar components of a function’s inputs. In

addition to constructing symbolic expressions for the shape of an array operator’s out-

puts, this information can also be used for algebraic simpli�cations and determining

symbolic equality/inequality.
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Combine Nested Maps Over Same Array
Map(λxi.Map(f, xi), x) Map(f, x)

Combine Nested Maps Over Di�erent Arrays
Map(λxi.Map(f, y), x) OuterMap(f, x, y)

Combine Nested IndexMaps
IndexMap(λi.IndexMap(f, σ2), σ1) IndexMap(f, σ1 ++ σ2)

Figure 6.2: Nested Fusion Rules

Horizontal Reduce Fusion
a = Reduce(f,⊕1, init1, X)
b = Reduce(g,⊕2, init2, X)
 

a, b = Reduce(f × g,⊕1 ×⊕2, (init1, init2), X)
where

f × g = λx.(f(x), g(x))
⊕1 ×⊕2 = λ((a, b), (c, d)).((a⊕1 c), (b⊕2 d))

Horizontal IndexReduce Fusion
a = IndexReduce(f,⊕1, init1, σ)
b = IndexReduce(g,⊕2, init2, σ)
 

a, b = IndexReduce(f × g,⊕1 ×⊕2, (init1, init2), σ)
where

f × g = λi.(f(i), g(i))
⊕1 ×⊕2 = λ((a, b), (c, d)).((a⊕1 c), (b⊕2 d))

Figure 6.3: Horizontal Fusion Rules
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6.4 Value Specialization

A potential source of ine�ciency for programs which traverse NumPy arrays is that,

by default, all indexing must make use of an auxiliary “strides” array in order to com-

pute the position of elements in the data array. Since indexing is fundamental to all

array reads and writes, it is desirable to eliminate the extra arithmetic and indirection

associated with strided indexing. It is possible to alleviate some of this ine�ciency by

partially evaluating [CD93] a function on the stride values of input arrays. More gen-

erally, it can be bene�cial to perform runtime value specialization [BLR10, CASQP13],

for scalar inputs, elements of tuples, and array strides.

Parakeet performs this optimization by propagating scalar values from the inputs

throughout the source of a function, determining which local variables have statically

determinable values and then constructing a cloned copy of the function with these

variables replaced by constants. Specialized values are propagated recursively through

higher-order array operators, function calls, and ParFor statements. Since partially

evaluating a function on all possible scalar inputs can result in a wasteful process of

never-ending recompilation, Parakeet restricts this optimization to only propagate in-

put values in the set {0, 1, 0.0, 1.0, False,True}, and structures which contain these

values. This optimization can be viewed as analogous to creating singleton type for a

subset of input values as done in type directed partial evaluation [Dan96]
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Chapter 7

Evaluation

In this section, we will examine the degree to which Parakeet accelerates a variety of

computationally intensive algorithms. The source of each benchmark is given, along

with its performance under the standard Python interpreter CPython, aswell as perfor-

mance under all three of Parakeet’s backends: the single core C backend, the multi-core

OpenMPbackend, and theGPUCUDAbackend. In addition, wemay also comparewith

any easily-accesible Python library functions which implement the same algorithm.

The degree to which Parakeet accelerates code depends most of all on whether that

code spends most of its time in the Python interpreter. In the worst case for Python,

when execution time is dominated by some highly optimized low-level routine, then

Parakeet may in fact run slower than Python. On the other hand, if a large number of

data elements are being inspected within “pure” Python code, then Parakeet may run

the same code several thousand times faster.

A secondary consideration when determining to what degree one should expect a

speed-up from Parakeet is how much parallelism is available. If an algorithm consists

largely of array operations, NumPy library functions, or comprehensions, then Para-
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keet will be able to extract from all of those data parallel operators. which in term can

be compiled into GPU kernels or multi-core saturating OpenMP declarations.

Lastly, we consider the question of Parakeet’s backends. By default, Parakeet uses

its OpenMP backend. It is possible, on certain examples, to gain a signi�cant perfor-

mance boost from the GPU. In other examples, however, the GPU can be a performance

liability, due to either ine�cient CUDA code generation or the overhead of transferring

data to and from device memory. Furthermore, some algorithms will simply not run

on the GPU at all, particularly those which use more system memory than is available

on the device or which require nested memory allocation within a GPU kernel.

All benchmarks presented here were executed on a machine with 4 Xeon W3520

cores running at 2.67GHz, 12GB of memory, and an NVIDIA GTX 580 video card. The

software used was Ubuntu Linux 12.10, Python 2.7.6, NumPy 1.8.0, CUDA 5.5, and the

development branch of Parakeet 0.25.

7.1 Growcut

Growcut [VK05] is an automata-based image segmentation algorithm. It takes an im-

age and a user-speci�edmask and then repeatedly applies the automata evolution rule

below to derive a �nal segmentation.

Table 7.1 shows the execution times of this Growcut implementation for 500x500 �oat64

image inputs. This benchmark represents a best-case scenario for Parakeet’s speed-up

over Python. In the absence of runtime compilation, all of the computation occurs

inside the Python interpreter, resulting in hopelessly slow performance.
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@jit
def growcut_python(image, state, window_radius):

height = image.shape[0]
width = image.shape[1]
def attack(i,j):

pixel = image[i, j, :]
winning_colony = state[i, j, 0]
defense_strength = state[i, j, 1]
for jj in xrange(max(j-window_radius,0), min(j+

window_radius+1, width)):
for ii in xrange(max(i-window_radius, 0), min(i+

window_radius+1, height)):
if ii != i or jj != j:

d = np.sum((pixel - image[ii, jj, :])**2)
gval = 1.0 - np.sqrt(d) / np.sqrt(3)
attack_strength = gval * state[ii, jj, 1]
if attack_strength > defense_strength:

defense_strength = attack_strength
winning_colony = state[ii, jj, 0]

return np.array([winning_colony, defense_strength])
return np.array([[attack(i,j)

for i in xrange(height)]
for j in xrange(width)])

Listing 7.1: Growcut: Automata Evolution Rule

Execution Time Speed-up Relative to Python Compile Time
Python 1268.745s −
Parakeet (C) 0.478s 2654 0.714s
Parakeet (OpenMP) 0.134s 9468 0.889s
Parakeet (CUDA) 0.029s 43749 2.428s

Table 7.1: Growcut Performance
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7.2 Matrix Multiplication

Matrix multiplication is one of the most heavily optimized algorithms in the whole of

numerical computing. The one-line Python implementation show in Listing 7.2 cap-

tures the essence of matrix multiplication, unmarred by performance tweaks or op-

timizations. This style of programming, in fact, is ideal for Parakeet since it reveals

parallelizable structure without any potentially confound explicit loops. A well tuned

low-level implementation [WD98, GVDG08], on the other hand can consist of thou-

sands of lines of Fortran, sometimes stitching together machine-generated “codelets”

through auto-tuning.

def matmult(X,Y):
return np.array([[np.dot(x,y) for y in Y.T] for x in X])

Listing 7.2: Matrix Multiplication

Shown in Table 7.2 are the execution times for 1200x1200 inputmatriceswith �oat32

element types. The performance under Python is actually surprisingly good, largely

since the dot product operation is being performed by NumPy using an e�cient im-

plementation. For comparison, we also show the performance of a “purer” Python

implementation which de�nes the dot product in terms Python’s builtin sum function.

We also compare with the performance of a highly tuned multi-core CPU library, AT-

LAS [WD98] and its GPU equivalent, CUBLAS [BCI+08].

Unsurprisingly, ATLAS’s tightly optimized multi-core matrix multiplication algo-

rithm signi�cantly outperform Parakeet’s C and OpenMP backends. Similarly, the

CUBLAS library outperforms Parakeet’s naively generated CUDA code. A signi�cant

factor in this performance gap is Parakeet’s lack of cache tiling [WL91]. We have previ-

ously investigated tiled data parallel operators [HRS13] which group array inputs into
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Execution Time Speed-up over Python Compile Time
Python 17.40s − −
Parakeet (C) 12.19s 1.4 0.34s
Parakeet (OpenMP) 3.85s 4.5 0.29s
Parakeet (CUDA) 0.11s 158.2 1.95s
ATLAS 0.40s 43.5 −
CUBLAS 0.008s 2175 −

Table 7.2: Matrix Multiplication Performance

small working sets but such operators are not currently part of Parakeet.

7.3 Rosenbrock Gradient

Howard H. Rosenbrock’s “parabolic valley” [Ros60] is commonly used a test function

to evaluate the e�cacy of non-linear optimization methods. Since many of these op-

timization techniques rely on repeatedly evaluating the gradient of their objective, it

can be useful to accelerate the gradient of the Rosenbrock function. An implementa-

tion of the gradient in terms of NumPy array operations is shown in Listing 7.3. Since

the actual array arithmetic occurs through compiled primitives, we don’t expect Para-

keet to outperform Python as dramatically as when core computations occur as loops

executed by the Python interpreter.

def rosenbrock_gradient(x):
der = np.empty_like(x)
der[1:-1] = (+ 200 * (x[1:-1] - x[:-2] ** 2)

- 400 * (x[2:] - x[1:-1] ** 2) * x[1:-1]
- 2 * (1 - x[1:-1]))

der[0] = -400 * x[0] * (x[1] - x[0] ** 2) - 2 * (1 - x[0])
der[-1] = 200 * (x[-1] - x[-2] ** 2)
return der

Listing 7.3: Gradient of Rosenbrock Function

Table 7.3 shows the execution times for this code on an input array with 10 million

77



�oat64 elements.

Execution Time Speed-up Relative to Python Compile Time
Python 0.4361s − −
Parakeet (C) 0.0631s 6.9 0.277s
Parakeet (OpenMP) 0.0195s 22.4 0.261s
Parakeet (CUDA) 0.008s 54.5 2.249s

Table 7.3: Rosenbrock Derivative Performance

7.4 Image Convolution

Spatial convolution can be used to implement operations such as blurring or sharpen-

ing, or for feature extract in machine learning algorithms [LB95]. Listing 7.4 imple-

ments the application of a simple 3x3 convolutional �lter to every pixel location in an

image.

Execution Time Speed-up over Python Compile Time
Python 10.972s − −
Parakeet (C) 0.017s 645 0.761s
Parakeet (OpenMP) 0.008s 1371 0.873s
Parakeet (CUDA) 0.003s 3657 2.323s

Table 7.4: Image Convolution Performance

def conv_3x3(image, weights):
def pixel_result(i,j):

total = 0
for ii in xrange(3):

for jj in xrange(3):
total += image[i-ii+1, j-jj+1] * weights[ii, jj]

return np.array([[pixel_result(i,j)
for j in xrange(image.shape[1]-1)]
for i in xrange(image.shape[0]-1)])

Listing 7.4: Nested loops implementation of 3x3 window convolution

78



7.5 Univariate Regression

Ordinary least squares regression with a single explanatory variable has a particularly

elegant closed form solution as the ratio of (1) the covariance of the outputs and inputs

with (2) the variance of the inputs. Implemented using NumPy, as in Listing 7.5, this

code spends almost no time in the Python interpreter. Nonetheless, as shown in Ta-

ble 7.5, it is still accelerated by Parakeet due to fusion of array operations and parallel

execution.

def covariance(x,y):
return ((x-x.mean()) * (y-y.mean())).mean()

def fit_simple_regression(x,y):
slope = covariance(x,y) / covariance(x,x)
offset = y.mean() - slope * x.mean()
return slope, offset

Listing 7.5: Univariate regression using NumPy operations

Execution Time Speed-up over Python Compile Time
Python 0.380s − −
Parakeet (C) 0.056s 6.8 0.353s
Parakeet (OpenMP) 0.014s 27.1 0.401s
Parakeet (CUDA) 0.029s 13.1 2.396s

Table 7.5: Univariate Regression Performance

7.6 Tensor Rotation

The ladder of loops shown in Listing 7.6 implements a rank 4 tensorial rotation. Also

shown is a more compact alternative in Listing 7.7 which uses NumPy operations that

aren’t supported by Parakeet. The performance of the original code under the Python

interpreter and Parakeet are compared with the shorter NumPy code in Table 7.6.
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def rotate(T, g):
def compute_elt(i,j,k,l):

total = 0
for ii in range(n):

for jj in range(n):
for kk in range(n):

for ll in range(n):
gij = g[ii, i] * g[jj, j]
gkl = g[kk, k] * g[ll, l]
total += gij * gkl * T[ii,jj,kk,ll]

return total
return np.array([[[[compute_elt(i,j,k,l)

for l in xrange(n)]
for k in xrange(n)]
for j in xrange(n)]
for i in xrange(n)])

Listing 7.6: Tensor Rotation

def rotate(T, g):
gg = np.outer(g, g)
gggg = np.outer(gg, gg).reshape(4 * g.shape)
axes = ((0, 2, 4, 6), (0, 1, 2, 3))
return np.tensordot(gggg, T, axes)

Listing 7.7: Alternative NumPy Tensor Rotation

Execution Time Speed-up Relative to Python Compile Time
Python 108.72s − −
Parakeet (C) 0.057s 1907 0.449s
Parakeet (OpenMP) 0.015s 7248 0.578s
Parakeet (CUDA) 0.006s 18120 2.581s
NumPy 0.562s 193 −

Table 7.6: Tensor Rotation Performance
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7.7 Harris Corner Detector

The Harris corner detector [HS88] is used as an early step in many image processing

algorithms to identify “interesting” regions within an image. It does this by associating

with every pixel a 2x2 matrix of products of directional derivatives in pixel space, and

deriving a score from the eigenvalues of these matrices. Like other examples where

computational cost is dominated by time spent in NumPy libraries, we expect Para-

keet to extract modest gains over Python by merging array operations and parallel

execution.

def harris(I):
m,n = I.shape
dx = (I[1:, :] - I[:m-1, :])[:, 1:]
dy = (I[:, 1:] - I[:, :n-1])[1:, :]
#
# At each point we build a matrix
# of derivative products
# M =
# | A = dx^2 C = dx * dy |
# | C = dy * dx B = dy * dy |
#
# and the score at that point is:
# det(M) - k*trace(M)^2
#
A = dx * dx
B = dy * dy
C = dx * dy
tr = A + B
det = A * B - C * C
k = 0.05
return det - k * tr * tr

Listing 7.8: Harris Corner Detector

Table 7.7 shows the performance of the above code on a 2400x2400 �oat32 input

array. There is a roughly two-fold gain over NumPy simply from fusing array traversals

and eliminating array temporaries.

81



Execution Time Speed-up Relative to Python Compile Time
Python 0.173s − −
Parakeet (C) 0.066s 2.6 0.397s
Parakeet (OpenMP) 0.021s 8.2 0.325s
Parakeet (CUDA) 0.004s 43.2 2.23s

Table 7.7: Harris Corner Performance

7.8 Julia Fractal

The Julia Fractal is a visualization of the level sets of an iterated complex mapping.

Since Parakeet does not directly support complex numbers, the complex magnitude

operation must be explicitly expanded. Since the pixels of the rendered fractal are

independent, this algorithm is signi�cantly accelerated both across multiple cores and

on the GPU.

def kernel(zr, zi, cr, ci, lim, cutoff):
count = 0
while ((zr*zr + zi*zi) < (lim*lim)) and count < cutoff:

zr, zi = zr * zr - zi * zi + cr, 2 * zr * zi + ci
count += 1

return count

def julia(cr, ci, N, bound=1.5, lim=1000., cutoff=1e6):
grid = np.linspace(-bound, bound, N)
return np.array([[kernel(x, y, cr, ci, lim, cutoff=cutoff)]

for x in grid]
for y in grid])

Listing 7.9: Julia Fractal

Execution Time Speed-up Relative to Python Compile Time
Python 243.841s − −
Parakeet (C) 0.122s 1924 0.761s
Parakeet (OpenMP) 0.055s 4269 0.873s
Parakeet (CUDA) 0.012s 19, 570 2.323s

Table 7.8: Julia Fractal Performance
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7.9 Smoothed Particle Hydrodynamics

Smoothed Particle Hydrodynamics was originally formulated to simulate the behav-

ior of �uids [MCG03]. Listing 7.10 shows an SPH liquid renderer adapted from a

Numba implementation by Rok Roskar. Table 7.9 shows the execution times for ren-

dering 120x120 images with 1600 particles. Unfortunately, this implementation is not

amenable to parallel execution without signi�cant restructuring, thus the CUDA and

OpenMP execution times are not shown .

Execution Time Speed-up Relative to Python Compile Time
Python 11022.29s − −
Parakeet (C) 1.04s 10, 598 0.737s

Table 7.9: SPH Renderer Performance
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def kernel_func(d, h) :
if d < 1: f = 1.-(3./2)*d**2 + (3./4.)*d**3
elif d<2: f = 0.25*(2.-d)**3
else: f = 0
return f/(np.pi*h**3)

def distance(x,y,z):
return np.sqrt(x**2+y**2+z**2)

def physical_to_pixel(xpos,xmin,dx):
return int32((xpos-xmin)/dx)

def pixel_to_physical(xpix,x_start,dx):
return dx*xpix+x_start

def render_image(xs, ys, zs, hs, qts, mass, rhos, nx, ny, xmin, xmax, ymin,
ymax):
MAX_D_OVER_H = 2.0
image = np.zeros((nx,ny))
dx = (xmax-xmin)/nx
dy = (ymax-ymin)/ny
x_start = xmin+dx/2
y_start = ymin+dy/2
kernel_samples = np.arange(0, 2.01, .01)
kernel_vals = np.array([kernel_func(x,1.0) for x in kernel_samples])
qts2 = qts * mass / rhos
for i, (x,y,z,h,qt) in enumerate(zip(xs,ys,zs,hs,qts2)):

if ((x > xmin-2*h) and (x < xmax+2*h) and
(y > ymin-2*h) and (y < ymax+2*h) and
(np.abs(z) < 2*h)):
if (MAX_D_OVER_H*h/dx < 1 ) and (MAX_D_OVER_H*h/dy < 1):

xpos = physical_to_pixel(x,xmin,dx)
ypos = physical_to_pixel(y,ymin,dy)
xpixel = pixel_to_physical(xpos,x_start,dx)
ypixel = pixel_to_physical(ypos,y_start,dy)
dxpix, dypix, dzpix = [x-xpixel,y-ypixel,z]
d = distance(dxpix,dypix,dzpix)
if (xpos>0) and (xpos<nx) and (ypos>0) and (ypos<ny) and (d/h<2):

kernel_val = kernel_vals[int(d/(.01*h))]/(h*h*h)
image[xpos,ypos] += qt*kernel_val

else :
x_pix_start = int32(physical_to_pixel(x-MAX_D_OVER_H*h,xmin,dx))
x_pix_stop = int32(physical_to_pixel(x+MAX_D_OVER_H*h,xmin,dx))
y_pix_start = int32(physical_to_pixel(y-MAX_D_OVER_H*h,ymin,dy))
y_pix_stop = int32(physical_to_pixel(y+MAX_D_OVER_H*h,ymin,dy))
if(x_pix_start < 0): x_pix_start = 0
if(x_pix_stop > nx): x_pix_stop = int32(nx-1)
if(y_pix_start < 0): y_pix_start = 0
if(y_pix_stop > ny): y_pix_stop = int32(ny-1)
for xpix in range(x_pix_start, x_pix_stop):

for ypix in range(y_pix_start, y_pix_stop):
xpixel = pixel_to_physical(xpix,x_start,dx)
ypixel = pixel_to_physical(ypix,y_start,dy)
dxpix, dypix, dzpix = [x-xpixel,y-ypixel,z]
d = distance(dxpix,dypix,dzpix)
if (d/h < 2):

kernel_val = kernel_vals[int(d/(.01*h))]/(h*h*h)
image[xpix,ypix] += qt*kernel_val

return image

Listing 7.10: SPH Renderer
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Chapter 8

Conclusion

This thesis set out to save numerically-inclined programmers from having to write in

low-level languages in order to speed up their programs. The existing Parakeet library

isn’t the �nal word in this endeavor but rather a guidepost toward the right direction.

We have demonstrated that compact high-level descriptions of numerical algorithms

can be successfully compiled into e�cient code which runs in parallel across multiple

cores or on a GPU. Furthermore, we have shown the central role played by higher order

data parallel array operators in attaining this goal. The basic contours of Parakeet’s

design, its variety of data parallel operators, typed intermediate representation, and

restructuring optimizations, should be transferrable to other languages beyond Python.

There are several directions along which Parakeet can (and should) be extended:

• Graph-Based Control Flow Representations. While the current structured

SSA representation was useful for quickly prototyping analyses and optimiza-

tions, it prevents the implementation of idiomatic control �ow constructs. To

support a broader subset of Python, it is important to migrate Parakeet to a

proper control �ow graph and reimplement all of Parakeet’s data �ow analyses
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to work with this more �exible representation.

• StructuredArray Elements. Parakeet is currently limited to arrays with scalar

elements, which forces it to reject many NumPy programs which use structured

element types. Parakeet should be able to support not only to support these

kinds of arrays, but to e�ciently reorganize their layout via the standard array-

of-structs to struct-of-arrays transformation.

• User-de�ned Objects. Parakeet cannot currently accelerate methods or use

any sort of user-de�ned objects within its intermediate representation. It should

be possible to partially lift these restrictions by treating objects as immutable

records. A more ambitious attempt to fully support the semantics of Python

objects would require a dramatic rethinking both of Parakeet’s type system and

of its assumptions regarding mutability.

• Data-Dependent Broadcasting. Parakeet implements a restriction of NumPy’s

notion of broadcasting. When two values of di�ering ranks are combined (a ma-

trix and scalar, or a matrix and vector), Parakeet inserts an explicit Map oper-

ation to implement the logic of broadcasting. However, Parakeet is not able to

support broadcasting which occurs due to unit dimensions, such adding a 200x1

matrix with a 1x300 matrix to get a 200x300 result. It should be possible to add

dynamic broadcasting as part of the semantics of higher order array operators,

though this may incur some additional overhead.

• Full NumPy Support. If Parakeet were expanded and improvement in all the

waysmentioned above, then it might be possible to fully wrap the NumPy library

and support any unmodi�ed code which restricts itself to array operations.
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• Shorter Compile Times for GPU Backend. Despite the impressive perfor-

mance attained by the CUDA backend, it is still not ready to be used as the de-

fault compilation pathway in Parakeet. One of the major reasons for this are the

extremely long compile times incurred through the use of NVIDIA’s nvcc com-

piler. In the future, it should be possible to dramatically decrease these compile

times by targeting the GPU pseudo-assembly language PTX directly, bypassing

the central overhead of CUDA compilation.

• Better utilizations of sharedmemory onGPU. The current compilation tem-

plate for GPU kernels in Parakeet is very naive and makes no use of the GPU’s

software managed cache (called sharedmemory). Utilization of this cache is often

critical for attaining good performance on the GPU and thus it is strongly desir-

able for compiled code to do so. One possible avenue by which at least some pro-

grams can bene�t from shared memory is to identify nested reductions within a

parallel operator and to have a distinct compilation template for this case which

pre-loads inputs into shared memory and then performs a “tree-structured” re-

duction.

• Heterogeneous Execution. The easiest way to facilitate the use of multiple

GPUs, along with multi-core CPUs, is to identify bulk operations which can be

concurrently executed and to assign each operation to a particular device. It may

also be possible to achieve a more �ne-grained heterogeneity, wherein a single

operation is split between GPU(s) and CPU cores. This would require a more

nuanced notion of where data lives, since portions of an array could be split

across multiple memory spaces.

Despite its limitations, however, Parakeet already supports a wide range of numer-
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ical Python programs and enables their e�cient execution on parallel hardware. The

future of scienti�c programming lies with high-level collection-oriented languages.

Runtime compilation techniques, like those found in Parakeet, will be essential for

eliminating the cost of abstraction and freeing scienti�c programmers to simply write

what they mean.
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