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ABSTRACT

The applicability of machine learning methods is often limited by the amount of avail-

able labeled data, and by the ability (or inability) of the designer to produce good internal

representations and good similarity measures for the inputdata vectors. The aim of this

thesis is to alleviate these two limitations by proposing algorithms tolearngood internal

representations, and invariant feature hierarchies from unlabeled data. These methods

go beyond traditional supervised learning algorithms, andrely on unsupervised, and

semi-supervised learning.

In particular, this work focuses on “deep learning” methods, a set of techniques and

principles to train hierarchical models. Hierarchical models produce feature hierarchies

that can capture complex non-linear dependencies among theobserved data variables

in a concise and efficient manner. After training, these models can be employed in

real-time systems because they compute the representationby a very fast forward prop-

agation of the input through a sequence of non-linear transformations. When the paucity

of labeled data does not allow the use of traditional supervised algorithms, each layer of

the hierarchy can be trained in sequence starting at the bottom by using unsupervised or

semi-supervised algorithms. Once each layer has been trained, the whole system can be

fine-tuned in an end-to-end fashion. We propose several unsupervised algorithms that

can be used as building block to train such feature hierarchies. We investigate algo-

rithms that produce sparse overcomplete representations and features that are invariant

to known and learned transformations. These algorithms aredesigned using the Energy-
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Based Model framework and gradient-based optimization techniques that scale well on

large datasets. The principle underlying these algorithmsis to learn representations that

are at the same time sparse, able to reconstruct the observation, and directly predictable

by some learned mapping that can be used for fast inference intest time.

With the general principles at the foundation of these algorithms, we validate these

models on a variety of tasks, from visual object recognitionto text document classifica-

tion and retrieval.
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would be able not only to generate data, but also to produce fast infer-

ence ofZ; unfortunately, learning is intractable in general.B) A factor

graph describes the constraint between input and latent variables by con-

necting them with a factor node. The joint distribution betweenY andZ

can have two factors, as shown inC). Many unsupervised models have

one factor measuring the compatibility betweenY and some transfor-

mation ofZ, and another factor measuring the compatibility betweenZ

and a transformation ofY . Unlike the model in A), the factor nodes are

not necessarily modelling conditional distributions. . . .. . . . . . . . 11
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Rectangular boxes represent factors containing at least a cost module

(red diamond shaped boxes), and possibly, a transformationmodule (blue
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latent codeZ. The discrepancy between this prediction and the actual

codeZ is measured by the Prediction Cost module. Likewise, the latent

codeZ is the input to the decoder that tries to reconstruct the input Y .

The discrepancy between this reconstruction and the actualY is mea-

sured by the Reconstruction Cost module. Additional cost modules can

be applied to the code and to the input. This is like a factor graph repre-

sentation allowing to “zoom in” inside the nodes. The goal ofinference

is to determine the value of the latent codeZ for a given inputY . The

energy of the system is the sum of the terms produced by the cost mod-

ules. The goal of learning is to adjust the parameters of bothEncoder

and Decoder in order to make the energy lower in correspondence of

the training samples, e.g., to make the predicted codes veryclose to the

actual codeZ, and to produce good reconstructions fromZ when the

input is similar to a training vector. After training, the encoder can be

used for fast feed-forward feature extraction. . . . . . . . . . .. . . . . 14
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INTRODUCTION

In many real world applications labeled data is too scarce tofit the parameters of those

models that could describe it well and is too expensive to produce. Moreover, labels are

often noisy in the sense that errors may be present in the labeling process. For instance,

consider the problem of building an image retrieval system for the web. Traditional

learning algorithms would need to have access to pairs consisting of a query and an

image, and their relative score. However, it is impossible to have access to such infor-

mation for all possible images and queries. Moreover, the few labeled samples that are

available might be generated by taking into account the userclick through data which is

naturally noisy.

One way to cope with the paucity of labeled data is to engineeras much as possible

the prediction system by exploiting the prior knowledge andthe experience of human

experts. This effectively reduces the number of parametersof the model and regularizes

the system. For instance, a good description of natural images can be computed by us-

ing wavelets transforms (Simoncelli et al., 1998) or hand-designed descriptors (Lowe,

2004; Dalal and Triggs, 2005), and the prediction system cantake advantage of such

representation. However, such a system would not be able to easily adapt to other do-

mains because other kinds of data might have different statistics and require different

representations.

In this thesis, we propose a more general approach that relies on learning, and that

allows adaptation to a variety of domains. While labeled datais scarce, unlabeled data
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is often available in large amounts at virtually no cost. Forinstance, billions of images

can be easily downloaded from the web. Our approach is to leverage unlabeled data

to learn representations that capture the statistics of theinput. Since both unlabeled

and labeled data share the same underlying structure, the learned representations can

provide a description in terms of typical features or frequent patterns occurring in the

input data. Such representation is often more concise and more descriptive than the

raw input data. Moreover, many popular supervised algorithms (Boser et al., 1992;

Rasmussen and Williams, 2006) compute similarity measures between pairs of input

samples and strongly rely on the representation used. In other words, the better the

representation of the data is, the easier the subsequent classification will be.

In real world applications the representation has to be computed efficiently and it has

to describe the input concisely. The former requirement implies that the computation has

to be a fast feed-forward process, not involving iterative optimization procedures. The

latter requirement is related to the concept of efficient coding (Attneave, 1954; Barlow,

1961), stating that units in the representation should havereduced dependencies. The

most well known algorithm used for reducing statistical dependencies is principal com-

ponent analysis which is able to remove second order correlations. More recently, in-

dependent component analysis (Bell and Sejnowski, 1995; Olshausen and Field, 1997;

Hyvarinen et al., 2001) has been introduced as a method to remove higher order de-

pendencies. However, recent studies (Bethge, 2006; Wegmannand Zetzsche, 1990;

Simoncelli, 1997; Lyu and Simoncelli, 2008) suggest that these linear transformations

leave strong higher order dependencies and that the use of non-linear transformations is

needed to remove them.
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In this thesis we consider a general class of trainable non-linear functions, dubbed

“deep networks” (Hinton et al., 2006; Hinton and Salakhutdinov, 2006; Bengio and

LeCun, 2007; Bengio et al., 2007; Ranzato et al., 2007c; Lee et al., 2007). These

models are composed of a sequence of non-linear transformations whose parameters

are optimized to fit the data. If we take into account the intermediate representations

produced by each layer in the sequence, we can interpret the deep network as a model

producing a bottom up hierarchy of features. The representation becomes more and

more abstract as it is transformed by more layers, and the hope is that the top level

representation will be more closely related to the causes generating the data and to the

labels we might want to predict.

A simple experiment reported in chapter 5 clarifies the abstraction achieved by such

systems (Ranzato et al., 2007b). A deep network with two layers is trained on hand-

written digits. While the first layer learns features that capture correlations between

neighboring pixels in the form of digit “strokes”, the second layer trained with only ten

units learns longer range dependencies and it combines the first layer strokes into ten

digit prototypes, one per class. Even though the network wastrained without making

use of labels, it discovered the highly non-linear mapping between input pixels and class

labels in its top layer representation.

Deep networks are appealing because they lead to more efficient representations (Ben-

gio and LeCun, 2007) since a top level representation can be defined by re-using inter-

mediate computations, limiting the number of parameters and the number of computa-

tional units. The historical problem of these methods is that the optimization is very

hard because it is highly non-linear and non-convex (Tesauro, 1992). Until a few years
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ago, no network with more than a couple of layers could be successfully trained. The

only exception were convolutional networks (LeCun et al., 1998) that exploit a highly

constrained architecture due to the weight sharing. However, these networks are specif-

ically designed for images, and they need quite a large number of labeled samples to

train.

A more general solution was proposed by Hinton and collaborators (Hinton et al.,

2006). They showed that a deep network can be trained in two steps. First, each layer

is trained in sequence by using an unsupervised algorithm tomodel the distribution of

the input. Once a layer has been trained, it is used to producethe input to train the layer

above. After all layers have been trained in an unsupervisedway, the whole network

is trained by traditional back-propagation of the error (e.g., classification error), but

the parameters are initialized using the weights learned inthe first phase. Since the

parameters are nicely initialized, the optimization of thewhole system can be carried

out successfully. This procedure and similar ideas have been applied to a variety of

domains, such as computer vision (Hinton and Salakhutdinov, 2006; Ranzato et al.,

2007c; Ranzato et al., 2007b; Larochelle et al., 2007; Vincent et al., 2008; Ahmed et al.,

2008; Torralba et al., 2008), natural language processing (Salakhutdinov and Hinton,

2007a; Mnih and Hinton, 2007; Ranzato and Szummer, 2008; Weston et al., 2008;

Collobert and Weston, 2008; Mnih and Hinton, 2008), robotics(Hadsell et al., 2008)

and collaborative filtering (Salakhutdinov et al., 2007).

At a very high level, these works have demonstrated that it ispossible to train feed-

forward hierarchical models using unsupervised as well as semi-supervised and multi-

task learning algorithms (Ranzato and Szummer, 2008; Westonet al., 2008; Collobert
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and Weston, 2008; Ahmed et al., 2008). It remains an open research question to identify

even better training protocols and to adapt those to the specific task at the hand.

Since the key to training deep networks is the use of an unsupervised learning algo-

rithm, chapter 1 describes a general framework to design these algorithms, theEnergy-

Based Modelframework (LeCun et al., 2006; Ranzato et al., 2007a). Energy-Based

Models are non-normalized probabilistic models that assign an energy value to the joint

set of observed and predicted variables. These models can bethought of as a local prob-

abilistic model assigning higher likelihood to training samples only in regions of the

input space that are of interest. This framework permits a richer class of algorithms than

properly normalized probabilistic models, and allows greater computational efficiency

both during training and inference. According to this framework, the goal of learning is

to adjust the parameters of the model in such a way that pointsthat are similar to train-

ing samples are assigned lower energy. In order to achieve this goal a loss functional is

minimized during training. Although all loss functionals decrease the energy in corre-

spondence of the training samples, they differ in the way they make sure that other points

have higher energy: some require to identify candidate points where the energy has to

be raised and others enforce more global constraints on the internal representation, such

as sparsity or compactness. We show the equivalence betweenthese two strategies and

give an interpretation of traditional unsupervised algorithms in this framework. Chap-

ter 2 provides simple visualizations of the energy surface on toy datasets in order to give

a better intuition of these concepts. Since raising the energy by constraining the internal

representation is more computationally efficient in high-dimensional spaces, we have

investigated several sparse coding algorithms for featureextraction. Chapter 3 describes
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one such algorithm, Predictive Sparse Decomposition, using the principles and the ideas

developed in the previous chapters.

In chapter 4 the Predictive Sparse Decomposition algorithmis extended to learn rep-

resentations that are not only sparse, but also invariant toeither known or learned trans-

formations. Learning representations that are invariant to irrelevant transformations of

the input is crucial towards building robust recognition systems. Invariant representa-

tions are desirable because they are more compact and they can be used by even simple

recognition systems, since they do not encode irrelevant properties of the input data.

For instance, a face detector should be invariant (or robust) to the pose of the subject, to

lighting conditions, and to facial expressions, while still encoding the information that is

necessary to locate and identify a face. In particular, muchof the progress in computer

vision is based on hand-designed descriptors that are invariant to lighting conditions,

and changes in scale and orientation (Schmid and Mohr, 1997;Lowe, 2004; Lazebnik

et al., 2004; Dalal and Triggs, 2005). However, these methods work well only on natu-

ral images for which they were designed, and they are conceivably sub-optimal once a

large dataset of examples is available. Therefore, designing a generic algorithm that can

learn representations that are invariant to learned transformations can make possible the

development of a system that adapts to the data in an end-to-end fashion.

Finally, chapter 5 demonstrates how these unsupervised algorithms can be used to

build deep networks and reports several experiments, ranging from visual object recog-

nition to text document classification and retrieval.
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1
ENERGY-BASED MODELS FOR

UNSUPERVISEDLEARNING

Unsupervised learning algorithms capture regularities inthe data for the purpose of

restoring corrupted data or for extracting representations of the data that can be used for

tasks such as prediction, classification, or visualization. We will view an unsupervised

machine as a functionF (Y ) that maps input vectorsY to scalar energy values. An

unsupervised machine captures dependencies between inputvariables by producing low

energy values in regions of high data density, and higher energy values in regions with

little or no data.

For instance, figure 1.1(a) shows an energy surface before training. The energy is

not lower around areas of high data density. At this stage, the machine is not able to

predict if an input data vector is similar to the samples in the training set. However, after

training the energy takes the desired shape as shown in figure1.1(b), that is, it is lower

around high data density areas. Figure 1.1(c) shows how sucha model could be used for

denoising. The denoised image is computed by searching for the minimum of the energy

that is closest to the input sample. Loosely speaking, this process returns the most likely

data vector nearby the noisy input. This task, and more generally, estimating regions

of high data density can be accomplished only if the energy islower around areas of

high data density. In this sense, a model assigning an energythat is constant over the

whole input space has failed to learn because any data vectorgets the same “score” as a
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(a) (b) (c)

Figure 1.1: Toy illustration of an unsupervised EBM. The bluedots are training samples,

the red curve is the energy surface. (a) Before training, the energy does not have the

desired shape and the model does not discriminate between areas of high and low data

density. (b) After training, the energy is lower around areas of high data density. (c) The

model can be used for denoising, for instance. Denoising consists of finding the nearest

local minimum nearby the noisy observation.

training sample under the model. This paper describes the principles behind successful

learning of energy functions, and it introduces a common framework, theenergy-based

modelframework, to describe most unsupervised learning algorithms.

A particularly important class of unsupervised algorithms, which includes principal

component analysis, K-means, and many others, produces internal representationsof

data vectors as part of the energy computation. These representations, also known as

feature vectors, or codescan be used as input for further processing such as prediction.

Moreover, many unsupervised machines make explicit use of such representations by

reconstructing the data vectors from the representations, and by using the reconstruction

error as part of the energy function. For example in clustering methods such as K-Means

(or vector quantization), the code is the index of the prototype in the codebook that is

closest to the data vector. The reconstruction error is the distance between the data
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vector and its closest prototype. Similarly in principal component analysis, the code

is the set of coordinates of the projection of the data vectoron a linear subspace, and

the reconstruction error is the distance between the data vector and its projection. In

auto-encoder neural networks (Rumelhart et al., 1986), the code is the state of a low-

dimensional hidden layer from which the data vector is reconstructed with a possibly

non-linear mapping. In restricted Boltzmann machines (RBMs) (Freund and Haussler,

1994; Hinton, 2002), the code is a vector of stochastic binary variables, from which the

input can be (stochastically) reconstructed, even though the machines are not explicitly

trained to reconstruct but to maximize log likelihood. Finally, in sparse coding and other

related methods (Lee and Seung, 1999; Olshausen and Field, 1997; Aharon et al., 2005;

Ranzato et al., 2006; Lee et al., 2007), the code is a high-dimensional vector in which

most of the components are constrained to be zero (or near zero), and the energy is the

reconstruction error under sparsity constraints.

Unlike these methods, some probabilistic density models like Product of Experts

methods (Teh et al., 2003; Ning et al., 2005; Roth and Black, 2005) do not use the

internal representations to reconstruct the input data, but only to compute the negative

log likelihood. This can be interpreted as their energy function and it has the property

that the difference of energies of two points is equal to their log likelihood ratio.

Training an unsupervised machine consists in shaping the energy landscape so that

regions of high data density have lower energies than other regions. This is generally

achieved by parameterizing a family of energy functions{F (Y ; W ), W ∈ W} in-

dexed by a parameterW , and by searching for theW that minimizes a particular loss

functional that depends onF and on the training set. We will show that essentially every
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unsupervised learning algorithm has a term in the loss functional whose purpose is to

decrease the energy of the training samples. However, different algorithms use different

techniques to ensure that the energy values associated withregions of low data density

are higher.

Unsupervised methods appear very diverse, and based on verydifferent principles.

We argue that the various unsupervised methods merely differ on two points: (1) how

F (Y ; W ) is parameterized, and (2) how the loss functional is defined,particularly how

the energy of unobserved points is made larger than the energy around training sam-

ples. This work discusses which combinations of architectures and loss functionals are

allowed, which combinations are efficient, and which combinations do not work. One

problem is that pulling up on the energies of unobserved points in high dimensional

spaces is often very difficult and even intractable. In particular, we show that probabilis-

tic models use a particular method for pulling up on the energy of unobserved points

that turns out to be very inefficient in many cases. We proposenew loss functionals for

pulling up energies that have efficiency advantages over probabilistic approaches. We

show that unsupervised methods that reconstruct the data vectors from internal codes

can alleviate the need for explicitly pulling up on the energy of unobserved points by

limiting the information content of the code.

1.1 Energy-Based Models for Unsupervised Learning

Unsupervised algorithms often compute internal representations of input data vectors.

In density estimation models, such as mixture of Gaussians or Product of Experts mod-

els, these representations are implicit because they are only used to produce a likelihood
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value. Otherwise, internal representations are often usedto reconstruct the input, ensur-

ing that most of the information contained in the input has been captured by the model.

Internal representations are useful in a variety of applications such as dimensionality

reduction, feature extraction, and clustering. These representations are referred to as

codes, or features, and they can have desirable properties such assparsity, compactness,

and independence of the components.

Probabilistic unsupervised models can be graphically represented as in fig. 1.1. There

Figure 1.2: Probabilistic graphical models of unsupervised learning. The set of observed

variables is denoted byY , while the set of latent variables, orcodes, is denoted by

Z. A) A loopy Bayes network modelling two consistent conditional distributions, one

predicting the latent code from the input, and another one predicting the input from

the code. This model would be able not only to generate data, but also to produce

fast inference ofZ; unfortunately, learning is intractable in general.B) A factor graph

describes the constraint between input and latent variables by connecting them with a

factor node. The joint distribution betweenY andZ can have two factors, as shown in

C). Many unsupervised models have one factor measuring the compatibility betweenY

and some transformation ofZ, and another factor measuring the compatibility between

Z and a transformation ofY . Unlike the model in A), the factor nodes are not necessarily

modelling conditional distributions.
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are two sets of variables, the observed input vectorY ∈ RM and the latent codeZ ∈

RN , whose value has to be inferred. Training such models generally means adjusting

the parameters in such a way that the marginal distribution over Y gives higher likeli-

hood to the training vectors, and also, that the joint distribution overY andZ assigns

higher likelihood to training vectors and corresponding “compatible” codes. The ideal

probabilistic model is the loopy Bayes network shown in fig. 1.1 A). This model in-

cludes a module generating data from codes, that can easily check how well the model

fits the data, and also, another module directly inferring the code from the input. Unfor-

tunately, learning two consistent conditional distributions in a loopy graph is generally

intractable. A more general representation is given by the factor graph in fig. 1.1 B),

where the factor node describes the compatibility constraint Y andZ have to meet in

order to be assigned high likelihood value. This model can beextended by considering

a joint distribution that factorizes into two factors as shown in fig. 1.1 C). Often, one

factor measures the compatibility betweenY and some transformation ofZ, while the

other factor considersZ and some transformation ofY .

Indeed, factors often have a preferred “directionality”, favoring inference of one

variable given the other one. Any model can be interpreted asbelonging to one of the

following classes:

• anencodermodel that provides a direct mapping of input data into a feature rep-

resentation; the PoE model proposed by (Teh et al., 2003) andICA based on in-

formation maximization (Herault and Jutten, 1986; Jutten and Herault, 1991; Bell

and Sejnowski, 1995) are examples of such a model. While producing representa-

tions of input data is straightforward, generating data from the model is generally
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complicated, requiring the use of expensive Monte Carlo sampling techniques.

• a decoder model that is based on a generative model reconstructing theinput

from an internal latent representation; a mixture of Gaussians as well as gener-

ative ICA based on maximum likelihood (MacKay, 1999) and traditional sparse

coding algorithms (Olshausen and Field, 1997) can be interpreted in this way.

While generating data is straightforward, inferring the representation might re-

quire computationally expensive marginalization or minimization procedures.

• anencoder-decodermodel that has both a factor producing direct representations

as well as another factor reconstructing the data from it; the most popular (non-

probabilistic) encoder-decoder model is PCA and the most notable probabilistic

model of this kind is RBM. Both data generation and feature extraction are easy

in this model, but learning might be very difficult because ofthe normalization

requirement of the model.

An energy-based model (EBM) (LeCun et al., 2006; Ranzato et al.,2007a) is a model

that assigns lower energy values to input vectors that are similar to training samples and

higher energy values elsewhere. Un-normalized models are much more computationally

efficient in large and high dimensional spaces because they require the energy to be

higher only within a suitableneighborhoodof the training samples. For instance, in

image restoration the corrupted data is usually near the “clean” data, and restoring a

corrupted input vector may be performed by finding an area of low energy near that

input vector (Teh et al., 2003; Portilla et al., 2003; Elad and Aharon, 2006). As it will

be discussed in sec. 1.2.1, a probabilistic model is a special kind of EBM.

13



Figure 1.3: Generic unsupervised architecture in the energy-based model framework.

Rectangular boxes represent factors containing at least a cost module (red diamond

shaped boxes), and possibly, a transformation module (blueboxes). The encoder takes

as inputY and produces a prediction of the latent codeZ. The discrepancy between this

prediction and the actual codeZ is measured by the Prediction Cost module. Likewise,

the latent codeZ is the input to the decoder that tries to reconstruct the input Y . The

discrepancy between this reconstruction and the actualY is measured by the Recon-

struction Cost module. Additional cost modules can be applied to the code and to the

input. This is like a factor graph representation allowing to “zoom in” inside the nodes.

The goal ofinferenceis to determine the value of the latent codeZ for a given input

Y . The energy of the system is the sum of the terms produced by the cost modules.

The goal of learning is to adjust the parameters of both Encoder and Decoder in order

to make the energy lower in correspondence of the training samples, e.g., to make the

predicted codes very close to the actual codeZ, and to produce good reconstructions

from Z when the input is similar to a training vector. After training, the encoder can be

used for fast feed-forward feature extraction.
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(a) (b)

(c) (d)

(e) (f)

Figure 1.4: Instances of the graphical representation of fig. 1.3. (a) PCA the encoder and

decoder are linear; (b) autoencoder neural network; (c) K-Means and other clustering

algorithms: the code is constrained to be a binary vector with only one non-zero compo-

nent; (d) sparse coding methods, including basis pursuit, Olshausen-Field models, and

generative noisy ICA in which the decoder is linear and the code subject to a sparsity

penalty; (e) encoder-only models, including Product of Experts and Field of Experts; (f)

Predictive Sparse Decomposition method.

The energy-based graphical representation of an unsupervised model is derived from

the graphical representation of a factor graph and it is shown in fig. 1.3. This is a
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more operational representation where the transformations applied to the variablesY

andZ, and the compatibility tests are made explicit and visible inside the factor nodes.

In particular, there is a cost measuring the discrepancy between the codeZ and its

prediction given by theencoder. The encoder is a deterministic function mapping the

inputY into an approximation of the latent codeZ; this is denoted byge(Y ; W ), where

W are trainable parameters. Likewise, there is a cost measuring the discrepancy between

the inputY and its reconstruction produced by thedecoder. The decoder is another

deterministic function that maps the latent codeZ into a approximation of the input

Y ; this is denoted bygd(Z; W ). Additional costs might take into account constraints

applied to the input and latent variables as well. The overall energy of the system is the

sum of all the terms produced by these cost modules.

Given a training setT = {Y i, i ∈ 1 . . . p} and a set of trainable parametersW ,

we must define a parameterized family of energy functionsF (Y ; W ) in the form of an

architecture, and aloss functionalL(F (·; W ), T ) whose role is to measure the “quality”

(or badness) of the energy surfaceF (·; W ) on the training setT . An energy surface

is “good” if it gives lower energies to areas around the training samples, and higher

energies to all other areas.

Since the model depends not only on the inputY but also on the latent codeZ,

we must introduce another energy functionE(Y, Z; W ) and aninferenceprocedure to

computeZ andF (Y ; W ). With reference to fig. 1.3,E(Y, Z; W ) is the sum of the

decoder reconstruction error, the encoder prediction error, and the error in satisfying the

constraints on the input and latent code. In particular, we denote byEdec(Y, Z; W ) and

Eenc(Y, Z; W ) the error terms produced by the encoder and decoder’s cost modules.
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Before describing inference procedures, we first establish the link between energy-

based models and probabilistic models. Among all possible distributions, we consider

a Boltzmann distributionbecause it is the maximum entropy distribution satisfying an

expected constraint on the average energy (Jaynes, 1957; Zhu et al., 1997). In other

words, this is the distribution that makes less assumptionswhile being compatible with

the observations. In a Boltzmann distribution the probability density function and the

energy relate by:

P (Y, Z; W ) =
e−βE(Y,Z;W )

ΓY,Z

, with (1.1)

ΓY,Z =

∫

y,z

e−βE(y,z;W ), β ∈ R+

The denominatorΓY,Z is called partition function and makes sure the distribution nor-

malizes to one. Although energy-based models do not requireΓY,Z to be finite in general

(and therefore, there might be no probabilistic model that can be associated to an energy-

based model), we assumeΓY,Z finite when we refer to “the probabilistic model associ-

ated to” a given energy-based model. Note that any probabilistic model can be written

in the energy-based model framework by definingE(Y, Z; W ) = − log P (Y, Z; W ). It

is also useful to introduce the marginal distribution over the inputY :

P (Y ; W ) =
e−βF (Y ;W )

ΓY

=

∫

z
e−βE(Y,z;W )

ΓY,Z

, with (1.2)

ΓY =

∫

y

e−βF (y;W )

whereF (Y ; W ) is derived through marginalization,F (Y ; W ) = − 1
β

log
∫

z
e−βE(Y,z;W ).
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The most common inference procedure definesZ andF (Y ) as follows:

Z = arg min
z∈Z

E(Y, z; W ) (1.3)

F (Y ; W ) = min
z∈Z

E(Y, z; W ) (1.4)

In probabilistic terms, the proposed inference corresponds to finding the maximum a

posteriori (MAP) estimate for the latent variablesZ, that are treated as adetermin-

istic latent variables. This is easy to show becausearg max P (Z|Y ; W ) is the same

asarg max P (Y, Z; W ) which is equal toarg min E(Y, Z; W ) (see eq. 1.1). Instead,

probabilistic models infer adistributionof latent codes by marginalizing the joint distri-

bution of eq. 1.1. In terms of energies we have already seen that this corresponds to the

following log sum of exponentials:

F (Y ; W ) = −1/β log

∫

z

e−βE(Y,z;W ), β ∈ R+ (1.5)

which is intractable to compute, in general. Note thatF can be interpreted as (the

minimum of) thefree energyfrom an analogy to statistical mechanics. For simplicity

in this paper, we refer to both functionsE(Y, Z; W ) andF (Y ; W ) as “energy” since it

will be clear from the context if we refer to one or the other. Also, note that if we let

β go to infinity the log-sum in eq. 1.5 reduces to the minimization of eq. 1.4. Finally,

some methods set the code through a deterministic mapping ofthe input. PCA and

auto-encoder neural networks are the most popular example of machines using this kind

of inference procedure. This limit case of inference procedure can also be seen as a

particular instance of the minimization of eq. 1.4:

F (Y ; W ) = min
Z

E(Y, Z; W ), with

E(Y, Z; W ) = max
ν

Edec(Y, Z; W ) + ν(Z − ge(Y ; W )) (1.6)
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whereEdec(Y, Z; W ) is the error term measuring the discrepancy between the output

of the decoder and the input,ge(Y ; W ) is the value assigned toZ by the encoder, andν

is a Lagrange multiplier. While this is a dummy optimization problem settingF (Y ; W )

equal toEdec(Y, ge(Y ); W ), it directly links to the formulation of eq. 1.4.

Specializations of the model of fig. 1.3 include cases where either the encoder or the

decoder are missing, as well as cases in which the code prediction error is constrained

to be zero, i.e., where inference of the code is done through adeterministic mapping of

the input. Fig. 1.4 and chapter 2 re-interpret several classical unsupervised methods in

this framework, and elucidate this point. It is important tokeep in mind that the general

architecture of fig. 1.3 has several advantages over simplerarchitectures that lack either

the encoder or the decoder. The decoder makes learning easier because it allows to check

the fitting of the training data by comparing it with its reconstruction from the code. On

the other hand, the encoder is trained to approximate the latent codeZ allowing very

fast and direct inference after its parameters are learned.

Devising an EBM consists of (1) choosing the architecture, i.e. the particular form of

encoder, decoder and cost modules that will contribute to the energy functionE(Y, Z; W ),

(2) choosing an inference procedure that determinesF (Y ; W ) andZ, and (3) choosing

a loss functional. A model can be trained with many differentloss functionals. The sim-

plest loss functional that one can devise, called theenergy loss, is simply the average

energy over the training setT = {Y i, i ∈ 1 . . . p}:

Lenergy(W,T ) =
1

p

p
∑

i=1

F (Y i; W ) (1.7)

In general, minimizing this lossdoes notproduce good energy surfaces because, unless

F (Y ; W ) has a special form, nothing prevents the energy surface frombecomingflat.
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No term increases the loss if the energy of unobserved vectors is low, hence minimiz-

ing this loss will not ensure that the energies of unobservedvectors are higher than the

energies of training vectors. This is undesired because it makes the modelunable to

discriminatebetween data vectors that are similar and data vectors that are dissimilar

to training samples. An example of such learning failure is learning a set of random

projections to simply rotate the input space, for instance.Clearly, all points in input

space are perfectly reconstructed, even those that are verydifferent from training sam-

ples, and the feature space is useless because it is just a rotation of the input space. To

prevent thiscatastrophic collapse, we discuss two solutions. The first one is to add a

contrastive term to the loss functional which has the effectof “pulling up” on the en-

ergies of selected unobserved points. The second solution,which is implicitly used by

many classical unsupervised methods, is to construct the architecture in such a way that

only a suitably small subset of the points can have lower energy. The region of lower

energy can be designed to be a manifold with a given dimension, or a discrete set of

regions around which the energy is lower. With such architectures, there is no need to

explicitly pull up on the energies of unobserved points, since placing low energy areas

near the training samples will automatically cause other areas to have higher energies.

1.2 Two Strategies to Avoid Flat Energy Surfaces

The trained model has to assign lower energy to vectors observed during training, and

higher energy to unobserved vectors. This is achieved by designing a suitable energy

and loss functional. All loss functionals have a term minimizing the energy over the

training samples, while different strategies are employedto increase the energy of other
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data vectors. First, we consider loss functionals that explicitly pull up on the energy

of suitably chosen points. Then, we present a second family of energy functions that

increase the energy of unobserved vectors indirectly by adding constraints to the code,

and we demonstrate the equivalence of these two strategies.

1.2.1 Adding a Contrastive Term to the Loss

Learning to model the distribution of the input data, whether locally around the training

samples or rather globally across the whole input space, canbe achieved by minimizing

a loss functional of the following form:

L(W ; T ) =
1

p

p
∑

i=1

f(F (Y i; W ))− g(F (Ȳ i; W )) (1.8)

whereY i is a training sample,̄Y i is a data vector whose energy has to be increased,

and f and g are monotonically increasing functions making sure that the energy of

the training samples is lower than other points. The second term in the loss is called

“contrastive term”. Without this term the model could assign the same energy value to

all points in input space.

An example of this loss functional is the so calledmargin loss(LeCun et al., 2006;

Hadsell et al., 2006):

L(W,T ) =
1

p

p
∑

i=1

F (Y i; W )2 + max(0,m− F (Ȳ i; W ))2 (1.9)

wherem ∈ R+ is the margin. This loss tries to make the energy of the contrastive

sampleȲ i higher than the energy of the training sample by at least a margin m. Ideally,

Ȳ i is chosen to be the “most offending incorrect answer” of the model (LeCun et al.,
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2006). In other words,̄Y i is the lowest energy point that lies outside a neighborhood

containing the training data. If there is not prior knowledge about where such point can

be picked, sampling methods such as Langevin dynamics can beused to select it.

Another example of this kind of loss functional can be derived by maximum like-

lihood learning in probabilistic models. Most probabilitydensities can be written (or

approximated as cloed as desired) in terms of an energy function through the Gibbs

distribution:

P (Y 1, . . . , Y p; W ) =

p
∏

i=1

e−βF (Y i;W )

∫

y
e−βF (y;W )

(1.10)

whereβ is an arbitrary positive constant, and the denominator is the partition function.

If a probability density is not explicitly derived from an energy function in this way,

we simply define the energy asF (Y ; W ) = − log P (Y ; W ). Training a probabilistic

density model is generally performed by finding theW that maximizes the likelihood of

the training data under the model given in the previous equation. Equivalently, we can

minimize a loss functionalL(W ; T ) that is proportional to the negative log probability

of the data. Using the Gibbs expression forP (Y ; W ), we obtain:

L(W ; T ) = − 1

β
log P (Y 1, . . . , Y p; W ) =

1

p

p
∑

i=1

F (Y i; W ) +
1

β
log

∫

y

e−βF (y;W )

(1.11)

Note that the same objective function can be derived using the dual formulation of the

maximum entropy principle (Jaynes, 1957; Zhu et al., 1997).The gradient ofL(W,T )

with respect toW is:

∂L(W ; T )

∂W
=

1

p

p
∑

i=1

∂F (Y i; W )

∂W
−

∫

y

P (y; W )
∂F (y; W )

∂W

= <
∂F (Y ; W )

∂W
>Y ∼T − <

∂F (Y ; W )

∂W
>Y ∼P (Y ;W ) (1.12)
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whereY ∼ T andY ∼ P (Y ; W ) mean thatY is drawn from the training set and

from the model distribution, respectively. In other words,minimizing the first term in

eq. 1.11 with respect toW has the effect of making the energy of observed data points

as small as possible, while minimizing the second term (the log partition function) has

the effect of “pulling up” on the energy of unobserved data points to make it as high as

possible, particularly if their energy is low (their probability under the model is high).

Naturally, evaluating the derivative of the log partition function (the second term in

eq. 1.12) may be intractable whenY is a high dimensional variable andF (Y,W ) is

a complicated function for which the integral has no analytic solution. This is known

as thepartition function problem. A considerable amount of literature is devoted to

this problem. The intractable integral is often evaluated through Monte-Carlo sampling

methods, variational approximations, or dramatic shortcuts, such as Hinton’scontrastive

divergencemethod (Carreira-Perpignan and Hinton, 2005). The basic idea of contrastive

divergence is to avoid pulling up on the energy ofevery possible pointY , and to merely

pull up on the energy of randomly generated points located near the training samples.

These points are found by using a Markov Chain that starts at training samples and that

runs for only a few steps. This process is likely to pick low energy points that are nearby

the training samples. This ensures that training points will becomelocal minimaof the

energy surface, which is sufficient in many applications of unsupervised learning.

To summarize, we can interpret the log of the partition function as a very compli-

cated instance of the contrastive term in eq. 1.8. This term increases the energy of all the

points in input space making sure that the distribution normalizes to one. Even though

the loss functional in eq. 1.11 is the only one maximizing thelikelihood of the data, it is
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generally intractable to compute and it requires approximations.

In general, one of the main issues when training unsupervised models is finding

ways to prevent the system from producing flat energy surfaces. Probabilistic models

explicitly pull up on the energies of unobserved points by using the partition function

as a contrastive term in the loss. Other methods using a margin loss identify candidate

points where the energy has to be pulled up by running an optimization to find a mode

of the distribution, for instance. However, if the parameterization of the energy function

makes the energy surface highly malleable or flexible, it maybe necessary to pull up on a

very large number of unobserved points to make the energy surface take a suitable shape.

This problem is particularly difficult in high dimensional spaces where the volume of

unobserved points is huge due to the curse of dimensionality.

1.2.2 Limiting the Information Content of the Internal Representa-

tion

One solution to the previously mentioned problem is to make the energy surface a little

“stiff”, so that pulling down on a small number of well-chosen points will automatically

pull up the energies of many points (LeCun et al., 2006). One way to achieve this

is by limiting the number of parameters or by constraining the parameters through a

regularization term in the loss.

Another solution is to design the energy function in such a way that only a small sub-

set of points can have low energies. This method is used (albeit implicitly) by prenormal-

ized probabilistic models such as Gaussian models or Gaussian mixture models. In such

models, only the points around the modes of the Gaussians canhave low energy (or high
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probability). Every other point has high energy by construction. It is important to note

that this property is not exclusive to normalized density models. For example, a simple

vector quantization model in which the energy isF (Y ; W ) = mini∈[1,...,N ] ||Y −Wi||2

whereWi is thei-th prototype, can only produce low energy values (good reconstruc-

tions) around each of theN prototypes and higher energies everywhere else.

Building on this idea, the encoder-decoder architecture hasan interesting property

that can be exploited to avoid flat energy surfaces. The architecture should be designed

so that each training sample can be properly represented by aunique code, and therefore

can be assigned a low energy valueF (Y ; W ) (e.g., good reconstruction). The architec-

ture should also be designed so that unobserved points are assigned codes similar to

those associated with training samples, so that their energies (e.g., reconstruction error)

are higher. Satisfying this property can be done in a number of ways, but the simplest

way is reduce the number of available codes while forcing them to represent well the

training samples (by minimizing the energy over the training set). In short, we can min-

imize the simple energy loss in eq. 1.7 if welimit the information content of the code.

This can be done by allowing the code to take only a finite number of different values

(as with the example of the previous paragraph), or by makingthe code have a lower

dimensionality than the input, or by having a term in the energy functionE(Y, Z; W )

that forces the code to be a “sparse” vector in which most components are zero. Many

classical unsupervised learning methods use this principle implicitly as described in the

next chapter.

We provide a range of results that formalize the link betweenthe information con-

tent of the code and the volume of data that can be assigned lowenergy in a number
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of cases corresponding to different model assumptions, such as the kind of decoder and

cost modules used. Lemma 1.1 is a set of general results that relate entropy to the

shape of the energy function. Theorem 1.1 establishes a monotonic link between the

entropy of the distribution of the input and the entropy of the distribution of the code in

a linear generative model. Theorem 1.2 shows that in a sparsecoding model, increasing

the sparsity of the code decreases the volume of the input space with low energy. The-

orem 1.3 shows that in a reconstructive dimensionality reduction model, reducing the

dimensionality of the code decreases the volume of the inputspace with low energy.

Lemma 1.1. Let us assume the energyE(Y, Z) defines a joint probability distribu-

tion P (Y, Z) from which we can derive conditional and marginal distributions. Let the

marginal beP (Y ) = e−βF (Y )/
∫

y
e−βF (y) (omitting the parametersW for clarity of no-

tation).

(1) The distribution maximizing the entropy over all probability densities on a given

supportS of finite volume is the uniform distribution (denoted byU ).

(2) For any distributionP (Y ) defined onS, the KL divergence betweenP (Y ) and U

increases linearly as the entropy ofP (Y ) decreases.

(3) For any distributionP (Y ) defined onS with H(P (Y )) smaller than the maximum

(log of the volume ofS), F (Y ) cannot be constant.

(4) If Y is a vector distributed according to a Gaussian distribution, then decreasing

H(P (Y )) makesdet(∂2F
∂Y 2 ) increase.

(5) Let Y ∈ R a random variable with distributionP (Y ), and consider a sequence of

l variables drawn fromP (Y ). A high probability setBl
δ is defined as a set inRl whose

probability is greater thanδ, with δ > 0.5. The most probable set is the smallest of such
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sets. If the entropy ofP (Y ) decreases, then the volume of the most probable set also

decreases.

Proof.

(1)LetH(P (Y )) denote the entropy of a distributionP (Y ) andH(U) the entropy of the uniform

distribution.

KL(P, U) =

∫

S

P (Y ) log(P (Y )V ol(S)) = −H(P (Y )) + H(U) (1.13)

As theKL divergence ofP andU is nonnegative with equality if and only ifP = U ,

H(P (Y )) ≤ H(U), (1.14)

with equality if and only ifP = U .

(2) As seen above,

KL(P, U) = H(U)−H(P (Y )) (1.15)

(3) By defining the energy as minus the log of the probability, we have that the uniform dis-

tribution is the only one that is associated a flat energy surfaceF (Y ) = c, c ∈ R. Any other

distribution with lower entropy, i.e. non-uniform, must have a non-flat energy surface. By con-

tradiction, if F (Y ) is constant and not associated to a uniform distribution then we have that

P (Y ) = exp−βF (Y )/
∫

y
exp−βF (y) = 1/V ol(S) = U .

(4) The entropy of a random Gaussian vector with covariance matrixΣ is:

H(P (Y )) =
1

2
log((2πe)M |det(Σ)|). (1.16)

The entropy decreases iff|det(Σ)| decreases as well. On the other hand, if we define the energy

asF (Y ) = − log P (Y ) (up to a constant) then we find that the Hessian of the energy is:

∂2F

∂Y 2
= (|det(Σ)|)−1. (1.17)
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Hence, as the entropy of the distribution of the random vector is decreased the curvature of the

energy surface increases. In particular, it increases at the mode of the distribution. If we think

of F (Y ) as a trainable model, then decreasing the entropy makes the difference between the

lowest and the highest energy values larger, and the model more discriminative (less uniform).

A similar property can be demonstrated for any other uni-modal distribution aswell.

(5) This is an interesting result from (Cover and Thomas, 1991). LetY ∈ R, and{Y i}l a

sequence ofl independent samples drawn from the distributionP (Y ). Then, up to the first order

in the exponent:

Vol(Bl
δ) = 2lH(P (Y )) (1.18)

whereδ > 0.5 andBl
δ is the most probable set with probability at leastδ estimated froml

samples. In other words, the volume of the smallest set containing most of the probability is

about2lH(P (Y )) with (loosely speaking) average side length equal to2H(P (Y )).

Although this results is valid only for (any) one-dimensional distribution, it gives a nice

intuition of how the entropy relates to the energy in this case. Given a distribution and its cor-

responding energy, we can set a threshold to individuate the (possibly not connected) set with

lowest energy (most probable set). By decreasing the entropy of the distribution, the volume

of this set decreases meaning that the energy becomes more peaked (the distribution has more

mass) around the lowest energy (most likely) areas. �

In the case of a linear generative model, links between the entropy of the input dis-

tribution and the entropy of the code distribution can be described more precisely:

Theorem 1.1. In a linear generative (decoder-only) model that represents the input as

Y = WZ + η, whereP (η) = N(0, σ2
Y ) andP (Z) = L(λ) (Laplace distribution with

zero mean and scale parameterλ), decreasing the entropyH(P (Y )) of the marginal dis-
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tribution overY also decreases the average number of partitions of the inputspace that

are induced by the codeZ. Under a Gaussian variational approximation to the poste-

rior and 0-th order Taylor approximations, decreasingH(P (Z)) reducesH(P (Y )) too.

Proof. This is derived from the Blahut-Arimoto and Information Bottleneck methods

(Tishby et al., 1995). The model assumptions are the same as in (Olshausen and Field,

1997)’s algorithm. The code is distributed according to a Laplace priorP (Z), and the

conditional likelihoodp(Y |Z) is a Gaussian with meanWZ and fixed spherical covari-

ance matrix. Hence,H(P (Y |Z)) is fixed, whileH(P (Y )) depends onH(P (Z)) and

the parametersW . The algorithm implicitly partitions the input space into (soft) re-

gions, where each region is assigned a codeZ. Since the average volume of the input

space is2H(P (Y )) and the average volume of all the points that are mapped into the same

codeZ is 2H(Y |Z), the average number of partitions induced by the algorithm is given

by the ratio: 2H(P (Y ))/2H(P (Y |Z)) = 2I(Y,Z), whereI(Y, Z) is the mutual information

betweenY andZ. Therefore, by reducingH(P (Y )) we reduce the number of bits re-

quired to identify a partition, i.e. the complexity of the model. By using a Gaussian

variational approximation to the posterior (refer to the appendix A) and exploiting the

relationH(P (Y )) = H(P (Z))−H(P (Z|Y )) + H(P (Y |Z)), we can show that reduc-

ing H(P (Z)) reducesH(P (Y )) since the entropy of the posterior never decreases more

thanH(P (Z)). �

In a sparse coding model, the sparsity of the code can be controlled through a hyper-

parameter; we show that varying this hyperparameter has an effect on the shape of the
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energy surface:

Theorem 1.2.In a sparse coding model whose energy isF (Y ; W ) = minZ ||Y −WZ||2

s.t. ||Z||0 ≤ d, with W ∈ RM×N , M ≤ N , d < M , and rank(W ) = m ∈ (d,M ], and

assuming the data centered at the origin and contained in a ball of radius R, and for

a sufficiently smallǫ ∈ R+, the volume of the input space whose energy is belowǫ

decreases as the code is made sparser, that is, asd is decreased.

Proof. The model assumptions are again the same as in (Olshausen and Field, 1997)’s

algorithm, but expressed in the log domain in terms of energies and using theL0 norm

instead of theL1 norm . The “L0 norm” is not a norm and it counts the number of non-

zero elements of a vector. By relaxing theL0 norm into anL1 norm we turn an NP-hard

optimization problem into a convex one. TheL1 relaxation gives the same solution as

theL0 norm provided that the solution is sparse enough (Donoho andElad, 2003). The

proof is by induction. Whend = 0 the only admissible code is 0, and the region that can

have energy smaller thanǫ is the sphere of radius
√

ǫ centered at the origin. We denote

the volume of this sphere withSǫ
0 = 4

3
πǫ

3

2 . Whend = 1, the set of admissible codes

consists of all codes with at most one non-zero coordinate. This createsN additional

sets along the columns ofW with energy smaller thanǫ. For smallǫ, each such set can

be approximated by a “tube” of length2R and radius
√

ǫ going through the origin along

the direction given by the columns ofW . The total volume of these setsSǫ
1 is lower

bounded by the volume of a single “tube” which is2Rπǫ. This volume is larger than

Sǫ
0 providedǫ is sufficiently small to guarantee thatǫ < 9

4
R2. The assumption on small

ǫ is also required to approximate the low energy areas with thetube whend = 1 and

to make sure that sub-spaces generated by the columns ofW have little overlap when
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d > 1. Assuming that the property holds ford − 1, we are going to show that it also

holds ford < m. This is trivial because the volume of the sets that have energy below

ǫ using at mostd − 1 code units,Sǫ
d−1, is strictly contained inSǫ

d since (a) the condi-

tion ||Z||0 ≤ d implies ||Z||0 ≤ d − 1, and (b)d < m. The former condition implies

thatSǫ
d−1 ⊆ Sǫ

d. The latter condition guarantees that the space spanned by at least one

d-dimensional sub-space generated by pickingd columns ofW does not coincide with

the sub-spaces generated by taking into account onlyd − 1 columns since the rank of

W is greater thand, and therefore,Sǫ
d−1 ⊂ Sǫ

d. �

Reducing the dimensionality of the code is another way to control the shape of the

energy surface:

Theorem 1.3. In a model whose energy isF (Y ; W ) = minZ ||Y −WZ||2, with W ∈

RM×N , N < M , rank(W ) = N , and assuming the data centered at the origin and

contained in a ball of radiusR, and for a sufficiently smallǫ ∈ R+, the volume of the

input space whose energy is belowǫ decreases as the code is made lower dimensional,

that is, asN is decreased.

Proof sketch. The proof is similar to the one of the previous theorem. The volume

generated by any set ofN − 1 linearly independent vectorsSǫ
N−1 is going to be always

smaller than the volumeSǫ
N generated by taking into accountN linearly independent

vectors (columns ofW ), provided thatǫ is sufficiently small. �

So far we have taken into account “decoder-only” models thatlinearly reconstruct the

input without a module directly producing the representation. As we mentioned earlier,
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there are also “encoder-only” models (Teh et al., 2003; Bell and Sejnowski, 1995) that

directly produce the representation without explicitly reconstructing the input. In par-

ticular, the work by (Scholkopf et al., 2001) addresses the question of how to devise

an encoder-only algorithm that assigns lower energy to highdata density areas. The

algorithm is a single class SVM that maps the input into feature space through a fixed

non-linear transformation followed by a linear adaptive projection. The algorithm is

trained in such a way that this function is positive when points are drawn from high

data density areas, and negative otherwise. This is essentially akin to learn an energy

function and setting a threshold to identify regions of highdata density. In order to train

the parameters, the authors propose to minimize a loss functional that trades off two

terms: the empirical error and the model complexity. The empirical error is formulated

in terms of the separation of the points mapped in feature space from the origin, while

the model complexity term is the squaredL2 norm of the parameter vector. Since the

algorithm can be reduced to a standard binary SVM, it inherits many theoretical prop-

erties. In particular, the authors show that the trade-off parameter between the two error

terms in the loss effectively controls the volume over whichthe algorithm assigns high

probability and the fitting of the data.

The aim of their work is very similar to ours because (1) they want to learn a func-

tion that is above threshold over the most probable set (lower energy around training

samples) without trying to solve the more difficult density estimation problem tackled

by probabilistic models, and (2) they use a loss function that trades off the fitting of

the training data to the model complexity. While they controlthe model complexity by

penalizing the parameters, we suggest to control it by constraining the internal represen-
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tation. Theorem 1.1 used yet another way to control the modelcomplexity, i.e. by min-

imizing the mutual information between input and code. Whilequantities like entropy

and mutual information are difficult to compute and estimate, we argue that constraining

the representation might be better than bounding the parameters of the model if we are

interested in using the unsupervised algorithm to learn a representation of the input. The

framework we propose is particularly useful not just to identify high data density areas,

but also to learn adaptive representations of the input withsome properties, as opposed

to use fixed non-linear mappings.

To summarize, we have shown that the energy surface can be made less flat by

either having a contrastive term in the loss pulling up on theenergy of suitably chosen

data vectors, or by constraining the code. The first strategymight become inefficient

in high dimensional spaces because the volume that has to be considered is very large,

and because sampling and optimization methods become too expensive. Constraining

the internal representation is a more global strategy to pull up on the energy. Only few

regions in input space can be assigned low energy values. Since the energy is made

small around the training samples, it must be higher elsewhere. This strategy might

overcome the inefficiency of the first class of methods that use a contrastive term in the

loss, and it can actually be used in combination with it (Lee et al., 2007).
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2
CLASSICAL METHODS IN THEL IGHT

OF THE ENERGY-BASED MODEL

FRAMEWORK

In this chapter we review a number of classical unsupervisedlearning models in the light

of the energy-based framework. The most popular methods andPSD, the algorithm

that we are going to introduce in chapter. 3, are summarized in table 2.1. Most of

these algorithms use special cases of the encoder-decoder architecture described above.

They differ in the specifics of the architecture, the constraints on the code, the inference

procedure and the loss function used for training. To illustrate how each method works,

we will use toy problems, designed to facilitate the visualization of the energy surface.

The first training dataset is shown in fig. 2.1(a) and it consists of 10,000 points in the

2D plane(y1, y2) . The training points are generated by a mixture of three Cauchy dis-

tributions along three random vectors. Points outside the circle of radius
√

2 have been

left out. The second training dataset is shown in fig. 2.1(b) and it also consists of 10,000

points in the 2D plane, but the points are generated along a spiral that fits in the square

with opposite corners (-1,1), (1,-1). The goal of learning is to learn an energy surface

F (Y ; W ) with lower values around regions of high data density and higher values ev-

erywhere else. The energy can be as simple as the squared reconstruction error, or it can

include additional terms such as a sparsity constraint. Thedata is designed so that there
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is no function that can predict a single value ofy2 from y1 or vice versa. It is important

to remain cautious about over-interpreting results obtained with this low-dimensional

toy problem: real problems in unsupervised learning occur in high dimensional tasks.

Nevertheless, these toy examples are a useful didactic tool.

(a) (b)

Figure 2.1: Toy datasets: 10,000 points generated by (a) a mixture of 3 Cauchy distri-

butions (the red vectors show the directions of generation), and (b) points drawn from a

spiral.

2.1 Principal Component Analysis

PCA is an encoder-decoder architecture that minimizes an energy loss equal to the mean

squared reconstruction error. In PCA the optimal code is constrained to be equal to

the value predicted by the encoder, and the encoder and decoder are symmetric and

use a weight matrixW whose columns are orthogonal; see table 2.1 for more details.

PCA avoids flat energy surfaces by using a code with a lower dimensionality than the

input. Only those vectorsY that are in the space spanned by the columns ofW will
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Figure 2.2: Toy dataset (a) - Energy surfaceF (Y ; W ) for (by column): 1) PCA, 2)

auto-encoder trained using the energy loss (minimization of mean squared reconstruc-

tion error), 3) auto-encoder trained using as loss the negative of the log-likelihood, 4)

auto-encoder trained by using the margin loss, 5) a sparse coding algorithm (Lee et al.,

2006), and 6) K-Means. The red vectors are the vectors along which the data was gen-

erated (mixture of Cauchy distributions). The blue lines arethe directions learned by

the decoder, the magenta numbers on the bottom left are the largest values of the energy

(the smallest is zero), and the green numbers on the bottom right are the number of code

units. Black is small and white is large energy value.

be exactly reconstructed (with zero energy). Therefore, learning can be carried out by

simply minimizing the average energy of the training samples, without having to worry

about pulling up on the energies of unobserved points: theirenergies will automatically

become higher (except if they happen to be on the linear subspace).
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Figure 2.3: Toy dataset (b) - Energy surfaces. The magenta points are training samples

along which the energy surface should take smaller values.

Table 2.1: Popular unsupervised algorithms in the EBM framework of fig. 1.3. N and

M are the dimensionalities of the codeZ and the inputY , σ is the logistic non-linearity

andσ′ its derivative, andge is the mapping produced by the encoder. In the Mixture of

Gaussians (MoG) we denote the inverse of the covariance matrix of the i-th component

with Ai, for i = 1..N .
Methods Encoder Decoder Inp. Rec. Cost Code Pred. Cost Code Cost pull-up

PCA W T Y WZ ||Y − WZ||2
2

Z = ge(Y ; W ) − N < M

autoenc. σ(WeY ) WdZ ||Y − WdZ||2
2

Z = ge(Y ; We) − N < M

RBM σ(W T Y ) σ(WZ) − 1

2
Y T WZ − 1

2
Y T WZ − part. func.

ICA-IM WeY − − Z = ge(Y ; We) σ′(Z) log |We|

sparse cod. − WZ ||Y − WZ||2
2

− ||Z||1 sparsity

PSD Dσ(WeY ) WdZ ||Y − WdZ||2
2

||Z − Dσ(WeY )||2
2

||Z||1 sparsity

K-Means − Wi ||Y − Wi||22 − − 1-of-N code

MoG − Wi ||Y − Wi||2Ai
− − part. func.

PoE WeY − − Z = ge(Y ; We)
P

gi log(1 + z2

i ) part. func.

PCA performs very poorly on these toy datasets. With one code unit, the region

of low energy is a horizontal straight line as shown in fig. 2.21) and fig. 2.3 1), while

with two code units, the entire input space has zero energy. Every point in the plane

gets reconstructed perfectly (the system simply computes the identity function), but the
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Table 2.2: Strategies used by common algorithms to avoid flatenergies.

Pull-up factor methods

N < M PCA, autoencoder, factor analysis

sparsity sparse coding, K-Means

exact max. likelihood(part. func.) square ICA, MoG

approx. max. likelihood (CD, score matching, etc.) RBM, PoE, overcomplete ICA

constant part. func. Basis Rotation (Weiss and Freeman, 2007)

param. regularization 1 class SVM, KPCA

model is essentially useless as it does not discriminate between areas of high and low

data density.

2.2 Autoencoder

Similarly to PCA, an autoencoder neural net with a small hidden layer learns low-dimen-

sional representations. Unlike with PCA, that manifold may be non-linear if the encoder

and decoder have multiple layers. Still, the limitation on the dimensionality of the code

allows us to simply pull down on the energy of the training samples, without having to

pull up on unobserved points. Fig. 2.2 2) shows the energy surface (squared reconstruc-

tion error) generated by using a one-hidden layer autoencoder with one and three code

units (see table 2.1). While the former one produces an energysurface very similar to

PCA, the latter one fails to produce a non-flat energy1 because neither a contrastive term

is added to the loss nor the code is constrained. Fig. 2.3 2) shows the energy surface

on the spiral data when the encoder has a first hidden layer with 100 units and a second

1The energy is almost flat because of the saturation due to the hyperbolic tangent.
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hidden layer with just one unit (the code). Similarly, the decoder has a hidden layer with

100 units and an output layer with two units. The lower dimensional manifold of zero

energy is non-linear, but does not fit the data perfectly.

2.3 Negative Log Probability Loss

In order to train a “wide” autoencoder successfully, i.e. anautoencoder whose code is

higher dimensional than the input, we can add a contrastive term to the loss. Here we

consider a probabilistic approach and minimize the negative log likelihood loss. The

energy of the system is again the squared reconstruction error between input and output

of the network:

F (Y ; We,Wd) = ||Y −Wdtanh(WeY )||22

Naturally, there is no analytic expression for the log partition function, since it involves

a non-linear function in the exponential,log
∫

y
exp(−F (y; We,Wd)). Then, we must

resort to approximate methods to evaluate the derivative ofthe log partition function

as shown in eq 1.12. Since the toy problem is two-dimensional, we can get away with

replacing the integral by a discrete sum of about 10,000 datavectors at regularly-spaced

grid points. Fig. 2.2 3) shows the energy surface produced bysuch a wide autoencoder

with only 3 and 20 hidden units. The bottom plot shows the result of approximate

maximum likelihood using Contrastive Divergence (with persistent Markov Chain sam-

pling (Salakhutdinov, 2008)) in order to approximate a sample from the model distri-

bution. Notice how in this case the energy surface takes the correct shape only locally

around regions of high density of training data. Interestingly, the modelwarpsthe input
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space in order to produce such energy surface. For instance,when the autoencoder has

only 3 code units the directions learned by the decoder (bluevectors) are not the direc-

tions along which the data was generated (red vectors), and the encoder and decoder

vectors are not pointing along the same directions. The machine assigns lower energy

to the training samples, and much higher energy to the other points by properly rotating

and stretching the mapping. A solution with symmetrical encoder and decoder where

the vectors recover the directions of data generation wouldallow good reconstruction of

all points in the plane, instead.

An important characteristics of the negative log probability loss is that its value only

depends on thedifferenceof energies between training points and unobserved points.

Shifting the entire surface upwards, i.e. adding a constantto the energy, does not change

the value of the loss. This means that there is no pressure fortraining points to produce

low energy values. Since the energy is equal to the squared reconstruction error, an im-

portant consequence of this fact is thatminimizing the negative log probability loss does

not necessarily lead to good reconstruction of training samples. In general, the negative

log probability loss is the only one maximizing the likelihood of the data. This is the

loss that should be used for density estimation problems that might arise in compression

applications, for instance. However, most of the times we only need to identify regions

of high density data or to extract features. Unless the probabilistic model is simple

and the input space is low dimensional, training using this loss might require expensive

approximations, such as the use of variational and samplingmethods.
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2.4 Restricted Boltzmann Machines

In a Restricted Boltzmann Machine (Hinton, 2002), the codeZ is binary and it can have

any dimensionality. When the inputY is binary as well, we have that the encoder predic-

tion error is the same as the input reconstruction error, andthey are equal to−1
2
ZT W T Y .

The overall energy (disregarding the biases) is:E(Y, Z; W ) = −ZT W T Y . There is no

error associated to the code variables. Inference of the code is not performed by min-

imizing the energy, but by sampling the code according to thedistribution defined by

the energy. OnceZ has been picked, the reconstruction is chosen by sampling aswell.

WhenY is continuous, the code is still chosen by sampling, but the reconstruction is

set equal toσ(WZ), whereσ(.) is logistic. This corresponds to taking the average over

the distribution of binary vectorsY . Weights are updated according to contrastive diver-

gence (Carreira-Perpignan and Hinton, 2005), an approximation to the gradient of the

log-likelihood of the data.

2.5 Product of Experts

In the Product of Experts (PoE) method proposed by (Teh et al., 2003) the decoding

is missing and the code is a deterministic function of the input. The encoder consists

of a set of linear filters, rows of matrixWe, and the energy is defined as:F (Y ) =
∑

gi log(1 + z2
i ), with Z = WeY andgi, i ∈ [1, .., N ] set of coefficients that are sub-

ject to learning as well. Training uses the negative log probability loss with a gradient

step approximated by contrastive divergence. While producing the code for a given
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input is a simple matrix multiplication, generating data from the model (which is nec-

essary in the energy pull-up phase of contrastive divergence learning) requires the use

of expensive sampling methods, such as Markov Chain Monte Carlo and Hybrid Monte

Carlo methods (Neal, 1993), whose convergence is slow and difficult to assess. More re-

cently, Salakhutdinov (Salakhutdinov, 2008) introduced afaster variant of these methods

dubbed “persistent Markov Chains”. The basic idea is to maintain a set of “particles”

(input vectors) to compute the model expectations, and to update these particles by us-

ing Gibbs sampling. Sampling methods are used whenever the learning algorithm needs

to compute expectations over the model distribution or to draw samples from it, like in

contrastive divergence learning.

2.6 Contrastive Margin Loss

As with contrastive divergence, we concentrate our effort on pulling up the energies of

unobserved points that are in thevicinity of training samples. To generate one of those

points (let’s call itȲ ), we use two strategies: (a) use Langevin dynamics, and (b) sample

a point at random from a region that lies outside a small neighborhood of the training

samples. In the first case, we start from the training sample and run a few steps of a

Langevin dynamics by updating the current estimate ofȲ in the following way:

Ȳ ← Ȳ − η
∂E

∂Y
|Y =Ȳ + ǫ (2.1)

whereǫ is a random sample from a zero-mean multivariate Gaussian distribution with

a predefined isotropic covariance, andη is a step size. The process is biased towards

picking unobserved points with low energy. Unlike contrastive divergence, we use a
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contrastive loss function that does not attempt to approximate the negative log proba-

bility loss, but merely attempts to pull up on samplesȲ up to a given energy levelm,

called themargin:

L(Y ; W ) = F (Y ; W ) + max(0,m− F (Ȳ ; W )) (2.2)

For this experiment, we setm = 1. The energy surface is the squared reconstruction

error and again we consider a wide autoencoder. The result using the sampling strategy

(b) is shown in figure 2.2 4), while the energy surface obtained using the sampling

strategy (a) is shown in fig. 2.3 3). The contrastive term prevents the energy from being

flat everywhere. The margin prevents unobserved points whose energy is already high

from being pushed even further.

2.7 Sparse codes

In this sparse coding model (Lee et al., 2006; Olshausen and Field, 1997), the code has

most of its components constrained to be zero. The architecture does not have an en-

coder. The error on the code measures theL1 norm ofZ, while the reconstruction error

of the input measures the squared Euclidean distance between input and linear recon-

struction from the code. SinceZ can be higher dimensional than the input, an energy

loss equal to the squared reconstruction error would produce an energy surface equal to

0 everywhere (the linear system is underdetermined). Instead, the code is constrained to

be sparse and only few low dimensional subspaces can have lowenergy. Loss and the
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energies are equal to:

E(Y, Z; W ) =
1

2
||Y −WZ||22 + λ||Z||1

L(Y ; W ) = F (Y ; W ) = minZE(Y, Z; W ) (2.3)

The model is also summarized in table 2.1. Inference is performed by minimizing the

convex non-quadratic energyE(Y, Z; W ) overZ. By applying the algorithm to the first

toy dataset, a staircase energy surface can be retrieved andthe minima are tightly set

around the training samples as shown in fig. 2.2 5) (the directions of data generation

are actually perfectly recovered). We have also applied another sparse coding algo-

rithm (Ranzato et al., 2006) to the spiral toy dataset and got similar results as shown in

fig. 2.3 4).

2.8 K-Means Clustering

The architecture for K-means clustering is very similar to the one described for sparse

coding. Indeed, the coding produced by K-Means can be interpreted as the ultimate

sparse code because only one unit is active (non-zero) in thecode. K-Means has no

encoder, only a decoder and a reconstruction cost module, see table 2.1. The only points

that are reconstructed with zero energy are the prototypes.Every other point has higher

energy.

Figure 2.2 6) shows the energy surface obtained by training K-means with 3 and 20

prototypes on the first toy dataset, and fig. 2.3 5) shows the same on the spiral data with

20 prototypes. The minima of the energy are very localized, and many more prototypes

would have been necessary to give the right shape to the energy surface. The problem
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becomes even more serious in high dimensional spaces.

2.9 Mixture of Gaussians

The energy-based model view of a mixture of Gaussians and K-Means are very simi-

lar. A mixture of Gaussians is a “decoder-only” model lacking an encoder. Since the

joint probability isP (Y, Z = i; W ) = P (Y |Z = i)P (Z = i), with P (Y |Z = i) =

N(Wi, A
−1
i ), whereWi is the mean of thei-th component,Ai is its inverse covariance

matrix, andW denotes all the parameters of the model (means and covariances), the en-

ergy is:E(Y, Z; W ) =
∑

i δ(Z, i)(1
2
||Y −Wi||2Ai

−log det(Ai)−log P (Z = i)). We can

also introduce a constantci = − log det(Ai) − log P (Z = i) to defineE(Y, Z; W ) =
∑

i δ(Z, i)(1
2
||Y −Wi||2Ai

+ ci). If P (Z = i) and the covariances are the same for all

components (i.e.,ci = c,∀i), then this is much like the squared reconstruction error used

in K-Means. However, inference and learning are different.In a mixture of Gaussians

inference is done through marginalization,P (Y ; W ) =
∑

i P (Y |Z = i)P (Z = i),

which corresponds to settingF (Y ; W ) = − log
∑

Z e−E(Y,Z;W ), and the loss is the neg-

ative log of the data likelihood. Training a mixture of Gaussians in the energy-based

model framework would proceed by minimizing the loss by gradient descent over the

training set. After training, the constantci would converge to minus the sum of the log

of P (Z = i) and the log determinant ofAi. Usually, a mixture of Gaussian is trained

using EM algorithm instead (Dempster et al., 1977).
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2.10 Other Algorithms

There are other popular unsupervised algorithms that can beinterpreted in the energy-

based model framework. In Factor Analysis (Hinton et al., 1997) the internal represen-

tation is modelled by a multivariate isotropic Gaussian distribution and the conditional

distribution of the input given the code is another Gaussiandistribution with a diagonal

covariance matrix. Factor analysis is a linear generative model whose decoder matrix

is learned by maximizing the data likelihood. The information content of the code is

reduced by the choice of the prior on the code (penalizing itsL2 norm), and by using a

code with smaller dimensionality than the input.

Minimum Description Length (Hinton and Zemel, 1994) methodminimizes a loss

that takes into account the number of bits that are needed to encode the reconstruction

error, the number of bits required to represent the code and the number of bits to encode

the parameters of the model. These last two terms limit the information content of the

code and the complexity of the model, ensuring that the energy is not constant.

(Doi et al., 2006) proposed an encoder-decoder model to learn sparse overcomplete

representations. Their model prevents flat energy surfacesby injecting noise in the

representation, yet another way to limit the information content of the code.

Finally, Score Matching (Hyvarinen, 2005) makes sure that training samples are

local minima of the energy surface by minimizing a loss functional that is the difference

between the square of the first derivative and the second derivative of the energy with

respect to the input training data. In other words, trainingsamples are minima of the

energy surface and they are placed in regions of high curvature, thus preventing flat
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energy surfaces. (Hyvarinen, 2007) also showed that score matching is a deterministic

variant of Contrastive Divergence using Langevin dynamics for sampling.

2.11 What is not an EBM?

The EBM framework can be used to describe most unspervised learning algorithms.

However, there are some methods that are based on other principles than learning an

energy surface with training samples placed at the local minima. One such method is

calleddenoising autoencoder(LeCun, 1987; Ranzato et al., 2007a; Vincent et al., 2008).

These autoencoders are trained using as input a noisy data vector (e.g., an image patch

corrupted by additive Gaussian noise), and as target the corresponding “clean” version

of the input. The machine rather than learning to place the training samples at the

minima of the energy surface, it learnsvector fieldswhose rotational is not necessarily

zero. Hence, these vector fields may not be derived or underlie any potential (or energy).
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3
LEARNING SPARSEFEATURES

In the previous chapters we have seen that restricting the information content of the

code is an efficient strategy to prevent flat energy surfaces in high dimensional spaces.

A sparse coding algorithm represents the input data with a code that has only few sig-

nificantly non-zero components. Our interest in sparse coding algorithms is justified by

their computational efficiency, and by their ability to learn a possibly overcomplete set

of features. In such high-dimensional spaces features are more likely to become linearly

separable, making simpler a recognition system based on these representations.

Here we show how the energy-based model framework can be usedto devise an

efficient sparse coding algorithm. This algorithm is calledPredictive Sparse Decom-

position(PSD). First, we decide on the architecture. We are interested in systems that

produce features through a (1) direct and (2) non-linear mapping. A direct mapping, as

opposed to an iterative inference procedure, is desirable for its computational efficiency.

The mapping has to be non-linear because linear projectionscan capture at most second

order correlations. Moreover, a linear mapping would not beable to produce sparse

overcomplete representations because of the non-orthogonality of the filters. Therefore,

we use an architecture like in fig. 3.1 that has an encoder implementing a non-linear

function such as:

ge(Y ; We, D) = D tanh(WeY ) (3.1)

whereY ∈ RM is the input,We ∈ RN×M is a filter matrix,tanh is the hyperbolic tan-

gent non-linearity, andD ∈ RN×N is a diagonal matrix of coefficients. Other encoding

48



Figure 3.1: Graphical representation of PSD algorithm learning sparse representations.

functions will be studied in the appendix B. Since the encoderis already non-linear, the

decoder can be linear and parameterized by a set of basis functions, columns of matrix

Wd ∈ RM×N . The most natural encoding and decoding cost modules simplycompute

the squared distance of their inputs. Since we are interested in sparse codes, we also

enforce an L1 penalty on the code. We define the energy as the sum of all these error

terms, and the loss can be safely set equal to the energy sincethe code is constrained to

be sparse:

E(Y, Z; Wd,We, D) = ‖Y −WdZ‖22 + α‖Z − ge(Y ; We, D)‖22 + λ‖Z‖1

L(Y ; Wd,We, D) = F (Y ; Wd,We, D) = min
Z

E(Y, Z; Wd,We, D) (3.2)

3.1 Inference

Inferring the representationZ can be done in two ways.
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• Optimal inference consists of setting the representation to

Z∗ = arg min
z

E(Y, Z; Wd,We, D)

, by running an iterative gradient descent algorithm involving two possibly large

matrix-vector multiplications at each iteration (one for computing the value of the

objective, and one for computing the derivatives throughWd). Note that the loss

is convex with respect toZ, and other faster optimization algorithms could be

used (Lee et al., 2006).

• Approximate inferencesets the representation toge(Y ; We, D) as given in eq. 3.1,

involving only a forward propagation through the encoder, i.e. a single matrix-

vector multiplication.

The optimal inference is used during training, while the approximate inference is used

after training when the encoder is able to produce values very close to the optimal ones.

3.2 Learning

The goal of learning is to find the optimal value of the parameters in both encoder

and decoder:{We, D,Wd}. Learning proceeds by an on-line block coordinate gradient

descent algorithm, alternating the following two steps foreach training sampleY :

1. (optimal inference step)keeping the parameters fixed, minimize the energy

E(Y, Z; Wd,We, D) of eq. 3.2 with respect toZ, starting from the initial value

provided by the encoderge(Y ; We, D).
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2. (parameter update step)using the optimal value of the codeZ found at the previ-

ous step, update the parameters by one step of stochastic gradient descent on the

loss. The update is:U ← U − η ∂L
∂U

, whereU collectively denotes{We, D,Wd}

andη is the step size. The columns ofWd are then re-scaled to unit norm.

Minimizing this energy with respect toZ produces a representation that simultaneously

reconstructs the input, is sparse, and is not too different from the predicted representa-

tion. If multiple solutions to the original loss (without the code prediction term) exist,

minimizing this compound loss will drive the system towardsproducing basis func-

tions and optimal representations that are easily predictable. After training, the function

ge(Y ; We, D) will provide good and smooth approximations to the optimal sparse repre-

sentations. Also, the columns ofWd are rescaled to unit norm after every update because

otherwise the loss can be made smaller by multiplying and dividing Wd andZ by the

same constant. SinceWd is normalized and thetanh saturates, the encoder needs the

trainable diagonal matrixD of coefficients in order to make the system able to adapt to

different scaling of the input data.

Interestingly, we recover different algorithms dependingon the value of the hyper-

parameterα of eq. 3.2:

• α = 0. The loss of eq. 3.2 reduces to the one in eq. 2.3. The learningalgorithm

becomes similar to (Olshausen and Field, 1997)’s sparse coding algorithm. The

encoder can be trainedseparatelyfrom the set of basis functionsWd.

• α ∈ (0, +∞). The parameters are updated taking into account also the predictabil-

ity constraint on the representation.

51



• α → +∞. The additional constraint on the representation (the second term in

eq. 3.2) becomes an equality, i.e.Z = ge(Y ; We, D), and the model becomes sim-

ilar to an auto-encoder neural network with a sparsity regularization term acting

on the internal representationZ instead of a regularization acting on the parame-

tersWe andWd.

In this paper, we always setα = 1. Sec. 3.3.2 shows that training the encoder after

training the set of basesWd yields similar performance in terms of recognition accu-

racy. When the encoder is trained afterwards, the approximate representation is usually

less sparse and the overall training time increases considerably. Finally, additional ex-

periments (see appendix B) show that training the system as anauto-encoder (α→ +∞)

provides a very fast and efficient algorithm that can producegood representations when

the dimensionality of the representation is not much greater than the input dimension-

ality, i.e. N ≃ M . When the sparse representation is highly overcomplete the block-

coordinate descent algorithm withα ∈ (0, +∞) provides better features.

In the appendix A we give yet another interpretation of the encoder, as an approxima-

tion to the mean parameter of a Gaussian variational approximation to the true posterior

distribution.

3.3 Experiments

First, we demonstrate that the proposed algorithm (PSD) is able to produce good fea-

tures for recognition by comparing to other unsupervised feature extraction algorithms,

principal components analysis (PCA), restricted Boltzmann machine (RBM) (Hinton,
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2002), and sparse encoding symmetric machine (SESM) (Ranzato et al., 2007b). Then,

we compare the recognition accuracy and inference time of PSD feed-forward approx-

imation to feature sign (Lee et al., 2006), the fastest exactsparse coding algorithm, on

the Caltech 101 dataset (Fei-Fei et al., 2004).

3.3.1 Comparing PSD to PCA, RBM, and SESM

The MNIST dataset (MNI, ) has a training set with 60,000 handwritten digits of size

28x28 pixels, and a test set with 10,000 digits. Each image ispreprocessed by normaliz-

ing the pixel values so that their standard deviation is equal to 1. In this experiment the

sparse representation has 256 units. This internal representation is used as a global fea-

ture vector and fed to a linear regularized logistic regression classifier. Fig. 3.3.1 shows

the comparison between PSD (using feed-forward approximate codes) and, PCA, SESM

(Ranzato et al., 2007b), and RBM (Hinton, 2002). Even though PSDprovides theworst

reconstruction error , it can achieve thebest recognition accuracyon the test set under

different number of training samples per class.

3.3.2 Comparing PSD to Exact Sparse Coding Algorithms

In order to quantify how well our jointly trained encoder approximates the optimal rep-

resentations obtained by minimizing the loss in eq. 3.2 and the optimal representations

that are produced by an exact algorithm minimizing eq. 2.3 such as feature sign (Lee

et al., 2006) (FS), we measure the average signal to noise ratio1 (SNR) over a test dataset

of 20,000 natural image patches of size 9x9. The dataset of images was constructed by

1SNR = 10log10(σ
2

signal/σ2

noise)
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Figure 3.2: Classification error on MNIST as a function of reconstruction error using

raw pixel values and, PCA, RBM, SESM and PSD features. Left-to-Right : 10-100-

1000 samples per class are used for training a linear classifier on the features. The

unsupervised algorithms were trained on the first 20,000 training samples.

randomly picking 9x9 patches from the images of the Berkeley dataset converted to

gray-scale values, and these patches were normalized to have zero mean and unit stan-

dard deviation. The algorithms were trained to learn sparsecodes with 64 units2.

We compare representations obtained by “PSD Encoder” usingtheapproximatein-

ference, “PSD Optimal” using theoptimalinference, “FS” minimizing eq. 2.3 with (Lee

et al., 2006), and “Regressor” that is separately trained to approximate the exact optimal

codes produced by FS. The results given in table 3.1 show thatthe PSD encoder achieves

about the same SNR on the true optimal sparse representations produced by FS, as the

Regressor that was trained to predict these representations.

Despite the lack of absolute precision in predicting the exact optimal sparse codes,

2Principal component analysis shows that the effective dimensionality of 9x9 natural image patches

is about 47 since the first 47 principal components capture the 95% of the variance in the data. Hence, a

64-dimensional feature vector is actually an overcompleterepresentation for these 9x9 image patches.
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Table 3.1: Comparison between representations produced by FS (Lee et al., 2006) and

PSD. In order to compute the SNR, the noise is defined as(Signal−Approximation).

Comparison (Signal / Approximation)Signal to Noise Ratio (SNR)

1. PSD Optimal / PSD Encoder 8.6

2. FS / PSD Optimal 5.2

3. FS / PSD Encoder 3.1

4. FS / Regressor 3.2

PSD encoder achieves even better performance in recognition. The Caltech 101 dataset

is pre-processed in the following way (Pinto et al., 2008):1) each image is converted

to gray-scale,2) it is down-sampled so that the longest side is 151 pixels,3) the mean

is subtracted and each pixel is divided by the image standarddeviation,4) the image is

locally normalized by subtracting the weighted local mean from each pixel and dividing

it by the weighted norm if this is larger than 1 with weights forming a 9x9 Gaussian

window centered on each pixel, and5) the image is 0-padded to 143x143 pixels. 64

feature detectors (either produced by FS or PSD Encoder) were plugged into an image

classification system (Pinto et al., 2008) thatA) used the sparse coding algorithms con-

volutionally to produce 64 feature maps of size 128x128 for each pre-processed image,

B) applied an absolute value rectification,C) computed an average down-sampling to a

spatial resolution of 30x30 andD) used a linear SVM classifier to recognize the object

in the image (see fig. 3.3(b)). Using this system with 30 training images per class we

can achieve53% accuracy on Caltech 101 dataset.

It is important to observe that we mustrectify the features in order to achieve good
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Figure 3.3:a) 256 basis functions of size 12x12 learned by PSD, trained on the Berkeley

dataset. Each 12x12 block is a column of matrixWd in eq. 3.2, i.e. a basis function.b)

Object recognition architecture: linear adaptive filter bank, followed byabs rectification,

average down-sampling and linear SVM classifier.

generalization. In other words, the features used for recognition are not the code units,

but their sparsity errors (i.e., their absolute value). If we remove the absolute value

rectification the accuracy on the test set drops to 16%, whileall training samples are

still correctly classified. We conjecture that a rectification is necessary for a twofold

reason. First, it improves generalization by removing the polarity of edges which is

irrelevant for recognition, since it is important to know there is an edge, but not if the

object is brighter or darker than the background. Secondly,it avoids cancellations due

to the band-pass nature of the learned filters that precede the anti-aliasing low-pass filter

before the spatial down-sampling. These cancellations would propagate a very noisy

signal to the classifier.
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Since FS finds exact sparse codes, its representations are generally sparser than those

found by the PSD encoder trained with the same value of sparsity penaltyλ. Hence, we

compare the recognition accuracy against themeasuredsparsity level of the representa-

tion as shown in fig. 3.4(b). PSD is not only able to achieve better accuracy than exact

sparse coding algorithms, but also, it does it much more efficiently. Fig. 3.4(a) demon-

strates that our feed-forward predictor extracts featuresmore than 100 times faster than

feature sign. In fact, the speed up is over 800 when the sparsity is set to the value that

gives the highest accuracy shown in fig. 3.4(b).

Finally, we observe that these sparse coding algorithms aresomewhat inefficient

when applied convolutionally. Many feature detectors are the translated versions of each

other as shown in fig. 3.3(a). Hence, the resulting feature maps are highly redundant.

This might explain why the recognition accuracy tends to saturate when the number of

filters is increased as shown in fig. 3.4(c).

3.3.3 Stability

In order to quantify the stability of PSD and FS, we investigate their behavior under nat-

urally changing input signals. For this purpose, we train a basis set with 128 elements,

each of size 9x9, using the PSD algorithm on the Berkeley (Ber, )dataset. This basis

set is then used with FS on the standard “foreman” test video together with the PSD

Predictor. We extract 784 uniformly distributed patches from each frame with a total of

400 frames.

For each patch, a 128 dimensional representation is calculated using both FS and the

PSD predictor. The stability is measured by the number of times a unit of the representa-

57



0.1 0.2 0.3 0.4 0.5 0.6
0

200

400

600

800

λ

S
pe

ed
 U

p

(a)

0 0.05 0.1 0.15 0.2
47

48

49

50

51

52

53

Sparsity Penalty per Code Unit

A
ve

ra
ge

 A
cc

ur
ac

y 
pe

r 
C

la
ss

 (
%

)

 

 

PSD Predictor
Regressor
FS
PSD Optimal

(b)

0 20 40 60 80
30

35

40

45

50

55

Number of Basis Functions

R
ec

og
ni

tio
n 

A
cc

ur
ac

y

(c)

Figure 3.4:a) Speed up for inferring the sparse representation achieved by the PSD en-

coder over FS for a code with 64 units. The feed-forward extraction is more than 100

times faster.b) Recognition accuracy versus measured sparsity (averageℓ1 norm of the

representation) of the PSD encoder compared to the to the representation of FS algo-

rithm. A difference within 1% is not statistically significant. c) Recognition accuracy as

a function of the number of basis functions.

tion changes its sign, either negative, zero or positive, between two consecutive frames.

Since the PSD predictor does not generate exact zero values,we threshold its output

units in such a way that the average number of zero units equals the one produced by FS

(roughly, only the4% of the units are non-zero). The transition probabilities are given

in Figure 3.5. It can be seen from this figure that the PSD predictor generates a more

stable representation of slowly varying natural frames compared to the representation

produced by the exact optimization algorithm.
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Figure 3.5: Conditional probabilities for sign transitionsbetween two consecutive

frames. For instance,P (−|+) shows the conditional probability of a unit being neg-

ative given that it was positive in the previous frame. The figure on the right is used as

baseline, showing the conditional probabilities computedon pairs ofrandomframes.

59



4
LEARNING INVARIANT

REPRESENTATIONS

In this chapter we study methods to learn invariant representations. We are interested in

learning features that are invariant to transformations that are irrelevant for recognition.

By mapping similar input data vectors into the same feature vector, we can make much

easier the training of a subsequent supervised classifier. This is a typical problem in

vision. For instance, consider the problem of recognizing generic object categories in

images. Ideally, we would like to learn a representation that is invariant, or robust, to

changes in illumination, position, scale, and orientationof objects. If we had such repre-

sentation, then we could train a classifier using more compact representations and fewer

labeled samples per class. Since most applications requiring invariant representations

are in the computer vision field, we refer to vision problems in this chapter. However,

the methods are general and can be applied to any other domain.

The most successful and most commonly-used (although not adaptive) invariant de-

scriptors, such as SIFT and HoG (Lowe, 2004; Dalal and Triggs, 2005), are computed

on patches extracted at a regularly spaced grid on the input image. Each patch is con-

volved with a filter bank (often consisting of oriented edge detectors), the outputs of

which are rectified and often normalized and quantized. Then, the outputs of each filter

are spatially pooled using a simple addition or a max operator, so as to build local bags

of features. The pooling operation makes the descriptor robust to minor changes in the

60



position of individual features. This architecture is somewhat similar (and inspired by)

that of the early areas of the mammalian visual cortex: simple cells detect oriented edges

at various locations and scales (playing the same role as thefilter bank). Highly-active

simple cells inhibit other cells at neighboring locations and orientations (like the nor-

malization), while complex cells spatially pool the rectified outputs of complex cells, so

as to create a local invariance to small shifts (like the pooling operation).

The problem oflearning invariant image features has become a topic of growing

interest in recent years. Supervised learning methods havelong been used in conjunction

with Convolutional Networks to learn low-level, locally invariant features that are tuned

to the task at hand (LeCun et al., 1998; LeCun et al., 2004), but these methods require

large numbers of labelled samples. A number of different proposals have appeared for

unsupervised learning of locally-invariant descriptors (Wiskott and Sejnowski, 2002;

Foldiak, 1991), which also use sparsity criteria (Hyvarinen and Hoyer, 2001; Osindero

et al., 2006; Hyvarinen and Koster, 2007; Ranzato et al., 2007c; Cadieu and Olshausen,

2008; Kavukcuoglu et al., 2009).

Some methods assume knowledge of the transformations to which the representation

has to be invariant (Ranzato et al., 2007c). This is the simplest case and it will be

described in section 4.1. There are two ways of learning suchrepresentations. The first

one is to “hard-wire” the invariance in the architecture. For instance, a rotation invariant

representation can be computed by applying a filter bank of edge detectors in different

orientations, followed by a max operator across the corresponding feature maps. The

output of the max operator is the same no matter the orientation of the input pattern,

achieving invariance to rotation. The second way is to applythe transformation to each
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training sample, and to train the system to produce the same representation when taking

as input either the original or the transformed input.

A more ambitious and difficult problem is to learn representations that are invariant

to learnedtransformations. At a very high level, these methods use thesame princi-

ples as before. In slow feature analysis (Wiskott and Sejnowski, 2002) the system is

trained on time-varying natural signals and the internal representation is forced to vary

smoothly across time, achieving invariance (or robustness) to small distortions. Other

methods learn transformations by relying on a carefully chosen architecture (Cadieu and

Olshausen, 2008), or by trying to learn how to pool similar features (Kohonen, 1996;

Hyvarinen and Hoyer, 2000; Hyvarinen and Koster, 2007). Section 4.2 will describe an

algorithm that produces representations invariant to learned transformations by pooling

features that are similar, while enforcing sparsity acrosspools of features (Kavukcuoglu

et al., 2009). Overall, these algorithms are simple extensions of sparse coding algo-

rithms, like the one described in the previous chapter.

4.1 Learning Locally-Shift Invariant Representations

An image patch can be modeled as a collection of features placed at particular locations

within the patch. A patch can be reconstructed from the list of features that are present

in the patch together with their respective locations. In the simplest case, the features

are templates (or basis functions) that are combined additively to reconstruct a patch. If

we assume that each feature can appear at most once within a patch, then computing a

shift-invariant representation comes down to applying each feature detector at all loca-

tions in the patch, and recording the location where the response is the largest. Hence
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Figure 4.1: Left Panel: (a) sample images from the “two bars”dataset. Each sample con-

tains two intersecting segments at random orientations andrandom positions. (b) Non-

invariant features learned by an auto-encoder with 4 hiddenunits. (c) Shift-invariant

decoder filters learned by the proposed algorithm. The algorithm finds the most natural

solution to the problem. Right Panel (d): architecture of theshift-invariant unsupervised

feature extractor applied to the two bars dataset. The encoder convolves the input im-

age with a filter bank and computes the max across each featuremap to produce the

invariant representation. The decoder produces a reconstruction by taking the invariant

feature vector (the “what”), and the transformation parameters (the “where”). The re-

constructions is the sum of each decoder basis function at the position indicated by the

transformation parameters, and weighted by the corresponding feature component.
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the invariant feature vector records the presence or absence of each feature in the patch

(whatis in the image), while the so calledtransformation parametersrecord the location

at which each feature output is the largest (whereeach feature appears in the image)123.

In general, the feature outputs need not be binary. Before describing the learning algo-

rithm, we show how a trained system operates using a toy example as an illustration.

Each input sample is a binary image containing two intersecting bars of equal length, as

shown in fig. 4.1(a). Each bar is 7 pixels long, has 1 of 4 possible orientations, and is

placed at one of 25 random locations (on a 5×5 grid) at the center of a 17×17 image

frame. The input image is passed through 4 convolutional filters of size 7×7 pixels. The

convolution of each detector with the input produces an 11×11 feature map. Amax-

pooling layer finds the largest value in each feature map, recording the position of this

value as thetransformation parameterfor that feature map. The invariant feature vector

collects these max values, recording the presence or absence of each feature indepen-

dently of its position. No matter where the two bars appear inthe input image, the result

of themax-poolingoperation will be identical for two images containing bars of identi-

1This matched filterkind of approach is susceptible to failure because of interference from nearby

features and because of non-zero responses of the filter to other patterns. However, the algorithm is very

robust in practice and it seems that the minimization of the reconstruction error forces the system to

resolve the interference problem.
2The representation might be invariant to other transformations than shift. This might be undesired

depending on the application. It is an open research question how to achieve invariance exclusively to a

given type of transformation preserving the information relevant to achieve a given task.
3In some applications, the information about the location ofthe features might carry useful information

that cannot be discarded. One possibility is to use this algorithm on overlappingwindows in order to

implicitly retain the information about position in the representation throughcross-predictive coding.
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cal orientations at different locations. The reconstructed patch is computed by placing

each code value at the proper location in the decoder featuremap, using the transforma-

tion parameters obtained in the encoder, and setting all other values in the feature maps

to zero. The reconstruction is simply the sum of the decoder basis functions (which are

essentially identical to the corresponding filters in the encoder) weighted by the feature

map values at all locations.

A solution to this toy experiment is one in which the invariant representation encodes

the information about which orientations are present, while the transformation param-

eters encode where the two bars appear in the image. The oriented bar detector filters

shown in the figure are in fact the ones discovered by the learning algorithm described

in the next section. In general, this architecture is not limited to binary images, and can

be used to compute shift invariant features with any number of components.

4.1.1 Learning Algorithm

The encoder is given by two functionsZ = EncZ(Y ; We) and U = EncU(Y ; We)

whereY is the input image,We is the trainable parameter vector of the encoder (the

filters), Z is the invariant feature vector, andU is the transformation parameter vector.

Similarly, the decoder is a functionDec(Z,U ; Wd) whereWd is the trainable parameter

vector of the decoder (the basis functions). The input reconstruction errorEd mea-

sures the square Euclidean distance between the inputY and its reconstructionEd =

||Y − Dec(Z,U ; Wd)||2. Likewise, the code prediction error is the squared Euclidean

distance between the invariant code produced by the encoderand the optimal code:

Ee = ||Z − EncZ(Y ; We)||2. Learning proceeds by block-coordinate descent overZ

65



and the parameters in encoder and decoder:

1. First, propagate the inputY through the encoder to produce the predicted code

Z0 = EncZ(Y ; We) and the transformation parametersU = EncU(Y ; We) that

are then copied into the decoder. KeepingU fixed, and usingZ0 as initial value

for the codeZ, minimize the energyEd+Ee with respect to the codeZ by gradient

descent to produce the optimal codeZ∗.

2. Update the weights in the encoder and decoder by one step ofgradient descent so

as to minimize the decoder energy.

Note that this is ageneral learning algorithmthat is suitable for any encoder-decoder

architecture, and not specific to a particular kind of feature or architecture choice. Any

differentiable module can be used as encoder or decoder. In particular, we can use the

encoder-decoder architecture described in chapter 3 by adding to the energy a sparsity

penalty on the code, and by using a linear decoder and a simplenon-linear encoder, for

instance. This would produce feature that are not only sparse, but also shift-invariant.

We tested the proposed architecture and learning algorithmon the “two bars” toy

example described in the previous section. In this experiment, both the encoder and the

decoder are linear functions of the parameters (linear filters and linear basis functions)

and the energy is simply the sum of encoder and decoder reconstruction error. The input

images are 17×17 binary images containing two bars in different orientations: horizon-

tal, vertical and the two diagonals as shown in fig. 4.1(a). The encoder contains four 7×7

linear filters, plus four 11×11 max-pooling units. The decoder contains four 7×7 linear

basis functions. The parameters are randomly initialized.The learned basis functions
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Figure 4.2: Fifty 20×20 filters learned in the decoder by the sparse and shift invari-

ant learning algorithm after training on the MNIST dataset of handwritten digits of size

28×28 pixels. A digit is reconstructed as linear combination ofa small subset of these

features positioned at one of 81 possible locations (9 × 9), as determined by the trans-

formation parameters produced by the encoder.

are shown in fig. 4.1(c), and the encoder filters in fig. 4.1(d).After training on a few

thousand images, the filters converge as expected to the oriented bar detectors shown in

the figure. The resulting 4-dimensional representation extracted from the input image is

translation invariant. These filters and the correspondingrepresentation differ strikingly

from what can be achieved by PCA or an auto-encoder neural network. For comparison,

an auto-encoder neural network with 4 hidden units was trained on whole images from

this dataset. The filters (weights of the hidden units) are shown in fig. 4.1(b). There is

no appearance of oriented bar detectors, and the resulting codes are not shift invariant.

In fig. 4.2 we show an example of sparse and shift invariant features (using an exten-

sion of the sparse coding algorithm described in (Ranzato et al., 2006), but similar results

are achieved by using the algorithm proposed in chapter 3). The algorithm is applied

to the handwritten digits of the MNIST dataset (MNI, ), whichconsists of quasi-binary
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images of size 28×28 pixels. We considered a set of fifty20 × 20 filters in both en-

coder and decoder that are applied to the input at 81 locations (9 × 9 grid), over which

the max-pooling is performed. Hence image features can moveover those 81 positions

while leaving the invariant feature vector unchanged. Because the feature vectors must

be sparse, the learned features (shown in fig. 4.2) look like part detectors. Each digit

can be expressed as a linear combination of a small number of these 50 parts, placed at

one of 81 locations in the image frame. Unlike with the non-invariant method described

in (Ranzato et al., 2006), no two filters are shifted versions of each other. Moreover,

the reconstruction error is reduced by a factor of two compared to the non-invariant

approach.

4.2 Learning Representations Invariant to Generic Trans-

formations

The algorithm proposed in this section (Kavukcuoglu et al.,2009) is similar to the pre-

vious one in the fact that it combines feature detection and pooling during learning,

but it does not assume anything about the transformation andthe filters are not applied

convolutionally.

Our aim is to learn the filter bank stage and the pooling stage simultaneously, in

such a way that filters belonging to the same pool extract similar features. Our solution

is to pre-wire (before learning) which filters are pooled together, and to let the filters

learn. The main idea, borrowed from (Hyvarinen and Koster, 2007), is to minimize a

sparsity criterion on the pooling units. As a result, filtersthat are pooled together end up
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extracting similar features.

Several authors have proposed methods to learn pooled features (Kohonen, 1996;

Hyvarinen and Hoyer, 2000; Hyvarinen and Koster, 2007). Whenthe filters that are

pooled together are organized in a regular array (1D or 2D), the filters formtopographic

mapsin which nearby filters extract similar features (Osindero et al., 2006; Hyvarinen

and Hoyer, 2001). In this work for the first time, a trainable topographically-organized

feature map is also used for extracting locally invariant image descriptors for image

recognition.

This is an extension to the sparse coding algorithm proposedin chapter 3 that over-

comes one of the most well-known idiosyncrasy, namely the instability of the repre-

sentation. If the input pattern is slightly distorted, the representation might drastically

change. The use of a direct encoding regressor partially solves this issue because it

makes the mapping smoother (see sec. 3.3.3), but the use of invariant features further

improves the stability as demonstrated in sec. 4.2.2.

4.2.1 Modeling Invariant Representations

Let us consider the standard sparse coding algorithm introduced by Olshausen and Field (Ol-

shausen and Field, 1997). The loss is equal to:

L(Y, Z; Wd) = ‖Y −WdZ‖22 + λ‖Z‖1 (4.1)

We now describe how the sparsity term in eq. 4.1 can be modifiedto create coefficients

that are invariant to perturbations of the input signal.

The overall idea (Hyvarinen and Koster, 2007) is to arrange theZ ’s into a 2D map

(or some other topology) and then pool the squared coefficients ofZ across overlapping
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windows. Then, the square of the the filter outputs within each sub-window are summed,

and its square root is computed. More formally, let the map ofZ containK overlapping

neighborhoodsPi. Within each neighborhoodi, we sum the squared coefficientsZj

(weighted by a fixed Gaussian weighting function centered inthe neighborhood) and

then take the square root. This gives the activationvi =
√

∑

j∈Pi
wjz2

j , wherewj are

the Gaussian weights. The overall sparsity penalty is the sum of each neighborhood’s

activation:
∑K

i=1 vi. Figure 4.3(a) illustrates this scheme. Thus, the overall objective

function is now:

LI =
1

2
||Y −WdZ||22 + λ

K
∑

i=1

√

∑

j∈Pi

wjz2
j (4.2)

The modified sparsity term has a number of subtle effects on the nature ofZ that are

not immediately obvious:

• The square root in the sum overi encourages sparse activationsacrossneighbor-

hoods since a few large activations will have lower overall cost than many small

ones.

• Withineach neighborhoodi, the coefficientszj are encouraged to be similar to one

another due to thez2
j term (which prefers many small coefficients to a few large

ones, see also fig. 4.4). This has the effect of encouraging similar basis functions

in Wd to be spatially close in the 2D map.

• As the neighborhoods overlap, these basis functions will smoothly vary across the

map, so that the coefficientszj in any given neighborhoodi will be similar.
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Figure 4.3: (a): The structure of the block-sparsity term which encouragesthe basis

functions inWd to form a topographic map. See text for details.(b): Overall architecture

of the loss function, as defined in eq. 4.3. In the generative model, we seek a feature

vectorZ that simultaneously approximate the inputY via a dictionary of basis functions

Wd and also minimize a sparsity term. Since performing the inference at run-time is

slow, we train a prediction functionge(Y ; W ) (dashed lines) that directly predicts the

optimalZ from the inputY . At run-time we use only the prediction function to quickly

computeZ from Y , from which the invariant featuresvi can be computed.
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• If the size of the pooling regions is reduced to a singleZ element, then the sparsity

term is equivalent to that of eq. 4.1.

The modified sparsity term means that by minimizing the loss functionLI in eq. 4.2

with respect to both the coefficientsZ and the dictionaryWd, the system learns a set of

basis functions inWd that are laid out in atopographic mapon the 2D grid.

Since the nearby basis functions in the topographic map are similar, the coefficients

zj will be similar for a given inputY . This also means that if this input is perturbed

slightly then the pooled response within a given neighborhood will be minimally af-

fected, since a decrease in the response of one filter will be offset by an increased re-

sponse in a nearby one. Hence, we can obtain a locally robust representation by taking

the pooled activationsvi as features, rather thanZ as is traditionally done.

Since invariant representations encode similar patterns with the same representation,

they can be made more compact. Put another way, this means that the dimensionality of

v can be made lower than the dimensionality ofZ without loss of useful information.

This has the triple benefit of requiring less computation to extract the features from an

image, requiring less memory to store them, and requiring less computation to exploit

them.

The 2D map overZ uses circular boundary conditions to ensure that the pooling

wraps smoothly around at the edges of the map.

In order to make the algorithm efficient at test time, that is,to speed up inference

of the invariant representation, we use an encoder to directly predictZ from Y and we

add a corresponding penalty in the loss function as already done in the previous chapter.
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Figure 4.4: Level sets induced by different sparsity penalties (the figure was taken from

Yuan and Lin’s paper (Yuan and Lin, 2004)). There are two pools. The first one has two

units(Z1, Z2), and the second one has only one unit(Z3). The first row shows the level

set in 3D, while the second and the third rows show the projections on the coordinate

planes. The first column is the L1 norm of the units, the secondcolumn is the proposed

sparsity penalty (grouped lasso), and the third one is the L2norm of the units. The

proposed sparsity penalty enforces sparsity across pools,but not within a pool.
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Linking to the previous chapter, the overall energy function and loss are:

E(Y, Z; Wd,We, D) = ‖Y −WdZ‖22 + α‖Z − ge(Y ; We, D)‖22 + λ

K
∑

i=1

√

∑

j∈Pi

wjZ2
j

LIPSD(Y ; Wd,We, D) = F (Y ; Wd,We, D) = min
Z

E(Y, Z; Wd,We, D) (4.3)

where the encoding mapping is the same one used before:ge(Y ; We, D) = D tanh(WeY ).

The learning algorithm is unchanged, and it consists of a block coordinate gradient

descent optimization alternating a minimization over the codeZ, and over the parame-

ters in both encoder and decoder (see sec. 3.2).

Once the parameters are learned, computing the invariant representationV can be

performed by a simple feed-forward propagation through theencoderge(Y ; We, D),

and then by mappingZ into V throughVi =
√

∑

j∈Pi
wjZ2

j . We will call this method

Invariant Predictive Sparse Decomposition (IPSD).

4.2.2 Experiments

We first study the topographic map produced by our training scheme, before exploring

the properties of the invariant features obtained. First, we make an empirical evaluation

of the invariance achieved by these representations under translations and rotations of

the input image. Second, we assess the discriminative powerof these invariant repre-

sentations on recognition tasks in three different domains: (i) generic object categories

using the Caltech 101 dataset; (ii) generic object categories from a dataset of very low

resolution images and (iii) classification of handwriting digits using the MNIST dataset.

We show examples from the latter two datasets in Fig. 4.7. In these experiments we

compare our learned representations with the SIFT descriptor (Lowe, 2004) that is con-
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Figure 4.5: Topographic map of feature detectors learned from natural image patches

of size 12x12 pixels by optimizing the loss in eq. 4.3. There are 400 filters that are

organized in 6x6 neighborhoods. Adjacent neighborhoods overlap by 4 pixels both

horizontally and vertically. Notice the smooth variation within a given neighborhood

and also the circular boundary conditions.
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Figure 4.6: Analysis of learned filters by fitting Gabor functions, each dot corresponding

to a filter. Left: Center location of fitted Gabor. Right: Polar map showing the joint

distribution of orientation (azimuthally) and frequency (radially in cycles per pixel) of

Gabor fit.
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Figure 4.7: Left: Examples from the MNIST dataset. Right: Examples from the tiny

images. We use gray-scale images in our experiments.

sidered a state-of-the-art descriptor in computer vision.Finally, we examine the compu-

tational cost of computing our features on an image.

Learning the topographic map

Fig. 4.5 shows a typical topographic map learned by the proposed method from natural

image patches. Each tile shows the filter inWd corresponding to a particularZi. In the

example shown, the input images are patches of size 12x12 pixels, and there are 400

basis functions, and hence, 400 unitsZi arranged in a 20x20 lattice. The neighborhoods

over which the squared activities ofZi’s are pooled are 6x6 windows, and they overlap

by 4 in both the vertical and the horizontal direction. The properties of these filters are

analyzed by fitting Gabor functions and are shown in Fig. 4.6.
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By varying the way in which the neighborhoods are pooled, we can change the

properties of the map. Larger neighborhoods make the filtersin each pool increasingly

similar. A larger overlap between windows makes the filters vary more smoothly across

different pools. A large sparsity valueλ makes the feature detectors learn less localized

patterns that look like those produced by k-means clustering because the input has to

be reconstructed using a small number of basis functions. Onthe other hand, a small

sparsity value makes the feature detectors look like non-localized random filters because

any random overcomplete basis set can produce good reconstructions (effectively, the

first term in the loss of eq. 4.3 dominates).

The map in fig. 4.5 has been produced with an intermediate sparsity level of λ =

3. The chosen parameter setting induces the learning algorithm to produce a smooth

map with mostly localized edge detectors in different positions, orientations, and scales.

These features are nicely organized in such a way that neighboring units encode similar

patterns. A unitVi that connects to the sum of the squares of unitsZj in a pool is invari-

ant because these units represent similar features, and small distortions applied to the

input, while slightly changing theZj ’s within a pool, are likely to leave the correspond-

ing Vi unaffected.

While the sparsity level, the size of the pooling windows and their overlap should

be set by cross-validation, in practice we found their exactvalues does not significantly

affect the kind of features learned. In other words, the algorithm is quite robust to the

choice of these parameters, probably because of the many constraints enforced during

learning.
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Analyzing Invariance to Transformations

In this experiment we study the invariance properties of thelearned representation under

simple transformations. We have generated a dataset of 16x16 natural image patches

under different translations and rotations. Each patch is presented to our predictor that

produces a 128 dimensional descriptor (chosen to be the samesize as SIFT) ofV ’s.

A representation can be considered invariant if it does not change significantly as the

input is transformed. Indeed, this is what we observe in Fig.4.8. We compare the mean

squared difference between the descriptor of the referencepatch and the descriptor of

the transformed version, averaged over many different image patches. The figure shows

ours against SIFT with a varying horizontal shift for 0 and 25degrees rotation. Very

similar results are found for vertical shifts and other rotation angles.

On the left panel, we can see that the mean squared error (MSE)between the rep-

resentation of the original patch and its transformation increases linearly as we increase

the horizontal shift. The MSE of our representation is generally lower than the MSE

produced by features that are computed using SIFT, a non-rotation invariant version of

SIFT, and a non-invariant representation produced by the proposed method (that was

trained with pools of size 1x1, like PSD described in the previous chapter). A similar

behavior is found when the patch is not only shifted, but alsorotated. When the shift is

small, SIFT has lower MSE. But as soon as the translation becomes large enough that

the input pattern falls in a different internal sub-window,the MSE increases consider-

ably. Instead our learned representations seem to be quite robust to shifts, with an overall

lower area under the curve. Note also that traditional sparse coding algorithms are prone

to produce unstable representations under small distortions of the input. Because each

79



0 4 8 12 16
0

0.5

1

1.5
rotation 0 degrees

horizontal shift

N
or

m
al

iz
ed

 M
S

E

0 4 8 12 16
0.2

0.4

0.6

0.8

1

1.2
rotation 25 degrees

horizontal shift
N

or
m

al
iz

ed
 M

S
E

 

 

SIFT non rot. inv.
SIFT
Our alg. non inv.
Our alg. inv.

Figure 4.8: Mean squared error (MSE) between the representation of a patch and its

transformed version. On the left panel, the transformed patch is horizontally shifted. On

the right panel, the transformed patch is first rotated by 25 degrees and then horizon-

tally shifted. The curves are an average over 100 patches randomly picked from natural

images. Since the patches are 16x16 pixels in size, a shift of16 pixels generates a trans-

formed patch that is quite uncorrelated to the original patch. Hence, the MSE has been

normalized so that the MSE at 16 pixels is the same for all methods. This allows us to

directly compare different feature extraction algorithms: non-orientation invariant SIFT,

SIFT, the proposed method trained to produce non-invariantrepresentations (i.e. pools

have size 1x1), and the proposed method trained to produce invariant representations.

All algorithms produce a feature vector with 128 dimensions. Our method produces

representations that are more invariant to transformations than the other approaches for

most shifts.
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input has to be encoded with a small number of basis functions, and because the basis

functions are highly tuned in orientation and location, a small change in the input can

produce drastic changes in the representation. This problem is partly alleviated by our

approximate inference procedure that uses a smooth encoderfunction. However, this ex-

periment shows that this representations is still fairly unstable under small distortions,

when compared to the invariant representations produced bythe invariant algorithm and

SIFT.

Generic Object Recognition

We now use our invariant features for object classification on the Caltech 101 dataset (Fei-

Fei et al., 2004) of 101 generic object categories. We use 30 training images per class

and up to 20 test images per class. The images are randomly picked, and pre-processed

as described in sec. 3.3.2.

We have trained our method on 50,000 16x16 patches randomly extracted from the

pre-processed images. The topographic map used has size 32x16, with the pooling

neighborhoods being 6x6 and an overlap of 4 coefficients between neighborhoods. Hence,

there are a total of 512 units that are used in 128 pools to produce a 128-dimensional

representation that can be compared to SIFT. After trainingour algorithm in an unsuper-

vised way, we use the encoder function to infer the representation of one whole image

by: (i) running the encoder on 16x16 patches spaced by 4 pixels to produce 128 maps

of features of size 34x34; (ii) the maps of features are low-pass filtered with a boxcar

filter to avoid aliasing; (iii) the maps are then projected along the leading 3060 principal

components (equal to the number of training samples), and (iv) a supervised linear SVM

is trained to recognize the object in each corresponding image. The overall scheme is
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Figure 4.9: Diagram of the recognition system. This is composed of an invariant feature

extractor that has been trained unsupervised, followed by asupervised linear SVM clas-

sifier. The feature extractor process the input image through a set of filter banks, where

the filters are organized in a two dimensional topographic map. The map defines pools

of similar feature detectors whose activations are first non-linearly transformed by a hy-

perbolic tangent non-linearity, and then, multiplied by a gain. Invariant representations

are found by taking the square root of the sum of the squares ofthose units that belong

to the same pool. The output of the feature extractor is a set of maps of features that can

be fed as input to the classifier. The filter banks and the set ofgains is learned by the

algorithm. Recognition is very fast, because it consists of adirect forward propagation

through the system.
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shown in Fig. 4.9. Table 4.1 reports the recognition resultsfor this experiment. Us-

ing a linear SVM classifier our features outperforms SIFT andthe multi-scale Gabor

system proposed by Serre and Poggio (Serre et al., 2005). However, if rotation invari-

ance is removed from SIFT the performance becomes comparable to SIFT. With the

more sophisticated Spatial Pyramid Matching Kernel SVM classifier (Lazebnik et al.,

2006a), our features yield an average accuracy per class equal to 59.6%. By decreasing

the stepping stride to 1 pixel, thereby producing 120x120 feature maps, our features

achieve 65.5% accuracy as shown in table 4.1. This is comparable to Lazebnik’s 64.6%

accuracy on Caltech-101 (without background class) (Lazebnik et al., 2006a). For com-

parison, our re-implementation of Lazebnik’s SIFT featureextractor, stepped by 4 pixels

to produce 34x34 maps, yielded 65% average recognition rate. With 128 invariant fea-

tures, each descriptor takes around 4ms to compute from a 16x16 patch. Note that the

evaluation time of each region is a linear function of the number of features, thus this

time can be further reduced if the number of features is reduced. Fig. 4.10 shows how

the recognition performance varies the number of features is decreased.

Tiny Images classification

The proposed method was compared to SIFT on another recognition task using a tiny

images dataset (Torralba et al., 2008). This was chosen as its extreme low-resolution

provides a different setting to the Caltech 101 images. For simplicity, we selected 5

animal nouns (Abyssinia cat, angel shark, apatura iris (a type of butterfly), bilby (a type

of marsupial), may beetle) and manually labeled 200 examples of each. 160 images

of each class were used for training, with the remaining 40 held out for testing. All

images are converted to gray-scale. Both our algorithm with 128 pooled units and SIFT
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Figure 4.10: The figure shows the recognition accuracy on theCaltech 101 dataset as

a function of the number of invariant units (and thus the dimensionality of the descrip-

tor). Note that the performance improvement between 64 and 128 units is below 2%,

suggesting that for certain applications the more compact descriptor might be preferable.

84



were used to extract features over 16x16 regions, spaced every 4 pixels over the 32x32

images. The resulting 5 by 5 by 128 dimensional feature maps are then fed into a linear

SVM classifier, as before. Our features achieve 54% correct classification rate and SIFT

features achieve 53% correct classification rate. Hence ourlearned features perform

comparably to SIFT.

Handwriting Recognition

We use a very similar architecture to that used in the experiments above to train on

the handwritten digits of the MNIST dataset (MNI, ). This is adataset of quasi-binary

handwritten digits with 60,000 images in the training set, and 10,000 images in the

test set. The algorithm was trained using 16x16 windows extracted from the original

28x28 pixel images. For recognition, 128-dimensional feature vectors were extracted at

25 locations regularly spaced over a 5x5 grid. A linear SVM trained on these features

yields an error rate of1.0%. When 25 SIFT feature vectors are used instead of our

invariant features, the error rate increases to1.5%. This demonstrates that, while SIFT

seems well suited to natural images, our method produces features that canadaptto the

task at hand.
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Method Av. Accuracy/Class(%)

local norm5×5 + boxcar5×5 + PCA3060 + linear SVM

IPSD (24x24) 50.9

SIFT (24x24) (non rot. inv.) 51.2

SIFT (24x24) (rot. inv.) 45.2

Serre et al. features (Serre et al., 2005) 47.1

local norm9×9 + Spatial Pyramid Match Kernel SVM

SIFT (Lazebnik et al., 2006a) 64.6

IPSD (34x34) 59.6

IPSD (56x56) 62.6

IPSD (120x120) 65.5

Table 4.1: Recognition accuracy on Caltech 101 dataset using avariety of different fea-

ture representations and two different classifiers. The PCA +linear SVM classifier is

similar to (Pinto et al., 2008), while the Spatial Pyramid Matching Kernel SVM clas-

sifier is that of (Lazebnik et al., 2006a). IPSD is used to extract features with three

different sampling step sizes over an input image to produce34x34, 56x56 and 120x120

feature maps, where each feature is 128 dimensional to be comparable to SIFT. Local

normalization isnot applied on SIFT features when used with Spatial Pyramid Match

Kernel SVM.
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Performance on Tiny Images Dataset

Method Accuracy (%)

IPSD (5x5) 54

SIFT (5x5) (non rot. inv.) 53

Performance on MNIST Dataset

Method Error Rate (%)

IPSD (5x5) 1.0

SIFT (5x5) (non rot. inv.) 1.5

Table 4.2: Results of recognition error rate on Tiny Images and MNIST datasets. In both

setups, a 128 dimensional feature vector is obtained using either our method or SIFT

over a regularly spaced 5x5 grid and afterwards a linear SVM is used for classification.

For comparison purposes it is worth mentioning that a Gaussian SVM trained on MNIST

images without any preprocessing achieves 1.4% error rate.
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5
DEEPNETWORKS

A hierarchical feature extractor can be trained layer-by-layer using any of the unsu-

pervised algorithms described in chapter 3 and 4, similarlyto what was proposed by

Hinton and collaborators (Hinton et al., 2006; Hinton and Salakhutdinov, 2006) for

training deep belief networks. Indeed, the underlying principle is very simple and it

consists of initializing the parameters of each layer by using an unsupervised algorithm,

like an RBM or an auto-encoder neural network (Bengio et al., 2007; Ranzato et al.,

2007b), and then to optimize the whole system by supervised gradient descent. The

chain of non-linear layers can be used for feature extraction, or it can be topped by a

supervised classifier for recognition. Recent works (Westonet al., 2008; Collobert and

Weston, 2008; Ahmed et al., 2008) proposed to replace this two-steps training procedure

with a more integrated one, where the whole system is optimized from random initial

conditions, but auxiliary prediction tasks are added to theloss function,de factoinject-

ing more gradients both at the top and at the internal states of the network to improve

optimization and generalization.

In this chapter we report some experiments using deep networks. We demonstrate

these methods on three very different datasets in order to show the ability of the learning

algorithm to adapt to different domains. We report results on recognition of handwritten

digits (Ranzato et al., 2006; Ranzato et al., 2007b; Ranzato et al., 2007c), on recognition

of generic natural object categories (Ranzato et al., 2007c), and on classification and

retrieval of text documents (Ranzato and Szummer, 2008).
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5.1 Digit Recognition

+ 1 + 1=  1 + 1 + 1 + 1 + 1 + 0.8 + 0.8

Figure 5.1: Top: A randomly selected subset of encoder filters learned by a sparse

coding algorithm (Ranzato et al., 2006) similar to the one presented in chapter 3, when

trained on the MNIST handwritten digit dataset. Bottom: An example of reconstruction

of a digit randomly extracted from the test data set. The reconstruction is made by

adding “parts”: it is theadditivelinear combination of few basis functions of the decoder

with positive coefficients.

The MNIST dataset (MNI, ) of handwritten digits has 60,000 samples in the training

set, and 10,000 samples in the test set. Digits are quasi-binary images of size 28×28

pixels (see fig. 4.7). The images are pre-processed by dividing each pixel value by 255.

In the experiment of fig. 5.1 the sparse coding algorithm described in (Ranzato et al.,

2006), which is similar to PSD but with codes that are non-negative, was trained to

produced feature vectors with 196 components using 196 filters of size 28×28 (i.e.,

filters are not convolutional).

Each one of the filters, shown in the top part of fig. 5.1, contains an elementary “part”

of a digit. Reconstruction of most digits is achieved by a linear additive combination of

a small number of filters since the the code is sparse and positive. The bottom part of
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fig. 5.1 illustrates this reconstruction by parts.

In the next experiment, the same sparse coding algorithm is used to initialize the first

layer of a large convolutional network. We used an architecture essentially identical to

LeNet-5as described in (LeCun et al., 1998). However, because the model produces

sparse features, our network had a considerably larger number of feature maps: 50

for layer 1 and 2, 50 for layer 3 and 4, 200 for layer 5, and 10 forthe output layer.

The numbers for LeNet-5 were 6, 16, 100, and 10 respectively.We refer to our larger

network as the 50-50-200-10 network. We trained this networks on 55,000 samples

from MNIST, keeping the remaining 5,000 training samples asa validation set. When

the error on the validation set reached its minimum, an additional five sweeps were

performed on the training set augmented with the validationset (unless this increased

the training loss). Then the learning was stopped, and the final error rate on the test set

was measured. When the weights are initialized randomly, the50-50-200-10 achieves a

test error rate of 0.7%, to be compared with the 0.95% obtained by (LeCun et al., 1998)

with the 6-16-100-10 network.

Next, the sparse feature learning method was trained on 5×5 image patches extracted

from training images. The model had a 50-dimensional code. The encoder filters were

used to initialize the first layer of the 50-50-200-10 net. The network was then trained

in the usual way, except that the first layer was kept fixed for the first 10 epochs through

the training set. The 50 filters after training are shown in fig. 5.2. The test error rate

was 0.6%. To our knowledge, this is the best results ever reported with a method trained

on the original MNIST set, without deskewing nor augmentingthe training set with

distorted samples.

90



The training set was then augmented with samples obtained byelastically distorting

the original training samples, using a method similar to (Simard et al., 2003). The er-

ror rate of the 50-50-200-10 net with random initializationwas 0.49% (to be compared

to 0.40% reported in (Simard et al., 2003)). By initializing the first layer with the fil-

ters obtained with the proposed method, the test error rate dropped to 0.39%. While

this is the best numerical result ever reported on MNIST, it is not statistically different

from (Simard et al., 2003).

Figure 5.2: Filters in the first convolutional layer after training when the network is

randomly initialized (top row) and when the first layer of thenetwork is initialized with

the features learned by the sparse unsupervised algorithm (bottom row).

Architecture Training Set Size

20K 60K 60K + Distortions

6-16-100-10 (LeCun et al., 1998) - - 0.95 - 0.60 -

5-50-100-10 (Simard et al., 2003) - - - - 0.40 -

50-50-200-10 1.01 0.89 0.70 0.60 0.49 0.39

Table 5.1:Comparison of test error rates on MNIST dataset using convolutional network ar-

chitectures with various training set size: 20,000, 60,000, and 60,000 plus550,000 elastic dis-

tortions. For each size, results are reported with randomly initialized filters, and with first-layer

filters initialized using the proposed algorithm (bold face).
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5.1.1 What does the top-layer represent?

Here we report an experiment that was done using yet another sparse coding algorithm,

dubbed SESM (Ranzato et al., 2007b). SESM is also similar to PSD, but encoder and

decoder share the same weight matrix like in RBM’s. The encoderand decoder compute

a weighted sum of the input followed by a logistic non-linearity. The loss function and

the training algorithm are the same as in PSD.

Training SESM on the whole digits produces filters that look like digit strokes, sim-

ilarly to what is shown in fig. 5.1. By using the first layer representation, we train a

second stage using SESM. While the first layer representationhas 200 components, the

second layer representation has only 10 components. Since we aim to find a 1-of-10

code we increase the sparsity level when training the secondstage machine. Despite the

completelyunsupervisedtraining procedure, the feature detectors in the second stage

machine look like digit prototypes, as can be seen in fig. 5.3.The hierarchical unsuper-

vised feature extractor is able to capture higher order correlations among the input pixel

intensities, and to discover the highly non-linear mappingfrom raw pixel data to the

class labels. While the first layer captures local correlations among the input variables

(strokes), the second layer models longer range dependencies by putting together the

strokes that frequently occur together.

Changing the random initialization can sometimes lead to thediscover of two differ-

ent shapes of “9” without a unit encoding the “4”, for instance. Nevertheless, results are

qualitatively very similar to this one. For comparison, when training a two-layers DBN,

prototypes are not recovered because the learned code is distributed among units.
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Figure 5.3: Back-projection in image space of the filters learned in the second stage

of the hierarchical feature extractor. The second stage wastrained on the non linearly

transformed codes produced by the first stage machine. The back-projection has been

performed by using a 1-of-10 code in the second stage machine, and propagating this

through the second stage decoder and first stage decoder. Thefilters at the second stage

discover the class-prototypes (manually ordered for visual convenience) even though no

class label was ever used during training.

5.1.2 Using Sparse and Locally Shift Invariant Features

In this section we report experiments using the sparse and locally-shift invariant feature

extractor described in sec. 4.1. We constructed a deep network and trained it on sub-

sets of various sizes, with three different learning procedures. In all cases the feature

extraction is performed by the four bottom layers (two levels of convolution/pooling).

The input is a 34×34 image obtained by evenly padding the 28×28 original image with

zeros. The first layer is a convolutional layer with fifty 7×7 filters, which produces 50

feature maps of size 28×28. The second layer performs a max-pooling over 2×2 neigh-

borhoods and outputs 50 feature maps of size 14×14. The third layer is a convolutional

layer with 1,280 filters of size 5×5, that connect the subsets of the 50 layer-two fea-

ture maps to the 128 layer-three maps of size 10×10. Each layer-three feature map is

connected to 10 layer-two feature maps according to a fixed, randomized connectivity
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Figure 5.4: Fifty 7×7 sparse shift-invariant features learned by the unsupervised learn-

ing algorithm on the MNIST dataset. These filters are used in the first convolutional

layer of the feature extractor.

table. The fourth layer performs a max-pooling over 2×2 neighborhoods and outputs

128 feature maps of size 5×5. The layer-four representation has128 × 5 × 5 = 3, 200

components that are fed to a two-layer neural net with 200 hidden units, and 10 output

units (one per class). There is a total of about105 trainable parameters in this network.

Thefirst training procedure trains the four bottom layers of the network unsuper-

vised over the whole MNIST dataset, following the method presented in the previous

sections. In particular the first stage module was learned using 100,000 8×8 patches ex-

tracted from the whole training dataset (see fig.5.4), whilethe second stage module was

trained on 100,000 50×6×6 patches produced by the first stage extractor. The second-

stage features are receptive fields of size 18×18 when backprojected on the input. In

both cases, these are the smallest patches that can be reconstructed from the convo-

lutional and max-pooling layers. Nothing prevents us from using larger patches if so

desired. The top two layers are then trained supervised withfeatures extracted from the

labeled training subset. Thesecond training procedureinitializes the whole network

randomly, and trains supervised the parameters in all layers using the labeled samples

in the subset. Thethird training procedure randomly initializes the parameters in both

stages of the feature extractor, and only trains (in supervised mode) the top two layers
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on the samples in the current labeled subset, using the features generated by the feature

extractorwith random filters.

For the supervised portion of the training, we used labeled subsets of various sizes,

from 300 up to 60,000. Learning was stopped after 50 iterations for datasets of size big-

ger than 40,000, 100 iterations for datasets of size 10,000 to 40,000, and 150 iterations

for datasets of size less than 5,000.

The results are presented in fig.5.5. For larger datasets (> 10,000 samples) there is

no difference between training the bottom layer unsupervised or supervised. However

for smaller datasets, networks with bottom layers trained unsupervised perform consis-

tently better than networks trained entirely supervised. Keeping the bottom layers ran-

dom yields surprisingly good results (less than 1% classification error on large datasets),

and outperforms supervised training of the whole network onvery small datasets (<

1,000 samples). This counterintuitive result shows that itmight be better to freeze pa-

rameters at random initial values when the paucity of labeled data makes the system

widely over-parameterized. Conversely, the good performance with random features

hints that the lower-layer weights in fully supervised back-propagation do not need to

change much to provide good enough features for the top layers. This might explain why

overparameterization does not lead to a more dramatic collapse of performance when the

whole network is trained supervised on just 30 samples per category. For comparison,

the best published testing error rate when training on 300 samples is 3% (Amit and

Trouve, 2005), and the best error rate when training on the whole set is 0.60% (Ran-

zato et al., 2006) as reported in the previous section. Note that in that case thewhole

network was fine-tuned by supervised gradient descent afterthe unsupervised training
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stage, yielding slightly better results.

5.2 Recognition of Generic Object Categories

In this section we report another experiment using the sparse and locally shift-invariant

feature extractor of sec. 4.1. We used the features to recognize object categories in

the Caltech-101 dataset (Fei-Fei et al., 2004). The Caltech 101 dataset has images of

101 different object categories, plus a background category. It has various numbers of

samples per category (from 31 up to 800), with a total of 9,144samples of size roughly

300×300 pixels. The common experiment protocol adopted in the literature is to take 30

images from each category for training, use the rest for testing, and measure the average

recognition rate per class.

This dataset is particularly challenging for learning-based systems, because the num-

ber of training sample per category is exceedingly small. Anend-to-end supervised

classifier such as a convolutional network would need a much larger number of training

samples per category, lest over-fitting would occur. In the following experiment, we

demonstrate that extracting features with the proposed unsupervised method leads to

considerably higher accuracy than pure supervised training.

Before extracting features, the input images are preprocessed. They are converted

to gray-scale, resized so that the longer edge is 140 pixels while maintaining the aspect

ratio, high-pass filtered to remove the global lighting variations, and evenly zero-padded

to a 140×140 image frame.

The feature extractor has the following architecture. In the first stage feature extrac-

tor (layer 1 and 2) there are 64 filters of size 9×9 that output 64 feature maps of size
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2,000 2.53 3.05 3.40
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Figure 5.5: Error rate on the MNIST test set (%) when trainingon various number of

labeled training samples. With large labeled sets, the error rate is the same whether

the bottom layers are learned unsupervised or supervised. The network with random

filters at bottom levels performs surprisingly well (under 1% classification error with

40K and 60K training samples). With smaller labeled sets, the error rate is lower when

the bottom layers have been trained unsupervised, while pure supervised learning of

the whole network is plagued by over-parameterization. Despite the large size of the

network the effect of over-fitting is surprisingly limited.
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132×132. The next max-pooling layer takes non overlapping 4×4 windows and out-

puts 64 feature maps of size 33×33. Unsupervised training was performed on 100,000

patches randomly sampled from the subset of the Caltech-256 dataset (Griffin et al.,

2006) that does not overlap with the Caltech 101 dataset (the Caltech 101 categories

were removed). The first stage was trained on such patches of size 12×12. The second

stage of feature extraction (layer 3 and 4) has a convolutional layer which outputs 512

feature maps and has 2048 filters. Each feature map in layer 3 combines 4 of the 64

layer-2 feature maps. These 4 feature maps are picked at random. Layer 4 is a max-

pooling layer with 5×5 windows. The output of layer 4 has 512 feature maps of size

5×5. This second stage was trained unsupervised on 20,000 samples of size64×13×13

produced by the first stage feature extractor. Note that the top level representation is in-

variant in windows of approximate size 20×20 pixels in input space, because of the

combined effect of pooling at the first and second stage. Example of learned filters are

shown in fig. 5.6.

After the feature extractor is trained, it is used to extractfeatures on a randomly

picked Caltech-101 training set with 30 samples per category. To test how a baseline

classifier fares on these 512×5×5 features, we applied ak-nearest neighborclassifier

which yielded about 20% overall average recognition rate for k = 5.

Next, we trained an SVM with Gaussian kernels in the one-versus-others fashion for

multi-class classification. The overall recognition system is shown in fig. 5.7. The two

parameters of the SVM’s, the Gaussian kernel widthγ−1 and the softnessC, are tuned

with cross validation, with 10 out of 30 samples per categoryused as the validation

set. The parameters with the best validation performance,γ = 5.6 · 10−7, C = 2.1 ·
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Figure 5.6: Caltech 101 feature extraction. Top Panel: the 64convolutional filters of

size 9×9 learned by the first stage of the invariant feature extraction. Bottom Panel:

a selection of 32 (out of 2048) randomly chosen filters learned in the second stage of

invariant feature extraction.

103, were used to train the SVM. More than 90% of the training samples are retained

as support vectors. This is an indication of the complexity of the classification task

due to the small number of training samples and the large number of categories. We

report the average result over 8 independent runs, in each ofwhich 30 images of each

category were randomly selected for training and the rest were used for testing. The

average recognition rate over all 102 categories is54%(± 1%). Examples of images

and recognition rates on a few categories are given in fig. 5.8.

For comparison, we trained an essentially identical architecture in supervised mode

using back-propagation (except the penultimate layer was atraditional dot-product and

sigmoid layer with 200 units instead of a layer of Gaussian kernels). Supervised train-

ing from a random initial condition over the whole net achieves 100% accuracy on the

training dataset (30 samples per category), but only 20% average recognition rate on the
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Figure 5.7: Example of the computational steps involved in the generation of two 5×5

shift-invariant feature maps from a pre-processed image inthe Caltech101 dataset. Fil-

ters and feature maps are those actually produced by our algorithm.

test set. This is only marginally better than the simplest baseline systems (Fei-Fei et al.,

2004; Berg et al., 2005), and considerably worse than the above result.

In our experiment, the categories that have the lowest recognition rates are the back-

ground class and some of the animal categories (wild cat, cougar, beaver, crocodile),

consistent with the results reported in (Lazebnik et al., 2006b) (their experiment did not

include the background class).

Our performance is similar to that of similar multi-stage Hubel-Wiesel type architec-
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Figure 5.8: Recognition accuracy on some object categories of the Caltech 101 dataset.

The system is more accurate when the object category has little variability in appearance,

limited occlusion and plain background.
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tures composed of alternated layers of filters and max pooling layers. Serre et al. (Serre

et al., 2005) achieved an average accuracy of 42%, while Mutch and Lowe (Mutch and

Lowe, 2006) improved it to 56%. Our system is smaller than those models, and does not

include feature pooling over scale. It would be reasonable to expect an improvement in

accuracy if pooling over scale were used. More importantly,our model has several ad-

vantages. First, our model uses no prior knowledge about thespecific dataset. Because

the features are learned, it applies equally well to naturalimages and to digit images

(and possibly other types). This is quite unlike the systemsin (Serre et al., 2005; Mutch

and Lowe, 2006) which use fixed Gabor filters at the first layer.Second, using trainable

filters at the second layer allows us to get away with only 512 feature maps. This is to

be compared to Serre et al’s 15,000 and Mutch et al’s 1,500.

For reference, the best reported performance of 66.2% on this dataset was reported

by Zhang et al. (Zhang et al., 2006), who used a geometric blurlocal descriptor on inter-

est points, and matching distance for a combined nearest neighbor and SVM. Lazebnik

et al. (Lazebnik et al., 2006b) report 64.6% by matching multi-resolution histogram

pyramids on SIFT. While such carefully engineered methods have an advantage with

very small training set sizes, we can expect this advantage to be reduced or disappear

as larger training sets become available. As evidence for this, the error rate reported by

Zhang et al. on MNIST with 10,000 training samples is over 1.6%, twice our 0.84% on

the same, and considerably more than our 0.64% with the full training set.

Our method is very time efficient in recognition. The featureextraction is a feed-

forward computation with about2 · 108 multiply-add operations for a140× 140 image

and109 for 320 × 240. Classifying a feature vector with the Caltech-101 SVM takes
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another4 · 107 operations. An optimized implementation of our system could be run on

a modern PC at several frames per second.

5.3 Text Classification and Retrieval

Document representations are a key ingredient in all information retrieval and process-

ing systems. The goal of the representation is to make certain aspects of the document

readily accessible, e.g. the document topic. To identify a document topic, we cannot

rely on specific words in the document, as it may use other synonymous words or mis-

spellings. Likewise, the presence of a word does not warrantthat the document is related

to it, as it may be taken out of context, or polysemous, or unimportant to the document

topic.

The most widespread representations for document classification and retrieval to-

day are based on a vector of counts. These include various term-weighting retrieval

schemes, such as tf-idf and BM25 (Robertson and Walker, 1994),and bag-of-words

generative models such as naive Bayes text classifiers. The pertinent feature of these

representations is that they represent individual words. Aserious drawback of the ba-

sic tf-idf and BM25 representations is that all dimensions are treated as independent,

whereas in reality word occurrences are highly correlated.

There have been many attempts at modeling word correlationsby rotating the vector

space and projecting documents onto principal axes that expose related words. Meth-

ods include LSI (Deerwester et al., 1990) and pLSI (Hofmann,1999). These methods

constitute a linear re-mapping of the original vector space, and while an improvement,

still can only capture very limited relations between words. As a result they need a large
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number of projections in order to give an appropriate representation.

Other models, such as LDA (Blei et al., 2003), have shown superior performance

over pLSI and LSI. However, inferring the representation iscomputationally expensive

because of the “explaining away” effect that plagues all directed graphical models.

More recently, a number of authors have proposed undirectedgraphical models that

can make inference efficient at the cost of more complex learning due to a global (rather

than local) partition function whose exact gradient is intractable. These models build on

RBM’s by adapting the conditional distribution of the input visible units to model dis-

crete counts of words (Hinton and Salakhutdinov, 2006; Gehler et al., 2006; Salakhutdi-

nov and Hinton, 2007a; Salakhutdinov and Hinton, 2007b). These models have shown

state-of-the-art performance in retrieval and clustering, and can be easily used as a build-

ing block for deep multi-layer networks (Hinton et al., 2006). This might allow the

top-level representation to capture high-order correlations that would be difficult to effi-

ciently represent with similar but shallow models (Bengio and LeCun, 2007).

Seeking an algorithm that can be trained efficiently, and that can produce a represen-

tation with just a few matrix multiplications, we propose a deep network whose build-

ing blocks are autoencoders, with a specially designed firstlayer for modeling discrete

counts of words.

Previously, deep networks have been trained either from fully labeled data, or purely

unlabeled data. Neither method is ideal, as it is expensive to label large collections,

whereas purely unsupervised learning may not capture the relevant class information in

the data. Inspired by the experiments by Bengio et al. (Bengio et al., 2007), we learn the

parameters of the model by usingboth a supervised and an unsupervised objective. In
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other words, we require the representation to produce good reconstructions of the input

documents and, at the same time, to give good predictions of the document class labels.

Besides demonstrating better accuracy in retrieval, we alsoextend the deep network

framework to asemi-supervisedsetting where we deal with partially labeled collections

of documents. This allows us to use relatively few labeled documents yet leverage

language structure learned from large corpora (Ranzato and Szummer, 2008).

5.3.1 Modelling Text

The input to the system is a bag of words representation of each text document in the

form of a count vector. The length of the vector equals the number of unique words

in the collection, and itsi-th entry stores the number of times the corresponding word

occurs in the document. The goal of the system is to extract acompactrepresentation

from this very high-dimensional but sparse input vector. A compact representation is

good because it requires less storage, and allows fast indexlookup.

Since we want to extract compact representations, we use at each layer a simple

auto-encoder neural network compressing the input into a code with fewer units. The

auto-encoder is trained by minimizing the square distance between input and output of

the network. The encoder computes a weighted sum of the inputfollowed by a logistic

non-linearity, while the decoder is linear. The only exception is the auto-encoder at the

first stage that has to predict a vector of positive word counts. For this stage, we use a

Poisson regressor in the decoder, that is, we exponentiate the weighted sum produced

by the decoder and treat it as the mean firing rate of the Poisson distribution. The

parameters of the model are trained by minimizing this unsupervised objective and also
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the supervised error term coming from the prediction of the input document topic. The

supervised error term is simply the cross-entropy between network prediction and target

vector encoding the class of the training sample.

More formally, at the first stage the encoder computes:

Z = σ(We log(X + 1) + be) (5.1)

whereX is the input vector of counts,Z is the representation at the first stage,We and

be are the weight matrix and the bias of the first stage encoder, and σ is the logistic

non-linearity. This encoder tries to mirror the computations done in the decoder. The

decoder at the first stage computes a reconstruction by taking eWdZ+bd, whereWd and

bd are the weight matrix and the bias of the decoder. In the upperstages, the encoder

computes the code asZ = σ(WeX + be), and the decoder computes the reconstruction

asWdZ + bd.

The layer-wise training is done by minimizing a loss that is the weighted sum of

the reconstruction error and the classification errorL = ER + αEC , where the hyper-

parameterα is set to zero if the sample does not have a label. Denoting with (WC)i the

i-th row of the classifier weight matrix, withbCi the i-th bias of the classifier, and with

Hj thej-th output unit of the classifier passed through a soft-max:

Hj =
exp((WC)j · Z + bCj)

∑

i exp((WC)i · Z + bCi)
, (5.2)

we defineEC = −
∑

i Yi log Hi, whereY is a 1-of-N encoding of the target class label.

Finally, in the upper layers the reconstruction error is:

ER = ‖X −Wdσ(WeX + be)− bd‖22, (5.3)
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while at the first layer it is derived from minus the log probability of the data under the

Poisson model (instead of using a Gaussian model as before):

ER =
∑

i

(βe((Wd)i·Z+bdi) −Xi(Wd)i · Z −Xibdi + log Xi!), (5.4)

whereβ is a constant proportional to the document length, andZ is the encoder output.

Since the layer-wise training takes already into account the labels of the documents

(if available), no global “fine-tuning” of the whole system is necessary according to our

experiments. This saves a lot of time because it is expensiveto do forward and backward

propagation through a large and deep network. In the following experiments, the deep

network is trained layer-by-layer by stochastic gradient descent.

5.3.2 Experiments

In our experiments we considered three standard datasets: 20 Newsgroups, Reuters-

21578, and Ohsumed1. The 20 Newsgroups dataset contains 18845 postings taken from

the Usenet newsgroup collection. Documents are partitioned into 20 topics. The dataset

is split into 11314 training documents and 7531 test documents. Training and test ar-

ticles are separated in time. Reuters has a predefined ModAptesplit of the data into

11413 training documents and 4024 test documents. Documents belong to one of 91

topics. The Ohsumed dataset has 34389 documents with 30689 words and each doc-

ument might be assigned to more than one topic, for a total of 23 topics. The dataset

is split into training and test by randomly selecting the 67%and the 33% of the data.

1These corpora were downloaded fromhttp://people.csail.mit.edu/jrennie/

20Newsgroups , andhttp://www.kyb.mpg.de/bs/people/pgehler/rap
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Rainbow2 was used to pre-process these datasets by stemming the documents, removing

stop words and words appearing less than three times or in only a single document, and

retaining between 1000 and 30,000 words with the highest mutual information.

Unless stated otherwise, we trained each layer of the network for only 4 epochs over

the whole training dataset. Convergence took only a couple ofepochs, and was robust

to the choice of the learning rate. This was set to about10−4 when training the first

layer, and to10−3 when training the layers above. The learning rate was exponentially

decreased by multiplying it by 0.97 every 1000 samples. A small L1 regularizer on

the parameters was added to the loss. Each weight was randomly initialized, and was

updated by taking a gradient step with a regularizer given bythe value of the learning

rate times5 · 10−4 the sign of the weight. The value ofαc in eq. 3.2 was set to the

ratio between the number of input units in the layer and the number of classes in order

to make the two error termsER andEC comparable. Its exact value did not affect the

performance as long as it had the right order of magnitude.

The Value of Labels

In order to assess whether semi-supervised training was better than purely unsupervised

training, we trained the deep model on the 20 Newsgroup dataset using only 2, 5, 10,

20 and 50 samples per class. During training we showed the system 10 labeled samples

every 100 examples by sweeping more often over the labeled data. This procedure

was repeated at each layer during training. We trained 4 layers for 10 epochs with an

architecture of 2000-200-100-50-20, denoting 2000 inputs, 200 hidden units at the first

layer, 100 at the second, 50 at the third, and 20 at the fourth.Then, we trained a Support

2Rainbow is available athttp://www.cs.cmu.edu/ ˜ mccallum/bow/rainbow
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Figure 5.9: SVM classification of documents from the 20 Newsgroups dataset (2000

word vocabulary) trained with between 2 and 50 labeled samples per class. The SVM

was applied to representations from the deep model trained in a semi-supervised or un-

supervised way, and to the tf-idf representation. The numbers in parentheses denote the

number of code units. Error bars indicate one standard deviation. The fourth layer rep-

resentation has only 20 units, and is much more compact and computationally efficient

than all the other representations.

Vector Machine3 (SVM) with a Gaussian kernel on (1) the codes that corresponded to

the labeled documents, and we compared the accuracy of the semi-supervised model to

the one achieved by a Gaussian SVM trained on the features produced by (2) the same

model but trained in an unsupervised way, and by (3) the tf-idf representation of the

3We used libsvm package available athttp://www.csie.ntu.edu.tw/ ˜ cjlin/libsvm

109



Figure 5.10: Precision-recall curves for the Reuters dataset comparing a linear model

(LSI) to the nonlinear deep model with the same number of codeunits (in parentheses).

Retrieval is done using thek most similar documents according to cosine similarity, with

k ∈ [1 . . . 4095].

same labeled documents. The SVM was generally tuned by five-fold cross validation

on the available labeled samples (but two-fold cross validation when using only two

samples per class). Fig. 5.9 demonstrates that the learned features gave much better

accuracy than the tf-idf representation overall when labeled data was scarce. The model

was able to exploit the very few labeled samples producing features that were easier to

discriminate. The performance actually improved when the dimensionality of the code

was reduced and only 2 or 5 labeled samples per class were available, probably because

a more compact code implicitly enforces a stronger regularization. Semi-supervised
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training outperformed unsupervised training, and the gap widened as we increased the

number of labeled samples, indicating that the unsupervised method had failed to model

information relevant for classification when compressing to a low-dimensional space.

Interestingly, if we classify the data using the classifier of the feedback module we

obtain a performance similar to the one achieved by the Gaussian SVM. For example,

whenall training samples are labeled the classifier at the first stageachieves accuracy

of 76.3% (as opposed to 75.5% of the SVM trained either on the learned representation

or on tf-idf), while the one on the fourth layer achieves accuracy of 74.8%. Hence,

the training algorithm provides an accurate classifier as a side product of the training,

reducing the overall learning time.

Deep or Shallow?

In all the experiments discussed in this section the model was trained using fully labeled

data (still, training also includes an unsupervised objective as discussed earlier). In order

to retrieve documents after training the model, all documents are mapped into the latent

low-dimensional space, the cosine similarity between eachdocument in the test dataset

and each document in the training dataset is measured, and thek most similar documents

are retrieved.k is chosen to be equal to 1, 3, 7, ..., 4095. Based on the topic label of

the documents, we assess the performance by computing therecall and theprecision

averaged over the whole test dataset.

In the first experiment, we compared the linear mapping produced by LSI to the

nonlinear mapping produced by our model. We considered the Reuters dataset with a

12317 word vocabulary and trained a network with 3 layers. The first layer had 100

code units, the second layer had 40 units in one experiment and 10 in another, the third
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Figure 5.11: Precision-recall curves for the Reuters dataset comparing shallow models

(one-layer) to deep models with the same number of code units. The deep models are

more accurate overall when the codes are extremely compact.This also suggests that

the number of hidden units has to begraduallydecreased from layer to layer.

layer was trained with either 3 or 2 code units. As shown in Fig. 5.10, the nonlinear

representation is more powerful than the linear one, when the representation is very

compact.

Another interesting question is whether adding layers is useful. Fig. 5.11 shows that

for a given dimensionality of the output latent space the deep architecture outperforms

the shallow one. The deep architecture is capable of capturing more complex dependen-

cies among the input variables than the shallow one, while the representation remains

compact. The compactness allows us to efficiently handle very large vocabularies (more
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Figure 5.12: Precision-recall curves for the 20 Newsgroupsdataset comparing the per-

formance of tf-idf versus a one-layer shallow model with 200code units for varying

sizes of the word dictionary (from 1000 to 10000 words).

than 30,000 words for the Ohsumed, for instance). Fig. 5.12 shows that increasing the

number of words (i.e. the dimensionality of the input) does give better retrieval perfor-

mance.

Compact or Binary High-Dimensional?

The most popular representation of documents is tf-idf, a very high-dimensional and

sparse representation. One might wonder whether we should learn a high-dimensional

representation instead of a compact representation. Unfortunately, the autoencoder based

learning algorithm forces us to map data into a lower-dimensional space at each layer, as

without additional constraints the trivial identity function would be learned. We used the
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Figure 5.13: Precision-recall curves comparing compact representations vs. high-

dimensional binary representations. Compact representations can achieve better per-

formance using less memory and CPU time.

sparse encoding symmetric machine (SESM) (Ranzato et al., 2007b) as a building block

for training a deep network producing sparse features. SESMis a symmetric autoen-

coder with a sparsity constraint on the representation, andit is trained without labels.

In order to make the sparse representation at the final layer computationally appealing

we thresholded it to make it binary. We trained a 2000-1000-1000 SESM network on

the Reuters dataset. In order to make a fair comparison with our compact representa-

tion, we fixed the information content of the code in terms of precision4 at k = 1. We

4The entropy of the representation would be more natural, butits value depends on the quantization

level.
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measured the precision and recall of the binary representation of a test document by

computing its Hamming distance from the representation of the training documents. We

then trained our model with the following number of units 2000-200-100-7. The last

number of units was set to match the precision of the binary representation atk = 1.

Fig. 5.13 shows that our compact representation outperforms the high-dimensional and

binary representation at higher values ofk. Just 7 continuous units are able to achieve

better retrieval than 1000 binary units5! Storing the Reuters dataset with the compact

representation takes less than half the memory space than using the binary representa-

tion, and comparing a test document against the whole training dataset is five times faster

with the compact representation. The best accuracy for our model is given with a 20-

unit representation. Fig. 5.13 shows the performance of a representation with the same

number of units learned by a deep belief network (DBN) following Salakhutdinov and

Hinton’s constrained Poisson model (Salakhutdinov and Hinton, 2007b). Their model

was greedily pre-trained for one epoch in an unsupervised way (200 pre-training epochs

gave similar fine-tuned accuracy), and then fine-tuned with supervision for 100 epochs.

While fine-tuning does not help our model, it significantly improves the DBN which

eventually achieves the same accuracy as our model. Despitethe similar accuracy, the

computational cost of training a DBN (with our implementation using conjugate gra-

dient on mini-batches) is several times higher due to this supervised training through a

large and deep network. By looking at how words are mapped to the top-level feature

space, we can get an intuition about the learned mapping. Forinstance, the code closest

5Note that the binarization has been achieved by thresholding the quasi-binary codes produced by

SESM and this was not taken into account while training SESM.Therefore, the comparison is a bit

unfavorable to the binary codes.
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Table 5.2: Neighboring word stems for the model trained on Reuters. The number of

units is 2000-200-100-7.
Word stem Neighboring word stems

livestock beef, meat, pork, cattle

lend rate, debt, bond, downgrad

acquisit merger, stake, takeov

port ship, port, vessel, freight

branch stake, merger, takeov, acquisit

plantat coffe, cocoa, rubber, palm

barrel oil, crude, opec, refineri

subcommitte bill, trade, bond, committe

coconut soybean, wheat, corn, grain

meat beef, pork, cattl, hog

ghana cocoa, buffer, coffe, icco

varieti wheat, grain, agricultur, crop

warship ship, freight, vessel, tanker

edibl beef, pork, meat, poultri

to the representation of the word “jakarta” corresponds to the word “indonesia”, simi-

larly,“meat” is closest to “beef” (table 5.2). As expected,the model implicitly clusters

synonymous and related words.

Visualization

The deep model can also be used to visualize documents. When the top layer is two-

dimensional we can visualize high-dimensional nonlinear manifolds in the space of bags

of words. Fig. 5.14 shows how documents in the Ohsumed test set are mapped to the
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Figure 5.14: Two-dimensional codes produced by the deep model 30689-100-10-5-2

trained on the Ohsumed dataset (only the 6 most numerous classes are shown). The

codes result from propagating documents in the test set through the four-layer network.

plane. The model exposes clusters of documents according tothe topic class, and places

similar topics next to each other. The dimensionality reduction is extreme in this case,

from more than 30000 to 2.
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CONCLUSION

The first contribution of this work is to introduce and develop the Energy-Based Model

framework for unsupervised learning. This framework allows to view most unsuper-

vised algorithms as pursuing the same “energy carving” task, that is, making the energy

lower around areas of high data density. This bridges the conceptual gap between meth-

ods that maximize the data likelihood and methods that enforce constraints on the inter-

nal representation. In particular, it interprets sparsityas a particular way to constrain the

code and regularize the learning process.

The second theme of this thesis is efficient inference. The models we propose are not

very different from generative probabilistic models sincewe fit the data by reconstruct-

ing from an internal representation. However, inference ismade efficient by training a

direct mapping from input to latent representation. Generative models have straightfor-

ward interpretation, but are very expensive to use because inference consists of “invert-

ing” the model, often requiring the use of iterative optimization procedures. We propose

to train a feed-forward function to predict the latent code,and we suggest simple ways

to jointly train this with the generative part of the model.

The main topic of this work has been how to train and apply deepnetworks. We have

demonstrated these methods on a variety of tasks with experiments that gave intuitions

about the encoding produced by these hierarchical models, as well as the importance to

add non-linear layers to represent higher order dependencies among the input variables.

These models can be trained in many different ways. We introduced several unsuper-
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vised algorithms to train each layer in sequence. These algorithms produce compact

representations, or even sparse overcomplete representations. Simple extensions allows

the learning of representations that are invariant to either known or learned transfor-

mations. Learning invariant feature hierarchies is crucial to build a robust recognition

system in vision, for instance. In this work, we pointed the reader to other training proce-

dures that learn the parameters in an end-to-end fashion by adding additional constraints

on the internal representations. This seems a more efficientstrategy than the proposed

layer-wise training, but it is avenue of future work to compare them and to devise even

better strategies by exploiting semi-supervised and multi-task learning principles.

Another interesting question is how to exploit the feed-back connections we use

during training, in order to improve recognition. The accuracy of recognition systems

is poor when the input is corrupted by noise. For instance, visual object recognition

is not very successful when objects are occluded. It seems conceivable that by using

feed-back connections the network could fill-in the missinginformation and improve its

prediction. Also, feed-back connections could be used in vision applications to imple-

ment attentional mechanisms, allowing to process higher resolution images.

Also, the quest for efficient coding has ample avenue for future investigation. In this

work, we used sparsity as a mechanism to encourage uncorrelation, if not independence,

among the units in the latent code. However, recent advanceson models for lateral

inhibition and pooling in computational neural science might suggest better ways to

achieve coding efficiency in these bottom-up hierarchical models.
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A
VARIATIONAL INTERPRETATION

In this section we show that a Gaussian variational approximation to the posterior re-

duces to a Laplace approximation in a sparse coding model like (Olshausen and Field,

1997). Under the assumption that the encoder of PSD is trained after the decoder has

been optimized, the encoder is a least square approximationto the MAP estimate of the

latent code, and it can then be interpreted as an approximation to the variational mean.

The results in this sections are used to justify theorem 1.1 as well as to derive archi-

tectures of encoders in appendix B.

A.1 The Fixed Point Solution of Lasso

Consider the problem of minimizing the following loss with respect toZ:

L(Z) =
1

2
‖Y −WdZ‖2 +

σ2
Y

λ

N
∑

i=1

|zi| (A.1)

This loss is convex, but non-quadratic. The fixed point of this equation can be found

by setting to zero the derivatives. The solution for thei-th component can be written as

follows:

Pi = coli(Wd) · (Y −
∑

k 6=i

colk(Wd)zk)

zi =
{|Pi| − σ2

Y

λ
}+

‖coli(W )‖2 sgn(Pi) (A.2)
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where the operator{x}+ = max(0, x), i.e. is the positive part operator, and coli(Wd) is

thei-th column of matrixWd.

The fixed point equations provide us with an iterative algorithm where the code

unit takes a value equal to theshrinkedprojection of the residual error along the corre-

sponding basis function. The residual is computed by takinginto account all code units

except the current one. These update formulas reminds thoseused in Gaussian belief

propagation to solve a system of linear equations. The sparsity enforced onZ adds

the shrinkage on these update rules; different sparsity penalties yield different shrink-

age non-linearities (Rozell et al., 2008). The convergence of this iterative algorithm has

been demonstrated by (Daubechies et al., 2004).

A.2 Variational Approximation to the Posterior

Here, we study a Gaussian variational approximation to the posterior distribution. We

assume that (1) the parametersWd are given, (2) the likelihoodp(Y | Z) isN(WdZ, σ2
Y ),

(3) the codeZ is factorial with each component distributed according to a0-mean Laplace

distributionL(λ), and (4) the samples are i.i.d. (hence, we can just consider asingle

sample Y in the following derivation). We seek the best factorial Gaussianq(Z) =
∏

i q(zi) that approximates the posterior distributionp(Z | Y ), with q(zi) ∈ N(mi, σ
2).

First, we assume that the standard deviationσ is given, and we optimize only for the

value of the meanmi, i ∈ [1 . . . N ]. In the next section, we will also derive the optimal

value ofσ. We minimize the KL-divergence between the approximate distributionq and

the true posteriorp(Z | Y ) over the mean parametersmi.

We have that by definition and using our assumptions:
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KL(q(z), p(Z | Y )) =

∫

∏

q(zi) log
Πq(zi)

p(Z | Y )
(A.3)

=

∫

∏

q(zi) log
Πq(zi)

p(Y | Z)p(Z)
+ c

= −N

2
ln(2πeσ2) +

1

λ

∑

i

∫

q(zi)|zi|

−
∫

Πq(zi) log p(Y | Z) + c (A.4)

Since, we have that:

∫

q(zi)|zi| = mi(1− 2Φ(−mi

σ
)) + 2σe−

1

2
(

mi
σ

)2 (A.5)

whereΦ is the c.d.f. of the normal distribution, and also,

−
∫

Πq(zi) log p(Y | Z) =
1

2σ2
y

[
∑

i

‖coli(W )‖22(σ2 + m2
i )− 2

∑

i

mi(
∑

l

wliyl) +

+2
∑

l

∑

k

∑

h 6=k

(wlkwlhmkmh)] + c (A.6)

then, we have expanded all terms in eq A.4; in other words, we can substitute eq. A.5

and A.6 into eq. A.4. By setting to zero the derivatives w.r.t.mi we obtain:

∂KL

∂mi

=
1

σ2
Y

(‖coli(W )‖2mi −
∑

l

wliyl +
∑

l

∑

k 6=i

wlkwlimk) +

+
1

λ
(1− 2Φ(−mi

σ
) + 2

mi

σ
e−

1

2
(

mi
σ

)2(
1√
2π
− 1)) = 0 (A.7)

Unfortunately, this equation cannot be solved in closed form because it contains both

polynomials and exponentials ofmi. However, we can make three cases depending on

the value of the ratiomi/σ.
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Case 1:mi

σ
≈ 0 In this case, we can assume thatΦ(−mi

σ
) ≈ 1

2
, andexp(−1

2
(mi

σ
)2) ≈

1. Then, the KL divergence is minimized for thatmi such that:

mi =
coli(Wd) · (Y −

∑

h 6=i colh(Wd)mh)

‖coli(Wd)‖2 + 2
σλ

( 1√
2π
− 1)

(A.8)

Case 2:mi

σ
≫ 0 In this case, we can assume thatΦ(−mi

σ
) ≈ 0, andexp(−1

2
(mi

σ
)2) ≈

0. Then, the KL divergence is minimized for thatmi such that:

mi =
coli(Wd) · (Y −

∑

h 6=i colh(Wd)mh)− σ2

Y

λ

‖coli(Wd)‖22
(A.9)

Case 3:mi

σ
≪ 0 In this case, we can assume thatΦ(−mi

σ
) ≈ 1, andexp(−1

2
(mi

σ
)2) ≈

0. Then, the KL divergence is minimized for thatmi such that:

mi =
coli(Wd) · (Y −

∑

h 6=i colh(Wd)mh) +
σ2

Y

λ

‖coli(Wd)‖22
(A.10)

These equations are essentially the same as those found for the MAP estimates of eq. A.2.

A.2.1 Optimizing the Variance

In the previous section we have found that the MAP estimate and the means of the varia-

tional distribution are the same under the condition|mi/σ| ≫ 0. This might trivially say

that whenσ is very small the Gaussian variational distribution reduces to a delta Dirac

distribution, and the best way we can approximate a distribution with a delta Dirac is by

placing the delta at themodeof the posterior distribution, i.e. at the most likely value.

However, if we allow also the standard deviationσ of the variational distribution to be

learned we found that thisσ does not tend to zero when|mi/σ| ≫ 0.
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By setting to 0 the derivative of the KL-divergenve w.r.t.σ, and by performing very

similar reasonings, we have that:

σ2 =
Nσ2

Y
∑

i ‖coli(Wd)‖2
(A.11)

when|mi/σ| ≫ 0. By setting the norm of the basis functions to 1, then

σ2 = σ2
Y (A.12)

Therefore, when|mi/σ| ≫ 0 the optimal value of the variance is constant and depends

on the noise level of the observedY . Under these conditions, the mean of the Gaus-

sian variational distribution coincides with the MAP estimate (the mode of the posterior

distribution), while the variance is equal to the varianceσ2
Y of the noise added to the ob-

servedY . Hence, the encoder of PSD approximates the mean of a Gaussian variational

distribution approximating the posterior.

When|mi/σ| ≈ 0, we can assume thatexp(−1
2
(mi

σ
)2 ≈ 1 andΦ(−mi

σ
) ≈ 1

2
. Then,

the optimalσ minimizing the KL-divergence is given by:

σ =
σ2

y
√

(
σ2

y

λ
)2 + σ2

y +
σ2

y

λ

(A.13)

If we use this variational approximation to the posterior inH(Y ) = H(Y |Z) +

H(Z) − H(Z|Y ), we have that when|mi/σ| ≫ 0 decreasingλ decreases bothH(Z)

andH(Y ) becauseH(Y |Z) andH(Z|Y ) are fixed (entropies of Gaussian distributions

whose covariance does not depend onλ). When|mi/σ| ≈ 0, decreasingH(Z) does not

changeH(Y ) because the decrease is compensated by an equal decrease ofH(Z|Y ),

instead. In fact, the differenceH(Z)−H(Z|Y ) depends on the difference(log λ−log σ)

which tends to a constant as we decreaseλ. Therefore, under the above mentioned
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assumptions and assuming that there is at least on code unit satisfying the condition

|mi/σ| ≫ 0 we have that decreasingH(Z) actually decreasesH(Y ) too.
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B
CHOOSING THEENCODING FUNCTION

The choice of the encoding architecture is task dependent. In general, the encoder archi-

tecture as well as any other hyper-parameter of the system, like the sparsity level, have

to be cross-validated.

We report experiments using PSD and other algorithms that differ from PSD mainly

for the choice of the encoder architecture. The comparison is done qualitatively by visu-

ally inspecting the learned features, and quantitatively by measuring the reconstruction

and the sparsity error, as well as the recognition rate on theCaltech 101 dataset using

the simple recognition system described in sec. 3.3.2.

We consider the following algorithms:

1. PSD as described in sec. 3 using the output of the encoder asfeature after training

2. PSD using the optimal features (i.e. those minimizing theenergy) even after train-

ing

3. PSD using the output of the encoder as latent code even during training, akin to a

standard autoencoder with a sparsity constraint on the internal representation

4. like 3, but the encoder is composed of a diagonal matrix followed by a linear

matrix of filters (with unit norm rows) and by a thresholding non-linearity (see

below)

5. like 4, but the linear matrix of filters in the encoder is thetranspose of the decoder

matrix of basis functions.
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(a) (b) (c) (d)

Figure B.1: Random subset of the 405 filters of size 9x9 pixels learned in the encoder

by different algorithms trained on patches from the Berkeleydataset: (a) PSD (case

1 and 2), (b) PSD without iterating for the code during training (case 3), (c) a sparse

autoencoder with a thresholding non-linearity in the encoder (case 4), and (d) a sparse

autoencoder with thresholding non-linearity and tied/shared weights between encoder

and decoder (case 5).

By looking at the fixed point solution of lasso of eq. A.2 (i.e. inference in PSD

without the code prediction error term) we can see that the non-linearity used to produce

sparse representations is thesoft thresholding non-linearity:

y =



















x− λ if x > λ

0 if − λ ≤ x ≤ λ

x + λ if x < −λ

(B.1)

Unfortunately, this non-linearity does not work well in an encoder during training be-

cause the slope is zero in the interval[ λ, λ]. As a result, some filters of the encoder

might never be updated. Therefore in experiments number 4 and 5, (1) we also normal-

ize the encoder filters to unit norm and (2) we consider the following smooth quadratic
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(a) (b) (c) (d)

Figure B.2: Random subset of the 128 filters of size 16x16 pixelslearned in the encoder

by different algorithms trained on patches from the Caltech 101 pre-processed images:

(a) PSD (case 1 and 2), (b) PSD without iterating for the code during training (case

3), (c) a sparse autoencoder with a thresholding non-linearity in the encoder (case 4),

and (d) a sparse autoencoder with thresholding non-linearity and tied/shared weights

between encoder and decoder (case 5).

approximation:

y =



















x− λ if x > λ + α

α
(α+λ)2

x2sgn(x) if − λ− α ≤ x ≤ λ + α

x + λ if x < −λ− α

(B.2)

where sgn is the sign function. Unlike an encoder using a hyperbolic tangent that is lin-

ear around zero, a code prediction function with a smooth thresholding non-linearity is

able to produce representations that are sparser because weak activations are suppressed

by this non-linearity. In our experiment,λ as well asα in eq. B.2 are set equal to the

sparsity level.

In order to compute the reconstruction and the sparsity error we trained on image

patches randomly sampled from the Berkeley dataset. We learn405 filters of size 9x9

pixels. A random subset of encoder filters are shown in fig. B and the errors are re-

ported in table B.1. The machines using the thresholding non-linearity yield sparser
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Table B.1: Comparison between different encoding architectures and ways to train them.

The sparsity level is set to 0.6 in all experiments, except case 5 which was set to 0.2.
Methods SNR (rec. error) [dB] Sparsity [L1 norm] Recogn. Rate

1. PSD predicted codes 15.7 5.6 47%

2. PSD optimal codes 14.6 2.8 -

3. PSD not iter. for the code during training 12.9 3.4 45%

4. autoenc. with thres. non-lin. 14.3 3.1 43%

5. autoenc. with thres. non-lin., tied weights 16.1 5.1 46%

representations, comparable to those achieved by using optimal codes (case 2).

In the table we report also a recognition experiment using these different machines.

We trained 128 filters of size 16x16 (see fig. B for a random subset of encoder filters)

on Caltech 101 images. The pre-processing as well as the recognition system are the

same as the ones described in sec. 3.3.2. Although filters might look quite different the

recognition performance seems robust to the choice of the training algorithm used to

learn the filters. Even though the encoder of PSD does not produce very sparse codes,

it achieves the best recognition accuracy. Higher recognition rates could be achieved by

(1) cross-validating the sparsity level, (2) using a betterclassifier (e.g. a spatial pyramid

matching SVM (Lazebnik et al., 2006a)), and (3) extracting hierarchical features by

using these features as intermediate representations of a deep network (Ranzato et al.,

2007c).

Comparing the features learned by the machine number 3 in fig. B.1(b) and B.2(b) to

the filters learned by PSD and looking at the corresponding results in table B.1, we

can conclude that the minimization used to infer the code during training of PSD is

crucial to improve the optimization when the representation is highly overcomplete, but
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otherwise it is not necessary. In general, a better trainingprocedure could be to start the

optimization by minimizing in code space to break the symmetries and then, to complete

the training by removing this extra optimization step (binding the code to the output of

the decoder) to speed-up learning.
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