Unsupervised Learning of Feature

Hierarchies

by

Marc’Aurelio Ranzato

A dissertation submitted in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
Department of Computer Science
New York University

May 2009

Yann LeCun



© Marc'Aurelio Ranzato

All Rights Reserved, 2009



DEDICATION

To my parents and siblings.



ACKNOWLEDGMENTS

| would like to thank my advisor Prof. Yann LeCun for his guidarand for the many
opportunities he has offered me since the very beginning ypfstadies. | am also
grateful to the members of my committee for the discussiom$&d during these years
and for providing me with their precious insights that wesdplful to gain different
perspectives on my work. | want also to acknowledge fruitfislcussions with the

members of LeCun’s lab at New York University.



ABSTRACT

The applicability of machine learning methods is often tediby the amount of avail-
able labeled data, and by the ability (or inability) of theid@er to produce good internal
representations and good similarity measures for the id@iat vectors. The aim of this
thesis is to alleviate these two limitations by proposirgpathms toearngood internal
representations, and invariant feature hierarchies frolabeled data. These methods
go beyond traditional supervised learning algorithms, eglg on unsupervised, and

semi-supervised learning.

In particular, this work focuses on “deep learning” methadset of techniques and
principles to train hierarchical models. Hierarchical ralsdporoduce feature hierarchies
that can capture complex non-linear dependencies amongbferved data variables
in a concise and efficient manner. After training, these rwodan be employed in
real-time systems because they compute the represengterery fast forward prop-
agation of the input through a sequence of non-linear toansdtions. When the paucity
of labeled data does not allow the use of traditional suged/algorithms, each layer of
the hierarchy can be trained in sequence starting at therhdy using unsupervised or
semi-supervised algorithms. Once each layer has beeedaime whole system can be
fine-tuned in an end-to-end fashion. We propose severalpengiged algorithms that
can be used as building block to train such feature hieraschiVe investigate algo-
rithms that produce sparse overcomplete representati@hgeatures that are invariant

to known and learned transformations. These algorithmdesmgned using the Energy-



Based Model framework and gradient-based optimizatiomiecies that scale well on
large datasets. The principle underlying these algoritisrtslearn representations that
are at the same time sparse, able to reconstruct the obeanatd directly predictable
by some learned mapping that can be used for fast inferertestitime.

With the general principles at the foundation of these atlgors, we validate these
models on a variety of tasks, from visual object recognitmtext document classifica-

tion and retrieval.

Vi



TABLE OF CONTENTS

Dedication il

Acknowledgments iV

Abstract Y

List of Figures X

List of Tables XXIV

Introduction 1

1 Energy-Based Models for Unsupervised Learning 7
1.1 Energy-Based Models for Unsupervised Learning . . . . . ... . 10
1.2 Two Strategies to Avoid Flat Energy Surfaces . . . .. .. ...... . 20

1.2.1 Adding a Contrastive TermtothelLoss . ... ... ... ... 21

1.2.2 Limiting the Information Content of the Internal Remetion 24

2 Classical Methods in the Light of the Energy-Based Model Framewrx 34

2.1 Principal Component Analysis . . . . . . ... ... ... ... ... 53
2.2 Autoencoder. . . . . . ... e 38
2.3 Negative Log ProbabilityLoss . . . . ... .. ... ... ...... 39

2.4 Restricted Boltzmann Machines . . . . .. ... ... ......... 41

Vil



2.5 Productof Experts . .. .. .. . . . . ... 41

2.6 Contrastive MarginLOSS . . . . . . . . ... 42
2.7 Sparsecodes. . . . . . .. e 43
28 K-MeansClustering. . . . . . . . . . . 44
29 Mixtureof Gaussians . . . . . . . ... 45
2.10 Other Algorithms . . . . . . . . . . . . 46
2.11 WhatisnotanEBM? . . . . . . ... .o 47
Learning Sparse Features 48
3.1 Inference . . .. . . . . . ... 49
3.2 Learning . . . . . . e e e e 50
3.3 EXperiments . . . . . . . ... 52
3.3.1 Comparing PSDto PCA,RBM,and SESM . . . . ... .. .. 53
3.3.2 Comparing PSD to Exact Sparse Coding Algorithms . . . . . 3 5
3.33 Stability . . . . ... 57
Learning Invariant Representations 60
4.1 Learning Locally-Shift Invariant Representations . ...... ... .. 62
4.1.1 Learning Algorithm . . . . ... .. ... ... .. ... 65
4.2 Learning Representations Invariant to Generic Transitions . . . . . 68
4.2.1 Modeling Invariant Representations . . . . .. ... ... .. 69
422 Experiments . . .. . . ... 74
Deep Networks 88
5.1 DigitRecognition . . . . . ... 89

viii



5.1.2 Using Sparse and Locally Shift Invariant Features .. .. .. . .

5.2 Recognition of Generic Object Categories . . . . . ... ... .. ...

5.3 Text Classification and Retrieval . . . . .. . .. . ... ... ...

531 ModellingText . . .. .. ... .. ... .. .. .. ...,

5.3.2 Experiments . .. ... ... .. ...

Conclusion

A Variational Interpretation
A.1 The Fixed Point SolutionoflLasso . . . .. ... ... .......

A.2 Variational Approximation to the Posterior . . . . . . .. .. . ...

A.2.1 Optimizingthe Variance . . ... ... .. ... .......

B Choosing the Encoding Function

Bibliography



LIST OF FIGURES

1.1 Toy illustration of an unsupervised EBM. The blue dots taaiing
samples, the red curve is the energy surface. (a) Befordartgaithe
energy does not have the desired shape and the model doasanivhd
inate between areas of high and low data density. (b) Aféenitng, the
energy is lower around areas of high data density. (c) Theetntah
be used for denoising, for instance. Denoising consistsndirfg the

nearest local minumum nearby the noisy observation. . . . . . . .



1.2 Probabilistic graphical models of unsupervised leaynirhe set of ob-
served variables is denoted bY, while the set of latent variables, or
codesis denoted by”. A) A loopy Bayes network modelling two con-
sistent conditional distributions, one predicting thefdtcode from the
input, and another one predicting the input from the codas Todel
would be able not only to generate data, but also to prodwsterfter-
ence ofZ; unfortunately, learning is intractable in generg). A factor
graph describes the constraint between input and lateiablas by con-
necting them with a factor node. The joint distribution beénY andZ
can have two factors, as shown@). Many unsupervised models have
one factor measuring the compatibility betwe€érand some transfor-
mation of Z, and another factor measuring the compatibility betwgen
and a transformation af. Unlike the model in A), the factor nodes are

not necessarily modelling conditional distributions. . . .. .. ... 11

Xi



1.3 Generic unsupervised architecture in the energy-baseel framework.
Rectangular boxes represent factors containing at leasstanoadule
(red diamond shaped boxes), and possibly, a transformaiatule (blue
boxes). The encoder takes as inpuaind produces a prediction of the
latent codeZ. The discrepancy between this prediction and the actual
codeZ is measured by the Prediction Cost module. Likewise, thetate
codeZ is the input to the decoder that tries to reconstruct thetifipu
The discrepancy between this reconstruction and the aktusimea-
sured by the Reconstruction Cost module. Additional cost riesdtan
be applied to the code and to the input. This is like a factapgmrepre-
sentation allowing to “zoom in” inside the nodes. The goahéérence
is to determine the value of the latent caddor a given inputY”. The
energy of the system is the sum of the terms produced by therzms
ules. The goal of learning is to adjust the parameters of Bottoder
and Decoder in order to make the energy lower in correspa@eh
the training samples, e.g., to make the predicted codesclesg to the
actual codeZ, and to produce good reconstructions frahhwhen the
input is similar to a training vector. After training, thecader can be

used for fast feed-forward feature extraction.. . . . . . . ...... .. 14

Xii



1.4

2.1

2.2

Instances of the graphical representation of fig. 1.3.P(@A the en-
coder and decoder are linear; (b) autoencoder neural netyor K-
Means and other clustering algorithms: the code is comstdato be
a binary vector with only one non-zero component; (d) spacking
methods, including basis pursuit, Olshausen-Field modeld genera-
tive noisy ICA in which the decoder is linear and the code sutlije a
sparsity penalty; (e) encoder-only models, including Bob@f Experts

and Field of Experts; (f) Predictive Sparse Decompositi@thod. . . .

Toy datasets: 10,000 points generated by (a) a mixtu@ ©auchy

distributions (the red vectors show the directions of gatien), and (b)

points drawn fromaspiral. . . . . .. ... ... ... . L.

Toy dataset (a) - Energy surfaggY; W) for (by column): 1) PCA,
2) auto-encoder trained using the energy loss (miniminatibmean
squared reconstruction error), 3) auto-encoder trained)ws loss the
negative of the log-likelihood, 4) auto-encoder trainedibing the mar-
ginloss, 5) a sparse coding algorithm (Lee et al., 2006) fakdMeans.
The red vectors are the vectors along which the data wasafedgmix-
ture of Cauchy distributions). The blue lines are the dimilearned
by the decoder, the magenta numbers on the bottom left atartest
values of the energy (the smallest is zero), and the greeberson the

bottom right are the number of code units. Black is small andenl

large energy value. . . . . ...

Xiii

15

35



2.3

3.1

3.2

3.3

3.4

Toy dataset (b) - Energy surfaces. The magenta pointsaameng sam-

ples along which the energy surface should take smalleesalu. . . . 37

Graphical representation of PSD algorithm learningspeepresenta-

HONS. . . . . 49

Classification error on MNIST as a function of reconsiarcerror us-
ing raw pixel values and, PCA, RBM, SESM and PSD features. Left-
to-Right : 10-100-1000 samples per class are used for taiimear
classifier on the features. The unsupervised algorithms wained on

the first 20,000 training samples. . . . . . . . . .. .. ... ... 4 5

a) 256 basis functions of size 12x12 learned by PSD, trainechen t
Berkeley dataset. Each 12x12 block is a column of mairjxn eq. 3.2,

i.e. a basis functionb) Object recognition architecture: linear adaptive
filter bank, followed byabs rectification, average down-sampling and

linear SVM classifier. . . . . . . . . . . . . ... 56

a) Speed up for inferring the sparse representation achieyéuelPSD
encoder over FS for a code with 64 units. The feed-forwarchetbn

is more than 100 times fasteb) Recognition accuracy versus mea-
sured sparsity (averagé norm of the representation) of the PSD en-
coder compared to the to the representation of FS algorithiffer-
ence within 1% is not statistically significant) Recognition accuracy

as a function of the number of basis functions. . . . .. ... . ..... 58

Xiv



3.5

4.1

Conditional probabilities for sign transitions betwéda consecutive
frames. For instance?(—|+) shows the conditional probability of a
unit being negative given that it was positive in the pregiiame. The
figure on the right is used as baseline, showing the conditjpmbabil-

ities computed on pairs eandomframes. . . . . . ... ... L.

Left Panel: (a) sample images from the “two bars” datdsath sample
contains two intersecting segments at random orientaodsrandom
positions. (b) Non-invariant features learned by an autmeder with 4
hidden units. (c) Shift-invariant decoder filters learngdhe proposed
algorithm. The algorithm finds the most natural solutiorhte problem.
Right Panel (d): architecture of the shift-invariant unsused feature
extractor applied to the two bars dataset. The encoder bas/the in-

put image with a filter bank and computes the max across eattrée
map to produce the invariant representation. The decodelupes a
reconstruction by taking the invariant feature vector (tvbat”), and

the transformation parameters (the “where”). The recacttns is the
sum of each decoder basis function at the position indidajelde trans-

formation parameters, and weighted by the correspondiyfe com-

PONENL. . . . . o e

XV



4.2

4.3

Fifty 20x 20 filters learned in the decoder by the sparse and shift in-
variant learning algorithm after training on the MNIST dstof hand-
written digits of size 2&28 pixels. A digit is reconstructed as linear
combination of a small subset of these features positiohedeaof 81
possible locations)(x 9), as determined by the transformation parame-

ters produced by theencoder. . . . . . .. .. .. ... .. ... ... 67

(a): The structure of the block-sparsity term which encourdge®asis
functions inWW; to form a topographic map. See text for detailb):
Overall architecture of the loss function, as defined in e§. 4n the
generative model, we seek a feature vecfothat simultaneously ap-
proximate the input” via a dictionary of basis functiong’, and also
minimize a sparsity term. Since performing the inferenceuattime
is slow, we train a prediction functiog.(Y'; W) (dashed lines) that di-
rectly predicts the optima from the inputY”. At run-time we use only
the prediction function to quickly computé from Y, from which the

invariant features; can be computed. . . . . .. ... ... L. 71

XVi



4.4 Level sets induced by different sparsity penalties fitnere was taken
from Yuan and Lin’s paper (Yuan and Lin, 2004)). There are pools.
The first one has two unitsZ;, Z,), and the second one has only one
unit (Z3). The first row shows the level set in 3D, while the second and
the third rows show the projections on the coordinate plaiég first
column is the L1 norm of the units, the second column is the@sed
sparsity penalty (grouped lasso), and the third one is thedréh of the
units. The proposed sparsity penalty enforces sparsiggsagools, but

notwithinapool. . . . . . . . . . ... . ... 73

4.5 Topographic map of feature detectors learned from akituage patches
of size 12x12 pixels by optimizing the loss in eq. 4.3. Theee400 fil-
ters that are organized in 6x6 neighborhoods. Adjacentheidhoods
overlap by 4 pixels both horizontally and vertically. Na&ithe smooth
variation within a given neighborhood and also the circldaundary

conditions. . . . . . . . 75

4.6 Analysis of learned filters by fitting Gabor functionsclealot corre-
sponding to a filter. Left: Center location of fitted Gabor. Righolar
map showing the joint distribution of orientation (azimaitly) and fre-

guency (radially in cycles per pixel) of Gabor fit. . . . .. .. ... 76

4.7 Left: Examples from the MNIST dataset. Right: Examplesnfithe

tiny images. We use gray-scale images in our experiments. . ... 77

XVii



4.8 Mean squared error (MSE) between the representatiopatta and its
transformed version. On the left panel, the transformedpiathorizon-
tally shifted. On the right panel, the transformed patclhrgt fotated by
25 degrees and then horizontally shifted. The curves areerage over
100 patches randomly picked from natural images. Since &ehps
are 16x16 pixels in size, a shift of 16 pixels generates astoamed
patch that is quite uncorrelated to the original patch. Hetite MSE
has been normalized so that the MSE at 16 pixels is the samalfor
methods. This allows us to directly compare different feaxtraction
algorithms: non-orientation invariant SIFT, SIFT, the pvsed method
trained to produce non-invariant representations (i.eolpbave size
1x1), and the proposed method trained to produce invarggaresenta-
tions. All algorithms produce a feature vector with 128 dnsiens. Our
method produces representations that are more invariararisforma-

tions than the other approaches for most shifts.

XVili



4.9 Diagram of the recognition system. This is composed aheariant
feature extractor that has been trained unsuperviseowied by a su-
pervised linear SVM classifier. The feature extractor pssdbe input
image through a set of filter banks, where the filters are azgdnin
a two dimensional topographic map. The map defines poolsofasi
feature detectors whose activations are first non-lingeatysformed by
a hyperbolic tangent non-linearity, and then, multipligdebgain. In-
variant representations are found by taking the squareafoitte sum
of the squares of those units that belong to the same pool.otitpait
of the feature extractor is a set of maps of features that eafed as
input to the classifier. The filter banks and the set of gaitsamed by
the algorithm. Recognition is very fast, because it consites direct

forward propagation through the system. . . . . . .. ... ... ... 82

4.10 The figure shows the recognition accuracy on the Calt@tldataset as
a function of the number of invariant units (and thus the disienality
of the descriptor). Note that the performance improvemehtvben 64
and 128 units is below 2%, suggesting that for certain apgtios the

more compact descriptor might be preferable. . . . ... ... ... 84

XiX



5.1

5.2

5.3

5.4

Top: A randomly selected subset of encoder filters lehbyea sparse
coding algorithm (Ranzato et al., 2006) similar to the onesg@néed in
chapter 3, when trained on the MNIST handwritten digit detta8ot-
tom: An example of reconstruction of a digit randomly exteakcfrom
the test data set. The reconstruction is made by addings™pdirts the
additivelinear combination of few basis functions of the decodehwit

positive coefficients. . . . . . ... . L L

Filters in the first convolutional layer after trainindgp@n the network is
randomly initialized (top row) and when the first layer of thetwork
is initialized with the features learned by the sparse uestged algo-

rithm (bottomrow). . . . . . . . . . .. . ...

Back-projection in image space of the filters learnedéstécond stage
of the hierarchical feature extractor. The second stagettaased on
the non linearly transformed codes produced by the firsestagchine.
The back-projection has been performed by using a 1-of-tlé aothe
second stage machine, and propagating this through thedstage de-
coder and first stage decoder. The filters at the second stapver the

class-prototypes (manually ordered for visual converegeeen though

no class label was ever used during training. . . . . ... ... ... 93

Fifty 7x7 sparse shift-invariant features learned by the unsupenlvi
learning algorithm on the MNIST dataset. These filters aszlus the

first convolutional layer of the feature extractor. . . . . . ... ...

XX

94



5.5 Error rate on the MNIST test set (%) when training on waiaumber
of labeled training samples. With large labeled sets, ther eate is the
same whether the bottom layers are learned unsupervisegenssed.
The network with random filters at bottom levels performgsigingly
well (under 1% classification error with 40K and 60K trainsamples).
With smaller labeled sets, the error rate is lower when thobolayers
have been trained unsupervised, while pure supervisedihggof the
whole network is plagued by over-parameterization. Desihiée large

size of the network the effect of over-fitting is surprismgimited. . . . 97

5.6 Caltech 101 feature extraction. Top Panel: the 64 cotivoll filters
of size 99 learned by the first stage of the invariant feature exwacti
Bottom Panel: a selection of 32 (out of 2048) randomly chodaardi

learned in the second stage of invariant feature extraction. . . . . .

5.7 Example of the computational steps involved in the garer of two
5x5 shift-invariant feature maps from a pre-processed imagfe= Cal-
tech101 dataset. Filters and feature maps are those gqtuadluced by

ouralgorithm. . . . . . . . ..

5.8 Recognition accuracy on some object categories of thec®ali01 dataset.

The system is more accurate when the object category Hawvétiabil-

ity in appearance, limited occlusion and plain background. . . . . . 101

XXi



5.9 SVM classification of documents from the 20 Newsgroupasid (2000
word vocabulary) trained with between 2 and 50 labeled sesnpér
class. The SVM was applied to representations from the demgem
trained in a semi-supervised or unsupervised way, and tif-itierepre-
sentation. The numbers in parentheses denote the numbal®tiaits.
Error bars indicate one standard deviation. The fourthrlegeresenta-
tion has only 20 units, and is much more compact and computty

efficient than all the other representations. . . . . ... .. ...... . 109

5.10 Precision-recall curves for the Reuters dataset congpatinear model
(LSI) to the nonlinear deep model with the same number of cols
(in parentheses). Retrieval is done using Ahmost similar documents

according to cosine similarity, with € [1...4095]. . . . . . ... ... 110

5.11 Precision-recall curves for the Reuters dataset cangpsinallow mod-
els (one-layer) to deep models with the same number of coite dime
deep models are more accurate overall when the codes asmekyr
compact. This also suggests that the number of hidden uastschbe

graduallydecreased from layertolayer. . . . .. .. ... ... .... 112

5.12 Precision-recall curves for the 20 Newsgroups datam®iparing the
performance of tf-idf versus a one-layer shallow model v2@® code

units for varying sizes of the word dictionary (from 1000 @0DO words).113

5.13 Precision-recall curves comparing compact repratiens vs. high-dimensional
binary representations. Compact representations carvadbedter per-

formance using less memory and CPU time. . . . . . . ... ... ... 114

XXii



5.14 Two-dimensional codes produced by the deep model 30689.0-5-2

B.1

B.2

trained on the Ohsumed dataset (only the 6 most numerouseslase
shown). The codes result from propagating documents ingbieset

through the four-layer network. . . . . . . .. .. ... ... .. ...

Random subset of the 405 filters of size 9x9 pixels learntttierncoder
by different algorithms trained on patches from the Berkelaset: (a)
PSD (case 1 and 2), (b) PSD without iterating for the codendutriain-
ing (case 3), (c) a sparse autoencoder with a thresholdindinearity
in the encoder (case 4), and (d) a sparse autoencoder wstiotding

non-linearity and tied/shared weights between encodedaodder (case

D) e e

Random subset of the 128 filters of size 16x16 pixels leaim#te en-
coder by different algorithms trained on patches from thaechl 101
pre-processed images: (a) PSD (case 1 and 2), (b) PSD witboatt
ing for the code during training (case 3), (c) a sparse actmbsr with
a thresholding non-linearity in the encoder (case 4), and(dparse

autoencoder with tresholding non-linearity and tied/edareights be-

tween encoder and decoder (case5). . . ... ... ... ... ...

XXili

8.

12



LIST OF TABLES

2.1 Popular unsupervised algorithms in the EBM frameworkgf¥i3. N
and M are the dimensionalities of the codeand the inputy’, o is
the logistic non-linearity and@’ its derivative, andy, is the mapping
produced by the encoder. In the Mixture of Gaussians (MoGjevete

the inverse of the covariance matrix of théh component with4;, for

2.2 Strategies used by common algorithms to avoid flat eegrgi . . . . . 38

3.1 Comparison between representations produced by FS {la¢e 2006)
and PSD. In order to compute the SNR, the noise is definétligaal —

Approximation). . . ... e 55

4.1 Recognition accuracy on Caltech 101 dataset using a yafieliffer-
ent feature representations and two different classifidiise PCA +
linear SVM classifier is similar to (Pinto et al., 2008), whihe Spa-
tial Pyramid Matching Kernel SVM classifier is that of (Langbet al.,
2006a). IPSD is used to extract features with three diftesampling
step sizes over an input image to produce 34x34, 56x56 anxtl2P0
feature maps, where each feature is 128 dimensional to bparaive
to SIFT. Local normalization isot applied on SIFT features when used

with Spatial Pyramid Match Kernel SVM. . . . . . ... ... ... .. 86

XXIV



4.2

5.1

5.2

B.1

Results of recognition error rate on Tiny Images and MNd&tasets.
In both setups, a 128 dimensional feature vector is obtaised) either
our method or SIFT over a regularly spaced 5x5 grid and a&sdsy
a linear SVM is used for classification. For comparison pagsoit is
worth mentioning that a Gaussian SVM trained on MNIST imagiis-

out any preprocessing achieves 1.4% errorrate. . . ... ..... 87

Comparison of test error rates on MNIST dataset using convolutiomabrie
architectures with various training set size: 20,000, 60,000, and 60J080 p
550,000 elastic distortions. For each size, results are reported withmindo
initialized filters, and with first-layer filters initialized using the proposed algo-
rithm (boldface).. . . . . . . . . . . . 91
Neighboring word stems for the model trained on Reutdns. fiumber

of units is 2000-200-100-7. . . . . . . . . 116

Comaprison between different encoding architecturesayd to train
them. The sparsity level is set to 0.6 in all experimentsgpkcase 5

whichwas setto 0.2. . . . . . . . . . . . . s 129

XXV



INTRODUCTION

In many real world applications labeled data is too scardé tbe parameters of those
models that could describe it well and is too expensive tdpce. Moreover, labels are
often noisy in the sense that errors may be present in thériglhocess. For instance,
consider the problem of building an image retrieval systemtlie web. Traditional

learning algorithms would need to have access to pairs stimgiof a query and an
image, and their relative score. However, it is impossibladve access to such infor-
mation for all possible images and queries. Moreover, theldeled samples that are
available might be generated by taking into account the elssthrough data which is

naturally noisy.

One way to cope with the paucity of labeled data is to engiasenuch as possible
the prediction system by exploiting the prior knowledge #mel experience of human
experts. This effectively reduces the number of paramefeise model and regularizes
the system. For instance, a good description of natural @nagn be computed by us-
ing wavelets transforms (Simoncelli et al., 1998) or haedighned descriptors (Lowe,
2004; Dalal and Triggs, 2005), and the prediction systemtake advantage of such
representation. However, such a system would not be ablasity@adapt to other do-
mains because other kinds of data might have differentssitagiand require different

representations.

In this thesis, we propose a more general approach thas @hdéearning, and that

allows adaptation to a variety of domains. While labeled d&txarce, unlabeled data



is often available in large amounts at virtually no cost. iRstance, billions of images
can be easily downloaded from the web. Our approach is todgeeunlabeled data
to learn representations that capture the statistics ofnjngt. Since both unlabeled
and labeled data share the same underlying structure, dheelé representations can
provide a description in terms of typical features or fragygatterns occurring in the
input data. Such representation is often more concise and descriptive than the
raw input data. Moreover, many popular supervised algmstifBoser et al., 1992;
Rasmussen and Williams, 2006) compute similarity measusesden pairs of input
samples and strongly rely on the representation used. ler a@tbrds, the better the

representation of the data is, the easier the subsequesifidation will be.

In real world applications the representation has to be etedpefficiently and it has
to describe the input concisely. The former requirementigsphat the computation has
to be a fast feed-forward process, not involving iteratipérization procedures. The
latter requirement is related to the concept of efficienimgpdAttneave, 1954; Barlow,
1961), stating that units in the representation should hestaced dependencies. The
most well known algorithm used for reducing statistical elegencies is principal com-
ponent analysis which is able to remove second order ctioeta More recently, in-
dependent component analysis (Bell and Sejnowski, 199%1aDt&en and Field, 1997;
Hyvarinen et al., 2001) has been introduced as a method toweimigher order de-
pendencies. However, recent studies (Bethge, 2006; WegmrashrZetzsche, 1990;
Simoncelli, 1997; Lyu and Simoncelli, 2008) suggest thasthlinear transformations
leave strong higher order dependencies and that the usedingar transformations is

needed to remove them.



In this thesis we consider a general class of trainable m&at functions, dubbed
“deep networks” (Hinton et al., 2006; Hinton and Salakhutdi 2006; Bengio and
LeCun, 2007; Bengio et al., 2007; Ranzato et al., 2007c; Lee.eR@D7). These
models are composed of a sequence of non-linear transformatvhose parameters
are optimized to fit the data. If we take into account the mtdiate representations
produced by each layer in the sequence, we can interpreetye metwork as a model
producing a bottom up hierarchy of features. The representhecomes more and
more abstract as it is transformed by more layers, and the f®fhat the top level
representation will be more closely related to the causasrgéing the data and to the

labels we might want to predict.

A simple experiment reported in chapter 5 clarifies the alostin achieved by such
systems (Ranzato et al., 2007b). A deep network with two &jigetrained on hand-
written digits. While the first layer learns features thattoa@ correlations between
neighboring pixels in the form of digit “strokes”, the seddayer trained with only ten
units learns longer range dependencies and it combinesrshdafyer strokes into ten
digit prototypes, one per class. Even though the networktvedised without making
use of labels, it discovered the highly non-linear mappieyeen input pixels and class

labels in its top layer representation.

Deep networks are appealing because they lead to more effie@esentations (Ben-
gio and LeCun, 2007) since a top level representation can fiieedeby re-using inter-
mediate computations, limiting the number of parametedstaa number of computa-
tional units. The historical problem of these methods i¢ tha optimization is very

hard because it is highly non-linear and non-convex (Tesdl892). Until a few years



ago, no network with more than a couple of layers could beessfally trained. The
only exception were convolutional networks (LeCun et al982hat exploit a highly
constrained architecture due to the weight sharing. Horyévese networks are specif-
ically designed for images, and they need quite a large nuwibl@beled samples to

train.

A more general solution was proposed by Hinton and collabosgHinton et al.,
2006). They showed that a deep network can be trained in ®ys stirst, each layer
is trained in sequence by using an unsupervised algorithmoitel the distribution of
the input. Once a layer has been trained, it is used to pratheceput to train the layer
above. After all layers have been trained in an unsuperviggd the whole network
is trained by traditional back-propagation of the errog(eclassification error), but
the parameters are initialized using the weights learnetthenfirst phase. Since the
parameters are nicely initialized, the optimization of teole system can be carried
out successfully. This procedure and similar ideas hava bgplied to a variety of
domains, such as computer vision (Hinton and SalakhutdiR006; Ranzato et al.,
2007c; Ranzato et al., 2007b; Larochelle et al., 2007; Vinhetal., 2008; Ahmed et al.,
2008; Torralba et al., 2008), natural language processtadpkhutdinov and Hinton,
2007a; Mnih and Hinton, 2007; Ranzato and Szummer, 2008; 0Vestt al., 2008;
Collobert and Weston, 2008; Mnih and Hinton, 2008), roboftdadsell et al., 2008)
and collaborative filtering (Salakhutdinov et al., 2007).

At a very high level, these works have demonstrated thatibssible to train feed-
forward hierarchical models using unsupervised as welkas-supervised and multi-

task learning algorithms (Ranzato and Szummer, 2008; Westah, 2008; Collobert



and Weston, 2008; Ahmed et al., 2008). It remains an opearesguestion to identify

even better training protocols and to adapt those to thafgpesk at the hand.

Since the key to training deep networks is the use of an umgigee learning algo-
rithm, chapter 1 describes a general framework to desigsethlgorithms, th&nergy-
Based Modeframework (LeCun et al., 2006; Ranzato et al., 2007a). EnBapged
Models are non-normalized probabilistic models that asaigenergy value to the joint
set of observed and predicted variables. These models daolght of as a local prob-
abilistic model assigning higher likelihood to trainingngales only in regions of the
input space that are of interest. This framework permitstzeri class of algorithms than
properly normalized probabilistic models, and allows ¢geaomputational efficiency
both during training and inference. According to this fravoek, the goal of learning is
to adjust the parameters of the model in such a way that pthiatsare similar to train-
ing samples are assigned lower energy. In order to achievgalal a loss functional is
minimized during training. Although all loss functionalsatease the energy in corre-
spondence of the training samples, they differ in the way thake sure that other points
have higher energy: some require to identify candidatetpoitere the energy has to
be raised and others enforce more global constraints omtienal representation, such
as sparsity or compactness. We show the equivalence bethesmtwo strategies and
give an interpretation of traditional unsupervised altjons in this framework. Chap-
ter 2 provides simple visualizations of the energy surfacty datasets in order to give
a better intuition of these concepts. Since raising theggnay constraining the internal
representation is more computationally efficient in higmehsional spaces, we have

investigated several sparse coding algorithms for feaxiraction. Chapter 3 describes



one such algorithm, Predictive Sparse Decompositiongubi@ principles and the ideas
developed in the previous chapters.

In chapter 4 the Predictive Sparse Decomposition algorihemtended to learn rep-
resentations that are not only sparse, but also invariagither known or learned trans-
formations. Learning representations that are invariamtrélevant transformations of
the input is crucial towards building robust recognitiorstgyns. Invariant representa-
tions are desirable because they are more compact and thégassed by even simple
recognition systems, since they do not encode irrelevaspguties of the input data.
For instance, a face detector should be invariant (or ropboisthe pose of the subject, to
lighting conditions, and to facial expressions, whild stilcoding the information that is
necessary to locate and identify a face. In particular, nafc¢he progress in computer
vision is based on hand-designed descriptors that areiamiao lighting conditions,
and changes in scale and orientation (Schmid and Mohr, 198¥e, 2004; Lazebnik
et al., 2004; Dalal and Triggs, 2005). However, these methantk well only on natu-
ral images for which they were designed, and they are coalolivsub-optimal once a
large dataset of examples is available. Therefore, degigngeneric algorithm that can
learn representations that are invariant to learned toamsftions can make possible the
development of a system that adapts to the data in an enaddtéashion.

Finally, chapter 5 demonstrates how these unsupervisedithigs can be used to
build deep networks and reports several experiments, mgrighm visual object recog-

nition to text document classification and retrieval.



1
ENERGY-BASED MODELS FOR

UNSUPERVISEDLEARNING

Unsupervised learning algorithms capture regularitiegha data for the purpose of
restoring corrupted data or for extracting representatairthe data that can be used for
tasks such as prediction, classification, or visualizatMe will view an unsupervised
machine as a functioft’'(Y") that maps input vector¥ to scalar energy valuesAn
unsupervised machine captures dependencies betweewvarliles by producing low
energy values in regions of high data density, and highemggnalues in regions with

little or no data.

For instance, figure 1.1(a) shows an energy surface befairértg. The energy is
not lower around areas of high data density. At this stagenhchine is not able to
predict if an input data vector is similar to the samples attiaining set. However, after
training the energy takes the desired shape as shown in flgiie), that is, it is lower
around high data density areas. Figure 1.1(c) shows howasoeidel could be used for
denoising. The denoised image is computed by searchingéaninimum of the energy
that is closest to the input sample. Loosely speaking, tlosgss returns the most likely
data vector nearby the noisy input. This task, and more gépeestimating regions
of high data density can be accomplished only if the enerdgwer around areas of
high data density. In this sense, a model assigning an erleagys constant over the

whole input space has failed to learn because any data \gei®the same “score” as a
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Figure 1.1: Toy illustration of an unsupervised EBM. The ldoés are training samples,
the red curve is the energy surface. (a) Before training, tieggy does not have the
desired shape and the model does not discriminate betweas af high and low data
density. (b) After training, the energy is lower around areghigh data density. (c) The
model can be used for denoising, for instance. Denoisingistsof finding the nearest

local minimum nearby the noisy observation.

training sample under the model. This paper describes theiples behind successful
learning of energy functions, and it introduces a commoméwaork, theenergy-based

modelframework, to describe most unsupervised learning alyoist

A particularly important class of unsupervised algorithmkich includes principal
component analysis, K-means, and many others, producamahtepresentation®f
data vectors as part of the energy computation. These ege®ns, also known as
feature vectorsor codescan be used as input for further processing such as predlictio
Moreover, many unsupervised machines make explicit useidt sepresentations by
reconstructing the data vectors from the representatiand by using the reconstruction
error as part of the energy function. For example in clustemethods such as K-Means
(or vector quantization), the code is the index of the psgietin the codebook that is

closest to the data vector. The reconstruction error is te&nte between the data



vector and its closest prototype. Similarly in principahgmonent analysis, the code
is the set of coordinates of the projection of the data veaitoa linear subspace, and
the reconstruction error is the distance between the dat@vand its projection. In
auto-encoder neural networks (Rumelhart et al., 1986), dlde ¢s the state of a low-
dimensional hidden layer from which the data vector is retrmcted with a possibly
non-linear mapping. In restricted Boltzmann machines (RBMs3nd and Haussler,
1994; Hinton, 2002), the code is a vector of stochastic limariables, from which the
input can be (stochastically) reconstructed, even thohghmtachines are not explicitly
trained to reconstruct but to maximize log likelihood. Fipan sparse coding and other
related methods (Lee and Seung, 1999; Olshausen and Fé@Id;, Aharon et al., 2005;
Ranzato et al., 2006; Lee et al., 2007), the code is a high+dimeal vector in which
most of the components are constrained to be zero (or nea), z2&d the energy is the

reconstruction error under sparsity constraints.

Unlike these methods, some probabilistic density mod&és Rroduct of Experts
methods (Teh et al., 2003; Ning et al., 2005; Roth and Black5@@ not use the
internal representations to reconstruct the input dateobly to compute the negative
log likelihood. This can be interpreted as their energy fiomcand it has the property

that the difference of energies of two points is equal tortlogy likelihood ratio.

Training an unsupervised machine consists in shaping tesygmandscape so that
regions of high data density have lower energies than odggoms. This is generally
achieved by parameterizing a family of energy functig@d¥Y; W), W € W} in-
dexed by a parameté¥’, and by searching for thB” that minimizes a particular loss

functional that depends afi and on the training set. We will show that essentially every



unsupervised learning algorithm has a term in the loss fomak whose purpose is to
decrease the energy of the training samples. Howeverreliff@lgorithms use different
techniques to ensure that the energy values associatedegitins of low data density
are higher.

Unsupervised methods appear very diverse, and based owliffengnt principles.
We argue that the various unsupervised methods merely difféwo points: (1) how
F(Y; W) is parameterized, and (2) how the loss functional is defipadicularly how
the energy of unobserved points is made larger than the e@eogind training sam-
ples. This work discusses which combinations of architestand loss functionals are
allowed, which combinations are efficient, and which corabions do not work. One
problem is that pulling up on the energies of unobservedtpamhigh dimensional
spaces is often very difficult and even intractable. In patér, we show that probabilis-
tic models use a particular method for pulling up on the epefgunobserved points
that turns out to be very inefficient in many cases. We propeseloss functionals for
pulling up energies that have efficiency advantages ovdygitistic approaches. We
show that unsupervised methods that reconstruct the datarsgrom internal codes
can alleviate the need for explicitly pulling up on the eryeo) unobserved points by

limiting the information content of the code.

1.1 Energy-Based Models for Unsupervised Learning

Unsupervised algorithms often compute internal repregemis of input data vectors.
In density estimation models, such as mixture of GaussiaRsanluct of Experts mod-

els, these representations are implicit because they &resed to produce a likelihood

10



value. Otherwise, internal representations are often tesegtonstruct the input, ensur-

ing that most of the information contained in the input hasrbeaptured by the model.

Internal representations are useful in a variety of appboa such as dimensionality

reduction, feature extraction, and clustering. Theseessprtations are referred to as
codes or features, and they can have desirable properties siggagsty, compactness,

and independence of the components.

Probabilistic unsupervised models can be graphicallyesgnted asin fig. 1.1. There

A) B ) factor node C ) factor node 1

P(Y|2)
input Y i i
p PZ|Y) Code Z inputY code Z input Y code Z

factor node 2

Figure 1.2: Probabilistic graphical models of unsuperisarning. The set of observed
variables is denoted by, while the set of latent variables, aodes is denoted by

Z. A) A loopy Bayes network modelling two consistent conditionatributions, one
predicting the latent code from the input, and another omelipting the input from
the code. This model would be able not only to generate daiiaalso to produce
fast inference ofZ; unfortunately, learning is intractable in generB). A factor graph
describes the constraint between input and latent vagdiyteconnecting them with a
factor node. The joint distribution betwe&hand Z can have two factors, as shown in
C). Many unsupervised models have one factor measuring thpatdiity betweeny”

and some transformation af, and another factor measuring the compatibility between
Z and a transformation df. Unlike the model in A), the factor nodes are not necessarily

modelling conditional distributions.
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are two sets of variables, the observed input vettar R and the latent cod& <
RN, whose value has to be inferred. Training such models giyenaans adjusting
the parameters in such a way that the marginal distributi@n B gives higher likeli-
hood to the training vectors, and also, that the joint distion overY and Z assigns
higher likelihood to training vectors and correspondingrfpatible” codes. The ideal
probabilistic model is the loopy Bayes network shown in fig. A). This model in-
cludes a module generating data from codes, that can easitkdow well the model
fits the data, and also, another module directly inferrirggdbde from the input. Unfor-
tunately, learning two consistent conditional distribag in a loopy graph is generally
intractable. A more general representation is given by #otof graph in fig. 1.1 B),
where the factor node describes the compatibility condtidiand Z have to meet in
order to be assigned high likelihood value. This model caaxtended by considering
a joint distribution that factorizes into two factors aswhan fig. 1.1 C). Often, one
factor measures the compatibility betwe€rand some transformation &f, while the
other factor considerg and some transformation &f.

Indeed, factors often have a preferred “directionalitydydring inference of one
variable given the other one. Any model can be interpretdokésnging to one of the

following classes:

e anencodermodel that provides a direct mapping of input data into auieatep-
resentation; the POE model proposed by (Teh et al., 2003)&Adased on in-
formation maximization (Herault and Jutten, 1986; Jutted lderault, 1991; Bell
and Sejnowski, 1995) are examples of such a model. While pioguepresenta-

tions of input data is straightforward, generating datanftbe model is generally

12



complicated, requiring the use of expensive Monte Carlo $agechniques.

e a decodermodel that is based on a generative model reconstructingnphe
from an internal latent representation; a mixture of Garssias well as gener-
ative ICA based on maximum likelihood (MacKay, 1999) and itradal sparse
coding algorithms (Olshausen and Field, 1997) can be irgtgg in this way.
While generating data is straightforward, inferring theresgntation might re-

guire computationally expensive marginalization or miiziaion procedures.

e anencoder-decodemodel that has both a factor producing direct represemsitio
as well as another factor reconstructing the data from é&;nfost popular (non-
probabilistic) encoder-decoder model is PCA and the mosthi@tprobabilistic
model of this kind is RBM. Both data generation and feature elitra are easy
in this model, but learning might be very difficult becausett normalization

requirement of the model.

An energy-based model (EBM) (LeCun et al., 2006; Ranzato étG07a) is a model
that assigns lower energy values to input vectors that argesito training samples and
higher energy values elsewhere. Un-normalized models ach more computationally
efficient in large and high dimensional spaces because #wpyire the energy to be
higher only within a suitabl@eighborhoodof the training samples. For instance, in
image restoration the corrupted data is usually near treaft¢l data, and restoring a
corrupted input vector may be performed by finding an areawfénergy near that
input vector (Teh et al., 2003; Portilla et al., 2003; Elad @&Mharon, 2006). As it will
be discussed in sec. 1.2.1, a probabilistic model is a Sgentof EBM.
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Figure 1.3: Generic unsupervised architecture in the grleaged model framework.
Rectangular boxes represent factors containing at leasstantodule (red diamond
shaped boxes), and possibly, a transformation module fmxes). The encoder takes
as inputY” and produces a prediction of the latent cader he discrepancy between this
prediction and the actual codeis measured by the Prediction Cost module. Likewise,
the latent codé’ is the input to the decoder that tries to reconstruct thetifpuThe
discrepancy between this reconstruction and the adfusl measured by the Recon-
struction Cost module. Additional cost modules can be agpbethe code and to the
input. This is like a factor graph representation allowiagzoom in” inside the nodes.
The goal ofinferenceis to determine the value of the latent coddor a given input
Y. The energy of the system is the sum of the terms producedéygdbt modules.
The goal of learning is to adjust the parameters of both Eeicadd Decoder in order
to make the energy lower in correspondence of the trainingpéss, e.g., to make the
predicted codes very close to the actual caeand to produce good reconstructions
from Z when the input is similar to a training vector. After traigjrthe encoder can be

used for fast feed-forward feature extraction.
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Figure 1.4: Instances of the graphical representation 01 f&) (a) PCA the encoder and
decoder are linear; (b) autoencoder neural network; (c) & and other clustering
algorithms: the code is constrained to be a binary vectdr arly one non-zero compo-
nent; (d) sparse coding methods, including basis pursishddsen-Field models, and
generative noisy ICA in which the decoder is linear and theecsubject to a sparsity
penalty; (e) encoder-only models, including Product of &xpand Field of Experts; (f)

Predictive Sparse Decomposition method.

The energy-based graphical representation of an unsgpérmodel is derived from

the graphical representation of a factor graph and it is shiowfig. 1.3. This is a
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more operational representation where the transforma@qplied to the variables
andZ, and the compatibility tests are made explicit and visihkde the factor nodes.
In particular, there is a cost measuring the discrepancydet the code”Z and its
prediction given by thencoder The encoder is a deterministic function mapping the
inputY into an approximation of the latent code this is denoted by.(Y; W), where

W are trainable parameters. Likewise, there is a cost mewgiine discrepancy between
the inputY and its reconstruction produced by thecoder The decoder is another
deterministic function that maps the latent cadanto a approximation of the input
Y; this is denoted byy,(Z; W). Additional costs might take into account constraints
applied to the input and latent variables as well. The olerargy of the system is the

sum of all the terms produced by these cost modules.

Given a training sef’ = {Y*, ¢ € 1...p} and a set of trainable parametét3
we must define a parameterized family of energy functibs’; 17) in the form of an
architecture and adoss functionalL.(F'(-; W), T') whose role is to measure the “quality”
(or badness) of the energy surfakg¢-; /) on the training sef’. An energy surface
is “good” if it gives lower energies to areas around the frggnsamples, and higher

energies to all other areas.

Since the model depends not only on the inpubut also on the latent codg,
we must introduce another energy functigY, Z; W) and aninferenceprocedure to
computeZ and F(Y; W). With reference to fig. 1.3E(Y, Z; W) is the sum of the
decoder reconstruction error, the encoder predictiom,eanal the error in satisfying the
constraints on the input and latent code. In particular, &mote byFye{Y, Z; W) and

EendY, Z; W) the error terms produced by the encoder and decoder’s cakile®
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Before describing inference procedures, we first estaltishink between energy-
based models and probabilistic models. Among all possiiskeiloutions, we consider
a Boltzmann distributiorbecause it is the maximum entropy distribution satisfying a
expected constraint on the average energy (Jaynes, 19%7etZil., 1997). In other
words, this is the distribution that makes less assumptidnie being compatible with
the observations. In a Boltzmann distribution the probgbdensity function and the
energy relate by:

e~ BE(Y.Z;W)

P(Y, 2;W) = ———, with (1.1)

Y,Z

Py y — / eBEWEW) g e pt
Y,z

The denominator'y ; is called partition function and makes sure the distributior-
malizes to one. Although energy-based models do not refjyigeto be finite in general
(and therefore, there might be no probabilistic model thatlme associated to an energy-
based model), we assufie ; finite when we refer to “the probabilistic model associ-
ated to” a given energy-based model. Note that any prolséibilinodel can be written
in the energy-based model framework by definii@’, Z; W) = —log P(Y, Z; W). It

is also useful to introduce the marginal distribution over inputY”:

e~ BF(Y;W) B fz e~ PEY.:zW)

FY FY,Z
Iy — / o OF W)
Yy

whereF (Y; W) is derived through marginalizatiof,(Y; W) = — 5 log [, e ##(>=W),

PY;W) =

, with (1.2)
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The most common inference procedure defidend F'(Y') as follows:

7 = arg mig E(Y,z; W) (1.3)
ze

F(Y;W) = mig E(Y,z; W) (1.4)
zZe

In probabilistic terms, the proposed inference correspdodinding the maximum a
posteriori (MAP) estimate for the latent variablgs that are treated as @etermin-
istic latent variables. This is easy to show becausemax P(Z|Y; W) is the same
asargmax P(Y, Z; W) which is equal toargmin E(Y, Z; W) (see eq. 1.1). Instead,
probabilistic models infer distributionof latent codes by marginalizing the joint distri-
bution of eq. 1.1. In terms of energies we have already sesrhis corresponds to the

following log sum of exponentials:
F(Y;W) = —1/8log / e PEXVEW) 3 e RY (1.5)

which is intractable to compute, in general. Note tlhatan be interpreted as (the
minimum of) thefree energyfrom an analogy to statistical mechanics. For simplicity
in this paper, we refer to both functiodgY, Z; W) and F(Y; W) as “energy” since it
will be clear from the context if we refer to one or the othetsd@ note that if we let

[ go to infinity the log-sum in eq. 1.5 reduces to the minimizatof eq. 1.4. Finally,
some methods set the code through a deterministic mappitigeahput. PCA and
auto-encoder neural networks are the most popular exarhplachines using this kind
of inference procedure. This limit case of inference procectan also be seen as a

particular instance of the minimization of eq. 1.4:
F(Y;W) = mZin E(Y,Z; W), with

E(Y,Z;W) = max EqedY. Z;W) + v(Z — g.(Y; W) (1.6)
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where EyedY, Z; W) is the error term measuring the discrepancy between theibutp
of the decoder and the inpu,(Y; W) is the value assigned t6 by the encoder, and

is a Lagrange multiplier. While this is a dummy optimizatioolplem setting?'(Y; W)
equal toEgedY, g.(Y); W), it directly links to the formulation of eq. 1.4.

Specializations of the model of fig. 1.3 include cases whigheethe encoder or the
decoder are missing, as well as cases in which the code pogderror is constrained
to be zero, i.e., where inference of the code is done throwtgterministic mapping of
the input. Fig. 1.4 and chapter 2 re-interpret several @akansupervised methods in
this framework, and elucidate this point. It is importankéep in mind that the general
architecture of fig. 1.3 has several advantages over simpttitectures that lack either
the encoder or the decoder. The decoder makes learning basaise it allows to check
the fitting of the training data by comparing it with its restmuction from the code. On
the other hand, the encoder is trained to approximate tbatlabdeZ allowing very
fast and direct inference after its parameters are learned.

Devising an EBM consists of (1) choosing the architectuee the particular form of
encoder, decoder and cost modules that will contributegettergy functio (Y, Z; W),
(2) choosing an inference procedure that determi@s; W) andZ, and (3) choosing
aloss functional. A model can be trained with many diffeteas functionals. The sim-
plest loss functional that one can devise, calledahergy lossis simply the average

energy over the training sét= {Y", i€ 1...p}:
Lenergy (W, T) Z F(Y', W (1.7)

In general, minimizing this losgdoes noproduce good energy surfaces because, unless

F(Y; W) has a special form, nothing prevents the energy surface lh@eomingflat.
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No term increases the loss if the energy of unobserved \&&dow, hence minimiz-
ing this loss will not ensure that the energies of unobsevestors are higher than the
energies of training vectors. This is undesired becauseakes)the modelinable to
discriminatebetween data vectors that are similar and data vectors taatissimilar
to training samples. An example of such learning failureesrhing a set of random
projections to simply rotate the input space, for instanCéarly, all points in input
space are perfectly reconstructed, even those that aralifeagent from training sam-
ples, and the feature space is useless because it is justti@madf the input space. To
prevent thiscatastrophic collapsewe discuss two solutions. The first one is to add a
contrastive term to the loss functional which has the eftécpulling up” on the en-
ergies of selected unobserved points. The second solutiach is implicitly used by
many classical unsupervised methods, is to construct tigtecture in such a way that
only a suitably small subset of the points can have lowergnerhe region of lower
energy can be designed to be a manifold with a given dimensioa discrete set of
regions around which the energy is lower. With such archites, there is no need to
explicitly pull up on the energies of unobserved points¢siplacing low energy areas

near the training samples will automatically cause otheasito have higher energies.

1.2 Two Strategies to Avoid Flat Energy Surfaces

The trained model has to assign lower energy to vectors wddeturing training, and
higher energy to unobserved vectors. This is achieved bigrieg a suitable energy
and loss functional. All loss functionals have a term mizimg the energy over the

training samples, while different strategies are empldgdadcrease the energy of other
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data vectors. First, we consider loss functionals thatielyl pull up on the energy
of suitably chosen points. Then, we present a second farhignhergy functions that
increase the energy of unobserved vectors indirectly byngdtbnstraints to the code,

and we demonstrate the equivalence of these two strategies.

1.2.1 Adding a Contrastive Term to the Loss

Learning to model the distribution of the input data, whetbeally around the training
samples or rather globally across the whole input spaceyeachieved by minimizing

a loss functional of the following form:
1 & . -
LWT) = 2 J(F(Y5W)) = g(F(Y5W)) (1.8)
=1

whereY" is a training sampleY is a data vector whose energy has to be increased,
and f and g are monotonically increasing functions making sure that éhergy of
the training samples is lower than other points. The secemd in the loss is called
“contrastive term”. Without this term the model could assige same energy value to
all points in input space.

An example of this loss functional is the so calledrgin loss(LeCun et al., 2006;
Hadsell et al., 2006):

1< , .
L(W,T) = ) > P W)’ 4 max(0,m — F(Y5W))? (1.9)
=1
wherem € R* is the margin. This loss tries to make the energy of the cetita
sampleY higher than the energy of the training sample by at least gimar. Ideally,

Y is chosen to be the “most offending incorrect answer” of toeleh (LeCun et al.,
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2006). In other wordsY is the lowest energy point that lies outside a neighborhood
containing the training data. If there is not prior knowledout where such point can
be picked, sampling methods such as Langevin dynamics casdukto select it.

Another example of this kind of loss functional can be detilay maximum like-
lihood learning in probabilistic models. Most probabilgnsities can be written (or
approximated as cloed as desired) in terms of an energyifuntiirough the Gibbs
distribution:

P o—BFY"W)

1 . _
P(Y,...,YP,W)—HW

(1.10)
whereg is an arbitrary positive constant, and the denominatorapértition function

If a probability density is not explicitly derived from an engy function in this way,
we simply define the energy d8(Y; W) = —log P(Y;W). Training a probabilistic
density model is generally performed by finding ifiethat maximizes the likelihood of
the training data under the model given in the previous eégmaEquivalently, we can
minimize a loss functional (1W; T') that is proportional to the negative log probability

of the data. Using the Gibbs expression f{Y"; 117), we obtain:

1 1< 4 1
LOW;T)=—=log P(Y',...,Y?, W) ==Y FY“W)+ =1lo /eﬁ”y%w)
(W3 T) 5log ( ) 5 ; ( ) 38 )
(1.11)
Note that the same objective function can be derived usiegltial formulation of the
maximum entropy principle (Jaynes, 1957; Zhu et al., 1991 gradient ofL (W, T")

with respect tdV is:
OL(W;T) 1 G~ OF (YL W) L OF(y; W)
oW 5; ow /y Ply; W)=

_ 5F(Y; W) OF (Y, W)

oW S>yor — < W Y ~P(Y;W) (112)
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whereY ~ T andY ~ P(Y;W) mean thaty” is drawn from the training set and
from the model distribution, respectively. In other wordsgnimizing the first term in
eg. 1.11 with respect td’ has the effect of making the energy of observed data points
as small as possible, while minimizing the second term (igeplartition function) has
the effect of “pulling up” on the energy of unobserved datafsoto make it as high as
possible, particularly if their energy is low (their proliélp under the model is high).
Naturally, evaluating the derivative of the log partitiamnttion (the second term in
eq. 1.12) may be intractable whénis a high dimensional variable and(Y, W) is

a complicated function for which the integral has no analgblution. This is known
as thepartition function problem A considerable amount of literature is devoted to
this problem. The intractable integral is often evaluatedigh Monte-Carlo sampling
methods, variational approximations, or dramatic shaést@uch as Hinton'sontrastive
divergencenethod (Carreira-Perpignan and Hinton, 2005). The bas&afleontrastive
divergence is to avoid pulling up on the energyeweéry possible point’, and to merely
pull up on the energy of randomly generated points locatedl thee training samples.
These points are found by using a Markov Chain that startaiaitig samples and that
runs for only a few steps. This process is likely to pick lovergy points that are nearby
the training samples. This ensures that training pointsh@itomelocal minimaof the

energy surface, which is sufficient in many applicationsregupervised learning.

To summarize, we can interpret the log of the partition fiorces a very compli-
cated instance of the contrastive term in eq. 1.8. This teaoreases the energy of all the
points in input space making sure that the distribution radizes to one. Even though

the loss functional in eq. 1.11 is the only one maximizinglikedihood of the data, it is

23



generally intractable to compute and it requires appro#ona.

In general, one of the main issues when training unsupeahsedels is finding
ways to prevent the system from producing flat energy susfaBeobabilistic models
explicitly pull up on the energies of unobserved points byngighe partition function
as a contrastive term in the loss. Other methods using a mimsgg identify candidate
points where the energy has to be pulled up by running an gtran to find a mode
of the distribution, for instance. However, if the paramietgion of the energy function
makes the energy surface highly malleable or flexible, it bewecessary to pullupon a
very large number of unobserved points to make the enerdgcaitake a suitable shape.
This problem is particularly difficult in high dimensiongdaces where the volume of

unobserved points is huge due to the curse of dimensionality

1.2.2 Limiting the Information Content of the Internal Representa-
tion

One solution to the previously mentioned problem is to makecinergy surface a little
“stiff”, so that pulling down on a small number of well-chaspoints will automatically
pull up the energies of many points (LeCun et al., 2006). Ong wwaachieve this
is by limiting the number of parameters or by constraining parameters through a
regularization term in the loss.

Another solution is to design the energy function in such g tlvat only a small sub-
set of points can have low energies. This method is usedtatig@icitly) by prenormal-
ized probabilistic models such as Gaussian models or Gausskture models. In such

models, only the points around the modes of the Gaussiartsas@low energy (or high
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probability). Every other point has high energy by condiarc It is important to note
that this property is not exclusive to normalized densitydels. For example, a simple
wherelV; is the:-th prototype, can only produce low energy values (goodnsttac-

tions) around each of th& prototypes and higher energies everywhere else.

Building on this idea, the encoder-decoder architectureanasteresting property
that can be exploited to avoid flat energy surfaces. Thetaathre should be designed
so that each training sample can be properly representedivgae code, and therefore
can be assigned a low energy valtigy’; W) (e.g., good reconstruction). The architec-
ture should also be designed so that unobserved points signed codes similar to
those associated with training samples, so that their esefeg.g., reconstruction error)
are higher. Satisfying this property can be done in a numbesags, but the simplest
way is reduce the number of available codes while forcingnthe represent well the
training samples (by minimizing the energy over the tragrset). In short, we can min-
imize the simple energy loss in eq. 1.7 if Wit the information content of the code
This can be done by allowing the code to take only a finite nurobdifferent values
(as with the example of the previous paragraph), or by mattiegcode have a lower
dimensionality than the input, or by having a term in the gpdunction E(Y, Z; W)
that forces the code to be a “sparse” vector in which most corapts are zero. Many
classical unsupervised learning methods use this preaipplicitly as described in the

next chapter.

We provide a range of results that formalize the link betwgéeninformation con-

tent of the code and the volume of data that can be assignedrevgy in a number
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of cases corresponding to different model assumption$, asithe kind of decoder and
cost modules used. Lemma 1.1 is a set of general resultsdlze rentropy to the
shape of the energy function. Theorem 1.1 establishes atomindink between the
entropy of the distribution of the input and the entropy @& thstribution of the code in
a linear generative model. Theorem 1.2 shows that in a spatseg model, increasing
the sparsity of the code decreases the volume of the inpaéespith low energy. The-
orem 1.3 shows that in a reconstructive dimensionality cédao model, reducing the

dimensionality of the code decreases the volume of the isypate with low energy.

Lemma 1.1. Let us assume the enerdy(Y, Z) defines a joint probability distribu-
tion P(Y, Z) from which we can derive conditional and marginal distributo Let the
marginal beP(Y) = e #F (V) J, e~ PFW) (omitting the parameterd/ for clarity of no-
tation).

(1) The distribution maximizing the entropy over all probalildensities on a given
supportS of finite volume is the uniform distribution (denotediby

(2) For any distributionP(Y") defined onS, the KL divergence betwedn(Y") and U
increases linearly as the entropy B{Y") decreases.

(3) For any distributionP(Y") defined onS with H(P(Y')) smaller than the maximum
(log of the volume of), F(Y') cannot be constant.

(4) If Y is a vector distributed according to a Gaussian distribatithen decreasing
H(P(Y)) makeslet(2%) increase.

(5) LetY € R arandom variable with distributios”(Y"), and consider a sequence of

[ variables drawn fromP(Y"). A high probability set3! is defined as a set iR’ whose

probability is greater tham, with o > 0.5. The most probable set is the smallest of such
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sets. If the entropy oP(Y) decreases, then the volume of the most probable set also

decreases. [ |

Proof.
(1) Let H(P(Y")) denote the entropy of a distributidhY") andH (U') the entropy of the uniform
distribution.
KL(P,U) = / P(Y) log(P(Y)Vol(S)) = —H(P(Y)) + H(U) (1.13)
s

As the K L divergence of? andU is nonnegative with equality if and only i = U,

H(P(Y)) < H(U), (1.14)

with equality if and only ifP = U.
(2) As seen above,

KL(P,U) = H(U) — H(P(Y)) (1.15)

(3) By defining the energy as minus the log of the probability, we have that theromidlis-
tribution is the only one that is associated a flat energy surfdd€) = c¢,c € R. Any other
distribution with lower entropy, i.e. non-uniform, must have a non-flatgghsurface. By con-
tradiction, if F(Y") is constant and not associated to a uniform distribution then we have that
P(Y) =exp—BF(Y)/ [, exp—BF(y) = 1/Vol(S) =U.

(4) The entropy of a random Gaussian vector with covariance matisx

H(P(Y)) = %log((Qﬂe)M| det(S))). (1.16)

The entropy decreases fiflet(X)| decreases as well. On the other hand, if we define the energy
asF(Y) = —log P(Y) (up to a constant) then we find that the Hessian of the energy is:

O*F

577 = (| det(x)]) L. (1.17)
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Hence, as the entropy of the distribution of the random vector is deddaseurvature of the
energy surface increases. In particular, it increases at the mode disthibution. If we think
of F'(Y) as a trainable model, then decreasing the entropy makes the differenaebetve
lowest and the highest energy values larger, and the model more dis¢imiflass uniform).
A similar property can be demonstrated for any other uni-modal distributiorels

(5) This is an interesting result from (Cover and Thomas, 1991). Let R, and{Y}; a
sequence dfindependent samples drawn from the distributitfY”). Then, up to the first order
in the exponent:

Vol(BL) = 2 (P(Y) (1.18)
whered§ > 0.5 and st is the most probable set with probability at leaséstimated from/
samples. In other words, the volume of the smallest set containing most ofababity is
about2#(P(Y)) with (loosely speaking) average side length equalte” ).

Although this results is valid only for (any) one-dimensional distribution, vegia nice
intuition of how the entropy relates to the energy in this case. Given a distnibatid its cor-
responding energy, we can set a threshold to individuate the (possibbonnected) set with
lowest energy (most probable set). By decreasing the entropy of ttidudli®n, the volume
of this set decreases meaning that the energy becomes more peakadt(ibetion has more

mass) around the lowest energy (most likely) areas. O

In the case of a linear generative model, links between th@y of the input dis-

tribution and the entropy of the code distribution can becdbsed more precisely:

Theorem 1.1.In a linear generative (decoder-only) model that represehe input as
Y = WZ +n, whereP(n) = N(0,0%) and P(Z) = L()\) (Laplace distribution with

zero mean and scale parametgr decreasing the entropy (P(Y")) of the marginal dis-
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tribution overY also decreases the average number of partitions of the isypate that
are induced by the cod®. Under a Gaussian variational approximation to the poste-
rior and O-th order Taylor approximations, decreasifid P(Z)) reducesH (P(Y')) too.

[

Proof. This is derived from the Blahut-Arimoto and Information Betteck methods
(Tishby et al., 1995). The model assumptions are the sanre(@shausen and Field,
1997)’s algorithm. The code is distributed according to alaee priorP(Z), and the
conditional likelihoodp(Y'|Z) is a Gaussian with medi Z and fixed spherical covari-
ance matrix. Henceld (P(Y'|Z)) is fixed, while H(P(Y')) depends orf{ (P(Z)) and
the parameter$l’. The algorithm implicitly partitions the input space inteoft) re-
gions, where each region is assigned a cgde&since the average volume of the input
space i27*Y)) and the average volume of all the points that are mappedtieteame
codeZ is 211(Y17) the average number of partitions induced by the algorithigiven
by the ratio: 27/(P(Y)) /oH(P(Y12)) — 2I(Y.2) "wherel (Y, Z) is the mutual information
betweenY” andZ. Therefore, by reducing/ (P(Y)) we reduce the number of bits re-
quired to identify a partition, i.e. the complexity of the deb. By using a Gaussian
variational approximation to the posterior (refer to th@ampdix A) and exploiting the
relationH(P(Y)) = H(P(Z)) — H(P(Z|Y))+ H(P(Y|Z)), we can show that reduc-
ing H(P(Z)) reduces? (P(Y)) since the entropy of the posterior never decreases more

thanH(P(Z)). O

In a sparse coding model, the sparsity of the code can beatiedtthrough a hyper-

parameter; we show that varying this hyperparameter haffest en the shape of the
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energy surface:

Theorem 1.2.1n a sparse coding model whose energ¥'{§"; W) = miny ||Y —W Z||?
st || Z]]o < d, withW € RM*N M < N,d < M, and rank{y) = m € (d, M], and
assuming the data centered at the origin and contained inlbdbaadius R, and for
a sufficiently smalk € R, the volume of the input space whose energy is below

decreases as the code is made sparser, that ig,ieslecreased. [ |

Proof. The model assumptions are again the same as in (Olshaudeétiedah, 1997)’s
algorithm, but expressed in the log domain in terms of eesrgnd using thé, norm
instead of thel,; norm . The ‘L, norm” is not a norm and it counts the number of non-
zero elements of a vector. By relaxing thgnorm into anZ; norm we turn an NP-hard
optimization problem into a convex one. The relaxation gives the same solution as
the Ly norm provided that the solution is sparse enough (Donohd=tend] 2003). The
proof is by induction. Wherd = 0 the only admissible code is 0, and the region that can
have energy smaller tharis the sphere of radiug’e centered at the origin. We denote
the volume of this sphere with§ = %7?6%. Whend = 1, the set of admissible codes
consists of all codes with at most one non-zero coordinates dreatesV additional
sets along the columns &F with energy smaller thaa For smalle, each such set can
be approximated by a “tube” of leng#iz and radius,/e going through the origin along
the direction given by the columns oF. The total volume of these set§ is lower
bounded by the volume of a single “tube” which2&re. This volume is larger than
S¢ providede is sufficiently small to guarantee thak %RQ. The assumption on small
€ is also required to approximate the low energy areas wittithe whend = 1 and

to make sure that sub-spaces generated by the coluninsiadve little overlap when
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d > 1. Assuming that the property holds fdr— 1, we are going to show that it also
holds ford < m. This is trivial because the volume of the sets that haveggnaelow

e using at mostl — 1 code units,S5_,, is strictly contained inS§ since (a) the condi-
tion || Z]|o < d implies||Z||o < d — 1, and (b)d < m. The former condition implies
thatS5_, € S5. The latter condition guarantees that the space spannetié&gsaone

d-dimensional sub-space generated by pickirgplumns ofi1” does not coincide with
the sub-spaces generated by taking into account @rlyl columns since the rank of

W is greater thaw, and thereforeS; , C S5. O

Reducing the dimensionality of the code is another way torobihe shape of the

energy surface:

Theorem 1.3.In a model whose energy i8(Y; W) = ming ||Y — WZ||?, with W €
RM*N N < M, rank(¥) = N, and assuming the data centered at the origin and
contained in a ball of radiug?, and for a sufficiently small € R*, the volume of the
input space whose energy is belewecreases as the code is made lower dimensional,

that is, asN is decreased. [ |

Proof sketch The proof is similar to the one of the previous theorem. Tokiwme
generated by any set of — 1 linearly independent vectors, _, is going to be always
smaller than the volumé’, generated by taking into account linearly independent

vectors (columns ofl’), provided that is sufficiently small. O

So far we have taken into account “decoder-only” models lihatairly reconstruct the

input without a module directly producing the representatiAs we mentioned earlier,
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there are also “encoder-only” models (Teh et al., 2003; Badl ejnowski, 1995) that
directly produce the representation without explicitlgoastructing the input. In par-
ticular, the work by (Scholkopf et al., 2001) addresses thestjon of how to devise
an encoder-only algorithm that assigns lower energy to digtia density areas. The
algorithm is a single class SVM that maps the input into feaspace through a fixed
non-linear transformation followed by a linear adaptivejection. The algorithm is
trained in such a way that this function is positive when o@re drawn from high
data density areas, and negative otherwise. This is eaigmtkin to learn an energy
function and setting a threshold to identify regions of hilgita density. In order to train
the parameters, the authors propose to minimize a lossidmattthat trades off two
terms: the empirical error and the model complexity. Theieicgd error is formulated
in terms of the separation of the points mapped in featureesfram the origin, while
the model complexity term is the squarég norm of the parameter vector. Since the
algorithm can be reduced to a standard binary SVM, it inkeniany theoretical prop-
erties. In particular, the authors show that the trade-afameter between the two error
terms in the loss effectively controls the volume over whiod algorithm assigns high

probability and the fitting of the data.

The aim of their work is very similar to ours because (1) thentto learn a func-
tion that is above threshold over the most probable set l@mergy around training
samples) without trying to solve the more difficult densisgimation problem tackled
by probabilistic models, and (2) they use a loss function ttedes off the fitting of
the training data to the model complexity. While they conth@ model complexity by

penalizing the parameters, we suggest to control it by cainstg the internal represen-
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tation. Theorem 1.1 used yet another way to control the moolaplexity, i.e. by min-
imizing the mutual information between input and code. Whilantities like entropy
and mutual information are difficult to compute and estimatargue that constraining
the representation might be better than bounding the paeasnef the model if we are
interested in using the unsupervised algorithm to learpeesentation of the input. The
framework we propose is particularly useful not just to iafgrhigh data density areas,
but also to learn adaptive representations of the input sathe properties, as opposed
to use fixed non-linear mappings.

To summarize, we have shown that the energy surface can be lessl flat by
either having a contrastive term in the loss pulling up onghergy of suitably chosen
data vectors, or by constraining the code. The first strategit become inefficient
in high dimensional spaces because the volume that has tons&lered is very large,
and because sampling and optimization methods become pmmsive. Constraining
the internal representation is a more global strategy tbygpubn the energy. Only few
regions in input space can be assigned low energy valuexe $e energy is made
small around the training samples, it must be higher elsesvh&his strategy might
overcome the inefficiency of the first class of methods thatausontrastive term in the

loss, and it can actually be used in combination with it (Leal e 2007).
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2
CLASSICAL METHODS IN THELIGHT

OF THE ENERGY-BASED MODEL

FRAMEWORK

In this chapter we review a number of classical unsupenlesatiing models in the light
of the energy-based framework. The most popular methodsP&Mdl the algorithm
that we are going to introduce in chapter. 3, are summariaeble 2.1. Most of
these algorithms use special cases of the encoder-decotiéeeature described above.
They differ in the specifics of the architecture, the constszon the code, the inference
procedure and the loss function used for training. To ithtsthow each method works,

we will use toy problems, designed to facilitate the viszetion of the energy surface.

The first training dataset is shown in fig. 2.1(a) and it caei$10,000 points in the
2D plane(y;, y2) . The training points are generated by a mixture of three Gadih
tributions along three random vectors. Points outside ittoéecof radiusy/2 have been
left out. The second training dataset is shown in fig. 2.1fo)iaalso consists of 10,000
points in the 2D plane, but the points are generated alongal fpat fits in the square
with opposite corners (-1,1), (1,-1). The goal of learniaga learn an energy surface
F(Y; W) with lower values around regions of high data density anthéiigyalues ev-
erywhere else. The energy can be as simple as the squaredtrection error, or it can

include additional terms such as a sparsity constraint.det@ is designed so that there
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is no function that can predict a single valueygfirom y; or vice versa. It is important
to remain cautious about over-interpreting results oletiwith this low-dimensional
toy problem: real problems in unsupervised learning oceurigh dimensional tasks.

Nevertheless, these toy examples are a useful didactic tool

() (b)
Figure 2.1: Toy datasets: 10,000 points generated by (axaraiof 3 Cauchy distri-
butions (the red vectors show the directions of generatanmg (b) points drawn from a

spiral.

2.1 Principal Component Analysis

PCA is an encoder-decoder architecture that minimizes aggfwss equal to the mean
squared reconstruction error. In PCA the optimal code istcaingd to be equal to
the value predicted by the encoder, and the encoder and eleacel symmetric and
use a weight matrix¥” whose columns are orthogonal; see table 2.1 for more details
PCA avoids flat energy surfaces by using a code with a lower mboeality than the

input. Only those vector¥ that are in the space spanned by the columnd/ovill
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2) energy loss  3) neg-log-likel. 4) margin loss 5) sparse cod. 6) kmeans

Figure 2.2: Toy dataset (a) - Energy surfaE€y’; 1) for (by column): 1) PCA, 2)

12

146 3

227. 2 20
‘

23

auto-encoder trained using the energy loss (minimizatiamean squared reconstruc-
tion error), 3) auto-encoder trained using as loss the ivegat the log-likelihood, 4)

auto-encoder trained by using the margin loss, 5) a spadiagalgorithm (Lee et al.,

2006), and 6) K-Means. The red vectors are the vectors aldngjvthe data was gen-
erated (mixture of Cauchy distributions). The blue linestaeedirections learned by
the decoder, the magenta numbers on the bottom left arerfestavalues of the energy
(the smallest is zero), and the green numbers on the botgirhare the number of code

units. Black is small and white is large energy value.

be exactly reconstructed (with zero energy). Therefomnieg can be carried out by
simply minimizing the average energy of the training sampgthout having to worry
about pulling up on the energies of unobserved points: #reargies will automatically

become higher (except if they happen to be on the linear sale3p
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1) PCA 2) energy loss 3) margin loss
‘ ‘ u

4) sparse cod.

5) kmeans

Figure 2.3: Toy dataset (b) - Energy surfaces. The magemtaspare training samples

along which the energy surface should take smaller values.

Table 2.1: Popular unsupervised algorithms in the EBM fraorkwf fig. 1.3. N and

M are the dimensionalities of the codeand the input’, o is the logistic non-linearity

ando’ its derivative, andy, is the mapping produced by the encoder. In the Mixture of

Gaussians (MoG) we denote the inverse of the covariancexnadthe i-th component

with A;, fori = 1..N.

Methods Encoder ‘ Decoder‘ Inp. Rec. Cost Code Pred. Cost ‘ Code Cost ‘ pull-up
PCA wTy wZ Y —wWZz|J3 Z = ge(Y; W) - N<M
autoenc. a(WeY) WaZ Y — WaZz||2 Z = ge(Y; We) - N<M
RBM c(WTY) | o(WZ2) | -iyTwz -YTwz - part. func.
ICA-IM WeY - - Z = go(Y; W) o' (Z) log |We|
sparse cod. — Wz Y —WZ|3 — 1Z] sparsity
PSD Do (W.Y) WaZ lY = WuZ||2 | ||1Z — Do(WeY)||3 [1Z]]1 sparsity
K-Means - Wi Y — W;l|2 - - 1-of-N code
MoG - W; 1Y —will%, - - part. func.
PoE WeY - - Z = ge(Y; We) > gilog(1+22) | part. func.

PCA performs very poorly on these toy datasets. With one coidle the region

of low energy is a horizontal straight line as shown in fig. 2)&and fig. 2.3 1), while

with two code units, the entire input space has zero energgrygpoint in the plane

gets reconstructed perfectly (the system simply compueegientity function), but the
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Table 2.2: Strategies used by common algorithms to avoiéfiatgies.

Pull-up factor methods

N<M PCA, autoencoder, factor analysis
sparsity sparse coding, K-Means

exact max. likelihood(part. func.) square ICA, MoG

approx. max. likelihood (CD, score matching, etc, RBM, PoE, overcomplete ICA
constant part. func. Basis Rotation (Weiss and Freeman, 2007)
param. regularization 1 class SVM, KPCA

model is essentially useless as it does not discriminatedsst areas of high and low

data density.

2.2 Autoencoder

Similarly to PCA, an autoencoder neural net with a small hiddger learns low-dimen-
sional representations. Unlike with PCA, that manifold maybn-linear if the encoder
and decoder have multiple layers. Still, the limitation ba timensionality of the code
allows us to simply pull down on the energy of the training pés, without having to
pull up on unobserved points. Fig. 2.2 2) shows the energgsei(squared reconstruc-
tion error) generated by using a one-hidden layer autoesromih one and three code
units (see table 2.1). While the former one produces an ersendgice very similar to
PCA, the latter one fails to produce a non-flat enétggcause neither a contrastive term
is added to the loss nor the code is constrained. Fig. 2.3@yskhe energy surface

on the spiral data when the encoder has a first hidden layleri®i@ units and a second

1The energy is almost flat because of the saturation due toythertholic tangent.
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hidden layer with just one unit (the code). Similarly, theo@er has a hidden layer with
100 units and an output layer with two units. The lower din@masl manifold of zero

energy is non-linear, but does not fit the data perfectly.

2.3 Negative Log Probability Loss

In order to train a “wide” autoencoder successfully, i.e.aatoencoder whose code is
higher dimensional than the input, we can add a contrastie to the loss. Here we
consider a probabilistic approach and minimize the negdtyg likelihood loss. The

energy of the system is again the squared reconstructiontegtween input and output

of the network:

F(Y; W, Wy) = ||Y — WatanhW.Y)|[5

Naturally, there is no analytic expression for the log i function, since it involves
a non-linear function in the exponentidbg [ exp(—F(y; W,, Wy)). Then, we must
resort to approximate methods to evaluate the derivativhi@iog partition function
as shown in eq 1.12. Since the toy problem is two-dimensjamalcan get away with
replacing the integral by a discrete sum of about 10,000\d&ttors at regularly-spaced
grid points. Fig. 2.2 3) shows the energy surface produceslibis a wide autoencoder
with only 3 and 20 hidden units. The bottom plot shows the Itesfuapproximate
maximum likelihood using Contrastive Divergence (with ent Markov Chain sam-
pling (Salakhutdinov, 2008)) in order to approximate a slenfipm the model distri-
bution. Notice how in this case the energy surface takesdhead shape only locally

around regions of high density of training data. Interegjinthe modelwarpsthe input
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space in order to produce such energy surface. For instethes the autoencoder has
only 3 code units the directions learned by the decoder (xgéors) are not the direc-
tions along which the data was generated (red vectors), lnérncoder and decoder
vectors are not pointing along the same directions. The maassigns lower energy
to the training samples, and much higher energy to the othiatgby properly rotating

and stretching the mapping. A solution with symmetricalaster and decoder where
the vectors recover the directions of data generation wallde good reconstruction of

all points in the plane, instead.

An important characteristics of the negative log probapibss is that its value only
depends on thdifferenceof energies between training points and unobserved points.
Shifting the entire surface upwards, i.e. adding a constetiie energy, does not change
the value of the loss. This means that there is no pressuteafomg points to produce
low energy values. Since the energy is equal to the squaceds&uction error, an im-
portant consequence of this fact is tha@himizing the negative log probability loss does
not necessarily lead to good reconstruction of training pa In general, the negative
log probability loss is the only one maximizing the likeldub of the data. This is the
loss that should be used for density estimation problensight arise in compression
applications, for instance. However, most of the times wg nged to identify regions
of high density data or to extract features. Unless the podibac model is simple
and the input space is low dimensional, training using tss Imight require expensive

approximations, such as the use of variational and sampigtyods.
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2.4 Restricted Boltzmann Machines

In a Restricted Boltzmann Machine (Hinton, 2002), the cgds binary and it can have
any dimensionality. When the inplitis binary as well, we have that the encoder predic-
tion error is the same as the input reconstruction errortlagdare equal te%ZTWTY.

The overall energy (disregarding the biases)isY, Z; W) = —ZTW?TY. There is no
error associated to the code variables. Inference of the odot performed by min-
imizing the energy, but by sampling the code according todik&ibution defined by
the energy. Once has been picked, the reconstruction is chosen by samplinglhs
WhenY is continuous, the code is still chosen by sampling, but @o@mstruction is
set equal tar (I 7), whereo (.) is logistic. This corresponds to taking the average over
the distribution of binary vectors. Weights are updated according to contrastive diver-
gence (Carreira-Perpignan and Hinton, 2005), an approxamé&b the gradient of the

log-likelihood of the data.

2.5 Product of Experts

In the Product of Experts (PoE) method proposed by (Teh g2@03) the decoding
is missing and the code is a deterministic function of thaiinghe encoder consists
of a set of linear filters, rows of matri¥/,, and the energy is defined a&i(Y") =

S gilog(l + 27), with Z = WY andg;,i € [1,.., N| set of coefficients that are sub-
ject to learning as well. Training uses the negative log ability loss with a gradient

step approximated by contrastive divergence. While produtie code for a given
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input is a simple matrix multiplication, generating datanfr the model (which is nec-
essary in the energy pull-up phase of contrastive divergéarning) requires the use
of expensive sampling methods, such as Markov Chain Mont®@ad Hybrid Monte
Carlo methods (Neal, 1993), whose convergence is slow aficLdtito assess. More re-
cently, Salakhutdinov (Salakhutdinov, 2008) introducéasser variant of these methods
dubbed persistent Markov Chairis The basic idea is to maintain a set of “particles”
(input vectors) to compute the model expectations, and tatgpthese particles by us-
ing Gibbs sampling. Sampling methods are used whenevegaineihg algorithm needs
to compute expectations over the model distribution or smdsamples from it, like in

contrastive divergence learning.

2.6 Contrastive Margin Loss

As with contrastive divergence, we concentrate our effarpolling up the energies of
unobserved points that are in thieinity of training samples. To generate one of those
points (let’s call itY"), we use two strategies: (a) use Langevin dynamics, ancathpke

a point at random from a region that lies outside a small ri@giood of the training
samples. In the first case, we start from the training sammderan a few steps of a

Langevin dynamics by updating the current estimat® af the following way:

_ _ oF
Y<—Y—778—Y‘YZ}7+E (21)

wheree is a random sample from a zero-mean multivariate Gaussgnhdition with
a predefined isotropic covariance, amis a step size. The process is biased towards

picking unobserved points with low energy. Unlike contraesdivergence, we use a
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contrastive loss function that does not attempt to appratenthe negative log proba-
bility loss, but merely attempts to pull up on samplésip to a given energy leveh,

called themargin
LY;W) = F(Y;W) 4+ max(0,m — F(Y;W)) (2.2)

For this experiment, we set = 1. The energy surface is the squared reconstruction
error and again we consider a wide autoencoder. The resngj titee sampling strategy
(b) is shown in figure 2.2 4), while the energy surface obthinsing the sampling
strategy (a) is shown in fig. 2.3 3). The contrastive term @névthe energy from being
flat everywhere. The margin prevents unobserved points @vbnsrgy is already high

from being pushed even further.

2.7 Sparse codes

In this sparse coding model (Lee et al., 2006; Olshausen mhd, £997), the code has
most of its components constrained to be zero. The archiecloes not have an en-
coder. The error on the code measuresitheorm of Z, while the reconstruction error
of the input measures the squared Euclidean distance betweet and linear recon-
struction from the code. Sincg can be higher dimensional than the input, an energy
loss equal to the squared reconstruction error would pmdaenergy surface equal to
0 everywhere (the linear system is underdetermined). ddsthe code is constrained to

be sparse and only few low dimensional subspaces can havenergy. Loss and the
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energies are equal to:

1
E(Y,Z;W) = |lY =WZ|l;+ M2

LY;W) = F(Y;W) = ming E(Y, Z; W) (2.3)

The model is also summarized in table 2.1. Inference is pagd by minimizing the

convex non-quadratic enerdy(Y, Z; W) over Z. By applying the algorithm to the first
toy dataset, a staircase energy surface can be retrievethamdinima are tightly set
around the training samples as shown in fig. 2.2 5) (the dinestof data generation
are actually perfectly recovered). We have also appliedhencsparse coding algo-
rithm (Ranzato et al., 2006) to the spiral toy dataset andigutas results as shown in

fig. 2.3 4).

2.8 K-Means Clustering

The architecture for K-means clustering is very similarite bne described for sparse
coding. Indeed, the coding produced by K-Means can be irdgtxg as the ultimate
sparse code because only one unit is active (non-zero) iocdtle. K-Means has no
encoder, only a decoder and a reconstruction cost mod@¢akke 2.1. The only points
that are reconstructed with zero energy are the prototypeery other point has higher
energy.

Figure 2.2 6) shows the energy surface obtained by trainimgeidns with 3 and 20
prototypes on the first toy dataset, and fig. 2.3 5) shows time € the spiral data with
20 prototypes. The minima of the energy are very localizad,raany more prototypes

would have been necessary to give the right shape to theyesertace. The problem
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becomes even more serious in high dimensional spaces.

2.9 Mixture of Gaussians

The energy-based model view of a mixture of Gaussians andeldrg are very simi-
lar. A mixture of Gaussians is a “decoder-only” model lagkan encoder. Since the
joint probability isP(Y,Z = ;W) = P(Y|Z = i)P(Z = i), with P(Y|Z = i) =
N(W;, A;l), wherelV; is the mean of thé-th componentA; is its inverse covariance
matrix, andi’ denotes all the parameters of the model (means and covesigitice en-
ergyis:E(Y,Z;W) =%, 0(Z,4)(5||Y —=W;||4 —log det(A;) —log P(Z = i)). We can
also introduce a constant = — log det(A;) — log P(Z = i) to defineE(Y, Z; W) =
> 0(Z,0)(])Y — Wil|4 + ). If P(Z = i) and the covariances are the same for all
components (i.ec; = ¢, Vi), then this is much like the squared reconstruction erredus
in K-Means. However, inference and learning are differémta mixture of Gaussians
inference is done through marginalizatiaR(Y; W) = Y . P(Y|Z = i)P(Z = 1),
which corresponds to setting(Y; W) = —log >, e £ W) "and the loss is the neg-
ative log of the data likelihood. Training a mixture of Gaass in the energy-based
model framework would proceed by minimizing the loss by ggatidescent over the
training set. After training, the constafntwould converge to minus the sum of the log
of P(Z = i) and the log determinant of;. Usually, a mixture of Gaussian is trained

using EM algorithm instead (Dempster et al., 1977).
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2.10 Other Algorithms

There are other popular unsupervised algorithms that cantéereted in the energy-
based model framework. In Factor Analysis (Hinton et al97)@he internal represen-
tation is modelled by a multivariate isotropic Gaussiartriigtion and the conditional

distribution of the input given the code is another Gausdiatribution with a diagonal

covariance matrix. Factor analysis is a linear generatisdeghwhose decoder matrix
is learned by maximizing the data likelihood. The inforroaticontent of the code is
reduced by the choice of the prior on the code (penalizingdtaorm), and by using a

code with smaller dimensionality than the input.

Minimum Description Length (Hinton and Zemel, 1994) methmoohimizes a loss
that takes into account the number of bits that are neededctade the reconstruction
error, the number of bits required to represent the codetedumber of bits to encode
the parameters of the model. These last two terms limit tfeenmation content of the

code and the complexity of the model, ensuring that the griengot constant.

(Doi et al., 2006) proposed an encoder-decoder model ta lgzarse overcomplete
representations. Their model prevents flat energy surfagdsjecting noise in the

representation, yet another way to limit the informationteat of the code.

Finally, Score Matching (Hyvarinen, 2005) makes sure thahing samples are
local minima of the energy surface by minimizing a loss fiorwl that is the difference
between the square of the first derivative and the secondatigg of the energy with
respect to the input training data. In other words, trairsagiples are minima of the

energy surface and they are placed in regions of high cueatbus preventing flat
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energy surfaces. (Hyvarinen, 2007) also showed that scatehing is a deterministic

variant of Contrastive Divergence using Langevin dynamicsampling.

2.11 Whatis notan EBM?

The EBM framework can be used to describe most unspervisedigaalgorithms.
However, there are some methods that are based on otheipprgthan learning an
energy surface with training samples placed at the localma@n One such method is
calleddenoising autoencodé€keCun, 1987; Ranzato et al., 2007a; Vincent et al., 2008).
These autoencoders are trained using as input a noisy dzta ye.g., an image patch
corrupted by additive Gaussian noise), and as target thhesgmnding “clean” version

of the input. The machine rather than learning to place tamitrg samples at the
minima of the energy surface, it learmactor fieldswvhose rotational is not necessarily

zero. Hence, these vector fields may not be derived or uedsnrii potential (or energy).
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3
LEARNING SPARSEFEATURES

In the previous chapters we have seen that restricting tioeniation content of the
code is an efficient strategy to prevent flat energy surfatésgih dimensional spaces.
A sparse coding algorithm represents the input data withde tioat has only few sig-
nificantly non-zero components. Our interest in sparsengpdigorithms is justified by
their computational efficiency, and by their ability to Iea possibly overcomplete set
of features. In such high-dimensional spaces features are likely to become linearly
separable, making simpler a recognition system based se tepresentations.

Here we show how the energy-based model framework can betasgelise an
efficient sparse coding algorithm. This algorithm is call@dictive Sparse Decom-
position(PSD). First, we decide on the architecture. We are intedeist systems that
produce features through a (1) direct and (2) non-linearpimgp A direct mapping, as
opposed to an iterative inference procedure, is desirabiesfcomputational efficiency.
The mapping has to be non-linear because linear projeatemsapture at most second
order correlations. Moreover, a linear mapping would noabke to produce sparse
overcomplete representations because of the non-orthdtyoof the filters. Therefore,
we use an architecture like in fig. 3.1 that has an encodereimghting a non-linear

function such as:
ge(Y;We, D) = D tanh(W.Y) (3.1)

whereY € RM is the input,IV, € RV*M is a filter matrix,tanh is the hyperbolic tan-

gent non-linearity, and ¢ R¥*" is a diagonal matrix of coefficients. Other encoding
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Figure 3.1: Graphical representation of PSD algorithmneay sparse representations.

functions will be studied in the appendix B. Since the encaglalready non-linear, the
decoder can be linear and parameterized by a set of basigoiusiccolumns of matrix
W, € RM*N_ The most natural encoding and decoding cost modules siogphpute
the squared distance of their inputs. Since we are intetesteparse codes, we also
enforce an L1 penalty on the code. We define the energy as theftall these error
terms, and the loss can be safely set equal to the energytemcede is constrained to

be sparse:

E(Y,Z;W4,W,,D) = ||Y — WaZ||3+ a||Z — g.(Y; We, D)||5 + M| Z||x

LY; Wy, W, D) = F(Y; Wy, W,, D) = mZin EY,Z;Wy,W.,D) (3.2)

3.1 Inference

Inferring the representatiafi can be done in two ways.
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e Optimal inference consists of setting the representation to
Z* = argmin E(Y, Z; Wy, W,, D)

, by running an iterative gradient descent algorithm ingtwo possibly large
matrix-vector multiplications at each iteration (one fongputing the value of the
objective, and one for computing the derivatives throtig)). Note that the loss
is convex with respect t&, and other faster optimization algorithms could be

used (Lee et al., 2006).

e Approximate inferencesets the representationdgY’; W,, D) as givenin eq. 3.1,
involving only a forward propagation through the encoder, ia single matrix-

vector multiplication.

The optimal inference is used during training, while theragpmate inference is used

after training when the encoder is able to produce valugsalese to the optimal ones.

3.2 Learning

The goal of learning is to find the optimal value of the parargin both encoder
and decoder{W,, D, W,}. Learning proceeds by an on-line block coordinate gradient

descent algorithm, alternating the following two stepsdach training sampl&:

1. (optimal inference steReeping the parameters fixed, minimize the energy
E(Y,Z; Wy, W, D) of eq. 3.2 with respect t&, starting from the initial value
provided by the encodeg.(Y; W,, D).
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2. (parameter update stepising the optimal value of the codefound at the previ-
ous step, update the parameters by one step of stochagtiergrdescent on the
loss. The update i/ «— U — 2%, whereU collectively denote§W., D, W,}

andy is the step size. The columnsaf; are then re-scaled to unit norm.

Minimizing this energy with respect t8 produces a representation that simultaneously
reconstructs the input, is sparse, and is not too differemb the predicted representa-
tion. If multiple solutions to the original loss (withoutdltode prediction term) exist,
minimizing this compound loss will drive the system towapisducing basis func-
tions and optimal representations that are easily prda&téfter training, the function
g.(Y; W, D) will provide good and smooth approximations to the optinpalrse repre-
sentations. Also, the columnsdf, are rescaled to unit norm after every update because
otherwise the loss can be made smaller by multiplying andlicig 1V, and Z by the
same constant. Sind&; is normalized and theanh saturates, the encoder needs the
trainable diagonal matri® of coefficients in order to make the system able to adapt to
different scaling of the input data.

Interestingly, we recover different algorithms dependimgthe value of the hyper-

parametery of eq. 3.2:

e o = 0. The loss of eq. 3.2 reduces to the one in eq. 2.3. The |leaatgugithm
becomes similar to (Olshausen and Field, 1997)’s sparseg@dgorithm. The

encoder can be trainesgparatelyfrom the set of basis functiong’,.

e a € (0,+00). The parameters are updated taking into account also thefabil-

ity constraint on the representation.
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e o — +oo. The additional constraint on the representation (thersgterm in
eq. 3.2) becomes an equality, i2.= g.(Y; W,, D), and the model becomes sim-
ilar to an auto-encoder neural network with a sparsity regggtion term acting
on the internal representatidhinstead of a regularization acting on the parame-

tersWW, andWW.

In this paper, we always set = 1. Sec. 3.3.2 shows that training the encoder after
training the set of basdd/; yields similar performance in terms of recognition accu-
racy. When the encoder is trained afterwards, the approginegiresentation is usually
less sparse and the overall training time increases caasilye Finally, additional ex-
periments (see appendix B) show that training the systemastarencoderq{ — +o0)
provides a very fast and efficient algorithm that can prodymad representations when
the dimensionality of the representation is not much grehgen the input dimension-
ality, i.e. N ~ M. When the sparse representation is highly overcompleteltoi-b
coordinate descent algorithm withe (0, +oco) provides better features.

In the appendix A we give yet another interpretation of theoeler, as an approxima-
tion to the mean parameter of a Gaussian variational apmiation to the true posterior

distribution.

3.3 Experiments

First, we demonstrate that the proposed algorithm (PSDiles ta produce good fea-
tures for recognition by comparing to other unsuperviseduiee extraction algorithms,

principal components analysis (PCA), restricted Boltzmaratimme (RBM) (Hinton,
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2002), and sparse encoding symmetric machine (SESM) (Raatat., 2007b). Then,
we compare the recognition accuracy and inference time bBffe8d-forward approx-
imation to feature sign (Lee et al., 2006), the fastest espatse coding algorithm, on

the Caltech 101 dataset (Fei-Fei et al., 2004).

3.3.1 Comparing PSD to PCA, RBM, and SESM

The MNIST dataset (MNI, ) has a training set with 60,000 harittien digits of size
28x28 pixels, and a test set with 10,000 digits. Each imagesigrocessed by normaliz-
ing the pixel values so that their standard deviation is efgua. In this experiment the
sparse representation has 256 units. This internal rapedsmn is used as a global fea-
ture vector and fed to a linear regularized logistic regoesslassifier. Fig. 3.3.1 shows
the comparison between PSD (using feed-forward approgicwades) and, PCA, SESM
(Ranzato et al., 2007b), and RBM (Hinton, 2002). Even though p®lzides thevorst
reconstruction error, it can achieve thbest recognition accuracyon the test set under

different number of training samples per class.

3.3.2 Comparing PSD to Exact Sparse Coding Algorithms

In order to quantify how well our jointly trained encoder apximates the optimal rep-
resentations obtained by minimizing the loss in eq. 3.2 Aedptimal representations
that are produced by an exact algorithm minimizing eq. 2chsas feature sign (Lee
etal., 2006) (FS), we measure the average signal to noisé (8NR) over a test dataset

of 20,000 natural image patches of size 9x9. The datasetagjesiwas constructed by

SN R = 1010g10(02;, 01/ T2 vise)

signal
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Figure 3.2: Classification error on MNIST as a function of restouction error using
raw pixel values and, PCA, RBM, SESM and PSD features. Left-ghRi 10-100-
1000 samples per class are used for training a linear ckxssifi the features. The

unsupervised algorithms were trained on the first 20,000itrg samples.

randomly picking 9x9 patches from the images of the Berkelsgskt converted to
gray-scale values, and these patches were normalized ¢ozead mean and unit stan-
dard deviation. The algorithms were trained to learn speoses with 64 unifs

We compare representations obtained by “PSD Encoder” ulsewgpproximatan-
ference, “PSD Optimal” using th@ptimalinference, “FS” minimizing eq. 2.3 with (Lee
et al., 2006), and “Regressor” that is separately trainegpocimate the exact optimal
codes produced by FS. The results given in table 3.1 showh&&SD encoder achieves
about the same SNR on the true optimal sparse represestatioduced by FS, as the
Regressor that was trained to predict these representations

Despite the lack of absolute precision in predicting theceratimal sparse codes,

2Principal component analysis shows that the effective dsimality of 9x9 natural image patches
is about 47 since the first 47 principal components captie®®¥o of the variance in the data. Hence, a

64-dimensional feature vector is actually an overcomplepeesentation for these 9x9 image patches.
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Table 3.1: Comparison between representations produceé lfizde et al., 2006) and

PSD. In order to compute the SNR, the noise is definddagial — Approximation).

Comparison (Signal / Approximation)Signal to Noise Ratio (SNR
1. PSD Optimal / PSD Encoder 8.6
2. FS/PSD Optimal 5.2
3. FS/PSD Encoder 3.1
4. FS / Regressor 3.2

PSD encoder achieves even better performance in recagnitiee Caltech 101 dataset
is pre-processed in the following way (Pinto et al., 200B)each image is converted
to gray-scale?) it is down-sampled so that the longest side is 151 pix®Ishe mean

is subtracted and each pixel is divided by the image standrition,4) the image is
locally normalized by subtracting the weighted local meamfeach pixel and dividing

it by the weighted norm if this is larger than 1 with weightsnfing a 9x9 Gaussian
window centered on each pixel, aBjithe image is O-padded to 143x143 pixels. 64
feature detectors (either produced by FS or PSD Encodep plagged into an image
classification system (Pinto et al., 2008) thatused the sparse coding algorithms con-
volutionally to produce 64 feature maps of size 128x128 &mhepre-processed image,
B) applied an absolute value rectificatid@), computed an average down-sampling to a
spatial resolution of 30x30 arfd) used a linear SVM classifier to recognize the object
in the image (see fig. 3.3(b)). Using this system with 30 trejnmages per class we

can achievé3% accuracy on Caltech 101 dataset.

It is important to observe that we mustctify the features in order to achieve good

55



= N

Enlin

oy

e ]

(=

e

S

EEPE Y

SOnRE o

RN < s

EmEE S,

BLAS

N

0 20 40 60 80 100 120 140

H=II

Number of Invariant Units

() (b)
Figure 3.3:a) 256 basis functions of size 12x12 learned by PSD, trainel@Bérkeley
dataset. Each 12x12 block is a column of matiix in eq. 3.2, i.e. a basis functiob)
Object recognition architecture: linear adaptive filtemkdollowed byabs rectification,

average down-sampling and linear SVM classifier.

generalization. In other words, the features used for neitiog are not the code units,
but their sparsity errors (i.e., their absolute value). # remove the absolute value
rectification the accuracy on the test set drops to 16%, wdiileaining samples are
still correctly classified. We conjecture that a rectifioatis necessary for a twofold
reason. First, it improves generalization by removing tbkapty of edges which is

irrelevant for recognition, since it is important to knovetk is an edge, but not if the
object is brighter or darker than the background. Secoiidy,oids cancellations due
to the band-pass nature of the learned filters that precedmtiraliasing low-pass filter
before the spatial down-sampling. These cancellationddvpropagate a very noisy

signal to the classifier.
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Since FS finds exact sparse codes, its representationsrearatig sparser than those
found by the PSD encoder trained with the same value of spg@msnalty\. Hence, we
compare the recognition accuracy againstritteasuredparsity level of the representa-
tion as shown in fig. 3.4(b). PSD is not only able to achievédbetccuracy than exact
sparse coding algorithms, but also, it does it much moreieffily. Fig. 3.4(a) demon-
strates that our feed-forward predictor extracts featoree than 100 times faster than
feature sign. In fact, the speed up is over 800 when the sp@ssset to the value that
gives the highest accuracy shown in fig. 3.4(b).

Finally, we observe that these sparse coding algorithmsamewhat inefficient
when applied convolutionally. Many feature detectors hedtanslated versions of each
other as shown in fig. 3.3(a). Hence, the resulting featunesnaae highly redundant.
This might explain why the recognition accuracy tends torsdé when the number of

filters is increased as shown in fig. 3.4(c).

3.3.3  Stability

In order to quantify the stability of PSD and FS, we invedegaeir behavior under nat-
urally changing input signals. For this purpose, we trairmsidset with 128 elements,
each of size 9x9, using the PSD algorithm on the Berkeley (Béatgset. This basis
set is then used with FS on the standard “foreman” test vidgether with the PSD
Predictor. We extract 784 uniformly distributed patchesrfreach frame with a total of
400 frames.

For each patch, a 128 dimensional representation is céclulesing both FS and the

PSD predictor. The stability is measured by the number aésimunit of the representa-
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representation) of the PSD encoder compared to the to tleseqation of FS algo-
rithm. A difference within 1% is not statistically significa c) Recognition accuracy as

a function of the number of basis functions.

tion changes its sign, either negative, zero or positiveyeen two consecutive frames.
Since the PSD predictor does not generate exact zero valgesreshold its output
units in such a way that the average number of zero units etjuabne produced by FS
(roughly, only the1% of the units are non-zero). The transition probabilities given

in Figure 3.5. It can be seen from this figure that the PSD ptedgenerates a more
stable representation of slowly varying natural frames garad to the representation

produced by the exact optimization algorithm.
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Figure 3.5: Conditional probabilities for sign transitiohstween two consecutive

frames. For instance?(—|+) shows the conditional probability of a unit being neg-

ative given that it was positive in the previous frame. Thearkgon the right is used as

baseline, showing the conditional probabilities computegbairs ofrandomframes.
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4
LEARNING INVARIANT

REPRESENTATIONS

In this chapter we study methods to learn invariant reptasens. We are interested in
learning features that are invariant to transformatioas &ne irrelevant for recognition.
By mapping similar input data vectors into the same featuctovewe can make much
easier the training of a subsequent supervised classiftes i3 a typical problem in
vision. For instance, consider the problem of recogniziagegic object categories in
images. Ideally, we would like to learn a representation iha&nvariant, or robust, to
changes in illumination, position, scale, and orientatibabjects. If we had such repre-
sentation, then we could train a classifier using more compacesentations and fewer
labeled samples per class. Since most applications raguimvariant representations
are in the computer vision field, we refer to vision problemshis chapter. However,

the methods are general and can be applied to any other domain

The most successful and most commonly-used (although aptiad) invariant de-
scriptors, such as SIFT and HoG (Lowe, 2004; Dalal and Trigg65), are computed
on patches extracted at a regularly spaced grid on the inpage. Each patch is con-
volved with a filter bank (often consisting of oriented edgeedtors), the outputs of
which are rectified and often normalized and quantized. Tthenoutputs of each filter
are spatially pooled using a simple addition or a max operatoas to build local bags

of features. The pooling operation makes the descriptargiofo minor changes in the
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position of individual features. This architecture is sarhat similar (and inspired by)
that of the early areas of the mammalian visual cortex: smplls detect oriented edges
at various locations and scales (playing the same role adtérebank). Highly-active
simple cells inhibit other cells at neighboring locatiomsl arientations (like the nor-
malization), while complex cells spatially pool the reeéifioutputs of complex cells, so

as to create a local invariance to small shifts (like the pgobperation).

The problem oflearning invariant image features has become a topic of growing
interest in recent years. Supervised learning methodslbagdeen used in conjunction
with Convolutional Networks to learn low-level, locally iakiant features that are tuned
to the task at hand (LeCun et al., 1998; LeCun et al., 2004) haset methods require
large numbers of labelled samples. A number of differenppsals have appeared for
unsupervised learning of locally-invariant descriptaféigkott and Sejnowski, 2002;
Foldiak, 1991), which also use sparsity criteria (Hyvamimad Hoyer, 2001; Osindero
et al., 2006; Hyvarinen and Koster, 2007; Ranzato et al., 200@dieu and Olshausen,
2008; Kavukcuoglu et al., 2009).

Some methods assume knowledge of the transformations aiwie representation
has to be invariant (Ranzato et al., 2007c). This is the sishgase and it will be
described in section 4.1. There are two ways of learning sejgfesentations. The first
one is to “hard-wire” the invariance in the architecturer ihgtance, a rotation invariant
representation can be computed by applying a filter bank gé elétectors in different
orientations, followed by a max operator across the coomrding feature maps. The
output of the max operator is the same no matter the orientati the input pattern,

achieving invariance to rotation. The second way is to afiytransformation to each
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training sample, and to train the system to produce the sapresentation when taking
as input either the original or the transformed input.

A more ambitious and difficult problem is to learn represgois that are invariant
to learnedtransformations. At a very high level, these methods useséimee princi-
ples as before. In slow feature analysis (Wiskott and Segkgw2002) the system is
trained on time-varying natural signals and the internpiesentation is forced to vary
smoothly across time, achieving invariance (or robusinessmall distortions. Other
methods learn transformations by relying on a carefullyseimoarchitecture (Cadieu and
Olshausen, 2008), or by trying to learn how to pool similatéees (Kohonen, 1996;
Hyvarinen and Hoyer, 2000; Hyvarinen and Koster, 2007)ti8ee.2 will describe an
algorithm that produces representations invariant tonegtransformations by pooling
features that are similar, while enforcing sparsity acpugss of features (Kavukcuoglu
et al., 2009). Overall, these algorithms are simple exterssof sparse coding algo-

rithms, like the one described in the previous chapter.

4.1 Learning Locally-Shift Invariant Representations

An image patch can be modeled as a collection of featuresglaicparticular locations
within the patch. A patch can be reconstructed from the fis¢atures that are present
in the patch together with their respective locations. k& shmplest case, the features
are templates (or basis functions) that are combined adbitio reconstruct a patch. If
we assume that each feature can appear at most once withioha fieen computing a
shift-invariant representation comes down to applyinghdaature detector at all loca-

tions in the patch, and recording the location where thearsp is the largest. Hence
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Figure 4.1: Left Panel: (a) sample images from the “two beetaset. Each sample con-
tains two intersecting segments at random orientationgamdbm positions. (b) Non-
invariant features learned by an auto-encoder with 4 hiddets. (c) Shift-invariant
decoder filters learned by the proposed algorithm. The alkgorfinds the most natural
solution to the problem. Right Panel (d): architecture ofshidt-invariant unsupervised
feature extractor applied to the two bars dataset. The emamhvolves the input im-
age with a filter bank and computes the max across each fea@peto produce the
invariant representation. The decoder produces a recmtisin by taking the invariant
feature vector (the “what”), and the transformation paramrse(the “where”). The re-
constructions is the sum of each decoder basis functioregidhition indicated by the

transformation parameters, and weighted by the correspgifielature component.
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the invariant feature vector records the presence or abs#Hreach feature in the patch
(whatis in the image), while the so call&nsformation parametergcord the location
at which each feature output is the largeghéreeach feature appears in the imaga)
In general, the feature outputs need not be binary. Beforeribéeéry the learning algo-
rithm, we show how a trained system operates using a toy eeaaspan illustration.
Each input sample is a binary image containing two intensgdtars of equal length, as
shown in fig. 4.1(a). Each bar is 7 pixels long, has 1 of 4 péssikientations, and is
placed at one of 25 random locations (on>aSbgrid) at the center of a X717 image
frame. The inputimage is passed through 4 convolutionatéilof size %7 pixels. The
convolution of each detector with the input produces ar 111l feature map. Anax-
pooling layer finds the largest value in each feature map, recordi@gosition of this
value as théransformation parametdor that feature map. The invariant feature vector
collects these max values, recording the presence or absémach feature indepen-
dently of its position. No matter where the two bars appeéneninput image, the result

of themax-poolingoperation will be identical for two images containing baf&denti-

1This matched filterkind of approach is susceptible to failure because of iaterfce from nearby
features and because of non-zero responses of the filtehao patterns. However, the algorithm is very
robust in practice and it seems that the minimization of #onstruction error forces the system to

resolve the interference problem.
2The representation might be invariant to other transfoienatthan shift. This might be undesired

depending on the application. It is an open research quelstw to achieve invariance exclusively to a

given type of transformation preserving the informatiolevant to achieve a given task.
3In some applications, the information about the locatiotheffeatures might carry useful information

that cannot be discarded. One possibility is to use thisriilgo on overlappingwindows in order to

implicitly retain the information about position in the regentation througbross-predictive coding
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cal orientations at different locations. The reconstrdgatch is computed by placing
each code value at the proper location in the decoder featape using the transforma-
tion parameters obtained in the encoder, and setting af etdues in the feature maps
to zero. The reconstruction is simply the sum of the decodsisifunctions (which are

essentially identical to the corresponding filters in theagter) weighted by the feature
map values at all locations.

A solution to this toy experiment is one in which the invatieepresentation encodes
the information about which orientations are present, evttie transformation param-
eters encode where the two bars appear in the image. Thdeatibar detector filters
shown in the figure are in fact the ones discovered by theileguadgorithm described
in the next section. In general, this architecture is noitéohto binary images, and can

be used to compute shift invariant features with any numbeomponents.

4.1.1 Learning Algorithm

The encoder is given by two functiord = Encz(Y;W,) andU = Ency(Y; W)
whereY is the input image}V., is the trainable parameter vector of the encoder (the
filters), Z is the invariant feature vector, aidis the transformation parameter vector.
Similarly, the decoder is a functidbec(Z, U; W,) whereW, is the trainable parameter
vector of the decoder (the basis functions). The input rstcantion errorE; mea-
sures the square Euclidean distance between the innd its reconstructio; =

|Y — Dec(Z,U;W,)||*. Likewise, the code prediction error is the squared Eualide
distance between the invariant code produced by the en@dkthe optimal code:

E. = ||Z — Encz(Y;W,)||?. Learning proceeds by block-coordinate descent aver
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and the parameters in encoder and decoder:

1. First, propagate the inpat through the encoder to produce the predicted code
Zy = Encz(Y;W,) and the transformation parametéfs= Ency(Y; W,) that
are then copied into the decoder. Keeplhdixed, and usingZ, as initial value
for the codeZ, minimize the energy,+ E. with respect to the codg by gradient

descent to produce the optimal cadée

2. Update the weights in the encoder and decoder by one stgpdient descent so

as to minimize the decoder energy.

Note that this is general learning algorithnthat is suitable for any encoder-decoder
architecture, and not specific to a particular kind of featr architecture choice. Any
differentiable module can be used as encoder or decodearticylar, we can use the
encoder-decoder architecture described in chapter 3 hipgtinl the energy a sparsity
penalty on the code, and by using a linear decoder and a simopléinear encoder, for
instance. This would produce feature that are not only sparg also shift-invariant.

We tested the proposed architecture and learning algomihitine “two bars” toy
example described in the previous section. In this expertint®th the encoder and the
decoder are linear functions of the parameters (linearditi@d linear basis functions)
and the energy is simply the sum of encoder and decoder reeaotign error. The input
images are 1¥17 binary images containing two bars in different oriemtasi horizon-
tal, vertical and the two diagonals as shown in fig. 4.1(ag dimcoder contains four<77
linear filters, plus four 1% 11 max-pooling units. The decoder contains four7dinear

basis functions. The parameters are randomly initialiZHte learned basis functions
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Figure 4.2: Fifty 20«20 filters learned in the decoder by the sparse and shiftimnvar
ant learning algorithm after training on the MNIST dataddtandwritten digits of size
28x 28 pixels. A digit is reconstructed as linear combinatiomaimall subset of these
features positioned at one of 81 possible locations 0), as determined by the trans-

formation parameters produced by the encoder.

are shown in fig. 4.1(c), and the encoder filters in fig. 4.1@ler training on a few
thousand images, the filters converge as expected to theextibar detectors shown in
the figure. The resulting 4-dimensional representatioraeie¢d from the input image is
translation invariant. These filters and the corresponcepgesentation differ strikingly
from what can be achieved by PCA or an auto-encoder neurabnet®wor comparison,
an auto-encoder neural network with 4 hidden units wasedhon whole images from
this dataset. The filters (weights of the hidden units) amvshin fig. 4.1(b). There is
no appearance of oriented bar detectors, and the resutitgs@re not shift invariant.
In fig. 4.2 we show an example of sparse and shift invariaritifea (using an exten-
sion of the sparse coding algorithm described in (Ranzato 0©6), but similar results
are achieved by using the algorithm proposed in chapter Bg algorithm is applied

to the handwritten digits of the MNIST dataset (MNI, ), whiobnsists of quasi-binary
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images of size 2828 pixels. We considered a set of fifgp x 20 filters in both en-
coder and decoder that are applied to the input at 81 locafior 9 grid), over which
the max-pooling is performed. Hence image features can mexethose 81 positions
while leaving the invariant feature vector unchanged. Bsedhe feature vectors must
be sparse, the learned features (shown in fig. 4.2) look lgte getectors. Each digit
can be expressed as a linear combination of a small numbkesé 60 parts, placed at
one of 81 locations in the image frame. Unlike with the novainant method described
in (Ranzato et al., 2006), no two filters are shifted versidnsazh other. Moreover,
the reconstruction error is reduced by a factor of two comgpdao the non-invariant

approach.

4.2 Learning Representations Invariant to Generic Trans-

formations

The algorithm proposed in this section (Kavukcuoglu et20Q9) is similar to the pre-
vious one in the fact that it combines feature detection asalipg during learning,
but it does not assume anything about the transformatioritentilters are not applied
convolutionally.

Our aim is to learn the filter bank stage and the pooling stagel&neously, in
such a way that filters belonging to the same pool extractairf@atures. Our solution
is to pre-wire (before learning) which filters are pooledethgr, and to let the filters
learn. The main idea, borrowed from (Hyvarinen and Kosté72, is to minimize a

sparsity criterion on the pooling units. As a result, filtdrat are pooled together end up
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extracting similar features.

Several authors have proposed methods to learn pooleddsdtiohonen, 1996;
Hyvarinen and Hoyer, 2000; Hyvarinen and Koster, 2007). Wthenfilters that are
pooled together are organized in a regular array (1D or 2i)fitters formtopographic
mapsin which nearby filters extract similar features (Osindetrale 2006; Hyvarinen
and Hoyer, 2001). In this work for the first time, a trainaldpdgraphically-organized
feature map is also used for extracting locally invarianag® descriptors for image
recognition.

This is an extension to the sparse coding algorithm propwsedapter 3 that over-
comes one of the most well-known idiosyncrasy, namely tis¢alvility of the repre-
sentation. If the input pattern is slightly distorted, tle@resentation might drastically
change. The use of a direct encoding regressor partiallyesdhis issue because it
makes the mapping smoother (see sec. 3.3.3), but the useaniaint features further

improves the stability as demonstrated in sec. 4.2.2.

4.2.1 Modeling Invariant Representations

Let us consider the standard sparse coding algorithm intediby Olshausen and Field (Ol-

shausen and Field, 1997). The loss is equal to:
LY, Z;Wa) = |Y = WaZ|l5 + M| Z]|, (4.1)

We now describe how the sparsity term in eq. 4.1 can be moddieckate coefficients
that are invariant to perturbations of the input signal.
The overall idea (Hyvarinen and Koster, 2007) is to arrahge/ts into a 2D map

(or some other topology) and then pool the squared coeftgad¥ across overlapping
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windows. Then, the square of the the filter outputs withirheaad-window are summed,
and its square root is computed. More formally, let the map obntainK overlapping
neighborhoods?;. Within each neighborhood we sum the squared coefficients
(weighted by a fixed Gaussian weighting function centereth@éneighborhood) and
then take the square root. This gives the activation- m , Wherew; are
the Gaussian weights. The overall sparsity penalty is the aglueach neighborhood’s
activation: Zfil v;. Figure 4.3(a) illustrates this scheme. Thus, the ovelgbaiive

function is now:

K
1 2 2
Ly = 5|l = WaZ|[; + A; > w2 (4.2)

i= JEPR;

The modified sparsity term has a number of subtle effects em#éture ofZ that are

not immediately obvious:

e The square root in the sum ovieencourages sparse activati@sossneighbor-
hoods since a few large activations will have lower overafitchan many small

ones.

¢ Withineach neighborhood the coefficients; are encouraged to be similar to one
another due to thef. term (which prefers many small coefficients to a few large
ones, see also fig. 4.4). This has the effect of encouragmigpsibasis functions

in W, to be spatially close in the 2D map.

¢ As the neighborhoods overlap, these basis functions witicthly vary across the

map, so that the coefficients in any given neighborhoodwill be similar.
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Figure 4.3:(a): The structure of the block-sparsity term which encouragesbasis

functions inl¥/; to form a topographic map. See text for detgjly: Overall architecture

of the loss function, as defined in eq. 4.3. In the generatigdeh we seek a feature

vectorZ that simultaneously approximate the inpuvia a dictionary of basis functions

W, and also minimize a sparsity term. Since performing ther@rfee at run-time is

slow, we train a prediction functiog.(Y; W) (dashed lines) that directly predicts the

optimal Z from the inputY’. At run-time we use only the prediction function to quickly

computeZ from Y, from which the invariant featuras can be computed.
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e Ifthe size of the pooling regions is reduced to a singlelement, then the sparsity

term is equivalent to that of eq. 4.1.

The modified sparsity term means that by minimizing the lasstionZ; in eq. 4.2
with respect to both the coefficientsand the dictionaryl,, the system learns a set of

basis functions i/, that are laid out in @opographic mamn the 2D grid.

Since the nearby basis functions in the topographic mapimitas the coefficients
z; will be similar for a given input”. This also means that if this input is perturbed
slightly then the pooled response within a given neighbodhwill be minimally af-
fected, since a decrease in the response of one filter wilffisetdy an increased re-
sponse in a nearby one. Hence, we can obtain a locally robpitgentation by taking

the pooled activations; as features, rather thanas is traditionally done.

Since invariant representations encode similar patteitistiae same representation,
they can be made more compact. Put another way, this medrketdimensionality of
v can be made lower than the dimensionalityZofvithout loss of useful information.
This has the triple benefit of requiring less computationxivaet the features from an
image, requiring less memory to store them, and requiriag ®mputation to exploit

them.

The 2D map ovetrZ uses circular boundary conditions to ensure that the pgolin

wraps smoothly around at the edges of the map.

In order to make the algorithm efficient at test time, thatasspeed up inference
of the invariant representation, we use an encoder to Hirpatdict Z from Y and we

add a corresponding penalty in the loss function as alreadg th the previous chapter.
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Figure 4.4: Level sets induced by different sparsity peeslithe figure was taken from

Yuan and Lin’s paper (Yuan and Lin, 2004)). There are two po®he first one has two

units (7, Z,), and the second one has only one @#aif). The first row shows the level

set in 3D, while the second and the third rows show the prigjeston the coordinate

planes. The first column is the L1 norm of the units, the se@mhamn is the proposed

sparsity penalty (grouped lasso), and the third one is thadrgn of the units. The

proposed sparsity penalty enforces sparsity across gmglsot within a pool.
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Linking to the previous chapter, the overall energy funtemd loss are:

K
E(Y,Z;Wa, We,D) = |[Y = WaZ|3+ al|Z — g.(YiWe, D)3+ A [ w; 22

i=1 \/ jep,

L[PSD(Y; Wd7 We7 D) - F(Y7 Wd7 W67D) - mZHlE(K Z7 Wd7 W€7D> (43)

where the encoding mapping is the same one used befdgié; ., D) = D tanh(W.Y).
The learning algorithm is unchanged, and it consists of akbtmordinate gradient
descent optimization alternating a minimization over thdee”, and over the parame-
ters in both encoder and decoder (see sec. 3.2).
Once the parameters are learned, computing the invaripregentatiorl’ can be
performed by a simple feed-forward propagation througheheoderg.(Y; W., D),
and then by mapping into V' throughV; = \/m We will call this method

Invariant Predictive Sparse Decomposition (IPSD).

4.2.2 Experiments

We first study the topographic map produced by our trainitgese, before exploring
the properties of the invariant features obtained. Firstnvake an empirical evaluation
of the invariance achieved by these representations urateslations and rotations of
the input image. Second, we assess the discriminative pofxtbese invariant repre-
sentations on recognition tasks in three different domdihgeneric object categories
using the Caltech 101 dataset; (ii) generic object categdrien a dataset of very low
resolution images and (iii) classification of handwritingits using the MNIST dataset.
We show examples from the latter two datasets in Fig. 4.7 hése experiments we

compare our learned representations with the SIFT descifpbwe, 2004) that is con-
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Figure 4.5: Topographic map of feature detectors learnaah fnatural image patches
of size 12x12 pixels by optimizing the loss in eq. 4.3. Theme 400 filters that are
organized in 6x6 neighborhoods. Adjacent neighborhoodslay by 4 pixels both
horizontally and vertically. Notice the smooth variatioithvin a given neighborhood

and also the circular boundary conditions.
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Figure 4.6: Analysis of learned filters by fitting Gabor funaos, each dot corresponding
to a filter. Left: Center location of fitted Gabor. Right: Polaapnshowing the joint
distribution of orientation (azimuthally) and frequencgdially in cycles per pixel) of

Gabor fit.

76



AN TR QRY%Q 4 O
CLP—addA Wl

e W= X e\A

A
7
2
5
9
4
S
o
5
[4)

\ 32
> &
¢ 3
(s
g 5
O9
&/
2/
NG
78

WONOLeeUpNe—
NN O NNy N ey

/9
& |
/4
70
73
*
& 4
¢ 3
&7
6 3

Figure 4.7: Left: Examples from the MNIST dataset. Right: fapées from the tiny

images. We use gray-scale images in our experiments.

sidered a state-of-the-art descriptor in computer visionally, we examine the compu-

tational cost of computing our features on an image.

Learning the topographic map

Fig. 4.5 shows a typical topographic map learned by the meponethod from natural
image patches. Each tile shows the filte#ify corresponding to a particuldf;. In the
example shown, the input images are patches of size 12xEkspiand there are 400
basis functions, and hence, 400 urfffsarranged in a 20x20 lattice. The neighborhoods
over which the squared activities @f’s are pooled are 6x6 windows, and they overlap
by 4 in both the vertical and the horizontal direction. Theparties of these filters are

analyzed by fitting Gabor functions and are shown in Fig. 4.6.
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By varying the way in which the neighborhoods are pooled, we d@ange the
properties of the map. Larger neighborhoods make the filbegach pool increasingly
similar. A larger overlap between windows makes the filt@ryvnore smoothly across
different pools. A large sparsity valuemakes the feature detectors learn less localized
patterns that look like those produced by k-means clugjdratause the input has to
be reconstructed using a small number of basis functionsth®wther hand, a small
sparsity value makes the feature detectors look like noaliped random filters because
any random overcomplete basis set can produce good regoimnstis (effectively, the

first term in the loss of eq. 4.3 dominates).

The map in fig. 4.5 has been produced with an intermediatesitpéevel of A\ =
3. The chosen parameter setting induces the learning digotid produce a smooth
map with mostly localized edge detectors in different posg, orientations, and scales.
These features are nicely organized in such a way that neigifgbunits encode similar
patterns. A unit/; that connects to the sum of the squares of ufijts1 a pool is invari-
ant because these units represent similar features, artidistartions applied to the
input, while slightly changing th&;’s within a pool, are likely to leave the correspond-

ing V; unaffected.

While the sparsity level, the size of the pooling windows ameirtoverlap should
be set by cross-validation, in practice we found their exatties does not significantly
affect the kind of features learned. In other words, the raigm is quite robust to the
choice of these parameters, probably because of the masyraions enforced during

learning.
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Analyzing Invariance to Transformations

In this experiment we study the invariance properties oféaened representation under
simple transformations. We have generated a dataset obli@xtliral image patches
under different translations and rotations. Each patclmasented to our predictor that
produces a 128 dimensional descriptor (chosen to be the semeas SIFT) ofl’s.

A representation can be considered invariant if it does hange significantly as the

input is transformed. Indeed, this is what we observe in &i. We compare the mean
squared difference between the descriptor of the referpatz and the descriptor of

the transformed version, averaged over many different epagches. The figure shows
ours against SIFT with a varying horizontal shift for 0 andd&grees rotation. Very

similar results are found for vertical shifts and other tiotaangles.

On the left panel, we can see that the mean squared error (B&&Een the rep-
resentation of the original patch and its transformati@neases linearly as we increase
the horizontal shift. The MSE of our representation is galietower than the MSE
produced by features that are computed using SIFT, a nationtinvariant version of
SIFT, and a non-invariant representation produced by tbpgsed method (that was
trained with pools of size 1x1, like PSD described in the fmes chapter). A similar
behavior is found when the patch is not only shifted, but aiéated. When the shift is
small, SIFT has lower MSE. But as soon as the translation besdange enough that
the input pattern falls in a different internal sub-winddihe MSE increases consider-
ably. Instead our learned representations seem to be qbitstrto shifts, with an overall
lower area under the curve. Note also that traditional €p@wding algorithms are prone

to produce unstable representations under small distsrtod the input. Because each
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Figure 4.8: Mean squared error (MSE) between the reprasamtaf a patch and its
transformed version. On the left panel, the transformedmyiathorizontally shifted. On
the right panel, the transformed patch is first rotated by @jprekes and then horizon-
tally shifted. The curves are an average over 100 patchesnaly picked from natural
images. Since the patches are 16x16 pixels in size, a sHifi pixels generates a trans-
formed patch that is quite uncorrelated to the original lpatéence, the MSE has been
normalized so that the MSE at 16 pixels is the same for all ogthThis allows us to
directly compare different feature extraction algorithmsn-orientation invariant SIFT,
SIFT, the proposed method trained to produce non-invarepresentations (i.e. pools
have size 1x1), and the proposed method trained to produaeant representations.
All algorithms produce a feature vector with 128 dimensiof@ur method produces

representations that are more invariant to transformatilban the other approaches for

most shifts.
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input has to be encoded with a small number of basis functimmd because the basis
functions are highly tuned in orientation and location, abmhange in the input can
produce drastic changes in the representation. This proigigoartly alleviated by our
approximate inference procedure that uses a smooth entod#ion. However, this ex-
periment shows that this representations is still fairlgtable under small distortions,
when compared to the invariant representations producéaeipvariant algorithm and

SIFT.

Generic Object Recognition

We now use our invariant features for object classificatiothe Caltech 101 dataset (Fei-
Fei et al., 2004) of 101 generic object categories. We useadfinng images per class
and up to 20 test images per class. The images are randorkbdpi@nd pre-processed

as described in sec. 3.3.2.

We have trained our method on 50,000 16x16 patches randodmceed from the
pre-processed images. The topographic map used has si2é,32ih the pooling
neighborhoods being 6x6 and an overlap of 4 coefficientsdmtwmeighborhoods. Hence,
there are a total of 512 units that are used in 128 pools touysed 128-dimensional
representation that can be compared to SIFT. After traioumgalgorithm in an unsuper-
vised way, we use the encoder function to infer the reprasentof one whole image
by: (i) running the encoder on 16x16 patches spaced by 4giggbroduce 128 maps
of features of size 34x34; (ii) the maps of features are |lasspfiltered with a boxcar
filter to avoid aliasing; (iii) the maps are then projectenha the leading 3060 principal
components (equal to the number of training samples), ahd Gupervised linear SVM

is trained to recognize the object in each correspondingggnd he overall scheme is
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Figure 4.9: Diagram of the recognition system. This is cosegloof an invariant feature
extractor that has been trained unsupervised, followeddmparvised linear SVM clas-
sifier. The feature extractor process the input image thr@uget of filter banks, where
the filters are organized in a two dimensional topographip.nfdne map defines pools
of similar feature detectors whose activations are firstinggarly transformed by a hy-

perbolic tangent non-linearity, and then, multiplied byaang Invariant representations
are found by taking the square root of the sum of the squardssé units that belong
to the same pool. The output of the feature extractor is afsetps of features that can
be fed as input to the classifier. The filter banks and the sgaiofs is learned by the
algorithm. Recognition is very fast, because it consistsdifect forward propagation

through the system.
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shown in Fig. 4.9. Table 4.1 reports the recognition redoltghis experiment. Us-
ing a linear SVM classifier our features outperforms SIFT #relmulti-scale Gabor
system proposed by Serre and Poggio (Serre et al., 2005)ewowf rotation invari-
ance is removed from SIFT the performance becomes compat@al®IFT. With the
more sophisticated Spatial Pyramid Matching Kernel SVMssifger (Lazebnik et al.,
2006a), our features yield an average accuracy per class @gp9.6%. By decreasing
the stepping stride to 1 pixel, thereby producing 120x120Que2 maps, our features
achieve 65.5% accuracy as shown in table 4.1. This is corbleai@Lazebnik’s 64.6%
accuracy on Caltech-101 (without background class) (Lakediral., 2006a). For com-
parison, our re-implementation of Lazebnik’s SIFT feaxtactor, stepped by 4 pixels
to produce 34x34 maps, yielded 65% average recognition Véité 128 invariant fea-
tures, each descriptor takes around 4ms to compute from E6Jatch. Note that the
evaluation time of each region is a linear function of the bemof features, thus this
time can be further reduced if the number of features is redu€ig. 4.10 shows how

the recognition performance varies the number of featwdecreased.

Tiny Images classification

The proposed method was compared to SIFT on another remgtask using a tiny
images dataset (Torralba et al., 2008). This was chosers agtiteme low-resolution
provides a different setting to the Caltech 101 images. Huopkgity, we selected 5
animal nouns (Abyssinia cat, angel shark, apatura irisga of butterfly), bilby (a type
of marsupial), may beetle) and manually labeled 200 exasnpleeach. 160 images
of each class were used for training, with the remaining 4@ bat for testing. All

images are converted to gray-scale. Both our algorithm wathdooled units and SIFT
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Figure 4.10: The figure shows the recognition accuracy orCéileech 101 dataset as
a function of the number of invariant units (and thus the disienality of the descrip-

tor). Note that the performance improvement between 64 @8duhits is below 2%,

suggesting that for certain applications the more compastriptor might be preferable.
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were used to extract features over 16x16 regions, spaceg £yexels over the 32x32
images. The resulting 5 by 5 by 128 dimensional feature magpthan fed into a linear
SVM classifier, as before. Our features achieve 54% cortassification rate and SIFT
features achieve 53% correct classification rate. Hencdeauned features perform

comparably to SIFT.

Handwriting Recognition

We use a very similar architecture to that used in the exparimmabove to train on
the handwritten digits of the MNIST dataset (MNI, ). This isl@aset of quasi-binary
handwritten digits with 60,000 images in the training setd 40,000 images in the
test set. The algorithm was trained using 16x16 windowsaeted from the original
28x28 pixel images. For recognition, 128-dimensionaldeavectors were extracted at
25 locations regularly spaced over a 5x5 grid. A linear SVMred on these features
yields an error rate 0£.0%. When 25 SIFT feature vectors are used instead of our
invariant features, the error rate increase$.&%0. This demonstrates that, while SIFT
seems well suited to natural images, our method producasésahat caadaptto the

task at hand.
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Method Av. Accuracy/Class(%)

local norms, s + boxcarsys + PCAsgeo + linear SVM

IPSD (24x24) 50.9
SIFT (24x24) (non rot. inv.) 51.2
SIFT (24x24) (rot. inv.) 45.2
Serre et al. features (Serre et al., 2005) 47.1

local normg,.g + Spatial Pyramid Match Kernel SVM

SIFT (Lazebnik et al., 2006a) 64.6
IPSD (34x34) 59.6
IPSD (56x56) 62.6
IPSD (120x120) 65.5

Table 4.1: Recognition accuracy on Caltech 101 dataset usiagety of different fea-
ture representations and two different classifiers. The PQiAear SVM classifier is
similar to (Pinto et al., 2008), while the Spatial Pyramidtblang Kernel SVM clas-
sifier is that of (Lazebnik et al., 2006a). IPSD is used toamttfeatures with three
different sampling step sizes over an input image to pro@dg84, 56x56 and 120x120
feature maps, where each feature is 128 dimensional to bparaivle to SIFT. Local
normalization isnot applied on SIFT features when used with Spatial Pyramid Matc

Kernel SVM.
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Performance on Tiny Images Dataset

Method Accuracy (%)
IPSD (5x5) 54
SIFT (5x5) (non rot. inv.) 53

Performance on MNIST Dataset

Method Error Rate (%)
IPSD (5x5) 1.0
SIFT (5x5) (non rot. inv.) 1.5

Table 4.2: Results of recognition error rate on Tiny ImagesMNIST datasets. In both
setups, a 128 dimensional feature vector is obtained usihgreour method or SIFT
over a regularly spaced 5x5 grid and afterwards a linear S¥Msed for classification.
For comparison purposes it is worth mentioning that a GansSVM trained on MNIST

images without any preprocessing achieves 1.4% error rate.
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5
DEEPNETWORKS

A hierarchical feature extractor can be trained layerdyel using any of the unsu-
pervised algorithms described in chapter 3 and 4, simil@rlwhat was proposed by
Hinton and collaborators (Hinton et al., 2006; Hinton andalautdinov, 2006) for
training deep belief networks. Indeed, the underlying @gle is very simple and it
consists of initializing the parameters of each layer bypgisin unsupervised algorithm,
like an RBM or an auto-encoder neural network (Bengio et al.,72@anzato et al.,
2007b), and then to optimize the whole system by supervisadient descent. The
chain of non-linear layers can be used for feature extmactio it can be topped by a
supervised classifier for recognition. Recent works (Westa., 2008; Collobert and
Weston, 2008; Ahmed et al., 2008) proposed to replace thissteps training procedure
with a more integrated one, where the whole system is opgithfrom random initial
conditions, but auxiliary prediction tasks are added tdalss functionde factoinject-
ing more gradients both at the top and at the internal stdtdsemetwork to improve

optimization and generalization.

In this chapter we report some experiments using deep nktwd¥e demonstrate
these methods on three very different datasets in ordeiois 8fe ability of the learning
algorithm to adapt to different domains. We report resuttsezognition of handwritten
digits (Ranzato et al., 2006; Ranzato et al., 2007b; Ranzatq 2087c), on recognition
of generic natural object categories (Ranzato et al., 20@#g) on classification and

retrieval of text documents (Ranzato and Szummer, 2008).
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5.1 Digit Recognition

R N R E R VI VIR L

Figure 5.1: Top: A randomly selected subset of encoder dillearned by a sparse
coding algorithm (Ranzato et al., 2006) similar to the ones@néed in chapter 3, when
trained on the MNIST handwritten digit dataset. Bottom: Aamyple of reconstruction
of a digit randomly extracted from the test data set. Thenstraction is made by
adding “parts”: it is theadditivelinear combination of few basis functions of the decoder

with positive coefficients.

The MNIST dataset (MNI, ) of handwritten digits has 60,00pkes in the training
set, and 10,000 samples in the test set. Digits are quasiybimages of size 2828
pixels (see fig. 4.7). The images are pre-processed by diyekch pixel value by 255.

In the experiment of fig. 5.1 the sparse coding algorithmidiesd in (Ranzato et al.,
2006), which is similar to PSD but with codes that are nonatigg, was trained to
produced feature vectors with 196 components using 196sfitié size 2&28 (i.e.,
filters are not convolutional).

Each one of the filters, shown in the top part of fig. 5.1, carstan elementary “part”
of a digit. Reconstruction of most digits is achieved by adinadditive combination of

a small number of filters since the the code is sparse andygosithe bottom part of
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fig. 5.1 illustrates this reconstruction by parts.

In the next experiment, the same sparse coding algorithses to initialize the first
layer of a large convolutional network. We used an architecessentially identical to
LeNet-5as described in (LeCun et al., 1998). However, because thelnpooduces
sparse features, our network had a considerably larger eunibfeature maps: 50
for layer 1 and 2, 50 for layer 3 and 4, 200 for layer 5, and 10tler output layer.
The numbers for LeNet-5 were 6, 16, 100, and 10 respectiVgg/ refer to our larger
network as the 50-50-200-10 network. We trained this nkev@n 55,000 samples
from MNIST, keeping the remaining 5,000 training samples aalidation set. When
the error on the validation set reached its minimum, an aufdit five sweeps were
performed on the training set augmented with the validasiein(unless this increased
the training loss). Then the learning was stopped, and thédmor rate on the test set
was measured. When the weights are initialized randomlys@&0-200-10 achieves a
test error rate of 0.7%, to be compared with the 0.95% obdidnygLeCun et al., 1998)
with the 6-16-100-10 network.

Next, the sparse feature learning method was trainedkd@nfage patches extracted
from training images. The model had a 50-dimensional codie. éhcoder filters were
used to initialize the first layer of the 50-50-200-10 nete Tietwork was then trained
in the usual way, except that the first layer was kept fixedterfirst 10 epochs through
the training set. The 50 filters after training are shown in%ig. The test error rate
was 0.6%. To our knowledge, this is the best results evertregpavith a method trained
on the original MNIST set, without deskewing nor augmentihg training set with

distorted samples.
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The training set was then augmented with samples obtainethltically distorting
the original training samples, using a method similar tan@d et al., 2003). The er-
ror rate of the 50-50-200-10 net with random initializatiwas 0.49% (to be compared
to 0.40% reported in (Simard et al., 2003)). By initializingetfirst layer with the fil-
ters obtained with the proposed method, the test error raggpdd to 0.39%. While
this is the best numerical result ever reported on MNISTE ftat statistically different
from (Simard et al., 2003).

HEANNEE T EENON IS SN G G R ENEN DTN F R AEN S
il I P P O A e O O i Tl o O O L T O e G

Figure 5.2: Filters in the first convolutional layer afteaiting when the network is
randomly initialized (top row) and when the first layer of tietwork is initialized with

the features learned by the sparse unsupervised algofithiton row).

Architecture Training Set Size

20K 60K 60K + Distortions
6-16-100-10 (LeCun et al., 1998 - -1 0.95 -1 0.60 -
5-50-100-10 (Simard et al., 2003) - - - -1 0.40 -
50-50-200-10 1.01 0.89| 0.70 0.60| 0.49 0.39

Table 5.1:Comparison of test error rates on MNIST dataset using convolutioraionie ar-
chitectures with various training set size: 20,000, 60,000, and 60,00®650J600 elastic dis-
tortions. For each size, results are reported with randomly initialized filtedswéh first-layer

filters initialized using the proposed algorithm (bold face).
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5.1.1 What does the top-layer represent?

Here we report an experiment that was done using yet angthesescoding algorithm,
dubbed SESM (Ranzato et al., 2007b). SESM is also similar i, B&t encoder and
decoder share the same weight matrix like in RBM’s. The encaxédecoder compute
a weighted sum of the input followed by a logistic non-lingarThe loss function and

the training algorithm are the same as in PSD.

Training SESM on the whole digits produces filters that laké& Higit strokes, sim-
ilarly to what is shown in fig. 5.1. By using the first layer repgatation, we train a
second stage using SESM. While the first layer representatier200 components, the
second layer representation has only 10 components. Siaamwto find a 1-of-10
code we increase the sparsity level when training the sestaige machine. Despite the
completelyunsupervisedraining procedure, the feature detectors in the secorye sta
machine look like digit prototypes, as can be seen in fig. btz hierarchical unsuper-
vised feature extractor is able to capture higher ordeetations among the input pixel
intensities, and to discover the highly non-linear mapgdnogn raw pixel data to the
class labels. While the first layer captures local correfetiamong the input variables
(strokes), the second layer models longer range deperedehygiputting together the

strokes that frequently occur together.

Changing the random initialization can sometimes lead taligmover of two differ-
ent shapes of “9” without a unit encoding the “4”, for instandlevertheless, results are
qualitatively very similar to this one. For comparison, wheaining a two-layers DBN,

prototypes are not recovered because the learned codéribudisd among units.
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Figure 5.3: Back-projection in image space of the filtersredrin the second stage
of the hierarchical feature extractor. The second stagetraaged on the non linearly
transformed codes produced by the first stage machine. Tdedrajection has been
performed by using a 1-0f-10 code in the second stage machmtepropagating this
through the second stage decoder and first stage decodéiflt@itseat the second stage
discover the class-prototypes (manually ordered for Visoiavenience) even though no

class label was ever used during training.

5.1.2 Using Sparse and Locally Shift Invariant Features

In this section we report experiments using the sparse aradlyeshift invariant feature
extractor described in sec. 4.1. We constructed a deep netwal trained it on sub-
sets of various sizes, with three different learning proces. In all cases the feature
extraction is performed by the four bottom layers (two |lsvefl convolution/pooling).
The input is a 3434 image obtained by evenly padding the<2® original image with
zeros. The first layer is a convolutional layer with fifty 7 filters, which produces 50
feature maps of size 288. The second layer performs a max-pooling oveR 2eigh-
borhoods and outputs 50 feature maps of sizeI4l The third layer is a convolutional
layer with 1,280 filters of size %5, that connect the subsets of the 50 layer-two fea-
ture maps to the 128 layer-three maps of size 10. Each layer-three feature map is

connected to 10 layer-two feature maps according to a fi@d]amized connectivity

93



FENTECSr S I=ANITEARRF INGAN N L
ALkIANEEFANINMPELTd LS T=TAaNnAa

Figure 5.4: Fifty %7 sparse shift-invariant features learned by the unsupsiiviearn-
ing algorithm on the MNIST dataset. These filters are usedhenfirst convolutional

layer of the feature extractor.

table. The fourth layer performs a max-pooling overZ2neighborhoods and outputs
128 feature maps of size. The layer-four representation hEz8 x 5 x 5 = 3,200
components that are fed to a two-layer neural net with 208dndunits, and 10 output

units (one per class). There is a total of abbirttrainable parameters in this network.

Thefirst training procedure trains the four bottom layers of the network unsuper-
vised over the whole MNIST dataset, following the methodspraged in the previous
sections. In particular the first stage module was learnedyu$0,000 &8 patches ex-
tracted from the whole training dataset (see fig.5.4), whiesecond stage module was
trained on 100,000 506x 6 patches produced by the first stage extractor. The second-
stage features are receptive fields of sizex18 when backprojected on the input. In
both cases, these are the smallest patches that can betractatsfrom the convo-
lutional and max-pooling layers. Nothing prevents us frosing larger patches if so
desired. The top two layers are then trained supervisedfeattures extracted from the
labeled training subset. Tteecond training procedureinitializes the whole network
randomly, and trains supervised the parameters in all $aysing the labeled samples
in the subset. Ththird training procedure randomly initializes the parameters in both

stages of the feature extractor, and only trains (in supedvmode) the top two layers
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on the samples in the current labeled subset, using therésagenerated by the feature

extractorwith random filters

For the supervised portion of the training, we used labelddasts of various sizes,
from 300 up to 60,000. Learning was stopped after 50 itematfor datasets of size big-
ger than 40,000, 100 iterations for datasets of size 100@0,000, and 150 iterations

for datasets of size less than 5,000.

The results are presented in fig.5.5. For larger datasei(000 samples) there is
no difference between training the bottom layer unsupedvi supervised. However
for smaller datasets, networks with bottom layers traineslpervised perform consis-
tently better than networks trained entirely supervisedeping the bottom layers ran-
dom yields surprisingly good results (less than 1% clasgifia error on large datasets),
and outperforms supervised training of the whole networkvery small datasets<(
1,000 samples). This counterintuitive result shows thatight be better to freeze pa-
rameters at random initial values when the paucity of labelata makes the system
widely over-parameterized. Conversely, the good perfooeaamith random features
hints that the lower-layer weights in fully supervised bgckpagation do not need to
change much to provide good enough features for the topdayéis might explain why
overparameterization does not lead to a more dramatiqusdlaf performance when the
whole network is trained supervised on just 30 samples degosy. For comparison,
the best published testing error rate when training on 30@pkss is 3% (Amit and
Trouve, 2005), and the best error rate when training on thelevbet is 0.60% (Ran-
zato et al., 2006) as reported in the previous section. Nuateih that case thehole

network was fine-tuned by supervised gradient descent tagennsupervised training
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stage, yielding slightly better results.

5.2 Recognition of Generic Object Categories

In this section we report another experiment using the spamd locally shift-invariant
feature extractor of sec. 4.1. We used the features to rezmg@iject categories in
the Caltech-101 dataset (Fei-Fei et al., 2004). The Calteéhda@aset has images of
101 different object categories, plus a background cayedbhas various numbers of
samples per category (from 31 up to 800), with a total of 9 da#ples of size roughly
300 x 300 pixels. The common experiment protocol adopted in theditee is to take 30
images from each category for training, use the rest foingsand measure the average
recognition rate per class.

This dataset is particularly challenging for learningdzhsystems, because the num-
ber of training sample per category is exceedingly small. e~d-to-end supervised
classifier such as a convolutional network would need a margjet number of training
samples per category, lest over-fitting would occur. In thiéiing experiment, we
demonstrate that extracting features with the proposedpamgised method leads to
considerably higher accuracy than pure supervised tinin

Before extracting features, the input images are prepredesBhey are converted
to gray-scale, resized so that the longer edge is 140 pixals waintaining the aspect
ratio, high-pass filtered to remove the global lighting &tidns, and evenly zero-padded
to a 140<140 image frame.

The feature extractor has the following architecture. kftrst stage feature extrac-

tor (layer 1 and 2) there are 64 filters of size ®that output 64 feature maps of size
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Classification error on the MNIST dataset

iéz —— Supervised training of the whole network
8l —— Unsupervised training of the feature extractors|
70 — -+ — Random feature extractors
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Unsupervised training Random bottom layers
Labeled for bottom layers, Supervised training from|  supervised training
training samples| supervised training for| random initial conditions for top layers
top layers
60,000 0.64 0.62 0.89
40,000 0.65 0.64 0.94
20,000 0.76 0.80 1.01
10,000 0.85 0.84 1.09
5,000 1.52 1.98 2.63
2,000 2.53 3.05 3.40
1,000 3.21 4.48 4.44
300 7.18 10.63 8.51

Figure 5.5: Error rate on the MNIST test set (%) when traimdngvarious number of
labeled training samples. With large labeled sets, ther eate is the same whether
the bottom layers are learned unsupervised or supervisbd.n&twork with random
filters at bottom levels performs surprisingly well (undé tlassification error with
40K and 60K training samples). With smaller labeled sets ginor rate is lower when
the bottom layers have been trained unsupervised, while gupervised learning of

the whole network is plagued by over-parameterization. pideghe large size of the

network the effect of over-fitting is surprisingly limited.
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132x132. The next max-pooling layer takes non overlappingt4vindows and out-
puts 64 feature maps of size:833. Unsupervised training was performed on 100,000
patches randomly sampled from the subset of the Caltech-a&&et (Griffin et al.,
2006) that does not overlap with the Caltech 101 dataset (titedbalOl1 categories
were removed). The first stage was trained on such patchézeof2<12. The second
stage of feature extraction (layer 3 and 4) has a convolatiayer which outputs 512
feature maps and has 2048 filters. Each feature map in layemBioes 4 of the 64
layer-2 feature maps. These 4 feature maps are picked atmandayer 4 is a max-
pooling layer with 5<5 windows. The output of layer 4 has 512 feature maps of size
5x5. This second stage was trained unsupervised on 20,000esa0fgize64 x 13 x 13
produced by the first stage feature extractor. Note thaijhéetvel representation is in-
variant in windows of approximate size Q0 pixels in input space, because of the
combined effect of pooling at the first and second stage. pi@of learned filters are

shown in fig. 5.6.

After the feature extractor is trained, it is used to extfaettures on a randomly
picked Caltech-101 training set with 30 samples per categboytest how a baseline
classifier fares on these 518x5 features, we applied /anearest neighboclassifier

which yielded about 20% overall average recognition rate: fe 5.

Next, we trained an SVM with Gaussian kernels in the oneusetghers fashion for
multi-class classification. The overall recognition sysie shown in fig. 5.7. The two
parameters of the SVM'’s, the Gaussian kernel width and the softnes§/, are tuned
with cross validation, with 10 out of 30 samples per categmgd as the validation

set. The parameters with the best validation performance,5.6 - 10-7, C = 2.1 -
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Figure 5.6: Caltech 101 feature extraction. Top Panel: theds®olutional filters of

size %9 learned by the first stage of the invariant feature extactiBottom Panel:
a selection of 32 (out of 2048) randomly chosen filters ledrinethe second stage of

invariant feature extraction.

103, were used to train the SVM. More than 90% of the training dampre retained
as support vectors. This is an indication of the complexityhe classification task
due to the small number of training samples and the large pumibcategories. We
report the average result over 8 independent runs, in eaatmioch 30 images of each
category were randomly selected for training and the resewsed for testing. The
average recognition rate over all 102 categories4i%(+ 1%). Examples of images

and recognition rates on a few categories are given in fig. 5.8

For comparison, we trained an essentially identical agchiire in supervised mode
using back-propagation (except the penultimate layer weaditional dot-product and
sigmoid layer with 200 units instead of a layer of Gaussiaméds). Supervised train-
ing from a random initial condition over the whole net aclei\00% accuracy on the

training dataset (30 samples per category), but only 20%ageaecognition rate on the
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Figure 5.7: Example of the computational steps involvedhedeneration of two %5
shift-invariant feature maps from a pre-processed imagdearCaltech101 dataset. Fil-

ters and feature maps are those actually produced by ouitalgo

test set. This is only marginally better than the simplestbae systems (Fei-Fei et al.,
2004; Berg et al., 2005), and considerably worse than theeatesult.

In our experiment, the categories that have the lowest retog rates are the back-
ground class and some of the animal categories (wild cagamieaver, crocodile),
consistent with the results reported in (Lazebnik et al0g2)) (their experiment did not
include the background class).

Our performance is similar to that of similar multi-stageldél+Wiesel type architec-
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Figure 5.8: Recognition accuracy on some object categofigedaltech 101 dataset.
The system is more accurate when the object category Hawétiability in appearance,

limited occlusion and plain background.
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tures composed of alternated layers of filters and max pgddiyers. Serre et al. (Serre
et al., 2005) achieved an average accuracy of 42%, while iVand Lowe (Mutch and
Lowe, 2006) improved it to 56%. Our system is smaller thaséhmodels, and does not
include feature pooling over scale. It would be reasonabxpect an improvement in
accuracy if pooling over scale were used. More importantly, mnodel has several ad-
vantages. First, our model uses no prior knowledge aboidpbeific dataset. Because
the features are learned, it applies equally well to natinnages and to digit images
(and possibly other types). This is quite unlike the systemn(Serre et al., 2005; Mutch
and Lowe, 2006) which use fixed Gabor filters at the first lagercond, using trainable
filters at the second layer allows us to get away with only E&tdre maps. This is to

be compared to Serre et al’s 15,000 and Mutch et al’'s 1,500.

For reference, the best reported performance of 66.2% erdtaset was reported
by Zhang et al. (Zhang et al., 2006), who used a geometriddxal descriptor on inter-
est points, and matching distance for a combined nearagtin@ and SVM. Lazebnik
et al. (Lazebnik et al., 2006b) report 64.6% by matching mrekolution histogram
pyramids on SIFT. While such carefully engineered method® laam advantage with
very small training set sizes, we can expect this advantade treduced or disappear
as larger training sets become available. As evidence i®rttie error rate reported by
Zhang et al. on MNIST with 10,000 training samples is ovefAd,.6vice our 0.84% on

the same, and considerably more than our 0.64% with ther&illihg set.

Our method is very time efficient in recognition. The feataxtraction is a feed-
forward computation with abow- 108 multiply-add operations for &0 x 140 image

and 10 for 320 x 240. Classifying a feature vector with the Caltech-101 SVM takes
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another - 107 operations. An optimized implementation of our system ddod run on

a modern PC at several frames per second.

5.3 Text Classification and Retrieval

Document representations are a key ingredient in all in&tion retrieval and process-
ing systems. The goal of the representation is to make oexgiects of the document
readily accessible, e.g. the document topic. To identifypaudnent topic, we cannot
rely on specific words in the document, as it may use otherrsynous words or mis-
spellings. Likewise, the presence of a word does not wathanthe document is related
to it, as it may be taken out of context, or polysemous, or poirtant to the document
topic.

The most widespread representations for document clagsificand retrieval to-
day are based on a vector of counts. These include varionswveighting retrieval
schemes, such as tf-idf and BM25 (Robertson and Walker, 129),bag-of-words
generative models such as naive Bayes text classifiers. Ttiagre feature of these
representations is that they represent individual wordserous drawback of the ba-
sic tf-idf and BM25 representations is that all dimensiore taeated as independent,
whereas in reality word occurrences are highly correlated.

There have been many attempts at modeling word correlabipnstating the vector
space and projecting documents onto principal axes thatsexpelated words. Meth-
ods include LSI (Deerwester et al., 1990) and pLSI (Hofmdr®99). These methods
constitute a linear re-mapping of the original vector spacel while an improvement,

still can only capture very limited relations between wordis a result they need a large
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number of projections in order to give an appropriate regredion.

Other models, such as LDA (Blei et al., 2003), have shown soipperformance
over pLSI and LSI. However, inferring the representatiocamputationally expensive

because of the “explaining away” effect that plagues a#ated graphical models.

More recently, a number of authors have proposed undirggtgzhical models that
can make inference efficient at the cost of more complex iegiue to a global (rather
than local) partition function whose exact gradient isantable. These models build on
RBM's by adapting the conditional distribution of the inpusiale units to model dis-
crete counts of words (Hinton and Salakhutdinov, 2006; &wsttlal., 2006; Salakhutdi-
nov and Hinton, 2007a; Salakhutdinov and Hinton, 2007bkesEhmodels have shown
state-of-the-art performance in retrieval and clusteramgl can be easily used as a build-
ing block for deep multi-layer networks (Hinton et al., 2006I'his might allow the
top-level representation to capture high-order correfetithat would be difficult to effi-

ciently represent with similar but shallow models (Bengid &eCun, 2007).

Seeking an algorithm that can be trained efficiently, antidha produce a represen-
tation with just a few matrix multiplications, we propose eeg network whose build-
ing blocks are autoencoders, with a specially designeddiyst for modeling discrete

counts of words.

Previously, deep networks have been trained either frolplabeled data, or purely
unlabeled data. Neither method is ideal, as it is expensiMaliel large collections,
whereas purely unsupervised learning may not capture kixard class information in
the data. Inspired by the experiments by Bengio et al. (Berigib,&2007), we learn the

parameters of the model by usibgth a supervised and an unsupervised objectine
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other words, we require the representation to produce gemahstructions of the input
documents and, at the same time, to give good predictiorreeaidcument class labels.
Besides demonstrating better accuracy in retrieval, we edsend the deep network
framework to asemi-supervisesetting where we deal with partially labeled collections
of documents. This allows us to use relatively few labeledudeents yet leverage

language structure learned from large corpora (Ranzato azmti®@er, 2008).

5.3.1 Modelling Text

The input to the system is a bag of words representation d¢f et document in the
form of a count vector. The length of the vector equals the bemof unique words
in the collection, and it$-th entry stores the number of times the corresponding word
occurs in the document. The goal of the system is to extrach@pactrepresentation
from this very high-dimensional but sparse input vector. ompact representation is
good because it requires less storage, and allows fast lodkexp.

Since we want to extract compact representations, we usacatlayer a simple
auto-encoder neural network compressing the input intoda eath fewer units. The
auto-encoder is trained by minimizing the square distamt@den input and output of
the network. The encoder computes a weighted sum of the fofpoved by a logistic
non-linearity, while the decoder is linear. The only exeapis the auto-encoder at the
first stage that has to predict a vector of positive word cauRbr this stage, we use a
Poisson regressor in the decoder, that is, we exponentiater¢ighted sum produced
by the decoder and treat it as the mean firing rate of the Roidstribution. The

parameters of the model are trained by minimizing this uastiped objective and also
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the supervised error term coming from the prediction of tiput document topic. The
supervised error term is simply the cross-entropy betwesnork prediction and target
vector encoding the class of the training sample.

More formally, at the first stage the encoder computes:
Z =oc(Welog(X + 1) + be) (5.1)

where X is the input vector of counts; is the representation at the first stagje, and

b. are the weight matrix and the bias of the first stage encodergas the logistic
non-linearity. This encoder tries to mirror the computasi@lone in the decoder. The
decoder at the first stage computes a reconstruction bygaKir?+%, wherel; and

b, are the weight matrix and the bias of the decoder. In the ugpiagres, the encoder
computes the code &= o(IW. X + b.), and the decoder computes the reconstruction
asWyZ + b,.

The layer-wise training is done by minimizing a loss thaths twveighted sum of
the reconstruction error and the classification efroe Er + aE-, where the hyper-
parametery is set to zero if the sample does not have a label. Denotirfy(Wit. ); the
i-th row of the classifier weight matrix, with-; thei-th bias of the classifier, and with

H; the j-th output unit of the classifier passed through a soft-max:

GXp((Wc)j -4+ ij>

H: = , 5.2
J Zl eXp<<Wc)i -z + bCz) ( )
we defineEc = — ). Y; log H;, whereY is a 1-of-V encoding of the target class label.
Finally, in the upper layers the reconstruction error is:
Er=||X — Wao(W.X +b,) — b3, (5.3)
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while at the first layer it is derived from minus the log proli#pof the data under the

Poisson model (instead of using a Gaussian model as before):

Ep =Y (Be!WaiZta) — Xi(Wy); - Z — Xibgi + log X;), (5.4)

where/ is a constant proportional to the document length, Znslthe encoder output.
Since the layer-wise training takes already into accountdbels of the documents
(if available), no global “fine-tuning” of the whole systemnecessary according to our
experiments. This saves a lot of time because it is expetwsie forward and backward
propagation through a large and deep network. In the foligveixperiments, the deep

network is trained layer-by-layer by stochastic gradiesgaent.

5.3.2 Experiments

In our experiments we considered three standard datasetdle®@sgroups, Reuters-
21578, and OhsumédThe 20 Newsgroups dataset contains 18845 postings taken fr
the Usenet newsgroup collection. Documents are partidiame 20 topics. The dataset
is split into 11314 training documents and 7531 test docusefraining and test ar-
ticles are separated in time. Reuters has a predefined Mod@pteof the data into
11413 training documents and 4024 test documents. Docsnbehdng to one of 91
topics. The Ohsumed dataset has 34389 documents with 306&®% \&nd each doc-
ument might be assigned to more than one topic, for a totaBdbgics. The dataset

is split into training and test by randomly selecting the 6aftl the 33% of the data.

1These corpora were downloaded fromttp:/people.csail.mit.edul/jrennie/

20Newsgroups , andhttp://www.kyb.mpg.de/bs/people/pgehler/rap
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Rainbow was used to pre-process these datasets by stemming theelutsyinemoving
stop words and words appearing less than three times orymamihgle document, and
retaining between 1000 and 30,000 words with the highestahutformation.

Unless stated otherwise, we trained each layer of the nktiwoonly 4 epochs over
the whole training dataset. Convergence took only a coupépoths, and was robust
to the choice of the learning rate. This was set to aliout when training the first
layer, and tol0—2 when training the layers above. The learning rate was exyiiaily
decreased by multiplying it by 0.97 every 1000 samples. Alishiaregularizer on
the parameters was added to the loss. Each weight was randuotidlized, and was
updated by taking a gradient step with a regularizer givethbyalue of the learning
rate times5 - 10~* the sign of the weight. The value of. in eq. 3.2 was set to the
ratio between the number of input units in the layer and thralver of classes in order
to make the two error termE; and E- comparable. Its exact value did not affect the

performance as long as it had the right order of magnitude.

The Value of Labels

In order to assess whether semi-supervised training wéer ledin purely unsupervised
training, we trained the deep model on the 20 Newsgroup efatessng only 2, 5, 10,

20 and 50 samples per class. During training we showed themsyR) labeled samples
every 100 examples by sweeping more often over the labeltd dehis procedure

was repeated at each layer during training. We trained 4ddge 10 epochs with an

architecture of 2000-200-100-50-20, denoting 2000 in®@® hidden units at the first
layer, 100 at the second, 50 at the third, and 20 at the foliitan, we trained a Support

2Rainbow is available atttp://www.cs.cmu.edu/ ~mccallum/bow/rainbow
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Figure 5.9: SVM classification of documents from the 20 Nawsgs dataset (2000
word vocabulary) trained with between 2 and 50 labeled sasnpér class. The SVM
was applied to representations from the deep model tramademi-supervised or un-
supervised way, and to the tf-idf representation. The nusibeparentheses denote the
number of code units. Error bars indicate one standard tlewial he fourth layer rep-
resentation has only 20 units, and is much more compact anguwationally efficient

than all the other representations.

Vector Machiné (SVM) with a Gaussian kernel on (1) the codes that correspoma
the labeled documents, and we compared the accuracy ofrtiesgpervised model to
the one achieved by a Gaussian SVM trained on the featuresiped by (2) the same

model but trained in an unsupervised way, and by (3) theftfedresentation of the

3We used libsvm package availablehétip://www.csie.ntu.edu.tw/ ~ cjlin/libsvm
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Figure 5.10: Precision-recall curves for the Reuters datasaparing a linear model
(LSI) to the nonlinear deep model with the same number of cmiks (in parentheses).
Retrieval is done using themost similar documents according to cosine similarityhwit

ke(l...4095].

same labeled documents. The SVM was generally tuned by didecfoss validation
on the available labeled samples (but two-fold cross vabdavhen using only two
samples per class). Fig. 5.9 demonstrates that the leaeagdrés gave much better
accuracy than the tf-idf representation overall when katbelata was scarce. The model
was able to exploit the very few labeled samples produciatufes that were easier to
discriminate. The performance actually improved when theedsionality of the code
was reduced and only 2 or 5 labeled samples per class wetaldgaprobably because

a more compact code implicitly enforces a stronger regedéion. Semi-supervised
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training outperformed unsupervised training, and the gmlemed as we increased the
number of labeled samples, indicating that the unsupetvisgethod had failed to model
information relevant for classification when compressimg tow-dimensional space.
Interestingly, if we classify the data using the classifiethe feedback module we
obtain a performance similar to the one achieved by the Gau§3/M. For example,
whenall training samples are labeled the classifier at the first stabeves accuracy
of 76.3% (as opposed to 75.5% of the SVM trained either ongamkd representation
or on tf-idf), while the one on the fourth layer achieves aacy of 74.8%. Hence,
the training algorithm provides an accurate classifier asl@ groduct of the training,

reducing the overall learning time.

Deep or Shallow?

In all the experiments discussed in this section the modsltreaned using fully labeled
data (still, training also includes an unsupervised objects discussed earlier). In order
to retrieve documents after training the model, all docusiare mapped into the latent
low-dimensional space, the cosine similarity between elmdument in the test dataset
and each document in the training dataset is measured, @hdrtbst similar documents
are retrieved.k is chosen to be equal to 1, 3, 7, ..., 4095. Based on the topat ddib
the documents, we assess the performance by computimgdhkt and theprecision
averaged over the whole test dataset.

In the first experiment, we compared the linear mapping predwby LSI to the
nonlinear mapping produced by our model. We considered theeRedataset with a
12317 word vocabulary and trained a network with 3 layerse fitst layer had 100

code units, the second layer had 40 units in one experimehi@im another, the third
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Figure 5.11: Precision-recall curves for the Reuters datasaparing shallow models
(one-layer) to deep models with the same number of code. uhiits deep models are
more accurate overall when the codes are extremely compadt.also suggests that

the number of hidden units has to peaduallydecreased from layer to layer.

layer was trained with either 3 or 2 code units. As shown in Bid0, the nonlinear
representation is more powerful than the linear one, whenrd¢jpresentation is very

compact.

Another interesting question is whether adding layersesuisFig. 5.11 shows that
for a given dimensionality of the output latent space thepdmehitecture outperforms
the shallow one. The deep architecture is capable of cagturore complex dependen-
cies among the input variables than the shallow one, whédea¢presentation remains

compact. The compactness allows us to efficiently handlelaege vocabularies (more
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Figure 5.12: Precision-recall curves for the 20 Newsgraigiaset comparing the per-

formance of tf-idf versus a one-layer shallow model with 2@@le units for varying

sizes of the word dictionary (from 1000 to 10000 words).

than 30,000 words for the Ohsumed, for instance). Fig. Shbfvs that increasing the

number of words (i.e. the dimensionality of the input) doe® dpetter retrieval perfor-

mance.

Compact or Binary High-Dimensional?

The most popular representation of documents is tf-idf, i ¥Ygh-dimensional and

sparse representation. One might wonder whether we sheaild & high-dimensional

representation instead of a compact representation. tumiely, the autoencoder based
learning algorithm forces us to map data into a lower-direera space at each layer, as

without additional constraints the trivial identity fura would be learned. We used the
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Figure 5.13: Precision-recall curves comparing compaptesentations vs. high-
dimensional binary representations. Compact representatian achieve better per-

formance using less memory and CPU time.

sparse encoding symmetric machine (SESM) (Ranzato et 8i7/23@s a building block
for training a deep network producing sparse features. SESMsymmetric autoen-
coder with a sparsity constraint on the representation,itaisdrained without labels.
In order to make the sparse representation at the final layrapatationally appealing
we thresholded it to make it binary. We trained a 2000-100001SESM network on
the Reuters dataset. In order to make a fair comparison witlt@mpact representa-

tion, we fixed the information content of the code in terms @fgsiorf atk = 1. We

4The entropy of the representation would be more naturalitbwalue depends on the quantization

level.
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measured the precision and recall of the binary representaf a test document by
computing its Hamming distance from the representation@triaining documents. We
then trained our model with the following number of units QED0-100-7. The last
number of units was set to match the precision of the bingoyeseentation at = 1.
Fig. 5.13 shows that our compact representation outpesfdie high-dimensional and
binary representation at higher valuestofJust 7 continuous units are able to achieve
better retrieval than 1000 binary urfitsStoring the Reuters dataset with the compact
representation takes less than half the memory space tihanthe binary representa-
tion, and comparing a test document against the whole trgistataset is five times faster
with the compact representation. The best accuracy for aateiis given with a 20-
unit representation. Fig. 5.13 shows the performance gpeesentation with the same
number of units learned by a deep belief network (DBN) follogvSalakhutdinov and
Hinton’s constrained Poisson model (Salakhutdinov andd#in2007b). Their model
was greedily pre-trained for one epoch in an unsupervisgd2@0 pre-training epochs
gave similar fine-tuned accuracy), and then fine-tuned wigesvision for 100 epochs.
While fine-tuning does not help our model, it significantly moyes the DBN which
eventually achieves the same accuracy as our model. Delpismilar accuracy, the
computational cost of training a DBN (with our implementatigsing conjugate gra-
dient on mini-batches) is several times higher due to thiesused training through a
large and deep network. By looking at how words are mappedetadh-level feature

space, we can get an intuition about the learned mappingngiance, the code closest

>Note that the binarization has been achieved by threstwlttia quasi-binary codes produced by
SESM and this was not taken into account while training SE$Nerefore, the comparison is a bit

unfavorable to the binary codes.
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Table 5.2: Neighboring word stems for the model trained ont&su The number of

units is 2000-200-100-7.

Word stem Neighboring word stems
livestock beef, meat, pork, cattle
lend rate, debt, bond, downgrad
acquisit merger, stake, takeov

port ship, port, vessel, freight
branch stake, merger, takeov, acquisit
plantat coffe, cocoa, rubber, palm
barrel oil, crude, opec, refineri

subcommitte| bill, trade, bond, committe

coconut soybean, wheat, corn, grain
meat beef, pork, cattl, hog
ghana cocoa, buffer, coffe, icco
varieti wheat, grain, agricultur, crop
warship ship, freight, vessel, tanker
edibl beef, pork, meat, poultri

to the representation of the word “jakarta” correspondfieoword “indonesia”, simi-
larly,“meat” is closest to “beef” (table 5.2). As expectéae model implicitly clusters

synonymous and related words.

Visualization

The deep model can also be used to visualize documents. WaeagHhayer is two-
dimensional we can visualize high-dimensional nonlineanifiolds in the space of bags

of words. Fig. 5.14 shows how documents in the Ohsumed testreanapped to the
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Figure 5.14: Two-dimensional codes produced by the deepeh®@589-100-10-5-2
trained on the Ohsumed dataset (only the 6 most numerouseslase shown). The

codes result from propagating documents in the test saighrthe four-layer network.

plane. The model exposes clusters of documents accordthg topic class, and places
similar topics next to each other. The dimensionality reiducis extreme in this case,

from more than 30000 to 2.
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CONCLUSION

The first contribution of this work is to introduce and deyetbe Energy-Based Model
framework for unsupervised learning. This framework alaw view most unsuper-
vised algorithms as pursuing the same “energy carving’, thsk is, making the energy
lower around areas of high data density. This bridges theeqatnal gap between meth-
ods that maximize the data likelihood and methods that eafoonstraints on the inter-
nal representation. In particular, it interprets sparagy particular way to constrain the

code and regularize the learning process.

The second theme of this thesis is efficient inference. Thiatsave propose are not
very different from generative probabilistic models simgfit the data by reconstruct-
ing from an internal representation. However, inferenamasle efficient by training a
direct mapping from input to latent representation. Generanodels have straightfor-
ward interpretation, but are very expensive to use becafiseence consists of “invert-
ing” the model, often requiring the use of iterative optiatinn procedures. We propose
to train a feed-forward function to predict the latent cogled we suggest simple ways

to jointly train this with the generative part of the model.

The main topic of this work has been how to train and apply segworks. We have
demonstrated these methods on a variety of tasks with erpets that gave intuitions
about the encoding produced by these hierarchical modelgek as the importance to
add non-linear layers to represent higher order depeneleaanong the input variables.

These models can be trained in many different ways. We iotred several unsuper-

118



vised algorithms to train each layer in sequence. Theseitdges produce compact
representations, or even sparse overcomplete reprasestabimple extensions allows
the learning of representations that are invariant to eiknewn or learned transfor-
mations. Learning invariant feature hierarchies is ciuciduild a robust recognition
system in vision, for instance. In this work, we pointed tha&der to other training proce-
dures that learn the parameters in an end-to-end fashioddiggadditional constraints
on the internal representations. This seems a more effisigategy than the proposed
layer-wise training, but it is avenue of future work to comgthem and to devise even
better strategies by exploiting semi-supervised and gt learning principles.

Another interesting question is how to exploit the feedkbaonnections we use
during training, in order to improve recognition. The a@my of recognition systems
is poor when the input is corrupted by noise. For instancgjaliobject recognition
is not very successful when objects are occluded. It seemseo@ble that by using
feed-back connections the network could fill-in the missifgrmation and improve its
prediction. Also, feed-back connections could be usedsioriapplications to imple-
ment attentional mechanisms, allowing to process higresiuéon images.

Also, the quest for efficient coding has ample avenue for&utovestigation. In this
work, we used sparsity as a mechanism to encourage uncamneiénot independence,
among the units in the latent code. However, recent advamecasodels for lateral
inhibition and pooling in computational neural science Imiguggest better ways to

achieve coding efficiency in these bottom-up hierarchicadiets.
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A
VARIATIONAL INTERPRETATION

In this section we show that a Gaussian variational appration to the posterior re-
duces to a Laplace approximation in a sparse coding mode(Gkshausen and Field,
1997). Under the assumption that the encoder of PSD is ttaifter the decoder has
been optimized, the encoder is a least square approxintatibie MAP estimate of the
latent code, and it can then be interpreted as an approximettithe variational mean.
The results in this sections are used to justify theorem 4 el as to derive archi-

tectures of encoders in appendix B.

A.1 The Fixed Point Solution of Lasso

Consider the problem of minimizing the following loss witlspect toZ:

2 N

1 o
L(Z) = §‘|Y—WdZH2+TYZ|Zi’ (A.1)
=1

This loss is convex, but non-quadratic. The fixed point of #uation can be found
by setting to zero the derivatives. The solution for itk component can be written as

follows:

P; = coli(Wy) - (Y =) coly(Wy)z)
ki
_{RI-%3)

zi = W sgn?;) (A.2)
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where the operatofz} ™ = maz(0, ), i.e. is the positive part operator, and ¢ol,) is
thei-th column of matrixiv;.

The fixed point equations provide us with an iterative aldponi where the code
unit takes a value equal to tiskrinkedprojection of the residual error along the corre-
sponding basis function. The residual is computed by takitggaccount all code units
except the current one. These update formulas reminds tiseskin Gaussian belief
propagation to solve a system of linear equations. The #pansforced onZ adds
the shrinkage on these update rules; different sparsitglpes yield different shrink-
age non-linearities (Rozell et al., 2008). The convergemtei®iterative algorithm has

been demonstrated by (Daubechies et al., 2004).

A.2 Variational Approximation to the Posterior

Here, we study a Gaussian variational approximation to tstgpior distribution. We
assume that (1) the paramet@rsare given, (2) the likelihood(Y | Z)is N(W,Z, %),
(3) the codée” is factorial with each component distributed according@eraean Laplace
distribution L(\), and (4) the samples are i.i.d. (hence, we can just considargie
sample Y in the following derivation). We seek the best faatoGaussiam(Z) =
[1; ¢(z:) that approximates the posterior distributigt | V'), with ¢(z;) € N(m;, o?).
First, we assume that the standard deviatiois given, and we optimize only for the
value of the meam;,i € [1... N]. In the next section, we will also derive the optimal
value ofo. We minimize the KL-divergence between the approximatgidigion ¢ and
the true posteriop(Z | Y) over the mean parameters.

We have that by definition and using our assumptions:
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KLz |v) = | Hq(zmogp“qﬂ (A3)
= z;i)lo —Hq(zi)
- /Hq< os T 2wz)
- —gln(2ﬂ602)+§2/q(zi)|zi|

%

—/Hq(zi) logp(Y | Z)+c¢ (A.4)

Since, we have that:

ml )2

/ (2i)|2i] = mai(1 — 2(1)(_7%» + 202 (A.5)

where® is the c.d.f. of the normal distribution, and also,

/Hq(zz)logp Y| 2) Z llcol; (W) ||3(o? —l—m — QZ:mZ Zwlzyl
+2 Z Z Z wlkwlhmkmh + C (A 6)

k  h#tk
then, we have expanded all terms in eq A.4; in other words, amesabstitute eq. A.5
and A.6 into eq. A.4. By setting to zero the derivatives win.t.we obtain:

OKL 1
e J—2(||co| V[P — Z WY + Z Z Wi WiM,)
i Y

1 ki

1 , C amie 1
(1 —2d(= Ty 4o 5 E (2 1)) =0 A7
+A( ( O)+ e (\/ﬂ ) (A.7)

Unfortunately, this equation cannot be solved in closedfbecause it contains both
polynomials and exponentials of;. However, we can make three cases depending on

the value of the ration; /o.
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Case 1:™ ~ 0 In this case, we can assume thdt- ") ~ 1, andexp(—3(2)?) ~

lea

1. Then, the KL divergence is minimized for that such that:

B COlz‘(Wd) . (Y - Zh;éi COlh(Wd>mh>

m; =
lcoli (W)l + A(7= — 1)

(A.8)

Case 2:™ >> ( In this case, we can assume thét-"2) ~ 0, andexp(—3(™2)?) ~

[

0. Then, the KL divergence is minimized for that such that:

2

- colh(Wa) - (Y = 32, Col(Wa)ma) — ut
e lcok(Wa)|3 (A.9)

Case 3:™ < 0 Inthis case, we can assume thgt- ") ~ 1, andexp(—3(2)?) ~

0. Then, the KL divergence is minimized for that such that:

o2
B COlZ’(Wd) : (Y - Zh;éz COlh(Wd)mh) + Ty
lcol(Wa)ll3

my

(A.10)

These equations are essentially the same as those fouhe /AP estimates of eq. A.2.

A.2.1 Optimizing the Variance

In the previous section we have found that the MAP estimatdf@means of the varia-
tional distribution are the same under the conditian/o| > 0. This might trivially say
that wheno is very small the Gaussian variational distribution redutcea delta Dirac
distribution, and the best way we can approximate a didtabwvith a delta Dirac is by
placing the delta at thenodeof the posterior distribution, i.e. at the most likely value
However, if we allow also the standard deviatiomf the variational distribution to be

learned we found that this does not tend to zero whéem; /| > 0.
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By setting to O the derivative of the KL-divergenve w.at.and by performing very

similar reasonings, we have that:

No?
o2 = X (A.11)
2 lleoli(Wa)l[?
when|m;/o| > 0. By setting the norm of the basis functions to 1, then
ol = oy (A.12)

Therefore, whemm;/o| > 0 the optimal value of the variance is constant and depends
on the noise level of the observéd Under these conditions, the mean of the Gaus-
sian variational distribution coincides with the MAP estite (the mode of the posterior
distribution), while the variance is equal to the variangeof the noise added to the ob-
servedY. Hence, the encoder of PSD approximates the mean of a Gawssiational
distribution approximating the posterior.

When|m;/o| ~ 0, we can assume thatp(—1 (™) ~ 1 and®(—") ~ 3. Then,
the optimalo minimizing the KL-divergence is given by:

0.2

e — 2 (A.13)
V&r v+ g

If we use this variational approximation to the posteriorHitY) = H(Y|Z) +

H(Z) — H(Z]Y'), we have that whefn,/o| > 0 decreasing\ decreases botH (Z)
andH (Y') becausdd (Y|Z) andH(Z|Y') are fixed (entropies of Gaussian distributions
whose covariance does not depend\@nWhen|m;/o| ~ 0, decreasing? (Z) does not
changeH (Y') because the decrease is compensated by an equal decrda&g|bf),
instead. In fact, the differendé(Z)— H(Z|Y') depends on the differen¢®g A —log o)

which tends to a constant as we decreaseTherefore, under the above mentioned
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assumptions and assuming that there is at least on codeatisitygig the condition

|m;/o| > 0 we have that decreasirfg(~) actually decreased (V) too.
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B
CHOOSING THEENCODING FUNCTION

The choice of the encoding architecture is task dependegeneral, the encoder archi-
tecture as well as any other hyper-parameter of the systieerthle sparsity level, have
to be cross-validated.

We report experiments using PSD and other algorithms tfffar diom PSD mainly
for the choice of the encoder architecture. The comparsdomne qualitatively by visu-
ally inspecting the learned features, and quantitativglyneasuring the reconstruction
and the sparsity error, as well as the recognition rate oiCdigech 101 dataset using
the simple recognition system described in sec. 3.3.2.

We consider the following algorithms:

1. PSD as described in sec. 3 using the output of the encofleatase after training

2. PSD using the optimal features (i.e. those minimizingethergy) even after train-
ing

3. PSD using the output of the encoder as latent code evemgduaining, akin to a

standard autoencoder with a sparsity constraint on thenmiteepresentation

4. like 3, but the encoder is composed of a diagonal matriboviedd by a linear
matrix of filters (with unit norm rows) and by a thresholdingmlinearity (see

below)

5. like 4, but the linear matrix of filters in the encoder is tte@spose of the decoder

matrix of basis functions.
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@) (b) (©) (d)
Figure B.1: Random subset of the 405 filters of size 9x9 pixelmied in the encoder
by different algorithms trained on patches from the Berkalajaset: (a) PSD (case
1 and 2), (b) PSD without iterating for the code during tragn{case 3), (c) a sparse
autoencoder with a thresholding non-linearity in the emcddase 4), and (d) a sparse
autoencoder with thresholding non-linearity and tieddetiaveights between encoder

and decoder (case 5).

By looking at the fixed point solution of lasso of eq. A.2 (i.enference in PSD
without the code prediction error term) we can see that timelimearity used to produce

sparse representations is swdt thresholding non-linearity

z—\ ifz>\
y = 0 if —A<a<\ (B.1)
x+ N ifz <=M\

Unfortunately, this non-linearity does not work well in anceder during training be-
cause the slope is zero in the interyal, A\]. As a result, some filters of the encoder
might never be updated. Therefore in experiments numbed%afi) we also normal-

ize the encoder filters to unit norm and (2) we consider theviohg smooth quadratic
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@) (b) (€) (d)
Figure B.2: Random subset of the 128 filters of size 16x16 plraisied in the encoder
by different algorithms trained on patches from the Calte@h fire-processed images:
(@) PSD (case 1 and 2), (b) PSD without iterating for the caaléngd training (case
3), (c) a sparse autoencoder with a thresholding non-lityeiarthe encoder (case 4),
and (d) a sparse autoencoder with thresholding non-lityeand tied/shared weights

between encoder and decoder (case 5).

approximation:

r—XN ifz>A+a
Yy = m:ﬁsgr(x) if —A—a<z<\+a (B.2)
r+ A ifr<—-A—a
where sgn is the sign function. Unlike an encoder using aitighe tangent that is lin-
ear around zero, a code prediction function with a smootstiolding non-linearity is
able to produce representations that are sparser becaakewi&ations are suppressed
by this non-linearity. In our experimenk, as well asx in eq. B.2 are set equal to the
sparsity level.
In order to compute the reconstruction and the sparsityr @veotrained on image
patches randomly sampled from the Berkeley dataset. We #¥griilters of size 9x9

pixels. A random subset of encoder filters are shown in fig. & the errors are re-

ported in table B.1. The machines using the thresholdinglimearity yield sparser
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Table B.1: Comparison between different encoding architestand ways to train them.

The sparsity level is set to 0.6 in all experiments, excepé &awhich was set to 0.2.

Methods H SNR (rec. error) [dB]‘ Sparsity [L1 norm] H Recogn. Rate
1. PSD predicted codes 15.7 5.6 47%

2. PSD optimal codes 14.6 2.8

3. PSD not iter. for the code during training 12.9 3.4 45%

4. autoenc. with thres. non-lin. 14.3 3.1 43%

5. autoenc. with thres. non-lin., tied weights 16.1 5.1 46%

representations, comparable to those achieved by usingapiodes (case 2).

In the table we report also a recognition experiment usiegdhdifferent machines.
We trained 128 filters of size 16x16 (see fig. B for a random subsencoder filters)
on Caltech 101 images. The pre-processing as well as thenioogsystem are the
same as the ones described in sec. 3.3.2. Although filterstiiaigk quite different the
recognition performance seems robust to the choice of #ieitig algorithm used to
learn the filters. Even though the encoder of PSD does noupeodery sparse codes,
it achieves the best recognition accuracy. Higher recagniates could be achieved by
(1) cross-validating the sparsity level, (2) using a bettassifier (e.g. a spatial pyramid
matching SVM (Lazebnik et al., 2006a)), and (3) extractingyrdrchical features by
using these features as intermediate representationsedmretwork (Ranzato et al.,
2007c).

Comparing the features learned by the machine number 3 in fijbBand B.2(b) to
the filters learned by PSD and looking at the correspondisglt®in table B.1, we
can conclude that the minimization used to infer the codéndutraining of PSD is

crucial to improve the optimization when the representaigchighly overcomplete, but
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otherwise it is not necessary. In general, a better traipmgedure could be to start the
optimization by minimizing in code space to break the symiiagtand then, to complete
the training by removing this extra optimization step (lngdthe code to the output of

the decoder) to speed-up learning.
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