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Abstract

Cryptographic primitiv es, such as hash functions and block ciphers, are

integral components in several practical cryptographic schemes.In order to

prove security of theseschemes,a variety of security assumptionsare made

on the underlying hashfunction or block cipher, such ascollision-resistance,

pseudorandomnessetc. In fact, such assumptionsare often made without

much regard for the actual constructionsof theseprimitiv es. In this thesis,

we addressthis problemand suggestnew,and possiblybetter, designcriteria

for hashfunctions and block ciphers.

We start by analyzing the designcriteria underlying hashfunctions. The

usualdesignprinciple hereinvolvesa two-stepprocedure:First, comeup with

a heuristically-designedand \hop efully strong" �xed-length input construc-

tion (i.e. the compressionfunction), then usea standard domain extension

technique, usually the cascade construction (see �gure 3.2), to get a con-

struction that works for variable-length inputs. We investigate this design

principle from two perspectives:

(a) To instantiate the Random Oracle. We suggestmodi�cations to ex-

isting constructions that make the resulting construction secureas a

random oracle, with appropriate assumptionson the underlying com-

pressionfunction.

(b) In general, we look for \black-box" �xes to existing hash functions

v



to get secureconstructions for each of the common security notions

required of hash functions. We also give suggestionsfor appropriate

modesfor using existing hashfunctions along theselines.

We next move on to discussthe Feistel network, which is used in the

designof several popular block cipherssuch asDES,Triple-DES,Blow�sh etc.

Currently, the celebratedresult of Luby-Racko� [47] (and further extensions)

is regardedasthe theoretical basisfor using this construction in block cipher

design,where it was shown that a four-round Feistel network is a (strong)

pseudorandom permutation (PRP) if the round functions are independent

pseudorandom functions (PRFs). We study the Feistel network from two

di�erent perspectives:

(a) Is there a weaker security notion for round functions, than pseudoran-

domness,that su�ces to prove security of the Feistel network?

(b) Can the Feistel network satisfy a much stronger security notion, i.e.

security asan ideal cipher, underappropriateassumptionson the round

functions?

We give a positive answer to the �rst questionand a partial positive answer

to the secondquestion. In the process,we undertake a combinatorial study

of the Feistel network, that might be useful in other scenariosas well. We

provide several practical applications of our results for the Feistel network.
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Chapter 1

In tro duction

Cryptographic primitiv es, such as hash functions and block ciphers, are in-

tegral components in the designof practical cryptographic schemes. Often

the useof such primitiv esmakes the task of coming up with secureand ef-

�cient cryptosystemsmuch easier,as comparedto designingsuch systems

from scratch basedon complexity-theoretic assumptions. The usual design

procedureinvolvescomingup with a proposedconstruction that usesan ab-

stract function/p ermutation family. The construction is then proven secure

by making an appropriate assumptionon the function/p ermutation family.

For instance,assumingthe function family to be collision-resistant or assum-

ing the permutations to be pseudorandom permutations. In practice, these

functions(resp. permutation) familiesareinstantiated with actual hashfunc-

tions (resp. block ciphers), in the hope that theseconstructionswill satisfy

the required security notion.
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Hence, depending on the requirements of cryptographic schemesthese

primitiv esmay needto satisfy a variety of security notions. For this reason,

the notion of a \secure" hash function or a \secure" block cipher is a little

fuzzy, at best. In this thesis,we attempt to comeup with new and possibly

better designcriteria for theseprimitiv es.

1.1 Hash Functions

The most commonway of constructinga hashfunctions consistsof two steps.

First, one constructs a compression function f : f 0; 1gm ! f 0; 1gn from

scratch, or using a block cipher. Then one usesan iterativ e technique such

as the Cascade construction (see �gure 3.2) to extend the domain of the

function to variable-length inputs. The basic motivation behind using the

cascadeconstruction for domain extension was provided by the results of

Merkle and Damg�ard [22, 54], who showed that the cascadeconstruction

applied to a su�x-free encoding1 of the input is collision resistant if the

underlying compressionfunction is collision resistant.

Thus, the main security notion that has served as a guideline for the

designof cryptographic hashfunctions, such asSHA [32], MD5 [34] etc., has

beenCollision Resistance. Indeed, thesehash functions have beenused to

instantiate collision resistant functions in a variety of cryptographic schemes.

The applications of Collision resistant hash functions (CRHFs) range from

1In particular, they suggestusing the Merkle-Damg�ard strengthening, which involves
appending the input length to the input
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signature schemes(the classic\Hash-then-Sign" paradigm), to more recent

applications such as thoserelying on the non-black-box techniquesof [2].

However, the problem with using a particular security property as the

guideline for hash function design is that now the requirements from hash

functions extendto a largenumber of di�erent security notions. Indeed,hash

functions are used as pseudorandom functions, for messageauthentication,

asUniversal One-Way HashFunctions (UOWHFs)2 [60], for Key Derivation

or even as a Random Oracle [8].

In spite of this largevariety of applications,a largefraction of the existing

literature related to designand implementation of cryptographic hash func-

tions has concentrated on collision resistance[22, 54, 15]. Apart from this,

there have alsobeenresults related to pseudorandomness[5], MACs [6, 53],

target collision-resistance[11, 70] and key derivation [25].

1.1.1 Hash Functions as Random Oracles

In this thesis,we start by discussingoneof the most important applications

of hash functions. That is, when hash functions are used to instantiate a

random oracle. The random oracle methodology was introduced by Bellare

and Rogaway as a \paradigm for designinge�cien t protocols" [8]. In this

paradigm, one designsa cryptographic protocol under the assumptionthat

thereexistsa ideal randomfunction oracle(RO), which canbeaccessedby all

parties in the protocol (including the adversary). Then oneprovidesa formal

2also called target collision resistant functions
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proof of security for the protocol under this assumption. In practice, the

random oracle is instantiated using an actual cryptographic hash function,

such as oneof the hashfunctions from the SHA family [32].

It is clear that security in the ROM does not guarantee security of the

schemewhen instantiated with an actual hash functions. Indeed, this was

shown in several \separation" results [18, 61, 4, 19, 26] which gave instances

of un-instantiable \arti�cial" cryptographic schemesthat are securein the

ROM. However, none of these results gave any attacks on actual schemes

that wereproven securein the ROM (such asOAEP [9] or PSS[10]). Thus,

the random oracle methodology is still a useful tool for designinge�cien t

cryptographic schemeswith \reasonablesecurity guarantee".

In chapter 3, we study the designprinciples for cryptographic hashfunc-

tions when used to instantiate the Random Oracle. As we discussed,an

actual hash function H : f 0; 1g� ! f 0; 1gn is designedto work on variable

length inputs. Thus, onewould assumethat if this hashfunction H is \ran-

dom and unstructured" enough, then there should not be any issueswith

using H for instantiating the random oracle (RO). However, in reality, this

thinking is erroneous.

As we noted above, practical hash functions are designedby applying

a domain extensiontechnique to a �xed-length input compressionfunction

f : f 0; 1gm ! f 0; 1gn . While most of the ad-hoc designe�ort goes into the

compressionfunction h, the domain extensiontechnique used in almost all

hashfunctions is the plain Merkle-Damg�ard construction (�gure 3.2). Thus,

4



it would be unreasonableto expect such a structured construction to behave

like a monolithic random oracle. On the other hand, it is a much more di�-

cult task to designa monolithic \unstructured" hashfunction from scratch.

Hence,we approach this problem from a perspective of designinga vari-

ablelengthinput randomoracle(VIL-R O) from a �xed-lengthinput primitive

(for eg., a FIL-R O), so that all the designe�ort can then be concentrated

on comingup with a construction for the �xed-length primitiv e (in practice,

the compressionfunction).

We start by noting that noneof the previous\domain-extension" results

for hash functions (collision-resistance,pseudo-randomnessetc.) imply a

similar domain extensionresult for randomfunction oracle. The main reason

beingthat an RO constructionmust replicateall the propertiesof the random

oracle,such as pseudorandomness, extractability, programmability etc. Since

noneof the previousde�nitions guarantee all theseproperties, it is not even

clear how to approach this problem.

Indi�eren tiabilit y

We start by discussingwhat it meansto implement an variable-length input

random oracle H from a �xed-length building block, such as a FIL-RO f .

We show that the notion of indi�er entiability introduced by Maurer et al

[52] is the right de�nition in this context. In particular, if we show that

the construction H using a �xed-length building block f is indi�eren tiable

from a random oracleunder the assumptionthat f is ideal, then we can use

5



the construction H to instantiate the random oraclein any schemeprovably

securein the ROM. And the resulting schemewill be securein the idealized

model corresponding to the primitiv e f .

In order to illustrate this security notion, considera proposedRO con-

struction Cf
H in the f -ideal model. This is an indi�eren tiable RO construc-

tion if there is a simulator SH that can simulate the role of the �xed-length

primitiv e f in the random oraclemodel. That is, for any attacker A (�;�) that

expects accessto two oracles,the following two scenariosare indistinguish-

able: �rst, where it has oracle accessto the RO H and the simulator SH

and second,where it has oracle accessto the RO construction C f
H and the

�xed-length primitiv e oraclef . Thus, SH shouldessentially simulate the role

played by the �xed-length primitiv e f with respect to the RO construction.

More details on this de�nition are given in chapter 2, section2.2.

Domain Extension for Random Oracle

Equipped with a suitable de�nition, we attempt to �nd an indi�er entiable

construction of a variable-lengthrandomoracleH from a �xed-length random

function oracle f 3. We start by discussingsomeexisting, and seemingly

securedomain extensiontechniquesunder this de�nition.

In particular, we show that the popular hash-then-signparadigm is not

securein this context. Moreover, even the plain Merkle-Damg�ard construc-

tion, used in almost all existing hash functions, is not an indi�eren tiable
3This is a �xed-length random function that is accessibleto all the parties in the

protocol.
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construction of a VIL-R O (even with Merkle-Damg�ard strengthening). Thus,

the existing designprinciple behind hash functions such as SHA-1 or MD5

is not securefor our goal.

Therefore, instead of giving new and practically unmotivated construc-

tions, we comeup with minimal changesto the plain Merkle-Damg�ard con-

struction that are easily implementablein practice, and satisfy our security

de�nition. In particular, we proposethe following modi�cations to the plain

MD construction:

1. Pre�x-fr ee encoding: we show that if the inputs to the plain MD con-

struction are guaranteed to be pre�x-fr ee, then the resulting construc-

tion is secure.

2. Dropping some output bits: we show that by dropping a non-trivial

number of output bits from the output of the plain MD construction,

we get an indi�eren tiable construction of a VIL-R O.

3. The NMAC construction (see�gure 3.3a): we show that by applying

an independent hash function g to the output of the plain MD con-

struction using f (as in the NMAC construction [5]), then we get an

indi�eren tiable VIL-R O construction in the random oraclemodel for f

and g.

4. The HMAC construction (see �gure 3.3b): we show a slight variant

of the NMAC construction allows us to build the secondfunction g

from f itself (as in [5], in going from NMAC to HMAC)! In this latter

7



variant, oneimplements a securehashfunction H by making two black-

box calls to the plain MD construction (with the sameI V and a given

compressionfunction f ).

Ideal Cipher to Random Oracle

In practice, most hash functions are block-cipher based,either explicitly as

in [15] or implicitly as in SHA-1. Therefore, we consider the question of

constructing a VIL-R O H from an ideal block cipher E : f 0; 1g� � f 0; 1gn !

f 0; 1gn . An ideal block cipher is an ideal primitiv e that takesa � -bit key, and

de�nes an independent random permutation for each key.

Weconcentrate on usingthe Merkle-Damg�ard constructionwith the Davies-

Meyer compressionfunction f (x; y) = Ey(x) � x, sincethis is the most prac-

tically relevant construction. One could hope to �rst show that the Davies-

Meyer compressionfunction is an indi�eren tiable construction of a FIL-RO

in the ideal cipher model for E and then useoneof the secureconstructions

of a VIL-R O from a FIL-RO. However, as we show, this �rst attempt fails

and the Davies-Meyer construction fails to give a FIL-RO from an ideal ci-

pher. Fortunately, we show, via direct proofs, that all four �xes proposedfor

FIL-RO to VIL-R O construction alsowork whenusedwith the Davies-Meyer

compressionfunction in the ideal cipher model.
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1.1.2 Getting the Best out of Existing Hash Functions

Having discussedthe useof hashfunctions for instantiating the random ora-

cle, we then analyzesecurity of hashfunctions in a moregeneralperspective.

As we mentioned above, hash functions are required to satisfy a variety of

di�erent security requirements in cryptographic schemes.In fact, in the past,

hashfunctions wereviewed by practitioners asblack-boxeswith magicprop-

erties.

However, this perception has changedsincethe recent attacks on exist-

ing hash functions, including the SHA-1 and MD5. Most notable of these

were the new and improved collision-�nding attacks proposedby Wang et

al [72, 73]. Along with other results demonstrating weaknessesof existing

hash function constructions,such as [43, 45], theseattacks showed that the

collision-resistanceof these hash functions is much worse than what was

anticipated earlier. Moreover, these results have also cast a doubt on the

security of thesehash functions with respect to other notions.

Theseresults have prompted NIST into organizinga seriesof workshops

[62] for coming up with constructions for the \next generation" hash func-

tions, and rightly so. However, this new standard is not expected to be

decidedany time soon. Meanwhile, practitioners are stuck with either using

existing, known to be \insecure", hash functions or using an ad-hoc imple-

mentation that has not undergonethe thorough analysis that standardized

hash functions go through. In either case,the resulting application will be

prone to possibleweaknessesthat are avoidable.
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In chapter 4, we addressthis problem by looking for �xes that would

allow practitioners to use standardized hash functions while side-stepping

several of the weaknessesof existing constructions. As we have discussed,

almost all existing hash functions are basedon the plain MD construction

(with Merkle-Damg�ard strengthening). Thus, we look for black-box �xes

that can be implemented on top of the plain MD construction for several of

the applications that hashfunctions are often usedfor.

E�cien t Blac k-Bo x Fixes to Existing Hash Functions

Most of the prior work for hash functions has been aimed at �nding iter-

ative techniques (usually, somevariants of the plain MD construction) for

extending the domain of �xed length primitiv e to get an arbitrary length

primitiv e satisfying the samesecurity property, which are also often called

property-preservingtransforms. For instance, the results from chapter 3 for

constructing a VIL-R O from a FIL-RO fall under this category. However,

we note that it is not always the casethat thesevariants of the plain MD

construction can be implemented on top of a plain MD basedhashfunction.

An example in this context is the PRF domain extensiontechnique in [5].

In fact, most often the reasonfor such \non-black-box variants" of the plain

MD construction is that no black-box variants are known that preserve the

required security property.

In chapter 4, our focuswill be slightly di�erent in the sensethat we will

emphasizethis alternative goal for domain extensiontechniquesmore than
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property preservation. In particular, we are willing to make slightly stronger

assumptionson the �xed-length primitiv e in order to get a variable-length

primitiv e with a desiredsecurity property. We will look for e�cien t variants

of the plain MD construction that satisfy the following axioms:

1. It should consistof oneor two \black-box" calls to plain MD construc-

tion.

2. The construction must support variable-length inputs.

3. Comparedto a singleevaluation of the plain MD construction, its eval-

uation should make at most a �xed (small constant) number of extra

calls to the underlying compressionfunction.

Such a variant of the plain MD construction will allow a practitioner, who

understandsthe security property he/she needsfrom the hash functions, to

usean existing standardizedimplementation without having to tinker with

the, often rather involved, internals of the implementation. We also refer to

such a variant of the plain MD construction as an e�cient black-box hash

function mode of operation.

Securit y Prop erties vs. Mo des of Op eration

The axiomsthat we require our hash function modesof operation to satisfy

leave very little choicefor the domain extensiontechniquesthat onecan use.

Wediscussmost of the popular hashfunction modesof operation that satisfy

our axioms:
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1. Plain MD Construction: This capturesthe notion that the application

usesthe hashfunction as it is.

2. Encode-then-MDConstruction: In this case,the userencodesthe hash

function input beforeapplying the plain MD construction. Examplesof

popular encoding schemesusedare su�x-free encoding and pre�x-free

encoding.

3. MD-then-ChopConstruction: Herethe userappliesthe plain MD mode

and only usespart of the output while discardingthe remainingbits. In

particular, existing hashfunctions SHA-224and SHA-384are obtained

this way from SHA-256and SHA-512,respectively.

4. NMAC/HMA C Construction: The versionof the NMAC construction

that we considersimply composestwo applications of the plain MD

mode with possiblydi�erent initialization vectors I V1 and I V2. While

not obeyingthe �rst axiom, the NMAC constructionservesasa niceab-

straction for the HMAC construction which doessatisfy all our axioms

(but is slightly harder to formally analyzein somecases).Essentially ,

the HMAC constructionsimulatesthe two black-box callsof the NMAC

construction with di�erent I Vs, by adding pre�xes to the input in each

call.

We analyzeeach of thesehash function modesof operation for most of the

security properties that areusually desiredof hashfunctions. The hashfunc-

tion properties that we analyze include: (1) Collision-resistance,(2) Pseu-
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dorandomness,(3) MessageAuthentication, (4) Random Oracle, (5) Target

Collision Resistance(UOWHFs), (6) SecondPreimageResistance,(7) Ran-

domnessExtraction, and (8) One-Wayness.

In each case,we �nd the minimal assumptionsthat oneneedsto make on

the compressionfunction in order to achieve the required security property

from the resulting hashfunction mode of operation. In many cases,it turns

out that we needto make strongerassumptionson the compressionfunction

than the desiredsecurity property. Someof theseresults follow directly from

previouswork, while for other results we provide separateproofs in chapter

4.

We provide a detailed \security property vs. hash function mode of op-

eration guide" that givesthe minimal assumptionsoneneedsto make on the

compressionfunction for each of an e�cien t black-box mode of operation

to satisfy each of the security property (see�gure 4.1). This will serve as

a useful guide for practitioners on how to useexisting hash functions when

they desirea certain security property from them.

1.2 Blo ck Ciphers

In the secondpart of this thesis,we discussanother important cryptographic

primitiv e, a block cipher. A block cipherE : f 0; 1g� � f 0; 1gn ! f 0; 1gn takes

a � -bit key, and givesa permutation on n-bit strings for each key. Examples

of actual block ciphers include Data Encryption Standard (DES), Advanced
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Encryption Standard (AES) etc. The initial use of block ciphers was for

symmetric key encryption.

Though the usesfor block ciphersarenot aswide-rangingasin the caseof

hashfunctions, theseprimitiv esare alsousedin several scenariosother than

for privacy. For instance,theseare usedin the popular messageauthentica-

tion mode, CBC-MAC, or in instantiating schemesin the ideal cipher model

[15, 23, 30, 42, 46].

1.2.1 Feistel Net works and Lub y-Rac ko� 's Result

Feistel networks form the basis of several block cipher constructions, such

as DES, Triple DES, Blow�sh etc. A Feistel network consistsof multiple

iterativ eapplicationsof the Feistel transform. The Feisteltransform provides

a construction of a permutation on 2n-bit strings using a length-preserving

function f : f 0; 1gn ! f 0; 1gn . It is de�ned as follows: 	 f (x)
def
= xR k

(xL � f (xR )). The di�erent iterativ e applicationsof the Feistel transform are

known as the roundsof the Feistel network, and the corresponding functions

are called round functions.

Initially , there wasno theoretical justi�cation for the usageof the Feistel

networks in the design of block ciphers. This theoretical justi�cation was

provided by the result of Luby and Racko� [47], who showed that 4 rounds

of the Feistel network with independent pseudorandom functions in each

round givesa (strong) pseudorandompermutation 4. Sincethe paper of Luby-

4A strong pseudorandompermutation is indistinguishable from a truly random permu-
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Racko�, several improvements weremadeto their result (see[58,51,69,64]).

All these results showed essentially argued the pseudorandomnessof a

multiple round Feistel network with pseudorandomround functions (with

improving exact security of the reductions or under slightly di�erent attack

scenarios). These results provided enough justi�cation for the use of the

Feistel network basedblock ciphers for symmetric key encryption. Indeed,

pseudorandomnessof ciphertexts is the security property that one desires

from a symmetric key encryption scheme.

1.2.2 Lo oking Bey ond Pseudorandomness?

However, there are several reasonsto look for other security properties from

block ciphers.

(a) As we mentioned above, block ciphers are utilized for a much wider

rangeof applications than for symmetric key encryption alone. These

applicationsoften requiresecurity propertiesthat may bedi�erent from

pseudorandomness.

(b) The round functions (or S-Boxes in actual constructions) in Feistel

network basedblock ciphersare designedbasedon heuristics,and may

not be (possibly even closeto) pseudorandomfunctions. In this case,

all of the previousresults for the Feistel network becomeinapplicable.

(c) Moreover, the round functions in actual constructionsmay leak a lot of

tation for any attacker that can make both forward or inversepermutation queries
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information about the intermediateround valuesof the Feistelnetwork.

Again, all of the prior results for Feistel networks assumethe secrecy

of all (or at least some)of the round values.

In part I I of this thesis,weanalyzethe Feistelnetworks from this perspective.

In particular, we analyzethe Feistel network under both weaker as well as

stronger security notions than pseudorandomness.

Firstly, we analyze the situation when the round functions of a Feistel

network are not pseudorandomfunctions. In particular, we analyzethe sit-

uation when the round functions satisfy someweaker security property than

pseudorandomness,or if the intermediate round valuesof the Feistelnetwork

are somehow (possibly thorough weaknessof round functions) leaked to the

attacker. We give positive results in such a situation in chapter 6.

Secondly, we ask if the Feistel network could be used to designa much

stronger primitiv e than a pseudorandompermutation. That is, we analyze

if, under some(ideal) security assumptionon the round functions, the Feistel

network is an indi�eren tiable construction of an ideal block cipher. Note that

this is also the other direction of one of the questionsaddressedin chapter

3. We give a partial positive answer to this question in chapter 7.

1.2.3 An Abstraction for Feistel Net works

As we discussed,most of the previous results becomeinapplicable if either

the round functions are not pseudorandom,or (at least someof) the round
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valuesare not hidden from the attacker. In order to handle this problem, we

start out by discussinga combinatorial abstraction for the multiple round

Feistel network that is applicable to scenarioswhere one or both of these

assumptionsdo not hold. In particular, we do not make any assumptionson

the round functions when stating this result.

Considera k-round Feistelnetwork that de�nes a permutation on 2n bits

basedon k length-preservingfunctions on n-bits. We will refer to the inputs

to each of theseround functions as the round valuesof the Feistel network.

We study a gamebetweenthis k-round Feistel network and an attacker that

makes2n-bit forward/in versepermutation queriesto this Feistelnetwork and

getsthe result aswell asall the intermediateround values. The attacker wins

the gameif it makestwo queriessuch that the middle ((k=2)th ) round values

in thesequeriescollide.

We show that if the attacker wins after making q queriesto the k-round

Feistel network in this game,then:

(a) Either the number of queries,q, madeby it is exponential in k.

(b) Or a newround function output canbe represented asan XOR of upto

5 other round values that already existed before this round function

output. We refer to this as the 5-XOR condition (seesection5.1).

The secondcondition essentially implies that for somequery made by the

attacker, a round function, say f i (Ri ), where output can be represented as

an XOR of upto 5 round valuesthat werede�ned beforethis round function
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output. This includesround valuesfrom earlier queries,or round valuesfrom

this query that were de�ned beforethis round function output.

This property essentially proves a property of an interaction between

an attacker and the Feistel network that does not depend on the round

functions used in the construction. We use this property for our problem

by showing that if the round functions of the Feistelnetwork are chosensuch

that the 5-XOR condition is not satis�ed for any e�cien t attacker, then the

number of queriesmadeby a \winning" attacker must be exponential in the

number of rounds k (which is super-polynomial in the security parameter �

for k = ! (log � ).

Moreover, we show that this result is tight in the sensethat for a Feistel

network with upto logarithmic number of rounds k = O(log � ), there is an

attacker that can �nd the input corresponding to any permutation output by

making only forward queries.This is su�cien t to seethat the combinatorial

property above doesnot hold for such a Feistel network. In fact, aswe show

in chapter 6, this implies that such a Feistel network is not useful for most

applications wherethe round valuesare revealedto the attacker.

1.2.4 New and Impro ved Primitiv es

In chapter 6, weshow new(or improved) constructionsof somecryptographic

primitiv es using the combinatorial property above. First, prove a stronger

result than Luby-Racko� (and subsequent results) for PRPs, that with a

super-logarithmic number of rounds, the Feistel network, with independent
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PRFs as round functions, is a (strong) pseudorandompermutation even if

the PRP attacker can observethe intermediate computations of the Feistel

network. This givesa more resilient PRP construction.

Coming back to our �rst question,we ask if there is a weaker property of

the round functions than pseudorandomness,that guaranteessomesecurity

property for the Feistel network. We show that even if the round functions

of a super-logarithmic round Feistelnetwork are only unpredictablefunctions

(UFs) then it is an unpredictable permutation (UP) 5. In fact, we show that

this result is tight, in the sensethat for upto a logarithmic number of rounds,

there is a setof UFs that do not give a UP via the Feistelnetwork (seelemma

23).

Next, we show that our result is alsouseful in a scenariowherethe appli-

cation may needto explicitly reveal all the intermediate round valuesto an

attacker. For instance,this comesup whenonetries to add veri�ability to the

PRP or UP constructions above. The notion of veri�able (pseudo)random

functions (VRFs) was introducedby Micali et al. [55]. Theseare essentially

veri�able analogsof PRFs, with a public key PK and secretkey SK . Given

both the public and secretkeys,onecan compute the output y of the VRF

on an input x, aswell asconstruct a short proof that y is indeedthe output

of the VRF on input x and not some\garbage value" (which could easilybe

donefor a normal PRF). On the other hand, given only the public key PK ,

5Roughly speaking, an unpredictable function guaranteesthat no attacker can predict
the output of the function on an unqueriedinput (similarly for unpredictable permutations
with both forward/in versequeries).
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onecanverify this proof to learn whether y is indeedthe correctly computed

output (seeformal defns. in section6.1).

Weintroducethe notion of veri�able (pseudo)randompermutations(VRPs)

that are similar veri�able analoguesof PRPs (or permutation analoguesof

VRFs). For VRPs, one can compute (and provide proofs for) both the for-

ward and inversepermutation giventhe public and secretkeys. Weshow that

a super-logarithmic round Feistel network with independent VRFs as round

functions, is a secureVRP. Note that in this case,the VRP proof will sim-

ply consistof intermediate round function input/output pairs alongwith the

corresponding VRF proofs. Thus the round valuesneedto be revealedto the

attacker, which makesall of the previous techniquesfor the Feistel network

inapplicable. Moreover, this also implies that super-logarithmic number of

rounds are both necessaryand su�cien t.

Finally, weconsiderthe caseof veri�able unpredictablepermutations(VUPs).

Theseare veri�able analogsof unpredictablepermutations. The correspond-

ing notion of veri�able unpredictable functions (VUFs) was also introduced

by Micali et al. [55]. Thesearealsoknown asuniquesignatures(see[38,49]).

Micali et al. usedVUFs as an intermediate step for constructing VRPs.

Note that in this case, if one usesthe Feistel network with VUFs as

round functions to construct VUPs, then neither are the round functions

pseudorandom,nor are the round valueshidden from the attacker (and are

revealedaspart of the VUP proof). However, we show that even in this case,

a super-logarithmic round Feistel network is both necessaryand su�cien t to
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construct VUPs from VUFs.

Applications

We then provide various examplesof natural scenarioswhereour technique

(and the constructionswe derive from it) are useful. Theseapplications are

described in section6.3 (chapter 6).

� We show how our results provide a \closer-to-reality" justi�cation for

the number of Feistel roundsheuristically usedin practical block cipher

constructions.

� Using our results,we provide the most e�cien t domain extensiontech-

nique for length-preservingMACs without introducing any new as-

sumptions.

� Weshow that VRPs immediatelyyield non-interactive, setup-free, perfectly-

binding commitment schemes.

� VRPs can be usedto �x a subtle security 
a w in the non-interactive

lottery systemof Micali-Rivest [56].

� We show that theseprimitiv escan alsobe usedto implement socalled

\in variant signatures" neededby Goldwasserand Ostrovsky [38].

� Other applicationsof VRPs, such asveri�able CBC encryption/decryption,

veri�able huge (pseudo)randomobjects [36] or a \pro of-transferable"
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implementation of the Ideal Cipher Model using a semi-trusted third

party.

1.2.5 The Ideal Cipher Mo del

In chapter 7, we analyze if the Feistel network can be used to achieve a

stronger security notion than pseudorandomness.That is, we analyzeif the

Feistelnetwork canbeusedto get an indi�er entiableconstruction of the ideal

cipher (IC) from a randomoracle (RO). This is essentially the converseof a

questionwestudiedin chapter 3. Therewegaveindi�eren tiable constructions

of the random oraclefrom the ideal cipher oracle. If the converseresult also

holds, then it will alsoimply that the ideal cipher model (ICM) is equivalent

to the random oracle model (ROM). Although, the ideal cipher model has

not beenas widely applicable as the random oraclemodel, there have been

someresults that utilize this model (see[15, 23, 30, 42, 46]).

Wegivea \partial positive" answer to this question,by showing that with

su�cien t number of rounds a Feistel network basedconstruction using RO

is indi�er entiable from the ideal cipher in the \honest-but-curious" model.

This is a weaker security notion than generalindi�eren tiabilit y, that is still

strongerthan classicalindistinguishability (that is usedin the caseof PRPs).

Indi�eren tiabilit y in the Honest-but-Curious Mo del

We start out by introducing the notion of indi�eren tiabilit y in the honest-

but-curious model in section7.1. In order to illustrate this security notion,
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considera construction CH
E of the IC E using the RO H. Under the general

notion of indi�eren tiabilit y this construction is a secureideal cipherconstruc-

tion, if there is an e�cien t simulator that can simulate the role of the RO H

in the ideal cipher model. In this weaker notion, the task of the simulator is

simply to simulate the interaction betweenthe RO H and the construction

CH
E in the ideal cipher model. That is, for any attacker A that has expects

accessto the ideal cipher construction oracle CH
E and can make queriesto

this construction where it observes the queriesthat CH
E , in turn, makes to

the random oracleH , the following two scenariosare indistinguishable: �rst,

where it has oracleaccessto CH
E and can observe the actual interaction be-

tweenCE and H or second,where it has oracleaccessto the ideal cipher E

and the simulator S generatesa fake interaction for the attacker.

We show that if an ideal cipher construction is indi�eren tiable in the

honest-but-curiousmodel, then any cryptographic protocol that is secure

against honest-but-curiousattackers in the ideal cipher model can also be

instantiated in the random oraclemodel using this construction.

Next, we de�ne the notion of a transparent construction, which are con-

structions for which generalindi�eren tiabilit y is equivalent to indi�eren tia-

bilit y in the honest-but-curiousmodel. Roughly speaking, for a transparent

ideal cipher construction using RO, an attacker can query the RO indirectly

by making queriesto the construction and observingits interaction with the

RO.
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An HBC Indi�eren tiable construction and going beyond : : :

Next, we analyzethe Feistel network to �nd out if it can give us an indi�er-

entiable IC construction usingRO. We �rst show that for upto a logarithmic

number of roundsk = O(log � ), the k-round Feistel network is a transparent

construction. That is, if one can prove the honest-but-curiousindi�eren tia-

bilit y of this construction, then it will also imply generalindi�eren tiabilit y.

This implies that if such a k-round Feistelnetwork is an HBC indi�eren tiable

ideal cipher construction, then the random oraclemodel and the ideal cipher

model are equivalent! We conjecture that this is the caseand that in fact,

even a 6-round Feistel network might be an indi�eren tiable ideal cipher con-

struction. However, we have not beenable to comeup with a formal proof

of this conjecture.

However, we show that with super-logarithmic number of rounds k =

! (log � ), the k-round Feistel network is HBC indi�eren tiable from the ideal

cipher. This result usesthe combinatorial property that we prove in chapter

5. This would indicate that one might be able to show that such a con-

struction is indi�eren tiable from the ideal cipher in general,by showing that

this is a transparent construction. Unfortunately, we prove that this cannot

be the caseby showing that for super-logarithmic number of rounds, the

Feistel network cannot be a transparent construction. Thus, in this case,

honest-but-curiousindi�eren tiabilit y is a strictly weaker notion than general

indi�eren tiabilit y.

Finally, we state a result of Coron [20]who shows that for upto 5 rounds,
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the Feistel network doesnot even give an HBC indi�eren tiable ideal cipher

construction. We give a proof of this fact for a 4-round Feistel network in

section 7.2.4. This result also implies that the notion of indi�eren tiabilit y

in the honest-but-curiousmodel is strictly stronger than classicalindistin-

guishability, since4 rounds are su�cien t in the latter case[47].
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Chapter 2

Preliminaries

2.1 Pseudorandomness and Indistinguishabil-

it y

Let � 2 N denotethe security parameter. Let f A � ; B � g� 2 N be a sequenceof

pairs of sets. For the purposesof this thesis,A � and B � will be of the form

f 0; 1gn(� ) and f 0; 1gm(� ) , respectively. Here n(�) and m(�) are polynomial

functions N 7! N. When no ambiguity can arise, we will simply represent

thesesetsas f 0; 1gn and f 0; 1gm .

Let F� be the set of all functions A � 7! B � , and let P� be the set of all

permutations on A � . A function ensembleH = f H � g� 2 N is a sequencesuch

that each H � is distributed on F� . HereH is the uniform function ensemble

if H � is uniformly distributed on F� . A permutation ensembleH = f H � g� 2 N

is a sequencesuch that each H � is distributed on P� , and H is the uniform
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permutation ensembleis H � is uniformly distributed on P� .

A function ensemble is e�cien tly computable if the distribution H � is

e�cien tly samplableand the functions in H � can be computed e�cien tly.

That is, there exist probabilistic polynomial time Turing machines,I and V,

and a mapping from strings to functions, � , such that (1) � (I (1� )) and H �

are identically distributed and (2) V(i; x) = (� (i ))( x) so that V(I (1n ); �) is

essentially H � (�). We denoteby f i the function assignedto i (i.e. f i
def
= � (i )).

We refer to i as the key of f i and to I as the key generatingfunction of F .

Throughout this thesis, when we considerfunction (or permutation en-

sembles), the sequenceof sets f A � ; B � g� 2 N will be of the form
�

f 0; 1gn(� ) ;

f 0; 1gm(� )
	

, wheren; m are functions on N 7! N. The usual key generation

function I will simply output a uniformly sampledrandom bit string from a

set f 0; 1gk(� ) , i.e. I (1� ) is uniformly distributed over f 0; 1gk(� ).

We start by describingthe notion of indistinguishability of two function

(or permutation) ensembles. In this notion, the distinguisher is an oracle

machine that is givenoracleaccessto a function in F� or a permutation in P� .

On input 1� , the distinguisher makesqueriesto the function or permutation

that it has oracle accessto, and outputs a single bit. We assumethat on

input 1� , the distinguisheronly makesqueriesin A � . For the purposeof this

thesis, the oraclemachine can be thought to be an oracleTuring machine.

Let D be an oraclemachine, let f be a function in F� and let H � be dis-

tributed over F� . We denoteby D f (1� ), the output distribution of D when

its oraclequeriesare answeredby f , and denoteby D H � (1� ), the output dis-
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tribution of D when its oraclequeriesare answeredby a function distributed

accordingto H � . We will also consideroraclemachines that take oracleac-

cessto a permutation in P� and its inverse. Let � be a permutation in P�

and let H � be a distribution over P� . We denoteby D � ;� � 1
(1� ), the output

distribution of D when it is given oracle accessto the permutation � , and

denoteby D H � ;H � 1
� (1� ), the output distribution of D when it is given oracle

accessto a permutation distributed accordingto H � .

De�nition 1 ((t; q; � )-indistinguishabilit y). Let H = f H � g� 2 N and ~H =

f ~H � g� 2 N be two function ensembles. We say that H and ~H are (t; q; � )-

indistinguishable function ensemblesif for any probabilistic oracle machine

D running in time t and making at most q oracle queries,

�
�
�Pr

�
D H � (1� ) = 1

�
� Pr

h
D

~H � (1� ) = 1
i �
�
� � �

Here t; q and � are all functions of the security parameter � . The same

de�nition can alsobe used for (t; q; � )-indistinguishability of two permutation

ensembleshH; H � 1i and h~H ; ~H � 1i .

De�nition 2 (negligible function). A function h : N ! N is negligible if

for every constant c > 0 and all su�ciently large n,

h(n) <
1
nc

We will say that two function (or permutation) ensemblesare (computa-
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tionally) indistinguishable if they are (t; q; � )-indistinguishable with � negli-

gible for every polynomial t and q.

Next, we will usethis notion of indistinguishability to introduce the no-

tions of pseudorandomfunctions and permutations.

De�nition 3 ((t; q; � )-PRF). Let H = f H � g� 2 N be an e�ciently computable

function ensembleand let R = f R� g� 2 N be the uniform function ensemble.

H is a (t; q; � )-pseudorandomfunction ensemble if for any probabilistic oracle

distinguisher D that runs in time t and makesat most q oracle queries,

�
�Pr

�
D H � (1� ) = 1

�
� Pr

�
D R � (1� ) = 1

� �
� � �

De�nition 4 ((t; q; � )-PRP). Let H = f H � g� 2 N be an e�ciently computable

permutation ensembleand let R = f R� g� 2 N the the uniform permutation

ensemble. H is a (t; q; � -pseudorandompermutation ensemble if for any

probabilistic oracle distinguisher D that runs in time t and makesat most q

oracle queries,

�
�Pr

�
D H � (1� ) = 1

�
� Pr

�
D R � (1� ) = 1

� �
� � �

De�nition 5 ((t; q; � )-SPRP). Let H = f H � g� 2 N be an e�ciently com-

putablepermutation ensembleand let R = f R� g� 2 N the the uniform permu-

tation ensemble.H is a (t; q; � -strong pseudorandompermutation ensemble

if for any probabilistic oracle distinguisher D that runs in time t and makes
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at most q oracle queries,

�
�
�Pr

h
D H � ;H � 1

� (1� ) = 1
i

� Pr
h
D R � ;R � 1

� (1� ) = 1
i �
�
� � �

2.2 Ideal Primitiv es and Indi�eren tiabilit y

In this section,we introducethe notion of ideal primitives and indi�er entia-

bility that will be usedin parts I and I I. We de�ne an ideal primitive as an

algorithmic entit y which receivesinputs from oneof the parties and delivers

its output immediately to the querying party. Moreover, the input/output

pairs of an ideal primitiv e satisfy an ideal property, which can only be ap-

proximated in practice.

In this thesis,wewill concentrate on two popular ideal primitiv es,random

oracles and ideal ciphers. A random oracle (RO) [8] is an ideal primitiv e

H : f 0; 1g� ! f 0; 1gn which provides a random output to each new query.

Identical input queriesare given the sameanswer. An ideal cipher is an ideal

primitiv e that models an ideal block cipher E : f 0; 1g� � f 0; 1gn ! f 0; 1gn .

For such a block cipher, each key k 2 f 0; 1g� de�nes an independent random

permutation Ek = E(k; �) on f 0; 1gn. The ideal primitiv e provides oracle

accessto E and E � 1; that is, on query (0; k; m) the primitiv esanswers c =

Ek(m), and on query (1; k; c) the primitiv e answers m such that c = Ek(m).

Another notion related to ideal primitiv es, is that of ideal assumption

models. In such models,onesimpli�es the task of constructing cryptographic
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protocolsby assumingthe existenceof somepublicly accessibleideal primitive

oracle. The security of a protocol in such a model is also proven under this

assumption,which does not formally imply its security in generalbut still

provides a reasonablesecurity guarantee (as discussedin the introduction).

The most popular ideal assumption models are the random oracle model

(ROM) and the ideal cipher model (ICM), whereone assumesthe existence

of a random oracleand an ideal cipher oraclerespectively.

As discussedin the introduction, the notion of indistinguishability does

not su�ce to discussthe security of constructionsof oneideal primitiv e using

another. The main reasonis that in such a situation, oneor more of oracles

are publicly available. For such a situation, the notion of indi�er entiability

of random systems,introducedby Maurer et al in [52], turns out to be the

right one. Indi�eren tiabilit y is essentially an extensionof indistinguishability,

based on ideas from the Universal Composability framework [17] and the

model of P�tzmann and Waidner [66]. Instead of discussingthe notion of

indi�eren tiabilit y in the context of random systemsthat provide interfaces

to each other (as is done in [52]), we shall usethis notion in the framework

of Interactive Turing Machines(as in [17]).

De�nition 6 (Indi�eren tiabilit y). A Turing machineC with oracleaccess

to an ideal primitive G is said to be (tD ; tS; q; � ) indi�eren tiable from an ideal

primitive F if there existsa simulator S, such that for any distinguisher D
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it holdsthat :

�
�Pr

�
D C;G(1� ) = 1

�
� Pr

�
D F ;S(1� ) = 1

� �� � �

The simulator has oracle access to F and runs in time at most tS. The

distinguisher runs in time at most tD and makesat most q queries. Here

tD ; tS; q and � are all functions of the security parameter � . Similarly, CG

is said to be (computationally) indi�er entiable from F is � is a negligible

function of � (for polynomially bounded tD and tS).

As illustrated in �gure 2.1, the role of the simulator is to simulator the

ideal primitiv e G so that no distinguisher can tell whether it is interacting

with C and G, or with F and S; in other words, the output of S should look

\consistent" with what the distinguisher can obtain from F . Note that the

simulator doesnot seethe queriesmadeby the distinguisher to F ; however,

it can call F directly when neededfor the simulation.

In part I, the ideal primitiv e F that we try to construct will be a random

oracle, while Gwill beeither a �xed-length input randomfunction or an ideal

block cipher. Thus the construction C will useprimitiv e G to emulate the

random oracle F . On the other hand, in part I I the ideal primitiv e F will

be the ideal cipher E, while the G will be a random oracleH .

It is shown in [52] that if CG is indi�eren tiable from F , then CG can

replaceF in any cryptosystem,and the resulting cryptosystemis at least as

securein the Gmodel asin the F model. For instance,if a block cipher based
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C G F S

D

Figure 2.1: The indi�eren tiabilit y notion: the distinguisher D either inter-
acts with algorithm C and ideal primitiv e G, or with ideal primitiv e F and
simulator S. Algorithm C has oracle accessto G, while simulator S has
oracleaccessto F .

iterativ e hashfunction is indi�eren tiable from a randomoracleH in the ideal

cipher model, then the iterativ e hashfunction can replacethe random oracle

in any cryptosystem, and the resulting cryptosystem remains securein the

ideal cipher model if the original scheme was securein the random oracle

model.

C G F

P A P A'

e e

Figure 2.2: The environment E interacts with cryptosystemP and attacker
A . In the G model (left), P has oracle accessto C whereasA has oracle
accessto G. In the F model, both P and A 0 have oracleaccessto F
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We usethe de�nition of [52] to specify what it meansfor a cryptosystem

to be at leastassecurein the G model as in the F model. A cryptosystemis

modelledasan Interactive Turing Machine with an interfaceto an adversary

A and to a public oracle. The cryptosystem is run by an environment E

which providesa binary output and alsoruns the adversary. In the G model,

cryptosystemP hasoracleaccessto C whereasattacker A hasoracleaccess

to G. In the F model, both P and A have oracleaccessto F . The de�nition

is illustrated in Figure 2.2.

De�nition 7. A cryptosystemis said to be at least as secure in the G model

with algorithm C as in the F model, if for any environment E and any

attacker A in the G model, there existsan attacker A 0 in the F model, such

that
�
�
�Pr

h
EP C;A G

(1� ) = 1
i

� Pr
h
EP F ;A 0F

(1� ) = 1
i �
�
�

is a negligiblefunction of the security parameter � . Similarly, a cryptosystem

is said to be computationally at least as secure, etc., if E, A and A 0 are

polynomial-time in � .

The following theorem from [52] shows that security is preserved when

replacingan ideal primitiv e by an indi�eren tiable one:

Theorem 1. Let P be a cryptosystemwith oracleaccessto an ideal primitive

F . Let C be an algorithm such that CG is indi�er entiable from F . Then

cryptosystemP is at least as secure in the G model with algorithm C as in

the F model.
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Pro of: We only provide a proof sketch; see[52] for a full proof. Let P be

any cryptosystem,modelledasan Interactive Turing Machine. Let E be any

environment, and A be any attacker in the G model. In the G model, P has

oracleaccessto C whereasA hasoracleaccessto ideal primitiv e G; moreover

environment E interacts with both P and A . This is illustrated in Figure 2.3

(left part).

C G F S

P A P A

e e
D D

A'

Figure 2.3: Construction of attacker A 0 from attacker A and simulator S.

SinceCG is indi�eren tiable from F (seeFigure 2.1), onecanreplace(C; G)

by (F ; S) with only a negligiblemodi�cation of the environment's output dis-

tribution. As illustrated in Figure 2.3, by mergingattacker A and simulator

S, oneobtainsan attacker A 0 in the F model, and the di�erence in E's output

distribution is negligible.

Henceif onecan�nd an indi�eren tiable constructionof the idealprimitiv e

F using another primitiv e G, then any securecryptographic protocol in the

ideal assumptionmodel corresponding to F hasan equivalent secureprotocol
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in the ideal assumptionmodel with primitiv e G.

2.3 Other Cryptographic Primitiv es

In this section,we will give formal de�nitions for someof the cryptographic

primitiv esthat we will usein this thesis.

2.3.1 Message Authen tication Codes

We start by de�ning the notion of a MessageAuthentication Code. This is

a symmetric key primitiv e that allows a senderA to senda messagem to a

receiver B alongwith a tag t, such that the receiver B can verify whether the

messagewas indeedsent by the senderA.

A MessageAuthentication Code, MAC, is de�ned over a sequenceof

messageand tag spacesfM � ; T� g� 2 N. It consistsof a triple (Gen;Tag; Ver)

of probabilistic polynomial time (PPT) algorithms:

1. The key generating algorithm Gen outputs the sharedsecretkey: s  

Gen(1� ).

2. The tagging algorithm Tag producesa tag t  Tags(m) (such that

t 2 T� ), for any messagem 2 M � .

3. The (deterministic) veri�cation algorithm Ver producesa valueVers(m; t) 2

f accept;r ej ectg indicating whether the tag t is a valid tag for message

m or not.
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We will de�ne the security of MACs in the exact security framework aswell.

De�nition 8 ((t; q; � )-secure MA C). A MessageAuthentication Code, (Gen;Tag; Ver),

is a (t; q; � )-secureMAC, if for any oracle machine A that runs in time at

most t, makesat most q queriesto its oraclesand outputs a \for gery" (m; t)

suchthat m hasnever been queried to the oracle Tags(�):

Pr
�
Vers(m; t) = accept

�
�s  Gen(1� ); (m; t)  AT ags ;V ers (1� )

�
� �

Here t; q and � are all functions of the security parameter � .

2.3.2 Collision Resistance

A Collision Resistant function ensemble is de�ned over a sequenceof sets

f A � ; B � g� 2 N. It consistsof a pair (Gen;Eval) of PPT algorithms:

1. The key generating algorithm Gen outputs the function key: s  

Gen(1� ).

2. The function evaluation algorithm Eval takesa function key s and an

input x 2 A � , and maps it to an output y  Eval(s;x) such that

y 2 B � . We will alsodenotethis as y = hs(x).

The task of an attacker in the collision resistanceattack gameis to �nd a

pair of inputs for which the given function has the sameoutput.

De�nition 9 ((t; � )-collision resistan t function). A e�ciently computable

function ensembleH � if a (t; e;� )-collision resistant function ensembleif for
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any oraclemachineA that runs in time at most t and outputsa pair of inputs

x1; x2 2 A � :

Pr
�
hs(x1) = hs(x2)

�
�s  Gen(1� ); (x1; x2)  A(1� ; s)

�
� �

Here t and � are functions of the security parameter � .
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Part I

Hash Functions
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Chapter 3

Hash Functions as Random

Oracles

Random Ora cle Methodology. The random oracle model was intro-

duced by Bellare and Rogaway as a \paradigm for designinge�cien t pro-

tocols" [8]. It assumesthat all parties, including the adversary, have access

to a public, truly random function H . This model has proved extremely

useful for designingsimple, e�cien t and highly practical solutions for many

problems. From a theoretical perspective, it is clear that a security proof in

the random oraclemodel is only a heuristic indication of the security of the

systemwheninstantiated with a particular hashfunction, such asSHA-1 [32]

or MD5 [34]. In fact, many recent \separation" results [18, 61, 39, 4, 19, 26]

illustrated variouscryptographic systemssecurein the random oraclemodel

but completely insecurefor any concreteinstantiation of the random oracle
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(even by a family of hash functions). Nevertheless,theseimportant separa-

tion results do not seemto directly attack any of the concrete,widely used

cryptosystems(such as OAEP [9] and PSS [10] as used in the PKCS #1

v2.1 standard [65]) which rely on \secure hash functions". Moreover, we

hope that such particular systemsare in fact secure when instantiated with

a \good" hash function. In the random oracle model, instead of making a

highly non-standard (and possibly unsubstantiated) assumption that \m y

system is securewith this H " (e.g., H being SHA-1), one proves that the

system is at least securewith an \ideal" hash function H (under standard

assumptions). Such formal proof in the random oraclemodel is believed to

indicate that there are no structural 
a ws in the designof the system,and

thus onecan heuristically hope that no such 
a ws will suddenlyappear with

a particular, \w ell designed"function H . But can we say anything about the

lack of structural 
aws in the designof H itself?

Building Random Ora cles. From a purely theoretical view, we know

that a concretefunction H is not a random oracle,so to prove that a given

H is \good" we needto directly argue the security of our systemwith this

H . However, the latter task is usually unmanageablegiven our current tools

(e.g., \realizable" properties of H such as collision-resistance,pseudoran-

domnessor one-waynessare usually not enoughto prove the security of the

system). However, we argue that there is a signi�cant gap in this reason-

ing. Indeed,most systemsabstractly model H as a function from f 0; 1g� to

f 0; 1gn (wheren is proportional to the security parameter),sothat H canbe
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usedon somearbitrary input domain. On the other hand, in practice such

arbitrary-length hash functions are built by �rst heuristically constructing a

�xed-lengthbuilding block, such as a �xed-length compressionfunction or a

block cipher, and then iterating this building block in somemannerto extend

the input domain arbitrarily . For example,SHA-1, MD5, as well as all the

other hash function we know of, are constructed by applying somevariant

of the Merkle-Damg�ard construction to an underlying compressionfunction

f : f 0; 1gn+ � ! f 0; 1gn (seeFigure 3.2):

Function H (m1; : : : ; m` ) :

let y0 = 0n (more generally, some�xed I V value can be used)

for i = 1 to ` do yi  f (yi � 1; mi )

return y`

When the number of � -bit messageblocks ` is not �xed, one essentially

appendsan extra block m`+1 containing the binary representation hjmji of

the length of the message(prependedby 1 and a string of 0's in order to

make everything a multiple of � ; the exactdetails will not matter for our dis-

cussion). This procedureis known as Merkle-Damg�ard strengthening. The

�xed-length compressionfunction f can either be constructed from scratch

or madeout of a block-cipher E via the Davies-Meyer construction (see[74]

and Figure 3.4): f (x; y) = Ey(x) � x. For example, the SHA-1 compres-

sion function was designedspeci�cally for hashing, but a block-cipher can

neverthelessbe derived from it, as illustrated in [41].
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Our Main Question. Given such particular and \structured" designof

our hash function H ,| which is actually the designusedin practice,| we

argue that there exists a missing link in the claim that no structural 
a ws

exist in the designof our system. Indeed, we only know that no such 
a ws

exist when H was modeled as a \monolithic" random oracle, and not as

an iterated hash function built from somesmaller building block. As since

the real implementation of H as an iterated hash function has much more

structure than a random monolithic hash function would have, maybe this

structure could somehow invalidate the security proof in the random oracle

model? To put this into a di�erent perspective, all the ad-hoc (and hopefully

\secure") designe�ort for widely used hash functions, such as SHA-1 and

MD5, has beenplaced into the designof the �xed-length building block f

(or E). On the other hand, even if f (or E) were assumedto be ideal, the

current proofs in the random oraclemodel do not guarantee the security of

the resulting systemwhen such iterated hashfunction H is used!

Let us illustrate our point on a well known example. A commonsugges-

tion to construct a MAC algorithm is to simply include a secret key k as

part of the input of the hash function, and take for exampleMAC(k; m) =

H (kkm). It is easyto seethat this construction is securewhen H is mod-

eled as a random oracle [8], as no adversary can output a MAC forgery

exceptwith negligibleprobability. However, this MAC schemeis completely

insecurefor any Merkle-Damg�ard construction consideredso far (including

Merkle-Damg�ard strengtheningusedin current hashfunctions such asSHA-
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1, and any of the 64 block-cipher basedvariants of iterativ e hash-functions

consideredin [68, 15]), no matter which (ideal) compressionfunction f (or

a block cipher E) is used. Namely, given MAC(k; m) = H (kkm), one

can extend the messagem with any single arbitrary block y and deduce

MAC(k; mky) = H (kkmky) without knowing the secret key k (even with

Merkle-Damg�ard strengthening, one could still forge the MAC by more or

lesssetting y = hjmji , wherethe actual block dependson the exact details of

the strengthening). This (well known) exampleillustrates that the construc-

tion of a MAC from an iterated hash function requiresa speci�c analysis,

and cannot be derived from the security of this MAC with a monolithic

hash function H . On the other hand, while the Merkle-Damg�ard transfor-

mation and its variants have beenintensively studied for many \realizable"

properties such ascollision-resistance[22, 54, 68, 15], pseudorandomness[5],

unforgeability [1, 53] and randomnessextraction [25], it is clear that these

analysesare insu�cien t to argueits applicability for the purposesof building

a hashfunction which can be modeledasa random oracle,sincethe latter is

a considerablystronger security notion (in fact unrealizablein the standard

model). For a simple concreteexample, the Merkle-Damg�ard strengthen-

ing is easily seento preserve collision-resistancewhen instantiated with a

collision-resistant compressionfunction, while we just saw that it does not

work to yield a random oracleor even just a variable-length MAC, and this

holds even if the underlying compressionfunction is modeled as a random

oracle.
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Our Goals. From the above discussion,it is clear that we needa formal

de�nition of what it meansto implement an arbitrary-length random oracle

H from a �xed-length building block f or E. We have already seenthat

the notion of \indi�eren tiabilit y" proposedin [52] is the suitable de�nition

in this case. In particular, if we show that the construction H using �xed-

length building blocks f (or E) is indi�eren tiable from an arbitrary length

random oraclethen under the assumptionthat f (or E) is ideal, we can use

H to instantiate the random oraclein any cryptosystemproven securein the

ROM.

In this chapter, our goal will be to �nd an indi�er entiable construction

of a random oracle. However, while the notion of indi�eren tiabilit y is not

speci�c to somevariant of the Merkle-Damg�ard transformation, we would

like to give secureconstructionswhich resemble what is done in practice as

much as possible.Unfortunately, we already arguedthat the current design

principle behindhashfunctionssuch asSHA-1and MD5 { the (strengthened)

Merkle-Damg�ard transformation { will not be securefor our ambitious goal.

Therefore, instead of giving new and practically unmotivated constructions,

our secondarygoal is to come up with minimal and easily implementable

in practice changesto the plain Merkle-Damg�ard construction, which would

satisfy our security de�nition.

Our resul ts. Basedon the notion on indi�er entiability, we provide several

provably secureconstructions. We start by giving three modi�cations to the

(insecure)plain Merkle-Damg�ard construction which yield a securerandom

45



oracleH taking arbitrary-length input, from a compressionfunction viewed

as a random oracle taking �xed-length input. This result can be viewed

as a securedomain extenderfor the random oracle, which is an interesting

result of independent interest. We remark that domain extendersare well

studied for such primitiv esascollision-resistant hashfunctions [22,54], pseu-

dorandomfunctions [5], MACs [1, 53] and universal one-way hash functions

[11, 70]. Although the aboveworksalsoshowed that somevariants of Merkle-

Damg�ard yield securedomain extendersfor the corresponding primitiv e in

question, theseresults are not su�cien t to claim a domain extender for the

random oracle.

Our securemodi�cations to the plain Merkle-Damg�ard construction are

the following.

1. Pre�x-F ree Encoding : we show that if the inputs to the plain MD

construction are guaranteed to be pre�x-fr ee, then the plain MD con-

struction is secure.

2. Dropping SomeOutput Bits : we show that by dropping a non-trivial

number of output bits from the plain MD chaining, we get a secure

random oracle H even if the input is not encoded in the pre�x-free

manner.

3. Using NMAC construction (seeFigure 3.3a): we show that by applying

an independent hashfunction g to the output of the plain MD chaining

(as in the NMAC construction [5]), then once again we get a secure
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construction of an arbitrary-length random oracle H , in the random

oraclemodel for f and g.

4. Using HMAC Construction (seeFigure 3.3b): we show a slightly mod-

i�ed variant of the NMAC construction allowing us to conveniently

build the function g from the compressionfunction f itself (as in [5]

when going from NMAC to HMAC)! In this latter variant, one im-

plements a securehash function H by making two black-box calls to

the plain Merkle-Damg�ard construction (with the same�xed I V and a

given compressionfunction f ): �rst on (` + 1)-block input 0� m1 : : : m` ,

getting an n-bit output y, and then on one-block � -bit input y0 (ob-

tained by either truncating or padding y depending on whether or not

� > n), getting the �nal output.

Note that we could also de�ne the HMAC construction by using a di�erent

initialization vector in each part of the construction, instead of using the

sameI V but prepending 0� to the input. However, our purposehere is to

present theseconstructionsasblack-box extensionsof existing hashfunctions

such as SHA-1 which have only one �xed I V, in which caseour proposed

construction can be viewed as making two black-box calls to SHA-1 to get

SH A � 1(SH A � 1(0� k m1 : : : m` ).

However, in practice most hash-function constructions are block-cipher

based, either explicitly as in [68] or implicitly as for SHA-1. Therefore,

we considerthe question of designingan arbitrary-length random oracle H
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from an ideal block cipher E, speci�cally concentrating on using the Merkle-

Damg�ard constructionwith the Davies-Meyer compressionfunction f (x; y) =

Ey(x) � x, sincethis is the most practically relevant construction. We show

that all of the four �xes to the plain MD chaining which worked when f

wasa �xed-length random oracle,are still secure(in the ideal cipher model)

when we plug in f (x; y) = Ey(x) � x instead. Speci�cally, we can either use

a pre�x-free encoding, or drop a non-trivial number of output bits (when

possible),or apply an independent random oracle g to the output of plain

MD chaining, or use the optimized HMAC construction which allows us to

build this function g from the ideal cipher itself.

3.1 Domain Extension for Random Oracles

In this section, we show how to construct an iterativ e hash-function indif-

ferentiable from a random oracle, from a compressionfunction viewed as a

random oracle. We start with two simpleand intuitiv e constructionsthat do

not work.

3.1.1 H (x) = f (h(x)) for Random Oracle f and Collision-

Resistan t One-w ay Hash-function h

Onecould hope to emulate a random oracle(with arbitrary-length input) by

taking :

Cf (x) = f (h(x))
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f H Sh
f

C(m)    =    f(h(m)) 

C

H(m)    =   S(h(m))

Figure 3.1: The simulator cannot output H (m) since it only receives h(m)
and cannot recover m from h(m).

wheref : f 0; 1gn ! f 0; 1gn is modelledasa random oracleand h : f 0; 1g� !

f 0; 1gn is any collision-resistant one-way hash-function (not modelled as a

random oracle). However, we show that such C f is not indi�eren tiable from

a random oracle; namely, we construct a distinguisher that can fool any

simulator.

As illustrated in Figure 3.1, the distinguisher �rst generatesan arbitrary

m and computesu = h(m). Then it queriesv = f (u) to random oracle f

and queriesz = C f (m) to Cf . It then checks that z = v and outputs 1 in

this case,and 0 otherwise. It is easy to seethat the distinguisher always

output 1 when interacting with C f and f , but outputs 0 with overwhelming

probability wheninteracting with H and any simulator S. Namely, whenthe

distinguisher interacts with H and S, the simulator only receivesu = h(m);

therefore, in order to output v such that v = H (m), the simulator must

either recover m from h(m) (and then query H (m)) or guessthe value of

H (m), which can be donewith only negligibleprobability.
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3.1.2 Plain Merkle-Damg �ard Construction

We show that the plain Merkle-Damg�ard construction (seeFigure 3.2) fails

to emulate a random oracle (taking arbitrary-length input) when the com-

pressionfunction f is viewed asa random oracle(taking �xed-length input).

For simplicity, we only considerthe usualMerkle-Damg�ard variant, although

the discussioneasilyextendsto the strengthenedvariant which appendsthe

messagelength hjmji at the last block :

Function MD f (m1; : : : ; m` ) :

let y0 = 0n (more generally, some�xed I V value can be used)

for i = 1 to ` do yi  f (yi � 1; mi )

return y` 2 f 0; 1gn.

wherefor all i , jmi j = � and f : f 0; 1gn+ � ! f 0; 1gn .

I V

m1 m2

ff f
y1 y2

y`

m`

Figure 3.2: The plain Merkle-Damg�ard Construction

We have already mentioned in introduction a counter-examplebasedon

MAC. Namely, we showed that MAC(k; m) = H (kkm) provides a secure

MAC in the random oraclemodel for H , but is completely insecurewhen H

is replacedby the previous Merkle-Damg�ard construction MD f , becauseof
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the messageextensionattack. In the following, we give a more direct refu-

tation basedon the de�nition of indi�eren tiabilit y, using again the message

extensionattack.

We consideronly one-block messagesor two-block messages.For such

messages,wehavethat MD f (m1) = f (0; m1) andMD f (m1; m2) = f (f (0; m1)

; m2). We build a distinguisher that can fool any simulator as follows. The

distinguisher �rst makes a MD f -query for m1 and receives u = MD f (m1).

Then it makes a query for v = f (u; m2) to random oracle f . The distin-

guisher then makes a MD f -query for (m1; m2) and eventually checks that

v = MD f (m1; m2); in this caseit outputs 1, and 0 otherwise. It is easyto see

that the distinguisher always outputs 1 when interacting with MD f and f .

However, whenthe distinguisher interacts with H and S (who must simulate

f ), we observe that S has no information about m1 (becauseS does not

seethe distinguisher'sH -queries). Therefore,the simulator cannot answer v

such that v = H (m1; m2), exceptwith negligibleprobability.

3.1.3 Pre�x-free Merkle-Damg �ard

In this section, we show that if the inputs to the plain MD construction

are guaranteed to be pre�x-free, then the plain MD construction is secure.

Namely, pre�x-free encoding enablesto eliminate the messageexpansion

attack described previously. This \�x" is similar to the �x for the CBC-

MAC [7], which is also insecurein its plain form. Thus, the plain MD con-

struction canbesafelyusedfor any application of the randomoracleH where
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the length of the inputs is �xed or whereone usesdomain separation(e.g.,

prepending 0; 1; : : : to di�erentiate between inputs from di�erent domains).

For other applications, one must speci�cally ensurethat pre�x-freeness is

satis�ed.

A pre�x-free code over the alphabet f 0; 1g� is an e�cien tly computable

injective function g : f 0; 1g� ! (f 0; 1g� )� such that for all x 6= y, g(x) is

not a pre�x of g(y). Moreover, it must be easyto recover x given only g(x).

We provide two examplesof pre�x-free encodings. The �rst one consistsin

prepending the messagesizein bits as the �rst block. The last block is then

paddedwith the bit one followed by zeroes.

Function g1(m) :

let N be the messagelength of m in bits.

write m as (m1; : : : ; m` ) wherefor all i , jmi j = �

and with the last block m` paddedwith 10r .

let g1(m) = (hN i ; m1; : : : ; m` ) wherehN i is a � -bit binary encoding of N .

An important drawback of this encoding is that the messagelength must

be known in advance; this can be a problem for streaming applications in

which a large messagemust be processedon the 
y . Our secondencoding g2

doesnot su�er from this drawback, but requiresto waste one bit per block

of the message:
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Function g2(m) :

write m as (m1; : : : ; m` ) wherefor all i , jmi j = � � 1

and with the last block m` paddedwith 10r .

let g2(m) = (0jm1; : : : ; 0jm` � 1; 1jm` ).

Given any pre�x-free encoding g, we considerthe following construction

of the iterativ e hash-functionpf-MD f
g : f 0; 1g� ! f 0; 1gn , using the Merkle-

Damg�ard hash-functionMD f : (f 0; 1g� )� ! f 0; 1gn de�ned previously.

Function pf-MD f
g(m) :

let g(m) = (m1; : : : ; m` )

y  MD f (m1; : : : ; m` )

return y

Theorem 2. The construction pf-MDf
g(m), described above, is (tD ; tS; q; � )-

indi�er entiablefrom a randomoracle, in the �xed-lengthrandomoraclemodel

for the compressionfunction, for any tD , with tS = ` � O(q2) and � = 2� n �

`2 � O(q2), where ` is the maximum number of � -bit blocks in the pre�x-fr ee

encoding of a query madeby the distinguisher D.

3.1.4 The Chop Solution

In this section, we show that by removing a fraction of the output of the

plain Merkle-Damg�ard construction MD f , one obtains a construction indif-

ferentiable from a randomoracle. This \�x" is similar to the method usedby
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Dodis et al. [25] to overcomethe problemof usingplain MD chaining for ran-

domnessextraction from high-entropy distributions, and to the suggestionof

Lucks [48] to increasethe resilienceof plain MD chaining to multi-collision

attacks. It is also already used in practice in the designof hash functions

SHA-348 and SHA-224 [33] (both obtained by dropping someoutput bits

from SHA-512and SHA-256). Here we show that by dropping a non-trivial

number of output bits from the plain MD chaining, one gets a secureran-

dom oracle H even if the input is not encoded in the pre�x-free manner.

For example,such dropping prevents the \extension" attacks we saw in the

MAC application, sincethe attacker cannot guessthe value of the dropped

bits, and cannot extend the output of the MAC to a valid MAC of a longer

message.

Formally, given a compressionfunction f : f 0; 1gn+ � ! f 0; 1gn , the new

construction chop-MDf
s is de�ned as follows :

Function chop-MDf
s (m) :

let m = (m1; : : : ; m` )

y  MD f (m1; : : : ; m` )

return the �rst n � s bits of y.

Theorem 3. The construction chop-MDf
s (m), described above,is (tD ; tS; q; � )-

indi�er entiablefrom a randomoracle, in the �xed-lengthrandomoraclemodel

for the compression function f , for any tD , with tS = ` � O(q2) and � =

2� s � `2 � O(q2). Here ` is the maximum number of � -bit blocks in a query

madeby the distinguisher D.
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While really simple,the drawback of this method is that its exactsecurity

is proportional to q22� s, wheres is the number of chopped bits and q is the

number of oraclequeries.Thus, to achieve adequatesecurity level the value

of s hasto be relatively high, which meansthat short-output hashfunctions

such asSHA-1 and MD5 cannot be �xed using this method. However, func-

tions such as SHA-512can naturally be �xed (say, by setting s = 256). A

formal proof of theorem3 is given in the next section.

3.1.5 The NMA C and HMA C constructions

The NMAC construction [5], which is the basisof the popular HMAC con-

struction, appliesan independenthashfunction g to the output of the plain

MD chaining. It has beenshown very valuable in the designof MACs [5],

and recently alsorandomnessextractors [25]. Herewe show that if g is mod-

elled as another �xed-length random oracle independent from the random

oraclef (usedfor the compressionfunction), then onceagain onegetsa se-

cure construction of an arbitrary-length random oracleH , even if plain MD

chaining is applied without pre�x-free encoding. Intuitiv ely, applying g gives

another way to hide the output of the plain MD chaining, and thus prevent

the \extension" attack described earlier.

Formally, given f : f 0; 1gn+ � ! f 0; 1gn and g : f 0; 1gn ! f 0; 1gn0
, the

function NMACf ;g is de�ned as (seeFigure 3.3a):
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Function NMACf ;g(m) :

let m = (m1; : : : ; m` )

y  M D f (m1; : : : ; m` )

Y  g(y)

return Y

Theorem 4. The construction NMACf ;g is (tD ; tS; q; � ) indi�er entiablefrom

a random oracle for any tD , tS = ` � O(q2) and � = 2� min (n;n 0)`2O(q2), in

the �xed-lengthrandom oracle model for the functions f and g (modelled as

independentrandomoracles),where ` is the maximumnumber of � -bit blocks

in a query madeby the distinguisher.

To practically instantiate this suggestion,we would like to implement

f and g from a single compressionfunction. This problem is analogousto

the problem in going from NMAC to HMAC in [5], although our solution

is slightly di�erent. One simple way for achieving this is to use domain

separation: e.g., by prepending 0 for calls to f and 1 | for calls to g.

However, with this modeling we are e�ectively using the pre�x-free encoding

mappingm1m2 : : : m` to 0m10m2 : : : 0m` 10� , which appearsslightly wasteful.

Additionally , this also forces us to go into the lower-level implementation

details for the compressionfunction, which we would like to avoid. Instead,

our solution consists in applying two black-box calls to the plain Merkle-

Damg�ard construction MD f (with the samef and I V) : �rst to the input

0� m1 : : : m` , getting an n-bit output y, and again to � -bit y0, where y0 is
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de�ned from y as follows (seeFigure 3.3b):

Function HMACf (m) :

let m = (m1; : : : ; m` )

let m0 = 0�

y  MD f (m0; m1; : : : ; m` )

if n < � then y0  y k 0� � n

elsey0  yj �

Y  MD f (y0)

return Y

Intuitiv ely, we are almost using the NMAC construction with g(y) =

f (I V; y0) (where y0 is obtained from y as above), except we prepend a �xed

block m0 = 0� to our message.This latter tweak is done to ensurethat

there are no inter-dependenciesbetween using the sameI V on y0 and the

�rst messageblock (which would have beenunder adversarialcontrol had we

not prependedm0). Indeed, it is very unlikely that \high-entropy" y0 will

ever be equal to m0 = 0� , so the analysisfor NMAC can be easily extended

for this optimization.

Theorem 5. The construction HMACf , described above, is (tD ; tS; q; � ) in-

di�er entiablefrom a randomoracle, in the �xed length random oracle model

for the compressionfunction f , for any tD , tS = ` � O(q2) and � = 2min (n;� ) �

`2 � O(q2). Here ` is the maximum number of � bit blocks in a querymadeby

the distinguisher D.

The formal proofsfor both theorems4 and 5 aregiven in the next section.
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Figure 3.3: The NMAC and HMAC constructions

3.2 Constructions using Ideal Cipher

In practice, most hash-function constructionsare block-cipher based,either

explicitly as in [68] or implicitly as for SHA-1. Therefore, we considerthe

question of designing an arbitrary-length random oracle H from an ideal

block cipher E : f 0; 1g� � f 0; 1gn ! f 0; 1gn , speci�cally concentrating on

using the Merkle-Damg�ard construction with the Davies-Meyer compression

function f (x; y) = Ey(x) � x (seeFigure 3.4), since this is the most prac-

tically relevant construction. We notice that the question of designing a

collision-resistanthash function H from an ideal block cipher was explicitly

consideredby Preneel,Govaerts and Vandewalle in [68], and latter formal-

ized and extendedby Black, Rogaway and Shrimpton [15]. Speci�cally, the

authors of [15] actually considered64 block-cipher variants of the Merkle-
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Damg�ard transform (which included the Davies-Meyer variant amongthem),

and formally showedthat exactly 20of thesevariations (including the Davies-

Meyer variant) are collision-resistant when the block cipher E is modeledas

an ideal cipher. However, while our work will also model E as an ideal ci-

pher, our security goal is considerablystrongerthan merecollision-resistance.

Indeed,we already pointed out that noneof the 64 variants above can with-

stand the \extension" attack on the MAC application, even with the Merkle-

Damg�ard strengthening. And even when restricting to a �xed number of

blocks ` (which invalidates the \extension" attack), collision-resistanceis

completely insu�cien t for our purposes. For example, the authors of [15]

show the collision-resistancewhen using the plain MD chaining with �xed

I V and compressionfunction f (x; y) = Ey(x). On the other hand, it is easy

to seethat this method doesnot provide a securerandomoracleH according

to our de�nition.

fx

y

x

y

E

Figure 3.4: The Davies-Meyer Compressionfunction

From a di�erent direction, if we could show that the Davies-Meyer com-

pressionfunction f (x; y) = Ey(x) � x is a securerandom oracle when E is

an ideal block-cipher, then we could directly apply any of the three �xes
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discussedabove. Unfortunately, this is again not the case: intuitiv ely, the

above construction allows anybody to compute x from f (x; y) � x and y

(since x = E � 1
y (f (x; y) � x)), which should not be the caseif f was a true

random oracle. Thus, we need a direct proof to argue the security of the

Davies-Meyer construction. Luckily, using such direct proofs we indeedar-

guethat all of the �xes to the plain MD chaining which worked when f was

a �xed-length random oracle, are still securewhen f (x; y) = Ey(x) � x is

used instead. Namely, we can either use a pre�x-free encoding, or drop a

non-trivial number of output bits, or apply an independent random oracleg

to the output of plain MD chaining. With respect to this latter �x, we also

show that we can implement this independent g using the ideal cipher itself,

similarly to the casewith an ideal compressionfunction f .

Formally, given a block-cipher E : f 0; 1g� � f 0; 1gn ! f 0; 1gn , the plain

Merkle-Damg�ard hash-functionwith Davies-Meyer's compressionfunction is

de�ned as :

Function MDE (m1; : : : ; m` ) :

let y0 = 0n (more generally, some�xed I V value can be used)

for i = 1 to ` do yi  Em i (yi � 1) � yi � 1

return y` 2 f 0; 1gn .

where for all i , jmi j = � . The block-cipher basediterativ e hash-functions

pf-MDE
g , chop-MDE

s , NMACE
g and HMACE are then de�ned as in section

3.1, using MDE instead of MD f .
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Theorem 6. The block-cipher based constructions pf-MDE
g , chop-MDE

s ,

NMACE
g and HMACE are (tD ; tS; q; � )-indi�er entiable from a random ora-

cle, in the ideal cipher model for E, for any tD and tS = ` � O(q2), with

� = 2� n � `2 � O(q2) for pf-MDE
g , � = 2� s � `2 � O(q2) for chop-MDE

s , � =

2� min( n;n 0) � `2 � O(q2) for NMACE
g and � = 2� min( �;n ) � `2 � O(q2) for HMACE .

Here ` is the maximum messagelength queried by the distinguisher.

Pro of: We will prove that the Merkle-Damg�ard (MD) basedconstructions

are indi�eren tiable constructionsof a random oracle(RO), when applied to

the Davies-Meyer (DM) compressionfunction using an ideal block cipher

(IC). The four constructionsthat we prove to be secureare:

1. Pre�x-free Merkle-Damg �ard construction pf-MD E
g : In this con-

struction, we apply the Davies-Meyer Merkle-Damg�ard (DMMD) con-

struction to a pre�x-free encoding of the input (using the pre�x-free

encoding schemeg).

2. Merkle-Damg �ard with chopp ed output chop-MD E
s : This is the

plain DMMD construction applied directly to the input, with a non-

trivial number, s, of the output bits chopped.

3. NMA C construction NMA CE 1;E 2: This construction usestwo in-

dependent ideal block ciphers E1 : f 0; 1g� � f 0; 1gn ! f 0; 1gn and

E2 : f 0; 1g� 0
� f 0; 1gn0

! f 0; 1gn0
. It �rst appliesthe DMMD construc-

tion using E1 to the input, getting a n bit output Y . Then it applies
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the Davies-Meyer compressionfunction using E2 to Y to get the �nal

output.

4. HMA C construction HMA CE : This is an instantiation of the

NMAC construction using the sameideal cipher for both parts, but us-

ing di�erent initialization vectorsin each part (implemented by prepend-

ing 0� to the input).

The proof of indi�eren tiabilit y in each of thesecasesessentially involvestwo

steps. First, we propose a simulator that simulates the task of the ideal

cipher in the random oraclemodel (ROM). Secondly, we show that the view

of any distinguisher in the ROM, with oracle accessto the actual random

oracle and the ideal cipher simulator, does not di�er from its view in the

ideal cipher model (ICM), with oracleaccessto the RO construction and the

ideal cipher, by more than a negligible amount. We start by providing an

intuitiv e idea of the basic paradigm usedin each of the proofs, followed by

the formal proofs for each case.

The Simulator. The task of the simulator in each of the casesis to

simulate the ideal cipher in the ROM, in such a way that its relation with

the random oracle is consistent with the relation between that actual ideal

cipherand the RO construction in the ICM. Thus, in each case,the simulator

essentially givesrandom responsesto all forward block cipher queriesexcept

those that form the last application of the ideal cipher for somerandom

oracle input (when processedusing the RO construction). For example, in
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the Chop construction this will be the last block cipher call in the Davies-

Meyer Merkle-Damg�ard computation.

If the query corresponds to a last block cipher call, then the simulator

consultsthe randomoracleand adjustsits responsesoasto remainconsistent

with the ICM scenario.

In the caseof an inverseblock cipher query, the simulator always gives

random responses. In addition, the simulator also maintains a table T in

which it recordsall previousquery-responsepairs (so as to maintain consis-

tency amongits responses).

Pro of of Indi�eren tiabilit y. Each of the proofs of indi�eren-

tiabilit y consist of a hybrid argument that presents a sequenceof mutually

indistinguishablegamesstarting in the random oraclemodel, with the RO F

and the ideal cipher simulator S, leading up to the ideal cipher model, with

the RO construction (which we call CE ) and the ideal cipher E. The over-

all structure of the hybrid argument is similar for each of the constructions,

though the formal proof di�ers. We will describe the overall structure of the

proof here.

Game 1. This is the random oraclemodel, wherethe distinguisher is given

oracleaccessto the random oracleF and the ideal cipher simulator S.

Game 2. In this game, we introduce a relay algorithm R0 that is sim-

ply a dummy algorithm betweenthe distinguisherand the random oracleF .

This relay algorithm simply relays the queriesof the distinguisher to the RO
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and relays back the output of F .

Game 3. In this game,we modify the simulator by de�ning a few failure

conditions for its query-responsepairs. If any of thesefailure conditions is

true, then the new simulator S0 explicitly fails. Thesefailure conditions cap-

ture certain collision conditions which, if they happen, could be exploited by

the distinguisher to decidethe scenarioit is in. The failure conditions are

di�erent for each constructionsand are described in the formal proof. Thus

the distinguisher has oracle accessto the new simulator SF
0 and the relay

algorithm RF
0 in this game.

Game 4. Now we modify the relay algorithm so as to make its responses

directly dependent on the simulator, insteadof the RO F . The new relay al-

gorithm R1 essentially evaluatesthe construction CE using the simulator S0

insteadof the ideal cipher E. The main idea hereis to prove that unlessone

of the failure conditions described in game3 is true for the query-response

pairs of the simulator S0 (in which caseit would fail), the responsesof R1

are still consistent with the random oracle. Thus, games3 and 4 form the

heart of the proof in each case. In this game, the distinguisher has oracle

accessto the relay algorithm RSF
0

1 and the simulator SF
0 .

Game 5. In this game, we modify the simulator so that it choosesits
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responsesindependent of the random oracle (i.e. uniformly random by it-

self). In addition, the new simulator S1 doesnot check for any of the failure

conditionsdescribed above. This doesnot introduceany changesin the view

of the distinguisher since the relay algorithm R1 usesthe simulator S1 to

construct its responses(which still look random). Thus, in this game the

distinguisher hasoracleaccessto the relay algorithm RS1
1 and the simulator

S1.

Game 6. Finally, we replacethe simulator S1 by the ideal block cipher E.

Thus the relay algorithm R1 now becomesidentical to the RO construction

CE . Thus in this gamethe distinguisher has oracle accessto the RO con-

struction CE and the ideal cipher E.

Now that we have the overall structure of the indi�eren tiabilit y proofs, we

will give the formal proofs for each of the four RO constructions. The proof

of this theorem is a consequenceof lemmas1, 2, 3 and 4.

3.2.1 Pre�x-free Merkle-Damg �ard Construction

In this section,we will give the proof of indi�eren tiabilit y for the pre�x-free

Merkle-Damg�ard construction pf-MDE
g .

Lemma 1. The pre�x-fr ee Merkle-Damg�ard construction pf-MDE
g using an
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ideal cipher E : f 0; 1g� � f 0; 1gn ! f 0; 1gn is (tD ; tS; q; � )-indi�er entiable

from a random oracle in the ideal cipher model for E, for any tD and tS =

O(q� Rg(q� � )) (where Rg(q� � ) is the running time of the decoding algorithm

of g on an input of length q � � ), with � = 2� n � `2 � O(q2).

Pro of:

The Simulator. The simulator SE acceptseither forward ideal cipher

queries, (+ ; x; y), or inverse ideal cipher queries, (� ; x; z), such that x 2

f 0; 1g� and y; z 2 f 0; 1gn . In either case,the simulator S responds with a

n-bit string that is interpreted as Ex (y) in caseof a forward query (+ ; x; y)

and asE � 1
x (z) in caseof an inversequery. The simulator maintains a table T

of triples (x; y; z) 2 f 0; 1g� � f 0; 1gn � f 0; 1gn , such that it either responded

with z to a forward query (+ ; x; y) or with y to an inversequery (� ; x; z).

On getting a forward query (+ ; x; y), the simulator searchesits table T for

a triple (x; y; z) for any z. If there existssuch a triple, then it respondswith

z otherwiseit needsto choosea new responseto this query. It then searches

its table T for a sequenceof triples (x1; y1; z1) : : : (x i ; yi ; zi ) such that:

� The bit string x1 k : : : k x i k x decodesto a valid RO input under the

pre�x-free encoding g.

� It is the casethat y1 = I V , whereI V denotesthe initialization vector

usedin the construction pf-MDE
g .

� For each j = 2: : : i , it is the casethat yj = zj � 1 � yj � 1.
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� It is the casethat y = zi � yi , where y is the input messagein the

current forward query.

Note that for an empty sequenceof triples, i.e. when just consideringthe

� -bit block x from the current query, only the �rst requirement makessense.

We additionally also require that y = I V in this case.

If the simulator S �nds such a sequenceof triples, then it needsto give

a response that is consistent with the random oracle output on g� 1(x1 k

: : : k x i k x). Thus, the simulator makes this RO query to get the output

Y = F (g� 1(x1 k : : : k x i k x)), and respondswith z = Y � y. If the simulator

doesnot �nd such a sequenceof triples, it outputs a random responsez. In

either case,it storesthe triple (x; y; z) in its table T .

On receivingan inversequery (� ; x; z), the simulator S searchesits table

T for a triple (x; y; z) for any y. If it �nds such a triple, then it outputs y

as its response. If it doesnot �nd such a triple, it choosesa random n-bit

string y and respondswith y. It then storesthe triple (x; y; z) into its table T .

Pro of of Indi�eren tiabilit y. We need to prove that the distin-

guishercannot tell apart the two scenarios,onewhereit hasoracleaccessto

the random oracleF and the simulator S and the other where it has access

to the RO construction pf-MDE
g and the ideal block cipher E. As we men-

tioned above, the proof involves a hybrid argument starting in the random

oracle scenario,and ending in the ideal cipher scenariothrough a sequence

of mutually indistinguishablehybrid games.
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Game 1. This is the random oracle model, where the distinguisher D

has oracle accessto the random oracle F and the simulator S described

above. Let G1 denote the event that D outputs 1 after interacting with F

and S. Thus,

Pr[G1] = Pr
h
D F;SF

(1� ) = 1
i

Game 2. In this game,we give the distinguisheroracleaccessto a dummy

relay algorithm R0 instead of direct oracle accessto the random oracle F .

This relay algorithm R0 is given oracleaccessto the random oracleF , and

on getting a random oraclequery from the distinguisher, it simply makesthe

samequery to the RO F and forwards the RO output to the distinguisher

as its response. Let G2 denotethe event that the distinguisher outputs 1 in

this game. Sincewe have left the view of the distinguisherunchangedin this

game,the distribution of its outputs alsoremainsthe same.

Pr[G2] = Pr
h
D RF

0 ;SF
(1� ) = 1

i
= Pr[G1]

Game 3. In this game,wemodify the simulator S. In particular, we restrict

the responsesof the simulator such that they never satisfy certain speci�c

failure conditions. If the simulator comesup with a responsethat results in

its responsessatisfying oneof theseconditions, then it fails explicitly instead
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of sendingthis response.

The failure conditions that the new simulator S0 avoids essentially de-

scribe certain dependenciesthat could arise amongits responsesthat could

be exploited by the distinguisher. In responseto a forward query (+ ; x; y),

the new simulator choosesa response z 2 f 0; 1gn similar to the original

simulator S and it checks for the following conditions:

1. Condition B1: It is the casethat z � y = I V, where I V is the n-bit

initialization vector usedin the RO construction pf-MDE
g .

2. Condition B2: There is a triple (x0; y0; z0) 2 T , with (x0; y0) 6= (x; y),

such that y0 � z0 = y � z.

3. Condition B3: There is a triple (x0; y0; z0) 2 T , with (x0; y0) 6= (x; y),

such that y � z = y0.

If the responsez is chosenby the simulator S0 at random then the simula-

tor S0 checks for theseconditions and explicitly fails if any of them holds.

However, if the simulator is forcedto choosea responsein order to maintain

consistencywith the random oracleF , then it only checks for the conditions

B1 and B2.

Let us brie
y describe how the distinguisher can exploit each of these

conditions to its advantage. If the condition B1 holds then the distinguisher

could possibly force two di�erent RO query sequencesto end in the same

block, whereoneinput is the su�x of the other. Hencethe simulator can be

consistent with at most one of thesetwo RO inputs. If condition B2 holds,
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then the distinguishercanagainforcetwo querysequencesto endin the same

block. However, in this casethe two RO inputs have a commonsu�x and

the simulator canbe consistent with at most oneof theseinputs. If condition

B3 holds, then distinguishercan make a RO query sequenceto the simulator

such that the simulator is not consistent with the RO output becausethe

query corresponding to the last block of the (encoding of the) RO input is

not the last one that it makes.

Now we will estimate the occurrenceprobability for each of the above

failure conditions. Let the number of random oracle queriesmade by the

distinguisher be qF , and let the number of ideal cipher queriesbe qE . To

start with, it is easyto seethat the occurrenceprobability of condition B1

is at most the probability that oneof q(= qE + qF ) random n-bit strings are

equal to I V .

To bound the occurrenceprobability of failure condition B2, we will an-

alyze three situations separately.

� Query (+ ; x; y) doesnot correspond to the last block of (the pre�x-free

encoding of) a random oraclequery. In this case,condition B2 occurs

only if the uniformly random n-bit string y � z (with z chosenby the

simulator), collideswith oneof qE n-bit strings corresponding to other

queries.

� Both (x; y; z) and (x0; y0; z0) form last blocks of random oraclequeries.

In this case,condition B2 is exactly the event that two random oracle
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outputs collide.

� The triple (x; y; z) forms the last block of a random oraclequery, but

(x0; y0; z0) doesnot. In this case,y0� z0 is a random n-bit string chosen

by the simulator. Hence, condition B2 corresponds to the random

oracleoutput y � z collideswith a random n-bit string chosenby the

simulator.

Hence,wecanbound the occurrenceprobability of condition B2 by the birth-

day bound over (qE + qF ) uniformly random n-bit strings.

The simulator checks for condition B3 only if it choosesthe responsein-

dependently. In this case,the occurrenceprobability of this failure condition

can be bounded by the (qE 2=2n). We do not force the simulator to check

for condition B3 when it is forced to be consistent with the random oracle.

This is becausethe distinguisher can force this condition using RO queries,

but this doesnot help sincewe usea pre�x-free encoding beforeapplying the

Merkle-Damg�ard construction.

If an inversequery (� ; x; z) is made to the simulator S0, the it chooses

a responsey 2 f 0; 1gn to this query similar to the original simulator S and

checks for the following failure conditions:

1. Condition C1. It is the casethat y = I V or y � z = I V, where I V is

the n-bit initialization vector.

2. Condition C2. There is a triple (x0; y0; z0) 2 T , with (x0; z0) 6= (x; z),

such that y0 � z0 = y � z.
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3. Condition C3. There is a triple (x0; y0; z0) 2 T , with (x0; z0) 6= (x; z),

such that y � z = y0 or y0 � z0 = y.

In the caseof inversequeries, the simulator always independently chooses

random responsesto any newqueriesand fails if any of the conditionsC1; C2

or C3 holds, and henceestimating the occurrenceprobability of thesefailure

conditions is straightforward. The reasonsfor avoiding the conditions C1; C2

and C3 are similar to thosegiven above for B1; B2 and B3.

Let G3 denotethe event that the distinguisher outputs 1 in game3, i.e.

Pr[G3] = Pr
h
D RF

0 ;SF
0 (1� ) = 1

i
. The responsesof the distinguisher in games

2 and 3 di�er only in situations where the new simulator S0 explicitly fails

and the original simulator S doesnot. This event is identical with the event

that any of the failure conditions hold for the responsesof either simulator

(both of which are identically distributed).

jPr[G3] � Pr[G2]j � 2 � Pr[B1 [ B2 [ B3 [ C1 [ C2 [ C3 hold for a

corresponding query.]

�
2 � (qE + qF ) � (2 � (qE + qF ) + 1)

2n

= O
�

q2

2n

�
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Game 4. In this game,we modify the relay algorithm and leave the ideal

cipher simulator unchanged. The underlying idea is to make the responses

of the relay algorithm directly dependent on the simulator. Thus, insteadof

giving the new relay algorithm R1 an oracleaccessto the random oracleF ,

here it is given oracleaccessto the simulator S0.

On a randomoraclequery X , the relay algorithm R1 computesthe pre�x-

free encoding of X , i.e. g(X ). It then applies the Davies-Meyer Merkle-

Damg�ard construction to g(X ) by querying the simulator S0. Thus the re-

lay algorithm R1 is essentially the sameas the random oracle construction

pf-MDE
g , except that it is basedon the simulator S0 instead of the ideal

cipher E.

Let G4 denote the event that the distinguisher D outputs 1 when given

oracleaccessto S0 and R1 in this game. Thus, we know that

Pr[G4] = Pr[D RS0
1 ;SF

0 (1� ) = 1]

Now we will show that the view of the distinguisher D remainsunchanged

(upto a negligibleadditive factor) in the transformation from game3 to game

4. Wewill assumethat that maximum length of the pre�x-free encoding g(X )

of a random oracle input X queried upon by the distinguisher is `� . This

claim is formally stated below:

Claim 7. Let G3 and G4 denotethe eventsthat the distinguisherD outputs

1 in games3 and 4, respectively. If qE and qF denote the number of ideal
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cipher and random oracle queriesmade by the distinguisher (respectively),

then it is the casethat

jPr [G4] � Pr [G3]j = O
�

(qE + ` � qF )2

2n

�

pro of of claim 7: From the view of the distinguisher, the games3 and 4

di�er only if it detectsany di�erence in the responsesof the relay algorithm

or the simulator in thesetwo games.We will prove that such a di�erence in

the responsesis impossibleunlessthe simulator S0 fails in either game3 or

4. We start by demonstratinga few usefulproperties of the responsesof the

simulator S0.

Claim 8. If the simulator S0 does not explicitly fail, then there are no two

di�er ent sequences of � -bit blocks x1 : : : xm and x0
1 : : : x0

p with corresponding

triples (x1; y1; z1) : : : (xm ; ym ; zm ) and(x0
1; y0

1; z0
1) : : : (x0

p; y0
p; z0

p) in tableT such

that:

� Both x1 k : : : k xm and x0
1 k : : : k x0

p constitute valid pre�x-fr ee encod-

ings of random oracle inputs.

� It is the case that y1 = y0
1 = I V, and for each s = 1: : : m and s0 =

1: : : p, ys = ys� 1 � zs� 1 and y0
s0 = y0

s0� 1 � z0
s0� 1.

� There is a s 2 f 1; mg suchthat (xs; ys; zs) = (x0
p; y0

p; z0
p).

pro of of claim 8: We will prove this claim by performing an induction

on the number of queriesmade to the simulator S0, and show that unless
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the simulator explicitly fails, such sequenceof triples cannot exist in the

table T maintained by it. When no querieshave beenmade,then the claim

is vacuously true. Assumethat it holds when q querieshave already been

madeto the simulator S0.

Say there are two sequencesof � -bit blocks x1 : : : xm and x0
1 : : : x0

p that

satisfy the properties mentioned in the statement of the claim after the (q+

1)th query. We can deducethat there are two subsequencesof � -bit blocks

x j � r : : : x j and x0
p� r : : : x0

p such that:

8s 2 f 0; r g : (x j � s; yj � s; zj � s) = (x0
p� s; y0

p� s; z0
p� s)

If r < j � 1 and r < p � 1, then considerthe triples (x j � r � 1; yj � r � 1; zj � r � 1)

and (x0
p� r � 1; y0

p� r � 1; z0
p� r � 1). Sinceyj � r = y0

p� r , we can deducethat yj � r � 1 �

zj � r � 1) = y0
p� r � 1 � z0

p� r � 1. Without lossof generality, assumethat the query

corresponding to the triple (x j � r � 1; yj � r � 1; zj � r � 1) was made after the one

corresponding to (x0
p� r � 1; y0

p� r � 1; z0
p� r � 1). If this query was a forward query

then the simulator S0 would have explicitly failed becauseof failure condition

B2. If this wasan inversequery then the simulator would have failed because

of failure condition C2.

Now considerthe casethat r = p � 1 but r < j � 1. In this case,if the

triple (x j � r � 1; yj � r � 1; zj � r � 1) was generatedas a result of a forward query,

then the simulator S0 would have explicitly failed becauseof failure condition

B1 sincezj � r � 1 � yj � r � 1 = yj � r = y0
1 = I V. If this triple was generateddue
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to an inversequery then the simulator will fail becauseof failure condition

C1. The casewhen r = j � 1, but r < p � 1 is similar.

Lastly, if r = p � 1 = j � 1 then we have that 8s 2 f 1; pg : (xs; ys; zs) =

(x0
s; y0

s; z0
s). But this implies that x0

1 k : : : k x0
p is a pre�x of x1 k : : : k xm ,

which is not possiblesincethey are encodings of two di�erent inputs using

the pre�x-free encoding g.

Hence,wecanconcludethat there canbeno such sequenceof � -bit blocks

x1 k : : : k xm and x0
1 k : : : k x0

p if the simulator S0 doesnot explicitly fail.

Next we show that if the distinguisher wishesto �nd the random oracle

output for an input X 2 f 0; 1g� , such that g(X ) = x1 k : : : k xs, by making

queriesto the simulator S0 to compute the Davies-Meyer Merkle-Damg�ard

construction applied to x1 k : : : k xs, then the only way it can do so is by

making the orderedsequenceof forward queries(+ ; x1; y1) : : : (+ ; xs; ys).

Claim 9. Considerany sequence of � -bit blocksx1 : : : xs, with corresponding

triples (x1; y1; z1) : : : (xs; ys; zs) in the table T maintained by the simulator

S0, suchthat:

� x1 k : : : k xs is a valid encoding of a random oracle input X under the

pre�x-fr ee encoding g.

� y1 = I V, and for all j 2 f 2; sg it is the casethat yj = yj � 1 � zj � 1.

If the simulator S0 does not explicitly fail then it must be the case that the

76



triples (x1; y1; z1) : : : (xs; ys; zs) were stored asa resultof the ordered sequence

of queries(+ ; x1; y1) : : : (+ ; xs; ys).

pro of of claim 9: To the contrary, assumethat the sequenceof queries

that resulted in the triples (x1; y1; z1) : : : (xs; ys; zs) was not the sequenceof

forward queriesgiven in the claim statement. We can then deducethat at

least oneof the following must be true regarding this sequenceof queries:

1. For j 2 f 1; s� 1g, a forward query (+ ; x j ; yj ) wasmadewhenthe triple

(x j +1 ; yj +1 ; zj +1 ) already existed in the table T .

2. For j 2 f 2; sg, an inversequery was made (� ; x j ; zj ) when the triple

(x j � 1; yj � 1; zj � 1) already existed in the table T .

3. The triple (x1; y1; z1) was generatedas a result of an inverse query

(� ; x1; z1).

In the �rst case,we know from claim 8 that the triple (x j ; yj ; zj ) cannot be

the last block of the pre�x-free encoding of another query if the simulator

S0 doesnot fail. Henceit must be the casethat the responseto the corre-

sponding query wasrandomly chosenby the simulator itself (independent of

the random oracle). But since the triple (x j +1 ; yj +1 ; zj +1 ) already exists in

table T , the simulator will explicitly fail from condition B3 sincethe equality

yj � zj = yj +1 holds. In the secondcase,the simulator will explicitly fail due

to failure condition C3 sincethe equality yj = zj � 1 � yj � 1 holds. In the last

casethe simulator fails due to failure condition C1.
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Thus the simulator S0 explicitly fails in either of the abovesituations, and

the only sequenceof queriespossibleis the one mentioned in the statement

of the claim.

Next, we wish to show that the responsesof the relay algorithm R0 and

the simulator S0 are always consistent in game3. Note that in game4, the

relay algorithm R1 respondsto all queriesby computing the RO construction

pf-MDS0
g , with the ideal cipher E replacedby the simulator S0. On the other

hand, the responsesof the relay algorithm R0 could be inconsistent with the

simulator S0 (i.e. the distinguisher may get a di�erent output to a random

oracleinput dependingon whether it usesthe construction pf-MDS0
g itself, or

queriesthe relay algorithm R0). We show that such a situation is impossible

unlessthe simulator S0 fails.

Claim 10. In game3, if the simulator S0 neverfails then there is no sequence

of � -bit blocks x1 : : : x j , with corresponding triples (x1; y1; z1) : : : (x j ; yj ; zj )

suchthat:

� The bit string x1 k : : : k x j is a valid pre�x-fr ee encoding of a random

oracle input.

� y1 = I V and for l = 2: : : j it is the casethat yl = yl � 1 � zl � 1.

� To the randomoraclequeryg� 1(x1 k : : : k x j ), the responseof the relay

algorithm R0 is di�er ent from yj � zj .
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pro of of claim 10: To any random oraclequery X , the relay algorithm R0

always responds with the random oracle output F (X ). Thus the situation

described in the statement of the claim occurs if and only if the simulator

responds to its queries(corresponding to the � -bit blocks in g(X ) = x1 k

: : : k x j ) in such a way that yj � zj 6= F (X ).

From claim 9, we can deducethat if the distinguisher is to compute the

Davies-Meyer Merkle Damg�ard output on g(X ) = x1 k : : : k x j , then the

only way to do this is to make the orderedsequenceof queries(+ ; x1; y1); : : : ;

(+ ; x j ; yj ) unlessthe simulator S0 fails. Herey1 = I V and for each i = 2: : : j

we have yi = yi � 1 � zi � 1. Hencethe simulator S0 already has the triples

(x1; y1; z1) : : : (x j � 1; yj � 1; zj � 1) in its table T when the query (+ ; x j ; yj ) is

made.

If the responseof the simulator S0 to the query (+ ; x j ; yj ) is di�erent

from F (X ) � yj , then it must be the casethat the simulator is unable to

give this responsebecauseof someother constraint. But from claim 8, we

can deducethat the block x j cannot be part of any other valid Davies-Meyer

Merkle-Damg�ard computation sequenceunlessthe simulator S0 fails. Thus

there can be no other constraint of the responseof S0 if it hasnot explicitly

failed.

Thus the responsesof S0 are always consistent with the relay algorithm

R0 in game3, if it doesnot fail.
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In fact, we can usethe sameargument as in proof of claim 10 to show that

the responsesof S0 areconsistent with the randomoracleF in game4 aswell

(that is, the result of applying Davies-Meyer Merkle-Damg�ard construction

using S0 to g(X ) is the sameas F (X )).

From the above, we can deducethat if the simulator S0 doesnot fail in

game 4, then the responsesof the relay algorithm R1 are identical to the

responsesof the relay algorithm R0. And sincewe are using the samesimu-

lator S0 in both games,and have shown that the responsesof the simulator

and the two relay algorithms are consistent in the two games,we can also

deducethat the view of the distinguisher D remainsunchangedfrom game

3 to game4 if the simulator S0 doesnot fail in either of the two games.

Hence,we can �nally completethe proof of claim 7 by observingthat if

the maximum length of the pre�x-free encoding of a random oracle query

madeby D is ` � � then,

jPr[G4] � Pr[G3]j � Pr [S0 fails in game3] + Pr [S0 fails in game4]

= O
�

(qE + qF `)2

2n

�

= O
�

(q̀ )2

2n

�

Game 5. In this game, we modify the simulator S0 so as to make its
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responsesindependent of the random oracleF . For this purpose,we remove

the randomoracleF from this gameentirely and the newsimulator S1 always

choosesa random n-bit response, even in situations where S0 would have

consultedthe RO F . We alsoremove all the failure conditions from the new

simulator S1.

Thus on a forward query (+ ; x; y), the new simulator S1 checks if there is

a triple (x; y; z) in its table T . If it �nds such a triple then it respondswith

the n-bit string z. Otherwise it choosesa uniformly random n-bit string z

and sendsthis as its response,while storing the triple (x; y; z) in T . On an

inversequery (� ; x; z), it similarly checks to seeif there is a triple (x; y; z)

in its table T . If it �nds such a triple, it responds with y, elseit choosesa

uniformly random n-bit responsey.

Now we will show that the view of the distinguisher D doesnot change

by a non-negligibleamount from game4 to game5. In fact, if we can show

that the responsesof the simulators S0 and S1 seemalmost identical to

the distinguisher D, then we will be done. But the responsesof these two

simulators areidentical apart from the failure conditionswhich areusedby S0

and not by S1 (even whenS0 consultsthe random oracle,its responseis still

uniformly distributed). Thus, the distinguisher doesnot notice a di�erence

betweenthesegamesif:

� In game4, the simulator S0 doesnot fail.

� In game 5, the simulator S1 does not respond to its queries in such
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a manner that its satisfy one of the failure conditions speci�ed in the

de�nition of S0.

In fact, thesetwo events are identical in terms of their probability of occur-

rencesincethe distribution of the responsesof the two simulators is identical.

Let G5 denote the event that the distinguisher D outputs 1 in game5, so

that Pr[G5] = Pr[D RS1
1 ;S1 (1� ) = 1]. Then we can deducethat,

jPr[G5] � Pr [G4]j � Pr [S0 fails in game4]

+ Pr [S1 should have failed in game5]

= O
�

q2`2

2n

�

Game 6. This is the �nal gameof our argument. Here we �nally replace

the simulator S1 with the ideal cipher E. Since the relay algorithm R1

simply implemented the construction pf-MDS1
g , it will be the sameasthe RO

construction pf-MDE
g in this game. Hencethis gameis sameas the view of

the distinguisher in the ideal cipher model.

The outputs of the ideal cipher E are not distributed uniformly like the

responsesof S1. Hencethe distinguishermay beable to di�erentiate between

games5 and 6 if it can detect this. However, this happensonly if S1 outputs

an input/output collision for the sameideal cipher key. The probability of

this event is easily seento be at most the birthday bound. Let G6 denote

the probability that the distinguisher outputs 1 in game6, so that Pr[G6] =
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Pr[Dpf-MDE

g ;E (1� ) = 1]. Then we can deducethat

jPr[G6] � Pr[G5]j = O
�

q2`2

2n

�

Now we can completethe proof of lemma 1 by combining games1 to 6,

and observingthat game1 is sameas the random oraclemodel while game

6 is sameas the ideal cipher model. Hencewe can deducethat

�
�
�
�Pr

h
D F;SF

(1� ) = 1
i

� Pr
�
Dpf-MDE

g ;E (1� ) = 1
� �
�
�
� = O

�
q2`2

2n

�

3.2.2 MD-then-Chop Construction

Now we will prove the indi�eren tiabilit y of the secondrandom oracle con-

struction chop-MDE
s . Recall that this construction essentially applies the

plain Davies-Meyer Merkle-Damg�ard construction (using the ideal cipher E)

to the input and then removesa non-trivial number s of the output bits.

Lemma 2. The Merkle-Damg�ard construction with truncated output chop-MDE
s

based on theDavies-Meyerconstruction applied to an ideal cipherE : f 0; 1g� �

f 0; 1gn ! f 0; 1gn is (tD ; tS; q; � )-indi�er entiable from a random oracle F :

f 0; 1g� ! f 0; 1gn� s in the ideal cipher model for E, for any tD and tS =

O(q2 � � )) , with � = 2� n � `2 � O(q2).
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Pro of:

We will assumethat the random oracle inputs provided to the construction

chop-MDE
s areall of length, that is a multiple of the block length � . In actual

implementation, this can be achieved by applying an appropriate encoding

schemeto the input, such as appending a 1 followed by a su�cien t number

of 0s to the input.

The Simulator. The simulator S acceptseither forward ideal cipher

queries, (+ ; x; y), or inverse ideal cipher queries, (� ; x; z), such that x 2

f 0; 1g� and y; z 2 f 0; 1gn . In either case,the simulator respondswith a n-bit

string that is interpreted as Ex (y) in caseof a forward query (+ ; x; y), and

as E � 1
x (z) in caseof an inversequery (� ; x; z). The simulator maintains a

table T consistingof triples (x; y; z) 2 f 0; 1g� � f 0; 1gn � f 0; 1gn , such that it

either respondedwith z to a forward query (+ ; x; y) or with y to an inverse

query (� ; x; z).

On getting a forward query (+ ; x; y), the simulator searches its table T

for a triple of the form (x; y; z). If it �nds such a triple then it responds

with the n-bit string z otherwise it needs to choose a fresh response to

this query. It proceedsby searching its table T for a sequenceof triples

(x1; y1; z1) : : : (x i ; yi ; zi ) such that:

� It is the casethat y1 = I V , whereI V denotesthe initialization vector

usedin the construction chop-MDE
s .
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� For each j = 2: : : i , it holds that yj = yj � 1 � zj � 1.

� It is the casethat y = yi � zi , where y is the ideal cipher input from

the current forward query.

Note that for an empty sequenceof triples, i.e. when just consideringthe

� -bit block x from the current query, we only needto check if y = I V and

noneof the above conditions make sense.

If the simulator �nds such a sequenceof triples, then it needsto give a

responsethat is consistent with the randomoracleoutput on x1 k : : : k x i k x.

Thus, the simulator makesthis RO query to get the output Y = F (x1 k : : : k

x i k x). It then samplesa uniformly random s-bit string Y 0 and outputs

the n-bit string z = (Y k Y 0) � y. If the simulator doesnot �nd any such

sequenceof triples in its table T , then it samplesa uniformly distributed

random n-bit string z and sendsz as its response. In either case,it inserts

the triple (x; y; z) in its table T .

On an inversequery (� ; x; z), the simulator S searches its table T for a

triple (x; y; z) with arbitrary y. If it �nds such a triple, then it respondswith

y. Otherwise, the simulator S choosesa uniformly distributed random n-bit

string y and respondswith y. It then insertsthe triple (x; y; z) in its table T .

Pro of of Indi�eren tiabilit y. We need to prove that the distin-

guishercannot tell apart the two scenarios,onewhereit hasoracleaccessto

the random oracle F and the simulator S, and the other where it has ora-
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cle accessto the RO construction chop-MDE
s and the ideal cipher E. As in

the caseof the pre�x-free Merkle-Damg�ard construction, the proof involves

a hybrid argument.

Game 1. This is the random oracle model, and the distinguisher D is

given oracleaccessto the random oracleF and the ideal cipher simulator S

described above. Let G1 denote the event that the distinguisher D outputs

1 in this game.

Pr[G1] = Pr[D F;SF
(1� ) = 1]

Game 2. In this game,the distinguisher is given oracleaccessto a relay

algorithm R0 instead of direct oracle accessto F . The relay algorithm, in

turn, has oracleaccessto the random oracle F . On a random oraclequery

X , the relay algorithm simply makesthe samequery to F and respondswith

the RO output F (X ). Let G2 denotethe event that D outputs 1 in game2.

Sincethe view of the distinguisher remainsunchangedin this game,we can

deducethat

Pr[G2] = Pr[D RF
0 ;SF

(1� ) = 1] = Pr[G1]

Game 3. In this game, we modify the simulator S. In particular, we

restrict the responsesof the simulator such that they never satisfy certain

speci�c failure conditions. If the simulator comesup with a responsethat

results in its responsessatisfying one of theseconditions, then it explicitly

fails instead of sendingthis response.
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Thesefailure conditions, that the new simulator S0 checks for, describe

certain dependenciesamongits responsesthat could be exploited by a distin-

guisher. In responseto a forward query (+ ; x; y), the newsimulator S0 starts

by choosing a n-bit responsez 2 f 0; 1gn in the sameway as the original

simulator S. It then checks if oneof the following conditions is satis�ed:

1. Condition B1: It is the casethat z � y = I V, whereI V is the initial-

ization vector usedin the RO construction chop-MDE
s .

2. Condition B2: There is a triple (x0; y0; z0) 2 T , with (x0; y0) 6= (x; y),

such that y0 � z0 = y � z.

3. Condition B3: There is a triple (x0; y0; z0) 2 T , with (x0; y0) 6= (x; y),

such that y � z = y0.

If the responsez, whether S0 choosesa uniformly random z or z is chosen

to be consistent with the RO F on somequery, is such that one of these

conditions is satis�ed, then the simulator S0 explicitly fails.

On a new inversequery (� ; x; z), the simulator S0 again choosesits re-

sponsey 2 f 0; 1gn in the sameway as S. It then checks if the following

conditions, and fails if any oneof them is satis�ed:

1. Condition C1: It is the casethat y = I V or y � z = I V, where I V is

the initialization vector usedin the RO construction chop-MDE
s .

2. Condition C2: There is a triple (x0; y0; z0) 2 T , with (x0; z0) 6= (x; z),

such that y0 � z0 = y � z.
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3. Condition C3: There is a triple (x0; y0; z0) 2 T , with (x0; z0) 6= (x; z),

such that either y � z = y0 or y0 � z0 = y.

Next we will estimatethe occurrenceprobability for each of the above failure

conditions. Westart by noting that the probability that oneof the conditions

C1; C2 and C3 holds can be readily estimated, since the simulator always

choosesuniformly random responsesto inversequeries.

In the caseof a forward query, the simulator might be forcedto chooseits

responsesoasto maintain consistencywith the random oracleF . Hencethe

distinguisher could �nd out (n � s) bits of the responseof the simulator by

making a random oraclequery. Thus, it is not asstraightforward to estimate

the occurrenceprobabilities for the failure conditionsB1; B2 and B3. Let the

number of random oracle queriesmade by D be qF , and let the number of

ideal cipher queriesbe qE (hencethe total number of queriesq = qE + qF )

We can bound the occurrenceprobability of event B1 easily, since it is

the probability that at least oneof (qE + qF ) uniformly random n-bit strings

is I V . In order to estimate the occurrenceprobability of failure condition

B2, we will analyzethree situations separately.

� Query (+ ; x; y) doesnot correspond to the last block of a randomoracle

input. In this case,condition B2 holds only if the uniformly random

n-bit string y � z is equal to oneof upto qE n-bit strings corresponding

to previousqueries.

� Both (x; y; z) and (x0; y0; z0) correspond to last blocks of random or-
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acle inputs, and the simulator adjusted its responseaccording to the

RO output in each case. In this case,condition B2 implies a collision

amongthe two random oracleoutputs aswell asa collision amongthe

remaining s uniformly random bits chosenby the simulator in each

case.

� The triple (x; y; z) forms the last block of a random oracle input and

the simulator adjusts its responsez accordingly, but (x0; y0; z0) doesnot.

In this case,y0 � z0 is a random n-bit string chosenby the simulator.

Here, the condition B2 corresponds to a random oracle output along

with the extra s random bits chosenby the simulator colliding with

another randomly and independently chosenn-bit string chosenby the

simulator.

From the above, we can deducethat the occurrenceprobability of failure

condition B2 can be boundedby the birthday bound over (qE + qF ) random

n-bit strings.

In order to bound the occurrenceprobability of failure condition B3, we

note that the simulator S0 choosesat leasts random and independent bits in

its response(even if it is forcedto make the remaining (n � s) bits consistent

with the randomoracle). Thusthe occurrenceprobability of condition B3 can

be boundedby the birthday bound over (qE + qF ) independent and random

s-bit random strings.

Let G3 denotethe event that the distinguisherD outputs 1 in this game,
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i.e. Pr[G3] = Pr
h
D RF

0 ;SF
0 (1� ) = 1

i
. The responsesof the distinguisher in

games2 and 3 di�er only if the simulator S0 exits becauseof one of the

failure conditions in game3. This event is identical with the event that at

least oneof the failure conditions hold for the responsesof either simulators

(in which caseS0 exits while S doesnot).

jPr[G3] � Pr[G2]j � Pr[B1 [ B2 [ B3 [ C1 [ C2 [ C3 hold for a query.]

= O
�

q2

2s

�

Game 4. In this game,we modify the relay algorithm but leave the ideal

ciphersimulator S0 unchanged.The underlying ideais to make the responses

of the relay algorithm directly dependent on the simulator. Thus, insteadof

giving the newrelay algorithm R1 oracleaccessto the random oracleF , here

it is given oracleaccessto the simulator S0. It responds to a random oracle

queryX by computing the Davies-Meyer Merkle-Damg�ard constructionusing

input X and then chops the sames bits from the output as in the caseof

the RO construction chop-MDE
s .

Let G4 denote the event that the distinguisher D outputs 1 in game4.

Thus we know that

Pr[G4] = Pr
h
D RS0

1 ;SF
0 (1� ) = 1

i
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We will assumethat the maximum length of a random oraclequery madeby

the adversary is ` � � . Now we will show that the view of the distinguisher

changesby at most a negligible amount in the transition from game 3 to

game4. This claim is formally stated below.

Claim 11. Let G3 and G4 denotethe eventsthat the distinguisher outputs

1 in game3 and game4, respectively. Let qE and qF denotethe number of

ideal cipher and random oracle queriesmadeby the distinguisher, then it is

the casethat

jPr[G4] � Pr[G3]j = O
�

(qE + qF � `)2

2s

�

pro of of claim 11: The view of the distinguisher di�ers in games3 and

4 only if it �nds a di�erence in responsesof either the relay algorithm or

the simulator amongthe two games.We will show that such a di�erence is

impossible,unlessthe simulator S0 fails in at leastoneof the two games.Let

us start by proving a few important properties of the simulator S0 that are

valid in both games3 and 4.

Claim 12. If the simulator S0 doesnot explicitly fail, then there are no two

di�er ent sequences of � -bit blocks x1 : : : xm and x0
1 : : : x0

p with corresponding

triples (x1; y1; z1) : : : (xm ; ym ; zm ) and (x0
1; y0

1; z0
1) : : : (x0

p; y0
p; z0

p) in the tableT

suchthat:

� It is the case that y1 = y0
1 = I V , and for each b = 2: : : m and b0 =

2: : : p, it holdsthat yb = yb� 1 � zb� 1 and y0
b0 = y0

b0� 1 � z0
b0� 1.

� It is the casethat (xm ; ym ; zm ) = (x0
p; y0

p; z0
p).
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pro of of claim 12: We will prove this claim by performing an induction

on the number of queriesmade to the simulator and show that unlessthe

simulator S0 fails, such sequencesof triples cannot exist. When no queries

have beenmadeasyet, this claim is vacuouslytrue. Let us assumethat the

claim is also true when q querieshave beenmadeto the simulator S0.

Now say there exist two sequencesof triples be (x1; y1; z1) : : : (xm ; ym ; zm )

and (x0
1; y0

1; z0
1) : : : (x0

p; y0
p; z0

p), that satisfy the properties stated in the claim,

after the (q + 1)th query. Sincewe know that (xm ; ym ; zm ) = (x0
p; y0

p; z0
p), we

can deducethat there are two subsequencesof � -bit blocks xm� r : : : xm and

xp� r : : : xp such that

8b 2 f 0; r g : (xm� b; ym� b; zm� b) = (x0
p� b; y0

p� b; z0
p� b)

If r < m� 1 and r < p� 1, then considerthe triples (xm� r � 1; ym� r � 1; zm� r � 1)

and (x0
p� r � 1; y0

p� r � 1; z0
p� r � 1). Sinceym� r = y0

p� r , we candeducethat ym� r � 1 �

zm� r � 1 = y0
p� r � 1 � z0

p� r � 1. Without lossof generality, assumethat the query

corresponding to the triple (xm� r � 1; ym� r � 1; zm� r � 1) was made earlier than

the one corresponding to (x0
p� r � 1; y0

p� r � 1; z0
p� r � 1). If this query is a forward

query, then the simulator S0 would fail becauseof failure condition B2. On

the other hand, if this were an inversequery, then the simulator would have

failed due to failure condition C2.

Now consider the casethat r = p � 1 but r < m � 1. In this case,if

the triple (xm� r � 1; ym� r � 1; zm� r � 1) was generatedas a result of a forward
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query then the simulator S0 would have failed due to failure condition B1

becauseym� r � 1 � zm� r � 1 = ym� r = y0
1 = I V. If this triple weregeneratedas

a result of an inversequery then the simulator would have failed as a result

of failure condition C1 being true. The casewhen r = m � 1 but r < p � 1

is symmetrical

Lastly, it cannot be the casethat r = p � 1 as well as r = m � 1, since

the two bit strings x0
1 k : : : k x0

p and x1 k : : : k xm are di�erent.

Hencewecanconcludethat therecanbeno such sequencesof � -bit blocks

x1; : : : ; xm and x1; : : : ; x0
p if the simulator doesnot explicitly fail.

Next we show that if the distinguisher wishesto �nd the random oracle

output for an input X = x1 k : : : k xs by making queriesto the simulator

S0 and computing the Davies-Meyer Merkle-Damg�ard construction, then the

only way it can do so is by making the orderedsequenceof forward queries

(+ ; x1; y1) : : : (+ ; xs; ys).

Claim 13. Considerany sequence of � -bit blocksx1 : : : xs, with corresponding

triples (x1; y1; z1) : : : (xs; ys; zs) in the tableT maintained by the simulator S0,

suchthat y1 = I V and for eachj = 2: : : s it holdsthat yj = yj � 1� zj � 1. If the

simulator S0 does not explicitly fail then it must be the casethat the triples

(x1; y1; z1) : : : (xs; ys; zs) are generated as a result of the ordered sequence of

forward queries(+ ; x1; y1) : : : (+ ; xs; ys).

pro of of claim 13: To the contrary, assumethat the triples (x1; y1; z1) : : :

93



(xs; ys; zs) were not generatedas a result of the sequenceof forward queries

mentioned in the claim. We can then deducethat oneof the following must

be true regardingthe actual sequenceof queriesthat resultedin thesetriples:

1. For j = 1: : : (s � 1), a forward query (+ ; x j ; yj ) was made when the

triple (x j +1 ; yj +1 ; zj +1 ) already existed in the table T .

2. For j = 2: : : s, an inversequery (� ; x j ; zj ) was made when the triple

(x j � 1; yj � 1; zj � 1) already existed in the table T .

3. The triple (x1; y1; z1) was generatedas a result of an inverse query

(� ; x1; y1).

In the �rst case,the simulator S0 would fail since the failure condition B3

holds. Indeed, we can deducethat yj � zj = yj +1 . In the secondcase,the

simulator explicitly fails becauseof failure condition C3 sincewe know that

yj = yj � 1 � zj � 1. In the third and �nal case,the simulator would explicitly

fail sincethe failure condition C1 holds. Thus the only possiblesequenceof

queriesthat could result in thesetriples is the onementioned in the claim.

Now we will show that the responsesof the relay algorithm R0 in game

3 are consistent with those of the simulator S0. Note that in game4, the

relay algorithm R1 is designedin such a way that its responsesare always

consistent with S0 while the relay algorithm R0 is given oracleaccessto the
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random oracle F and may not be consistent with S0. We show that such

inconsistencyis impossibleunlessthe simulator S0 explicitly fails.

Claim 14. In game3, if the simulator S0 neverfails then there is no sequence

of � -bit blocks x1 : : : x j , with corresponding triples (x1; y1; z1) : : : (x j ; yj ; zj )

suchthat:

� y1 = I V and for l = 2: : : j it is the casethat yl = yl � 1 � zl � 1.

� To the randomoraclequeryX = x1 k : : : k x j , the responseof the relay

algorithm R0 is di�er ent from the (n � s) bits of yj � zj that are not

chopped in the construction chop-MDE
s .

pro of of claim 14: To any random oraclequery X , the relay algorithm R0

always responds with the random oracle output F (X ). Thus the situation

described in the statement of the claim occurs if and only if the simulator

responds to its queries(corresponding to the � -bit blocks in X = x1 k : : : k

x j ) in such a way that yj � zj 6= F (X ).

From claim 13, we can deducethat if the distinguisher is to compute the

RO output on X = x1 k : : : x j by queryingthe simulator, then the only way to

do this is to make the orderedsequenceof queries(+ ; x1; y1); : : : ; (+ ; x j ; yj )

unless the simulator S0 fails. Here y1 = I V and for each i = 2: : : j we

have yi = yi � 1 � zi � 1. Hence the simulator S0 already has the triples

(x1; y1; z1) : : : (x j � 1; yj � 1; zj � 1) in its table T when the query (+ ; x j ; yj ) is

made.
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If the responseof the simulator S0 to the query (+ ; x j ; yj ) is di�erent from

F (X ) � yj , then it must be the casethat the simulator is unable to give this

responsebecauseof someother constraint. But from claim 12,wecandeduce

that the block x j cannot be the last block of any other valid Davies-Meyer

Merkle-Damg�ard computation sequenceunlessthe simulator S0 fails. Thus

there can be no other constraint of the responseof S0 if it hasnot explicitly

failed.

Thus we have shown that, even though the relay algorithm R0 simply for-

wards the random oracleoutputs in game3, its responsesare still consistent

with the responsesof simulator S0 in that game. Another way to look at

this claim would be to note that the responsesof the simulator S0 are always

consistent with the random oracleoutputs, unlessit explicitly fails.

Hence, it is easy to seethat if the simulator S0 does not fail in either

of the games3 or 4, the view of the distinguisher doesnot changein going

from onegameto the other. Now we can completethe proof of claim 11 by

observingthat if the longestRO query madeby the distinguisherD consists

consistsof at most ` � -bit blocks then

jPr[G4] � Pr[G3]j � Pr[S0 fails in game3] + Pr[S0 fails in game4]

= O
�

(qE + qF � `)2

2s

�

= O
�

(q � `)2

2s

�
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Game 5. In this game,wemodify the simulator S0 soasto make the view of

the distinguisher independent of the random oracleF . For this purpose,we

introducea new simulator S1 that doesnot have oracleaccessto the random

oracle F , and always outputs a n-bit random responseto all new forward

as well as inverse queries even in caseswhere S0 would have maintained

consistencywith F . We alsoremove all failure conditions from the simulator

S1.

On a forward query (+ ; x; y), the newsimulator S1 checks if there already

existsa triple (x; y; z) in its table T . If it �nds such a triple, then it responds

with the n-bit string z. If not, then it choosesa uniformly random n-bit

string z and sendsthis as its response,while storing the triple (x; y; z) in T .

On an inversequery (� ; x; z), it similarly checks to seeif there is a triple

(x; y; z) in its table T . If it �nds such a triple, it respondswith y otherwise

it choosesa uniformly random n-bit responsey.

Now we will show that the view of the distinguisherdoesnot changeby a

non-negligibleamount in going from game4 to game5. Note that if we can

show that the responsesof the simulators S0 and S1 are indistinguishable,

then we will be done. But in the view of the distinguisher, thesetwo simu-

lators are identical apart from the failure conditions usedby S0 but not by

S1. Thus, we can deducethat the distinguisher doesnot notice a di�erence

betweengames4 and 5 unless:
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� In game4, simulator S0 explicitly fails.

� In game5, simulator S1 responds with an output such that it satis�es

oneof the failure conditions (for which S0 would have failed).

Since the simulator S1 always choosesa uniformly random n-bit response

to every query, we can easilybound the occurrenceprobability of any of the

failure conditionsusingthe birthday bound. Let G5 denotethe event that the

distinguisher D outputs 1 in game5, so that Pr[G5] = Pr[D RS1
1 ;S1 (1� ) = 1].

Thus we can deducethat

jPr[G5] � Pr[G4]j � Pr[S0 fails in game4]

+ Pr[S1 satis�es a failure condition in game5]

= O
�

(q � `)2

2s
+

(q � `)2

2n

�

= O
�

q2`2

2s

�

Game 6. This is the �nal gameof our proof. In this game,we replacethe

simulator S1 with the ideal cipher E. Sincethe relay algorithm R1 essentially

implements the RO construction chop-MDE
s , the view of the distinguisher in

this gameis essentially its view in the ideal cipher model.

The outputs of the ideal cipher E arenot uniformly distributed asare the

responsesof S1. However, the distinguishercandi�erentiate betweenthe two

only if the simulator S1 outputs a collision for the sameideal cipher key. The

occurrenceprobability of this event canbeeasilyboundedusingthe birthday
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bound. Thus let G6 be the event that the distinguisher D outputs 1 in this

game,so that Pr[G6] = Pr[Dchop-MDE

s ;E (1� ) = 1] and we can deducethat

jPr[G5] � Pr[G4]j � O
�

q2`2

2n

�

Now we can completethe proof of lemma 2 by combining games1 to 6,

and observingthat game1 is sameas the random oraclemodel while game

6 is the sameas the ideal cipher model. Hencewe can deducethat

�
�
�Pr

h
D F;SF

(1� ) = 1
i

� Pr
h
Dchop-MDE

s ;E (1� ) = 1
i �
�
� = O

�
q2`2

2n

�

3.2.3 NMA C and HMA C Constructions

Herewe will prove the indi�eren tiabilit y of the NMAC and HMAC construc-

tion with the Davies-Meyer compressionfunction.

Lemma 3. The NMAC construction NMACE 1;E 2 that usestwo independent

ideal block ciphers E1 : f 0; 1g� � f 0; 1gn ! f 0; 1gn and E2 : f 0; 1g� 0
�

f 0; 1gn0
! f 0; 1gn0

is (tD ; tS; q; � )-indi�er entiable from a random oracle F :

f 0; 1g� ! f 0; 1gn0
in the ideal block cipher model for E1 and E2, for any tD

and tS = O(q2), with � = 2� min( n;n 0) � `2 � O(q2) (`� is the maximum lengthof

an RO query madeby the distinguisher).
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Pro of: Recall that the construction NMACE 1;E 2 essentially applies the

Davies-Meyer Merkle-Damg�ard construction using the block cipher E1 to

the input x1 k : : : k x` to get the �nal output Y. It then appliesthe Davies-

Meyer compressionfunction using E2 to this output Y . We will assumefor

simplicity that the output length n of E1 is the sameas the key length � 0 of

E21. We will usethe initialization vector I V for the Davies-Meyer Merkle-

Damg�ard construction applied to E1, and use initialization vector I V 0 for

the Davies-Meyer construction with E2.

The Simulator. Let us start by describing the simulator for the ideal

block ciphersE1 and E2 in the random oraclemodel with an actual random

oracleF . The simulator gets forward/in versequeriesfor either of the block

ciphers E1 and E2. Thus the queriesthat simulator S responds to are as

follows:

1. (1; + ; x; y) : A forward E1 query, where(x; y) 2 f 0; 1g� � f 0; 1gn . The

expectedresponseis E1x (y).

2. (1; � ; x; z) : An inverseE1 query, where(x; z) 2 f 0; 1g� � f 0; 1gn . The

expectedresponseis E1� 1
x (z).

3. (2; + ; x; y) : A forward E2 query, where(x; y) 2 f 0; 1g� 0
� f 0; 1gn0

. The

expectedresponseis E2x (y).

1one can usesuitable padding techniques to expand Y from n bits to � 0 bits
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4. (2; � ; x; z) : An inverseE2 query, where (x; z) 2 f 0; 1g� 0
� f 0; 1gn0

.

The expectedresponseis E2� 1
x (z).

The simulator S also maintains a table T in which it recordsall previous

queriesthat weremadeto it, alongwith the responsesit gave to each. Thus,

it recordsan entry (1; x; y; z) in T for every forward (resp. inverse)query of

the form (1; + ; x; y) (resp. (1; � ; x; z)) to which it responded with z (resp.

y). On the other hand, it recordsan entry (2; x; y; z) in T for every forward

(resp. inverse)query of the form (2; + ; x; y) (resp. (2; � ; x; z)) to which it

respondedwith z (resp. y).

On getting a forward query (1; + ; x; y), the simulator �rst checks if there

is a tuple (1; x; y; z) in its table T . If this is the case,then the simulator S

respondswith z, otherwiseit choosesa uniformly random n-bit string z and

sendsthis as its response. It then records(1; x; y; z) in its table T .

Similarly, on getting an inversequery (1; � ; x; z), it �rst searchesits table

T for a tuple (1; x; y; z). If it �nds such a tuple, then it responds with z,

otherwise it sendsa uniformly random n-bit string y as its responseand

stores(1; x; y; z) in its table T .

On a query (2; + ; x; y), the simulator S again checks if there is a tuple

(2; x; y; z) 2 T . If this is the casethen it responds with z. If it cannot �nd

such a tuple, then the simulator checks if y = I V 0, where I V 0 is the ini-

tialization vector usedin the secondpart of the construction NMACE 1;E 2. If

y 6= I V 0, then the simulator simply sendsback a randomresponsez 2 f 0; 1gn0

and stores(2; x; y; z) in T . On the other hand, if y = I V 0, then the simulator
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S searchesits table T for a sequenceof tuples (1; x1; y1; z1); : : : ; (1; x i ; yi ; zi )

such that the following conditions hold:

� It is the casethat y1 = I V , whereI V denotesthe initialization vector

usedin NMACE 1;E 2.

� For each j = 2: : : i , it holds that yj = yj � 1 � zj � 1.

� It is the casethat yi � zi = x, wherex is the key provided in the current

query (2; + ; x; y) (here we assumethat � 0 = n).

If the simulator S �nds such a sequenceof tuples, then it needsto senda

responsethat is consistent with the random oracle F . Thus, it queriesthe

random oracleF on the input x1 k : : : k x` to get the output Y = F (x1

parallel : : : k x` ). It then choosesits responseasz = Y � y = Y � I V 0 (since

we know that y = I V 0). It then sendsthis n0-bit string z as its responseand

store (2; x; y; z) in its table T . If S doesnot �nd such a tuple, then it sends

a random responsez 2 f 0; 1gn0
and stores(2; x; y; z) in T .

On getting an inversequery (2; � ; x; z), the simulator searches its table

T for a tuple (2; x; y; z) and responds with y if it �nds such a tuple. If it

doesnot �nd such a tuple, then it sendsa uniformly random n0-bit response

y and stores(2; x; y; z) in its table T .

Pro of of Indi�eren tiabilit y. We needto show that the distinguisher

cannot tell apart the two scenarios,onewhereit hasoracleaccessto the ac-

tual random oracle F and the simulator S described above, and the other
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whereit hasoracleaccessto RO constructionNMACE 1;E 2 and the ideal block

ciphersE1 and E2. We will usea hybrid argument to prove this result start-

ing in the random oracle scenario,and ending in the ideal cipher scenario

through a sequenceof indistinguishablegames.

Game 1. This is the random oraclemodel, where the distinguisher D has

oracle accessto the random oracle F and the simulator S. Let G1 denote

the event that D outputs 1 after interacting with F and S. Thus,

Pr[G1] = Pr
h
D F;SF

(1� ) = 1
i

Game 2. In this game,we give the distinguisheroracleaccessto a dummy

relay algorithm R0 instead of direct oracle accessto the RO F . This relay

algorithm, in turn, hasoracleaccessto the RO F , and on getting a random

oracle query from the distinguisher, it simply makes the samequery to F

and forwards the RO output to the distinguisher D as its response. The

simulator S still hasdirect oracleaccessto F . Let G2 denotethe event that

the distinguisherD outputs 1 in this game.Sincethe view of the distinguisher

remainsunchangedin this game,we can deducethat

Pr[G2] = Pr
h
D RF

0 ;SF
(1� ) = 1

i
= Pr[G1]

Game 3. In this game,we will modify the simulator S by restricting its

responses. In particular, the new simulator S0 choosesits responsesin the
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samefashion as the original simulator S, but after making its choice the

simulator S0 checks if it responsesso far satisfy oneof a few conditions that

could aid the distinguisher in getting to know that it is in the random oracle

scenario.

On a forward query (1; + ; x; y), the new simulator S0 checks if there is a

tuple (1; x; y; z) in its table T , and choosesits responsez in the sameway as

the original simulator S. However, if the responsechosenis a new one then

it checks if the tuple (x; y; z) satis�es one of the following conditions before

sendingz.

1. Condition B1: It is the casethat z � y = I V , where I V is the n-

bit initialization vector usedin the �rst Merkle-Damg�ard construction

using E1.

2. Condition B2: There is a tuple (1; x0; y0; z0) 2 T , with (x0; y0) 6= (x; y),

such that y0 � z0 = y � z.

3. Condition B3: There is a tuple (1; x0; y0; z0) 2 T such that z � y = y0.

4. Condition B4: There is a tuple (2; x0; y0; z0) 2 T such that y � z = x0.

If the responsez chosenby the simulator S0 is such that at least one of

theseconditions is satis�ed, then the simulator explicitly fails. Essentially ,

the idea is that conditions B1 and B2 could be usedby the distinguisher to

make two random oracleinputs collide after the Merkle-Damg�ard part using

E1. On the other hand, conditions B3 and B4 could be usedby the distin-

guisher to generatea random oracle input such that the simulator cannot
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adjust its output to match that of the random oracle. Sincethe simulator

S0 always choosesthe responseto any E1 query at random, we can bound

the occurrenceprobabilities of each of theseevents using simple probability

calculations.

On an inversequery (1; � ; x; z), the newsimulator S0 choosesits response

y in the samefashion as the original simulator S. However, if the response

is not chosenfrom the table T , then S0 checks if the tuple (x; y; z) satis�es

any of the following conditions.

1. Condition C1: It is the casethat y = I V or y � z = I V, where I V

is the initialization vector used in the Merkle-Damg�ard construction

using E1.

2. Condition C2: There is a tuple (1; x0; y0; z0) 2 T , with (x0; z0) 6= (x; z),

such that y0 � z0 = y � z.

3. Condition C3: There is a tuple (1; x0; y0; z0) 2 T such that y � z = y0

or y0� z0 = y.

4. Condition C4: There is a tuple (2; x0; y0; z0) 2 T such that y � z = x0.

If the responsey is such that at leastoneof theseconditions is satis�ed, then

the simulator S0 explicitly fails. Wecanestimatethe occurrenceprobabilities

for thesefailure condition similar to the caseof a forward query (1; + ; x; y).

For queriesmade to the block cipher E2, we needto check for di�erent

failure conditions. In particular, the Merkle-Damg�ard construction usingE2
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will only be applied to oneblock inputs in the RO construction NMACE 1;E 2.

For forward queries(2; + ; x; y), the new simulator S0 choosesz 2 f 0; 1gn0
in

the sameway asthe original simulator S and sendsz asits responsewithout

checking for any failure conditions. On the other hand, for inversequeries

(2; � ; x; z), the simulator S0 choosesy 2 f 0; 1gn0
similar to S, but then checks

to seeif the tuple (x; y; z) satis�es the following condition:

1. Condition C0
1: It is the casethat y = I V 0.

If the tuple (x; y; z) satis�es this condition and the responsey was freshly

chosenat random, then the simulator S0 explicitly fails. The probability

of occurrenceof the failure condition C0
1 is a straightforward probability

computation.

Let G3 denote the event that the distinguisher D outputs 1 in game

3, i.e. Pr[G3] = Pr
h
D RF

0 ;SF
0 (1� ) = 1

i
. The response distribution of the

distinguisher di�ers in games2 and 3 if and only if the simulator S0 fails in

game3. This event is identical to one of the failure conditions holding for

the responsesof the simulator S0.

jPr[G3] � Pr[G2]j = Pr[B1 _ B2 _ B3 _ B4 _ C1 _ C2 _ C3 _ C4 _ C0
1]

�
q2

2min (n:n 0)

Game 4. In this game,we modify the relay algorithm, but leave the ideal

cipher simulator S0 unchanged. In particular, the new relay algorithm R1

does not simply relay the outputs of the random oracle F . Instead, R1 is
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given oracleaccessto the simulator S0, and it respondsto any random oracle

queriesmade to it by honestly evaluating the RO construction NMACE 1;E 2

by using the simulator S0 in placeof the ideal ciphersE1 and E2.

Let G4 denotethe event that the distinguisherD outputs 1 in game4, so

that

Pr[G4] = Pr
�
D R

S F
0

1 ;SF
0 (1� ) = 1

�

We assumethat the maximum length of a random oraclequery madeby the

distinguisher is ` � � . Now we will show that the view of the distinguisher D

does not changeby a non-negligibleamount when we make this changeto

the relay algorithm. This is formally stated below.

Claim 15. Let G3 and G4 denotethe eventsthat the distinguisher outputs

1 in game3 and 4, respectively. Let qE and qF denotethe number of ideal

cipher (including both E1 and E2 queries)and random oracle queriesmade

by the distinguisher, then it is the casethat

jPr[G4] � Pr[G3]j = O
�

(qE + qF � `)2

2min (n;n 0)

�

pro of of claim 15: The view of the distinguisherchangesin the transition

from game3 to 4 only if there is a change in the responsedistributions of

either the relay algorithm or the simulator betweenthe two games.We will

show that if the simulator S0 doesnot fail in either of the two games,then

such a changein the responsedistributions is impossible.

Let us start by analyzing the way the two relay algorithms, R0 and R1,
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choosetheir responses.The relay algorithm from game3, R0, simply forwards

the random oracle output to any RO query X (i.e. responds with F (X )).

On the other hand, the relay algorithm from game4 usesthe block ciphers

simulated by S0 to implement the RO constructionNMACE 1;E 2, andresponds

with the output of this \simulated construction". If the distinguisherdetects

a di�erence in the responsesof the two relay algorithms, then it must be

the casethat the simulator S0 did not adjust its responsesconsistently with

the RO F in game4, which resulted in the responseof the relay algorithm

R1 not matching the RO output. We will show that unlessthe simulator S0

explicitly fails, it is always able to adjust its responsesconsistent with the

random oracleF .

The simulator S0 is the same in both games3 and 4. However, the

simulator receivesextra queriesfrom the relay algorithm R1 in game4. Thus

it may be the casethat the simulator S0 choosesits responseto the same

query di�erently, depending on whether it is in game3 or game4. This is

the caseonly if the simulator choosesits responseconsistent with the RO

F in one game,while independently at random in the other game. We will

show that such a di�erence is impossible,unlessthe simulator S0 explicitly

fails in oneof the games.

Below, for simplicity, we will denote by NMACS0 (X ) the output of the

\simulated RO construction" NMACE 1;E 2 using the block cipherssimulated

by S0, while F (X ) is the actual random oracleoutput on X . We will start

by proving a coupleof useful properties of the responsesof the simulator S0
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that hold in both games3 and 4. The �rst property essentially says that

if the simulator S0 doesnot fail then it is not possiblefor the input to the

Davies-Meyer function basedon E2 to collide for two di�erent RO inputs.

Claim 16. If the simulator S0 doesnot explicitly fail, then there are no two

di�er ent sequences of � -bit blocks x1 : : : xm and x0
1 : : : xp with corresponding

tuples(1; x1; y1; z1) : : : (1; xm ; ym ; zm ) and (1; x0
1; y0

1; z0
1) : : : (1; x0

p; y0
p; z0

p) in the

table T of S0 suchthat:

� It is the case that y1 = y0
1 = I V . Moreover, for each b = 2: : : m and

b0 = 2: : : p, it holdsthat yb = yb� 1 � zb� 1 and y0
b0 = y0

b0� 1 � z0
b0� 1.

� It is the casethat ym � zm = y0
p � z0

p.

pro of of claim 16: This is easyto seesincethere is r 2 f 0: : : (min(m; p) �

1)g such that,

8s 2 f 0; (r + 1)g : (xm� s; ym� s; zm� s) = (x0
p� s; y0

p� s; z0
p� s)

and (xm� r ; ym� r ; zm� r ) 6= (x0
p� r ; y0

p� r ; z0
p� r )

Of the two tuples (1; xm� r ; ym� r ; zm� r ) and (1; x0
p� r ; y0

p� r ; z0
p� r ), we consider

the one whosecorresponding query was made later. Without lossof gener-

ality, let this be (1; xm� r ; ym� r ; zm� r ). If this wasa result of a forward query

(1; + ; xm� r ; ym� r ), then the simulator S0 would have failed dueto failure con-

dition B2. On the other hand if this were an inversequery, then S0 would
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have failed asa result of the failure condition C2.

Next, we show that if the distinguisher wishes to �nd out the output

NMACS0 (X ) for a random oracle query X = x1 k : : : k xm , then the only

way it can do so is by computing the RO construction honestly.

Claim 17. Consider any sequence of entries (1; x1; y1; z1) : : : (1; xm ; ym ; zm )

; (2; x0; y0; z0) in the table T maintained by the simulator S0 that satisfy the

following properties:

� It is the casethat y1 = I V and y0 = I V 0.

� For all i = 2: : : m, it is the casethat yi = yi � 1 � zi � 1.

� It also holdsthat x0 = ym � zm .

If the simulator S0 doesnot explicitly fail, then it is necessarily the casethat

theseentries were generated as a result of the ordered sequence of queries

(1; + ; x1; y1); : : : ; (1; + ; xm ; ym ); (2; + ; x0; y0).

pro of of claim 17: To the contrary, assumethat the tuples (1; x1; y1; z1) : : :

(1; xm ; ym ; zm ); (2; x0; y0; z0) were not generatedas a result of the ordered

sequenceof forward queries(1; + ; x1; y1); : : : ; (1; + ; xm ; ym ); (2; + ; x0; y0). In

this case,oneof the following must hold:

1. The tuple (1; xm ; ym ; zm ) was stored in the table T after the tuple

(2; x0; y0; z0), as a result of a forward/in versequery.
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2. For somej 2 f 1: : : (m � 1)g, a new forward query (1; + ; x j ; yj ) was

made when the tuple (1; x j +1 ; yj +1 ; zj +1 ) already existed in the table

T .

3. For somej 2 f 2: : : mg, a new inverse query (1; � ; x j ; zj ) was made

when the tuple (1; x j � 1; yj � 1; zj � 1) already existed in the table T .

4. The tuple (1; x1; y1; z1) was stored in T as a result of an inversequery

(1; � ; x1; z1).

5. The tuple (2; x0; y0; z0) was stored in T as a result of the inversequery

(2; � ; x0; z0).

Wewill show how any of thesesituations would haveresultedin the simulator

S0 explicitly failing. In each of thesecases,we can deducethat at least one

of the failure conditions would have held.

� Case1 : In this case,the failure condition B4 (resp. C4) would have

beentrue for the query (1; + ; xm ; ym ) (resp. (1; � ; xm ; zm )).

� Case 2 : Failure condition B3 would have been true for the query

(1; + ; x j ; yj ).

� Case 3 : Failure condition C3 would have been true for the query

(1; � ; x j ; zj ).

� Case 4 : Failure condition C1 would have been true for the query

(1; � ; x1; z1).
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� Case 5 : Failure condition C0
1 would have been true for the query

(2; � ; x0; z0).

Thus if the simulator never fails, then the sequenceof tuples (1; x1; y1; z1) : : :

(1; xm ; ym ; zm ); (2; x0; y0; z0) could have beenstored only asa result of the se-

quenceof forward queries(1; + ; x1; y1); : : : ; (1; + ; xm ; ym ); (2; + ; x0; y0).

As a consequenceof claims 16 and 17, we can deducethat in both games

3 and 4 the simulator is always able to adjust its responsesto be consistent

with random oracle F if it does not explicitly fail. Thus the responsesof

the relay algorithm R0 and R1 are identical in the view of the distinguisher.

Moreover, as a result of claim 17, we can also deducethat the distinguisher

D can only �nd the output NMACS0 (X ) by making the sequenceof forward

queriesgiven in claim 17. In this case,the simulator adjusts its response

accordingly so that NMACS0 (X ) = F (X ) for any X . Thus the view of the

distinguisher D does not change in the transition between games3 and 4

if the simulator S0 does not explicitly fail in either game. Hence,we can

deducethat

jPr[G4] � Pr[G3]j � Pr[S0 fails in either game]

= O
�

(qE + qF � `)2

2min (n;n 0)

�
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Game 5. In this game,we modify the simulator so that it always selects

its responsesindependent of the random oracleF . This doesnot induceany

inconsistenciesin the view of the distinguisher sincethe relay algorithm R1

also usesthe new simulator S1 instead of directly using the random oracle

F .

The newsimulator S1 always choosesa uniformly randomresponseto any

query madeto it, including any forward query (2; + ; x; I V 0). Moreover, after

it choosesa responseit doesnot check for any of the failure conditions that

the old simulator S0 checked for in game4. The view of the distinguisherdoes

not changeby more than a negligible amount in the transition from game

4 to 5. This is becausethe distinguisher only notices a di�erence between

the two gamesif S0 fails in game4 (or equivalently, the new simulator S1

respondswith a z that satis�es oneof the failure conditions checked by S0).

Sincethe new simulator S1 always choosesa uniformly random responseto

any query, we can easily bound this di�erence.

jPr[G5] � Pr[G4]j � Pr[S0 fails in game4]

+ Pr[S1 satis�es oneof the failure conditions]

= O
�

(q � `)2

2min( n;n 0)

�

Game 6. This is the �nal gameof our proof. Here we replacethe simu-
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lator S1 by actual ideal block ciphers E1 : f 0; 1g� � f 0; 1gn ! f 0; 1gn and

E2 : f 0; 1g� 0
� f 0; 1gn0

! f 0; 1gn0
. Sincethe relay algorithm R1 essentially

implements the RO construction NMACE 1;E 2, the view of the distinguisher

in this gameis identical to its view in the ideal cipher model.

Let G6 denotethe event that the distinguisherD outputs 1 in this game.

We can deducethat the view of the distinguisher does not change in the

transition from game5 to 6, unlessthe simulator S1 outputs a collision in

block cipher outputs for the samekey. The probability of this event can be

boundedby simply using the birthday paradox.

jPr[G6] � Pr[G5]j � Pr[S1 outputs a collision.]

= O
�

(q � `)2

2min( n;n 0)

�

Now we can completethe proof of lemma 3 by combining the above games.

Hence,we deducethat

�
�
�Pr

h
DNMACE 1;E 2

;E 1;E 2(1� ) = 1
i

� Pr
�
D F;S(1� ) = 1

� ��
� = O

�
q2`2

2min( n;n 0)

�

Lemma 4. The HMAC construction HMACE using an ideal block cipher

E : f 0; 1g� � f 0; 1gn ! f 0; 1gn is (tD ; tS; q; � )-indi�er entiablefrom a random
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oracle F : f 0; 1g� ! f 0; 1gn in the ideal block cipher model for E, for any tD

and tS = O(q2), with � = 2� n � `2 � O(q2) (`� is the maximum length of an

RO query madeby the distinguisher).

Pro of: The proof of this lemma is almost identical to the proof of indi�er-

entiabilit y for the NMAC construction given in lemma3. This is becausethe

HMAC construction essentially implements the NMAC using a singleblock

cipher, by using di�erent initialization vectors in each part of the construc-

tion. With slight modi�cations, the simulator described in lemma3 works in

this caseas well.

The proof of indi�eren tiabilit y is also almost identical to that in lemma

3. We do add a few extra \failure conditions" to handle the fact that we are

using the sameideal cipher E in placeof both E1 and E2.

3.2.4 Implications for the RO Domain Extenders

We saw above that the four modi�cations of the Merkle-Damg�ard construc-

tion, i.e. the pre�x-free, chop, NMAC and HMAC constructions,applied to

the Davies-Meyer compressionfunction are indi�eren tiable from a variable-

length input random oracle (VIL-R O) in the ideal cipher model. This fact

was formally stated and proved in theorem 6. Now we will show that this

result is strongerthan the indi�eren tiabilit y of domain extendersfor the ran-

dom oracledescribed in section3.1. In particular, we show that theorems2,
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3, 4 and 5 from section3.1canbe derived asa direct consequenceof theorem

6.

To this purpose,say we are given a �xed-length input random function

oracle(FIL-R O) f : f 0; 1g� + n ! f 0; 1gn. Considerthe following construction

basedon f :

T f : f 0; 1g� � f 0; 1gn ! f 0; 1gn

(x; y) 7! f (x k y) � y

Note that the construction T f is essentially the sameas the Davies-Meyer

construction except that the latter is de�ned for an ideal block cipher E :

f 0; 1g� � f 0; 1gn ! f 0; 1gn . If we are able to show that T f is indi�eren tiable

from the ideal block cipher E, then it will complete the proof of all theo-

remsfrom section3.1 as an implication of theorem 6 and the composability

property of indi�eren tiable constructions. This is becausethe Davies-Meyer

construction applied to T f is identical to the FIL-RO f . However, it is easily

seenthat T f cannot be proven indi�eren tiable from the ideal cipher E 2.

To overcomethis, we introduce a weaker ideal primitiv e than the ideal

cipher,which wewill call the weak ideal block cipher. A weak ideal block cipher

E is essentially the sameas an ideal cipher, except that it only responds to

forward block cipher queries. In this case,we do not run into the problem of

respondingto inversequeriesmadeto the constructionT f . Unfortunately, we

2In particular, the construction T f cannot answer inverseideal cipher queries.
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cannotusetheorem6 in a \black-box manner" to get indi�eren tiable VIL-R O

construction using a weak ideal cipher. However, none of the constructions

proposedin theorem 6 make useof inversequeriesto the underlying block

cipher.

Corollary 1. The block-cipher based constructions pf-MDE
g , chop-MDE

s ,

NMACE
g and HMACE are (tD ; tS; q; � )-indi�er entiablefrom a randomoracle,

in the weak ideal cipher model for E, for any tD and tS = ` � O(q2), with

� = 2� n � `2 � O(q2) for pf-MDE
g , � = 2� s � `2 � O(q2) for chop-MDE

s , � =

2� min( n;n 0) � `2 � O(q2) for NMACE
g and � = 2� min( �;n ) � `2 � O(q2) for HMACE .

Here ` is the maximum messagelength queried by the distinguisher.

In fact, the proof of this theoremis simpler than that for theorem6 since

the simulator neednot respond to inverseideal cipher queries.We now show

that the construction T f is an indi�eren tiable construction of a weak ideal

cipher E : f 0; 1g� � f 0; 1gn ! f 0; 1gn using the FIL-RO f .

Lemma 5. The construction T f (described above) is (tD ; tS; q; � ) indi�er en-

tiable from a weak ideal cipher E : f 0; 1g� � f 0; 1gn ! f 0; 1gn for any tD ,

tS = O(q2) and � = 2� n � q2, in the random oracle model for f .

Pro of: In order to prove this theorem, we needto describe a random ora-

cle simulator S such that no distinguisher can tell apart the random oracle

model, where it has oracle accessto the random function oracle f and the

construction Tf , from the weak ideal cipher model, where it has oracle ac-

cessto the simulator S and the weak ideal block cipher E. We will start by
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describingthe simulator.

The Simulator. The simulator S gets random oracle queries of the

form x k y 2 f 0; 1g� + n. The simulator makes the forward query (x; y) to

block cipher E to get Ex (y). Then S responds with z = Ex (y) � y. In ad-

dition, the simulator S also maintains a table T of previousquery-response

pairs (x k y; z) which it checks each time to seeif the current query matches

a previousone.

Pro of of Indi�eren tiabilit y. The proof of indi�eren tiabilit y involves

a hybrid argument that starts in the ideal cipher model, where the distin-

guisherD hasoracleaccessto E and S, which is game1.

Game 1. This is essentially the weak ideal cipher model, where the distin-

guisher D is given oracle accessto the random oracle simulator S and the

weakideal cipher E. Let G1 denotethe event that D outputs 1 in this game.

Thus, if � denotethe security parameter,

Pr[G1] = Pr
h
D SE ;E (1� ) = 1

i

Game 2. In this game, we give the distinguisher D oracle accessto a

relay algorithm R0, insteadof the weak ideal cipher E. This relay algorithm

R0 has oracleaccessto the simulator SE . On a forward block cipher query

(x; y) 2 f 0; 1g� � f 0; 1gn , the relay algorithm R0 simply queriesthe simulator
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SE on x k y to get its responsez. Then R0 respondsto the block cipherquery

with y � z.

Let G2 denote the event that D outputs 1 in this game. Sincethe view

of the distinguisher doesnot changein this game,we can deducethat

Pr[G1] = Pr
h
D SE ;RS E

(1� ) = 1
i

= Pr[G1]

Game 3. In this game,we modify the simulator sothat it doesnot consult

the ideal block cipher for any of the queriesmade to it. Instead, the new

simulator S0 always choosesa uniformly random n-bit responsez to every

newqueryx k y, andrecordsit in its table T beforesendingover the response.

Let G3 denotethe event that the distinguisherD outputs 1 in this game.

Since the relay algorithm only consults S0 for any query, so that the view

of the distinguisher in this game is entirely independent of the weak ideal

cipher E. Thus the distinguisher D detectsa di�erence betweenthis game

and game2 only if the relay algorithm R0 outputs a collision for two block

cipher querieswith the samekey, and the probability of this event can be

easily boundedusing the birthday paradox. Thus, we can deducethat

jPr[G3] � Pr[G2]j �
q2

2n

Note that the simulator S0 is essentially the sameas the �xed-length in-

put RO f , while the relay algorithm R0 is de�ned in the sameway as the
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construction T f . Hence,we can alsodeducethat

�
�
�Pr

h
D f ;T f

(1� ) = 1
i

Pr
h
D SE ;E (1� ) = 1

i �
�
� = jPr[G3] � Pr[G1]j

�
q2

2n

3.3 Other Extensions

Increasing Output Length. All the random oracleconstructionsthat we

have discussed,permit really e�cien t output expansion. Given a random

oracleH : f 0; 1g� ! f 0; 1gn , output expansionby a factor L can be achieved

by appending an extra log(L)-bit block to the input X and outputting the

concatenationof the following blocks:

H (X k h1i ); H (X k h2i ); : : : ; H (X k hLi )

It can be easily seenthat this construction is generically secure,including

any of the indi�eren tiable constructionsof VIL-R O that we have proposed.

However, onewould imagine that evaluating this construction would involve

L evaluations of the VIL-R O H .

As it turns out, for the Pre�x-free, Chop, NMAC and HMAC construc-

tions of a VIL-R O using a FIL-RO or an ideal cipher, this procedurecan be
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completedextremely e�cien tly using only one (or two) extra evaluation of

the underlying �xed-length input primitiv e for each extra block of output. 3

This can be done by �rst computing the Merkle-Damg�ard construction on

the input X , and evaluating only one last part of the construction for each

of the output blocks. This reducesthe running time for the procedurefrom

L � (jX j=� ) to L + (jX j=k) computations.

Domain Separation for Indep endent ROs. The same technique as

above can also be usedfor domain separationof the random oracle, to get

multiple independent random function oracles from a single one. This is

useful in cryptographic constructionswhereone needsto usemultiple inde-

pendent random oraclesin order to prove the security of the construction.

In particular, if we have a single random oracle H : f 0; 1g� ! f 0; 1gn , and

we need L independent random oraclesin our constructions, then we can

achieve this by de�ning theserandom oraclesas:

H1(X ) := H (X k h1i )

...

HL (X ) := H (X k hLi )

We cannot usethe samee�cien t processingtechnique that we usedfor out-

put expansion,sinceoneusually doesnot needto evaluate the independent

3For a pre�x-free encoding g, this can be doneby appending h1i : : : hL i to g(X ) instead
appending to X and then evaluating g.
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random oracleson the sameinput.
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Chapter 4

Getting the Best out of existing

Hash Functions

In the previous chapter, we discussedthe security of hash functions when

used to instantiate the random oracle. This was a really strong security

requirement from hash functions and, not surprisingly, one needsto make

ideal assumptionson the compressionfunction to prove the security of the

iterativ e hash function in this case. Here we will take a more general look

at iterativ e hash functions without restricting to someparticular security

requirement.

As we have alreadyseen,cascadechaining is a very elegant way to build a

hashfunction H on arbitrary-length inputs from a givencompressionfunction

h on �xed-length inputs. Recall that for a given h : f 0; 1g� � f 0; 1gn !

f 0; 1gn , onecan de�ne a hash function H , parametrizedby an initialization
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vector I V 2 f 0; 1gn , asfollows(whereinput x = x1 k : : : k x` andx i 2 f 0; 1g�

for i = 1: : : `):

H (x1 k : : : k x` ) = h(x` ; h(: : : ; h(x1; I V) : : :))

We will refer to this as the MD mode (after Merkle-Damg�ard). The most

abundant useof the MD modein practicecomesin the designof the industry-

standard hash family SHA (which consistsof several speci�c hash functions

SHA-x, where x 2 f 1; 224; 256; 384; 512g). Unfortunately, despite its ele-

ganceand simplicity, the \plain MD" mode has several de�ciencies. For

instance, it doesnot guarantee that a \global" collision of H implies a \lo-

cal" collisionof the compressionfunction h, unlessonepreprocessesthe input

into a su�x-free form beforeapplying H [22] (as we already mentioned, the

particular su�x-free encoding of appendingthe messagelength is calledMD

strengthening, and is actually usedin the SHA family for this reason).More

seriously, as we already saw in chapter 3, even MD strengtheningfalls prey

to the \extension attack" 1 which makesit insu�cien t for domain extension

of random oracle. Moreover, this de�ciency disquali�es the natural use of

\plain MD" in the designof \pseudorandomfunctions" [5]. Other problems

alsoarise when the MD mode is usedin applications such as key derivation

[25] and target collision-resistance(or UOWHFs 2) [11, 70].

Apart from the issuesmentioned above, several other de�cienciesof the

1given H (x) and any extensiony, one can compute H (x k y) without knowing x.
2Universal One-Way Hash Functions
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MD modeagainstexponential-time attacks have beendiscovered[43,45]. All

thesede�ciencies,coupledwith the improved brute-forceattacks on the pop-

ular SHA-1 hash function proposedrecently [72, 73], suggestthat it is time

to designa better, more \secure" mode of operation for building a variable-

length input hash function. With this purpose,NIST has been organizing

several workshopsdedicated to coming up with the next generation hash

functions [62]. However, this processwill take sometime, and it doesnot ap-

pear that such hashfunctions would be standardizedand widely acceptedin

any forseeablefuture. Therefore,practitioners are \stuck" with the prospect

of using existing hash functions, despiteall their de�ciencies. Hence,there

is a pressingneedto designimmediate \�xes" to the MD paradigm, without

changing it drastically.

There are two aims in comingup with such \�xes" to the MD mode. The

�rst, and sofar the most popular, aim is to designa slight variant of the MD

mode that provably preserves a given security property of the compression

function, and to do soin the most aestheticande�cien t manner. Wemention

only a few of the many examplesof this approach. For collision-resistance,

we already mentioned the well known technique of MD strengthening. For

anotherexample,by viewing the initialization vector asthe key and applying

a pre�x-fr ee encoding to the message,onecan obtain a variable-length input

pseudorandomfunction from a �xed-length input pseudorandomcompression

function [5]. In the caseof target collision-resistance,Shoup [70] designed

an elegant mode for building target collision-resistant (TCR) hashfunctions
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(or UOWHFs [60]) from a TCR compressionfunction by cleverly XORing

certain masks to the internal chaining variables in the MD construction.

The commonfeature in all theseresults is that oneassumesexactlythe same

property from the compressionfunction h as the desiredproperty from the

hash function H . In many cases,such as the PRF and TCR examples,this

meansthat a \secure" mode must be su�cien tly di�erent from the plain

MD so that its implementation requires a non-trivial modi�cation to the

SHA implementation. Concretely, the SHA family usesa �xed public IV

(as opposedto arbitrary secretIV neededfor PRFs), while in the TCR case

one cannot XOR the corresponding maskswithout modifying the internals

of SHA.

The second,lesspopular, aim is to try and designa \secure" mode that

usesonly black-box callsto the plain MD mode 3. For instance,MD strength-

ening satis�es this property. Other examplesinclude the HMAC mode for

pseudorandomfunctions [5] and the results for domain extensionof random

oraclementioned in the previouschapter. The attractiv e feature of thesere-

sults is that they result in a hashfunction with the desiredproperty without

tinkering with the internals of SHA, and can use any o�-the-shelf imple-

mentation. Moreover, all theseexamplesalsosatisfy the property-preserving

property described above.

Our Goal. In this chapter, we will emphasizethe latter aim in comingup

with \�xes" for existing hash functions. That is, we considerthe question

3in practice, with MD strengthening, but we ignore this aspect for now
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of building a hashfunction H 0 achieving a given security property P using a

black-box MD-basedhash function H (with an unknown compressionfunc-

tion h). We require that the proposedconstruction H 0 satis�es the following

\axioms":

1. The construction should consist of one or two \black-box" calls to H .

In particular, the construction is not allowed to useany knowledgeof

or tinker with the internals of the hashfunction H .

2. The construction must support variable-length inputs.

3. Compared to a single evaluation of H (M ), the evaluation of H 0(M )

should make at most a �xed (small constant) number of extra calls to

the underlying compressionfunction of H . In other words,the e�ciency

of H 0 is negligibly closeto that of H .

The motivation behind requiring the construction H 0 to satisfy theseaxioms

is from the viewpoint of a practitioner who understandsthe properties of

the hash function that are neededfor the security of his cryptosystem, but

who wants to usean o�-the-shelf standardizedhashfunction implementation

without tinkering with its internals. Such a practitioner would be willing to

sacri�ce the property-preservingaspect of the \�x" in favor of a black-box

implementation.

In fact, the above \axioms" leave very little freedom in choosing the

modes of operation for H 0. The resulting modes are essentially the most

widely-utilized constructionsappearing in practical implementations:
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1. Plain MD Construction: This capturesthe notion that the application

usesthe hash function as it is. We will denotethis mode of operation

asH.

2. Encode-then-MDConstruction: In this case,the userencodesthe hash

function input beforeapplying the plain MD construction. Examples

of popular encoding schemesusedare su�x-free encoding and pre�x-

free encoding. We will refer to the corresponding constructionsas the

pre�x-fr ee MD construction H pr e and the su�x-fr ee MD construction

Hsuf .

3. MD-then-ChopConstruction: Herethe userappliesthe plain MD mode

and only usespart of the output while discardingthe remainingbits. In

particular, existing hashfunctions SHA-224and SHA-384are obtained

this way from SHA-256 and SHA-512, respectively. We denote the

MD-then-chop construction that chopss bits of the output as Hchops .

4. NMAC/HMA C Construction: The version of the NMAC construc-

tion that we considersimply composestwo applications of the plain

MD mode with possibly di�erent initialization vectors I V1 and I V2.

While not obeying the �rst axiom, the NMAC construction serves as

a nice abstraction for the HMAC construction which does satisfy all

our axioms (but is slightly harder to formally analyzein somecases).

Concretely, the HMAC construction usesthe NMAC construction with

I V1 = h(I V; � 1) = H (� 1) and I V2 = h(I V; � 2) = H (� 2), where each
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� i is either the null string ? (in which casewe let h(I V; ? ) = I V) or

a single � -bit block. We denotethe NMAC construction as Hnmac and

the HMAC construction as Hhmac .

Now wecan�nally rephraseour goalasfollows. Givena particular desired

security property P (such as collision-resistanceor pseudorandomness)and

oneof the 4 modesof operation above (which all satisfy our axioms), �nd the

weakestsecurity assumption(s)P 0on the compressionfunction h which would

make the corresponding mode satisfy P (or determinethat the construction

is insecurefor any h). Ideally, this security property P 0 for h would beP itself

(which would result in a property-preservingmode of operation). However,

unlike most previouswork, property preservation is not our primary concern.

In particular, we will not declarea mode of operation to be \insecure" for a

property P simply becauseit is not property-preservingfor P. Instead, we

will �nd the weakest security property P 0 of the compressionfunction that

makes the resulting construction secure. This will allow the practitioners

to decide whether or not it is reasonableto assumethat the compression

function of existing hashfunctions, such asSHA, satisfy the property P 0.

Our Resul ts. We achieve our main goal for a very wide variety of security

properties including collision-resistance (CR), pseudorandomness(PR) , in-

di�er entiability from random oracle (RO), messageauthentication (MA C),

target collision-resistance (TCR) , second preimage-resistance (SPR), ran-

domnessextraction (RE) and one-wayness(OW). In each case,and for each

of the four popular modesabove, we will identify the neededproperty P 0 on
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h. In somecases,the neededP 0 easily follows from someexisting work (for

instance,from the previouschapter or [21] in the caseof domain extensionof

random oracle). In other cases,it required someminor, but important mod-

i�cations to the existing results in order to satisfy our axioms. For example,

by assumingthat \ h(I V; r andom) = random" in addition to h being a PRF

whenkeyed with the �rst n bits of its input, we could build a variable length

PRF using the encode-then-MD mode and adjusting the proof of [5]. More

interestingly, by making extra assumptionson h, in somecaseswe can prove

security of the modeswhich werepreviouslybelieved \insecure" becausethey

were not property-preserving. Finally, in somecasesthe proof will involve

careful and non-trivial modi�cation of previousresults. For example,this is

the casewhen analyzing the one-waynessof the Hsuf construction.

In addition to giving an exhaustive \mo de � property" guide (seetable

4.1) for achieving a given security property with a given popular mode, in

each section we also mention the practical implication of our results when

using existing hashfunctions SHA-x, wherex 2 f 1; 224; 256; 384; 512g.

Rela ted Work. We have already cited many of the relevant papers. In

particular, the variants of the MD mode that are useful in the property-

preservation of collision-resistance[22], pseudorandomness[5, 6], message-

authentication [1, 53], random oracles[21] and randomnessextraction [25].

We also mention the works of [12, 13] concernedwith multiple property-

preservation; namely, designinga singlemode of operation which simultane-

ously preserves several properties. Unfortunately, the modes of [12, 13] do
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Assumptions on compression function:

(8)=computed SPR (cSPR)
(7)=enhanced SPR (eSPR)

(1)=Collision Resistance(CR)
(2)=Output Regular
(3)=standard PRF (sPRF)
(4)=dual PRF (dPRF)
(5)=FIL-R O
(6)=MA C with � -bit key

(9)=Fixed-p oint at random I V
(10)=F amily of random functions
(11)=One-way function

(7')=eSPR after Chop
(8')=cSPR after Chop

(3')=sPRF after Chop
(2')= h(Un ; �) is output regular
(1')=CR after Chop

Misc.
SF=Su�x-free
PF=Pre�x-free
MDS=MD Strengtheining
??=not known to be secure

K ey � B lks =X OR key to
each block

RExt=Randomness Extrn.

CRHF

RO

PRF
Append key +

Pre-Free+(1)+(2)
(1) + (2) (1') + (2)

(1)+(2)+(4)

Not Secure
Suf-Free not secure

Pre-Free+(5)

(5) NMA C/HMA C+(5)

I V1 6= I V2 ; � 1 6= � 2

MAC

Suf-Free+(1)

(prepend)

(append)

PF+(2')+(3)

SF+(1)+(4)

(append)

Prepend key +

worsesecurity

(1)+(2)+(6')

(2')+(3')

Append key +

Any I V s/ � s

TCR

SPR

RExt

OWF

Append key + N/H+(1)+(2)+(6)

SF+(7) (key � blks)key � blks key � blks

Any I V s/ � s

� 1 6= ?

(1)+(2)+(6)

(7) + (9) PF+(7)+(9) (7') + (9)

N/H+(7)+(9)

(8) + (9)
SF+(9)

PF+(8)+(9)
(8') + (9)

Any I V s/ � s

N/H+(8)+(9)

H 1 (M ) ^ H 1 (m ` )

(10)

H 1 (M ) ^ H 1 (m ` )

(10)

H 1 (M ) HMA C??

NMA C + (10)

(SF/PF??)

MDS + (10)

(2)+(11)
MDS+(2)+(11)

(2')+(11)
NMA C+(2)+(11)

HMA C??

(SF/PF??)

SF+(1)+(6)

PF+(1)+(2)+(6) (app.)

N/HMA C+(1)+(2)

(key � blks)

Any I Vs=�s

N/H+(3)+(4)

(append)

(prepend)

Plain MD Encode-then-MD MD-then-Chop NMAC/HMA C

Figure 4.1: Table for comparingSecurity Property vs. Mode of operation.
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not satisfy our axioms. Finally, we mention the work of Halevi and Krawczyk

[40], which concentrated on building TCR hashfunctions, and is the closest

in spirit to our motivation (indeed, we will usetheir results when discussing

the TCR property). The authorsbuilt TCR hashfunctions usingthe encode-

then-MD mode,and showeda simplecoding schemethat yieldsa secureTCR

hash function under an appropriately strong assumptionon the underlying

compressionfunction h (still weaker than CR, but stronger than TCR).

Loca tion of the key in keyed constr uctions. We note that for

keyed constructions,such as constructionsof pseudorandomand TCR func-

tions, there are more than one possibilities for each hash function mode of

operation. In particular, any construction for theseprimitiv esmust specify

the location of the key. In keepingwith the black-box nature of the modes

of operation, we prevent popular keying methods such as setting the key to

be the I V or XORing the key into the chaining variablessincethis violates

our basicaxioms.

Moreover, we alsodo not considerthe dedicated-key setting [1, 13], where

there is separatespacefor the key in each application of the compressionfunc-

tion. This is becauseexisting hash functions do not support such dedicated

keys. Even though we may considerthe key to be part of the messageblock

bits, wedo not analyzethis method sinceit yieldsconstructionswith poor in-

put bandwidth (thus violating our last axiom). Hence,we will only consider

modesof operation which incur an additive constant overheadcomparedto

the plain MD mode.
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4.1 Preliminaries

In this chapter, we will be interestedmore in the qualitativ e aspects of the

security of iterativ e hash functions rather than focusing on the exact secu-

rit y in each case. For this purpose,we will give here slightly \less formal"

and asymptotic de�nitions for each of thesesecurity notions related to hash

functions. In particular, we will rede�ne someof the security notions already

de�ned in chapter 2 (wherethesede�nitions werein \exact security" terms).

4.1.1 Collision Resistance

In this chapter, a collision resistant function ensemble H � is de�ned for a

sequenceof sets
�

f 0; 1gm(� ) ; f 0; 1gn(� )
	

� 2 N
, wherem and n denotethe input

and output length of H � , respectively. As in chapter 2, it consistsof a pair

of PPT machines (Gen;Eval). However, we will give an asymptotic version

of the de�nition of collision resistancehere.

De�nition 10. � -CR function family A function ensembleH � is a � -collision

resistant function family if for any probabilistic polynomial time machineA:

Pr
�
hs(x1) = hs(x2)

�
�s  Gen(1� ); (x1; x2)  A(1� ; s)

�
� �

Here � is a function of the security parameter � .
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4.1.2 Pseudorandomness

Herea pseudorandomfunction ensemble H � is de�ned for a sequenceof sets
�

f 0; 1gm(� ) ; f 0; 1gn(� )
	

� 2 N
. It consistsof a pair of PPT machines(Gen;Eval),

the key generationand evaluation machines.

De�nition 11. � -PRF family Let R� be the truly randomfunction ensemble.

A function ensembleH � is a � -pseudorandomfunction family if for any PPT

oracle machineA:

�
�Pr

�
Ahs (1� ) = 1

�
�s  Gen(1� )

�
� Pr

�
A f = 1jf  R�

� �
� � �

Here � is a function of the security parameter � .

4.1.3 Unpredictabilit y and MA Cs

A messageauthentication code, MAC, is de�ned for a sequenceof sets

fM � ; T� g� 2 N. It consistsof a triple (Gen;Tag; Ver) of PPT machines, de-

noting the key generation,tagging and tag veri�cation algorithms.

De�nition 12 ( � -secure MA C). A MAC (Gen;Tag; Ver) is a � -secure

MAC if for any PPT oracle machine A that outputs a message/tagpair

(m; t) suchthat it never queried the taggingoracle on the messagem:

Pr
�
Vers(m; t) = accept

�
�s  Gen(1� ); (m; t)  AT ags ;V ers (1� )

�
� �

Here � is a function of the security parameter � .
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4.1.4 Target Collision Resistance and One-W ayness

Target collision resistanceis a weaker notion of collision intractabilit y that

collision resistance. A target collision resistant function ensemble is also

calleda Universal One-Way HashFunction ensemble (or simply UOWHFs).

A TCR function ensemble is de�ned for a sequenceof sets
�

f 0; 1gm(� ) ; f 0; 1gn(� )
	

� 2 N
,

and consistsof a pair of algorithms (Gen;Eval). However, the TCR attacker

is more restricted than the collision �nding attacker above, sinceit chooses

oneof the colliding inputs without knowledgeof the hashfunction key.

De�nition 13 ( � -TCR function family). A function ensembleH � is a

� -secure TCR function family if for any pair of PPT machines(A1; A2):

Pr
�
hs(x1) = hs(x2)

�
�(x1; � )  A1(1� ); s  Gen(1� ); x2  A2(1� ; � ; x1; s)

�
� �

Here � is a function of the security parameter � .

A notion related to TCR hash functions is that of second preimage-

resistantfunctions. Unlike TCR hashfunctions this security notion is related

to unkeyed hash functions f : f 0; 1gm ! f 0; 1gn (where we can think of m

as being the security parameter).

De�nition 14 ( � -SPR function). A function f : f 0; 1gm ! f 0; 1gn is

� -secondpreimageresistant if for any PPT machineA:

Pr
h
f (x) = f (x0)

�
�
�x

$ f 0; 1gm ; x0  A(1� ; x)
i

� �
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Related to the notion of SPR functions, we can alsode�ne the notion of

preimageresistance or one-wayness. This is a slightly weaker property than

secondpreimageresistance.

De�nition 15. � -secure one way function A function f : f 0; 1gm ! f 0; 1gn

is an � -secureoneway function if for any PPT machineA:

Pr
h
f (x) = y

�
�
�y

$ f 0; 1gn ; x  A(1� ; y)
i

� �

4.1.5 Randomness Extraction

A randomnessextractor is a function that is usedto extract uniformly ran-

dom bits from inputs samplesfrom an imperfect sourceof randomness.This

has beenan extremely useful primitiv e in cryptography, as well as theoret-

ical computer sciencein general. We will give here brief de�nitions for this

primitiv e.

We start by de�ning the notion of min entropy, which is a measureof the

amount of randomnessin a probability distribution. For instanceconsidera

distribution X over f 0; 1gn . The min entropy of the distribution X , denoted

as H1 (X ), is the minimum integer m such that PrX (x) � 2� m for all x 2

f 0; 1gn . HerePrX (x) denotesthe probability assignedto x by the distribution

X .

We will alsoneeda way to quantify the distancebetweentwo probability

distributions, X1 and X2, over a set S. The popular measurein this case
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is statistical distance between X1 and X2. The statistical distance between

X1 and X2 is de�ned as SD(X1; X2)
def
= 1

2

P

s2 S
jPrX1 (x) � PrX2 (x)j. If two

distributions have statistical distance � between them, then they are called

� -closedistributions.

A randomnessextractor is a function h : f 0; 1g� � f 0; 1gm ! f 0; 1gn that

takesa � -bit uniformly random seedand a m-bit input, and outputs a n-bit

output.

De�nition 16 ((k; � ) Extractor). A (k; � ) extractor is a function f : f 0; 1g� �

f 0; 1gm ! f 0; 1gn suchthat for everydistribution X on f 0; 1g� with H1 (X ) �

k, the distribution f (X ; Um ) is � -closeto the uniform distribution on f 0; 1gn ,

where Um denotesthe uniform distribution on f 0; 1gm .

4.2 Securit y of MD modes

4.2.1 Collision Resistance

We will analyze each of the four modes described above for the minimal

assumptionsrequired on the compressionfunction h : f 0; 1g� � f 0; 1gn !

f 0; 1gn neededin order to prove its collision resistance.As we discussed,we

will not restrict ourselvesto the caseof property preservation. In particular,

the security property neededfor the compressionfunction h may be stronger

than collision resistance.
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Plain Merkle-Damg �ard construction

It is a well-known fact that simply assumingcollision resistanceof the com-

pressionfunction does not su�ce to prove collision resistanceof the plain

MD construction. Indeed, if the compressionfunction h has a �xed-point

such that there is somex 2 f 0; 1g� such that: h(x; I V ) = I V. Then the

output of the plain MD construction H collides for the inputs x and x k m,

for any m. Fortunately, if the compressionfunction doesnot have any such

�xed point then the plain MD construction H can be shown to be collision

resistant.

We will state the following lemma in terms of simple security conditions

on the compressionfunction h. In the process,we introducea new security

property that essentially implies that the compressionfunction is a regular

function.

Assumption 1 (Regularit y of outputs). A function h : f 0; 1gm ! f 0; 1gn

is a � output regular function if for any e�cient machine A that givesa 1

bit output:

jPr [A(x) = 1jx  h(Um ) ] � Pr [A(x) = 1jx  Un ]j � �

Here Um and Un denote the uniform distributions on f 0; 1gm and f 0; 1gn ,

respectively.

Now we state the conditions required in order for the plain MD construc-

tion H to be collision resistant.
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Lemma 6. The plain MD construction H using a compressionfunction h :

f 0; 1g� � f 0; 1gn ! f 0; 1gn is a O (` � (� r eg + � col)) collision resistant hash

function 4 if and only if h satis�es the following properties:

� h is � col collision resistant.

� h is an � r eg output regular function.

Pro of: The main idea in the proof is to show that output regularity implies

that no e�cien t attacker can �nd a �xed point in the compressionfunction

h : f 0; 1g� � f 0; 1gn ! f 0; 1gn with non-negligibleprobability. That is, there

is a negligible � such that for all e�cien t attackers A:

Pr
h
h(x i ; h(: : : ; h(x1; I V ) : : :)) = I V

�
�
�I V $ f 0; 1gn ; x1 : : : x i  A(I V)

i
� �

To the contrary, say there is an e�cien t attacker that �nds such a �xed point

with non-negligibleprobability � 0, then we can show that it either breaksthe

collision resistanceor the output regularity assumptionfor the compression

function.

In order to show this, choosethe initialization vector I V as I V  h(x)

(for x  U� � Un ), instead of I V  Un . If the successprobability of A

changesby a non-negligibleamount then we can break the output regularity

assumption. Otherwise,the attacker A still �nds, with non-negligibleproba-

bilit y, a sequenceof � -bit blocksx1 : : : x i such that h(x i ; h(: : : ; h(x1; I V ) : : :)) =

4` denotesthe maximum number of � -bit blocks throughout this section
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I V . SinceA is unlikely to guessthe preimagex of I V , it is likely to �nd a

collision for h. Thus maximum successprobability of an e�cien t attacker in

�nding such a �xed point is � r eg + � col.

Now that we have shown that no e�cien t attacker is likely to �nd �xed

points in h, we can essentially use the original proof of Merkle-Damg�ard

[22, 54] to show that the plain MD construction H is collision resistant as

well.

Enco de-then-MD construction

It makessenseto only considerdeterministic input coding schemes,sincethe

resulting construction must behave like a function. We analyze two of the

most popular such coding schemes,i.e. pre�x-fr ee encoding and su�x-fr ee

encoding.

We �rst not that usinga pre�x-free encoding on the input doesnot enable

us to get rid of any security properties in lemma6. Hencewe can essentially

restate the sameresult for the pre�x-free MD construction Hpr e as well. On

the other hand, if we use a su�x-fr ee encoding (such as Merkle-Damg�ard

strengthening) then the resulting su�x-free MD construction Hsuf can be

shown to be collision resistant by simply assumingthe collision-resistanceof

the compressionfunction h [22, 54].
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MD-then-Chop construction

Note that simply assumingcollision resistanceof the compressionfunction is

not useful for this construction, sincewe truncate s bits of the output. For

instance,considerthe casewhenh is collision resistant on theses bits, while

is the constant function for all other bits (noted by Kelsey [44]). However,

in our setting this only meansthat we needto make a stronger assumption

on the compressionfunction h. In particular, we will instead assumethat h

is collision resistant even if we remove theses bits from its output.

Lemma 7. The MD-then-chop construction Hchops , using a compression

function h : f 0; 1g� � f 0; 1gn ! f 0; 1gn , is a O(` � (� r eg + � 0
col)) collision

resistant hashfunction if the following holds:

� The function h0 : f 0; 1g� � f 0; 1gn ! f 0; 1gn� s de�ned as h0(x; y) =

h(x; y)jn� s (i.e. choppingthe last s bits from the output of h) is a � 0
col

collision resistant function.

� h is a � r eg output regular function.

The proof of this lemma is essentially the sameas for lemma 6.

NMA C/HMA C construction

Wenote that usingthe NMAC constructionHnmac doesnot help in improving

upon the collision resistanceof the plain MD construction H. This is essen-

tially becauseany collision in the �rst the plain MD construction of Hnmac
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(using initialization vector I V1) essentially implies a collision for the entire

construction. Hence,at best, we can restate lemma 6 for this construction

as well.

Sincethe HMAC construction Hhmac is simply a black-box instantiation

of the NMAC construction, this does not help in improving the collision

resistanceas well. However, we note that this construction has the best

exact security if � 1 6= ? .

4.2.2 Pseudorandomness

An issuein the pseudorandomnessanalysisof the MD modes of operation

is the location of the PRF key. As discussedabove, we need to specify

the location of the key such that the resulting construction is still a black-

box variant of plain MD. For our analysis, we will assumethe key length

to be the length of a single block (i.e. � bits for the compressionfunction

h : f 0; 1g� � f 0; 1gn ! f 0; 1gn), and we will denote the key as K . We will

analyzetwo approachesfor keying each MD mode of operation:

1. Prepend the key to input: The PRF construction H outputs H (K k X )

on input X .

2. Append the key to input: The PRF construction H outputs H (X k K )

on input X .

Moreover, we will needtwo versionsof pseudorandomnessde�nitions for the

compressionfunction, one where the key occupiesthe last n bits and other
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where it occupiesthe �rst � bits. We get the following two assumptionson

the compressionfunction in this manner.

� Standard PRF (sPRF) security: Here we require that for a uniformly

chosenK 2 f 0; 1gn , the function h(�; K ) must beindistinguishablefrom

a truly random function.

� Dual PRF (dPRF) security: Herewerequirethat for a uniformly chosen

K 2 f 0; 1g� , the function h(K ; �) must be indistinguishablefrom a truly

random function.

Depending on the maximum distinguishing advantage � of an e�cien t at-

tacker in each case,we call the compressionfunction h � -sPRF or � -dPRF.

Plain MD construction.

In this caseif we prepend the PRF key to the hash function input, then

the resulting construction is not a PRF. This is becausean attacker can use

the extensionattack to �nd H (K k X k Y) by simply knowing the output

H (K k X ) and computing the compressionfunction on the remainingblocks

itself (where it doesnot needto know the key K ). On the other hand, if we

append the PRF key to the input, then we can show that if the plain MD

construction usingh is collision-resistant and satis�es the dual PRF security,

then the plain MD construction H(� k K ) is a variable-length input PRF.

Lemma 8. The plain MD construction H is a O(` � (� col + � r eg) + � dpr f ) PRF

(with PRF key appended to the function input) if the following conditions
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hold:

� h is � col collision resistant.

� h is a � r eg output regular function.

� h is a � dpr f dual pseudorandomfunction.

Pro of: If the PRF attacker cannot �nd any collisions in the plain MD

construction H, then the n bit chaining variable 5 is unique for each PRF

input. In this case,the dual PRF security of h implies the PRF security of

the entire construction (with the sameadvantage). On the other hand, the

attacker can �nd a collision in H with probability at most O(` � (� r eg + � col)).

Enco de-the-MD construction.

Once again, we will discusstwo deterministic coding schemeshere, pre�x-

free encoding and su�x-fr ee encoding. Let us �rst analyze the su�x-free

MD construction Hsuf . If we prepend the key to the (encoded) input, the

resulting construction is still insecuresincethe extensionattack works in this

caseaswell. On the other hand, if we append the key to the (encoded) input

then the resulting construction is a PRF if the su�x-free MD construction

5The chaining variable denotesthe n bit intermediate inputs/outputs in the MD con-
struction
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Hsuf using the compressionfunction h is a dual PRF and collision resistant

(for which we only needcollision resistanceof h in this case).

For the pre�x-free MD construction Hpr e, if we append the key to the

(encoded) input then we get no advantage as compared to the plain MD

construction and we can only restate lemma 8 in this case. On the other

hand, if we prepend the PRF key to the (encoded) input then the resulting

construction is not vulnerable to the extensionattack in this case.Indeed,it

was shown by Bellare et al. in [5] that the pre�x-free MD construction with

the PRF key in the IV is a PRF only assumingthat the compressionfunction

h satis�es the standardPRF security. However, sincewewill needto prepend

the key to the input (in order to preserve the black-box property of the

construction), we will needto imposean extra condition on the compression

function. In particular, we require that the function de�ned ash(Un ; �) is an

output regular function. That is, if the �rst n bits of the compressionfunction

h are chosenat random then the resulting function is output regular with

high probability.

Lemma 9. The pre�x-fr ee MD construction Hpr e is a O(� 0
r eg+ ` � � spr f ) secure

PRF (with PRF key prepended to the input) if the following conditions hold:

� h is a � spr f sPRF.

� h(Un ; �) is a � 0
r eg output regular function.

Pro of: The proof of this lemma essentially follows from the result of [5].

Indeed,if the attacker succeedswith non-negligibleprobability whenthe PRF
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key is prependedto the encoded input while has at most negligible success

probability if the PRF key is in the IV of the construction, then it violates

the output regularity property of the compressionfunction. This is because

for a random and secretkey as input to h(Un ; �), the output is random and

secretaswell (if the output regularity property holds).

MD-then-Chop construction.

If the PRF key is appendedto the input to the MD-then-Chop construction

Hchops , then a slight variant of lemma8 canbe stated for this construction as

well. Indeed,all we needis to specify the dual PRF and collision-resistance

properties for the compressionfunction with chopped output.

On the other hand, if we prepend the PRF key to the input to Hchops ,

then the extensionattack doesnot seemto go through asin the caseof plain

MD construction. This is becausethe attacker doesnot learn the chopped s

bits of the chaining variableby observingthe output of Hchops for the pre�x of

an input. Indeed, this construction can be proven to be an arbitrary-length

input PRF by makinga slightly non-standardassumptionon the compression

function. In particular, we require the compressionfunction to satisfy the

following resilient sPRF assumption:

Assumption 2 ((s; � )-resilien t sPRF). The function h : f 0; 1g� �f 0; 1gn !

f 0; 1gn is a (s; � )-resilient sPRF if it is a � -secure sPRF evenif the attacker

learns s bits of the n bit key.
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Now wecanstate the following lemmafor the MD-then-Chopconstruction

in terms of this assumption.

Lemma 10. The MD-then-Chop construction Hchops is a O(� 0
r eg + ` � � 0

spr f )

secure PRF (with PRF keyprepended to the input) if the following conditions

hold:

� h is a (s; � 0
spr f )-resilient sPRF.

� h(Un ; �) is a � 0
r eg output regular function.

NMA C/HMA C construction.

The NMAC and HMAC constructions were shown to be securearbitrary-

length input PRFs by Bellare [3]. In [3], it is shown that the HMAC con-

struction with � 1 = � 2 = ? (i.e. with the sameIV for both invocations of

the plain MD construction) is a securearbitrary-length input PRF if the

underlying compressionfunction satis�es both the standard and dual PRF

security de�nitions. This is doneby simply prepending a di�erent � -bit key

to each invocation of the plain MD construction 6.

Lemma 11. The NMAC (resp. HMAC) construction Hnmac (resp. Hhmac ) is

a O(q2` � � spr f + � dpr f ) PRF (with a di�er ent � -bit keyprepended to the input

in each call to the MD construction) for any I V1 and I V2 (resp. � 1 and � 2)

if the following conditions hold:

6if the same key is prepended in both invocations, then the construction is secure
under a slightly stronger assumption, called security against related-key attacks in [5, 3].
We ignore this setting here
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� h is a � spr f -secure sPRF.

� h is a � dpr f -secure dPRF.

4.2.3 Random Oracle

We already analyzedeach of the four modes of operation for indi�eren tia-

bilit y from random oracle in the chapter 3. However, we will mention these

results brie
y for completeness.Note that, in this casewe needto make an

\idealized" assumptionon the compressionfunction. In particular, we will

assumethat the compressionfunction is a �xed-length input random oracle

(FIL-R O).

Plain MD construction.

The plain MD construction does not give an indi�eren tiable construction

a random oracle from a FIL-RO. This is essentially becausethe plain MD

construction is vulnerable to the extensionattack, asshown in chapter 3.

Enco de-then-MD construction.

The su�x-free MD construction Hsuf is alsovulnerable to the extensionat-

tack, and cannot be indi�eren tiable from RO. However, if we apply a pre�x-

free encoding to the input then the resulting pre�x-free MD construction

Hpr e is no longer vulnerable to this attack. Indeed, as shown in the previ-

ouschapter, this construction is indi�eren tiable from RO if the compression
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function is a FIL-RO.

MD-then-Chop construction.

The MD-then-Chop constructioncanbeshown to beindi�eren tiable from RO

if we chop a non-negligible(i.e. super-logarithmic in the security parameter)

number of output bits. However, as shown in chapter 3, this construction

has slightly worse exact security. In particular, we needa birthday bound

over s (number of chopped) bits instead of n bits.

NMA C/HMA C construction.

The HMAC construction with � 1 = 0� and � 2 = ? is indi�eren tiable from

RO. We note that � 1 can be any � -bit block such that � 1 =2 f? ; � 2g, while

� 2 can be any bit string in f?g [ f 0; 1g� . On the other hand, the NMAC

construction is indi�eren tiable from RO if I V1 6= I V2.

4.2.4 Message Authen tication Code

Wewill refer to MACs that work for �xed-length messagesasFIL-MA Csand

thosethat work for variable-lengthmessagesasVIL-MA Cs. We will analyze

each of the modesof operation to seeif they satisfy VIL-MA C security. Let

us �rst note, that a pseudorandomfunction can be consideredto be a MAC

as well (PRF output serves as the messagetag). Thus all the results for

PRF security above hold for VIL-MA C security as well. We will try to �nd
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if thesemodesare VIL-MA Cs under weaker assumptionson the compression

function than thoseneededfor the caseof PRFs.

However, if we assumethe compressionfunction to be simply a FIL-

MAC, then we cannot usethe output of oneapplication of the compression

function to key the construction. One solution to this problem would be to

analyzethe construction in the dedicated-key setting, whereeach call to the

compressionfunction has a separatekey space.For current hash functions,

onecouldassumethat part of the messageblock spacecanbeusedto securely

key the compressionfunction. That is, for the compressionfunction h :

f 0; 1g� � f 0; 1gn ! f 0; 1gn , the key occupiespart of the �rst � bits in the

input. In this case,we can usethe results of [1, 53] to get secureVIL-MA C

constructions. However, as we discussedearlier, this violates the property

that our modesof operation shouldbe e�cien t in terms of input bandwidth.

Thus, we will take a di�erent approach here.

Plain MD construction.

If we prependthe MAC key K 2 f 0; 1g� to the input and apply the plain MD

construction, then the resulting construction is vulnerable to the extension

attack sincethe attacker can obtain the tag for a messageby �rst getting a

tag for the pre�x. On the other hand, if the MAC key is appendedto the

input, then we �nd su�cien t assumptionsto show that H is a secureVIL-

MAC. In particular, we will needthe plain MD construction to be collision-

resistant and the compressionfunction to be a secureMAC when the MAC

150



key occupiesthe �rst � bits of its input.

Lemma 12. The plain MD construction H is a O(` �(� r eg+ � col)+ � mac)-secure

VIL-MA C, whenthe key is appended to the input, if the following conditions

hold:

� h is a � col collision resistant function.

� h is a � r eg output regular function.

� h is a � mac secure MAC, whenthe �rst � bits of its input is considered

to be the key space.

Pro of: The collision resistanceof the plain MD construction (which we get

from the �rst two conditions in the statement of the lemma) implies that the

n-bit input to the last application of h is unique for each new input. Hence

MAC security of the compressionfunction h implies MAC security of the

plain MD construction H.

Enco de-then-MD construction.

If we usea su�x-free encoding and append the MAC key to the input, then

we succeedin reducing the assumptionsneededin lemma 12 for collision

resistance. Indeed, in this case,we can show that the su�x-free MD con-

struction Hsuf is O(� mac + ` � � col) secureVIL-MA C if the compressionfunction

is � col collision resistant and � mac secureFIL-MA C. On the other hand, if we
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prependthe MAC key to the input, then the resulting construction is insecure

sinceit is still vulnerable to the extensionattack.

If we usea pre�x-free encoding, and prepend the MAC key to the input

then the resulting construction is a secureVIL-MA C only if all the conditions

stated in lemma9 hold. On the other hand, the pre�x-free MD construction

Hpr e with MAC key appendedto the input essentially has the samesecurity

as the plain MD construction in lemma 12.

MD-then-Chop construction.

If we prepend the MAC key to the input to the MD-then-Chop construction

Hchops , then the resulting construction can be shown to be a VIL-MA C only

under the conditions from lemma 10. On the other hand, if we append

the MAC key to the input then we can prove the VIL-MA C security of

the resulting construction by making slightly stronger assumptionson the

compressionfunction as comparedto lemma 12.

Lemma 13. The MD-then-Chopconstruction Hchops is mathcalO(` � (� r eg +

� col) + � 0
mac)-secure VIL-MA C if the following conditions hold:

� h is a � col collision resistant function.

� h is a � r eg output regular function.

� h0(�) = h(�)jn� s is a � 0
mac secure FIL-MA C.
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NMA C/HMA C construction.

In this case,if we prepend the MAC key to the input, then we needthe same

conditions as lemma11 in order to prove VIL-MA C security aswell. On the

other hand, if we append the MAC key to the input, then both NMAC and

HMAC constructions can only be proven secureusing the sameconditions

as in the caseof plain MD construction (lemma 12).

4.2.5 Target Collision Resistance

Target collision resistance(TCR) is a strictly weaker property than collision

resistance. However, for somepurposes,TCR hash functions (also called

UOWHFs) su�ce instead of CRHFs. For instance,it is possibleto comeup

with a signature schemeon arbitrary length messagesusing one that works

only for �xed-length messagesby usingTCR hashfunctions. For this reason,

this primitiv e hasattracted even greaterinterest sincethe discovery of better

attacks against the collision resistanceof existing hashfunctions.

When analyzing the TCR security of the hash function modesof opera-

tion, we cannot assumethat the underlying compressionfunction is a TCR

function as well. This is becausethe output of a TCR function need not

be random, so that each subsequent application of the compressionfunction

will require separatekey space(and this dedicated-key setting violates our

requirements from the mode of operation). Instead, we will assumethat the

compressionfunction h : f 0; 1g� � f 0; 1gn ! f 0; 1gn is an unkeyed function
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that satis�es secondpreimageresistancetype properties.

Plain MD construction.

In order to discussthe TCR security of the plain MD construction, we need

to �rst discussappropriate keying mechanisms for this construction. As

we brie
y mentioned above, Shoup[70] described an e�cien t masking-based

construction basedon the plain MD construction. However, this construc-

tion modi�es the chaining variable which violatesour propertiesof black-box

modesof operation. Unfortunately, we do not know of any black-box ways

of keying the plain MD construction such that it can be shown to be a TCR

hashfunction only assumingthe compressionfunction to be a SPR function.

Halevi and Krawczyk [40] suggestedan alternate way of keying the plain

MD construction that satis�es all the properties of a black-box mode of

operation. The construction HK proposedin [40] usesa � -bit key K and

XORs the key with each messageblock in the plain MD construction, i.e.

HK (x1 k : : : k x` )
def
= h(K � x` ; h(: : : ; h(K � x1; I V) : : :))

However, in order to prove TCR security of this construction one needsto

make a slightly non-standard \SPR-t ype" assumption on the compression

function, called the evaluated SPR assumption(e-SPR) [40].

Assumption 3 (evaluated second preimage-resistance). Consider a

function h : f 0; 1g� � f 0; 1gn ! f 0; 1gn and let HK be the plain MD based
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construction using h (described above). The function h is � evaluated second

preimageresistant if any e�cient machineA wins in the following gamewith

probability at most � (over the random choice of I V and the coins of A).

1. A choosesa sequence of � -bit blocks � 1; : : : ; � i .

2. The challengerchoosesa randomkeyK andsetsc = HK (� 1� K ; : : : ; � i � 1�

K ) and m = � i � K .

3. A wins if it can �nd c0 and m0 suchthat h(m0; c0) = h(m; c).

Halevi and Krawczyk [40] show that if the compressionfunction h is an

e-SPRfunction, then the construction HK described above is a secureTCR

hashfunction. However, in their proof they require that the inputs provided

to HK must be su�x-free. Indeed, this is required for their reduction to go

through. However, we note that even for the plain MD construction (with

possibly\non-su�x-free" inputs), onecanmake an additional assumptionon

the compressionfunction to enableus to apply the proof technique of [40].

Lemma 14. The construction HK is an O(` � (� f ix + � espr))-secure TCR hash

function if the following conditions hold:

� h is an � espr-secure e-SPRfunction.

� For a randomly chosenI V, no e�cient machineA has successproba-

bility more than � f ix in �nding a sequence of � -bit blocks suchthat:

h(x i ; h(: : : ; h(I V; x1) : : :)) = I V

155



Enco de-then-MD construction.

If we apply a su�x-free encoding to the input beforeusing the construction,

then the resulting mode of operation Hsuf ;K is a TCR hash function based

only on the assumptionthat h is an e-SPRfunction [40]. On the other hand,

if weusea pre�x-free encoding then it doesnot help in improving the security

of the plain MD constructionand weneedall conditionsof lemma14to prove

the TCR security of the resulting construction.

MD-then-Chop construction.

For the MD-then-Chop construction, we need to make a slightly stronger

assumptionon the compressionfunction to prove the TCR security of the

resulting construction. In particular, weneedto assumethat the compression

function h is e-SPRevenif wechop a non-negligiblenumber of its output bits.

If we replacethe secondcondition in lemma 14 wit this stronger condition,

then it holds for the MD-then-Chop construction as well.

NMA C/HMA C construction.

Using the NMAC or HMAC construction does not lead to improved TCR

security of the resulting construction. Again this is becauseif the attacker

�nds a collision in the �rst invocation of the plain MD construction then it

implies a collision for both NMAC and HMAC construction.
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4.2.6 Second Preimage Resistance.

In this section,we will analyzeeach of the modesof operation for the min-

imal assumptionson the compressionfunction neededin order to prove the

SPR security of the construction. Unfortunately, to the best of our knowl-

edge,there is no black-box mode of operation that is property preservingfor

secondpreimageresistance.Hencewe will needto make a slightly stronger

assumptionon the compressionfunction h.

Assumption 4 (computed Second Preimage Resistance (cSPR) [40]).

A function h : f 0; 1g� � f 0; 1gn ! f 0; 1gn is a � -securecSPRfunction if any

e�cient machineA hassuccessprobability at most � in the following game:

1. The challenger randomly selects a sequence of � -bit blocks x1; : : : ; x` ,

sets c = H(x1 k : : : k x i � 1) and x = x i . Here H is the plain MD

construction using the compression function h and random I V. The

challengersendsx1; : : : ; x i to A.

2. A wins if it �nds (x0; c0) 2 f 0; 1g� � f 0; 1gn suchthat h(x0; c0) = h(x; c).

Note that this assumptionis quite similar to the eSPRassumptionthat

we neededfor the TCR hashfunction case.

Plain MD construction.

Here we will assumethat the compressionfunction h is a cSPR function.

However, in order to prove SPR security of the plain MD construction, we

157



will also needto assumethat the attacker cannot �nd �xed points starting

from a random I V.

Lemma 15. The plain MD construction H using the compressionfunction h

is a O(` � (� cspr + � f ix ))-secure SPR function if the following conditions hold:

� h is a � cspr -secure cSPR function.

� For a random initialization vector I V , no e�cient attacker can �nd a

sequence of � -bit blocks x1; : : : ; x i suchthat H(x1 k : : : k x i ) = I V with

probability more than � f ix .

Enco de-then-MD construction.

If we usea su�x-free encoding on the input, then the resulting construction

Hsuf can be proven to be a SPR function solely on the assumptionthat the

compressionfunction h is a cSPRfunction. On the other hand, the pre�x-free

MD construction doesnot help in gaining any improvement in SPR security

over the plain MD construction.

Lemma 16 ([40]). The su�x-fr ee MD construction Hsuf is a O(` � � cspr )-

secure SPR function if the compression function h is a � cspr -secure cSPR

function.

MD-then-Chop construction.

As in the caseof collision resistanceand TCR functions, we will need to

imposea slightly stronger assumptionon the compressionfunction in order
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to prove the SPR security of the MD-then-Chop construction Hchops . In

particular, we will needto assumethat the function h0(�) = h(�)jn� s is � 0
cspr -

secureSPR function. This assumptionalongwith the secondcondition from

lemma 15 su�ces to show that the MD-then-Chop construction is a O(` �

(� f ix + � 0
cspr ))-secureSPR function.

NMA C/HMA C construction.

The NMAC/HMA C construction do not give any better SPR security as

comparedto the plain MD construction. This is becausea collision in the

�rst invocation of the MD construction impliesa collisionfor both the NMAC

and HMAC constructions.

4.2.7 Randomness Extraction

The idea of using the MD construction as a randomnessextractor was dis-

cussedby Dodis et al in [25]. They showed that for getting any useful ran-

domnessextraction properties from the MD construction, oneneedsto make

a really strongassumptionon the compressionfunction h. In particular, they

assumethat the compressionfunction h : f 0; 1g� � f 0; 1gn ! f 0; 1gn is an

ideal randomnessextractor, which is the sameas assumingit to be a family

of randomfunctions7. That is, the function h(�; x) is a random function from

� to n bits when x is uniformly distributed. We debatesuch a compression

7Note that this is a weaker assumption than assumingh to be a FIL-R O. In particular,
it is a (very ine�cien tly) realizable assumption.
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function h asa family of random functions f hr g for r 2 f 0; 1gn .

Let us start by explaining why oneneedsto make such a strong assump-

tion on h. If we assumeh to be a regular extractor, then the distribution of

the output of h(�; x) for random x has a non-zerostatistical distance from

the uniform distribution on f 0; 1gn . If this output is used a seedfor the

next application of the compressionfunction then one has no guarantee of

extraction, sincethe seedus no longer independent of the � -bit input block.

Actually, Dodis et al [25] do give a positive result for the MD construction

simply under the assumptionthat h is an almost-universalfamily of functions

8. However, for this result they require that every input block for the MD

construction must have someamount of conditional min-entropy9 (see[25]

for more details). However, all the results hereare basedon the assumption

that h is an ideal randomnessextractor.

Plain MD construction.

In this case,onecan show that for a restricted classof inputs (from certain

high min entropy distributions), the output of the plain MD construction,

using an ideal randomnessextractor h, is closeto uniform. The input distri-

bution should be such that it has high overall min entropy as well as high

conditional min-entropy in the last input block.

8i.e., for the function h(�; x), where x uniformly distributed on f 0; 1gn , for any two
distinct inputs y and z, the probabilit y that h(z; x) = h(y; x) is negligibly close to the
corresponding probabilit y for a random function

9This is the min entropy of an input block conditioned on all the other input blocks.
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Lemma 17 ([25]). Let f Hr g be the plain MD construction de�ned over a

family of random functions f hr g, where the seed r is essentially the random

I V in the plain MD construction. Let X be the distribution of the inputs to

H (over bit strings with at most ` � -bit blocks) and let X ` be the distribution

induced by X on the last block of the input. If H 1 (X ) > n + 2log
�

1
�

�
and

H1 (X` ) > log` + 2log
�

1
�

�
, then SD(HIV (X ); U n ) = O(� ) where Un is the

uniform distribution on n-bit strings.

Enco de-then-MD construction.

Note that if oneappliesa su�x-free encoding to the input in conjunction with

the plain MD construction, then the (encoded) input to the MD construction

may no longersatisfy the min entropy requirements from lemma17. Indeed,

considerapplying Merkle-Damg�ard strengtheningto the input beforethe MD

construction. In this case,the last block hasno conditional entropy (sinceit is

simply the input length). Nonetheless,in [25], Dodis et al. show that adding

any �xed padding to an input that satis�es all min entropy requirements still

givesa good randomnessextractor! Similarly, we cannot say much about a

generalpre�x-free encoding since it might changethe input distribution in

an arbitrary way. However, if we considerprepending input length to the

input, then it still givesa good randomnessextractor.
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MD-then-Chop construction.

Quite surprisingly, if we chop a su�cien t number of output bits then onecan

prove randomnessextraction properties of the resulting construction based

on fewer assumption than lemma 17. In particular, we can get rid of the

requirement that the last input block hassu�cien t conditional min entropy.

Lemma 18 ([25 ]). Let Hchops ;r be the MD-then-Chop construction de�ned

over a family of random functions f hr g, where the seed r is essentially the

randomI V used in the construction. Let X be the input distribution to Hchops

(over bit strings with at most ` k-bit blocks). If H1 (X ) = n + s + log(` +

1), then we get that SD(Hchops (X ); Un� s) � 2� s where Un� s is the uniform

distribution on (n � s)-bit strings.

NMA C/HMA C construction.

For the NMAC construction, it canbeshown that if randomand independent

I V1 and I V2 are usedin the two applications of the plain MD construction,

then the resulting construction Hnmac is a good randomnessextractor if the

compressionfunction represents a family of random functions. We can then

restate lemma 17 for the construction Hnmac as well, with the sameexact

security. However, it turns out that translating theseresults to the setting

of the HMAC construction is not straightforward [25].
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4.2.8 One-W ayness

One way functions are alsooften referredto aspreimageresistant functions.

This security property is even weaker than secondpreimageresistance.

Plain MD construction.

In this case,we will needto assumethat the compressionfunction h is a one

way function. Moreover, we will alsorequire that h is output regular, sothat

its output is uniformly distributed for a random input. This is essentially

becausewe needthe input to a one-way function to be random in order to

usethe one-waynessproperty.

Lemma 19. The plain MD construction H is O(` � � r eg+ � owf )-secure one-way

function if the following conditions hold:

� h is an � r eg output regular function.

� h is a � owf -secure one-wayfunction.

Pro of: Say an attacker A has non-negligibleadvantage in the one-wayness

gameagainst the plain MD construction H. Then we can construct another

attacker A0, that simply gives its challengeas a challengeto A. Sinceh is

output regular, the attacker A cannot tell the di�erence between this chal-

lengeand if it was given the output of H on a random input. Thus it has

non-negligiblesuccessprobability in this gameas well. The attacker A0 can

usethe preimageoutputted by A to invert its challengeas well.
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Enco de-then-MD construction.

Note that if we use an arbitrary su�x-free encoding before the MD con-

struction, then we cannot say much about the one-waynessof the resulting

construction sincethe input distribution could be arbitrary. However, if we

apply Merkle-Damg�ard strengtheningto the input, then we canshow that the

resulting construction is a one-way function under su�cien t assumptions.In

particular, we needto make an additional assumptionthat for any message

block, most outputs of the compressionfunction have a small number of

preimagesin the chaining variable that are consistent with the given block.

Note that this property certainly holds for a random compressionfunction

(and, thus, holds for most compressionfunctions). As for pre�x-free en-

coding, onceagain we cannot say anything general(for the samereasonas

above), but when prepending the messagelength we are essentially back to

the setting of plain MD discussedabove, exceptwe needto assumethat the

output of the compressionfunction on a random IV and a �xed message

block is random.

In particular, we note that encoding the input in any way doesnot help

as far as one-waynessof the construction is concerned. In fact, we only

needmore assumptionsto prove this property, ascomparedto the plain MD

construction.
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MD-then-Chop construction.

In order to prove the one-way security of the MD-then-Chop construction, we

will needto make a slightly strongerassumptionon the compressionfunction

h. In particular, we assumethat the compressionfunction h is one-way with

s bits of the output chopped. Let the one-way security of the function h with

truncated output be � 0
owf . Then we canshow that Hchops is a O(` � � r eg+ � 0

owf )-

secureone-way function (similar to lemma 19)

NMA C/HMA C construction.

The NMAC construction is a one-way function under the sameconditionson

the underlying compressionfunction h as required in lemma 19. However,

we require that random and independent initialization vectors I V1 and I V2

are usedin the NMAC construction. However, it turns out that translating

theseresults to the setting of the HMAC construction is not straightforward.

4.3 Implications for Actual Hash Functions

Wewill now translate our resultsinto suggestionsfor usageof actual \cascade

construction based" hash functions, such as functions from the SHA family.

As we mentioned earlier, we have tried to �nd the minimal assumptions

neededto make each of the four modesof operation secure(for each of the

security properties). Thus, we have left part of the \decision making" for

the practitioner who usesour results. In particular, the practitioner must
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considerthe following questions:

1. What one needsto assumeabout the hash function in order for the

cryptosystem(that the hashfunction is being usedfor) to be provably

secure?

2. What level of trust the practitioner is willing to placein the underlying

compressionfunction?

The answer to the �rst question will help in deciding the security property

to look for in the hash function mode of operation. The answer to the

secondquestionmay not be as straightforward sincethe designof the com-

pressionfunctions is quite complex and mostly basedon heuristic. In this

case,the practitioner needsto weigh all the properties (s)hedesiresfrom the

cryptosystem, in terms of e�ciency , security etc. Thus, while somemay be

willing to make a slightly stronger assumptionon the compressionfunction

to have a more e�cien t implementation, others may be willing to sacri�ce

somee�ciency for better security.

Now we will give somebasic recommendationsfor actual hash functions

with respect to the various security properties.

4.3.1 Collision Resistance

Each of the SHA functions are essentially basedon the su�x-free MD con-

struction (using MD strengthening). Hence,collision resistancefor each of
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thesehashfunctions is asymptotically sameas�nding collisionson the com-

pressionfunction. It doesnot make much senseto usethe \truncated" ver-

sions,SHA-224and SHA-384,sincethis only sacri�cesthe collision resistance

of the original \un truncated" version (i.e. SHA-256 and SHA-512, respec-

tively). Using the NMAC/HMA C construction doesnot help in this case.

4.3.2 Pseudorandomness

We note that using the full SHA-256or SHA-512hashfunctions makesmore

sensefor pseudorandomnessthan using the chopped versions(SHA-228 or

SHA-384), which only have worsesecurity. If any of the SHA functions are

used, as it is, for pseudorandomness,then we recommendappending the

PRF key to the input instead of prepending it. However, we recommend

using these functions in conjunction with a pre�x-free encoding (such as

prepending input length to the input) in which casethe PRF key should be

prepended to the input. Another option would be to composetwo calls to

SHA-1, with independent keysprependedin each call, to get security based

on the sPRF and dPRF security of the compressionfunction.

4.3.3 Random Oracle

Note that none of the SHA functions should be used, as it is, if the se-

curity of the cryptosystem requires the random oracle assumption for the

hash function. This is becausethe plain MD construction (even with MD
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strengthening) is vulnerable to simple attacks in the indi�eren tiabilit y sce-

nario. One may think that both SHA-224 and SHA-384 that correspond

to \chop" versionsof the functions SHA-256and SHA-512would be secure

(since the MD-then-Chop construction is secure). However, note that only

32 bits are chopped in the caseof SHA-224, which does not give su�cien t

security for almost all applications. Hence,only SHA-384 (that chops 128

bits) may be suitable to be useddirectly to instantiate the random oracle.

We recommendusing the HMAC construction involving two black-box

calls to the SHA function (while prependingdi�erent � 1 and � 2 in each cal)

for this purpose. Using any of these hash functions in conjunction with a

pre�x-free encoding will alsowork for this purpose.

4.3.4 Message Authen tication

If the SHA functions areusedasMACsdirectly, then the MAC key shouldbe

appendedto the input. In this case,security dependson both the MAC se-

curity and collision resistanceof the compressionfunction. Using the HMAC

construction doesnot help in improving the security either. Moreover, when

the \chopped" functions SHA-224or SHA-384are usedasMACs, then their

security is only worsethan the unchopped versions(SHA-256and SHA-512).

If oneis willing to assumepseudorandomnessof the compressionfunction,

then the techniquesmentioned above for pseudorandomnesscan be usedas

well. Another approach would be to assumethe dedicated-key setting, by

inserting the MAC key in each application of the compressionfunction (at the
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cost of someinput bandwidth) and then onecould useoneof the techniques

suggestedin [1, 53].

4.3.5 Target Collision Resistance or UO WHFs

We recommendusing the technique suggestedby Halevi and Krawczyk [40]

if the SHA functions are used as UOWHFs. In this case,one XORs the

UOWHF key to each block of the input. SinceMD strengtheningis already

usedin all thesefunctions, the UOWHF security of this construction is based

only on the eSPR[40] (seeabove) of the compressionfunction.

4.3.6 Second Preimage Resistance

It makes senseto use the SHA hash functions directly for the purposeof

second preimageresistance without using any additional techniques, since

they do not lead to improved security (note that these functions already

incorporate MD strengthening).

4.3.7 Randomness Extraction

All the positive results for randomnessextraction have reasonableinterpre-

tation in practice, only if we arewilling to assumethat the SHA compression

function is closeto being a family of random functions. Even though it is

theoretically impossible,sincethe SHA compressionfunction hasa short de-

scription, it might still be a more reasonableassumptionthan assumingthe
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compressionfunction to be a FIL-RO.

Under this assumption,we can deducethat the SHA functions are good

randomnessextractors for input distributions with high min entropy overall

and in the last block. On the other hand, as we saw above, it might be a

good idea to use chopped function SHA-384 for this purposeto get better

extraction properties (SHA-224 doesnot have su�cien t number of chopped

bits to give useful advantage). Using the HMAC construction doesnot help

in improving the extraction properties.

4.3.8 One-W ayness

In the caseof \one-wayness", the security of the chopped functions, SHA-

224 and SHA-384,seemsto rely on stronger assumptionsthan the security

of the corresponding \unchopped" versions(SHA-256and SHA-384). This is

becausethe one-way security increaseswith the number of output bits. On

the other hand, it might be the casethat SHA-224still has higher security

than SHA-1, which seemsintuitiv e given the bigger IV of SHA-224. More-

over, messageencoding or HMAC construction only seemsto decreasethe

one-waynessof the hashfunction.
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Chapter 5

Feistel net work made public

FeistelNetworks are extremelypopular tools in designing\cryptographically

strong" functions. Such networks are basedon iterativ e application of the

simple Feistel permutation. In particular, given a function f : f 0; 1gn !

f 0; 1gn , the Feistel permutation basedon function f is de�ned as:

	 f : f 0; 1g2n ! f 0; 1g2n

xL k xR 7! xR k f (xR) � xL

Typically, a Feistel network consistsof several iterativ e applications of the

Feistel permutation with independent functions f usedin each application.

The various iterativ e applications of the Feistel permutation are called the

roundsof the Feistel network, while the corresponding functions are called

round functions. Among their applications, they are commonly usedin the
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designof popular block ciphers, such as DES, as well as other constructs,

such as popular padding schemesOAEP [9] or PSS-R[10]. Even though a

theoretical justi�cation for the useof the Feistelnetwork in designof DESwas

not disclosedat the time of its release,this justi�cation was later provided

by the celebratedresult of Luby and Racko� [47].

5.0.9 Lub y-Rac ko� 's result and Impro vements

Luby and Rack off's resul t [47]. Luby and Racko� noted that the

security of a block cipher can be best analyzed in terms of its \closeness"

from a uniformly random permutation for each key. That is, it should be an

independent pseudorandompermutation for every di�erent key. Moreover, as

a justi�cation for the use of Feistel network in the designof block ciphers,

they showed that three (resp. four) rounds of the Feistel transform are suf-

�cient to turn a pseudorandomfunction (PRF) family into a pseudorandom

permutation (PRP) family (resp. strong PRP family (SPRP)). In particu-

lar, their construction of a PRP (resp. SPRP) consistedof a three (resp.

four) round Feistel network with independent PRFs (from the PRF family)

as round functions.

Subsequent Impr ovements. There hasbeena lot of subsequent work on

improving various aspects of the Luby-Racko� result. (referred to as \LR"

from now on). Naor and Reingold [58] provided a simpler proof of the LR

result. Moreover, they generalizedthe result and showed that the four round

173



construction remains secureeven if the �rst and last round of the Feistel

transform are replacedby pairwise independent permutations.

Maurer andPietrzak [51] studiedthe exactsecurity of the LR construction

if the number of Feistel rounds is increasedfrom four. In particular, they

noted that LR type proofsconsistof two parts, �rst the PRFs in each rounds

of the PRP/SPRP construction are replacedby uniformly random functions.

Then the resulting construction is provento besecureagainstany unbounded

attacker that makes lessthan an exponential (of the form O(2cn)) number

of queries. LR showed that the four round construction is secureagainst

any attacker that makesO(2n=2) queries.Maurer and Pietrzak [51] improved

this result by showing that a 6k round Feistel network is secureagainst any

attacker that makesupto O(n � (1 � O(1=k))) queries(thus approaching the

information-theoretic bound of O(2n) ask ! 1 ).

Patarin [64] signi�cantly improved this result by showing that a 5 (resp.

6) round Feistel network is a securePRP (resp. SPRP) against any un-

boundedattacker making q � 2n queries,thusshowing that the information-

theoretic bound can be achieved within a constant number of rounds.

Ramzanand Reyzin [69] generalizedthe LR result from a di�erent per-

spective. They studied the security of the Feistel network (with PRFs)

against attackers that are given oracle accessto some(or all) of the round

functions. They showed that if the attacker has oracleaccessto the middle

two round functions, then the four round Feistel network is still a secure

SPRP. On the other hand, they also showed that if there is an e�cien t
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attacker that, when given oracle accessto either of the �rst or last round

function, breaksthe SPRP security of the four round construction.

Apart from thesethere wereresultsthat studied the security of the Feistel

network when not all of the round functions are independent ([67, 63]). In

a recent work, Maurer et al [50] studied the security of the Feistel network

whenthe round functionsarenon-adaptively securePRFs insteadof adaptive

security.

5.0.10 The Problem and Our Result

A commonaspect of all the works on the Feistel network mentioned above

is that they crucially rely on the following assumptions:

(a) the (pseudo)randomnessof round functions; and

(b) thesecrecy of (at least someof) the intermediate roundvaluesappearing

during the Feistel computation

If either of theseassumptionsis not true then each of the above results is

no longer valid. However, there are several natural scenarioswhereone (or

both) of theseassumptionsare violated.

Is Unpredict ability enough? We start with the assumptionregarding

pseudorandomnessof round functions. The assumptionis quite strong, since

practical block ciphers certainly do not usePRFs as their round functions.

Instead, they heuristically useconsiderablymore than the three-six rounds
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predicted by the LR and all subsequent \theoretical justi�cations". Thus,

a large disconnectstill remains to be bridged. Clearly, though, we needto

assumesome security property of the round functions, but can a weaker

property be enoughto guarantee security? In the context of domain exten-

sion of messageauthentication codes, An and Bellare [1] studied a natural

question whether unpredictability | a much weaker property than pseudo-

randomness| can at least guarantee the unpredictability of the resulting

Feistel permutation. Although not as strong aspseudorandomness,this will

at least guarantee someminimal security of block ciphers(seenext chapter),

is enoughfor messageauthentication, and anyways doublesthe domainof the

unpredictablefunction, which is useful(and non-trivial!) by itself. [1] gave a

negative answer for the caseof three rounds,and suggestedthat \even more

roundsdo not appear to help". This result indicatesthat previous\LR-t ype

techniques" are insu�cien t to handle unpredictability (since in the caseof

PRFs three rounds are enough),and also leavesopen the question whether

more Feistel rounds will eventually be enoughto preserve unpredictability.

Is it Safe to Leak Intermedia te Resul ts? Another crucial reasonfor

the validit y of the LR result is the fact that all the intermediate round values

are never leaked to the attacker. In fact, the key to the argument, and other

results mentioned above, is that the attacker e�ectively getsno information

about most of thesevalues in casea PRF is used for the round functions,

and simple attacks (which we later generalizeto many more rounds) are

possibleto invalidate the LR result in casethe intermediate round values
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are leaked. Unfortunately, for many natural applicationsthis assumption(or

conclusion!) cannot beenforced,and totally newargument is needed.There

are several examplesof such applications.

Starting with the simplestexample,intermediate valuesmay be inadver-

tently leakedthrough an attack. For example,onemight imaginea smartcard

implementing a block cipher via the Feistel network using a securechip im-

plementing a PRF. In this case,the attacker might be able to observe the

communication betweenthe smartcardand the chip, although it is unableto

break security of the chop. More realistically, when round functions are not

PRFs, the attacker might get a lot of information about the intermediateval-

uesanyway, even without extra attack capabilities. For instance,in the case

of unpredictablefunctions(UFs) mentioned above,wewill construct provably

secureUFs such that the output of the Feistel Network completely leaksall

intermediate round values. Although arti�cial, this exampleillustrates that

weaker assumptionson the round functions can no longer guarantee the se-

crecy of intermediate values. For yet another example, the round function

might simply be public to begin with. This happenswhen oneconsidersthe

questionof implementing an ideal cipher from a random oracle. In this case

the round function is a publicly accessiblerandom oracle, and is certainly

freely available to the attacker. This question will be consideredin chapter

7. As a �nal example (not consideredin prior work), the attacker might

get hold of the intermediate valuesbecausethe application requires to reveal

such values. This happenswhen one tries to add veri�ability to PRFs and
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PRPs (or their unpredictable analogs),which we describe in more detail in

the next chapter.

Our Resul ts. In order to dealwith such situations whenthe intermediate

round valuesmay be leaked to the adversary, and alsohandlecaseswhenthe

round functions may not be pseudorandom,we develop a new understand-

ing of the Feistel network. In particular, we develop a general framework

for studying the Feistel network that is applicable in all such scenarios. In

our modeling, a k-round Feistel network is applied to k members f 1 : : : f k

independently selectedfrom some(not necessarilypseudorandom)function

family C, resulting in a Feistel permutation � . Whenever an attacker makes

a forward (resp. inverse)query to � (resp. � � 1), we assumethat it learnsall

intermediate values.

On the negative side, we show a simple attack allowing an adversary

to compute any value � � 1(y) by making at most exponential in k number

of forward queriesto � . Since such an inversion should be unlikely (with

polynomially many queries)even for an unpredictablepermutation, this im-

mediately meansthat at least a superlogarithmic number of Feistel rounds

(in the security parameter � ) are necessaryto guarantee security for any of

the applications above. Aside from showing the tightness of all our posi-

tive result describe below, this result partially explains why practical block

ciphers use signi�c antly more than 3 � 6 roundspredicted by all the previ-

ous \theoretical justi�cations" of the Feistel network. Indeed,sinceall such

ciphers heuristically use round functions which are not PRFs, and we just
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showed that even unpredictable functions might leak a lot (or even all) of

the intermediate results, the simpleattack we present might have beenquite

applicable if a small constant number of rounds was used!

On the positive side, we show a general combinatorial property of the

FeistelNetwork which makesessentially no assumptions(such aspseudoran-

domness)about the round functions used in the Feistel construction, and

allows us to apply it to a wide variety of situations described above, where

the previous techniquesfailed. In essence,for any s � k=2, we show that if

an attacker, making a sub-exponential in s number of (forward or backward)

queriesto the construction and always learning all the intermediate round

values, can causea non-trivial collision somewherebetween rounds s and

k � s, then the attacker can also�nd a simple (and non-trivial) XOR condi-

tion on a constant (up to six) number of the round valuesof the querieshe

hasmade. This meansthat if a function family C is such that it is provably

hard for an e�cien t attacker to �nd such a non-trivial XOR condition, |

and we call such families 5-XOR resistant, | then it is very unlikely that

the attacker can causeany collisions between rounds s and k � s (as long

as s, and thus k, are super-logarithmic in the security parameter � ). In the

next chapter, we show that onceno such collisionsare possible,it is possible

to directly arguethe security of the Feistel Network for our applications.
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5.1 Preliminaries

Wewill denoteby Fibonacci(k) the k th Fibonaccinumber, and thusFibonacci(k) =

O(1:618k).

The Feistel transformation using f : f 0; 1gn ! f 0; 1gn is a permutation

	 f on 2n bits de�ned as, 	 f (x)
def
= xR k xL � f (xR ). The symbols xL and

xR denote the left and right halvesof the 2n bit string x. We will also call

the Feistel network consistingof k iterated applications of the Feistel trans-

formation, a k-round LR construction and denoteit by 	 f 1 :::f k (or 	 k when

f 1 : : : f k are clear from context) wheref 1 : : : f k are the round functions used.

On a 2n bit input, the construction 	 k generates(k + 2) n-bit intermediate

round values, the last two of which form the output. This construction is

illustrated in �gure 5.1.

5-X OR Condition. Consider a k-round LR construction 	 k , that uses

arbitrary round functions f 1 : : : f k . Now consider any sequenceof q for-

ward/in versequeriesprovided to this construction. As discussedabove, in

the processof computing its output the LR construction 	 k also generates

(k + 2) n-bit round values. We will denotethe n-bit round valuesassociated

with the i th query asRi
0; Ri

1; : : : ; Ri
k ; Ri

k+1 . If this wasforward (resp. inverse)

query, then the 2n bit input value is Ri
0 k Ri

1 (resp. Ri
k k Ri

k+1 ).

For any j 2 f 1; : : : ; kg, the LR construction performsthe round function

evaluation f j (Ri
j ). We call this a new round function evaluation if R i

j 6= Ri 0

j

for any i 0 < i . In this case,if the i th query is a forward (resp. inverse)one,
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Figure 5.1: The k-round Feistel Network

then the round value Ri
j +1 (resp. Ri

j � 1) is the new round value generatedas

a result of this round function evaluation.

We say that the 5-X OR condition holds for this sequenceof q queries,

with corresponding round values
�

Ri
0; Ri

1; : : : Ri
k+1

	
i 2f 1:::qg

, if there is at least

one new round function evaluation such that the corresponding new round

value Ri
j generatedas a result can be represented as a bit-by-bit XOR of

upto 5 previously existing round values,that is:
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� If i th query is a forward query, then Ri
j can be represented as an XOR

of upto 5 round valuesRi 0

j 0, such that either i 0 < i or (i 0 = i) ^ (j 0 < j ).

� If i th query is an inversequery, then Ri
j can be represented asan XOR

of upto 5 round valuesRi 0

j 0, such that either i 0 < i or (i 0 = i) ^ (j 0 > j ).

5.2 Insecurit y of O(log� )-round Feistel

Wewill demonstrateherethat upto a logarithmic number of Feistelroundsdo

not su�ce for any of our results. Essentially , we will describe an e�cien t at-

tacker A that only makesforward queriesto the k-round LR construction 	 k

(using arbitrary round functions f 1 : : : f k), and �nds the input corresponding

to any permutation output y 2 f 0; 1g2n .

Theorem 18. For the k round LR construction 	 k that usesk = O(log � )

round functions, there exists a probabilistic polynomial time adversary A �

that takesoracle accessto 	 k . The adversaryA � makesO(Fibonacci(k)) =

poly(� ) forward queriesto 	 k and with high probability �nds the input cor-

responding to an output y without actually making that query.

Pro of: The adversary A � gets the permutation output y 2 f 0; 1g2n , that

it is supposedto invert 	 k on. For concreteness,we assumethat y = 02n

(anything elseworks just aswell). We will describe the recursive subroutine

that the attacker A � is basedon. Say the round functions of 	 k are f 1 : : : f k .

The recursive function that we describe is E(j; Y), wherej is the number of
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rounds in the Feistel construction and Y is a 2n bit value, and the task of

E(j; Y) is to �nd the input such that the j th and (j + 1)th round valuesare

YL and YR (the left and right halvesof Y), respectively.

� E(1; Y ) : Choosea random R0
0  f 0; 1gn . Make the forward query

R0
0 k YL to 	 1, where the 2nd round value is R0

2. Now the 1st and 2nd

round valuesfor the input R0
2 � R0

0 � YR k YL are YL and YR .

� E(j ; Y ) ; j > 1 : Perform the following steps,

{ Makea randomqueryR0 k R1  f 0; 1g2n , andsay the 2n bit value

at the j th round is is Rj k Rj +1 . Then, f j (Rj ) = (Rj � 1 � Rj +1 ).

{ Run E(j � 2; (f j � 1(Rj � 1) � YL ) k Rj � 1) and the 2n bit value at

the (j � 1)th round is Rj � 1 k YL . Hencef j (YL ) = Rj � 1 � Rj +1 .

{ Run E(( j � 1); (f j (YL ) � YR) k YL ), and the j th and (j + 1)th round

valuesare YL and YR , respectively.

The adversary A � essentially runs the algorithm E(k; 02n). Now we needto

makesurethat the adversaryA � doesnot queryon the input correspondingto

the output 02n . But sinceall the queriesmadein the recursive algorithm are

essentially chosenat random, we know that the probability of this happening

is q
22n . Hence,the probability that A � succeedsis at least

�
1 � q

22n

�
.

We note that the above attacker works in a scenariowhereit can only make

forward queriesto the Feistel construction 	 k . In case,it can make inverse

queriesas well, it is possibleto designa similar attacker that succeedsin
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O(Fibonacci(k=2)) queries. If the number of rounds k = O(log � ), then the

number of queriesneededby either of theseattackers is polynomial in the

security parameter � . We will describe how this attacker works in each of

the applications of the Feistel network in the next chapter.

5.3 Com binatorial Analysis of the Feistel Net-

work

In this section, we will prove a generalcombinatorial lemma about the k-

round LR construction 	 k , that usesarbitrary round functions f 1 : : : f k . In

the subsequent chapter, we will seethat this lemma is the main ingredient

in deriving each of our results.

Consideran arbitrary sequenceof q forward/in versepermutation queries

madeto the LR construction 	 k , each of which is a 2n bit string. Denotethe

(k + 2) n-bit round valuesassociated with the i th query asR[i; 0]; R[i; 1]; : : : ;

R[i; k]; R[i; (k + 1)], whereR[i; 0] k R[i; 1] (resp. R[i; k]; R[i; (k + 1)]) is the

input if this is a forward (resp. inverse)query. Wesay that such a sequenceof

queriesproducesa sth round valuecollision, if the sth round valuecollidesfor

two di�erent permutation queriesfrom this query sequence.That is, when

we have R[i; s] = R[j; s] for i; j 2 f 1: : : qg and (R[i; 0] k R[i; 1]) 6= (R[j; 0] k

R[j; 1]).

We essentially show that if any such sequenceof q queriesproducesa r th

round value collision for any r 2 f s : : : (k � s)g (where s � (k=2)), then one
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of the following must hold:

1. The number of queriesq is exponential in s.

2. For this sequenceof queries,the 5-XOR condition holds.

5.3.1 A \No-Collision" Prop ert y of the Feistel Net-

work

Now we will state the \no round value collision" property described above.

This is formalized in the lemma below:

Lemma 20. Let 	 k be a k round LR construction that uses�xed and arbi-

trary round functions f 1 : : : f k . For any s � k
2 , and any ordered sequence

of q = o(1:3803
s
2 ) forward/inverse queries, with associated round values

R[i; 0]; : : : ; R[i; k + 1] for i = 1: : : q, if the 5-XOR condition doesnot hold for

this sequence of queriesthen there is no r th round value collision for these

queries,for all r 2 f s : : : (k � s)g.

Note that is is simply a structural property of the k-round LR construc-

tion that holds irrespective of the round functions usedin the construction.

We will provide a (very) high level overview of the proof followed by the

formal proof. The proof essentially considersstarts by assumingthat the 5-

XOR condition doesnot hold for the given sequenceof queriesin which two

di�erent queriescollide in the r th round value. Then we prove the existence

of an exponential number of queriesin this sequenceas follows:
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1. We �rst show that each round value (generatedbefore the r th round

value) in the later of the two colliding queriescollideswith the corre-

sponding round value in an earlier query.

2. Next we prove that if each of thesecolliding queries(made earlier) are

di�erent and could only have beenmadein an order such that at least

half of theseare in strict ascending/descendingorder, in terms of the

order in which they were made.

3. Then we show that for (almost) each of the queriesin this strict as-

cending/descendingsequence,there exists another strict ascending(or

descending)sequenceof queries (each of which is di�erent from the

onesalready considered).

4. Finally, we note that this argument can be continued recursively, with-

out doublecounting, and we get a recursionfor the number of queries.

Upon solving this recursion,we get that the number of queriesin this

sequenceis 
(1 :3803s=2).

Pro of: Assumethat the 5-XOR condition does not hold for the given se-

quenceof queries.Without lossof generality, say oneof the queriesinvolved

in the r th (wherer 2 f s : : : (k � s)g, for s � (k=2)) round valuecollision is the

last (qth ) query. If this were not the casethen we can disregardall queries

following the colliding query that was madelater, and argueon the smaller

sequenceof queriesthat remains. In addition, we alsoassumethat the given

sequenceof queriesdoesnot consistof duplicate queries. If not then we can
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disregardall but the �rst of theseidentical queries.This will not weaken our

conclusion,but makesour argument easierto explain.

We represent the j th round value associated with the i th query asR[i; j ].

Thus we know that 9i < q : R [q; r ] = R [i; r ]. We maintain a q vector

b that denotesthe direction of each query. Thus b[i ] = 1 denotesthat the

i th query is a forward query, while b[i ] = 0 denotesthat it is an inverse

query. We de�ne a \�rst occurrence" query function for each round value,

i.e. p : f 1: : : qg� f 0: : : k + 1g ! f 1: : : qg. For any round valueR[i; j ], p(i; j )

is the least input number such that R[p(i; j ); j ] = R[i; j ].

If the colliding round number r � k=2, then we get a worselower bound

if the qth query is a forward query. Otherwise, we get a worselower bound

if it is an inversequery. Sincethe two casesare symmetrical, we will only

describe here the argument when r � k=2 and assumingthat the qth query

is a forward query.

As the �rst step of our argument, we prove that all the round values

R[q; 1] : : : R [q; r � 1] collide with the corresponding round value in an earlier

query.

Claim 19. If 9i < q : R [q; r ] = R [i; r ], then each of the round values

R[q; 1] : : : R [q; r � 1] were de�ned before the qth query wasmade. That is,

8j 2 f 1: : : r g : p(q; j ) < q

pro of of claim 19: We will useinduction on the round number j to show
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that p(q; j ) < q. We start the induction with j = r and go down to j = 1.

For j = r , we already know that p(q; r ) = i from the statement of the claim.

Now say the sameholds for all j = r : : : c (for c � r ), then we will show

that the (c � 1)th round value also collides with the corresponding round

value in an earlier query. Say, for the sake of contradiction, that R[q; c � 1]

is a new round value in input number q (i.e. p(q; (c � 1)) = q). Then the

round function evaluation f (c� 1) (R[q; c � 1]) is a new round function evalua-

tion, generatingthe new round value R[q; c]. But R[q; c] = R[p(q; c); c], and

p(q; c) < q by induction hypothesis.This contradicts the fact that the 5-XOR

condition doesnot hold for the given sequenceof queries. Thus, p(q; j ) < q

for all j = 1: : : r .

Henceall the round valuesR[q; 1] : : : R [q; r ] alreadyoccur beforequerynum-

ber q. As our next step, we will show that the order in which the queries

p(q; 1) : : : p (q; r ) are madecould be oneof very few possibleorders.

Claim 20. There is a round number j 2 f 1: : : r g, suchthat,

p(q; 1) > : : : > p(q; j )

p(q; j ) < : : : < p(q; r )

That is, the round value R[q; j ] was de�ned before any of the other round

valuesR[q; 1] : : : R [q; r ]. Moreover, the queriesp(q; j ) : : : p (q; r ) were made

in this order, while the queries p(q; 1) : : : p(q; j ) were made in the reverse
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order.

pro of of claim 20: We will �rst prove that for any three consecutive round

valuesR[q; (i � 1)]; R[q; i ] and R[q; (i + 1)] (where i 2 f 2: : : r � 1g), it holds

that,

[p(q; (i � 1)) > p(q; i )] _ [p(q; i ) < p(q; (i + 1))]

The claim will then follow asa straightforward consequence.

Assumeto the contrary that p(q; (i � 1)) � p(q; i ) andp(q; (i + 1)) � p(q; i )

for somei 2 f 2; r � 1g. If p(q; (i � 1)) = p(q; i ) (or p(q; i ) = p(q; (i + 1)))

then it is easyto verify that queriesp(q; i ) and q are the same,which is not

the caseby assumption. Thus, we have the casethat p(q; (i � 1)) < p(q; i )

and p(q; i ) > p(q; (i + 1)). But we know from the designof 	 k that,

f i (R[p(q; i ); i ]) = R[p(q; i ); (i � 1)] � R[p(q; i ); (i + 1)]

It is also the casethat,

f i (R[q; i ]) = R[q; (i � 1)] � R[q; (i + 1)]

) f i (R[p(q; i ); i ]) =
R[p(q; (i � 1)); (i � 1)]

� R[p(q; (i + 1)); (i + 1)]

)
R[p(q; i ); (i � 1)]

� R[p(q; i ); (i + 1)]
=

R[p(q; (i � 1)); (i � 1)]

� R[p(q; (i + 1)); (i + 1)]

Thus, if b[p(q; i )] = 0 then R[p(q; i ); (i � 1)] can be represented as an XOR
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of three previously existing round valuesotherwiseR[p(q; i ); (i + 1)] hassuch

an XOR representation. In any case,this will give a 5-XOR condition which

we know doesnot hold. Thus we can say that

8i 2 f 2: : : r � 1g : [p(q; (i � 1)) > p(q; i )] _ [p(q; i ) < p(q; (i + 1))]

Now it is a straightforward task to verify that the query orders consistent

with this constraint are exactly the onesin the statement of claim 20.

From claim 20, we can deducethat there exist at least r
2 consecutive round

valuesin the qth query, whose\�rst occurrence"queriesarein strictly ascend-

ing/descendingtemporal order. Sincer < k
2 , we will get a worselower bound

on the number of queriesif we assumethat q > p(q; 1) > : : : > p
�
q; r

2

�
. If on

the other hand, q > p(q; r ) > : : : > p
�
q; r

2

�
wecanshow that q = 
(1 :3803r ).

Thus, we assumethat q > p(q; 1) > : : : > p
�
q; r

2

�
.

As our next step, we will prove a general property of such a strictly

ordered sequenceof \�rst occurrence" queriesof consecutive round values.

For this purpose,considerany threeconsecutive \�rst occurrence"queriesout

of such a sequence,say i j = p(`; j ), i j +1 = p(`; (j + 1)) and i j +2 = p(`; (j + 2))

such that i j > i j +1 > i j +2 . We will determine the order in which the \�rst

occurrence"queriesof the round valuesof the i th
j querycouldhavebeenmade

in this case. Additionally , we will also determine the order of thesequeries

relative to the queriesi j ; i j +1 and i j +2 .
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We essentially show that if the i th
j query is a forward query then the

round valuesR[i j ; 1] : : : R[i j ; (j � 1)] collide with corresponding round values

in somequery beforethe i th
j query. Moreover, we alsoshow that the queries

p(i j ; 1) : : : p(i j ; j � 2) weremadeafter the i th
j +1 query, but beforethe i th

j query.

If the i th
j query is an inversequery, then we prove the sameconditions for the

round valuesR[i j ; (j + 1)] : : : R[i j ; k]. This is formally stated in the following

claim.

Claim 21. Let the queriesnumbered i j ; i j +1 and i j +2 be the \�rst occurrence"

queries of the round valuesR[`; j ];R[`; j + 1] and R[`; j + 2], respectively.

Moreover, say that i j > i j +1 > i j +2 . If the i th
j query is a forward query (i.e.

b[i j ] = 1) then,

i j > p(i j ; 1) > : : : > p(i j ; j � 2) > i j +1

On the other hand, if b[i j ] = 0 then,

i j > p(i j ; k) > : : : > p(i j ; j + 2) > i j +1

pro of of claim 21: Let us start by consideringthe casethat b[i j ] = 1.

In this case,we analyzethe round valuesR[i j ; 1] : : : R[i j ; (j � 1)]. Consider

the round value R[i j ; (j � 1)]. If this round value does not collide with a

corresponding round value before the i th
j query, then f j � 1(R[i j ; (j � 1)]) is

a new round function evaluation and R[i j ; j ] is the newly generatedround
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value. But we know that

f j +1 (R[`; (j + 1)]) = R[`; j ] � R[`; (j + 2)]

) f j +1 (R[i j +1 ; (j + 1)]) = R[i j ; j ] � R[i j +2 ; (j + 2)]

) R[i j ; j ] = R[i j +2 ; (j + 2)] � R[i j +1 ; j ] � R[i j +1 ; (j + 2)]

And since i j > i j +1 > i j +2 , this will give a representation of the newly

generatedround value R[i j ; j ] in terms of 3 previously existing round values,

which violates the fact that the 5-XOR condition doesnot hold. Thus, we

can deducethat p(i j ; j � 1) < i j . Now we can argue inductively (similar to

claims 19) and show that each of the round valuesR[i j ; 1] : : : R[i j ; (j � 2)]

collide with corresponding round valuesin earlier queriesaswell.

Conclusion 1: We can deducethat 8j 0 2 f 1: : : j � 1g : p(i j ; j 0) < i j .

Now we will try to �nd the order in which these queriesp(i j ; j 0) could

have beenmade. In addition, sincewe know that i j +2 < i j +1 < i j , we will

also be interested in the order of the queries p(i j ; j 0) relative to the i th
j +1

and i th
j +2 queries. Let us start by concentrating our attention on the queries

i j +1 ; p(i j ; (j � 1)) and p(i j ; (j � 2)).

Considerthe casethat p(i j ; (j � 1)) < i j +1 and p(i j ; (j � 2)) < i j +1 . Then
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we can deducethat,

f j +1 (R[i j +1 ; (j + 1)]) = R[i j ; j ] � R[i j +2 ; (j + 2)]

) f j +1 (R[i j +1 ; (j + 1)]) =
R[i j +2 ; (j + 2)] � R[i j ; (j � 2)]

� f j � 1(R[i j ; (j � 1)])

)
R[i j +1 ; (j + 2)]

� R[i j +1 ; j ]
=

R[i j +2 ; (j + 2)] � R[p(i j ; (j � 2)); (j � 2)]

� R[p(i j ; (j � 1)); j ] � R[p(i j ; (j � 1)); (j � 2)]

Thus depending on whether i j +1 is a forward or inverse query, we get a

representation of R[i j +1 ; j ] or R[i j +1 ; (j + 2)] as an XOR of �v e previous

round valuesand sinceR[i j +1 ; (j + 1)] is a new round value this contradicts

the fact that 5-XOR condition doesnot hold for the givensequenceof queries.

Thus we can deducethat,

p(i j ; (j � 1)) > i j +1 or p(i j ; (j � 2)) > i j +1 (5.1)

Next we considerthe casethat p(i j ; (j � 2)) < p(i j ; (j � 1)) as well as

i j +1 < p(i j ; (j � 1)). In this case,we observe that,

f j � 1(R[i j ; (j � 1)]) = R[i j ; (j � 2)] � R[i j ; j ]

) f j � 1(R[p(i j ; (j � 1)); (j � 1)]) =
R[i j ; (j � 2)] � f j +1 (R[i j +1 ; (j + 1)])

� R[i j +2 ; (j + 2)]

)
R[p(i j ; (j � 1)); (j � 2)]

� R[p(i j ; (j � 1)); j ]
=

R[p(i j ; (j � 2)); (j � 2)] � R[i j +1 ; j ]

� R[i j +1 ; (j + 2)] � R[i j +2 ; (j + 2)]
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Now depending on whether the p(i j ; (j � 1))th query is a forward or inverse

query, we can derive a 5 XOR representation of either R[p(i j ; (j � 1)); (j �

2)] or R[p(i j ; (j � 1)); j ] in terms of previously existing round values, thus

violating the fact that the 5-XOR condition doesnot hold. Hencewe deduce

that

p(i j ; (j � 2)) > p(i j ; (j � 1)) or i j +1 > p(i j ; (j � 1)) (5.2)

In order to satisfy both equations5.1and 5.2,weneedthat p(i j ; (j � 2)) >

p(i j ; (j � 1)) as well asp(i j ; (j � 2)) > i j +1 .

Conclusion 2: Wecandeducethat the only two possibleordersfor these

three queriesare

p(i j ; (j � 2)) > p(i j ; (j � 1)) > i j +1 or p(i j ; (j � 2)) > i j +1 > p(i j ; (j � 1))

In either case,we can deducefrom conclusion 2 that p(i j ; (j � 2)) >

p(i j ; (j � 1)). Next consider the query p(i j ; (j � 3)). If p(i j ; (j � 2)) >

p(i j ; (j � 3)) as well, then we can deducethat

R[p(i j ; (j � 2)); (j � 3)]

� R[p(i j ; (j � 2)); (j � 1)]
=

R[p(i j ; (j � 1)); (j � 1)]

� R[p(i j ; (j � 3)); (j � 3)]

This will give a representation of either R[p(i j ; (j � 2)); (j � 1)] or R[p(i j ; (j �

2)); (j � 3)] in terms of 3 previously existing round values depending on

whetherthe p(i j ; (j � 2))th query is a forward or an inversequery, respectively.
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In either case,this violates the fact that the 5-XOR condition doesnot hold

for the given sequenceof queries. Thus, we can deducethat p(i j ; (j � 3)) >

p(i j ; (j � 2)) > p(i j ; (j � 1)). Now this sameargument can be continued and

using conclusion 2, we can prove that

i j > p(i j ; 1) > : : : > p(i j ; (j � 2)) > i j +1

If the query number i j is an inverse query, then we can carry out a

symmetric argument by consideringthe round valuesR[i j ; (j + 1)] : : : R[i j ; k]

instead of R[i j ; (j � 1)] : : : R[i j ; 1]. Then it can be deducedthat

i j > p(i j ; k) > : : : > p(i j ; (j + 2)) > i j +1

We will apply claim 21 to the sequenceof �rst occurrencequeriesp(q; 1) >

: : : > p
�
q; r

2

�
. Thus consider any j = 1: : : r

2 � 2, and the �rst occur-

rence queriesp(q; j ); p(q; (j + 1)) and p(q; (j + 2)). Since j � r
2 � k

4 , we

will get a worse bound if the p(q; j ) th query is a forward query. In par-

ticular, we can use claim 21 to show in this case that the round values

R[p(q; j ); 1] : : : R[p(q; j ); (j � 1)] collide with corresponding round values in

earlier queries. On the other hand, if this is an inversequery then we can

show that each of the round valuesR[p(q; j ); (j + 1)] : : : R[p(q; j ); k] collide

with corresponding round valuesin an earlier query. The former caseclearly
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givesus a worselower bound on the number of queries,and hencewe assume

that the p(q; j )th query is an inversequery.

Henceconsideringqueryp(q; j ), wecandeducethat at leastanother(j � 2)

querieswemadebeforeit but after the queryp(q; (j + 1)). Wecanalsodeduce

from claim 21 that these(j � 2) \�rst occurrence"queriesare also madein

strictly descendingtemporal order, that is

p(p(q; j ); 1) > : : : > p(p(q; j ); (j � 2))

Since each of these sequenceof queries is in strict temporal order, we

can apply claim 21 to each of thesesequenceof queriesand continue in this

recursive fashion. Moreover, we also show that any queriesthat we count

at a certain level of the recursionin this fashion lies strictly in betweentwo

consecutive queriesfrom the previous level, we can deducethat we do not

perform any double counting. In �gure 5.2, we illustrate an example of a

query tree with the �rst three levels indicated. Here the two queriesthat

collide in the (k=2)th round value are indicated as \colliding queries" 1 and

2, in the order they were made.

In order to bound from below the number of queriesq that produce a

collision on the r th round value, we will needto count the number of queries

that are bound to exist by the argument above. Let Q(j ) be a recursively

de�ned variable that denotesthe minimum number of queries` neededto get

round valuesR[`; 1] : : : R[`; j ] with their �rst occurrencequeriesmadein the
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= Query Tree level 1
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Figure 5.2: Example of the �rst three levels of a query tree. All the queries
in this exampleare assumedto be forward queries.

order p(i; 1) > : : : > p(i; j ). Using claim 21, we get the following expression

for Q(j ),

Q(j ) = j +
P j � 2

`=3 Q(` � 2)

) Q(j ) = Q(j � 1) + Q(j � 4) + 1

) Q(j ) = 2 � Q(j � 1) � Q(j � 2) + Q(j � 4) � Q(j � 5)
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The solution to the abovehomogeneousrecurrenceequationcanbeexpressed

in terms of the powers of the roots of the following algebraicequation:

x5 � 2x4 + x3 � x4 + 1 = 0

This equation has only one root greater than 1, which is 1:3803. Thus we

can represent the solution of the above recurrenceas:

Q(j ) = �(1 :3803j )

From claim 20, we get that if any query collideswith an earlier query in the

r th round value, we can �nd a strictly increasing/decreasingsequenceof r
2

\�rst occurrence"queries.Thus, we get that

q � Q
�

r
2

�

) q = 

�
1:3803r =2

�

) q � 

�
1:3803s=2

�
, sincer 2 f s : : : (k � s)g

The above proof only took into account the casethat r < k=2. If r > k=2

then a similar argument can be carried out by swapping forward queries

with inversequeriesand we can derive that q = 

�
1:3803(k� r )=2

�
. In either

case,we get the bound that q = 

�
1:3803s=2

�
, sincer 2 f s : : : (k � s)g and

s � (k=2).
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5.3.2 A Sligh tly Weaker Result

Next westate a morerestricted versionof the combinatorial lemma,whenthe

adversaryonly makesforward queriesto the Feistelconstruction. This lemma

will be useful in certain scenarioswhen the attacker only makes forward

queriesto the Feistel-basedconstruction (for instance, in domain extension

of MACs in next chapter).

Lemma 21. Let 	 k be a k-round LR construction that uses�xed and ar-

bitrary round functions f 1 : : : f k . For any round number s, and any ordered

sequence of q = o(1:3803
s
2 ) forward queries, with associated round values

R[i; 0]; : : : ; R[i; k + 1] for i = 1: : : q, if the 5-XOR condition doesnot hold for

this sequence of forward queriesthen there is no r th round valuecollision for

thesequeries,for all r � s.

The proof of this lemma is similar to that of lemma 20, but is slightly

simplersincethe query sequenceonly consistsof forward queries.Weprovide

it next for completeness.

Pro of: We start by assumingthat the 5-XOR condition doesnot hold for

the given sequenceof forward queries.Without lossof generality, say oneof

the queriesinvolved in the r th round collision (for r � s) is the last query,

i.e. the qth query. If this is not the case,then we caneasilyignorethe queries

following the collision queriesand get a smallersequenceof queriesfor which

the property holds. We alsoassumethat the given sequenceof queriesdoes

not consist of duplicate queries. If this is not the casethen we can ignore
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all but the �rst one of all such identical queriesand it will not weaken our

conclusion,while making the argument easierto describe.

We represent the j th round value associated with the i th query asR[i; j ].

Thus we know that 9i < q : R [q; r ] = R [i; r ]. We de�ne a \�rst occur-

rence" function for each round value, i.e. p : f 1: : : qg � f 0: : : k + 1g !

f 1: : : qg. For any round value R[i; j ], p(i; j ) is the least input number such

that R[p(i; j ); j ] = R[i; j ].

In the �rst step,wewill prove that all the round valuesR[q; 1] : : : R[q; (r �

1)] collide with the corresponding round value in an earlier query. As a �rst

step,we prove that all the round valuesR[q; 1] : : : R [q; r � 1] collide with the

corresponding round value in an earlier query.

Claim 22. If 9i < q : R [q; r ] = R [i; r ], then each of the round values

R[q; 1] : : : R [q; (r � 1)] were already de�ned before the qth query was made.

That is,

8j 2 f 1: : : r g : p(q; j ) < q

pro of of claim 22: We will useinduction on the round number j to show

that p(q; j ) < q. We start the induction with j = r and go down to j = 1.

For j = r , we already know that p(q; r ) = i from the statement of the claim.

Now say the sameholds for all j = r : : : c (for c � r ), then we will show

that the (c � 1)th round value also collides with the corresponding round

value in an earlier query. Say, for the sake of contradiction, that R[q; c� 1] is

a new round value in query number q (i.e. p(q; c � 1) = q). Then the round
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function evaluation f (c� 1) (R[q; c � 1]) is a new round function evaluation,

and henceR[q; c] is the new round function value generatedasa result. But

R[q; c] = R[p(q; c); c], and p(q; c) < q by the induction hypothesis,which is

a 1-XOR representation of the new round value R[q; c]. This contradicts the

fact that the 5-XOR condition doesnot hold for this sequenceof queries.

Thus, we know that all the round values R[q; 1] : : : R [q; r ] were de�ned

strictly before input number q. As our next step, we will show that the

order in which the queriesp(q; 1) : : : p (q; r ) are madecan only be oneof very

few speci�c orders.

Claim 23. There is a round number j 2 f 1: : : r g, suchthat,

p(q; 1) > : : : > p(q; j )

p(q; j ) < : : : < p(q; r )

That is, the queries p(q; j ) : : : p (q; r ) were made in this order, while the

queriesp(q; 1) : : : p(q; j ) were madein the reverseorder.

pro of of claim 23: We will �rst prove that for any three consecutive round

valuesR[q; (i � 1)]; R[q; i ] and R[q; (i + 1)] (where i 2 f 2: : : r � 1g), it holds

that,

[p(q; (i � 1)) > p(q; i )] _ [p(q; i ) < p(q; (i + 1))]

The claim will then follow asa straightforward consequence.

Assumeto the contrary that p(q; (i � 1)) � p(q; i ) andp(q; (i + 1)) � p(q; i )

201



for somei 2 f 2; r � 1g. We can easily seethat p(q; (i � 1)) 6= p(q; i ) (and

p(q; i ) 6= p(q; (i + 1))) since otherwise the queriesp(q; i ) and q will be the

same.

Thus, it must be the casethat p(q; (i � 1)) < p(q; i ) and p(q; i ) > p(q; (i +

1)). But we know from the designof 	 k that,

f i (R[p(q; i ); i ]) = R[p(q; i ); (i � 1)] � R[p(q; i ); (i + 1)]

It is also the casethat,

f i (R[q; i ]) = R[q; (i � 1)] � R[q; (i + 1)]

) f i (R[p(q; i ); i ]) = R[p(q; (i � 1)); (i � 1)] � R[p(q; (i + 1)); (i + 1)]

) R[p(q; i ); (i + 1)] =
R[p(q; (i � 1)); (i � 1)] � R[p(q; (i + 1)); (i + 1)]

� R[p(q; i ); (i � 1)]

Thus the newround valueR[p(q; i ); (i + 1)] can be represented asan XOR of

3 previously existing round values. This will give a 5-XOR condition which

we know doesnot hold. Thus we can say that

8i 2 f 2: : : r � 1g : [p(q; (i � 1)) > p(q; i )] _ [p(q; i ) < p(q; (i + 1))]

Now it is a straightforward task to verify that the query orders consistent

with this constraint are exactly the onesin the statement of claim 23.
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From claim 23, we can deducethat there exist at least r
2 consecutive round

values in the qth query, whose\�rst occurrence" queriesare in strictly as-

cending/descendingtemporal order. We note that for the given game, the

worse caseis if the queriesp(q; 1) : : : p
�
q; r

2

�
are made in the reverseorder

(i.e. this is the part with the greater number of strictly orderedqueries). In

fact, if it is the casethat p
�
q; r

2

�
< : : : < p(q; r ), then we can show that the

number of queriesq = O(1:3803r ). Sincewe wish to �nd the lower bound on

the number of queriesq, we assumethat q > p(q; 1) > : : : > p
�
q; r

2

�
.

As our next step, we will prove a general property of such a strictly

ordered sequenceof \�rst occurrence" queriesof consecutive round values.

For this purpose,we considerthe �rst occurrencequeriesp(`; j ); p(`; (j + 1))

and p(`; (j + 2)), denoted by i j ; i j +1 and i j +2 respectively. Assume that

these queriesare made in the order i j > i j +1 > i j +2 . We will show that

all the round valuesR[i j ; 1] : : : R[i j ; j � 1] collide with corresponding round

valuesin queriesbeforethe i th
j query. Moreover, wealsoshow that the queries

p(i j ; 1) : : : p(i j ; j � 2) weremadeafter the i th
j +1 query, but beforethe i th

j query.

This is formally stated in the following claim.

Claim 24. Let the queriesnumbered i j ; i j +1 and i j +2 be the \�rst occurrence"

queriesof the round valuesR[`; j ];R[`; j + 1] and R[`; j + 2] (respectively) for

any query `. Moreover, say that i j > i j +1 > i j +2 . Then, it is the casethat

i j > p(i j ; 1) > : : : > p(i j ; j � 2) > i j +1
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pro of of claim 24: Considerthe round valueR[i j ; j � 1]. If this doesnot col-

lide with a corresponding round value in an earlier query, then f j � 1(R[i j ; j �

1]) is a new round function evaluation and R[i j ; j ] is the new round value

generatedas a result. Now we know that

f j +1 (R[`; j + 1]) = R[`; j ] � R[`; j + 2]

) f j +1 (R[i j +1 ; (j + 1)]) = R[i j ; j ] � R[i j +2 ; j + 2]

) R[i j ; j ] = R[i j +2 ; (j + 2)] � R[i j +1 ; j ] � R[i j +1 ; (j + 2)]

Sincei j > i j +1 > i j +2 , this would give us a 5-XOR condition involving the

new round value R[i j ; j ] which we know doesnot hold. Hencewe know that

p(i j ; j � 1) < i j . Now we can useinduction to show that all the round values

R[i j ; 1] : : : R[i j ; (j � 2)] also collide with a corresponding round value in an

earlier query.

Conclusion 1: We have deducedthat 8j 0 2 f 1: : : j � 1g : p(i j ; j 0) < i j .

Now we will try to �nd the order in which these\�rst occurrence"queries

could have beenmade. In addition, we will alsobe interestedin establishing

the order of thesequeriesrelative to the queriesi j +1 and i j +2 . Let usstart by

concentrating our attention on the queriesi j +1 ; p(i j ; (j � 1)) and p(i j ; (j � 2)).

First, considerthe casethat p(i j ; (j � 1)) < i j +1 and p(i j ; (j � 2)) < i j +1 .
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Then we know that,

f j +1 (R[i j +1 ; (j + 1)]) = R[i j ; j ] � R[i j +2 ; (j + 2)]

) f j +1 (R[i j +1 ; (j + 1)]) =
R[i j +2 ; (j + 2)] � R[i j ; (j � 2)]

� f j � 1(R[i j ; (j � 1)])

)
R[i j +1 ; (j + 2)]

� R[i j +1 ; j ]
=

R[i j +2 ; (j + 2)] � R[p(i j ; (j � 2)); (j � 2)]

� R[p(i j ; (j � 1)); j ] � R[p(i j ; (j � 1)); (j � 2)]

Since,R[i j +1 ; (j + 1)] wasoccursfor the �rst time in the i th
j +1 query, we get a

representation of the newly generatedround valueR[i j +1 ; (j + 2)] in terms of

5 previouslyexisting round values. This contradicts the fact that the 5-XOR

condition doesnot hold for thesequeries.Thus we can deducethat,

p(i j ; (j � 1)) > i j +1 or p(i j ; (j � 2)) > i j +1 (5.3)

Along similar lines, considerthe casethat p(i j ; (j � 2)) < p(i j ; (j � 1)) as

well as i j +1 < p(i j ; (j � 1)). In this case,we observe that,

f j � 1(R[i j ; (j � 1)]) = R[i j ; (j � 2)] � R[i j ; j ]

) f j � 1(R[p(i j ; (j � 1)); (j � 1)]) =
R[i j ; (j � 2)] � f j +1 (R[i j +1 ; (j + 1)]

� R[i j +2 ; (j + 2)]

)
R[p(i j ; (j � 1)); (j � 2)]

� R[p(i j ; (j � 1)); j ]
=

R[i j ; (j � 2)] � R[i j +1 ; j ]

� R[i j +1 ; (j + 2)] � R[i j +2 ; (j + 2)]

Here the round value R[p(i j ; (j � 1)); (j � 1)] occursfor the �rst time in the
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p(i j ; (j � 1))th query. Thus the newly generatedround valueR[p(i j ; (j � 1)); j ]

can be represented as an XOR of 5 previously existing round values. This

again contradicts the fact that the 5-XOR condition does not hold for the

given sequenceof queries.Hencewe deducethat,

p(i j ; (j � 2)) > p(i j ; (j � 1)) or i j +1 > p(i j ; (j � 1)) (5.4)

In order to satisfy both equations5.3and 5.4, it is requiredthat p(i j ; (j �

2)) > p(i j ; (j � 1)) as well asp(i j ; (j � 2)) > i j +1 .

Conclusion 2: We can deducethat the only possibleorders for these

three queriesare

p(i j ; (j � 2)) > p(i j ; (j � 1)) > i j +1 or p(i j ; (j � 2)) > i j +1 > p(i j ; (j � 1))

In either case,we can deducefrom conclusion 2 that p(i j ; (j � 2)) >

p(i j ; (j � 1)). Next consider the query p(i j ; (j � 3)). If p(i j ; (j � 2)) >

p(i j ; (j � 3)) as well, then we can deducethat

R[p(i j ; (j � 2)); (j � 3)]

� R[p(i j ; (j � 2)); (j � 1)]
=

R[p(i j ; (j � 1)); (j � 1)]

� R[p(i j ; (j � 3)); (j � 3)]

This will give a representation of either R[p(i j ; (j � 2)); (j � 1)] in terms of

3 previously existing round values. This violates the fact that the 5-XOR

condition does not hold for the given sequenceof queries. Thus, we can
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deducethat p(i j ; (j � 3)) > p(i j ; (j � 2)) > p(i j ; (j � 1)). Now this same

argument can be continued and using conclusion 2, we can prove that

i j > p(i j ; 1) > : : : > p(i j ; (j � 2)) > i j +1

Now we can apply claim 24 to the sequenceof �rst occurrencequeries

p(q; 1) > : : : > p
�
q; r

2

�
. Thus for each query p(q; i ) (for i = 1: : : r

2 � 2), we

can deducethat all the queriesp(p(q; i ); (i � 2)) : : : p(p(q; i ); 1) weremadein

this order betweenqueriesp(q; (i + 1)) and p(q; i ). And sincethesequeries

are madestrictly in betweentwo consecutive queriesfrom the previouslevel

(i.e. p(q; (i + 1)) and p(q; i ) in this case),we can alsodeducethat each of the

queriesin thesesequencesis di�erent from the queriesp(q; 1) : : : p
�
q; r

2

�
.

Claim 24 can be applied to any sequenceof strictly ordered\�rst occur-

rence" queriesof consecutive round values. In particular, we can apply this

claim to any of the new strictly orderedsequenceof querieswhoseexistence

we showed here. Hencewe can continue this argument recursively to prove

the existenceof many more queriesbeforethe last one, i.e. the qth query.

Now we can �nd a lower bound on the number of queriesq required in

order to force a r th round collision. To �nd this lower bound, we introduce

a recursively de�ned variable Q(j ), that denotesthe minimum number of
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queries` requiredto forcea round valuecollision for each of the round values

R[`; 1] : : : R[`; j ] with a corresponding round value in a query prior to the ` th

query. From the above argument, we can deducethat

Q(j ) = j +
P j � 2

i =3 Q(i � 2)

) Q(j ) = Q(j � 1) + Q(j � 4) + 1

) Q(j ) = 2 � Q(j � 1) � Q(j � 2) + Q(j � 4) � Q(j � 5)

The solution to the above homogeneousequation can be expressedin terms

of the powers of the roots of the following algebraicequation:

x5 � 2x4 + x3 � x4 + 1 = 0

This equation has only one root greater than 1, which is 1:3803. Thus we

can represent the solution of the above recurrenceas:

Q(j ) = �(1 :3803j )

From claim 23, we can deducethat if the r th round value in the qth query

collides with a corresponding round value in an earlier query, then (we get

the worst lower bound if ) the \�rst occurrence"queriesof the round values
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R
�
q; r

2

�
: : : R[q; 1] are madein this order. Hence,we get that

q � Q
�

r
2

�

) q = 

�
1:3803r =2

�

) q � 

�
1:3803s=2

�
, sincer � s

5.3.3 Relev ance for Feistel Applications

Both lemma20and 21will beusefulfor the applicationsdescribed in the next

chapter. In particular, we will be interested in using the LR construction

with round functions that resist the 5-XOR condition, when any adaptive

adversary makesa polynomial number of querieswhile having accessto all

intermediate round values. We will specify this asa property of the function

ensemblefrom which the round functions are derived. Here the function

ensemble fF n(� )g� 2 N is such that F n is a distribution over length-preserving

functions on n bits. A function ensemble is calleda 5-XOR resistantfunction

family if the LR construction using independently sampled functions from

this ensemble resiststhe 5-XOR condition whenquerieda polynomial number

of times by any adaptive adversary. More formally,

De�nition 17 (5-X OR resistan t function family). A function ensemble

fF k(� );n(� )g� 2 N, that consists of length preserving functions on n bits, is a
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5-XOR resistant function family if for any adversaryA,

Pr [A 5-XOR condition in (A $ 	 f 1 ;:::;f k ) jf 1; : : : ; f k  F k;n ] � � xor = negl(� )

Here the advantage� xor of the adversaryA depends the security parameter

� . The running time of A, input length n and number of Feistel rounds k

are all polynomial functions of � .

By applying lemmas20and21to a LR constructionusinground functions

independently sampledfrom a 5-XOR resistant function family, wecanderive

the following corollary.

Corollary 2. Let 	 k be a k-round LR construction that usesround func-

tions that are independentlysampled from a 5-XOR resistant function family

consistingof functions on n bits. For any adversaryA that adaptivelymakes

permutation queriesto 	 k , while observingthe intermediate round values,it

holdsthat

� if A makesboth forward/inverse queries, then for any round number

s � (k=2) with s = ! (log � ),

Pr
�
9 r th r.v. collision in A $ 	 k for somer 2 f s : : : (k � s)g

�
� � xor

� if A makes only forward queries, then for any round number s =

! (log � ),

Pr
�
9 r th r.v. collision in A $ 	 k for somer 2 f s : : : kg

�
� � xor
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Here the bound � xor denotesthe maximum advantageof the XOR �nding

adversary that runs in time O(tA + (qA k)5), where tA is the running time

of the adversaryA and qA denotesthe number of queriesmadeby it. Also,

tA ; qA and the input length n are all polynomial in � .

The proof of this corollary is quite straightforward sincethe 5-XOR �nd-

ing adversary simply runs the collision �nding adversary, and performs a

brute force search for a 5-XOR condition when it �nds a round value colli-

sion. From lemma20 (or 21), such a 5-XOR condition is guaranteed to exist.

We will usethis corollary in each of the results in the next chapter.
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Chapter 6

Implications for Feistel-based

Primitiv es

In the previouschapter, we studied a generalcombinatorial property of Feis-

tel networks. We also brie
y mentioned that this result proves useful in

applications of Feistel networks whereoneof the following two assumptions

are violated:

(a) the round functions are (pseudo)random; and

(b) (At least someof) the intermediate round valuesappearing during the

Feistel computation are secret

We noted that if anyone of theseassumptionsdo not hold then all previous

results that usedFeistel network fail. We then gave a generalcombinatorial

result that could be applied to scenarioswhere one (or both) of the above
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assumptionsdo not hold. In this chapter, we use this combinatorial result

to provide constructions of new primitiv es as well as new (and stronger)

constructionsof previously known primitiv es.

6.0.4 Summary of results

Str ong(er) PRP fr om any PRF. Our result can be used to give a

construction of Strong PRPs from any PRF, that remainssecureeven when

intermediate PRF computationsare leaked to the attacker. Earlier, we gave

examplesof scenarioswhere such a construction may make sense. For in-

stance,onemight imagine a smartcard implementing a block cipher via the

Feistel network using a securechip implementing a PRF. In this case,the

attacker might be able to observe the communication between the smart-

card and the chip. More realistically, when the round functions of the block

cipher are not PRFs, the attacker might get a lot of information about the

intermediatevaluesanyway. Our result implies that with a super-logarithmic

number of rounds, a Feistel basedblock cipher is securein such scenariosas

well.

(Str ong) unpredict able permut ation (UP) fr om unpredict able

functions (UF). Weshow that usinga super-logarithmic number of Feistel

rounds,onecan construct (strong) unpredictablepermutations using unpre-

dictable functions in each round. Strong UPs are similar to UFs in the sense

that no attacker should be able to predict an input-output pair which it has
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not explicitly queriedthe UP on. However, unlikeUFs, herethe attacker may

alsomake inversequeriesto the UP. Note that in this case,the round func-

tions are not (pseudo)randomand this assumption(a) is violated. However,

we show that for unpredictablepermutations, even assumption(b) may not

be true. In particular, we give examplesof (secure)UFs which whenusedas

round functions in the Feistel network leak all intermediate round valuesto

the attacker. Although arti�cial, this exampleillustrates that weaker round

functions may no longer guarantee the secrecyof round values.

Verifiable Random Permut ations. We apply our result to the prob-

lem of constructing veri�able random permutations (VRPs) from veri�able

random functions (VRFs). VRFs and VRPs are veri�able analogsof PRFs

and PRPs, respectively. Let us concentrate on VRFs �rst. Intuitiv ely, regu-

lar PRFs have a limitation that one must trust the owner of the secretkey

that a given PRF value is correctly computed. And even when done so, a

party receivinga correct PRF value cannot later convince someother party

that the value is indeedcorrect (i.e., PRF valuesare \non-transferable"). In

fact, sincethe function valuesare supposedto be (pseudo)random,it seems

that such veri�abilit y of outputs of a PRF would contradict its pseudoran-

domness.The way out of this contradiction was provided by Micali, Rabin

and Vadhan[55], who introducedthe notion of a VRF. Unlike PRFs, a VRF

owner must be able to provide a short proof that any given VRF output

is computed correctly. This implies that the VRF owner must publish a

public key allowing others to verify the validit y of such proofs. However,
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every \unopened" VRF value (i.e., one for which no proof was given yet)

should still look indistinguishable from random, even if many other values

were \op ened" (by giving their proofs). Additionally , the public key should

commit the owner of the VRF to all its function valuesin a uniqueway, even

if the owner tries to selectan \improp er" public key. Micali et al. [55] also

gave a secureconstruction of a VRF basedon the RSA assumption. Since

then several more e�cien t constructionsof VRFs have beenproposedbased

on various cryptographic assumptions;see[49, 24, 28].

The notion of a VRP, introduced in [27], naturally adds veri�abilit y to

PRPs, in exactly the samenatural way asVRFs do to PRFs. Wewill describe

someapplications of VRPs later in this chapter. On the onehand, it is easy

to see that a VRP (on a \non-trivial domain") is also a VRF, just like

in the PRF/PRP case. On a �rst look, we might hope that the converse

implication holds as well, by simply applying the Luby-Racko� result to

VRFs in place of PRFs. However, a moment of re
ection shows that this

is not the case. Indeed, the proof for the iterated Feistel construction must

include all the VRF valuesfor the intermediate rounds, together with their

proofs. Thus, the attacker can legally obtain all the intermediate round

valuesfor every input/output that he queries,except for the one on which

he is being \challenged". Thus rules out LR-type proof for this application.

We useour combinatorial result for the LR construction, to show that if

a super-logarithmic number of Feistel rounds are used,then we get a secure

veri�able random permutation from any veri�able random function.
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Verifiable Unpredict able Permut ations. We alsoconsiderthe nat-

ural combination of the scenariosconsideredso far, exempli�ed by the task

of constructing veri�able unpredictablepermutations (VUPs) from veri�able

unpredictable functions (VUFs) [55] (also called unique signature schemes

[38, 49]). A VUF is de�ned in essentially the sameway as VRFs, except

that the pseudorandomnessrequirement for VRFs is replacedby a weaker

unpredictability requirement. Similarly, VUPs, introducedin [27], are either

the permutation analogsof VUFs, or, alternatively, unpredictable analogs

of VRPs. Of course,as a VRP is also a VUP, we could attempt to build a

VUP by actually building a VRP via the Feistel construction applied to a

VRF, as suggestedabove. However, this seemsquite wasteful sinceVUFs

appear to be much easierto construct than VRFs. Indeed,although in the-

ory VUFs are equivalent to VRFs [55], the \Goldreich-Levin-type" reduc-

tion from VUFs to VRFs in [55] is extremelyine�cien t (it losesexponential

security and forces the authors to combine it with another ine�cien t tree

construction). Moreover, several previouspapers [55, 49] construct e�cient

VUFs basedon relatively standard computational assumptions,while all the

e�cient VRF constructions [24, 28] are basedon very ad hoc decisional as-

sumptions. Thus, it is natural to study the security of the Feistel network

when applied to VUFs. In this case,not only the round functions cannot be

assumedpseudorandom,but also all the intermediate round valuesmust be

leaked togetherwith their proofsof correctness,making this setting the most

challenging to analyze. Using our result, we show that a super-logarithmic
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number of Feistel rounds with any secureVUFs givesa secureVUP.

Applica tions. In section6.3,weillustrate many applicationsof our results,

such as:

� We show how our results provide a \closer-to-reality" justi�cation for

the number of Feistel roundsheuristically usedin practical block cipher

constructions.

� Using our results,we provide the most e�cien t domain extensiontech-

nique for length-preservingMACs without introducing any new as-

sumptions.

� Weshow that VRPs immediatelyyield non-interactive, setup-free, perfectly-

binding commitment schemes.

� VRPs can be usedto �x a subtle security 
a w in the non-interactive

lottery systemof Micali-Rivest [56].

� We show that theseprimitiv escan alsobe usedto implement socalled

\in variant signatures" neededby Goldwasserand Ostrovsky [38].

� Other applicationsof VRPs, such asveri�able CBC encryption/decryption,

veri�able huge (pseudo)randomobjects [36] or a \pro of-transferable"

implementation of the Ideal Cipher Model using a semi-trusted third

party.
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6.1 Preliminaries

In this section, we provide de�nitions for the cryptographic primitiv es that

we will usethroughout this chapter. We start by giving an alternative de�ni-

tion for pseudorandomfunctions/permutations that is di�erent from the ones

given in chapter 2 and is more suited for our results in this chapter. We will

give thesede�nitions for a function ensemble f H � g� 2 N that is de�ned over

the sequenceof input/output setsff 0; 1ga(� ) ; f 0; 1gb(� )g� 2 N. We will assume

that the key generating algorithm I (� ) outputs a bit string s 2 f 0; 1gc(� ) ,

wherec(� ) is the key length, and the keyed function will be represented as

Hs(�). In this chapter, we will usethe terms function ensemble and function

family, interchangeably.

De�nition 18 (Pseudorandom Functions). A function ensemblef F� g� 2 N

is a pseudorandomfunction ensembleif for any probabilistic polynomial time

(PPT) attacker pair A = (A1; A2), which do not query their oracleson the

challengequery, it holds that:

�
�
�
�
�
�
�
Pr

2

6
4b= b0

�
�
�
�
�
�
�

s  I (� ); (x; � )  AFs
1 (1� ); y0  Fs(x);

y1  f 0; 1gb(� ) ; b  f 0; 1g; b0  AFs
2 (yb; � )

3

7
5 �

1
2

�
�
�
�
�
�
�

= negl(� )

We note that ,in asymptotic terms, de�nition 18 is equivalent to the

de�nition 3 in chapter 2. We state this in the following lemma and provide

a brief justi�cation for the same.

Lemma 22. De�nitions 18 and 3 are equivalent de�nitions of PRFs (mod-
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ulo exact security). In particular, a (t; q; � )-PRF according to de�nition 3,

suchthat � (� ) is negligible for any polynomials t(� ) and q(� ), is also a PRF

according to de�nition 18, and vice versa.

Proof. We �rst show that a PRF according to de�nition 3 is also a PRF

according to the de�nition 3 above. If this is not the case,then there is a

PPT distinguisher D that has non-negligibleadvantage � in distinguishing

the uniform function ensemble and the PRF ensemble. If the D makes q

oraclequeries,then we consider(q+ 1) hybrid scenarios.In the �rst hybrid,

all oraclequeriesare respondedto using the uniform random function. And

in the i th hybrid, the �rst (i � 1) queriesare responded to using the PRF,

while all remaining (q � i + 1) queriesare responded to using the uniform

random function. Thus, in the last hybrid, all queriesare respondedto using

the PRF. Sincethe advantage � of D in distinguishing betweenthe �rst and

(q+ 1)th hybrid is non-negligible.We can deducethat there is a i 2 f 1: : : qg,

such that D hasan advantage of at least �=(q+ 1) in distinguishing between

the i th and (i + 1)th hybrid.

The attacker A = (A1; A2) that we designessentially choosesa random

i 2 f 0: : : (q � 1)g, and simulates the distinguisher as follows: The attacker

A1 simply runs the distinguisher D by responding to its oraclequeriesusing

its PRF oracleuntil the i th query. Then it choosesthe (i + 1)th query of D

asits challengequery. Then the attacker A2 continuesthe executionof D by

responding to the (i + 1)th query using the challengeresponse,and responds

to all remaining queries of D using uniform random responses. Thus, if
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the challengeresponseis random then D executesin the (i + 1)th hybrid,

otherwiseit executesin the (i + 2)th hybrid. Thus with probability O(�=q2),

the attacker A succeeds.

In the other direction, say there is an attacker A with non-negligiblesuc-

cessprobability in the attack gameof de�nition 18. Then the distinguisherD

can simply simulate the attack gameof A by responding to all its queriesus-

ing its function oracle. In responseto the challengequery, it either sendsthe

responseof its function oracleor a uniform random response. If the function

oracle of D is a uniform random function, then A can guesscorrectly only

with probability 1=2, otherwise it has a probability non-negligibly di�erent

from 1=2 of guessingcorrectly.

In a similar way, we give herean alternative de�nition for pseudorandom

permutations (PRP). We will only consider the caseof strong PRPs here,

henceonly give the de�nition for this case.

De�nition 19 ((Strong) Pseudorandom Perm utations). A permuta-

tion ensemblef � � g� 2 N is a (strong) pseudorandompermutation ensemble

if for any probabilistic polynomial time (PPT) adversarypair A = (A1; A2),

none of which query their oracles on the challengequery or its inverse, it

holdsthat,

�
�
�
�
�
�
�
�
�
�

Pr

2

6
6
6
6
4

b= b0

�
�
�
�
�
�
�
�
�
�

s  f 0; 1gc(� ) ; (d2f� 1;+1 g; x; � )  A � s ;� � 1
s

1 (1� );

y0  � d
s(x); y1  f 0; 1gb(� ) ; b  f 0; 1g;

b0  A � s ;� � 1
s

2 (yb; � )

3

7
7
7
7
5

�
1
2

�
�
�
�
�
�
�
�
�
�

= negl(� )
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This de�nition is again equivalent to the de�nition of strong PRPs from

chapter 2 (similar to the caseof PRFs). A slightly weaker notion than PRFs

is that of Unpredictable functions. Theseprimitiv es are similar to Message

Authentication Codesde�ned in chapter 2.

De�nition 20 (Unpredictable Functions (UF)). A function ensemble

f F� g is an unpredictablefunction ensemble if for any probabilistic polynomial

time (PPT) adversary A, that does not query its oracle on the prediction

query, it holdsthat,

Pr
�
y = Fs(x)

�
�
�
� s  I (� ); (x; y)  AFs (1� )

�
= negl(� )

Similar to the caseof PRFs/PRPs, wecanalsode�ne permutation analogs

of UFs, called Unpredictablepermutations.

De�nition 21 (Unpredictable Perm utations). A function ensemblef � � g

is an unpredictablepermutation ensemble if for any probabilistic polynomial

time (PPT) adversary A, that does not query its oracle on the prediction

query or its inverse, it holdsthat,

Pr
�
y = � s(x)

�
�
�
� s  f 0; 1gc(� ) ; (x; y)  A � s ;� � 1

s (1� )

�
= negl(� )

As we discussedabove, we cande�ne veri�able analogsof each of the de�-

nitions above. Let usstart by de�ning the notion of Veri�able Pseudorandom

Functions (VRFs).
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De�nition 22 (V eri�able Random Functions). A Veri�able random

function family f F� g consists of three algorithms (Gen; Prove; Verify) such

that Gen(1� ) outputs a pair of keys (PK ; SK ); ProveSK (x) outputs a pair

(FSK (x); proofSK (x)) , where FSK (x) is the function output and proofSK (x))

is the correspondingproof of correctness;and VerifyP K (x; y; prf ) veri�es that

y = FSK (x) using the proof prf (by outputting 1 if so). This VRF family

shouldsatisfy three requirements:

� Correctness : if (y; prf )  ProveSK (x), then VerifyP K (x; y; prf ) = 1.

� Soundness: no (PK ; x; y1; prf 1; y2; prf 2), with (y1; prf 1) 6= (y2; prf 2),

can satisfy

VerifyP K (x; y1; prf 1) = VerifyP K (x; y2; prf 2) = 1

� Pseudorandomness : For any PPT adversarypair A = (A1; A2), nei-

ther of which query their oracle on the challengeinput x, it holdsthat

�
�
�
�
�
�
�
�
�
�
�
�
�

Pr

2

6
6
6
6
6
6
6
4

b= b0

�
�
�
�
�
�
�
�
�
�
�
�
�

(PK ; SK )  Gen(1� );

(x; � )  AProveS K
1 (1� ); y0  FSK (x);

y1  f 0; 1gb(� ) ; b  f 0; 1g;

b0  AProveS K
2 (yb; � )

3

7
7
7
7
7
7
7
5

�
1
2

�
�
�
�
�
�
�
�
�
�
�
�
�

= negl(� )

Along similar lines,we cande�ne the notions of Veri�able Pseudorandom

Permutations (VRPs), Veri�able UnpredictableFunctions (VUFs) and Veri-
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�able UnpredictablePermutations(VUPs) asveri�able analogsof PRPs,UFs

andUPs, respectively, each of which hasthreealgorithms(Gen; Prove; Verify),

and satisfy the Completenessand Soundnessproperties as well.

6.2 Implications

In the previous chapter, we proved a combinatorial property of the Feistel

construction whereinternal round function valueswere visible to the adver-

sary. Now we will describe how this property can be applied to a variety of

scenariosto yield new or improved cryptographic constructionsthan before.

6.2.1 More Resilien t PRPs from PRFs

We give a construction of pseudorandom permutations from pseudorandom

functions, that remains secureeven if the PRF input/output pairs used in

the construction arevisible to the attacker. In particular, we proposeusinga

k-round LR construction 	 R;k , wherek = ! (log � ), with independent PRFs

f 1 : : : f k  F asround functions. The following statesthat this construction

is a securePRP even if the attacker can observe the intermediate round

values.

Theorem 25. If there existsan e�cient PRP adversaryA � that hasa non-

negligibleadvantage� � in the PRP attack gameagainstthe construction 	 R;k

(using round functions from the PRF family F ), then there alsoexistsa PRF

adversaryA f that has non-negligible advantage� f in the PRF attack game
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against a PRF sampled from the PRF family F . From this, we get a bound

� � = O
�

qk� f + (qk)6

2n

�
, where � f denotesthe maximum advantageof a PRF

adversaryrunning in time O(t + (qk)5) againsta PRF sampled from F , and

t; q are the running time and number of queriesmadeby A � .

Pro of: Weshow that the PRP construction 	 R;k , usingPRFs sampledfrom

the PRF family F(�) : f 0; 1gn ! f 0; 1gn , is a securePRP. The proof consists

of two parts:

1. Showing that a PRF family that yields secureand independent PRFs

upon each sampleis a 5-XOR resistant function family.

2. Showing that no PRP adversary can succeedwith non-negligiblead-

vantage in the PRP attack gameagainst a ! (log � )-round Feistel con-

struction with independent and securePRFs in each round.

XOR-resist ance of PRFs. Considera k-round Feistel construction 	 k

that usesk PRFs f 1 : : : f k , independently sampledfrom a PRF family F(�) :

f 0; 1gn ! f 0; 1gn , as round functions. Consideran XOR �nding adversary

Axor that forcesa 5-XOR condition through its querieswith non-negligible

advantage. We will show that using Axor , we can designanother attacker

A f that succeedsin the PRF attack game(seede�nition 18) against a PRF

sampledfrom the family F .

Claim 26. If there is an PPT attacker Axor that queriesthe k-round Feistel

construction 	 k (that usesindependent PRFs from a PRF family F ), ob-

servesintermediate round valuesand forces the 5-XOR condition throughits
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querieswith probability � xor , then there exists a PRF adversaryA f that has

advantage� f in the PRF attack gameagainsta PRF sampled from F , where

� f � 1
2qk �

�
� xor � (qk)6

2n

�
.

pro of of claim 26: The PRF adversary A f getsoracleaccessto the chal-

lengePRF adversaryFs. It then needsto choosea challengequery, to which it

either getsthe PRF output or a random n-bit string, and its task is to distin-

guishbetweenthe two cases.The attacker A f choosesa random round num-

ber i 2 f 1: : : kg, and samples(k � 1) independent PRFs f 1 : : : f i � 1; f i +1 : : : f k

from the family F . It then simulates the Feistel construction 	 k , with the

challengePRF asthe i th round function and the self-generatedPRFs making

up the remaining round functions. It then simulates the XOR attack game

betweenAxor and 	 k .

Assumea �xed, largeenough,polynomial upper bound on the number of

queriesthat the adversary Axor makesto 	 k . The PRF adversarychoosesa

random query number j 2 f 1: : : qg whereit choosesits challengequery. On

getting the j th query, it sendsthe i th round valueasthe challengePRF query,

and usesthe challengeresponseas the output of the i th round function. It

computesthe remaining self-generatedround functions as usual. If the i th

round function is applied to a new input, then it checks to seeif the new

round value generatedhas a 5-XOR representation in terms of previously

existing round values. If so, then it guessesthat the challengeresponseis

the PRF output (say by outputting 1), otherwise it guessesthe challenge

responseto be random (by outputting 0).
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It is clear that if the attacker A f makes all its guessescorrectly, i.e.

correct round number and correctquerynumber, then it succeedsif a random

responsealsodoesnot have an 5-XOR representation. Hence,we get that

Adv(A f ) = Pr[(A f ! 1) ^ (PRF output)]

+ Pr[(A f ! 0) ^ (Random output)] �
1
2

Here A f ! 0=1 represents the event that the attacker A f outputs 0=1. If

� xor denotesthe advantage of an XOR adversary then we get that,

Pr[(A f ! 1) ^ (PRF output)] = Pr[(A f ! 1)j(PRF output)]

� Pr[(PRF output)]

�
� xor

qk
�

1
2

Pr[(A f ! 0) ^ (Random output)] = Pr[(A f ! 0)j(Random output)]

� Pr[(Random output)]

�
�
1 �

(qk)5

2n

�
�

1
2

) Adv(A f ) �
1

2qk
�
�
� xor �

(qk)6

2n

�

Security of the PRP constr uction. We will now show that the con-

struction 	 R;k , that is basedon a k-round Feistelconstruction usingindepen-
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dently sampledround functions from a PRF family F(�) : f 0; 1gn ! f 0; 1gn ,

is a securePRP construction.

Claim 27. If there exists an e�cient PRP adversary A � that has a non-

negligibleadvantage� � in the PRP attack gameagainstthe construction 	 R;k

(using round function from PRF family F ), then there also exists a PRF

adversaryA f that has non-negligible advantage� f in the PRF attack game

against a PRF sampled from the PRF family F . In particular, we get that

the maximum advantageof such a PRP adversarycan be bounded by � � =

O
�

qk� f + (qk)6

2n

�
. Here � f is the maximum advantageof a PRF adversary

running in time O(t + (qk)5) against a PRF sampled from F , where t; q are

the running time and number of queriesmadeby A � .

pro of of claim 27: The PRF adversaryA f getsoracleaccessto a challenge

PRF Fs. It samples(k � 1) independent PRFs f 1 : : : f (k=2)� 1; f (k=2)+1 : : : f k

from the PRF family F . It simulates the PRP construction 	 R;k by plug-

ging in the challengePRF as the (k=2)th round function and using the self-

generatedPRFs as the remaining round functions. It then simulates the

PRP attack gamebetweenthe attacker A � and 	 R;k .

It computesthe responseto any query madeby A � by computing all the

round values((k=2)th one by querying the PRF oracle). When the attacker

A � sendsits challengequery, then A f computesall the self-generatedround

functions honestly, but sendsthe (k=2)th round value as its PRF challenge

query and usesthe challengequery responseas the (k=2)th round function

output. It then continues with the post-challenge phaseas it did before
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the challengequery. Finally, it simply gives the sameoutput as the PRP

adversary A � (i.e. guessPRF if A � guessesPRP, elseguessrandom).

We note that the PRF adversary succeedsif the following conditions all

hold: (1) the PRP adversary A � succeeds,(2) the (k=2)th round value in

the challengequery is never required in any other query and, (3) the PRP

challenge output looks random if the PRF challenge response is random.

Thus, we have that,

Adv(A f ) � Pr

2

6
6
6
6
4

(A � succeeds)

^ (no (k=2)th round collision)

^ (PRF random) PRP random)

3

7
7
7
7
5

�
1
2

Now we can estimate the probability in the above expressionas,

Pr

2

6
4

(A � succeeds) ^ (no (k=2)th round collision)

^ (PRF random) PRP random)

3

7
5

� Pr

2

6
4

(A � succeeds)

^ (PRF random) PRP random)

�
�
�
�
�
�
�

0

B
@

no collision in

f k
2 � 1; k

2 + 1g

1

C
A

3

7
5

� Pr[no collision in f k
2 � 1; k

2 + 1g]

� Pr

2

6
4(A � succeeds)

�
�
�
�
�
�
�

(PRF random) PRP random)

^ ((no collision in f k
2 � 1; k

2 + 1g)

3

7
5

� Pr
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6
4(PRF random) PRP random)
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� Pr[no collision in f k
2 � 1; k

2 + 1g]

� Pr

2

6
4(A � succeeds)

�
�
�
�
�
�
�

(PRF random) PRP random)

^ ((no collision in f k
2 � 1; k

2 + 1g)

3

7
5

� Pr

2

6
4(PRF random) PRP random)

�
�
�
�
�
�
�

0

B
@

no collision in

f k
2 � 1; k

2 + 1g

1

C
A

3

7
5

�(1 � � xor )

� Pr

2

6
4(A � succeeds)

�
�
�
�
�
�
�

(PRF random) PRP random)

^ ((no collision in f k
2 � 1; k

2 + 1g)

3

7
5

�(1 � 2� f ) � (1 � � xor )

�
�

� � � 2� f �
�

2qk� f + (qk)6

2n

� �
� (1 � 2� f ) �

�
1 � 2qk� f � (qk)6

2n

�

) � � = O
�

qk� f + (qk)6

2n

�

In the above argument, we have used � f to bound the advantage of all of

out PRF adversaries(in L.H.S. as well as R.H.S.). This bound � f is the

maximum advantageof a PRF adversaryrunning in time O(t + (qk)5), where

t; q are the running time and number of queriesmadeby the PRP attacker

A � . The initial two stepsof the above argument can be derived as simple

conditional probability manipulations. The third step can be derived as a

result of corollary 2 in chapter 5, that says that the advantageof the collision

�nding attacker is no more than that of a 5-XOR �nding attacker.

In the fourth step, we usethe fact that if a PRF family yields secureand

independent PRFs, then the usual PRF attack de�nition is equivalent to a

modi�ed de�nition wherethe attacker hasaccessto two independently sam-
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pled PRFs from the samefamily. In the challengephaseof this new attack

scenario,either random or pseudorandomresponsesare given to challenge

queriesto both thesefunctions. Sincethe attacker is not permitted to query

the PRF oracleson these challengequeries,we need the property that no

round valuecollisionoccuramonground valuesin f (k=2)� 1: : : (k=2)+ 1g.

Moreover, since we know from theorem 18 in chapter 5 that there is an

attacker that can invert the Feistelnetwork with k = O(log � ) roundswithin

a polynomial number of forward queries,we can alsodeducethat the result

above is asymptotically tight.

6.2.2 Unpredictable Perm utations

What if the round functions in the Feistel network are only unpredictable

functions and not pseudorandom?In this case,it is not clear whether the

attack in theorem 18 (chapter 5) can be made to work in this case.This is

becausethe UP adversarycannot make useof this attacker sinceit doesnot

seemto have accessto all the intermediate round values. However, we will

�rst show that if certain pathological (but secure)unpredictable functions

are usedas round functions, then the UP adversary can infer all the round

valuessimply by observingthe output of the Feistel construction!

Lemma 23. For any k � n
! (log � ) (in particular, if k = O(log � )), there exist
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k secure unpredictable functions f 1 : : : f k , such that by querying the k-round

Feistel construction 	 f 1 :::f k on any input an e�cient attacker can always

learn all intermediate round values.

Pro of: Let f gi : f 0; 1gn ! f 0; 1gn=kgi 2f 1:::kg be k secureunpredictable

functions. For i 2 f 1; kg, we will de�ne the functions f i : f 0; 1gn ! f 0; 1gn

as f i (x) = 0(i � 2)�(n=k) k x i � 1 k gi (x) k 0(k� i )�(n=k) , where x i � 1 denotesthe

(i � 1)th (n=k) bit block in the input x. Each of the functions f i is a secure

unpredictable function if the corresponding function gi is a secureUF.

Considera query (R0 k R1) 2 f 0; 1g2n made to the Feistel construction

	 f 1 :::f k . We will considerk blocks of (n=k) bits each in both R0 and R1,

which we will denoteby R0 = R1
0 k : : : k Rk

0 and R1 = R1
1 k : : : k Rk

1. Denote

the round valuesgeneratedin computing the output of this construction as

(R0; R1) : : : (Rk ; Rk+1 ), where Rk k Rk+1 is the output of this construction.

If the number of rounds in the Feistelconstruction is even, then we note that

the output of the construction is:

Rk = (g1(R1) � R1
0 � R1

1) k : : : k (gk� 2(Rk� 2) � Rk� 2
0 � Rk� 2

1 )

k (gk� 1(Rk� 1) � Rk� 1
0 ) k Rk

0

Rk+1 = (g1(R1) � R1
0 � R1

1) k : : : k (gk� 1(Rk� 1) � Rk� 1
0 � Rk� 1

1 )

k (gk(Rk) � Rk
1)
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If number of rounds k is odd, then the output of the Feistel construction is,

Rk = (g1(R1) � R1
0 � R1

1) k : : : k (gk� 2(Rk� 2) � Rk� 2
0 � Rk� 2

1 )

k (gk� 1(Rk� 1) � Rk� 1
1 ) k Rk

1

Rk+1 = (g1(R1) � R1
0 � R1

1) k : : : k (gk� 1(Rk� 1) � Rk� 1
0 � Rk� 1

1 )

k (gk(Rk) � Rk
0)

Now it is easy to �nd each of the round function outputs (and hencethe

intermediate round values)by simply observingthe right half of the output

of the Feistel construction.

Thus we seethat if the number of rounds in the Feistel construction (using

UFs) used to construct unpredictable permutations is k = O(log � ), then

the construction is insecure. Moreover, even if we attempt to construct a

shrinking MAC by choppingthe left half of the output, it would bepossibleto

retrieve all intermediate round valuesby simply observingthe MAC output.

In fact, even for k = ! (log � ) (but less than n=! (log � )) rounds it might

be possibleto retrieve all intermediate round values,and hencenoneof the

previous proof techniques are applicable. We will prove a much stronger

result here,by showing that if we usea super-logarithmic number of rounds

in the Feistelconstruction (with independent unpredictableround functions)

then the resulting construction is an unpredictable permutation even if the

adversarygetsall the intermediate round valuesalongwith the permutation

output (which, aswe saw, it may get any way for somepathological UFs).
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The UP construction 	 U;k consistsof k = ! (log � ) rounds of the Feistel

transformation using independent UFs f 1 : : : f k  F . The following theorem

essentially statesthat this construction is a secureUP construction.

Theorem 28. If there exists an e�cient UP adversary A � that has non-

negligible advantage� � in the unpredictability gameagainst 	 U;k and which

makesa polynomial number of queriesto 	 U;k , then there also exists a UF

adversaryA f that has non-negligibleadvantagein the unpredictability game

against a UF sampled from the UF family F . From this, we get that the

maximum advantageof the UP adversaryA � is � � = O (� f � (qk)6). Here � f

denotesthe maximum advantageof a UF adversaryrunning in time O(t +

(qk)5) againsta UF sampled from F , where t is the running time of the PRP

adversaryA � and q is the number of queriesmadeby it.

Pro of: The proof of this theorem consistsof two main parts:

1. A UF family that yields secureand independent UFs on each sample

is a 5-XOR resistant function family.

2. The construction 	 U;k that usessecureand independent UFs in each

round is a secureunpredictablepermutation.

XOR-resist ance of UFs. Considerthe k-round Feistelconstruction 	 U;k

using independent UFs f 1 : : : f k  F in each round. If there is an adversary

Axor that queries	 U;k and forcesa 5-XOR condition through its querieswith

a non-negligibleadvantage � xor , then we canconstruction a UF adversaryA f

233



that hasnon-negligibleadvantage in the unpredictability gameagainsta UF

sampledfrom the family F .

Claim 29. If there is an adversaryAxor that can force a 5-XOR condition

in an interaction with 	 U;k (that usesindependentUFs sampled from a UF

family F(�) : f 0; 1gn ! f 0; 1gn) with non-negligibleprobability � xor then there

exists a VUF adversaryA f that has non-negligible successprobability � f in

the unpredictability against a UF sampled from the family F . In particular,

we showthat � f � � xor
(qk)6 .

pro of of claim 29: On getting the challengeunpredictable function Fs,

the UF adversary choosesa random round number i where it plugs in the

challenge UF. Next, the UF adversary A f generates(k � 1) independent

UFs f 1 : : : f i � 1; f i +1 : : : f k from the samefamily and usestheseasthe remain-

ing round functions to simulate the Feistel construction 	 U;k for the XOR

adversary Axor to attack.

Then it lets the UF adversary run its attack on 	 U;k . Assuminga �xed

and large enoughpolynomial upper bound q on the number of queriesmade

by Axor , the UF adversaryA f choosesa random query number j 2 f 1; qg. It

guessesthat the 5-XOR condition occursafter the i th round function evalua-

tion in the j th query, i.e. Rj
i . Insteadof querying this input to the UF oracle,

it selectsthis as the challengeinput and usesan XOR of upto 5 randomly

chosenpreviously existing round valuesas its prediction of the output.

If all its guessesare correct, i.e. it choosesthe correct round number

i , the correct query number j and the correct XOR representation, then it
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succeedsin the UF game. The probability that all its guessesare correct is

at least 1
(qk)6 . Thus, we get that � f � � xor

(qk)6 .

Security of the UP constr uction. We will now show that the UP

construction 	 U;k , that usesround functions from the UF family F that gives

secureand independent UFs on each sample, is a secureconstruction of a

unpredictablepermutation

Claim 30. If there exists a PPT UP adversaryA � that has non-negligible

advantage� � in the unpredictability gameagainst 	 U;k and which makesa

polynomial number of queriesto 	 U;k , then there also existsa UF adversary

A f that has non-negligible advantagein the unpredictability gameagainst a

UF sampled from the UF family F . In particular, we get that the maximum

advantageof the UP adversary A � is � � = O(� f � (qk)6). Here � f is the

maximum advantageof a UF adversaryrunning in time O(t + (qk)5) against

a UF sampled from F , where t; q are the running time and number of queries

madeby A � .

pro of of claim 30: The UF adversary A f getsoracleaccessto a challenge

unpredictablefunction Fs. It samples(k � 1) independent UFs f 1 : : : f (k=2)� 1

; f (k=2)+1 : : : f k from the sameUF family F . It simulates the UP construction

by plugging in the challengeUF asthe (k=2)th round function, and using the

self-generatedUFs as the other round functions.
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When the UP adversarysendsits challengequeryR0 k R1 (or Rk k Rk+1 ),

and its predicted output Rk k Rk+1 (resp. R0 k R1), the UF adversary pro-

ceedsby usingits selfgeneratedround functions to evaluate the intermediate

round valuesR0; R1; R2 : : : Rk=2 and from Rk+1 ; Rk ; Rk� 1 : : : Rk=2+1 . It then

sendsthe challengeinput/output pair (Rk=2; Rk=2� 1 � Rk=2+1 ) as its predic-

tion. It is easyto seethat if the round value Rk=2 is a new round value and

the UP adversary predicted correctly, then the UF adversary A f succeeds.

Thus, we can deducethat,

Pr[A f succeeds] = Pr

2

6
4

(A � succeeds)

^ (no (k=2)th round collision)

3

7
5

= Pr
�
(A � succeeds)

�
�no (k=2)th round collision

�

� Pr [no collision]

�
�
Pr [A � succeeds] � Pr

�
(k=2)th collision

��

� Pr [no collision]

� (� � � � xor ) � (1 � � xor )

) � � �
� f

1 � � xor
+ � xor

) � � = O(� f � (qk)6)

In the above argument, we have often bound the advantage of a UF adver-

sary by � f . This is the maximum advantage of a UF adversary running in

time O(t + (qk)5), where t; q are the running time and number of queries

madeby A � . The transition from step (3) to (4) is possibleusing corollary 2
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from chapter 5, that says that the advantage of an e�cien t collision �nding

adversary is sameas that of an e�cien t XOR condition forcing adversary.

The last step of the argument is possiblethrough claim 29.

6.2.3 Veri�able Random Perm utations

When we attempt to use the Feistel network to construct a veri�able ran-

dom permutation using VRFs as round functions, then the attacker gets all

the intermediate round valuesas part of the proofs for each round function

computation. Thus, here again, one can use the attacker from lemma 18

(chapter 5) to construct a VRP attacker that violates the pseudorandom-

nessrequirement of the VRP construction if the number of Feistel rounds is

k = O(log � ).

The VRP construction	 V R;k that we use is the k-round LR construc-

tion using independent VRFs f 1 : : : f k  F as round functions. The pub-

lic/priv ate keysof 	 V R;k are simply the concatenationof the public/priv ate

keys of the k VUFs. The Prove functionality for 	 V R;k gives the permuta-

tion output, and as proof it gives all intermediate round valuesalong with

the corresponding VRF proofs. The Verify functionality simply checks if all

intermediate VRF proofs verify correctly.
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Theorem 31. Let 	 V R;k = (G� ; � ; V� ) be the VRP construction that uses

a k-round LR construction with independent VRFs f 1 : : : f k  F . This

construction is a secure VRP if the VRFs used as round functions are se-

cure. In particular, for any probabilistic polynomial time oracle machine

A � = (A1; A2) that does not query its oracle on x or try to invert the re-

sponse to the challenge query, the advantageof A � in winning the VRP

pseudorandomnessgameagainst 	 V R;k is at most O
�

qk� f + (qk)6

2n

�
, where

� f denotesthe maximum advantageof a VRF adversary that runs in time

O(t + (qk)5) against a VRF sampled from F , and t and q are the running

time and number of queriesmadeby A � .

Pro of: The completenessof the construction 	 V R;k is a direct consequence

of the completenessof each of the VRFs used as round functions, since if

all VRF proofs verify correctly then the resulting VRP proof does so too.

The soundnessof the construction if alsoobvious given the fact that all the

intermediate VRFs are sound. In particular, if there are two output/pro of

pairs of 	 V R;k that verify correctly, then we can �nd two VRF output/pro of

pairs that verify correctly for one of the round functions. The proof for the

pseudorandomnessproperty of 	 V R;k is essentially the sameas the proof of

theorem25.
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6.2.4 Veri�able Unpredictable Perm utations

Our VUP construction 	 V U;k is essentially identical to the VRP construction

	 V R;k , excepts that we use independent VRFs instead of VUFs as round

functions.

Theorem 32. Let 	 V U;k = (G� ; � ; V� ) be the construction usingk roundsof

the Feistel construction using independentVUFs f 1 : : : f k  F . Then 	 V U;k

is a secure VRP if the VUFs used in the construction are secure VUFs. In

particular, for any probabilistic polynomial time oraclemachineA � that does

not make a forward query on x or an inverse query on y, the advantageof

A � in winning the VUP pseudorandomnessgameagainst 	 V U;k is at most

O(q6k7 � � f ), where � f denotesthe maximum advantageof a VUF adversary

running in time O(t + (qk)5) againsta VUF sampled from F , t is the running

time of A � and q is the number of queriesmadeby A � .

The completenessand soundnessproperties of this construction can be

proven in the sameway asthe correspondingpropertiesof the VRP construc-

tion 	 V R;k , above. The proof for the unpredictability property is the sameas

in theorem28.

6.3 Applications

We have seenthat our results for the Feistel network with public round

valuesleadsto newor improved constructionsof several cryptographic prim-
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itiv es. In this section,we will illustrate several practically-motivated natural

scenarioswhereour results are applicable.

6.3.1 Implications to Domain Extension

Sincethe Feistel Network doublesthe length of its input, our results could

alsobe viewed in relation to the questionof domain extensionof UFs, VUFs

and VRFs. In practice, the questionof domainextensionis typically handled

by a collision-resistant hash function (CRHF): it usesonly one call the the

underlying n-bit primitiv e f and does not require the secret key to grow.

However, the existenceof a CRHF is a theoretically strongassumption,which

does not seemto follow from the mere existenceof UFs, VRFs or VUFs.

This is especially true for UFs, whoseexistencefollows from the existence

of mere one-way functions and, hence,can even be \black-box separated"

from CRHFs [71]. Thus, it makessenseto considerthe questionof domain

extensionwithout intr oducing new assumptions.

For PRFs, this questionis easilysolved by using (almost) universalhash

functions (instead of CRHFs) to hashthe messageto n bits beforeapplying

the n-bit PRF. However, this technique fails for UFs, VUFs and VRFs: in

the caseof unpredictability becausethe output reveals information about

the hash key, and for VRFs becauseit is unclear how to provide proofs of

correctnesswithout revealing the hash key. Another attempt (which works

for digital signatures) is to use target collision-resistant hash functions [60]

in place of CRHFs, but such functions have to be freshly chosenfor each
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new input, which will break the uniqueprovabilit y of UFs, VUFs and VRFs.

(Additionally , the hash key should also be authenticated, which further de-

creasesthe bandwidth). In casethe underlying n-bit primitiv e f is shrinking

(say, to n � a bits), one can use somevariant of the cascade(or Merkle-

Damg�ard) construction. Indeed, this was formally analyzed for MACs by

[1, 53]. However, the cost of this method is oneevaluation of f per a input

bits. In particular, in casethe output of f is alsoequalto n, which is natural

if one wants to extend the domain of a UF given by a block cipher, this

method is either inapplicable or very ine�cien t.1

In contrast, our method builds a UP/VUP/VRP from 2n to 2n bits from

the onefrom n to n bits, by usingk = ! (log � ) evaluationsof f , albeit alsoat

the price of increasingthe secretkey by the sameamount. This answers the

questionleft open by An and Bellare [1] (who only showed that three rounds

are insu�cien t): Feistel Network is a good domain extenderfor MACs if and

only if it usessuper-logarithmic number of rounds!

Moreover, in the context of UFs (and VUFs), whereone wants to mini-

mizethe output length aswell, we notice that the output length canbeeasily

reducedfrom 2n to n. This is doneby simply dropping the \left half" of the

Feistelpermutation output! The justi�cation for this optimization follows by

noticing that in this casethe attacker will only make forward queriesto the

Feistel construction. For such attackers,we can extendour main combinato-

1In principle, such length-preserving f can be \truncated" by a bits, but this losesan
exponential factor in a in terms of exact security. Thus, to double the input length, one
would have to evaluate f at least 
( n= log� ) times.
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rial lemma as follows. For any s � k, if a 5-XOR resistant family is usedto

implement the round functions and the attacker madelessthan exponential

in s number of queries, then the attacker has a negligible chance to cause

any collisions between rounds s and k (as opposedto k � s we had when

backward querieswereallowed). From this, onecan derive that k = ! (log � )

Feistel rounds is enoughto turn a UF (or VUF) from n to n bits into one

from 2n to n bits. Moreover, in the caseof UFs we expect that one would

usea (possiblyheuristic) pseudorandomgeneratorto derive the k round keys

(much like in the caseof block ciphers),meaningthat the only e�ective cost

is k computationsof the basicUF. Oncethe domain is doubled,however, one

can usethe cascademethods [1, 53] to increaseit further without increasing

the key or the output length.

6.3.2 More Resilien t Blo ck Ciphers

Although not asstrong aspseudorandomness,unpredictability is a meaning-

ful property of block ciphers. First, wealreadymentioned that it is enoughfor

messageauthentication, and our Feistelconstruction is alsousefulin the con-

text of domain extensionof MACs. We notice that it is alsoenoughto argue

certain weaker properties of popular modes of operation on block ciphers.

For example, one can easily argue that the CBC mode with UPs (rather

than PRPs) yield a \computationally � -universal" hash function [3], which

can then be usedwith an ordinary block cipher to get a secure\encrypted

CBC-MAC". Even in the context of encryption, one can argue that CBC,
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OFB and CFB modes with UPs satisfy the following form of one-wayness

against the usual chosenmessageattack. The attacker can ask encryptions

or any messages.For the challenge,it speci�es any messagewith onemissing

block. Then this block is chosenat random, and the encryption of the entire

message(using the corresponding mode) is given to the attacker. Finally, the

attacker hasto recover this missingblock, and usingUPs guaranteesthat the

attacker only hasa negligibleprobability to succeededin this game.

To summarize,the usageof UPs in placeof PRPs still maintains weaker,

but still meaningful security properties. Therefore, we seetheir primary

utilit y as a way for providing a \graceful fall-back" property for the Feistel

construction. If (nearly) pseudorandomround functions are used,then with

! (log � ) rounds the resulting permutation is a PRP. As a bonus, it remains

a PRP even if the intermediate round valuescould be leaked! Additionally ,

even if the round functions are only unpredictable, we still have somebasic

security left, soat the very least the systemwill not be \completely broken".

6.3.3 Ideal Cipher Mo del using Semi-Honest Trusted

Part y

The Ideal Cipher Model(ICM) (alsoknown asthe \ShannonModel") assumes

the existenceof a publicly accessibleIdeal Block Cipher, meaning that for

every possiblekey s onehas a fresh random permutation � s and its inverse

� � 1
s . Although the ICM is not aspopular as the random oraclemodel, there
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are still several notable examplesof schemeswherethis model hasbeenused

[15, 23, 30, 42, 46]. Unfortunately, just like the random oracle model, the

ICM model cannot be provably realizedwithout a trusted party T (see[14]).

A naive implementation is easy, but inconvenient. First, T shouldkeeptrack

of all the queriesalready asked to ensureconsistency, which quickly becomes

very impractical. Second,the parties must trust that T has evaluated the

value � s(x) consistently acrossinvocations. Third, once they get such a

value, they cannot convince any other party of its validit y: that party must

independently go to T to check the correctness.Finally, they must trust that

the answers of T are actually random.

It turns out that a VRP can considerablyimprove this naive implemen-

tation. First, we start with implementing a singletruly random permutation

� (corresponding to an ideal cipher with a �xed key). Then T can publish

the public key for a VRP � , and only keepthe secretkey as its state. When

someparty comesto T and asksa forward or backward query to �, T sim-

ply evaluates� or � � 1 on that query, and returns the result together with a

proof of correctness.This way the parties are assuredthat: (a) they receive

a correct and consistent value of �; (b) they are really talking to T (or, if

not, the value is correct anyway); (c) onceT is committed to the public key,

T cannot dynamically adjust the valuesof � and � � 1; (d) even if T selected

a bad public key, T is committed to a permutation; in particular, the value

of � on a randompoint is guaranteed to be random. Finally, oncesomebody

getsa valueof � or � � 1 from T, it can transfer this valueon its own, without
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the needof other parties to cometo T and verify it.

To extendthis to a full blown Ideal Cipher, we facea problemthat T must

generatea new VRP for every key s of the Ideal Cipher. However, for our

particular VRF-based construction we can do better. Instead of assuming

the existenceof a VRF from n to n bits, we assumethe existenceof a VRF

from n + a to n bits, wherea is the length of the key s (if needed,such VRF

can always be constructed from another VRF using the domain extension

techniqueswe developed earlier). In this case,T will always prepend the key

s to all the VRFs inputs whenevaluating the FeistelNetwork for the valueof

� s. This way T still storesonly ! (log � ) keysfor the VRFs, and canemulate

2a possiblerandom ciphers.

6.3.4 Applications of VRPs/VUPs

Next, we mention several exampleshow VRPs could be useful in scenarios

whereplain VRFs are not enough.

Non-in teractiv e Commitmen ts

Wenoticethat VRPs immediatelyyield non-interactive,setup-free,perfectly-

binding commitments schemes.The senderchoosesa randomkeypair (SK ; PK )

for a VRP � . To commit to m (in the domain of the VRP), the sendersends

PK and the value c = � SK (m) to the receiver. To open m, the sendersends

m and the proof that c = � SK (m), which the receiver can check using the

public key PK . The hiding property of this construction trivially follows
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for the security of VRPs. As for binding, it follows from the fact that � is

a permutation even for an adversarial choice of PK . As we can see,it is

not clear how to achieve binding directly using plain VRFs. However, given

our (non-trivial) equivalencebetween VRFs and VRPs, we get that VRFs

arealsosu�cien t for building non-interactive, perfectly binding commitment

schemeswithout setup. Alternativ ely, to commit to a singlebit b, onecanuse

VUPs augmented with the Goldreich-Levin bit [37]. Here the senderwould

pick a random r and x, and sendPK , r , � SK (x), and (x � r ) � b, wherex � r

denotesthe inner product modulo 2. Using our equivalencebetweenVUPs

and VUFs, we seethat VUFs are su�cien t as well.

We remark that the best general constructions of such commitments

schemeswas previously basedon one-way permutations (using the hardcore

bit) [16], sinceNaor's construction from one-way functions [57] is either in-

teractive, or non-setup-free.Sincethe assumptionof one-way permutations

is incompatible with VUFs or VRFs, our new construction is not implied by

prior work.

Non-In teractiv e Zero-Kno wledge (NIZK)

Weshow that VRPs (and, thus, indirectly, VRFs), couldbeusedto construct

NIZK proofs (in the commonreferencestring model). We remark, however,

that Dwork and Naor [29] already gave a completely di�erent construction

of NIZK proofs from VRFs (and even a weaker primitiv e called veri�able

pseudorandom generator). Thus, our construction only givesan alternative
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(and di�erent) proof of an already known result by [29]. Nonetheless,we

believe that it naturally illustrates the usefulnessof VRPs in comparisonto

VRFs, and alsosolvesa questionleft openby Goldwasserand Ostrovsky [38]

(seebelow).

Feige et al. [31] reducedthe question of constructing NIZK proofs (in

the common referencestring model) to the question of implementing the

so called \hidden bits system" HBS, and showed how to implement HBS

using trapdoor permutations. Later, Goldwasserand Ostrovsky [38] showed

how to implement HBS using so called invariant signatures. In our modern

terminology, invariant signaturesare quite similar to VRFs, except for one

additional requirement: they should induce a (pseudo)randomdistribution

on the output whenapplied to a random input, evenif the public key for the

VRF is adversarially chosen. Thus, we can think of invariant signaturesas

\balanced" VRFs. Unfortunately, it is easyto seethat regular VRFs are not

enoughto plug into the construction of [38]. Namely,

(a) Plain VRFs do not have to satisfy this property (and, as far aswe can

see,there is no trivial way to enforceit in VRFs; although, our results

imply a non-trivial way to do so).

(b) More severely, there exist secure(and, of course,unbalanced)VRFs for

which the transformation of [38] is completely insecure.

To brie
y seepoint (a), imagine adding a new special public key PK �

to any secureVRF, for which the VRF is de�ned to be identically zero. It

is clear that this still de�nes a VRF, sincethe prover is still committed to
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a unique function, even for the key PK � . And pseudorandomnessholds,

sincethe chancesPK � will be selectedare negligible. Yet, the new VRF is

obviously unbalanced.In fact, if weusethis newVRF in placeof the invariant

signature in the construction of [38], we will get a completely insecureHBS

system(thus,showing (b)). Brie
y , in the constructionof [38]a VRF selected

by the prover is applied to a bunch or random points to de�ne the \hidden

random string" (for which the prover can selectively open somepart later).

If the prover choosesPK � as his public key, then the hidden random string

is all zero as well, and it is easyto seethat NIZK construction of [31] will

completely fails with such non-randomHRS.

On a positive side, VRPs trivially satisfy balancedness,since they are

guaranteed to be permutations for any value of the public key. This means

one can build NIZK proofs from VRPs. By our construction of VRPs from

VRFs, we seethat VRFs are also su�cien t for NIZK proofs for NP. Also,

even VUPs coupledwith the Goldreich-Levin bit turn out to be su�cien t for

this application.

Non-in teractiv e Lottery for Micropa ymen ts

Micali and Rivest [56] suggestedthe following elegant way to perform non-

interactive lottery (with the main application in micropayments). The mer-

chant published a public key PK for a VRF f , the user choosesa ticket

x, and wins if somepredicate about f (x) is true (for example, if f (x) is

less than some threshold t). Since f looks random to the user, the user
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cannot signi�cantly bias his odds no matter what x he chooses. Similarly,

sincethe merchant is committed to f by the public key PK , they merchant

cannot lie about the value f (x). Unfortunately, this still leaves exactly the

sameproblem we had for the NIZK application above. Nothing stops the

merchant from publishing a \non-balanced" VRF. In the extreme case,a

constant function f (x) = c, where c is selectedso that the predicate does

not hold. Onceagain,we needbalancednessto ensurethat the merchant not

only cannot changethe valueof f after the commitment, but alsoguarantees

that the value f (x) is random at least for a random x. Once again, VRPs

perfectly solve this problem.

Moreover, VRPs have an extra advantagethat onecanpreciselyknow the

number of possiblewinners: it is exactly equal to the number of strings y

satisfying the given predicate. Thus, onecan always allocatea given number

of prizesand never worry that with somesmall probability there will bemore

winners than prizes.

Reusable Coin-Flipping

We can extend the previous lottery example to the following coin 
ipping

problem. Alice wants to publish somevalue PK (keepingthe corresponding

valueSK secret)allowing other to non-interactively selecta random number

r as follows. Any party Bob can choosea random value x and send it to

Alice. The value x (combined with PK ) uniquely de�nes the �nal value of

r . If needed,Alice can open the value of r and convince Bob that this value
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is correct. Additionally , we want the following properties.

(a) No matter how Bob selectsx, the value r looksrandom to Bob (except

if he \replays" someold r ).

(b) For any x, Alice cannot producetwo di�erent r as the �nal value, even

if sheadversarially choosesthe public key PK .

(c) Bob is sure that that if he selectsx at random, the value r is random,

even if Alice adversarially choosesthe public key PK .

(d) Alice can reusethe samePK for many executions(and only has to

worry about the replay attack from Bob).

It is clear that VRPs precisely solve this problem. In contrast, VRFs

do not satisfy property (c), while other existing coin-
ipping protocols are

either ine�cien t or do not appear to have the reusability property (d).

Adding Veri�abilit y to PRP Applications

Finally, we mention exampleshow VRPs could be useful to add veri�abilit y

to someapplication of PRPs (where, again, PRFs are not su�cien t).

Verifiable CBC Encr yption. As the simplest example, using VRPs

onecan add veri�abilit y to CBC encryption and decryption.

Verifiable Huge Random Objects. A bit lessstraightforwardly, we

considerthe questionof \truthfully", yet e�cien tly, samplinghuge(pseudo)

random objects, initiated by Goldreich et al. [36]. In this work, the authors

showed several applications where PRPs can be used to e�cien tly sample
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various exponential-sized objects (like random connectedgraphs). Using

VRPs one can naturally add veri�abilit y to these constructs, so that the

samplercancompactly commit and selectively reveal small parts of the huge

object (like an edge). However, there is a subtlety. Sincethe PRP is often

usedasonly part of the samplingprocedure,revealing the proofs might leak

a lot of extra information which might be undesirable. For example,in the

randomconnectedgraphexampleone�rst samplesa (pseudo)randomgraph,

and then usesthe PRP to add a random Hamiltonian cycleto it (in order to

make it connected).With VRPs in placeof PRPs, revealing the VRP proof

will reveal that a given edgeis part of the \special" Hamiltonian cycle,which

is probably undesirable.

Nevertheless,wecanavoid this \priv acyproblem" in scenarioswhereonly

PRPs are usedto samplethe given object. We give one such example(not

present in [36]). Speci�cally, we can use PRPs to samplea pseudorandom

constant-degreegraph of exponential size(which is very likely to be a great

expander). In the casethe graph should be bipartite, such sampling simply

consistsof choosing d independent PRPs, where d is the required degree.

This allows one to easily �nd all the neighbors of a given node on either

side of the graph. In caseof regular graphs, we need to sampled random

matchings, which can alsobe doneusing PRPs by using an elegant result of

Naor and Reingold [59] allowing one to samplepseudorandompermutations

with a prescribed cycle structure. In either case,by using VRPs in placeof

PRPs we get veri�able random, constant-degreegraphs,which do not su�er
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from the problem we had for random connectedgraphs.

Notice alsothat PRFs/VRFs are not su�cien t for this application, since

with high probability they will not result in a truthful implementation. Ad-

ditionally, such sampling is not \reversible" (i.e., if f (x) = y, then given x

onecan seethat y is connectedto it, but not vice versa).

Wehope that more\v eri�able" hugerandomobjects could be \priv ately"

sampledusing our technique.
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Chapter 7

Relation Bet ween the Ideal

Cipher and Random Oracle

Mo dels

In the introduction, we discussedthe notion of idealized models and how

thesemake the task of designingpractical and e�cien t protocols easier,at

the cost of formally provable security in the standard model. Two of the

most popular examplesof idealized models are the Random Oracle Model

(ROM) and the Ideal Cipher Model. In chapter 3, we discussedthe problem

of instantiating the random oracle with an actual hash function and the

assumptionsinvolved therein. We discussedthe ROM in somedetail there

and gave indi�er entiable constructions of the random oracle from a �xed-

length input random function oracle or an ideal cipher oracle. We start by
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giving a short description of the Ideal Cipher Model.

Ideal Cipher Model. The Ideal Cipher Model (ICM) (also known as

the \Shannon Model") is an exampleof a ideal assumptionmodel, just as

the ROM. In this model, we assumethe existenceof a publicly accessible

Ideal Block Cipher. This is essentially a block cipher, with a k bit key

and a n bit input, that is chosenuniformly from all block ciphers of this

form. All parties in the ICM can make both forward (encryption) or inverse

(decryption) queriesto the ideal block cipher. One proves the security of a

cryptosystem under this assumption, and then instantiates the ideal block

cipher with an actual block cipher, such asAES. Although the ICM is not as

popular as the ROM, there are still several examplesof schemeswhere this

model hasbeenused[15, 23, 30, 42, 46].

Several questionshavebeenraisedregardingsecurity in the ICM. Existing

bock ciphers, such as DES, AES etc. are vulnerable to related key attacks

and have distinguishing patterns that are unlikely to occur in a random

permutation. Henceit may not be entirely secureto usetheseconstructions

to instantiate the ideal block cipher. As in the caseof ROM, uninstantiable

schemesthat aresecurein the ICM have alsobeendiscovered(see[14]). But,

all theseproblemswithstanding, the ideal cipher model doesprovide security

againstgenericattacks that do not exploit weaknessesof the underlying block

cipher.

Comparing Tw o Models. Wediscussedthe indi�er entiability framework

[52] earlier in this thesis,asa framework for comparingtwo ideal assumptions
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such as the random oracle and the ideal cipher assumptions. In particular,

we usedthis framework to �nd (indi�eren tiable) constructionsof the random

oracleusingan ideal cipher. The existenceof such constructionsimplies that

the random oracleassumptionis no stronger an assumptionthan assuming

the existenceof an ideal cipher. That is, any cryptographic task that can be

(e�cien tly) accomplishedin the Random Oracle Model is also (e�cien tly)

achievable in the Ideal Cipher Model using one of theseindi�eren tiable RO

constructions. Thus, the indi�eren tiabilit y turns out to be the right notion

when comparingtwo ideal assumptionmodels.

We know from chapter 3 that there exist indi�eren tiable constructions

of the Random Oracle using the Ideal Cipher. Thus it is really interesting

to investigate the other direction of this question. That is, Is there an in-

di�er entiableconstruction of an Ideal Cipher using a Random Oracle? This

direction seemsmuch more di�cult to tackle. Actually, it is widely believed

that a positiveanswer holdsin this direction too [20]. In fact, it is conjectured

that, with a su�cien t number of rounds, the Luby-Racko� (LR) construction

[47] (with independent random oracles,indexedby the ideal cipher key and

the round number, as round functions) is a secureconstruction of an ideal

block cipher in the ROM 1. In spite of this, there hasnot beenmuch progress

in getting a formal proof of this conjecture.

In this chapter, we take a �rst step toward resolvingthis problem.

1As we already discussedin chapter 5, the LR result [47] is not applicable in this case
becausean attacker can easily �nd out all intermediate round values by querying the
random oracle.
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7.0.5 Our Plan

We will start by describing the notion of indi�er entiability in the honest-

but-curious model. This is a weaker notion than general indi�eren tiabilit y

which we described in chapter 2, but is considerablystronger than the clas-

sical notion of indistinguishability (seelater). We will also describe special

typesof constructions,which wecall transparent constructions, for which this

restricted de�nition is equivalent to generalindi�eren tiabilit y.

Once we have a suitable de�nition, we will describe the random permu-

tation model wherewe assumethe existenceof a publicly accessiblerandom

permutation � (and its inverse� � 1). Note that this can be thought of as a

very special caseof the ideal block cipher, where the key spaceconsistsof

a single element. We will show that if we can �nd an indi�eren tiable con-

struction of a random permutation from a random oracle, it can be easily

extendedto get an indi�eren tiable construction of an ideal block cipher from

a random oracle. This is simply done by prepending the block cipher key

to the input of the random oracle. Thus, it is (necessaryand) su�cien t to

study constructionsof a singlerandom permutation from a random oracle.

Wewill then describe a constructionof a randompermutation from a ran-

dom oracle: namely, the LR-construction described above, where we derive

the round functions from the randomoracle(indexedby round number). We

conjecturethat the LR-construction is indi�eren tiable from a randompermu-

tation, with a su�cien t number of rounds. However, we will not be able to

prove this result in general. Instead, we prove this implication in the honest-
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but-curious model, as long as the number of rounds is super-logarithmic in

the security parameter � . We will derive this as a consequenceof lemma 20

from chapter 5.

Weconjecturethat our result is sub-optimal in the sensethat the LR con-

struction seemsto be secureeven with a \large enough" constant number of

rounds (seelater for what large enoughcould be), and even in the malicious

model. However, we show optimalit y in the following sense:we prove that

for upto a logarithmic number of roundsthe LR-construction is a transparent

construction. Thus, short of resolvingour conjecturein the maliciousmodel,

any improvement in the number of rounds even in the honest-but-curious

model will right away imply the sameresult in the malicious model as well.

From a negative side,we show that for super-logarithmic number of rounds

the LR-construction is provablynot transparent, which meansthat our posi-

tive result in the honest-but-curiousmodel doesnot trivially imply the same

result in the maliciousmodel.

7.1 Indi�eren tiabilit y in the Honest-but-Curious

Mo del

We brie
y recall the generalnotion of indi�eren tiabilit y. For two ideal prim-

itiv esF and G, an e�cien t oraclemachine CG is an indi�er entiableconstruc-

tion of the ideal primitiv e G using the ideal primitiv e F if there exists a

simulator SF such that for any e�cien t distinguisher D, the following prob-
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abilit y is negligible:

�
�
�Pr[D CF

G ;F (1� ) = 1] � Pr[D G;SG
F (1� ) = 1]

�
�
�

Roughly speaking,the task of the simulator SF is to simulate the role played

by the ideal primitiv e F in the F ideal model (from the view of the distin-

guisher), in the G ideal model. In the new (weaker) notion of indi�er entia-

bility in the honest-but-curiousmodel, the distinguishere�ectively hasaccess

to only one oracle. To illustrate this, in the F model the distinguisher can

only query the G construction CF
G , and not the F oracle. In addition, it also

hasoracleaccessto the queriesmadeby the construction CG to the F oracle,

which we denote as the communication transcript TCG$F . Thus the role of

the simulator S in the G model changesfrom trying to simulate F in general

indi�eren tiabilit y to trying to simulate the communication transcript TCG$F

in the G model. When the distinguisher D is in F model, then the queries

in TCG$F can be divided into two categories. Those for which D does not

observe the queriesof CG, and those for which it does. In the G model, the

former queriesare sent directly to the G oracle and the responsesof G are

sent back to D. While the latter queriesare madethrough the simulator S,

which forwards the samequery to the G oracle. But apart from sendingback

the output of G to D, it alsosendsa simulated communication transcript TS.

Thesetwo views of the distinguisher are depicted in �gure 7.1.

De�nition 23. A Turing machine CG (with oracle accessto F ) is said to
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be (tD ; tS; q; � ) indi�er entiable from an ideal primitive G in the honest-but-

curious model if there existsa simulator S suchthat for any distinguisherD

it holdsthat:

�
�Pr

�
D CG;TC G$F = 1

�
� Pr

�
D G;TS = 1

� �
� < �

The simulator S simulates the transcript TS for queries made by the dis-

tinguisher to it and runs in time tS. The distinguisher D runs in time at

most tD and makesat most q queriesto its oracle. The distinguishing ad-

vantage� is a negligiblefunction of the security parameter � . If tS and q are

both polynomial in � then the construction CG is said to be (polynomially)

indi�er entiablefrom G in the honest-but-curiousmodel.

FCG

D

F model G model

G

TSTCG$F

S

Figure 7.1: Indi�eren tiabilit y in honest-but-curiousmodel: The distinguisher
D either interacts with CG and getsthe transcript TCG$F or it interacts with
G and gets the simulated transcript TS

Note that the simulator S does not make any extra queriesto G apart

from forwarding the queriesmadeby the distinguisherD. This fact is crucial
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sincewe want the property that the distinguisher should not learn anything

from observingthe internal functioning of CG (i.e. queriesmadeto F ), that

it cannot learn from the ideal G oracle.

Considerthe constructionCG that is indi�eren tiable from Gin the honest-

but-curious model. Our new de�nition guaranteesthat any cryptosystemP,

possibly involving honest-but-curiousparties, that usesthe construction CG

in the F model behaves in exactly the sameway as it doesin the G model.

This fact is formally stated in the following lemma.

Lemma 24. If a construction CG using F is indi�er entiable from G in the

honest-but-curiousmodel, as stated in de�nition 23, then any cryptographic

protocol P (involving honest-but-curiousparties possibly) using CG in the F

model behavesexactly the sameway as in the G model.

Pro of: [alsosee�gure 7.2] Say there exists a protocol P = (Phon ; Pcur ) that

behavesdi�erently when using CG in F model. Phon represents the conven-

tional honest parties of the protocol, and Pcur represents the curious ones.

We claim that the curious parties Pcur do not gain any extra information

when using the construction CG. We will prove this by simulating the view

of all parties in P in the F model, in the G model aswell. But this is exactly

what de�nition 23 guarantees. We simply replacethe construction CG with

G. And we usethe simulator S guaranteed by our de�nition to simulate the

transcript TCG$F for the curious parties Pcur . Thus the queriesmade by

the curious parties Pcur are directed through the simulator S, which along

with the responseof G addsa fake transcript TS for the curiousparties. The
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conventional honestparties Phon aregiven direct accessto the ideal primitiv e

G. And the indistinguishability of the two scenarios(CG; TCG$F ) and (G; TS)

implies that the views of all parties in the protocol remainsthe same.

We note here that the notion of \indi�eren tiabilit y of CG from G in the

CG F

G modelF model

Distinguisher D

PhonPcur PcurPhon

G S

TSTCG$F

new curious
parties in G model

Figure 7.2: An ideaof the proof of lemma24. The conventional honestparties
Phon alongwith the curiousonesPcur can be seentogether asa distinguisher
D

honest but curious model" is at least as strong as (in fact, as we shall see

later, strictly strongerthan) the notion of \indistinguishabilit y of CG and G".

Clearly, a distinguisher in the indistinguishability scenariowill work in the

former scenario(def. 23) simply by ignoring the transcripts TCG$F (or TS).

7.1.1 Transparen t Constructions

Even though generalindi�eren tiabilit y seemsto be much strongerthan indif-

ferentiabilit y in the honest-but-curiousmodel (de�nition 23), we now show

that for certain typesof constructionsthesetwo de�nitions are, in fact, equiv-

alent.
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De�nition 24 (T ransparen t Constructions). A construction CG of G

(using oracleaccessto F ) is a (tE ; qE ) transparent construction if there exists

a Turing machine E (called an \extr acting algorithm") such that for any

x 2 dom(F ) it is the casethat E CF
G ;TC G$F (x) = F (x). Here TCG$F denotes

the transcript of all the communication between CG and F . E runs in time tE

andmakesat mostqE queriesto CF
G for any input x, whiledom(F ) represents

the domainof F . And jxj, tD and qE are polynomial in the security parameter

� .

Thusa transparent constructionCF
G is such that it is possibleto e�cien tly

computeF (x) at any input x by making a polynomial number of queriesto

CG and observingthe communication betweenCG and its oracleF .

Lemma 25. If a transparent construction CG (using F ) is (polynomially)

indi�er entiable from G in the honest-but-curiousmodel (defn. 23) then it is

also (polynomially) indi�er entiablefrom G.

Pro of: Say that a construction CG is indi�eren tiable from ideal primitiv e

G in the honest-but-curiousmodel. Then we have a simulator Shon that

successfullyfakesthe transcript TCG$F (with TShon ) in the G model.

First, we will designa simulator Smal for generalindi�eren tiabilit y using

the simulator Shon . The simulator Smal needsto simulate the ideal primitiv e

F in G model. On getting a query x 2 dom(F ), Smal usesthe extracting al-

gorithm E (for CG) to computeF (x). The extracting algorithm needsoracle

accessto the construction CG and the communication transcript TCG$F . The
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simulator Smal replacesthe construction CG with the ideal G oracle, which

it hasaccessto. And it usesthe \honest-but-curious" simulator Shon to pro-

ducea fake transcript for E. By de�nition 23 the extracting algorithm E has

no way to tell that it has oracleaccessto (G; TShon ) instead of (CG; TCG$F ).

This simulator conversion is illustrated in �gure 7.3a.

Now we will show that the simulator Smal designedabove actually works.

To the contrary, say there is a distinguisher Dmal with non-negligiblead-

vantage in the general indi�eren tiabilit y game. Then we will designa dis-

tinguisher Dhon for the honest-but-curiousindi�eren tiabilit y scenario. Dhon

simply runs the \malicious" distinguisher Dmal and usesthe extracting al-

gorithm E to simulate the F oracle for Dmal . Note that it is easyfor Dhon

to run the extracting algorithm E, which needsthe exact sameoraclesthat

Dhon hasaccessto. The new distinguisher is illustrated in �gure 7.3b.

Say CG is a (tE ; qE ) transparent construction. Then if the simulator Shon

runs in time tShon for every query, then Smal runs in time O(tShon � qE + tE ).

And if Dmal makesqD mal queriesand runs in time tD mal then Dhon makesat

most O(qD mal � qE ) queriesand runs in time O(tD mal � tE ).

This theorem essentially implies that if one is able to �nd a transparent

constructionCG for an idealprimitiv eGand prove its indi�eren tiabilit y in the

honest-but-curiousmodel. This will alsoimply the generalindi�eren tiabilit y

of the construction CG.
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Dmal

E

FCG

Dhon

TCG$F

E

G

S0

ai Simulator Conversion bi Distinguisher Conversion
depicted in F model

TS
S

Figure 7.3: a. Conversionof the simulator S in honest-but-curiousmodel to
simulator S0 in generalindi�eren tiabilit y.
b. Conversionof the maliciousdistinguisherDmal into an honest-but-curious
distinguisher Dcur .

7.2 The Construction

In this section,wewill proposea construction for an ideal cipherE : f 0; 1g� �

f 0; 1g2n ! f 0; 1g2n from a random oracle H : f 0; 1g� ! f 0; 1gn . Note that

it su�ces to give a construction C� of a single random permutation (RP)

� : f 0; 1g2n ! f 0; 1g2n using H . Similar to the ideal cipher oracle, the

random permutation oracle� responds to both forward and inversequeries.

On input (0; x), it outputs y = � (x) and on input (1; y), it outputs x such

that � (x) = y. A constriction for the ideal cipher can be derived from this

RP construction by prependingthe ideal cipher key to every query C� makes

to H .
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We will now concentrate on getting an indi�eren tiable construction of a

random permutation from RO, and all our results can be carried over to the

ideal cipher model using the technique mentioned above.

The Random Permut ation Constr uction. We �rst note that the con-

structions in [47, 58] etc. are not necessarilyindi�eren tiable from a random

permutation, sinceall theseresultsare proven in the classicalindistinguisha-

bilit y model. Here we will give an indi�eren tiable construction of random

permutation (RP) from the random oracle (RO) H : f 0; 1g� ! f 0; 1gn . Sim-

ilar to [47, 58], our construction is basedon multiple rounds of the Feistel

permutation. However, our proofs will be in the indi�eren tiabilit y model.

We �rst formally de�ne a \ k round LR-construction".

De�nition 25 (k round LR-construction). Given functions hi 2 Fn : i =

1: : : k, the k round LR-construction 	 h1 ;:::;hk is essentially the composition

of k roundsof Feistel permutation, 	 hk � 	 hk � 1 � : : : � 	 h1 .

We will basically usea k round LR-construction (with su�cien tly large

k) to get a random permutation � : f 0; 1g2n ! f 0; 1g2n . We will use inde-

pendent random functions hi for each round of the k round LR-construction

	 h1 ;:::;hk . Note that it is easy to get these independent random functions

hi 2 Fn from the random oracleH . Thesecan be simply de�ned as hi (x) =

H (hi i k x) for i = 1: : : k. Here hi i represents the log(k)-bit binary represen-

tation of i . The k round LR construction with round functions derived in

this fashion is denotedas C� ;k . We conjecture that for su�cien t number of
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rounds k this is an indi�eren tiable construction of RP from RO.

Conjecture 1. For a su�cient number of roundsk, the k roundconstruction

C� ;k (using a random oracle H : f 0; 1g� ! f 0; 1gn) is an indi�er entiable

construction of a random permutation � : f 0; 1g2n ! f 0; 1g2n .

Even though we believe this conjecture to hold, we have been unable

to prove it formally. However, we will formally show that the k round LR

construction is indi�eren tiable from a random permutation in the honest-

but-curious scenariowith a su�cien t number of rounds k.

7.2.1 Transparency for O(log � ) Rounds

The questionnow is how many roundsshouldsu�ce to prove indi�eren tiabil-

it y in the honest-but-curiousmodel? We�rst show that for upto a logarithmic

(in security parameter� ) number of rounds proving indi�eren tiabilit y of the

LR-construction in the honest-but-curiousmodel is no simpler than proving

its indi�eren tiabilit y in general. Recall that a transparent construction is

one for which indi�eren tiabilit y in the honest-but-curiousmodel implies its

indi�eren tiabilit y in the generalmodel. We prove that for upto a logarithmic

(in � ) number of rounds the LR-construction is a transparent construction.

Theorem 33. The k round LR-construction C� ;k is a (tE ; qE ) transparent

construction of the randompermutation � from randomoracleH for number

of roundsk = O(log(� )) . The running time tE and number of queriesqE are

both polynomial in the security parameter � .
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Pro of: We need to design an extracting algorithm Ext that when given

accessto (C� ;k ; TC� ;k $ H ) can extract the values of H (hi i k x) for any x 2

f 0; 1gn and i 2 f 1: : : kg. We will alsorefer to the function output H (hi i k x)

as hi (x).

The proof of this theorem is similar to the theorem 18 in chapter 5. In

particular, we will usethe algorithm E (described there) that takesas input

a round number j and a 2n bit string Y, and �nds the input such that Y

forms the j and (j + 1).

The extractor Ext gets as input hi i and x. It runs the algorithm E on

input (( i � 1); x0 k x), for an arbitrary n bit string x0. It responds to the

queriesmadeby E using the construction C� ;k and can provide all interme-

diate round valuesfrom the transcript TC� ;k $ H . Upon �nding this input X ,

the extractor Ext simply sendsthis asa query to C� ;k and learnsthe output

hi (x) from the transcript TC� ;k $ H .

This extractor Ext makesO(Fibonacci(k)) number of queries(and runs

in time O(Fibonacci(k)) aswell), just like E. For number of roundsO(log � ),

this is polynomial in the security parameter � .

Thus one can hope to prove indi�eren tiabilit y of the LR-construction

for O(log(� )) rounds in the honest-but-curiousmodel, and it will imply the

generalindi�eren tiabilit y of the construction. However, there is no indication

to suggestthat this task might be any easierthan the generalresult.
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7.2.2 HBC Indi�eren tiabilit y for ! (log � ) rounds

On the positive side,we prove the indi�eren tiabilit y of the LR-construction

in the honest-but-curiousmodel for a super-logarithmic number of rounds.

Theorem 34. The k roundconstruction C� ;k is (tD ; tS; q; O ((q � k)5 � 2� n ) )

indi�er entiable from a random permutation � : f 0; 1g2n ! f 0; 1g2n (with

security parameter � ) in the honest-but-curiousmodel for k = ! (log(� ))

rounds. tS, n and q are all polynomial in � .

Pro of: The proof of this theoremconsistsof two parts: �rst, wewill describe

the simulator S that fakesthe communication betweenthe construction C� ;k

and H in the random permutation model, and next we will give a proof of

indi�eren tiabilit y (in HBC model) using this simulator.

The Simula tor. The simulator S gets inputs either of the form (0; x)

(forward queries)or of the form (1; y) (inversequeries),wherex; y 2 f 0; 1g2n .

In the random oracle model, if the input (0; x) is given to the construction

C� ;k , then C� ;k makesqueriesto the randomoracleH andcomputesthe round

values R0 : : : Rk+1 where R0 = xjL ; R1 = xjR and Ri = hi � 1(Ri � 1) � Ri � 2

for i 2 f 2: : : (k + 1)g. Inverse queries are handled in a similar fashion,

albeit in reverse,starting from Rk = yjL ; Rk+1 = yjR and computing Ri =

hi +1 (Ri +1 ) � Ri +2 for i 2 f k � 1: : : 0g.

In the random permutation model, the simulator performs essentially

the samecomputation except that it simulates the round functions hi itself.

It maintains a table Th i for each round function hi , in which it stores all
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previously generateround function outputs for hi . Considera forward query

(0; x), thusR0 = xjL and R1 = xjR . The simulator generatesa fake transcript

for this query as follows:

1. It forwards the query (0; x) to the random permutation � and gets

y = � (x). Thus, in our representation of the LR-construction Rk = yjL

and Rk+1 = yjR .

2. Next, it checks to seeif hk(Rk) is already de�ned. If so, then it checks

the tables Thk � 1 ; Thk � 2 ; : : : and so on to seeif there exists a chain of

de�ned values[Ri � 1 = hi (Ri ) � Ri +1 ]i = k:::bot, where bot 2 f 1: : : kg. If

bot = 1, then all the round valuesfor this query are already de�ned,

so it checks to seeif (Rbot� 1 k Rbot) = x. If so, S returns this sequence

of round value/round function output pairs as the transcript to the

distinguisher, otherwise the simulator exits with failure since there is

no way to de�ne the round function valuesconsistent with � .

3. If bot > 1 then it checks to seeif similarly there exists a sequenceof

de�ned round valuesgoing down from R0 = xjL and R1 = xjR . That

is, a sequenceof round values [Ri +1 = hi (Ri ) � Ri � 1]i =1 :::top, where

top 2 f 1: : : kg. It then checks to seeif top � bot � 2. If so, then it

exits with failure since it cannot be consistent with both � and the

previously generatedfake transcript.

4. If everything goes well until this point, then the simulator S starts

de�ning the missing round function outputs between top and bot. It
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de�nes the function outputs htop+1 (Rtop+1 ) : : : hbot� 2(Rbot� 2) at random.

It connectsthe top and bottom sequencesof round valuesby de�ning

hbot� 1(Rbot� 1) = Rbot � Rbot� 2 and hbot(Rbot) = Rbot+1 � Rbot� 1.

5. After completing the entire chain in this fashion,S sendsit to D.

Thus the simulator simply tries to de�ne all round function valuesrandomly.

However, it �rst scansto seeif someof the intermediate round valueswere

already de�ned in its previous responses.It doesso both starting from top

and bottom, and de�nes the unde�ned round function outputs in the middle

at random but making sure that it connectsthe two partial sequencesof

round values. If it sohappensthat there areno unde�ned round valuesin the

middle, then it realizesthat it cannot be consistent with both thesepartial

sequencesof de�ned round valuessimultaneously and exits with failure.

Pr oof of HBC Indifferentiability. Now we will prove that when the

simulator S described above is usedin the indi�eren tiabilit y game,then any

distinguisherD that makesat most (a polynomial) q queriesto its oracleshas

only a negligibledistinguishing advantage. Here q and n (the output length

of H ) are both polynomial functions of the security parameter � , while the

number of roundsin the LR construction is k = ! (log(� )). As we mentioned,

our proof proceedsvia a hybrid argument.

Hiding the random perm utation � : Let usstart in the randompermuta-

tion scenario.Herethe distinguisherhasoracleaccessto � and the simulator

S. Our �rst modi�cation is to prevent D from directly accessing� , by re-
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placing it with a simple relaying algorithm M that acts as an interface to

� . When M getsa query from the distinguisher, it simply relays this query

to the random permutation � and sendsback the response of � . In this

new scenario,the distinguisher has oracle accessto M � and S� (see�gure

7.4a). Since we have made no real change from the point of view of the

distinguisher, we have Pr [D (� ;TS � ) = 1] = Pr [D (M � ;TS � ) = 1].

Bounding out the \bad events": Now wewill modify the simulator S, so

that it never outputs certain typesof collisions that will a�ect our analysis

later. Recall that the simulator S needsto de�ne the round function values

h1(R1) : : : hk(Rk) in order to generatethe transcript TS for every query made

to it. And S tries to assignrandom valuesto hi (Ri ) for any new Ri .

Now we introducea slightly modi�ed simulator S1 that is essentially the

sameasS exceptthat it choosesround function valuesmorecarefully. Let us

�rst �x a little notation. We will number the queriesmadeto the simulator

in the order they are made, query number 1 followed by 2 and so on. And

for the mth query made to the simulator, we will label its round valuesas

R(m)
0 ; R(m)

1 ; : : : ; R(m)
k ; R(m)

k+1 .

When assigninga newround function valuehi (R
(m)
i ) for querynumber m,

the new simulator S1 makessurethat the new round round value generated,

i.e. R(m)
i +1 (resp. R(m)

i � 1) if the mth query is a forward query (resp. inverse

query), cannot be represented as an XOR of upto �ve previously existing

round values. That is, the simulator S1 intentionally prevents a 5-XOR

condition (seechapter 5) from occurring in its responses.
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The distinguisher cannot tell if it hasoracleaccessto (M ; S) or (M ; S1)

unlessthe old simulator S outputs a round function value that results in the

5-XOR condition being true. Let us denotethis event by B1. Hencefor any

distinguisher D making q queries,

�
�
�Pr

�
D (M � ;TS � ) = 1

�
� Pr

h
D (M � ;TS �

1
) = 1

i �
�
� � Pr [B1]

We can bound the probability of B1 occurring by noticing that for randomly

assignedround function values,Pr [B1] = O
�

(q�k)6

2n

�
. This canbe derived by

using the birthday paradox to bound the probability that any XOR of upto

6 round valuesis 0n .

Transferring Con trol to the Simulator: Next we will modify the relay-

ing algorithm M so that it does not simply act as a channel between the

distinguisher and � . The new relaying algorithm, which we will call M 1,

responds to the � queriesby making the samequeriesto the simulator S1

and computing � (x) (or � � 1(y)) from the responsesof S1 (see�gure 7.4b).

To illustrate this point, say M 1 getsa query (0; x) from the distinguisher

D (that is, a forward query to � ). Then M 1 forwards this query to S1,

which in turn getsy = � (x) from the random permutation and constructsa

fake transcript TS1 (0; x) (or round valuesR0 = xjL ; R1 = xjR ; : : : ; Rk+1 ). If

all goes well this transcript is consistent with � . The simulator sendsthis

transcript TS1 (0; x) to M 1, which can recover � (x) from TS1 and respond to

the distinguisher D with this value. Inversequeries1; y) are handled in a
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similar fashion.

From the view of D, everything in this scenariois sameasin the previous

one unlessthe simulator S1 exits with failure on somequery made by M 1.

This happens if and only if S1 fails to be consistent with the random per-

mutation � on somequery. We claim that if the number of queriesq made

by the distinguisher D is polynomial in the security parameter � then the

simulator S1 is always consistent with � .

Lemma 26. For a polynomial number of queriesq made to the simulator

S1, the responsesof the simulator are always consistent with the random

permutation � .

Pro of: In fact, this lemmacanbeseenasa consequenceof the combinatorial

lemma20from chapter 5. In order to seethis, considerthe situation in which

the simulator S1 exits with failure. This occursif thereexist partial sequences

of round valuesR(m)
0 ; R(m)

1 ; : : : ; R(m)
top ; R(m)

top+1 and R(m)
bot� 1; R(m)

bot ; : : : ; R(m)
k ; R(m)

k+1

with top � bot� 2. But in this case,either top � (k=2) or bot � (k=2) + 1.

Thus,wecandeducethat at leastoneof the round function outputs hk=2(R
(m)
k=2

or hk=2+1 (R(m)
k=2+1 is alreadyde�ned. This can only occur if the corresponding

round value in the mth query collides with the corresponding round value

in an earlier query. Moreover, this earlier query must be di�erent from the

mth query, otherwise the simulator S1 would not have been inconsistent in

the mth query. Hence,the (k=2)th or the ((k=2) + 1)th round value collides

for two of the queriesmadeby the distinguisher. But sincethe simulator S1

makessurethat the 5-XOR condition doesnot hold, we can deducethat the
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number of queriesq made by the distinguisher must be exponential in the

security parameter, i.e. q = O(1:3803k).

Thus for any distinguisherD that makesq queriesq = poly(� ), it is the case

that Pr [D (M � ;TS �
1

) ] = Pr [D (M
TS �

1 ;TS �
1

) ].

Remo ving the Random Perm utation � : Until now, all responsesof the

simulator are forced to be consistent with � . Now we will modify the simu-

lator S1 and get closerto the actual random oraclescenario. The new sim-

ulator, which we shall denoteby S2, doesnot attempt to output transcripts

consistent with � . As before,it implements the k round LR-construction with

randomly assignedinternal round functions. But now it alsoimplements the

last (or �rst) couple of round functions hk� 1; hk (or h2; h1) with randomly

chosenvalues(see�gure 7.4c), so that the actual permutation output may

not be consistent with � .

To illustrate this, when the new simulator S2 getsa forward query (0; x).

It computesR0 = xjL ; R1 = xjR andassignsrandomvaluesto h1(R1); : : : ; hk(Rk).

It then sendsthe round valuesR0; : : : ; Rk+1 as the transcript for the query

(0; x). Inversequeriesare handled in a symmetrical fashion. The relaying

algorithm, M 1, as beforeusesthesetranscripts to compute its responsesto

D 's queries.

Note that the distinguisher cannot tell this scenarioapart from the pre-

vious scenario,unless

� the new simulator S2 violates the XOR constraint satis�ed by S1. We

call this event B3.
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� the old simulator S1 exits with failure. We call this event B4.

Lemma 26 implies that the event B4 doesnot happen for any distinguisher

D that makesa polynomial number of queries.Thus for any distinguisherD

making at most a polynomial number of queriesq,

�
�
�
�Pr

�
D (M

TS �
1 ;TS �

1
)
�

� Pr
h
D (M

TS2 ;TS2 )
i �
�
�
� � Pr [B3] = O

�
(q:k)4

2n

�

Onto the Random Oracle Mo del: Note that the previousscenariois es-

sentially the sameas the random oracle scenario,since all round function

valueschosenby S2 are random. Therefore for any distinguisher D (�gure

7.4d), we have Pr [D (M
TS2 ;TS2 ) ] = Pr [D (CH

� ;k ;TC� ;k $ H ) = 1].

Combining all the above hybrids, for any distinguisher D that makesat

most q queries,

�
�
�Pr

h
D (CH

� ;k ;TC � ;k $ H ) = 1
i

� Pr
�
(D � ;TS � ) = 1

� ��
� < O

�
(q � k)4

2n

�

Hereq and n are polynomial in the security parameter� , and k = ! (log(� )).

In fact, with a slightly more carefully designedsimulator S1 that avoids an

XOR of speci�c round (function) values, one gets that the distinguishing

advantage of D is O
�

q4

2n

�
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Figure 7.4: Overall GameStructure

7.2.3 Non-transparency for ! (log� ) rounds

One can deducefrom theorem 34 that if the LR-construction with ! (log � )

rounds is a transparent construction, then it will imply the generalindi�er-

entiabilit y of this construction too. Unfortunately, we show that for number

of rounds ! (log(� )) the LR-construction is not a transparent construction.

Theorem 35. The k round LR-construction C� ;k is not a transparent con-

struction of the random permutation � for number of roundsk = ! (log(� )) .

Pro of: This theoremcan alsobe derived asa consequenceof the lemma26.

In particular, if there exists an extracting algorithm Ext that can compute

hi (x), given as input hi i k x, then it cannot be e�cien t for number of rounds

k = ! (log � ). In particular, if Ext works for the k round LR-construction

C� ;k with the actual round values, then it should also work for the hybrid
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scenarioin �gure 7.4b, whereit hasoracleaccessto � and the round values

are faked by the simulator S1 (that avoids the 5-XOR condition).

However, in this case,we can show that if Ext is e�cien t, then we can

construct another (e�cien t) algorithm A that �nds two queriesthat collide in

the (k=2)th round value. In particular, A choosesa randominput X 2 f 0; 1g2n

and makesthis query to � (and getsall intermediate round valuesfrom S1).

It then runs the extracting algorithm Ext with input hk=2i k Rk=2 (where

Rk=2 is the round value that it gets from the faked transcript of S1). Since

Ext is extremely unlikely to guessthe input X usedby A, it will �nd out

hk=2(Rk=2) through a permutation query to � that is di�erent from X , with

overwhelming probability. The collision �nding algorithm A can get this

di�erent input by keepingtrack of the queriesmadeby Ext , and thus�nd two

queriesthat collide in the (k=2)th round value. However, this is impossible

from the combinatorial lemma 20 from chapter 5, sinceS1 prevents the 5-

XOR condition from holding.

7.2.4 Negativ e Results for Constan t Rounds

Finally, we mention that one does needto use su�cien t number of rounds

of the Feistel permutation in the construction, to have any hope of proving

it indi�eren tiable. Coron [20] showed that for lessthan 6 rounds the LR-

construction is not indi�eren tiable from a random permutation.
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Theorem 36 ([20]). Let C� ;k be the k round LR-construction of a random

permutation � , with number of rounds k < 6. Then there is an e�cient

distinguisher D such that for any simulator S, D can distinguish the oracle

pair (C� ;k ; H ) and (� ; S) with non-negligibleprobability.

Pro of: It is easyto seethat the construction (C� ;k ; H ) cannotwork for k < 4,

since in this caseit does not even satisfy the classical indistinguishability

de�nition [47]. Coron [20] gave attacks on 4 and 5 round LR-constructions

in the indi�eren tiabilit y scenario. We give an attack on the 4 round LR

construction herefor illustration.

Let usrepresent the round valuesof the constructionC� ;4 asR0; R1 : : : R4; R5,

such that C� ;4(R0 k R1) = (R4 k R5). And the round functions will be de-

noted as h1; : : : ; h4. Now consider any simulator S for which we get the

two scenarios:(C� ;4; H ) and (� ; S). We will designa distinguisher D that

distinguishesthesetwo with high probability for any simulator S.

The distinguisherD essentially forcesthe simulator to satisfy a constraint

that holds with very low probability for an RP � . On the other hand, it

always holds for the LR-construction C� ;4. The algorithm of D is as follows:

1. Choose3 arbitrary n bit strings, R2; R0
2; R3.

2. Query the random oracleH to get h2(R2), h2(R0
2) and h3(R3), in this

order.

3. Compute R1 = h2(R2) � R3 and R0
1 = h2(R0

2) � R3.
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4. Query the random oracle to get h1(R1) and h1(R0
1). Compute R0 =

h1(R1) � R2 and R0
0 = h1(R0

1) � R2.

5. Query the random permutation on R0 k R1 and R0
0 k R0

1 to get the

valuesR4 k R5 and R0
4 k R0

5, respectively.

6. Check if R4 � R0
4 = R2 � R0

2. If so, then output 1 elseoutput 0

Note that the values R2 and R0
2 were queried upon before R3. Hencethe

round valuesR1 and R0
1 are completelyarbitrary round valuescontrolled by

the distinguisher. The distinguisherD always outputs 1 whengivenaccessto

the constructionC� ;4. But whengivenaccessto the randompermutation, the

simulator S will needto �nd h1(R1) and h1(R0
1) that satisfy the constraint:

� ((h1(R1) � R2) k R1)jL � � ((h1(R0
1) � R0

2) k R0
1)jL = R2 � R0

2

In this equation R1, R0
1, R2 and R0

2 are all e�ectively chosenby the dis-

tinguisher. Henceno e�cien t simulator can �nd two round function values

h1(R1) and h1(R0
1) that satisfy the aboveconstraint with non-negligibleprob-

abilit y for a random permutation � .

This theoremalsoimplies that indi�eren tiabilit y (even in the honest-but-

curious model) is strictly stronger than classicalindistinguishability. This is

becausethe LR-construction with 4 rounds or more is known to satisfy the

latter [47]. Thus we can derive the following corollary from theorem 36.
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Corollary 3. A 4 round LR-construction is indistinguishable, but not in-

di�er entiable, from a random permutation (even in the honest-but-curious

model).
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