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Abstract

Cryptographic primitiv es, sud as hash functions and block ciphers, are
integral componerts in seeral practical cryptographic schemes.In order to
prove security of thesesdemes,a variety of security assumptionsare made
on the underlying hashfunction or block cipher, sud as collision-resistance,
pseudorandomnesgtc. In fact, sud assumptionsare often made without
much regard for the actual constructions of these primitiv es. In this thesis,
we addressthis problem and suggestnew, and possiblybetter, designcriteria
for hashfunctions and block ciphers.

We start by analyzingthe designcriteria underlying hashfunctions. The
usualdesignprinciple hereinvolvesa two-stepprocedure: First, comeup with
a heuristically-designedand \hop efully strong" xed-length input construc-
tion (i.e. the compressionfunction), then usea standard domain extension
technique, usually the cas@de construction (see gure 3.2), to get a con-
struction that works for variable-length inputs. We investigate this design

principle from two perspectives:

(a) To instantiate the Random Oracle We suggestmodi cations to ex-
isting constructions that make the resulting construction secureas a
random oracle, with appropriate assumptionson the underlying com-

pressionfunction.

(b) In general, we look for \black-box" xes to existing hash functions
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to get secureconstructions for eat of the common security notions
required of hash functions. We also give suggestionsfor appropriate

modesfor using existing hash functions along theselines.

We next move on to discussthe Feistel network which is usedin the
designof se\eral popular block cipherssud asDES, Triple-DES, Blow sh etc.
Currently, the celebratedresult of Luby-Rado [47] (and further extensions)
is regardedasthe theoretical basisfor using this constructionin block cipher
design,where it was shown that a four-round Feistel network is a (strong)
pseudoandom permutation (PRP) if the round functions are independert
pseudoandom functions (PRFs). We study the Feistel network from two

di erent perspectives:

(a) Is there a wealker security notion for round functions, than pseudoran-

domnessthat su ces to prove security of the Feistel network?

(b) Can the Feistel network satisfy a much stronger security notion, i.e.
security asanideal cipher, under appropriate assumptionson the round

functions?

We give a positive answer to the rst questionand a partial positive answer
to the secondquestion. In the process,we undertake a conbinatorial study
of the Feistel network, that might be useful in other scenariosas well. We

provide se\eral practical applications of our results for the Feistel network.
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Chapter 1

Intro duction

Cryptographic primitiv es, suc as hash functions and block ciphers, are in-
tegral componerts in the designof practical cryptographic sdhemes. Often
the use of sudh primitiv es makesthe task of coming up with secureand ef-
cient cryptosystemsmuch easier,as comparedto designingsud systems
from scratch basedon complexity-theoretic assumptions. The usual design
procedureinvolvescomingup with a proposedconstruction that usesan ab-
stract function/p ermutation family. The construction is then proven secure
by making an appropriate assumptionon the function/p ermutation family.
For instance,assumingthe function family to be collision-resistamn or assum-
ing the permutations to be pseudoandom permutations. In practice, these
functions (resp. permutation) familiesareinstantiated with actual hashfunc-
tions (resp. block ciphers), in the hope that theseconstructionswill satisfy

the required security notion.



Hence, depending on the requiremerts of cryptographic schemesthese
primitiv esmay needto satisfy a variety of security notions. For this reason,
the notion of a \secure" hashfunction or a \secure" block cipher is a little
fuzzy, at best. In this thesis, we attempt to comeup with new and possibly

better designcriteria for theseprimitiv es.

1.1 Hash Functions

The most commonway of constructing a hashfunctions consistsof two steps.
First, one constructs a compressionfunction f : f0;1g™ ! f0;1g" from
scratdh, or using a block cipher. Then one usesan iterativ e technique sud
as the Cas@ade construction (see gure 3.2) to extend the domain of the
function to variable-length inputs. The basic motivation behind using the
cascadeconstruction for domain extension was provided by the results of
Merkle and Damgard [22, 54], who showved that the cascadeconstruction
applied to a su x-free encaling® of the input is collision resistant if the
underlying compressiorfunction is collision resistan.

Thus, the main security notion that has sened as a guideline for the
designof cryptographic hashfunctions, sud as SHA [32], MD5 [34] etc., has
been Collision Resistan@. Indeed, these hash functions have beenusedto
instantiate collisionresistart functionsin a variety of cryptographic schhemes.

The applications of Collision resistart hash functions (CRHFs) range from

YIn particular, they suggestusing the Merkle-Damgard strengthening which involves
appending the input length to the input



signature shemes(the classic\Hash-then-Sign" paradigm), to more recen
applications sud asthoserelying on the non-bladk-box techniquesof [2].

Howeer, the problem with using a particular security property as the
guideline for hash function designis that now the requiremens from hash
functions extendto a large number of di erent security notions. Indeed,hash
functions are used as pseudoandom functions, for messageauthentiation,
asUniversal One-Way Hash Functions (UOWHFs)? [6Q], for Key Derivation
or even asa Random Oracle [8].

In spite of this large variety of applications, a large fraction of the existing
literature related to designand implemenation of cryptographic hashfunc-
tions has concertrated on collision resistance[22, 54, 15]. Apart from this,
there have also beenresults related to pseudorandomnesgs], MACs [6, 53],

target collision-resistancg11, 70] and key derivation [25].

1.1.1 Hash Functions as Random Oracles

In this thesis, we start by discussingone of the mostimportant applications
of hash functions. That is, when hash functions are usedto instantiate a
random oracle The random oracle methalolagy was introduced by Bellare
and Rogavay as a \paradigm for designinge cient protocols” [8]. In this
paradigm, one designsa cryptographic protocol under the assumptionthat
there existsa ideal randomfunction oracle(RO), which canbe accessedy all

partiesin the protocol (including the adversary). Then oneprovidesa formal

2also called target collision resistant functions



proof of security for the protocol under this assumption. In practice, the
random oracle is instantiated using an actual cryptographic hash function,
sud asone of the hashfunctions from the SHA family [32).

It is clear that security in the ROM does not guarartee security of the
sthemewhen instantiated with an actual hash functions. Indeed, this was
shown in se\eral \separation” results[18, 61, 4, 19, 26] which gave instances
of un-instantiable \arti cial" cryptographic shemesthat are securein the
ROM. Howewer, none of theseresults gave any attacks on actual sdhemes
that were proven securein the ROM (such as OAEP [9] or PSS[10]). Thus,
the random oracle methodology is still a useful tool for designinge cient
cryptographic shemeswith \reasonablesecurity guarartee".

In chapter 3, we study the designprinciples for cryptographic hashfunc-
tions when used to instantiate the Random Oracle As we discussed,an
actual hashfunction H : f0;1g ! f0;1g" is designedto work on variable
length inputs. Thus, onewould assumethat if this hashfunction H is \ran-
dom and unstructured" enough, then there should not be any issueswith
using H for instantiating the random oracle (RO). Howe\er, in reality, this
thinking is erroneous.

As we noted above, practical hash functions are designedby applying
a domain extensiontechnique to a xed-length input compressionfunction
f :f0;1g™ ! fO0;1g". While most of the ad-hoc designe ort goesinto the
compressionfunction h, the domain extensiontechnique usedin almost all

hash functions is the plain Merkle-Damgaard construction ( gure 3.2). Thus,



it would be unreasonableo expect sud a structured constructionto behave
like a monolithic random oracle. On the other hand, it is a much more di -
cult task to designa monolithic \unstructured” hashfunction from scratd.

Hence,we approad this problem from a perspective of designinga vari-
ablelengthinput randomoracle (VIL-R O) from a xed-lengthinput primitive
(for &g., a FIL-R O), sothat all the designe ort can then be conceitrated
on comingup with a construction for the xed-length primitiv e (in practice,
the compressiorfunction).

We start by noting that none of the previous\domain-extension" results
for hash functions (collision-resistance,pseudo-randomnes®tc.) imply a
similar domain extensionresult for random function oracle. The main reason
beingthat an RO constructionmust replicate all the propertiesof the random
oracle,sud as pseudoandomnessextractability, programmability etc. Since
none of the previousde nitions guarartee all theseproperties, it is not even

clear how to approad this problem.

Indi eren tiabilit y

We start by discussingwhat it meansto implemert an variable-lengthinput
random oracle H from a xed-length building block, sud asa FIL-RO f.
We show that the notion of indi er entiability introduced by Maurer et al
[52 is the right de nition in this cortext. In particular, if we show that
the construction H using a xed-length building block f is indi erentiable

from a random oracleunder the assumptionthat f is ideal, then we can use



the construction H to instantiate the random oraclein any sdhemeprovably
securein the ROM. And the resulting sdhemewill be securein the idealized
maodel correspnding to the primitiv e f .

In order to illustrate this security notion, considera proposedRO con-
struction C/, in the f -ideal model. This is an indi erentiable RO construc-
tion if there is a simulator SH that can simulate the role of the xed-length
primitiv e f in the random oraclemodel. That is, for any attacker A(:) that
expects accesdo two oracles,the following two scenariosare indistinguish-
able: rst, whereit has oracle accessto the RO H and the simulator S
and second,whereit has oracle accesso the RO construction C/, and the
xed-length primitiv e oraclef . Thus, Sy shouldessetially simulate the role
played by the xed-length primitive f with respectto the RO construction.

More details on this de nition are given in chapter 2, section2.2.

Domain Extension for Random Oracle

Equipped with a suitable de nition, we attempt to nd an indi er entiable
construction of a variable-lengthrandomoracleH from a xed-length random
function oraclef 3. We start by discussingsomeexisting, and seemingly
securedomain extensiontechniquesunder this de nition.

In particular, we shav that the popular hash-then-signparadigm is not
securein this cortext. Moreover, even the plain Merkle-Damgard construc-

tion, usedin almost all existing hash functions, is not an indi erentiable

3This is a xed-length random function that is accessibleto all the parties in the
protocol.



construction of a VIL-R O (evenwith Merkle-Damgaard strengthening. Thus,
the existing designprinciple behind hash functions sud as SHA-1 or MD5
is not securefor our goal.

Therefore, instead of giving new and practically unmotivated construc-
tions, we comeup with minimal changesto the plain Merkle-Damgard con-
struction that are easily implementablein practice, and satisfy our security
de nition. In particular, we proposethe following modi cations to the plain

MD construction:

1. Pre x-fr ee enaoding: we show that if the inputs to the plain MD con-
struction are guararteed to be pre x-fr eg, then the resulting construc-

tion is secure.

2. Dropping some output bits: we shav that by dropping a non-trivial
number of output bits from the output of the plain MD construction,

we get an indi erentiable construction of a VIL-R O.

3. The NMAC construction (see gure 3.3a): we show that by applying
an independent hash function g to the output of the plain MD con-
struction using f (as in the NMAC construction [5]), then we get an
indi erentiable VIL-R O constructionin the random oraclemodel for f

and g.

4. The HMAC construction (see gure 3.3b): we shav a slight variant
of the NMAC construction allows us to build the secondfunction g

from f itself (asin [5], in going from NMAC to HMAC)! In this latter

7



variant, oneimplemerns a securehashfunction H by making two black-
box calls to the plain MD construction (with the samel V and a given

compressiorfunction f).

Ideal Cipher to Random Oracle

In practice, most hash functions are block-cipher based,either explicitly as
in [15 or implicitly asin SHA-1. Therefore, we considerthe question of
constructinga VIL-RO H from an ideal blaeck cipherE : f0;1g  f0; 19" !
f0; 1g". An ideal black cipheris an ideal primitiv e that takesa -bit key, and
de nes an independert random permutation for eat key.

We conceltrate on usingthe Merkle-Damgard constructionwith the Davies-
Meyer compressionfunction f (x;y) = Ey(x) X, sincethis is the most prac-
tically relevant construction. One could hope to rst show that the Davies-
Meyer compressionfunction is an indi erentiable construction of a FIL-RO
in the ideal cipher model for E and then useone of the secureconstructions
of a VIL-R O from a FIL-RO. Howewer, as we show, this rst attempt fails
and the Davies-Meyer construction fails to give a FIL-RO from an ideal ci-
pher. Fortunately, we shaw, via direct proofs, that all four xes proposedfor
FIL-R O to VIL-R O construction alsowork whenusedwith the Davies-Meyer

compressiorfunction in the ideal cipher model.



1.1.2 Getting the Best out of Existing Hash Functions

Having discussedhe useof hashfunctions for instantiating the random ora-
cle, we then analyzesecurity of hashfunctionsin a more generalperspective.
As we mertioned above, hash functions are required to satisfy a variety of
di erent security requiremerts in cryptographic sthemes.In fact, in the past,
hashfunctions were viewed by practitioners asbladk-boxeswith magic prop-
erties.

Howe\er, this perception has changedsincethe recen attacks on exist-
ing hash functions, including the SHA-1 and MD5. Most notable of these
were the new and improved collision- nding attacks proposedby Wang et
al [72, 73]. Along with other results demonstrating weaknesse®f existing
hashfunction constructions, sud as [43 45], theseattacks shoved that the
collision-resistanceof these hash functions is much worse than what was
anticipated earlier. Moreover, these results have also cast a doubt on the
security of thesehash functions with respect to other notions.

Theseresults have prompted NIST into organizinga seriesof workshops
[62] for coming up with constructions for the \next generation" hash func-
tions, and rightly so. Howewer, this new standard is not expected to be
decidedany time socon. Mearnwhile, practitioners are stuck with either using
existing, known to be \insecure", hashfunctions or using an ad-hoc imple-
mertation that has not undergonethe thorough analysisthat standardized
hash functions go through. In either case,the resulting application will be

proneto possibleweaknessethat are avoidable.

9



In chapter 4, we addressthis problem by looking for xes that would
allow practitioners to use standardized hash functions while side-stepping
seeral of the weaknesse®f existing constructions. As we have discussed,
almost all existing hash functions are basedon the plain MD construction
(with Merkle-Damgard strengthening). Thus, we look for black-box xes
that can be implemerted on top of the plain MD construction for seeral of

the applications that hashfunctions are often usedfor.

E cien t Black-Bo x Fixes to Existing Hash Functions

Most of the prior work for hash functions has beenaimed at nding iter-
ative techniques (usually, somevariants of the plain MD construction) for
extending the domain of xed length primitive to get an arbitrary length
primitiv e satisfying the samesecurity property, which are also often called
property-preservingtransforms For instance, the results from chapter 3 for
constructing a VIL-R O from a FIL-RO fall under this category Howe\er,
we note that it is not always the casethat thesevariants of the plain MD
construction can be implemerted on top of a plain MD basedhashfunction.
An examplein this cortext is the PRF domain extensiontechnique in [5].
In fact, most often the reasonfor sud \non-black-box variants” of the plain
MD construction is that no black-box variants are known that presene the
required security property.

In chapter 4, our focuswill be slightly di erent in the sensethat we will

emphasizethis alternative goal for domain extensiontechniques more than

10



property presenation. In particular, we are willing to make slightly stronger
assumptionson the xed-length primitiv e in order to get a variable-length
primitiv e with a desiredsecurity property. We will look for e cient variants

of the plain MD construction that satisfy the following axioms:

1. It should consistof one or two \black-box" calls to plain MD construc-

tion.
2. The construction must support variable-length inputs.

3. Comparedto a singleevaluation of the plain MD construction, its eval-
uation should make at most a xed (small constart) number of extra

callsto the underlying compressiorfunction.

Sud a variant of the plain MD construction will allow a practitioner, who
understandsthe security property he/she needsfrom the hash functions, to
usean existing standardizedimplemenrtation without having to tinker with
the, often rather involved, internals of the implemertation. We alsorefer to
sud a variant of the plain MD construction as an e cient black-tox hash

function made of operation.

Securit y Prop erties vs. Mo des of Op eration

The axiomsthat we require our hashfunction modesof operation to satisfy
leave very little choicefor the domain extensiontechniquesthat onecan use.
We discussmost of the popular hashfunction modesof operation that satisfy

our axioms:

11



1. Plain MD Construction: This capturesthe notion that the application

usesthe hashfunction asit is.

2. Encode-then-MD Construction: In this case the userencalesthe hash
function input beforeapplying the plain MD construction. Examplesof
popular encaling shemesusedare su x-free encaling and pre x-free

encaling.

3. MD-then-ChopConstruction: Herethe userappliesthe plain MD mode
and only usespart of the output while discardingthe remainingbits. In
particular, existing hashfunctions SHA-224and SHA-384are obtained
this way from SHA-256and SHA-512,respectively.

4. NMAC/HMA C Construction: The versionof the NMAC construction
that we considersimply composestwo applications of the plain MD
mode with possibly di erent initialization vectorslV; and | V,. While
not obeyingthe rst axiom,the NMAC constructionsenesasa niceab-
straction for the HMAC construction which doessatisfy all our axioms
(but is slightly harder to formally analyzein somecases).Essemially,
the HMA C construction simulatesthe two bladk-box callsof the NMAC
constructionwith di erent | Vs, by adding pre xes to the input in eat

call.

We analyzeead of these hashfunction modesof operation for most of the
security propertiesthat are usually desiredof hashfunctions. The hashfunc-

tion properties that we analyzeinclude: (1) Collision-resistance,(2) Pseu-

12



dorandomness(3) MessageAuthentication, (4) Random Oracle, (5) Target
Collision Resistance(UOWHFs), (6) SecondPreimageResistance(7) Ran-
domnessExtraction, and (8) One-Wayness.

In ead case,we nd the minimal assumptionsthat oneneedsto make on
the compressionfunction in order to achieve the required security property
from the resulting hashfunction mode of operation. In many casesjt turns
out that we needto make strongerassumptionson the compressiorfunction
than the desiredsecurity property. Someof theseresultsfollow directly from
previouswork, while for other results we provide separateproofsin chapter
4.

We provide a detailed \security property vs. hashfunction mode of op-
eration guide" that givesthe minimal assumptionsoneneedsto make on the
compressionfunction for ead of an e cient black-box mode of operation
to satisfy eat of the security property (see gure 4.1). This will sene as
a useful guide for practitioners on how to useexisting hash functions when

they desirea certain security property from them.

1.2 Blo ck Ciphers

In the secondpart of this thesis,we discussanotherimportant cryptographic
primitiv e, a block cipher. A block cipherE : f0;1g f0;1g" ! fO0; 19" takes
a -bit key, and givesa permutation on n-bit strings for eat key. Examples

of actual block ciphersinclude Data Encryption Standad (DES), Advaned

13



Encryption Standad (AES) etc. The initial use of block ciphers was for
symmetric key encryption.

Though the usesfor block ciphersare not aswide-rangingasin the caseof
hashfunctions, theseprimitiv esare alsousedin seeral scenariosother than
for privacy. For instance,theseare usedin the popular messageuthertica-
tion mode, CBC-MAC, or in instantiating scdhemesin the ideal cipher model

[15, 23, 30, 42, 46).

1.2.1 Feistel Networks and Luby-Racko 's Result

Feistel networks form the basis of seeral block cipher constructions, sud

as DES, Triple DES, Blow sh etc. A Feistel network consistsof multiple

iterativ e applicationsof the Feisteltransform The Feisteltransform provides
a construction of a permutation on 2n-bit strings using a length-preserving
function f : f0;1g" ! f0;1g". It is de ned as follows: ¢ (X) & Xr k
(x. f(xgr)). Thedierent iterative applications of the Feisteltransform are
known asthe roundsof the Feistel network and the correspnding functions
are called round functions.

Initially , there was no theoretical justi cation for the usageof the Feistel
networks in the designof block ciphers. This theoretical justi cation was
provided by the result of Luby and Radko [47], who showved that 4 rounds
of the Feistel network with independert pseudoandom functions in ead

round givesa (strong) pseudoandompermutation . Sincethe paper of Luby-

4A strong pseudorandompermutation is indistinguishable from a truly random permu-
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Rado, seeralimprovemeris weremadeto their result (see[58,51, 69, 64]).
All these results shoved essetially argued the pseudorandomnessf a
multiple round Feistel network with pseudorandomround functions (with
improving exact security of the reductions or under slightly di erent attack
scenarios). These results provided enough justi cation for the use of the
Feistel network basedblock ciphersfor symmetric key encryption. Indeed,
pseudorandomnes®f ciphertexts is the security property that one desires

from a symmetric key encryption stheme.

1.2.2 Looking Beyond Pseudorandomness?

Howe\er, there are se\eral reasonsto look for other security properties from

block ciphers.

(a) As we mertioned above, block ciphers are utilized for a much wider
range of applications than for symmetric key encryption alone. These
applicationsoften require security propertiesthat may bedi erent from

pseudorandomness.

(b) The round functions (or S-Baxes in actual constructions) in Feistel
network basedblock ciphersare designedbasedon heuristics,and may
not be (possibly even closeto) pseudorandomfunctions. In this case,

all of the previousresults for the Feistel network becomeinapplicable.

(c) Moreover, the round functionsin actual constructionsmay leak a lot of

tation for any attacker that can make both forward or inversepermutation queries
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information about the intermediateround valuesof the Feistelnetwork.
Again, all of the prior results for Feistel networks assumethe secrecy

of all (or at least some)of the round values.

In part 11 of this thesis,we analyzethe Feistelnetworks from this perspective.
In particular, we analyzethe Feistel network under both wealer as well as
stronger security notions than pseudorandomness.

Firstly, we analyzethe situation when the round functions of a Feistel
network are not pseudorandomfunctions. In particular, we analyzethe sit-
uation whenthe round functions satisfy somewealer security property than
pseudorandomnessyr if the intermediate round valuesof the Feistel network
are somehwv (possibly thorough weaknessof round functions) leaked to the
attacker. We give positive resultsin sud a situation in chapter 6.

Secondly we ask if the Feistel network could be usedto designa much
stronger primitiv e than a pseudorandompermutation. That is, we analyze
if, under some(ideal) security assumptionon the round functions, the Feistel
network is an indi erentiable construction of an ideal black cipher. Note that
this is also the other direction of one of the questionsaddressedn chapter

3. We give a partial positive answer to this questionin chapter 7.

1.2.3 An Abstraction for Feistel Networks

As we discussedmost of the previous results becomeinapplicable if either

the round functions are not pseudorandom.or (at least someof) the round
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valuesare not hidden from the attacker. In order to handlethis problem, we
start out by discussinga combinatorial abstraction for the multiple round
Feistel network that is applicable to scenarioswhere one or both of these
assumptionsdo not hold. In particular, we do not make any assumptionson
the round functions when stating this result.

Considera k-round Feistel network that de nes a permutation on 2n bits
basedon k length-preservingfunctions on n-bits. We will referto the inputs
to eadt of theseround functions asthe round valuesof the Feistel network.
We study a gamebetweenthis k-round Feistel network and an attacker that
makes2n-bit forward/in versepermutation queriesto this Feistelnetwork and
getsthe result aswell asall the intermediate round values. The attacker wins
the gameif it makestwo queriessud that the middle ((k=2)"") round values
in thesequeriescollide.

We shaw that if the attacker wins after making g queriesto the k-round

Feistel network in this game,then:
(a) Either the number of queries,g, madeby it is exponertial in k.

(b) Or anewround function output canbe represeted asan XOR of upto
5 other round valuesthat already existed before this round function

output. We referto this asthe 5-XOR condition (seesection5.1).

The secondcondition essetally implies that for somequery made by the
attacker, a round function, say f;(R;), where output can be represeted as

an XOR of upto 5 round valuesthat were de ned beforethis round function
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output. This includesround valuesfrom earlier queries,or round valuesfrom
this query that were de ned beforethis round function output.

This property essetially proves a property of an interaction between
an attacker and the Feistel network that does not depend on the round
functions usedin the construction. We use this property for our problem
by shawing that if the round functions of the Feistelnetwork are chosensud
that the 5-XOR condition is not satis ed for any e cient attacker, then the
number of queriesmadeby a \winning" attacker must be exponertial in the
number of rounds k (which is super-polynomial in the security parameter
fork = ! (log ).

Moreover, we shaw that this result is tight in the sensethat for a Feistel
network with upto logarithmic number of rounds k = O(log ), there is an
attacker that can nd the input correspndingto any permutation output by
making only forward queries. This is su cien t to seethat the conbinatorial
property above doesnot hold for sud a Feistel network. In fact, aswe shav
in chapter 6, this implies that sud a Feistel network is not useful for most

applications wherethe round valuesare revealedto the attacker.

1.2.4 New and Impro ved Primitiv es

In chapter 6, we shav new (or improved) constructionsof somecryptographic
primitiv es using the combinatorial property above. First, prove a stronger
result than Luby-Radko (and subsequen results) for PRPs, that with a

super-logarithmic number of rounds, the Feistel network, with independert

18



PRFs as round functions, is a (strong) pseudorandompermutation evenif
the PRP attacker can observethe intermediate computations of the Feistel
network This givesa more resiliert PRP construction.

Coming bad to our rst question,we askif there is a wealer property of
the round functions than pseudorandomnesghat guararteessomesecurity
property for the Feistel network. We show that ewven if the round functions
of a super-logarithmic round Feistelnetwork are only unpredictablefunctions
(UFs) then it is an unpredictable permutation (UP) °. In fact, we show that
this result is tight, in the sensehat for upto a logarithmic number of rounds,
thereis a setof UFs that do not give a UP via the Feistelnetwork (seelemma
23).

Next, we shaw that our result is alsousefulin a scenariowherethe appli-
cation may needto explicitly reveal all the intermediate round valuesto an
attacker. For instance,this comesup whenonetries to add veri ability to the
PRP or UP constructions above. The notion of veri able (pseudo)andom
functions (VRFs) wasintroducedby Micali et al. [55]. Theseare essetially
veri able analogsof PRFs, with a public key PK and secretkey SK . Given
both the public and secretkeys, one can compute the output y of the VRF
on an input x, aswell asconstruct a short proof that y is indeedthe output
of the VRF oninput x and not some\garbage value" (which could easilybe

donefor a normal PRF). On the other hand, given only the public key PK,

SRoughly speaking, an unpredictable function guaranteesthat no attacker can predict
the output of the function on an unqueriedinput (similarly for unpredictable permutations
with both forward/in versequeries).
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onecan verify this proof to learn whethery is indeedthe correctly computed
output (seeformal defns. in section6.1).

Weintro ducethe notion of veri able (pseudo)andompermutations(VRPS)
that are similar veri able analoguesof PRPs (or permutation analoguesof
VRFs). For VRPs, one can compute (and provide proofs for) both the for-
ward and inversepermutation giventhe public and secretkeys. We shaw that
a super-logarithmic round Feistel network with independent VRFs asround
functions, is a secureVRP. Note that in this case,the VRP proof will sim-
ply consistof intermediate round function input/output pairs alongwith the
correspnding VRF proofs. Thusthe round valuesneedto be revealedto the
attacker, which makesall of the previoustechniquesfor the Feistel network
inapplicable. Moreover, this also implies that super-logarithmic number of
rounds are both necessaryand su cien t.

Finally, we considerthe caseof veri able unpredictablepermutations(VUPS).
Theseare veri able analogsof unpredictable permutations. The correspnd-
ing notion of veri able unpredictable functions (VUFs) was also introduced
by Micali et al. [55]. Theseare alsoknown asuniquesignatures(see[38, 49]).
Micali et al. usedVUFs as an intermediate step for constructing VRPs.

Note that in this case,if one usesthe Feistel network with VUFs as
round functions to construct VUPs, then neither are the round functions
pseudorandom nor are the round valueshidden from the attacker (and are
revealedaspart of the VUP proof). Howewer, we show that evenin this case,

a super-logarithmic round Feistel network is both necessaryand su cient to
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construct VUPs from VUFs.

Applications

We then provide various examplesof natural scenarioswhere our technique
(and the constructionswe derive from it) are useful. Theseapplications are

descriked in section6.3 (chapter 6).

We shownv how our results provide a \closer-to-reality” justi cation for
the number of Feistelroundsheuristically usedin practical block cipher

constructions.

Using our results, we provide the most e cien t domain extensiontech-
nique for length-preserving MACs without introducing any new as-

sumptions.

Weshaw that VRPs immediately yield non-interactive, setup-fiee, perfectly-

binding commitment schemes

VRPs can be usedto x a subtle security aw in the non-interactive

lottery systemof Micali-Rivest [56].

We shaw that theseprimitiv escan alsobe usedto implemern socalled

\in variant signatures”neededby Goldwasserand Ostrovsky [38].

Other applicationsof VRPs, sut asveri able CBC encryption/decryption,

veri able huge (pseudo)randomobjects [36] or a \pro of-transferable”
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implemertation of the Ideal Cipher Model using a semi-trusted third

party.

1.2.5 The Ideal Cipher Mo del

In chapter 7, we analyze if the Feistel network can be usedto adiewe a
stronger security notion than pseudorandomnessThat is, we analyzeif the
Feistelnetwork canbe usedto getanindi er entiableconstruction of the ideal
cipher (IC) from a randomoracle (RO). This is essehally the corverseof a
guestionwe studiedin chapter 3. Therewe gaveindi erentiable constructions
of the random oraclefrom the ideal cipher oracle. If the corverseresult also
holds, then it will alsoimply that the ideal cipher madel (ICM) is equivalert
to the random oracle model (ROM). Although, the ideal cipher model has
not beenaswidely applicable as the random oracle model, there have been
someresultsthat utilize this model (see[15, 23, 30, 42, 46]).

We give a\partial positive" answer to this question,by shoving that with
su cient number of rounds a Feistel network basedconstruction using RO
is indi er entiable from the ideal cipher in the \honest-but-curious" model.
This is a wealer security notion than generalindi erentiabilit y, that is still

strongerthan classicalindistinguishability (that is usedin the caseof PRPS).

Indi eren tiabilit y in the Honest-but-Curious Mo del

We start out by introducing the notion of indi erentiabilit y in the honest-

but-curious model in section7.1. In order to illustrate this security notion,
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considera construction CE of the IC E usingthe RO H. Under the general
notion of indi erentiabilit y this constructionis a secureideal cipher construc-
tion, if there is an e cien t simulator that can simulate the role of the RO H
in the ideal cipher model. In this wealker notion, the task of the simulator is
simply to simulate the interaction betweenthe RO H and the construction
CE in the ideal cipher model. That is, for any attacker A that has expects
accesgo the ideal cipher construction oracle C£ and can make queriesto
this construction whereit obsenesthe queriesthat C£, in turn, makesto
the random oracleH, the following two scenariosare indistinguishable: rst,
whereit hasoracleaccesgo C{' and can obsene the actual interaction be-
tweenCg and H or second,whereit hasoracleaccesdo the ideal cipher E
and the simulator S generatesa fake interaction for the attacker.

We show that if an ideal cipher construction is indi erentiable in the
honest-but-curious model, then any cryptographic protocol that is secure
against honest-but-curiousattackers in the ideal cipher model can also be
instantiated in the random oracle model using this construction.

Next, we de ne the notion of a transparent construction, which are con-
structions for which generalindi erentiabilit y is equivalert to indi erentia-
bility in the honest-but-curiousmodel. Roughly speaking, for a transparert
ideal cipher construction using RO, an attacker can query the RO indirectly
by making queriesto the construction and observingits interaction with the

RO.
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An HBC Indieren tiable construction and going beyond:::

Next, we analyzethe Feistelnetwork to nd out if it cangive us an indi er-
ertiable IC construction usingRO. We rst show that for upto a logarithmic
number of roundsk = O(log ), the k-round Feistel network is a transgarent
construction. That is, if one can prove the honest-but-curiousindi erentia-
bility of this construction, then it will alsoimply generalindi erentiabilit y.
This impliesthat if sud a k-round Feistelnetwork is an HBC indi erentiable
ideal cipher construction, then the random oraclemodel and the ideal cipher
model are equivalert! We conjecturethat this is the caseand that in fact,
even a 6-round Feistel network might be an indi erentiable ideal cipher con-
struction. Howewer, we have not beenable to comeup with a formal proof
of this conjecture.

Howewer, we showv that with super-logarithmic number of rounds k =
I (log ), the k-round Feistel network is HBC indi erentiable from the ideal
cipher. This result usesthe conmbinatorial property that we prove in chapter
5. This would indicate that one might be able to show that sud a con-
struction is indi erentiable from the ideal cipherin general,by showving that
this is a transparert construction. Unfortunately, we prove that this cannot
be the caseby showing that for super-logarithmic number of rounds, the
Feistel network cannot be a transparert construction. Thus, in this case,
honest-but-curiousindi erentiabilit y is a strictly weaker notion than general
indi erentiabilit y.

Finally, we state a result of Coron [20] who shows that for upto 5 rounds,
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the Feistel network doesnot even give an HBC indi erentiable ideal cipher
construction. We give a proof of this fact for a 4-round Feistel network in
section 7.2.4. This result also implies that the notion of indi erentiabilit y
in the honest-but-curiousmodel is strictly stronger than classicalindistin-

guishability, since4 rounds are su cient in the latter case[47)].
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Chapter 2

Preliminaries

2.1 Pseudorandomness and Indistinguishabil-
ity

Let 2 N denotethe security parameter. Let fA ;B g oy be a sequenceof
pairs of sets. For the purposesof this thesis,A and B will be of the form
f0;1g"() and f0;1g™( ), respectively. Here n() and m() are polynomial
functions N 7! N. When no ambiguity can arise, we will simply represeh
thesesetsasf0; 1g" and f0; 1g™.

Let F bethe setof all functionsA 7! B , and let P be the set of all
permutations on A . A function ensembleH = fH g ,y is a sequencesut
that ead H is distributed on F . HereH is the uniform function ensemble

if H is uniformly distributed on F . A permutation ensembleH = fH g 2y

is a sequencesud that ead H is distributed on P , and H is the uniform
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permutation ensemblds H is uniformly distributed on P .

A function ensenble is e ciently computable if the distribution H is
e ciently samplableand the functions in H can be computed e cien tly.
That is, there exist probabilistic polynomial time Turing macdhines,| and V,
and a mapping from strings to functions, , sud that (1) (1(1)) andH
are identically distributed and (2) V(i; x) = ( (i))(x) sothat V(I (1"); ) is
essetially H (). We denoteby f; the function assignedo i (i.e. f; =  (i)).
We referto i asthe key of f; andto | asthe key generatingfunction of F.

Throughout this thesis, when we considerfunction (or permutation en-
senbles), the sequenceof setsfA ;B g oy Will be of the form f0;1g"() ;
f0;1g™() , wheren; m are functions on N 7! N. The usual key geneation
function | will simply output a uniformly sampledrandom bit string from a
setf0; 1g“( ), i.e. I (1) is uniformly distributed over f 0; 1g~( ).

We start by describingthe notion of indistinguishability of two function
(or permutation) ensenbles. In this notion, the distinguisheris an oracle
madine that is given oracleaccesdgo afunction in F or a permutation in P .
Oninput 1 , the distinguisher makesqueriesto the function or permutation
that it has oracle accesso, and outputs a single bit. We assumethat on
input 1 , the distinguisher only makesqueriesin A . For the purposeof this
thesis, the oracle madine can be thought to be an oracle Turing madine.

Let D be an oraclemadine, let f be afunctionin F andlet H be dis-
tributed over F . We denoteby D' (1 ), the output distribution of D when

its oraclequeriesare ansveredby f , and denoteby D" (1 ), the output dis-
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tribution of D whenits oraclequeriesare answeredby a function distributed
accordingto H . We will also consideroracle machinesthat take oracle ac-
cessto a permutation in P and its inverse. Let be a permutation in P

and let H be a distribution over P . We denoteby D (1), the output
distribution of D when it is given oracle accesso the permutation , and
denoteby DH i (1), the output distribution of D whenit is given oracle

accesdo a permutation distributed accordingto H .

De nition 1 ((t; g; )-indistinguishabilit y). LetH = fH g,y and H =
fH g »n be two function ensembles. We say that H and | are (t; q; )-
indistinguishable function ensemblesf for any prolabilistic oracle machine

D running in time t and making at most q oracle queries,

h i
PprDH(1)=1 pPrD"(@1)=1

Here t;g and are all functions of the security parameter . The same
de nition can alsobe usel for (t; g; )-indistinguishability of two permutation

ensemblesH:H i andhq:H 1.

De nition 2 (negligible function). A function h: N! N is negligible if

for everyconstantc> 0 and all su ciently largen,

1
h(n) < o

We will say that two function (or permutation) ensenbles are (computa-
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tionally) indistinguishableif they are (t; g; )-indistinguishable with  negli-
gible for every polynomial t and q.
Next, we will usethis notion of indistinguishability to introduce the no-

tions of pseudoandom functions and permutations.

De nition 3 ((t;q; )-PRF). LetH = fH g oy beane ciently computable
function ensembleand let R = fR g ,n be the uniform function ensemble.
H is a(t; g; )-pseudorandomnfunction ensenble if for any prokabilistic oracle

distinguisherD that runs in time t and makesat most q oracle queries,

PrDH (1)=1 PrDR@)=1

De nition 4 ((t;q; )-PRP). LetH = fH g ,\ beane ciently computable
permutation ensembleand let R = fR g ,y the the uniform permutation
ensemble. H is a (t;q; -pseudorandompermutation ensenble if for any
prokabilistic oracle distinguisher D that runs in time t and makesat most q

oracle queries,

PrD"(1)=1 PrDR@)=1

De nition 5 ((t;q; )-SPRP). LetH = fH g,y be an eciently com-
putable permutation ensembleand let R = fR g ,\ the the uniform permu-
tation ensemble.H is a (t; g; -strong pseudorandompermutation ensenble

if for any prolabilistic oracle distinguisher D that runs in time t and makes
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at most q oracle queries,

h . i h . i
Ppr D"H (1)=1 PrDRR@1)=1

2.2 ldeal Primitiv es and Indi eren tiabilit y

In this section,we intro ducethe notion of ideal primitives and indi er entia-
bility that will be usedin parts | and II. We de ne an ideal primitive asan
algorithmic ertity which receiwesinputs from one of the parties and delivers
its output immediately to the querying party. Moreover, the input/output
pairs of an ideal primitiv e satisfy an ideal property, which can only be ap-
proximated in practice.

In this thesis,we will conceitrate ontwo popular ideal primitiv es,random
oraclesand ideal ciphers A random oracle (RO) [8] is an ideal primitiv e
H :f0;1g ! fO0;19" which provides a random output to ead new query.
Identical input queriesare giventhe sameanswer. An ideal cipheris anideal
primitiv e that models an ideal block cipherE : f0;1g f0;1g"! f0;1g".
For such a block cipher, ead key k 2 f0;1g de nes anindependen random
permutation Ex = E(k; ) on f0;1g". The ideal primitiv e provides oracle
accesgo E and E 1; that is, on query (0; k; m) the primitiv esansvers c =
E«(m), and on query (1; k; ¢) the primitiv e answersm sud that ¢ = Ey(m).

Another notion related to ideal primitiv es, is that of ideal assumption

madels In sud models,onesimpli es the task of constructing cryptographic
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protocolsby assumingthe existenceof somepublicly accessiblédeal primitive

oracle The security of a protocol in sud a model is also proven under this

assumption, which doesnot formally imply its security in generalbut still

provides a reasonablesecurity guarartee (as discussedn the introduction).

The most popular ideal assumption models are the random oracle model
(ROM) and the ideal cipher model (ICM), whereone assumeghe existence
of a random oracleand an ideal cipher oraclerespectively.

As discussedin the introduction, the notion of indistinguishability does
not su ce to discussthe security of constructionsof oneideal primitiv e using
another. The main reasonis that in sud a situation, one or more of oracles
are publicly available. For sud a situation, the notion of indi er entiability
of random systems,introduced by Maurer et al in [52], turns out to be the
right one. Indi erentiabilit y is essetally an extensionof indistinguishability,
basedon ideas from the Universal Composability framework [17] and the
model of P tzmann and Waidner [66]. Instead of discussingthe notion of
indi erentiabilit y in the context of random systemsthat provide interfaces
to eat other (asis donein [52]), we shall usethis notion in the framework

of Interactive Turing Machines(asin [17]).

De nition 6 (Indi eren tiabilit y). A Turing machineC with oracleaccess
to an ideal primitive Gis saidto be (tp;ts;q; ) indi erentiable from an ideal

primitive F if there existsa simulator S, suchthat for any distinguisher D
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it holdsthat :

PrD9®(1)=1 PrD"®@1)=1

The simulator has oracle accessto F and runs in time at mostts. The
distinguisher runs in time at most tp and makesat most q queries. Here
tp;ts; g and are all functions of the security parameter . Similarly, C©
is said to be (computationaly) indi er entiable from F is is a negligible

function of  (for polynomially boundal tp and ts).

As illustrated in gure 2.1, the role of the simulator is to simulator the
ideal primitive G so that no distinguisher can tell whether it is interacting
with C and G, or with F and S; in other words, the output of S shouldlook
\consistert” with what the distinguisher can obtain from F. Note that the
simulator doesnot seethe queriesmadeby the distinguisherto F; however,
it cancall F directly when neededfor the simulation.

In part |, the ideal primitive F that we try to construct will be a random
oracle while Gwill be either a xed-length input random function or anideal
block cipher. Thus the construction C will use primitive G to enulate the
random oracle F. On the other hand, in part Il the ideal primitive F will
be the ideal cipher E, while the G will be a random oracleH .

It is shawn in [52] that if CC® is indierentiable from F, then C® can
replaceF in any cryptosystem,and the resulting cryptosystemis at leastas

securein the G model asin the F model. For instance,if a block cipherbased
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Figure 2.1: The indi erentiabilit y notion: the distinguisher D either inter-
acts with algorithm C and ideal primitiv e G, or with ideal primitive F and
simulator S. Algorithm C has oracle accessto G, while simulator S has
oracleaccesdo F.

iterativ e hashfunction is indi erentiable from arandomoracleH in the ideal
cipher model, then the iterative hashfunction canreplacethe random oracle
in any cryptosystem, and the resulting cryptosystem remains securein the

ideal cipher model if the original stheme was securein the random oracle

model.
C G F
P S A P k A
T T T T
e e
J d

Figure 2.2: The ervironment E interacts with cryptosystemP and attacker
A. In the G model (left), P has oracle accessto C whereasA has oracle
accesdo G. In the F model, both P and A° have oracleaccesgo F
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We usethe de nition of [52]to specify what it meansfor a cryptosystem
to be at leastassecurein the G model asin the F model. A cryptosystemis
modelledasan Interactive Turing Machine with an interfaceto an adversary
A and to a public oracle. The cryptosystemis run by an ervironmen E
which providesa binary output and alsoruns the adversary In the G model,
cryptosystemP hasoracleaccesgo C whereasattacker A hasoracleaccess
to G. In the F model, both P and A have oracleaccesgo F. The de nition

is illustrated in Figure 2.2.

De nition 7. A cryptosystemis said to be at least as secure in the G model

with algorithm C as in the F madel, if for any environment E and any

attacker A in the G madel, there existsan attacker A°in the F model, such
that , .
h C.AG | h F oF |
PrEA"1)=1 PrE"A (1)=1

is a negligiblefunction of the security parameter . Similarly, a cryptosystem

is said to be computationally at least as secure, etc., if E, A and A° are

polynomial-time in

The following theorem from [52] shaws that security is presened when

replacing an ideal primitiv e by an indi erentiable one:

Theorem 1. Let P be a cryptosystemwith oracle accessto an ideal primitive
F. Let C be an algorithm suchthat C® is indi er entiable from F. Then
cryptosystemP is at least as secure in the G madel with algorithm C as in

the F maodel.
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Pro of: We only provide a proof sketch; see[52 for a full proof. Let P be
any cryptosystem, modelled asan Interactive Turing Machine. Let E be any
ervironmert, and A be any attacker in the G model. In the G model, P has
oracleaccess3o C whereasA hasoracleaccesgo ideal primitiv e G; moreover

ervironmert E interactswith both P and A. This isiillustrated in Figure 2.3

(left part).
C G F s |A
Pl A Pk A
T T Bl e
e [ e
Dl D l ,,,,,,,,,,,,,

Figure 2.3: Construction of attacker A°from attacker A and simulator S.

SinceCCisindi erentiable from F (seeFigure 2.1), onecanreplace(C; G)
by (F ; S) with only a negligiblemodi cation of the ervironmert's output dis-
tribution. As illustrated in Figure 2.3, by merging attacker A and simulator
S, oneobtains an attacker A°in the F model, andthe di erence in E's output

distribution is negligible.

Henceif onecan nd anindi erentiable construction of the ideal primitiv e
F using another primitiv e G, then any securecryptographic protocol in the

idealassumptionmodel correspndingto F hasan equivalent secureprotocol
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in the ideal assumptionmodel with primitiv e G.

2.3 Other Cryptographic Primitiv es

In this section,we will give formal de nitions for someof the cryptographic

primitiv esthat we will usein this thesis.

2.3.1 Message Authen tication Codes

We start by de ning the notion of a MessageAuthentication Code. This is
a symmetric key primitiv e that allows a senderA to senda messagen to a
receiver B alongwith atagt, sud that the receiver B can verify whether the
messageavas indeedsert by the senderA.

A MessageAuthentication Code, MAC, is de ned over a sequenceof
messagand tag spacedM ;T g ,n. It consistsof a triple (Gen;Tag; Ver)

of probabilistic polynomial time (PPT) algorithms:

1. The key geneating algorithm Gen outputs the sharedsecretkey: s

Gen(1 ).

2. The tagging algorithm Tag producesa tag t Tags(m) (sud that
t2 T), for any messagen 2 M

3. The (deterministic) veri cation algorithm Ver producesavalueVergs(m;t) 2

f acceptyrejectg indicating whether the tag t is a valid tag for message

m or not.
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We will de ne the security of MACsin the exact security framework aswell.

De nition 8 ((t; g; )-secure MA C). A MessageAuthentication Code, (Gen;Tag; Ver),
is a (t; q; )-secureMAC, if for any oracle machine A that runs in time at
mostt, makesat most g queriesto its oraclesand outputs a \for gery" (m;t)

suchthat m hasnever been querial to the oracle Tags( ):

Pr Vers(m;t) = accepts Gen(l); (m;t) AT3%Versq)

Heret; g and are all functions of the security parameter .

2.3.2 Collision Resistance

A Collision Resistant function ensenble is de ned over a sequenceof sets

fA ;B g an. It consistsof a pair (Gen;Eval) of PPT algorithms:

1. The key geneating algorithm Gen outputs the function key: s

Gen(1 ).

2. The function ewvaluation algorithm Eval takesa function key s and an
input x 2 A , and mapsit to an output y Eval(s;x) sud that

y 2 B . Wewill alsodenotethis asy = hg(x).

The task of an attacker in the collision resistanceattack gameisto nd a

pair of inputs for which the given function hasthe sameoutput.

De nition 9 ((t; )-collision resistant function). A e ciently computable

function ensembleH if a (t; e; )-collision resistantfunction ensemblef for
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any oraclemachineA that runs in time at mostt and outputsa pair of inputs

X1;X2 2 A

Pr hs(x1) = hs(x2) s Gen(l); (X1;%2) A1 ;9)

Heret and are functions of the security parameter .
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Chapter 3

Hash Functions as Random

Oracles

Random Ora cle Methodology. The random oracle model was intro-
duced by Bellare and Rogawvay as a \paradigm for designinge cient pro-
tocols" [8]. It assumedhat all parties, including the adversary have access
to a public, truly random function H. This model has proved extremely
useful for designingsimple, e cien t and highly practical solutions for many
problems. From a theoretical perspective, it is clearthat a security proofin
the random oracle model is only a heuristic indication of the security of the
systemwheninstantiated with a particular hashfunction, sud asSHA-1[32]
or MD5 [34]. In fact, many recen \separation” results[18, 61, 39, 4, 19, 26]
illustrated various cryptographic systemssecurein the random oracle model

but completely insecurefor any concreteinstantiation of the random oracle
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(even by a family of hashfunctions). Newertheless,theseimportant separa-
tion results do not seemto directly attack any of the concrete,widely used
cryptosystems(such as OAEP [9] and PSS [10] as usedin the PKCS #1

v2.1 standard [65]) which rely on \secure hash functions". Moreover, we
hope that sud particular systemsare in fact secure wheninstantiated with
a \good" hashfunction. In the random oracle model, instead of making a
highly non-standard (and possibly unsubstariated) assumptionthat \my
systemis securewith this H" (e.g., H being SHA-1), one provesthat the
systemis at least securewith an \ideal" hash function H (under standard
assumptions). Sud formal proof in the random oracle model is believed to
indicate that there are no structural aws in the designof the system,and
thus onecan heuristically hope that no such awswill suddenlyappear with

a particular, \w ell designed"function H. But can we say anything alout the

lack of structural aws in the designof H itself?

Building Random Ora cles. From a purely theoretical view, we know
that a concretefunction H is not a random oracle,soto prove that a given
H is\good" we needto directly arguethe security of our systemwith this
H. Howewer, the latter task is usually unmanageablagiven our current tools
(e.q., \realizable" properties of H sud as collision-resistance,pseudoran-
domnessor one-waynessare usually not enoughto prove the security of the
system). Howewer, we argue that there is a signi cant gap in this reason-
ing. Indeed, most systemsabstractly model H as a function from f0; 1g to

f0; 1g" (wheren is proportional to the security parameter),sothat H canbe
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usedon somearbitrary input domain. On the other hand, in practice sud
arbitrary-length hashfunctions are built by rst heuristically constructing a
xe d-lengthbuilding block, sud asa xed-length compressiorfunction or a
block cipher, and then iterating this building block in somemannerto extend
the input domain arbitrarily . For example, SHA-1, MD5, as well as all the
other hash function we know of, are constructed by applying somevariant
of the Merkle-Damgard construction to an underlying compressiorfunction

f:f0;1g"" ! f0;1g" (seeFigure 3.2):

let yo = O" (more generally some xed |V value can be used)
fori=1to doy, f(yi ;;m)

return y-

When the number of -bit messageblocks ™ is not xed, oneessetially
appendsan extra block m-,; cortaining the binary represetation hjmji of
the length of the messaggprependedby 1 and a string of O's in order to
make everything a multiple of ; the exactdetails will not matter for our dis-
cussion). This procedureis known as Merkle-Damgaard strengthening The
xed-length compressionfunction f can either be constructed from scratth
or madeout of a block-cipher E via the Davies-Me\er construction (see[74]
and Figure 3.4): f(x;y) = Ey(x) x. For example,the SHA-1 compres-
sion function was designedspeci cally for hashing, but a block-cipher can

newerthelessbe derived from it, asillustrated in [41].
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Our Main Question.  Given sud particular and \structured" designof
our hashfunction H,| which is actually the designusedin practice,| we
argue that there exists a missinglink in the claim that no structural aws
exist in the designof our system. Indeed, we only know that no sucx aws
exist when H was modeled as a \monolithic* random oracle, and not as
an iterated hashfunction built from somesmaller building block. As since
the real implemenation of H as an iterated hash function has much more
structure than a random monolithic hash function would have, maybe this
structure could somehav invalidate the security proof in the random oracle
model? To put this into a di erent perspective, all the ad-hoc (and hopefully
\secure") designe ort for widely usedhash functions, sud as SHA-1 and
MD5, has beenplacedinto the designof the xed-length building block f

(or E). On the other hand, evenif f (or E) were assumedto be ideal, the
current proofsin the random oracle model do not guarartee the security of
the resulting systemwhen sud iterated hashfunction H is used!

Let usillustrate our point on a well known example. A commonsugges-
tion to construct a MAC algorithm is to simply include a secretkey k as
part of the input of the hashfunction, and take for example MAC(k; m) =
H (kkm). It is easyto seethat this construction is securewhen H is mod-
eled as a random oracle [8], as no adversary can output a MAC forgery
exceptwith negligible probability. Howewer, this MAC sdiemeis completely
insecurefor any Merkle-Damgard construction consideredso far (including

Merkle-Damgard strengtheningusedin current hashfunctions sud as SHA-
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1, and any of the 64 block-cipher basedvariants of iterative hash-functions
consideredin [68, 15]), no matter which (ideal) compressionfunction f (or

a block cipher E) is used. Namely given MAC(k;m) = H(kkm), one
can extend the messagem with any single arbitrary block y and deduce
MAC(k; mky) = H(kkmky) without knowing the secretkey k (even with

Merkle-Damgaard strengthening, one could still forge the MAC by more or
lesssetting y = hjmji, wherethe actual block dependson the exact details of
the strengthening). This (well known) exampleillustrates that the construc-
tion of a MAC from an iterated hash function requiresa speci ¢ analysis,
and cannot be derived from the security of this MAC with a monolithic
hash function H. On the other hand, while the Merkle-Damgard transfor-
mation and its variants have beenintensively studied for many \realizable"

properties sud as collision-resistancg22, 54, 68, 15|, pseudorandomnesfb],

unforgeability [1, 53] and randomnessextraction [25], it is clear that these
analysesareinsu cien t to argueits applicability for the purposesof building

a hashfunction which can be modeledas a random oracle,sincethe latter is
a considerablystronger security notion (in fact unrealizablein the standard
model). For a simple concrete example, the Merkle-Damaard strengthen-
ing is easily seento presene collision-resistancewhen instantiated with a
collision-resistah compressionfunction, while we just sawv that it doesnot
work to yield a random oracleor even just a variable-length MAC, and this
holds ewen if the underlying compressionfunction is modeled as a random

oracle.
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Our Goals. From the above discussioniit is clearthat we needa formal
de nition of what it meansto implemen an arbitrary-length random oracle
H from a xed-length building block f or E. We have already seenthat
the notion of \indi eren tiabilit y* proposedin [52] is the suitable de nition

in this case. In particular, if we shav that the construction H using xed-

length building blocks f (or E) is indi erentiable from an arbitrary length
random oraclethen under the assumptionthat f (or E) is ideal, we can use
H to instantiate the random oraclein any cryptosystemproven securein the
ROM.

In this chapter, our goal will beto nd an indi er entiable construction
of a random oracle. Howewer, while the notion of indi erentiabilit y is not
speci c to somevariant of the Merkle-Damaard transformation, we would
like to give secureconstructionswhich resenble what is donein practice as
much as possible. Unfortunately, we already arguedthat the current design
principle behind hashfunctions sud asSHA-1and MD5 { the (strengthened)
Merkle-Damgard transformation { will not be securefor our ambitious goal.
Therefore,instead of giving new and practically unmotivated constructions,
our secondarygoal is to come up with minimal and easily implementable
in practice changesto the plain Merkle-Damgard construction, which would

satisfy our security de nition.

Our resul ts. Basedonthe notion onindi er entiability, we provide se\eral
provably secureconstructions. We start by giving three modi cations to the

(insecure)plain Merkle-Damgaard construction which yield a securerandom
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oracleH taking arbitrary-length input, from a compressionfunction viewed
as a random oracle taking xed-length input. This result can be viewed
as a securedomain extenderfor the random oracle, which is an interesting
result of independen interest. We remark that domain extendersare well
studied for sudh primitiv esascollision-resistah hashfunctions [22, 54], pseu-
dorandomfunctions [5], MACs [1, 53] and universal one-way hashfunctions
[11, 70]. Although the above works alsoshoved that somevariants of Merkle-
Damgard yield securedomain extendersfor the correspnding primitiv e in
guestion, theseresults are not su cient to claim a domain extender for the
random oracle.

Our securemodi cations to the plain Merkle-Damgard construction are

the following.

1. Pre x-Free Encoding : we shav that if the inputs to the plain MD
construction are guararteed to be pre x-fr eg, then the plain MD con-

struction is secure.

2. Dropping SomeOutput Bits : we showv that by dropping a non-trivial
number of output bits from the plain MD chaining, we get a secure
random oracle H ewen if the input is not encaled in the pre x-free

manner.

3. Using NMAC construction (seeFigure 3.3a): we shav that by applying
anindepender hashfunction g to the output of the plain MD chaining

(as in the NMAC construction [5]), then once again we get a secure
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construction of an arbitrary-length random oracle H, in the random

oraclemodel for f and g.

. Using HMAC Construction (seeFigure 3.3b): we show a slightly mod-
ied variant of the NMAC construction allowing us to corveniertly
build the function g from the compressionfunction f itself (asin [5]
when going from NMAC to HMAC)! In this latter variant, one im-
plemerts a securehash function H by making two black-lox calls to
the plain Merkle-Damgaard construction (with the same xed |1V and a
given compressiorfunction f): rst on (" + 1)-block input 0 my:::m-,
getting an n-bit output y, and then on one-black -bit input y° (ob-
tained by either truncating or paddingy depending on whether or not

> n), getting the nal output.

Note that we could also de ne the HMAC construction by using a di erent

initialization vector in ead part of the construction, instead of using the

samel V but prepending 0 to the input. Howewer, our purposehereis to

presemn theseconstructionsasbladk-box extensionsof existing hashfunctions

sudh as SHA-1 which have only one xed 1V, in which caseour proposed

construction can be viewed as making two bladk-box calls to SHA-1 to get

SHA 1(SHA 1(0 kmg:::m-).

Howeer, in practice most hash-function constructions are block-cipher

based, either explicitly as in [68] or implicitly as for SHA-1. Therefore,

we considerthe question of designingan arbitrary-length random oracle H
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from anideal block cipher E, speci cally concenrating on usingthe Merkle-
Damgard constructionwith the Davies-Meyer compressiorfunction f (x;y) =

Ey(x) X, sincethis is the most practically relevant construction. We shov
that all of the four xes to the plain MD chaining which worked when f

wasa xed-length random oracle, are still secure(in the ideal cipher model)
whenwe plug in f (x;y) = Ey(x) X instead. Speci cally, we can either use
a pre x-free encaling, or drop a non-trivial number of output bits (when
possible),or apply an independert random oracle g to the output of plain
MD chaining, or usethe optimized HMAC construction which allows us to

build this function g from the ideal cipher itself.

3.1 Domain Extension for Random Oracles

In this section, we shav how to construct an iterative hash-function indif-
ferertiable from a random oracle, from a compressionfunction viewed as a
random oracle. We start with two simple and intuitiv e constructionsthat do

not work.

3.1.1 H(x) = f(h(x)) for Random Oracle f and Collision-

Resistant One-way Hash-function h

One could hope to enulate a random oracle (with arbitrary-length input) by
taking :
C'(x) = f (h(x))

48



A4

C f H ?

f
C(m) = f(h(m)) Hm) * S(h(m))

Figure 3.1: The simulator cannot output H(m) sinceit only receives h(m)
and cannot recover m from h(m).
wheref :f0;1g"! f0;1g" is modelledasarandomoracleandh : f0;1g !
f0; 1g" is any collision-resistam one-way hash-function (not modelled as a
random oracle). Howewer, we shav that suc C' is not indi erentiable from
a random oracle; namely, we construct a distinguisher that can fool any
simulator.

As illustrated in Figure 3.1, the distinguisher rst generatesan arbitrary
m and computesu = h(m). Then it queriesv = f (u) to random oracle f
and queriesz = C"(m) to C'. It then cheds that z = v and outputs 1 in
this case,and O otherwise. It is easyto seethat the distinguisher always
output 1 wheninteracting with C" and f , but outputs 0 with overwhelming
probability wheninteracting with H and any simulator S. Namely, whenthe
distinguisherinteracts with H and S, the simulator only receivesu = h(m);
therefore, in order to output v sud that v = H(m), the simulator must
either recorer m from h(m) (and then query H(m)) or guessthe value of

H (m), which can be donewith only negligible probability.
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3.1.2 Plain Merkle-Damg ard Construction

We show that the plain Merkle-Damgard construction (seeFigure 3.2) fails
to enulate a random oracle (taking arbitrary-length input) when the com-
pressionfunction f is viewed asa random oracle (taking xed-length input).
For simplicity, we only considerthe usual Merkle-Damgard variant, although
the discussioneasily extendsto the strengthenedvariant which appendsthe

messagédength hjmji at the last block :

let yo = O" (more generally some xed |V value can be used)
fori=1to " doy, f(yi 1;m)
return y- 2 f0; 1g".

wherefor all i, jm;j= andf :f0;1g"* ! fO0;1g".

mi mo m-
L L |
IV —= § - - - f -
Y1 y2 —y

Figure 3.2: The plain Merkle-Damgard Construction

We have already menrtioned in introduction a courter-example basedon
MAC. Namely we shoved that MAC(k; m) = H(kkm) provides a secure
MAC in the random oracle model for H, but is completelyinsecurewhenH

is replacedby the previous Merkle-Damgard construction MD', becauseof
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the messageextensionattack. In the following, we give a more direct refu-
tation basedon the de nition of indi erentiabilit y, using again the message

extensionattack.

We consideronly one-black message®r two-block messages.For suth
messagesye havethat MD' (m;) = f (0;m;) andMD' (my; m,) = f (f (O; m,)
;My). We build a distinguisher that can fool any simulator as follows. The
distinguisher rst makesa MD' -query for m; and receivesu = MD' (m,).
Then it makesa query for v = f (u;m;) to random oraclef. The distin-
guisher then makes a MD' -query for (m;;m,) and ewertually cheds that
v = MD'(my; m,); in this caseit outputs 1, and 0 otherwise. It is easyto see
that the distinguisher always outputs 1 when interacting with MD and f .
Howewer, whenthe distinguisherinteracts with H and S (who must simulate
f), we obsene that S has no information about m; (becauseS does not
seethe distinguisher'sH -queries). Therefore,the simulator cannot answer v

sud that v = H(my; m;), exceptwith negligible probability.

3.1.3 Prex-free Merkle-Damg ard

In this section, we show that if the inputs to the plain MD construction
are guararteed to be pre x-free, then the plain MD construction is secure.
Namely, pre x-free encaling enablesto eliminate the messageexpansion
attack descriked previously This \ x" is similar to the x for the CBC-
MAC [7], which is alsoinsecurein its plain form. Thus, the plain MD con-

struction canbe safelyusedfor any application of the randomoracleH where
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the length of the inputs is xed or where one usesdomain separation(e.g.,
prepending 0; 1;::: to di erentiate betweeninputs from di erent domains).
For other applications, one must speci cally ensurethat pre x-freenessis
satis ed.

A pre x-free code over the alphabet f0;1g is an e ciently computable
injective function g : f0;1g ! (f0;1g ) sud that for all x 6 y, g(x) is
not a pre x of g(y). Moreover, it must be easyto recover x given only g(x).
We provide two examplesof pre x-free encalings. The rst oneconsistsin
prepending the messagesizein bits asthe rst block. The last block is then

paddedwith the bit onefollowed by zerces.

Function g;(m) :

let N be the messagdength of m in bits.

An important drawbad of this encaling is that the messagéength must
be known in advance;this can be a problem for streaming applications in
which a large messagenust be processedn the y. Our secondencaling g,
doesnot su er from this drawbad, but requiresto waste one bit per block

of the message
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Function gy(m) :

write m as(myq;:::;m-) wherefor all i, jm;j = 1

Given any pre x-free encaling g, we considerthe following construction
of the iterativ e hash-function pf-MDg :f0;1g ! f0; 19", using the Merkle-

Damgard hash-functionMD' : (f0;1g ) ! f0;1g" de ned previously

Function pf-MD{(m) :
let g(m) = (Mgq;:::;m)
y MDf(mg:::;m)

return y

Theorem 2. The construction pf-MDg(m), descriled alove, is (tp;ts;q; )-
indi er entiablefrom a randomoracle, in the xed-lengthrandomoracle model
for the compressionfunction, for any tp, with ts = > O(¢?) and = 2 "

2 O(?), whee " is the maximum numker of -bit blacksin the pre x-fr ee

enading of a query made by the distinguisherD.

3.1.4 The Chop Solution

In this section, we shav that by removing a fraction of the output of the
plain Merkle-Damgard construction MD', one obtains a construction indif-

ferertiable from a randomoracle. This \ x" is similar to the method usedby
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Dodis et al. [25 to overcomethe problem of using plain MD chaining for ran-
domnessextraction from high-ertropy distributions, and to the suggestionof
Lucks [48] to increasethe resilienceof plain MD chaining to multi-collision
attacks. It is also already usedin practice in the designof hash functions
SHA-348 and SHA-224 [33] (both obtained by dropping someoutput bits
from SHA-512and SHA-256). Here we shav that by dropping a non-trivial
number of output bits from the plain MD chaining, one gets a secureran-
dom oracle H ewen if the input is not encaled in the pre x-free manner.
For example,sud dropping preverts the \extension" attacks we saw in the
MAC application, sincethe attacker cannot guessthe value of the dropped
bits, and cannot extend the output of the MAC to a valid MAC of a longer
message.

Formally, given a compressionfunction f : f0;1g"" ! f0;1g", the new

construction chop-MDY, is de ned as follows :

Function chop-MDL(m) :

y MDf(mg;:::;m)

return the rst n s bits of y.
Theorem 3. The construction chop-MD,(m), descrited akove, is (tp;ts; q; )-
indi er entiablefrom a randomoracle, in the xed-lengthrandomoraclemadel
for the compression function f, for any tp, with ts = ° O(¢?) and =
25 2 0O(cp). Here " is the maximum number of -bit blocksin a query

made by the distinguisherD.
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While really simple,the drawbad of this method is that its exactsecurity
is proportional to ¢?2 S, wheres is the number of chopped bits and q is the
number of oraclequeries. Thus, to achieve adequatesecurity level the value
of s hasto be relatively high, which meansthat short-output hashfunctions
sud as SHA-1 and MD5 cannot be xed using this method. Howewer, func-
tions sud as SHA-512 can naturally be xed (say, by setting s = 256). A

formal proof of theorem 3 is given in the next section.

3.1.5 The NMA C and HMA C constructions

The NMAC construction [5], which is the basisof the popular HMAC con-
struction, appliesan independenthashfunction g to the output of the plain
MD chaining. It has beenshown very valuable in the designof MACs [5],
and recernly alsorandomnessextractors [25]. Herewe show that if g is mod-
elled as another xed-length random oracle independent from the random
oraclef (usedfor the compressiorfunction), then onceagain one getsa se-
cure construction of an arbitrary-length random oracleH, ewenif plain MD
chaining is applied without pre x-free encaling. Intuitiv ely, applying g gives
another way to hide the output of the plain MD chaining, and thus prevent
the \extension" attack descriked earlier.

Formally, givenf : f0;1g"* | f0;1g” andg: f0;1g" ! f0;1g"™, the

function NMAC'* is de ned as (seeFigure 3.3a):
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Function NMAC"9(m) :

Y o odly)

return Y

Theorem 4. The construction NMAC' 9 is (tp;ts;q; ) indi er entiablefrom
a random oracle for any tp, ts = ° O(qf) and = 2 M9 20(¢R), in
the xed-lengthrandom oracle model for the functions f and g (modelled as
independentrandomoracles),whete * is the maximum numter of -bit blacks

in a query made by the distinguisher.

To practically instantiate this suggestion,we would like to implemen
f and g from a single compressionfunction. This problem is analogousto
the problem in going from NMAC to HMAC in [5], although our solution
is slightly dierent. One simple way for achieving this is to use domain
separation: e.g., by prepending O for callsto f and 1 | for callsto g.
Howeer, with this modeling we are e ectiv ely using the pre x-free encaling
mappingm;m, :::m- to Om;0m,:::0m-10 , which appearsslightly wasteful.
Additionally, this also forcesus to go into the lower-level implemertation
details for the compressiorfunction, which we would like to avoid. Instead,
our solution consistsin applying two black-lmx calls to the plain Merkle-
Damgard construction MD' (with the samef and V) : rst to the input

0 m;:::m-, getting an n-bit output y, and againto -bit y° wherey?®is
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de ned from y asfollows (seeFigure 3.3b):

Function HMAC' (m) :

y MDD (mg;mq;::ii;im)
ifn< theny® ykO "
elsey® vyj

Y MD'(y)

return Y

Intuitiv ely, we are almost using the NMAC construction with g(y) =
f (1V;y9 (whereyCis obtained from y as above), exceptwe prepend a xed
block mg = 0 to our message. This latter tweak is done to ensurethat
there are no inter-dependenciesbetween using the samelV on y° and the
rst messagédlock (which would have beenunder adversarial cortrol had we
not prependedmy). Indeed, it is very unlikely that \high-entropy" y° will
ewver be equalto my = 0, sothe analysisfor NMAC can be easily extended

for this optimization.

Theorem 5. The construction HMAC', descrited atove, is (tp;ts;q; ) in-
di er entiablefrom a randomoracle, in the xed length random oracle model
for the compressionfunction f, for any tp, ts =~ O(¢f) and = 2mn(n )

2 0(¢?). Here " is the maximumnumter of  bit blacksin a query madeby

the distinguisherD.

The formal proofsfor both theorems4 and 5 are givenin the next section.
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a. NMAC construction
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b. HMAC construction

Figure 3.3: The NMAC and HMAC constructions

3.2 Constructions using Ideal Cipher

In practice, most hash-function constructions are block-cipher based,either
explicitly asin [68 or implicitly asfor SHA-1. Therefore, we considerthe
guestion of designingan arbitrary-length random oracle H from an ideal
block cipher E : f0;1g f0;1g" ! fO0;1g", specically conceftrating on
using the Merkle-Damgard construction with the Davies-Meyer compression
function f (x;y) = Ey(x) x (seeFigure 3.4), sincethis is the most prac-
tically relevant construction. We notice that the question of designinga
collision-resistanthash function H from an ideal block cipher was explicitly
consideredby Preneel, Govaerts and Vandewalle in [68], and latter formal-
ized and extendedby Black, Rogavay and Shrimpton [15. Speci cally, the

authors of [15] actually considered64 block-cipher variants of the Merkle-
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Damgard transform (which included the Davies-Meyer variant amongthem),
and formally shavedthat exactly 20 of thesevariations (including the Davies-
Meyer variant) are collision-resistam whenthe block cipher E is modeledas
an ideal cipher. Howewer, while our work will also model E as an ideal ci-
pher, our security goalis considerablystrongerthan merecollision-resistance.
Indeed, we already pointed out that none of the 64 variants above can with-
stand the \extension™" attack onthe MAC application, evenwith the Merkle-
Damgard strengthening. And ewen when restricting to a xed number of
blocks * (which invalidates the \extension" attack), collision-resistanceis
completely insu cien t for our purposes. For example, the authors of [15]
show the collision-resistancewhen using the plain MD chaining with xed
|V and compressiorfunction f (x;y) = Ey(x). On the other hand, it is easy
to seethat this method doesnot provide a securerandom oracleH according

to our de nition.

Y '

Figure 3.4: The Davies-Meyer Compressionfunction

From a di erent direction, if we could shav that the Davies-Meyer com-
pressionfunction f (x;y) = Ey(x) X is a securerandom oraclewhenE is

an ideal block-cipher, then we could directly apply any of the three xes
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discussedabove. Unfortunately, this is again not the case: intuitiv ely, the
above construction allows anybody to compute x from f(x;y) x andy
(sincex = E, Yf (x;y) x)), which should not be the caseif f was a true
random oracle. Thus, we needa direct proof to argue the security of the
Davies-Meyer construction. Luckily, using sud direct proofs we indeed ar-
guethat all of the xes to the plain MD chaining which worked whenf was
a xed-length random oracle, are still securewhenf (x;y) = E,(x) X is
usedinstead. Namely, we can either use a pre x-free encaling, or drop a
non-trivial number of output bits, or apply an independen random oracleg
to the output of plain MD chaining. With respect to this latter x, we also
show that we canimplemert this independent g using the ideal cipher itself,
similarly to the casewith an ideal compressiorfunction f .

Formally, given a block-cipher E : f0;1g f0;1g" ! fO0; 19", the plain

Merkle-Damgaard hash-functionwith Davies-Meyer's compressiorfunction is

de ned as:
Function MD&(mq;:::;m-)
let yo = 0" (more generally some xed |V value can be used)

fori=1to doy; Em(¥i 1) V¥ 1
return y- 2 f0; 1g".

where for all i, jm;j = . The block-cipher basediterative hash-functions
pf-MD;, chop-MDS, NMAC{ and HMACE are then de ned asin section
3.1, usingMDE instead of MD" .
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Theorem 6. The black-cipher basel constructions pf-MDY, chop-MLE,
NMACS and HMACF are (tp;ts;q; )-indi er entiable from a random ora-
cle, in the ideal cipher maodel for E, for any tp andts = ° O(¢?), with
= 2" 2 O(cp) for pFMDE, = 2% 2 O(cd) for chop-MDE, =
2 min(mn% 2 O(g?) for NMACE and =2 mn(n) 2 O(¢?) for HMACE.

Here " is the maximum messagdength queried by the distinguisher.

Pro of: We will prove that the Merkle-Damgard (MD) basedconstructions
are indi erentiable constructionsof a random oracle (RO), when applied to
the Davies-Meyer (DM) compressionfunction using an ideal block cipher

(IC). The four constructionsthat we prove to be secureare:

1. Pre x-free  Merkle-Damg ard construction pf-MD 5: In this con-
struction, we apply the Davies-Meyer Merkle-Damgard (DMMD) con-
struction to a pre x-free encaling of the input (using the pre x-free

encaling shemeg).

2. Merkle-Damg ard with chopp ed output chop-MD £: This is the
plain DMMD construction applied directly to the input, with a non-

trivial number, s, of the output bits chopped.

3. NMA C construction NMA CEYE2: This construction usestwo in-
dependent ideal block ciphersEl : f0;1g f0;1g" ! fO0;19" and
E2:f0;1g° f0;1g"™! f0;1g". It rst appliesthe DMMD construc-

tion using E1 to the input, getting a n bit output Y. Then it applies
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the Davies-Meyer compressiorfunction usingE2 to Y to get the nal

output.

4. HMA C construction HMA CE: This is an instantiation of the
NMAC construction using the sameideal cipher for both parts, but us-
ing di erent initialization vectorsin ead part (implemerted by prepend-

ing O to the input).

The proof of indi erentiabilit y in eat of thesecasesessetially involvestwo
steps. First, we proposea simulator that simulates the task of the ideal
cipherin the random oraclemodel (ROM). Secondly we show that the view
of any distinguisher in the ROM, with oracle accesgo the actual random
oracle and the ideal cipher simulator, doesnot dier from its view in the
ideal cipher model (ICM), with oracleaccesdo the RO construction and the
ideal cipher, by more than a negligible amourt. We start by providing an
intuitiv e idea of the basic paradigm usedin eat of the proofs, followed by
the formal proofs for eat case.

The Simulator. The task of the simulator in eat of the casesis to
simulate the ideal cipher in the ROM, in sud a way that its relation with
the random oracleis consistet with the relation betweenthat actual ideal
cipherand the RO constructionin the ICM. Thus, in eat case the simulator
essetially givesrandom responsesto all forward block cipher queriesexcept
those that form the last application of the ideal cipher for somerandom

oracle input (when processedusing the RO construction). For example,in
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the Chop construction this will be the last block cipher call in the Davies-
Meyer Merkle-Damgard computation.

If the query correspndsto a last block cipher call, then the simulator
consultsthe random oracleand adjustsits resppnsesoasto remain consistenm
with the ICM scenario.

In the caseof an inverseblock cipher query, the simulator always gives
random responses. In addition, the simulator also maintains a table T in
which it recordsall previousquery-respnsepairs (so asto maintain consis-
tency amongits responses).

Pro of of Indieren tiabilit y. Ead of the proofs of indi eren-
tiabilit y consistof a hybrid argumert that presens a sequenceof mutually
indistinguishablegamesstarting in the random oraclemodel, with the RO F
and the ideal cipher simulator S, leading up to the ideal cipher model, with
the RO construction (which we call CF) and the ideal cipher E. The over-
all structure of the hybrid argumert is similar for eat of the constructions,
though the formal proof di ers. We will describe the overall structure of the

proof here.

Game 1. This is the random oraclemodel, wherethe distinguisheris given

oracleaccesgo the random oracleF and the ideal cipher simulator S.

Game 2. In this game,we introduce a relay algorithm Ry that is sim-

ply a dummy algorithm betweenthe distinguisherand the random oracleF .

This relay algorithm simply relays the queriesof the distinguisherto the RO
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and relays bad the output of F.

Game 3. In this game,we modify the simulator by de ning a few failure

conditions for its query-respnsepairs. If any of thesefailure conditions is
true, then the new simulator Sy explicitly fails. Thesefailure conditions cap-
ture certain collision conditions which, if they happen, could be exploited by
the distinguisher to decidethe scenarioit is in. The failure conditions are
di erent for ead constructionsand are descriked in the formal proof. Thus
the distinguisher has oracle accessto the new simulator S§ and the relay

algorithm R in this game.

Game 4. Now we modify the relay algorithm soasto make its responses

directly dependen on the simulator, instead of the RO F. The newrelay al-
gorithm R, essetially ewvaluatesthe construction CE usingthe simulator Sy
instead of the ideal cipher E. The main ideahereis to prove that unlessone
of the failure conditions descrited in game 3 is true for the query-respnse
pairs of the simulator Sy (in which caseit would fail), the responsesof R;
are still consistem with the random oracle. Thus, games3 and 4 form the
heart of the proof in eat case. In this game, the distinguisher has oracle

F
accesdo the relay algorithm Rf" and the simulator Sf.

Game 5. In this game,we modify the simulator so that it choosesits
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responsesindependen of the random oracle (i.e. uniformly random by it-
self). In addition, the new simulator S; doesnot ched for any of the failure
conditions described above. This doesnot introduceany changesin the view
of the distinguisher since the relay algorithm R; usesthe simulator S; to
construct its responses(which still look random). Thus, in this gamethe
distinguisher has oracleaccesdo the relay algorithm Rfl and the simulator

S.

Game 6. Finally, we replacethe simulator S; by the ideal block cipherE.

Thus the relay algorithm R; now becomesdertical to the RO construction
CE. Thus in this gamethe distinguisher has oracle accesso the RO con-

struction CE and the ideal cipher E.

Now that we have the overall structure of the indi erentiabilit y proofs, we
will give the formal proofs for ead of the four RO constructions. The proof

of this theoremis a consequencef lemmasl, 2, 3 and 4.

3.2.1 Prex-free Merkle-Damg ard Construction

In this section,we will give the proof of indi erentiabilit y for the pre x-free

Merkle-Damgard construction pf-MDg.

Lemma 1. The pre x-fr ee Merkle-Damgrd construction p1‘-MDgE using an
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ideal cipher E : f0;1g fO;19" ! f0O;1g" is (tp;ts;q; )-indi er entiable
from a random oracle in the ideal cipher model for E, for any tp andtg =
O(q Ryg(g )) (where Rg(q ) is the running time of the decoding algorithm
of g on an input of lengthg ), with =2 " 2 O().

Pro of:
The Simulator. The simulator Sg acceptseither forward ideal cipher
queries, (+;X;y), or inverseideal cipher queries, ( ;X;z), sud that x 2
f0;1g andy;z 2 f0;1g". In either case,the simulator S responds with a
n-bit string that is interpreted as E,(y) in caseof a forward query (+;X;y)
and asE, 1(z) in caseof aninversequery. The simulator maintains a table T
of triples (x;y;z) 2 10;1g f0;1g" f0;19", sud that it either responded
with z to a forward query (+;x;y) or with y to an inversequery ( ;X; 2).
On getting a forward query (+ ; X; y), the simulator seardesits table T for
atriple (x;y;z) for any z. If there existssud a triple, then it respondswith
z otherwiseit needsto choosea new responseto this query. It then searties

its table T for a sequenceof triples (X1;VY1;2z1) :::(Xi;Vi; z) sud that:

The bit string x; k ::: k Xj k x decadesto a valid RO input under the

pre x-free encaling g.

It is the casethat y; = |V, wherelVV denotesthe initialization vector

usedin the construction pf-MDg.

Foreahj = 2:::i,it isthe casethat y; = z 1 Yy, 1.
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It is the casethat y = z vy;, wherey is the input messagean the

current forward query.

Note that for an empty sequenceof triples, i.e. when just consideringthe
-bit block x from the current query, only the rst requiremen makessense.
We additionally alsorequirethat y = IV in this case.
If the simulator S nds sud a sequenceof triples, then it needsto give
a responsethat is consistem with the random oracle output on g (x; k
.. k Xj k x). Thus, the simulator makesthis RO query to get the output
Y = F(g }(xy k:::kx; kx)), andresppndswith z=Y . If the simulator
doesnot nd sud a sequenceof triples, it outputs a random responsez. In
either case,it storesthe triple (x;y;z) in its table T.
On receivingan inversequery ( ;X; z), the simulator S seartesits table
T for atriple (x;y;z) for any y. If it nds sud a triple, then it outputs y
asits response. If it doesnot nd sud a triple, it choosesa random n-bit

string y and respondswith y. It then storesthe triple (x;y; z) into its table T .

Pro of of Indieren tiabilit y. We needto prove that the distin-
guishercannot tell apart the two scenariospnewhereit hasoracleaccesgo
the random oracle F and the simulator S and the other whereit hasaccess
to the RO construction pf-MDgE and the ideal block cipher E. As we men-
tioned above, the proof involves a hybrid argumen starting in the random
oracle scenario,and ending in the ideal cipher scenariothrough a sequence

of mutually indistinguishable hybrid games.
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Game 1. This is the random oracle madel, where the distinguisher D

has oracle accessto the random oracle F and the simulator S descrilked
above. Let G; denotethe ewernt that D outputs 1 after interacting with F
and S. Thus,

h i
Pr[G,]= Pr DFS"(1)=1

Game 2. In this game,we give the distinguisher oracleaccesdo a dummy

relay algorithm Ry instead of direct oracle accessto the random oracle F.
This relay algorithm Ry is given oracle accesgo the random oracleF, and
on getting a random oraclequery from the distinguisher, it simply makesthe
samequery to the RO F and forwards the RO output to the distinguisher
asits response. Let G, denotethe event that the distinguisher outputs 1 in
this game. Sincewe have left the view of the distinguisherunchangedin this
game,the distribution of its outputs alsoremainsthe same.

h i
Pr[G,]= Pr DRS"(1 )= 1 = Pr[Gy]

Game 3. In this game,we modify the simulator S. In particular, we restrict

the responsesof the simulator sud that they newer satisfy certain speci c
failure conditions. If the simulator comesup with a responsethat resultsin

its responsessatisfying one of theseconditions, then it fails explicitly instead
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of sendingthis response.

The failure conditions that the new simulator S, avoids essetially de-
scribe certain dependencieghat could arise amongits responsesthat could
be exploited by the distinguisher. In responseto a forward query (+;X;Yy),
the new simulator choosesa respnsez 2 f0;1g" similar to the original

simulator S and it cheds for the following conditions:

1. Condition B4: It isthe casethat z y = IV, wherelV is the n-bit

initialization vector usedin the RO construction pf-MDg.

2. Condition B,: Thereis a triple (x%y%2z% 2 T, with (x%y9 6 (X;y),

sud that y° z°=y z.

3. Condition B3: Thereis a triple (x%y%2z% 2 T, with (x%y9 6 (x;y),

suhthaty z=y°

If the responsez is chosenby the simulator Sy at random then the simula-
tor Sy cheds for these conditions and explicitly fails if any of them holds.
Howe\er, if the simulator is forcedto choosea responsein order to maintain
consistencywith the random oracleF, then it only cheds for the conditions
B, and B,.

Let us briey describke how the distinguisher can exploit ead of these
conditionsto its advantage. If the condition B; holds then the distinguisher
could possibly force two di erent RO query sequencedo end in the same
block, whereoneinput is the su x of the other. Hencethe simulator can be

consistem with at most one of thesetwo RO inputs. If condition B, holds,
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then the distinguishercanagainforcetwo query sequenceso endin the same
block. Howeer, in this casethe two RO inputs have a commonsu x and
the simulator canbe consistem with at most oneof theseinputs. If condition
B3 holds, then distinguisher can make a RO query sequencéo the simulator
sud that the simulator is not consistet with the RO output becausethe
query correspnding to the last block of the (encading of the) RO input is
not the last onethat it makes.

Now we will estimate the occurrenceprobability for ead of the above
failure conditions. Let the number of random oracle queriesmade by the
distinguisher be ¢=, and let the number of ideal cipher queriesbe gg. To
start with, it is easyto seethat the occurrenceprobability of condition B,
is at most the probability that oneof (= g + =) random n-bit strings are
equalto V.

To bound the occurrenceprobability of failure condition B,, we will an-

alyzethree situations separately

Query (+; x; y) doesnot correspnd to the last block of (the pre x-free
encaling of) a random oracle query. In this case,condition B, occurs
only if the uniformly random n-bit stringy z (with z chosenby the
simulator), collideswith oneof g n-bit strings correspnding to other

gueries.

Both (x;y;z) and (x%y® z% form last blocks of random oracle queries.

In this case,condition B, is exactly the ewvert that two random oracle
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outputs collide.

The triple (x;y;z) forms the last block of a random oracle query, but
(x%y% 29 doesnot. In this case,y® z%is arandom n-bit string chosen
by the simulator. Hence, condition B, correspnds to the random
oracleoutput y z collideswith a random n-bit string chosenby the

simulator.

Hence,we canbound the occurrenceprobability of condition B, by the birth-
day bound over (g + ¢ ) uniformly random n-bit strings.

The simulator cheds for condition B3 only if it choosesthe responsein-
dependertly. In this case,the occurrenceprobability of this failure condition
can be bounded by the (ge2=2"). We do not force the simulator to chedk
for condition B3 whenit is forcedto be consisteh with the random oracle.
This is becausethe distinguisher can force this condition using RO queries,
but this doesnot help sincewe usea pre x-free encaling beforeapplying the
Merkle-Damgard construction.

If an inversequery ( ;X;z) is madeto the simulator Sy, the it chooses
a responsey 2 f0; 1g" to this query similar to the original simulator S and

cheds for the following failure conditions:

1. Condition C;. It isthe casethat y=1V ory z =1V, wherelV is

the n-bit initialization vector.

2. Condition C,. Thereis a triple (x%y%2z9 2 T, with (x%29 6 (x;2),

sud that y° 2=y =z

71



3. Condition C;. Thereis a triple (x%y%2z9 2 T, with (x%29 6 (x; z),

suhthaty z=ylory® z0=vy.

In the caseof inverse queries,the simulator always independerly chooses
random responsesto any new queriesand fails if any of the conditionsCy; C,
or C3 holds, and henceestimating the occurrenceprobability of thesefailure
conditionsis straightforward. The reasondor avoiding the conditions Cy; C,
and C; are similar to those given above for B;; B, and Bs.

Let G3 dﬁnotethe ewert that the distinguisher outputs 1 in game3, i.e.
Pr[Gs] = Pr DRo:Ss (1) = 1I . The responsesof the distinguisherin games
2 and 3 dier only in situations where the new simulator Sy explicitly fails
and the original simulator S doesnot. This event is idertical with the evert

that any of the failure conditions hold for the responsesof either simulator

(both of which are identically distributed).

JPr[Gs] Pr[Gy]j 2 Pr[B;i[ B2[ B3[ Ci[ Cz[ Cs hold for a

correspnding query]

2 (+q) 2 (g+q)+1)
2n
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Game 4. In this game,we modify the relay algorithm and leave the ideal

cipher simulator unchanged. The underlying idea is to make the responses
of the relay algorithm directly dependert on the simulator. Thus, instead of

giving the new relay algorithm R; an oracleaccesgo the random oracleF,

hereit is given oracleaccesdo the simulator Sp.

On arandomoraclequery X, the relay algorithm R; computesthe pre x-
free encaling of X, i.e. g(X). It then appliesthe Davies-Meyer Merkle-
Damgard construction to g(X) by querying the simulator Syo. Thus the re-
lay algorithm R; is essetially the sameas the random oracle construction
pf-MDE, except that it is basedon the simulator S, instead of the ideal
cipherE.

Let G4 denotethe ewert that the distinguisher D outputs 1 when given

oracleaccesdo Sy and R; in this game. Thus, we know that
PI[G,] = PHDR*SE (1) = 1]

Now we will show that the view of the distinguisher D remainsunchanged
(upto a negligibleadditive factor) in the transformation from game3 to game
4. Wewill assumehat that maximum length of the pre x-free encaling g(X)
of a random oracle input X queried upon by the distinguisheris = . This

claim is formally stated below:

Claim 7. Let G; and G4 denotethe eventsthat the distinguisher D outputs

1 in games3 and 4, respctively. If g¢ and g= denotethe numker of ideal
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cipher and random oracle queries made by the distinguisher (resgctively),
then it is the casethat

s 2
Pric] Priggi=o (TGN

pro of of claim 7. From the view of the distinguisher, the games3 and 4
di er only if it detectsany di erence in the responsesof the relay algorithm
or the simulator in thesetwo games.We will prove that sud a di erence in
the responsesis impossibleunlessthe simulator Sy fails in either game3 or
4. We start by demonstrating a few useful properties of the responsesof the

simulator Sp.

Claim 8. If the simulator Sy does not explicitly fail, then there are no two
di er ent seguenes of -bit blocks X1 ::: Xy, and x§:: :xg with correspnding
triples (X1;y1;21) 220 (Xm: Ym: Zm) @nd (x9;y9; 29) -2 (x0; yp; ) in tableT such
that:

Both X3 k:::k Xy and x9 k ::: k xg constitute valid pre x-fr ee enad-

ings of random oracle inputs.

It is the casethaty; = y? = 1V, and for eachs = 1:::m and s° =
1:0:p,¥Ys=VYs 1 Zs1andy%=y%, z% 5.
Thereis a s 2 f1;mg suchthat (xs;ys; zs) = (XD Y9: Zp)-

proof of claim 8: We will prove this claim by performing an induction

on the number of queriesmade to the simulator Sy, and shav that unless
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the simulator explicitly fails, sud sequenceof triples cannot exist in the
table T maintained by it. When no querieshave beenmade, then the claim
is vacuouslytrue. Assumethat it holds when g querieshave already been
madeto the simulator S,.

Say there are two sequence®f -bit blocks X1 ::: Xy, and x?:: :xg that
satisfy the properties mertioned in the statemen of the claim after the (q+
1) query. We can deducethat there are two subsequencesf -bit blocks

Xj r:iix; and x8

S ¢ 11:x) sud that:

852 f0;rg 1 (X &Y 612 §)= (X2 aYS &2 o)

If r<j landr < p 1,then considerthe triples (Xj r ;¥ r 1,Z + 1)
and (x) , 1;¥p ; 1:Z5 , 1)- Sincey; [ =yJ ,, we candeducethat y; , 1
Z 1))=Yy, 1 Zy, 1 Without lossof generality, assumethat the query
correspnding to the triple (X; « ;¥ r 17z « 1) was made after the one
correspnding to (xp . 1;Y) , 1;Z) , 1) If this query was a forward query
then the simulator Sy would have explicitly failed becauseof failure condition
B,. If this wasan inversequery then the simulator would have failed because
of failure condition C,.

Now considerthe casethat r = p 1lbutr <j 1. In this case,if the
triple (X; + 1;Y; r 1;Z 1) was generatedas a result of a forward query,
then the simulator Sy would have explicitly failed becauseof failure condition

Bisincez; 1 Yj r 1=Y (= y? = IV. If this triple was generateddue
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to an inversequery then the simulator will fail becauseof failure condition
C;:. The casewhenr =) 1,butr < p 1issimilar.

Lastly,ifr=p 1=j 1lthenwehavethat 8s2 fl,pg : (Xs;Vs;Zs) =
(x3;ye; 2). But this implies that x? k ::: k x3 is aprex of x3 k ::: K X,
which is not possiblesincethey are encalings of two di erent inputs using
the pre x-free encaling g.

Hence,we can concludethat there canbe no sud sequencef -bit blocks

XpKiiikxm andx9k:::k xg if the simulator Sy doesnot explicitly fail. t

Next we shaw that if the distinguisher wishesto nd the random oracle
output for an input X 2 f0;1g , sud that g(X) = x; k::: k X5, by making
gueriesto the simulator Sy to compute the Davies-Meyer Merkle-Damgard
construction applied to x; k ::: k Xs, then the only way it can do sois by

making the orderedsequenceof forward queries(+ ; X1;y1) :::(+; Xs; Ys).

Claim 9. Considerany sequene of -bit blacksx; : ::Xs, with correspnding
triples (X1;Y1;21) :::(Xs; Ys; Zs) in the table T maintained by the simulator

So, suchthat:

X1 k 111k Xg is a valid enaoding of a randomoracle input X under the

pre x-fr ee enading g.
y1 = 1V, andfor all j 2 f2;sg it is the casethaty; = y; 1 Z 1.

If the simulator Sy does not explicitly fail then it must be the casethat the
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triples (X1;Y1;21) i1 (Xs; Ys; Zs) Were stored as a result of the ordered segquene

of queries(+ ;X1;y1) 11 (+; Xs; Ys).

pro of of claim 9: To the cortrary, assumethat the sequenceof queries
that resulted in the triples (X1;VY1;21) ::: (Xs; Ys; Zs) was not the sequenceof
forward queriesgiven in the claim statemen. We can then deducethat at

least one of the following must be true regardingthis sequenceof queries:

1. Forj 2 f1;s 1g, aforward query (+;X;;Yy;) wasmadewhenthe triple

(Xj+1:Yj+1:Z+1) already existedin the table T .

2. Forj 2 f2;sg, an inversequery was made ( ;X;;z) when the triple

(X; 1Y} 1,7 1) already existedin the table T .

3. The triple (X1;y1;z1) was generatedas a result of an inverse query

(X1 29).

In the rst case,we know from claim 8 that the triple (X;;y;;z) cannotbe
the last block of the pre x-free encaling of another query if the simulator
Sp doesnot fail. Henceit must be the casethat the responseto the corre-
sponding query was randomly chosenby the simulator itself (independen of
the random oracle). But sincethe triple (Xj+1;Yj+1;z+1) already existsin
table T, the simulator will explicitly fail from condition B3 sincethe equality
Y; Z = Y;+1 holds. In the secondcase the simulator will explicitly fail due
to failure condition C; sincethe equality y; = z 1 Yy; 1 holds. In the last

casethe simulator fails due to failure condition C;.
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Thusthe simulator Sy explicitly failsin either of the above situations, and
the only sequenceof queriespossibleis the one mertioned in the statemen

of the claim. o

Next, we wish to shav that the responsesof the relay algorithm Ry and
the simulator Sy are always consisten in game3. Note that in game4, the
relay algorithm R; respondsto all queriesby computing the RO construction
pf-MD>°, with the ideal cipher E replacedby the simulator Sy. On the other
hand, the responsesof the relay algorithm Rq could be inconsistert with the
simulator Sy (i.e. the distinguisher may get a di erent output to a random
oracleinput dependingon whetherit usesthe construction pf-MDg0 itself, or
gueriesthe relay algorithm Rg). We shaw that sud a situation is impossible

unlessthe simulator S, fails.

Claim 10. In game3, if the simulator Sy neverfails thenthere is no seqguene
of -bit blacks X3 :::X;, with correspnding triples (X1;Y1;21) i (Xj;Yi:Z)

suchthat:

The bit string x;, k ::: k x; is a valid pre x-fr ee enading of a random

oracle input.
yi:=1V andfor | = 2:::j it isthecasethaty, =y, 1 2z 1.
To the randomoraclequeryg *(x; k::: k x;), the respnseof the relay

algorithm Ry is dier entfromy; z.
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pro of of claim 10: To any random oraclequery X, the relay algorithm R
always responds with the random oracle output F(X). Thus the situation
descriked in the statemert of the claim occursif and only if the simulator
responds to its queries(corresponding to the -bit blocks in g(X) = x; k
ik xp) in sudh away that y;  z 6 F(X).

From claim 9, we can deducethat if the distinguisheris to compute the

Davies-Meyer Merkle Damgard output on g(X) = x; k ::: K X;, then the

(+;Xj;Y;) unlessthe simulator Sy fails. Herey; = 1V andfor eahi = 2:::]
we havey; = y; 1 Z ;. Hencethe simulator Sy already has the triples
Xy za)iii(X; 1Y) 1,Z 1) in its table T when the query (+;X;;Y;) is
made.

If the responseof the simulator Sy to the query (+;X;;y;) is dierent
from F(X) y;, then it must be the casethat the simulator is unable to
give this responsebecauseof someother constrairt. But from claim 8, we
candeducethat the block x; cannotbe part of any other valid Davies-Meyer
Merkle-Damgard computation sequenceaunlessthe simulator Sy fails. Thus
there can be no other constraint of the responseof Sy if it hasnot explicitly
failed.

Thus the responsesof Sy are always consiste with the relay algorithm

Ro in game3, if it doesnot fail.
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In fact, we can usethe sameargumert asin proof of claim 10to show that
the responsesof Sy are consisten with the randomoracleF in game4 aswell
(that is, the result of applying Davies-Meyer Merkle-Damgard construction
using Sy to g(X) is the sameasF (X)).

From the above, we can deducethat if the simulator Sy doesnot fail in
game 4, then the responsesof the relay algorithm R; are idertical to the
responsesof the relay algorithm Ry. And sincewe are using the samesimu-
lator Sy in both games,and have shavn that the responsesof the simulator
and the two relay algorithms are consisten in the two games,we can also
deducethat the view of the distinguisher D remainsunchangedfrom game
3 to game4 if the simulator Sy doesnot fail in either of the two games.

Hence,we can nally completethe proof of claim 7 by observingthat if
the maximum length of the pre x-free encaling of a random oracle query

madeby D is”~  then,

JPr[G4] Pr[Gs)j Pr[Sy fails in game 3]+ Pr [S, fails in game4]

_ (e + )2
= 0 e
_ (q)?

= 0O on

Game 5. In this game, we modify the simulator Sy so as to make its
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responsesindependen of the random oracleF . For this purpose,we remove
the randomoracleF from this gameertirely andthe newsimulator S; always
choosesa random n-bit response, even in situations where Sy would have
consultedthe RO F. We alsoremove all the failure conditions from the new
simulator S;.

Thus on a forward query (+; X; y), the newsimulator S; cheds if there is
atriple (x;y;z) inits table T. If it nds sud atriple then it respondswith
the n-bit string z. Otherwiseit choosesa uniformly random n-bit string z
and sendsthis asits response,while storing the triple (x;y;z) in T. On an
inversequery ( ;X;z), it similarly cheds to seeif there is a triple (X;y;2z)
in its table T. If it nds sud a triple, it respondswith vy, elseit choosesa
uniformly random n-bit responsey.

Now we will shav that the view of the distinguisher D doesnot change
by a non-negligibleamourt from game4 to game5. In fact, if we can show
that the responsesof the simulators Sy and S; seemalmost identical to
the distinguisher D, then we will be done. But the responsesof thesetwo
simulators areidentical apart from the failure conditionswhich areusedby Sy
and not by S; (evenwhen Sy consultsthe random oracle, its responseis still
uniformly distributed). Thus, the distinguisher doesnot notice a di erence

betweenthesegamesif:
In game4, the simulator Sy doesnot fail.

In game5, the simulator S; does not respond to its queriesin sud
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a mannerthat its satisfy one of the failure conditions speci ed in the

de nition of S,.

In fact, thesetwo everts are identical in terms of their probability of occur-
rencesincethe distribution of the responsesof the two simulators is idertical.
Let G5 denotethe event that the distinguisher D outputs 1 in gameb5, so

that Pr[Gsg] = Pr[DRfl?Sl(l ) = 1]. Then we can deducethat,

jPr[Gs] Pr[G4]] Pr [Sp fails in game4]

+ Pr[S; should have failed in game5]

2%2
q

= 0 o

Game 6. This isthe nal gameof our argumen. Herewe nally replace
the simulator S; with the ideal cipher E. Since the relay algorithm Ry
simply implemerted the construction pf-MDgl, it will be the sameasthe RO
construction pf-MDgE in this game. Hencethis gameis sameas the view of
the distinguisherin the ideal cipher model

The outputs of the ideal cipher E are not distributed uniformly like the
responsesof S;. Hencethe distinguishermay be ableto di erentiate between
gamesb and 6 if it candetectthis. However, this happensonly if S; outputs
an input/output collision for the sameideal cipher key. The probability of
this event is easily seento be at most the birthday bound. Let G¢ denote

the probability that the distinguisher outputs 1 in game6, sothat Pr[Ge] =
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E
Pr[D pi-MD, (2 ) = 1]. Then we can deducethat

2%2
g

jPr[G¢] Pr[Gs]j= O on

Now we can completethe proof of lemma 1 by combining gamesl to 6,
and observingthat game1l is sameas the random oracle model while game

6 is sameasthe ideal cipher model. Hencewe can deducethat

h i 222

pr DFs*(1)=1 pr DPFMDiE(1)=1 =0 qzn

3.2.2 MD-then-Chop Construction

Now we will prove the indi erentiabilit y of the secondrandom oracle con-
struction chop-MDE. Recall that this construction essetially applies the
plain Davies-Meyer Merkle-Damgard construction (using the ideal cipher E)

to the input and then removesa non-trivial number s of the output bits.

Lemma 2. The Merkle-Damgard construction with truncated output chop-MD§
basal on the Davies-Meyerconstruction applied to an ideal cipherE : f0; 1g
fO;1g" ! f0;19" is (tp;ts;q; )-indi er entiable from a random oracle F :
fO;1g ! f0;1g" ®° in the ideal cipher model for E, for any tp and ts =
O(¢¢ )),with =2" 2 O(cp).

83



Pro of:

We will assumethat the random oracle inputs provided to the construction
chop-MDE areall of length, that is a multiple of the block length . In actual
implemenation, this can be adchieved by applying an appropriate encaling
sthemeto the input, sud as appendinga 1 followed by a su cient number

of Osto the input.

The Simulator. The simulator S acceptseither forward ideal cipher
qgueries, (+;X;y), or inverseideal cipher queries, ( ;X;z), sud that x 2
f0;1g andy;z 2 f0;1g". In either case the simulator respopndswith a n-bit
string that is interpreted as E,(y) in caseof a forward query (+;x;y), and
asE, 1(2) in caseof an inversequery ( ;x;z). The simulator maintains a
table T consistingoftriples (x;y;z) 2 f0;1g f0;1g" fO0;19", sud that it
either resppndedwith z to a forward query (+; X; y) or with y to an inverse
query ( ;X; 2).

On getting a forward query (+; X; y), the simulator seartesits table T
for a triple of the form (x;y;z). If it nds sud a triple then it responds
with the n-bit string z otherwise it needsto choose a fresh response to
this query. It proceedsby searting its table T for a sequenceof triples

(X1;¥1;21) =21 (Xi;Yi; z) sudh that:

It is the casethat y; = |V, wherelV denotesthe initialization vector

usedin the construction chop-MDE .

84



Foreahj = 2:::i,it holdsthat y; =y; 1 7z 1.

It is the casethat y = y; z, wherey is the ideal cipher input from

the current forward query.

Note that for an empty sequenceof triples, i.e. when just consideringthe
-bit block x from the currert query, we only needto chedk if y = IV and
none of the above conditions make sense.

If the simulator nds sud a sequenceof triples, then it needsto give a
responsethat is consistem with the randomoracleoutput onx; k ::: k x; k x.
Thus, the simulator makesthis RO queryto getthe output Y = F(x; k:::k
X; k x). It then samplesa uniformly random s-bit string Y ° and outputs
the n-bit string z = (Y kY9 y. If the simulator doesnot nd any sud
sequenceof triples in its table T, then it samplesa uniformly distributed
random n-bit string z and sendsz asits response. In either case,it inserts
the triple (x;y;z) in its table T.

On an inversequery ( ;X; z), the simulator S seartesits table T for a
triple (x;y;z) with arbitrary y. If it nds sud atriple, then it respondswith
y. Otherwise,the simulator S choosesa uniformly distributed random n-bit

string y and respondswith y. It then insertsthe triple (x;y;z) inits table T .

Pro of of Indieren tiabilit y. We needto prove that the distin-
guishercannot tell apart the two scenariospnewhereit hasoracleaccesgo

the random oracle F and the simulator S, and the other whereit has ora-
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cle accesgo the RO construction chop-MDS and the ideal cipher E. As in
the caseof the pre x-free Merkle-Damgard construction, the proof involves

a hybrid argumer.

Game 1. This is the random oracle model, and the distinguisher D is
given oracleaccesdo the random oracleF and the ideal cipher simulator S
descriked above. Let G; denotethe ewert that the distinguisher D outputs
1 in this game.

Pr[Gi] = PrIDFS" (1) = 1]

Game 2. In this game,the distinguisheris given oracle accesso a relay

algorithm R, instead of direct oracle accessto F. The relay algorithm, in
turn, hasoracleaccesgo the random oracle F. On a random oracle query
X, the relay algorithm simply makesthe samequeryto F and respondswith
the RO output F(X). Let G, denotethe ewert that D outputs 1in game?2.
Sincethe view of the distinguisher remainsunchangedin this game,we can
deducethat

Pr[G2] = PrDR6S" (1) = 1]= Pr{G4]

Game 3. In this game, we modify the simulator S. In particular, we

restrict the responsesof the simulator sud that they newer satisfy certain
speci ¢ failure conditions. If the simulator comesup with a responsethat
results in its responsessatisfying one of these conditions, then it explicitly

fails instead of sendingthis response.
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Thesefailure conditions, that the new simulator Sy cheds for, descrike
certain dependenciesamongits responseghat could be exploited by a distin-
guisher. In responseto a forward query (+ ; X; y), the newsimulator Sy starts
by choosing a n-bit responsez 2 f0;1g" in the sameway as the original

simulator S. It then cheds if one of the following conditions is satis ed:

1. Condition B;: It isthe casethat z y = 1V, wherelV is the initial-

ization vector usedin the RO construction chop-MDg.

2. Condition B,: Thereis a triple (x%y%2z% 2 T, with (x%y9 6 (X;y),

sud that y° z°=y z.

3. Condition B3: Thereis a triple (x%y%2z% 2 T, with (x%y9 6 (x;y),
suhthaty z=y°
If the responsez, whether Sy choosesa uniformly random z or z is chosen
to be consisten with the RO F on somequery, is sud that one of these
conditions is satis ed, then the simulator Sy explicitly fails.
On a new inversequery ( ;X;z), the simulator Sy again choosesits re-
sponsey 2 f0;1g" in the sameway as S. It then cheds if the following

conditions, and fails if any one of them is satis ed:

1. Condition C;: It isthe casethat y=1V ory z =1V, wherelV is

the initialization vector usedin the RO construction chop-MDE .
2. Condition C,: Thereis a triple (x%y%2z% 2 T, with (x%29 6 (x;2),
sud that y° 2=y =z
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3. Condition C3: Thereis a triple (x%y%z% 2 T, with (x%29 6 (x; z),

sudh that eithery z=ylory® z0=vy.

Next we will estimatethe occurrenceprobability for ead of the above failure
conditions. We start by noting that the probability that oneof the conditions
C1; C, and C; holds can be readily estimated, since the simulator always
choosesuniformly random responsesto inversequeries.

In the caseof a forward query, the simulator might be forcedto chooseits
responsesoasto maintain consistencywith the random oracleF. Hencethe
distinguishercould nd out (n s) bits of the responseof the simulator by
making a random oraclequery. Thus, it is not asstraightforward to estimate
the occurrenceprobabilities for the failure conditionsB,; B, and Bs. Let the
number of random oracle queriesmade by D be g, and let the number of
ideal cipher queriesbe g (hencethe total number of queriesq= ¢ + )

We can bound the occurrenceprobability of evert B, easily sinceit is
the probability that at leastoneof (g + ¢ ) uniformly random n-bit strings
is V. In order to estimate the occurrenceprobability of failure condition

B,, we will analyzethree situations separately

Query (+;x; y) doesnot correspnd to the last block of arandomoracle
input. In this case,condition B, holds only if the uniformly random
n-bit stringy z is equalto oneof upto gg n-bit strings correspnding

to previousqueries.

Both (x;y;z) and (x%y®%z% correspnd to last blocks of random or-
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acle inputs, and the simulator adjusted its responseaccordingto the
RO output in ead case. In this case,condition B, implies a collision
amongthe two random oracle outputs aswell asa collision amongthe
remaining s uniformly random bits chosenby the simulator in eat

case.

The triple (x;y;z) forms the last block of a random oracle input and
the simulator adjustsits responsez accordingly but (x% y® z% doesnot.
In this case,y® 2z%is a random n-bit string chosenby the simulator.
Here, the condition B, correspndsto a random oracle output along
with the extra s random bits chosenby the simulator colliding with
anotherrandomly and independerily chosenn-bit string chosenby the

simulator.

From the above, we can deducethat the occurrenceprobability of failure

condition B, can be boundedby the birthday bound over (g + ) random

n-bit strings.

In order to bound the occurrenceprobability of failure condition B3, we

note that the simulator Sy choosesat leasts random and independen bits in

its response(evenif it is forcedto make the remaining (n  s) bits consistem

with the randomoracle). Thusthe occurrenceprobability of condition B3 can

be boundedby the birthday bound over (g + &) independert and random

s-bit random strings.

Let Gz denotethe ewert that the distinguisherD outputs 1 in this game,
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h i
i.e. Pr[Gs] = Pr DRo'Ss (1 ) = 1. The responsesof the distinguisher in

games2 and 3 dier only if the simulator S, exits becauseof one of the
failure conditions in game 3. This ewert is identical with the evert that at
least one of the failure conditions hold for the responsesof either simulators

(in which caseSy exits while S doesnot).

jPr[G3]  Pr[G;]j Pr[B.:[ B>[ Bs[ Ci[ Co[ Cs hold for a query]

_ o
_o§

Game 4. In this game,we modify the relay algorithm but leave the ideal

cipher simulator Sy unchanged. The underlying ideais to make the responses
of the relay algorithm directly dependert on the simulator. Thus, instead of
giving the newrelay algorithm R; oracleaccesgo the random oracleF, here
it is given oracleaccesdo the simulator Sy. It respondsto a random oracle
query X by computingthe Davies-Meyer Merkle-Damgard construction using
input X and then chopsthe sames bits from the output asin the caseof
the RO construction chop-MDE .
Let G4 denotethe ewert that the distinguisher D outputs 1 in game4.

Thus we know that

h i
Pr{G4] = Pr DR"SE(1) =1
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We will assumethat the maximum length of a random oraclequery made by
the adversaryis = . Now we will showv that the view of the distinguisher
changesby at most a negligible amourt in the transition from game 3 to

game4. This claim is formally stated below.

Claim 11. Let G3 and G4 denotethe eventsthat the distinguisher outputs
1 in game3 and game4, respectively. Let g¢ and g= denotethe numkber of
ideal cipher and random oracle queriesmade by the distinguisher, then it is

the casethat
(e + 0 )°
25

JPriGs]  Pr[Gs]j= O
proof of claim 11: The view of the distinguisher di ers in games3 and
4 only if it nds a dierence in responsesof either the relay algorithm or
the simulator amongthe two games. We will showv that sud a di erence is
impossible,unlessthe simulator Sy fails in at leastone of the two games.Let

us start by proving a few important properties of the simulator Sy that are

valid in both games3 and 4.

Claim 12. If the simulator Sy does not explicitly fail, then there are no two
di er ent seguen@s of -bit blocks X1 ::: Xy, and x§:: :xg with correspnding
triples (X1;y1;21) 121 (Xm: Ym: Zm) and (x3;y9; z9) ::: (XD yg; z9) in the table T
suchthat:

It is the casethat y; = y9 = IV, and for eachb= 2:::m and P =

2:::p, it holdsthatyp=yp 1 zp ;andyd=y% , z% ;.
It is the casethat (Xm;Ym;Zm) = (XD;Y9: Z9)-
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pro of of claim 12: We will prove this claim by performing an induction
on the number of queriesmade to the simulator and showv that unlessthe
simulator S, fails, sud sequence®f triples cannot exist. When no queries
have beenmadeasyet, this claim is vacuouslytrue. Let us assumethat the
claim is alsotrue when q querieshave beenmadeto the simulator Sp.

Now say there exist two sequencesf triples be (X1;VY1;21) i (Xm; Ym; Zm)
and (x3;y9;z9) ::: (XD ¥9: ), that satisfy the properties stated in the claim,
after the (q+ 1)™ query. Sincewe know that (Xm;Ym;zm) = (X3;y9; ), we
can deducethat there are two subsequencesf -bit blocks x,, :::xyn and

Xp r:1iXp sud that
802 f0;rg : (Xm 0;¥m b1Zm b) = (X3 Y9 b Zp 1)

Ifr<m Zlandr < p 1,thenconsiderthetriples (Xm r 1;Ym r 1,Zm r 1)
and (xS ; ;Y0 . 1523 ¢ 1)- Sinceym =y ,, wecandeducethat yn, 1
Zm r 1= Yp . 1 Z9 . 1- Without lossof generaliy, assumethat the query
correspnding to the triple (Xm r 1;Ym r 1;Zm r 1) Was made earlier than
the one correspnding to (x) | 1;¥p + 1;Z5 . 1)- If this query is a forward
qguery, then the simulator Sy would fail becauseof failure condition B,. On
the other hand, if this were an inversequery, then the simulator would have
failed due to failure condition C..

Now considerthe casethat r = p 1butr < m 1. In this case,if

the triple (Xm r 1;¥Ym r 1,Zm r 1) Was generatedas a result of a forward
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guery then the simulator S, would have failed due to failure condition B,
because/m r 1 Zm r 1= Ym r = Y= V. If this triple were generatedas
a result of an inversequery then the simulator would have failed as a result
of failure condition C; beingtrue. The casewhenr = m 1lbutr<p 1
is symmetrical

Lastly, it cannot be the casethat r = p 1 aswellasr = m 1, since
the two bit stringsx? k ::: k x3 and x; k ::: k x, are di erent.

Hencewe canconcludethat there canbe no sut sequencesf -bit blocks

X1;: 0 Xm and Xq; @ ;xg if the simulator doesnot explicitly fail. 0

Next we shaw that if the distinguisher wishesto nd the random oracle
output for an input X = X; k ::: k Xs by making queriesto the simulator
So and computing the Davies-Meyer Merkle-Damgaard construction, then the
only way it can do sois by making the orderedsequenceof forward queries
(+3X3 Y1) 111 (1 Xs) Ys)-

Claim 13. Considerany sequene of -bit blacksx, ::: X, with correspnding
triples (X1;Y1;21) i : (Xs; ¥s; Zs) in thetableT maintained by the simulator Sy,
suchthaty; = IV andfor eachj = 2:::sit holdsthaty; =y, 1 z ;. If the
simulator Sy does not explicitly fail then it must be the casethat the triples
(X1;Y¥1;21) i (Xs; Vs, Zs) are genented as a result of the ordered sequene of

forward queries(+ ;X1; Y1) i (+; Xs; Vs).
pro of of claim 13: To the cortrary, assumethat the triples (X1;y1;21) :::
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(Xs; Ys; Zs) Were not generatedas a result of the sequenceof forward queries
mertioned in the claim. We canthen deducethat one of the following must

betrue regardingthe actual sequencef queriesthat resultedin thesetriples:

1. Forj = 1:::(s 1), aforward query (+;X;;y;) was made when the

triple (Xj+1;Yj+1;Z+1) already existedin the table T .

2. Forj = 2:::s, aninversequery ( ;X;;z) was made when the triple

(X; 1Y} 1,7 1) already existedin the table T .

3. The triple (X1;Yy1;21) was generatedas a result of an inverse query

( 5X15Y1)

In the rst case,the simulator Sy would fail sincethe failure condition Bs
holds. Indeed, we can deducethat y; 7 = yj+1. In the secondcase,the
simulator explicitly fails becauseof failure condition C; sincewe know that
Yi =Y 1 2z 1. Inthethird and nal case,the simulator would explicitly
fail sincethe failure condition C; holds. Thus the only possiblesequenceof

gueriesthat couldresult in thesetriples is the onemertioned in the claim. U

Now we will shav that the responsesof the relay algorithm R, in game
3 are consistet with those of the simulator Sy. Note that in game4, the
relay algorithm R; is designedin sud a way that its responsesare always

consisten with Sy while the relay algorithm Ry is given oracle accesdo the
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random oracle F and may not be consisteth with S;. We shav that suth

inconsistencyis impossibleunlessthe simulator Sy explicitly fails.

Claim 14. In game3, if the simulator Sy neverfails thenthere is no sequene
of -bit blacks X1 :::X;, with correspnding triples (X1;Y1;21) i (Xj:Yi:Z)

suchthat:
yi:=1V andfor | = 2:::j it isthecasethaty, =y, 1 2z 1.

To therandomoraclequery X = x; k ::: kK X;, the respnseof the relay
algorithm Rq is dier ent from the (n  s) bits of y;  z that are not

choppd in the construction chop-MDE .

pro of of claim 14: To any random oraclequery X, the relay algorithm R
always responds with the random oracle output F(X). Thus the situation
descriked in the statemert of the claim occursif and only if the simulator
respondsto its queries(correspnding to the -bit blocksin X = x; k::: k
Xj) in suh away that y; z 6 F(X).

From claim 13, we can deducethat if the distinguisheris to computethe

RO output onX = x; K :::x; by queryingthe simulator, then the only way to

unlessthe simulator Sy fails. Herey; = IV and for eah i = 2:::j we
haveyi = vi 1z 1. Hencethe simulator Sy already has the triples
(X1;y1;21) :2:(X; 1Y 1,z 1) in its table T when the query (+;X;;Y;) is

made.
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If the responseof the simulator Sy to the query (+;X;;Y;) is di erent from
F(X) vy, thenit must be the casethat the simulator is unableto give this
responsebecauseof someother constrairnt. But from claim 12, we candeduce
that the block x; cannot be the last block of any other valid Davies-Meyer
Merkle-Damgard computation sequenceaunlessthe simulator S, fails. Thus
there can be no other constrairt of the responseof S if it hasnot explicitly

failed. O

Thus we have shown that, ewven though the relay algorithm R, simply for-
wards the random oracle outputs in game3, its responsesare still consister
with the responsesof simulator Sy in that game. Another way to look at
this claim would be to note that the resppnsesof the simulator S, are always
consisten with the random oracle outputs, unlessit explicitly fails.

Hence,it is easyto seethat if the simulator Sy does not fail in either
of the games3 or 4, the view of the distinguisher doesnot changein going
from one gameto the other. Now we can completethe proof of claim 11 by
observingthat if the longestRO query madeby the distinguisher D consists

consistsof at most~ -bit blocks then

jPr[G4]  Pr[G3]j Pr[S, fails in game3]+ Pr[S, fails in game4]

N\ 2
_ o @t )
25
(q )32
0
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Game 5. In this game,we modify the simulator Sy soasto make the view of

the distinguisher independen of the random oracleF. For this purpose,we
introducea new simulator S; that doesnot have oracleaccesdo the random
oracle F, and always outputs a n-bit random responseto all new forward
as well as inverse querieseven in caseswhere So would have maintained
consistencywith F. We alsoremove all failure conditions from the simulator
S;.

On aforward query (+; X; y), the newsimulator S; chedks if there already
existsatriple (x;y;z) inits table T. If it nds sud atriple, then it responds
with the n-bit string z. If not, then it choosesa uniformly random n-bit
string z and sendsthis asits response,while storing the triple (x;y;z) in T.
On an inversequery ( ;X; z), it similarly cheds to seeif there is a triple
(X;y;2) inits table T. If it nds sud a triple, it respondswith y otherwise
it choosesa uniformly random n-bit responsey.

Now we will show that the view of the distinguisherdoesnot changeby a
non-negligibleamourt in going from game4 to game5. Note that if we can
show that the responsesof the simulators Sy and S; are indistinguishable,
then we will be done. But in the view of the distinguisher, thesetwo simu-
lators are idertical apart from the failure conditions usedby Sy but not by
S;. Thus, we can deducethat the distinguisher doesnot notice a di erence

betweengames4 and 5 unless:
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In game4, simulator Sy explicitly fails.

In game5, simulator S; respondswith an output sud that it satis es

one of the failure conditions (for which Sy would have failed).

Since the simulator S; always choosesa uniformly random n-bit response
to every query, we can easily bound the occurrenceprobability of any of the
failure conditionsusingthe birthday bound. Let Gs denotethe ewert that the
distinguisher D outputs 1 in game5, sothat Pr[Gs] = Pr[DRfl?Sl(l ) = 1].

Thus we can deducethat

jPriGs] Pr[G4)j Pr[Sy fails in game4]

+ Pr[S; satis es a failure condition in game5]
2 )2
(@ )2, (@)
2s 2n
q2‘2
25

= 0

= 0O

Game 6. This is the nal gameof our proof. In this game,we replacethe

simulator S; with the ideal cipher E. Sincethe relay algorithm R; essetially
implemerts the RO construction chop-MDE, the view of the distinguisherin
this gameis essetially its view in the ideal cipher model

The outputs of the ideal cipher E are not uniformly distributed asarethe
responsesnf S;. Howevwer, the distinguishercandi erentiate betweenthe two
only if the simulator S; outputs a collision for the sameideal cipher key. The

occurrenceprobability of this evert canbe easilyboundedusingthe birthday
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bound. Thus let Gg be the evert that the distinguisher D outputs 1 in this
game,sothat Pr[Gg] = Pr[DChOp'MDS;E(l ) = 1] and we can deducethat

222
q

jPr[Gs]  Pr[Gs]j © on

Now we can completethe proof of lemma 2 by combining gamesl to 6,
and observingthat gamel is sameas the random oracle model while game
6 is the sameasthe ideal cipher model. Hencewe can deducethat

h i h [ 272

PrDFS (1)=1 pPr DNOPMDIE( )= 1 =0 i

3.2.3 NMA C and HMA C Constructions

Herewe will prove the indi erentiabilit y of the NMAC and HMAC construc-

tion with the Davies-Meyer compressiorfunction.

Lemma 3. The NMAC construction NMACEYE2 that usestwo independent
ideal black ciphers E1 : f0;1g fo;1g" ! f0;1g" and E2 : f0;1g °

f0;1g™ ! f0;1g" is (tp;ts;q; )-indi er entiablefrom a randomoracle F :
f0;1g ! f0;1g" in the ideal block cipher model for E1 and E2, for any tp
andts = O(q?), with = 2 mn(mn% 2 o(g?) (* is the maximum length of

an RO query made by the distinguisher).
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Pro of: Recall that the construction NMACEYE? essetially applies the
Davies-Meyer Merkle-Damaard construction using the block cipher E1 to
the input x; k ::: k x- to getthe nal output Y. It then appliesthe Davies-
Meyer compressiorfunction using E 2 to this output Y. We will assumefor
simplicity that the output length n of E 1 is the sameasthe key length °of
E2!. We will usethe initialization vector |V for the Davies-Meyer Merkle-
Damgard construction applied to E1, and use initialization vector 1V for

the Davies-Meyer construction with E2.

The Simulator. Let us start by describingthe simulator for the ideal
block ciphersE 1 and E2 in the random oraclemodel with an actual random
oracleF. The simulator getsforward/in versequeriesfor either of the block
ciphersE1l and E2. Thus the queriesthat simulator S respondsto are as

follows:

1. (1;+;x;y) : A forward E1 query, where(x;y) 2 f0;1g f0;1g". The
expectedresponseis E 1,(y).

2. (1; ;x;z): AninverseE1 query, where(x;z) 2 f0;1g f0;1g". The

expectedresponseis E 1, 1(2).

3. (2;+:x;y) : A forward E2 query, where(x;y) 2 f0;1g ° f0;1g"". The

expectedresponseis E 2, (y).

Lone can usesuitable padding techniquesto expand Y from n bits to © bits
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4. (2; ;x;z) : An inverseE2 query, where(x;z) 2 f0;1g° f0;1g".

The expectedresponseis E 2, 1(z).

The simulator S also maintains a table T in which it recordsall previous
gueriesthat weremadeto it, alongwith the responsest gaveto ead. Thus,
it recordsan ertry (1;x;y;z) in T for every forward (resp. inverse)query of
the form (1;+;x;y) (resp. (1; ;X;z)) to which it responded with z (resp.
y). On the other hand, it recordsan ertry (2;x;y;z) in T for every forward
(resp. inverse) query of the form (2;+;x;y) (resp. (2; ;X;z)) to which it
respondedwith z (resp. y).

On getting a forward query (1; +; X; y), the simulator rst cheds if there
is atuple (1;x;y;z) in its table T. If this is the case,then the simulator S
respondswith z, otherwiseit choosesa uniformly random n-bit string z and
sendsthis asits response. It then records(1;x;y;z) in its table T.

Similarly, on getting aninversequery (1; ;X;z), it rst seardesits table
T for a tuple (1;x;y;2). If it nds sud a tuple, then it responds with z,
otherwise it sendsa uniformly random n-bit string y as its response and
stores(1;x;y;z) in its table T.

On a query (2;+;Xx;Y), the simulator S again cheds if there is a tuple
(2;x;y;2) 2 T. If this is the casethen it respondswith z. If it cannot nd
sud a tuple, then the simulator chedks if y = 1V% wherelV?°is the ini-
tialization vector usedin the secondpart of the construction NMACEYE2, |f
y 6 1V° then the simulator simply sendsbac arandomresponsez 2 f0; 1g"

and stores(2; x; y; z) in T. On the other hand, if y = 1 V9 then the simulator
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sud that the following conditions hold:

It is the casethat y; = |V, wherel V denotesthe initialization vector

usedin NMACE1EZ,
Foreahj = 2:::i,it holdsthat y; =y; 1 7z 1.

It isthe casethat y; z = X, wherex is the key provided in the currert

query (2;+;x;y) (here we assumethat %= n).

If the simulator S nds sud a sequenceof tuples, then it needsto senda
responsethat is consisten with the random oracle F. Thus, it queriesthe
random oracleF on the input x; k::: k X- to getthe output Y = F(x;
parallel::: k x-). It then choosesits resppnseasz=Y y=Y [V?(since
we know that y = 1 V9. It then sendsthis n%bit string z asits responseand
store (2;x;y;z) in its table T. If S doesnot nd sud a tuple, then it sends
a random responsez 2 f0; 1g™° and stores(2;x;y;z) in T.

On getting an inversequery (2; ;X;z), the simulator seartesits table
T for a tuple (2;x;y;z) and respondswith y if it nds sud a tuple. If it
doesnot nd sud atuple, then it sendsa uniformly random n%bit response

y and stores(2; x;y; z) in its table T.

Pro of of Indi eren tiabilit y. Weneedto show that the distinguisher
cannottell apart the two scenariospnewhereit hasoracleaccesdgo the ac-

tual random oracle F and the simulator S descrited above, and the other
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whereit hasoracleaccesgo RO construction NMA CEYE2 and the ideal block
ciphersE1 and E2. We will usea hybrid argumert to prove this result start-
ing in the random oracle scenario,and ending in the ideal cipher scenario

through a sequenceof indistinguishable games.

Game 1. This is the random oracle model, wherethe distinguisher D has
oracle accesso the random oracle F and the simulator S. Let G; denote
the event that D outputs 1 after interacting with F and S. Thus,

h i
Pr[G,]= Pr DFS"(1)=1

Game 2. In this game,we give the distinguisheroracleaccesgo a dummy

relay algorithm Ry instead of direct oracle accesso the RO F. This relay
algorithm, in turn, hasoracleaccesdo the RO F, and on getting a random
oracle query from the distinguisher, it simply makesthe samequery to F
and forwards the RO output to the distinguisher D as its response. The
simulator S still hasdirect oracleaccesdo F. Let G, denotethe event that
the distinguisherD outputs 1 in this game. Sincethe view of the distinguisher
remainsunchangedin this game,we can deducethat

h i
Pr[G,]= Pr DRo:S"(1 )= 1 = Pr[Gy]

Game 3. In this game,we will modify the simulator S by restricting its

responses. In particular, the new simulator Sy choosesits responsesin the
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same fashion as the original simulator S, but after making its choice the
simulator Sy cheds if it responsessofar satisfy one of a few conditions that
could aid the distinguisherin getting to know that it is in the random oracle
scenario.

On a forward query (1; +;x; y), the new simulator S, cheds if there is a
tuple (1;x;y;2) in its table T, and choosesits responsez in the sameway as
the original simulator S. Howe\er, if the responsechosenis a new one then
it cheds if the tuple (X;y;z) satis es one of the following conditions before

sendingz.

1. Condition Bj: It is the casethat z y = IV, wherelV is the n-
bit initialization vector usedin the rst Merkle-Damgard construction

using E1.

2. Condition B,: Thereis atuple (1;x%y%z% 2 T, with (x%y9 & (x;y),

sucd that y° 2=y =z
3. Condition B3: Thereis atuple (1;x%y%z% 2 T sucdthat z y= y°

4. Condition B4: Thereis atuple (2;x%y%z% 2 T sucdhthaty z= x°

If the responsez chosenby the simulator Sy is sud that at least one of
these conditions is satis ed, then the simulator explicitly fails. Essemially,
the ideais that conditions B; and B, could be usedby the distinguisher to
make two random oracleinputs collide after the Merkle-Damgard part using
E1. On the other hand, conditions B3 and B4 could be usedby the distin-

guisherto generatea random oracle input sud that the simulator cannot
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adjust its output to match that of the random oracle. Sincethe simulator
So always choosesthe responseto any E1 query at random, we can bound
the occurrenceprobabilities of eat of theseewvents using simple probability
calculations.

On aninversequery (1; ;X; z), the newsimulator Sy choosests response
y in the samefashion as the original simulator S. Howe\er, if the response
is not chosenfrom the table T, then Sy cheds if the tuple (x;y;z) satis es

any of the following conditions.

1. Condition Cy: It isthe casethat y = IV ory z = 1V, wherelV
is the initialization vector usedin the Merkle-Damgard construction

using E1.

2. Condition C,: Thereis a tuple (1;x%y%2z9 2 T, with (x%2% 6 (x; z),

sud that y° z°=y z.

3. Condition C3: Thereis atuple (1;x%y%z% 2 T sudhthaty z=y°

ory® z0=vy.
4. Condition C,: Thereis atuple (2;x%y%z%9 2 T sudthaty z= x°

If the responsey is sudh that at leastone of theseconditionsis satis ed, then
the simulator Sy explicitly fails. We canestimatethe occurrenceprobabilities
for thesefailure condition similar to the caseof a forward query (1; +; X; y).

For queriesmadeto the block cipher E2, we needto ched for di erent

failure conditions. In particular, the Merkle-Damgard construction using E 2
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will only be applied to oneblock inputs in the RO construction NMA CELE2,
For forward queries(2; +;X; y), the new simulator So choosesz 2 f0; 1g"° in
the sameway asthe original simulator S and sendsz asits responsewithout
cheking for any failure conditions. On the other hand, for inversequeries
(2; :x;z), the simulator Sy choosesy 2 f0; 1g™ similar to S, but then cheds

to seeif the tuple (x;y; z) satis es the following condition:
1. Condition C{: It is the casethat y = 1 V°

If the tuple (x;y;z) satis es this condition and the responsey was freshly
chosenat random, then the simulator Sy explicitly fails. The probability
of occurrenceof the failure condition C? is a straightforward probability
computation.

Let Gz denote theh ewert that thei distinguisher D outputs 1 in game
3,i.e. Pr[Gs] = Pr DRoSs(1 )= 1. The response distribution of the
distinguisherdi ers in games2 and 3 if and only if the simulator Sy fails in

game3. This ewert is identical to one of the failure conditions holding for

the responsesof the simulator Sp.

jPriGs] PrGyli = Pr[Bi_B;_Bs_Bs_Ci_Co_Cs_Cs_CJ]
q2
2min (n:n 9
Game 4. In this game,we modify the relay algorithm, but leave the ideal
cipher simulator Sy unchanged. In particular, the new relay algorithm R,

does not simply relay the outputs of the random oracle F. Instead, R; is
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given oracleaccesso the simulator Sy, and it respondsto any random oracle
queriesmadeto it by honestly evaluating the RO construction NMA CE1E2
by usingthe simulator Sy in place of the ideal ciphersE1 and E 2.

Let G4 denotethe ewert that the distinguisherD outputs 1 in game4, so
that

F
PG, = Pr DR*S6(1)=1

We assumethat the maximum length of a random oraclequery madeby the
distinguisheris © . Now we will shav that the view of the distinguisher D
does not changeby a non-negligibleamourt when we make this changeto

the relay algorithm. This is formally stated below.

Claim 15. Let G; and G4 denotethe eventsthat the distinguisher outputs
1 in game3 and 4, respectively. Let gg and g denotethe numter of ideal
cipher (including both E1 and E 2 queries)and random oracle queriesmade
by the distinguisher, then it is the casethat

(+ g )°

JPr[G4] Pr[G3]J =0 2min (n;n9)

pro of of claim 15: The view of the distinguisher changesin the transition
from game3 to 4 only if there is a changein the responsedistributions of
either the relay algorithm or the simulator betweenthe two games.We will
show that if the simulator Sy doesnot fail in either of the two games,then
sud a changein the responsedistributions is impossible.

Let us start by analyzing the way the two relay algorithms, Rq and Ry,
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choosetheir responses.The relay algorithm from game3, Ry, simply forwards
the random oracle output to any RO query X (i.e. responds with F(X)).
On the other hand, the relay algorithm from game4 usesthe block ciphers
simulated by Sy to implemert the RO constructionNMA CEYE2 andresponds
with the output of this \simulated construction". If the distinguisherdetects
a di erence in the responsesof the two relay algorithms, then it must be
the casethat the simulator Sy did not adjust its responsesconsistetly with
the RO F in game4, which resulted in the responseof the relay algorithm
R1 not matching the RO output. We will shav that unlessthe simulator Sy
explicitly fails, it is always able to adjust its responsesconsisten with the
random oracleF.

The simulator Sy is the samein both games3 and 4. Howewr, the
simulator receivesextra queriesfrom the relay algorithm R, in game4. Thus
it may be the casethat the simulator Sy choosesits responseto the same
guery di erently, depending on whether it is in game3 or game4. This is
the caseonly if the simulator choosesits responseconsistem with the RO
F in one game,while independenly at random in the other game. We will
showv that sud a di erence is impossible,unlessthe simulator Sy explicitly
fails in one of the games.

Below, for simplicity, we will denote by NMAC®(X) the output of the
\simulated RO construction" NMACEYE2 ysing the block cipherssimulated
by Sg, while F(X) is the actual random oracle output on X. We will start

by proving a couple of useful properties of the responsesof the simulator S
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that hold in both games3 and 4. The rst property essehally says that
if the simulator Sy doesnot fail then it is not possiblefor the input to the

Davies-Meyer function basedon E 2 to collide for two di erent RO inputs.

Claim 16. If the simulator Sy does not explicitly fail, then there are no two
di er ent seguenes of -bit blocks x; ::: X, and x9:::x, with correspnding
tuples(1; x1;y1;21) -2 (15 Xm; Ym; Zm) @nd (1, x3;y9; 29) 121 (1 x3; y9: ) in the

table T of Sy suchthat:

It is the casethaty; = y? = I1V. Moreover, for eachb= 2:::m and

= 2:::p, it holdsthatyo= Yo 1 zpb 1 @andyp=y% ; 2Z% ;.

It is the casethaty,, zm =y) Z).

pro of of claim 16: This is easyto seesincethereisr 2 f0:::(min(m;p)

1)g sud that,

8s2f0;(r+1)g : (Xm s;¥m siZm s) = (X3 Y9 6129 &)
and (Xm ;¥m riZm 1) 6 (X) ;Yp 125 ;)
Of the two tuples (1;Xm ;Ym r:Zm ) @and (1;x ;Y] ;2 ), We consider
the one whosecorrespnding query was made later. Without lossof gener-
ality, let this be (1;Xm r;¥Ym r;2Zm (). If this wasa result of a forward query
(1;+;Xm r;¥Ym r), thenthe simulator Sy would have failed dueto failure con-

dition B,. On the other hand if this were an inversequery, then Sy would
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have failed as a result of the failure condition C,. O

Next, we showv that if the distinguisher wishesto nd out the output
NMAC(X) for a random oracle query X = x; k ::: k X, then the only

way it cando sois by computing the RO construction honestly

Claim 17. Consider any sequene of entries (1;X1;VY1;21) i (1; Xm; Ym; Zm)
1 (2;x%y% 29 in the table T maintained by the simulator S, that satisfy the

following properties:
It is the casethat y; = IV and y°= 1VC
Foralli=2:::m, it isthecasethaty, =y, 1 z 1.
It alsoholdsthat x°=y,,  Zn.

If the simulator Sp does not explicitly fail, then it is necessarilythe casethat

theseentries were geneated as a result of the ordered sequene of queries

pro of of claim 17: Tothe cortrary, assumehat the tuples (1;X1;y1;21) :::

(1;Xm; Ym; Zm); (2;x%y% 29 were not generatedas a result of the ordered

this case,one of the following must hold:

1. The tuple (1;Xm;Ym;Zm) was stored in the table T after the tuple

(2;x%y% 29, asa result of a forward/in versequery:
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2. For somej 2 f1:::(m 1)g, a new forward query (1;+;X;;y;) was
made when the tuple (1;X;+1;Yj+1;2+1) already existed in the table

T.

3. For somej 2 f2:::mg, a new inversequery (1; ;X;;z) was made

whenthe tuple (1;%; 1,y 1;Z 1) already existedin the table T.

4. The tuple (1;X1;Y1;21) wasstoredin T asa result of an inversequery
(1, X1 z9).

5. The tuple (2;x%y%z% wasstoredin T asa result of the inversequery
(2, ;x%29.

We will shov how any of thesesituations would have resultedin the simulator
Sp explicitly failing. In eat of thesecaseswe can deducethat at leastone

of the failure conditions would have held.

Casel : In this case,the failure condition B, (resp. C4) would have

beentrue for the query (1;+; Xm;Ym) (resp. (1; ;Xm;Zm)).

Case 2 : Failure condition B3 would have beentrue for the query
(L +:5X53))-

Case 3 : Failure condition C; would have beentrue for the query
L 5x%:7).

Case4 : Failure condition C; would have beentrue for the query
(1 5X1;21).
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Caseb5 : Failure condition C9 would have been true for the query

2; ;x%29.

Thus if the simulator newer fails, then the sequencef tuples (1;X1;y1;21) :::
(L;Xm; Ym; Zm); (2; x% y% 29 could have beenstored only as a result of the se-

quenceof forward queries(L;+;X1;y1);: 5 (L +;Xm; Ym); (2;+:;x%y9. O

As a consequencef claims 16 and 17, we can deducethat in both games
3 and 4 the simulator is always able to adjust its responsesto be consistem
with random oracle F if it doesnot explicitly fail. Thus the responsesof
the relay algorithm Ry and R, are idertical in the view of the distinguisher.
Moreover, as a result of claim 17, we can also deducethat the distinguisher
D canonly nd the output NMAC® (X ) by making the sequencef forward
queriesgiven in claim 17. In this case,the simulator adjusts its response
accordingly sothat NMAC® (X ) = F(X) for any X. Thus the view of the
distinguisher D does not changein the transition between games3 and 4
if the simulator Sy does not explicitly fail in either game. Hence,we can

deducethat

jPr[G4]  Pr[G3]j Pr[Sp fails in either game]

(e + 0 )°

= 0 2min (n;n )
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Game 5. In this game,we modify the simulator sothat it always selects

its responsesindependert of the random oracleF . This doesnot induce any
inconsistenciesn the view of the distinguisher sincethe relay algorithm R;
also usesthe new simulator S; instead of directly using the random oracle
F.

The newsimulator S; always choosesa uniformly randomresponseto any
query madeto it, including any forward query (2; +;x; 1 V9. Moreover, after
it choosesa responseit doesnot ched for any of the failure conditions that
the old simulator Sy cheded for in game4. The view of the distinguisherdoes
not changeby more than a negligible amourt in the transition from game
4 to 5. This is becausethe distinguisher only notices a di erence between
the two gamesif Sy fails in game4 (or equivalertly, the new simulator S;
respondswith a z that satis es one of the failure conditions chedked by Sp).
Sincethe new simulator S; always choosesa uniformly random responseto

any query, we can easily bound this di erence.

jPr[Gs]  Pr[Gu]j Pr[Sp fails in game4]

+ Pr[S; satis es one of the failure conditionsg]
(9 )?
2min(n;n %)

Game 6. This is the nal gameof our proof. Here we replacethe simu-
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lator S; by actual ideal block ciphersel1l:f0;1g f0;1g9" ! fO;1g" and
E2:f0;1g° f0;1g"°! f0;1g™. Sincethe relay algorithm R; essetially
implemerts the RO construction NMACEYE2 the view of the distinguisher
in this gameis idertical to its view in the ideal cipher model.

Let Gg denotethe evert that the distinguisherD outputs 1 in this game.
We can deducethat the view of the distinguisher does not changein the
transition from game5 to 6, unlessthe simulator S; outputs a collision in
block cipher outputs for the samekey. The probability of this evert can be

boundedby simply using the birthday paradox.

jPr[Ge] Pr[Gs]j Pr[S; outputs a collision]

(9 )
O 2min(n;n 9

Now we can completethe proof of lemma 3 by conbining the above games.

Hence,we deducethat

. [ 22
NMACF'*®2E1E2 _ Fis _ _ q
Pr D @)=1 Prpo@)=1 =0 o

Lemma 4. The HMAC construction HMACE using an ideal block cipher

E:f0;1g f0;1g"! f0;19" is (tp;ts;q; )-indi er entiablefrom a random
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oracleF :f0;1g ! f0;1g" in theideal black cipher model for E, for any tp
andts = O(cf), with =2 " 2 O(c®) (C is the maximum length of an

RO query made by the distinguisher).

Pro of: The proof of this lemmais almost idertical to the proof of indi er-
ertiabilit y for the NMAC construction givenin lemma3. This is becausdahe
HMAC construction essetially implemerts the NMAC using a single block
cipher, by using di erent initialization vectorsin ead part of the construc-
tion. With slight modi cations, the simulator described in lemma3 works in
this caseaswell.

The proof of indi erentiabilit y is also almost identical to that in lemma
3. We do add a few extra \failure conditions" to handlethe fact that we are

using the sameideal cipher E in placeof both E; and E,.

3.2.4 Implications for the RO Domain Extenders

We saw above that the four modi cations of the Merkle-Damgard construc-
tion, i.e. the pre x-free, chop, NMAC and HMAC constructions, applied to
the Davies-Meyer compressionfunction are indi erentiable from a variable-
length input random oracle (VIL-R O) in the ideal cipher model. This fact
was formally stated and proved in theorem 6. Now we will shaw that this
result is strongerthan the indi erentiabilit y of domain extendersfor the ran-

dom oracledescriked in section3.1. In particular, we show that theorems2,

115



3,4 and 5 from section3.1 canbe derived asa direct consequencef theorem
6.

To this purpose,say we are given a xed-length input random function
oracle(FIL-RO) f :f0;1g *" ! f0;1g". Considerthe following construction

basedon f :

TM:fo;1g  fO;1g" ! f0;1g"

(xy) 7 f(xky) vy

Note that the construction T is essetially the sameas the Davies-Meyer
construction exceptthat the latter is de ned for an ideal block cipher E :
f0;1g f0;1g"! fO;1g". If we areableto shav that T' is indi erentiable
from the ideal block cipher E, then it will complete the proof of all theo-
remsfrom section3.1 as an implication of theorem 6 and the composability
property of indi erentiable constructions. This is becausehe Davies-Meyer
construction appliedto T' is identical to the FIL-RO f . Howeer, it is easily
seenthat T' cannot be proven indi erentiable from the ideal cipher E2.

To overcomethis, we introduce a wealer ideal primitiv e than the ideal
cipher, which we will call the weak ideal black cipher. A weakideal black cipher
E is essetially the sameas an ideal cipher, exceptthat it only respondsto
forward block cipher queries. In this case,we do not run into the problem of

responding to inversequeriesmadeto the construction TT. Unfortunately, we

2In particular, the construction T cannot answer inverseideal cipher queries.
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cannotusetheorem6 in a\black-box manner" to getindi erentiable VIL-R O
construction using a weak ideal cipher. Howewer, none of the constructions
proposedin theorem 6 make use of inversequeriesto the underlying block

cipher.

Corollary 1. The black-cipher basal constructions pf-MDE, chop-MDE,
NMACS and HMACF are (tp;ts; q; )-indi er entiablefrom a randomoracle,
in the weak ideal cipher model for E, for any tp andts =~ O(¢?), with
= 2" 2 O(p) for p-MDE, = 23 2 O(cf) for chop-MDE, =
2 min(mn% 2 O(¢?) for NMACE and =2 mn(n) 2 O(¢?) for HMACE.

Here * is the maximum messagdength queried by the distinguisher.

In fact, the proof of this theoremis simpler than that for theorem6 since
the simulator neednot respond to inverseideal cipher queries. We now show
that the construction T' is an indi erentiable construction of a weak ideal

cipherkE :f0;1g f0;1g" ! fO0;1g" usingthe FIL-RO f.

Lemma 5. The construction T" (descriked alove)is (tp;ts;q; ) indier en-
tiable from a weak ideal cipherE : f0;1g f0;1g" ! fO0;1g" for any tp,

ts= O(¢®) and =2 " ¢, in the randomoracle model for f .

Pro of: In orderto prove this theorem, we needto descrite a random ora-
cle simulator S sud that no distinguisher can tell apart the random oracle
model, where it has oracle accesgo the random function oraclef and the
construction Ty, from the weak ideal cipher model, whereit has oracle ac-

cessto the simulator S and the weak ideal block cipher E. We will start by
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describingthe simulator.

The Simulator. The simulator S gets random oracle queries of the
form x ky 2 f0;1g *". The simulator makes the forward query (X;y) to
block cipher E to get E4(y). Then S respondswith z = E4(y) V. In ad-
dition, the simulator S also maintains a table T of previous query-respnse
pairs (x k y; z) which it cheds ead time to seeif the currernt query matches

a previousone.

Pro of of Indi eren tiabilit y. The proof of indi erentiabilit y involves
a hybrid argumen that starts in the ideal cipher model, where the distin-

guisherD hasoracleaccesdo E and S, which is gamel.

Game 1. This is essetially the weak ideal cipher madel, wherethe distin-
guisherD is given oracle accesso the random oracle simulator S and the
weakideal cipherE. Let G; denotethe ewert that D outputs 1 in this game.

Thus, if denotethe security parameter,
h [
Pr[G,]=Pr D> E(1)=1
Game 2. In this game, we give the distinguisher D oracle accessto a

relay algorithm Ry, instead of the weakideal cipher E. This relay algorithm
Ro hasoracleaccesgo the simulator SE. On a forward block cipher query

(x;y) 2 f0;1g f0;1g", the relay algorithm Rq simply queriesthe simulator
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St onx Kk y to getits responsez. Then R respondsto the block cipher query
withy z.

Let G, denotethe ewernt that D outputs 1 in this game. Sincethe view
of the distinguisher doesnot changein this game,we can deducethat

h i
Pr[Gi]= Pr DS R" (1)=1 = Pr[Gy]

Game 3. In this game,we modify the simulator sothat it doesnot consult

the ideal block cipher for any of the queriesmadeto it. Instead, the new
simulator Sy always choosesa uniformly random n-bit responsez to ewery
newqueryx Kk y, andrecordsit in its table T beforesendingover the response.

Let Gz denotethe ewert that the distinguisherD outputs 1 in this game.
Sincethe relay algorithm only consults Sy for any query, so that the view
of the distinguisher in this gameis ertirely independen of the weak ideal
cipher E. Thus the distinguisher D detectsa di erence betweenthis game
and game?2 only if the relay algorithm R, outputs a collision for two block
cipher querieswith the samekey, and the probability of this evert can be

easily boundedusing the birthday paradak. Thus, we can deducethat

2

PrGs] PriGsl| -

Note that the simulator Sy is essehally the sameas the xed-length in-

put RO f, while the relay algorithm Rq is de ned in the sameway as the
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construction T". Hence,we can alsodeducethat
h f i h ] i
Pr D" (1)=1Pr DS (1)=1 = jPrG;s] PI[Gy]j

q
n

3.3 Other Extensions

Increasing Output Length. All the random oracle constructionsthat we
have discussed,permit really e cient output expansion. Given a random
oracleH :f0;1g ! f0;1g", output expansionby a factor L canbe acieved
by appending an extra log(L)-bit block to the input X and outputting the

concatenationof the following blocks:

It can be easily seenthat this construction is generically secure,including
any of the indi erentiable constructionsof VIL-R O that we have proposed.
Howewer, onewould imaginethat ewaluating this construction would involve
L ewaluations of the VIL-RO H.

As it turns out, for the Pre x-free, Chop, NMAC and HMAC construc-

tions of a VIL-R O using a FIL-R O or an ideal cipher, this procedurecan be
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completed extremely e cien tly using only one (or two) extra evaluation of
the underlying xed-length input primitiv e for ead extra block of output. 3
This can be done by rst computing the Merkle-Damgard construction on
the input X, and evaluating only one last part of the construction for eat
of the output blocks. This reducesthe running time for the procedurefrom

L (jXj=)to L + (jXj=k) computations.

Domain Separation for Indep endent ROs. The same technique as
above can also be usedfor domain separationof the random oracle, to get
multiple independert random function oraclesfrom a single one. This is
usefulin cryptographic constructionswhere one needsto use multiple inde-
pendent random oraclesin order to prove the security of the construction.
In particular, if we have a singlerandom oracleH : f0;1g ! f0;1g", and
we need L independert random oraclesin our constructions, then we can

achiewve this by de ning theserandom oraclesas:

Ha(X) H (X khli)

Ho(X) H(X ki)

We cannot usethe samee cien t processingtechnique that we usedfor out-

put expansion,sinceone usually doesnot needto ewaluate the independert

3For a pre x-free encaling g, this can be doneby appendinghli :::hLi to g(X ) instead
appendingto X and then evaluating g.
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random oracleson the sameinput.
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Chapter 4

Getting the Best out of existing

Hash Functions

In the previous chapter, we discussedthe security of hash functions when
usedto instantiate the random oracle. This was a really strong security
requiremen from hash functions and, not surprisingly, one needsto make
ideal assumptionson the compressionfunction to prove the security of the
iterative hash function in this case. Here we will take a more generallook
at iterative hash functions without restricting to some particular security
requiremern.

As we have already seen,cas@dechainingis a very elegarn way to build a
hashfunction H on arbitrary-length inputs from a givencompressiorfunction
h on xed-length inputs. Recall that for a given h : f0; 1g fO; 1g" !

f0; 1g", onecande ne a hashfunction H, parametrizedby an initialization
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vectorl V 2 f0; 19", asfollows(whereinput x = x; k::: k x- andx; 2 f0; 1g

fori=1:::7):

H(xy k::ikx) = h(x;h(G::; h(xg;1V) )

We will refer to this asthe MD mode (after Merkle-Damgard). The most
abundart useofthe MD modein practice comesn the designof the industry-
standard hash family SHA (which consistsof seweral speci ¢ hashfunctions
SHA-x, where x 2 f1;224 256 384 512)). Unfortunately, despiteits ele-
ganceand simplicity, the \plain MD" mode has se\ral de ciencies. For
instance, it doesnot guarartee that a \global" collision of H implies a \lo-
cal" collision of the compressiorfunction h, unlessonepreprocesseshe input
into a su x-free form beforeapplying H [22] (as we already mertioned, the
particular su x-free encaling of appendingthe messagéength is called MD
strengthening and is actually usedin the SHA family for this reason). More
seriously aswe already saw in chapter 3, even MD strengtheningfalls prey
to the \extension attack” ! which makesit insu cien t for domain extension
of random oracle. Moreover, this de ciency disquali es the natural use of
\plain MD" in the designof \pseudorandomfunctions" [5]. Other problems
alsoarisewhenthe MD mode is usedin applications sud as key derivation
[25) and target collision-resistancgor UOWHFs ?) [11, 70.

Apart from the issuesmertioned above, seeral other de ciencies of the

lgiven H (x) and any extensiony, one can compute H (x k y) without knowing x.
2Universal One-Way Hash Functions
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MD mode againstexponenial-time attacks have beendiscovered[43,45]. All
thesede ciencies,coupledwith the improved brute-force attacks on the pop-
ular SHA-1 hashfunction proposedrecenly [72, 73], suggestthat it is time
to designa better, more \secure" mode of operation for building a variable-
length input hash function. With this purpose,NIST has beenorganizing
seeral workshopsdedicated to coming up with the next generation hash
functions [62]. Howe\er, this processwill take sometime, and it doesnot ap-
pearthat sud hashfunctions would be standardizedand widely acceptedin
any forseeablduture. Therefore,practitioners are \stuck" with the prospect
of using existing hash functions, despite all their de ciencies. Hence,there
is a pressingneedto designimmediate\ xes" to the MD paradigm, without
changingit drastically.

There aretwo aimsin comingup with sud \ xes" to the MD mode. The
rst, and sofar the most popular, aim is to designa slight variant of the MD
mode that provably presenesa given security property of the compression
function, andto do soin the mostaestheticand e cien t manner. We mertion
only a few of the many examplesof this approad. For collision-resistance,
we already mertioned the well known technique of MD strengthening For
another example,by viewing the initialization vector asthe key and applying
a pre x-fr ee enading to the messagepne can obtain a variable-lengthinput
pseudorandonfunction from a xed-length input pseudorandoncompression
function [5]. In the caseof target collision-resistance Shoup [70] designed

an elegan mode for building target collision-resistan (TCR) hashfunctions
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(or UOWHFs [60]) from a TCR compressionfunction by clewverly XORing

certain masksto the internal chaining variablesin the MD construction.
The commonfeaturein all theseresultsis that oneassumesxactlythe same
property from the compressionfunction h asthe desiredproperty from the
hash function H. In many casessud asthe PRF and TCR examples,this

meansthat a \secure"” mode must be su ciently dierent from the plain

MD so that its implemertation requires a non-trivial modi cation to the
SHA implemenation. Concretely the SHA family usesa xed public IV

(as opposedto arbitrary secretlV neededfor PRFs), while in the TCR case
one cannot XOR the correspnding maskswithout modifying the internals
of SHA.

The second,lesspopular, aim is to try and designa \secure" mode that
usesonly bladk-box callsto the plain MD mode 2. For instance,MD strength-
ening satis es this property. Other examplesinclude the HMAC mode for
pseudorandomfunctions [5] and the results for domain extensionof random
oraclemertioned in the previouschapter. The attractiv e feature of thesere-
sultsis that they result in a hashfunction with the desiredproperty without
tinkering with the internals of SHA, and can use any o -the-shelf imple-
mertation. Moreover, all theseexamplesalso satisfy the property-preserving

property descrited above.

Our Goal. In this chapter, we will emphasizethe latter aim in comingup

with \ xes" for existing hash functions. That is, we considerthe question

3in practice, with MD strengthening, but we ignore this aspect for now
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of building a hashfunction H ° achieving a given security property P usinga
black-box MD-basedhash function H (with an unknown compressionfunc-
tion h). We require that the proposedconstruction H ° satis es the following

\axioms":

1. The construction should consist of one or two \black-box" calls to H.
In particular, the construction is not allowed to useany knowledge of

or tinker with the internals of the hashfunction H.
2. The construction must support variable-length inputs.

3. Comparedto a single evaluation of H(M), the ewaluation of HY{M)
should make at mosta xed (small constart) number of extra calls to
the underlying compressiorfunction of H. In otherwords, the e ciency

of HCis negligibly closeto that of H.

The motivation behind requiring the construction H °to satisfy theseaxioms
is from the viewpoint of a practitioner who understandsthe properties of
the hashfunction that are neededfor the security of his cryptosystem, but
who wants to usean o -the-shelf standardizedhashfunction implemertation
without tinkering with its internals. Sud a practitioner would be willing to
sacri ce the property-preservingaspect of the \ x* in favor of a bladk-box
implemertation.

In fact, the above \axioms" leave very little freedomin choosing the
modes of operation for H®. The resulting modes are essetially the most

widely-utilized constructionsappearingin practical implemertations:
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1. Plain MD Construction: This capturesthe notion that the application
usesthe hashfunction asit is. We will denotethis mode of operation

asH.

2. Encode-then-MD Construction: In this case,the userencalesthe hash
function input before applying the plain MD construction. Examples
of popular encaling shemesusedare su x-free encaling and pre x-
free encaling. We will refer to the correspnding constructions as the
pre x-fr ee MD construction H e and the su x-fr ee MD construction

Hsuf .

3. MD-then-ChopConstruction: Herethe userappliesthe plain MD mode
and only usespart of the output while discardingthe remainingbits. In
particular, existing hashfunctions SHA-224and SHA-384are obtained
this way from SHA-256 and SHA-512, respectively. We denote the

MD-then-chop construction that chopss bits of the output as Henep, -

4. NMAC/HMA C Construction: The version of the NMAC construc-
tion that we considersimply composestwo applications of the plain
MD mode with possibly di erent initialization vectors|V; and | V..
While not obeying the rst axiom, the NMAC construction senes as
a nice abstraction for the HMAC construction which does satisfy all
our axioms (but is slightly harder to formally analyzein somecases).
Concretely the HMAC construction usesthe NMAC construction with

Ve = h(IV; 1) = H( 1) and1V, = h(1V; ,) = H( ), whereeadh
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i is either the null string ? (in which casewe let h(1V;?) = V) or
a single -bit block. We denotethe NMAC construction as Hyynac and

the HMAC construction as Hymac -

Now we can nally rephraseour goalasfollows. Givena particular desired
security property P (such as collision-resistanceor pseudorandomnessand
oneof the 4 modesof operation above (which all satisfy our axioms), nd the
wealest security assumption(s)P °on the compressiorfunction h which would
make the correspnding mode satisfy P (or determinethat the construction
isinsecurefor any h). Ideally, this security property P °for h would be P itself
(which would result in a property-preservingmode of operation). Howe\er,
unlike most previouswork, property presenation is not our primary concern.
In particular, we will not declarea mode of operation to be \insecure” for a
property P simply becauseit is not property-preservingfor P. Instead, we
will nd the wealest security property P° of the compressionfunction that
makes the resulting construction secure. This will allow the practitioners
to decidewhether or not it is reasonableto assumethat the compression

function of existing hashfunctions, suc as SHA, satisfy the property P°.

Our Results. We adiewve our main goalfor a very wide variety of security
properties including collision-resistane (CR), pseudoandomness(PR), in-
di er entiability from random oracle (RO), messageauthentiation (MAC),
target collision-resistane (TCR), seond preimage-esistane (SPR), ran-
domnessextraction (RE) and one-waynesgOW). In eat case,and for eah

of the four popular modesabove, we will idertify the neededproperty P°on
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h. In somecasesthe neededP ° easily follows from someexisting work (for
instance,from the previouschapter or [2]] in the caseof domain extensionof
random oracle). In other casesjt required someminor, but important mod-
i cations to the existing resultsin order to satisfy our axioms. For example,
by assumingthat \ h(l V;random) = random" in addition to h beinga PRF
whenkeyed with the rst n bits of its input, we could build a variable length
PRF using the encale-then-MD mode and adjusting the proof of [5]. More
interestingly, by making extra assumptionson h, in somecaseswe can prove
security of the modeswhich werepreviouslybelieved\insecure" becausdhey
were not property-preserving. Finally, in somecasesthe proof will involve
careful and non-trivial modi cation of previousresults. For example,this is
the casewhen analyzing the one-waynessof the Hg; construction.

In addition to giving an exhaustive \mode property" guide (seetable
4.1) for achieving a given security property with a given popular mode, in
eat sectionwe also mertion the practical implication of our results when

using existing hash functions SHA-x, wherex 2 f1;224 256 384 512.

Rela ted Work. We have already cited many of the relevant papers. In
particular, the variants of the MD mode that are useful in the property-
presenation of collision-resistance22], pseudorandomnes$s, 6], message-
authertication [1, 53], random oracles[21] and randomnessextraction [25].
We also mertion the works of [12, 13] concernedwith multiple property-
presenation; namely, designinga single mode of operation which simultane-

ously presenes se\eral properties. Unfortunately, the modes of [12, 13] do
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Plain MD Encode-then-MD | MD-then-Chop | NMAC/HMA C
Suf-Free+(1 N/HMA C+(1)+(2
CRHF | @)+ @ uf-Free+(1) 1) + 2 )
Pre-Free+(1)+(2) 167
Appendkey + | SF+(1)+(4) (append)| Prependkey + | N/H+(3)+(4) (prepend)
PRFE | (1)+@2)+@) PF+(2')+(3) (prepend] (2)+(3) Any [Vs=s
Suf-Free not secure (5) NMA C/HMA C+(5)
RO Not Secure . .
Pre-Free+(5) worsesecurity [V, 6 1Vo; 16 »
MAC Appendkey + | SF+(1)+(6) (append)| Append key + N/H+(1)+(2)+(6)
(1)+(2)+(6) PF+(1)+(2)+(6) (app.) | (1)+(2)+(6") Any IVs/ s
TCR key blks SF+(7) (key blks) key blks N/H+(7)+(9)  (append)
(7) + (9) PF+(7)+(9) (7 + (9) Any IVs/ s(key blks)
SF+(9 N/H+(8)+(9
SPR 8) + (9 ©) 8 + (9 8)+(9)
PF+(8)+(9) Any IVs/ s
RExt (10) MDS + (10)(SF/PF??) (20) NMAC + (10)
Hi (M)" Hy (m) |Hi (M)" Hy (M) Hi (M) HMAC??
MDS+(2)+(11 NMAC+(2)+(11
OWF (2)+(12) (2)*+(11) (2"+(12) (2)+(11)
(SFIPF??) HMA C??
Assumptions on compression function: \ Misc.
(1)=Collision Resistance(CR) (1)=CR after Chop SF=Su x-free

(2)=Output Regular
(3)=standard PRF (sPRF)
(4)=dual PRF (dPRF)
(5)=FIL-R O

(6)=MA C with -bit key
(7)=enhanced SPR (eSPR)
(8)=computed SPR (cSPR)
(9)=Fixed-p oint at random | V
(10)=F amily of random functions
(11)=One-way function

(2")= h(Uy; ) is output regular
(3)=sPRF after Chop

(7")=eSPR after Chop
(8")=cSPR after Chop

PF=Pre x-free

MDS=MD Strengtheining
??=not known to be secure
RExt=Randomness Extrn.

Key Blks=XOR ke?/to
ead block

Figure 4.1: Table for comparing Security Property vs. Mode of operation.
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not satisfy our axioms. Finally, we mertion the work of Halevi and Krawczyk
[40], which concetrated on building TCR hashfunctions, and is the closest
in spirit to our motivation (indeed, we will usetheir results when discussing
the TCR property). The authorsbuilt TCR hashfunctions usingthe encale-
then-MD mode, and shaved a simple coding schemethat yieldsa secureTCR
hash function under an appropriately strong assumptionon the underlying

compressiorfunction h (still wealker than CR, but strongerthan TCR).

Location of the key in keyed constr uctions. We note that for
keyed constructions, sud as constructionsof pseudorandomand TCR func-
tions, there are more than one possibilities for eat hash function mode of
operation. In particular, any construction for these primitiv es must specify
the location of the key. In keepingwith the bladk-box nature of the modes
of operation, we prevernt popular keying methods sud as setting the key to
be the 1V or XORing the key into the chaining variablessincethis violates
our basicaxioms.

Moreover, we alsodo not considerthe dedicated-ley setting [1, 13|, where
thereis separatespacefor the key in eat application of the compressiorfunc-
tion. This is becauseexisting hashfunctions do not support sud dedicated
keys. Even though we may considerthe key to be part of the messagdlock
bits, we do not analyzethis method sinceit yields constructionswith poor in-
put bandwidth (thus violating our last axiom). Hence,we will only consider
modesof operation which incur an additive constart overheadcomparedto

the plain MD mode.
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4.1 Preliminaries

In this chapter, we will be interested more in the qualitative aspects of the
security of iterative hash functions rather than focusingon the exact secu-
rity in ead case. For this purpose,we will give here slightly \less formal®

and asymptotic de nitions for eat of thesesecurity notions related to hash
functions. In particular, we will rede ne someof the security notions already

de ned in chapter 2 (wherethesede nitions werein \exact security" terms).

4.1.1 Collision Resistance

In this chapter, a collision resistart function enserble H is de ned for a

sequenceof sets f0;1g™( );f0; 1g"( ) wherem and n denotethe input

2N’

and output length of H , respectively. As in chapter 2, it consistsof a pair
of PPT madines(Gen;Eval). Howewer, we will give an asymptotic version

of the de nition of collision resistancehere.

De nition  10. -CR function family A function ensembleH is a -collision

resistantfunction family if for any prokabilistic polynomial time machineA:

Pr hs(x1) = hs(xz) s Gen(l ); (xi;%x2)  A(1;9)

Here is a function of the security parameter .
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4.1.2 Pseudorandomness

Here a pseudorandontfunction ensenble H is de ned for a sequencef sets
f0;1g™ );f0;1g" ) . It consistsof a pair of PPT machines(Gen;Eval),

the key generationand evaluation madines.

De nition 11. -PRF family Let R bethetruly randomfunction ensemble.
A function ensembleH is a -pseudoandomfunction family if for any PPT

oracle machine A:
Pr As(1)=1s Gen(l) PrA"'=1jf R
Here is a function of the security parameter .

4.1.3 Unpredictabilit y and MA Cs

A messageauthentication code, MAC, is de ned for a sequenceof sets
fM ;T g on. It consistsof a triple (Gen;Tag;Ver) of PPT madines, de-

noting the key generation,tagging and tag veri cation algorithms.

De nition 12 ( -secure MA C). A MAC (Gen;Tag;Ver) is a -seure
MAC if for any PPT oracle machine A that outputs a message/tagpair

(m;t) suchthat it never queried the taggingoracle on the messagen:
Pr Verg(m;t) = accepts Gen(1l); (m;t)  ATakVers1 )

Here is a function of the security parameter .
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4.1.4 Target Collision Resistance and One-W ayness

Target collision resistanceis a weaker notion of collision intractabilit y that
collision resistance. A target collision resistart function ensenble is also
called a Universal One-Way Hash Function ensenble (or simply UOWHFs).
A TCR function ensenble is de ned for asequencefsets f0; 1g™( ):f0; 1g"( )
and consistsof a pair of algorithms (Gen;Eval). Howewer, the TCR attacker
is more restricted than the collision nding attacker above, sinceit chooses

one of the colliding inputs without knowledgeof the hashfunction key.

De nition 13 ( -TCR function family). A function ensembleH is a

-secure TCR function family if for any pair of PPT machines(Ay; A,):
Pr hs(x1) = hs(x2) (x1; ) A1), s Gen(l); x2  Ax(1l; ;X1;9)

Here is a function of the security parameter .

A notion related to TCR hash functions is that of second preimage-
resistantfunctions. Unlike TCR hashfunctionsthis security notion is related
to unkeyed hashfunctionsf : f0;1g™ ! fO0;1g" (where we can think of m

as being the security parameter).

De nition 14 ( -SPR function). A function f : f0;1g™ ! f0;1g" is

-secondpreimageresistart if for any PPT machineA:

h i
Prfx)=f(x9 x *fo1g™; x° AL ;x)
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Related to the notion of SPR functions, we can alsode ne the notion of
preimageresistan@ or one-waynessThis is a slightly wealer property than

secondpreimageresistance.

De nition  15. -secure one way function A function f : f0;1g™ ! f0; 1g"
is an -secureoneway function if for any PPT machine A:

h i
Prf(x)=yy ®f0oig; x Al:y)

4.1.5 Randomness Extraction

A randomnessextractor is a function that is usedto extract uniformly ran-
dom bits from inputs samplesfrom an imperfect sourceof randomness.This
has beenan extremely useful primitiv e in cryptography, aswell as theoret-
ical computer sciencein general. We will give here brief de nitions for this
primitiv e.

We start by de ning the notion of min entropy, which is a measureof the
amourt of randomnesan a probability distribution. For instanceconsidera
distribution X over f0; 1g". The min entropy of the distribution X, denoted
asHj (X), is the minimum integer m sud that Pry(x) 2 ™ for all x 2
f0; 1g". HerePry (x) denotesthe probability assignedo x by the distribution
X.

We will alsoneeda way to quartify the distancebetweentwo probability

distributions, X; and X,, over a set S. The popular measurein this case
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is statistical distanae between X; and X,. The statistical distanae between

P
X, and X, is dened as SD(X1;Xz) € 1 jPre,(x) Prg,(x)j. If two

s2S
distributions have statistical distance betweenthem, then they are called

-closedistributions.
A randomnessextractor is a function h: f0;1g f0;1g™ ! f0;1g" that
takesa -bit uniformly random seedand a m-bit input, and outputs a n-bit

output.

De nition 16 ((k; ) Extractor). A (k; ) extractoris afunctionf :f0;1g
f0;1g™ ! f0;1g" suchthat for everydistribution X onf0; 1g with H; (X)
k, the distribution f (X ;Uy,) is -closeto the uniform distribution on f 0; 19",

where U,, denotesthe uniform distribution on f0; 1g™.

4.2 Security of MD modes

4.2.1 Collision Resistance

We will analyze eat of the four modes descrited above for the minimal
assumptionsrequired on the compressionfunction h : f0;1g  f0; 1g" !

f0; 1g" neededin order to prove its collision resistance.As we discussedwe
will not restrict oursehesto the caseof property preservation In particular,
the security property neededfor the compressiorfunction h may be stronger

than collision resistance.
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Plain Merkle-Damg ard construction

It is a well-known fact that simply assumingcollision resistanceof the com-
pressionfunction doesnot su ce to prove collision resistanceof the plain
MD construction. Indeed, if the compressionfunction h has a xed-point
sud that there is somex 2 f0;1g sud that: h(x;1V) = IV. Then the
output of the plain MD construction H collidesfor the inputs x and x k m,
for any m. Fortunately, if the compressiorfunction doesnot have any suc
xed point then the plain MD construction H can be shovn to be collision
resistart.

We will state the following lemmain terms of simple security conditions
on the compressiorfunction h. In the process,we introduce a new security
property that essetially implies that the compressionfunction is a regular

function.

Assumption 1 (Regularit y of outputs). A functionh:f0;1g™! fO0;1g"
is a output regular function if for any e cient machine A that givesa 1

bit output:

JPriA(x) = 1jx = h(Un)] PriA(x) = 1jx  Uy]j

Here U,, and U, denotethe uniform distributions on f0;1g™ and f0; 19",
resyectively.

Now we state the conditions requiredin order for the plain MD construc-

tion H to be collision resistart.
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Lemma 6. The plain MD construction H using a compressionfunction h :
f0; 19 fO;1g" ! f0;19" isa O( (regt co)) Collision resistant hash

function # if and only if h satis es the following properties:
his o oollision resistant.
h is an ¢y output regular function.

Pro of: The main ideain the proof is to shav that output regularity implies
that no e cient attacker can nd a xed point in the compressionfunction
h:f0;1g f0;1g" ! fO0;1g" with non-negligibleprobability. That is, there
is a negligible sud that for all e cient attackersA:

h [
Pr h(xi;h(:::;h(xg;1V)::) =1V IV ¥ fO;19"; x1:::x; A(IV)

To the cortrary, say thereis ane cient attacker that nds sud a xed point
with non-negligibleprobability ° then we canshaw that it either breaksthe
collision resistanceor the output regularity assumptionfor the compression
function.

In order to shaw this, choosethe initialization vector IV aslV ~ h(x)
(for x U U,), instead of | V U,. If the successprobability of A
changesby a non-negligibleamourt then we can break the output regularity
assumption. Otherwise, the attacker A still nds, with non-negligibleproba-

bility, asequencef -bit blocksx; :::X; sudthat h(x;;h(:::;h(Xxg;1V)::2) =

4* denotesthe maximum number of -bit blocks throughout this section
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| V. SinceA is unlikely to guessthe preimagex of 1V, it is likelyto nd a
collisionfor h. Thus maximum succesgprobability of an e cient attacker in
nding sud a xed point is yeg+ col-

Now that we have shown that no e cient attacker is likely to nd xed
points in h, we can essehally use the original proof of Merkle-Damgard
[22, 54 to show that the plain MD construction H is collision resistart as

well.

Encode-then-MD construction

It makessensedo only considerdeterministic input coding sthemes,sincethe
resulting construction must behave like a function. We analyzetwo of the
most popular sud coding sdhemes,i.e. pre x-fr ee enading and su x-fr ee
enading.

We rst not that usinga pre x-free encaling on the input doesnot enable
usto getrid of any security propertiesin lemma6. Hencewe can essetially
restate the sameresult for the pre x-free MD construction H,.. aswell. On
the other hand, if we use a su x-fr ee enading (such as Merkle-Damgard
strengthening) then the resulting su x-free MD construction Hgys can be
shown to be collision resistart by simply assumingthe collision-resistanceof

the compressiorfunction h [22, 54].
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MD-then-Chop  construction

Note that simply assumingcollision resistanceof the compressiorfunction is
not useful for this construction, sincewe truncate s bits of the output. For
instance,considerthe casewhen h is collision resistart on theses bits, while
is the constart function for all other bits (noted by Kelsey [44]). Howe\er,
in our setting this only meansthat we needto make a stronger assumption
on the compressiorfunction h. In particular, we will instead assumethat h

is collision resistart even if we remove theses bits from its output.

Lemma 7. The MD-then-chop construction Hehop,, USING @ compression
function h : f0;1g  f0;1g" ! f0;1g", is @ O(C (reg*+ Q) collision

resistant hashfunction if the following holds:

The function h®: f0;1g f0;1g" ! f0;1g" ® de ned as hqx;y) =

h(x;y¥)in s (i.e. choppingthe last s bits from the output of h) is a ¢

col

collision resistant function.
his a ,¢q Output regular function.

The proof of this lemmais essetally the sameasfor lemmaé.

NMA C/HMA C construction

We note that usingthe NMA C construction H,nac doesnot helpin improving
upon the collision resistanceof the plain MD construction H. This is essen-

tially becauseany collisionin the rst the plain MD construction of Hymac
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(using initialization vector 1 V;) essetially implies a collision for the ertire
construction. Hence,at best, we can restate lemma 6 for this construction
aswell.

Sincethe HMAC construction Hymnac is simply a black-box instantiation
of the NMAC construction, this does not help in improving the collision
resistanceas well. Howewer, we note that this construction has the best

exactsecuriy if ;67?.

4.2.2 Pseudorandomness

An issuein the pseudorandomnesanalysis of the MD modes of operation
is the location of the PRF key As discussedabove, we needto specify
the location of the key sud that the resulting construction is still a black-
box variant of plain MD. For our analysis, we will assumethe key length
to be the length of a single block (i.e.  bits for the compressionfunction
h:f0;1g f0;1g" ! f0;1g"), and we will denotethe key asK. We will

analyzetwo approatesfor keying eadt MD mode of operation:

1. Prependthe keyto input: The PRF constructionH outputs H (K k X)

oninput X.

2. Appendthe keyto input: The PRF construction H outputs H(X k K))

oninput X.

Moreover, we will needtwo versionsof pseudorandomnesde nitions for the

compressionfunction, one where the key occupiesthe last n bits and other
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whereit occupiesthe rst  bits. We get the following two assumptionson

the compressiorfunction in this manner.

Standad PRF (sPRF) security: Here we require that for a uniformly
chosenK 2 f0;1g", the function h( ; K) must beindistinguishablefrom

atruly random function.

Dual PRF (dPRF) security: Herewerequirethat for auniformly chosen
K 2 f0;1g , the function h(K; ) must beindistinguishablefrom a truly

random function.

Depending on the maximum distinguishing advantage of an e cient at-

tacker in ead case,we call the compressiorfunction h -sPRF or -dPRF.

Plain MD construction.

In this caseif we prepend the PRF key to the hash function input, then
the resulting construction is not a PRF. This is becausean attacker can use
the extensionattackto nd H(K k X k Y) by simply knowing the output
H (K k X) and computing the compressiorfunction on the remaining blocks
itself (where it doesnot needto know the key K). On the other hand, if we
append the PRF key to the input, then we can show that if the plain MD
construction using h is collision-resistah and satis es the dual PRF security,

then the plain MD construction H( k K)) is a variable-lengthinput PRF.

Lemma 8. The plain MD construction His a O(" ( coi+ reg) + dporf) PRF

(with PRF key appendal to the function input) if the following conditions
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hold:
his o oollision resistant.
his a ,¢q Output regular function.
hisa gyt dual pseudoandom function.

Pro of: If the PRF attacker cannot nd any collisionsin the plain MD
construction H, then the n bit chaining variable ® is unique for ead PRF
input. In this case,the dual PRF security of h implies the PRF security of
the ertire construction (with the sameadvantage). On the other hand, the
attacker can nd a collisionin H with probability at mostO(" ( reg+ col))-

Enco de-the-MD construction.

Once again, we will discusstwo deterministic coding sdhemeshere, pre x-
free enading and su x-fr ee enading. Let us rst analyze the su x-free
MD construction Hgys . If we prepend the key to the (encaded) input, the
resulting construction s still insecuresincethe extensionattack works in this
caseaswell. On the other hand, if we appendthe key to the (encaded) input

then the resulting construction is a PRF if the su x-free MD construction

5The chaining variable denotesthe n bit intermediate inputs/outputs in the MD con-
struction
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Hsut Using the compressiorfunction h is a dual PRF and collision resistart
(for which we only needcollision resistanceof h in this case).

For the pre x-free MD construction Hy¢, if we append the key to the
(encaded) input then we get no advantage as comparedto the plain MD
construction and we can only restate lemma 8 in this case. On the other
hand, if we prepend the PRF key to the (encaded) input then the resulting
constructionis not vulnerable to the extensionattack in this case.Indeed, it
was shavn by Bellare et al. in [5] that the pre x-free MD construction with
the PRF keyin the IV is a PRF only assumingthat the compressiorfunction
h satis esthe standard PRF security. Howewer, sincewe will needto prepend
the key to the input (in order to presene the bladk-box property of the
construction), we will needto imposean extra condition on the compression
function. In particular, we require that the function de ned ash(U,; ) is an
output regularfunction. That is, if the rst n bits of the compressiorfunction
h are chosenat random then the resulting function is output regular with

high probability.

Lemma 9. The pre x-fr ee MD construction Hy¢ is a O( ?eg+ T sprf) Secure

PRF (with PRF key prependal to the input) if the following conditions hold:
h(U,; ) is a ?eg output regular function.

Pro of: The proof of this lemma essetially follows from the result of [9].

Indeed,if the attacker succeedsvith non-negligibleprobability whenthe PRF
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key is prependedto the encaled input while has at most negligible success
probability if the PRF key is in the IV of the construction, then it violates
the output regularity property of the compressiorfunction. This is because
for a random and secretkey asinput to h(U,; ), the output is random and

secretaswell (if the output regularity property holds).

MD-then-Chop  construction.

If the PRF key is appendedto the input to the MD-then-Chop construction
Hcnhops» then a slight variant of lemma8 can be stated for this construction as
well. Indeed, all we needis to specify the dual PRF and collision-resistance
properties for the compressiorfunction with chopped output.

On the other hand, if we prepend the PRF key to the input to Hchop,,
then the extensionattack doesnot seemto go through asin the caseof plain
MD construction. This is becausehe attacker doesnot learn the chopped s
bits of the chaining variable by observingthe output of Hehep, for the pre x of
an input. Indeed, this construction can be proven to be an arbitrary-length
input PRF by making a slightly non-standardassumptiononthe compression
function. In particular, we require the compressionfunction to satisfy the

following resilient SPRF assumption:

Assumption 2 ((s; )-resilient sPRF). Thefunctionh:f0;1g f 0;1g9"!
f0;1g" is a (s; )-resilient sSPRF if it is a -secure SPRF evenif the attacker

learns s bits of the n bit key.
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Now we canstate the following lemmafor the MD-then-Chop construction

in terms of this assumption.

Lemma 10. The MD-then-Chop construction Henop, i @ O( feg + ~ 25r1)
secure PRF (with PRF keyprependal to the input) if the following conditions
hold:

his a (s; g )-resilient sPRF.

h(U,; ) is a ?eg output regular function.

NMA C/HMA C construction.

The NMAC and HMAC constructions were shovn to be securearbitrary-
length input PRFs by Bellare [3]. In [3], it is shovn that the HMAC con-
struction with ;= , =? (i.e. with the samelV for both invocations of
the plain MD construction) is a securearbitrary-length input PRF if the
underlying compressionfunction satis es both the standard and dual PRF
security de nitions. This is doneby simply prependinga di erent -bit key

to ead invocation of the plain MD construction ©.

Lemma 11. The NMAC (resp. HMAC) construction Hymae (resp. Homac) 1S
ao(q® sprf+ dprt) PRF (with adierent -bit keyprependeal to the input
in each call to the MD construction) for any | V; and 1V, (resp. 1 and ;)

if the following conditions hold:

6if the same key is prepended in both invocations, then the construction is secure
under a slightly stronger assumption, called security against related-key attacks in [5, 3].
We ignore this setting here
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his a gyt -secure SPRF.

his a go-secure dPRF.

4.2.3 Random Oracle

We already analyzed ead of the four modes of operation for indi erentia-
bility from random oraclein the chapter 3. Howewer, we will mertion these
results briey for completenessNote that, in this casewe needto make an
\idealized" assumptionon the compressionfunction. In particular, we will
assumethat the compressionfunction is a xed-lengthinput random oracle

(FIL-R O).

Plain MD construction.

The plain MD construction does not give an indi erentiable construction
a random oracle from a FIL-RO. This is essehally becausethe plain MD

construction is vulnerable to the extensionattack, asshown in chapter 3.

Encode-then-MD construction.

The su x-free MD construction Hgs is alsovulnerableto the extensionat-
tack, and cannot be indi erentiable from RO. However, if we apply a pre x-
free encaling to the input then the resulting pre x-free MD construction
Hore is no longer vulnerable to this attack. Indeed, as shovn in the previ-

ous chapter, this construction is indi erentiable from RO if the compression
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function is a FIL-R O.

MD-then-Chop  construction.

The MD-then-Chop construction canbe shown to beindi erentiable from RO
if we chop a non-negligible(i.e. super-logarithmic in the security parameter)
number of output bits. Howewer, as shovn in chapter 3, this construction
has slightly worse exact security. In particular, we needa birthday bound

over s (number of chopped) bits instead of n bits.

NMA C/HMA C construction.

The HMAC constructionwith  ; = 0 and , =7? is indi erentiable from
RO. We note that ; canbeany -bit block sud that ; 2{? ; ,g, while
> can be any bit string in f2g [ f0;1g . On the other hand, the NMAC

construction is indi erentiable from RO if 1V, 6 | V5.

4.2.4 Message Authen tication Code

We will referto MACsthat work for xed-length messageasFIL-MA Csand
thosethat work for variable-length messageas VIL-MA Cs. We will analyze
eadt of the modesof operation to seeif they satisfy VIL-MA C security. Let
us rst note, that a pseudorandomfunction can be consideredto be a MAC
as well (PRF output senes as the messagdgag). Thus all the results for

PRF security above hold for VIL-MA C security aswell. We will try to nd
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if thesemodesare VIL-MA Cs under wealer assumptionson the compression
function than those neededfor the caseof PRFs.

Howeer, if we assumethe compressionfunction to be simply a FIL-
MAC, then we cannot usethe output of one application of the compression
function to key the construction. One solution to this problem would be to
analyzethe construction in the dedicated-key setting, where eat call to the
compressionfunction has a separatekey space. For currernt hash functions,
onecouldassumethat part of the messagdlock spacecanbeusedto securely
key the compressionfunction. That is, for the compressionfunction h :
fO;1g f0;1g" ! f0;1g9", the key occupiespart of the rst  bits in the
input. In this case,we can usethe results of [1, 53] to get secureVIL-MA C
constructions. Howeer, as we discussedearlier, this violates the property
that our modesof operation should be e cien t in terms of input bandwidth.

Thus, we will take a di erent approad here.

Plain MD construction.

If we prependthe MAC keyK 2 f0;1g to the input and apply the plain MD
construction, then the resulting construction is vulnerable to the extension
attack sincethe attacker can obtain the tag for a messageyy rst getting a
tag for the pre x. On the other hand, if the MAC key is appendedto the
input, then we nd su cient assumptionsto showv that H is a secureVIL-
MAC. In particular, we will needthe plain MD construction to be collision-

resistart and the compressiorfunction to be a secureMAC whenthe MAC
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key occupiesthe rst  bits of its input.

Lemma 12. The plain MD construction His a O(" ( regt col)* mac)-S€CUre
VIL-MA C, whenthe keyis appendeal to the input, if the following conditions
hold:

his a ¢ collision resistantfunction.
his a (g Output regular function.

hisa ma seure MAC, whenthe rst  bits of its input is consideed

to be the key space.

Pro of: The collision resistanceof the plain MD construction (which we get
from the rst two conditionsin the statemert of the lemma) implies that the
n-bit input to the last application of h is unique for eat new input. Hence
MAC security of the compressionfunction h implies MAC security of the

plain MD construction H.

Encode-then-MD construction.

If we usea su x-free encaling and append the MAC key to the input, then
we succeedin reducing the assumptionsneededin lemma 12 for collision
resistance. Indeed, in this case,we can shov that the su x-free MD con-
struction Hgys iISO( mact ~  col) SecureVIL-MA C if the compressiorfunction

IS ¢o collisionresistart and 5. secureFIL-MA C. On the other hand, if we
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prependthe MAC keyto the input, then the resulting constructionis insecure
sinceit is still vulnerableto the extensionattack.

If we usea pre x-free encaling, and prepend the MAC key to the input
then the resulting constructionis a secureVIL-MA C only if all the conditions
stated in lemma9 hold. On the other hand, the pre x-free MD construction
Hore With MAC key appendedto the input essetially hasthe samesecurity

asthe plain MD constructionin lemmal2.

MD-then-Chop  construction.

If we prependthe MAC key to the input to the MD-then-Chop construction
Hchops» then the resulting construction can be shovn to be a VIL-MA C only
under the conditions from lemma 10. On the other hand, if we append
the MAC key to the input then we can prove the VIL-MA C security of
the resulting construction by making slightly stronger assumptionson the

compressiorfunction as comparedto lemma12.

Lemma 13. The MD-then-Chop construction Henop, is mathcalO(™ ( req+
cl) + 2..)-secure VIL-MA C if the following conditions hold:
his a o collision resistantfunction.

his a (g Output regular function.

hq) = h()j, sisa 2. seure FIL-MA C.

mac
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NMA C/HMA C construction.

In this case,if we prependthe MAC key to the input, then we needthe same
conditionsaslemmallin orderto prove VIL-MA C security aswell. On the
other hand, if we append the MAC key to the input, then both NMAC and
HMAC constructions can only be proven secureusing the sameconditions

asin the caseof plain MD construction (lemma 12).

4.2.5 Target Collision Resistance

Target collision resistance(TCR) is a strictly wealer property than collision
resistance. Howewer, for somepurposes, TCR hash functions (also called
UOWHFs) su ce instead of CRHFs. For instance, it is possibleto comeup
with a signature schemeon arbitrary length messagesising one that works
only for xed-length messageby using TCR hashfunctions. For this reason,
this primitiv e hasattracted even greaterinterest sincethe discovery of better
attacks againstthe collision resistanceof existing hashfunctions.

When analyzingthe TCR security of the hash function modesof opera-
tion, we cannot assumethat the underlying compressiornfunction is a TCR
function as well. This is becausethe output of a TCR function need not
be random, sothat ead subsequenapplication of the compressiorfunction
will require separatekey space(and this dedicated-ley setting violates our
requiremens from the mode of operation). Instead, we will assumethat the

compressionfunction h : f0;1g f0;1g" ! fO0;1g" is an unkeyed function
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that satis es secondpreimageresistancetype properties.

Plain MD construction.

In order to discussthe TCR security of the plain MD construction, we need
to rst discussappropriate keying medanisms for this construction. As
we brie y mertioned above, Shoup[70] descriked an e cient masking-lasel
construction basedon the plain MD construction. Howeer, this construc-
tion modi es the chaining variable which violates our properties of black-box
modes of operation. Unfortunately, we do not know of any bladk-box ways
of keying the plain MD construction sud that it canbe shovn to bea TCR
hashfunction only assumingthe compressiorfunction to be a SPR function.

Halevi and Krawczyk [40] suggestedan alternate way of keying the plain
MD construction that satis es all the properties of a bladk-box mode of
operation. The construction H¢ proposedin [40] usesa -bit key K and

XORs the key with ead messagélock in the plain MD construction, i.e.

HK(xlk:::kx\)d:ef h(K  x;h(G:i;h(K o xg;1V) )

Howewer, in order to prove TCR security of this construction one needsto
make a slightly non-standard \SPR-type" assumption on the compression

function, calledthe evaluatel SPR assumption(e-SPR) [40].

Assumption 3 (evaluated second preimage-resistance). Consider a

function h : f0;1g f0;1g" ! fO0;1g" and let H¢ be the plain MD basel
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construction using h (descriked alove). The function h is ewaluated second
preimageresistart if any e cient machineA winsin the following gamewith

prokability at most (over the random choiee of | V and the coins of A).

1. A chmsesa sequene of -bit blacks 4;:::; .

K)andm= ; K.
3. A winsif it can nd c®and m°®suchthat h(m%c) = h(m; c).

Halevi and Krawczyk [40] show that if the compressionfunction h is an
e-SPRfunction, then the construction Hx described above is a secureTCR
hashfunction. Howeer, in their proof they require that the inputs provided
to Hqx must be su x-free. Indeed, this is required for their reduction to go
through. Howewer, we note that ewven for the plain MD construction (with
possibly\non-su x-free” inputs), onecan make an additional assumptionon

the compressiorfunction to enableus to apply the proof technique of [40].

Lemma 14. The construction Hx isan O(" ( tix + espr))-Secure TCR hash

function if the following conditions hold:

his an esp-secure e-SPRfunction.

For a randomly chosenl V, no e cient machine A has sucessprola-

bility more than ¢ix in nding a sequene of -bit blacks suchthat:

h(xi;h(:::;h(1V;xq)::2) =1V
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Encode-then-MD construction.

If we apply a su x-free encaling to the input beforeusingthe construction,
then the resulting mode of operation Hg, .« IS @ TCR hash function based
only on the assumptionthat h is an e-SPRfunction [40]. On the other hand,
if we usea pre x-free encaling then it doesnot help in improving the security
of the plain MD construction and we needall conditionsof lemmal4to prove

the TCR security of the resulting construction.

MD-then-Chop  construction.

For the MD-then-Chop construction, we needto make a slightly stronger
assumptionon the compressionfunction to prove the TCR security of the
resulting construction. In particular, we needto assumethat the compression
function h is e-SPRewenif we chop a non-negligiblenumber of its output bits.
If we replacethe secondcondition in lemma 14 wit this stronger condition,

then it holds for the MD-then-Chop construction as well.

NMA C/HMA C construction.

Using the NMAC or HMAC construction does not lead to improved TCR
security of the resulting construction. Again this is becauseif the attacker
nds a collisionin the rst invocation of the plain MD construction then it

implies a collision for both NMAC and HMAC construction.
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4.2.6 Second Preimage Resistance.

In this section,we will analyzeead of the modesof operation for the min-
imal assumptionson the compressionfunction neededin order to prove the
SPR security of the construction. Unfortunately, to the best of our knowl-
edge,there is no bladck-box mode of operation that is property preservingfor
secondpreimageresistance. Hencewe will needto make a slightly stronger

assumptionon the compressiorfunction h.

Assumption 4 (computed Second Preimage Resistance (cSPR) [40]).
A function h:f0;1g f0;1g"! fO0;19" is a -securecSPRfunction if any

e cient machine A has suaessprokability at most in the following game:

1. The challenger randomly selets a sequene of -bit blacks x4;:::; %,
setsc = H(x; k ::: k Xj 1) and x = Xx;. Here H is the plain MD

construction using the compressionfunction h and random1V. The

2. Awinsifit nds (x2c) 2 f0;1g f0;1g" suchthat h(x%c® = h(x; c).

Note that this assumptionis quite similar to the eSPRassumptionthat

we neededfor the TCR hashfunction case.

Plain MD construction.

Here we will assumethat the compressionfunction h is a cSPR function.

Howeer, in order to prove SPR security of the plain MD construction, we
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will alsoneedto assumethat the attacker cannot nd xed points starting

from arandom | V.

Lemma 15. The plain MD construction H using the compressionfunction h

isaO( (csprt 1ix))-Secure SPR function if the following conditions hold:
his a cspr-secure cSPR function.

For a randominitialization vector |V, no e cient attackercan nd a

prokability more than .

Encode-then-MD construction.

If we usea su x-free encading on the input, then the resulting construction
Hsut canbe provento be a SPR function solely on the assumptionthat the
compressiorfunction h is a cSPRfunction. On the other hand, the pre x-free
MD construction doesnot help in gaining any improvemern in SPR security

over the plain MD construction.

Lemma 16 ([40]). The sux-fr ee MD construction Hsys is @ O("  cspr)-
secure SPR function if the compressionfunction h is a ¢, -Secure cSPR

function.

MD-then-Chop  construction.

As in the caseof collision resistanceand TCR functions, we will needto

imposea slightly strongerassumptionon the compressionfunction in order
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to prove the SPR security of the MD-then-Chop construction Hehop,. 1IN
particular, we will needto assumethat the function hY') = h()j, sis -
secureSPR function. This assumptionalongwith the secondcondition from
lemma 15 su ces to show that the MD-then-Chop construction is a O("

(1ix + Opr))-secureSPR function.

NMA C/HMA C construction.

The NMAC/HMA C construction do not give any better SPR security as
comparedto the plain MD construction. This is becausea collision in the
rst invocation of the MD constructionimplies a collisionfor both the NMAC

and HMAC constructions.

4.2.7 Randomness Extraction

The idea of using the MD construction as a randomnessextractor was dis-
cussedby Dodis et al in [25]. They shaved that for getting any useful ran-
domnessxtraction propertiesfrom the MD construction, one needsto make
areally strong assumptionon the compressiorfunction h. In particular, they
assumethat the compressionfunction h : f0;1g f0;1g" ! f0;1g" is an
ideal randomnessextractor, which is the sameas assumingit to be a family
of randomfunctions’. That is, the function h( ; x) is a random function from

to n bits when x is uniformly distributed. We debate suth a compression

"Note that this is a weaker assumptionthan assumingh to be a FIL-R O. In particular,
it is a (very ine cien tly) realizable assumption.
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function h asa family of random functions fh.g for r 2 f0; 1g".

Let us start by explaining why oneneedsto make sud a strong assump-
tion on h. If we assumeh to be a regular extractor, then the distribution of
the output of h( ;x) for random x has a non-zerostatistical distance from
the uniform distribution on f0; 1g". If this output is useda seedfor the
next application of the compressionfunction then one has no guarartee of
extraction, sincethe seedus no longerindependen of the -bit input block.
Actually, Dodis et al [25] do give a positive result for the MD construction
simply underthe assumptionthat h is an almost-universalfamily of functions
8. Howe\er, for this result they require that ewvery input block for the MD
construction must have someamourt of conditional min-entropy® (see[25]
for more details). However, all the results here are basedon the assumption

that h is an ideal randomnessextractor.

Plain MD construction.

In this case,one can shaw that for a restricted classof inputs (from certain
high min entropy distributions), the output of the plain MD construction,
using an ideal randomnessextractor h, is closeto uniform. The input distri-
bution should be sud that it has high overall min entropy as well as high

conditional min-ertropy in the last input block.

8i.e., for the function h( ;x), where x uniformly distributed on f0;1g", for any two
distinct inputs y and z, the probability that h(z;x) = h(y;x) is negligibly closeto the
corresponding probability for a random function

9This is the min entropy of an input block conditioned on all the other input blocks.
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Lemma 17 ([25]). Let fH,g be the plain MD construction de ned over a
family of random functions f h,g, whete the sed r is essentialy the random
|V in the plain MD construction. Let X be the distribution of the inputs to
H (over bit strings with at most ™ -bit blacks) and let X- be the distribution
induced by X on the last block of the input. If Hy (X) > n+ 2log ¥ and
H, (X)) > log™ + 2log %, then SD(Hy (X);U,) = O() wheer U, is the

uniform distribution on n-bit strings.

Encode-then-MD construction.

Note that if oneappliesa su x-free encaling to the input in conjunction with
the plain MD construction, then the (encaded) input to the MD construction
may no longer satisfy the min entropy requiremens from lemmal7. Indeed,
considerapplying Merkle-Damgard strengtheningto the input beforethe MD
construction. In this case the last block hasno conditional ertropy (sinceit is
simply the input length). Nonethelessjn [25], Dodis et al. shav that adding
any xed paddingto aninput that satis es all min ertropy requiremerts still
givesa good randomnessextractor! Similarly, we cannot say much about a
generalpre x-free encaling sinceit might changethe input distribution in
an arbitrary way. Howewer, if we considerprepending input length to the

input, then it still givesa good randomnessextractor.
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MD-then-Chop  construction.

Quite surprisingly, if we chop a su cien t number of output bits then onecan
prove randomnessextraction properties of the resulting construction based
on fewer assumptionthan lemma 17. In particular, we can get rid of the

requiremen that the last input block hassu cien t conditional min ertropy.

Lemma 18 ([25]). Let Hchop,r e the MD-then-Chop construction de ned
over a family of random functions f h,g, wheee the sed r is essentialy the
random| V usel in the construction. Let X be the input distribution to Henep,
(over bit strings with at most ~ k-bit blacks). If H; (X) = n+ s+ log(" +
1), then we getthat SD (Hchop,(X);Un ) 2 ° whewr U, s is the uniform

distribution on (n  s)-bit strings.

NMA C/HMA C construction.

For the NMAC construction, it canbe shown that if randomand independen
|V, and |V, are usedin the two applications of the plain MD construction,
then the resulting construction Hymae is @ good randomnessextractor if the
compressiorfunction represeits a family of random functions. We can then
restate lemma 17 for the construction H,nac as well, with the same exact
security. Howewer, it turns out that translating theseresults to the setting

of the HMAC construction is not straightforward [25].
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4.2.8 One-W ayness

Oneway functions are also often referredto as preimageresistart functions.

This security property is even wealer than secondpreimageresistance.

Plain MD construction.

In this case,we will needto assumethat the compressiorfunction h is a one
way function. Moreover, we will alsorequirethat h is output regular, sothat
its output is uniformly distributed for a random input. This is essetially
becausewe needthe input to a one-way function to be random in order to

usethe one-waynessproperty.

Lemma 19. The plain MD construction His O(" egt+ owf )-S€ECUre One-way

function if the following conditions hold:

h is an ¢y output regular function.

his a o -secure one-wayfunction.

Pro of: Sa an attacker A has non-negligibleadvantage in the one-wayness
gameagainstthe plain MD construction H. Then we can construct another
attacker A° that simply givesits challengeas a challengeto A. Sinceh is
output regular, the attacker A cannot tell the di erence betweenthis chal-
lengeand if it was given the output of H on a random input. Thus it has
non-negligiblesuccesgprobability in this gameas well. The attacker A° can

usethe preimageoutputted by A to invert its challengeaswell.
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Encode-then-MD construction.

Note that if we use an arbitrary su x-free encaling before the MD con-
struction, then we cannot say much about the one-waynessof the resulting
construction sincethe input distribution could be arbitrary. However, if we
apply Merkle-Damgaard strengtheningto the input, then we canshow that the
resulting construction is a one-way function under su cien t assumptions.In
particular, we needto make an additional assumptionthat for any message
block, most outputs of the compressionfunction have a small number of
preimagesin the chaining variable that are consistem with the given block.
Note that this property certainly holds for a random compressionfunction
(and, thus, holds for most compressionfunctions). As for pre x-free en-
coding, onceagain we cannot say anything general(for the samereasonas
above), but when prepending the messagdength we are essetially bad to
the setting of plain MD discussedabove, exceptwe needto assumethat the
output of the compressionfunction on a random IV and a xed message
block is random.

In particular, we note that encaling the input in any way doesnot help
as far as one-waynessof the construction is concerned. In fact, we only
needmore assumptionsto prove this property, ascomparedto the plain MD

construction.
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MD-then-Chop  construction.

In orderto prove the one-way security of the MD-then-Chop construction, we
will needto make a slightly strongerassumptionon the compressiorfunction
h. In particular, we assumethat the compressiorfunction h is one-way with
s bits of the output chopped. Let the one-way security of the function h with
truncated output be ;. Thenwe canshaw that Henop, iSO regt O )-

secureone-way function (similar to lemma19)

NMA C/HMA C construction.

The NMAC construction is a one-way function under the sameconditionson
the underlying compressionfunction h asrequired in lemma 19. Howe\er,
we require that random and independert initialization vectors!V; and |V,
are usedin the NMAC construction. Howeer, it turns out that translating

theseresultsto the setting of the HMA C constructionis not straightforward.

4.3 Implications for Actual Hash Functions

Wewill now translate our resultsinto suggestiongor usageof actual \cascade
construction based"hash functions, sud as functions from the SHA family.
As we mertioned earlier, we have tried to nd the minimal assumptions
neededto make eat of the four modesof operation secure(for eah of the
security properties). Thus, we have left part of the \decision making" for

the practitioner who usesour results. In particular, the practitioner must
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considerthe following questions:

1. What one needsto assumeabout the hash function in order for the
cryptosystem (that the hashfunction is being usedfor) to be provably

secure?

2. What level of trust the practitioner is willing to placein the underlying

compressiorfunction?

The answer to the rst questionwill help in decidingthe security property
to look for in the hash function mode of operation. The answer to the
secondquestionmay not be as straightforward sincethe designof the com-
pressionfunctions is quite complex and mostly basedon heuristic. In this
case,the practitioner needsto weigh all the properties (s)he desiresfrom the
cryptosystem, in terms of e ciency, security etc. Thus, while somemay be
willing to make a slightly stronger assumptionon the compressionfunction
to have a more e cient implemertation, others may be willing to sacri ce
somee ciency for better security.

Now we will give somebasicrecommendationgfor actual hashfunctions

with respect to the various security properties.

4.3.1 Collision Resistance

Ead of the SHA functions are essetially basedon the su x-free MD con-

struction (using MD strengthening). Hence, collision resistancefor ead of
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thesehashfunctions is asymptotically sameas nding collisionson the com-
pressionfunction. It doesnot make much senseto usethe \truncated" ver-
sions,SHA-224and SHA-384,sincethis only sacri cesthe collisionresistance
of the original \untruncated" version (i.e. SHA-256 and SHA-512, respec-

tively). Usingthe NMAC/HMA C construction doesnot help in this case.

4.3.2 Pseudorandomness

We note that usingthe full SHA-2560r SHA-512hashfunctions makesmore
sensefor pseudorandomnesshan using the chopped versions(SHA-228 or
SHA-384), which only have worsesecurity. If any of the SHA functions are
used, as it is, for pseudorandomnessthen we recommendappending the
PRF key to the input instead of prepending it. Howewer, we recommend
using these functions in conjunction with a pre x-free encaling (suc as
prepending input length to the input) in which casethe PRF key should be
preendal to the input. Another option would be to composetwo calls to
SHA-1, with independen keysprependedin ead call, to get security based

on the sPRF and dPRF security of the compressiorfunction.

4.3.3 Random Oracle

Note that none of the SHA functions should be used, as it is, if the se-
curity of the cryptosystem requires the random oracle assumptionfor the

hash function. This is becausethe plain MD construction (even with MD
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strengthening) is vulnerable to simple attacks in the indi erentiabilit y sce-
nario. One may think that both SHA-224 and SHA-384 that correspnd
to \chop" versionsof the functions SHA-256and SHA-512would be secure
(since the MD-then-Chop construction is secure). Howewer, note that only
32 bits are chopped in the caseof SHA-224, which doesnot give su cient
security for almost all applications. Hence,only SHA-384 (that chops 128
bits) may be suitable to be useddirectly to instantiate the random oracle.
We recommendusing the HMAC construction involving two bladk-box
callsto the SHA function (while prependingdi erent ; and , in ead cal)
for this purpose. Using any of these hash functions in conjunction with a

pre x-free encaling will alsowork for this purpose.

4.3.4 Message Authen tication

If the SHA functions are usedasMA Csdirectly, then the MAC key shouldbe
appendedto the input. In this case,security dependson both the MAC se-
curity and collision resistanceof the compressiorfunction. Usingthe HMAC
construction doesnot help in improving the security either. Moreover, when
the \chopped" functions SHA-2240r SHA-384are usedas MACs, then their
security is only worsethan the unchopped versions(SHA-256and SHA-512).

If oneis willing to assumepseudorandomnessf the compressiorfunction,
then the technigues mertioned above for pseudorandomnessan be usedas
well. Another approad would be to assumethe delicated-key setting, by

inserting the MAC key in eat application of the compressiorfunction (at the
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cost of someinput bandwidth) and then one could useone of the techniques

suggestedn [1, 53].

4.3.5 Target Collision Resistance or UOWHFs

We recommendusing the technique suggestedoy Halevi and Krawczyk [40]
if the SHA functions are used as UOWHFs. In this case,one XORs the
UOWHF key to ead block of the input. SinceMD strengtheningis already
usedin all thesefunctions, the UOWHF security of this constructionis based

only on the eSPR[4(] (seeabove) of the compressiorfunction.

4.3.6 Second Preimage Resistance

It makes senseto usethe SHA hash functions directly for the purpose of
second preimageresistane without using any additional techniques, since
they do not lead to improved security (note that these functions already

incorporate MD strengthening).

4.3.7 Randomness Extraction

All the positive results for randomnessextraction have reasonableinterpre-
tation in practice, only if we arewilling to assumethat the SHA compression
function is closeto being a family of random functions. Even though it is
theoretically impossible,sincethe SHA compressiorfunction hasa short de-

scription, it might still be a more reasonableassumptionthan assumingthe
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compressiorfunction to be a FIL-RO.

Under this assumption,we can deducethat the SHA functions are good
randomnessextractors for input distributions with high min entropy overall
and in the last block. On the other hand, as we sav above, it might be a
good idea to usechopped function SHA-384 for this purposeto get better
extraction properties (SHA-224 doesnot have su cient number of chopped
bits to give useful advantage). Using the HMAC construction doesnot help

in improving the extraction properties.

4.3.8 One-W ayness

In the caseof \one-wayness", the security of the chopped functions, SHA-
224 and SHA-384,seemsto rely on stronger assumptionsthan the security
of the correspnding \unchopped" versions(SHA-256and SHA-384). This is
becausethe one-way security increaseswith the number of output bits. On
the other hand, it might be the casethat SHA-224still has higher security
than SHA-1, which seemsintuitiv e given the bigger IV of SHA-224. More-
over, messagesncaling or HMAC construction only seemsto decreasethe

one-waynessof the hashfunction.
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Part |1

Blo ck Ciphers
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Chapter 5

Feistel network made public

Feistel Networks are extremely popular tools in designing\cryptographically
strong" functions. Sud networks are basedon iterative application of the
simple Feistel permutation. In particular, given a function f : f0;1g" !

f0; 1g", the Feistel permutation basedon function f is de ned as:

¢ 1f0;1g™ ! f0;1g%n

XL kXR 7' Xgr kf(XR) XL

Typically, a Feistel network consistsof se\eral iterative applications of the
Feistel permutation with independent functions f usedin ead application.
The various iterativ e applications of the Feistel permutation are called the
rounds of the Feistel network, while the correspnding functions are called

round functions. Among their applications, they are commonly usedin the
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designof popular block ciphers, sut as DES, as well as other constructs,
sud as popular padding shemesOAEP [9] or PSS-R[10]. Even though a
theoreticaljusti cation for the useof the Feistelnetwork in designof DES was
not disclosedat the time of its releasethis justi cation was later provided

by the celebratedresult of Luby and Rado [47].

5.0.9 Luby-Racko 's result and Impro vements

Luby and Rackoff's resul t [47]. Luby and Radko noted that the

security of a block cipher can be best analyzedin terms of its \closeness"
from a uniformly random permutation for ead key. That is, it should be an
independen pseudoandompermutation for every di erent key. Moreover, as
a justi cation for the use of Feistel network in the designof block ciphers,
they showed that three (resp. four) rounds of the Feistel transform are suf-
cient to turn a pseudorandomfunction (PRF) family into a pseudorandom
permutation (PRP) family (resp. strong PRP family (SPRP)). In particu-

lar, their construction of a PRP (resp. SPRP) consistedof a three (resp.
four) round Feistel network with independert PRFs (from the PRF family)

as round functions.

Subsequent Impr ovements. There hasbeena lot of subsequenhwork on
improving various aspects of the Luby-Radko result. (referredto as\LR"
from now on). Naor and Reingold [58 provided a simpler proof of the LR

result. Moreover, they generalizedhe result and shaoved that the four round
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construction remains secureewen if the rst and last round of the Feistel
transform are replacedby pairwise independert permutations.

Maurer and Pietrzak [5]] studied the exactsecurity of the LR construction
if the number of Feistel rounds is increasedfrom four. In particular, they
notedthat LR type proofsconsistof two parts, rst the PRFsin eat rounds
of the PRP/SPRP construction are replacedby uniformly random functions.
Then the resulting constructionis provento be secureagainstany unbounded
attacker that makeslessthan an exponertial (of the form O(2°")) number
of queries. LR showed that the four round construction is secureagainst
any attacker that makesO(2"2) queries. Maurer and Pietrzak [51]improved
this result by shawing that a 6k round Feistel network is secureagainst any
attacker that makesupto O(n (1 O(1=k))) queries(thus approading the
information-theoretic bound of O(2") ask! 1).

Patarin [64] signi cantly improved this result by showving that a 5 (resp.
6) round Feistel network is a securePRP (resp. SPRP) against any un-
boundedattacker makingq 2" queries,thus shawving that the information-
theoretic bound can be achieved within a constart number of rounds.

Ramzanand Reyzin [69] generalizedthe LR result from a di erent per-
spective. They studied the security of the Feistel network (with PRFs)
against attackers that are given oracle accesso some(or all) of the round
functions. They shaved that if the attacker has oracle accesgo the middle
two round functions, then the four round Feistel network is still a secure

SPRP. On the other hand, they also shaved that if there is an e cient
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attacker that, when given oracle accessto either of the rst or last round
function, breaksthe SPRP security of the four round construction.

Apart from thesethere wereresultsthat studiedthe security of the Feistel
network when not all of the round functions are independen ([67, 63]). In
a recert work, Maurer et al [50] studied the security of the Feistel network
whenthe round functions are non-adaptively securePRFs insteadof adaptive

security.

5.0.10 The Problem and Our Result

A commonaspect of all the works on the Feistel network mertioned above

is that they crucially rely on the following assumptions:
(&) the (pseudo)andomnessof round functions; and

(b) thesecrecy of (at least someof) the intermediate round valuesappearing

during the Feistel computation

If either of these assumptionsis not true then ead of the above results is
no longer valid. Howeer, there are se\eral natural scenarioswhere one (or

both) of theseassumptionsare violated.

Is Unpredict ability enough? We start with the assumptionregarding
pseudorandomnessf round functions. The assumptionis quite strong, since
practical block cipherscertainly do not use PRFs as their round functions.

Instead, they heuristically use considerablymore than the three-six rounds
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predicted by the LR and all subsequen \theoretical justi cations”. Thus,
a large disconnectstill remainsto be bridged. Clearly, though, we needto
assumesome security property of the round functions, but can a wealer
property be enoughto guarartee security? In the cortext of domain exten-
sion of messageauthertication codes, An and Bellare [1] studied a natural

guestion whether unpredictability | a much wealer property than pseudo-
randomness| can at least guarartee the unpredictability of the resulting
Feistel permutation. Although not as strong as pseudorandomnesshis will

at leastguarartee someminimal security of block ciphers(seenext chapter),

is enoughfor messagauthertication, and anyways doublesthe domain of the
unpredictablefunction, which is useful(and non-trivial') by itself. [1] gave a
negative answer for the caseof three rounds, and suggestedhat \even more
rounds do not appearto help”. This result indicatesthat previous\LR-t ype
techniques"” are insu cien t to handle unpredictability (sincein the caseof
PRFs three rounds are enough), and also leaves open the questionwhether

more Feistel rounds will evertually be enoughto presene unpredictability.

Is it Safe to Leak Intermedia te Resul ts? Another crucial reasonfor
the validity of the LR result is the fact that all the intermediate round values
are newer leaked to the attacker. In fact, the keyto the argumen, and other
results mertioned above, is that the attacker e ectively getsno information
about most of thesevaluesin casea PRF is usedfor the round functions,
and simple attacks (which we later generalizeto many more rounds) are

possibleto invalidate the LR result in casethe intermediate round values
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are leaked. Unfortunately, for many natural applicationsthis assumption(or
conclusion!) cannot be enforced,and totally newargumert is needed.There
are se\eral examplesof sud applications.

Starting with the simplestexample,intermediate valuesmay be inadver-
tently leakedthrough an attack. For example,onemight imaginea smartcard
implemerting a block cipher via the Feistel network using a securechip im-
plemerting a PRF. In this case,the attacker might be able to obsene the
commnunication betweenthe smartcard and the chip, although it is unableto
break security of the chop. More realistically, when round functions are not
PRFs, the attacker might geta lot of information about the intermediate val-
uesanyway, even without extra attack capabilities. For instance,in the case
of unpredictablefunctions (UFs) mertioned above, we will construct provably
secureUFs sud that the output of the Feistel Network completely leaksall
intermediate round values. Although arti cial, this exampleillustrates that
wealker assumptionson the round functions can no longer guarartee the se-
crecy of intermediate values. For yet another example,the round function
might simply be public to beginwith. This happenswhen one considersthe
guestionof implemerting an ideal cipher from a random oracle. In this case
the round function is a publicly accessiblerandom oracle, and is certainly
freely available to the attacker. This questionwill be consideredin chapter
7. As a nal example (not consideredin prior work), the attacker might
get hold of the intermediate valuesbecausethe application requiresto reval

suchvalues This happenswhen onetries to add veri ability to PRFs and
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PRPs (or their unpredictable analogs),which we descrike in more detail in

the next chapter.

Our Resul ts. In orderto dealwith sud situations whenthe intermediate
round valuesmay be leaked to the adversary and alsohandle casesvhenthe
round functions may not be pseudorandom,we dewelop a new understand-
ing of the Feistel network. In particular, we dewelop a general framework
for studying the Feistel network that is applicablein all sud scenarios.In
our modeling, a k-round Feistel network is applied to k menmbersfq:::fy
independerly selectedfrom some(not necessarilypseudorandom)function
family C, resulting in a Feistel permutation . Whenewer an attacker makes
aforward (resp. inverse)queryto (resp. 1), we assumethat it learnsall
intermediate values.

On the negative side, we shav a simple attack allowing an adversary
to compute any value (y) by making at most exponertial in k number
of forward queriesto . Sincesud an inversion should be unlikely (with
polynomially many queries)even for an unpredictable permutation, this im-
mediately meansthat at least a superlogarithmic number of Feistel rounds
(in the security parameter ) are necessaryto guarartee security for any of
the applications above. Aside from shawing the tightnessof all our posi-
tive result descrike below, this result partially explains why practical black
ciphers use signi cantly more than 3 6 roundspredicted by all the previ-
ous\theoretical justi cations” of the Feistel network. Indeed, sinceall such

ciphers heuristically useround functions which are not PRFs, and we just
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showved that even unpredictable functions might leak a lot (or ewen all) of
the intermediate results, the simple attack we presern might have beenquite
applicableif a small constart nhumber of rounds was used!

On the positive side, we shov a general conbinatorial property of the
Feistel Network which makesessetially no assumptions(such aspseudoran-
domness)about the round functions usedin the Feistel construction, and
allows us to apply it to a wide variety of situations descriked above, where
the previoustechniquesfailed. In essencefor any s k=2, we show that if
an attacker, making a sub-expnertial in s number of (forward or badkward)
gueriesto the construction and always learning all the intermediate round
values, can causea non-trivial collision somewherebetween rounds s and
k s, then the attacker canalso nd a simple (and non-trivial) XOR condi-
tion on a constart (up to six) number of the round valuesof the querieshe
hasmade. This meansthat if a function family C is sud that it is provably
hard for an e cient attacker to nd sud a non-trivial XOR condition, |
and we call sud families 5-XOR resistant | then it is very unlikely that
the attacker can causeany collisions betweenroundss and k s (as long
ass, and thus k, are super-logarithmic in the security parameter ). In the
next chapter, we show that onceno sud collisionsare possible,it is possible

to directly arguethe security of the Feistel Network for our applications.
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5.1 Preliminaries

Wewill denoteby Fibonaccfk) the k™" Fibonaccinumber, and thus Fibonaccofk) =
O(1:618).
The Feistel transformation usingf : f0;1g" ! f0;1g" is a permutation
¢ on 2n bits de ned as, ¢(X) def Xr kx.  f(Xgr). The synbols x, and
Xr denotethe left and right halvesof the 2n bit string x. We will also call
the Feistel network consistingof k iterated applications of the Feistel trans-
formation, a k-round LR construction and denoteit by ¢,..r, (or « when
fq:::f¢ areclearfrom cortext) wheref:::fy arethe round functions used.
On a 2n bit input, the construction  generategk + 2) n-bit intermediate
round values, the last two of which form the output. This construction is

illustrated in gure 5.1.

5-XOR Condition. Consider a k-round LR construction , that uses
arbitrary round functions f,:::fx. Now considerany sequenceof q for-
ward/in versequeriesprovided to this construction. As discussedabove, in
the processof computing its output the LR construction | also generates

(k+ 2) n-bit round values. We will denotethe n-bit round valuesasseiated

ewaluation f; (R!). We call this a new round function evaluationif R} 6 R}’

for any i°< i. In this case,if the i"" query is a forward (resp. inverse)one,
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R, . n-bit roundvalue
@ - roundfunctions

Figure 5.1: The k-round Feistel Network

then the round value Rji . (resp. R} 1) Is the new round value generatedas
a result of this round function ewaluation.
We sa that the 5-X OR condition holds for this sequenceof q queries,

with correspnding round values R};R};::: if there is at least

: |I<+1 i2f 1::q9’
one new round function evaluation sud that the correspnding new round
value RJ-i generatedas a result can be represeted as a bit-by-bit XOR of

upto 5 previously existing round values, that is:
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If i™" query is a forward query, then RJ-i can be represeted asan XOR

of upto 5 round valuesR!o, sud that either i°< i or (i°= i)~ (j°< j).

If i query is an inversequery, then RJ-i canberepreseted asan XOR

jO

of upto 5 round valuesR;,, sud that eitheri®< i or (i°= i)~ (j°> j).

5.2 Insecurit y of O(log )-round Feistel

Wewill demonstrateherethat upto alogarithmic number of Feistelroundsdo
not su ce for any of our results. Essetially, we will descrite an e cient at-
tacker A that only makesforward queriesto the k-round LR construction
(using arbitrary round functionsf:::fy), and nds the input correspnding

to any permutation output y 2 f0; 1g*".

Theorem 18. For the k round LR construction | that usesk = O(log )
round functions, there exists a prokabilistic polynomial time adversary A
that takesoracle accessto . The adversaryA makesO(Fibonaccfk)) =
poly( ) forward queriesto ¢ and with high prolability nds the input cor-

respnding to an output y without actually making that query.

Pro of: The adversary A getsthe permutation output y 2 f0;1g®", that
it is supposedto invert | on. For concretenesswe assumethat y = 02"
(anything elseworks just aswell). We will descrile the recursive subroutine
that the attacker A is basedon. Say the round functionsof | aref,:::fy.

The recursiwe function that we descrike is E(j; Y), wherej is the number of
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rounds in the Feistel construction and Y is a 2n bit value, and the task of
E(j; Y) isto nd the input sud that the j and (j + 1) round valuesare

Y, and Yg (the left and right halvesof Y), respectively.

E(1;Y) : Choosearandom Ry  f0;1g". Make the forward query
RIk Y. to 1, wherethe 2" round value is R9. Now the 1%t and 2"

round valuesfor the input R R  Yg kY, areY_ and Yg.
E(j;Y) ; J > 1: Perform the following steps,

{ MakearandomqueryRok R;  f0;1g?", andsay the 2n bit value
at the j™ roundisis Rj k Rj+1. Then, f{(R)) = (Rj 1 Rj+1)-

{ RunE( 2;(f; 1(Rj 1) Y.) kR; 1) andthe 2n bit value at
the (j 1)" roundisR; 1 kY.. Hencef;(Y.)=R; 1 Rj:«.

{ RUNE((j 1);(fj(Y.) Yr)kY.), andthej® and(j + 1) round

valuesare Y_ and Yg, respectively.

The adversary A essetially runs the algorithm E(k; 0°"). Now we needto
make surethat the adversaryA doesnot queryonthe input correspndingto
the output 0°". But sinceall the queriesmadein the recursiwe algorithm are
essetially chosenat random, we know that the probability of this happening
is 5. Hence,the probability that A succeedss at least 1 - .
We note that the above attacker works in a scenariowhereit canonly make
forward queriesto the Feistel construction . In case,it can make inverse

queriesas well, it is possibleto designa similar attacker that succeedsn
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O(Fibonaccfk=2)) queries. If the number of roundsk = O(log ), then the
number of queriesneededby either of these attackers is polynomial in the
security parameter . We will describe how this attacker works in ead of

the applications of the Feistel network in the next chapter.

5.3 Combinatorial Analysis of the Feistel Net-
work

In this section, we will prove a generalconbinatorial lemma about the k-
round LR construction , that usesarbitrary round functionsf,:::fy. In
the subsequen chapter, we will seethat this lemma is the main ingredient
in deriving ead of our results.

Consideran arbitrary sequencef g forward/in versepermutation queries

madeto the LR construction |, ead of which is a 2n bit string. Denotethe

R[i; k]; R[i; (k + 1)], where R[i; 0] k R[i; 1] (resp. R[i; K]; R[i; (k + 1)]) is the
input if this is a forward (resp. inverse)query. We say that sud a sequencef
queriesproducesa s round value collision, if the s round value collidesfor
two di erent permutation queriesfrom this query sequence.That is, when
we have RJi; s] = RJ[j; s] fori;j 2 f1:::qg and (R[i; 0] k R[i; 1]) 6 (R][j; O] k
R[; 1]).

We essetially show that if any sud sequenceof q queriesproducesa rt

round value collisionfor any r 2 fs:::(k s)g (wheres (k=2)), then one
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of the following must hold:
1. The number of queriesq is exponertial in s.

2. For this sequenceof queries,the 5-XOR condition holds.

5.3.1 A \No-Collision" Prop erty of the Feistel Net-

work

Now we will state the \no round value collision" property descrited above.

This is formalized in the lemma below:

Lemma 20. Let , be ak round LR construction that uses xed and arbi-
trary round functions f,:::fx. For any s % and any ordered sequene

of g = 0(1:3803) forward/inverse queries, with assaiated round values

this sequene of queriesthen there is no r" round value collision for these

queries,for all r 2 fs:::(k s)g.

Note that is is simply a structural property of the k-round LR construc-
tion that holds irrespective of the round functions usedin the construction.
We will provide a (very) high level overview of the proof followed by the
formal proof. The proof essetially considersstarts by assumingthat the 5-
XOR condition doesnot hold for the given sequencenf queriesin which two
di erent queriescollide in the r'" round value. Then we prove the existence

of an exponertial number of queriesin this sequenceas follows:
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. We rst show that ead round value (generatedbefore the r" round
value) in the later of the two colliding queriescollideswith the corre-

sponding round value in an earlier query:

. Next we prove that if ead of thesecolliding queries(made earlier) are
di erent and could only have beenmadein an order sud that at least
half of theseare in strict ascending/descendingrder, in terms of the

order in which they were made.

. Then we show that for (almost) ead of the queriesin this strict as-
cending/descendingsequencethere exists another strict ascending(or
descending)sequenceof queries (ead of which is dierent from the

onesalready considered).

. Finally, we note that this argumert can be cortinued recursiwely, with-
out double courting, and we get a recursionfor the number of queries.
Upon solving this recursion,we get that the number of queriesin this

sequencas (1 :38037?).

Pro of: Assumethat the 5-XOR condition does not hold for the given se-

guenceof queries. Without lossof generality, say one of the queriesinvolved

inthe r™ (wherer 2 fs:::(k s)g fors (k=2)) round valuecollisionis the

last (g") query. If this were not the casethen we can disregardall queries

following the colliding query that was made later, and argue on the smaller

sequencef queriesthat remains. In addition, we alsoassumethat the given

sequencef queriesdoesnot consistof duplicate queries. If not then we can
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disregardall but the rst of theseidertical queries. This will not wealen our
conclusion,but makesour argumen easierto explain.

We represen the j ™ round value assiated with the it" query asRi; j].
Thus we know that 9i < q : RIgr] = R[i;r]. We maintain a q vector
b that denotesthe direction of ead query. Thus b[i] = 1 denotesthat the
i query is a forward query, while b[i] = 0 denotesthat it is an inverse
query. We de ne a \rst occurrence" query function for ead round value,
ie.p:fl:::qg fO:::k+1g! f1:::q9g9. Forany roundvalueR]i;j], p(i; j)
is the least input numkber sud that R[p(i; j);j]1= RI[i;j]

If the colliding round numberr k=2, then we get a worselower bound
if the " query is a forward query. Otherwise, we get a worse lower bound
if it is an inversequery. Sincethe two casesare symmetrical, we will only
descrile herethe argumert whenr k=2 and assumingthat the g query
is a forward query.

As the rst step of our argumen, we prove that all the round values
R[g;1]:::R[qg;r 1] collide with the correspnding round valuein an earlier

query.

Claim 19. If 9i < q : RJ[qgr] = R]i; r], then each of the round values

R[g;1]:::R[g;r 1] were de ned before the g query was made. That is,

8 2fl:::rg : p(gj)<g

pro of of claim 19: We will useinduction on the round numberj to showv
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that p(q;j) < g. We start the induction with j = r and godown to j = 1.
Forj = r, we already know that p(q;r) = i from the statemer of the claim.

Now sa the sameholdsfor allj = r:::c(for ¢ r), then we will shav
that the (¢ 1) round value also collides with the correspnding round
value in an earlier query. Say, for the sake of cortradiction, that R[g;c 1]
is a new round value in input number q (i.e. p(g;(c 1)) = g). Then the
round function evaluation f . 1y (R[g;c 1]) is a newround function evalua-
tion, generatingthe new round value R[q; c]. But R[qg; c] = R[p(q; ¢); c], and
p(g; €) < gby induction hypothesis. This cortradicts the fact that the 5-XOR
condition doesnot hold for the given sequenceof queries. Thus, p(g;j) < g

forallj = 1:::r. U

Henceall the round valuesR[q; 1]::: R [q; r] already occur beforequery num-
ber g. As our next step, we will shav that the order in which the queries

p(g;1):::p(qg;r) are made could be one of very few possibleorders.
Claim 20. Thereis around numterj 2 f1:::rg, suchthat,
pg1) > =t > p(gj)
p(arj) < i < p(gr)

That is, the round value R[q;j] was de ned before any of the other round
valuesR[q; 1]:::R[g; r]. Moreover, the queriesp(q;j):::p(g;r) were made

in this order, while the queriesp(q;1):::p(qg;j) were made in the reverse
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order.

pro of of claim 20: Wewill rst provethat for any three consecutie round
valuesR[qg; (I 1)];R[qg;i] and R[q; (i + 1)] (wherei 2 f2:::r 1g), it holds
that,

[p(a; (i 1)) > plo; )] _ [p(g;i) < pla; (i + 1))]

The claim will then follow as a straightforward consequence.

Assumeto the cortrary that p(q; (i 1)) p(q;i) andp(qg;(i+1)) p(q;i)
for somei 2 f2;r 1g. If p(g; (i 1)) = p(a;i) (or p(g;i) = p(q; (i + 1)))
then it is easyto verify that queriesp(q;i) and g are the same,which is not
the caseby assumption. Thus, we have the casethat p(g;(i 1)) < p(q;i)

and p(q;i) > p(q; (i + 1)). But we know from the designof | that,

fi(RIp(q1);i]) = Rip(g;i); (i 1)1  Rlp(a;i); (i + 1)]

It is alsothe casethat,

fi(Rla;i]) Rlg:(i 1)1 Ria(i+ 1)]
Rlp(g; (i 1));(  1)]
Rlp(q; (i + 1)); (i + 1)]

Rlp(g;i); (i 1)] Rip(a; (i 1)@ 1)]

RIp(a;i); (i + 1)] Rip(q; (i + 1)); (i + 1)]

) fi(RIp(a;i);1])

Thus, if b[p(q;i)] = 0then R[p(q;i); (i 1)] can be represeied asan XOR
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of three previously existing round valuesotherwiseR[p(q; i); (i + 1)] hassud
an XOR represemation. In any case,this will give a 5-XOR condition which

we know doesnot hold. Thus we can say that

8i2f2::xr 1g : [p(ap (i 1)) > p(q;i)] _ [p(g;i) < p(q; (i + 1))]

Now it is a straightforward task to verify that the query orders consisten

with this constrairt are exactly the onesin the statemern of claim 20. Y

From claim 20, we can deducethat there exist at least 5 consecutie round

valuesin the g query, whose\ rst occurrence"queriesarein strictly ascend-
ing/descendingtemporal order. Sincer < g we will get a worselower bound
on the number of queriesif we assumethat > p(g;1)> :::>p ¢ 5 . If on
the otherhand,q> p(q;r) > :::> p g5 wecanshavthat = (1 :3803).
Thus, we assumethat g> p(g;1)> :::>p ¢, 5 .

As our next step, we will prove a general property of sud a strictly
ordered sequenceof \ rst occurrence" queriesof consecutie round values.
For this purpose,considerany three consecutie\ rst occurrence"queriesout
of sudr asequencesay ij = p(;j), ij«1 = p(; (j + 1)) andij+2 = p(; (j +2))
sud that ij > ij4+1 > ij4+2. We will determinethe order in which the \ rst
occurrence"queriesof the round valuesof the i}h guery could have beenmade
in this case. Additionally, we will also determine the order of thesequeries

relative to the queriesij;ij+; andij.,.
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We essetially shaw that if the i}h query is a forward query then the
round valuesR{[i;; 1]:::R[ij;(j  1)] collide with correspnding round values
in somequery beforethe i}h qguery. Moreover, we also show that the queries
p(ij;1):::p(ij;j  2) weremadeafter the if,; query, but beforethe i query.
If the i}h query is an inversequery, then we prove the sameconditions for the
round valuesR([i;; (j + 1)]:::R[i;; Kk]. This is formally statedin the following

claim.

Claim 21. Letthe queriesnumteredij;ij+; andij., bethe\rst occurrene”
gueries of the round valuesR[;j;R[;j + 1] and R[';j + 2], respctively.
Moreover, saythat ij > ij.1 > ij+2. If the i}h queryis a forward query (i.e.

blij]= 1) then,

i > (i) > o> plii o 2)> ja
On the other hand, if bfi;] = O then,

ij > p(ij;k) > tio> piys) + 2)> e

proof of claim 21: Let us start by consideringthe casethat bfi;] = 1.
In this case,we analyzethe round valuesR[ij; 1]:::R[i;;(j 1)]. Consider
the round value R[ij;(j  1)]. If this round value does not collide with a
correspnding round value before the i}h query, then f; 1(R[ij;(j 1)) is

a new round function evaluation and R[ij;j] is the newly generatedround
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value. But we know that

R[GIT R G+ 2)
Rlij;1T Rlij2;( + 2)]
Rlij«2;( +2)] Rlij«asj] Rlija; (0 + 2)]

fi (R[S (G + 1))
) fia(Rj+a;( + 1))
) RIij:j]

And sinceij > ij41 > lij+2, this will give a represetation of the newly
generatedround value R[i;;j] in terms of 3 previously existing round values,
which violates the fact that the 5-XOR condition doesnot hold. Thus, we
can deducethat p(ij;j 1) < i;. Now we can argueinductively (similar to
claims 19) and show that ead of the round valuesR[ij;1]:::R[i;;(j  2)]

collide with correspnding round valuesin earlier queriesaswell.

Conclusion 1: We candeducethat 8j°2 f1:::j 1g : p(ij;j9 < ij.

Now we will try to nd the order in which these queriesp(i;;j9 could
have beenmade. In addition, sincewe know that ij., < ij+1 < ij, we will
also be interested in the order of the queriesp(ij;j9 relative to the ij-”l,l
and ij”lz gueries. Let us start by concelitrating our attention on the queries
ij+2;p(5; (G 1)) andp(ij; (G 2)).

Considerthe casethat p(ij;(j 1)) < ij+1 andp(ij;(j 2)) < ij+1. Then
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we can deducethat,

fiea RO+ (G + 1)) Rlij;1T Rlij2;( + 2)]

Rlij+2;( + 2] Rlj;( 2)]
fi a(ROG DD

Rlij+1;( + 2)] _ Rljs2;G+2)] RpG;:G 2)3G 2]
R[ij+1;]] Rp(;;G - 1)1 Rip(;:G 1)):G 2)]

) Fia(Rlija: (G + 1))

Thus depending on whether ij,; is a forward or inverse query, we get a
represetation of Rfij+1;j] or Rfij+1;(j + 2)] as an XOR of v e previous
round valuesand sinceR[i;+1; (j + 1)] is a newround value this cortradicts
the fact that 5-XOR condition doesnot hold for the given sequenc®f queries.

Thus we can deducethat,

p(ij; (G 1)) > i orp(ij; (G 2)) > ija (5.1)

Next we considerthe casethat p(i;;(j 2)) < p(i;;(j 1)) aswell as

Ij+2 < p(ij;(  1)). In this case,we obsere that,

fi a(RO;:G D)D) Rij;(G 2] Rl

RIj;;G 21 fiaa (Rl G+ D))
Rlij+2;( + 2)]

Rip(;:G - 1)):G 2)] RIp(i;G 2)):G 2] Riijsasii]
Rip(; G 1)l Rlij+1:(0 +2)] Rlijs2:( + 2)]

) fia(RIpG: G )G D)D)
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Now depending on whether the p(ij; (j  1))" query is a forward or inverse
query, we can derive a 5 XOR represetation of either R[p(i;; (j  1)); (]

2)] or R[p(ij; (j  1));j] in terms of previously existing round values, thus
violating the fact that the 5-XOR condition doesnot hold. Hencewe deduce

that
p(ij; (G 2)>p(ij;(G 1) orija > pd;;( 1)) (5.2)

In orderto satisfy both equations5.1and 5.2, we needthat p(i;; (j 2)) >
p(ij; 1)) aswellasp(ij;(j  2)) > ij1.

Conclusion 2: We candeducethat the only two possibleordersfor these

three queriesare

p(j; (0 2) > p(ij;(G 1)) > Bjea orp(iy; (G 2)) > ijaa > p(ij; (G 1)

In either case,we can deducefrom conclusion 2 that p(i;;(j 2)) >
p(i;;(i  1)). Next considerthe query p(i;;(j  3)). If p(ij;(j 2) >
p(ij; (j  3)) aswell, then we can deducethat

Rip(i:G 2):G 31 _ Rp(;;G  1xG 1]

Rip(;:(G 2):G )] Rip(;;(G - 3G 3)]

This will give arepresetation of either R[p(ij;(j 2));(G 1)] or R[p(ij; (]
2));(j 3)] in terms of 3 previously existing round values depending on

whetherthe p(ii;(j 2))" queryis aforward or aninversequery, respectively.
j

194



In either case,this violates the fact that the 5-XOR condition doesnot hold
for the given sequenceof queries. Thus, we can deducethat p(i;;(j  3)) >
p(ij; G 2))> p(ij;( 1)). Now this sameargumert can be cortinued and

using conclusion 2, we can prove that

ij>pQ;;0)> > p(i (0 2) >

If the query number ij is an inverse query, then we can carry out a
symmetric argumert by consideringthe round valuesR[ij; (j + 1)]::: R[ij; k]

insteadof R[ij;(j  1)]:::R[ij;1]. Then it canbe deducedthat

ij > p(ij; k) > o> p(iys (5 + 2) > ja

We will apply claim 21 to the sequenceof rst occurrencequeriesp(q; 1) >
0> p g5 . Thusconsiderany j = 1:::5 2, and the rst occur-
rence queriesp(q;j); p(g; (j + 1)) and p(q; (j + 2)). Since]j 5 % we
will get a worse bound if the p(q;j)" query is a forward query. In par-
ticular, we can use claim 21 to show in this casethat the round values
Rp(q;j);1]:::R[p(q;j);(j  1)] collide with correspnding round valuesin
earlier queries. On the other hand, if this is an inversequery then we can

show that ead of the round valuesR[p(q;j);(j + 1)]:::R[p(q;]j); K] collide

with correspnding round valuesin an earlier query. The former caseclearly
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givesus a worselower bound on the number of queries,and hencewe assume
that the p(qg;j)™ query is an inversequery

Henceconsideringqueryp(q; j ), we candeducethat at leastanother(j 2)
guerieswe madebeforeit but after the queryp(qg; (j + 1)). We canalsodeduce
from claim 21 that these(j 2) \rst occurrence"queriesare alsomadein

strictly descendingemporal order, that is

p(p(a;j); 1) > :r> p(p(g:j); (0 2)

Since eat of these sequenceof queriesis in strict temporal order, we
can apply claim 21 to ead of thesesequencef queriesand cortinue in this
recursive fashion. Moreover, we also shav that any queriesthat we count
at a certain level of the recursionin this fashionlies strictly in betweentwo
consecutie queriesfrom the previous level, we can deducethat we do not
perform any double courting. In gure 5.2, we illustrate an example of a
guery tree with the rst three levels indicated. Here the two queriesthat
collide in the (k=2)" round value are indicated as\colliding queries"1 and
2, in the order they were made.

In order to bound from belowv the number of queriesq that produce a
collision on the r" round value, we will needto court the number of queries
that are bound to exist by the argument above. Let Q(j) be a recursiwely
de ned variable that denotesthe minimum number of queries’ neededo get

round valuesR[’; 1]:::R[; j] with their rst occurrencequeriesmadein the
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| = Query Treelewel 1

| = Query Treelevel 2

= Query Treelewel 3

Figure 5.2: Example of the rst three levels of a query tree. All the queries
in this exampleare assumedo be forward queries.

order p(i; 1) > ::: > p(i; j). Using claim 21, we get the following expression
for Q(j),

P

Q(G) = i+ LIQC 2
) QG) = Q1 1+Q( 4)+1
) Q1) = 2Q( 1) Qi 2+Q( 4 QG 5
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The solution to the above homogeneousecurrenceequationcanbe expressed

in terms of the powers of the roots of the following algebraicequation:

x> 2x*+x® x*+1=0

This equation has only one root greater than 1, which is 1:3803. Thus we

can represen the solution of the above recurrenceas:

Q(j) = (1 :3803)

From claim 20, we get that if any query collideswith an earlier query in the
r'" round value, we can nd a strictly increasing/decreasingsequenceof 5

\rst occurrence"queries. Thus, we get that

q Q 3
) q = 1:38032
) q 1:3803%2 | sincer 2 fs:::(k s)g

The above proof only took into account the casethat r < k=2. If r > k=2

then a similar argumen can be carried out by swapping forward queries

with inversequeriesand we can derive that g=  1:3803k =2 | In either
case,we get the bound that q = 1:38032 , sincer 2 fs:::(k s)gand
s (k=2).
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5.3.2 A Slightly Weaker Result

Next we state a morerestricted versionof the conbinatorial lemma, whenthe
adversaryonly makesforward queriesto the Feistelconstruction. This lemma
will be useful in certain scenarioswhen the attacker only makes forward
gueriesto the Feistel-basedconstruction (for instance,in domain extension

of MACs in next chapter).

Lemma 21. Let | be a k-round LR construction that uses xed and ar-
bitrary round functions f,:::f,. For any round numter s, and any ordered

sequene of q = 0(1:3803) forward queries, with assaiated round values

this sequene of forward queriesthen there is no r" round value collision for

thesequeries,for all r  s.

The proof of this lemma is similar to that of lemma 20, but is slightly
simpler sincethe query sequenc®nly consistsof forward queries. We provide
it next for completeness.

Pro of: We start by assumingthat the 5-XOR condition doesnot hold for
the given sequenceof forward queries. Without lossof generality, say one of
the queriesinvolved in the r' round collision (for r  s) is the last query,
i.e. the g query. If this is not the case then we can easilyignorethe queries
following the collision queriesand get a smaller sequencef queriesfor which
the property holds. We also assumethat the given sequenceof queriesdoes

not consistof duplicate queries. If this is not the casethen we can ignore
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all but the rst oneof all sudh idertical queriesand it will not wealen our
conclusion,while making the argumen easierto descrike.

We represen the j " round value assiated with the it" query asR]i; j].
Thus we know that 9i < q : R[gr] = R[i;r]. Wedene a\rst occur-
rence" function for ead round value,i.e. p: fl:::qq fO0:::k+ 1g!
f1:::9g. For any round value R[i; j], p(i; j ) is the least input numkber suc
that R[p(i; j);i]= RIi;j].

In the rst step,wewill provethat all the round valuesR[q; 1]::: R[q; (r
1)] collide with the correspnding round value in an earlier query. As a rst
step, we prove that all the round valuesR[q; 1]:::R[q;r 1] collide with the

correspnding round value in an earlier query.

Claim 22. If 9i < g : RJ[gr] = RIi; r], then each of the round values
Rlg;1]:::R[g(r 1)] were already de ned before the g query was made.
That is,

8 2fl:::rg : p(gj)<q

pro of of claim 22: We will useinduction on the round number j to shov
that p(q;j) < g. We start the induction with j = r and godown to j = 1.
Forj = r, we already know that p(q;r) = i from the statemen of the claim.

Now say the sameholdsfor allj = r:::c(for ¢ r), then we will shav
that the (¢ 1) round value also collides with the correspnding round
valuein an earlier query. Say, for the sake of cortradiction, that R[g;c 1]is

a new round value in query number q (i.e. p(g;c 1) = ). Then the round
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function ewaluation f 1) (R[g;c 1]) is a new round function ewaluation,
and henceR]q; ] is the new round function value generatedas a result. But
R[q;c] = R[p(q;c); c], and p(g; c) < q by the induction hypothesis, which is
a 1-XOR represetation of the newround value R[q; c]. This corntradicts the

fact that the 5-XOR condition doesnot hold for this sequencef queries. U

Thus, we know that all the round values R[g;1]:::R[g;r] were de ned
strictly before input number g. As our next step, we will showv that the
order in which the queriesp(q; 1):::p(q;r) are madecanonly be oneof very

few speci ¢ orders.

Claim 23. Thereis around numterj 2 f1:::rg, suchthat,

p(g;1) >t > p(gj)
p(gj) < v < p(gr)

That is, the queriesp(q;j):::p(qg;r) were made in this order, while the

queriesp(q; 1):::p(q;j) were madein the reverseorder.

pro of of claim 23: Wewill rst provethat for any three consecutie round
valuesR[qg; (I 1)];R[qg;i] and R[q; (i + 1)] (wherei 2 f2:::r 1g), it holds
that,

[p(a; (i 1)) > p(g; )] _ [p(c; i) < p(g; (i + 1))]

The claim will then follow as a straightforward consequence.

Assumeto the cortrary that p(q; (i 1)) p(g;i) andp(q;(i+1)) p(q;i)
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for somei 2 f2;r 1g. We can easily seethat p(g;(i 1)) 6 p(g;i) (and
p(q;i) 6 p(q; (i + 1))) sinceotherwisethe queriesp(q;i) and g will be the
same.

Thus, it must bethe casethat p(qg; (i 1)) < p(qg;i) andp(q;i) > p(q; (i +

1)). But we know from the designof | that,

fi(RIp(cr 1);i]) = Rip(g;i); (i 1)1  Rlp(q;i); (i + 1)]

It is alsothe casethat,

Rlg: (i 1)] R i+ 1)]

Rlp(ap (i 1));(i 1) RIp(o; (i + 1)); (0 + 1)]
Rlp(o; (i 1));(i )] RiIp(o; (i + 1)); (i + 1)]
Rp(qi); (i 1)]

fi(R[o; i])
) Fi(RIp(a;i);i])

) RIp(o;i); (i + 1)]

Thusthe newround value R[p(q;i); (i + 1)] canbe represeted asan XOR of
3 previously existing round values. This will give a 5-XOR condition which

we know doesnot hold. Thus we can say that

8i2f2::xr 1g : [p(a (i 1)) > p(q;i)] _ [p(g;i) < p(q; (i + 1))]

Now it is a straightforward task to verify that the query orders consistem

with this constraint are exactly the onesin the statemert of claim 23. U
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From claim 23, we can deducethat there exist at least 5 consecutie round

valuesin the " query, whose\rst occurrence" queriesare in strictly as-
cending/descendingtemporal order. We note that for the given game, the
worse caseis if the queriesp(g,1):::p ;5 are madein the reverseorder
(i.e. this is the part with the greater number of strictly orderedqueries). In
fact, if it is the casethat p q;5 < :::< p(q;r), then we canshow that the
number of queriesq = O(1:3803). Sincewe wishto nd the lower bound on
the number of queriesq, we assumethat > p(g;1)> :::>p ¢, 5 .

As our next step, we will prove a general property of sud a strictly
ordered sequenceof \ rst occurrence" queriesof consecutie round values.
For this purpose,we considerthe rst occurrencequeriesp(’;j);p(; (j + 1))
and p(’; (j + 2)), denoted by ij;ij+1 and ij., respectively. Assume that
these queriesare made in the order i; > ij+; > ij+2. We will showv that
all the round valuesR[ij;1]:::R[ij;j 1] collide with corresmnding round
valuesin queriesbeforethe i}h guery. Moreover, we alsoshaw that the queries
p(ij;1):::p(i;;j  2) weremadeatfter the i}*l1 guery, but beforethe i}h query.

This is formally stated in the following claim.

Claim 24. Letthe queriesnumtered ij;ij+; andij., bethe\rst occurrene”
queriesof the roundvaluesR[; j;R[';] + 1]and R['; j + 2] (respectively) for

any query ". Moreover, saythat i; > ij+1 > ij+2. Then, it is the casethat

ij > p(ij;1)> o> plijs] 2)> s
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pro of of claim 24: Considerthe round valueR[ij;j 1]. If this doesnot col-
lide with a corresnding round value in an earlier query, then f; 1(R[i;;]
1]) is a new round function evaluation and R[i;;j] is the new round value

generatedas a result. Now we know that

R[GIT R[G)+ 2]

fiaa (R + 1))
) fiaa (RO, G+ 1))
) RIj;j]

Rlij;j]1 Rlij+2;) + 2]

Rlij«2;(0 +2)] Rlij+1;0]  Rlija;( + 2)]

Sinceij > ij+1 > ij4+2, this would give us a 5-XOR condition involving the
new round value R[i;;j ] which we know doesnot hold. Hencewe know that
p(ij;J 1) <i;. Now we canuseinduction to shawv that all the round values
R[ij;1]:::R[ij; (j  2)] also collide with a correspnding round value in an
earlier query.

Conclusion 1: We have deducedthat 8j°2 f1:::j 1g : p(i;;j9 < ij.

Now we will try to nd the orderin which these\ rst occurrence"queries
could have beenmade. In addition, we will alsobe interestedin establishing
the order of thesequeriesrelative to the queriesi;,; andij.,. Let usstart by
concettrating our attention onthe queriesij.1;p(ij; (J 1)) andp(ij;(j 2)).

First, considerthe casethat p(ij;(j 1)) < ij+1 andp(ij;(j 2)) < ij+1-
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Then we know that,

Rlij;T Rlij2;( + 2)]

Rlij+2;( + 2] Rlj;( 2)]

fi ao(ROG DD

Rlij+1;( + 2)] _ Rljs2;G+2)] RpG;:G 2)3G 2]
R[ij+1;]] Rp(;;(G 1)1 Rip(;:G 1)):G 2)]

fisi (Rlij+1;(G + 1)D

) Fia(Rlija:( + 1))

Since,R[ij+1; (j + 1)] wasoccursfor the rst time in the ijth+1 query, we geta
represemation of the newly generatedround value R[ij1; (j + 2)] in terms of
5 previously existing round values. This cortradicts the fact that the 5-XOR

condition doesnot hold for thesequeries. Thus we can deducethat,

p(ij; (G 1)) > e orp(ij; (G 2)) > ija (5.3)

Along similar lines, considerthe casethat p(i;;(j 2)) < p(ij;(j 1)) as

well asij«1 < p(ij;(j  1)). In this case,we obsene that,

fi 1«(RO;G DD Rlij;G 21 RIij;jl

Rij;G 2] fijwa(Rlja; G+ 1)
Rlij+2;( + 2)]

RipGi; G )G 2)] Riij;G 2)] Rlija;i]
RpGi; G 1)l Rlij+1;( + 2] Rlij+2;( + 2)]

) fia(RIpG:G o )G D)D)

Herethe round value R[p(ij;(j 1));(j 1)] occursfor the rst time in the
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p(ij; (G 1))™ query. Thusthe newly generatedround valueR[p(ij; (j 1));j]
can be represeted as an XOR of 5 previously existing round values. This
again cortradicts the fact that the 5-XOR condition does not hold for the

given sequenceof queries. Hencewe deducethat,

p(ij; (G 2) > p(ij; (0 1) orijea > p(ij: (G 1)) (5.4)

In orderto satisfy both equations5.3and 5.4, it is requiredthat p(i;; (j
2)) > p(ij; (5 1)) aswell asp(ij;(j  2)) > ij.

Conclusion 2: We can deducethat the only possibleorders for these

three queriesare

p(;; (G 2))> p(ij;(G 1) > djwa orp(ij; (G 2)) > ijwa > p(ij; (G 1)

In either case,we can deducefrom conclusion 2 that p(ij;(j 2)) >
p(i;;(j  1)). Next considerthe query p(ij; (i 3)). If p(i;;( 2) >
p(ij; (j  3)) aswell, then we can deducethat

Rip(;;G 2):G 31 _ Rip(;:G D)sG 1)

Rp(i:G 2):G 1) Rip(;: G 3):G  3)]

This will give a represetation of either R[p(i;;(j 2));( 1)] in terms of
3 previously existing round values. This violates the fact that the 5-XOR

condition does not hold for the given sequenceof queries. Thus, we can
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deducethat p(ij;(j 3)) > p(ij; G 2) > p(ij;(§  1)). Now this same

argumernt can be cortinued and using conclusion 2, we can prove that

ij > p(ij;1) > > p(is (00 2) > dja

Now we can apply claim 24 to the sequenceof rst occurrencequeries
p(g;1) > > p ¢, 5 . Thusfor eah query p(q;i) (fori = 1:::5 2), we
candeducethat all the queriesp(p(q;i); (i 2)):::p(p(qg;i); 1) weremadein
this order betweenqueriesp(q; (i + 1)) and p(q;i). And sincethese queries
are madestrictly in betweentwo consecutie queriesfrom the previouslevel
(i.e. p(qg; (i+ 1)) and p(q; i) in this case),we canalsodeducethat eat of the
queriesin thesesequencess di erent from the queriesp(g;1):::p g, 5 .

Claim 24 can be applied to any sequenceof strictly ordered\rst occur-
rence" queriesof consecutie round values. In particular, we can apply this
claim to any of the new strictly orderedsequencef querieswhoseexistence
we shoved here. Hencewe can cortinue this argumert recursiwely to prove
the existenceof many more queriesbeforethe last one,i.e. the g" query.

Now we can nd a lower bound on the number of queriesq required in

order to forcea r round collision. To nd this lower bound, we introduce

a recursiwely de ned variable Q(j), that denotesthe minimum number of
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gueries’ requiredto forcea round value collision for eat of the round values
R[; 1]:::R[’;j] with a correspnding round valuein a query prior to the *™

qguery. From the above argumert, we can deducethat

P+ 1206 2)

() =
) Q(G) = Q1 D+QIl H+1
) Q1) = 2Q(G 1) QG 29+Q(G 4 QG 95

The solution to the above homogeneougquation can be expressedn terms

of the powers of the roots of the following algebraicequation:

x> 2x*+x® x*+1=0

This equation has only one root greater than 1, which is 1:3803. Thus we

canrepresen the solution of the above recurrenceas:

Q(j) = (1 :3803)

From claim 23, we can deducethat if the r' round value in the " query
collideswith a correspnding round value in an earlier query, then (we get

the worst lower bound if) the \rst occurrence”queriesof the round values
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R g5 :::R[g 1] are madein this order. Hence,we get that
q Q 3
) q = 1:3803%
) q 1:3803%% |, sincer s

5.3.3 Relevance for Feistel Applications

Both lemma20and 21 will be usefulfor the applicationsdescritedin the next
chapter. In particular, we will be interestedin using the LR construction
with round functions that resist the 5-XOR condition, when any adaptive
adversary makes a polynomial number of querieswhile having accesso all
intermediate round values. We will specify this asa property of the function
ensemblefrom which the round functions are derived. Here the function
ensemble fF ,( yg 2n is sud that F, is a distribution over length-preserving
functions on n bits. A function ensenble is calleda 5-XOR resistantfunction
family if the LR construction using independerly sampledfunctions from
this ensenble resiststhe 5-XOR condition whenquerieda polynomial number

of times by any adaptive adversary More formally,

De nition 17 (5-X OR resistant function family). A function ensemble

fF «( y:n( )9 2n, that consists of length preserving functions on n bits, is a
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5-XOR resistart function family if for any adversaryA,

Pr[A 5-XOR condition in (A$  ¢,...¢ ) ifi5 e Fenl xor = hed( )

Here the advantage 4, Of the adversaryA depgendsthe security parameter
. The running time of A, input lengthn and numter of Feistel rounds k

are all polynomial functions of

By applying lemmas20and 21to a LR constructionusinground functions
independerly sampledfrom a 5-XOR resistart function family, we canderive

the following corollary.

Corollary 2. Let ¢ be a k-round LR construction that usesround func-
tions that are independentlysamplel from a 5-XOR resistantfunction family
consisting of functions on n bits. For any adversaryA that adaptivelymakes
permutation queriesto , while observingthe intermediate round values, it

holdsthat

if A makeshoth forward/inverse queries, then for any round numker

s (k=2) withs=1(log ),
Pr 9r™" r.v. collisionin A$ | for somer 2 fs:::(k s)g xor

if A makesonly forward queries, then for any round numbker s =

! (log ),
Pr 9r" rv. collisionin A$  for somer 2 fs:::kg xor
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Here the bound .o, denotesthe maximum advantageof the XOR nding
adversarythat runs in time O(ta + (gak)®), whee t, is the running time
of the adversaryA and g, denotesthe numker of queriesmadeby it. Also,

ta;0a and the input lengthn are all polynomial in

The proof of this corollary is quite straightforward sincethe 5-XOR nd-
ing adversary simply runs the collision nding adversary and performs a
brute force seard for a 5-XOR condition whenit nds a round value colli-
sion. From lemma20 (or 21), suc a 5-XOR condition is guararteedto exist.

We will usethis corollary in ead of the resultsin the next chapter.
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Chapter 6

Implications for Feistel-based

Primitiv es

In the previouschapter, we studied a generalcombinatorial property of Feis-
tel networks. We also briey mertioned that this result proves useful in
applications of Feistel networks where one of the following two assumptions

are violated:
(&) the round functions are (pseudo)andont and

(b) (At least someof) the intermediate round valuesappearing during the

Feistel computation are secret

We noted that if anyone of theseassumptionsdo not hold then all previous
results that usedFeistel network fail. We then gave a generalconbinatorial

result that could be applied to scenarioswhere one (or both) of the above
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assumptionsdo not hold. In this chapter, we usethis conbinatorial result
to provide constructions of new primitiv es as well as new (and stronger)

constructionsof previously known primitiv es.

6.0.4 Summary of results

Str ong(er) PRP fr om any PRF. Our result can be usedto give a
construction of Strong PRPs from any PRF, that remainssecureeven when
intermediate PRF computations are leaked to the attacker. Earlier, we gave
examplesof scenarioswhere sud a construction may make sense. For in-
stance,one might imagine a smartcard implemerting a block cipher via the
Feistel network using a securechip implemerting a PRF. In this case,the
attacker might be able to obsene the communication between the smart-
card and the chip. More realistically, when the round functions of the block
cipher are not PRFs, the attacker might get a lot of information about the
intermediate valuesanyway. Our resultimpliesthat with a super-logarithmic
number of rounds, a Feistel basedblock cipheris securein sud scenariosas

well.

(Str ong) unpredict able permut ation (UP) fr om unpredict able

functions (UF). Weshow that usinga super-logarithmic number of Feistel
rounds, one can construct (strong) unpredictable permutations using unpre-
dictable functions in ead round. Strong UPs are similar to UFs in the sense

that no attacker should be ableto predict an input-output pair which it has
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not explicitly queriedthe UP on. Howewer, unlike UFs, herethe attacker may
alsomake inversequeriesto the UP. Note that in this case,the round func-
tions are not (pseudo)randomand this assumption(a) is violated. Howewer,
we show that for unpredictable permutations, even assumption(b) may not
betrue. In particular, we give examplesof (secure)UFs which whenusedas
round functions in the Feistel network leak all intermediate round valuesto
the attacker. Although arti cial, this exampleillustrates that weaker round

functions may no longer guarartee the secrecyof round values.

Verifiable ~ Random Permut ations. We apply our result to the prob-
lem of constructing veri able random permutations (VRPs) from veri able
random functions (VRFs). VRFs and VRPs are veri able analogsof PRFs
and PRPs, respectively. Let us conceitrate on VRFs rst. Intuitiv ely, regu-
lar PRFs have a limitation that one must trust the owner of the secretkey
that a given PRF value is correctly computed. And even when done so, a
party receivinga correct PRF value cannot later corvince someother party
that the valueis indeedcorrect (i.e., PRF valuesare \non-transferable"). In
fact, sincethe function valuesare supposedto be (pseudo)randomi,it seems
that sud veri abilit y of outputs of a PRF would cortradict its pseudoran-
domness.The way out of this cortradiction was provided by Micali, Rabin
and Vadhan[55], who introducedthe notion of a VRF. Unlike PRFs, a VRF
owner must be able to provide a short proof that any given VRF output
is computed correctly. This implies that the VRF owner must publish a

public key allowing others to verify the validity of sud proofs. Howe\er,
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ewvery \unopened” VRF value (i.e., one for which no proof was given yet)
should still look indistinguishable from random, even if many other values
were \op ened" (by giving their proofs). Additionally, the public key should
commit the owner of the VRF to all its function valuesin a unique way, even
if the owner tries to selectan \improp er" public key. Micali et al. [55] also
gave a secureconstruction of a VRF basedon the RSA assumption. Since
then seeral more e cien t constructionsof VRFs have beenproposedbased
on various cryptographic assumptions;see[49, 24, 28].

The notion of a VRP, introducedin [27], naturally adds veri abilit y to
PRPs, in exactly the samenatural way asVRFs doto PRFs. We will descrike
someapplications of VRPs later in this chapter. On the onehand, it is easy
to seethat a VRP (on a \non-trivial domain") is also a VRF, just like
in the PRF/PRP case. On a rst look, we might hope that the cornverse
implication holds as well, by simply applying the Luby-Radko result to
VRFs in place of PRFs. Howewer, a momert of re ection shaows that this
is not the case. Indeed, the proof for the iterated Feistel construction must
include all the VRF valuesfor the intermediate rounds together with their
proofs. Thus, the attacker can legally obtain all the intermediate round
valuesfor ewery input/output that he queries,exceptfor the one on which
he is being \challenged". Thus rules out LR-type proof for this application.

We useour combinatorial result for the LR construction, to shawv that if
a super-logarithmic number of Feistel rounds are used,then we get a secure

veri able random permutation from any veri able random function.
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Verifiable  Unpredict able Permut ations. We alsoconsiderthe nat-

ural combination of the scenariosconsideredso far, exempli ed by the task
of constructing veri able unpredictable permutations (VUPs) from veri able

unpredictable functions (VUFs) [55] (also called unique signature schemes
[38 49]). A VUF is de ned in essetially the sameway as VRFs, except
that the pseudorandomnessequiremen for VRFs is replacedby a wealer
unpredictability requiremen. Similarly, VUPSs, introducedin [27], are either
the permutation analogsof VUFs, or, alternatively, unpredictable analogs
of VRPs. Of course,asa VRP is alsoa VUP, we could attempt to build a
VUP by actually building a VRP via the Feistel construction applied to a
VRF, as suggestedabove. Howewer, this seemsquite wasteful since VUFs

appearto be much easierto construct than VRFs. Indeed, although in the-
ory VUFs are equivalent to VRFs [55], the \Goldreich-Levin-type" reduc-
tion from VUFs to VRFs in [55]is extremelyine cient (it losesexponernial

security and forcesthe authors to combine it with another ine cient tree
construction). Moreover, seeral previous papers [55, 49] construct e cient

VUFs basedon relatively standard computational assumptions,while all the

e cient VRF constructions[24, 28 are basedon very ad hoc decisional as-
sumptions. Thus, it is natural to study the security of the Feistel network
when applied to VUFs. In this case,not only the round functions cannot be
assumedpseudorandomput alsoall the intermediate round valuesmust be
leaked togetherwith their proofsof correctnessmaking this setting the most

challengingto analyze. Using our result, we shov that a super-logarithmic
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number of Feistel rounds with any secureVUFs givesa secureVUP.

Applica tions. In section6.3,weillustrate many applicationsof our results,

sud as:

We showv how our results provide a \closer-to-reality” justi cation for
the number of Feistelroundsheuristically usedin practical block cipher

constructions.

Using our results, we provide the most e cien t domain extensiontech-
nique for length-preserving MACs without introducing any new as-

sumptions.

Weshaw that VRPs immediately yield non-interactive, setup-fiee, perfectly-

binding commitment schemes

VRPs can be usedto x a subtle security aw in the non-interactive

lottery systemof Micali-Rivest [56].

We shaw that theseprimitiv escan alsobe usedto implemen so called

\in variant signatures”neededby Goldwasserand Ostrovsky [38].

Other applicationsof VRPs, sud asveri able CBC encryption/decryption,
veri able huge (pseudo)randomobjects [36] or a \pro of-transferable™

implemertation of the Ideal Cipher Model using a semi-trusted third

party.
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6.1 Preliminaries

In this section, we provide de nitions for the cryptographic primitiv esthat
we will usethroughout this chapter. We start by giving an alternative de ni-
tion for pseudoandomfunctions/permutationsthat is di erent from the ones
givenin chapter 2 and is more suited for our resultsin this chapter. We will
give thesede nitions for a function ensenble fH g ,n that is de ned over
the sequenceof input/output setsff 0; 1g?( );f0; 19X g ,n. We will assume
that the key geneating algorithm | ( ) outputs a bit string s 2 f0;1g%( ),
wherec( ) is the key length, and the keyed function will be represeted as
Hs(). In this chapter, we will usethe terms function ensenble and function

family, interchangeably

De nition 18 (Pseudorandom Functions). A function ensembldF g ,y
is a pseudoandomfunction ensembldf for any prokabilistic polynomial time
(PPT) attacker pair A = (A1;A;), which do not query their oracleson the
challengequery, it holdsthat:

2 3
. Fs . )

Pr?b: o3 s 10)xa ) Ar@ )iye  Fe(x); g
yi  f0;1g% b fO1g P A (Ve )

= ned( )

NI =

We note that ,in asymptotic terms, de nition 18 is equivalent to the
de nition 3 in chapter 2. We state this in the following lemma and provide

a brief justi cation for the same.
Lemma 22. De nitions 18 and 3 are equivalentde nitions of PRFs (mod-
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ulo exact security). In particular, a (t; g; )-PRF according to de nition 3,
suchthat ( ) is negligiblefor any polynomialst( ) and q( ), is alsoa PRF

according to de nition 18, and vice versa.

Proof. We rst shawv that a PRF accordingto de nition 3 is also a PRF
accordingto the de nition 3 above. If this is not the case,then there is a
PPT distinguisher D that has non-negligibleadvantage in distinguishing
the uniform function ensenble and the PRF ensemble. If the D makes g
oraclequeries,then we consider(g+ 1) hybrid scenarios.In the rst hybrid,
all oraclequeriesare respondedto usingthe uniform random function. And
in the i™ hybrid, the rst (i 1) queriesare respondedto using the PRF,
while all remaining (9 i+ 1) queriesare respondedto using the uniform
randomfunction. Thus, in the last hybrid, all queriesare respondedto using
the PRF. Sincethe advantage of D in distinguishing betweenthe rst and
(g+ 1) hybrid is non-negligible. We can deducethat thereisai 2 f1:::qg,
sud that D hasan advantage of at least =(q+ 1) in distinguishing between
the i and (i + 1) hybrid.

The attacker A = (A1;A;) that we designessehally choosesa random
i 2f0:::(g 1)g, and simulates the distinguisher as follows: The attacker
A, simply runs the distinguisher D by responding to its oracle queriesusing
its PRF oracleuntil the i"" query. Then it choosesthe (i + 1) query of D
asits challengequery. Then the attacker A, cortinuesthe executionof D by
responding to the (i + 1) query using the challengeresponse,and responds

to all remaining queriesof D using uniform random responses. Thus, if

219



the challengeresponseis random then D executesin the (i + 1)" hybrid,
otherwiseit executesin the (i + 2)" hybrid. Thuswith probability O( =¢?),
the attacker A succeeds.

In the other direction, say there is an attacker A with non-negligiblesuc-
cesgprobability in the attack gameof de nition 18. Then the distinguisherD
cansimply simulate the attack gameof A by responding to all its queriesus-
ing its function oracle. In responseto the challengequery; it either sendsthe
responseof its function oracleor a uniform randomresponse. If the function
oracle of D is a uniform random function, then A can guesscorrectly only
with probability 1=2, otherwiseit has a probability non-negligibly di erent

from 1=2 of guessingcorrectly. O

In a similar way, we give herean alternative de nition for pseudoandom
permutations (PRP). We will only considerthe caseof strong PRPs here,

henceonly give the de nition for this case.

De nition 19 ((Strong) Pseudorandom Permutations). A permuta-
tion ensemblef g ,N IS a (strong) pseudorandompermutation ensemble
if for any prokabilistic polynomial time (PPT) adversarypair A = (A1;A»),

none of which query their oracleson the challengequery or its inverse, it

holdsthat,
2 3
. 1
s f0;10°0); (dor 1eagiX; ) AT (1)
1
Pf§b= Py,  dx)yn fo1gX )b f0;1g; % 5 = ned()

P AT (Yo )
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This de nition is again equivalert to the de nition of strong PRPs from
chapter 2 (similar to the caseof PRFs). A slightly wealer notion than PRFs
is that of Unpredictable functions. These primitiv es are similar to Message

Authentication Codesde ned in chapter 2.

De nition 20 (Unpredictable Functions (UF)). A function ensemble
fF gis an unpredictablefunction ensenble if for any prokabilistic polynomial
time (PPT) adversaryA, that does not query its oracle on the prediction

guery, it holdsthat,

Pry=FsX) s 1()(xy) AF@) =ned()

Similar to the caseof PRFs/PRPs, we canalsode ne permutation analogs

of UFs, called Unpredictable permutations.

De nition 21 (Unpredictable Permutations). A function ensembld g
is an unpredictable permutation ensenble if for any prokabilistic polynomial
time (PPT) adversaryA, that does not query its oracle on the prediction

guery or its inverse, it holdsthat,

Pry= s(x) s f0;1g0;(xy) A s s'(1) =ned()

As we discussedabove, we cande ne veri able analogsof ead of the de -
nitions above. Let us start by de ning the notion of Veri able Pseudoandom

Functions (VRFs).
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De nition 22 (Veriable Random Functions). A Veriable random
function family fF g consists of three algorithms (Gen Prove; Verify) such
that Ger{1 ) outputs a pair of keys (PK;SK); Provesk (x) outputs a pair
(Fsk (X); proofsk (x)), where Fsk (X) is the function output and proofsk (X))
is the corresnding proof of correctness;and Verify, « (X; y; prf ) veri es that
y = Fsk (x) using the proof prf (by outputting 1 if so). This VRF family

shouldsatisfy three requirements:
Correctness : if (y;prf)  Provesk (x), then Verifyp (X;y; prf) = 1.

Soundness: no (PK; x;yq; prfq;ys; prf), with (yq; prfi) 6 (y,; prf,),

can satisfy

Verifyp (X; y1; prfi) = Verifyp (X y2; prfz) = 1

Pseudorandomness : For any PPT adversarypair A = (A1;A»), nei-
ther of which query their oracle on the challengeinput x, it holdsthat

2 3
(PK;SK) Ger(l):

(x; ) A1)y Fsk (X);
yi  f0;1g% ;b fO;1g;
tP AgrovegK (Yb; )

ned( )

Prab= 1’

NI =

Along similar lines, we cande ne the notions of Veri able Pseudoandom

Permutations (VRPs), Veri able Unpredictable Functions (VUFs) and Veri-
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able Unpredictable Permutations (VUPS) asveri able analogsof PRPs, UFs
and UPs, respectively, ead of which hasthree algorithms (Gen Prove; Verify),

and satisfy the Completenessand Soundnesgroperties as well.

6.2 Implications

In the previous chapter, we proved a combinatorial property of the Feistel
construction whereinternal round function valueswere visible to the adver-
sary. Now we will descrilke how this property can be applied to a variety of

scenariogto yield new or improved cryptographic constructionsthan before.

6.2.1 More Resilient PRPs from PRFs

We give a construction of pseudoandom permutations from pseudoandom
functions, that remains secureewen if the PRF input/output pairs usedin
the construction are visible to the attacker. In particular, we proposeusinga
k-round LR construction g, wherek = ! (log ), with independen PRFs
fi:::fx  F asround functions. The following statesthat this construction
is a securePRP ewen if the attacker can obsene the intermediate round

values.

Theorem 25. If there existsan e cient PRP adversaryA that hasa non-
negligibleadvantage in the PRP attack gameagainstthe construction gy
(using round functions from the PRF family F), thenthere alsoexistsa PRF

adversaryA; that has non-ngligible advantage ; in the PRF attack game
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againsta PRF samplel from the PRF family F. From this, we geta bound

=0 g+ @

5~ » whee ¢ denotesthe maximum advantageof a PRF

adversaryrunning in time O(t + (gk)®) againsta PRF sample from F, and

t; g are the running time and numler of queriesmadeby A .

Pro of: Weshaw that the PRP construction g, using PRFs sampledfrom
the PRF family F(, : f0;1g" ! f0; 19", is a securePRP. The proof consists

of two parts:

1. Showing that a PRF family that yields secureand independert PRFs

upon ead sampleis a 5-XOR resistart function family.

2. Showving that no PRP adversary can succeedwith non-negligible ad-
vantage in the PRP attack gameagainsta! (log )-round Feistel con-

struction with independent and securePRFs in ead round.

XOR-resist ance of PRFs. Considera k-round Feistel construction ¢
that usesk PRFs f;:::fy, independerly sampledfrom a PRF family F) :
f0;1g" ! fO0;1g", asround functions. Consideran XOR nding adversary
Aor that forcesa 5-XOR condition through its querieswith non-negligible
advantage. We will shav that using A, We can designanother attacker
A: that succeedsn the PRF attack game(seede nition 18) againsta PRF

sampledfrom the family F.

Claim 26. If thereis an PPT attacker A,o; that queriesthe k-round Feistel
construction ¢ (that usesindependent PRFs from a PRF family F), ob-

servesintermediate round valuesand forcesthe 5-XOR condition throughits
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qguerieswith prolkability ., then there existsa PRF adversaryA; that has

advantage ¢ in the PRF attack gameagainsta PRF sampla& from F, where

1 (k)
f 20k xor on

pro of of claim 26: The PRF adversary A; getsoracleaccesdo the chal-
lengePRF adversaryFs. It then needso choosea challengequery, to which it
either getsthe PRF output or arandom n-bit string, and its task is to distin-
guish betweenthe two cases.The attacker A choosesa random round num-
beri 2 f1:::kg, andsamples(k 1)independen PRFsf:::f; 1;fis 11:fk
from the family F. It then simulates the Feistel construction , with the
challengePRF asthe i"" round function and the self-generated®RFs making
up the remaining round functions. It then simulates the XOR attack game
betweenA,,, and .

Assumea xed, large enough,polynomial upper bound on the number of
gueriesthat the adversary Ao, makesto . The PRF adversarychoosesa
random query number j 2 f1:::qg whereit choosesits challengequery. On
getting the j " query, it sendsthe i™ round value asthe challengePRF query;
and usesthe challengeresponseas the output of the i™ round function. It
computesthe remaining self-generatedround functions as usual. If the it
round function is applied to a new input, then it chedks to seeif the new
round value generatedhas a 5-XOR represetation in terms of previously
existing round values. If so, then it guesseghat the challengeresponseis
the PRF output (say by outputting 1), otherwiseit guesseshe challenge

responseto be random (by outputting 0).
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It is clear that if the attacker A; makes all its guessescorrectly, i.e.
correctround number and correctquery number, then it succeed# arandom

responsealsodoesnot have an 5-XOR represetation. Hence,we get that

Adv(As) = Pr[(As! 1) (PRF output)]
1
+ Pr[(A¢s ! 0)”~ (Random output)] >
Here A; ! 0=l represets the ewvent that the attacker As outputs 0=1. If

xor denotesthe advantage of an XOR adversary then we get that,

Pri(A; ! 1)" (PRF output)] Pri(A; ! 1)j(PRF output)]

Pr[(PRF output)]

xor :_L
gk 2
Pr[(A; ! 0)" (Randomoutput)] = Pr[(As ! 0)j(Random output)]
Pr[(Random output)]
(g)® 1
2n 2
1 k)®
) AdV(Af) Zqu xor (an)

Security of the PRP constr uction. Wewill now show that the con-

struction gy, that is basedon a k-round Feistel construction usingindepen-
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dertly sampledround functions from a PRF family F¢, : f0;1g" ! f0; 19",

is a securePRP construction.

Claim 27. If there existsan e cient PRP adversaryA that hasa non-
negligibleadvantage in the PRP attack gameagainstthe construction g
(using round function from PRF family F), then there also exists a PRF
adversaryA; that has non-ngligible advantage ; in the PRF attack game
againsta PRF sampl@ from the PRF family F. In particular, we get that
the maximum advantageof sucha PRP adversarycan be boundel by =

O ok + (qzkn)s . Here ; is the maximum advantageof a PRF adversary

running in time O(t + (gk)®) againsta PRF sampla from F, whee t; g are

the running time and numkber of queriesmadeby A .

pro of of claim 27: The PRF adversaryA; getsoracleaccesso a challenge
PRF Fs. It samples(k 1) independent PRFs f1:::f (=) 1;fk=21 1::fk
from the PRF family F. It simulates the PRP construction gk by plug-
ging in the challengePRF asthe (k=2)" round function and using the self-
generatedPRFs as the remaining round functions. It then simulates the
PRP attack gamebetweenthe attacker A and gry.

It computesthe responseto any query madeby A by computing all the
round values((k=2)" one by querying the PRF oracle). When the attacker
A sendsits challengequery, then A; computesall the self-generatedound
functions honestly but sendsthe (k=2)"" round value asits PRF challenge
query and usesthe challenge query responseas the (k=2)" round function

output. It then cortinues with the post-dhallenge phaseas it did before
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the challengequery. Finally, it simply givesthe sameoutput asthe PRP
adversaryA (i.e. guessPRF if A guesse$RP, elseguessrandom).

We note that the PRF adversary succeedsf the following conditions all
hold: (1) the PRP adversary A succeeds(2) the (k=2)" round value in
the challengequery is newer required in any other query and, (3) the PRP
challenge output looks random if the PRF challenge responseis random.

Thus, we have that,

2
(A succeedp
Adv(At) Prg A (no (k=2)" round collision) %
N (PRF random) PRP random)

Now we can estimate the probability in the above expressionas,

2 3
(A succeeds” (no (k=2)" round collision)
Pr? g

N (PRF random) PRP random)
2 0 13

(A succeedp no collision in
Prg %D E g
A (PRF random) PRP random) f¥ 1%+ 1g

Prino collisionin f%¥  1;% + 1q] 3

(PRF random) PRP random)
Pr?(A succeeds %

2 A ((no collision inég 1: g + 1g)

13

no collision in
Pr?(PRF random) PRP random) %) X!z:

fk 1,5+ 1g
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Prino collisionin f5 1,3 + 1q] 3

(PRF random) PRP random)
Prg(A succeedps !Zz

A ((no collision ine;g L%+ 1g)

2 13
no collision in
Pr?(PRF random) PRP random) % XE
f¥ 1%+ 1g
(12 XOI’) 3

(PRF random) PRP random)
Prg(A succeeds !Zz

A((no collisionin f%  1;% + 1g)

(1 2 f) (1 xor)

2¢ 2gk ¢+ @2 @ 2¢) 1 20k; @2

) =0 k4

2n

In the above argumen, we have used ¢ to bound the advantage of all of
out PRF adversaries(in L.H.S. aswell as R.H.S.). This bound ; is the
maximum advantage of a PRF adversaryrunning in time O(t + (gk)®), where
t; g are the running time and number of queriesmade by the PRP attacker
A . The initial two stepsof the above argumert can be derived as simple
conditional probability manipulations. The third step can be derived as a
result of corollary 2 in chapter 5, that says that the advantage of the collision
nding attacker is no more than that of a 5-XOR nding attacker.

In the fourth step, we usethe fact that if a PRF family yields secureand
independent PRFs, then the usual PRF attack de nition is equivalert to a

modi ed de nition wherethe attacker hasaccesdo two independerilly sam-
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pled PRFs from the samefamily. In the challengephaseof this new attack
scenario, either random or pseudorandomresponsesare given to challenge
gueriesto both thesefunctions. Sincethe attacker is not permitted to query
the PRF oracleson these challenge queries, we needthe property that no

round valuecollisionoccuramonground valuesin f (k=2) 1:::(k=2)+1g. U

Moreover, since we know from theorem 18 in chapter 5 that there is an
attacker that caninvert the Feistel network with k = O(log ) roundswithin
a polynomial number of forward queries,we can also deducethat the result

above is asymptotically tight.

6.2.2 Unpredictable Permutations

What if the round functions in the Feistel network are only unpredictable
functions and not pseudorandom?In this case,it is not clear whether the
attack in theorem 18 (chapter 5) can be madeto work in this case. This is
becausethe UP adversary cannot make useof this attacker sinceit doesnot
seemto have accesdo all the intermediate round values. Howeer, we will
rst shaw that if certain pathological (but secure)unpredictable functions
are usedas round functions, then the UP adversary can infer all the round

valuessimply by observingthe output of the Feistel construction!

Lemma 23. For any k % (in particular, if k = O(log )), there exist
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k secure unpredictable functions f 1 :::fy, suchthat by queryingthe k-round
Feistel construction ¢,..r, on any input an e cient attacker can always

learn all intermediate round values.

Proof: Let fg : f0;1g" ! f0; 19" g 1::kg D€ K secureunpredictable
functions. For i 2 f1;kg, we will de ne the functionsf; : f0;1g" ! fO0; 1g"
asfi(x) = 00 203 k x; 1 k g(x) k 0k D= where x; 1 denotesthe
(i 1™ (n=K) bit block in the input x. Ead of the functions f; is a secure
unpredictable function if the correspnding function g; is a secureUF.
Considera query (Rg k R;) 2 f0;1g°" madeto the Feistel construction
f.f,- We will considerk blocks of (n=k) bits ead in both Ry, and R,
which we will denoteby Ro = R3 k:::k R§ andR; = Rl k::: k Rk. Denote
the round valuesgeneratedin computing the output of this construction as
(Ro; R1) :::(Rk; Rk+1), where Ry k Ry+1 is the output of this construction.
If the number of roundsin the Feistel construction is even, then we note that

the output of the construction is:

R« = ((R1) Ry Rpk:iitk(mk 2(Rc 2) R§? RY?
K(ok 1(Rk 1) Rlc() 1) K Rlc()
Reei = (0(R1) R§ R k:ik(xk 1(Re1) R§' RYH

k ((Re) RY)
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If number of roundsk is odd, then the output of the Feistel construction is,

R« = ((R1) Ri Rhk:itk(mk 2(Rk 2) RE? RY?
k(g 1(Rc 1) RS ) KkRY
Rier = (0i(R1)) R3 RDKk:ik(ok 1(Re 1) R§ T RYD

k ((Rx)  Rp)

Now it is easyto nd ead of the round function outputs (and hencethe
intermediate round values) by simply observingthe right half of the output
of the Feistel construction.
Thus we seethat if the number of roundsin the Feistel construction (using
UFs) usedto construct unpredictable permutations is k = O(log ), then
the construction is insecure. Moreover, even if we attempt to construct a
shrinking MA C by choppingthe left half of the output, it would be possibleto
retrieve all intermediate round valuesby simply observingthe MAC output.
In fact, even for k = ! (log ) (but lessthan n=! (log )) rounds it might
be possibleto retrieve all intermediate round values,and hencenone of the
previous proof techniques are applicable. We will prove a much stronger
result here, by showing that if we usea super-logarithmic number of rounds
in the Feistel construction (with independernt unpredictableround functions)
then the resulting construction is an unpredictable permutation ewen if the
adversary getsall the intermediate round valuesalong with the permutation

output (which, aswe saw, it may get any way for somepathological UFs).
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The UP construction y consistsof k = ! (log ) rounds of the Feistel
transformation usingindependent UFsf,:::fy  F. The following theorem

essetially statesthat this construction is a secureUP construction.

Theorem 28. If there existsan e cient UP adversary A that has non-
negligible advantage in the unpredictability gameagainst .« and which
makesa polynomial numker of queriesto y«, then there also existsa UF
adversaryA; that has non-ngyligible advantagein the unpredictability game
against a UF sample@ from the UF family F. From this, we get that the
maximum advantageof the UP adversaryA is = O (¢ (0k)®). Here ;
denotesthe maximum advantageof a UF adversaryrunning in time O(t +
(0k)®) againsta UF samplel from F, wheet is the running time of the PRP

adversaryA and q is the numker of queriesmadeby it.
Pro of: The proof of this theorem consistsof two main parts:

1. A UF family that yields secureand independent UFs on ead sample

is a 5-XOR resistart function family.

2. The construction (. that usessecureand independert UFs in ead

round is a secureunpredictable permutation.

XOR-resist ance of UFs. Considerthe k-round Feistelconstruction
usingindependen UFsf,:::fx  F in ead round. If there is an adversary
Axor that queries ( andforcesa 5-XOR condition through its querieswith

a non-negligibleadvantage ., then we can construction a UF adversary A
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that hasnon-negligibleadvantage in the unpredictability gameagainsta UF

sampledfrom the family F.

Claim 29. If there is an adversaryA,, that can force a 5-XOR condition
in an interaction with .« (that usesindependentUFs samplel from a UF
family F¢y : f0;1g" ! f0; 1g") with non-negligible protability o, then there
existsa VUF adversaryA¢ that has non-ngjligible sucessprobability ¢ in

the unpredictability againsta UF sampla& from the family F. In particular,

we showthat xor

proof of claim 29: On getting the challenge unpredictable function Fy,
the UF adversary choosesa random round number i whereit plugs in the
challenge UF. Next, the UF adversary As generates(k 1) independert
UFsfq,:::fy 1;fi+1 11 from the samefamily and usestheseasthe remain-
ing round functions to simulate the Feistel construction y for the XOR
adversary A,or to attack.

Then it lets the UF adversaryrun its attack on . Assuminga xed
and large enoughpolynomial upper bound g on the number of queriesmade
by Asor, the UF adversary As choosesa random query numberj 2 f1;qg. It
guesseshat the 5-XOR condition occursafter the i round function evalua-
tion in the j " query; i.e. R‘I Instead of querying this input to the UF oracle,
it selectsthis asthe challengeinput and usesan XOR of upto 5 randomly
chosenpreviously existing round valuesasits prediction of the output.

If all its guessesare correct, i.e. it choosesthe correct round number

i, the correct query number j and the correct XOR represetation, then it
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succeedsn the UF game. The probability that all its guessesre correct is

1

at least oL

Thus, we get that ¢ AR u

Security of the UP constr uction. We will now showv that the UP
construction ., that usesround functions from the UF family F that gives
secureand independernt UFs on ead sample,is a secureconstruction of a

unpredictable permutation

Claim 30. If there existsa PPT UP adversaryA that has non-ngligible
advantage in the unpredictability gameagainst (x and which makesa
polynomial numker of queriesto yx, then there also existsa UF adversary
A; that has non-ngligible advantagein the unpredictability gameagainsta
UF samplel from the UF family F. In particular, we getthat the maximum
advantageof the UP adversaryA is = O(¢ (gk)®). Here ; is the
maximum advantageof a UF adversaryrunning in time O(t+ (gk)®) against
a UF sampla@ from F, wheee t; q are the running time and numter of queries

madeby A .

pro of of claim 30: The UF adversary A; getsoracleaccesdo a challenge
unpredictable function Fs. It samples(k 1) independent UFsfq:::f -2 1
;T k=2)1 11 from the sameUF family F. It simulatesthe UP construction
by pluggingin the challengeUF asthe (k=2)" round function, and usingthe

self-generatedJFs asthe other round functions.
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When the UP adversarysendsts challengequery Rqg k Ry (or R¢ kK Ry+1),
and its predicted output Ry k Rg+1 (resp. Ro k Ry), the UF adversary pro-
ceeddy usingits selfgeneratedround functionsto evaluate the intermediate
round valuesRg; R1; R, iRk and from Ry.1; Rk; Rk 1:::Rk=+1. It then
sendsthe challengeinput/output pair (Ry=; Rk=> 1 Rk=+1) asits predic-
tion. It is easyto seethat if the round value Ry-, is a new round value and
the UP adversary predicted correctly, then the UF adversary A; succeeds.
Thus, we can deducethat,

2 3
Prg (A succeedp g

A (no (k=2)" round collision)

Pr[As succeeds =

= Pr (A succeeds no (k=2)" round collision
Pr [no collision]
Pr[A succeeds Pr (k=2)" collision

Pr [no collision]

( xor) (1 xor)
) ﬁ"' xor
) = O(r (ak)®

In the above argumen, we have often bound the advantage of a UF adver-
sary by ;. This is the maximum advantage of a UF adversary running in
time O(t + (gk)®), wheret; q are the running time and number of queries

madeby A . The transition from step (3) to (4) is possibleusing corollary 2
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from chapter 5, that says that the advantage of an e cient collision nding
adversary is sameas that of an e cient XOR condition forcing adversary

The last step of the argumert is possiblethrough claim 29. O

6.2.3 Veriable Random Permutations

When we attempt to usethe Feistel network to construct a veri able ran-
dom permutation using VRFs as round functions, then the attacker getsall
the intermediate round valuesas part of the proofs for eat round function
computation. Thus, here again, one can use the attacker from lemma 18
(chapter 5) to construct a VRP attacker that violates the pseudorandom-
nessrequiremen of the VRP construction if the number of Feistel roundsis
k = O(log ).

The VRP construction gk that we useis the k-round LR construc-
tion using independen VRFs fq:::fy F asround functions. The pub-
lic/priv ate keysof gk are simply the concatenationof the public/priv ate
keys of the k VUFs. The Prove functionality for gk givesthe permuta-
tion output, and as proof it givesall intermediate round valuesalong with
the correspnding VRF proofs. The Verify functionality simply cheds if all

intermediate VRF proofs verify correctly.
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Theorem 31. Let yrx = (G ; ;V ) bethe VRP construction that uses
a k-round LR construction with independent VRFs fq:::fy F. This
construction is a secure VRP if the VRFs usal as round functions are se-
cure. In particular, for any prohabilistic polynomial time oracle machine
A = (A1;A) that does not query its oracle on x or try to invert the re-

sponse to the challenge query, the advantageof A in winning the VRP

pseudoandomnessgame against gy is at most O gk ; + (qz'f])s , Whee
¢ denotesthe maximum advantageof a VRF adversarythat runs in time
O(t + (gk)®) againsta VRF samplel from F, and t and q are the running

time and numter of queriesmadeby A .

Pro of: The completenes®f the construction g IS a direct consequence
of the completenessf eah of the VRFs used as round functions, since if
all VRF proofs verify correctly then the resulting VRP proof does so too.
The soundnessf the construction if alsoobvious given the fact that all the
intermediate VRFs are sound. In particular, if there are two output/pro of
pairs of gk that verify correctly, then we can nd two VRF output/pro of
pairs that verify correctly for one of the round functions. The proof for the
pseudoandomnessproperty of gk IS essetially the sameas the proof of

theorem 25.
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6.2.4 Veriable Unpredictable Permutations

Our VUP construction vy is essetially idertical to the VRP construction
vRk, exceptsthat we useindependent VRFs instead of VUFs as round

functions.

Theorem 32. Let yuk = (G ; ;V ) bethe construction usingk roundsof
the Feistel construction usingindependentVUFs f,:::fy ~ F. Then yyx

is a secure VRP if the VUFs usd in the construction are secure VUFs. In

particular, for any prokabilistic polynomial time oracle machineA that does
not make a forward query on x or an inverse query on y, the advantageof
A in winning the VUP pseudoandomnessgameagainst yyx IS at most
O(cfk” ¢), where ; denotesthe maximum advantageof a VUF adversary
running in time O(t+ (gk)®) againsta VUF sampla@ from F, t is the running

time of A and q is the numker of queriesmadeby A .

The completenessand soundnessproperties of this construction can be
provenin the sameway asthe correspnding propertiesof the VRP construc-
tion gk, above. The proof for the unpredictability property is the sameas

in theorem 28.

6.3 Applications

We have seenthat our results for the Feistel network with public round

valuesleadsto new or improved constructionsof se\eral cryptographic prim-
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itiv es. In this section,we will illustrate se\eral practically-motivated natural

scenarioswhere our results are applicable.

6.3.1 Implications to Domain Extension

Sincethe Feistel Network doublesthe length of its input, our results could
alsobe viewed in relation to the questionof domain extensionof UFs, VUFs
and VRFs. In practice, the questionof domain extensionis typically handled
by a collision-resistam hash function (CRHF): it usesonly one call the the
underlying n-bit primitive f and does not require the secretkey to grow.
Howe\er, the existenceof a CRHF is atheoretically strong assumption,which
does not seemto follow from the mere existenceof UFs, VRFs or VUFs.
This is especially true for UFs, whoseexistencefollows from the existence
of mere one-way functions and, hence,can even be \black-box separated"
from CRHFs [7]]. Thus, it makessenseto considerthe questionof domain
extensionwithout intr oducing new assumptions

For PRFs, this questionis easily solved by using (almost) universalhash
functions (instead of CRHFs) to hashthe messagedo n bits beforeapplying
the n-bit PRF. Howeer, this technique fails for UFs, VUFs and VRFs: in
the caseof unpredictability becausethe output revealsinformation about
the hash key, and for VRFs becauseit is unclear how to provide proofs of
correctnesswithout revealing the hash key. Another attempt (which works
for digital signatures)is to usetarget collision-resistan hash functions [60]

in place of CRHFs, but sud functions have to be freshly chosenfor eah
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new input, which will break the unique provability of UFs, VUFs and VRFs.
(Additionally , the hash key should also be autherticated, which further de-
creaseghe bandwidth). In casethe underlying n-bit primitiv ef is shrinking
(say, to n a bits), one can use somevariant of the cascade(or Merkle-
Damgard) construction. Indeed, this was formally analyzedfor MACs by
[1, 53]. Howeer, the cost of this method is one evaluation of f per a input
bits. In particular, in casethe output of f is alsoequalto n, which is natural
if one wants to extend the domain of a UF given by a block cipher, this
method is either inapplicable or very ine cien t.1

In cortrast, our method builds a UP/VUP/VRP from 2n to 2n bits from
the onefrom n to n bits, by usingk = ! (log ) ewaluationsof f , albeit alsoat
the price of increasingthe secretkey by the sameamourt. This answersthe
guestionleft openby An and Bellare [1] (who only shoved that three rounds
areinsu cien t): Feistel Networkis a good domain extenderfor MACs if and
only if it usessuger-logarithmic numkber of roundd

Moreover, in the context of UFs (and VUFs), where one wants to mini-
mizethe output length aswell, we notice that the output length canbe easily
reducedfrom 2n to n. This is doneby simply dropping the \left half" of the
Feistel permutation output! The justi cation for this optimization follows by
noticing that in this casethe attacker will only make forward queriesto the

Feistel construction. For sud attackers, we can extend our main combinato-

YIn principle, sudh length-preservingf can be \truncated" by a bits, but this losesan
exponertial factor in a in terms of exact security. Thus, to double the input length, one
would have to evaluate f at least ( n=log ) times.

241



rial lemmaasfollows. For any sk, if a 5-XOR resistart family is usedto

implemert the round functions and the attacker made lessthan exponertial

in s number of queries,then the attacker has a negligible chanceto cause
any collisions betweenrounds s and k (as opposedto k s we had when
badkward querieswere allowed). From this, onecanderivethat k = ! (log )

Feistel rounds is enoughto turn a UF (or VUF) from n to n bits into one
from 2n to n bits. Moreover, in the caseof UFs we expect that one would
usea (possiblyheuristic) pseudorandongeneratorto derive the k round keys
(much like in the caseof block ciphers), meaningthat the only e ective cost
is k computationsof the basicUF. Oncethe domainis doubled, howeer, one
can usethe cascademethods [1, 53 to increaseit further without increasing

the key or the output length.

6.3.2 More Resilient Blo ck Ciphers

Although not asstrong aspseudorandomnessjnpredictability is a meaning-
ful property of block ciphers. First, we alreadymertioned that it is enoughfor
messageauthertication, and our Feistelconstructionis alsousefulin the con-
text of domain extensionof MACs. We notice that it is alsoenoughto argue
certain wealer properties of popular modes of operation on block ciphers.
For example, one can easily argue that the CBC mode with UPs (rather
than PRPSs) yield a \computationally -universal" hash function [3], which
can then be usedwith an ordinary block cipher to get a secure\encrypted

CBC-MAC". Even in the cortext of encryption, one can argue that CBC,
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OFB and CFB modeswith UPs satisfy the following form of one-wayness
againstthe usual chosenmessageattack. The attacker can ask encryptions
or any messageskor the challenge,it speci es any messageavith onemissing
block. Then this block is chosenat random, and the encryption of the ertire

messagéusing the corresppnding mode) is givento the attacker. Finally, the

attacker hasto recover this missingblock, and using UPs guararteesthat the

attacker only hasa negligible probability to succeededn this game.

To summarize,the usageof UPs in placeof PRPs still maintains wealer,
but still meaningful security properties. Therefore, we seetheir primary
utilit y asa way for providing a \graceful fall-back” property for the Feistel
construction. If (nearly) pseudorandonround functions are used,then with
I (log ) roundsthe resulting permutation is a PRP. As a bonus, it remains
a PRP ewen if the intermediate round valuescould be leaked! Additionally,
ewven if the round functions are only unpredictable, we still have somebasic

securiy left, soat the very leastthe systemwill not be \completely broken".

6.3.3 Ideal Cipher Mo del using Semi-Honest Trusted

Party
The Ideal Cipher Model (ICM) (alsoknown asthe \ShannonModel") assumes
the existenceof a publicly accessiblddeal Block Cipher, meaningthat for

ewery possiblekey s one has a fresh random permutation ¢ and its inverse

¢ 1. Although the ICM is not aspopular asthe random oraclemodel, there
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are still seweral notable examplesof shhemeswherethis model hasbeenused
[15, 23, 30, 42, 46]. Unfortunately, just like the random oracle model, the
ICM model cannot be provably realizedwithout atrusted party T (see[14]).
A naive implemertation is easy but inconveniert. First, T shouldkeeptrack
of all the queriesalready asked to ensureconsistencywhich quickly becomes
very impractical. Second,the parties must trust that T has evaluated the
value ¢(x) consistetly acrossinvocations. Third, oncethey get sud a
value, they cannot corvince any other party of its validity: that party must
independertly goto T to ched the correctness.Finally, they must trust that
the answersof T are actually random.

It turns out that a VRP can considerablyimprove this naive implemen-
tation. First, we start with implemerting a singletruly random permutation

(correspnding to an ideal cipher with a xed key). Then T can publish
the public key for a VRP , and only keepthe secretkey asits state. When
someparty comesto T and asksa forward or backward queryto , T sim-
ply evaluates or ! onthat query, and returns the result together with a
proof of correctness.This way the parties are assuredthat: (a) they receiwe
a correct and consistentvalue of ; (b) they are really talking to T (or, if
not, the valueis correct anyway); (c) onceT is committed to the public key,
T cannot dynamically adjust the valuesof and ?; (d) ewvenif T selected
a bad public key, T is committed to a permutation; in particular, the value
of onarandompoint is guararteedto be random. Finally, oncesomelody

getsavalueof or !fromT, it cantransferthis valueon its own, without
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the needof other parties to cometo T and verify it.

To extendthis to afull blown Ideal Cipher, we facea problemthat T must
generatea new VRP for ewery key s of the Ideal Cipher. Howeer, for our
particular VRF-based construction we can do better. Instead of assuming
the existenceof a VRF from n to n bits, we assumethe existenceof a VRF
from n + a to n bits, wherea is the length of the key s (if needed,such VRF
can always be constructed from another VRF using the domain extension
techniqueswe deweloped earlier). In this case, T will always prependthe key
s to all the VRFs inputs when evaluating the Feistel Network for the value of

s- Thisway T still storesonly! (log ) keysfor the VRFs, and canenulate

22 possiblerandom ciphers.

6.3.4 Applications of VRPs/VUPs

Next, we mertion seeral exampleshow VRPs could be useful in scenarios

whereplain VRFs are not enough.

Non-in teractiv e Commitmen ts

We noticethat VRPs immediately yield non-interactive, setup-free perfectly-
binding commitmerts schemes.The senderchoosesarandomkey pair (SK; PK)
foraVRP . Tocommitto m (in the domain of the VRP), the sendersends
PK andthe valuec= sk (m) to the receiver. To open m, the sendersends
m and the proof that ¢ = sk (m), which the receiver can chedk using the

public key PK. The hiding property of this construction trivially follows
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for the security of VRPs. As for binding, it follows from the fact that is
a permutation ewven for an adversarial choiee of PK. As we can see,it is
not clear how to achieve binding directly using plain VRFs. Howeer, given
our (non-trivial) equivalencebetween VRFs and VRPs, we get that VRFs
arealsosu cient for building non-interactive, perfectly binding commitmert
schemeswithout setup. Alternativ ely, to commit to a singlebit b, onecanuse
VUPs augmerted with the Goldreich-Levin bit [37]. Here the senderwould
pick arandomr and x, and sendPK, r, sk (X), and(x r) b wherex r
denotesthe inner product modulo 2. Using our equivalencebetween VUPs
and VUFs, we seethat VUFs are su cient aswell.

We remark that the best general constructions of sudr commitmerts
schemeswas previously basedon one-way permutations (using the hardcore
bit) [16], since Naor's construction from one-way functions [57] is either in-
teractive, or non-setup-free.Sincethe assumptionof one-way permutations
is incompatible with VUFs or VRFs, our new construction is not implied by

prior work.

Non-In teractiv e Zero-Kno wledge (NIZK)

We shaw that VRPs (and, thus, indirectly, VRFs), could be usedto construct
NIZK proofs (in the commonreferencestring model). We remark, howeer,
that Dwork and Naor [29 already gave a completely di erent construction
of NIZK proofs from VRFs (and even a wealer primitiv e called veri able

pseudoandom geneator). Thus, our construction only givesan alternative
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(and di erent) proof of an already known result by [29]. Nonetheless,we
beliewe that it naturally illustrates the usefulnesof VRPs in comparisonto
VRFs, and alsosolvesa questionleft openby Goldwasserand Ostrovsky [38]
(seebelow).

Feigeet al. [3]] reducedthe question of constructing NIZK proofs (in
the common referencestring model) to the question of implemerning the
so called \hidden bits system" HBS, and shoved how to implemert HBS
using trapdoor permutations. Later, Goldwasserand Ostrovsky [38] shaved
how to implemert HBS using so called invariant signatures In our modern
terminology, invariant signaturesare quite similar to VRFs, exceptfor one
additional requiremen: they should induce a (pseudo)randomdistribution
on the output whenappliedto a random input, evenif the public keyfor the
VRF is adversarialy chosen Thus, we can think of invariant signaturesas
\balanced" VRFs. Unfortunately, it is easyto seethat regular VRFs are not

enoughto plug into the construction of [38]. Namely,

(&) Plain VRFs do not have to satisfy this property (and, asfar aswe can
see,there is no trivial way to enforceit in VRFs; although, our results
imply a non-trivial way to do so).

(b) More se\erely, there exist secure(and, of course,unbalanced)VRFs for
which the transformation of [38] is completely insecure.

To briey seepoint (a), imagine adding a new special public key PK
to any secureVRF, for which the VRF is de ned to be idertically zero. It

is clear that this still de nes a VRF, sincethe prover is still committed to
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a unique function, ewen for the key PK . And pseudorandomnes#$olds,
sincethe chancesPK will be selectedare negligible. Yet, the new VRF is
obviously unbalanced. In fact, if we usethis newVRF in placeof the invariant
signature in the construction of [38], we will get a completelyinsecureHBS
system(thus, showving (b)). Brie y, in the construction of [38]a VRF seleted
by the prover is applied to a bunch or random points to de ne the \hidden
random string” (for which the prover can selectively open somepart later).
If the prover choosesPK as his public key, then the hidden random string
is all zeroaswell, and it is easyto seethat NIZK construction of [31] will
completelyfails with sud non-randomHRS.

On a positive side, VRPs trivially satisfy balancednesssince they are
guararteed to be permutations for any value of the public key. This means
one can build NIZK proofs from VRPs. By our construction of VRPs from
VRFs, we seethat VRFs are also su cient for NIZK proofs for NP. Also,
even VUPs coupledwith the Goldreich-Levin bit turn out to be su cient for

this application.

Non-in teractiv e Lottery for Micropa yments

Micali and Rivest [56] suggestedhe following elegan way to perform non-
interactive lottery (with the main application in micropaymerts). The mer-
chant published a public key PK for a VRF f, the user choosesa ticket
X, and wins if some predicate about f (x) is true (for example, if f (x) is

lessthan somethreshold t). Sincef looks random to the user, the user
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cannot signi cantly bias his odds no matter what x he chooses. Similarly,
sincethe merchant is committed to f by the public key PK , they merdhant
cannot lie about the value f (x). Unfortunately, this still leaves exactly the
sameproblem we had for the NIZK application above. Nothing stops the
merchant from publishing a \non-balanced" VRF. In the extreme case,a
constart function f (x) = ¢, where c is selectedso that the predicate does
not hold. Onceagain, we needbalancednes$o ensurethat the merchant not
only cannot changethe value of f after the commitmernt, but alsoguarartees
that the value f (x) is random at least for a random x. Once again, VRPs
perfectly solve this problem.

Moreover, VRPs have an extra advantage that onecan preciselyknow the
number of possiblewinners: it is exactly equal to the number of strings y
satisfying the given predicate. Thus, one can always allocate a given number
of prizesand newer worry that with somesmall probability there will be more

winnersthan prizes.

Reusable Coin-Flipping

We can extend the previous lottery exampleto the following coin ipping
problem. Alice wants to publish somevalue PK (keepingthe correspnding
value SK secret)allowing other to non-interactively selecta random number
r as follows. Any party Bob can choosea random value x and sendit to
Alice. The value x (combined with PK') uniquely de nes the nal value of

r. If needed,Alice can open the value of r and corvince Bob that this value

249



is correct. Additionally, we want the following properties.

(&) No matter how Bob selectsx, the valuer looksrandomto Bob (except
if he \replays" someold r).

(b) For any x, Alice cannot producetwo di erent r asthe nal value,even
if sheadversarially choosesthe public key PK .

(c) Bobis surethat that if he selectsx at random, the valuer is random,

ewven if Alice adversarially choosesthe public key PK .

(d) Alice can reusethe samePK for many executions(and only has to

worry about the replay attack from Bob).

It is clear that VRPs precisely solve this problem. In contrast, VRFs
do not satisfy property (c), while other existing coin- ipping protocols are

either ine cien t or do not appear to have the reusability property (d).

Adding Veriabilit y to PRP Applications

Finally, we mertion exampleshow VRPs could be usefulto add veri abilit y

to someapplication of PRPs (where, again, PRFs are not su cien t).

Verifiable  CBC Encr yption. As the simplest example, using VRPs

one can add veri abilit y to CBC encryption and decryption.

Verifiable  Huge Random Objects. A bit lessstraightforwardly, we
considerthe questionof \truthfully", yet e cien tly, sampling huge (pseudo)
random objects, initiated by Goldreich et al. [36]. In this work, the authors

showved se\eral applications where PRPs can be usedto e ciently sample
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various exponertial-sized objects (like random connectedgraphs). Using
VRPs one can naturally add veri abilit y to these constructs, so that the
samplercan compactly commit and selectiely reveal small parts of the huge
object (like an edge). Howewer, there is a subtlety. Sincethe PRP is often
usedasonly part of the sampling procedure,revealing the proofs might leak
a lot of extra information which might be undesirable. For example,in the
randomconnectedgraph exampleone rst samplesa (pseudo)randomgraph,
and then usesthe PRP to add a random Hamiltonian cycleto it (in orderto
make it connected). With VRPs in place of PRPs, revealing the VRP proof
will revealthat a given edgeis part of the \sp ecial* Hamiltonian cycle,which
is probably undesirable.

Newerthelesswe canavoid this \priv acy problem” in scenariosvhereonly
PRPs are usedto samplethe given object. We give one sud example (not
presen in [36]). Speci cally, we can use PRPs to samplea pseudorandom
constart-degreegraph of exponertial size (which is very likely to be a great
expander). In the casethe graph should be bipartite, sud sampling simply
consistsof choosing d independert PRPs, where d is the required degree.
This allows one to easily nd all the neighbors of a given node on either
side of the graph. In caseof regular graphs, we needto sampled random
matchings, which can alsobe done using PRPs by using an elegan result of
Naor and Reingold [59] allowing oneto samplepseudorandompermutations
with a prescribed cycle structure. In either case,by using VRPs in place of

PRPs we get veri able random, constari-degreegraphs, which do not su er
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from the problem we had for random connectedgraphs.

Notice alsothat PRFs/VRFs are not su cient for this application, since
with high probability they will not result in a truthful implemertation. Ad-
ditionally, such samplingis not \reversible" (i.e., if f (x) = y, then given x
one can seethat y is connectedto it, but not vice versa).

We hopethat more\v eri able” hugerandom objects could be \priv ately”

sampledusing our technique.
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Chapter 7

Relation Between the Ideal
Cipher and Random Oracle

Mo dels

In the introduction, we discussedthe notion of idealized models and how
these make the task of designingpractical and e cient protocols easier,at
the cost of formally provable security in the standard model. Two of the
most popular examplesof idealized models are the Random Oracle Model
(ROM) and the Ideal Cipher Model. In chapter 3, we discussedhe problem
of instantiating the random oracle with an actual hash function and the
assumptionsinvolved therein. We discussedhe ROM in somedetail there
and gave indi er entiable constructions of the random oracle from a xed-

length input random function oracle or an ideal cipher oracle. We start by

253



giving a short description of the Ideal Cipher Model

Ideal Cipher Model. The Ideal Cipher Model (ICM) (also known as
the \Shannon Model") is an example of a ideal assumption model, just as
the ROM. In this model, we assumethe existenceof a publicly accessible
Ideal Block Cipher. This is essetially a block cipher, with a k bit key
and a n bit input, that is chosenuniformly from all block ciphers of this
form. All partiesin the ICM can make both forward (encryption) or inverse
(decryption) queriesto the ideal block cipher. One provesthe security of a
cryptosystem under this assumption, and then instantiates the ideal block
cipherwith an actual block cipher, sud asAES. Although the ICM is not as
popular asthe ROM, there are still se\eral examplesof shhemeswhere this
model hasbeenused[15, 23, 30, 42, 46).

Se\eral questionshave beenraisedregardingsecurity in the ICM. Existing
bock ciphers, sud as DES, AES etc. are vulnerable to related key attacks
and have distinguishing patterns that are unlikely to occur in a random
permutation. Henceit may not be ertirely secureto usetheseconstructions
to instantiate the ideal block cipher. As in the caseof ROM, uninstantiable
sthemesthat are securein the ICM have alsobeendiscorered (see[14]). But,
all theseproblemswithstanding, the ideal cipher model doesprovide security
againstgenericattacks that do not exploit weaknessesf the underlying block

cipher.

Comparing Tw o Models. Wediscussedhe indi er entiability framework

[52 earlierin this thesis,asa framework for comparingtwo ideal assumptions
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sud asthe random oracle and the ideal cipher assumptions. In particular,

we usedthis framework to nd (indi erentiable) constructionsof the random
oracleusing an ideal cipher. The existenceof sut constructionsimplies that

the random oracle assumptionis no stronger an assumptionthan assuming
the existenceof an ideal cipher. That is, any cryptographic task that canbe
(e cien tly) accomplishedin the Random Oracle Model is also (e cien tly)

achievable in the Ideal Cipher Model using one of theseindi erentiable RO
constructions. Thus, the indi erentiabilit y turns out to be the right notion
when comparingtwo ideal assumptionmodels.

We know from chapter 3 that there exist indi erentiable constructions
of the Random Oracle using the Ideal Cipher. Thus it is really interesting
to investigate the other direction of this question. That is, Is there an in-
di er entiable construction of an Ideal Cipher using a Random Oracle? This
direction seemamuch more di cult to tackle. Actually, it is widely believed
that a positive answer holdsin this direction too [20]. In fact, it is conjectured
that, with a su cient number of rounds, the Luby-Racko (LR) construction
[47] (with independert random oracles,indexed by the ideal cipher key and
the round number, as round functions) is a secureconstruction of an ideal
block cipherin the ROM 1. In spite of this, there hasnot beenmuch progress
in getting a formal proof of this conjecture.

In this chapter, we take a rst steptoward resolvingthis problem.

1As we already discussedin chapter 5, the LR result [47] is not applicable in this case
becausean attacker can easily nd out all intermediate round values by querying the
random oracle.
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7.0.5 Our Plan

We will start by describingthe notion of indi er entiability in the honest-
but-curious model. This is a weaker notion than generalindi erentiabilit y
which we descriked in chapter 2, but is considerablystronger than the clas-
sical notion of indistinguishability (seelater). We will also descrile special
typesof constructions,which we call transgarent constructions, for which this
restricted de nition is equivalert to generalindi erentiabilit y.

Once we have a suitable de nition, we will descrite the random permu-
tation model where we assumethe existenceof a publicly accessibleandom
permutation  (and its inverse 1). Note that this can be thought of asa
very special caseof the ideal black cipher, where the key spaceconsistsof
a single elemen. We will shav that if we can nd an indi erentiable con-
struction of a random permutation from a random oracle, it can be easily
extendedto get an indi erentiable construction of an ideal black cipher from
a random oracle. This is simply done by prepending the block cipher key
to the input of the random oracle. Thus, it is (necessaryand) su cient to
study constructionsof a singlerandom permutation from a random oracle.

We will then descrile a construction of a random permutation from aran-
dom oracle: namely, the LR-construction descriked above, where we derive
the round functions from the randomoracle (indexed by round number). We
conjecturethat the LR-construction is indi erentiable from a randompermu-
tation, with a su cient number of rounds. Howewer, we will not be able to

prove this result in general. Instead, we prove this implication in the honest-
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but-curious model, as long as the numter of roundsis suger-logarithmic in
the security parameter . We will derive this asa consequencef lemma 20
from chapter 5.

We conjecturethat our result is sub-optimal in the sensdhat the LR con-
struction seemdo be secureeven with a\large enough" constant number of
rounds (seelater for what large enoughcould be), and even in the malicious
model. Howewer, we shav optimality in the following sense:we prove that
for upto a logarithmic number of roundsthe LR-construction is a transgarent
construction. Thus, short of resolvingour conjecturein the maliciousmodel,
any improvemen in the number of rounds even in the honest-but-curious
model will right away imply the sameresult in the malicious model as well.
From a negative side, we shaow that for super-logarithmic number of rounds
the LR-construction is provablynot transgarent, which meansthat our posi-
tive result in the honest-but-curiousmodel doesnot trivially imply the same

result in the malicious model.

7.1 Indieren tiabilit yin the Honest-but-Curious

Mo del

We brie y recall the generalnotion of indi erentiabilit y. For two ideal prim-
itivesF and G, an e cient oraclemacdine Cg is an indi er entiable construc-
tion of the ideal primitive G using the ideal primitive F if there exists a

simulator Sg sud that for any e cient distinguisher D, the following prob-
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ability is negligible:
PIDCF(1)=1] Prip%sF(1) = 1]

Roughly speaking, the task of the simulator Sg is to simulate the role played
by the ideal primitive F in the F ideal model (from the view of the distin-
guisher), in the G ideal model. In the new (weaker) notion of indi er entia-
bility in the honest-but-curiousmodel, the distinguishere ectively hasaccess
to only oneoracle. To illustrate this, in the F model the distinguisher can
only query the G construction C§, and not the F oracle. In addition, it also
hasoracleaccesdo the queriesmadeby the construction Cg to the F oracle,
which we denote as the communication transcript Tc.,, . Thus the role of
the simulator S in the G model changesfrom trying to simulate F in general
indi erentiability to trying to simulate the commnunication transcript Tc,.
in the G model. When the distinguisher D is in F model, then the queries
in Tege: Can be divided into two categories. Those for which D does not
obsene the queriesof Cg, and those for which it does. In the G model, the
former queriesare sert directly to the G oracle and the responsesof G are
sert badk to D. While the latter queriesare madethrough the simulator S,
which forwards the samequery to the G oracle. But apart from sendingbadk
the output of Gto D, it alsosendsa simulated comrmunication transcript Ts.

Thesetwo views of the distinguisher are depictedin gure 7.1.

De nition  23. A Turing machine Cg (with oracle accessto F) is said to
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ke (tp;ts;q; ) indier entiable from an ideal primitive G in the honest-but-
curious model if there existsa simulator S suchthat for any distinguisher D

it holdsthat:

Pr D%Tee =1 Pr D% =1 <

The simulator S simulates the transcript Ts for queries made by the dis-
tinguisher to it and runs in time ts. The distinguisher D runs in time at
most tp and makesat most g queriesto its oracle. The distinguishing ad-
vantage is a negligiblefunction of the security parameter . If ts and g are
both polynomial in  then the construction Cg is said to be (polynomially)

indi er entiablefrom G in the honest-but-curiousmaodel.

777777777777777777777

Figure 7.1: Indi erentiabilit y in honest-but-curiousmodel: The distinguisher
D either interacts with Cg and getsthe transcript Tc e OF it interacts with
G and getsthe simulated transcript Ts

Note that the simulator S doesnot make any extra queriesto G apart

from forwarding the queriesmadeby the distinguisherD. This fact is crucial
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sincewe want the property that the distinguisher should not learn anything
from observingthe internal functioning of Cg (i.e. queriesmadeto F), that
it cannotlearn from the ideal G oracle.

Considerthe construction Cg that is indi erentiable from Gin the honest-
but-curious model. Our new de nition guararteesthat any cryptosystemP,
possiblyinvolving honest-but-curiousparties, that usesthe construction Cg
in the F model beharesin exactly the sameway asit doesin the G model.

This fact is formally stated in the following lemma.

Lemma 24. If a construction Cg using F is indi er entiablefrom G in the
honest-but-curiousmadel, as stated in de nition 23, then any cryptographic
protocol P (involving honest-but-curiousparties possibly) using Cg in the F

maodel behavesexactly the sameway as in the G madel.

Pro of: [alsosee gure 7.2] Say there existsa protocol P = (Ppon; Peur) that
behavesdi erently whenusing Cg in F model. Pyo, represets the corven-
tional honest parties of the protocol, and P, represets the curious ones.
We claim that the curious parties P, do not gain any extra information
when using the construction Cg. We will prove this by simulating the view
of all partiesin P in the F model, in the G model aswell. But this is exactly
what de nition 23 guarartees. We simply replacethe construction Cg with
G. And we usethe simulator S guararteed by our de nition to simulate the
transcript Tc.ge for the curious parties Pg,,. Thus the queriesmade by
the curious parties P, are directed through the simulator S, which along

with the responseof G addsa fake transcript Ts for the curious parties. The

260



convertional honestparties Py, are givendirect accesgo the ideal primitiv e
G. And the indistinguishability of the two scenariogCg; Tc g ) and (G, Ts)
implies that the views of all parties in the protocol remainsthe same.
We note here that the notion of \indi eren tiability of Cg from G in the

F model G model

| newcurious
™ partiesin G model

77777

1—Distinguisher D 4f

Figure 7.2: An ideaof the proof of lemmaZ24. The convertional honestparties
Prhon a@longwith the curiousonesP,,, canbe seentogether asa distinguisher
D

honestbut curious model” is at least as strong as (in fact, as we shall see
later, strictly strongerthan) the notion of \indistinguishabilit y of Cg and G".

Clearly, a distinguisher in the indistinguishability scenariowill work in the

former scenario(def. 23) simply by ignoring the transcripts Tc ¢r  (0Or Ts).

7.1.1 Transparent Constructions

Eventhough generalindi erentiabilit y seemgo be much strongerthan indif-
ferertiabilit y in the honest-but-curiousmodel (de nition 23), we now shav
that for certain typesof constructionsthesetwo de nitions are, in fact, equiv-

alert.
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De nition 24 (Transparent Constructions). A construction Cg of G
(using oracleaacessto F) is a (tg; gg) transparent construction if there exists
a Turing machine E (called an \extracting algorithm™) such that for any
x 2 dom(F) it is the casethat EC&:Tes* (x) = F(x). Here Tc,sr denotes
the transcript of all the communication between Cg andF . E runsin time tg

and makesat mostge queriesto CE for any input x, while dom(F ) represents

thedomainof F. Andjxj, tp and g are polynomialin the security parameter

Thusatransparert construction C§ is sud that it is possibleto e cien tly
compute F (x) at any input x by making a polynomial number of queriesto

Cs and observingthe comnunication betweenCg and its oracleF .

Lemma 25. If a transmrent construction Cg (using F) is (polynomially)
indi er entiablefrom G in the honest-but-curiousmadel (defn. 23) then it is

also (polynomially) indi er entiablefrom G.

Pro of: Sa that a construction Cg is indi erentiable from ideal primitiv e
G in the honest-but-curiousmodel. Then we have a simulator Sy, that
successfullyfakesthe transcript T sr  (with Ts, . ) in the G model.

First, we will designa simulator Spy for generalindi erentiabilit y using
the simulator Syo,. The simulator S,y needsto simulate the ideal primitiv e
F in Gmodel. On getting a query x 2 dom(F ), Sya usesthe extracting al-
gorithm E (for Cg) to computeF (x). The extracting algorithm needsoracle

accesso the construction Cg and the comnunication transcript Tc gr . The
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simulator S,y replacesthe construction Cg with the ideal G oracle, which
it hasaccesgo. And it usesthe \honest-but-curious" simulator Sy, to pro-
ducea fake transcript for E. By de nition 23the extracting algorithm E has
no way to tell that it hasoracleaccesdo (G;Ts,,, ) instead of (Cg; Tcosr ).
This simulator corversionis illustrated in gure 7.3a.

Now we will shav that the simulator S, designedabove actually works.
To the cortrary, say there is a distinguisher D5 with non-negligible ad-
vantage in the generalindi erentiabilit y game. Then we will designa dis-
tinguisher Dy, for the honest-but-curiousindi erentiabilit y scenario. Do
simply runs the \malicious" distinguisher D, and usesthe extracting al-
gorithm E to simulate the F oraclefor D, . Note that it is easyfor Do
to run the extracting algorithm E, which needsthe exact sameoraclesthat
Dhon hasaccesdo. The new distinguisheris illustrated in gure 7.3b.

Say Cg is a (tg; ) transparert construction. Then if the simulator Syon
runsin time tg, . for ewvery query, then Syy runsin time O(ts,, G + tg).

And if Dma makesq,, queriesand runsin time tp _, then Dpon makesat

most O(p e ) queriesand runsin time O(tp, , tg).

mal

This theorem essetially implies that if oneis ableto nd a transparert
construction Cg for anideal primitiv e G and proveits indi erentiabilit y in the
honest-but-curiousmodel. This will alsoimply the generalindi erentiabilit y

of the construction Cg.
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SO

bi Distinguisher Conversion
depictedin F model

Figure 7.3: a. Conversionof the simulator S in honest-but-curiousmodel to
simulator S°in generalindi erentiabilit y.

b. Conversionof the maliciousdistinguisherD 5 into an honest-but-curious
distinguisher D .

7.2 The Construction

In this section,we will proposea constructionfor anideal cipherE : f0; 1g
f0;1g°" ! f0;1g*" from a random oracleH :f0;1g ! f0;1g". Note that
it suces to give a construction C of a single random permutation (RP)
: f0;1g°" | f0;1g> using H. Similar to the ideal cipher oracle, the
random permutation oracle respondsto both forward and inversequeries.
On input (0;x), it outputs y = (x) and on input (1;y), it outputs x sud
that (x) = y. A constriction for the ideal cipher can be derived from this
RP construction by prependingthe ideal cipherkeyto every query C makes

to H.

264



We will now concerrate on getting an indi erentiable construction of a
random permutation from RO, and all our results can be carried over to the

ideal cipher model using the technique mertioned above.

The Random Permut ation Constr uction. We rst notethat the con-
structions in [47, 58] etc. are not necessarilyindi erentiable from a random
permutation, sinceall theseresultsare provenin the classicalindistinguisha-
bility model. Here we will give an indi erentiable construction of random
permutation (RP) from the randomoracle(RO) H :f0;1g ! f0;1g". Sim-
ilar to [47, 58], our construction is basedon multiple rounds of the Feistel
permutation. Howevwer, our proofs will be in the indi erentiabilit y model.

We rst formally de ne a\k round LR-construction”.

De nition 25 (k round LR-construction).  Givenfunctionsh; 2 F, @i =
1:::k, the k round LR-construction y,....n, IS essentialy the composition

of k roundsof Feistel permutation, p, he 1 o hy -

We will basically usea k round LR-construction (with su ciently large

k) to get a random permutation : f0;1g> ! f0;1g?". We will useinde-
penden random functions h; for ead round of the k round LR-construction
hi:h - NOte that it is easyto get these independen random functions
h; 2 F, from the random oracleH. Thesecan be simply de ned ash;(x) =

H(hi kx) fori = 1:::k. Herehi represets the log(k)-bit binary represen-
tation of i. The k round LR construction with round functions derived in

this fashionis denotedas C ... We conjecturethat for su cient number of
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roundsk this is an indi erentiable construction of RP from RO.

Conjecture 1. For asu cient numkber of roundsk, the k round construction
C « (using a randomoracleH : f0;1g ! f0;1g9") is an indier entiable

construction of a randompermutation :f0;1g>" ! f0; 1g*".

Even though we beliewe this conjecture to hold, we have been unable
to prove it formally. Howewer, we will formally shav that the k round LR
construction is indi erentiable from a random permutation in the honest-

but-curious scenariowith a su cient number of roundsk.

7.2.1 Transparency for O(log ) Rounds

The questionnow is how many roundsshouldsu ce to proveindi erentiabil-
ity in the honest-but-curiousmodel? We rst shaw that for upto alogarithmic
(in security parameter ) number of rounds proving indi erentiabilit y of the
LR-construction in the honest-but-curiousmodel is no simpler than proving
its indi erentiabilit y in general. Recall that a transparent construction is
one for which indi erentiabilit y in the honest-but-curiousmodel implies its
indi erentiabilit y in the generalmodel. We prove that for upto a logarithmic

(in ) number of roundsthe LR-construction is a transparert construction.

Theorem 33. The k round LR-construction C  is a (tg; ) transmrent
construction of the randompermutation from randomoracleH for numker
of roundsk = O(log( )). The running time tg and numker of queriesge are

both polynomial in the security parameter .
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Pro of: We needto designan extracting algorithm Ext that when given
accessto (C x;Tc ,sH) can extract the valuesof H(hi k x) for any x 2
f0;1g" andi 2 f1:::kg. Wewill alsoreferto the function output H (hi k x)
as h;(x).

The proof of this theorem s similar to the theorem 18 in chapter 5. In
particular, we will usethe algorithm E (described there) that takesasinput
a round number j and a 2n bit string Y, and nds the input sud that Y
formsthe j and (j + 1).

The extractor Ext getsasinput hi and x. It runs the algorithm E on
input ((i  1);x°k x), for an arbitrary n bit string x° It respondsto the
qgueriesmade by E using the construction C  and can provide all interme-
diate round valuesfrom the transcript Tc , s . Upon nding this input X,
the extractor Ext simply sendsthis asa queryto C ., and learnsthe output
hi(x) from the transcript Tc s .

This extractor Ext makes O(Fibonacc{k)) number of queries(and runs
in time O(Fibonaccfk)) aswell), just like E. For number of roundsO(log ),

this is polynomial in the security parameter .

Thus one can hope to prove indi erentiabilit y of the LR-construction
for O(log( )) roundsin the honest-but-curiousmodel, and it will imply the
generalindi erentiabilit y of the construction. Howeer, there is no indication

to suggestthat this task might be any easierthan the generalresult.
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7.2.2 HBC Indieren tiabilit y for ! (log ) rounds

On the positive side, we prove the indi erentiabilit y of the LR-construction

in the honest-but-curiousmodel for a super-logarithmic number of rounds.

Theorem 34. Thek roundconstruction C . is (tp; ts; g, O((q k)°> 2 "))
indi er entiable from a random permutation : f0;1g®" ! f0;1g* (with
security parameter ) in the honest-but-curiousmadel for k = ! (log( ))

rounds. ts, n and g are all polynomial in

Pro of: The proof of this theoremconsistsof two parts: rst, wewill descrike
the simulator S that fakesthe communication betweenthe construction C
and H in the random permutation model, and next we will give a proof of

indi erentiabilit y (in HBC model) using this simulator.

The Simula tor. The simulator S gets inputs either of the form (0;x)
(forward queries)or of the form (1;y) (inversequeries),wherex;y 2 f0; 1g?".
In the random oracle model, if the input (0;x) is given to the construction
C «,thenC .. makesqueriesto the randomoracleH and computesthe round
valuesRp:::Rk+1 WhereRg = Xj ;R1 = Xj, and Ry = h; 1(Rj 1) Ri 2
fori 2 f2:::(k+ 1)g. Inverse queriesare handled in a similar fashion,
albeit in reverse,starting from Ry = yj, ;Rks1 = Yj, and computing R; =
hi+1 (Ri+1) Rij+ fori 2 fk 1:::0g.

In the random permutation model, the simulator performs essetially
the samecomputation exceptthat it simulates the round functions h; itself.

It maintains a table T, for ead round function h;, in which it storesall
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previously generateround function outputs for h;. Considera forward query
(0;x), thusRp = xj, andR; = Xj,. The simulator generatesa fake transcript

for this query as follows:

1. It forwards the query (0;x) to the random permutation  and gets
y = (X). Thus,in our represetation of the LR-construction Ry = yj,

and Rg+1 = Yj,-

2. Next, it cheds to seeif hy(Ry) is already de ned. If so,then it chedks
the tables T, ,; Th, ,;::: and soon to seeif there exists a chain of
de ned values[R; 1 = hj(Rj) Ri+1l]izk:bot, Wherebot2 f1:::kg. If
bot= 1, then all the round valuesfor this query are already de ned,
soit cheds to seeif (Rpot 1 K Rpot) = X. If SO, S returns this sequence
of round value/round function output pairs as the transcript to the
distinguisher, otherwise the simulator exits with failure since there is

no way to de ne the round function valuesconsisten with

3. If bot> 1 then it chedks to seeif similarly there exists a sequenceof
de ned round valuesgoing down from Ry = xj, and R; = Xj,. That
is, a sequenceof round values [Ri+1 = hi(R;) R 1]i=1::t0p, Where
top 2 f1:::kg. It then chedks to seeif top bot 2. If so,then it
exits with failure sinceit cannot be consistet with both  and the

previously generatedfake transcript.

4. If ewerything goes well until this point, then the simulator S starts

de ning the missing round function outputs betweentop and bot It
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de nesthe function outputs higp+1 (Riop+1) <& hpot 2(Rbot 2) at random.
It connectsthe top and bottom sequence®f round valuesby de ning

hbot l(Rbot l) = F\)bot Rbot 2 and hbot(Rbot) = F\)bot+1 Rbot 1.
5. After completing the ertire chain in this fashion, S sendsit to D.

Thusthe simulator simply tries to de ne all round function valuesrandomly.
However, it rst scansto seeif someof the intermediate round valueswere
already de ned in its previousresponses.It doesso both starting from top
and bottom, and de nes the unde ned round function outputs in the middle
at random but making sure that it connectsthe two partial sequencef
round values. If it sohappensthat there are no unde ned round valuesin the
middle, then it realizesthat it cannot be consisten with both thesepartial

sequencesf de ned round valuessimultaneously and exits with failure.

Pr oof of HBC Indifferentiability. Now we will prove that whenthe
simulator S descriled above is usedin the indi erentiabilit y game,then any
distinguisherD that makesat most (a polynomial) g queriesto its oracleshas
only a negligible distinguishing advantage. Here g and n (the output length
of H) are both polynomial functions of the security parameter , while the
number of roundsin the LR constructionisk = ! (log( )). As we mertioned,
our proof proceedsvia a hybrid argumer.

Hiding the random permutation :Let usstart in the randompermuta-

tion scenario.Herethe distinguisherhasoracleaccesso andthe simulator

S. Our rst modi cation is to prevert D from directly accessing , by re-
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placing it with a simple relaying algorithm M that acts as an interface to
. When M getsa query from the distinguisher, it simply relays this query
to the random permutation  and sendsbad the responseof . In this
new scenario,the distinguisher has oracleaccesso M and S (see gure
7.4a). Since we have made no real change from the point of view of the
distinguisher,we have Pr[D( s ) = 1]= Pr[DM Ts ) = 1],

Bounding out the \bad events": Now wewill modify the simulator S, so

that it never outputs certain typesof collisionsthat will a ect our analysis
later. Recallthat the simulator S needsto de ne the round function values
h:(R1) :::hg(Rk) in orderto generatethe transcript Ts for every query made
to it. And S tries to assignrandom valuesto h;(R;) for any newR,;.

Now we introducea slightly modi ed simulator S; that is essetially the
sameasS exceptthat it choosesround function valuesmore carefully. Let us
rst x alittle notation. We will number the queriesmadeto the simulator
in the order they are made, query number 1 followed by 2 and soon. And

for the m™" query madeto the simulator, we will label its round valuesas

When assigninga newround function value h; (Ri(m)) for query number m,
the new simulator S; makessurethat the newround round value generated,
ie. R™ (resp. R™) if the m™ query is a forward query (resp. inverse
guery), cannot be represeted as an XOR of upto ve previously existing
round values That is, the simulator S; intentionally prevents a 5-XOR

condition (seechapter 5) from occurring in its responses.
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The distinguisher cannottell if it hasoracleaccesdo (M ;S) or (M ;S;)
unlessthe old simulator S outputs a round function value that resultsin the
5-XOR condition beingtrue. Let us denotethis event by B;. Hencefor any

distinguisher D making g queries,
h _ i
Pr D™ T)=1 pr D™ =1 Pr[B,

We can bound the probability of B; occurring by noticing that for randomly

assignedround function values,Pr [By] = O 8X° _ This canbe derived by
using the birthday paradox to bound the probability that any XOR of upto
6 round valuesis 0".

Transferring Control to the Simulator: Next we will modify the relay-

ing algorithm M sothat it doesnot simply act as a channel between the
distinguisherand . The new relaying algorithm, which we will call M 4,
respondsto the queriesby making the samequeriesto the simulator S;
and computing (x) (or  (y)) from the responsesof S; (see gure 7.4Db).
Toillustrate this point, say M ; getsa query (0; x) from the distinguisher
D (that is, a forward query to ). Then M ; forwards this query to S;,

which in turn getsy = (x) from the random permutation and constructsa

all goeswell this transcript is consistemn with . The simulator sendsthis
transcript Tg, (0; x) to M 1, which canrecorer (x) from Ts, and respond to

the distinguisher D with this value. Inversequeriesl;y) are handledin a
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similar fashion.

From the view of D, ewerything in this scenariois sameasin the previous
one unlessthe simulator S; exits with failure on somequery madeby M ;.
This happensif and only if S; fails to be consisten with the random per-
mutation  on somequery. We claim that if the number of queriesq made
by the distinguisher D is polynomial in the security parameter then the

simulator S, is always consisten with

Lemma 26. For a polynomial numler of queriesq madeto the simulator
S;, the respnsesof the simulator are always consistent with the random

permutation

Pro of: In fact, this lemmacanbe seenasa consequencef the combinatorial
lemmaZ20from chapter 5. In orderto seethis, considerthe situation in which
the simulator S; exits with failure. This occursif there exist partial sequences
of round valuesR§™; R{™;:::; REV; R, and Ry ;iR 2 R{™; R
with top bot 2. But in this case,either top (k=2) or bot (k=2) + 1.
Thus, we candeducethat at leastoneof the round function outputs hy-(R'™)
or Ny=p+1 (R(kTZ)+1 is alreadyde ned. This canonly occur if the correspnding
round value in the m™ query collides with the correspnding round value
in an earlier query. Moreover, this earlier query must be di erent from the
m™" query, otherwisethe simulator S; would not have beeninconsistert in
the m" query. Hence,the (k=2)" or the ((k=2) + 1)"" round value collides

for two of the queriesmadeby the distinguisher. But sincethe simulator S;

makessurethat the 5-XOR condition doesnot hold, we can deducethat the
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number of queriesq made by the distinguisher must be exponertial in the
security parameter,i.e. q= 0(1:380%).
Thus for any distinguisherD that makesq queriesq= poly( ), it is the case
that PrD™ )] = prp™ Te)]

Removing the Random Permutation : Until now, all responsesof the

simulator are forcedto be consiste with . Now we will modify the simu-
lator S; and get closerto the actual random oracle scenario. The new sim-
ulator, which we shall denoteby S,, doesnot attempt to output transcripts
consisten with . As before,it implemerts the k round LR-construction with
randomly assignednternal round functions. But now it alsoimplemerts the
last (or rst) couple of round functions hy 1;hy (or hy; hy) with randomly
chosenvalues(see gure 7.4c), sothat the actual permutation output may
not be consistem with

To illustrate this, whenthe new simulator S, getsa forward query (0; x).

(0;x). Inversequeriesare handled in a symmetrical fashion. The relaying
algorithm, M 1, as beforeusesthesetranscripts to computeits responsesto
D's queries.

Note that the distinguisher cannot tell this scenarioapart from the pre-

vious scenario,unless

the new simulator S, violates the XOR constrairt satis ed by S;. We

call this event Bs.
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the old simulator S; exits with failure. We call this evernt B,.

Lemma 26 implies that the event B4 doesnot happen for any distinguisher
D that makesa polynomial number of queries. Thus for any distinguisher D
making at most a polynomial number of queriesq,

(ak)*

(M Ts; 1 ) h Tsy. i
Pr D Pr DM ™2Ts2)  pPr[Bs]= 0O o

Onto the Random Oracle Mo del: Note that the previousscenariois es-

sertially the sameas the random oracle scenario, since all round function
valueschosenby S, are random. Therefore for any distinguisher D ( gure
7.4d), we have Pr[D™ "2Ts)] = prD(©Te ws v) = 1],

Combining all the above hybrids, for any distinguisher D that makesat
most q queries,

h i 4
Pr D(CH;k;TC k$ H) =1 Pr (D Ts ): 1 <0 (q2rl]()

Hereqg and n are polynomial in the security parameter , andk = ! (log( )).
In fact, with a slightly more carefully designedsimulator S; that avoids an
XOR of specic round (function) values, one gets that the distinguishing

advantage of D is O g—:
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Figure 7.4: Overall Game Structure

7.2.3 Non-transparency for ! (log ) rounds

One can deducefrom theorem 34 that if the LR-construction with ! (log )
roundsis a transparert construction, then it will imply the generalindi er-
ertiabilit y of this construction too. Unfortunately, we shaw that for number

of rounds! (log( )) the LR-construction is not a transparert construction.

Theorem 35. The k round LR-construction C . is not a transprent con-

struction of the random permutation  for numkber of roundsk = ! (log( )).

Pro of: This theoremcan alsobe derived asa consequencef the lemma 26.
In particular, if there exists an extracting algorithm Ext that can compute
hi(x), givenasinput hi k x, then it cannotbe e cient for number of rounds

= I (log ). In particular, if Ext works for the k round LR-construction

C « with the actual round values, then it should also work for the hybrid
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scenarioin gure 7.4b,whereit hasoracleaccesso and the round values
are faked by the simulator S, (that avoids the 5-XOR condition).

Howe\er, in this case,we can shaw that if Ext is e cient, then we can
construct another (e cien t) algorithm A that nds two queriesthat collidein
the (k=2)™ round value. In particular, A choosesarandominput X 2 f0; 1g%"
and makesthis queryto (and getsall intermediate round valuesfrom S,).
It then runs the extracting algorithm Ext with input hk=2i k Ry, (where
Rk= is the round value that it getsfrom the faked transcript of S;). Since
Ext is extremely unlikely to guessthe input X usedby A, it will nd out
he=(Rk=) through a permutation queryto that is di erent from X, with
overwhelming probability. The collision nding algorithm A can get this
di erent input by keepingtrack of the queriesmadeby E xt, andthus nd two
queriesthat collide in the (k=2)" round value. Howe\er, this is impossible
from the conbinatorial lemma 20 from chapter 5, since S; prevens the 5-

XOR condition from holding.

7.2.4 Negativ e Results for Constant Rounds

Finally, we mertion that one doesneedto usesu cient number of rounds
of the Feistel permutation in the construction, to have any hope of proving
it indi erentiable. Coron [20] shawved that for lessthan 6 rounds the LR-

construction is not indi erentiable from a random permutation.
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Theorem 36 ([20]). Let C  be the k round LR-construction of a random
permutation , with numker of roundsk < 6. Then there is an e cient
distinguisher D suchthat for any simulator S, D can distinguish the oracle

pair (C .«;H) and ( ;S) with non-negligible prokability.

Pro of: It iseasyto seethat the construction (C .«; H) cannotwork for k < 4,
sincein this caseit does not ewen satisfy the classicalindistinguishability
de nition [47]. Coron [20] gave attacks on 4 and 5 round LR-constructions
in the indi erentiabilit y scenario. We give an attack on the 4 round LR
construction herefor illustration.

Let usrepresen the round valuesof the constructionC ., asRo; R1:::R4; Rs,
sud that C 4(Ro k R1) = (R4 k Rs). And the round functions will be de-
noted as hy;:::;hs. Now considerany simulator S for which we get the
two scenarios:(C .4;H) and ( ;S). We will designa distinguisher D that
distinguishesthesetwo with high probability for any simulator S.

The distinguisherD essetially forcesthe simulator to satisfy a constrairt
that holds with very low probability for an RP . On the other hand, it

always holds for the LR-construction C .,. The algorithm of D is asfollows:
1. Choose3 arbitrary n bit strings, R2; RY; Ra.

2. Query the random oracleH to get hy(R,), h2(RY) and hz(Rs), in this

order.

3. ComputeR; = hy(R2) Rz andR?= hy(RY) Ra.
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4. Query the random oracleto get h;(R;) and h;(R%). Compute Ry =
hl(Rl) R, and Rg = hl(Rg_)) R,.

5. Query the random permutation on Ry k R; and R k R? to get the

valuesR, k Rs and RS k R, respectively.
6. Chek if R4 RJ= R, RY. If so,then output 1 elseoutput O

Note that the valuesR, and RS were queried upon before R;. Hencethe
round valuesR; and R? are completely arbitrary round valuescortrolled by
the distinguisher. The distinguisherD always outputs 1 whengivenaccesgo
the constructionC 4. But whengivenaccesso the random permutation, the

simulator S will needto nd hy(R;) and hy(R?) that satisfy the constrairt:

(hi(R1) Ra)kR1j.  ((hi(R}) RYOKRIj, =R. Ry

In this equation R, R?, R, and RY are all e ectively chosenby the dis-
tinguisher. Henceno e cient simulator can nd two round function values
h1(R1) and h;(R?) that satisfy the above constrairt with non-negligibleprob-

ability for a random permutation .

This theoremalsoimplies that indi erentiabilit y (evenin the honest-but-
curious model) is strictly strongerthan classicalindistinguishability. This is
becausethe LR-construction with 4 rounds or more is known to satisfy the

latter [47]. Thus we can derive the following corollary from theorem 36.
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Corollary 3. A 4 round LR-construction is indistinguishable, but not in-
di er entiable, from a random permutation (even in the honest-but-curious

madel).
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