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Abstract

Information Extraction is the task of automatically extracting structured infor-

mation from unstructured or semi-structured machine-readable documents. One

of the challenges of Information Extraction is to resolve ambiguity between entities

either in a knowledge base or in text documents. There are many variations of

this problem and it is known under different names, such as coreference resolution,

entity disambiguation, entity linking, entity matching, etc. For example, the task

of coreference resolution decides whether two expressions refer to the same entity;

entity disambiguation determines how to map an entity mention to an appropriate

entity in a knowledge base (KB); the main focus of entity linking is to infer that

two entity mentions in a document(s) refer to the same real world entity even

if they do not appear in a KB; entity matching (also record deduplication, entity

resolution, reference reconciliation) is to merge records from databases if they refer

to the same object.

Resolving ambiguity and finding proper matches between entities is an impor-

tant step for many downstream applications, such as data integration, question

answering, relation extraction, etc. The Internet has enabled the creation of a

growing number of large-scale knowledge bases in a variety of domains, posing a
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scalability challenge for Information Extraction systems. Tools for automatically

aligning these knowledge bases would make it possible to unify many sources of

structured knowledge and to answer complex queries. However the efficient align-

ment of large-scale knowledge bases still poses a considerable challenge.

Various aspects and different settings to resolve ambiguity between entities are

studied in this dissertation. A new scalable domain-independent graph-based ap-

proach utilizing Personalized Page Rank is developed for entity matching across

large-scale knowledge bases and evaluated on datasets of 110 million and 203 mil-

lion entities. A new model for entity disambiguation between a document and a

knowledge base utilizing a document graph and effectively filtering out noise is

proposed; corresponding datasets are released. A competitive result of 91.7% in

microaccuracy on a benchmark AIDA dataset is achieved, outperforming the most

recent state-of-the-art models. A new technique based on a paraphrase detection

model is proposed to recognize name variations for an entity in a document. Corre-

sponding training and test datasets are made publicly available. A new approach

integrating a graph-based entity disambiguation model and this technique is pre-

sented for an entity linking task and is evaluated on a dataset for the Text Analysis

Conference Entity Discovery and Linking 2014 task.
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Chapter 1

Introduction

Traditionally, Information Extraction is associated with extraction of event in-

formation from natural language text. This was a popular task of the Message

Understanding Conferences (MUC) in the late eighties and nineties (Sundheim,

1992). MUC was the first large scale effort to boost research into automatic infor-

mation extraction and it would define the research field for the decades to come.

According to (Bunescu and Paşca, 2006) Information Extraction involves the pro-

cessing of natural language text to produce structured knowledge, suitable for

storage in a database for later retrieval or automated reasoning. Cowie and Lehn-

ert, 1996, Cowie and Lehnert (1996) see information extraction as a process that

involves the extraction of fragments of information from natural language texts

and linking of these fragments into a coherent framework. They define the goal of

information extraction as ”to build systems that find and link relevant information

while ignoring extraneous and irrelevant information”.

Text is not the only source of information. The Internet has enabled the cre-
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CHAPTER 1. INTRODUCTION

ation of a growing number of large-scale knowledge bases in a variety of domains,

containing complementary information. Tools for automatically aligning these

knowledge bases would make it possible to unify many sources of structured knowl-

edge and to answer complex queries. However, the efficient alignment of large-scale

knowledge bases still poses a substantial challenge and is the core problem of the

entity matching task.

The document-centric view of information extraction has received considerable

attention. However, the end result, a group of entities and relations, often are

not the only structured knowledge product. In a development environment, new

extractions must be merged with previously extracted information, often stored

in a structured information database, a knowledge base (KB). This last step is

critical for automatic knowledge base population, which requires linking mentions

in text to entries in a KB, determining information duplication between the text

and KB, exploiting existing knowledge in improving information extraction, and

detecting when to create new entries in the knowledge base. These challenges are

addressed by entity disambiguation and entity linking tasks.

To the discerning human eye, the “Bush” in “Mr. Bush left for the Zurich

environment summit in Air Force One.” is clearly the US president. Further

context may reveal him to be the 43rd president, George W. Bush, and not the

41st president, George H. W. Bush. The ability to disambiguate a polysemous

entity mention or infer that two orthographically different mentions are the same

entity mention is crucial in updating an entity’s KB record. This task has been

variously called entity disambiguation, record linkage, or entity linking. When per-
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CHAPTER 1. INTRODUCTION

formed without a KB, entity disambiguation reduces to the traditional document

coreference resolution problem, in which entity mentions, either within the same

document or across multiple documents, are clustered together, where hopefully

each cluster corresponds to a single real world entity. The emergence of large scale

publicly available KBs like Wikipedia and DBpedia has spurred an interest in link-

ing textual entity references to their entries in these public KBs. Bunescu and

Pasca (2006) and Cucerzan (2007) presented important pioneering work in this

area, but suffer from several limitations including Wikipedia specific dependencies,

scale, and the assumption of a KB entry for each entity.

In the last decade, a growing number of large-scale knowledge bases have been

created online. Domains include music, movies, publications and biological data1.

As these knowledge bases sometimes contain both overlapping and complemen-

tary information, there has been growing interest in attempting to merge them

by aligning their common elements. This alignment could have important uses

for information retrieval and question answering. For example, one could be in-

terested in finding a scientist with expertise on certain related protein functions

- information which could be obtained by aligning a biological database with a

publication one. This task is known as entity matching (also referred to as dupli-

cate identification, record linkage, entity resolution, reference reconciliation, etc.)

and is challenging to automate as different knowledge bases generally use different

terms to represent their entities, and the space of possible matchings grows expo-

nentially with the number of entities. Entity matching is a crucial step for data

integration and data cleaning problems (Cohen et al., 1999; Hernandez and Stolfo,
1. Such as MusicBrainz, IMDb, DBLP, UnitProt.
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CHAPTER 1. INTRODUCTION

1995; Rahm and Do, 2000).

We summarize the similarities and differences of three tasks in Table 1.1.

Task Entity
Matching Disambiguation Linking

Data structured: unstructured:
one or more text
databases documents

Knowledge no yes yes (optional)
Base
Goal identify duplicate map entity mentions cluster corefered

entries to KB entries entities
Scale 100-200M entities 1-200 entity mentions,

per database 1-20k candidates
per document

Evaluation precision/recall/ microaccuracy clustering metrics, e.g.
f-score (precision@1) B3+F

macroaccuracy
Challenges scalability a noisy document graph

balance local similarity vs relatedness
NIL clustering

Table 1.1: Main characteristics of Entity Matching, Disambiguation, and Linking
tasks.

Here we study various aspects and different settings to resolve ambiguity be-

tween data entries. We present models to address a problem of large-scale entity

matching across knowledge graphs, and to solve tasks of entity disambiguation

and entity linking between text documents and a knowledge base. We design a

graph representation for every setting. Graph edges represent relations between

different nodes. Our ultimate goal is to quantify the importance of one node to

another. Personalized Page Rank provides a natural measure of the relatedness

4



CHAPTER 1. INTRODUCTION

between nodes.

The PageRank algorithm (Brin and Page, 1998; Page et al., 1999) considers

random walk on a graph, where at each step with probability ϵ (teleport probabil-

ity) we jump to a randomly selected node on a graph, and with probability 1−ϵ we

follow a random outgoing edge of the current node. Stationary distribution of this

walk gives PageRank weights associated with each node. Personalized PageRank

(PPR) is the same as PageRank, except that all teleports are made to the same

source node, for which we are personalizing the PageRank. Intuitively, pairwise

weights PPR(s → e) represent relationships between nodes in the graph: the

higher the weight is, the more relevant endpoint e is for the source s. Thus PPR

naturally measures the importance of e for s (Brin and Page, 1998). Our graph-

based approaches utilizing PPR do not require training and perform competitively

on benchmark datasets.

1.1 Challenges & Contributions

We address different challenges for entity matching, disambiguation, and link-

ing problems. Our models have the following properties:

For all problems

• We start from a graph representation of the problem;

• Our models are based on a random walk algorithm, they do not require

training;

5
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• Our models benefit from both relational information between entities in a

knowledge graph and from the local information for the node in question;

• Score propagation scheme is scalable for large graphs; it can be efficiently

implemented on MapReduce (Sections 3.2.2, 3.3.3);

Entity Matching

• Generic: domain independent, robust to incomplete data, applicable to one

or more datasets;

• Does not propagate errors by doing simultaneous resolution for all nodes

(Section 3.3.2);

• Experiments on Microsoft Knowledge Graphs validate the effectiveness and

scalability of our approach by accurately resolving 1.6M matching pairs;

Entity Disambiguation

• Our method is able to better utilize the local similarity between a candidate

and a KB node, unlike previous PageRank based approaches in Named Entity

Disambiguation (Alhelbawy and Gaizauskas, 2014) which mainly rely on

global coherence;

• We tailor the Personalized PageRank algorithm to only focus on one high-

confidence entity at a time to reduce the impact of noisy candidates (Sec-

tion 4.4.3);

• Our model achieves a precision of 91.7% on a benchmark AIDA dataset;

6
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Entity Linking

• We adopt the paraphrase model to measure the similarity between entity

mention strings and address the problem of name variations;

• We show how to apply this model for NIL-clustering and efficiently combine

it with a graph-based entity disambiguation technique to improve Entity

Linking (Section 5.5);

• We achieve the competitive result of 80.5% in B3+F score on a dataset for

the diagnostic Text Analysis Conference Entity Discovery and Linking 2014

task.

1.2 Overview

The rest of this thesis is organized as follows.

The review of prior work in related areas is in Chapter 2.

In Chapter 3 we discuss the problem of entity matching across knowledge

graphs. We review prior work in this area and discuss challenges that were not ad-

dressed by previous approaches. This is followed by a graph representation of the

problem and a motivation for using Personalized Page Rank on this graph. The

precision and recall results are presented for databases of 110M and 203M entities.

Chapter 4 is devoted to the problem of entity disambiguation for text docu-

ments. We discuss a procedure for building graph representation of a document.

We then devise an algorithm that efficiently combines an initial similarity of a can-

7
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didate and its relatedness to the document, and filters out noise from a document

graph.

The problem of entity linking and the related problem of name variations are

discussed in Chapter 5. We draw analogies between name variations and para-

phrase identification problems. We then show how to integrate two state-of-the-art

models — for entity disambiguation and paraphrase identification — into a new

approach for the entity linking task.

We conclude the thesis and discuss future work in Chapter 6.

8



Chapter 2

Related Work

Information extraction is concerned with both identifying structured informa-

tion in text and disambiguating extracted information and entities. The ambiguity

of entity names, especially in large corpora like the Web or citations in scholarly

articles, has served to motivate research on entity resolution. To address ambigu-

ity in personal name search, (Mann and Yarovskiy, 2003) disambiguates person

names using biographic facts, like birth year, occupation and affiliation. When

present in a text, biographic facts extracted using regular expressions help disam-

biguation. More recently, the Web People Search Task clustered web pages for

entity disambiguation (Artiles et al., 2008).

The related task of cross-document coreference resolution has been addressed by

several researchers starting from (Bagga and Baldwin, 1998). (Poesio et al., 2007)

built a cross-document coreference system using features from encyclopedic sources

like Wikipedia. This continues to be a popular task (Huang et al., 2010; Popescu,

2010). Entity linking has been scaled to consider hundreds of thousands of unique
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entities, whereas operating on this scale is a challenge for cross-document corefer-

ence resolution. Recent approaches to scaling this task have included distributed

graphical models over a compute cluster (Singh et al., 2011) and a streaming coref-

erence algorithm (Rao et al., 2010). Successful coreference resolution is insufficient

for correct entity linking, as the coreference chain must still be correctly mapped

to the proper KB entry.

By comparison, research in entity disambiguation began only recently. The

earliest work done by (Bunescu and Paşca, 2006) and (Cucerzan, 2007) aims to link

entity mentions to their corresponding topic pages in Wikipedia. These authors

do not use the term entity disambiguation and they take different approaches.

Cucerzan uses heuristic rules and Wikipedia disambiguation markup to derive

mappings from surface forms of entities to their Wikipedia entries. For each entity

in Wikipedia, a context vector is derived as a prototype for the entity and these

vectors are compared (via dot-product) with the context vectors of unknown entity

mentions. His work assumes that all entities have a corresponding Wikipedia entry,

but this assumption fails for a significant number of entities in news articles and

even more for other genres, like forums and blogs. Bunescu and Pasca (2006),

on the other hand, suggest a simple method to handle entities not in Wikipedia

by learning a threshold to decide if the entity is not in Wikipedia. Both works

mentioned rely on Wikipedia specific annotations, such as category, hierarchies and

disambiguation links. (Milne and Witten, 2008) use machine learning to identify

significant terms within unstructured text and built their system on (Cucerzan,

2007).

10
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Several different techniques for entity disambiguation have been used in recent

work. Han and Sun (2011) combine different forms of disambiguation knowledge

evidence from mention-entity associations and entity popularity in the KB, and

context similarity. Ratinov et al. (2011) use a mixture of local and global features

to train the coefficients of a linear ranking SVM to rank different NE candidates.

Shirakawa et al. (2011) cluster related textual mentions and assign a concept to

each cluster using probabilistic taxonomy. Han et al. (2011) use local dependency

between NE mention and the candidate entity, and semantic relatedness between

candidate entities to construct a referent graph, proposing a collective inference

algorithm to infer the correct reference node in the graph. Hoffart et al. (2011)

pose the problem as one of finding a dense sub-graph, which is infeasible in a huge

graph.

The entity linking problem aims to cluster together entities that refer to the

same real world object. It is often done by aligning entities in a document with

a corresponding entries in a knowledge base. However a substantial challenge

is presented by entities that do not appear in the KB, called NIL entities, e.g.

people names on forum data. These names are often ambiguous, misspelled, or

incomplete and should be handled differently. Since the Text Analytics Conference

on Knowledge Base Population (TAC-KBP) included the task of entity linking

(McNamee et al., 2009), the task has grown in popularity with many different

approaches (Ji and Grishman, 2011; Zhang et al., 2010). Examples include the

use of information retrieval techniques, such as query expansion (Gottipati and

Jiang, 2011), for retrieving the correct KB entry; generative clustering models for

11
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entities in text based on KB entries (Han and Sun, 2011); and graph partitioning,

Markov-Chain Monte Carlo and centroid models to obtain optimal clustering for

both linked and unlinked (NIL) entities (Monahan et al., 2014).

The entity matching problem was originally defined in 1959 by (Newcombe et

al., 1959) and was formalized by (Fellegi and Sunter, 1969) 10 years later. Since

then it has been considered under various facets and from different communities,

including the AI research community, the DB research community, and industry.

Numerous approaches have been proposed for entity matching especially for struc-

tured data. Due to the large variety of data sources and entities to match there

is no single “best” match algorithm. A single match approach typically performs

very differently for different domains and match problems. For example, it has

been shown that there is no universally best string similarity measure (Guha et al.,

2004; Sarawagi and Kirpal, 2004). Instead it is often beneficial and necessary to

combine several methods for improved matching quality, e.g. to consider the sim-

ilarity of several attributes or to take into account relationships between entities.

For large datasets it is popular to apply blocking strategies to reduce the search

space for entity matching and achieve sufficiently fast execution times. There are

several entity matching frameworks that have recently been developed which sup-

port multiple approaches for blocking and matching as well as their combination

(Baxter et al., 2003; Bilenko et al., 2006; Kenig and Gal, 2013; Michelson and

Knoblock, 2006; Vries et al., 2009; Whang et al., 2009).

A significant amount of research has been done in this area — particularly

under the umbrella term of ontology matching (Choi et al., 2006; Kalfoglou and

12
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Schorlemmer, 2003; Shvaiko and Euzenat, 2013; Suchanek et al., 2011). An on-

tology is a formal collection of world knowledge and can take different structured

representation. Despite the large body of literature in this area, most of the work

on ontology matching has been demonstrated only on fairly small datasets of the

order of a few hundred entities. In particular, (Shvaiko and Euzenat, 2013) iden-

tified large-scale evaluation as one of the main challenges for the field of ontology

matching.

Entities to be resolved may reside in distributed, typically heterogeneous data

sources or in a single data source, e.g. in a database or a search engine store. They

may be physically materialized or dynamically requested from sources, e.g. by

database queries or keyword searches (Chiang et al., 2014; Papadakis et al., 2013).

The conceptual unifying property of entity matching, disambiguation and link-

ing tasks is their goal — to identify data points (database entries, entities, etc)

that refer to the same real world object. We show how to represent each of these

problems as a graph and how to use Personalized Page Rank on this graph to find

correct matches.

13



Chapter 3

Entity Matching

3.1 Introduction

A common prerequisite for knowledge discovery is accurately combining data

from multiple, heterogeneous sources into a unified, mineable knowledge graph.

An important step in creating such a graph is entity matching. Entity matching is

the problem of determining if two entities in a data set refer to the same real-world

object. It is a complex and ubiquitous problem, that appears in numerous appli-

cation domains including information extraction, data integration, and language

processing.1

As an example consider the two toy knowledge graphs in Figure 3.1. Nodes

in these graphs are actors, movies, characters, performance entities, and their

attributes. Edges between nodes correspond to Resource Description Framework
1. This chapter is a revised version of (Pershina et al., 2015a) and patent application (Yakout

et al., 2014).
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(RDF) triples (s, p, o) and are annotated with predicates p. RDF is a simple yet

very powerful triple-based representation for semantic web. It was defined byWorld

Wide Web Consortium (W3C) in 1998 (Lassila and Swick, 1998). For example,

triple (p1, played_by, a1) represents an edge between performance p1 and actor

a1, meaning that performance p1 was played by an actor a1. The goal is to learn

that actors a2 and a4 are the same (Tom Cruise), movies m1 and m2 are likely

to be different (Mission Impossible vs Mission Impossible III), as well as actors a1

and a3 (Douglas played Kiev Room Agent in Mission Impossible vs Douglas played

IMF Agent in Mission Impossible III).

A growing body of work has shown that incorporating global information can

improve the entity matching performance. For example, global information is em-

ployed in simultaneous coreference in (Singla and Domingos, 2006), jointly modeled

record and field coreference in (Culotta and McCallum, 2005), dirichlet process for

modeling interactions between dataset entities in (Bhattacharya and Getoor, 2006;

Hall et al., 2008), distribution of wrong entries in input datasets for data fusion

in (Dong et al., 2014), probabilistic ontology alignment in (Suchanek et al., 2011).

The main limitations of the above techniques are requirements for prior domain

knowledge for modeling, data for training, and/or probabilistic inference, which

makes these methods computationally infeasible for large data sets.

Missing or incomplete information in the database is another challenge in the

entity matching process, e.g. actors a1 and a3 in Figure 3.1 have the same name

“Douglas” but correspond to different people - actors Sam Douglas and Douglas

Price. Only the dissimilarity of neighboring pairs can help to properly resolve
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this pair, e.g. different names for characters (c1,c3) should impact the score for

(a1, a3). The intuition behind our algorithm is that matching nodes should have

similar nodes in their neighborhood, thus our approach ranks pair (a2,a4) higher

than pair (a1,a3) in Figure 3.1.

Greedy iterative approaches (Bohm et al., 2012; Dong et al., 2005; Guo and

Barbosa, 2014; Lacoste-Julien et al., 2013; Whang et al., 2009) process nodes

sequentially, e.g. by using a priority queue: the highest scored node is resolved as a

match, triggering updates for other nodes, and so on. The drawback of this process

is the propagation of erroneous decisions, accepted earlier. For example, different

actors (a1,a3) would be mistakenly resolved as a match by a greedy approach,

since they have exactly the same attributes. This decision would later boost the

similarity score between movies (m1,m2) that are clearly different.

In the era of big data, the sources to merge may comprise millions of nodes

of tens of different types and will require scalable techniques to resolve matches.

There are many approaches, such as blocking, clustering, bootstrapping (Bhat-

tacharya and Getoor, 2007; Cohen and Richman, 2002; McCallum et al., 2000;

Rastogi et al., 2011; Whang et al., 2009), constrained deduplication (Arasu et al.,

2009), duplicate detection (Herschel and Naumann, 2008), proposed to avoid the

quadratic number of comparisons between all pairs of entities to make it scalable.

Many entity matching techniques strive for scalability and implicitly use the graph

of potential matching candidate pairs to propagate similarity scores. In this paper

we present a new method to construct such a graph.

There are primary and relationship entities in the knowledge graphs. Primary
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entities can have non-reference attributes, such as name, etc (e.g. actor a2).

Relationship entities serve to connect primary entities and to describe this con-

nection, e.g. performance p1 in Figure 3.1ab shows that actor a1 played character

c1 in movie m1. Relationship entities do not have any non-reference attributes,

making it very difficult to match them. Our approach achieves a high F-score of

98% when resolving relationship entity matches.

The main properties of our entity matching framework can be summarized as

follows:

• Generic: domain independent, robust to incomplete data, accurate for primary

and relationship entities;

• Scalable: both graph construction and score propagation scheme are scalable

for large datasets;

• Efficient: does not require training, probabilistic inference, intermediate local

models; avoids propagating errors by doing simultaneous resolution for all

nodes.

3.2 Pairs Graph Construction

Constructing the pairs graph with all possible pairs of entities is unnecessary

and often not feasible when we integrate very large knowledge graphs. However,

we want the pairs graph to have at least all the matching entities. A pair of entities

is a potential match if: (1) their attribute values overlap (or their corresponding
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bag-of-word encodings overlap); and/or (2) they are connected to entities in their

corresponding graphs that are likely to match.

First, we construct potentially matching Seed Pairs based on direct attributes

similarity. Second, we expand Seed Pairs, using their corresponding connected

entities, and add the necessary new entity pairs and edges to the graph.

3.2.1 Seed Pairs Generation

In the generation of Seed Pairs we rely only on the attribute values of the

entities, encoded into a bag of words. We compute IDF (or Inverse Document

Frequency) scores for words with respect to the source graph and calculate cosine

similarity between entities. First, we organize encoded entities e for each input

graph into a schema ⟨Word, e, idf⟩. Then we compute IDF scores for individual

words idf(w) with respect to the source graph, and finally obtain initial similarity

for the pair:

⟨ e1, e2, sim(⟨e1, e2⟩)=
1

||e1||·||e2||
∑

w∈e1∩e2

idf1(w)×idf2(w) ⟩ (3.1)

In practice, we generate Seed Pairs separately for each entity type and do

additional optimization and pruning, e.g. we discard words with very low IDF

score (stop words), and keep only the top k = 100 potential matches per entity.

3.2.2 Expanding the Pairs Graph

Given two knowledge graphs our goal is to identify pairs of entities that match.

We need to build graph of pairs that captures the influence of each pair of enti-
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ties on the neighborhood entities. Thus, the similarity of a pair of entities will

contribute to the similarity of its neighborhood pairs of entities. For example, the

similarity of a pair of actors contribute to the similarity of their corresponding pairs

of performances and movies. The final similarity score of a pair of entities depends

on both the similarity of their primitive attribute values and the similarity of their

connected entities. The graph has two types of nodes: (i) a node that represents

a pair of entities; and (ii) a node that represents a word. An edge between nodes,

that are pairs of entities, represents the dependency between their corresponding

similarities. For example, the similarity of two performances depends on the simi-

larity of their corresponding movie and actor entity pairs. An edge between a pair

node and a word node means that the word is shared between the pair of entities.

For example, the word “Tom” is shared between the pair of actors (a2,a4).

Given only seed pairs we need to generate additional pairs and edges to add

connectivity to the graph and to include relationship entities, that do not have any

atomic attribute values to be considered at the seed generation step. We do two-

step expansion for seed pairs (as, bs)∈Seed Pairs, generated for graphs G1(V1, E1)

and G2(V2, E2).

First Step. For triples (as, p, a)∈E1 and (bs, p, b)∈E2 we add an entity pair

node (a, b), if both a and b are entities of the same type. Then we add an undirected

edge connecting it to (as, bs). Similar step is performed for triples (a, p, as) ∈E1

and (b, p, bs)∈E2. For example, we add a new pair (p1,p3) and an edge connecting

it to the seed (m1,m2) (Figure 3.1c).

Second Step. At this step we expand relationship entities (a, b) that were added
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at the first step. Thus, we expand a pair of performances (p1,p3) by adding a pair

of characters (c1,c3) and a corresponding edge between these two pairs. This two-

step process is illustrated in Figure 3.1c. There can be slightly different definitions

of relationship entities. We use entities that do not have name attribute.

There are many conflicting pairs produced during the expansion process, e.g. a

pair of movies (m1,m2) generates four performance pairs (p1,p3), (p1,p4), (p2,p3),

(p2,p4). We assume, that there are no duplicates within the original knowledge

graphs and thus pairs (p1,p3) and (p1,p4) cannot coexist together with respect

to their parent (m1,m2). To resolve conflicts between nodes we use local infor-

mation, such as shared terminal attributes, and stable marriage heuristics (Gale

and Shapley, 1962) to keep only relevant pairs. For example, performance node

p1 can “marry” either p3 or p4, and the same is true about node p2. Node p1

would “prefer” p3 since their immediate neighbor pairs (c1,c3) and (a1,a3) have

some shared terminals. Similarly, p2 would “prefer” p4 over p3. As a result, the

stable marriage algorithm maps p1 to p3 and p2 to p4. Thus nodes (p1,p4) and

(p2,p3) and their further extensions, (c1,c4), (a1,a4), (c2,c3), (a2,a3), are removed

from the graph (shaded nodes in Figure 3.1c).

Terminals. Lastly, we add shared terminals to all nodes. Thus, string Douglas

is attached to the pair (a1,a3), strings Tom and Cruise are attached to the pair

(a2,a4), etc.

The individual seed expansion step is independent from other seeds expansion,

so it is parallelizable and is done efficiently with MapReduce. The graph construc-

tion process is summarized in Algorithm 3.2.
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3.3 Random Surfer Model

The graph of pairs captures the influence of each pair of entities on the neighbor-

hood entities (Figure 3.1). We need a holistic approach to quantify the influence

of terminal value similarity on entity pair similarity and the influence of one entity

pair on another. Personalized PageRank provides a natural way to measure this

influence.

3.3.1 Personalized PageRank

Consider a directed weighted graph G(V,E). Its edges represent relations be-

tween nodes. PageRank is the stationary distribution of a random walk on G,

where at each step with probability ϵ (teleport probability) we jump to a ran-

domly selected node on a graph, and with probability 1 − ϵ we follow a random

outgoing edge from the current node. Personalized PageRank (PPR) is the same

as PageRank but all teleports are made to the same source node, for which we per-

sonalize the PageRank. Thus, for every source node v and landing node u there is

an associated PPR weight denoted as PPR(v → u).

3.3.2 Holistic Similarity In a Knowledge Graph

The contribution of each word to the similarity of a pair of entities should con-

sider the word’s popularity. Popular words across entities will less likely influence

the matching decision. Therefore each word will have a weight. The well estab-

lished measure for this purpose is the IDF which is well known in the Information
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Retrieval area. The lower the IDF score of a word is, the more entities this word

is shared between. Hence, the less distinguishing such a word is to its entities.

The contribution of a word w to the similarity of a pair p is conversely pro-

portion to the degree of the node w in the graph (i.e. the number of node pairs

connected to node w). This is similar to the popularity notion, which the IDF

weight is trying to capture.

Another way to explain a word’s contributions to the pairs similarity is by

considering a random surfer, walking in the graph. Let us consider a random

surfer that continuously starts its trip at the word node w. Then the landing

probability of the surfer at node ⟨e1, e2⟩ is essentially the amount of contribution

of word w to the similarity of pair ⟨e1, e2⟩. Summing these contributions over all

words w we obtain

sim(⟨e1, e2⟩) =
∑
∀w

PPR(w → ⟨e1, e2⟩) (3.2)

The above reasoning about the contribution of the words to entities similarity using

a random surfer can be extended further to the contribution of entity pairs towards

entity pairs.

3.3.3 Optimization

Equation (3.2) requires computing PPR weights for all primitive words w in

the graph to calculate sim(⟨e1, e2⟩). Thus, to compute the contribution of a pair

of actors (a2,a4) from Figure 3.1c) to the similarity of a pair of movies (m1,m2)

we would have to start a random surfer at each shared primitive value for (a2,a4):

names Tom and Cruise. One can optimize this by computing summary of words at
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the pair level as pair’s initial similarity, and then propagate it using PPR weights.

We use two strategies to compute this initial similarity.

Simple Initial Similarity. Pairs Graph construction filters out irrelevant pairs,

entities, and their attributes. It induces two subgraphs - one in each source. These

are the subgraphs that were used to build Pairs Graph. We can compute initial

similarity scores iSim(⟨e1, e2⟩) for every pair node ⟨e1, e2⟩ with respect to these two

subgraphs in a similar fashion as in Section 3.2.1, Equation (3.1): first, compute

idf(w) for words w with respect to the source subgraphs, then calculate cosine

similarity between entities in each pair to produce iSim(⟨e1, e2⟩).

GraphBased Initial Similarity. Let us denote as Vw all pairs of entities in the

graph G(V,E) that share primitive value w. These pairs are immediate neighbors

of w, so |Vw| = degree(w). Random surfer, started at node w, is either teleported

with probability ϵ or makes one step in a random direction with probability 1− ϵ.

There are |degree(w)| possible directions, so after one iteration random surfer lands

at any of the nodes v ∈ Vw with probability P (v) = 1−ϵ
degree(w)

, and then the process

resumes. Thus

PPR(w → ⟨e1, e2⟩) =
∑
v∈Vw

P (v) · PPR(v → ⟨e1, e2⟩)

∼
∑
v∈Vw

1

deg(w)
· PPR(v → ⟨e1, e2⟩)

Then similarity of a pair ⟨e1, e2⟩ from Equation (3.2) can be rewritten as following

sim(⟨e1, e2⟩)=
∑
w

PPR(w → ⟨e1, e2⟩)

∼
∑
w

1

deg(w)

∑
v∈Vw

PPR(v → ⟨e1, e2⟩)
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Every vertex v = ⟨e′1, e′2⟩ appears in this sum as many times as many primitive

values w pair ⟨e′1, e′2⟩ has. Let us denote this set of shared primitive values for

vertex v as Wv. Changing the order of summation and combining terms for the

same vertices we get

sim(⟨e1, e2⟩) ∼
∑
v

PPR(v → ⟨e1, e2⟩)
∑
w∈Wv

1

deg(w)

=
∑
v

PPR(v → ⟨e1, e2⟩) · iSim(v),

where iSim(v) =
∑
w∈Wv

1

deg(w)

(3.3)

denotes initial similarity of node v and is equal to the sum of degree reciprocals of

primitive values for node v.

This computation justifies the idf logic, described in Section ??. Namely, the

contribution of a word w ∈ Wv into initial similarity of a pair v is conversely

proportion to the degree of the node w in the graph (i.e. the number of reference

pairs sharing word w).

The optimization step (3.3) subsumes all shared primitive values w ∈ Wv of

every pair v into initial similarity iSim(v).

These strategies for summarizing primitive values allow us to remove all ter-

minal nodes from the pairs graph and thus drastically reduce its size. Moreover,

this step significantly simplifies further computation by reducing starting points

for random surfer to only non-terminal (reference) nodes:

sim(⟨e1, e2⟩) =
∑

v∈non−terminal
nodes

PPR(v → ⟨e1, e2⟩) · iSim(v) (3.4)
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3.4 Pipeline

Our pipeline for Holistic Entity Matching is in Figure 3.3. Its input consists

of two knowledge graphs. The goal is to identify duplicate entries in these graphs.

There are following steps in this pipeline: (1) generate Seeds; (2) construct Pairs

Graph; (3) compute initial similarity for pairs in the Pairs Graph; (4) propagate

initial scores via PPR; (5) resolve final scores.

3.5 Experiments

3.5.1 Data

For our experiments we use two datasets: Freebase2 and an IMDB dataset from

an internal data warehouse3. Given two sources with more than 110M and 203M

entities correspondingly (Table 3.1), we focus on several entity types of interest to

avoid space and time limitations. Namely, we pick actors and movies, as they are

closely related and thus may benefit from each other. During graph construction

step these entities will introduce new nodes, such as performance pairs, allowing

us to validate our technique for relationship entities.

3.5.2 Graph construction and score propagation

We generated 5M seeds, 3.2M actor pairs and 1.8M movie pairs, and built

graph of pairs as described in Section 3.2. We adopt the Monte Carlo approach
2. www.freebase.com
3. Internal Microsoft IMDB dataset is obtained from imdb pages.
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Dataset Freebase IMDB
Total Entities 110.6M 203.9M
Actors 425.9K 2.7M
Movies 240.8K 2.5M
Performances 1.2M 5.8M

Table 3.1: Freebase and IMDB datasets statistics.

(Fogaras and Balazs, 2004) for computing Personalized PageRank. It performs a

number of independent random walks for every source node and takes an empirical

distribution of ending nodes to obtain PPR weights with respect to the source. We

initialized 4,000 random walks for every source node, performed 5 steps of PPR at

each node with teleport probability ϵ= 0.2, and computed final scores according

to (3.4).

3.5.3 Models and Evaluation

Seed scores from Section 3.2.1, and initial scores from Section 3.3.2, are our two

baselines; we compare their precision and recall with HolisticEM in Table 3.2. In

addition to the ground truth matches, available from internal data warehouse, that

covers about 95% of all matches between Freebase and IMDB datasets, we perform

additional manual evaluation of uniformly sampled 1000 unmatched entities for

each type. We use thresholds obtained on a development dataset for every entity

type to resolve HolisticEM scores.
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Movies Actors Performances
Models P/R/F P/R/F P/R/F
Seeds 68.2 / 82.4 66.4 / 79.1 N/A

74.6 72.2
Simple 92.0 / 76.1 83.2 / 78.2 N/A

83.3 80.6
GraphBased 88.2 / 86.4 86.9 / 83.2 N/A

87.3 85.0
Holistic+Simple 93.1 / 92.5 95.8 / 93.5 93.1 / 95.9

92.8 94.7 94.4
Holistic+GraphBased 99.3 / 96.9 98.9 / 97.9 98.6 / 97.4

98.1 98.4 98.0

Table 3.2: Precision, Recall and F-score for (1) Seed Pairs; (2) pairs in Pairs Graph
with Simple and GraphBased initial scores; (3) pairs in Pairs Graph with PPR-
propagated Simple (HolisticEM+S) and GraphBased (HolisticEM+GB) scores.

3.5.4 Results

Holistic Entity Matching improves F-score over Seeds and both initial scores -

Simple and GraphBased. It is interesting that pairs generated in Pairs Graph and

scored with Simple or GraphBased routines are already a good baseline achieving

on movies an F-score of 83% and 87% correspondingly. Propagating initial scores

with PPR further improves the performance achieving a very competitive results

with F-score of 98.1% on movies and F-score of 98.4% on actors. The GraphBased

initial scores perform better than Simple initial scores, proving that optimization

(3.3) properly captures contribution of terminal values with respect to the graph

structure.

This result compares favorably with the most recent state-of-the-art greedy

approach SiGMa (Lacoste-Julien et al., 2013) that achieves an F-score of 97% on
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movies when merging smaller datasets, also derived from IMDB and Freebase, with

3.1M and 474K entities correspondingly and with ground truth of 255K movies.

This justifies the efficiency of HolisticEM, that is able to handle 60 times bigger

datasets of 203M and 110M entities with 6 times bigger ground truth of 1.6M.

In addition to primary entities HolisticEM efficiently resolves relationship enti-

ties matches achieving high F-score of 98.0% on performances (Table 3.2).

3.6 Conclusion

We propose a novel scalable framework for collective entity matching across

knowledge graphs. We describe a new way of constructing a graph of potential

matching pairs and propose a new scheme to propagate similarity between pairs

in this graph. Building the subgraph from seeds, adding necessary connections

and controlling its expansion can be a very efficient graph sampling technique for

dense graphs, where considering quadratic number of all possible pairs makes any

further computations infeasible. By propagating scores via Personalized Page Rank

we significantly simplified the entity matching routine. Our PPR-based framework

does not require any prior domain knowledge, training, probabilistic inference;

it scales to large datasets and has a competitive performance on both primary

and relationship entities. This approach can be implemented on MapReduce to

efficiently handle industrial size datasets.
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CHAPTER 3. ENTITY MATCHINGIndividual seed expansion step is independent from other seeds expansion, so it is par-
allelizable and is done e�ciently with MapReduce. The graph construction process is sum-
marized in Algorithm 1.

Algorithm 1 : Pairs Graph Construction
1: Input: graphs G1(V1, E1(s, p, o)), G2(V2, E2(s, p, o))
2: Phase 1: generate Seeds ={(s1, s2)|s1 2V1, s2 2V2}
3: Phase 2: expand Seeds

4: table Edges(pair(s1, s2), pair(o1, o2));
5: // One step expansion for all seeds.
6: for (as, bs) 2 Seeds do
7: Edges=Edges [ SingleStep(as, bs);
8: end for
9: table newNodes =select pairs (s1, s2), (o1, o2)

10: from Edges;
11: // Second step expansion for relationship entities.
12: for {(a, b)2newNodes & isRelationshipEnt(a, b)} do
13: Edges=Edges [ SingleStep(a, b);
14: end for

15: makeBidirectionalEdges(Edges);
16: table AllNodes(s1, s2)=select (s1, s2), (o1, o2)
17: from Edges, Seeds;
18: // Find shared terminal attributes of the same type p1=p2.
19: table TerminalEdges(terminal o, pair(s1, s2))=
20: AllNodes combine E1 on AllNodes.s1 = E1.s1
21: combine E2 on AllNodes.s2 = E2.s2
22: where E1.p1 = E2.p2
23: and E1.o1 = E2.o2 = o is terminal;
24: return Edges [ TerminalEdges;

25: function SingleStep(pair (a, b))
26: // case 1: find edges to object pairs
27: table ExpandO(pair(a, b), pair(o1, o2)) =
28: E1 combine E2 on p1=p2, s1=a, s2=b;
29: // case 2: find edges from subject pairs
30: table ExpandS(pair(s1, s2), pair(a, b)) =
31: E1 combine E2 on p1=p2, o1=a, o2=b;
32: // Remove conflicting nodes via StableMarriage algo
33: NewEdges = StableMarriage(ExpandO [ ExpandS);
34: return NewEdges;
35: end function

14
Figure 3.2: Algorithm 1 for graph expansion.
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Figure 3.3: Pipeline for HolisticEM framework.
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Chapter 4

Entity Disambiguation

4.1 Introduction

In Chapter 3 we studied the entity matching problem and presented a graph-

based approach to find duplicates in databases. A database is a structured input

defined by its schema, and it can be naturally presented as a graph, where graph-

ranking techniques, such as Personalized PageRank, can be applied. It turns out

that similar methods can be used for Named Entity Disambiguation (NED) - the

task to map textual entity mentions in a document with structured data in a

Knowledge Base (KB).1

While input for NED has a different nature - combination of unstructured

and structured data - it is still possible to represent it as a graph and to apply

graph-ranking techniques similar to those used for Entity Matching. There are

several additional steps in NED that are needed to process this input before it
1. This chapter is a revised version of (Pershina et al., 2015c).
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can be converted to a graph. First, named entity recognition is applied to detect

named entity mentions in a document. Second, a list of KB candidates should be

generated for every entity mention. Third, a notion of node has to be introduced.

Forth, edges have to be constructed to represent relations between nodes in a

graph.

Entity matching and NED tasks have different scales since a database may

comprise hundred millions of entities while an average news document has at most

several hundreds of entities. Different scales pose different challenges for these

tasks. A practical method for entity matching has to be efficient and scalable for

large input. On the other hand the large dense graph for entity matching is a more

accurate snapshot of relations in databases and thus is more robust to noise. The

much smaller scale of NED input requires a cherry-picking approach that would

properly filter out noise and can efficiently combine all available information about

other nodes in a graph.

Finally, for the NED task it is often implied that every entity mention has

a correct corresponding entry in a knowledge base. Thus, a natural accuracy

measure for this task is precision@1.0 - fraction of entities disambiguated correctly

assuming that candidates pool always include the true answer. We will discuss a

more realistic setting for this problem in the next Chapter 5 devoted to entity

linking. Namely, we will omit an assumption that every entity has a correct entry

in a knowledge base and propose a technique to cluster together entities that refer

to the same real world object and are not mapped to any valid entry in a KB. For

entity matching task this assumption does not hold either and thus precision and
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recall are used to measure the accuracy of the model.

NED is both useful on its own, and serves as a valuable component in larger

Knowledge Base Construction systems (Mayfield, 2014). Since the surge of large,

publicly available knowledge bases (KB) such as Wikipedia, the most popular ap-

proach has been linking text mentions to KB nodes (Bunescu and Paşca, 2006).

In this paradigm, the NED system links text mentions to the KB, and quite nat-

urally utilizes information in the KB to support the linking process. Recent NED

systems (Alhelbawy and Gaizauskas, 2014; Cucerzan, 2007; Ratinov et al., 2011)

usually exploit two types of KB information: local information, which measures

the similarity between the text mention and the candidate KB node; and global

information, which measures how well the candidate entities in a document are

connected to each other, with the assumption that entities appearing in the same

document should be coherent. There is a trade-off between local and global views

since both types of features have their strengths and drawbacks: local features

better encode similarity between a candidate and a KB node, but overlook the

coherence between entities; global features are able to exploit interlinking infor-

mation between entities, but can be noisy if they are used on their own, without

considering information from the text and the KB.

In this chapter, we propose to disambiguate NEs using a Personalized PageR-

ank (PPR) random walk algorithm. Given a document and a list of entity mentions

within the document, we first construct a graph whose vertices are linking candi-

dates and whose edges reflect links in Wikipedia. We run the PPR algorithm on

this graph, with the constraint that we only allow the highest scored candidate
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for each entity to become the start point of a hop. As all candidates but the

correct one are erroneous and probably misleading, limiting the random walk to

start from the most promising candidates effectively filters out potential noise in

the Personalized PageRank process.

Our method has the following properties: 1) as our system is based on a random

walk algorithm, it does not require training model parameters ; 2) unlike previous

PageRank based approaches in NED (Alhelbawy and Gaizauskas, 2014) which

mainly rely on global coherence, our method is able to better utilize the local

similarity between a candidate and a KB node (Section 4.3); and 3) we tailor the

Personalized PageRank algorithm to focus on a single high-confidence entity at a

time to reduce noise (Section 4.4).

4.2 Related Work

Early attempts at the NED tasks use local and surface level information. (Bunescu

and Paşca, 2006) first utilize information in a knowledge base (Wikipedia) to dis-

ambiguate names, by calculating the similarity between the context of a name

mention and the taxonomy of a KB node.

Later research, such as (Cucerzan, 2007) and (Milne and Witten, 2008) extends

this line by exploring richer feature sets, such as coherence features between entities.

Global coherence features have therefore been widely used in NED research (see

e.g. (Cheng and Roth, 2013; Hoffart et al., 2011; Ratinov et al., 2011)) and have

been applied successfully in TAC shared tasks (Cucerzan, 2011). These methods

often involve optimizing an objective function that contains both local and global
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terms, and thus requires training on an annotated or distantly annotated dataset.

Our system performs collective NED using a random walk algorithm that does

not require supervision. Random walk algorithms such as PageRank (Page et al.,

1999) and Personalized PageRank (Jeh and Widom, 2003) have been successfully

applied to NLP tasks, such as Word Sense Disambiguation (WSD: (Agirre and

Soroa, 2009; Sinha and Mihalcea, 2007)).

(Alhelbawy and Gaizauskas, 2014) successfully apply the PageRank algorithm

to the NED task. Their work is the closest in spirit to ours and performs well

without supervision. We try to further improve their model by using a PPR model

to better utilize local features, and by adding constraints to the random walk to

reduce noise.

4.3 The Graph Model

We construct a graph representation G(V,E) from the document D with pre-

tagged named entity textual mentions M = {m1, ...,mk}. For each entity mention

mi ∈ M there is a list of candidates in the KB, Ci = {ci1, ..., cini
}. Vertices V are

defined as pairs

V = { (mi, c
i
j) | mi ∈ M, cij ∈ Ci },

corresponding to the set of all possible KB candidates for different mentions in

M . Edges are undirected and exist between two vertices if the two candidates are

directly linked in the knowledge base, but no edge is allowed between candidates for

the same named entity. Every vertex (m, c) is associated with an initial similarity
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score between entity mention m and candidate c (Figure 4.1).

United F.C. is based in Lincolnshire and participates 
in the sixth tier of English football. The striker 
Devon White joined this football club in 1985.

Devon_White
(baseball), 0.5

Lincoln_United_F.C.,0.5 Boston_United_F.C.,0.5

Lincolshire, 0.4

Boston, _Lincolnshire, 0.3

Lincoln,_Lincolnshire, 0.3

Devon_White
(footballer), 0.5

Figure 4.1: A toy document graph for three entity mentions: United F.C., Lin-
colnshire, Devon White. Candidates and their initial similarity scores are generated
for each entity mention.

4.3.1 Vertices

4.3.1.1 Candidates

Given named entity mentions M in the document, we need to generate all pos-

sible candidates for every mention m ∈ M . We first perform coreference resolution

on the whole document and expand m to the longest mention in the coreference

chain. We then add a Wikipedia entry c to the candidate set Ci for mention mi if

1) the title of c is the same as the expanded form of mi, or 2) string mi redirects

to page c, or 3) c appears in a disambiguation page with title mi.
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4.3.1.2 Initial Similarity

Initial similarity iSim for vertex (m, c) describes how similar entity mention

m to candidate c is. It is independent from other candidates in the graph G.

We experiment with the local measure (localSim), based on the local information

about the entity in the text, and the global measure (popSim), based on the global

importance of the entity. Initial similarity scores of all candidates for a single

named entity mention are normalized to sum to 1.

• localSim: The local similarity score is produced by a MaxEnt model trained

on the TAC2014 EDL training data (LDC2014E15). MaxEnt features include

string similarity between the title of the Wikipedia entry and the entity

mention, such as edit distance, whether the text mention starts or ends

with the Wikipedia title, etc; and whether they have the same type (e.g.

person, organization, location, etc).

• popSim: We use the Freebase popularity as an alternative similarity mea-

sure. The Freebase popularity is a function of entity’s incoming and outgoing

link counts in Wikipedia and Freebase.2

4.3.2 Edges

Edges in our graph model represent relations between candidates. We insert

an edge between two candidates if the Wikipedia entry corresponding to either of
2. https://developers.google.com/freebase/v1/search
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the two candidates contains a link to the other candidate. We assume that this

relation is bidirectional and thus this edge is undirected.

There is a toy document graph in Figure 4.1 with three entity mentions and

seven candidates: three candidates generated for Lincolnshire, and two candidates

generated for United F.C. and Devon White each. Each graph node e(m, c) is a pair

of an entity mention m and a candidate c; every node is assigned an initial score,

normalized across all candidates for the same entity. An edge is drawn between two

candidates for different entities whenever there is a link from the Wikipedia page

for one candidate to the Wikipedia page for another. There is no edge between

candidates competing for the same entity.

4.4 The Challenge

A successful entity disambiguation algorithm would benefit from both the initial

similarity between candidate and entity, as well as the coherence among entities in

the same document. We assume that every entity can refer to at most one in the list

of possible candidates, so all candidates except for the correct one for each entity

are erroneous and will introduce noise into the document graph. Based on this

observation, we contend that the typical random walk approach, which computes

coherence of one candidate to the whole graph, is not suitable for our scenario.

To address this problem, we propose to consider pairwise relations between every

two nodes, given by PPR scores, compute the contribution of every node to the

coherence of the other, and impose aggregation constraints to avoid redundant

contributions.
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4.4.1 Personalized PageRank

The PageRank algorithm considers random walk on a graph, where at each

step with probability ϵ (teleport probability) we jump to a randomly selected node

on a graph, and with probability 1 − ϵ we follow a random outgoing edge of the

current node. Stationary distribution of this walk gives PageRank weights asso-

ciated with each node. Personalized PageRank is the same as PageRank, except

that all teleports are made to the same source node, for which we are personalizing

the PageRank.

4.4.2 Coherence and Constraints

The coherence of the node e to the graph G quantifies how well node e “fits”

into this graph. Intuitively, pairwise weights PPR(s → e) represent relationships

between nodes in the graph: the higher the weight is, the more relevant endpoint e

is for the source s. Candidate nodes in the graph have different quality, measured

by their initial similarity iSim. Thus, coherence of the node e to the graph G due

to the presence of node s is given by

cohs(e) = PPR(s → e) · iSim(s), (4.1)

where relevance e for s is weighted by the iSim(s), which is the similarity between

entity e and candidate s. We experiment with a MaxEnt-trained local score and

the Freebase popularity as the iSim in Section 4.5.

We observe that summing the contributions cohs(e) for all nodes s∈V would

accumulate noise, and therefore impose two aggregation constraints to take into
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account this nature of document graph G. Namely, to compute coherence coh(e)

of the node e(m, c), corresponding to the entity mention m and the candidate c,

to the graph G we enforce:

(c1) ignore contributions from candidate nodes competing for an entity m;

(c2) take only one, highest contribution from candidate nodes, competing for an

entity m′ ̸= m;

The first constraint (c1) means that alternative candidates ē(m, c̄), generated for

the same entity mention m, should not contribute to the coherence of e(m, c), as

only one candidate per entity can be correct. For the same reason the second

constraint (c2) picks the single candidate node s(m′, c′) for entity m′̸=m with the

highest contribution cohs(e) towards e. So these constraints guarantee that exactly

one and the most relevant candidate per entity will contribute to the coherence

of the node e. Thus, the set of contributors towards coh(e) is defined as

CONTRe(m,c)= { (m′, argmax
c

coh(m′,c)(e) ) ∈V, m′ ̸=m } (4.2)

Then coherence of the node e to graph G is given by

coh(e) =
∑

s∈CONTRe(m,c)

cohs(e) (4.3)

Consider the example in Figure 4.1, which has two connected components.

Candidate Devon_White_(baseball) is disconnected from the rest of the graph and

can neither contribute towards any other candidate nor get contributions from

other nodes. So its coherence is zero. All other candidates are connected, i.e.

belong to the same connected component. Thus, the random walker, started from
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any node in this component, will land at any other node in this component with

some positive likelihood.

Let us consider the CONTRe(m,c) for entity mention m = Lincolnshire and

candidate c = Lincolnshire, 0.4,. Without our constraints, nodes

Devon_White_(footballer), 0.5, Lincoln_United_F.C., 0.5, Boston_United_F.C., 0.5,

Lincoln_Lincolnshire, 0.3,Boston_Lincolnshire, 0.3 can all potentially contribute to-

wards coherence of Lincolnshire, 0.4.

However, (c1) and (c2) will eliminate contribution from some of the candidates:

Constraint (c1) does not allow Lincoln_Lincolnshire, 0.3 and Boston_Lincolnshire, 0.3

to contribute, because they compete for the same entity mention as candidate

Lincolnshire, 0.4; constraint (c2) will allow only one contribution from either

Lincoln_United_F.C., 0.5 or Boston_United_ F.C., 0.5 whichever is bigger, since

they compete for the same entity mention United F.C.. Therefore, set CONTRe(m,c)

for entity mention m = Lincolnshire and candidate c = Lincolnshire, 0.4, will

contain only two contributors: candidate Devon_White_(footballer), 0.5, for en-

tity mention Devon_White, and exactly one of the candidates for entity mention

United F.C.

4.4.3 PPRSim

Our goal is to find the best candidate for every entity given a candidate’s coher-

ence and its initial similarity to the entity. To combine the coherence score coh(e)

with iSim(e), we weight the latter with an average value of PPR weights used in
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Models Microaccuracy Macroaccuracy
Cucerzan 51.03 43.74
Kulkarni 72.87 76.74
Hoffart 81.82 81.91

Shirakawa 82.29 83.02
Alhelbawy 87.59 84.19

iSim 62.61 72.21
PPR 85.56 85.86

PPRSim 91.77 89.89

Table 4.1: Performance of PPRSim compared to baselines and state-of-the-art
models on AIDA dataset. Baselines iSim and PPR choose a candidate with the
highest initial similarity or coherence correspondingly.

coherence computation (4.3) across all nodes in the document graph G(V,E):

PPRavg =

∑
e∈V

∑
s∈CONTRe

PPR(s → e)

|V |
(4.4)

Thus, the final score for node e is a linear combination

score(e) = coh(e) + PPRavg · iSim(e) (4.5)

If the document graph has no edges then PPRavg is zero and for any node e its

coherence coh(e) is zero as well. In this case we set score(e) to its initial similarity

iSim(e) for all nodes e in the graph G.

Finally, PPRSim disambiguates entity mention m with the highest scored candi-

date c ∈ Cm :

disambiguate(m) = argmax
c∈Cm

score(m, c) (4.6)

To resolve ties in (4.6) we pick a candidate with the most incoming Wikipedia

links.
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Thus, candidate Devon_White_(footballer), 0.5 in Figure 4.1 will get higher

overall score than its competitor, Devon_White_(baseball), 0.5. Their initial scores

are the same, 0.5, but the latter one is disconnected from other nodes in the

graph and thus has a zero coherence. So, entity mention Devon White will be cor-

rectly disambiguated with the candidate Devon_White_(footballer), 0.5. This can-

didate is directly connected to Boston_United_F.C., 0.5 and has a shortest path of

length 3 to Lincolnshire_United_F.C., 0.5, and therefore contributes more towards

Boston_United_F.C., 0.5, and boosts its coherence to make it the correct disam-

biguation for United F.C. Similarly, Lincolnshire is correctly disambiguated with

Boston, Lincolnshire, F.C., 0.3.

4.5 Experiments and Results

4.5.1 Data

For our experiments we use dataset AIDA3. All textual entity mentions are

manually disambiguated against Wikipedia links (Hoffart et al., 2011). There are

34,965 annotated mentions in 1393 documents. Only mentions with a valid entry

in the Wikipedia KB are considered (Hoffart et al., 2011), resulting in a total of

27,816 mentions. We use a Wikipedia dump from June 14, 2014, as the reference

KB. Our set of candidates is publicly available for experiments4.
3. http://www.mpi-inf.mpg.de/yago-naga/aida/
4. https://github.com/masha-p/PPRforNED
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4.5.2 Evaluation

We use two evaluation metrics: (1) Microaccuracy is the fraction of correctly

disambiguated entities; (2) Macroaccuracy is the proportion of textual mentions,

correctly disambiguated per entity, averaged over all entities.

4.5.3 PPR

We adopt the Monte Carlo approach (Fogaras and Balazs, 2004) for computing

Personalized PageRank. It performs a number of independent random walks for

every source node and takes an empirical distribution of ending nodes to obtain

PPR weights with respect to the source. We initialized 2,000 random walks for

every source node, performed 5 steps of PPR, and computed PPR weights from

all iterations dropping walks from the first one. The teleport probability is set to

0.2.

4.5.4 Baselines

We performed a set of experiments using initial similarity and Personalized

PageRank weights. Model iSim uses only Freebase scores and achieves microaccu-

racy of 62.61% (Table 5.1). PPR model picks a candidate with highest coherence,

computed in (4.3), where no initial similarity is used (iSim ≡ 1.0) and no con-

straints are applied. It has a microaccuracy of 85.56%. This is a strong baseline,

proving that coherence (4.3), solely based on PPR weights, is very accurate. We

also reimplemented the most recent state-of-the-art approach by (Alhelbawy and

Gaizauskas, 2014) based on the PageRank. We ran it on our set of candidates
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PPRSim Micro Macro
iSim ≡ 1.0 85.56 85.86
iSim = localSim 87.01 86.65
iSim = popSim 90.26 88.98

+(c1) 90.52 89.21
+(c2) 91.68 89.78

+(c1),(c2) 91.77 89.89

Table 4.2: Performance of PPRSim with different initial similarities and con-
straints.

4.5.5 Results

We observe that PPR combined with global similarity popSim achieves a mi-

croaccuracy of 90.2% (Table 4.2). Adding constraints into the coherence com-

putation further improves the performance to 91.7%. Interestingly, (c2) is more

accurate than (c1). When put together, (c1)+(c2) performs better than each

individual constraint (Table 4.2). Thus, combining coherence and initial similarity

via (5.4) improves both micro- and macroaccuracy, outperforming state-of-the-art

models (Table 5.1).

4.6 Conclusion

In this chapter we devise a new algorithm for collective named entity disam-

biguation based on Personalized PageRank. We show how to incorporate pairwise

constraints between candidate entities by using PPR scores and propose a new

robust scheme to compute coherence of a candidate entity to a document. Our

approach outperforms state-of-the-art models and opens up many opportunities to
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employ pairwise information in NED.
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Chapter 5

Entity Linking

5.1 Introduction

In Chapter 4 we considered Named Entity Disambiguation task that maps

textual entity mentions to corresponding entries in a knowledge base. A usual

assumption for this problem is to expect a correct disambiguation KB entry for

every entity mention in a text. The current chapter is devoted to Entity Linking

(EL) task, where the ultimate goal is to cluster together textual entity mentions,

that refer to the same real world object. The first step of this process links entity

mentions to entries of some knowledge base. After linked entities are grouped

together if they refer to the same KB entry, unlinked entities (NILs) have to be

clustered as well. Unlike the NED task, we do not assume that every entity links

to a KB entry. Thus this setting is a more realistic one since knowledge base is

often incomplete and can miss some entities (Min et al., 2013). 1

1. This chapter is a revised version of (Pershina et al., 2016).
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So far we ignored local differences between entity mention strings. Therefore

misspelled or corrupted names of the same named entity will never end up in

the same cluster. To improve both mapping and clustering steps we address the

problem of name variations - when same named entity is represented by different

strings. This is particularly important for clustering NIL entities, that do not have

a correct entry in the knowledge base and thus can be clustered only based on

their string representation.

To evaluate our approach we use data provided by Entity Linking (EL) track at

NIST Text Analysis Conference Knowledge Base Population (TAC-KBP) (Ji et al.,

2014). This dataset is very different from the AIDA collection of documents, that

we used in Chapter 4 for NED. First, it includes documents from different genres

such as newswire, web data, discussion forum posts, and local news, while AIDA

has only Reuters newswire articles. Second, about 35% of entity mentions in this

dataset are NILs - they do not have a correct corresponding entry in the provided

knowledge base. This makes it different from NED task, where we assumed that

such an entry always exists.

As opposed to Entity Matching and Named Entity Disambiguation tasks, the

evaluation metric for Entity Linking is designed to judge the quality of obtained

clusters but not the accuracy for individual entities. Thus, the final evaluation

depends on both the accuracy of intermediate disambiguation step against knowl-

edge base as well as further clustering of NIL entities. Various clustering metrics

are presented in (Bagga and Baldwin, 1998; Luo, 2013). We compute the B3+F

score that was used in TAC EDL 2014 competition.
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Linking raw entity mentions in a document to real world entities is useful on its

own and serves as a valuable component in larger Knowledge Base Construction

systems (Mayfield, 2014), e.g. the Cold Start track of TAC KBP program where

the goal is to develop an automatic system to construct a KB from scratch (Ji et al.,

2014). In the Wikification community (Bunescu and Paşca, 2006), text mentions

are linked to Wikipedia, a large and publicly available knowledge base.

There are two paradigms to solve the EL problem: local, non-collective ap-

proaches for Entity Linking resolve one mention at a time, relying on a context

and local features, while collective approaches try to disambiguate the set of rele-

vant mentions simultaneously, assuming that entities appearing in the same docu-

ment should be coherent. (Alhelbawy and Gaizauskas, 2014; Cassidy et al., 2012;

Cucerzan, 2007, 2011; Fernandez et al., 2010; Ferragina and Scaiella, 2010; Guo

et al., 2011; Han and Zhao, 2009; Han and Sun, 2011; Hoffart et al., 2011; Huang

et al., 2014; Kulkarni et al., 2009; Liu et al., 2013; Pennacchiotti and Pantel, 2009;

Pershina et al., 2015c; Radford et al., 2010; Ratinov et al., 2011; Shen et al., 2013).

We follow the second paradigm and present a collective approach, which is based

on PPRSim for NED discussed in Chapter 4.

On the other hand, Nevertheless, we still try to capture the local similarity

between the entity mention and its candidates in our model. To measure the

similarity between entity mention strings we propose to use an approach which

was proven effective for paraphrase detection. For this purpose we adopt the

state-of-the-art ASOBEK paraphrase model (Eyecioglu and Keller, 2015). It was

developed for paraphrase identification in Twitter and was ranked first among 19
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teams on the Paraphrase In Twitter (PIT) 2015 task. It uses six simple character

and word features and trains an SVM. This universal system is trained on pairs

of entity name variations, which we make publicly available2, and provides an

accurate similarity measure between entity mention strings.

In this chapter we make the following contributions: 1) we use the paraphrase

model to measure the similarity between entity mention strings and provide pub-

licly available training data for this model; 2) we efficiently incorporate this model

into a state-of-the-art entity disambiguation technique applied to the Entity Link-

ing task and achieve the competitive result of 80.5% in B3+F score on the diag-

nostic TAC EDL 2014 dataset.

5.2 Related Work

Traditionally, there were two paradigms to solve Entity Linking problem: non-

collective approaches (Guo et al., 2013; Han and Sun, 2011; Mihalcea and Csomai,

2007; Milne and Witten, 2008), and collective ones (Alhelbawy and Gaizauskas,

2014; Cassidy et al., 2012; Cucerzan, 2007, 2011; Fernandez et al., 2010; Ferragina

and Scaiella, 2010; Guo et al., 2011; Han and Zhao, 2009; Han and Sun, 2011;

Hoffart et al., 2011; Huang et al., 2014; Kulkarni et al., 2009; Liu et al., 2013;

Medelyan et al., 2008; Pennacchiotti and Pantel, 2009; Pershina et al., 2015c;

Radford et al., 2010; Ratinov et al., 2011; Shen et al., 2013).

Traditionally the EDL task starts by detecting entity mentions in text. Once

the entities have been extracted, the EDL task relies on the systems developed for
2. https://github.com/masha-p/paraphrase_flavor
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entity linking and NIL clustering.

The NIL Clustering task was added to TAC KBP in 2011, attracting the at-

tention of many researchers. Entity Linking has been evaluated at several TAC

conferences (2009-2013), and an overview of existing techniques can be found in (Ji

and Grishman, 2011; Ji et al., 2014). Most efficient systems capture the interplay

of Entity Linking and NIL clustering tasks (Monahan et al., 2014). While Entity

Linking can scale linearly with the number of entities, clustering is a much more

expensive operation (Singh et al., 2011). We address the problem of scalability by

using a greedy clustering approach based on a simple paraphrase model. Its worst

case running time is O(mn) where m is the number of NILs in a document and n

is the number of no-NILs.

5.3 Document Graph

5.3.1 Candidates

Given a document with pre-tagged named entity textual mentions M , we gen-

erate all possible candidates for every entity mention m ∈ M . First, we perform

coreference resolution on the whole document and expandm to the longest mention

in the coreference chain. We then add a Wikipedia entry c to the candidate set Ci

for mention mi in one of three cases: 1) the title of c is the same as the expanded

form of mi; 2) string mi redirects to page c; 3) c appears in a disambiguation page

with title mi.
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5.3.2 Edges

To represent relations between candidates we insert an edge between two candi-

dates if the Wikipedia entry corresponding to either of the two candidates contains

a link to the other candidate. We assume that information can flow in either di-

rection and thus this edge is undirected.

We construct a graph representation G(V,E) from the document D with pre-

tagged named entity textual mentions M={m1, ...,mk}. For each entity mention

mi ∈ M there is a list of candidates in the KB Ci = {ci1, ..., cini
}. Vertices V are

defined as pairs

V ={(mi, c
i
j)|mi∈M, cij∈Ci},

corresponding to the set of all possible KB candidates for different mentions in M .

Every vertex (m, c) has an initial similarity score iSim(m, c) between m and c.

5.3.3 Initial Similarity

We split m and c into sets of tokens Tm and Tc and recognize two cases: 1) if

Tm and Tc have any tokens in common then their similarity is 1.0; 2) otherwise it

is a reciprocal of the edit distance between m and c:

iSim(m, c) =

 1.0 , if Tm ∩ Tc ̸= ϕ

1
edit(m,c)

, otherwise
(5.1)

Thus, the pairwise initial similarity for “Buenos Aires” vs “Buenos Aires Wildlife

Refugee” and for “Buenos Aires” vs “University of Buenos Aires” equals to 1.0.

This simple metric does not use any external resources and is applicable to all entity
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mentions even if they do not appear in a Freebase and Wikipedia, as opposed to

the freebase popularity metric used in (Alhelbawy and Gaizauskas, 2014; Pershina

et al., 2015c). We show in Section 5.5 that combining (5.1) with PPRSim can

efficiently utilize the document graph, that represents other entities, and perform

competitively on the TAC EDL 2014 data.

5.4 Name Variations as Paraphrases

Depending on the text genre there can be different variations of the same

named entity. Official sources such as newswire are more strict and more likely

to use official titles to address people and organizations. The forum data, on

the opposite, does not have such standards and may use interchangeably “Hillary

Clinton” vs “Hitlery Clinton” , “richardsdenni” vs “Rich Dennison”, “mich state

fair” vs “Michigan st Fair”, “the blond demon” vs “le demon blond”, etc. Edit

distance is not a reliable clue to detect these kind of differences. For example, the

above pairs have edit distance of 4, 12, 11, and 15 correspondingly.

One can view name variations as paraphrases of the same entity mention. There

is no strict definition of a paraphrase (Bhagat and Hovy, 2013) and in linguistic

literature paraphrases are most often characterized by an approximate equivalence

of meanings across phrases. Thus, in a broad sense, detecting whether two phrases

refer to the same entity mention is a particular case of the paraphrase problem.

A growing body of research studied the problem of paraphrases in Twitter (Guo

and Diab, 2012; Guo et al., 2013; Socher et al., 2011; Xu et al., 2015a), in bilingual

data (Bannard and Callison-Burch, 2005), and even paraphrases between idioms
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(Pershina et al., 2015b). Finally, there was a new Paraphrase In Twitter track

(PIT) proposed in SemEval 2015 (Xu et al., 2015b). Most paraphrase models are

tailored for a data set that they will be applied to. Thus, Twitter paraphrase mod-

els often make use of hashtags, timestamps, geotags, or require topic and anchor

words (Xu et al., 2015a). None of this is applicable to named entity mentions.

Based on this observation, we focus on a holistic ASOBEK approach (Eyecioglu

and Keller, 2015) for paraphrase identification in entity linking. The ASOBEK

model uses simple character and word features and trains a linear SVM. This work

is motivated by set theory and every phrase is considered a set of either character

uni/bi-grams (C1, C2), or word uni/bi-grams (W1,W2). There are three types of

features derived from these sets: 1) count of elements in a set, e.g. |C1| (length); 2)

count of elements in the set overlap, e.g. |Cphrase1
1 ∩Cphrase2

1 |; 3) count of elements

in the set union, e.g. |Cphrase1
1 ∪ Cphrase2

1 |. (Eyecioglu and Keller, 2015) reported

best performance using just six features:

|Cphrase1
2 ∩ Cphrase2

2 |,

|Cphrase1
2 ∪ Cphrase2

2 |,

|W phrase1
1 ∩W phrase2

1 |,

|W phrase1
1 ∪W phrase2

1 |,

|Cphrase1
2 |,

|Cphrase2
2 |. (5.2)
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We adopt this model for our task for detecting name variations. Namely, we

built our training data set of name variation pairs, extracted ASOBEK best fea-

tures, and trained a linear SVM (Joachims, 2006)3 on this data.

We tested the ASOBEKmodel for three different feature sets that were explored

in original paper: 1) feature set that performed best (ASOBEK), six features (5.2)

total; 2) same as above plus length in words |W phrase1
1 |, |W phrase2

1 |, eight features to-

tal; 3) same as above plus unigram features, twelve total. We plot precision-recall

curves for these three variations (Figure 5.1). First feature set performs slightly

better confirming the result of Eyecioglu and Keller, 2015; all three achieve maxi-

mal F-score around 92% with precision of 96% and recall 88%. For our experiments

we use the first feature set that was proven to be the best in original paper.
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Figure 5.1: Performance of ASOBEK model with different feature sets applied to
name variation task.

3. https://www.cs.cornell.edu/people/tj/svm_light/
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Argentina, 567.3
Buenos_Aires, 336.7
University_of_Buenos_Aires, 97.1
Landmarks_in_Buenos_Aires, .71.4
Buenos_Aires_wines, 61.4
Evita_(musical), 1.1
…….

Buenos Aires
I I

I

2008_Summer_Olympics,1038.8
Beijing, 878.8
Beijing_National_Stadium, 356.6
Beijing_Ancient_Observatory, 169.4
Beijing_(locomotive), 147.8
…….

Beijing
I I

I

Hillary_Rodham_Clinton,1097.9
Hillary_Clinton_presidential_campaign,_2008, 661.0
Edmund_Hillary, 207.2
Hillary_The_Movie,162.7
…….

Hillary Clinton

NIL
Hitlery Clinton

I II

I
NIL

NIL
richardsdenni

Richard Dennison

I III

INIL
Western Hybrid Seeds Inc

NIL
Hybr  West Seed Inc

IIII I

Figure 5.2: Examples of ParaLink refining and clustering steps I, II, III.

5.5 ParaLink

The most recent state-of-the-art entity disambiguation model PPRSim (Per-

shina et al., 2015c) runs Personalized PageRank (PPR) on the document graph

and is based on intuition that pairwise weight PPR(s → e) measures how relevant

endpoint e is for the source s. Then coherence of the node e to the graph G due
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to the presence of node s is computed as

cohs(e) = PPR(s → e) · iSim(s) (5.3)

Since there can be only one correct candidate per entity, PPRSim imposes ag-

gregation constraints to take only the highest contribution from candidate nodes,

competing for the same entity. Finally, the total score for the node e is

score(e) = coh(e) + PPRavg · iSim(e) (5.4)

where total coherence coh(e) of node e to the graph is computed with respect

to aggregation constraints and initial similarity score iSim(e) is weighted by an

average value of PPR weights used in coherence computation.

However, this approach often ranks higher a popular candidate connected to

many nodes in a graph over the correct but less popular one. In fact, running

PPRSim on the AIDA dataset yields a precision of 91.7% while the correct disam-

biguation link is contained within the top three ranked candidates for more than

99% of entity mentions4.

For example, the top candidate for mention Buenos Aires is the incorrect entity

Argentina, generated from the disambiguation page. It is winning over the correct

one Buenos Aires, ranked second, due to a larger amount of incoming links (56K

vs 12K) and thus a better connected neighborhood in a document graph (34 vs

26 edges). These candidates are top ranked by PPRSim on a document graph.

However, the second candidate is a perfect paraphrase of the textual entity mention,
4. https://github.com/masha-p/PPRforNED
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while the first one is not. Thus, using the similarity between the entity mention

string and the KB entry title to select among the top-scoring candidates found by

PPRSim can solve this problem (step I).

Entity disambiguation models usually assume that every entity mention has a

valid KB entry and do not handle explicitly NIL entities. Thus NILs get clustered

using the default one-name-per-cluster strategy. So, “Hitlery Clinton” will be

clustered separately from “Hillary Clinton”, “richardsdenni” will be separate from

“Rich Dennison”, etc. We propose to cluster every NIL candidate together with the

most similar already linked entity mention if their paraphrase similarity is above

a certain threshold obtained on a development dataset (step II).

Finally, NIL candidates, that were not assigned a link at the previous step,

get clustered with the most similar NILs or constitute a singleton NIL cluster if

no similar mentions can be found (step III). Thus ParaLink combines PPRSim

with three additional refining steps based on paraphrase similarity between entity

mention strings (Figure 5.2,5.3).

5.6 Experiments and Results.

5.6.1 Data

For our experiments we use the diagnostic TAC EDL 2014 dataset. Its training

part consists of 158 documents with 5966 pretagged entity mentions; the test set

contains 138 documents with 5234 pretagged entity mentions. All entity mentions

are manually disambiguated against Wikipedia links, all NIL entities are clustered.
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Resolve Top-ranked Candidates using 
Similarity with KB entry

Cluster NILs with most Similar 
already resolved entities  

Cluster Similar NILs together

I

I
I

I

I
II

I

I
III

Candidate Ranking for each entity 

Text Document and Knowledge Base

Document Graph 

PPRSim for NED

Figure 5.3: ParaLink diagram with refining and clustering steps I, II, III.

To train an ASOBEK model we extract name variations from the training data

for TAC EDL 2014 task. Given entity clusters we pick pairs of entity mentions

from the same cluster to create a set of name variations that refer to the same real

world entity and we pair entity mentions from different clusters to have negative

examples. Our training data consists of 1143 positive pairs and 1500 negative pairs,

our test has 511 positive pairs and 1168 negative pairs. It is publicly available for

future experiments.5 We use TAC training data to tune for an optimal threshold

for each step I,II,III.
5. https://github.com/masha-p/paraphrase_flavor
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5.6.2 Evaluation

We use the standard TAC EDL clustering metric B3+F to evaluate baseline

and ParaLink models. This metric compares the gold partitioning G and the one

from the entity linking system S.

B-cubed cluster scoring compares clusters in the gold and response partition

Bagga and Baldwin, 1998. The B-cubed cluster precision is the weighted average

of a per-element precision score. Precision of an element A is the following:

B3Precision(A, goldPartition, resPartition) =

|cluster(goldPartition,A) ∩ cluster(resPartition,A)|
|cluster(resPartition,A)|

where cluster(partition,A) is the cluster in the partition containing the element

A; in other words, this is A’s equivalence class and contains the set of all elements

equivalent to A in the partition. Then each cluster in the gold partition is weighted

equally, and each element is weighted equally within a cluster:

B3ClusterPrecision(goldPartition, resPartition) =∑
a

B3Precision(a, goldPartition, resPartition)

|goldPartition| ∗ |cluster(goldPartition, a)|
Recall is defined dually by switching the roles of gold and response partitions, and

the F1-measure is defined in the usual way.

A brief analysis of the answer key revealed some mistakes in the TAC annota-

tion. By fixing the answer link for 6 mentions in the training data (from the total

of 5966) and for 22 mentions in a test data (from the total of 5234) we improved

our B3+F by 0.1 and 0.2 correspondingly (Table 5.1). Our corrected answer keys

are publicly available.
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5.6.3 Baselines

We compare our model with several graph-based approaches. Our baseline is a

faithful re-implementation of the NYU 2014 entity linking system based on PageR-

ank (Alhelbawy and Gaizauskas, 2014; Ji et al., 2014; Nguyen et al., 2014) and

ranked 4th in TAC EDL 2014. We compare it with the state-of-the-art PPRSim

model for named entity disambiguation (Pershina et al., 2015c).

Models Train data Test data
NYU(PR) 76.2 76.3
PPRSim 78.4 78.9

PPRSim+I 79.1 80.0
PPRSim+II 79.5 80.3
PPRSim+III 79.2 80.2
ParaLink 79.7 80.5
ParaLink* 79.8 80.7

Table 5.1: Performance of ParaLink in B3+F score compared to the baseline and
state-of-the-art models on TAC EDL 2014 train/test datasets. NYU (PR): PageR-
ank with one-name-per-cluster name clustering; PPRSim: Personalized PageRank
as described in (Pershina et al., 2015c); PPRSim+I/II/III: Combining PPRSim
separately with steps in ParaLink; ParaLink: PPRSim with all steps I,II,III; Par-
aLink*: ParaLink scored on manually corrected TAC answer key.

5.6.4 Results

We observe that the refined disambiguation process for PPRSim (step I) im-

proves the performance from 78.4% to 79.1% on training, and from 78.9% to 80.0%

on test datasets. Adding paraphrase clustering (step II and III) further improves

the B3+F score to achieve 79.7% and 80.5% on training and test datasets. Thus,
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we show that paraphrase similarity can be efficiently incorporated into the entity

linking pipeline and improve the performance (Table 5.1).

5.6.5 Discussion

Interestingly, performance of PageRank is about the same on both training and

test data, while ParaLink achieves a better result on test dataset than on training

one. The reason is that the fraction of discussion forum posts is slightly higher in

test data than in training - about 20% vs 15%. ParaLink is particularly efficient

for this type of data since it combines the power of disambiguation PPRSim model

with ability to efficiently cluster misspelled and corrupted names, that are typical

for forum posts. Thus it achieves a better performance on a dataset with more

informal documents.

5.7 Conclusion

In this chapter we discuss the problem of name variations for the entity linking

task. We show how to adopt ASOBEK paraphrase model to solve this problem and

how to incorporate it into the entity linking pipeline. Using paraphrase paradigm

for the name variations problem opens new perspectives for future research in

Information Extraction.

For the future work we will further explore the problem of name variations and

will extend our graph-based approach for better NIL detection in cases when only

incorrect candidates are generated for the named entity. We plan to investigate
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other clustering techniques for NIL and non-NIL entities.
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Future Work

This thesis focuses on the important problem of resolving entity ambiguity in

various settings. It is an important step for many downstream applications, such

as data integration, question answering, relation extraction, etc. Our methods are

based on a graph representation of data and ranking techniques utilizing Personal-

ized Page Rank. This approach introduces new challenges but also new potentials

for resolving entity ambiguity.

Our future work on Entity Matching will be focused on different scenarios for

constructing pairs graph and on a more sophisticated score propagation schemes.

We plan to explore different strategies for filtering out noise when aggregating con-

tributions from different nodes in order to further improve the score propagation.

We showed encouraging results and demonstrated the potential of modeling

data as a graph but we skip the question of coverage/recall for both entity match-

ing across knowledge graphs and entity linking for text documents. This is an

important characteristics that can downgrade the performance if not properly ad-

65



CHAPTER 6. FUTURE WORK

dressed and tracked. Being unsupervised, our graph-based ranking method may

require a more thorough study and/or labeled data in order to choose a true match

from the ranked list of candidates. Our paraphrase component solves this problem

to some extent leaving room for further improvement. Our current routine for

entity linking also does not handle the case when none of proposed candidates is

a true match and a NIL label should be assigned instead of the highest ranked

candidate.

A clustering step for Entity Linking task can be performed differently and can

be either before or after the linking step. For the future work we plan to further

explore the problem of name variations and experiment with other features and

other models for paraphrase identification. Also there can be several clustering

strategies applied at the same time. It is an interesting and challenging topic on

its own and is one of the directions to investigate and to further improve the entity

linking. Another question to answer is whether our graph-based approach can be

extended to identify NILs when proposed candidates do not contain a true match.
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