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Abstract

Lots of objects in computer graphics applications are represented by surfaces. It

works very well for objects of simple topology, but can get prohibitively expensive

for objects with complex small-scale geometrical details.

Volumetric textures aligned with a surface can be used to add topologically com-

plex geometric details to an object, while retaining an underlying simple surface

structure. The simple surface structure provides great controllability on the overall

shape of the model, and volumetric textures handle geometric details and topological

changes efficiently.

Adding a volumetric texture to a surface requires more than a conventional two-

dimensional parameterization: a part of the space surrounding the surface has to be

parameterized. Another problem with using volumetric textures for adding geometric

detail is the difficulty of the rendering of implicitly represented surfaces, especially

when they are changed interactively.

We introducethick surfacesto represent objects with topologically complex ge-

ometric details. A thick surface consists of three components. First, a base mesh

of simple structure is used to approximate the overall shape of the object. Second, a

layer of space along the base mesh is parameterized. We define the layer of space as a

shell, which covers the geometric details of the object. Third, volumetric textures of
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geometric details are mapped into the shell. The object is represented as the implicit

surface encoded by the volumetric textures. Places without volumetric textures are

filled with patches of the base mesh.

We present algorithms for constructing a shell around a surface and rendering a

volumetric-textured surface. Mipmap technique for volumetric textures is explored

as well. The gradient field of a generalized distance function is used to construct a

non-self-intersecting shell, which has other properties desirable for volumetric tex-

ture mapping. The rendering algorithm is designed and implemented on NVIDIA

GeForceFX video chips. Finally we demonstrate a number of interactive operations

that these algorithms enable.
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Chapter 1

Introduction

1.1 Model representation

People are using more and more complex objects in computer graphics applications,

such as special visual effects, video games, virtual environments, etc. These objects

tend to have tremendous geometric and textural details. Most of them are represented

by surfaces: either textured polygonal meshes or higher-order primitives, such as

spline patches or subdivision surfaces. These common surface representations work

well for objects of relatively simple topology and continuous geometric structure. For

many types of objects however, the local geometry can be highly complex. Examples

include fur, bark, cracked surfaces, grills, peeling paint, chain-link fences and others.

In these cases, using meshes or patches to represent small-scale geometry of complex

topology often leads to excessively large number of small faces or patches, which

require a lot of resource to process and tend to be error-prone in simulation. The

surface representation approach limits our ability to construct and process more than

a few of such topologically complex objects on current personal computers. But if
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we ignore the small-scale details, a complex surface often has a simple overall shape,

which can be well represented by a mesh or a smooth surface.

Volumetric representation is preferable for objects with complex topology and

geometric details. To obtain a volumetric representation of an object, a function is

sampled at regular grid points in a volume containing the object. The sampled func-

tion values are stored and interpreted as an implicit representation of the object. The

three-dimensional function can be the distance function to the object, the density,

transparency of the object or other user-defined functions with a proper reconstruc-

tion process. For the distance function, the object is reconstructed as an ISO-surface

where the function value is zero. Volumetric representation handles topological op-

erations effectively, but requires a lot of storage spaces and computational resources.

If the object has a very simple large-scale shape, most of the sampled function values

do not provide helpful information to the geometric details of the object. The spaces

and resources used to store and process them are thus a large waste. Another draw-

back of volumetric representation is aliasing, which is caused by sampling on regular

grid, and results in artifacts on the reconstructed model. Features not aligned with

the grid directions are subject to the aliasing problem.

The volumetric texture aligned with the surface is a combined volume and sur-

face representation of three dimensional objects. It overcomes some of the problems

we described above, and makes it possible to efficiently represent geometrically and

topologically complex details in implicit form by encoding the surface as an ISO-

surface in a layer. This idea was explored by a number of researchers in the past (see

Chapter 2).
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1.2 Thick surfaces

We introducethick surfaces, a combined volume-surface representation for handling

models with topologically complex geometric details (Figure 1.1), extending the idea

of volumetric textures. A thick surface consists of three components. First, a base

mesh of simple structure is used to approximate the overall shape of the object. Sec-

ond, a layer of space along the base mesh is parameterized. We define the layer of

space as ashell. The shell covers the geometric details of the object. Third, volumet-

ric textures of geometric details are mapped into the shell. The object is represented

as the implicit surface encoded by the volumetric textures.

This representation has important advantages over conventional surface represen-

tation for objects with complex details:

• It uses simple and efficient data structures (textures) to represent highly irreg-

ular geometry.

• Small features of high topological complexity can be easily introduced and

modified.

• Image processing techniques can be used to modify small-scale geometry with-

out topological constraints.

• Hierarchical representations can be naturally constructed using filtering on vol-

umetric textures.

• One can easily use procedural modeling and simulation to produce complex

effects near the surface.

We focus on algorithms central to the goal of using this approach in modeling

applications. Specifically, in addition to surface parameterization required by 2D

3



Figure 1.1: A surface with fine-scale details added as volumetric textures. The small

picture shows the texture detail. The volumetric textured model is further edited by

boolean operations.
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texturing, volumetric textures require parameterizing a region of space near a surface

(a volume layer). Furthermore, as the surface deforms, the volume layer param-

eterization needs to be recomputed. Most of previous work on volumetric textures

used techniques such as normal displacement, which results in self-intersections near

concave features. We describe an algorithm for computing volume layer parame-

terizations with a number of desirable properties, which can be used to update the

parameterization interactively.

While ISO-surfaces are convenient for many types of operations, they are much

more difficult to render than conventional meshes. We describe algorithms for volu-

metric texture rendering that enable interactive manipulation of volumetric-textured

objects. Our algorithm for rendering volumetric-textured surfaces extends direct

slice-based ISO-surface rendering for volumes. We take advantage of the pro-

grammable graphics hardware to reduce the geometry requirements of the slice-based

methods, which is crucial for interactive rendering of volumetric textures.
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Chapter 2

Previous Work

2.1 Volumetric textures

The idea of volumetric textures goes back to the work by Kajiya and Kay [23], Perlin

and Hoffert [33], both of which appeared at Siggraph at the same year. They intro-

duced the idea of representing a pattern of 3D geometry in a reference volume. The

reference volume is actually a 3D texture in which both a volume density value and a

lighting model are stored at each point, and not tied to the geometry of any particular

surface. It is tiled over an underlying surface much like a 2D texture. Rendering of

such textured surface is accomplished by ray casting. Brightness from the lighting

model and illumination intensity at each intersection point of a ray and 3D texture

cells is attenuated and accumulated along the ray. Kajiya and Kay [23] used this

model for fur rendering, while Perlin and Hoffert [33] applied it in modeling fire,

woven cloth, as well as curly fur.

Our work was motivated by the work of F. Neyret and coworkers (e.g. [29, 30,

28]) as well as the recent work on fur rendering [25, 26]. In their work on volumetric

6



textures, Neyret and coworkers defined an offset vector for each vertex of a mesh, but

they did not show how to generate these vectors. Texture coordinates are assigned

to the two endpoints of the vector, and interpolated for other points on the line seg-

ments. An opacity value and a normal distribution function (NDF) are stored in each

voxel of the texture. The NDFs, which are approximated using ellipsoids, defines the

per voxel reflectance properties. The volumetric texture is filtered at different scales,

forming a hierarchy similar to a mipmaped texture. The filtered volumetric texture

data is regarded as a fully expanded octree, through which rays are traced in render-

ing. While tracing a ray into the octree, cells of the appropriate sizes are selected

from different levels. Those selected cells are then illuminated and their opacity is

accumulated to obtain the final rendered image.

Our geometry is to some extent similar to the slab representation used for model-

ing weathered stones [17] and volume sculpting [1]. Agarwala uses multi-resolution

data structure in each slab to represent the solid material for sculpting [1]. Each data

field is rendered as a box and invisible geometry is culled for interactive rendering.

Final rendering is obtained by ray tracing. Slice rendering cannot be used because of

the multi-resolution data structure.

The surface aligned slabs have two advantages over traditional volumetric rep-

resentation. They have less aliasing and less storage coherency for layered objects.

The disadvantage is that they are predefined [1] or first displaced in normal directions

then manually corrected as in [17]. The slabs are not automatically generated from

the input mesh, thus cannot be interactively deformed. We present a fully automatic

method to construct layers around a surface. The simple structure of the layers gives

us seamless transition between parametric and volumetric representations. Slice ren-

dering can be applied for fast interactive rendering.
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2.2 Stable medial axes

Our construction is closely related to the work in vision and medical imaging on using

various types of medial axis approximation to analyze shape and extract surfaces

from volumetric data (e.g. [34, 18]). The medial axis of a 2D domain is the set of

the centers of the maximal inscribed circles of the domain. In case of 3D, the medial

axis is similarly defined, with spheres in place of circles.

Choi and others did extensive work on medial axis on planar domain, citing

[9, 10, 11, 12] for a few of his publications. They explained the mathematical theory

of medial axis transform [9, 11] and developed algorithms for various applications

[10], especially for computing 2D offset curve of a planar domain whose boundary

is composed of rational curve segments [12]. Instead of computing intersections of

each offset curve segments and finding the valid parts of the 2D offset curve, Choi

and coworkers decompose the planar domain into many fundamental domains ac-

cording the radius of the maximal inscribed circle and compute offset curves in each

fundamental domain. A fundamental domain does not contain any locally maximal

or minimal radius component. The medial axis of a fundamental domain is a simple

curve segment and the offset curve can be easily computed. Results are then con-

nected to form the offset curve of the original domain. Change in topology is taken

care of in fundamental domains. This medial axis approach can be modified in each

fundamental domain so that the topology of the offset curve does not change by us-

ing medial axis as the offset curve where the real offset curve segments are invalid.

Although it can then be extended to 3D and used to construct an interior shell (refer

to Chapter 4 for definition) of a surface, the computation of medial axis remains too

expensive. Any deformation of the base surface will require re-computation of the
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whole medial axis. That makes the medial axis approach unsuitable for interactive

applications. Our generalized distance function (Chapter 4) is similar to some of

the medialness functions used to construct stable medial axes, but we do not need

any form of medial axes in our shell construction process and avoid the expensive

computation cost.

Our work is closest to [40] which solves the Hamilton-Jacobi equations for the

medialness function on a regular grid to recover a skeleton. In [40], Siddiqi and

others introduced an algorithm for simulating the eikonal equation in medial axis

tracking. They first sample the initial boundary into marker particles, then evolve

these particles. The trajectories of the particles are governed by the vector field ob-

tained from the gradient of the Euclidean distance function. For accuracy, they start

with a dense sequence of marker particles and generate new particles when original

ones drift apart in rare-faction regions. Special numerical technique is applied to

estimate the gradient of the Euclidean distance function, because finite differences

will lead to error near singularities (the medial axes), where the function is not dif-

ferentiable. The gradient field of our generalized distance function is much easier to

estimate than that of the Euclidean distance function, due to much less singularities

and smaller gradient magnitude near medial axes.

Our generalized distance function leads the shell off or stops at the medial axes

depending on the type of medial axes it meets, effectively trimming the unstable

medial axes. Invalid offset surface and self intersection are avoided automatically.

R-functions have been used to achieve similar effects ([36, 37, 31]), but with more

complex computation based on a CSG representation of the surface.
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2.3 Direct ISO-surface rendering

Indirect methods for rendering ISO-surfaces [27, 8] require significant preprocess-

ing and results in large meshes. Westermann and Ertl presented a method to render a

shaded ISO-surface directly from volumetric data using up-to-date graphics hardware

in [43]. The volumetric data is used as a 3D texture without constructing an explicit

polygonal mesh. Geometry is rendered by slices with material used as alpha. Two

types of shading (with gradient as texture and without gradient) were implemented.

In gradient-less case, they compute the differencing derivative in the light direction,

which is the dot product of the gradient with the light direction vector. It is done in

two passes, using positions as colors and rendering twice with texture coordinates

shifted along the light direction. Rezk-Salama and others use multiple textures for

interpolation of 2D textures [35]. It makes the technique in [43] single-pass, but re-

quires high slice density. Variations of the idea of using slices to render displacement

maps are explored in [24, 16, 38]. Kautz and Seidel described a clever technique

for converting displacements along one direction to displacements along two other

directions [24]. This allows one to choose slice direction closest to the perpendicular

of the view direction and minimize the problem of viewing slices at grazing angles.

Our rendering technique extends the direct volume and ISO-surface rendering

approach based on slicing and 3D textures (or collections of 2D textures), which is

originated in [6, 45, 14]. Most closely our work is related to ISO-surface rendering

and displacement map rendering described above [43, 35, 24, 16, 38]. For volumetric

textures a slice-based approach is described in [28]. We apply an extension of these

techniques to a collection of relatively small distorted volumes. Our technique has

the crucial advantage of allowing a more flexible choice of the number of slices per
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volumetric element, while minimizing visual artifacts associated with insufficient

slice density. A more detailed comparison is given in Chapter 5.

2.4 Implicit surfaces and volume modeling

There is an extensive body of literature related to volume-based representations (see

[5] for a list of references); some recent important work includes [7, 20]. Carr and

others use polyharmonic radial basis functions (RBF) to reconstruct smooth mani-

fold surfaces from point cloud data and to repair incomplete meshes [7]. An object’s

surface is defined implicitly as the zero set of an RBF fitted to the given point cloud

data. Adaptively sampled distance fields (ADF) are introduced in [20] to effectively

capture fine details on geometric objects. Interactive and procedural volume sculpt-

ing techniques [42, 1, 15] can be applied to our surface representation. Most work

on volumetric modeling focuses on volumetric data in pure form, i.e. objects are

represented as level sets of a function defined by volume samples. We concentrate

on techniques which blend parametric and volumetric representations.

2.5 Structured mesh generation

Constructing a collection of layers aligned with a surface is a common problem in

structured mesh generation. Mesh generation is a large and complex field aiming

to build meshes suitable for a variety of numerical algorithms to solve PDEs (see,

e.g. surveys [3, 21] and the book [41]). Such meshes often have to satisfy stringent

requirements for the algorithms to achieve optimal or nearly-optimal convergence

rates. Particularly, object-aligned grids are important for CFD problems [21].
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Yezzi and Prince presented a PDE approach to compute point correspondences

and grids within annular tissues [46]. They derive a vector field in the volume sand-

wiched between two simple surfaces from the solution of the Laplace equation. Cor-

respondence trajectories are implicitly built using the vector field as the tangent vec-

tor field. Each trajectory connects two points on the two boundary surfaces respec-

tively. To generate a structured grid in the sandwiched volume, the trajectories of

a set of seed points are evenly segmented. The splitting points are used as the grid

points and the trajectories as the grid lines in one direction. The result grid does

not self-intersect, and follows the geometry nicely. This method applies to occasions

when both boundary surfaces are well defined, and the stability and performance de-

pend heavily on the PDE solvers used in each step. But we only have one boundary

surface and need to generate the grid and the other boundary surface at the same time.

Traditional grid generation algorithm does not trivially apply to our problem.

We aim to construct a shell aligned with the surface efficiently, maintaining non-

degeneracy without explicitly minimizing a distortion measure. As explained in

greater detail in Chapter 4, the desirable behavior of shells is different from the de-

sired behavior of grids used for solving PDEs.

Cohen and coworkers construct an envelope shell around a surface for mesh sim-

plification [13]. For some proposed thicknessε, they apply normal displacement

for each vertex and limit the displacement magnitude to avoid self intersection. In

the analytical method, a ’safe’ε value is found for each vertex. In the numerical

approach, vertices walk along normals in small steps and stop when they cannot pro-

ceed without generating self intersections. An octree is used in both analytical and

numerical methods to accelerate the computationally expensive intersection test at

each step. The envelope shell serves the mesh simplification application well, which
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only uses it to bound the error. Walking along normals tends to bring all vertices

together in high curvature concave area, making the shell degenerate or generating

highly distorted shell. Usually, smoothing in both walking direction and displace-

ment magnitude is desired to avoid visual artifacts if the shell is to be used in 3D

texture mapping.

Level set methods [39] present the main alternative to our approach in shell gen-

eration. However, it has several difficulties in our scenario. See Chapter 4 for a more

detailed comparison of shells generated by different methods.

Hyperbolic grid generation methods are similar in nature to our method: the sur-

face is propagated outwards. However the direction and speed of propagation is

determined by solving a non-linear PDE, which is computationally expensive. Fur-

thermore, the criteria used to formulate the PDE (volume preservation and orthog-

onality), are not necessarily the best for our application. Volume preservation, just

like the marching method, tends to expand the shell excessively outwards in con-

cave areas. We consider this property less appropriate for texturing application than

compressing the shell as our method does.
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Chapter 3

Representation

3.1 Shells

A parameterization of a layer of space around a surface is required to apply a vol-

umetric texture to the surface. The parameterized shell can lie outside the surface,

having the surface as the inner boundary. We refer this kind of shells asexterior

shells. Similarly, we defineinterior shells, which lies inside the surface, andenve-

lope shellswith layers located on both sides of the surface (Figure 3.1).

Different shells are suitable for different applications. For example, exterior

shells are preferred for modeling of fur and other objects with attached geometric

details, while interior shells are better choices for modeling of cracks on tree trunks.

If preserving the exact shape of the surface is not crucial, and the surface need not be

retained as a shell layer, envelope shells allow us to avoid running into some difficult

concave areas on a surface and achieve better shell quality. When a high curvature

feature will result in tightly compressed exterior or interior shell, envelope shell can

let the shell expand to the other side and achieve smaller thickness change and less
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Figure 3.1: Three types of shells plotted in 2D. The base surfaces are shown in thick

red. Exterior shell (left plot) lies outside the base surface; interior shell (middle plot)

lies inside the base surface; and envelope shell (right plot) could be both side of the

base surface.

distortion of the mapped texture. However, how to generate envelope shells is not as

clear as the cases of exterior and interior shells.

Exterior and interior Shells can be considered as generated by expanding its

boundary surface and grow a skin on the surface. The expanding trajectory of each

point on the surface can be used as grid lines, providing a natural parameterization

of the shell (Figure 3.2). For some expanding methods, the trajectories are along a

straight line, e.g. the widely used normal displacement method. Shells with straight

grid lines are usually efficient in storage and processing, providing substantial advan-

tage for modeling of complex objects.

To overcome the self-intersection problem of the normal displacement method,

other methods are developed to expand the surface and construct the shell, which

is to be discussed in more detail in Chapter 4. In general, these trajectories are not

straight lines any more, which requires more sample points to represent.

For volumetric texture applications, it is enough and sometimes preferred to use

simple shells for which the displacement away from the surface is along a straight
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Figure 3.2: Shells generated and parameterized with straight and non-straight ex-

panding trajectories. The upper left picture is a normal displacement shell. The

upper right one shows the shell generated by our methods with the actual trajectories

of the points on the surface. The lower one is also generated by our methods, but

uses adjusted straight trajectories as grid lines.
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line. The basic geometric information required to represent such a parameterized

shell is minimal and does not substantially increase the memory requirements. To

represent an exterior shell around a surface, we can specify the extending direction

of the shell at each vertex and the thickness of the shell in this direction. Both the di-

rection and the thickness can be encoded into a three-dimensional vector. In practice,

slightly more information are stored along with this vector.

We refer to the initial surface for which we construct a shell as thebase surface.

We consider shells that are obtained by displacing points of the base surface along

line segments defined at vertices, which we calldirectors. At each vertex of the

surface, we store the director, shell thickness, the number of shell layers and texture

coordinates. The shell in our setting consists of slabs corresponding to the faces of

the mesh or individual patches. Each slab is a deformation of a prism.

3.2 Volumetric textures

The main additional storage incurred in our thick surface applications is the 3D tex-

tures associated with the surface. The alpha channel of the texture defines the effec-

tive surface implicitly as the ISO-surface corresponding to a fixed alpha value. The

remaining texture channels are used to store the gradient of the alpha values. The

number of layers in the shell corresponds to the number of pixels in the texture in the

direction perpendicular to the surface. It can vary across the surface. In an extreme

case, as shown in Figure 3.3, the number of layers can go down to one. If no holes

need to be specified on the part of the surface where only one layer is used, the texture

can be entirely omitted. By choosing appropriate alpha values on the textured parts

of the surface, we can easily ensure smooth transition between the implicitly defined
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Figure 3.3: A surface with a partial volumetric texture attached. The left picture

shows the structure of the shell.

part of the surface and the part that has a conventional polygonal representation.

In our implementation we use multi-resolution surfaces with subdivision connec-

tivity for the base surface. Texture coordinates are specified only for vertices of the

top level mesh in the multi-resolution hierarchy, and interpolated for vertices gener-

ated by subdivision. However, the basic techniques that we have developed can be

applied to arbitrary meshes with 2D texture coordinates.
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Chapter 4

Constructing Shells

Most previous works on volumetric textures used normal displacement to gener-

ate the shell around a surface. In concave area, self-intersection quickly develops

even with very small displacement, resulting in noticeable artifacts in rendering. A

few others did manual correction on the result of normal displacement when self-

intersection is observed. This approach is obviously limited to simple objects, and

does not work at all when the base surface is interactively deformed and the shell

needs to be updated at each frame.

In this chapter we describe our basic algorithm for constructing shells around

surfaces. Intuitively, one can think about the shell construction process as growing

thick skin on the surface. Shells constructed by our method behave more or less like

elastic compressible skin, which is considered a desirable property for the purpose of

volumetric texturing.

Our algorithm is based on the observation of the gradient field of a generalized

distance function, which we will discuss in detail. The most important property

of the generalized distance function is that it enables us to avoid self-intersection
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automatically without incurring heavy computational burden. We start with some

desirable properties of a shell for our purpose.

To make a shell useful for volumetric texturing, a number of properties are desir-

able:

• The layers should not intersect. This requirement is motivated by the ”skin”

metaphor which we believe to be natural for manipulating this type of surface

representation in many cases.

• The layers should have the same connectivity. This is crucial for defining a

vertex’s volumetric texture coordinates(s, t, r). They can be obtained as fol-

lows in this case:(s, t) are given by the base surface parametrization which is

assumed to be known, andr is incremented proportionally along the displace-

ment director from the base surface.

• The shell should maintain prescribed thickness whenever possible. However, if

thickness cannot be maintained due to geometric obstacles, valid shell with lo-

cally decreased thickness should be produced. This corresponds to the intuitive

idea of elastic “sponge-like” skin. Note that volume preservation is somewhat

undesirable as it is likely to result in fold formation.

• The shell should be close to the one obtained by normal displacement whenever

possible.

• The shell at a point should depend only on the parts of the surface close to

point. This property is important for modeling applications and efficient im-

plementation.
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Next, we describe our shell construction algorithm motivated by these require-

ments.

4.1 The basic algorithm

To describe our algorithm in detail we introduce some formal notation. We assume

that our base surface is a mesh, or a higher order surface associated with a mesh

(subdivision surface, spline surface etc.) without self-intersections. Formally, our

goal of constructing a shell around the surface can be described as follows.

Given a surfaceM embedded inR3, construct a one-to-one mapf(x, t)

from the direct productM × [0, 1] into R3. We call the length of the

curvet → f(x0, t), wherex0 is a fixed point onM andt is in [0, 1], the

thicknessof the shell atx0 and denote ith(x0).

4.1.1 Main ideas

Our algorithm is based on a simple idea: to construct a shell, we always need to find a

corresponding point off the surface for every point on the surface. The corresponding

points are further away from the surface when the desired shell thickness is larger.

We can consider that as a process of moving every point on the surface along a certain

path and stopping when the desired shell thickness is reached. In the places where

this is impossible (the simplest example is the center of a sphere when we try to build

an interior shell of a thickness exceeding the radius), the shell cannot be extended

further. More formally, in the case of normal displacement, the direction of motion

is defined by the gradient of the distance function, which points exactly along the
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Figure 4.1: Medial axes of a box.

normal direction to the surface whenever it is defined. The lines of the gradient field

of the distance function are just straight lines. However, they cannot be extended

indefinitely: the distance function is singular at points on the medial axes. Extend-

ing beyond a medial axis results in self-intersections of the shell. Unfortunately the

medial axis comes close to the surface at concavities and extends all the way to an

object at sharp features, as in the example shown in Figure 4.1.

4.1.2 Extended distance function gradient

We consider this example in more detail. Suppose we are building an interior shell.

In the process of moving away from the surface along the gradient, it is often still

possible to move even we already hit the medial axis. E.g., if we start from the corner

of the box, we just move along the branch of the medial axis. While the complete

gradient of the distance function is not defined in the neighborhood of a medial axis,

it is defined along the medial axis. If we define the gradient of the distance function

on the medial axis to be the gradient along it whenever it is defined, we call this

extended distance function gradient. While the magnitude of the regular distance

function gradient is always one, the magnitude of this extended gradient is less than

one on medial axes: the sharper the angle of the concavity, the smaller it is. In
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general, the magnitude of the extended gradient at a pointx on the medial axis equals

cos(α), whereα is the half angle between the two surface normals at the two closest

surface points1 from x (Figure 4.2). For the horizontal part of the medial axis of the

box, it is identically zero. We note that these are exactly the points where no further

motion is possible, because shell parts extended from two sides of the box run into

each other. This shows that the magnitude of the gradient of the distance function

along the medial axis can be used as a measure of how easy it is to move a particle

located at that point of space away from the surface. If we are at a point off the medial

axis, at which the gradient magnitude is one, there is an obvious direction to expand

the shell locally. The magnitude of the gradient allows us to distinguish the points

where the shell can grow quickly and where it needs to stop and start compressing.

4.1.3 The basic algorithm

These observations suggest the following simple abstract algorithm for constructing

the director of a shell:

To obtain the director of a shell at pointx, first follow the extended gra-

dient fieldg(x) = ∇xd(x, M) of the distance function, and solve the

ODE:
∂F (x, t)

∂t
= hg(x) (4.1)

whereh is the desired thickness, andF (x, t) is position along the inte-

gral line of the gradient field passing throughx. Then definef(x, t) by

linear interpolation betweenx andF (x, 1).

1If there are more than two closest surface points from the medial axis pointx, the extended

gradient atx can be defined as zero, meaning you cannot move away from the surface any more once

you hit the pointx.
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Figure 4.2: The extended gradientg at a medial axis pointx, wheren is surface

normal, andα is the half angle between the two normals.

Consider the trajectoryF (x, t) of a surface pointx. Note that as long as the

integral curveF (x, t) does not reach the medial axis, it remains a straight line with

unit speed parametrization, as‖g(x)‖ = 1. If it reaches the medial axis, the speed

changes. If the point on the medial axis we have reached is an unstable medial

axis branch extended to a local concave region, the gradient will remain high, and

we will move away from the surface at a slightly slower speed. If the gradient is

small, which indicates a more stable medial axis point, the shell starts compressing,

and the total length off(x0, t) ends up being less thanh. Note that this simple

procedure ensures smooth transition between no compression and high compression

of the shell in different areas. The endpoints of the trajectories, if they reach the

medial axis, always end up at stable points with low gradient, effectively trimming

the unstable medial axis branches. Figure 4.3 illustrates the shell generation process
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Figure 4.3: Moving along the extended distance function gradient. We start from

a surface pointy and move along the surface normal, which is the gradient of the

Euclidean distance function. The moving trajectory is shown in dotted lines. Once

we reaches a medial axis, denoted byx, we turn to the extended distance function

gradientg and move along the medial axis. The distance to the surface, indicated by

the arrows pointing to the surface, increases along the actual moving trajectory.

by this algorithm. Once the shell reaches the thicknessh in parameterization space,

we connect the starting point and the end point and use the straight line segment as a

virtual trajectory.

For the box example and sufficiently largeh, this yields a shell completely filling

the box as shown in Figure 4.4. Unfortunately, it is difficult to solve Equation 4.1,

as the field is discontinuous, and we would have to compute the medial axis. To

make the algorithm practical, we replace the distance function with a function we

call Lp-averaged distance function.
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Figure 4.4: The shell with target thickness exceeding one half of the box size con-

structed using the gradient along the medial axis. The shell director lines are shown.

4.2 Averaged distance functions

4.2.1 Generalization of distance functions

The basis of our definition is the following simple observation. We can rewrite the

distance function from a pointx to a surfaceM as

d(x, M) = inf
y∈M

|x− y|

=

(
sup
y∈M

|x− y|−1

)−1

=
(
‖|x− y|−1‖L∞(M)

)−1

(4.2)

This definition lends itself to a natural generalization:

dp(x, M) =
(
‖A−1|x− y|−1‖Lp(M)

)−1

= A1/p

(∫
M

|x− y|−pdy

)−1/p (4.3)

whereA is the area of the surfaceM . This normalization by the area is introduced

to ensure that the gradient of this distance function is non-dimensional and close to

magnitude1 at infinity, which mimics the properties of the gradient of the Euclidean

distance.
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Figure 4.5: Averaged distance functions. The red dotted plot shows the standard

distance function from a point on the line to the set of two points{−1, 1}. Other

lines show the averaged distance functions for different values ofp.

4.2.2 Gradient fields

Intuitively, one can expect the gradient direction field of this function to have similar

properties to the gradient field of the distance function asp approaches∞. Another

intuitive interpretation of this distance function is the potential of field generated by

particles on the surface raised to the power−1/p. In practice, we have observed

that even for small values ofp, the fields are quite similar. This is illustrated in

Figure 4.5 and 4.6. The one-dimensional averaged distance functions are compared

to the standard distance function in Figure 4.5, and fields of several values ofp in a

two-dimensional box are shown in Figure 4.6.

However, unlike the case of the standard distance function, the gradient of this

function is well defined away from the surface, as the integration and differentiation
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Figure 4.6: Field lines of the gradient field of the distance function for several values

of p.
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can be exchanged.

gp(x, M) = ∇x (dp(x, M))

=
1

A
(dp(x, M))p+1

∫
M

(x− y)|x− y|−p−2dy
(4.4)

4.3 The shell constructing algorithm

Using the averageddp(x, M) yields the analog of 4.1 in which the gradient has an

explicit expression and the medial axis does not have to be computed explicitly.

∂F (x, t)

∂t
= hgp(x) (4.5)

TheLp-averaged distance function shares a number of properties with the con-

ventional distance function. It can be proved that in 3D forp > 1 (andp > 0 in

2D) the direction of the gradientgp at points of a smooth surface coincides with the

normal2. Furthermore, in all our experiments we have observed that the magnitude

of the gradient remains close to one near the surface, and decays in the area close to

the conventional medial axis. So our function defines a fuzzy medial axis, pruning

away insignificant branches corresponding to concavities. The magnitude of the gra-

dient field comes close to zero only in areas in which the shell genuinely cannot be

expanded (see Figure 4.7 and 4.8 for the results of our two-dimensional experiments

on deforming curves). The crucial difference of the averaged distance function from

the conventional distance function is that the gradient field can be easily integrated.

2An interesting observation thatp = 1 in 3D corresponds to the the electric field potential which

makes it clear that this value cannot be used: e.g. the potential is constant inside a hollow uniformly

charged sphere.
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Figure 4.7: Self-adjusting shell behavior of an exterior shell in the concave region.

With the angle up to 90 degrees, no compression is observed; after that the shell starts

to compress.
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Figure 4.8: Interior shell. The first image shows interior shell for which prescribed

thickness is achieved. As the object is deformed, the shell compresses to avoid folds

(prescribed thickness remains the same).

4.3.1 Localization

The averaged distance function is supported over the whole surface. However, one

can think by intuition that it does not make sense to take into account parts of the

surface that are far away. If the distance between two surface patches is larger than

double the target shell thickness, their generated shells will not intersect each other.

Thus for every space pointx, we can only integrate over the parts of the surface that

fit inside the ball of radius2h and centered atx. Hereh is the target shell thickness.

In our implementation, we extend the integration support to be a bit larger than2h

to ensure stability. This makes our calculation local. In addition to speeding up

the calculation, this also makes the algorithm satisfy the locality condition, useful in

geometric modeling applications: modifying a bounded region on a surface affects

the surface only in a neighborhood of that region.
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4.3.2 Boundaries

So far we have assumed thatM does not have a boundary. Near the boundary, the

averaged distance function is likely to yield shells with considerable distortion due to

the fact that the gradient field has to make a 180-degree turn. The standard distance

function handles this case well, but the averaged function gradient field turns to the

outward direction. This problem is solved by adding artificial faces at the boundary.

A single additional vertex is added for each boundary vertex. The direction to the new

vertex is obtained by using a tangent direction across the boundary, and the distance

is taken to be equal to the shell thickness. It should be noted that such extension is

satisfactory if there are no other parts of the surface near the boundary. Otherwise,

the extension can overlap a different surface part.

4.4 Numerical and performance considerations

There are two main difficulties in using the averaged distance function to construct

shells: we need to solve the ODE which is stiff if the trajectory approaches the medial

axis, and we need to compute the field gradient efficiently. While the ODE in most

cases is well-behaved, the gradient direction and magnitude may change rapidly near

the medial axis, resulting in a stiff system. In addition, the gradient, which is an

integral over the surface, is expensive to evaluate. We have evaluated several solution

techniques (variants of explicit and implicit Euler and Runge-Kutta methods) and

obtained the best performance and stability using an adaptive explicit Euler method.

This algorithm is given below in somewhat simplified form, wherex0 is the starting

point on the surface,x is the current position along the trajectory,g is the gradient

of the averaged distance function at the point,h is the prescribed thickness,∆ is the
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variable step size, andε is the adaptivity threshold for the change in the direction.

t = 0;

x = x0;

g = Field(x0);

while t < h

∆ = 2∆0;

do

∆ = ∆/2;

xnew = x + ∆ ∗ g;

gnew = Field(xnew);

while angle betweeng andgnew is aboveε;

t+ = ∆;

x = xnew;

g = gnew;

end while

4.4.1 Computing integrals

The expense of computing the gradient can be considerable for an interactive appli-

cation since it involves a surface integral.

The simplest approach to compute the integrals is to do point-wise summation

over the surface. For each vertex on the mesh representing the base surface, we

calculate the function to be integrated and weight the result value by a quarter of the

area of the immediate neighborhood. Although we only integrate over a small part

of the surface inside a ball near a given point, the integration still requires visiting all
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vertices of the surface when implemented in a brute-force way.

We use the Barnes and Hut algorithm [2] to accelerate the computation of the

integral. The vertices of the mesh and their weights are placed into the leaf nodes

of an space-partitioning octree. A weighted centroid and a total weight are stored

at each tree node. The centroid and weight of a non-leaf node are computed from

all its children and the tree is built bottom-up. When computing the integral for a

point of space, the tree is traversed top-down. For each node, we compute the ratio

of the distance between our point and the centroid to the node size, and compare the

ratio with a given threshold. If the ratio is below the threshold, the gradient field is

computed using the centroid only and weighted by the weight of the node. This is

considered a sufficiently close approximation. Otherwise, the gradient field for the

node is computed recursively as the sum of the fields of its children. This algorithm

takes very little effort to implement, and provided a substantial speedup.

4.4.2 An analytical approach

However, the point-wise summation approach does not work well in the case when

the sampling is fixed and the surface may have very sharp angles. This is easy to un-

derstand if the sample points (vertices) are thought as point charges, replacing surface

charge density. The approximate gradient field may “escape” between points when

a surface region with high curvature is not sampled densely enough for numerical

methods. This results in shell inversion. This “escape” problem can be avoided by

integrating analytically over triangles of the surface mesh (quads can be split into tri-

angles for this purpose). Fortunately, it is possible to analytically integrate|x− y|−3

over a wedge, and a triangle can be represented as a complement of three different

wedges in a plane, obtained by extending each triangle side in one direction (Fig-
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Figure 4.9: Decomposition of a triangle for integration. Integral on a triangle is

decomposed into three integrals on wedges.

ure 4.9).

Over a single wedge, the integral of|x−y|−3 can be computed explicitly. Without

losing generality, assume that the origin is the vertex of the wedge andx coordinate

axis is the starting edge. Then forp = 3, the integral in the averaged distance function

is ∫
6
|x− y|−3dy =

2

w
arctan

(
w

(|x| − u) cot β
2
− v

)
(4.6)

where(u, v, w) is the coordinates of the pointx andβ is the counter-clockwise angle

of the wedge6 , as shown in Figure 4.10. This formula is then differentiated onu,

v, andw for the calculation of gradient (refer to Appendix A for detail). Using this

simple formulas the integral over the mesh can be evaluatedpreciselyif desired.

The computation of formula (4.6) and its gradient over the whole surface can get

very expensive. Space partition techniques we used in the Barnes and Hut algorithm

cannot be applied to triangles directly, because a triangle may not fit in a single node.
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Figure 4.10: Analytical integration of the function|x−y|−3 over a wedge. The result

is shown in Equation (4.6).

We use an analogue of the Barnes and Hut algorithm to speed it up. For each surface

patch, we compute the ratio of the distance between pointx and the centroid of

the patch to the size of the bounding box of the patch. If the ratio is below some

threshold, the integral is computed using only the centroid and weighted by the area

of the patch. Otherwise, the patch is subdivided when it has more than one faces; or

the integral is computed using the analytic formula when the patch is a single face.

The centroids and areas of patches can be pre-computed and organized in a tree.

While computing the gradient field in this way is more expensive than the point-wise

summation approach, this eliminates the need for refinement. In fact, using a coarser

resolution version of the mesh yields good results.
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4.5 Examples

Several examples of external and internal shells and textures are shown in Fig-

ure 4.11-4.13, Figure 5.7 and Figure 7.2-7.8. The timings for simpler objects were

fractions of a second. For the bunny mesh shown in Figure 4.12, the external shell

was generated in 1.8 sec on a 1GHz Pentium III, and the internal shell in 8 sec. The

longer time for the internal mesh is due to refinement necessary to compute a valid

shell inside the ears. The target thickness for the exterior shell was set at 10% of the

bounding box size, and at 5% for the interior shell.

4.6 Limitations of the algorithm

Even with the optimizations described above, the algorithm is still relatively com-

putationally expensive. Clearly, one expects better performance in cases when the

exterior shell is constructed for a convex object, when simple normal displacement

suffices. In this case our algorithm produces nearly identical results, but at much

higher computational expense. Ideally, normal displacements should be used when-

ever possible, and our approach should be applied only in places where it is truly

necessary. The problem is that identifying those trouble region of the normal dis-

placement method is not trivial.

The resulting shell is not guaranteed to be one-to-one; this is essentially inevitable

as we require directors to be straight. However, as shown in Figure 4.14 a rather large

shell thickness needs to be prescribed for a special type of geometry for the failure

to occur; for this figure the requested shell thickness was close to the size of the

bounding box of the whole object.
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Figure 4.11: Shells for sharp features. Upper: cross-section of the shell for a shape

with sharp corners; lower: same object with volumetric texture added.
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Figure 4.12: A cross-section of the interior and exterior shells for the bunny.

39



Figure 4.13: A kiosk and zoomed-in detail. Volume textures are used on the roof and

walls.
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target  thickness

Figure 4.14: Folding for extreme shell thickness (prescribed thickness equal to the

objects bounding box size, only 70% of the shell shown to show the fold clearly.)

4.7 Comparison

Figure 4.15 shows the shells generated by normal displacement and our method on

a saddle mesh. Normal displacement method inevitably generates self-intersecting

shell near the saddle point no matter which side of the mesh the shell goes. In the

pictures, we only show the shell located at the upper side for clarity.

Level set methods, the fast marching method in particular, present the main al-

ternative to our approach. However, the level set methods do not solve the problem

of shell construction directly. Both the original surface and the constructed front are

defined implicitly. The method does not readily provide any mapping from the origi-

nal surface to the advancing front, and the topology of the front may change. This is

in fact an advantage for many applications but makes shell construction difficult. An
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Figure 4.15: Comparison of the results for normal displacement (upper right) and

our method (lower right) for a saddle. The left picture is the saddle mesh with the

clipping plane shown in blue. Cross sections of the shells at the clipping plane are

shown at right.
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Figure 4.16: Exterior shells constructed by fast marching method, Cohen’s method

(envelope shell) and our method from left to right. Two dimensional shells are shown

for clarity. The base curve is shown in thick red, all of which are the inner boundary

of the shells.

additional step is required to establish the correspondence, as described in [39].

Another alternative is the envelope construction [13] which preserves the topol-

ogy of the original surface. We have explored this approach and found that the thick-

ness of such envelopes is very low in the regions of concavities, and the shape of the

surface of the envelope tends to be undesirable in such areas.

Shells constructed by different methods are shown in Figure 4.16 for comparison.

From the figure, we can see that our method generates nice shaped shell in concave

area and avoids self intersection when two parts of the curve are close. In high curva-

ture concave area, Cohen’s method heavily compresses the shell while fast marching

method tends to expand it. Cohen et al. only use the shell for error bounding, so the

visual quality of the shell is less important. The shell by fast marching method is

only half in thickness than the other two. Fast marching method does not work for

the proposed thickness due to change of the topology of the marching front.

Finally we note that [46] uses a conceptually similar (although numerically quite

43



Figure 4.17: The shell generated by the lower bound value ofp. In the tight con-

cave region, the averaged distance function gradient field turns back into the surface,

resulting in a flipped shell.

different) approach for constructing correspondences between surfaces, given that

computing our integrals over the whole surface forp = 1 corresponds to solving the

Laplace equation using Poisson formula. As we have pointed out, the valuep = 1

does not work for constructing shells (Figure 4.17).
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Chapter 5

Rendering

The marching cubes method [27, 8] is used in a lot of volume modeling applications

for both ISO-surface extraction and volume rendering. It is simple to implement and

sufficient to produce good images. However, marching cubes requires significant

processing and results in large number of triangles. For a surface mapped with vol-

umetric textures, the number of triangles produced by marching cubes easily grows

into millions. While the surface is interactively changed, most of today’s system

cannot keep up processing and rendering such a large mesh. Ray tracing is another

method to produce high quality rendering of volumetric-textured surfaces. It involves

a lot of CPU bound computation, and is usually used for off-line rendering due to the

high CPU usage and long rendering time. Interactive ray-tracing is often considered

to be difficult for complex objects or scenes.

Slice-based rendering is another popular method in volume modeling applica-

tions. For an object that is represented implicitly as the ISO-surface of sample values

in a volume, it renders slices through the volume and uses the sample values as alpha

texture. Alpha test is enabled to trim the part of the slices that are out of the object.
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This chapter presents our algorithm for rendering a surface represented by a vol-

umetric texture. It is extended from the slice-based direct volume rendering tech-

niques. This slice-based rendering algorithm maps perfectly to the current graphics

hardware, and overcomes the major problem of conventional slice-based rendering,

which is the normal discontinuities across slice boundaries.

This part of the work was done in collaboration with Daniel Kristjansson.

5.1 Slice-based direct ISO-surface rendering

Consider a single quadrilateral face of the surface. The part of the shell on the top of

this surface is a hexahedron (Figure 5.1), with texture coordinates assigned to all ver-

tices. Our surface inside the hexahedron is the ISO-surface of the function encoded in

the alpha channel of the texture. We assume that the other channels contain the tex-

ture gradient. Recall that the normal to an ISO-surface defined byα(x, y, z) = const

is∇α; therefore the gradient texture can be used for shading. It should be noted that

the gradient in the light direction can be computed on the fly as suggested in [43].

However, this approach works only if the gradient has unit magnitude (we need the

unit normal for lighting), which places considerable restrictions on the wayα can

vary.

The idea of the slice-based direct volume rendering is to render polygons inter-

secting the 3D textured volume and assign texture space vertex positions as texture

coordinates. The alpha test is used to discard the part of each slice that is outside

the object, and the gradient texture is used for shading. One of the problems with

this approach is that there is a normal discontinuity at the boundary of slice images

(Figure 5.2). This means that many slices are needed to achieve smooth shading. A
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view direction

Figure 5.1: Slices in a single texture hexahedron. Slices are oriented in the direction

closest to the view direction.

large number of slices is affordable when a single volume is rendered. In fact, sev-

eral slices per 3D texture layer are often used; this still amounts to rendering only few

thousand slices, as the volumetric texture size rarely exceeds 512 in any direction.

The situation is different for volumetric-textured surfaces; for a curved surface,

a large number of polygons must be rendered for each surface layer, so rendering

multiple slices per pixel is often not feasible.

Our algorithm addresses this problem by ensuring that the normal varies smoothly

across slice boundaries, even if the distance between slices is considerable. This

allows us to reduce the number of needed slices by a large factor.
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no interpolation, 64 slices

normal interpolation, 16 slices texture coordinate interpolation, 16 slices

layer boundaries, detail, 16 slices

layer boundaries, 16 slices3marching cubes, 64 grid

Figure 5.2: Comparison of quality for rendering methods for a single volumetric

texture. The texture is computed as the distance field for a large sphere with smaller

spheres attached at vertices of a regular icosahedron. The number of slices in slice-

based methods is chosen so that the total time required to render an 800x800 image

is approximately the same for each method.
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5.2 The idea of the algorithm

The normal discontinuity at pixels near the slice boundaries for slice-based rendering

method is resulted from the discontinuous texture coordinates, which jump from one

slice to another at slice boundaries. In our algorithm, we eliminate this artifact by

generating continuous texture coordinates across slice boundaries. Thus the problem

is solved and we are able to use very few slices without artifacts.

The idea of the algorithm is illustrated in Figure 5.3. It is somewhat similar to the

approach that was used in [43] for volume rendering of unstructured meshes.

Suppose that for each pixel, we know the texture coordinatest1 corresponding to

the first slice along the view direction, for whichα ≥ 0.5 (i.e. the point of the slice

is inside the object, represented by the upper black concrete dot), and the texture

coordinatest2 for the last slice along the view direction for whichα < 0.5 (the gray

dot in Figure 5.3). In this case, we can approximate the point whereα = 0.5 by

interpolating between two points, usingα1 andα2 as weights. We interpolate the

texture coordinatest1 andt2 using the same ratio, and look up the normal using the

interpolated coordinates. The interpolated coordinates change smoothly as we pass

the slice image boundary, and the normal obtained in this way is considerably more

accurate. This process can be regarded as bump mapping for ISO-surfaces.

Conceptually, our algorithm proceeds in two passes. An actual implementation

may be more efficient if the number of passes is increased as discussed below.

5.3 Algorithm details

Suppose the top face of the hexahedron is a quadP = [p0, p1, p2, p3] and the bottom

face isQ = [q0, q1, q2, q3]. We assume that the normals of any two opposite faces
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view direction

surface

Figure 5.3: Slice interpolation. Our algorithm interpolates between the slice texture

coordinates along the view direction of the last slice outside the surface and the first

slice inside the surface.

are sufficiently close. Although nothing in the method relies on this assumption, for

highly distorted hexahedron the quality of the result will be low. We assume that the

view direction is close to the normals of both facesP andQ. We render a set ofM

slicesSm whereS0 = P andSM−1 = Q. The verticespm
j (j = 0 . . . 3) of them-th

slice are given by

pm
j =

(
1− m

M

)
pj +

(m

M

)
qj

The texture coordinates are interpolated in a similar way. In addition to rendering

the slices in the direction closest to the view direction, we also render the faces of

the hexahedron to ensure correct texture coordinate interpolation as explained below.

We assume that the top and bottom slices have alpha values below the threshold at

all points; otherwise we render additional slices in front and back.
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5.3.1 First pass

This pass is nearly identical to the simplest version of slice-based rendering. The

difference is that the output of this pass is two textures. The first output textureT1

contains the 3D texture coordinates of the closest fragments withα ≥ 0.5, and is of

the same size as the output image. The second textureZ1 of the same size has the

depth values for rendered fragments.

The alpha test on this pass rejects the fragments withα < 0.5 (outside the object);

the standard depth test is performed.

5.3.2 Second pass

In this pass, we need to perform somewhat more complicated operations which re-

quire hardware programmability. The textures from the first pass are applied to the

rendered fragments, using the view-port coordinates(x, y) as the texture coordinates.

The fragment is discarded this time ifα ≥ 0.5, i.e. it is inside the object. For frag-

ments withα < 0.5, we compare the fragmentz value with the depth texture value

Z1(x, y) (thez value for the closest fragment inside the ISO-surface). A fragment is

discarded if it is behind the closest fragment inside the ISO-surface (Figure 5.4).

If the fragment passed all tests, we look up the alpha valueα1 for the current

fragment, and the alpha value for the closest visible fragment at this point usingT1.

α1 = α(T1(x, y)). The texture coordinatest2 of the current fragment and texture

coordinatest1 = T1(x, y) of the visible fragment at the same pixel are interpolated

to compute the new texture coordinates

t3 = ((α1 − 0.5)t2 − (α2 − 0.5)t1)/(α1 − α2).

The resulting coordinates are used to look up the gradient for lighting. We note that
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front slice
back slice

fail (2)
fail (2)

fail (1,2)
fail (1,2)

fail (1)
pass

fail depth

( 1 ,t1)

( 2 ,t2)

Figure 5.4: The second pass of our rendering algorithm. Here, besides the reversed

depth test, the other two tests for a fragment are: (1)α < 0.5; and (2) current depth

is less than the depth value from the first pass. In the picture,t1, t2 are texture coor-

dinates.

52



the gradient ofα is computed in texture coordinates and needs to be transformed to

eye coordinates. Because the hexahedron is a trilinearly distorted cube, the texture-

to-eye coordinates change from texel to texel. Instead of recomputing the transfor-

mation, we compute it at the vertices and use trilinear interpolation in the interior.

This approach works unless the distortion is high.

Most importantly, the depth test on this pass is reversed. This means that the

fragment that is actually rendered, is the furthest fragment from the eye which is

both outside the ISO-surface and passes the comparison with the depth value from

the first pass.

Note that in the second step we assume that the texture coordinates from the first

pass are taken from the same texture, so it makes sense to interpolatet1 andt2. This

is ensured by rendering the boundaries between textures twice, with a small offset

towards each of the textures.

Finally we observe that for smoothly varying textures or a number of slices equal

to the texture dimension, normal interpolation can be used instead of texture coordi-

nate interpolation.

5.4 Implementation

The algorithm was implemented using GeForceFX fragment programs.

The theoretical first pass produces two textures: the texture coordinates texture

and the depth value texture. Although the depth buffer on the video card is of high

precision, the video card does not give the full 24-bit depth values while binding a

texture to the depth buffer due to the limitation of the GeForceFX driver. Only the 8

most significant bits are present in the output. This precision is insufficient for depth
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tests in most graphics applications. If we use this low-precision depth texture in the

second pass, we end up with comparing the high-precision depth values generated in

the second pass with the 8-bit one from the first pass. The lack in precision causes the

incorrect fragments to be picked by the reversed depth test and results in unacceptable

artifacts. To work around this problem, we capture the depth values from the first pass

in a separate pass, which writes the 24-bit depth values to a 32-bit RGBA buffer.

We also split the second pass into two: one to generate the 3D texture coordinate

we need, followed by a final pass to render the image. The final pass uses the two

3D texture coordinates per pixel from the previous passes to look up the gradient,

generates a normal and calculates the lighting. By using this extra pass we only need

to perform the lighting and interpolation of texture coordinates for visible slices. The

final lighting pass also does not require geometry, so it is relatively inexpensive in

terms of AGP bus bandwidth and results in better performance (Figure 5.5).

5.5 Performance

The performance of the rendering algorithm is very satisfactory for interactive appli-

cations. Especially for large textures, our algorithm shows substantial performance

improvement over other algorithms with similar rendering quality. We rendered a

turbine blade model using 128 slices through a 512x512x512 texture (compressed

to 134 MB) and the system exhibits real-time performance (Figure 5.6). With 512

slices, the quality is slightly greater, and the rendering time is still acceptable for

interactive tasks.

On the other hand, when we try to stress geometric complexity, we run into per-

formance limitations because of the large number of faces with volumetric textures
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attached. For example, with the shirt in Figure 1.1 and Figure 7.2, we are limited

to about 16 slices while still obtaining close to real-time performance (17fps with

either normal or texture coordinate interpolation). The bunnies shown in Figure 5.7

are rendered in similar speed to the shirt.

The performance was observed on a Quadro 3000 clocked at the standard 400/850

Mhz for the core and memory respectively.
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Figure 5.5: Steps of the rendering algorithm. From left to right: Texture coordinates

and depth from the first pass on the first row; Interpolated texture coordinates of the

second pass and final image on the second row.
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Figure 5.6: The turbine blade model rendered interactively by our algorithm. With

compression, we fitted this excessively large texture in the video memory and ren-

dered the model with real-time performance.
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Figure 5.7: Several different volumetric textures applied on the bunny. Only the

heads are shown to view the geometric details.
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Chapter 6

Mipmaps

Mipmaping technique was introduced by Williams in 1983 [44] for filtering image

textures. It filters an image texture into multiple levels of different resolutions. When

a mipmaped image texture is rendered, one or more precomputed mipmap levels,

whose pixel size is near the size of a screen pixel in the texture, are picked to retrieve

the texture content. Mipmaping is an effective method to eliminate aliasing in texture

mapping. It can also be applied to volumetric textures with proper definition of how

to filter the voxel contents.

6.1 Volumetric textures

For the volumetric textures we discussed in this dissertation, each voxel contains a

normal vectorn and an alpha valueα. We use the volumetric textures asoccupancy

textures, which means that an alpha valueα specifies whether a voxel is inside the

implicitly represented object or not. This is determined by a boundary valueα0. If

α ≥ α0, the voxel is inside the object; otherwise it is outside. Usually the object only
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contains part of the texture. On the other hand, one can define a volumetric texture to

be atransparency texture, whose alpha value states how transparent a voxel is. The

object represented by a transparency texture contains the whole texture, even some

voxels may have theirα = 0 and be fully transparent.

6.2 Linear filtering

The classical and simplest approach to filter textures for mipmaping is linear in-

terpolation. In the case of volumetric textures,α at voxel (i, j, k) in the filtered

texture is set to be the averagedα of the 8 voxels whose indexes are in the range

of (2i . . . 2i + 1, 2j . . . 2j + 1, 2k . . . 2k + 1) in the original texture. This method

keeps both the occupancy and transparency interpretation valid for the filtered tex-

ture. However, it usually makes the alpha values in a filtered occupancy texture below

the boundary value when the texture is sparsely occupied. This process shrinks or

even vanishes the object gradually in mipmap levels of lower resolution (Figure 6.1).

6.3 Double mipmaping

6.3.1 Motivation

In the real world, there are a lot of objects similar to the one shown in Figure 6.1,

which has a lot of holes. Examples include window screens, chain-link fence, etc.

If you look at such a object from a large distance where it is impossible to see the

structural details, the object will look like a semi-transparent mask and the objects

behind it appear dimmer. The transparency of this imaginary mask depends on how

much light transmits through the object, and can be approximated by the ratio of the
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Figure 6.1: Simple linear interpolation filtering vanishes a volumetric texture in

mipmaping. The upper picture does not use mipmap and aliasing shows in the far

part. The lower picture uses mipmap built by simple linear interpolation filtering and

the object becomes sparser while it is further away and finally disappears.α in the

original texture is between 0 and 1, and the boundary valueα0 = 0.5.
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see-through part to the whole object.

This observation invokes a solution to the vanishing problem in volumetric tex-

ture mipmap. The original texture is an occupancy texture and represents a geometric

object. It is rendered using alpha test as described in Chapter 5. We filter the texture

to build a mipmap by the linear interpolation method discussed above. When the

object starts vanishing or shrinking in the filtered texture at some level, the filtered

textures can be interpreted as a transparency texture instead of an occupancy texture

from that level. The transparency texture is then rendered using alpha blending, with-

out alpha test. This double interpretation of the mipmap should imitate the real world

observation closely.

6.3.2 Algorithm overview

The double-mipmaping approach uses two mipmaped textures, a high-resolution oc-

cupancy texture to represent the detailed geometry and a low-resolution transparency

texture to generate the transparent effects. The object is rendered twice, first using

the occupancy texture to render the part near to the view point, then the transparency

texture for the further part. The two textures are carefully tailored to make the transi-

tion from geometry to transparency smooth. In the transparency texture, we encode

the gradient using a reflectance model instead of a single vector to amend the low

resolution.

6.3.3 Texture representation

In the case of occupancy textures, rendering a volumetric-textured surface by slices

involves using alpha test to discard the part outside of the object. Furthermore, we
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interpolate texture coordinates or normals to fix the normal discontinuity at slice

boundaries as described in Chapter 5. Rendering a surface mapped with a volumetric

transparency texture is simpler. The transparency is implemented by alpha blending.

There is no alpha test involved, thus no sharp slice boundary or shading discontinuity.

However, rendering a few mipmap levels as occupancy textures and the other levels

as transparency textures is not feasible on current graphics hardware.

We use two mipmaped textures and render the object in two passes to accom-

plish this combined geometry-transparency mipmap approach. The first texture is an

occupancy texture representing a geometric object. Its mipmap levels only contains

the original full resolution texture and those filtered levels before the object starts

shrinking or vanishing. The second texture is rendered as a transparency texture,

whose mipmap contains the filtered levels left by the first texture. The two textures

have one overlapping mipmap level to provide smooth transition between them. An

extra empty level (α = 0 for the whole level) is added to the end of the occupancy tex-

ture and the start of the transparency texture respectively. These two empty mipmap

levels prevent the two textures from being applied to areas where they are not desired

(Figure 6.2).

6.4 Reflectance model

6.4.1 Limitation of normal textures

Every voxel in our volumetric textures contains a normal vectorn and an alpha value

α. The alpha value indicates whether a voxel is inside the object or not, and is used

by the renderer to discard pixels outside the object. The normal vector is used for
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occupancy texture mipmap

transparency texture

mipmap

overlapping level

(the same size)

empty level

empty level

original texture

Figure 6.2: Structure of the double mipmaping. The occupancy texture mipmap

contains the high resolution levels and the transparency texture mipmap contains the

low resolution levels. They have one overlapping level of the same size. An empty

level (α = 0 for the whole level, shown as gray cubes in the picture) of the right size

is placed in each mipmap.
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shading the object. When an object represented by volumetric textures is sufficiently

sampled, each voxel contains only a small piece of the object. If a voxel intersects

the surface of the object, we can simplify the shading problem by assuming that the

small piece of the surface is a plane. Thus the normal vector at each voxel provides

enough information to reconstruct the local shape of the object. Combined with

global material properties, we can apply the Phong illumination model for shading.

Problems arise while volumetric textures are substantially down-sampled. Voxels

get larger in lower resolution texture levels and contain more of the object. When a

piece of the object surface in a single voxel cannot be safely assumed to be a plane,

one normal per voxel is not enough to describe the local shape of the object any

more. Shading inconsistency can occur across the same object when different parts

are mapped with different mipmap levels or the object is moving back and forth in

a scene. This problem can be easily noticed when a volumetric texture contains two

diffusive objects of the same shape, but one of them is smooth, and the other is rough

with a lot of small geometrical details. Their normal textures will be dramatically

different, and so are their appearances. After several down-sampling steps, both

objects will become smooth, with their down-sampled normal textures being very

close. Thus they will appear to be of the same brightness when rendered with the

down-sampled texture. But a rough diffusive object tends to appear dimmer than

a smooth one when both are illuminated with the same light. The normals in any

small part of the rough object point to different directions. The light is then scattered

around (Figure 6.3), which makes the object appear darker. This effect can only

be correctly captured when the rough objects are rendered with a sufficiently high-

resolution volumetric texture.
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Figure 6.3: Lights reflecting on a smooth surface and a rough surface. On a rough

surface, incoming lights are reflected to random directions. Some lights may be

reflected several times between small features before leaving the surface and viewed

by the camera.

6.4.2 Normal distribution model

The problem usually grows clearly noticeable with the transparency textures, which

mainly consist of low resolution mipmap levels. Kajiya suggested to use a reflectance

model to model details in distant view [22]. The reflectance can be used to represent

geometrical details smaller than a voxel. Neyret presented a method using an ellip-

soid as the geometrical primitive to encode the normal distribution in a voxel [30].

The ellipsoid is picked such that its normal distribution function (NDF) represents the

real NDF in a voxel. During rendering, the Phong illumination model is integrated

over the ellipsoid, using the normal of the ellipsoid as the normal of the represented

object. In this representation, the position and scale of the ellipsoid does not affect

the NDF. Thus, the oriented ellipsoid in each voxel has only six free parameters.

Neyret used this scheme for efficient storage. Only are the two smallest ellipsoid

axes stored in their volumetric texture. The third one is defined to be orthogonal to

the two stored and has unit length. The object is rendered by ray tracing.

We adopt the method of encoding the NDF in a voxel by an ellipsoid in the
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transparency texture. The current programmable graphics hardware lets people write

vertex programs and fragment programs for the vertex and fragment processing units

to customize their action in the rendering pipeline. This makes it possible to develop

hardware-accelerated rendering algorithm for objects represented by volumetric-

texture.

6.4.3 Ellipsoid representation and filtering

To fully utilize the power of the texture mapping hardware, we need to consider

carefully on what to store in the volumetric textures. When the texture are retrieved

in fragment programs, the voxel contents are linearly interpolated (supposed linear

method is used, which is reasonable). For textures that contains colors and/or alpha

values, even normal vectors, interpolation makes good sense given the proper post

process if required (e.g. normalization in the case of normal textures). In the case of

our transparency texture, the content of a voxel is some representation of an ellipsoid.

We need to ensure that the representation is interpolatable, and the interpolated result

still represents an ellipsoid. Preferably the ellipsoid representation can be filtered by

linear interpolation.

The quadratic form of an ellipsoid can be represented by a3× 3 matrixQ (point

M is on the ellipsoid if and only ifMT QM = 1). The normal distribution function

encoded by two ellipsoids is ’almost-additive’ with respect toQ−1, subject to an error

of magnitudeO(θ2), whereθ is the separation angle between the two ellipsoids (see

[30] for details). We conclude thatQ−1 is a good choice to store in the texture. It also

indicates that the ellipsoid representation of the NDF can be filtered by interpolating

Q−1. while down-sampling the transparency texture, we weight theQ−1 of each

ellipsoid by its opacity and sum them. The axes of the result ellipsoid are recovered
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from the eigenvectors and eigenvalues of the summed matrix.

Although we can store only two axes of an ellipsoid and derived the third one and

the quadratic form as Neyret did in [30], we prefer to store the full matrixQ−1 in the

texture to lower the computational burden of the fragment processing unit, which is

already heavily loaded in our rendering algorithm. The ellipsoid axes are scaled such

that the longest one has unit length. This makes all 9 components ofQ−1 in the range

of [−1, 1] (see Appendix B). We can stored them in textures without truncation after

scaling and translating by0.5 (i.e. q′ = 0.5 ∗ q + 0.5) and transforming them into

the range of[0, 1]. This transformation can be easily reversed (i.e.q = 2 ∗ q′ − 1)

in fragment programs. Furthermore, The normalization of the longest axis scales the

ellipsoids to similar size, facilitating direct interpolation of the transparency texture

by the texture mapping hardware.

6.4.4 Rendering of textures with NDF

The rendering method of the texture with NDF is a slightly modified version of the

idea described by Neyret in [30]. We have implemented the algorithm as a fragment

program on NVIDIA GeForceFX video card. The ellipsoid is first projected onto a

plane perpendicular to the view direction. The quadratic formQ′ of the projected

ellipse is derived from the ellipsoid quadratic formQ and the view directiond. The

ellipse axes are recovered from the eigenvalues and eigenvectors ofQ′ and nine uni-

formly distributed samples (3× 3 regular grids) are generated (Figure 6.4). Since the

length of the fragment program directly affects the rendering performance, we use

only nine samples to compute the integral on an ellipsoid here. The integration is

performed numerically by summing these samples. To further shorten the fragment

program, we take the nine normalized normal vectors and average them directly. The
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ellipsoid

projection plane

Figure 6.4: Rendering of NDF. The ellipsoid is projected onto the projection plane.

Nine samples are picked in the projected ellipse and projected back onto the ellipsoid.

Normals are sampled at these projected points.

averaged vector (not normalized) is then used as the normal vector at the current pixel

to do shading. If the directions of the nine normal vectors vary a lot, which means

the object is rough, the length of the averaged normal vector will be much less than 1

and the pixel appears dark. This is consistent with the real world observation. In our

experiments, it is also a close approximation to the result obtained by shading on all

nine locations and averaging. It shortens the compiled fragment program by 25%.

69



6.5 Double mipmap rendering

A surface with double mipmaped volumetric textures is rendered in two passes, with

the occupancy textures and the transparency textures respectively.

6.5.1 First pass

The surface is first rendered exactly as described in Chapter 5 with the mipmaped

occupancy texture. This pass only renders the part of the object with clearly visible

geometric details. Slices through the texture are rendered with alpha test enabled.

The correct mipmap levels are picked by the rasterization hardware during rendering.

If the object or part of it is near the camera and appears large in the scene, high-

resolution levels are used and the object is rendered in full geometric detail. If the

object is far and occupies only a small number of pixels, filtered levels in the mipmap

are used. Due to the existence of an empty level, which is also the lowest-resolution

level of the mipmap (see Figure 6.2), far part of the object may be completely clipped

by the alpha test.

6.5.2 Second pass

The second pass renders the object with the transparency texture. Alpha blending

is applied in this pass. In contrast to the occupancy texture used in the first pass,

the empty level in the mipmaped transparency texture is the level of the highest res-

olution. The part of the object near the viewer will be rendered withα = 0, thus

completely discarded by alpha blending. The two overlapping levels of the two tex-

tures are of the same size and applied to the same part of the rendered object, forming

a transitional zone. When the linear interpolating filter is used to retrieve the texture
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contents, the empty levels are interpolated with other levels in the two textures re-

spectively. This makes the retrieved alpha from the occupancy texture goes to zero

gradually from near to far in the transitional zone, while the alpha from the trans-

parency texture fades into full effect. A simple surface with a double mipmaped

volumetric texture is rendered in Figure 6.5. The transition from the occupancy tex-

ture to the transparency texture is smooth as shown in the picture.

The second pass use alpha blending to achieve transparent effects. This requires

we render faces from far to near. One can use the order-independent transparency

technique developed by Everitt in [19]. However, we only use blending to render the

part of objects that is far from the viewer in a typical scene. The near part is rendered

with the occupancy texture and does not have this requirement. Due to the layer

structure of our representation, we can go easy on this problem without ruining the

results. In the second pass, we render the object layer by layer in an inside-to-outside

order. For objects that have no intuitive definition of inside and outside, such as a

terrain model, we render the layers bottom-to-up. At the same time, we enable alpha

test withα = 0 to discard empty areas and let it to be seen through.

Another problem with the transparency texture is how many slices to render. For

the occupancy texture, increasing the number of slices rendered improves the render-

ing quality. But in case of the transparency texture, the number of slices rendered has

direct effects on the results: the more slices, the less transparent the object appears.

According to our interpretation of the transparency texture, the slice number of each

mipmap level should be the same as the dimension of the texture at that level. This

can only be implemented by separating each level into a different texture and render

one pass for each texture. But this will dramatically increase the rendering time just

for the far part of the object. We pick the slice number to be the averaged texture
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Figure 6.5: A surface rendered with unmipmaped and double mipmaped volumetric

textures. Double mipmaping provides smooth transition from full geometric details

to transparent effects.
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dimensions of the overlapping level and the next level in the transparency texture

mipmap. This is a trade-off by experiments. For the overlapping level, the result is

compensated by the occupancy texture, and it is acceptable for other levels.

6.6 Alpha in transparency textures

6.6.1 Directional transparency

The alpha channel of the occupancy texture contains samples of a function, which

defines the object implicitly. These alpha values are down sampled and interpreted

as transparency when we go down the mipmap levels. Some objects display different

transparency in different directions, e.g. a bunch of hollow tubes. Since we need three

textures to store the quadratic form of the ellipsoids, we have three alpha channels

that are freely available for the simulation of the directional transparency.

In the construction of a transparency texture in a double mipmap, we consider the

scalar alpha channel in the occupancy texture as three channels with the same value.

The three channels represent the directional transparency of the object in the three

axis directions of the parameterization space. Each channel is then filtered separately

into the transparency texture.

With consideration of the directional property, there are two cases to consider in

filtering as shown in Figure 6.6.

The alpha values in the picture represent the voxel transparency in the upwards

direction. α1 andα2 are the alpha value of the two voxels, andα = 1 means the

voxel is opaque. Denoteα to be the new alpha value when the two voxels are filtered

into one voxel.
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Figure 6.6: Relative positions of voxels in filtering of directional alpha channels. The

alpha values here represent the transparency in the upwards direction as shown by the

arrows.

In the first case, two voxels are side by side. The filtered upwards alpha valueα

is the average ofα1 andα2: α = (α1 + α2)/2.

In the second case, it gets a little more complex when two voxels lie in a row

along the direction of the represented transparency. The correlation of the two voxels

should be considered to obtain the correct result. If the correlation coefficientC = 0,

two voxels are independent and the combined alphaα = 1− (1−α1)(1−α2). (The

probability that light goes through each voxel is independent.) IfC = 1, the opaque

parts of the two voxels overlap andα = max(α1, α2) (Figure 6.7). While bothα1 and

α2 are in the open interval(0, 1), α is a strict decreasing function of the correlation

C.

6.6.2 Alpha blending

Standard hardware alpha blending in rendering treats all voxels as not correlated.

That makes the filtered texture look more opaque than the original when correlation

exists, no matter we store the alpha as scalar values or multi-component vectors. In

practice, correlation needs to be considered in rendering of filtered volumetric tex-
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Figure 6.7: Correlation of voxels in filtering of directional alpha channels when vox-

els lie in a row along the direction of represented transparency.C is the correlation

coefficient of the two voxels.

tures. It posts a difficulty with current hardware implementation of the rendering

pipeline. The fragment program does not have read access to the destination frame

buffer, thus unable to accomplish the desired blending function. Software render-

ing is able to do it but will not be suitable whenever interactivity is expected for a

complex scene.
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Chapter 7

Applications

In this chapter we describe a variety of operations that we have implemented in our

modeling system. The modeling system uses the shell generation and rendering al-

gorithms explained in previous chapters. These high performance algorithms enable

us to process and manipulate a lot of complex models in real-time, which is hard to

achieve by other methods.

7.1 Deformations

The base surface of a volumetric-textured object can be deformed with the volumetric

texture moving along with it. In our modeling system, the base surface is represented

as a multi-resolution subdivision surface and deformed by moving its control points.

At each deformation step, the base surface is subdivided and the shell is recomputed

on the subdivided surface to generate smooth action of the textured object. We take

advantage of the locality of the field that defines the shell, and recompute only the

part of the shell within the field influence distance from the modified surface part.
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This can be done at interactive rates (Figure 7.2 and 7.3).

To further speed up the shell updating process, we implemented an interpolation

coefficientt (0 ≤ t ≤ d) in our system, whered is the subdivision depth of the base

surface. Ift = 0, all shell directors are computed using the algorithm described in

Chapter 4. In the case oft > 0, we only compute a fraction of the shell directors

using our shell generation algorithm and generate others by bilinear interpolation.

Specifically, for each top-level quad face, which has(2d + 1)× (2d + 1) vertices on

subdivision leveld, we compute the shell directors on a(2d−t+1)×(2d−t+1) grid and

interpolate for other vertices (Figure 7.1). When the multi-resolution base surface

does not have detail on any subdivision level or the magnitude of the level details

is relatively small compared to the size of the face on that level, the interpolation

method work very well and provide noticeable performance advantage.

Other method can also be used to implement the deformation. We note that if a

volume deformer is used to modify the surface, the same volume deformation can

be applied to the shell and no interactive re-computation of the shell is necessary.

However, for significant deformation the shell is best recomputed to ensure consistent

nominal thickness.

7.2 Moving geometry along the surface

Image editing operations can be easily applied to volumetric textures in a straight

forward fashion: one can ignore the third dimension (such as translating, cropping

operations, etc) or extend the operations to the third dimension symmetrically (such

as blurring operation and a lot of other filters). These editing operations result in

changes of the implicitly geometry defined the volumetric textures (Figure 7.4).
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Figure 7.1: Interpolation in shell director computation. In the case of subdivision

depthd = 3 and interpolation coefficientt = 2, each top-level quad face is pa-

rameterized on a domain shown above, where only the shell directors at the marked

vertices are computed. All other directors are generated by bilinear interpolation.
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However, mapping a texture onto a surface in three dimension space causes dis-

tortion of the texture. When some of these extended image editing operations (e.g.

translating) are implemented, geometric distortion of the texture mapping should be

taken into account. The problem is identical to the one addressed in [4]. The target

area, to which the texture is moved, and the source area are re-parameterized on a

common planar domain with a distortion-minimizing parametrization. The common

parameterization is used to re-sample the source texture over the target geometry.

The same approach can be used for the translating operation of volumetric textures.

We implemented the translating operation on volumetric-textured object as a

proof of concepts in our system. The user can specify a region of arbitrary shape

and fill the region with a volumetric texture. This piece of texture can be moved

around on the object. The trace of the texture is filled with the base surface.

7.3 Boolean operations and carving

One of the advantages of volumetric geometry representations is that boolean oper-

ations become relatively simple (Figure 7.5). In the case of volumetric textures the

situation is complicated by the fact that the transformation from world coordinates

to texture coordinates is nonlinear. However, it is still relatively simple to com-

pute a boolean operation between a regular non-distorted volumetric object and the

volumetric-textured surface. This requires re-sampling the volumetric object over the

shell grid, which is straightforward.

We implemented two boolean operations: cutting holes on a textured object and

combining two volumetric textures. Cutting operation uses the same method to define

an arbitrary shape as we did for the translating operation. The part of textures that
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falls into the specified region is set to zero to accomplish the cutting operation. In the

combining operation, we utilize the multiple texture units on the video card and the

programmability of the pixel engine. Two textures are mapped to the same region of

the object. The fragment program picks the texture with the largerα value at each

pixel, resulting in a union operation of the two textures. This implementation make it

very convenient to move one texture in the other, which requires no computation but

a simple translation of one set of texture coordinates. We used this method to paste a

horse texture into a terrain full of trees (represented by a texture), and move the horse

around freely while the trees are growing.

Applying a boolean operation to two volumetric-textured surfaces is much more

difficult. It involves re-sampling an ISO-surface represented by a distorted grid into

another distorted grid. That is not a trivial problem.

7.4 Animated textures

Removing details from the underlying geometric representation and placing them

into 3D textures makes some animations much simpler to execute. One example

is the boiling man (Figure 7.6). The texture is procedurally animated to show the

bubbles. During the animation, the bubbles rise from the bottom and burst on the

surface, when small pieces of irregular shape fly around. This would require a change

in the topology of the underlying geometry if we were using conventional geometric

modeling. Volumetric textures handle the changes of topology without any additional

cost, providing real time performance for the animation.

Other examples of texture animation include the waving flag (Figure 7.7) and the

growing trees (Figure 7.8). The structural texture on the flag is constructed after an
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example appeared in Neyret’s work. They produced that animation with off-line ren-

derer, which required 10 minutes per frame. We are able to render the flag animation

in real-time in our modeling system. It is still a significant improvement in speed

after discounted by the clock rate of our faster CPU.

In all these animated examples, Our fast shell generation algorithm enables us to

animate the base mesh and the texture at the same time.
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Figure 7.2: Two simple objects with small-scale geometry added.
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Figure 7.3: Editing operations: deforming a volume-textured surface by modifying

the base surface.

Figure 7.4: Editing operations: moving a geometric texture on a surface.
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Figure 7.5: Editing operations: cutting a hole on the chain-mail shirt.
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Figure 7.6: An animated bubbling texture applied on the mannequin head. The base

surface is deformed at the same time while the texture is animated.

Figure 7.7: A structural texture on a deforming plane and a partial zoom-in view.

This model is created after a similar one appeared in Neyret’s work.
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Figure 7.8: Three stages of a growing bush texture with a zoomed-in view.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

We presented methods for constructing and rendering surfaces with small-scale ge-

ometry represented by volumetric textures. These methods enable a variety of inter-

active modeling operations.

The shell construction algorithm is based on theLp-averaged distance function,

which is generalized from the standard distance function. The gradient field of the

Lp-averaged distance function is well defined away from the surface. The shell

around a surface can be obtained by integrating the gradient field directly using an

adaptive explicit Euler method. In case that insufficient sampling causes difficulties

for numerical methods, we developed the analytic formulas to compute the field. This

analytic approach makes it possible to use a coarser base mesh for computation of

the field and might lower the computation cost in some cases. The shell construc-

tion algorithm is expected to be useful for a variety of applications using volumetric

textures, such as fur rendering, weathering simulation, etc.
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Our rendering algorithm for volumetric-textured objects extends the slice-based

volume rendering algorithm. The algorithm renders the object in multiple passes.

For each pixel, we find the visible point in the object on one slice and the outside

point on another slice immediately before the visible point. The texture coordinate

for the pixel is then computed by interpolating that of the two points according to

the two alpha values. The interpolated texture coordinates is continuous between

slices. This algorithm effectively eliminates the visible slice boundary artifacts in

standard slice-based volume rendering. It enables us to reduce the number of slices

rendered without noticeably degrading the result. We do not need to render as many

slices as the size of the texture to show off all the details of the object. The rendering

algorithm can also be used for standard volume rendering applications to improve the

ISO-surface rendering quality.

The mipmaping method we developed for volumetric textures produces rendering

results similar to the real world observations. It is easy to construct hierarchies for

volumetric textures by low-pass filtering and sub-sampling. However it is well known

that low-pass filtering is not the best way to simplify implicit geometry, as undesir-

able topological artifacts may appear. Our current approach as shown in Chapter 6

uses transparency to amend the lost of topological information in sub-sampling. It

is a reasonable approach for a lot of objects we want to represent. For example, you

will not see any threads on a window screen while looking from far away. But the

scene behind the screen will look darker, just like you are looking through a gray

semi-transparent window. We use two textures of different resolutions to represent

geometrical and transparent appearance of a texture. Explicit normal and alpha in-

formation are stored in the high resolution geometrical texture. In the low resolution

transparency texture, normals are encoded by a distribution function at each texel to
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avoid artifacts due to insufficient sampling density. The transition between these two

textures is implemented smoothly using mipmaping hardware.

8.2 Future work

As we have mentioned, the shell construction algorithm that we have proposed has

considerable potential for acceleration. Ideally normal displacement should be used

whenever possible, with our algorithm applied only in complex areas.

Examples we have shown only use procedure generated volumetric textures. Pro-

cedure methods are very effective in generating regular texture patterns, such as chain

mail, knits and fabrics, etc. A lot of irregular textures can be generated by procedure

methods using Perlin noise [32, 33]. We also want to derived models and textures

from real world objects. One should be able to build models and textures out of data

from CT, MRI or ultrasound scanned objects. It involves fitting a mesh (or a shell

directly) to the scan data and re-sampling it into volumetric textures. This approach

has the advantage of achieving high resolution model with smaller data storage. Fea-

ture aligned textures are likely to have few visual artifacts over traditional volume

representation.

Physical simulation on objects represented by thick surfaces is another interesting

area worth exploring. Topologically complex objects present some tough problems in

simulation, partially inherited from their conventional complex representation. Our

effective representation based on volumetric textures might simplify the problem in

certain ways.
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Appendix A

Analytical integration

The averaged distance function discussed in Chapter 4 is defined on theLp norm,

dp(x, M) = A1/p

(∫
M

|x− y|−pdy

)−1/p

(A.1)

Whenp = 3, the integral involved in the averaged distance functiondp(x, M)

can be computed analytically on an arbitrary triangle. This enables us to compute the

averaged distance function precisely and avoid the “escape” problem in the case that

a surface region with high curvature is not sampled densely enough for numerical

methods.

As indicated in Figure 4.9 on Page 35, we can decompose a triangle into three

wedges and compute the integral in Equation (A.1) over a triangle by three parts:∫
4P1P2P3

|x− y|−pdy =

∫
6 (P1,

−−−→
P1P2,

−−−→
P1P3)

|x− y|−pdy +∫
6 (P2,

−−−→
P3P2,

−−−→
P1P2)

|x− y|−pdy −∫
6 (P3,

−−−→
P3P2,

−−−→
P1P3)

|x− y|−pdy

where 6 (V, ~e1, ~e2) represents a wedge whose end point isV and covers the area be-
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tween ~e1 and ~e2 counter-clockwise. We only need to compute the integral over a

wedge explicitly to obtain the analytical result over a triangle.

In the following we develop the formulas to compute
∫

M
|x − y|−3dy over a

wedge6 (V, ~e1, ~e2). Without losing generality, assume that the wedge lies in thexy

plane of a coordinate system with its vertexV at the orig pointO and the starting edge

~e1 on the positivex coordinate axis. The interior of the wedge covers the counter-

clockwise angle from the positivex axis to~e2. Denoteβ the size of the angle. Since

our wedges are decomposed from triangles,β is in the range(0, π). Transform the

xy plane to polar coordinate system(r, θ), the integral becomes:∫
6 (O, ~e1, ~e2)

|x− y|−3dy =

∫ β

0

∫ +∞

0

|x− y|−3rdrdθ

Suppose that the Cartesian coordinates ofx is (u, v, w), whereu, v, w are ar-

bitrary real numbers. Defineq to be the distance between the origin andx (q =
√

u2 + v2 + w2). The Cartesian coordinates ofy can be written in terms of(r, θ) as

(r cos θ, r sin θ, 0). Denote the above integralH(x). Then we have:

H(x) =

∫ β

0

∫ +∞

0

|x− y|−3rdrdθ

=

∫ β

0

∫ +∞

0

r

((u− r cos θ)2 + (v − r sin θ)2 + w2)3/2
drdθ

=

∫ β

0

∫ +∞

0

r

(r2 − 2r(u cos θ + v sin θ) + q2)3/2
drdθ

DefineU(θ) = u cos θ + v sin θ, which does not depend onr. So, we can integrate

on r asU(θ) is constant:

H(x) =

∫ β

0

∫ +∞

0

r

(r2 − 2rU(θ) + q2)3/2
drdθ

=

∫ β

0

rU(θ)− q2

(q2 − U(θ)2)
√

r2 − 2rU(θ) + q2

∣∣∣∣∣
+∞

0

dθ

=

∫ β

0

1

q − U(θ)
dθ
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SubstituteU(θ) back in and compute the integral onθ:

H(x) =

∫ β

0

1

q − (u cos θ + v sin θ)
dθ

=
2

w
arctan

(
(q + u) tan θ

2
− v

w

)∣∣∣∣∣
β

0

=
2

w

(
arctan

(
(q + u) tan β

2
− v

w

)
+ arctan

( v

w

))
Define

θ1 = arctan

(
(q + u) tan β

2
− v

w

)
, and θ2 = arctan

( v

w

)
,

then

tan θ1 =
(q + u) tan β

2
− v

w
, tan θ2 =

v

w
,

tan(θ1 + θ2) =
tan θ1 + tan θ2

1− tan θ1 tan θ2

=
w

(q − u) cot β
2
− v

It leads to the formula presented in Chapter 4:

H(x) =
2

w
arctan

(
w

(q − u) cot β
2
− v

)
(A.2)

Now, the gradient of Equation (A.1):

g3(x, M) = ∇x(d3(x, M))

= − 1

3A
(d3(x, M))4∇x

(∫
M

|x− y|−3dy

)
can be computed analytically by taking the partial derivatives ofH(x) on u, v, w

explicitly:

Hu(x) =
sin β

q(q − (u cos β + v sin β))

Hv(x) =
1

q(q − u)
− cos β

q(q − (u cos β + v sin β))

Hw(x) = −H(x)

w
+

(u2 + v2 − qu) sin β − qv(1− cos β)

qw(q − u)(q − (u cos β + v sin β))
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Equation (A.2) assumesw 6= 0. While w = 0, pointx is in thexy plane. For this

special case, we can compute the limit of Equation (A.2) whenw → 0, or recompute

H(x) with w = 0 (for now,q =
√

u2 + v2):

H(x) =

∫ β

0

1

q − (u cos θ + v sin θ)
dθ

=
2(q − u)

v(q − u− v tan θ
2
)

∣∣∣∣∣
β

0

=
2

(q − u) cot β
2
− v

For the gradient ofH(x) in case ofw = 0, the first two componentsHu(x) and

Hv(x) are still computed by the formulas shown above, andHw(x) = 0.

H(x) only exists while the pointx is out of the wedge. Furthermore, whenx is

very close to the wedge, the computation ofH(x) becomes unstable. Rounding er-

rors may cause the integral on a triangle to be negative, and result in wrong gradient

directions. During implementation, we need to take these into account and decom-

pose a triangle in a way thatx does not lie in any of the three wedges. To ensure

stability,x is preferred to be as far from the wedges as possible.
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Appendix B

Quadratic form representation of

ellipsoids

Denote vectorsv1, v2, v3 to be three normalized axes of an ellipsoid and scalars

a1, a2, a3 the length of the three axes respectively. Then the followings hold:

|vi| = 1, vi · vj = 0, ai > 0, (1 ≤ i, j ≤ 3, i 6= j)

where ‘·’ is the dot product of two vectors.

Assume the ellipsoid is centered at the origin. Then the equation of the ellipsoid

is:
(M · v1)

2

a2
1

+
(M · v2)

2

a2
2

+
(M · v3)

2

a2
3

= 1 (B.1)

whereM is a point of space.

The left side of Equation (B.1) can be written as:

3∑
i=1

(M · vi)
2

a2
i

=
3∑

i=1

MT viv
T
i M

a2
i

= MT

(
3∑

i=1

vi

ai

(
vi

ai

)T
)

M

whereXT is the transpose of the matrixX.
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We can use the3× 3 matrix in the middle of the last term to represent the origin-

centered ellipsoid and denote itQ. A point M is on the ellipsoid if and only if

MT QM = 1. Q has the following format in terms of the ellipsoid axes and their

length:

Q =
3∑

i=1

vi

ai

(
vi

ai

)T

=

(
v1

a1

v2

a2

v2

a2

)(
v1

a1

v2

a2

v2

a2

)T

Notice thatv1, v2, v3 form an orthogonal basis of the 3D space. So we haveQ−1

as:

Q−1 =

((
v1

a1

v2

a2

v2

a2

)T
)−1(

v1

a1

v2

a2

v2

a2

)−1

= (a1v1 a2v2 a3v3)(a1v1 a2v2 a3v3)
T

Write the orthogonal basisvi = (b1,i, b2,i, b3,i)
T , (1 ≤ i ≤ 3). Definewi =

(bi,1, bi,2, bi,3)
T , (1 ≤ i ≤ 3). It is easy to prove that|wi| = 1 and they form another

orthogonal basis of the 3D space. If the ellipsoid is scaled so that its longest axis has

unit length, (i.e.ai ≤ 1, 1 ≤ i ≤ 3), every componentqi,j (1 ≤ i, j ≤ 3) of the

matrixQ−1 is in the range of[−1, 1].

|qi,j| = |a2
1bi,1bj,1 + a2

2bi,2bj,2 + a2
3bi,3bj,3|

≤ a2
1|bi,1bj,1|+ a2

2|bi,2bj,2|+ a2
3|bi,3bj,3|

≤ |bi,1bj,1|+ |bi,2bj,2|+ |bi,3bj,3|

≤
√

(b2
i,1 + b2

i,2 + b2
i,3)(b

2
j,1 + b2

j,2 + b2
j,3)

= 1

So, normalizing the longest axis of the ellipsoid puts allqi,j in [−1, 1]. This enables

us to transform all components ofQ−1 to [0, 1] by half scaling then half bias. Then

we can store the transformed matrix in textures without truncation. In fragment pro-

grams, the matrixQ−1 can be easily restored by the inverse transformation.
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