
Leveraging Program Analysis for Type Inference

by

Zvonimir Pavlinovic

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science

New York University

May 2019

Professor Thomas Wies

Acknowledgements

I would like to thank my mother, father, sister, and late grandparents for their

undeniable support in pursuing my professional goals. Without their unconditional

love, I would have never reached this point in my career that initially seemed as

nothing more than a childish dream. This dissertation could have not been written

without the guidance of my adviser, Thomas Wies. I am sincerely thankful for

an unparalleled patience and countless hours spent helping me understand the

phenomena of computation and the very core of being a scientist. To my friends,

I thank you for being there for me despite my frequent absence and unavailability.

To all the other people that helped me in any capacity during the course of my

studies, I am sincerely grateful.

iii

Abstract

Type inference is a popular feature of programming languages used to automati-

cally guarantee the absence of certain execution errors in programs at compile time.

The convenience of type inference, unfortunately, comes with a cost. Developing

type inference algorithms is a challenging task that currently lacks a systematic

approach. Moreover, programmers often have problems interpreting error reports

produced by type inference. The overarching goal of this thesis is to provide a

mathematically rigorous framework for the systematic development of sophisti-

cated type inference algorithms that are convenient to use by the programmers.

To this end, we focus on two specific problems in this thesis: (1) how to construc-

tively design type inference algorithms that improve over the state-of-the-art and

(2) how to automatically debug type errors that arise during inference. We base

our approach on the observation that, similar to type inference, program analysis

algorithms automatically discover various program properties that can be used to

show program correctness. Type inference and program analysis techniques, al-

though similar, have traditionally been developed independently of each other. In

contrast, this thesis further explores the recent path of leveraging program analysis

for type inference.

As our first contribution, we use abstract interpretation to constructively de-

sign type inference algorithms. We specifically focus on Liquid types, an advanced

family of algorithms that combine classical typing disciplines and known static

analyses to prove various safety properties of functional programs. By using ab-

stract interpretation, we make the design space of Liquid type inference explicit.

We also unveil the general type inference framework underlying Liquid types. By

properly instantiating this general framework, one obtains novel type inference

iv

algorithms that are sound by construction.

Our second contribution is a framework for automatically debugging type er-

rors for languages that deploy type inference in the style of Hindley-Milner, such as

OCaml and Haskell. Such languages are notorious for producing cryptic type error

reports that are often not helpful in fixing the actual bug. We formulate the prob-

lem of finding the root cause of type errors as an optimization problem expressed in

a formal logic. We then show how to solve this problem using automated theorem

provers. We experimentally illustrate how our framework can efficiently produce

type error reports that outperform the state-of-the-art solutions in identifying the

true cause of type errors.

In summary, this thesis introduces a mathematical framework for the systematic

design of sophisticated type inference algorithms that are sound by construction.

Our results further enable automatic generation of more meaningful type error

diagnostics, ultimately making type inference more usable by the programmers.

v

Contents

Acknowledgements . iii

Abstract . iv

List of Figures . viii

List of Tables . x

List of Appendices . xi

1 Introduction 1

1.1 Data Flow Refinement Type Inference 4

1.2 Type Error Localization . 8

1.3 Road Map . 11

2 Preliminaries 13

2.1 Notation . 13

2.2 Language . 14

2.3 Types . 16

2.4 Abstract Interpretation . 17

3 Data Flow Refinement Type Inference 20

3.1 Overview . 20

3.2 Data Flow Semantics . 29

vi

3.3 Relational Data Flow Semantics . 45

3.4 Collapsed Relational Data Flow Semantics 57

3.5 Data Flow Refinement Type Semantics 67

3.6 Liquid Type Semantics . 75

3.7 Related Work . 80

4 Type Error Localization 85

4.1 Overview . 85

4.2 Problem . 93

4.3 Algorithm . 95

4.4 Implementation and Evaluation . 104

4.5 Taming The Exponential Explosion 109

4.6 Related Work . 130

5 Conclusions 134

Appendices 136

Bibliography 264

vii

List of Figures

3.1 Series of abstract semantics leading up to Liquid type inference . . 28

3.2 Subsequent maps computed by data flow semantics for program

from Example 1. Numbers above maps are used to identify the maps. 30

3.3 Concrete transformer for data flow semantics 39

3.4 Value propagation in the concrete data flow semantics 40

3.5 Operations on relational abstract domains 52

3.6 Value propagation in the relational data flow semantics 54

3.7 Abstract transformer for relational data flow semantics 55

3.8 Abstract transformer for collapsed semantics (recursive function def-

inition rule) . 64

3.9 Propagation between values in the collapsed semantics 65

3.10 A structural definition of strengthening operations on refinement

types . 70

3.11 Abstract transformer for data flow refinement semantics 72

3.12 Adapted Liquid typing rules . 78

4.1 High-level overview of constraint-based type error localization. Thick

arrows represent a looping interaction between a compiler and the

SMT solver. 86

viii

4.2 Typing rules for λ⊥ . 94

4.3 Rules defining the constraint typing relation for λ⊥ 100

4.4 Labeled abstract syntax tree for the program p 102

4.5 Quality of AST ranking criterion compared to OCaml’s type checker

in pinpointing the true error source in 20 benchmark programs . . . 107

4.6 Maximum, average, and minimum execution times for computing a

minimum error source . 108

4.7 Maximum, average, and minimum number of generated assertions

(in thousands) for computing a minimum error source 108

4.8 Rules defining the refined constraint typing relation for λ⊥ 112

4.9 Maximum, average, and minimum number of typing assertions for

computing a minimum error source by naive and iterative approach 125

4.10 Maximum, average, and minimum execution times for computing a

minimum error source by naive and iterative approach 126

4.11 Maximum, average, and minimum number of typing assertions for

computing a minimum error source by naive and iterative approach

for larger programs . 129

4.12 Maximum, average, and minimum execution times for computing

a minimum error source by naive and iterative approach for larger

programs . 130

ix

List of Tables

4.1 Statistics for the number of expansions and iterations when com-

puting a single minimum error source 127

4.2 Statistics for the number of expansions and iterations when com-

puting a single minimum error source for larger programs 128

x

List of Appendices

A Data Flow Refinement Type Inference 136

A.1 Example Concrete Map . 136

A.2 Concrete Semantics Proofs . 138

A.3 Path Data Flow Semantics . 158

A.4 Relational Semantics Proofs . 202

A.5 Collapsed Semantics Proofs . 227

A.6 Data Flow Refinement Type Semantics Proofs 240

A.7 Liquid Types Semantics Proofs . 246

B Type Error Localization 255

B.1 Proof of Lemma 25 . 255

xi

Chapter 1

Introduction

Types are an integral part of modern programming languages. The role of types

in a programming language is to facilitate the usage of powerful programming

abstractions and, perhaps more importantly, enhance the reliability of programs.

Types can be used to express information about program executions capturing the

form of values being used by the program and the behavior of functions that oper-

ate over these values. For instance, types can capture program invariants stating

that certain program variables always hold integer values during the execution or

that functions implementing the integer division operation accept two integer argu-

ments and produce an integer value. Programmers use types to communicate such

information about their programs to the compiler that in turn uses this informa-

tion to ensure the absence of certain runtime errors. Some programming languages,

such as OCaml [70] and Haskell [38], automatically discover types in programs by

employing type inference algorithms [74]. By using type inference, programming

languages are therefore able to provide certain correctness guarantees for programs

at compile time without requiring major programmer intervention.

1

Type inference algorithms can be seen as a form of static analysis of pro-

grams [15, 17, 16]. Both type inference and static analyses automatically deduce

information about programs with the goal of showing program correctness. In

type inference, programs are deemed correct if they do not exhibit a target class

of execution errors, such as calling a Boolean negation operation with a string

argument [74]. A deeper connection between type inference and static analyses

can be observed in the way they both deal with the inherent infeasibility of au-

tomatically deciding program correctness. Static analyses approach this problem

by sacrificing precision for soundness, i.e., by over-approximating how programs

behave [17, 16]. That is, the behaviors of a program inferred by a static analysis

always include the actual program behaviors, but they also might include same

spurious behaviors. Similarly, type inference algorithms sacrifice precision by flag-

ging some correct programs as potentially erroneous, but they ensure soundness by

never classifying an erroneous program as correct. Despite many similarities [15],

type inference and static analysis techniques are typically developed independently

of each other. Type inference algorithms rarely reap many of the benefits provided

by the advances in static analysis and program analysis in general [17, 68]. This is

unfortunate, particularly since type inference algorithms and the process of their

creation taken by both industry and academia have several notable shortcomings.

The presentations of many type inference algorithms found in the literature [40,

59, 78] and practical implementations [70, 38, 92] only argue the algorithm’s sound-

ness. Such works do not formally discuss the precision of the type inference being

presented. The particular points where these algorithms can be made more pre-

cise, generalized, or how they can be compared against each other are not made

formally explicit. Overall, the design space of existing type inference algorithms

2

is mathematically unclear. Developing type inference algorithms is consequently

a challenging problem lacking a more systematic approach. This problem is even

more severe in the context of modern programming languages that are facing de-

mands for providing type inference with an ever increasing precision and for in-

creasingly complex classes of errors whose absence they are supposed to guarantee.

The other shortcoming associated with type inference concerns its usability. When

type inference flags a given program as possibly erroneous by discovering a type

error, the compiler-generated messages explaining the error are often not helpful

in fixing the actual bug. The produced error explanation frequently identifies the

source of the error incorrectly, thus increasing the debugging times for the pro-

grammer [54]. Even worse, cryptic type error reports can significantly hinder the

process of learning languages with type inference for novice programmers [54]. The

goal of this thesis is to reduce the cost of developing and using sophisticated type

inference algorithms in modern programming languages by addressing the prob-

lems of (1) how to constructively design type inference algorithms that improve

over the state-of-the-art and (2) how to automatically debug type errors that arise

during inference. We base our approach on the close connection between static

analysis and type inference described earlier.

We make two key technical contributions in this thesis. First, we use abstract

interpretation [17, 16] to systematically construct Liquid type inference [92], a

recently developed algorithm based on classical type inference [40, 59] and pred-

icate abstraction [4, 27] that automatically infers rich properties of higher-order

programs. Abstract interpretation is a mathematically rigorous framework for

constructively designing static analyses as abstract semantics of programs, i.e., as

over-approximations of the actual program behaviors. By formulating Liquid type

3

inference as a static analysis using abstract interpretation, we unveil the design

space of such inference algorithms. Our formulation makes explicit the points

where Liquid type inference loses precision and can hence be improved. More-

over, our results allow generalization of Liquid type inference and facilitate the

development of powerful type inference algorithms that are sound by construction.

As a second contribution, we formally illustrate how the problem of type error

debugging for languages such as OCaml and Haskell can be cast as an optimization

problem that neatly separates two constituent subproblems: devising a heuristic for

pinpointing the root source of a type error and searching for the root source given

such a heuristic. We express the optimization problem of type error debugging

using formal logic and then solve it using automated theorem provers [21, 5]. By

relying on recent advances in automated theorem proving, we obtain a general,

effective, and efficient framework for type error debugging.

We now discuss each of our two technical contributions in more detail.

1.1 Data Flow Refinement Type Inference

Classical type inference algorithms, such as those found in OCaml and Haskell,

guarantee the absence of a certain class of runtime errors. For instance, such

algorithms can capture that an array read, read a i, will always operate on the

base pointer a to some memory region that holds an array. However, to show

that the array read is always within the array bounds, the types need to relate

the index i at which the read occurs and the length of the array a. Automatically

inferring such types is out of the scope of classical type systems. Refinement types

take an exciting direction to designing static type inference algorithms that can

4

infer fine-grained program invariants [28, 95, 78, 92, 99, 93]. Here, the types of a

classical type system are augmented with auxiliary type refinements that further

constrain the members of the basic type.

Liquid types [78, 91, 92, 90] form an important family of refinement type sys-

tems. Here, basic types are augmented with refinement predicates that are drawn

from some decidable logic. These predicates can express relational dependencies

between inputs and outputs of functions. For example, the contract of the array

read operator, read, can be expressed using the Liquid type

read :: (a : α array)→ (i : {ν : int | 0 ≤ ν < length a})→ α

This type indicates that read is a function that takes an array a over some element

type α and an index i as input and returns a value of type α. The type {ν : int |

0 ≤ ν < length a} of the parameter i refines the base type int to indicate that i

must be an index within the bounds of the array a. Liquid type inference uses

this type to check that array accesses in a given program are within the array

bounds by automatically inferring refinement types for all program expressions.

For instance, consider the following illustrative OCaml program.

let f a i = read a (i - 1) in

let b = f [| 1; 2 |] 2 in

let c = f [| 3; 4; 5 |] 3 in

b + c

The above program defines a function f that accepts an integer array a, an integer

i, and returns the element of a at position i − 1. This function is then called

two times with integer arrays and integers whose value equals the length of the

respective arrays. Liquid type inference first calls the OCaml type inference to

5

get the basic types of program expressions. For every expression, the Liquid type

inference then infers a conjunction of auxiliary refinement predicates drawn from a

given finite set of candidate predicates. The inferred conjunction refines the basic

type of the expression and is consistent with the way the expression is used in the

program. For instance, one possible inferred Liquid type for f is

f :: (a : int array)→ (i : {ν : int | ν = length a ∧ 2 ≤ ν})→ int

The above type correctly states that f is always called with an integer array a

whose length is equal to the value of the argument i in the above program. The

value of i is also correctly inferred to be greater or equal than 2. Hence, the

actual access index i− 1 is always provably within the bounds of a for the above

program. This illustrative example showcases an interesting feature of Liquid type

inference. The type of f is not inferred based on the body of f in isolation, as

is the case with more classical type inference [40, 59], but also on the remainder

of the program: the types for parameters a and i are deduced based on how f is

called in the program. The algorithm discovers that the values flowing to the two

arguments of f are always an integer array a and an integer i such that i is in the

interval [2,∞] and i = length a. Intuitively, this type expresses an invariant of the

program capturing how data flows to and from f.

Approach. In this thesis, we formally model the distinguishing features of Liq-

uid type inference with the goal of generalizing it and unveiling the design space

of such analyses. We shed new light on Liquid type inference in terms of abstract

interpretation, a framework that enables the systematic construction of static anal-

yses as abstractions of a concrete program semantics [16, 17]. First, we propose a

new semantics of higher-order functional programs that precisely captures the pro-

6

gram properties abstracted by Liquid types. Our new semantics explicitly models

the data flow in higher-order programs that is over-approximated by Liquid types.

To the best of our knowledge, this is the first semantics where the notion of data

flow is made explicit in a higher-order setting. We then systematically construct

a data flow refinement type analysis via a sequence of Galois abstractions [16] of

this concrete semantics. The resulting analysis infers valid refinement types for

all subexpressions of a program and is parametric in the abstract domain used

to express the type refinements. Finally, we show that Liquid type inference is a

particular instance of this parametric analysis where the abstract domain of type

refinements is defined by the particular choice of candidate refinement predicates

made by the Liquid type inference.

Contributions. Our technical development brings several benefits. First, the

points where Liquid type inference loses precision are made explicit in (1) the

Galois connections used in the abstractions building up to our data flow refine-

ment type analysis and (2) the way in which the convergence of the analysis is

enforced, which we formally capture as widening operators [16, 17]. These oper-

ators are a well-known mechanism used in abstract interpretation to ensure the

sound termination of static analyses. Next, we generalize from the specific choice

of logical predicates as type refinements used in Liquid types by allowing for the

use of arbitrary abstract domains (including e.g. polyhedra [83, 19] and automata-

based domains [3, 50]). Instantiations of our parametric type analysis are sound

by construction. Finally, the type inference analyses that build on our results can

be more easily compared against each other and used in combination with other

static analyses (e.g., via reduced products [17]).

7

1.2 Type Error Localization

Another important aspect of type inference besides its systematic construction is

usability. For a type inference to be usable, it is important that the program-

mers understand the results the inference produces. This particularly applies for

the cases where type inference rejects a program and reports a type error. The

quality of the error report has a direct impact on the programmer’s ability to fix

the bug [54]. In this thesis, we focus on the problem of type error debugging

for Hindley-Milner type inference [40, 59] found in languages such as OCaml and

Haskell. Our focus on the Hindley-Milner algorithm is motivated by its widespread

usage [70, 38] and often unsatisfactory error reports that increase debugging times

for the programmers [54]. Moreover, addressing the problem of type error debug-

ging for the Hindley-Milner type inference is an essential step in improving type

error reports for the Liquid type inference, as the latter algorithm relies on the

results produced by the Hindley-Milner algorithm [78].

Hindley-Milner type inference reports type errors on the fly. If the inferred

type of the current program expression conflicts the inferred type of its context,

the inference algorithm immediately stops and reports an error at the current

program location. Although fast in practice, this approach also produces poor

error diagnostics. In particular, it might be the case that the programmer made a

mistake with the previous usages of the offending expression, or with some other

related expressions. For example, consider the following simple OCaml program

taken from the student benchmarks in [54]:

1 type ’a lst = Null | Cons of ’a * ’a lst

2 let x = Cons(3, Null)

8

3 let _ = print_string x

The standard OCaml compiler [70] reports a type mismatch error for expression x

on line 3, as the code before that expression is well typed. However, perhaps the

programmer defined x incorrectly on line 2 or misused the print string function.

As x is defined just before the error line, it seems more likely that the error is

caused by a misuse of print string. In fact, the student author of this code

confirmed that this is the real source of the error. This simple example suggests

that in order to generate useful error reports, compilers should consider several

possible error causes and rank them by their relevance. Hence, there is a need for

an infrastructure that can supply compilers with error sources that best match their

relevance criteria. This thesis proposes a general algorithm based on constraint

solving that provides this functionality.

Approach. Unlike typical type inference algorithms, we do not simply report the

location of the first observed type inconsistency. Instead, we compute all minimum

sets of expressions each of which, once corrected, yields a type correct program.

Compilers can then use these computed sets for generating more meaningful error

reports or even for providing automatic error correction. The considered optimality

criterion is controlled by the compiler. For example, the compiler may only be

interested in those error causes that require the fewest changes to fix the program.

The crux of our approach is to reduce type error localization to the weighted

maximum satisfiability modulo theory (MaxSMT) problem. Specifically, our algo-

rithm builds on existing work that rephrases type inference in terms of constraint

solving [87, 1, 71]. Each program expression is assigned a type variable and typing

information is captured in terms of constraints over those variables. If an input

9

program has a type error, then the corresponding set of typing constraints is unsat-

isfiable. We encode the compiler-specific ranking criterion by assigning weights to

the generated typing constraints. A weighted MaxSMT solver then computes the

satisfiable subsets of the constraints that have maximum cumulative weight. As

constraints directly map to program expressions, the complements of these max-

imum sets represent minimum sets of program expressions that may have caused

the type error.

One issue with our constraint-based approach to the type error debugging prob-

lem is that the constraints for polymorphic functions need to be freshly copied for

each usage of such functions, potentially resulting in an exponential number of

constraints [74]. We hence also propose an improved algorithm that deals with

the inherent complexity of polymorphic typing [57]. Our new algorithm makes

the optimistic assumption that the relevant type error sources only involve few

polymorphic functions, even for large programs. The new algorithm abstracts

polymorphic functions by principal types [40] in such a way that all potential er-

ror sources involving the definition of an abstracted function are represented by

a single error source whose cost is smaller or equal to the cost of all these poten-

tial error sources. If a computed error source does not involve a usage of such

an abstracted polymorphic function, the minimum error source has been found.

Otherwise, we expand the instantiations of the principal type of the function in-

volved in the discovered error source to the corresponding typing constraints and

repeat the whole process of finding the minimum error source. In the worst case

scenario, the algorithm terminates by solving the constraint set where all usages

of polymorphic functions are expanded, ending up with the same constraint set as

the naive algorithm.

10

Contributions. The benefits of our approach are multifold. Our approach

clearly separates the problems of devising a heuristic for pinpointing the actual

source of a type error, expressed as a ranking criterion, and the problem of search-

ing for the best error source given the criterion, solved by MaxSMT solvers. The

use of SMT solvers has several additional advantages. First, it allows support for

a variety of type systems by instantiating the MaxSMT solver with an adequate

reasoning theory. In particular, the typing constraints for the Hindley-Milner type

systems [40, 59] can be encoded in the theory of inductive data types [7]. Second,

the framework does not introduce a substantial implementation overhead since the

SMT solver can be used as a black box. Finally, we experimentally illustrate how

our type error debugging framework is able to incorporate sophisticated ranking

criteria that outperform standard type inference implementations in finding the

true source of type errors while being efficient even for programs having several

thousands of lines of code. To the best of our knowledge, no other type error de-

bugging technique that formally guarantees the optimality of the computed error

sources has comparable performance.

1.3 Road Map

In summary, the results presented in this thesis enable a systematic development

of powerful and programmer-friendly type inference algorithms. The presentation

of these results in this thesis is structured as follows. We start by introducing

the programming language, notation, and definitions we use throughout the thesis

in Chapter 2. We present our formulation of Liquid type inference as abstract

interpretation in Chapter 3. After providing an overview of the technical contri-

11

bution in § 3.1, we introduce our novel concrete data flow semantics of untyped

higher-order languages in § 3.2 and build several subsequent abstract semantics

in § 3.3, § 3.4, and § 3.5. We finally present Liquid type semantics of functional

programs in § 3.6. Chapter 4 describes our solution to the problem of type error

debugging aimed at type inference algorithms in the style of Hindley-Milner. We

first overview our approach in § 4.1. Then, we formalize the problem of type error

localization in § 4.2, present the solution in § 4.3, and discuss our implementation

and evaluation in § 4.4. § 4.5 presents an improved type error localization algo-

rithm that effectively deals with the inherent complexity of polymorphic typing.

We conclude the thesis in Chapter 5.

12

Chapter 2

Preliminaries

We first introduce notation and definitions that we use throughout the thesis.

2.1 Notation

We often use meta-level let . . . in . . . and conditional if . . . then . . . else . . .

constructs in mathematical definitions. The context and the notation should make

it clear when these constructs are used on the meta-level and as actual constructs

of the programming language of investigation. We will often compress consecutive

let statements let x = . . . in let y = . . . in . . . as let x = . . . ; y = . . . in

We use capital lambda notation (Λx. . . .) for defining mathematical functions.

For a function f : X → Y , x ∈ X, and y ∈ Y , we use f.x : y and f [x 7→ y] to

denote a function that maps x to y and otherwise agrees with f on every element of

X\{x}. For a set X we denote its powerset by ℘(X). For a relation R ⊆ X×Y over

sets X, Y and a natural number n > 0, we use Ṙn to refer to the pointwise lifting

of R to a relation on n-tuples Xn × Y n. That is 〈(x1, . . . , xn), (y1, . . . , yn)〉 ∈ Ṙn

iff
∧

1≤i≤n(xi, yi) ∈ R. Similarly, for any nonempty set Z we denote by ṘZ the

13

pointwise lifting of R to a relation over (Z → X) × (Z → Y). More precisely, if

f1 : Z → X and f2 : Z → Y , then (f1, f2) ∈ ṘZ iff ∀z ∈ Z. (f1(z), f2(z)) ∈ R.

Typically, we drop the subscripts from these lifted relations when they are clear

from the context or use an alternative “dot” notation. For instance, the pointwise

lifting Ṙ2 of a relation R : X × Y , for some sets X and Y , is also denoted by R̈.

For sets X, Y , and a function d : X → ℘(Y), we use the notation Πx ∈ X.d(x)

to refer to the set { f : X → Y | ∀x ∈ X. f(x) ∈ d(x) } of all dependent functions

with respect to d. Similarly, for given sets X and Y we use the notation Σx ∈

X.d(x) to refer to the set { 〈x, y〉 : X × Y | y ∈ d(x) } of all dependent pairs with

respect to d. We use the operators π1 and π2 that project to the first, respectively,

second component of a pair. For set comprehensions {t1 | t2} we assume that free

variables of the term t2 are existentially quantified unless they are free in t1.

2.2 Language

For exposition purposes, our formal presentations are built around an idealized

language: a lambda calculus with ML-style let polymorphism. The syntax of our

language is defined as follows:

Expressions e ::= x variables

| c constants

| µf.λx.e (recursive) lambda abstractions

| e1 e2 applications

| e0 ? e1 : e2 conditionals

| let x = e1 in e2 let bindings

14

The language supports constants c ∈ Cons and recursive lambda abstractions. We

assume the set of constants includes Booleans b ∈ Bool
def
= {true, false}, which

we will use to assign meaning to conditional expressions. In addition to condi-

tional expressions and the usual constructs of the lambda calculus, our language

also supports let bindings. Specifically, we use let bindings to define polymorphic

functions.

Variables x ∈ Vars and f ∈ Vars are drawn from an infinite set that is disjoint

from all other syntactic constructs. An expression e is closed if all using occurrences

of variables within e are bound in definitions of recursive functions µf.λx.e.

Let e be an expression. Each subexpression of e is uniquely annotated with

a location ` ∈ Loc. We use Loc(e) to denote the set of all locations of e. A

location ` ∈ Loc(e) hence uniquely identifies a subexpression of e. We denote this

subexpression by e(`). We use superscript notation to indicate these locations in

(sub)expressions as in (e`11 e
`2
2)` and (µf.λx.e`11)`. Sometimes, we also use e′ ∈ e

notation to denote the fact that e′ is a subexpression of e. The label annotations are

omitted whenever possible to avoid notational clutter. Variables are also locations

Vars ⊆ Loc. A program is a closed expression where all location labels are unique.

Next, we define a mapping Uloc for the usage locations of a variable. Formally,

Uloc is a partial function such that given a location ` of a let variable definition

and a program p returns the set Ulocp(`) of all locations where this variable is used

in p. Note that a location of a let variable definition is a location corresponding

to the root of the defining expression. We also make use of a function for the

definition location dloc. The function dloc reverses the mapping of Uloc for a

variable usage. More precisely, dloc(p, `) returns the location where the variable

appearing at ` was defined in p. Also, for a set of locations L we define Vloc(`) to

15

be the set of all locations in Loc(`) that correspond to usages of let variables. We

assume the above sets are precomputed for a given program. We do not provide

detailed algorithms for computing them as they are straightforward.

2.3 Types

The types of our language are as follows:

Monotypes τ ::= bool | int | α | τ → τ

Polytypes σ ::= τ | ∀α.σ

Monotypes τ include the base types bool and int, type variables α, which are drawn

from an infinite set disjoint from the other types (as well as locations and program

expressions), and function types τ → τ . A monotype in which no type variables

occur is called ground. A polytype ∀α.σ represents the intersection of all types

obtained by instantiating the type variable α in σ by a ground monotype. That

is, ∀α.σ binds α. We write ∀~α.τ as a shorthand for ∀α1. . . .∀αn.τ where ~α =

α1, . . . , αn. We further denote by fv(σ) the set of free type variables in type σ.

Finally, we write σ[~β/~α] for capture-avoiding substitution of free occurrences of

the type variables ~α in σ by the type variables ~β.

We define typing environments Γ as maps from variables to types. We write ∅

for the empty typing environment and extend the function fv to typing environ-

ments in the expected way.

16

2.4 Abstract Interpretation

A partially ordered set (poset) is a set L equipped with a relation v that is (1)

reflexive, (2) transitive, and (3) antisymmetric. We use the notation (L,v) for

such a poset.

Galois connections. Let (L1,v1) and (L2,v2) be two posets. We say a pair of

functions 〈α, γ〉 with α ∈ L1 → L2 and γ ∈ L2 → L1 forms a Galois connection iff

∀x ∈ L1,∀y ∈ L2. α(x) v2 y ⇐⇒ x v1 γ(y) .

This fact is denoted by (L1,v1) −−→←−−α
γ

(L2,v2). We call L1 the concrete domain

and L2 the abstract domain of the Galois connection. Similarly, α is called ab-

straction function (or left adjoint) and γ concretization function (or right adjoint).

Intuitively, α(x) is the most precise approximation of x ∈ L1 in L2 while γ(y) is

the least precise element of L1 that can be approximated by y ∈ L2.

A complete lattice is a tuple 〈L,v,⊥,>,t,u〉 where (L,v) is a poset such that

for any X ⊆ L, the least upper bound tX (join) and greatest lower bound uX

(meet) with respect to v exist. In particular, we have ⊥ = uL and > = tL. We

will often identify a complete lattice with its carrier set L. Some of our definitions

for a join (meet) operator will be defined as a binary operator t ⊆ L×L (u ⊆ L×L)

that is lifted to arbitrary subset of L when possible.

Let (L1,v1,⊥1,>1,t1,u1) and (L2,v2,⊥2,>2,t2,u2) be two complete lat-

tices. Let the pair 〈α, γ〉, where α ∈ L1 → L2 and γ ∈ L2 → L1, form a Galois

connections. Each function in the pair uniquely determines the other:

α(x) = u2{y ∈ L2 | x v1 γ(y)}

17

γ(y) = t1{x ∈ L1 | α(x) v2 y}

Also, α is a complete join-morphism

∀S ⊆ L1. α(t1S) = t2{α(x) | x ∈ S}, α(⊥1) = ⊥2

and γ is a complete meet-morphism

∀S ⊆ L2. γ(u2S) = u1{γ(x) | x ∈ S}, γ(>2) = >1.

Proposition 1 ([17]). The following statements are equivalent:

1. 〈α, γ〉 is a Galois connection

2. α and γ are monotone, α ◦ γ is reductive: ∀y ∈ L2. α(γ(y)) v2 y, and γ ◦ α

is extensive: ∀x ∈ L1. x v1 γ(α(x))

3. γ is a complete meet-morphism and α = Λx ∈ L1.
d

2{ y ∈ L2 | x v1 γ(y) }

4. α is a complete join-morphism and γ = Λy ∈ L2.
⊔

1{x ∈ L1 | α(x) v2 y }.

Proposition 2 ([17]). α is onto iff γ is one-to-one iff α ◦ γ = λy. y.

Widening operators. A widening operator for a complete lattice 〈L,v,⊥,>,t,u〉

is a function O : L× L→ L such that: (1) O is an upper bound operator, i.e., for

all x, y ∈ L, xty v xO y, and (2) for all infinite ascending chains x0 v x1 v . . . in

L, the chain y0 v y1 v . . . eventually stabilizes, where y0
def
= x0 and yi

def
= yi−1Oxi

for all i > 0.

Proposition 3 ([16]). Given a complete lattice 〈L,v,⊥,>,t,u〉, let F : L→ L

be a monotone function and O : L × L → L a widening operator for L. Let X̄ be

18

an (upward) iteration sequence defined over L, as follows

X0 def
= ⊥

X i+1 def
= X i if F (X i) v X i

X iOF (X i) otherwise

Let Xf be the least fixpoint lfpv⊥F of F , which exists due to Tarski [88]. It follows

then that X̄ is stationary with the limit X such that Xf v X.

19

Chapter 3

Data Flow Refinement Type

Inference

We motivate our work on casting Liquid type inference as abstract interpretation

by providing a more detailed introduction to the actual inference algorithm, its

distinguishing features, and challenges of modeling the algorithm as an abstract

semantics of programs. Proofs for all the theorems, lemmas, and corollaries stated

in this chapter can be found in Appendix A, unless already presented in the chapter.

3.1 Overview

To better understand how the Liquid Type inference works, consider the following

OCaml program that is slightly more involved than the example from § 1.

1 let dec y = y - 1 in

2 let f x g = if x >= 0 then g x else x in

3 f (f 1 dec) dec

20

The program first defines a function dec that decrements the input value y by one

and then calls the higher-order function f twice, passing it an integer value and

dec in each call. In turn, f calls the given function g on its parameter x if x is not

negative, which is true for both calls to f in the program.

3.1.1 Liquid Type Inference

The Liquid type inference algorithm works as follows. First, the analysis performs

a standard Hindley-Milner type inference to infer the basic shape of the refinement

type for every subexpression of the program. For instance, the inferred type for

the function f is int→(int→int)→int. For every function type τ1→τ2, where τ1 is

a base type such as int, the analysis next introduces a fresh dependency variable

x which stands for the function parameter, x : τ1→τ2. The scope of x is the result

type τ2, i.e., refinement predicates inferred for τ2 can express dependencies on the

input τ1 by referring to x. Further, every base type τ is replaced by a refinement

type, {ν : τ | φ(ν, ~x)}, with a placeholder refinement predicate φ that expresses

a relation between the members ν of τ and the other variables ~x in scope of the

refinement type. For example, the augmented type for function f is

x : {ν : int | φ1(ν)} → (y : {ν : int | φ2(ν, x)} →

{ν : int | φ3(ν, x, y)})→ {ν : int | φ4(ν, x)}.

The algorithm then derives a system of Horn clauses modeling the subtyping con-

straints imposed on the refinement predicates by the program data flow. For

example, the body of the function f induces the following Horn clauses over the

21

refinement predicates in f’s type:

x ≥ 0 ∧ φ1(x)⇒ φ2(x, x)

x ≥ 0 ∧ φ1(x) ∧ φ2(x, x) ∧ φ3(ν, x, y)⇒ φ4(ν, x)

x < 0 ∧ φ1(x) ∧ ν = x⇒ φ4(ν, x)

The first two clauses model the data flow from the parameter x to the input of the

function parameter g of f and, in turn, the result value of g to the result value of

f in the then branch of the conditional. The third clause captures the flow of the

parameter x to f’s result value in the else branch. Similar entailments are derived

from the other subexpressions.

The algorithm finally solves the Horn clauses using monomial predicate ab-

straction [52] to derive the refinement predicates φi. That is, the analysis assumes

a given set of atomic predicates Q = {p1(ν, ~x), . . . , pn(ν, ~x)}, which are either pro-

vided by the programmer or derived from the program using heuristics, and then

infers an assignment for each φi to a conjunction over Q such that all Horn clauses

are valid. This can be done effectively and efficiently using the Houdini algo-

rithm [26, 52]. For example, if we choose Q = {0 ≤ ν, ν < 2, ν = x, ν = x− 1, ν =

y − 1, ν = 1}, then the final type inferred for function f will be:

x : {ν : int | 0 ≤ ν < 2}→(y : {ν : int | 0 ≤ ν < 2 ∧ ν = x}→

{ν : int | ν < 2 ∧ ν = y − 1})→{ν : int | ν < 2 ∧ ν = x− 1}

The meaning of this type is tied to the current program. For instance, the above

inferred type guarantees that the program only calls f with an integer in the

interval [0, 2) as the first argument. In other words, the inference algorithm is able

to infer that only the integer values in the interval [0, 2) flow to f as inputs and

22

that the output values flowing out of f are integers smaller than 2 and are equal

to the decrement of the respective inputs. Note that for a different program, the

analysis would potentially infer a different refinement type for f. For instance, if

we replaced dec by the identity function, the analysis would infer {ν : int | ν = 1}

for the first input x of f. Further, the type inferred for the input g of f captures

how functions passed as g to f are used by f. To see this in more detail, consider

the following two types inferred for the two usages of f in the program:

x : {ν : int | ν = 1}→(y : {ν : int | ν = x = 1}→

{ν : int | ν = x = y = 1})→{ν : int | ν = x = 1}

x : {ν : int | ν = 0}→(y : {ν : int | ν = x = 0}→

{ν : int | ν = x = y = 0})→{ν : int | ν = x = 0}

Intuitively, the function f takes two different execution paths whose endpoints

correspond to the two usages of f. The types inferred for these two usages capture

the behavior of f for the inputs generated at these two call sites. The first type

above, corresponding to the nested call to f, states that f is here called with integer

1 as the first input and a function accepting and producing integers as the other

input. This function, once passed to f at this call site, is subsequently called

with integer 1, also producing integer 1 as the result. Finally, the output of this

invocation to f is also integer 1. The similar explanation can be given for the type

corresponding to the outer call to f. Both of these two types are encompassed by

the type inferred for the definition of f. In general, Liquid type inference infers

data flow invariants of higher-order programs that capture not only the kind of

values to which a program expression evaluates, but also how these values are used

by the program from that point onward in the execution paths taken by the values.

23

3.1.2 Problem

Rather than indirectly describing the inference as a constraint solving problem in-

duced by a type system with a subtyping relation, we model Liquid type inference

directly as an abstraction, formalized by Galois connections, of higher-order data

flow that induces the subtyping relation. One of the key technical challenges in

modeling Liquid types in this way concerns the choice of the concrete semantics.

While soundness of the Liquid typing rules can be proved against denotational [92]

and operational semantics [78], neither is well suited for calculationally construct-

ing Liquid type inference using abstract interpretation. Intuitively, these semantics

do not explicitly capture the data flow properties of programs.

The problem with denotational semantics is that it is inherently compositional;

functions are analyzed irrespective of the context in which they appear. Formally,

Liquid types and their denotational interpretations do not form a Galois connec-

tion. Consider a function let f x = x + 1 and the two types τ1 = {ν : int | ν ≥

0} → {ν : int | ν ≥ 0} and τ2 = {ν : int | ν < 0} → {ν : int | ν ≤ 0}. The denota-

tional semantics of f is a function that maps all input values that are integers to

their successors and all other inputs to the error value. The type τ1 describes all

functions that map a positive integer to a positive integer and all other values to

arbitrary values. The meaning of τ2 is similar. The denotation of f is contained in

the concretization of both τ1 and τ2 and hence in their intersection. However, the

meet, i.e., the greatest lower bound, of τ1 and τ2 subject to the subtyping ordering

is τ = {ν : int | true} → {ν : int | ν = 0}. Clearly, the denotation of f is not

described by τ , which means that the denotational concretization of Liquid types

cannot be the right adjoint of a Galois connection [17]. One way of forming a Ga-

lois connection between types and a denotational domain is by using intersection

24

types [15]. However, intersection types are not supported by Liquid type inference

and lead to a fundamentally different analysis [28].

Operational semantics, on the other hand, do not make explicit how a function

value flows from the point of its creation to its call sites. A formal connection to

Liquid type inference would then involve complex reasoning that relates steps in

the program’s execution trace where function values are created with subsequent

steps where they are called.

3.1.3 Approach

We therefore start our technical development with a new concrete data flow seman-

tics for untyped higher-order functional programs. This new semantics is inspired

by minimal function graphs [46] and the exact semantics for flow analysis [41].

3.1.3.1 Data Flow Semantics

The key idea behind our data flow semantics is as follows. We first formally model

unique evaluation points in a program execution. Intuitively, these points are

identified by an execution environment and the unique location of the expression

currently being evaluated and can be used to describe execution paths that values

take in a higher-order program. As opposed to more classical semantics, such as

big-step operational semantics, the meaning of programs computed by our data

flow semantics is a map from execution points to data flow values.

Consider the illustrative program in Example 1 (left). We explain the meaning

of the content to the right shortly. Each expression in the program is annotated

with a unique location but we show only a portion of these locations.

Example 1. A simple OCaml program (to the left) and its meaning (to the right)

25

as given by the data flow semantics for higher-order untyped languages.

1 let id x = xg in

2 let u = (ida 1b)c in

3 (idd 2e)f

id→ [a 7→ 〈1, 1〉, d 7→ 〈2, 2〉]
u, b, c→ 1, a→ [a 7→ 〈1, 1〉]
e, f → 2, d→ [d 7→ 〈2, 2〉]
ga → 1, gd → 2

The data flow map for our running example is shown in Example 1 to the right.

Here, we identify execution points with a notation based on locations only, to

avoid clutter. For instance, for the entries b, c, u, e, and f, the map shows the

values to which the expressions annotated with those locations evaluated in the

above program. As an example, the e, f → 2 mapping indicates that the result

of executing expressions associated with locations e and f is integer 2. The more

interesting case is with execution points whose location is g. We have two such

points, ga and gd, that store the results of evaluating the body of id stemming

from the two invocations of id at call site points identified with locations a and

d, respectively. In other words, we use a and d designations on g to informally

describe different stack information present when the program evaluation reaches

the expression with the location g two times in the above program. The valuation

for points described so far are constants with the expected value, i.e., the same

value one obtains using, say, a big-step operational semantics.

The more interesting cases occur at execution points that store function values.

We model function values as tables that keep track of the call sites points at

which the associated functions are called and the pair of input and output values

produced. For instance, the function id is assigned a meaning as a table [a 7→

〈1, 1〉, d 7→ 〈2, 2〉] that stores input-output values for both call site points of id,

a and d, where an input to id has been observed, i.e., where the function was

26

called. Interestingly, the execution points corresponding to the two usages of id

are also tables but with only a fraction of the content computed for the definition

of id. Intuitively, id takes two separate execution paths in the program, reaching

locations a and d. For each execution point on these two paths, the associated

tables capture how id has been used from that point onward in the corresponding

paths. Tables stored at execution points a and d thus contain information about

inputs and outputs of id for the call sites a and d, respectively.

As we show later, the computation in our data flow semantics boils down to

propagation of information between data flow values stored at the successive exe-

cution points. On a high level, function inputs are propagated from call site points

to the function definitions and the outputs are propagated back in the other di-

rection. For instance, once it observes the input 1 generated at the call site a, the

table assigned to the point a propagates this input to the table associated with the

point id. After this input is evaluated, the produced output is stored in the table

mapped to id and then propagated back to a. Note how this change of direction in

which the inputs and outputs of functions are propagated intuitively corresponds

to the input contravariance and output covariance of subtyping for function types.

3.1.3.2 Liquid Types as Abstract Interpretation

We continue our technical development by creating a series of semantics that ab-

stract, in the sense of Galois connections, the concrete data flow semantics. This

series of abstractions is shown in Figure 3.1. We use the concrete data flow seman-

tics to define the properties of higher-order programs that are abstracted by the

Liquid types. These properties are captured by the collecting semantics. We then

abstract the collecting semantics by a relational data flow semantics. The basic

27

Figure 3.1: Series of abstract semantics leading up to Liquid type inference

idea behind the relational semantics is to abstract concrete data flow values by

relations since Liquid types intuitively represent relations expressed in a certain

decidable logic. In the next abstraction step, we introduce an abstract semantics

that does not maintain the precise information on the call sites at which the inputs

to functions are being generated. More precisely, the tables modeling functions in

this new semantics, called the collapsed semantics, do not distinguish inputs by

their call sites, as is the case with Liquid types and in contrast to the concrete

and relational data flow semantics. The call site information in tables is collapsed

and, in effect, functions are modeled essentially as single relations capturing the

input-output behavior of the functions in the program. The key idea behind the

general refinement type semantics, the next semantics in our abstraction chain,

is to abstract relations with refinement types that consist of a basic type and an

element of an arbitrary relational abstract domain representing type refinements.

That is, the general refinement type inference is parametric in the abstract domain

of type refinements. This semantics also ensures the sound termination of the type

inference via widening operators [16, 17]. As we show, these operators are defined

on the structure of refinement types using the available widening operators of the

chosen abstract domain of type refinements. Finally, Liquid type inference is a

particular instance of the general data flow refinement type inference.

28

Consequences. The benefits of modeling Liquid type inference as abstract in-

terpretation are multifold. First, the design space, i.e., the precision loss points, of

type inference algorithms developed using our framework are explicitly captured

by Galois connections used in the abstraction chain and widening operators used to

enforce the finite convergence of the analysis. Second, we obtain a generalization

of the Liquid type inference in the form of general refinement type semantics. Any

instantiation of this general system yields a data flow refinement type inference

that is sound by construction. Lastly, type inference analyses that build on our

results can be more easily compared against each other and used in combination

with other static analyses (e.g., via reduced products [17]).

3.2 Data Flow Semantics

In this section, we formally introduce our data flow semantics of untyped functional

programs.

Language. Our formal presentation in this chapter assumes that our language

does not support let expressions. This simplification is made as we are not in-

vestigating polymorphism in this chapter. We name the resulting language λd.

However, we will informally use let constructs in our examples to make them

more readable. In general, our examples will use the constructs of more familiar

programming languages, such as OCaml, that can be easily compiled to λd. For

instance, the let constructs can be expanded into function applications of λd as

expected [74]. The same holds for the conditional expressions.

29

3.2.1 Examples

Before we formally introduce the data flow semantics, we first provide more infor-

mal intuition through several additional examples.

3.2.1.1 Data Flow Computation

First, we explain how our semantics computes data flow maps. In Figure 3.2, we

show the data flow map computed in each step by our data flow semantics for the

program in Example 1. We only show the map entries for execution points storing

tables, for simplicity. Initially, no useful information for execution points id, a,

(1)
id→ ⊥
a→ ⊥
d→ ⊥

(2)
id→ []
a→ ⊥
d→ ⊥

(3)
id→ []
a→ []
d→ ⊥

(4)
id→ []
a→ [a 7→ 〈1,⊥〉]
d→ ⊥

(5)
id→ [a 7→ 〈1,⊥〉]
a→ [a 7→ 〈1,⊥〉]
d→ ⊥

(6)
id→ [a 7→ 〈1, 1〉]
a→ [a 7→ 〈1,⊥〉]
d→ ⊥

(7)
id→ [a 7→ 〈1, 1〉]
a→ [a 7→ 〈1, 1〉]
d→ ⊥

(8)
id→ [a 7→ 〈1, 1〉]
a→ [a 7→ 〈1, 1〉]
d→ []

(9)
id→ [a 7→ 〈1, 1〉]
a→ [a 7→ 〈1, 1〉]
d→ [d 7→ 〈2,⊥〉]

(10)
id→ [a 7→ 〈1, 1〉, d 7→ 〈2,⊥〉]
a→ [a 7→ 〈1, 1〉]
d→ [d 7→ 〈2,⊥〉]

(11)
id→ [a 7→ 〈1, 1〉, d 7→ 〈2, 2〉]
a→ [a 7→ 〈1, 1〉]
d→ [d 7→ 〈2,⊥〉]

(12)
id→ [a 7→ 〈1, 1〉, d 7→ 〈2, 2〉]
a→ [a 7→ 〈1, 1〉]
d→ [d 7→ 〈2, 2〉]

Figure 3.2: Subsequent maps computed by data flow semantics for program from
Example 1. Numbers above maps are used to identify the maps.

and d is known, denoted with ⊥ in the map identified with (1). After evaluating

line 1, id, being a function definition, is assigned the empty table [] (2). This

30

table indicates that the meaning of id is a function, with currently no information

on how this function is used in the program. In the next step (3), execution point

a is reached and is also assigned [] based on the value of id. However, in the

next step (4) our semantics observes that id is called with 1 at execution point

a; the table associated with a hence contains this information. This information

is then propagated back to the table associated with id in the next step (5). As

we shall see later, this exchange of information is formally defined as propagation

of data between the table associated with the point id and the table stored at

a. Now that id has seen input 1, our semantics evaluates the body of id with 1,

producing 1 as the result (6). In the next step (7), this output is propagated back

in the other direction to the table stored at a. This change of direction in which

inputs and outputs are propagated between tables intuitively corresponds to the

contravariance of subtyping for function types [74]. After this step, the execution

point d becomes reachable and is assigned the empty table [] (8). The data flow

computation then continues in the similar fashion as described earlier. Note how a

data flow value stored at some execution point, such as id, can be updated multiple

times in different execution steps of our semantics.

3.2.1.2 Recursion

We now exemplify how our semantics models recursion through a program that

can be found below in Example 2.

Example 2. The OCaml program below first defines a function f that returns 0

when given 1 as input, and it otherwise just recurses with a decrement of the input.

This function is then called two times with inputs 2 and 0, respectively. The latter

call never terminates. To avoid clutter, we only annotate program expressions of

31

particular interest with their locations.

let rec f n = if n=1 then 0 else fa (n-1)

in (fb 2c) + (fd 0e)

A portion of the map computed by our data flow semantics for the above program

is shown below. We again identify execution points with their locations.

b→ [b 7→ 〈2, 0〉] d→ [d 7→ 〈0,⊥〉]

f → [b 7→ 〈2, 0〉, a2 7→ 〈1, 0〉,

d 7→ 〈0,⊥〉, a0 7→ 〈−1,⊥〉, a−1 7→ 〈−2,⊥〉, . . .]

Let us first discuss the execution point identified by b, which corresponds to the

call to f with integer 2. The meaning assigned to b is a table indicating that

the corresponding function is invoked at the call site b with integer 2, returning

0 as the output. The computation of this output clearly requires a recursive call

to f with 1 as the input. The existence and effect of this call can be observed

by the entry a2 7→ 〈1, 0〉 in the table associated with f. Intuitively, this entry

states that f was called at the point identified by a, which is inside the body of

f indicating recursion, while analyzing f with the previous input 2. Here, we use

the integer value 2 designation on a to informally describe the stack information

present when the execution reaches a for this particular case. We note that our

choices of describing stack information in the examples are made for presentation

purposes only; we formally explain how our data flow semantics encodes stack

information in § 3.2.2.

Consider now the execution point identified by d, which corresponds to the

call to f with integer 0. The meaning assigned to d is a table indicating that the

corresponding function is invoked at the call site d with integer 0 but with no

32

computed output ⊥. Clearly, there is no useful output computed since f does not

terminate with 0 as the input. The recursive calls to f observed after calling f

with 0 and their effects can be again observed in the table computed for f. For

instance, the table entry a0 7→ 〈−1,⊥〉 states that the recursive call to f at the

call site point a has seen −1 as the input, but no output has been computed. The

designation 0 on a again informally describes the stack information stating that

this call to f is induced by the preceding call to f with 0 as the input. Similarly,

the entry a−1 7→ 〈−2,⊥〉 indicates that f was recursively called at a with −2 as

input and with no useful output observed. This recursive call was induced by the

previous call to f with −1 as the input.

Observe how for every recursive call to f we remember the stack information

describing the preceding call to f that led to this recursive call. That is, the table

computed for f has entries of the form ai 7→ 〈i − 1,⊥〉 for every integer i ≤ 0.

Each call site point ai explicitly stores the information about the previous call to

f, here designated with the input integer i, that led to the current execution of

the body of f. This way, we uniquely distinguish between different recursive calls

to f in the program execution. We note again that the examples use a simplified

notion of stack information for simplicity. As we shall see later in this section,

each execution point ai is modeled as pair of a particular execution environment

and the location a. Since f is a recursive function, this environment will contain

a certain binding for f itself. That binding will explicitly contain the information

about the call site point, say x, of f that led to the current recursive execution of

f. The call site x will in turn remember the information about the preceding call

to f that ultimately led to x, and so on. Modeling stack information in this way

allows us to uniquely identify execution points even in the presence of recursive

33

functions. For instance, suppose there are two calls with the same two argument

values passed to a recursive function f in a program. These two top-level calls

will induce recursive calls to f with the same argument values. Our semantics,

however, is able to distinguish between these seemingly same recursive calls since

they were induced by the two top-level calls to f happening at the two different

call sites.

3.2.1.3 Higher-order Functions

We also illustrate how our semantics models higher-order functions of λd. Intu-

itively, a higher-order function will be modeled as a table some of whose inputs

and outputs are also tables. We will work with the program shown in Example 3.

Example 3. The OCaml program below first defines a constant function g1 always

returning 0, identity function g2, and a higher-order function h that accepts a

function and simply calls it with integer 1. Then, h is called with g1 and g2 after

which the respective results of these two calls are divided. This program is safe,

returning 0 as the result. For simplicity, we only annotate few program expressions

of interest with their locations.

let h g = g 1a in

let g1 x = 0 in

let g2 x = x in

(hb g1c)/(hd g2e)

34

The corresponding data flow map is shown below.

g1, c→ [ab 7→ 〈1, 0〉] g2, e→ [ad 7→ 〈1, 1〉]

b→ [b 7→ 〈[ab 7→ 〈1, 0〉], 0〉] d→ [d 7→ 〈[ad 7→ 〈1, 1〉], 1〉]

h→ [b 7→ 〈[ab 7→ 〈1, 0〉], 0〉, d 7→ 〈[ad 7→ 〈1, 1〉], 1〉]

Let us focus on the valuation for the function h. The meaning of h here is a table

that has (non-bottom) entries for call site points identified with locations b and d,

indicating that these are the two call site points from which the inputs to h are

emitted. For the call site b, where h is applied to g1, the observed input-output

pair consists of a table T = [ab 7→ 〈1, 0〉] and integer 0. Indeed, h produces 0 with

g1 as the input. The table T encodes the fact that h applies the input argument

g, which is in this case g1, at the call site identified by ab, i.e., inside the body

of h at location a while analyzing h with the input seen at b. Note how we here

again use the call site b to informally describe the stack information. Finally, the

contents of T indicate that the input g of h was here called with integer 1 as the

input, producing 0 as the output. Similar analysis applies for the second entry d

of table for h. The explanation for other nodes in the map is similar.

We now proceed to the formal presentation of our data flow semantics for

untyped higher-order programs.

3.2.2 Semantic Domains

We start our formal exposition of concrete data flow semantics by introducing

semantic domains used for giving meaning to expressions of λd.

35

Nodes and environments

Every intermediate point of a program’s execution is uniquely identified by an

execution node (or simply node), n ∈ N . We distinguish expression nodes Ne and

variable nodes Nx. An expression node 〈E, `〉, denoted E�`, captures the execution

point where a subexpression e` is evaluated in the environment E.

n ∈ N def
= Ne ∪Nx nodes

Ne
def
= E × Loc expression nodes

Nx
def
= E × Ne × Vars variable nodes

E ∈ E def
= Vars ⇀fin Nx environments

v ∈ V ::= ⊥ | ω | c | T (data flow) values

T ∈ T def
= Ne → V × V tables

M ∈M def
= N → V execution maps

An environment E is a (finite) partial map binding variables to variable nodes.

A variable node 〈E, ncs, x〉, denoted E�ncs�x, models the execution point where

an argument value is bound to a formal parameter of a function. Here, E is the

environment of the expression node where the function was defined. The expression

node ncs is referred to as the call site of the variable node. Intuitively, this is the

node of the subexpression that emits the argument value of the function application

associated with the binding. That is, if the call came from the expression (e`11 e
`2
2),

then the location of ncs is `2 and the environment of ncs is the environment used

when evaluating the function application. The call site is included in the variable

node to uniquely identify the binding. This way, we implicitly model the call

stack of a program in our semantics. Finally, x is the formal parameter that is

36

being bound to the variable node. We explain the role of expression and variable

nodes in more detail later. For any node n, we denote by env(n) the environment

component of n and by loc(n) the location component.

A pair 〈e, E〉 is called well-formed if E(x) is defined for every variable x that

occurs free in e.

Values and execution maps

There are four kinds of (data flow) values v ∈ V . First, every constant c is also

a value. The value ⊥ stands for nontermination or unreachability of a node, and

the value ω models execution errors. Functions are represented by tables T . A

table maintains an input/output value pair for each call site. We denote by T⊥

the empty table that maps every call site to the pair 〈⊥,⊥〉. We say that a table

T has been called at a call site ncs when the associated input value is non-bottom

ncs ∈ T
def⇐⇒ π1(T (ncs)) 6= ⊥. We write [ncs 7→ 〈v1, v2〉] as shorthand for the table

T⊥[ncs 7→ 〈v1, v2〉].

The data flow semantics computes execution maps M ∈M, which map nodes

to values. We denote by M⊥ (Mω) the execution maps that assign ⊥ (ω) to every

node. For a set of nodes N , we write M1 =\N M2 to express that the two maps

M1 and M2 are pointwise equal on all nodes in N \N .

As a precursor to defining the data flow semantics, we define a computational

ordering v on values. In this ordering, ⊥ is the smallest element, ω is the largest

element, and tables are ordered recursively on the pairs of values for each call site:

v1 v v2
def⇐⇒ v1 = ⊥ ∨ v2 = ω ∨ (v1, v2 ∈ Cons ∧ v1 = v2) ∨

(v1, v2 ∈ T ∧ ∀ncs. v1(ncs) v̇ v2(ncs))

37

Defining the error value as the largest element of the ordering is nonessential but

simplifies the presentation. In particular, this definition ensures that the least

upper bounds (lub) of arbitrary sets of values exist, which we denote by the join

operator t.

⊥ t v def
= v v t ⊥ def

= v c t c def
= c

T1 t T2
def
= λncs. T1(ncs) ṫ T2(ncs) v1 t v2

def
= ω (otherwise)

The meet of values is defined in the expected way. These two operators together

with the above ordering relation on values form a complete lattice.

Lemma 1. Let V ∈ ℘(V). Then, tV = lub(V) and uV = glb(V) subject to v.

As expected, execution maps also form a complete lattice with the ordering relation

v̇, join ṫ, and meet u̇ operators that are simply pointwise lifts of the corresponding

ordering relation and operators on values.

3.2.3 Concrete Transformer

The data flow semantics of an expression e is defined as the least fixpoint of a

concrete transformer, step, on execution maps. The idea is that we start with the

map M⊥ and then use step to consecutively update the map with new values as

more and more execution nodes are reached. The signature of this transformer is

as follows:

step : N→ λd → E →M→M

Essentially, step takes k ∈ N, an expression e, and an environment E and returns

a transformer stepkJeK(E) : M → M on execution maps. The definition of the

transformer is given in Fig. 3.3 using induction over both k and the structure of

e. Note that in the definition we implicitly assume that 〈e, E〉 is well-formed. Let

38

step0JeK(E)(M)
def
= M

stepk+1Jc`K(E)(M)
def
= M [E�`→M(E�`) t c]

stepk+1Jx`K(E)(M)
def
=

let 〈v′x, v′〉 = prop(M(E(x)),M(E�`))
inM [E(x) 7→ v′x, E�` 7→ v′]

stepk+1J(e
`1
1 e

`2
2)`K(E)(M)

def
=

letM1 = stepkJe1K(E)(M); v1 =M1 M1(E�`1) in

if v1 6∈ T thenMω else

letM2 = stepkJe2K(E)(M1); v2 =M2 M2(E�`2) in

let 〈v′1, T ′〉 = prop(v1, [E�`1 7→ 〈v2,M2(E�`)〉])
〈v′2, v′〉 = T ′(E�`1)

inM2[E�`1 7→ v′1, E�`2 7→ v′2, E�` 7→ v′]

stepk+1J(µf.λx.e
`1
1)`K(E)(M)

def
=

let T =M T⊥ tM(E�`) in
letM = Λncs ∈ T. if π1(T (ncs)) = ω thenMω else

let nx=E�ncs�x; nf=E�ncs�f ; E1=E[x 7→nx, f 7→nf]
〈T ′x, T ′〉 = prop([ncs 7→ 〈M(nx),M(E1�`1)〉], T)

〈T ′′, T ′f〉 = prop(T,M(nf)); 〈v′x, v′1〉 = T ′x(ncs)

M1 = M [E� 7̀→T ′ t T ′′, nf 7→T ′f , nx 7→v′x, E1�`1 7→v′1]

in stepkJe1K(E1)(M1)

inM [E�` 7→ T] ṫ
⊔̇
ncs∈T M(ncs)

stepk+1J(e
`0
0 ? e`11 : e`22)`K(E)(M)

def
=

letM0 = stepkJe0K(E)(M); v0 =M0 M0(E�`0) in

if v0 6∈ Bool thenMω else

let b = if v0 = true then 1 else 2 in

letMb = stepkJebK(E)(M0); vb =Mb
Mb(E�`b) in

let 〈v′b, v′〉 = prop(vb,Mb(E�`))
inMb[E�` 7→ v′, E�`b 7→ v′b]

Figure 3.3: Concrete transformer for data flow semantics

39

prop(T1, T2)
def
=

let T ′ = Λncs.

if ncs 6∈ T2 then 〈T1(ncs), T2(ncs)〉 else
let 〈v1i, v1o〉 = T1(ncs); 〈v2i, v2o〉 = T2(ncs)

〈v′2i, v′1i〉 = prop(v2i, v1i); 〈v′1o, v′2o〉 = prop(v1o, v2o)

in (〈v′1i, v′1o〉, 〈v′2i, v′2o〉)
in 〈Λncs. π1(T ′(ncs)),Λncs. π2(T ′(ncs))〉

prop(T,⊥)
def
= 〈T, T⊥〉 prop(T, ω)

def
= 〈ω, ω〉

prop(v1, v2)
def
= 〈v1, v1 t v2〉 (otherwise)

Figure 3.4: Value propagation in the concrete data flow semantics

us ignore the parameter k for a moment and focus on the equations that case split

on the structure of e. We discuss the cases for e one at a time.

Constant e = c`. Here, we simply set the current node to the join of the current

value stored for E�` and the value c. The use of join is non-essential, but it

simplifies our presentation; in practice, the result of the join is always c.

Variable e = x`. This case is already more interesting. It implements the data

flow propagation between the variable node E(x) where x is bound and the ex-

pression node E�` where x is used. This is realized using the helper function prop

defined in Fig. 3.4. Let vx = M(E(x)) and v = M(E�`) be the current values

stored at the two nodes in M . The function prop takes these values as input and

propagates information between them, updating them to the new values v′x and

v′ which are then stored back into M . The propagation works as follows. If vx

is a constant or the error value and v is still ⊥, then we simply propagate vx for-

40

ward, replacing v and leaving vx unchanged. The interesting cases are when we

propagate information between tables. The idea is that inputs in a table v flow

backward to vx whereas outputs for these inputs flow forward from vx to v. Thus,

if vx is a table but v is still ⊥, we initialize v to the empty table T⊥ and leave vx

unchanged (because we have not yet accumulated any inputs in v). If both vx and

v are tables, we propagate inputs and outputs as described above by calling prop

recursively for every call site ncs that is called in v. Note how the recursive call for

the propagation of the inputs prop(v2i, v1i) inverts the direction of the propagation.

As we shall see, this will give rise to contravariant subtyping of function types.

Function application e = (e`11 e
`2
2)`. We first evaluate e1 to obtain the updated

map M1 and extract the new value v1 stored at the corresponding expression node.

Here, we use a special meta-level let binding let x =M v. That is, let x =M v in t

shortcircuits to M if v = ⊥, Mω if v = ω, and otherwise yields t where x is bound

to v. Hence, if the E�`1 node has not yet been reached (v1 = ⊥), we return M1.

If v1 is not a table, then we must be attempting an unsafe call, in which case we

return the error map Mω. If v1 is a table, we continue evaluation of e2 obtaining

the new map M2 and value v2 at the associated expression node E�`2. If v2 is

neither ⊥ nor ω, then we need to propagate the information between this call site

and v1. To this end, we first extract the return value v = M(E�`) for the node of e

computed thus far and create a singleton table storing the input-output 〈v2, v〉 for

this call site E�`1. We propagate between v1 and this table to obtain v′1 and a table

T ′. Note that this propagation essentially boils to down to (1) the propagation

between v2 and the input of v1 at E�`1 and (2) the propagation between the output

of v1 at E�`1 and the return value v. The updated table T ′ hence contains the

41

updated input and output values v′2 and v′. All of these values are stored back

into M2. Intuitively, v′1 contains the information that the corresponding function

received an input coming from the call site E�`1. This information will ultimately

be propagated back to the function definition that will in turn evaluate this input,

as follows.

Recursive function e = (µf.λx.e`11)`. We first extract the table T computed for

the function thus far. Then, for every call site ncs for which an input has already

been back-propagated to T (i.e. π1(T (ncs)) 6= ⊥), we do the following. First,

we create a variable node nx that will store the input value that was intuitively

emitted at the call site ncs. The contents of this value can potentially be updated

later on during the computation if the actual input is a table that, for instance, has

yet to be called. We hence define nx using ncs as a unique variable node E�ncs�x,

thus ensuring the execution of the lambda body for other inputs does not interfere

with the execution for this input. The similar reasoning underlies the creation of

nf . The unique nature of nf allows our semantics to precisely track recursive calls

to f that occurred while evaluating the input to f coming from ncs. Also, note

that by remembering the call site node ncs in the environment nodes nx and nf we

effectively model the program stack. That is, each call site node ncs contains an

environment that in turn contains environment nodes, which again keep track of

the call site information, and so on.

We then propagate information between the values stored at the node for the

body e1, the nodes nx and nf for the bound variables, and the table T . That is,

we propagate information from (1) the input of T at ncs and the corresponding

environment node nx, and (2) the value assigned to the function body under the

42

update environment E1 and the output of T at ncs. Further, the value associated

with nf is a table that will intuitively contain information about the recursive calls

to the function observed during the analysis of the body for the current input. The

propagation between T and the table stored at nf allows T to pick up such observed

inputs and eventually propagate the corresponding outputs back to M(nf).

The new values obtained by propagation are stored back into the map to obtain

a new map M1 and then we evaluate the body e1. The updated maps obtained for

all call sites are then merged into a single map via a join. Note that this join does

not lose precision by introducing ω. This is because the extended environment E1

is unique for each call site, which means that the evaluation of the body e1 for

different call sites will update different expression nodes. Moreover, a concurrent

update to the same variable node n in two maps M(ncs) and M(n′cs) can only

occur if M(n) stores a table and the updates are the result of back-propagation of

inputs and outputs. In this case, these inputs and outputs must agree if they come

from the same call site and the updated tables in M(ncs)(n) and M(n′cs)(n) can

be safely merged via join. This reflects the deterministic nature of the concrete

semantics.

Conditionals. The discussion for conditional expressions is similar to the pre-

vious expression cases.

Lemma 2. The function prop is monotone and increasing.

Lemma 3. For every k ∈ N, e ∈ λd and E ∈ E such that 〈e, E〉 is well-formed,

then stepkJeK(E) is monotone and increasing.

43

Step-indexing. Let us now return to the discussion of the parameter k of step.

Intuitively, we would like to just do away with k and define the semantics of a

program e as the least fixpoint of step over the complete lattice of execution maps.

However, if e does not terminate, then the tables stored in the fixpoint iterates

may grow arbitrarily deep. Since tables are defined inductively, they can only have

finite nesting depth, which means that the fixpoint would approximate these un-

bounded tables with ω. Possible solutions include to define tables coinductively or

to use a different representation of tables based on Scott domains [80]. However,

we here use a simpler solution inspired by step-indexing [2]. We introduce the

step-index parameter k, informally called fuel, that bounds the number of func-

tion applications executed by stepkJeK(E)(M) and, in turn, the nesting depth of

the tables in the resulting execution map. The fixpoint then simply computes a

separate map for every fuel k.

We define the semantics SJeK of a program e as the least fixpoint of step over

the complete lattice of step-indexed execution maps N→M, which is ordered by

the pointwise lifting of the computational ordering on values:

SJeK def
= lfpv̈Λk.M⊥ΛM.Λk. stepkJeK(ε)(M(k))

Here, ε denotes the empty environment. Lemma 3 guarantees that SJeK is

well-defined.

In addition to the example from the beginning of this section, we also show the

final execution map for the example from § 3.1 in Appendix A.

44

3.2.4 Properties and Collecting Semantics

As we shall see, Liquid type systems abstract programs by properties P ∈ P , which

are step-indexed sets of execution maps: P def
= N → ℘(M). We order properties

by the pointwise lifting of subset inclusion. Properties form the concrete domain

of our abstract interpretation. We therefore raise the data flow semantics S to a

collecting semantics C : λd → P that maps programs to properties:

CJeK def
= Λk.{SJeK(k)}

An example of a property is safety : letMsafe be the set of all execution maps that

map no node to the error value ω and define Psafe = Λk.Msafe. Then a program e

is called safe if CJeK ⊆̇ Psafe.

3.3 Relational Data Flow Semantics

We now present the first abstraction of the concrete data flow semantics in the

sequence of abstract semantics leading up to Liquid types. As we shall see later, a

critical abstraction step performed by Liquid types is to conflate the information

in tables that are propagated back from different call sites of that function. That

is, a pair of input/output values that has been collected from one call site will

also be considered as a possible input/output pair at other call sites to which that

function flows. However, in order for Liquid type inference not to lose too much

precision, output values observed for a particular call site explicitly remember the

corresponding input value. We refer to this semantics as the relational (data flow)

semantics.

45

3.3.1 Example

We first provide an intuition behind relational semantics through our running

program from Example 1. Relational semantics abstracts the value of every node

n in an execution map by a relation over the values observed at n and the values

observed for the scope of n that is defined by env(n).

id→ [a→ 〈{(ν : 1)}, {(a : 1, ν : 1)}〉, d→ 〈{(ν : 2)}, {(d : 2, ν : 2)}〉]

u, b, c→ {(id : F, ν : 1)} e, f → {(id : F, u : 1, ν : 2)}

a→ [a 7→ 〈{(id : F, ν : 1)}, {(id : F, a : 1, ν : 1)}〉]

d→ [d 7→ 〈{(id : F, u : 1, ν : 2)}, {(id : F, u : 1, d : 2, ν : 2)}〉]

ga → {(xa : 1, ν : 1)} gd → {(xd : 2, ν : 2)}

In the above, we present the final map computed by our relational semantics for

our running example. Let us explain the map by first focusing on nodes u, b, and

c. The concrete semantics assigns integer 1 to these nodes, as explained in § 3.2,

while relational semantics assigns the relational value {(id : F, ν : 1)}. This value

is a relation consisting of a single tuple (id : F, ν : 1). This tuple states that the

value possibly observed for the nodes u, b, and c is integer 1, via mapping ν : 1.

Observe that, similar to Liquid types, we use the symbolic variable ν to refer to

the values of the current node/expression. On the other hand, the mapping id : F

in the tuple indicates that the node associated with id is in the current scope and

it contains some function/table value. Note how this mapping does not state what

is that table exactly, yet only the fact that id is a function. This particular design

choice in modeling relations is motivated by the fact that Liquid types do not

track precise dependencies on function values. The relation {(id : F, u : 1, ν : 2)}

46

computed for nodes e and f states that these nodes possibly evaluate to integer 2,

where the values in the scope corresponding to id and u are a function and integer

1, respectively. Note how the relations described so far contain only a single tuple.

As we show later, refinements of basic types will concretize to relations having

multiple tuples of the form explained above.

Let us now turn to explaining relational tables by considering the entry for

id node in the above map. Let us discuss the table entry a 7→ 〈{(ν : 1)}, {(a :

1, ν : 1)}〉. As expected, this entry indicates that id is called at the node identified

with a. Here, the observed input is a relational value {(ν : 1)} indicating that

the actual input passed to id at b is integer 1. Note how there are no other

mappings in the tuple of the input relation except ν : 1. This is because the initial

environment/scope, used to analyze id, is empty. The output relation {(a : 1, ν : 1)}

is more interesting. This value indicates via the pair ν : 1 that the actual output

of id observed at the call site a is 1. Additionally, the output value also explicitly

remembers the input value through the mapping a : 1 where the call site node a is

used to refer to the input value. This way, relational semantics tracks dependencies

between inputs and outputs, which becomes important in the abstraction steps we

introduce later on.

The maps computed by the relational data flow semantics for programs of Ex-

ample 3 and Example 2 are obtained similarly. For instance, here is the relational

47

map for our program from Example 3 exhibiting higher-order features of λd.

g1, b→ [ab 7→ 〈{(ν : 1)}, {(ab : 1, ν : 0)}〉] g2, d→ [ad 7→ 〈{(ν : 1)}, {(ad : 1, ν : 1)}〉]

b→ [b 7→ 〈[ab 7→ 〈{(ν : 1)}, {(ab : 1, ν : 0)}〉], {(b : F, ν : 0)}〉]

d→ [d 7→ 〈[ad 7→ 〈{(ν : 1)}, {(ad : 1, ν : 1)}〉], {(d : F, ν : 1)}〉]

h→ [b 7→ 〈[ab 7→ 〈{(ν : 1)}, {(ab : 1, ν : 0)}〉], {(b : F, ν : 0)}〉,

d 7→ 〈[ad 7→ 〈{(ν : 1)}, {(ad : 1, ν : 1)}〉], {(d : F, ν : 1)}〉]

Note again the use call site points in tables to express input-output dependencies.

To avoid clutter, we also do not show all entries for scope nodes within rows of

relations. For instance, input and output relations in the relational tables of b and

d should also contain entries h : F, g1: F, and g2: F.

3.3.2 Abstract Domains

We start our formal exposition of relational semantics by introducing the abstract

domains. The definitions of nodes and environments are the same as in the concrete

semantics. The relational abstractions of values, constants, and tables are defined

with respect to scopes, which are finite sets of nodes N ⊆ N . Given a node n, we

denote its scope by Nn
def
= rng(env(n)). The new domains are defined as follows:

rN ∈ V r
N ::= ⊥r | >r | Rr

N | T r
N relational values

Rr
N ∈ Rr

N
def
= ℘(Dr

N) relations

Dr
N ∈ Dr

N
def
= N ∪ {ν} → Cons ∪ {F} dependency vectors

T r
N ∈ T r

N
def
= Πncs ∈ Ne. V r

N\{ncs} × V
r
N∪{ncs} relational tables

M r ∈Mr def
= Πn ∈ N . V r

Nn relational maps

48

Relational values rN model how concrete values, stored at some node, depend on

the concrete values of nodes in the current scope N . The relational value ⊥r again

models nontermination or unreachability and imposes no constraints on the values

in its scope. The relational value>r models every possible concrete value, including

ω. Concrete constant values are abstracted by relations Rr
N , which are sets of

dependency vectors Dr
N . A dependency vector tracks the dependency between a

constant value stored at the current node, represented by the special symbol ν,

and the values stored at the other nodes in the current scope N . Here, we assume

that ν is not contained in N .

We only track dependencies between constant values precisely: if a node in

the scope stores a table, we abstract it by the symbol F which stands for an

arbitrary concrete table. We assume F to be different from all other constants.

We also require that for all Dr
N ∈ rN , Dr(ν) ∈ Cons . We will see later that the

inferred refinement relations φ(ν, ~x) of Liquid types are abstractions of dependency

relations. That is, every satisfying assignment of a φ(ν, ~x) concretizes to a set of

dependency vectors.

Relational tables T r are defined analogously to concrete tables except that

they now map call sites ncs to pairs of relational values 〈ri, ro〉 rather than concrete

values. The call site node is not allowed to be in the scope of the input relational ri

but is explicitly added to the scope of ro. The idea is that ro tracks the dependency

between the output value and the input values described by ri via ncs. We denote

by T r
⊥r the empty relational table that maps every call site to the pair 〈⊥r,⊥r〉.

We denote the fact that a relational table T r has been invoked at a call site ncs by

ncs ∈ T r. Relational execution maps M r assign each node n a relational value with

scope Nn. We denote by M r
⊥r (M r

>r) the relational execution maps that assign ⊥r

49

(>r) to every node.

We denote by V r the union of all V r
N and use similar notation for the sets of

all dependency relations and relational tables. For the members of these sets we

sometimes omit the subscript indicating the scope when it is irrelevant or clear

from the context. We then define a partial order vr on V r, which is analogous

to the partial order v on concrete values, except that equality on constants is

replaced by subset inclusion on dependency relations:

r1 vr r2
def⇐⇒ r1=⊥r ∨ r2=>r ∨ (r1, r2 ∈ Rr

N ∧ r1 ⊆ r2) ∨

(r1, r2 ∈ T r
N ∧ ∀ncs. r1(ncs) v̇

r
r2(ncs))

We note that aside from ⊥r and >r, only the relational values of identical scope

N are comparable. This ordering induces for every N , a complete lattice (V r
N ,vr

,⊥r,>r,tr,ur). The definition of join over relational values is given below.

⊥r tr r def
= r r tr ⊥r def

= r Rr
1 tr Rr

2
def
= Rr

1 ∪Rr
2

T r
1 tr T r

2
def
= λncs. T

r
1(ncs) ṫr T r

2(ncs) r1 tr r2
def
= >r (otherwise)

The meet ur is defined similarly.

Lemma 4. Let V ∈ ℘(V r
N). Then, trV = lub(V) and urV = glb(V) subject to vr.

The lattices on relational values can be lifted pointwise to a complete lattice

on relational execution maps (Mr, v̇r
,M r
⊥r ,M r

>r , ṫr, u̇r).

Galois connections

We define the meaning of relational execution maps in terms of a Galois connection

between Mr and the complete lattice of sets of concrete execution maps ℘(M),

which we can then lift to properties P = N → ℘(M). To this end, we first

50

formalize the intuitive meaning of relational values that we have provided above.

We do this using a family of Galois connections between the complete lattices V r
N

and the complete lattice of sets of pairs of execution maps and values, ℘(M×V),

which is ordered by subset inclusion. These Galois connections share the same

concretization function γr : V r → ℘(M×V), which is defined as:

γr(⊥r)
def
= M×{⊥} γr(>r)

def
= M×V

γr(Rr
N)

def
= {〈M, c〉 | Dr ∈ Rr

N ∧Dr(ν) = c ∧

∀n ∈ N. M(n) ∈ γd(Dr(n))} ∪ γr(⊥r)

γr(T r
N)

def
= {〈M,T 〉 | ∀ncs. T (ncs)=〈vi, vo〉 ∧ T r(ncs)=〈ri, ro〉

∧ 〈Mi, vi〉 ∈ γr(ri) ∧ 〈Mo, vo〉 ∈ γr(ro)

∧Mi =\{ncs} M ∧Mo=Mi[ncs 7→ vi]} ∪ γr(⊥r)

Here, the function γd, which is used to give meaning to dependency relations, is

defined by γd(c) = {c} and γd(F) = T .

Lemma 5. For all scopes N , γr is a complete meet-morphism between V r
N and

℘(M×V) .

It follows that there exists a Galois connection between ℘(M×V) and V r
N for

every scope N which has γr as its right adjoint [17]. Let αr
N : ℘(M× V) → V r

N

be the corresponding left adjoint, which is uniquely determined by γr according to

Proposition 1. The meaning of relational execution maps is then given in terms of

γrN by the function γ̇r :Mr → ℘(M) as follows:

γ̇r(M r)
def
= {M | ∀n. 〈M,M(n)〉 ∈ γr(M r(n))}

From Lemma 5 it easily follows that γ̇r is also a complete meet-morphism. We

51

denote by α̇r : ℘(M)→Mr the left adjoint of the induced Galois connection.

Abstract domain operations

Before we can define the abstract transformer, we need to introduce a few primi-

tive operations for constructing and manipulating relational values and execution

maps (Fig. 3.5). The operation rN [n1=n2] strengthens rN by enforcing equality

rN [n1=n2]
def
= αr

N(γr(rN) ∩ {〈M, v〉 |M(n1)=M(n2)})

rN [ν=n]
def
= αr

N(γr(rN) ∩ {〈M, v〉 | v=M(n)})

rN [n← r′]
def
= αr

N(γr(rN) ∩ {〈M ′[n 7→ v′], v〉 | 〈M ′, v′〉 ∈ γr(r′)})

M r[n← rN]
def
=

l̇r

{M r[n′ 7→M r(n′)[n← r]] | n′ ∈ N}

rN [M r]
def
=

lr
{r[n←M r(n)] | n ∈ N}

rN [N ′]
def
= αr

N ′(γ
r(rN) ∩ {〈M, v〉 | ∀n ∈ N ′\N.M(n) /∈ {⊥, ω}})

Figure 3.5: Operations on relational abstract domains

between n1 and n2 in the dependency vectors. Similarly, rN [ν=n] strengthens rN

by requiring that the described value is equal to the value at node n. We use the

operation rN [n← r′] to strengthen rN with r′ for n. Logically, this can be viewed

as computing rN ∧r′[n/ν]. The operation M r[n← rN] lifts rN [n← r′] pointwise to

relational execution maps. Note that here for every n′ we implicitly rescope M(n′)

so that its scope includes n. The operation rN [M r], conversely, strengthens rN

with all the relations describing the values at nodes N in M r. Intuitively, this

operation is used to push scope/environment assumptions to a relational value.

Finally, the rescoping operation rN [N ′] changes the scope of rN from N to N ′

52

while strengthening it with the information that all nodes in N ′ \ N are neither

⊥ nor ω. We use the operation ∃n̂. rN
def
= r[N \ {n̂}] to simply project out, i.e.,

remove a node n̂ from the scope of a given relational value rN . We (implicitly) use

the rescoping operations to enable precise propagation between relational values

that have incompatible scopes.

The relational abstraction of a constant c in scope N is defined as crN
def
= {Dr ∈

Dr
N | Dr(ν) = c }. We define Bool rN

def
= true r

N tr false r
N .

3.3.3 Abstract Transformer

The abstract transformer, stepr, of the relational semantics is shown in Fig. 3.7.

It closely resembles the concrete transformer, step, where relational execution

maps M r take the place of concrete execution maps M and relational values

r take the place of concrete values v. More precisely, the actual transformer

Stepr
k+1JeK(E)(M r)

def
= M r ṫr

stepr
k+1JeK(E)(M r) simply runs stepr on a given

M r and joins the result with M r. Defining the actual transformer this way is

non-essential, but simplifies our proofs.

The case for constant values c` effectively replaces the join on values in the con-

crete transformer using a join on relational values. The constant c is abstracted

by the relational value cr[M r], which establishes the relation between c and the

other values stored at the nodes that are bound in the environment E. In general,

the transformer pushes environment assumptions into relational values rather than

leaving the assumptions implicit. We decided to treat environment assumptions

this way so we can interpret relational values independently of the environment.

This idea is implemented in the rules for variables and constants, as explained

above, while it is done inductively for other constructs. In the case for variables

53

x`, the abstract transformer replaces prop in the concrete transformer by the ab-

stract propagation operator propr defined in Fig. 3.6. Note that the definition of

propr(T r,⊥r)
def
= 〈T r, T r

⊥r〉 propr(T r,>r)
def
= 〈>r,>r〉

propr(T r
1, T

r
2)

def
=

let T r = Λncs.

let 〈r1i, r1o〉 = T r
1(ncs); 〈r2i, r2o〉 = T r

2(ncs)

〈r′2i, r′1i〉 = propr(r2i, r1i)

〈r′1o, r′2o〉 = propr(r1o[ncs ← r2i], r2o[ncs ← r2i])

in (〈r′1i, r1o tr r′1o〉, 〈r′2i, r2o tr r′2o〉)
in 〈Λncs. π1(T r(ncs)),Λncs. π2(T r(ncs))〉

propr(r1, r2)
def
= 〈r1, r1trr2〉 (otherwise)

Figure 3.6: Value propagation in the relational data flow semantics

propr assumes that its arguments range over the same scope. Therefore, whenever

we use propr in stepr, we implicitly use the rescoping operator to make the argu-

ments compatible. For instance, in the call to propr for variables x`, the scope of

M r(E(x)) is NE(x) which does not include the variable node E(x) itself. We there-

fore implicitly rescope M r(E(x)) to M r(E(x))[NE�`] before strengthening it with

the equality ν = E(x). The other cases are fairly straightforward. Observe how

in the case for conditionals (e`00 ? e`11 : e`22)` we analyze both branches and combine

the resulting relational execution maps with a join. In each branch, the map M r
0 is

strengthened with the information about the truth value stored at E�`0, reflecting

the path-sensitive nature of Liquid types.

Lemma 6. The function propr is monotone and increasing.

Lemma 7. For every k ∈ N, e ∈ λd and E ∈ E such that 〈e, E〉 is well-formed,

then Stepr
kJeK(E) is monotone and increasing.

54

stepr
0Je`K(E)(M r)

def
= M r

stepr
k+1Jc`K(E)(M r)

def
= M r[E�` 7→M r(E�`) tr cr[M r]]

stepr
k+1Jx`K(E)(M r)

def
=

let 〈r′x, r′〉 = propr(M r(E(x))[ν=E(x)],M r(E�`))
inM r[E(x) 7→ r′x, E�` 7→ r′[M r]]

stepr
k+1J(e

`1
1 e

`2
2)`K(E)(M r)

def
=

letM r
1 = Stepr

kJe1K(E)(M r); r1 =M r
1
M r

1(E�`1) in

if r1 6∈ T r thenM r
>r else

letM r
2 = Stepr

kJe2K(E)(M r
1); r2 =M r

2
M r

2(E�`2) in

〈r′1, T r
0〉 = propr(r1, [E�`1 7→ 〈r2,M

r
2(E�`)〉])

〈r′2, r′〉 = T r
0(E�`1)

inM r
2[E�`1 7→ r′1, E�`2 7→ r′2, E�` 7→ r′]

stepr
k+1J(µf.λx.e

`1
1)`K(E)(M r)

def
=

let T r =M r M r(E�`) tr T r
⊥ in

letM r = Λncs∈T r. if π1(T r(ncs))=>r thenM r
>r else

let nx = E�ncs�x; nf = E�ncs�f ; E1 = E[x 7→nx, f 7→nf]
〈T r

x, T
r
1〉 = propr([ncs 7→〈M r(nx),M

r(E1�`1)[ncs=nx]〉], T r)

〈T r
2, T

r
f〉 = propr(T r,M r(nf)); 〈r′x, r′1〉 = T r

x(ncs)

M r
1 = M r[E�` 7→ T r

1 tr T r
2, nf 7→ T r

f , nx 7→ r′x, E1�`1 7→ r′1[nx=ncs]]

in Stepr
kJe1K(E1)(M r

1)

inM r[E�` 7→ T r] ṫr
⊔̇r

ncs∈T r M r(ncs)

stepr
k+1J(e

`0
0 ? e`11 : e`22)`K(E)(M r)

def
=

letM r
0 = Stepr

kJe0K(E)(M r); r0 =M r
0
M r

0(E�`0) in

if r0 6vr Bool r thenM r
>r else

letM r
1 = Stepr

kJe1K(E)(M r
0[E�`0 ← true r ur r0])

M r
2 = Stepr

kJe2K(E)(M r
0[E�`0 ← false r ur r0])

r1 = M r
1(E�`1); r2 = M r

2(E�`2)

〈r′1, r′〉 = propr(r1,M
r
1(E�`)); 〈r′2, r′′〉 = propr(r2,M

r
2(E�`))

inM r
0 ṫ

r
M r

1[E�`1 7→ r′1, E�` 7→ r′] ṫrM r
2[E�`2 7→ r′2, E�` 7→ r′′]

Figure 3.7: Abstract transformer for relational data flow semantics

55

3.3.4 Abstract Semantics

The abstract domain of the relational abstraction is given by relational properties

P r def
= N → Mr, which are ordered by v̈r

, the pointwise lifting of v̇r
on Mr to

P r. We likewise lift the Galois connection 〈α̇r, γ̇r〉 to a Galois connection 〈α̈r, γ̈r〉

between the concrete lattice P and the abstract lattice P r. The relational abstract

semantics Cr : λd → P r is then defined as the least fixpoint of Stepr as follows:

CrJeK def
= lfpv̈

r

Λk. M r
⊥r

ΛP r.Λk. Stepr
kJeK(ε)(P

r(k))

Theorem 1. The relational abstract semantics is sound, i.e., for all programs e,

CJeK ⊆ γ̈r(CrJeK).

In the proof of Theorem 1 we show that propr and stepr are sound abstractions

of their concrete counterparts prop and step, from which the claim then follows

easily. For the most part, these proofs are straightforward inductions because the

definitions of the abstract operators are so closely aligned with the concrete ones.

Most intermediate steps just follow directly from properties of the involved Galois

connections. The soundness proof of stepr is slightly more involved because it is not

true that for all well-formed (e, E), k ∈ N, M ∈M, and M r ∈Mr, if M ∈ γ̇r(M r)

then stepkJeK(E)(M) ∈ γ̇r(stepr
kJeK(E)(M r)). This is because stepr relies on certain

invariants satisfied by the (E,M) that the concrete step maintains for the iterates

of SJeK. For instance, to prove that the implicit uses of the rescoping operator r[N]

in stepr are sound, we need the invariant that in the concrete, all variable nodes

that are bound in E are not mapped to ⊥ or ω by M . This can be shown with a

simple induction proof. Similar invariants are needed to prove the last step in the

case for recursive functions, where we need to show that the join over all call sites⊔̇
ncs∈T M(ncs) in the concrete transformer is abstracted by the join over all call

56

sites
⊔̇r

ncs∈T M
r(ncs) in stepr.

3.4 Collapsed Relational Data Flow Semantics

We now describe the key abstraction step in the construction of Liquid types,

which we formalize in terms of a collapsed (relational data flow) semantics. This

semantics abstracts the relational semantics by (1) collapsing the input/output

relations for all call sites in each table into a single one, and (2) collapsing variable

nodes by removing their call site components. That is, tables no longer keep track

of where they are called and variable bindings no longer track the call stack.

3.4.1 Example

We first provide an intuition behind the collapsed data flow semantics through an

example. For that purpose, use the program from Example 3 exhibiting higher-

order features of λd.

The map computed by the collapsed data flow semantics is presented below.

We only show map entries for a portion of reachable nodes.

g1, c→ 〈z, {(ν : 1), {(z : 1, ν : 0)}〉 g2, e→ 〈z, {(ν : 1), {(z : 1, ν : 1)}〉

b→ 〈g1, 〈z, {(ν : 1)}, {(z : 1, ν : 0)}〉, {(g1 : F, ν : 1), (g1 : F, ν : 0)}〉

d→ 〈g2, 〈z, {(ν : 1)}, {(z : 1, ν : 1)}〉, {(g2 : F, ν : 1), (g2 : F, ν : 0)}〉

h→ 〈g, 〈z, {(ν : 1)}, {(z : 1, ν : 1), (z : 1, ν : 0)}〉, {(g : F, ν : 1), (g : F, ν : 0)}〉

As opposed to the concrete and relational semantics that keep track of execution

points where the functions are being called in the program, the collapsed semantics

completely disregards such information. Consider first the entry for g1 in the map

57

that assigns g1 the collapsed table value 〈z, {(ν : 1), {(z : 1, ν : 0)}〉, stating that g1

is a function called at some concrete call site node, symbolically represented as z,

with integer 1 as the input and 0 as the output. Note that the information about

the actual call site node at which g1 is called is not maintained. Also, observe

how z is used to explicitly remember the input value in the output relation. The

same explanation can be given for the map entry for g2. The ramifications of

not maintaining the precise call site information in tables are best understood by

looking at the map entry for h. Since both g1 and g2 are inputs of h in the program

and h cannot distinguish between these two inputs using their call site information

that is absent, the analysis of the body of h must simultaneously consider both g1

and g2 as the input argument g of h. That is, the semantics infers that the input

g of h is the table value 〈z, {(ν : 1)}, {(z : 1, ν : 1), (z : 1, ν : 0)}〉 that can intuitively

be seen as the join of values of g1 and g2. The semantics then concludes that the

output relation for h is the relation {(g : F, ν : 1), (g : F, ν : 0)}, containing both 0

and 1 as the possible result of calling h. In effect, the result for both calls to h at

nodes b and d can be either 0 or 1. Therefore, the collapsed semantics flags the

program as potentially unsafe as the value of the divisor expression can possibly

be 0. Note that the concrete and relational semantics render this program safe.

Overall, by not maintaining precise call site information in tables, the collapsed

semantics can introduce imprecision as the input relations of functions coming from

different call sites must be merged together when analyzing the function body.

We next introduce the collapsed relational data flow semantics formally. We

start by explaining the abstract domains used in defining the semantics.

58

3.4.2 Abstract Domains

The semantic domains of the collapsed semantics are defined as follows:

n̂ ∈ N̂ def
= Ê × Loc abstract nodes

Ê ∈ Ê def
= Vars ⇀fin N̂ abstract environments

u ∈ Vcr
N̂

::= ⊥cr | >cr | Rcr
N̂
| T cr

N̂
collapsed values

T cr
N̂
∈ T cr

N̂

def
= Σz ∈ DVar . Vcr

N̂\{z} × V
cr
N̂∪{z} collapsed tables

Rcr
N̂
∈ Rcr

N̂

def
= ℘(Dcr

N̂
) collapsed relations

Dcr
N̂
∈ Dcr

N̂

def
= (N̂ ∪ {ν})→ (Cons ∪ {F}) collapsed dep. vectors

M cr ∈Mcr def
= Πn̂ ∈ N̂ . Vcr

N̂n̂
collapsed maps

Since we abstract from call site information in variable nodes, the new semantics

no longer distinguishes between expression and variable nodes, leading to the defi-

nitions of abstract nodes n̂ ∈ N̂ and abstract environments Ê ∈ Ê . The operations

env and loc on abstract nodes are defined as for concrete nodes.

In order to be able to express input-output dependencies in tables without

keeping track of call sites explicitly, the collapsed semantics introduces dependency

variables z ∈ DVar , which symbolically stand for the concrete input nodes of call

sites. An abstract scope N̂ is then defined as a finite set of abstract nodes and

dependency variables N̂ ⊆fin (N̂ ∪DVar). Analogous to concrete scopes, we define

N̂n̂ = rng(env(n̂)) as the abstract scope of an abstract node n̂.

Collapsed values uN̂ ∈ Vcr
N̂

are implicitly indexed by an abstract scope N̂ and

closely resemble relational values. The only major difference is in the definition of

tables, which now only track a single symbolic call site. A collapsed table T cr
N ∈ T cr

N̂

is a tuple 〈z, u1, u2〉 where z cannot appear in the scope of the input relational value

u1 but is included in the scope of output relational value u2. We write dx (T cr
N)

59

to denote the dependency variable z and io(T cr
N) to denote the pair 〈u1, u2〉. The

remaining definitions are as for relational values except that abstract nodes take

the place of concrete nodes.

The ordering vcr
N̂

on collapsed values Vcr
N̂

resembles the ordering on relational

values:

u1 vcr u2
def⇐⇒ u1 = ⊥cr ∨ u2 = >cr ∨ (u1, u2 ∈ Rcr

N̂
∧ u1 ⊆ u2)

∨ (u1, u2 ∈ T cr
N̂
∧ io(u1) v̇cr

io(u2))

We assume that when we compare two collapsed tables, we implicitly apply α-

renaming so that they range over the same dependency variable. Again, this

ordering induces, for every N̂ , a complete lattice (Vcr
N̂
,vcr,⊥cr,>cr,tcr,ucr). The

definition of the join tcr operator is as follows.

⊥cr tcr u def
= u u tcr ⊥cr def

= u Rcr
1 tcr Rcr

2
def
= Rcr

1 ∪Rcr
2

〈z, u1, u2〉 tcr 〈z, u3, u4〉
def
= 〈z, u1 tcr u3, u2 tcr u4〉 u1 tcr u2

def
= >cr (otherwise)

The meet ucr is defined similarly.

Lemma 8. Let V ∈ ℘(Vcr
N̂

). Then, tcrV = lub(V) and ucrV = glb(V) subject to

vcr.

Technically, vcr is only a pre-order due to α-renaming of tables. We implicitly

identify Vcr
N̂

with its quotient subject to the equivalence relation induced by vcr.

These lattices are lifted pointwise to a complete lattice on collapsed execution maps

(Mcr, v̇cr
,M cr
⊥cr ,M cr

>cr , ṫcr, u̇cr).

60

Galois connections

In order to provide the meaning of collapsed execution maps and values, we first

need to formally relate concrete and abstract nodes, environments, and scopes.

To this end, we define the node abstraction function ρ : N → N̂ as ρ(n)
def
=

(ρ ◦ env(n))�loc(n). In essence, ρ recursively removes call site information from

concrete variable nodes. For instance, ρ maps two concrete variable nodes E�ncs�x

and E�n′cs�x for distinct call sites ncs and n′cs to the same abstract node (ρ ◦

E)�x. Next, we want to define a Galois connection between relational values V r
N

and collapsed values Vcr
N̂

for given concrete and abstract scopes N and N̂ . More

precisely, we want to abstract relations over concrete nodes in N by relations

over abstract nodes in N̂ which may contain dependency variables standing for

arbitrary expression nodes at call sites. The corresponding concretization function

therefore needs to be defined with respect to a specific matching δ : N̂ → N of

abstract to concrete nodes. These matching functions need to be consistent with

node abstraction. We formalize this consistency property by defining the set of all

scope consistent matchings ∆(N̂ ,N) as

∆(N̂ ,N)
def
= { δ : N̂→N | ∀n̂ ∈ N̂ .(n̂ ∈ N̂ ⇒ ρ(δ(n̂))=n̂)

∧ (n̂ ∈ DVar ⇒ δ(n̂) ∈ Ne) }

That is, we require that the matching of abstract nodes with concrete nodes is

consistent with ρ. For dependency variables, we require that they are matched

back to expression nodes. This second requirement formalizes the intuition that

dependency variables symbolically stand for arbitrary concrete call site nodes. The

meaning of collapsed values Vcr
N̂

with respect to relational values V r
N is then given

subject to a scope consistent matching δ ∈ ∆(N̂ ,N) by the concretization function

61

γcrδ : Vcr
N̂
→ V r

N , which is defined as follows:

γcrδ (⊥cr)
def
= ⊥r γcrδ (>cr)

def
= >r γcrδ (〈z, ui, uo〉)

def
= Λncs. 〈γcrδ (ui), γ

cr
δ[z 7→ncs](uo)〉

γcrδ (Rcr
N̂

)
def
= {Dr | Dcr ∈ Rcr ∧Dcr(ν) = Dr(ν) ∧ ∀n̂ ∈ N̂ . Dr(δ(n̂)) = Dcr(n̂)}

The concretization function simply renames the abstract nodes and dependency

variables to concrete nodes, as given by δ. For tables, it assigns the same pair of

relational values to every possible call site (modulo renaming of ncs in the output

relation). Note that the extended matching function δ[z 7→ ncs] is again scope

consistent for N̂ ∪ {z} and N ∪ {ncs}.

Lemma 9. For every δ ∈ ∆(N̂ ,N), γcrδ is a complete meet-morphism between Vcr
N̂

and V r
N .

It follows then that there exists a unique Galois connection 〈αcr
δ , γ

cr
δ 〉 between

V r
N and Vcr

N̂
, for every δ ∈ ∆(N̂ ,N) [17]. We then lift the γcrδ to a concretization

function γ̇cr : M cr →M r for collapsed execution maps:

γ̇cr(M cr)
def
= Λn.

lr
{γcrδ (M cr(ρ(n))) | δ ∈ ∆(N̂ρ(n), Nn)}

That is, if M r ∈ γ̇cr(M cr), then for every node n, the relational value M r(n) must

be subsumed by γcrδ (M cr(ρ(n))) for all possible consistent matchings δ between Nn

and N̂ρ(n). We note that for all concrete nodes n reachable in our transformer

stepr, there is a unique δ ∈ ∆(N̂ρ(n), Nn). This is because N̂ρ(n) contains no depen-

dency variables. Moreover, the locations of the concrete variable nodes bound in

reachable environments are the locations of the variables to which they are bound.

Hence, they are pairwise distinct. Since ρ preserves the node location information,

it is injective on Nn. Hence, δ is uniquely determined by ρ as per the definition of

∆. Since this uniqueness property does not hold in general for unreachable nodes,

62

the meet over all δ is needed so that γ̇cr is a complete meet-morphism, which fol-

lows directly from its definition and Lemma 9. As usual, the left adjoint of the

induced Galois connection is denoted by α̇cr :Mr →Mcr.

Abstract domain operations

In the new abstract transformer we replace the strengthening and rescoping opera-

tions on relational values such as rN [n1 = n2] by their most precise abstractions on

collapsed values uN̂ . For technical reasons in the soundness proof of the abstract

transformer, these abstractions are defined with respect to a Galois connection be-

tween Vcr
N̂

and the complete lattice ΠN.∆(N̂ ,N)→ V r
N where the ordering on V r

N

and the concretizations γcrδ are simply lifted pointwise. For instance, strengthening

with equality between abstract nodes, uN̂ [n̂1=n̂2], is defined as

uN̂ [n̂1=n̂2]
def
=

⊔cr
{αcr

δ (γcrδ (u)[δ(n̂1)=δ(n̂2)]) | N ⊆ N ∧ δ ∈ ∆(N̂ ,N) }

This definition in terms of most precise abstraction should not obscure the simple

nature of this operation. E.g., for collapsed dependency relations Rcr we simply

have:

Rcr
N̂

[n̂1=n̂2] = {Dcr∈Rcr
N̂
| n̂1, n̂2∈N̂ ⇒ Dcr(n̂1)=Dcr(n̂2) }

as one might expect. The other strengthening operations on relational values are

abstracted in a similar manner.

3.4.3 Abstract Transformer

The abstract transformer for the collapsed semantics, stepcr : λd → Ê → Mcr →

Mcr, closely resembles the relational abstract transformer stepr where the opera-

tions on relational values are simply replaced by their abstractions on collapsed

63

values. The only significant difference is in the case for recursive function def-

initions, shown in Figure 3.8. As collapsed tables do not maintain per-call-site

information, the function body e1 is now evaluated only once for the abstract node

n̂x that abstracts all variable nodes bound to x in the concrete. The propagation

between collapsed values, shown in Figure 3.9, is similarly simplified. Note that,

technically, propagation works on the representatives of equivalence classes of col-

lapsed values modulo α-renaming of dependency variables in tables. We assume

that whenever we propagate between two collapsed tables, the dependency vari-

ables in these tables are consistently renamed so that they match on both sides.

stepcr
k+1J(µf.λx.e

`1
1)`K(Ê)(M cr)

def
=

let T cr =M cr M cr(Ê�`) tcr T cr
⊥ in

if π1(io(T cr)) = ⊥cr thenM cr[Ê�` 7→ T cr] else

if π1(io(T cr)) = >cr thenM cr
>cr else

let n̂x = Ê�x; n̂f = Ê�f ; Ê1 = Ê[x 7→ n̂x, f 7→ n̂f]

〈T cr
x , T

cr
1 〉 = propcr(〈dx (T cr),M r(nx),M

r(Ê1�`1)[dx (T cr)=n̂x]〉, T cr)

〈T cr
2 , T

cr
f 〉 = propcr(T cr

1 ,M
cr(n̂f)); 〈u′x, u′1〉 = io(T cr

x)

M cr
1 = M cr[Ê�` 7→ T cr

1 tcr T cr
2 , n̂f 7→ T cr

f , n̂x 7→ u′x, Ê1�`1 7→ u′1[n̂x=dx (T cr)]]

in Stepcr
k Je1K(Ê1)(M cr

1)

Figure 3.8: Abstract transformer for collapsed semantics (recursive function defi-
nition rule)

Lemma 10. The function propcr is monotone and increasing.

Lemma 11. For every k ∈ N, e ∈ λd and Ê ∈ Ê such that 〈e, Ê〉 is well-formed,

then Stepcr
k JeK(Ê) is monotone and increasing.

In the above, the well-formedness of a pair (e, Ê) of an expression e and abstract

64

propcr(T cr,⊥cr)
def
= 〈T cr, 〈dx (T cr),⊥,⊥〉〉

propcr(T cr,>cr)
def
= 〈>cr,>cr〉

propcr(T cr
1 , T

cr
2)

def
=

let 〈z, u1i, u1o〉 = T cr
1 ; 〈z, u2i, u2o〉 = T cr

2

〈u′2i, u′1i〉 = propcr(u2i, u1i)

〈u′1o, u′2o〉 = propcr(u1o[z ← u2i], u2o[z ← u2i])

in 〈〈z, u′1i, u1o tcr u′1o〉, 〈z, u′2i, u2o tcr u′2o〉〉

propcr(u1, u2)
def
= 〈u1, u1 tcr u2〉 (otherwise)

Figure 3.9: Propagation between values in the collapsed semantics

environment Ê is defined in the similar way as for the concrete environments.

3.4.4 Abstract Semantics

The abstract domain of the collapsed abstract semantics is given by collapsed

properties Pcr def
= N → Mcr, ordered by v̈cr

. The Galois connection 〈α̇cr, γ̇cr〉 is

lifted to the Galois connection 〈α̈cr, γ̈cr〉 between the lattices P r and Pcr. The

collapsed semantics CcrJ·K : λd → Pcr is then defined as

CcrJeK def
= lfpv̈

cr

Λk. M cr
⊥cr

ΛP cr.Λk. Stepcr
k JeK(ε)(P cr(k))

where Stepcr
k JeK(Ê)(M cr)

def
= M cr ṫcr stepcr

k JeK(Ê)(M cr).

Theorem 2. The collapsed abstract semantics is sound, i.e., for all programs e,

CrJeKv̈r
γ̈cr(CcrJeK).

The proof outline is as follows. First, the collapsed domain operations are by

definition sound abstractions of the corresponding relational operations. It follows

that propcr abstracts propr. These facts are then used to prove that stepcr overap-

proximates stepr. The only nontrivial case is the rule for recursive function defini-

65

tions. The proof first shows that after evaluating the body e1 for every call site ncs

in the relational semantics, the resulting map M r(ncs) = Stepr
k+1Je1K(E1)(M r

1) is in

γ̇cr(M cr
2) whereM cr

2 = Stepcr
k+1Je1K(Ê1)(M cr

1). It then follows that
⊔̇r

ncs∈T crM r(ncs) ∈

γ̇cr(M cr
2).

One important implication of node abstraction is that the collapsed semantics

only reaches finitely many abstract nodes.

Lemma 12. For all programs e and k ∈ N, either CcrJeK(k)(n̂) = M cr
>cr or the set

{ n̂ ∈ N̂ | CcrJeK(k)(n̂) 6= ⊥cr } is finite.

In fact, it can be easily observed from the definition of the abstract transformer

that, given some initial abstract environment, every subexpression will be analyzed

with at most one abstract environment. This is a consequence of the fact that the

transformer in the case of recursive function definitions (where variables are bound)

always extends the given environment with the same unique nodes. This implies

that there is a one-to-one correspondence between expression/variable nodes and

expression/variable locations for the nodes that are reachable.

Example. Consider again our running program e from Example 1. The stabi-

lized collapsed map M cr
e in the fixpoint of CcrJeK is as follows:

id→ 〈z, {(ν : 1), (ν : 2)}, {(z : 1, ν : 1), (z : 2, ν : 2)}〉

u, b, c→ {(id : F, ν : 1)} e, f → {(id : F, u : 1, ν : 2)}

a→ 〈z, {(id : F, ν : 1)}, {(id : F, z : 1, ν : 1)}〉

d→ 〈z, {(id : F, u : 1, ν : 2)}, {(id : F, u : 1, z : 2, ν : 2)}〉

gb, ge → {(x : 1, ν : 1), (x : 2, ν : 2)}

Note that in this specific example there is no precision loss in terms of the input-

output relations. In particular, for the nodes at locations c and f we have a

66

collapsed relation that contains a single vector, which means that we still have

precise information about the value obtained as the result of function calls of

id. This happens since the input values at the two calls to id are different and

function values keep track of precise dependencies on constant inputs. The output

relation of id at each call site is strengthened inside propcr with the actual value

of the corresponding input. For instance, at the call site identified with e, the

output of id {(z : 1, ν : 1), (z : 2, ν : 2)} is effectively strengthened with the input

{(id : F, u : 1, z : 2)} emitted at e, resulting in the value {(id : F, u : 1, ν : 2)}.

3.5 Data Flow Refinement Type Semantics

Finally, we obtain a parametric generalization of Liquid types, which we refer

to as the data flow refinement type semantics. This semantics is an abstraction

of the collapsed relational semantics. The abstraction combines three ideas: (1)

we abstract dependency relations over concrete constants by abstract relations

drawn from some abstract domain of type refinements, (2) we fold the step-indexed

properties in the collapsed semantics into single type maps, and (3) we introduce

widening to enforce convergence of the fixpoint in a finite number of iterations.

We will show that the Liquid type inference proposed in [78] is a specific instance

of this parametric abstract semantics.

3.5.1 Abstract Domains

Our data flow refinement type analysis is parameterized by the choice of base types

and the abstract domain representing type refinements. We assume we are given a

set of base types b ∈ B whose meaning is provided by the concretization function

67

γB : B→ ℘(Cons). For simplicity, base types are assumed to be disjoint and every

constant has a base type ∀c,∃b. c ∈ γB(b).

Type refinements a are drawn from a family of relational abstract lattices

〈AN̂ ,va,⊥a,>a,ta,ua〉 parameterized by abstract scopes N̂ . We assume that

there exists a Galois connection 〈αa
N̂
, γa

N̂
〉 between AN̂ and the complete lat-

tice of collapsed dependency relations 〈Rcr
N̂
,⊆, ∅,Dcr

N̂
,∪,∩〉 for every N̂ . We fur-

ther assume that the abstract domains AN̂ come equipped with sound abstrac-

tions of the various strengthening operations on collapsed dependency relations.

For instance, we assume that there exists an operation aN̂ [n̂1 = n̂2] such that

αa
N̂

(γa
N̂

(aN̂)[n̂1 = n̂2]) va aN̂ [n̂1 = n̂2]. Finally, we assume that these abstract

domains provide widening operators Oa
N̂

: AN̂ ×AN̂ → AN̂ .

The semantic domains of the data flow refinement type semantics are as follows:

t ∈ V t
N̂

::= ⊥t | >t | Rt
N̂
| T t

N̂
data flow refinement types

T t
N̂
∈ T t

N̂

def
= Σz ∈ DVar .V t

N̂\{z} × V
t
N̂∪{z} refinement function types

Rt
N̂
∈ Rt

N̂

def
= B×AN̂ refinement base types

M t ∈Mt def
= Πn̂ ∈ N̂ . V t

N̂n̂
refinement type maps

The abstract values of the new semantics, which we refer to as data flow refinement

types, closely resembles collapsed abstract values. The major difference is in the

treatment of dependency relations. The abstraction of a dependency relation is a

refinement base type Rt
N̂

, which consists of a base type b and an abstract refinement

relation a. We denote these pairs as {ν : b | a} and write b(Rt
N̂

) for b and a(Rt
N̂

)

for a. Refinement function types abstract collapsed tables and consist of an input

type ti, which is bound to a dependency variable z, and an output type to. We use

the familiar function type notation z : ti → to for these values. As for collapsed

68

tables, we use the functions dx and io for extracting the dependency variable,

respectively, the pair of input/output types from function types. As expected,

refinement type maps associate a type of appropriate scope with each abstract

node. The refinement boolean true and false values are defined as truet def
= {ν :

bool | at} and falset def
= {ν : bool | af }, respectively, where Bool t

def
= {ν : bool | a>}.

The ordering on types is defined as:

t1 vt t2
def⇐⇒ t1 = ⊥t ∨ t2 = >t ∨ (t1, t2 ∈ Rt

N̂
∧ b(t1) = b(t2) ∧ a(t1) va a(t2))

∨ (t1, t2 ∈ T t
N̂
∧ io(t1) v̇t

io(t2))

Again, we implicitly quotient types modulo renaming of dependency variables to

obtain a partial order that induces a family of complete lattices (V t
N̂
,vt,⊥t,>t,tt,ut).

The definition of the join tt operator is as follows.

{ν : b | a1} tt {ν : b | a2}
def
= {ν : b | a1 ta a2} ⊥t tt t def

= t t tt ⊥t def
= t

z : t1 → t2 tt z : t3 → t4
def
= z : t1 tt t3 → t2 tt t4 t1 tt t2

def
= >t (otherwise)

The meet ut is defined similarly.

Lemma 13. Let V ∈ ℘(V t
N̂

). Then, ttV = lub(V) and utV = glb(V) subject to

vt.

These are lifted pointwise to a complete lattice of refinement type maps (Mt, v̇t
,M t
⊥t ,M t

>t , ṫt, u̇t).

Galois connections

The meaning of refinement types is given by the function γt : V t
N̂
→ Vcr

N̂
that

uses the concretization functions for base types and type refinements to map a

69

refinement type to a collapsed value:

γt(⊥t)
def
= ⊥cr γt(>t)

def
= >cr

γt(z : ti → to)
def
= 〈z, γt(ti), γt(to)〉

γt({ν : b | a}) def
= {Dcr | Dcr ∈ γa(a) ∧Dcr(ν) ∈ γB(b)}

Lemma 14. For all N̂ , γt
N̂

is a complete meet-morphism between V t
N̂

and Vcr
N̂

.

We follow the usual notations for the Galois connections induced by γt
N̂

, which

we lift pointwise to a Galois connection 〈α̇t, γ̇t〉 between type maps and collapsed

maps.

3.5.2 Abstract propagation and transformer

As usual, the domain operations on refinement types can be defined as the best

abstractions, using the above introduced Galois connections, of domain operations

of the collapsed semantics. Here, we provide a more direct structural definition of

refinement type operations by relying on the corresponding operations of the given

domain AN̂ of type refinements. First, tN̂ [z ← t]
def
= t whenever z 6∈ N̂ . Otherwise,

the definition goes as shown in Figure 3.10. The strengthening of a bottom and

t[z ← ⊥t]
def
= ⊥t

t[z ← t′]
def
= t if t ∈ {⊥t,>t} or t′ ∈ {>t} ∪ T t

{ν : b1 | a1}[z ← {ν : b2 | a2}]
def
= {ν : b1 | a1[z ← a2]}

(z : t1 → t2)[z1 ← t]
def
= z : (t1[z1 ← t])→ (t2[z1 ← ∃z. t]) t ∈ Rt

Figure 3.10: A structural definition of strengthening operations on refinement
types

top type in fact does not perform any proper strengthening. The same applies

70

for the cases where we strengthen with >t or function types. The definition of

the strengthening operations for the mentioned cases is guided by simplicity and

it is in line with the strengthening operations performed by Liquid type inference

that does not explicitly model ⊥t and >t types. The strengthening of a function

type is defined structurally by performing the strengthening on the corresponding

input and output types. Note that the definition for strengthening an output type

ensures that the dependency of the output values on the input are not changed

by projecting out the dependency variable z from the scope of the type t used to

perform the strengthening. The strengthening of a basic refinement type reduces

to strengthening of the corresponding refinement domain elements. The structural

definitions of other operations on types can be defined similarly.

Lemma 15. Structural strengthening operations are sound.

The propagation operation propt on refinement types is then obtained from

propcr by replacing all operations on collapsed values with their counterparts from

the refinement type semantics. We omit the definition as it is straightforward.

Also, the refinement type abstracting a constant c with abstract scope N̂ is defined

as ct
N̂

def
= {ν : ty(c) | >a[ν=ct]} where >a ∈ AN̂ . We define the Boolean refinement

type as Bool t
N̂
, falset

N̂
tt truet

N̂
.

We obtain the new abstract transformer Stept from the collapsed transformer

stepcr in the same fashion. However, the signature of the new transformer is now

Stept : λd → Ê →Mt →Mt. That is, we additionally eliminate the step-indexing

parameter k. The transformer is given as SteptJe`K(Ê)(M t)
def
= M t ṫt steptJe`K(Ê)(M t)

where stept is shown in Figure 3.11. As the transformer definition is parametric

in the operations on the abstract domain of type refinements, different choices of

refinements do not require changes in the transformer. Moreover, the analysis ab-

71

steptJc`K(Ê)(M t)
def
= M t[Ê�` 7→M t(Ê�`) tt ct[M t]]

steptJx`K(Ê)(M t)
def
=

let 〈t′x, t′〉 = propt(M t(Ê(x))[ν=Ê(x)],M t(Ê�`))
inM t[Ê(x) 7→ t′x, Ê�` 7→ t′[M t]]

steptJ(e`11 e
`2
2)`K(Ê)(M t)

def
=

letM t
1 = SteptJe1K(Ê)(M t); t1 =M t

1
M t

1(Ê�`1) in

if t1 6∈ T t thenM t
>t else

letM t
2 = SteptJe2K(Ê)(M t

1); t2 =M t
2
M t

2(Ê�`2) in

let 〈t′1, T t
0〉 = propt(t1, dx (t1) : t2 →M t

2(Ê�`))
〈t′2, t′〉 = io(T t

0)

inM t
2[Ê�`1 7→ t′1, Ê�`2 7→ t′2, Ê�` 7→ t′]

steptJ(µf.λx.e`11)`K(Ê)(M t)
def
=

let T t =M t M t(Ê�`) tt T t
⊥ in

if π1(io(T t)) = ⊥t thenM t[Ê�` 7→ T t] else

if π1(io(T t)) = >t thenM t
>t else

let n̂x = Ê�x; n̂f = Ê�f ; Ê1 = Ê[x 7→ n̂x, f 7→ n̂f]

〈T t
x, T

t
1〉 = propt(dx (T t) : M t(nx)→M t(Ê1�`1)[dx (T t)=n̂x], T

t)

〈T t
2, T

t
f〉 = propt(T t,M t(n̂f)); 〈t′x, t′1〉 = io(T t

x)

M t
1 = M t[Ê�` 7→ T t

1 tt T t
2, n̂f 7→ T t

f , n̂x 7→ t′x, Ê1�`1 7→ t′1[n̂x=dx (T t)]]

in SteptJe1K(Ê1)(M t
1)

steptJ(e`00 ? e`11 : e`22)`K(Ê)(M t)
def
=

letM t
0 = SteptJe0K(Ê)(M t); t0 =M t M t

0(Ê�`0) in

if t0 6vt Bool t thenM t
>t else

letM t
1 = SteptJe1K(Ê)(M t

0[Ê�`0 ← truet ut t0])

M t
2 = SteptJe2K(Ê)(M t

0[Ê�`0 ← falset ut t0])

t1 = M t
1(Ê�`1); t2 = M t

2(Ê�`2)

〈t′1, t′〉 = propt(t1,M
t
1(Ê�`)); 〈t′2, t′′〉 = propt(t2,M

t
2(Ê�`))

inM t
0 ṫ

t
M t

1[Ê�`1 7→ t′1, Ê�` 7→ t′] ṫt M t
2[Ê�`2 7→ t′2, Ê�` 7→ t′′]

Figure 3.11: Abstract transformer for data flow refinement semantics

72

stracts from the specific representation of type refinements. If one uses, e.g., poly-

hedra for type refinements, the actual implementations can choose between con-

straint and generator representations of polyhedra elements [19], providing more

flexibility for tuning the analysis’ precision/efficiency trade-off.

Lemma 16. The function propt is increasing. Assuming that refinement domain

operations are monotone, propt is monotone as well.

Lemma 17. For every k ∈ N, e ∈ λd and Ê ∈ Ê such that 〈e, Ê〉 is well-formed,

then SteptJeK(Ê) is increasing. If the refinement domain operations are monotone,

then SteptJeK(Ê) is also monotone.

Widening

To ensure that the type analysis converges in finitely many steps, we need a widen-

ing operator for V t
N̂

. We construct this widening operator from the widening op-

erator Oa
N̂

on the domains of refinement relations and a shape widening operator.

In order to define the latter, first define the shape of a type using the function

sh : V t
N̂
→ V t

N̂

sh(⊥t)
def
= ⊥t sh(>t)

def
= >t sh(Rt)

def
= ⊥t sh(z : ti → to)

def
= z : sh(ti)→ sh(to)

A shape widening operator is a function Osh
N̂

: V t
N̂
× V t

N̂
→ V t

N̂
such that

(1) Osh
N̂

is an upper bound operator and (2) for every infinite ascending chain

t0 vt
N̂
t0 vt

N̂
. . . , the chain sh(t′0) vt

N̂
sh(t′1) vt

N̂
. . . stabilizes, where t′0

def
= t0 and

t′i
def
= t′i−1O

sh
N̂
ti for i > 0. In what follows, let Osh

N̂
be a shape widening operator.

73

First, we lift Oa
N̂

to an upper bound operator Ora
N̂

on V t
N̂

:

tOra
N̂
t′

def
=

{ν : b | a Oa
N̂

a ′} if t = {ν : b | a} ∧ t′ = {ν : b | a ′}

z : (tiOra
N̂
t′i)→ (toOra

N̂∪{z} t
′
o) if t = z : ti → to ∧ t′ = z : t′i → t′o

t tt
N̂
t′ otherwise

We then define the operator Ot
N̂

: V t
N̂
× V t

N̂
→ V t

N̂
as the composition of Osh

N̂
and

Ora
N̂

, that is, tOt
N̂
t′

def
= tOra

N̂
(tOsh

N̂
t′).

Lemma 18. Ot
N̂

is a widening operator.

3.5.3 Abstract semantics

We identify the properties P t of the data flow refinement type semantics with type

maps, P t def
= Mt. Then we connect P t to collapsed properties Pcr via the Galois

connection induced by the concretization function γ̈t
def
= ΛM t.Λk. γ̇t(M t). We lift

the widening operators Ot
N̂

pointwise to an upper bound operator Ȯt: P t×P t → P t.

The data flow refinement semantics CtJ·K : λd → P t is then defined as the least

fixpoint of the widened iterates of Stept:

CtJeK def
= lfpv̇

t

M t
⊥

ΛM t. (M t Ȯt SteptJeK(ε)(M t))

Theorem 3. The refinement type semantics is sound and terminating, i.e., for

all programs e, CtJeK converges in finitely many iterations. Moreover, CcrJeK v̈cr

γ̈t(CtJeK).

The soundness proof and termination follow straightforwardly from the proper-

ties of the involved Galois connections, Lemma 18, Lemma 12, and Proposition 3.

74

We say that a type map M t is safe if for all abstract nodes n̂, M t(n̂) 6= >t.

Let further γ̈
def
= γ̈r ◦ γ̈cr ◦ γ̈t. The next lemma states that safe type maps yield

safe properties. It follows immediately from the definitions of the concretizations.

Lemma 19. For all safe type maps M t, γ̈(M t) ⊆̇ Psafe.

A direct corollary of this lemma and the soundness theorems for our abstract

semantics is that we can use the data flow refinement type semantics to prove the

safety of programs.

Corollary 1. For all programs e, if CtJeK is safe then so is e.

3.5.4 Instantiating the framework

In order to obtain an instance of our data flow refinement type analysis, one has to

choose basic types, the abstract domain of type refinements with the accompanying

domain operations and widening operator, and the shape widening operator.

3.6 Liquid Type Semantics

We now recast Liquid types as an instantiation of the parametric data flow refine-

ment type inference.

Abstract domains. The set of basic types consists of types such as int, bool, etc.

The abstract domain of type refinements AN̂ is induced by a given set of qualifiers

Q by instantiating them with the given abstract scope N̂ . Hence, the abstract

domain of type refinements is ℘(QN̂) whose elements are interpreted conjunctively

and quotiented by the pre-order induced by entailment modulo some appropriate

75

decidable first-order theory (e.g., linear arithmetic with uninterpreted functions as

in [78]). This quotient is a complete lattice.

Domain Operations. The strengthening operations on our model of Liquid

types are defined structurally, as in Figure 3.10, by relying on the strengthening

operations provided by the Liquid domain of type refinements. These operations

correspond to the logical operations used in the original Liquid types work: a

refinement domain element a can be represented as a logical predicate. Based on

this representation, a[ν=n̂] corresponds to a ∧ ν = n̂ and a[n̂ ← a′] is a ∧ a′[n̂/ν]

where the latter operation is a syntactic substitution of n̂ for ν in ′a. The operation

∃z. t of projecting out a dependency variable z from a scope of a type t can be

defined as removing the conjuncts of t that involve z. In practice, Liquid types

avoid using the rescoping operation in the strengthening operations by renaming

dependency variables, thus making sure that variables in types are always unique.

Widenings. We note that the Liquid Type inference first infer basic types and

only then it infers type refinements. Our data flow refinement semantics performs

the two inference phases simultaneously, thus not forcing the analysis to make an

a priori decision about how the shapes of the types of recursive functions should be

approximated. To obtain Liquid Types in our framework, we need a shape widen-

ing operator that mimics the approximation of recursive functions performed by

the Hindley-Milner type system on which Liquid Types are based. The connection

between this approximation and widening is already well understood [15]. Since

the refinement domain AN̂ has finite height, the type refinement widening operator

Oa
N̂

is simply the join operator on ℘(QN̂).

76

Connection to original Liquid types. We now connect our formalization of

Liquid types with the one from the original work [78]. The subtyping relation on

our model of Liquid types is defined as follows

{ν : b | a1} <:q {ν : b | a2}
def⇐⇒ a1 va a2

z:t1→t2 <:q z:t3→t4
def⇐⇒ t3<:q t1 ∧ t2[z ← t3]<:q t4[z ← t3]

Our subtyping relation coincides with the original one [78, p. 6]. The main differ-

ence is the original subtyping is defined subject to typing environment assumptions

that we push directly into the type refinements. It can be shown that subtyping

between types implies that propagation between these types has reached a fixpoint.

Lemma 20. If t1<:q t2, then 〈t1, t2〉 = propt(t1, t2).

We use this fact to show that a valid derivation of the Liquid typing judgment

relation can be obtained from the results of our analysis. To this end, we first define

a typing relation `q adapted from [78, p. 6]. As with Liquid types, we define the

typing rules with a more standard notion of typing environments Γ ∈ Ξ
def
= Vars ⇀

V t that map program variables to types. In order to connect the typing rules with

the results produced by our abstract interpretation, we define the rules subject to

an injective mapping κ : Vars → N̂ from variables to abstract nodes. Let Ξκ be

the set of liquid typing environments whose domain is dom(κ). The abstract scope

induced by κ is then simply N̂κ
def
= rng(κ). Also, the induced abstract environment

is κ(Γ)
def
= Λx ∈ dom(Γ).κ(x). Given an encoding of abstract environment nodes

κ, our Liquid typing relation `κq : ΣΓ ∈ Ξκ. λd × V t
N̂κ

is given by the typing rules

shown in Figure 3.12. We assume we are given an existing base typing function

ty : Cons → B (e.g., Hindley-Milner) for constants and an existing strengthening

operation a[ν = c] on type refinements that sets ν to c in the concrete (implemented

77

x ∈ dom(Γ) Γ(x) <:q t t = Γ(x)[ν=κ(x)][Γ]κ

Γ `κq x : t Γ `κq c : ct[Γ]κ

Γ `κq e1 : t1 Γ `κq e2 : t2 t1 <:q dx (t1) : t2 → t

Γ `κq e1e2 : t

t <:q tf dx (t) : tx → t1 <:q t

κ1 = κ.x : κ(Γ)�x.f : κ(Γ)�f Γ.x : tx.f : tf `κ1q e : t1

Γ `κq µfλx. e : t

Γ `κq x : t0 t0<:q Bool t t1<:q t t2<:q t

Γ1 = Λx ∈ dom(Γ).Γ(x)[κ(x)← t0 ut truet] Γ1 `κq e1 : t1

Γ2 = Λx ∈ dom(Γ).Γ(x)[κ(x)← t0 ut falset] Γ2 `κq e2 : t2

Γ `κq (x ? e1 : e2) : t

Figure 3.12: Adapted Liquid typing rules

as adding a logical conjunct ν = c to a). We use these operations and κ to properly

strengthen constants with the environment assumptions. More precisely, ct[Γ]κ is

a shorthand for ct[M t] where M t = Λn̂. n̂ ∈ rng(κ) ? Γ(κ−1(n̂)) : ⊥t.

The first obvious difference between our typing rules and the original Liquid

typing rules is that we need to maintain the mapping κ between program variables

and environment nodes. Again, we use this mapping to easier connect the typing

rules to our semantics and properly push environment assumptions to types that

happens on the leaves of typing derivations. Second, the rules in the original paper

are nondeterministic: the subtyping rule can be applied at any point in the typing

derivation. Our rules, on the other hand, are deterministic as we directly push

subtyping constraints at any point where there is a potential flow of data. Lastly,

we assume for simplicity that conditionals are A-normalized, as is the case with

the original Liquid type inference algorithm implementation [78, sec. 4.4].

It can then be shown that the Liquid typing rules specify a fixpoint of our

78

Liquid type semantics. Let valid be typing environments that do not contain ⊥t

and >t types. We can now formalize the result that a solution computed by type

inference based on the Liquid typing rules can be obtained using our abstract

interpretation.

Theorem 4. Let e` be an expression, κ an injective encoding of abstract vari-

able nodes, Γ ∈ Ξκ a valid typing environment, and t ∈ V t
N̂κ

. If Γ `κq e` : t,

then there exists a safe type map M t such that SteptJe`K(κ(Γ)�`)(M t) = M t and

M t(κ(Γ)�`) = t.

The proof goes by showing that one can construct a safe type map from the typing

derivation corresponding to Γ `κq e` : t. This map is then shown to be a fixpoint

of the abstract transformer.

Design space. We note that our Liquid type inference is sound by construction

and the points where the analysis loses precision are made explicit in our choice of

widening operators and Galois connections used in the relational, collapsed, and

refinement type semantics. This is in contrast to the original Liquid types work

where the soundness of the inference is argued as follows. Given an expression e,

a Liquid type environment Γ, and a qualifier set Q, it is first shown that for a

Liquid type τ inferred by the algorithm Solve(Γ, e, Q), the original Liquid typing

relation holds Γ `Q e : τ [78, Theorem 2]. Then, this relation is shown to be

conservative subject to an “exact” typing relation Γ ` e : τ [78, Theorem 1],

which is in turn proven to be sound subject to a standard operational semantics

elsewhere [51]. This indirect soundness argument obscures where the analysis loses

precision. In particular, it does not make formally explicit how `Q abstracts ` and

how ` abstracts the concrete semantics.

79

3.7 Related Work

We now discuss work related to refinement type inference.

Refinement type systems. One of the earliest works on refinement types goes

back to [28]. The authors present a type system for ML where a programmer-

annotated definition of an algebraic datatype induces a finite set of its subtypes,

called refinements. These refinements constitute a finite-height (non-relational)

abstract domain of type refinements. The presented type system uses intersection

and union types in order to perform modular refinement type inference. Xi and

Pfenning [96] introduce a modular and semi-automatic dependent type analysis

for ML where refinement types (called index types) are defined over a parametric

constraint domain. Techniques used in the original Liquid types [78] work were

extended to support Haskell [92], abstractions over type refinements [91, 90], and

inference of heap invariants for C programs [79]. Our results can serve as the

basis for reformulating these works in terms of abstract interpretation. We also

note that the work in [92] provides a denotational semantic model of Liquid types.

However, this model is used for proving the soundness of Liquid typing rules and

the inference algorithm. This is a different task than systematically and construc-

tively designing Liquid type inference as an abstract semantics of programs, for

which denotational semantics is not a good fit as it is inherently modular and

it does not make explicit how data flows in programs. Zhu and Jagannathan [99]

present an algorithm that infers data flow invariants of functional programs using a

refinement type inference algorithm that solves subtyping constraints per function

body and then lazily propagates the information from call sites to corresponding

functions, akin to our data flow refinement type system. Moreover, their system

80

uses intersection types labeled by call site information to infer the type of a func-

tion based on different call sites. This suggests that their system can be formalized

using our framework where the collapsed semantics is refined by a partition of call

sites. Their inference algorithm, however, is not guaranteed to terminate. Viewed

using our framework, this is a consequence of the fact that the abstract domain of

type refinements is of infinite height and the fixpoint computation is not using a

widening operator. Knowles and Flanagan [51] introduce a general refinement type

system that infers data flow invariants for functional programs where refinements

are conjunctions and disjunctions of unrestricted Boolean expressions drawn from

the language of programs. Similar to Liquid types, their system first computes

the basic type structure of the program and then sets up constraints encoding the

program data flow. When viewed through the lens of our work, their inference

algorithm works over an infinite-height abstract domain and uses certain widening

operator to ensure finite convergence. When analyzing recursive functions, the

resulting function type is itself defined as a least fixpoint, since the fixpoint opera-

tor is anyhow available in the language. The inference algorithm proposed in [43]

can be seen as an implementation of our data flow refinement type system where

(collapsed) data flow equations of a higher-order program are transformed into a

first-order program that is then analyzed using various abstract domains. The re-

sults are then pushed back to the original higher-order program. Refinement type

techniques have also been used in the context of dynamic languages [93, 48, 53].

The work in [53] uses Galois connections to formalize the intuition that gradual

refinement types abstract static refinement types. However, the resulting gradual

type system does not take full advantage of the framework of abstract interpre-

tation, i.e., the type system is not calculationally constructed as an abstraction

81

of a concrete program semantics. We note that none of the above works formally

describe their refinement type systems as abstract interpretations in this original

sense.

Semantics of higher-order programs. Work in [41] and similarly [76] use flow

graphs to assign concrete meaning to higher-order programs. Nodes in the graph

correspond to nodes of our data flow semantics. Their semantics models functions

as expression nodes storing the location of the function definition expression. Argu-

ment values then flow directly from call sites to the function. Hence, this semantics

has to make non-local changes when analyzing function applications. In contrast,

our data flow semantics treats functions as tables and propagates values backwards

in lockstep with the program structure, which is more suitable for building type

systems. The minimal function graph semantics [46, 45] models functions as tables

whose domains only contain inputs observed during program execution, similar to

our data flow semantics. However, minimal function graphs do not explicitly model

flow of information in a program, which is not well suited for designing data flow

refinement type systems. More precisely, similar to minimal function graphs, our

new semantics computes for every function, the pairs of input and output values

for the calls to that function that are actually observed during program execution.

While minimal function graph semantics accumulates this information in a sepa-

rate dedicated global structure, our semantics stores information on function calls

more locally. That is, at each point in the flow graph where a function value is

observed, we record those calls to the function that happen from that point onward

as the function value continues to flow through the program. The semantics makes

explicit how input values propagate backwards from the call sites of a function

82

to the function definition and, conversely, how output values propagate from the

definition back to the call sites. Our semantics precisely captures the properties

abstracted by Liquid types and is defined structurally on the program syntax, al-

lowing for an easier formal connection to the typing rules underlying Liquid type

inference.

There is a large body of work on control and data flow analysis on higher-order

programs and the concrete semantics they overapproximate [58, 69, 65, 44, 18].

However, these works either do not make program data flow explicit or they treat

program functions as graph nodes, continuations, or closures, all of which are

not well-suited for developing data flow refinement type systems as an abstract

semantics since they do not make explicit how data flows in functional programs,

i.e., how inputs flow from function call sites to the function definition and how the

outputs flow back in the other direction. To the best of our knowledge, the data

flow semantics introduced in this work is the first concrete semantics where the

notion of data flow is made explicit and the concrete transformer only makes local

changes to the global execution map, enabling abstractions that naturally lead to

structural typing rules.

Types as abstract interpretations. The formal connection between types and

abstract interpretation is studied by Cousot [15]. His paper shows how to construct

standard polymorphic type systems via a sequence of abstractions starting from a

concrete denotational call-by-value semantics. Monsuez [62] similarly shows how to

use abstract interpretation to design polymorphic type systems for call-by-name

semantics and model advanced type systems such as System F [60, 61, 63, 64].

Techniques presented in [32, 31] use the abstract interpretation view of types

83

to design new type inference algorithms for ML-like languages by incorporating

widening operators that infer more precise types for recursive functions. Unlike

these works that focus on modular type inference, this thesis is instead focused

on refinement type systems that perform a whole program analysis, an example of

which are Liquid types. The work in [42] uses abstract interpretation techniques to

develop a type system for JavaScript that is able to guarantee absence of common

errors such as invoking a non-function value or accessing an undefined property.

Further, the work in [29] uses Galois connections to relate gradual types with ab-

stract static types to build a gradual type system from a static one. Harper [37]

introduces a framework for constructing dependent type systems from operational

semantics based on the PER model of types. Although this work does not build on

abstract interpretation, it relies on the idea that types overapproximate program

behaviors and that they can be derived using a suitable notion of abstraction.

84

Chapter 4

Type Error Localization

The contents of this chapter are previously published in a slightly modified form

in [72, 73]. Proofs for all the theorems, lemmas, and corollaries stated in this

chapter can be found in Appendix B, unless already presented in the chapter.

4.1 Overview

In this section, we provide an overview of our approach to the problem of type error

localization introduced in § 1 and explain it through several illustrative examples.

The high-level execution flow of our constraint-based type error localization is

shown in Figure 4.1. The framework can be viewed as a compiler plug-in. When

type inference takes place, our algorithm starts by generating typing assertions

for the given input program. The constraint generation incorporates a compiler-

specific criterion for ranking type error sources by appropriately assigning weights

to the assertions. After the constraint generation finishes, the produced annotated

assertions, constituting a typing constraint, are passed to a weighted MaxSMT

solver. If the input program has a type error, the generated constraint is unsatis-

85

Compiler

Typing
Constraint Generation

Weighted
MaxSMT Solverconstraints

input program and
ranking criterion

ranking
criterion

minimum
error sources

Figure 4.1: High-level overview of constraint-based type error localization. Thick
arrows represent a looping interaction between a compiler and the SMT solver.

fiable. In this case, the MaxSMT solver finds all error sources that are minimum

subject to the specified ranking criterion. The compiler can then iteratively in-

teract with the solver to further rank and filter the error sources to generate an

appropriate error message. This way, our framework can support interaction with

the programmer. In particular, the compiler can take feedback from the pro-

grammer and pass it to the solver to guide the search for the error source the

programmer needs. In the following, we describe the actual algorithm in more

detail and highlight the main features of our approach.

4.1.1 Minimum Error Sources

First, let us make the notion of minimum error source more precise. An error

source is a set of program locations that need to be fixed so that the erroneous

program becomes well typed. Usually, not all error sources are equally likely to

cause the error, and the compiler might prefer some error sources over others.

In our framework, the compiler provides a criterion for ranking error sources by

assigning weights to program locations. Our algorithm then finds the error sources

with minimum cumulative weight. As an example, consider the following OCaml

86

program:

1 let f x = print_int x in

2 let g x = x + 1 in

3 let x = "hi" in

4 f x;

5 g x

Note that the program cannot be typed since the functions f and g expect an

argument of type int, but both are applied to x whose type is string. The

program has several possible error sources. One error source is the declaration

of x. Namely, changing the declaration of x to, say, an integer constant would

make the program well typed. Another error source is given by the two function

applications of f and g. For example, replacing both f and g by print string

would yield another well-typed program.

Now consider a ranking criterion that assigns each program location equal

weight 1. Then the cumulative weight of the first error source is 1, while the

weight of the second error source is 2. Our algorithm would therefore report the

first error source and discard the second one. This simple ranking criterion thus

minimizes the number of program locations that need to be modified so that the

program becomes well typed. Later in this chapter, we discuss more elaborate

ranking criteria that are useful for type error localization.

4.1.2 Reduction to MaxSMT

Next, we show how the reduction to weighted MaxSMT works through another

example. Consider the following OCaml program:

87

let x = "hi" in not x

Clearly, the program is not well typed as the operation not on Booleans is applied

to a variable x of type string.

Our constraint generation procedure takes the program and generates a set

of typing assertions using the OCaml type inference rules. This set of assertions

constitutes a typing constraint. A formal description of the constraint generation

can be found in § 4.3.2. For our example program, the constraint generation

produces the following set of assertions:

αnot = fun(bool, bool) [Def. of not] (4.1)

αapp = fun(αi, αo) not x (4.2)

αapp = αnot not (4.3)

αi = αx x (4.4)

αx = string x = "hi" (4.5)

The constraint encoding preserves the mapping between assertions and associated

program locations. That is, each assertion comes from a particular program ex-

pression shown to the right of the assertion. The assertion (4.1) is generated from

the definition of the function not in OCaml’s standard library [55]. It specifies the

type αnot of not as a function type from bool to bool. The assertions (4.2) to (4.4)

specify the types of all subexpressions of the expression not x in the program.

Finally, the assertion (4.5) specifies the type of x, according to its declaration.

The generated typing constraint is interpreted in the theory of inductive data

types, which is supported by many SMT solvers [5, 21, 23]. In this theory, the

terms αapp , αi, αo, αnot , and αx stand for type variables, while the terms bool

88

and string are type constants. The function fun is a type constructor that maps

an argument type αi and a result type αo to a function type from αi to αo. The

theory interprets fun as an injective constructor. Hence, the assertions (4.1) to (4.3)

together imply αi = bool. Type constants such as bool and string are interpreted

as pairwise distinct values. The assertions (4.4) and (4.5) imply αi = string, so we

conclude bool = string together with the assertions (4.1) to (4.3) – a contradiction.

Consequently, the generated typing constraint is unsatisfiable, confirming there is

a type error.

As in the previous example, we first assume a ranking criterion that assigns

each program location equal weight 1. The problem of finding the minimum error

sources in the program is then encoded into a weighted MaxSMT problem by

assigning weight 1 to each assertion in the generated constraint. The weighted

MaxSMT solver computes all subsets of assertions in the typing constraint that

are satisfiable and have maximum cumulative weight. Thus, the complements of

those sets encode the minimum error sources.

For the running example, there are altogether five complement sets of maximum

satisfiable subsets, each consisting of a single assertion (4.1)-(4.5). Removing any

single assertion leaves the remaining assertions satisfiable. In other words, by

fixing the program expression associated with the removed assertion, the input

program becomes well typed. For example, consider the assertion (4.3). Removal

of that assertion can be interpreted as using a different function instead of not in

the application not x. Removal of the assertion (4.1) can be seen as changing the

internals of not so that it applies to string values. Hence, the meaning associated

with removing a certain assertion can be utilized for suggesting possible error fixes.

89

4.1.3 Ranking Criteria

Not all error sources are equally useful for fixing the type error. In the previous

example, it is unlikely that the true error source is located in the implementation

of the function not, since it is part of the standard library. Compilers might want

to eliminate such error sources from consideration. Similarly, the error source

corresponding to the removal of assertion (4.2) implies that the programmer should

use some other expression than not x in the program. This error source seems

less specific than the remaining error sources, so compilers might want to rank

it as less likely. In general, compilers might want to rank error sources by some

definition of usefulness. In our framework, such rankings are encoded by assigning

appropriate weights to program locations, and hence assertions in the generated

typing constraint.

Hard Assertions. One way of incorporating ranking criteria is to specify that

certain assertions must hold, no matter what. Such assertions are commonly re-

ferred to as hard assertions. Assertions that the MaxSMT solver is allowed to

remove from the assertion set are called soft. The compiler may, for instance, an-

notate all assertions as hard that come from the definitions of functions provided

in the standard library. This would encode that all type error sources must be lo-

cated in user-defined functions. If we apply this criterion to our previous example,

we annotate the assertion (4.1) as hard. This eliminates the error source implying

that the implementation of not must be modified. Other assertions that might be

considered hard are assertions that come from user-provided type annotations in

the program.

90

Weighted Clauses. Our approach supports more sophisticated ranking crite-

ria than distinguishing only between hard and soft assertions. Such criteria are

encoded by assigning weights to assertions. Going back to our running example,

compilers might favor error sources consisting of smaller program expressions. For

instance, each assertion can be assigned a weight equal to the size of the corre-

sponding expression in the abstract syntax tree. This way, not x in our previous

example is not reported, as desired.

To demonstrate the power of weighted assertions, we consider another example

from the student benchmarks in [54], which served as the motivating example for

the type error localization technique presented in [97]:

1 let f(lst:move list):

2 (float*float) list = ...

3 let rec loop lst x y dir acc =

4 if lst = [] then

5 acc

6 else

7 print_string "foo"

8 in

9 List.rev

10 (loop lst 0.0 0.0 0.0 [(0.0,0.0)])

The standard OCaml compiler reports a type error in the shaded expression on

line 10. However, the actual error cause lies in the misuse of the print string

function on line 7, as reported by the authors of [97]. The technique of Zhang

and Myers [97] correctly reports the expression on line 7 as the most likely error

cause. With the ranking criteria that we introduced so far, our algorithm generates

91

two error sources that both have minimum weight. These error sources can be

interpreted as follows:

1. Replace the function print string on line 7.

2. Replace the function loop on line 10.

However, the second error source is not likely the actual cause of the error: using

some other function than loop on line 10 would mean that the loop function is

not used at all in the program. In fact, the OCaml compiler would generate a

warning for the fixed program.

The compiler can thus analyze the produced error sources and find those sources

that correspond to the removal of entire functions from the program. Assertions

associated with such error sources can then be set as hard. In the running example,

the solver will then produce just a single error source, indicating the actual error

cause.

This additional ranking criterion can also be encoded directly in the typing

constraint without a second round of interaction with the solver. Suppose the

program contains a user-defined function f whose type is described by a type

variable αf . Suppose further that f is used n times in the program and for i,

1 ≤ i ≤ n, let the type variable αi indicate the type imposed on f by the context

of the i-th usage of f. Then we can add the following additional hard assertion to

the typing constraint: α1 = αf ∨ . . . ∨ αn = αf . This assertion expresses that f

needs to be used at least once, effectively encoding the additional criterion.

92

4.2 Problem

We now formally define the problem of computing minimum error sources for a

given ranking criterion.

Language and Semantics. For the purposes of type error localization, we as-

sume in this chapter that constants of our language besides Booleans also include

integers n ∈ Int and a constant hole ⊥. Please note that the constant ⊥ here plays

a different role than the same symbol in Chapter 3. We explain the role of holes in

more detail below. We are also only interested in non-recursive lambda abstrac-

tions λx.e. This simplification is introduced for presentation purposes without

loss of generality. We name the resulting language λ⊥. We also assume standard

operational semantics for λ⊥.

As for other Hindley-Milner type systems, type inference is decidable for λ⊥.

Expressions therefore do not require explicit type annotations. Typing judgments

take the form Γ ` e : τ . We say that a program p ∈ λ⊥ is well typed iff there exists

a type σ such that ∅ ` p : σ.

The actual typing rules are shown in Figure 4.2. The rules are standard, with

the exception of the rule [Hole], which we describe in more detail. The value⊥ has

the polytype ∀α.α. Therefore, the typing rule [Hole] assigns a fresh unconstrained

type variable to each usage of⊥. Intuitively, ⊥ is a placeholder for another program

expression. It can be safely used in any context without causing a type error.

Changes to hole expressions in an ill-typed program cannot make the program

well typed1.

1A similar concept was previously used in [54] where a hole in an OCaml program is repre-
sented by an expression that raises an exception.

93

x : ∀~α.τ ∈ Γ ~β new

Γ ` x : τ [~β/~α]
[Var] Γ ` e1 : τ1 → τ2 Γ ` e2 : τ1

Γ ` e1 e2 : τ2
[App]

b ∈ Bool
Γ ` b : bool

[Bool]
Γ.x : τ1 ` e : τ2

Γ ` λx.e : τ1 → τ2
[Abs]

Γ ` e1 : bool Γ ` e2 : τ Γ ` e3 : τ
Γ ` e1 ? e2 : e3 : τ

[Cond] n ∈ Int
Γ ` n : int

[Int]

Γ ` e1 : τ1 Γ.x : ∀~α.τ1 ` e2 : τ2 ~α = fv(τ1) \ fv(Γ)

Γ ` let x = e1 in e2 : τ2
[Let]

α new
Γ ` ⊥ : α

[Hole]

Figure 4.2: Typing rules for λ⊥

Minimum Error Sources. Without loss of generality, we assume that locations

of expressions are implemented as sequences of natural numbers. That is, we call

a path ` ∈ N∗ in the abstract syntax tree representation of e a location of e. Now,

let mask be the function that maps an expression e and a location ` ∈ Loc(e) to

the expression obtained from e by replacing e(`) with ⊥. We extend mask to sets

of locations in the expected way.

Definition 1 (Error source). Let p be a program. A set of locations L ⊆ Loc(p)

is an error source of p if

1. mask(p, L) is well typed

2. for all strict subsets L′ of L, mask(p, L′) is not well typed.

A ranking criterion allows the compiler to favor error sources of particular

interest by assigning appropriate weights to locations. Formally, a ranking criterion

94

is a function R that maps a program p to a partial function R(p) : Loc(p) ⇀ N+.

The locations in Loc(p)\dom(R(p)) are considered hard locations, i.e., R disregards

these locations as causes of type errors. We extend R(p) to a set of locations

L ⊆ Loc(p) by defining

R(p)(L) =
∑

`∈dom(R(p))∩L

R(p)(`) .

Minimum error sources are error sources that minimize the given ranking criterion.

Definition 2 (Minimum error source). Let R be a ranking criterion and p a pro-

gram. An error source L ⊆ Loc(p) is called minimum error source of p subject to

R if for all other error sources L′ of p, R(p)(L) ≤ R(p)(L′).

We are interested in the problem of finding a minimum error source for a given

program p subject to a given ranking criterion R, respectively, finding all such

minimum error sources.

4.3 Algorithm

In this section, we present our algorithm for computing the minimum error sources.

More precisely, we show how the problem of finding minimum type error sources

can be reduced to the weighted MaxSMT problem that can in turn be solved off-

the-shelf using automated theorem provers. We first formally define the weighted

MaxSMT problem and then explain the actual reduction.

Weighted MaxSMT. The MaxSAT problem takes as input a finite set of propo-

sitional clauses C and finds an assignment that maximizes the number of clauses

K that are simultaneously satisfied [56]. MaxSAT can alternatively be viewed as

95

finding the largest subset C ′ of clauses C such that C ′ is satisfiable and C ′ is a

maximum satisfiable subset, |C ′| = K. Partial MaxSAT partitions C into hard and

soft clauses. The hard clauses CH are assumed to hold and the goal is to find a

maximizing subset C ′ of the soft clauses such that C ′ ∪ CH is satisfiable. Weighted

Partial MaxSAT, for simplicity referred to as only weighted MaxSAT, adds an in-

teger weight wi = w(Ci) to each soft clause Ci and asks for a satisfiable subset C ′

that maximizes the weighted score:

∑
Ci∈C′

wi subject to CH ∪ C ′ is satisfiable. (4.6)

The MaxSMT problem generalizes MaxSAT from working over propositional

clauses to a set of assertion formulas A where each assertion belongs to a fixed

first-order theory T . Most concepts directly generalize from MaxSAT to MaxSMT:

satisfiability is replaced by Satisfiability Modulo Theories [6], partial MaxSMT

has hard and soft assertions (AH and AS), weighted partial MaxSMT assigns an

integer weight to each soft assertion. We represent weighted MaxSMT instances

as tuples (w,AH ,AS) where w is the weight function assigning the weights to the

soft assertions.

Theory of Inductive Data Types. Our reduction to the weighted MaxSMT

problem generates a typing constraint from the given input program. This con-

straint is satisfiable iff the input program is well typed. The constraint is then

passed to the MaxSMT solver, which computes the minimum error sources. The

generated typing constraint hence needs to be expressed in terms of assertions that

are interpreted in an appropriate first order theory. We use the theory of inductive

data types [7] for this purpose. In this theory, we can define our own inductive

96

data types and then state equality constraints over the terms of that data type.

For our encoding, we define an inductive data type Types that represents the set

of all ground monotypes of λ⊥:

t ∈ Types ::= int | bool | fun(t, t)

Here, the term constructor fun is used to encode the ground function types.

The terms in Types are interpreted in the models of the theory of inductive

data types. A model of this theory is a first-order structure that interprets the

type constructors such that the following axioms are satisfied:

int 6= bool

∀α, β ∈ Types. fun(α, β) 6= int ∧ fun(α, β) 6= bool

∀α, β, γ, δ ∈ Types. fun(α, β)= fun(γ, δ)⇒ α=γ ∧ β=δ

That is, the term constructor fun must be interpreted by an injective function,

and the interpretation of the terms int and bool is distinct from the interpretation

of all other terms. Hence, the axioms exactly encode the equality relation on

ground monotypes of λ⊥. For the type systems of actual languages such as OCaml,

we extend Types with additional type constructors, e.g., to encode user-defined

algebraic data types in OCaml programs.

Overview of the Reduction. Next, we describe the actual reduction to weighted

MaxSMT. In the following, let p be the program under consideration and let R be

the ranking criterion of interest.

At the heart of our reduction is a constraint generation procedure that traverses

p and generates a set of assertions in our theory of Types. These assertions encode

97

the typing rules shown in Figure 4.2. The constraint generation procedure can

produce multiple assertions associated with a single location ` of p. Suppose R

considers a location ` to be soft. That is, while searching for minimum error

sources the solver must consider two possibilities. If ` is in the minimum error

source, then none of the assertions generated from the expression p(`) need to be

satisfied. If on the other hand ` is not in the minimum error source, then the

type of the expression p(`) must be consistent with its context. That is, all the

assertions directly associated with ` must be satisfied simultaneously. However,

some of the assertions generated from subexpressions of p(`) may be dropped

because the corresponding locations may still be in the minimum error source.

Thus, to properly encode the problem of finding minimum error sources, we need

to link the assertions of location ` together so that the solver considers them as a

single logical unit. Also, we need to capture the relationship between the locations

according to the structure of p. For this purpose, we associate a propositional

variable T` with every location `. By setting T` to true, the solver decides that

T` is not in the minimum error source. That is, each assertion associated with a

location `o takes the following form:

T`n ⇒ · · · ⇒ T`1 ⇒ T`0 ⇒ t1 = t2 (4.7)

Here, `1, . . . , `n are the locations that are reached along the path to `0 in p (i.e.,

all proper prefixes of `0). The terms t1 and t2 are terms in our theory of Types.

These terms may include logical variables that need to be unified by the MaxSMT

solver. Note that the assertion (4.7) ensures that if any of the T`i is set to false

(i.e., `i is in the minimum error source), then all the assertions that depend on `0

are immediately satisfied. In order to simplify the presentation in § 4.1, we have

98

omitted the additional propositional variables in our discussion of the examples.

The assertions that encode the typing rules are considered hard. To reduce

the problem of finding minimum error sources to weighted MaxSMT, we add to

these hard assertions an additional set of clauses, each of which consists of one

of the propositional variables T`. For each `, if R(p)(`) is defined, the clause T`

is soft with associated weight R(p)(`). Otherwise, T` is hard. Each solution to

this weighted MaxSMT instance then yields a minimum error source by taking all

locations ` whose clause T` is not in the solution set.

We now explain these steps in more detail, starting with the generation of the

assertions that encode the typing rules.

4.3.1 Assertion Generation

We build on existing work for constrained-based type checking [87, 1, 71] and adapt

it for our purposes.

We formalize the assertion generation in terms of a constraint typing relation

A,Γ ` p : α. Here, A is a set of typing assertions of the form (4.7). The rules

that define the constraint typing relation are given in Figure 4.3. They are de-

fined recursively on the structure of expressions. To relate the generated typing

assertions to p’s locations, we assume that every expression is annotated with its

location ` in p. Note that for a set of assertions A, we write T` ⇒ A to mean

{T` ⇒ A | A ∈ A}.

We focus on the rules [A-Let] and [A-Var] as they are the most complex

ones. The [A-Let] rule handles let bindings let x = e1 in e2 by first computing a

set of typing assertions A1 for e1. The assertions in A1 encode all typing assertions

imposed by e1 under the current environment Γ. In particular, they capture the

99

A,Γ.x : α ` e : β γ new

T` ⇒ ({γ = fun(α, β)} ∪ A),Γ ` (λx.e)` : γ
[A-Abs]

A1,Γ ` e1 : α A2,Γ ` e2 : β γ new

T` ⇒ ({α = fun(β, γ)} ∪ A1 ∪ A2),Γ ` (e1 e2)` : γ
[A-App]

A1,Γ ` e1 : α A2,Γ ` e2 : β A3,Γ ` e3 : γ δ new

A = {(T`1 ⇒ α = bool), (T`2 ⇒ β = δ), (T`3 ⇒ γ = δ)} ∪ A1 ∪ A2 ∪ A3

T` ⇒ A,Γ ` (e`11 ? e`22 : e`33)` : δ
[A-Cond]

α new
∅,Γ ` ⊥ : α

[A-Hole]
x : ∀~α.(A ⇒ α) ∈ Γ ~β, γ new

T` ⇒ ({γ = α[~β/~α]} ∪ A[~β/~α]),Γ ` x` : γ
[A-Var]

b ∈ Bool α new

{T` ⇒ α = bool},Γ ` b` : α
[A-Bool]

n ∈ Int α new

{T` ⇒ α = int},Γ ` n` : α
[A-Int]

A1,Γ ` e1 : α1 A2,Γ.x : ∀~α.(A1 ⇒ α1) ` e2 : α2 ~α = fv(α) \ fv(Γ) ~β, γ new

T` ⇒ ({γ = α2} ∪ A1[~β/~α] ∪ A2),Γ ` (let x = e1 in e2)` : γ
[A-Let]

Figure 4.3: Rules defining the constraint typing relation for λ⊥

assertions on the type of e1 itself, which is described by a fresh type variable α1.

To compute the typing assertions A2 for e2, the variable x is added to the typing

environment Γ. The type of x is described by a typing schema of the form:

∀~α.(A1 ⇒ α1)

The typing schema is needed to properly handle polymorphism. It remembers the

set of assertions A1 along with the type variable α1 that represents the type of e1

and x. Note that the schema quantifies over all type variables ~α that have been

freshly introduced when analyzing e1 (including α1). Whenever x is used inside

the body e2 of the let binding, the [A-Var] rule instantiates A1 by replacing the

100

type variables ~α with fresh type variables ~β. The instantiated copy is then added

to the other generated assertions. The fresh instances of A1 ensure that each usage

of x in e2 is consistent with the typing assertions imposed by e1.

The following lemma states the correctness of the constraint typing relation.

Lemma 21. Let p be a program, L ⊆ Loc(p), A a set of typing assertions, and α

a type variable such that A, ∅ ` p : α. Then mask(L, p) is well typed iff A ∪ {T` |

` /∈ L } is satisfiable in the theory of Types.

The proof of Lemma 21 closely follows that of [87, Lemma 2], modulo reasoning

about the auxiliary propositional variables.

4.3.2 Reduction to Weighted Partial MaxSMT

To compute minimum error sources, we generate a weighted MaxSMT instance

I (p,R) = (w,AH ,AS) as follows. Let A be a set of assertions such that A, ∅ ` p : α

for some type variable α. Then define:

AH = A ∪ {T` | ` /∈ dom(R(p)) }

AS = {T` | ` ∈ dom(R(p)) }

w(T`) = R(p)(`), for all T` ∈ AS

Let S be a solution of I (p,R). Then define E(S) = { ` ∈ Loc(p) | T` /∈ S }. The

following theorem states the correctness of our reduction.

Theorem 5. Let p be a program and R a ranking criterion. Then L ⊆ Loc(p) is

a minimum error source of p subject to R iff there exists a solution S of I (p,R)

such that L = E(S).

101

(let f = ... in ...)`0

(λxy. y x)`1

(λy.y x)`2

(y x)`3

y`4 x`5

(f 1 0)`6

(f 1)`7 0`8

1`10f `9

Figure 4.4: Labeled abstract syntax tree for the program p

We conclude the presentation of our algorithm with an example that demon-

strates how our approach deals with polymorphic functions.

Example 4. Let p be the following ill-typed program:

let f = λx y. y x in f 1 0

The most general type that can be inferred for f from its defining expression is

f : ∀αβ. α→ (α→ β)→ β .

However, the type of 0 is int and not a function type. Hence, applying 0 as second

argument to f in the body of the let violates the typing rules.

Figure 4.4 shows the abstract syntax tree of the program p with each node

labeled by its location. Applying the constraint generation rules from Figure 4.3

then yields the following set of assertions A:

102

T`0 ⇒ {α0 = α6, Cf (α′′1, α
′′
2, α

′′
3, α

′′
4, α

′′
5, β
′′
1 , β

′′
2),

T`6 ⇒ {α7 = fun(α8, α6),

T`7 ⇒ {α9 = fun(α10, α7),

T`8 ⇒ α8 = int,

T`9 ⇒ {α9 = α′′1,

Cf (α′1, α
′
2, α
′
3, α
′
4, α
′
5, β
′
1, β
′
2)}

},

T`10 ⇒ α10 = int}}

where

Cf (α1, α2, α3, α4, α5, β1, β2) ≡

T`1 ⇒ { α1 = fun(β1, α2),

T`2 ⇒ { α2 = fun(β2, α3),

T`3 ⇒ { α4 = fun(α5, α3),

T`4 ⇒ α4 = β2,

T`5 ⇒ α5 = β1}}}

Note that we introduced a predicate Cf to serve as a shorthand for the instantiated

assertions that are associated with the bound variable f .

The assertions in A are satisfiable in Types if one of the following location

variables is assigned false: T`4 , T`8 , T`9 , or any other T`i where `i is on the path to

one of the locations `4, `8, or `9.

Now consider the ranking criterion R that defines `9 hard and all other locations

`i soft with rank R(p)(`i) = ni, where ni is the number of nodes in the subtree of

the AST whose root `i identifies. Solving the weighted MaxSMT instance I (p,R)

yields two minimum error sources, each of which contains one of the locations `4

and `8.

103

4.4 Implementation and Evaluation

We have implemented our weighted MaxSMT based algorithm for computing min-

imum type error sources for the Caml subset of the OCaml language and evaluated

it on the OCaml benchmark suite from [54]. The implementation of our algorithm

was able to find a minimum error source for 98% of the benchmarks in a reasonable

time using a typical ranking criterion.

4.4.1 Implementation

Our implementation bundles together the EasyOCaml [24] tool and the MaxSMT

solver νZ [11, 10]. The νZ solver is available as a branch of the SMT solver

Z3 [21]. We use EasyOCaml for generating typing constraints for OCaml programs.

Once we convert the constraints to the weighted MaxSMT instances, we use Z3’s

weighted MaxRes [66] algorithm to compute a minimum error source.

Assertion Generation. EasyOCaml implements the type error localization ap-

proach described in [33] for a subset of the OCaml language. Similar to our ap-

proach, EasyOCaml uses constraint solving for error localization. We tapped into

the corresponding code of EasyOCaml and modified it to produce the weighted

MaxSMT instances from the input program. The implementation begins by run-

ning EasyOCaml on the input program. EasyOCaml produces typing assertions,

which we annotate with the locations of the corresponding program expressions in

the input source code. These assertions only encode the typing relation. In addi-

tion, we output the structure of the input program in terms of its abstract syntax

tree edges where the nodes are the locations associated with the typing assertions.

This information is sufficient to generate the final typing constraint as described

104

in § 4.3.2. In our evaluation, we used a fixed ranking criterion that is defined as

follows: (1) all assertions that come from expressions in external libraries are set

as hard; (2) all assertions that come from user-provided type annotations are set

as hard; and (3) all remaining assertions have a weight equal to the size of the

corresponding expression in the abstract syntax tree. We encode the generated

assertions in an extension of the SMT-LIB 2 language [8] to handle the theory of

inductive data types.

Solving the Weighted MaxSMT Instances. We compute the weighted par-

tial MaxSMT solution for the encoded typing constraints by using Z3’s weighted

partial MaxSMT facilities. In particular, we configure the solver to use the MaxRes [66]

algorithm for solving the weighed partial MaxSMT problem.

4.4.2 Evaluation

We now discuss in more details the effectiveness of minimum error sources as well

as the efficiency of computing them using our implementation.

Quality of Computed Minimum Error Sources. In our first experiment, we

assessed how good the produced minimum error sources are at pinpointing the true

error source. To this end, we chose 20 programs from the benchmark suite at ran-

dom, identified the true error source in each program, and compared it against the

first minimum error source that was computed by our implementation. As men-

tioned earlier, we used the ranking criterion that favors error sources of smaller

code size and that excludes possible errors sources coming from external functions

and type annotations. To identify the true error source we used additional infor-

105

mation that was provided by the benchmark suite. Namely, the benchmark suite

does not consist of individual programs. Instead, it consists of sequences of mod-

ified versions of programs. Each such program sequence was recorded in a single

session of interactions between a student and the OCaml compiler. By comparing

subsequent program versions within one sequence, we can identify the changes that

the student made to fix the reported type errors and thereby infer the true error

sources.

We classified the result of the comparison as either “hit”, “close”, or “miss”.

Here, “hit” means that the computed minimum error source exactly matches the

true error source, and “miss” means that there is no relationship between the two.

A “close” result means that the locations in the computed minimum error source

were close enough to the true error locations so that a programmer could easily

understand and fix the type error. For example, if the minimum error source

reported the function in a function application instead of the argument of the

application (or vice versa), then we considered the result to be close to the true

error source.

We then repeated the same experiment but this time using OCaml’s type

checker instead of our implementation. For each program, we recorded the re-

sult of the two experiments. Figure 4.5 shows the number of obtained result pairs,

aggregated over the 20 benchmark programs. As can be seen, on the randomly

chosen programs, our approach identifies the true error source more often than

the OCaml type checker, even though we were using a rather simplistic ranking

criterion. Specifically, our approach missed the true error source in only three

programs, whereas OCaml did so in six programs. Despite the subjective nature

of true error sources, we believe that this experiment shows the potential of our

106

AST size criterion OCaml # of outcomes
hit miss 3
hit close 2
hit hit 4

close miss 1
close close 6
close hit 1
miss miss 2
miss close 1
miss hit 0

Figure 4.5: Quality of AST ranking criterion compared to OCaml’s type checker
in pinpointing the true error source in 20 benchmark programs

approach to providing helpful error reports to the user.

Computing minimum error sources. The last experiment we performed had

the goal of measuring the time spent computing the minimum error sources. We

broke the student benchmark suite consisting of 356 programs into 8 groups ac-

cording to their size in the number of lines of code. The first group includes

programs consisting of 0 and 50 lines of code, the second group includes programs

of size 50 to 100, and so on as shown in the first column of Figure 4.6. The num-

bers in parenthesis indicate the number of programs in each group. The figure

shows statistics about the execution time for computing a minimum error source.

We show the minimum, average, and maximum execution times for each program

family. As it can be seen, the execution times are reasonably small. However,

for some programs the framework spends around a dozen seconds computing the

solution.

The slowdown in our implementation mostly occurs in the cases where a huge

number of constraints has been generated. This is confirmed by statistics shown in

Figure 4.7. As it can be seen, even for small to moderate programs the number of

107

Code size

tim
e

(s
ec

)

0

2

4

6

8

10

12

0-5
0 (4

7)

50-1
00 (1

02)

100-1
50 (6

5)

150-2
00 (5

7)

200-2
50 (5

3)

250-3
00 (2

8)

300-3
50 (3

)

350-4
00 (1

)

min avg max

Figure 4.6: Maximum, average, and minimum execution times for computing a
minimum error source

Code size

A
ss

er
tio

ns
 (t

ho
us

an
ds

)

0

5

10

15

20

0-50
(47)

50-100
(102)

100-150
(65)

150-200
(57)

200-250
(53)

250-300
(28)

300-350
(3)

350-400
(1)

min avg max

Figure 4.7: Maximum, average, and minimum number of generated assertions (in
thousands) for computing a minimum error source

generated assertions can reach more than ten thousand. In general, the number of

assertions does not grow linearly with the size of the program. In fact, our tool can

108

generate an exponential number of assertions for certain programs. As we discuss

next, this phenomena is tied to an inherent property of polymorphic typing.

More experiments and accompanying statistics can be found in the original

paper [72].

4.5 Taming The Exponential Explosion

As observed in the previous section, the number of typing constraints can grow

exponentially in the size of the program. This is because the constraints associated

with polymorphic functions are duplicated each time these functions are used, as

illustrated in the discussion of Example 4.

Exponential Explosion Problem. Let us again briefly provide the intuition

behind copying constraints for polymorphic functions. Consider the typing con-

straints for the OCaml function let f (a, b, c) = (a, c) that simply takes a

first and last element of a triple and returns them as a pair.

αf = fun(αi, αo)

αi = triple(αa, αb, αc)

αo = pair(αa, αc)

The above constraints state that the type of f, represented by the type variable

αf , is a function type that accepts some triple and returns a pair whose constituent

types are equal to the type of the first and last component of that triple. When

a polymorphic function, such as f, is called in the program, the associated set

of typing constraints needs to be instantiated and the new copy has to be added

to the whole set of typing constraints. Instantiation of typing constraints involves

109

copying the constraints and replacing free type variables in the copy with fresh type

variables. If the constraints of polymorphic function were not freshly instantiated

for each usage of the function, the same type variable would be constrained by the

context of each usage, potentially resulting in a spurious type error. Introducing

a fresh copy of typing constraints for functions is a standard approach for dealing

with polymorphism in purely constraint based type inference and checking [74].

The exponential explosion in the constraint size does not seem to be avoid-

able. The type inference problem for polymorphic type systems is known to be

EXPTIME-complete [57, 49]. However, in practice, compilers successfully avoid

the explosion by computing the principal type [20] of each polymorphic function,

such as the one shown in Example 4, and then instantiating a fresh copy of this

type for each usage. The resulting constraints are much smaller in practice. Since

these constraints are equisatisfiable with the original constraints, the resulting al-

gorithm is a decision procedure for the type checking problem [20]. Unfortunately,

this technique cannot be applied immediately to the optimization problem of type

error localization. If the minimum cost error source is located inside of a poly-

morphic function, then abstracting the constraints of that function by its principle

type will hide this error source. Thus, this approach can yield incorrect results.

Iterative Expansion. In this section, we propose an improved reduction to the

MaxSMT problem that abstracts polymorphic functions by principal types and

still guarantees the optimum solution. Our reduction is based on the optimistic

assumption that type error sources only involve few polymorphic functions, even for

large programs. Our new reduction to MaxSMT relies on principal type abstraction

that is done in such a way that all potential error sources involving the definition

110

of an abstracted function are represented by a single error source whose cost is

smaller or equal to the cost of all these potential error sources. The algorithm

then iteratively computes minimum error sources for abstracted constraints. If

an error source involves a usage of a polymorphic function, the corresponding

instantiations of the principal type of that function are expanded to the actual

typing constraints. Usages of polymorphic functions that are exposed by the new

constraints are expanded if they are relevant for the minimum error source in the

next iteration. The algorithm eventually terminates when the computed minimum

error source no longer involves any usages of abstracted polymorphic functions.

Such error sources are guaranteed to have minimum cost for the fully expanded

constraints, even if the final constraint is not yet fully expanded.

Our core technical contribution is a refinement of the typing relation introduced

in § 4.3.1. The novelty of this new typing relation is the ability to specify a set of

variable usage locations whose typing constraints are abstracted as the principal

type of the variable. We then describe an algorithm that iteratively uses this typing

relation to find a minimum error source while expanding only those principal type

usages that are relevant for the minimum source.

4.5.1 Assertion Generation

For the rest of this section, we assume a fixed program p ∈ λ⊥. We first formally

introduce the notion of principal types.

Principal Types. Standard type inference implementations handle expressions

of the form let x = e1 in e2 by computing the principal type of e1, binding x to

the principal type σp in the environment Γ.x : σp, and proceeding to perform type

111

Π.x : α,Γ.x : α `L e : β | A γ new

Π,Γ `L (λx.e)` : γ | {T` ⇒ ({γ = fun(α, β)} ∪ A)}
[A-Abs]

Π,Γ `L e1 : α | A1 Π,Γ `L e2 : β | A2 γ new

Π,Γ `L (e1 e2)` : γ | {T` ⇒ ({α = fun(β, γ)} ∪ A1 ∪ A2)}
[A-App]

Π,Γ `L e1 : α1 | A1 Π,Γ `L e2 : α2 | A2 Π,Γ `L e3 : α3 | A3 γ new

A4 = {(T`1 ⇒ α1 = bool), (T`2 ⇒ α2 = γ), (T`3 ⇒ α3 = γ)}

Π,Γ `L (e`11 ? e`22 : e`33)` : γ | {T` ⇒ (A1 ∪ A2 ∪ A3 ∪ A4)}
[A-Cond]

α new
Π,Γ `L ⊥ : α | ∅ [A-Hole]

b ∈ Bool α new

Π,Γ `L b` : α | {T` ⇒ α = bool}
[A-Bool]

n ∈ Int α new

Π,Γ `L n` : α | {T` ⇒ α = int}
[A-Int]

` ∈ L x : ∀~α.(AV α) ∈ Γ ~β, γ new

Π,Γ `L x` : γ | {T` ⇒ ({γ = α[~β/~α]} ∪ A[~β/~α])}
[A-Var-Exp]

` 6∈ L x : ∀~α.(AV α) ∈ Π ~β, γ new

Π,Γ `L x` : γ | {T` ⇒ ({γ = α[~β/~α]} ∪ A[~β/~α])}
[A-Var-Prin]

`1 ∈ L

Π,Γ `L e1 : α1 | A1 ~α = fv(A1) \ fv(Γ) τexp = ∀~α.(A1 V α1)

Π,Γ.x : τexp `L e2 : α2 | A2
~β, γ new

Π,Γ `L (let x = e`11 in e2)` : γ | {T` ⇒ ({γ = α2} ∪ A1[~β/~α] ∪ A2)}
[A-Let-Exp]

`1 6∈ L

ρ(Π, e1) = ∀~δ.τp α new τprin = ∀α,~δ.({P`1 ⇒ α = τp}V α)

Π,Γ `L e1 : α1 | A1 ~α = fv(A1) \ fv(Γ) τexp = ∀~α.(A1 V α1)

Π.x : τprin, Γ.x : τexp `L e2 : α2 | A2
~β, γ new

Π,Γ `L (let x = e`11 in e2)` : γ | {T` ⇒ ({γ = α2} ∪ A1[~β/~α] ∪ A2)}
[A-Let-Prin]

Figure 4.8: Rules defining the refined constraint typing relation for λ⊥

112

inference on e1 [20]. Given an environment Γ, the type σp is the principal type for

e if Γ ` e : σp and for any other σ such that Γ ` e : σ then σ is a generic instance

of σp. Note that a principal type is unique, subject to e and Γ, up to the renaming

of bound type variables in σp. We define ρ to be a partial function accepting an

expression e and a typing environment Γ where ρ(Γ, e) returns a principal type of

e subject to Γ. If e is not typeable in Γ, then (Γ, e) 6∈ dom(ρ). We assume that

the principal type function ρ is precomputed for p. We do not provide a detailed

algorithms for computing ρ since it is well-known from the literature. For instance,

the ρ function can be implemented using the classical W algorithm [20].

The main idea behind our improved algorithm is to iteratively discover which

principal type usages must be expanded to compute a minimum error source. The

technical core of the algorithm is a new typing relation that produces typing con-

straints subject to a set of locations where principal type usages must be expanded.

As before, we use A to denote a set of logical assertions in the signature of Types

that represent typing constraints. Henceforth, when we refer to types we mean

terms over Types. Expanded locations are a set of locations L such that L ⊆ Loc(p).

Intuitively, this is a set of locations corresponding to usages of let variables x

where the typing of x in the current iteration of the algorithm is expanded into

the corresponding typing constraints. Those locations of usages of x that are not

expanded will treat x using its principal type. We also introduce a set of locations

whose usages must be expanded L0. We will always assume L0 ⊆ L. Formally,

L0 is the set of all program locations in p except the locations of well-typed let

variables and their usages. This definition enforces that usages of variables that

have no principal type are always expanded. In summary, L0 ⊆ L ⊆ Loc(p).

We define a typing relation `L over (Π,Γ, e, α,A) which is parameterized by

113

L. The relation is given by judgments of the form:

Π,Γ `L e : α | A.

Intuitively, the relation holds iff expression e in p has type α under typing envi-

ronment Γ if we solve the constraints A for α. (We make this statement formally

precise later.) The relation depends on L, which controls whether a usage of a

let variable is typed by the principal type of the let definition or the expanded

typing constraints of that definition.

For technical reasons, the principal types are computed in tandem with the

expanded typing constraints. This is because both the expanded constraints and

the principal types may refer to type variables that are bound in the environment,

and we have to ensure that both agree on these variables. We therefore keep track

of two separate typing environments:

• the environment Π binds let variables to the principal types of their defining

expressions if the principal type exists with respect to Π, and

• the typing environment Γ binds let variables to their expanded typing con-

straints (modulo L).

The typing relation ensures that the two environments are kept synchronized.

To properly handle polymorphism, the bindings in Γ are represented by typing

schemas:

x : ∀~α.(AV α)

The schema states that x has type α if we solve the typing constraints A for

the variables ~α. To simplify the presentation, we also represent bindings in Π

as type schemas. Note that we can represent an arbitrary type t by the schema

114

∀α.({α = t} V α) where α /∈ fv(t). The symbol V is used here to suggest, but

keep syntactically separate, the notion of logical implication ⇒ that is implicitly

present in the schema.

The typing relation Π,Γ `L e : α | A is defined in Figure 4.8. It can be seen as

a constraint generation procedure that goes over an expression e at location ` and

generates a set of typing constraints A. Again, we associate with each location

` a propositional variable T` for the same purpose of identifying minimum error

sources as defined in § 4.2.

The rules A-Let-Prin and A-Let-Exp govern the computation and binding

of typing constraints and principal types for let definitions (let x = e`11 in e2)`.

If e1 has no principal type under the current environment Π, then `1 ∈ L by

the assumption that L0 ⊆ L. Thus, when rule A-Let-Prin applies, ρ(Π, e1) is

defined. The rule then binds x in Π to the principal type and binds x in Γ to the

expanded typing constraints obtained from e1.

The [A-Let-Prin] rule binds x in both Π and Γ as it is possible that in the

current iteration some usages of x need to be typed with principal types and some

with expanded constraints. For instance, our algorithm can expand usages of a

function, say f , in the first iteration, and then expand all usages of, say g, in the

next iteration. If g’s defining expression in turn contains calls to f , those calls will

be typed with principal types. This is done because there may exist a minimum

error source that does not require that the calls to f in g are expanded.

After extending the typing environments, the rule recurses to compute the

typing constraints for the body e2 with the extended environments. Note that the

rule introduces an auxiliary propositional variable P`1 that guards all the typing

constraints of the principal type before x is bound in Π. This step is crucial for the

115

correctness of the algorithm. We refer to the variables as principal type correctness

variables. That is, if P`1 is true then this means that the definition of the variable

bound at `1 is not involved in the minimum error source and the principal type

safely abstracts the associated unexpanded typing constraints.

The rule A-Let-Exp applies whenever `1 ∈ L. The rule is almost identical to

the A-Let-Prin rule, except that it does not bind x in Π to τprin (the principal

type). This will have the effect that for all usages of x in e2, the typing constraints

for e1 to which x is bound in Γ will always be instantiated. By the way the algo-

rithm extends the set L, `1 ∈ L implies that `1 ∈ L0, i.e., the defining expression

of x is ill-typed and does not have a principal type.

The A-Var-Prin rule instantiates the typing constraints of the principal type

of a let variable x if x is bound in Π and the location of x is not marked to

be expanded. Instantiation is done by substituting the type variables ~α that are

bound in the schema of the principle type with fresh type variables ~β. The A-

Var-Exp rule is again similar, except that it handles all usages of let variables

that are marked for expansion, as well as all usages of variables that are bound in

lambda abstractions.

The remaining rules are relatively straightforward. The rule A-Abs is notewor-

thy as it simultaneously binds the abstracted variable x to the same type variable

α in both typing environments. This ensures that the two environments consis-

tently refer to the same bound type variables when they are used in the subsequent

constraint generation and principal type computation within e.

116

4.5.2 Reduction to Weighted Partial MaxSMT

The reduction to MaxSMT follows the reduction introduced in § 4.3.2. Addition-

ally, the new reduction also must take care of assertions generated for usages of

principal types.

Given a cost function R for program p and a set of locations L where L0 ⊆ L,

we generate a WPMaxSMT instance I (p,R,L) = (AH ,AS, w) as follows. Let Ap,L

be a set of constraints such that ∅, ∅ `L p : α | Ap,L for some type variable α. Then

define

AH = Ap,L ∪ {T` | ` /∈ dom(R(p)) } ∪ PDefs(p)

AS = {T` | ` ∈ dom(R(p)) }

w(T`) = R(p)(`), for all T` ∈ AS

The set of assertions PDefs(p) contains the definitions for the principal type cor-

rectness variables P`. For a let variable x that is defined at some location `, the

variable P` is defined to be true iff

• each location variable T`′ for a location `′ in the defining expression of x is

true, and

• each principal type correctness variable P`′ for a let variable that is defined

at `′ and used in the defining expression of x is true.

Formally, PDefs(p) defines the set of formulas

PDefs(p) = {PDef ` | ` ∈ dom(Ulocp) }

PDef ` =

P` ⇔ ∧
`′∈Loc(`)

T`′ ∧
∧

`′∈Vloc(`)

Pdloc(`′)

117

Setting the P` to false thus captures all possible error sources that involve some of

the locations in the defining expression of x, respectively, the defining expressions of

other variables that x depends on. Recall that the propositional variable P` is used

to guard all the instances of the principal types of x in Ap,L. Thus, setting P` to

false will make all usage locations of x well-typed that have not yet been expanded

and are thus constrained by the principal type. By the way P` is defined, the cost

of setting P` to false will be the minimum weight of all the location variables

for the locations of x’s definition and its dependencies. Thus, P` conservatively

approximates all the potential minimum error sources that involve these locations.

We denote by Solve the procedure that given p, R, and L returns some model

M that is a solution of I (p,R,L). This procedure can be, for instance, implemented

using the previously introduced algorithm for computing minimum error sources

in § 4.3.

Lemma 22. Solve is total.

Lemma 22 follows from our assumption that R is defined for the root location

`p of the program p. That is, I (p,R,L) always has some solution since AH holds

in any model M where M 6|= T`p .

Given a model M = Solve(p,R,L), we define LM to be the set of locations

excluded in M :

LM = { ` ∈ Loc(p) |M |= ¬T` }.

4.5.3 Iterative Algorithm

Next, we present our iterative algorithm for computing minimum type error sources.

In order to formalize the termination condition of the algorithm, we first need

118

to define the set of usage locations of let variables in program p that are in the

scope of the current expansion L. We denote this set by Scope(p,L). Intuitively,

Scope(p,L) consists of all those usage locations of let variables that either occur

in the body of a top-level let declaration or in the defining expression of some

other let variable which has at least one expanded usage location in L. Formally,

Scope(p,L) is the largest set of usage locations in p that satisfies the following

condition: for all ` ∈ dom(Ulocp), if Ulocp(`)∩L = ∅∧Ulocp(`) 6= ∅, then Loc(`)∩

Scope(p,L) = ∅.

For M = Solve(p,R,L), we then define Usages(p,L,M) to be the set of all

usage locations of the let variables in p that are in scope of the current expansions

and that are marked for expansion. That is, ` ∈ Usages(p,L,M) iff

1. ` ∈ Scope(p,L), and

2. M 6|= Pdloc(`)

Note that if the second condition holds, then a potentially cheaper error source

exists that involves locations in the definition of the variable x used at `. Hence,

that usage of x should not be typed by x’s principal type but by the expanded

typing constraints generated from x’s defining expression.

We say that a solution LM , corresponding to the result of Solve(p,R,L), is

proper if Usages(p,L,M) ⊆ L, i.e., LM does not contain any usage locations of let

variables that are in scope and still typed by unexpanded instances of principal

types.

Algorithm 1 shows the iterative algorithm. It takes an ill-typed program p and

a cost function R as input and returns a minimum error source. The set L of

locations to be expanded is initialized to L0. In each iteration, the algorithm first

119

Algorithm 1 Iterative algorithm for computing a minimum error source

1: procedure IterMinError(p,R)
2: L← L0

3: loop
4: M ← Solve(p,R,L)
5: Lu ← Usages(p,L,M)
6: if Lu ⊆ L then
7: return LM
8: end if
9: L← L ∪ Lu

10: end loop
11: end procedure

computes a minimum error source for the current expansion using the procedure

Solve from the previous section. If the computed error source is proper, the

algorithm terminates and returns the current solution LM . Otherwise, all usage

locations of let variables involved in the current minimum solution are marked

for expansion and the algorithm continues.

Correctness. We devote the remainder of this section to arguing the correctness

of our iterative algorithm. In a nutshell, we show by induction that the solutions

computed by our algorithm are also solutions of the naive algorithm that expands

all usages of let variables immediately as in [72].

We start with the base case of the induction where we fully expand all con-

straints, i.e., L = Loc(p).

Lemma 23. Let p be a program and R a cost function and let M = Solve(p,R,Loc(p)).

Then LM ⊆ Loc(p) is a minimum error source of p subject to R.

Lemma 23 follows from [72, Theorem 1] because if L = Loc(p), then we ob-

tain exactly the same reduction to WPMaxSMT as in our previous work. More

precisely, in this case the A-Var-Prin rule is never used. Hence, all usages of

120

let variables are typed by the expanded typing constraints according to rule A-

Var-Exp. The actual proof requires a simple induction over the derivations of the

constraint typing relation defined in Figure 4.8, respectively, the constraint typing

relation defined in 4.3.

We next prove that in order to achieve full expansion it is not necessary that

L = Loc(p). To this end, define the set Lp, which consists of L0 and all usage

locations of let variables in p:

Lp = L0 ∪
⋃

l∈dom(Ulocp)

Ulocp(l).

Then `L generates the same constraints as `Loc(p) as stated by the following lemma.

Lemma 24. For any p, Π, Γ, α, and A, we have Π,Γ `Lp p : α | A iff Π,Γ `Loc(p)

p : α | A.

Lemma 24 can be proved using a simple induction on the derivations of `Lp ,

respectively, `Loc(p). First, note that Loc(p) \ Lp is the set of locations of well-

typed let variable definitions in p. Hence, the derivations using `Lp will never use

the A-Let-Exp rule, only A-Let-Prin. However, the A-Let-Prin rule updates

both Π and Γ, so applications of A-Var-Exp (A-Var-Prin is never used in either

case) will be the same as if `Loc(p) is used.

The following lemma states that if the iterative algorithm terminates, then it

computes a correct result.

Lemma 25. Let p be a program, R a cost function, and L such that L0 ⊆ L ⊆ Lp.

Further, let M = Solve(p,R,L) such that LM is proper. Then, LM is a minimum

error source of p subject to R.

The proof of Lemma 25 can be found in Appendix A.7.3. For brevity, we

121

provide here only the high-level argument. The basic idea is to show that adding

each of the remaining usage locations to L results in typing constraints for which

LM is again a proper minimum error source. More precisely, we show that for each

set D such that L0 ⊆ L ⊆ L ∪D ⊆ Lp, if M is the maximum model of I (p,R,L)

from which LM was computed, then M can be extended to a maximum model M ′

of I (p,R,L ∪ D) such that LM ′ = LM . That is, LM is again a proper minimum

error source for I (p,R,L ∪D). The proof goes by induction on the cardinality of

the set D. Therefore, by the case L∪D = Lp, Lemma 23, and Lemma 24 we have

that LM is a true minimum error source for p subject to R.

Finally, note that the iterative algorithm always terminates since L is bounded

from above by the finite set Lp and L grows in each iteration. Together with

Lemma 25, this proves the total correctness of the algorithm.

Theorem 6. Let p be a program and R a cost function. Then, IterMinError(p,R)

terminates and computes a minimum error source for p subject to R.

4.5.4 Implementation and Evaluation

We now show the results of evaluating our improved algorithm for finding minimum

type error sources on the OCaml student benchmark suite from [54] introduced

in § 4.4. Additionally, we also evaluate our implementation on larger programs

extracted from the GRASShopper [75] program verification tool written in OCaml.

The prototype implementation of the new algorithm was uniformly faster than

the naive approach in our experiments. Most importantly, the number of generated

typing constraints produced by the algorithm is almost an order of magnitude

smaller than when using the naive approach. Consequently, the new algorithm

also ran faster in the experiments.

122

We note that the new algorithm and the algorithm from § 4.3 provide the same

formal guarantees. Hence, we do not repeat here the experiment on quality of type

error sources.

Implementation. Our implementation of the new algorithm directly follows the

definition in 4.5.3. That is, our implementation is a simple Python wrapper around

the implementation of the naive algorithm.

The generation of typing constraints for each iteration in our algorithm directly

follows the typing rules in Figure 4.3. In addition, we perform a simple optimization

that reduces the total number of typing constraints. When typing an expression

let x = e1 in e2, the A-Let-Prin and A-Let-Exp rules always add a fresh instance

of the constraint A1 for e1 to the whole set of constraints. This is to ensure

that type errors in e1 are not missed if x is never used in e2. We can avoid this

duplication of A1 in certain cases. If a principal type was successfully computed

for the let variable beforehand, the constraints A1 must be consistent. If the

expression e1 refers to variables in the environment that have been bound by

lambda abstraction, then not instantiating A1 at all could make the types of these

variables under-constrained. However, if A1 is consistent and e1 does not contain

variables that come from lambda abstractions, then we do not need to include a

fresh instance of A1 in A-Let-Prin. Similarly, if e1 has no principal type because

of a type error and the variable x is used somewhere in e2, then the algorithm

ensures that all such usages are expanded and included in the whole set of typing

constraints. Therefore, we can safely omit the extra instance of A1 as well.

Student benchmarks. In our first experiment, we collected statistics for find-

ing a single minimum error source in the student benchmarks with our iterative

123

algorithm and the naive algorithm. We measured the number of typing constraints

generated (Fig. 4.9), the execution times (Fig. 4.10), and the number of expansions

and iterations taken by our algorithm (Table 4.1).

Figure 4.9 shows the statistics for the total number of generated typing as-

sertions. By typing assertions we mean logical assertions, encoding the typing

constraints, that we pass to the weighted MaxSMT solver. The number of typing

assertions roughly corresponds to the sum of the total number of locations, con-

straints attached to each location due to copying, and the number of well typed let

definitions. Again, all 8 groups of programs are shown on the x axis in Figure 4.9.

The numbers in parenthesis indicate the number of programs in each group. For

each group and each approach (naive and iterative), we plot the maximum, min-

imum and average number of typing assertions. To show the general trend for

how both approaches are scaling, lines have been drawn between the averages for

each group. (All of the figures in this section follow this pattern.) As can be

seen, our algorithm reduces the total number of generated typing assertions. This

number grows exponentially with the size of the program for the naive approach.

With our approach, this number seems to grow at a much slower rate since it does

not expand every usage of a let variable unless necessary. These results make us

cautiously optimistic that the number of assertions the iterative approach expands

will be polynomial in practice. Note that the total number of typing assertions

produced by our algorithm is the one that is generated in the last iteration of the

algorithm.

The statistics for execution times are shown in Figure 4.10. The iterative algo-

rithm is consistently faster than the naive solution. We believe this to be a direct

consequence of the fact that our algorithm generates a substantially smaller num-

124

 0

 2

 4

 6

 8

 10

 12

 14

 16

0-50 50-100 100-150 150-200 200-250 250-300 300-350 350-400

N
o

.
o

f
a

s
s
e

rt
io

n
s
 (

in
 t

h
o

u
s
a

n
d

s
)

Code size

(47) (102) (65) (57) (53) (28) (3) (1)

naive (avg)
iterative (avg)

Figure 4.9: Maximum, average, and minimum number of typing assertions for
computing a minimum error source by naive and iterative approach

ber of typing constraints. The difference in execution times between our algorithm

and the naive approach increases with the size of the input program. Note that

the total times shown are collected across all iterations.

We also measured the statistics on the number of iterations and expansions

taken by our algorithm. The number of expansions corresponds to the total num-

ber of usage locations of let variables that have been expanded in the last iteration

of our algorithm. The results, shown in Table 4.1, indicate that the total number

of iterations required does not substantially change with the input size. We hy-

pothesize that this is due to the fact that type errors are usually tied only to a

small portion of the input program, whereas the rest of the program is not relevant

to the error.

125

 0

 2

 4

 6

 8

 10

 12

0-50 50-100 100-150 150-200 200-250 250-300 300-350 350-400

T
im

e
 (

s
e

c
)

Code size

(47) (102) (65) (57) (53) (28) (3) (1)

naive (avg)
iterative (avg)

Figure 4.10: Maximum, average, and minimum execution times for computing a
minimum error source by naive and iterative approach

It is worth noting that both the naive and iterative algorithm compute single

error sources. The algorithms may compute different solutions for the same input

since the fixed cost function does not enforce unique solutions. Both approaches

are complete and would compute identical solutions for the all error sources prob-

lem [72]. The iterative algorithm does not attempt to find a minimum error source

in the least number of iterations possible, but rather it expands let definitions

on-demand as they occur in the computed error sources. This means that the

algorithm sometimes continues expanding let definitions even though there exists

a proper minimum error source for the current expansion. In our future work, we

plan to consider how to enforce the search algorithm so that it first finds those

minimum error sources that require less iterations and expansions.

126

iterations expansions
min avg max min avg max

0-50 0 0.49 2 0 1.7 11
50-100 0 0.29 3 0 0.88 13
100-150 0 0.49 4 0 1.37 32
150-200 0 0.44 3 0 1.82 19
200-250 0 0.49 2 0 3.11 30
250-300 0 0.36 2 0 6.04 45
300-350 0 0.67 2 0 3.33 10
350-400 0 0 0 0 0 0

Table 4.1: Statistics for the number of expansions and iterations when computing
a single minimum error source

GRASShopper benchmarks. Since we lacked an appropriate corpus of larger

ill-typed user written programs, we generated ill-typed programs from the source

code of the GRASShopper tool [75]. We chose GRASShopper because it contains

non-trivial code that mostly falls into the OCaml fragment supported by Easy-

OCaml. For our experiments, we took several modules from the GRASShopper

source code and put them together into four programs of 1000, 1500, 2000, and

2500 lines of code, respectively. These modules include the core data structures for

representing the abstract syntax trees of programs and specification logics, as well

as complex utility functions that operate on these data structures. We included

comments when counting the number of program lines. However, comments were

generally scars. The largest program with 2500 lines comprised 282 top-level let

definitions and 567 let definitions in total. We then introduced separately five

distinct type errors to each program, obtaining a new benchmarks suite of 20 pro-

grams in total. We introduced common type mismatch errors such as calling a

function or passing an argument with an incompatible type.

We repeated the previous experiments on the generated GRASShopper bench-

127

marks. The benchmarks are grouped by code size. There are four groups of five

programs corresponding to programs with 1000, 1500, 2000, and 2500 lines.

Figure 4.11 shows the total number of generated typing assertions subject to the

code size. This figure follows the conventions of Fig. 4.9 except that the number of

constraints is given on a logarithmic scale. Note that the minimum, maximum, and

average points are plotted in Figures 4.11 and 4.12 for each group and algorithm,

but these are relatively close to each other and hence visually mostly indistinguish-

able. The total number of assertions generated by our algorithm is consistently

an order of magnitude smaller than when using the naive approach. The naive

approach expands all let defined variables where the iterative approach expands

only those let definitions that are needed to find the minimum error source. Con-

sequently, the times taken by our algorithm to compute a minimum error source

are smaller than when using the naive one, as shown in Figure 4.12. Beside solving

a larger weighed MaxSMT instance, the naive approach also has to spend more

time generating typing assertions than our iterative algorithm. Finally, Table 4.2

shows the statistics on the number of iterations and expansion our algorithm made

while computing the minimum error source. Again, the total number of iterations

appears to be independent of the size of the input program.

iterations expansions
min avg max min avg max

1000 0 0.2 1 0 0.2 1
1500 0 0.4 2 0 2.8 14
2000 0 0.6 2 0 53.8 210
2500 0 0.2 1 0 3 15

Table 4.2: Statistics for the number of expansions and iterations when computing
a single minimum error source for larger programs

128

 1000

 10000

 100000

 1e+06

1000 1500 2000 2500

N
o

.
o

f
a

s
s
e

rt
io

n
s

Code size

naive (avg)
iterative (avg)

Figure 4.11: Maximum, average, and minimum number of typing assertions for
computing a minimum error source by naive and iterative approach for larger
programs

Comparison to other tools. Our algorithm also outperforms the approach by

Myers and Zhang [97] in terms of speed on the same student benchmarks. While

our algorithm ran always under 5 seconds, their algorithm took over 80 seconds for

some programs. We also ran their tool SHErrLoc [82] on one of our GRASSHopper

benchmark programs of 2000 lines of code. After approximately 3 minutes, their

tool ran out of memory. We believe this is due to the exponential explosion in the

number of typing constraints due to polymorphism. For that particular program,

the total number of typing constraints their tool generated was roughly 200, 000.

On the other hand, their tool shows high precision in correctly pinpointing the

actual source of type errors. These results nicely exemplify the nature of type

error localization. In order to solve the problem of producing high quality type

129

 0

 50

 100

 150

 200

 250

 300

 1000 1500 2000 2500

T
im

e
 (

s
e

c
)

Code size

naive (avg)
iterative (avg)

Figure 4.12: Maximum, average, and minimum execution times for computing a
minimum error source by naive and iterative approach for larger programs

error reports, one needs to consider the whole typing data. However, the size of

that data can be impractically large, making the generation of type error reports

slow to the point of being not usable. One benefit of our approach is that these two

problems can be studied independently. We mainly focused on the second problem,

i.e., how to make the search for high-quality type error sources practically fast.

4.6 Related Work

Previous work on localization of type errors has mainly focused on designing con-

crete systems for generating quality type error messages. The approach taken

in [94, 22] computes a trace of type inference, i.e., a set of decisions made by

130

type inference algorithm that led to a type error. Similarly, type error localization

algorithms presented in [89, 30, 77] show a program slice involved in the error.

The obvious difference between these approaches and the one taken in this thesis

concerns the used notion of a type error source. In our work, type error sources are

minimal sets of expressions that, once corrected, yield a well-typed program and

are guaranteed to satisfy the compiler or user provided optimality criterion. In

contrast, modeling error sources as traces and slices often results in redundant in-

formation being reported to the programmer, such as statements or type inference

decisions that are related to the error but do not cause it. The works presented

in [14, 13, 67] design completely new type systems that, while performing the

type inference, also collect additional information that can be reported to the pro-

grammer in the case of type errors. Our work, on the other hand, does not require

changes to the existing type systems yet it simply piggybacks on top of them. More

closely related to our approach is the Seminal [54] tool, which computes several

possible error sources by repeated calls to the type checker rather than an SMT

solver. However, the search for error causes is based on fixed heuristics and pro-

vides no formal guarantees that all error sources are found, respectively, that they

are ranked according to some criterion. Sulzmann [86, 84] presents a type error

debugger for Haskell that presents to the programmer a minimal set of locations

whose corresponding expressions are responsible for the type error. Our work also

considers a minimal set of expressions inducing a type error as a potential error

source, but we also allow incorporating heuristics for choosing which minimal set

will be reported to the programmer as there can be many such sets. Zhang and

Myers [97] encode typing information for Hindley-Milner type systems in terms of

constraint graphs. The generated graphs are then analyzed to find most likely error

131

sources by using Bayesian inference. It is unclear how this approach would support

more expressive type systems. Also, the constraint graph generation suffers from

the exponential blow-up due to polymorphism, which our work addresses by the

lazy expansion of constraints induced by typing polymorphic functions (§ 4.5). On

the other hand, the proposed technique is designed for general diagnosis of static

errors, whereas we focus specifically on diagnosis of type errors. In a follow up

work, the authors also apply their techniques to Haskell [98].

Previous approaches based on constraint solving [33, 85] produce minimal but

not minimum error sources and consider specific ranking criteria for specific type

systems. Hage and Heeren [35] build a type error debugging system for Haskell by

incorporating several fixed and expert designed heuristics for explaining type er-

rors. Our work, in contrast, provides a general framework for type error debugging

where the heuristic for identifying the root cause of a type error is merely an input

to the system. The work by the same authors that is more related to our work can

be found in [36]. Here, the authors present a framework for constraint-based type

inference that allows compilers to plug in various different strategies for solving the

constraints, consequently allowing more flexibility for producing type error reports.

These strategies allow different constraint solving decision based on the context

and can be used, for instance, to manipulate the order in which the constraints

are solved. In contrast to our work, it is unclear whether their system produces

the optimal solution given a constraint-solving input strategy. Seidel et al. devise

a general machine learning algorithm that blames program expressions for causing

type errors by offline learning from the corpus of ill-typed programs [81]. While

their approach can support various type systems and ranking criteria, it does not

provide a formal guarantee that the blamed program expressions indeed consti-

132

tute an actual error source. The problem of type error localization has also been

studied in the context of Java generics [12], domain-specific languages [34], and

dependently typed languages [25].

Following our work initially published in [72, 73], the MaxSMT approach to

type inference has also been applied to Python [39]. Here, a MaxSMT solver is

used to infer types for as large as possible portion of the given program, which

is particularly useful since Python is a dynamically typed language and inferring

static types for the whole program is consequently often impossible. We note that

our approach is in part inspired by the Bug-Assist tool [47], which uses a MaxSAT

procedure for fault localization in imperative programs. However, the problem we

are solving in this thesis is quite different.

133

Chapter 5

Conclusions

The goal of this thesis is to provide a mathematically rigorous framework for the

systematic development of type inference algorithms that are convenient to use

by the programmers. Towards achieving that goal, we focused on two impor-

tant problems surrounding type inference: (1) how to constructively design type

inference algorithms that improve over the state-of-the-art and (2) how to auto-

matically debug type errors that arise during inference. This thesis approaches

these two specific problems based on the close connection between type inference

and program analysis techniques. We addressed the first problem by using ab-

stract interpretation to constructively design Liquid type inference, an advanced

family of algorithms that combine classical typing disciplines and known static

analyses to prove various safety properties of functional programs. By rigorously

modeling Liquid type inference using the primitives of abstract interpretation, we

unveiled the design space of such algorithms and generalized it in a way that allows

easy construction of novel type inference algorithms that are sound by construc-

tion. Regarding the second problem, we have shown how the problem of type

134

error localization for type inference algorithms in the style of Hindley-Milner can

be cast as an optimization problem expressed in a formal logic. We then showed

how this problem can be solved using automated theorem provers. Finally, we

experimentally illustrated how our approach yields type error debugging systems

that outperform the state-of-the-art tools in correctly identifying the root causes

of type errors while still being efficient, even for large programs.

The results presented in this thesis naturally open several interesting research

directions. An exciting future work project is to use our abstract interpretation

model of Liquid types to obtain and implement type inference algorithms that are

more expressive than the original Liquid type inference. This could be achieved

by instantiating our generalization of Liquid types with, say, the polyhedra ab-

stract domain or automata-based domains. Another interesting research problem

is to extend our framework for type error debugging to support type inference

algorithms that are more expressive than the Hindley-Milner algorithm, such as

Liquid types for instance. Due to the close connection between type inference and

static analysis, the problem of building a general framework for debugging static

analyses naturally arises. In general, we believe this thesis provides important

results and generally paves the way for the systematic study and development of

enhanced type analyses that are usable by the programmers.

135

Appendix A

Data Flow Refinement Type

Inference

A.1 Example Concrete Map

Let us reconsider the example from § 3.1. The code is again given below, but

this time we also annotate expressions of interest with location labels.

1 let dec y = y - 1 in

2 let f x g = if x >= 0 then go xp else xq

3 in fa (fb 1c decd)j decm

The concrete execution map Me for this program, restricted to the execution nodes

136

of interest is as follows:

qa 7→ ⊥ qb 7→ ⊥ c 7→ 1 pa 7→ 0 pb 7→ 1

j 7→ 0 d 7→ [pb 7→ (1, 0)] m 7→ [pa 7→ (0, −1)]

dec 7→ [pb 7→ (1, 0), pa 7→ (0, −1)]

a 7→ [j 7→ (0, [m 7→ ([pa 7→ (0, −1)], −1)])]

b 7→ [c 7→ (1, [d 7→ ([pb 7→ (1, 0)], 0)])]

f 7→ [j 7→ (0, [m 7→ ([pa 7→ (0, −1)], −1)]),

c 7→ (1, [d 7→ ([pb 7→ (1, 0)], 0)])]

For this specific program, the execution will always reach the program expressions

with locations a, b, c, d, j, and m with the same environment. For this reason,

we identify these expression nodes with their locations. Expressions with labels

o, p, and q will be reachable with two environments, each of which corresponds to

executing the body of f with the value passed to it at call sites with locations a

and b. We use this call site information to distinguish the two evaluations of the

body of f. For instance, the expression node associated with the xq expression

when performing the analysis for the call to f made at location a is denoted by qa

in the above table.

137

A.2 Concrete Semantics Proofs

Lemma 26. prop is increasing.

Proof. Let 〈v′1, v′2〉 = prop(v1, v2). The proof goes by mutual structural induction

on v1 and v′2.

Base cases.

• v1 = ⊥.

v′1 = ⊥, v′2 = v2 def. of prop

v1 v v′1, v2 v v′2 def. of v

• v1 = ω.

v′1 = v′2 = ω def. of prop

v1 v v′1, v2 v v′2 def. of v

• v1 = c, v2 = ⊥.

v′1 = v′2 = c def. of prop

v1 v v′1, v2 v v′2 def. of v

• v1 = c, v2 = c.

v′1 = v′2 = c def. of prop

v1 v v′1, v2 v v′2 def. of v

• v1 = c1, v2 = c2, c1 6= c2.

v′1 = v1, v
′
2 = ω def. of prop

v1 v v′1, v2 v v′2 def. of v

• v1 = c1, v2 = ω.

v′1 = v1, v
′
2 = ω def. of prop

v1 v v′1, v2 v v′2 def. of v

138

• v1 = c, v2 ∈ T .

v′1 = v1, v
′
2 = ω def. of prop

v1 v v′1, v2 v v′2 def. of v

• v1 ∈ T , v2 = ⊥.

v′1 = v1, v
′
2 = T⊥ def. of prop

v1 v v′1, v2 v v′2 def. of v

• v1 ∈ T , v2 = c.

v′1 = v1, v
′
2 = ω def. of prop

v1 v v′1, v2 v v′2 def. of v

• v1 ∈ T , v2 = ω.

v′1 = v′2 = ω def. of prop

v1 v v′1, v2 v v′2 def. of v

Induction case: v1 = T1, v2 = T2. By definition of prop, we need to consider two

cases of call-sites subject to the table T2.

• ncs 6∈ T2.

v1i = v′1i, v2i = v′2i, v1o = v′1o, v20 = v′2o def. of prop

v1i v v′1i, v2i v v′2i, v1o v v′1o, v20 v v′2o def. of v

• ncs ∈ T2.

v1i v v′1i, v2i v v′2i, v1o v v′1o, v20 v v′2o def. of prop and i.h. (A.1)

Lemma 27. step is increasing.

Proof. By structural induction on program expressions. The result follows from

the increasing property of the join t and Lemma 26.

139

Lemma 28. prop is monotone.

Proof. Let 〈v′1, v′2〉 = prop(v1, v2), 〈v′3, v′4〉 = prop(v3, v4), v1 v v3, and v2 v v4. We

show that v′1 v v′3 and v′2 v v′4. The proof goes by mutual structural induction on

v3 and v4.

Base cases.

• v3 = ω.

v′3 = ω, v′4 = ω def. of prop

v′1 v v′3, v′2 v v′4 def. of v

• v4 = ω.

v′4 = ω def. of prop

v′2 v v′4 by v

– v3 = c

v1 = ⊥ ∨ v1 = c by v1 v v3

v′3 = c, v′1 = ⊥ ∨ v′1 = c def. of prop

v′1 v v′3 by v

– v3 ∈ T

v′3 = ω def. of prop

v′1 v v′3 by v

• v3 = ⊥.

v1 = ⊥ by v1 v v3

v′4 = v4, v
′
2 = v2, v

′
3 = v3, v

′
1 = v1 def. of prop

v′1 v v′3, v′2 v v′4 def. of v

140

• v4 = ⊥.

v2 = ⊥ by v2 v v4

v′1 = v1, v
′
3 = v3 def. of prop

v′1 v v′3 def. of v

– v3 = c

v1 = ⊥ ∨ v1 = c by v1 v v3

v′4 = c, v′2 = ⊥ ∨ v′2 = c def. of prop

v′2 v v′4 by v

– v3 ∈ T

v1 = ⊥ ∨ v1 ∈ T by v1 v v3

v′4 = T⊥, v
′
2 = ⊥ ∨ v′2 = T⊥ def. of prop

v′2 v v′4 by v

• v3 = c, v4 = c.

v′4 = v4 = v3 = v′3 = c def. of prop

v1 = ⊥ ∨ v1 = c, v2 = ⊥ ∨ v2 = c by v1 v v3, v2 v v4

v′1 = ⊥ ∨ v′1 = c, v′2 = ⊥ ∨ v′2 = c def. of prop

v′1 v v′3, v′2 v v′4 def. of v

• v3 = c1, v4 = c2, c1 6= c2.

v′4 = ω, v3 = v′3 = c1 def. of prop

v1 = ⊥ ∨ v1 = c1 by v1 v v3, v2 v v4

v′1 = ⊥ ∨ v′1 = c1 def. of prop

v′1 v v′3, v′2 v v′4 def. of v

141

• v3 = c, v4 ∈ T .

v′4 = ω, v3 = v′3 = c def. of prop

v1 = ⊥ ∨ v1 = c by v1 v v3, v2 v v4

v′1 = ⊥ ∨ v′1 = c def. of prop

v′1 v v′3, v′2 v v′4 def. of v

• v3 ∈ T , v4 = c.

v′4 = ω, v3 = v′3 def. of prop

v1 = ⊥ ∨ v1 ∈ T , v2 = ⊥ ∨ v2 = c by v1 v v3, v2 v v4

v′1 = v1 def. of prop

v′1 v v′3, v′2 v v′4 def. of v

Induction case: v3 = T3 and v4 = T4. If v1 = ⊥, then v′1 = ⊥ and v′1 v v′3 trivially

follows. When v2 = ⊥, we have v′2 = ⊥ ∨ v′2 = T⊥ and the argument follows from

Lemma 26.

We are hence left with the case when v1 = T1 and v2 = T2. First, we have that

ncs ∈ T2 =⇒ ncs ∈ T4 by the T2 v T4 assumption. We have three cases to consider.

• ncs 6∈ T2 and ncs 6∈ T4. Trivial, as there is no propagation.

• ncs 6∈ T2 and ncs ∈ T4. By prop, there is no propagation between the pairs

T1(ncs) and T2(ncs). The result then follows from Lemma 26.

• ncs ∈ T2 and ncs ∈ T4. The result follows from the induction hypothesis.

Lemma 29. step is monotone.

142

Proof. Let M ′v̇M ′′ and k ∈ N. For any E and e, we show that M ′
fv̇M ′′

f where

M ′
f = stepkJeK(E)(M ′) and M ′′

f = stepkJeK(E)(M ′′). The proof goes by structural

induction on e and natural induction on k. When k = 0, the argument is trivial.

We thus consider the case when k > 0 and do the case analysis on e.

• e = c`. M ′
fv̇M ′′

f follows from the monotonicity of t.

• e = x`. Here, M ′
fv̇M ′′

f follows from the monotonicity of prop (Lemma 28).

• e = (e`11 e
`2
2)`. We do case analysis on the values computed for e1 and e2 by

stepkJeK(E)(M ′) and stepk+1JeK[k](E)(M ′′).

– v′1 = ⊥. Then M ′
f = M ′

1 and the result holds by Lemma 27.

– v′′1 = ⊥. By i.h., M ′
1v̇M ′′

1 , hence v′1 = ⊥ and the argument follows from

the previous case.

– v′1 6= ⊥ ∧ v′1 6∈ T . By i.h., M ′
1v̇M ′′

1 and hence v′′1 6= ⊥ ∧ v′′ 6∈ T .

Therefore, M ′′
f = Mω and the result follows trivially.

– v′1 ∈ T , v′′1 6∈ T . The argument is trivial as M ′′
f = Mω.

– v′1 ∈ T , v′′1 ∈ T . By i.h., v′1 v v′′1 . The cases for v′2 and v′′2 are handled

the same way as for v′1 and v′′1 . We are thus interested in the remaining

case where v′2, v
′′
2 6∈ {⊥, ω} where by i.h. v′2 v v′′2 . The result then

follows by the monotonicity of prop (Lemma 28).

• e = (λx.e)`. The argument, similar to the case for function applications,

follows from Lemmas 28, 26, and basic properties of joins t.

Proof (of Lemma 2).

143

Proof. Follows directly from Lemma 26 and Lemma 28.

Proof (of Lemma 3).

Proof. Follows directly from Lemma 27 and Lemma 29.

We next prove that our definitions of joins and meets are indeed correct. The

definition of a binary join on concrete values is raised to an arbitrary number of

values in the expected way where t∅ def
= ⊥ and t{v} def

= v. The meet u is defined

similarly. We also define a depth of a concrete data flow value in the expected way.

The depth of constants, errors, and unreachable values is simply 0. The depths of

tables is the maximum depth of any of the values stored for any call site, increased

by 1.

Definition 3 (Depth of Values).

depth(⊥)
def
= depth(c)

def
= depth(ω)

def
= 0

depth(T)
def
= 1 + max(

⋃
ncs

depth(π1(T (ncs))) ∪
⋃
ncs

depth(π1(T (ncs))))

Note that depth is well-defined since, although there is an infinite number of call

sites in a table, the depth of every value stored at every call site in a table is

bounded by the table depth, as tables are defined inductively.

Proof (of Lemma 1).

Proof. We carry the proof by case analysis on elements of V and induction on the

minimum depth thereof when V consists of tables only.

We first consider the trivial (base) cases where V is not a set of multiple tables.

• V = ∅. By v, lub(V) = ⊥ and t(V) = ⊥ by t.

• V = {v}. Trivial.

144

• c ∈ V, T ∈ V . By v, lub of {c, T} is ω and since ω is the top element,

lub(V) = ω = tV .

• c1 6= c2, c1 ∈ V, c2 ∈ V . As in the previous case.

• ⊥ ∈ V . By v, lub(V) = lub(V/{⊥}) and t(V) = t(V/{⊥}) by t. The set

V/{⊥} either falls into one of the above cases or consists of multiple tables,

which is the case we show next.

Let V ⊆ T and |V | > 1. Let d be the minimum depth of any table in V . By v, lub

of V is a table T that for every call site ncs has input (resp. output) that is lub of

the corresponding inputs (resp. outputs) of tables in V for ncs. We focus on inputs;

the same argument goes for outputs. Let Vi = {π1(v(ncs)) | ncs ∈ Ne ∧ v ∈ V }.

By t, π1(T (ncs)) = tVi. We hence need to show that tVi = lub(Vi). The set Vi

either falls into one of the trivial cases, from which the argument easily follows,

or Vi ⊆ T ∧ |V | > 1. In the latter case, the minimum depth of any value in Vi is

smaller than d by the definition of depth and the result follows from the i.h.

The proof of correctness for the meet u is similar.

A.2.1 Additional Properties

We now introduce and prove several interesting properties related to the concrete

data flow semantics.

145

A.2.1.1 Finiteness

We say a value v is finite fin(v) if it is either a ground value or a table that has

seen only a finite number of inputs.

fin(v)
def
=(v ∈ {⊥, ω} ∪ Cons) ∨ (v ∈ T ∧ |{ncs | ncs ∈ v}| ∈ N ∧

∀ncs ∈ v. fin(π1(v(ncs))) ∧ fin(π2(v(ncs))))

It can be shown that prop does not affect the finiteness of values. The same clearly

holds for joins t.

Lemma 30. Let v1, v2, v3, and v4 be values. If fin(v1), fin(v2), and 〈v3, v4〉 =

prop(v1, v2), then fin(v3) and fin(v4).

Proof. By structural induction on v1 and v2. The cases when either v1 or v2 are

not a table are trivial. For tables, the argument follows by i.h. and the simple fact

that prop does not invent new call site nodes, yet only manipulates the existing

ones, whose total number is finite by the lemma assumption.

We say a map M is finite fin(M) if all of its values are finite and the set of

reachable nodes is finite as well |{n | M(n) 6= ⊥}| ∈ N. It can be shown that step

preserves the finiteness of maps.

Lemma 31. Let M and M ′ be maps, E an environment, e` an expression, and k

a fuel. If fin(M), (e, E) is well-formed, and stepkJe`K(E)(M) = M ′, then fin(M ′).

Proof. The proof goes by natural induction on k and structural induction on e.

The argument follows from the Lemma 30. Note that in the case e is a lambda

abstraction and M(E�`) = T , for some table T , the set of ncs in T is finite. Hence,

the set M is finite and by i.h. each M ′ ∈ M is finite as well. The result then

follows from the basic properties of joins.

146

A.2.1.2 Computation Range

We define an expression range of an expression node E�` subject to a program p

to be a set of expression nodes whose location is a sublocation of ` in p and whose

environment is an extension of E

erangep(E�`)
def
= {E ′�`′ | E ⊆ E ′ ∧ `′ ∈ Loc(p(`))}.

The corresponding range is then defined as

rangep(E�`)
def
= erangep(E�`) ∪ {n | n ∈ rng(E ′) ∧ E ′� ∈ erangep(E�`))}

Note that in the above definition we use the pattern to existentially quantify

a certain object instead of explicitly writing down the quantifier. We do this to

avoid clutter.

Let domain validity domvalid(`, p, E) of an environment E subject to program

p and a location ` in p holds iff dom(E) consists of exactly all variables bound

above ` in p. We use this definition to characterize the range of a computation

performed by step.

Lemma 32. Let M and M ′ be maps, E an environment, e` an expression of

a program p, and k a fuel. If domvalid(`, p, E) and stepkJe`K(E)(M) = M ′, then

∀n.M(n) 6= M ′(n) =⇒ n ∈ rangep(E�`).

Proof. The proof goes by natural induction on k and structural induction on e.

The domain validity assumption together with the uniqueness of locations in p

guarantees that environments are always extended, i.e., their contents never get

rewritten by environment updates done when analyzing the bodies of lambda ab-

straction, which is needed in order to ensure that updated nodes are in the erange

of the current node.

We now state few properties relating ranges. First, ranges of non-related ex-

147

pression do not share visited expression nodes.

Lemma 33. Let E be an environment, p be a program, `1 and `2 two locations

such that Loc(p(`1))∩Loc(p(`2)) = ∅. Then, rangep(E�`1)∩rangep(E�`2)∩Ne = ∅.

Proof. Follows directly from Loc(p(`1)) ∩ Loc(p(`2)) = ∅.

Similarly, the ranges of nodes whose environments are non-related do not have

any common expression nodes.

Lemma 34. Let E1 and E2 be two environments and ` a location of a program p.

If dom(E1) = dom(E2) and E1 6= E2, then rangep(E�`1) ∩ rangep(E�`2) ∩Ne = ∅.

Proof. The argument follows from the fact that the extensions of E1 and E2 have to

be different as dom(E1) = dom(E2) and environments are modeled as functions.

A.2.1.3 Refined Range

We can also give a more refined definition of a range.

erangerp(E�`)
def
= lfp⊆{E�`}λL. L ∪ {E

′�`′ | `′ ∈ Loc(p(`)) ∧ E ⊆ E ′ ∧ ∀n ∈ rng(E ′\E).

∃n′ ∈ L. env(n) = env(n′) ∧ loc(n) ∈ Loc(p(`))}

The corresponding range is then defined as expected

rangerp(E�`)
def
= erangerp(E�`) ∪ {n | n ∈ rng(E ′) ∧ E ′� ∈ erangerp(E�`))}

The same result about the range of computation can be shown.

Lemma 35. Let M and M ′ be maps, E an environment, e` an expression of

a program p, and k a fuel. If domvalid(`, p, E) and stepkJe`K(E)(M) = M ′, then

∀n.M(n) 6= M ′(n) =⇒ n ∈ rangerp(E�`).

Proof. Similar to the proof of Lemma 32.

148

However, something stronger can be said about the disjointness.

Lemma 36. Let E be an environment, p be a program, `1 and `2 two locations

such that Loc(p(`1))∩Loc(p(`2)) = ∅. Then, rangep(E�`1)∩rangep(E�`2) = rng(E).

Proof. Expression nodes of both ranges are clearly different by Loc(p(`1))∩Loc(p(`2)) =

∅. The environment nodes n not in rng(E) must have the associated variable loc(n)

from Loc(p(`1)) and Loc(p(`2)), respectively. The result then again follows from

Loc(p(`1)) ∩ Loc(p(`2)) = ∅.

Similarly, the ranges of nodes whose environments are non-related have the

same property.

Lemma 37. Let E1 and E2 be two environments and ` a location of a program

p. If dom(E1) = dom(E2) and E1 6= E2, then rangep(E�`1) ∩ rangep(E�`2) =

rng(E1) ∩ rng(E2).

Proof. The environment nodes n in both ranges must have the associated envi-

ronment env(n) equal to the environment of some expression node in the corre-

sponding range. These environments are by definition the extensions of E1 and E2,

respectively, that have to be different as dom(E1) = dom(E2) and environments

are modeled as functions. Hence, the only shared nodes are those environment

nodes that appear in both E1 and E2.

A.2.1.4 Environment Consistency

We next formalize the notion of environment consistency for a map that states

that no node can be visited with an environment holding a ⊥ or ω value.

envcons(M)
def⇐⇒ ∀n, nx ∈ rng(env(n)).M(n) 6= ⊥ =⇒ M(nx) 6∈ {⊥, ω}

149

Additionally, we also define consistency of an environment E subject to a map M

envconsM(E)
def⇐⇒ ∀nx ∈ rng(E).M(nx) 6∈ {⊥, ω}

A.2.1.5 Table IO Consistency

We next formalize the notion of input output consistency for tables.

tiocons(v)
def⇐⇒ (v∈{⊥, ω} ∪ Cons) ∨ (v∈T ∧ ∀ncs∈v.π1(v(ncs))=⊥ =⇒ π2(v(ncs))=⊥

∧ ∀ncs ∈ v. tiocons(π1(v(ncs))) ∧ tiocons(π2(v(ncs))))

As expected, a map is input-output consistent tiocons(M) if all of its values are

IO consistent.

A.2.1.6 Constant Consistency

We next formalize the notion of constant consistency that intuitively states that

reachable nodes corresponding to constant and lambda expression must be either

constants and tables, respectively, or an error value. Let p be a program. A map

M is constant consistent constconsp(M) if for every node n, where M(n) = v and

loc(n) = `, it must be

v ∈ {ω,⊥, c} if p(`) = c

v ∈ {ω,⊥} ∪ T if p(`) = µf.λx.e

A.2.1.7 Error Consistency

We continue by formalizing the notion of the error absence of values that intuitively

states the a given value is not an error and, if it is a table, it does not recursively

150

contain errors.

noerr(v)
def⇐⇒ (v ∈ {⊥} ∪ Cons) ∨ (v ∈ T ∧ ∀ncs ∈ v.

noerr(π1(v(ncs))) ∧ noerr(π2(v(ncs))))

A map M is error consistent errcons(M) if either (1) M = Mω or (2) for every

node n it must be that noerr(M(n)).

A.2.1.8 Concrete Subtyping

Next, we introduce the notion of subtyping for our concrete values that resembles

the subtyping on types.

v1<:cv2
def⇐⇒ (v2 = ⊥) ∨ (v1 = v2 ∧ v1 ∈ {ω} ∪ Cons) ∨ (v1 ∈ T ∧ v2 ∈ T ∧

∀ncs ∈ v2. π1(v2(ncs))<:cπ1(v1(ncs)) ∧ π2(v1(ncs))<:cπ2(v2(ncs)))

151

A map M is subtype consistent csubp(M), subject to a program p, iff for every

node n, where loc(n) = `, it must be that

M(env(n)(x))<:cM(n) if p(`) = x and x ∈ dom(env(n))

M(env(n)�`1)<:c[env(n)�`2 7→ 〈M(env(n)�`2),M(n)〉]

if p(`) = (e`11 e
`2
2) and M(env(n)�`1) ∈ T

M(env(n)�`1)<:cM(n)

if p(`) = (e`00 ? e`11 : e`22) and M(env(n)�`0) = true

M(env(n)�`2)<:cM(n)

if p(`) = (e`00 ? e`11 : e`22) and M(env(n)�`0) = false

M(n)<:cM(nf) ∧ [ncs 7→ 〈M(nx),M(E1�`1)〉]<:cM(n)

if p(`) = (µf.λx.e`11), M(n) ∈ T , ncs ∈M(n),

nx = env(n)�ncs�x, nf = env(n)�ncs�f, and E1 = env(n).x : nx.f : nf

We can also show that propagation does not invalidate subtyping.

Lemma 38. Let v1 ∈ V, v2 ∈ V, v3 ∈ V, and v4 ∈ V. If v1<:cv2 and 〈v3, v4〉 =

prop(v1, v2), then v3<:cv4.

Proof. By structural induction on v1 and v2.

Lemma 39. Let v1 ∈ V, v2 ∈ V, v3 ∈ V, and v4 ∈ V. If v1<:cv2 , v1 6∈ {⊥, ω},

and 〈v3, v4〉 = prop(v1, v2), then v3 6∈ {⊥, ω} and v4 6∈ {⊥, ω}.

Proof. Immediate from the definition of prop.

We can even say something stronger.

Lemma 40. Let v1 ∈ V, v2 ∈ V, v3 ∈ V, and v4 ∈ V. If v1<:cv2 , noerr(v1),

noerr(v2), and 〈v3, v4〉 = prop(v1, v2), then noerr(v3) and noerr(v4).

152

Proof. By structural induction on v1 and v2. The base cases are trivial. For the

induction case where both v1 and v2 are tables, the argument follows by the i.h.

A.2.1.9 Dataflow Invariant

We say a map M is data flow consistent subject to a program p if it satisfies the

invariant dfp(M) iff

fin(M) ∧ csubp(M) ∧ errcons(M) ∧ tiocons(M) ∧ constconsp(M) ∧ envcons(M)

A.2.1.10 Constant Compatibility

We next introduce formally the notion of constant compatibility between two con-

crete values that intuitively states that the join of values does not introduce error

values.

ccomp(v1, v2)
def⇐⇒ (v1 ∈ {⊥, ω}) ∨ (v2 ∈ {⊥, ω}) ∨ (v1∈Cons ∧ v∈Cons ∧ v1=v2)

∨ (v1 ∈ T ∧ v2 ∈ T ∧ ∀ncs. ccomp(π1(v2(ncs)), π1(v1(ncs))) ∧

ccomp(π2(v1(ncs)), π2(v2(ncs))))

We also raise the definition of constant compatibility to a set of values V in the

expected way ccomp(V)
def⇐⇒ ∀v1, v2 ∈ V. ccomp(v1, v2). Note that constant com-

patibility is a reflexive relation.

Lemma 41. Let v be a concrete value. Then, ccomp(v, v).

Proof. By structural induction on v.

Next, we say that two mapsM1 andM2 are constant compatible ccomp(M1,M2)

iff ∀n. ccomp(M1(n),M2(n)). Given a set of maps M̂ , we define its constant com-

patibility ccomp(M̂) as ∀M1 ∈ M̂,M2 ∈ M̂. ccomp(M1,M2).

Constant compatibility preserves error consistency of maps over joins.

153

Lemma 42. Let M1 and M2 be two concrete maps such that ccomp(M1,M2),

errcons(M1), and errcons(M2). Then, errcons(M1ṫM2).

Proof. By the definition of ccomp(v1, v2) on values v1 and v2, the join v1tv2 cannot

introduce errors. That is, if noerr(v1) and noerr(v2), then noerr(v1 t v2). This can

be easily shown by structural induction on v1 and v2. The result then follows

directly from the lemma assumptions.

A similar result can be shown in the other direction.

Lemma 43. Let M , M1, and M2 be concrete maps such that M = M1ṫM2. If

errcons(M) and M 6= Mω, then ccomp(M1,M2), errcons(M1), and errcons(M2).

Proof. Similar to the proof of Lemma 42.

Clearly, the above result can be lifted to an arbitrary finite join of maps.

Lemma 44. Let M̂ be a finite set of concrete maps. If errcons(ṫM̂) and ṫM̂ 6=

Mω, then ccomp(M̂) and ∀M ∈ M̂. errcons(M).

Proof. By induction on |M̂ |. The argument follows almost directly from Lemma 43.

We next show that constant compatibility is preserved by prop of value chains.

Lemma 45. Let v1 ∈ V, v2 ∈ V, v3 ∈ V, v′1 ∈ V, v′2 ∈ V, v′′2 ∈ V , and

v′3 ∈ V. If v1<:cv2, v2<:cv3, 〈v′1, v′2〉 = prop(v1, v2), and 〈v′′2 , v′3〉 = prop(v2, v3),

then ccomp(v′2, v
′′
2).

Proof. By structural induction on v2. We first cover the base cases.

• v2 = ⊥. Then, v3 = ⊥ and hence v′′2 = ⊥ by the def. of prop.

154

• v2 = c. By <:c, v1 = c and v3 = c ∨ v2 = ⊥. Therefore, v′2 = v′′2 = c.

• v2 = ω. By <:c, v1 = ω and v3 = ω ∨ v2 = ⊥. Therefore, v′2 = v′′2 = ω.

Let us now consider the case when v2 ∈ T . By <:c, it must be that v1 ∈ T . If

v3 = ⊥, then v′′2 = v2 and v′2 = v2 v v′2 by Lemma 26. The result then follows

trivially. Hence, we are left with the case where v3 ∈ T . Let us focus on any call

site ncs and let v1(ncs) = 〈v1i, v1o〉, v2(ncs) = 〈v2i, v2o〉, and v3(ncs) = 〈v3i, v3o〉. By

the def. of prop, we have that v′1 ∈ T , v′2 ∈ T , v′′2 ∈ T , and v′3 ∈ T . Let then

v′1(ncs) = 〈v′1i, v′1o〉, v′2(ncs) = 〈v′2i, v′2o〉, v′′2(ncs) = 〈v′′2i, v′′2o〉, and v′3(ncs) = 〈v′3i, v′3o〉.

By the def. of prop, we have to only consider the cases of whether ncs ∈ v2 and

ncs ∈ v3.

• ncs 6∈ v2, ncs 6∈ v3. By the def. of prop, we have v′2i = v′′2i = v2i and v′2o =

v′′2o = v2o. The argument is then straightforward.

• ncs 6∈ v2, ncs ∈ v3. By the def. of prop, we have v′2i = v2i and v′2o = v2o.

By Lemma 26, we have v2i v v′′2i and v2o v v′′2o. The argument then follows

easily.

• ncs ∈ v2, ncs 6∈ v3. By the def. of prop, we have v′′2i = v2i and v′′2o = v2o.

By Lemma 26, we have v2i v v′2i and v2o v v′2o. The argument then follows

easily.

• ncs ∈ v2, ncs ∈ v3. First, by <:c we have v3i<:cv2i and v2i<:cv1i. Next,

we also have v1o<:cv2o and v2o<:cv3o. By the def. of prop, we next have

〈v′2i, v′1i〉 = prop(v2i, v1i), 〈v′3i, v′′2i〉 = prop(v3i, v2i), 〈v′1o, v′2o〉 = prop(v1o, v2o),

and 〈v′′2o, v′3o〉 = prop(v2o, v3o). By the i.h., we then have ccomp(v′2i, v
′′
2i) and

ccomp(v′2o, v
′′
2o). The result then follows from the def. of ccomp.

155

A.2.2 Inductive Properties

Given a fixed program m, we define the family of inductive properties P , indexed

by fuels k, as a set of triples consisting of locations in the program, concrete maps,

and environments that is closed subject to the concrete transformer step. More

precisely, given a program m and a fuel k, we say that Pk ∈ ℘(Loc×M×E) is an

inductive invariant (of step) if

(`,M,E) ∈ Pk =⇒ (`, stepkJe
`K(E)(M), E) ∈ Pk

where e` ∈ m and (e, E) is well-formed. We additionally require that all potential

recursive calls of step for the subexpressions of e are closed subject to P , as follows:

• e` = e`11 e
`2
2 .

(`,M,E) ∈ Pk+1

(`1,M,E) ∈ Pk

(`,M,E) ∈ Pk+1 (`1,M1, E) ∈ Pk

M1 = stepkJe
`1
1 K(E)(M) M1(E�`1) 6∈ {⊥, ω}

(`2,M1, E) ∈ Pk

156

• e` = (e`00 ? e`11 : e`22)`.
(`,M,E) ∈ Pk+1

(`0,M,E) ∈ Pk

(`,M,E) ∈ Pk+1 (`0,M0, E) ∈ Pk

M0 = stepkJe
`0
0 K(E)(M) M0(E�`0) = true

(`1,M,E) ∈ Pk

(`,M,E) ∈ Pk+1 (`0,M0, E) ∈ Pk

M0 = stepkJe
`0
0 K(E)(M) M0(E�`0) = false

(`2,M,E) ∈ Pk

• e` = (µf.λx.e`11)`.

M(`�E) = T ncs ∈ T π1(T (ncs)) 6∈ {⊥, ω}

nx = E�ncs�x nf = E�ncs�f E1 = E.x : nx.f : nf

〈T ′x, T ′〉 = prop([ncs 7→ 〈M(nx),M(E1�`1)〉], T)

〈T ′′, T ′f〉 = prop(T,M(nf)) 〈v′x, v′1〉 = T ′x(ncs)

M1 = M [E�` 7→ T ′ t T ′′, nx 7→ v′x, nf 7→ T ′f , E1�`1 7→ v′1]

(`,M,E) ∈ Pk+1

(`1,M1, E1) ∈ Pk

Given a program e`, we define its strongest inductive invariant family I as the

smallest inductive property of e` such that (`,M⊥, ∅) ∈ Ik, for every k.

157

A.3 Path Data Flow Semantics

In this section, we introduce an alternative definition of the concrete data flow

semantics that, besides data flow values, also keeps track of paths the data flow

values take. This semantics can be thought of as accumulating ghost information

of the data flow semantics. We will use this ghost information to show several

useful properties of the original data flow semantics.

A.3.1 Semantic Domains

We define paths p ∈ Path as a sequence of nodes N+. The path data flow values

are defined in a similar way as are the data flow values except that path information

is maintained as well.

w ∈ Vw ::= ⊥ | ω | 〈c, p〉 | 〈Tw, p〉 path (data flow) values

Tw ∈ T w def
= Path → Vw × Vw path tables

Mw ∈Mw def
= N → Vw path execution maps

The set Consw def
= Cons×Path denotes the set of all constant path values that also

Boolean path values Boolw
def
= {true, false} × Path.

The computational partial ordering on path values is defined similarly to the

ordering on the ordinary the data flow values. In addition, we require that corre-

sponding paths are related by the prefix relation �.

w1 vw w2
def⇐⇒ w1 = ⊥ ∨ w2 = ω ∨

(w1 = 〈c, p1〉 ∧ w2 = 〈c, p2〉 ∧ c ∈ Cons ∧ p1, p2 ∈ Path ∧ p1 � p2) ∨

w1=〈Tw
1 , p1〉 ∧ w2=〈Tw

2 , p2〉 ∧ Tw
1 , T

w
2 ∈T w ∧ p1, p2 ∈ Path ∧ p1 � p2

∧ ∀ncs. T
w
1 (ncs) v̇w Tw

2 (ncs)

158

The join on the path values is defined as follows.

〈c, p1〉 tw 〈c, p〉 def
= 〈c, p〉 if p1 � p2 ∨ p2 � p1 and

p = p1 � p2 ? p2 : p1

〈Tw
1 , p1〉 tw 〈Tw

2 , p2〉
def
= 〈Λncs. T

cr
1 (ncs)ṫwT cr

2 (ncs), p〉 if p1 � p2 ∨ p2 � p1 and

p = p1 � p2 ? p2 : p1

⊥ tw w
def
= w w tw ⊥ def

= w w1 tw w2
def
= ω (otherwise)

The meet on path values is defined similarly, as expected.

Lemma 46. The join tw and uw on path values are lub and glb operators subject

to the vw ordering.

Proof. Similar to the proof of Lemma 1.

An empty table that maps every call site to the pair of ⊥ values is denoted

by Tw
⊥ . We reuse the notation for denoting singleton tables from the data flow

semantics. The same applies for the notation ncs ∈ Tw denoting if some non-⊥

input has been seen for the call site ncs in a given table Tw. A path value map

Mw ∈Mw def
= N → Vw is a function from nodes to path values, as expected. Path

maps Mw
⊥ and Mw

ω assign to each node the ⊥ and ω value, respectively.

We also define a function paths that collects paths of a value

paths(⊥)
def
=∅ paths(ω)

def
= ∅ paths(〈c, p〉) def

= {p}

paths(〈Tw, p〉) def
={p} ∪

⋃
p′∈Tw

{p′} ∪ paths(π1(Tw(p′))) ∪ paths(π2(Tw(p′)))

All paths paths(Mw) of path map Mw are defined as the union of all paths of values

in the map, as expected.

159

A.3.2 Data Propagation

The data propagation propw : Vw×Vw → Vw×Vw on path values closely resembles

the data propagation on the plain data flow values. The main difference is that

a meaningful propagation only happens in the case when the paths of the given

values match by the � relation. Otherwise, the propagation just sets both values

to top ω. As we shall see shortly, such cases never happen during the computation.

propw(〈Tw
1 , p1〉, 〈Tw

2 , p2〉)
def
= if p1 � p2

let T ′ = Λp.

if p 6∈ Tw
2 then 〈Tw

1 (p), Tw
2 (p)〉 else

let 〈w1i, w1o〉 = Tw
1 (ncs); 〈w2i, w2o〉 = Tw

2 (ncs)

〈w′2i, w′1i〉 = propw(w2i, w1i); 〈w′1o, w′2o〉 = propw(w1o, w2o)

in (〈w′1i, w′1o〉, 〈w′2i, w′2o〉)
in 〈Λp. π1(T ′(p)),Λp. π2(T ′(p))〉

propw(〈Tw, p〉,⊥)
def
= (〈Tw, p〉, 〈Tw

⊥ , p〉) propw(〈Tw, p〉, ω)
def
= 〈ω, ω〉

propw(〈Tw
1 , p1〉, 〈Tw

2 , p2〉)
def
= 〈ω, ω〉 if p1 6� p2

propw(〈c, p1〉, 〈c, p2〉)
def
= (〈c, p1〉, 〈c, p2〉) if p1 � p2

propw(〈c, p1〉, 〈c, p2〉)
def
= 〈ω, ω〉 if p1 6� p2

propw(w1, w2)
def
= 〈w1, w1 tw w2〉 (otherwise)

Lemma 47. propw is increasing and monotone.

Proof. By structural induction on the arguments of propw. The argument for the

increasing property is rather straightforward. Regarding monotonicity, arguably

the most interesting case is that of constants. Suppose w1 = 〈c, p1〉, w2 = 〈c, p2〉,

160

w3 = 〈c, p3〉, and w4 = 〈c, p4〉. Let w1 vw w3 and w2 vw w4. First, if p1 6� p2 then

p3 6� p4 since by the definition of vw it must be that p1 � p3 and p2 � p4. In

this case, the argument is trivial. If p1 � p2 the argument is again simple as the

values w1 and w2 do not get updated. Assume now that w2 = ⊥ and w4 = ⊥. The

argument is again straightforward. Lastly, assume that only w2 = ⊥ (note that

we cannot have the case when only w4 = ⊥ since we assume for the purpose of

showing monotonicity that w2 vw w4). The propagation will result in an updated

value w′2 = w1. If p3 6vw p4, the argument is easy. Otherwise, since p1 � p3 and

p3 � p4, then it also must be that p1 � p4. The same reasoning, together with the

induction hypothesis, applies to the case of tables.

It can be also shown that the propagation does not invent new paths. That is,

propagation between two values results in two values where each resulting value

is either top ω or a new path values that has the same path as the original path

value.

Lemma 48. Let 〈w′1, w′2〉 = propw(w1, w2) for some path values w1, w
′
1, w2, and

w′2. Then, if w1 = 〈 , p〉 for some path p, then w′1 = ω or w′2 = 〈 , p〉. The same

hold for w2 and w′2.

Proof. The proof goes by structural induction on both w1 and w2.

A.3.3 Transformer

The transformer stepw : N→ λd → E →Mw →Mw of the paths semantics works

similarly as the transformer for the original data flow semantics. The only differ-

ence is that the path information needs to be properly handled when creating new

values. For that purpose, we introduce a function for extending path information

161

in path values with nodes.

ext(p, n)
def
= p if top(p) = n ext(p, n)

def
= p · n (otherwise)

ext(〈Tw, p〉, n)
def
= 〈Tw, ext(p, n)〉 ext(〈c, p〉, n)

def
= 〈c, ext(p, n)〉

ext(ω, n)
def
= ω ext(⊥, n)

def
= ⊥

Here, we use top to denote the top/final node of a path. Further, · operation

concatenates two given paths. Note that we also consider a node as a path. Finally,

observe that the operation ext on paths is idempotent. Also, let path be a partial

function on path values that returns a path associated with the value, if such a

path exists. Note that path semantics models call sites as paths rather than nodes,

but the variable nodes are created only using the top of the call site path. As we

shall see later, the actual paths observed during the computation that have unique

top nodes.

Lemma 49. stepw is increasing and monotone.

Proof. The increasing property follows from the increasing property of propw (Lemma 47).

The proof of monotonicity closely follows that of Lemma 28.

A.3.4 Additional Properties

We next introduce several useful properties related to the path semantics.

A.3.4.1 Computation Range

The results regarding the computation range are the same as for the ordinary data

flow semantics.

Lemma 50. Let Mw and Mw
0 be path maps, E an environment, e` an expression

162

stepw
0 JeK(E)(Mw)

def
= Mw

stepw
k+1Jc`K(E)(Mw)

def
= Mw[E�`→Mw(E�`) t 〈c, E�`〉]

stepw
k+1Jx`K(E)(Mw)

def
=

let 〈w′x, w′〉 = propw(Mw(E(x)),Mw(E�`))
inMw[E(x) 7→ w′x, E�` 7→ ext(w′, E�`)]

stepw
k+1J(e

`1
1 e

`2
2)`K(E)(Mw)

def
=

letMw
1 = stepw

k Je1K(E)(Mw); w1 =Mw
1
Mw

1 (E�`1) in

if w1 6∈ T w thenMw
ω else

letMw
2 = stepw

k Je2K(E)(Mw
1); w2 =Mw

2
Mw

2 (E�`2) in

let 〈w′1, Tw〉 = propw(w1, [path(w1) 7→ 〈w2,M
w
2 (E�`)〉])

〈w′2, w′〉 = Tw(path(w1))

inMw
2 [E�`1 7→ w′1, E�`2 7→ w′2, E�` 7→ ext(w′, E�`)]

stepw
k+1J(µf.λx.e

`1
1)`K(E)(Mw)

def
=

let Tw =Mw 〈Tw
⊥ , E�`〉 tw Mw(E�`) in

letMw = Λp ∈ Tw. if π1(Tw(ncs)) = ω thenMw
ω else

let nx=E�top(p)�x; nf=E�top(p)�f ; E1=E[x 7→nx, f 7→nf]
〈Tw

x , T
w
0 〉 = propw([p 7→ 〈Mw(nx),M

w(E1�`1)〉], Tw)

〈Tw
2 , T

w
f 〉 = propw(Tw,M

w(nf)); 〈w′x, w′1〉 = Tw
x (p)

Mw
1 = Mw[E� 7̀→Tw

1 tw Tw
2 , nf 7→ext(Tw

f , nf), nx 7→ext(w′x, nx), E1�`1 7→w′1]

in stepw
k Je1K(E1)(Mw

1)

inMw[E�` 7→ Tw] ṫw
⊔̇w

p∈Tw M(p)

stepw
k+1J(e

`0
0 ? e`11 : e`22)`K(E)(Mw)

def
=

letMw
0 = stepw

k Je0K(E)(Mw); w0 =Mw
0
Mw

0 (E�`0) in

if w0 6∈ Boolw thenMw
ω else

let b = if w0 = 〈true, 〉 then 1 else 2 in

letMw
b = stepw

k JebK(E)(Mw
0); wb =Mw

b
Mw

b (E�`b) in
let 〈w′b, w′〉 = propw(wb,M

w
b (E�`))

inMw
b [E�` 7→ ext(w′, E�`), E�`b 7→ w′b]

of a program e′ where (e, E) is well-formed, and k a fuel. If domvalid(`, e′, E) and

stepw
k Je`K(E)(Mw) = Mw

0 then ∀n.Mw(n) 6= Mw
0 (n) =⇒ n ∈ rangere′(E�`).

163

Proof. Similar to the proof of Lemma 35.

Lemma 51. Let E be an environment, e′ be a program, `1 and `2 two locations

such that Loc(e′(`1)) ∩ Loc(e′(`2)) = ∅. Then, rangee′(E�`1) ∩ rangee′(E�`2) =

rng(E).

Proof. Similar to the proof of Lemma 36.

Lemma 52. Let E1 and E2 be two environments and ` a location of a program

e′. If dom(E1) = dom(E2) and E1 6= E2, then rangee′(E�`1) ∩ rangee′(E�`2) =

rng(E1) ∩ rng(E2).

Proof. Similar to the proof of Lemma 37.

A.3.4.2 Finiteness

We say a value w is finite fin(w) if it is either a ground value or a table that has seen

only a finite number of inputs, just as in the case of regular data flow semantics.

fin(w)
def
=(w ∈ {⊥, ω} ∪ Consw) ∨ (∃Tw. w = 〈Tw,〉 ∈ T w ∧ |{p | p ∈ Tw}| ∈ N ∧

∀p ∈ Tw. fin(π1(Tw(p))) ∧ fin(π2(Tw(p))))

As expected, propw does not affect the finiteness of values. The same clearly holds

for joins t.

Lemma 53. Let w1, w2, w3, and w4 be path values. If fin(w1), fin(w2), and

〈w3, w4〉 = propw(w1, w2), then fin(w3) and fin(w4).

Proof. Similar to the proof of Lemma 30.

We say a path map Mw is finite fin(Mw) if all of its values are finite and the

set of reachable nodes is finite as well |{n | Mw(n) 6= ⊥}| ∈ N. It can be shown

that stepw preserves the finiteness of maps.

164

Lemma 54. Let Mw and Mw
0 be maps, E an environment, e` an expression where

(e, E) is well-formed, and k a fuel. If fin(Mw) and stepw
k Je`K(E)(Mw) = Mw

0 , then

fin(Mw
0).

Proof. Similar to the proof of Lemma 31.

A.3.4.3 Top of the Path Consistency

We say a path map Mw is consistent subject to the top of the paths tpcons(Mw)

iff for every node n it is the case that Mw(n) ∈ {⊥, ω} or Mw(n) = 〈 , p〉 for some

path p where path(p) = n.

The consistency of maps subject to the top of paths is an preserved by the path

semantics transformer.

Lemma 55. Let Mw ∈ Mw where tpcons(Mw), Mw
0 ∈ Mw, e` an expression,

k ∈ N, and E an environment where (e, E) is well-formed. If stepw
k Je`K(E)(Mw) =

Mw
0 , then tpcons(Mw

0).

Proof. The proof goes by induction on k and e. The argument follows from the

basic properties of the join on path values, Lemma 48, and the idempotency of ext

operation.

Top of the path consistency can be used to establish an interesting and useful

property of the concrete transformer stepw. Once path has been inferred for some

value in the map, then after applying the transformer, the updated value is either

top ω or a new path value but with the same associated path.

Lemma 56. Let n ∈ N , Mw ∈ Mw where tpcons(Mw), Mw
0 ∈ Mw, e` an

expression, k ∈ N, and E an environment where (e, E) is well-formed. Suppose

165

stepw
k Je`K(E)(Mw) = Mw

0 . If Mw(n) = 〈 , p〉 for some path p, then Mw(n0) = 〈 , p〉

or Mw
0 (n) = ω.

Proof. The proof goes by induction on k and e. The argument follows from the

basic properties of the join on path values and Lemma 48. The top of the path

consistency property together with Lemma 55 is needed to prove that the calls to

ext on existing paths do not create new paths.

A.3.4.4 Call Site Path consistency

We next define the notion of call site path consistency intuitively capturing the idea

that a table can be called at call site path that refers to the future points reached

by the table, i.e., call site paths must be an extension of the path associated with

the table. A path value w is call site path consistent pcscons(w) iff

(w ∈ {⊥, ω} ∪ Consw) ∨

∃Tw, p.w = 〈Tw, p〉 ∧ ∀p′ ∈ Tw. p � p′ ∧ pcscons(π1(Tw(p′))) ∧ pcscons(π2(Tw(p′)))

We raise the definition of call site path consistency to the maps. That is, a path

map Mw is said to be call site path consistent pcscons(Mw) iff for every node n we

have pcscons(Mw(n)).

It can be shown that the data propagation does not invalidate the call site path

consistency.

Lemma 57. Let 〈w′1, w′2〉 = propw(w1, w2) for path values w1, w
′
1, w2, and w′2. If

pcscons(w1) and pcscons(w2), then pcscons(w′1) and pcscons(w′2).

Proof. The proof goes by structural induction on both w1 and w2. The base cases

are trivial and so is the the induction case when both w1 and w2 are path tables

but the path associated with w1 is not a prefix of the one associated with w2.

166

Otherwise, the argument follows from the i.h. and the fact that any call site path

seen in w2 has to also be an extension of the path associated with w1.

The call site path consistency is preserved by the transformer of the path

semantics.

Lemma 58. Let Mw ∈ Mw where pcscons(Mw), Mw
0 ∈ Mw, e` an expression,

k ∈ N, and E an environment where (e, E) is well-formed. If stepw
k Je`K(E)(Mw) =

Mw
0 , then pcscons(Mw

0).

Proof. The proof goes by induction on k and e. The argument follows from the

basic properties of the join on path values, Lemma 48, Lemma 57, and Lemma 56.

A.3.4.5 Root Path Consistency

A path p is called to be root consistent rootconse(p), subject to some program e,

iff its root node corresponds to a constant or lambda expression of the program.

rootconse(p)
def⇐⇒ ∃c.e(loc(root(p))) = c ∨ ∃f, x, e′. e(loc(root(p))) = µf.λx.e′

Note that we use root(p) to denote the starting/root node of a path p. A map Mw

is root consistent if all of its paths in paths(Mw) are root consistent.

Lemma 59. Let e be a program, 〈w′1, w′2〉 = propw(w1, w2) for path values w1, w
′
1, w2,

and w′2. If rootconse(w1) and rootconse(w2), then rootcons(w′1) and rootcons(w′2).

Proof. The proof goes by structural induction on both w1 and w2.

The root path consistency is preserved by the transformer of the path semantics.

Lemma 60. Let Mw ∈ Mw where pcscons(Mw), Mw
0 ∈ Mw, e` an expression,

k ∈ N, and E an environment where (e, E) is well-formed. If stepw
k Je`K(E)(Mw) =

Mw
0 , then pcscons(Mw

0).

167

Proof. The proof goes by induction on k and e. The argument follows from the

basic properties of the join on path values, Lemma 48, and Lemma 59.

A.3.4.6 Table IO Consistency

We next formalize the notion of input-output consistency for tables that is the

same as for the standard data flow semantics.

tiocons(w)
def⇐⇒ (w ∈ {⊥, ω} ∪ Consw) ∨ (∃Tw. w = 〈Tw, 〉 ∧ ∀p ∈ Tw.

π1(Tw(p)) = ⊥ =⇒ π2(Tw(p)) = ⊥ ∧

tiocons(π1(Tw(p))) ∧ tiocons(π2(Tw(p))))

As expected, a map is input-output consistent tioconse(M), subject to a program

e, iff all of its values are IO consistent and for every node n

Mw(env(n)�`1)=⊥ =⇒Mw(env(n)�`2)=⊥ ∧

Mw(env(n)�`2)=⊥ =⇒Mw(env(n)�`)=⊥

if ∃e1, e2, `1, `2. e(loc(n)) = e`11 e
`2
2

π1(Mw(n)(p))=⊥ =⇒Mw(nf)=⊥ ∧

π1(Mw(n)(p))=⊥ =⇒Mw(nx)=⊥ ∧

π1(Mw(nx))=⊥ =⇒Mw(E1�`1)=⊥

if M(n) ∈ T w and ∃x, f, e1, `1, nx, nf , p. p ∈Mw(n) ∧ nx=env(n)�top(p)�x

∧ nf=env(n)�top(p)�f ∧ E1 = E.x:nx.f:nf

The input-output consistency of values is not violated by data propagation.

Lemma 61. Let e be a program, 〈w′1, w′2〉 = propw(w1, w2) for path values w1, w
′
1, w2,

and w′2. If tioconse(w1) and tioconse(w2), then tiocons(w′1) and tiocons(w′2).

Proof. The proof goes by structural induction on both w1 and w2.

168

The input-output consistency is preserved by stepw.

Lemma 62. Let Mw ∈ Mw where tiocons(Mw), Mw
0 ∈ Mw, e` an expression,

k ∈ N, and E an environment where (e, E) is well-formed. If stepw
k Je`K(E)(Mw) =

Mw
0 , then tiocons(Mw

0).

Proof. The proof goes by induction on k and e. The argument follows from the

fact that the join on path values does not invalidate input output consistency and

Lemma 61.

A.3.4.7 Table Input Consistency

A path value w is input consistent inpconse(w), subject to some program e, iff the

path associated with every input of a table has to come from a function application

expression in e.

inpconse(w)
def⇐⇒ (w ∈ {⊥, ω} ∪ Consw) ∨ ∃Tw. w = 〈Tw, 〉 ∧ ∀p ∈ Tw.

inpconse(π1(Tw(p))) ∧ inpconse(π2(Tw(p))) ∧ ∃e1, e2, `2, p
′.

e
loc(top(p))
1 e`22 ∈ e ∧ (π1(Tw(p)) ∈ {⊥, ω} ∨ π1(Tw(p)) = 〈 , p′〉

∧ top(p′) = env(top(p))�`2)

A map Mw is input consistent inpconse(M
w) iff all of its values are input consistent.

Lemma 63. Let e be a program, 〈w′1, w′2〉 = propw(w1, w2) for path values w1, w
′
1, w2,

and w′2. If inpconse(w1) and inpconse(w2), then inpcons(w′1) and inpcons(w′2).

Proof. The proof goes by structural induction on both w1 and w2 and it relies on

Lemma 48.

The input consistency of path maps is preserved by stepw.

169

Lemma 64. Let Mw ∈ Mw where inpcons(Mw), Mw
0 ∈ Mw, e` an expression,

k ∈ N, and E an environment where (e, E) is well-formed. If stepw
k Je`K(E)(Mw) =

Mw
0 , then inpcons(Mw

0).

Proof. The proof goes by induction on k and e. The argument follows from the fact

that join on paths values does not invalidate input consistency and Lemma 63.

A.3.4.8 Table Output Consistency

A path value w is output consistent outconse(w), subject to some program e, iff the

path associated with every input of a table has to come from a function application

expression in e.

outconse(w)
def⇐⇒ (w ∈ {⊥, ω} ∪ Consw) ∨ ∃Tw, p, f, x, e1, `1. w = 〈Tw, p〉 ∧

e(loc(root(p))) = µf.λx. e`11 ∧ ∀p′ ∈ Tw. outconse(π1(Tw(p′))) ∧

outconse(π2(Tw(p′))) ∧ (∃E, p′′. π2(Tw(p′)) ∈ {⊥, ω} ∨

π2(Tw(p′)) = 〈 , p′′〉 ∧ top(p′′) = E�`1 ∧ E =

env(root(p)).x : env(root(p))�top(p′)�x.f : env(root(p))�top(p′)�f)

A map Mw is output consistent outconse(M
w) iff all of its values are output con-

sistent.

Lemma 65. Let e be a program, 〈w′1, w′2〉 = propw(w1, w2) for path values w1, w
′
1, w2,

and w′2. If outconse(w1) and outconse(w2), then outcons(w′1) and outcons(w′2).

Proof. The proof goes by structural induction on both w1 and w2.

The output consistency of path maps is preserved by stepw.

Lemma 66. Let Mw ∈ Mw where outcons(Mw), Mw
0 ∈ Mw, e` an expression,

k ∈ N, and E an environment where (e, E) is well-formed. If stepw
k Je`K(E)(Mw) =

Mw
0 , then outcons(Mw

0).

170

Proof. The proof goes by induction on k and e. The argument follows from the fact

that join on paths values does not invalidate input consistency and Lemma 63.

A.3.4.9 Constant Consistency

We next formalize the notion of constant consistency for path maps that is identical

to the notion of constant consistency for regular maps. A path map Mw is constant

consistent constconse(M
w), subject to a program e, iff for every node n, where

Mw(n) = w for some path value w and loc(n) = ` for some location `, it must be

w ∈ {ω,⊥, 〈c, n〉} if e(`) = c

w ∈ {ω,⊥} ∪ {〈Tw, E�`〉 | Tw ∈ T w} if e(`) = µf.λx.e1 for some x, f , and e1

A.3.4.10 Concrete Path Subtyping

The notion of subtyping for path values resembles the one on the regular data

flow values. Additionally, we also require that a table cannot see a call site path

(coming from the future) unless the future table has seen it as well.

w1<:ww2
def⇐⇒ (w2 = ⊥) ∨ (w1 = 〈c, p1〉 ∧ w2 = 〈c, p2〉 ∧ c ∈ Cons ∧ p1, p2 ∈ Path)

∨ (w1 = w2 = ω) ∨ (w1 = 〈Tw
1 , p1〉 ∧ w2 = 〈Tw

2 , p2〉 ∧ Tw
1 , T

w
2 ∈ T w

∧ p1, p2 ∈ Path ∧ p1 � p2 ∧ (∀p ∈ Tw
1 . p2 � p =⇒ p ∈ Tw

2) ∧

∀p ∈ Tw
2 .π1(Tw

2 (p)) <:w π1(Tw
1 (p)) ∧ π2(Tw

1 (p)) <:w π2(Tw
2 (p)))

Unlike the subtyping relation on the ordinary data flow values, the above subtyp-

ing relation for path values is transitive, given certain simple assumptions on the

values.

Lemma 67. Let w1 ∈ Vw, w2 ∈ Vw, and w3 ∈ Vw such that tiocons(w1),

tiocons(w2), tiocons(w3), pcscons(w1), pcscons(w2), and pcscons(w3). If w1 <:w w2

171

and w2 <:w w3, then w1 <:w w3.

Proof. By structural induction on w2. We first cover the base cases.

• w2 = ⊥

w3 = ⊥ by def. of <:w

w1<:w⊥

• w2 = ω

w3 = ⊥ ∨ w3 = ⊥ by def. of <:w

w1 = ω by def. of <:w

ω<:wω ∧ ω<:w⊥

• w2 = 〈c, p2〉

w1 = 〈c, p1〉, p1 � p2 by def. of <:w

w3 = ⊥ ∨ w3 = 〈c, p3〉 ∧ p2 � p3 by def. of <:w

〈c, p1〉<:w⊥ ∧ 〈c, p1〉<:w〈c, p3〉 by trans. of �

For the induction case, suppose w2 = 〈Tw
2 , p2〉 for some Tw

2 and p2. If w3 = ⊥,

the argument is trivial. We are thus left with the case where w1 = 〈Tw
1 , p1〉 and

w3 = 〈Tw
3 , p3〉 for some Tw

1 , Tw
3 , p1, and p3 where p1 � p2 and p2 � p3. Hence,

p1 � p3. Let us first argue that ∀p ∈ Tw
1 . p3 � p =⇒ p ∈ Tw

3 . Suppose not, i.e.,

there exists a path p ∈ Tw
1 such that p3 � p and p 6∈ Tw

3 . By p2 � p3, we have that

p2 � p and hence p ∈ Tw
2 by w1<:ww2. Therefore, it also must be that p ∈ Tw

3 by

w2<:ww3.

Consider next any call site path p. Let Tw
1 (p) = 〈w1i, w1o〉, Tw

2 (p) = 〈w2i, w2o〉,

and Tw
3 (p) = 〈w3i, w3o〉. If p 6∈ Tw

3 , the argument is trivial. Hence, we can only

focus on the case where p ∈ Tw
3 . We branch on the occurrence of p in Tw

2 .

172

Suppose p 6∈ Tw
2 . Hence, w2i = ⊥ and by tiocons(w2) it must be that w2o = ⊥.

Next, it cannot be the case where both p ∈ Tw
1 and p ∈ Tw

3 when p 6∈ Tw
2 . To

see this, suppose this is not the case, i.e., p ∈ Tw
1 . By pcscons(w3), we have

that p3 � p. Since p2 � p3, then also p2 � p. Then, p2 ∈ Tw
2 by w1<:ww2, a

contradiction. Hence, p 6∈ Tw
1 . By tiocons(w1) we have w1i = w1o = ⊥ . The result

then follows by Tw
1 (p) = Tw

2 (p).

Suppose now p ∈ Tw
2 . Then, we have w3i<:ww2i and w2i<:ww1i as well as

w1o<:ww2o and w2o<:ww3o and the result follows by i.h.

We next prove several results stating how the propagation between values affect

the subtyping relation between the values. We start with the expected result that

the propagation preserves subtyping between path values.

Lemma 68. Let w1 ∈ Vw, w2 ∈ Vw, w3 ∈ Vw, and w4 ∈ Vw. If w1<:ww2 and

〈w3, w4〉 = propw(w1, w2), then w3<:ww4.

Proof. By structural induction on w1 and w2. The proof argument is similar to

the one of Lemma 38.

The propagation between two values reserves the subtyping relation not only

between the two values, but also on the whole subtyping chain containing these

two values.

Lemma 69. Let w1 ∈ Vw, w2 ∈ Vw, w3 ∈ Vw, w′1 ∈ Vw, w′2 ∈ Vw, and w′3 ∈ Vw.

Suppose w1<:ww2, w2<:ww3, tiocons(w1), tiocons(w2), tiocons(w3), pcscons(w1),

pcscons(w2), and pcscons(w3). If 〈w′1, w′2〉 = propw(w1, w2) then w′2<:ww3. Simi-

larly, if 〈w′2, w′3〉 = propw(w2, w3) then w1<:ww′2.

173

Proof. The proof goes by structural induction on w2 and follows the structure of

the proof of Lemma 67. Also, the proof relies on Lemma 61 and Lemma 57 to

trigger the induction hypothesis.

It can also be shown that updated versions, by means of propagation, of value

lying on the subtyping chain can be joined while retaining the subtyping property

of the chain.

Lemma 70. Let w1 ∈ Vw, w2 ∈ Vw, w3 ∈ Vw, w′1 ∈ Vw, w′2 ∈ Vw, w′′2 ∈ Vw,

and w′′3 ∈ Vw. Suppose w1<:ww2, w2<:ww3, tiocons(w1), tiocons(w2), tiocons(w3),

pcscons(w1), pcscons(w2), and pcscons(w3). Next, suppose 〈w′1, w′2〉 = propw(w1, w2)

and 〈w′′2 , w′′3〉 = propw(w2, w3) such that w′1<:ww′2<:ww3 and w1<:ww′′2<:ww′′3 . Then,

w′1 <:w w2 tw w′′2 <:w w′3.

Proof. By structural induction on w1, w2, and w3.

We now finally define the subtyping consistency of path maps. A map Mw

is subtyping consistent csube(M
w), subject to a program e, iff for every node n,

where loc(n) = `, it must be that

Mw(env(n)�`2) <:w π1(Mw(env(n)�`1)(p)) ∧ π2(Mw(env(n)�`1)(p)) <:w Mw(n)

if ∃e1, e2, `1, `2, T
w, p. e(`) = (e`11 e

`2
2) and Mw(env(n)�`1) = 〈Tw, p〉

π1(Mw(n)(p)) <:w Mw(nx) ∧Mw(E1�`1) <:w π2(Mw(n)(p))

if ∃x, f, e1, `1, T
w, p, nx, nf . e(`) = (µf.λx.e`11), Mw(n) = 〈Tw, 〉 , p ∈Mw(n),

nx = env(n)�top(p)�x, nf = env(n)�top(p)�f, and E1 = env(n).x : nx.f : nf

and ∀p ∈ paths(Mw), 〈n1, n2〉 ∈ p.Mw(n1) <:w Mw(n2).

174

A.3.4.11 Path Consistency

We next introduce a path consistency, a property of maps similar to subtyping

but providing more information about paths of values related to subtyping. A

path map Mw is called path consistent pvcons(Mw), subject to a program e, iff

∀p ∈ paths(Mw).Mw(top(p)) = p ∧ ∀〈n1, n2〉 ∈ p. agreen2
(Mw(n1),Mw(n2)) where

agreen(w1, w2)
def⇐⇒ ∃p1, p2. p2 = p1 · n ∧ w1 = 〈 , p1〉 ∧ w2 = 〈 , p2〉.

That is, the values associated with neighbouring nodes cannot be bottom ⊥ or top

ω and associated paths have to be an extension of each other.

We next prove several interesting properties of path consistent maps. We use

prefix(p, i) to denote a prefix of p up to and including the node at position i in p.

We also use n ∈i p to denote that n appears in p at the position i.

Lemma 71. Let Mw be a path map, p ∈ paths(Mw), and n ∈i p. If pvcons(Mw),

then Mw(n) = 〈 , prefix(p, i)〉.

Proof. Follows from the definition of pvcons and agree.

If two values agree, the data propagation between these two values is preserved.

Lemma 72. Let e be a program, n a node, and 〈w3, w4〉 = propw(w1, w2) for path

values w1, w2, w3, and w4. If agreen(w1, w2), then agreen(w3, w4).

Proof. The argument follows from Lemma 48.

A.3.4.12 Path Determinism

We next introduce another useful property of paths taken by data flow values in

our semantics. That is, every taken path is deterministic in the sense that for

every node in a path there is always a unique predecessor node. For this purpose,

175

we define the predecessor relation predeMw(n1, n2) to hold between nodes n1 and n2,

subject to a path map Mw and program e, iff one of the following six cases hold

1.

n1 ∈ Nx ∧ n2 ∈ Ne ∧ ∃x. e(loc(n1)) = x ∧ x ∈ dom(env(n1)) ∧ n2 = env(n1)(x)

2.

n1 ∈ Ne ∧ n2 ∈ Nx ∧ ∃n,E0, e1, e2, `1, `2, x, T
w, p. n2=E0�n�x ∧ n1=env(n)�`2

∧ eloc(n)
1 e`22 ∈ e ∧Mw(env(n)�`2) 6∈ {⊥, ω} ∧Mw(n) = 〈Tw, p〉 ∧

env(root(p)) = E0 ∧ e(loc(root(p))) = µ .λx.

3.

n1 ∈ Ne ∧ n2 ∈ Nx ∧ ∃n,E0, e1, e2, `1, `2, f, T
w, p. n2=E0�n�f ∧ n1=root(p)

∧ eloc(n)
1 e`22 ∈ e ∧Mw(env(n)�`2) 6∈ {⊥, ω} ∧Mw(n) = 〈Tw, p〉 ∧

env(root(p)) = E0 ∧ e(loc(root(p))) = µf.λ .

4.

n1 ∈ Ne ∧ n2 ∈ Ne ∧ ∃n,E0, Eb, e1, e2, eb, `1, `2, `b, f, x, T
w, p.

env(n2)=env(n) ∧ n1=Eb�`b ∧ e(loc(n2)) = e
loc(n)
1 e`22 ∧Mw(n) = 〈Tw, p〉 ∧

Mw(env(n)�`2) 6∈ {⊥, ω} ∧ env(root(p)) = E0 ∧ e(loc(root(p))) = µf.λx.e`bb ∧

Eb = E0.x : E0�n�x.f : E0�n�f

5.

n1 ∈ Ne ∧ n2 ∈ Ne ∧ ∃e0, e1, e2, `0.

e(loc(n2)) = e`00 ? e
loc(n1)
1 : e2 ∧Mw(env(n2)�`0) = 〈true, 〉 ∧ env(n1) = env(n2)

176

6.

n1 ∈ Ne ∧ n2 ∈ Ne ∧ ∃e0, e1, e2, `0.

e(loc(n2)) = e`00 ? e1 : e
loc(n1)
2 ∧Mw(env(n2)�`0) = 〈false, 〉 ∧ env(n1) = env(n2)

Note that we again use the pattern to quantify out certain mathematical objects

to avoid clutter.

The first interesting property of the predecessor relation is that there is no

predecessor of a node that corresponds to the constant expression or lambda ex-

pression.

Lemma 73. Let n2 be a node, Mw a path map, and e a program. If e(loc(n2)) is

a constant or a lambda expression, then there does not exist a node n1 such that

predeMw(n1, n2).

Proof. Follows from the definition of the pred relation.

A node cannot be its predecessor, i.e., the pred relation is not reflexive.

Lemma 74. Let n be a node, Mw a path map, and e a program. Then, it cannot

be the case that predeMw(n, n).

Proof. Follows from the definition of the pred relation.

Next, the predecessor relation is deterministic.

Lemma 75. Let n, n1, and n2 be nodes, Mw a path map, and e a program. If

predeMw(n, n1) and predeMw(n, n2), then n1 = n2.

Proof. Follows from the definition of the pred relation, the fact that environments

and path maps are modeled as functions, and uniqueness of locations in e.

177

Although the predecessor relation is deterministic, two different nodes can share

their predecessor.

Lemma 76. Let n, n1, and n2 be nodes where n1 6= n2, Mw a path map, and e a

program. If predeMw(n, n1) and predeMw(n, n2), then n ∈ Nx or e(loc(n)) is a lambda

expression.

Proof. Follows from the definition of the pred relation.

We say that path p is deterministic deteMw(p), subject to a program e and path

map Mw, iff ∀〈n1, n2〉 ∈ p. predeMw(n1, n2). A map Mw is deterministic dete(Mw)

subject to a program e iff ∀p ∈ paths(Mw). deteMw(p).

A.3.4.13 Error Consistency

Similar to data flow semantics, we introduce the notion of the error absence of

values that intuitively states the a given value is not an error and, if it is a table,

it does not recursively contain errors.

noerr(w)
def⇐⇒ (w ∈ {⊥} ∪ Consw) ∨ (∃Tw. w = 〈Tw, 〉 ∧ ∀p ∈ Tw.

noerr(π1(Tw(p))) ∧ noerr(π2(Tw(p))))

A path map Mw is error consistent errcons(Mw) if either (1) Mw = Mw
ω or (2) for

every node n it must be that noerr(Mw(n)).

Data propagation does not invalidate the absence of error property of path

values, given that these values are related by the concrete subtyping relation on

path values.

Lemma 77. Let w1 ∈ Vw, w2 ∈ Vw, w3 ∈ Vw, and w4 ∈ Vw. If w1<:ww2 ,

noerr(w1), noerr(w2), and 〈w3, w4〉 = propw(w1, w2), then noerr(w3) and noerr(w4).

178

Proof. By structural induction on w1 and w2. The proof argument is almost iden-

tical to the one of Lemma 40.

A.3.4.14 Environment Consistency

The notion of environment consistency for a path map is identical to the one for

regular data flow maps.

envcons(Mw)
def⇐⇒ ∀n, nx ∈ rng(env(n)).Mw(n) 6= ⊥ =⇒ Mw(nx) 6∈ {⊥, ω}.

Consistency of an environment E subject to a path map Mw is defined as follows

envconswM(E)
def⇐⇒ ∀nx ∈ rng(E).Mw(nx) 6∈ {⊥, ω}

A.3.4.15 Consistency

We can now define a general consistency conse(M
w) of a path map Mw subject to

a program e as follows

conse(M
w)

def⇐⇒ tpcons(Mw) ∧ pcscons(Mw) ∧ rootconse(M
w) ∧ inpconse(M

w) ∧

outconse(M
w) ∧ dete(M

w) ∧ csube(M
w) ∧ tioconse(M

w) ∧ fin(Mw)

∧ constconse(M
w) ∧ errcons(Mw) ∧ envcons(Mw) ∧ pvcons(Mw)

We now prove several interesting properties of general consistency of maps.

Lemma 78. Let Mw be a consistent map conse(M
w) subject to a program e. Then,

∀p ∈ paths(Mw), n ∈ p.Mw(n) 6∈ {⊥, ω}.

Proof. Follows from the definition of pvcons.

The next result states that the observed paths in a consistent map can be

uniquely identified by their top nodes.

Lemma 79. Let Mw be a consistent map conse(M
w) subject to a program e. Then,

∀p1, p2 ∈ paths(Mw).p1 6= p2 =⇒ top(p1) 6= top(p2).

179

Proof. By the induction on both |p1| and |p2|. By pvcons(Mw), prefixes of both p1

and p2 are in paths(Mw). The argument then follows from dete(M
w), rootconse(M

w),

Lemma 75, and Lemma 73.

Further, a node cannot appear at two different location in any path of a con-

sistent map. That is, individual paths do not constitute cycles.

Lemma 80. Let Mw be a consistent map conse(M
w) subject to a program e and

p ∈ paths(Mw). For any given node n, suppose n ∈i p and n ∈j∈ p. Then, it must

be that i = j.

Proof. Suppose not, i 6= j. Let pi = prefix(p, i) and pj = prefix(p, j). Clearly,

pi 6= pj. However, by Lemma 71 it must be that Mw(n) = 〈 , pi〉 = 〈 , pj〉. Hence,

pi = pj. Contradiction.

Moreover, a node is always visited from the same predecessor node.

Lemma 81. Let Mw be a consistent map conse(M
w) subject to a program e. Also,

let n1 and n2 be nodes such that predeMw(n1, n2). Then, Mw(n2) = ⊥ ∨Mw(n2) =

ω ∨ agreen2
(Mw(n1),Mw(n2)).

Proof. Let Mw(n2) = 〈 , p〉 for some p. First, consider the case |p |= 1.

p ∈ paths(Mw) by def. of paths

e(loc(n2)) is a constant or lambda by def. of rootcons

¬predeMw(n1, n2) by Lemma 73

Next, consider the case |p| > 1.

p = p′ · n2 by tpconse(M
w) for some p′

Mw(n1) = 〈 , p′〉 by Lemma 71 and Lemma 80

180

We next show that propagation among values from a consistent map cannot

invalidate subtyping on branching points in the subtyping chains.

Lemma 82. Let Mw be a consistent map conse(M
w) subject to a program e. Also,

let n, n1, and n2 be nodes such that n1 6= n2, predeMw(n, n2), and predeMw(n, n2).

Suppose Mw(n) <:w Mw(n1), Mw(n) <:w Mw(n2), and 〈w′, w′1〉 = propw(Mw(n),Mw(n1)).

Then, w′ <:w Mw(n2).

Proof. Let Mw(n) = w, Mw(n1) = w1, and Mw(n2) = w2. First, observe that if

w1 = ⊥ then w′ = w and the result follows immediately. Otherwise, the proof goes

by a case analysis on Mw(n2).

• w2 = ⊥. Trivial, by the def. of <:w.

• w2 = 〈c, p2〉. Then w = 〈c, p〉 so that p � p2 and w1 = ⊥ or w1 = 〈c, p1〉

where p � p1. Then, by the def. of propw it follows that w′ = 〈c, p〉.

• w2 = ω. Then, w = w′ = w′1 = w2 = ω.

Next, suppose w = 〈Tw
2 , p2〉 for some Tw

2 and p2. Then it must be that w1 =

〈Tw
1 , p1〉 for some Tw

1 and p1. Also, it is the case that w = 〈Tw, p〉 for some Tw and

p. First, observe that

top(p) = n, top(p1) = n1, top(p2) = n2 by tpcons(Mw)

p1 6= p2

We next show that p1 6� p2; the case p2 6� p1 is handled similarly. Suppose p1 � p2.

By pvcons(Mw) and dete(M
w), we know that p2 = p·n2 and p1 = p·n1. Hence, there

exist i and j such that i 6= j, n ∈i p2, n ∈j∈ p2. However, this is a contradiction

by Lemma 80. Thus, p1 6= p2, p1 6� p2, and p2 6� p1. By pcscons(Mw), the

181

set of observed call site paths in Tw
1 and Tw

2 is different. The result then follows

immediately from the definition of propw.

We next show that output values in tables must agree, via concrete subtyping,

with the value of the lambda body used to initially populate the table.

Lemma 83. Let Mw be a consistent map conse(M
w) subject to a program e, w

a path value, n a node, and pc as well as p′ paths. Suppose 〈Tw, p〉 = Mw(n), for

some Tw and p, and let π2(Tw(pc)) = w. If w = 〈 , p′〉, then Mw(top(p′)) <:w w

and Mw(top(p′)) = 〈 , p′〉.

Proof.

p, pc, p
′ ∈ paths(Mw) by def. of paths

e(loc(root(p))) = µf.λx.e`11 for some f, x, e1, `1 by rootconse(M
w)

nx = env(rootp)�top(pc)�x, assume

nf = env(rootp)�top(pc)�f,

E1 = env(root(p)).x : nx.f : nf

top(p′) = E1�`1 by outconse(M
w)

Mw(root(p)) <:w Mw(n) by csube(M
w), tioconsMw, pcsconse(M

w),

and Lemma 67

Mw(root(p)) = 〈Tw
r , 〉 for some Tw

r by def. of <:w

Mw(E1�`1) <:w π2(Tw
r (pc)) by csube(M

w)

Mw(E1�`1) <:w w by csube(M
w), tioconsMw, pcsconse(M

w),

and Lemma 67

Mw(E1�`1) = 〈 , p′〉 by tpcons(Mw) and Lemma 79

182

A similar result holds for inputs of tables that are pushed to tables at the

execution points corresponding to function application expressions.

Lemma 84. Let Mw be a consistent map conse(M
w) subject to a program e, w

a path value, n a node, and pc as well as p′ paths. Suppose 〈Tw, p〉 = Mw(n), for

some Tw and p, and let π1(Tw(pc)) = w. If w = 〈 , p′〉, then Mw(top(p′)) <:w w

and Mw(top(p′)) = 〈 , p′〉.

Proof.

p, pc, p
′ ∈ paths(Mw) by def. of paths

p � pc by pcscons(Mw)

e
loc(top(pc))
1 e

loc(top(p′))
2 ∈ e, for some e1, e2 by inpconse(M

w)

env(top(pc)) = env(top(p′))

Mw(n) <:w Mw(top(pc)) by csube(M
w), tioconsMw, pcsconse(M

w),

and Lemma 67

Mw(top(pc)) = 〈Tw
c , 〉 by def. of <:w and pvcons(Mw)

π1(Tw
c (pc)) <:w w by def. of <:w

Mw(top(p′)) <:w π1(Tw
c (pc)) by csube(M

w)

Mw(top(p′)) <:w w by csube(M
w), tioconsMw, pcsconse(M

w),

and Lemma 67

Mw(top(p′)) = 〈 , p′〉 by tpcons(Mw) and Lemma 79

We next show that the concrete transformer does not change the structure of

the paths, i.e., the pred relation.

183

Lemma 85. Let Mw, Mw
1 , and Mw

2 be path maps such that conse(M
w
1), conse(M

w
2),

and conse(M
w) for some program e. Given an expression e`0 ∈ e, fuel k, and two en-

vironments E1 and E2 such that E1 6= E2, domvalid(`, e, E1,, domvalid(`, e, E2), and

dom(E1) = dom(E2), assume that stepw
k Je`0K(E1)(Mw) = Mw

1 and stepw
k Je`0K(E2)(Mw) =

Mw
2 . Then, ∀p1, p2 ∈ paths(Mw

1)∪paths(Mw
2), i, j, n. n ∈i p1∧n ∈j p2 =⇒ prefix(p1, i) =

prefix(p2, j).

Proof. Let p′ = prefix(p1, i) and p′′ = prefix(p2, j). Clearly, top(p′) = n = top(p′′)

by the definition of prefix. First, if p1 ∈ paths(Mw
1) and p2 ∈ paths(Mw

1), then

by Lemma 71 we have that p′, p′′ ∈ paths(Mw
1) and the result thus follows from

Lemma 79. The same argument applies for the case when p1 ∈ paths(Mw
2) and

p2 ∈ paths(Mw
2).

We are therefore left with the case when p1 ∈ paths(Mw
1) and p2 ∈ paths(Mw

2)

but p1 6∈ paths(Mw
2) and p2 6∈ paths(Mw

1). (The same argument that follows also

applies for the case where we invert the memberships of p1 and p2.) By Lemma 71,

we have that p′ ∈ paths(Mw
1) and p′′ ∈ paths(Mw

2). We thus have deteMw
1
(p′)

and deteMw
2
(p′′). The argument follows by a mutual induction on |p′| and |p′′|. If

|p′| = |p′′| = 1, the argument is trivial. Next, observe that by rootconse(M
w
1) and

rootconse(M
w
2) and Lemma 73 it cannot be the case that |p′| > 1 and |p′′| = 1 (and

similarly |p′′| > 1 and |p′| = 1). Hence, both p′ and p′′ have a predecessor of a top

node n; let those predecessor node be n′ and n′′, respectively. We next show that

n′ = n′′. The argument then inductively follows by Lemma 71. We consider all

the possible cases of n by inspecting the definition of pred. Observe that we have

predeMw
1
(n′, n) and predeMw

2
(n′′, n).

184

• e(loc(n)) = x.

x ∈ dom(env(n)) by def. of pred

∀Mw, n0. predeMw(n0, n) =⇒ n0 = env(n)(x) by def. of pred

predeMw
1
(env(n)(x), n), predeMw

2
(env(n)(x), n)

n′ = n′′ = env(n)(x)

• n = E�nc�x for some E, nc, and x.

•nc 6∈ ranger(E1�`), nc 6∈ ranger(E2�`) assume

Mw(nc) = Mw
1 (nc) = Mw

2 (nc) by Lemma 50 and Lemma 51

n′ = n′′ by def. of pred

•nc ∈ ranger(E1�`), nc ∈ ranger(E2�`) assume

impossible by Lemma 50 and Lemma 51

•nc ∈ ranger(E1�`), nc 6∈ ranger(E2�`) assume

Mw
2 (nc) = Mw(nc) by Lemma 50 and Lemma 51

Mw(nc) 6= ⊥ by def. of pred

Mw
1 (nc) 6= ω by errcons(Mw

1)

Mw(nc) = 〈 , pc〉,Mw
1 (nc) = 〈 , pc〉, for some pc by Lemma 56

Mw
2 (nc) = 〈 , pc〉

n′ = n′′ by def. of pred

•nc 6∈ ranger(E1�`), nc ∈ ranger(E2�`) assume

similar to above

• Similar for other cases of n.

185

We also show that the join of two consistent path maps, obtained by parallel

applications of the concrete transformer, is subtype consistent.

Lemma 86. Let Mw, Mw
1 , and Mw

2 be path maps such that conse(M
w
1), conse(M

w
2),

and conse(M
w) for some program e. Assume we are also given an expression e`0 ∈ e,

fuel k, and two environments E1 and E2 such that E1 6= E2, domvalid(`, e, E1),

domvalid(`, e, E2), and dom(E1) = dom(E2). If stepw
k Je`0K(E1)(Mw) = Mw

1 and

stepw
k Je`0K(E2)(Mw) = Mw

2 , then csube(M
w
1 ṫ

w
Mw

2).

Proof. Let p ∈ paths(Mw
1 ṫ

w
Mw

2) and 〈n1, n2〉. We show that

Mw
1 (n1) tw Mw

2 (n1)<:wMw
2 (n1) tw Mw

1 (n2)

For the remainder of the definition of csube, the argument follows from Lemma 50

and Lemma 51. Let w1 = Mw
1 (n1) tw Mw

2 (n1) and w2 = Mw
1 (n2) tw Mw

2 (n2).

First, observe that p ∈ paths(Mw
1) or p ∈ paths(Mw

2) by the definition of ṫw.

Also, note that Mw
1 (n1) 6= ω,Mw

2 (n1) 6= ω,Mw
2 (n1) 6= ω, and Mw

1 (n2) 6= ω. Sup-

pose not. By errcons(Mw
1) and errcons(Mw

2) we have that Mw
1 = Mw

ω or Mw
2 = Mw

ω ,

in which case Mw
1 ṫ

w
Mw

2 = Mw
ω and thus paths(Mw

1 ṫ
w
Mw

2) = ∅, a contradiction.

Further, note that w1 6= ⊥ and w2 6= ⊥ by conse(M
w
1), conse(M

w
2), and Lemma 78.

We proceed with the proof by structural induction on w1 and w2 where we

focus on the cases where w1 6= ⊥ and w2 6= ⊥. Suppose first w1 = ω. There are

two cases possible. First, Mw
1 (n1) = 〈c1, p1〉 and Mw

2 (n1) = 〈c2, p2〉 where either

186

c1 6= c2 or p1 6� p2 ∧ p2 6� p1.

p1 = p2 by Lemma 85

Mw
1 (root(p1)) = 〈c, 〉,Mw

2 (root(p2)) = 〈c, 〉 by rootconse(M
w
1), rootconse(M

w
2),

constcons(Mw
1), and constcons(Mw

2)

Mw
1 (top(p1)) = 〈c, 〉,Mw

2 (top(p2)) = 〈c, 〉 by csube(M
w
1), csube(M

w
2),

Lemma 67, and def. of <:w

contradiction

The other case is when Mw
1 (n1) is a constant path value and Mw

2 (n1) is table path

value, or vice versa. The argument is then exactly the same. Moreover, the same

reasoning steps are sufficient to show that w2 6= ω. In conclusion, w1 6= ω and

w2 6= ω.

Next, suppose that w1 = 〈c1, p1〉 and w2 = 〈c2, p2〉 where either c1 6= c2 or

p1 6� p2 ∧ p2 6� p1.

(Mw
1 (n1) = 〈c1, p1〉 ∧Mw

1 (n2) = 〈c1, p2〉) ∨ by conse(M
w
1), conse(M

w
2),

(Mw
2 (n1) = 〈c1, p1〉 ∧Mw

2 (n2) = 〈c1, p2〉) and Lemma 78

p1 � p2 by csube(M
w
1) and csube(M

w
2)

c1 = c2 by rootconse(M
w
1), rootconse(M

w
2),

constcons(Mw
1), constcons(Mw

2),

csube(M
w
1), csube(M

w
2),

Lemma 67, and def. of <:w

contradiction

The same reasoning steps apply for the other base cases of w1 ∈ Consw ∧w2 ∈ T w

and w1 ∈ T w ∧ w2 ∈ Consw. When w1 ∈ T w and w2 ∈ T w, for every call site

187

path p the inputs of w1 and w2, and outputs respectively, at p must agree on the

top nodes by inpconse(M
w
1), inpconse(M

w
2), outconse(M

w
1), and outconse(M

w
2). The

same reasoning as above then inductively applies by Lemma 84, Lemma 83, and

the definition of <:w.

Lemma 87. Let Mw, Mw
1 , and Mw

2 be path maps such that conse(M
w
1), conse(M

w
2),

and conse(M
w) for some program e. Given an expression e`0 ∈ e, fuel k, and two en-

vironments E1 and E2 such that E1 6= E2, domvalid(`, e, E1), domvalid(`, e, E2), and

dom(E1) = dom(E2), assume that stepw
k Je`0K(E1)(Mw) = Mw

1 and stepw
k Je`0K(E2)(Mw) =

Mw
2 . Then, pvcons(Mw

1 ṫ
w
Mw

2).

Proof. Similar to the proof of Lemma 86.

Lemma 88. Let Mw, Mw
1 , and Mw

2 be path maps such that conse(M
w
1), conse(M

w
2),

and conse(M
w) for some program e. Given an expression e`0 ∈ e, fuel k, and two en-

vironments E1 and E2 such that E1 6= E2, domvalid(`, e, E1), domvalid(`, e, E2), and

dom(E1) = dom(E2), assume that stepw
k Je`0K(E1)(Mw) = Mw

1 and stepw
k Je`0K(E2)(Mw) =

Mw
2 . Then, errcons(Mw

1 ṫ
w
Mw

2).

Proof. Similar to the proof of Lemma 86.

The above results are used to show that the general consistency of path maps

is preserved by stepw.

Theorem 7. Let Mw,Mw
f ∈ Mw, Mw

f ∈ Mw, e` an expression of a program m,

k ∈ N, and E an environment where (e, E) is well-formed, domvalid(`,m,E), and

envconswM(E). If consm(Mw) and stepw
k Je`K(E)(Mw) = Mw

f , then consm(Mw
f) and

envconsMw
f
(E).

188

Proof. The proof goes by induction on k and structural induction on e. We need to

show that envcons(Mw), csubm(Mw
f), pvconsm(Mw

f), errcons(Mw
f), constconsm(Mw

f),

detm(Mw
f). When k = 0, the argument is trivial. We consider the cases for e when

k > 1.

• e = c. LetMw(E�`) = w. By constconsm(Mw
f), we have that w ∈ {⊥, ω, 〈c, `〉}.

If w = 〈c, `〉, then Mw = Mw
f and the argument is trivial. If w = ω, then by

errcons(Mw), we have Mw = Mw
ω and hence Mw

f = Mw
ω = Mw, from which

the argument directly follows. If w = ⊥, then Mw
f = Mw[E�` 7→ 〈c, E�`〉],

from which dete(M
w
f), errcons(Mw

f), envcons(Mw
f), and constconsm(Mw

f) im-

mediately follow. Lastly, pvcons(Mw
f) and csubm(Mw

f) hold by Lemma 78.

Note that envconsMw
f
(E) holds trivially.

• e = x. Let wx = Mw(E(x)) and w = Mw(E�`). If wx = ω ∨ w = ω, then

Mw = Mw
ω and by Lemma 47 it follows that Mw

f = Mw
ω and consm(Mw

f)

trivially. Also note that constconsm(Mw
f) holds trivially.

Next, note that by the def. of pred, we have predmMw(E(x), E�`). By Lemma 81,

it is the case that w = ⊥ or agreeE�`(wx, w). In case w = ⊥, detm(Mw
f) fol-

lows by predmMw(E(x), E�`) and Lemma 78 whereas pvcons(Mw
f) follows by

the def. of propw and ext. In the other case, detm(Mw
f) and pvcons(Mw

f) follow

by Lemma 56.

Since w = ⊥ or agreeE�`(wx, w), by consm(Mw) and the definition of <:w, we

have that wx<:ww. Then by Lemma 77 it follows that errcons(Mw
f). This

lemma and Lemma 47 imply envcons(Mw
f) and envconsMw

f
(E).

We now turn to proving that csubm(Mw
f). By Lemma 68, we have that

w′x<:ww′. For any path at which the pair 〈E(x), E�`〉 lies, the subtyping

189

across the whole path is not invalidated by Lemma 69 and consm(Mw
f).

As paths can branch on variable nodes by Lemma 76, the subtyping be-

tween E(x) and successive nodes in other paths on which E(x) lies holds by

Lemma 82. Next, suppose e`11 x
` ∈ m for some e1 and `1. If Mw(E�`1) =

〈Tw, p1〉, for some Tw ∈ T w and path p1, then we need to show that w′<:wπ2(Tw(p1)).

We know by the def. of csubm that w<:wπ1(Tw(p1)) and, from earlier, that

w<:ww′x. Then, the argument follows by Lemma 69. The similar reasoning

applies for other places where x can appear in m.

• e = e`11 e
`2
2 . Clearly (e1, E) is well-formed and domvalid(`1,m,E) so by the

i.h., we have that consm(Mw
1) and envconsMw

1
(E). Also, (e2, E) is well-

formed and domvalid(`2,m,E) so we have by the i.h. that consm(Mw
2) and

envconsMw
2
(E). By Lemma 50 and Lemma 51 we have that w1 = Mw

2 (E�`1).

Hence, we have that w1<:w[path(w1) 7→ 〈w2, w〉], where w = Mw
2 (E�`), by

the def. of csubm(Mw
2). Then, envcons(Mw

f) and envconsMw
f
(E) hold trivially,

errcons(Mw
f) follows by Lemma 77, and constcons(Mw

f) holds by the def. of

propw. That is, suppose m(`1) is a lambda expression. Then by Lemma 47,

w′1 ∈ T w ∪ {ω}. However, w′1 6= ω by Lemma 77.

We next show that csubm(Mw
f). First, let wo = π2(Tw(path(w1))). We know

that wo<:ww. If wo = ⊥, then w = ⊥. A more interesting case is when

wo = 〈 , po〉. By outconsm(Mw
2), we have that top(po) = Eb�`b where Eb =

E0.x : E0�nc�x.f : E0�nc�f , E0 = env(root(path(w1))), Ec = top(path(w1)),

and m(loc(root(path(w1)))) = µf.λx.e`bb for some eb, f , x, and `b. Hence,

predmMw
2
(Eb�`b, E�`) by the def. of pred. By Lemma 81, it is the case that

w = ⊥ or agreeE�`(M
w
2 (Eb�`b), w).

190

We next need to show that Mw
f (Eb�`b)<:ww′. Note that Mw

f (Eb�`b) =

Mw
2 (Eb�`b). We know that wo<:ww by csubm(Mw

2) and hence w′o<:ww′ by

Lemma 68. By Lemma 83, we have that Mw
2 (Eb�`b)<:wwo. Therefore, by

Lemma 69 we have Mw
2 (Eb�`b)<:ww′o and thus by Lemma 67 it must be that

Mw
2 (Eb�`b)<:ww′. The same argument applies for the updated input of w′1.

The remaining argument for csubm(Mw
f) as well as detm(Mw

f), pvcons(Mw
f),

is the same as in the case of program variables.

• e = µf.λx. e`11 . First, observe that for any p1, p2 ∈ Tw where p1 6= p2, we

have that top(p1) 6= top(p2) by Lemma 79. Hence, for any p ∈ Tw, we have

unique nx, nf , and E1. By csubm(Mw), we know that Tw <:w Mw(nf) and

[p 7→ 〈Mw(nx),M
w(E1�`1)〉] <:w Tw. Since π1(Tw(p)) 6= ⊥, we have by the

definition of pred and inpconsm(Mw) that predmMw(top(path(π1(Tw(p)))), nx)

and by the def. of pred we also have predmMw(E�`, nf). The argument then

goes as usual to show that consm(Mw
1). Note that in order to show that

csubm(Mw
1) we also additionally use Lemma 70 to show that the join Tw

1 twTw
2

does not invalidate the subtyping on the paths at which nf appears.

Finally, we switch to proving that the join of all such Mw
1 , resulting in Mw

f ,

is consistent. First, errcons(Mw
f) follows by Lemma 54 and Lemma 88. Next,

envcons(Mw
f) and envconsMw

f
(E) simply follows by the def. of ṫw. Similarly,

detm(Mw
f) follows from the def. of ṫw. Finally, csubm(Mw

f) and pvcons(Mw
f)

follows by Lemma 54, Lemma 86, and Lemma 87.

• e = e`00 ? e`11 : e`22 . Similar to the earlier cases.

191

A.3.5 Connection to Data Flow Semantics

In this subsection, we make the formal connection between path data flow seman-

tics and the regular data flow semantics without the path information. To that

end, we first introduce the notion on uniqueness tpcsuniq(w) of a value w in terms

of the uniqueness of paths subject to their top nodes.

tpcsuniq(w)
def⇐⇒ (w ∈ {⊥, ω} ∪ Consw) ∨ (∃Tw. w = 〈Tw, 〉 ∧ (∀p1, p2 ∈ Tw.

top(p1) = top(p2) =⇒ p1 = p2) ∧ ∀p ∈ Tw.

tpcsuniq(π1(Tw(p))) ∧ tpcsuniq(π2(Tw(p))))

We first prove the results stating that two paths drawn from a set of root consistent

and deterministic paths must have unique top nodes.

Lemma 89. Let P be a set of paths such that for every p ∈ P we have rootconse(p)

and deteMw(p) for some program e and a path map Mw. Then, for any p1, p2 ∈ P ,

top(p1) = top(p2) implies p1 = p2.

Proof. Similar to the proof of Lemma 79.

Data propagation does not invalidate the tpcsuniq property.

Lemma 90. Let w1 and w2 be path values s.t. tpcsuniq(w1), tpcsuniq(w2), and

P = paths(w1)∪paths(w2) where for every p ∈ P we have rootconse(p) and deteMw(p)

for some program e and a path map Mw. Further, let w3 and w4 be values such

that 〈w3, w4〉 = propw(w1, w2). Then, tpcsuniq(w3) and tpcsuniq(w4).

Proof. By structural induction on w1 and w2. The base cases are trivial. For the

inductive case, let w1 = 〈Tw
1 , p1〉 and w2 = 〈Tw

2 , p2〉 where p1 � p2. Let p ∈ Tw
2 for

some p. By Lemma 89, there is no different p′ ∈ Tw
2 such that top(p) = top(p′).

Also, for every p′ ∈ Tw
1 s.t. top(p′) = top(p), we have by Lemma 89 that p = p′. In

192

other words, by Lemma 89 the call site paths both in w1 and w2 can be uniquely

and consistently identified with their top nodes. The argument then follows by

i.h.

Next, we present the conversion function strip : Vw ⇀ V from path data flow

values to regular data flow values that simply strips the path information.

strip(⊥)
def
= ⊥ strip(ω)

def
= ω strip(〈c, p〉) def

= c

strip(〈Tw, p〉) def
= Λncs. if ∃p′ ∈ Tw. top(p′) = ncs if tpcsuniq(〈Tw, p〉)

then 〈strip(π1(Tw(p′))), strip(π2(Tw(p′)))〉

else 〈⊥,⊥〉

The strip function on maps strip :Mw ⇀M is defined in the expected way.

Using the strip function, we next connect the subtyping relation between path

values and plain data flow values.

Lemma 91. Let w1 and w2 be path values and P = paths(w1) ∪ paths(w2) where

for every p ∈ P we have rootconse(p) and deteMw(p) for some program e and a path

map Mw. Further, assume that tpcsuniq(w1) and tpcsuniq(w2). Then, w1 <:w w2

implies strip(w1) <:c strip(w2).

Proof. First, note that tpcsuniq(w1) implies w1 ∈ dom(strip). The same holds for

w2. The proof goes by structural induction on w1 and w2. We first cover the base

cases.

• w1 = ⊥, w1 ∈ Vw. The result immediately follows by the def. of <:c since

strip(⊥) = ⊥.

193

• w1 = ω.

w2 = ω by def. of <:w

strip(w1) = strip(w2) = ω by def. of strip

• w1 = 〈c, p1〉, w2 = 〈c, p2〉, p1 � p2.

strip(w1) = strip(w2) = c by def. of strip

For the inductive case, let w1 = 〈Tw
1 , p1〉 and w2 = 〈Tw

2 , p2〉 where p1 � p2. Let

p ∈ Tw
2 for some p. By Lemma 89, there is no different p′ ∈ Tw

2 such that top(p) =

top(p′). Also, for every p′ ∈ Tw
1 s.t. top(p′) = top(p), we have by Lemma 89 that

p = p′. The argument then follows by i.h.

We next show that the propagation between path values and their stripped

counterparts in the data flow semantics yields values that are again related by the

strip function.

Lemma 92. Let w1 and w2 be path values such that w1<:ww2 and P = paths(w1)∪

paths(w2) where for every p ∈ P we have rootconse(p) and deteMw(p) for some

program e and a path map Mw. Further, assume that tpcsuniq(w1), tpcsuniq(w2),

and 〈w′1, w′2〉 = propw(w1, w2) for some path values w′1 and w′2. Lastly, let 〈v′1, v′2〉 =

prop(strip(w1), strip(w2)). Then, w′1 ∈ dom(strip), w′2 ∈ dom(strip), strip(w′1) = v′1,

and strip(w′2) = v′2.

Proof. By Lemma 90, we have tpcsuniq(w′1) and tpcsuniq(w′2). By the def. of strip,

it must also be that w1 ∈ dom(strip) and w1 ∈ dom(strip). The proof continues by

the structural induction on w1 and w2. We cover the base cases first.

194

• w1 = ⊥, w2 = ⊥.

w′1 = w′2 = ⊥ by def. of propw

strip(w1) = ⊥, strip(w2) = ⊥ by def. of strip

v′1 = v′2 = ⊥ by def. of prop

• w1 = 〈c, p〉, w2 = ⊥.

w′1 = 〈c, p〉, w′2 = 〈c, p〉 by def. of propw

strip(w1) = c, strip(w2) = ⊥ by def. of strip

v′1 = c, v′2 = c by def. of prop

• w1 = 〈Tw, p〉, w2 = ⊥.

w′1 = w1, w
′
2 = 〈Tw

⊥ , p〉 by def. of propw

v′1 = strip(w1), v′2 = T⊥ by def. of prop

• w1 = 〈c, p1〉, w2 = 〈c, p2〉, p1 � p2.

w′1 = 〈c, p1〉, w′2 = 〈c, p2〉 by def. of propw

strip(w1) = c, strip(w2) = c by def. of strip

v′1 = c, v′2 = c by def. of prop

• w1 = ω,w2 = ω.

w′1 = ω, ω by def. of propw

strip(w1) = ω, strip(w2) = ω by def. of strip

v′1 = ω, v′2 = ω by def. of prop

For the inductive case, let w1 = 〈Tw
1 , p1〉 and w2 = 〈Tw

2 , p2〉 where p1 � p2. Let

p ∈ Tw
2 for some p. By Lemma 89, there is no different p′ ∈ Tw

2 such that top(p) =

top(p′). Also, for every p′ ∈ Tw
1 s.t. top(p′) = top(p), we have by Lemma 89 that

195

p = p′. Hence, the call site paths seen in Tw
1 and Tw

2 are uniquely identified by

their top nodes. The argument then follows by def. of paths, tpcsuniq, and i.h.

Lemma 93. Let w1 and w2 be path values such that P = paths(w1) ∪ paths(w2)

where for every p,p2 ∈ P we have top(p1) = top(p2) =⇒ p1 = p2. Further,

assume that tpcsuniq(w1), inpconse(w1), outconse(w1), tiocons(w1), tpcsuniq(w2),

inpconse(w2), outconse(w2), and tiocons(w2). Further, assume w1 ∈ dom(strip),

w2 ∈ dom(strip), strip(w1) = v1, and strip(w2) = v2. Lastly, we assume that w1 and

w2 agree on the paths. Then, w1 tw w2 ∈ dom(strip) and strip(w1 tw w2) = v1 t v2.

Proof. We carry the proof by structural induction on w1 and w2. We first cover

the base cases.

• w1 = ⊥.

w1 tw w2 = w2 by def. of tw

v1 = ⊥ by def. of strip

v1 t v2 = v2 = strip(w2) = strip(w1 tw w2) by def. of t

• w2 = ⊥. Similar to the previous case.

• w1 = ω.

w1 tw w2 = ω by def. of tw

v1 = ω by def. of t

v1 t v2 = ω by def. of t

strip(ω) = ω by def. of strip

196

• w1 = 〈c1, p〉, w2 = 〈c2, p〉, c1 6= c2.

w1 tw w2 = ω by def. of tw

v1 = c1, v2 = c2 by def. of strip

v1 t v2 = ω by def. of t

strip(ω) = ω by def. of strip

• w1 = 〈c, p〉, w2 = 〈c, p〉.

w1 tw w2 = 〈c, p〉 by def. of tw

v1 = c, v2 = c by def. of strip

v1 t v2 = c by def. of t

strip(〈c, p〉) = c by def. of strip

• w1 = 〈c, p〉, w2 = 〈Tw, p〉.

w1 tw w2 = ω by def. of tw

v1 = c, v2 ∈ T by def. of strip

v1 t v2 = ω by def. of t

strip(ω) = ω by def. of strip

• Other. Similar for the other cases.

For the inductive case, let w1 = 〈Tw
1 , p1〉 and w2 = 〈Tw

2 , p2〉 where p1 � p2.

Let p ∈ Tw
2 for some p. By Lemma 89, there is no different p′ ∈ Tw

2 such that

top(p) = top(p′). Also, for every p′ ∈ Tw
1 s.t. top(p′) = top(p), we have by

Lemma 89 that p = p′. Hence, the call site paths seen in Tw
1 and Tw

2 are uniquely

identified by their top nodes.

• p ∈ Tw
1 , p ∈ Tw

2 . Let Tw
1 (p) = 〈w1i, w1o〉 and Tw

2 (p) = 〈w2i, w2o〉. If w1i, w2i 6∈

{⊥, ω}, then path(w2i) = path(w1i) by path(w2i), path(w1i) ∈ P (by def. of

197

paths), Lemma 89, and top(path(w2i)) = top(path(w1i)) which follows by

the def. of inpcons. The same property holds for the outputs by the same

reasoning and def. of outcons. The argument then follows from the i.h.

• p ∈ Tw
1 , p 6∈ Tw

2 . By tiocons(Tw
2), we then have that Tw

2 (p) = 〈⊥,⊥〉. The

argument then follows trivially since strip(w2)(top(p)) = 〈⊥,⊥〉.

• Other cases. Handled similarly.

We can now establish a result connecting the path based data flow semantics

and plain data flow semantics. For that purpose, we first state an almost obvious

result.

Lemma 94. Let Mw be a consistent map conse(M
w) subject to a program e. Then,

Mw ∈ dom(strip).

Proof. The result follows from Lemma 79.

We can now state our main theorem.

Theorem 8. Let e` be an expression of a program m, Mw a consistent map

consm(Mw), E an environment where domvalid(`,m,E), envconsMw(E), and (e, E)

is well-formed. Further, let M be a concrete map such that M = strip(Mw) and

k a step index fuel. If stepw
k Je`K(E)(Mw) = Mw

f and stepkJe`K(E)(M) = Mf , for

some maps Mw
f and Mf , then Mw

f ∈ dom(strip) and strip(Mw
f) = Mf .

Proof. The proof goes by natural induction on k and structural induction on e.

When k = 0, the argument is trivial. Otherwise, the proof branches on e.

198

• e = c. Let w = Mw(E�`), wf = Mw
f (E�`), v = M(E�`), and vf = Mf (E�`).

By consm(Mw), w ∈ {⊥, ω, 〈c, E�`〉}. If w = ⊥, then wf = 〈c, E�`〉, v = ⊥,

vf = c, and the result follows from the definition of strip. If w = 〈c, E�`〉,

then wf = w and vf = v, from which the result follows immediately. Lastly,

if w = ω, then by errcons(Mw) (implied by conse(M
w)) we have Mw = Mw

ω

and hence Mw
f = Mw

ω , M = Mω, as well as Mf = Mω. The result then

follows simply from the definition of strip.

• e = x. Let wx = Mw(E(x)), w = Mw(E�`), vx = M(E(x)), and v =

M(E�`). By csubm(Mw) (implied by consm(Mw)) and Lemma 81, we have

wx <:w w. Further, by consm(Mw), we have tpcsuniq(w1), tpcsuniq(w2), and

that all paths in paths(w1)∪ paths(w2) are deterministic and root consistent.

The result then follows from Lemma 92.

• e = e`11 e
`2
2 . Clearly, we have domvalid(`1,m,E) and so by i.h.Mw

1 ∈ dom(strip)

and M1 = strip(Mw
1). By Theorem 7 it is the case that envconsMw

1
(E) and

consm(Mw
1). As domvalid(`2,m,E) trivially, we have by i.h. that Mw

2 ∈

dom(strip) andM2 = strip(Mw
2). Also, again by Theorem 7 we have envconsMw

2
(E)

and consm(Mw
2).

By Lemmas 50 and 51, we have w1 = Mw
2 (E�`1) and so by csubm(Mw

2)

(implied by consm(Mw
2)) it must be w1 <:w w′ where w′ = 〈[path(w1) 7→

〈w2,M
w
2 (E�`2)〉], path(w1)〉. Note that by the def. of strip andM2 = strip(Mw

2),

we have strip(w′) = [top(path(w1)) 7→ 〈v2,M2(E�`2)〉]. Further, by consm(Mw),

we have tpcsuniq(w1), tpcsuniq(w′), and that all paths in paths(w1)∪paths(w′)

are deterministic and root consistent. The result then follows from Lemma 92.

• e = µf.λx.e`11 . Let w = Mw(E�`) and v = M(E�`). By consm(Mw),

199

w ∈ {⊥, ω, 〈Tw, E�`〉} for some Tw ∈ T w. If w = ⊥, then Tw = 〈Tw
wbot, E�`〉,

v = ⊥, T = T⊥. In that case, Mw
f = Mw[E�` 7→ Tw], Mf = M [E�` 7→ T], the

result follows from the definition of strip. If w = ω, then by errcons(Mw) (im-

plied by conse(M
w)) we have Mw = Mw

ω and hence Mw
f = Mw

ω by Lemma 49,

M = Mω and thus Mf = Mω by Lemma 27. The result then follows simply

from the definition of strip. Lastly, if w = 〈Tw, E�`〉, then Tw = w and

T = v. The argument then goes as follows.

By Lemma 79 and def. of strip, we have {ncs | ncs ∈ T} = {top(p) | p ∈ Tw}.

That is, for every p ∈ Tw there is a unique ncs ∈ T such that top(p) = ncs, and

vice versa. Then, by csubm(Mw) (implied by consm(Mw)) it is that 〈[p 7→

〈Mw(nx),M
w(E1�`1)〉], p〉<:wTw. Similarly, by csubm(Mw) and Lemma 81

we have Tw <:w Mw(nf). Also, by consm(Mw) we have tpcsuniq(Mw(nx)),

tpcsuniq(Mw(E1�`1)), tpcsuniq(Tw), tpcsuniq(Mw(nf)), and all paths in paths(Mw(nx))∪

paths(Mw(nf))∪paths(Tw)∪pathsMw(E1�`1) are deterministic and root con-

sistent. Then by Lemma 92 and Lemma 93 we have Mw
1 ∈ dom(strip) and

strip(Mw
1) = M1. By Lemmas 47 and 77 as well as envconsMw(E) we have

envconsMw
1
(E1). Also, domvalid(`1,m,E1) holds by the definition of E1 and

domvalid(`,m,E). Then by the i.h., stepw
k Je1K(E1)(Mw

1) ∈ dom(strip) and

strip(stepw
k Je1K(E1)(Mw

1)) = stepkJe1K(E1)(M1).

Finally, observe that for each two different Mw
1 ,M

w
2 ∈ ~Mw, Mw

1 and Mw
2 agree

on all nodes except possibly those in rng(E) by Lemma 52. By envconsMw(E),

for every node n in rng(E) we have Mw(n) 6∈ {⊥, ω}. Then by Lemma 56 we

have path(Mw(n)) = path(Mw
1 (n)), path(Mw(n)) = path(Mw

2 (n)), for every

node n in rng(E), which clearly implies path(Mw
2 (n)) = path(Mw

1 (n)). The

result then follows from fin(Mw), which implies |{top(p) | p ∈ Tw}| is finite,

200

and Lemma 93.

• e = e`00 ? e`11 : e`22 . Similar to the earlier cases.

We additionally show that consistency of a path map implies that its stripped

plain data flow map has the data flow invariant property.

Lemma 95. Let Mw be consistent map conse(M
w) subject to a program e. Then,

df(strip(Mw)).

Proof. First, observe that by Lemma 94 we have Mw ∈ dom(strip). Next, let M =

strip(Mw). Then, errcons(M) follows by errcons(Mw) (implied by conse(M
w)) and

the definition of strip. The same argument can be given to show fin(M), tiocons(M),

constconse(M), and envcons(M). Finally, csube(M) follows from csube(M
w), rootconse(M

w),

tpcons(Mw), and dete(M
w). To see this in more detail, first observe that the set

of reachable (non-⊥) nodes of Mw and M is the same by the def. of strip. For ev-

ery reachable node n that corresponds to a non-leaf expression of e, we have that

Mw(n) = 〈 , p〉 for some path p. By tpcons(Mw), top(p) = n and by rootconse(M
w)

as well as Lemma 73 we have that |p| > 1. Then, for the predecessor n′ of n in

p, we have that Mw(n′) <:w Mw(n) by csube(M
w) and predeMw(n′, n) by dete(M

w).

The result then follows from the definition of pred, Lemma 91, and the fact that

conse(M
w) implies tpcsuniq(Mw(n′)) ∧ tpcsuniq(Mw(n)).

201

A.4 Relational Semantics Proofs

We first prove that our definitions of meets and joins over relational values are

correct.

Proof (Proof of Lemma 4).

Proof. The proof follows that of Lemma 1.

We next prove the monotonicity of the concretization function for relational

values.

Lemma 96. Let r1 ∈ V r
N , r2 ∈ V r

N , and r1 vr r2. Then, γrN(r1) ⊆ γrN(r2).

Proof. The proof goes by structural induction on r2. We first cover the base cases.

• r2 = ⊥r. Then r1 = ⊥r and the result follows trivially.

• r2 = >r. Trivially by the def. of γrN (>r).

• r2 = Rr
2. Then either r1 = ⊥r or r1 = Rr

1 s.t. Rr
1 ⊆ Rr

2. Since the former case is

trivial due to ∀r. γrN (⊥r) ⊆ γrN (r) by the def. of γrN , we focus on the latter case.

Here,

Rr
1 ⊆ Rr

2 =⇒ {〈M, c〉 | Dr ∈ Rr
1 ∧Dr(ν) = c} ⊆ {〈M, c〉 | Dr ∈ Rr

2 ∧Dr(ν) = c} =⇒

{〈M, c〉 | Dr ∈ Rr
1 ∧Dr(ν) = c ∧ ∀n ∈ N.M(n) ∈ γd(M(n))} ⊆

{〈M, c〉 | Dr ∈ Rr
2 ∧Dr(ν) = c ∧ ∀n ∈ N.M(n) ∈ γd(M(n))} =⇒

γrN (r1) ⊆ γrN (r2).

For the induction step r = T r
2, if r1 = ⊥r the argument is trivial. We hence

focus on the case where r1 = T r
1. Let T r

1(ncs) = 〈r1i, r1o〉 and T r
2(ncs) = 〈r2i, r2o〉

for any call site ncs. By T r
1 vr T r

2, we have r1i vr r2i and r1o vr r2o. By i.h.

202

on r2i and r2o, it follows γrN(r1i) ⊆ γrN(r2i) and γrN(r1o) ⊆ γrN(r2o), which implies

γrN(T r
1) ⊆ γrN(T r

2) by the def. of γrN .

It can be also shown that the concretization of relational values does not impose

any constraints on the values for nodes not in the given scope.

Lemma 97. For any n 6∈ N , n is unconstrained in γrN(rN) for any relational

value r. That is, ∀n 6∈ N, v, v′,M.〈M, v〉 ∈ γrN(rN) =⇒ 〈M [n→ v′], v〉 ∈ γrN(rN).

Proof. The proof goes by structural induction on r. The base cases are trivial.

The induction case for tables follows from the i.h. and the fact that for any table

T r and call site ncs, ncs is not in the scope of πi(T
r(ncs)).

The next proof shows that the concretization function satisfies the meet-morphism

requirement.

Theorem 9 (Complete Meet Morphism on Rel. Values). Let V r ∈ ℘(V r
N). Then

γrN(urV r) =
⋂
r∈V r γ

r
N(r).

Proof. We carry the proof by case analysis on elements of V r and induction on the

minimum depth thereof when V r consists of tables only.

We first consider the trivial (base) cases where V r is not a set of multiple

relational tables.

• V r = ∅. Here, γrN (ur∅) = γrN (>r) =M×V =
⋂
∅.

• V r = {r}. Trivial.

• Rr ∈ V r, T r ∈ V r. We have ur{Rr, T r} = ⊥r and since ⊥r is the bottom element,

urV r = ⊥r. Similarly, γrN (Rr) ∩ γrN (T r) = γrN (⊥r) and since ∀r. γrN (⊥r) ⊆ γrN (r),

it follows
⋂
r∈V r γ

r
N (r) = γrN (⊥r) = γrN (urV r).

203

• V r ⊆ Rr
N . Here,

γrN (urV r) = γrN (
⋂

Rr∈V r

Rr)

= {〈M, c〉 | Dr ∈ (
⋂

Rr∈V r

Rr)) ∧Dr(ν) = c ∧ ∀n ∈ N.M(n) ∈ γd(M(n))} ∪ γrN (⊥r)

[by def. of γrN]

=
⋂

Rr∈V r

({〈M, c〉 | Dr ∈ Rr ∧Dr(ν) = c ∧ ∀n ∈ N.M(n) ∈ γd(M(n))} ∪ γrN (⊥r))

[by uniqueness/non-overlapping of γd]

=
⋂

Rr∈V r

γrN (Rr) [by def. of γrN]

• >r ∈ V r. Here, urV r = ur(V r/{>r}) and
⋂
r∈V r γ

r
N (r) =

⋂
r∈V r,r 6=>r γrN (r) since

γrN (>r) = M× V. The set V r/{>r} either falls into one of the above cases or

consists of multiple tables, which is the case we show next.

Let V r ⊆ T r
N and |V r| > 1. Let d be the minimum depth of any table in V r.

⋂
T r∈V r

γrN (T r) = {〈M,T 〉 | ∀ncs. T (ncs)=〈vi, vo〉 ∧ 〈Mi, vi〉 ∈
⋂

T r∈V r

γr(π1(T r(ncs))) ∧

〈Mo, vo〉 ∈
⋂

T r∈V r

γr(π2(T r(ncs))) ∧Mi =\{ncs} M ∧Mo=Mi[ncs 7→ vi]} ∪ γrN (⊥r)

[by def. of γrN and ncs not in the scope of π1(T r(ncs))]

= {〈M,T 〉 | ∀ncs. T (ncs)=〈vi, vo〉 ∧ 〈Mi, vi〉 ∈ γrN (urT r∈V rπ1(T r(ncs))) ∧

〈Mo, vo〉 ∈ γrN (urT r∈V rπ2(T r(ncs))) ∧Mi =\{ncs} M ∧Mo=Mi[ncs 7→ vi]} ∪ γrN (⊥r)

[by i.h. on the min. depth of {π1(T r(ncs))) | T r ∈ V r} and {π2(T r(ncs))) | T r ∈ V r}]

= γrN (urT r∈V rT r) [by def. of γrN]

We can now state the monotonicity of abstraction function for the relational

domain.

204

Lemma 98. αr
N is monotone.

Proof. The result follows from the properties of Galois connections.

The meet morphism requirement is also satisfied by the concretization function

defined over relational maps.

Theorem 10 (Complete Meet Morphism on Rel. Maps). Let mr ∈ ℘(Mr). Then

γ̇r(u̇rmr) =
⋂
M r∈mr γ̇

r(M r).

Proof.⋂
M r∈mr

γ̇r(M r) = {M | ∀n. 〈M,M(n)〉 ∈
⋂

M r∈mr
γrN(M r(n))}

= {M | ∀n. 〈M,M(n)〉 ∈ γrN(urM r∈mrM
r(n))} [by Lemma 9]

= γ̇r(u̇rmr) [by def. of γ̇r and u̇r]

A.4.1 Domain Operations

In this subsection, we state the basic properties and the corresponding proofs of

strengthening operations on relational values.

A.4.1.1 Strengthening

We first show that our strengthening operations indeed perform strengthening.

Lemma 99. Let r1 ∈ V r
N , r ∈ V r

N , and n ∈ N . Then r[n← r1] vr r.

Proof. In the below calculational proof, let S = {〈M ′[n 7→ v′], v〉 | 〈M ′, v′〉 ∈

205

γrN(r1)}.

αr
N (γrN (r)) vr r by prop. of Galois conn.

αr
N (γrN (r) ∩ S) vr αr

N (γrN (r)) by Lemma 98

αr
N (γrN (r) ∩ S) vr r by transitivity

r[n← r1] vr r by def. of ·[· ← ·]

Lemma 100. Let r ∈ V r
N , n1 ∈ N , and n2 ∈ N . Then r[n1=n2] vr r.

Proof. Similar to the proof of Lemma 99.

Lemma 101. Let r ∈ V r
N and n ∈ N . Then r[ν=n2] vr r.

Proof. Similar to the proof of Lemma 99.

Lemma 102. Let r ∈ V r
N and M r ∈Mr. Then r[M r] vr r.

Proof. Follows from the properties of meets and Lemma 99.

We can also show that strengthening operations are idempotent. We show the

proof of idempotency for strengthening by a relational value.

Lemma 103. Let r1 ∈ V r
N , r ∈ V r

N , and n ∈ N . Then r[n← r1] = r[n← r1][n←

r1].

Proof. In the below calculational proof, let S = {〈M ′[n 7→ v′], v〉 | 〈M ′, v′〉 ∈

206

γrN(r1)} and r′ = r[n← r1] = αr
N(γrN(r) ∩ S).

r′[n← r1] = αr
N (γrN (r′) ∩ S) by def. of ·[· ← ·]

γrN (r) ∩ S ⊆ γrN (r′) by prop. of Galois conn.

γrN (r) ∩ S ⊆ γrN (r′) ∩ S by def. of ∩

αr
N (γrN (r) ∩ S) vr αr

N (γrN (r′) ∩ S) by Lemma 98

r[n← r1] vr r′[n← r1] by def. of ·[· ← ·]

r[n← r1] vr r[n← r1][n← r1] by def. of r′

r[n← r1][n← r1] vr r[n← r1] by Lemma 99

r[n← r1][n← r1] = r[n← r1]

A.4.1.2 Monotonicity

All of the strengthening operations on relational values are monotone.

Lemma 104. Let r1 ∈ V r
N , r2 ∈ V r

N , r ∈ V r
N , and n ∈ N . Then r1 vr r2 =⇒

r1[n← r] vr r2[n← r].

Proof. In the below calculational proof, let S = {〈M ′[n 7→ v′], v〉 | 〈M ′, v′〉 ∈

γrN(r)}.

r1 vr r2 =⇒ γrN (r1) ⊆ γrN (r2) by Lemma 96

⇐⇒ γrN (r1) ∩ S ⊆ γrN (r2) ∩ S

=⇒ αr
N (γrN (r1) ∩ S) vr αr

N (γrN (r2) ∩ S) by Lemma 98

⇐⇒ r1[n← r] vr r2[n← r] by def. of ·[· ← ·]

207

Lemma 105. Let r1 ∈ V r
N , r2 ∈ V r

N , r′1 ∈ V r
N0

, r′2 ∈ V r
N0

, and n ∈ N . Then

r1 vr r2 ∧ r′1 vr r′2 =⇒ r1[n← r′1] vr r2[n← r′2].

Proof. In the below calculational proof, let S1 = {〈M ′[n 7→ v′], v〉 | 〈M ′, v′〉 ∈

γrN(r′1)} and S2 = {〈M ′[n 7→ v′], v〉 | 〈M ′, v′〉 ∈ γrN(r′2)}.

First note that r′1 vr r′2 implies by Lemma 96 that γrN(r′1) ⊆ γrN(r′2). Hence,

S1 ⊆ S2.

r1 vr r2 =⇒ γrN (r1) ⊆ γrN (r2) by Lemma 96

⇐⇒ γrN (r1) ∩ S1 ⊆ γrN (r2) ∩ S2 by S1 ⊆ S2

=⇒ αr
N (γrN (r1) ∩ S1) vr αr

N (γrN (r2) ∩ S2) by mono. of αr
N

⇐⇒ r1[n← r] vr r2[n← r] by def. of ·[· ← ·]

Lemma 106. Let r1 ∈ V r
N , r2 ∈ V r

N , n1 ∈ N , and n2 ∈ N . Then r1 vr r2 =⇒

r1[n1=n2] vr r2[n1=n2].

Proof. Similar as for Lemma 104.

Lemma 107. Let r1 ∈ V r
N , r2 ∈ V r

N , and n ∈ N . Then r1 vr r2 =⇒ r1[ν=n] vr

r2[ν=n].

Proof. Similar as for Lemma 104.

Lemma 108. Let r1 ∈ V r
N , r2 ∈ V r

N , and M r ∈Mr. Then r1 vr r2 =⇒ r1[M r] vr

r2[M r].

Proof. The result follows from Lemma 104 and the monotonicity of meets.

208

Lemma 109. Let r1 ∈ V r
N , r2 ∈ V r

N , M r
1 ∈ Mr, and M r

2 ∈ Mr. Then r1 vr

r2 ∧M r
1 v̇

r
M r

2 =⇒ r1[M r
1] vr r2[M r

2].

Proof. The result follows from Lemma 105 and the monotonicity of meets.

Lemma 110. Let r1 ∈ V r
N , r2 ∈ V r

N , and N ′ be a scope. Then r1 vr r2 =⇒

r1[N ′] vr r2[N ′].

Proof. Similar as for Lemma 104.

A.4.1.3 Structural Strengthening

We also here provide a structural definition of strengthening and argue its sound-

ness. First, whenever n 6∈ N , then rN̂dn← re def
= r. Otherwise,

rdn← ⊥re def
= ⊥r

rdn← r′e def
= r if r ∈ {⊥r,>r} or r′ ∈ {>r} ∪ T r

Rr
1dn← Rr

2e
def
= Rr

1[n← Rr
2]

T rdn← re def
= Λncs.〈π1(T r(ncs))dn← re, π2(T r(ncs))dn← ∃ncs. re〉 r ∈ Rr

N

It can be shown that the structural strengthening is an overapproximation of the

ordinary one.

Lemma 111. Let r ∈ V r, r′ ∈ V r, and n ∈ N . Then, r[n← r′] vr rdn← r′e.

Proof. When n 6∈ N , the argument is trivial by Lemma 99. Otherwise, if r′ = ⊥r,

the result follows by the fact monotonicity of αr
N and by the definition of γrN .

The proof is carried by structural induction on r. First, for the cases where r′ ∈

{>r} ∪ T r, the result follows immediately by Lemma 99. For the rest of the proof,

we thus assume that r′ ∈ Rr
N .

209

For the base cases when r ∈ {⊥r,>r} the result again follows easily from

Lemma 99. For the base case r ∈ Rr
N , the argument is trivial. For the induction

case when r ∈ T r
N , we have the following:

{〈M,T 〉 | ∀ncs. T (ncs)=〈vi, vo〉 ∧ T r(ncs)=〈ri, ro〉 ∧ 〈Mi, vi〉 ∈ γr(ri)

∧ 〈Mo, vo〉 ∈ γr(ro) ∧Mi =\{ncs} M ∧Mo=Mi[ncs 7→ vi]} ∩M

whereM = {〈M ′[n 7→ v′], v〉 | 〈M ′, v′〉 ∈ γr(r′)}

= {〈M,T 〉 | ∀ncs. T (ncs)=〈vi, vo〉 ∧ T r(ncs)=〈ri, ro〉 ∧ 〈Mi, vi〉 ∈ γr(ri)

∧ 〈Mo, vo〉 ∈ γr(ro) ∧Mi =\{ncs} M ∧Mo=Mi[ncs 7→ vi] ∧ 〈M,T 〉 ∈ M}

= {〈M,T 〉 | ∀ncs. T (ncs)=〈vi, vo〉 ∧ T r(ncs)=〈ri, ro〉 ∧ 〈Mi, vi〉 ∈ (γr(ri) ∩M)

∧ 〈Mo, vo〉 ∈ γr(ro) ∧Mi =\{ncs} M ∧Mo=Mi[ncs 7→ vi] ∧M ∈M}

by ncs not in the scope of ri and def. of M (values)

= {〈M,T 〉 | ∀ncs. T (ncs)=〈vi, vo〉 ∧ T r(ncs)=〈ri, ro〉 ∧ 〈Mi, vi〉 ∈ (γr(ri) ∩M)

∧ 〈Mo, vo〉 ∈ (γr(ro) ∩Mncs) ∧Mi =\{ncs} M ∧Mo=Mi[ncs 7→ vi]}

whereMncs = {〈M [ncs 7→ v′], v〉 | 〈M, v〉 ∈ M∧ v′ ∈ V}

⊆ {〈M,T 〉 | ∀ncs. T (ncs)=〈vi, vo〉 ∧ T r(ncs)=〈ri, ro〉 ∧ 〈Mi, vi〉 ∈ γr(ri[n← r′])

∧ 〈Mo, vo〉 ∈ γr(ro[n← ∃ncs. r
′]) ∧Mi =\{ncs} M ∧Mo=Mi[ncs 7→ vi]}

by the def. of ·[· ← ·], def. of ∃ · . ·, and Proposition 1

= {〈M,T 〉 | ∀ncs. T (ncs)=〈vi, vo〉 ∧ T r(ncs)=〈ri, ro〉 ∧ 〈Mi, vi〉 ∈ γr(ridn← r′e)

∧ 〈Mo, vo〉 ∈ γr(rodn← ∃ncs. r
′e) ∧Mi =\{ncs} M ∧Mo=Mi[ncs 7→ vi]}

by i.h. and Proposition 1

= M ′

We then have that r[n← r′] vr αr(M ′ ∪ γrN(⊥r)) = αr
N(γrN(rdn← r′e)) vr rdn←

r′e by Proposition 1.

210

A.4.2 Propagation and Transformer

Proof (of Lemma 6).

Proof. For the increasing property, the proof goes by structural induction on both

relational arguments of propr and it closely follows the proof of Lemma 26. Re-

garding monotonicity, the proof goes by structural induction on the relational ar-

guments of propr, closely follows the proof of Lemma 28, and relies on Lemma 105

(introduced later).

Proof (of Lemma 7).

Proof. The increasing property of Stepr
k+1J·K is obvious. Regarding monotonicity,

the proof goes by structural induction on program expressions and it closely follows

the proof of Lemma 29. The proof relies on Lemma 6 as well as Lemma 109, 107, 110,

and 106.

A.4.2.1 Range of Computation

Lemma 112. Let M r and M r
1 be relational maps, E an environment, e` an expres-

sion of a program p, and k a fuel. If domvalid(`, p, E) and Stepr
kJe`K(E)(M r) = M r

1,

then ∀n.M r(n) 6= M r
1(n) =⇒ n ∈ rangep(E�`).

Proof. The same as in the proof of Lemma 32.

The same result about the range of computation can be shown.

Lemma 113. Let M r and M r
1 be relational maps, E an environment, e` an expres-

sion of a program p, and k a fuel. If domvalid(`, p, E) and Stepr
kJe`K(E)(M) = M r

1,

then ∀n.M r(n) 6= M r
1(n) =⇒ n ∈ rangerp(E�`).

Proof. Similar to the proof of Lemma 35.

211

A.4.3 Soundness

We first provide several useful results used to argue soundness of relational seman-

tics.

Lemma 114. Let M ∈ M, v ∈ V, n ∈ N , and r ∈ V r
N . Suppose 〈M, v〉 ∈ γrN(r)

and M(n) ∈ T . Then, for any T ∈ T , 〈M [n 7→ T], v〉 ∈ γrN(r).

Proof. When n 6∈ N , the argument follows by Lemma 97. If r ∈ {⊥r,>r}, the

argument is trivial. For other cases, the result follows by the definition of γrN ,

specifically γd (γd(F) = T).

Lemma 115. Let M ∈ M, M ′ ∈ M, v ∈ V, and r ∈ V r
N . Suppose Mv̇M ′,

〈M, v〉 ∈ γrN(r), and ∀n ∈ N.M(n) 6= ω =⇒ M ′(n) 6= ω. Then 〈M ′, v〉 ∈ γrN(r).

Proof. The argument goes by structural induction on r. By Lemma 97, the proof

analysis can focus only on the nodes N of M ′. The cases when r ∈ {⊥r,>r} are

trivial. The other cases follow by the definition of γr. For instance, suppose n ∈ N

and M(n) = c. Then, M ′(n) = c. Otherwise, suppose M(n) ∈ T . The argument

then follows from Lemma 114.

A.4.3.1 Data Propagation

We start proving the soundness of the relational semantics by formalizing and

showing that relational propagation abstracts the concrete one. We begin by in-

troducing the notion of scope consistency that closely resembles the environment

consistency.

scopeconsN(M)
def⇐⇒ ∀n ∈ N.M(n) 6∈ {⊥, ω}

212

Lemma 116. Let v1, v2, v3, and v4 be values, M1 and M2 maps, r1 ∈ V r
N ,

r2 ∈ V r
N , r3 ∈ V r

N , and r4 ∈ V r
N . Let v1<:cv2, noerr(v1), noerr(v2), 〈M1, v1〉 ∈

γrN(r1), 〈M2, v2〉 ∈ γrN(r2), M1v̇M2, scopeconsN(M1), and scopeconsN(M2). If

〈v3, v4〉 = prop(v1, v2) and 〈r3, r4〉 = propr(r1, r2), then 〈M1, v3〉 ∈ γrN(r3) and

〈M2, v4〉 ∈ γrN(r4).

Proof. By structural induction on both v1 and v2.

• v1 = ⊥, v2 = ⊥.

v3 = ⊥, v4 = ⊥ by def. of prop

∀r.M×{⊥} ∈ γrN(r) by def. of γrN

• v1 = c, v2 = ⊥.

v3 = c, v4 = c by def. of prop

〈M2, v4〉 ∈ γrN(r1) by scopeconsM2
(N) and Lemma 115

r1 ∈ Rr
N ∪ {>r} by def. of γrN

r3 = r1, r1 vr r4 by def. of propr

• v1 = T, v2 = ⊥, r2 6∈ T r
N .

v3 = v1, v4 = T⊥ by def. of prop

r1 ∈ T r
N ∪ {>r} by def. of γrN

r3 = r1 ∨ r3 = >r, r4 = T r
⊥r ∨ r4 = >r by def. of propr

〈M2, T⊥〉 ∈ γrN(r4) by def. of γrN

213

• v1 = T, v2 = ⊥, r2 ∈ T r
N .

v3 = v1, v4 = T⊥ by def. of prop

r1 ∈ T r
N ∪ {>r} by def. of γrN

r3 = r1 ∨ r3 = >r, r2 vr r4 by def. of propr and Lemma 6

γrN(T r
⊥r) ⊆ γrN(r4) by def. of γrN

〈M2, T⊥〉 ∈ γrN(T r
⊥r) by def. of γrN

〈M2, T⊥〉 ∈ γrN(r4)

• v1 = c, v2 = c.

v3 = c, v4 = c by def. of prop

r1 vr r3, r2 vr r4 by def. of propr and Lemma 6

For the induction case, let v1 = T1 and v2 = T2. By definition of γrN , it must

be that r1 ∈ T r
N ∪ {>r} and r2 ∈ T r

N ∪ {>r}. If r1 = >r or r2 = >r, the argument

is trivial as r3 = r4 = >r by the def. of propr. We thus focus on the case when

r1 = T r
1 and r2 = T r

2. First, observe that ncs ∈ T2 =⇒ ncs ∈ T r
2 by the def. of γrN .

If ncs ∈ T r
2 but ncs 6∈ T2, the argument follows from Lemma 6.

We are left with the case where ncs ∈ T r
2 and ncs ∈ T2. Let 〈v1i, v1o〉 = T1(ncs),

〈v2i, v2o〉 = T1(ncs), 〈r1i, r1o〉 = T r
1(ncs), and 〈r2i, r2o〉 = T r

2(ncs). By definition of

<:c, we have that v2i<:cv1i and v1o<:cv2o.

Suppose first that 〈v′2i, v′1i〉 = prop(v2i, v1i) and 〈r′2i, r′1i〉 = propr(r2i, r1i). We

have noerr(v1i), noerr(v2i), noerr(v1o), noerr(v2o) by the definition of noerr. Also, it

trivially follows that scopeconsM1
(N \ {ncs}) and scopeconsM2

(N \ {ncs}). By defi-

nition of γr, the fact that ncs is not in the scope of v2i, v1i, r2i, r1i, and Lemma 97,

we have 〈M1, v1i〉 ∈ γrN\{ncs}(r1i) and 〈M2, v2i〉 ∈ γrN\{ncs}(r2i). It then follows from

induction hypothesis that 〈M1, v
′
1i〉 ∈ γrN\{ncs}(r

′
1i) and 〈M2, v

′
2i〉 ∈ γrN\{ncs}(r

′
2i).

214

Next, 〈M1[ncs 7→ v1i], v1o〉 ∈ γrN∪{ncs}(r1o) and 〈M2[ncs 7→ v2i], v2o〉 ∈ γrN∪{ncs}(r2o).

Since ncs ∈ v2, we know v2i 6= ⊥. Also, we know by noerr(v2i) that v2i 6= ω. Hence,

if v2i = c, then by v2i<:cv1i we have that v1i = c. Further, if v2i ∈ T , then

〈M1[ncs 7→ v2i], v1o〉 by Lemma 114. It also holds that 〈M1[ncs 7→ v2i], v1o〉 ∈

γrN∪{ncs}(r1o) and 〈M2[ncs 7→ v2i], v2o〉 ∈ γrN∪{ncs}(r2o). By definition of strength-

ening, one then also has 〈M1[ncs 7→ v2i], v1o〉 ∈ γrN∪{ncs}(r1o[ncs ← r2i]) and

〈M2[ncs 7→ v2i], v2o〉 ∈ γrN∪{ncs}(r2o[ncs ← r2i]).

Let 〈v′1o, v′2o〉 = prop(v1o, v2o) and 〈r′1o, r′2o〉 = propr(r1o[ncs ← r2i], r2o[ncs ←

r2i]). As M1[ncs 7→ v2i] v̇
r
M2[ncs 7→ v2i], scopeconsM1[ncs 7→v2i](N ∪ {ncs}), and

scopeconsM2[ncs 7→v2i](N ∪ {ncs}), we have by induction hypothesis that 〈M1[ncs 7→

v2i], v
′
1o〉 ∈ γrN∪{ncs}(r

′
1o) and 〈M2[ncs 7→ v2i], v

′
2o〉 ∈ γrN∪{ncs}(r

′
2o).

By Lemma 38 and Lemma 39, we have v′2i<:cv′1i and, if v2i = c, v2i = v′2i =

v1i = v′1i = c. In that case, 〈M1[ncs 7→ v′1i], v
′
1o〉 ∈ γrN∪{ncs}(r

′
1o) and 〈M1[ncs 7→

v′2i], v
′
2o〉 ∈ γrN∪{ncs}(r

′
2o). In the case v′2i ∈ T , then also v′1i ∈ T and the same result

follows by Lemma 114.

A.4.3.2 Joins

We next show several results showing the soundness of the relational join subject

to to the concrete one.

Lemma 117. Let v1, v2, be values, M a concrete map, r1 ∈ V r
N , and r2 ∈ V r

N .

If noerr(v1), noerr(v2), ccomp(v1, v2), 〈M, v1〉 ∈ γrN(r1), 〈M, v2〉 ∈ γrN(r2), then

〈M, v1 t v2〉 ∈ γrN(r1 tr r2).

Proof. By structural induction on both v1 and v2. Let v = v1t v2 and r = r1tr r2.

• v1 = ⊥ or v1 = ⊥. Trivial, as v = c and the argument then follows by

monotonicity of γrN .

215

• v1 = c, v2 = c. Again, by monotonicity of γrN .

For the induction case, let v1 = T1 and v2 = T2. By definition of γrN , it must

be that r1 ∈ T r
N ∪ {>r} and r2 ∈ T r

N ∪ {>r}. If r1 = >r or r2 = >r, the argument

is trivial as r3 = >r by the def. of tr. We thus focus on the case when r1 = T r
1 and

r2 = T r
2. Consider any call site ncs. Let 〈v1i, v1o〉 = T1(ncs), 〈v2i, v2o〉 = T1(ncs),

〈r1i, r1o〉 = T r
1(ncs), and 〈r2i, r2o〉 = T r

2(ncs). Let us first consider the case for

inputs. We have 〈M, v1i〉 ∈ γrN(r1i), 〈M, v2i〉 ∈ γrN(r2i), noerr(v2i), noerr(v1i), and

ccomp(v1i, v2i). By i.h., we then have 〈M, v1i t v2i〉 ∈ γr(r1i tr r2i).

Next, we have that 〈M [ncs 7→ v1i], v1o〉 ∈ γrN(r1o), 〈M [ncs 7→ v2i], v2o〉 ∈ γrN(r2o),

noerr(v2o), noerr(v1o), and ccomp(v1o, v2o). Now, if v1i = ⊥, then v1o = ⊥ by the

def. of γr and noerr(v1o). Hence, 〈M [ncs 7→ v2i], v1o〉 ∈ γrN(r1o) as well again by

the definition of γrN . The same holds in the other direction. For the remaining

cases, if v1i = c then by ccomp(v1i, v2i) we have v1i = v2i, hence clearly 〈M [ncs 7→

v2i], v1o〉 ∈ γrN(r1o). Lastly, if v1i ∈ T then by ccomp(v1i, v2i) we have v2i ∈ T ,

and by Lemma 114 〈M [ncs 7→ v2i], v1o〉 ∈ γrN(r1o). By the induction hypothesis,

we then have 〈M [ncs 7→ v2i], v2o t v1o〉 ∈ γrN(r1o tr r2o). Again, if v2i ∈ T then

by ccomp(v1i, v2i) and Lemma 114 〈M [ncs 7→ v2i t v1i], v2o t v1o〉 ∈ γrN(r1o tr r2o).

Similar reasoning applies for the cases when v2i ∈ {⊥} ∪ Cons .

Lemma 118. Let K ≥ 2, v1 to vK be values where ccomp({v1, . . . , vK}) and

∀1 ≤ i ≤ K. noerr(vi), r1 to rK relational values in V r
N , and ∀1 ≤ i ≤ K. 〈M, vi〉 ∈

γrN(ri). Then, 〈M,t1≤i≤Kvi〉 ∈ γrN(tr1≤i≤Kri).

Proof. The argument goes by induction onK. The result follows from the Lemma 117

and the fact that join t does not invalidate the constant compatibility of values.

Lemma 119. Let K ≥ 2, M̂ = {M1, . . . ,MK} be a set of concrete maps where

216

ccomp(M̂) and ∀M ∈ M̂. errcons(M), M̂r = {M r
1, . . . ,M

r
K} a set of relational

maps, and ∀1 ≤ i ≤ K.Mi ∈ γ̇r(M r
i). Then, ṫM̂ ∈ γ̇r(ṫr M̂r).

Proof. First, let

Mu = ṫM̂ = Λn. t {M(n) |M ∈ M̂}

and

M r
u = ṫr M̂ = Λn. tr {M r(n) |M r ∈ M̂r}

First, suppose there exists a map Mi ∈ M̂ s.t. exists a node n where it is not

the case that noerr(Mi(n)). By errcons(Mi), it must be that Mi = Mω, in which

case Mu = Mω. Also, it then must be that M r
i = M r

>r and clearly M r
u = M r

>r . The

result then trivially follows by the definition of γ̇r.

Otherwise, we have the following. As a reminder, by the definition of γ̇r one

has that M ∈ γ̇r(M r) implies that ∀n.〈M,M(n)〉 ∈ γr(M r(n)). Also, by Lemma 42

and Mu 6= Mω, we have errcons(Mu). Hence,

∀1 ≤ i ≤ K. ∀n.〈Mi,Mi(n)〉 ∈ γr(M r
i (n)) by def. of γ̇r

∀1 ≤ i ≤ K. ∀n.〈Mu,Mi(n)〉 ∈ γr(M r
i (n)) by Lemma 115

∀n.〈Mu,t{Mi(n) |Mi ∈ M̂}〉 ∈ γr(tr{M r
i (n) |M r

i ∈ M̂r}) by Lemma 118

∀n.〈Mu,Mu(n)〉 ∈ γr(M r
u(n)) by def. of ṫr

and ṫ

Mu ∈ γ̇r(M r
u) by def. of γ̇r

A.4.3.3 Constants

We now prove the soundness of relational abstraction for constants.

Lemma 120. Let M ∈ M, N a scope, and c ∈ Cons. If scopeconsM(N), then

217

〈M, c〉 ∈ γrN(cr).

Proof. By definition, we have crN{Dr ∈ Dr
N | Dr(ν) = c }. By γrN , we also have

γrN(cr) = γrN({Dr ∈ Dr
N | Dr(ν) = c }) =

{〈M, c〉 | Dr ∈ Dr
N ∧Dr(ν) = c ∧ ∀n ∈ N. M(n) ∈ γd(Dr(n))} ∪ γr(⊥r) =

{〈M, c〉 | Dr(ν) = c ∧ ∀n ∈ N. M(n) 6∈ {⊥, ω}} ∪ γr(⊥r)

The result then follows from the definition of scopecons.

A.4.3.4 Strengthening

We now prove the soundness of several strengthening operations.

Lemma 121. Let M ∈ M, v1 ∈ V, n ∈ N , r ∈ V r
N , and r′ ∈ V r. If 〈M, v1〉 ∈

γrN(r) and 〈M,M(n)〉 ∈ γr(r′), then 〈M, v1〉 ∈ γrN(r[n← r′]).

Proof.

γrN(rN [n← r′]) = γrN(αr
N(γr(rN) ∩ {〈M ′[n 7→ v′], v〉 | 〈M ′, v′〉 ∈ γr(r′)})) ⊇

γr(rN) ∩ {〈M ′[n 7→ v′], v〉 | 〈M ′, v′〉 ∈ γr(r′)} ⊇

{〈M, v1〉} ∩ {〈M ′[n 7→ v′], v〉 | 〈M ′, v′〉 ∈ γr(r′)} ⊇

{〈M, v1〉} ∩ {〈M ′[n 7→ v′], v〉 | 〈M, v′〉 ∈ {〈M,M(n)〉}} =

{〈M, v1〉} ∩ {〈M [n 7→M(n)], v〉 | v ∈ V} =

{〈M, v1〉} ∩ {〈M, v〉 | v ∈ V} =

{〈M, v1〉}

We can generalize the above result.

Lemma 122. Let M ∈ M, v ∈ V, N a scope, M r ∈ Mr, r ∈ V r
N . If 〈M, v〉 ∈

γrN(r) and M ∈ γ̇r(M r), then 〈M, v〉 ∈ r[M r].

218

Proof. Consider any n ∈ N . By M ∈ γ̇r(M r), we have that 〈M,M(n)〉 ∈

γr(M r(n)). Then by Lemma 121, 〈M, v〉 ∈ γrN(r[n ← M r(n)]). Hence, 〈M, v〉 ∈⋂
n∈N γ

r
N(r[n ← M r(n)]). Then by Lemma 9 we have 〈M, v〉 ∈ γrN(urn∈Nr[n ←

M r(n)]).

Next, we present a results showing that updates to a relational map with sound

information yields a sound map.

Lemma 123. Let M ∈ M, M r ∈ Mr, n ∈ N , v ∈ V, and r ∈ V r. If 〈M, v〉 ∈

γr(r) and M ∈ γ̇r(M r), then M ∈ γ̇r(M r[n 7→ r]).

Proof. Clearly, as ∀n′.〈M,M(n′)〉 ∈ γr(M r[n 7→ r](n′)).

Our rescoping operations are also sound.

Lemma 124. Let M ∈ M, v1 ∈ V, r ∈ V r
N , and N ′ ⊆ ℘(N) such that

scopeconsM(N ′). If 〈M, v1〉 ∈ γrN(r), then 〈M, v1〉 ∈ γrN∪N ′(r[N ∪N ′])

Proof.

rN [N ∪N ′] = αr
N∪N ′(γ

r(rN) ∩ {〈M, v〉 | ∀n ∈ N ′\N.M(n) /∈ {⊥, ω}})

wr αr
N∪N ′({〈M, v1〉)} ∩ {〈M, v〉 | ∀n ∈ N ′\N.M(n) /∈ {⊥, ω}})

= αr
N∪N ′({〈M, v1〉)})

Lemma 125. Let M ∈ M, v1 ∈ V, r ∈ V r
N , and N ′ ⊆ N . If 〈M, v1〉 ∈ γrN(r),

then 〈M, v1〉 ∈ γrN ′(r[N ′])

Proof. Straightforward as N ′ \N = ∅.

Strengthening of a relational value with the information not in the scope is

sound as well.

219

A.4.3.5 Maps

We next show the soundness of updates to the relational maps subject to their

concretizations.

Lemma 126. Let M ∈ M, M r ∈ Mr, n ∈ N , v ∈ V, and r ∈ V r. If 〈M, v〉 ∈

γr(r), M ∈ γ̇r(M r), M(n) v v, and v 6= ω, then M [n 7→ v] ∈ γ̇r(M r[n 7→ r]).

Proof. Suppose not. Let M0 = M [n 7→ v] and M r
0 = M r[n 7→ r]. There must be a

node n′ such that 〈M0,M0(n′)〉 6∈ γr(M r
0(n′)). We branch on several cases:

• n 6∈ Nn′ . If n = n′, the argument is trivial. Otherwise we know that

〈M,M(n′)〉 ∈ γr(M r(n′)), M r(n′) = M r
0(n′), and M(n′) = M0(n′). Then by

Lemma 97 also 〈M0,M0(n′)〉 ∈ γr(M r
0(n′)).

• n ∈ Nn′ . Again, we know that 〈M,M(n′)〉 ∈ γr(M r(n′)), M r(n′) = M r
0(n′),

and M(n′) = M0(n′). Since Mv̇M ′, M =\{n} M
′, and M ′(n) 6= ω, then by

Lemma 115 〈M0,M0(n′)〉 ∈ γr(M r(n′)) and hence 〈M0,M0(n′)〉 ∈ γr(M r
0(n′)).

A.4.3.6 Transformer

We next show that the relational transformer abstracts the concrete transformer

given certain invariants on the concrete maps.

Lemma 127. First, assume that P is an inductive invariant family of a program

m where ∀k, `, E. (`,M,E) ∈ Pk =⇒ dfm(M) ∧ envconsM(E). Now, let e` be an

expression of m, Mf ∈M, M ∈M, k ∈ N, and E an environment where (e, E) is

well-formed, domvalid(`,m,E), and (`,M,E) ∈ Pk. Also, let M r
f ∈ Mr and M r ∈

220

Mr such that M ∈ γ̇r(M r). If stepkJe`K(E)(M) = Mf and Stepr
kJe`K(E)(M r) =

M r
f , then Mf ∈ γ̇r(M r

f).

Proof. We carry the proof by induction on k and e. The case when k = 0 is

trivial. We note that Stepr
kJe`K(E)(M r) = M r ṫr stepr

kJe`K(E)(M r), hence we fo-

cus on stepr
kJe`K and consider all the cases for e. Also observe that df(M) and

envconsM(E) by P and (`,M,E) ∈ Pk.

e = c`. Let v = M(E�`) and r = M r(E�`). By dfm(M), we have that constconsm(M)

which implies v ∈ {⊥, ω, c}. If v = ω then by dfn(M) we have errcons(M) and

thus M = Mω. Then it must be that M r = M r
>r and the argument is trivial.

Otherwise, v ∈ {⊥, c}. By envconsM(E) we have scopeconsM(N) where N =

NE�`. Then by Lemma 120 it follows 〈M, c〉 ∈ γrN(cr) and by Lemma 122 it must be

that 〈M, c〉 ∈ γrN(cr[M r]). Since noerr(c), noerr(v), ccomp(v, c), and 〈M, v〉 ∈ γr(r),

by Lemma 117 it must be that 〈M, vtc〉 ∈ γrN(rtr cr[M r]). The result then follows

by Lemma 126.

e = x`. Let M(E�`) = v, M(E(x)) = vx, M
r(E�`) = r, and M r(E(x)) = rx.

If vx = ω or v = ω, then by errcons(M) it must be that M = Mω and hence

M r = M r
>r . In this case, the argument is trivial.

Otherwise, we know that 〈M, v〉 ∈ γr(r), and 〈M, vx〉 ∈ γr(rx). Let r0 be rx

implicitly rescoped with NE(x) ∪ NE�`. Let also r1 be r be rescoped with NE(x) ∪

NE�`. By envconsM(E) and envcons(M) and Lemma 124, we have 〈M, vx〉 ∈ γr(r0).

〈M, v〉 ∈ γr(r1). As E(x) was not initially in the scope of E(x), then also 〈M, vx〉 ∈

γr(r0[E(x)=ν]).

Next, by dfm(M) we have that vx<:cv. As by errcons(M) we have noerr(v),

noerr(vx), and scopeconsM(N) (via envconsM(E)), then by Lemma 116 we have

221

that 〈M, v′x〉 ∈ γr(r′x) and 〈M, v′〉 ∈ γr(r′). As r′x is rescoped back to NE(x) as r2

and r′ is rescoped back to NE�` as r3, by Lemma 125 we have 〈M, v′x〉 ∈ γr(r2) and

〈M, v′〉 ∈ γr(r3). By Lemma 122, we have 〈M, v′〉 ∈ γr(r3[M r]).

Let M1 = M [E(x) 7→ v′x], M2 = M1[E�` 7→ v′], M r
1 = M r[E(x) 7→ r2], and

M r
2 = M r

1[E�` 7→ r3]. By Lemma 126, M1 ∈ γrN(M r
1). By the increasing property

of prop (Lemma 6), we have Mv̇M1. Also, M =\{E(x)} M1 and v′x 6= ω by vx<:cv

and Lemma 39. Hence, envconsM1(E) and scopeconsM1
(N). Then by Lemma 115

we have 〈M1, v
′〉 ∈ γrN(r3). Finally, we then have by Lemma 126 that M2 ∈ γ̇r(M r

2).

e = (e`11 e
`2
2)`. By i.h., M1 ∈ γ̇r(M r

1). By the inductiveness of P , we have dfm(M1)

and envconsM1(E). If v1 = ⊥, then Mf = M1 and M r
1 v̇

r
M r

f by the obvious

increasing property of Stepr
k+1J·K and propr (Lemma 6); the result thus follows by

the monotonicity of γ̇r. If v1 = ω, then by errcons(M1) it must be that M1 = Mω

and hence M r = M r
>r , in which case the result follows immediately. If v1 6∈ T , then

by the definition of γr also r1 6∈ T r
N . In that case, Mf = Mω and M r = M r

>r and

the argument is straightforward. If v1 ∈ T , but r1 6∈ T r
N , then r1 = >r and hence

M r
f = M r

>r . Otherwise, by i.h. M2 ∈ γ̇r(M r
2). Again by the inductive property of

P , we have dfm(M2) and envconsM2(E). The cases when v2 ∈ {⊥, ω} are handled

identically as for v1.

By domvalid(`,m,E), domvalid(`1,m,E), and domvalid(`2,m,E), Lemma 32,

and Lemma 33, we have that v1 = M2(E�`1). Similarly, by Lemma 112 it also

holds r1 = M r
2(E�`1). Let v = M2(E�`) and r = M r

2(E�`). Then by M2 ∈ γ̇r(M r
2),

we have 〈M2, v1〉 ∈ γr(r1), 〈M2, v2〉 ∈ γr(r2), and 〈M2, v〉 ∈ γr(r). As r is implicitly

rescoped with NE�` ∪ {E�`1} to r0, then by Lemma 124, 〈M2, v2〉 ∈ γr(r0).

If any of v1, v2, or v3 is ω, then M2 = Mω and the argument goes as usual. Oth-

222

erwise, we have noerr(v1), noerr(v2), noerr(v3) and by dfm(M2) also v1<:c[E�`1 7→

〈v2, v〉]. Since 〈M2, [E�`1 7→ 〈v2, v2〉]〉 ∈ γrN([E�`1 7→ 〈r2, r0〉]) by def. of γr and

envconsM2(E), we have by Lemma 116 that 〈M2, v
′
1〉 ∈ γrN(r′1) and 〈M2, [E�`1 7→

〈v′2, v′〉]〉 ∈ γrN([E�`1 7→ 〈r′2, r′0〉]) and hence by def. of γr we have 〈M2, v
′
1〉 ∈ γr(r′1),

〈M2, v
′
2〉 ∈ γr(r′2), and 〈M2, v

′〉 ∈ γr(r′0). As r′0 is implicitly rescoped back with

NE�` to r′′0 , by Lemma 125 we have 〈M2, v
′〉 ∈ γr(r′′0). The argument for storing

the results to maps M2 and M r
2 then follows by Lemma 39, 115, and 126 as earlier.

(e`00 ? e`11 : e`22)`. By i.h., we have that M0 ∈ γrN(M r
0). By the inductiveness of P ,

we have dfm(M0) and envconsM0(E). The cases when v0 ∈ {⊥, ω} are handled as

expected. If v0 ∈ Bool and r0 6∈ Bool r, then r0 = >r by the definition of γr and

M r
f = M r

>r .

Otherwise, the argument is as follows. Suppose v0 = true; the argument for the

case when v0 = false is identical. Since envconsM0(E) implies scopeconsM0
(NE�`),

by Lemma 120 we have that 〈M0, true〉 ∈ γr(true r). Since 〈M0, true〉 ∈ γr(r0) by

M0 ∈ γrN(M r
0), we have that 〈M0, true〉 ∈ (γr(true r) ∩ γr(r0)). Then by Lemma 9,

it also holds 〈M0, true〉 ∈ γr(true r ur r0). Now, let n′ ∈ NE�`0 . By M0 ∈ γ̇r(M r
0),

we have that 〈M0,M0(n′)〉 ∈ γr(M r
0(n′)). As 〈M0, true〉 = 〈M0,M0(E�`0)〉, we

have that 〈M0,M0(n′)〉 ∈ γr(M r
0(n′)[E�`0 ← true r ur r0]) by Lemma 121. Hence,

by Lemma 123 it is the case that M0 ∈ γ̇r(M r
0[n′ 7→ M r

0(n′)[E�`0 ← true r ur

r0]]). Further, by Lemma 10 it is also the case that M0 ∈ γ̇r(u̇rn′∈NE�`0 M
r
0[n′ 7→

M r
0(n′)[E�`0 ← true r ur r0]]). Therefore, M0 ∈ γ̇r(M r

0[E�`0 ← true r ur r0]).

It follows then by i.h. that M1 ∈ γrN(M r
1) and by the inductiveness of P , we have

dfm(M1) and envconsM1(E). The argument continues as usual by Lemma 39, 115,

and 126 as before.

223

e = (µf.λx.e`11)`. Let v = M(E�`). By dfm(M) it follows that constconsm(M)

which implies that v ∈ {⊥, ω} ∪ T . If v = ⊥, then T = T⊥ and Mf = M [E�` 7→

T⊥]. By the definition of γrN , then either (1) r = ⊥r in which case M r
f = M r[E�` 7→

T r
⊥r], (2) r ∈ Rr

N in which case M r
f = M r

>r , (3) r ∈ T r and the result follows by the

obvious increasing property of Stepr
k+1J·K and propr (Lemma 6), or (4) r = >r in

which case M r
f = M r

>r . If v = ω then by errcons(M) it must be that M = Mf = Mω

and hence M r = M r
f = M r

>r . If v ∈ T but r 6∈ T r, then r = >r and hence

M r
f = M r

>r .

We are left with the case where T ∈ T and T r ∈ T r where v = T and r = T r.

By γr, ncs ∈ T implies ncs ∈ T r. For the case where ncs 6∈ T and ncs 6∈ T r, the

argument is trivial. When ncs 6∈ T but ncs ∈ T r, the result follows by the obvious

increasing property of Stepr
k+1J·K and propr. We are thus left with the case when

ncs ∈ T and ncs ∈ T r. The case when π1(T (ncs)) ∈ {⊥, ω} are handled as expected.

We thus continue assuming π1(T (ncs)) 6∈ {⊥, ω}. First, we have by dfm(M)

that [ncs 7→ 〈M(nx),M(E1�`1)〉]<:cT and T<:cM(nf). By the def. of <:c, M(nx) 6∈

{⊥, ω}. Next, 〈M,M(E1�`1)〉 ∈ γr(M r(E1�`1)) by M ∈ γrN(M r). Since M r(E1�`1)

is first implicitly rescoped with NE�`1 ∪ {ncs} to r0 and M(nx) 6∈ {⊥, ω}, by

Lemma 124 we have 〈M,M(E1�`1)〉 ∈ γr(r0). As ncs 6∈ NE�`1 , then it must be

that 〈M,M(E1�`1)〉 ∈ γr(r0[ncs=nx]). Then, r0 is implicitly rescoped to the same

scope but without nx and then by Lemma 125 we have 〈M,M(E1�`1)〉 ∈ γr(r1).

We hence have [ncs 7→ 〈M(nx),M(E1�`1)〉] ∈ γr[ncs 7→ 〈M r(nx), r1〉, T ∈ γr(T r),

and M(nf) ∈ γrN(M r(nf)). As scopeconsM(NE�`) by envconsM(E), noerr(T),

noerr(M(nx)), noerr(M(nf)), and noerr(M(E1�`1)), by Lemma 116 we have that

〈M,T ′〉 ∈ γrN(T r
1), 〈M,T ′′〉 ∈ γrN(T r

2), 〈M,T ′x〉 ∈ γrN(T r
x), and 〈M,T ′f〉 ∈ γr(T r

f).

By Lemma 39, we have noerr(T ′′) and noerr(T ′). By Lemma 45 we have that

224

ccomp(T ′, T ′′) and thus 〈M,T ′ t T ′′〉 ∈ γr(T r
1 tr T r

2) by Lemma 117.

Note that by Lemma 40 it must be that noerr(T ′x) and hence v′x 6= ω. By

this and envconsM(E) it must be that envconsM1(E1). It follows then by i.h. that

M1 ∈ γrN(M r
1) and by inductiveness of P we have dfm(M1) and envconsM1(E1).

The argument continues as usual by Lemma 39, 115, and 126 as before. Also, the

soundness argument for implicit rescoping and strengthening of r′1 goes as usual

and relies on the fact that nx is not in the scope of r′1.

Remember that for every ncs ∈ dom(M̄) we have ncs ∈ dom(M̄ r) and M̄(ncs) ∈

γ̇r((̄M r)(ncs)). Given fin(M) implied by dfm(M), we have |dom(M̄)| = K where

K ∈ N. By the inductiveness of P , we have that dfm(Mf) and hence errcons(Mf).

If Mf = Mω then there exists ncs such that M̄(ncs) = Mω in which case M̄ r(ncs) =

M r
>r and hence M r

f = M r
>r . Otherwise, by the definition of ṫ we have that ∀M ∈

M̄.M 6= Mω. By Lemma 44 we have ccomp(M̄) and ∀M ∈ M̄. errcons(M). The

result then follows from Lemma 118.

We can now prove that relational semantics abstract the concrete one.

Proof (of Theorem 1).

Proof. We assume a fixed program e`m . We first define a set Pk ∈ ℘(Loc×M×E)

for every fuel k as the smallest set satisfying the following. Initially, (`m,M⊥, ∅) ∈

Pk. Second, (`,M,E) ∈ Pk if (1) ` ∈ Loc(e), (2) (e(`), E) is well-formed, (3)

domvalid(`, e, E), (4) there exists a path map Mw such that consm(Mw), Mw ∈

dom(strip), M = strip(Mw), and envconsMw(E). Lastly, for every (`,M,E) ∈ Pk,

if stepw
k Je(`)K(E)(Mw) = Mw

1 , consm(Mw), consm(Mw
1), Mw ∈ dom(strip), Mw

1 ∈

dom(strip), M = strip(Mw), and M1 = strip(Mw
1), then (`,M1, E) ∈ Pk.

By Theorem 7, Theorem 8, consm(Mw
⊥), Mw

⊥ ∈ dom(strip), andM⊥ = strip(Mw
⊥),

225

we have that P is an inductive invariant family of m. By Lemma 95 and the defi-

nition of envcons for path maps, we have that (`,M,E) ∈ Pk, for every k, implies

dfm(M) and envconsM(E). Since (`m,M⊥, ∅) ∈ Pk, we have that the strongest

inductive invariant I of m is subsumed by P , i.e, Sk ⊆ Pk. The result then follows

from the definition of C[[·]] and Lemma 127.

226

A.5 Collapsed Semantics Proofs

We first prove that our definitions of collapsed meet and join are correct. A

depth of a collapsed value is defined in the similar way as for the concrete and rela-

tional values. We hence reuse the function depth to denote the depth of collapsed

values.

Proof (of Lemma 8).

Proof. Similar to the proof of Lemma 4, the proof is carried by case analysis on

elements of U and induction on the minimum depth thereof when U consists of

collapsed tables only.

The next proof shows that the concretization function for collapsed values is a

complete meet-morphism.

Theorem 11 (Complete Meet Morphism of γcr
N̂

). Let U ∈ ℘(Vcr
N̂

) and let N be a

concrete scope. Then γcrδ (ucrU) = uru∈Uγcrδ (u) for δ ∈ ∆(N̂ ,N).

Proof. We carry the proof by case analysis on elements of U and induction on the

minimum depth thereof when U consists of tables only.

We first consider the trivial (base) cases where U is not a set of multiple col-

lapsed tables.

• U = ∅. Here, γcrδ (ucr∅) = γcrδ (>cr) = >cr = ur∅.

• U = {u}. Trivial.

• Rcr ∈ U, T cr ∈ U . We have ucr{Rcr, T cr} = ⊥cr and since ⊥cr is the bottom

element, ucrU = ⊥cr. Similarly, γcrδ (Rcr) ur γcrδ (T cr) = ⊥r = γcr
N̂

(⊥cr) so by the

definition of ur we have uru∈Uγcrδ (u) = ⊥r.

227

• U ⊆ Rcr
N̂

. Here,

γcrδ (ucrU) = γcrδ (ucr{Rcr
N̂
| Rcr ∈ U}) = γcrδ (

⋂
Rcr∈U

Rcr)

[by def. of ucr]

= {Dr | Dcr ∈ (
⋂

Rcr∈U
Rcr)) ∧Dcr(ν) = Dr(ν) ∧ ∀n̂ ∈ N̂ .Dr(δ(n̂)) = Dcr(n̂)}

[by def. of γcrδ]

=
⋂

Rcr∈U
{Dr | Dcr ∈ Rcr ∧Dcr(ν) = Dr(ν) ∧ ∀n̂ ∈ N̂ .Dr(δ(n̂)) = Dcr(n̂)}

=
⋂

Rcr∈U
γcrδ (Rcr) = urRcr∈Uγ

cr
δ (Rcr) [by def. of γcr

N̂
and ur]

• >cr ∈ U . Here, ucrU = ucr(U/{>cr}) and uru∈Uγcrδ (u) = uru∈U,u6=>crγcrδ (u) since

γcr
N̂

(>cr) = >r. The set U/{>cr} either falls into one of the above cases or consists

of multiple tables, which is the case we show next.

Let U ⊆ T cr
N̂

and |U | > 1. Let d be the minimum depth of any table in U .

γcrδ (ucrU) = γcrδ (〈z,ucr{π1(io(T cr)) | T cr ∈ U},ucr
N̂
{π2(io(T cr)) | T cr ∈ U}〉)

[by def. of ucr]

= λncs.〈γcrδ (ucr{π1(io(T cr)) | T cr ∈ U}), γcrδ[z 7→ncs]
(ucr{π2(io(T cr)) | T cr ∈ U})〉

[by def. of γcr]

= λncs.〈ur{γcrδ (π1(io(T cr))) | T cr ∈ U},ur{γcrδ[z 7→ncs]
(π2(io(T cr))) | T cr ∈ U}〉

[by i.h. on the min. depth of {π1(io(T cr))) | T cr ∈ U} and {π2(io(T cr))) | T cr ∈ U}]

= uru∈Uγcrδ (u) [by def. of ur]

We can now state the monotonicity of functions constituting the Galois con-

nection between collapsed and relational values.

228

Lemma 128. For any abstract scope N̂ , concrete scope N , and δ ∈ ∆(N̂ ,N), both

αcr
δ and γcrδ are monotone.

Proof. The argument follows from the fact that αcr
δ and γcrδ constitute a Galois

connection (Prop.1), as evidenced by Theorem 11.

The meet morphism requirement is also satisfied by the concretization function

defined over collapsed maps.

Theorem 12 (Complete Meet Morphism of γ̇cr). Let mcr ∈ ℘(Mcr). Then

γ̇cr(u̇cr
mcr) = u̇rM cr∈mcr γ̇cr(M cr).

Proof.

γ̇cr(u̇crmcr) = Λn. ur {γcrδ (ucr{M cr(ρ(n)) |M cr ∈ mcr} | δ ∈ ∆(Nρ(n), N̂n)}

[by def. of ucr and γ̇cr]

= Λn. ur {ur{γcrδ (M cr(ρ(n))) |M cr ∈ mcr} | δ ∈ ∆(Nρ(n), N̂n)}

[by Theorem 11]

= Λn. ur {ur{γcrδ (M cr(ρ(n))) | δ ∈ ∆(Nρ(n), N̂n)} |M cr ∈ mcr}

[by assoc. of meets (ucr)]

= u̇r
M cr∈mcr

γ̇cr(M cr) [by def. of ucr and γ̇cr]

Moreover, αcr
δ is surjective and γcrδ is injective for any δ ∈ ∆(N̂ ,N) given a

concrete scope N . Hence, the Galois connection on collapsed values is in fact a

Galois insertion.

Lemma 129. Let δ ∈ ∆(N̂ ,N) for some abstract scope N̂ and concrete scope N .

Then, αcr
δ is surjective and γcrδ is injective.

229

Proof. We show the injectivity of γcrδ . The surjective nature of αcr
δ then follows

from Proposition 2. Suppose γcrδ is not surjective. Then, there exist u1 ∈ Vcr
N̂

and

u2 ∈ Vcr
N̂

s.t. u1 6= u2 (modulo variable renaming) and γcrδ (u1) = γcrδ (u2). We

arrive at contradiction by structural induction on u1 and u2. Let γcrδ (u1) = r1 and

γcrδ (u2) = r2.

Base cases.

• u1 = ⊥cr or u2 = ⊥cr. Assume u1 = ⊥cr w.l.g. Then, r1 = ⊥r. By def. of γcrδ ,

r2 = ⊥r iff u2 = ⊥cr, contradiction.

• u1 = >cr or u2 = >cr. Assume u1 = >cr w.l.g. Then, r1 = >r. By def. of γcrδ ,

r2 = >r iff u2 = >cr, contradiction.

• u1 ∈ Rcr
N̂
, u2 ∈ T cr

N̂
or u1 ∈ T cr

N̂
, u1 ∈ Rcr

N̂
. Assume u1 = Rcr

N̂
and u2 ∈ T cr

N̂
w.l.g.

Then, r1 ∈ Rr
N and r2 ∈ T r

N . Hence, r1 6= r2.

• u1 ∈ Rcr
N̂
, u2 ∈ Rcr

N̂
. By def. of γcrδ and δ being a function it follows r1 6= r2.

Essentially, γcrδ simply renames dependency variables in dep. vectors using δ.

Induction case. Let u1 = 〈z, u1i, u1o〉 and u2 = 〈z, u2i, u2o〉. By u1 6= u2, we have

u1i 6= u2i or u1o 6= u2o. The result then follows from the i.h.

A.5.1 Domain Operations

In this subsection, we state the basic properties and the corresponding proofs of

strengthening operations on collapsed values.

A.5.1.1 Soundness, Strengthening, Idempotency, and Monotonicity

We start by showing soundness of the domain operations of the collapsed semantics

subject to the relational semantics. We first show the proof for strengthening by

230

imposing equality between two abstract nodes.

Lemma 130. Let δ1 ∈ ∆(N̂ ,N) for some abstract scope N̂ and concrete scope N ,

r ∈ V r
N , u ∈ Vcr

N̂
, n̂1 ∈ N̂ , and n̂2 ∈ N̂ . If r vr γcrδ1(u), then r[δ1(n̂1)=δ1(n̂2)] vr

γcrδ1(u[n̂1=n̂2]).

Proof. We recall u[n̂1=n̂2] =
⊔cr{αcr

δ (γcrδ (u)[δ(n̂1)=δ(n̂2)]) | N ⊆ N∧δ ∈ ∆(N̂ ,N) }

for a given concrete scope N .

r[δ1(n̂1)=δ1(n̂2)] vr γcrδ (u)[δ1(n̂1)=δ1(n̂2)] by Lemma 100

αcr
δ1

(r[δ1(n̂1)=δ1(n̂2)]) vr αcr
δ1

(γcrδ (u)[δ1(n̂1)=δ1(n̂2)]) by Lemma 128

αcr
δ1

(r[δ1(n̂1)=δ1(n̂2)]) vr u[δ1(n̂1)=δ1(n̂2)] by def. of u[δ1(n̂1)=δ1(n̂2)]

r[δ1(n̂1)=δ1(n̂2)] vr γcrδ1(u[δ1(n̂1)=δ1(n̂2)]) by Prop. 1

The above result can be made more general.

Lemma 131. Strengthening operations on collapsed values are sound.

Proof. The proof closely follows that of Lemma 130: the proof relies on the proper-

ties of monotonicity of abstraction and concretization functions and monotonicity

of the corresponding strengthening operation defined over relational values.

We next show that the strengthening operations on collapsed values indeed

perform strengthening.

Lemma 132. Let u1 ∈ Vcr
N̂

, u ∈ Vcr
N̂

, n̂1 ∈ N̂ and n̂2 ∈ N̂ . Then u[n̂1=n̂2] vcr
N̂
u.

Proof. Again, recall u[n̂1=n̂2] =
⊔cr{αcr

δ (γcrδ (u)[δ(n̂1)=δ(n̂2)]) | N ⊆ N ∧ δ ∈

∆(N̂ ,N) } for a given concrete scope N . Let δ1 ∈ ∆(N̂ ,N) for any concrete scope

231

N .

γcrδ1(u)[δ1(n̂1)=δ1(n̂2)] vr γcrδ1(u) by Lemma 100

αcr
δ1

(γcrδ1(u)[δ1(n̂1)=δ1(n̂2)]) vr u by prop. of Galois conn.

The result then follows from the glb property of the join tcr operator (Theorem 8).

The above result and the proof can be applied to all strengthening operations on

collapsed values.

Lemma 133. Strengthening operations on collapsed values are indeed strengthen-

ing.

Proof. The argument closely follows that of Lemma 132.

As expected, strengthening operations are also monotone.

Lemma 134. Strengthening operation on collapsed values are monotone.

Proof. The argument follows directly from the monotonicity of strengthening op-

erations on relational values and monotonicity of the join operator tcr on collapsed

values.

In order to prove the idempotency of a strengthening of a collapsed value with

another collapsed value, we first prove the following result.

Lemma 135. Let N̂ and N̂1 be abstract scopes, N and N1 concrete scopes, n̂ ∈ N̂ ,

u ∈ Vcr
N̂

, u1 ∈ Vcr
N̂1

, r ∈ V r
N , δ ∈ ∆(N̂ ,N), and δ1 ∈ ∆(N̂1, N1). Then, αcr

δ (r[δ(n̂)←

γcrδ1(u1)]) vcr αcr
δ (r)[n̂← u1].

232

Proof. We recall

αcr
δ (r)[n̂← u1] =

⊔cr
{αcr

δ (γcrδ (αcr
δ (r))[δ1(n̂)← γcrδ1(u1)]) | δ ∈ ∆(N̂ ,N), δ1 ∈ ∆(N̂1, N1) }

By basic properties of Galois connections, monotonicity of joins and strengthening

operations on relational values (Theorem 104), αcr
δ (r)[n̂← u1] is larger than

u′ =
⊔cr
{αcr

δ (r[δ1(n̂)← γcrδ1(u1)]) | δ ∈ ∆(N̂ ,N), δ1 ∈ ∆(N̂1, N1) }

By definition of u′, we have αcr
δ (r[δ(n̂)← γcrδ1(u1)]) vcr u′ vcr αcr

δ (r)[n̂← u1].

We can now prove the idempotency of strengthening using a value.

Lemma 136. Let N̂ and N̂1 be abstract scopes, N and N1 concrete scopes, n̂ ∈ N̂ ,

u ∈ Vcr
N̂

, u1 ∈ Vcr
N̂1

. Then, u[n̂← u1] = u[n̂← u1][n̂← u1].

Proof. We first recall

u[n̂← u1] =
⊔cr
{αcr

δ (γcrδ (u)[δ1(n̂)← γcrδ1(u1)]) | δ ∈ ∆(N̂ ,N), δ1 ∈ ∆(N̂1, N1) }

By Theorem 133, we know u[n̂ ← u1][n̂ ← u1] vr u[n̂ ← u1]. We thus need to

show u[n̂← u1] vr u[n̂← u1][n̂← u1].

233

u[n̂← u1] =

[by def of ·[· ← ·]]⊔cr
{αcr

δ (γcrδ (u)[δ1(n̂)← γcrδ1(u1)]) | δ ∈ ∆(N̂ ,N), δ1 ∈ ∆(N̂1, N1) } =

[by Lemma 103]⊔cr
{αcr

δ (γcrδ (u)[δ1(n̂)← γcrδ1(u1)][δ1(n̂)← γcrδ1(u1)]) | δ ∈ ∆(N̂ ,N), δ1 ∈ ∆(N̂1, N1) } vr

[by Lemma 135]⊔cr
{αcr

δ (γcrδ (u)[δ1(n̂)← γcrδ1(u1)])[n̂← u1] | δ ∈ ∆(N̂ ,N), δ1 ∈ ∆(N̂1, N1) } vr

[by glb property of tcr]

(
⊔cr
{αcr

δ (γcrδ (u)[δ1(n̂)← γcrδ1(u1)]) | δ ∈ ∆(N̂ ,N), δ1 ∈ ∆(N̂1, N1) })[n̂← u1] =

[by def of ·[· ← ·]]

u[n̂← u1][n̂← u1]

A.5.1.2 Structural Strengthening

We also here provide a structural definition of strengthening on collapsed values

and argue its soundness. First, whenever z 6∈ N̂ , then uN̂dz ← ue def
= u. Otherwise,

udn̂← ⊥cre def
= ⊥cr

udn̂← u′e def
= u if u ∈ {⊥cr,>cr} or u′ ∈ {>cr} ∪ T cr

Rcr
1 dn̂← Rcr

2 e
def
= Rcr

1 [n̂← Rcr
2]

〈z, ui, uo〉dn̂← ue def
= 〈z, uidn̂← ue, uodn← ∃z. ue〉 u ∈ Rcr

It can be shown that the structural strengthening is sound.

Lemma 137. Structural strengthening is sound. Let u ∈ Vcr
N̂

, u′ ∈ Vcr
N̂1

, n̂ ∈ N̂ ,

234

r ∈ V r
N , r′ ∈ V r

N1
, δ ∈ ∆(N̂ ,N), and δ1 ∈ ∆(N̂1, N1). If r vr γcrδ (u) and r′ vr

γcrδ1(u
′), then r[δ(n̂)← r′] vr udn̂← u′e.

Proof. The proof is carried by structural induction on u. The proof in fact shows

that structural strengthening on collapsed values overapproximates the structural

strengthening on relational values. The argument then follows from Lemma 111

and Lemma 131.

A.5.2 Propagation and Transformer

Proof (of Lemma 10).

Proof. For the increasing property, the proof goes by structural induction on both

collapsed value arguments of propcr and it closely follows the proof of Theorem 26.

Regarding monotonicity, the proof again goes by structural induction on the col-

lapsed arguments of propcr, closely follows the proof of Theorem 28, and relies on

Lemma 134 (introduced later).

We next show that propagation in collapsed semantics is an abstraction of the

propagation in relational semantics.

Theorem 13. Let u1 ∈ Vcr
N̂

, u2 ∈ Vcr
N̂

, N̂ an abstract scope, N a concrete scope,

and δ ∈ ∆(N̂ ,N). Further, let 〈r′1, r′2〉 = propr(r1, r2) where r1 vr γcrδ (u1) and

r2 vr γcrδ (u2). Lastly, let 〈u′1, u′2〉 = propcr(u1, u2). Then, r′1 vr γcrδ (u′1) and r′2 vr

γcrδ (u′2).

Proof. The proof is carried by structural induction on u1 and u2.

Base cases.

235

• u1 = ⊥cr.

u′1 = ⊥cr, u′2 = u2 by propcr

r1 = ⊥r by γcrδ

r′1 = ⊥r, r′2 = r2 by propr

γcrδ (u′1) = ⊥r, γcrδ (u′2) = r′2 by γcrδ

r′1 vr γcrδ (u′1), r′2 vr γcrδ (u′2)

• u1 ∈ Rcr
N̂

and u2 = ⊥cr.

u′1 = u1, u
′
2 = u1 by propcr

r′2 = ⊥r by γcrδ

r′1 = r1, r
′
2 = r1 by propr

r′1 vr γcrδ (u′1), r′2 vr γcrδ (u′2)

• u1 ∈ T cr
N̂

and u2 = ⊥cr.

u′1 = u1, u
′
2 = T cr

⊥cr by propcr

r′1 = r1, r
′
2 = T r

⊥r ∨ r′2 = ⊥r by propr

T r
⊥r = γcrδ (T cr

⊥cr) by γcrδ

r′1 vr γcrδ (u′1), r′2 vr γcrδ (u′2)

• u1 = >cr.

u′1 = >cr, u′2 = >cr by propcr

γcrδ (u′1) = >cr, γcrδ (u′2) = >cr by γcrδ

r′1 vr γcrδ (u′1), r′2 vr γcrδ (u′2)

236

• u1 ∈ Rcr
N̂

and u2 = >cr.

u′1 = u1, u
′
2 = u2 by propcr

r′1 = r1 by propr

r′1 vr γcrδ (u′1), r′2 vr γcrδ (u′2)

• u1 ∈ T cr
N̂

and u2 = >cr.

u′1 = >cr, u′2 = u2 = >cr by propcr

γcrδ (u′1) = >r, γcrδ (u′2) = >r by γcrδ

r′1 vr γcrδ (u′1), r′2 vr γcrδ (u′2)

• u1 ∈ T cr
N̂

and u2 ∈ Rcr
N̂

.

u′1 = u1, u
′
2 = >cr by propcr

r′1 = r1 by propr

r′1 vr γcrδ (u′1), r′2 vr γcrδ (u′2)

• u1 ∈ Rcr
N̂

and u2 ∈ T cr
N̂

. Similar to the previous case.

For the induction case, let u1 = 〈z, u1i, u1o〉 and u1 = 〈z, u2i, u2o〉. By γcrδ ,

the only interesting case is when r1 ∈ T r
N and r2 ∈ T r

N per Theorem 10. For

any ncs, let r1(ncs) = 〈r1i, r1o〉 and r2(ncs) = 〈r2i, r2o〉. By r1 vr γcrδ (u1) and

r2 vr γcrδ (u2) we have r1i vr γcrδ (u1i), r1o vr γcrδ[z 7→ncs]
(u1o), r2i vr γcrδ (u2i), and r2o vr

γcrδ[z 7→ncs]
(u2o). By i.h., we have r′1i vr γcrδ (u′1i) and r′2i vr γcrδ (u′2i). By monotonicity

(Lemmas 99 and 134) and Lemma 135, r1o[ncs ← r2i] vr γcrδ[z 7→ncs]
(u1o[z ← u2i])

and r2o[ncs ← r2i] vr γcrδ[z 7→ncs]
(u2o[z ← u2i]). By i.h. and monotonicity of joins,

we have r′1o vr γcrδ (u′1o) and r′2o vr γcrδ (u′2o). Since the resulting relational tables

r′1 and r′2 can be expressed as respective joins tr of singleton relational tables

[ncs 7→ 〈r′1i, r′1o〉] and [ncs 7→ 〈r′2i, r′1o〉] for every call site ncs, the result follows from

the fact that the join tr over relational values is lub (Lemma 4).

237

Proof (of Lemma 11).

Proof. The increasing property of Stepcr
k+1J·K is obvious. The proof goes by struc-

tural induction on program expressions and it closely follows the proof of Theo-

rem 29. The proof relies on Theorem 10 as well as Lemma 134.

Theorem 14. For all programs e, CrJeK v̇r
γ̇cr(CJeK).

Proof. First, observe that M r
⊥r v̇r

γ̇cr(M cr
⊥cr). The remainder of the proof is carried

by structural induction on e showing that if M r v̇r
γ̇cr(M cr) then M r

1 v̇
r
γ̇cr(M cr

1)

where M r
1 = stepr

k+1JeK(E)(M r), M cr
1 = stepcr

k+1JeK(ρ(E))(M cr), and ρ function is

raised to environments in the expected way. We focus on the lambda abstraction

rule; other rules are even more trivial. For any ncs, let M r
ncs

= M r(ncs). It follows in

an almost straightforward fashion by Theorems 131 and 13 that M r
ncs
v̇r

γ̇cr(M cr
1).

Since ṫr is a glb (by def. of ṫr
and Theorem 4), ṫrncs∈T r M r(ncs) v̇

r
γ̇r(M r

1).

We now switch to proving Lemma 12 that states that only a finite number of

nodes is reachable by the collapsed semantics. Given a program e and a location `

in e, let scope varse(l) denote the sequence of program variable pairs (f, x) that are

(1) bound by some lambda abstraction strictly above l in the abstract syntax tree

(AST) of e and (2) ordered top-bottom based on their binding appearance in e.

As an example, given a program e = µf1.λx1.(µf2.λx2.e
`)`1 , we have for instance

scope varse(`) = 〈(f1, x1), (f2, x2)〉 and scope varse(`1) = 〈(f1, x1)〉. The function

scope varse can be simply computed based on the abstract syntax of e. Given an

environment Ê and pair of variables (f, x), let Ê[f, x] = Ê.x:Ê�x.f :Ê�f . Given

a sequence s of variable pairs (f1, x1) · · · (fj, xj), let aenv(s) = ∅[f1, x1] · · · [fj, xj].

We can thus define an abstract environment for a location ` in a program e ∈ λd as

238

aenve(`)
def
= aenv(scope varse(`)). Given a program e, we denote its abstract range

arange(e) = {Ê�` | ` ∈ Loc(e) ∧ s = scope varse(l) ∧ Ê = aenv(s)}.

Proof (of Lemma 12).

Proof. The proof follows from a straightforward inductive argument on e. Either

CcrJeK(k)(n̂) = M cr
>cr or the nodes updated by stepcr

k JeK belong to the set arange(e)∪

{n̂ | n̂′ ∈ arange(e)∧ n̂ ∈ rng(env(n̂′))} that is finite since (1) there are only a finite

number of locations and lambda expressions in e, (2) program variables are unique,

(3) and environments are finite partial functions.

239

A.6 Data Flow Refinement Type Semantics Proofs

As usual, we first prove that our definitions of refinement type meet and join

are correct. A depth depth of a refinement type value is defined in the similar way

as for the values of the collapsed semantics.

Proof (of Lemma 13).

Proof. Similar to the proof of Lemma 4, the proof is carried by case analysis on

elements of U and induction on the minimum depth thereof when U consists of

refinement function types only.

Proof (of Lemma 14 (Complete Meet Morphism of γt
N̂

)).

Let U ∈ ℘(V t
N̂

) and let N̂ be an abstract scope. We need to show that

γt(ut
N̂
U) = ucrt∈Uγt(t).

Proof. We carry the proof by case analysis on elements of U and induction on the

minimum depth thereof when U consists of tables only.

We first consider the trivial (base) cases where U is not a set of multiple re-

finement function types.

• U = ∅. Here, γt(ut∅) = γt(>t) = >cr = ucr∅.

• U = {t}. Trivial.

• {ν : · | ·} ∈ U, T t ∈ U . We have ut{{ν : · | ·}, T t} = ⊥t and since ⊥t is the bottom

element, utU = ⊥t. Similarly, γt({ν : · | ·}) ucr γt(T t) = ⊥cr = γt(⊥t) so by the

definition of ucr we have ucrt∈Uγt(t) = ⊥r.

• {ν : b1 | ·} ∈ U, {ν : b2 | ·} ∈ U , and b1 6= b2. Similar to the previous case.

240

• ∃b. ∀t ∈ U. t = {ν : b | ·}. Here,

γt(utU) = γt(utRt∈UR
t)

= {Dcr | Dcr ∈ γa(ua{a | {ν : b | a} ∈ U}) ∧Dcr(ν) ∈ γB(b)}

[by def. of γt and ut]

=
⋂

{ν:b | a}∈U

{Dcr | Dcr ∈ γa(a) ∧Dcr(ν) ∈ γB(b)}

[by the complete meet-morphism of γa]

=
⋂
t∈U

γt(t) = ucrt∈Uγt(t) [by def. of γt and ucr]

• >t ∈ U . Here, utU = ut(U/{>t}) and ucrt∈Uγt(t) = ucrt∈U,t6=>tγt(t) since γt(>t) =

>cr. The set U/{>t} either falls into one of the above cases or consists of multiple

tables, which is the case we show next.

Let U ⊆ T t
N̂

and |U | > 1. Let d be the minimum depth of any table in U .

γt(utU) = γt(z : ut{π1(io(T t)) | T t ∈ U} → ut{π2(io(T t)) | T t ∈ U})

[by def. of ut]

= 〈z, γt(ut{π1(io(T t)) | T t ∈ U}), γt(ut{π2(io(T t)) | T t ∈ U})〉

[by def. of γt]

= 〈z,ucr{γt(π1(io(T t))) | T t ∈ U},ucr{γt(π2(io(T t))) | T t ∈ U}〉

[by i.h. on the min. depth of {π1(io(T t))) | T t ∈ U} and {π2(io(T t))) | T t ∈ U}]

= ucrt∈Uγt(t) [by def. of ucr]

A.6.1 Domain Operations

Proof (of Lemma 15).

241

Proof. The proof goes by structural induction on the type being strengthened. The

proof shows that structural strengthening on types overapproximates the structural

strengthening on collapsed values. The argument then follows from Lemma 137.

It can be also shown that the structural strengthening indeed performs a

strengthening given certain assumptions.

Lemma 138. Let the set of types V t
N̂

be instantiated with an abstract domain

of type refinements AN̂ with the strengthening property ∀a ∈ AN̂ , a1 ∈ AN̂ .a[z ←

a1] va
N̂

a. Let t ∈ V t
N̂

and t1 ∈ V t
N̂

. Then, t[z ← t1] vt
N̂
t where strengthening

·[· ←] is defined structurally as shown in Figure 3.10.

Proof. The proof goes by structural induction on t and case analysis of t1. For the

cases where t ∈ {⊥t,>t} or t1 ∈ {⊥t,>t} ∪ T t, the argument is trivial. For the

case when both t and t1 are basic refinement types, the argument follows from the

strengthening property of abstract domain elements. The case when t ∈ T t and

t1 ∈ Rt follows from the i.h.

We can also show that strengthening is monotone assuming that refinement

domain strengthening and rescoping operations are monotone.

Lemma 139. Let t ∈ V t
N̂

, t′ ∈ V t
N̂

, t1 ∈ V t
N̂

, t2 ∈ V t
N̂

, and z ∈ DVar. Assuming

that strengthening operations on refinement domain AN̂ are monotone, then t1 vt

t2 ∧ t vt t′ =⇒ t1[z ← t] vt t2[z ← t′].

Proof. When z 6∈ N̂ , the argument is straightforward. The proof goes by structural

induction on t1 and t2. But, let us first discuss the cases of t and t′. When t = ⊥t,

the argument is trivial. The same applies when t ∈ T t
N̂

or t = >t. Whenever t′ = >t

242

or t′ ∈ T t
N̂

, the argument goes by Lemma 138. We can thus carry the induction

argument by just considering the cases where t, t′ ∈ Rt. Let t = {ν : b0 | a0} and

t′ = {ν : b0 | a ′0}. Let us cover the base cases first.

• t1 = ⊥t. Here, t1[z ← t] = ⊥t and the result follows trivially.

• t2 = ⊥t. Then it must be that t1 = ⊥t and the result follows from the

previously analyzed case.

• t2 = >t. We have t2[z ← t] = >t and the result holds trivially.

• t1 = >t. Then, t2 = >t which is the case already covered.

• t1 = {ν : b | a1}, t2 = {ν : b | a2}, where a1 va a2. We have t1[z ← t] = {ν :

b | a1[z ← a0]} and t2[z ← t] = {ν : b | a2[z ← a ′0]}. The result then follows

from the monotonicity of the refinement strengthening.

For the induction case where t1 ∈ T t and t2 ∈ T t, the argument follows straight-

forwardly from the i.h. and monotonicity of the refinement domain rescoping op-

eration.

A.6.2 Abstract Propagation and Transformer

Proof (of Lemma 16).

Proof. The increasing property follows easily by the structural induction on both

type arguments of propt. Regarding monotonicity, the argument goes on structural

induction on the argument to propt by closely following that of Lemma 28 and it

relies on Lemma 139.

Proof (of Lemma 17).

243

Proof. The increasing property follows trivially. The argument for monotonicity

follows that of Lemma 29 and it relies on the monotonicity of propt established by

Lemma 16.

Lemma 140. For all programs e and k ∈ N, either CtJeK(k)(n̂) = M t
>t or the set

{ n̂ ∈ N̂ | CtJeK(k)(n̂) 6= ⊥t } is finite.

Proof. The proof is the same as the proof of Lemma 12.

A.6.3 Widenings

Lemma 141. Let t1 ∈ V t
N̂

, t2 ∈ V t
N̂

such that t1 vt
N̂
t2. Then, sh(t1) vt

N̂
sh(t2).

Proof. The proof easily follows by structural induction on both t1 and t2.

Lemma 142. Let Oa
N̂

be a widening operator for the domain of abstract re-

finements AN̂ used to instantiate the set of types V t
N̂

and the widening opera-

tor Ora
N̂

. Also, let t1 ∈ V t
N̂

, t2 ∈ V t
N̂

, and t = t1Ora
N̂
t2. Then, depth(t) ≤

max(depth(t1), depth(t2)).

Proof. The proof goes by structural induction on both t1 and t2 and it relies on

the properties of the sh function.

Proof (of Lemma 18).

Proof. The upper bound property of Ot
N̂

directly follows from the upper bound

properties of Ora
N̂

and Osh
N̂

. Let t0 vt
N̂
t1 vt

N̂
. . . be an increasing sequence of types.

Let yi be the sequence of types defined by y0 = t0 and yi = yi−1Ot
N̂
ti−1 for all

i > 0. By Ot
N̂

being an upper bound operator it follows that y0 vt
N̂
y1 vt

N̂
. . . . By

Lemma 141, it is then the case that sh(y0) vt
N̂

sh(y1) vt
N̂
. . . . Now, Ora

N̂
increases

244

the shape of the two argument types by being increasing and by Lemma 141, but

only by introducing >t (Lemma 142). Hence, either Ora
N̂

eventually produces >t

in the sequence yi, thus stabilizing it, or it eventually stops affecting the shape

of types in yi. In that case, the shape of yi eventually stabilizes by the widening

properties of Osh
N̂

. The whole yi then stabilizes by the widening operator property

of Oa
N̂

and the definition of Ora
N̂

.

245

A.7 Liquid Types Semantics Proofs

For the rest of this section, we assume the set of Liquid types V t
N̂

is defined as

described in § 3.6.

A.7.1 Domain Operations

Lemma 143. The strengthening operations on Liquid types are sound and strength-

ening.

Proof. The results follow from the soundness and strengthening properties of the

refinement domain (follow from the semantics of logical conjunction), Lemma 138,

and Lemma 15.

We can also show that strengthening operations are idempotent. Here, we

assume that the strengthening of the liquid types refinement domain is idempotent.

This is true in practice as strengthening amounts to adding equality conjuncts.

a[z ← a1] = a[z ← a1][z ← a1] idempotency

Lemma 144. Let t ∈ V t
N̂

, t1 ∈ V t
N̂

, and z ∈ DVar. Then, t[z ← t1] = t[z ←

t1][z ← t1].

Proof. The proof goes by the structural induction on t. First, observe that if

z 6∈ N̂ , the argument is trivial. Otherwise, if t1 = ⊥t then t[z ← ⊥t] = ⊥t = t[z ←

⊥t][z ← ⊥t]. Next, if t1 ∈ {>t} ∪ T t, then t[z ← t1] = t = t[z ← t1][z ← t1]. We

can thus just focus on the case where t ∈ Rt. Let t = {ν : b1 | a1}. We cover the

base cases first.

• t = ⊥t. Here, ⊥t[z ← t1] = ⊥t = ⊥t[z ← t1][z ← t1].

246

• t = >t. Similar to the above case, >t[z ← t1] = >t = >t[z ← t1][z ← t1].

• t = {ν : b | a}. In this case, {ν : b | a}[z ← t1] = {ν : b | a[z ← a1]} and

{ν : b | a}[z ← t1][z ← t1] = {ν : b | a[z ← a1]}[z ← t1] = {ν : b | a[z ←

a1][z ← a1]}. The result then follows from the idempotency of the refinement

strengthening.

For the induction case where t ∈ T t, the result holds by the i.h.

Lemma 145. Strengthening operations on the liquid abstract domain of refine-

ment are idempotent.

Proof. Follows the proof of Lemma 144.

A.7.2 Data Propagation

We can now prove that the sutbyping between types implies fixpoint in data prop-

agation established between those types.

Proof (of Lemma 20).

Proof. The proof goes by an induction on the maximum depth of types d =

max (depth(t1), depth(t2)). We first cover the base cases where d = 1. We only

need to consider few cases based on the definition of <:q.

• t1 = {ν : b | a1}, t2 = {ν : b | a2}, and a1 va a2. We have propt({ν : b | a1}, {ν :

b | a2}) = 〈{ν : b | a1}, {ν : b | a1taa2}〉 = 〈{ν : b | a1}, {ν : b | a2}〉.

Let us now consider the induction case for d > 1 where t1 ∈ T t and t2 ∈ T t. Let

propt(t1, t2) = 〈t3, t4〉. Observe that the maximum depth of input and output types

of t1 and t2 and their arbitrary strengthening is smaller than d by the definition of

247

depth and Lemma 143. Let t1 = z : t1i → t1o and t2 = z : t2i → t2o. By definition

of <:q, we have that (1) t2i<:q t1i and (2) t1o[z ← t2i]<:q t2o[z ← t2i]. By i.h., we

thus have propt(t2i, t1i) = 〈t2i, t1i〉 and propt(t1o[z ← t2i], t2o[z ← t2i]) = 〈t1o[z ←

t2i], t2o[z ← t2i]〉. By Lemma 143, we have t2o[z ← t2i] vt t2o and t1o[z ← t2i] vt

t1o. Therefore, by the definition of propt it follows t3 = z : t1i → t1o = t1 and

t4 = z : t2i → t2o = t2.

A.7.3 Connection to Liquid Types

First, we define a typing relation `κm: Ξκ × λd × V t ×Mt that mimics the earlier

typing relation `κq , but also produces a type map that accumulates the results

deduced in the typing derivation. To this end, given a κ and Γ ∈ Ξκ, we define

M t
κ,Γ to be a type map that holds Γ(x) for all nodes n̂ ∈ rng(κ) where κ(x) = n̂;

otherwise, it returns ⊥t.

x ∈ dom(Γ) Γ(x) <:q t
t = Γ(x)[ν = κ(x)][Γ]κ

Γ `κm x` : t,M t
Γ,κ[κ(Γ)�` 7→ t]

t = ct[Γ]κ

Γ `κm c` : t,M t
Γ,κ[κ(Γ)�` 7→ t]

Γ `κm e`11 : t1,M
t
1 Γ `κm e`22 : t2,M

t
2

t1 ∈ T t t1 <:q dx (t1) : t2 → t

M t,Γ `κm (e`11 e
`2
2)` : t, (M t

1 ṫ
t
M t

2)[κ(Γ)�` 7→ t]

dx (t) : tx → t1 <:q t t <:q tf
Γ1 = Γ.x : tx.f : tf κ1 = κ.x :κ(Γ)�x.f :κ(Γ)�f Γ1 `κ1m e`11 : t1,M

t
1

Γ `κm (µf.λx. e`11)` : t,M t
1[κ(Γ)�` 7→ t]

Γ `κm x : t0,M
t
0 t0 <:q Bool t t1<:q t t2<:q t

Γ1 = Λx ∈ dom(Γ).Γ(x)[κ(x)← t0 ut truet] Γ1 `κm e1 : t1,M
t
1

Γ2 = Λx ∈ dom(Γ).Γ(x)[κ(x)← t0 ut falset] Γ2 `κm e2 : t2,M
t
2

Γ `κm (x ? e`11 : e`22)` : t, (M t
0 ṫ

t
M t

1 ṫ
t
M t

2)[κ(Γ)�` 7→ t]

248

Lemma 146. Let e be a program, κ an injective mapping from variables to abstract

nodes, t ∈ V t, and Γ ∈ Ξκ. Then, Γ `κq e : t iff Γ `κm e : t,M t for some M t ∈Mt.

Proof. The proof goes by structural induction on e. The result follows directly

from the fact that `κm simply collects a type map M t, without basing the rule

premises on the contents of M t.

We now show several interesting but rather obvious properties of `κm.

Lemma 147. Let e be a program, κ an injective mapping from variables to ab-

stract nodes, t ∈ V t, and Γ ∈ Ξκ. If Γ `κm e : t,M t for some M t ∈ Mt, then

M t(κ(Γ)�`) = t.

Proof. The proof is carried trivially by structural induction on e.

Let domain validity domvalid(`, p,Γ) of a type environment Γ subject to pro-

gram p and a location ` in p holds iff dom(Γ) consists of exactly all variables bound

above ` in p.

Lemma 148. Let e` be an expression of a program p, κ and injective mapping from

variables to abstract nodes, t ∈ V t, Γ ∈ Ξκ, and domvalid(`, p,Γ). If Γ `κm e : t,M t

for some M t ∈Mt, then ∀x ∈ dom(Γ).M t(κ(x)) = Γ(x).

Proof. The proof is carried by structural induction on e. First, we note that pro-

grams p ∈ λd have unique variables. Due to this, domain validity is preserved

for updates to typing environments when typing the bodies of recursive functions.

Further, every typing derivation has leaves at either variable or constant expres-

sions where the environment assumptions are directly pushed to the maps. Finally,

Γ1 and Γ2 are smaller than Γ when analyzing conditionals, due to strengthening,

249

so the join of M t
1 and M t

2 with M t
0 ensures that the result holds since by i.h.

∀x ∈ dom(Γ).M t
0(κ(x)) = Γ(x).

Lemma 149. Let e ∈ λd, κ an injective mapping from variables to abstract nodes,

t ∈ V t, Γ ∈ Ξκ, and M t ∈ Mt such that Γ `κm e : t,M t. Then for every n̂ ∈ N̂e, if

M t(n̂) 6= ⊥t then loc(n̂) ∈ Loc(e).

Proof. By structural induction on e.

Let trange(M t)
def
= {n̂ |M t(n̂) 6= ⊥t} be a set of non-⊥t nodes of M t.

Lemma 150. Let p be a program, `1 and `2 locations in p such that Loc(p(`1))∩

Loc(p(`2)) = ∅, κ an injective mapping from variables to abstract nodes, t1 ∈

V t, t2 ∈ V t, Γ ∈ Ξκ, M t
1 ∈ Mt, M t

2 ∈ Mt, and domvalid(`1, p,Γ) as well as

domvalid(`2, p,Γ). Suppose Γ `κm p(`1) : t1,M
t
1 and Γ `κm p(`2) : t2,M

t
2. Then,

trange(M t
1) ∩ trange(M t

2) = rng(κ).

Proof. The argument follows from Lemma 149. Also, since p is a program, the

program variables of lambda abstractions are unique. Therefore, the updates to

Γ in the derivation for p(`1) and p(`2) are unique. Also, by domain validity of Γ,

we have that κ and Γ are always extended (rather than being updated, i.e., some

bindings being rewritten). Therefore, only the variable nodes associated with Γ,

and hence in rng(κ), will and must appear in both M t
1 and M t

2.

Lemma 151. Let e` be an expression, κ an injective mapping from variables

to abstract nodes, t ∈ V t, Γ ∈ Ξκ a valid typing environment, M t ∈ Mt, and

domvalid(`, p,Γ). Suppose Γ `κm e` : t,M t. Then, M t is safe and t 6= >t.

Proof. The proof goes by structural induction on e. By Γ being valid and the

definition of <:q, further updates to the environment are also safe. Also, direct

250

updates to the maps are safe by the definition of <:q. Finally, joins do not introduce

errors by Lemma 150 and 148. The fact that t 6= >t can be established then by

Lemma 147.

We next define a typing relation `κc : M t×Γκ×λd× t that checks if a given type

map satisfies our Liquid typing relation. We say that two type maps M t
1 and M t

2

x ∈ dom(Γ) Γ(x) <:q t

M t(κ(Γ)�`) = t t = Γ(x)[ν = κ(x)][Γ]κ

M t,Γ `κc x` : t

t = ct[Γ]κ M t(κ(Γ)�`) = t

M t,Γ `κc c` : t

M t,Γ `κc e
`1
1 : t1 M t,Γ `κc e

`2
2 : t2 M t(κ(Γ)�`) = t

t1 ∈ T t t1 <:q dx (t1) : t2 → t

M t,Γ `κc (e`11 e
`2
2)` : t

dx (t) : tx → t1 <:q t t <:q tf
Γ1 = Γ.x : tx.f : tf κ1 = κ.x : κ(Γ)�x.f : κ(Γ)�f M t,Γ1 `κ1c e`1 : t1
M t(κ(Γ)�`) = t M t(κ1(x)) = tx M t(κ1(f)) = tf M t(κ1(Γ1)�`1) = t1

M t,Γ `κc (µf.λx. e`11)` : t

M t(κ(Γ)�`) = t M t,Γ `κq x : t0 t0 <:q Bool t t1<:q t t2<:q t

Γ1 = Λx ∈ dom(Γ).Γ(x)[κ(x)← t0 ut truet] M t
Γ2,κ

,Γ1 `κq e1 : t1

Γ2 = Λx ∈ dom(Γ).Γ(x)[κ(x)← t0 ut falset] M t
Γ1,κ

,Γ2 `κq e2 : t2

M t,Γ `κq (x`0 ? e`11 : e`22)` : t

agree, denoted tmagree(M t
1,M

t
2) iff ∀n̂.M t

1(n̂) 6= ⊥t ∧M t
2(n̂) 6= ⊥t =⇒ M t

1(n̂) =

M t
2(n̂).

Lemma 152. Let e` be an expression of p be a program, κ an injective mapping

from variables to abstract nodes, t ∈ V t, Γ ∈ Ξκ, M t ∈ Mt, M t
0 ∈ Mt, and

domvalid(`, p,Γ). If tmagree(M t,M t
0) and Γ `κm e : t,M t, then M t

0,Γ `κc e : t.

Proof. By structural induction on e.

• e` = c`. Trivial.

251

• e` = x`. Also straightforward.

• e` = (e`11 e
`2
2)`. By Lemma 150 and 148, we have that tmagree(M t

1,M
t
0) and

tmagree(M t
2,M

t
0). The result then follows from the induction hypothesis.

• e` = (µf.λx.e`11)`. Similar to the previous case.

• e` = (x`0 ? e`11 : e`22)`. Similar, the argument again relies on Lemma 150

and 148.

We can now easily show an important connection between `κm and `κc .

Lemma 153. Let e` be an expression of p be a program, κ an injective mapping

from variables to abstract nodes, t ∈ V t, Γ ∈ Ξκ, M t ∈ Mt, and domvalid(`, p,Γ).

If Γ `κm e : t,M t, then M t,Γ `κc e : t.

Proof. Direct corollary of Lemma 152.

We say a triple (Γ,M t, κ) matches if ∀x ∈ dom(Γ).Γ(x) = M t(κ(x)).

Theorem 15. Let e` be an expression, κ an injective encoding of abstract variable

nodes, Γ ∈ Ξκ, M t a safe type map, and t ∈ V t
N̂κ

. If M t,Γ `κc e` : t and (Γ,M t, κ)

match, then SteptJe`K(κ(Γ)�`)(M t) = M t and M t(κ(Γ)�`) = t.

Proof. The proof goes by structural induction on e.

• e = x`. By matching (Γ,M t, κ), we have that κ(Γ)(x) = κ(x) andM t(κ(Γ)(x)) =

Γ(x). Hence, M t(κ(Γ)(x)) <:q M t(κ(Γ)�`). Then by the definition of `κc , we

have that M t(κ(Γ)�`) = M t(κ(Γ)(x))[ν = κ(x)][Γ]κ and hence by matching

(Γ,M t, κ) we have M t(κ(Γ)�`) = M t(κ(Γ)(x))[ν = κ(Γ)(x)][M t]. Therefore,

252

M t(κ(Γ)(x))[ν = κ(Γ)(x)] <:q M t(κ(Γ)�`) by the structural definition of

strengthening. The result then follows from Lemma 20 and Lemma 145.

• e = c`. The result follows from the definition of ct[Γ]κ. That is, ct[Γ]κ =

ct[M t] by matching (Γ,M t, κ).

• e = (e`11 e
`2
2)`. By i.h., we have that SteptJe`11 K(κ(Γ))(M t) = M t andM t(κ(Γ)�`1) =

t1 where t1 ∈ T t. Similarly, SteptJe`22 K(κ(Γ))(M t) = M t and M t(κ(Γ)�`2) =

t2 where t2 6∈ {⊥t,>t} by the definition of <:q. Then by the definition of

SteptJ·K, we thus have that M t
1 = M t

2 = M t and the result then follows from

Lemma 20.

• e = (µf.λx. e`1)`. First, by the definition of <:q, it must be that π1(io(T t)) 6∈

{⊥t,>t}. Further, by the definition of SteptJ·K and Lemma 20, we have that

T t = T t
1 = T t

2, tx = t′x, tf = t′f , and t1 = t′1[n̂x=dx (T t)] since dx (T t) is

not initially in the scope of t1 (n̂x and dx (T t) are simply used as synonym

variables). Next, by domvalid(`, p,Γ) it follows that (Γ1, κ1,M
t) is matching

and that domain validity is preserved domvalid(`1, p,Γ1) . Also, by SteptJ·K

we have that κ(Γ1) = Ê1. Hence, M t
1 = M t by the induction hypothesis.

• e = (x`0 ? e`11 : e`22)`. First, observe that by definition of <:q, if t0<:qBool t,

then t0 6= ⊥t and t0 vt Bool t. Next, by i.h., we have that M t
0 = M t and

t0 in `κc and SteptJ·K are the same. Now, SteptJ·K strengthens the envi-

ronment nodes of κ(Γ) in M t
0, using the node Ê�`0, while the typing rela-

tion `κc uses κ(x). However, by the typing rule of `κc for variable nodes,

we know that Γ(x) <:q t0 where t0 = Γ(x)[ν=κ(x)][M t
0]. By matching

(Γ, κ,M t
0) (that is implied by matching (Γ, κ,M t) and M t

0 = M t), we have

t0 = M t
0(κ(Γ)(x))[ν=κ(Γ)(x)][M t

0]. By the definition of the liquid abstract

253

domain, t0 implies that κ(Γ)(x) = Ê�`0 and thus κ(x) = Ê�`0. Since Ê�`0 is

not in the scope of any node in N̂Ê�`0 , we have M t
i = M t

0[Ê�`0 ← truetutt0] =

M t
0[κ(x) ← truet ut t0] = M t

Γ1,κ
and M t

j = M t
0[Ê�`0 ← falset ut t0] =

M t
0[κ(x) ← falset ut t0] = M t

Γ2,κ
. Therefore, (Γ1, κ1,M

t
i) is matching and

so is (Γ2, κ2,M
t
j). By i.h. then, we have M t

1 = M t
i and M t

2 = M t
j . By

Lemma 20, we thus have that t = t′ = t′′, t1 = t′1, and t2 = t′2. The result

then follows from the fact that both M t
i and M t

j , and consequently M t
1 and

M t
2, are smaller than M t

0 that is equal to M t.

Proof (of Theorem 4).

Proof. Our implicit assumption is that e` is an expression of a program p such

that domvalid(`, p,Γ). Then by Lemma 146, there exists a type map M t such that

Γ `κq e : t iff Γ `κm e : t,M t. Let M t be such map. We know this map is safe by

Lemma 151 and that it satisfies M t,Γ `κc e : t. We also know by Lemma 148 that

(Γ,M t, κ) is matching. The result then follows from Theorem 15.

254

Appendix B

Type Error Localization

B.1 Proof of Lemma 25

The main idea behind our proof is centered around how the set of error sources

for a particular program changes if we expand some let usage. In particular,

we show that by expanding a well-typed let usage the number of error sources

decreases. At the same time, we show that the number of proper error sources

actually increases in the same scenario. In the case of a full expansion, when for

instance L = Lp, it follows that all error sources are in fact proper. Using this, we

show that a minimum error source that is proper for some L will be a minimum

error source when we extend L to Lp.

We first state and prove few lemmas that the main proofs rely on. The next

lemma states that typing derivations for the same expression using the same typing

environments are equivalent modulo type variables used.

Lemma 154. Let Γ,Π `L e` | A1 and Γ,Π `L e` | A2. Then, A1 and A2 are the

same modulo consistent renaming of type variables not bound in Γ and Π.

255

Proof. This follows from the fact that the only source of non-determinism in our

typing rules is the choice of names for type variables.

The purpose of the next lemma is to show that every generated set of constraints

can be trivially satisfied.

Lemma 155. Let Γ,Π `L e` | A. Then, A is of the form {T` =⇒ A′}.

Proof. The proof goes by induction on typing derivations. By focusing on the last

rule in the derivation, we can see that every rule generates a constraint with the

above form. By setting T` to false, the generated set is then satisfied.

We now introduce notation and definitions used in our main arguments. Given

a program p, we say that typing environment Γ1 pointwise implies (for p) Γ2,

written Γ1 �p Γ2, iff for all typing bindings x : ∀ ~α1.(A1 V β1) ∈ Γ1 and x :

∀ ~α2.(A2 V β2) ∈ Γ2 for the same variable x we have that ∀β1, β2.β1 = β2 =⇒

(∃ ~α′1.A1 ∧ ∃ ~α2.A2 ∧ PDefs(p) =⇒ ∃ ~α′2.A2) is valid. Here, ~α′1 is ~α1 without β1

(similarly for ~α′2). When Γ1 �p Γ2 and Γ2 �p Γ1, we simply write Γ1 ��p Γ2.

We now state two facts that are important in the proofs that follow and which

can be deduced from the proof of correctness of W algorithm.

• If e is a subexpression of p and Γ1 ��p Γ2, then ρ(Γ1, e) = ρ(Γ2, e).

• Let e be a subexpression of p and Γ,Π `L e : β1 | A1 where all T and

P variables in A1 are assumed to be true. Given ρ(Π, e) = ∀~δ.τprin and

A2 = {β2 = τprin}, then ∀β1, β2.β1 = β2 =⇒ (∃~α′.A1 ∧ ∃~δ, β2.A2) ⇐⇒

(∃~δ.A2 ∧ ∃~α.A1) holds. Here, ~α is a vector of all free variables in A1 except

those bound in Γ and Π. Also, ~α′ is ~α without β1.

256

Given Γ,Π `L e` : β | A where e is a subexpression of a program p, we

define CΓ,Π,p,A,β to be the formula ∃~α.A ∧ PDefs(p). Here, ~α is a vector of the

set fv(A)/(fv(Γ) ∪ fv(Π) ∪ {β}). When Γ, Π, p, and β are clear from the context,

we simply write CA. Also for convenience, let pwip(Γ1,Π2,Γ2,Π2) for a program p

hold iff Γ2 �p Γ1, Γ2 �p Π2, and Π1 ��p Π2.

We are now ready to prove the first main lemma. We show that the number of

error sources decreases for successive expansions of well typed let usages.

Lemma 156. Let e be an expression in a program p, L and Lu set of locations

where L0 ⊆ L ⊆ Lu ⊆ Lp. Also, assume Lu = L∪{`u} such that `u is a location of

a well-typed let variable usage in e. If Γ,Π `L e` : α | ψ and pwip(Γ,Π,Γu,Πu),

then from the typing derivation using L we can create a typing derivation using Lu

such that the following holds:

• Γu,Πu `Lu e` : α | ψu

• M |= Cψu =⇒ M |= Cψ

Proof. We will refer to typing derivations using L and Lu with d and du, respec-

tively, using in general subscript u for parts of du. We carry the proof by induction

on d, focusing on the last rule in the derivation. We start by observing that if

M |= Cψu where M 6|= T`, then by Lemma 155 M |= Cψ also holds. For simplicity,

we will skip this trivial analysis of such models below; we only consider case where

M |= T` and assume that Cψ and Cψu are simplified accordingly.

[A-Abs]. Suppose pwip(Γ,Π,Γu,Πu). Since x : α binding is trivial (x : α is

the same as x : ∀α.(∅ V α)), we have pwip(Γ.x : α,Π.x : α,Γu.x : α,Πu.x;α).

We then create du by induction hypothesis, applying the same rule, and choos-

ing the same name for α and γ as in d by appropriate type variable renaming

257

(Lemma 154). Now, suppose M is a model of Cψu . Although α and β are quanti-

fied out in Cψu , by semantics of existential quantification there exist a valuation

to α and β that satisfies the constraint when those variables are free; let those

values be α′ and β′, respectively. Let M ′ then be M [α→ α′, β → β′]. Then, M ′

is a model of CAu too. By induction hypothesis, it is also a model of CA, thus

also being a model of Cψ when α and β are made free. Then, M ′ is also a model

of Cψ and so must be M .

Similar argument can be given for the rules [A-Hole], [A-Int], and [A-Bool].

[A-App]. Suppose pwip(Γ,Π,Γu,Πu). Since the environments are the same for

the rule assumptions, we can use the induction hypothesis. We create du similarly

as in the previous rule. Suppose now M is a model of Cψu . As in the previous rule,

we can easily modify M into M ′ such that M ′ |= CA1u
, CA2u

; then by induction

hypothesis it also must be that M ′ |= CA1 , CA2 . The result then follows from

induction hypothesis on α and β as earlier.

Similar argument can be given for the rule [A-Cond].

[A-Let-Prin]. Suppose pwip(Γ,Π,Γu,Πu). We first apply induction hypothesis

for derivation for e1 using L. We create derivation using Lu as before using

induction hypothesis and renaming type variables where necessary. By induction

hypothesis we then have CA1u
=⇒ CA1 . By this and semantics of existential

quantification we also have that Γu.x : τexpu �p Γ.x : τexp.

By the above first property of W algorithm, we have Π.x : τprin ��p Πu.x : τprinu .

Finally, we show that Γu.x : τexpu �p Πu.x : τprinu . If we assume that all T and P

variables of A1 are set to true, then by the PDefs definition P`1 holds, and the

argument follows from the second property of W algorithm we mention above.

258

Otherwise, P`1 is set to false and the argument is trivial.

The proof then continues by applying the induction hypothesis on typing deriva-

tion for e2. The final argument is made as in the previous rules using induction

hypothesis on A2u and FOL substitution lemma together with induction hypoth-

esis on A1u [~β/~α].

Similar argument can be given for the rule [A-Let-Exp].

[A-Var-Prin]. We only consider the case when ` 6= `u. The argument is similar

for the other case. Suppose pwip(Γ,Π,Γu,Πu). We then create du in the usual

way also making sure it ends in rule [A-Var-Exp], since ` ∈ Lu. Now, let M be

a model of Cψu . The result then directly follows from the fact that Γu �p Πu and

Πu �p Π: by definition of pointwise implication it is also the case that Γu �p Π.

Similar argument can be given for the rule [A-Var-Exp].

To avoid clutter, we now change a bit the definition of pointwise implication,

needed for the remainder of the proof, instead of redefining it from scratch. The def-

inition again states the same, except the case whereA1 is of the form {P` =⇒ β1 =

τ}. Then we require that ∀β1, β2.β1 = β2 =⇒ (∃ ~α′1.A1 ∧ ∃ ~α2.A2 ∧ PDefs(p) =⇒

(P` =⇒ ∃ ~α′2.A2)). Also, we redefine pwip(Γ1,Π1,Γ2,Π2) to hold for a program p

iff Γ2 �p Γ1, Π1 �p Γ1, and Π1 ��p Π2.

Let M be an FOL model and Γ a typing environment. We write M |= Γ if

M |= ∃~α.A for every x : ∀~α.(A V β) ∈ Γ. We say ms(M,Γ,Π,Γ′,Π′) iff M |= Γ,

M |= Π, M |= Γ′, and M |= Π′.

We now show that every proper error source is still an error source after we

259

perform an expansion of a well-typed let variable. Argued later, such an error

source is also proper after the expansion.

Lemma 157. Let e be an expression in a program p and L and Lu set of locations

where L0 ⊆ L ⊆ Lu ⊆ Lp. Also, let Lu = L ∪ {`u} where `u is a location of

a well-typed let variable usage. If Γ,Π `L e : α | ψ, M is an FOL model such

that M |= Pdloc(`u), ms(M,Γ,Π,Γ′,Π′), and pwip(Γ
′,Π′,Γ,Π), then from the typing

derivation using L we can create a typing derivation using Lu such that:

• Γu,Πu `Lu e : α | ψu

• M |= Cψ =⇒ M |= Cψu

Proof. We borrow the notation from the proof of the previous lemma. We also

carry the proof using the same technique. Likewise, we skip the trivial analysis

when M 6|= T`.

[A-Abs]. Suppose ms(M,Γ,Π,Γu,Πu) and pwip(Γu,Πu,Γ,Π). Assume M |= Cψ

and M |= Pdloc(`u). Since x : α binding is trivial, we have ms(M,Γ.x : α,Π.x :

α,Γu.x : α,Πu.x : α) and pwip(Γu.x : α,Πu.x : α,Γ.x : α,Π.x : α). The argument

is then same as for the same rule in Lemma 156.

Similar argument can be given for the rules [A-Hole], [A-Int], and [A-Bool].

[A-App]. Suppose ms(M,Γ,Π,Γu,Πu) and pwip(Γu,Πu,Γ,Π). Assume M |= Cψ

and M |= Pdloc(`u). Since the environments are the same for the rule assumptions,

we can use the induction hypothesis. We proceed by using the same argument as

for the same rule in Lemma 156.

Similar argument can be given for the rule [A-Cond].

260

[A-Let-Prin]. Suppose ms(M,Γ,Π,Γu,Πu), pwip(Γu,Πu,Γ,Π), and M is a

model of Cψ where M |= Pdloc(`u). We first apply induction hypothesis for deriva-

tion for e1 using L. We create derivation using Lu as before using induction

hypothesis renaming type variables when necessary. By induction hypothesis we

then have CA1 =⇒ CA1u
. By this and semantics of existential quantification we

also have that Γ.x : τexp �p Γu.x : τexpu .

By the above first property of W algorithm, we have Π.x : τprin ��p Πu.x : τprinu .

Finally, we show that Π.x : τprin �p Γ.x : τexp. We first note that if P`1 is set to

false, the statement trivially follows. Otherwise, the statement follows from the

properties of correctness of W algorithm.

The fact that ms(M,Γ.x : τexp,Π.x : τprin,Γu.x : τexpu ,Πu.x : τprinu) follows from

the fact that M |= A1[~β/~α] (A1u [~β/~α]), CA1 =⇒ CA1u
, and FOL substitution

lemma.

Again, the argument then similarly proceeds as in Lemma 156. Similar proof can

be given for the rule [A-Let-Exp].

[A-Var-Prin]. We only consider the case when ` 6= `u. The argument is similar

for the other case. We create du in the usual way also making sure it ends in rule

[A-Var-Exp], since ` ∈ Lu. Suppose ms(M,Γ,Π,Γu,Πu), pwip(Γu,Πu,Γ,Π),

and M is a model of Cψ where M |= Pdloc(`u). First, P`1 in ψ, coming from

A[~β/~α], is in fact Pdloc(`u) which is set to true by assumption. Using this, the

argument follows from Π �p Γu, which transitively holds from Π �p Γ and

Γ�p Γu.

261

Lemma 158. Let p be a program, R a cost function, L and Lu set of locations

where L0 ⊆ L ⊆ Lu ⊆ Lp such that Lu = L ∪ {`u} and `u ∈ Scope(p,L), where

`u is a location of a well-typed let variable usage. If M = Solve(p,R,L) where

LM is minimum and proper, then M = Solve(p,R,Lu) and LM is minimum and

proper again.

Proof. We first note that Solve returns solutions for A where ∅, ∅ `L e : α | A.

Then, by Lemma 156, Lemma 154, and semantics of existential quantification, we

have that the number of error sources reduces or stays the same when instead

of using L we use Lu. Therefore, since M is minimum among all models before

expansion, it will also be a minimum model after the expansion as R is fixed.

Now, since `u 6∈ L and M is proper for L, we have that `u 6∈ Usages(p,L,M).

Given our assumption that `u ∈ Scope(p,L), it must be the that M |= Pdloc(`u).

Then we have by Lemma 157 that proper error sources are still error sources when

instead of L we use Lu. Also by the definition of PDefs and Scope, we have that

Usages(p,L,M) = Usages(p,Lu,M). We hence have that LM is also proper.

We can finally prove Lemma 25.

Proof. From Lemma 24, we know it suffices to use Lp in order for the generated

constraints to have the minimum error source as the correct solution. We also

know D = Lp \ L consists of locations corresponding to usages of well-typed let

definitions. By the definition of Scope and PDefs , this set can be ordered in a

list so that each consecutive usage location is in the scope if we expand one by

one from the beginning all usage locations appearing earlier in the list. For each

such consecutive expansion inductively, Lemma 158 guarantees that the proper

minimum error source before the expansion is still a proper minimum error source

262

after the expansion. After expanding all usages, our expansion location set L is

exactly Lp, guaranteeing the correct solution since in that case all error sources

are in fact proper.

263

Bibliography

[1] A. Aiken and E. L. Wimmers. Type inclusion constraints and type inference.

In FPCA, pages 31–41. ACM, 1993.

[2] A. W. Appel and D. A. McAllester. An indexed model of recursive types

for foundational proof-carrying code. ACM Trans. Program. Lang. Syst.,

23(5):657–683, 2001.

[3] V. Arceri, M. D. Preda, R. Giacobazzi, and I. Mastroeni. SEA: string exe-

cutability analysis by abstract interpretation. CoRR, abs/1702.02406, 2017.

[4] T. Ball, R. Majumdar, T. D. Millstein, and S. K. Rajamani. Automatic pred-

icate abstraction of C programs. In Proceedings of the 2001 ACM SIGPLAN

Conference on Programming Language Design and Implementation (PLDI),

Snowbird, Utah, USA, June 20-22, 2001, pages 203–213, 2001.

[5] C. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanović, T. King,

A. Reynolds, and C. Tinelli. CVC4. In CAV, pages 171–177. Springer-Verlag,

2011.

[6] C. Barrett, R. Sebastiani, S. A. Seshia, and C. Tinelli. Satisfiability Modulo

Theories, chapter 26, pages 825–885. Volume 185 of Biere et al. [9], February

2009.

264

[7] C. Barrett, I. Shikanian, and C. Tinelli. An abstract decision procedure for

a theory of inductive data types. Journal on Satisfiability, Boolean Modeling

and Computation, 3:21–46, 2007.

[8] C. Barrett, A. Stump, and C. Tinelli. The SMT-LIB standard – version 2.0.

In SMT, 2010.

[9] A. Biere, M. J. H. Heule, H. van Maaren, and T. Walsh, editors. Handbook

of Satisfiability, volume 185 of Frontiers in Artificial Intelligence and Appli-

cations. IOS Press, February 2009.

[10] N. Bjørner and A. Phan. νZ: Maximal Satisfaction with Z3. In SCSS, 2014.

[11] N. Bjørner, A. Phan, and L. Fleckenstein. νZ: An Optimizing SMT Solver.

In TACAS, 2015.

[12] N. E. Boustani and J. Hage. Improving type error messages for generic java.

Higher-Order and Symbolic Computation, 24(1-2):3–39, 2011.

[13] S. Chen and M. Erwig. Counter-factual typing for debugging type errors. In

POPL, pages 583–594. ACM, 2014.

[14] O. Chitil. Compositional explanation of types and algorithmic debugging of

type errors. In ICFP, ICFP ’01, pages 193–204. ACM, 2001.

[15] P. Cousot. Types as abstract interpretations. In Proceedings of the 24th

ACM SIGPLAN-SIGACT symposium on Principles of programming lan-

guages, pages 316–331. ACM, 1997.

[16] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for

static analysis of programs by construction or approximation of fixpoints. In

265

Proceedings of the 4th ACM SIGACT-SIGPLAN symposium on Principles of

programming languages, pages 238–252. ACM, 1977.

[17] P. Cousot and R. Cousot. Systematic design of program analysis frameworks.

In Proceedings of the 6th ACM SIGACT-SIGPLAN symposium on Principles

of programming languages, pages 269–282. ACM, 1979.

[18] P. Cousot and R. Cousot. Invited talk: Higher order abstract interpretation

(and application to comportment analysis generalizing strictness, termination,

projection, and PER analysis. In Proceedings of the IEEE Computer Society

1994 International Conference on Computer Languages, May 16-19, 1994,

Toulouse, France, pages 95–112, 1994.

[19] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among

variables of a program. In Conference Record of the Fifth Annual ACM Sympo-

sium on Principles of Programming Languages, Tucson, Arizona, USA, Jan-

uary 1978, pages 84–96, 1978.

[20] L. Damas and R. Milner. Principal type-schemes for functional programs. In

POPL, pages 207–212. ACM, 1982.

[21] L. De Moura and N. Bjørner. Z3: An Efficient SMT Solver. In TACAS, pages

337–340. Springer-Verlag, 2008.

[22] D. Duggan and F. Bent. Explaining type inference. In Science of Computer

Programming, pages 37–83, 1995.

[23] B. Dutertre and L. de Moura. The Yices SMT solver. Technical report, SRI

International, 2006.

266

[24] EasyOCaml. http://easyocaml.forge.ocamlcore.org. [Online; accessed

10-March-2014].

[25] J. Eremondi, W. Swierstra, and J. Hage. A framework for improving error

messages in dependently-typed languages. Open Computer Science, 9(1):1–32,

2019.

[26] C. Flanagan and K. R. M. Leino. Houdini, an annotation assistant for es-

c/java. In FME 2001: Formal Methods for Increasing Software Productivity,

International Symposium of Formal Methods Europe, Berlin, Germany, March

12-16, 2001, Proceedings, volume 2021 of Lecture Notes in Computer Science,

pages 500–517. Springer, 2001.

[27] C. Flanagan and S. Qadeer. Predicate abstraction for software verification. In

Conference Record of POPL 2002: The 29th SIGPLAN-SIGACT Symposium

on Principles of Programming Languages, Portland, OR, USA, January 16-

18, 2002, pages 191–202, 2002.

[28] T. S. Freeman and F. Pfenning. Refinement types for ML. In Proceedings

of the ACM SIGPLAN’91 Conference on Programming Language Design and

Implementation (PLDI), Toronto, Ontario, Canada, June 26-28, 1991, pages

268–277, 1991.

[29] R. Garcia, A. M. Clark, and É. Tanter. Abstracting gradual typing. In Pro-

ceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Prin-

ciples of Programming Languages, POPL 2016, St. Petersburg, FL, USA,

January 20 - 22, 2016, pages 429–442, 2016.

267

http://easyocaml.forge.ocamlcore.org

[30] H. Gast. Explaining ML type errors by data flows. In Implementation and

Application of Functional Languages, pages 72–89. Springer, 2005.

[31] R. Gori and G. Levi. An experiment in type inference and verification by ab-

stract interpretation. In Verification, Model Checking, and Abstract Interpre-

tation, Third International Workshop, VMCAI 2002, Venice, Italy, January

21-22, 2002, Revised Papers, pages 225–239, 2002.

[32] R. Gori and G. Levi. Properties of a type abstract interpreter. In Verification,

Model Checking, and Abstract Interpretation, 4th International Conference,

VMCAI 2003, New York, NY, USA, January 9-11, 2002, Proceedings, pages

132–145, 2003.

[33] C. Haack and J. B. Wells. Type error slicing in implicitly typed higher-order

languages. Sci. Comput. Program., pages 189–224, 2004.

[34] J. Hage. Language Implementation Patterns: Create your own Domain-

Specific and General Programming Languages, by terence parr, pragmatic

bookshelf, http://www.pragprog.com, ISBN 9781934356456. J. Funct. Pro-

gram., 21(2):215–217, 2011.

[35] J. Hage and B. Heeren. Heuristics for type error discovery and recovery. In

Implementation and Application of Functional Languages, 18th International

Symp osium, IFL 2006, Budapest, Hungary, September 4-6, 2006, Revised

Selected Papers, pages 199–216, 2006.

[36] J. Hage and B. Heeren. Strategies for solving constraints in type and effect

systems. Electr. Notes Theor. Comput. Sci., 236:163–183, 2009.

268

[37] R. Harper. Constructing type systems over an operational semantics. J. Symb.

Comput., 14(1):71–84, 1992.

[38] The Haskell Programming Language. http://www.haskell.org/. [Online;

accessed 15-March-2014].

[39] M. Hassan, C. Urban, M. Eilers, and P. Müller. Maxsmt-based type inference

for python 3. In Computer Aided Verification - 30th International Confer-

ence, CAV 2018, Held as Part of the Federated Logic Conference, FloC 2018,

Oxford, UK, July 14-17, 2018, Proceedings, Part II, pages 12–19, 2018.

[40] J. R. Hindley. The principal type-scheme of an object in combinatory logic.

Transactions of the American Mathematical Society, 146:2960, 1969.

[41] S. Jagannathan and S. Weeks. A unified treatment of flow analysis in higher-

order languages. In Proceedings of the 22Nd ACM SIGPLAN-SIGACT Sym-

posium on Principles of Programming Languages, pages 393–407. ACM, 1995.

[42] S. H. Jensen, A. Møller, and P. Thiemann. Type analysis for javascript. In

Static Analysis, 16th International Symposium, SAS 2009, Los Angeles, CA,

USA, August 9-11, 2009. Proceedings, pages 238–255, 2009.

[43] R. Jhala, R. Majumdar, and A. Rybalchenko. HMC: verifying functional

programs using abstract interpreters. In Computer Aided Verification - 23rd

International Conference, CAV 2011, Snowbird, UT, USA, July 14-20, 2011.

Proceedings, pages 470–485, 2011.

[44] N. D. Jones and N. Andersen. Flow analysis of lazy higher-order functional

programs. Theor. Comput. Sci., 375(1-3):120–136, Apr. 2007.

269

http://www.haskell.org/

[45] N. D. Jones and A. Mycroft. Data flow analysis of applicative programs using

minimal function graphs. In Conference Record of the Thirteenth Annual ACM

Symposium on Principles of Programming Languages, St. Petersburg Beach,

Florida, USA, January 1986, pages 296–306, 1986.

[46] N. D. Jones and M. Rosendahl. Higher-order minimal function graphs. Journal

of Functional and Logic Programming, 1997(2), 1997.

[47] M. Jose and R. Majumdar. Bug-Assist: Assisting Fault Localization in ANSI-

C Programs. In CAV, pages 504–509. Springer-Verlag, 2011.

[48] M. Kazerounian, N. Vazou, A. Bourgerie, J. S. Foster, and E. Torlak. Re-

finement types for ruby. In Verification, Model Checking, and Abstract Inter-

pretation - 19th International Conference, VMCAI 2018, Los Angeles, CA,

USA, January 7-9, 2018, Proceedings, pages 269–290, 2018.

[49] A. J. Kfoury, J. Tiuryn, and P. Urzyczyn. ML Typability is DEXTIME-

Complete. In CAAP, pages 206–220, 1990.

[50] S. Kim and K. Choe. String analysis as an abstract interpretation. In Ver-

ification, Model Checking, and Abstract Interpretation - 12th International

Conference, VMCAI 2011, Austin, TX, USA, January 23-25, 2011. Proceed-

ings, pages 294–308, 2011.

[51] K. Knowles and C. Flanagan. Type reconstruction for general refinement

types. In Programming Languages and Systems, 16th European Symposium

on Programming, ESOP 2007, Held as Part of the Joint European Conferences

on Theory and Practics of Software, ETAPS 2007, Braga, Portugal, March

24 - April 1, 2007, Proceedings, pages 505–519, 2007.

270

[52] S. K. Lahiri and S. Qadeer. Complexity and algorithms for monomial and

clausal predicate abstraction. In Automated Deduction - CADE-22, 22nd

International Conference on Automated Deduction, Montreal, Canada, August

2-7, 2009. Proceedings, volume 5663 of Lecture Notes in Computer Science,

pages 214–229. Springer, 2009.

[53] N. Lehmann and É. Tanter. Gradual refinement types. In Proceedings of the

44th ACM SIGPLAN Symposium on Principles of Programming Languages,

POPL 2017, Paris, France, January 18-20, 2017, pages 775–788, 2017.

[54] B. Lerner, M. Flower, D. Grossman, and C. Chambers. Searching for type-

error messages. In PLDI. ACM Press, 2007.

[55] X. Leroy, D. Doligez, A. Frisch, J. Garrigue, D. Rémy, and J. Vouillon.

OCaml Manual: Module Pervasives. http://caml.inria.fr/pub/docs/

manual-ocaml/libref/Pervasives.html. [Online; accessed 14-March-2014].

[56] C. M. Li and F. Manyà. MaxSAT, Hard and Soft Constraints, chapter 19,

pages 613–631. Volume 185 of Biere et al. [9], February 2009.

[57] H. G. Mairson. Deciding ML Typability is Complete for Deterministic Expo-

nential Time. In POPL, pages 382–401, 1990.

[58] J. Midtgaard. Control-flow analysis of functional programs. ACM Comput.

Surv., 44(3):10:1–10:33, 2012.

[59] R. Milner. A theory of type polymorphism in programming. J. Comput. Syst.

Sci., 17(3):348–375, 1978.

271

http://caml.inria.fr/pub/docs/manual-ocaml/libref/Pervasives.html
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Pervasives.html

[60] B. Monsuez. Polymorphic typing by abstract interpretation. In International

Conference on Foundations of Software Technology and Theoretical Computer

Science, pages 217–228. Springer, 1992.

[61] B. Monsuez. Polymorphic types and widening operators. In Static Analysis,

pages 267–281. Springer, 1993.

[62] B. Monsuez. Polymorphic typing for call-by-name semantics. In Formal Meth-

ods in Programming and Their Applications, pages 156–169. Springer, 1993.

[63] B. Monsuez. System f and abstract interpretation. In International Static

Analysis Symposium, pages 279–295. Springer, 1995.

[64] B. Monsuez. Using abstract interpretation to define a strictness type inference

system. In Proceedings of the 1995 ACM SIGPLAN symposium on Partial

evaluation and semantics-based program manipulation, pages 122–133. ACM,

1995.

[65] C. Mossin. Higher-order value flow graphs. Nord. J. Comput., 5(3):214–234,

1998.

[66] N. Narodytska and F. Bacchus. Maximum satisfiability using core-guided

maxsat resolution. In Twenty-Eighth AAAI Conference on Artificial Intelli-

gence, 2014.

[67] M. Neubauer and P. Thiemann. Discriminative sum types locate the source

of type errors. In ICFP, pages 15–26. ACM Press, 2003.

[68] F. Nielson, H. R. Nielson, and C. Hankin. Principles of program analysis.

Springer, 1999.

272

[69] H. R. Nielson and F. Nielson. Infinitary control flow analysis: a collecting se-

mantics for closure analysis. In Conference Record of POPL’97: The 24th

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-

guages, Papers Presented at the Symposium, Paris, France, 15-17 January

1997, pages 332–345, 1997.

[70] OCaml. http://ocaml.org. [Online; accessed 2-February-2014].

[71] M. Odersky, M. Sulzmann, and M. Wehr. Type inference with constrained

types. TAPOS, 5(1):35–55, 1999.

[72] Z. Pavlinovic, T. King, and T. Wies. Finding minimum type error sources.

In Proceedings of the 2014 ACM International Conference on Object Ori-

ented Programming Systems Languages & Applications, OOPSLA 2014, part

of SPLASH 2014, Portland, OR, USA, October 20-24, 2014, pages 525–542,

2014.

[73] Z. Pavlinovic, T. King, and T. Wies. Practical smt-based type error local-

ization. In Proceedings of the 20th ACM SIGPLAN International Conference

on Functional Programming, ICFP 2015, Vancouver, BC, Canada, September

1-3, 2015, pages 412–423, 2015.

[74] B. C. Pierce. Types and programming languages. MIT press, 2002.

[75] R. Piskac, T. Wies, and D. Zufferey. Grasshopper. In Tools and Algorithms

for the Construction and Analysis of Systems, pages 124–139. Springer, 2014.

[76] J. Plevyak and A. A. Chien. Iterative flow analysis, 1995.

273

http://ocaml.org

[77] V. Rahli, J. B. Wells, J. Pirie, and F. Kamareddine. Skalpel: A type error

slicer for standard ML. Electr. Notes Theor. Comput. Sci., 312:197–213, 2015.

[78] P. M. Rondon, M. Kawaguchi, and R. Jhala. Liquid types. In Proceedings of

the ACM SIGPLAN 2008 Conference on Programming Language Design and

Implementation, Tucson, AZ, USA, June 7-13, 2008, pages 159–169, 2008.

[79] P. M. Rondon, M. Kawaguchi, and R. Jhala. Low-level liquid types. In

Proceedings of the 37th ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages, POPL 2010, Madrid, Spain, January 17-23, 2010,

pages 131–144, 2010.

[80] D. S. Scott. Data types as lattices. SIAM J. Comput., 5(3):522–587, 1976.

[81] E. L. Seidel, H. Sibghat, K. Chaudhuri, W. Weimer, and R. Jhala. Learning

to blame: localizing novice type errors with data-driven diagnosis. PACMPL,

1(OOPSLA):60:1–60:27, 2017.

[82] SHErrLoc. http://www.cs.cornell.edu/projects/sherrloc/. [Online; ac-

cessed 22-April-2015].

[83] G. Singh, M. Püschel, and M. T. Vechev. Fast polyhedra abstract domain.

In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Pro-

gramming Languages, POPL 2017, Paris, France, January 18-20, 2017, pages

46–59, 2017.

[84] P. J. Stuckey, M. Sulzmann, and J. Wazny. Interactive type debugging in

haskell. In Haskell, pages 72–83. ACM, 2003.

274

http://www.cs.cornell.edu/projects/sherrloc/

[85] P. J. Stuckey, M. Sulzmann, and J. Wazny. Improving type error diagnosis.

In ACM SIGPLAN Workshop on Haskell, pages 80–91. ACM, 2004.

[86] M. Sulzmann. An overview of the chameleon system. In The Third Asian

Workshop on Programming Languages and Systems, APLAS’02, Shanghai

Jiao Tong University, Shanghai, China, November 29 - December 1, 2002,

Proceedings, pages 16–30, 2002.

[87] M. Sulzmann, M. Müller, and C. Zenger. Hindley/Milner style type systems

in constraint form. Res. Rep. ACRC-99-009, University of South Australia,

School of Computer and Information Science. July, 1999.

[88] A. Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific

Journal of Mathematics, 5, 06 1955.

[89] F. Tip and T. B. Dinesh. A slicing-based approach for locating type errors.

ACM Trans. Softw. Eng. Methodol., pages 5–55, 2001.

[90] N. Vazou, A. Bakst, and R. Jhala. Bounded refinement types. In Proceed-

ings of the 20th ACM SIGPLAN International Conference on Functional Pro-

gramming, ICFP 2015, Vancouver, BC, Canada, September 1-3, 2015, pages

48–61, 2015.

[91] N. Vazou, P. M. Rondon, and R. Jhala. Abstract refinement types. In Pro-

gramming Languages and Systems - 22nd European Symposium on Program-

ming, ESOP 2013, Held as Part of the European Joint Conferences on Theory

and Practice of Software, ETAPS 2013, Rome, Italy, March 16-24, 2013. Pro-

ceedings, pages 209–228, 2013.

275

[92] N. Vazou, E. L. Seidel, R. Jhala, D. Vytiniotis, and S. L. P. Jones. Refinement

types for haskell. In Proceedings of the 19th ACM SIGPLAN international

conference on Functional programming, Gothenburg, Sweden, September 1-3,

2014, pages 269–282, 2014.

[93] P. Vekris, B. Cosman, and R. Jhala. Refinement types for typescript. In

Proceedings of the 37th ACM SIGPLAN Conference on Programming Lan-

guage Design and Implementation, PLDI 2016, Santa Barbara, CA, USA,

June 13-17, 2016, pages 310–325, 2016.

[94] M. Wand. Finding the source of type errors. In POPL, pages 38–43. ACM,

1986.

[95] H. Xi and F. Pfenning. Dependent types in practical programming. In POPL

’99, Proceedings of the 26th ACM SIGPLAN-SIGACT Symposium on Prin-

ciples of Programming Languages, San Antonio, TX, USA, January 20-22,

1999, pages 214–227, 1999.

[96] H. Xi and F. Pfenning. Dependent types in practical programming. In Pro-

ceedings of the 26th ACM SIGPLAN-SIGACT symposium on Principles of

programming languages, pages 214–227. ACM, 1999.

[97] D. Zhang and A. C. Myers. Toward general diagnosis of static errors. In

POPL, pages 569–581. ACM, 2014.

[98] D. Zhang, Y. Wang, G. E. Suh, and A. C. Myers. A hardware design language

for timing-sensitive information-flow security. In Proceedings of the Twenti-

eth International Conference on Architectural Support for Programming Lan-

276

guages and Operating Systems, ASPLOS ’15, Istanbul, Turkey, March 14-18,

2015, pages 503–516, 2015.

[99] H. Zhu and S. Jagannathan. Compositional and lightweight dependent type

inference for ML. In Verification, Model Checking, and Abstract Interpre-

tation, 14th International Conference, VMCAI 2013, Rome, Italy, January

20-22, 2013. Proceedings, pages 295–314, 2013.

277

