
Deconstructing Models and Methods in Deep Learning

by

Pavel Izmailov

A dissertation submitted in partial fulfillment

of the reqirements for the degree of

Doctor of Philosophy

Department of Computer Science

New York University

May, 2023

Professor Andrew Gordon Wilson



© Pavel Izmailov

all rights reserved, 2023



Acknowledgements

I am deeply grateful to a lot of people in my life, and the list is much longer than what I can fit

here.

I am very lucky to be advised by Andrew Gordon Wilson, and be a part of Andrew’s lab.

Andrew’s support, insights and guidance were crucial for me to become the researcher that I am,

and made a huge impact on my life. I feel very privileged to be a part of Andrew’s lab.

I am also very grateful to my undergraduate research advisors, Dmitry Kropotov and Dmitry

Vetrov. They are the reason I got excited about machine learning, and why I was able to become

a researcher.

I was also incredibly lucky to work with many amazing colleagues during my Ph.D. I would

like to especially thank Timur Garipov, Dmitry Podoprikhin, Polina Kirichenko, Marc Finzi, Wes-

ley Maddox and Samuel Stanton who played a major role in forming my research interests. I am

also deeply thankful to Gregory Benton, Sanae Lotfi, Nate Gruver, Ben Athiwaratkun, Patrick

Nicholson, Micah Goldblum, Sanyam Kapoor, Andres Potapczynski and Shikai Qiu for being

amazing collaborators, I learned a lot from each of you. I am also very grateful for my men-

tors and friends in industry, who made a huge impact on my research interests and career: Alex

Alemi, Ben Poole, Lucas Beyer, Simon Kornblith, Matt Hoffman, Bernie Wang and Alex Smola.

I want to thank my parents, who have always supported me and taught me to believe in my-

self. I would also like to thank my friends. I am grateful to Vadim Bereznyuk, who has been

my best friend since high school and has always been there for me, regardless of what happened

iii



in my life. I also want to especially thank Polina Kirichenko, who has been my closest friend

and collaborator during the Ph.D. A huge thank you to Alexander (Sanya) Pukhov and Marina

Zavalina, who let me live on their couch for half a year. I worked on this thesis from that couch!

You are truly great friends and amazing people. I am also grateful to Galina (cat), Timur Garipov,

Samat Davletshin, Karen Grigorian, Karen Manukyan, Iana Movsesian, Anastasia Erastova, Ta-

tiana Sholokhova, Anastasia Kuptsova, Tamara Makoveeva, Hui Xu, Marc Finzi, Aishwarya Ka-

math, Nicolas Carion and many others. I cannot imagine going through the Ph.D. without your

support.

Back in 2013, I made a bet with three of my high school classmates on who will be the first

to get a Ph.D.: me, Vadim Bereznyuk, Stepan Balybin or Petr Maximov. This bet provided great

motivation, and I am also happy to report that I won the bet!

Finally, I am thankful to so many of my teachers. In particular, I would like to especially thank

Alexey Ponomarev, Vladimir Dubrovsky, and Oleg Mikushonov.

iv



Abstract

Machine learning models are ultimately used to make decisions in the real world, where mistakes

can be incredibly costly. We still understand surprisingly little about neural networks and the

procedures that we use to train them, and, as a result, ourmodels are brittle, often rely on spurious

features, and generalize poorly under minor distribution shifts. Moreover, these models are often

unable to faithfully represent uncertainty in their predictions, further limiting their applicability.

In this dissertation, I present results on neural network loss surfaces, probabilistic deep learn-

ing, uncertainty estimation and robustness to distribution shifts. In each of these works, we aim

to build foundational understanding of models, training procedures, and their limitations, and

then use this understanding to develop practically impactful, interpretable, robust and broadly

applicable methods and models.
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2.5 Illustrations of SWA and SGD with a Preactivation ResNet-164 on CIFAR-1001.
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ing from the same initialization of SGD after 125 training epochs. . . . . . . . . . 14

2.6 Top: cyclical learning rate as a function of iteration. Bottom: test error as a func-

tion of iteration for cyclical learning rate schedule with Preactivation-ResNet-164

on CIFAR-100. Circles indicate iterations corresponding to the minimum learning
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2.7 The 𝐿2-regularized cross-entropy train loss and test error surfaces of a Preacti-

vation ResNet-164 on CIFAR-100 in the plane containing the first, middle and

last points (indicated by black crosses) in the trajectories with (top) cyclical and
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2.8 (Left) Test error and (Right) 𝐿2-regularized cross-entropy train loss as a function
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for Preactivation ResNet-164 on CIFAR-100. Each line corresponds to a different
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2.9 𝐿2-regularized cross-entropy train loss and test error as a function of a point on

the line connecting SWA and SGD solutions on CIFAR-100. Left: Preactivation
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3.2 A probabilistic perspective of generalization. (a) Ideally, a model supports a

wide range of datasets, but with inductive biases that provide high prior probabil-

ity to a particular class of problems being considered. Here, the CNN is preferred

over the linear model and the fully-connected MLP for CIFAR-10 (while we do

not consider MLP models to in general have poor inductive biases, here we are

considering a hypothetical example involving images and a very large MLP). (b)

By representing a large hypothesis space, a model can contract around a true so-

lution, which in the real-world is often very sophisticated. (c) With truncated

support, a model will converge to an erroneous solution. (d) Even if the hypoth-

esis space contains the truth, a model will not efficiently contract unless it also

has reasonable inductive biases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 Left: Posterior joint density cross-sections along the rays corresponding to dif-

ferent eigenvectors of SWAG covariance matrix. Middle: Posterior joint density

surface in the plane spanned by eigenvectors of SWAG covariance matrix corre-

sponding to the first and second largest eigenvalues and (Right:) the third and

fourth largest eigenvalues. All plots are produced using PreResNet-164 on CIFAR-

100. The SWAG distribution projected onto these directions fits the geometry of

the posterior density remarkably well. . . . . . . . . . . . . . . . . . . . . . . . . 52
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3.4 Negative log likelihoods for SWAG and baselines. Mean and standard deviation

(shown with error-bars) over 3 runs are reported for each experiment on CIFAR

datasets. SWAG (blue star) consistently outperforms alternatives, with lower neg-

ative log likelihood, with the largest improvements on transfer learning. Temper-

ature scaling applied on top of SWA (SWA-Temp) often performs close to as well

on the non-transfer learning tasks, but requires a validation set. . . . . . . . . . . 54

3.5 Reliability diagrams forWideResNet28x10 onCIFAR-100 and transfer task; ResNet-

152 and DenseNet-161 on ImageNet. Confidence is the value of the max softmax

output. A perfectly calibrated network has no difference between confidence and

accuracy, represented by a dashed black line. Points below this line correspond to

under-confident predictions, whereas points above the line are overconfident pre-

dictions. SWAG is able to substantially improve calibration over standard training

(SGD), as well as SWA. Additionally, SWAG significantly outperforms tempera-

ture scaling for transfer learning (CIFAR-10 to STL), where the target data are not

from the same distribution as the training data. . . . . . . . . . . . . . . . . . . . 55

3.6 Approximating the BMA. 𝑝 (𝑦 |𝑥,D) =
∫
𝑝 (𝑦 |𝑥,𝑤)𝑝 (𝑤 |D)𝑑𝑤 . Top: 𝑝 (𝑤 |D),

with representations from VI (orange) deep ensembles (blue), MultiSWAG (red).

Middle: 𝑝 (𝑦 |𝑥,𝑤) as a function of 𝑤 for a test input 𝑥 . This function does not

vary much within modes, but changes significantly between modes. Bottom:

Distance between the true predictive distribution and the approximation, as a

function of representing a posterior at an additional point 𝑤 , assuming we have

sampled the mode in dark green. There is more to be gained by exploring new

basins, than continuing to explore the same basin. . . . . . . . . . . . . . . . . . 59
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3.7 Approximating the true predictive distribution. (a): A close approximation

of the true predictive distribution obtained by combining 200 HMC chains. (b):

Deep ensembles predictive distribution using 50 independently trained networks.

(c): Predictive distribution for factorized variational inference (VI). (d): Conver-

gence of the predictive distributions for deep ensembles and variational inference

as a function of the number of samples; we measure the average Wasserstein

distance between the marginals in the range of input positions. The multi-basin

deep ensembles approach provides a more faithful approximation of the Bayesian

predictive distribution than the conventional single-basin VI approach, which is

overconfident between data clusters. The top panels show the Wasserstein dis-

tance between the true predictive distribution and the deep ensemble and VI ap-

proximations, as a function of inputs 𝑥 . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.8 Negative log likelihood for Deep Ensembles, MultiSWAG and MultiSWA using a

PreResNet-20 on CIFAR-10 with varying intensity of the Gaussian blur corrup-

tion. The image in each plot shows the intensity of corruption. For all levels

of intensity, MultiSWAG and MultiSWA outperform Deep Ensembles for a small

number of independent models. For high levels of corruption MultiSWAG sig-

nificantly outperforms other methods even for many independent models. We

present results for other corruptions in the Appendix. . . . . . . . . . . . . . . . 61

3.9 Induced prior correlation function. Average pairwise prior correlations for

pairs of objects in classes {0, 1, 2, 4, 7} ofMNIST induced by LeNet-5 for 𝑝 (𝑓 (𝑥 ;𝑤))

when 𝑝 (𝑤) = N(0, 𝛼2𝐼 ). Images in the same class have higher prior correlations

than images from different classes, suggesting that 𝑝 (𝑓 (𝑥 ;𝑤)) has desirable in-

ductive biases. The correlations slightly decrease with increases in 𝛼 . (d): NLL of

an ensemble of 20 SWAG samples on MNIST as a function of 𝛼 using a LeNet-5. . 64
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3.10 Rethinking generalization. (a): Sample functions from a Gaussian process

prior. (b): GP fit (with 95% credible region) to structured data generated as𝑦green(𝑥) =

sin(𝑥 ·2𝜋)+𝜖, 𝜖 ∼ N(0, 0.22). (c): GP fit, with no training error, after a significant

addition of corrupted data in red, drawn from Uniform[0.5, 1]. (d): Variational

GP marginal likelihood with RBF kernel for two classes of CIFAR-10. (e): Laplace

BNNmarginal likelihood for a PreResNet-20 on CIFAR-10 with different fractions

of random labels. The marginal likelihood for both the GP and BNN decreases as

we increase the level of corruption in the labels, suggesting reasonable inductive

biases in the prior over functions. Moreover, both the GP and BNN have 100%

training accuracy on images with fully corrupted labels. . . . . . . . . . . . . . . 66

3.11 Bayesian model averaging alleviates double descent. (a): Test error and (b):

NLL loss for ResNet-18 with varying width on CIFAR-100 for SGD, SWAG and

MultiSWAG. (c): Test error and (d): NLL loss when 20% of the labels are randomly

reshuffled. SWAG reduces double descent, and MultiSWAG, which marginalizes

over multiple modes, entirely alleviates double descent both on the original la-

bels and under label noise, both in accuracy and NLL. (e): Test errors for Mul-

tiSWAG with varying number of independent SWAG models; error monotoni-

cally decreases with increased number of independent models, alleviating dou-

ble descent. We also note that MultiSWAG provides significant improvements in

accuracy and NLL over SGD and SWAG models. See Appendix Figure A.17 for

additional results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
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3.12 Effects of the prior variance 𝛼2
. (a)–(e): Average class probabilities over all of

CIFAR-10 for two sample prior functions 𝑝 (𝑓 (𝑥 ;𝑤)) (two top rows) and predic-

tive distribution (average over 200 samples of weights, bottom row) for varying

settings of 𝛼 in 𝑝 (𝑤) = N(0, 𝛼2𝐼 ). (f): NLL and (g) classification error of an en-

semble of 20 SWAG samples on CIFAR-10 as a function of 𝛼 using a Preactivation

ResNet-20 and VGG-16. The NLL is high for overly small 𝛼 and near-optimal in

the range of [0.1, 0.3]. The NLL remains relatively low for vague priors corre-

sponding to large values of 𝛼 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.13 Adaptivity of posterior variance with data. We sample two functions 𝑓 (𝑥 ;𝑤)

from the distribution over functions induced by a distribution over weights, start-

ing with the prior 𝑝 (𝑤) = N(0, 10 · 𝐼 ), in combination with a PreResNet-20. We

measure class probabilities averaged across the CIFAR-10 test set, as we vary the

amount of available training data. Although the prior variance is too large, such

that the softmax saturates for logits sampled from the prior, leading to one class

being favoured, we see that the posterior quickly adapts to correct the scale of the

logits in the presence of data. In Figure 3.12 we also show that the prior variance

can easily be calibrated such that the prior predictive distribution, even before

observing data, is high entropy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
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4.1 Effect of HMChyper-parameters. BMA accuracy, log-likelihood and expected

calibration error (ECE) as a function of (a): the trajectory length 𝜏 and (b): num-

ber of HMC chains. The orange curve shows the results for a fixed number of

samples in (a) and for a fixed number of samples per chain in (b); the brown

curve shows the results for a fixed amount of compute. All experiments are done

on CIFAR-10 using the ResNet-20-FRN architecture on IMDB using CNN-LSTM.

Longer trajectory lengths decrease correlation between subsequent samples im-

proving accuracy and log-likelihood. For a given amount of computation, increas-

ing the number of chains from one to two modestly improves the accuracy and

log-likelihood. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.2 Log-scale histograms of 𝑅 convergence diagnostics. Function-space 𝑅s are

computed on the test-set softmax predictions of the classifiers and weight-space

𝑅s are computed on the raw weights. About 91% of CIFAR-10 and 98% of IMDB

posterior-predictive probabilities get an 𝑅 less than 1.1. Most weight-space 𝑅 val-

ues are quite small, but enough parameters have very large 𝑅s to make it clear

that the chains are sampling from different distributions in weight space. . . . . . 98

4.3 Posterior density visualization. Visualizations of posterior log-density, log-

likelihood and log-prior in the two-dimensional subspace of the parameter space

spanned by threeHMC samples from (a) the same chain and (b) three independent

chains. Each HMC chain explores a region of high posterior density of a complex

non-convex shape, that appears multi-modal in the presented cross-sections. . . 99

xxi



4.4 HMC convergence. The performance of an individual HMC sample and a BMA

ensemble of 100 samples from each one of 3 HMC chains after the burn-in as a

function of burn-in length. The dashed line indicates the burn-in length of 50

that we used in the main experiments in this work. We use ResNet-20-FRN on

CIFAR-10 and CNN-LSTM on IMDB. On IMDB, there is no visible dependence of

the results on the burn-in length; on CIFAR-10, there is a weak trend that slows

down over time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.5 UCI regression datasets. Performance of Hamiltonian Monte Carlo (HMC),

stochastic gradient Langevin dynamics (SGLD), stochastic gradient descent (SGD),

subspace inference (SI) [Izmailov et al. 2019], SWAG [Maddox et al. 2019] and de-

terministic variational inference [DVI; Wu et al. 2018]. We use a fully-connected

architecture with a single hidden layer of 50 neurons. The results reported for

each method are mean and standard deviation computed over 20 random train-

test splits of the dataset. For SI, SWAG and DVI we report the results presented

in Izmailov et al. [2019]. Top: test root-mean-squared error. Bottom: test log-

likelihood. HMC performs on par with or better than all other baselines in each

experiment, often providing a significant improvement. . . . . . . . . . . . . . . 102

4.6 Image and text classification. Performance ofHamiltonianMonte Carlo (HMC),

stochastic gradient Langevin dynamics (SGLD) with 1 and 5 chains, mean field

variational inference (MFVI), stochastic gradient descent (SGD), and deep en-

sembles. We use ResNet-20-FRN on CIFAR datasets, and CNN-LSTM on IMDB.

Bayesian neural networks via HMC outperform all baselines on all datasets in

terms of accuracy and log-likelihood. On ECE, the methods perform comparably. 103
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4.7 Evaluation on CIFAR-10-C. Accuracy and log-likelihood of HMC, SGD, deep

ensembles, SGLD and MFVI on a distribution shift task, where the CIFAR-10 test

set is corrupted in 16 different ways at various intensities on the scale of 1 to 5. We

use the ResNet-20-FRN architecture. Boxes capture the quartiles of performance

over each corruption, with the whiskers indicating the minimum and maximum.

HMC is surprisingly the worst of the considered methods: even a single SGD

solution provides better OOD robustness. . . . . . . . . . . . . . . . . . . . . . . 106

4.8 Bayesianneural networks under covariate shift. (a): Performance of a ResNet-

20 on the pixelate corruption in CIFAR-10-C. For the highest degree of corruption,

a Bayesian model average underperforms a MAP solution by 25% (44% against

69%) accuracy. See Izmailov et al. [2021b] for details. (b): Visualization of the

weights in the first layer of a Bayesian fully-connected network on MNIST sam-

pled via HMC. (c): The corresponding MAP weights. We visualize the weights

connecting the input pixels to a neuron in the hidden layer as a 28 × 28 image,

where each weight is shown in the location of the input pixel it interacts with. . 109

4.9 Robustness onMNIST.Accuracy for deep ensembles, MAP and Bayesian neural

networks trained onMNIST under covariate shift. Top: Fully-connected network;

bottom: Convolutional neural network. While on the original MNIST test set

BNNs provide competitive performance, they underperform deep ensembles on

most of the corruptions. With the CNN architecture, all BNN variants lose to

MAP when evaluated on SVHN by almost 20%. . . . . . . . . . . . . . . . . . . . 111
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4.10 Robustness on CIFAR-10. Accuracy for deep ensembles, MAP and Bayesian

neural networks using a CNN architecture trained on CIFAR-10 under covariate

shift. For the corruptions from CIFAR-10-C, we report results for corruption in-

tensity 4. While the BNNs with both Laplace and Gaussian priors outperform

deep ensembles on the in-distribution accuracy, they underperform even a single

MAP solution on most corruptions. . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.11 Bayesian inference samples weights along low-variance principal com-

ponents from the prior, while MAP sets these weights to zero. (a): The

distribution (mean ± 2 std) of projections of the weights of the first layer on the

directions corresponding to the PCA components of the data for BNN samples

and MAP solution using MLP and CNN architectures with different prior scales.

In each case, MAP sets the weights along low-variance components to zero, while

BNN samples them from the prior. (b): Accuracy of BNN and MAP solutions on

the MNIST test set with Gaussian noise applied along the 50 highest and 50 low-

est variance PCA components of the train data (left and right respectively). MAP

is very robust to noise along low-variance PCA directions, while BMA is not; the

two methods are similarly robust along the highest-variance PCA components. . 118

4.12 EmpCov prior improves robustness. Test accuracy under covariate shift for

deep ensembles, MAP optimization with SGD, and BNN with Gaussian and Emp-

Cov priors. Left: MLP architecture trained on MNIST. Right: CNN architecture

trained on CIFAR-10. The EmpCov prior provides consistent improvement over

the standard Gaussian prior. The improvement is particularly noticeable on the

noise corruptions and domain shift experiments (SVHN, STL-10). . . . . . . . . . 121
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4.13 Effect of posterior temperature. The effect of posterior temperature 𝑇 on

the log-likelihood, accuracy and expected calibration error using the CNN-LSTM

model on the IMDB dataset. For both the log-likelihood and accuracy 𝑇 = 1

provides optimal performance, while for the ECE the colder posteriors provide a

slight improvement. For all three metrics, the posterior at 𝑇 = 1 outperforms the

SGD baseline as well as a deep ensemble of 10 independently trained models. . . 123

4.14 Effect of prior variance. The effect of prior variance on BNN performance.

In each panel, the dashed line shows the performance of the SGD model from

section 4.4. While low prior variance may lead to over-regularization and hurt

performance, all the considered prior scales lead to better results than the perfor-

mance of an SGD-trained neural network of the same architecture. . . . . . . . . 125

4.15 Distribution of predictive entropies (left) and calibration curve (right) of pos-

terior predictive distributions for HMC, SGD, deep ensembles, MFVI, SGLD and

SGHMC-CLR-Prec for ResNet20-FRN on CIFAR-10. On the left, for all methods,

except HMC we plot a pair of histograms: for HMC and for the corresponding

method. SGD, Deep ensembles and MFVI provide more confident predictions

than HMC. SGMCMC methods appear to fit the predictive distribution of HMC

better: SGLD is slightly underconfident relative to HMCwhile SGHMC-CLR-Prec

is slightly over-confident. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
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5.1 Deep feature reweighting (DFR). An illustration of the DFR method on the

Waterbirds dataset, where the background (BG) is spuriously correlated with

the foreground (FG). Standard ERM classifiers learn both features relevant to

the background and the foreground, and weight them in a way that the model

performs poorly on images with confusing backgrounds. With DFR, we simply

reweight these features by retraining the last linear layer on a small dataset where

the backgrounds are not spuriously correlated with the foreground. The result-

ing DFR model primarily relies on the foreground, and performs much better on

images with confusing backgrounds. . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.2 Feature learning and simplicity bias. ResNet-20 ERM classifiers trained on

Dominoes data with varying levels of spurious correlation between core and spu-

rious features. We show worst-group test accuracy for: Original data, data with

only core features present (Core-Only), and accuracy of decoding the core feature

from the latent representations of the Original data with logistic regression. We

additionally report optimal accuracy: accuracy of a model trained and evaluated

on the Core-Only data. Even in cases when themodel achieves 0% accuracy on the

Original data, the core features can still be decoded from latent representations. . 144

5.3 Background reliance. Accuracy of DFRMRandDFROG+MR on different ImageNet-

9 validation splits with an ImageNet-trained ResNet-50 feature extractor. DFR re-

duces background reliance with a minimal drop in performance on the Original

data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
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A.1 The ℓ2-regularized cross-entropy train loss (Top) and test error (Bottom) surfaces

of a deep residual network (ResNet-164) on CIFAR-100. Left: Three optima for

independently trained networks. Middle and Right: A quadratic Bezier curve,

and a polygonal chain with one bend, connecting the lower two optima on the

left panel along a path of near-constant loss. Notice that in each panel, a direct

linear path between each mode would incur high loss. . . . . . . . . . . . . . . . . 167

A.2 Same as Fig. A.1 for VGG-16 on CIFAR-10. . . . . . . . . . . . . . . . . . . . . . . 168

A.3 Error as a function of the point on the curves𝜙𝜃 (𝑡) found by the proposedmethod,

using a ResNet-164 on CIFAR-100. Top left: train error. Bottom left: test error;

dashed lines correspond to quality of ensemble constructed from curve points be-

fore and after logits rescaling. Top right: train loss (ℓ2 regularized cross-entropy).

Bottom right: cross-entropy before and after logits rescaling for the polygonal

chain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

A.4 The worst train loss along the curve, maximum of the losses of the endpoints,

and the ratio of the length of the curve and the line segment connecting the two

modes, as a function of the scaling factor 𝐾 of the sizes of fully-connected layers. 171

A.5 Train loss and test error along the polygonal chain connecting the sequence of

points ensembled in FGE. The plot is generated using PreResNet-164 on CIFAR

100. Circles indicate the bends on the polygonal chain, i.e. the networks ensem-

bled in FGE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

A.6 Cyclical learning rate used for Shake-Shake as a function of iteration. . . . . . . 178

A.7 Test error as a function of training epoch for constant (green) and decaying (blue)

learning rate schedules for aWide ResNet-28-10 on CIFAR-100. In red we average

the points along the trajectory of SGD with constant learning rate starting at

epoch 140. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
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A.8 Trajectory of SGDwith isotropic Gaussian gradient noise on a quadratic loss func-

tion. Left: SGD without momentum; Right: SGD with momentum. . . . . . . . . 181

A.9 Gradient variance norm and computed optimal learning rates for VGG-16 and

PreResNet-164. The computed optimal learning rates are always too large by a

factor of 10, while the gradient variance stabilizes over the course of training. . . 185

A.10 Left: Posterior-density cross-sections along the rays corresponding to different

eigenvectors of the SWAG covariance matrix. Middle: Posterior-density surface

in the plane spanned by eigenvectors of SWAG covariance matrix correspond-

ing to the first and second largest eigenvalues and (Right:) the third and fourth

largest eigenvalues. Each row in the figure corresponds to an architecture-dataset

pair indicated in the title of each panel. . . . . . . . . . . . . . . . . . . . . . . . . 187

A.11 (a) 30 samples of SWAG with a rank 20 covariance matches the SWA result over

the course of training for PreResNet56 on CIFAR-100. SWAG with a rank of 140,

SWAG with a rank of 20, and SWA all outperform ensembles of SGD iterates

from the SWA procedure and from a standard SGD training path. (b) NLL and (c)

accuracy by number of samples forWideResNet on CIFAR-100 for SWAG, SWAG-

Diag, and SWA. 30 samples is adequate for stable accuracies and NLLs. (d)NLL by

number of samples for different scales for WideResNet on CIFAR-100 for SWAG,

SWAG-Diag, and SWA. Scales beneath 1 perform better, with 0.5 and 0.25 best. . . 188

A.12 NLL by number of samples for SWAG with and without batch norm updates af-

ter sampling. Updating the batch norm parameters after sampling results in a

significant improvement in NLL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

A.13 Reliability diagrams (see Section 3.5.1) for all models and datasets. The dataset

and architecture are listed in the title of each panel. . . . . . . . . . . . . . . . . . 191

A.14 In and out of sample entropy distributions for WideResNet28x10 on CIFAR5 + 5. . 192

xxviii



A.15 Diversity of high performing functions. Bottom: a contour plot of the poste-

rior log-density in the subspace containing a pair of independently trained modes

(as with deep ensembles), and a path of high posterior density connecting these

modes. In each panel, the purple point represents a sample from the posterior in

the parameter subspace. Top: the predictive distribution constructed from sam-

ples in the subspace. The shaded blue area shows the 3𝜎-region of the predictive

distribution at each of the input locations, and the blue line shows the mean of

the predictive distribution. In each panel, the purple line shows the predictive

function corresponding to the sample shown in the corresponding bottom row

panel. For the details of the experimental setup see Section 5.1 of Izmailov et al.

[2019]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

A.16 (a)–(c): Average pairwise prior correlations for pairs of objects in classes {0, 1, 2, 4, 7}

of MNIST induced by LeNet-5 for 𝑝 (𝑓 (𝑥 ;𝑤)) when 𝑝 (𝑤) = N(0, 𝛼2𝐼 ). Images in

the same class have higher prior correlations than images from different classes,

suggesting that𝑝 (𝑓 (𝑥 ;𝑤)) has desirable inductive biases. The correlations slightly

decrease with increases in 𝛼 . Panels (e)–(g) show sample functions from LeNet-5

along the direction connecting a pair of MNIST images of 0 and 1 digits. The com-

plexity of the samples increases with 𝛼 . (d): NLL and (h) classification error of

an ensemble of 20 SWAG samples on MNIST as a function of 𝛼 using a LeNet-5.

The NLL is high for overly small 𝛼 and near-optimal for larger values with an

optimum near 𝛼 = 0.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
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A.17 Double Descent. (a): Test error and (b): NLL loss for ResNet-18 with varying
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A.22 Negative log likelihood, accuracy and expected calibration error distribution on
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A.25 Additional posterior density visualizations. Visualizations of posterior log-
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eter space spanned by three HMC samples on IMDB using CNN-LSTM. (a): sam-

ples from the same chain and (b): independent chains; (c): Log-likelihood surfaces
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A.29 HMC samples are (over)confident classifiers. Plots show the probability as-
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variance 1
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A.33 Corruptions and linear dependence. Top: The distribution (mean ± 2 std) of

MNIST and MNIST-C images and bottom: 5 × 5 patches extracted from these
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A.50 Shape-texture bias report. Detailed report of the shape-texture bias generated
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1 | Introduction

Over the last few years, we have seen remarkable progress in many areas of deep learning. We

now have deep learning models that can play chess at super-human level [Silver et al. 2016],

neural networks that advance the field of protein folding [Jumper et al. 2021], generative models

that create realistic images and videos from textual descriptions [Ramesh et al. 2021; Saharia et al.

2022], and language models that show glimpses of general intelligence [OpenAI 2023; Bubeck

et al. 2023]. Inevitably, we also see more and more applications of deep learning models in the

real world with self-driving cars, medical imaging models for automated diagnosis, and personal

assistants and other systems built around language models.

However, these systems, still have major limitations, that make their widespread adoption

challenging. In particular, it remains challenging to quantify uncertainty in the predictions of

deep learning models [Guo et al. 2017; Kadavath et al. 2022; Minderer et al. 2021]. As a result,

it is often hard to know when we can trust these models and when we should defer to a human

expert. Anothermajor issue is that neural networks often rely on shortcut features, and generalize

poorly when the test data distribution differs from the training distribution [Geirhos et al. 2018;

Hendrycks and Dietterich 2019], which is the case in most real-world applications.

Most of my research to date has been on a high level about understanding deep learning. I

believe that by deconstructing our models and methods and understanding individual parts, we

can build a better intuition and mechanistic understanding of how they work. Ultimately, this

understanding often translates into bettermodels, methods, and training procedures. Throughout
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this dissertation, I present several examples of this type of work.

The rest of this dissertation is organized as follows. In Chapter 2, I present results on the

structure of the set of optima in neural network loss surfaces. I also present practical methods for

improved training and fast ensembling of deep neural networks motivated by our observations

about the loss surfaces. In Chapter 3, I present a broad exposition of Bayesian neural networks

and a probabilistic perspective on generalization. I also present practical methods for improved

uncertainty estimation in deep neural networks. In Chapter 4, I report the results of a detailed

scientific study of the posterior distributions in Bayesian neural networks with many surprising

observations challenging conventional wisdom. In particular, I describe the precise mechanism

which leads Bayesian neural networks to perform poorly under distribution shift and propose a

partial resolution. In Chapter 5, I describe our work on feature learning in neural networks in the

presence of shortcut features, and a method for reducing the reliance on these features. Finally,

I conclude this dissertation in Chapter 6.
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2 | Loss Surfaces of Deep Neural

Networks

We train neural networks by minimizing a loss function, which captures the goodness of fit to the

data as a function of the parameters of the model. During training, the optimization trajectory

can be thought of as a descent on the loss surface, i.e. the plot of the loss function. Consequently,

the properties of the loss surfaces are central to deep learning.

Loss surfaces have a deep connection to optimization and generalization. In particular, whether

or not we will be able to train our models with simple optimization methods such as stochastic

gradient descent (SGD) will depend on the properties of the loss surfaces. Moreover, different

types of optima will provide different generalization performance, and the properties of the loss

surfaces will determine which of these solutions we will find in practice. In Chapter 3, we will

also discuss the connections of the loss surfaces to Bayesian deep learning and ensembling.

In this chapter, we present our results on the structure of the set of local optima of deep neural

networks. In particular, we demonstrate mode connectivity: the local optima of neural networks

are connected by a curved path of near-constant train loss and test accuracy. We illustrate this

phenomenon in Figure 2.1. We propose a simple method for finding the mode-connecting paths

and demonstrate that mode connectivity holds very generally in vision and NLP. Inspired by

these observations, we propose Stochastic Weight Averaging (SWA), a training procedure for

deep neural networks that averages the weights of SGD iterates with high constant or cyclical
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Figure 2.1: Visualization of mode connectivity for ResNet-20 with no skip connections on the CIFAR-10
dataset. The visualization is created in collaboration with Javier Ideami (https://losslandscape.com/).

learning rates. SWA can be used as a drop-in replacement for any optimizer in deep learning and

consistently leads to improvements in generalization at no cost.

This chapter is adapted from the papers “Loss Surfaces, Mode Connectivity, and Fast Ensem-

bling of DNNs” [Garipov et al. 2018] which originally appeared at NeurIPS 2018 and “Averaging

Weights Leads toWider Optima and Better Generalization” [Izmailov et al. 2018] which originally

appeared at UAI 2018, written jointly with Timur Garipov, Dmitry Podoprikhin, Dmitry Vetrov

and Andrew Gordon Wilson.

2.1 Mode Connectivity

The loss surfaces of deep neural networks (DNNs) are highly non-convex and can depend on

millions of parameters. The geometric properties of these loss surfaces are not well understood.

Even for simple networks, the number of local optima and saddle points is large and can grow

4
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exponentially in the number of parameters [Auer et al. 1996; Choromanska et al. 2015; Dauphin

et al. 2014]. Moreover, the loss is high along a line segment connecting two optima [e.g., Good-

fellow et al. 2015; Keskar et al. 2017]. These two observations suggest that the local optima are

isolated.

In this chapter, we describe a training procedure that can in fact find paths of near-constant

accuracy between the modes of large deep neural networks. Furthermore, we show that for a

wide range of architectures, we can find these paths in the form of a simple polygonal chain

of two line segments. Consider, for example, Figure 5.1, which illustrates the ResNet-164 ℓ2-

regularized cross-entropy train loss on CIFAR-100, through three different planes. We form each

two-dimensional plane by all affine combinations of three weight vectors.1

The left panel shows a plane defined by three independently trained networks. In this plane,

all optima are isolated, which corresponds to the standard intuition. However, the middle and

right panels show two different paths of near-constant loss between the modes in weight space,

discovered by our proposed training procedure. The endpoints of these paths are the two inde-

pendently trained DNNs corresponding to the two lower modes in the left panel. We show a

high-resolution visualization of the path discovered by our method in Figure 2.1.

We release the code for reproducing the results at

https://github.com/timgaripov/dnn-mode-connectivity.

2.2 Finding Paths between Modes

We describe a method to minimize the training error along a path that connects two points in

the space of DNN weights. Section 2.2.1 introduces this general procedure for arbitrary para-
1Suppose we have three weight vectors𝑤1,𝑤2,𝑤3. We set𝑢 = (𝑤2−𝑤1), 𝑣 = (𝑤3−𝑤1)−⟨𝑤3− 𝑤1,𝑤2− 𝑤1⟩/∥𝑤2−

𝑤1∥2 · (𝑤2−𝑤1). Then the normalized vectors𝑢 = 𝑢/∥𝑢∥, 𝑣 = 𝑣/∥𝑣 ∥ form an orthonormal basis in the plane containing
𝑤1,𝑤2,𝑤3. To visualize the loss in this plane, we define a Cartesian grid in the basis 𝑢, 𝑣 and evaluate the networks
corresponding to each of the points in the grid. A point 𝑃 with coordinates (𝑥,𝑦) in the plane would then be given
by 𝑃 = 𝑤1 + 𝑥 · 𝑢 + 𝑦 · 𝑣 .
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Figure 2.2: The ℓ2-regularized cross-entropy train loss surface of a ResNet-164 onCIFAR-100, as a function
of network weights in a two-dimensional subspace. In each panel, the horizontal axis is fixed and is
attached to the optima of two independently trained networks. The vertical axis changes between panels
as we change planes (defined in the main text). Left: Three optima for independently trained networks.
Middle and Right: A quadratic Bezier curve, and a polygonal chain with one bend, connecting the lower
two optima on the left panel along a path of near-constant loss. Notice that in each panel a direct linear
path between each mode would incur high loss.

metric curves, and Section 2.2.2 describes polygonal chains and Bezier curves as two example

parametrizations of such curves. In Appendix A.2, we discuss the computational complexity of

the proposed approach and how to apply batch normalization at test time to points on these

curves.

2.2.1 Connection Procedure

Let 𝑤̂1 and 𝑤̂2 in R|𝑛𝑒𝑡 | be two sets of weights corresponding to two neural networks indepen-

dently trained by minimizing any user-specified loss L(𝑤), such as the cross-entropy loss. Here,

|𝑛𝑒𝑡 | is the number of weights of the DNN. Moreover, let 𝜙𝜃 : [0, 1] → R|𝑛𝑒𝑡 | be a continuous

piecewise smooth parametric curve, with parameters 𝜃 , such that 𝜙𝜃 (0) = 𝑤̂1, 𝜙𝜃 (1) = 𝑤̂2.

To find a path of high accuracy between 𝑤̂1 and 𝑤̂2, we propose to find the parameters 𝜃 that

minimize the expectation over a uniform distribution on the curve, ℓ̂ (𝜃 ):

ℓ̂ (𝜃 ) =
∫
L(𝜙𝜃 )𝑑𝜙𝜃∫
𝑑𝜙𝜃

=

1∫
0
L(𝜙𝜃 (𝑡))∥𝜙′𝜃 (𝑡)∥𝑑𝑡

1∫
0
∥𝜙′

𝜃
(𝑡)∥𝑑𝑡

=

1∫
0

L(𝜙𝜃 (𝑡))𝑞𝜃 (𝑡)𝑑𝑡 = E𝑡∼𝑞𝜃 (𝑡)
[
L(𝜙𝜃 (𝑡))

]
, (2.1)
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where the distribution𝑞𝜃 (𝑡) on 𝑡 ∈ [0, 1] is defined as: 𝑞𝜃 (𝑡) = ∥𝜙′𝜃 (𝑡)∥ ·
(

1∫
0
∥𝜙′

𝜃
(𝑡)∥𝑑𝑡

)−1

. The nu-

merator of (2.1) is the line integral of the loss L on the curve, and the denominator
∫ 1

0 ∥𝜙
′
𝜃
(𝑡)∥𝑑𝑡

is the normalizing constant of the uniform distribution on the curve defined by 𝜙𝜃 (·). Stochastic

gradients of ℓ̂ (𝜃 ) in Eq. (2.1) are generally intractable since 𝑞𝜃 (𝑡) depends on 𝜃 . Therefore we also

propose a more computationally tractable loss

ℓ (𝜃 ) =
∫ 1

0
L(𝜙𝜃 (𝑡))𝑑𝑡 = E𝑡∼𝑈 (0,1)L(𝜙𝜃 (𝑡)), (2.2)

where 𝑈 (0, 1) is the uniform distribution on [0, 1]. The difference between (2.1) and (2.2) is that

the latter is an expectation of the lossL(𝜙𝜃 (𝑡)) with respect to a uniform distribution on 𝑡 ∈ [0, 1],

while (2.1) is an expectation with respect to a uniform distribution on the curve. The two losses

coincide, for example, when 𝜙𝜃 (·) defines a polygonal chain with two line segments of equal

length and the parametrization of each of the two segments is linear in 𝑡 .

To minimize (2.2), at each iteration we sample 𝑡 from the uniform distribution 𝑈 (0, 1) and

make a gradient step for 𝜃 with respect to the loss L(𝜙𝜃 (𝑡)). This way we obtain unbiased esti-

mates of the gradients of ℓ (𝜃 ), as

∇𝜃L(𝜙𝜃 (𝑡)) ≃ E𝑡∼𝑈 (0,1)∇𝜃L(𝜙𝜃 (𝑡)) = ∇𝜃E𝑡∼𝑈 (0,1)L(𝜙𝜃 (𝑡)) = ∇𝜃 ℓ (𝜃 ).

We repeat these updates until convergence.

2.2.2 Example Parametrizations

Polygonal chain. The simplest parametric curve we consider is the polygonal chain (see Fig-

ure 5.1, right). The trained networks 𝑤̂1 and 𝑤̂2 serve as the endpoints of the chain and the bends

of the chain are the parameters 𝜃 of the curve parametrization. Consider the simplest case of a
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Figure 2.3: The ℓ2-regularized cross-entropy train loss (left) and test error (middle) as a function of the
point on the curves 𝜙𝜃 (𝑡) found by the proposed method (ResNet-164 on CIFAR-100). Right: Error of the
two-network ensemble consisting of the endpoint 𝜙𝜃 (0) of the curve and the point 𝜙𝜃 (𝑡) on the curve
(CIFAR-100, ResNet-164). “Segment” is a line segment connecting two modes found by SGD. “Polychain”
is a polygonal chain connecting the same endpoints.

chain with one bend 𝜃 . Then

𝜙𝜃 (𝑡) =


2 (𝑡𝜃 + (0.5 − 𝑡)𝑤̂1) , 0 ⩽ 𝑡 ⩽ 0.5

2 ((𝑡 − 0.5)𝑤̂2 + (1 − 𝑡)𝜃 ) , 0.5 ⩽ 𝑡 ⩽ 1.

Bezier curve. A Bezier curve (see Figure 5.1, middle) provides a convenient parametrization of

smooth paths with given endpoints. A quadratic Bezier curve 𝜙𝜃 (𝑡) with endpoints 𝑤̂1 and 𝑤̂2 is

given by

𝜙𝜃 (𝑡) = (1 − 𝑡)2𝑤̂1 + 2𝑡 (1 − 𝑡)𝜃 + 𝑡2𝑤̂2, 0 ⩽ 𝑡 ⩽ 1.

These formulas naturally generalize to 𝑛 bends 𝜃 = {𝑤1,𝑤2, . . . ,𝑤𝑛} (see Appendix A.1.3).

2.3 Mode Connectivity Demonstrations

We show that the proposed training procedure in Section 2.2 does indeed find high accuracy paths

connecting different modes, across a range of architectures and datasets. Moreover, we further

investigate the properties of these curves, showing that they correspond tomeaningfully different

representations that can be ensembled for improved accuracy. We use these insights to propose

a fast ensembling procedure in Section 2.4. In Section 2.5 we describe a training procedure with

improved generalization performance also inspired by these observations.
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In particular, we test VGG-16 [Simonyan and Zisserman 2014], a 28-layer Wide ResNet with

widening factor 10 [Zagoruyko and Komodakis 2016] and a 158-layer ResNet [He et al. 2016] on

CIFAR-10, and VGG-16, 164-layer ResNet-bottleneck [He et al. 2016] on CIFAR-100. For CIFAR-10

and CIFAR-100 we use the same standard data augmentation as Huang et al. [2017a]. We provide

additional results, including detailed experiments for fully connected and recurrent networks, in

the Appendix A.1.4.

For eachmodel and dataset we train two networks with different random initializations to find

two modes. Then we use the proposed algorithm of Section 2.2 to find a path connecting these

two modes in the weight space with a quadratic Bezier curve and a polygonal chain with one

bend. We also connect the two modes with a line segment for comparison. In all experiments

we optimize the loss (2.2), as for Bezier curves the gradient of loss (2.1) is intractable, and for

polygonal chains we found loss (2.2) to be more stable.

Figures 5.1 and 2.3 show the results of the proposed mode connecting procedure for ResNet-

164 on CIFAR-100. Here loss refers to ℓ2-regularized cross-entropy loss. For both the Bezier curve

and polygonal chain, train loss (Figure 2.3, left) and test error (Figure 2.3, middle) are indeed

nearly constant. In addition, we provide plots of train error and test loss in Appendix A.1.4. In

Appendix A.1.4, we also include a comprehensive table summarizing all path finding experiments

on CIFAR-10 and CIFAR-100 for VGGs, ResNets and Wide ResNets, as well as fully connected

networks and recurrent neural networks, which follow the same general trends. In the Appendix

A.1.7 we also show that the connecting curves can be found consistently as we vary the number

of parameters in the network, although the ratio of the arclength for the curves to the length

of the line segment connecting the same endpoints decreases with increasing parametrization.

In Appendix A.1.4, we also measure the losses (2.1) and (2.2) for all the curves we constructed,

and find that the values of the two losses are very close, suggesting that the loss (2.2) is a good

practical approximation to the loss (2.1).

The constant-error curves connecting two given networks discovered by the proposedmethod
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are not unique. We trained two different polygonal chains with the same endpoints and different

random seeds using VGG-16 on CIFAR-10. We then measured the Euclidean distance between

the turning points of these curves. For VGG-16 on CIFAR-10 this distance is equal to 29.6 and the

distance between the endpoints is 50, showing that the curves are not unique. In this instance,

we expect the distance between turning points to be less than the distance between endpoints,

since the locations of the turning points were initialized to the same value (the center of the line

segment connecting the endpoints).

Although high accuracy connecting curves can often be very simple, such as a polygonal chain

with only one bend, we note that line segments directly connecting two modes generally incur

high error. For VGG-16 on CIFAR-10 the test error goes up to 90% in the center of the segment.

For ResNet-158 and Wide ResNet-28-10 the worst errors along direct line segments are still high,

but relatively less, at 80% and 66%, respectively. This finding suggests that the loss surfaces of

state-of-the-art residual networks are indeed more regular than those of classical models like

VGG, in accordance with the observations in Li et al. [2017].

In this paperwe focus on connecting pairs of networks trained using the same hyper-parameters,

but from different random initializations. Building upon our work, Gotmare et al. [2018] have re-

cently shown that our mode connectivity approach applies to pairs of networks trained with

different batch sizes, optimizers, data augmentation strategies, weight decays and learning rate

schemes.

To motivate the ensembling procedure proposed in the next section, we now examine how far

we need to move along a connecting curve to find a point that produces substantially different,

but still useful, predictions. Let 𝑤̂1 and 𝑤̂2 be two distinct sets of weights corresponding to optima

obtained by independently training a DNN two times. We have shown that there exists a path

connecting 𝑤̂1 and 𝑤̂2 with high test accuracy. Let 𝜙𝜃 (𝑡), 𝑡 ∈ [0, 1] parametrize this path with

𝜙𝜃 (0) = 𝑤̂1, 𝜙𝜃 (1) = 𝑤̂2. We investigate the performance of an ensemble of two networks: the

endpoint 𝜙𝜃 (0) of the curve and a point 𝜙𝜃 (𝑡) on the curve corresponding to 𝑡 ∈ [0, 1]. Figure 2.3
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ensembles constructed of all models available by the given time.

(right) shows the test error of this ensemble as a function of 𝑡 , for a ResNet-164 on CIFAR-100.

The test error starts decreasing at 𝑡 ≈ 0.1 and for 𝑡 ⩾ 0.4 the error of an ensemble is already as low

as the error of an ensemble of the two independently trained networks used as the endpoints of

the curve. Thus even by moving away from the endpoint by a relatively small distance along the

curvewe can find a network that producesmeaningfully different predictions from the network at

the endpoint. This result also demonstrates that these curves do not exist only due to degenerate

parametrizations of the network (such as rescaling on either side of a ReLU); instead, points along

the curve correspond to meaningfully different representations of the data that can be ensembled

for improved performance. In Appendix A.1.8 we show how to create trivially connecting curves

that do not have this property.

2.4 Fast Geometric Ensembling

In this section, we introduce a practical ensembling procedure, Fast Geometric Ensembling (FGE),

motivated by our observations about mode connectivity.

In the previous section, we considered ensembling along mode connecting curves. Suppose
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now we instead only have one set of weights 𝑤̂ corresponding to a mode of the loss. We cannot

explicitly construct a path 𝜙𝜃 (·) as before, but we know that multiple paths passing through 𝑤̂

exist, and it is thus possible to move away from 𝑤̂ in the weight space without increasing the loss.

Further, we know that we can find diverse networks providing meaningfully different predictions

by making relatively small steps in the weight space (see Figure 2.3, right).

Inspired by these observations, we propose the Fast Geometric Ensembling (FGE) method that

aims to find diverse networks with relatively small steps in the weight space, without leaving a

region that corresponds to low test error.

While inspired by mode connectivity, FGE does not rely on explicitly finding a connecting

curve, and thus does not require pre-trained endpoints, and so can be trained in the time required

to train a single network.

Let us describe Fast Geometric Ensembling. First, we initialize a copy of the network with

weights 𝑤 set equal to the weights of the trained network 𝑤̂ . Now, to force 𝑤 to move away

from 𝑤̂ without substantially decreasing the prediction accuracy we adopt a cyclical learning

rate schedule 𝛼 (·) (see Figure 2.4, left), with the learning rate at iteration 𝑖 = 1, 2, . . . defined as

𝛼 (𝑖) =

(1 − 2𝑡 (𝑖))𝛼1 + 2𝑡 (𝑖)𝛼2 0 < 𝑡 (𝑖) ⩽ 1

2

(2 − 2𝑡 (𝑖))𝛼2 + (2𝑡 (𝑖) − 1)𝛼1
1
2 < 𝑡 (𝑖) ⩽ 1

,

where 𝑡 (𝑖) = 1
𝑐
(mod (𝑖 − 1, 𝑐) + 1), the learning rates are 𝛼1 > 𝛼2, and the number of iterations in

one cycle is given by even number 𝑐 . Here by iteration we mean processing one mini-batch of

data. We can train the network 𝑤 using the standard ℓ2-regularized cross-entropy loss function

(or any other loss that can be used for DNN training) with the proposed learning rate schedule for

𝑛 iterations. In the middle of each learning rate cycle when the learning rate reaches its minimum

value 𝛼 (𝑖) = 𝛼2 (which corresponds to mod (𝑖−1, 𝑐)+1 = 𝑐/2, 𝑡 (𝑖) = 1
2 ) we collect the checkpoints

of weights𝑤 . When the training is finished we ensemble the collected models. An outline of the

algorithm is provided in Appendix A.1.9.

12



Figure 2.4 (left) illustrates the adopted learning rate schedule. During the periods when the

learning rate is large (close to𝛼1),𝑤 is exploring theweight space doing larger steps but sacrificing

the test error. When the learning rate is small (close to 𝛼2),𝑤 is in the exploitation phase in which

the steps become smaller and the test error goes down. The cycle length is usually about 2 to 4

epochs, so that the method efficiently balances exploration and exploitation with relatively-small

steps in the weight space that are still sufficient to gather diverse and meaningful networks for

the ensemble.

To find a good initialization 𝑤̂ for the proposed procedure, we first train the network with the

standard learning rate schedule (the schedule used to train single DNN models) for about 80% of

the time required to train a single model. After this pre-training is finished we initialize FGE with

𝑤̂ and run the proposed fast ensembling algorithm for the remaining computational budget. In

order to get more diverse samples, one can run the algorithm described above several times for

a smaller number of iterations initializing from different checkpoints saved during training of 𝑤̂ ,

and then ensemble all of the models gathered across these runs.

Cyclical learning rates have also recently been considered in Smith and Topin [2017] and

Huang et al. [2017a]. Our proposedmethod is perhapsmost closely related to Snapshot Ensembles

[Huang et al. 2017a], but has several distinctive features, inspired by our geometric insights. In

particular, Snapshot Ensembles adopt cyclical learning rates with cycle length on the scale of 20

to 40 epochs from the beginning of the training as they are trying to do large steps in the weight

space. However, according to our analysis of the curves it is sufficient to do relatively small steps

in the weight space to get diverse networks, so we only employ cyclical learning rates with a

small cycle length on the scale of 2 to 4 epochs in the last stage of the training. As illustrated

in Figure 2.4 (left), the step sizes made by FGE between saving two models (that is the euclidean

distance between sets of weights of corresponding models in the weight space) are on the scale

of 7 for Preactivation-ResNet-164 on CIFAR-100. For Snapshot Ensembles for the same model

the distance between two snapshots is on the scale of 40. We also use a piecewise linear cyclical

13
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Figure 2.5: Illustrations of SWA and SGDwith a Preactivation ResNet-164 on CIFAR-1002. Left: test error
surface for three FGE samples and the corresponding SWA solution (averaging in weight space). Middle
and Right: test error and train loss surfaces showing the weights proposed by SGD (at convergence) and
SWA, starting from the same initialization of SGD after 125 training epochs.

learning rate schedule following Smith and Topin [2017] as opposed to the cosine schedule in

Snapshot Ensembles.

Figure 2.4 (right) illustrates the results for Preactivation-ResNet-164 on CIFAR-100 for one

and two training budgets. The training budget 𝐵 for training the model in the standard way is

150 epochs. Snapshot Ensembles use a cyclical learning rate from the beginning of the training

and they gather the models for the ensemble throughout training. To find a good initialization for

FGE we run standard independent training for the first 125 epochs before applying FGE. In this

case, the whole ensemble is gathered over the following 22 epochs (126-147) to fit in the budget

of each of the two runs. During these 22 epochs FGE is able to gather diverse enough networks

to outperform Snapshot Ensembles both for 1𝐵 and 2𝐵 budgets.

We provide further detailed experiments with FGE in Appendix A.1.9.

2.5 Stochastic Weight Averaging

Fast Geometric Ensembling (Section 2.4) uses a high frequency cyclical learning rate with SGD

to select networks to ensemble. In Figure 5.1 (left) we see that the weights of the networks en-

sembled by FGE are on the periphery of the most desirable solutions. This observation suggests

it is promising to average these points in weight space, and use a network with these averaged
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weights, instead of forming an ensemble by averaging the outputs of networks inmodel space. Al-

though the general idea of maintaining a running average of weights traversed by SGD dates back

to Ruppert [1988], this procedure is not typically used to train neural networks. It is sometimes

applied as an exponentially decaying running average in combination with a decaying learning

rate (where it is called an exponential moving average), which smooths the trajectory of conven-

tional SGD but does not perform very differently. However, we show that an equally weighted

average of the points traversed by SGD with a cyclical or high constant learning rate, which we

refer to as Stochastic Weight Averaging (SWA), has many surprising and promising features for

training deep neural networks, leading to a better understanding of the geometry of their loss

surfaces. Indeed, SWA with cyclical or constant learning rates can be used as a drop-in replace-

ment for standard SGD training of multilayer networks — but with improved generalization and

essentially no overhead. In particular:

• We show that SGD with cyclical [e.g., Loshchilov and Hutter 2016] and constant learning

rates traverses regions of weight space corresponding to high-performing networks. We

find that while these models are moving around this optimal set they never reach its central

points. We show that we can move into this more desirable space of points by averaging

the weights proposed over SGD iterations.

• While FGE ensembles can be trained in the same time as a single model, test predictions

for an ensemble of 𝑘 models requires 𝑘 times more computation. We show that SWA can

be interpreted as an approximation to FGE ensembles but with the test-time, convenience,

and interpretability of a single model.

• We demonstrate that SWA leads to solutions that are wider than the optima found by SGD.

Keskar et al. [2017] and Hochreiter and Schmidhuber [1997a] conjecture that the width of

the optima is critically related to generalization. We illustrate that the loss on the train is

shifted with respect to the test error (Figure 5.1, middle and right panels, and sections 3,
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4). We show that SGD generally converges to a point near the boundary of the wide flat

region of optimal points. SWA on the other hand is able to find a point centered in this

region, often with slightly worse train loss but with substantially better test error.

• We show that the loss function is asymmetric in the direction connecting SWAwith SGD. In

this direction, SGD is near the periphery of sharp ascent. Part of the reason SWA improves

generalization is that it finds solutions in flat regions of the training loss in such directions.

• SWA achieves notable improvement for training a broad range of architectures over sev-

eral consequential benchmarks. In particular, running SWA for just 10 epochs on ImageNet

we are able to achieve 0.8% improvement for ResNet-50 and DenseNet-161, and 0.6% im-

provement for ResNet-150. We achieve improvement of over 1.3% on CIFAR-100 and of over

0.4% on CIFAR-10 with Preactivation ResNet-164, VGG-16 andWide ResNet-28-10. We also

achieve substantial improvement for the recent Shake-Shake Networks and PyramidNets.

• SWA is extremely easy to implement and has virtually no computational overhead com-

pared to the conventional training schemes.

We emphasize that SWA is finding a solution in the same basin of attraction as SGD, as can be

seen in Figure 5.1, but in a flatter region of the training loss. SGD typically finds points on the

periphery of a set of good weights. By running SGDwith a cyclical or high constant learning rate,

we traverse the surface of this set of points, and by averaging we find a more centred solution in

a flatter region of the training loss. Further, the training loss for SWA is often slightly worse than

for SGD suggesting that SWA solution is not a local optimum of the loss. Throughout this section,

optima is used in a general sense to mean solutions (converged points of a given procedure), rather

than different local minima of the same objective.

The rest of this section is organized as follows. In section 2.5.1, we consider trajectories of SGD

with a constant and cyclical learning rate, which helps understand the geometry of SGD training
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Figure 2.6: Top: cyclical learning rate as a function of iteration. Bottom: test error as a function of
iteration for cyclical learning rate schedule with Preactivation-ResNet-164 on CIFAR-100. Circles indicate
iterations corresponding to the minimum learning rates.

for neural networks, and motivates the SWA procedure. Then in section 5.4 we present the SWA

algorithm in detail, in section 2.5.3 we derive its complexity, and in section 2.5.4 we analyze the

width of solutions found by SWA versus conventional SGD training. In section 2.5.5 we then

examine the relationship between SWA and Fast Geometric Ensembling. Finally, in section 3.4

we consider SWA from the perspective of stochastic convex optimization.

2.5.1 Analysis of SGD Trajectories

SWA is based on averaging the samples proposed by SGD using a learning rate schedule that

allows exploration of the region of weight space corresponding to high-performing networks. In

particular we consider cyclical and constant learning rate schedules.

The cyclical learning rate schedule that we adopt is inspired by Garipov et al. [2018] and Smith

and Topin [2017]. In each cycle we linearly decrease the learning rate from 𝛼1 to 𝛼2. The formula
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Figure 2.7: The 𝐿2-regularized cross-entropy train loss and test error surfaces of a Preactivation ResNet-
164 on CIFAR-100 in the plane containing the first, middle and last points (indicated by black crosses) in
the trajectories with (top) cyclical and (bottom) constant learning rate schedules.

for the learning rate at iteration 𝑖 is given by

𝛼 (𝑖) = (1 − 𝑡 (𝑖))𝛼1 + 𝑡 (𝑖)𝛼2,

𝑡 (𝑖) = 1
𝑐
(mod (𝑖 − 1, 𝑐) + 1) .

The base learning rates 𝛼1 ⩾ 𝛼2 and the cycle length 𝑐 are the hyper-parameters of the method.

Here by iteration we assume the processing of one batch of data. Figure 2.6 illustrates the cyclical

learning rate schedule and the test error of the corresponding points. Note that unlike the cyclical

learning rate schedule of Garipov et al. [2018] and Smith and Topin [2017], here we propose to

use a discontinuous schedule that jumps directly from the minimum to maximum learning rates,

and does not steadily increase the learning rate as part of the cycle. We use this more abrupt

cycle because for our purposes exploration is more important than the accuracy of individual

proposals. For even greater exploration, we also consider constant learning rates 𝛼 (𝑖) = 𝛼1.
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We run SGD with cyclical and constant learning rate schedules starting from a pretrained

point for a Preactivation ResNet-164 on CIFAR-100. We then use the first, middle and last point

of each of the trajectories to define a 2-dimensional plane in the weight space containing all affine

combinations of these points. In Figure 2.7 we plot the loss on train and error on test for points in

these planes. We then project the other points of the trajectory to the plane of the plot. Note that

the trajectories do not generally lie in the plane of the plot, except for the first, last and middle

points, showed by black crosses in the figure. Therefore for other points of the trajectories it is

not possible to tell the value of train loss and test error from the plots.

The key insight from Figure 2.7 is that both methods explore points close to the periphery

of the set of high-performing networks. The visualizations suggest that both methods are doing

exploration in the region of space corresponding to DNNs with high accuracy. The main differ-

ence between the two approaches is that the individual proposals of SGD with a cyclical learning

rate schedule are in general much more accurate than the proposals of a fixed-learning rate SGD.

After making a large step, SGDwith a cyclical learning rate spends several epochs fine-tuning the

resulting point with a decreasing learning rate. SGD with a fixed learning rate on the other hand

is always making steps of relatively large sizes, exploring more efficiently than with a cyclical

learning rate, but the individual proposals are worse.

Another important insight we can get from Figure 2.7 is that while the train loss and test error

surfaces are qualitatively similar, they are not perfectly aligned. The shift between train and test

suggests that more robust central points in the set of high-performing networks can lead to better

generalization. Indeed, if we average several proposals from the optimization trajectories, we get

a more robust point that has a substantially higher test performance than the individual proposals

of SGD, and is essentially centered on the shifted mode for test error. We further discuss the

reasons for this behaviour in Sections 2.5.4, 2.5.5, 3.4.
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Algorithm 1 Stochastic Weight Averaging
Require:

weights 𝑤̂ , LR bounds 𝛼1, 𝛼2,
cycle length 𝑐 (for constant learning rate 𝑐 = 1), number of iterations 𝑛

Ensure: 𝑤SWA
𝑤 ← 𝑤̂ {Initialize weights with 𝑤̂ }
𝑤SWA ← 𝑤

for 𝑖 ← 1, 2, . . . , 𝑛 do

𝛼 ← 𝛼 (𝑖) {Calculate LR for the iteration}
𝑤 ← 𝑤 − 𝛼∇L𝑖 (𝑤) {Stochastic gradient update}
if mod (𝑖, 𝑐) = 0 then

𝑛models ← 𝑖/𝑐 {Number of models}
𝑤SWA ← 𝑤SWA·𝑛models+𝑤

𝑛models+1 {Update average}
end if

end for

{Compute BatchNorm statistics for𝑤SWA weights}

2.5.2 SWA Algorithm

We now present the details of the Stochastic Weight Averaging algorithm, a simple but effective

modification for training neural networks, motivated by our observations in section 2.5.1.

Following Garipov et al. [2018], we start with a pretrained model 𝑤̂ . We will refer to the

number of epochs required to train a given DNN with the conventional training procedure as

its training budget and will denote it by 𝐵. The pretrained model 𝑤̂ can be trained with the

conventional training procedure for full training budget or reduced number of epochs (e.g. 0.75𝐵).

In the latter case we just stop the training early without modifying the learning rate schedule.

Starting from 𝑤̂ we continue training, using a cyclical or constant learning rate schedule. When

using a cyclical learning rate we capture the models 𝑤𝑖 that correspond to the minimum values

of the learning rate (see Figure 2.6), following Garipov et al. [2018]. For constant learning rates

we capture models at each epoch. Next, we average the weights of all the captured networks 𝑤𝑖

to get our final model𝑤SWA.

Note that for cyclical learning rate schedule, the SWA algorithm is related to FGE (Section 2.4),
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except that instead of averaging the predictions of the models, we average their weights, and we

use a different type of learning rate cycle. In section 2.5.5 we show how SWA can approximate

FGE, but with a single model.

Batch Normalization. If the DNN uses batch normalization [Ioffe and Szegedy 2015], we run

one additional pass over the data, as described in Appendix A.1.2, to compute the running mean

and standard deviation of the activations for each layer of the network with 𝑤SWA weights after

the training is finished, since these statistics are not collected during training. For most deep

learning libraries, such as PyTorch or Tensorflow, one can typically collect these statistics by

making a forward pass over the data in training mode.

The SWA procedure is summarized in Algorithm 1.

2.5.3 Computational Complexity

The time and memory overhead of SWA compared to conventional training is negligible. During

training, we need to maintain a copy of the running average of DNN weights. Note however

that the memory consumption in storing a DNN is dominated by its activations rather than its

weights, and thus is only slightly increased by the SWA procedure, even for large DNNs (e.g., on

the order of 10%). After the training is complete we only need to store the model that aggregates

the average, leading to the same memory requirements as standard training.

During training extra time is only spent to update the aggregated weight average. This oper-

ation is of the form

𝑤SWA ←
𝑤SWA · 𝑛models +𝑤

𝑛models + 1
,

and it only requires computing a weighted sum of the weights of two DNNs. As we apply this

operation at most once per epoch, SWA and SGD require practically the same amount of compu-
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tation. Indeed, a similar operation is performed as a part of each gradient step, and each epoch

consists of hundreds of gradient steps.

2.5.4 Solution Width

Keskar et al. [2017] and Chaudhari et al. [2016] conjecture that the width of a local optimum is

related to generalization. The general explanation for the importance of width is that the surfaces

of train loss and test error are shiftedwith respect to each other and it is thus desirable to converge

to the modes of broad optima, which stay approximately optimal under small perturbations. In

this section we compare the solutions found by SWA and SGD and show that SWA generally

leads to much wider solutions.

Let 𝑤SWA and 𝑤SGD denote the weights of DNNs trained using SWA and conventional SGD,

respectively. Consider the rays

𝑤SWA(𝑡, 𝑑) = 𝑤SWA + 𝑡 · 𝑑,

𝑤SGD(𝑡, 𝑑) = 𝑤SGD + 𝑡 · 𝑑,

which follow a direction vector 𝑑 on the unit sphere, starting at𝑤SWA and𝑤SGD, respectively. In

Figure 2.8 we plot train loss and test error of𝑤SWA(𝑡, 𝑑𝑖) and𝑤SGD(𝑡, 𝑑𝑖) as a function of 𝑡 for 10

random directions 𝑑𝑖 , 𝑖 = 1, 2, . . . , 10 drawn from a uniform distribution on the unit sphere. For
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Figure 2.9: 𝐿2-regularized cross-entropy train loss and test error as a function of a point on the line
connecting SWA and SGD solutions on CIFAR-100. Left: Preactivation ResNet-164. Right: VGG-16.

this visualization we use a Preactivation ResNet-164 on CIFAR-100.

First, while the loss values on train for𝑤SGD and𝑤SWA are quite similar (and in fact𝑤SGD has

a slightly lower train loss), the test error for 𝑤SGD is lower by 1.5% (at the converged value cor-

responding to 𝑡 = 0). Further, the shapes of both train loss and test error curves are considerably

wider for 𝑤SWA than for 𝑤SGD, suggesting that SWA indeed converges to a wider solution: we

have to step much further away from𝑤SWA to increase error by a given amount. We even see the

error curve for SGD has an inflection point that is not present for these distances with SWA.

Notice that in Figure 2.8 any of the random directions from𝑤SGD increase test error. However,

we know that the direction from𝑤SGD to𝑤SWA would decrease test error, since𝑤SWA has consid-

erably lower test error than 𝑤SGD. In other words, the path from 𝑤SGD to 𝑤SWA is qualitatively

different from all directions shown in Figure 2.8, because along this direction 𝑤SGD is far from

optimal. We therefore consider the line segment connecting𝑤SGD and𝑤SWA:

𝑤 (𝑡) = 𝑡 ·𝑤SGD + (1 − 𝑡) ·𝑤SWA .

In Figure 2.9 we plot the train loss and test error of 𝑤 (𝑡) as a function of signed distance from

𝑤SWA for Preactivation ResNet-164 and VGG-16 on CIFAR-100.

We can extract several key insights about𝑤SWA and𝑤SGD from Figure 2.9. First, the train loss

and test error plots are indeed substantially shifted, and the point obtained by minimizing the
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train loss is far from optimal on test. Second, 𝑤SGD lies near the boundary of a wide flat region

of the train loss. Further, the loss is very steep near𝑤SGD.

Keskar et al. [2017] argue that the loss near sharp optima found by SGD with very large

batches are actually flat in most directions, but there exist directions in which the optima are

extremely steep. They conjecture that because of this sharpness the generalization performance

of large batch optimization is substantially worse than that of solutions found by small batch

SGD. Remarkably, in our experiments in this section we observe that there exist directions of

steep ascent even for small batch optima, and that SWA provides even wider solutions (at least

along random directions) with better generalization. Indeed, we can see clearly in Figure 2.9 that

SWA is not finding a different basin than SGD, but rather a flatter region in the same basin of

attraction. We can also see clearly that the significant asymmetry of the loss function in certain

directions, such as the direction SWA to SGD, has a role in understanding why SWA provides

better generalization than SGD. In these directions SWA finds a much flatter solution than SGD,

which can be near the periphery of sharp ascent.

2.5.5 Connection to Ensembling

In Section 2.4 we described the Fast Geometric Ensembling (FGE) procedure for training ensem-

bles in the time required to train a single model. Using a cyclical learning rate, FGE generates

a sequence of points that are close to each other in the weight space, but produce diverse pre-

dictions. In SWA instead of averaging the predictions of the models we average their weights.

However, the predictions proposed by FGE ensembles and SWA models have similar properties.

Let 𝑓 (·) denote the predictions of a neural network parametrized by weights 𝑤 . We will as-

sume that 𝑓 is a scalar (e.g. the probability for a particular class) twice continuously differentiable

function with respect to𝑤 .

Consider points 𝑤𝑖 proposed by FGE. These points are close in the weight space by design,

and concentrated around their average 𝑤SWA = 1
𝑛

∑𝑛
𝑖=1𝑤𝑖 . We denote Δ𝑖 = 𝑤𝑖 − 𝑤SWA. Note
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∑𝑛
𝑖=1 Δ𝑖 = 0. Ensembling the networks corresponds to averaging the function values

𝑓 =
1
𝑛

𝑛∑︁
𝑖=1

𝑓 (𝑤𝑖).

Consider the linearization of 𝑓 at𝑤SWA.

𝑓 (𝑤 𝑗 ) = 𝑓 (𝑤SWA) +
〈
∇𝑓 (𝑤SWA),Δ 𝑗

〉
+𝑂 (∥Δ 𝑗 ∥2),

where ⟨·, ·⟩ denotes the dot product. Thus, the difference between averaging the weights and

averaging the predictions

𝑓 − 𝑓 (𝑤SWA) =
1
𝑛

𝑛∑︁
𝑖=1

(
⟨∇𝑓 (𝑤SWA),Δ𝑖⟩ +𝑂 (∥Δ𝑖 ∥2)

)
=

〈
∇𝑓 (𝑤SWA),

1
𝑛

𝑛∑︁
𝑖=1

Δ𝑖

〉
+𝑂 (Δ2) = 𝑂 (Δ2),

where Δ = max𝑛𝑖=1 ∥Δ𝑖 ∥. Note that the difference between the predictions of different perturbed

networks is

𝑓 (𝑤𝑖) − 𝑓 (𝑤 𝑗 ) = ⟨∇𝑓 (𝑤SWA),Δ𝑖 − Δ 𝑗 ⟩ +𝑂 (Δ2),

and is thus of the first order of smallness, while the difference between averaging predictions and

averaging weights is of the second order of smallness. Note that for the points proposed by FGE

the distances between proposals are relatively small by design, which justifies the local analysis.

To analyze the difference between ensembling and averaging the weights of FGE proposals

in practice, we run FGE for 20 epochs and compare the predictions of different models on the

test dataset with a Preactivation ResNet-164 [He et al. 2016] on CIFAR-100. The norm of the

difference between the class probabilities of consecutive FGE proposals averaged over the test

dataset is 0.126. We then average the weights of the proposals and compute the class probabilities
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on the test dataset. The norm of difference of the probabilities for the SWA model and the FGE

ensemble is 0.079, which is substantially smaller than the difference between the probabilities of

consecutive FGE proposals. Further, the fraction of objects for which consecutive FGE proposals

output the same labels is not greater than 87.33%. For FGE and SWA the fraction of identically

labeled objects is 95.26%.

The theoretical considerations and empirical results presented in this section suggest that

SWA can approximate the FGE ensemble with a single model.

2.5.6 Connection to Convex Minimization

Mandt et al. [2017b] showed that under strong simplifying assumptions SGDwith a fixed learning

rate approximately samples from a Gaussian distribution centered at the minimum of the loss.

Suppose this is the case when we run SGD with a fixed learning rate for training a DNN.

Let us denote the dimensionality of the weight space of the neural network by 𝑑 . Denote the

samples produced by SGD by𝑤𝑖, 𝑖 = 1, 2, . . . , 𝑘 . Assume the points𝑤𝑖 are concentrated around the

local optimum 𝑤̂ . The SWA solution is given by𝑤SWA = 1
𝑛

∑𝑘
𝑖=1𝑤𝑖 . The points𝑤𝑖 are samples from

a multidimensional Gaussian N(𝑤̂, Σ) for some covariance matrix Σ defined by the curvature of

the loss, batch size and the learning rate. Note that the samples from amultidimensional Gaussian

are concentrated on the ellipsoid

{
𝑧 ∈ R𝑑 | ∥Σ− 1

2 (𝑧 − 𝑤̂)∥ =
√
𝑑

}
,

and the probability mass for a sample to end up inside the ellipsoid near 𝑤̂ is negligible. On the

other hand,𝑤SWA is guaranteed to converge to 𝑤̂ as 𝑘 →∞.

Moreover, Polyak and Juditsky [1992] showed that averaging SGD proposals achieves the

best possible convergence rate among all stochastic gradient algorithms. The proof relies on

the convexity of the underlying problem and in general there are no convergence guarantees if
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the loss function is non-convex [see e.g. Ghadimi and Lan 2013]. While DNN loss functions are

known to be non-convex [e.g. Choromanska et al. 2015], over the trajectory of SGD these loss

surfaces are approximately convex [e.g. Goodfellow et al. 2015]. However, even when the loss is

locally non-convex, SWA can improve generalization. For example, in Figure 2.9 we see that SWA

converges to a central point of the training loss.

In otherwords, there are a set of points that all achieve low training loss. By running SGDwith

a high constant or cyclical schedule, we traverse over the surface of this set. Then by averaging the

corresponding iterates, we get tomove inside the set. This observation explains both convergence

rates and generalization. In deep learning we mostly observe benefits in generalization from

averaging. Averaging can move to a more central point, which means one has to move further

from this point to increase the loss by a given amount, in virtually any direction. By contrast,

conventional SGD with a decaying schedule will converge to a point on the periphery of this

set. With different initializations conventional SGD will find different points on the boundary, of

solutions with low training loss, but it will not move inside.

2.6 Experiments

We compare SWA against conventional SGD training and FGE on CIFAR-10, CIFAR-100 and Im-

ageNet ILSVRC-2012 [Russakovsky et al. 2012]. We note that FGE is an ensemble whereas SWA

corresponds to a single model. Conventional SGD training uses a standard decaying learning

rate schedule (details in the Appendix) until convergence. We found an exponentially decay-

ing average of SGD to perform comparably to conventional SGD at convergence. The code for

reproducing the results in this section is available at https://github.com/timgaripov/swa.

27

https://github.com/timgaripov/swa


SWA
DNN (Budget) SGD FGE (1 Budget) 1 Budget 1.25 Budgets 1.5 Budgets

CIFAR-100
VGG-16 (200) 72.55 ± 0.10 74.26 73.91 ± 0.12 74.17 ± 0.15 74.27 ± 0.25

ResNet-164 (150) 78.49 ± 0.36 79.84 79.77 ± 0.17 80.18 ± 0.23 80.35 ± 0.16
WRN-28-10 (200) 80.82 ± 0.23 82.27 81.46 ± 0.23 81.91 ± 0.27 82.15 ± 0.27

PyramidNet-272 (300) 83.41 ± 0.21 – – 83.93 ± 0.18 84.16 ± 0.15
CIFAR-10

VGG-16 (200) 93.25 ± 0.16 93.52 93.59 ± 0.16 93.70 ± 0.22 93.64 ± 0.18
ResNet-164 (150) 95.28 ± 0.10 95.45 95.56 ± 0.11 95.77 ± 0.04 95.83 ± 0.03
WRN-28-10 (200) 96.18 ± 0.11 96.36 96.45 ± 0.11 96.64 ± 0.08 96.79 ± 0.05

ShakeShake-2x64d (1800) 96.93 ± 0.10 – – 97.16 ± 0.10 97.12 ± 0.06

Table 2.1: Accuracies (%) of SWA, SGD and FGE methods on CIFAR-100 and CIFAR-10 datasets for dif-
ferent training budgets. Accuracies for the FGE ensemble are from Garipov et al. [2018].

2.6.1 CIFAR Datasets

For the experiments on CIFAR datasets we use VGG-16 [Simonyan and Zisserman 2014], a 164-

layer Preactivation-ResNet [He et al. 2016] and Wide ResNet-28-10 [Zagoruyko and Komodakis

2016] models. Additionally, we experiment with the recent Shake-Shake-2x64d [Gastaldi 2017]

on CIFAR-10 and PyramidNet-272 (bottleneck, 𝛼 = 200) [Han et al. 2016] on CIFAR-100. All

models are trained using 𝐿2-regularization, and VGG-16 also uses dropout.

For each model we define budget as the number of epochs required to train the model until

convergence with conventional SGD training, such that we do not see improvement with SGD

beyond this budget. We use the same budgets for VGG, Preactivation ResNet and Wide ResNet

models as Garipov et al. [2018]. For Shake-Shake and PyramidNets we use the budgets indicated

by the papers that proposed these models [Gastaldi 2017; Han et al. 2016]. We report the results

of SWA training within 1, 1.25 and 1.5 budgets of epochs.

For VGG, Wide ResNet and Preactivation-ResNet models we first run standard SGD training

for ≈ 75% of the training budget, and then use the weights at the last epoch as an initialization for

SWA with a fixed learning rate schedule. We ran SWA for 0.25, 0.5 and 0.75 budget to complete

28



the training within 1, 1.25 and 1.5 budgets respectively.

For Shake-Shake and PyramidNet architectures we do not report the results in one budget.

For thesemodels we use a full budget to get an initialization for the procedure, and then train with

a cyclical learning rate schedule for 0.25 and 0.5 budgets. We used long cycles of small learning

rates for Shake-Shake, because this architecture already involves many stochastic components.

We present the details of the learning rate schedules for each of these models in the Appendix.

For each model we also report the results of conventional SGD training, which we denote by

SGD. For VGG, Preactivation ResNet and Wide ResNet we also provide the results of the FGE

method with one budget. Note that for FGE we report the accuracy of an ensemble of 6 to 12

networks, while for SWA we report the accuracy of a single model.

We summarize the experimental results in Table 2.1. For all models we report the mean and

standard deviation of test accuracy over 3 runs. In all conducted experiments SWA substantially

outperforms SGD in one budget, and improves further, as we allow more training epochs. Across

different architectures we see consistent improvement by ≈ 0.5% on CIFAR-10 (excluding Shake-

Shake, for which SGD performance is already extremely high) and by 0.75-1.5% on CIFAR-100.

Amazingly, SWA is able to achieve comparable or better performance than FGE ensembles with

just onemodel. OnCIFAR-100 SWAusually needsmore than one budget to get results comparable

with FGE ensembles, but on CIFAR-10 even with 1 budget SWA outperforms FGE.

2.6.2 ImageNet

On ImageNet we experimented with ResNet-50, ResNet-152 [He et al. 2016] and DenseNet-161

[Huang et al. 2017b]. For these architectureswe used pretrainedmodels from PyTorch.torchvision.

For each of the models we ran SWA for 10 epochs with a cyclical learning rate schedule with the

same parameters for all models (the details can be found in Appendix A.2.1), and report the mean

and standard deviation of test error averaged over 3 runs. The results are shown in Table 2.2. For

all 3 architectures SWA provides consistent improvement by 0.6-0.9% over the pretrained models.
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SWA
DNN SGD 5 epochs 10 epochs

ResNet-50 76.15 76.83 ± 0.01 76.97 ± 0.05
ResNet-152 78.31 78.82 ± 0.01 78.94 ± 0.07

DenseNet-161 77.65 78.26 ± 0.09 78.44 ± 0.06

Table 2.2: Top-1 accuracies (%) on ImageNet for SWA and SGD with different architectures.
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Figure 2.10: Test error as a function of training epoch for SWAwith different learning rate schedules with
a Preactivation ResNet-164 on CIFAR-100.

2.6.3 Effect of the Learning Rate Schedule

In this section we explore how the learning rate schedule affects the performance of SWA. We

run experiments on Preactivation ResNet-164 on CIFAR-100. For all schedules we use the same

initialization from a model trained for 125 epochs using the conventional SGD training. As a

baseline we use a fully-trained model trained with conventional SGD for 150 epochs.

We consider a range of constant and cyclical learning rate schedules. For cyclical learning

rates we fix the cycle length to 5, and consider the pairs of base learning rate parameters (𝛼1, 𝛼2) ∈

{(10−1, 10−3), (5 ·10−2, 5 ·10−4), (10−2, 10−4), (5 ·10−3, 5 ·10−5)}. Among the constant learning rates

we consider 𝛼1 ∈ {10−1, 5 · 10−2, 10−2, 10−3}.

We plot the test error of the SWA procedure for different learning rate schedules as a function

of the number of training epochs in Figure 2.10.
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We find that in general the more aggressive constant learning rate schedule leads to faster

convergence of SWA. In our experiments we found that setting the learning rate to some inter-

mediate value between the largest and the smallest learning rate used in the annealing scheme

in conventional training usually gave us the best results. The approach is however universal and

can work well with different learning rate schedules tailored for particular tasks.

2.7 Related Work

Despite the success of deep learning across many application domains, the loss surfaces of deep

neural networks are not well understood. These loss surfaces are an active area of research, which

falls into two distinct categories.

The first category explores the local structure of minima found by SGD and its modifications.

Researchers typically distinguish sharp and wide local minima, which are respectively found by

using large and small mini-batch sizes during training. Hochreiter and Schmidhuber [1997a] and

Keskar et al. [2017], for example, claim that flat minima lead to strong generalization, while sharp

minima deliver poor results on the test dataset. However, recently Dinh et al. [2017a] argue that

most existing notions of flatness cannot directly explain generalization. To better understand

the local structure of DNN loss minima, Li et al. [2017] proposed a new visualization method for

the loss surface near the minima found by SGD. Applying the method for a variety of different

architectures, they showed that the loss surfaces of residual networks are seemingly smoother

than those of VGG-like models.

The other major category of research considers global loss structure. One of the main ques-

tions in this area is how neural networks are able to overcome poor local optima. Choromanska

et al. [2015] investigated the link between the loss function of a simple fully-connected network

and the Hamiltonian of the spherical spin-glass model. Under strong simplifying assumptions

they showed that the values of the investigated loss function at local optima are within a well-
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defined bound. In other research, Lee et al. [2016a] showed that under mild conditions gradient

descent almost surely converges to a local minimizer and not a saddle point, starting from a

random initialization.

Freeman and Bruna [2017] theoretically show that local minima of a neural network with

one hidden layer and ReLU activations can be connected with a curve along which the loss is

upper-bounded by a constant that depends on the number of parameters of the network and

the “smoothness of the data”. Their theoretical results do not readily generalize to multilayer

networks. Using a dynamic programming approach they empirically construct a polygonal chain

for a CNN on MNIST and an RNN on PTB next word prediction. However, in more difficult

settings such as AlexNet on CIFAR-10 their approach struggles to achieve even the modest test

accuracy of 80%. Moreover, they do not consider ensembling.

By contrast, in this chapter we describe a much simpler training procedure that can find

near-constant accuracy polygonal chains with only one bend between optima, on a range of

architectures. Inspired by properties of the loss function discovered by our procedure, we also

propose a new state-of-the-art ensembling method that can be trained in the time required to

train a single DNN, with compelling performance on many key benchmarks (e.g., 96.4% accuracy

on CIFAR-10).

Fast Ensembling Methods. Xie et al. [2013] proposed a related ensembling approach that

gathers outputs of neural networks from different epochs at the end of training to stabilize final

predictions. More recently, Huang et al. [2017a] proposed snapshot ensembles, which use a cosine

cyclical learning rate [Loshchilov and Hutter 2017b] to save “snapshots” of the model during

training at times when the learning rate achieves its minimum. In our experiments, we compare

our geometrically inspired approach to Huang et al. [2017a], showing improved performance.

Extensions of Mode Connectivity. Draxler et al. [2018a] simultaneously and independently

discovered the existence of curves connecting local optima in DNN loss landscapes. To find these
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curves they used a different approach inspired by the Nudged Elastic Bandmethod [Jonsson et al.

1998] from quantum chemistry. Skorokhodov and Burtsev [2019] use a method inspired bymode-

connectivity to show that it is possible to find arbitrary shapes in the loss surfaces of neural net-

works. Benton et al. [2021] generalize our observations to construct mode-connecting simplicial

complexes that formmulti-dimensional manifolds of low loss. Fort and Jastrzebski [2019] present

a large-scale model of neural network loss surfaces that agrees with mode connectivity. Kudi-

tipudi et al. [2019] provide a theoretical explanation of mode connectivity. Recently, Ainsworth

et al. [2022] showed that it is often possible to achieve linear mode connectivity if we account for

permutation invariances in the parameterization of neural networks.

Weight Averaging. The SWA method is based on averaging multiple points along the trajec-

tory of SGD with cyclical or constant learning rates. The general idea of maintaining a running

average of weights proposed by SGD was first considered in convex optimization by Ruppert

[1988] and later by Polyak and Juditsky [1992]. However, this procedure is not typically used to

train neural networks. Practitioners instead sometimes use an exponentially decaying running

average of the weights found by SGDwith a decaying learning rate, which smooths the trajectory

of SGD but performs comparably.

SWA is making use of multiple samples gathered through exploration of the set of points

corresponding to high performing networks. To enforce exploration we run SGD with constant

or cyclical learning rates. Mandt et al. [2017b] show that under several simplifying assumptions

running SGDwith a constant learning rate is equivalent to sampling from a Gaussian distribution

centered at the minimum of the loss, and the covariance of this Gaussian is controlled by the

learning rate. Following this explanation from [Mandt et al. 2017b], we can interpret points

proposed by SGD as being constrained to the surface of a sphere, since they come from a high

dimensional Gaussian distribution. SWA effectively allows us to go inside the sphere to find

higher density solutions.
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Dropout [Srivastava et al. 2014] is an extremely popular approach to regularizing DNNs.

Across each mini-batch used for SGD, a different architecture is created by randomly dropping

out neurons. The authors make analogies between dropout, ensembling, and Bayesian model

averaging. At test time, an ensemble approach is proposed, but then approximated with similar

results by multiplying each connection by the dropout rate. At a high level, SWA and Dropout are

both at once regularizers and training procedures, motivated to approximate an ensemble. Each

approach implements these high level ideas quite differently, and as we show in our experiments,

can be combined for improved performance.

2.8 Discussion

We have shown that the optima of deep neural networks are connected by simple pathways, such

as a polygonal chain with a single bend, with near constant accuracy. We introduced a training

procedure to find these pathways, with a user-specific curve of choice. We were inspired by

these insights to propose a practical new training method, Stochastic Weight Averaging, which

achieves strong results on CIFAR-10, CIFAR-100, and ImageNet. Stochastic Weight Averaging is

extremely easy to implement, architecture-agnostic, and improves generalization performance at

virtually no additional cost over conventional training.

At a high level we have shown that even though the loss surfaces of deep neural networks

are very complex, there is relatively simple structure connecting different optima. Indeed, we

can now move towards thinking about valleys of low loss, rather than isolated modes. A better

understanding of the loss surfaces for multilayer networks will help continue to unlock the po-

tential of these rich models. In Chapters 3 and 4 we show how mode connectivity connects to

Bayesian deep learning and probabilistic perspective on deep learning.

In this chapter, we also showed that SGD typically converges to the boundary of a vast low-

loss region, and by averaging the SGD iterates with SWA, we can move towards the center of this
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region. In subsequent works, we developed extensions of SWA for reinforcement learning [Nik-

ishin et al. 2018], semi-supervised learning [Athiwaratkun et al. 2019] and uncertainty estimation

[Chapter 3; Maddox et al. 2019]. SWA has been applied to numerous domains from skin lesion

segmentation [Tang et al. 2019] and cosmic microwave background inference [Lemos et al. 2022]

to low-precision training [Yang et al. 2019a] and domain generalization [Cha et al. 2021]. Due to

its high popularity, SWA was added to the core PyTorch library, among a small selection of op-

timizers [Izmailov et al. 2020], and discussed in several modern deep learning textbooks [Zhang

et al. 2021; Murphy 2023]. SWA continues to inspire new methods, such as efficient training of

language models [Li et al. 2022] and the current state-of-the-art on ImageNet [Wortsman et al.

2022].
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3 | Probabilistic Models and Bayesian

Deep Learning

Deep neural networks are highly flexible models that are typically not fully determined by the

training data. Indeed, in Chapter 2 we explored in detail the optima of neural networks and the

diversity of predictions that they make on the test set. We have also seen how these optima can

be combined for improved predictions by ensembling.

Bayesian methods provide a natural and principled way to account for the epistemic uncer-

tainty — uncertainty over the parameters of our model due to limited data. In particular, true

Bayesian neural networks would automatically consider and ensemble all the possible settings

of the parameters that are consistent with the training data. As a result, these models should

provide better predictions and uncertainty estimates compared to standard training.

In this chapter, we describe the Bayesian approach to deep learning, and the probabilistic

perspective on generalization, providing new insights into several phenomena in deep learn-

ing. We also propose practical methods for improved uncertainty estimation in neural networks.

Throughout the chapter, we heavily rely on our observations about the loss surfaces of neural

networks discussed in Chapter 2.

This chapter is adapted from the papers “Bayesian Deep Learning and a Probabilistic Per-

spective of Generalization” [Wilson and Izmailov 2020] which appeared at NeurIPS 2020 and “A

Simple Baseline for Bayesian Uncertainty in Deep Learning” [Maddox et al. 2019] which appeared
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at NeurIPS 2019. These papers are written jointly with Wesley Maddox, Timur Garipov, Dmitry

Vetrov and Andrew Gordon Wilson.

3.1 Bayesian Perspective on Generalization

Imagine fitting the airline passenger data in Figure 3.1. Which model would you choose: (1)

𝑓1(𝑥) = 𝑤0 +𝑤1𝑥 , (2) 𝑓2(𝑥) =
∑3
𝑗=0𝑤 𝑗𝑥

𝑗 , or (3) 𝑓3(𝑥) =
∑104

𝑗=0𝑤 𝑗𝑥
𝑗?
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Figure 3.1: Airline passenger numbers recorded monthly.

Put this way, most audiences overwhelmingly favour choices (1) and (2), for fear of overfitting.

But of these options, choice (3) most honestly represents our beliefs. Indeed, it is likely that the

ground truth explanation for the data is out of class for any of these choices, but there is some

setting of the coefficients {𝑤 𝑗 } in choice (3) which provides a better description of reality than

could be managed by choices (1) and (2), which are special cases of choice (3). Moreover, our

beliefs about the generative processes for our observations, which are often very sophisticated,

typically ought to be independent of how many data points we happen to observe.

And in modern practice, we are implicitly favouring choice (3): we often use neural networks

withmillions of parameters to fit datasets with thousands of points. Furthermore, non-parametric

methods such as Gaussian processes often involve infinitely many parameters, enabling the flex-

ibility for universal approximation [Rasmussen and Williams 2006], yet in many cases provide
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Figure 3.2: A probabilistic perspective of generalization. (a) Ideally, a model supports a wide range
of datasets, but with inductive biases that provide high prior probability to a particular class of problems
being considered. Here, the CNN is preferred over the linear model and the fully-connected MLP for
CIFAR-10 (while we do not consider MLP models to in general have poor inductive biases, here we are
considering a hypothetical example involving images and a very large MLP). (b) By representing a large
hypothesis space, a model can contract around a true solution, which in the real-world is often very
sophisticated. (c) With truncated support, a model will converge to an erroneous solution. (d) Even if
the hypothesis space contains the truth, a model will not efficiently contract unless it also has reasonable
inductive biases.

very simple predictive distributions. Indeed, parameter counting is a poor proxy for understand-

ing generalization behaviour.

From a probabilistic perspective, we argue that generalization depends largely on two proper-

ties, the support and the inductive biases of a model. Consider Figure 3.2(a), where on the horizon-

tal axis we have a conceptualization of all possible datasets, and on the vertical axis the Bayesian

evidence for a model. The evidence, or marginal likelihood, 𝑝 (D|M) =
∫
𝑝 (D|M,𝑤)𝑝 (𝑤)𝑑𝑤 , is

the probability we would generate a dataset if we were to randomly sample from the prior over
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functions 𝑝 (𝑓 (𝑥)) induced by a prior over parameters 𝑝 (𝑤). We define the support as the range

of datasets for which 𝑝 (D|M) > 0. We define the inductive biases as the relative prior proba-

bilities of different datasets — the distribution of support given by 𝑝 (D|M). A similar schematic

to Figure 3.2(a) was used by MacKay [1992a] to understand an Occam’s razor effect in using the

evidence for model selection; we believe it can also be used to reason about model construction

and generalization.

From this perspective, we want the support of the model to be large so that we can represent

any hypothesis we believe to be possible, even if it is unlikely. We would even want the model to

be able to represent pure noise, such as noisy CIFAR [Zhang et al. 2017a], as long as we honestly

believe there is some non-zero, but potentially arbitrarily small, probability that the data are

simply noise. Crucially, we also need the inductive biases to carefully represent which hypotheses

we believe to be a priori likely for a particular problem class. If we are modelling images, then

our model should have statistical properties, such as convolutional structure, which are good

descriptions of images.

Figure 3.2(a) illustrates three models. We can imagine the blue curve as a simple linear func-

tion, 𝑓 (𝑥) = 𝑤0+𝑤1𝑥 , combinedwith a distribution over parameters 𝑝 (𝑤0,𝑤1), e.g.,N(0, 𝐼 ), which

induces a distribution over functions 𝑝 (𝑓 (𝑥)). Parameters we sample from our prior 𝑝 (𝑤0,𝑤1)

give rise to functions 𝑓 (𝑥) that correspond to straight lines with different slopes and intercepts.

This model thus has truncated support: it cannot even represent a quadratic function. But be-

cause the marginal likelihood must normalize over datasets D, this model assigns much mass to

the datasets it does support. The red curve could represent a large fully-connected MLP. This

model is highly flexible, but distributes its support across datasets too evenly to be particularly

compelling for many image datasets. The green curve could represent a convolutional neural

network, which represents a compelling specification of support and inductive biases for image

recognition: this model has the flexibility to represent many solutions, but its structural proper-

ties provide particularly good support for many image problems.

39



With large support, we cast a wide enough net that the posterior can contract around the

true solution to a given problem as in Figure 3.2(b), which in reality we often believe to be very

sophisticated. On the other hand, the simple model will have a posterior that contracts around an

erroneous solution if it is not contained in the hypothesis space as in Figure 3.2(c). Moreover, in

Figure 3.2(d), the model has wide support, but does not contract around a good solution because

its support is too evenly distributed.

Returning to the opening example, we can justify the high order polynomial by wanting large

support. But wewould still have to carefully choose the prior on the coefficients to induce a distri-

bution over functions that would have reasonable inductive biases. Indeed, this Bayesian notion

of generalization is not based on a single number, but is a two dimensional concept. From this

probabilistic perspective, it is crucial not to conflate the flexibility of a model with the complex-

ity of a model class. Indeed Gaussian processes with RBF kernels have large support, and are

thus flexible, but have inductive biases towards very simple solutions. We also see that parameter

counting has no significance in this perspective of generalization: what matters is how a distri-

bution over parameters combines with a functional form of a model, to induce a distribution over

solutions. Rademacher complexity [Mohri and Rostamizadeh 2009], VC dimension [Vapnik 1998],

and many conventional metrics, are by contrast one dimensional notions, corresponding roughly

to the support of the model, which is why they have been found to provide an incomplete picture

of generalization in deep learning [Zhang et al. 2017a].

The key distinguishing property of a Bayesian approach is marginalization instead of opti-

mization, where we represent solutions given by all settings of parameters weighted by their pos-

terior probabilities, rather than bet everything on a single setting of parameters. Neural networks

are typically underspecified by the data, and can represent many different but high performing

models corresponding to different settings of parameters, which is exactly when marginaliza-

tion will make the biggest difference for accuracy and calibration. Moreover, we clarify that

the recent deep ensembles [Lakshminarayanan et al. 2017] are not a competing approach to
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Bayesian inference, but can be viewed as a compelling mechanism for Bayesian marginalization.

Indeed, we empirically demonstrate that deep ensembles can provide a better approximation to

the Bayesian predictive distribution than standard Bayesian approaches. We further propose a

new method, MultiSWAG, inspired by deep ensembles, which marginalizes within basins of at-

traction — achieving significantly improved performance, with a similar training time.

We then investigate the properties of priors over functions induced by priors over the weights

of neural networks, showing that they have reasonable inductive biases. We also show that the

mysterious generalization properties recently presented in Zhang et al. [2017a] can be understood

by reasoning about prior distributions over functions, and are not specific to neural networks.

Indeed, we show Gaussian processes can also perfectly fit images with random labels, yet gener-

alize on the noise-free problem. These results are a consequence of large support but reasonable

inductive biases for common problem settings. We further show that while Bayesian neural net-

works can fit the noisy datasets, the marginal likelihood has much better support for the noise

free datasets, in line with Figure 3.2. We additionally show that the multimodal marginalization

in MultiSWAG alleviates double descent, so as to achieve monotonic improvements in perfor-

mance with model flexibility, in line with our perspective of generalization. MultiSWAG also

provides significant improvements in both accuracy and NLL over SGD training and unimodal

marginalization. Finally we provide several perspectives on tempering in Bayesian deep learning.

In the Appendix we provide several additional experiments and results. We also provide code

at https://github.com/izmailovpavel/understandingbdl.

3.2 Bayesian Marginalization

Often the predictive distribution we want to compute is given by

𝑝 (𝑦 |𝑥,D) =
∫

𝑝 (𝑦 |𝑥,𝑤)𝑝 (𝑤 |D)𝑑𝑤 . (3.1)
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The outputs are 𝑦 (e.g., regression values, class labels, . . . ), indexed by inputs 𝑥 (e.g. spatial lo-

cations, images, . . . ), the weights (or parameters) of the neural network 𝑓 (𝑥 ;𝑤) are 𝑤 , and D

are the data. Eq. (3.1) represents a Bayesian model average (BMA). Rather than bet everything on

one hypothesis — with a single setting of parameters 𝑤 — we want to use all settings of param-

eters, weighted by their posterior probabilities. This procedure is called marginalization of the

parameters 𝑤 , as the predictive distribution of interest no longer conditions on 𝑤 . This is not a

controversial equation, but simply the sum and product rules of probability.

3.2.1 Importance of Marginalization in Deep Learning

In general, we can view classical training as performing approximate Bayesian inference, using

the approximate posterior 𝑝 (𝑤 |D) ≈ 𝛿 (𝑤 = 𝑤̂) to compute Eq. (3.1), where 𝛿 is a Dirac delta func-

tion that is zero everywhere except at 𝑤̂ = argmax𝑤𝑝 (𝑤 |D). In this case, we recover the standard

predictive distribution 𝑝 (𝑦 |𝑥, 𝑤̂). From this perspective, many alternatives, albeit imperfect, will

be preferable — including impoverished Gaussian posterior approximations for 𝑝 (𝑤 |D), even if

the posterior or likelihood are actually highly non-Gaussian and multimodal.

The difference between a classical and Bayesian approach will depend on how sharp the pos-

terior 𝑝 (𝑤 |D) becomes. If the posterior is sharply peaked, and the conditional predictive distri-

bution 𝑝 (𝑦 |𝑥,𝑤) does not vary significantly where the posterior has mass, there may be almost

no difference, since a delta function may then be a reasonable approximation of the posterior for

the purpose of BMA. However, modern neural networks are usually highly underspecified by the

available data, and therefore have diffuse likelihoods 𝑝 (D|𝑤), not strongly favouring any one

setting of parameters. Not only are the likelihoods diffuse, but different settings of the parame-

ters correspond to a diverse variety of compelling hypotheses for the data [Garipov et al. 2018;

Izmailov et al. 2019]. This is exactly the setting when wemost want to perform a Bayesian model

average, which will lead to an ensemble containing many different but high performing models,

for better calibration and accuracy than classical training.
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Loss Valleys. Flat regions of low loss (negative log posterior density − log𝑝 (𝑤 |D)) are asso-

ciated with good generalization [e.g., Hochreiter and Schmidhuber 1997a; Hinton and Van Camp

1993; Dziugaite and Roy 2017; Izmailov et al. 2018; Keskar et al. 2016]. While flat solutions that

generalize poorly can be contrived through reparametrization [Dinh et al. 2017b], the flat regions

that lead to good generalization contain a diversity of high performing models on test data [Iz-

mailov et al. 2018], corresponding to different parameter settings in those regions. And indeed,

as we discussed in Chapter 2, there are large contiguous regions of low loss that contain such

solutions, even connecting together different SGD solutions [Garipov et al. 2018; Izmailov et al.

2019] (see also Figure A.15, Appendix).

Since these regions of the loss represent a large volume in a high-dimensional space [Huang

et al. 2019], and provide a diversity of solutions, they will dominate in forming the predictive

distribution in a Bayesian model average. By contrast, if the parameters in these regions provided

similar functions, as would be the case in flatness obtained through reparametrization, these

functions would be redundant in the model average. That is, although the solutions of high

posterior density can provide poor generalization, it is the solutions that generalize well that will

have greatest posterior mass, and thus be automatically favoured by the BMA.

Calibration by Epistemic Uncertainty Representation. It has been noticed that modern

neural networks are often miscalibrated in the sense that their predictions are typically overcon-

fident [Guo et al. 2017]. For example, in classification the highest softmax output of a convolu-

tional neural network is typically much larger than the probability of the associated class label.

The fundamental reason for miscalibration is ignoring epistemic uncertainty. A neural network

can represent many models that are consistent with our observations. By selecting only one, in a

classical procedure, we lose uncertainty when the models disagree for a test point. In regression,

we can visualize epistemic uncertainty by looking at the spread of the predictive distribution;

as we move away from the data, there are a greater variety of consistent solutions, leading to
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larger uncertainty, as in Figure 3.7. We can further calibrate the model with tempering, which

we discuss in the Appendix Section 3.10.

Accuracy. An often overlooked benefit of Bayesian model averaging in modern deep learning

is improved accuracy. If we average the predictions of many high performing models that dis-

agree in some cases, we should see significantly improved accuracy. This benefit is now starting

to be observed in practice [e.g., Izmailov et al. 2019]. Improvements in accuracy are very convinc-

ingly exemplified by deep ensembles [Lakshminarayanan et al. 2017], which have been perceived

as a competing approach to Bayesian methods, but in fact provides a compelling mechanism

for approximate Bayesian model averaging, as we show in Section 3.2.3. We also demonstrate

significant accuracy benefits for multimodal Bayesian marginalization in Section 3.9.

3.2.2 Beyond Monte Carlo

Nearly all approaches to estimating the integral in Eq. (3.1), when it cannot be computed in closed

form, involve a simple Monte Carlo approximation: 𝑝 (𝑦 |𝑥,D) ≈ 1
𝐽

∑𝐽

𝑗=1 𝑝 (𝑦 |𝑥,𝑤 𝑗 ) ,𝑤 𝑗 ∼ 𝑝 (𝑤 |D).

In practice, the samples from the posterior 𝑝 (𝑤 |D) are also approximate, and found through

MCMC or deterministic methods. The deterministic methods approximate 𝑝 (𝑤 |D) with a differ-

ent more convenient density 𝑞(𝑤 |D, 𝜃 ) from which we can sample, often chosen to be Gaussian.

The parameters 𝜃 are selected to make 𝑞 close to 𝑝 in some sense; for example, variational ap-

proximations [e.g., Beal 2003], which have emerged as a popular deterministic approach, find

argmin𝜃KL(𝑞 | |𝑝). Other standard deterministic approximations include Laplace [e.g., MacKay

1995], EP [Minka 2001], and INLA [Rue et al. 2009].

From the perspective of estimating the predictive distribution in Eq. (3.1), we can view simple

Monte Carlo as approximating the posterior with a set of point masses, with locations given by

samples from another approximate posterior 𝑞, even if 𝑞 is a continuous distribution. That is,

𝑝 (𝑤 |D) ≈ ∑𝐽

𝑗=1 𝛿 (𝑤 = 𝑤 𝑗 ) ,𝑤 𝑗 ∼ 𝑞(𝑤 |D).
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Ultimately, the goal is to accurately compute the predictive distribution in Eq. (3.1), rather

than find a generally accurate representation of the posterior. In particular, we must carefully

represent the posterior in regions that will make the greatest contributions to the BMA integral.

In terms of efficiently computing the predictive distribution, we do not necessarily want to place

point masses at locations given by samples from the posterior. For example, functional diversity

is important for a good approximation to the BMA integral, because we are summing together

terms of the form 𝑝 (𝑦 |𝑥,𝑤); if two settings of the weights𝑤𝑖 and𝑤 𝑗 each provide high likelihood

(and consequently high posterior density), but give rise to similar functions 𝑓 (𝑥 ;𝑤𝑖), 𝑓 (𝑥 ;𝑤 𝑗 ),

then they will be largely redundant in the model average, and the second setting of parameters

will not contribute much to estimating the BMA integral for the unconditional predictive distri-

bution. In Sections 3.2.3 and 3.6, we consider how various approaches approximate the predictive

distribution.

3.2.3 Deep Ensembles are BMA

Deep ensembles [Lakshminarayanan et al. 2017] is fast becoming a gold standard for accurate and

well-calibrated predictive distributions. Recent reports [e.g., Ovadia et al. 2019; Ashukha et al.

2020] show that deep ensembles appear to outperform some particular approaches to Bayesian

neural networks for uncertainty representation, leading to the confusion that deep ensembles

and Bayesian methods are competing approaches. These methods are often explicitly referred

to as non-Bayesian [e.g., Lakshminarayanan et al. 2017; Ovadia et al. 2019; Wenzel et al. 2020].

To the contrary, we argue that deep ensembles are actually a compelling approach to Bayesian

model averaging, in the vein of Section 3.2.2.

There is a fundamental difference between a Bayesian model average and some approaches

to ensembling. The Bayesian model average assumes that one hypothesis (one parameter set-

ting) is correct, and averages over models due to an inability to distinguish between hypotheses

given limited information [Minka 2000b]. As we observe more data, the posterior collapses onto
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a single hypothesis. If the true explanation for the data is a combination of hypotheses, then

the Bayesian model average may appear to perform worse as we observe more data. Some en-

sembling methods work by enriching the hypothesis space, and therefore do not collapse in this

way. Deep ensembles, however, are formed by MAP or maximum likelihood retraining of the

same architecture multiple times, leading to different basins of attraction. The deep ensemble

will therefore collapse in the same way as a Bayesian model average, as the posterior concen-

trates. Since the hypotheses space (support) for a modern neural network is large, containing

many different possible explanations for the data, posterior collapse will often be desirable.

Furthermore, by representing multiple basins of attraction, deep ensembles can provide a bet-

ter approximation to the BMA than the Bayesian approaches in Ovadia et al. [2019]. Indeed,

the functional diversity is important for a good approximation to the BMA integral, as per Sec-

tion 3.2.2. The approaches referred to as Bayesian in Ovadia et al. [2019] instead focus their

approximation on a single basin, which may contain a lot of redundancy in function space, mak-

ing a relatively minimal contribution to computing the Bayesian predictive distribution. On the

other hand, retraining a neural network multiple times for deep ensembles incurs a significant

computational expense. The single basin approaches may be preferred if we are to control for

computation. We explore these questions in Section 3.6.

3.3 SWA-Gaussian

Bayesian methods provide a natural probabilistic representation of uncertainty in deep learning

[e.g., Blundell et al. 2015; Kingma et al. 2015; Chen et al. 2014], and previously had been a gold

standard for inference with neural networks [Neal 1996]. However, existing approaches are often

highly sensitive to hyperparameter choices, and hard to scale to modern datasets and architec-

tures, which limits their general applicability in modern deep learning.

In this section we propose a different approach to Bayesian deep learning: we use the infor-
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mation contained in the SGD trajectory to efficiently approximate the posterior distribution over

the weights of the neural network. We find that the Gaussian distribution fitted to the first two

moments of SGD iterates, with a modified learning rate schedule, captures the local geometry of

the posterior surprisingly well. Using this Gaussian distribution we are able to obtain convenient,

efficient, accurate and well-calibrated predictions in a broad range of tasks in computer vision.

We propose SWA-Gaussian in Sections 3.3.2 and 3.3.3 to estimate the covariance of the sta-

tionary distribution, forming a Gaussian approximation to the posterior over weight parameters.

With SWAG, uncertainty in weight space is captured with minimal modifications to the SWA

training procedure. We then present further theoretical and empirical analysis for SWAG in Sec-

tion 3.4.

3.3.1 Stochastic Gradient Descent (SGD)

Standard training of deep neural networks (DNNs) proceeds by applying stochastic gradient de-

scent on the model weights 𝜃 with the following update rule:

Δ𝜃𝑡 = −𝜂𝑡

(
1
𝐵

𝐵∑︁
𝑖=1
∇𝜃 log𝑝 (𝑦𝑖 |𝑓𝜃 (𝑥𝑖)) −

∇𝜃 log𝑝 (𝜃 )
𝑁

)
,

where the learning rate is 𝜂, the 𝑖th input (e.g. image) and label are {𝑥𝑖, 𝑦𝑖}, the size of the whole

training set is 𝑁 , the size of the batch is 𝐵, and the DNN, 𝑓 , has weight parameters 𝜃 .1 The loss

function is a negative log likelihood −∑
𝑖 log𝑝 (𝑦𝑖 |𝑓𝜃 (𝑥𝑖)), combined with a regularizer log𝑝 (𝜃 ).

This type of maximum likelihood training does not represent uncertainty in the predictions or

parameters 𝜃 .
1We ignoremomentum for simplicity in this update; however we utilizedmomentum in the resulting experiments

and it is covered theoretically [Mandt et al. 2017a].
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3.3.2 SWAG-Diagonal

We first consider a simple diagonal format for the covariance matrix. In order to fit a diagonal

covariance approximation, we maintain a running average of the second uncentered moment

for each weight, and then compute the covariance using the following standard identity at the

end of training: 𝜃 2 = 1
𝑇

∑𝑇
𝑖=1 𝜃

2
𝑖 , Σdiag = diag(𝜃 2 − 𝜃 2

SWA); here the squares in 𝜃 2
SWA and 𝜃 2

𝑖 are

applied elementwise. The resulting approximate posterior distribution is thenN(𝜃SWA, ΣDiag). In

our experiments, we term this method SWAG-Diagonal.

Constructing the SWAG-Diagonal posterior approximation requires storing two additional

copies of DNNweights: 𝜃SWA and 𝜃 2. Note that these models do not have to be stored on the GPU.

The additional computational complexity of constructing SWAG-Diagonal compared to standard

training is negligible, as it only requires updating the running averages of weights once per epoch.

3.3.3 SWAG: Low Rank plus Diagonal Covariance Structure

We now describe the full SWAG algorithm. While the diagonal covariance approximation is

standard in Bayesian deep learning [Blundell et al. 2015; Kirkpatrick et al. 2017], it can be too

restrictive. We extend the idea of diagonal covariance approximations to utilize a more flexible

low-rank plus diagonal posterior approximation. SWAG approximates the sample covariance Σ

of the SGD iterates along with the mean 𝜃SWA.2

Note that the sample covariance matrix of the SGD iterates can be written as the sum of

outer products, Σ = 1
𝑇−1

∑𝑇
𝑖=1(𝜃𝑖 − 𝜃SWA) (𝜃𝑖 − 𝜃SWA)⊤, and is of rank 𝑇 . As we do not have

access to the value of 𝜃SWA during training, we approximate the sample covariance with Σ ≈
1

𝑇−1
∑𝑇
𝑖=1(𝜃𝑖 − 𝜃𝑖) (𝜃𝑖 − 𝜃𝑖)⊤ = 1

𝑇−1𝐷𝐷
⊤, where 𝐷 is the deviation matrix comprised of columns

2We note that stochastic gradient Monte Carlo methods [Chen et al. 2014; Welling and Teh 2011] also use the SGD
trajectory to construct samples from the approximate posterior. However, these methods are principally different
from SWAG in that they (1) require adding Gaussian noise to the gradients, (2) decay learning rate to zero and (3) do
not construct a closed-form approximation to the posterior distribution, which for instance enables SWAG to draw
new samples with minimal overhead. We include comparisons to SGLD [Welling and Teh 2011] in the Appendix.
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𝐷𝑖 = (𝜃𝑖 − 𝜃𝑖), and 𝜃𝑖 is the running estimate of the parameters’ mean obtained from the first 𝑖

samples. To limit the rank of the estimated covariance matrix we only use the last𝐾 of𝐷𝑖 vectors

corresponding to the last 𝐾 epochs of training. Here 𝐾 is the rank of the resulting approximation

and is a hyperparameter of the method. We define 𝐷 to be the matrix with columns equal to 𝐷𝑖

for 𝑖 = 𝑇 − 𝐾 + 1, . . . ,𝑇 .

We then combine the resulting low-rank approximation Σlow-rank =
1

𝐾−1 ·𝐷𝐷
⊤ with the diag-

onal approximation Σdiag of Section 3.3.2. The resulting approximate posterior distribution is a

Gaussian with the SWA mean 𝜃SWA and summed covariance: N(𝜃SWA,
1
2 · (Σdiag + Σlow-rank)).3 In

our experiments, we term this method SWAG. Computing this approximate posterior distribution

requires storing 𝐾 vectors 𝐷𝑖 of the same size as the model as well as the vectors 𝜃SWA and 𝜃 2.

These models do not have to be stored on a GPU.

To sample from SWAG we use the following identity

𝜃 = 𝜃SWA +
1
√

2
· Σ

1
2
diag𝑧1 +

1√︁
2(𝐾 − 1)

𝐷𝑧2, where 𝑧1 ∼ N(0, 𝐼𝑑), 𝑧2 ∼ N(0, 𝐼𝐾 ). (3.2)

Here 𝑑 is the number of parameters in the network. Note that Σdiag is diagonal, and the product

Σ
1
2
diag𝑧1 can be computed in O(𝑑) time. The product 𝐷𝑧2 can be computed in O(𝐾𝑑) time.

Related methods for estimating the covariance of SGD iterates were considered inMandt et al.

[2017a] and Chen et al. [2016], but store full-rank covariance Σ and thus scale quadratically in

the number of parameters, which is prohibitively expensive for deep learning applications. We

additionally note that using the deviation matrix for online covariance matrix estimation comes

from viewing the online updates used in Dasgupta and Hsu [2007] in matrix fashion.

The full Bayesian model averaging procedure is given in Algorithm 2. As in Izmailov et al.

[2018] (SWA) we update the batch normalization statistics after sampling weights for models that

use batch normalization [Ioffe and Szegedy 2015]; we investigate the necessity of this update in
3We use one half as the scale here because both the diagonal and low rank terms include the variance of the

weights. We tested several other scales in Appendix A.3.4.
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Algorithm 2 Bayesian Model Averaging with SWAG
𝜃0: pretrained weights; 𝜂: learning rate;𝑇 : number of steps; 𝑐: moment update frequency; 𝐾 : maximum number of
columns in deviation matrix; 𝑆 : number of samples in Bayesian model averaging
Train SWAG
𝜃 ← 𝜃0, 𝜃 2 ← 𝜃 2

0 {Initialize moments}
for 𝑖 ← 1, 2, ...,𝑇 do

𝜃𝑖 ← 𝜃𝑖−1 − 𝜂∇𝜃L(𝜃𝑖−1){Perform SGD update}
if MOD(𝑖, 𝑐) = 0 then

𝑛 ← 𝑖/𝑐 {Number of models}

𝜃 ← 𝑛𝜃 + 𝜃𝑖
𝑛 + 1

, 𝜃 2 ←
𝑛𝜃 2 + 𝜃 2

𝑖

𝑛 + 1
{Moments}

if NUM_COLS(𝐷) = 𝐾 then

REMOVE_COL(𝐷 [:, 1])
APPEND_COL(𝐷, 𝜃𝑖 − 𝜃 ) {Store deviation}

return 𝜃SWA = 𝜃, Σdiag = 𝜃 2 − 𝜃 2
, 𝐷

Test Bayesian Model Averaging
for 𝑖 ← 1, 2, ..., 𝑆 do

Draw 𝜃𝑖 ∼ N
(
𝜃SWA,

1
2Σdiag + 𝐷𝐷⊤

2(𝐾−1)

)
(3.2)

Update batch norm statistics with new sample.
𝑝 (𝑦∗ |Data) += 1

𝑆
𝑝 (𝑦∗ |𝜃𝑖 )

return 𝑝 (𝑦∗ |Data)

Appendix A.3.5.3.

3.3.4 Bayesian Model Averaging with SWAG

Maximum a-posteriori (MAP) optimization is a procedure whereby one maximizes the (log) pos-

terior with respect to parameters 𝜃 : log𝑝 (𝜃 |D) = log𝑝 (D|𝜃 ) + log𝑝 (𝜃 ). Here, the prior 𝑝 (𝜃 )

is viewed as a regularizer in optimization. However, MAP is not Bayesian inference, since one

only considers a single setting of the parameters 𝜃MAP = argmax𝜃𝑝 (𝜃 |D) in making predictions,

forming 𝑝 (𝑦∗ |𝜃MAP, 𝑥∗), where 𝑥∗ and 𝑦∗ are test inputs and outputs.

A Bayesian procedure instead marginalizes the posterior distribution over 𝜃 , in a Bayesian

model average, for the unconditional predictive distribution: 𝑝 (𝑦∗ |D, 𝑥∗) =
∫
𝑝 (𝑦∗ |𝜃, 𝑥∗)𝑝 (𝜃 |D)𝑑𝜃 .

In practice, this integral is computed through a Monte Carlo sampling procedure:

𝑝 (𝑦∗ |D, 𝑥∗) ≈ 1
𝑇

∑𝑇
𝑡=1 𝑝 (𝑦∗ |𝜃𝑡 , 𝑥∗) , 𝜃𝑡 ∼ 𝑝 (𝜃 |D).

We emphasize that in this paper we are approximating fully Bayesian inference, rather than
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MAP optimization. We develop a Gaussian approximation to the posterior from SGD iterates,

𝑝 (𝜃 |D) ≈ N (𝜃 ; 𝜇, Σ), and then sample from this posterior distribution to perform a Bayesian

model average. In our procedure, optimization with different regularizers, to characterize the

Gaussian posterior approximation, corresponds to approximate Bayesian inference with different

priors 𝑝 (𝜃 ).

Prior Choice. Typically, weight decay is used to regularize DNNs, corresponding to explicit L2

regularization when SGD without momentum is used to train the model. When SGD is used with

momentum, as is typically the case, implicit regularization still occurs, producing a vague prior on

the weights of the DNN in our procedure. This regularizer can be given an explicit Gaussian-like

form (see Proposition 3 of Loshchilov and Hutter [2017a]), corresponding to a prior distribution

on the weights.

Thus, SWAG is an approximate Bayesian inference algorithm in our experiments (see Section

3.5) and can be applied to most DNNs without any modifications of the training procedure (as

long as SGD is used with weight decay or explicit L2 regularization). Alternative regularization

techniques could also be used, producing different priors on the weights. It may also be possible

to similarly utilize Adam and other stochastic first-order methods, which view as a promising

direction for future work.

3.4 Does the SGD Trajectory Capture Loss Geometry?

To analyze the quality of the SWAG approximation, we study the posterior density along the

directions corresponding to the eigenvectors of the SWAG covariance matrix for PreResNet-164

on CIFAR-100. In order to find these eigenvectors we use randomized SVD [Halko et al. 2011].4

In the left panel of Figure 3.3 we visualize the ℓ2-regularized cross-entropy loss 𝐿(·) (equivalent

to the joint density of the weights and the loss with a Gaussian prior) as a function of distance
4From sklearn.decomposition.TruncatedSVD.
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Figure 3.3: Left: Posterior joint density cross-sections along the rays corresponding to different eigen-
vectors of SWAG covariance matrix. Middle: Posterior joint density surface in the plane spanned by
eigenvectors of SWAG covariance matrix corresponding to the first and second largest eigenvalues and
(Right:) the third and fourth largest eigenvalues. All plots are produced using PreResNet-164 on CIFAR-
100. The SWAG distribution projected onto these directions fits the geometry of the posterior density
remarkably well.

𝑡 from the SWA solution 𝜃SWA along the 𝑖-th eigenvector 𝑣𝑖 of the SWAG covariance: 𝜙 (𝑡) =

𝐿(𝜃SWA + 𝑡 · 𝑣𝑖
∥𝑣𝑖 ∥ ). Figure 3.3 (left) shows a clear correlation between the variance of the SWAG

approximation and the width of the posterior along the directions 𝑣𝑖 . The SGD iterates indeed

contain useful information about the shape of the posterior distribution, and SWAG is able to

capture this information. We repeated the same experiment for SWAG-Diagonal, finding that

there was almost no variance in these eigen-directions. Next, in Figure 3.3 (middle) we plot the

posterior density surface in the 2-dimensional plane in the weight space spanning the two top

eigenvectors 𝑣1 and 𝑣2 of the SWAG covariance: 𝜓 (𝑡1, 𝑡2) = 𝐿(𝜃SWA + 𝑡1 · 𝑣1
∥𝑣1∥ + 𝑡2 ·

𝑣2
∥𝑣2∥ ). Again,

SWAG is able to capture the geometry of the posterior. The contours of constant posterior density

appear remarkably well aligned with the eigenvalues of the SWAG covariance. We also present

the analogous plot for the third and fourth top eigenvectors in Figure 3.3 (right). In Appendix

A.3.3, we additionally present similar results for PreResNet-164 on CIFAR-10 and VGG-16 on

CIFAR-100.

As we can see, SWAG is able to capture the geometry of the posterior in the subspace spanned

by SGD iterates. However, the dimensionality of this subspace is very low compared to the di-
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mensionality of the weight space, and we can not guarantee that SWAG variance estimates are

adequate along all directions in weight space. In particular, we would expect SWAG to under-

estimate the variances along random directions, as the SGD trajectory is in a low-dimensional

subspace of the weight space, and a random vector has a close-to-zero projection on this subspace

with high probability. In Appendix A.3.1 we visualize the trajectory of SGD applied to a quadratic

function, and further discuss the relation between the geometry of objective and SGD trajectory.

In Appendices A.3.1 and A.3.2, we also empirically test the assumptions behind theory relating

the SGD stationary distribution to the true posterior for neural networks.

3.5 SWAG Experiments

We conduct a thorough empirical evaluation of SWAG, comparing to a range of high performing

baselines, including MC dropout [Gal and Ghahramani 2016], temperature scaling [Guo et al.

2017], SGLD [Welling and Teh 2011], Laplace approximations [Ritter et al. 2018b], deep ensembles

[Lakshminarayanan et al. 2017], and ensembles of SGD iterates that were used to construct the

SWAG approximation. In Section 3.5.1 we evaluate SWAG predictions and uncertainty estimates

on image classification tasks. We also evaluate SWAG for transfer learning and out-of-domain

data detection. We investigate the effect of hyperparameter choices and practical limitations in

SWAG, such as the effect of learning rate on the scale of uncertainty, in Appendix A.3.4.

3.5.1 Calibration and Uncertainty Estimation on Image Classification

Tasks

In this section we evaluate the quality of uncertainty estimates as well as predictive accuracy for

SWAG and SWAG-Diagonal on CIFAR-10, CIFAR-100 and ImageNet ILSVRC-2012 [Russakovsky

et al. 2012].

For all methods we analyze test negative log-likelihood, which reflects both the accuracy
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Figure 3.4: Negative log likelihoods for SWAG and baselines. Mean and standard deviation (shown with
error-bars) over 3 runs are reported for each experiment on CIFAR datasets. SWAG (blue star) consistently
outperforms alternatives, with lower negative log likelihood, with the largest improvements on transfer
learning. Temperature scaling applied on top of SWA (SWA-Temp) often performs close to as well on the
non-transfer learning tasks, but requires a validation set.

and the quality of predictive uncertainty. Following Guo et al. [2017] we also consider a variant

of reliability diagrams to evaluate the calibration of uncertainty estimates (see Figure 3.5) and

to show the difference between a method’s confidence in its predictions and its accuracy. To

produce this plot for a given method we split the test data into 20 bins uniformly based on the

confidence of a method (maximum predicted probability). We then evaluate the accuracy and

mean confidence of the method on the images from each bin, and plot the difference between

confidence and accuracy. For a well-calibrated model, this difference should be close to zero

for each bin. We found that this procedure gives a more effective visualization of the actual

confidence distribution of DNN predictions than the standard reliability diagrams used in Guo

et al. [2017] and Niculescu-Mizil and Caruana [2005].

We provide tables containing the test accuracy, negative log likelihood and expected calibra-

tion error for all methods and datasets in Appendix A.3.6.3.

CIFAR datasets. On CIFAR datasets we run experiments with VGG-16, PreResNet-164 and

WideResNet-28x10 networks. In order to compare SWAGwith existing alternatives we report the

results for standard SGD and SWA [Izmailov et al. 2018] solutions (single models), MC-Dropout

[Gal and Ghahramani 2016], temperature scaling [Guo et al. 2017] applied to SWA and SGD

solutions, SGLD [Welling and Teh 2011], and K-FAC Laplace [Ritter et al. 2018b] methods. For all
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Figure 3.5: Reliability diagrams for WideResNet28x10 on CIFAR-100 and transfer task; ResNet-152 and
DenseNet-161 on ImageNet. Confidence is the value of the max softmax output. A perfectly calibrated
network has no difference between confidence and accuracy, represented by a dashed black line. Points
below this line correspond to under-confident predictions, whereas points above the line are overconfident
predictions. SWAG is able to substantially improve calibration over standard training (SGD), as well as
SWA. Additionally, SWAG significantly outperforms temperature scaling for transfer learning (CIFAR-10
to STL), where the target data are not from the same distribution as the training data.

the methods we use our implementations in PyTorch (see Appendix A.3.9). We train all networks

for 300 epochs, starting to collect models for SWA and SWAG approximations once per epoch

after epoch 160. For SWAG, K-FAC Laplace, and Dropout we use 30 samples at test time.

ImageNet. On ImageNet we report our results for SWAG, SWAG-Diagonal, SWA and SGD. We

run experiments with DenseNet-161 [Huang et al. 2017b] and Resnet-152 [He et al. 2016]. For

each model we start from a pre-trained model available in the torchvision package, and run

SGD with a constant learning rate for 10 epochs. We collect models for the SWAG versions and

SWA 4 times per epoch. For SWAG we use 30 samples from the posterior over network weights

at test-time, and use randomly sampled 10% of the training data to update batch-normalization

statistics for each of the samples. For SGD with temperature scaling, we use the results reported

in Guo et al. [2017].

Transfer from CIFAR-10 to STL-10. We use the models trained on CIFAR-10 and evaluate

them on STL-10 [Coates et al. 2011]. STL-10 has a similar set of classes as CIFAR-10, but the

image distribution is different, so adapting the model from CIFAR-10 to STL-10 is a commonly
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used transfer learning benchmark. We provide further details on the architectures and hyperpa-

rameters in Appendix A.3.9.

Results. We visualize the negative log-likelihood for all methods and datasets in Figure 3.4.

On all considered tasks SWAG and SWAG diagonal perform comparably or better than all the

considered alternatives, SWAG being best overall. We note that the combination of SWA and

temperature scaling presents a competitive baseline. However, unlike SWAG it requires using

a validation set to tune the temperature; further, temperature scaling is not effective when the

test data distribution differs from train, as we observe in experiments on transfer learning from

CIFAR-10 to STL-10.

Next, we analyze the calibration of uncertainty estimates provided by different methods. In

Figure 3.5 we present reliability plots for WideResNet on CIFAR-100, DenseNet-161 and ResNet-

152 on ImageNet. The reliability diagrams for all other datasets and architectures are presented in

the Appendix A.3.6.1. As we can see, SWAG and SWAG-Diagonal both achieve good calibration

across the board. The low-rank plus diagonal version of SWAG is generally better calibrated than

SWAG-Diagonal. We also present the expected calibration error for each of the methods, archi-

tectures and datasets in Tables A.5, A.6. Finally, in Tables A.11, A.12 we present the predictive

accuracy for all of the methods, where SWAG is comparable with SWA and generally outperforms

the other approaches.

3.5.2 Comparison to ensembling SGD solutions

We evaluated ensembles of independently trained SGD solutions (Deep Ensembles, [Lakshmi-

narayanan et al. 2017]) on PreResNet-164 on CIFAR-100. We found that an ensemble of 3 SGD

solutions has high accuracy (82.1%), but only achieves NLL 0.6922, which is worse than a sin-

gle SWAG solution (0.6595 NLL). While the accuracy of this ensemble is high, SWAG solutions are

much better calibrated. An ensemble of 5 SGD solutions achieves NLL 0.6478, which is competitive
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with a single SWAG solution, that requires 5× less computation to train. Moreover, we can similarly

ensemble independently trained SWAG models; an ensemble of 3 SWAG models achieves NLL of

0.6178.

We also evaluated ensembles of SGD iterates that were used to construct the SWAG approxi-

mation (SGD-Ens) for all of our CIFAR models. SWAG has higher NLL than SGD-Ens on VGG-16,

but much lower NLL on the larger PreResNet-164 andWideResNet28x10; the results for accuracy

and ECE are analogous.

3.5.3 Out-of-Domain Image Detection

To evaluate SWAG on out-of-domain data detection we train a WideResNet as described in sec-

tion 3.5.1 on the data from five classes of the CIFAR-10 dataset, and then analyze predictions

of SWAG variants along with the baselines on the full test set. We expect the outputted class

probabilities on objects that belong to classes that were not present in the training data to have

high-entropy reflecting the model’s high uncertainty in its predictions, and considerably lower

entropy on the images that are similar to those on which the network was trained. We plot the

histograms of predictive entropies on the in-domain and out-of-domain in Figure A.14 for a qual-

itative comparison and report the symmetrized KL divergence between the binned in and out of

sample distributions in Table A.4, finding that SWAG and Dropout perform best on this measure.

Additional details are in Appendix A.3.6.2.

3.5.4 Language Modeling with LSTMs

We next apply SWAG to an LSTM network on language modeling tasks on Penn Treebank and

WikiText-2 datasets. In Appendix A.3.7 we demonstrate that SWAG easily outperforms both

SWA and NT-ASGD [Merity et al. 2017], a strong baseline for LSTM training, in terms of test and

validation perplexities.
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We compare SWAG to SWA and the NT-ASGD method [Merity et al. 2017], which is a strong

baseline for training LSTM models. The main difference between SWA and NT-ASGD, which

is also based on weight averaging, is that NT-ASGD starts weight averaging much earlier than

SWA: NT-ASGD switches to ASGD (averaged SGD) typically around epoch 100 while with SWA

we start averaging after pre-training for 500 epochs. We report test and validation perplexities

for different methods and datasets in Table 3.1.

As we can see, SWA substantially improves perplexities on both datasets over NT-ASGD.

Further, we observe that SWAG is able to substantially improve test perplexities over the SWA

solution.

Table 3.1: Validation and Test perplexities for NT-ASGD, SWAand SWAGonPenn Treebank andWikiText-
2 datasets.

Method PTB val PTB test WikiText-2 val WikiText-2 test

NT-ASGD 61.2 58.8 68.7 65.6
SWA 59.1 56.7 68.1 65.0
SWAG 58.6 56.26 67.2 64.1

3.5.5 Regression

Finally, while the empirical focus of our paper is classification calibration, we also compare to

additional approximate BNN inference methods which perform well on smaller architectures, in-

cluding deterministic variational inference (DVI) [Wu et al. 2018], single-layer deep GPs (DGP)

with expectation propagation [Bui et al. 2016], SGLD [Welling and Teh 2011], and re-parameterization

VI [Kingma and Welling 2013] on a set of UCI regression tasks. We report test log-likelihoods,

RMSEs and test calibration results in Appendix Tables A.14 and A.15 where it is possible to see

that SWAG is competitive with these methods. Additional details are in Appendix A.3.8.
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Figure 3.6: Approximating the BMA. 𝑝 (𝑦 |𝑥,D) =
∫
𝑝 (𝑦 |𝑥,𝑤)𝑝 (𝑤 |D)𝑑𝑤 . Top: 𝑝 (𝑤 |D), with repre-

sentations from VI (orange) deep ensembles (blue), MultiSWAG (red). Middle: 𝑝 (𝑦 |𝑥,𝑤) as a function of
𝑤 for a test input 𝑥 . This function does not vary much within modes, but changes significantly between
modes. Bottom: Distance between the true predictive distribution and the approximation, as a function
of representing a posterior at an additional point 𝑤 , assuming we have sampled the mode in dark green.
There is more to be gained by exploring new basins, than continuing to explore the same basin.

3.6 An Empirical Study of Marginalization

We have shown that deep ensembles can be interpreted as an approximate approach to Bayesian

marginalization, which selects for functional diversity by representing multiple basins of attrac-

tion in the posterior. Most Bayesian deep learning methods instead focus on faithfully approxi-

mating a posterior within a single basin of attraction. We propose a new method, MultiSWAG,

which combines these two types of approaches. MultiSWAG combines multiple independently

trained SWAG approximations [Maddox et al. 2019], to create a mixture of Gaussians approxima-

tion to the posterior, with each Gaussian centred on a different basin of attraction. We note that

MultiSWAG does not require any additional training time over standard deep ensembles.
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Figure 3.7: Approximating the true predictive distribution. (a): A close approximation of the true
predictive distribution obtained by combining 200 HMC chains. (b): Deep ensembles predictive distri-
bution using 50 independently trained networks. (c): Predictive distribution for factorized variational
inference (VI). (d): Convergence of the predictive distributions for deep ensembles and variational infer-
ence as a function of the number of samples; we measure the average Wasserstein distance between the
marginals in the range of input positions. Themulti-basin deep ensembles approach provides amore faith-
ful approximation of the Bayesian predictive distribution than the conventional single-basin VI approach,
which is overconfident between data clusters. The top panels show the Wasserstein distance between the
true predictive distribution and the deep ensemble and VI approximations, as a function of inputs 𝑥 .

We illustrate the conceptual difference between deep ensembles, a standard variational single

basin approach, and MultiSWAG, in Figure 3.6. In the top panel, we have a conceptualization

of a multimodal posterior. Variational Inference (VI), which is often considered as a representa-

tive Bayesian method [e.g. Ovadia et al. 2019], approximates the posterior with multiple samples

within a single basin. But we see in the middle panel that the conditional predictive distribu-

tion 𝑝 (𝑦 |𝑥,𝑤) does not vary significantly within the basin, and thus each additional sample con-

tributes minimally to computing the marginal predictive distribution 𝑝 (𝑦 |𝑥,D). On the other

hand, 𝑝 (𝑦 |𝑥,𝑤) varies significantly between basins, and thus each point mass for deep ensembles

contributes significantly to the marginal predictive distribution. By sampling within the basins,

MultiSWAG provides additional contributions to the predictive distribution. In the bottom panel,

we have the gain in approximating the predictive distribution when adding a point mass to the

representation of the posterior, as a function of its location, assuming we have already sampled

the mode in dark green. Including samples from different modes provides significant gain over

continuing to sample from the same mode, and including weights in wide basins provide rela-

tively more gain than the narrow ones.
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Figure 3.8: Negative log likelihood for Deep Ensembles, MultiSWAG andMultiSWA using a PreResNet-20
on CIFAR-10 with varying intensity of the Gaussian blur corruption. The image in each plot shows the
intensity of corruption. For all levels of intensity, MultiSWAG and MultiSWA outperform Deep Ensem-
bles for a small number of independent models. For high levels of corruption MultiSWAG significantly
outperforms other methods even for many independent models. We present results for other corruptions
in the Appendix.

In Figure 3.7 we evaluate single basin and multi-basin approaches in a case where we can

near-exactly compute the predictive distribution. We provide details for generating the data and

training the models in Appendix A.4.4.1. We see that the predictive distribution given by deep

ensembles is qualitatively closer to the true distribution, compared to the single basin variational

method: between data clusters, the deep ensemble approach provides a similar representation

of epistemic uncertainty, whereas the variational method is extremely overconfident in these

regions. Moreover, we see that the Wasserstein distance between the true predictive distribution

and these two approximations quickly shrinks with number of samples for deep ensembles, but is

roughly independent of number of samples for the variational approach. Thus the deep ensemble

is providing a better approximation of the Bayesian model average in Eq. (3.1) than the single

basin variational approach, which has traditionally been labelled as the Bayesian alternative.

Next, we evaluate MultiSWAG under distribution shift on the CIFAR-10 dataset [Krizhevsky

et al. 2014], replicating the setup in Ovadia et al. [2019]. We consider 16 data corruptions, each at 5

different levels of severity, introduced by Hendrycks and Dietterich [2019]. For each corruption,

we evaluate the performance of deep ensembles and MultiSWAG varying the training budget.

For deep ensembles we show performance as a function of the number of independently trained

models in the ensemble. For MultiSWAG we show performance as a function of the number of

independent SWAG approximations that we construct; we then sample 20 models from each of
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these approximations to construct the final ensemble.

While the training time for MultiSWAG is the same as for deep ensembles, at test time Multi-

SWAG is more expensive, as the corresponding ensemble consists of a larger number of models.

To account for situations when test time is constrained, we also propose MultiSWA, a method

that ensembles independently trained SWA solutions [Izmailov et al. 2018], discussed in Section

2.5. SWA solutions are the means of the corresponding Gaussian SWAG approximations. In Sec-

tion 2.5.5, we argue that SWA solutions approximate the local ensembles represented by SWAG

with a single model.

In Figure 3.8 we show the negative log-likelihood as a function of the number of indepen-

dently trained models for a Preactivation ResNet-20 on CIFAR-10 corrupted with Gaussian blur

with varying levels of intensity (increasing from left to right) in Figure 3.8. MultiSWAG out-

performs deep ensembles significantly on highly corrupted data. For lower levels of corruption,

MultiSWAG works particularly well when only a small number of independently trained mod-

els are available. We note that MultiSWA also outperforms deep ensembles, and has the same

computational requirements at training and test time as deep ensembles. We present results for

other types of corruption in Appendix Figures A.18, A.19, A.20, A.21, showing similar trends. In

general, there is an extensive evaluation of MultiSWAG in the Appendix.

Our perspective of generalization is deeply connectedwith Bayesianmarginalization. In order

to best realize the benefits of marginalization in deep learning, we need to consider as many

hypotheses as possible through multimodal posterior approximations, such as MultiSWAG. In

Section 3.9 we return to MultiSWAG, showing how it can entirely alleviate prominent double

descent behaviour, and lead to striking improvements in generalization over SGD and single basin

marginalization, for both accuracy and NLL.
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3.7 Neural Network Priors

A prior over parameters 𝑝 (𝑤) combines with the functional form of a model 𝑓 (𝑥 ;𝑤) to induce

a distribution over functions 𝑝 (𝑓 (𝑥 ;𝑤)). It is this distribution over functions that controls the

generalization properties of the model; the prior over parameters, in isolation, has no meaning.

Neural networks are imbued with structural properties that provide good inductive biases, such

as translation equivariance, hierarchical representations, and sparsity. In the sense of Figure 3.2,

the prior will have large support, due to the flexibility of neural networks, but its inductive biases

provide the most mass to datasets which are representative of problem settings where neural

networks are often applied. In this section, we study the properties of the induced distribution

over functions. We directly continue the discussion of priors in Section 3.8, with a focus on

examining the noisy CIFAR results in Zhang et al. [2017a], from a probabilistic perspective of

generalization. These sections are best read together.

We also provide several additional experiments in the Appendix. In Section A.4.5, we present

analytic results on the dependence of the prior distribution in function space on the variance of

the prior over parameters, considering also layer-wise parameter priors with ReLU activations.

As part of a discussion on tempering, in Section 3.10.4 we study the effect of𝛼 in 𝑝 (𝑤) = N(0, 𝛼2𝐼 )

on prior class probabilities for individual sample functions 𝑝 (𝑓 (𝑥 ;𝑤)), the predictive distribution,

and posterior samples as we observe varying amounts of data. In Section A.4.6, we further study

the correlation structure over images induced by neural network priors, subject to perturbations

of the images. In Section A.4.4.3 we provide additional experimental details.

3.7.1 Deep Image Prior and Random Network Features

Two recent results provide strong evidence that vague Gaussian priors over parameters, when

combined with a neural network architecture, induce a distribution over functions with useful

inductive biases. In the deep image prior, Ulyanov et al. [2018] show that randomly initialized con-
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Figure 3.9: Induced prior correlation function. Average pairwise prior correlations for pairs of objects
in classes {0, 1, 2, 4, 7} of MNIST induced by LeNet-5 for 𝑝 (𝑓 (𝑥 ;𝑤)) when 𝑝 (𝑤) = N(0, 𝛼2𝐼 ). Images in the
same class have higher prior correlations than images from different classes, suggesting that 𝑝 (𝑓 (𝑥 ;𝑤))
has desirable inductive biases. The correlations slightly decrease with increases in 𝛼 . (d): NLL of an
ensemble of 20 SWAG samples on MNIST as a function of 𝛼 using a LeNet-5.

volutional neural networks without training provide excellent performance for image denoising,

super-resolution, and inpainting. This result demonstrates the ability for a sample function from

a random prior over neural networks 𝑝 (𝑓 (𝑥 ;𝑤)) to capture low-level image statistics, before any

training. Similarly, Zhang et al. [2017a] shows that pre-processing CIFAR-10 with a randomly

initialized untrained convolutional neural network dramatically improves the test performance

of a simple Gaussian kernel on pixels from 54% accuracy to 71%. Adding ℓ2 regularization only

improves the accuracy by an additional 2%. These results again indicate that broad Gaussian pri-

ors over parameters induce reasonable priors over networks, with a minor additional gain from

decreasing the variance of the prior in parameter space, which corresponds to ℓ2 regularization.

3.7.2 Prior Class Correlations

In Figure 3.9 we study the prior correlations in the outputs of the LeNet-5 convolutional network

[LeCun et al. 1998] on objects of different MNIST classes. We sample networks with weights

𝑝 (𝑤) = N(0, 𝛼2𝐼 ), and compute the values of logits corresponding to the first class for all pairs

of images and compute correlations of these logits. For all levels of 𝛼 the correlations between

objects corresponding to the same class are consistently higher than the correlation between

objects of different classes, showing that the network induces a reasonable prior similarity metric
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over these images. Additionally, we observe that the prior correlations somewhat decrease as we

increase 𝛼 , showing that bounding the norm of the weights has some minor utility, in accordance

with Section 3.7.1. Similarly, in panel (d) we see that the NLL significantly decreases as𝛼 increases

in [0, 0.5], and then slightly increases, but is relatively constant thereafter.

In the Appendix A.4.5, we further describe analytic results and illustrate the effect of 𝛼 on

sample functions.

3.7.3 Effect of Prior Variance on CIFAR-10

We further study the effect of the parameter prior standard deviation𝛼 , measuring performance of

approximate Bayesian inference for CIFAR-10 with a Preactivation ResNet-20 [He et al. 2016] and

VGG-16 [Simonyan and Zisserman 2014]. For each of these architectures we run SWAG [Maddox

et al. 2019] with fixed hyper-parameters and varying 𝛼 . We report the results in Figure A.16(d),

(h). For both architectures, the performance is near-optimal in the range 𝛼 ∈ [10−2, 10−1]. Smaller

𝛼 constrains the weights too much. Performance is reasonable and becomes mostly insensitive

to 𝛼 as it continues to increase, due to the inductive biases of the functional form of the neural

network.

3.8 Rethinking Generalization

Zhang et al. [2017a] demonstrated that deep neural networks have sufficient capacity to fit ran-

domized labels on popular image classification tasks, and suggest this result requires re-thinking

generalization to understand deep learning.

We argue, however, that this behaviour is not puzzling from a probabilistic perspective, is

not unique to neural networks, and cannot be used as evidence against Bayesian neural net-

works (BNNs) with vague parameter priors. Fundamentally, the resolution is the view presented

in Section 3.1: from a probabilistic perspective, generalization is at least a two-dimensional con-
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Figure 3.10: Rethinking generalization. (a): Sample functions from a Gaussian process prior. (b): GP
fit (with 95% credible region) to structured data generated as 𝑦green(𝑥) = sin(𝑥 · 2𝜋) + 𝜖, 𝜖 ∼ N(0, 0.22).
(c): GP fit, with no training error, after a significant addition of corrupted data in red, drawn from
Uniform[0.5, 1]. (d): Variational GP marginal likelihood with RBF kernel for two classes of CIFAR-10.
(e): Laplace BNN marginal likelihood for a PreResNet-20 on CIFAR-10 with different fractions of random
labels. The marginal likelihood for both the GP and BNN decreases as we increase the level of corruption
in the labels, suggesting reasonable inductive biases in the prior over functions. Moreover, both the GP
and BNN have 100% training accuracy on images with fully corrupted labels.

cept, related to support (flexibility), which should be as large as possible, supporting even noisy

solutions, and inductive biases that represent relative prior probabilities of solutions.

Indeed, we demonstrate that the behaviour in Zhang et al. [2017a] that was treated as mys-

terious and specific to neural networks can be exactly reproduced by Gaussian processes (GPs).

Gaussian processes are an ideal choice for this experiment, because they are popular Bayesian

non-parametric models, and they assign a prior directly in function space. Moreover, GPs have

remarkable flexibility, providing universal approximationwith popular covariance functions such

as the RBF kernel. Yet the functions that are a priori likely under a GP with an RBF kernel are rel-
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atively simple. We describe GPs further in Appendix A.4.2, and Rasmussen and Williams [2006]

provides an extensive introduction.

We start with a simple example to illustrate the ability for a GP with an RBF kernel to easily fit

a corrupted dataset, yet generalize well on a non-corrupted dataset, in Figure 3.10. In Fig 3.10(a),

we have sample functions from a GP prior over functions 𝑝 (𝑓 (𝑥)), showing that likely functions

under the prior are smooth and well-behaved. In Fig 3.10(b) we see the GP is able to reasonably

fit data from a structured function. And in Fig 3.10(c) the GP is also able to fit highly corrupted

data, with essentially no structure; although these data are not a likely draw from the prior, the

GP has support for a wide range of solutions, including noise.

We next show that GPs can replicate the generalization behaviour described in Zhang et al.

[2017a] (experimental details in the Appendix). When applied to CIFAR-10 images with random

labels, Gaussian processes achieve 100% train accuracy, and 10.4% test accuracy (at the level of ran-

dom guessing). However, the same model trained on the true labels achieves a training accuracy

of 72.8% and a test accuracy of 54.3%. Thus, the generalization behaviour described in Zhang et al.

[2017a] is not unique to neural networks, and can be described by separately understanding the

support and the inductive biases of a model.

Indeed, although Gaussian processes support CIFAR-10 images with random labels, they are

not likely under the GP prior. In Fig 3.10(d), we compute the approximate GP marginal likelihood

on a binary CIFAR-10 classification problem, with labels of varying levels of corruption. We

see as the noise in the data increases, the approximate marginal likelihood, and thus the prior

support for these data, decreases. In Fig 3.10(e), we see a similar trend for a Bayesian neural

network. Again, as the fraction of corrupted labels increases, the approximatemarginal likelihood

decreases, showing that the prior over functions given by the Bayesian neural network has less

support for these noisy datasets. We provide further experimental details in the Appendix.

Dziugaite and Roy [2017] and Smith and Le [2018] provide complementary perspectives on

Zhang et al. [2017a], for MNIST; Dziugaite and Roy [2017] show non-vacuous PAC-Bayes bounds
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for the noise-free binary MNIST but not noisy MNIST, and Smith and Le [2018] show that logistic

regression can fit noisy labels on subsampled MNIST, interpreting the results from an Occam

factor perspective.

3.9 Double Descent

Double descent [e.g., Belkin et al. 2019] describes generalization error that decreases, increases,

and then again decreases, with increases in model flexibility. The first decrease and then increase

is referred to as the classical regime: models with increasing flexibility are increasingly able to

capture structure and perform better, until they begin to overfit. The next regime is referred to

as themodern interpolating regime. The existence of the interpolation regime has been presented

as mysterious generalization behaviour in deep learning.

However, our perspective of generalization suggests that performance should monotonically

improve as we increase model flexibility when we use Bayesian model averaging with a reason-

able prior. Indeed, in the opening example of Figure 3.1, we would in principle want to use the

most flexible possible model. Our results in Section 3.7 show that standard BNN priors induce

structured and useful priors in the function space, so we should not expect double descent in

Bayesian deep learning models that perform reasonable marginalization.

To test this hypothesis, we evaluate MultiSWAG, SWAG and standard SGD with ResNet-18

models of varying width, following Nakkiran et al. [2019], measuring both error and negative log

likelihood (NLL). For the details, see Appendix A.4.4. We present the results in Figure 3.11 and

Appendix Figure A.17.

First, we observe that models trained with SGD indeed suffer from double descent, especially

when the train labels are partially corrupted (see panels (c), (d) in Figure 3.11). We also see that

SWAG, a unimodal posterior approximation, reduces the extent of double descent. Moreover,

MultiSWAG, which performs a more exhaustive multimodal Bayesian model average completely
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Figure 3.11: Bayesian model averaging alleviates double descent. (a): Test error and (b): NLL loss
for ResNet-18 with varying width on CIFAR-100 for SGD, SWAG and MultiSWAG. (c): Test error and (d):
NLL loss when 20% of the labels are randomly reshuffled. SWAG reduces double descent, andMultiSWAG,
which marginalizes over multiple modes, entirely alleviates double descent both on the original labels
and under label noise, both in accuracy and NLL. (e): Test errors for MultiSWAG with varying number of
independent SWAGmodels; errormonotonically decreases with increased number of independentmodels,
alleviating double descent. We also note that MultiSWAG provides significant improvements in accuracy
and NLL over SGD and SWAG models. See Appendix Figure A.17 for additional results.

mitigates double descent: the performance of MultiSWAG solutions increases monotonically with

the size of the model, showing no double descent even under significant label corruption, for

both accuracy and NLL. We also found that deep ensembles follow a similar pattern to Mul-

tiSWAG in Figure 3.11(c), also mitigating double descent, with slightly worse accuracy (about

1-2%). This result is in line with our perspective of Section 3.2.3 of deep ensembles providing

a better approximation to the Bayesian predictive distribution than conventional single-basin

Bayesian marginalization procedures.

Our results highlight the importance of marginalization over multiple modes of the posterior:
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under 20% label corruption SWAG clearly suffers from double descent while MultiSWAG does

not. In Figure 3.11(e) we show how the double descent is alleviated with increased number of

independent modes marginalized in MultiSWAG.

These results also clearly show that MultiSWAG provides significant improvements in accu-

racy over both SGD and SWAG models, in addition to NLL, an often overlooked advantage of

Bayesian model averaging we discuss in Section 3.2.1.

Recently, Nakkiran et al. [2020] show that carefully tuned 𝑙2 regularization can help mitigate

double descent. Alternatively, we show that Bayesian model averaging, particularly based on

multimodal marginalization, can mitigate prominent double descent behaviour. The perspective

in Sections 3.1 and 3.2 predicts this result: models with reasonable priors and effective Bayesian

model averaging should monotonically improve with increases in flexibility.

3.10 Temperature Scaling

The standard Bayesian posterior distribution is given by

𝑝 (𝑤 |D) = 1
𝑍
𝑝 (D|𝑤)𝑝 (𝑤), (3.3)

where 𝑝 (D|𝑤) is a likelihood, 𝑝 (𝑤) is a prior, and 𝑍 is a normalizing constant.

In Bayesian deep learning it is typical to consider the tempered posterior

𝑝𝑇 (𝑤 |D) =
1

𝑍 (𝑇 )𝑝 (D|𝑤)
1/𝑇𝑝 (𝑤), (3.4)

where𝑇 is a temperature parameter, and 𝑍 (𝑇 ) is the normalizing constant corresponding to tem-

perature 𝑇 . The temperature parameter controls how the prior and likelihood interact in the

posterior:

• 𝑇 < 1 corresponds to cold posteriors, where the posterior distribution is more concentrated
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around solutions with high likelihood.

• 𝑇 = 1 corresponds to the standard Bayesian posterior distribution.

• 𝑇 > 1 corresponds to warm posteriors, where the prior effect is stronger and the posterior

collapse is slower.

Tempering posteriors is a well-known practice in statistics, where it goes by the names Safe

Bayes, generalized Bayesian inference, and fractional Bayesian inference [e.g., de Heide et al. 2019;

Grünwald et al. 2017; Barron and Cover 1991; Walker and Hjort 2001; Zhang 2006; Bissiri et al.

2016; Grünwald 2012]. Safe Bayes has been shown to be natural from a variety of perspectives,

including from prequential, learning theory, and minimum description length frameworks [e.g.,

Grünwald et al. 2017].

Concurrently with our work, Wenzel et al. [2020] noticed that successful Bayesian deep learn-

ingmethods tend to use cold posteriors. They provide an empirical study that shows that Bayesian

neural networks (BNNs) with cold posteriors outperform models with SGD based maximum like-

lihood training, while BNNs with 𝑇 = 1 can perform worse than the maximum likelihood solu-

tion. They claim that cold posteriors sharply deviate from the Bayesian paradigm, and consider

possible reasons for why tempering is helpful in Bayesian deep learning.

In this section, we provide an alternative view and argue that tempering is not at odds with

Bayesian principles. Moreover, for virtually any realistic model class and dataset, it would be

highly surprising if 𝑇 = 1 were in fact the best setting of this hyperparameter. Indeed, as long as

it is practically convenient, we would advocate tempering for essentially any model, especially

parametric models that do not scale their capacity automatically with the amount of available

information. Our position is that at a high level Bayesian methods are trying to combine honest

beliefs with data to form a posterior. By reflecting the belief that the model is misspecified, the

tempered posterior is often more of a true posterior than the posterior that results from ignoring

our belief that the model misspecified.
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Finding that𝑇 < 1 helps for Bayesian neural networks is neither surprising nor discouraging.

And the actual results of the experiments inWenzel et al. [2020], which show great improvements

over standard SGD training, are in fact very encouraging of deriving inspiration from Bayesian

procedures in deep learning.

We consider (1) tempering under misspecification (Section 3.10.1); (2) tempering in terms

of overcounting data (Section 3.10.2); (3) how tempering compares to changing the observation

model (Section 3.10.3); (4) the effect of the prior in relation to the experiments of Wenzel et al.

[2020] (Section 3.10.4); (5) the effect of approximate inference, including how tempering can help

in efficiently estimating parameters even for the untempered posterior (Section 3.10.5).

This section shows how tempering can be a reasonable procedure, and addresses several of

the points in Wenzel et al. [2020], particularly on prior misspecification.

Since the original publication of our paper, there have been many papers discussing the cold

posterior effect. In Section 4.8 (also, Izmailov et al. [2021b]), we show that there is no cold pos-

terior effect in any of the examples of Wenzel et al. [2020] if we remove data augmentation.

In Kapoor et al. [2022], we show precisely how data augmentation leads to underconfidence in

Bayesian classification, and how posterior tempering can more naturally reflect our beliefs about

aleatoric uncertainty than using𝑇 = 1. We also show that the cold posterior effect can be removed

in the presence of data augmentation by using a Dirichlet observation model, which explicitly

enables one to represent aleatoric uncertainty.

3.10.1 Tempering Helps with Misspecified Models

Many works explain how tempered posteriors help under model misspecification [e.g., de Heide

et al. 2019; Grünwald et al. 2017; Barron and Cover 1991; Walker and Hjort 2001; Zhang 2006;

Bissiri et al. 2016; Grünwald 2012]. In fact, de Heide et al. [2019] and Grünwald et al. [2017]

provide several simple examples where Bayesian inference fails to provide good convergence

behaviour for untempered posteriors. While it is easier to show theoretical results for 𝑇 > 1,
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several of these works also show that𝑇 < 1 can be preferred, even in well-specified settings, and

indeed recommend learning 𝑇 from data, for example by cross-validation [e.g., Grünwald 2012;

de Heide et al. 2019].

Are we in a misspecified setting for Bayesian neural networks? Of course. And it would

be irrational to proceed as if it were otherwise. Every model is misspecified. In the context of

Bayesian neural networks specifically, the mass of solutions expressed by the prior outside of the

datasets we typically consider is likely much larger than desired for most applications. We can

calibrate for this discrepancy through tempering. The resulting tempered posterior will be more

in line with our beliefs than pretending the model is not misspecified and finding the untempered

posterior.

Non-parametric models, such as Gaussian processes, attempt to side-step model misspecifi-

cation by growing the number of free parameters (information capacity) automatically with the

amount of available data. In parametric models, we take much more of a manual guess about the

model capacity. In the case of deep neural networks, this choice is not even close to a best guess;

it was once the case that architectural design was a large component of works involving neural

networks, but now it is more standard practice to choose an off-the-shelf architecture, without

much consideration of model capacity. We do not believe that knowingly using a misspecified

model to find a posterior is more reasonable (or Bayesian) than honestly reflecting the belief that

the model is misspecified and then using a tempered posterior. For parametric models such as

neural networks, it is to be expected that the capacity is particularly misspecified.

3.10.2 Overcounting Data with Cold Posteriors

The criticism of cold posteriors raised by Wenzel et al. [2020] is largely based on the fact that

decreasing temperature leads to overcounting data in the posterior distribution.

However, a similar argument can be made against marginal likelihood maximization (also
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known as empirical Bayes or type 2 maximum likelihood). Indeed, here, the prior will depend on

the same data as the likelihood, which can lead tomiscalibrated predictive distributions [Darnieder

2011].

Nonetheless, empirical Bayes has been embraced and widely adopted in Bayesian machine

learning [e.g., Bishop and Nasrabadi 2006; Rasmussen and Williams 2006; MacKay 2003; Minka

2000a], as embodying several Bayesian principles. Empirical Bayes has been particularly em-

braced in seminal work on Bayesian neural networks [e.g., MacKay 1992a, 1995], where it has

been proposed as a principled approach to learning hyperparameters, such as the scale of the

variance for the prior over weights, automatically embodying Occam’s razor. While there is in

this case some deviation from the fully Bayesian paradigm, the procedure, which depends on

marginalization, is nonetheless clearly inspired by Bayesian thinking — and it is thus helpful to

reflect this inspiration and provide understanding of how it works from a Bayesian perspective.

There is also work showing the marginal likelihood can lead to miscalibrated Bayes factors

under model misspecification. Attempts to calibrate these factors [Xu et al. 2019], as part of the

Bayesian paradigm, are highly reminiscent of work on safe Bayes.

3.10.3 Tempered Posterior or Different Likelihood?

In some cases, the tempered posterior for one model is an untempered posterior using a differ-

ent likelihood function. Specifically, consider regression with a Gaussian likelihood and noise

variance 𝜎2:

𝑝 (𝑦 |𝑥,𝑤) = N(𝑦 |𝑓 (𝑥,𝑤), 𝜎2)

=
1

√
2𝜋𝜎2

· exp
(
− (𝑦 − 𝑓 (𝑥,𝑤))

2

2𝜎2

)
,
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where 𝑓 (𝑥,𝑤) is the prediction of themodel 𝑓 with parameters𝑤 on the input 𝑥 . Then, tempering

the likelihood, we achieve

𝑝 (𝑦 |𝑥,𝑤)1/𝑇 =
1

√
2𝜋𝜎21/𝑇 · exp

(
− (𝑦 − 𝑓 (𝑥,𝑤))

2

2𝑇𝜎2

)
= N(𝑦 |𝑓 (𝑥,𝑤),𝑇𝜎2) ·

√︄
(2𝜋𝑇𝜎2)
(2𝜋𝜎2)1/𝑇

= N(𝑦 |𝑓 (𝑥,𝑤),𝑇𝜎2) ·𝐶,

where 𝐶 is a renormalization constant that does not depend on the parameters 𝑤 of the model.

In this case, the standard Bayesian posterior in the model with noise variance𝑇𝜎2 is equal to the

posterior of temperature𝑇 in the original model with noise variance 𝜎2. Section 4.1 of Grünwald

et al. [2017] considers a related construction.

The predictive distribution differs for the two models; even though the posteriors coincide,

the likelihoods for a new datapoint 𝑦∗ are different:

∫
𝑝 (𝑦∗ |𝑤)𝑝 (𝑤)𝑑𝑤 ≠

∫
𝑝𝑇 (𝑦∗ |𝑤)𝑝 (𝑤)𝑑𝑤 . (3.5)

For the Gaussian model described above, the predictions of the tempered model and model with

modified likelihood will have the same mean but different predictive variance.

Wenzel et al. [2020] provide a construction of a likelihood function that is equivalent to tem-

pering for classification problems. For a general likelihood function 𝑝 (D|𝑤), we can consider a

modified likelihood of the form

𝑝 (D|𝑤) = 𝑝 (D|𝑤)1/𝑇 ·𝐶 (𝑤), (3.6)

where𝐶 (𝑤) is a renormalization constant that in general depends on the parameters𝑤 and inputs

𝑥 , but not the target values 𝑦. The standard posterior 𝑝 (𝑤 |D) in the model with the modified
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likelihood will then coincide with the tempered posterior 𝑝𝑇 (𝑤 |D) in the original model up to

𝐶 (𝑤):

𝑝 (𝑤 |D)
𝑝𝑇 (𝑤 |D)

= 𝐶 (𝑤) . (3.7)

Furthermore, as Wenzel et al. [2020] show, the tempered softmax likelihood with 𝑇 < 1 can

be viewed as a valid likelihood if we introduce a new class, not observed in the training data.

While they discard that particular interpretation, it is not unreasonable to include an unobserved

class, since our observation model may want to recognize that we have not observed all possible

classes, and therefore retain an additional label. This extra class can, for example, correspond to

all the possible images that do not belong to any of the classes in our dataset. Finally, new work

[Kapoor et al. 2022] shows that we can naturally interpret the tempered likelihood as using the

multinomial observation model, assuming 1/𝑇 counts of the label are observed for each of the

training datapoints, which is perfectly valid.

We present other key considerations in the discussion of tempering for Bayes posteriors in

other parts of this section.

3.10.4 Effect of the Prior

While a somewhat misspecified prior will certainly interact with the utility of tempering, we do

not believe the experiments in Wenzel et al. [2020] provide evidence that even the prior 𝑝 (𝑤) =

N(0, 𝐼 ) is misspecified to any serious extent. For a relatively wide range of distributions over𝑤 ,

the functional form of the network 𝑓 (𝑥 ;𝑤) can produce a generally reasonable distribution over

functions 𝑝 (𝑓 (𝑥 ;𝑤)). In Figure 3.13, we reproduce the findings in Wenzel et al. [2020] showing

sample functions 𝑝 (𝑓 (𝑥 ;𝑤)) corresponding to the prior 𝑝 (𝑤) = N(0, 10 · 𝐼 ) strongly favour a

single class over the dataset. While this behaviour appears superficially dramatic, we note it

is simply an artifact a miscalibrated signal variance. A miscalibrated signal variance interacts

76



Pr
io
r

Sa
m
pl
e
1

0 1 2 3 4 5 6 7 8 9

0.0

0.2

0.4

0.6

0.8

1.0

C
la

ss
P

ro
ba

bi
lit

y

Pr
io
r

Sa
m
pl
e
2

0 1 2 3 4 5 6 7 8 9

0.0

0.2

0.4

0.6

0.8

1.0

C
la

ss
P

ro
ba

bi
lit

y

Pr
io
r

Pr
ed
ic
tiv

e

0 1 2 3 4 5 6 7 8 9

0.0

0.2

0.4

0.6

0.8

1.0

C
la

ss
P

ro
ba

bi
lit

y
0 1 2 3 4 5 6 7 8 9

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5 6 7 8 9

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5 6 7 8 9

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5 6 7 8 9

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5 6 7 8 9

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5 6 7 8 9

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5 6 7 8 9

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5 6 7 8 9

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5 6 7 8 9

0.0

0.2

0.4

0.6

0.8

1.0

C
la

ss
P

ro
ba

bi
lit

y

0 1 2 3 4 5 6 7 8 9

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5 6 7 8 9

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5 6 7 8 9

0.0

0.2

0.4

0.6

0.8

1.0

(a) 𝛼 = 0.01 (b) 𝛼 = 0.1 (c) 𝛼 = 0.3 (d) 𝛼 = 1. (e) 𝛼 =
√

10

10−2 10−1 100

Prior std α

2 · 103

4 · 103

1 · 104

2 · 104

N
L

L

PreResNet-20

VGG-16

Weight Decay

10−2 10−1 100

Prior std α

5%

10%

20%

90%

C
la

ss
ifi

ca
ti

on
E

rr
or

PreResNet-20

VGG-16

Weight Decay

Figure 3.12: Effects of the prior variance𝛼2. (a)–(e): Average class probabilities over all of CIFAR-10 for
two sample prior functions 𝑝 (𝑓 (𝑥 ;𝑤)) (two top rows) and predictive distribution (average over 200 samples
of weights, bottom row) for varying settings of 𝛼 in 𝑝 (𝑤) = N(0, 𝛼2𝐼 ). (f): NLL and (g) classification error
of an ensemble of 20 SWAG samples on CIFAR-10 as a function of 𝛼 using a Preactivation ResNet-20 and
VGG-16. The NLL is high for overly small 𝛼 and near-optimal in the range of [0.1, 0.3]. The NLL remains
relatively low for vague priors corresponding to large values of 𝛼 .
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Figure 3.13: Adaptivity of posterior variance with data. We sample two functions 𝑓 (𝑥 ;𝑤) from
the distribution over functions induced by a distribution over weights, starting with the prior 𝑝 (𝑤) =
N(0, 10 · 𝐼 ), in combination with a PreResNet-20. We measure class probabilities averaged across the
CIFAR-10 test set, as we vary the amount of available training data. Although the prior variance is too
large, such that the softmax saturates for logits sampled from the prior, leading to one class being favoured,
we see that the posterior quickly adapts to correct the scale of the logits in the presence of data. In
Figure 3.12 we also show that the prior variance can easily be calibrated such that the prior predictive
distribution, even before observing data, is high entropy.
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with a quickly saturating soft-max link function to provide a seemingly dramatic preference to

a given class. If we instead use 𝑝 (𝑤) = N(0, 𝛼2𝐼 ), for quite a range of 𝛼 , then sample functions

provide reasonably high entropy across labels averaged over the dataset, as in Figure 3.12. For

individual points the posterior samples have different particular class preferences. 𝛼 can be easily

determined through cross-validation, as in Figure 3.12, or specified as a standard value used for

𝐿2 regularization (𝛼 = 0.24 in this case).

However, even with the inappropriate prior scale, we see in panels (a)–(e) of Figure 3.12 that

the unconditional predictive distribution is completely reasonable. Moreover, the prior variance

represents a soft prior bias, and will quickly update with data. In Figure 3.13 we show posterior

samples after observing 10, 100, and 1000 data points.

Other aspects of the prior, outside of the prior signal variance, will have a much greater effect

on the inductive biases of the model. For example, the induced covariance function

cov(𝑓 (𝑥𝑖,𝑤), 𝑓 (𝑥 𝑗 ,𝑤)) reflects the induced similarity metric over data instances; through the co-

variance function we can answer, for instance, whether the model believes a priori that a trans-

lated image is similar to the original. Unlike the signal variance of the prior, the prior covari-

ance function will continue to have a significant effect on posterior inference for even very large

datasets, and strongly reflects the structural properties of the neural network. We explore these

structures of the prior in Figure A.16.

3.10.5 The Effect of Inexact Inference

We have to keep in mind what we ultimately use posterior samples to compute. Ultimately, we

wish to estimate the predictive distribution given by the integral in Equation (3.1). With a finite

number of samples, the tempered posterior could be used to provide a better approximation to

the expectation of the predictive distribution associated with untempered posterior.

Consider a simple example, where we wish to estimate the mean of a high-dimensional Gaus-

sian distribution N(0, 𝐼 ). Suppose we use 𝐽 independent samples. The mean of these samples is
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also Gaussian distributed, 𝜇 ∼ N
(
0, 1

𝐽
𝐼

)
. In Bayesian deep learning, the dimension 𝑑 is typically

on the order 107, and 𝐽 would be on the order of 10. The norm of 𝜇 would be highly concentrated

around
√

107√
10

= 1000. In this case, sampling from a tempered posterior with𝑇 < 1 would lead to a

better approximation of the Bayesian model average associated with an untempered posterior.

Furthermore, no current sampling procedure will be providing samples that are close to inde-

pendent samples from the true posterior of a Bayesian neural network. The posterior landscape

is far too multimodal and complex for there to be any reasonable coverage. The approximations

we have are practically useful, and often preferable to conventional training, but we cannot re-

alistically proceed with analysis assuming that we have obtained true samples from a posterior.

While we would expect that some value of 𝑇 ≠ 1 would be preferred for any finite dataset in

practice, it is conceivable that some of the results in Wenzel et al. [2020] may be affected by the

specifics of the approximate inference technique being used.

We should be wary not to view Bayesian model averaging purely through the prism of simple

Monte Carlo, as advised in Section 3.2.2. Given a finite computational budget, our goal in effec-

tively approximating a Bayesian model average is not equivalent to obtaining good samples from

the posterior.

3.11 Related Work

Notable early works on Bayesian neural networks include MacKay [1992a], MacKay [1995], and

Neal [1996]. These works generally argue in favour of making the model class for Bayesian

approaches as flexible as possible, in line with Box and Tiao [1973]. Accordingly, Neal [1996]

pursued the limits of large Bayesian neural networks, showing that as the number of hidden units

approached infinity, these models become Gaussian processes with particular kernel functions.

This work harmonizes with recent work describing the neural tangent kernel [e.g., Jacot et al.

2018].
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The marginal likelihood is often used for Bayesian hypothesis testing, model comparison,

and hyperparameter tuning, with Bayes factors used to select between models [Kass and Raftery

1995]. MacKay [2003, Ch. 28] uses a diagram similar to Fig 3.2 to show the marginal likelihood

has an Occam’s razor property, favouring the simplest model consistent with a given dataset,

even if the prior assigns equal probability to the various models. Rasmussen and Ghahramani

[2001] reasons about how the marginal likelihood can favour large flexible models, as long as

such models correspond to a reasonable distribution over functions.

There has been much recent interest in developing Bayesian approaches for modern deep

learning, with new challenges and architectures quite different from what had been considered

in early work. Recent work has largely focused on scalable inference [e.g., Blundell et al. 2015; Gal

and Ghahramani 2016; Kendall and Gal 2017; Ritter et al. 2018b; Khan et al. 2018], function-space

inspired priors [e.g., Yang et al. 2019b; Louizos et al. 2019; Sun et al. 2019; Hafner et al. 2018], and

developing flat objective priors in parameter space, directly leveraging the biases of the neural

network functional form [e.g, Nalisnick 2018]. Wilson [2020] provides a notemotivating Bayesian

deep learning.

Early works tend to provide a connection between loss geometry and generalization us-

ing minimum description length frameworks [e.g., Hinton and Van Camp 1993; Hochreiter and

Schmidhuber 1997a; MacKay 1995]. Empirically, Keskar et al. [2016] argue that smaller batch SGD

provides better generalization than large batch SGD, by finding flatter minima. Chaudhari et al.

[2016] and Izmailov et al. [2018] (see Section 2.5) design optimization procedures to specifically

find flat minima.

By connecting flat solutions with ensemble approximations, Izmailov et al. [2018] also suggest

that functions associated with parameters in flat regions ought to provide different predictions

on test data, for flatness to be helpful in generalization, which is distinct from the flatness in

Dinh et al. [2017b]. Garipov et al. [2018] (see Section 2.1) also show that there are mode con-

necting curves, forming loss valleys, which contain a variety of distinct solutions. We argue that
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flat regions of the loss containing a diversity of solutions are particularly relevant for Bayesian

model averaging, since the model average will then contain many compelling and complemen-

tary explanations for the data. Additionally, Huang et al. [2019] describes neural networks as

having a blessing of dimensionality, since flat regions will occupy much greater volume in a high

dimensional space, which we argue means that flat solutions will dominate in the Bayesian model

average.

Smith and Le [2018] and MacKay [2003, Chapter 28] additionally connect the width of the

posterior with Occam factors; from a Bayesian perspective, larger width corresponds to a smaller

Occam factor, and thus ought to provide better generalization. Dziugaite and Roy [2017] and

Smith and Le [2018] also provide different perspectives on the results in Zhang et al. [2017a],

which shows that deep convolutional neural networks can fit CIFAR-10 with random labels and

no training error. The PAC-Bayes bound of Dziugaite and Roy [2017] becomes vacuous when

applied to randomly-labelled binaryMNIST. Smith and Le [2018] show that logistic regression can

fit noisy labels on sub-sampled MNIST, interpreting the result from an Occam factor perspective.

In general, PAC-Bayes provides a compelling framework for deriving explicit non-asymptotic

generalization bounds for stochastic networks with distributions over parameters [McAllester

1999; Langford and Caruana 2002; Dziugaite and Roy 2017; Neyshabur et al. 2017, 2018; Masegosa

2019; Jiang et al. 2019; Guedj 2019; Alquier 2021]. Langford and Caruana [2002] devised a PAC-

Bayes generalization bound for small stochastic neural networks (two layer with two hidden

units) achieving an improvement over the existing deterministic generalization bounds. Dziu-

gaite and Roy [2017] extended this approach, optimizing a PAC-Bayes bound with respect to a

parametric distribution over the weights of the network, exploiting the flatness of solutions dis-

covered by SGD, for non-vacuous bounds with an overparametrized network on binary MNIST.

Neyshabur et al. [2017] also discuss the connection between PAC-Bayes bounds and sharpness,

and Neyshabur et al. [2018] devises PAC-Bayes bounds based on spectral norms of the layers

and the Frobenius norm of the weights of the network. Achille and Soatto [2018] additionally
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combine PAC-Bayes and information theoretic approaches to argue that flat minima have low

information content. Masegosa [2019] also proposes variational and ensemble learning methods

based on PAC-Bayes analysis under model misspecification. Jiang et al. [2019] provide a review

and comparison of several generalization bounds, including PAC-Bayes.

Our contributions are largely orthogonal and complementary to PAC-Bayes. PAC-Bayes

bounds can be be improved by, e.g. fewer parameters, and very compact priors, which can be

different from what provides optimal generalization. From our perspective, model flexibility and

priors with large support, rather than compactness, are desirable. Moreover, we show the great

significance of multi-basin marginalization for generalization, whereas multi-basin marginaliza-

tion has aminimal logarithmic effect on PAC-Bayes bounds. Indeed,marginalization—a posterior

weighted model average — is our key focus, whereas PAC-Bayes bounds are typically bounding

the empirical risk of a single sample. In general, our focus is complementary to PAC-Bayes, aim-

ing to provide prescriptive intuitions onmodel construction, inference, and neural network priors,

as well as new connections between Bayesian model averaging and deep ensembles, benefits of

Bayesian model averaging in the context of modern deep neural networks, views of marginaliza-

tion that contrast with simple Monte Carlo, and new methods for Bayesian marginalization in

deep learning.

In other work, Pearce et al. [2018] propose a modification of deep ensembles and argue that it

performs approximate Bayesian inference, and Gustafsson et al. [2019] briefly mention how deep

ensembles can be viewed as samples from an approximate posterior. In the context of deep en-

sembles, we believe it is natural to consider the BMA integral separately from the simple Monte

Carlo approximation that is often used to approximate this integral; to compute an accurate pre-

dictive distribution, we do not need samples from a posterior, or even a faithful approximation

to the posterior.

Fort et al. [2019] considered the diversity of predictions produced by models from multiple

independent SGD runs, and suggested to ensemble averages of SGD iterates. AlthoughMultiSWA
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(one of themethods considered in Section 3.6) is related to this idea, the crucial practical difference

is that MultiSWA uses a learning rate schedule that selects for flat regions of the loss, the key to

the success of the SWA method [Izmailov et al. 2018]. Section 3.6 also shows that MultiSWAG,

which we propose for multimodal Bayesian marginalization, outperforms MultiSWA.

Double descent, which describes generalization error that decreases, increases, and then again

decreases with model flexibility, was demonstrated early by Opper et al. [1990]. Recently, Belkin

et al. [2019] extensively demonstrated double descent, leading to a surge of modern interest, with

Nakkiran et al. [2019] showing double descent in deep learning. Nakkiran et al. [2020] shows

that tuned 𝑙2 regularization can mitigate double descent. Alternatively, we show that Bayesian

model averaging, particularly based onmultimodal marginalization, can alleviate even prominent

double descent behaviour.

Tempering in Bayesian modelling has been considered under the names Safe Bayes, general-

ized Bayesian inference, and fractional Bayesian inference [e.g., de Heide et al. 2019; Grünwald et al.

2017; Barron and Cover 1991; Walker and Hjort 2001; Zhang 2006; Bissiri et al. 2016; Grünwald

2012]. We provide several perspectives of tempering in Bayesian deep learning, and analyze the

results in a recent paper by Wenzel et al. [2020] that questions tempering for Bayesian neural

networks.

3.11.1 Methods for Uncertainty Estimation

Markov chain Monte Carlo (MCMC) was at one time a gold standard for inference with

neural networks, through the Hamiltonian Monte Carlo (HMC) work of Neal [1996]. However,

HMC requires full gradients, which is computationally intractable for modern neural networks.

To extend the HMC framework, stochastic gradient HMC (SGHMC) was introduced by Chen

et al. [2014] and allows for stochastic gradients to be used in Bayesian inference, crucial for both

scalability and exploring a space of solutions that provide good generalization. Alternatively,

stochastic gradient Langevin dynamics (SGLD) [Welling and Teh 2011] uses first order Langevin

83



dynamics in the stochastic gradient setting. Theoretically, both SGHMC and SGLD asymptoti-

cally sample from the posterior in the limit of infinitely small step sizes. In practice, using finite

learning rates introduces approximation errors (see e.g. [Mandt et al. 2017a]), and tuning stochas-

tic gradient MCMC methods can be quite difficult.

Variational Inference: Graves [2011] suggested fitting a Gaussian variational posterior ap-

proximation over the weights of neural networks. This technique was generalized by Kingma

and Welling [2013] which proposed the reparameterization trick for training deep latent variable

models; multiple variational inference methods based on the reparameterization trick were pro-

posed for DNNs [e.g., Kingma et al. 2015; Blundell et al. 2015; Molchanov et al. 2017; Louizos

and Welling 2017]. While variational methods achieve strong performance for moderately sized

networks, they are empirically noted to be difficult to train on larger architectures such as deep

residual networks [He et al. 2016]; Blier and Ollivier [2018] argue that the difficulty of training is

explained by variational methods providing inusfficient data compression for DNNs despite be-

ing designed for data compression (minimum description length). Recent key advances [Louizos

and Welling 2017; Wu et al. 2018] in variational inference for deep learning typically focus on

smaller-scale datasets and architectures. An alternative line of work re-interprets noisy versions

of optimization algorithms: for example, noisy Adam [Khan et al. 2018] and noisy KFAC [Zhang

et al. 2017b], as approximate variational inference.

Dropout Variational Inference: Gal and Ghahramani [2016] used a spike and slab varia-

tional distribution to view dropout at test time as approximate variational Bayesian inference.

Concrete dropout [Gal et al. 2017] extends this idea to optimize the dropout probabilities as well.

From a practical perspective, these approaches are quite appealing as they only require ensem-

bling dropout predictions at test time, and they were succesfully applied to several downstream

tasks [Kendall and Gal 2017; Mukhoti and Gal 2018].
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Laplace Approximations assume a Gaussian posterior,N(𝜃 ∗,I(𝜃 ∗)−1),where 𝜃 ∗ is a MAP es-

timate and I(𝜃 ∗)−1 is the inverse of the Fisher information matrix (expected value of the Hessian

evaluated at 𝜃 ∗). It was notably used for Bayesian neural networks in MacKay [1992b], where

a diagonal approximation to the inverse of the Hessian was utilized for computational reasons.

More recently, Kirkpatrick et al. [2017] proposed using diagonal Laplace approximations to over-

come catastrophic forgetting in deep learning. Ritter et al. [2018b] proposed the use of either a

diagonal or block Kronecker factored (KFAC) approximation to the Hessianmatrix for Laplace ap-

proximations, and Ritter et al. [2018a] successfully applied the KFAC approach to online learning

scenarios.

SGD Based Approximations. Mandt et al. [2017a] proposed to use the iterates of averaged

SGD as an MCMC sampler, after analyzing the dynamics of SGD using tools from stochastic

calculus. From a frequentist perspective, Chen et al. [2016] showed that under certain conditions

a batch means estimator of the sample covariance matrix of the SGD iterates converges to 𝐴 =

H(𝜃 )−1𝐶 (𝜃 )H (𝜃 )−1, whereH(𝜃 )−1 is the inverse of the Hessian of the log likelihood and𝐶 (𝜃 ) =

E(∇ log𝑝 (𝜃 )∇ log𝑝 (𝜃 )𝑇 ) is the covariance of the gradients of the log likelihood. Chen et al. [2016]

then show that using 𝐴 and the sample average of the iterates for a Gaussian approximation

produces well calibrated confidence intervals of the parameters and that the variance of these

estimators achieves the Cramer Rao lower bound (the minimum possible variance). A description

of the asymptotic covariance of the SGD iterates dates back to Ruppert [1988] and Polyak and

Juditsky [1992], who show asymptotic convergence of Polyak-Ruppert averaging.

Methods for Calibration of DNNs. Lakshminarayanan et al. [2017] proposed using ensem-

bles of several networks for enhanced calibration, and incorporated an adversarial loss function

to be used when possible as well. Outside of probabilistic neural networks, Guo et al. [2017] pro-

posed temperature scaling, a procedure which uses a validation set and a single hyperparameter

to rescale the logits of DNN outputs for enhanced calibration. Kuleshov et al. [2018] propose
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calibrated regression using a similar rescaling technique.

3.12 Discussion

“It is now common practice for Bayesians to fit models that have more parameters

than the number of data points. . . Incorporate every imaginable possibility into themodel

space: for example, if it is conceivable that a very simple model might be able to explain

the data, one should include simple models; if the noise might have a long-tailed distri-

bution, one should include a hyperparameter which controls the heaviness of the tails of

the distribution; if an input variable might be irrelevant to a regression, include it in the

regression anyway.” MacKay [1995]

We have presented a probabilistic perspective of generalization, which depends on the sup-

port and inductive biases of the model. The support should be as large possible, but the inductive

biases must be well-calibrated to a given problem class. We argue that Bayesian neural networks

embody these properties — and through the lens of probabilistic inference, explain generaliza-

tion behaviour that has previously been viewed as mysterious. Moreover, we argue that Bayesian

marginalization is particularly compelling for neural networks, show how deep ensembles pro-

vide a practical mechanism for marginalization, and propose a new approach that generalizes

deep ensembles to marginalize within basins of attraction. We show that this multimodal ap-

proach to Bayesian model averaging, MultiSWAG, can entirely alleviate double descent, to en-

able monotonic performance improvements with increases in model flexibility, as well significant

improvements in generalization accuracy and log-likelihood over SGD and single basin marginal-

ization.

In the next Chapter 4, we present a detailed analysis of Bayesian neural networks, where

we aim to approximate the posterior as precisely as possible. We find that the intuitions that we

built in this chapter hold for BNNswith precise inference, and also identify several new surprising
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phenomena.

87



4 | Detailed Study of Bayesian Neural

Network Posteriors

In the previous Chapter 3, we presented a broad argument favouring a Bayesian approach to deep

learning [see also, MacKay 1995; Neal 1996; Blundell et al. 2015; Gal 2016]. Bayesian inference

for neural networks promises improved predictions, reliable uncertainty estimates, and principled

model comparison, naturally supporting active learning, continual learning, and decision-making

under uncertainty. The Bayesian deep learning community has designedmultiple successful prac-

tical methods inspired by the Bayesian approach [Blundell et al. 2015; Gal and Ghahramani 2016;

Welling and Teh 2011; Kirkpatrick et al. 2017; Maddox et al. 2019; Izmailov et al. 2019; Daxberger

et al. 2020] with applications ranging from astrophysics [Cranmer et al. 2021] to automatic diag-

nosis of Diabetic Retinopathy [Filos et al. 2019], click-through rate prediction in advertising [Liu

et al. 2017] and modeling of fluid dynamics [Geneva and Zabaras 2020].

However, inference with modern neural networks is distinctly challenging. We wish to com-

pute a Bayesian model average corresponding to an integral over a multi-million dimensional

multi-modal posterior, with unusual topological properties like mode-connectivity (see Chap-

ter 2), under severe computational constraints.

There are therefore many unresolved questions about Bayesian deep learning practice. Varia-

tional procedures typically provide unimodal Gaussian approximations to the multimodal poste-

rior. Practically successful methods such as deep ensembles [Lakshminarayanan et al. 2017; Fort
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et al. 2019] have a natural Bayesian interpretation [Wilson and Izmailov 2020], but only repre-

sent modes of the posterior. While Stochastic MCMC [Welling and Teh 2011; Chen et al. 2014;

Zhang et al. 2020c] is computationally convenient, it could be providing heavily biased estimates

of posterior expectations. Moreover, Wenzel et al. [2020] question the quality of standard Bayes

posteriors, citing results where “cold posteriors”, raised to a power 1/𝑇 with 𝑇 < 1, improve

performance.

Additionally, Bayesian deep learning methods are typically evaluated on their ability to gen-

erate useful, well-calibrated predictions on held-out or out-of-distribution data. However, strong

performance on benchmark problems does not imply that the algorithm accurately approximates

the true Bayesian model average (BMA).

In this chapter, we investigate fundamental open questions in Bayesian deep learning, us-

ing multi-chain full-batch Hamiltonian Monte Carlo [HMC, Neal et al. 2011]. HMC is a highly-

efficient and well-studied Markov Chain Monte Carlo (MCMC) method that is guaranteed to

asymptotically produce samples from the true posterior. However it is enormously challenging

to apply HMC to modern neural networks due to its extreme computational requirements: HMC

can take tens of thousands of training epochs to produce a single sample from the posterior. To

address this computational challenge, we parallelize the computation over hundreds of Tensor

processing unit (TPU) devices.

We argue that full-batch HMC provides the most precise tool for studying the BNN posterior

to date. We are not proposing HMC as a computationally efficient method for practical applica-

tions. Rather, using our implementation of HMC we are able to explore fundamental questions

about posterior geometry, the performance of BNNs, approximate inference, effect of priors and

posterior temperature.

In particular, we show: (1) BNNs can achieve significant performance gains over standard

training and deep ensembles; (2) a single long HMC chain can provide a comparable representa-

tion of the posterior to multiple shorter chains; (3) in contrast to recent studies, we find posterior
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tempering is not needed for near-optimal performance, with little evidence for a “cold posterior”

effect, which we show is largely an artifact of data augmentation; (4) BMA performance is robust

to the choice of prior scale, and relatively similar for diagonal Gaussian, mixture of Gaussian,

and logistic priors over weights. This result highlights the importance of architecture relative to

parameter priors in specifying the prior over functions. (5) While Bayesian neural networks have

good performance for OOD detection, they show surprisingly poor generalization under domain

shift; (6) while cheaper alternatives such as deep ensembles and SGMCMC can provide good

generalization, they provide distinct predictive distributions from HMC. Notably, deep ensemble

predictive distributions are similarly close to HMC as standard SGLD, and closer than standard

variational inference.

We additionally show how to effectively deploy full batch HMC on modern neural networks,

including insights about how to tune crucial hyperparameters for good performance, and paral-

lelize sampling over hundreds of TPUs. OurHMC samples and implementation are a public resource.

This chapter is adapted from the papers “What Are Bayesian Neural Network Posteriors

Really Like?” [Izmailov et al. 2021b] which originally appeared at ICML 2021 and “Dangers

of Bayesian Model Averaging under Covariate Shift” [Izmailov et al. 2021a] which originally

appeared at NeurIPS 2021, written jointly with Sharad Vikram, Matthew D. Hoffman, Patrick

Nicholson, Sanae Lotfi and Andrew Gordon Wilson.

4.1 Background

See Chapter 3 for a detailed discussion of Bayesian deep learning. Here, we introduce the concepts

and notation used throughout this chapter.

Bayesian neural networks. The goal of classical learning is to find a single best setting of the

parameters for the model, typically through maximum-likelihood optimization. In the Bayesian
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framework, the learner instead infers a posterior distribution 𝑝 (𝑤 |D) over the parameters𝑤 of the

model after observing the data D. The posterior distribution is given by Bayes’ rule: 𝑝 (𝑤 |D) ∝

𝑝 (D|𝑤)𝑝 (𝑤), where 𝑝 (D|𝑤) is the likelihood of D given by the model with parameters 𝑤 , and

𝑝 (𝑤) is the prior distribution over the parameters. The predictions of the model on a new test

example 𝑥 are then given by the Bayesian model average (BMA)

𝑝 (𝑦 |𝑥,D) =
∫
𝑤
𝑝 (𝑦 |𝑥,𝑤)𝑝 (𝑤 |D)𝑑𝑤, (4.1)

where 𝑝 (𝑦 |𝑥,𝑤) is the predictive distribution for a given value of the parameters 𝑤 . This BMA

is particularly compelling in Bayesian deep learning, because the posterior over parameters for

a modern neural network can represent many complementary solutions to a given problem, cor-

responding to different settings of parameters [Wilson and Izmailov 2020]. Unfortunately, the

integral in Eq. (4.1) cannot be evaluated in closed form for neural networks, so one must resort

to approximate inference. Moreover, approximating Eq. (4.1) is challenging due to a high dimen-

sional and sophisticated posterior 𝑝 (𝑤 |D).

Markov Chain Monte Carlo. The integral in Eq. (4.1) can be approximated by sampling:

𝑝 (𝑦 |𝑥,D) ≈ 1
𝑀

∑𝑀
𝑖=1 𝑝 (𝑦 |𝑥,𝑤𝑖), where 𝑤𝑖 ∼ 𝑝 (𝑤 |D) are samples drawn from the posterior.

MCMC methods construct a Markov chain that, if simulated for long enough, generates approxi-

mate samples from the posterior. In this work, we focus on Hamiltonian Monte Carlo [Neal et al.

2011], a method that produces asymptotically exact samples assuming access to the unnormalized

posterior density 𝑝 (D|𝑤)𝑝 (𝑤) and its gradient.

Maximum a-posteriori (MAP) estimation. In contrast with Bayesian model averaging, a

MAP estimator uses the single setting of weights (hypothesis) that maximizes the posterior den-

sity 𝑤MAP = argmax
𝑤

𝑝 (𝑤 |D) = argmax
𝑤

(log𝑝 (D|𝑤) + log𝑝 (𝑤)), where the log prior can be

viewed as a regularizer. For example, if we use a Gaussian prior on 𝑤 , then log𝑝 (𝑤) will pe-
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nalize the ℓ2 norm of the parameters, driving parameters that do not improve the log likelihood

log𝑝 (D|𝑤) to zero. MAP is the standard approach to training neural networks and our base-

line for classical training throughout the paper. We perform MAP estimation with SGD unless

otherwise specified.

4.2 HMC for deep neural networks

We use full-batch Hamiltonian Monte Carlo (HMC) to sample from the parameter posteriors

for Bayesian neural networks. In this section, we show how to make HMC effective for modern

Bayesian neural networks, discussing important details such as hyper-parameter specification. In

the next sections, we use the HMC samples to explore fundamental questions about approximate

inference in modern deep learning. We summarize HMC in Appendix Figure 4 and Figure 5.

Intuitively, HMC is simulating the dynamics of a particle sliding on the plot of the density function

that we are trying to sample from.1

Implementation. To scale HMC to modern neural network architectures and for datasets like

CIFAR-10 and IMDB, we parallelize the computation over 512 TPUv3 devices2 [Jouppi et al. 2020].

We execute HMC in a single-program multiple-data (SPMD) configuration, wherein a dataset is

sharded evenly over each of the devices and an identical HMC implementation is run on each

device. Each device maintains a synchronized copy of the Markov chain state, where the full-

batch gradients needed for leapfrog integration are computed using cross-device collectives. We

release our JAX [Bradbury et al. 2018] implementation.

1For a detailed introduction to HMC please see Neal et al. [2011]. See also interactive visualization here: http:
//chi-feng.github.io/mcmc-demo/.

2We use other hardware configurations in several experiments. We state the hardware that we used in the cor-
responding sections.
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Neural network architectures. In our evaluation, following Wenzel et al. [2020], we pri-

marily focus on two architectures: ResNet-20-FRN and CNN-LSTM. ResNet-20-FRN is a resid-

ual architecture [He et al. 2016] of depth 20 with batch normalization layers [Ioffe and Szegedy

2015] replaced with filter response normalization [FRN; Singh and Krishnan 2020]. Batch nor-

malization makes the likelihood harder to interpret by creating dependencies between training

examples, whereas the outputs of FRN layers are independent across inputs. We use Swish (SiLU)

activations [Hendrycks and Gimpel 2016; Elfwing et al. 2018; Ramachandran et al. 2017] instead

of ReLUs to ensure smoothness of the posterior density surface, which we found improves ac-

ceptance rates of HMC proposals without hurting the overall performance. The CNN-LSTM is

a long short-term memory network [Hochreiter and Schmidhuber 1997b] adapted from Wenzel

et al. [2020] without modifications.

Datasets and Data Augmentation. In our main evaluations we use the CIFAR image classi-

fication datasets [Krizhevsky et al. 2014] and the IMDB dataset [Maas et al. 2011] for sentiment

analysis. We do not use any data augmentation, both because the random augmentations intro-

duce stochasticity into the evaluation of the posterior log-density and its gradient, and because

the expected randomly perturbed log-likelihood does not have a clean interpretation as a valid

likelihood function [Wenzel et al. 2020]. In this section we perform ablations using ResNet-20-

FRN on CIFAR-10 and CNN-LSTM on IMDB.
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Figure 4.1: Effect of HMC hyper-parameters. BMA accuracy, log-likelihood and expected calibration
error (ECE) as a function of (a): the trajectory length 𝜏 and (b): number of HMC chains. The orange curve
shows the results for a fixed number of samples in (a) and for a fixed number of samples per chain in (b);
the brown curve shows the results for a fixed amount of compute. All experiments are done on CIFAR-10
using the ResNet-20-FRN architecture on IMDB using CNN-LSTM. Longer trajectory lengths decrease
correlation between subsequent samples improving accuracy and log-likelihood. For a given amount of
computation, increasing the number of chains from one to two modestly improves the accuracy and log-
likelihood.
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4.2.1 Trajectory length 𝜏

The trajectory length parameter 𝜏 determines the length of the dynamics simulation on eachHMC

iteration. Effectively, it determines the correlation of subsequent samples produced by HMC. To

suppress random-walk behavior and speed up mixing, we want the length of the trajectory to

be relatively high. But increasing the length of the trajectory also leads to an increased compu-

tational cost: the number of evaluations of the gradient of the target density (evaluations of the

gradient of the loss on the full dataset) is equal to the ratio 𝜏/Δ of the trajectory length to the

step size.

We suggest the following value of the trajectory length 𝜏 :

𝜏 =
𝜋𝛼prior

2 , (4.2)

where 𝛼prior is the standard deviation of the prior distribution over the parameters. If applied

to a spherical Gaussian distribution, HMC with a small step size and this trajectory length will

generate exact samples3. While we are interested in sampling from the posterior rather than from

the spherical Gaussian prior, we argue that in large BNNs the prior tends to determine the scale of

the posterior. We provide more detail and confirm this intuition empirically in the Section A.5.3.

In order to test the validity of our recommended trajectory length, we perform an ablation

and report the results in Figure 4.1(a). As expected, longer trajectory lengths provide better per-

formance in terms of accuracy and log-likelihood. Expected calibration error is generally low

across the board. The trajectory length 𝜏 provides good performance in all three metrics. This

result confirms that, despite the expense, when applying HMC to BNNs it is actually helpful to

use tens of thousands of gradient evaluations per iteration.
3Since the Hamiltonian defines a set of independent harmonic oscillators with period 2𝜋𝛼 , 𝜏 = 𝜋𝛼/2 applies a

quarter-turn in phase space, swapping the positions and momenta.
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4.2.2 Step size Δ

The step size parameter Δ determines the discretization step size of the Hamiltonian dynamics

and consequently the number of leapfrog integrator steps. Lower step sizes lead to a better ap-

proximation of the dynamics and higher rates of proposal acceptance at the Metropolis-Hastings

correction step. However, lower step sizes require more gradient evaluations per iteration to hold

the trajectory length 𝜏 constant.

Using ResNet-20-FRN on CIFAR-10, we run HMC for 50 iterations with step sizes of 1 · 10−5,

5 · 10−5, 1 · 10−4, and 5 · 10−4 respectively, ignoring the Metropolis-Hastings correction. We find

the chains achieve average accept probabilities of 72.2%, 46.3%, 22.2%, and 12.5%, reflecting large

drops in accept probability as step size is increased. We also observe BMA log-likelihoods of

−0.331, −0.3406, −0.3407, and −0.895, indicating that higher accept rates result in higher likeli-

hoods.

4.2.3 Number of HMC chains

We can improve the coverage of the posterior distribution by running multiple independent

chains of HMC. Effectively, each chain is an independent run of the procedure using a different

random initialization. Then, we combine the samples from the different chains. The computa-

tional requirements of running multiple chains are hence proportional to the number of chains.

We report the Bayesian model average performance as a function of the number of chains

in Figure 4.1(b). Holding compute budget fixed, using two or three chains is only slightly better

than using one chain. This result notably shows that HMC is relatively unobstructed by energy

barriers in the posterior surface that would otherwise require multiple chains to overcome. We

explore this result further in Section 4.3.
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4.3 How well does HMC mix?

The primary goal of our work is to construct accurate samples from the posterior, and use them

to understand the properties of Bayesian neural networks better. In this section we consider

several diagnostics to evaluate whether our HMC sampler has converged, and discuss their im-

plications to the posterior geometry. We consider mixing in both weight space and function space.

A distribution over weights 𝑤 combined with a neural network architecture 𝑓 (𝑥,𝑤) induces a

distribution over functions 𝑓 (𝑥). Ultimately, since we are using functions to make predictions,

we care mostly about mixing in function space.

Summary: HMC is able to mix surprisingly well in function space, and better than in

parameter space. Geometrically, HMC is able to explore connected basins of the posterior

with high functional diversity.

4.3.1 𝑅 diagnostics

We apply the classic Gelman et al. [1992] “𝑅” potential-scale-reduction diagnostic to our HMC

runs. Given two or more chains, 𝑅 estimates the ratio between the between-chain variance (i.e.,

the variance estimated by pooling samples from all chains) and the average within-chain variance

(i.e., the variances estimated from each chain independently). The intuition is that, if the chains

are stuck in isolated regions, then combining samples from multiple chains will yield greater

diversity than taking samples from a single chain. For the precise mathematical definition of 𝑅,

please see the Section A.5.2.

We compute 𝑅 using TensorFlow Probability’s implementation4 [Lao et al. 2020] for both the

weights and the test-set softmax predictions on CIFAR-10 with ResNet-20-FRN and on IMDBwith
4tfp.mcmc.potential_scale_reduction
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Figure 4.2: Log-scale histograms of 𝑅 convergence diagnostics. Function-space 𝑅s are computed on
the test-set softmax predictions of the classifiers and weight-space 𝑅s are computed on the raw weights.
About 91% of CIFAR-10 and 98% of IMDB posterior-predictive probabilities get an 𝑅 less than 1.1. Most
weight-space 𝑅 values are quite small, but enough parameters have very large 𝑅s to make it clear that the
chains are sampling from different distributions in weight space.

CNN-LSTM. We report the results in Figure 4.2. We observe that on both IMDB and CIFAR, the

bulk of the function-space 𝑅 values is concentrated near 1, meaning intuitively that a single chain

can capture the diversity of predictions on most of the test data points nearly as well as multiple

chains. The mixing is especially good on the IMDB dataset, where only 2% of inputs correspond

to 𝑅 larger than 1.1. In Section A.5.5 we apply HMC to a synthetic regression problem and show

that HMC can indeed mix in the prediction space: different HMC chains provide very similar

predictions.

In weight space, although most parameters show no evidence of poor mixing, some have very

large 𝑅s, indicating that there are directions in which the chains fail to mix.

Implications for the Posterior Geometry. The fact that a single HMC chain is able to

mix well in function space (aka prediction space) suggests that the posterior contains connected

regions which correspond to high functional diversity. Indeed, a single HMC chain is extremely

unlikely to jump between isolated modes, but appears able to produce samples with diverse pre-
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Figure 4.3: Posterior density visualization. Visualizations of posterior log-density, log-likelihood and
log-prior in the two-dimensional subspace of the parameter space spanned by three HMC samples from
(a) the same chain and (b) three independent chains. Each HMC chain explores a region of high posterior
density of a complex non-convex shape, that appears multi-modal in the presented cross-sections.

dictions. Moreover, HMC is able to navigate these regions effeciently. Prior work onmode connec-

tivity [Garipov et al. 2018; Draxler et al. 2018b] has shown that there exist paths of high density

connecting different modes of the posterior. Our observations suggest a stronger version of mode

connectivity: not only do mode-connecting paths exist between functionally diverse modes, but

also at least some of these paths can be leveraged by Monte Carlo methods to efficiently explore

the posterior.

4.3.2 Posterior density visualizations

To further investigate how HMC is able to explore the posterior over the weights, we visualize a

cross-section of the posterior density in subspaces of the parameter space containing the samples.

Following Garipov et al. [2018], we study two-dimensional subspaces of the parameter space of
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the form

S = {𝑤 |𝑤 = 𝑤1 · 𝑎 +𝑤2 · 𝑏 +𝑤3 · (1 − 𝑎 − 𝑏)}. (4.3)

S is the unique two-dimensional affine subspace (plane) of the parameter space that includes

parameter vectors𝑤1,𝑤2 and𝑤3.

In Figure 4.3(a) we visualize the posterior log-density, log-likelihood and log-prior density

of a ResNet-20-FRN on CIFAR-10. For the visualization, we use the subspace S defined by the

parameter vectors𝑤1,𝑤51 and𝑤101, the samples produced by HMC at iterations 1, 51 and 101 after

burn-in respectively. We observe that HMC is able to navigate complex geometry: the samples fall

in three seemingly isolated modes in our two-dimensional cross-section of the posterior. In other

words, HMC samples from a single chain are not restricted to any specific convex Gaussian-like

mode, and instead explore a region of high posterior density of a complex shape in the parameter

space. We note that popular approximate inference procedures, such as variational methods, and

Laplace approximations, are typically constrained to unimodal Gaussian approximations to the

posterior, which we indeed expect to miss a large space of compelling solutions in the posterior.

In Figure 4.3(b) we provide a visualization for the samples produced by 3 different HMC chains

at iteration 51 after burn-in. Comparing the visualizations for samples from the same chain and

samples from independent chains in Figure 4.3, we see that the shapes of the posterior surfaces

are different, with the latter appearing more regular and symmetric. The qualitative differences

between (a) and (b) suggest that while each HMC chain is able to navigate the posterior geometry

the chains do not mix perfectly in the weight space, confirming our results in Section 4.3.1.

In Section A.5.4 we provide additional details on our visualization procedure and visualiza-

tions using the CNN-LSTM on IMDB.
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Figure 4.4: HMC convergence. The performance of an individual HMC sample and a BMA ensemble
of 100 samples from each one of 3 HMC chains after the burn-in as a function of burn-in length. The
dashed line indicates the burn-in length of 50 that we used in the main experiments in this work. We use
ResNet-20-FRN on CIFAR-10 and CNN-LSTM on IMDB. On IMDB, there is no visible dependence of the
results on the burn-in length; on CIFAR-10, there is a weak trend that slows down over time.

4.3.3 Convegence of the HMC chains

As another diagnostic, we look at the convergence of the performance of HMC BMA estimates

and individual samples as a function of the length of the burn-in period. For a converged chain,

the performance of the BMA and individual samples should be stationary not show any visible

trends after a sufficiently long burn-in. We use the samples from 3 HMC chains, and evaluate

performance of the ensemble of the first 100 HMC samples in each chain after discarding the first

𝑛𝑏𝑖 samples, where 𝑛𝑏𝑖 is the length of the burn-in. Additionally, we evaluate the performance of

the individual HMC samples after 𝑛𝑏𝑖 iterations in each of the chains.

We report the results for ResNet-20-FRN on CIFAR-10 and CNN-LSTM on IMDB in Figure 4.4.

On IMDB, there is no visible trend in performance, so a burn-in of just 10 HMC iterations should

be sufficient. On CIFAR-10, we observe a slowly rising trend that saturates at about 50 iterations,

indicating that a longer burn-in period is needed compared to IMDB. We therefore use a burn-in

period of 50 HMC iterations on both CIFAR and IMDB for the remainder of the chapter.
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Figure 4.5: UCI regression datasets. Performance of Hamiltonian Monte Carlo (HMC), stochastic
gradient Langevin dynamics (SGLD), stochastic gradient descent (SGD), subspace inference (SI) [Izmailov
et al. 2019], SWAG [Maddox et al. 2019] and deterministic variational inference [DVI; Wu et al. 2018]. We
use a fully-connected architecture with a single hidden layer of 50 neurons. The results reported for each
method are mean and standard deviation computed over 20 random train-test splits of the dataset. For
SI, SWAG and DVI we report the results presented in Izmailov et al. [2019]. Top: test root-mean-squared
error. Bottom: test log-likelihood. HMC performs on par with or better than all other baselines in each
experiment, often providing a significant improvement.

4.4 Evaluating Bayesian neural networks

Now that we have a procedure for effective HMC sampling, we are primed to explore exciting

questions about the fundamental behaviour of Bayesian neural networks, such as the role of tem-

pering, the prior over parameters, generalization performance, and robustness to covariate shift.

In this section we evaluate Bayesian neural networks in various problems using our implemen-

tation of HMC. Throughout the experiments, we use posterior temperature 𝑇 = 1.

We emphasize that the main goal of our work and this section in particular is to understand

the behaviour of true Bayesian neural network posteriors using HMC as a precise tool, and not

to argue for HMC as a practical method for Bayesian deep learning.
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Figure 4.6: Image and text classification. Performance of Hamiltonian Monte Carlo (HMC), stochas-
tic gradient Langevin dynamics (SGLD) with 1 and 5 chains, mean field variational inference (MFVI),
stochastic gradient descent (SGD), and deep ensembles. We use ResNet-20-FRN on CIFAR datasets, and
CNN-LSTM on IMDB. Bayesian neural networks via HMC outperform all baselines on all datasets in
terms of accuracy and log-likelihood. On ECE, the methods perform comparably.

Summary: Bayesian neural networks achieve strong results outperforming even large

deep ensembles in a range of evaluations. Surprisingly, however, BNNs are less robust to

distribution shift than conventionally-trained models.

4.4.1 Regression on UCI datasets

Bayesian deep learning methods are often evaluated on small-scale regression problems using

fully connected networks [e.g., Wu et al. 2018; Izmailov et al. 2019; Maddox et al. 2019]. Following

these works, we evaluate Bayesian neural networks using HMC on five UCI regression datasets:

Concrete, Yacht, Boston, Energy and Naval. For each of these datasets, we construct 20 random 90-

to-10 train-test splits and report the mean and standard deviation of performance over the splits.

We use a fully connected neural network with a single hidden layer of size 50 and 2 outputs

representing the predictive mean and standard deviation. For HMC we used a single chain with

10 burn-in iterations and 90 iterations of sampling. For more details, please see Section A.5.1.
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AUC-ROC

OOD Dataset HMC DE ODIN Mahal.

CIFAR-100 0.857 0.853 0.858 0.882

SVHN 0.8814 0.8529 0.967 0.991

Table 4.1: Out-of-distribution detection. We use a ResNet-20-FRN model trained on CIFAR-10 to
detect out-of-distribution data coming from SVHN or CIFAR-100. We report the results for HMC, deep
ensembles and specialized ODIN [Liang et al. 2017] andMahalanobis [Lee et al. 2018] methods. We report
the AUC-ROC score (higher is better) evaluating the ability of each method to distinguish between in-
distribution and OOD data. The predictive uncertainty from Bayesian neural networks allows us to detect
OOD inputs: HMC outpefroms deep ensembles on both datasets. Furthermore, HMC is competitive with
ODIN on the harder near-OOD task of detecting CIFAR-100 images, but underperforms on the easier
far-OOD task of detecting SVHN images.

We report the results in Figure 4.5. HMC typically outperforms all the baselines, often by a

significant margin, both in test RMSE and log-likelihood. On the Boston dataset, HMC achieves a

slightly higher average RMSE compared to the subspace inference and SWAG [Izmailov et al. 2019;

Maddox et al. 2019] but outperforms both these methods significantly in terms of log-likelihood.

4.4.2 Image Classification on CIFAR

Next, we evaluate Bayesian neural networks using HMC on image classification problems. We

use the ResNet-20-FRN architecture on CIFAR-10 and CIFAR-100. We picked a random subset of

40960 of the 50000 images for each of the datasets to be able to evenly shard the data across the

TPU devices; we use the same subset for both HMC and the baselines. We run 3 HMC chains

using step size 10−5 and a prior variance of 1/5, resulting in 70,248 leapfrog steps per sample. In

each chain we discard the first 50 samples as burn-in, and then draw 240 samples (720 in total for 3

chains)5. For SGLD, we use a single chain with 1000 burn-in epochs and 9000 epochs of sampling

producing 900 samples; we also report the performance of an ensemble of 5 independent SGLD

chains. Next, we report the performance of a mean field variational inference (MFVI) solution;
5In total, on CIFAR-10 our HMC run requires as many computations as over 60 million epochs of standard SGD

training
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we initialize the mean of MFVI with a solution pre-trained with SGD and use an ensemble of 50

samples from the VI posterior at evaluation. Finally, we report the performance of a single SGD

solution and a deep ensemble of 50 models. For more details, see Section A.5.1.

We report the results in Figure 4.6. Bayesian neural networks outperform all baselines in

terms of accuracy and log-likelihood on both datasets. In terms of ECE, SGD provides the worst

results across the board, and the rest of the methods are competitive; MFVI is particularly well-

calibrated on CIFAR-100.

Out-of-distribution detection. Bayesian deep learning methods are often evaluated on

out-of-distribution detection. In the Table 4.1 we report the performance of HMC-based Bayesian

neural network on out-of-distribution (OOD) detection. To detect OOD data, we use the level of

predicted confidence (value of the softmax class probability for the predicted class) from the HMC

ensemble, measuring the area under the receiving operator characteristic curve (AUC-ROC). We

train the methods on CIFAR-10 and use CIFAR-100 and SVHN as OOD data sources. We find that

BNNs perform competitively with the specialized ODIN method in the challenging near-OOD

detection setting (i.e. when the OOD data distribution is similar to the training data) of CIFAR-

100, while underperforming in the easier far-OOD setting on SVHN relative to the baselines

[Liang et al. 2017; Lee et al. 2018].

Robustness to distribution shift. Bayesian methods are often specifically applied to co-

variate shift problems [Ovadia et al. 2019; Wilson and Izmailov 2020; Dusenberry et al. 2020]. We

evaluate the the performance of HMC and Deep Ensemble-based Bayesian neural networks on

the CIFAR-10-C dataset [Hendrycks and Dietterich 2019], which applies a set of corruptions to

CIFAR-10 with varying intensities. Mimicking the setup in Ovadia et al. [2019], we use the same

16 corruptions, evaluating the performance at all intensities. We report the results in Figure 4.7.

Surprisingly, we find that Deep Ensembles and SGLD are consistently more robust to distribution

shift than HMC-based BNNs. For high corruption intensities, even a single SGD model outper-
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Figure 4.7: Evaluation on CIFAR-10-C. Accuracy and log-likelihood of HMC, SGD, deep ensembles,
SGLD and MFVI on a distribution shift task, where the CIFAR-10 test set is corrupted in 16 different ways
at various intensities on the scale of 1 to 5. We use the ResNet-20-FRN architecture. Boxes capture the
quartiles of performance over each corruption, with the whiskers indicating the minimum and maximum.
HMC is surprisingly the worst of the considered methods: even a single SGD solution provides better
OOD robustness.

forms the HMC ensemble.

In Section A.5.6 we provide further exploration of this effect, where we see HMC samples are

significantly less robust to many types of noise compared to conventionally-trained SGDmodels.

Interestingly, the performance of HMC-based BNNs under data corruption can be significantly

improved by using posterior tempering.

[PI TODO!]

4.4.3 Language Classification on IMDB

We use a CNN-LSTM architecture on the IMDB binary text classification dataset. In Figure 4.6

we report the results for HMC and the same baselines as in Section 4.4.2. We use HMC with

a step size of 10−5 and a prior variance of 1/40, resulting in 24,836 leapfrog steps per sample.

We run 3 chains, burning-in for 50 samples, and drawing 400 samples per chain (1,200 total).

For more details on the hyperparameters, please see Section A.5.1. Analogously to the image

classification experiments, HMC outperforms the baselines on accuracy and log-likelihood and
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provides competitive performance on ECE.

4.5 Bayesian Neural Networks under Covariate Shift

The predictive distributions of deep neural networks are often deployed in critical applications

such as medical diagnosis [Gulshan et al. 2016; Esteva et al. 2017; Filos et al. 2019], and au-

tonomous driving [Bojarski et al. 2016; Al-Shedivat et al. 2017; Michelmore et al. 2020]. These

applications typically involve covariate shift, where the target data distribution is different from

the distribution used for training [Hendrycks and Dietterich 2019; Arjovsky 2021]. Accurately

reflecting uncertainty is crucial for robustness to these shifts [Ovadia et al. 2019; Roy et al. 2021].

Since Bayesian methods provide a principled approach to representing model (epistemic) uncer-

tainty, they are commonly benchmarked on out-of-distribution (OOD) generalization tasks [e.g.,

Kendall and Gal 2017; Ovadia et al. 2019; Chang et al. 2019; Dusenberry et al. 2020; Wilson and

Izmailov 2020].

However, in Section 4.4, we showed that Bayesian neural networks (BNNs) with high fidelity

inference throughHamiltonianMonte Carlo (HMC) provide shockingly poor OOD generalization

performance, despite the popularity and success of approximate Bayesian inference in this setting

[Gal and Ghahramani 2016; Lakshminarayanan et al. 2017; Ovadia et al. 2019; Maddox et al. 2019;

Wilson and Izmailov 2020; Dusenberry et al. 2020; Benton et al. 2021].

In this section, we seek to understand, further demonstrate, and help remedy this concerning

behaviour. We show that Bayesian neural networks perform poorly for different types of covari-

ate shift, namely test data corruption, domain shift, and spurious correlations. In Figure 4.8(a)

we see that a ResNet-20 BNN approximated with HMC underperforms a maximum a-posteriori

(MAP) solution by 25% on the pixelate-corrupted CIFAR-10 test set. This result is particularly

surprising given that on the in-distribution test data, the BNN outperforms the MAP solution by

over 5%.
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Intuitively, we find that Bayesian model averaging (BMA) can be problematic under covariate

shift as follows. Due to linear dependencies in the features (inputs) of the training data distribu-

tion, model parameters corresponding to these dependencies do not affect the predictions on the

training data. As an illustrative special case of this general setting, consider MNIST digits, which

always have black corner pixels (dead pixels, with intensity zero). The corresponding first layer

weights are always multiplied by zero and have no effect on the likelihood. Consequently, these

weights are simply sampled from the prior. If at test time the corner pixels are not black, e.g., due

to corruption, these pixel values will be multiplied by random weights sampled from the prior,

and propagated to the next layer, significantly degrading performance. On the other hand, classi-

cal MAP training drives the unrestricted parameters towards zero due to regularization from the

prior that penalizes the parameter norm, and will not be similarly affected by noise at test time.

Here we see a major difference in robustness between optimizing a posterior for MAP training

in comparison to a posterior weighted model average.

As a motivating example, in Figure 4.8(b, c) we visualize the weights in the first layer of

a fully-connected network for a sample from the BNN posterior and the MAP solution on the

MNIST dataset. The MAP solution weights are highly structured, while the BNN sample appears

extremely noisy, similar to a draw from the Gaussian prior. In particular the weights correspond-

ing to dead pixels (i.e. pixel positions that are black for all the MNIST images) near the boundary

of the input image are set near zero (shown in white) by the MAP solution, but sampled ran-

domly by the BNN. If at test time the data is corrupted, e.g. by Gaussian noise, and the pixels

near the boundary of the image are activated, the MAP solution will ignore these pixels, while

the predictions of the BNN will be significantly affected.

Dead pixels are a special case of our more general findings: we show that the dramatic lack

of robustness for Bayesian neural networks is fundamentally caused by any linear dependencies

in the data, combined with models that are non-linear in their parameters. Indeed, we consider a

wide range of covariate shifts, including domain shifts. These robustness issues have the potential
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Figure 4.8: Bayesian neural networks under covariate shift. (a): Performance of a ResNet-20 on the
pixelate corruption in CIFAR-10-C. For the highest degree of corruption, a Bayesian model average under-
performs a MAP solution by 25% (44% against 69%) accuracy. See Izmailov et al. [2021b] for details. (b):
Visualization of the weights in the first layer of a Bayesian fully-connected network on MNIST sampled
via HMC. (c): The corresponding MAP weights. We visualize the weights connecting the input pixels to
a neuron in the hidden layer as a 28 × 28 image, where each weight is shown in the location of the input
pixel it interacts with.

to impact virtually every real-world application of Bayesian neural networks, since train and test

rarely come from exactly the same distribution.

Based on our understanding, we introduce a novel prior that assigns a low variance to the

weights in the first layer corresponding to directions orthogonal to the data manifold, leading

to improved generalization under covariate shift. We additionally study the effect of non-zero

mean corruptions and accordingly propose a second prior that constrains the sum of the weights,

resulting in further improvements in OOD generalization for Bayesian neural networks.

Our code for this section is available here.

Covariate shift. In this section, we focus on the covariate shift setting. We assume the train-

ing dataset Dtrain consists of i.i.d. samples from the distribution 𝑝train(𝑥,𝑦) = 𝑝train(𝑥) · 𝑝 (𝑦 |𝑥).

However, the test data may come from a different distribution 𝑝test(𝑥,𝑦) = 𝑝test(𝑥) · 𝑝 (𝑦 |𝑥).

For concreteness, we assume the conditional distribution 𝑝 (𝑦 |𝑥) remains unchanged, but the

marginal distribution of the input features 𝑝test(𝑥) differs from 𝑝train(𝑥); we note that our results

do not depend on this particular definition of covariate shift. Arjovsky [2021] provides a detailed

discussion of covariate shift.
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4.5.1 Bayesian neural networks are not robust to covariate shift

In this section, we evaluate Bayesian neural networks under different types of covariate shift.

Specifically, we focus on two types of covariate shift: test data corruption and domain shift. In

Section A.6.4, we additionally evaluate BNNs in the presence of spurious correlations in the data.

Methods. We evaluate BNNs against two deterministic baselines: a MAP solution approxi-

mated with stochastic gradient descent (SGD) with momentum [Robbins andMonro 1951; Polyak

1964] and a deep ensemble of 10 independently trained MAP solutions [Lakshminarayanan et al.

2017]. For BNNs, we provide the results using a Gaussian prior and a more heavy-tailed Laplace

prior following Fortuin et al. [2021]. Izmailov et al. [2021b] conjectured that cold posteriors [Wen-

zel et al. 2020] can improve the robustness of BNNs under covariate shift; to test this hypothesis,

we provide results for BNNs with a Gaussian prior and cold posteriors at temperature 10−2. For

all BNN models, we run a single chain of HMC for 100 iterations discarding the first 10 itera-

tions as burn-in, following Izmailov et al. [2021b]. We provide additional experimental details in

Section A.6.1.

Datasets and data augmentation. We run all methods on the MNIST [LeCun 1998] and

CIFAR-10 [Krizhevsky et al. 2014] datasets. Following Izmailov et al. [2021b] we do not use data

augmentation with any of the methods, as it is not trivially compatible with the Bayesian neural

network framework [e.g., Izmailov et al. 2021b; Wenzel et al. 2020].

Neural network architectures. On both the CIFAR-10 and MNIST datasets we use a small

convolutional network (CNN) inspired by LeNet-5 [LeCun et al. 1998], with 2 convolutional lay-

ers followed by 3 fully-connected layers. On MNIST we additionally consider a fully-connected

neural network (MLP) with 2 hidden layers of 256 neurons each. We note that high-fidelity poste-

rior sampling with HMC is extremely computationally intensive. Even on the small architectures
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Figure 4.9: Robustness on MNIST. Accuracy for deep ensembles, MAP and Bayesian neural networks
trained on MNIST under covariate shift. Top: Fully-connected network; bottom: Convolutional neural
network. While on the originalMNIST test set BNNs provide competitive performance, they underperform
deep ensembles on most of the corruptions. With the CNN architecture, all BNN variants lose to MAP
when evaluated on SVHN by almost 20%.

that we consider, the experiments take multiple hours on 8 NVIDIA Tesla V-100 GPUs or 8-core

TPU-V3 devices [Jouppi et al. 2020]. See Izmailov et al. [2021b] for details on the computational

requirements of full-batch HMC for BNNs.

4.5.1.1 Test data corruption

We start by considering the scenario where the test data is corrupted by some type of noise. In

this case, there is no semantic distribution shift: the test data is collected in the same way as the

train data, but then corrupted by a generic transformation.

In Figure 4.9, we report the performance of the methods trained on MNIST and evaluated on

the MNIST-corrupted (MNIST-C) test sets [Mu and Gilmer 2019] under various corruptions6. We

report the results for a fully-connected network and a convolutional network.

With the CNN architecture, deep ensembles consistently outperform BNNs. Moreover, even a

single MAP solution significantly outperforms BNNs on many of the corruptions. The results are

especially striking on brightness and fog corruptions, where the BNN with Laplace prior shows
6In addition to the corruptions from MNIST-C, we consider Gaussian noise with standard deviation 3, as this

corruption was considered by Izmailov et al. [2021b].
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accuracy at the level of random guessing, while the deep ensemble retains accuracy above 90%.

Gaussian noise and impulse noise corruptions also present significant challenges for BNNs. The

BNNs show the most competitive performance in-distribution and on the corruptions represent-

ing affine transformations: shear, scale, rotate and translate. The results are generally analogous

for the MLP: across the board the BNNs underperform deep ensembles, and often even a single

MAP solution.

While the cold posteriors provide an improvement on some of the noise corruptions, they also

hurt performance on Brightness and Stripe, and do not improve the performance significantly on

average across all corruptions compared to a standard BNN with a Gaussian prior. We provide

additional results on cold posterior performance in Section A.6.7.

Next, we consider the CIFAR-10-corrupted dataset (CIFAR-10-C) [Hendrycks and Dietterich

2019]. CIFAR-10-C consists of 18 transformations that are available at different levels of intensity

(1 – 5). We report the results using corruption intensity 4 (results for other intensities are in

Section A.6.3) for each of the transformations in Figure 4.10. Similarly to MNIST-C, BNNs out-

perform deep ensembles and MAP on in-distribution data, but underperform each over multiple

corruptions. On CIFAR-10-C, BNNs are especially vulnerable to different types of noise (Gaussian

noise, shot noise, impulse noise, speckle noise). For each of the noise corruptions, BNNs underper-

form even the classical MAP solution. The cold posteriors improve the performance on the noise

corruptions, but only provide a marginal improvement across the board.

We note that Izmailov et al. [2021b] evaluated a ResNet-20 model on the same set of CIFAR-

10-C corruptions. While they use a much larger architecture, the qualitative results for both

architectures are similar: BNNs are the most vulnerable to noise and blur corruptions. We thus

expect that our analysis is not specific to smaller architectures and will equally apply to deeper

models.
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Figure 4.10: Robustness on CIFAR-10. Accuracy for deep ensembles, MAP and Bayesian neural net-
works using a CNN architecture trained on CIFAR-10 under covariate shift. For the corruptions from
CIFAR-10-C, we report results for corruption intensity 4. While the BNNs with both Laplace and Gaus-
sian priors outperform deep ensembles on the in-distribution accuracy, they underperform even a single
MAP solution on most corruptions.

4.5.1.2 Domain shift

Next, we consider a different type of covariate shift where the test data and train data come from

different, but semantically related distributions.

First, we apply our CNN andMLPMNISTmodels to the SVHN test set [Netzer et al. 2011]. The

MNIST-to-SVHN domain shift task is a common benchmark for unsupervised domain adaptation:

both datasets contain images of digits, althoughMNIST contains hand-written digits while SVHN

represents house numbers. In order to apply our MNIST models to SVHN, we crop the SVHN

images and convert them to grayscale. We report the results in Figure 4.9. While for MLPs all

methods perform similarly, with the CNN architecture BNNs underperform deep ensembles and

MAP by nearly 20%.

Next, we apply our CIFAR-10 CNN model to the STL-10 dataset [Coates et al. 2011]. Both

datasets contain natural images with 9 shared classes between the two datasets7. We report the

accuracy of the CIFAR-10 models on these 9 shared classes in STL-10 in Figure 4.10. While BNNs

outperform the MAP solution, they still significantly underperform deep ensembles.

The results presented in this section highlight the generality and practical importance of the
7CIFAR-10 has a class frog and STL-10 has monkey. The other nine classes coincide.
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lack of robustness in BNNs: despite showing strong performance in-distribution, BNNs under-

perform even a single MAP solution (classical training) over an extensive variety of covariate

shifts.

4.6 Understanding Bayesian neural networks under

covariate shift

Now that we have established that Bayesian neural networks are highly susceptible tomany types

of covariate shift, we seek to understandwhy this is the case. In this section, we identify the linear

dependencies in the input features as one of the key issues undermining the robustness of BNNs.

We emphasize that linear dependencies in particular are not simply chosen for the simplicity of

analysis, and their key role follows from the structure of the fully-connected and convolutional

layers.

4.6.1 Motivating example: dead pixels and fully-connected layers

To provide an intuition for the results presented in this section, we start with a simple but prac-

tically relevant motivating example. Suppose we use a fully-connected Bayesian neural network

on a dataset 𝐷 = {(𝑥𝑖, 𝑦𝑖)}𝑛𝑖=1, with 𝑚 input features, where 𝑥𝑖 ∈ R𝑚 . We use the upper in-

dices to denote the features 𝑥1, . . . , 𝑥𝑚 and the lower indices to denote the datapoints 𝑥𝑖 . Then,

for each neuron 𝑗 in the first hidden layer of the network, the activation can be written as

𝑧 𝑗 = 𝜙 (∑𝑛
𝑖=1 𝑥

𝑖𝑤1
𝑖 𝑗 + 𝑏1

𝑗 ), where 𝑤1
𝑖 𝑗 is the weight of the first layer of the network correspond-

ing to the input feature 𝑖 and hidden neuron 𝑗 , and 𝑏1
𝑗 is the corresponding bias. We show the

following Lemma:

Lemma 4.1. Using the notation introduced above, suppose that the input feature 𝑥𝑖
𝑘
is equal to zero

for all the examples 𝑥𝑘 in the training dataset 𝐷 . Suppose the prior distribution over the parameters
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𝑝 (𝑊 ) factorizes as 𝑝 (𝑊 ) = 𝑝 (𝑤1
𝑖 𝑗 ) · 𝑝 (𝑊 \𝑤1

𝑖 𝑗 ) for some neuron 𝑗 in the first layer, where𝑊 \𝑤1
𝑖 𝑗

represents all the parameters𝑊 of the network except 𝑤1
𝑖 𝑗 . Then, the posterior distribution 𝑝 (𝑊 |𝐷)

will also factorize and the marginal posterior over the parameter𝑤1
𝑖 𝑗 will coincide with the prior:

𝑝 (𝑊 |𝐷) = 𝑝 (𝑊 \𝑤1
𝑖 𝑗 |𝐷) · 𝑝 (𝑤1

𝑖 𝑗 ). (4.4)

Consequently, the MAP solution will set the weight𝑤1
𝑖 𝑗 to the value with maximum prior density.

Intuitively, Lemma 4.1 says that if the prior for some parameter in the network is independent

of the other parameters, and the value of the parameter does not affect the predictions of the

model on any of the training data, then the posterior of this parameter will coincide with its

prior. In particular, if one of the input features is always zero, then the corresponding weights will

always be multiplied by zero, and will not affect the predictions of the network. To prove Lemma

4.1, we simply note that the posterior is proportional to the product of prior and likelihood, and

both terms factorize with respect to𝑤1
𝑖 𝑗 . We present a formal proof in Section A.6.8.

So, for any sample from the posterior, the weight 𝑤1
𝑖 𝑗 will be a random draw from the prior

distribution. Now suppose at test time we evaluate the model on data where the feature 𝑥𝑖 is no

longer zero. Then for these new inputs, the model will be effectively multiplying the input feature

𝑥𝑖 by a randomweight𝑤1
𝑖 𝑗 , leading to instability in predictions. In Section A.6.8, we formally state

and prove the following proposition:

Proposition 4.2. Suppose the assumptions of Lemma 4.1 hold. Assume also that the prior distri-

bution 𝑝 (𝑤1
𝑖 𝑗 ) has maximum density at 0 and that the network uses ReLU activations. Then for any

test input 𝑥 , the expected prediction under Bayesian model averaging (Equation 4.1) will depend on

the value of the feature 𝑥𝑖 , while the MAP solution will ignore this feature.

For example, in the MNIST dataset there is a large number of dead pixels: pixels near the

boundaries of the image that have intensity zero for all the inputs. In practice, we often use
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independent zero-mean priors (e.g. Gaussian) for each parameter of the network. So, according

to Lemma 4.1, the posterior over all the weights in the first layer of the network corresponding to

the dead pixels will coincide with the prior. If at test time the data is corrupted by e.g., Gaussian

noise, the dead pixels will receive non-zero intensities, leading to a significant degradation in the

performance of the Bayesian model average compared to the MAP solution.

While the situation where input features are constant and equal to zero may be rare and easily

addressed, the results presented in this section can be generalized to any linear dependence in

the data. We will now present our results in the most general form.

4.6.2 General linear dependencies and fully-connected layers

We now present our general results for fully-connected Bayesian neural networks when the fea-

tures are linearly dependent. Intuitively, if there exists a direction in the input space such that

all of the training data points have a constant projection on this direction (i.e. the data lies in a

hyper-plane), then posterior coincides with the prior in this direction. Hence, the BMA predic-

tions are highly susceptible to perturbations that move the test inputs in a direction orthogonal to

the hyper-plane. The MAP solution on the other hand is completely robust to such perturbations.

In Section A.6.8 we prove the following proposition.

Proposition 4.3. Suppose that the prior over the weights𝑤1
𝑖 𝑗 and biases𝑏

1
𝑗 in the first layer is an i.i.d.

Gaussian distribution N(0, 𝛼2), independent of the other parameters in the model. Suppose all the

inputs 𝑥1 . . . 𝑥𝑛 in the training dataset 𝐷 lie in an affine subspace of the input space:
∑𝑚
𝑗=1 𝑥

𝑗

𝑖
𝑐 𝑗 = 𝑐0

for all 𝑖 = 1, . . . , 𝑛 and some constants 𝑐 such that
∑𝑚
𝑖=0 𝑐

2
𝑖 = 1. Then,

(1) For any neuron 𝑗 in the first hidden layer, the posterior distribution of random variable 𝑤𝑐
𝑗 =∑𝑚

𝑖=1 𝑐𝑖𝑤
1
𝑖 𝑗−𝑐0𝑏

1
𝑗 (the projection of parameter vector (𝑤1

1 𝑗 , . . . ,𝑤
1
𝑚𝑗 , 𝑏

1
𝑗 ) on direction (𝑐1, . . . , 𝑐𝑚,−𝑐0))

will coincide with the prior N(0, 𝛼2).

(2) The MAP solution will set𝑤𝑐
𝑗 to zero.
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(3) (Informal) Assuming the network uses ReLU activations, at test time, the BMA prediction will

be susceptible to the inputs 𝑥 that lie outside of the subspace, i.e. the predictive mean will

depend on
∑𝑚
𝑗=1 𝑥

𝑗𝑐 𝑗 − 𝑐0. The MAP prediction will not depend on this difference.

Empirical support. To test Proposition 4.3, we examine the performance of a fully-connected

BNN on MNIST. The MNIST training dataset is not full rank, meaning that it has linearly depen-

dent features. For a fully-connected BNN, Proposition 4.3 predicts that the posterior distribution

of the first layer weights projected onto directions corresponding to these linearly dependent

features will coincide with the prior. In Figure 4.11(a) we test this hypothesis by projecting first

layer weights onto the principal components of the data. As expected, the distribution of the

projections on low-variance PCA components (directions that are constant or nearly constant in

the data) almost exactly coincides with the prior. The MAP solution, on the other hand, sets the

weights along these PCA components close to zero, confirming conclusion (2) of the proposition.

Finally, in Figure 4.11(b) we visualize the performance of the BMA and MAP solution as we apply

noise along high-variance and low-variance directions in the data. As predicted by conclusion

(3) of Proposition 4.3, the MAP solution is very robust to noise along the low-variance directions,

while BMA is not.

4.6.3 Linear dependencies and convolutional layers

Finally, we can extend Proposition 4.3 to convolutional layers. Unlike fully-connected layers,

convolutional layers include weight sharing such that no individual weight corresponds to a

specific pixel in the input images. For example, dead pixels will not necessarily present an issue

for convolutional layers, unlike what is described in Section 4.6.1. However, convolutional layers

are still susceptible to a special type of linear dependence. Intuitively, we can think of the outputs

of the first convolutional layer on all the input images as the outputs of a fully-connected layer

applied to all the 𝐾 × 𝐾 patches of the input image. Therefore the reasoning in Proposition 4.3
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Figure 4.11: Bayesian inference samples weights along low-variance principal components from
the prior, while MAP sets these weights to zero. (a): The distribution (mean ± 2 std) of projections of
the weights of the first layer on the directions corresponding to the PCA components of the data for BNN
samples and MAP solution using MLP and CNN architectures with different prior scales. In each case,
MAP sets the weights along low-variance components to zero, while BNN samples them from the prior.
(b): Accuracy of BNN and MAP solutions on the MNIST test set with Gaussian noise applied along the
50 highest and 50 lowest variance PCA components of the train data (left and right respectively). MAP is
very robust to noise along low-variance PCA directions, while BMA is not; the two methods are similarly
robust along the highest-variance PCA components.

applies to the convolutional layers, with the difference that the linear dependencies in the 𝐾 ×𝐾

patches cause the instability rather than dependencies in the full feature space. In Section A.6.8

we prove the following proposition.

Proposition 4.4. Suppose that the prior over the parameters of the convolutional filters and biases

in the first layer is an i.i.d. Gaussian distribution N(0, 𝛼2), independent of the other parameters

in the model. Suppose that the convolutional filters in the first layer are of size 𝐾 × 𝐾 × 𝐶 , where

𝐶 is the number of input channels. Then, consider the set 𝐷̂ of size 𝑁 of all the patches of size

𝐾 × 𝐾 ×𝐶 extracted from the training images in 𝐷 after applying the same padding as in the first

convolutional layer. Suppose all the patches 𝑧1 . . . 𝑧𝑁 in the dataset 𝐷̂ lie in an affine subspace of

the space R𝐾×𝐾×𝐶 :
∑𝐶
𝑐=1

∑𝐾
𝑎=1

∑𝐾
𝑏=1 𝑧

𝑎,𝑏
𝑖
𝛾𝑐,𝑎,𝑏 = 𝛾0 for all 𝑖 = 1, . . . , 𝑁 and some constants 𝑐𝑖 such that∑𝐶

𝑐=1
∑𝐾
𝑎=1

∑𝐾
𝑏=1 𝛾

2
𝑐,𝑎,𝑏
+𝛾2

0 = 1. Then, we can prove results analogous to (1)-(3) in Proposition 4.3 (see

the Section A.6.8 for the details).

Empirical support. In Figure 4.11(a), we visualize the projections of the weights in the first

layer of the CNN architecture on the PCA components of the 𝐾 × 𝐾 patches extracted from
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MNIST. Analogously to fully-connected networks, the projections of the MAP weights are close

to zero for low-variance components, while the projections of the BNN samples follow the prior.

4.6.4 What corruptions will hurt performance?

Based on Propositions 4.3, 4.4, we expect that the corruptions that are the most likely to break

linear dependence structure in the data will hurt the performance the most. In Section A.6.9 we

argue that noise corruptions are likely to break linear dependence, while the affine corruptions

are more likely to preserve it, agreeing with our observations in Section 4.5.1.

4.6.5 Why do some approximate Bayesian inference methods work well

under covariate shift?

Unlike BNNs with HMC inference, some approximate inference methods such as SWAG [Mad-

dox et al. 2019], MC dropout [Gal and Ghahramani 2016], deep ensembles [Lakshminarayanan

et al. 2017] and mean field VI [Blundell et al. 2015] provide strong performance under covariate

shift [Ovadia et al. 2019; Izmailov et al. 2021b]. For deep ensembles, we can easily understand

why: a deep ensemble represents an average of approximate MAP solutions, and we have seen

in conclusion (3) of Proposition Theorem 4.3 that MAP is robust to covariate shift in the sce-

nario introduced in Section 4.6.2. Similarly, other methods are closely connected to MAP via

characterizing the posterior using MAP optimization iterates (SWAG), or modifying the training

procedure for the MAP solution (MC Dropout). We provide further details, including theoretical

and empirical analysis of variational inference under covariate shift, in Section A.6.10.
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4.7 Towards more robust Bayesian model averaging under

covariate shift

In this section, we propose a simple new prior inspired by our theoretical analysis. In Section 4.6

we showed that linear dependencies in the input features cause the posterior to coincide with the

prior along the corresponding directions in the parameter space. In order to address this issue,

we explicitly design the prior for the first layer of the network so that the variance is low along

these directions.

4.7.1 Data empirical covariance prior

Let us consider the empirical covariance matrix of the inputs 𝑥𝑖 . Assuming the input features are

all preprocessed to be zero-mean
∑𝑛
𝑖=1 𝑥𝑖 = 0, we have Σ = 1

𝑛−1
∑𝑛
𝑖=1 𝑥𝑖𝑥

𝑇
𝑖 . For fully-connected

networks, we propose to use the EmpCov prior 𝑝 (𝑤1) = N(0, 𝛼Σ + 𝜖𝐼 ) on the weights 𝑤1 of the

first layer of the network, where 𝜖 is a small positive constant ensuring that the covariance matrix

is positive definite. The parameter 𝛼 > 0 determines the scale of the prior.

Suppose there is a linear dependence in the input features of the data: 𝑥𝑇𝑖 𝑝 = 𝑐 for some

direction 𝑝 and constant 𝑐 . Then 𝑝 will be an eigenvector of the empirical covariance matrix with

the corresponding eigenvalue equal to 0 : Σ𝑝 = 1
𝑛−1

∑𝑛
𝑖=1 𝑥𝑖𝑥

𝑇
𝑖 𝑝 = 𝑐

𝑛−1
∑𝑛
𝑖=1 𝑥𝑖 = 0. Hence the prior

over𝑤1 will have a variance of 𝜖 along the direction 𝑝 .

More generally, the EmpCov prior is aligned with the principal components of the data, which

are the eigenvectors of the matrix Σ. The prior variance along each principal component 𝑝𝑖 is

equal to 𝛼𝜎2
𝑖 + 𝜖 where 𝜎2

𝑖 is its corresponding explained variance. In Section A.6.11, we discuss

a more general family of priors aligned with the principal components of the data.
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Figure 4.12: EmpCov prior improves robustness. Test accuracy under covariate shift for deep ensem-
bles, MAP optimization with SGD, and BNN with Gaussian and EmpCov priors. Left: MLP architecture
trained on MNIST. Right: CNN architecture trained on CIFAR-10. The EmpCov prior provides consistent
improvement over the standard Gaussian prior. The improvement is particularly noticeable on the noise
corruptions and domain shift experiments (SVHN, STL-10).

Generalization to convolutions. We can generalize the EmpCov prior to convolutions by

replacing the empirical covariance of the data with the empirical covariance of the patches that

interact with the convolutional filter, denoted by 𝐷̂ in Proposition 4.4.

Is EmpCov a valid prior? EmpCov constructs a valid prior by evaluating the empirical co-

variance matrix of the inputs. This prior does not depend on the train data labels 𝑦𝑖 , unlike the

approach known as Empirical Bayes [see e.g. Bishop and Nasrabadi 2006, section 3.5], which is

commonly used to specify hyperparameters in Gaussian process and neural network priors [Ras-

mussen and Williams 2006; MacKay 1995].

4.7.2 Experiments

In Figure 4.12 we report the performance of the BNNs using the EmpCov prior. In each case, we

apply the EmpCov prior to the first layer, and a Gaussian prior to all other layers. For more details,

please see Section A.6.1. On both MLP on MNIST and CNN on CIFAR-10, the EmpCov prior

significantly improves performance across the board. In both cases, the BNN with EmpCov prior

shows competitive performance with deep ensembles, especially in the domain shift experiments.
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EmpCov is also particularly useful on the noise corruptions.

In Section A.6.12, we provide a detailed analysis of the performance of the CNN architecture

on MNIST. Surprisingly, we found that using the EmpCov prior by itself does not provide a large

improvement in this case. In Section A.6.12, we identify an issue specific to this particular setting,

and propose another targeted prior that substantially improves performance.

4.8 Do we need cold posteriors?

Multipleworks have considered tempering the posterior in Bayesian neural networks [e.g.Wenzel

et al. 2020; Wilson and Izmailov 2020; Zhang et al. 2020c; Ashukha et al. 2020; Aitchison 2020].

See Section 3.10 for a detailed discussion of posterior tempering. Specifically, we can consider a

distribution

𝑝𝑇 (𝑤 |D) ∝
(
𝑝 (D|𝑤) · 𝑝 (𝑤)

)1/𝑇
, (4.5)

where 𝑤 are the parameters of the network, D is the training dataset, 𝑝 (D|𝑤) is the likelihood

of D for the network with parameters 𝑤 and 𝑇 is the temperature. Note that at temperature

𝑇 = 1, 𝑝𝑇 corresponds to the standard Bayesian posterior over the parameters of the network.

Temperatures𝑇 < 1 correspond to cold posteriors, distributions that are sharper than the Bayesian

posterior. Similarly, temperatures𝑇 > 1 correspond to warm posteriors which are softer than the

Bayesian posterior. See Appendix Figure A.25(d) for a visualization of the log-likelihood density

surface at different temperatures.

Wenzel et al. [2020] argue that Bayesian neural networks require a cold posterior, and the

performance at temperature 𝑇 = 1 is inferior to even a single model trained with SGD. The

authors refer to this phenomenon as the cold posteriors effect. However, our results are different:
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Figure 4.13: Effect of posterior temperature. The effect of posterior temperature 𝑇 on the log-
likelihood, accuracy and expected calibration error using the CNN-LSTM model on the IMDB dataset.
For both the log-likelihood and accuracy 𝑇 = 1 provides optimal performance, while for the ECE the
colder posteriors provide a slight improvement. For all three metrics, the posterior at 𝑇 = 1 outperforms
the SGD baseline as well as a deep ensemble of 10 independently trained models.

Summary: We show that that cold posteriors are not needed to obtain near-optimal per-

formance with Bayesian neural networks and may even hurt performance. We show that

the cold posterior effect is largely an artifact of data augmentation.

4.8.1 Testing the cold posteriors effect

Wenzel et al. [2020] demonstrate the cold posteriors with two main experiments: ResNet-20 on

CIFAR-10 and CNN-LSTM on IMDB. In these experiments the authors show poor performance

at temperature 𝑇 = 1, with strong benefits from decreasing the temperature. However, for the

CIFAR-10 experiment, it is apparent [Wenzel et al. 2020, Appendix K, Figure 28] that the results

at 𝑇 = 1 are near-optimal for the ResNet on CIFAR-10 if data augmentation is turned off and

batch normalization is replaced with filter response normalization, which is in fact necessary for

a clear Bayesian interpretation of the inference procedure.

Furthermore, in Section 4.4, we show that Bayesian neural networks can achieve performance

superior to SGD and even deep ensembles at temperature 𝑇 = 1, in particular using the same

ResNet-20-FRNmodel on CIFAR-10 and CNN-LSTMmodel on IMDB used byWenzel et al. [2020].
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To further understand the effect of posterior temperature 𝑇 , we compare the performance of

the CNN-LSTM model at different 𝑇 using our Hamiltonian Monte Carlo sampler. In all runs

we used a fixed prior variance 𝛼2 = 1
40 . We report the results in Figure 4.13. We find that the

performance of the BNN at 𝑇 = 1 is better than the SGD baseline as well as a deep ensemble

of 50 independent models. Moreover, the performance at 𝑇 = 1 is better compared to all other

temperatures we tested in terms of both test accuracy and log-likelihood.

We also note that while posterior tempering does not seem necessary for good predictive

performance with BNNs, it may be helpful under distribution shift. In Section A.5.6 we show

that decreasing the temperature can significantly improve the robustness of BNN predictions to

noise in the test inputs. Wilson and Izmailov [2020] additionally argue that tempering may be a

reasonable procedure in general, and is not necessarily at odds with Bayesian principles.

Role of data augmentation. Our results are in contrast with Wenzel et al. [2020], who

argue that cold posteriors are needed for good performance with BNNs. In Section A.5.7 we

provide an additional study of what may have caused the poor performance of BNNs in Wenzel

et al. [2020], using the code for inference provided by Wenzel et al. [2020]. We identify data

augmentation as the key factor responsible for the cold posterior effect, and also show that batch

normalizing does not significantly influence this effect: when the data augmentation is turned off,

we do not observe the cold posteriors effect. Data augmentation cannot be naively incorporated

in the Bayesian neural network model (see the discussion in appendix K of Wenzel et al. [2020]),

and arguably it may be reasonable to decrease the temperature when using data augmentation:

intuitively, data augmentation increases the amount of data observed by the model, and should

lead to higher posterior contraction. We leave incorporating data augmentation in our HMC

evaluation framework as an exciting direction of future work.
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Figure 4.14: Effect of prior variance. The effect of prior variance on BNN performance. In each panel,
the dashed line shows the performance of the SGD model from Section 4.4. While low prior variance may
lead to over-regularization and hurt performance, all the considered prior scales lead to better results than
the performance of an SGD-trained neural network of the same architecture.

4.9 What is the effect of priors in Bayesian neural

networks?

Bayesian deep learning is often criticized for the lack of intuitive priors over the parameters. For

example, Wenzel et al. [2020] hypothesize that the popular Gaussian priors of the formN(0, 𝛼2𝐼 )

are inadequate and lead to poor performance. Tran et al. [2020] propose a new prior for Bayesian

neural networks inspired by Gaussian processes [Rasmussen and Williams 2006] based on this

hypothesis. In concurrent work, Fortuin et al. [2021] also explore several alternatives to stan-

dard Gaussian priors inspired by the cold posteriors effect. Wilson and Izmailov [2020] on the

other hand, argue that vague Gaussian priors in the parameter space induce useful function-space

priors.

In Section 4.4 we have shown that Bayesian neural networks can achieve strong performance

with vague Gaussian priors. In this section, we explore the sensitivity of BNNs to the choice of the

prior scale as well as several alternative prior families, as a step towards a better understanding
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of the role of the prior in BNNs.

Summary: High-variance Gaussian priors over parameters of BNNs lead to strong per-

formance. The results are robust with respect to the prior scale. Mixture of Gaussian and

logistic priors over parameters are not too different in performance to Gaussian priors.

These results highlight the relative importance of architecture over parameter priors in

specifying a useful prior over functions.

4.9.1 Effect of Gaussian prior scale

We use priors of the formN(0, 𝛼2𝐼 ) and vary the prior variance 𝛼2. For all cases, we use a single

HMC chain producing 40 samples. These are much shorter chains than the ones we used in

Section 4.4, so the results are not as good; the purpose of this section is to explore the relative

performance of BNNs under different priors.

We report the results for the CIFAR-10 and IMDB datasets in Figure 4.14. When the prior

variance is too small, the regularization is too strong, hindering the performance. Setting the

prior variance too large does not seem to hurt the performance as much. On both problems, the

performance is fairly robust: a wide window of prior variances lead to strong performance. In

particular, for all considered prior scales, the results are better than those of SGD training.

Why are BNNs so robust to the prior scale? One possible explanation for the relatively

flat curves in Figure 4.14 is that large prior variances imply a strong prior belief that the “true”

classifier (i.e., the model that would be learned given infinite data) should make high-confidence

predictions. Since the model is powerful enough to achieve any desired training accuracy, the

likelihood does not overrule this prior belief, and so the posterior assigns most of its mass to very

confident classifiers. Past a certain point, increasing the prior variance on the weights may have

no effect on the classifiers’ already saturated probabilities. Consequently, nearly every member
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Prior Gaussian MoG Logistic

Accuracy 0.866 0.863 0.869

ECE 0.029 0.025 0.024

Log Likelihood -0.311 -0.317 -0.304

Table 4.2: Non-Gaussian priors. BMA accuracy, ECE, and log-likelihood under different prior families
using CNN-LSTM on IMDB. We produce 80 samples from a single HMC chain for each of the priors. The
heavier-tailed logistic prior provides slightly better performance compared to the Gaussian and mixture
of Gaussians (MoG) priors.

of the BMA may be highly overconfident. But the ensemble does not have to be overconfident—a

mixture of overconfident experts can still makewell-calibrated predictions. Appendix Figure A.29

provides some qualitative evidence for this explanation; for some CIFAR-10 test set images, the

HMC chain oscillates between assigning the true label probabilities near 1 and probabilities near

0.

4.9.2 Non-Gaussian priors

In Table 4.2, we report BMA accuracy, ECE, and log-likelihood for two non-Gaussian priors on

the IMDB dataset: logistic and mixture of Gaussians (MoG). For the MoG prior we use a mixture

of two Gaussians centered at 0, one with variance 1
40 and the other with variance 1

160 . We pick

prior scale of the logistic prior to have a variance of 1
40 . We additionally provide the results for a

Gaussian prior with variance 1
40 . We approximate the BMA using 80 samples from a single HMC

chain for each of the priors. We find that the heavier-tailed logistic prior performs slightly better

than the Gaussian and MoG.

4.9.3 Importance of Architecture in Prior Specification

We often think of the prior narrowly in terms of a distribution over parameters 𝑝 (𝑤). But the

prior that matters is the prior over functions 𝑝 (𝑓 (𝑥)) that is inducedwhen a prior over parameters

𝑝 (𝑤) is combined with the functional form of a neural network 𝑓 (𝑥,𝑤). All of the results in this
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section point to the relative importance of the architecture in defining the prior over functions,

compared to the prior over parameters. A vague prior over parameters is not necessarily vague in

function-space. Moreover, while the details of the prior distribution over parameters 𝑝 (𝑤) have

only a minor effect on performance, the choice of architecture certainly has a major effect on

performance.

4.10 Do scalable BDL methods and HMC make similar

predictions?

While HMC shows strong performance in our evaluation in Section 4.4, in most realistic BNN

settings it is an impractical method. However, HMC can be used as a reference to evaluate and

calibrate more scalable and practical alternatives. In this section, we evaluate the fidelity of

SGMCMC, variational methods, and deep ensembles in representing the predictive distribution

(Bayesian model average) given by our HMC reference.

Summary: While SGMCMC and Deep Ensembles can provide good generalization accu-

racy and calibration, their predictive distributions differ from HMC. Deep ensembles are

similarly close to the HMC predictive distribution as SGLD, and closer than standard vari-

ational inference.

4.10.1 Comparing the predictive distributions

We consider two primary metrics: agreement and total variation. We define the agreement be-

tween the predictive distributions 𝑝 of HMC and 𝑝 of another method as the fraction of the test
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SGMCMC

Metric HMC
(reference) SGD Deep Ens MFVI SGLD SGHMC SGHMC

CLR
SGHMC
CLR-Prec

CIFAR-10

Accuracy 89.64 83.44 88.49 86.45 89.32 89.38 89.63 87.46
±0.25 ±1.14 ±0.10 ±0.27 ±0.23 ±0.32 ±0.37 ±0.21

Agreement 94.01 85.48 91.52 88.75 91.54 91.98 92.67 90.96
±0.25 ±1.00 ±0.06 ±0.24 ±0.15 ±0.35 ±0.52 ±0.24

Total Var 0.074 0.190 0.115 0.136 0.110 0.109 0.099 0.111
±0.003 ±0.005 ±0.000 ±0.000 ±0.001 ±0.001 ±0.006 ±0.002

CIFAR-10-C

Accuracy 70.91 71.04 76.99 75.40 78.80 78.20 76.43 73.42
±0.93 ±1.80 ±0.39 ±0.34 ±0.17 ±0.25 ±0.39 ±0.39

Agreement 86.00 72.01 79.29 75.47 77.99 78.98 80.93 79.65
±0.44 ±0.82 ±0.18 ±0.27 ±0.22 ±0.22 ±0.73 ±0.35

Total Var 0.133 0.334 0.220 0.245 0.214 0.203 0.194 0.205
±0.004 ±0.007 ±0.003 ±0.002 ±0.002 ±0.002 ±0.010 ±0.005

Table 4.3: Evaluation of cheaper alternatives to HMC. Agreement and total variation between pre-
dictive distributions of HMC and approximate inference methods: deep ensembles, mean field variational
inference (MFVI), and stochastic gradient Monte Carlo (SGMCMC) variations. For all methods we use
ResNet-20-FRN trained on CIFAR-10 and evaluate predictions on the CIFAR-10 and CIFAR-10-C test sets.
For CIFAR-10-C we report the average results across all corruptions and corruption intensities. We addi-
tionally report the results for HMC for reference: we compute the agreement and total variation between
one of the chains and the ensemble of the other two chains. For each method we report the mean and
standard deviation of the results over three independent runs. MFVI provides the worst approximation
of the predictive distribution. Deep ensembles despite often being considered non-Bayesian, significantly
outperformMFVI. SG-MCMCmethods provide the best results with SGHMC-CLR showing the best over-
all performance.

data points for which the top-1 predictions of 𝑝 and 𝑝 are the same:

1
𝑛

𝑛∑︁
𝑖=1

𝐼 [arg max
𝑗
𝑝 (𝑦 = 𝑗 |𝑥𝑖) = arg max

𝑗
𝑝 (𝑦 = 𝑗 |𝑥𝑖)],

where 𝐼 [·] is the indicator function and 𝑛 is the number of test data points 𝑥𝑖 . We define the

total variation metric between 𝑝 and 𝑝 as the total variation distance between the predictive
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distributions averaged over the test data points:

1
𝑛

𝑛∑︁
𝑖=1

1
2

∑︁
𝑗

����𝑝 (𝑦 = 𝑗 |𝑥𝑖) − 𝑝 (𝑦 = 𝑗 |𝑥𝑖)
����.

The agreement (higher is better) captures how well a method is able to capture the top-1 predic-

tions of HMC, while the total variation (lower is better) compares the predictive probabilities for

each of the classes.

In Table 4.3 we report the agreement and total variation metrics as well as the predictive

accuracy on the CIFAR-10 and CIFAR-10-C test sets for a deep ensemble of 50 models and sev-

eral SGLD variations: standard SGLD [Welling and Teh 2011], SGLD with momentum (SGHMC)

[Chen et al. 2014], SGLD with momentum and a cyclical learning rate schedule (SGHMC-CLR)

[Zhang et al. 2020c] and SGLD with momentum, cyclical learning rate schedule and a precon-

ditioner (SGHMC-CLR-Prec) [Wenzel et al. 2020]. All methods were trained on CIFAR-10. For

more details, please see Section A.5.1.

Overall, the absolute value of agreement achieved by all methods is fairly low on CIFAR-

10 and especially on CIFAR-10-C. More advanced SGHMC-CLR and SGHMC-CLR-Prec methods

provide a better fit of the HMC predictive distribution while not necessarily improving the ac-

curacy. Notably, these methods are also less robust to the data corruptions in CIFAR-10-C, again

suggesting that higher fidelity representations of the predictive distribution can lead to decreased

robustness to covariate shift, as we found in section 4.4.2.

Deep ensembles, while not typically considered to be a Bayesian method, provide a reason-

able approximation to the HMC predictive distribution. In particular, deep ensembles outperform

both SGLD and SGHMC in terms of total variation on CIFAR-10 and in terms of agreement on

CIFAR-10-C. These results support the argument that deep ensembles, while not typically charac-

terized as a Bayesianmethod, provide a higher fidelity approximation to a Bayesianmodel average

than methods that are conventionally accepted as Bayesian inference procedures in modern deep
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Figure 4.15: Distribution of predictive entropies (left) and calibration curve (right) of posterior predictive
distributions for HMC, SGD, deep ensembles, MFVI, SGLD and SGHMC-CLR-Prec for ResNet20-FRN on
CIFAR-10. On the left, for all methods, except HMC we plot a pair of histograms: for HMC and for the
corresponding method. SGD, Deep ensembles and MFVI provide more confident predictions than HMC.
SGMCMC methods appear to fit the predictive distribution of HMC better: SGLD is slightly underconfi-
dent relative to HMC while SGHMC-CLR-Prec is slightly over-confident.

learning [see Section 3.2.3; Wilson and Izmailov 2020].

In SectionA.5.6we explore the performance ofHMC, SGD, deep ensembles, SGLD and SGHMC-

CLR-Prec under different corruptions individually. Interestingly, the behavior of SGLD and SGHMC-

CLR-Prec appears more similar to that of deep ensembles than that of HMC. So, while both

SGMCMC and deep ensembles are very compelling practically, they provide relatively distinct

predictive distributions from HMC. Mean-field variational inference methods are particularly far

from the HMC predictive distribution. Thus, we should be very careful when making judgements

about true Bayesian neural networks based on the SGMCMC or MFVI performance.

4.10.2 Predictive entropy and calibration curves

To provide an additional comparison of the predictive distributions between HMC and other

methods, in Figure 4.15 we visualize the distribution of predictive entropies and the calibration

curves for HMC, SGD, deep ensembles, MFVI, SGLD and SGHMC-CLR-Prec on CIFAR-10 using
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ResNet-20-FRN.

All methods except fot SGD make conservative predictions: their confidences tend to under-

estimate their accuracies (Figure 4.15, right); SGD on the other hand is very over-confident [in

agreement with the results in Guo et al. 2017]. Deep ensembles and MFVI provide the most cali-

brated predictions, while SGLD and SGHMC-CLR-Prec match the HMC entropy distribution and

calibration curve closer.

4.11 Related work

The bulk of work on Bayesian deep learning has focused on scalable approximate inference

methods. These methods include stochastic variational inference [Hoffman et al. 2013; Graves

2011; Blundell et al. 2015; Kingma et al. 2015; Molchanov et al. 2017; Louizos and Welling 2017;

Khan et al. 2018; Zhang et al. 2018; Wu et al. 2018; Osawa et al. 2019; Dusenberry et al. 2020],

dropout [Srivastava et al. 2014; Gal and Ghahramani 2016; Kendall and Gal 2017; Gal et al. 2017],

the Laplace approximation [MacKay 1992b; Kirkpatrick et al. 2017; Ritter et al. 2018b; Li 2000;

Daxberger et al. 2020], expectation propagation [Hernández-Lobato and Adams 2015], and lever-

aging the stochastic gradient descent (SGD) trajectory, either for a deterministic approximation,

or sampling as in SGLD [Mandt et al. 2017b; Maddox et al. 2019; Izmailov et al. 2018; Wilson and

Izmailov 2020]. Foong et al. [2019] and Farquhar et al. [2020] additionally consider the role of

expressive posterior approximations in variational inference. See Section 3.11 for a more detailed

discussion of the prior work on approximate inference in Bayesian deep learning.

While these (and many other) methods often provide improved predictions or uncertainty

estimates, to the best of our knowledge none of these methods have been directly evaluated on

their ability to match the true posterior distribution using practical architectures and datasets.

Moreover, many of these methods are often designed with train-time constraints in mind, to

take roughly the same amount of compute as regular SGD training. To evaluate approximate
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inference procedures, and explore fundamental questions in Bayesian deep learning, we attempt

to construct a posterior approximation of the highest possible quality, ignoring the practicality

of the method.

The Monte Carlo literature for Bayesian neural networks has mainly focused on stochas-

tic gradient-based methods [Welling and Teh 2011; Ahn et al. 2014; Chen et al. 2014; Ma et al.

2015; Ahn et al. 2012; Ding et al. 2014; Zhang et al. 2020c; Garriga-Alonso and Fortuin 2021] for

computational efficiency reasons. These methods are fundamentally biased: (1) they omit the

Metropolis-Hastings correction step, and (2) the noise from subsampling the data perturbs their

stationary distribution. In particular, Betancourt [2015] argues that HMC is incompatible with

data subsampling. Notably, Zhang et al. [2020b] recently proposed a second-order stochastic

gradient MCMC method that is asymptotically exact.

Since the classic work of Neal [1996], there have been a few recent attempts at using full-

batch HMC in BNNs [e.g.; Cobb and Jalaian 2020; Wenzel et al. 2020]. These studies tend to use

relatively short trajectory lengths (generally not considering a number of leapfrog steps greater

than 100), and tend to focus on relatively small datasets and networks. We on the other hand

experiment with practical architectures and datasets and use up to 105 leapfrog steps per iteration

to ensure good mixing.

Our work is aimed at understanding the properties of true Bayesian neural networks. In a

similar direction, Wenzel et al. [2020] have recently explored the effect of the posterior tempera-

ture in Bayesian neural networks. We discuss their results in detail in Section 4.8, and provide our

own exploration of the posterior temperature with a different result: we find that BNNs achieve

strong performance at temperature 1 and do not require posterior tempering.

4.11.1 Covariate shift

Methods to improve robustness to shift between train and test often explicitly make use of the test

distribution in some fashion. For example, it is common to apply semi-supervised methods to the
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labelled training data augmented by the unlabelled test inputs [e.g., Daume III and Marcu 2006;

Athiwaratkun et al. 2019], or to learn a shared feature transformation for both train and test [e.g.,

Daumé III 2009]. In a Bayesian setting, Storkey and Sugiyama [2007] and Storkey [2009] propose

such approaches for linear regression and Gaussian processes under covariate shift, assuming the

data comes from multiple sources. Moreover, Shimodaira [2000] propose to re-weight the train

data points according to their density in the test data distribution. Sugiyama et al. [2006, 2007]

adapt this importance-weighting approach to the cross-validation setting.

We focus on the setting of robustness to covariate shift without any access to the test distri-

bution [e.g., Daume III and Marcu 2006]. Bayesian methods are frequently applied in this setting,

oftenmotivated by the ability for a Bayesianmodel average to provide a principled representation

of epistemic uncertainty: there are typically many consistent explanations for out of distribution

points, leading to high uncertainty for these points. Indeed, approximate inference approaches

for Bayesian neural networks are showing good and increasingly better performance under co-

variate shift [e.g., Gal and Ghahramani 2016; Lakshminarayanan et al. 2017; Ovadia et al. 2019;

Maddox et al. 2019; Wilson and Izmailov 2020; Dusenberry et al. 2020; Benton et al. 2021].

Many works attempt to understand robustness to covariate shift. For example, for classical

training Neyshabur et al. [2020] show that models relying on features that encode semantic struc-

ture in the data are more robust to covariate shift. Nagarajan et al. [2020] also provide insights

into how classically trained max-margin classifiers can fail under covariate shift due to a reliance

on spurious correlations between class labels and input features. BNN robustness to adversarial

attacks is a related area of study, but generally involves much smaller perturbations to the test co-

variates than covariate shift. Carbone et al. [2020] prove that BNNs are robust to gradient-based

adversarial attacks in the large data, overparameterized limit, while Wicker et al. [2021] present

a framework for training BNNs with guaranteed robustness to adversarial examples.

In this work, we propose novel priors that improve robustness of BNNs under covariate shift.

In Fortuin et al. [2021], the authors explore a wide range of priors and, in particular, show that the
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distribution of the weights of SGD-trained networks is heavy-tailed such as Laplace and Student-

𝑡 , and does not appear Gaussian. Other heavy-tailed sparsity inducing priors have also been

proposed in the literature [Carvalho et al. 2009; Molchanov et al. 2017; Kessler et al. 2019; Cui

et al. 2020; Fortuin 2021]. Inspired by this work, we evaluate Laplace and Student-𝑡 priors for

BNNs, but find that they do not address the poor performance of BNNs under covariate shift.

Domingos [2000], Minka [2000b], Masegosa [2019] and Morningstar et al. [2020] explore fail-

ure modes of Bayesian model averaging when the Bayesian model does not contain a reasonable

solution in its hypothesis space, causing issues when the posterior contracts. This situation is

orthogonal to the setting in our paper, where we know the Bayesian model does contain a rea-

sonable solution in its hypothesis space, since the MAP estimate is robust to covariate shift. In

our setting, robustness issues are caused by a lack of posterior contraction.

In general, understanding and addressing covariate shift is a large area of study. For a com-

prehensive overview, see Arjovsky [2021]. To our knowledge, no prior work has attempted to

understand, further demonstrate, or remedy the poor robustness of Bayesian neural networks

with high fidelity approximate inference recently discovered in Izmailov et al. [2021b].

4.12 Discussion

Despite the rapidly increasing popularity of approximate Bayesian inference in modern deep

learning, little is known about the behaviour of truly Bayesian neural networks. To the best of

our knowledge, our work provides the first realistic evaluation of Bayesian neural networks with

precise and exhaustive posterior sampling. We establish several properties of Bayesian neural

networks, including good generalization performance, lack of a cold posterior effect, and a sur-

prising lack of robustness to covariate shift. We hope that our observations and the tools that we

develop will facilitate fundamental progress in understanding the behaviour of Bayesian neural

networks.
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Is HMC Converging? In general, it is not possible to ensure that an MCMC method has

converged to sampling from the true posterior distribution: theoretically, there may always re-

main regions of the posterior that cannot be discovered by the method but that contain most of

the posterior mass. To maximize the performance of HMC, we choose the hyper-parameters that

are the most likely to provide convergence: long trajectory lengths, and multiple long chains.

In Section 4.3, we study the convergence of HMC using the available convergence diagnostics.

We find that while HMC does not mix perfectly in weight space, in the space of predictions we

cannot find evidence of non-mixing.

Should we use Bayesian neural networks? Our results show that Bayesian neural net-

works can improve the performance over models trainedwith SGD in a variety of settings, both in

terms of uncertainty calibration and predictive accuracy. On most of the problems we considered

in this work, the best results were achieved by Bayesian neural networks. We believe that our re-

sults provide motivation to use Bayesian neural networks with accurate posterior approximation

in practical applications.

Should we use HMC in practice? For most realistic scenarios in Bayesian Deep Learning,

HMC is an impractical method. On the image classification benchmarks, HMC takes orders of

magnitude more compute than any of the baselines that we considered. We hope that our work

will inspire the community to produce new accurate and scalable approximate inference methods

for Bayesian deep learning.

4.12.1 Challenging conventional wisdom

A conventional wisdom has emerged that deep ensembles are a non-Bayesian alternative to vari-

ational methods, that standard priors for neural networks are poor, and that cold posteriors are

a problematic result for Bayesian deep learning. Our results highlight that one should take care
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in uncritically repeating such claims. In fact, deep ensembles appear to provide a higher fidelity

representation of the Bayesian predictive distribution than widely accepted approaches to ap-

proximate Bayesian inference. If anything, the takeaway from the relatively good performance of

deep ensembles is that we would benefit from approximate inference being closer to the Bayesian

ideal! Moreover, the details over the priors in weight space can have a relatively minor effect on

performance, and there is no strong evidence that standard Gaussian priors are particularly bad.

In fact, there are many reasons to believe these priors have useful properties, see e.g. Section 3.7.

Similarly, on close inspection, we found no evidence for a general cold posterior effect, which

we identify as largely an artifact of data augmentation. Although we see here that tempering

does not in fact seem to be required, as argued in Section 3.10 tempering is also not necessarily

unreasonable or even divergent from Bayesian principles.

Even the results we found that are less favourable to Bayesian deep learning are contrary to

the current orthodoxy. Indeed, higher fidelity Bayesian inference surprisingly appears to suf-

fer more greatly from covariate shift, despite the popularity of approximate Bayesian inference

procedures in this setting.

137



5 | Deep Neural Networks under

Distribution Shifts

In the previous chapters of this dissertation, we discussed general properties of neural network

loss surfaces, probabilistic perspective on generalization, uncertainty estimation and Bayesian

neural networks. Now, we will focus on the problem of robustness to distribution shifts. In this

chapter, we present a mechanistic understanding of feature learning in neural networks in the

presence of shortcut (spurious) features.

We find that the last layer largely determines how much the model will rely on the shortcut

features. Moreover, we can retrain the last layer, with a frozen feature extractor, and significantly

reduce the reliance on spurious features. It is interesting to consider this result in the context of

our analysis in Section 4.5, where we identified the importance of the first layer for robustness

to input corruptions. Together, these results highlight the importance of low-level mechanistic

understanding of deep learning models for robustness to distribution shift.

This chapter is adapted from the paper “Last Layer Re-Training is Sufficient for Robustness to

Spurious Correlations” [Kirichenko et al. 2023] which originally appeared at ICLR 2023, written

jointly with Polina Kirichenko and Andrew Gordon Wilson.
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5.1 Spurious Correlations

Realistic datasets in deep learning are riddled with spurious correlations — patterns that are pre-

dictive of the target in the train data, but that are irrelevant to the true labeling function. For

example, most of the images labeled as butterfly on ImageNet also show flowers [Singla and Feizi

2021], and most of the images labeled as tench show a fisherman holding the tench [Brendel and

Bethge 2019]. Deep neural networks rely on these spurious features, and consequently degrade

in performance when tested on datapoints where the spurious correlations break, for example, on

images with unusual background contexts [Geirhos et al. 2020; Rosenfeld et al. 2018; Beery et al.

2018]. In an especially alarming example, CNNs trained to recognize pneumonia were shown

to rely on hospital-specific metal tokens in the chest X-ray scans, instead of features relevant to

pneumonia [Zech et al. 2018].

In this chapter, we investigate what features are in fact learned on datasets with spurious cor-

relations. We find that even when neural networks appear to heavily rely on spurious features

and perform poorly on minority groups where the spurious correlation is broken, they still learn

the core features sufficiently well. These core features, associated with the semantic structure

of the problem, are learned even in cases when the spurious features are much simpler than the

core features (see Section 5.3.2) and in some cases even when no minority group examples are

present in the training data! While both the relevant and spurious features are learned, the spuri-

ous features can be highly weighted in the final classification layer of the model, leading to poor

predictions on the minority groups.

Inspired by these observations, we propose Deep Feature Reweighting (DFR), a simple and

effective method for improving worst-group accuracy of neural networks in the presence of spu-

rious features. We illustrate DFR in Figure 5.1. In DFR, we simply retrain the last layer of a

classification model trained with standard Empirical Risk Minimization (ERM), using a small set

of reweighting data where the spurious correlation does not hold. DFR achieves state-of-the-art
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Figure 5.1: Deep feature reweighting (DFR). An illustration of the DFR method on the Waterbirds
dataset, where the background (BG) is spuriously correlated with the foreground (FG). Standard ERM
classifiers learn both features relevant to the background and the foreground, and weight them in a way
that the model performs poorly on images with confusing backgrounds. With DFR, we simply reweight
these features by retraining the last linear layer on a small dataset where the backgrounds are not spu-
riously correlated with the foreground. The resulting DFR model primarily relies on the foreground, and
performs much better on images with confusing backgrounds.

performance on popular spurious correlation benchmarks by simply reweighting the features

of a trained ERM classifier, with no need to re-train the feature extractor. Moreover, we show

that DFR can be used to reduce reliance on background and texture information and improve ro-

bustness to certain types of covariate shift in large-scale models trained on ImageNet, by simply

retraining the last layer of these models. We note that the reason DFR can be so successful is

because standard neural networks are in fact learning core features, even if they do not primarily

rely on these features to make predictions, contrary to recent findings [Hermann and Lampinen

2020; Shah et al. 2020]. Since DFR only requires retraining a last layer, amounting to logistic

regression, it is extremely simple, easy to tune and computationally inexpensive relative to the

alternatives, yet can provide state-of-the-art performance. Indeed, DFR can reduce texture bias

and improve robustness of large ImageNet trained models, in only minutes on a single GPU. Our

code is available at github.com/PolinaKirichenko/deep_feature_reweighting.
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5.2 Problem Setting

We consider classification problems, where we assume that the data consists of several groups G𝑖 ,

which are often defined by a combination of a label and spurious attribute. Each group has its

own data distribution 𝑝𝑖 (𝑥,𝑦), and the training data distribution is a mixture of the group distri-

butions 𝑝 (𝑥,𝑦) = ∑
𝑖 𝛼𝑖𝑝𝑖 (𝑥,𝑦), where 𝛼𝑖 is the proportion of group G𝑖 in the data. For example, in

theWaterbirds dataset [Sagawa et al. 2020], the task is to classify whether an image shows a land-

bird or a waterbird. The groups correspond to images of waterbirds on water background (G1),

waterbirds on land background (G2), landbirds on water background (G3) and landbirds on land

background (G4). See Figure A.44 for a visual description of theWaterbirds data. We will consider

the scenario when the groups are not equally represented in the data: for example, onWaterbirds

the sizes of the groups are 3498, 184, 56 and 1057, respectively. The larger groups G1,G4 are re-

ferred to asmajority groups and the smaller G2,G3 are referred to as minority groups. As a result

of this heavy imbalance, the background becomes a spurious feature, i.e. it is a feature that is

correlated with the target on the train data, but it is not predictive of the target on the minority

groups. Throughout the chapter we will discuss multiple examples of spurious correlations in

both natural and synthetic datasets. In this chapter, we study the effect of spurious correlations

on the features learned by standard neural networks, and based on our findings propose a simple

way of reducing the reliance on spurious features assuming access to a small set of data where

the groups are equally represented.

5.3 Understanding Representation Learning with

Spurious Correlations

In this section we investigate the solutions learned by standard ERM classifiers on datasets with

spurious correlations. We show that while these classifiers underperform on the minority groups,
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h

Train Data Test Data (Worst Acc)

(Spurious Corr.) Original FG-Only

Balanced (50%) 91.9% 94.7%
Original (95%) 73.8% 93.7%
Original (100%) 38.4% 94%
FG-Only (-) 75.2% 95.5%

Table 5.1: ERM classifiers trained on Waterbirds with Original and FG-Only images achieve similar FG-
Only accuracy.

they still learn the core features that can be used to make correct predictions on the minority

groups.

5.3.1 Feature learning on Waterbirds data

We first consider the Waterbirds dataset [Sagawa et al. 2020] (see Section 5.2) which is gener-

ated synthetically by combining images of birds from the CUB dataset [Wah et al. 2011] and

backgrounds from the Places dataset [Zhou et al. 2017] (see Sagawa et al. [2020] for a detailed de-

scription of the data generation process). For the experiments in this section, we generate several

variations of the Waterbirds data following the procedure analogous to Sagawa et al. [2020]. The

Original dataset is analogous to the standard Waterbirds data, but we vary the degree of spurious

correlation between the background and the target: 50% (Balanced dataset), 95% (as in Sagawa

et al. [2020]) and 100% (no minority group examples in the train dataset). The FG-Only dataset

contains images of the birds on uniform grey background instead of the Places background, re-

moving the spurious feature. We show examples of datapoints from each variation of the dataset

in Appendix Figure A.42. In Appendix A.7.2.1, we provide the full details for the experiment in

this section, and additionally consider the reverse Waterbirds problem, where instead of predict-

ing the bird type, the task is to predict the background type, with similar results.

We train a ResNet-50 model with ERM on each of the variations of the data and report the
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results in Table 5.1. Following prior work [e.g., Sagawa et al. 2020; Liu et al. 2021; Idrissi et al.

2021], we initialize the model with weights pretrained on ImageNet. For the models trained on

the Original data, there is a large difference between the mean and worst group accuracy on the

Original test data: the model heavily relies on the background information in its predictions,

so the performance on minority groups is poor. The model trained without minority groups is

especially affected, only achieving 38.4% worst group accuracy. However, surprisingly, we find

that all the models trained on the Original data can make much better predictions on the FG-Only

test data: if we remove the spurious feature (background) from the inputs at test time, the models

make predictions based on the core feature (bird), and achieve worst-group1 accuracy close to

94%, which is only slightly lower than the accuracy of a model trained directly on the FG-Only

data and comparable to the accuracy of a model that was trained on balanced train data2.

In summary, we conclude that while the models pre-trained on ImageNet and trained on

the Original data make use of background information to make predictions, they still learn the

features relevant to classifying the birds almost as well as the models trained on the data without

spurious correlations. We will see that we can retrain the last layer of the Original-trained models

and dramatically improve the worst-group performance on the Original data, by emphasizing

the features relevant to the bird. While we use pre-trained models in this section, following the

common practice on Waterbirds, we show similar results on other datasets without pre-training

(see Section 5.3.2, Appendix A.7.3.1).

5.3.2 Simplicity bias

Shah et al. [2020] showed that neural networks can suffer from extreme simplicity bias, a ten-

dency to completely rely on the simple features, while ignoring similarly predictive (or even
1On the FG-Only data the groups only differ by the bird type, as we remove the background. The difference

between mean and worst-group accuracy is because the target classes are not balanced in the training data.
2In Appendix A.7.2.4, we demonstrate logit additivity: the class logits on Waterbirds are well approximated as

the sum of the logits for the corresponding background image and the logits for the foreground image.
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Figure 5.2: Feature learning and simplicity bias. ResNet-20 ERM classifiers trained on Dominoes
data with varying levels of spurious correlation between core and spurious features. We show worst-
group test accuracy for: Original data, data with only core features present (Core-Only), and accuracy
of decoding the core feature from the latent representations of the Original data with logistic regression.
We additionally report optimal accuracy: accuracy of a model trained and evaluated on the Core-Only
data. Even in cases when the model achieves 0% accuracy on the Original data, the core features can still
be decoded from latent representations.

more predictive) complex features. In this section, we explore whether the neural networks can

still learn the core features in the extreme simplicity bias scenarios, where the spurious features

are simple and highly correlated with the target. Following Shah et al. [2020] and Pagliardini

et al. [2022], we consider Dominoes binary classification datasets, where the top half of the image

shows MNIST digits [LeCun et al. 1998] from classes {0, 1}, and the bottom half shows MNIST

images from classes {7, 9} (MNIST-MNIST ), Fashion-MNIST [Xiao et al. 2017] images from classes

{coat, dress} (MNIST-Fashion) or CIFAR-10 [Krizhevsky and Hinton 2009] images from classes {car,

truck} (MNIST-CIFAR). In all Dominoes datasets, the top half of the image (MNIST 0 − 1 images)

presents a linearly separable feature; the bottom half of the image presents a harder to learn

feature. See Appendix A.7.2.2 for more details about the experimental set-up and datasets, and

Appendix Figure A.42 for image examples.

We use the simple feature (top half of the images) as a spurious feature and the complex

feature (bottom half) as the core feature; we generate datasets with 100%, 99% and 95% correla-

tions between the spurious feature and the target in train data, while the core feature is perfectly

aligned with the target. We then define 4 groups G𝑖 based on the values of the spurious and core

features, where the minority groups correspond to images with top and bottom halves that do
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not match. The groups on validation and test are balanced.

We train a ResNet-20 model on each variation of the dataset. In Figure 5.2 we report the

worst group performance for each of the datasets and each spurious correlation strength. In

addition to the worst-group accuracy on the Original test data, we report the Core-Only worst-

group accuracy, where we evaluate the model on datapoints with the spurious top half of the

image replaced with a black image. Similarly to Shah et al. [2020] and Pagliardini et al. [2022],

we observe that when the spurious features are perfectly correlated with the target on Dominoes

datasets, the model relies just on the simple spurious feature to make predictions and achieves

0% worst-group accuracy. However, with 99% and 95% spurious correlation levels on train, we

observe that models learned the core features well, as indicated both by their performance on the

Original test data and especially increased performance on Core-Only test data where spurious

features are absent. For reference, on each dataset we also report the Optimal accuracy, which

is the accuracy of a model trained and evaluated on the Core-Only data. The optimal accuracy

provides an upper bound on the accuracy that we can expect on each of the datasets.

Decoding feature representations. The performance on the Original and even Core-Only

data might not be fully representative of whether or not the network learned a high-quality

representation of the core features. Indeed, even if we remove theMNIST digit from the top half of

the image, the network can still primarily rely on the (empty) top half in its predictions: an empty

image may be more likely to come from class 1, which typically has fewer white pixels than class

0. To see how much information about the core feature is contained in the latent representation,

we evaluate the decoded accuracy: for each problem we train a logistic regression classifier on

the features extracted by the final convolutional layer of the network. We use a group-balanced

validation set to train the logistic regression model, and then report the worst-group accuracy on

a test set. In Figure 5.2, we observe that for MNIST-MNIST andMNIST-FashionMNIST even when

the spurious correlation is 100%, reweighting the features leads to high worst group test accuracy.
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Moreover, on all Dominoes datasets for 99% and 95% spurious correlations level the core features

can be decoded with high accuracy and almost match the optimal accuracy. This decoding serves

as a basis of our DFR method, which we describe in detail in Section 5.4. In Appendix A.7.2.2 we

report an additional baseline and verify that the model indeed learns a non-trivial representation

of the core feature.

Relation to prior work. With the same Dominoes datasets that we consider in this section,

Shah et al. [2020] showed that neural networks tend to rely entirely on the simple features. How-

ever, they only considered the 100% spurious correlation strength and accuracy on the Original

test data. Our results do not contradict their findings but provide new insights: even in these

most challenging cases, the networks still represent information about the complex core feature.

Moreover, this information can be decoded to achieve high accuracy on the mixed group exam-

ples. Hermann and Lampinen [2020] considered a different set of synthetic datasets, showing that

in some cases neural networks fail to represent information about some of the predictive features.

In particular, they also considered decoding the information about these features from the latent

representations and different spurious correlation strengths. Our results add to their observations

and show that while it is possible to construct examples where predictive features are suppressed,

in many challenging practical scenarios, neural networks learn a high quality representation of

the core features relevant to the problem even if they rely on the spurious features.

ColorMNIST. In Appendix A.7.2.3 we additionally show results on ColorMNIST dataset with

varied spurious correlations strength in train data: decoding core features from the trained repre-

sentations on this problem also achieves results close to optimal accuracy and demonstrates that

the core features are learned even in the cases when the model initially achieved 0% worst-group

accuracy.

In summary, we find that, surprisingly, if (1) the strength of the spurious correlation is lower

than 100% or (2) the difference in complexity between the core and spurious features is not as
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stark as on MNIST-CIFAR, the core feature can be decoded from the learned embeddings with high

accuracy.

5.4 Deep Feature Reweighting

In Section 5.3 we have seen that neural networks trained with standard ERM learn multiple fea-

tures relevant to the predictive task, such as features of both the background and the object repre-

sented in the image. Inspired by these observations, we propose Deep Feature Reweighting (DFR),

a simple and practical method for improving robustness to spurious correlations and distribution

shift.

Let us assume that we have access to a dataset D = {𝑥𝑖, 𝑦𝑖} which can exhibit spurious cor-

relations. Furthermore, we assume that we have access to a (typically much smaller) dataset D̂,

where the groups are represented equally. D̂ can be a subset of the train datasetD, or a separate

set of datapoints. We will refer to D̂ as reweighting dataset. We start by training a neural network

on all of the available dataD with standard ERMwithout any group or class reweighting. For this

stage we do not need any information beyond the training data and labels. Here, we assume that

the network consists of a feature extractor (such as a sequence of convolutional or transformer

layers), followed by a fully-connected classification layer mapping the features to class logits.

In the second stage of the procedure, we simply discard the classification head and train a new

classification head from scratch on the available balanced data D̂. We use the new classification

head to make predictions on the test data. We illustrate DFR in Figure 5.1.

Notation. We will use notation DFRD̂D , where D is the dataset used to train the base feature

extractor model and D̂ – to train the last linear layer.
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5.5 Feature Reweighting Improves Robustness

In this section, we evaluate DFR on benchmark problems with spurious correlations.

Data. See Section 5.2 for a description of the Waterbirds data. On CelebA hair color predic-

tion[Liu et al. 2015], the groups are non-blond females (G1), blond females (G2), non-blond males

(G3) and blond males (G4) with proportions 44%, 14%, 41%, and 1% of the data, respectively; the

group G4 is the minority group, and the gender serves as a spurious feature. On MultiNLI, the

goal is to classify the relation between a pair of sentences (premise and hypothesis) as contradic-

tion, entailment or neutral; the presence of negation words (“no”, “never”, ...) is correlated with

the contradiction class, and serves as a spurious feature. Finally, we consider the CivilComments

[Borkan et al. 2019] dataset implemented in the WILDS benchmark [Koh et al. 2021; Sagawa

et al. 2021], where the goal is to classify comments as toxic or neutral. Each comment is labeled

with 8 attributes 𝑠𝑖 (male, female, LGBT, black, white, Christian, Muslim, other religion) based on

whether or not the corresponding characteristic is mentioned in the comment. For evaluation,

we follow the standard WILDS protocol and report the worst accuracy across the 16 overlapping

groups corresponding to pairs (𝑦, 𝑠𝑖) for each of the attributes 𝑠𝑖 . See Figures A.44, A.45 for a

visual description of all four datasets.

Baselines. We consider 6 baseline methods that work under different assumptions on the infor-

mation available at the training time. Empirical Risk Minimization (ERM) represents conventional

training without any procedures for improving worst-group accuracies. Just Train Twice (JTT )

[Liu et al. 2021] is a method that detects the minority group examples on train data, only using

group labels on the validation set to tune hyper-parameters. Correct-n-Contrast (CnC) [Zhang

et al. 2022] detects the minority group examples similarly to JTT, and uses a contrastive objec-

tive to learn representations robust to spurious correlations. Group DRO [Sagawa et al. 2020] is a

148



state-of-the-art method, which uses group information on train and adaptively upweights worst-

group examples during training. SUBG is ERM applied to a random subset of the data where the

groups are equally represented, which was recently shown to be a surprisingly strong baseline

[Idrissi et al. 2021]. Finally, Spread Spurious Attribute (SSA) [Nam et al. 2022] attempts to fully

exploit the group-labeled validation data with a semi-supervised approach that propagates the

group labels to the the training data. We discuss the assumptions on the data for each of these

baselines in Appendix A.7.3.2.

DFR. We evaluate DFRValTr , where we use a group-balanced3 subset of the validation data avail-

able for each of the problems as the reweighting dataset D̂. We use the standard training dataset

(with group imbalance) D to train the feature extractor. In order to make use of more of the

available data, we train logistic regression 10 times using different random balanced subsets of

the data, and average theweights of the learnedmodels. We report full details and several ablation

studies in Appendix A.7.3.

Hyper-parameters. Following prior work [e.g. Liu et al. 2021], we use a ResNet-50 model [He

et al. 2016] pretrained on ImageNet for Waterbirds and CelebA and a BERT model [Devlin et al.

2018] pre-trained on Book Corpus and English Wikipedia data for MultiNLI and CivilComments.

For DFRVal
Tr , the size of the reweighting set D̂ is small relative to the number of features produced

by the feature extractor. For this reason, we use ℓ1-regularization to allow the model to learn

sparse solutions and drop irrelevant features. For DFRVal
Tr we only tune a single hyper-parameter —

the strength of the regularization term. We tune all the hyper-parameters on the validation data

provided with each of the datasets. We note that the prior work methods including Group DRO,

JTT, CnC, SUBG, SSA and others extensively tune hyper-parameters on the validation data. For

DFRVal
Tr we split the validation in half, and use one half to tune the regularization strength param-

3We keep all of the data from the smallest group, and subsample the data from the other groups to the same
size. On CivilComments the groups overlap, so for each datapoint we use the smallest group that contains it when
constructing the group-balanced reweighting dataset.
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Method

Group Info Waterbirds CelebA MultiNLI CivilComments

Train / Val Worst(%) Mean(%) Worst(%) Mean(%) Worst(%) Mean(%) Worst(%) Mean(%)

JTT ✗ / ✓ 86.7 93.3 81.1 88.0 72.6 78.6 69.3 91.1
CnC ✗ / ✓ 88.5±0.3 90.9±0.1 88.8±0.9 89.9±0.5 - - 68.9±2.1 81.7±0.5
SUBG ✓/ ✓ 89.1±1.1 - 85.6±2.3 - 68.9±0.8 - - -
SSA ✗ / ✓✓ 89.0±0.6 92.2±0.9 89.8±1.3 92.8±0.1 76.6±0.7 79.9±0.87 69.9±2 88.2±2.

Group DRO ✓/ ✓ 91.4 93.5 88.9 92.9 77.7 81.4 69.9 88.9

Base (ERM) ✗ / ✗ 74.9±2.4 98.1±0.1 46.9±2.8 95.3±0 65.9±0.3 82.8±0.1 55.6±0.6 92.1±0.1
DFRVal

Tr ✗ / ✓✓ 92.9±0.2 94.2±0.4 88.3±1.1 91.3±0.3 74.7±0.7 82.1±0.2 70.1±0.8 87.2±0.3

Table 5.2: Spurious correlation benchmark results. Worst-group and mean test accuracy of DFR
variations and baselines on benchmark datasets. For mean accuracy, we follow Sagawa et al. [2020] and
weight the group accuracies according to their prevalence in the training data. The Group Info column
shows whether group labels are available to the methods on train and validation datasets. DFRVal

Tr uses the
validation data to train the model parameters (last layer) in addition to hyper-parameter tuning, indicated
with ✓✓; SSA also uses the validation set to train the model. For DFR we report the mean±std over 5
independent runs. DFR is competitive with state-of-the-art.

eter; then, we retrain the logistic regression with the optimal regularization on the full validation

set.

Results. We report the results for DFRVal
Tr and the baselines in Table 5.2. DFRVal

Tr is competitive

with the state-of-the-art Group DRO across the board, achieving the best results among all meth-

ods onWaterbirds and CivilComments. Moreover, DFRVal
Tr achieves similar performance to SSA, a

method designed to make optimal use of the group information on the validation data (DFRVal
Tr is

slightly better on Waterbirds and CivilComments while SSA is better on CelebA and MultiNLI).

Both methods use the same exact setting and group information to train and tune the model. We

explore other variations of DFR in Appendix A.7.3.3.

To sum up, DFRVal
Tr matches the performance of the best available methods, while only using

the group labels on a small validation set. This state-of-the-art performance is achieved by simply

reweighting the features learned by standard ERM, with no need for advanced regularization

techniques.
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5.6 Natural Spurious Correlations on ImageNet

In the previous section we focused on benchmark problems constructed to highlight the effect

of spurious features. Computer vision classifiers are known to learn undesirable patterns and

rely on spurious features in real-world problems [see e.g. Rosenfeld et al. 2018; Singla and Feizi

2021; Geirhos et al. 2020]. In this section we explore two prominent shortcomings of ImageNet

classifiers: background reliance [Xiao et al. 2020] and texture bias [Geirhos et al. 2018].

5.6.1 Background reliance

Prior work has demonstrated that computer vision models such as ImageNet classifiers can rely

on image background to make their predictions [Zhang et al. 2007; Ribeiro et al. 2016; Shetty

et al. 2019; Xiao et al. 2020; Singla and Feizi 2021]. Here, we show that it is possible to reduce the

background reliance of ImageNet-trained models by simply retraining their last layer with DFR.

Xiao et al. [2020] proposed several datasets in the Backgrounds Challenge to study the ef-

fect of the backgrounds on predictions of ImageNet models. The datasets in the Backgrounds

Challenge are based on the ImageNet-9 dataset, a subset of ImageNet structured into 9 coarse-

grain classes (see Xiao et al. [2020] for details). ImageNet-9 contains 45𝑘 training images and

4050 validation images. We consider three datasets from the Backgrounds Challenge: (1) Orig-

inal contains the original images; (2) Mixed-Rand contains images with random combinations

of backgrounds and foregrounds (objects); (3) FG-Only contains images showing just the ob-

ject with a black background. We additionally consider Paintings-BG using paintings from Kag-

gle’s painter-by-numbers dataset ( https://www.kaggle.com/c/painter-by-numbers/) as

background for the ImageNet-9 validation data. Finally, we consider the ImageNet-R dataset

[Hendrycks et al. 2021] restricted to the ImageNet-9 classes. See Appendix A.7.5 for details and

Figure A.49 for example images.

We use an ImageNet-trained ResNet-50 as a feature extractor and train DFR with different
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Figure 5.3: Background reliance. Accuracy of DFRMRand DFROG+MR on different ImageNet-9 valida-
tion splits with an ImageNet-trained ResNet-50 feature extractor. DFR reduces background reliance with
a minimal drop in performance on the Original data.

reweighting datasets. As a Baseline, we train DFR on the Original 45𝑘 training datapoints (we

cannot use the ImageNet-trained ResNet-50 last layer, as ImageNet-9 has a different set of classes).

We train DFRMR and DFROG+MR on Mixed-Rand training data and a combination of Mixed-Rand

and Original training data respectively. In Figure 5.3, we report the predictive accuracy of these

methods on different validation datasets as a function of the number of Mixed-Rand data ob-

served. We select the observed subset of the data randomly; for DFROG+MR, in each case we use

the same amount of Mixed-Rand and Original training datapoints. We repeat this experiment

with a VIT-B-16 model [Dosovitskiy et al. 2020] pretrained on ImageNet-21𝑘 and report the re-

sults in the Appendix Figure A.47.

First, we notice that the baseline model provides significantly better performance on FG-Only

(92%) than on the Mixed-Rand (86%) validation set, suggesting that the feature extractor learned

the features needed to classify the foreground, as well as the background features. With access

to Mixed-Rand data, we can reweight the foreground and background features with DFR and

significantly improve the performance on mixed-rand, FG-Only and Paintings-BG datasets. At

the same time, DFROG+MR is able to mostly maintain the performance on the Original ImageNet-

9 data; the small drop in performance is because the background is relevant to predicting the

class on this validation set. Finally, on ImageNet-R, DFR provides a small improvement when we

use all of 45𝑘 datapoints; the covariate shift in ImageNet-R is not primarily background-based, so
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reducing background reliance does not provide a big improvement. We provide additional results

in See Appendix A.7.5.

5.6.2 Texture-vs-shape bias

Geirhos et al. [2018] showed that on images with conflicting texture and shape, ImageNet-trained

CNNs tend to make predictions based on the texture, while humans usually predict based on the

shape of the object. The authors designed the GST dataset with conflicting cues, and proposed

the term texture bias to refer to the fraction of datapoints on which a model (or a human) makes

predictions based on texture; conversely, shape bias is the fraction of the datapoints on which pre-

diction is made based on the shape of the object. Geirhos et al. [2018] showed that it is possible to

increase the shape bias of CNNs by training on Stylized ImageNet (SIN ), a dataset obtained from

ImageNet by removing the texture information via style transfer (see Appendix FigureA.49 for ex-

ample images). Using SIN in combination with ImageNet (SIN+IN ), they also obtained improved

robustness to corruptions. Finally, they proposed the Shape-RN-50 model, a ResNet-50 (RN-50)

trained on SIN+IN and finetuned on IN, which outperforms the ImageNet-trained ResNet-50 on

in-distribution data and out-of-distribution robustness.

Here, we explore whether it is possible to change the shape bias of ImageNet-trained models

by simply retraining the last layer with DFR. Intuitively, we expect that the standard ImageNet-

trained model already learns both the shape and texture features. Indeed, Hermann et al. [2020]

showed that shape information is partially decodable from the features of ImageNet models on

the GST dataset. Here, instead of targeting GST, we apply DFR to the large-scale SIN dataset, and

explore both the shape bias and the predictive performance of the resulting models. In Table 5.3,

we report the shape bias, as well as predictive accuracy of ResNet-50 models trained on ImageNet

(IN ), SIN, IN+SIN and the Shape-RN-50 model, and the DFR models trained on SIN and IN+SIN.

The DFR models use an IN-trained ResNet-50 model as a feature extractor. See Appendix A.7.6

for details.
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Method

Training

Data

Shape

bias (%)

Top-1 Acc (%)

ImageNet ImageNet-R ImageNet-C

RN-50
IN 21.4 76.0 23.8 39.8
SIN 81.4 60.3 26.9 38.1

IN+SIN 34.7 74.6 27.6 45.7

Shape-RN-50 IN+SIN 20.5 76.8 25.6 42.3

DFR SIN 34.0 65.1 24.6 36.7
IN+SIN 30.6 74.5 27.2 40.7

Table 5.3: Shape bias. Shape bias and accuracy on ImageNet validation set variations for ResNet-50
trained on different datasets and DFR with an ImageNet-trained ResNet-50 as a feature extractor. For
each metric, we show the best result in bold. By retraining just the last layer with DFR, we can signif-
icantly increase the shape bias compared to the base model (21.4% → 34% for DFR(SIN)) and improve
performance on ImageNet-R/C.

First, we observe that while the SIN-trained RN-50 achieves a shape bias of 81.4%, as reported

by Geirhos et al. [2018], the models trained on combinations of IN and SIN are still biased towards

texture. Curiously, the Shape-RN-50 model proposed by Geirhos et al. [2018] has almost identical

shape bias to a standard IN-trained RN-50! At the same time, Shape-RN-50 outperforms IN-

trained RN-50 on all the datasets that we consider, and Geirhos et al. [2018] showed that Shape-

RN-50 significantly outperforms IN-trained RN-50 in transfer learning to a segmentation problem,

suggesting that it learned better shape-based features. The fact that the shape bias of this model

is lower than that of an IN-trained RN-50, suggests that the shape bias is largely affected by the

last linear layer of the model: even if the model extracted high-quality features capturing the

shape information, the last layer can still assign a higher weight to the texture information.

Next, DFR can significantly increase the shape bias of an IN-trained model. DFRSIN
IN achieves

a comparable shape bias to that of a model trained from scratch on a combination of IN and

SIN datasets. Finally, DFRIN+SIN
IN improves the performance on both ImageNet-R and ImageNet-C

[Hendrycks andDietterich 2019] datasets compared to the base RN-50model. In the Appendix Ta-

ble A.32 we show similar results for a VIT-B-16 model pretrained on ImageNet-21𝑘 and finetuned
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on ImageNet; there, DFRIN+SIN
IN can also improve the shape bias and performance on ImageNet-C,

but does not help on ImageNet-R. To sum up, by reweighting the features learned by an ImageNet-

trained model, we can significantly increase its shape bias and improve robustness to certain

corruptions. However, to achieve the highest possible shape bias, it is still preferable to re-train

the model from scratch, as RN-50(SIN) achieves a much higher shape bias compared to all other

methods.

5.7 Related Work

Feature learning in the presence of spurious correlations. The poor performance of

neural networks on datasets with spurious correlations inspired research in understanding when

and how the spurious features are learned. Geirhos et al. [2020] provide a detailed survey of

the results in this area. Several works explore the behavior of maximum-margin classifiers, SGD

training dynamics and inductive biases of neural network models in the presence of spurious

features [Nagarajan et al. 2020; Pezeshki et al. 2021; Rahaman et al. 2019]. Shah et al. [2020]

show empirically that in certain scenarios neural networks can suffer from extreme simplicity

bias and rely on simple spurious features, while ignoring the core features; in Section 5.3.2 we

revisit these problems and provide further discussion. Hermann and Lampinen [2020] and Ja-

cobsen et al. [2018] also show synthetic and natural examples, where neural networks ignore

relevant features, and Scimeca et al. [2021] explore which types of shortcuts are more likely to

be learned. Kolesnikov and Lampert [2016] on the other hand show that on realistic datasets

core and spurious features can often be distinguished from the latent representations learned by

a neural network in the context of object localization.

Group robustness. The methods achieving the best worst-group performance typically build

on the distributionally robust optimization (DRO) framework, where the worst-case loss is min-
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imized instead of the average loss [Ben-Tal et al. 2013; Hu et al. 2018; Sagawa et al. 2020; Oren

et al. 2019; Zhang et al. 2020a]. Notably, Group DRO [Sagawa et al. 2020], which optimizes a

soft version of the worst-group loss holds state-of-the-art results on multiple benchmarks with

spurious correlations. Several methods have been proposed for the scenario where group labels

are not known, and need to be inferred from the data; these methods typically train a pair of

networks, where the first model is used to identify the challenging minority examples and define

a weighted loss for the second model [Liu et al. 2021; Nam et al. 2020; Yaghoobzadeh et al. 2019;

Utama et al. 2020; Creager et al. 2021; Dagaev et al. 2021; Zhang et al. 2022]. Other works pro-

posed semi-supervised methods for the scenario where the group labels are provided for a small

fraction of the train datapoints [Sohoni et al. 2021; Nam et al. 2022]. Idrissi et al. [2021] recently

showed that with careful tuning simple approaches such as data subsampling and reweighting

can provide competitive performance. We note that all of the methods described above use a

validation set with a high representation of minority groups to tune the hyper-parameters and

optimize worst-group performance.

In a closely related work, Menon et al. [2020] considered classifier retraining and threshold

correction on a subset of the training data for correcting the subgroup bias. In our work, we

focus on classifier retraining and show that re-using train data for last layer retraining as done

in Menon et al. [2020] is suboptimal, while retraining the last layer on held-out data achieves

significantly better performance across various spurious correlations benchmarks (see Section

5.5). Moreover, we make multiple contributions beyond the scope of Menon et al. [2020], for

example: we analyze feature learning in the extreme simplicity bias scenarios (Section 5.3), show

strong performance on natural language processing datasets with spurious correlations (Section

5.5) and demonstrate how last layer retraining can be used to correct background and texture

bias in large-scale models on ImageNet (Section 5.6).

In an independent and concurrent work, Rosenfeld et al. [2022] show that ERM learns high

quality representations for domain generalization, and by training the last layer on the target
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domain it is possible to achieve strong results. Kang et al. [2019] propose to use classifier re-

training, among other methods, in the context of long-tail classification. The observations in

our work are complimentary, as we focus on spurious correlation robustness instead of domain

generalization and long-tail classification. Moreover, there are important algorithmic differences

between DFR, and the methods of Kang et al. [2019] and Rosenfeld et al. [2022]. In particular,

Kang et al. [2019] retrain the last layer on the training data with class-balanced data sampling,

while we use held-out data and group-balanced subsampling; they also do not use regularization.

Rosenfeld et al. [2022] only present last layer retraining results as motivation, and do not use it in

their proposed DARE method. We present a detailed discussion of these differences in Appendix

A.7.1, and empirical comparisons in Appendix A.7.7.

Other group robustness methods. Another group of papers proposes regularization tech-

niques to learn diverse solutions on the train data, focusing on different groups of features [Teney

et al. 2021a; Lee et al. 2022; Pagliardini et al. 2022; Pezeshki et al. 2021]. Xu et al. [2022] show

how to train orthogonal classifiers, i.e. classifiers invariant to given spurious features in the data.

Other papers proposedmethods based onmeta-learning theweights for aweighted loss [Ren et al.

2018] and group-agnostic adaptive regularization [Cao et al. 2019, 2020]. Sohoni et al. [2020] use

clustering of internal features to provide approximate labels for group distributionally robust op-

timization. A number of prior works address de-biasing classifiers by leveraging prior knowledge

on the bias type [Li and Vasconcelos 2019; Kim et al. 2019; Tartaglione et al. 2021; Teney et al.

2021b; Zhu et al. 2021; Wang et al. 2019; Cadene et al. 2019; Li et al. 2018a].

Spurious correlations in natural image datasets. Multiple works demonstrated that natu-

ral image datasets contain spurious correlations that hurt neural networkmodels [Kolesnikov and

Lampert 2016; Xiao et al. 2020; Shetty et al. 2019; Alcorn et al. 2019; Singla and Feizi 2021; Singla

et al. 2021;Moayeri et al. 2022]. Notably, Geirhos et al. [2018] demonstrated that ImageNet-trained

CNNs are biased towards texture rather than shape of the objects. Follow-up work explored this
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texture bias and showed that despite being texture-biased, CNNs still often represent information

about the shape in their feature representations [Hermann et al. 2020; Islam et al. 2021]. In Section

5.6 we show that it is possible to reduce the reliance of ImageNet-trained models on background

context and texture information by retraining just the last layer of the model.

Transfer learning. Transfer learning [Pan and Yang 2009; Sharif Razavian et al. 2014] is an

extremely popular framework in modern machine learning. Multiple works demonstrate its ef-

fectiveness [e.g. Girshick 2015; Huh et al. 2016; He et al. 2017; Sun et al. 2017; Mahajan et al. 2018;

Kolesnikov et al. 2020; Maddox et al. 2021], and study when and why transfer learning can be

effective [Zhai et al. 2019; Neyshabur et al. 2020; Abnar et al. 2021; Kornblith et al. 2019; Kumar

et al. 2022]. Bommasani et al. [2021] provide a comprehensive discussion of modern transfer

learning with large-scale models. While algorithmically our proposed DFR method is related to

transfer learning, it has a different motivation and works on different problems. We discuss the

relation between DFR and transfer learning in detail in Section 5.4.

Related methods have been developed in several areas of machine learning, such as ML Fair-

ness [Dwork et al. 2012; Hardt et al. 2016; Kleinberg et al. 2016; Pleiss et al. 2017; Agarwal et al.

2018; Khani et al. 2019], NLP [McCoy et al. 2019; Lovering et al. 2020; Kaushik et al. 2020, 2021;

Eisenstein 2022; Veitch et al. 2021] domain adaptation [Ganin and Lempitsky 2015; Ganin et al.

2016] and domain generalization [Blanchard et al. 2011; Muandet et al. 2013; Li et al. 2018b; Gul-

rajani and Lopez-Paz 2020; Ruan et al. 2021] including works on Invariant Risk Minimization and

causality [Peters et al. 2016; Arjovsky et al. 2019; Krueger et al. 2021; Aubin et al. 2021].

5.8 Discussion

We have shown that neural networks simultaneously learn multiple different features, includ-

ing relevant semantic structure, even in the presence spurious correlations. By retraining the
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last layer of the network with DFR, we can significantly reduce the impact of spurious features

and improve worst-group-performance of the models. In particular, DFR achieves state-of-the-

art performance on spurious correlation benchmarks, and can reduce the reliance of ImageNet

trained models on background and texture information. DFR is extremely simple, cheap and ef-

fective: it only has one hyper-parameter, and we can run it on ImageNet-scale data in a matter of

minutes. We hope that our results will be useful to practitioners and will inspire further research

in feature learning in the presence of spurious correlations.

Spurious correlations and representation learning. Prior work has often associated poor

robustness to spurious correlations with the quality of representations learned by the model [Ar-

jovsky et al. 2019; Bahng et al. 2020; Ruan et al. 2021] and suggested that the entire model needs

to be carefully trained to avoid relying on spurious features [e.g. Sagawa et al. 2020; Idrissi et al.

2021; Liu et al. 2021; Zhang et al. 2022; Sohoni et al. 2021; Pezeshki et al. 2021; Lee et al. 2022].

Our work presents a different view: representations learned with standard ERM even without see-

ing any minority group examples are sufficient to achieve state-of-the-art performance on popular

spurious correlation benchmarks. The issue of spurious correlations is not in the features extracted

by the models (though the representations learned by ERM can be improved [e.g., Hermann and

Lampinen 2020; Pezeshki et al. 2021]), but in the weights assigned to these features. Thus we can

simply re-weight these features for substantially improved robustness.

Practical advantages of DFR. DFR is extremely simple, cheap and effective. In particular,

DFR has only one tunable hyper-parameter — the strength of regularization of the logistic re-

gression. Furthermore, DFR is highly robust to the choice of base model, as we demonstrate in

Appendix Table A.29, and does not require early stopping or other highly problem-specific tuning

such as in Idrissi et al. [2021] and other prior works. Moreover, as DFR only requires re-training

the last linear layer of the model, it is also extremely fast and easy to run. For example, we can

train DFR on the 1.2𝑀-datapoint Stylized ImageNet dataset in Section 5.6 on a single GPU in a
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matter of minutes, after extracting the embeddings on all of the datapoints, which only needs to

be done once. On the other hand, existing methods such as Group DRO [Sagawa et al. 2020] re-

quire training the model from scratch multiple times to select the best hyper-parameters, which

may be impractical for large-scale problems.

On the need for reweighting data in DFR. Virtually all methods in the spurious correla-

tion literature, even the ones that do not explicitly use group information to train the model, use

group-labeled data to tune the hyper-parameters (we discuss the assumptions of different meth-

ods in prior work in Appendix A.7.3.2). If a practitioner has access to group-labeled data, we

believe that they should leverage this data to find a better model instead of just tuning the hyper-

parameters. Finally, we note that DFR can be easily combined with methods that automatically

estimate group labels [e.g. Liu et al. 2021; Creager et al. 2021; Sohoni et al. 2021]: we can retrain

the last layer using these estimated labels instead of ground truth.

Future work. There are many exciting directions for future research. DFR largely reduces the

issue of spurious correlations to a linear problem: how do we train an optimal linear classifier

on given features to avoid spurious correlations? In particular, we can try to avoid the need

for a balanced reweighting dataset by carefully studying this linear problem and only using the

features that are robustly predictive across all of the training data. We can also consider other

types of supervision, such as saliency maps [Singla and Feizi 2021] or segmentation masks to

tell the last layer of the model what to pay attention to in the data. Finally, we can leverage

better representation learning methods [Pezeshki et al. 2021], including self-supervised learning

methods [e.g. Chen et al. 2020; He et al. 2021], to further improve the performance of DFR.
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6 | Conclusion

Despite the exciting progress in methodology, our understanding of deep learning models re-

mains very limited. In this dissertation, we explored a range of results that aim to impprove this

understanding. In these works, we dissect models and training procedures and attempt to look

inside the black box and understand the mechanisms and principles.

In Chapter 2, we explored the loss surfaces of neural networks. We demonstrated mode con-

nectivity, the phenomenon that the optima of neural network loss surfaces are connected by

simple paths of low loss. This observation inspired us to propose SWA, an impactful method for

training deep neural networks.

In Chapter 3, we presented a principled treatment of generalization in deep learning from a

Bayesian probabilistic perspective. We used our insights about the loss surfaces from Chapter

2 to develop scalable methods for approximate inference in deep learning with state-of-the-art

performance in uncertainty quantification.

In Chapter 4, for the first time, we applied highly precise Hamiltonian Monte Carlo approxi-

mate inference to practically-sized Bayesian neural networks. With this tool, we were able to an-

swer multiple foundational questions around Bayesian deep learning. In particular, we have seen

that Bayesian neural networks with standard priors provide strong performance in-distribution

but generalize poorly when the inputs are corrupted at test time. We presented a precise mecha-

nistic explanation of this result and propose a fix.

Finally, in Chapter 5, we explored feature learning in neural networks in the presence of short-
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cut features. We showed the last layer often plays a distinct mechanistic role in the model and

can control howmuch the network relies on the shortcut features. Motivated by this observation,

we proposed a practical method for reducing reliance on shortcut features in pretrained models.

I believe that now is the time when foundational research on understanding deep learning

models is incredibly important. With ourmodels becoming larger andmore powerful, and applied

more and more widely in the real world, we need to understand these models, the decisions that

theymake, and whenwe can trust them. The improved understanding can also motivate practical

improvements in the methodology, as we have seen many times throughout this dissertation.
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A | Appendix

A.1 Appendix for Mode Connectivity

We organize the supplementary material as follows. Section A.1.1 discusses the computational

complexity of the proposed curve finding method. Section A.1.2 describes how to apply batch

normalization at test time to points on curves connecting pairs of local optima. Section A.1.3

provides formulas for a polygonal chain and Bezier curve with 𝑛 bends. Section A.1.4 provides

details and results of experiments on curve finding and contains a table summarizing all path

finding experiments. Section A.1.5 provides additional visualizations of the train loss and test

accuracy surfaces. Section A.1.6 contains details on curve ensembling experiments. Section ??

describes experiments on relation between mode connectivity and the number of parameters

in the networks. Section A.1.8 discusses a trivial construction of curves connecting two modes,

where points on the curve represent reparameterization of the endpoints, unlike the curves in the

main text. Section A.1.9 provides details of experiments on FGE. Finally, Section A.1.10 describes

pathways traversed by FGE.

A.1.1 Computational complexity of curve finding

The forward pass of the proposed method consists of two steps: computing the point 𝜙𝜃 (𝑡) and

then passing a mini-batch of data through the DNN corresponding to this point. Similarly, the

backward pass consists of first computing the gradient of the loss with respect to 𝜙𝜃 (𝑡), and then
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multiplying the result by the Jacobian 𝜕𝜙𝜃
𝜕𝜃
. The second step of the forward pass and the first step

of the backward pass are exactly the same as the forward and backward pass in the training of

a single DNN model. The additional computational complexity of the procedure compared to

single model training comes from the first step of the forward pass and the second step of the

backward pass and in general depends on the parametrization 𝜙𝜃 (·) of the curve.

In our experiments we use curve parametrizations of a specific form. The general formula for

a curve with one bend is given by

𝜙𝜃 (𝑡) = 𝑤̂1 · 𝑐1(𝑡) + 𝜃 · 𝑐 (𝑡) + 𝑤̂2 · 𝑐2(𝑡).

Here the parameters of the curve are given by 𝜃 ∈ R|𝑛𝑒𝑡 | and coefficients 𝑐1, 𝑐2, 𝑐 : [0, 1] → R.

For this family of curves the computational complexity of the first step of the method is

O(|𝑛𝑒𝑡 |), as we only need to compute a weighted sum of 𝑤̂1, 𝑤̂2 and 𝜃 ∈ R|𝑛𝑒𝑡 | . The Jacobian

matrix
𝜕𝜙𝜃 (𝑡)
𝜕𝜃

= 𝑐 (𝑡) · 𝐼 ,

thus the additional computational complexity of the backward pass is also O(|𝑛𝑒𝑡 |), as we only

need to multiply the gradient with respect to 𝜙𝜃 (𝑡) by a scalar. Thus, the total additional compu-

tational complexity is O(|𝑛𝑒𝑡 |). In practice we observe that the gap in time-complexity between

one epoch of training a single model and one epoch of the proposed method with the same net-

work architecture is usually below 50%.
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A.1.2 Batch Normalization

Batch normalization (Ioffe and Szegedy [2015]) is essential to modern deep learning architectures.

Batch normalization re-parametrizes the output of each layer as

𝑥 = 𝛾
𝑥 − 𝜇 (𝑥)
𝜎 (𝑥) + 𝜖 + 𝛽,

where 𝜇 (𝑥) and 𝜎 (𝑥) are the mean and standard deviation of the output 𝑥 , 𝜖 > 0 is a constant for

numerical stability and𝛾 and 𝛽 are free parameters. During training, 𝜇 (𝑥) and 𝜎 (𝑥) are computed

separately for each mini-batch and at test time statistics aggregated during training are used.

When connecting two DNNs that use batch normalization, along a curve 𝜙 (𝑡), we compute

𝜇 (𝑥) and 𝜎 (𝑥) for any given 𝑡 over mini-batches during training, as usual. In order to apply batch-

normalization to a network on the curve at the test stage we compute these statistics with one

additional pass over the data, as running averages for these networks are not collected during

training.

A.1.3 Formulas for curves with 𝑛 bends

For 𝑛 bends 𝜃 = {𝑤1,𝑤2, . . . ,𝑤𝑛}, the parametrization of a polygonal chain connecting points

𝑤0,𝑤𝑛+1 is given by

𝜙𝜃 (𝑡) = (𝑛 + 1) ·
((
𝑡 − 𝑖

𝑛 + 1

)
·𝑤𝑖+1 +

(
𝑖 + 1
𝑛 + 1

− 𝑡
)
·𝑤𝑖

)
,

for 𝑖
𝑛+1 ⩽ 𝑡 ⩽

𝑖+1
𝑛+1 and 0 ≤ 𝑖 ≤ 𝑛.

For 𝑛 bends 𝜃 = {𝑤1,𝑤2, . . . ,𝑤𝑛}, the parametrization of a Bezier curve connecting points𝑤0

and𝑤𝑛+1 is given by

𝜙𝜃 (𝑡) =
𝑛+1∑︁
𝑖=0

𝑤𝑖𝐶
𝑖
𝑛+1𝑡

𝑖 (1 − 𝑡)𝑛+1−𝑖
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Table A.1: The properties of loss and error values along the found curves for different architectures and
tasks

Model Length Train Loss Train Error (%) Test Error (%)

DNN Curve Ratio Min Int Mean Max Min Int Max Min Int Max

MNIST

FC Single — 0.018 — — 0.018 0.01 — 0.01 1.46 — 1.5
FC Segment 1 0.018 0.252 0.252 0.657 0.01 0.53 2.13 1.45 1.96 3.18
FC Bezier 1.58 0.016 0.02 0.02 0.024 0.01 0.02 0.04 1.46 1.52 1.56
FC Polychain 1.73 0.013 0.022 0.022 0.029 0 0.03 0.07 1.46 1.51 1.58

CIFAR-10

3conv3fc Single — 0.05 — — 0.05 0.06 — 0.06 12.3 — 12.36
3conv3fc Segment 1 0.05 1.124 1.124 2.416 0.06 35.69 88.24 12.28 43.3 88.27
3conv3fc Bezier 1.30 0.034 0.038 0.037 0.05 0.05 0.1 0.2 12.06 12.7 13.66
3conv3fc Polychain 1.67 0.04 0.044 0.044 0.05 0.06 0.15 0.31 12.17 12.68 13.31

VGG-16 Single — 0.04 — — 0.04 0 — 0.01 6.87 — 7.01
VGG-16 Segment 1 0.039 1.759 1.759 2.569 0 61.43 90 6.87 63.75 90
VGG-16 Bezier 1.55 0.028 0.03 0.03 0.04 0 0.01 0.02 6.59 6.77 7.01
VGG-16 Polychain 1.83 0.025 0.031 0.031 0.045 0 0.01 0.04 6.54 6.89 7.28

ResNet-158 Single — 0.015 — — 0.015 0.02 — 0.02 5.56 — 5.74
ResNet-158 Segment 1 0.013 0.551 0.551 2.613 0 16.37 81.41 5.57 20.79 80.00
ResNet-158 Bezier 2.13 0.013 0.017 0.018 0.022 0 0.02 0.07 5.48 5.82 6.24
ResNet-158 Polychain 3.48 0.013 0.017 0.017 0.047 0 0.05 0.139 5.48 5.88 7.35

WRN-10-28 Single — 0.033 — — 0.035 0 — 0 4.49 — 4.56
WRN-10-28 Segment 1 0.033 0.412 0.412 2.203 0 5.44 65.62 4.49 10.55 66.6
WRN-10-28 Bezier 1.83 0.03 0.033 0.038 0.038 0 0.01 0.04 4.4 4.62 4.83
WRN-10-28 Polychain 1.95 0.026 0.029 0.029 0.037 0 0 0 4.38 6.93 10.38

CIFAR-100

VGG-16 Single — 0.14 — — 0.141 0.05 — 0.06 29.44 — 29.94
VGG-16 Segment 1 0.137 3.606 3.606 4.941 0.04 73.25 99 29.44 80.59 99.01
VGG-16 Bezier 1.52 0.095 0.107 0.105 0.141 0.03 0.08 0.18 29.28 30.49 31.23
VGG-16 Polychain 1.64 0.118 0.139 0.139 0.2 0.04 0.19 0.39 29.33 30.13 30.92

ResNet-164 Single — 0.079 — — 0.08 0.06 — 0.09 24.41 — 24.4
ResNet-164 Segment 1 0.076 1.844 1.844 5.53 0.06 38.03 98.65 24.4 53.69 98.83
ResNet-164 Bezier 1.87 0.074 0.083 0.084 0.098 0.05 0.28 0.96 24.15 24.99 26.1
ResNet-164 Polychain 2.56 0.067 0.078 0.078 0.109 0.06 0.28 0.85 23.98 24.92 26.12

A.1.4 Curve Finding Experiments

All experiments on curve finding were conducted with TensorFlow (Abadi et al. [2016]) and as

baseline models we used the following implementations:166



Table A.2: The value of perplexity along the found curves for PTB dataset

Model Train Validation Test

DNN Curve Min Max Min Max Min Max

PTB

RNN Single 37.5 39.2 82.7 83.1 78.7 78.9
RNN Segment 37.5 596.3 82.7 682.1 78.7 615.7
RNN Bezier 29.8 39.2 82.7 88.7 78.7 84.0
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Figure A.1: The ℓ2-regularized cross-entropy train loss (Top) and test error (Bottom) surfaces of a deep
residual network (ResNet-164) on CIFAR-100. Left: Three optima for independently trained networks.
Middle and Right: A quadratic Bezier curve, and a polygonal chain with one bend, connecting the lower
two optima on the left panel along a path of near-constant loss. Notice that in each panel, a direct linear
path between each mode would incur high loss.

• ResNet-bottleneck-164 andWide ResNet-28-10 (https://github.com/tensorflow/models/

tree/master/research/resnet);

• ResNet-158 (https://github.com/tensorflow/models/tree/master/official/resnet);

• A reimplementation of VGG-16 without batch-normalization from (https://github.com/

pytorch/vision/blob/master/torchvision/models/vgg.py);

Table A.1 summarizes the results of the curve finding experiments with all datasets and archi-

tectures. For each of the models we report the properties of loss and the error on the train and test
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Figure A.2: Same as Fig. A.1 for VGG-16 on CIFAR-10.

datasets. For each of these metrics we report 3 values: “Max” is the maximum values of the met-

ric along the curve, “Int” is a numerical approximation of the integral
∫
<metric>(𝜙𝜃 )𝑑𝜙𝜃/

∫
𝑑𝜙𝜃 ,

where <metric> represents the train loss or the error on the train or test dataset and “Min” is the

minimum value of the error on the curve. “Int” represents a mean over a uniform distribution on

the curve, and for the train loss it coincides with the loss (1) in the paper. We use an equally-

spaced grid with 121 points on [0, 1] to estimate the values of “Min”, “Max”, “Int”. For “Int” we

use the trapezoidal rule to estimate the integral. For each dataset and architecture we report the

performance of single models used as the endpoints of the curve as “Single”, the performance of

a line segment connecting the two single networks as “Segment”, the performance of a quadratic

Bezier curve as “Bezier” and the performance of a polygonal chain with one bend as “Polychain”.

Finally, for each curve we report the ratio of its length to the length of a line segment connecting

the two modes.

We also examined the quantity “Mean” defined as
∫
< metric > (𝜙𝜃 (𝑡))𝑑𝑡 , which coincides

with the loss (2) from the paper, but in all our experiments it is nearly equal to “Int”.

Besides convolutional and fully-connected architectures we also apply our approach to RNN

architecture on next word prediction task, PTB dataset (Marcus et al. [1993]). As a base model we
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used the implementation available at https://www.tensorflow.org/tutorials/recurrent.

As the main loss we consider perplexity. The results are presented in Table A.2.

A.1.5 Train loss and test accuracy surfaces

In this section we provide additional visualizations. Fig. A.1 and Fig. A.2 show visualizations of

the train loss and test accuracy for ResNet-164 on CIFAR-100 and VGG-16 on CIFAR-10.

A.1.6 Curve Ensembling
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Figure A.3: Error as a function of the point on the curves 𝜙𝜃 (𝑡) found by the proposed method, using
a ResNet-164 on CIFAR-100. Top left: train error. Bottom left: test error; dashed lines correspond to
quality of ensemble constructed from curve points before and after logits rescaling. Top right: train
loss (ℓ2 regularized cross-entropy). Bottom right: cross-entropy before and after logits rescaling for the
polygonal chain.

Herewe explore ensembles constructed from points sampled from these high accuracy curves.

In particular, we train a polygonal chain with one bend connecting two independently trained

ResNet-164 networks on CIFAR-100 and construct an ensemble of networks corresponding to

50 points placed on an equally-spaced grid on the curve. The resulting ensemble had 21.03%

error-rate on the test dataset. The error-rate of the ensemble constructed from the endpoints of

the curve was 22.0%. An ensemble of three independently trained networks has an error rate
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of 21.01%. Thus, the ensemble of the networks on the curve outperformed an ensemble of its

endpoints implying that the curves found by the proposed method are actually passing through

diverse networks that produce predictions different from those produced by the endpoints of the

curve. Moreover, the ensemble based on the polygonal chain has the same number of parameters

as three independent networks, and comparable performance.

Furthermore, we can improve the ensemble on the chain without adding additional parame-

ters or computational expense, by accounting for the pattern of increased training and test loss

towards the centres of the linear paths shown in Figure A.3. While the training and test accuracy

are relatively constant, the pattern of loss, shared across train and test sets, indicates overcon-

fidence away from the three points defining the curve: in this region, networks tend to output

probabilities closer to 1, sometimes with the wrong answers. This overconfidence decreases the

performance of ensembles constructed from the networks sampled on the curves. In order to cor-

rect for this overconfidence and improve the ensembling performance we use temperature scaling

[Guo et al. 2017], which is inversely proportional to the loss. Figure A.3, bottom right, illustrates

the test loss of ResNet-164 on CIFAR-100 before and after temperature scaling. After rescaling the

predictions of the networks, the test loss along the curve decreases and flattens. Further, the test

error-rate of the ensemble constructed from the points on the curve went down from 21.03% to

20.7% after applying the temperature scaling, outperforming 3 independently trained networks.

However, directly ensembling on the curves requires manual intervention for temperature

scaling, and an additional pass over the training data for each of the networks (50 in this case) at

test time to perform batch normalization as described in section A.1.2. Moreover, we also need

to train at least two networks for the endpoints of the curve.

A.1.7 The Effects of Increasing Parametrization

One possible factor that influences the connectedness of a local minima set is the overparame-

terization of neural networks. In this section, we investigate the relation between the observed
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Figure A.4: The worst train loss along the curve, maximum of the losses of the endpoints, and the ratio
of the length of the curve and the line segment connecting the two modes, as a function of the scaling
factor 𝐾 of the sizes of fully-connected layers.

connectedness of the local optima and the number of parameters (weights) in the neural network.

We start with a network that has three convolutional layers followed by three fully-connected

layers, where each layer has 1000𝐾 neurons. We vary 𝐾 ∈ {0.3, 0.5, 0.8, 1}, and for each value of

𝐾 we train two networks that we connect with a Bezier curve using the proposed procedure.

For each value of 𝐾 , Figure A.4 shows the worst training loss along the curve, maximum of

losses of the endpoints, and the ratio of the length of the curve and the line segment connecting

the twomodes. Increasing the number of parameters we are able to reduce the difference between

theworst value of the loss along the curve and the loss of singlemodels used as the endpoints. The

ratio of the length of the found curve and the length of the line segment connecting the twomodes

also decreases monotonically with 𝐾 . This result is intuitive, since a greater parametrization

allows for more flexibility in how we can navigate the loss surfaces.

A.1.8 Trivial connecting curves

For convolutional networks with ReLU activations and without batch normalization we can con-

struct a path connecting two points in weight space such that the accuracy of each point on the

curve (excluding the origin of the weight space) is at least as good as the minimum of the accura-
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Algorithm 3 Fast Geometric Ensembling
Require:

weights 𝑤̂ , LR bounds 𝛼1, 𝛼2,
cycle length 𝑐 (even), number of iterations 𝑛

Ensure: ensemble
𝑤 ← 𝑤̂ {Initialize weight with 𝑤̂ }
ensemble← [ ]
for 𝑖 ← 1, 2, . . . , 𝑛 do

𝛼 ← 𝛼 (𝑖) {Calculate LR for the iteration}
𝑤 ← 𝑤 − 𝛼∇L𝑖 (𝑤) {Stochastic gradient update}
if mod (𝑖, 𝑐) = 𝑐/2 then

ensemble← ensemble + [𝑤] {Collect weights}
end if

end for

cies of the endpoints. Unlike the paths found by our procedure, these paths are trivial and merely

exploit redundancies in the parametrization. Also, the training loss goes up substantially along

these curves. Below we give a construction of such paths.

Let 𝑤̂1 and 𝑤̂2 be two sets of weights. This path of interest consists of two parts. The first part

connects the point 𝑤̂1 with 0 and the second one connects the point 𝑤̂2 with 0. We describe only

the first part 𝜙 (𝑡) of the path, such that 𝜙 (0) = 0, 𝜙 (1) = 𝑤̂1, as the second part is completely

analogous. Let the weights of the network 𝑤̂1 be {𝑊𝑖, 𝑏𝑖}1≤𝑖≤𝑛 where𝑊𝑖, 𝑏𝑖 are the weights and

biases of the 𝑖-th layer, and𝑛 is the total number of layers. Throughout the derivation we consider

the inputs of the network fixed. The output of the 𝑖-th layer 𝑜𝑖 =𝑊𝑖ReLU(𝑜𝑖−1) + 𝑏𝑖 , 1 ≤ 𝑖 ≤ 𝑛,

where 𝑖 = 0 corresponds to the first layer and 𝑖 = 𝑛 corresponds to logits (the outputs of the last

layer). We construct 𝜙 (𝑡) = {𝑊𝑖 (𝑡), 𝑏𝑖 (𝑡)}1≤𝑖≤𝑛 in the following way. We set𝑊𝑖 (𝑡) = 𝑊𝑖𝑡 and

𝑏𝑖 (𝑡) = 𝑏𝑖𝑡 𝑖 . It is easy to see that logits of the network with weights 𝜙 (𝑡) are equal to 𝑜𝑛 (𝑡) = 𝑡𝑛𝑜𝑛

for all 𝑡 > 0. Note that the predicted labels corresponding to the logits 𝑜𝑛 (𝑡) and 𝑜𝑛 are the same,

so the accuracy of all networks corresponding to 𝑡 > 0 is the same.
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A.1.9 Fast geometric ensembling experiments

In this section we compare the proposed Fast Geometric Ensembling (FGE) technique against

ensembles of independently trained networks (Ind), and SnapShot Ensembles (SSE) [Huang et al.

2017a], a recent state-of-the-art fast ensembling approach. Alg. 3 provides an outline of the FGE

algorithm.

For the ensembling experiments we use a 164-layer Preactivation-ResNet in addition to the

VGG-16 and Wide ResNet-28-10 models. As baseline models we used the following implementa-

tions:

• VGG-16 (https://github.com/pytorch/vision/blob/master/torchvision/models/vgg.

py);

• Preactivation-ResNet-164 (https://github.com/bearpaw/pytorch-classification/blob/

master/models/cifar/preresnet.py);

• ResNet-50 ImageNet (https://github.com/pytorch/vision/blob/master/torchvision/

models/resnet.py);

• Wide ResNet-28-10 (https://github.com/meliketoy/wide-resnet.pytorch/blob/master/

networks/wide_resnet.py);

We compare the accuracy of each method as a function of computational budget. For each

network architecture and dataset we denote the number of epochs required to train a single model

as 𝐵. For a 𝑘𝐵 budget, we run each of Ind, FGE and SSE 𝑘 times from random initializations and

ensemble the models gathered from the 𝑘 runs. In our experiments we set 𝐵 = 200 for VGG-16

and Wide ResNet-28-10 (WRN-28-10) models, and 𝐵 = 150 for ResNet-164, since 150 epochs is

typically sufficient to train this model. We note the runtime per epoch for FGE, SSE, and Ind is

the same, and so the total computation associated with 𝑘𝐵 budgets is the same for all ensembling

approaches.
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Table A.3: Error rates (%) on CIFAR-100 and CIFAR-10 datasets for different ensembling techniques and
training budgets. The best results for each dataset, architecture, and budget are bolded.

CIFAR-100 CIFAR-10

DNN (Budget) method 1𝐵 2𝐵 3𝐵 1𝐵 2𝐵 3𝐵

VGG-16 (200)
Ind 27.4 ± 0.1 25.28 24.45 6.75 ± 0.16 5.89 5.9
SSE 26.4 ± 0.1 25.16 24.69 6.57 ± 0.12 6.19 5.95
FGE 25.7 ± 0.1 24.11 23.54 6.48 ± 0.09 5.82 5.66

ResNet-164 (150)
Ind 21.5 ± 0.4 19.04 18.59 4.72 ± 0.1 4.1 3.77
SSE 20.9 ± 0.2 19.28 18.91 4.66 ± 0.02 4.37 4.3
FGE 20.2 ± 0.1 18.67 18.21 4.54 ± 0.05 4.21 3.98

WRN-28-10 (200)
Ind 19.2 ± 0.2 17.48 17.01 3.82 ± 0.1 3.4 3.31
SSE 17.9 ± 0.2 17.3 16.97 3.73 ± 0.04 3.54 3.55
FGE 17.7 ± 0.2 16.95 16.88 3.65 ± 0.1 3.38 3.52

For the FGE (Fast Geometric Ensembling) strategy on ResNet we run the FGE routine sum-

marized in Alg. 1 after epoch 125 of the usual (same as Ind) training for 22 epochs. The total

training time is thus 125 + 22 = 147 epochs. For VGG and Wide ResNet models we run the pre-

training procedure for 156 epochs to initialize FGE. Then we run FGE for 22 epochs starting from

checkpoints corresponding to epochs 120 and 156 and ensemble all the gathered models. The

total training time is thus 156 + 22 + 22 = 200 epochs. For VGG we use cycle length 𝑐 = 2 epochs,

which means that the total number of models in the final ensemble is 22. For ResNet and Wide

ResNet we use 𝑐 = 4 epochs, and the total number of models in the final ensemble is 12 for Wide

ResNets and 6 for ResNets.

For Ind, we use an initial learning rate of 0.1 for ResNet and Wide ResNet, and 0.05 for VGG.

For FGE, with VGG we use cycle length 𝑐 = 2 epochs, and a total of 22 models in the final

ensemble. With ResNet and Wide ResNet we use 𝑐 = 4 epochs, and the total number of models

in the final ensemble is 12 for Wide ResNets and 6 for ResNets. For VGG we set the learning

rates to 𝛼1 = 10−2, 𝛼2 = 5 · 10−4; for ResNet and Wide ResNet models we set 𝛼1 = 5 · 10−2,

𝛼2 = 5 · 10−4. For SSE, we followed Huang et al. [2017a] and varied the initial learning rate 𝛼0 and

number of snapshots per run 𝑀 . We report the best results we achieved, which corresponded to

174



𝛼0 = 0.1, 𝑀 = 4 for ResNet, 𝛼0 = 0.1, 𝑀 = 5 for Wide ResNet, and 𝛼0 = 0.05, 𝑀 = 5 for VGG. The

total number of models in the FGE ensemble is constrained by network choice and computational

budget. Further experimental details are in the Appendix A.1.9.

Table A.3 summarizes the results of the experiments. In all conducted experiments FGE out-

performs SSE, particularly as we increase the computational budget. The performance improve-

ment against Ind is most noticeable for CIFAR-100. With a large number of classes, any two

models are less likely to make the same predictions. Moreover, there will be greater uncertainty

over which representation one should use on CIFAR-100, since the number of classes is increased

tenfold from CIFAR-10, but the number of training examples is held constant. Thus smart en-

sembling strategies will be especially important on this dataset. Indeed in all experiments on

CIFAR-100, FGE outperformed all other methods. On CIFAR-10, FGE consistently improved upon

SSE for all budgets and architectures. FGE also improved against Ind for all training budgets with

VGG, but is more similar in performance to Ind on CIFAR-10 when using ResNets.

Prediction diversity. Diversity of predictions of the individual networks is crucial for the en-

sembling performance [e.g., Lee et al. 2016b]. We note that the diversity of the networks averaged

by FGE is lower than that of completely independently trained networks. Specifically, two inde-

pendently trained ResNet-164 on CIFAR-100 make different predictions on 19.97% of test objects,

while two networks from the same FGE run make different predictions on 14.57% of test objects.

Further, performance of individual networks averaged by FGE is slightly lower than that of fully

trained networks (e.g. 78.0% against 78.5% on CIFAR100 for ResNet-164). However, for a given

computational budget FGE can propose many more high-performing networks than independent

training, leading to better ensembling performance (see Table A.3).

ImageNet results. ImageNet ILSVRC-2012 [Russakovsky et al. 2012] is a large-scale dataset

containing 1.2 million training images and 50000 validation images divided into 1000 classes.

CIFAR-100 is the primary focus of our ensemble experiments. However, we also include ImageNet
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Figure A.5: Train loss and test error along the polygonal chain connecting the sequence of points ensem-
bled in FGE. The plot is generated using PreResNet-164 on CIFAR 100. Circles indicate the bends on the
polygonal chain, i.e. the networks ensembled in FGE.

results for the proposed FGE procedure, using a ResNet-50 architecture. We used a pretrained

model with top-1 test error of 23.87 to initialize the FGE procedure. We then ran FGE for 5 epochs

with a cycle length of 2 epochs and with learning rates 𝛼1 = 10−3, 𝛼2 = 10−5. The top-1 test error-

rate of the final ensemble was 23.31. Thus, in just 5 epochs we could improve the accuracy of the

model by 0.56 using FGE. The final ensemble contains 4 models (including the pretrained one).

Despite the harder setting of only 5 epochs to construct an ensemble, FGE performs comparably

to the best result reported by Huang et al. [2017a] on ImageNet, 23.33 error, which was also

achieved using a ResNet-50.

A.1.10 Polygonal chain connecting FGE proposals

In order to better understand the trajectories followed by FGE we construct a polygonal chain

connecting the points that FGE ensembles. Suppose we run FGE for 𝑛 learning rate cycles ob-

176



taining 𝑛 points 𝑤1,𝑤2, . . . ,𝑤𝑛 in the weight space that correspond to the lowest values of the

learning rate. We then consider the polygonal chain consisting of the line segments connecting

𝑤𝑖 to𝑤𝑖+1 for 𝑖 = 1, . . . , 𝑛 − 1. We plot test accuracy and train error along this polygonal chain in

Figure A.5. We observe that along this curve both train loss and test error remain low, agreeing

with our intuition that FGE follows the paths of low loss and error. Surprisingly, we find that the

points on the line segments connecting the weights 𝑤𝑖,𝑤𝑖+1 have lower train loss and test error

than𝑤𝑖 and𝑤𝑖+1. See Izmailov et al. [2018] for a detailed discussion of this phenomenon.

A.2 Appendix for Stochastic Weight Averaging

This supplementary material is structured as follows. In Section A.2.1 we describe the details of

the experiments with SWA. In Section A.2.2 how SWA can be used to train a neural network from

scratch with a constant learning rate schedule.

A.2.1 Experimental Details

For the experiments on CIFAR datasets (section 2.6.1) we used the following implementations

(embedded links):

• Shake-Shake-2x64d

• PyramidNet-272

• VGG-16

• Preactivation-ResNet-164

• Wide ResNet-28-10

Models for ImageNet are from here. Pretrained networks can be found here.
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Figure A.6: Cyclical learning rate used for Shake-Shake as a function of iteration.

SWA learning rates. For PyramidNet SWA uses a cyclic learning rate with 𝛼1 = 0.05 and

𝛼2 = 0.001 and cycle length 3. For VGG and Wide ResNet we used constant learning 𝛼1 = 0.01.

For ResNet we used constant learning rates 𝛼1 = 0.01 on CIFAR-10 and 0.05 on CIFAR-100.

For Shake-Shake Net we used a custom cyclic learning rate based on the cosine annealing

used when training Shake-Shake with SGD. Each of the cycles replicate the learning rates cor-

responding to epochs 1600 − 1700 of the standard training and the cycle length 𝑐 = 100 epochs.

The learning rate schedule is depicted in Figure A.6 and follows the formula

𝛼 (𝑖) = 0.1 ·
(
1 + cos

(
𝜋 · 1600 + epoch(𝑖) mod 100)

1800

))
,

where epoch(i) is the number of data passes completed before iteration 𝑖 .

For all experiments with ImageNet we used cyclic learning rate schedule with the same hy-

perparameters 𝛼1 = 0.001, 𝛼2 = 10−5 and 𝑐 = 1.

SGD learning rates. For conventional SGD training we used SGD with momentum 0.9 and

with an annealed learning rate schedule. For VGG, Wide ResNet and Preactivation ResNet we

fixed the learning rate to 𝛼1 for the first half of epochs (0𝐵–0.5𝐵), then linearly decreased the

learning rate to 0.01𝛼1 for the next 40% of epochs (0.5𝐵–0.9𝐵), and then kept it constant for the
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Figure A.7: Test error as a function of training epoch for constant (green) and decaying (blue) learning
rate schedules for a Wide ResNet-28-10 on CIFAR-100. In red we average the points along the trajectory
of SGD with constant learning rate starting at epoch 140.

last 10% of epochs (0.9𝐵 – 1𝐵). For VGG we set 𝛼1 = 0.05, and for Preactivation ResNet and Wide

ResNet we set 𝛼1 = 0.1. For Shake-Shake Net and PyramidNets we used the cosine and piecewise-

constant learning rate schedules described in Gastaldi [2017] and Han et al. [2016] respectively.

A.2.2 Training with a Constant Learning Rate

In this section we show that it is possible to train DNNs from scratch with a fixed learning rate

using SWA. We run SGD with a fixed learning rate of 0.05 on a Wide ResNet-28-10 [Zagoruyko

and Komodakis 2016] for 300 epochs from a random initialization on CIFAR-100. We then aver-

aged the weights at the end of each epoch from epoch 140 and until the end of training. The final

test accuracy of this SWA model was 81.7.

Figure A.7 illustrates the test error as a function of the number of training epochs for SWA

and conventional training. The accuracy of the individual models with weights averaged by

SWA stays at the level of ≈ 65% which is 16% less than the accuracy of the SWA model. These

results correspond to our intuition presented in section 3.4 that SGD with a constant learning

rate oscillates around the optimum, but SWA converges.

While being able to train a DNN with a fixed learning rate is a surprising property of SWA,
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for practical purposes we recommend initializing SWA from a model pretrained with conven-

tional training (possibly for a reduced number of epochs), as it leads to faster and more stable

convergence than running SWA from scratch.

A.3 Appendix for SWA-Gaussian

[PI ToDo]

A.3.1 Asymptotic Normality of SGD

Under conditions of decaying learning rates, smoothness of gradients, and the existence of a full

rank stationary distribution, martingale based analyses of stochastic gradient descent [e.g., As-

mussen and Glynn 2007, Chapter 8] show that SGD has a Gaussian limiting distribution. That is,

in the limit as the time step goes to infinity, 𝑡1/2(𝜃𝑡−𝜃 ∗) → N(0,H(𝜃 )−1E(∇ log𝑝 (𝜃 )∇ log𝑝 (𝜃 )𝑇 )H (𝜃 )−1)),

whereH(𝜃 )−1 is the inverse of theHessianmatrix of the log-likelihood andE(∇ log𝑝 (𝜃 )∇ log𝑝 (𝜃 )𝑇 )

is the covariance of the gradients and 𝜃 ∗ is a stationary point or minima. Note that these analyses

date back to Ruppert [1988] and Polyak and Juditsky [1992] for Polyak-Ruppert averaging, and

are still popular in the analysis of stochastic gradient descent.

Mandt et al. [2017a], Chen et al. [2016], and Babichev and Bach [2018] all use the same style of

analyses, but for different purposes. We will test the specific assumptions of Mandt et al. [2017a]

in the next section. Finally, note that the technical conditions are essentially the same conditions

as for the Bernstein von Mises Theorem [e.g., Van der Vaart 2000, Chapter 10] which implies that

the asymptotic posterior will also be Gaussian.

It may be counter-intuitive that, aswe show in Section 3.4, SWAG captures the geometry of the

objective correctly. Onemight even expect SWAG estimates of variance to be inverted, as gradient

descent would oscillate more in the sharp directions of the objective. To gainmore intuition about

SGD dynamics we visualize SGD trajectory on a quadratic problem. More precisely, we define a
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Figure A.8: Trajectory of SGD with isotropic Gaussian gradient noise on a quadratic loss function. Left:
SGD without momentum; Right: SGD with momentum.

2-dimensional quadratic function 𝑓 (𝑥,𝑦) = (𝑥 +𝑦)2 +0.05 · (𝑥 −𝑦)2 shown in Figure A.8. We then

run SGD to minimize this function.

It turns out that the gradient noise plays a crucial role in forming the SGD stationary dis-

tribution. If there is no noise in the gradients, we are in the full gradient descent regime, and

optimization either converges to the optimizer, or diverges to infinity depending on the learning

rate. However, when we add isotropic Gaussian noise to the gradients, SGD converges to the

correct Gaussian distribution, as we visualize in the left panel of Figure A.8. Furthermore, adding

momentum affects the scale of the distribution, but not its shape, as we show in the right panel

of Figure A.8. These conclusions hold as long as the learning rate in SGD is not too large.

The results we show in Figure A.8 are directly predicted by theory in Mandt et al. [2017a]. In

general, if the gradient noise is not isotropic, the stationary distribution of SGDwould be different

from the exact posterior distribution. Mandt et al. [2017a] provide a thorough empirical study

of the SGD trajectory for convex problems, such as linear and logistic regression, and show that

SGD can often provide a competitive baseline on these problems.

A.3.1.1 Other Considerations for Gaussian Approximation

Given the covariance matrix 𝐴 = H(𝜃 )−1E(∇ log𝑝 (𝜃 )∇ log𝑝 (𝜃 )𝑇 )H (𝜃 )−1, Chen et al. [2016]

show that a batch means estimator of the iterates (similar to what SWAG uses) themselves will
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converge to 𝐴 in the limit of infinite time. We tried batch means based estimators but saw no

improvement; however, it could be interesting to explore further in future work.

Intriguingly, the covariance 𝐴 is the same form as sandwich estimators [see e.g. Müller 2013,

for a Bayesian analysis in the model mis-specification setting], and so 𝐴 = H(𝜃 )−1 under model

well-specification [Müller 2013; Chen et al. 2016]. We then tie the covariancematrix of the iterates

back to the well known Laplace approximation, which usesH(𝜃 )−1 as its covariance as described

by MacKay [2003, Chapter 28], thereby justifying SWAG theoretically as a sample based Laplace

approximation.

Finally, in Chapter 4 of Berger [2013] constructs an example (Example 10) of fitting a Gaus-

sian approximation from a MCMC chain, arguing that it empirically performs well in Bayesian

decision theoretic contexts. Berger [2013] give the explanation for this as the Bernstein vonMises

Theorem providing that in the limit the posterior will itself converge to a Gaussian. However, we

would expect that even in the infinite data limit the posterior of DNNs would converge to some-

thing very non-Gaussian, with connected modes surrounded by gorges of zero posterior density

[Garipov et al. 2018]. One could use this justification for fitting a Gaussian from the iterates of

SGLD or SGHMC instead.

A.3.2 Do the assumptions of Mandt et al. [2017a] hold for DNNs?

In this section, we investigate the results of Mandt et al. [2017a] in the context of deep learning.

Mandt et al. [2017a] uses the following assumptions:

1. Gradient noise at each point 𝜃 is N(0,𝐶).

2. 𝐶 is independent of 𝜃 and full rank.

3. The learning rates, 𝜂, are small enough that we can approximate the dynamics of SGD by a

continuous-time dynamic described by the corresponding stochastic differential equation.
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4. In the stationary distribution, the loss is approximately quadratic near the optima, i.e. ap-

proximately (𝜃 − 𝜃 ∗)⊤H(𝜃 ) (𝜃 − 𝜃 ∗), whereH(𝜃 ∗) is the Hessian at the optimum; further,

the Hessian is assumed to be positive definite.

Assumption 1 is motivated by the central limit theorem, and Assumption 3 is necessary for the

analysis in Mandt et al. [2017a]. Assumptions 2 and 4 may or may not hold for deep neural

networks (as well as other models). Under these assumptions, Theorem 1 of Mandt et al. [2017a]

derives the optimal constant learning rate that minimizes the KL-divergence between the SGD

stationary distribution and the posterior1:

𝜂∗ = 2
𝐵

𝑁

𝑑

𝑡𝑟 (𝐶) , (A.1)

where 𝑁 is the size of the dataset, 𝑑 is the dimension of the model, 𝐵 is the minibatch size and 𝐶

is the gradient noise covariance.

We computed Equation A.1 over the course of training for two neural networks in Figure

A.A.9(a), finding that the predicted optimal learning rate was an order of magnitude larger than

what would be used in practice to explore the loss surface in a reasonable time (about 4 compared

to 0.1).

We now focus on seeing how Assumptions 2 and 4 fail for DNNs; this will give further insight

into what portions of the theory do hold, and may give insights into a corrected version of the

optimal learning rate.

A.3.2.1 Assumption 2: Gradient Covariance Noise.

In Figure A.A.9(b), the trace of the gradient noise covariance and thus the optimal learning rates

are nearly constant; however, the total variance is much too small to induce effective learning

rates, probably due to over-parameterization effects inducing non full rank gradient covariances
1An optimal diagonal preconditioner is also derived; our empirical work applies to that setting as well. A similar

analysis with momentum holds as well, adding in only the momentum coefficient.
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as was found in Chaudhari and Soatto [2018]. We note that this experiment is not sufficient to be

fully confident that𝐶 is independent of the parameterization near the local optima, but rather that

𝑡𝑟 (𝐶) is close to constant; further experiments in this vein are necessary to test if the diagonals

of 𝐶 are constant. The result that 𝑡𝑟 (𝐶) is close to constant suggests that a constant learning

rate could be used for sampling in a stationary phase of training. The dimensionality parameter

in Equation A.1 could be modified to use the number of effective parameters or the rank of the

gradient noise to reduce the optimal learning rate to a feasible number.

To estimate 𝑡𝑟 (𝐶) from the gradient noise we need to divide the estimated variance by the

batch size (as 𝑉 (𝑔(𝜃 )) = 𝐵𝐶 (𝜃 )), for a correct version of Equation A.1. From Assumption 1 and

Equation 6 of Mandt et al. [2017a], we see that

𝑔(𝜃 ) ≈ 𝑔(𝜃 ) + 1
√
𝐵
∇𝑔(𝜃 ),∇𝑔(𝜃 ) ∼ 𝑁 (0,𝐶 (𝜃 )),

where 𝐵 is the batch size. Thus, collecting the variance of 𝑔(𝜃 ) (the variance of the stochastic

gradients) will give estimates that are upscaled by a factor of 𝐵, leading to a cancellation of the

batch size terms:

𝜂 ≈ 2
𝑁

𝑑

𝑡𝑟 (𝑉 (𝑔(𝜃 ))) .

To include momentum, we can repeat the analysis in Sections 4.1 and 4.3 of Mandt et al. [2017a]

finding that this also involves scaling the optimal learning rate but by a factor of 𝜇, themomentum

term.2 This gives the final optimal learning rate equation as

𝜂 ≈ 2𝜇
𝑁

𝑑

𝑡𝑟 (𝑉 (𝑔(𝜃 ))) . (A.2)

In Figure A.9(b), we computed 𝑡𝑟 (𝐶) for VGG-16 and PreResNet-164 on CIFAR-100 beginning

from the start of training (referred to as from scratch), as well as the start of the SWAG procedure
2Our experiments used 𝜇 = 0.1 corresponding to 𝜌 = 0.9 in PyTorch’s SGD implementation.
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FigureA.9: Gradient variance norm and computed optimal learning rates for VGG-16 and PreResNet-164.
The computed optimal learning rates are always too large by a factor of 10, while the gradient variance
stabilizes over the course of training.

(referred to in the legend as SWA). We see that 𝑡𝑟 (𝐶) is never quite constant when trained from

scratch, while for a period of constant learning rate near the end of training, referred to as the

stationary phase, 𝑡𝑟 (𝐶) is essentially constant throughout. This discrepancy is likely due to large

gradients at the very beginning of training, indicating that the stationary distribution has not

been reached yet.

Next, in Figure A.9(a), we used the computed 𝑡𝑟 (𝐶) estimate for all four models and Equation

A.2 to compute the optimal learning rate under the assumptions of Mandt et al. [2017a], finding

that these learning rates are not constant for the estimates beginning at the start of training and

that they are too large (1-3 at the minimum compared to a standard learning rate of 0.1 or 0.01).

A.3.2.2 Assumption 4: Hessian Eigenvalues at the Optima

To test assumption 4, we used a GPU-enabled Lanczos method from GPyTorch [Gardner et al.

2018] and used restarting to compute the minimum eigenvalue of the train loss of a pre-trained

PreResNet-164 on CIFAR-100. We found that even at the end of training, the minimum eigenvalue

was −272 (the maximum eigenvalue was 3580 for comparison), indicating that the Hessian is not

positive definite. This result harmonizes with other work analyzing the spectra of the Hessian for
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DNN training [Li et al. 2017; Sagun et al. 2018]. Further, Garipov et al. [2018] and Draxler et al.

[2018a] argue that the loss surfaces of DNNs have directions along which the loss is completely

flat, suggesting that the loss is nowhere near a positive-definite quadratic form.

A.3.3 Further Geometric Experiments

In Figure A.10 we present figures/swag analogous to those in Section 3.4 for PreResNet-110 and

VGG-16 on CIFAR-10 and CIFAR-100. For all dataset-architecture pairs we see that SWAG is able

to capture the geometry of the posterior in the subspace spanned by SGD trajectory.

A.3.4 Hyper-Parameters and Limitations

In this section, we discuss the hyper-parameters in SWAG, as well as some current theoretical

limitations.

A.3.5 Rank of Covariance Matrix

We now evaluate the effect of the covariance matrix rank on the SWAG approximation. To do

so, we trained a PreResNet56 on CIFAR-100 with SWAG beginning from epoch 161, and eval-

uated 30 sample Bayesian model averages obtained at different epochs; the accuracy plot from

this experiment is shown in Figure A.11 (a). The rank of each model after epoch 161 is simply

min(𝑒𝑝𝑜𝑐ℎ − 161, 140), and 30 samples from even a low rank approximation reach the same pre-

dictive accuracy as the SWA model. Interestingly, both SWAG and SWA outperform ensembles

of a SGD run and ensembles of the SGD models in the SWA run.

A.3.5.1 Number of Samples in the Forwards Pass

Inmost situationswhere SWAGwill be used, no closed form expression for the integral
∫
𝑓 (𝑦)𝑞(𝜃 |𝑦)𝑑𝜃,

will exist. Thus, Monte Carlo approximations will be used; Monte Carlo integration converges
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Figure A.10: Left: Posterior-density cross-sections along the rays corresponding to different eigenvectors
of the SWAG covariance matrix. Middle: Posterior-density surface in the plane spanned by eigenvectors
of SWAG covariance matrix corresponding to the first and second largest eigenvalues and (Right:) the
third and fourth largest eigenvalues. Each row in the figure corresponds to an architecture-dataset pair
indicated in the title of each panel.
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Figure A.11: (a) 30 samples of SWAG with a rank 20 covariance matches the SWA result over the course
of training for PreResNet56 on CIFAR-100. SWAG with a rank of 140, SWAG with a rank of 20, and SWA
all outperform ensembles of SGD iterates from the SWA procedure and from a standard SGD training
path. (b) NLL and (c) accuracy by number of samples for WideResNet on CIFAR-100 for SWAG, SWAG-
Diag, and SWA. 30 samples is adequate for stable accuracies and NLLs. (d) NLL by number of samples for
different scales forWideResNet on CIFAR-100 for SWAG, SWAG-Diag, and SWA. Scales beneath 1 perform
better, with 0.5 and 0.25 best.

at a rate of 1/
√
𝐾, where 𝐾 is the number of samples used, but practically good results may be

found with very few samples (e.g. Chapter 29 of MacKay [2003]).

To test how many samples are needed for good predictive accuracy in a Bayesian model av-

eraging task, we used a rank 20 approximation for SWAG and then tested the NLL on the test set

as a function of the number of samples for WideResNet28x10 [Zagoruyko and Komodakis 2016]

on CIFAR-100.

The results from this experiment are shown in Figure A.11 (b, c), where it is possible to see

that about 3 samples will match the SWA result for NLL, with about 30 samples necessary for

stable accuracy (about the same as SWA for this network). In most of our experiments, we used

30 samples for consistency. In practice, we suggest tuning this number by looking at a validation

set as well as the computational resources available and comparing to the free SWA predictions

that come with SWAG.
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A.3.5.2 Dependence on Learning Rate

First, we note that the covariance, Σ, estimated using SWAG, is a function of the learning rate

(and momentum) for SGD. While the theoretical work of Mandt et al. [2017a] suggests that it is

possible to optimally set the learning rate, our experiments in Appendix A.3.2 show that currently

the assumptions of the theory do not match the empirical reality in deep learning. In practice the

learning rate can be chosen to maximize negative log-likelihood on a validation set. In the linear

setting as in Mandt et al. [2017a], the learning rate controls the scale of the asymptotic covariance

matrix. If the optimal learning rate (Equation A.1) is used in this setting, the covariance matches

the true posterior. To attempt to disassociate the learning rate from the covariance in practice, we

rescale the covariancematrix when sampling by a constant factor for aWideResNet on CIFAR-100

shown in Figure A.11 (d).

Over several replications, we found that a scale of 0.5 worked best, which is expected because

the low rank plus diagonal covariance incorporates the variance twice (once for the diagonal and

once from the low rank component).

A.3.5.3 Necessity of Batch Norm Updates

One possible slowdown of SWAG at inference time is in the usage of updated batch norm param-

eters. Following Izmailov et al. [2018], we found that in order for the averaging and sampling to

work well, it was necessary to update the batch norm parameters of networks after sampling a

new model. This is shown in Figure A.12 for a WideResNet on CIFAR-100 for two independently

trained models.

A.3.5.4 Usage in Practice

From our experimental findings, we see that given an equal amount of training time, SWAG

typically outperforms other methods for uncertainty calibration. SWAG additionally does not
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Figure A.12: NLL by number of samples for SWAG with and without batch norm updates after sampling.
Updating the batch norm parameters after sampling results in a significant improvement in NLL.

require a validation set like temperature scaling and Platt scaling (e.g. Guo et al. [2017]; Kuleshov

et al. [2018]). SWAG also appears to have a distinct advantage over temperature scaling, and other

popular alternatives, when the target data are from a different distribution than the training data,

as shown by our transfer learning experiments.

Deep ensembles [Lakshminarayanan et al. 2017] require several times longer training for

equal calibration, but often perform somewhat better due to incorporating several independent

training runs. Thus SWAG will be particularly valuable when training time is limited, but infer-

ence time may not be. One possible application is thus in medical applications when image sizes

(for semantic segmentation) are large, but predictions can be parallelized and may not have to be

instantaneous.

A.3.6 Further Classification Uncertainty Results

A.3.6.1 Reliability Diagrams

We provide the additional reliability diagrams for all methods and datasets in Figure A.13. SWAG

consistently improves calibration over SWA, and performs on par or better than temperature

scaling. In transfer learning temperature scaling fails to achieve good calibration, while SWAG
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Figure A.13: Reliability diagrams (see Section 3.5.1) for all models and datasets. The dataset and archi-
tecture are listed in the title of each panel.
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still provides a significant improvement over SWA.

A.3.6.2 Out-of-Domain Image Detection
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Figure A.14: In and out of sample entropy distributions for WideResNet28x10 on CIFAR5 + 5.

Table A.4: Symmetrized, discretized KL divergence between the distributions of predictive entropies for
data from the first and last five classes of CIFAR-10 for models trained only on the first five classes. The
entropy distributions for SWAG are more different than the baseline models.

Method JS-Distance

SWAG 3.31

SWAG-Diag 2.27
MC Dropout 3.04
SWA 1.68
SGD (Baseline) 3.14
SGD + Temp. Scaling 2.98

Next, we evaluate the SWAG variants along with the baselines on out-of-domain data de-

tection. To do so we train a WideResNet as described in Section A.3.9 on the data from five

classes of the CIFAR-10 dataset, and then analyze their predictions on the full test set. We expect

the outputted class probabilities on objects that belong to classes that were not present in the

training data to have high-entropy reflecting the model’s high uncertainty in its predictions, and

considerably lower entropy on the images that are similar to those on which the network was

trained.

To make this comparison quantitative, we computed the symmetrized KL divergence between
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the binned in and out of sample distributions in Table A.4, finding that SWAG and Dropout per-

form best on this measure. We plot the histograms of predictive entropies on the in-domain

(classes that were trained on) and out-of-domain (classes that were not trained on) in Figure

A.A.14 for a qualitative comparison.

Table A.4 shows the computed symmetrized, discretized KL distance between in and out of

sample distributions for the CIFAR5 out of sample image detection class. We used the same bins as

in Figure A.14 to discretize the entropy distributions, then smoothed these bins by a factor of 1e-7

before calculating 𝐾𝐿(IN| |OUT) + 𝐾𝐿(OUT| |IN) using the scipy.stats.entropy function. We

can see even qualitatively that the distributions are more distinct for SWAG and SWAG-Diagonal

than for the other methods, particularly temperature scaling.

A.3.6.3 Tables of ECE, NLL, and Accuracy.

We provide test accuracies (Tables A.11,A.12,A.13) and negative log-likelihoods (NLL) (Tables

A.8,A.9,A.10) all methods and datasets. We observe that SWAG is competitive with SWA, SWA

with temperature scaling and SWA-Dropout in terms of test accuracy, and typically outperforms

all the baselines in terms of NLL. SWAG-Diagonal is generally inferior to SWAG for log-likelihood,

but outperforms SWA.

In Tables A.5,A.6,A.7 we additionally report expected calibration error [ECE, Naeini et al.

2015], a metric of calibration of the predictive uncertainties. To compute ECE for a given model

we split the test points into 20 bins based on the confidence of the model, and we compute the

absolute value of the difference of the average confidence and accuracy within each bin, and aver-

age the obtained values over all bins. Please refer to [Naeini et al. 2015; Guo et al. 2017] for more

details. We observe that SWAG is competitive with temperature scaling for ECE. Again, SWAG-

Diagonal achieves better calibration than SWA, but using the low-rank plus diagonal covariance

approximation in SWAG leads to substantially improved performance.
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Table A.5: ECE for various versions of SWAG, temperature scaling, and MC Dropout on CIFAR-10 and
CIFAR-100.

CIFAR-10 CIFAR-10 CIFAR-10 CIFAR-100 CIFAR-100 CIFAR-100

Model VGG-16 PreResNet-164 WideResNet28x10 VGG-16 PreResNet-164 WideResNet28x10

SGD 0.0483 ± 0.0022 0.0255 ± 0.0009 0.0166 ± 0.0007 0.1870 ± 0.0014 0.1012 ± 0.0009 0.0479 ± 0.0010
SWA 0.0408 ± 0.0019 0.0203 ± 0.0010 0.0087 ± 0.0002 0.1514 ± 0.0032 0.0700 ± 0.0056 0.0684 ± 0.0022
SWAG-Diag 0.0267 ± 0.0025 0.0082 ± 0.0008 0.0047 ± 0.0013 0.0819 ± 0.0021 0.0239 ± 0.0047 0.0322 ± 0.0018
SWAG 0.0158 ± 0.0030 0.0053 ± 0.0004 0.0088 ± 0.0006 0.0395 ± 0.0061 0.0587 ± 0.0048 0.0113 ± 0.0020
KFAC-Laplace 0.0094 ± 0.0005 0.0092 ± 0.0018 0.0060 ± 0.0003 0.0778 ± 0.0054 0.0158 ± 0.0014 0.0379 ± 0.0047
SWA-Dropout 0.0284 ± 0.0036 0.0162 ± 0.0000 0.0094 ± 0.0014 0.1108 ± 0.0181 * 0.0574 ± 0.0028
SWA-Temp 0.0366 ± 0.0063 0.0172 ± 0.0010 0.0080 ± 0.0007 0.0291 ± 0.0097 0.0175 ± 0.0037 0.0220 ± 0.0007
SGLD 0.0082 ± 0.0012 0.0251 ± 0.0012 0.0192 ± 0.0007 0.0424 ± 0.0029 0.0363 ± 0.0008 0.0296 ± 0.0008

Table A.6: ECE on ImageNet.

Model DenseNet-161 ResNet-152

SGD 0.0545 ± 0.0000 0.0478 ± 0.0000
SWA 0.0509 ± 0.0000 0.0605 ± 0.0000
SWAG-Diag 0.0459 ± 0.0000 0.0566 ± 0.0000
SWAG 0.0204 ± 0.0000 0.0279 ± 0.0000
SWA-Temp 0.0190 ± 0.0000 0.0183 ± 0.0000

Table A.7: ECE on CIFAR10 to STL 10.

Model VGG-16 PreResNet-164 WideResNet28x10

SGD 0.2149 ± 0.0027 0.1758 ± 0.0000 0.1561 ± 0.0000
SWA 0.2082 ± 0.0056 0.1739 ± 0.0000 0.1413 ± 0.0000
SWAG-Diag 0.1719 ± 0.0075 0.1312 ± 0.0000 0.1241 ± 0.0000
SWAG 0.1463 ± 0.0075 0.1110 ± 0.0000 0.1017 ± 0.0000
SWA-Dropout 0.1803 ± 0.0024 0.1421 ± 0.0000
SWA-Temp 0.2089 ± 0.0055 0.1646 ± 0.0000 0.1371 ± 0.0000

A.3.7 Language Modeling

Weevaluate SWAGusing standard PennTreebank andWikiText-2 benchmark languagemodeling

datasets. Following [Merity et al. 2017]we use a 3-layer LSTMmodel with 1150 units in the hidden

layer and an embedding of size 400; we apply dropout, weight-tying, activation regularization

(AR) and temporal activation regularization (TAR) techniques. We follow [Merity et al. 2017] for
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Table A.8: NLL on CIFAR10 and CIFAR100.

Dataset CIFAR-10 CIFAR-100

Model VGG-16 PreResNet-164 WideResNet28x10 VGG-16 PreResNet-164 WideResNet28x10

SGD 0.3285 ± 0.0139 0.1814 ± 0.0025 0.1294 ± 0.0022 1.7308 ± 0.0137 0.9465 ± 0.0191 0.7958 ± 0.0089
SWA 0.2621 ± 0.0104 0.1450 ± 0.0042 0.1075 ± 0.0004 1.2780 ± 0.0051 0.7370 ± 0.0265 0.6684 ± 0.0034
SWAG-Diag 0.2200 ± 0.0078 0.1251 ± 0.0029 0.1077 ± 0.0009 1.0163 ± 0.0032 0.6837 ± 0.0186 0.6150 ± 0.0029
SWAG 0.2016 ± 0.0031 0.1232 ± 0.0022 0.1122 ± 0.0009 0.9480 ± 0.0038 0.6595 ± 0.0019 0.6078 ± 0.0006
KFAC-Laplace 0.2252 ± 0.0032 0.1471 ± 0.0012 0.1210 ± 0.0020 1.1915 ± 0.0199 0.7881 ± 0.0025 0.7692 ± 0.0092
SWA-Dropout 0.2328 ± 0.0049 0.1270 ± 0.0000 0.1094 ± 0.0021 1.1872 ± 0.0524 0.6500 ± 0.0049
SWA-Temp 0.2481 ± 0.0245 0.1347 ± 0.0038 0.1064 ± 0.0004 1.0386 ± 0.0126 0.6770 ± 0.0191 0.6134 ± 0.0023
SGLD 0.2001 ± 0.0059 0.1418 ± 0.0005 0.1289 ± 0.0009 0.9699 ± 0.0057 0.6981 ± 0.0052 0.678 ± 0.0022
SGD-Ens 0.1881 ± 0.002 0.1312 ± 0.0023 0.1855 ± 0.0014 0.8979 ± 0.0065 0.7839 ± 0.0046 0.7655 ± 0.0026

Table A.9: NLL on ImageNet.

Model DenseNet-161 ResNet-152

SGD 0.9094 ± 0.0000 0.8716 ± 0.0000
SWA 0.8655 ± 0.0000 0.8682 ± 0.0000
SWAG-Diag 0.8559 ± 0.0000 0.8584 ± 0.0000
SWAG 0.8303 ± 0.0000 0.8205 ± 0.0000
SWA-Temp 0.8359 ± 0.0000 0.8226 ± 0.0000

Table A.10: NLL when transferring from CIFAR10 to STL10.

Model VGG-16 PreResNet-164 WideResNet28x10

SGD 1.6528 ± 0.0390 1.4790 ± 0.0000 1.1308 ± 0.0000
SWA 1.3993 ± 0.0502 1.3552 ± 0.0000 1.0047 ± 0.0000
SWAG-Diag 1.2258 ± 0.0446 1.0700 ± 0.0000 0.9340 ± 0.0000
SWAG 1.1402 ± 0.0342 0.9706 ± 0.0000 0.8710 ± 0.0000
SWA-Dropout 1.3133 ± 0.0000 0.9914 ± 0.0000
SWA-Temp 1.4082 ± 0.0506 1.2228 ± 0.0000 0.9706 ± 0.0000

specific hyper-parameter settings such as dropout rates for different types of layers. We train

all models for language modeling tasks and evaluate validation and test perplexity. For SWA

and SWAG we pre-train the models using standard SGD for 500 epochs, and then run the model

for 100 more epochs to estimate the mean 𝜃SWA and covariance Σ in SWAG. For this experiment

we introduce a small change to SWA and SWAG: to estimate the mean 𝜃SWA we average weights

after each mini-batch of data rather than once per epoch, as we found more frequent averaging to
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Table A.11: Accuracy on CIFAR-10 and CIFAR-100.

Dataset CIFAR-10 CIFAR-100

Model VGG-16 PreResNet-164 WideResNet28x10 VGG-16 PreResNet-164 WideResNet28x10

SGD 93.17 ± 0.14 95.49 ± 0.06 96.41 ± 0.10 73.15 ± 0.11 78.50 ± 0.32 80.76 ± 0.29
SWA 93.61 ± 0.11 96.09 ± 0.08 96.46 ± 0.04 74.30 ± 0.22 80.19 ± 0.52 82.40 ± 0.16
SWAG-Diag 93.66 ± 0.15 96.03 ± 0.10 96.41 ± 0.05 74.68 ± 0.22 80.18 ± 0.50 82.40 ± 0.09
SWAG 93.60 ± 0.10 96.03 ± 0.02 96.32 ± 0.08 74.77 ± 0.09 79.90 ± 0.50 82.23 ± 0.19
KFAC-Laplace 92.65 ± 0.20 95.49 ± 0.06 96.17 ± 0.00 72.38 ± 0.23 78.51 ± 0.05 80.94 ± 0.41
SWA-Dropout 93.23 ± 0.36 96.18 ± 0.00 96.39 ± 0.09 72.50 ± 0.54 82.30 ± 0.19
SWA-Temp 93.61 ± 0.11 96.09 ± 0.08 96.46 ± 0.04 74.30 ± 0.22 80.19 ± 0.52 82.40 ± 0.16
SGLD 93.55 ± 0.15 95.55 ± 0.04 95.89 ± 0.02 74.02 ± 0.30 80.09 ± 0.05 80.94 ± 0.17

Table A.12: Accuracy on ImageNet.

Model DenseNet-161 ResNet-152

SGD 77.79 ± 0.00 78.39 ± 0.00
SWA 78.60 ± 0.00 78.92 ± 0.00
SWAG-Diag 78.59 ± 0.00 78.96 ± 0.00
SWAG 78.59 ± 0.00 79.08 ± 0.00
SWA-Temp 78.60 ± 0.00 78.92 ± 0.00

Table A.13: Accuracy when transferring from CIFAR-10 to STL-10.

Model VGG-16 PreResNet-164 WideResNet28x10

SGD 72.42 ± 0.07 75.56 ± 0.00 76.75 ± 0.00
SWA 71.92 ± 0.01 76.02 ± 0.00 77.50 ± 0.00
SWAG-Diag 72.09 ± 0.04 75.95 ± 0.00 77.26 ± 0.00
SWAG 72.19 ± 0.06 75.88 ± 0.00 77.09 ± 0.00
SWA-Dropout 71.45 ± 0.11 76.91 ± 0.00
SWA-Temp 71.92 ± 0.01 76.02 ± 0.00 77.50 ± 0.00

greatly improve performance. After SWAG distribution is constructed we sample and ensemble

30 models from this distribution. We use rank-10 for the low-rank part of the covariance matrix

of SWAG distribution.
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A.3.8 Regression

For the small UCI regression datasets, we use the architecture from Wu et al. [2018] with one

hidden layer with 50 units, training for 50 epochs (starting SWAG at epoch 25) and using 20

repetitions of 90/10 train test splits. We fixed a single seed for tuning before using 20 different

seeds for the results in the paper.

We use SGD3, manually tune learning rate andweight decay, and use batch size of𝑁 /10where

𝑁 is the dataset size. All models predict heteroscedastic uncertainty (i.e. output a variance). In

Table A.14, we compare subspace inference methods to deterministic VI (DVI, Wu et al. [2018])

and deep Gaussian processes with expectation propagation (DGP1-50 Bui et al. [2016]). SWAG

outperforms DVI and the other methods on three of the six datasets and is competitive on the

other three despite its vastly reduced computational time (the same as SGDwhereas DVI is known

to be 300x slower). Additionally, we note the strong performance of well-tuned SGD as a baseline

against the other approximate inference methods, as it consistently performs nearly as well as

both SWAG and DVI.

Finally, in Table A.14, we compare the calibration (coverage of the 95% credible sets of SWAG

and 95% confidence regions of SGD) of both SWAG and SGD. Note that neither is ever too over-

confident (far beneath 95% coverage) and that SWAG is considerably better calibrated on four of

the six datasets.

A.3.9 Classification Experimental Details and Parameters

In this section we describe all of the architectures and hyper-parameters we use in Sections 3.5.1,

A.3.6.2.

On ImageNet we use architecture implementations and pre-trained weights from https://

github.com/pytorch/vision/tree/master/torchvision. For the experiments on CIFAR datasets
3Except for concrete where we use Adam due to convergence issues.
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Table A.14: Unnormalized test log-likelihoods on small UCI datasets for proposed methods, as well as
direct comparisons to the numbers reported in deterministic variational inference (DVI, Wu et al. [2018])
and Deep Gaussian Processes with expectation propagation (DGP1-50, Bui et al. [2016]), and variational
inference (VI) with the re-parameterization trick [Kingma et al. 2015]. * denotes reproduction from [Wu
et al. 2018]. Note that SWAG wins on two of the six datasets, and that SGD serves as a strong baseline
throughout.

dataset N D SGD SWAG DVI* DGP1-50* VI* SGLD* PBP*

boston 506 13 -2.536 ± 0.240 -2.469 ± 0.183 -2.41 ± 0.02 -2.33 ± 0.06 -2.43 ±0.03 -2.40 ± 0.05 -2.57 ± 0.09
concrete 1030 8 -3.02 ± 0.126 -3.05 ± 0.1 -3.06 ± 0.01 -3.13 ± 0.03 -3.04 ±0.02 -3.08 ± 0.03 -3.16 ± 0.02
energy 768 8 -1.736 ± 1.613 -1.679 ± 1.488 -1.01 ± 0.06 -1.32 ± 0.03 -2.38 ±0.02 -2.39 ± 0.01 -2.04 ± 0.02
naval 11934 16 6.567 ± 0.185 6.708 ± 0.105 6.29 ± 0.04 3.60 ± 0.33 5.87 ±0.29 3.33 ± 0.01 3.73 ± 0.01
yacht 308 6 -0.418 ± 0.426 -0.404 ± 0.418 -0.47 ± 0.03 -1.39 ± 0.14 -1.68 ±0.04 -2.90 ± 0.01 -1.63 ± 0.02
power 9568 4 -2.772 ± 0.04 -2.775 ± 0.038 -2.80 ± 0.00 -2.81 ± 0.01 -2.66 ± 0.01 -2.67 ± 0.00 -2.84 ± 0.01

Table A.15: Calibration on small-scale UCI datasets. Bolded numbers are those closest to 0.95 %the
predicted coverage).

N D SGD SWAG

boston 506 13 0.913 ± 0.039 0.936 ± 0.036
concrete 1030 8 0.909 ± 0.032 0.930 ± 0.023
energy 768 8 0.947 ± 0.026 0.951 ± 0.027
naval 11934 16 0.948 ± 0.051 0.967 ± 0.008
yacht 308 6 0.895 ± 0.069 0.898 ± 0.067
power 9568 4 0.956 ± 0.006 0.957 ± 0.005

we adapted the following implementations:

• VGG-16: https://github.com/pytorch/vision/blob/master/torchvision/models/vgg.py

• Preactivation-ResNet-164: https://github.com/bearpaw/pytorch-classification/blob/master/

models/cifar/preresnet.py

• WideResNet28x10: https://github.com/meliketoy/wide-resnet.pytorch/blob/master/networks/

wide_resnet.py

For all datasets and architectures we use the same piecewise constant learning rate schedule

and weight decay as in Izmailov et al. [2018], except we train Pre-ResNet for 300 epochs and

start averaging after epoch 160 in SWAG and SWA. For all of the methods we are using our own
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implementations in PyTorch. We describe the hyper-parameters for all experiments for each

model:

SWA We use the same hyper-parameters as Izmailov et al. [2018] on CIFAR datasets. On Ima-

geNet we used a constant learning rate of 10−3 instead of the cyclical schedule, and averaged 4

models per epoch. We adapt the code from https://github.com/timgaripov/swa for our imple-

mentation of SWA.

SWAG In all experiments we use rank 𝐾 = 20 and use 30 weight samples for Bayesian model

averaging. We re-use all the other hyper-parameters from SWA.

KFAC-Laplace For our implementation we adapt the code for KFAC Fisher approximation from

https://github.com/Thrandis/EKFAC-pytorch and implement our own code for sampling. Fol-

lowing [Ritter et al. 2018b] we tune the scale of the approximation on validation set for every

model and dataset.

MC-Dropout In order to implement MC-dropout we add dropout layers before each weight

layer and sample 30 different dropout masks for Bayesian model averaging at inference time. To

choose the dropout rate, we ran the models with dropout rates in the set {0.1, 0.05, 0.01} and

chose the one that performed best on validation data. For both VGG-16 and WideResNet28x10

we found that dropout rate of 0.05 worked best and used it in all experiments. On PreResNet-164

we couldn’t achieve reasonable performance with any of the three dropout rates, which has been

reported from the work of He et al. [2016]. We report the results for MC-Dropout in combination

with both SWA (SWA-Drop) and SGD (SGD-Drop) training.

Temperature Scaling For SWA and SGD solutions we picked the optimal temperature bymin-

imizing negative log-likelihood on validation data, adapting the code from https://github.com/

gpleiss/temperature_scaling.
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SGLD We initialize SGLD from checkpoints pre-trained with SGD.We run SGLD for 100 epochs

on WideResNet and for 150 epochs on PreResNet-156. We use the learning rate schedule of

[Welling and Teh 2011]:

𝜂𝑡 =
𝜂0

(𝜂1 + 𝑡)0.55 .

We tune constants 𝑎, 𝑏 on validation. For WideResNet we use 𝑎 = 38.0348, 𝑏 = 13928.7 and for

PreResNet we use 𝑎 = 40.304, 𝑏 = 15476.4; these values are selected so that the initial learning

rate is 0.2 and final learning rate is 0.1. We also had to rescale the noise in the gradients by a factor

of 5 · 10−4 compared to [Welling and Teh 2011]. Without this rescaling we found that even with

learning rates on the scale of 10−7 SGD diverged. We note that noise rescaling is commonly used

with stochastic gradient MCMC methods (see e.g. the implementation of [Zhang et al. 2020c]).

On CIFAR datasets for tuning hyper-parameters we used the last 5000 training data points as

a validation set. On ImageNet we used 5000 of test data points for validation. On the transfer

task for CIFAR10 to STL10, we report accuracy on all 10 STL10 classes even though frogs are not

a part of the STL10 test set (and monkeys are not a part of the CIFAR10 training set).

A.4 Appendix for “Bayesian Deep Learning and a

Probabilistic Perspective of Generalization”

This appendix is organized as follows. In Section A.4.1, we visualize predictive functions cor-

responding to weight samples within high posterior density valleys on a regression problem.

In Section A.4.2, we provide background material on Gaussian processes. In Section A.4.3, we

present further results comparing MultiSWAG and MultiSWA to Deep Ensembles under data dis-

tribution shift on CIFAR-10. In Section A.4.4, we provide the details of all experiments presented

in the paper. In Section A.4.5, we present analytic results on the dependence of the prior distri-

bution in function space on the variance of the prior over parameters. In Section A.4.6, we study

200



−10 −5 0 5 10
−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

−10 −5 0 5 10
−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

−10 −5 0 5 10
−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

−10 −5 0 5 10
−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

0 10 20 30

−3

−2

−1

0

1

2

0 10 20 30

−3

−2

−1

0

1

2

0 10 20 30

−3

−2

−1

0

1

2

0 10 20 30

−3

−2

−1

0

1

2

Figure A.15: Diversity of high performing functions. Bottom: a contour plot of the posterior log-
density in the subspace containing a pair of independently trained modes (as with deep ensembles), and
a path of high posterior density connecting these modes. In each panel, the purple point represents a
sample from the posterior in the parameter subspace. Top: the predictive distribution constructed from
samples in the subspace. The shaded blue area shows the 3𝜎-region of the predictive distribution at each
of the input locations, and the blue line shows the mean of the predictive distribution. In each panel, the
purple line shows the predictive function corresponding to the sample shown in the corresponding bottom
row panel. For the details of the experimental setup see Section 5.1 of Izmailov et al. [2019].

the prior correlations between BNN logits on perturbed images.

A.4.1 Loss Valleys

We demonstrate that different points along the valleys of high posterior density (low loss) con-

necting pairs of independently trained optima [Garipov et al. 2018; Draxler et al. 2018b; Fort and

Jastrzebski 2019] correspond to different predictive functions. We use the regression example

from Izmailov et al. [2019] and show the results in Figure A.15.

A.4.2 Gaussian processes

With a Bayesian neural network, a distribution over parameters 𝑝 (𝑤) induces a distribution over

functions 𝑝 (𝑓 (𝑥 ;𝑤)) when combined with the functional form of the network. Gaussian pro-

cesses (GPs) are often used to instead directly specify a distribution over functions.

AGaussian process is a distribution over functions, 𝑓 (𝑥) ∼ GP(𝑚,𝑘), such that any collection
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of function values, queried at any finite set of inputs 𝑥1, . . . , 𝑥𝑛 , has a joint Gaussian distribution:

𝑓 (𝑥1), . . . , 𝑓 (𝑥𝑛) ∼ N (𝜇, 𝐾) . (A.3)

The mean vector, 𝜇𝑖 = E[𝑓 (𝑥𝑖)] = 𝑚(𝑥𝑖), and covariance matrix, 𝐾𝑖 𝑗 = cov(𝑓 (𝑥𝑖), 𝑓 (𝑥 𝑗 )) =

𝑘 (𝑥𝑖, 𝑥 𝑗 ), are determined by the mean function 𝑚 and covariance function (or kernel) 𝑘 of the

Gaussian process.

The popular RBF kernel has the form

𝑘 (𝑥𝑖, 𝑥 𝑗 ) = exp
(
− 1

2ℓ2 ∥𝑥𝑖 − 𝑥 𝑗 ∥
2
)
. (A.4)

The length-scale hyperparameter ℓ controls the extent of correlations between function values. If

ℓ is large, sample functions from a GP prior are simple and slowly varying with inputs 𝑥 .

Gaussian processes with RBF kernels (as well as many other standard kernels) assign posi-

tive density to any set of observations. Moreover, these models are universal approximators [Ras-

mussen andWilliams 2006]: as the number of observations increase, they are able to approximate

any function to arbitrary precision.

Work onGaussian processes inmachine learningwas triggered by the observation that Bayesian

neural networks become Gaussian processes with particular kernel functions as the number of

hidden units approaches infinity [Neal 1996]. This result resembles recent work on the neural

tangent kernel [e.g., Jacot et al. 2018].

A.4.3 Deep Ensembles and MultiSWAG Under Distribution Shift

In Figures A.18, A.19, A.20, A.21 we show the negative log-likelihood for Deep Ensembles, Mul-

tiSWA and MultiSWAG using PreResNet-20 on CIFAR-10 with various corruptions as a function

of the number of independently trained models (SGD solutions, SWA solutions or SWAG mod-
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els, respectively). For MultiSWAG, we generate 20 samples from each independent SWAGmodel.

Typically MultiSWA and MultiSWAG significantly outperform Deep Ensembles when a small

number of independent models is used, or when the level of corruption is high.

In Figure A.22, following Ovadia et al. [2019], we show the distribution of negative log likeli-

hood, accuracy and expected calibration error as we vary the type of corruption. We use a fixed

training time budget: 10 independently trained models for every method. For MultiSWAGwe en-

semble 20 samples from each of the 10 SWAG approximations. MultiSWAG particularly achieves

better NLL than the other two methods, and MultiSWA outperforms Deep Ensembles; the differ-

ence is especially pronounced for higher levels of corruption. In terms of ECE, MultiSWAG again

outperforms the other two methods for higher corruption intensities.

We note that Ovadia et al. [2019] found Deep Ensembles to be a very strong baseline for

prediction quality and calibration under distribution shift. For this reason, we focus on Deep

Ensembles in our comparisons.

A.4.4 Details of Experiments

In this section we provide additional details of the experiments presented in the paper.

A.4.4.1 Approximating the True Predictive Distribution

For the results presented in Figure 3.7 we used a network with 3 hidden layers of size 10 each. The

network takes two inputs: 𝑥 and 𝑥2. We pass both 𝑥 and 𝑥2 as input to ensure that the network

can represent a broader class of functions. The network outputs a single number 𝑦 = 𝑓 (𝑥).

To generate data for the plots, we used a randomly-initialized neural network of the same

architecture described above. We sampled the weights from an isotropic Gaussian with variance

0.12 and added isotropic Gaussian noise with variance 0.12 to the outputs:

𝑦 = 𝑓 (𝑥 ;𝑤) + 𝜖 (𝑥),
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with 𝑤 ∼ N(0, 0.12 · 𝐼 ), 𝜖 (𝑥) ∼ N (0, 0.12 · 𝐼 ). The training set consists of 120 points shown in

Figure 3.7.

For estimating the ground truth we ran 200 chains of Hamiltonian Monte Carlo (HMC) using

the hamiltorch package [Cobb et al. 2019]. We initialized each chain with a network pre-trained

with SGD for 3000 steps, then ran Hamiltonian Monte Carlo (HMC) for 2000 steps, producing 200

samples.

For Deep Ensembles, we independently trained 50 networks with SGD for 20000 steps each.

We used minus posterior log-density as the training loss. For SVI, we used a fully-factorized

Gaussian approximation initialized at an SGD solution trained for 20000 steps. For all inference

methods we set prior variance to 102 and noise variance to 0.022.

Discrepancy with true BMA. For the results presented in panel (d) of Figure 3.7 we com-

puted Wasserstein distance between the predictive distribution approximated with HMC and the

predictive distribution for Deep Ensembles and SVI. We used the one-dimensional Wasserstein

distance function4 from the scipy package [Virtanen et al. 2020a]. We computed the Wasserstein

distance between marginal distributions at each input location, and averaged the results over the

input locations. In the top sub-panels of panels (b), (c) of Figure 3.7 we additionally visualize the

marginal Wasserstein distance between the HMC predictive distribution and Deep Ensembles

and SVI predictive distrbutions respectively for each input location.

A.4.4.2 Deep Ensembles and MultiSWAG

We evaluate Deep Ensembles, MultiSWA and MultiSWAG under distribution shift in Section 3.6.

Following Ovadia et al. [2019], we use a PreResNet-20 network and the CIFAR-10 dataset with

different types of corruptions introduced in Hendrycks and Dietterich [2019]. For training in-

dividual SGD, SWA and SWAG models we use the hyper-parameters used for PreResNet-164 in
4https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.wasserstein_distance.html
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Figure A.16: (a)–(c): Average pairwise prior correlations for pairs of objects in classes {0, 1, 2, 4, 7} of
MNIST induced by LeNet-5 for 𝑝 (𝑓 (𝑥 ;𝑤)) when 𝑝 (𝑤) = N(0, 𝛼2𝐼 ). Images in the same class have higher
prior correlations than images from different classes, suggesting that 𝑝 (𝑓 (𝑥 ;𝑤)) has desirable inductive
biases. The correlations slightly decrease with increases in 𝛼 . Panels (e)–(g) show sample functions from
LeNet-5 along the direction connecting a pair of MNIST images of 0 and 1 digits. The complexity of the
samples increases with 𝛼 . (d): NLL and (h) classification error of an ensemble of 20 SWAG samples on
MNIST as a function of 𝛼 using a LeNet-5. The NLL is high for overly small 𝛼 and near-optimal for larger
values with an optimum near 𝛼 = 0.3.

Maddox et al. [2019]. For each SWAG model we sample 20 networks and ensemble them. So,

Deep Ensembles, MultiSWA and MultiSWAG are all evaluated under the same training budget;

Deep Ensembles and MultiSWA also use the same test-time budget.

For producing the corrupted data we used the code5 released by Hendrycks and Dietterich

[2019]. We had issues producing the data for the frost corruption type, so we omit it in our

evaluation, and include Gaussian blur which was not included in the evaluation of Hendrycks

and Dietterich [2019].

A.4.4.3 Neural Network Priors

In themain textwe considered different properties of the prior distribution over functions induced

by a spherical Gaussian distribution over the weights, with different variance scales.
5https://github.com/hendrycks/robustness/blob/master/ImageNet-C/create_c/make_cifar_c.py
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Prior correlation diagrams. In panels (a)–(c) of Figure A.16 we show pairwise correlations

of the logits for different pairs of datapoints. To make these plots we produce 𝑆 = 100 samples of

the weights 𝑤𝑖 of a LeNet-5 from the prior distribution N(0, 𝛼2𝐼 ) and compute the logits corre-

sponding to class 0 for each data point and each weight sample. We then compute the correlations

for each pair 𝑥 , 𝑥′ of data points as follows:

corrlogit(𝑥, 𝑥′) =∑𝑆
𝑖=1(𝑓 (𝑥,𝑤𝑖) − 𝑓 (𝑥)) (𝑓 (𝑥′,𝑤𝑖) − 𝑓 (𝑥′))√︃∑𝑆

𝑖=1(𝑓 (𝑥,𝑤𝑖) − 𝑓 (𝑥))2 ·
∑𝑆
𝑖=1(𝑓 (𝑥′,𝑤𝑖) − 𝑓 (𝑥′))2

,

where 𝑓 (𝑥,𝑤) is the logit corresponding to class 0 of the network with weights𝑤 on the input 𝑥 ,

and 𝑓 (𝑥) is the mean value of the logit 𝑓 (𝑥) = 1
𝑆

∑
𝑖 𝑓 (𝑥,𝑤𝑖). For evaluation, we use 200 random

datapoints per class for classes 0, 1, 2, 4, 7 (a total of 1000 datapoints). We use this set of classes

to ensure that the structure is clearly visible in the figure. We combine the correlations into a

diagram, additionally showing the average correlation for each pair of classes. We repeat the

experiment for different values of 𝛼 ∈ {0.02, 0.1, 1}. For a discussion of the results see Section

3.7.2.

Sample functions. In panels (e)–(g) of Figure A.16 we visualize the functions sampled from the

LeNet-5 network along the direction connecting a pair of MNIST images. In particular, we take a

pair of images𝑥0 and𝑥1 of digits 0 and 1, respectively, and construct the path𝑥 (𝑡) = 𝑡 ·𝑥0+(1−𝑡)·𝑥1.

We then study the samples of the logits 𝑧 (𝑡) = 𝑓 (𝑥 (𝑡) · ∥𝑥0∥/∥𝑥 (𝑡)∥,𝑤) along the path; here we

adjusted the norm of the images along the path to be constant as the values of the logits are

sensitive to the norm of the inputs. The complexity of the samples increases as we increase the

variance of the prior distribution over the weights. This increased complexity of sample functions

explains why we might expect the prior correlations for pairs of images to be lower when we

increase the variance of the prior distribution over the weights.
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Performance dependence on prior variance. In panels (d), (h) of Figure A.16 we show the

test negative log-likelihood and accuracy of SWAG applied to LeNet-5 on MNIST. We train the

model for 50 epochs, constructing the rank-20 SWAG approximation from the last 25 epochs. We

use an initial learning rate of 0.05 and SWAG learning rate of 0.01 with the learning rate schedule

of Maddox et al. [2019]. We use posterior log-density as the objective, and vary the prior variance

𝛼2. In panels (f), (g) of Figure 3.12 we perform an analogous experiment using a PreResNet-20

and a VGG-16 on CIFAR-10, using the hyper-parameters reported in Maddox et al. [2019] (for

PreResNet-20 we use the hyper-parameters used with PreResNet-164 in Maddox et al. [2019]).

Both on MNIST and CIFAR-10 we observe that the performance is poor for overly small values of

𝛼 , close to optimal for intermediate values, and still reasonable for larger values of 𝛼 . For further

discussion of the results see Section 3.7.3.

Predictions from prior samples. Following Wenzel et al. [2020] we study the predictive dis-

tributions of prior samples using PreResNet-20 on CIFAR-10. In Figure 3.12 we show the sample

predictive functions averaged over datapoints for different scales 𝛼 of the prior distribution. We

also show the predictive distribution for each 𝛼 , which is the average of the sample predictive

distributions over 200 samples of weights. In Figure 3.13 we show how the predictive distribu-

tion changes as we vary the number of observed data for prior scale 𝛼 =
√

10. We see that the

marginal predictive distribution for all considered values of 𝛼 is reasonable — roughly uniform

across classes, when averaged across the dataset. For the latter experiment we used stochastic

gradient Langevin dynamics (SGLD) [Welling and Teh 2011] with a cosine lerning rate schedule.

For each sample we restart SGLD, and we only use the sample obtained at the last iteration. We

discuss the results in Section 3.10.4.

Prior correlations with corrupted images. In Section A.4.6 and Figure A.23 we study the

decay of the prior correlations between logits on an original image and a perturbed image as we

increase the intensity of perturbations. For the BNN we use PreResNet-20 architecture with the
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standard Gaussian prior N(0, 𝐼 ). For the linear model, the correlations are not affected by the

prior variance 𝛼2:

𝑐𝑜𝑣 (𝑤𝑇𝑥,𝑤𝑇𝑦) = E(𝑤𝑇𝑥 ·𝑤𝑇𝑦) =

E𝑥𝑇𝑤𝑤𝑇𝑦 = 𝑥𝑇E𝑤𝑤𝑇𝑦 = 𝛼2𝑥𝑇𝑦,

and hence

𝑐𝑜𝑟𝑟 (𝑤𝑇𝑥,𝑤𝑇𝑦) =

𝑐𝑜𝑣 (𝑤𝑇𝑥,𝑤𝑇𝑦)√︁
𝑐𝑜𝑣 (𝑤𝑇𝑦,𝑤𝑇𝑦) · 𝑐𝑜𝑣 (𝑤𝑇𝑥,𝑤𝑇𝑥)

= 𝑥𝑇𝑦.

We use theN(0, 𝐼 ) prior for the weights of the linear model. Finally, we also evaluate the correla-

tions associated with an RBF kernel (see Equation (A.4)). To set the lengthscale ℓ of the kernel we

evaluate the pairwise correlations for the PreResnet-20 and RBF kernel on the 100 uncorrupted

CIFAR-10 images that were used for the experiment, and ensure that the average correlations

match. The resulting value of ℓ is 10000, and the average correlation for the RBF kernel and Pre-

ResNet was ≈ 0.9; for the linear model the average correlation was ≈ 0.82. For the perturbations

we used the same set of corruptions introduced in Hendrycks and Dietterich [2019] as in the ex-

periments in Section 3.6 with the addition of a random translation: for a random translation of

intensity 𝑖 we pad the image with 2 · 𝑖 zeros on each side and crop the image randomly to 32× 32.

A.4.4.4 Rethinking Generalization

In Section 3.8, we experiment with Bayesian neural networks and Gaussian processes on CIFAR-

10with noisy labels, inspired by the results in Zhang et al. [2017a] that suggest we need to re-think

generalization to understand deep learning.

Following Zhang et al. [2017a], we train PreResNet-20 on CIFAR-10 with different fractions
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of random labels. To ensure that the networks fits the train data, we turn off weight decay and

data augmentation, and use a lower initial learning rate of 0.01. Otherwise, we follow the hyper-

parameters that were used with PreResNet-164 in Maddox et al. [2019]. We use diagonal Laplace

approximation to compute an estimate of marginal likelihood for each level of label corruption.

Following Ritter et al. [2018b] we use the diagonal of the Fisher information matrix rather than

the Hessian.

We perform a similar experiment with a Gaussian process with RBF kernel on the binary

classification problem for two classes of CIFAR-10. We use variational inference to fit the model,

and we use the variational evidence lower bound to approximate the marginal likelihood. We use

variational inference to overcome the non-Gaussian likelihood and not for scalability reasons;

i.e., we are not using inducing inputs. We use the GPyTorch package [Gardner et al. 2018] to

train the models. We use an RBF kernel with default initialization from GPyTorch and divide the

inputs by 5000 to get an appropriate input scale. We train the model on a binary classification

problem between classes 0 and 1.

For the 10-class GP classification experiment we train 10 one-vs-all models that classify be-

tween a given class and the rest of the data. To reduce computation, in training we subsample

the data not belonging to the given class to 10𝑘 datapoints, so each model is trained on a total of

15𝑘 datapoints. We then combine the 10 models into a single multi-class model: an observation

is attributed to the class that corresponds to the one-vs-all model with the highest confidence.

We use the same hyper-parameters as in the binary classification experiments.

A.4.4.5 Double Descent

In Section 3.9 we evaluate SGD, SWAG and MultiSWAG for models of varying width. Following

Nakkiran et al. [2019] we use ResNet-18 on CIFAR-100; we consider original labels, 10% and 20%

label corruption. For networks of everywidthwe reuse the hyper-paramerers used for PreResNet-

164 in Maddox et al. [2019]. For original labels and 10% label corruption we use 5 independently
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Figure A.17: Double Descent. (a): Test error and (b): NLL loss for ResNet-18 with varying width on
CIFAR-100 for SGD, SWAG and MultiSWAG when 10% of the labels are randomly reshuffled. MultiSWAG
alleviates double descent both on the original labels and under label noise, both in accuracy and NLL. (e):
Test NLLs for MultiSWAG with varying number of independent models under 20% label corruption; NLL
monotonically decreases with increased number of independent models, alleviating double descent.

trained SWAG models with MultiSWAG, and for 20% label corruption we use 10 models; for 20%

label corruption we also show performance varying the number of independent models in Figures

?? and ??. Both for SWAG and MultiSWAG we use an ensemble of 20 sampled models from each

of the SWAG solutions; for example, for MultiSWAG with 10 independent SWAG solutions, we

use an ensemble of 200 networks.

A.4.5 Analysis of Prior Variance Effect

In this sectionwe provide simple analytic results for the effect of prior variance in ReLU networks.

A related derivation is presented in the Appendix Section A.8 of Garipov et al. [2018] about

connecting paths from symmetries in parametrization.

We will consider a multilayer network 𝑓 (𝑥,𝑤) of the form

𝑓 (𝑥, {𝑊𝑖,𝑏𝑖}𝑛𝑖=1) = (A.5)

𝑊𝑛 (. . . 𝜙 (𝑊2𝜙 (𝑊1𝑥 + 𝑏1) + 𝑏2)) + 𝑏𝑛, (A.6)

where 𝜙 is the ReLU (or in fact any positively-homogeneous activation function),𝑊𝑖 are weight

matrices and 𝑏𝑖 are bias vectors. In particular, 𝑓 can be a regular CNN with ReLU activations up
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to the logits (with softmax activation removed).

Now, suppose we have a prior distribution of the form

𝑊𝑖 ∼ N(0, 𝛼2
𝑖 𝐼 ), 𝑏𝑖 ∼ N(0, 𝛽2

𝑖 𝐼 ), (A.7)

where the identity matrices 𝐼 are implicitly assumed to be of appropriate shapes, so each weight

matrix and bias vector has a spherical Gaussian distribution. We can reparameterize this distri-

bution as

𝑊𝑖 = 𝛼𝑖E𝑖, E𝑖 ∼ N(0, 𝐼 ), (A.8)

𝑏𝑖 = 𝛽𝑖𝜖𝑖, 𝜖𝑖 ∼ N(0, 𝐼 ). (A.9)

We can then express the predictions of the network on the input 𝑥 for weights sampled from the

prior as the random variable

𝑓 (𝑥, {𝛼𝑖, 𝛽𝑖}𝑛𝑖=1) =

𝛼𝑛 · E𝑛 (. . . 𝜙 (𝛼1E1𝑥 + 𝛽1 · 𝜖1)) + 𝛽𝑛 · 𝜖𝑛 . (A.10)

Through Equation (A.10), we can observe some simple properties of the dependence between

the prior scales 𝛼𝑖 , 𝛽𝑖 and the induced function-space prior.

Proposition A.1. Suppose the network has no bias vectors, i.e. 𝛽1 = . . . = 𝛽𝑛 = 0. Then the scales

𝛼𝑖 of the prior distribution over the weights only affect the output scale of the network.

211



Proof. In the case when there are no bias vectors Equation (A.10) simplifies to

𝑓 (𝑥,{𝛼𝑖, 𝛽𝑖 = 0}𝑛𝑖=1) =

𝛼𝑛 · E𝑛 (. . . 𝜙 (𝛼1E1𝑥 + 𝛽1 · 𝜖1)) + 𝛽𝑛 · 𝜖𝑛 =

𝛼𝑛 · . . . · 𝛼1 · E𝑛 (. . . 𝜙 (E1𝑥)) =

𝛼𝑛 · . . . · 𝛼1 · 𝑓 (𝑥, {𝛼𝑖 = 1, 𝛽𝑖 = 0}𝑛𝑖=1).

In the derivation above we used positive homogeneity of ReLU: 𝜙 (𝛼𝑧) = 𝛼𝜙 (𝑧) for any positive

𝛼 . □

In other words, to sample from the distribution over functions corresponding to a prior with

variances {𝛼𝑖, 𝛽𝑖 = 0}𝑛𝑖=1, we can sample from the spherical Gaussian prior (without bias terms)

{𝛼𝑖 = 1, 𝛽𝑖 = 0}𝑛𝑖=1 and then rescale the outputs of the network by the product of variances

𝛼𝑛 · . . . · 𝛼2 · 𝛼1.

We note that the result above is different from the results for sigmoid networks considered in

MacKay [1995], where varying the prior on the weights leads to changing the length-scale of the

sample functions. For ReLU networks without biases, increasing prior variance only increases

the output scale of the network and not the complexity of the samples. If we apply the softmax

activation on the outputs of the last layer of such network, we will observe increasingly confident

predictions as we increase the prior variance. We observe this effect in Figure 3.12 and discuss it

in Section 3.10.4.

In case bias vectors are present, we can obtain a similar result using a specific scaling of the

prior variances with layer, as in the following proposition.

Proposition A.2. Suppose the prior scales depend on the layer of the network as follows for some
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𝛾 > 0:

𝛼𝑖 = 𝛾, 𝛽𝑖 = 𝛾
𝑖,

for all layers 𝑖 = 1 . . . 𝑛. Then 𝛾 only affects the scale of the predictive distribution at any input 𝑥 :

𝑓 (𝑥,{𝛼𝑖 = 𝛾, 𝛽𝑖 = 𝛾 𝑖}𝑛𝑖=1) = 𝛾𝑛 · 𝑓 (𝑥, {𝛼𝑖 = 1, 𝛽𝑖 = 1}𝑛𝑖=1).

Proof. The proof is analogous to the proof of Proposition A.1. We can use the positive homo-

genety of ReLU activations to factor the prior scales outside of the network:

𝑓 (𝑥,{𝛼𝑖 = 𝛾, 𝛽𝑖 = 𝛾 𝑖}𝑛𝑖=1) =

𝛾 · E𝑛 (. . . 𝜙 (𝛾 · E1𝑥 + 𝛾 · 𝜖1)) + 𝛾𝑛 · 𝜖𝑛 =

𝛾𝑛 ·
(
E𝑛 (. . . 𝜙 (E1𝑥 + 𝜖1))) + 𝜖𝑛

)
=

𝛾𝑛 · 𝑓 (𝑥, {𝛼𝑖 = 1, 𝛽𝑖 = 1}𝑛𝑖=1).

□

The analysis above can be applied to other simple scaling rules of the prior, e.g.

𝑓 (𝑥,{𝛼𝑖 = 𝛾𝛼𝑖, 𝛽𝑖 = 𝛾 𝑖𝛽𝑖}𝑛𝑖=1) =

𝛾𝑛 · 𝑓 (𝑥, {𝛼𝑖 = 𝛼𝑖, 𝛽𝑖 = 𝛽𝑖}𝑛𝑖=1), (A.11)

can be shown completely analogously to Proposition A.2.

More general types of scaling of the prior affect both the output scale of the network and also
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the relative effect of prior and variance terms. For example, by Equation (A.11) we have

𝑓 (𝑥,{𝛼𝑖 = 𝛾, 𝛽𝑖 = 𝛾}𝑛𝑖=1) =

𝑓 (𝑥,{𝛼𝑖 = 𝛾 · 1, 𝛽𝑖 = 𝛾 𝑖 · 𝛾1−𝑖}𝑛𝑖=1) =

𝛾𝑛 · 𝑓 (𝑥, {𝛼𝑖 = 1, 𝛽𝑖 = 𝛾1−𝑖}𝑛𝑖=1).

We note that the analysis does not cover residual connections and batch normalization, so it

applies to LeNet-5 but cannot be directly applied to PreResNet-20 networks used in many of our

experiments.

A.4.6 Prior Correlation Structure under Perturbations

In this section we explore the prior correlations between the logits on different pairs of datapoints

induced by a spherical Gaussian prior on the weights of a PreResNet-20. We sample a 100 random

images from CIFAR-10 (10 from each class) and apply 17 different perturbations introduced by

Hendrycks and Dietterich [2019] at 5 different levels of intensity. We then compute correlations

between the logits 𝑓 (𝑥,𝑤) for the original image 𝑥 and 𝑓 (𝑥,𝑤) for the corrupted image 𝑥 , as we

sample the weights of the network from the prior𝑤 ∼ N(0, 𝐼 ).

In Figure A.23 we show how the correlations decay with perturbation intensity. For reference

we also show how the correlations decay for a linear model and for an RBF kernel. For the RBF

kernel we set the lengthscale so that the average correlations on the uncorrupted datapoints

match those of a PreResNet-20. Further experimental details can be found in Appendix A.4.4.3.

For all types of corruptions except saturate, snow, fog and brightness the PreResNet logits

decay slower compared to the RBF kernel and linear model. It appears that the prior samples are

sensitive to corruptions that alter the brightness or more generally the colours in the image. For

many types of corruptions (such as e.g. Gaussian Noise) the prior correlations for PreResNet are

close to 1 for all levels of corruption.
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(b) Impulse Noise
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(c) Shot Noise

Figure A.18: Noise Corruptions. Negative log likelihood on CIFAR-10 with a PreResNet-20 for Deep
Ensembles, MultiSWAG and MultiSWA as a function of the number of independently trained models for
different types of corruption and corruption intensity (increasing from left to right).

Overall, these results indicate that the prior over functions induced by a vague prior over pa-

rameters 𝑤 in combination with a PreResNet has useful equivariance properties: before seeing

data, the model treats images of the same class as highly correlated, even after an image has un-

dergone significant perturbations representative of perturbations we often see in the real world.

These types of symmetries are a large part of what makes neural networks a powerful model

class for high dimensional natural signals.
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(c) Motion Blur
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(d) Zoom Blur
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(e) Gaussian Blur

Figure A.19: Blur Corruptions. Negative log likelihood on CIFAR-10 with a PreResNet-20 for Deep
Ensembles, MultiSWAG and MultiSWA as a function of the number of independently trained models for
different types of corruption and corruption intensity (increasing from left to right).
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(a) Contrast
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(b) Saturate
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(c) Elastic Transform
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(d) Pixelate
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(e) JPEG Compression

Figure A.20: Digital Corruptions. Negative log likelihood on CIFAR-10 with a PreResNet-20 for Deep
Ensembles, MultiSWAG and MultiSWA as a function of the number of independently trained models for
different types of corruption and corruption intensity (increasing from left to right).
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(a) Snow
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(b) Fog
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(c) Brightness

Figure A.21: Weather Corruptions. Negative log likelihood on CIFAR-10 with a PreResNet-20 for Deep
Ensembles, MultiSWAG and MultiSWA as a function of the number of independently trained models for
different types of corruption and corruption intensity (increasing from left to right).
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(a) Negative log likelihood
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(b) Accuracy
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(c) Expected calibration error

Figure A.22: Negative log likelihood, accuracy and expected calibration error distribution on CIFAR-10
with a PreResNet-20 for Deep Ensembles, MultiSWAG and MultiSWA as a function of the corruption
intensity. Following Ovadia et al. [2019] we summarize the results for different types of corruption with
a boxplot. For each method, we use 10 independently trained models, and for MultiSWAG we sample 20
networks from each model. As in Figures 5, 11-14, there are substantial differences between these three
methods, which are hard to see due to the vertical scale on this plot. MultiSWAG particularly outperforms
Deep Ensembles and MultiSWA in terms of NLL and ECE for higher corruption intensities.
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Figure A.23: Prior correlations under corruption. Prior correlations between predictions (logits) for
PreResNet-20, Linear Model and RBF kernel on original and corrupted images as a function of corruption
intensity for different types of corruptions. The lengthscale of the RBF kernell is calibrated to produce
similar correlations to PreResNet on uncorrupted datapoints. We report the mean correlation values over
100 different images and show the 1𝜎 error bars with shaded regions. For all corruptions except Snow,
Saturate, Fog and Brightness the correlations decay slower for PreResNet compared to baselines.
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Experiments

CIFAR-10 CIFAR-100 IMDB
Method Hyper-parameter Was Tuned Resnet-20-FRN Resnet-20-FRN CNN LSTM

HMC

Prior Variance ✓ 1
5

1
5

1
40

Step Size ✓ 10−5 10−5 10−5

Num. Burnin Iterations ✗ 50 50 50
Num. Samples per Chain ✗ 240 40 400
Num. of Chains ✗ 3 3 3
Total Samples ✗ 720 120 1200

Total Epochs 5 · 107 8.5 · 106 3 · 107

SGD

Weight Decay ✓ 10 10 3
Initial Step Size ✓ 3 · 10−7 1 · 10−6 3 · 10−7

Step Size Schedule ✗ cosine cosine cosine
Batch Size ✓ 80 80 80
Num. Epochs ✗ 500 500 500
Momentum ✗ 0.9 0.9 0.9

Total Epochs 5 · 102 5 · 102 5 · 102

Deep Ensembles Num. Models ✗ 50 50 50

Total Epochs 2.5 · 104 2.5 · 104 2.5 · 104

SGLD

Prior Variance ✓ 1
5

1
5

1
5

Step Size ✓ 10−6 3 · 10−6 1 · 10−5

Step Size Schedule ✓ constant constant constant
Batch Size ✓ 80 80 80
Num. Epochs ✗ 10000 10000 10000
Num. Burnin Epochs ✗ 1000 1000 1000
Num. Samples per Chain ✗ 900 900 900
Num. of Chains ✗ 5 5 5
Total Samples ✗ 4500 4500 4500

Total Epochs 5 · 104 5 · 104 5 · 104

MFVI

Prior Variance ✗ 1
5

1
5

1
5

Num. Epochs ✗ 300 300 300
Optimizer ✓ Adam Adam Adam
Initial Step Size ✓ 10−4 10−4 10−4

Step Size Schedule ✗ cosine cosine cosine
Batch Size ✓ 80 80 80
VI mean init ✗ SGD solution SGD solution SGD solution
VI variance init ✓ 10−2 10−2 10−2

Number of samples ✗ 50 50 50

Total Epochs 8 · 102 8 · 102 8 · 102

Table A.16: Hyper-parameters for CIFAR and IMDB. We report the hyper-parameters for each
method our main evaluations on CIFAR and IMDB datasets in Section 4.4. For each method we report the
total number of training epochs equivalent to the amount of compute spent. We run HMC on a cluster of
512 TPUs, and the baselines on a cluster of 8 TPUs. For each of the hyper-parameters we report whether
it was tuned via cross-validation, or whether a value was selected without tuning.
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Experiments

Method Hyper-parameter Was Tuned Concrete Yacht Energy Boston Naval

HMC

Prior Variance ✓ 1
10

1
10

1
10

1
10

1
40

Step Size ✓ 10−5 10−5 10−5 10−5 5 · 10−7

Num. Burnin Iterations ✗ 10 10 10 10 10
Num. Iterations ✗ 90 90 90 90 90
Num. of Chains ✗ 1 1 1 1 1

SGD

Weight Decay ✓ 10 10−1 10 10−1 1
Initial Step Size ✓ 3 · 10−5 3 · 10−6 3 · 10−6 3 · 10−6 10−6

Step Size Schedule ✗ cosine cosine cosine cosine cosine
Batch Size ✗ 927 277 691 455 10740
Num. Epochs ✓ 1000 5000 5000 500 1000
Momentum ✗ 0.9 0.9 0.9 0.9 0.9

SGLD

Prior Variance ✓ 1
10

1
10

1
10

1
10 1

Step Size ✓ 3 · 10−5 10−4 3 · 10−5 3 · 10−5 10−6

Step Size Schedule ✗ constant constant constant constant constant
Batch Size ✗ 927 277 691 455 10740
Num. Epochs ✗ 10000 10000 10000 10000 10000
Num. Burnin Epochs ✗ 1000 1000 1000 1000 1000
Num. Samples per Chain ✗ 900 900 900 900 900
Num. of Chains ✗ 1 1 1 1 1

Table A.17: Hyper-parameters for UCI. We report the hyper-parameters for each method our main
evaluations on UCI datasets in Section 4.4. For HMC, the number of iterations is the number of HMC iter-
ations after the burn-in phase; the number of accepted samples is lower. For each of the hyper-parameters
we report whether it was tuned via cross-validation, or whether a value was selected without tuning.

Hyper-parameter Was Tuned SGLD SGHMC SGHMC
CLR

SGHMC
CLR-Prec

Initial Step size ✓ 10−6 3 · 10−7 3 · 10−7 3 · 10−5

Step Size Schedule ✗ constant constant cyclical cyclical
Momentum ✓ 0. 0.9 0.95 0.95

Preconditioner ✗ None None None RMSprop
Num. Samples per chain ✗ 900 900 180 180

Num. of Chains ✗ 3 3 3 3

Table A.18: SGMCMC hyper-parameters on CIFAR-10. We report the hyper-parameter values used
by each of the SGMCMC methods in Section 4.10. The remaining hyper-parameters are the same as the
SGLD hyper-parameters reported in Table A.16. For each of the hyper-parameters we report whether it
was tuned via cross-validation, or whether a value was selected without tuning.
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A.5 Appendix for “What Are Bayesian Neural Network

Posteriors Really Like?”

This appendix is organized as follows. We present the Hamiltonian Monte Carlo algorithm that

we implement in the paper in Figure 4, Figure 5. In Section A.5.1 we provide the details on

hyper-parameters used in our experiments. In Section A.5.2 we provide a description of the

𝑅 statistic used in Section 4.3.1. In Section A.5.3 we study the marginals of the posterior over

parameters estimated by HMC. In Section A.5.4 we provide additional posterior density surface

visualizations. In Section A.5.5 we compare the BMA predictions using two independent HMC

chains on a synthetic regression problem. In Section A.5.6 we show that BNNs are not robust

to distribution shift and discuss the reasons for this behavior. In Section A.5.7 we provide a

further discussion of the effect of posterior temperature. Finally, in Section A.5.8 we visualize the

predictions of HMC samples from a single chain on several CIFAR-10 test inputs.

A.5.1 Hyper-Parameters and Details

CIFAR and IMDB. In Table A.16 we report the hyperparameters used by each of the methods

in our main evaluation on CIFAR and IMDB datasets in Section 4.4. HMC was run on a cluster

of 512 TPUs and the other baselines were run on a cluster of 8 TPUs. On CIFAR datasets the

methods used a subset of 40960 datapoints. All methods were ran at posterior temperature 1. We

tuned the hyper-parameters for all methods via cross-validation maximizing the accuracy on a

validation set. For the step-sizes we considered an exponential grid with a step of
√

10 with 5-7

different values, where the boundaries were selected for each method so it would not diverge.

We considered weight decays 1, 5, 10, 20, 40, 100 and the corresponding prior variances. For batch

sizes we considered values 80, 200, 400 and 1000; for all methods lower batch sizes resulted in the

best performance. For HMC we set the trajectory length according to the strategy described in
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Section 4.2.1. For SGLD, we experimented with using a cosine learning rate schedule decaying

to a non-zero final step size, but it did not improve upon a constant schedule. For MFVI we

experimentedwith the SGD andAdam optimizers; we initialize themean of theMFVI distribution

with a pre-trained SGD solution, and the per-parameter variance with a value 𝜎VIInit; we tested

values 10−2, 10−1, 100 for 𝜎VIInit. For all HMC hyper-parameters, we provide ablations illustrating

their effect in Section 4.2. Producing a single sample with HMC on CIFAR datasets takes roughly

one hour on our hardware, and on IMDB it takes 105 seconds; we can run up to three chains in

parallel.

Temperature scaling on IMDB. For the experiments in Section 4.8 we run a single HMC

chain producing 40 samples after 10 burn-in epochs for each temperature. We used step-sizes

5 · 10−5, 3 · 10−5, 10−5, 3 · 10−6, 10−6 and 3 · 10−7 for temperatures 10, 3, 1, 0.3, 0.1 and 0.03

respectively, ensuring that the accept rates were close to 100%. We used a prior variance of

1/50 in all experiments; the lower prior variance compared to Table A.16 was chosen to reduce

the number of leapfrog iterations, as we chose the trajectory length according to the strategy

described in Section 4.2.1. We ran the experiments on 8 NVIDIA Tesla V-100 GPUs, as we found

that sampling at low temperatures requires float64 precision which is not supported on TPUs.

UCI Datasets. In Table A.17 we report the hyperparameters used by each of the methods

in our main evaluation on UCI datasets in Section 4.4. For each datasets we construct 20 random

splits with 90% of the data in the train and 10% of the data in the test split. In the evaluation, we

report the mean and standard deviation of the results across the splits. We use another random

split for cross-validation to tune the hyper-parameters. For all datasets we use a fully-connected

network with a single hidden layer with 50 neurons and 2 outputs representing the predictive

mean and variance for the given input. We use a Gaussian likelihood to train each of the methods.

For the SGD and SGLD baselines, we did not use mini-batches: the gradients were computed over

the entire dataset. We run each experiment on a single NVIDIA Tesla V-100 GPU.

SGMCMCMethods. In Table A.18 we report the hyper-parameters of the SGMCMCmeth-
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ods on the CIFAR-10 dataset used in the evaluation in Section 4.10. We considered momenta in

the set of {0.9, 0.95, 0.99} and step sizes in {10−4, 3 · 10−5, 10−5, 3 · 10−6, 10−6, 3 · 10−7, 10−7}. We

selected the hyper-parameters with the best accuracy on the validation set. SGLD does not allow

a momentum.

A.5.2 Description of 𝑅 Statistics

𝑅 [Gelman et al. 1992] is a popular MCMC convergence diagnostic. It is defined in terms of some

scalar function 𝜓 (𝜃 ) of the Markov chain iterates {𝜃𝑚𝑛 |𝑚 ∈ {1, . . . , 𝑀}, 𝑛 ∈ {1, . . . , 𝑁 }}, where

𝜃𝑚𝑛 denotes the state of the 𝑚th of 𝑀 chains at iteration 𝑛 of 𝑁 . Letting 𝜓𝑚𝑛 ≜ 𝜓 (𝜃𝑚𝑛), 𝑅 is

defined as follows:

𝜓𝑚· ≜
1
𝑁

∑︁
𝑛

𝜓𝑚𝑛; 𝜓·· ≜
1
𝑀𝑁

∑︁
𝑚,𝑛

𝜓𝑚𝑛; (A.12)

𝐵

𝑁
≜

1
𝑀 − 1

∑︁
𝑚

(𝜓𝑚· −𝜓··)2; (A.13)

𝑊 ≜
1

𝑀 (𝑁 − 1)
∑︁
𝑚,𝑛

(𝜓𝑚𝑛 −𝜓𝑚·)2; (A.14)

𝜎̂2
+ ≜

𝑁 − 1
𝑁

𝑊 + 𝐵
𝑁

; (A.15)

𝑅 ≜
𝑀 + 1
𝑀

𝜎̂2
+
𝑊
− 𝑁 − 1

𝑀𝑁
. (A.16)

If the chains were initialized from their stationary distribution, then 𝜎̂2
+ would be an unbiased

estimate of the stationary distribution’s variance. 𝑊 is an estimate of the average within-chain

variance; if the chains are stuck in isolated regions, then𝑊 should be smaller than 𝜎̂2
+, and 𝑅 will

be clearly larger than 1. The 𝑀+1
𝑀

and 𝑁−1
𝑀𝑁

terms are there to account for sampling variability—

they vanish as 𝑁 gets large if𝑊 approaches 𝜎̂2
+.

Since 𝑅 is defined in terms of a function of interest 𝜓 , we can compute it for many such

functions. In Section 4.3.1 we evaluated it for each weight and each predicted softmax probability
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Algorithm 4 Hamiltonian Monte Carlo
Input: Trajectory length 𝜏 , number of burn-in interations 𝑁burnin, initial parameters𝑤init, step
sizeΔ, number of samples𝐾 , unnormalized posterior log-density function 𝑓 (𝑤) = log𝑝 (𝐷 |𝑤)+
log𝑝 (𝑤).
Output: Set 𝑆 of samples𝑤 of the parameters.
𝑤 ← 𝑤init; 𝑁leapfrog ← 𝜏

Δ ;
# Burn-in stage
for 𝑖 ← 1 . . . 𝑁burnin do

𝑚 ∼ N(0, 𝐼 );
(𝑤,𝑚) ← Leapfrog(𝑤,𝑚,Δ, 𝑁leapfrog, 𝑓 );

end for

# Sampling
𝑆 ← ∅;
for 𝑖 ← 1 . . . 𝐾 do

𝑚 ∼ N(0, 𝐼 );
(𝑤 ′,𝑚′) ← Leapfrog(𝑤,𝑚,Δ, 𝑁leapfrog, 𝑓 );

# Metropolis-Hastings correction
𝑝accept ← min

{
1, 𝑓 (𝑤

′)
𝑓 (𝑤) · exp

( 1
2 ∥𝑚∥

2 − ∥𝑚′∥2
)}
;

𝑢 ∼ Uniform[0, 1];
if 𝑢 ⩽ 𝑝accept then
𝑤 ← 𝑤 ′;

end if

𝑆 ← 𝑆 ∪ {𝑤};
end for

Algorithm 5 Leapfrog integration
Input: Parameters 𝑤0, initital momentum𝑚0, step size Δ, number of leapfrog steps 𝑁leapfrog,
posterior log-density function 𝑓 (𝑤) = log𝑝 (𝑤 |𝐷).
Output: New parameters𝑤 ; new momentum𝑚.
𝑤 ← 𝑤0; 𝑚 ←𝑚0;
for 𝑖 ← 1 . . . 𝑁leapfrog do

𝑚 ←𝑚 + Δ
2 · ∇𝑓 (𝑤);

𝑤 ← 𝑤 + Δ ·𝑚;
𝑚 ←𝑚 + Δ

2 · ∇𝑓 (𝑤);
end for

Leapfrog(𝑤0,𝑚0,Δ, 𝑁leapfrog, 𝑓 ) ← (𝑤,𝑚)
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(a) ResNet-20-FRN (b) CNN-LSTM

Figure A.24: Marginal distributions of the weights. Log-scale histograms of estimated marginal
posterior standard deviations for ResNet-20-FRN on CIFAR-10 and CNN-LSTM on IMDB. The histograms
show how many parameters have empirical standard deviations that fall within a given bin. For most of
the parameters (notice that the plot is logarithmic) the posterior scale is very similar to that of the prior
distribution.

in the test set.

A.5.3 Marginal distributions of the weights

In Section 4.2.1, we argued for using a trajectory length 𝜏 =
𝜋𝜎prior

2 based on the intuition that

the posterior scale is determined primarily by the prior scale. In Figure A.24 we examine this

intuition. For each parameter, we estimate the marginal standard deviation of that parameter

under the distribution sampled by HMC. Most of these marginal scales are close to the prior

scale, and only a few are significantly larger (note logarithmic scale on y-axis), confirming that

the posterior’s scale is determined by the prior.

A.5.4 Additional Posterior Visualizations

In Section 4.3.2 we study two-dimensional cross-sections of posterior log-density, log-likelihood

and log-prior surfaces. We provide additional visualizations on the IMDB dataset in Figure A.25.

On IMDB, the posterior log-density is dominated by the prior, and the corresponding panels

are virtually indistinguishable in Figure A.25. For the CNN-LSTM on IMDB the number of pa-

rameters is much larger than the number of data points, and hence the scale of the prior density
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Figure A.25: Additional posterior density visualizations. Visualizations of posterior log-density, log-
likelihood and log-prior in two-dimensional subspaces of the parameter space spanned by three HMC
samples on IMDB using CNN-LSTM. (a): samples from the same chain and (b): independent chains; (c):
Log-likelihood surfaces for samples from the same chain at posterior temperatures 𝑇 = 1, 10 and 0.1.

values is much larger than the scale of the likelihood. Note that the likelihood still affects the pos-

terior typical set, and the HMC samples land in the modes of the likelihood in the visualization.

In contrast, on ResNet-20, the number of parameters is smaller and the number of data points

is larger, so the posterior is dominated by the likelihood in Figure 4.3. The log-likelihood panels

for both datasets show that HMC is able to navigate complex geometry: the samples fall in three

isolated modes in our two-dimensional cross-sections. On IMDB, the visualizations for samples

from a single chain and for samples from three independent chains are qualitatively quite similar,

hinting at better parameter-space mixing compared to CIFAR-10 (see Section 4.3.1).
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In Figure A.25 (c), we visualize the likelihood cross-sections using our runs with varying

posterior temperature on IMDB. The visualizations show that, as expected, low temperature leads

to a sharp likelihood, while the high-temperature likelihood appear soft. In particular, the scale

of the lowest likelihood values at 𝑇 = 10 is only 103 while the scale at 𝑇 = 0.1 is 106.

How are the visualizations created? To create the visualizations we pick the points in the

parameter space corresponding to three HMC samples: 𝑤1,𝑤2,𝑤3. We construct a basis in the 2-

dimensional affine subspace passing through these three points: 𝑢 = 𝑤2−𝑤1 and 𝑣 = 𝑤3−𝑤1. We

then orthogonalize the basis: 𝑢 = 𝑢/∥𝑢∥, 𝑣 = (𝑣 −𝑢𝑇 𝑣)/∥𝑣 −𝑢𝑇 𝑣 ∥. We construct a 2-dimensional

uniform grid in the basis 𝑢, 𝑣 . Each point in the grid corresponds to a vector of parameters of

the network. We evaluate the log-likelihood, log-prior and posterior log-density for each of the

points in the grid, converting them to the corresponding network parameters. Finally, we produce

contour plots using the collected values. The procedure is analogous to that used by Garipov et al.

[2018]6.

A.5.5 HMC Predictive Distributions in Synthetic Regression

We consider a one-dimensional synthetic regression problem. We follow the general setup of Iz-

mailov et al. [2019] andWilson and Izmailov [2020]. We generate the training inputs as a uniform

grid with 40 points in each of the following intervals (120 datapoints in total): [−10,−6], [6, 10]

and [14, 18]. We construct the ground truth target values using a neural network with 3 hidden

layers, each of dimension 100, one output and two inputs: following Izmailov et al. [2019], for

each datapoint 𝑥 we pass 𝑥 and 𝑥2 as inputs to the network to enlarge the class of functions that

the network can represent. We draw the parameters of the network from a Gaussian distribution

with mean 0 and standard deviation 0.1. We show the sample function used to generate the tar-

get values as a black line in each of the panels in Figure A.26. We then add Gaussian noise with
6See also the blogpost https://izmailovpavel.github.io/curves_blogpost/, Section "How to Visual-

ize Loss Surfaces?".
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Figure A.26: HMC chains on synthetic regression. We visualize the predictive distributions for two
independent HMC chains on a synthetic regression problem with a fully-connected network. The data
is shown with red circles, and the true data generating function is shown with a black line. The shaded
region shows 3 standard deviations of the predictive distribution, and the predictive mean is shown with
a line of the same color. In panels (a), (b) we show the predictive distributions for each of the two chains
individually, and in panel (c) we overlay them on top of each other. The chains provide almost identical
predictions, suggesting that HMC mixes well in the prediction space.

mean 0 and standard deviation 0.02 to each of the target values. The final dataset used in the

experiment is shown with red circles in Figure A.26.

For inference, we use the same model architecture that was used to generate the data. We

sample the initialization parameters of the network from a Gaussian distribution with mean 0 and

standard deviation 0.005. We use a Gaussian distribution with mean zero and standard deviation

0.1 as the prior over the parameters, same as the distribution used to sample the parameters of

the ground truth solution. We use a Gaussian likelihood with standard deviation 0.02, same as the

noise distribution in the data. We run twoHMC chains from different random initializations. Each

chain uses a step-size of 10−5 and the trajectory length is set according to the strategy described

in Section 4.2.1, resulting in 15708 leapfrog steps per HMC iteration. We run each chain for 100

HMC iterations and collect the predictions corresponding to all the accepted samples, resulting

in 89 and 82 samples for the first and second chain respectively. We discard the first samples and

only use the last 70 samples from each chain. For each input point we compute the mean and

standard deviation of the predictions.
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We report the results in Figure A.26. In panels (a), (b) we show the predictive distributions

for each of the chains, and in panel (c) we show them overlaid on top of each other. Both chains

provide high uncertainty away from the data, and low uncertainty near the data as desired [Yao

et al. 2019]. Moreover, the true data-generating function lies in the 3𝜎-region of the predictive

distribution for each chain. Finally, the predictive distributions for the two chains are almost

identical. This result suggests that on the synthetic problem under consideration HMC is able

to mix in the space of predictions, and provides similar results independent of initialization and

random seed. We come to the same conclusion for more realistic problems in Section 4.3.
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Figure A.27: Performance under corruption. We show accuracy, log-likelihood and ECE of HMC,
SGD, Deep Ensembles, SGLD and SGHMC-CLR-Prec for all 16 CIFAR-10-C corruptions as a function of
corruption intensity. HMC shows poor accuracy on most of the corruptions with a few exceptions. SGLD
provides the best robustness on average.
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A.5.6 BNNs are not Robust to Domain Shift

In Section 4.4.2, Figure 4.7 we have seen that surprisingly BNNs via HMC underperform signif-

icantly on corrupted data from CIFAR-10-C compared to SGLD, deep ensembles and even MFVI

and SGD. We provide detailed results in Figure A.27. HMC shows surprisingly poor robustness

in terms of accuracy and log-likelihood across the corruptions. The ECE results are mixed. In

most cases, the HMC ensemble of 720 models loses to a single SGD solution!

The poor performance of HMC onOOD data is surprising. Bayesianmethods average the pre-

dictions over multiple models for the data, and faithfully represent uncertainty. Hence, Bayesian

deep learning methods are expected to be robust to noise in the data, and are often explicitly

evaluated on CIFAR-10-C [e.g. Wilson and Izmailov 2020; Dusenberry et al. 2020]. Our results

suggest that the improvements achieved by Bayesian methods on corrupted data may be a sign

of poor posterior approximation.

To further understand the robustness results, we reproduce the same effect on a small fully-

connected network with two hidden layers of width 256 onMNIST. We run HMC at temperatures

𝑇 = 1 and 𝑇 = 10−3 and SGD and report the results for both the BMA ensembles and individual

samples in Figure A.28. For all methods, we train the models on the original MNIST training set,

and evaluate on the test set with random Gaussian noiseN(0, 𝜎2𝐼 ) of varying scale 𝜎 . We report

the test accuracy as a function of 𝜎 . We find that while the performance on the original test set is

very close for all methods, the accuracy of HMC at 𝑇 = 1 drops much quicker compared to that

of SGD as we increase the noise scale.

Notably, the individual sample performance of 𝑇 = 1 HMC is especially poor compared to

SGD. For example, at noise scale 𝜎 = 3 the SGD accuracy is near 60% while the HMC sample only

achieves around 20% accuracy!

HMC can be though of as sampling points at a certain sub-optimal level of the training loss,

significantly lower than that of SGD solutions. As a result, HMC samples are individually inferior
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Figure A.28: Robustness on MNIST. Performance of SGD, BMA ensembles and individual samples
constructed by HMC at temperatures 𝑇 = 1 and 𝑇 = 10−3 on the MNIST test set corrupted by Gaussian
noise. We use a fully-connected network. Temperature 1HMC shows very poor robustness, while lowering
the temperature allows us to close the gap to SGD.

to SGD solutions. On the original test data ensembling the HMC samples leads to strong perfor-

mance significantly outperforming SGD (see Section 4.4). However, as we apply noise to the test

data, ensembling can no longer close the gap to the SGD solutions. To provide evidence for this

explanation, we run evaluate HMC at a very low temperature𝑇 = 10−3, as low temperature pos-

teriors concentrate on high-performance solutions similar to the ones found by SGD.We find that

at this temperature, HMC performs comparably with SGD, closing the gap in robustness We have

also experimented with varying the prior scale but were unable to close the gap in robustness at

temperature 𝑇 = 1.

We hypothesize that using a lower temperature with HMC would also significantly improve

robustness on CIFAR-10-C. Verifying this hypothesis, and generally understanding the robustness

of BNNs further is an exciting direction of future work.
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Acc, 𝑇 = 1 Acc, 𝑇 = 0.1 CE, 𝑇 = 1 CE, 𝑇 = 0.1

BN + Aug 87.46 91.12 0.376 0.2818
FRN + Aug 85.47 89.63 0.4337 0.317
BN + No Aug 86.93 85.20 0.4006 0.4793
FRN + No Aug 84.27 80.84 0.4708 0.5739

Table A.19: Role of data augmentation in the cold posterior effect. Results of a single chain ensem-
ble constructed with the SGHMC-CLR-Prec sampler of Wenzel et al. [2020] at temperatures 𝑇 = 1 and
𝑇 = 0.1 for different combinations of batch normalization (BN) or filter response normalization (FRN) and
data augmentation (Aug). We use the ResNet-20 architecture on CIFAR-10. Regardless of the normal-
ization technique, the cold posteriors effect is present when data augmentation is used, and not present
otherwise.

A.5.7 Further discussion of cold posteriors

In Section 4.8 we have seen that the cold posteriors are not needed to achieve strong performance

with BNNs. We have even shown that cold (aswell aswarm) posteriorsmay hurt the performance.

On the other hand, in Section A.5.6 we have shown that lowering the temperature can improve

robustness under the distribution shift, at least for a small MLP on MNIST. Here, we discuss the

potential reasons for why the cold posteriors effect was observed in Wenzel et al. [2020].

A.5.7.1 What causes the difference with Wenzel et al. [2020]?

There are several key differences between the experiments in our study and Wenzel et al. [2020].

First of all, the predictive distributions of SGLD (a version of which was used in Wenzel et al.

[2020]) are highly dependent on the hyper-parameters such as the batch size and learning rate,

and are inherently biased: SGLDwith a non-vanishing step size samples from a perturbed version

of the posterior, both because it omits a Metropolis-Hastings accept-reject step and because its

updates include minibatch noise. Both of these perturbations should tend to make the entropy

of SGLD’s stationary distribution increase with its step size; we might expect this to translate to

approximations to the BMA that are overdispersed.

Furthermore, Wenzel et al. [2020] show in Figure 6 that with a high batch size they achieve
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Figure A.29: HMC samples are (over)confident classifiers. Plots show the probability assigned by a
series of HMC samples to the true label of a held-out CIFAR-10 image. In many cases these probabilities
are overconfident (i.e., assign the right answer probability near 0), but there are always some samples that
assign the true label high probability, so the Bayesian model average is both accurate and well calibrated.
These samples were generated with a spherical Gaussian prior with variance 1

5 .

good performance at 𝑇 = 1 for the CNN-LSTM. Using the code provided by the autors7 with

default hyper-parameters we achieved strong performance at𝑇 = 1 for the CNN-LSTM (accuracy

of 0.855 and cross-entropy of 0.35, compared to 0.81 and 0.45 reported in Figure 1 of Wenzel et al.

[2020]); we were, however, able to reproduce the cold posteriors effect on CIFAR-10 using the

same code.

On CIFAR-10, the main difference between our setup and the configuration in Wenzel et al.

[2020] is the use of batch normalization and data augmentation. In the appendix K and Figure 28 of

Wenzel et al. [2020], the authors show that if both the data augmentation and batch normalization

are turned off, we no longer observe the cold posteriors effect. In Table A.19 we confirm using

the code provided by the authors that in fact it is sufficient to turn off just the data augmentation

to remove the cold posteriors effect. It is thus likely that the results in Wenzel et al. [2020] are at

least partly affected by the use of data augmentation.
7https://github.com/google-research/google-research/tree/master/cold_posterior_bnn
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A.5.8 Visualizing prediction variations in HMC samples

In Figure A.29 we visualize the predicted class probability of the true class for 100 HMC samples

on eight different input images. While on some images the predicted class probability is always

close to 1, on other inputs it is close to 1 for some of the samples (confidently correct), close to 0

for some of the samples (confidently wrong) and in between 0 and 1 for the remaining samples

(unconfident). So, some of the samples are individually over-confident, but the ensemble is well-

calibrated as other samples assign high probabilities to the correct class.

A.6 Appendix for “Dangers of Bayesian Model Averaging

under Covariate Shift”

This appendix is organized as follows.

• In Section A.6.1, we provide details on hyper-parameters, datasets and architectures used

in our experiments.

• In Section A.6.2, we discuss whether the poor generalization of BNNs under covariate shift

is surprising.

• In Section A.6.3, we examine BNN performance under covariate shift for a variety of dif-

ferent standard priors with different hyper-parameter settings.

• In Section A.6.4, we study the effect of spurious correlations on BMA performance using

the shift-MNIST dataset.

• In SectionA.6.5, we show that the same issues that hurt BNN generalization under covariate

shift can cause poor performance in low-data regime.
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• In Section A.6.6, we explore the convergence of the BNN performance as a function of the

number of HMC samples we produce.

• In Section A.6.7, we study how temperature scaling impacts BMA performance under co-

variate shift.

• In Section A.6.8, we provide proofs of our propositions from Section 4.6.

• In Section A.6.9, we visualize how different corruptions introduce noise along different

principal components of the data, and relate this to BMA performance on these corruptions.

• In Section A.6.10, we explain why approximate inference methods SWAG and MC Dropout

do not suffer the same performance degradation under covariate shift as HMC.

• In Section A.6.11, we analyze a more general family of priors that includes the EmpCov

prior from Section 4.7.

• In Section A.6.12, we introduce the sum filter prior for improving BNN robustness to non-

zero-mean noise.

• In Section A.6.13, we provide an example of a model architecture where the BMA will be

impacted by nonlinear dependencies in the training data.

• In Section A.6.14, we examine how BNNs can be impacted by linear dependencies beyond

the first layer using the example of dead neurons.

• In Section A.6.15 we prove that linear dependencies do not hurt BMAs of linear models

under covariate shift.

• In Section A.6.16, we examine covariate shift from an optimization perspective.

• Lastly, in subsubsection A.6.16.4, we provide details on licensing.

238



A.6.1 Hyper-parameters and details of experiments

A.6.1.1 Prior definitions

Here we define the prior families used in the main text and the appendix, and the corresponding

hyper-parameters.

Gaussian priors. We consider iid Gaussian priors of the form N(0, 𝛼2𝐼 ), where 𝛼2 is the

prior variance. Gaussian priors are the default choice in Bayesian neural networks [e.g. Fortuin

et al. 2021; Izmailov et al. 2021b; Wilson and Izmailov 2020].

Laplace priors. We consider priors of the form Laplace(𝛼) : 1
2𝛼 exp(−∥𝑥 ∥1/𝛼), where ∥ · ∥1

is the ℓ1-norm.

Student-t priors. In Section A.6.3, we consider iid Student-t priors of the form

Student-𝑡 (𝜈, 𝛼2) : Γ( 𝜈+12 )
Γ( 𝜈2 )
√
𝜈𝜋
(1 + 𝑤2

𝜈𝛼2 )−
𝜈+1

2 , where 𝜈 represents the degrees of freedom and 𝛼2 is the

prior variance.

Exp-norm priors. In Section A.6.3, we consider the prior family of the form

ExpNorm(𝑝, 𝛼2) : exp(−∥𝑤 ∥𝑝/2𝛼2). Notice that for 𝑝 = 2, we get the Gaussian prior family. By

varying 𝑝 we can construct more heavy-tailed (𝑝 < 2) or less heavy-tailed (𝑝 > 2) priors.

A.6.1.2 Hyper-parameters and details

HMC hyper-parameters. The hyper-parameters for HMC are the step size, trajectory length

and any hyper-parameters of the prior. Following Izmailov et al. [2021b], we set the trajectory

length 𝜏 =
𝜋𝜎𝑝𝑟𝑖𝑜𝑟

2 where 𝜎𝑝𝑟𝑖𝑜𝑟 is the standard deviation of the prior. We choose the step size

to ensure that the accept rates are high; for most of our MLP runs we do 104 leapfrog steps per

sample, while for CNN we do 5 · 103 leapfrog steps per sample. For each experiment, we run a

single HMC chain for 100 iterations discarding the first 10 iterations as burn-in; in Section A.6.6

we show that 100 samples are typically sufficient for convergence of the predictive performance.

Data Splits. For all CIFAR-10 and MNIST experiments, we use the standard data splits:
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50000 training samples for CIFAR-10, 60000 training samples for MNIST, and 10000 test samples

for both. For all data corruption experiments, we evaluate on the corrupted 10000 test samples.

For domain shift experiments, we evaluate on 26032 SVHN test samples for MNIST to SVHN and

7200 STL-10 test samples for CIFAR-10 to STL-10. In all cases, we normalize the inputs using

train data statistics, and do not use any data augmentation.

Neural network architectures. Due to computational constraints, we use smaller neural

network architectures for our experiments. All architectures use ReLU activations. For MLP

experiments, we use a fully-connected network with 2 hidden layers of 256 neurons each. For

CNN experiments, we use a network with 2 convolutional layers followed by 3 fully-connected

layers. Both convolutional layers have 5 × 5 filters, a stride of 1, and use 2 × 2 average pooling

with stride 2. The first layer has 6 filters and uses padding, while the second layer has 16 filters

and does not use padding. The fully connected layers have 400, 120, and 84 hidden units.

MAP and deep ensemble hyper-parameters. We use the SGD optimizer with momen-

tum 0.9, cosine learning rate schedule and weight decay 100 to approximate the MAP solution.

In Section A.6.16 we study the effect of using other optimizers and weight decay values. On

MNIST, we run SGD for 100 epochs, and on CIFAR we run for 300 epochs. For the deep ensemble

baselines, we train 10 MAP models independently and ensemble their predictions.

Prior hyper-parameters. To select prior hyper-parameters we perform a grid search, and

report results for the optimal hyperparameters in order to compare the best versions of differ-

ent models and priors. We report the prior hyper-parameters used in our main evaluation in

Table A.20. In Section A.6.3 we provide detailed results for various priors with different hyper-

parameter choices.

Tempering hyper-parameters. For the tempering experiments, we use a Gaussian prior

with variance 𝛼2 = 1
100 on MNIST and 𝛼2 = 1

3 on CIFAR-10. We set the posterior temperature

to 10−2. We provide additional results for other prior variance and temperature combinations in

Section A.6.7.
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Table A.20: Prior hyper-parameters

Hyper-parameter MNIST MLP MNIST CNN CIFAR-10 CNN

BNN, Gaussian prior; 𝛼2 1
100

1
100

1
100

BNN, Laplace prior; 𝛼
√︃

1
6

√︃
1
6

√︃
1

200

Compute. We ran all the MNIST experiments on TPU-V3-8 devices, and all CIFAR experi-

ments on 8 NVIDIA Tesla-V100 devices. A single HMC chain with 100 iterations on these devices

takes roughly 1.5 hours for MNIST MLP, 2 hours for CIFAR CNN and 3 hours for MNIST CNN.

As a rough upper-bound, we ran on the order of 100 different HMC chains, each taking 2 hours

on average, resulting in 200 hours on our devices, or roughly 1600 GPU-hours (where we equate

1 hour on TPU-V3-8 to 8 GPU-hours).

A.6.2 Should we find the lack of BMA robustness surprising?

Bayesian neural networks are sometimes presented as a way of improving just the uncertainties,

often at the cost of degradation in accuracy. Consequently, one might assume that the poor

performance of BNNs under covariate shift is not surprising, and we should use BNN uncertainty

estimates solely to detect OOD, without attempting to make predictions, even for images that are

still clearly recognizable.

In recent years, however, Bayesian deep learning methods [e.g., Maddox et al. 2019; Dusen-

berry et al. 2020; Daxberger et al. 2020], as well as high-fidelity approximate inference with HMC

[Izmailov et al. 2021b], achieve improved uncertainty and accuracy compared to standard MAP

training with SGD. In this light, we believe there are many reasons to find the significant perfor-

mance degradation under shift surprising:

• The BNNs are often providing significantly better accuracy on in-distribution points. For

example, HMC BNNs achieve a 5% improvement over MAP on CIFAR-10, but 25% worse
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accuracy on the pixelate corruption, when the images are still clearly recognizable (see

Figure 4.8). To go from clearly better to profoundly worse would not typically be expected

of any method on these shifts.

• In fact, recent work [e.g. Miller et al. 2021] shows that there is typically a strong correlation

between in-distribution and OOD generalization accuracy on related tasks, which is the

opposite of what we observe in this work.

• Many approximate Bayesian inference procedures do improve accuracy over MAP on shift

problems [Ovadia et al. 2019; Wilson and Izmailov 2020; Dusenberry et al. 2020], and newer

inference procedures appear to be further improving on these results. For example, Mul-

tiSWAG [Wilson and Izmailov 2020] is significantly more accurate than MAP under shift.

The fact that these methods are more Bayesian than MAP, and improve upon MAP in these

settings, makes it particularly surprising that a high-fidelity BMA would be so much worse

than MAP. This is a nuanced point — how is it that methods getting closer in some ways

to the Bayesian ideal are improving on shift, when a still higher-fidelity representation of

the Bayesian ideal is poor on shift? — we discuss this point in Section A.6.10.

• Recent results highlight that there need not be a tension between OOD detection and OOD

generalization accuracy: indeed deep ensembles provide much better performance than

MAP on both [Ovadia et al. 2019].

• Bayesian methods are closely associated with trying to provide a good representation of

uncertainty, and a good representation of uncertainty should not say “I have little idea”

when a point is only slightly out of distribution, but still clearly recognizable, e.g., through

noise corruption or mild domain shift.

• In Figure A.30 we report the log-likelihood and ECE metrics which evaluate the quality of

uncertainty estimates for deep ensembles, MAP and BNNs. The log-likelihood and ECE of
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standard BNNs are better than the corresponding values for the MAP solution on average,

but they are much worse than the corresponding numbers for deep ensembles for high de-

grees of corruption. Furthermore, for some corruptions (impulse noise, pixelate) BNNs lose

to MAP on both log-likelihood and ECE at corruption intensity 5. Also for larger ResNet-

20 architecture on CIFAR-10-C, Izmailov et al. [2021b] reported that the log-likelihoods of

BNNs are on average slightly worse than for MAP solution at corruption intensity 5.

A.6.3 Additional results on BNN robustness

A.6.3.1 Error-bars and additional metrics

We report the accuracy, log-likelihood and expected calibration error (ECE) for deep ensembles,

MAP solutions and BMA variations in Figure A.30. We report the results for different corruption

intensities (1, 3, 5) and provide error-bars computed over 3 independent runs. Across the board,

EmpCov priors provide the best performance among BNN variations on all three metrics.

A.6.3.2 Detailed results for different priors

In this section, we evaluate BNNs with several prior families and provide results for different

choices of hyper-parameters. The priors are defined in subsubsection A.6.1.1.

We report the results using CNNs andMLPs onMNIST in Figure A.31. None of the considered

priors completely close the gap to MAP under all corruptions. Gaussian priors show the worst

results, losing to MAP on all MNIST-C corruptions and Gaussian noise, at all prior standard

deviations. Laplace priors show similar results to Gaussian priors under Gaussian noise, but

beat MAP on the stripe corruption in MNIST-C. Student-𝑡 priors show better results, matching

or outperforming MAP on all affine transformations, but still underpeform significantly under

Gaussian noise, Brightness and Fog corruptions. Finally, exp-norm priors can match MAP on

Shot noise and also outperform MAP on stripe, but lose on other corruptions. The in-domain
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Figure A.30: Detailed results on CIFAR-10. Accuracy, log-likelihood and log-likelihood for deep en-
sembles, MAP solution, and BNN variants under covariate shift on CIFAR-10. We report the performance
at corruption intensity levels 1, 3 and 5 (corruption intensity does not affect the CIFAR-10 and STL-10
columns in the plots). For all methods except deep ensembles we report the mean and standard deviation
(via error-bars) over 3 random seeds. EmpCov priors provide the only BNN variation that consistently
performs on par with deep ensembles in terms of log-likelihood and ECE. Tempered posteriors improve
the accuracy on some of the corruptions, but significantly hurt in-domain performance.
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Figure A.31: Priors on MNIST. We report the performance of different prior families under covariate
shift on MNIST. For Gaussian and Laplace prior families, we report the results using both the MLP and
CNN architectures; for Student-𝑡 and ExpNorm we only report the results for MLP. None of the priors
can match the MAP performance across the board, with particularly poor results under Gaussian noise,
Brightness and Fog corruptions.
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performance with exp-norm priors is also lower compared to the other priors considered.

To sum up, none of the priors considered is able to resolve the poor robustness of BNNs under

covariate shift. In particular, all priors provide poor performance underGaussian noise, Brightness

and Fog corruptions.

A.6.4 Bayesian neural networks and spurious correlations

For corrupted data, models experience worse performance due to additional noisy features be-

ing introduced. However, it’s also possible that the reverse can occur, and a seemingly highly

predictive feature in the training data will not be present in the test data. This distinct cate-

gory of covariate shift is often called spurious correlation. To test performance with spurious

correlations, we use the Shift-MNIST dataset [Jacobsen et al. 2018], where we introduce spurious

features via modifying the training data so that a set of ten pixels in the image perfectly correlates

with class labels.

Table A.21: Spurious correlations. Accuracy and log-likelihood of MAP, deep ensembles and BNNs
with Gaussian and EmpCov priors on the Shift-MNIST dataset.

Model MLP Accuracy MLP LL CNN Accuracy CNN LL

MAP 88.70% -0.527 48.63% -2.206

Deep Ensemble 88.73% -0.527 72.99% -1.041

BNN Gaussian Prior 90.83% -0.598 64.27% -1.326

BNN EmpCov Prior 86.95% -1.146 64.41% -1.450

Table A.21 shows the results for deep ensembles, MAP and BNNs with Gaussian and EmpCov

priors on the Shift-MNIST dataset. We see worse accuracy for CNN architectures, demonstrating

how more complex architectures can more easily over-fit the spurious correlations. BNNs with

Gaussian prior perform better than MAP on both MLP and CNN, but significantly worse than

deep ensembles for CNNs. Notice that the EmpCov prior does not improve performance here for
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either architecture, highlighting the difference between spurious correlations and other forms

of covariate shift. In particular, the largest principal components of the Shift-MNIST training

dataset place large magnitude weights on the spurious features, and so using the EmpCov prior

results in samples with larger weights for the activated (spurious) pixels. When those same pixels

are not activated in the test set, such samples will have a larger shift in their predictions.

An in-depth analysis of BNNs in the presence of spurious correlations remains an exciting

direction for further research.

A.6.5 Bayesian neural networks in low-data regime

The intuition presented in Propositions 4.3, 4.4 suggests that Bayesian neural networks may also

underperform in low-data regime. Indeed, if the model only observes a small number of data-

points, some of the directions in the parameter space will not be sufficiently constrained by the

data. Empirically, in Table A.22 found that the performance of BNNs is indeed inferior to MAP

when the training dataset is very small, but the results become more similar as the size of the

dataset increases.

Table A.22: Spurious correlations. Accuracy of MAP and HMC BNNs using the MLP architecture on
MNIST in low-data regime. When the dataset is very small, MAP significantly outperforms the BNN.

50 datapoints 100 datapoints 1000 datapoints

MAP 66.4% 74.3% 90.2%

HMC BNN 53.4% 65.4% 90.3%

We believe that the reason why we do not observe the poor generalization of the Bayesian

models in the 1000 datapoints regime is that the low-variance directions are fairly consistent

across the dataset. However, in extreme low-data cases, we cannot reliably estimate the low-

variance directions leading to poor performance according to Propositions 4.3, 4.4. A detailed

exploration of BNN performance in low-data regime is an exciting direction of future work.
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A.6.6 Convergence of HMC accuracy with samples

In our experiments, we use 90 HMC samples from the posterior to evaluate the performance

of BNNs. In this section, we verify that the Monte Carlo estimates of accuracy of the Bayesian

model average converge very quickly with the number of samples, and 90 samples are sufficient

for performing qualitative comparison of the methods. In Table A.23 we show the accuracy for

a fully-connected HMC BNN with a Gaussian prior on MNIST under different corruptions as a

function of the number of samples:

Table A.23: Spurious correlations. Accuracy of MAP and HMC BNNs using the MLP architecture on
MNIST in low-data regime. When the dataset is very small, MAP significantly outperforms the BNN.

corruption 10 samples 50 samples 100 samples 500 samples 1200 samples

MNIST 98.2% 98.19% 98.19% 98.32% 98.26%

Impulse Noise 85.34% 89.86% 90.68% 91.3% 91.33%

Motion Blur 81.56% 81.82% 82.14% 82.47% 82.61%

Scale 67.32% 68.69% 69.45% 69.91% 70.18%

Brightness 23.66% 20.26% 22.31% 24.08% 23.4%

Stripe 28.18% 30.09% 34.8% 39.26% 37.96%

Canny Edges 58.79% 62.85% 63.34% 64.36% 64.32%

In each case, the performance estimated from 100 samples is very similar to the performance

for 1200 samples. The slowest convergence is observed on the stripe corruption, but even there

the performance at 100 samples is very predictive of the performance at 1200 samples.
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Figure A.32: Temperature ablation. We report the performance of BNNs with Gaussian priors and
tempered posteriors for different temperatures and prior scales. Low temperatures (𝑇 = 10−2, 10−3) can
provide a significant improvement on the noise corruptions, but do not improve the results significantly
under other corruptions.

A.6.7 Tempered posteriors

In this section we explore the effect of posterior tempering on the performance of the MLP on

MNIST. In particular, following Wenzel et al. [2020] we consider the cold posteriors:

𝑝𝑇 (𝑊 |𝐷) ∝ (𝑝 (𝐷 |𝑊 )𝑝 (𝑊 ))1/𝑇 , (A.17)

where 𝑇 ⩽ 1. In Figure A.32 we report the results for BNNs with Gaussian priors with variances

0.01 and 0.03 and posterior temperatures 𝑇 ∈ {10−1, 10−2, 10−3}. As observed by Izmailov et al.

[2021b], lower temperatures (10−2, 10−3) improve performance under the Gaussian noise corrup-

tion; however, low temperatures do not help with other corruptions significantly.

A.6.8 Proofs of the theoretical results

For convenience, in this section we assume that a constant value of 1 is appended to the input

features instead of explicitly modeling a bias vector 𝑏. We assume that the output 𝑓 (𝑥,𝑊 ) of the

network with parameters𝑊 on an input 𝑥 is given by

𝑓 (𝑥,𝑊 ) = 𝜓 (𝜙 (. . . 𝜙 (𝜙 (𝑥𝑊 1)𝑊 2 + 𝑏2))𝑊 𝑙 + 𝑏𝑙 ), (A.18)
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where 𝜙 are non-linearities of the intermediate layers (e.g. ReLU) and𝜓 is the final link function

(e.g. softmax).

We will also assume that the likelihood is a function ℓ (·, ·) that only depends on the output of

the network and the target label:

𝑝 (𝑦 |𝑥,𝑊 ) = ℓ (𝑦, 𝑓 (𝑥,𝑊 )) . (A.19)

For example, in classification ℓ (𝑦, 𝑓 (𝑥,𝑊 )) = 𝑓 (𝑥,𝑊 ) [𝑦], the component of the output of the

softmax layer corresponding to the class label 𝑦. Finally, we assume that the likelihood factorizes

over the inputs:

𝑝 (D|𝑊 ) =
∏
𝑥,𝑦∈D

𝑝 (𝑦 |𝑥,𝑊 ) (A.20)

for any collection of datapoints D.

A.6.8.1 Proof of Lemma 4.1

We restate the Lemma:

LemmaA.3. Suppose that the input feature 𝑥𝑖
𝑘
is equal to zero for all the examples 𝑥𝑘 in the training

dataset 𝐷 . Suppose the prior distribution over the parameters 𝑝 (𝑊 ) factorizes as 𝑝 (𝑊 ) = 𝑝 (𝑤1
𝑖 𝑗 ) ·

𝑝 (𝑊 \ 𝑤1
𝑖 𝑗 ) for some neuron 𝑗 in the first layer, where𝑊 \ 𝑤1

𝑖 𝑗 represents all the parameters𝑊 of

the network except𝑤1
𝑖 𝑗 . Then, the posterior distribution 𝑝 (𝑊 |𝐷) will also factorize and the marginal

posterior over the parameter𝑤1
𝑖 𝑗 will coincide with the prior:

𝑝 (𝑊 |𝐷) = 𝑝 (𝑊 \𝑤1
𝑖 𝑗 |𝐷) · 𝑝 (𝑤1

𝑖 𝑗 ). (A.21)

Consequently, the MAP solution will set the weight𝑤1
𝑖 𝑗 to the value with maximum prior density.

Proof. Let us denote the input vector 𝑥 without the input feature 𝑖 by 𝑥−𝑖 , and the matrix
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𝑊 1 without the row 𝑖 by𝑊 1
−𝑖 . We can rewrite Equation A.18 as follows:

𝑓 (𝑥,𝑊 ) = 𝜓 (𝜙 (. . . 𝜙 (𝜙 (𝑥−𝑖𝑊 1
−𝑖 + 𝑥𝑖𝑊 1

𝑖︸︷︷︸
=0

)𝑊 2 + 𝑏2))𝑊 𝑙 + 𝑏𝑙 ) . (A.22)

As for all the training inputs 𝑥𝑘 the feature 𝑥𝑖𝑘 is equal to 0, the vector 𝑥𝑖𝑊 1
𝑖 is equal to zero and

can be dropped:

𝑓 (𝑥𝑘 ,𝑊 ) = 𝜓 (𝜙 (. . . 𝜙 (𝜙 (𝑥−𝑖𝑘 𝑊
1
−𝑖)𝑊 2 + 𝑏2))𝑊 𝑙 + 𝑏𝑙 )) =: 𝑓 ′(𝑥𝑘 ,𝑊−𝑖), (A.23)

where𝑊−𝑖 denotes the vector of parameters𝑊 without𝑊 1
𝑖 , and we defined a new function 𝑓 ′

that does not depend on𝑊𝑖 and is equivalent to 𝑓 on the training data. Consequently, according

to Equation A.19 and Equation A.20, we can write

𝑝 (𝐷 |𝑊 ) =
𝑛∏
𝑘=1

ℓ (𝑦𝑘 , 𝑓 (𝑥𝑘 ,𝑊 )) =
𝑛∏
𝑘=1

ℓ (𝑦𝑘 , 𝑓 ′(𝑥𝑘 ,𝑊−𝑖)) . (A.24)

In other words, the likelihood does not depend on𝑊 1
𝑖 and in particular𝑤1

𝑖 𝑗 for any 𝑗 .

Let us write down the posterior over the parameters using the factorization of the prior:

𝑝 (𝑊 |𝐷) =

does not depend on𝑤1
𝑖 𝑗︷                          ︸︸                          ︷

𝑝 (𝐷 |𝑊 \𝑤1
𝑖 𝑗 )𝑝 (𝑊 \𝑤1

𝑖 𝑗 ) 𝑝 (𝑤1
𝑖 𝑗 )

𝑍
, (A.25)

where 𝑍 is a normalizing constant that does not depend on𝑊 . Hence, the posterior factorizes as

a product of two distributions: 𝑝 (𝐷 |𝑊 \𝑤1
𝑖 𝑗 )𝑝 (𝑊 \𝑤1

𝑖 𝑗 )/𝑍 over𝑊 \𝑤1
𝑖 𝑗 and 𝑝 (𝑤1

𝑖 𝑗 ). The marginal

posterior over𝑤1
𝑖 𝑗 thus coincides with the prior and is independent of the other parameters.

Maximizing the factorized posterior Equation A.25 to find the MAP solution, we set the 𝑤1
𝑖 𝑗

to the maximum of its marginal posterior, as it is independent of the other parameters. ■
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A.6.8.2 Formal statement and proof of Proposition 4.1

First, let us prove the following result for the MAP solution.

Proposition A.4. Consider the following assumptions:

(a) The input feature 𝑥𝑖
𝑘
is equal to zero for all the examples 𝑥𝑘 in the training dataset 𝐷 .

(b) The prior over the parameters factorizes as 𝑝 (𝑊 ) = 𝑝 (𝑊−𝑖) · 𝑝 (𝑊 1
𝑖 ), where𝑊−𝑖 is the vector

of all parameters except for𝑊 1
𝑖 , the row 𝑖 of the weight matrix𝑊 1 of the first layer.

(c) The prior distribution 𝑝 (𝑊 1
𝑖 ) has maximum density at 0.

Consider an input 𝑥 (𝑐) = [𝑥1, . . . , 𝑥𝑖−1, 𝑐, 𝑥𝑖+1, . . . , 𝑥𝑚]. Then, the prediction with the MAP model

𝑊𝑀𝐴𝑃 does not depend on 𝑐 : 𝑓 (𝑥 (𝑐),𝑊𝑀𝐴𝑃 ) = 𝑓 (𝑥 (0),𝑊𝑀𝐴𝑃 ).

Proof. Analogous to the proof of Lemma A.3, we can show that under the assumptions (a),

(b) the posterior over the parameters factorizes as

𝑝 (𝑊 |𝐷) = 𝑝 (𝑊 −𝑖 |𝐷)𝑝 (𝑊 1
𝑖 ). (A.26)

Then, the MAP solution will set the weights𝑊 1
𝑖 to the point of maximum density, which is 0

under assumption (c). Consequently, based on Equation A.22, we can see that the output of the

MAP model will not depend on 𝑥𝑖 = 𝑐 . ■

Next, we provide results for the Bayesian model average. We define positive-homogeneous

activations as functions 𝜙 that satisfy 𝜙 (𝑐 · 𝑥) = 𝑐 · 𝜙 (𝑥) for any positive scalar 𝑐 and any 𝑥 . For

example, ReLU and Leaky ReLU activations are positive-homogeneous.

We will call a vector 𝑧 of class logits (inputs to softmax) 𝜖-separable if the largest component

𝑧𝑖 is larger than all the other components by at least 𝜖 :

𝑧𝑖 − 𝑧 𝑗 > 𝜖 ∀𝑗 ≠ 𝑖 . (A.27)
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We can prove the following general proposition.

Proposition A.5. We will need the following assumptions:

(d) The support of the prior over the parameters𝑊−𝑖 is bounded: ∥𝑊−𝑖 ∥ < 𝐵.

(e) The activations 𝜙 are positive-homogeneous and have a Lipschitz constant bounded by 𝐿𝜙 .

Consider an input 𝑥 (𝑐) = [𝑥1, . . . , 𝑥𝑖−1, 𝑐, 𝑥𝑖+1, . . . , 𝑥𝑚]. Then, we can prove the following conclusions

(2) Suppose the link function𝜓 is identity. Suppose also that the expectationE[𝜙 (. . . 𝜙 (𝜙 (𝑊 1
𝑖 )𝑊 2) . . .)𝑊 𝑙 ]

over𝑊 sampled from the posterior is non-zero. Then the predictive mean under BMA (see

Equation 4.1) on the input 𝑥 (𝑐) depends on 𝑐 .

(3) Suppose the link function 𝜓 is softmax. Then, for sufficiently large 𝑐 > 0 the predicted class

𝑦 (𝑐) = arg max𝑦 𝑓 (𝑥 (𝑐),𝑊 ) [𝑦] does not depend on 𝑥 (𝑐) for any sample𝑊 from the posterior

such that 𝑧 = 𝜙 (. . . 𝜙 (𝜙 (𝑊 1
𝑖 )𝑊 2) . . .)𝑊 𝑙 is 𝜖-separable.

Proof. We can rewrite Equation A.18 as follows:

𝑓 (𝑥 (𝑐),𝑊 ) = 𝜓 (𝜙 (. . . 𝜙 (𝜙 (𝑥−𝑖𝑊 1
−𝑖 + 𝑐𝑊 1

𝑖 )𝑊 2 + 𝑏2))𝑊 𝑙 + 𝑏𝑙 ) =

𝜓 (𝜙 (. . . 𝜙 (𝑐 · 𝜙 ( [𝑥−𝑖𝑊 1
−𝑖]/𝑐 +𝑊 1

𝑖 )𝑊 2 + 𝑏2))𝑊 𝑙 + 𝑏𝑙 ) =

𝜓 (𝑐 · (𝜙 (. . . 𝜙 (𝜙 ( [𝑥−𝑖𝑊 1
−𝑖]/𝑐 +𝑊 1

𝑖 )𝑊 2 + 𝑏2/𝑐))𝑊 𝑙 + 𝑏𝑙/𝑐)) . (A.28)

Now, under our assumptions the prior and hence the posterior over theweights𝑊−𝑖 is bounded.

As in finite-dimensional Euclidean spaces all norms are equivalent, in particular we imply that

(1) the spectral norms ∥𝑊 𝑡 ∥2 < 𝐿𝑊 are bounded for all layers 𝑡 = 2, . . . , 𝑙 by a constant 𝐿𝑊 , and

(2) the Frobenious norms ∥ · ∥ of the bias parameters 𝑏𝑡 and the weights𝑊 1
−𝑖 are all bounded by a

constant 𝐵. We will also assume that the norm of the vector 𝑥−𝑖 is bounded by the same constant:

∥𝑥−𝑖 ∥ ⩽ 𝐵.
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Consider the difference



 (
𝜙

(
. . . 𝜙

(
𝜙

(
𝑥−𝑖𝑊 1

−𝑖
𝑐
+𝑊 1

𝑖

)
𝑊 2 + 𝑏

2

𝑐

))
𝑊 𝑙 + 𝑏

𝑙

𝑐

)
−

𝜙

(
. . . 𝜙

(
𝜙

(
𝑥−𝑖𝑊 1

−𝑖
𝑐
+𝑊 1

𝑖

)
𝑊 2 + 𝑏

2

𝑐

))
𝑊 𝑙





 ⩽ 𝐵𝑐 . (A.29)

Indeed, by the ∥𝑏𝑙 ∥ ⩽ 𝐵. Next, for an arbitrary 𝑧 we can bound





𝜙 (
𝑧 + 𝑏

𝑙−1

𝑐

)
𝑊 𝑙 − 𝜙 (𝑧)𝑊 𝑙





 ⩽ 𝐿𝑊 · 𝐿𝜙 · 𝐵𝑐 , (A.30)

where we used the fact that 𝜙 is Lipschitz with 𝐿𝜙 and the Lipschitz constant for matrix multipli-

cation by𝑊 𝑙 coincides with the spectral norm of𝑊 𝑙 which is bounded by 𝐿𝑊 .

Using the bound in Equation A.30, we have



 (
𝜙

(
𝜙

(
. . . 𝜙

(
𝜙

(
𝑥−𝑖𝑊 1

−𝑖
𝑐
+𝑊 1

𝑖

)
𝑊 2 + 𝑏

2

𝑐

)
𝑊 𝑙−1 + 𝑏

𝑙−1

𝑐

)
. . .

)
𝑊 𝑙 + 𝑏

𝑙

𝑐

)
−

𝜙

(
𝜙

(
. . . 𝜙

(
𝜙

(
𝑥−𝑖𝑊 1

−𝑖
𝑐
+𝑊 1

𝑖

)
𝑊 2 + 𝑏

2

𝑐

)
· · ·

)
𝑊 𝑙−1

)
𝑊 𝑙





 ⩽ 𝐵𝑐 + 𝐿𝑊 · 𝐿𝜙 · 𝐵𝑐 . (A.31)

Applying the same argument to all layers of the network (including the first layer where 𝑥−𝑖𝑊 1
−𝑖

𝑐

plays the role analogous to 𝑏𝑙−1

𝑐
in Equation A.30), we get





 (
𝜙

(
. . . 𝜙

(
𝜙

(
𝑥−𝑖𝑊 1

−𝑖
𝑐
+𝑊 1

𝑖

)
𝑊 2 + 𝑏

2

𝑐

)
. . .

)
𝑊 𝑙 + 𝑏

𝑙

𝑐

)
−𝜙

(
. . . 𝜙

(
𝜙

(
𝑊 1
𝑖

)
𝑊 2) . . .)𝑊 𝑙






⩽
𝐵

𝑐
(1 + 𝐿𝑊 · 𝐿𝜙 + 𝐿2

𝑊 · 𝐿
2
𝜙
+ . . . + 𝐿𝑙−1

𝑊 · 𝐿𝑙−1
𝜙
). (A.32)

Choosing 𝑐 to be sufficiently large, we can make the bound in Equation A.32 arbitrarily tight.
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Conclusion (2) Suppose𝜓 is the identity. Then, we can write

𝑓 (𝑥 (𝑐),𝑊 ) = 𝑐 · 𝜙
(
. . . 𝜙

(
𝜙

(
𝑊 1
𝑖

)
𝑊 2) . . .)𝑊 𝑙 + Δ, (A.33)

where Δ is bounded: ∥Δ∥ ⩽ 𝐵(1 + 𝐿𝑊 · 𝐿𝜙 + 𝐿2
𝑊
· 𝐿2

𝜙
+ . . . + 𝐿𝑙−1

𝑊
· 𝐿𝑙−1

𝜙
). Consider the predictive

mean under BMA,

E𝑊 𝑓 (𝑥 (𝑐),𝑊 ) = 𝑐 · E𝑊𝜙
(
. . . 𝜙

(
𝜙

(
𝑊 1
𝑖

)
𝑊 2) . . .)𝑊 𝑙︸                                    ︷︷                                    ︸

≠0

+ E𝑊Δ︸︷︷︸
Bounded

, (A.34)

where the first term is linear in 𝑐 and the second term is bounded uniformly for all 𝑐 . Finally, we

assumed that the expectation E𝑊𝜙
(
. . . 𝜙

(
𝜙

(
𝑊 1
𝑖

)
𝑊 2) . . .)𝑊 𝑙 ≠ 0, so for large values of 𝑐 the first

term in Equation A.34 will dominate, so the output depends on 𝑐 .

Conclusion (3) Now, consider the softmax link function 𝜓 . Note that for the softmax we

have arg max𝑦𝜓 (𝑐 · 𝑧) [𝑦] = arg max𝑦 𝑧 [𝑦]. In other words, multiplying the logits (inputs to the

softmax) by a positive constant 𝑐 does not change the predicted class. So, we have

𝑦 (𝑐,𝑊 ) = arg max
𝑦
𝑓 (𝑥 (𝑐),𝑊 ) [𝑦] =

arg max
𝑦

(
𝜙

(
. . . 𝜙

(
𝜙

(
𝑥−𝑖𝑊 1

−𝑖
𝑐
+𝑊 1

𝑖

)
𝑊 2 + 𝑏

2

𝑐

))
𝑊 𝑙 + 𝑏

𝑙

𝑐

)
[𝑦] . (A.35)

Notice that 𝑧𝑊 = 𝜙 (. . . 𝜙 (𝜙 (𝑊 1
𝑖 )𝑊 2) . . .)𝑊 𝑙 does not depend on the input 𝑥 (𝑐) in any way.

Furthermore, if 𝑧𝑊 is 𝜖-separable, with class 𝑦𝑊 corresponding to the largest component of 𝑧𝑊 ,

then by taking

𝑐 >
𝐵(1 + 𝐿𝑊 · 𝐿𝜙 + 𝐿2

𝑊
· 𝐿2

𝜙
+ . . . + 𝐿𝑙−1

𝑊
· 𝐿𝑙−1

𝜙
)

𝜖
, (A.36)

we can guarantee that the predicted class for 𝑓 (𝑥 (𝑐),𝑊 ) will be 𝑦𝑊 according to Equation A.32.

■
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A.6.8.3 General linear dependencies, Proposition 4.3

We will prove the following proposition, reducing the case of general linear dependencies to the

case when an input feature is constant.

Suppose that the prior over the weights𝑊 1 in the first layer is an i.i.d. Gaussian distribution

N(0, 𝛼2), independent of the other parameters in the model. Suppose all the inputs 𝑥1 . . . 𝑥𝑛 in

the training dataset 𝐷 lie in a subspace of the input space: 𝑥𝑇𝑖 𝑐 = 0 for all 𝑖 = 1, . . . , 𝑛 and some

constant vector 𝑐 such that
∑𝑚
𝑖=1 𝑐

2
𝑖 = 1.

Let us introduce a new basis 𝑣1, . . . , 𝑣𝑚 in the input space, such that the vector 𝑐 is the first

basis vector. We can do so e.g. by starting with the collection of vectors {𝑐, 𝑒2, . . . , 𝑒𝑚}, where

𝑒𝑖 are the standard basis vectors in the feature space, and using the Gram–Schmidt process to

orthogonalize the vectors. We will use𝑉 to denote the matrix with vectors 𝑣1, . . . , 𝑣𝑚 as colunms.

Due to orthogonality, we have 𝑉𝑉𝑇 = 𝐼 .

We can rewrite our model from Equation A.18 as

𝑓 (𝑥,𝑊 ) = 𝜓 (𝜙 (. . . 𝜙 (𝜙 ( 𝑥𝑉︸︷︷︸
𝑥

𝑉𝑇𝑊 1︸︷︷︸
𝑊̄ 1

)𝑊 2 + 𝑏2))𝑊 𝑙 + 𝑏𝑙 ). (A.37)

We can thus re-parameterize the first layer of the model by using transformed inputs 𝑥 = 𝑥𝑉 ,

and transformed weights 𝑊̄ 1 = 𝑉𝑇𝑊 1. Notice that this re-parameterized model is equivalent

to the original model, and doing inference in the re-parameterized model is equivalent to doing

inference in the original model.

The induced prior over the weights 𝑊̄ 1 is N(0, 𝛼2𝐼 ), as we simply rotated the basis. Further-

more, the input 𝑥1
𝑘
= 𝑥𝑇

𝑘
𝑣1 = 0 for all training inputs 𝑘 . Thus, with the re-parameterized model

we are in the setting of Lemma 4.1 and Propositions A.4, A.5.

In particular, the posterior over the parameters 𝑊̄ 1
1 = 𝑣𝑇1𝑊

1 will coincide with the prior

N(0, 𝛼2𝐼 ) (Lemma 4.1). The MAP solution will ignore the feature combination 𝑥1 = 𝑥𝑇 𝑣1, while
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the BMA predictions will depend on it (Propositions A.4, A.5).

A.6.8.4 Convolutional layers, Proposition 4.4

Suppose that the convolutional filters in the first layer are of size𝐾×𝐾×𝐶 , where𝐶 is the number

of input channels. Let us consider the set 𝐷̂ of size 𝑁 of all the patches of size 𝐾 ×𝐾 ×𝐶 extracted

from the training images in 𝐷 after applying the same padding as in the first convolutional layer.

Let us also denote the set of patches extracted from a fixed input image by 𝐷𝑥 .

A convolutional layer applied to 𝑥 can be thought of as a fully-connected layer applied to all

patches in 𝐷𝑥 individually, and with results concatenated:

𝑐𝑜𝑛𝑣 (𝑤, 𝑥) =
©­«𝑖, 𝑗,

𝑖+𝑘∑︁
𝑎=𝑖

𝑗+𝑘∑︁
𝑏= 𝑗

𝐶∑︁
𝑐=1

𝑥𝑎,𝑏,𝑐 ·𝑊 1
𝑎,𝑏,𝑐

ª®¬
 , (A.38)

where 𝑥𝑎,𝑏,𝑐 is the intensity of the image at location (𝑎, 𝑏) in channel 𝑐 ,𝑊 1
𝑎,𝑏,𝑐

is the corresponding

weight in the convolutional filter, and the tuples (𝑖, 𝑗, 𝑣) for all 𝑖, 𝑗 represent the intensities at

location (𝑖, 𝑗) in the output image.

In complete analogy with Lemma 4.1 and Propositions A.4, A.5, we can show that if all the

patches in the dataset 𝐷̂ are linearly dependent, then we can re-parameterize the convolutional

layer so that one of the convolutional weights will always be multiplied by 0 and will not affect

the likelihood of the data. The MAP solution will set this weight to zero, while the BMA will

sample this weight from the prior, and it will affect predictions.

A.6.9 How corruptions break linear dependence in the data

In Figure A.33, we visualize the projections of the original and corrupted MNIST data on the PCA

components extracted from the MNIST train set and the set of all 5 × 5 patches of the MNIST

train set. As we have seen in Section 4.6, the former are important for the MLP robustness, while

the latter are important for CNNs.
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Figure A.33: Corruptions and linear dependence. Top: The distribution (mean ± 2 std) of MNIST and
MNIST-C images and bottom: 5×5 patches extracted from these images projected onto the corresponding
principal components of the training data images and patches. Gaussian noise corruption breaks linear
dependencies in both cases, while Translate does not change the projection distribution for the 5 × 5
patches.

Certain corruptions increase variance along the lower PC directions more than others. For

example, the Translate corruption does not alter the principal components of the 5× 5 patches in

the images, and so a convolutional BNN with a Gaussian prior is very robust to this corruption.

In contrast, Gaussian noise increases variance similarly along all directions, breaking any linear

dependencies present in the training data and resulting in much worse BNN performance.

A.6.10 Analyzing other approximate inference methods

In this section, we provide additional discussion on why popular approximate inference methods

SWAG and MC Dropout do not exhibit the same poor performance under covariate shift.

A.6.10.1 Variational inference

Suppose the prior is 𝑝 (𝑤) = N(0, 𝛼2𝐼 ) and the variational family contains distributions of the

form 𝑞(𝑤) = N(𝜇,Λ), where the mean 𝜇 and the covariance matrix Λ are parameters. Variational

inference solves the following optimization problem: maximizeE𝑤∼N(𝜇,Λ)𝑝 (𝐷 |𝑤)−𝐾𝐿
(
N(𝜇,Λ) | |N (0, 𝛼2𝐼 )

)
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with respect to 𝜇, Λ [Blundell et al. 2015; Kingma and Welling 2013].

First, let us consider the case when the parameter Λ is unconstrained and can be any positive-

definite matrix. Suppose we are using a fully-connected network, and there exists a linear de-

pendence in the features, as in Proposition 4.3. Then, there exists a direction 𝑑 in the parameter

space of the first layer of the model, such that the projection of the weights on this direction will

not affect the likelihood, and the posterior over this projection will coincide with the prior and

will be independent from other directions (Proposition 4.3,), which is Gaussian. Consequently,

the optimal variational distribution will match the prior in this projection, and will also be in-

dependent from the other directions, or, in other words, 𝑑 will be an eigenvector of the optimal

Λ with eigenvalue 𝛼2. So, variational inference with a general Gaussian variational family will

suffer from the same exact issue that we identified for the true posterior. Furthermore, we can

generalize this result to convolutional layers completely analogously to Proposition 4.4,.

Now, let us consider the mean-field variational inference (MFVI) which is commonly used in

practice in Bayesian deep learning. In MFVI, the covariance matrix Λ is constrained to be diag-

onal. Consequently, for general linear dependencies in the features the variational distribution

will not have sufficient capacity to make the posterior over the direction 𝑑 independent from the

other directions. As a result, MFVI will not suffer as much as exact Bayesian inference from the

issue presented in Propositions 4.3, 4.4,.

One exception is the dead pixel scenario described in Section 5.1, where one of the features

in the input is a constant zero. In this scenario, MFVI will have capacity to make the variational

posterior over the corresponding weight match the prior, leading to the same lack of robustness

described in Proposition 4.2.

Empirical results. In addition to the theoretical analysis above, we ran mean field variational

inference on our fully-connected network on MNIST and evaluated robustness on the MNIST-C

corruptions. Below we report the results for MFVI, MAP and HMC BNN with a Gaussian prior:
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Table A.24: Accuracy of MAP, MFVI and HMC BNNs under different corruptions. MFVI is more robust
than HMC and even outperforms the MAP solution for some of the corruptions.

method CIFAR-10 Gaussian Noise Motion Blur Scale Brightness Stripe Canny Edges

MAP 98.5% 70.6% 86.7% 77.6% 50.6% 34.1% 68%

MFVI 97.9% 62.5% 82.2% 70.5% 68.9% 47.7% 70%

HMC 98.2% 43.2% 82.1% 69.5% 22.3% 34.8% 63.3%

As expected from our theoretical analysis, MFVI is much more robust to noise than HMC

BNNs. However, on some of the corruptions (Gaussian Noise, Motion Blur, Scale) MFVI under-

performs theMAP solution. At the same time, MFVI even outperformsMAP on Brightness, Stripe

and Canny Edges.

A.6.10.2 SWAG

SWA-Gaussian (SWAG) [Maddox et al. 2019] approximates the posterior distribution as a mul-

tivariate Gaussian with the SWA solution [Izmailov et al. 2018] as its mean. To construct the

covariance matrix of this posterior, either the second moment (SWAG-Diagonal) or the sample

covariance matrix of the SGD iterates is used. For any linear dependencies in the training data,

the corresponding combinations of weights become closer to zero in later SGD iterates due to

weight decay. Since SWAG only uses the last𝐾 iterates in constructing its posterior, the resulting

posterior will likely have very low variance in the directions of any linear dependencies. Fur-

thermore, because SGD is often initialized at low magnitude weights, even the earlier iterates

will likely have weights close to zero in these directions.

A.6.10.3 MC Dropout

MC Dropout applies dropout at both train and test time, thus allowing computation of model

uncertainty from a single network by treating stochastic forward passes through the network as

posterior samples. The full model learned at train time is still an approximate MAP solution, and
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Figure A.34: General PCA priors. Performance of the PCA priors introduced in Section A.6.11 for
various decay rates 𝜆. PCA priors generally improve performance significantly under Gaussian noise and
Stripe. Lower decay rates 𝜆 provide better results under Gaussian noise.

thus will beminimally affected by linear dependencies in the data being broken at test time. As for

the test-time dropout, we can conclude that if the expected output of the network is not affected

by linear dependencies being broken, then any subset of that network (containing a subset of the

network’s hidden units) would be similarly unaffected. Additionally, if dropping an input breaks

a linear dependency from the training data, the network (as an approximate MAP solution) is

robust to such a shift.

A.6.11 General PCA Priors

In Section 4.7 we introduced the EmpCov prior, which improves robustness to covariate shift

by aligning with the training dataset’s principal components. Following the notation used in

Section 4.7, we can define a more general family of PCA priors as

𝑝 (𝑤1) = N(0, 𝛼𝑉 diag(𝑠)𝑉𝑇 + 𝜖𝐼 ), 𝑠𝑖 = 𝑓 (𝑖) (A.39)

where for an architecture with 𝑛𝑤 first layer weights, 𝑠 is a length 𝑛𝑤 vector, diag(𝑠) is the

𝑛𝑤 ×𝑛𝑤 diagonal matrix with 𝑠 as its diagonal, and𝑉 is an 𝑛𝑤 ×𝑛𝑤 matrix such that the 𝑖𝑡ℎ column

of 𝑉 is the 𝑖𝑡ℎ eigenvector of Σ.
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Figure A.35: MNIST CNN results. Test accuracy under covariate shift for deep ensembles, MAP opti-
mization with SGD, and BNN with Gaussian and EmpCov priors.

The EmpCov prior is the PCA prior where 𝑓 (𝑖) returns the 𝑖𝑡ℎ eigenvalue (explained variance)

of Σ. However, there might be cases where we do not want to directly use the empirical covari-

ance, and instead use an alternate 𝑓 . For example, in a dataset of digits written on a variety of

different wallpapers, the eigenvalues for principal components corresponding to the wallpaper

pattern could be much higher than those corresponding to the digit. If the task is to identify the

digit, using EmpCovmight be too restrictive on digit-related features relative to wallpaper-related

features.

We examine alternative PCA priors where 𝑓 (𝑖) = 𝜆𝑖 for different decay rates 𝜆. We evaluate

BNNs with these priors on MNIST-C, and find that the choice of decay rate can significantly alter

the performance on various corruptions. Using priors with faster decay rates (smaller 𝜆) can

provide noticeable improvement on Gaussian Noise and Zigzag corruptions, while the opposite

occurs in corruptions like Translate and Fog. Connecting this result back to Section A.6.9 and

Figure A.33, we see that the corruptions where faster decay rates improve performance are often

the ones which add more noise along the smallest principal components.
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A.6.12 Effect of non-zero mean corruptions

In Figure A.35, we report the results of deep ensembles, MAP and BNNs with Gaussian and Em-

pCov priors under various corruptions using the CNN architecture on MNIST. EmpCov improves

performance on all of the noise corruptions. For example, on the Gaussian noise corruption, Em-

pCov achieves 58.3% accuracy while the Gaussian prior achieves 32.7% accuracy; similarly on the

impulse noise the results are 96.5% and 90.73% respectively.

However, EmpCov does not improve the results significantly on brightness or fog, and even

hurts the performance slightly on stripe. Below, we explain that these corruptions are non-zero

mean, and the performance is affected by the sum of the filter weights. We thus propose the

SumFilter prior which greatly improves the performance on these corruptions.

A.6.12.1 Non-zero mean corruptions

As we have seen in various experiments (e.g. Figure 4.9, Figure A.31), convolutional Bayesian

neural networks are particularly susceptible to the brightness and fog corruptions on MNIST-C.

Both of these corruptions are not zero-mean: they shift the average value of the input features

by 1.44 and 0.89 standard deviations respectively. In order to understand why non-zero mean

corruptions can be problematic, let us consider a simplified corruption that applies a constant

shift 𝑐 to all the pixels in the input image. Ignoring the boundary effects, the convolutional layers

are linear in their input. Denoting the output of the convolution with a filter 𝑤 on an input 𝑥 as

𝑐𝑜𝑛𝑣 (𝑤, 𝑥), and an image with all pixels equal to 1 as 1 we can write

𝑐𝑜𝑛𝑣 (𝑤, 𝑥 + 𝑐 · 1) = 𝑐𝑜𝑛𝑣 (𝑤, 𝑥) + 𝑐 · 𝑐𝑜𝑛𝑣 (𝑤, 1) = 𝑐𝑜𝑛𝑣 (𝑤, 𝑥) + 1 · 𝑐 ·
∑︁
𝑎,𝑏

𝑤𝑎,𝑏, (A.40)

where the last term represents an image of the same size as the output of the 𝑐𝑜𝑛𝑣 (·, ·) but with

all pixels equal to the sum of the weights in the convolutional filter 𝑤 multiplied by 𝑐 . So, if the
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input of the convolution is shifted by a constant value 𝑐 , the output will be shifted by a constant

value 𝑐 ·∑𝑎,𝑏𝑤𝑎,𝑏 .

As the convolutional layer is typically followed by an activation such as ReLU, the shift in the

output of the convolution can significantly hinder the performance of the network. For example,

suppose 𝑐 ·∑𝑎,𝑏𝑤𝑎,𝑏 is a negative value such that all the output pixels in 𝑐𝑜𝑛𝑣 (𝑤, 𝑥) +1 ·𝑐 ·
∑
𝑎,𝑏𝑤𝑎,𝑏

are negative. In this case, the output of the ReLU activation applied after the convolutional fil-

ter will be 0 at all output locations, making it impossible to use the learned features to make

predictions.

In the next section, we propose a prior that reduces the sum
∑
𝑎,𝑏𝑤𝑎,𝑏 of the filter weights,

and show that it significantly improves robustness to multiple corruptions, including fog and

brightness.

A.6.12.2 SumFilter prior

As we’ve discussed, if the sum of filter weights for CNNs is zero, then corrupting the input by

adding a constant has no effect on our predictions. We use this insight to propose a novel prior

that constrains the sum of the filter weights. More specifically, we place a Gaussian prior on the

parameters and Laplace prior on the sum of the weights:

𝑝 (𝑤) ∼ N
(
𝑤 |0, 𝛼2𝐼

)
× Laplace

( ∑︁
filter

𝑤 |0, 𝛾2
)
. (A.41)

For our experiments, we only place the additional Laplace prior on the sum of weights in first

layer filters. An alternative version could place the prior over filter sums in subsequent layers,

which may be useful for deeper networks.
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Figure A.36: SumFilter priors. Performance of BNNs with the SumFilter priors introduced in subsub-
section A.6.12.2 for the CNN architecture on MNIST. SumFilter priors do not improve the performance
under Gaussian noise unlike EmpCov priors, but provide a significant improvement on the Brightness and
Fog corruptions.

A.6.12.3 Experiments

Figure A.36 shows that this prior substantially improves the performance of a convolutional BNN

on MNIST-C. The BNN with a filter sum prior yields a better or comparable performance to

MAP for all MNIST corruptions, with the exception of Canny Edges and Impulse Noise. We also

implemented this prior for MLPs, but found that it only improved BNN performance on two

corruptions, fog and brightness. Overall, this prior addresses a more specific issue than EmpCov,

and we would not expect it to be applicable to as many forms of covariate shift.

A.6.13 Example: Bayesian NALU under covariate shift

The Neural Arithmetic Logic Unit (NALU) [Trask et al. 2018] is an architecture which can learn

arithmetic functions that extrapolate to values outside those observed during training. A portion

of the unit is of the form
∏𝑚

𝑗=1 |𝑥 𝑗 |𝑤 𝑗 , and in this section we examine a simplified form of this unit

in order to demonstrate an instance where nonlinear dependencies hurt BMA under covariate

shift.

Let’s consider the NALU-inspired architecture with input features 𝑥1, . . . , 𝑥𝑚 that takes the

form 𝑓 (𝑥,𝑤) = ∏𝑚
𝑗=1(𝑥 𝑗 )𝑤 𝑗 . Suppose the prior over the weights 𝑤 = [𝑤1, . . . ,𝑤𝑚] is an i.i.d.
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Gaussian distributionN(0, 𝛼2). Suppose all inputs 𝑥1, . . . 𝑥𝑛 in training datasetD lie in a subspace

of the input space:
∏𝑚

𝑗=1(𝑥
𝑗

𝑖
)𝑝 𝑗 = 1 for all 𝑖 = 1, . . . , 𝑛 and some constant vector 𝑝 such that∑𝑚

𝑗=1 𝑝
2
𝑗 = 1. Following the same approach as subsubsection A.6.8.3, we can introduce a new

basis 𝑣1, . . . , 𝑣𝑚 in the input space such that 𝑣1 = 𝑝 . We can similarly re-parameterize the model

using the weights rotated into this new basis, 𝑤̄ = 𝑤𝑇 𝑣1, . . . ,𝑤
𝑇 𝑣𝑚 , and it follows that 𝑤𝑖 =

𝑤̄1·𝑣𝑖1+· · ·+𝑤̄𝑚 ·𝑣𝑖𝑚 for all 𝑖 = 1, . . . , 𝑛. Using the corresponding transformed inputs 𝑥𝑖 =
∏𝑚

𝑗=1(𝑥 𝑗 )𝑣
𝑗

𝑖

for all 𝑖 = 1, . . . , 𝑛, we can rewrite our model as follows:

𝑓 (𝑥,𝑤) = 𝑓 (𝑥, 𝑤̄) = (
𝑚∏
𝑗=2
(𝑥 𝑗 )𝑤̄ 𝑗 ) · (𝑥1)𝑤̄1︸ ︷︷ ︸

=1

. (A.42)

Since 𝑓 (𝑥, 𝑤̄) does not depend on 𝑤̄1 for all 𝑥 ∈ D̄, we can follow the same reasoning from

subsubsection A.6.8.1 to conclude that the marginal posterior over 𝑤̄1 coincides with the induced

prior. Since 𝑤̄ is the result of simply rotating𝑤 into a new basis, it also follows that the induced

prior over 𝑤̄ is N(0, 𝛼2𝐼 ), and that the posterior can be factorized as 𝑝 (𝑤̄ |D̄) = 𝑝 (𝑤̄ \ 𝑤̄1 |D̄) ·

𝑝 (𝑤̄1).

Consider a test input 𝑥𝑘 (𝑐) = [𝑐, 𝑥2
𝑘
, . . . , 𝑥𝑚

𝑘
]. The predictive mean under BMA will be:

E𝑤̄ 𝑓 (𝑥𝑘 (𝑐), 𝑤̄) = E𝑤̄\𝑤̄1

𝑚∏
𝑗=2
(𝑥 𝑗
𝑘
)𝑤̄ 𝑗 · E𝑤̄1𝑐

𝑤̄1 . (A.43)

Thus the predictive mean depends upon 𝑐 , and so the BMAwill not be robust to the nonlinear

dependency being broken at test time. In comparison, the MAP solution would set 𝑤̄1 = 0, and

its predictions would not be affected by 𝑐 .

While the dependency described in this sectionmay not necessarily be common in real datasets,

we highlight this example to demonstrate how a nonlinear dependency can still hurt BMA ro-
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bustness. This further demonstrates how the BMA issue we’ve identified does not only involve

linear dependencies, but rather involves dependencies which have some relationship to themodel

architecture.

A.6.14 Dead neurons

Neural network models can often contain dead neurons: hidden units which output zero for all

inputs in the training set. This behaviour occurs in classical training when a neuron is knocked

off the training data manifold, resulting in zero non-regularized gradients for the correspond-

ing weights and thus an inability to train the neuron using the gradient signal from the non-

regularized loss. However, we can envision scenarios where a significant portion of the BNN

posterior distribution contains models with dead neurons, such as when using very deep, over-

parameterized architectures.

Let us consider the posterior distribution over the parameters𝑊 conditioned on the parame-

ters𝑊 1,𝑊 2, 𝑏2, . . . ,𝑊 𝑘 , 𝑏𝑘 of the first 𝑘 layers, where we use the notation of Section A.6.8. Sup-

pose for the parameters 𝑊 1,𝑊 2, 𝑏2, . . . ,𝑊 𝑘 , 𝑏𝑘 the 𝑘-th layer contains a dead neuron, i.e. an

output that is 0 for all the inputs 𝑥 𝑗 in the training dataset 𝐷 . Then, consider the sub-network

containing layers 𝑘 + 1, . . . , 𝑙 . For this sub-network, the output of a dead neuron in the 𝑘-th layer

is an input that is 0 for all training inputs. We can then apply the same reasoning as we did in

subsubsection A.6.8.1, subsubsection A.6.8.2 to show that there will exist a direction in the pa-

rameters𝑊 𝑘 of the 𝑘 + 1-st layer, such that along this direction the posterior conditioned on the

parameters𝑊 1,𝑊 2, 𝑏2, . . . ,𝑊 𝑘 , 𝑏𝑘 coincides with the prior (under the assumption that the prior

over the parameters𝑊 𝑘 is iid and independent of the other parameters). If a test input is cor-

rupted in a way that activates the dead neuron, the predictive distribution of the BMA conditioned

on the parameters𝑊 1,𝑊 2, 𝑏2, . . . ,𝑊 𝑘 , 𝑏𝑘 will change.
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A.6.15 Bayesian linear regression under covariate shift

We examine the case of Bayesian linear regression under covariate shift. Let us define the fol-

lowing Bayesian linear regression model:

𝑦 = 𝑤⊤𝜙 (𝑥, 𝑧) + 𝜖 (𝑥) (A.44)

𝜖 ∼ N(0, 𝜎2) (A.45)

where𝑤 ∈ R𝑑 are linear weights and 𝑧 are the deterministic parameters of the basis function

𝜙 . We consider the dataset 𝐷 = {(𝑥𝑖, 𝑦𝑖)}𝑛𝑖=1 and define 𝑦 := (𝑦1, . . . , 𝑦𝑁 )⊤, 𝑋 := (𝑥1, . . . , 𝑥𝑛)⊤, and

Φ := (𝜙 (𝑥1, 𝑧), . . . , 𝜙 (𝑥𝑛, 𝑧))⊤

The likelihood function is given by:

𝑝 (𝑦 |𝑋,𝑤, 𝜎2) =
𝑛∏
𝑖=1
N(𝑦𝑖 |𝑤⊤𝜙 (𝑥𝑖, 𝑧), 𝜎2). (A.46)

Let us choose a conjugate prior on the weights:

𝑝 (𝑤) = N(𝑤 |𝜇0, Σ0), (A.47)

The posterior distribution is given by:
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𝑝 (𝑤 |D) ∝ N (𝑤 |𝜇0, Σ0) ×
𝑛∏
𝑖=1
N(𝑦𝑖 |𝑤⊤𝜙 (𝑥𝑖, 𝑧), 𝜎2)

= N(𝑤 |𝜇, Σ),

𝜇 = Σ

(
Σ−1

0 𝜇0 +
1
𝜎2Φ

⊤𝑦

)
,

Σ−1 = Σ−1
0 +

1
𝜎2Φ

⊤Φ.

The MAP solution is therefore equal to the mean,

𝑤MAP = Σ

(
Σ−1

0 𝜇0 +
1
𝜎2Φ

⊤𝑦

)
=

(
Σ−1

0 +
1
𝜎2Φ

⊤Φ

)−1 (
Σ−1

0 𝜇0 +
1
𝜎2Φ

⊤𝑦

)
(A.48)

Thus, we see that the BMA and MAP predictions coincide in Bayesian linear regression, and

both will have equivalent performance under covariate shift in terms of accuracy.

What happens away from the data distribution? If the data distribution spans the entire

input space, than the posterior will contract in every direction in the weight space. However, if

the data lies in a linear (or affine, if we are using a Gaussian prior) subspace of the input space,

there will be directions in the parameter space for which the posterior would coincide with the

prior. Now, if a test input does not lie in the same subspace, the predictions on that input would

be affected by the shift vector according to the prior. Specifically, if the input 𝑥 is shifted from

the subspace containing the data by a vector 𝑣 orthogonal to the subspace, then the predictions

between 𝑥 and its projection to the subspace would differ by𝑤𝑇 𝑣 , where𝑤 ∼ N(𝜇0, Σ0), which is

itself N(𝜇𝑇0 𝑣, 𝑣𝑇Σ0𝑣). Assuming the prior is zero-mean, the mean of the prediction would not be

affected by the shift, but the uncertainty will be highly affected. The MAP solution on the other

hand does not model uncertainty.
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A.6.16 An optimization perspective on the covariate shift problem.

In this section, we examine SGD’s robustness to covariate shift from an optimization perspective.

A.6.16.1 Effect of regularization and initialization on SGD’s robustness to

covariate shift

In Section A.6.14, we discussed how SGD pushes the weights that correspond to dead neurons,

a generalization of the dead pixels analysis, towards zero thanks to the regularization term. In

this section, we study the effect of regularization and initialization on SGD’s robustness under

covariate shift.

Regularization

To study the effect of regularization on SGD’s robustness under covarite shift, we hold all hyper-

parameters fixed and we change the value of the regularization parameter. Figure A.37 shows

the outcome. Most initialization schemes for neural networks initialize the weights with values

close to zero, hence we expect SGD not perform as poorly on out-of-distribution data as HMC on

these networks even without regularization. Therefore, we see that SGD without regularization

(reg = 0.0) is still competitive with reasonably regularized SGD.

Initialization

The default initialization scheme for fully-connected layers in Pytorch for example is the He

initialization [He et al. 2015]. We use a uniform initialization U(−𝑏, 𝑏) and study the effect of

varying 𝑏 on the performance of SGD under covarite shift for a fully-connected neural network.

Figure A.38 shows our empirical results, where smaller weights result in better generalization on

most of the corruptions.
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Figure A.37: Effect of regularization on SGD’s performance on corrupted MNIST. Accuracy for
the following values of the regularization parameter: 0.0, 0.001, 0.01, and 0.1. Top: Fully-connected net-
work; bottom: Convolutional neural network. Regularization helps improve the performance on some
corruptions, such as Gaussian noise, but its absence does not affect SGD’s robustness under covariate
shift because the weights are initialized at small values.

MN
IS

T

SV
HN

Ga
us

s N
ois

e
Sh

ot
 N

ois
e

Im
pu

lse
 N

ois
e

Gl
as

s B
lu

r
Mo

tio
n 

Bl
ur

Sh
ea

r

Sc
ale

Ro
ta

te
Tr

an
sla

te

Br
ig

ht
ne

ss Fo
g

St
rip

e
Do

tte
d 

Lin
e

Sp
at

te
r

Zi
gz

ag
Ca

nn
y 

Ed
ge

s

Av
er

ag
e

0.2
0.4
0.6
0.8
1.0

Ac
cu

ra
cy

Domain Noise Blur Affine Other Corruptions Avg

SGD, b=0.001 SGD, b=0.01 SGD, b=0.1 SGD, b=1.0

Figure A.38: Effect of initialization on SGD’s performance on corrupted MNIST with MLP. The
weights are initialized using a uniform distributionU(−𝑏, 𝑏), and we consider the following values for 𝑏:
0.001, 0.01, 0.1, and 1.0. All experiments were run without regularization. For most corruptions, initializing
the weights at smaller values leads to better robustness to covariate shift.
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Figure A.39: Robustness onMNIST for different stochastic optimizers. Accuracy for SGD, Adadelta,
Adam and L-BFGS on MNIST under covariate shift. Top: Fully-connected network; bottom: Convolu-
tional neural network. Adam and Adadelta provide competitive performance with SGD for most corrup-
tions. However, SGD is better on the MLP architecture for some corruptions whereas Adam and Adadelta
are better on the same corruptions with the CNN architecture.

A.6.16.2 Other stochastic optimizers

In addition to SGD, we examine the performance of Adam [Kingma and Ba 2014], Adadelta [Zeiler

2012], L-BFGS [Nocedal 1980; Liu and Nocedal 1989] on corrupted MNIST. Figure A.39 shows the

results for all 4 algorithms on the MNIST dataset under covariate shift, for both fully-connected

and convolutional neural networks. We see that SGD, Adam and Adadelta have comparable per-

formance for convolutional neural networks, whereas SGD has an edge over both algorithms on

MLP. L-BFGS provides a comparatively poor performance and we hypothesise that it is due to

the lack of regularization. Naive regularization of the objective function does not improve the

performance of L-BFGS.

A.6.16.3 Loss surface analysis

There have been several works that tried to characterize the geometric properties of the loss land-

scape and describe its connection to the generalization performance of neural networks. In par-

ticular, it is widely believed that flat minima are able to provide better generalization [Hochreiter

and Schmidhuber 1997a; Keskar et al. 2016]. Intuitively, the test distribution introduces a hori-
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zontal shift in the loss landscape which makes minima that lie in flat regions of the loss surface

perform well for both train and test datasets. From the other side, it is well-known that SGD

produces flat minima. Hence, we would like to understand the type of distortions that corrup-

tions in the corrupted CIFAR-10 dataset introduce in the loss surface, and evaluate the potential

advantage of flat minima in this context.

In the same fashion as Li et al. [2017], we visualize the effect of the Gaussian noise corruption

on the loss surface for different intensity levels as shown in Figure A.40. These plots are produced

for two random directions of the parameter space for a ResNet-56 network. We observe that high

levels of intensity make the loss surface more flat, but result in a worse test loss overall. We

can see visually that the mode in the central flat region, that we denote 𝑤0, is less affected by

the corruption than a solution picked at random. Figure A.41 shows the loss difference between

different solutions including 𝑤0, that we call optimal, and the new mode for each corruption

intensity. We can see that themode is indeed less affected by the corruptions than other randomly

selected solutions of the same loss region.

A.6.16.4 Licensing

TheMNIST dataset is made available under the terms of the Creative Commons Attribution-Share

Alike 3.0 license. The CIFAR-10 dataset is made available under the MIT license. Our code is a

fork of the Google Research repository at https://github.com/google-research/google-research,

which has source files released under the Apache 2.0 license.

A.7 Appendix for Deep Feature Reweighting

This appendix is organized as follows. In Section A.7.1 we provide additional related work discus-

sion. In Section A.7.2 we present details on the experiments on feature learning in the presence of

spurious correlations. In Section A.7.3 we provide details on the results for the spurious correla-
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Figure A.40: 2D (top) and 3D bottom visualizations of the loss surface of a ResNet-56 network on cor-
rupted CIFAR-10 with different intensity levels of the Gaussian noise corruption.
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Figure A.41: Loss difference between different random solutions, including the mode found through
standard SGD training (optimal in the legend), and the new mode for each corruption intensity.
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tion benchmark datasets and perform ablation studies. We provide details on the experiments on

the reliance of ImageNet-trained models on the background in Section A.7.5 and on the texture-

bias in Section A.7.6. In Section ?? we provide further discussion of the results presented in the

paper and future work. In Section A.7.7 we compare DFR to methods proposed in Kang et al.

[2019] and other last layer retraining variations.

Code references. In addition to the experiment-specific packages that we discuss throughout

the appendix, we used the following libraries and tools in this work: NumPy [Harris et al. 2020],

SciPy [Virtanen et al. 2020b], PyTorch [Paszke et al. 2017], Jupyter notebooks [Kluyver et al.

2016], Matplotlib [Hunter 2007], Pandas [McKinney 2010], transformers [Wolf et al. 2019].

A.7.1 Additional related work

Differences with Kang et al. [2019] . Our work and Kang et al. [2019] consider different set-

tings: Kang et al. [2019] considers long-tail classification with class imbalance, while we consider

spurious correlations and shortcut learning. In spurious correlation robustness, there is often no

class imbalance, and the methods of Kang et al. [2019] cannot be directly applied. Our conceptual

results, such as the ability to control the reliance on background or texture features in trained

models are also orthogonal to the observations of Kang et al. [2019].

Algorithmically, DFR is related to the methods of Kang et al. [2019], but there are still impor-

tant differences. In the Learning Weight Scaling (LWS) method, the authors rescale the logits of

the classifier with scalar weights 𝑓𝑖 : the weight of the 𝑖-th row of the weight matrix in the last

layer is updated to 𝑤̂𝑖 = 𝑓𝑖𝑤𝑖 . The parameters 𝑓𝑖 are trained by minimizing the loss on the training

set with class-balanced sampling. In particular, LWS is not full last layer retraining, as only one

parameter per class is learned.

Kang et al. [2019] also proposed a Classifier Re-training (cRT) approach which retrains the

last layer on the training set with class-balanced sampling, where we are equally likely to sample
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datapoints from each class. cRT is closer to DFR than LWS, as it retrains all parameters in the

last layer.

The algorithmic differences of these methods with DFR are as follows:

• In DFR, we use a group-balanced subset of the data instead of class-balanced sampling. This

distinction is important, as in the group robustness setting the classes are often balanced,

so LWS and cRT are not immediately applicable to the spurious correlation setting.

• In DFR, we subsample the reweighting dataset to be group balanced instead of using class-

or group-balanced sampling. Specifically, we produce a dataset where the number of ex-

amples in each group is the same, and only use these datapoints. This detail is hugely

important, as group-balanced sampling does not produce classifiers robust to spurious cor-

relations [e.g. see RWG and SUBG methods in Idrissi et al. 2021].

• In DFRVal
Tr , we use held-out data for retraining the last layer, and not the training data. This

is the important distinction between DFRVal
Tr and DFRTr

Tr . LWS and cRT both retrain the

classifier on the training data.

• There are also technical differences in how we train the last layer in DFR: we average the

weights of several independent runs of last layer retraining on different group-balanced

subsets of the data, and use strong ℓ1 regularization.

To sum up, both cRT and LWS are not immediately applicable to spurious correlation robust-

ness. Moreover, even if we adapt cRT to the spurious correlation setting, there are still major

differences with DFR: subsampling vs group-balanced sampling, held-out data vs training data,

and regularization. We present comparisons to LWS, cRT and related last layer retraining vari-

ations on Waterbirds and CelebA in Appendix A.7.7, where we show that both DFR versions

outperform methods proposed in Kang et al. [2019] and other ablations. In Appendix A.7.3, we

also show that regularization andmultiple re-runs of last layer retraining are important for strong

performance with DFR.
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Differences with Rosenfeld et al. [2022] . While our works make similar high-level obser-

vations, they are actually complementary to each other. In particular, our works don’t share any

datasets, experiments or problem settings. Rosenfeld et al. [2022] focus on domain generaliza-

tion, where the goal is to train a model that generalizes to unseen domains. In this setting, we

know the domain labels on the train, and we have no data from the test domains. In spurious

correlations, the goal is to train a model that does not rely on spurious features. We typically

have examples from all the test groups in train, but the groups are highly imbalanced. As in do-

main generalization we do not have access to target domain data, Rosenfeld et al. [2022] refer to

last layer retraining on the target domain as “cheating” (see e.g. the caption of Figure 1 in their

paper). Consequently, they propose a different method, DARE, which is very different from DFR.

DARE estimates means and covariance matrices for each domain to whiten out the features. On

test, they apply approximate whitening to a new domain, and they don’t use test domain data to

retrain the last layer. On the other hand, DFR uses an ERM-trained feature extractor and simply

retrains the last layer on a group-balanced reweighting dataset.

To sum up, the observations from our work and the concurrent work by Rosenfeld et al.

[2022] are complimentary: we both show that ERM learns the core features well, but the settings,

methods and experiments are different. In particular, it is not trivial to apply DARE to spurious

correlations or DFR to domain generalization.

A.7.2 Details: Understanding Representation Learning with Spurious

Correlations

Here we provide details on the experiments in Section 5.3.
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A.7.2.1 Feature learning on Waterbirds

Inverse problem. In Table A.25 we present the results on the inverted Waterbirds problem,

where the goal is to predict the background type while the bird type serves as a spurious feature.

We note that prior work did not consider this reverse Waterbirds problem. The results for the

inverted problem are analogous to the results for the standard Waterbirds (Table 5.1): models

trained on the Original data learn the background features sufficiently well to predict the back-

ground type with high accuracy when the spurious foreground feature is not present, but perform

poorly when presented with conflicting background and foreground features. While it is often

suggested than neural networks are biased to learn the background [Xiao et al. 2020], we see that

in fact the network relies on the spurious foreground feature (bird) when trained to predict the

background.

Data. We show examples of Original, FG-Only and BG-OnlyWaterbirds images in Figure A.42.

To generate the data, we follow the instructions at

github.com/kohpangwei/group_DRO#waterbirds, but in addition to the Original data we save

the backgrounds and foregrounds separately. Consequently, the FG-Only data contains the same

exact birds images as the Original data, and the BG-Only data contains the same exact places

images as the Original data. For the 100% spurious correlation strength we simply discard all

the minority groups data from the Original (95% spurious correlation) training dataset. For the

Balanced data, we start with the Original data with 95% spurious correlation and replaced the

background in the smallest possible number of images (chosen randomly) to achieve a 50% spu-

rious correlation strength.

Hyper-parameters. For the experiments in this section we use a ResNet-50 model pretrained

on ImageNet, imported from the torchvision package:

torchvision.models.resnet50(pretrained=True) [?]. We train the models for 50 epochs
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Original FG-Only BG-Only

MNIST-MNIST MNIST-FashionMNIST MNIST-CIFAR

Figure A.42: Data examples. Variations of the waterbirds (Top) and Dominoes (Bottom) datasets gen-
erated for the experiment in Section 5.3.

with SGD with a constant learning rate of 10−3, momentum decay of 0.9, batch size 32 and a

weight decay of 10−2. We use random crops (RandomResizedCrop(224, scale=(0.7, 1.0),

ratio=(0.75, 4./3.), interpolation=2)) and horizontal flips (RandomHorizontalFlip())

implemented in torchvision.transforms as data augmentation.

A.7.2.2 Dominoes datasets

Data. We show data examples fromDominoes datasets (MNIST-MNIST,MNIST-FashionMNIST

and MNIST-CIFAR) in Figure A.42. The top half of each image shows MNIST digits from classes

{0, 1}, and the bottom half shows: MNIST images from classes {7, 9} for MNIST-MNIST, Fashion-

MNIST images from classes {coat, dress} for MNIST-FashionMNIST, and CIFAR-10 images from

classes {car, truck} for MNIST-CIFAR. The label corresponds to the more complex bottom part of

the image, but the top and bottom parts are correlated (we consider 95%, 99% and 100% levels of

spurious correlation strength in experiments). 20% of the training datawas reserved for validation

or reweighting dataset (see Section 5.4) where each group is equally represented.
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Train Data

Spurious Test Data (Worst/Mean, %)

Corr. (%) Original BG-Only

Balanced 50 93.2/95.6 93.6/96.0

Original 95 77.4/91.2 93.1/95.7

Original 100 36.1/77.5 92.7/94.8

Place-Only - 91.8/94.2 92.4/95.2

Table A.25: Feature learning on Inverted Waterbirds. ERM classifiers trained on Inverted Water-
birds with Original and BG-Only images. Here the target is associated with the background type, and
the foreground (bird type) serves as the spurious feature. All the models trained on the Original data
including the model trained without any minority group examples (Spurious corr. 100%) underperform on
the worst-group accuracy on the Original data, but perform well on the BG-Only data, almost matching
the performance of the BG-Only trained model.

Hyper-parameters. We used a randomly initialized ResNet-20 architecture for this set of ex-

periments. We trained the network for 500 epochs with SGD with batch size 32, weight decay

10−3, initial learning rate value 10−2 and a cosine annealing learning rate schedule. For the logistic

regressionmodel, we first extract the embeddings from the penultimate layer of the network, then

use the logistic regression implementation (sklearn.linear_model.LogisticRegression) from

the scikit-learn package [?]. We use ℓ1 regularization and tune the inverse regularization

strength parameter𝐶 in the range {0.1, 10, 100, 1000}. Formore details onDeep Feature Reweight-

ing implementation and tuning, see section A.7.3.

Transfer from simple to complex features. In addition to the results presented in Figure 5.2,

we measure the decoded accuracy using the model trained just on the spurious simple features:

the top half of the image showing an MNIST digit. After training, we retrain the last layer of

the model using a validation split of the corresponding Dominoes dataset which has both top

and bottom parts. In this case, we measure the transfer learning performance with the features
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Figure A.43: Logit additivity. Distribution of logits for the negative class on the test data for a model
trained onWaterbirds dataset. We show scatter plots of the logits for the Original, FG-Only and BG-Only
images. The logits on Original images are well aligned with sums of logits on the corresponding FG and
BG images (rightmost panel), suggesting that the foreground and background features are processed close
to independently in the network.

learned on the binary MNIST classification problem applied to the more complex bottom half of

the image. We obtain the following transfer accuracy results: 92.5% on MNIST-MNIST, 92.1% on

MNIST-Fashion and 61.4% on MNIST-CIFAR. On all datasets, the decoded accuracy reported in

Figure 5.2 for the spurious correlation levels 99% and 95% is better than the transfer accuracy.

For the 100% spurious correlation, transfer achieves comparable results on MNIST-Fashion and

MNIST-CIFAR, but on MNIST-MNIST the decoded accuracy with a model trained on the data

with the core feature is significantly higher (99% vs 92%). These results confirm that for the

spurious correlation strength below 100%, the model learns a high quality representation of the

core features, which cannot be explained by transfer learning from the spurious feature.

A.7.2.3 ColorMNIST

Data. We follow Zhang et al. [2022] to generate ColorMNIST dataset: there are 5 classes cor-

responding to pairs of digits (0, 1), (2, 3), (4, 5), (6, 7), (8, 9), and 5 fixed colors such that in train

data each class𝑦 has a color 𝑠 which is associated with it with correlation 𝑝𝑐𝑜𝑟𝑟 , and the remaining

examples are colored with the remaining colors uniformly at random. Validation split is a ran-

domly sampled 10% fraction of the original MNIST data, and validation and test data exmaples

are colored with 5 colors uniformly at random.
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𝑝𝑐𝑜𝑟𝑟 no corr. 0.8 0.9 0.95 0.995 1.0

ERM 94.5±1.0 85.1±2.2 66.0±7.2 40.8±3.6 0.0±0.0 0.0±0.0

DFRVal
Tr – 93.8±0.9 92.6±0.7 91.6±0.8 80.4±1.1 77.3±1.3

Table A.26: Results on ColorMNIST. Worst-group accuracy of a small CNN model trained on 5-class
ColorMNIST dataset, varying the spurious correlation strength 𝑝𝑐𝑜𝑟𝑟 between classes and colors. DFR
achieves strong performance even in the challenging settings with strong correlation between class labels
and colors. We report mean ± std over 3 independent runs of the method.

Hyper-parameters. We train a small LeNet-like Convolutional Neural Network model on

this dataset varying 𝑝𝑐𝑜𝑟𝑟 . The model is trained for 5 epochs, with batch size 32, learning rate

10−3, and weight decay 5 × 10−4, following Zhang et al. [2022]. CNN consists of 2 convolutional

layers with 6 and 16 output filters, followed by a max pooling layer, then another convolutional

layer with 32 output filters and a fully-connected layer.

We report worst-group accuracy for ERM and DFRVal
Tr in Table A.26. The no corr. results for

ERM correspond to the model trained on the dataset without correlation between colors and class

labels. Notably, DFR recovers strongworst-group performance even in the cases when basemodel

has 0% worst-group accuracy (𝑝𝑐𝑜𝑟𝑟 = 1.0 and 𝑝𝑐𝑜𝑟𝑟 = 0.995). For 𝑝𝑐𝑜𝑟𝑟 < 0.95 DFR’s worst-group

accuracy is closely matching the optimal accuracy of the model trained on data without spurious

correlations.

A.7.2.4 Logit additivity

To better understand why the models trained on the Original Waterbirds data perform well on

FG-Only images, in Figure A.43 we inspect the logits of a trained model. We show scatter plots of

logits for the negative class (logits for the positive class behave analogously) on the Original, FG-

Only and BG-Only test data. Both logits on FG-Only and BG-Only data correlate with the logits

on the Original images, and FG-Only show a higher correlation. The FG-Only and BG-Only logits

are not correlated with each other, as in test data the groups are balanced and the foreground and
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background are independent.

We find that the sum of the logits for the BG-Only and the logits for the FG-Only images

provides a good approximation of the logits on the corresponding Original image (combining the

foreground and the background). We term this phenomenon logit additivity: onWaterbirds, logits

for the different predictive features (both core and spurious) are computed close to independently

and added together in the last classification layer.

A.7.3 Details: Spurious Correlation Benchmarks

Here we provide details and additional ablations on the experiments in Section 5.5.

Data. We use the standard Waterbirds, CelebA and MultiNLI datasets, following e.g. [Sagawa

et al. 2020; Liu et al. 2021; Idrissi et al. 2021]. We use CivilComments dataset as implemented in

the WILDS benchmark [Koh et al. 2021]. See Figures A.44, A.45 for group descriptions and data

examples.

Base model hyper-parameters. For the experiments on Waterbirds and CelebA we use a

ResNet-50 model pretrained on ImageNet, imported from the torchvision package:

torchvision.models.resnet50(pretrained=True). We use random crops

(RandomResizedCrop(224, scale=(0.7, 1.0), ratio=(0.75, 4./3.), interpolation=2))

and horizontal flips (RandomHorizontalFlip()) implemented in torchvision.transforms as

data augmentation. We train all models with SGD with momentum decay of 0.9 and a constant

learning rate. On Waterbirds, we train the models for 100 epochs with weight decay 10−3, learn-

ing rate 10−3 and batch size 32. On CelebA, we train the models for 50 epochs with weight

decay 10−4, learning rate 10−3 and batch size 128. We do not use early stopping. On MultiNLI

and CivilComments, we use the BERT for classification model from the transformers package:

BertForSequenceClassification.from_pretrained(’bert-base-uncased’,
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Method

ImageNet Dataset Waterbirds CelebA

Pretrain Fine-tune Worst(%) Mean(%) Worst(%) Mean(%)

Base Model ✓ ✓ 74.9±2.4 98.1±0.1 46.9±2.8 95.3±0

DFRTr
Tr ✓ ✓ 90.2±0.8 97.0±0.3 80.7±2.4 85.4±0.4

DFRVal
Tr ✓ ✓ 92.9±0.2 94.2±0.4 88.3±1.1 89.6±0.4

Base Model ✗ ✓ 6.9±3.0 88.0±1.1 39.8±2.0 95.7±0.1

DFRTr
Tr ✗ ✓ 45.4±4.1 69.8±7.0 83.4±2.6 87.5±0.3

DFRVal
Tr ✗ ✓ 53.9±1.8 62.6±2.2 85.0±2.1 87.6±0.3

DFRVal
IN ✓ ✗ 88.7±0.4 89.7±0.1 73.1±2.6 80.9±0.5

Table A.27: Effect of ImageNet pretraining and dataset fine-tuning. Results for DFR on the Wa-
terbirds and CelebA datasets when using an ImageNet-trained model as a feature extractor, training the
feature extractor from random initialization or initializing the feature extractor with ImageNet-trained
weights and fine-tuning on the target data. On Waterbirds, we can achieve surprisingly strong worst
group accuracy of 88.7% without finetuning on the target data. On CelebA, we can achieve reasonable
worst group accuracy of 85% without pretraining. However, on both datasets, both ImageNet pretrain-
ing and dataset finetuning are needed to achieve optimal performance. All methods in Table 5.2 use
ImageNet-trained models as initialization and finetune on the target dataset.

num_labels=num_classes). We train the BERT models with the AdamW [Loshchilov and Hut-

ter 2017a] with linear learning rate annealing with initial learning rate 10−5, batch size 16 and

weight decay 10−4 for 5 epochs.

DFR details. For DFR, we first extract and save the embeddings (inputs to the classification

layer of the base model) of the training, validation and testing data using the base model. We

then preprocess the embeddings to have zero mean and unit standard deviation using the stan-

dard scaler sklearn.preprocessing.StandardScaler from the scikit-learn package. In each

case, we compute the preprocessing statistics on the reweighting data used to train the last layer.

To retrain the last layer, we use the logistic regression implementation
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Finetuned WB CelebA

Last Layer 93.1±0.2 88.3±0.5

Last 2 Layers 93.1±0.5 87.2±0.9

Last Block 90.7±0.4 83.0±0.9

All Layers 35.6±0.1 77.8±0.1

Table A.28: Retraining multiple layers. We retrain the last linear layer, last two layers (linear, last
batchnorm and conv), last residual block, and all layers from scratch on group-balanced validation data.
Retraining the last layer is sufficient for optimal performance, and moreover retraining more layers can
hurt the results.

(sklearn.linear_model.LogisticRegression) from the scikit-learn package. We use ℓ1

regularization. For DFRVal
Tr we only tune the inverse regularization strength parameter 𝐶: we

consider the values in range {1., 0.7, 0.3, 0.1, 0.07, 0.03, 0.01} and select the value that leads to the

best worst-group performance on the available validation data (as described in Section 5.5, for

DFRVal
Tr we use half of the validation to train the logistic regression model and the other half to

tune the parameters at the tuning stage). For DFRTr
Tr we additionally tune the class weights: we

set the weight for one of the classes to 1 and consider the weights for the other class in range

{1, 2, 3, 10, 100, 300, 1000}; we then switch the classes and repeat the procedure. For the final eval-

uation, we use the best values of the hyper-parameters obtained during the tuning phase and

train a logistic regression model on all of the available reweighting data. We train the logistic

regression model on the reweighting data 10 times with random subsets of the data (we take all

of the data from the smallest group, and subsample the other groups randomly to have the same

number of datapoints) and average the weights of the learned models. We report the model with

averaged weights.

A.7.3.1 Ablation studies

Is ImageNet pretraining necessary for image benchmarks? DFR relies on the ability of

the feature extractor to learn diverse features, which may suggest that ImageNet pretraining is
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crucial. In Appendix Table A.27, we report the results on the same problems, but training the

feature extractor from scratch. We find that on Waterbirds, ImageNet pretraining indeed has a

dramatic effect on the performance of DFR as well as the base feature extractor model. However,

on CelebA DFR shows strong performance regardless of pretraining. The difference between

Waterbirds and CelebA is thatWaterbirds contains only 4.8𝑘 training points, making it difficult to

learn a meaningful feature extractor from scratch. Furthermore, on both datasets, finetuning the

feature extractor on the target data is crucial: just using the features extracted by an ImageNet-

trained model leads to poor results. We note that all the baselines considered in Table 5.2 use

ImageNet pretraining.

Retrainingmultiple layers. In Table A.28we perform another ablation by retrainingmultiple

layers from scratch on the group-balanced validation dataset on Waterbirds and CelebA. We find

that retraining just the last layer provides optimal performance, retraining the last two layers

(the last convolutional layer and the fully-connected classifier layer) or the last residual block is

competitive (but worse), while retraining the full network is a lot worse.
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Base Model Hypers

Method

Waterbirds

lr wd batch size aug Worst(%) Mean(%)

10−3 10−3 32 ✓
Base Model 74.9±2.4 98.1±0.1

DFRVal
Tr 92.9±0.2 94.2±0.4

10−3 10−3 32 ✗
Base Model 73.4 97.7

DFRVal
Tr 90.9 92.2

10−3 10−2 32 ✓
Base Model 24.1 94.4

DFRVal
Tr 88.0 88.6

10−3 10−2 32 ✗
Base Model 66.4 97.1

DFRVal
Tr 90.1 90.5

3 · 10−3 10−3 32 ✓
Base Model 71.5 98.1

DFRVal
Tr 91.9 93.5

3 · 10−3 10−3 32 ✗
Base Model 76.5 98.0

DFRVal
Tr 89.5 94.5

10−3 10−3 64 ✓
Base Model 73.5 98.0

DFRVal
Tr 93.1 95.0

10−3 10−3 64 ✗
Base Model 69.5 97.4

DFRVal
Tr 89.0 93.6

Base Model Hypers

Method

CelebA

lr wd batch size aug Worst(%) Mean(%)

10−3 10−4 128 ✓
Base Model 46.9±2.8 95.3±0

DFRVal
Tr 88.3±1.1 91.3±0.3

10−3 10−3 128 ✓
Base Model 44.3±6.4 95.2±0.1

DFRVal
Tr 86.2±1.2 90.8±0.7

10−3 10−4 128 ✗
Base Model 46.7±0.0 95.3±0.1

DFRVal
Tr 86.9±1.1 91.6±0.2

10−3 10−3 128 ✗
Base Model 40.6±8.7 95.1±0.2

DFRVal
Tr 85.6±1.4 91.8±0.5

Table A.29: Effect of base model hyper-parameters. We report the results of DFRVal
Tr for a range of

base model hyper-parameters on Waterbirds and CelebA as well as the performance of the corresponding
base models. While the quality of the base model has an effect on DFR, the results are fairly robust. For a
subset of configurations we report the mean and standard deviation over 3 independent runs of the base
model and DFR.
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Waterbirds dataset

G1 G2 G3 G4

Image

Examples

Description

landbird
on land

landbird
on water

waterbird
on land

waterbird
on water

Class Label 0 0 1 1

# Train data 3498 (73%) 184 (4%) 56 (1%) 1057 (22%)

# Val data 467 466 133 133

Target: bird type; Spurious feature: background type; Minority: G2,G3

CelebA hair color dataset

G1 G2 G3 G4

Image

Examples

Description

Non-blond
woman

Non-blond
man

Blond
woman

Blond
man

Class Label 0 0 1 1

# Train data 71629 (44%) 66874 (41%) 22880 (14%) 1387 (1%)

# Val data 8535 8276 2874 182

Target: hair color; Spurious feature: gender; Minority: G4

Figure A.44: Waterbirds and CelebA data. Dataset descriptions and example images from each group
on Waterbirds and CelebA datasets.
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MultiNLI

Text examples

Class

label

Description

# Train

data

# Val

data

G1

“if residents are unhappy, they can put wheels

on their homes and go someplace else, she said.

[SEP] residents are stuck here but they can’t

go anywhere else.”

0
contradiction

no negations
57498 (28%) 22814

G2
“within this conflict of values is a clash

about art. [SEP] there is no clash about art.”
0

contradiction

has negations
11158 (5%) 4634

G3

“there was something like amusement in

the old man’s voice. [SEP]

the old man showed amusement.”

1
entailment

no negations
67376 (32%) 26949

G4

“in 1988, the total cost for the postal service

was about $36. [SEP] the postal service cost us

citizens almost nothing in the late 80’s. ”

1
entailment

has negations
1521 (1%) 613

G5

“yeah but even even cooking over an open fire

is a little more fun isn’t it [SEP]

i like the flavour of the food.”

2
neutral

no negations
66630 (32%) 26655

G6
“that’s not too bad [SEP]

it’s better than nothing”
2

neutral

has negations
1992 (1%) 797

Target: contradiction / entailment / neutral; Spurious feature: has negation words. Minority: G4, G6

CivilComments

Text examples

Class

label

Description

# Train

data

# Val

data

“I’m quite surprised this worked for you.

Infrared rays cannot penetrate tinfoil.”
0

non-toxic

no identities
148186 (55%) 25159

“I think you may have misunderstood what

’straw men’ are. But I’m glad that your gravy is good.”
0

non-toxic

has identities
90337 (33%) 14966

“Hahahaha putting his faith in Snopes. Pathetic.” 1
toxic

no identities
12731 (5%) 2111

“That sounds like something a white person would say.”’ 1
toxic

has identities
17784 (7%) 2944

Target: Toxic / not toxic comment; Spurious feature: mentions protected categories.

Figure A.45: MultiNLI and CivilComments data. Dataset descriptions and data examples from dif-
ferent groups on MultiNLI and CivilComments. We underline the words corresponding to the spurious
feature. CivilComments contains 16 overlapping groups (corresponding to toxic / non-toxic comments
and mentions of one of the protected identities: male, female, LGBT, black, white, Christian, Muslim,
other religion. We only show examples with mentions of the male and white identities.
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Method

Group Info Waterbirds CelebA MultiNLI CivilComments

Train / Val Worst(%) Mean(%) Worst(%) Mean(%) Worst(%) Mean(%) Worst(%) Mean(%)

Base (ERM) ✗ / ✗ 74.9±2.4 98.1±0.1 46.9±2.8 95.3±0 65.9±0.3 82.8±0.1 55.6±0.6 92.1±0.1

DFRTr
Tr ✓/ ✓ 90.2±0.8 97.0±0.3 80.7±2.4 90.6±0.7 71.5±0.6 82.5±0.2 58.0±1.3 92.0±0.1

DFRVal
Tr ✗ / ✓✓ 92.9±0.2 94.2±0.4 88.3±1.1 91.3±0.3 74.7±0.7 82.1±0.2 70.1±0.8 87.2±0.3

Base Model trained without minority groups

Base (ERM) ✗ / ✗ 31.9±3.6 96.0±0.2 21.7±3.2 95.2±0.1 66.0±1.6 82.5±0.1 8.4±4.9 73.8±0.3

DFRTr
Tr-NM ✓/ ✓ 89.9±0.6 94.3±0.5 89.0±1.1 91.6±0.4 73.0±0.6 82.2±0.1 66.5±0.7 85.9±0.3

Table A.30: DFR variations. Worst-group and mean test accuracy of DFR variations on the benchmark
datasets problems. DFRVal

Tr achieves the best performance across the board. Interestingly, DFRTr
Tr-NM out-

performs DFRTr
Tr on all dataset and even outperforms DFRVal

Tr on CelebA. For all experiments, we report
mean±std over 5 independent runs of the method.
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What if we just use ImageNet features? As a baseline, we apply DFR to features extracted

by a model pretrained on ImageNet with no fine-tuning on CelebA and Waterbirds data. We

report the results in Table A.27 (DFRTr
IN and DFRVal

IN lines). While on Waterbirds the performance

is fairly good, on CelebA fine-tuning is needed to get reasonable performance. The results in

Table A.27 suggest that both ImageNet pretraining and fine-tuning on the target data are needed

to train the best feature extractor for DFR.

Robustness to basemodel hyper-parameters In TableA.29we report the results of DFRVal
Tr for

a range of configurations of the baseline model hyper-parameters. While the quality of the base

model clearly has an effect on DFR performance, we achieve competitive results for all the hyper-

parameter configurations that we consider, even when the base model performs poorly. For ex-

ample, on Waterbirds with data augmentation, learning rate 10−3 and weight decay 10−2 the base

model achieves worst group accuracy of 24.1%, but by retraining the last layer of this model with

DFRVal
Tr we still achieve 88% worst group accuracy.

Ablation on the number of linear model retrains. We study the effect of the number

of logistic regression retrains on different balanced subsets of the validation set in Table A.31 on

Waterbirds and CelebA.We retrain the last linear layer multiple times and average the parameters

of the resulting models, as described in Appendix A.7.3. In general, it is better to train more than

1 model and average their weights. This effect is especially prominent on CelebA, where a single

model gets 85% worst group accuracy, while the average of 3 models gets 88.6%. As we increase

the number of linear model retrains, the improvements saturate.

Ablation on the ℓ1 regularization. We emphasize that it is beneficial to use ℓ1 regularization

in spurious correlations benchmarks where the number of last layer features is much higher than

the reweighting dataset size (e.g. in Waterbirds we use approximately 500 examples for retrain-

ing the last layer in DFRVal
Tr while the dimensionality of the penultimate layer representations in
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Number of retrains

1 3 5 10 20

Waterbirds 91.21±1.82 92.88±0.45 91.73±1.25 93.13±0.29 92.89±0.19

CelebA 85.09±1.49 88.64±1.90 87.80±1.17 88.02±1.82 88.37±2.02

Table A.31: Ablation on the number of retrains in DFRVal
Tr . Worst group accuracy of DFRVal

Tr vary-
ing the number of logistic regression retrains on Waterbirds and CelebA: we train the logistic regression
model on the validation data several times with random subsets of the data (we take all of the data from
the smallest group, and subsample the other groups randomly to have the same number of datapoints)
and average the weights of the learned models. Averaging more than 1 linear model leads to improved
performance.

ResNet-50 is 2048). Without ℓ1 regularization, DFRVal
Tr achieves 87.72 ± 0.42% worst group accu-

racy on Waterbirds and 86.03 ± 0.42% on CelebA, as opposed to 92.9 ± 0.2% and 88.3 ± 1.1% if we

choose ℓ1 regularization strength through cross-validation as described in Appendix A.7.3.

Full model fine-tuning on validation. As an additional baseline, we finetune the full model

(as opposed to just the last layer) on the group-balanced validation set for 10 epochs with SGD

starting from the ResNet-50 checkpoint pre-trained on ImageNet and without training on the

corresponding train splits ofWaterbirds and CelebA.We achieve 89.3±1.3%worst group accuracy

on Waterbirds and 84.4 ± 0.5% on CelebA. While these results are good relative to ERM on the

standard training set, they are still significantly worse than DFRVal
Tr (see Table 5.2).

A.7.3.2 Prior work assumptions

In Section 5.5 we compare DFR to ERM, Group DRO [Sagawa et al. 2020], JTT [Liu et al. 2021],

CnC [Zhang et al. 2022], SUBG [Idrissi et al. 2021] and SSA [Nam et al. 2022]. These methods

differ in assumptions about the amount of group information available.
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Group DRO and SUBG assume that both train and validation data have group labels, and the

hyper-parameters are tuned using worst-group validation accuracy. DFRTr
Tr and DFRTr

Tr-NM match

the setting of these methods and use the same data and group information; in particular, these

methods only use the validation set with group labels to tune the hyper-parameters.

A number of prior works [e.g. Liu et al. 2021; Creager et al. 2021; Zhang et al. 2022] sidestep the

assumption of knowing the group labels on train data, but still rely on tuning hyper-parameters

using worst-group accuracy on validation, and thus, having group labels on validation data. In

fact, Idrissi et al. [2021] showed that ERM is a strong baseline when tuned with worst-group

accuracy on validation.

Lee et al. [2022] explore the setting where they do not necessarily require group labels on

validation data, but their method implicitly relies on the presence of sufficiently many minor-

ity examples in the validation set such that different prediction heads would disagree on those

examples to choose the most reliable classifier.

Recent works Nam et al. [2022] and Sohoni et al. [2021] explore the setting where the group

information is available on a small subset of the data (e.g. on the validation set), and the goal is to

use the available data optimally, both to train the model and to tune the hyper-parameters. These

methods use semi-supervised learning to extrapolate the available group labels to the rest of the

training data. We consider this same setting with DFRVal
Tr , where we use the validation data to

retrain the last layer of the model.

A.7.3.3 DFR variations

Here, we discuss two additional variations of DFRD̂D . In DFRTrTr , we use a random group-balanced

subset of the train data as D̂. InDFRTrTr-NM (NM stands for “NoMinority") we use a random group-

balanced subset of the train data as D̂, but remove the minority groups (G2,G3 onWaterbirds and

G4 on CelebA) from the data D used to train the feature extractor.

We compare different DFR versions in Table A.30. All three DFR variations obtain results com-
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petitive with state-of-the-art Group DRO results on the Waterbirds data. On CelebA, DFRVal
Tr and

DFRTr
Tr-NM match Group DRO, while DFRTr

Tr performs slightly worse, but still on par with JTT.

In particular, DFRTrTr-NM matches the state-of-the-art Group DRO by using the same data to train

and tune the model. Notably, DFRTr
Tr-NM achieves these results with the features extracted by the

network trained without seeing any examples from the minority groups! Even without minority

groups, ERM models extract the core features sufficiently well to achieve state-of-the-art results

on the image classification benchmarks.

DFRTr
Tr also significantly improves performance compared to the base model across the board,

but underperforms compared to DFRVal
Tr : it is crucial to retrain the last layer on new data that

was not used to train the feature extractor.

On the NLP datasets, DFRVal
Tr outperforms the other variations, but in all cases all DFR varia-

tions significantly improve performance compared to the basemodel. Notably, on CivilComments

the no minority version group of the dataset only retains the toxic comments which mention the

protected identities and non-toxic comments which do not mention these identities. As a result,

the base model only achieves 8.4% worst group performance! DFRTr
Tr-NM is still able to recover

66.5% worst group accuracy using the features extracted by this model.

A.7.3.4 Why is DFRTr
Tr-NM better than DFRTr

Tr ?

Let us consider the second stage of DFRD̂D , where we fix the feature encoder 𝑓 (·), and train a

logistic regression model L on the dataset 𝑓 (D̂), where by 𝑓 (D̂) we denote the dataset with

labels from the reweighting dataset D̂ and features from D̂ extracted by 𝑓 . We then evaluate the

logistic regression model L on the features extracted from the test data, 𝑓 (DTest).

Let us use M̂ to denote a minority group in the reweighting dataset D̂, and MTest to de-

note the same minority group in the test data. For DFRTr
Tr-NM and DFRVal

Tr , the model 𝑓 is trained

without observing any data from M̂ orMTest. Assuming the datapoints in M̂ andMTest are iid

samples from the same distirbution, the distribution of features in 𝑓 (M̂) and 𝑓 (MTest) will also
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Figure A.46: DFR Variations. Visualization of the features extracted from the reweighting dataset 𝐷̂
and the test data for different variations of DFR on theWaterbirds data. We show projections of the 2048-
dimensional features on the top-2 principal components extracted from 𝐷̂ . WithDFRVal

Tr andDFRTr
Tr-NM , the

distribution of the features for the minority groups G2 and G3 does not change between the reweighting
and test data, while with DFRTr

Tr we see significant distribution shift.

be identical.

On the other hand, with DFRTr
Tr , the minority group datapoints M̂ are used to train the feature

extractor 𝑓 . In this case, we can no longer assume that the distribution of features 𝑓 (M̂) will be

the same as the distribution of 𝑓 (MTest). Consequently, in DFRTr
Tr , the logistic regression model

L will be evaluated under distribution shift, which makes the problem much more challenging

and leads to inferior performance of DFRTr
Tr on the Waterbirds data. We verify this intuition in

Figure A.46, where we visualize the feature embeddings for the reweighting dataset 𝐷̂ and the

test data. We see that as we predicted, the distribution of the minority group features coincides

between D̂ and test data for DFRTr
Tr-NM and DFRVal

Tr , while DFRTr
Tr shows significant distribution

shift.

What D̂ should be used in practice? In Table A.30, the best performance is achieved by

DFRTr
Tr-NM and DFRVal

Tr , which retrain the last layer on data that was not used in training the

feature extractor. In practice, we recommend collecting a group-balanced validation set, which

can be used both to tune the hyper-parameters and re-train the last layer of the model, as we do

in DFRVal
Tr .
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A.7.4 Relation to transfer learning

Algorithmically, DFR is a special case of transfer learning, whereD serves as the source data, and

D̂ is the target data [Sharif Razavian et al. 2014]. However, themotivation of DFR is different from

that of standard transfer learning: in DFR we are trying to correct the behavior of a pretrained

model, and reduce the effect of spurious features, while in transfer learning the goal is to learn

general features that generalize well to diverse downstream tasks. For example, we can use DFR

to reduce the reliance of ImageNet-trained models on the background or texture and improve

their robustness to covariate shift (see Section 5.6), while in standard transfer learning we would

typically use a pretrained model as initialization or a feature extractor to learn a good solution on

a new dataset. In the context of spurious correlations, one would not expect DFR to work as well

as it does: the only reason DFR is successful is because, contrary to conventional wisdom, neural

network classifiers are in fact learning substantial information about core features, even when they

seem to rely on spurious features to make predictions. Moreover, in Appendix Table A.27 we show

that transfer learning with features learned ImageNet does not work nearly as well as DFR on

the spurious correlation benchmarks.

A.7.5 Details: ImageNet Background Reliance

Herewe provide details on the experiments on background reliance in Section 5.6.1 and additional

evaluations verifying the main results.

Data. We use the ImageNet-9 dataset [Xiao et al. 2020]. To test whether our models can gener-

alize to unusual backgrounds, we additionally generate Paintings-BG data shown in Figure A.49.

For the Paintings-BG data we use the Original images and segmentation masks for ImageNet-9

data provided by Xiao et al. [2020], and combine them with random paintings from Kaggle’s

painter-by-numbers dataset available at kaggle.com/c/painter-by-numbers/ as backgrounds.
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For the ImageNet-R dataset [Hendrycks et al. 2021], we only use the images that fall into one

of the ImageNet-9 categories, and evaluate the accuracy with respect to these categories. We

show examples of images from different dataset variations in Figure A.49.

Base model hyper-parameters. We use a ResNet-50 model pretrained on ImageNet and a VIT-

B-16 model pretrained on ImageNet-21k and finetuned on ImageNet. The ResNet-50 model is im-

ported from the torchvision package: torchvision.models.resnet50(pretrained=True).

The VIT-B-16 model is imported from the lukemelas/PyTorch-Pretrained-ViT package avail-

able at github.com/lukemelas/PyTorch-Pretrained-ViT; we use the command:

ViT(’B_16_imagenet1k’, pretrained=True) to load the model. To extract the embeddings,

we remove the last linear classification layer from each of the models. We preprocess the data

using the torchvision.transforms package Compose([ Resize(resize_size),

CenterCrop(crop_size), ToTensor(), Normalize([0.485, 0.456, 0.406], [0.229,

0.224, 0.225])]), where (resize_size, crop_size) are equal to (256, 224) for the ResNet-50

and (384, 384) for the VIT-B-16. We do not apply any data augmentation.

DFR details. We Train DFR on random subsets of the Mixed-Rand train data of different sizes

(DFRMR) or combinations of the Mixed-Rand and Original data (DFROG+MR). For DFROG+MR we

use the same number of Original and Mixed-Rand datapoints in all experiments. As the full

ImageNet-9 contains 50𝑘 datapoints, we train the logistic regression on GPUwith a simple imple-

mentation in PyTorch [Paszke et al. 2017]. We then preprocess the embeddings to have zero mean

and unit standard deviation using the standard scaler sklearn.preprocessing.StandardScaler

from the scikit-learn package. In each case, we compute the preprocessing statistics on the

reweighting data used to train the last layer. For the experiments in this section we use ℓ2 regu-

larization (as the number of datapoints is large relative to the number of observations, we do not

have to use ℓ1). We set the regularization coefficient 𝜆 to be 100 and train the logistic regression

model with the loss
∑
𝑥,𝑦∈D′ 𝐿(𝑦,𝑤𝑥 + 𝑏) + 𝜆

2 ∥𝑤 ∥
2, where 𝐿(·, ·) is the cross-entropy loss. We use
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Figure A.47: ImageNet background reliance (VIT-B-16). Performance of DFR trained on MixedRand
data and MixedRand + Original data on different ImageNet-9 validation splits. All methods use an VIT-
B-16 feature extractor trained on ImageNet21k and finetuned on ImageNet. DFR can reduce background
reliance with a minimal drop in performance on the Original data. See Figure 5.3 for analogous results
with a ResNet-50 feature extractor.
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Figure A.48: GradCAM visualizations of the features used by the baseline model and DFRMR on
ImageNet-9.

full-batch SGD with learning rate 1 and no momentum to train the model for 1000 epochs. We

did not tune the 𝜆 parameter or SGD hyper-parameters.

Results for VIT-B-16. We report the results for the VIT-B-16 base model in Figure A.47. The

results are generally analogous to the results for ResNet-50: it is possible to significantly reduce

the reliance of the model on the background by retraining the last layer with DFR. For the VIT,

removing the background dependence hurts the performance on the Original data slightly, but

greatly improves the performance on the images with unusual backgrounds (Mixed-Rand, FG-

Only, Paintings-BG). Removing the background dependence does not improve the performance

on ImageNet-R.
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BG modification. For each test image we generate images with 7 modified backgrounds:

MixRand (random Only-BG-T ImageNet-9 background, [1]), Paintings-BG, and constant black,

white, red, green and blue backgrounds. Then, for each model from Section 5.6.1 we compute the

percentage of the datapoints, on which changing the background with a fixed foreground does

not change the predictions compared to the original image. We get 87.5% for the baseline model,

92.4% for DFRMRand 93.1% for DFROG+MR, suggesting that the DFRMR and DFROG+MR models are

significantly more robust to modifying the background.

Prediction based on BG. Next, for each model we evaluate the percentage of test MixRand

datapoints on which the model makes predictions that match the background class and not the

foreground class. We get 14.8% for the baseline model, 11.2% for DFRMR and 11.7% for DFROG+MR.

The baseline model predicts the background class significantly more frequently than the DFR

models.

GradCAM. Finally, to gain a visual intuition into the features used by DFRMRand the base-

line models, in Figure A.48 we make GradCAM feature visualizations on three images from

ImageNet-9. We use the pytorch-grad-cam package [Gildenblat and contributors 2021] avail-

able at github.com/jacobgil/pytorch-grad-cam. While the baseline model uses the background

context, the DFRMR features are more compact and focus on the target object, again suggesting

that DFR reduces the reliance on the background information.
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Figure A.49: ImageNet variations. Examples of datapoints from the ImageNet variations used in the
experiments.
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A.7.6 Details: ImageNet Texture Bias Details

Here we provide details on the experiments on texture bias in Section 5.6.

Data. We generate the stylized ImageNet (SIN) data following the instructions at

github.com/rgeirhos/Stylized-ImageNet [Geirhos et al. 2018]. For evaluation, we use ImageNet-C

[Hendrycks andDietterich 2019] and ImageNet-R datasets [Hendrycks et al. 2021]. For ImageNet-

C we report the average performance across all 19 corruption types and 5 corruption intensities.

We show examples of stylized ImageNet images in Figure A.49.

Base model hyper-parameters. We use the same ResNet-50 and VIT-B-16 models as described

in Appendix A.7.5.

DFR details. We train DFR using the embeddings of the original ImageNet (IN), stylized Ima-

geNet (SIN) and their combination (IN+SIN) as the reweighting dataset. We preprocess the base

model embeddings by manually subtracting the mean and dividing by standard deviation com-

puted on the reweighting data used to train DFR; we did not use

sklearn.preprocessing.StandardScaler due to the large size of the datasets (1.2𝑀 datapoints

for IN and SIN; 2.4𝑀 datapoints for IN+SIN). We train the logistic regression for the last layer

on a single GPU with a simple implementation in PyTorch. We use SGD with learning rate 1,

no momentum, no regularization and batch size of 104 to train the model for 100 epochs. We

tuned the batch size (in the range {103, 104, 105}) and picked the batch size that leads to the best

performance on the ImageNet validation set (104). We did not tune the other hyper-parameters.

Results for VIT-B-16. We report the results for the VIT-B-16 base model in Table A.32. For this

model, baselines trained from scratch on IN+SIN and SIN are not available so we only report the

results for the standard model trained on ImageNet21k and finetuned on ImageNet; for DFR we
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report the results using IN+SIN as the reweighting dataset. Despite the large-scale pretraining

on ImageNet21k, we find that we can still improve the shape bias (36% → 39.9%) as well as

robustness to ImageNet-C corruptions (49.7%→ 52% Top-1 accuracy). On the original ImageNet

and ImageNet-R the performance of DFR is similar to that of the baseline model.

paragraphDetailed texture bias evaluation. To provide further insight into the texture bias

of the models trained with DFR, in Figure A.50 we report the fraction of shape and texture de-

cisions for different classes following Geirhos et al. [2018]. We produce the figure using the

modelvshuman codebase available at github.com/bethgelab/model-vs-human [Geirhos et al. 2021].

We report the results for both DFR models and models trained from scratch on IN, SIN and

IN+SIN as well as the ShapeResNet-50 model and humans (results from Geirhos et al. [2018]).

When trained on the same data, models trained from scratch achieve a higher shape bias than

DFR models, but DFR can still significantly improve the shape bias compared to the base model

trained on IN.

paragraphDetailed ImageNet-C results. In Figure A.51, we report the Top-1 accuracy for

DFR models and models trained from scratch on IN, SIN and IN+SIN on individual ImageNet-C

datasets. We use the ResNet-50 base model. The model trained from scratch on IN+SIN provides

the best robustness across the board, but DFR trained on IN+SIN also provides an improvement

over the baseline RN50(IN) model on many corruptions.
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Method

Training

Data

Shape

bias (%)

Top-1 Acc (%) / Top-5 Acc (%)

ImageNet ImageNet-R ImageNet-C

VIT-B-16 IN21k + IN 36 79.2/95.0 29.1/42.0 49.7/69.3

DFR IN+SIN 39.9 79.7/94.5 29.0/41.4 52.0/71.0

Table A.32: Texture-vs-shape bias results for VIT-B-16. Shape bias, top-1 and top-5 accuracy on
ImageNet validation set variations for VIT-B-16 pretrained on ImageNet21k and finetuned on ImageNet
and DFR using this model as a feature extractor and reweighting the features on combined ImageNet and
Stylized ImageNet datasets. By retraining just the last layer with DFR, we can increase the shape bias
compared to the feature extractor model and improve robustness to covariate shift on ImageNet-C.
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Figure A.50: Shape-texture bias report. Detailed report of the shape-texture bias generated using the
model-vs-human codebase (https://github.com/bethgelab/model-vs-human) [Geirhos et al. 2021].
The plot shows the fraction of the decisions made based on shape and texture information respectively
on examples with conflicting cues [Geirhos et al. 2018]. The brown diamonds (⋄) show human predictions
and the circles (◦) show the performance of ResNet-50 models trained on different datasets: ImageNet (IN,
yellow), Stylized ImageNet (SIN, blue), ImageNet + Stylized ImageNet (IN+SIN, red), ImageNet + Stylized
ImageNet Finetuned on ImageNet (IN+SIN→IN, pink); these models are provided in the model-vs-human
codebase. For each dataset (except for IN+SIN→IN) we report the results for DFR using an ImageNet-
trained ResNet-50 model as a feature extractor with squares □ of the corresponding colors. Reweighting
the features in a pretrained model with DFR we can significatly increase the shape bias: DFR trained on
SIN (blue squares) virtually matches the shape bias of the model trained from scratch on IN+SIN (red
circles). However, the model trained just on SIN (blue circles) from scratch still provides a significantly
higher shape bias, that we cannot match with DFR.
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Figure A.51: ImageNet-C results. Results of ResNet-50 models trained on different ImageNet varia-
tions (shown in circles) and DFR using an ImageNet-trained ResNet-50 model as a feature extractor on
ImageNet-C and ImageNet-R datasets. Each panel corresponds to a different corruption, and the hori-
zontal axis represents the corruption intensity. Retraining the last layer on ImageNet-Stylized (DFR(SIN),
red squares) improves robustness to ImageNet-C corruptions compared to the base model (RN50(IN), blue
circles), but does not match the robustness of a model trained from scratch on SIN or IN+SIN.
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A.7.7 Comparison to Kang et al. [2019]

We compare DFRVal
Tr and DFRTr

Tr to LWS and cRT methods proposed in Kang et al. [2019], and

perform other related ablations in Table A.33. We discuss the LWS and cRT methods in detail as

well as their algorithmic differences with DFR in Section 5.7 and Appendix A.7.1. We adapt the

original implementation for LWS and cRT8.

In addition to LWS and cRT, we evaluate last layer re-training on the training and valida-

tion data with group-balanced data sampling. These methods serve as intermediate variations

between DFR and cRT, as they use balanced sampling instead of subsampling compared to DFR,

but use group information instead of class information compared to cRT. For DFR, we report the

performance of DFRTr
Tr and DFRVal

Tr .

We train LWS, cRT and last layer re-training variations for 10 epochs with SGD, using co-

sine learning rate schedule decaying from 0.2 to 0; DFR implementation details can be found in

Appendix A.7.3.

Since the original LWS and cRT methods were proposed to address the class imbalance prob-

lem, they perform poorly in terms of the worst group accuracy in the spurious correlation setting.

LWS performs especially poorly, as it only retrains a single scaling parameter per class, which

is not sufficient to remove the reliance on spurious features. Re-training the last layer with bal-

anced data sampling with respect to the group labels does improve performance compared to

these original methods from Kang et al. [2019] as well as ERM, but underperforms compared to

both DFR versions. This ablation highlights the importance of subsampling compared to balanced

sampling [see also Idrissi et al. 2021]9.

DFRVal
Tr achieves the best performance across the board. To sum up, for optimal performance,

it is important to use held-out data (as opposed to re-using the train data) and to perform data
8https://github.com/facebookresearch/classifier-balancing
9The difference is less pronounced on Waterbirds with retraining on the validation set because the validation

set is relatively group-balanced. In CelebA the group distribution is the same in validation and training sets, so
subsampling performs much better than group-balanced sampling.
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Method

Class or group

Data Balancing

Waterbirds CelebA

balancing WGA WGA

LWS [Kang et al. 2019] Class Train
Balanced
sampling

40.03±8.07 35.55±14.4

cRT [Kang et al. 2019] Class Train
Balanced
sampling

74.48±1.5 52.88±5.96

Re-training last layer Group Train
Balanced
sampling

76.48±1.24 56.11±4.77

Re-training last layer Group Validation
Balanced
sampling

89.21±1.04 67.66±2.14

DFRTr
Tr Group Train Subsampling 90.2±0.8 80.7±2.4

DFRVal
Tr Group Validation Subsampling 92.9±0.2 88.3±1.1

Table A.33: Comparison to LWS and cRT from Kang et al. [2019] and ablations. We compare
DFRVal

Tr and DFRTr
Tr to LWS and cRT proposed in Kang et al. [2019] for long-tail classification, as well as

variations of last layer retraining on Waterbirds and CelebA dataset. The methods differ in (1) the data
(train or validation) used for retraining last layer or logits scales in LWS, (2) whether class or group labels
are used for balancing the dataset, and (3) the type of balancing which is either subsampling the dataset
or using a balanced dataloader which first selects the class or group label uniformly at random and then
samples an example from that class or group. Notice the significant improvement that we gain in terms
of WGA as we change the data from train to validation, and as we change the balancing from balanced
sampling to subsampling. DFRVal

Tr performs best compared to other methods.

subsampling according to group labels (as opposed to using group-balanced data sampling).
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