

An On-Line Handwriting Recognizer
with Fisher Matching, Hypotheses
Propagation Network and Context

Constraint Models

By

Jong Oh

A dissertation submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

Department of Computer Science

New York University

May 2001

Davi Geiger

 Jong Oh

All Rights Reserved, 2001

iv

DEDICATION

To my late aunt Jung-Ja Cho

and my cousin Susan

v

ACKNOWLEDGEMENTS

I thank my advisor Davi Geiger for his support and helpful feed-backs on research.

Especially his openness to new ideas was a great enabling factor in initiating this

project. I also appreciate Mark Pipes, who was a visiting student from MIT during

the last summer, for his coding help for experiments and his creative contribution

in the idea of visual context modeling.

vi

ABSTRACT

We have developed an on-line handwriting recognition system. Our

approach integrates local bottom-up constructs with a global top-down measure

into a modular recognition engine. The bottom-up process uses local point features

for hypothesizing character segmentations and the top-down part performs shape

matching for evaluating the segmentations. The shape comparison, called Fisher

segmental matching, is based on Fisher's linear discriminant analysis. The

component character recognizer of the system uses two kinds of Fisher matching

based on different representations and combines the information to form the

multiple experts paradigm.

Along with an efficient ligature modeling, the segmentations and their

character recognition scores are integrated into a recognition engine termed

Hypotheses Propagation Network (HPN), which runs a variant of topological sort

algorithm of graph search. The HPN improves on the conventional Hidden Markov

Model and the Viterbi search by using the more robust mean-based scores for word

level hypotheses and keeping multiple predecessors during the search.

We have also studied and implemented a geometric context modeling

termed Visual Bigram Modeling that improves the accuracy of the system's

performance by taking the geometric constraints into account, in which the

component characters in a word can be formed in relation with the neighboring

vii

characters. The result is a shape-oriented system, robust with respect to local and

temporal features, modular in construction and has a rich range of opportunities for

further extensions.

viii

TABLE OF CONTENTS

DEDICATION iv

ACKNOWLEDGEMENTS v

ABSTRACT vi

LIST OF FIGURES xii

LIST OF TABLES xv

CHAPTER 1. Introduction 1

1.1 On-Line Handwriting Recognition 2

1.2 Off-Line Handwriting Recognition 4

1.3 Comparisons of On-Line and Off-Line Recognition 6

1.4 Constraints on Handwriting Style and Vocabulary 9

1.5 Writer-Independence vs. Writer-Dependence 12

1.6 Functional Topics of Handwriting Recognition 14

1.7 Previous Works and Contributions of the Thesis 16

1.7.1 Fisher Discriminant Analysis Based Character Recognizer 17

1.7.2 Multiple Experts Fusion for the Character Recognizer 18

ix

1.7.3 Word-Level Hypothesis Evaluation Taking the Average of the Component

Character Scores 20

1.7.4 Hypotheses Propagation Network (HPN) 20

1.7.5 Feature-Link Code 21

1.7.6 Ligature Filtering Modeling 22

1.7.7 Visual Bigram Modeling (VBM) 23

CHAPTER 2. Data Acquisition and Normalization 24

2.1 Gaussian Smoothing 25

2.2 Global and Local Filtering 26

2.3 Translation and Scale Normalization 28

2.4 Other Normalizations 31

CHAPTER 3. Feature Extraction and Representation 32

3.1 Local Point Features 32

3.2 Sub-character Primitive Features 33

3.3 Annotated Image Features 34

3.4 The Features Used by the System 37

CHAPTER 4. Character Segmentation 40

4.1 Analytic vs. Holistic Approach 40

4.2 Explicit vs. Implicit Segmentation 41

x

4.2.1 Recognition by Segmentation 42

4.2.2 Segmentation by Recognition 42

4.2.3 Fuzzy Centering Segmentation 43

4.3 Curvature-Based Static/Dynamic Segmentation 45

4.4 The Feature-Link Coding 47

4.4.1 The Feature-Links and Sub-Stroke Primitives 47

4.4.2 Computing the Feature-Link Code 49

CHAPTER 5. Component Character Recognition 54

5.1 Character Recognition Paradigms 54

5.1.1 Structural Character Recognition 55

5.1.2 Neural Network Based Character Recognition 56

5.1.3 Hidden Markov Model Based Character Recognition 58

5.2 Linear Projection Methods 59

5.3 Fisher's Segmental Matching 64

5.3.1 Construction of the Fisher Projection Matrix 65

5.3.2 Training and Character Recognition 67

5.4 Experimental Results on Basic Representations 70

5.5 Multiple Experts Fusion 74

5.6 Experimental Results on the Fusion Matching 77

CHAPTER 6. Word Recognition Engine 81

xi

6.1 Conventional Word Hypothesis Evaluation and Its Problems 82

6.2 Word Recognition as a Graph Search Problem 84

6.3 Hypotheses Propagation Network 88

6.3.1 The HPN Search 88

6.3.2 Pruning on the Hypothesis List 92

6.4 Experimental Results 92

CHAPTER 7. Hypotheses Filtering Models 95

7.1 Dynamic Lexicon 95

7.2 Ligature Modeling 97

7.2.1 Using Feature-Link Code to Model Ligatures 98

7.2.2 Examples and Experimental Results 100

7.3 Visual Bigram Modeling 103

7.3.1 Modeling Visual Bigram Information 104

7.3.2 Training the VBM 107

7.3.3 Computing the Class Model Coefficients 108

7.3.4 Experimental Result 110

CONCLUSION 112

REFERENCES 115

xii

LIST OF FIGURES

Figure 1. A tablet digitizer, input sampling and communication to the computer........ 4

Figure 2. (a) Original off-line image (b) the result with some spurs after applying

thresholding and thinning... 5

Figure 3. (a) A pair of characters "th" each of whose regions overlapping in space (b)

spatial separation of "t" and "h" (c) temporal separation of "t" and "h"........................ 7

Figure 4. (a) A written image of "A" and the three different orders that it could have

been written indicated in boxed numbers in (b), (c) and (d). ... 8

Figure 5. Three different handwriting styles... 10

Figure 6. (a) Two different allographs of "a" and (b) three allographs of "x." 13

Figure 7. Block diagram showing the module entities and the flow of control and

information between modules. ... 15

Figure 8. Distribution of interval points in one dimension. Filled circles are original

data points and empty circles are interpolated points (a) original distribution (b)

distribution after the local filtering. ... 28

Figure 9. A cursively written input word of “eye.” The left side shows the high-

curvature points (in filled dots). The right side shows the high-curvature points along

with the augmentation points (in empty dots).. 46

Figure 10. The 24 feature-link templates indexed from 0... 50

Figure 11. An example word "day," its feature-links and the corresponding feature-

link code. The filled and empty circles are the segmentation points. 50

xiii

Figure 12. (a) Hypothetical three class clusters in the original space and their best

separating hyper-planes. (b) The clusters projected to the projection space, the

scattering effect and the separation between the classes.. 63

Figure 13. The distribution of the candidate characters and their scores produced by

ECV based recognizer with an input of "a." .. 73

Figure 14. Overall architecture of feature-fusion character recognizer. 76

Figure 15. A hypothetical word input whose middle part is poorly shaped, and the

arcs representing the segments identified by the system. The pair <s, n> on each arc is

the interpretation of the corresponding segment, where s is the character label and n

the character recognition score... 83

Figure 16. The segmentation graph of an input. The segmentation points are indicated

by the dots over data, which are also the vertices of the graph along with S and T. The

edges installed by the generation rule are indicated by the arcs with arrows............... 86

Figure 17. (a) An edge from the segmentation graph (b) the same edge expanded into

multiple interpreted edges in the interpretation graph. .. 86

Figure 18. The lattice structure of HPN and an example of edge from the node N (t',

m') to node N (t, m)... 90

Figure 19. The look-back windows of HPN, from the current processing time. 90

Figure 20. Snapshot of HPN search building the hypothesis list H (t, m) for time t and

the class m. ... 91

Figure 21. Incorrect and correct character segmentations and the ligature modeling.

The segment boundaries are indicated as dots. (a) Wrong segmentation of "g" into "o"

and "j." This case is rejected by ligature modeling because continuously written "oj"

requires a ligature between the segments. (b) Correct segmentation of "pie." (c)

xiv

Wrong segmentation of "pie" into "jie." The hypothesized ligature is not consistent as

a ligature between "j" and "i." Therefore it will not be taken as permissible............ 101

Figure 22. The example characters that are ambiguous individually but are obvious

when seen in the context. ... 103

xv

LIST OF TABLES

Table 1. Character recognition tests on ECV representation.. 72

Table 2. Character recognition tests on TFV representation. ... 72

Table 3. Character recognition tests on combined representation fusion matching. 79

Table 4. The fusion matching's character recogniton performance and comparison with

that of ECV and TFV representations.. 80

Table 5. The fusion matching's reduction effect on the size of candidate set compared with

the matchings of ECV and TFV... 80

Table 6. Word recognition performances on the ECV representation and its Fisher

matching with different recognition engine searches... 93

Table 7. Word recognition performance on the fusion representation and its Fisher

matching with different recognition engine searches... 94

Table 8. The comparison of word recognition performances with and without the ligature

modeling. Both tests were done using the fusion representation and the HPN search.

.. 102

Table 9. Three categories of lowercase letters according to the presence of ascender or

descender sub-strokes... 106

Table 10. Comparison of word recognition performances with and without the VBM.

Both tests were done using the fusion representation and the HPN search. 111

xvi

1

CHAPTER 1. Introduction

Handwriting has been a medium for communicating messages and ideas

between people, across space and time, from the time when the first alphabet was

invented a few thousand years ago. In ancient times, the capability of handwriting

was a privilege available only to a small number of specially trained scribes and

scholars, and practically all documents and publications had been handcrafted by

them until the invention of the printing press. As the literacy rate improved,

handwriting had served as a mainstay means of persistent communications until

the advent of the typewriter. Nowadays, even with the modern technologies like

word processors, fax machines and electronic mail, handwriting has survived as a

useful and versatile communication method because of the ubiquity and the

convenience of pen and paper in various everyday situations. In the future,

handwriting may only thrive more because of the technological developments

under way that intend to establish handwriting as a new mode for humans to

communicate with computers.

Handwriting has long been studied by numerous disciplines for various

different aspects and purposes, and they include experimental psychology,

neuroscience, engineering, computer science, anthropology, education, forensic

2

science, etc ([57], [58], [68], [69], [75], [76], [77]). From the computer science

perspective, the types of analyses involved are the recognition, the interpretation

and the verification of handwriting. Handwriting recognition is the task of

transcribing a language message represented in a spatial form of graphical marks,

into a computer text, for example, a sequence of 8-bit ASCII characters.

Handwriting interpretation is the task of determining the most likely meaning of a

given body of handwriting, for example a mailing address written on an envelope.

This can be regarded as a more general level of handwriting recognition and uses

semantic context information to resolve the ambiguities arising from the multiple

possible ways the input can be interpreted. Handwriting verification is the task of

determining whether or not a given handwriting belongs to a particular person and

can have use, for example in forensic investigation. Signature verification can be

considered as a sub-field of handwriting verification and deals with a special type

of handwriting, that is, people's signatures and has applications as a means of

identification and security ([59]). Handwriting recognition tasks fall in two broad

categories: one is on-line recognition and the other is off-line recognition.

1.1 On-Line Handwriting Recognition

On-line handwriting recognition assumes that a transducer device is

connected to the computer and is available to the user. The transducer converts the

3

user's writing motion into a sequence of signals and sends the information to the

computer. The most common form of the transducer is a tablet digitizer. A tablet

consists of a plastic or electronic pen and a pressure or electrostatic-sensitive

writing surface on which the user forms one's handwriting with the pen. Sampling

the movement of the pen-tip, the digitizer is able to detect information like x and y

coordinates of a sampled point, the state of whether the pen touches the surface

(pen-down) or not (pen-up). The information is sent to the connected computer for

recognition processing (Figure 1). A "stroke" in on-line data is defined as a

sequence of sampled points from the pen-down state to the pen-up state of the pen,

and the completed writing of a word consists of a sequence of one or more strokes.

A "digital ink" is the display of the strokes on the computer screen. By digital ink,

the user can see what he or she writes on the tablet and it provides interactivity

between the user and the computer. For example, by manipulating the digital ink,

the user can correct or edit one's writing in an interactive manner. One natural

application of on-line handwriting recognition is as an alternative input method to

the computer. In English, the size of the alphabet is relatively small and the

language fits well for keyboard entry, but for a language like Chinese that has a

much larger alphabet, using a keyboard is a non-trivial challenge. In addition, for

the new trend of small form factor computers and devices used for mobile

computing, carrying a keyboard, even in miniaturized from, is becoming less and

4

less an option. Another application is as a more natural and easier-to-use interface

to the tasks involving complex formatting, like entering and editing equations, and

drawing sketches and diagrams.

1.2 Off-Line Handwriting Recognition

Off-line handwriting recognition can be regarded as an extended field of

OCR (Optical Character Recognition) and lacks the interactive nature of on-line

handwriting recognition provided by the digital ink. In OCR, machine-printed

material is scanned into a computer file in two-dimensional image representation,

while off-line handwriting recognition deals with hand-written messages instead of

printed publications. Off-line data is two-dimensional in structure because of its

Figure 1. A tablet digitizer, input sampling and communication to the computer.

Electronic pen

Digitizing tablet

Computer
and

recognition
system

(x1, y1)
(x2, y2) (xi, yi)

… …

5

image representation and has a typical size of a few hundred kilobytes per word.

Since an image has no granted provision to distinguish its foreground and

background, the first step of an off-line recognition, called "thresholding" ([42],

[52], [65]), is to separate the foreground pixels from the background in the input.

Unlike on-line handwriting, a written image also has a line thickness whose width

depends on the writing instrument used and the scanning process. Hence the next

processing step is to apply a class of techniques called "thinning" or

"skeletonization" ([37], [61]) which tries to shed out redundant foreground pixels

from the input. These early preprocessing steps are necessary for off-line

recognition but are in general expensive computationally and imperfect, and may

introduce undesirable artifacts in the result, for example, "spurs" in the thinning

process ([37], [61]). The applications of off-line handwriting recognition include

Figure 2. (a) Original off-line image (b) the result with some spurs after
applying thresholding and thinning.

(a) (b)

6

reading handwritten mail addresses in automated postal sorting, reading bank

check amounts, automatic processing of handwritten forms and interpretation of

handwritten notes and manuscripts.

1.3 Comparisons of On-Line and Off-Line Recognition

An aspect of on-line handwriting recognition that sets it apart from off-line

handwriting recognition, OCR or other image recognition tasks, is the temporal

input sequence information provided directly by the user. The digitizer naturally

captures the temporal ordering information when it samples the points on the

contour that the user is forming. Hence on-line data has one-dimensional structure

and has a typical size of a few hundred bytes per word. This dynamic information

provides clean foreground separation and perfect thinning, and the on-line

recognition can bypass the preprocessings that are required by the off-line

recognition processing. Also the difference in input representation leads to large

difference in the size of the input data. As mentioned above, eon-line data, in

general, is at least an order of magnitude more compact compared to off-line data

because of the different dimensionalities in representation. The difference in the

data size also results in substantial difference in the processing time.

7

Another important advantage of on-line data is that its sequence

information makes the character boundary segmentation easier to do. After the

preprocessing stage, most handwriting recognizers, whether on-line or off-line, try

to break its input into intervals corresponding to hypothetical characters and apply

an evaluation method to the intervals. The recognition performance of the system

has a substantial dependence on the quality and the robustness of the character

segmentation. Due to the cues available from the temporal ordering built into its

input data, an on-line recognizer has a non-trivial advantage in generating

segmentations reliably and efficiently. For example, when two neighboring

characters overlap in the respective occupying regions, it is much harder for an

Figure 3. (a) A pair of characters "th" each of whose regions overlapping in
space (b) spatial separation of "t" and "h" (c) temporal separation of "t" and
"h"

(a)

(b) (c)

8

off-line recognizer to segment them correctly because any simple geometric

separation will contain a part of the other character (see Figure 3). For an on-line

recognizer, the problem is easier to handle since the boundaries of the two

characters may overlap spatially but never in time. Meanwhile, an advantage of

off-line recognition's image representation is that it is insensitive to variations in

the ordering of the strokes contained in handwriting. See Figure 4. That is, the

same handwriting may have been formed in many different orders of strokes, but

the completed written image looks the same and has the same representation. This

is not the case for on-line data since different orderings of the strokes will result in

Figure 4. (a) A written image of "A" and the three different orders that it could
have been written indicated in boxed numbers in (b), (c) and (d).

(a)

(b) (c) (d)
1 2

3

1

2

1

2

9

different representations even though the completed image is the same.

Fortunately, each character class has certain regularity in stroke orderings so that

the number of different stroke orders is not large in most cases. In overall

comparison, the advantages of on-line handwriting recognition outweigh its

disadvantages and on-line recognizers achieve consistently higher accuracy and

run faster than the off-line recognizers do. Because of the benefits of on-line

recognition, some efforts have studied the interchangeability of the representations

([14], [1], [49], [60]). The rationale is that if we have a means to convert off-line

data to an on-line version and apply the on-line processing techniques, then we

would achieve a level of performance comparable to on-line recognition, on the

off-line data. In addition, we would have a unified paradigm that handles both

types of recognition tasks using the same system. The essence of such a

conversion would be the recovery of temporal ordering of the trajectories in the

input image. However, the interchangeability has proven to be asymmetric: the

conversion from on-line data to off-line version is not hard but the other direction

has turned out to be difficult and has led to only limited success.

1.4 Constraints on Handwriting Style and Vocabulary

10

In terms of the constraint on the input writing style, handwriting

recognition, on-line or off-line, has three different modes supporting printed,

cursive and mixed styles. See Figure 5. Printed style recognition is the easiest

because each character of handwriting in such style has a clearer boundary with its

neighbors. For example, the characters in printed style writing are usually

separated by a pen-up signal in on-line recognition. The extra assumptions that we

can take about printed style handwriting make the segmentation step easier to

perform. In cursive script recognition, however, most of the component characters

are connected to their neighbors by a kind of sub-stroke called "ligature" that is not

part of any letters but a connecting pattern between two letters. In this situation, it

Figure 5. Three different handwriting styles.

11

is much more challenging to hypothesize about the character segmentation since

there is scarcer information hinting at the likely segmentation boundaries. Printed

style mode can be regarded as a subset of cursive mode recognition except for

some idiosyncracies, and the mixed mode can be obtained as a by-product of

obtaining both printed and cursive mode supports. Therefore the hardest problem

is the cursive mode recognition.

Another important constraint on handwriting recognition is the size of the

vocabulary supported by the system. Almost all modern handwriting recognizers

use a dictionary to improve the accuracy. The hypothetical characters identified

by the system can easily be very ambiguous even to human eyes, when they are

considered in isolation. Also many candidates that are mis-hypothesized by the

system may look plausible as real characters when viewed in isolation from the

context. Therefore the ambiguities are ever-present epiphenomena of the

recognition process that the system needs to cope with and the neighboring context

offers valuable information for the resolution. Other than the visual context, the

lexicon provides the linguistic constraints that specify the legal strings permissible

according to the vocabulary. By pruning the search space using the lexicon, many

spurious hypotheses will not be generated and the system will need to handle a

smaller number of legal candidates. This not only improves the accuracy of the

system, but also speeds up the recognition performance due to the economy

12

achieved by the search focus. However, the size of lexicon has an inversely

proportional relationship with the system's accuracy because, with larger

vocabulary, there will be more legal candidates generated and more room for

ambiguities and mistakes. Therefore it is important for a handwriting recognizer

to handle a large lexicon and scale up easily and robustly as more words are added

to the dictionary.

1.5 Writer-Independence vs. Writer-Dependence

Another taxonomy in handwriting recognition is the classes of writer-

independent and writer-dependent systems. Writer-independence means that the

system can handle the idiosyncrasies of multiple people's writing styles, and a

writer-dependent system is trained and optimized to recognize a single person's

writing. Within a character class, there can be more than one subclass of the class

each of which has substantial difference from the others in visual shape. This

subclass standing for a representative variability within a class is called

"allograph." See Figure 6. Therefore each character class consists of one or more

allographs and as the number of people increases, there will need to be more

allographs covering the range of personal styles among them. Automatically

identifying a good set of allographs is a challenging task and takes a huge number

of samples for adequate construction. Also larger number of allographs means

13

more processing time and more opportunity for confusion. On the other hand, a

writer-dependent system is trained with only one user and expectedly has less

variability in the writing data, leading to smaller number of allographs and higher

accuracy.

Most likely, writer-dependence may not be very meaningful to off-line

recognition systems because of the nature of many of their applications like postal

code sorting and recognizing the amounts of bank checks. In the case of on-line

recognition, writer-dependence makes more sense since the system will typically

serve as an input method to computers used personally by single user, that is, not

intended to be shared by multiple users. Ideally such an on-line recognizer will

Figure 6. (a) Two different allographs of "a" and (b) three allographs of "x."

(a)

(b)

14

have a certain level of default writer-independence to start with. Thereafter, the

system will be activated, either automatically or by the user, for personal training

and the recognizer will learn the particularities of the owning user's writing style,

thereby picking up extra recognition accuracy. This process is termed "user-

adaptation" and is an attractive and desirable property. The availability of user

adaptation, however, is critically influenced by the kind of techniques used by the

character recognition. Practically, user adaptation needs to be done incrementally

with relatively small amounts of data in a short enough training time tolerable by

the user. Therefore a data-hungry and time-intensive training paradigm like a

neural network is not suitable for such purpose.

1.6 Functional Topics of Handwriting Recognition

We have identified below six functional topics that any word or higher-

level handwriting recognizer, whether on-line or off-line, requires for

performance. The data normalization is the front end of the system and performs

noise suppression and regularizes the input data variability like size, translation,

and rotation. The feature extraction computes the target features and plugs them in

the internal representation of the system. The segmentation module generates the

hypothetical character or sub-unit segmentations consumed by the recognition

15

engine. The component character recognizer evaluates a given segmentation

into class-labeled scores determined by the recognizer's internal metric.

The recognition engine is the place where the various information from the rest of

the system is all integrated to generate and propagate word level hypotheses. The

Figure 7. Block diagram showing the module entities and the flow of control and
information between modules.

Input

Data normalization

Feature Extraction

Character Recognizer Segmentation

Recognition Engine Hypotheses Filtering

16

hypotheses filtering, or postprocessing, is used both to improve the accuracy and

to speed up the recognition performance by controlling the amount of search

performed by the recognition engine. Typically, the recognition engine generates

large number of hypotheses, many of them spurious, so the filtering applies pre-

arranged models either to eliminate or to rearrange the worthiness of the

hypotheses. The block diagram of Figure 7 illustrates each module standing in

relation to the entire system and the flow of control and information between the

modules, which are actually representative of our system. The module entities and

the actual control flow among the modules may depend on the specific approaches

taken by a system. For example, by taking implicit segmentation strategy (see

CHAPTER 4) there will be no segmentation module standing separately, and

instead it will be merged with the recognition engine. Another example is that the

feature extraction may have local focus as in our system so that the character

recognizer needs to communicate with the module each time it is invoked.

1.7 Previous Works and Contributions of the Thesis

The research focus in this thesis will be to develop a solution to the hardest

problem in natural handwriting recognition: an on-line cursive script recognizer

that has arbitrarily scalable vocabulary. Traditionally, most handwriting

recognition researches have concentrated on the study of isolated character

17

recognition and relatively little effort has been spent on the rest of the process ([6],

[13], [27], [39], [67], [71]). There may have been two reasons for this. Firstly the

community may have over-relied on the potential contribution from the

discriminative power of isolated level character recognizer. It is now being

realized that the ambiguities and the spuriousness encountered during the

recognition process are better and more naturally resolved by drawing relevant

information from the context rather than trying to put the discriminative capacity

of the character recognizer to the limit. Secondly, the community may have under-

estimated the complexity of the string level recognition and tried to reuse the

established standard like Hidden Markov Model. The character recognizer indeed

plays an important role in the process, but the experiences in the field indicate that

more orchestrated and higher level integration of diverse information from the rest

of the system is in strong demand to accomplish higher performance and

robustness. The center of such information integration is the recognition engine

and ours is a general model geared for the stated focus. In addressing these issues,

we will develop, demonstrate and claim the following contributions.

1.7.1 Fisher Discriminant Analysis Based Character Recognizer

Fisher discriminant analysis (FDA) ([15], [64]) is an improvement of more

conventional linear projection methods like Principal Component Analysis (PCA).

18

A notable weakness of PCA is that the projection it performs scatters data in the

projection space without considering of the class specific distribution structures.

In contrast, the projection matrix of FDA is constructed by taking the class specific

regularities into account. More specifically the FDA tries to maximize the

between-class scatter while minimizing the within-class scatter in the projection

space. The result is a clearer class boundaries and thus easier separation between

the classes. While the principle has been known for decades, practical application

dealing with high dimensional representation space had not been tried until

recently when the face recognition community used it successfully ([3]).

A substantial advantage of using linear techniques like FDA is that the

training is much faster and requires relatively smaller amount of training data

compared with the more popular methods like neural networks and hidden Markov

models described in CHAPTER 5. Therefore it has a potential to make user-

tailored training feasible. The FDA will be used in this thesis as the base for the

character recognizer for the first time for letter and word level performance in

handwriting recognition.

1.7.2 Multiple Experts Fusion for the Character Recognizer

A problem with using the linear techniques for a character recognizer in

string level recognition task has been that the character scores computed by such a

19

technique have a linear distribution so that it is not easy to determine which

characters to exclude from the candidate list. Therefore such a recognizer needs to

retain larger number of candidates for adequate accuracy. This is in turn slows

down the recognition engine since it will generate more word level hypotheses.

We will address this issue by the use of multiple experts fusion paradigm.

More specifically, the character recognizer in our system will use two FDA

recognizers each working on different representation. The recognition results from

the two FDA recognizers will be integrated at a fusion module that combines the

information and produces the final recognition result. Conventional fusion

approaches typically involve designing the topology of interconnections between

the recognizers ([1], [28], [63]), therefore the overall mechanism is implicit. Our

information fusion is unique in the sense that it has an explicit strategy of how to

re-compute the new scores and thereby reshuffle the ranks of the final candidates.

We will show how the fusion process proceeds and will demonstrate its

effectiveness by the experimental result showing much reduced candidate set, also

with improved accuracy.

20

1.7.3 Word-Level Hypothesis Evaluation Taking the Average of the

Component Character Scores

The conventional method of evaluating string level hypothesis in

handwriting recognition has been accumulating the confidence values assigned to

each string component ([6], [13], [27], [39], [71]). The accumulation metric,

however, has a weakness when the input contains a black-out interval, that is an

ill-formed region for example by mistake. The accumulative scoring may also

have the undesirable preference to longer or shorter (depending on the nature of

the metric) hypotheses. This is one place the handwriting recognition community

has not paid the due attention and the researchers have assumed the accumulation

metric by default. We will take examples showing superior robustness of the

components average based hypothesis metric, to the accumulation metric. The

effectiveness of the new metric will be demonstrated when we will illustrate the

experimental results on our recognition engine.

1.7.4 Hypotheses Propagation Network (HPN)

The standard Viterbi search runs optimally assuming that word evaluation

metric is perfect. But the assumption is not practical in reality and other than the

metric, there are many sources of noise like perturbations in data acquisition, in

feature extraction, ambiguities and confusions in the character recognition process

21

and so on, all disturbing the Viterbi search. While this is a well-known problem in

the statistical pattern recognition setting ([6], [13], [27], [39], [71]), no previous

work has tried to address the soundness of the fundamental assumption or its

remedy. Our strategy to cope with this problem is to allow more than one

predecessor hypotheses at each propagation point in our recognition engine termed

Hypotheses Propagation Network. The rationale is to compensate the expected

sub-optimality due to the noises in the hypotheses evaluation by keeping more

options open for determining the predecessors. The effectiveness of this approach

over the conventional Viterbi search will be demonstrated when we illustrate the

experimental result on word performances. The HPN also has modular design in

the sense that various information coming from other parts of the system are

handily integrated to make the management of the hypotheses propagation easier

and efficient.

1.7.5 Feature-Link Code

Using our high-curvature based segmentation, we identify each segment

between the two consecutive segmentation points as “feature-link.” We have 24

convexity-directional pattern templates each having unique index. Using a

template matching, we label each feature-link with an index of the most closely

matching template. The result is a compact sub-character level representation of

22

the entire input in terms of the feature-link labels. This is different from the

conventional directional code ([27], [71]) representation in two important ways.

Firstly, the feature-link code can represent convexity and the direction code does

not. Secondly, the direction code represents only equal length intervals while our

code represents variable length intervals. Therefore the feature-link code is more

natural and informed break-up of the input strokes than the conventional one. We

will use the feature-link label representation for our efficient ligature modeling.

1.7.6 Ligature Filtering Modeling

Although the ligatures are big source of variability in the shapes of

characters written continuously, not much effort has been expended on handling

them. Most approaches simply ignored them ([7]) and others trying to deal with

the ligatures mainly used hidden Markov models ([27], [35], [71]). In this thesis

we propose a more efficient and intuitive modeling deriving from the feature-link

coding mentioned above. We will demonstrate the effectiveness of our modeling

by showing the word performance results with and without the modeling.

23

1.7.7 Visual Bigram Modeling (VBM)

VBM is a context constraint model drawing from the geometric properties

of neighboring characters. This is another important opportunity promising

substantial gain in system performance, yet has not been much explored in the

field. The two previous efforts available from the literature have tried to either

estimate and use ascender or descender sub-strokes of writing ([55]), or rely on the

covariance matrix of the model parameters ([79]). We will show a new and more

intuitive approach that does not need such information and the model parameters

are learned by training on the data samples. Verifying the effectiveness of VBM,

we will show a substantial increase in the word performance results when it is

activated.

24

CHAPTER 2. Data Acquisition and Normalization

As mentioned in CHAPTER 1, the tablet digitizer reports the sequence of

(x, y) coordinate pairs to the recognition system, as the user writes on the tablet

surface with the pen. The points represented by the coordinates come from the

dynamic contour formed by the user writing, with a sampling frequency set up for

the digitizer. The sampling rate is typically at least 100 Hz (i.e. one hundred

points per second). An important information from the digitizing hardware other

than the point coordinate pairs is the pen-down and the pen-up signals regarding

when the user puts the pen on the writing surface and when one lifts up the pen,

respectively. This information is used to determine where a stroke starts and ends

and the overall handwriting data is represented as a sequence of strokes.

Depending on the type of a digitizer it may be able to provide more information

such as pen-pressure and pen-tilt, and with programming one can also compute the

pen movement speed. Most systems including ours, however, use only the

coordinates and pen-up/down signals.

The point coordinates provided by the digitizer are integer numbers with

reference to the origin of the tablet's coordinate system, so its digital ink, when

magnified, has jagged lines. Other than the limiting accuracy of the digitizer,

25

noise can originate from the digitizing process, hardware error, or erratic hand

motion and pen-down indication. The same characters or words written by

different users can vary greatly in size, shape and distortion. Even the same writer

may write in substantially different ways depending on situations or over time. So

the first task of a recognition system is to suppress noise and reduce the variability

in the raw data for easier and standardized processing in later stages.

2.1 Gaussian Smoothing

Smoothing is the technique to suppress the quantization noise of the point

sampling, which averages an input point with its neighbors with some weighted

mask. The primary purpose of smoothing at least in our system is to get more

fine-grained real-number coordinates instead of the integer numbers in the raw

data, so that the point curvatures can be computed reliably. Since our character

segmentation strategy (CHAPTER 4) is based on determining the critical points by

high curvature, it is important to computer the point curvatures accurately and

reliably. The average can be a simple mean or can be obtained by applying a

convolution kernel to a fixed size window centered at the point being processed.

The most common form of such a kernel is a class of Gaussian distributions

controlled by the size of the window (ρ) and the spread (σ) of the distribution.

26

For a contour >=< npppC ,,, 21 � , the Gaussian smoothing of C transforms

it to >=< ''
2

'
1 ,,,' npppC � where

),(),,('''
iiiiii yxpyxp ==

∑
∑

=

−=

=

−= + ⋅
= ρ

ρ

ρ

ρ
j

j

j

j ji

i
jG

jGx
x

)(

)(
' ,

∑
∑

=

−=

=

−= + ⋅
= ρ

ρ

ρ

ρ
j

j

j

j ji

i
jG

jGy
y

)(

)(
'

and the Gaussian mask G(k), for k = -ρ to k = ρ, is defined as

)
2

exp()(
2

2

σ⋅
−= k

kG .

2.2 Global and Local Filtering

Filtering eliminates duplicate data points and normalizes the irregularity in

data point density caused by the relative speed of the user writing. For example,

when the writing speed is slower in an interval, it will contain more points and

when the speed is faster, the interval will have a sparser distribution of points. A

common form of filtering is equi-distant resampling and forces a minimum

Euclidean distance between two data points. This results in data points

approximately equally spaced in distance. When scarcity of data points is the

issue in a fast interval, an interpolation technique is used to fill the gaps. Usually

this filtering step is performed only at the global level as part of the data

27

acquisition process. In our approach, we adopt two level filtering. The global

level works the same as the conventional one. The local level filtering assumes

and works on a writing interval or a character segment as input. A character

hypothesis interval is a sequence of points contained in one or more consecutive

sub-strokes since a character may span several strokes with the starting and ending

parts covering possibly partial strokes. The character segmentation approach of

our system generates a set of tentative segmentation points based on the

curvatures. Which interval between the two segmentation points to try as

hypothetical character, is managed and determined by the recognition engine and

as a preparation of input to the component character recognizer, the local filtering

is performed on the target interval. The resampling size of the local filtering is a

fixed constant, and the spacing between two resampled points is dependent on the

arc length of the given interval. Therefore, the local filtering generates as output a

fixed size sequence of points regardless of how many points the input interval has

or how long the interval is in terms of arc length. Because the size of the interval

in terms of the contained points can vary greatly as the recognition engine tries

from the minimum to the maximum sizes, it is possible that the input interval

contains less points than the resampling size. In such case, an equi-distance

interpolation is performed to make up for the missing points. (Figure 8)

28

2.3 Translation and Scale Normalization

The coordinate representation of the raw input is, of course, not translation

invariant. To achieve the invariance of the coordinate values, we recompute the

point positions with reference to a new standard origin. Which origin to take as

the standard is facilitated by whether the system can hypothesize the definite

boundaries of the characters, since then we can use a fixed boundary point as the

origin. Depending on the segmentation methodology employed, however, this

Figure 8. Distribution of interval points in one dimension. Filled circles are
original data points and empty circles are interpolated points (a) original
distribution (b) distribution after the local filtering.

(a)

(b)

29

information may not be available. For example, in the systems using implicit

segmentation (see CHAPTER 4), the recognition engine works without the

segmentation boundaries. Therefore such systems need to use some other

representation, like directional code, instead of coordinates to obtain translation

invariance. Once again, our adoption of compact set of the segmentation points

come in handy to determine the origin. In our system, it is possible to compute the

graphical bounding box of a writing interval hypothesized by the recognition

engine as a possible character, since the interval has definite starting and ending

points. The lower left corner of an interval is chosen as the new origin and the

coordinates are recomputed in reference to it. That is, given an interval

>=<),,(,),,(),,(2211 nn yxyxyxI � , the new origin is)','(yxO =

where }min{' ixx = and }min{' iyy = , ni �1= . Then the translation invariant

version of the interval is

>−−−−−−=<),','(,),','(),','(' 2211 yyxxyyxxyyxxI nn� .

As with other visual recognition tasks, reducing the variability of the target

objects in size is an important normalization step and this category of techniques

try to adjust the scale of input to a standard size, and may be applied at the

character level or to the entire word. However, more elaborate size normalization

techniques requires extracting context features like the principal lines of

30

handwriting like the low and high baselines and the mid-line, consumes non-trivial

amount of computation even before entering the main stage of the recognition

process. Another weakness of the approaches depending on extracting such

elaborate features is that they may not be stable in on-line handwriting data. For

example, the tablet surface may be slippery and the user may form the writing

hastily while in motion. In such situations, the user's writing may have poorly

aligned baseline or none at all in some cases. So either the user needs to be

constrained to write with a clear baseline or relying on less-than-dependable

feature is better avoided. The size normalization in our system is applied at the

character level and achieved easily due to the local filtering approach we use. The

output S of the local filtering applied to a character interval is a fixed length

sequence of resampled points. After the translation normalization is applied to S,

it becomes

>=<),(,),,(),,(' 2211 nn yxyxyxS � .

Then S' is transformed to an "Expanded Coordinate Vector" (ECV) by expanding

the point coordinate pairs into vector form:

>=<=
∧

nn yxyxyxVS ,,,,,,)'(ECV 2211 � .

The extended coordinate vector V is in turn subjected to the vector magnitude

normalization and becomes U such that |U| = 1.That is, VVU /= . Now U is the

translation and scale invariant representation of the input character interval.

31

2.4 Other Normalizations

The remaining Euclidean geometric invariance not explicitly addressed in

constructing the standard representation is rotation. “Deskewing” and “baseline

correction” are two methods for the rotation normalization. Deskewing ([12],

[44]) is a group of algorithms that minimize the variability in the slant of writing

that can be applied either at isolated character or at entire word. Baseline

correction ([1], [5]) tries to orient the baseline of writing horizontally. In our

system, we have not addressed normalizing the rotation and there are two reasons.

Firstly, we can assume that the intention of a user of a recognition system is to

cooperate so as to get one's handwriting recognized, but not to put the system's

capability to the test to the limit. So we can expect or ask the user's writing to be

in a reasonable range of rotation for on-line recognition. Secondly, our character

recognition technique itself is able to absorb the amount of variability in rotation

typically seen in the writing formed on the limited space of a tablet.

32

CHAPTER 3. Feature Extraction and Representation

With the normalized data, the next step is to extract prominent information

from them and represent it in a standard form to be used by the recognition stage.

Along with the segmentation strategy, selecting the data representation is one of

the most fundamental decisions to make. The final choice may be influenced by

which character recognition paradigm we will use, or with a fixed choice of

representation it may influence the other way around. Depending on the scope or

sight that a feature unit represents, there are 3 major categories of features.

3.1 Local Point Features

The features in this group are the finest in grain and the examples are the

point coordinates, the point curvature and the tangent angle of each point, etc.

These are by themselves local features with a limited sight, arranged in sequence.

For a character recognizer that builds up the evaluation of its input incrementally

in sequence, the inflexible one-dimensional unfolding of inherently two-

dimensional character data may lead to loss of spatial information ([51]). We may

imagine a simple experiment in which a subject peeps through a hole moving

33

along the contour of a handwritten image and neither sees nor feels anything else.

Intuitively, it will not be easy to make sense out of observing a long sequence of

isolated or small groups of points even to human eyes, while seeing them at once

would tell it all so vividly. But the local features are not without advantages. One

is that they are easy to compute reliably. Another is their robustness due to their

redundant and distributed nature.

3.2 Sub-character Primitive Features

This group of features is extracted at a higher level than individual data

points. Each character model is decomposed into a small number of subcharacter

primitive units each of which represents a small salient sub-region of the character.

The simplest kind is the directional code computed from equally spaced regions.

That is, the character shape is divided into equally spaced intervals and the line

orientation code corresponding to each interval is computed. Usually 8 or 16

directional code is used. More sophisticated methods compute a set of salient

points according to their feature extraction scheme, and use the variable length

intervals between the salient points, instead of the equal-spaced ones. The

summary information computed from each interval may still be a directional code

or a more elaborate feature. One novel approach is training the system to learn

how to best divide into the primitives with integrated evaluation of each possible

34

feature options. For example, [27] trained Hidden Markov Models corresponding

to each subcharacter primitive and set up a language grammar specifying the legal

concatenation of the primitives to form a character. Another kind of feature is

drawn from the topological characteristics of the character shape like corners,

cusps, loops, and openings. One advantage of the subcharacter primitives is that

they are more concise due to their encoded nature. Another is that they offer a

higher level view because they represent a region not a point. One problem is that

the primitive level feature extraction, depending on the granularity they work on,

should be extremely robust to be effective since one mistake may make a big hole

in the overall picture because of their regional representation nature. This is not

easy to achieve especially in the setting of writer independent mode of recognition,

in which a large variability in writing style exists and a system needs to deal with

potentially missing or previously unseen features not covered in the training data.

3.3 Annotated Image Features

On-line handwriting input has one dimensional sequence representation in

structure. As has been previously mentioned, converting off-line data to on-line

version is hard to achieve reliably, but the other direction is relatively easier.

Therefore, if a limited or refined form of image features can contribute

substantially to the discriminative power, at least as a part of the overall feature set

35

used by the system, then it would be well worth a try. The advantages of

converting on-line data to image representation include:

• Stroke order invariance: In an image, the information on which order a

shape was formed is not apparent and not relevant. This is not a

problem since we already have the data in an on-line version. Only one

image model is needed for the same shape class. This is not the case

for on-line data: even for the same shape class, multiple models are

necessary, one for each substantially different stroke orders.

• Simpler size normalization: Depending on the level of elaboration, the

topic of size normalization may become an involved topic. On the

character level conversion from on-line to image, the size

normalization is achieved easily by fitting the on-line data into the

fixed size image, that is by contraction or expansion.

• Robustness: Image is a most natural, redundant, distributed and fully

decoded type of representation. Therefore it fits well for a pattern

recognition system like neural network, which works best on such a

kind of representation. The robustness comes from the fact that such a

recognition system learns and performs the feature extraction itself

from the raw data, so that the choice and the development of features

are automated instead of handcrafting that may be a fallible process.

36

• Higher level perspective: Image can naturally be made to represent a

character or larger unit, so it provides even higher level of scope than

the subcharacter primitive features.

The main disadvantage of the image representation is its large size, leading

to more computing time and memory for processing. This is exacerbated by the

fact that a string level recognizer needs to invoke the component character

recognizer many times, say hundreds, before its recognition engine get through

processing. The larger representation size also means the need of more training

data because of the increased number of learnable parameters. To ameliorate the

situation, on-line handwriting recognition systems whose data representation is

based on image, use a scaled-down, low-resolution image and the loss of

resolution is compensated by augmenting it with various on-line features. The

capability of an on-line recognizer to work on off-line data representation like

image is potentially important in the sense that it can naturally lead to bridging the

gap between the two different modes of recognition. It has been mentioned before

that the approaches that attempted to use on-line recognizer to handle off-line data,

have had limited successes. The main reason is their dependence on the close

reconstruction of the temporal information from the off-line data, which is a

daunting task. With an on-line recognizer that can handle image representation,

37

the difficulty of the problem would be reduced substantially since such a

recognizer will need only reasonable character segmentation, not an exact recovery

of the temporal orderings.

3.4 The Features Used by the System

We compute the local geometric features, namely the point curvatures and

the point tangent angles. Firstly we compute the tangent angle at each point. This

is approximated as the direction angle from the current point to the next point.

That is, for the two consecutive points),(iii yxp = and),(111 +++ = iii yxp , the

tangent angle iθ of ip is






 −
=

+

+

),(dist
acos

1

1

ii

ii
i pp

xx
θ

where dist(⋅) is the Euclidean distance between the two points. The curvature ik at

ip is the then approximated as the amount of the direction angle change around

point ip . That is, ik is computed as the absolute amount of angle change from

1−iθ to iθ multiplied by the sign that is plus if the angle change is clockwise, or

minus if it is counter-clockwise. These features are local in nature and, as stated

above, have potential weaknesses depending on the kind of character recognizer

employed. Our segmentation approach and the character recognition paradigm

38

circumvent this problem. Using the tentative segmentation points generated by the

segmentation module, our recognition engine generates evaluation intervals that

are at the character level. So the point features are never considered individually

or incrementally and they are always grouped at the character level. In addition,

the Fisher discriminant analysis technique that our system adopts for character

recognition, integrates all the component features together at once in evaluating

the scores, so that small errors in feature extraction do not have ruinous impact on

the overall evaluation as long as the rest of features are well aligned with the

model parameters. In effect, this is equivalent to the recognizer having a higher,

that is at the character, level perspective so it is not misled by a local fluctuation of

feature variability. This is in contrast with the recognition method whose direction

of data unfolding is less flexible like HMM. For example, since an HMM

evaluates its input features incrementally in one direction, a feature error in the

middle may hurt the score badly at the point and because of the multiplicative

nature of HMM's scoring represented usually by the accumulation of the log-

likelihood, the recovery from the damage is less likely even if the rest of the

features align well. In other words, the locally mismatched feature will result in

near zero local likelihood and since the HMM constructs the likelihood of a

character hypothesis by multiplication of the local likelihoods, the final score will

be very significantly low even if the later local probabilities are high. So our

39

approach combines the robustness of local features drawn from their redundancy

and distribution, with the higher level contextual scope by a noise insensitive

integration at the character level. Other than the basic features, we compute the

signed or unsigned accumulation of the curvatures and the tangent angles from the

starting point and these serve as more larger scale and accumulative features. We

also perform a sub-stroke based feature extraction by assigning the type index to

an interval between the tentative segmentation points. The type indices for the

sub-stroke intervals are called Feature-Link Code (FLC) and are used in modeling

the ligatures as hypotheses filtering scheme. Since it is performed after generating

the hypothetical segmentation points, the description is delayed to CHAPTER 4.

40

CHAPTER 4. Character Segmentation

Given a word or a larger unit of writing input, the recognition system needs

to break it into more basic and smaller units, usually an individual character or

even lower level sub-character primitives, and to hypothesize and evaluate the

possibilities drawn from the input. The input breaking is called the character

segmentation.

4.1 Analytic vs. Holistic Approach

In analytic segmentation approach, the system generates hypothetical

segmentations before the recognition process starts. Early handwriting recognition

systems were heavily dependent on the segmentation strategies, their quality,

efficiency and robustness, which are hard to achieve in perfection. In reaction to

the situation, another philosophy, called "holistic approach", came to get the

attention. In holistic approach of segmentation, only the global, Gestalt-like

features accounting for the entire input, are extracted and evaluated ([11], [16],

[17], [40], [54]). So in such an approach, the input is treated as an unbreakable

whole and no segmentation is needed. One obvious limitation of this approach is

41

that it can support only a small limited vocabulary. For example, when applied at

the word level, the system would need at least one feature model for every word in

its vocabulary, and since there is no means to compare partial features

incrementally, a given input would have to be compared against all the word

models in the vocabulary. Hence as the size of the system vocabulary increases, it

becomes less and less flexible to scale up in the amount of memory and processing

time. Meanwhile, the analytic approach can support unlimited or very large

vocabulary since what it recognizes is any legal combination of characters in the

supported alphabets.

4.2 Explicit vs. Implicit Segmentation

In more general visual recognition or pattern recognition problems, the

segmentation of a given input into the target objects has been an important and

difficult problem. There seems to be a cyclic dependency between the

segmentation and the recognition problems: a perfect segmentation can be

obtained as a by-product of the correct recognition that largely depends on the

right segmentation. The same pattern repeats in the handwriting recognition task

and, to be practical, the cycle needs to be broken somewhere. Depending on the

choice of the break point, the analytic approach has two extreme forms:

recognition-by-segmentation and segmentation-by-recognition.

42

4.2.1 Recognition by Segmentation

In the recognition-by-segmentation (or explicit segmentation) paradigm,

the input is first broken down into hypothetical character segments using features

like cusp, closure, estimated character widths, etc., and ordered and legal

combinations of these segments were generated as possible strings of characters.

This approach, adopted in the early systems ([25], [22], [43]), needs a complicated

segmenter and, without careful control, can lead to intractable computation due to

the large proliferation of generated candidates.

4.2.2 Segmentation by Recognition

At the opposite extreme to explicit segmentation is the segmentation-by-

recognition (or implicit segmentation) paradigm. In this strategy, mostly based on

path optimization framework like graph search, there is no complex segmenter that

performs segmentation explicitly. Rather a best segmentation is obtained by

extracting, after the recognition evaluation is complete, the path that represents the

best candidate in terms of the metric applied to evaluate the paths ([73], [30], [26],

[36], [27]). Or the system recognizes a word corresponding to the best-scoring

path generated and evaluated by the system. This approach is attractive because it

43

bypasses the difficult and fallible segmentation step. The main disadvantage is

that it requires a large amount of, although not intractable, computation. This

stems from the fact that it lacks a segmenter that suggests the possible boundary

points, so any input point is a potential segmentation point and should be treated

accordingly, leading to exhaustive hypothesizing. Because this approach is based

on dynamic programming of path optimization, the running time does not become

intractable, but still takes too much computing to be practical.

4.2.3 Fuzzy Centering Segmentation

One reason why the segmentation step is important, is that the performance

of the character recognizer relies on how well the input is segmented. Using

implicit segmentation, the system actually does not really bypass the character

segmentation altogether. Instead, it tries more exhaustive segmentation

possibilities systematically so as to avoid intractable amount of computation.

Since the character recognizer is typically trained with data that has regular

starting and ending patterns, the thread of character recognition whose input aligns

well with the character model, will have higher evaluation score. Such well-

aligned (or well-segmented) intervals would constitute a component of winning

overall segmentation. So the idea is to train the character recognizer with specially

prepared data having fuzzy character boundaries. That is, the character samples

44

are extracted from the word contexts without crisp starting and ending portions,

and contain parts of the neighboring character patterns. Therefore, a character

recognizer trained in such way would be robust to contextual co-articulation

problem and would not need crisp segmentation for good performance. Instead the

recognizer would need well-centered input and the segmentation problem is

transformed from finding the boundaries to finding the best centering positions. A

system based on such a recognizer then will scan its input with the recognizer that

sees fixed length frame as input, from start to end. After the scanning phase, the

system will mark the positions in the input where the character recognizer's

response level has local maxima above certain threshold. Those maxima

correspond to the centering points in the input, on which the character recognizer

was at high activation level in terms of the recognition score. The system then

proceeds to the rest of the processing with the segmentations guessed from the

maxima points. Therefore, this segmentation approach avoids the explicit

segmentation by changing the nature of the character recognizer, not by making

the recognition engine absorb the segmentation problem. Because the input

window length is fixed and there is no need to iterate to try different size input on

the same starting point, this approach is more economical in the number of times

the character recognizer needs to be invoked, than the regular implicit

segmentation method. But the overall running time is still substantial because the

45

character recognizer would be invoked on every data point or at least on every few

points, to make sure that the correct centering points are included in the set of

points tried.

4.3 Curvature-Based Static/Dynamic Segmentation

Another weakness of implicit or fuzzy boundary segmentation, other than

the running time, is that it is no longer possible to apply a visual context modeling

(see CHAPTER 7) used in later stage for filtering the hypotheses, since the

character boundaries have been blurred. For example, in the ligature modeling and

the visual bigram modeling (VBM), the geometric information from the context

surrounding the current processing point is extracted including a possible sub-

stroke between the characters, the relative size and positioning of the characters,

and so on. Without hypothesizing about the definite boundary points, computing

such information can not be made reliably. Hence, most successful approaches

take a middle ground somewhere between the two extremes ([70], [79]) of pure

explicit and pure implicit approaches.

Our segmentation strategy is a hybrid analytic approach that hypothesizes

about the candidate segmentation points but the actual segmentations are handled

dynamically by a rule built into the recognition engine, and the best global

segmentation is naturally determined at the end. The generation of the candidate

46

segmentation points will be based on detecting the high curvature points. The

rationale is that the high curvature points, that is corner-points or turning-points,

are the places where the information regarding the writing's dynamics and

geometry is most condensed, and therefore are natural candidates for character

boundaries. The intuition is right for most cases, but the set of high curvature

points is incomplete as full candidates since some real segmentation points can lie

in the middle of a smooth interval whose points have only low curvatures. Hence,

an augmentation is needed to make the candidate set a complete one, and we will

resolve the issue by adding a middle point in a long enough (determined by a

threshold) interval between two high curvature points (Figure 9).

In summary, our segmentation approach works like an implicit

segmentation, but avoids exhaustive hypothesization because the character

recognizer needs to be invoked on the set of tentative boundary points which is a

Figure 9. A cursively written input word of “eye.” The left side shows the
high-curvature points (in filled dots). The right side shows the high-
curvature points along with the augmentation points (in empty dots).

47

much smaller subset of the entire data points. Since the hypothesis characters

intervals span only a few segmentation points, there is smaller number of character

recognition threads on each character starting point. For example, the shortest

character consists of the interval formed by 2 segmentation points and the longest

9 segmentation points, and therefore each successively longer interval spanning up

to 9 segmentation points needs to be evaluated starting from a particular boundary

point. The clearly separated character boundaries also make it amenable to extract

useful context features as stated above. The next section defines and describes the

sub-stroke level feature extraction drawing from the boundary information made

available by our segmentation strategy.

4.4 The Feature-Link Coding

4.4.1 The Feature-Links and Sub-Stroke Primitives

The segmentation points generated by the system break the entire input into

a sequence of intervals each of which is determined by two consecutive

segmentation points. That is, given a stroke >=< npppC ,,, 21 � , the

segmentation module computes a sequence of segmentation points

>=<
mkkk pppS ,,,

21
� , where nkkk ppppp

m
=<<<= �

211 . Then C is

subdivided into the intervals >=<
+++ 1

,,,, 21 iiii kkkki ppppI � for i = 1 to m-1. By

48

the nature of our segmentation points drawing from the level of the point

curvatures, any interval so determined contains no corners or cusps and is smooth

in shape since otherwise the system would have detected high curvature points

inside the interval and it would have been further subdivided. We name these

intervals "feature-links." The feature-links can be considered as sub-stroke or sub-

character level primitives and exploiting their smoothness we may use a simple

technique to classify them according to the line or the direction that the intervals

form. This may sound similar to the conventional methods of computing the

directional code representation from the input contour ([27], [71]). In comparison

our situation has two notable differences from the typical direction coding

schemes. Firstly, the traditional methods encode only the line direction. A

feature-link, however, may have a substantial amount of convexity. Secondly, the

usual direction code is constructed out of equally spaced intervals obtained by a

resampling. But feature-links are irregular in length and may have large

differences among them. Intuitively, the feature-links are more natural since they

are not formed from uninformed artificial spacing and are based on the

segmentation points that in turn are based on curvatures. Therefore forming a sub-

stroke primitive using more consistent information like curvature can be

considered to be more feature-worthy. The feature-links are also more economical

in representation because a sequence of simple direction codes can be compacted

49

into a single code representing a feature-link. Conventional direction code

schemes have to use short enough spacing in forming the direction intervals so that

they are shaped as lines not curves, since such schemes do not incorporate the

convexity. But the feature-link allows convexity and can represent longer length

without loss of information.

4.4.2 Computing the Feature-Link Code

With the feature-links, we want to draw higher level information

representing the line or curve formed by the component points of such intervals.

To this end, we define 24 directional convex templates each representing the

direction and the convexity of the corresponding categories of feature-links (see

Figure 10). Given a sub-stroke >=< npppC ,,, 21 � , like feature-link, let's

define the "cross-length" of C as the Euclidean distance between the first and the

last points of C, that is),(dist)(thcross_leng 1 nppC = . The templates have a

standard scale in terms of the cross-length and are stored inside the system. Other

than the visual scale, the feature-link templates are also normalized to have the

same number N of data points using the local filtering method described in

CHAPTER 2.

With the feature-link templates set up, the next step is to assign a given

feature-link the index that represents the feature-link template matching the input

50

Figure 10. The 24 feature-link templates indexed from 0.

Figure 11. An example word "day," its feature-links and the corresponding
feature-link code. The filled and empty circles are the segmentation points.

0

1
2

3

4 5

6 7 8

9 10

11

12

13

14

15

16 17

18
19 20

21 22

23

12

3

4

16

19
4

15

3

22

2

22

6

19

17
5

4

51

most closely. This task is performed by a template matching whose high level

steps are as follows.

1. Given an input feature-link, normalize it to have the standard cross-length

and the standard number N of data points by local filtering. Let's call the

normalized input as I.

2. Determine the subset T of templates that are the candidates to match with

I.

3. For each template Ti in T do the following:

3.1. Compute the amount of rotation angle θ (Ti , I) needed to align Ti with

I in terms of the starting and the ending points.

3.2. In the aligned state, compute the area A(Ti , I) between Ti and I.

3.3. Compute the matching metric E(Ti , I) by combining θ (Ti , I) and

A(Ti , I).

4. Output k such that }),E({minarg ITk ii= .

In step-2, each template is first translated to have the same starting position

as that of the input I, and the distance between the ending points of the template

and I is computed. This distance gives a good hint at how much the template is off

from I: the longer the distance, the more discrepancy between the directions of the

template and I. Therefore the template matching does not need to consider all of

52

its feature-link templates and only a few of them that have end-point distances

smaller than a threshold are selected as candidates for further processing.

In step-3.2, the area A(Ti , I) between Ti and I is actually an approximation

of the gap between Ti and I. Let >=< Ni tttT ,,, 21 � and >=< NxxxI ,,, 21 � .

Note that both are normalized to have the same representation length N. Then

A(Ti , I) is defined to be

∑ =
= N

j jji xtIT
1

),(dist),A(

where dist(⋅) is the Euclidean distance. This simple metric gives a reasonable

approximation of the gap between a template and the input because the feature-

links are by definition smooth intervals without sharp or complex curves.

In step-3.3, the system combines the rotation angle and the area to compute

the matching score. The formula we use for determining the score is

)),(exp(),A(),(E 3 ITcITIT iii θ⋅×=

where c is a normalizing constant. The lower the value of E(Ti , I), the better Ti

matches I. The rationale is that the rotation angle is more critical in determining a

match since it measures the level of directional alignment, and is given more

rapidly growing functional. So as the value of the rotation angle grows, E(Ti , I)

will be quickly dominated by θ (Ti , I). If the rotation angles are within close

range, then E(Ti , I) will be determined by the magnitude of , A(Ti , I). The scheme

can be alluded to an energy minimization process. That is, we interpret the

53

rotation angle and the gap area as representing the amount of work to transform a

template to the input. The larger the amount of work, the more energy it will

consume for the transformation. Then the solution is the template that consumes

the least amount of energy to transform itself to the given input.

For a feature-link f, the template matching outputs the index of the template

that matches f the best. We call this index the "feature-link code" (or FLC for

short) of f. Figure 11 shows an example word "day," the segmentation points

identified on it, the feature-links and their FLC's determined by the template

matching. The FLC encoding may be used as a sub-character primitive level

representation of handwriting and, if worked out adequately, may open a

possibility for a large speed-up in the recognition time because of its very compact

form. In this thesis, however, that potential is not pursed and instead will be

mainly used for modeling the ligatures in CHAPTER 7. The problem with

modeling the ligatures has been that it is not obvious how to categorize them and

how to construct the contextual modeling efficiently in processing time and

memory. The simplicity, robustness and the compactness of FLC representation

will address the modeling issues nicely.

54

CHAPTER 5. Component Character Recognition

An analytic handwriting recognition system needs a recognizer working at

the level of an individual character to classify and evaluate the segmentations

given by the segmentation module. This recognizer is a pattern classifier that

stores a model for each character class, which is the representative pattern derived

from the shape characteristics of the characters in the class. The models are

usually explicit or can be implicit as in the case of neural network based systems,

and can be constructed as an encoding of a set of designed rules or can be trained

on and learned from a large number of training samples. Given input is compared

against each stored model using the metric specific to the system and is assigned a

score for each interpreted class. To be useful, a character recognizer should be

capable of absorbing the shape variability inside each class and also discriminative

of the differences between the classes.

5.1 Character Recognition Paradigms

In the last few decades, two distinct categories of character recognizers

have been developed. One category is called the syntactic or structural recognition

55

and the other is statistical one. The statistical recognition methods are in turn

divided into three prominent groups: explicitly statistical recognizers, artificial

neural network based recognizers and those based on hidden Markov models.

5.1.1 Structural Character Recognition

This group of approaches tries to capture the shape characteristics of the

character classes into a symbolic form, and establish a set of rules to manipulate

and evaluate the symbolic features ([55], [19], [25], [33]). Due to the abstracted

nature of its representation, these rule-based systems have the advantage of the

economy of representation and the processing time if the size of the description

rules can be kept small or moderate. One difficulty is that manually formulating a

dependable set of classification rules that can account for a rich range of shape

variability, is a daunting challenge. Another is a possible brittleness introduced by

the summary nature of the representation. That is, the feature extraction is allowed

little room for mistake since the recognizer's decision will be based only on what

the feature extractor provides. Therefore, misleading or missing information

caused by the feature extraction will have a critical effect on the recognizer's

performance. Even if the approach is reformulated for training from samples, so

that the rule-generation process is automated, the resulting rules tend to proliferate

in a large number, reducing the manageability of the approach. Recently,

however, this approach has gotten a momentum due to the development of

56

statistical training techniques in which a reasonable-sized stochastic description

grammar is learned from annotated training samples informing which rule is

applicable.

5.1.2 Neural Network Based Character Recognition

Multi-layer artificial neural network is a general learning paradigm that,

with adequate network architectures and a large enough set of training data, can

learn arbitrarily complex decision boundaries. The classification behavior of a

neural network is fully determined by the statistical characteristics of the training

data, with a given structure of the network ([8]). Three major variations of the

neural network have been applied to the handwriting recognition field: the

standard fully-connected back propagation perceptrons, Kohonen's self-organizing

feature map (SOFM) approach and the time-delay neural networks (TDNN).

In general, the capacity of a learning system is determined by the number

of learnable parameters in the system. The larger capacity, however, requires a

larger amount of training data for proper training, which in turn means longer

training time and the need for more effort to ascertain the desired statistical

properties of the data. Therefore, it is desirable that the capacity of a system can

be tuned to an optimal size by choosing the right set of learnable parameters, for

better and faster training with a smaller training data set. This design is limited in

57

a fully connected perceptron since every unit or neuron is connected with each

other without choice, and the approach has not been very successful.

The SOFM networks transform the input vector into a fixed dimensional

(usually below three dimension) discrete map subject to a topological

(neighborhood preserving) constraint ([34]). The technique allows automatic

detection of shape prototypes from a large number of character samples, and is

analogous to k-means or hierarchical clustering. The quantization effect of SOFM

output is usually used by a postprocessor that tries to interpret the patterns of

SOFM output ([41]).

The convolutional neural networks (CNN) are the networks whose

connection structure is designed on the basis of the evidences from neural science

that the neural connection patterns do not have to be exhaustive and in many cases

localized connections are desirable and effective to represent specialized and

limited scope functions ([29], [20]). The locally connected neurons at a layer are

then integrated together at the next layer to form higher level features. In this

scheme, a unit of a network layer is connected to only a limited field of units in the

previous layer, and the connection weights are replicated and shared by some other

units distributed over the same layer. The overall connections consist of a set of

such replicated connection weight patterns. In essence, those replicated and

distributed connections perform localized feature extraction whose output is

58

integrated, at the next layer, into a larger scope feature ([38]). The TDNN is the

one-dimensional version of general CNN, sharing weights along a single temporal

dimension, and is used for space-time representation of handwriting signals. The

approach is known to provide a useful degree of invariance to spatial and temporal

distortions because of the distributed nature of the feature extraction in the system

([66], [23]).

5.1.3 Hidden Markov Model Based Character Recognition

A Hidden Markov Model (HMM) is a doubly stochastic process in which

the underlying process is hidden from observation and the observable process is

determined by the underlying process ([62]). The underlying process is

characterized by a conditional state transition probability distribution, where the

state is hidden from observation and depends on the previous states (the Markov

assumption). The observable process is characterized by a symbol emission

probability distribution, where a current symbol depends either on the current state

transition or on the current state. Because of its inherently temporal nature,

HMM's have been successfully employed in speech recognition field where the

acoustic data has strictly one-dimensional properties. Recent efforts have tried to

extend the same approach in the handwriting recognition field but so far the

success has been limited ([27], [45], [48]). One important reason is that despite

59

some similarities, handwriting data is inherently two-dimensional and a one-

dimensional data unfolding in an inflexible way as taken by a conventional HMM

leads to loss of information and integrity in the data. For example, speech data is

completely ordered by time and its recognition systems can rely on this

assumption. However, in handwriting data, even if it is represented in one-

dimension, the component parts can be out of order in time. An example is the

delayed dots and strokes that can happen in the formation of characters like "i,"

"j," "t," "x," etc.

5.2 Linear Projection Methods

The category of explicitly statistical character recognition is derived more

or less from the linear projection methods and the hierarchical or partitional cluster

analyses ([53], [24]). The features are summarized into a fixed length vector that

maps to a data point in high-dimensional representation space. Therefore, similar

patterns having similar vector representation will wind up clustering closely each

other as points in the high-dimensional space. There are various possible distance

metrics, measuring the closeness of the two points in such space. The most

common is the Euclidean distance. In this setting, the training and learning

corresponds to finding a set of hyper-planes that best separate the classes into

different regions of the space. In case there is no a priori knowledge about the

60

class labels, the clustering analysis methods provide automatic ways to construct

out of data a set of clusters corresponding to categories or taxonomies. If we can

keep all the training samples, then the classification can be done simply by

identifying the class of the sample in the representation space that is closest to the

input. Because of the large amount of memory needed to keep many samples,

usual solution is keeping only the centroids of the classes, that is, the class means

of the training samples in each classes. The prominent property of the linear

projection methods is the reduction of the problem's dimensionality and they try to

attain the economy of features by reducing the dimensionality of the original

representation space with as small discriminative compromises as possible. The

projection can visualize the data set in the projection space if a sufficiently small

output dimensionality is chosen.

The Principal Component Analysis (PCA) technique is one of the most

widely known projection methods. The essence of PCA is the construction of the

projection matrix that defines the linear mapping from the original space to the

projected feature space ([78], [74]). Let },,,,{ 321 MvvvvV �= be the set of n

dimensional data vectors. Let mn×∈ RW be a projection matrix of orthonormal

columns and consider the linear transformations defined by W:

Mkkk ,,2,1T
�== vWp .

61

Hence kp is the feature vector in the projection space. The dimensionality m of

the projection space needs to be meaningfully smaller than n, the original

dimensionality. The covariance matrix of a set of data vectors is a measure of how

the data are distributed or scattered in the representation space. Let

∑ =
⋅= M

i iM
1

/1 v� . That is µµ is the mean of V, the global center. Then the

covariance matrix K of V is defined as

T

1
)()(∑ =

−−= M

i ii �v�vK .

For the projected data },,,,{ 321 MppppP �= , its covariance matrix K' is

()

()W�x�xW

W�x�xW

W�x�xW

W�Wx�WxW

�WxW�WxW

�p�pK

∑

∑

∑

∑

∑

∑

=

=

=

=

=

=

−−=

−−=

−−=

−−=

−−=

−−=

M

i ii

M

i ii

M

i ii

M

i ii

M

i ii

M

i ii

1
TT

1
TTT

1
TTT

1
TTTT

1
TTTTT

1
T

)()(

)()(

)()(

)()(

)()(

)'()'('

 WKW T=

62

where �W�
T'= is the global mean of the projected vectors. Hence

WKWK T'= . Then PCA constructs the projection matrix Z that maximizes the

determinant of K'. That is,

WKWKZ WW
Tmaxarg'maxarg == .

Z can be constructed by finding the n solution eigenvalues },,,{ 21 nλλλ � and

their corresponding eigenvectors },,,,{ 321 nzzzz � , of the eigenvalue equation

zKz λ= .

The economy draws from the fact that not all eigenvectors are essential and

typically only a fraction of all eigenvectors has enough representative-ness. The

feature-worthiness of an eigenvector is determined by the size of its related

eigenvalue and the technique retains a set of n eigenvectors whose eigenvalues are

among the largest n. Let >=<
nsss λλλλ ,,,

21
� such that

nsss λλλ ≥≥≥ �
21

.

Then

>=<
msss zzzZ ,,,

21
�

that is, the columns of Z can be constructed as the eigenvectors corresponding to

the largest m eigenvalues of the problem zKz λ= . The m eigenvectors are

interpreted as the m most significant direction of the region formed by the data

population and as describing the distribution of the data. PCA also maximizes the

scatter of all data points in the projection space and in general has the effect of

63

widening the gap between the class boundaries, therefore facilitating the

discrimination among the classes (see Figure 12).

Figure 12. (a) Hypothetical three class clusters in the original space and their
best separating hyper-planes. (b) The clusters projected to the projection space,
the scattering effect and the separation between the classes.

Linear
projection

(a) Original space

(a) Projection space

64

5.3 Fisher's Segmental Matching

A substantial advantage of using linear techniques like FDA is that the

training is much faster and requires relatively smaller amount of training data

compared with the more popular methods like neural networks and hidden Markov

models described previously. Therefore it has a potential to make a user-tailored

training feasible. The problem with the PCA is there is no provision built into the

linear projection that can take class-specific regularity into account. The

projection matrix is constructed with reference to the single global mean and the

scattering effect gained in the projection space is indiscriminate of the classes.

That is, the projection widens the between-class scatter, but it also widens the

scatter within the classes and this is not a desirable effect for classification

purposes. For example, in the face recognition task under large variation of

lighting, the PCA would wind up with the projection matrix in which the

projection columns with the largest eigenvalues tend to represent the variation in

lighting. The reasons are that the dominant pixel value changes in such task would

come from the lighting condition, and that the PCA would draw the globally more

significant feature first, in this case the lighting level. Therefore the PCA

projection would put the lighting level before the differences among the facial

patterns of different people, in terms of the feature worthiness. This is clearly

misleading information in many situations.

65

Fisher's linear discriminant analysis ([15], [64]) is one of the linear

techniques, which projects the input onto a lower-dimensional subspace. It was

successfully used in [3] for improving the performance of a face recognition task

under extensive variation of lighting conditions and facial expressions. One major

reason for using linear projection methods in the face recognition community is to

reduce the huge number of dimensions typically involved in face images. The

salient feature of Fisher projection is that it tries to maximize the between-class

scatter in relation with the within-class scatter, by taking class-specific regularities

into account in its construction. This contrasts with PCA where the global scatter

is maximized, indiscriminate of the classes. This point is demonstrated by a

simple two-class experiment in [3] where the PCA partially mixes up the two

classes in the projection space while the Fisher projection yields a clean-cut

separation.

5.3.1 Construction of the Fisher Projection Matrix

Suppose that we have the number C of classes CVVVV ,,,, 321 � and each

class Vi has a population of Ni vectors },,,{ 21
i
N

ii
i i

V vvv �= . Each data vector

is assumed to have n dimensions. The Fisher analysis considers two kinds of

scatter matrices: one for between-class distribution and the other for within-class

distribution. The between-class scatter B- is defined as

66

∑ =
−−= C

i iiiB N
1

T)()(����-

where i� is the centroid of the class Vi and � is the global centroid. The within-

class scatter W- is defined as

∑ ∑= =
−−= C

i i
i
ji

i
j

N

jW
i

1
T

1
)()(�v�v- .

Therefore the Fisher technique use the class label information to describe the two

comparative kinds of distributions. Given a projection matrix W (of size n by m)

and its linear transformation vWp T= , the between-class scatter in the projection

space is

()

W-W

W����W

W����W

W�W��W�W

�W�W�W�W

�����

B

C

i iii

C

i iii

C

i iii

C

i iii

C

i iiiB

N

N

N

N

N

T

1
TT

1
TTT

1
TTTT

1
TTTTT

1
T

)()(

)()(

)()(

)()(

)''()''(

=

−−=

−−=

−−=

−−=

−−=

∑

∑

∑

∑

∑

=

=

=

=

=

where µµ'i and µµ' are the class centroid and the global centroid in the projection

space respectively. Similarly W-W� WW
T= is the within-class scatter in the

67

projection space. The desired goal is to select a W' maximizing the between-class

scatter while minimizing the within-class scatter in the projection space so that the

widened gaps between the class boundaries lead to better class separability. The

problem can formulated as solving the following equation













=













=

W-W

W-W

�

�
W

W

W

W

B

W

B

T

T

maxarg

maxarg'

The construction of W' can be implemented by solving the generalized eigenvalue

equation

w-w- WB λ=

and computing the m largest eigenvalues mλλλ ,,, 21 � of the problem and their

corresponding eigenvectors mwww ,,, 21 � . Then the wi's form the orthonormal

columns of the target projection matrix, that is

].,,,[' 21 mwwwW �=

5.3.2 Training and Character Recognition

Computing the Fisher projection matrix with a set of character data vectors

is equivalent to training for character recognition using a metric in the Fisher

68

projection space. About the representation feature for character samples, there are

various choices as was described in CHAPTER 3. As a baseline representation,

we take a fixed length ECV (expanded coordinate vector, see CHAPTER 2) of the

character samples. That is, given a sample S,

>=< NNN yxyxyxS ,,,,,,)(ECV 2211 � for a constant N. The expanded

coordinate values xi's and yi's of ECVN (S) are the resampling results of the local

filtering after applying the data normalization steps of CHAPTER 2 to the original

data. The training data are compiled by computing ECVN (⋅) for each character

sample. Then the data go through the Fisher analysis and the projection matrix is

constructed. In the meantime, the training process also computes the model

centroid mi for each class i. The class vectors are normalized to be unit vectors for

the character matching later. Given a vector V, let F(V) be the vector in projection

space mapped by the projection matrix that has been trained by the Fisher analysis.

Given an input ECV y, its Fisher matching score (FMScore) for a class c is defined

as

2
))F(),F((dist2

),(FMScore
ym

y cc
−

=

where dist(⋅) is the Euclidean distance. So FMScore(⋅) ranges from 0 to 1 since the

model centroid and the input are normalized to unit vectors beforehand. The score

69

of 1 corresponds to the perfect match and 0 the complete mismatch. In summary,

the training steps are

1. Compile the training data in the standard representation.

2. Compute the model centroids and store them in the standard

representation.

3. Compute the Fisher projection matrix and store it.

The high level description of the character recognition is

1. Give an input y, convert it into the standard representation y.

2. For each class c, compute the score fc = FMScore(y, c) and produce the

pair <c, fc >.

3. Sort the <c, fc> pairs, in decreasing order on fc, into the list L.

4. Return the list L.

In case the character recognizer works as a standalone system, as is for an isolated

letter-by-letter recognizer, the system can just return the pair <c, fc> or the index c

such that fc is the maximum, instead of the steps 3 and 4 above. But for a

character recognizer as a component of a word or higher level recognition system,

such curtailed output is not enough since the system will need fuller information

for generating and managing the string hypotheses.

70

5.4 Experimental Results on Basic Representations

We used two basic representations for testing the performance of the Fisher

character recognition. One is the ECV representation described in the previous

section and the other is point tangent based, called tangential feature vector (TFV

for short). In more detail, let >=< NpppS ,,, 21 � be the normalized local

filtering result of an input character. Then

>
<=

)(),(),tan(,
),(),(),tan(),(),(),tan()TFV(222111

NNN pUpp

pUpppUppS

θ
θθ

�

where tan(pi) is the tangent of the point pi. θ (pi) is the accumulation of the signed

tangent angle values up to the point pi and U(pi) is the unsigned accumulation of

the tangent angles up to the point pi. The same Fisher training procedure works on

the TFV representation. For training, 1040 lowercase cursive letter samples were

used. For testing the performance, a set of 520 lowercase cursive letters was used,

which is disjoint from the training set. The test has two parts: one is self-test and

the other is disjoint-test. The self-test is performed on the training data and

measures the level of learning that took place. The disjoint-test is done on the test

data set that is disjoint from the training data set, and measures the generalization

capability acquired by the system through the training. The top choice accuracy is

tested in each character class and the global average performance is also measured.

See Table 1 and Table 2.

71

If the character recognizer is a standalone system, that is, works only as an

isolated character level recognition, then the only criterion that matters would be

the top choice accuracy since such task would be one-time invocation process. For

a character recognizer that works as a component of word recognition system, just

reporting the top choice would not be enough. Instead, an output of a set of

candidate characters with the corresponding confidence values, which are worth

considering is more desirable and in most cases is required, for the recognition

engine to work robustly at word level. To this end, the Fisher character matching

produces the set of candidates by keeping only the character classes that have its

Fisher matching score within the upper 40% of the top score. The numbers labeled

"average candidate set size" in Table 1 and Table 2 are the global average sizes of

all the character candidate sets produced during the tests. The candidate set size

has significant impact both on the speed and the accuracy of the system

performance. The recognition engine generates and grows word hypotheses by

combining the character hypotheses and therefore a small increase in the number

of character candidates will turn into much larger number of word level

hypotheses. This not only slows down the system's working, but also

72

Class Self-test Disjoint-test

a 97.5% 95.0%
b 100.0% 100.0%
c 95.0% 100.0%
d 100.0% 100.0%
e 92.5% 85.0%
f 92.5% 95.0%
g 97.5% 95.0%
h 97.5% 100.0%
i 85.0% 90.0%
j 100.0% 80.0%
k 95.0% 85.0%
l 100.0% 90.0%

m 92.5% 90.0%
n 92.5% 95.0%
o 95.0% 100.0%
p 97.5% 100.0%
q 82.5% 45.0%
r 100.0% 100.0%
s 90.0% 95.0%
t 100.0% 94.7%
u 85.0% 95.0%
v 100.0% 75.0%
w 90.0% 95.0%
x 100.0% 100.0%
y 92.5% 85.0%
z 90.0% 95.0%

Global
average

performance
94.62% 91.54%

Average
candidate set

size
11.87 13.57

Table 1. Character recognition tests
on ECV representation.

Class Self-test Disjoint-test

a 92.5% 95.0%
b 95.0% 100.0%
c 87.5% 90.0%
d 100.0% 100.0%
e 82.5% 80.0%
f 90.0% 70.0%
g 100.0% 100.0%
h 95.0% 90.0%
i 60.0% 60.0%
j 100.0% 100.0%
k 92.5% 85.0%
l 92.5% 85.0%

m 95.0% 95.0%
n 95.0% 90.0%
o 97.5% 100.0%
p 100.0% 95.0%
q 97.5% 100.0%
r 90.0% 85.0%
s 97.5% 100.0%
t 95.0% 52.6%
u 85.0% 85.0%
v 92.5% 75.0%
w 90.0% 95.0%
x 92.5% 85.0%
y 90.0% 65.0%
z 95.0% 95.0%

Global
average

performance
92.31% 87.5%

Average
candidate set

size
16.57 17.72

Table 2. Character recognition tests
on TFV representation.

73

introduces many spurious ambiguities leading to more misjudgments on the part of

the recognition engine. As seen in the Table 1 and Table 2, the size number is not

small for the Fisher character recognizers based on the ECV and the TFV features

and they keep on average about half of all the classes as candidates. The problem

stems from the nature of Fisher discriminant analysis or other linear analysis

techniques, that the evaluation scores they generate have linearity in their

distribution. For example, Figure 13 shows an example distribution of the sorted

scores of the candidate characters produced by ECV based Fisher recognizer with

Figure 13. The distribution of the candidate characters and their scores produced
by ECV based recognizer with an input of "a."

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

a c h I o m u w n g i e z v q

74

an input of "a." Therefore the distribution does not have a structure that is easy to

distinguish candidates and non-candidates and for reasonable robustness the

system needs to keep not a small number of candidates. This drawback will be

addressed in the next section with a new recognizer that integrates multiple

representations.

5.5 Multiple Experts Fusion

The rationale behind the paradigm of multiple experts fusion is that rather

than searching for a single omnipotent representation, a group of different and

simpler features compensating each others' weaknesses while retaining one's own

strength, sounds more natural and effective. Conventional fusion approaches

typically involve designing the topology of interconnections between the

recognizers ([1], [28], [63]), therefore the overall mechanism is implicit. Our

information fusion is unique in the sense that it has an explicit strategy that

compares the consistency of the two interpretations coming from each recognizer,

thereby re-computing the scores and the ranks of the candidate characters. The

new character recognizer implementing the fusion will not only improve in

accuracy, but will also achieve the desirable property of more selective response

pattern mentioned in the previous section. To this end we will use ECV and TFV

as the two different base representations. Let ECV-FCR be the Fisher character

75

recognizer based on ECV representation and TFV-FCR be that on TFV

representation. The outputs of the ECV-FCR and TFV-FCR will be integrated at

the module called Fisher Fusion Module that outputs the final result. See Figure

14.

Given a character segment input, the ECV and the TFV vectors are

extracted and they are fed to the corresponding base recognizers. In each base

recognizer, after the Fisher matching the candidates that have scores within the top

50% from the top score will be filtered and are output in a sorted list. Let these

lists be LECV and LTFV respectively for ECV and TFV representations. LECV and LTFV

may have different elements and different lengths. As seen in Table 1 and Table 2

ECV-FCR performs more reliably, so we take LECV as the main information and the

list LTFV is compared with it to proceed with the fusion process. For each element

<c, fc> pair in LECV, where c is a class label and fc is its Fisher matching score, we

try to find <c, gc> in LTFV. If <c, gc> pair is not found in LTFV then it means TFV-

FCR missed the class c as a candidate, so fc is penalized heavily by reducing it to

50%. Otherwise, we reevaluate fc as follows. Let topTFV be the top score of LTFV,

then we compute the ratio of gc with topTFV. That is, fc is updated into fc' as below

TFVtop
' c

cc

g
ff ⋅= .

76

Figure 14. Overall architecture of feature-fusion character recognizer.

ECV-FCR TFV-FCR

ECV
extraction

TFV
extraction

Input data

Candidate
list

Candidate
list

Fisher
Fusion
Module

Final
candidate

list

77

The updated pair <c, fc'> is sorted into the final list F. At the end, F is pruned to

have the items whose score is within the top 40% of its top score. The steps at the

Fisher fusion module are summarized below

1. Inputs are LECV and LTFV.

2. For each <c, fc> in LECV

.2.1. Find <c, gc> in LTFV.

.2.2. Compute fc' and sort <c, fc'> pair into the list F.

3. Prune out items in F whose score is below 60% from the top score.

4. Return F.

5.6 Experimental Results on the Fusion Matching

Table 3 shows the character recognition test results using the combined

representation fusion matching. Table 4 compares the recognition rates with those

of the base representations. For the disjoint-test, the error rate reduction rates from

the ECV and the TFV representations are 12.5% and 40.8% respectively. More

significant improvements were obtained in reducing the size of the output

candidate list. Now the new fusion matching produces the average number of

candidates of 3.68 for the disjoint-test. This is a large improvement from the

average number of candidates of 13.58 and 17.73 generated by the ECV and the

TFV matchings respectively, for the same test (Table 5). Therefore we have

78

obtain a target character recognizer that has more selective response pattern with

better accuracy. The fusion matching will run a little slower because it consists of

the two component matchings on base representations. But the compact candidate

set will more than compensate the extra cost since the recognition engine will

generate and handle significantly smaller number of word level hypotheses, and

the system performance will speed up overall.

79

Class Self-test Disjoint-test

a 97.5% 100.0%
b 100.0% 100.0%
c 95.0% 100.0%
d 100.0% 100.0%
e 90.0% 85.0%
f 92.5% 90.0%
g 100.0% 100.0%
h 100.0% 95.0%
i 87.5% 85.0%
j 100.0% 100.0%
k 97.5% 85.0%
l 97.5% 85.0%

m 97.5% 95.0%
n 97.5% 95.0%
o 95.0% 100.0%
p 100.0% 100.0%
q 92.5% 70.0%
r 100.0% 100.0%
s 97.5% 100.0%
t 100.0% 94.7%
u 92.5% 95.0%
v 100.0% 80.0%
w 92.5% 95.0%
x 97.5% 100.0%
y 97.5% 80.0%
z 95.0% 95.0%

Global average
performance 96.63% 92.5%

Average
candidate set

size
3.16 3.67

Table 3. Character recognition tests on combined representation fusion matching.

80

Self-test

Representation Recognition rate Error rate
Fusion 96.6% 3.4%

Fusion's error
reduction rate

ECV 94.6% 5.4% 37.4%
TFV 92.3% 7.7% 56.2%

Disjoint-test

Representation Recognition rate Error rate

Fusion 92.6% 7.4%

Fusion's error
reduction rate

ECV 91.5% 8.5% 12.5%
TFV 87.5% 12.5% 40.8%

Table 4. The fusion matching's character recogniton performance and comparison
with that of ECV and TFV representations.

Self-test

Representation Average candidate set size

Fusion 3.16

Candidate number reduction rate
of fusion matching

ECV 11.87 73.4%
TFV 16.57 80.9%

Disjoint-test

Representation Average candidate set size

Fusion 3.68

Candidate number reduction rate
of fusion matching

ECV 13.58 72.9%
TFV 17.73 79.2%

Table 5. The fusion matching's reduction effect on the size of candidate set
compared with the matchings of ECV and TFV.

81

CHAPTER 6. Word Recognition Engine

Unlike a standalone character level recognizer, the word level recognition

task faces two big challenges: the segmentation and the management of the word

level hypotheses. The recognition engine is the place where the issues are

addressed and to this end the various information from the rest of the system is

integrated and utilized. In our system the segmentation is partially addressed in

the preprocessing step by generating the tentative segmentation points. The

segmentation hypothesis points are just tentative possibilities and how to actually

try the permissible character segments is handled dynamically in the recognition

engine. Although the recognition engine is where the word level recognition really

takes place and is the center of global information fusion, relatively little effort has

been expended on an improvement of it, and the conventional approach is using

the Hidden Markov Model The conventional method of evaluating string level

hypothesis in handwriting recognition has been accumulating the confidence

values assigned to each string component ([6], [13], [27], [39], [71]).

82

6.1 Conventional Word Hypothesis Evaluation and Its Problems

In handwriting recognition context, the HMM's were originally meant the

models for character or sub-character units. The HMM, however, can be extended

to work at the word level by concatenating the character level HMM's according to

a given grammar that specifies legal combinations. Then the standard Viterbi

search process constructs the possible paths aligning with the input and the best

path can be found by minimizing or maximizing on the path scores. Let

>=< TxxxX ,,, 21 � be an input sequence and consider a possible partition of

X

)(,),(),(21 KXXX ττττ �=

where TK =≤≤≤≤ τττ �210 and >=< ++ −− iii
xxxX i ττττ ,,,)(21 11

� .

Each segment)(iX τ in the partition can be interpreted as modeled by a character

HMM whose index is the value of the variable hi. A path in this context is then

defined as H = <h1, h2, … , hK>. Then estimating the best path H can be

formulated as

{ })|)()(Pr(max)|Pr(11
,

KK
H

hhXXHX �� ττ
τ

=

or, if we assume the conditional independence among the segments

{ }∏ =
= K

j jj
H

hXHX
1

,
)|)(Pr(max)|Pr(τ

τ
.

83

Therefore the problem can be recast as a global level HMM of lower level, that is

character level, models, and becomes amenable to dynamic programming similarly

as in original HMM ([71]). The probability quantity can be replaced with other

kind of confidence metric C related with other kind of model m than HMM with a

path now defined as M = <m1, m2, … , mK>:

{ }∏ =
= K

j jj
M

mXCMXC
1

,
)|)((max)|(τ

τ

One problem of this approach is that the multiplication of the more general

component confidence values may not be natural if it is not drawn from real

statistics. For example, let's suppose the confidence is a score evaluated from a

Figure 15. A hypothetical word input whose middle part is poorly shaped,
and the arcs representing the segments identified by the system. The pair
<s, n> on each arc is the interpretation of the corresponding segment, where
s is the character label and n the character recognition score.

Poorly shaped
interval

<C1, 0.9> <C2, 0.1> <C3, 0.9>

<T1, 0.6> <T2, 0.5>

End of
input Start of

input

84

shape matching. In this case, it is not clear what the multiplicative path score may

mean. Rather the average of the component scores may make more sense, because

it is clearly a measure of how well the component characters are shaped overall.

The other problem is the brittleness that may be introduced by the multiplicative

nature of the path score. For example, suppose that one component character was

poorly shaped and scored low. In this case it is possible that the correct hypothesis

may not survive the propagation or may break down at the poorly formed

character. In Figure 15, let's suppose that the string C1C2C3 is the correct

interpretation of the input. Then its related multiplicative path score is

0.9×0.1×0.9 = 0.081 and the string will be pushed away by the wrong

interpretation T1T2 having the path score of 0.6×0.5 = 0.3. Also the multiplicative

path score has the effect of preferring shorter interpretations to longer ones

because an interpretation will have its confidence value reduced multiplicatively as

it concatenates a character and grows in length.

6.2 Word Recognition as a Graph Search Problem

A word level hypothesis is essentially a string of character hypotheses and

its confidence score. A character hypothesis consists of the interpreted character

class label, the evaluation score computed by the character recognizer, and other

information like its starting and ending points, the bounding box, etc. In our

85

system the score of a word hypothesis is not the conventional accumulation of the

log-likelihood of the character confidences. Instead it is taken as the average of

the scores of the component character hypotheses. Therefore our word hypothesis

score is a measure of how well its contained characters are shaped overall in

relation with the Fisher character models. The robustness of the new path scoring

can be shown by retaking the example of the previous section drawn from Figure

15. The averaging method gives the path score of (0.9+0.1+0.9) / 3 = 0.63 to the

correct hypothesis C1C2C3, which is higher than 0.55 assigned to the wrong

hypothesis T1T2. With the segmentation points and the rule to form the character

segments, the structure of the recognition engine can be formulated as a graph.

The segmentation points along with the starting and the ending points of the input

can be regarded as the set of vertices. The starting point corresponds to the special

vertex S and ending point to the special vertex T. A directed edge s → t between

the two nodes s and t can be regarded as representing the segment starting from the

segmentation point represented by s, to the segmentation point represented by t.

Which edges are present in the graph is determined by the rule in the recognition

engine. Conceptually this graph is called the "segmentation graph" of a given

input because it describes the structure of the segmentation possibilities. See

Figure 16. Note that the graph is a DAG (directed acyclic graph) since the edges

are directed forward and never go back in time. Next the segmentation graph is

86

Figure 16. The segmentation graph of an input. The segmentation points are
indicated by the dots over data, which are also the vertices of the graph along
with S and T. The edges installed by the generation rule are indicated by the arcs
with arrows.

Figure 17. (a) An edge from the segmentation graph (b) the same edge
expanded into multiple interpreted edges in the interpretation graph.

Input data

(a) (b)

s t s t

"a"

"c"

"i"

"e"

"h"

S
T

87

expanded into a graph called "interpretation graph." In the interpretation graph,

each unlabeled directed edge in the segmentation graph is interpreted, by invoking

the character recognizer with the corresponding segment as input, and is replaced

by a set of edges having the same source and destination vertices, but now being

labeled with the character class index and the evaluation score (see Figure 17).

In this setting the word recognition problem can be transformed into

finding the optimal path from the starting vertex S to the ending vertex T in the

interpretation graph ([39]). The score of a path is a function of the scores of the

edges contained in the path. Traditionally the path score function is the

summation of the log-likelihood of the individual edge score. The path score

function in our system, however, is the average of the component character scores

for the reasons explained the previous section. In addition, we use a variant of

Viterbi search in which more than one predecessors are kept in a list at each

propagation points. If we have an oracle metric that can evaluate word hypotheses

with infinite precision, then we would not need to care but use the standard Viterbi

search which runs optimally assuming that word evaluation metric is correct. In

practice, the reality is less than ideal especially in statistical pattern recognition

context and there are many sources of noise like perturbations in data, in feature

extraction, ambiguities and confusions in the character recognition process, and so

on. Therefore the optimality of the Viterbi search can not be expected because the

88

hypotheses evaluation metric itself is imperfect. Our strategy to cope with this

problem is to retain more than one predecessor hypotheses at each propagation

point in our recognition engine.

6.3 Hypotheses Propagation Network

The recognition engine of our system, named "Hypotheses Propagation

Network" (HPN), is a two-dimensional lattice in structure and implements the

interpretation graph and the search algorithm on it described in the previous

section. One dimension of HPN is the time in terms of the segmentation points:

the first segmentation point is the time-1, the second segmentation point the time-

2, and so on. The other dimension ranges over the indices of the character classes

(see Figure 18). The intersections of HPN lattice correspond to a node N (t, m),

where t is a time and m is the index of a character class. Given two nodes N (t',

m') and N (t, m) where t' < t, the edge N (t', m') → N (t, m) corresponds to the

segment from t' to t in the input that is interpreted as the class m, having m' as the

predecessor.

6.3.1 The HPN Search

In HPN, the interpreted edges are constructed dynamically by the segment

generation rule. At each processing time t, the HPN looks back in time and ranges

89

over the look-back windows of sizes from 1 to w that is the maximum size.

Therefore the i-th look-back window Wi starts at time t-i and ends at t (see Figure

19). For each Wi, the HPN sends the feature vector extracted from the

corresponding data segment to the component character recognizer which in turn

returns the list of candidates },,,{ 21 kmmm � . For each of the candidate mj, the

HPN iterates over the nodes N (t-i, m') and considers whether or not to place the

edge N (t-i, m') → N (t, mj) in the graph. The decision is based on the information

coming from various hypothesis-filtering models. One example is the use of

lexicon or dictionary. That is, if the string corresponding to a hypothesis that has

been propagated to the node N (t-i, m') forms a legal prefix of the lexicon if mj is

concatenated to it, then the new prefix is legal and the edge is permissible.

As stated above, the main difference of HPN search from other dynamic

programming search techniques is the use of multiple predecessors. At each node

N (t, m), the HPN stores the list of word level hypotheses H (t, m) each of whose

elements is a hypothesis that ends at time t with the character of class m as the last

character of its string. For an edge N (t1, m') → N (t2, m), the HPN iterates on each

element of H (t1, m') and computes a new hypothesis with the score of the edge

90

Figure 18. The lattice structure of HPN and an example of edge from the node
N (t', m') to node N (t, m).

Figure 19. The look-back windows of HPN, from the current processing time.

1 time

classes

a

b

t-1 t t+1
…

Current
processing time

2

First look-back window
second look-back window

w-th look-back window

1 2 3

a
b

y
z

m'

m

t'' t

N (t', m')'

N (t, ,m)'

time

classes

91

and the class label m and inserts it into the list H (t2, m). See Figure 20. After the

last time T, the lists H (T, *) are merged into a single sorted list H that is the

sequence of candidate words recognized by the system, ordered according to the

confidence values.

Figure 20. Snapshot of HPN search building the hypothesis list H (t, m) for time
t and the class m.

H (t, m)

Class m's legal
predecessors

"a" "b" "z" "y"

List length

1
2

3

Time

T

t

Look-back
window
range

m

92

6.3.2 Pruning on the Hypothesis List

Now allowing multiple hypotheses ending on the same propagation node,

with no limit on the length of the lists H (t, m) can lead to intractable computation

since the hypothesis growing and propagating process would encounter

exponentially growing number of predecessor as the time proceeds. The

hypotheses filtering models of the next chapter are ways to prune the search by

blocking the propagation of the hypotheses that are detected as not consistent with

the various context information. On the HPN itself, the search structure is taken

similar to the beam search. On one level, all H (t, m) are restricted to have at most

C number of items. At the other level, the maximum number of hypotheses at

each time t is restricted to U. This is achieved by keeping at most the top U

hypotheses at time t, in terms of their hypothesis scores, that are distributed over

the H (t, *)'s. The numbers C and U are among the system parameters controlling

the accuracy and the running speed.

6.4 Experimental Results

The word recognition tests were performed in 4 different settings on a set

of 100 words collected by the author and the results are summarized in the

following tables. All tests were run with a lexicon of 450 words and the ligature

modeling described in CHAPTER 7.2. Table 6 shows the results of the tests using

93

the ECV for representation and the two different recognition engine searches, that

is HPN search and the Viterbi. The system outputs a list of word candidates sorted

according to the confidence values assigned to each candidate. In our setting the

rank of the list starts from 0, not 1, so the top choice has rank-0. The performance

is taken as correct only if the target word is the same as the top choice. The table

also shows the distribution of the ranks of the mis-recognized or non-recognized

words. Non-recognition means that the target word is not included in the

candidate list. The average rank in the table means the mean value of the ranks of

the mis-recognized words.

ECV matching HPN search Viterbi search

Recognition rate 85% 73%

Rank distribution of mis/non-recognized words

rank-1 7 3
rank-2 3 1
rank-3 1 0

out of rank 4 23

Average rank 1.45 1.25

Table 6. Word recognition performances on the ECV representation and its Fisher
matching with different recognition engine searches.

From the table, it is clear that our strategy to keep multiple predecessors at

each propagation points is more robust than the standard Viterbi search. Most of

the mistakes it makes are non-recognition, not mis-recognition, which means that

94

the correct hypothesis did not survive to propagate to reach the end time in many

cases. The point that this situation can be remedied by keeping more opportunities

open in the form of having multiple predecessors at each propagation points as is

done in the HPN, is verified.

Table 7 shows the same kind of tests but done on the fusion representation

and its Fisher matching, instead of the ECV. The fusion representation with the

HPN search improved the recognition rate by 3% or reduced the error rate by 20%,

over the ECV-HPN combination. Also there are no non-recognized words in

Fusion-HPN case. This is attributable to the more discriminative property of the

fusion matching obtained by tuning the character scores with the information from

the different representations. Here again, there is a big gap in the performance

between the HPN and the Viterbi searches.

Fusion matching HPN search Viterbi search

Recognition rate 88% 68%

Rank distribution of mis/non-recognized words

rank-1 8 2
rank-2 1 0
rank-3 2 0
rank-4 1 0

out of rank 0 30

Average rank 1.67 1.0

Table 7. Word recognition performance on the fusion representation and its
Fisher matching with different recognition engine searches.

95

CHAPTER 7. Hypotheses Filtering Models

With no contextual analyses and relying only on the scores assigned by the

component character recognizer, the recognition engine is bound to generate a

large number of hypotheses, many of them spurious, because it lacks higher level

contextual sight. For example, some English characters are inherently ambiguous:

"o" and "0," "1" and "I," "1" (one) and "l" (lowercase "L"), to name a few. In

many cases, the ambiguities of such characters can only be resolved by taking the

given context into account. With a contextual perspective, however, many of the

generated hypotheses may not make sense any more and may be eliminated from

further propagation. The economy of hypothesis propagation obtained by such

filtering substantially contributes to the performance of the system.

7.1 Dynamic Lexicon

One of the most common forms of context information is the use of a

lexicon, that is a dictionary of permissible words. The lexicon filtering is usually

applied either after the generation of word candidates or during the propagation

process but the former approach can little contribute in pruning the search space.

96

In still another approach, the lexicon is dynamically reduced by an early-

recognition stage using an approximate but fast recognizer-like method ([67]).

The purpose of the early-recognition is to determine quickly a small set of

plausible candidate words, thereby reducing the size of the lexicon. The rest of the

system then focuses only on the reduced lexicon. A statistical n-gram modeling of

character sequences is also used and makes sense if the system tries to recognize

out-of-lexicon words. In our system, the dictionary is organized into the compact

"trie" data structure and is looked up dynamically when the HPN tries to propagate

a word hypothesis. A non-leaf node of the lexicon trie corresponds to a legal

prefix of the system, that is a proper prefix of a full word. The full words are

represented by the leaves of the trie. Each word level hypothesis has a pointer set

to the node of the trie that corresponds to the prefix string that the hypothesis

represents. So, when the HPN processes a hypothesis h ending at an HPN node for

propagation with an edge interpreted as a character class x, the HPN looks up the

trie node of h. If the node has x as a successor, then it means that h can be

extended to h' having x as the last character. This way, the system dynamically

prevents a hypothesis from being extended to a non-permissible string and all the

word level hypotheses generated and propagated are limited to legal prefixes of the

lexicon.

97

7.2 Ligature Modeling

Much of the variability of a character written in a cursive script comes

from how it connects with the surrounding characters, that is by the ligatures. This

phenomenon is similar to what is called co-articulation in speech recognition, in

which a phoneme has greater variation in pattern around the border with the

neighboring phonemes. Ligatures are not necessary but ever present in continuous

cursive writing due to physical constraints in and psychological need of fast

writing. Traditionally, most approaches simply ignored them ([7]), some others

trying to deal with the ligatures mainly used hidden Markov models ([27], [71]).

Still others used very expensive methodology ([35]), for example by using the

classes of continuously written character pairs, thereby proliferating the system’s

classes in large number. The rationale of our modeling the ligatures is that there

are certain regularities in their formation, and they can be used to measure a well-

formedness of a hypothesis. By appropriately modeling away these dummy

bridges, we can expect more regularity in the shapes of characters. The difficulty

of modeling ligatures, however, is that they are context sensitive and taking the

full contexts into account leads to a proliferation of models. For example, a

straightforward ligature modeling of 26 lowercase English letters by HMM will

wind up with 26 × 26 = 676 models. The large number of models inevitably

increases the amount of computing time and storage. Depending on a language

98

and its structure, more efficient modeling is possible (for example, Korean). In

[71], a context-free grammar was defined to model the way the ligatures can be

formed between the component sub-character units in Korean language that has a

concise syntax specifying how the sub-character units can be combined to form a

legal character, and HMM's were trained to actually model each type of ligature.

But for English there are few alphabetic constraints on the formation of ligatures

that could be exploited for more concise modeling.

7.2.1 Using Feature-Link Code to Model Ligatures

The feature-link code (FLC) was introduced in CHAPTER 4.4 and its

computation was also described there. In Figure 10, the 24 convexity-directional

feature-link templates were shown along with the indices assigned to the

individual templates. In Figure 11, example handwriting of the word "day," its

feature-link intervals and the FLC's were demonstrated. From the example, it is

clear that the FLC is a compact representation to describe a smooth contour

interval. In our system, the feature-link interval is the smallest unit along which

the entire input is broken down. A character segment is always formed as a

consecutive sequence of feature-link intervals. Therefore a ligature, if present, is

also a sequence of feature-link intervals between two character segments. In our

system, we use the feature-link intervals to hypothesize about the ligatures. A

99

ligature segment, however, does not need to contain many feature-link intervals in

normal handwriting, because, unlike the characters, it serves merely as a bridge

and its shape does not have a complex structure. Except for mis-formed or ill-

formed handwriting, it is a smooth interval with certain degree of convexity. This

sounds the same as the definition of the feature-link interval and through the FLC

we have an efficient way to categorize a ligature hypothesized between two

characters. Since the FLC is computed into a table at the pre-preprocessing step,

the consumer (that is, the HPN) just needs to look into the table.

For filtering purpose, we set up two lookup matrices IsRequired[c1, c2] and

IsLegal[c1, l, c2] where c1 and c2 range over character class indices and l is an FLC.

IsRequired[c1, c2] has value TRUE if a ligature is required between the two

character classes c1 and c2 in continuous writing, and FALSE otherwise.

IsLegal[c1, l, c2] is set to TRUE if l is a permissible ligature between c1 and c2, and

FLASE otherwise. The quantity IsRequired[c1, c2] is used when the segments of

c1 and c2 touch each other and therefore no ligature is present. If IsRequired[c1, c2]

is TRUE in this case, then it means that c1 followed by c2 is mis-hypothesized

since they require a ligature in continuous formation. When two characters c1 and

c2 are separated by an interval labeled with FLC l, the matrix entry IsLegal[c1, l,

c2] is looked up by the system to check whether the ligature is permissibly formed.

Therefore if a hypothesis that is being considered by the HPN for extension with

100

such context, is not consistent with the ligature models, such an instance is blocked

from further propagation.

With the models explained, the question is how we determine what value to

enter into the matrix entries. Ideally, training may do this from the samples and in

such case we may use the observed probability quantity instead of Boolean values.

But because of the difficulty in obtaining large amount of labeled ligature data, we

used hand-designed code instead. The design was meant to be tolerant so that a

ligature type between two characters, that is FLC, was made legal unless it is

clearly nonsensical. The result is collapsing the large modeling, both in time and

storage, down to moderate-sized matrices and one or two matrix-entry lookups.

7.2.2 Examples and Experimental Results

Figure 21 shows two examples where the matrices IsRequired[c1, c2] and

IsLegal[c1, l, c2] are used. Part (a) of the figure shows the incorrect segmentation

of "g" into "o" and "j." The string "oj" when written continuously, needs a ligature

between the two characters since without one it should look as a shape of "g."

Therefore the value of IsRequired["o", "j"] is TRUE. Because the segmentation

provides no room for a ligature, the system can detect that "oj" is a wrong

interpretation. The next example in Figure 21 is how the quantity IsLegal[c1, l, c2]

is used. Part (c) of the figure shows a wrong segmentation of "pie" into "jie."

101

However the direction and the convexity of the hypothetical ligature between "j"

and "i" is clearly not a possible pattern under a normal condition, so the system

will find FALSE value at the entry IsLegal["j", l, "i"] where l is the FLC of the

ligature.

Figure 21. Incorrect and correct character segmentations and the ligature
modeling. The segment boundaries are indicated as dots. (a) Wrong
segmentation of "g" into "o" and "j." This case is rejected by ligature modeling
because continuously written "oj" requires a ligature between the segments. (b)
Correct segmentation of "pie." (c) Wrong segmentation of "pie" into "jie." The
hypothesized ligature is not consistent as a ligature between "j" and "i."
Therefore it will not be taken as permissible.

(a) "g' mistaken as "oj"

(b) "pie"

(c) "pie" mistaken as "jie"

ligature

102

In CHAPTER 6.4, all tests were run with the ligature modeling turned on.

To see how the absence of ligature modeling impacts the word recognition

performance, a test using the fusion representation and the HPN search was run

with the ligature modeling turned off. Table 8 compares the test result with that of

the test with the modeling. When the models are turned off, the recognition rate

dropped by 19%. A large part of the errors are non-recognition, meaning that the

extra confusions caused by no modeling, pushed the correct word hypotheses out

of the predecessor lists somewhere during the propagation. The rank distribution

of the no modeling case also shows the negative impact on the mis-recognition

cases in which the ranks of the targets are scattered wider from the top.

Ligature modeling Yes No

Recognition rate 88% 69%

Rank distribution of mis/non-recognized words

rank-1 8 10
rank-2 1 5
rank-3 2 1
rank-4 1 2
rank-5 0 1
rank-6 0 1

out of rank 0 11

Average rank 1.67 2.1

Table 8. The comparison of word recognition performances with and without the
ligature modeling. Both tests were done using the fusion representation and the
HPN search.

103

7.3 Visual Bigram Modeling

The ligature modeling is an example of hypothesis filtering using visual

context. It modeled the range of permissible connecting patterns between the

character hypotheses. In the visual bigram modeling we compare the geometric

characteristics of the character hypotheses directly to check if it is consistent with

the context drawn from the pair of hypotheses. That is, the variability of relative

geometric information like the relative size and positioning of a character unit in

comparison to its neighbors, is modeled and the system evaluates the fitness of a

hypothesis according to the models. An isolated character can be highly

ambiguous while its identity can be more evident when put in a context. For

example, the word "go" can be confused with "90" when the system considers each

individual character. But if the relative size and the positioning of the second

Figure 22. The example characters that are ambiguous individually but are
obvious when seen in the context.

Character
heights

Relative
height ratio

and
positioning

“go”

“90”

104

character hypothesis are taken into account, in relation with the first character

hypothesis, it becomes clearer that the "go" is the more likely interpretation

(Figure 22). Some studies ([35], [21]) tried to incorporate this modeling into the

character recognizer, that is, by training the recognizer with a data set of all

possible character pairs. This approach, however, has the problem in that it

requires a huge amount of training samples and much larger number of class

models. Other efforts available from the literature have tried to either identify and

use ascender or descender sub-strokes of writing ([55]), or rely on the covariance

matrix of the model parameters ([79]). We will show a new and more intuitive

approach that does not need such information and the model parameters are

learned by training on the data samples.

7.3.1 Modeling Visual Bigram Information

When the feature vector is extracted by the local filtering for a character

segment, it also computes the bounding box of the segment. Here a visual bigram

<c1, c2> is a pair of two consecutive character hypotheses c1 and c2, along with the

information of their respective bounding boxes. Given <c1, c2>, let

• topi be the top-most y-coordinate of the bounding box of ci

• bottomi be the bottom-most y-coordinate of the bounding box of ci

• hi = topi - bottomi, that is the height of the bounding box of ci

105

for i ∈{1, 2}. The combined height of <c1, c2> is, H(<c1, c2>) = max (top1, top2) -

min (bottom1, bottom2). Next, let us define the three functions of <c1, c2> as

follows:

• Height difference ratio:
)c,c(H

)c,cHDR(
21

21
21 ><

−
=><

hh

• Top difference ratio:
)c,c(H

toptop
)c,cTDR(

21

21
21 ><

−
=><

• Bottom difference ratio:
)c,cH(

bottombottom
)c,cBDR(

21

21
21 ><

−
=>< .

Suppose that we have a model MH that measures the fitness of the height

difference ratio of an input class <c1, c2>. For lowercase English alphabet, each ci

ranges over 26 letter classes, and a straightforward approach would take 26×26 =

676 bigram classes. The information that we want for modeling, however, is the

relative size and the positioning between the characters. Therefore by categorizing

the letters into groups according to this criterion, the number of needed bigram

classes can be greatly reduced. To this end, let us consider the two kinds of sub-

strokes: ascender and descender. An ascender is a sub-stroke running beyond the

upper-baseline of the lowercase letter and a descender is a sub-stroke running

below the lower-baseline of the lowercase letter. All lowercase letters can be

divided into three groups: one having ascenders, another having descenders and

106

lastly the one having none. Table 9 shows the three categories and their member

letter classes.

Ascender or
descender Type name Members

Ascender A b, d, f, h, k, l, t

Descender D f, g, j, p, q, y, z

None N a, c, e, i, m, n, o, r, s, u, v, w, x

Table 9. Three categories of lowercase letters according to the presence of
ascender or descender sub-strokes.

The 26 letter classes have been reduced to the 3 classes of A, D, and N

representing the ascender group, the descender group and the none-group

respectively. Hence we only need to deal with the 9 bigram classes of {A, D,

N}×{A, D, N}: <A, A>, <A, D>, <A, N>, <D, A>, <D, D>, <D, N>, <N, A>, <N,

D>, and <N, N>. Now the model MH can be set up for 9 bigram classes as above,

instead of 676. The computing steps of MH(<c1, c2>) for the class <l1, l2>. is

1. Compute HDR(<c1, c2>).

2. Compare HDR(<c1, c2>) with the parameters of <l1, l2>.

3. Return the confidence value of HDR(<c1, c2>) interpreted as that of

<l1, l2>.

107

Suppose that we also have the models MT, MB set up similarly as MH, but

measuring the top-difference ratio and the bottom-difference ratio respectively.

Then what we desire from modeling the visual bigram information can be

summarized in the form

VBScore(<c1, c2>) = kH⋅MH(<c1, c2>) + kT⋅MT(<c1, c2>) + kB⋅MB(<c1, c2>)

where kH, kT and kB are coefficients or weights to the corresponding models.

7.3.2 Training the VBM

In computation of the model score M(<c1, c2>) for a model M that is one of

either MH, MT, or MB, the comparison of the related difference ratio of <c1, c2>

and the model's parameter is actually a look-up into a table holding the distribution

histogram of the ratio. Training the VBM parameters is essentially constructing

the model distributions from visual bigram samples. For example, let us consider

the training of height difference ratio (HDR) model for the bigram class <A, A>.

We collect the set of the HDR values for <A, A> class samples. Let S = <s1, s2, …

, sk> be the sorted list of the HDR values. Then the interval [s1, sk] is divided into

N equal length sub-intervals. A bin is set up for each such sub-interval, to count

the number of si values that fall inside the sub-interval. Therefore, after finishing

counting, the sequence of the bins forms the histogram of the distribution of HDR

values. The histogram is then Gaussian-smoothed. After training, the quantity in

108

a histogram slot represents a likelihood of the HDR values that fall within the slot.

The training of the rest of the models MT and MB proceeds similarly. The process

is iterated on each of the 9 bigram classes and the system will wind up with 27

histograms in total. With the histogram set up for a model M, the steps of

computing the model score on input <c1, c2> are as follows: (Let HISTM[*] be the

histogram of M)

1. Compute the model's difference ratio R from <c1, c2>.

2. Compute the histogram slot index k from R:  slotsize/min)(−= Rk ,

where min is the lower-bound of the first histogram slot interval and

slot-size is the interval length of the histogram slots.

3. Return HISTM[k].

7.3.3 Computing the Class Model Coefficients

Each model of a specific bigram class, has its coefficient that is used in the

computation of the target confidence level of an input as shown at the end of

CHAPTER 7.3.1:

VBScore(<c1, c2>) = kH⋅MH(<c1, c2>) + kT⋅MT(<c1, c2>) + kB⋅MB(<c1, c2>).

Intuitively, the coefficient of a model measures the amount of contribution that the

information coming form the model gives, in determining the fitness of the input

with the suggested class interpretation. In our approach for determining the

109

coefficients we compute the amount of discrepancy of the distribution compared

with the same kind of models of different classes. If the discrepancy of a model is

larger than those of other models of the same class, then it means that the model is

worth larger coefficient because it provides more information in measuring the

fitness of the input. Given two bigram classes T1, T2 and a model M, let D(M, T1,

T2) be the distribution discrepancy of T1's M from T2's M. The computing steps of

D(M, T1, T2) is

1. Align M's scales of distribution of T1 and T2 by extending the histograms

HISTT1 and HISTT2 to HIST'T1 and HIST'T2, so that the latter two have the

same range of intervals.

2. Compute the discrepancy DSUM as follows by iterating over i

2.1.




−
<−

=
else][HIST'][HIST'

][HIST'][HIST' if][HIST'][HIST'
:DSUM

21

2112

TT

TTTT

ii

iiii

3. Return DSUM.

Step 1 is necessary since T1 and T2 have, in most cases, different distributions

corresponding to different real value intervals. For a given class T, let DM(T) be

the sum of D(M, T, *)'s over all other classes. This process repeats on other

models of T. Let DH(T), DT(T) and DB(T) be the three discrepancy quantities for

the T's models MH, MT and MB respectively. Then the coefficients for the class T

is computed as

110

• kH = DH(T) / (DH(T) + DT(T) + DB(T))

• kT = DT(T) / (DH(T) + DT(T) + DB(T))

• kB = DB(T) / (DH(T) + DT(T) + DB(T)).

The three coefficients are computed for each of the 9 bigram classes, so the total of

27 coefficients are computed for each model of each bigram class, using the above

procedure.

7.3.4 Experimental Result

To see the effectiveness of VBM on the word recognition performance, a

test using the fusion representation and the HPN search was run with the VBM

obtained by training on 240 visual bigram samples. Table 10 compares the test

result with that of the test without the modeling. This time, the VBM filtering was

applied after the HPN finishes its search. That is, for each the final candidate word

of the system, the word's VBM score was multiplied by the standard word score to

get a new score. The candidates were re-sorted according to the new score into the

new list. Therefore the new list is a re-ordering of the standard output list of the

system, with the items reshuffled in reflection of the VBM fitness information.

As seen in the table, the recognition rate was increased from 88% to 93%, an

improvement of 5%.

111

Using VBM Yes No

Recognition rate 93% 88%

Rank distribution of mis/non-recognized words

rank-1 4 8
rank-2 1 1
rank-3 1 2
rank-4 1 1
rank-5 0 0
rank-6 0 0

out of rank 0 0

Average rank 1.85 1.67

Table 10. Comparison of word recognition performances with and without the
VBM. Both tests were done using the fusion representation and the HPN search.

112

CONCLUSION

Research in on-line handwriting recognition started in the early sixties, as

the first generation of tablet digitizers became available. Since then, the

limitations in hardware like less than accurate and unreliable digitizers and the

amount of computing required to meet the need of demanding recognition task,

along with premature state of understanding and technical advancement, have not

allowed until recently a practical solution of on-line handwriting recognition with

unconstrained style and vocabulary. The research focus in this thesis has been to

develop a solution to the most fundamental problems in natural handwriting

recognition: an on-line cursive script recognizer that has arbitrarily scalable

vocabulary. In doing so, we have addressed and contributed the following points:

• Improved character recognizer using FDA and multiple experts fusion

paradigm, having the desirable selective response pattern and better

accuracy.

• New and more robust measure of word hypothesis evaluation that takes

the mean of each component character scores, instead of the

conventional non-decreasing accumulative scores.

113

• A general recognition engine (HPN) having multiple predecessors

thereby absorbing the potential loss of optimality in the standard

Viterbi search.

• Design and computation of the compact FLC representation and its use

for efficient ligature modeling.

• Design and training of the efficient and effective geometric context

modeling in the form of VBM.

Our approach of integrating the local features into a larger context perspective,

more specifically at the character level, facilitates more robustness by avoiding the

sensitivity to local fluctuation of feature variability. This has been possible since

the features are not evaluated incrementally according to the temporal order, but

are rather evaluated at once at the character unit. More generally our approach

allows rearrangement of the order of the features inside a character segment in a

standard way. This would be hard to do in a more sequence-bound approach for

example a baseline HMM. The potential advantage is that such rearrangement of

input can be used for writing-order-independent recognition, so that it would

become more shape-based and would work more like humans are able to do.

Furthermore, the same methodology could be adapted to off-line recognition task

since the system would not have needs for ordering information other than for

segmentation purpose. Our overall modular design also allows incremental

114

evolution of the system since each functional modules can be studied and

improved in separation from the whole system and re-integration of the re-worked

module can be done with little modification to the rest of the system.

115

REFERENCES

[1] Fevzi Alimoglu and Ethem Alpaydin, “Combining Multiple Representations and

Classifiers for Pen-based Handwritten Digit Recognition,” Proc. of the 4th

International Conference Document Analysis and Recognition (ICDAR '97),

1997.

[2] H. S. M. Beigi, K. Nathan, G. J. Clary and J. Subrahmonia, "Size Normalization

in On-Line Unconstrained Handwriting Recognition, " in Proc. IEEE Int'l Conf.

Acoustics, Speech and Signal Processing, pp. 169-172, Adelaide, Australia, Apr.

1994.

[3] Peter N. Belhumeur, J. P. Hespanha, and David J. Kriegman, "Eigenfaces vs.

Fisher Faces: Recognition Using Class Specific Linear Projection," IEEE Trans.

Pattern Analysis and Machine Intelligence, vol. 19, No. 7, 1997.

[4] Richard Bellman, "On a Routing Problem," Quarterly of Applied Mathematics,

vol. 16, no. 1, pp. 87-90, 1958.

[5] Y. Bengio and Y. LeCun, "Word Normalization for On-Line Handwritten Word

Recognition," in Proc. 12th Int'l. Conf. Pattern Recognition, vol. 2, pp.409-413,

Jerusalem, Oct. 1994.

[6] Y. Bengio and Y. LeCun, C. Nohl and C. Burges, "Lerec: A Neural

Network/HMM Hybrid for On-Line Handwriting Recognition," Neural

Computation, vol. 7, no. 5, 1995.

116

[7] S. Bercu and G. Lorette, “On -Line Handwritten Word Recognition: An Approach

Based on Hidden Markov Models,” Proc. Int’l Workshop on Frontiers of

Handwriting Recognition, ‘’ pp. 385-390, Buffalo, N. Y., 1993.

[8] C. M. Bishop, Neural Networks for Pattern Recognition, Clarendon Press, 1995.

[9] G. Boccignone, A. Chianese, L. T. Cordelia and A. Marcelli, "Recovering

Dynamic Information for Static Handwriting," Pattern Recognition, vol. 26, pp.

409-419, 1993.

[10] R. Bozinovic and S. N. Srihari, "Off-Line Cursive Script Recognition," IEEE

Trans. Pattern Analysis and Machine Intelligence, vol. 11, no. 1, pp. 68-83, 1989.

[11] M. K. Brown and S. Ganapathy, "Cursive Script Recognition," in Proc. Int'l.

Conf. Cybernetics and Society, 1980.

[12] D. J. Burr, "Designing a Handwriting Reader," IEEE Trans. Pattern Analysis and

Machine Intelligence, vol. 5, pp. 554-559, 1983.

[13] M. Y. Chen, A. Kundu and J. Zhou, "Off-Line Handwritten Word Recognition

Using a Hidden Markov Model Type Stochastic Network," ," IEEE Trans. Pattern

Analysis and Machine Intelligence, vol. 16, no. 5, pp. 481-496, 1994.

[14] D. S. Doermann and A. Rosenfeld, "Recovery of Temporal Information form

Static Images of Handwriting," Int'l J. Computer Vision, vol. 15, pp. 143-164,

1995.

[15] Pattern Classification and Scene Analysis, Richard O. Duda, Peter E. Hart, New

York, Wiley, 1993.

117

[16] L. Duneau and B. Dorizzi, "On-Line Cursive Script Recognition: A User-

Adaptive System for Word Recognition," Pattern Recognition, vol. 29, no. 12,

pp.1981-1994, Dec. 1996.

[17] C. E. Dunn and P. S. P. Wang, "Character Segmentation Techniques for

Handwritten Test - A Survey," Proc. 11th Int'l. Conf. Pattern Recognition, col. 2,

pp. 577-580, The Hague, Netherlands, 1992.

[18] Restor Ford Jr., D. R. Fulkerson, "Flows and Networks," Princeton University

Press, 1962.

[19] L. S. Frishkopf and L. D. Harmon, "Machine Reading of Cursive Script," in C.

Cherry, Ed., Information Theory (4th London Symp.), London, England:

Butterworths, pp. 300-316, 1961.

[20] K. Fukushima and S. Miyake, "Neocognitron: A New Algorithm for Pattern

Recognition Tolerant of Deformations and Shifts in Position," Pattern

Recognition, vol. 15, pp. 455-469, 1982.

[21] P. D. Gader, M. Mohammed and J. H. Chiang, "Handwritten Word Recognition

with Character and Inter Character Neural Networks," IEEE Trans. System, Man

and Cybernetics, vol. 27, no. 1, pp. 158-164, 1997.

[22] G. Gaillat, "An On-Line Recognizer with Learning Capabilities," in Proc. 2nd Int'l.

Joint Conf. Pattern Recognition, pp. 305-306, Aug. 1974.

[23] I. Guyon, P. Albrecht, Y. LeCun, J. S. Denker and W. Hubbard, "Design of a

Neural Network Character Recognizer for a Touch Terminal," Pattern

Recognition, vol. 24, no. 2, pp. 105-119, 1991.

118

[24] I. Guyon, I. Poujaud, L. Personnaz, G. Dreyfus, J. Denker, Y. LeCun, "Comparing

Different Neural Net Architectures for Classifying Handwritten Digits," in Proc.

Int'l. Joint Conf. Neural Networks, Washington DC, vol. 2, pp. 127-132, 1989.

[25] S. Hanaki, T. Temma and H. Yoshida, "An On-Line Recognition of Handprinted

Kanji Characters," Pattern Recognition, vol. 12, pp. 421-429, 1908

[26] C. A. Higgins and D. M. Ford, "On-Line Recognition of Connected Handwriting

by Segmentation and Template Matching," 11th Int'l. Conf. Pattern Recognition,

vol. 2, p. 200, Aug. 1992.

[27] J. Hu, M. K. Brown and W. Turin, "HMM Based On-Line Handwriting

Recognition," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 18,

no. 10, pp. 1039-1044, Oct. 1996.

[28] Y. S. Huang and C. Y. Suen, “Combination of Multiple Experts for the

Recognition of Unconstrained Handwritten Numerals,” IEEE Trans. on Pattern

Analysis and Machine Intelligence, Vol. 17, No. 1, Jan. 1995.

[29] D. H. Hubel and T. N. Wiesel, "Receptive Fields, Binocular Interaction and

Functional Architecture in the Cat's Visual Cortex," J. Physiology, London, vol.

160, pp. 106-154, 1962.

[30] J. J. Hull and S. N. Srihari, "A Computational Approach to Visual Word

Recognition: Hypothesis Generation and Testing," Int'l. Conf. Computer Vision

and Pattern Recognition, pp 156-161, Jun. 1986.

[31] Advances in Handwriting and Drawing: A Multidisciplinary Approach. C. Faure,

P. J. G. Keuss, G. Lorette, and A. Vinter, eds., Paris; Europia, 1994.

119

[32] I. Karls, G. Maderlechner, V. Pflug, S. Baumann, A. Weigel and A. Dengel,

"Segmentation and Recognition of Cursive Handwriting With Improved

Structured Lexica," Proc. Int'l Workshop on Frontiers in Handwriting

Recognition, pp. 437-442, Buffalo, N. Y., 1993.

[33] D. D. Kerrick and A. C. Bovik, "Microprocessor-Based Recognition of

Handprinted Characters from a Tablet Input," Pattern Recognition, vol. 21,

pp.525-537, 1988.

[34] T. Kohonen, "The Self-Organizing maps," Proc. IEEE, vol. 78, pp. 1464-1480,

1990.

[35] A. Kosmala, J. Rottland and C. Rigoll, "Improved On-Line Handwriting

Recognition Using Context Dependent Hidden Markov Models," 4th Int'l. Conf.

Document Analysis and Recognition, pp.641-644, 1995

[36] A. Kundu, Yang He and P. Bahl, "Recognition of Handwritten Words: First and

Second Order Hidden Markov Model Based Approach, " Pattern Recognition,

vol. 22, no. 3, p. 283, 1989.

[37] L. Lam, S. W. Lee and C. Y. Suen, "Thinning methodologies: A Comprehensive

Survey," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 14, pp.869-

885, 1992.

[38] Y. LeCun, "Generalization and Network Design Strategies," in R. Pfeifer, Z.

Schreter, F. Fogelman and L. Steels, eds., Connectionism in Perspective, Zurich:

Switzerland, Elsevier.

120

[39] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-Based Learning

Applied to Document Recognition," Proc. IEEE, vol. 86, no. 11, pp. 2278-2324,

Nov. 1998.

[40] M. Leroux, J-C. Salome and J. Badard, "Recognition of Cursive Script Words in

A Small Lexicon," in Proc. Int'l. Conf. Document Analysis and Recognition, pp.

774, Saint Malo, France, Sep. 1991.

[41] C. Y. Liou and H. C. Yang, "Handprinted Character Recognition Based on Spatial

Topology Distance Measurement," IEEE Trans. Pattern Analysis and Machine

Intelligence, vol. 18, no. 9, pp. 941-944, Sep. 1996.

[42] Y. Liu and S. N. Srihari, "Document Image Binarization Based on Texture

Features," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 19, no. 5,

pp. 1-5, May 1997.

[43] W. W. Loy and I. D. Landau, "An On-Line Procedure for Recognition of

Handprinted Alphanumeric Characters," IEEE Trans. Pattern Recognition and

Machine Intelligence, vol. 4, pp. 422-427, Jul. 1982.

[44] F. J. Maarse and A. J. W. M. Thomassen, "Produced and Perceived Writing Slant:

Difference Between Up and Down Strokes," Acta Psychologica, vol. 54, pp.131-

147, 1983.

[45] J. Makhoul, T. Starner, R. Schartz and G. Lou, "On-Line Cursive Handwriting

Recognition Using Speech Recognition Models,", Proc. IEEE Int'l Conf.

Acoustics, Speech and Signal Processing, vol. 5, pp. 125-128, Adelaide, Australia,

1994.

121

[46] S. Manke, M. Finke and A. Waibel, "Combining Bitmaps with Dynamic Writing

Information for On-Line Handwriting Recognition," in Proc. 12th Int'l. Conf.

Pattern Recognition, Jerusalem, Oct. 1994.

[47] M. Mohammed and P. Gader, "Handwritten Word Recognition Using

Segmentation-Free Hidden Markov Modeling and Segmentation-Based Dynamic

Programming Techniques," IEEE Trans. Pattern Analysis and Machine

Intelligence, vol. 18, no. 5, pp. 548-554, May 1996.

[48] K. S. Nathan, H. S. M. Beigi, J. Subrahmonia, G. J. Clary and H. Maruyama,

"Realtime On-Line Unconstrained Handwriting Recognition Using Statistical

Methods," Proc. IEEE Int'l Conf. Acoustics, Speech and Signal Processing, pp.

2619-2622, Detroit, 1995.

[49] H. Nishida, "An Approach to Integration of Off-Line and On-Line Recognition of

Handwriting," Pattern Recognition Letters, vol. 16, no. 11, pp. 1213-219, Nov.

1995.

[50] F. Nouboud and R. Plamondon, "On-Line Recognition of Handprinted Characters:

Survey and Beta Tests," Pattern Recognition, vol. 25, no. 9, pp. 1031-1044, 1990.

[51] Jong Oh and Davi Geiger, "An On-Line Handwriting Recognition System Using

Fisher Segmental Matching and Hypotheses Propagation Network," in Proc. Int'l.

Conf. Computer Vision and Pattern Recognition '00, vol. 2, pp. 343-348, Hilton

Head, South Carolina, Jun. 2000.

[52] N. Otsu, "A Threshold Selection Method from Gray-Scale Histogram," IEEE

trans. Systems, Men and Cybernetics, vol. 8, pp. 62-66, 1978.

122

[53] R. Otto, "Construction of Quadratic Polynomial Classifiers," in Proc. Int'l. Conf.

Pattern Recognition '76, pp. 161-165, 1976.

[54] T. Paquet and Y. Lecourtier, "Handwriting Recognition: Application on Bank

Cheques," in Proc. Int'l. Conf. Document Analysis and Recognition, p. 749, Saint

Malo, France, Sep. 1991.

[55] M. Parizeau and R. Plamondon, "Allograph Adjacency Constraints for Cursive

Script Recognition," 3rd Int'l. Workshop on Frontiers in Handwriting Recognition,

pp. 252-261, 1993.

[56] M. Parizeau and R. Plamondon, "A Fuzzy Syntactical Approach to Allograph

Modeling for Cursive Script Recognition," IEEE Trans. Pattern Analysis and

Machine Intelligence, vo. 17. No. 7, ppl. 702-712, Jul. 1995.

[57] Pattern Recognition, special issue on handwriting processing and recognition, R.

Plamondon, ed., 1993.

[58] Computer Processing of Handwriting. R. Plamondon and G. Leedham, eds.,

Singapore: World Scientific, 1990.

[59] R. Plamondon and G. Lorette, "Automatic Signature Verification and Writer

Identification - The State of the Art," Pattern Recognition, vol. 22, no. 2, pp. 107-

131, 1989.

[60] R. Plamondon and C. M. Privitera, "The Segmentation of Cursive Handwriting:

An Approach Based on Off-Line Recovery of the Motor-Temporal Information,"

IEEE Trans. Image Processing, vol. 8, no. 1, pp. 80-91, Jan. 1999.

123

[61] R. Plamondon, C. Y. Suen, M. Bourdeau and C. Barriere, "Methodologies for

Evaluating Thinning Algorithms for Character Recognition," Int'l J. Pattern

Recognition and Artificial intelligence, special issue on thinning algorithms, vol.

7, no. 5, pp.1247-1270, 1993.

[62] I. R. Rabiner, "Tutorial on Hidden Markov Model and Selected Applications in

Speech Recognition," Proc. IEEE, vol. 77, no.2, pp. 257-285, 1989.

[63] A. F. R. Rahman and M. C. Fairhurst, “Introducing New Multiple Expert Decision

Combination Topologies: A Case Study using Recognition of Handwritten

Characters,” Proc. of the 4th International Conference Document Analysis and

Recognition (ICDAR '97), 1997.

[64] Pattern Recognition and Neural Networks, B. D. Ripley, Cambridge, New York;

Cambridge University Press, 1996.

[65] P. K. Sahoo, S. Soltani, A. K. C. Wong and Y. C. Chen, "A Survey of

Thresholding Techniques," Computer Vision, Graphics and Image Processing,

vol.. 41, pp.233-260, 1988.

[66] M. Schenkel, I. Guyon and D. Henderson, "On-Line Cursive Script Recognition

Using Time-Delay Neural Networks and Hidden Markov Models," Machine

Vision and Applications, vol. 8, no. 4, pp. 215-223, 1995.

[67] G. Seni, R. K. Srihari, and N. Nasrabadi, "Large Vocabulary Recognition of On-

Line Handwritten Cursive Words," IEEE Trans. Pattern Analysis and Machine

Intelligence, vol. 18, no. 7, Jul. 1996.

124

[68] Forensic, Developmental and Neuropsychological Aspects of Handwriting,

special issue, J. Forensic Document Examination, M. Simner, W. Hulstijn, and P.

Girouard, eds., 1994.

[69] Handwriting and Drawing Research: Basic and Applied Issues. M. L. Simner, C.

G. Leedham and A. J. W. M. Thomassen, eds., Amsterdam: IOS Press, 1996.

[70] B. K. Sin, J. Y. Ha, S. C. Oh and J. H. Kim, "Network-Based Approach to On-

Line Cursive Script Recognition," IEEE Trans. Systems, Man and Cybernetics,

vol. 29, no. 2, pp. 321-328, Apr. 1999.

[71] B. K. Sin and J. H. Kim, "Ligature Modeling for On-Line Cursive Script

Recognition," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 19,

no. 6, Jun. 1997.

[72] C. Sung-Bae and J. H. Kim, "Combining Multiple Neural Networks by Fuzzy

Integral for Robust Classification," IEEE Trans. Systems, Man and Cybernetics,

vol. 25, no. 2, pp. 380-384, 1995

[73] C. C. Tappert, "Cursive Script Recognition by Elastic Matching," IBM J. Res.

Development, vol. 26, pp. 765-771, 1982.

[74] M. Turk, A. Pentland, "Face Recognition Using Eigenfaces," in Proc. Int'l. Conf.

Computer Vision and Pattern Recognition, pp. 586-591, 1991.

[75] "Neuromotor Control in Handwriting and Drawing," Acta Psychologica, G. P.

Van Galen and P. Morasso, eds., vol. 100, nos. 1-2, p. 236, 1998.

125

[76] Handwriting: Issues of Psychomotor Control and Cognitive Models," Acta

Pychologica, G. P. Van Galen and G. E. Stelmach, eds., special volume,

Amsterdam: North Holland, 1993.

[77] Development of Graphic Skills: Research, Perspectives and Educational

Implications. J. Wan, A. M. Wing and N. Sovik, eds., London: Academic Press,

1991.

[78] S. Watanabe, "Karhunen-Loeve Expansion and Factor Analysis: Theoretical

Remarks and Applications," in Proc. 4th Prague Conf. on Information Theory,

1965.

[79] I. S. Yaeger, B. J. Webb and R. F. Lyon, "Combining Neural Networks and

Context Driven Search for On-Line Printed Handwriting Recognition in the

NEWTON," AI Magazine, vol. 19, no. 1, pp. 73-89, 1998.

