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ABSTRACT 
 
 

We have developed an on-line handwriting recognition system.  Our  

approach integrates local bottom-up constructs with a global top-down measure 

into a modular recognition engine.  The bottom-up process uses local point features 

for hypothesizing character segmentations and the top-down part performs shape 

matching for evaluating the segmentations.  The shape comparison, called Fisher 

segmental matching, is based on Fisher's linear discriminant analysis.  The 

component character recognizer of the system uses two kinds of Fisher matching 

based on different representations and combines the information to form the 

multiple experts paradigm. 

Along with an efficient ligature modeling, the segmentations and their 

character recognition scores are integrated into a recognition engine termed 

Hypotheses Propagation Network (HPN), which runs a variant of topological sort 

algorithm of graph search.  The HPN improves on the conventional Hidden Markov 

Model and the Viterbi search by using the more robust mean-based scores for word 

level hypotheses and keeping multiple predecessors during the search. 

We have also studied and implemented a geometric context modeling 

termed Visual Bigram Modeling that improves the accuracy of the system's 

performance by taking the geometric constraints into account, in which the 

component characters in a word can be formed in relation with the neighboring 
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characters.  The result is a shape-oriented system, robust with respect to  local and 

temporal features, modular in construction and has a rich range of opportunities for 

further extensions. 
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CHAPTER 1. Introduction 

 

Handwriting has been a medium for communicating messages and ideas 

between people, across space and time, from the time when the first alphabet was 

invented a few thousand years ago.  In ancient times, the capability of handwriting 

was a privilege available only to a small number of specially trained scribes and 

scholars, and practically all documents and publications had been handcrafted by 

them until the invention of the printing press.  As the literacy rate improved, 

handwriting had served as a mainstay means of persistent communications until 

the advent of the typewriter.  Nowadays, even with the modern technologies like 

word processors, fax machines and electronic mail, handwriting has survived as a 

useful and versatile communication method because of the ubiquity and the 

convenience of pen and paper in various everyday situations.  In the future, 

handwriting may only thrive more because of the technological developments 

under way that intend to establish handwriting as a new mode for humans to 

communicate with computers. 

Handwriting has long been studied by numerous disciplines for various 

different aspects and purposes, and they include experimental psychology, 

neuroscience, engineering, computer science, anthropology, education, forensic 
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science, etc ([57], [58], [68], [69], [75], [76], [77]).  From the computer science 

perspective, the types of analyses involved are the recognition, the interpretation 

and the verification of handwriting.  Handwriting recognition is the task of 

transcribing a language message represented in a spatial form of graphical marks, 

into a computer text, for example, a sequence of 8-bit ASCII characters.  

Handwriting interpretation is the task of determining the most likely meaning of a 

given body of handwriting, for example a mailing address written on an envelope.  

This can be regarded as a more general level of handwriting recognition and uses 

semantic context information to resolve the ambiguities arising from the multiple 

possible ways the input can be interpreted.  Handwriting verification is the task of 

determining whether or not a given handwriting belongs to a particular person and 

can have use, for example in forensic investigation. Signature verification can be 

considered as a sub-field of handwriting verification and deals with a special type 

of handwriting, that is, people's signatures and has applications as a means of 

identification and security ([59]).  Handwriting recognition tasks fall in two broad 

categories: one is on-line recognition and the other is off-line recognition. 

 

1.1 On-Line Handwriting Recognition 

On-line handwriting recognition assumes that a transducer device is 

connected to the computer and is available to the user.  The transducer converts the 
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user's writing motion into a sequence of signals and sends the information to the 

computer.  The most common form of the transducer is a tablet digitizer.  A tablet 

consists of a plastic or electronic pen and a pressure or electrostatic-sensitive 

writing surface on which the user forms one's handwriting with the pen.  Sampling 

the movement of the pen-tip, the digitizer is able to detect information like x and y 

coordinates of a sampled point, the state of whether the pen touches the surface 

(pen-down) or not (pen-up).  The information is sent to the connected computer for 

recognition processing (Figure 1).  A "stroke" in on-line data is defined as a 

sequence of sampled points from the pen-down state to the pen-up state of the pen, 

and the completed writing of a word consists of a sequence of one or more strokes.  

A "digital ink" is the display of the strokes on the computer screen.  By digital ink, 

the user can see what he or she writes on the tablet and it provides interactivity 

between the user and the computer.  For example, by manipulating the digital ink, 

the user can correct or edit one's writing in an interactive manner.  One natural 

application of on-line handwriting recognition is as an alternative input method to 

the computer.  In English, the size of the alphabet is relatively small and the 

language fits well for keyboard entry, but for a language like Chinese that has a 

much larger alphabet, using a keyboard is a non-trivial challenge.  In addition, for 

the new trend of small form factor computers and devices used for mobile 

computing, carrying a keyboard, even in miniaturized from, is becoming less and 
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less an option.  Another application is as a more natural and easier-to-use interface 

to the tasks involving complex formatting, like entering and editing equations, and 

drawing sketches and diagrams. 

 

1.2 Off-Line Handwriting Recognition 

Off-line handwriting recognition can be regarded as an extended field of 

OCR (Optical Character Recognition) and lacks the interactive nature of on-line 

handwriting recognition provided by the digital ink.  In OCR, machine-printed 

material is scanned into a computer file in two-dimensional image representation, 

while off-line handwriting recognition deals with hand-written messages instead of 

printed publications.  Off-line data is two-dimensional in structure because of its 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.  A tablet digitizer, input sampling and communication to the computer. 
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image representation and has a typical size of a few hundred kilobytes per word.  

Since an image has no granted provision to distinguish its foreground and 

background, the first step of an off-line recognition, called "thresholding" ([42], 

[52], [65]), is to separate the foreground pixels from the background in the input.  

Unlike on-line handwriting, a written image also has a line thickness whose width 

depends on the writing instrument used and the scanning process.  Hence the next 

processing step is to apply a class of techniques called "thinning" or 

"skeletonization" ([37], [61]) which tries to shed out redundant foreground pixels 

from  the  input.    These  early   preprocessing   steps  are   necessary  for  off-line 

recognition but are in general expensive computationally and imperfect, and may 

introduce undesirable artifacts in the result, for example, "spurs" in the thinning 

process ([37], [61]).  The applications of off-line handwriting recognition include 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.  (a) Original off-line image  (b) the result with some spurs after 
applying thresholding and thinning. 

 

(a) (b) 
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reading handwritten mail addresses in automated postal sorting, reading bank 

check amounts, automatic processing of handwritten forms and interpretation of 

handwritten notes and manuscripts. 

 

1.3 Comparisons of On-Line and Off-Line Recognition 

An aspect of on-line handwriting recognition that sets it apart from off-line 

handwriting recognition, OCR or other image recognition tasks, is the temporal 

input sequence information provided directly by the user.  The digitizer naturally 

captures the temporal ordering information when it samples the points on the 

contour that the user is forming.  Hence on-line data has one-dimensional structure 

and has a typical size of a few hundred bytes per word.  This dynamic information 

provides clean foreground separation and perfect thinning, and the on-line 

recognition can bypass the preprocessings that are required by the off-line 

recognition processing.  Also the difference in input representation leads to large 

difference in the size of the input data.  As mentioned above, eon-line data, in 

general, is at least an order of magnitude more compact compared to off-line data 

because of the different dimensionalities in representation.  The difference in the 

data size also results in substantial difference in the processing time. 
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Another important advantage of on-line data is that its sequence 

information makes the character boundary segmentation easier to do.  After the 

preprocessing stage, most handwriting recognizers, whether on-line or off-line, try 

to break its input into intervals corresponding to hypothetical characters and apply 

an evaluation method to the intervals.  The recognition performance of the system 

has a substantial dependence on the quality and the robustness of the character 

segmentation.  Due to the cues available from the temporal ordering built into its 

input data, an on-line recognizer has a non-trivial advantage in generating 

segmentations reliably and efficiently.  For example, when two neighboring 

characters overlap in the respective occupying regions, it is much harder for an 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.  (a) A pair of characters "th" each of whose regions overlapping in 
space  (b) spatial separation of "t" and "h"  (c) temporal separation of "t" and 
"h" 

 

(a) 

(b) (c) 
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off-line recognizer to segment them correctly because any simple geometric 

separation will contain a part of the other character (see Figure 3).  For  an  on-line 

recognizer, the problem is easier to handle since the boundaries of the two 

characters may overlap spatially but never in time.  Meanwhile, an advantage of 

off-line recognition's image representation is that it is insensitive to variations in 

the ordering of the strokes contained in handwriting.  See Figure 4.  That is, the 

same handwriting may have been formed in many different orders of strokes, but 

the completed written image looks the same and has the same representation.  This 

is not the case for on-line data since different orderings of the strokes will result in 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.  (a) A written image of "A" and the three different orders that it could 
have been written indicated in boxed numbers in (b), (c) and (d). 

 

(a) 

(b) (c) (d) 
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1 
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different representations even though the completed image is the same.  

Fortunately, each character class has certain regularity in stroke orderings so that 

the number of different stroke orders is not large in most cases.  In overall 

comparison, the advantages of on-line handwriting recognition outweigh its 

disadvantages and on-line recognizers achieve consistently higher accuracy and 

run faster than the off-line recognizers do.  Because of the benefits of on-line 

recognition, some efforts have studied the interchangeability of the representations 

([14], [1], [49], [60]).  The rationale is that if we have a means to convert off-line 

data to an on-line version and apply the on-line processing techniques, then we 

would achieve a level of performance comparable to on-line recognition, on the 

off-line data.  In addition, we would have a unified paradigm that handles both 

types of recognition tasks using the same system.  The essence of such a 

conversion would be the recovery of temporal ordering of the trajectories in the 

input image.  However, the interchangeability has proven to be asymmetric: the 

conversion from on-line data to off-line version is not hard but the other direction 

has turned out to be difficult and has led to only limited success. 

 

1.4 Constraints on Handwriting Style and Vocabulary 
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In terms of the constraint on the input writing style, handwriting 

recognition, on-line or off-line, has three different modes supporting printed, 

cursive and mixed styles.  See Figure 5.  Printed style recognition is the easiest 

because each character of handwriting in such style has a clearer boundary with its 

neighbors.  For example, the characters in printed style writing are usually 

separated by a pen-up signal in on-line recognition.  The extra assumptions that we 

can take about printed style handwriting make the segmentation step easier to 

perform.  In cursive script recognition, however, most of the component characters 

are connected to their neighbors by a kind of sub-stroke called "ligature" that is not 

part of any letters but a connecting pattern between two letters.  In this situation, it 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.  Three different handwriting styles. 
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is much more challenging to hypothesize about the character segmentation since 

there is scarcer information hinting at the likely segmentation boundaries.  Printed 

style mode can be regarded as a subset of cursive mode recognition except for 

some idiosyncracies, and the mixed mode can be obtained as a by-product of 

obtaining both printed and cursive mode supports.  Therefore the hardest problem 

is the cursive mode recognition. 

Another important constraint on handwriting recognition is the size of the 

vocabulary supported by the system.  Almost all modern handwriting recognizers 

use a dictionary to improve the accuracy.  The hypothetical characters identified 

by the system can easily be very ambiguous even to human eyes, when they are 

considered in isolation.  Also many candidates that are mis-hypothesized by the 

system may look plausible as real characters when viewed in isolation from the 

context.  Therefore the ambiguities are ever-present epiphenomena of the 

recognition process that the system needs to cope with and the neighboring context 

offers valuable information for the resolution.  Other than the visual context, the 

lexicon provides the linguistic constraints that specify the legal strings permissible 

according to the vocabulary.  By pruning the search space using the lexicon, many 

spurious hypotheses will not be generated and the system will need to handle a 

smaller number of legal candidates.  This not only improves the accuracy of the 

system, but also speeds up the recognition performance due to the economy 
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achieved by the search focus.  However, the size of lexicon has an inversely 

proportional relationship with the system's accuracy because, with larger 

vocabulary, there will be more legal candidates generated and more room for 

ambiguities and mistakes.  Therefore it is important for a handwriting recognizer 

to handle a large lexicon and scale up easily and robustly as more words are added 

to the dictionary. 

 

1.5 Writer-Independence vs. Writer-Dependence 

Another taxonomy in handwriting recognition is the classes of writer-

independent and writer-dependent systems.  Writer-independence means that the 

system can handle the idiosyncrasies of multiple people's writing styles, and a 

writer-dependent system is trained and optimized to recognize a single person's 

writing.  Within a character class, there can be more than one subclass of the class 

each of which has substantial difference from the others in visual shape.  This 

subclass standing for a representative variability within a class is called 

"allograph."  See Figure 6.  Therefore each character class consists of one or more 

allographs and as the number of people increases, there will need to be more 

allographs covering the range of personal styles among them.  Automatically 

identifying a good set of allographs is a challenging task and takes a huge number 

of samples for adequate construction.  Also larger number of allographs means 
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more processing time and more opportunity for confusion.  On the other hand, a 

writer-dependent system is trained with only one user and expectedly has less 

variability in the writing data, leading to smaller number of allographs and higher 

accuracy. 

Most likely, writer-dependence may not be very meaningful to off-line 

recognition systems because of the nature of many of their applications like postal 

code sorting and recognizing the amounts of bank checks.  In the case of on-line 

recognition, writer-dependence makes more sense since the system will typically 

serve as an input method to computers used personally by single user, that is, not 

intended to be shared by multiple users.  Ideally such an on-line recognizer will 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.  (a) Two different allographs of "a" and (b) three allographs of "x." 

 
 

(a) 

(b) 
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have a certain level of default writer-independence to start with.  Thereafter, the 

system will be activated, either automatically or by the user, for personal training 

and the recognizer will learn the particularities of the owning user's writing style, 

thereby picking up extra recognition accuracy.  This process is termed "user-

adaptation" and is an attractive and desirable property.  The availability of user 

adaptation, however, is critically influenced by the kind of techniques used by the 

character recognition.  Practically, user adaptation needs to be done incrementally 

with relatively small amounts of data in a short enough training time tolerable by 

the user.  Therefore a data-hungry and time-intensive training paradigm like a 

neural network is not suitable for such purpose. 

 

1.6 Functional Topics of Handwriting Recognition 

We have identified below six functional topics that any word or higher-

level handwriting recognizer, whether on-line or off-line, requires for 

performance.  The data normalization is the front end of the system and performs 

noise suppression and regularizes the input data variability like size, translation, 

and rotation.  The feature extraction computes the target features and plugs them in 

the internal representation of the system.  The segmentation module generates the 

hypothetical character or sub-unit segmentations consumed by the recognition 
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engine.    The  component  character  recognizer  evaluates  a  given  segmentation 

into   class-labeled   scores   determined   by   the   recognizer's    internal   metric. 

The recognition engine is the place where the various information from the rest of 

the system is all integrated to generate and propagate word level hypotheses.  The 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.  Block diagram showing the module entities and the flow of control and 
information between modules. 

Input 

Data normalization 

Feature Extraction 

Character Recognizer Segmentation 

Recognition Engine Hypotheses Filtering 
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hypotheses filtering, or postprocessing, is used both to improve the accuracy and 

to speed up the recognition performance by controlling the amount of search 

performed by the recognition engine.  Typically, the recognition engine generates 

large number of hypotheses, many of them spurious, so the filtering applies pre-

arranged models either to eliminate or to rearrange the worthiness of the 

hypotheses.  The block diagram of Figure 7 illustrates each module standing in 

relation to the entire system and the flow of control and information between the 

modules, which are actually representative of our system.  The module entities and 

the actual control flow among the modules may depend on the specific approaches 

taken by a system.  For example, by taking implicit segmentation strategy (see 

CHAPTER 4) there will be no segmentation module standing separately, and 

instead it will be merged with the recognition engine.  Another example is that the 

feature extraction may have local focus as in our system so that the character 

recognizer needs to communicate with the module each time it is invoked. 

 

1.7 Previous Works and Contributions of the Thesis 

The research focus in this thesis will be to develop a solution to the hardest 

problem in natural handwriting recognition: an on-line cursive script recognizer 

that has arbitrarily scalable vocabulary. Traditionally, most handwriting 

recognition researches have concentrated on the study of isolated character 
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recognition and relatively little effort has been spent on the rest of the process ([6], 

[13], [27], [39], [67], [71]).  There may have been two reasons for this.  Firstly the 

community may have over-relied on the potential contribution from the 

discriminative power of isolated level character recognizer. It is now being 

realized that the ambiguities and the spuriousness encountered during the 

recognition process are better and more naturally resolved by drawing relevant 

information from the context rather than trying to put the discriminative capacity 

of the character recognizer to the limit.  Secondly, the community may have under-

estimated the complexity of the string level recognition and tried to reuse the 

established standard like Hidden Markov Model.  The character recognizer indeed 

plays an important role in the process, but the experiences in the field indicate that 

more orchestrated and higher level integration of diverse information from the rest 

of the system is in strong demand to accomplish higher performance and 

robustness.  The center of such information integration is the recognition engine 

and ours is a general model geared for the stated focus.  In addressing these issues, 

we will develop, demonstrate and claim the following contributions. 

 

1.7.1 Fisher Discriminant Analysis Based Character Recognizer 

Fisher discriminant analysis (FDA) ([15], [64]) is an improvement of more 

conventional linear projection methods like Principal Component Analysis (PCA).  
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A notable weakness of PCA is that the projection it performs scatters data in the 

projection space without considering of the class specific distribution structures.  

In contrast, the projection matrix of FDA is constructed by taking the class specific 

regularities into account.  More specifically the FDA tries to maximize the 

between-class scatter while minimizing the within-class scatter in the projection 

space.  The result is a clearer class boundaries and thus easier separation between 

the classes.  While the principle has been known for decades, practical application 

dealing with high dimensional representation space had not been tried until 

recently when the face recognition community used it successfully ([3]). 

A substantial advantage of using linear techniques like FDA is that the 

training is much faster and requires relatively smaller amount of training data 

compared with the more popular methods like neural networks and hidden Markov 

models described in CHAPTER 5.  Therefore it has a potential to make user-

tailored training feasible.  The FDA will be used in this thesis as the base for the 

character recognizer for the first time for letter and word level performance in 

handwriting recognition. 

 

1.7.2 Multiple Experts Fusion for the Character Recognizer 

A problem with using the linear techniques for a character recognizer in 

string level recognition task has been that the character scores computed by such a 
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technique have a linear distribution so that it is not easy to determine which 

characters to exclude from the candidate list.  Therefore such a recognizer needs to 

retain larger number of candidates for adequate accuracy.  This is in turn slows 

down the recognition engine since it will generate more word level hypotheses. 

We will address this issue by the use of multiple experts fusion paradigm.  

More specifically, the character recognizer in our system will use two FDA 

recognizers each working on different representation.  The recognition results from 

the two FDA recognizers will be integrated at a fusion module that combines the 

information and produces the final recognition result.  Conventional fusion 

approaches typically involve designing the topology of interconnections between 

the recognizers ([1], [28], [63]), therefore the overall mechanism is implicit.  Our 

information fusion is unique in the sense that it has an explicit strategy of how to 

re-compute the new scores and thereby reshuffle the ranks of the final candidates.  

We will show how the fusion process proceeds and will demonstrate its 

effectiveness by the experimental result showing much reduced candidate set, also 

with improved accuracy. 
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1.7.3 Word-Level Hypothesis Evaluation Taking the Average of the 

Component Character Scores 

The conventional method of evaluating string level hypothesis in 

handwriting recognition has been accumulating the confidence values assigned to 

each string component ([6], [13], [27], [39], [71]).  The accumulation metric, 

however, has a weakness when the input contains a black-out interval, that is an 

ill-formed region for example by mistake.  The accumulative scoring may also 

have the undesirable preference to longer or shorter (depending on the nature of 

the metric) hypotheses.  This is one place the handwriting recognition community 

has not paid the due attention and the researchers have assumed the accumulation 

metric by default.  We will take examples showing superior robustness of the 

components average based hypothesis metric, to the accumulation metric.  The 

effectiveness of the new metric will be demonstrated when we will illustrate the 

experimental results on our recognition engine. 

 

1.7.4 Hypotheses Propagation Network (HPN) 

The standard Viterbi search runs optimally assuming that word evaluation 

metric is perfect.  But the assumption is not practical in reality and other than the 

metric, there are many sources of noise like perturbations in data acquisition, in 

feature extraction, ambiguities and confusions in the character recognition process 
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and so on, all disturbing the Viterbi search.  While this is a well-known problem in 

the statistical pattern recognition setting ([6], [13], [27], [39], [71]), no previous 

work has tried to address the soundness of the fundamental assumption or its 

remedy.  Our strategy to cope with this problem is to allow more than one 

predecessor hypotheses at each propagation point in our recognition engine termed 

Hypotheses Propagation Network.  The rationale is to compensate the expected 

sub-optimality due to the noises in the hypotheses evaluation by keeping more 

options open for determining the predecessors.  The effectiveness of this approach 

over the conventional Viterbi search will be demonstrated when we illustrate the 

experimental result on word performances.  The HPN also has modular design in 

the sense that various information coming from other parts of the system are 

handily integrated to make the management of the hypotheses propagation easier 

and efficient. 

 

1.7.5 Feature-Link Code 

Using our high-curvature based segmentation, we identify each segment 

between the two consecutive segmentation points as “feature-link.”  We have 24 

convexity-directional pattern templates each having unique index.  Using a 

template matching, we label each feature-link with an index of the most closely 

matching template.  The result is a compact sub-character level representation of 
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the entire input in terms of the feature-link labels.  This is different from the 

conventional directional code ([27], [71]) representation in two important ways.  

Firstly, the feature-link code can represent convexity and the direction code does 

not.  Secondly, the direction code represents only equal length intervals while our 

code represents variable length intervals.  Therefore the feature-link code is more 

natural and informed break-up of the input strokes than the conventional one.  We 

will use the feature-link label representation for our efficient ligature modeling. 

 

1.7.6 Ligature Filtering Modeling 

Although the ligatures are big source of variability in the shapes of 

characters written continuously, not much effort has been expended on handling 

them.  Most approaches simply ignored them ([7]) and others trying to deal with 

the ligatures mainly used hidden Markov models ([27], [35], [71]).  In this thesis 

we propose a more efficient and intuitive modeling deriving from the feature-link 

coding mentioned above.  We will demonstrate the effectiveness of our modeling 

by showing the word performance results with and without the modeling. 
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1.7.7 Visual Bigram Modeling (VBM) 

VBM is a context constraint model drawing from the geometric properties 

of neighboring characters.  This is another important opportunity promising 

substantial gain in system performance, yet has not been much explored in the 

field.  The two previous efforts available from the literature have tried to either 

estimate and use ascender or descender sub-strokes of writing ([55]), or rely on the 

covariance matrix of the model parameters ([79]).  We will show a new and more 

intuitive approach that does not need such information and the model parameters 

are learned by training on the data samples.  Verifying the effectiveness of VBM, 

we will show a substantial increase in the word performance results when it is 

activated. 



24 
 

 

CHAPTER 2. Data Acquisition and Normalization 

 

As mentioned in CHAPTER 1, the tablet digitizer reports the sequence of 

(x, y) coordinate pairs to the recognition system, as the user writes on the tablet 

surface with the pen.  The points represented by the coordinates come from the 

dynamic contour formed by the user writing, with a sampling frequency set up for 

the digitizer.  The sampling rate is typically at least 100 Hz (i.e. one hundred 

points per second).  An important information from the digitizing hardware other 

than the point coordinate pairs is the pen-down and the pen-up signals regarding 

when the user puts the pen on the writing surface and when one lifts up the pen, 

respectively.  This information is used to determine where a stroke starts and ends 

and the overall handwriting data is represented as a sequence of strokes.  

Depending on the type of a digitizer it may be able to provide more information 

such as pen-pressure and pen-tilt, and with programming one can also compute the 

pen movement speed.  Most systems including ours, however, use only the 

coordinates and pen-up/down signals. 

The point coordinates provided by the digitizer are integer numbers with 

reference to the origin of the tablet's coordinate system, so its digital ink, when 

magnified, has jagged lines.  Other than the limiting accuracy of the digitizer, 
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noise can originate from the digitizing process, hardware error, or erratic hand 

motion and pen-down indication.  The same characters or words written by 

different users can vary greatly in size, shape and distortion.  Even the same writer 

may write in substantially different ways depending on situations or over time.  So 

the first task of a recognition system is to suppress noise and reduce the variability 

in the raw data for easier and standardized processing in later stages. 

 

2.1 Gaussian Smoothing 

Smoothing is the technique to suppress the quantization noise of the point 

sampling, which averages an input point with its neighbors with some weighted 

mask.  The primary purpose of smoothing at least in our system is to get more 

fine-grained real-number coordinates instead of the integer numbers in the raw 

data, so that the point curvatures can be computed reliably.  Since our character 

segmentation strategy (CHAPTER 4) is based on determining the critical points by 

high curvature, it is important to computer the point curvatures accurately and 

reliably.  The average can be a simple mean or can be obtained by applying a 

convolution kernel to a fixed size window centered at the point being processed.  

The most common form of such a kernel is a class of Gaussian distributions 

controlled by the size of the window (ρ ) and the spread (σ ) of the distribution.  
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2.2 Global and Local Filtering 

Filtering eliminates duplicate data points and normalizes the irregularity in 

data point density caused by the relative speed of the user writing.  For example, 

when the writing speed is slower in an interval, it will contain more points and 

when the speed is faster, the interval will have a sparser distribution of points.  A 

common form of filtering is equi-distant resampling and forces a minimum 

Euclidean distance between two data points.  This results in data points 

approximately equally spaced in distance.  When scarcity of data points is the 

issue in a fast interval, an interpolation technique is used to fill the gaps.  Usually 

this filtering step is performed only at the global level as part of the data 
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acquisition process.  In our approach, we adopt two level filtering.  The global 

level works the same as the conventional one.  The local level filtering assumes 

and works on a writing interval or a character segment as input.  A character 

hypothesis interval is a sequence of points contained in one or more consecutive 

sub-strokes since a character may span several strokes with the starting and ending 

parts covering possibly partial strokes.  The character segmentation approach of 

our system generates a set of tentative segmentation points based on the 

curvatures.  Which interval between the two segmentation points to try as 

hypothetical character, is managed and determined by the recognition engine and 

as a preparation of input to the component character recognizer, the local filtering 

is performed on the target interval.  The resampling size of the local filtering is a 

fixed constant, and the spacing between two resampled points is dependent on the 

arc length of the given interval.  Therefore, the local filtering generates as output a 

fixed size sequence of points regardless of how many points the input interval has 

or how long the interval is in terms of arc length.  Because the size of the interval 

in terms of the contained points can vary greatly as the recognition engine tries 

from the minimum to the maximum sizes, it is possible that the input interval 

contains less points than the resampling size.  In such case, an equi-distance 

interpolation is performed to make up for the missing points. (Figure 8) 
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2.3 Translation and Scale Normalization 

The coordinate representation of the raw input is, of course, not translation 

invariant.  To achieve the invariance of the coordinate values, we recompute the 

point positions with reference to a new standard origin.  Which origin to take as 

the standard is facilitated by whether the system can hypothesize the definite 

boundaries of the characters, since then we can use a fixed boundary point as the 

origin.  Depending on the segmentation methodology employed, however, this 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8.  Distribution of interval points in one dimension.  Filled circles are 
original data points and empty circles are interpolated points  (a) original 
distribution  (b) distribution after the local filtering. 
 

(a) 

(b) 
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information may not be available.  For example, in the systems using implicit 

segmentation (see CHAPTER 4), the recognition engine works without the 

segmentation boundaries.  Therefore such systems need to use some other 

representation, like directional code, instead of coordinates to obtain translation 

invariance.  Once again, our adoption of compact set of the segmentation points 

come in handy to determine the origin.  In our system, it is possible to compute the 

graphical bounding box of a writing interval hypothesized by the recognition 

engine as a possible character, since the interval has definite starting and ending 

points.  The lower left corner of an interval is chosen as the new origin and the 

coordinates are recomputed in reference to it.  That is, given an interval 

>=< ),,(,),,(),,( 2211 nn yxyxyxI � , the new origin is )','( yxO =  

where }min{' ixx =  and }min{' iyy = , ni �1= .  Then the translation invariant 

version of the interval is 

>−−−−−−=< ),','(,),','(),','(' 2211 yyxxyyxxyyxxI nn� . 

 

As with other visual recognition tasks, reducing the variability of the target 

objects in size is an important normalization step and this category of techniques 

try to adjust the scale of input to a standard size, and may be applied at the 

character level or to the entire word.  However, more elaborate size normalization 

techniques requires extracting context features like the principal lines of 
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handwriting like the low and high baselines and the mid-line, consumes non-trivial 

amount of computation even before entering the main stage of the recognition 

process.  Another weakness of the approaches depending on extracting such 

elaborate features is that they may not be stable in on-line handwriting data.  For 

example, the tablet surface may be slippery and the user may form the writing 

hastily while in motion.  In such situations, the user's writing may have poorly 

aligned baseline or none at all in some cases.  So either the user needs to be 

constrained to write with a clear baseline or relying on less-than-dependable 

feature is better avoided.  The size normalization in our system is applied at the 

character level and achieved easily due to the local filtering approach we use.  The 

output S of the local filtering applied to a character interval is a fixed length 

sequence of resampled points.  After the translation normalization is applied to S, 

it becomes 

>=< ),(,),,(),,(' 2211 nn yxyxyxS � . 

Then S' is transformed to an "Expanded Coordinate Vector" (ECV) by expanding 

the point coordinate pairs into vector form: 

>=<=
∧

nn yxyxyxVS ,,,,,,)'(ECV 2211 � . 

The extended coordinate vector V is in turn subjected to the vector magnitude 

normalization and becomes U such that |U| = 1.That is, VVU /= .  Now U is the 

translation and scale invariant representation of the input character interval. 
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2.4 Other Normalizations 

The remaining Euclidean geometric invariance not explicitly addressed in 

constructing the standard representation is rotation.  “Deskewing” and “baseline 

correction” are two methods for the rotation normalization.  Deskewing ([12], 

[44]) is a group of algorithms that minimize the variability in the slant of writing 

that can be applied either at isolated character or at entire word.  Baseline 

correction ([1], [5]) tries to orient the baseline of writing horizontally.  In our 

system, we have not addressed normalizing the rotation and there are two reasons.  

Firstly, we can assume that the intention of a user of a recognition system is to 

cooperate so as to get one's handwriting recognized, but not to put the system's 

capability to the test to the limit.  So we can expect or ask the user's writing to be 

in a reasonable range of rotation for on-line recognition.  Secondly, our character 

recognition technique itself is able to absorb the amount of variability in rotation 

typically seen in the writing formed on the limited space of a tablet. 
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CHAPTER 3. Feature Extraction and Representation 

 

With the normalized data, the next step is to extract prominent information 

from them and represent it in a standard form to be used by the recognition stage.  

Along with the segmentation strategy, selecting the data representation is one of 

the most fundamental decisions to make.  The final choice may be influenced by 

which character recognition paradigm we will use, or with a fixed choice of 

representation it may influence the other way around.  Depending on the scope or 

sight that a feature unit represents, there are 3 major categories of features. 

 

3.1 Local Point Features 

The features in this group are the finest in grain and the examples are the 

point coordinates, the point curvature and the tangent angle of each point, etc.  

These are by themselves local features with a limited sight, arranged in sequence.  

For a character recognizer that builds up the evaluation of its input incrementally 

in sequence, the inflexible one-dimensional unfolding of inherently two-

dimensional character data may lead to loss of spatial information ([51]).  We may 

imagine a simple experiment in which a subject peeps through a hole moving 
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along the contour of a handwritten image and neither sees nor feels anything else.  

Intuitively, it will not be easy to make sense out of observing a long sequence of 

isolated or small groups of points even to human eyes, while seeing them at once 

would tell it all so vividly.  But the local features are not without advantages.  One 

is that they are easy to compute reliably.  Another is their robustness due to their 

redundant and distributed nature. 

 

3.2 Sub-character Primitive Features 

This group of features is extracted at a higher level than individual data 

points.  Each character model is decomposed into a small number of subcharacter 

primitive units each of which represents a small salient sub-region of the character.  

The simplest kind is the directional code computed from equally spaced regions.  

That is, the character shape is divided into equally spaced intervals and the line 

orientation code corresponding to each interval is computed.  Usually 8 or 16 

directional code is used.  More sophisticated methods compute a set of salient 

points according to their feature extraction scheme, and use the variable length 

intervals between the salient points, instead of the equal-spaced ones.  The 

summary information computed from each interval may still be a directional code 

or a more elaborate feature.  One  novel approach is training the system to learn 

how to best divide into the primitives with integrated evaluation of each possible 
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feature options.  For example, [27] trained Hidden Markov Models corresponding 

to each subcharacter primitive and set up a language grammar specifying the legal 

concatenation of the primitives to form a character.  Another kind of feature is 

drawn from the topological characteristics of the character shape like corners, 

cusps, loops, and openings.  One advantage of the subcharacter primitives is that 

they are more concise due to their encoded nature.  Another is that they offer a 

higher level view because they represent a region not a point.  One problem is that 

the primitive level feature extraction, depending on the granularity they work on, 

should be extremely robust to be effective since one mistake may make a big hole 

in the overall picture because of their regional representation nature.  This is not 

easy to achieve especially in the setting of writer independent mode of recognition, 

in which a large variability in writing style exists and a system needs to deal with 

potentially missing or previously unseen features not covered in the training data. 

 

3.3 Annotated Image Features 

On-line handwriting input has one dimensional sequence representation in 

structure.  As has been previously mentioned, converting off-line data to on-line 

version is hard to achieve reliably, but the other direction is relatively easier.  

Therefore, if a limited or refined form of image features can contribute 

substantially to the discriminative power, at least as a part of the overall feature set 
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used by the system, then it would be well worth a try.  The advantages of 

converting on-line data to image representation include: 

• Stroke order invariance: In an image, the information on which order a 

shape was formed is not apparent and not relevant.  This is not a 

problem since we already have the data in an on-line version.  Only one 

image model is needed for the same shape class.  This is not the case 

for on-line data: even for the same shape class, multiple models are 

necessary, one for each substantially different stroke orders. 

• Simpler size normalization: Depending on the level of elaboration, the 

topic of size normalization may become an involved topic.  On the 

character level conversion from on-line to image, the size 

normalization is achieved easily by fitting the on-line data into the 

fixed size image, that is by contraction or expansion. 

• Robustness: Image is a most natural, redundant, distributed and fully 

decoded type of representation.  Therefore it fits well for a pattern 

recognition system like neural network, which works best on such a 

kind of representation.  The robustness comes from the fact that such a 

recognition system learns and performs the feature extraction itself 

from the raw data, so that the choice and the development of features 

are automated instead of handcrafting that may be a fallible process. 
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• Higher level perspective: Image can naturally be made to represent a 

character or larger unit, so it provides even higher level of scope than 

the subcharacter primitive features. 

 

The main disadvantage of the image representation is its large size, leading 

to more computing time and memory for processing.  This is exacerbated by the 

fact that a string level recognizer needs to invoke the component character 

recognizer many times, say hundreds, before its recognition engine get through 

processing.  The larger representation size also means the need of more training 

data because of the increased number of learnable parameters.  To ameliorate the 

situation, on-line handwriting recognition systems whose data representation is 

based on image, use a scaled-down, low-resolution image and the loss of 

resolution is compensated by augmenting it with various on-line features.  The 

capability of an on-line recognizer to work on off-line data representation like 

image is potentially important in the sense that it can naturally lead to bridging the 

gap between the two different modes of recognition.  It has been mentioned before 

that the approaches that attempted to use on-line recognizer to handle off-line data, 

have had limited successes.  The main reason is their dependence on the close 

reconstruction of the temporal information from the off-line data, which is a 

daunting task.  With an on-line recognizer that can handle image representation, 



37 
 

the difficulty of the problem would be reduced substantially since such a 

recognizer will need only reasonable character segmentation, not an exact recovery 

of the temporal orderings. 

 

3.4 The  Features Used by the System 

We compute the local geometric features, namely the point curvatures and 

the point tangent angles.  Firstly we compute the tangent angle at each point.  This 

is approximated as the direction angle from the current point to the next point.  

That is, for the two consecutive points ),( iii yxp =  and ),( 111 +++ = iii yxp , the 

tangent angle iθ  of ip  is 
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where dist(⋅) is the Euclidean distance between the two points.  The curvature ik  at 

ip  is the then approximated as the amount of the direction angle change around 

point ip .  That is, ik  is computed as the absolute amount of angle change from 

1−iθ  to iθ  multiplied by the sign that is plus if the angle change is clockwise, or 

minus if it is counter-clockwise.  These features are local in nature and, as stated 

above, have potential weaknesses depending on the kind of character recognizer 

employed.  Our segmentation approach and the character recognition paradigm 
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circumvent this problem.  Using the tentative segmentation points generated by the 

segmentation module, our recognition engine generates evaluation intervals that 

are at the character level.  So the point features are never considered individually 

or incrementally and they are always grouped at the character level.  In addition, 

the Fisher discriminant analysis technique that our system adopts for character 

recognition, integrates all the component features together at once in evaluating 

the scores, so that small errors in feature extraction do not have ruinous impact on 

the overall evaluation as long as the rest of features are well aligned with the 

model parameters.  In effect, this is equivalent to the recognizer having a higher, 

that is at the character, level perspective so it is not misled by a local fluctuation of 

feature variability.  This is in contrast with the recognition method whose direction 

of data unfolding is less flexible like HMM.  For example, since an HMM 

evaluates its input features incrementally in one direction, a feature error in the 

middle may hurt the score badly at the point and because of the multiplicative 

nature of HMM's scoring represented usually by the accumulation of the log-

likelihood, the recovery from the damage is less likely even if the rest of the 

features align well.  In other words, the locally mismatched feature will result in 

near zero local likelihood and since the HMM constructs the likelihood of a 

character hypothesis by multiplication of the local likelihoods, the final score will 

be very significantly low even if the later local probabilities are high.  So our 
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approach combines the robustness of local features drawn from their redundancy 

and distribution, with the higher level contextual scope by a noise insensitive 

integration at the character level.  Other than the basic features, we compute the 

signed or unsigned accumulation of the curvatures and the tangent angles from the 

starting point and these serve as more larger scale and accumulative features.  We 

also perform a sub-stroke based feature extraction by assigning the type index to 

an interval between the tentative segmentation points.  The type indices for the 

sub-stroke intervals are called Feature-Link Code (FLC) and are used in modeling 

the ligatures as hypotheses filtering scheme.  Since it is performed after generating 

the hypothetical segmentation points, the description is delayed to CHAPTER 4. 
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CHAPTER 4. Character Segmentation 

 

Given a word or a larger unit of writing input, the recognition system needs 

to break it into more basic and smaller units, usually an individual character or 

even lower level sub-character primitives, and to hypothesize and evaluate the 

possibilities drawn from the input.  The input breaking is called the character 

segmentation. 

 

4.1 Analytic vs. Holistic Approach 

In analytic segmentation approach, the system generates hypothetical 

segmentations before the recognition process starts.  Early handwriting recognition 

systems were heavily dependent on the segmentation strategies, their quality, 

efficiency and robustness, which are hard to achieve in perfection.  In reaction to 

the situation, another philosophy, called "holistic approach", came to get the 

attention.  In holistic approach of segmentation, only the global, Gestalt-like 

features accounting for the entire input, are extracted and evaluated ([11], [16], 

[17], [40], [54]).  So in such an approach, the input is treated as an unbreakable 

whole and no segmentation is needed.  One obvious limitation of this approach is 
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that it can support only a small limited vocabulary.  For example, when applied at 

the word level, the system would need at least one feature model for every word in 

its vocabulary, and since there is no means to compare partial features 

incrementally, a given input would have to be compared against all the word 

models in the vocabulary.  Hence as the size of the system vocabulary increases, it 

becomes less and less flexible to scale up in the amount of memory and processing 

time.  Meanwhile, the analytic approach can support unlimited or very large 

vocabulary since what it recognizes is any legal combination of characters in the 

supported alphabets. 

 

4.2 Explicit vs. Implicit Segmentation 

In more general visual recognition or pattern recognition problems, the 

segmentation of a given input into the target objects has been an important and 

difficult problem.  There seems to be a cyclic dependency between the 

segmentation and the recognition problems: a perfect segmentation can be 

obtained as a by-product of the correct recognition that largely depends on the 

right segmentation.  The same pattern repeats in the handwriting recognition task 

and, to be practical, the cycle needs to be broken somewhere.  Depending on the 

choice of the break point, the analytic approach has two extreme forms: 

recognition-by-segmentation and segmentation-by-recognition. 
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4.2.1 Recognition by Segmentation 

In the recognition-by-segmentation (or explicit segmentation) paradigm, 

the input is first broken down into hypothetical character segments using features 

like cusp, closure, estimated character widths, etc., and ordered and legal 

combinations of these segments were generated as possible strings of characters.  

This approach, adopted in the early systems ([25], [22], [43]), needs a complicated 

segmenter and, without careful control, can lead to intractable computation due to 

the large proliferation of generated candidates. 

 

4.2.2 Segmentation by Recognition 

At the opposite extreme to explicit segmentation is the segmentation-by-

recognition (or implicit segmentation) paradigm.  In this strategy, mostly based on 

path optimization framework like graph search, there is no complex segmenter that 

performs segmentation explicitly. Rather a best segmentation is obtained by 

extracting, after the recognition evaluation is complete, the path that represents the 

best candidate in terms of the metric applied to evaluate the paths ([73], [30], [26], 

[36], [27]).  Or the system recognizes a word corresponding to the best-scoring 

path generated and evaluated by the system.  This approach is attractive because it 
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bypasses the difficult and fallible segmentation step.  The main disadvantage is 

that it requires a large amount of, although not intractable, computation.  This 

stems from the fact that it lacks a segmenter that suggests the possible boundary 

points, so any input point is a potential segmentation point and should be treated 

accordingly, leading to exhaustive hypothesizing.  Because this approach is based 

on dynamic programming of path optimization, the running time does not become 

intractable, but still takes too much computing to be practical. 

 

4.2.3 Fuzzy Centering Segmentation 

One reason why the segmentation step is important, is that the performance 

of the character recognizer relies on how well the input is segmented.  Using 

implicit segmentation, the system actually does not really bypass the character 

segmentation altogether.  Instead, it tries more exhaustive segmentation 

possibilities systematically so as to avoid intractable amount of computation.  

Since the character recognizer is typically trained with data that has regular 

starting and ending patterns, the thread of character recognition whose input aligns 

well with the character model, will have higher evaluation score.  Such well-

aligned (or well-segmented) intervals would constitute a component of winning 

overall segmentation.  So the idea is to train the character recognizer with specially 

prepared data having fuzzy character boundaries.  That is, the character samples 
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are extracted from the word contexts without crisp starting and ending portions, 

and contain parts of the neighboring character patterns.  Therefore, a character 

recognizer trained in such way would be robust to contextual co-articulation 

problem and would not need crisp segmentation for good performance.  Instead the 

recognizer would need well-centered input and the segmentation problem is 

transformed from finding the boundaries to finding the best centering positions.  A 

system based on such a recognizer then will scan its input with the recognizer that 

sees fixed length frame as input, from start to end.  After the scanning phase, the 

system will mark the positions in the input where the character recognizer's 

response level has local maxima above certain threshold.  Those maxima 

correspond to the centering points in the input, on which the character recognizer 

was at high activation level in terms of the recognition score.  The system then 

proceeds to the rest of the processing with the segmentations guessed from the 

maxima points.  Therefore, this segmentation approach avoids the explicit 

segmentation by changing the nature of the character recognizer, not by making 

the recognition engine absorb the segmentation problem.  Because the input 

window length is fixed and there is no need to iterate to try different size input on 

the same starting point, this approach is more economical in the number of times 

the character recognizer needs to be invoked, than the regular implicit 

segmentation method.  But the overall running time is still substantial because the 
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character recognizer would be invoked on every data point or at least on every few 

points, to make sure that the correct centering points are included in the set of 

points tried. 

 

4.3 Curvature-Based Static/Dynamic Segmentation 

Another weakness of implicit or fuzzy boundary segmentation, other than 

the running time, is that it is no longer possible to apply a visual context modeling 

(see CHAPTER 7) used in later stage for filtering the hypotheses, since the 

character boundaries have been blurred.  For example, in the ligature modeling and 

the visual bigram modeling (VBM), the geometric information from the context 

surrounding the current processing point is extracted including a possible sub-

stroke between the characters, the relative size and positioning of the characters, 

and so on.  Without hypothesizing about the definite boundary points, computing 

such information can not be made reliably.  Hence, most successful approaches 

take a middle ground somewhere between the two extremes ([70], [79]) of pure 

explicit and pure implicit approaches. 

Our segmentation strategy is a hybrid analytic approach that hypothesizes 

about the candidate segmentation points but the actual segmentations are handled 

dynamically by a rule built into the recognition engine, and the best global 

segmentation is naturally determined at the end.  The generation of the candidate 
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segmentation points will be based on detecting the high curvature points.  The 

rationale is that the high curvature points, that is corner-points or turning-points, 

are the places where the information regarding the writing's dynamics and 

geometry is most condensed, and therefore are natural candidates for character 

boundaries.  The intuition is right for most cases, but the set of high curvature 

points is incomplete as full candidates since some real segmentation points can lie 

in the middle of a smooth interval whose points have only low curvatures.  Hence, 

an augmentation is needed to make the candidate set a complete one, and we will 

resolve the issue by adding a middle point in a long enough (determined by a 

threshold) interval between two high curvature points (Figure 9). 

In summary, our segmentation approach works like an implicit 

segmentation, but avoids exhaustive hypothesization because the character 

recognizer needs to be invoked on the set of tentative boundary points which is a 

 
 
 
 
 
 
 
 
 

Figure 9.  A cursively written input word of “eye.”  The left side shows the 
high-curvature points (in filled dots).  The right side shows the high-
curvature points along with the augmentation points (in empty dots). 
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much smaller subset of the entire data points.  Since the hypothesis characters 

intervals span only a few segmentation points, there is smaller number of character 

recognition threads on each character starting point.  For example, the shortest 

character consists of the interval formed by 2 segmentation points and the longest 

9 segmentation points, and therefore each successively longer interval spanning up 

to 9 segmentation points needs to be evaluated starting from a particular boundary 

point.  The clearly separated character boundaries also make it amenable to extract 

useful context features as stated above.  The next section defines and describes the 

sub-stroke level feature extraction drawing from the boundary information made 

available by our segmentation strategy. 

 

4.4 The Feature-Link Coding 

4.4.1 The Feature-Links and Sub-Stroke Primitives 

The segmentation points generated by the system break the entire input into 

a sequence of intervals each of which is determined by two consecutive 

segmentation points.  That is, given a stroke >=< npppC ,,, 21 � , the 

segmentation module computes a sequence of segmentation points 

>=<
mkkk pppS ,,,

21
� , where nkkk ppppp

m
=<<<= �

211 .  Then C is 

subdivided into the intervals >=<
+++ 1

,,,, 21 iiii kkkki ppppI �  for i = 1 to m-1.  By 
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the nature of our segmentation points drawing from the level of the point 

curvatures, any interval so determined contains no corners or cusps and is smooth 

in shape since otherwise the system would have detected high curvature points 

inside the interval and it would have been further subdivided.  We name these 

intervals "feature-links."  The feature-links can be considered as sub-stroke or sub-

character level primitives and exploiting their smoothness we may use a simple 

technique to classify them according to the line or the direction that the intervals 

form.  This may sound similar to the conventional methods of computing the 

directional code representation from the input contour ([27], [71]).  In comparison 

our situation has two notable differences from the typical direction coding 

schemes.  Firstly, the traditional methods encode only the line direction.  A 

feature-link, however, may have a substantial amount of convexity.  Secondly, the 

usual direction code is constructed out of equally spaced intervals obtained by a 

resampling.  But feature-links are irregular in length and may have large 

differences among them.  Intuitively, the feature-links are more natural since they 

are not formed from uninformed artificial spacing and are based on the 

segmentation points that in turn are based on curvatures.  Therefore forming a sub-

stroke primitive using more consistent information like curvature can be 

considered to be more feature-worthy.  The feature-links are also more economical 

in representation because a sequence of simple direction codes can be compacted 
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into a single code representing a feature-link.  Conventional direction code 

schemes have to use short enough spacing in forming the direction intervals so that 

they are shaped as lines not curves, since such schemes do not incorporate the 

convexity.  But the feature-link allows convexity and can represent longer length 

without loss of information. 

 

4.4.2 Computing the Feature-Link Code 

With the feature-links, we want to draw higher level information 

representing the line or curve formed by the component points of such intervals.  

To this end, we define 24 directional convex templates each representing the 

direction and the convexity of the corresponding categories of feature-links (see 

Figure 10).  Given a sub-stroke >=< npppC ,,, 21 � , like feature-link, let's 

define the "cross-length" of C as the Euclidean distance between the first and the 

last points of C, that is ),(dist)(thcross_leng 1 nppC = .  The templates have a 

standard scale in terms of the cross-length and are stored inside the system.  Other 

than the visual scale, the feature-link templates are also normalized to have the 

same number N of data points using the local filtering method described in 

CHAPTER 2. 

With the feature-link templates set up, the next step is to assign a given 

feature-link the index that represents the feature-link template matching the input  
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Figure 10.  The 24 feature-link templates indexed from 0. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11.  An example word "day," its feature-links and the corresponding 
feature-link code.  The filled and empty circles are the segmentation points. 
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most closely.  This task is performed by a template matching whose high level 

steps are as follows. 

1. Given an input feature-link, normalize it to have the standard cross-length 

and the standard number N of data points by local filtering.  Let's call the 

normalized input as I. 

2. Determine the subset T of templates that are the candidates to match with 

I. 

3. For each template Ti in T do the following: 

3.1. Compute the amount of rotation angle θ (Ti , I) needed to align Ti with 

I in terms of the starting and the ending points. 

3.2. In the aligned state, compute the area A(Ti , I) between Ti  and I. 

3.3. Compute the matching metric E(Ti , I) by combining θ (Ti , I) and 

A(Ti , I). 

4. Output k such that }),E({minarg ITk ii= . 

 

In step-2, each template is first translated to have the same starting position 

as that of the input I, and the distance between the ending points of the template 

and I is computed.  This distance gives a good hint at how much the template is off 

from I: the longer the distance, the more discrepancy between the directions of the 

template and I.  Therefore the template matching does not need to consider all of 
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its feature-link templates and only a few of them that have end-point distances 

smaller than a threshold are selected as candidates for further processing. 

In step-3.2, the area A(Ti , I) between Ti  and I is actually an approximation 

of the gap between Ti  and I.  Let >=< Ni tttT ,,, 21 �  and >=< NxxxI ,,, 21 � .  

Note that both are normalized to have the same representation length N.  Then 

A(Ti , I) is defined to be 

∑ =
= N

j jji xtIT
1

),(dist),A(  

where dist(⋅) is the Euclidean distance.  This simple metric gives a reasonable 

approximation of the gap between a template and the input because the feature-

links are by definition smooth intervals without sharp or complex curves. 

In step-3.3, the system combines the rotation angle and the area to compute 

the matching score.  The formula we use for determining the score is 

)),(exp(),A(),(E 3 ITcITIT iii θ⋅×=  

where c is a normalizing constant.  The lower the value of E(Ti , I), the better Ti  

matches I.  The rationale is that the rotation angle is more critical in determining a 

match since it measures the level of directional alignment, and is given more 

rapidly growing functional.  So as the value of the rotation angle grows, E(Ti , I) 

will be quickly dominated by θ (Ti , I).  If the rotation angles are within close 

range, then E(Ti , I) will be determined by the magnitude of , A(Ti , I).  The scheme 

can be alluded to an energy minimization process.  That is, we interpret the 
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rotation angle and the gap area as representing the amount of work to transform a 

template to the input.  The larger the amount of work, the more energy it will 

consume for the transformation.  Then the solution is the template that consumes 

the least amount of energy to transform itself to the given input. 

For a feature-link f, the template matching outputs the index of the template 

that matches f the best.  We call this index the "feature-link code" (or FLC for 

short) of f.  Figure 11 shows an example word "day," the segmentation points 

identified on it, the feature-links and their FLC's determined by the template 

matching.  The FLC encoding may be used as a sub-character primitive level 

representation of handwriting and, if worked out adequately, may open a 

possibility for a large speed-up in the recognition time because of its very compact 

form.  In this thesis, however, that potential is not pursed and instead will be 

mainly used for modeling the ligatures in CHAPTER 7.  The problem with 

modeling the ligatures has been that it is not obvious how to categorize them and 

how to construct the contextual modeling efficiently in processing time and 

memory.  The simplicity, robustness and the compactness of FLC representation 

will address the modeling issues nicely. 
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CHAPTER 5. Component Character Recognition 

 

An analytic handwriting recognition system needs a recognizer working at 

the level of an individual character to classify and evaluate the segmentations 

given by the segmentation module.  This recognizer is a pattern classifier that 

stores a model for each character class, which is the representative pattern derived 

from the shape characteristics of the characters in the class.  The models are 

usually explicit or can be implicit as in the case of neural network based systems, 

and can be constructed as an encoding of a set of designed rules or can be trained 

on and learned from a large number of training samples.  Given input is compared 

against each stored model using the metric specific to the system and is assigned a 

score for each interpreted class.  To be useful, a character recognizer should be 

capable of absorbing the shape variability inside each class and also discriminative 

of the differences between the classes. 

 

5.1  Character Recognition Paradigms 

In the last few decades, two distinct categories of character recognizers 

have been developed.  One category is called the syntactic or structural recognition 
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and the other is statistical one.  The statistical recognition methods are in turn 

divided into three prominent groups: explicitly statistical recognizers, artificial 

neural network based recognizers and those based on hidden Markov models. 

5.1.1 Structural Character Recognition 

This group of approaches tries to capture the shape characteristics of the 

character classes into a symbolic form, and establish a set of rules to manipulate 

and evaluate the symbolic features ([55], [19], [25], [33]).  Due to the abstracted 

nature of its representation, these rule-based systems have the advantage of the 

economy of representation and the processing time if the size of the description 

rules can be kept small or moderate.  One difficulty is that manually formulating a 

dependable set of classification rules that can account for a rich range of shape 

variability, is a daunting challenge.  Another is a possible brittleness introduced by 

the summary nature of the representation.  That is, the feature extraction is allowed 

little room for mistake since the recognizer's decision will be based only on what 

the feature extractor provides.  Therefore, misleading or missing information 

caused by the feature extraction will have a critical effect on the recognizer's 

performance.  Even if the approach is reformulated for training from samples, so 

that the rule-generation process is automated, the resulting rules tend to proliferate 

in a large number, reducing the manageability of the approach.  Recently, 

however, this approach has gotten a momentum due to the development of 



56 
 

statistical training techniques in which a reasonable-sized stochastic description 

grammar is learned from annotated training samples informing which rule is 

applicable. 

 

5.1.2 Neural Network Based Character Recognition 

Multi-layer artificial neural network is a general learning paradigm that, 

with adequate network architectures and a large enough set of training data, can 

learn arbitrarily complex decision boundaries.  The classification behavior of a 

neural network is fully determined by the statistical characteristics of the training 

data, with a given structure of the network ([8]).  Three major variations of the 

neural network have been applied to the handwriting recognition field: the 

standard fully-connected back propagation perceptrons, Kohonen's self-organizing 

feature map (SOFM) approach and the time-delay neural networks (TDNN). 

In general, the capacity of a learning system is determined by the number 

of learnable parameters in the system.  The larger capacity, however, requires a 

larger amount of training data for proper training, which in turn means longer 

training time and the need for more effort to ascertain the desired statistical 

properties of the data.  Therefore, it is desirable that the capacity of a system can 

be tuned to an optimal size by choosing the right set of learnable parameters, for 

better and faster training with a smaller training data set.  This design is limited in 
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a fully connected perceptron since every unit or neuron is connected with each 

other without choice, and the approach has not been very successful. 

The SOFM networks transform the input vector into a fixed dimensional 

(usually below three dimension) discrete map subject to a topological 

(neighborhood preserving) constraint ([34]).  The technique allows automatic 

detection of shape prototypes from a large number of character samples, and is 

analogous to k-means or hierarchical clustering.  The quantization effect of SOFM 

output is usually used by a postprocessor that tries to interpret the patterns of 

SOFM output ([41]).  

The convolutional neural networks (CNN) are the networks whose 

connection structure is designed on the basis of the evidences from neural science 

that the neural connection patterns do not have to be exhaustive and in many cases 

localized connections are desirable and effective to represent specialized and 

limited scope functions ([29], [20]).  The locally connected neurons at a layer are 

then integrated together at the next layer to form higher level features.  In this 

scheme, a unit of a network layer is connected to only a limited field of units in the 

previous layer, and the connection weights are replicated and shared by some other 

units distributed over the same layer.  The overall connections consist of a set of 

such replicated connection weight patterns.  In essence, those replicated and 

distributed connections perform localized feature extraction whose output is 
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integrated, at the next layer, into a larger scope feature ([38]).  The TDNN is the 

one-dimensional version of general CNN, sharing weights along a single temporal 

dimension, and is used for space-time representation of handwriting signals.  The 

approach is known to provide a useful degree of invariance to spatial and temporal 

distortions because of the distributed nature of the feature extraction in the system 

([66], [23]). 

 

5.1.3 Hidden Markov Model Based  Character Recognition 

A Hidden Markov Model (HMM) is a doubly stochastic process in which 

the underlying process is hidden from observation and the observable process is 

determined by the underlying process ([62]).  The underlying process is 

characterized by a conditional state transition probability distribution, where the 

state is hidden from observation and depends on the previous states (the Markov 

assumption).  The observable process is characterized by a symbol emission 

probability distribution, where a current symbol depends either on the current state 

transition or on the current state.  Because of its inherently temporal nature, 

HMM's have been successfully employed in speech recognition field where the 

acoustic data has strictly one-dimensional properties.  Recent efforts have tried to 

extend the same approach in the handwriting recognition field but so far the 

success has been limited ([27], [45], [48]).  One important reason is that despite 
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some similarities, handwriting data is inherently two-dimensional and a one-

dimensional data unfolding in an inflexible way as taken by a conventional HMM 

leads to loss of information and integrity in the data.  For example, speech data is 

completely ordered by time and its recognition systems can rely on this 

assumption.  However, in handwriting data, even if it is represented in one-

dimension, the component parts can be out of order in time.  An example is the 

delayed dots and strokes that can happen in the formation of characters like "i," 

"j," "t," "x," etc. 

 

5.2 Linear Projection Methods 

The category of explicitly statistical character recognition is derived more 

or less from the linear projection methods and the hierarchical or partitional cluster 

analyses ([53], [24]).  The features are summarized into a fixed length vector that 

maps to a data point in high-dimensional representation space.  Therefore, similar 

patterns having similar vector representation will wind up clustering closely each 

other as points in the high-dimensional space.  There are various possible distance 

metrics, measuring the closeness of the two points in such space. The most 

common is the Euclidean distance. In this setting, the training and learning 

corresponds to finding a set of hyper-planes that best separate the classes into 

different regions of the space.  In case there is no a priori knowledge about the 
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class labels, the clustering analysis methods provide automatic ways to construct 

out of data a set of clusters corresponding to categories or taxonomies.  If we can 

keep all the training samples, then the classification can be done simply by 

identifying the class of the sample in the representation space that is closest to the 

input.  Because of the large amount of memory needed to keep many samples, 

usual solution is keeping only the centroids of the classes, that is, the class means 

of the training samples in each classes.  The prominent property of the linear 

projection methods is the reduction of the problem's dimensionality and they try to 

attain the economy of features by reducing the dimensionality of the original 

representation space with as small discriminative compromises as possible.  The 

projection can visualize the data set in the projection space if a sufficiently small 

output dimensionality is chosen. 

The Principal Component Analysis (PCA) technique is one of the most 

widely known projection methods.  The essence of PCA is the construction of the 

projection matrix that defines the linear mapping from the original space to the 

projected feature space ([78], [74]).  Let },,,,{ 321 MvvvvV �=  be the set of n 

dimensional data vectors.  Let mn×∈ RW  be a projection matrix of orthonormal 

columns and consider the linear transformations defined by W: 

Mkkk ,,2,1T
�== vWp . 
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Hence kp  is the feature vector in the projection space.  The dimensionality m of 

the projection space needs to be meaningfully smaller than n, the original 

dimensionality.  The covariance matrix of a set of data vectors is a measure of how 

the data are distributed or scattered in the representation space.  Let 

∑ =
⋅= M

i iM
1

/1 v� .  That is µµ is the mean of V, the global center.  Then the 

covariance matrix K of V is defined as 

T

1
)()(∑ =

−−= M

i ii �v�vK . 

For the projected data },,,,{ 321 MppppP �= , its covariance matrix K' is 
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where �W�
T'=  is the global mean of the projected vectors.  Hence 

WKWK T'= .  Then PCA constructs the projection matrix Z that maximizes the 

determinant of K'.  That is, 

WKWKZ WW
Tmaxarg'maxarg == . 

Z can be constructed by finding the n solution eigenvalues },,,{ 21 nλλλ �  and 

their corresponding eigenvectors },,,,{ 321 nzzzz � , of the eigenvalue equation 

zKz λ= . 

The economy draws from the fact that not all eigenvectors are essential and 

typically only a fraction of all eigenvectors has enough representative-ness.  The 

feature-worthiness of an eigenvector is determined by the size of its related 

eigenvalue and the technique retains a set of n eigenvectors whose eigenvalues are 

among the largest n.  Let >=<
nsss λλλλ ,,,

21
�  such that 

nsss λλλ ≥≥≥ �
21

.  

Then 

>=<
msss zzzZ ,,,

21
�  

that is, the columns of Z can be constructed as the eigenvectors corresponding to 

the largest m eigenvalues of the problem zKz λ= .  The m eigenvectors are 

interpreted as the m most significant direction of the region formed by the data 

population and as describing the distribution of the data.  PCA also maximizes the 

scatter of all data points in the projection space and in general has the effect of 
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widening the gap between the class boundaries, therefore facilitating the 

discrimination among the classes (see Figure 12). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12.  (a) Hypothetical three class clusters in the original space and their 
best separating hyper-planes.  (b) The clusters projected to the projection space, 
the scattering effect and the separation between the classes. 
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5.3 Fisher's Segmental Matching 

A substantial advantage of using linear techniques like FDA is that the 

training is much faster and requires relatively smaller amount of training data 

compared with the more popular methods like neural networks and hidden Markov 

models described previously.  Therefore it has a potential to make a user-tailored 

training feasible.  The problem with the PCA is there is no provision built into the 

linear projection that can take class-specific regularity into account.  The 

projection matrix is constructed with reference to the single global mean and the 

scattering effect gained in the projection space is indiscriminate of the classes.  

That is, the projection widens the between-class scatter, but it also widens the 

scatter within the classes and this is not a desirable effect for classification 

purposes.  For example, in the face recognition task under large variation of 

lighting, the PCA would wind up with the projection matrix in which the 

projection columns with the largest eigenvalues tend to represent the variation in 

lighting.  The reasons are that the dominant pixel value changes in such task would 

come from the lighting condition, and that the PCA would draw the globally more 

significant feature first, in this case the lighting level.  Therefore the PCA 

projection would put the lighting level before the differences among the facial 

patterns of different people, in terms of the feature worthiness.  This is clearly 

misleading information in many situations. 
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Fisher's linear discriminant analysis ([15], [64]) is one of the linear 

techniques, which projects the input onto a lower-dimensional subspace.  It was 

successfully used in [3] for improving the performance of a face recognition task 

under extensive variation of lighting conditions and facial expressions.  One major 

reason for using linear projection methods in the face recognition community is to 

reduce the huge number of dimensions typically involved in face images.  The 

salient feature of Fisher projection is that it tries to maximize the between-class 

scatter in relation with the within-class scatter, by taking class-specific regularities 

into account in its construction.  This contrasts with PCA where the global scatter 

is maximized, indiscriminate of the classes.  This point is demonstrated by a 

simple two-class experiment in [3] where the PCA partially mixes up the two 

classes in the projection space while the Fisher projection yields a clean-cut 

separation. 

 

5.3.1 Construction of the Fisher Projection Matrix 

Suppose that we have the number C of classes CVVVV ,,,, 321 �  and each 

class Vi has a population of Ni vectors },,,{ 21
i
N

ii
i i

V vvv �= .  Each data vector 

is assumed to have n dimensions.  The Fisher analysis considers two kinds of 

scatter matrices: one for between-class distribution and the other for within-class 

distribution.  The between-class scatter B-  is defined as 
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∑ =
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i iiiB N
1

T)()( ����-  

where i� is the centroid of the class Vi and �  is the global centroid.  The within-

class scatter W-  is defined as 
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Therefore the Fisher technique use the class label information to describe the two 

comparative kinds of distributions.  Given a projection matrix W (of size n by m) 

and its linear transformation vWp T= , the between-class scatter in the projection 

space is 
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where µµ'i and µµ' are the class centroid and the global centroid in the projection 

space respectively.  Similarly W-W� WW
T=  is the within-class scatter in the 



67 
 

projection space.  The desired goal is to select a W' maximizing the between-class 

scatter while minimizing the within-class scatter in the projection space so that the 

widened gaps between the class boundaries lead to better class separability.  The 

problem can formulated as solving the following equation 
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The construction of W' can be implemented by solving the generalized eigenvalue 

equation 

w-w- WB λ=  

and computing the m largest eigenvalues mλλλ ,,, 21 �  of the problem and their 

corresponding eigenvectors mwww ,,, 21 � .  Then the wi's form the orthonormal 

columns of the target projection matrix, that is 

].,,,[' 21 mwwwW �=  

 

5.3.2 Training and Character Recognition 

Computing the Fisher projection matrix with a set of character data vectors 

is equivalent to training for character recognition using a metric in the Fisher 
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projection space.  About the representation feature for character samples, there are 

various choices as was described in CHAPTER 3.  As a baseline representation, 

we take a fixed length ECV (expanded coordinate vector, see CHAPTER 2) of the 

character samples.  That is, given a sample S, 

>=< NNN yxyxyxS ,,,,,,)(ECV 2211 �  for a constant N.  The expanded 

coordinate values xi's and yi's of ECVN (S) are the resampling results of the local 

filtering after applying the data normalization steps of CHAPTER 2 to the original 

data.  The training data are compiled by computing ECVN (⋅) for each character 

sample.  Then the data go through the Fisher analysis and the projection matrix is 

constructed.  In the meantime, the training process also computes the model 

centroid mi for each class i.  The class vectors are normalized to be unit vectors for 

the character matching later.  Given a vector V, let F(V) be the vector in projection 

space mapped by the projection matrix that has been trained by the Fisher analysis.  

Given an input ECV y, its Fisher matching score (FMScore) for a class c is defined 

as 

2
))F(),F((dist2

),(FMScore
ym

y cc
−

=  

where dist(⋅) is the Euclidean distance.  So FMScore(⋅) ranges from 0 to 1 since the 

model centroid and the input are normalized to unit vectors beforehand.  The score 
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of 1 corresponds to the perfect match and 0 the complete mismatch.  In summary, 

the training steps are 

1. Compile the training data in the standard representation. 

2. Compute the model centroids and store them in the standard 

representation. 

3. Compute the Fisher projection matrix and store it. 

The high level description of the character recognition is 

1. Give an input y, convert it into the standard representation y. 

2. For each class c, compute the score fc = FMScore(y, c) and produce the 

pair <c, fc >. 

3. Sort the <c, fc> pairs, in decreasing order on fc, into the list L. 

4. Return the list L. 

 

In case the character recognizer works as a standalone system, as is for an isolated 

letter-by-letter recognizer, the system can just return the pair <c, fc> or the index c 

such that  fc is the maximum, instead of the steps 3 and 4 above.  But for a 

character recognizer as a component of a word or higher level recognition system, 

such curtailed output is not enough since the system will need fuller information 

for generating and managing the string hypotheses. 
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5.4 Experimental Results on Basic Representations 

We used two basic representations for testing the performance of the Fisher 

character recognition.  One is the ECV representation described in the previous 

section and the other is point tangent based, called tangential feature vector (TFV 

for short).  In more detail, let >=< NpppS ,,, 21 �  be the normalized local 

filtering result of an input character.  Then  

>
<=

)(),(),tan(,
),(),(),tan(),(),(),tan()TFV( 222111

NNN pUpp

pUpppUppS

θ
θθ

�

 

where tan(pi) is the tangent of the point pi.  θ (pi) is the accumulation of the signed 

tangent angle values up to the point pi and U(pi) is the unsigned accumulation of 

the tangent angles up to the point pi.  The same Fisher training procedure works on 

the TFV representation.  For training, 1040 lowercase cursive letter samples were 

used.  For testing the performance, a set of 520 lowercase cursive letters was used, 

which is disjoint from the training set.  The test has two parts: one is self-test and 

the other is disjoint-test.  The self-test is performed on the training data and 

measures the level of learning that took place.  The disjoint-test is done on the test 

data set that is disjoint from the training data set, and measures the generalization 

capability acquired by the system through the training.  The top choice accuracy is 

tested in each character class and the global average performance is also measured.  

See Table 1 and Table 2. 
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If the character recognizer is a standalone system, that is, works only as an 

isolated character level recognition, then the only criterion that matters would be 

the top choice accuracy since such task would be one-time invocation process.  For 

a character recognizer that works as a component of word recognition system, just 

reporting the top choice would not be enough.  Instead, an output of a set of 

candidate characters with the corresponding confidence values, which are worth 

considering is more desirable and in most cases is required, for the recognition 

engine to work robustly at word level.  To this end, the Fisher character matching 

produces the set of candidates by keeping only the character classes that have its 

Fisher matching score within the upper 40% of the top score.  The numbers labeled 

"average candidate set size" in Table 1 and Table 2 are the global average sizes of 

all the character candidate sets produced during the tests.  The candidate set size 

has significant impact both on the speed and the accuracy of the system 

performance.  The recognition engine generates and grows word hypotheses by 

combining the character hypotheses and therefore a small increase in the number 

of character candidates will turn into much larger number of word level  

hypotheses.      This   not   only   slows   down   the system's   working,   but   also 



72 
 

Class Self-test Disjoint-test 

a 97.5% 95.0% 
b 100.0% 100.0% 
c 95.0% 100.0% 
d 100.0% 100.0% 
e 92.5% 85.0% 
f 92.5% 95.0% 
g 97.5% 95.0% 
h 97.5% 100.0% 
i 85.0% 90.0% 
j 100.0% 80.0% 
k 95.0% 85.0% 
l 100.0% 90.0% 

m 92.5% 90.0% 
n 92.5% 95.0% 
o 95.0% 100.0% 
p 97.5% 100.0% 
q 82.5% 45.0% 
r 100.0% 100.0% 
s 90.0% 95.0% 
t 100.0% 94.7% 
u 85.0% 95.0% 
v 100.0% 75.0% 
w 90.0% 95.0% 
x 100.0% 100.0% 
y 92.5% 85.0% 
z 90.0% 95.0% 

Global 
average 

performance 
94.62% 91.54% 

Average 
candidate set 

size 
11.87 13.57 

 

Table 1.  Character recognition tests 
on ECV representation. 

Class Self-test Disjoint-test 

a 92.5% 95.0% 
b 95.0% 100.0% 
c 87.5% 90.0% 
d 100.0% 100.0% 
e 82.5% 80.0% 
f 90.0% 70.0% 
g 100.0% 100.0% 
h 95.0% 90.0% 
i 60.0% 60.0% 
j 100.0% 100.0% 
k 92.5% 85.0% 
l 92.5% 85.0% 

m 95.0% 95.0% 
n 95.0% 90.0% 
o 97.5% 100.0% 
p 100.0% 95.0% 
q 97.5% 100.0% 
r 90.0% 85.0% 
s 97.5% 100.0% 
t 95.0% 52.6% 
u 85.0% 85.0% 
v 92.5% 75.0% 
w 90.0% 95.0% 
x 92.5% 85.0% 
y 90.0% 65.0% 
z 95.0% 95.0% 

Global 
average 

performance 
92.31% 87.5% 

Average 
candidate set 

size 
16.57 17.72 

 

Table 2.  Character recognition tests 
on TFV representation. 
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introduces many spurious ambiguities leading to more misjudgments on the part of 

the recognition engine.  As seen in the Table 1 and Table 2, the size number is not 

small for the Fisher character recognizers based on the ECV and the TFV features 

and they keep on average about half of all the classes as candidates.  The problem 

stems from the nature of Fisher discriminant analysis or other linear analysis 

techniques, that the evaluation scores they generate have linearity in their 

distribution.  For example, Figure 13 shows an example distribution of the sorted 

scores of the candidate characters produced by ECV based Fisher recognizer with 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 13.  The distribution of the candidate characters and their scores produced 
by ECV based recognizer with an input of "a." 
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an input of "a."  Therefore the distribution does not have a structure that is easy to 

distinguish candidates and non-candidates and for reasonable robustness the 

system needs to keep not a small number of candidates.  This drawback will be 

addressed in the next section with a new recognizer that integrates multiple 

representations. 

 

5.5 Multiple Experts Fusion 

The rationale behind the paradigm of multiple experts fusion is that rather 

than searching for a single omnipotent representation, a group of different and 

simpler features compensating each others' weaknesses while retaining one's own 

strength, sounds more natural and effective. Conventional fusion approaches 

typically involve designing the topology of interconnections between the 

recognizers ([1], [28], [63]), therefore the overall mechanism is implicit.  Our 

information fusion is unique in the sense that it has an explicit strategy that 

compares the consistency of the two interpretations coming from each recognizer, 

thereby re-computing the scores and the ranks of the candidate characters.  The 

new character recognizer implementing the fusion will not only improve in 

accuracy, but will also achieve the desirable property of more selective response 

pattern mentioned in the previous section.  To this end we will use ECV and TFV 

as the two different base representations.  Let ECV-FCR be the Fisher character 
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recognizer based on ECV representation and TFV-FCR be that on TFV 

representation.  The outputs of the ECV-FCR and TFV-FCR will be integrated at 

the module called Fisher Fusion Module that outputs the final result.  See Figure 

14. 

Given a character segment input, the ECV and the TFV vectors are  

extracted   and   they  are fed  to the corresponding base recognizers.   In each base 

recognizer, after the Fisher matching the candidates that have scores within the top 

50% from the top score will be filtered and are output in a sorted list.  Let these 

lists be LECV and LTFV respectively for ECV and TFV representations.  LECV and LTFV 

may have different elements and different lengths.  As seen in Table 1 and Table 2 

ECV-FCR performs more reliably, so we take LECV as the main information and the 

list LTFV  is compared with it to proceed with the fusion process.  For each element 

<c, fc> pair in LECV, where c is a class label and fc is its Fisher matching score, we 

try to find <c, gc> in LTFV.  If <c, gc> pair is not found in LTFV then it means TFV-

FCR missed the class c as a candidate, so fc is penalized heavily by reducing it to 

50%.  Otherwise, we reevaluate fc as follows.  Let topTFV be the top score of LTFV, 

then we compute the ratio of gc with topTFV.  That is, fc is updated into fc' as below 

TFVtop
' c

cc

g
ff ⋅= . 
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Figure 14.  Overall architecture of feature-fusion character recognizer. 
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The updated pair <c, fc'> is sorted into the final list F.  At the end, F is pruned to 

have the items whose score is within the top 40% of its top score.  The steps at the 

Fisher fusion module are summarized below 

1. Inputs are LECV and LTFV. 

2. For each <c, fc> in LECV 

.2.1. Find <c, gc> in LTFV. 

.2.2. Compute fc' and sort <c, fc'> pair into the list F. 

3. Prune out items in F whose score is below 60% from the top score. 

4. Return F. 

 

5.6 Experimental Results on the Fusion Matching 

Table 3 shows the character recognition test results using the combined 

representation fusion matching.  Table 4 compares the recognition rates with those 

of the base representations.  For the disjoint-test, the error rate reduction rates from 

the ECV and the TFV representations are 12.5% and 40.8% respectively.  More 

significant improvements were obtained in reducing the size of the output 

candidate list.  Now the new fusion matching produces the average number of 

candidates of 3.68 for the disjoint-test.  This is a large improvement from the 

average number of candidates of 13.58 and 17.73 generated by the ECV and the 

TFV matchings respectively, for the same test (Table 5).  Therefore we have 
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obtain a target character recognizer that has more selective response pattern with 

better accuracy.  The fusion matching will run a little slower because it consists of 

the two component matchings on base representations.  But the compact candidate 

set will more than compensate the extra cost since the recognition engine will 

generate and handle significantly smaller number of word level hypotheses, and 

the system performance will speed up overall. 
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Class Self-test Disjoint-test 

a 97.5% 100.0% 
b 100.0% 100.0% 
c 95.0% 100.0% 
d 100.0% 100.0% 
e 90.0% 85.0% 
f 92.5% 90.0% 
g 100.0% 100.0% 
h 100.0% 95.0% 
i 87.5% 85.0% 
j 100.0% 100.0% 
k 97.5% 85.0% 
l 97.5% 85.0% 

m 97.5% 95.0% 
n 97.5% 95.0% 
o 95.0% 100.0% 
p 100.0% 100.0% 
q 92.5% 70.0% 
r 100.0% 100.0% 
s 97.5% 100.0% 
t 100.0% 94.7% 
u 92.5% 95.0% 
v 100.0% 80.0% 
w 92.5% 95.0% 
x 97.5% 100.0% 
y 97.5% 80.0% 
z 95.0% 95.0% 

Global average 
performance 96.63% 92.5% 

Average 
candidate set 

size 
3.16 3.67 

 

Table 3.  Character recognition tests on combined representation fusion matching. 

 



80 
 

 

 

Self-test 

Representation Recognition rate Error rate 
Fusion 96.6% 3.4% 

Fusion's error 
reduction rate 

ECV 94.6% 5.4% 37.4% 
TFV 92.3% 7.7% 56.2% 

Disjoint-test 

Representation Recognition rate Error rate 

Fusion 92.6% 7.4% 

Fusion's error 
reduction rate 

ECV 91.5% 8.5% 12.5% 
TFV 87.5% 12.5% 40.8% 

 

Table 4.  The fusion matching's character recogniton performance and comparison 
with that of ECV and TFV representations. 

 

 

Self-test 

Representation Average candidate set size 

Fusion 3.16 

Candidate number reduction rate 
of fusion matching 

ECV 11.87 73.4% 
TFV 16.57 80.9% 

Disjoint-test 

Representation Average candidate set size 

Fusion 3.68 

Candidate number reduction rate 
of fusion matching 

ECV 13.58 72.9% 
TFV 17.73 79.2% 

 

Table 5.  The fusion matching's reduction effect on the size of candidate set 
compared with the matchings of ECV and TFV. 
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CHAPTER 6. Word Recognition Engine 

 

Unlike a standalone character level recognizer, the word level recognition 

task faces two big challenges: the segmentation and the management of the word 

level hypotheses.  The recognition engine is the place where the issues are 

addressed and to this end the various information from the rest of the system is 

integrated and utilized.  In our system the segmentation is partially addressed in 

the preprocessing step by generating the tentative segmentation points.  The 

segmentation hypothesis points are just tentative possibilities and how to actually 

try the permissible character segments is handled dynamically in the recognition 

engine.  Although the recognition engine is where the word level recognition really 

takes place and is the center of global information fusion, relatively little effort has 

been expended on an improvement of it, and the conventional approach is using 

the Hidden Markov Model  The conventional method of evaluating string level 

hypothesis in handwriting recognition has been accumulating the confidence 

values assigned to each string component ([6], [13], [27], [39], [71]). 
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6.1 Conventional Word Hypothesis Evaluation and Its Problems 

In handwriting recognition context, the HMM's were originally meant the 

models for character or sub-character units.  The HMM, however, can be extended 

to work at the word level by concatenating the character level HMM's according to 

a given grammar that specifies legal combinations.  Then the standard Viterbi 

search process constructs the possible paths aligning with the input and the best 

path can be found by minimizing or maximizing on the path scores.  Let 

>=< TxxxX ,,, 21 �  be an input sequence and consider a possible partition of 

X 

)(,),(),( 21 KXXX ττττ �=  

where TK =≤≤≤≤ τττ �210  and >=< ++ −− iii
xxxX i ττττ ,,,)( 21 11

� .  

Each segment )( iX τ  in the partition can be interpreted as modeled by a character 

HMM whose index is the value of the variable hi.  A path in this context is then 

defined as H =  <h1, h2,  …  , hK>.  Then estimating the best path H  can be 

formulated as 

{ })|)()(Pr(max)|Pr( 11
,

KK
H

hhXXHX �� ττ
τ

=  

or, if we assume the conditional independence among the segments 

{ }∏ =
= K

j jj
H

hXHX
1

,
)|)(Pr(max)|Pr( τ

τ
. 
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Therefore the problem can be recast as a global level HMM of lower level, that is 

character level, models, and becomes amenable to dynamic programming similarly 

as in original HMM ([71]).  The probability quantity can be replaced with other 

kind of confidence metric C related with other kind of model m than HMM with a 

path now defined as M =  <m1, m2,  …  , mK>: 

{ }∏ =
= K

j jj
M

mXCMXC
1

,
)|)((max)|( τ

τ
 

One problem of this approach is that the multiplication of the more general 

component confidence values may not be natural if it is not drawn from real 

statistics.  For example, let's suppose the confidence is a score evaluated from a 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 15.  A hypothetical word input whose middle part is poorly shaped, 
and the arcs representing the segments identified by the system.  The pair 
<s, n> on each arc is the interpretation of the corresponding segment, where 
s is the character label and n the character recognition score. 
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shape matching.  In this case, it is not clear what the multiplicative path score may 

mean.  Rather the average of the component scores may make more sense, because 

it is clearly a measure of how well the component characters are shaped overall.  

The other problem is the brittleness that may be introduced by the multiplicative 

nature of the path score.  For example, suppose that one component character was 

poorly shaped and scored low.  In this case it is possible that the correct hypothesis 

may not survive the propagation or may break down at the poorly formed 

character.  In Figure 15, let's suppose that the string C1C2C3 is the correct 

interpretation of the input.  Then its related multiplicative path score is 

0.9×0.1×0.9 = 0.081 and the string will be pushed away by the wrong 

interpretation T1T2 having the path score of 0.6×0.5 = 0.3.  Also the multiplicative 

path score has the effect of preferring shorter interpretations to longer ones 

because an interpretation will have its confidence value reduced multiplicatively as 

it concatenates a character and grows in length. 

 

6.2 Word Recognition as a Graph Search Problem 

A word level hypothesis is essentially a string of character hypotheses and 

its confidence score.  A character hypothesis consists of the interpreted character 

class label, the evaluation score computed by the character recognizer, and other 

information like its starting and ending points, the bounding box, etc.  In our 
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system the score of a word hypothesis is not the conventional accumulation of the 

log-likelihood of the character confidences.  Instead it is taken as the average of 

the scores of the component character hypotheses.  Therefore our word hypothesis 

score is a measure of how well its contained characters are shaped overall in 

relation with the Fisher character models.  The robustness of the new path scoring 

can be shown by retaking the example of the previous section drawn from Figure 

15.  The averaging method gives the path score of (0.9+0.1+0.9) / 3 = 0.63 to the 

correct hypothesis C1C2C3, which is higher than 0.55 assigned to the wrong 

hypothesis T1T2.  With the segmentation points and the rule to form the character 

segments, the structure of the recognition engine can be formulated as a graph.  

The segmentation points along with the starting and the ending points of the input 

can be regarded as the set of vertices.  The starting point corresponds to the special 

vertex S and ending point to the special vertex T.  A directed edge s → t between 

the two nodes s and t can be regarded as representing the segment starting from the 

segmentation point represented by s, to the segmentation point represented by t.  

Which edges are present in the graph is determined by the rule in the recognition 

engine.  Conceptually this graph is called the "segmentation graph" of a given 

input because it describes the structure of the segmentation possibilities.  See 

Figure 16.  Note that the graph is a DAG (directed acyclic graph) since the edges 

are  directed  forward  and  never  go back in time.  Next the segmentation graph is  
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Figure 16.  The segmentation graph of an input.  The segmentation points are 
indicated by the dots over data, which are also the vertices of the graph along 
with S and T.  The edges installed by the generation rule are indicated by the arcs 
with arrows. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 17.  (a) An edge from the segmentation graph  (b) the same edge 
expanded into multiple interpreted edges in the interpretation graph. 
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expanded into a graph called "interpretation graph."  In the interpretation graph, 

each unlabeled directed edge in the segmentation graph is interpreted, by invoking 

the character recognizer with the corresponding segment as input, and is replaced 

by a set of edges having the same source and destination vertices, but now being 

labeled with the character class index and the evaluation score (see Figure 17). 

In this setting the word recognition problem can be transformed into 

finding the optimal path from the starting vertex S to the ending vertex T in the 

interpretation graph ([39]).  The score of a path is a function of the scores of the 

edges contained in the path.  Traditionally the path score function is the 

summation of the log-likelihood of the individual edge score.  The path score 

function in our system, however, is the average of the component character scores 

for the reasons explained the previous section.  In addition, we use a variant of 

Viterbi search in which more than one predecessors are kept in a list at each 

propagation points. If we have an oracle metric that can evaluate word hypotheses 

with infinite precision, then we would not need to care but use the standard Viterbi 

search which runs optimally assuming that word evaluation metric is correct.  In 

practice, the reality is less than ideal especially in statistical pattern recognition 

context and there are many sources of noise like perturbations in data, in feature 

extraction, ambiguities and confusions in the character recognition process, and so 

on.  Therefore the optimality of the Viterbi search can not be expected because the  



88 
 

hypotheses evaluation metric itself is imperfect.  Our strategy to cope with this 

problem is to retain more than one predecessor hypotheses at each propagation 

point in our recognition engine. 

 

6.3 Hypotheses Propagation Network 

The recognition engine of our system, named "Hypotheses Propagation 

Network" (HPN), is a two-dimensional lattice in structure and implements the 

interpretation graph and the search algorithm on it described in the previous 

section.  One dimension of HPN is the time in terms of the segmentation points: 

the first segmentation point is the time-1, the second segmentation point the time-

2, and so on.  The other dimension ranges over the indices of the character classes 

(see Figure 18).  The intersections of HPN lattice correspond to a node N (t, m), 

where t is a time and m is the index of a character class.  Given two nodes N (t', 

m') and N (t, m) where t' < t, the edge N (t', m') → N (t, m) corresponds to the 

segment from t' to t in the input that is interpreted as the class m, having m' as the 

predecessor. 

6.3.1 The HPN Search 

In HPN, the interpreted edges are constructed dynamically by the segment 

generation rule.  At each processing time t, the HPN looks back in time and ranges 
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over the look-back windows of sizes from 1 to w that is the maximum size.  

Therefore the i-th look-back window Wi starts at time t-i and ends at t (see Figure 

19).  For each Wi, the HPN sends the feature vector extracted from the 

corresponding data segment to the component character recognizer which in turn 

returns the list of candidates },,,{ 21 kmmm � .  For each of the candidate mj, the 

HPN iterates over the nodes N (t-i, m') and considers whether or not to place the 

edge N (t-i, m') → N (t, mj) in the graph.  The decision is based on the information 

coming from various hypothesis-filtering models.  One example is the use of 

lexicon or dictionary.  That is, if the string corresponding to a hypothesis that has 

been propagated to the node N (t-i, m') forms a legal prefix of the lexicon if mj is 

concatenated to it, then the new prefix is legal and the edge is permissible. 

As stated above, the main difference of HPN search from other dynamic 

programming search techniques is the use of multiple predecessors.  At each node 

N (t, m), the HPN stores the list of word level hypotheses H (t, m) each of whose 

elements is a hypothesis that ends at time t with the character of class m as the last 

character of its string.  For an edge N (t1, m') → N (t2, m), the HPN iterates on each 

element of H (t1, m') and computes a new hypothesis with the score of the edge  
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Figure 18.  The lattice structure of HPN and an example of edge from the node  
N (t', m') to node N (t, m). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 19.  The look-back windows of HPN, from the current processing time. 
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and the class label m and inserts it into the list H (t2, m).  See Figure 20.  After the 

last time T, the lists H (T, *) are merged into a single sorted list H that is the 

sequence of candidate words recognized by the system, ordered according to the 

confidence values. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 20.  Snapshot of HPN search building the hypothesis list H (t, m) for time 
t and the class m. 
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6.3.2 Pruning on the Hypothesis List 

Now allowing multiple hypotheses ending on the same propagation node, 

with no limit on the length of the lists H (t, m) can lead to intractable computation 

since the hypothesis growing and propagating process would encounter 

exponentially growing number of predecessor as the time proceeds.  The 

hypotheses filtering models of the next chapter are ways to prune the search by 

blocking the propagation of the hypotheses that are detected as not consistent with 

the various context information.  On the HPN itself, the search structure is taken 

similar to the beam search.  On one level, all H (t, m) are restricted to have at most 

C number of items.  At the other level, the maximum number of hypotheses at 

each time t is restricted to U.  This is achieved by keeping at most the top U 

hypotheses at time t, in terms of their hypothesis scores, that are distributed over 

the H (t, *)'s.  The numbers C and U are among the system parameters controlling 

the accuracy and the running speed. 

 

6.4 Experimental Results 

The word recognition tests were performed in 4 different settings on a set 

of 100 words collected by the author and the results are summarized in the 

following tables.  All tests were run with a lexicon of 450 words and the ligature 

modeling described in CHAPTER 7.2.  Table 6 shows the results of the tests using 
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the ECV for representation and the two different recognition engine searches, that 

is HPN search and the Viterbi.  The system outputs a list of word candidates sorted 

according to the confidence values assigned to each candidate.  In our setting the 

rank of the list starts from 0, not 1, so the top choice has rank-0.  The performance 

is taken as correct only if the target word is the same as the top choice.  The table 

also shows the distribution of the ranks of the mis-recognized or non-recognized 

words.  Non-recognition means that the target word is not included in the 

candidate list.  The average rank in the table means the mean value of the ranks of 

the mis-recognized words. 

 

ECV matching HPN search Viterbi search 

Recognition rate 85% 73% 

Rank distribution of mis/non-recognized words 

rank-1 7 3 
rank-2 3 1 
rank-3 1 0 

out of rank 4 23 

Average rank 1.45 1.25 

 

Table 6.  Word recognition performances on the ECV representation and its Fisher 
matching with different recognition engine searches. 

 

From the table, it is clear that our strategy to keep multiple predecessors at 

each propagation points is more robust than the standard Viterbi search.  Most of 

the mistakes it makes are non-recognition, not mis-recognition, which means that 
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the correct hypothesis did not survive to propagate to reach the end time in many 

cases.  The point that this situation can be remedied by keeping more opportunities 

open in the form of having multiple predecessors at each propagation points as is 

done in the HPN, is verified. 

Table 7 shows the same kind of tests but done on the fusion representation 

and its Fisher matching, instead of the ECV.  The fusion representation with the 

HPN search improved the recognition rate by 3% or reduced the error rate by 20%, 

over the ECV-HPN combination.  Also there are no non-recognized words in 

Fusion-HPN case.  This is attributable to the more discriminative property of the 

fusion matching obtained by tuning the character scores with the information from 

the different representations.  Here again, there is a big gap in the performance 

between the HPN and the Viterbi searches. 

 

Fusion matching HPN search Viterbi search 

Recognition rate 88% 68% 

Rank distribution of mis/non-recognized words 

rank-1 8 2 
rank-2 1 0 
rank-3 2 0 
rank-4 1 0 

out of rank 0 30 

Average rank 1.67 1.0 

 

Table 7.  Word recognition performance on the fusion representation and its 
Fisher matching with different recognition engine searches. 
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CHAPTER 7. Hypotheses Filtering Models 

 

With no contextual analyses and relying only on the scores assigned by the 

component character recognizer, the recognition engine is bound to generate a 

large number of hypotheses, many of them spurious, because it lacks higher level 

contextual sight.  For example, some English characters are inherently ambiguous: 

"o" and "0," "1" and "I," "1" (one) and "l" (lowercase "L"), to name a few.  In 

many cases, the ambiguities of such characters can only be resolved by taking the 

given context into account.  With a contextual perspective, however, many of the 

generated hypotheses may not make sense any more and may be eliminated from 

further propagation.  The economy of hypothesis propagation obtained by such 

filtering substantially contributes to the performance of the system. 

 

7.1 Dynamic Lexicon 

One of the most common forms of context information is the use of a 

lexicon, that is a dictionary of permissible words.  The lexicon filtering is usually 

applied either after the generation of word candidates or during the propagation 

process but the former approach can little contribute in pruning the search space.  
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In still another approach, the lexicon is dynamically reduced by an early-

recognition stage using an approximate but fast recognizer-like method ([67]).  

The purpose of the early-recognition is to determine quickly a small set of 

plausible candidate words, thereby reducing the size of the lexicon.  The rest of the 

system then focuses only on the reduced lexicon.  A statistical n-gram modeling of 

character sequences is also used and makes sense if the system tries to recognize 

out-of-lexicon words.  In our system, the dictionary is organized into the compact 

"trie" data structure and is looked up dynamically when the HPN tries to propagate 

a word hypothesis.  A non-leaf node of the lexicon trie corresponds to a legal 

prefix of the system, that is a proper prefix of a full word.  The full words are 

represented by the leaves of the trie.  Each word level hypothesis has a pointer set 

to the node of the trie that corresponds to the prefix string that the hypothesis 

represents.  So, when the HPN processes a hypothesis h ending at an HPN node for 

propagation with an edge interpreted as a character class x, the HPN looks up the 

trie node of h.  If the node has x as a successor, then it means that h can be 

extended to h' having x as the last character.  This way, the system dynamically 

prevents a hypothesis from being extended to a non-permissible string and all the 

word level hypotheses generated and propagated are limited to legal prefixes of the 

lexicon. 

 



97 
 

7.2 Ligature Modeling 

Much of the variability of a character written in a cursive script comes 

from how it connects with the surrounding characters, that is by the ligatures.  This 

phenomenon is similar to what is called co-articulation in speech recognition, in 

which a phoneme has greater variation in pattern around the border with the 

neighboring phonemes.  Ligatures are not necessary but ever present in continuous 

cursive writing due to physical constraints in and psychological need of fast 

writing.  Traditionally, most approaches simply ignored them ([7]), some others 

trying to deal with the ligatures mainly used hidden Markov models ([27], [71]).  

Still others used very expensive methodology ([35]), for example by using the 

classes of continuously written character pairs, thereby proliferating the system’s 

classes in large number.  The rationale of our modeling the ligatures is that there 

are certain regularities in their formation, and they can be used to measure a well-

formedness of a hypothesis.  By appropriately modeling away these dummy 

bridges, we can expect more regularity in the shapes of characters.  The difficulty 

of modeling ligatures, however, is that they are context sensitive and taking the 

full contexts into account leads to a proliferation of models.  For example, a 

straightforward ligature modeling of 26 lowercase English letters by HMM will 

wind up with 26 × 26 = 676 models.  The large number of models inevitably 

increases the amount of computing time and storage.  Depending on a language 
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and its structure, more efficient modeling is possible (for example, Korean).  In 

[71], a context-free grammar was defined to model the way the ligatures can be 

formed between the component sub-character units in Korean language that has a 

concise syntax specifying how the sub-character units can be combined to form a 

legal character, and HMM's were trained to actually model each type of ligature.  

But for English there are few alphabetic constraints on the formation of ligatures 

that could be exploited for more concise modeling. 

 

7.2.1 Using Feature-Link Code to Model Ligatures 

The feature-link code (FLC) was introduced in CHAPTER 4.4 and its 

computation was also described there.  In Figure 10, the 24 convexity-directional 

feature-link templates were shown along with the indices assigned to the 

individual templates.  In Figure 11, example handwriting of the word "day," its 

feature-link intervals and the FLC's were demonstrated.  From the example, it is 

clear that the FLC is a compact representation to describe a smooth contour 

interval.  In our system, the feature-link interval is the smallest unit along which 

the entire input is broken down.  A character segment is always formed as a 

consecutive sequence of feature-link intervals.  Therefore a ligature, if present, is 

also a sequence of feature-link intervals between two character segments.  In our 

system, we use the feature-link intervals to hypothesize about the ligatures.  A 
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ligature segment, however, does not need to contain many feature-link intervals in 

normal handwriting, because, unlike the characters, it serves merely as a bridge 

and its shape does not have a complex structure.  Except for mis-formed or ill-

formed handwriting, it is a smooth interval with certain degree of convexity.  This 

sounds the same as the definition of the feature-link interval and through the FLC 

we have an efficient way to categorize a ligature hypothesized between two 

characters.  Since the FLC is computed into a table at the pre-preprocessing step, 

the consumer (that is, the HPN) just needs to look into the table. 

For filtering purpose, we set up two lookup matrices IsRequired[c1, c2] and 

IsLegal[c1, l, c2] where c1 and c2 range over character class indices and l is an FLC. 

IsRequired[c1, c2] has value TRUE if a ligature is required between the two 

character classes c1 and c2 in continuous writing, and FALSE otherwise.  

IsLegal[c1, l, c2] is set to TRUE if l is a permissible ligature between c1 and c2, and 

FLASE otherwise.  The quantity IsRequired[c1, c2] is used when the segments of 

c1 and c2 touch each other and therefore no ligature is present.  If IsRequired[c1, c2] 

is TRUE in this case, then it means that c1 followed by c2 is mis-hypothesized 

since they require a ligature in continuous formation.  When two characters c1 and 

c2 are separated by an interval labeled with FLC l, the matrix entry IsLegal[c1, l, 

c2] is looked up by the system to check whether the ligature is permissibly formed.  

Therefore if a hypothesis that is being considered by the HPN for extension with 
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such context, is not consistent with the ligature models, such an instance is blocked 

from further propagation. 

With the models explained, the question is how we determine what value to 

enter into the matrix entries.  Ideally, training may do this from the samples and in 

such case we may use the observed probability quantity instead of Boolean values.  

But because of the difficulty in obtaining large amount of labeled ligature data, we 

used hand-designed code instead. The design was meant to be tolerant so that a 

ligature type between two characters, that is FLC, was made legal unless it is 

clearly nonsensical.  The result is collapsing the large modeling, both in time and 

storage, down to moderate-sized matrices and one or two matrix-entry lookups. 

 

7.2.2 Examples and Experimental Results 

Figure 21 shows two examples where the matrices IsRequired[c1, c2] and 

IsLegal[c1, l, c2] are used.  Part (a) of the figure shows the incorrect segmentation 

of "g" into "o" and "j."  The string "oj" when written continuously, needs a ligature 

between the two characters since without one it should look as a shape of "g."  

Therefore the value of IsRequired["o", "j"] is TRUE.  Because the segmentation 

provides no room for a ligature, the system can detect that "oj" is a wrong 

interpretation.  The next example in Figure 21 is how the quantity IsLegal[c1, l, c2] 

is used.  Part (c) of the figure shows a wrong segmentation of "pie" into "jie."  
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However the direction and the convexity of the hypothetical ligature between "j" 

and "i" is clearly not a possible pattern under a normal condition, so the system 

will find FALSE value at the entry IsLegal["j", l, "i"] where l is the FLC of the 

ligature. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 21.  Incorrect and correct character segmentations and the ligature 
modeling.  The segment boundaries are indicated as dots.  (a) Wrong 
segmentation of "g" into "o" and "j."  This case is rejected by ligature modeling 
because continuously written "oj" requires a ligature between the segments.  (b) 
Correct segmentation of "pie."  (c) Wrong segmentation of "pie" into "jie."  The 
hypothesized ligature is not consistent as a ligature between "j" and "i."  
Therefore it will not be taken as permissible. 

 

(a) "g' mistaken as "oj" 

(b) "pie" 

(c) "pie" mistaken as "jie" 

ligature 
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In CHAPTER 6.4, all tests were run with the ligature modeling turned on.  

To see how the absence of ligature modeling impacts the word recognition 

performance, a test using the fusion representation and the HPN search was run 

with the ligature modeling turned off.  Table 8 compares the test result with that of 

the test with the modeling.  When the models are turned off, the recognition rate 

dropped by 19%.  A large part of the errors are non-recognition, meaning that the 

extra confusions caused by no modeling, pushed the correct word hypotheses out 

of the predecessor lists somewhere during the propagation.  The rank distribution 

of the no modeling case also shows the negative impact on the mis-recognition 

cases in which the ranks of the targets are scattered wider from the top. 

 

Ligature modeling Yes No 

Recognition rate 88% 69% 

Rank distribution of mis/non-recognized words 

rank-1 8 10 
rank-2 1 5 
rank-3 2 1 
rank-4 1 2 
rank-5 0 1 
rank-6 0 1 

out of rank 0 11 

Average rank 1.67 2.1 

 

Table 8.  The comparison of word recognition performances with and without the 
ligature modeling.  Both tests were done using the fusion representation and the 
HPN search. 

 



103 
 

7.3 Visual Bigram Modeling 

The ligature modeling is an example of hypothesis filtering using visual 

context.  It modeled the range of permissible connecting patterns between the 

character hypotheses.  In the visual bigram modeling we compare the geometric 

characteristics of the character hypotheses directly to check if it is consistent with 

the context drawn from the pair of hypotheses.  That is, the variability of relative 

geometric information like the relative size and positioning of a character unit in 

comparison to its neighbors, is modeled and the system evaluates the fitness of a 

hypothesis according to the models.  An isolated character can be highly 

ambiguous while its identity can be more evident when put in a context.  For 

example, the word "go" can be confused with "90" when the system considers each 

individual character.  But if the relative size and the positioning of the second 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 22. The example characters that are ambiguous individually but are 
obvious when seen in the context. 

 

Character  
heights 

Relative 
height ratio 

and 
positioning 

“go” 

“90” 
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character hypothesis are taken into account, in relation with the first character 

hypothesis, it becomes clearer that the "go" is the more likely interpretation 

(Figure 22).  Some studies ([35], [21]) tried to incorporate this modeling into the 

character recognizer, that is, by training the recognizer with a data set of all 

possible character pairs.  This approach, however, has the problem in that it 

requires a huge amount of training samples and much larger number of class 

models.  Other efforts available from the literature have tried to either identify and 

use ascender or descender sub-strokes of writing ([55]), or rely on the covariance 

matrix of the model parameters ([79]).  We will show a new and more intuitive 

approach that does not need such information and the model parameters are 

learned by training on the data samples. 

 

7.3.1 Modeling Visual Bigram Information 

When the feature vector is extracted by the local filtering for a character 

segment, it also computes the bounding box of the segment.  Here a visual bigram 

<c1, c2> is a pair of two consecutive character hypotheses c1 and c2, along with the 

information of their respective bounding boxes.  Given <c1, c2>, let 

• topi be the top-most y-coordinate of the bounding box of ci 

• bottomi be the bottom-most y-coordinate of the bounding box of ci 

• hi = topi - bottomi, that is the height of the bounding box of ci 
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for i ∈{1, 2}.  The combined height of <c1, c2> is, H(<c1, c2>) = max (top1, top2) - 

min (bottom1, bottom2).  Next, let us define the three functions of <c1, c2> as 

follows: 

• Height difference ratio: 
)c,c(H

)c,cHDR(
21

21
21 ><

−
=><

hh
 

• Top difference ratio: 
)c,c(H

toptop
)c,cTDR(

21

21
21 ><

−
=><  

• Bottom difference ratio: 
)c,cH(

bottombottom
)c,cBDR(

21

21
21 ><

−
=>< . 

Suppose that we have a model MH that measures the fitness of the height 

difference ratio of an input class <c1, c2>.  For lowercase English alphabet, each ci 

ranges over 26 letter classes, and a straightforward approach would take 26×26 = 

676 bigram classes.  The information that we want for modeling, however, is the 

relative size and the positioning between the characters.  Therefore by categorizing 

the letters into groups according to this criterion, the number of needed bigram 

classes can be greatly reduced.  To this end, let us consider the two kinds of sub-

strokes: ascender and descender.  An ascender is a sub-stroke running beyond the 

upper-baseline of the lowercase letter and a descender is a sub-stroke running 

below the lower-baseline of the lowercase letter.  All lowercase letters can be 

divided into three groups: one having ascenders, another having descenders and 
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lastly the one having none.  Table 9 shows the three categories and their member 

letter classes. 

 

Ascender or 
descender Type name Members 

Ascender A b, d, f, h, k, l, t 

Descender D f, g, j, p, q, y, z 

None N a, c, e, i, m, n, o, r, s, u, v, w, x 
 

Table 9.  Three categories of lowercase letters according to the presence of 
ascender or descender sub-strokes. 

 

The 26 letter classes have been reduced to the 3 classes of A, D, and N 

representing the ascender group, the descender group and the none-group 

respectively.  Hence we only need to deal with the 9 bigram classes of {A, D, 

N}×{A, D, N}: <A, A>, <A, D>, <A, N>, <D, A>, <D, D>, <D, N>, <N, A>, <N, 

D>, and <N, N>.  Now the model MH can be set up for 9 bigram classes as above, 

instead of 676.  The computing steps of MH(<c1, c2>) for the class <l1, l2>. is 

1. Compute HDR(<c1, c2>). 

2. Compare HDR(<c1, c2>) with the parameters of <l1, l2>. 

3. Return the confidence value of HDR(<c1, c2>) interpreted as that of  

<l1, l2>. 
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Suppose that we also have the models MT, MB set up similarly as MH, but 

measuring the top-difference ratio and the bottom-difference ratio respectively.  

Then what we desire from modeling the visual bigram information can be 

summarized in the form 

VBScore(<c1, c2>) = kH⋅MH(<c1, c2>) + kT⋅MT(<c1, c2>) + kB⋅MB(<c1, c2>) 

where kH, kT and kB are coefficients or weights to the corresponding models. 

 

7.3.2 Training the VBM 

In computation of the model score M(<c1, c2>) for a model M that is one of 

either MH, MT, or MB, the comparison of the related difference ratio of <c1, c2> 

and the model's parameter is actually a look-up into a table holding the distribution 

histogram of the ratio.  Training the VBM parameters is essentially constructing 

the model distributions from visual bigram samples.  For example, let us consider 

the training of height difference ratio (HDR) model for the bigram class <A, A>.  

We collect the set of the HDR values for <A, A> class samples.  Let S = <s1, s2, … 

, sk> be the sorted list of the HDR values.  Then the interval [s1, sk] is divided into 

N equal length sub-intervals.  A bin is set up for each such sub-interval, to count 

the number of si values that fall inside the sub-interval.  Therefore, after finishing 

counting, the sequence of the bins forms the histogram of the distribution of HDR 

values.  The histogram is then Gaussian-smoothed.  After training, the quantity in 
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a histogram slot represents a likelihood of the HDR values that fall within the slot.  

The training of the rest of the models MT and MB proceeds similarly.  The process 

is iterated on each of the 9 bigram classes and the system will wind up with 27 

histograms in total.  With the histogram set up for a model M, the steps of 

computing the model score on input <c1, c2> are as follows: (Let HISTM[*] be the 

histogram of M) 

1. Compute the model's difference ratio R from <c1, c2>. 

2. Compute the histogram slot index k from R:  slotsize/min)( −= Rk , 

where min is the lower-bound of the first histogram slot interval and 

slot-size is the interval length of the histogram slots. 

3. Return HISTM[k]. 

 

7.3.3 Computing the Class Model Coefficients 

Each model of a specific bigram class, has its coefficient that is used in the 

computation of the target confidence level of an input as shown at the end of 

CHAPTER 7.3.1: 

VBScore(<c1, c2>) = kH⋅MH(<c1, c2>) + kT⋅MT(<c1, c2>) + kB⋅MB(<c1, c2>). 

Intuitively, the coefficient of a model measures the amount of contribution that the 

information coming form the model gives, in determining the fitness of the input 

with the suggested class interpretation.  In our approach for determining the 
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coefficients we compute the amount of discrepancy of the distribution compared 

with the same kind of models of different classes.  If the discrepancy of a model is 

larger than those of other models of the same class, then it means that the model is 

worth larger coefficient because it provides more information in measuring the 

fitness of the input.  Given two bigram classes T1, T2 and a model M, let D(M, T1, 

T2) be the distribution discrepancy of T1's M from T2's M.  The computing steps of 

D(M, T1, T2) is 

1. Align M's scales of distribution of T1 and T2 by extending the histograms 

HISTT1 and HISTT2 to HIST'T1 and HIST'T2, so that the latter two have the 

same range of intervals. 

2. Compute the discrepancy DSUM as follows by iterating over i 

2.1. 




−
<−

=
else][HIST'][HIST'

][HIST'][HIST' if][HIST'][HIST'
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3. Return DSUM. 

Step 1 is necessary since T1 and T2 have, in most cases, different distributions 

corresponding to different real value intervals.  For a given class T, let DM(T) be 

the sum of D(M, T, *)'s over all other classes.  This process repeats on other 

models of T.  Let DH(T), DT(T) and DB(T) be the three discrepancy quantities for 

the T's models MH, MT and MB respectively.  Then the coefficients for the class T 

is computed as 
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• kH = DH(T) / (DH(T) + DT(T) + DB(T)) 

• kT = DT(T) / (DH(T) + DT(T) + DB(T)) 

• kB = DB(T) / (DH(T) + DT(T) + DB(T)). 

 

The three coefficients are computed for each of the 9 bigram classes, so the total of 

27 coefficients are computed for each model of each bigram class, using the above 

procedure. 

 

7.3.4 Experimental Result 

To see the effectiveness of VBM on the word recognition performance, a 

test using the fusion representation and the HPN search was run with the VBM 

obtained by training on 240 visual bigram samples.  Table 10 compares the test 

result with that of the test without the modeling.  This time, the VBM filtering was 

applied after the HPN finishes its search.  That is, for each the final candidate word 

of the system, the word's VBM score was multiplied by the standard word score to 

get a new score.  The candidates were re-sorted according to the new score into the 

new list.  Therefore the new list is a re-ordering of the standard output list of the 

system, with the items reshuffled in reflection of the VBM fitness information.   

As seen in the table, the recognition rate was increased from 88% to 93%, an 

improvement of 5%. 
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Using VBM Yes No 

Recognition rate 93% 88% 

Rank distribution of mis/non-recognized words 

rank-1 4 8 
rank-2 1 1 
rank-3 1 2 
rank-4 1 1 
rank-5 0 0 
rank-6 0 0 

out of rank 0 0 

Average rank 1.85 1.67 

 

Table 10.  Comparison of word recognition performances with and without the 
VBM.  Both tests were done using the fusion representation and the HPN search. 
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CONCLUSION 

 

Research in on-line handwriting recognition started in the early sixties, as 

the first generation of tablet digitizers became available.  Since then, the 

limitations in hardware like less than accurate and unreliable digitizers and the 

amount of computing required to meet the need of demanding recognition task, 

along with premature state of understanding and technical advancement, have not 

allowed until recently a practical solution of on-line handwriting recognition with 

unconstrained style and vocabulary.  The research focus in this thesis has been to 

develop a solution to the most fundamental problems in natural handwriting 

recognition: an on-line cursive script recognizer that has arbitrarily scalable 

vocabulary.  In doing so, we have addressed and contributed the following points: 

• Improved character recognizer using FDA and multiple experts fusion 

paradigm, having the desirable selective response pattern and better 

accuracy. 

• New and more robust measure of word hypothesis evaluation that takes 

the mean of each component character scores, instead of the 

conventional non-decreasing accumulative scores. 



113 
 

• A general recognition engine (HPN) having multiple predecessors 

thereby absorbing the potential loss of optimality in the standard 

Viterbi search. 

• Design and computation of the compact FLC representation and its use 

for efficient ligature modeling. 

• Design and training of the efficient and effective geometric context 

modeling in the form of VBM. 

Our approach of integrating the local features into a larger context perspective, 

more specifically at the character level, facilitates more robustness by avoiding the 

sensitivity to local fluctuation of feature variability.  This has been possible since 

the features are not evaluated incrementally according to the temporal order, but 

are rather evaluated at once at the character unit.  More generally our approach 

allows rearrangement of the order of the features inside a character segment in a 

standard way.  This would be hard to do in a more sequence-bound approach for 

example a baseline HMM.  The potential advantage is that such rearrangement of 

input can be used for writing-order-independent recognition, so that it would 

become more shape-based and would work more like humans are able to do.  

Furthermore, the same methodology could be adapted to off-line recognition task 

since the system would not have needs for ordering information other than for 

segmentation purpose.  Our overall modular design also allows incremental 
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evolution of the system since each functional modules can be studied and 

improved in separation from the whole system and re-integration of the re-worked 

module can be done with little modification to the rest of the system. 
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