
DEEP LEARNING FOR INFORMATION EXTRACTION

by

Thien Huu Nguyen

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science

New York University

January, 2018

Professor Ralph Grishman



© Thien Huu Nguyen

All Rights Reserved, 2018



Dedication

To my beloved mother

iii



Acknowledgments

People have different stories to tell in their PhD time. My PhD journey began at

a day of Fall 2012. I was supposed to meet my advisor, Professor Ralph Grishman,

for the first time in his office. However, on my road to his office that day, I

accidentally ran into him in the Broadway avenue. It was the first time I talked to

Ralph in person after the many discussions via emails. The unexpected meeting

with Ralph impressed me so much that I forgot my nerve and worry of the first

days I entered United States to pursue a PhD degree. Ralph was so nice and

approachable that I could immediately feel the trust and confidence, the values

I have relied on throughout my PhD. The more I work with Ralph, the more

fortunate I find myself. Ralph gave me the courage and freedom to explore deep

learning for information extraction at the very early days of the field. He provided

me with valuable advice and suggestion whenever I need to deal with research

challenges and career decisions. It is his advice and enthusiasm that made me

more determined to purse an academic career that I have always dreamed of. His

work responsibility and positive attitudes on research would be the principles I

employ in the rest of my life. Ralph is the first and foremost person I would like

to thank in my academic career.

iv



ACKNOWLEDGMENTS

I own special thanks to Professor Kyunghyun Cho, an outstanding advisor

and a great friend who taught me much about deep learning and its potentials

to transform our life. Kyunghyun has always been generous on spending his time

discussing with me and providing me with great helps and encouragement. I also

would like to thank the members of the Proteus project at New York University of

which I am always proud to be a part. Dr. Adam Meyers gave me much insights

into linguists. Yifan He and Lisheng Fu were always willing to discuss with me on

new ideas. Xiang Li was a great listener who encouraged me whenever I have any

problem in research and life. Masha Pershina had been a great collaborator on

several projects. Kai Cao was always generous to share with me research resources.

Bonan Min and Wei Xu were the great academic brother and sister who showed

me great tips and advice. I have also learned much useful information from the

discussion with Professor Satoshi Sekine and Dr. Angus Grieve-Smith.

During my PhD, I was fortunate to have two outstanding internships with two

different groups at IBM T.J. Watson Research Center. Some parts in this disser-

tation were conducted during such internships. My first internship was associated

with the group on Statistical Multilingual Information Extraction from Text where

I had the opportunity to work with Dr. Radu Florian, Dr. Avirup Sil, Dr. Geor-

giana Dinu, Dr. Salim Rukous, Dr. Vittorio Castelli and many other great people.

I have obtained much research experience and received much support from that

internship. I learned to implement my first recurrent neural networks there. I

would like to especially thank Dr. Radu Florian for providing me so much guid-

ance and support even after I completed the internship. My second internship was

v



ACKNOWLEDGMENTS

within the Knowledge Induction team, working with Dr. Mariano Rodriguez muro,

Dr. Oktie Hassanzadeh, Dr. Achille Fokoue, Dr. Mohammad Sadoghi Hamedani,

Dr. Alfio M Gliozzo and Dr. Lisa Amini. This was another fruitful internship at

IBM with one paper and one patent published that I would not be able to make

without such great mentors. I also would like to thank Dr. Barbara Plank who

collaborated with me and taught me how to write a good paper.

Last, but certainly not least, I would like to thank my parents and my wife

for their tremendous emotional support of my PhD study. Their infinite love and

unconditional care have served as the strong basis that I could always resort to in

my life. Their trust, encouragement and sympathy have been the major forces that

drive me forward and conquer new challenges. This dissertation was written while

my wife was expecting our first child. We went to the hospital for delivery few

hours after I defended this dissertation in November 28, 2017. An angel, named

An Quynh Nguyen, was born two days later. I am grateful to her for bringing this

miracle to my PhD career.

My PhD study was gratefully supported by Vietnam Education Foundation,

the Ph.D Fellowship from IBM, and the Dean’s Dissertation Fellowship and the

Henry MacCracken Fellowship from the Graduate School of Arts and Science at

New York University.

vi



Abstract

The explosion of data has made it crucial to analyze the data and distill im-

portant information effectively and efficiently. A significant part of such data

is presented in unstructured and free-text documents. This has prompted the

development of the techniques for information extraction that allow computers

to automatically extract structured information from the natural free-text data.

Information extraction is a branch of natural language processing in artificial in-

telligence that has a wide range of applications, including question answering,

knowledge base population, information retrieval etc. The traditional approach

for information extraction has mainly involved hand-designing large feature sets

(feature engineering) for different information extraction problems, i.e, entity men-

tion detection, relation extraction, coreference resolution, event extraction, and

entity linking. This approach is limited by the laborious and expensive effort re-

quired for feature engineering for different domains, and suffers from the unseen

word/feature problem of natural languages.

This dissertation explores a different approach for information extraction that

uses deep learning to automate the representation learning process and generate

more effective features. Deep learning is a subfield of machine learning that uses

vii



ABSTRACT

multiple layers of connections to reveal the underlying representations of data. I

develop the fundamental deep learning models for information extraction problems

and demonstrate their benefits through systematic experiments.

First, I examine word embeddings, a general word representation that is pro-

duced by training a deep learning model on a large unlabelled dataset. I introduce

methods to use word embeddings to obtain new features that generalize well across

domains for relation extraction. This is done for both the feature-based method

and the kernel-based method of relation extraction.

Second, I investigate deep learning models for different problems, including

entity mention detection, relation extraction and event detection. I develop new

mechanisms and network architectures that allow deep learning to model the struc-

tures of information extraction problems more effectively. Some extensive exper-

iments are conducted on the domain adaptation and transfer learning settings to

highlight the generalization advantage of the deep learning models for information

extraction.

Finally, I investigate the joint frameworks to simultaneously solve several infor-

mation extraction problems and benefit from the inter-dependencies among these

problems. I design a novel memory augmented network for deep learning to prop-

erly exploit such inter-dependencies. I demonstrate the effectiveness of this net-

work on two important problems of information extraction, i.e, event extraction

and entity linking.

viii
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Chapter 1

Introduction

Entities and events are the central objects in the languages we produce in

discussion and communication everyday. For instance, the articles from news might

describe some recent attacks (events) while we might talk about celebrities or

politicians (entities) in our casual discussion. It is therefore crucial for computers to

recognize such entities and events so that they can come closer to the understanding

of human languages. This is essentially the target of Information Extraction (IE), a

branch of research in Natural Language Processing (NLP), that aims at identifying

entities, events and the inter-connections between them within text. The ultimate

goal is to transfer information in text into a more accessible form for other computer

applications such as question answering, information retrieval, knowledge base

population, knowledge reasoning, to name a few.

In order to solve the problems of IE, the traditional systems have employed dif-

ferent pipelines to generate feature representations (feature sets) that are then fed

into machine learning models to perform classification or labeling. These feature

1



CHAPTER 1. INTRODUCTION

pipelines often involve various NLP supervised modules and resources to extract

different linguistic characteristics, hopefully capturing important features for the

IE tasks. The determination of which NLP modules and resources are used and

which features should be extracted is called “feature engineering”. For convenience,

we will also call these traditional feature engineering models “feature-based” models.

There are three major problems with this feature-based approach:

1. Feature engineering for IE is a manual and expensive process that requires

much linguistic intuition as well as domain expertise. The feature represen-

tations are often customized for some specific domains, thus necessitating

additional investigations whenever a new domain of data is presented.

2. Despite much effort on hand-designing feature representations for IE, the

resulting feature sets might be not necessarily optimal. This issue can be

seen in three aspects. First, as our understanding about the IE tasks and

their domains (domain knowledge) is often incomplete, the feature designer

might still miss some important features for his tasks. Second, it is chal-

lenging to realize and capture the interactions between the designed features,

potentially causing information redundancy in the feature sets. Third, the

NLP supervised modules and resources for feature generation might involve

errors, leading to errors of the features they generate. All these aspects would

eventually impair the performance of the IE systems.

3. The feature-based models suffer from the data sparsity or unseen word/feature

problem. In this problem, some important words/features of the machine

2



CHAPTER 1. INTRODUCTION

learning models do not appear in the new data to which we want to apply

the models, causing the failure of the models on such new data. The unseen

word/feature problem stems from the representations of words as symbolic

items and the computation of the feature values as the discrete compositions

of words. Such discrete nature implies the hard matches of feature appear-

ance that is very likely to fail in the context of the new data.

This dissertation introduces a new approach for IE problems that is based on

Deep Learning to address the three aforementioned problems of the feature-based

models. Deep learning or artificial neural networks (NN) is a branch of machine

learning whose major advantage is the capacity to automatically induce effective

feature representations from data. In the deep learning models for IE, multiple

layers of hidden vectors are put on top of word embeddings, the general represen-

tations of words that can capture their hidden syntactic and semantic properties.

Word embeddings replace the hard matches of words in the feature-based approach

with the soft matches of continuous word vectors while the multiple layers of hidden

vectors further abstracts the word embeddings to automatically obtain underlying

feature representations from data. Consequently, word embeddings mitigate the

unseen word/feature problem of the feature-based models while the whole deep

learning models help to avoid feature engineering and/or provide effective feature

representations. To the best of my knowledge, this dissertation is among the first

works that develop the fundamental deep learning models for information extrac-

tion.

In the next section of this chapter, I will first describe the IE problem in detail
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and then review some background on machine learning and deep learning that is

necessary for the next chapters. Afterward, I will present some of the representative

previous work for IE. Finally, I will sketch an outline for this dissertation.

1.1 Information Extraction

Information Extraction is the process of extracting structured information from

unstructured text (i.e, online news, government documents, social media text, med-

ical alerts and records, etc.). The structured information is often organized in the

table format of databases. In information extraction, we are mainly interested in

two following types of databases:

• Relation Database: storing entities and the semantic relations (connections)

between those entities.

• Event Database: recording events and the entities that participate in such

events.

For this dissertation, we only focus on the entities, relations and events that

are mentioned explicitly in text. The possible reasoning or inference over these

objects at the database level should be considered as the next important steps and

is beyond the scope of the current work.

Practically, given a set of documents, we want to distill the entities, relations

and events of interest, and utilize them to populate relation and event databases.

An illustration of this process is shown in Figure 1.1. The left side of this figure
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presents a piece of unstructured text from some set of documents while the right

side shows the relation and event databases we want to create from the left side’s

text. As we can see in the figure, the relation database contains the semantic

relation “leaderOf ” between Giuliani (the former mayor of New York City) and

New York City (a city in the United States). The event database, on the other

hand, includes a “divorce” event in July between Giuliani (again, the former mayor

of New York City) and Donna Hanover (the second wife of Giuliani). All these

information and facts are mentioned explicitly in the text of Figure 1.1 and our IE

task is to automatically extract them.

The construction of relation and event databases from a set of documents can

be divided into several tasks that together constitute the information extraction

pipeline (Grishman, 2012). This pipeline involves the tasks of Entity Mention

Detection, Relation Extraction, Coreference Resolution, Entity Linking, Trigger

Prediction and Argument Prediction. The tasks and the flow of information in the

information extraction pipeline is shown in Figure 1.2.

In the following, we always assume that documents have been split into sen-

tences and sentences are already segmented into words. Sentence splitting and

word segmentation are the preprocessing steps that can be done very well for En-

glish using the existing toolkits such as NTLK1 or Stanford CoreNLP2.

In order to describe the IE tasks in more details, let us consider the text in

Figure 1.1 as an example:
1. http://www.nltk.org
2. http://stanfordnlp.github.io/CoreNLP
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Figure 1.1: Information extraction system.

“Giuliani finally settled his divorce from Donna Hanover in July after
20 years of marriage. Five months later, Giuliani proposed to Nathan,
a former nurse, who gave him tremendous emotional support through
his cancer treatment and as he led New York City during the Sept. 11,
2001, terror attacks.”

1.1.1 Entity Mention Detection

In the IE pipeline, the first task in building the relation database is Entity

Mention Detection (EMD) that locates and classifies entity mentions in text into

predefined classes (types). Entity mentions are continuous sequences of words in

6
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Figure 1.2: Information extraction pipeline.

the sentences that mention some objects (entities) in reality. Entity mentions can

appear in various forms, including names, pronouns (i.e, “he”, “she”, “it”, “her”,

“who”, etc), and nominals (i.e, nouns, noun phrases, etc). In our text example

above, for entity names, an EMD system should be able to recognize “Giuliani”,

“Donna Hanover” and “Nathan” as person names, “New York City” as a city name,

and “July” and “Sept. 11, 2011” as times3. Besides, an EMD system should realize
3. In the applications, the detection of times is often done separately from the detection of

other entity types, thus differentiating times from entity mentions in terms of concepts. However,

7



CHAPTER 1. INTRODUCTION

that the pronouns “he”, “his”, “him” and “who” as well as the nominal “a former

nurse” are also entity mentions of some persons in this text. A reduced form of

EMD is Named Entity Recognition where we only need to extract entity names

(i.e, ignoring pronouns and nominals).

Note that for each entity mention, we often designate a single word (called the

head word) that is most responsible for its meaning in the corresponding word

sequence. For instance, the head word of the entity mention “a former nurse” is

“nurse” while the head word for the pronoun entity mentions (i.e, “he”, “his”, etc)

are the pronouns themselves. There is one exception for names as we consider

their head words as comprising every word in their word sequences, thus possibly

spanning several consecutive words in the sentences. “Donna Hanover” is an ex-

ample for named entity mentions that have more than one head word (i.e, “Donna”

and “Hanover”). In the applications, it is often sufficient for the EMD systems to

recognize only the head words of the entity mentions.

1.1.2 Relation Extraction

Given the entity mentions from the previous step of EMD, in the next step

of Relation Extraction, we want to detect and classify the semantic relationships

between two entity mentions within in the same sentence. For convenience, we

often call any pairs of entity mentions appearing in the same sentence as relation

mentions. In our example text, a relation extraction system is expected to identify

the relation of type “leader of ” between the entity mention “he” (for a person)
in this dissertation, for convenience, we will consider times as a type of entity mentions unless a
clarification is needed.
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and the entity mention “New York City” (for a city) in the phrase “as he led New

York City during Sept. 11, 2001, terror attacks.”. Note that the relation classes of

interest for classification (i.e, “leader of ”) are often given as an input by users.

1.1.3 Coreference Resolution

From the relation extraction component, we know that “he” is the leader of

“New York City”. However, who is “he” in this case? By looking at the previous

context of the phrase “as he led New York City during Sept. 11, 2001, terror

attacks.” in the example text, we know that the pronoun “he” is referring to the

entity mention “Giuliani” appearing at the beginning of its sentence (i.e, “Five

months later, Giuliani proposed to Nathan …”). This is essentially the task we

want to perform in Coreference Resolution (i.e, recognizing the coreference of the

pronoun “he” and the entity mention “Giuliani”). More generally, the goal of

Coreference Resolution is to group entity mentions corresponding to the same

entity in a document into the same cluster. We generate one cluster for each

entity, forming a set of entity clusters for each document.

1.1.4 Entity Linking

The name “Giuliani” provides some identity information for the the pronouns

“he”, “his”, and “him”, and their corresponding entity cluster. However, it is not

sufficient to determine unique person (entity) in reality that is necessary to find

the entry for this entity in the database. This problem is due to our analysis

of multiple documents that might contain several entities with the same name

9
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“Giuliani”. In order to overcome this problem, we need to do Entity Linking or

Entity Disambiguation that seeks to link entity mentions or entities in documents

into some real world entities. For instance, in our text example, an entity linking

system should understand that “Giuliani” is the former mayor of New York City

while “Donna Hanover” is his second wife based on the context of such entity

mentions.

In practice, we often model the real world by some graph (called knowledge

base) whose nodes represent real world entities and edges capture the connections

among the entities. Each node of the knowledge base might contain different in-

formation about the corresponding entity. Wikipedia4 is a typical example for

such modeling effort. Given the knowledge base, Entity Linking is often defined

as mapping entity mentions or entities in documents into the corresponding enti-

ties (nodes) of the knowledge base. The identities of the nodes (entities) in the

knowledge base now serve as the identities for the entities and entity mentions in

the input documents.

The combination of all the information gathered in the previous components

(i.e, Entity Mention Detection, Relation Extraction, Coreference Resolution and

Entity Linking) allows us to populate the relation database as we can see in Figure

1.1. In the next section, we discuss the necessary steps to fill in the event database.

Similar to the relation database, the first step for the event database is detecting

entity mentions in the input documents (EMD). This is then followed by a new

task of Event Extraction.
4. https://en.wikipedia.org/wiki/Main_Page

10

https://en.wikipedia.org/wiki/Main_Page


CHAPTER 1. INTRODUCTION

1.1.5 Event Extraction

An event such as marriage, death, election, etc, can be narrated several times

in different sentences of a document. Each such sentence is called an event mention

for that event and contains a trigger, the main word expressing the event. The

event mentions of an event share the same event type and involve several arguments

(i.e, entity mentions) as properties. These properties often concern the participants

of the event mentions and their times and locations. For instance, according to

the ACE 2005 guideline5, the first sentence of the example text “Giuliani finally

settled his divorce from Donna Hanover in July after 20 years of marriage” is

an event mention of type “Divorce” whose trigger is “divorce” and arguments are

“Giuliani” and “Donna Hanover” for the participating people and “July” for the

time. Consequently, each event in a document is a cluster of coreferring event

mentions with the same type while each sentence in a document might correspond

to multiple event mentions (possibly from different events) that have different

trigger words.

The Event Extraction task is to identify and classify the trigger words into

some types of interest as well as locate arguments for the detected event types

within the same sentence. Traditionally, event extraction systems have sequen-

tially performed the two following steps: (i) recognizing event triggers in sentences

(Trigger Prediction, Trigger Labeling or Event Detection), and (ii) assigning roles

to the entity mentions as arguments for the recognized event triggers in step (i)

(Argument Prediction or Argument Labeling).
5. https://www.ldc.upenn.edu/sites/www.ldc.upenn.edu/files/english-events-guidelines-

v5.4.3.pdf
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Finally, we also need to perform coreference resolution and entity linking over

the entity mention arguments of the detected event mentions so we can group and

link them to their real world entities (Figure 1.2). The resulting event mentions

and linked entity mentions can be then inserted into the event knowledge base as

in Figure 1.1. This concludes our description of the information extraction tasks.

In the next section, I will present some background on machine learning and deep

learning that is important to our following discussion on IE.

1.2 Machine Learning Background

Most of the IE tasks can be formulated as a classification problem over some

appropriate objects or instances. In this problem, given a set of K predefined

classes Y (|Y| = K) and an object X, we need to choose a class Y ∈ Y that

captures the nature of X. For instance, in relation extraction, the predefined

classes Y involve the semantic relations of interest (i.e, “leader of ”, “employed by”,

etc) while the objects correspond to the relation mentions consisting of two target

entity mentions within a sentence.

In order to solve this classification problem for IE, the first step is to design

some function R to transform the initial input object X into some mathematical

representation R(X) that is more convenient for the mathematical analysis later.

In practice, R(X) is often a binary or continuous vector that is expected to involve

the most representative and important features for the classification task. The

design of the transformation function R is an art whose effectiveness is crucial to

the classification performance.
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Once the feature representation R(X) has been computed, the next step is to

use a function S to map R(X) into some scores S(R(X)) whose values can be used

to decide the class for the initial instance X in Y . In most of the cases, S(R(X))

is a vector of real-valued numbers that assign a likelihood score for each class in

Y . The task of machine learning is to build the function S to effectively predict

the classes for the input instances X.

For information extraction, the score function S is often parameterized by some

parameter θ, written as S(R(X), θ) or simply as S(X, θ) if we do not want to em-

phasize the representation function R. This parameterization converts the problem

of determining S into the problem of finding the suitable value for the parameter

θ. In machine learning for information extraction, we often seek to find such value

(called θ∗) by minimizing the expected risk:

θ∗ = argminθE(X,Y )∼P (X,Y )[L(S(X, θ), Y )] (1.1)

In this formula, X and Y are random variables to denote the initial input

instances and their corresponding correct classes in Y while P (X, Y ) represents the

joint probability distribution over these two variables. In addition, L(S(X, θ), Y )

is the cost function or the objective function that evaluates the loss of using S(X, θ)

to determine the class for X (the predicted class) given that Y is the correct class

for X in this case.

Unfortunately, the evaluation of the expectation in Equation 1.1 is often in-

tractable as we need to enumerate over all the exponentially possible values for

(X, Y ). In practice, we can only try to obtain a finite set of samples D =
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{(X1, Y1), (X2, Y2), . . . , (Xn, Yn)} from P (X, Y ) (i.e, |D| = n and (Xi, Yi) ∼ P (X,Y )

for all i ∈ [1..n]). D is also known as the training dataset in supervised learning.

We can then use D to approximate the probability distribution P (X,Y ), leading

to the empirical distribution P̂ (X, Y ) and the approximation of the expected risk

by the empirical risk from the Monte Carlo sampling principle:

E(X,Y )∼P (X,Y )[L(S(X, θ), Y )] ≈ E(X,Y )∼P̂ (X,Y )[L(S(X, θ), Y )]

=
1

n

n∑
i=1

L(S(Xi, θ), Yi)
(1.2)

Thus, θ∗ can be computed by:

θ∗ = argminθE(X,Y )∼P (X,Y )[L(S(X, θ), Y )]

≈ argminθ
1

n

n∑
i=1

L(S(Xi, θ), Yi)
(1.3)

In order to avoid overfitting to the training datasetD, we often add a regularizer

Ω(θ) to the right hand side of Equation 1.3 to penalize the large values of θ:

θ∗ ≈ argminθ

[
1

n

n∑
i=1

L(S(Xi, θ), Yi) + λΩ(θ)

]
(1.4)

where λ is a tradeoff between the loss on the training dataset D and the com-

plexity of the model measured by Ω(θ). The regularizer Ω(θ) is often some norm

of θ such as the L1 norm ||θ||1 or the L2 norm ||θ||2.

The optimization problem in Equation 1.4 can be solved by optimization tech-

niques such as gradient descent, coordinate descent or Newton’s methods (Good-
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fellow et al., 2016). Once θ∗ is obtained, we can combine the function (or model)

S(X, θ∗) with our decision rule to predict the class for any new input instance X.

This framework for classification belongs to the class of the supervised learn-

ing methods in machine learning as we assume the correct labels Yi for the input

instances Xi in the training dataset D. Two important elements in this framework

are the feature representation function R(X) and the score function S(R(X)) that

will significantly affect the performance of a classification model. The options for

these two functions amount to different classification models for information ex-

traction. Note that the score function S(R(X)) is often associated with a decision

rule to infer the class for the input instances X.

There are two possible ways to form the representation function R(X), i.e,

feature engineering and representation learning. In feature engineering, R(X) is

manually designed by the domain experts who rely on their domain knowledge

and linguistic intuition to specify the most important characteristics or features

for some IE task. The researchers then determine the toolkits, resources and

mechanisms to compute such characteristics for the input instances X. Features in

this approach often have binary values to indicate the presence or absence of some

discrete linguistic structures (i.e, the appearance of some word in some gazetteer,

the occurrence of some word or syntactic relation in the context, etc).

Feature engineering allows the incorporation of our intuition (for the classifica-

tion problem) into the models, generating highly interpretable classification models.

These advantages cause the prevalence of feature engineering to IE tasks that has

significantly advanced our performance for such tasks in the last decade. However,
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as we discussed at the beginning of this chapter, feature engineering has several

limitations due to its use of binary features and manual construction of feature

sets. Such limitations are the major motivation of this dissertation that explores

the representation learning approach to generate the feature representation R(X).

Representation learning uses neural networks to automatically induce R(X) from

data and mitigates the unseen word/feature problem of binary features. In the

following, I will review methods to build the score function S(X) in the feature

engineering approach as well as present some background on neural networks to

facilitate our discussion later.

1.2.1 Feature Engineering

Once the feature representation vector R(X) has been hand-designed and com-

puted for the input instances X, we can apply different methods to model the

score function S(R(X)). The two most popular methods for S(R(X)) in informa-

tion extraction are Maximum Entropy and Support Vector Machines (SVM). For

convenience, we denote d as the size of the vector R(X) (|R(X)| = d). Note that

this size d is fixed for all the representation vectors R(X) of all the possible input

instances X.

1.2.1.1 Maximum Entropy

In Maximum Entropy (Kambhatla, 2004), we parameterize S(R(X)) by a pa-

rameter matrix B (B ∈ Rd×K) to assign importance weights for the features (ele-

ments) in the representation vector R(X) with respect to different possible classes
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in Y (|Y| = K), i.e, the i-th column of B corresponds to the feature weights for the

i-th class in Y . The product BTR(X) is then added by a bias vector b (b ∈ RK)

to obtain the likelihood vector6 A = BTR(X) + b of size K for every class in

Y . Finally, we normalize the likelihoods in A = [a1, a2, . . . , aK ] via the softmax

function to obtain a probability distribution over the classes in Y , severing as our

score function S(R(X)) in this method:

S(R(X)) = S(X, θ) = softmax(A) =
[
ea1

Z
,
ea2

Z
, . . . ,

eaK

Z

]
(1.5)

where Z is a normalizing constant:

Z =
K∑
i=1

eai (1.6)

The parameter we need to learn in this case is θ = [B, b] while the loss function

L(S(X, θ), Y ) is often the negative log-likelihood:

L(S(X, θ), Y ) = −logS(X, θ)[Y ] = −log
[

eaY∑K
i=1 e

ai

]
(1.7)

The class Y ∗ for a new instance X is determined by the class with the highest

score in S(X, θ):

Y ∗ = argmaxS(X, θ) (1.8)
6. We assume R(X) and b are column vectors in this case for convenience
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1.2.1.2 Support Vector Machines

For simplicity, we assume that there are only two classes, denoted by -1 and 1,

in Y in this case (i.e, Y = {−1, 1}). The extension from the binary classification

setting to the multiple class setting (i.e, |Y| > 2) for Support Vector Machines

(SVM) (Cristianini and Taylor, 2000) can be done by considering multiple (|Y|)

binary classification problems. Each of such problem corresponds to a class in

Y that tries to predict whether an input instance X belongs to that class or not

(Cristianini and Taylor, 2000).

SVM considers each input instance X as one point in the d-dimensional space

defined by its vector R(X). In this space, the goal of SVM is to find a hyperplane

that divides the groups of training instances Xi with Yi = 1 and the groups of

training instances Xi with Yi = −1. As there might be multiple satisfying hy-

perplanes, SVM seeks to find two parallel hyperplanes that separate the instances

in the training data D and have the largest distance between them. The final

hyperplane of SVM is then the hyperplane that stands in the middle of the such

two hyperplanes. This process translates into the score function S(R(X)) that are

parameterized by a weight vector B (|B| = |R(X)|) and a bias b (θ = [B, b]):

S(R(X)) = BTR(X)− b (1.9)

The loss function in this case is the hinge loss function:

L(S(X, θ), Y ) = max(0, 1− Y (BTR(X)− b)) (1.10)

Finally, the decision rule for the prediction class Y ∗ is:
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Y ∗ = sgn(S(R(X))) = sgn(BTR(X)− b) (1.11)

where sgn is the sign function so that sgn(x) = 1 if x ≥ 0 and sgn(x) = −1 if

x < 0.

We can replace L(S(X, θ)) in Equation 1.4 with that in Equation 1.10 to obtain

the optimization problem for the soft-margin version of SVM. As this version of

SVM aims at learning a hyperplane, it is only suitable for the problems where the

two classes of data can be approximately separated well by hyperplanes (linearly

separable).

In order to deal with nonlinear separation, we need to incorporate the kernel

trick into SVM (Cristianini and Taylor, 2000). The general idea is to map the

input instances from the original space for R(X) (called X ) into another space V

by some nonlinear transformation so that they become linearly separable in V . We

can then apply our original SVM algorithm in the new space. In stead of explicitly

mapping the instances in the original space, the kernel trick suggests that we only

need to build a kernel function k : X × X → R to compute a score for every pair

of instances (X,X ′) in X . The expectation is that this score will correspond to

the dot product between the images of X and X ′ in the new space V , and that the

kernel function can implicitly capture the nonlinear transformation. Consequently,

we only need to replace all the dot product between two instances X and X ′ in the

linear SVM algorithm7 with the kernel function k(X,X ′) so that we can convert

the linear SVM algorithm into a nonlinear algorithm for classification. In general,
7. The dot products will naturally appear when we form the dual problem to solve the

optimization problem in Equation 1.4 for SVM.
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the construction of the kernel function k is much easier than the formation of

the direct mapping, leading to the popularity of the kernel methods for nonlinear

classification in SVM.

1.2.2 Representation Learning

In representation learning, we aim at automatically inducing the representation

function R(X) from data. The major tools for such autonomous feature learning

is neural networks (NN) or deep learning. This section reviews feed-forward neural

networks, the most basic network architecture for the deep learning models in this

dissertation.

1.2.2.1 Feed-forward Neural Networks

The first important element in NN is the input instances X that should be

in the form of real-valued vectors, matrices or tensors. In information extraction

problems, the input instances X are not readily presented in this format as they

often involve sentences, sequences of discrete symbols for words. I will show how to

convert the discrete instances X in IE into the continuos tensors when we discuss

the specific IE problems. For convenience, in this section, we will assume that the

input instances X are already given as real-valued column vectors.

In order to learn R(X) for X, feed-forward neural networks use a stack of

multiple hidden layers that connected to each other via linear and nonlinear trans-

formations. Each hidden layer is expected to capture some representation at some

abstract level of the input X. The deeper the hidden layer is, the more abstract
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the representation is. Formally, let m be the number of hidden layers in some

feed-forward network, Hi be the the hidden vector at the i-th layer (1 ≤ i ≤ m)

and li be the dimensionality of the column vector Hi. The elements of the hidden

vectors are called the hidden units in the literature. The computation of Hi and

R(X) in the feed-forward neural network is then given by:

Hi+1 = g(UT
i+1Hi + Vi+1) for i = 0 to m (1.12)

where H0 is the input vector X, Hm+1 is the representation vector R(X) we

have learned (i.e, H0 = X and Hm+1 = R(X)), and Ui ∈ Rli×li+1 and Vi ∈ Rli+1 are

the parameters to be optimized from data. In this case, l0 = d is the dimensionality

of the input X while lm+1 is the expected dimensionality of R(X) that should be

chosen in advance as a hyperparameter. Finally, g is a differential and nonlinear

function whose application on a vector amounts to the applications on each element

of that vector (i.e, element-wise):

g([v1, v2, . . . , vh]) = [g(v1), g(v2), . . . , g(vh)] (1.13)

Some typical nonlinear functions for deep learning include sigmoid, tanh and

rectifier:

sigmoid(t) = 1

1 + e−t
(1.14)

tanh(t) = 1− e−2t

1 + e−2t
(1.15)
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rectifier(t) = max(0, t) (1.16)

A graphical illustration of a feed-forward natural network is shown in Figure 1.3.

As we can see from the figure, the hidden units of the i-th layer are fully connected

to those of the (i + 1)-th layer, forming a flow of information as presented in

Equation 1.12. This direction of the information flow from X to R(X) is called

a forward pass to differentiate it from a backward pass (from R(X) to X) that

updates the parameters later.

H1 H2 Hm Hm+1 = R(X)H0 = X

Figure 1.3: Feed-forward Neural Networks.

1.2.2.2 Training

From our previous description, feed-forward neural networks learn R(X) for

X by treating R(X) as a parameterized function of X using the parameter γ =

[U1, V1, U2, V2, . . . , Um+1, Vm+1] and the network architecture in Figure 1.3. In feed-

forward neural networks, and more generally, in deep learning, γ will be optimized
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jointly with the parameter θ of the score function S(R(X)) by solving Equation

1.4 over the training data D. Eventually, it helps to capture the underlying repre-

sentation of data via optimization, potentially introducing useful features for the

classification tasks for such data. Unfortunately, this joint optimization creates

much more complicated functions in Equation 1.4 than those in the feature en-

gineering method. In particular, the joint function of γ and θ in representation

learning is often non-convex and contain many local minima while their counter-

parts in feature engineering are convex and involve only global minima. In addition,

the joint optimization requires to search in a much larger space for the optimal

values of parameters, making it a much more expensive computation (Goodfellow

et al., 2016).

Fortunately, it is now believed and demonstrated in practice that the local min-

ima in representation learning often corresponds to the points with small values of

the optimization functions in Equation 1.4 (Goodfellow et al., 2016). Consequently,

searching for a local minima often provides a practically good solution. Regarding

the computation expense, the use of Graphical Processing Unit (GPU) allows us to

complete the operations in representation learning (deep learning) much faster via

the use of massively parallel graphics processors. This has significantly accelerated

the training process and made it possible to run representation learning models

recently.

In addition to the use of GPU, deep learning models seek to reduce the com-

putation time by solving the optimization problem in Equation 1.4 approximately.

In particular, rather than using the whole training data D to evaluate the opti-
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mization function at a time, deep learning randomly initializes the parameters,

and then iteratively consumes a small subset of D and updates the parameters

based on that subset. Typically, an update is estimated from the gradient of the

objective function (gradient descent). This online learning method is known as

stochastic gradient descent (SGD) and the small subsets of D are called batches or

minibatches. The size of a batch is often fixed during training. The SGD algorithm

for learning parameters (training) is shown in Algorithm 1:

Algorithm 1: Stochastic Gradient Descent for Learning Parameters
1 Initialize the parameters in representation learning ψ = [γ, θ] randomly

while stopping criterion not met do
2 Sample a mini batch of J training instances from the training dataset D:

{(X1, Y 1), (X2, Y 2), . . . , (XJ , Y J)}
3 Compute the gradient G for the optimization function in Equation 1.4

over the sampled minibatch: G← 1
J
∇ψ

[∑J
i=1 L(S(X

i, ψ), Y i) + λΩ(ψ)
]

4 Compute update: ∆ψ = −ϵ⊙G (element-wise multiplication of vectors)
5 Apply update: ψ ← ψ +∆ψ

6 end

The parameter ϵ is called the learning rate that determines the size of the step

we move with each update. In SDG, ϵ is fixed during the training process and often

chosen via some development dataset8. In practice, fixing the learning rate might

not work very well as it might slow down the convergence of SGD (i.e, long training
8. Development dataset is similar to the training dataset D as both of them include a

set of input instances X and their corresponding classes Y . However, the development dataset
is disjoint with the the training dataset. The former is used to evaluate the effectiveness of
the hyperparameters in the models (i.e, number of hidden layers m, and their dimensionality
li, regularizer weight λ, etc) while the latter is employed to estimate the parameters in the
representation and score functions (i.e R(X) and S(R(X))). The hyperparameters are typically
selected by taking the values the produces the highest model performance on the development
dataset.
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time) or render a poor approximation of the optimal values for the parameters ψ.

There have been several efforts to update the learning rate ϵ during the training

process so that the convergence is achieved faster or the solution is more effective.

These methods include AdaGrad (Duchi et al., 2011), AdaDelta (Zeiler, 2012) and

Adam (Kingma and Ba, 2014).

1.2.2.3 Dropout

Deep learning models with multiple hidden layers can learn complicated rela-

tionships between the input X and the class output Y via the representation and

score functions R(X) and S(R(X)). However, they tend to overfit the training

data if such data only has a limited size. The consequence is the poor performance

on real test data as the relationships induced from the small training dataset are

likely due to the sampling noise. There have been many approaches to address

the overfitting problem in machine learning. One of the common methods is to

introduce parameter penalties into the objective function as in Equation 1.4. In

deep learning, a more common method to overcome overfitting is dropout that ran-

domly drops (i.e, sets to zero) units along with their connections in the network

architecture during training. The key idea is to prevent the co-adaptation among

the units (Srivastava et al., 2014). Formally, consider the hidden vector Hi in

the feed-forward neural network above. In order to inject dropout into Hi, we

first sample a binary vector ri of the same size with Hi (i.e, |ri| = |Hi|) from the

Bernoulli distribution with the mean p:
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ri ∼ Bernoulli(p) (1.17)

This is then combined with Hi to generate a new hidden vector H̃i:

H̃i = ri ⊙Hi (1.18)

where ⊙ is the element-wise multiplication operation.

For dropout, Hi is replaced by H̃i in all the following computations in the

neural network models. The decision of which hidden layers should be dropped

depends on network architectures and the target problems (Zaremba et al., 2014).

In information extraction, we often find that dropping the representation vector

(i.e, the last layer R(X) in the network architectures) produces good performance.

1.3 Prior Work

In this section, I review the most representative work for information extraction

that are related to the work in this dissertation. I will only focus on the feature

engineering approach in this section and leave the related work on representation

learning for discussion in the later chapters.

Information extraction has been an active area of research in natural language

processing. A large portion of the previous research effort has been spent on devel-

oping effective feature sets for different tasks of IE, such as named entity recogni-

tion, relation extraction, event extraction. For instance, the investigated features

for named entity recognition and mention detection include the orthographic fea-
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tures, gazetter features, cache features, word clusters, word embeddings etc (Ando

and Zhang, 2005; Bikel et al., 1997; Borthwick et al., 1997; Cherry and Guo, 2015;

Florian et al., 2003; Florian et al., 2004; Florian et al., 2006, 2010; Lin and Wu,

2009; Miller et al., 2004; Passos et al., 2014; Ratinov and Roth, 2009; Ritter et

al., 2011; Sam et al., 2011; Sang and Meulder, 2003; Suzuki and Isozaki, 2008;

Turian et al., 2010). The typical machine learning models for such sequential

labeling tasks are Hidden Markov Models (HMMs), Maximum Entropy Markov

Models (MEMMs) or Conditional Random Fields (CRFs) (Lafferty et al., 2001).

For relation extraction, it is very common to use the Maximum Entropy (MaxEnt)

model or SVM (Cristianini and Taylor, 2000) to learn the weights for various hand-

designed features, including the entity features, syntactic features, and semantic

features (Chan and Roth, 2010; Grishman et al., 2005; Jiang and Zhai, 2007a;

Kambhatla, 2004; Nguyen et al., 2014b; Sun et al., 2011; Zhou et al., 2005). This

is also the main approach for other IE tasks such as event extraction (Ahn, 2006;

Grishman et al., 2005; Gupta and Ji, 2009; Hong et al., 2011; Huang and Riloff,

2012; Ji and Grishman, 2008; Li et al., 2015; Liao and Grishman, 2010a, 2011;

McClosky et al., 2011; Patwardhan and Rilof, 2009), entity linking (Bunescu and

Pasca, 2006; Cassidy et al., 2011; Ji and Grishman, 2011; Mendes et al., 2011;

Milne and Witten, 2008; Shen et al., 2014b; Zheng et al., 2010) or coreference res-

olution (Clark and Manning, 2016; Durrett and Klein, 2013; Raghunathan et al.,

2010; Wiseman et al., 2015). In addition, kernel tricks are also applied in SVM for

information extraction to avoid explicit feature engineering. For example, string

kernels (Bunescu and Mooney, 2005b) and tree kernels (Bunescu and Mooney,
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2005a; Nguyen et al., 2009; Plank and Moschitti, 2013; Qian et al., 2008; Zelenko

et al., 2003; Zhang et al., 2006) are the powerful techniques for relation extraction.

Another important line of research in information extraction is joint modeling

that attempts to perform several IE tasks simultaneously (joint inference). The

rationale is to capture the inter-dependencies among these tasks to improve the

performance of the individual tasks. In the literature, the inter-dependences are

often exploited between trigger prediction and argument prediction in event extrac-

tion (Li et al., 2013b), entity mention detection and relation extraction (Kate and

Mooney, 2010; Li and Ji, 2014a; Li et al., 2014b; Miwa et al., 2014; Roth and Yih,

2004; Roth and Yih, 2007), and among name tagging, coreference resolution and

relation extraction (Ji and Grishman, 2005; Ji et al., 2005; Singh et al., 2013). All

of these work involves some level of feature engineering that are fed into structured

prediction models (i.e, structured perceptron, graphical models, etc.) to perform

the tasks.

So far, we have mainly discussed the IE work in the supervised learning paradigm

that assumes the availability of a vast amount of training data (labeled data). This

assumption does not hold often in reality as the training data for some tasks and

domains might be very expensive and difficult to obtain. How can we relax this

assumption so we can build good models for IE without requiring much train-

ing data? This is the key target of semi-supervised learning that employs large

amounts of unlabeled data in addition to limited amounts of labeled data to build

effective IE systems. The semi-supervised models have been applied to various

IE tasks, including named entity recognition via co-training (Collins and Singer,
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1999; Yangarber et al., 2002), relation extraction (Agichtein and Gravano, 2000;

Brin, 1998), and event extraction via boostrapting (Liao and Grishman, 2010a;

Riloff, 1996; Stevenson and Greenwood, 2005; Yangarber et al., 2000; Yangarber,

2003). In order to go further, unsupervised learning aims at removing the need

for training data and only relying on unlabeled data to create IE systems. The

main technologies in such unsupervised approach are unsupervised clustering or

topic modeling methods to identify the major patterns for IE (Hasegawa et al.,

2004; Min et al., 2012; Shinyama and Sekine, 2006; Yao et al., 2011; Yates and

Etzioni, 2007). In addition, distant supervision is an alternative to avoid the need

for a training dataset. It aligns the facts in some knowledge bases (i.e, Freebase,

YAGO, etc.) with a large amount of unlabeled text to automatically generate

large training dataset for IE models. Distant supervision is especially successful

in relation extraction; that has been one of the main breakthroughs in IE over the

last decades (Craven and Kumlien, 1999; Hoffmann et al., 2011; Mintz et al., 2009;

Surdeanu et al., 2012). Finally, there have been also studies in active learning

that try to request classes or labels of some input instances from users and use

these labeled data to guide the learning process. The goal of active learning is to

minimize the number of requests from users so an effective IE system can be built

quickly without much annotation effort (Becker et al., 2005; Fu and Grishman,

2013; Sun and Grishman, 2012).

Semi-supervised learning, distant supervision and unsupervised learning are

beyond the scope of this work that focuses on supervised learning and deep learning

for information extraction. Exploring such learning paradigms for IE with deep
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learning is a very promising research area in the future.

1.4 Outline of Thesis

The rest of this dissertation is organized as follows: Chapter 2 introduces the

use of word embeddings for domain adaptation of relation extraction. Chapters 3, 4

and 5 develop deep learning models for entity mention detection, relation extraction

and event detection respectively. Chapter 6 proposes memory-augmented neural

networks for information extraction and demonstrate their applications on event

extraction and entity linking. I conclude this dissertation and discuss some future

work in Chapter 7.
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Chapter 2

Word Embeddings for Domain

Adaptation of Relation Extraction

The previous research on supervised learning has mainly approached relation

extraction (RE) in two directions: feature-based (Boschee et al., 2005; Chan and

Roth, 2010; Grishman et al., 2005; Jiang and Zhai, 2007a; Kambhatla, 2004; Sun

et al., 2011; Zhou et al., 2005) and kernel-based (Bunescu and Mooney, 2005a,b;

Nguyen et al., 2009; Qian et al., 2008; Zelenko et al., 2003; Zhang et al., 2006).

Both approaches attempt to improve performance by enriching the RE representa-

tions from multiple sentence analyses and knowledge resources. The fundamental

assumption of the supervised systems in such research is that the training data

and the data to which the systems are applied are sampled independently and

identically from the same distribution. When there is a mismatch between the

data distributions (domain shifts), the RE performance of these systems tends to

degrade dramatically (Plank and Moschitti, 2013). This is where we need to resort
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to domain adaptation techniques (DA) to adapt a model trained on one domain

(the source domain) into a new model which can perform well on new domains (the

target domains). To make it clear, we assume the same relation classes (types),

thus the same extraction task in both source and target domains but a shift in the

underlying data distributions.

This chapters introduce methods to incorporate word embeddings into models

as domain adaptation techniques for RE. We will examine both approaches (i.e,

feature-based and kernel-based) to demonstrate the benefits of word embeddings

for DA of RE. Note that we actually design features for DA of RE based on word

embeddings in this chapter. However, as word embeddings are automatically in-

duced by deep learning models on some unlabeled corpus, we would still consider

the techniques in this chapter as semi-automatically learning feature representa-

tions from data. The work in this chapter has been published in (Nguyen and

Grishman, 2014a) and (Nguyen et al., 2015c).

2.1 The Feature-based Approach

The consequences of linguistic variation between training and testing data on

NLP tools (domain shifts) have been studied extensively in the last couple of years

for various NLP tasks such as Part-of-Speech tagging (Blitzer et al., 2006; Huang

and Yates, 2010; Schnabel and Schütze, 2014), named entity recognition (Daume,

2007) and sentiment analysis (Blitzer et al., 2007, 2011; Daume, 2007; Daume et al.,

2010), etc. Unfortunately, there is very little work on domain adaptation for RE.

The only study explicitly targeting this problem before the current work is by Plank

32



CHAPTER 2. WORD EMBEDDINGS FOR DOMAIN ADAPTATION OF
RELATION EXTRACTION

and Moschitti, 2013 who find that the out-of-domain performance of kernel-based

relation extractors can be improved by embedding semantic similarity information

generated from word clustering and latent semantic analysis (LSA) into syntactic

tree kernels. Although this idea is interesting, it suffers from two major limitations:

1. It does not incorporate word cluster information at different levels of gran-

ularity. In fact, Plank and Moschitti, 2013 only use the 10-bit cluster prefix in

their study. We will demonstrate later that the adaptability of relation extrac-

tors can benefit significantly from the addition of word cluster features at various

granularities.

2. It is unclear if this approach can encode real-valued features of words (such

as word embeddings (Collobert and Westion, 2008; Mnih and Hinton, 2007)) into

the syntactic trees effectively. As the real-valued features are able to capture latent

yet useful properties of words, the augmentation of lexical terms with these features

is desirable to provide a more general representation, potentially helping relation

extractors perform more robustly across domains.

In this work, we propose to avoid these limitations by applying a feature-based

approach for RE which allows us to integrate various word features of generalization

into a single system more naturally and effectively.

The application of word representations such as word clusters in domain adap-

tation of RE (Plank and Moschitti, 2013) is motivated by its successes in semi-

supervised methods (Chan and Roth, 2010; Sun et al., 2011) where word represen-

tations help to reduce data-sparseness of lexical information in the training data.

In DA terms, since the vocabularies of the source and target domains are usually
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different, word representations would mitigate the lexical sparsity by providing

general features of words that are shared across domains, hence bridge the gap

between domains. The underlying hypothesis here is that the absence of lexical

target-domain features in the source domain can be compensated by these general

features to improve RE performance on the target domains.

We extend this motivation by further introducing word embeddings (Bengio

et al., 2003; Collobert and Westion, 2008; Mnih and Hinton, 2007; Turian et al.,

2010) into feature-based methods to adapt RE systems to new domains. Word em-

bedding is another type of word representations assisting generalization of terms

that do not appear in the training data, but are similar to those in training data

with respect to their distributed representations (Bengio et al., 2003). We explore

the embedding-based features in a principled way and demonstrate that word em-

bedding itself is also an effective representation for domain adaptation of RE. More

importantly, we show empirically that word embeddings and word clusters capture

different information and their combination would further improve the adaptability

of relation extractors.

2.1.1 Regularization

Given the more general representations provided by word representations above,

how can we learn a relation extractor from the labeled source domain data that

generalizes well to new domains? In traditional machine learning where the chal-

lenge is to utilize the training data to make predictions on unseen data points

(generated from the same distribution as the training data), the classifier with a
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good generalization performance is the one that not only fits the training data, but

also avoids overfitting over it. This is often obtained via regularization methods

to penalize complexity of classifiers. Exploiting the shared interest in generaliza-

tion performance with traditional machine learning, in domain adaptation for RE,

we would prefer the relation extractor that fits the source domain data, but also

circumvents the overfitting problem over this source domain1 so that it could gen-

eralize well to new domains. Eventually, regularization methods can be considered

naturally as a simple yet general technique to cope with DA problems.

To our knowledge, there have not been any studies assessing the impact of

regularization on RE in general and on domain adaptation of RE specifically. It is

also worth pointing out that some studies in this area do not apply regularization in

their models. For example, Sun et al., 2011 use the MaxEnt package of OpenNLP2

which did not support regularization.

Following Plank and Moschitti, 2013, we assume that we only have labeled data

in a single source domain but no labeled nor unlabeled target data. Moreover, we

consider the single-system DA setting where we construct a single system able to

work robustly with different but related domains (multiple target domains). This

setting differs from most previous studies (Blitzer et al., 2006) on DA which have

attempted to design a specialized system for every specific target domain. In our

view, although this setting is more challenging, it is more practical for RE. In fact,

this setting can benefit considerably from our general approach of applying word

representations and regularization. Finally, due to this setup, the best way to set
1. domain overfitting (Jiang and Zhai, 2007c)
2. http://opennlp.apache.org
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up the regularization parameter is to impose the same regularization parameter on

every feature rather than a skewed regularization (Jiang and Zhai, 2007c).

2.1.2 Word Representations

Word representations are high-dimensional vectors that are associated with

words in an unlabeled corpus. In this work, we consider two types of word repre-

sentations and use them as additional features in our DA system, namely Brown

word clustering (Brown et al., 1992) and word embeddings. While word clusters

can be recognized as an one-hot vector representation over a small vocabulary,

word embeddings are dense, low-dimensional, and real-valued vectors (distributed

representations). Each dimension of the word embeddings expresses a latent fea-

ture of the words, hopefully reflecting useful semantic and syntactic regularities

(Turian et al., 2010). We investigate word embeddings induced by two typical

language models: Collobert and Weston (2008) embeddings (C&W) (Collobert

and Westion, 2008; Turian et al., 2010) and Hierarchical log-bilinear embeddings

(HLBL) (Mnih and Hinton, 2007, 2008; Turian et al., 2010).

2.1.3 Feature Set

2.1.3.1 Baseline Feature Set

Sun et al., 2011 utilize the full feature set from (Zhou et al., 2005) plus some

additional features and achieve the state-of-the-art feature-based RE system. Un-

fortunately, this feature set includes the human-annotated (gold-standard) infor-

mation on entity and mention types which is often missing or noisy in the test
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time (Plank and Moschitti, 2013). This issue becomes more serious in our setting

of single-system DA where we have a single source domain with multiple dissimilar

target domains, and an automatic system able to recognize entity and mention

types very well in different domains may not be available. Therefore, following

the settings of (Plank and Moschitti, 2013), we will only assume entity boundaries

and not rely on the gold standard information in the experiments. We apply the

same feature set as (Sun et al., 2011) but remove the entity and mention type in-

formation3. Clearly, evaluating the system on predicted mentions (Giuliano et al.,

2007) is also an important topic but out of the scope of this work.

2.1.3.2 Lexical Feature Augmentation

While Sun et al., 2011 show that adding word clusters to the heads of the two

mentions is the most effective way to improve the generalization accuracy, the

right lexical features into which word embeddings should be introduced to obtain

the best adaptability improvement are unexplored. Also, which dimensionality of

which word embedding should we use with which lexical features? In order to

answer these questions, following (Sun et al., 2011), we first group lexical features

into 4 groups and rank their importance based on linguistic intuition and illustra-

tions of the contributions of different lexical features from various feature-based

RE systems. After that, we evaluate the effectiveness of these lexical feature groups

for word embedding augmentation individually and incrementally according to the
3. We have the same observation as (Plank and Moschitti, 2013) that when the gold-standard

labels are used, the impact of word representations is limited since the gold-standard information
seems to dominate. However, whenever the gold labels are not available or inaccurate, the word
representations would be useful for improving adaptability performance. Moreover, in all the
cases, regularization methods are still effective for domain adaptation of RE.
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rank of importance. For each of these group combinations, we assess the system

performance with different numbers of dimensions for both C&W and HLBL word

embeddings. Let M1 and M2 be the first and second entity mentions in the relation

mention. Table 2.1 describes the lexical feature groups.

Rank Group Lexical Features
1 HM HM1 (head of M1)

HM2 (head of M2)
2 BagWM WM1 (words in M1)

WM2 (words in M2)
3 HC heads of chunks between M1 and M2
4 BagWC words between M1 and M2

Table 2.1: Lexical feature groups ordered by importance.

2.1.4 Experiments

2.1.4.1 Tools and Data

Our relation extraction system is hierarchical and includes a relation detector

as well as a relation classifier (Bunescu and Mooney, 2005b; Sun et al., 2011). We

use maximum entropy (MaxEnt) in the MALLET4 toolkit as our machine learning

tool. For Brown word clusters, we directly apply the clustering trained by (Plank

and Moschitti, 2013) to facilitate system comparison later. We evaluate C&Wword

embeddings with 25, 50 and 100 dimensions as well as HLBL word embeddings

with 50 and 100 dimensions that are introduced in (Turian et al., 2010) and can

be downloaded here5. The fact that we utilize the large, general and unbiased
4. http://mallet.cs.umass.edu/
5. http://metaoptimize.com/projects/wordreprs
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resources generated from previous work for evaluation not only helps to verify the

effectiveness of the resources across different tasks and settings but also supports

our setting of single-system DA.

We use the ACE 2005 corpus for DA experiments (as in (Plank and Moschitti,

2013)). It involves 6 relation types and 6 domains: broadcast news (bn), newswire

(nw), broadcast conversation (bc), telephone conversation (cts), weblogs (wl) and

usenet (un). We follow the standard practices on ACE (Plank and Moschitti, 2013)

and use news (the union of bn and nw) as the source domain and bc, cts and wl

as our target domains. We take half of bc as the only target development set,

and use the remaining data and domains for testing purposes (as they are small

already). The domain un is not considered in the experiments. As noted in (Plank

and Moschitti, 2013), the distributions of relations as well as the vocabularies of

the domains are quite different.

2.1.4.2 Evaluation of Word Embedding Features

We investigate the effectiveness of word embeddings on lexical features by fol-

lowing the procedure described in Section 2.1.3.2. We test our system on two

scenarios: In-domain: the system is trained and evaluated on the source domain

(bn+nw, 5-fold cross validation); Out-of-domain: the system is trained on the source

domain and evaluated on the target development set of bc (bc dev). Table 2.2

presents the F measures of this experiment6 (The cells in bold are the best results,

and the suffix ED in lexical group names is to indicate the embedding features).
6. All the in-domain improvement in rows 2, 6, 7 of Table 2.2 are significant at confidence

levels ≥ 95%.
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In-domain (bn+nw) Out-of-domain (bc development set)
System C&W,25 C&W,50 C&W,100 HLBL,50 HLBL,100 C&W,25 C&W,50 C&W,100 HLBL,50 HLBL,100

1 Baseline 51.4 51.4 51.4 51.4 51.4 49.0 49.0 49.0 49.0 49.0
2 1+HM_ED 54.0(+2.6) 54.1(+2.7) 55.7(+4.3) 53.7(+2.3) 55.2(+3.8) 51.5(+2.5) 52.7(+3.7) 52.5(+3.5) 50.2(+1.2) 50.6(+1.6)
3 1+BagWM_ED 52.3(+0.9) 50.9(-0.5) 51.5(+0.1) 51.8(+0.4) 52.5(+1.1) 48.5(-0.5) 48.9(-0.1) 48.6(-0.4) 48.7(-0.3) 49.0(+0.0)
4 1+HC_ED 51.3(-0.1) 50.9(-0.5) 48.3(-3.1) 50.8(-0.6) 49.8(-1.6) 44.9(-4.1) 45.8(-3.2) 45.8(-3.2) 48.7(-0.3) 47.3(-1.7)
5 1+BagWC_ED 51.5(+0.1) 50.8(-0.6) 49.5(-1.9) 51.4(+0.0) 50.3(-1.1) 48.3(-0.7) 46.3(-2.7) 44.0(-5.0) 46.6(-2.4) 44.8(-4.2)
6 2+BagWM_ED 54.3(+2.9) 53.2(+1.8) 53.2(+1.8) 54.0(+2.6) 53.8(+2.4) 52.5(+3.5) 51.4(+2.4) 50.6(+1.6) 50.0(+1.0) 48.6(-0.4)
7 6+HC_ED 53.4(+2.0) 52.3(+0.9) 52.7(+1.3) 54.2(+2.8) 53.1(+1.7) 50.5(+1.5) 50.9(+1.9) 48.4(-0.6) 50.0(+1.0) 48.9(-0.1)
8 7+BagWC_ED 53.4(+2.0) 52.2(+0.8) 50.8(-0.6) 53.5(+2.1) 53.6(+2.2) 49.2(+0.2) 50.7(+1.7) 49.2(+0.2) 47.9(-1.1) 49.5(+0.5)

Table 2.2: In-domain and Out-of-domain performance for different embedding fea-
tures.

From the table, we find that for C&W and HLBL embeddings of 50 and 100

dimensions, the most effective way to introduce word embeddings is to add embed-

dings to the heads of the two mentions (row 2; both in-domain and out-of-domain)

although it is less pronounced for HLBL embedding with 50 dimensions. Inter-

estingly, for C&W embedding with 25 dimensions, adding the embedding to both

heads and words of the two mentions (row 6) performs the best for both in-domain

and out-of-domain scenarios. This is new compared to the word cluster features

where the heads of the two mentions are always the best places for augmentation

(Sun et al., 2011). It suggests that a suitable amount of embeddings for words

in the mentions might be useful for the augmentation of the heads and inspires

further exploration. Introducing embeddings to words of mentions alone has mild

impact while it is generally a bad idea to augment chunk heads and words in the

contexts.

Comparing C&W and HLBL embeddings is somehow more complicated. For

both in-domain and out-of-domain settings with different numbers of dimensions,

C&W embedding outperforms HLBL embedding when only the heads of the men-

tions are augmented while the degree of negative impact of HLBL embedding on
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chunk heads as well as context words seems less serious than C&W’s. Regarding

the incremental addition of features (rows 6, 7, 8), C&W is better for the out-

of-domain performance when 50 dimensions are used, whereas HLBL (with both

50 and 100 dimensions) is more effective for the in-domain setting. For the next

experiments, we will apply the C&W embedding of 50 dimensions to the heads of

the mentions for its best out-of-domain performance.

2.1.4.3 Domain Adaptation Experiments with Word Embeddings

This section examines the effectiveness of word representations for RE across

domains. We evaluate word cluster and embedding (denoted by ED) features by

adding them individually as well as simultaneously into the baseline feature set.

For word clusters, we experiment with two possibilities: (i) only using a single

prefix length of 10 (as Plank and Moschitti, 2013 did) (denoted by WC10) and

(ii) applying multiple prefix lengths of 4, 6, 8, 10 together with the full string7

(denoted by WC). Table 2.3 presents the system performance (F measures) for

both in-domain and out-of-domain settings8.

System In-domain bc cts wl
Baseline(B) 51.4 49.7 41.5 36.6
B+WC10 52.3(+0.9) 50.8(+1.1) 45.7(+4.2) 39.6(+3)
B+WC 53.7(+2.3) 52.8(+3.1) 46.8(+5.3) 41.7(+5.1)
B+ED 54.1(+2.7) 52.4(+2.7) 46.2(+4.7) 42.5(+5.9)
B+WC+ED 55.5(+4.1) 53.8(+4.1) 47.4(+5.9) 44.7(+8.1)
Table 2.3: Domain adaptation results with word representations.

7. This set of prefix lengths is shown to produce the best results experimentally.
8. All the improvements over the baseline in Table 2.3 are significant at confidence level ≥

95%.
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The key observations from the table are:

(i): The baseline system achieves a performance of 51.4% within its own domain

while the performance on target domains bc, cts, wl drops to 49.7%, 41.5% and

36.6% respectively. Our baseline performance is worse than that of (Plank and

Moschitti, 2013) only on the target domain cts and better in the other cases.

This might be explained by the difference between our baseline feature set and the

feature set underlying their kernel-based system. However, the performance order

across domains of the two baselines are the same. Besides, the baseline performance

is improved over the target domains when the system is enriched with word cluster

features of the 10 prefix length only (row 2).

(ii): Over all the target domains, the performance of the system augmented

with word cluster features of various granularities (row 3) is superior to that when

only cluster features for the prefix length 10 are added (row 2). This is significant

(at confidence level ≥ 95%) for domains bc and wl and verifies our assumption

that various granularities for word cluster features are more effective than a single

granularity for domain adaptation of RE.

(iii): Row 4 shows that word embedding itself is also very useful for domain

adaptation in RE since it improves the baseline system for all the target domains.

(iv): In row 5, we see that the addition of both word cluster and word embed-

ding features improves the system further and results in the best performance over

all target domains (this is significant with confidence level ≥ 95% in domains bc

and wl). The result suggests that word embeddings seem to capture different infor-

mation from word clusters and their combination would be effective to generalize
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relation extractors across domains. However, in domain cts, the improvement

that word embeddings provide over word clusters is modest. This is because the

RCV1 corpus used to induce the word embeddings (Turian et al., 2010) does not

cover spoken language words in cts very well.

(v): Finally, the in-domain performance is also improved consistently demon-

strating the robustness of word representations (Plank and Moschitti, 2013).

2.1.4.4 Domain Adaptation Experiments with Regularization

All the experiments we have conducted so far do not apply regularization for

training (like some previous research on RE (Sun et al., 2011)). In this section,

in order to evaluate the effect of regularization on the generalization capacity of

relation extractors across domains, we replicate all the experiments in Section

2.1.4.3 but apply regularization when relation extractors are trained9. Table 2.4

presents the results10.

System In-domain bc cts wl
Baseline(B) 56.2 55.5 48.7 42.2
B+WC10 57.5(+1.3) 57.3(+1.8) 52.3(+3.6) 45.0(+2.8)
B+WC 58.9(+2.7) 58.4(+2.9) 52.8(+4.1) 47.3(+5.1)
B+ED 58.9(+2.7) 59.5(+4.0) 52.6(+3.9) 48.6(+6.4)
B+WC+ED 59.4(+3.2) 59.8(+4.3) 52.9(+4.2) 49.7(+7.5)

Table 2.4: Domain adaptation results with regularization.

For this experiment, every statement in (ii), (iii), (iv) and (v) of Section 2.1.4.3
9. We use a L2 regularizer with the regularization parameter of 0.5 for its best experimental

results.
10. All the improvements over the baseline in Table 2.4 are significant at confidence level ≥

95%.
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also holds. More importantly, the performance in every cell of Table 2.4 is sig-

nificantly better than the corresponding cell in Table 2.3 (5% or better gain in F

measure, a significant improvement at confidence level ≥ 95%). This demonstrates

the effectiveness of regularization for RE in general and for domain adaptation of

RE specifically.

2.2 The Kernel-based Approach

In parallel to our work in the previous section on DA for RE (Nguyen and

Grishman, 2014a), Nguyen et al., 2014d present a supervised DA algorithm for

RE that assumes some labeled data in the target domains. This differs from

the work in (Nguyen and Grishman, 2014a) and (Plank and Moschitti, 2013) in

that the latter belongs to the unsupervised domain adaptation techniques (i.e,

requiring no labeled data in the target domains). In our view, unsupervised DA

is more challenging, but more realistic and practical for RE as we usually do not

know which target domains we need to work on in advance, thus cannot expect to

possess labeled data of the target domains. Our work in this section therefore also

focuses on the single-system unsupervised DA. The single-system setting implies

the construction of a single system that can work robustly with different but related

domains (multiple target domains) as in the previous section.

Plank and Moschitti, 2013 propose to embed word clusters and latent semantic

analysis (LSA) of words into tree kernels for DA of RE, while (Nguyen and Grish-

man, 2014a) studies the application of word clusters and word embeddings for DA

of RE on the feature-based method. Although word clusters have been employed
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by both studies to improve the performance of relation extractors across domains,

the application of word embeddings (Bengio et al., 2003; Mnih and Hinton, 2008;

Turian et al., 2010) for DA of RE is only examined in the feature-based method

and never explored in the tree kernel-based method so far, giving rise to the first

question we want to address in this section:

(i) Can word embeddings help the tree kernel-based methods on DA for RE and

more importantly, in which way can we do it effectively?

This question is important as word embeddings are real valued vectors, while

the tree kernel-based methods rely on the symbolic matches or mismatches of

concrete labels in the parse trees to compute the kernels. It is unclear at the first

glance how to encode word embeddings into the tree kernels effectively so that

word embeddings could help to improve the generalization performance of RE.

One way is to use word embeddings to compute similarities between words and

embed these similarity scores into the kernel functions, e.g., by resembling the

method of (Plank and Moschitti, 2013) that exploited LSA (in the semantic syn-

tactic tree kernel (SSTK), cf. §2.2.1.1). We explore various methods to apply word

embeddings to generate the semantic representations for DA of RE and demon-

strate that semantic representations are very effective to significantly improve the

portability of the relation extractors based on the tree kernels, bringing us to the

second question:

(ii) Between the feature-based method in (Nguyen and Grishman, 2014a) and

the SSTK method in (Plank and Moschitti, 2013), which method is better for DA

of RE, given the recent discovery of word embeddings for both methods?
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It is worth noting that besides the approach difference, these two works employ

rather different resources and settings in their evaluation, making it impossible

to directly compare their performance. In particular, while Plank and Moschitti,

2013 only use the path-enclosed trees induced from the constituent parse trees

as the representation for relation mentions, Nguyen and Grishman, 2014a include

a rich set of features extracted from multiple resources such as constituent trees,

dependency trees, gazetteers, semantic resources in the representation. Besides,

Plank and Moschitti, 2013 consider the direction of relations in their evaluation

(i.e, distinguishing between relation classes and their inverses) but Nguyen and

Grishman, 2014a disregard this relation direction. Finally, we note that although

both studies evaluate their systems on the ACE 2005 dataset, they actually have

different dataset partitions. In order to overcome this limitation, we conduct an

evaluation in which the two methods are directed to use the same resources and

settings, and are thus compared in a compatible manner to achieve an insight on

their effectiveness for DA of RE. In fact, the problem of incompatible comparison

is unfortunately very common in the RE literature (Plank and Moschitti, 2013;

Wang, 2008) and we believe there is a need to tackle this increasing confusion in

this line of research. Therefore, this is actually the first attempt to compare the

two methods (tree kernel-based and feature-based) on the same settings. To ease

the comparison for future work and circumvent the Zigglebottom pitfall (Pedersen,

2008), the entire setup and package is available11.
11. https://bitbucket.org/nycphre/limo-re
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2.2.1 Relation Extraction Approaches

In the following, we review and compare the two relation extraction systems

with greater detail to facilitate the later discussion.

2.2.1.1 Tree kernel-based Method

In the tree kernel-based method (Moschitti, 2006, 2008; Plank and Moschitti,

2013), a relation mention (the two entity mentions and the sentence containing

them) is represented by the path-enclosed tree (PET), the smallest constituency-

based subtree including the two target entity mentions (Zhang et al., 2006). The

syntactic tree kernel (STK) is then defined to compute the similarity between two

PET trees (where target entities are marked) by counting the common sub-trees,

without enumerating the whole fragment space (Moschitti, 2006, 2008). STK is

then applied in the support vector machines (SVMs) for RE. The major limitation

of STK is its inability to match two trees that share the same substructure, but

involve different, though semantically related, terminal nodes (words). This is

caused by the hard matches between words, and consequently between sequences

containing them. For instance, in the following example taken from (Plank and

Moschitti, 2013), the two fragments “governor from Texas” and “head of Maryland”

would not match in STK although they have very similar syntactic structures and

basically convey the same relationship.

Plank and Moschitti, 2013 propose to resolve this issue for STK using the

semantic syntactic tree kernel (SSTK) (Bloehdorn and Moschitti, 2007) and apply

it to the domain adaptation problem of RE. The two following techniques are
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utilized to activate the SSTK: (i) replace the part-of-speech nodes in the PET

trees by the new ones labeled by the word clusters of the corresponding terminals

(words); (ii) replace the binary similarity scores between words (i.e, either 1 or 0)

by the similarities induced from the latent semantic analysis (LSA) of large corpus.

The former generalizes the part-of-speech similarity to the semantic similarity on

word clusters; the latter, on the other hand, allows soft matches between words

that have the same latent semantic but differ in symbolic representation. Both

techniques emphasize the invariants of word semantics in different domains, thus

being helpful to alleviate the vocabulary difference across domains.

2.2.1.2 Feature-based Method

In the feature-based method (Nguyen and Grishman, 2014a; Sun et al., 2011;

Zhou et al., 2005), relation mentions are first transformed into rich feature vectors

that capture various characteristics of the relation mentions (i.e, lexicon, syntax,

semantics etc). The resulting vectors are then fed into the statistical classifiers

such as Maximum Entropy (MaxEnt) to perform classification for RE.

The main reason for the performance loss of the feature-based systems on new

domains is the behavioral changes of the features when domains shift. Some fea-

tures might be very informative in the source domain but become less relevant in

the target domains. For instance, some words, that are very indicative in the source

domain might not appear in the target domains (lexical sparsity). Consequently,

the models putting high weights on such words (features) in the source domain

will fail to perform well on the target domains. Nguyen and Grishman, 2014a
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address this problem for the feature-based method in DA of RE by introducing

word embeddings as additional features. The rationale is based on the fact that

word embeddings are low dimensional and real valued vectors, capturing latent

syntactic and semantic properties of words (Bengio et al., 2003; Mnih and Hinton,

2008; Turian et al., 2010). The embeddings of symbolically different words are of-

ten close to each other if they have similar semantic and syntactic functions. This

again helps to mitigate the lexical sparsity or the vocabulary difference between

the domains and has proven helpful for, amongst others, the feature-based method

in DA of RE.

2.2.1.3 Tree Kernel-based vs Feature-based

The feature-based method explicitly encapsulates the linguistic intuition and

domain expertise for RE into the features, while the tree kernel-based method

avoids the complicated feature engineering and implicitly encodes the features into

the computation of the tree kernels. Which method is better for DA of RE?

In order to ensure the two methods (Nguyen and Grishman, 2014a; Plank and

Moschitti, 2013) are compared compatibly on the same resources, we make sure

the two systems have access to the same amount of information. Thus, we follow

(Plank and Moschitti, 2013) and use the PET trees (beside word clusters and word

embeddings) as the only resource the two methods can exploit.

For the feature-based method, we utilize all the features extractable from the

PET trees that are standard in the state-of-the-art feature-based systems for DA

of RE (Nguyen and Grishman, 2014a). Specifically, the feature set employed in
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this work (denoted by FET) includes: the lexical features, i.e., the context words,

the head words, the bigrams, the number of words, the lexical path, the order of

mention (Sun et al., 2011; Zhou et al., 2005); and the syntactic features, i.e., the

path connecting the two mentions in PET and the unigrams, bigrams, trigrams

along this path (Jiang and Zhai, 2007a; Zhou et al., 2005).

Hypothesis: Assuming identical settings and resources, we hypothesize that

the tree kernel-based method is better than the feature-based method for DA of

RE. This is motivated because of at least two reasons: (i) the tree kernel-based

method implicitly encodes a more comprehensive feature set (involving all the sub-

trees in the PETs), thus potentially captures more domain-independent features

to be useful for DA of RE; (ii) the tree kernel-based method avoids the inclusion

of fine-tuned and domain-specific features originating from the excessive feature

engineering (i.e., hand-designing feature sets based on the linguistic intuition for

specific domains) of the feature-based method.

2.2.2 Word Embeddings & Tree Kernels

In this section, we first give the intuition that guides us in designing the pro-

posed methods. In particular, one limitation of the syntactic semantic tree kernel

presented in (Plank and Moschitti, 2013) (§2.2.1.1) is that semantics is highly tied

to syntax (the PET trees) in the kernel computation, limiting the generalization

capacity of semantics to the extent of syntactic matches. If two relation mentions

have different syntactic structures, the two relation mentions will not match, al-

though they share the same semantic representation and express the same relation
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class. For instance, the two fragments “Tom is the CEO of the company” and

“the company, headed by Tom” express the same relationship between “Tom” and

“company” based on the semantics of their context words, but cannot be matched

in SSTK as their syntactic structures are different. In such a case, it is desirable

to have a representation of relation mentions that is grounded on the semantics of

the context words and reflects the latent semantics of the whole relation mentions.

This representation is expected to be general enough to be effective on different

domains. Once the semantic representation of relation mentions is established, we

can use it in conjunction with the traditional tree kernels to extend their coverage.

The benefit is mutual as both semantics and syntax help to generalize relation

mentions to improve the recall, but also constrain each other to support precision.

This is the basic idea of our approach, which we compare to the previous methods.

2.2.2.1 Methods

We propose to utilize word embeddings of the context words as the principal

components to obtain semantic representations for relation mentions in the tree

kernel-based methods. Besides more traditional approaches to exploit word em-

beddings, we investigate representations that go beyond the word level and use

compositionality embeddings for domain adaptation for the first time.

In general, suppose we are able to acquire an additional real-valued vector

VECTi from word embeddings to semantically represent a relation mention RELi

(along with the PET tree TREEi), leading to the new representation of RELi =
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(TREEi,VECTi). The new kernel function in this case is then defined by:

Knew(RELi,RELj) = (1− α)SSTK(TREEi,TREEj) + αKvec(VECTi,VECTj)

(2.1)

where Kvec(VECTi,VECTj) is some standard vector kernel such as the polynomial

kernels. α is a trade-off parameter and indicates whether the system attributes

more weight to the traditional SSTK or the new semantic kernel Kvec.

In this work, we consider the following methods to obtain the semantic represen-

tation VECTi from the word embeddings of the context words of RELi (assuming

me is the dimensionality of the word embeddings):

HEAD: VECTi = the concatenation of the word embeddings of the two en-

tity mention heads of RELi. This representation is inherited from (Nguyen and

Grishman, 2014a) that only examines embeddings at the word level separately for

the feature-based method without considering the compositionality embeddings of

relation mentions. The dimensionality of HEAD is 2me.

According to the principle of compositionality (Baroni and Zamparelli, 2010;

Paperno et al., 2014; Werning et al., 2006), the meaning of a complex expression is

determined by the meanings of its components and the rules to combine them. We

study the following two compositionality embeddings for relation mentions that

can be generated from the embeddings of the context words:

PHRASE: VECTi = the mean of the embeddings of the words contained in the

PET tree Ti of RELi. Although this composition is simple, it is in fact competitive

to the more complicated methods based on recursive neural networks (Blacoe and

Lapata, 2012; Socher et al., 2012b; Sterckx et al., 2014) on representing phrase
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semantics.

TREE: This is motivated by the training of recursive neural networks (Socher

et al., 2012a) for semantic compositionality and attempts to aggregate the context

words embeddings syntactically. In particular, we compute an embedding for every

node in the PET tree in a bottom-up manner. The embeddings of the leaves are

the embeddings of the words associated with them while the embeddings of the

internal nodes are the means of the embeddings of their children nodes. We use

the embeddings of the root of the PET tree to represent the relation mention in

this case. Both PHRASE and TREE have me dimensions.

It is also interesting to examine combinations of these three representations

(cf., Table 2.5).

SIM: Finally, for completeness, we experiment with a more obvious way to in-

troduce word embeddings into tree kernels, resembling more closely the approach of

(Plank and Moschitti, 2013). In particularly, the SIM method simply replaces the

similarity scores between word pairs obtained from LSA by the cosine similarities

between the word embeddings to be used in the SSTK kernel.

2.2.3 Experiments

2.2.3.1 Dataset, Resources and Parameters

We use the word clusters trained by (Plank and Moschitti, 2013) on the ukWaC

corpus (Baroni et al., 2009) with 2 billion words, and the C&W word embeddings

from (Turian et al., 2010)12 with 50 dimensions following (Nguyen and Grishman,
12. http://metaoptimize.com/projects/wordreprs
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2014a). In order to make the comparisons compatible, we introduce word em-

beddings into the tree kernel by extending the package provided by (Plank and

Moschitti, 2013), which uses the Charniak parser to obtain the constituent trees,

the SVM-light-TK for the SSTK kernel in SVM, the directional relation classes,

etc. We utilize the default vector kernel in the SVM-light-TK package (d=3). For

the feature-based method, we apply the MaxEnt classifier in the MALLET13 pack-

age with the L2 regularizer on the hierarchical architecture for relation extraction

as in (Nguyen and Grishman, 2014a).

Following prior work, we evaluate the systems on the ACE 2005 dataset which

involves 6 domains: broadcast news (bn), newswire (nw), broadcast conversation

(bc), telephone conversation (cts), weblogs (wl) and usenet (un). The union of bn

and nw (news) is used as the source domain while bc, cts and wl play the role of

the target domains. We take half of bc as the only target development set, and

use the remaining data and domains for testing. The dataset partition is exactly

the same as in (Plank and Moschitti, 2013).

2.2.3.2 Word Embeddings for Tree Kernel

We investigate the effectiveness of different semantic representations (§2.2.2.1)

in tree kernels by taking the PET tree as the baseline14, and evaluate the perfor-

mance of the representations when combined with the baseline on the bc develop-

ment set.

Table 2.5 shows the results. The main conclusions include:
13. http://mallet.cs.umass.edu
14. By using their system we obtained the same results.
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Method P R F1
PET (Plank and Moschitti, 2013) 52.2 41.7 46.4
PET+SIM 39.4 37.2 38.3
PET+HEAD 60.4 44.9 51.5
PET+PHRASE 58.4 40.7 48.0
PET+TREE 59.8 42.2 49.5
PET+HEAD+PHRASE 63.2 46.2 53.4
PET+HEAD+TREE 61.0 45.7 52.3
PET+PHRASE+TREE 59.2 42.4 49.4
PET+HEAD+PHRASE+TREE 60.8 45.2 51.9

Table 2.5: Performance on the bc dev set for PET.

(i) The substitution of LSA similarity scores with the word embedding co-

sine similarities (SIM) substantially degrades the performance of the tree kernel

method.

(ii) When employed independently, both the word level embeddings (HEAD)

and the compositionality embeddings (PHRASE, TREE) are effective for the tree

kernel-based method on DA for RE, showing a slight advantage for HEAD.

(iii) Thus, the compositionality embeddings PHRASE and TREE seem to cap-

ture different information with respect to the word level embeddings HEAD. We

expect the combination of HEAD with either PHRASE or TREE to further im-

prove performance. This is the case when adding one of them at a time. PHRASE

and TREE seem to capture similar information, combining all (last row in Table

2.5) is not the overall best system. The best performance is achieved when the

HEAD and PHRASE embeddings are utilized at the same time, reaching an F1 of

53.4% (compared to 46.4% of the baseline) on the development set.

The results in Table 2.5 are obtained using the trade-off parameter α = 0.7.
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Figure 2.1: α vs F-measure on PET+HEAD+PHRASE

Figure 2.1 additionally shows the variation of the performance with changing α

(for the best system on dev, i.e., for the representation PET+HEAD+PHRASE).

As we can see, the performance for α > 0.5 is in general better, suggesting a

preference for the semantic representation over the syntactic representation in DA

for RE. The performance reaches its peak when the suitable amounts of semantics

and syntax are combined (i.e, α = 0.7).

In the following experiments, we use the embedding combination (HEAD+PHRASE)

with α = 0.7 for the tree kernels, denoted WED.

2.2.3.3 Domain Adaptation Experiments

In this section, we examine the semantic representation for DA of RE in the

tree kernel-based method. In particular, we take the systems using the PET trees,

word clusters and LSA in (Plank and Moschitti, 2013) as the baselines and augment

them with the embeddings WED = HEAD+PHRASE. We report the performance
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of these augmented systems in Table 2.6 for the two scenarios: (i) in-domain: both

training and testing are performed on the source domain via 5-fold cross validation

and (ii) out-of-domain: models are trained on the source domain but evaluated on

the three target domains. To summarize, we find:

nw+bn (in-dom.) bc cts wl
# System: P: R: F1: P: R: F1: P: R: F1: P: R: F1:
1 PET (Plank and Moschitti, 2013) 50.6 42.1 46.0 51.2 40.6 45.3 51.0 37.8 43.4 35.4 32.8 34.0
2 PET+WED 55.8 48.7 52.0 57.3 45.7 50.8 54.0 38.1 44.7 40.1 36.5 38.2
3 PET_WC 55.4 44.6 49.4 54.3 41.4 47.0 55.9 37.1 44.6 40.0 32.7 36.0
4 PET_WC+WED 56.3 48.2 51.9 57.0 44.3 49.8 56.1 38.1 45.4 40.7 36.1 38.2
5 PET_LSA 52.3 44.1 47.9 51.4 41.7 46.0 49.7 36.5 42.1 38.1 36.5 37.3
6 PET_LSA+WED 55.2 48.5 51.6 58.8 45.8 51.5 54.1 38.1 44.7 40.9 38.5 39.6
7 PET+PET_WC 55.0 46.5 50.4 54.4 43.4 48.3 54.1 38.1 44.7 38.4 34.5 36.3
8 PET+PET_WC+WED 56.3 50.3 53.1 57.5 46.6 51.5 55.6 39.8 46.4 41.5 37.9 39.6
9 PET+PET_LSA 52.7 46.6 49.5 53.9 45.2 49.2 49.9 37.6 42.9 37.9 38.3 38.1
10 PET+PET_LSA+WED 55.5 49.9 52.6 56.8 45.8 50.8 52.5 38.6 44.5 41.6 39.3 40.5
11 PET+PET_WC+PET_LSA 55.1 45.9 50.1 55.3 43.1 48.5 53.1 37.0 43.6 39.9 35.8 37.8
12 PET+PET_WC+PET_LSA+WED 55.0 48.8 51.7 58.5 47.3 52.3 52.6 38.8 44.7 42.3 38.9 40.5

Table 2.6: In-domain (first column) and out-of-domain performance (columns two
to four) on ACE 2005. Systems of the rows not in gray come from (Plank and
Moschitti, 2013) (the baselines). WED means HEAD+PHRASE.

First, word embeddings seem to subsume word clusters in the tree kernel-based

method (comparing rows 2 and 4, and except domain cts) while word embeddings

and LSA actually encode different information (comparing rows 2 and 6 for the

out-of-domain experiments) and their combination would be helpful for DA of RE.

Second, regarding composite kernels, given word embeddings, the addition of

the baseline kernel (PET) is in general useful for the augmented kernels PET_WC

and PET_LSA (comparing rows 4 and 8, rows 6 and 10) although it is less pro-

nounced for PET_LSA.

Third and most importantly, for all the systems in (Plank and Moschitti,

2013) (the baselines) and for all the target domains, whether word clusters and
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LSA are utilized or not, we consistently witness performance improvement over

the baselines when combined with word embedding (comparing systems X and

X+WED where X is some baseline system). The best out-of-domain performance

is achieved when word embeddings are employed in conjunction with the compos-

ite kernels (PET+PET_WC+PET_LSA for the target domains bc and wl, and

PET+PET_WC for the target domain cts). To be more concrete, the best sys-

tem with word embeddings (row 12 in Table 2.6) significantly outperforms the best

system in (Plank and Moschitti, 2013) with p < 0.05, an improvement of 3.7%,

1.1% and 2.7% on the target domains bc, cts and wl respectively, demonstrating

the benefit of word embeddings for DA of RE in the tree kernel-based method.

2.2.3.4 Tree Kernel-based vs Feature-based DA of RE

This section aims to compare the tree kernel-based method in (Plank and Mos-

chitti, 2013) and the feature-based method in (Nguyen and Grishman, 2014a) for

DA of RE on the same settings (i.e, same dataset partition, the same pre-processing

procedure, the same model of directional relation classes, the same PET trees for

tree kernels and feature extraction, the same word clusters and the same word

embeddings). We first evaluate the feature-based system with different combina-

tions of embeddings (i.e, HEAD, PHRASE and TREE) on the bc development

set. Based on the evaluation results, we then discuss the effect of the semantic

representations on the feature-based system and the tree kernel-based system, and

then compare the performance of the two methods when they are augmented with

their best corresponding embedding combinations.
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Table 2.7 presents the evaluation results on the bc development for the feature-

based system where B is the baseline feature set consisting of FET and word

clusters (WC) (Nguyen and Grishman, 2014a).

System P R F1
B 51.2 49.4 50.3
B+HEAD 55.8 52.4 54.0
B+PHRASE 50.7 46.2 48.4
B+TREE 53.6 51.1 52.3
B+HEAD+PHRASE 53.2 50.1 51.6
B+HEAD+TREE 54.9 51.4 53.1
B+PHRASE+TREE 50.7 48.4 49.5
B+HEAD+PHRASE+TREE 52.7 49.4 51.0

Table 2.7: Performance of the feature-based method (dev).

The Role of Semantic Representations

Considering Table 2.7 for the feature-based method and Table 2.5 for the tree

kernel-based method, we see that when combined with the HEAD embeddings, the

compositionality embedding TREE is more effective for the feature-based method,

in contrast to the tree kernel-based method, where the PHRASE embeddings are

better. This can be partly explained by the fact that the tree kernel-based method

emphasizes the syntactic structure of the relation mentions, while the feature-

based method exploits the sequential structure more. Consequently, the syntactic

semantics of TREE are more helpful for the feature-based method, whereas the

sequential semantics of PHRASE are more useful for the tree kernel-based method.

Performance Comparison

The three best embedding combinations for the feature-based system in Table

2.7 are (listed by performance order): (HEAD), (HEAD+TREE) and (TREE),
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where (HEAD) is also the best word level method employed in (Nguyen and Gr-

ishman, 2014a). In order to enable a fairer and clearer evaluation, when doing

comparison, we use both the three best embedding combinations in the feature-

based method and the best embedding combination (HEAD+PHRASE) in the

tree kernel-based method. In the tree kernel-based method, we do not employ

the LSA information as it comes in the form of similarity scores between pairs of

words, and it is not clear how to encode this information into the feature-based

method effectively. Finally, we utilize the composite kernel for its demonstrated

effectiveness in Section 2.2.3.3.

nw+bn (in-dom.) bc cts wl
System: P: R: F1: P: R: F1: P: R: F1: P: R: F1:
Tree kernel-based:
PET+PET_WC+HEAD+PHRASE 56.3 50.3 53.1 57.5 46.6 51.5 55.6 39.8 46.4 41.5 37.9 39.6
Feature-based:
FET+WC+HEAD 44.5 51.0 47.5 46.5 49.3 47.8 44.5 40.0 42.1 35.4 39.5 37.3
FET+WC+TREE 44.4 50.2 47.1 46.4 48.7 47.6 43.7 40.3 41.9 32.7 36.7 34.6
FET+WC+HEAD+PHRASE 44.9 51.6 48.0 46.0 49.1 47.5 45.2 41.5 43.3 34.7 39.2 36.8
FET+WC+HEAD+TREE 45.1 51.0 47.8 46.9 48.4 47.6 43.8 39.5 41.5 34.7 38.8 36.6

Table 2.8: Tree kernel-based in (Plank and Moschitti, 2013) vs feature-based in
(Nguyen and Grishman, 2014a). All the comparisons between the tree kernel-based
method and the feature-based method in this table are significant with p < 0.05.

The most important observation from the experimental results (shown in Table

2.8) is that over all the target domains, the tree kernel-based system is significantly

better than the feature-based systems with p < 0.05 (assuming the same resources

and settings mentioned above). In fact, there are large margins between the tree

kernel-based and the feature-based methods in this case (i.e, about 3.7% for bc,

3.1% for cts and 2.3% for wl), clearly confirming the hypothesis about the advan-

tage of the tree kernel-based method over the feature-based method on DA for RE
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in Section 2.2.1.3.

2.2.4 Analysis

This section analyzes the output of the systems to gain more insights into their

operation.

Word Embeddings for the Tree-kernel based Method

We focus on the comparison of the best model in (Plank and Moschitti, 2013)

(row 11 in Table 2.6) (called P) with the same model but augmented with the

embedding WED (row 12 in Tabel 2.6) (called P+WED). One of the most inter-

esting insights is that the embedding WED helps to semantically generalize the

phrases connecting the two target entity mentions beyond the syntactic constraints.

For instance, model P fails to discover the relation between “Chuck Hagel” and

“Vietnam” in the sentence (of the target domain bc): “Sergeant Chuck Hagel was

seriously wounded twice in Vietnam.” (i.e, it returns the NONE relation as the

prediction) as the substructure associated with “seriously wounded twice” does not

appear with any relation in the source domain. Model P+WED, on the other

hand, correctly predicts the PHYS (Located) relation between the two entities as

the PHRASE embedding of “Chuck Hagel was seriously wounded twice in Viet-

nam.” (phrase X1) is very close to the embedding of the source domain phrase:

“Stewart faces up to 30 years in prison” (phrase X2) (annotated with the PHYS

relation between “Stewart” and “prison”).

In fact, X2 is only the 9th closest phrase in the source domain of X1. The

closest phrase of X1 in the source domain is X3: the phrase between “Iraqi sol-
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diers” and “herself ” in the sentence “The Washington Post is reporting she shot

several Iraqi soldiers before she was captured and she was shot herself ,

too.”. However, as the syntactical structure of X1 is more similar to X2’s, and is

remarkably different from X3 as well as the other closest phrases (ranked from 2nd

to 8th), the new kernel function Knew would still prefer X2 due to its trade-off

between syntax and semantics.

Tree Kernel-based vs Feature-based

From the analysis of the systems in Table 2.8, we find that, among others, the

tree kernel-based method improves the precision significantly via the semantic and

syntactic refinement it maintains. Let us consider the following phrase of the target

domain bc: “troops have dislodged stubborn Iraqi soldiers” (called Y1). The feature-

based systems in Table 2.8 incorrectly predict the ORG-AFF relation (Employment

or Membership) between “Iraqi soldiers” and “troops”. This is mainly due to the

high weights of the features linking the words “troop” and “soldiers” with the

relation type ORG-AFF in the feature-based models, which is, in turn, originated

from the high correlation of these words and the relation type in the training

data of the source domain (domain bias). The tree kernel-based model in Table

2.8 successfully recognizes the NONE relation in this case. A closer examination

shows that the phrase with the closest embedding to Y1 in the source domain is

Y2: “Iraqi soldiers abandoned their posts”15, which is annotated with the NONE

relation between “Iraqi soldiers” and “their posts”. As the syntactic structure of

Y2 is also very similar to Y1, it is not surprising that Y1 is closest to Y2 in the new
15. The full sentence is: “After today’s air strikes, Iraqi soldiers abandoned their posts and

surrendered to Kurdish fighters.”.

62



CHAPTER 2. WORD EMBEDDINGS FOR DOMAIN ADAPTATION OF
RELATION EXTRACTION

kernel function, consequently helping the tree kernel-based method work correctly

in this case.

2.3 Related work

Word embeddings have been only applied to RE recently. Socher et al., 2012b

use word embeddings as input for matrix-vector recursive neural networks in rela-

tion classification while Zeng et al., 2014, and Nguyen and Grishman, 2015a employ

word embeddings in the framework of convolutional neural networks for relation

classification and extraction, respectively. Sterckx et al., 2014 utilize word embed-

dings to reduce noise of training data in distant supervision. Kuksa et al., 2010

present a string kernel for bio-relation extraction with word embeddings, and Yu

et al., 2014, 2015 study the factor-based compositional embedding models. How-

ever, none of this work examines word embeddings for domain adaptation as we

do.

Regarding DA, in the unsupervised DA setting, Huang and Yates, 2010 at-

tempt to learn multi-dimensional feature representations while Blitzer et al., 2006

introduce structural correspondence learning. Daume, 2007 propose an easy adap-

tation framework (EA) while Xiao and Guo, 2013 present a log-bilinear language

adaptation technique in the supervised DA setting. Unfortunately, all of this work

assumes some prior (in the form of either labeled or unlabeled data) on the target

domains for the sequential labeling tasks, in contrast to our single-system unsu-

pervised DA setting for relation extraction. An alternative method that is also

popular for DA is instance weighting (Jiang and Zhai, 2007b). However, as shown
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by (Plank and Moschitti, 2013), instance weighting is not very useful for DA of

RE.

2.4 Conclusion

In order to improve the generalization (DA) for relation extractors, we propose

several methods to incorporate word embeddings into the feature-based and the

tree kernel-based approaches: (i) We have evaluated the effectiveness of word em-

bedding and clustering features as well as regularization on tackling the portability

of a feature-based relation extractor to new domains, and (ii) We augment the se-

mantic syntactic tree kernels with the semantic representation of relation mentions,

generated from the word embeddings of the context words. The methods demon-

strates strong promise for the DA of RE, i.e, it significantly improves the best

system of (Plank and Moschitti, 2013) (up to 7% relative improvement). More-

over, we perform a compatible comparison between the tree kernel-based method

and the feature-based method on the same settings and resources, which suggests

that the tree kernel-based method (Plank and Moschitti, 2013) is better than the

feature-based method (Nguyen and Grishman, 2014a) for DA of RE. An error

analysis is conducted to get a deeper comprehension of the systems.
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Chapter 3

Deep Learning for Entity Mention

Detection

The previous chapter has introduced the application of word embeddings to

improve the robustness of relation extractors. The remainder of this dissertation

deals exclusively with developing deep learning methods for IE tasks. We start

with the entity mention detection task in this chapter and dedicate chapters 4 and

5 for relation extraction and event detection respectively.

Traditionally, both entity mention detection (or simply mention detection (MD))

and named entity recognition (NER) are formalized as sequential labeling prob-

lems, thereby being solved by some linear graphical models such as Hidden Markov

Models (HMMs), Maximum Entropy Markov Models (MEMMs) or Conditional

Random Fields (CRFs) (Lafferty et al., 2001). Although these graphical models

have achieved the top performance for MD, there are still at least three problems

we want to focus on in this work:
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(i) The first problem is the performance loss of the mention detectors when they

are trained on some domain (the source domain) and applied to other domains (the

target domains). The problem might originate from various mismatches between

the source and the target domains (domain shifts) such as the vocabulary difference,

the distribution mismatches etc (Blitzer et al., 2006; Daume, 2007; Plank and

Moschitti, 2013).

(ii) Second, in mention detection, we might need to capture a long context,

possibly covering the whole sentence, to correctly predict the type for a word. For

instance, consider the following sentence with the pronominal “they”:

Now, the reason that France, Russia and Germany are against war is because

they have suffered much from the past war.

In this sentence, the correct type GPE1 for “they” can only be inferred from

its GPE references: “France”, “Russia” and “Germany” which are far from the

pronominal “they” of interest. The challenge is to come up with the models that

can encode and utilize these long-range dependency contexts effectively.

(iii) The third challenge is to be able to quickly adapt the current techniques

for MD so that they can perform well on new languages.

In this chapter, we propose to address these problems for MD via recurrent

neural networks (RNNs) which offer an effective recurrent mechanism to embed

the sentence context into a distributed representation and employ it to decode

the sentences. Besides, as RNNs replace the symbolic forms of words in the sen-

tences with their word embeddings, the distributed representation that captures

the general syntactic and semantic properties of words (Turian et al., 2010), they
1. Geographical Political Entity
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can alleviate the lexical sparsity, induce more general feature representation, thus

generalizing well across domains (Nguyen and Grishman, 2015b). This also helps

RNNs to quickly and effectively adapt to new languages which just require word

embeddings as the only new knowledge we need to obtain. Finally, we can achieve

the task-specific word embeddings for MD to improve the overall performance by

updating the initial pre-trained word embeddings during the course of training in

RNNs.

The recent emerging interest in deep learning has produced many successful

applications of RNNs for NLP problems such as machine translation (Bahdanau

et al., 2015; Cho et al., 2014a), semantic role labeling (Zhou and Xu, 2015) etc.

However, to the best of our knowledge, there has been no prior work employing

RNNs for MD on the cross-domain and language settings so far. To summarize,

the main contributions of this chapter are as follows:

1. We perform a systematic investigation on various RNN architectures and

word embedding techniques that are motivated from linguistic observations for

MD.

2. We achieve the state-of-the-art performance for MD in the cross-domain

setting with the bidirectional modeling applied to RNNs.

3. We demonstrate the portability of the RNN models for MD to new languages

by their significant improvement with large margins over the best reported system

for named entity recognition in Dutch.

The work in this chapter is published in (Nguyen et al., 2016d).
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3.1 Models

We formalize the mention detection problem as a sequential labeling task.

Given a sentence W = [w1, w2, . . . , wn], where wi is the i-th word and n is the

length of the sentence, we want to predict the label sequence Y = [y1, y2, . . . , yn]

for X, where yi is the label for wi. The labels yi follow the BIO2 encoding to

capture the entity mentions in W . Note that this work focuses on the extraction

of the entity mention heads, following (Florian et al., 2006) and (Li and Ji, 2014a).

In order to prepare the sentence for RNNs, we first transform each word wi

into a real-valued vector veci using the concatenation of two vectors embi and feti:

veci = [embi, feti]2, where:

• embi is the word embedding vector of wi, obtained by training a language

model on a large corpus (discussed later).

• feti is a binary vector encompassing different features for wi. In this work,

we are utilizing four types of features: capitalization, gazetteers, triggers

(whether wi is present in a list of trigger words3 or not) and cache (the label

that is assigned to wi sometime before in the document).

We then enrich this vector representation by including the word vectors in a con-

text window of vc for each word in the sentence to capture the short-range depen-

dencies for prediction (Mesnil et al., 2013). This effectively converts wi into the con-

text window version of the concatenated vectors: xi = [veci−vc , . . . , veci, . . . , veci+vc ].
2. For simplicity, we are using the word wi and its real-valued vector representation inter-

changeably.
3. Trigger words are the words that are often followed by entity names in sentences such as

“president”, “Mr.” etc.
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Given the new input representation, we describe the RNNs to be investigated

in this work below.

3.1.1 The Basic Models

In standard recurrent neural networks, at each time step (word position in

sentence) i, we have three main vectors: the input vector xi ∈ RmI , the hidden

vector hi ∈ RmH and the output vector oi ∈ RmO (mI , mH and mO are the

dimensions of the input vectors, the dimension of the hidden vectors and the

number of possible labels for each word respectively). The output vector oi is the

probabilistic distribution over the possible labels for the word xi and obtained from

hi via the softmax function φ:

oi = φ(Ohi), φ(tj) =
etj∑
k e

tk
(3.1)

Regarding the hidden vectors or units hi, there are two major methods to obtain

them from the current input and the last hidden and output vectors, leading to

two different RNN variants:

• In the Elman model, called ELMAN, the hidden vector from the previous

step hi−1, along with the input in the current step xi, constitute the inputs

to compute the current hidden state hi:

hi = Φ(Uxi + V hi−1) (3.2)

• In the Jordan model, called JORDAN, the output vector from the previous

step oi−1 is fed into the current hidden layer rather than the hidden vector
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from the previous steps hi−1. The rationale for this topology is to introduce

the label from the preceding step as a feature for current prediction:

hi = Φ(Uxi + V oi−1) (3.3)

In the formula above, Φ is the sigmoid activation function: Φ(t) = 1
1+e−t and

O, U , and V are the same weight matrices for all time steps, to be learned during

training. The unfolded dependency graphs for the two models are given in Figure

3.1.

h1h0 h2 h3 hn−1 hn h1 h2 h3 hn−1 hn

x1 x2 x3 xn−1 xn x1 x2 x3 xn−1 xn

o1 o2 o3 on−1 on o0 o1 o2 o3 on−1 on

ELMAN JORDAN

Figure 3.1: The ELMAN and JORDAN models

3.1.2 Gated Recurrent Units

The ELMAN and JORDAN models are basically the stacks of the standard

feed-forward neural networks that share the same weight matrices. Unfortunately,

this stacking mechanism is prone to the “vanishing gradient” problem (Bengio et

al., 1994), making it challenging to train the networks properly in practice. This

problem can be alleviated by long-short term memory units (LSTM) (Hochreiter

and Schmidhuber, 1997) that propose the idea of memory cells to enable the infor-

mation storage and access over a long period of time.
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In this work, we use a variant of LSTM, called the Gated Recurrent Units

(GRUs) by (Cho et al., 2014a). GRU is shown to be simpler than LSTM in terms

of computation and implementation but still achieves comparable performance

(Józefowicz et al., 2015).

The introduction of GRUs into the models ELMAN and JORDAN amounts

to two new models, named ELMAN_GRU and JORDAN_GRU respectively,

with two new methods to compute the hidden vectors hi. The formula for EL-

MAN_GRU is adopted directly from (Cho, 2014b) and given below:

hi = zi ⊙ ĥi + (1− zi)⊙ hi−1

ĥi = Φ(Whxi + Uh(ri ⊙ hi−1))

zi = Φ(Wzxi + Uzhi−1)

ri = Φ(Wrxi + Urhi−1)

(3.4)

where Wh,Wz,Wr ∈ RmH×mI , Uh, Uz, Ur ∈ RmH×mH and ⊙ is the element-wise

multiplication operation.

We cannot directly apply the formula above to the JORDAN_GRU model

since the dimensions of the output vectors oi and the hidden vector hi are different

in general. For JORDAN_GRU, we first need to transform the output vector oi

into the hidden vector space, leading to the following formula:
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hi = zi ⊙ ôi + (1− zi)⊙ ti−1

ti−1 = Toi−1

ôi = Φ(Woxi + Uo(ri ⊙ ti−1))

zi = Φ(Wzxi + Uzti−1)

ri = Φ(Wrxi + Urti−1)

(3.5)

where T ∈ RmH×mO .

3.1.3 The Bidirectional Networks

One of the limitations of the four basic models presented above is their inca-

pacity to incorporate the future context information that might be crucial to the

prediction in the current step. For instance, consider the first word “Liverpool” in

the following sentence:

Liverpool suffered an upset first home league defeat of the season, beaten 1-0

by a Guy Whittingham goal for Sheffield Wednesday.

In this case, the correct label ORGANIZATION can only be detected if we first

go over the whole sentence and then utilize the context words after “Liverpool” to

decide its label.

The limitation of the four models originates in their mechanism to perform a

single pass over the sentences from left to right and make the prediction for a word

when they first encounter it. Guided by this intuition, we propose to employ the

bidirectional networks to solve the MD problem.
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The bidirectional networks involve three passes over the sentence, in which

the first two passes are designated to encode the sentence while the third pass is

responsible for decoding. The procedure for the sentence X = [x1, x2, . . . , xn] is

below:

(i) Run the first RNN −−−→RNN from left to right over [x1, x2, . . . , xn] to obtain the

first hidden vector or output vector sequence (depending on whether −−−→RNN is an

Elman or Jordan network respectively): −−−→RNN([x1, x2, . . . , xn]) = [
−→
h1,
−→
h2, . . . ,

−→
hn]

(forward encoding).

(ii) Run the second RNN←−−−RNN from right to left over [x1, x2, . . . , xn] to obtain

the second hidden vector or output vector sequence: ←−−−RNN([xn, xn−1, . . . , x1]) =

[
←−
hn,
←−−
hn−1, . . . ,

←−
h1] (backward encoding).

(iii) Obtain the concatenated sequence h = [h1, h2, . . . , hn] where hi = [
−→
hi ,
←−
hi ].

(iv) Decode the sentence with the third RNN Rd (the decoding model) using h

as the input vector, i.e, replacing xi by hi in the formula (3.2), (3.3), (3.4) and (3.5).

Conceptually, the encoding RNNs −−−→RNN and ←−−−RNN can be different but in

this work, for simplicity and consistency, we assume that we only have a single

encoding model, i.e, −−−→RNN =
←−−−
RNN = Re. Note that Re and Rd can be any model

in {ELMAN, JORDAN, ELMAN_GRU, JORDAN_GRU}.

The observation is, at the time step i, the forward hidden vector −→hi represents

the encoding for the past word context (from position 1 to i) while the backward

hidden vector ←−hi is the summary for the future word context (from position n to
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i). Consequently, the concatenated vector hi = [
−→
hi ,
←−
hi ] constitutes a distributed

representation that is specific to the word at position i but still encapsulates the

context information over the whole sentence at the same time. This effectively

provides the networks a much richer representation to decode the sentence. The

bidirectional network for Re = ELMAN and Rd = JORDAN is given on the left

of Figure 3.2.

We notice that (Mesnil et al., 2013) also investigate the bidirectional models

for the task of slot filling in spoken language understanding. However, compared

to the work presented here, (Mesnil et al., 2013) does not use any special transition

memory cells (like the GRUs we are employing in this work) to avoid numerical

stability issues (Pascanu et al., 2012). Besides, they form the inputs h for the

decoding phase from a larger context of the forward and backward encoding out-

puts, while performing word-wise, independent classification; in contrast, we use

only the current output vectors in the forward and backward encodings for h, but

perform recursive computations to decode the sentence via the RNN model Rd

(demonstrated on the left of Figure 3.2).

3.1.4 Training and Inference

We train the networks locally. In particular, each training example consists of

a word xi and its corresponding label yi in a sentence X = [x1, x2, . . . , xn] (denoted

by I = (xi, yi, X)). In the encoding phase, we first compute the necessary inputs

according to the specific model of interest. This can be the original input vectors

[x1, x2, . . . , xn] in the four basic models or the concatenated vectors [h1, h2, . . . , hn]
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h1 h2 h3 hn−1 hn

o0 o1 o2 o3 on−1 on

x1 x2 x3 xn−1 xn

l0 l1 l2 l3 ln−1 ln

rn+1rnrn−1r3r2r1

h1 h2 h3 hn−1 hn

o1 o2 o3 on−1 on

x1 x2 x3 xn−1 xn

l0 l1 l2 l3 ln−1 ln

rn+1rnrn−1r3r2r1

α1 α2 α3 αn−1 αn α1 α2 α3 αn−1 αn

Figure 3.2: The bidirectional models. The model on the right is from(Mesnil et
al., 2013) with the forward and backward context size of 1. l0, rn+1 are the zero
vectors.

in the bidirectional models. Eventually, in the decoding phase, a sequence of vd

input vectors preceding the current position i is fed into the decoding network

Rd to obtain the output vector sequence. The last vector in this output sequence

corresponds to the probabilistic label distribution for the current position i, to be

used to compute the objective function. For example, in the bidirectional models,

the input sequence for the decoding phase is hi−vdhi−vd+1 . . . hi while the output

sequence is: Re([hi−vd , hi−vd+1, . . . , hi]) = [oi−vd , oi−vd+1, . . . , oi].

In this work, we employ the stochastic gradient descent algorithm4 to update

the parameters via minimizing the negative log-likelihood objective function:

nll(I) = − log(oi[yi]). (3.6)

Finally, besides the weight matrices in the networks, the word embeddings are

also optimized during training to obtain the task-specific word embeddings for MD.

The gradients are computed via back-propagation and inference is performed by
4. We tried the AdaDelta algorithm and the dropout regularization but do not see much

difference.

75



CHAPTER 3. DEEP LEARNING FOR ENTITY MENTION DETECTION

running the networks over the whole sentences and taking argmax over the output

sequence:

yi = argmax(oi). (3.7)

3.2 Word Representation

Following (Collobert et al., 2011), we pre-train word embeddings from a large

corpus and employ them to initialize the word representations in the models. One

of the state-of-the-art models to train word embeddings has been proposed recently

in (Mikolov et al., 2013b) that introduce two log-linear models, i.e the continuous

bag-of-words model (CBOW) and the continuous skip-gram model (Skip-gram).

The CBOW model attempts to predict the current word based on the average of

the context word vectors while the Skip-gram model aims to predict the surrounding

words in a sentence given the current word.

In this work, besides the CBOW and skip-gram models, we examine a con-

catenation - based variant of CBOW (C-CBOW) to train word embeddings and

compare the three models to gain insights into which kind of model is effective

to obtain word representations for the MD task. The objective of C-CBOW is

to predict the target word using the concatenation of the vectors of the words

surrounding it, motivated from our strategy to decide the label for a word based

on the concatenated context vectors. Intuitively, the C-CBOW model would per-

form better than CBOW as the concatenation mechanism helps to assign different

weights to different context words, thereby being more flexible than CBOW that
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applies a single weight for all the context words. CBOW, Skip-gram and C-CBOW

are illustrated in Figure 3.3.
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Figure 3.3: Methods to Train Word Embeddings

3.3 Experiments

3.3.1 Dataset

In order to investigate the robustness across domains, following the prior work

(Nguyen and Grishman, 2015a; Plank and Moschitti, 2013), we utilize the ACE

2005 dataset which contains 6 domains: broadcast news (bn), newswire (nw), broad-

cast conversation (bc), telephone conversation (cts), weblogs (wl), usenet (un) and

7 entity types: person, organization, GPE, location, facility, weapon, vehicle. The

union of bn and nw is considered as a single domain, called news. We take half

of bc as the only development data and use the remaining data and domains for

evaluation. Some statistics about the domains are given in Table 3.1.
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Domain #Docs #Sents #Mentions
news 332 6487 22460
bc 60 3720 9336
cts 39 5900 9924
wl 119 2447 6538
un 49 2746 6507
Total 599 21300 54765

Table 3.1: ACE 2005 Dataset

Regarding the robustness across languages, we further evaluate the RNN mod-

els on the CoNLL 2002 dataset for Dutch Named Entity Recognition5 (Carreras

et al., 2002; Sang and Meulder, 2002). The CoNLL dataset comes along with

the training data, validation data and test data, annotated for 4 types of entities:

person, organization, location and miscellaneous.

3.3.2 Resources and Parameters

In all the experiments with RNNs below, we employ the context window vc = 5,

the decoding window vd = 9. We find that the optimal number of hidden units (or

the dimension of the hidden vectors) and the learning rate vary according to the

dataset. For the ACE 2005 dataset, we use 200 hidden units with learning rate

= 0.01 while these numbers are 100 and 0.06 respectively for the Dutch CoNLL

dataset. Note that the number of hidden units is kept the same in both the

encoding phase and the decoding phase.

For word representation, we train the word embeddings for English from the

Gigaword corpus augmented with the newsgroups data from BOLT (Broad Opera-
5. http://www.cnts.ua.ac.be/conll2002/ner
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tional Language Technologies) (6 billion tokens) while the entire Dutch Wikipedia

pages (310 million tokens) are extracted to train the Dutch word embeddings. We

utilize the word2vec toolkit6 (modified to add the C-CBOW model) to learn the

word representations. Following (Baroni et al., 2014), we use the context window

of 5, subsampling set to 1e-05 and negative sampling with the number of negative

instances set to 10. The dimension of the vectors is set to 300 to make it compara-

ble with the word2vec toolkit. Finally, we use the standard BIO2 tagging schema

for both ACE 2005 and Dutch CoNLL datasets.

3.3.3 Model Architecture Evaluation

In this section, we evaluate different RNN models by training the models on

the news domain and report the performance on the development set. As pre-

sented in the previous sections, we have 4 basic models M = {ELMAN, JORDAN,

ELMAN_GRU, JORDAN_GRU} and 16 bidirectional models (4 choices for the

encoding and decoding models Re, Rd inM). The performance for the basic models

and the bidirectional models are shown in Table 3.2 and Table 3.3 respectively7.

Model(Rd) F1
ELMAN 80.70
JORDAN 80.46
ELMAN_GRU 80.85
JORDAN_GRU 81.06

Table 3.2: The basic models’ performance

There are several important observations from the three tables:
6. https://code.google.com/p/word2vec
7. The experiments in this section use C-CBOW to pre-train word embeddings.
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Rd Re ELMAN ELMAN_GRU
ELMAN 80.99 81.42
JORDAN 81.14 81.68
ELMAN_GRU 80.53 81.16
JORDAN_GRU 80.98 82.37
Rd Re JORDAN JORDAN_GRU
ELMAN 79.12 79.64
JORDAN 79.21 80.85
ELMAN_GRU 79.80 80.41
JORDAN_GRU 79.76 81.02
Table 3.3: The bidirectional models’ performance

-Elman vs Jordan: In the encoding phase, the Elman models consistently out-

perform the Jordan models when the same decoding model is applied in the bidirec-

tional architecture. In the decoding phase, however, it turns out that the Jordan

models are better most of the time over different model architectures (basic or

bidirectional).

-With vs Without GRUs: It is clear from the tables that GRUs are very helpful

in the encoding part of the bidirectional architecture for MD. However, for the

decoding part, we can only see the clear benefit of GRUs in the basic models and

the bidirectional architecture when Re is a Jordan model.

-Regarding different model architectures, in general, the bidirectional models

are more effective than the basic models, confirming the effectiveness of bidirec-

tional modeling to achieve a richer representation for MD.

The best basic model (F1 = 81.06%) and the best bidirectional model (F1 =

82.37%) are called BASIC and BIDIRECT respectively. In the following, we only

focus on these best models in the experiments.

80



CHAPTER 3. DEEP LEARNING FOR ENTITY MENTION DETECTION

3.3.4 Comparison to other Bidirectional RNN Work

Mesnil et al., 2013 also present a RNN system with bidirectional modeling for

the slot filling task. As described in Section 3.1.3, the major difference between

the bidirectional models in this work and (Mesnil et al., 2013)’s is the recurrence

in our decoding phase. Table 3.4 compares the performance of the bidirectional

model from (Mesnil et al., 2013), called MESNIL, and the BIDIRECT model.

In order to verify the effectiveness of recurrence in decoding, the performance

of MESNIL incorporated with the JORDAN_GRU model in the decoding phase

(MESNIL+JORDAN_GRU) is also reported.

Model P R F1
MESNIL (Mesnil et al., 2013) 81.01 79.67 80.33
MESNIL + JORDAN_GRU 82.17 79.56 80.85
BIDIRECT 82.91 81.83 82.37

Table 3.4: Comparison to (Mesnil et al., 2013).

In general, we see that the bidirectional model in this work is much better than

the model in (Mesnil et al., 2013) for MD. This is significant with p < 0.05 and

a large margin (an absolute improvement of 2.04%). More interestingly, MESNIL

is further improved when it is augmented with the JORDAN_GRU decoding,

verifying the importance of recurrence in decoding for MD.

3.3.5 Word Embedding Evaluation

The section investigates the effectiveness of different techniques to learn word

embeddings to initialize the RNNs for MD. Table 3.5 presents the performance
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of the BASIC and BIDIRECT models on the development set (trained on news)

when the CBOW, SKIP-GRAM and C-CBOW techniques are utilized to obtain

word embeddings from the same English corpus. We also report the performance

of the models when they are initialized with the word2vec word embeddings from

(Mikolov et al., 2013b) (trained with the Skip-gram model on 100 billion words of

Google News) (WORD2VEC). All of these word embeddings are updated during

the training of the RNNs to induce the task-specific word embeddings . Finally,

for comparison purpose, the performance for the following two scenarios is also

included: (i) the word vectors are initialized randomly (not using any pre-trained

word embeddings) (RANDOM), and (ii) the word vectors are loaded from the C-

CBOW pre-trained word embeddings but fixed during the RNN training (FIXED).

Word Model
Embeddings BASIC BIDIRECT
RANDOM 79.30 79.76
FIXED 80.36 81.52
WORD2VEC 80.92 81.41
CBOW 78.61 79.74
SKIP-GRAM 81.45 81.96
C-CBOW 81.06 82.37

Table 3.5: Comparison of methods for word embeddings.

The first observation is that we need to borrow some pre-trained word embed-

dings and update them during the training process to improve the MD performance

(comparing C-CBOW, RANDOM and FIXED). Second, C-CBOW is much better

than CBOW, confirming our intuition in Section 3.2. Third, we do not see much

difference in terms of MD performance when we enlarge the corpus to learn word

embeddings (comparing SKIP-GRAM and WORD2VEC that is trained with the
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skip-gram model on a much larger corpus). Finally, we achieve the best perfor-

mance when we apply the C-CBOW technique in the BIDIRECT model. From now

on, for consistency, we use the C-CBOW word embeddings in all the remaining

experiments in this chapter.

3.3.6 Cross-Domain Experiments

This section evaluates the MD systems on the cross-domain settings to gain

an insight into their operation when the domain changes. The state-of-the-art

systems for MD have been the joint extraction system for entity mentions and

relations from (Li and Ji, 2014a), the information networks to unify the outputs

of three information extraction tasks: entity mentions, relations and events using

structured perceptron from (Li et al., 2014b) and the Maximum Entropy Markov

Model (MEMM) system from (Florian et al., 2006). These systems extensively

hand-design a large set of features (parsers, gazetteers, word clusters, coreference

etc) to capture the useful structures for MD. In this work, we use the MEMM

system in (Florian et al., 2006) as the baseline and compare it with the RNN

systems. The reason for this choice is twofold: (i) as shown in Section 5.4 of (Li

and Ji, 2014a), the performance of the joint systems are comparable to the MEMM

system in (Florian et al., 2006), and (ii) similar to our work, the MEMM system in

(Florian et al., 2006) only focuses on the MD task while the joint systems in (Li and

Ji, 2014a; Li et al., 2014b) involves the predictions for other tasks, making it less

comparable to our work, especially on the cross-domain setting for MD. Evaluating

the joint models in (Li and Ji, 2014a; Li et al., 2014b) on the cross-domain setting

83



CHAPTER 3. DEEP LEARNING FOR ENTITY MENTION DETECTION

for MD is another important dimension, however, out of the scope of the current

work.

We note that the performance of the MEMM system reported in this work is

obtained from the actual system in (Florian et al., 2006) and the feature set of the

MEMM8 system also includes the four features we are using in the RNN models

(Section 3.1).

Following the previous work on the cross-domain settings for the ACE 2005

dataset (Nguyen et al., 2015c; Plank and Moschitti, 2013), we treat news as the

source domain and the other domains: bc, cts, wl and un as the target domains.

We then examine the systems on two scenarios: (i) the systems are trained and

tested on the source domain via 5-fold cross validation (in-domain performance),

and (ii) the systems are trained on the source domain but evaluated on the target

domains. Besides, in order to understand the effect of the features on the systems,

we report the systems’ performance both including and excluding the features

described in Section 3.1. Table 3.6 presents the results.

System Without Features With Features
In-Domain bc cts wl un In-Domain bc cts wl un

MEMM 76.90 71.73 78.02 66.89 67.77 82.55 78.33 87.17 76.70 76.75
BASIC 79.01 77.06 85.42 73.00 72.93 81.99 78.75 86.51 76.60 76.94
BIDIRECT 80.00† 76.27† 85.64† 73.79† 73.88† 82.52 79.65† 88.43† 76.70 77.03

Table 3.6: System’s performance on the cross-domain setting. Cells marked with
†designate the BIDIRECT models that significantly outperform (p < 0.05) the
MEMM model on the specified domains.

To summarize, we find that the RNN systems significantly outperform the

MEMM system across all the target domains when the features are not applied.
8. We also tried the CRF model with the same feature set as the MEMM system but it is

worse in our case.
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MEMM BIDIRECT BIDIRECT-MEMM
bc cts wl un bc cts wl un bc cts wl un

bc 75.20 86.60 70.25 72.38 75.49 87.51 70.75 73.04 0.29 0.91† 0.50† 0.66†
cts 66.91 89.76 68.74 69.72 68.23 91.24 68.82 70.27 1.32† 1.48† 0.08 0.55†
wl 74.94 86.53 77.07 75.90 74.73 86.79 76.35 75.37 -0.21 0.26 -0.72 -0.53
un 72.72 86.75 72.04 73.47 73.53 88.29 73.16 74.00 0.81† 1.45† 1.12† 0.53†

Table 3.7: Comparison between MEMM and BIDIRECT. Cells marked with †des-
ignate the statistical significance (p < 0.05). The columns and rows correspond
to the source and target domains respectively. BIDIRECT-MEMM means perfor-
mance subtraction.

The BIDIRECT system still yields the best performance among systems being

investigated (except in domain bc). This is also the case when the features from

Section 3.1 are included and demonstrates the robustness of the BIDIRECT model

in the domain shifts. We further support this result in Table 3.7 where we report

the performance of the MEMM and BIDIRECT systems (with features) on different

domain assignments for the source and the target domains. Finally, we also see

that the features are very useful for both the MEMM and the RNNs.

3.3.7 Named Entity Recognition for Dutch

The previous sections have dealt with mention detection for English. In this

section, we want to explore the capacity of the systems to quickly and effectively

adapt to a new language. In particular, we evaluate the systems on the named

entity recognition task (the simplified version of the MD task) for Dutch using

the CoNLL 2002 dataset. The state-of-the-art performance for this dataset in

the CoNLL evaluation is due to (Carreras et al., 2002) who utilize the AdaBoost

classifier. In (Nothman et al., 2013), the authors leverage data from Wikipedia and
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are able improve the state-of-the-art performance for Dutch. Very recently, while

we are preparing this work, (Gillick et al., 2015) introduce a multilingual language

processing system based on bytes and also report the performance on this dataset.

Table 3.8 compares the systems.

System P R F1
State-of-the-art in CoNLL 77.83 76.29 77.05
Nothman et al., 2013 - - 78.60
Gillick et al., 2015 - - 78.08
Gillick et al., 2015* - - 82.84
MEMM 80.25 77.52 78.86
BASIC 82.98 81.53 82.25
BIDIRECT 84.08 82.82 83.45
Table 3.8: Performance on Dutch CoNLL 2002.

We note that the system in (Gillick et al., 2015) is also based on RNNs and

the row labeled with * (Gillick et al., 2015) corresponds to the system trained

on multiple datasets instead of the single CoNLL dataset for Dutch, so it is not

comparable to ours.

The most important conclusion from the table is that the RNN models in

this work significantly outperform MEMM as well as the other comparable system

by large margins (up to 22% reduction in relative error). This proves that the

proposed RNN systems are less subject to the language changes than MEMM and

the other systems. Finally, BIDIRECT is also significantly better than BASIC,

testifying to its robustness across languages.
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3.4 Related Work

Both named entity recognition (Ando and Zhang, 2005; Bikel et al., 1997;

Borthwick et al., 1997; Cherry and Guo, 2015; Florian et al., 2003; Lin and Wu,

2009; Miller et al., 2004; Passos et al., 2014; Ratinov and Roth, 2009; Ritter et

al., 2011; Sang and Meulder, 2003; Suzuki and Isozaki, 2008; Turian et al., 2010)

and mention detection (Florian et al., 2004) have been extensively studied with

various evaluation in the last decades: MUC6, MUC7, CoNLL’02, CoNLL’03 and

ACE. The previous work on MD has examined the cascade models (Florian et al.,

2006), transferred knowledge from rich-resource languages to low-resource ones via

machine translation (Zitouni and Florian, 2008) or improved the systems on noisy

input (Florian et al., 2010). Besides, some recent work also tries to solve MD

jointly with other tasks such as relation or event extraction to benefit from their

inter-dependencies (Kate and Mooney, 2010; Li and Ji, 2014a; Li et al., 2014b;

Roth and Yih, 2007). However, none of these work investigates RNNs for MD on

the cross-domain and language settings as we do in this work.

Regarding neural networks for NER, Collobert et al., 2011 propose a CNN-

based framework while Mesnil et al., 2013 and Yao et al., 2013, 2014 investigate

the RNNs for the slot filling problem in spoken language understanding. Although

our work also examines the RNNs, we consider the mention detection problem with

an emphasis on the robustness of the models in the domain shifts and language

changes which has never been explored in the literature before.
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3.5 Conclusion

We systematically investigate various RNNs to solve the MD problem which

suggests that bidirectional modeling is a very helpful mechanism for this task.

In particular, the bidirectional model outperforms a very strong baseline of the

feature-based exponential models in the cross-domain setting, thus demonstrating

its robustness across domains. We also show that the bidirectional model is more

portable to new languages as it is significantly better than the best reported sys-

tems for NER in Dutch (up to 22% reduction in relative error). In the future,

we plan to apply the bidirectional modeling technique to other tasks as well as

study the combination of different network architectures and resources to further

improve the performance of the systems.
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Chapter 4

Deep Learning for Relation

Extraction

This chapter presents several deep learning models for relation extraction. There

are two major parts in this chapter. The first part introduces a convolutional neural

network that does not require feature engineering for relation extraction while the

second part aims at the other extreme, exploring the combination of convolutional

neural networks, recurrent neural networks and feature engineering to achieve the

state-of-the-art RE performance. The works in this chapter have been published

in (Nguyen and Grishman, 2015a) and (Nguyen and Grishman, 2016c).
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4.1 Convolutional Neural Networks for Relation

Extraction

The relation extraction (RE) task can be divided into two steps: detecting if a

relation mention corresponding to some entity mention pair of interest represents

some relation and classifying the detected relation mentions into some predefined

classes. If we only need to categorize the given relation mentions that are known

to express some expected relation (perfect detection), we are left with the relation

classification (RC) task. One variation of relation classification is that one might

have non-relation examples in the dataset but the number of those is compara-

ble to the number of the other examples. The non-relation examples, therefore,

can be treated as a usual relation class. Relation extraction, on the other hand,

often comes with a tremendously unbalanced dataset where the number of the

non-relation examples far exceeds the others, making relation extraction more chal-

lenging but more practical than relation classification. Our present work focuses

on the relation extraction task with an unbalanced corpus.

As we can see in Chapter 2, traditional RE systems require extensive feature

engineering and rely on existing natural language processing (NLP) modules to

analyze relation mentions and extract features, including part of speech taggers,

chunkers, name taggers, and parsers. Besides the costly effort for feature engineer-

ing, the traditional relation extractors might be subject to the error propagation

introduced by the imperfect quality of the supervised existing NLP toolkits. For

instance, all the tasks mentioned above are known to suffer from a performance

90



CHAPTER 4. DEEP LEARNING FOR RELATION EXTRACTION

loss when they are applied to out-of-domain data (Blitzer et al., 2006; Daume,

2007; McClosky et al., 2010), causing the degradation of the RE systems based

on them. In this section, we target an independent RE system that both avoids

complicated feature engineering and minimizes the reliance on the supervised NLP

modules for features, potentially alleviating the error propagation and advancing

our performance in this area.

To be concrete, our relation extraction system is provided only with raw sen-

tences marked with the positions of the two entities of interest1. The only elements

we can derive from this structure are the words, the k-grams and their positions in

the sentences, suggesting a paradigm in which relation mentions are represented

by features that depend on these elements. Eventually, word embeddings that are

capable of capturing latent semantic and syntactic properties of words (Bengio

et al., 2003; Collobert and Westion, 2008; Mikolov et al., 2013b; Mnih and Hinton,

2008; Turian et al., 2010), and convolutional neural networks (CNN) that are able

to recognize specific classes of k-gram and induce more abstract representations

(Kalchbrenner et al., 2014) are a natural combination one should apply to obtain

more effective representations for RE in this setting.

Convolutional neural networks (dating back to the 1980s) are a type of feed-

forward artificial neural networks whose layers are formed by a convolution opera-

tion followed by a pooling operation (Kalchbrenner et al., 2014; LeCun et al., 1988).

Recently, with the emerging interests of the community in deep learning, CNNs

have been revived and effectively applied in various NLP tasks, including semantic
1. For evaluation purpose, we assume the positions of the two entities of interest in the

sentences like most previous studies in this area. These are the only external features we need
to achieve an end-to-end relation extractor.
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parsing (Yih et al., 2014), search query retrieval (Shen et al., 2014a), sentence

modeling and classification (Kalchbrenner et al., 2014; Kim, 2014), name tagging

and semantic role labeling (Collobert et al., 2011). For relation classification and

extraction, there are two prior works on CNNs for relation classification (Liu et al.,

2013)2 and (Zeng et al., 2014); however, at the time of publishing, there was no

work on employing CNNs for relation extraction. This work was the first attempt

to fill in that gap and serves as a baseline for future research in this area.

Our convolutional neural network is built upon that of (Kalchbrenner et al.,

2014) and (Kim, 2014) which are originally proposed for sentence classification and

modeling. We adapt the network for relation extraction by introducing the posi-

tion embeddings to encode the relative distances of the words in the sentence to the

two entities of interest. In contrast to the models in (Liu et al., 2013) and (Zeng

et al., 2014) for relation classification that apply a single window size, our model

for relation extraction incorporates various window sizes for convolutional filters,

allowing the network to capture wider ranges of k-grams to be helpful for relation

extraction. In addition, rather than initializing the word embeddings randomly

as do (Liu et al., 2013) and fixing the randomly generated position embeddings

during training as do (Zeng et al., 2014), we use pre-trained word embeddings

for initialization and optimize both word embeddings and position embeddings as

model parameters. More importantly, rather than using extrinsic features (either

from human annotation or other pre-processing modules) to enrich the representa-

tion as do (Liu et al., 2013) and (Zeng et al., 2014), our model (adapted for RC
2. The title of the paper (Liu et al., 2013) on relation extraction is misleading since the

authors actually do relation classification, according to the experimental description.
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where entity heads are given) avoids the use of manual linguistic resources and

supervised NLP toolkits constructed externally, utilizing word embeddings that

can be trained automatically in an unsupervised framework as the only external

resource for the whole system.

We explore different model architectures systematically and demonstrate that

the best model performance is achieved when multiple window sizes are imple-

mented and the word embeddings, once initialized by some “universal” embeddings,

are allowed to adapt during the optimization process to reach an effective state

for relation extraction. We evaluate our models on both relation classification and

relation extraction tasks. For relation classification, experiments show that our

model (without any external features and resources) outperforms the state-of-the-

art models regardless of whether the external features are included in these models

or not. For relation extraction, our model is significantly better than the baseline

models that use the words and the embeddings themselves as the features.

4.1.1 Model

Our convolutional neural network for relation extraction consists of four main

layers: (i) the look-up table to encode words in sentences by real-valued vectors, (ii)

the convolutional layer to recognize k-grams, (iii) the pooling layer to determine

the most relevant features and (iv) a logistic regression layer (a fully connected

neural network with a softmax at the end) to perform classification (Collobert et

al., 2011; Kalchbrenner et al., 2014; Kim, 2014). Figure 4.1 gives an overview of

the network.
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In the morning, the <e1>President</e1> traveled to <e2>Detroit</e2> 

in
the

morning,
the

president
traveled

to
detroit

entity 1

entity 2

input sentence with marked entities

word embedding matrix

position embeddings matrix

table look-up

      Convolutional layer 
with multiple window sizes 
            for filters

Max pooling Fully connected layer
    with dropout and
      softmax output

Look-up tables

Figure 4.1: Convolutional Neural Network for Relation Extraction.

4.1.1.1 Word Representation

The input to the CNN for relation extraction consists of sentences marked with

the two entity mentions of interest. In order to facilitate CNNs with fixed length

inputs, we compute the maximal separation between entity mentions linked by a

relation and choose an input width greater than this distance. We insure that

every input (relation mention) has this length by trimming longer sentences and

padding shorter sentences with a special token.

Let n be the length of the relation mentions and W = [w1, w2, . . . , wn] be some

relation mention where wi is the i-th word in the mention. Also, let wi1 and

wi2 be the two heads of the two entity mentions of interest. Before entering the
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network, each word wi is first transformed into a vector embi by looking up the

word embedding table EMB that can be initialized either by a random process or

by some pre-trained word embeddings. Besides, in order to embed the positions

of the two entity heads as well as the other words in the relation mention into the

representation, for each word wi, its relative distances to the two entity heads i− i1

and i−i2 are also mapped into real-value vectors disti1 and disti2 respectively using

a position embedding table DIST (initialized randomly) (Collobert et al., 2011; Liu

et al., 2013; Zeng et al., 2014). Note that the relative distances only range from

−n + 1 to n − 1 so the position embedding matrix DIST has size (2n − 1) ×md

(md is a hyperparameter indicating the dimensionality of the position embedding

vectors).

Finally, the word embeddings embi and the position embeddings dist1 and dist2

are concatenated into a single vector xi = [embi, disti1 , disti2 ]⊤ to represent the

word wi. As a result, the original sentence W can now be viewed as a matrix X of

size (me+2md)×n where me is the dimensionality of the word embedding vectors.

X = [x1, x2, . . . , xn] (4.1)

4.1.1.2 Convolution

In the next step, the matrix X representing the input relation mention is fed

into the convolutional layer to extract higher level features. Given a window size

k, a filter is seen as a weight matrix f = [f1, f2, . . . , fk] (fi is a column vector of

size me + 2md). The core of this layer is obtained from the application of the
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convolutional operator on the two matrices X and f to produce a score sequence

s = [s1, s2, . . . , sn−k+1]:

si = g(
k−1∑
j=0

f⊤j+1x
⊤
j+i + b) (4.2)

where b is a bias term and g is some non-linear function.

This process can then be replicated for various filters with different window

sizes to increase the k-gram coverage of the model.

For relation extraction, we call the k-grams accompanied with relative positions

of its words the augmented k-grams. It is instructive to think about the filter f

as representing some hidden class of the augmented k-grams and the scores si

as measuring the possibility the augmented k-gram at position i belongs to the

corresponding hidden class (although these scores are not probabilities at all). The

trained weights of the filter f would then amount to a feature detector that learns

to recognize the hidden class of the augmented k-grams (Kalchbrenner et al., 2014).

4.1.1.3 Pooling

The rationale of the pooling layer is to further abstract the features generated

from the convolutional layer by aggregating the scores for each filter to introduce

the invariance to the absolute positions but preserve the relative positions of the

k-grams between themselves and the entity heads at the same time. The popular

aggregating function is max as it bears responsibility for identifying the most

important or relevant features from the score sequence. Concretely, for each filter f ,

its score sequence s is passed through the max function to produce a single number:
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pkf = max{s} = max{s1, s2, . . . sn−w+1} which can be interpreted as estimating the

possibility some augmented k-gram of the hidden class of f appears in the context.

4.1.1.4 Regularization and Classification

In the final step, the pooling scores for every filter are concatenated into a

single feature vector z = [p1, p2, . . . , pm] to represent the relation mention. Here,

m is the number of filters in the model and pi is the pooling score of the i-th filter.

Before actually applying this feature vector, following (Kim, 2014; Srivastava et

al., 2014), we execute a dropout for regularization by randomly setting to zero

a proportion ρ of the elements of the feature vector3 z to produce the vector zd.

The dropout vector zd is then fed into a fully connected layer of standard neural

networks followed by a softmax layer in the end to perform classification. The fully

connected layer induces a weight matrix FULL as model parameters.

At test time, the unseen relation mentions are scored using the feature vectors

that are not dropped out. We also rescale the weights whose Frobenius norms

exceed a hyperparameter as (Kim, 2014).

Overall, the parameters for the presented CNN are: the word embedding matrix

EMB, the position embedding matrix DIST, the m filter matrices, and the weight

matrix FULL for the fully connected layer. The gradients are computed using back-

propagation while training is done via stochastic gradient descent with shuffled

mini-batches and the AdaDelta update rule (Kim, 2014; Zeiler, 2012).
3. Following the Bernoulli distribution.
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4.1.2 Experiments

4.1.2.1 Hyperparameters and Resources

For all the experiments below, we use: tanh for the non-linear function, 150

filters for each window size in the model and position embedding vectors with

dimensionality of md = 504. Regarding the other parameters, we use the same

values as do (Kim, 2014), i.e, the dropout rate ρ = 0.5, the mini-batch size of 50,

the hyperparameter for the Frobenius norms of 3.

Finally, we utilize the pre-trained word embeddings word2vec from (Mikolov

et al., 2013b) which have dimensionality of me = 300 and are trained on 100 bil-

lion words of Google News using the continuous bag-of-words architecture. These

embeddings are publicly available here5. Vectors for the words not included in the

pre-trained embeddings are initialized randomly. Besides the word embeddings

word2vec, the model does not use any other NLP toolkits or resources.

4.1.2.2 Datasets

We evaluate our models on two datasets: the SemEval-2010 Task 8 dataset

(Hendrickx et al., 2010) for relation classification and the ACE 2005 dataset for

relation extraction.

The SemEval dataset can be downloaded here6 and contains 10,717 annotated

examples, including 8,000 examples for training and 2,717 examples for testing.

Each example is a sentence annotated for a pair of entities of interest and the
4. These values produce the best performance during our experimental process.
5. https://code.google.com/p/word2vec
6. http://docs.google.com/View?id=dfvxd49s36c28v9pmw
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corresponding relation class for this entity pair. There are 9 ordered relationships

(with two directions) and an undirected Other class, resulting in 19 classes. A pair

is counted as correct if the order of the entities in the relationship is correct. For

the ACE 2005 dataset, documents are annotated for 6 major relation classes and

7 entity types. In order to generate the non-relation examples or the examples for

the Other class, we collect every pair of entity mentions within a single sentence

and not included in the annotated relation set. To reduce the noise, we truncate

the generated dataset by removing all the examples whose distances between the

two entity heads are greater than 15. This results in a considerably unbalanced

dataset of 8,365 positive examples of the 6 annotated relation classes and 79,147

negative examples of the class Other. The distributions of the relation classes on

the two datasets are shown in Table 4.1. As we can see, the ACE dataset is much

more biased toward the Other class than the SemEval dataset and thus more ap-

propriate for relation extraction experiments.

4.1.2.3 Evaluation of Model Architectures

We investigate the effectiveness of different window sizes of filters by running

the proposed CNN model on window sizes of 2, 3, 4 and 5. To understand the

behavior of the model on multiple window sizes, we further test it on the following

window size combinations: (4,5), (3,4,5) and (2,3,4,5). In each of these window size

configurations, we evaluate the system on three different scenarios: (i) the word

embeddings and the position embeddings are randomly initialized and optimized
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ACE 2005 (87,512) SemEval 2010 (10,717)
Relation % Relation %
ORG-AFF 2.8 Cause-Effect 12.4
PER-SOC 1.2 Component-Whole 11.7
ART 1.0 Entity-Destination 10.6
PART-WHOLE 1.4 Entity-Origin 9.1
GEN-AFF 1.1 Product-Producer 8.8
PHYS 2.1 Member-Collection 8.6
Other 90.4 Message-Topic 8.4

Content-Container 6.8
Instrument-Agency 6.2
Other 17.4

Table 4.1: ACE 2005 and SemEval 2010 relation class distributions.

during the training process (denoted by nonstatic.rand), (ii) the word embeddings

are initialized by the pre-trained word embeddings; the position embeddings are

initialized randomly and the two embeddings are kept unchanged during the train-

ing (denoted by static.word2vec), (iii) the two embeddings are initialized as in

case (ii) but they are optimized as model parameters when the model is trained

(denoted by nonstatic.word2vec). These experiments are carried out for relation

extraction on the ACE 2005 dataset via 5-fold cross validation. Table 4.2 presents

the system performance on Precision (P), Recall (R) and F1 score (F).

The key observations from the table are7:

(i) From rows 1, 2, 3, 4, we see that evaluating window sizes individually is

quite intricate. It is unclear which window size is the best size for CNNs on relation

extraction. For instance, on the nonstatic.rand mode, the window size 4 seems to

outperform the others while on the other modes, the window sizes 3 and 5 turn out
7. The statements at points (ii) and (iii) are significant at confidence levels ≥ 95%.
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nonstatic.rand static.word2vec nonstatic.word2vec
# window sizes P R F P R F P R F
1 2 69.56 41.64 52.04 74.66 41.03 52.90 72.74 49.49 58.87
2 3 68.47 42.73 52.57 74.19 42.16 53.73 72.50 50.75 59.66
3 4 68.17 43.39 52.94 73.60 41.90 53.35 72.56 49.81 58.97
4 5 66.83 43.46 52.55 73.52 42.60 53.89 71.70 51.08 59.57
5 4-5 66.18 46.12 54.25 72.69 45.23 55.71 71.88 52.36 60.50
6 3-4-5 67.54 45.73 54.43 71.99 46.85 56.73 71.21 53.24 60.86
7 2-3-4-5 66.42 47.20 55.12 72.60 46.77 56.85 71.25 53.91 61.32

Table 4.2: System performance on various window size combinations and architec-
tures.

to be better. Besides, the performance gaps between the window sizes are small,

making it hard to draw a conclusive judgement. In any case, the window size 2

seems to be the worst, suggesting that the 2-grams might be less informative than

the others on representing relation mentions for CNNs on this dataset.

(ii) While the results on evaluating single window sizes are hard to analyze, the

results for multiple window sizes are quite clear and conclusive. Moving from single

window sizes of 2, 3, 4 or 5 (rows 1, 2, 3 and 4 respectively) to the configuration

with two window sizes 4 and 5 (row 5) gives us consistent improvements on all the

model architectures. The performance is then consistently enhanced when more

window sizes are included, resulting in the best performance when all the window

sizes 2, 3, 4 and 5 are employed. This demonstrates the advantages of the models

with multiple window sizes over the single window size models in (Liu et al., 2013)

and (Zeng et al., 2014).

(iii) Regarding different model architectures, the picture is even clearer. No

matter which window size configuration is applied, we consistently see the non-

static.word2vec architecture performs most effectively, followed by the static.word2vect
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setting which is in turn followed by the nonstatic.rand model. This suggests the

undeniable benefits of initializing the word embeddings by some “universal” pre-

trained values and updating the embeddings to reflect RE specific embeddings

when training the models (Collobert et al., 2011; Kim, 2014). For the next experi-

ments, we always use all the window sizes 2, 3, 4 and 5 with the nonstatic.word2vec

architecture.

4.1.2.4 Relation Extraction Experiment

We compare our system with the traditional feature-based relation extraction

systems when these systems are only allowed to use the same information and

resources as our systems, i.e, the words in the relation mentions, the positions of

the two entity heads and the word embeddings.

Given the sentences and the positions of the two entity heads, the features

extracted by the state-of-the-art feature-based systems include: the heads of the

two entity mentions; the words in the context before mention 1; after mention 2

and between two mentions; the bigrams, the word sequences between two entities,

the order of two mentions, the number of words between two mentions (Jiang and

Zhai, 2007a; Sun et al., 2011; Zhou et al., 2005). The feature-based system using

this feature set is called Words. Armed with the word embeddings, one can fur-

ther introduce these embeddings into the head words or the words in the context

as additional features (Nguyen and Grishman, 2014a). We call the system Words

augmented with the embeddings for the two heads Words-HM-Wed and Words aug-

mented with the embeddings for words in the contexts Words-WC-Wed. We apply

102



CHAPTER 4. DEEP LEARNING FOR RELATION EXTRACTION

the MaxEnt framework with L2 regularization in the Mallet toolkit8 to train these

feature-based models (as (Jiang and Zhai, 2007a; Nguyen and Grishman, 2014a;

Sun et al., 2011)). Table 4.3 shows the performance of the three baseline systems

and our proposed CNN via 5-fold cross validation on the ACE 2005 dataset.

System P R F
Words 54.95 43.73 48.69
Words-WC-Wed 50.10 44.47 47.11
Words-HM-Wed 57.01 55.74 56.36
Our CNN 71.25 53.91 61.32

Table 4.3: Performance of relation extraction systems.

The first observation is that adding the word embeddings to the words in the

context hurt the performance of the feature-based systems while augmenting the

heads of the entities with word embeddings significantly improves the feature-based

systems. This is consistent with the results reported by (Nguyen and Grishman,

2014a) and demonstrates that the ability to wisely pick the words for embeddings

and avoid embeddings on specific locations is crucial to the feature-based systems.

More importantly, our proposed CNN significantly outperforms all the baseline

models at the confidence levels ≥ 95%, an improvement of 4.96% over the best

feature-based system Words-HM-Wed (Nguyen and Grishman, 2014a). This result

indicates that CNNs are a better way to employ word embeddings for relation

extraction.

Remember that although the traditional systems can achieve a performance

greater than 72% on the ACE dataset (Qian et al., 2008; Sun et al., 2011), they
8. http://mallet.cs.umass.edu
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come at the expense of elaborate feature engineering as well as much more expen-

sive feature extraction. In particular, the feature extractors of these feature-based

systems require: (i) the perfect entity and mention type information hand-labeled

laboriously by human annotators; (ii) the extensive usage of the existing super-

vised NLP toolkits and resources (constituent and dependency parsers, dictionar-

ies, gazetteers etc) which might be unavailable for various domains in reality. The

absence of the perfect (hand-annotated) entity and mention type information (i.e,

point (i) above) greatly impairs these feature-based systems’ performance. For

instance, both (Plank and Moschitti, 2013) and (Nguyen and Grishman, 2014a)

report a performance less than 60% on the ACE 2005 dataset when the perfect

entity type and mention type features are not employed although the other fea-

tures with extensive feature engineering (i.e point (ii) above) are still included. As

a result, in a more realistic setting where hand-annotated features are prohibitive,

the proposed CNN requires much less feature engineering and resources but still

performs better than the traditional feature-based systems.

4.1.2.5 Relation Classification Experiment

In order to further verify the effectiveness of the system, we test the system

on the relation classification task with the SemEval 2010 dataset and compare the

results with the state-of-the-art systems in this area. Table 4.9 describes the perfor-

mance of various traditional systems that are based on classifiers such as MaxEnt

and SVM with series of supervised and manual features9 (Hendrickx et al., 2010)
9. i.e, the features extracted from supervised pre-processing NLP modules and manual

resources.
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as well as the more recent systems based on convolutional neural networks (Zeng

et al., 2014) (O-CNN), recursive neural networks (RNN), matrix-vector recursive

neural networks (MVRNN) (Socher et al., 2012b) or log-quadratic factor-based

compositional embedding model (FCM) (Yu et al., 2014)10.

As we can see, among the systems not using any supervised and manual features

(i.e, POS, WordNet, name tagging, dependency parse, patterns etc), our system

significantly outperforms the state-of-the-art system FCM (80.6%) (Yu et al., 2014)

with an improvement of 2.2%. More interestingly, even without supervised and

manual features, our system can still work comparably to the other systems utiliz-

ing these features as the vital components. For instance, the supervised features

(dependency parse and name tagging) are crucial to FCM (Yu et al., 2014) to

significantly improve its performance. We attribute our performance advantage

over the closely-related system O-CNN (Zeng et al., 2014) to the multiple window

sizes, the optimization of the position embeddings during training and possibly the

superiority of the embeddings word2vec we use.

4.1.2.6 Impact of Unbalanced Dataset

Shifting from relation classification to relation extraction with an unbalanced

corpus, we witness a large performance gap as described above. In this section,

we study the impact of the unbalanced corpus on the performance of relation ex-

tractors for both convolutional neural networks and traditional feature-based ap-

proaches (Words and Words-HM-Wed). In particular, we vary the ratio of positive

(true relations) and negative (the class Other) examples in the ACE 2005 dataset
10. These are the macro-averaged F1-scores, computed by the officially provided scorer.
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Classifier Feature Sets F
SVM POS, WordNet, morpho-

logical features, thesauri,
Google k-grams

77.6

MaxEnt POS, WordNet, morpho-
logical features, noun
compound system, the-
sauri, Google k-grams

77.6

SVM POS, WordNet, prefixes
and other morphological
features, dependency
parse, Levin classes,
PropBank, FrameNet,
NomLex-Plus, Google
k-grams, paraphrases,
TextRunner

82.2

RNN - 74.8
RNN POS, name tagging,

WordNet
77.6

MVRNN - 79.1
MVRNN POS, name tagging,

WordNet
82.4

O-CNN - 78.9
O-CNN WordNet 82.7
FCM - 80.6
FCM dependency parse, name

tagging
83.0

Our
CNN

- 82.8

Table 4.4: Performance of relation classification systems.

106



CHAPTER 4. DEEP LEARNING FOR RELATION EXTRACTION

0 0.5 1 1.5 2 2.5 3

50

60

70

80

1 + log10(
#positive
#negative)

F-
m

ea
su

re

Words
Words-HM-Wed
Our CNN

Figure 4.2: F measures vs positive/negative ratios

and see how the system performance responds to this variation. Figure 4.2 shows

the curves. This is a 5-fold cross validation experiment and all the comparisons

are significant at confidence levels ≥ 95%.

From the figure, we see that all the models improve consistently with the in-

crease of the ratio of the positive and negative examples. The performance peaks

with an improvement of about 20% for all the models when the number of exam-

ples of the class Other is small relative to the others. In other words, the systems

attain their best performance when relation extraction is reduced to the relation

classification problem, suggesting that relation extraction is much more challeng-

ing than relation classification. Finally, for all the ratio values, we consistently

see that the convolutional neural network is superior to the others, once again
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confirming its advantages.

4.2 Combining Neural Networks and Log-linear

Models to Improve Relation Extraction

As we have discussed in Chapter 2, the feature-based method for RE extensively

leveraged linguistic analysis and knowledge resources to construct the feature repre-

sentations, involving the combination of discrete properties such as lexicon, syntax,

and gazetteers. This approach is able to exploit the symbolic (discrete) structures

within relation mentions; however they suffer from the difficulty to generalize over

the unseen words (Gormley et al., 2015), motivating some recent work on employ-

ing the continuous representations of words (word embeddings) to do RE (Nguyen

and Grishman, 2014a; Nguyen et al., 2015c). The most popular method involves

neural networks (NNs) that effectively learn hidden and continuous structures of

relation mentions from such word embeddings, thus achieving the top performance

for RE (Nguyen and Grishman, 2015a; Santos et al., 2015a; Xu et al., 2015; Zeng

et al., 2014).

The NN research for relation extraction and classification so far has centered

around two main network architectures: convolutional neural networks (CNN)11

(Nguyen and Grishman, 2015a; Santos et al., 2015a; Zeng et al., 2015) and re-

cursive/recurrent neural networks (Socher et al., 2012b; Xu et al., 2015). The

distinction between convolutional neural networks and recurrent neural networks
11. as we can see in the previous section.
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(RNN) for RE is that the former aim to generalize the short and consecutive con-

text (i.e, the k-grams) of the relation mentions (Lei et al., 2015; Nguyen and Grish-

man, 2015a) while the latter adaptively accumulate the context information in the

whole sentence via the memory units, thereby encoding the long and possibly non-

consecutive patterns for RE (Hochreiter and Schmidhuber, 1997). Consequently,

the traditional feature-based method (i.e, the log-linear or MaxEnt model with

hand-crafted and discrete features), the CNNs and the RNNs tend to focus on dif-

ferent angles for RE. Guided by this intuition, in this work, we propose to combine

the three models to further improve the performance of RE. Note that this is in

contrast to the work in Section 4.1 that avoids the use of feature engineering with

discrete features completely.

While the architecture design of CNNs for RE is quite established due to the

extensive studies in the last couple of years, the application of RNNs to RE is only

very recent and the optimal designs of RNNs for RE are still a subject of ongoing

research. In this work, we first perform a systematic exploration of various network

architectures to seek the best RNN model for RE. In the next step, we extensively

study different methods to assemble the log-linear model, CNNs and RNNs for RE,

leading to the combined models that yield the state-of-the-art performance on the

ACE 2005 and SemEval datasets. To the best of our knowledge, this is the first

work to systematically examine the RNN architectures as well as combine them

with CNNs and the traditional feature-based approach for RE.
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4.2.1 Models

Relation mentions consist of sentences marked with two entity mentions of

interest. In this section, we examine two different representations for the sentences

in RE: (i) the standard representation, called SEQ that takes all the words in

the sentences into account and (ii) the dependency representation, called DEP

that only considers the words along the dependency paths between the two entity

mention heads of the sentences. In the following, unless indicated specifically, all

the statements about the sentences hold for both representations SEQ and DEP.

Following Section 4.1, we assume that the input sentences of the relation men-

tions have the same fixed length n. We also denote W = [w1, w2, . . . , wn] as the

input sentence of some relation mention, where wi is the i-th word in the sentence,

and wi1 and wi2 are the two heads of the two entity mentions of interest. In or-

der to prepare the relation mention for neural networks in this section, we also

transform each word wi into a real-valued vector xi. However, this section uses the

concatenation of the following seven vectors, motivated by the previous research

on feature analysis for RE (Gormley et al., 2015; Sun et al., 2011; Zeng et al., 2014;

Zhou et al., 2005):

- The real-valued word embedding vector embi of wi, obtained by looking up

the word embedding table EMB.

- The real-valued distance embedding vectors disti1 , disti2 to encode the relative

distances i − i1 and i − i2 of wi to the two entity heads of interest wi1 and wi2 :

disti1 = DIST[i− i1], disti2 = DIST[i− i2] where DIST is the position embedding

table (initialized randomly).
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- The real-valued embedding vectors for entity types enti and chunks chunki to

embed the entity type and chunking information for wi. These vectors are gener-

ated by looking up the entity type and chunk embedding tables (also initialized ran-

domly) (i.e, ENT and CHUNK respectively) for the entity type and chunking label

of wi: enti = ENT[entity type label of wi], chunki = CHUNK[chunking label of wi].

- The binary vector depi with one dimension to indicate whether the word wi

is on the dependency path between wi1 and wi2 or not.

- The binary vector reli whose dimensions correspond to the possible relations

between words in the dependency trees. The value at a dimension of reli is only

set to 1 if there exists one edge of the corresponding relation connected to wi in

the dependency tree.

The transformation from the word wi to the vector xi = [embi, disti1 , disti2 , enti,

chunki, depi, reli] essentially converts the relation mention with the input sentence

W into a real-valued matrix X = [x1, x2, . . . , xn], to be used by the neural networks

presented below.

4.2.1.1 The Separate Models

We review two typical NN architectures for RE underlying the combined models

in this work.

The Convolutional Neural Networks

In CNNs (Kalchbrenner et al., 2014; Nguyen and Grishman, 2015a)12, given

a window size of k, we have a set of feature maps (filters). Each feature map
12. The CNN model in this section is very similar to that of Section 4.1. The only difference

is in the representations of the words in the sentences. We review it here to introduce necessary
notations for this section.
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f is a weight matrix f = [f1, f2, . . . , fk] where fi is a vector to be learned during

training as the model parameters. The core of CNNs is the application of the

convolutional operator on the input matrix X and the filter matrix f to produce a

score sequence (also called the hidden vector) s = [s1, s2, . . . , sn−k+1], interpreted

as a more abstract representation of the input matrix X:

si = g(
k−1∑
j=0

fj+1xj+i + b) (4.3)

where b is a bias term and g is the tanh function.

In the next step, we further abstract the scores in s by aggregating it via

the max function to obtain the max-pooling score. We then repeat this process

for all the feature maps with different window sizes k to generate a vector of

the max-pooling scores. In the final step, we pass this vector into some standard

multilayer neural network, followed by a softmax layer to produce the probabilistic

distribution PC(y|X) over the possible relation classes y in the prediction task.

The Recurrent Neural Networks

In RNNs, we consider the input matrix X = [x1, x2, . . . , xn] as a sequence of

column vectors indexed from 1 to n. At each step i, we compute the hidden vector

αi from the current input vector xi and the previous hidden vector αi−1 using the

non-linear transformation function ϕ: αi = Φ(xi, αi−1).

This recurrent computation can be done via three different directional mech-

anisms: (i) the forward mechanism that recurs from 1 to n and generates the

forward hidden vector sequence: −−−→RNN([x1, x2, . . . , xn]) = [
−→
h1,
−→
h2, . . . ,

−→
hn], (ii) the

backward mechanism that runs RNNs from n to 1 and results in the backward hid-
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den vector sequence ←−−−RNN([xn, xn−1, . . . , x1]) = [
←−
hn,
←−−
hn−1, . . . ,

←−
h1]

13, and (iii) the

bidirectional mechanism that performs RNNs in both directions to produce the for-

ward and backward hidden vector sequences, and then concatenate them at each

position to generate the new hidden vector sequence [h1, h2, . . . , hn]: hi = [
−→
hi ,
←−
hi ].

Given the hidden vector sequence [h1, h2, . . . , hn] obtained from one of the three

mechanisms above, we study the following two strategies to generate the represen-

tation vector vR for the initial relation mention. Note that this representation

vector can be again fed into some standard multilayer neural network with a soft-

max layer in the end, resulting in the distribution PR(y|X) for the RNN models:

- The HEAD strategy: In this strategy, vR is the concatenation of the hidden

vectors at the positions of the two entity mention heads of interest: vR = [hi1 , hi2 ].

This is motivated by the importance of the two mention heads in RE (Nguyen and

Grishman, 2014a; Sun et al., 2011).

- The MAX strategy: This strategy is similar to our max-pooling mechanism in

CNNs. In particular, vR is obtained by taking the maximum along each dimension

of the hidden vectors h1, h2, . . . , hn. The idea is to further abstract the hidden

vectors by retaining only the most important feature in each dimension.

Regarding the non-linear function, the simplest form of Φ in the literature con-

siders it as a one-layer feed-forward neural network, called FF: hi = FF(xi, hi−1) =

Φ(Uxi + V hi−1) where ϕ is the sigmoid function, U and V are weight matrices.

Unfortunately, the application of FF is prone to the “vanishing gradient” problem

(Bengio et al., 1994), making it challenging to train RNNs properly. In this work,
13. The initial hidden vectors are set to the zero vector.
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we also use Gated Recurrent Units (Cho et al., 2014a) (GRU) to alleviate this

problem (as in Section 3.1.2).

4.2.1.2 The Combined Models

We first present three different methods to assemble CNNs and RNNs: ensem-

bling, stacking and voting, to be investigated in this work. The combination of the

neural networks with the log-linear model would be discussed in the next section.

1. Ensembling

In this method, we first run some CNN and RNN in Section 4.2.1.1 over the

input matrix X to gather the corresponding distributions PC(y|X) and PR(y|X).

We then combine the CNN and RNN by multiplying their distributions (element-

wise): Pensemble(y|X) = 1
Z
PC(y|X)PR(y|X) (Z is a normalization constant).

2. Stacking

The overall architecture of the stacking method is to use one of the two network

architectures (i.e, CNNs and RNNs) to generalize the hidden vectors of the other

architecture. The expectation is that we can learn more effective features for

RE via such a deeper architecture by alternating between the local and global

representations provided by CNNs and RNNs.

We examine two variants for this method. The first variant, called RNN-CNN,

applies the CNN model in Section 4.2.1.1 on the hidden vector sequence generated

by some RNN in Section 4.2.1.1 to perform RE. The second variant, called CNN-

RNN, on the other hand, utilizes the CNN model to acquire the hidden vector

sequence, that is, in turn, fed as the input into some RNN for RE. For the second
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variant, as the length of the hidden vector s = [s1, s2, . . . , sn−k+1] in the CNN

model depends on the specified window size k for the corresponding feature map

f , we need to pad the input matrix X with ⌊k
2
⌋ zero column vectors on both sides

to ensure the same fixed length n for all the hidden vectors: s = [s1, s2, . . . , sn].

Besides, we need to re-arrange the scores in the hidden vectors from different

feature maps of the CNN so they are grouped according to the positions in the

sentence, thus being compatible with the input requirement of RNNs.

3. Voting

Instead of integrating CNNs and RNNs at the model level as the two previous

methods, the voting method makes decisions for a relation mention X by voting

the individual decisions of the different models. While there are several voting

schemes in the literature, for this work, we employ the simplest scheme of majority

voting. If there is more than one relation class receiving the highest number of

votes, the relation class returned by a model and having the highest probability

would be chosen.

4.2.2 The Hybrid Models

In order to further improve the RE performance of models above, we investigate

the integration of these neural network models with the traditional log-linear model

that relies on various linguistic features from the past research on RE (Gormley

et al., 2015; Sun et al., 2011; Zhou et al., 2005). Specifically, in such integration

models (called the hybrid models), the relation class distribution is obtained from

the element-wise multiplication between the distributions of the neural network
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models and the log-linear model. Let us take the ensembling model in Section

4.2.1.2 as an example. The corresponding hybrid model in this case would be:

Phybrid(y|X) = 1
Z
PC(y|X)PR(y|X)Plogin(y|X), assuming Plogin(y|X) is the distribu-

tion of the log-linear model and Z is the normalization constant. The parameters of

the log-linear model are learnt jointly with the parameters of the neural networks.

Hypothesis: Let S be the set of relation mentions correctly predicted by some

neural network model in some dataset (the coverage set). The introduction of the

log-linear model into this neural network model essentially changes the coverage

set of the network, resulting in the new coverage set S ′ that might or might not

subsume the original set S. In this work, we hypothesize that although S and

S ′ overlap, there are still some relation mentions that only belong to either set.

Consequently, we propose to implement a majority voting system (called the hybrid-

voting system) on the outputs of the network and its corresponding hybrid model

to enhance both models.

Note that the voting models in Section 4.2.1.2 involve the voting on two models

(i.e, CNN and RNN). In order to integrate the log-linear model into such voting

models, we first augment the separate CNN and RNN models with the log-linear

model before we perform the voting procedure on the resulting models. Finally,

the corresponding hybrid-voting systems would involve the voting on four models

(CNN, hybrid CNN, RNN and hybrid RNN).
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4.2.2.1 Training

We train the models by minimizing the negative log-likelihood function us-

ing the stochastic gradient descent algorithm with shuffled mini-batches and the

AdaDelta update rule (Zeiler, 2012). The gradients are computed via back-propagation

while regularization is executed by dropout on the hidden vectors before the multi-

layer neural networks (Srivastava et al., 2014). During training, besides the weight

matrices, we also optimize the embedding tables EMB,DIST,ENTandCHUNK to

achieve the optimal state. Finally, we rescale the weights whose Frobenius norms

exceed a hyperparameter (Nguyen and Grishman, 2015a).

4.2.3 Experiments

4.2.3.1 Resources and Parameters

For all the experiments below, we utilize the pre-trained word embeddings

word2vec with 300 dimensions from (Mikolov et al., 2013b) to initialize the word

embedding table EMB. The parameters for CNNs and training the networks are

inherited from the previous studies, i.e, the window size set for feature maps =

{2, 3, 4, 5}, 150 feature maps for each window size, 50 dimensions for all the embed-

ding tables (except the word embedding table EMB), the dropout rate = 0.5, the

mini-batch size = 50, the hyperparameter for the Frobenius norms = 3 (Nguyen

and Grishman, 2015a). Regarding RNNs, we employ 300 units in the hidden layers.
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4.2.3.2 Dataset

We evaluate our models on two datasets: the ACE 2005 dataset for relation ex-

traction and the SemEval-2010 Task 8 dataset (Hendrickx et al., 2010) for relation

classification.

The ACE 2005 corpus comes with 6 different domains: broadcast conversation

(bc), broadcast news (bn), telephone conversation (cts), newswire (nw), usenet (un)

and weblogs (wl). Similar to the previous chapters, following the common practice

of domain adaptation research on this dataset (Gormley et al., 2015; Nguyen and

Grishman, 2014a; Nguyen et al., 2015c; Plank and Moschitti, 2013), we use news

(the union of bn and nw) as the training data, half of bc as the development set and

the remainder (cts, wl and the other half of bc) as the test data. Note that we

are using the data prepared by (Gormley et al., 2015), thus utilizing the same data

split on bc as well as the same data processing and NLP toolkits. The total number

of relations in the training set is 43,49714. We employ the BIO annotation scheme

to capture the chunking information for words in the sentences and only mark the

entity types of the two entity mention heads (obtained from human annotation)

for this dataset.

The SemEval dataset concerns the relation classification task that aims to deter-

mine the relation type (or no relation) between two entities in sentences. In order

to make it compatible with the previous research (Gormley et al., 2015; Socher et

al., 2012b), for this dataset, besides the word embeddings and the distance embed-

dings, we apply the name tagging, part of speech tagging and WordNet features
14. It was an error in (Gormley et al., 2015) that reported 43,518 total relations in the

training set. The authors acknowledged this error.
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(inherited from (Socher et al., 2012b) and encoded by the real-valued vectors for

each word). The other settings are also adopted from the past studies (Socher

et al., 2012b; Xu et al., 2015).

4.2.3.3 RNN Architectures

This section evaluates the performance of various RNN architectures for RE

on the ACE 2005 development set. In particular, we compare different design

combinations of the following four factors: (i) sentence representations (i.e, SEQ

or DEP), (ii) transformation functions Φ (i.e, FF or GRU), (iii) the strategies to

employ the hidden vector sequence for RE (i.e, HEAD or MAX), and (iv) the

directions to run RNNs (i.e, forward (→), backward (←) or bidirectional (⇌)).

Table 4.5 presents the results.

Systems DEP SEQ
⇌ 60.78 63.22

HEAD → 55.55 60.05
FF ← 57.69 58.54

⇌ 50.00 51.22
MAX → 52.08 53.96

← 45.07 33.50
⇌ 63.32 63.23

HEAD → 63.69 62.77
GRU ← 61.57 62.55

⇌ 60.96 64.24
MAX → 61.97 64.59

← 61.56 64.30

Table 4.5: Performance (F1 scores) of RNNs on the dev set.

The main conclusions include:
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(i) Assuming the same choices for the other three corresponding factors, GRU

is more effective than FF, SEQ is better than DEP most of the time, and HEAD

outperforms MAX (except in the case where SEQ and GRU are applied) for RE

with RNNs. Note that the improvement of SEQ over DEP can be partly explained

by the domination of the relation mentions with short distances between the two

entity mentions in the ACE 2005 dataset.

(ii) Regarding the direction mechanisms, the bidirectional mechanism achieves

the best performance for the HEAD strategy while the forward direction is the

best mechanism for the MAX strategy. This can be partly explained by the lack

of past or future context information in the HEAD strategy when we follow the

backward or forward direction respectively.

The best performance corresponds to the application of the SEQ representation,

the GRU function and the MAX strategy that would be used in all the RNN models

below. We call such RNN models with the forward, backward and bidirectional

mechanism FORWARD, BACKWARD and BIDIRECT respectively. We also

apply the SEQ representation for the CNN model (called CNN) in the following

experiments for consistency.

4.2.3.4 Evaluating the Combined Models

We evaluate the combination methods for CNNs and RNNs presented in Section

4.2.1.2. In particular, for each method, we examine three models that are combined

from one of the three RNN models FORWARD, BACKWARD, BIDIRECT and

the CNN model. For instance, in the stacking method, the three combined mod-
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els corresponding to the RNN-CNN variant are FORWARD-CNN, BACKWARD-

CNN, BIDIRECT-CNN while the three combined models corresponding to the

CNN-RNN variant are CNN-FORWARD, CNN-BACKWARD, CNN-BIDIRECT.

The notations for the other methods are self-explanatory. The model performance

on the development set is given in Table 4.6 that also includes the performance

of the separate models (i.e, CNN, FORWARD, BACKWARD, BIDIRECT) for

convenient comparison.

Model P R F1
BIDIRECT 69.16 59.97 64.24
FORWARD 69.33 60.45 64.59
BACKWARD 65.60 63.05 64.30
CNN 68.35 59.16 63.42
Ensembling
CNN-BIDIRECT 71.22 54.13 61.51
CNN-FORWARD 66.19 59.64 62.75
CNN-BACKWARD 65.09 60.13 62.51
Stacking
CNN-BIDIRECT 66.55 59.97 63.09
CNN-FORWARD 69.46 63.05 66.10
CNN-BACKWARD 72.58 58.35 64.69
BIDIRECT-CNN 65.63 61.59 63.55
FORWARD-CNN 73.13 58.67 65.11
BACKWARD-CNN 67.60 58.51 62.73
Voting
CNN-BIDIRECT 71.08 60.94 65.62
CNN-FORWARD 70.38 59.32 64.38
CNN-BACKWARD 69.78 61.75 65.52

Table 4.6: Performance of the combination methods.

The first observation is that the ensembling method is not an effective way to

combine CNNs and RNNs as its performance is worse than the separate models.

Second, regarding the stacking method, the best way to combine CNNs and RNNs
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in this framework is to assemble the CNN model and the FORWARD model. In

fact, the combination of the CNN and FORWARD models helps improve the per-

formance of the separate models in both variants of this method (referring to the

models CNN-FORWARD and FORWARD-CNN). Finally, the voting method is

also helpful as it outperforms the separate models with the CNN-BIDIRECT and

CNN-BACKWARD combinations.

For the following experiments, we would only focus on the three best combined

models in this section, i.e, the CNN-FORWARD model in the stacking method

(called STACK-FORWARD) and the CNN-BIDIRECT and CNN-BACKWARD

models in the voting methods (called VOTE-BIDIRECT and VOTE-BACKWARD

respectively).

4.2.3.5 Evaluating the Hybrid Models

This section investigates the hybrid and hybrid-voting models (Section 4.2.2)

to see if they can further improve the performance of the neural network mod-

els. In particular, we evaluate the separate models: CNN, BIDIRECT, FOR-

WARD, BACKWARD, and the combined models: STACK-FORWARD, VOTE-

BIDIRECT and VOTE-BACKWARD when they are augmented with the tradi-

tional log-linear model (the hybrid models). Besides, in order to verify the hypoth-

esis in Section 4.2.2, we also test the corresponding hybrid-voting models. The

experimental results are shown in Table 4.7.

There are three main conclusions:

(i) For all the models in columns “Neural Networks”, “Hybrid Models” and
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Model Neural Networks Hybrid Models Hybrid-Voting Models
P R F1 P R F1 P R F1

CNN 68.35 59.16 63.42 66.44 64.51 65.46 69.07 63.70 66.27
BIDIRECT 69.16 59.97 64.24 68.04 59.00 63.19 71.13 60.29 65.26
FORWARD 69.33 60.45 64.59 66.11 63.86 64.96 72.69 61.26 66.49
BACKWARD 65.60 63.05 64.30 66.03 62.07 63.99 71.56 63.21 67.13
Combined Models
VOTE-BIDIRECT 71.08 60.94 65.62 69.24 62.40 65.64 71.30 62.40 66.55
STACK-FORWARD 69.46 63.05 66.10 65.93 68.07 66.99 69.32 66.29 67.77
VOTE-BACKWARD 69.78 61.75 65.52 67.30 63.05 65.10 70.79 64.02 67.23

Table 4.7: Performance of the hybrid models on the ACE 2005 development set.

“Hybrid-Voting Models”, we see that the combined models outperform their corre-

sponding separate models (only except the hybrid model of VOTE-BACKWARD),

thereby further confirming the benefits of the combined models.

(ii) Comparing columns “Neural Networks” and “Hybrid Models”, we find that

the traditional log-linear model significantly helps the CNN model. The effects on

the other models are not clear.

(iii) More interestingly, for all the neural networks being examined (either sepa-

rate or combined), the corresponding hybrid-voting systems substantially improve

both the neural network models as well as the corresponding hybrid models, tes-

tifying to the hypothesis about the hybrid-voting approach in Section 4.2.2. Note

that the simpler voting systems on three models: the log-linear model, the CNN

model and some RNN model (i.e, either BIDIRECT, FORWARD or BACKWARD)

produce worse performance than the hybrid-voting methods (the respective perfor-

mance is 66.13%, 65.27%, and 65.96%).
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4.2.3.6 Comparing to the State of the art

The state-of-the-art system on the ACE 2005 for the unseen domains has been

the feature-rich compositional embedding model (FCM) and the hybrid FCM

model from (Gormley et al., 2015). In this section, we compare the proposed

hybrid-voting systems with these state-of-the-art systems on the test domains bc,

cts, wl. Table 4.8 reports the results. For completeness, we also include the

performance of the log-linear model and the separate models CNN, BIDIRECT,

FORWARD, BACKWARD, serving as the other baselines for this work.

System bc cts wl
P R F1 P R F1 P R F1 Ave

The State-of-the-art Systems
FCM 66.56 57.86 61.90 65.62 44.35 52.93 57.80 44.62 50.36 55.06
Hybrid FCM 74.39 55.35 63.48 74.53 45.01 56.12 65.63 47.59 55.17 58.26
Separate Systems
Log-Linear 68.44 50.07 57.83 73.62 41.57 53.14 60.40 47.31 53.06 54.68
CNN 65.62 61.06 63.26 65.92 48.12 55.63 54.14 53.68 53.91 57.60
BIDIRECT 65.23 61.06 63.07 66.15 49.26 56.47 55.91 51.56 53.65 57.73
FORWARD 63.64 59.39 61.44 60.12 50.57 54.93 55.54 54.67 55.10 57.16
BACKWARD 60.44 61.2 60.82 58.20 54.01 56.03 51.03 52.55 51.78 56.21
Hybrid-Voting Systems
VOTE-BIDIRECT 70.40 63.84 66.96† 66.74 49.92 57.12† 59.24 54.96 57.02† 60.37
STACK-FORWARD 65.75 66.48 66.11† 63.58 51.72 57.04† 56.35 57.22 56.78† 59.98
VOTE-BACKWARD 69.57 63.28 66.28† 65.91 52.21 58.26† 58.81 55.81 57.27† 60.60

Table 4.8: Comparison to the state of the art on the ACE 2005 dataset. The cells
marked with †designates the models that are significantly better than the other
neural network models (ρ < 0.05) on the corresponding domains.

From the table, we see that although the separate neural networks outperform

the FCM model across domains, they are still worse than the hybrid FCM model

due to the introduction of the log-linear model into FCM. However, when the

networks are combined and integrated with the log-linear model, they (the hybrid-

voting systems) become significantly better than the FCM models across all the
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domains (up to 2% improvement on the average absolute F score), yielding the

state-of-the-art performance for the unseen domains in this dataset.

4.2.3.7 Relation Classification Experiments

We further evaluate the proposed systems for the relation classification task on

the SemEval dataset. Table 4.9 presents the performance of the seprate models,

the proposed systems as well as the other representative systems on this task. The

most important observation is that the hybrid-voting systems VOTE-BIDIRECT

and VOTE-BACKWARD achieve the state-of-the-art performance for this dataset,

further highlighting their benefit for relation classification. The hybrid-voting

STACK-FORWARD system performs less effectively in this case, possibly due

to the small size of the SemEval dataset that is not sufficient to training such a

deep model.

4.2.4 Analysis

In order to better understand why the combination of CNNs and RNNs out-

performs the individual networks, we evaluate the performance breakdown per

relation for the CNN and BIDIRECT models. The results on the development set

of the ACE 2005 dataset are provided in Table 4.10.

One of the main insights is that although CNN and BIDIRECT have compa-

rable overall performance, their recalls on individual relations are very divergent.

In particular, BIDIRECT has much better recall for the PHYS relation while the

recalls of CNN are significantly better for the ART, ORG-AFF and GEN-AFF
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Classifier F
SVM (Hendrickx et al., 2010) 82.2
RNN (Socher et al., 2012b) 77.6
MVRNN (Socher et al., 2012b) 82.4
CNN (Zeng et al., 2014) 82.7
CR-CNN (Santos et al., 2015a) 84.1†
FCM (Gormley et al., 2015) 83.0
Hybrid FCM (Gormley et al., 2015) 83.4
DepNN (Liu et al., 2015) 83.6
SDP-LSTM (Xu et al., 2015) 83.7
Systems in this work
CNN 83.5
BIDIRECT 81.8
FORWARD 81.9
BACKWARD 82.4
VOTE-BIDIRECT 84.1
STACK-FORWARD 83.4
VOTE-BACKWARD 84.1

Table 4.9: Performance of relation classification systems. The “†” refers to special
treatment of the Other class.

Relation Class CNN BIDIRECT
P R F1 P R F1

PHYS 66.7 34.7 45.7 57.4 50.9 54.0
PART-WHOLE 68.6 67.8 68.2 74.4 70.1 72.2
ART 64.2 51.2 57.0 68.6 41.7 51.9
ORG-AFF 70.2 83.0 76.0 79.3 76.1 77.7
PER-SOC 71.1 59.3 64.6 69.6 59.3 64.0
GEN-AFF 65.9 55.1 60.0 59.0 46.9 52.3
all 68.4 59.2 63.4 69.2 60.0 64.2

Table 4.10: The performance breakdown per relation for CNN and BIDIRECT on
the development set.
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relations. A closer investigation reveals two facts: (i) the PHYS relation mentions

that are only correctly predicted by BIDIRECT involve long distances between two

entity mentions, such as the PHYS relation between “Some” (a person entity) and

“desert” (a location entity) in the following sentence: “Some of the 40,000 British

troops are kicking up a lot of dust in the Iraqi desert making sure that nothing is

left behind them that could hurt them.”, and (ii) the ART, ORG-AFF, GEN-AFF

relation mentions only correctly predicted by CNN contain patterns between the

two entity mentions that are short but meaningful enough to decide the relation

classes, such as “The Iraqi unit in possession of those guns” (the ART relation

between “unit” and “guns”), or “the al Qaeda chief operations officer” (the ORG-

AFF relation between “al Qaeda” and “officer”). The failure of CNN on the PHYS

relation mentions with long distances originates from its mechanism to model short

and consecutive k-grams (up to length 5 in our case), causing difficulty in captur-

ing long and/or non-consecutive patterns. BIDIRECT, on the other hand, fails to

predict the short (but expressive enough) patterns for ART, ORG-AFF, GEN-AFF

because it involves the hidden vectors that only model the context words outside

the short patterns, potentially introducing unnecessary and noisy information into

the max-pooling scores for prediction. Eventually, the combination of RNNs and

CNNs helps to compensate for the drawbacks of each model.

4.3 Related Work

For relation extraction/classification, most work on neural networks has focused

on the relation classification task. In particular, (Socher et al., 2012b) study the
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recursive NNs that recur over the tree structures while (Xu et al., 2015) investi-

gate recurrent NNs. Regarding CNNs, (Zeng et al., 2014) examine CNNs via the

sequential representation of sentences, (Santos et al., 2015a) explore a ranking loss

function with data cleaning while (Zeng et al., 2015) propose dynamic pooling and

multi-instance learning. For RE, (Yu et al., 2015) and (Gormley et al., 2015) work

on the feature-rich compositional embedding models. Finally, the only work that

combines NN architectures is due to (Liu et al., 2015) but it only focuses on the

stacking of the recursive NNs and CNNs for relation classification.

4.4 Conclusion

We present a CNN for relation extraction that emphasizes an unbalanced cor-

pus and minimizes usage of external supervised NLP toolkits for features. The

network uses multiple window sizes for filters, position embeddings for encoding

relative distances and pre-trained word embeddings for initialization in a non-

static architecture. The experimental results demonstrate the effectiveness of the

proposed CNN on both RC and RE.

In addition, we investigate different methods to combine CNNs, RNNs as well as

the hybrid models to integrate the log-linear model into the NNs. The experimental

results demonstrate that the stacking and majority voting between CNNs, RNNs

and their corresponding hybrid models are the best combination methods. We

achieve the state-of-the-art performance for both relation extraction and relation

classification.
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Chapter 5

Deep Learning for Event

Detection

This chapter focuses on the problem of event detection (ED) or trigger predic-

tion, i.e, identifying instances of specified types of events in text. Associated with

each event mention is a phrase, the event trigger (most often a single verb or nom-

inalization), which evokes that event. Our task, more precisely stated, involves

identifying event triggers and classifying them into specific types. For instance, ac-

cording to the ACE 2005 annotation guideline1, in the sentence “A police officer

was killed in New Jersey today”, an event detection system should be able to

recognize the word “killed” as a trigger for the event “Die”. This task is quite chal-

lenging, as the same event might appear in the form of various trigger expressions

and an expression might represent different events in different contexts. ED is a
1. https://www.ldc.upenn.edu/sites/www.ldc.upenn.edu/files/english-events-guidelines-v5.4.3.

pdf
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crucial component in the overall task of event extraction, which also involves event

argument discovery.

In order to develop deep learning models for event detection, we first show that a

customization of the CNN architecture in Section 4.1 can produce a highly effective

model with little need for feature engineering. We then extend this CNN model

to allow non-consecutive convolutions, thus further improving the performance for

ED. The works in this chapter have been published in (Nguyen and Grishman,

2015b) and (Nguyen and Grishman, 2016e).

5.1 Convolutional Neural Networks for Event

Detection

Recent systems for event extraction have employed either a pipeline architec-

ture with separate classifiers for trigger and argument labeling (Gupta and Ji, 2009;

Huang and Riloff, 2012; Ji and Grishman, 2008; Li et al., 2013a; Liao and Grish-

man, 2011; McClosky et al., 2011; Patwardhan and Rilof, 2009) or a joint inference

architecture that performs the two subtasks at the same time to benefit from their

inter-dependencies (Li et al., 2013b; Riedel and McCallum, 2011a, 2011b; Venu-

gopal et al., 2014). Both approaches have coped with the ED task by elaborately

hand-designing a large set of features (feature engineering) and utilizing the exist-

ing supervised natural language processing (NLP) toolkits and resources (i.e name

tagger, parsers, gazetteers etc) to extract these features for statistical classifiers.

In this section, we approach ED via a different perspective that relies on convo-
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lutional neural networks (CNN) to automatically learn features from sentences,

and to minimize the dependence on supervised toolkits and resources for features.

The CNN models in this section are very similar to those of Section 4.1, but we

need to customize them to capture the special structures for ED. To the best of

our knowledge, this is the first work on event detection via CNNs at the time of

publishing this work.

First, we evaluate CNNs for ED in the general setting and show that CNNs,

though not requiring complicated feature engineering, can still outperform the

state-of-the-art feature-based methods extensively relying on the other supervised

modules and manual resources for features. Second, we investigate CNNs in a

domain adaptation (DA) setting for ED. We demonstrate that CNNs significantly

outperform the traditional feature-based methods with respect to generalization

performance across domains due to: (i) their capacity to mitigate the error prop-

agation from the pre-processing modules for features, and (ii) the use of word

embeddings to induce a more general representation for event trigger candidates.

We believe that this is also the first research on domain adaptation using CNNs.

5.1.1 Model

We formalize the event detection problem as a multi-class classification problem.

Given a sentence, for every token in that sentence, we want to predict if the

current token is an event trigger: i.e, does it express some event in the pre-defined

event set or not (Li et al., 2013b)? The current token along with its context in

the sentence constitute an event trigger candidate or an example in multi-class

131



CHAPTER 5. DEEP LEARNING FOR EVENT DETECTION

classification terms. In order to prepare for CNNs, we limit the context to a

fixed window size by trimming longer sentences and padding shorter sentences

with a special token when necessary. Let 2n + 1 be the fixed window size, and

W = [w0, w1, . . . , wn, . . . , w2n−1, w2n] be some trigger candidate where the current

token is positioned in the middle of the window (token wn). Before entering the

CNNs, each token wi is transformed into a real-valued vector by looking up the

following embedding tables to capture different characteristics of the token:

- Word Embedding Table (initialized by some pre-trained word embed-

dings): to capture the hidden semantic and syntactic properties of the tokens

(Collobert and Westion, 2008; Turian et al., 2010).

- Position Embedding Table: to embed the relative distance i − n of the

token wi to the current token wn. In practice, we initialize this table randomly.

- Entity Type Embedding Table: If we further know the entity mentions

and their entity types2 in the sentence, we can also capture this information for

each token by looking up the entity type embedding table (initialized randomly)

using the entity type associated with each token. We employ the BIO annotation

scheme to assign entity type labels to each token in the trigger candidate using the

heads of the entity mentions.

For each token wi, the vectors obtained from the three look-ups above are

concatenated into a single vector xi to represent the token. As a result, the original

event trigger W is transformed into a matrix:
2. For convenience, when referring to entities in this work, we always include ACE timex

and values.
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X = [x0, x1, . . . , xn, . . . , x2n−1, x2n] (5.1)

of size d × (2n + 1) (d is the dimensionality of the concatenated vectors of the

tokens).

The matrix representation x is then passed through a convolution layer, a max

pooling layer and a softmax at the end to perform classification (as in Section 4.1).

In the convolution layer, we have a set of feature maps (filters) {f1, f2, . . . , fm} for

the convolution operation. Each feature map fi corresponds to some window size

k and can be essentially seen as a weight matrix of size d×k. Figure 5.1 illustrates

the proposed CNN.

Figure 5.1: Convolutional Neural Network for Event Detection.

Again, similar to Section 4.1, the gradients are computed using back-propagation;
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regularization is implemented by dropout (Srivastava et al., 2014); and training is

done via stochastic gradient descent with shuffled mini-batches and the AdaDelta

update rule (Zeiler, 2012). During the training, we also optimize the weights of

the three embedding tables at the same time to reach an effective state.

5.1.2 Experiments

5.1.2.1 Dataset, Hyperparameters and Resources

As the benefit of multiple window sizes in the convolution layer has been demon-

strated in the previous work (Kalchbrenner et al., 2014; Kim, 2014; Nguyen and

Grishman, 2015a), in the experiments below, we use window sizes in the set {2, 3,

4, 5} to generate feature maps. We utilize 150 feature maps for each window size

in this set. The window size for triggers is set to 31 while the dimensionality of

the position embeddings and entity type embeddings is 503. We inherit the values

for the other parameters from (Kim, 2014), i.e, the dropout rate ρ = 0.5, the

mini-batch size = 50, the hyperparameter for the Frobenius norms = 3. Finally,

we employ the pre-trained word embeddings word2vec with 300 dimensions from

(Mikolov et al., 2013b) for initialization.

We evaluate the presented CNN over the ACE 2005 corpus for event detection.

For comparison purposes, we utilize the same test set with 40 newswire articles (672

sentences), the same development set with 30 other documents (836 sentences) and

the same training set with the remaning 529 documents (14,849 sentences) as the

previous studies on this dataset (Ji and Grishman, 2008; Li et al., 2013b; Liao and
3. These values are chosen for their best performance on the development data.

134



CHAPTER 5. DEEP LEARNING FOR EVENT DETECTION

Grishman, 2010b). The ACE 2005 corpus has 33 event subtypes that, along with

one class “None” for the non-trigger tokens, constitutes a 34-class classification

problem.

In order to evaluate the effectiveness of the position embeddings and the entity

type embeddings, Table 5.1 reports the performance of the proposed CNN on the

development set when these embeddings are either included or excluded from the

systems. With the large margin of performance, it is very clear from the table

that the position embeddings are crucial while the entity embeddings are also very

useful for CNNs on ED.

Systems P R F
-Entity Types -Position 16.8 12.0 14.0

+Position 75.0 63.0 68.5
+Entity Types -Position 17.0 15.0 15.9

+Position 75.6 66.4 70.7

Table 5.1: Performance on the development set.

For the experiments below, we examine the CNNs in two scenarios: excluding

the entity type embeddings (CNN1) and including the entity type embeddings

(CNN2). We always use position embeddings in these two scenarios.

5.1.2.2 Performance Comparison

The state-of-the-art systems for event detection on the ACE 2005 dataset have

followed the traditional feature-based approach with rich hand-designed feature

sets, and statistical classifiers such as MaxEnt and perceptron for structured pre-

diction in a joint architecture (Hong et al., 2011; Li et al., 2013b). In this section,
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we compare the proposed CNNs with these state-of-the-art systems on the blind

test set. Table 5.2 presents the overall performance of the systems with gold-

standard entity mention and type information4.

Methods P R F
Sentence-level in (Hong et al., 2011) 67.6 53.5 59.7
MaxEnt with local features in (Li et al., 2013b) 74.5 59.1 65.9
Joint beam search with local features in (Li et al., 2013b) 73.7 59.3 65.7
Joint beam search with local and global features in (Li
et al., 2013b)

73.7 62.3 67.5

Cross-entity in (Hong et al., 2011) † 72.9 64.3 68.3
CNN1: CNN without any external features 71.9 63.8 67.6
CNN2: CNN augmented with entity types 71.8 66.4 69.0

Table 5.2: Performance with gold-standard entity mentions and types. † beyond
sentence level.

As we can see from the table, considering the systems that only use sentence-

level information, CNN1 significantly outperforms the MaxEnt classifier as well as

the joint beam search with local features from (Li et al., 2013b) (an improvement of

1.6% in F1 score), and performs comparably with the joint beam search approach

using both local and global features (Li et al., 2013b). This is remarkable since

CNN1 does not require any external features5, in contrast to the other feature-

based systems that extensively rely on such external features to perform well. More

interestingly, when the entity type information is incorporated into CNN1, we

obtain CNN2 that still only needs sentence level information but achieves the
4. Entity mentions and types are used to introduce more features into the systems.
5. External features are the features generated from the supervised NLP modules and

manual resources such as parsers, name tagger, entity mention extractors (either automatic or
manual), gazetteers, etc.
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state-of-the-art performance for this task (an improvement of 1.5% over the best

system with only sentence level information (Li et al., 2013b)).

Except for the CNN1, all the systems reported in Table 5.2 employ the gold-

standard (perfect) entities mentions and types from manual annotation which

might not be available in practice. Table 5.3 compares the performance of CNN1

and the feature-based systems in a more realistic setting, where entity mentions

and types are acquired from an automatic high-performing name tagger and infor-

mation extraction system (Li et al., 2013b). Note that CNN1 is eligible for this

comparison as it does not utilize any external features, thus avoiding usage of the

name tagger and the information extraction system to identify entity mentions

and types.

Methods F
Sentence level in (Ji and Grishman, 2008) 59.7
MaxEnt with local features in (Li et al., 2013b) 64.7
Joint beam search with local features in (Li et al., 2013b) 63.7
Joint beam search with local and global features in (Li et al.,
2013b)

65.6

CNN1: CNN without any external features 67.6

Table 5.3: Performance with predicted entity mentions and types.

5.1.2.3 Domain Adaptation Experiment

We evaluate the robustness across domains of the CNN models in this section.

In particular, we compare the proposed CNNs with the feature-based systems

under the domain adaptation setting for event detection (as in Chapters 2 and 3).

In such a setting, we take training data in some source domain to learn models
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that can work well on target domains. The target domains are supposed to be so

dissimilar from the source domain that the learning techniques would suffer from

a significant performance loss when trained on the source domain and applied to

the target domains. We refer the reader to Chapters 1 and 2 for a description of

the domain adaptation setting. To make it clear, we address the unsupervised DA

problem in this section, i.e, no training data in the target domains (Blitzer et al.,

2006; Nguyen et al., 2015c; Plank and Moschitti, 2013).

We also run the experiments in this part over the ACE 2005 dataset but focus

more on the difference between domains. Following the common practice of domain

adaptation research on this dataset (Nguyen and Grishman, 2014a; Nguyen et al.,

2015c; Plank and Moschitti, 2013), we use news (the union of bn and nw) as the

source domain and bc, cts, wl as three different target domains. We take half of

bc as the development set and use the remaining data for testing.

Table 5.4 presents the performance of five systems: the MaxEnt classifier with

the local features from (Li et al., 2013b) (called MaxEnt); the state-of-the-art joint

beam search systems with: (i) only local features (called Joint+Local); and (ii)

both local and global features (called Joint+Local+Global) in (Li et al., 2013b)

(the baseline systems); CNN1 and CNN2 via 5-fold cross validation. For each

system, we train a model on the training set of the source domain news and report

the performance of this model on the test set of the source domain (in-domain

performance) as well as the performance of the model on the three target domains

bc, cts and wl (out-of-domain performance)6.
6. The performance of the feature-based systems MaxEnt, Joint+Local and

Joint+Local+Global are obtained from the actual systems in (Li et al., 2013b).
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System In-domain(bn+nw) bc cts wl
P R F P R F P R F P R F

MaxEnt 74.5 59.4 66.0 70.1 54.5 61.3 66.4 49.9 56.9 59.4 34.9 43.9
Joint beam search in (Li et al., 2013b)
Joint+Local 73.5 62.7 67.7 70.3 57.2 63.1 64.9 50.8 57.0 59.5 38.4 46.7
Joint+Local+Global 72.9 63.2 67.7 68.8 57.5 62.6 64.5 52.3 57.7 56.4 38.5 45.7
CNN1 70.9 64.0 67.3 71.0 61.9 66.1† 64.0 55.0 59.1 53.2 38.4 44.6
CNN2 69.2 67.0 68.0 70.2 65.2 67.6† 68.3 58.2 62.8† 54.8 42.0 47.5

Table 5.4: In-domain (first column) and Out-of-domain performance for event
detection (columns two to four). Cells marked with †designate CNN models that
significantly outperform (p < 0.05) all the reported feature-based methods on the
specified domain.

The main conclusions from the table include:

(i) The baseline systems MaxEnt, Joint+Local, Joint+Local+Global achieve

high performance on the source domain, but degrade dramatically on the target

domains due to the domain shifts.

(ii) Comparing CNN1 and the baseline systems, we see that CNN1 performs

comparably with the baseline systems on the source domain (in-domain perfor-

mance) (as expected), substantially outperforms the baseline systems on two of

the three target domains (i.e, bc and cts), and is only less effective than the joint

beam search approach on the wl domain; (iii) Finally and most importantly, we

consistently achieve the best adaptation performance across all the target domains

with CNN2 by only introducing entity type information into CNN1. In fact, CNN2

significantly outperforms the feature-based systems with p < 0.05 and large mar-

gins of about 5.0% on the domains bc and cts, clearly testifying to the benefits of

CNNs on DA for ED.
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5.2 Non-consecutive Convolutional Neural

Networks for Event Detection

The prior CNN models for ED are characterized by the temporal convolution

operators that linearly map the vectors for the k-grams in the sentences into the

feature space. Such k-gram vectors are obtained by concatenating the vectors of

the k consecutive words in the sentences (Chen et al., 2015; Nguyen and Grishman,

2015b). In other words, the previous CNN models for ED only focus on modeling

the consecutive k-grams. Unfortunately, such consecutive mechanism is unable to

capture the long-range and non-consecutive dependencies that are necessary to the

prediction of trigger words. For instance, consider the following sentence with the

trigger word “leave” from the ACE 2005 corpus:

The mystery is that she took the job in the first place or didn’t leave earlier.

The correct event type for the trigger word “leave” in this case is “End-Org”

(ending a position). However, the previous CNN models might not be able to

detect “leave” as an event trigger or incorrectly predict its type as “Movement”.

This is caused by their reliance on the consecutive local k-grams such as “leave

earlier”. Consequently, we need to resort to the non-consecutive pattern “job leave”

to correctly determine the event type of “leave” in this case.

Guided by this intuition, we propose to improve the previous CNN models

for ED by operating the convolution on all possible non-consecutive k-grams in

the sentences. We aggregate the resulting convolution scores via the max-pooling

function to unveil the most important non-consecutive k-grams for ED. The aggre-
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gation over all the possible non-consecutive k-grams is made efficient with dynamic

programming.

Note that our work is related to (Lei et al., 2015) who employ the non-consecutive

convolution for the sentence and news classification problems. Our work is different

from Lei et al., 2015 in that we model the relative distances of words to the trig-

ger candidates in the sentences via position embeddings, while (Lei et al., 2015)

use the absolute distances between words in the k-grams to compute the decay

weights for aggregation. To the best of our knowledge, this is the first work on

non-consecutive CNN for ED.

We systematically evaluate the proposed model in the general setting as well

as the domain adaptation setting. The experiment results demonstrate that our

model significantly outperforms the current state-of-the-art models in such set-

tings.

5.2.1 Model

We also formalize ED as a multi-class classification problem as in the previous

section. In order to make it compatible with the previous work, we follow the

same preprocessing steps as the previous section (Section 5.1), i.e, limiting the

context of the event trigger candidates to some fixed window size, transforming

every token in the context into a vector using its word embeddings, position em-

beddings and entity type embeddings. The result of this process is the matrix

X = [x0, x1, . . . , xn, . . . , x2n−1, x2n] to represent the input trigger candidate W as

we can see in Equation 5.1. This matrix can be seen as a sequence of real-valued
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vectors X = (x0, x1, . . . , x2n) that will be used as input in the following CNN

models.

5.2.1.1 The Traditional CNN

Given the window size k, the traditional CNN models (as in the previous section

5.1) for ED consider the following set of 2n+ 1 consecutive k-gram vectors:

C = {ui : 0 ≤ i ≤ 2n} (5.2)

Vector ui is the concatenation of the k consecutive vectors preceding position i in

the sequence X:

ui = [xi−k+1, xi−k+2, . . . , xi] ∈ Rdk (5.3)

where the out-of-index vectors are simply set to all zeros.

The core of the CNN models is the convolution operation, specified by the filter

vector f ∈ Rdk. In CNNs, f can be seen as a feature extractor for the k-grams that

operates via the dot product with each element in C. This produces the following

convolution score set:

S(C) = {fTui : 0 ≤ i ≤ 2n} (5.4)

In the next step, we aggregate the features in S with themax function, resulting

in the aggregation score:

pkf = maxS(C) = max{si : 0 ≤ i ≤ 2n} (5.5)
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Afterward, pkf is often transformed by a non-linear function g7 to generate the

transformed score g(pkf ), functioning as the extracted feature for the initial trigger

candidate W .

We can then repeat this process for different window sizes k and filters f , gen-

erating multiple features g(pkf ) to capture various aspects of the trigger candidate

W . Finally, such features are concatenated into a single representation vector for

W , to be fed into a feed-forward neural network with a softmax layer in the end

to perform classification.

5.2.1.2 The Non-consecutive CNN

As mentioned in the introduction, the limitation of the previous CNN models

for ED is the inability to encode the non-consecutive k-grams that might be crucial

to the trigger prediction. This limitation originates from Equation 5.2 in which

only the consecutive k-gram vectors are considered. In order to overcome such

limitation, we propose to model all possible non-consecutive k-grams in the trigger

candidate, leading to the following set of non-consecutive k-gram vectors:

N = {vi1i2...ik : 0 ≤ i1 < i2 < . . . < ik ≤ 2n}

where: vi1i2...ik = [xi1 , xi2 , . . . , xik ] ∈ Rdk and the number of elements in N is

|N | =
(
2n+1
k

)
.

The non-consecutive CNN model then follows the procedure of the traditional

CNN model in Section 5.2.1.1 to compute the representation vector for classifi-

cation. The only difference is that the computation is done on the input set
7. The tanh function in this work.
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N instead of C. In particular, the convolution score set in this case would be

S(N) = {fTv : v ∈ N}, while the aggregating score would be:

pkf = maxS(N) = max{s : s ∈ S(N)} (5.6)

5.2.1.3 Implementation

Note that the maximum operation in Equation 5.5 only requires O(n) opera-

tions while the naive implementation of Equation 5.6 would need O(|N |) = O(nk)

operations. In this work, we employ the dynamic programming (DP) procedure

below to reduce the computation time for Equation 5.6.

Assuming the filter vector f is the concatenation of the k vectors f1, . . . , fk ∈ Rd:

f = [f1, . . . , fk], Equation 5.6 can be re-written by:

pkf =max{fT1 xi1 + . . .+ fTk xik

: 0 ≤ i1 < i2 < . . . < ik ≤ 2n}
(5.7)

Let Dj
t be the dynamic programming table representing the maximum convo-

lution score for the sub-filter [f1, . . . , fj] over all possible non-consecutive j-gram

vectors in the subsequence (x0, x1, . . . , xt) of X:

Dj
t =max{fT1 xi1 + . . .+ fTj xij

: 0 ≤ i1 < i2 < . . . < ij ≤ t}
(5.8)

where 1 ≤ j ≤ k, j − 1 ≤ t ≤ 2n.

Note that pkf = Dk
2n.
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We can solve this DP problem by the following recursive formulas8:

Dj
t = max{Dj

t−1, D
j−1
t−1 + fTj xt} (5.9)

The computation time for this procedure is O(kn) and remains linear in the

sequence length.

5.2.1.4 Training

We train the networks using stochastic gradient descent with shuffled mini-

batches, the AdaDelta update rule, back-propagation and dropout. During the

training, we also optimize the embedding tables (i.e, word, position and entity type

embeddings) to achieve the optimal states. Finally, we rescale the weights whose

Frobenius norms exceed a predefined threshold (Nguyen and Grishman, 2015a).

5.2.2 Experiments

We apply the same parameters, resources and the ACE 2005 corpus as Section

5.1.2.1 (Nguyen and Grishman, 2015b) to ensure the compatible comparison.

5.2.2.1 The General Setting

We compare the non-consecutive CNN model (NC-CNN) with the state-of-the-

art systems on the ACE 2005 dataset in Table 5.5. These systems include:

1) The feature-based systems with rich hand-designed feature sets as in Sec-

tion 5.1, including: the MaxEnt model with local features in (Li et al., 2013b)
8. We ignore the base cases as they are trivial.
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(MaxEnt); the structured perceptron model for joint beam search with local fea-

tures (Joint+Local), and with both local and global features in (Li et al., 2013b)

(Joint+Local+Global); and the sentence-level and cross-entity models in (Hong et

al., 2011).

2) The neural network models, i.e, the CNN model in Section 5.1 (Nguyen and

Grishman, 2015b) (CNN), the dynamic multi-pooling CNN model (DM-CNN) in

(Chen et al., 2015) and the bidirectional recurrent neural networks (B-RNN) in

(Nguyen et al., 2016a).

3) The probabilistic soft logic based model to capture the event-event correla-

tion in (Liu et al., 2016).

Methods F
Sentence-level in (Hong et al., 2011) 59.7
MaxEnt (Li et al., 2013b) 65.9
Joint+Local (Li et al., 2013b) 65.7
Joint+Local+Global (Li et al., 2013b) 67.5
Cross-entity in (Hong et al., 2011) † 68.3
Probabilistic soft logic (Liu et al., 2016) † 69.4
CNN (Nguyen and Grishman, 2015b) 69.0
DM-CNN (Chen et al., 2015) 69.1
B-RNN (Nguyen et al., 2016a) 69.3
NC-CNN 71.3

Table 5.5: Performance with gold-standard entity mentions and types. † beyond
sentence level.

The most important observation from the table is that the non-consecutive

CNN model significantly outperforms all the compared models with a large mar-

gin. In particular, NC-CNN is 2% better than B-RNN (Nguyen et al., 2016a),
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the state-of-the-art system that only relies on the context information within the

sentences of the trigger candidates. In addition, although NC-CNN only employs

the sentence-level information, it is still better than the other models that further

exploit the document-level information for prediction (an improvement of 1.9%

over the probabilistic soft logic based model in (Liu et al., 2016)). Finally, com-

paring NC-CNN and the CNN model in (Nguyen and Grishman, 2015b), we see

that the non-consecutive mechanism significantly improves the performance of the

traditional CNN model for ED (up to 2.3% in absolute F-measures with p < 0.05).

5.2.2.2 The Domain Adaptation Experiments

This section evaluates the robustness of NC-CNN for ED in the domain adap-

tation setting. The setting is exactly the same as those in Section 5.1.2.3. The

only exception is with respect to the domain un of the ACE 2005 dataset that is

also used as one of the target domains (besides bc, cts and wl) in this section.

We report the performance on un to further demonstrate the benefit of NC-CNN.

Table 5.6 shows the performance of the systems in the domain adaptation setting

(i.e, similar to Table 5.4).

System In-domain(bn+nw) bc cts wl un
P R F P R F P R F P R F P R F

MaxEnt 74.5 59.4 66.0 70.1 54.5 61.3 66.4 49.9 56.9 59.4 34.9 43.9 - - -
Joint+Local 73.5 62.7 67.7 70.3 57.2 63.1 64.9 50.8 57.0 59.5 38.4 46.7 - - -
Joint+Local+Global 72.9 63.2 67.7 68.8 57.5 62.6 64.5 52.3 57.7 56.4 38.5 45.7 - - -
B-RNN 71.4 63.5 67.1 70.7 62.1 66.1 70.0 54.4 61.0 52.7 38.3 44.2 66.2 46.0 54.1
DM-CNN 75.9 62.7 68.7 75.3 59.3 66.4 74.8 52.3 61.5 59.2 37.4 45.8 72.2 44.5 55.0
CNN 69.2 67.0 68.0 70.2 65.2 67.6 68.3 58.2 62.8 54.8 42.0 47.5 64.6 49.9 56.2
NC-CNN 74.9 66.5 70.4† 73.6 64.7 68.8† 71.7 57.3 63.6 57.8 40.3 47.4 71.7 49.0 58.1†

Table 5.6: Performance on the source domain and on the target domains. Cells
marked with †designates that NC-CNN significantly outperforms (p < 0.05) all
the compared methods on the specified domain.

147



CHAPTER 5. DEEP LEARNING FOR EVENT DETECTION

We notice that the performance of the systems MaxEnt, Joint+Local, B-RNN,

CNN and Joint+Local+Global is obtained from the actual systems in the original

work (Li et al., 2013b; Nguyen and Grishman, 2015b; Nguyen et al., 2016a). The

performance of DM-CNN, on the other hand, is from our re-implementation of the

system in (Chen et al., 2015) using the same hyper-parameters and resources as

CNN and NC-CNN for a fair comparison.

From the table, we see that NC-CNN is significantly better than the other

models on the source domain. This is consistent with the conclusions in Section

5.2.2.1 and further confirms the effectiveness of NC-CNN. More importantly, NC-

CNN outperforms CNN and the other models on the target domains bc, cts and

un, and performs comparably with CNN on wl. The performance improvement is

significant on bc and un (p < 0.05), thereby verifying the robustness of NC-CNN

for ED across domains.

5.3 Related Work

There have been three major approaches to event detection in the literature.

First, the pattern-based approach explores the application of patterns to identify

the instances of events, in which the patterns are formed by predicates, event trig-

gers and constraints on the syntactic context (Cao et al., 2015a, 2015b; Grishman

et al., 2005).

Second, the feature-based approach relies on linguistic intuition to design effec-

tive feature sets for statistical models for ED, ranging from the local sentence-level

representations (Ahn, 2006; Li et al., 2013a), to the higher level structures such
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as the cross-sentence or cross-event information (Gupta and Ji, 2009; Hong et al.,

2011; Ji and Grishman, 2008; Li et al., 2015; Liao and Grishman, 2010a, 2010b,

2011; McClosky et al., 2011; Patwardhan and Rilof, 2009). Some recent work on

the feature-based approach has also investigated event trigger detection in the joint

inference with event argument prediction (Li et al., 2013b; Poon and Vanderwende,

2010; Riedel et al., 2009; Riedel and McCallum, 2011a, 2011b; Venugopal et al.,

2014) to benefit from their inter-dependencies.

Finally, neural networks have been introduced into ED very recently with the

early work on convolutional neural networks (Chen et al., 2015; Nguyen and Gr-

ishman, 2015b). The other work includes: (Nguyen et al., 2016a) that employs

bidirectional recurrent neural networks to perform event trigger and argument

labeling jointly, (Jagannatha and Yu, 2016) that extracts event instances from

health records with recurrent neural networks, (Nguyen et al., 2016b) that pro-

poses a two-stage training algorithm for event extension with neural networks and

(Nguyen et al., 2016g) that applies non-consecutive CNNs for event nugget tasks.

5.4 Conclusion

We present a CNN for event detection that automatically learns effective fea-

ture representations from pre-trained word embeddings, position embeddings as

well as entity type embeddings, and reduces the error propagation. We conducted

experiments to compare the proposed CNN with the state-of-the-art feature-based

systems in both the general setting and the domain adaptation setting. The ex-

perimental results demonstrate the effectiveness as well as the robustness across
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domains of the CNN. In addition, we extend such CNN architecture to employ

non-consecutive convolutions, yielding the state-of-the-art performance for ED on

both the general setting and the domain adaptation setting.
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Chapter 6

Memory-augmented Networks for

Joint Inference in Information

Extraction

We can view the tasks in the information extraction (IE) pipeline in Figure

1.2 as sequences of prediction tasks. For instance, for trigger prediction or event

detection, a document can be seen as a sequence of words in which a prediction

is performed for every word in the sequence (i.e, predicting whether a word is a

trigger word of some event types or not). For relation extraction, the sequences

of prediction tasks corresponds to the sequences of entity mention pairs appearing

in the same sentences of the documents. Consequently, the whole information

extraction pipeline translates into a very long sequence of prediction tasks by

concatenating the sequences of the individual tasks.
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Given this view, the previous chapters and work on deep learning for informa-

tion extraction have only concerned solving the predictions in the sequences for IE

separately or independently. An illustration is given in Figure 6.1.

Figure 6.1: A sequence of prediction tasks in information extraction.

As we can see from the figure, there are n prediction tasks in the sequence

indexed from 1 to n. Each prediction task has its corresponding input and output.

The current deep learning work for IE has essentially modeled every task in this

sequence by neural networks that run separately and carry no information from

one step (task) to the other steps. Among several problems, such independent

modeling is unable to capture long range dependencies or interdependencies among

the outputs of the prediction tasks in the sequence that might be important to the

prediction. For example, consider the following sentence for the task of event

detection:

At least 10 people were killed when US drones fired missiles at three vehicles,

an senior security official told AFP.

There are two event trigger words in this sentence: “killed” for the event class
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(type) “Die” and “fired” for the event type “Attack”. It is often simple to recognize

the event type “Die” for “killed” based on the word itself, but it is more challenging

to identify the event type for “fired” as this word is more ambiguous (i.e, having

multiple possible meanings depending on context such as “Attack”, “End Position”

etc). However, if we notice that a “Die” event is very likely followed by an “Attack”

event appearing in the same sentence, we can infer that the event type for “fired”

should be “Attack” more easily based on the event type of “killed”. Note that such

dependencies can occur between event types of words that are very far from each

other in the sentences (i.e, long-range dependencies). As a result, if we solve the

prediction tasks for words in the sentences independently, we will not be able to

capture those interdependencies.

6.1 General Framework

In this dissertation, we propose a general memory-augmented neural network

to allow the inclusion of the long-range dependencies into the modeling of the

prediction sequences in IE. An overview of this framework is shown in Fiture 6.2.

The main proposal from this figure includes:

1. Instead of solving the prediction tasks in the sequence separately, we will

simultaneously perform such prediction tasks from left to right (joint modeling or

joint inference).

2. During the modeling process from 1 to n, we will maintain a memory at

every step. The memory of the current step i is computed from the memory of the

previous step i− 1 and the output of the current step. In general, the memory at
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Figure 6.2: Memory-augmented neural networks.

step i is expected to memorize or summarize the outputs that we have made so

far (i.e, from step 1 to i).

3. When we make a prediction for the step i + 1, we will use the memory

from the previous step (i.e, step i) in addition to the current input as the evidence.

This mechanism helps to incorporate the previous decisions (including the previous

decisions or labels that are very far from the current step) into the prediction of

the current step, thus being able to exploit the long-range dependencies among

outputs of the prediction tasks.

In order to demonstrate the effectiveness of such memory-augmented neural

networks, we seek their applications on two important problems of information

extraction, i.e, event extraction (EE) and entity linking (EL) in the following

sections. The works in this chapter have been published in (Nguyen et al., 2016a)

and (Nguyen et al., 2016f).
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6.2 Event Extraction with Memory-augmented

Neural Networks

6.2.1 Event Extraction Task

We focus on the EE task of the Automatic Context Extraction (ACE) evalua-

tion1. ACE defines an event as something that happens or leads to some change

of state. We employ the following terminology:

• Event mention: a phrase or sentence in which an event occurs, including

one trigger and an arbitrary number of arguments.

• Event trigger: the main word that most clearly expresses an event occur-

rence.

• Event argument: an entity mention (including temporal expression and

value (e.g. Job-Title)) that servers as a participant or attribute with a specific

role in an event mention.

ACE annotates 33 types2 (e.g., “Attack, “Die”, “Start-Position”) for event men-

tions that also correspond to the types of the event triggers. Each event type has

its own set of roles to be filled by the event arguments. For instance, the roles for

the “Die” event include “Place”, “Victim” and “Time”. The total number of roles

for all the event types is 36.
1. http://projects.ldc.upenn.edu/ace
2. These are actually 33 subtypes of the 8 event types annotated in the ACE 2005 dataset,

but we call them event types here for convenience.
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Given an English text document, an event extraction system needs to recognize

event triggers with specific types and their corresponding arguments with the roles

for each sentence. Following the previous work (Chen et al., 2015; Li et al., 2013b;

Liao and Grishman, 2011), we assume that the argument candidates (i.e, the entity

mentions, temporal expressions and values) are provided (by the ACE annotation)

to the event extraction systems.

For instance, we are supposed to extract two event mentions in the following

sentence:

In Baghdad, a cameraman died when an American tank fired on the street.

The first event mention is associated with the trigger word “died” of type “Die”,

and has “cameraman” as the “Victim” role and “Baghdad” as the “Place” role. The

second event mention, on the other hand, corresponds to the trigger word “fired”

of type “Attack”, and involves “cameraman” for the “Target” role and “Baghdad”

for the “Place” role.

6.2.2 Prior Deep Learning Work for Event Extraction

This section describes the previous deep learning work for event extraction that

motivates our current work.

Assume that we have a sentence with 5 words [W1,W2,W3,W4,W5] in which

words W2 and W5 are the heads of two entity mentions appearing in this sentence.

Figure 6.3 shows the prediction tasks in event extraction we need to solve for this

sentence.

The first column of this figure represents the trigger prediction tasks (rectangles)
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Figure 6.3: Prediction tasks for event extraction.

for every word (i.e, from wordW1 to wordW5) in this sentence while the rectangles

of the second and the third column correspond to the argument prediction tasks for

the entity mentionsW2 andW5 respectively. For instance, the argument prediction

task for W3 and W2 (the rectangle in the middle of the figure) aims at predicting

the role ofW2 with respect to the event associated with trigger wordW3 (assuming

W3 is a trigger word).

Under this view, the prior deep learning work for EE has only modeled the tasks

in the rectangles independently via some neural networks (Chen et al., 2015), ig-
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noring long-range dependencies among the tasks. One such interdependence is

the correlations among the event types within the same sentences that have been

demonstrated at the beginning of this chapter. Another important interdepen-

dence in EE is regarding to the argument roles and the event types. For example,

reconsider the example sentence with two event mentions we have in Section 6.2.1:

In Baghdad, a cameraman died when an American tank fired on the street.

It is often simple for the argument classifiers of the previous deep learning

models for EE to realize that “cameraman” is the “Target” argument of the “Die”

event due to the proximity between “cameraman” and “died” in this sentence.

However, as “cameraman” is far away from “fired”, the argument classifiers in

such models might fail to recognize “cameraman” as the “Target” argument for the

event “Attack” with their local features. Fortunately, we can overcome this issue

by relying on the global features to encode the fact that a “Victim” argument for

the “Die” event is often the “Target” argument for the “Attack” event in the same

sentence. Again, exploiting such interdependencies is impossible in the prior deep

learning models.

In order to address such limitations, we can apply the proposed memory-

augmented neural networks to perform EE. In particular, taking the example with

5 words in the sentence above as an example, we simultaneously (jointly) solve

the tasks (rectangles) in Figure 6.3 using the order specified in Figure 6.4 (joint

modeling). At every step along that order, we organize a memory to store the

prediction outputs in the previous steps, and use such memories as additional ev-

idence in the next predictions to capture the interdependencies. A detailed joint
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Figure 6.4: Memory-augmented neural networks for event extraction.

model for EE will be presented in the next section. Note that we often call the

memory-augmented networks for EE as the joint models in the following for con-

venience.

6.2.3 Model

We formalize the EE task as follow. Let W = [w1, w2, . . . , wn] be a sentence

where n is the sentence length and wi is the i-th token. Also, let E = [e1, e2, . . . , ek]
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be the entity mentions3 in this sentence (k is the number of the entity mentions

and can be zero). Each entity mention comes with the offsets of the head and the

entity type. We further assume that i1, i2, . . . , ik be the indexes of the last words

of the mention heads for e1, e2, . . . , ek, respectively.

In EE, for every token wi in the sentence, we need to predict the event type

(if any) for it. If wi is a trigger word for some event of interest, we then need to

predict the roles (if any) that each entity mention ej plays in such event.

The joint model for event extraction in this work consists of two phases: (i) the

encoding phase that applies recurrent neural networks to induce a more abstract

representation of the sentence, and (ii) the prediction phase that uses the new repre-

sentation to perform event trigger and argument role identification simultaneously

for W . Figure 6.5 shows an overview of the model.

6.2.3.1 Encoding

Sentence Encoding

In the encoding phase, we first transform each token wi into a real-valued vector

xi using the concatenation of the following three vectors:

1. The word embedding vector of wi: This is obtained by looking up a pre-

trained word embedding table EMB (Collobert and Westion, 2008; Mikolov et al.,

2013b; Turian et al., 2010).

2. The real-valued embedding vector for the entity type of wi: This vector is

motivated from the prior work (Nguyen and Grishman, 2015b) and generated by

looking up the entity type embedding table (initialized randomly) for the entity
3. i.e, including ACE entity mentions, times and values.
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Figure 6.5: The joint EE model for the input sentence “a man died when a tank fired
in Baghdad” with local context window d = 1. We only demonstrate the memory
matrices Garg/trg

i in this figure. Green corresponds to the trigger candidate “died”
at the current step while violet and red are for the entity mentions “man” and
“Baghdad” respectively.

type of wi. Note that we also employ the BIO annotation schema to assign entity

type labels to each token in the sentences using the heads of the entity mentions

as do (Nguyen and Grishman, 2015b).

3. The binary vector whose dimensions correspond to the possible relations

between words in the dependency trees. The value at each dimension of this vector

is set to 1 only if there exists one edge of the corresponding relation connected to

wi in the dependency tree of W . This vector represents the dependency features

that are shown to be helpful in the previous research (Li et al., 2013b).

Note that we do not use the relative position features, unlike the prior work on

neural networks for EE (Chen et al., 2015; Nguyen and Grishman, 2015b) because
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we predict the whole sentence for triggers and argument roles jointly, thus having

no fixed positions for anchoring in the sentences.

The transformation from the token wi to the vector xi essentially converts the

input sentence W into a sequence of real-valued vectors X = [x1, x2, . . . , xn], to be

used by recurrent neural networks to learn a more effective representation.

Recurrent Neural Networks

Consider the input sequence X = [x1, x2, . . . , xn]. At each step i, we compute

the hidden vector −→hi based on the current input vector xi and the previous hidden

vector −−→hi−1, using the non-linear transformation function Φ: −→hi = Φ(xi,
−−→
hi−1).

This recurrent computation is done over X to generate the hidden vector sequence

[
−→
h1,
−→
h2, . . . ,

−→
hn], denoted by −−−→RNN([x1, x2, . . . , xn]) = [

−→
h1,
−→
h2, . . . ,

−→
hn].

An important characteristics of the recurrent mechanism is that it adaptively

accumulates the context information from position 1 to i into the hidden vector
−→
hi , making −→hi a rich representation. However, −→hi is not sufficient for the event

trigger and argument predictions at position i as such predictions might need

to rely on the context information in the future (i.e, from position i to n). In

order to address this issue, we run a second RNN in the reverse direction from xn

to x1 to generate the second hidden vector sequence: ←−−−RNN[(xn, xn−1, . . . , x1)] =

[
←−
hn,
←−−
hn−1, . . . ,

←−
h1] in which ←−hi summarizes the context information from position

n to i. Eventually, we obtain the new representation [h1, h2, . . . , hn] for X by

concatenating the hidden vectors in [
−→
h1,
−→
h2, . . . ,

−→
hn] and [

←−
hn,
←−−
hn−1, . . . ,

←−
h1]. Note

that hi essentially encapsulates the context information over the whole sentence

(from 1 to n) with a greater focus on position i. Finally, we use Gated Recurrent

162



CHAPTER 6. MEMORY-AUGMENTED NETWORKS FOR JOINT
INFERENCE IN INFORMATION EXTRACTION

Units for the non-linear function Φ to mitigate the vanishing gradient problem

(Bengio et al., 1994; Cho et al., 2014a; Chung et al., 2014).

6.2.3.2 Prediction

In order to jointly predict triggers and argument roles (or simultaneously per-

form the prediction tasks in EE) for W , we maintain a binary memory vector Gtrg
i

for triggers, and binary memory matrices Garg
i and Garg/trg

i for arguments (at each

time i). These vector/matrices are set to zeros initially (i = 0) and updated during

the prediction process for W .

Given the bidirectional representation h1, h2, . . . , hn in the encoding phase and

the initialized memory vector/matrices, the joint prediction procedure loops over n

tokens in the sentence (from 1 to n). At each time step i, we perform the following

three stages in order:

(i) trigger prediction for wi.

(ii) argument role prediction for all the entity mentions e1, e2, . . . , ek with respect

to the current token wi.

(iii) compute Gtrg
i , Garg

i and Garg/trg
i for the current step using the previous mem-

ory vector/matrices Gtrg
i−1, G

arg
i−1 and G

arg/trg
i−1 , and the prediction output in the

earlier stages.

The output of this process would be the predicted trigger type ti for wi, the

predicted argument roles ai1, ai2, . . . , aik and the memory vector/matrices Gtrg
i ,

Garg
i and Garg/trg

i for the current step. Note that ti should be the event type if wi
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is a trigger word for some event of interest, or “Other” in the other cases. aij, in

constrast, should be the argument role of the entity mention ej with respect to wi

if wi is a trigger word and ej is an argument of the corresponding event, otherwise

aij is set to “Other” (j = 1 to k).

Trigger Prediction

In the trigger prediction stage for the current token wi, we first compute the

feature representation vector Rtrg
i for wi using the concatenation of the following

three vectors:

• hi: the hidden vector to encapsulate the global context of the input sentence.

• Ltrg
i : the local context vector for wi. Ltrg

i is generated by concatenating the

vectors of the words in a context window d of wi:

Ltrg
i = [EMB[wi−d], . . . ,EMB[wi], . . . ,EMB[wi+d]].

• Gtrg
i−1: the memory vector from the previous step.

The representation vector Rtrg
i = [hi, L

trg
i , Gtrg

i−1] is then fed into a feed-forward

neural network F trg with a softmax layer in the end to compute the probability

distribution P trg
i;t over the possible trigger types: P trg

i;t = P trg
i (l = t) = F trg

t (Rtrg
i )

where t is a trigger type. Finally, we compute the predicted type ti for wi by:

ti = argmaxt(P
trg
i;t ).

Argument Role Prediction

In the argument role prediction stage, we first check if the predicted trigger

type ti in the previous stage is “Other” or not. If yes, we can simply set aij to

“Other” for all j = 1 to k and go to the next stage immediately. Otherwise, we
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loop over the entity mentions e1, e2, . . . , ek. For each entity mention ej with the

head index of ij, we predict the argument role aij with respect to the trigger word

wi using the following procedure.

First, we generate the feature representation vector Rarg
ij for ej and wi by con-

catenating the following vectors:

• hi and hij : the hidden vectors to capture the global context of the input

sentence for wi and ej, respectively.

• Larg
ij : the local context vector for wi and ej. Larg

ij is the concatenation of the

vectors of the words in the context windows of size d for wi and wij :

Larg
ij = [EMB[wi−d], . . . ,EMB[wi], . . . ,EMB[wi+d],

EMB[wij−d], . . . ,EMB[wij ], . . . ,EMB[wij+d]].

• BINij: the hidden vector for the binary feature vector VECij. VECij is based

on the local argument features between the tokens i and ij from (Li et al.,

2013b). BINij is then computed by feeding VECij into a feed-forward neural

network F binary for further abstraction: BINij = F binary(VECij).

• Garg
i−1[j] and G

arg/trg
i−1 [j]: the memory vectors for ej that are extracted out of

the memory matrices Garg
i−1 and Garg/trg

i−1 from the previous step.

In the next step, we again use a feed-forward neural network F arg with a softmax

layer in the end to transform Rarg
ij = [hi, hij , L

arg
ij ,BINij, G

arg
i−1[j], G

arg/trg
i−1 [j]] into the

probability distribution P trg
ij;a over the possible argument roles: P arg

ij;a = P arg
ij (l =

a) = F arg
a (Rarg

ij ) where a is an argument role. Eventually, the predicted argument

role for wi and ej is aij = argmaxa(P
arg
ij;a).
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Note that the binary vector VECij enriches the feature representation Rarg
ij

for argument labeling with the discrete structures discovered in the prior work

on feature analysis for EE (Li et al., 2013b). These features include the shortest

dependency paths, the entity types, subtypes, etc.

The Memory Vector/Matrices

An important characteristic of EE is the existence of the dependencies between

trigger labels and argument roles within the same sentences (Li et al., 2013b). In

this work, we encode these dependencies into the memory vectors/matrices Gtrg
i ,

Garg
i and Garg/trg

i (i = 0 to n) and use them as features in the trigger and argument

prediction explicitly (as shown in the representation vectors Rtrg
i and Rarg

ij above).

We classify the dependencies into the following three categories:

1. The dependencies among trigger types: are captured by the memory

vectors Gtrg
i (Gtrg

i ∈ {0, 1}nT for i = 0, . . . , n, and nT is the number of the possible

trigger types). At time i, Gtrg
i indicates which event types have been recognized

before i. We obtain Gtrg
i from Gtrg

i−1 and the trigger prediction output ti at time i:

Gtrg
i [t] = 1 if t = ti and Gtrg

i−1[t] otherwise.

A motivation for such dependencies is that if a Die event appears somewhere

in the sentences, the possibility for the later occurrence of an Attack event would

be likely as we have shown in the previous sections.

2. The dependencies among argument roles: are encoded by the memory

matrix Garg
i (Garg

i ∈ {0, 1}k×nA for i = 0, . . . , n, and nA is the number of the

possible argument roles). At time i, Garg
i summarizes the argument roles that the

entity mentions has played with some event in the past. In particular, Garg
i [j][a] =
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1 if and only if ej has the role of a with some event before time i. Garg
i is computed

from Garg
i−1, and the prediction outputs ti and ai1, . . . , aik at time i: Garg

i [j][a] = 1

if ti ̸= “Other” and a = aij, and Garg
i−1[j][a] otherwise (for j = 1 to k).

3. The dependencies between argument roles and trigger types: are

encoded by the memory matrix Garg/trg
i (Garg/trg

i ∈ {0, 1}k×nT for i = 0 to n). At

time i, Garg/trg
i specifies which entity mentions have been identified as arguments

for which event types before. In particular, Garg/trg
i [j][t] = 1 if and only if ej has

been detected as an argument for some event of type t before i. Garg/trg
i is computed

from G
arg/trg
i−1 and the trigger prediction output ti at time i: Garg/trg

i [j][t] = 1 if ti ̸=

“Other” and t = ti, and Garg/trg
i−1 [j][t] otherwise (for all j = 1 to k).

6.2.3.3 Training

Denote the given trigger types and argument roles for W at training time as

T = t∗1, t
∗
2, . . . , t

∗
n and A = (a∗ij)

j=1,k
i=1,n . We train the network by minimizing the joint

negative log-likelihood function C for triggers and argument roles:

C(T,A,X,E) = − logP (T,A|X,E)

=− logP (T |X,E)− logP (A|T,X,E)

=−
n∑
i=1

logP trg
i;t∗i

−
n∑
i=1

I(t∗i ̸= “Other“)
k∑
j=1

logP arg
ij;a∗ij

(6.1)

where I is the indicator function.
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We apply the stochastic gradient descent algorithm with mini-batches and the

AdaDelta update rule (Zeiler, 2012). The gradients are computed using back-

propagation. During training, besides the weight matrices, we also optimize the

word and entity type embedding tables to achieve the optimal states. Finally, we

rescale the weights whose Frobenius norms exceed a hyperparameter (Kim, 2014;

Nguyen and Grishman, 2015a).

6.2.4 Word Representation

Following the prior work (Chen et al., 2015; Nguyen and Grishman, 2015b),

we pre-train word embeddings from a large corpus and employ them to initial-

ize the word embedding table. In this work, following Chapter 3, besides the

CBOW and SKIP-GRAM models in (Mikolov et al., 2013a, 2013b), we examine a

concatenation-based variant of CBOW (C-CBOW) to train word embeddings and

compare the three models to understand their effectiveness for EE. The objective

of C-CBOW is to predict the target word using the concatenation of the vectors of

the words surrounding it.

6.3 Experiments

6.3.1 Resources, Parameters and Dataset

For all the experiments below, in the encoding phase, we use 50 dimensions

for the entity type embeddings, 300 dimensions for the word embeddings and 300

units in the hidden layers for the RNNs.
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Regarding the prediction phase, we employ the context window of 2 for the

local features, and the feed-forward neural networks with one hidden layer for F trg,

F arg and F binary (the size of the hidden layers are 600, 600 and 300 respectively).

Finally, for training, we use the mini-batch size = 50 and the parameter for the

Frobenius norms = 3.

These parameter values are either inherited from the prior research (Chen et al.,

2015; Nguyen and Grishman, 2015b) or selected according to the validation data.

We pre-train the word embeddings from the English Gigaword corpus utilizing

the word2vec toolkit4 (modified to add the C-CBOW model). Following (Baroni

et al., 2014), we employ the context window of 5, the subsampling of the frequent

words set to 1e-05 and 10 negative samples.

We also evaluate the model with the ACE 2005 corpus for event extraction. For

the purpose of comparison, we use the same data split as the previous work (Chen

et al., 2015; Ji and Grishman, 2008; Li et al., 2013b; Liao and Grishman, 2010b;

Nguyen and Grishman, 2015b). This data split includes 40 newswire articles (672

sentences) for the test set, 30 other documents (836 sentences) for the development

set and 529 remaining documents (14,849 sentences) for the training set. Also,

we follow the criteria of the previous work (Chen et al., 2015; Ji and Grishman,

2008; Li et al., 2013b; Liao and Grishman, 2010b) to judge the correctness of the

predicted event mentions.
4. https://code.google.com/p/word2vec
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6.3.1.1 Memory Vector/Matrices

This section evaluates the effectiveness of the memory vector and matrices

presented in Section 6.2.3.2. In particular, we test the joint model on different

cases where the memory vector for triggers Gtrg and the memory matrices for

arguments Garg/trg and Garg are included or excluded from the model. As there are

4 different ways to combine Garg/trg and Garg for argument labeling and two options

to employ Gtrg or not for trigger labeling, we have 8 systems for comparison in total.

Table 6.1 reports the identification and classification performance (F1 scores) for

triggers and argument roles on the development set. Note that we are using the

word embeddings trained with the C-CBOW technique in this section.

System No Garg/trg Garg Garg/trg+Garg

No Trigger 67.9 68.0 64.6 64.2
Argument 55.6 58.1 55.2 53.1

Gtrg Trigger 63.8 61.0 61.3 66.8
Argument 55.2 56.6 54.7 53.6

Table 6.1: Performance of the memory vector/matrices on the development set.
No means not using the memory vector/matrices.

We observe that the memory vector Gtrg is not helpful for the joint model as it

worsens both trigger and argument role performance (considering the same choice

of the memory matrices Garg/trg and Garg (i.e, the same column in the table) except

in the column with Garg/trg +Garg).

The clearest trend is that Garg/trg is very effective in improving the performance

of argument labeling. This is true with both the inclusion and exclusion of Gtrg.

Garg and its combination with Garg/trg, on the other hand, have negative effect on
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this task. Finally, Garg/trg and Garg do not contribute much to the trigger labeling

performance in general (except in the case where Gt, Garg/trg and Garg are all

applied).

These observations suggest that the dependencies among trigger types and

among argument roles are not strong enough to be helpful for the joint model

in this dataset. This is in contrast to the dependencies between argument roles

and trigger types that improve the joint model significantly.

The best system corresponds to the application of the memory matrix Garg/trg

and will be used in all the experiments below.

6.3.1.2 Word Embedding Evaluation

We investigate different techniques to obtain the pre-trained word embeddings

for initialization in the joint model of EE. Table 6.2 presents the performance (for

both triggers and argument roles) on the development set when the CBOW, SKIP-

GRAM and C-CBOW techniques are utilized to obtain word embeddings from

the same corpus. We also report the performance of the joint model when it is

initialized with the word2vec word embeddings from (Mikolov et al., 2013a, 2013b)

(trained with the Skip-gram model on Google News) (WORD2VEC). Finally, for

comparison, the performance of the random word embeddings (RANDOM) is also

included. All of these word embeddings are updated during the training of the

model.

The first observation from the table is that RANDOM is not good enough

to initialize the word embeddings for joint EE and we need to borrow some pre-
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Word Embeddings Trigger Argument
RANDOM 59.9 50.1
SKIP-GRAM 66.7 57.1
CBOW 66.5 53.8
WORD2VEC 66.9 56.4
C-CBOW 68.0 58.1

Table 6.2: Performance of the word embedding techniques.

trained word embeddings for this purpose. Second, SKIP-GRAM, WORD2VEC

and CBOW have comparable performance on trigger labeling while the argument

labeling performance of SKIP-GRAM and WORD2VEC is much better than that

of CBOW for the joint EE model. Third and most importantly, among the com-

pared word embeddings, it is clear that C-CBOW significantly outperforms all the

others. We believe that the better performance of C-CBOW stems from its con-

catenation of the multiple context word vectors, thus providing more information

to learn better word embeddings than SKIP-GRAM and WORD2VEC. In addi-

tion, the concatenation mechanism essentially helps to assign different weights to

different context words, thereby being more flexible than CBOW that applies a

single weight for all the context words.

From now on, for consistency, C-CBOW would be utilized in all the following

experiments.

6.3.1.3 Comparison to the State of the Art

The state-of-the-art systems for EE on the ACE 2005 dataset have been the

pipelined system with dynamic multi-pooling convolutional neural networks by

(Chen et al., 2015) (DMCNN) and the joint system with structured prediction
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and various discrete local and global features by (Li et al., 2013b) (Li’s structure).

Note that the pipelined system in (Chen et al., 2015) is also the best-reported

system based on neural networks for EE. Table 6.3 compares these state-of-the-

art systems with the joint RNN-based model in this work (denoted by JRNN).

For completeness, we also report the performance of the following representative

systems:

1) Li’s baseline: This is the pipelined system with local features by (Li et al.,

2013b).

2) Liao’s cross event: is the system by (Liao and Grishman, 2010b) with the

document-level information.

3) Hong’s cross-entity (Hong et al., 2011): This system exploits the cross-

entity inference, and is also the best-reported pipelined system with discrete fea-

tures in the literature.
Model Trigger Trigger Identification Argument Argument

Identification (%) + Classification (%) Identification (%) Role (%)
P R F P R F P R F P R F

Li’s basline 76.2 60.5 67.4 74.5 59.1 65.9 74.1 37.4 49.7 65.4 33.1 43.9
Liao’s cross-event† N/A 68.7 68.9 68.8 50.9 49.7 50.3 45.1 44.1 44.6
Hong’s cross-entity† N/A 72.9 64.3 68.3 53.4 52.9 53.1 51.6 45.5 48.3
Li’s structure 76.9 65.0 70.4 73.7 62.3 67.5 69.8 47.9 56.8 64.7 44.4 52.7
DMCNN 80.4 67.7 73.5 75.6 63.6 69.1 68.8 51.9 59.1 62.2 46.9 53.5
JRNN 68.5 75.7 71.9 66.0 73.0 69.3 61.4 64.2 62.8 54.2 56.7 55.4

Table 6.3: Overall performance on the blind test data. “†” designates the systems
that employ evidence beyond sentence level.

From the table, we see that JRNN achieves the best F1 scores (for both trigger

and argument labeling) among all of the compared models. This is significant with

the argument role labeling performance (an improvement of 1.9% over the best-

reported model DMCNN in (Chen et al., 2015)), and demonstrates the benefit of
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the joint model with RNNs and memory features in this work. In addition, as

JRNN significantly outperforms the joint model with discrete features in (Li et al.,

2013b) (an improvement of 1.8% and 2.7% for trigger and argument role labeling

respectively), we can confirm the effectiveness of RNNs to learn effective feature

representations for EE.

6.3.2 Sentences with Multiple Events

In order to further prove the effectiveness of JRNN, especially for those sen-

tences with multiple events, we divide the test data into two parts according to

the number of events in the sentences (i.e, single event and multiple events) and

evaluate the performance separately, following (Chen et al., 2015). Table 6.4 shows

the performance (F1 scores) of JRNN, DMCNN and two other baseline systems,

named Embeddings+T and CNN in (Chen et al., 2015). Embeddings+T uses

word embeddings and the traditional sentence-level features in (Li et al., 2013b)

while CNN is similar to DMCNN, except that it applies the standard pooling

mechanism instead of the dynamic multi-pooling method (Chen et al., 2015).

The most important observation from the table is that JRNN significantly out-

performs all the other methods with a large margin when the input sentences con-

tain more than one event (i.e, the row labeled with 1/N in the table). In particular,

JRNN is 13.9% better than DMCNN on trigger labeling while the corresponding

improvement for argument role labeling is 6.5%, thereby further suggesting the

benefit of JRNN with the memory features. Regarding the performance on the

single event sentences, JRNN is still the best system on trigger labeling although
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Stage Model 1/1 1/N all
Embedding+T 68.1 25.5 59.8

Trigger CNN 72.5 43.1 66.3
DMCNN 74.3 50.9 69.1
JRNN 75.6 64.8 69.3

Embedding+T 37.4 15.5 32.6
Argument CNN 51.6 36.6 48.9

DMCNN 54.6 48.7 53.5
JRNN 50.0 55.2 55.4

Table 6.4: System performance on single event sentences (1/1) and multiple event
sentences (1/N).

it is worse than DMCNN on argument role labeling. This can be partly explained

by the fact that DMCNN includes the position embedding features for arguments

and the memory matrix Garg/trg in JRNN is not functioning in this single event

case.

6.4 Entity Linking with Memory-augmented

Neural Networks

The previous section has highlighted the benefits of the memory-augmented

neural networks for event extraction. This section applies the memory-augmented

networks on the task of entity linking (EL) to further demonstrate their advantages.

6.4.1 Entity Linking

Entity linking (EL) is the task to map entity mentions in documents to their

correct entries (called target entities) in some existing knowledge bases (KB). As
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we use the typical knowledge base of Wikipedia in this work, the problem becomes

linking entity mentions in documents to their corresponding pages in Wikipedia.

For instance, consider the following text:

Chelsea have long-standing rivalries with North London clubs Arsenal and

Tottenham Hotspur. A strong rivalry with Leeds United dates back to several heated

and controversial matches in the 1960s and 1970s.

In this text, an entity linking system should be able to link the entity mentions

“Chelsea”, “North London”, “Arsenal”, “Tottenham Hotspur”, and “Leeds United”

to their corresponding Wikipedia pages about football clubs, rather than the cities

in London. EL is a challenging problem of natural language processing, as the

same entity might be presented in various names, and the same entity mention

string might refer to different entities in different contexts (ambiguity).

In order to tackle the ambiguity in EL, the general framework is to first generate

a set of target entities in the knowledge bases as the referent candidates for each

entity mention in the documents (target candidates), and then solve a ranking

problem to disambiguate the entity mention. The key challenge in this paradigm

is the ranking model that computes the relevance of each target entity candidate to

the corresponding entity mention using the available context information in both

the documents and the knowledge bases.

6.4.1.1 Prior Deep Learning Work for Entity Linking

The sequence of prediction tasks in entity linking corresponds to the sequence

of entity mentions in documents where we need to perform a prediction for each
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entity mention (disambiguation). The previous deep learning models have only

solved entity linking by independently disambiguating entity mentions in docu-

ments (Francis-Landau et al., 2016) (the local approach for EL). Figure 6.6 demon-

strates the prediction tasks that the previous deep learning models have done for

our example text above.

Figure 6.6: Prediction tasks for entity linking.

In this figure, each rectangle is associated with a prediction task for an entity

mention in the text that would be modeled by a neural network (Francis-Landau

et al., 2016). As we can see, there are no connections between the rectangles,

leading to the independent disambiguation of the entity mentions.

Unfortunately, this independent mechanism in the local approach overlooks

the topical coherence among target entities referred by entity mentions within the

same document. The central idea is that the referent entities of some mentions

in a document might in turn introduce useful information to link other mentions

in that document due to the semantic relatedness among them. For instance,

consider the entity mention “Liverpool” in the following sentence that appears

after the aforementioned example text in the same document:

More recently a rivalry with Liverpool has grown following repeated clashes in

cup competitions.

If we just rely on “Liverpool” and its context in this sentence, we might not be

able to recognize the correct realistic entity for it as the context is not sufficient to

177



CHAPTER 6. MEMORY-AUGMENTED NETWORKS FOR JOINT
INFERENCE IN INFORMATION EXTRACTION

suggest an unique entity (i.e, “Liverpool” can be any sport clubs in this sentence

based on the phrase “cup competitions”). However, if we refer the the previous

entity mentions (i.e, ‘Chelsea”, “North London”, “Arsenal”, “Tottenham Hotspur”,

and “Leeds United”) that are already known as football clubs, we can use the

semantic relatedness to infer that ‘Liverpool” is also a football club in this case.

Such coherence has been shown to be effective for EL in the previous feature-based

work (Alhelbawy and Gaizauskas, 2014; Han et al., 2011; He et al., 2013b; Hoffart

et al., 2011; Pershina et al., 2015; Ratinov et al., 2011; Sil et al., 2012), but it is

not exploited in the current EL models based on deep learning.

In this work, we overcome this limitation by employing the memory-augmented

neural networks for EL. Specifically, given a document, we simultaneously perform

linking for every entity mention from the beginning to the end of the document,

as demonstrated in Figure 6.7. For each entity mention, we utilize convolutional

neural networks (CNN) to obtain the distributed representations for the entity

mention as well as its target candidates. These distributed representations are

then used for two purposes: (i) computing the local similarities for the entity

mention and target candidates, and (ii) functioning as the input for the recurrent

neural networks (RNN) that runs over the entity mentions in the documents. The

role of the RNNs is to accumulate information about the previous entity mentions

and target entities, and provide them as the global constraints for the linking

process of the current entity mention (i.e, the memory in our general memory-

augmented neural networks). We systematically evaluate the proposed model on

multiple datasets in both the general setting and the domain adaptation setting.
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The experiment results show that the proposed model outperforms the current

state-of-the-art models on the evaluated datasets. To our knowledge, this is also

the first work investigating the EL problem in the domain adaptation setting.

Figure 6.7: Memory-augmented neural networks for entity linking.

6.4.2 Model

The entity linking problem in this work can be formalized as follows. Let DOC

be the input document and E = {ent1, ent2, . . . , entk} be the entity mentions in

DOC. The goal is to map each entity mention enti to its corresponding Wikipedia

page (entity) or return “NIL” if enti is not present in Wikipedia. For each entity

mention enti ∈ DOC, let Pi = {pagei1, pagei2, . . . pageini
} be its set of Wikipedia

candidate pages (entities)5 where ni is the number of page candidates for enti.

Also, let page∗i ∈ Pi be the correct target entity for enti.

Following (Francis-Landau et al., 2016), we represent each entity mention enti

by the triple enti = (sufi, ctxi, doci), where sufi is the surface string of enti, ctxi

is the immediate context (within some predefined window) of enti and doci is the

entire document containing enti. Essentially, sufi, ctxi and doci are the sequences
5. For a fair comparison, we use the target candidates provided by (Francis-Landau et

al., 2016). Essentially, a query generation is executed for each entity mention, whose outputs
are combined with link counts to retrieve the potential entities (including “NIL”). The query
generation itself involves removing stop words, plural suffixes, punctuation, and leading or trailing
words.
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of words to capture the contexts or topics of enti at multiple granularities. For

the target candidate pages pageij, we use the title tilij and body content bdyij to

represent them (pageij = (tilij, bdyij)). For convenience, we also denote page∗i =

(til∗i , bdy∗i ) for the correct entity pages. Again, tilij, bdyij, til∗i and bdy∗i are also

sequences of words.

In order to link the entity mentions, the strategy is to assign a relevance score

ϕ(enti, pageij) for each target candidate pageij of enti, and then use these scores to

rank the candidates for each mention. In this work, we decompose ϕ(enti, pageij)

as the sum of the two following factors:

ϕ(enti, pageij) = ϕlocal(enti, pageij) + ϕglobal(ent1, ent2, . . . , enti, P1, P2, . . . , Pi)

(6.2)

In this formula, ϕlocal(enti, pageij) represents the local similarities between enti and

pij, i.e, only using the information related to enti and pageij. ϕglobal(ent1, ent2, . . . ,

enti, P1, P2, . . . , Pi), on the other hand, additionally considers the other mentions

and candidates in the document, attempting to model the interdependence among

these objects. The denotation ϕglobal(ent1, ent2, . . . , enti, P1, P2, . . . , Pi) implies that

we are computing the ranking scores for all the target candidates of all the entity

mentions in each document simultaneously, preserving the order of the entity men-

tions from the beginning to the end of the document.

The model in this work consists of three main components: (i) the encoding

component that applies convolutional neural networks to induce the distributed

representations for the input sequences sufi, ctxi, doci, tilij, and bdyij, (ii) the

local component that computes the local similarities ϕlocal(enti, pageij) for each
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entity mention enti, and (iii) the global component that runs recurrent neural net-

works on the entity mentions {ent1, ent2, . . . , entk} to generate the global features

ϕglobal(ent1, ent2, . . . , enti, P1, P2, . . . , Pi).

6.4.2.1 Encoding

Let W be some context word sequence of the entity mentions or target candi-

dates (i.e, x ∈ {sufi, ctxi, doci}i ∪ {tilij, pageij}i,j ∪ {til∗i , bdy∗i }i). In order to obtain

the distributed representation for W , we first transform each word wi ∈ W into

a real-valued, me-dimensional vector xi using the word embedding table EMB

(Mikolov et al., 2013b): xi = EMB[wi]. This essentially converts the word se-

quence W into a sequence of vectors that is padded with zero vectors to form a

fixed-length sequence of vectors X = [x1, x2, . . . , xn] of length n.

In the next step, we apply the convolution operation over X to generate the

hidden vector sequence, that is then transformed by a non-linear function g and

pooled by the sum function (Francis-Landau et al., 2016). Following the previous

work on CNN (Nguyen and Grishman, 2015a, 2015b), we utilize the set L of

multiple window sizes to parameterize the convolution operation. Each window

size l ∈ L corresponds to a convolution matrix Ml ∈ Rv×lme of dimensionality v.

Eventually, the concatenation vector W̄ of the resulting vectors for each window

size in L would be used as the distributed representation for W :

W̄ =
⊕
l∈L

n−l+1∑
i=1

g(Mlxi:(i+l−1)) (6.3)

where
⊕

is the concatenation operation over the window set L and xi:(i+l−1) is the
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concatenation vector of the given word vectors.

For convenience, let ¯sufi, c̄txi, ¯doci, t̄ilij, ¯bdyij, t̄il
∗
i and ¯bdy

∗
i be the distributed

representations of sufi, ctxi, doci, tilij, bdyij, til∗i and bdy∗i obtained by the convolu-

tion procedure above, respectively. Note that we apply the same set of convolution

parameters for each type of text granularity in the source document DOC as well

as in the target entity side. The vector representations of the context would then

be fed into the next components to compute the features for EL.

6.4.2.2 Local Similarities

We employ the local similarities ϕlocal(enti, pageij) from Francis-Landau et al.,

2016, the state-of-the-art neural network model for EL. In particular:

ϕlocal(enti, pageij) = ϕsparse(enti, pageij) + ϕCNN(enti, pageij)

= WsparseFsparse(enti, pageij) +WCNNFCNN(enti, pageij)
(6.4)

In this formula, Wsparse and WCNN are the weights for the feature vectors

Fsparse and FCNN respectively. Fsparse(enti, pageij) is the sparse feature vector

obtained from (Durrett and Klein, 2014). This vector captures various linguistic

properties and statistics that have been discovered in the previous studies for EL.

The representative features include the anchor text counts from Wikipedia, the

string match indications with the title of the Wikipedia candidate pages, or the

information about the shape of the queries for candidate generations (Francis-

Landau et al., 2016).

FCNN(enti, pageij), on the other hand, involves the cosine similarities between
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the representation vectors at multiple granularities of enti and pageij. In particular:

FCNN(enti, pageij)

= [cos( ¯suf i, t̄ilij), cos( ¯ctxi, t̄ilij), cos( ¯doci, t̄ilij),

cos( ¯suf i, ¯bdyij), cos( ¯ctxi, ¯bdyij), cos( ¯doci, ¯bdyij)]

(6.5)

The intuition for this computation is that the similarities at different levels

of contexts might help to enforce the potential topic compatibility between the

contexts of the entity mentions and target candidates for EL (Francis-Landau et

al., 2016).

6.4.2.3 Global Similarities

In order to encapsulate the coherence among the entity mentions and their tar-

get entities, we run recurrent neural networks over the sequences of the representa-

tion vectors for the entity mentions (i.e, the vector sequences for the surface strings

( ¯suf 1,
¯suf 2, . . . ,

¯sufk) and for the immediate contexts ( ¯ctx1, ¯ctx2, . . . , ¯ctxk)) and

the target entities (i.e, the vector sequences for the page titles (t̄il
∗
1, t̄il

∗
2, . . . , t̄il

∗
k)

and for the body contents ( ¯bdy
∗
1,

¯bdy
∗
2, . . . ,

¯bdy
∗
k))6.

Let us take the representation vector sequence of the body contents of the

target pages ( ¯bdy
∗
1,

¯bdy
∗
2, . . . ,

¯bdy
∗
k)

7 as an example. The recurrent neural network

with the recurrent function Φ for this sequence will generate the hidden vector

sequence (hb1, h
b
2, . . . , h

b
k) where: hbi = Φ(hbi−1,

¯bdy
∗
i ).

6. Note that we have different recurrent neural networks for different context vector se-
quences.

7. In the training process, ( ¯bdy
∗
1,

¯bdy
∗
2, . . . ,

¯bdy
∗
k) are obtained from the golden target entities

while at test time, they are retrieved from the predicted target entities.
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Each vector hbi in this sequence encodes or summarizes the information about

the content of the previous target entities (i.e, before i) in the document due to

the property of RNN.

Given the hidden vector sequence, when predicting the target entity for the

entity mention enti, we ensure that the target entity is consistent with the global

information stored in hbi−1. This is achieved by using the cosine similarities between

hbi−1 and the representation vectors of each target candidate pageij of enti, (i.e,

cos(hbi−1, t̄ilij) and cos(hbi−1,
¯bdyij)) as the global features for the ranking score.

We can repeat this process for the other representation vector sequences in both

the entity mention side and the target entity side. The resulting global features

would then be grouped into a single feature vector to compute the global similarity

score ϕglobal(ent1, ent2, . . . , enti, P1, P2, . . . , Pi) as in the local similarity section. An

overview of the whole model is presented in Figure 6.8.

Regarding the recurrent function Φ, we also employ the Gated Recurrent Units

(Cho et al., 2014a) to alleviate the “vanishing gradient problem” of RNN. Finally,

for training, we jointly optimize the parameters for the CNNs, RNNs and weight

vectors by maximizing the log-likelihood of a labeled training corpus. We utilize the

stochastic gradient descent algorithm and the AdaDelta update rule Zeiler, 2012.

The gradients are computed via back-propagation. Following (Francis-Landau et

al., 2016), we do not update the word embedding table during training.
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Figure 6.8: Joint model for learning local and global features for a document
with 3 entity mentions: “Chelsea”, “Arsenal” and “Liverpool”. Each of the entity
mentions has two entity candidate pages (either a football club or a city).The
orange rectangles denote the CNN-induced representation vectors ¯suf i, ¯ctxi, ¯doci,
t̄ilij and ¯bdyij. The circles in red and green are the ranking scores for the target
candidates, in which the green circles correspond to the correct target entities.
Finally, the circles in grey are the hidden vectors (i.e, the global vectors) of the
RNNs running over the entity mentions. We only show the global entity vectors
in this figure to improve the visualization.

6.4.3 Experiments

6.4.3.1 Datasets

Following (Francis-Landau et al., 2016), we evaluate the models on 4 different

entity linking datasets:

i) ACE (Bentivogli et al., 2010): This corpus is from the 2005 evaluation of
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NIST. It is also used in (Fahrni and Strube, 2014 and Durrett and Klein, 2014).

ii) CoNLL-YAGO (Hoffart et al., 2011): This corpus is originally from the

CoNLL 2003 shared task of named entity recognition for English.

iii) WP (Heath and Bizer, 2011): This dataset consists of short snippets from

Wikipedia.

iv) WIKI (Ratinov et al., 2011): This dataset contains 10,000 randomly sam-

pled Wikipedia articles. The task is to disambiguate the links in each article8.

For all the datasets, we use the standard data splits (for training data, test

data and development data) as the previous works for comparable comparison

(Francis-Landau et al., 2016).

6.4.3.2 Parameters and Resources

For all the experiments below, in the CNN models to learn the distributed

representations for the inputs, we use window sizes in the set L = {2, 3, 4, 5} for

the convolution operation with the dimensionality v = 200 for each window size9.

The non-linear function for transformation is g = tanh.

We employ the English Wikipedia dump from June 2016 as our reference knowl-

edge base.
8. As noted by (Francis-Landau et al., 2016) and (Nguyen et al., 2014c), the original

Wikipedia dump in (Ratinov et al., 2011) is no longer accessible, so we cannot duplicate the
results or conduct comparable experiments with (Ratinov et al., 2011). We instead compare
our performance with (Francis-Landau et al., 2016) that provides the access to their Wikipedia
dump.

9. As we need to compute the cosine similarities between the hidden vectors of the RNN
models and the representation vectors of the target candidates, the number of hidden units for
the RNN is set to 200|L| = 800 naturally.
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Regarding the input contexts for the entity mentions and the target candidates,

we utilize the window size of 10 for the immediate context ctxi, and only extract

the first 100 words in the documents for doci and bdyij.

Finally, we pre-train the word embedings on the whole English Wikipedia dump

using the word2vec toolkit (Mikolov et al., 2013b). The training parameters are

set to the default values in this toolkit. The dimensionality of the word embeddings

is 300.

Note that every parameter and resource in this work is either taken from the

previous work (Francis-Landau et al., 2016; Nguyen and Grishman, 2016c) or

selected by the development data.

6.4.3.3 Evaluating the Global Features

In this section, we evaluate the effectiveness of the global features for EL. In

particular, we differentiate two types of global features based on the side of in-

formation we expect to enforce the coherence. The first type of global features

(global-mention) concerns the entity mention side and involves applying the

global RNN models on the CNN-induced representation vectors of the entity men-

tions (i.e, the surface vectors ( ¯suf 1,
¯suf 2, . . . ,

¯sufk) and the immediate context

vectors ( ¯ctx1, ¯ctx2, . . . , ¯ctxk)). The second type of global features (global-entity),

on the other hand, focuses on the target entity side and models the coherence

with the representation vectors of the target entities (i.e, the page title vectors

(t̄il
∗
1, t̄il

∗
2, . . . , t̄il

∗
k) and the body content vectors ( ¯bdy

∗
1,

¯bdy
∗
2, . . . ,

¯bdy
∗
k)). Table 6.5

reports the development performance (F1 scores) of the proposed model on dif-
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ferent cases where the global-mention and global-entity features are included or

excluded from the model.

Global Features Dataset
ACE CoNLL WP

No 86.1 89.3 84.0
global-mention 86.8 90.2 84.2
global-entity 86.9 90.7 84.2
global-mention + global-entity 86.2 90.6 84.0

Table 6.5: Performance of the global features on the development set. No means
not using the global features.

The most important observation from the table is that the global features, in

general, help to improve the performance of the model on different datasets. This

is substantial on the ACE and CoNLL datasets when only one type of the global

features (either global-mention or global-entity) is integrated into the model. The

combination of global-mention and global-entity is not very effective as it is actually

worse than the performance of the individual global feature types. This suggests

that global-mention and global-entity might cover overlapping information and their

combination would inject redundancy into the model. The best performance is

achieved by the global-entity features that would be used in all the evaluations

below.

6.4.4 Comparing to the Previous Work

This section compares the proposed system (called Global-RNN) with the state-

of-the-art models on our four datasets. These systems include the neural net-

work model in (Francis-Landau et al., 2016), the joint model for entity analysis
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in (Durrett and Klein, 2014) and the AIDA-light system with two-stage mapping

in (Nguyen et al., 2014c)10. Table 6.6 shows the performance of the systems on

the test sets with the reference knowledge base of the June 2016 Wikipedia dump.

We also include the performance of the systems on the December 2014 Wikipedia

dump that was used and provided by (Francis-Landau et al., 2016) for further and

compatible comparison.

Systems Wikipedia 2014 Wikipedia 2016
ACE CoNLL WP WIKI ACE CoNLL WP WIKI

DK2014 (Durrett and Klein, 2014) 79.6 - - - - - - -
AIDA-LIGHT (Nguyen et al., 2014b) - 84.8 - - - - - -
Local CNN (Francis-Landau et al., 2016) 89.9 85.5 90.7 82.2 86.1 84.5 90.4 81.4
Global-RNN 89.7 87.2† 91.2† 83.7† 87.8† 86.5† 91.2† 81.7

Table 6.6: Performance of the systems. Cells marked with †designate the Global-
RNN models that significantly outperform the Local CNN model (ρ < 0.05).

First, we see that the performance of the systems significantly drop when we

switch from Wikipedia 2014 to Wikipedia 2016 (especially for the datasets ACE

and CoNLL). This is can be partly explained by the inclusion of new entities

(pages) into Wikipedia from 2014 to 2016 that has made the entity mentions in

the datasets more ambiguous11. Second and more importantly, Global-RNN signif-

icantly outperforms the all the compared models (except for the ACE dataset on

Wikipedia 2014 and the WIKI dataset on Wikipedia 2016), thereby demonstrating

the benefits of the joint modeling for local and global features via neural networks

for EL in this work.
10. We note that (Alhelbawy and Gaizauskas, 2014) and (Pershina et al., 2015) also use

the CoNLL-YAGO dataset for their experiments. However, since they evaluate the models on
the whole dataset rather than the test set as the other works do, they are not comparable to the
performance we report in this work.

11. The number of Wikipedia pages in 2014 is about 4.5 million while this number is 5
million in June 2016.
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6.4.5 Domain Adaptation Experiments

The purpose of this section is to further evaluate the models in the domain

adaptation setting to investigate their cross-domain robustness for EL. We refer

the reader to Chapters 1 and 2 to learn more about the domain adaptation setting.

One of the key strategies of the domain adaptation techniques is the search for

the domain-independent features that are discriminative across different domains

(Blitzer et al., 2006; Jiang and Zhai, 2007b; Nguyen and Grishman, 2014a; Plank

and Moschitti, 2013). These invariants serve as the connectors between different

domains and help to transfer the knowledge from one domain to the others. For

EL, we hypothesize that the global coherence is an effective domain-independent

feature that would help to improve the cross-domain performance of the models.

The intuition is that the entities mentioned in a document of any domains should

be related to each other. Eventually, we expect that the proposed model with

global coherence features would be more robust to domain shifts than the local

approach (Francis-Landau et al., 2016).

Dataset

We use the ACE dataset to evaluate the cross-domain performance of the mod-

els as it involves documents in 6 different domains: broadcast conversation (bc),

broadcast news (bn), telephone conversation (cts), newswire (nw), usenet (un) and

webblogs (wl) that facilitate our experiments. Following the common practice of

domain adaptation research on this dataset, we use news (the union of bn and nw)

as the source domain and bc, cts, wl, un as four different target domains. We

take half of bc as the development set and use the remaining data for testing.
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Evaluation

Table 6.7 compares Global-RNN with the neural network EL model in (Francis-

Landau et al., 2016), the best reported model on the ACE dataset in the litera-

ture12. In this table, the models are trained on the source domain news, and

evaluated on news itself (in-domain performance) (via 5-fold cross validation) as

well as on the 4 target domains bc, cts, wl, un (out-of-domain performance). The

experiments in this section are done with the 2016 Wikipedia dump.

Models Domain
in-domain bc cts wl un

Local CNN Francis-Landau et al., 2016 90.6 87.8 88.7 80.2 82.1
Global-RNN 91.0 88.7† 88.9 81.3† 83.1†

Table 6.7: Cross-domain performance. Cells marked with †designate the Glob-
RNN models that significantly outperform the Local CNN model (ρ < 0.05).

The first observation from the table is that the performance of all the compared

systems on the target domains is much worse than the corresponding in-domain

performance. In particular, the performance gap between the in-domain perfor-

mance and the the worst out-of-domain performance (on the domain wl) is up to

10%, thus indicating the mismatches between the source and the target domains

for EL. Second and most importantly, Global-RNN is consistently better than the

model with only local features in (Francis-Landau et al., 2016) over all the target

domains (although it is less pronounced in the cts domain). This demonstrates

the cross-domain robustness of the proposed model and confirms our hypothesis

about the domain-independence of the global coherence features for EL.
12. The performance of the model from (Francis-Landau et al., 2016) reported in this work

is obtained by running their actual released system.
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Analysis

In order to better understand the performance gap in the domain adaptation

experiments for EL, we visualize the representation vectors of the entity mentions

in different domains. In particular, after Global-RNN is trained, we retrieve the

representation vectors c̄i for the immediate contexts of the entity mentions in the

source and target domains, project them into the 2-dimension space via the t-SNE

algorithm and plot them. Figure 6.9 shows the plot.

NEWS

BC

CTS

WL

UN

Figure 6.9: t-SNE visualization on the representation vectors ctxi of different do-
mains.

As we can see from the figure, the entity mentions in the target domains bc,

cts, wl and un are quite separated from those of the source domain news, thereby

explaining the performance loss in the domain adaption experiments.
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It is not clear in Figure 6.9 why the models perform much worse on the target

domains wl and un than the other domains (i.e, bc and cts). We further investigate

this problem by computing the similarities between the target domains and the

source domain. While there are several methods to estimate domain similarities

(Plank and Noord, 2011), in this work, we employ the mean of the cosine similarities

of every mention pair in the two domains of interest. Specifically, let DOM1 and

DOM2 be the two domains of interest, and DOM1 = {dom1
1, dom2

1, . . . , doml1
1 } and

DOM2 = {dom1
2, dom2

2, . . . , doml2
2 } be the sets of the representation vectors for the

entity mentions in DOM1 and DOM2 respectively (l1 = |DOM1|, l2 = |DOM2|).

The similarity between DOM1 and DOM2 is then given by:

Sim(DOM1,DOM2) = 100×
∑l1

i=1

∑l2
j=1 cos(domi

1, domj
2)

l1l2
(6.6)

Table 6.8 shows the similarities between the source domain news and each

target domains bc, cts, wl and un with respect to the representation vectors of

the immediate context ¯ctxi (context) and the target entity title t̄il∗i (title) for the

entity mentions enti. We also include the similarities in which the representation

vectors are the local feature vectors FCNN(enti, page∗i ) in Equation 6.5 (interaction).

The goal of the local feature similarities is to characterize how the entity mentions

in different domains interact with their target entities.

It is clear from the table that wl is the most dissimilar domain from the source

domain. This is followed by un and partly explains the performance in Table 6.7.
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Domain context title interaction
bc 10.7 2.0 34.4
cts 11.4 2.0 32.6
wl 9.2 0.8 30.3
un 9.5 1.4 31.1

Table 6.8: Similarities to the source domain news.

6.5 Related Work

As the memory-augmented neural networks for information extraction are new,

we only focus on the related work for event extraction and entity linking. The

related work for event extraction can be found in Chapter 5. We only review the

related work for entity linking in this section.

Entity linking or disambiguation has been studied extensively in NLP research,

falling broadly into two major approaches: local and global disambiguation. Both

approaches share the goal of measuring the similarities between the entity mentions

and the target candidates in the reference KB. The local paradigm focuses on the

internal structures of each separate mention-entity pair, covering the name string

comparisons between the surfaces of the entity mentions and target candidates,

entity popularity or entity type and so on (Bunescu and Pasca, 2006; Cassidy et

al., 2011; Ji and Grishman, 2011; Mendes et al., 2011; Milne and Witten, 2008;

Shen et al., 2014b; Sil et al., 2012; Zheng et al., 2010). In contrast, the global

approach jointly maps all the entity mentions within documents to model the topi-

cal coherence. Various techniques have been exploited for capturing such semantic

consistency, including Wikipedia category agreement (Cucerzan, 2007), Wikipedia

link-based measures (Hoffart et al., 2011; Kulkarni et al., 2009; Shen et al., 2012),
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Point-wise Mutual Information measures (Ratinov et al., 2011), integer linear pro-

gramming (Cheng and Roth, 2013), PageRank (Alhelbawy and Gaizauskas, 2014;

Pershina et al., 2015), stacked generalization (He et al., 2013a), to name a few.

The entity linking techniques and systems have been actively evaluated at the

NIST-organized Text Analysis Conference (Ji et al., 2014).

Neural networks are applied to entity linking very recently. He et al., 2013b

learn enttiy representation via Stacked Denoising Auto-encoders. Sun et al., 2015

employ convolutional neural networks and neural tensor networks to model men-

tions, entities and contexts while Francis-Landau et al., 2016 combine CNN-based

representations with sparse features to improve the performance. However, none

of this work utilizes recurrent neural networks to capture the coherence features

as we do in this work.

6.6 Conclusion

We propose a novel neural network framework based on memory to address the

joint inference problem for information extraction. In such a framework, the pre-

diction tasks for IE are solved simultaneously; and memories are maintained during

the process to capture the interdependencies among the outputs of the tasks. We

demonstrate the advantages of the proposed framework on two important tasks of

IE, i.e, event extraction and entity linking. In particular, the memory-augmented

neural networks can well exploit the interdependencies between event types and

argument roles for EE and the topical coherence among the entities of documents

for EL. The extensive experiments show that we achieve the state-of-the-art per-
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formance for both tasks on the benchmark datasets.
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Chapter 7

Conclusion and Future Work

This dissertation departs from the traditional feature-based methods and de-

velops new deep learning models for information extraction tasks. The major moti-

vations for such deep learning models are the ability to generalize over vocabulary

(i.e, mitigate the unseen word/feature problems) and the automatic learning of

effective feature representations. The dissertation involves three main parts. The

first part in Chapter 2 introduces the use of word embeddings to generate robust

features that can work well on different domains (domain adaptation) for relation

extraction. The second part involves Chapters 3, 4 and 5 which explore various

deep learning models for entity mention detection, relation extraction and event

detection respectively. We show that such deep learning models help minimize

the effort of feature engineering while achieving the best reported performance

for such tasks. Finally, the third part in Chapter 6 proposes memory-augmented

neural networks to simultaneously solve multiple prediction tasks for information

extraction (joint inference). The memory-augmented neural networks maintain
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memories to capture long range dependencies in information extraction tasks. We

apply this general framework to event extraction and entity linking, resulting in

the systems with state-of-the-art performance for both of the tasks.

We envision much future research on deep learning for information extraction

following this dissertation. In this section, we describe two promising directions to

explore in the future.

The first direction concerns the unsupervised deep learning models for informa-

tion extraction. One of the major drawback of the current work is the requirement

of large training datasets (labeled data) to obtain good performance (supervised

learning). Such large training datasets are often very expensive to obtain in prac-

tice as they require proper creation of annotation guidelines, effective training for

annotators, good domain knowledge, strict quality control etc. This hinders the

portability of the systems to new domains where training data is not available or

limited. In contrast to labeled data, unlabeled data and/or weakly labeled data are

often abundant in application domains. How can we make use of unlabeled data

and weakly labeled data to automatically build schemas and extract high-quality

information from text with deep learning? The first step could be investigating

unsupervised learning models in deep learning that have been applied successfully

in other problems such as autoencoder models (Vincent et al., 2010), generative

adversarial networks (GAN) (Goodfellow et al., 2014) etc. The insights from such

research could suggest us to develop better unsupervised deep learning models for

information extraction.

The second direction considers the multitask deep learning frameworks for in-
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formation extraction. The main idea is to explore deep learning models that can

simultaneously solve several information extraction tasks to improve the perfor-

mance of the individual tasks (joint learning). Deep learning facilitates such mul-

titask learning objectives as it allows the shared representations among different

tasks. This encourages the communication among multiple tasks so they can fix

the errors from each other and produce better representations for the tasks. We

have seen some positive evidence for this direction in Chapter 6.
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