
Continuous LWE and Its Applications

by

Min Jae Song

A dissertation submitted in partial fulfillment

of the reqirements for the degree of

Doctor of Philosophy

Department of Computer Science

New York University

May, 2023

Professor Joan Bruna

Professor Oded Regev



© Min Jae Song

all rights reserved, 2023



Acknowledgments

My PhD journey has been fun and fulfilling. I would first and foremost like to thank my amazing

advisors, Joan Bruna and Oded Regev. I have learned immensely from them over the past 5 years.

Oded taught me that most problems, no matter how complicated they may seem at first, can

always be simplified. One just needs to take a deep breath, ask the right questions, and find the

right angle to view them. His emphasis on clarity and conciseness will always occupy my mind.

Joan taught me to keep an open mind, be optimistic, and stay curious. His remarkable stamina,

demonstrated by his endless curiosity and his ability to continuously work on intricate proofs

for hours on end, continues to be a constant source of inspiration for me. I could go on about the

countably infinite lessons I’ve learned from them (I am an avid note-taker), but to keep things

concise, I will simply say that it was a true blessing to have had them as my advisors.

I thank my co-authors for the numerous hours of joy and confusion, and few minutes of

epiphanies we had together. I thank Yi Tang for being confused about lattices and LWE together

and Clayton Sanford for being confused about kernel methods and uniform convergence of loss

landscapes together. I’m glad that our confusions have been somewhat alleviated and resulted

in papers. I also thank my relatively senior co-authors Alberto Bietti, Alex Wein, and Ilias Zadik

for generously sharing their deep insights and expertise. A few pieces of insights they would

casually drop during meetings have saved me weeks of “hitting the books”.

I thank my friends at NYU for the many chats, laughs, and cups of espresso we had together.

Special thanks my cohort Ishan Agarwal, David Brandfonbrener, Mark Goldstein, Aahlad Manas

iii



Puli, Aaron Zweig who have been my support group from the beginning, my office mates Adriel

Saporta, Raghav Singhal, Mukund Sudarshan, Mimee Xu, Aaron Zweig, and our espresso (and

pizza) connoisseur, Alfredo Canziani. I also thank my fellow NYU Koreans, Kyunghyun Cho,

Jason Lee, Taegyun Kim, and Young Kun Ko, for their support and the fun conversations we had

exclusively in Korean,

I thank the people I’ve met and befriended at conferences and workshops, especially the

Simons CCSI Workshop and COLT2022. Special thanks to Alex Wein, Eren Kizildag, Navid

Ardeshir, and Clayton Sanford for the many laughters and interesting discussions we had to-

gether at those exotic locations. I also thank myML-NYC co-conspirators, Dave Blei, Joan Bruna,

David Brandfonbrener, Claudia Shi, and Keyon Vafa, for the many talks, bars, and dinners we

enjoyed together.

I thank my thesis committee Joan Bruna, Oded Regev, Jonathan Niles-Weed, Subhash Khot,

and Alex Wein. It was an honor to share my work with you.

Lastly, I thank my family, both my immediate family and my in-laws, for their unwavering

support. They are the bedrock on which my existence stands. Special thanks to my wife who

has been my biggest supporter throughout this entire journey. Every day with you has been a

blessing and it will continue to be so in the future. Churro, our corgi, has been my second biggest

supporter, although definitely the furriest one.

iv



Abstract

Efficiently extracting useful information from high-dimensional data is a major challenge in ma-

chine learning (ML). Oftentimes, the challenge comes not from a lack of data, but from its high di-

mensionality and computational constraints. For instance, when data exhibits a low-dimensional

structure, one could in principle exhaustively search over all candidate structures, and obtain es-

timators with strong statistical guarantees. Of course, such brute-force approach is prohibitively

expensive in high dimensions, necessitating the need for computationally efficient alternatives.

When our problem, however, persistently eludes efficient algorithms, we may find ourselves ask-

ing the following perplexing question: is the failure due to our lack of algorithmic ingenuity or

is the problem just too hard? Is there a gap between what we can achieve statistically and what

we can achieve computationally?

This thesis is one attempt at answering such questions on the computational complexity of

statistical inference. We provide results of both positive and negative nature on the complexity of

canonical learning problems by establishing connections between ML and lattice-based cryptog-

raphy. The continuous learning with errors (CLWE) problem, which can be seen as a continuous

variant of the well-known learning with errors (LWE) problem from lattice-based cryptography,

lies at the center of this fruitful connection.

In the first part of this thesis, we show that CLWE enjoys essentially the same average-case

hardness guarantees as LWE. This result has several important applications. For example, it

shows that estimating the density of high-dimensional Gaussian mixtures is computationally
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hard, and gives rise to “backdoored” Gaussian distributions that can be used to plant undetectable

backdoors in ML models and construct novel public-key encryption schemes.

Next, we focus on the “backdoored” Gaussian distributions, which we refer to as Gaussian

pancakes, and the problem of distinguishing these distributions from the standard Gaussian. We

provide evidence for the hardness of this distinguishing problem based on a reduction fromCLWE

and lower bounds against restricted classes of algorithms, such as algorithms that compute low-

degree polynomials of the observations.

Finally, we end on a positive note by showing that the Lenstra-Lenstra-Lovász (LLL) algo-

rithm, commonly used in computational number theory and lattice-based cryptography, has sur-

prising implications for noiseless inference. In particular, we show that LLL solves both CLWE

andGaussian pancakes in the noiseless setting, showing that noise is necessary for hardness. This

strengthens the analogy between LWE and CLWE since LWE is also easy in the noiseless case. A

minor modification of our LLL-based method in fact surpasses sum-of-squares and approximate

message passing algorithms, two methods often conjectured to be optimal among polynomial-

time algorithms, on other noiseless problems such as Gaussian clustering and Gaussian phase

retrieval.
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1 | Introduction

The fundamental idea of statistics is that useful

information can be accrued from individual small bits

of data. No one [sample] try by itself tells us much,

but together the data speak.
Bradley Efron1

Statistical inference starts with the assumption that some unknown probability distribution

P over a domain X has produced the observed data 𝑋 ∈ X. Our goal as learners is to perform

an “inversion” by inferring (or equivalently, learning) properties of the unknown P using 𝑋 and

potentially a priori knowledge to better position ourselves for the future. To make things con-

crete, consider the hypothesis testing setup, in which the goal is to decide2 whether 𝑋 has been

drawn from some distribution Q or an alternative distribution P, given the promise that the

truth lies within these two choices. This is one of the simplest settings that captures the essence

of (frequentist) statistical inference, and thus has long been a central subject of study in classical

statistics [Wal50; LRC05; Leh11; LeC12].

As is the case in many other theoretical disciplines, significant efforts in statistics have been

devoted to the pursuit of optimality. After all, when we have a procedure that works, a natural
1[Efr82].
2In CS, such problems are indeed called decision problems. Statisticians call them detection problems when the

alternate distributionP has some “planted” structure. In this case, deciding betweenP andQ can be seen as detecting
whether 𝑋 exhibits the planted structure.
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follow-up question is “can it be better?”3 The concept of optimality is typically defined with

respect to some performance measure and various resource constraints. The go-to choice of

performance measure in this thesis is Type I + Type II error (i.e., equally weighted errors), which

is equivalent to the concept of advantage in computer science and cryptography.4 Type I error

is the probability that our decision rule Ψ : X → {0, 1}, i.e., any {0, 1}-valued function on X,

outputs Ψ(𝑋 ) = 1 (“𝑋 is from P”) when in truth 𝑋 ∼ Q; Type II error is the probability that

Ψ(𝑋 ) = 0 (“𝑋 is from Q”) when in fact 𝑋 ∼ P.

The choice of resource constraints in defining optimality is where modern statistics and ma-

chine learning departs from classical statistics (see, e.g., a brief survey on “constrained statistical

minimax” by Wainwright [Wai14] and also [Wai19, Chapter 1]). In classical statistics, the dimen-

sionality of the data is typically assumed to be fixed, and the primary resource constraint is the

number of available samples or, more generally, a signal-to-noise ratio (SNR) which quantifies

statistical discrepancy between P and Q. Thus, a fundamental question in this field is “What is

the minimum number of samples or SNR required to distinguish P and Q with high probability?”

Modern datasets tend to be massive, both in terms the number of samples and the dimen-

sionality of each sample. For instance, a single photo shot via iPhone 13 has dimension roughly

12 × 106, when represented naively, and Google’s Open Images dataset [KRAU+20], one of the

largest publicly available image datasets, contains about 9 × 106 images. Consequently, the fo-

cus of theoretical and practical efforts has shifted towards the high-dimensional setting in which

both the dimensionality and number of samples grow simultaneously. With the data dimension

no longer fixed, the computational complexity of inference algorithms becomes a key resource

constraint as well. A statistically-optimal algorithm whose running time scales exponentially in

the data dimension would be practically useless to any computationally-bounded being.
3Again, we quote Efron: Optimality results are a mark of scientific maturity. [Efr98]
4More precisely, advantage is equal to 1 − (Type I + Type II error). A random guess which doesn’t even look at

𝑋 achieves 0 advantage.
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1.1 Statistical-to-Computational Gaps

The inclusion of computation as a resource opens up a wealth of intriguing theoretical phenom-

ena. One of the most intriguing is the appearance of (conjectured) statistical-to-computational

gaps (stat-to-comp gaps), gaps betweenwhat is achievable statistically (i.e., with infinite time) and

what is achievable computationally (i.e., in polynomial time). In the context of hypothesis testing,

this means that the observed data 𝑋 may contain sufficient information for a computationally-

unbounded learner to correctly decide whether 𝑋 is drawn from P or Q with high probability,

but no efficient algorithm can extract such information. Indeed, more than a decade of research

has identified stat-to-comp gaps in many natural inference problems, such as sparse principal

component analysis [BR13], submatrix detection [MW15], and sparse linear regression [ZWJ14].

We refer the reader to the surveys [ZK16; BPW18; BB20; WX21; Gam21; KWB22; DK23] and doc-

toral theses [Hop18; Kun22] for a thorough overview of the literature, and diverse perspectives

ranging from information theory and theoretical computer science to statistical physics.

The existence of stat-to-comp gaps is not particularly surprising in itself; public-key cryp-

tography, for example, is precisely built on the existence of such gaps. Our ability to securely

transmit private text messages and financial information over public channels relies on the as-

sumption that the encryption scheme generates two distributions (each encoding a single bit 0 or

1, respectively) which cannot be distinguished by any computationally-bounded adversary, but

can be easily distinguished using the secret key [KL20, Chapter 10]. What is surprising, how-

ever, is the fact that these gaps arise in natural and canonical inference problems, without any

deliberate intent to create them. In light of this surprise, one may then ask the following question:

Can we get cryptographic primitives from natural inference problems?

In fact, the analogy to cryptography unlocks a question in the opposite direction as well:

Can we prove hardness of inference problems using cryptographic assumptions?

3



In this thesis, we provide positive answers to both questions by introducing a new problem

called continuous learning with errors (CLWE) and studying its computational complexity. A key

contribution of this thesis is showing that hardness of natural inference problems, in particular

CLWE and its sibling Gaussian pancakes, can be based on worst-case hardness assumptions from

lattice-based cryptography [MR09]. The proof of this fact comes in the form of a reduction: any

algorithm that can achieve “very modest” statistical performance on CLWE can be used to solve

any instance of lattice problems which are widely believed to be hard.

This has opened up new avenues for showing computational hardness in the context of sta-

tistical inference. Previous work on stat-to-comp gaps either show lower bounds against re-

stricted classes of algorithms, such as sum-of-squares (SoS) [BHKK+19], low-degree polynomi-

als [KWB22], and statistical query (SQ) algorithms [Kea98; FGRV+17; DKS17], or assume the

average-case hardness ofwell-known problems such as planted clique and reduce from them [BR13;

MW15; BB20]. Our result provides one of the few and rare instances in which hardness of an in-

ference problem is based on well-studied worst-case problems. In fact, prior to our work, experts

had expressed skepticism about whether such an approach, namely reduction from worst-case

problems, could be successful (see, e.g., [Hop18, Section 1.1] and [BB20, Section 1]).

Another remarkable feature of CLWE and Gaussian pancakes is that they remain hard even

when the number of samples is unbounded,5 which is in contrast to previously studied problems

that undergo “impossible-hard-easy” phase transitions depending on the number of observed

samples, such as planted vector recovery [MW21] and tensor PCA [RM14; HKPR+17; DH22]. This

feature makes CLWE and Gaussian pancakes particularly well-suited for cryptographic applica-

tions. Indeed, a follow-up work has demonstrated this by constructing public key cryptosystems

based on Gaussian pancakes [BNHR22].
5Note, however, that the algorithm’s run time immediately puts a restriction on the number of samples it can see.
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1.2 Continuous LWE and Gaussian Pancakes

We now briefly define CLWE and Gaussian pancakes. Precise definitions can be found in their

respective chapters (Chapters 3 and 4). The CLWE distribution with secret 𝒖 ∈ S𝑛−1, frequency

𝛾 > 0, and noise level 𝛽 > 0 consists of samples of the form (𝒚, 𝑧), where 𝒚 ∈ R𝑛 is drawn from

the standard Gaussian, 𝑧 = 𝛾 ⟨𝒚, 𝒖⟩ + 𝑒 (mod 1), and 𝑒 is drawn independently from the Gaussian

distribution of variance 𝛽2. The CLWE problem asks one to decide whether the observed samples

(𝒚𝑖, 𝑧𝑖) are from a CLWE distribution with some secret direction 𝒖 ∈ S𝑛−1, or the null distribution

in which 𝑧𝑖 ’s are independent of𝒚𝑖 and uniformly distributed on [0, 1] (see Figure 1.1). We denote

this problem by CLWE𝛽,𝛾 . The name “continuous” LWE comes from thewell-known learning with

errors (LWE) problem from lattice-based cryptography. The definition of LWE and analogies

between the two problems will be given in Chapter 3.

Figure 1.1: Scatter plot of 2D CLWE samples (left) and samples from the null distribution (right). Colors
indicate the values of 𝑧. Note the periodic structure of the CLWE distribution along the secret direction.

The Gaussian pancakes distributionwith secret 𝒖 ∈ S𝑛−1, spacing𝛾 > 0, and thickness 𝛽 > 0 is

a distribution which is a (noisy) discrete Gaussian supported on (1/𝛾)Z along the direction 𝒖 and
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Figure 1.2: Left: Scatter plot of 2DGaussian pancakes samples. Right: Unnormalized probability densities
of Gaussian pancakes (blue) and Gaussian (orange) along the hidden direction.

is standard Gaussian in the remaining 𝑛−1 directions. 𝛽 controls the thickness of each “pancake”

(see Figure 1.2). The Gaussian pancakes problem asks one to decide whether the observed samples

are from a Gaussian pancakes distribution with some secret direction 𝒖 ∈ S𝑛−1, or the standard

Gaussian. Gaussian pancakes can be seen as siblings of CLWE distributions since they can be

obtained by conditioning CLWE samples on 𝑧 ≈ 0. For this reason, we also refer to Gaussian

pancakes as homogeneous CLWE (hCLWE) since the samples 𝒙 satisfy 𝛾 ⟨𝒙, 𝒖⟩ ≈ 0 (mod 1) and

denote the problem by hCLWE𝛽,𝛾 .

1.3 Summary of Contributions

Results presented in this thesis are collected from three publishedworks [BRST21; SZB21; ZSWB22],

and a paper in preparation with Oded Regev and Alex Wein [RSW23]. Some passages have been

taken verbatim from the original sources.

Continuous LWE (Chapter 3). We show that CLWE enjoys essentially the same average-case

hardness guarantees as LWE. That is, its hardness can be based on fundamental worst-case lattice

problems. More precisely, we prove the following theorem.
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Theorem 1.1 (Informal version of Theorem 3.15). Let 𝑛 ∈ N, 𝛽 = 𝛽 (𝑛) ∈ (0, 1) and 𝛾 =

𝛾 (𝑛) ≥ 2
√
𝑛 such that 𝛾/𝛽 is polynomially bounded. If there exists an efficient algorithm that

solves CLWE𝛽,𝛾 , then there exists an efficient quantum algorithm that approximates worst-case lat-

tice problems to within polynomial factors.

Our proof follows the blueprint of the original reduction for LWE [Reg05], but with a modi-

fication in an intermediate step that gives rise to CLWE instead of LWE. It is worth noting that

recent work by [GVV22] has established a direct classical reduction from LWE to CLWE, which

allows for the use of the well-developed machinery of LWE in the context of CLWE.

As an example application, we show that hardness of CLWE immediately implies hardness of

learning “cosine neurons”, a family of functions which has previously been shown to be hard to

learn for restricted classes of algorithms. Our result shows that the hardness holds against any

polynomial-time algorithm, assuming worst-case lattice problems are hard.

Gaussian pancakes (Chapter 4). We show hardness of the Gaussian pancakes problem using

a variety of techniques. We first show that CLWE reduces to the Gaussian pancakes problem,

resulting in the following highly analogous theorem.

Theorem 1.2 (Informal version of Theorem 4.9). Let𝑛 ∈ N, 𝛽 = 𝛽 (𝑛) ∈ (0, 1) and𝛾 = 𝛾 (𝑛) ≥ 2
√
𝑛

such that 𝛾/𝛽 is polynomially bounded. If there exists an efficient algorithm that solves hCLWE𝛽,𝛾 ,

then there exists an efficient quantum algorithm that approximates worst-case lattice problems to

within polynomial factors.

We corroborate the above theoremwith lower bounds against restricted classes of algorithms,

such as statistical query algorithms and low-degree polynomials. These alternative approaches

provide additional insights into the Gaussian pancakes problem, allowing for an analysis of its

complexity beyond the parameters covered by the reduction-based approach.

Hardness of Gaussian pancakes has several important applications. For example, it shows that

estimating the density of high-dimensional Gaussian mixtures is computationally hard. More-
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over, a standard hybrid argument (see, e.g., [Gol08, Chapter 3]) shows that the problem remains

hard for Gaussian “baguettes”, i.e., when one has more than 1 discrete directions. These appli-

cations will be covered in Chapter 4 as well. We remark that follow-up work has used Gaussian

pancakes to plant undetectable backdoors in ML models [GKVZ22] and construct novel public-

key encryption schemes [BNHR22].

Lattice-based methods for noiseless inference (Chapter 5). We show that the Lenstra-

Lenstra-Lovász (LLL) algorithm, commonly used in computational number theory and lattice-

based cryptography, has surprising implications for noiseless inference. In particular, we show

that LLL solves both CLWE and Gaussian pancakes in the noiseless setting, which is in stark

contrast with the hardness that occurs in the noisy setting.

Theorem1.3 (Informal version of Theorem 5.8). Let𝑛 ∈ N and𝛾 = poly(𝑛). There is a polynomial-

time algorithmwhich uses𝑛+1 noiselessCLWE𝛾 (or hCLWE𝛾 ) samples and exactly outputs the secret

direction 𝒖 (up to a sign flip) with probability 1 − exp(−Ω(𝑛)) .

We remark that minor modifications to our LLL algorithm in fact surpasses sum-of-squares

and approximatemessage passing algorithms, twomethods often conjectured to be optimal among

polynomial-time algorithms, on other noiseless problems such as Gaussian clustering and Gaus-

sian phase retrieval [SZB21; ZSWB22; DK22]. These results highlight the crucial but subtle role

of noise and hidden algebraic structure in the onset of statistical-to-computational gaps.
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2 | Preliminaries

Books may be linearly ordered but our minds are not.

Paul Halmos1

2.1 Hypothesis Testing

Wedefine hypothesis testing problemswith respect to a sequence of distribution pairs (P𝑛,Q𝑛)𝑛∈N,

where P𝑛 and Q𝑛 are distributions on R𝑁 . Here, 𝑁 = 𝑁 (𝑛) is the size of the problem instance

that scales with 𝑛. In this work, we set 𝑁 = 𝑛𝑚, with 𝑛 denoting the dimension of each sample

and𝑚 the number of samples.2 Typically, the planted distribution P𝑛 is generated by a two-step

procedure. First, sample the planted signal 𝒖 uniformly from S𝑛 , the set of possible signals. Then,

sample i.i.d. samples from 𝑃𝒖 , the conditional distribution given 𝒖. For example, in the Gaussian

pancakes problem, 𝒖 is the secret direction, S𝑛 can either be the unit sphere S𝑛−1 or the Boolean

hypercube {±1/
√
𝑛}𝑛 . The null distribution Q𝑛 is usually chosen to be a distribution with nice

analytical properties, e.g., the standard Gaussian.

Hypothesis testing for planted structures is defined as follows. The statistician is given𝑚 =

𝑚(𝑛) i.i.d. samples drawn from an unknown distribution 𝐷 with the promise that either 𝐷 ∈

{𝑃𝒖}𝒖∈S𝑛 or 𝐷 = 𝑄𝑛 , and the goal is to decide between the two cases. The quantity of interest
1[Hal13].
2In cryptography, the index 𝑛 is referred to as the security parameter [Gol04; KL20].
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associated with a decision rule is the advantage (terminology from cryptography [Gol04; KL20]).

Definition 2.1 (Advantage). We define the advantage of a decision rule Ψ : X → {0, 1} solving

the decision problem of distinguishing two distributions P and Q over the domain X by

Adv(Ψ) =
��� Pr
𝑥∼P
[Ψ(𝑥) = 1] − Pr

𝑥∼Q
[Ψ(𝑥) = 1]

��� .
Note that in statistical parlance, Adv(Ψ) is equivalent to Type I + Type II error since

Adv(Ψ) = 1 − (Type I error + Type II error) .

We are interested in distribution pairs (P𝑛,Q𝑛) which cannot be distinguished by any effi-

ciently computable decision rule. To formalize this, we define the notion of computational indis-

tinguishability.

Definition 2.2 (Computational Indistinguishability). We say a sequence of distribution pairs

(P𝑛,Q𝑛) over a common domain X𝑛 are computationally indistinguishable if for any efficiently

computable decision rule Ψ𝑛 : X𝑛 → {0, 1},

|P𝑛 (Ψ𝑛) − Q𝑛 (Ψ𝑛) | = negl(𝑛) . (2.1)

Definition 2.3 (Statistical distance). For two distributions P and Q over R𝑛 with density func-

tions 𝜙1 and 𝜙2, respectively, we define the statistical distance between them as

Δ(P,Q) = 1
2

∫
R𝑛
|𝑝 (𝒙) − 𝑞(𝒙) |𝑑𝒙 .

We denote the statistical distance by Δ(𝑝, 𝑞) if the density functions are specified. Moreover,

for random variables 𝑋1 ∼ P and 𝑋2 ∼ Q, we also denote Δ(𝑋1, 𝑋2) = Δ(P,Q). One important

fact is that applying (possibly a randomized) function cannot increase statistical distance, i.e., for
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any pair of random vectors 𝑋,𝑌 and any function 𝑓 ,

Δ(𝑓 (𝑋 ), 𝑓 (𝑌 )) ≤ Δ(𝑋,𝑌 ) .

2.2 Lattices and Discrete Gaussians

Lattices. A lattice is a discrete additive subgroup of R𝑛 . Unless specified otherwise, we assume

all lattices are full rank, i.e., their linear span isR𝑛 . For an 𝑛-dimensional lattice Λ, a set of linearly

independent vectors 𝐵 = {𝒃1, . . . , 𝒃𝑛} is called a basis of Λ if Λ is generated by taking integer

combinations of 𝐵. The determinant of a lattice Λ with basis 𝐵 is defined as det(Λ) = | det(𝐵) |.

The dual lattice of a lattice Λ, denoted by Λ∗, is defined as

Λ∗ = {𝒚 ∈ R𝑛 | ⟨𝒙,𝒚⟩ ∈ Z for all 𝒙 ∈ Λ} .

If 𝐵 is a basis of Λ then (𝐵⊤)−1 is a basis of Λ∗. In particular, det(Λ∗) = det(Λ)−1.

Discrete Gaussians. We define 𝜌𝑟 : R𝑛 → R, the Gaussian function of width 𝑟 > 0, by

𝜌𝑠 (𝒙) = exp
(
−1

2
· ∥𝒙 ∥

2

𝑟 2

)
.

We denote the Gaussian mass of a lattice Λ ⊂ R𝑛 by 𝜌𝑠 (Λ) =
∑

𝒙∈Λ 𝜌𝑠 (𝒙).

Definition 2.4 (Discrete Gaussian). Let Λ ⊂ R𝑛 be a lattice, 𝒄 ∈ R𝑛 , and 𝑟 > 0. The discrete

Gaussian 𝐷𝒄+Λ,𝑟 on coset 𝒄 + Λ of width 𝑟 is a discrete distribution supported on 𝒄 + Λ with

probability mass function proportional to 𝜌𝑟 .

For 𝒄 = 0, we simply denote the discrete Gaussian distribution on lattice Λ with width 𝑟

by 𝐷Λ,𝑟 . We omit the subscript 𝑟 when 𝑟 = 1 and simply write 𝐷Λ. Furthermore, we denote

the centered continuous Gaussian of variance 𝑠2 by 𝐷𝑠 . We remark that the discrete Gaussian is

11



not the same as the rounded Gaussian, which is given by first sampling 𝑥 ∼ N(0, 1) and then

rounding 𝑥 to the nearest lattice point.3

Claim 2.5 ([Pei10, Fact 2.1]). For any 𝑟1, 𝑟2 > 0 and vectors 𝒙, 𝒄1, 𝒄2 ∈ R𝑛 , let 𝑟0 =

√︃
𝑟 2

1 + 𝑟 2
2 ,

𝑟3 = 𝑟1𝑟2/𝑟0, and 𝒄3 = (𝑟3/𝑟1)2𝒄1 + (𝑟3/𝑟2)2𝒄2. Then

𝜌𝑟1 (𝒙 − 𝒄1) · 𝜌𝑟2 (𝒙 − 𝒄2) = 𝜌𝑟0 (𝒄1 − 𝒄2) · 𝜌𝑟3 (𝒙 − 𝒄3) .

Fourier analysis. We briefly review basic tools of Fourier analysis required later on. The

Fourier transform of a function 𝑓 : R𝑛 → C is defined by

𝑓 (𝒚) =
∫
R𝑛
𝑓 (𝒙)𝑒−2𝜋𝑖 ⟨𝒙,𝒚⟩𝑑𝒙 .

An elementary property of the Fourier transform is that if 𝑓 (𝒚) = 𝑔(𝒚 + 𝒄) for some 𝒄 ∈ R𝑛 ,

then 𝑓 (𝒚) = 𝑒2𝜋𝑖⟨𝒄,𝒚⟩𝑔(𝒚). Another important fact is that the Fourier transform of a Gaussian is

also a Gaussian. More precisely, 𝜌𝑠 = (𝑠
√

2𝜋)𝑛𝜌1/(2𝜋𝑠) . We also exploit the Poisson summation

formula stated below. Note that we denote by 𝑓 (𝑆) = ∑
𝒙∈𝑆 𝑓 (𝒙) for any function 𝑓 and any

discrete set 𝑆 .

Lemma 2.6 (Poisson summation formula). For any lattice Λ and any function 𝑓 ,4

𝑓 (Λ) = det(Λ∗) · 𝑓 (Λ∗) .

Smoothing parameter. An important lattice parameter induced by discrete Gaussian which

will repeatedly appear in our work is the smoothing parameter, defined as follows.

Definition 2.7 (Smoothing parameter). Let Λ ⊂ R𝑛 be a lattice and let 𝜀 > 0. We define the
3In fact, it can be shown that the statistical distance between the discrete Gaussian and the rounded Gaussian on

(1/𝛾)Z, where 𝛾 = poly(𝑛), is at least Ω(1/𝛾3). See discussion in [GPV08, Section 4] for more details.
4To be precise, 𝑓 must satisfy some niceness conditions; this will always hold in our applications.
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smoothing parameter 𝜂𝜀 (Λ) by

𝜂𝜀 (Λ) = inf{𝑠 | 𝜌1/(2𝜋𝑠) (Λ∗ \ {0}) ≤ 𝜀} .

Intuitively, this parameter is the width beyond which the discrete Gaussian distribution “be-

haves” like a continuous Gaussian. This is formalized in the lemmas below.

Lemma 2.8 ([Reg09, Claim 3.9]). For any lattice Λ ⊂ R𝑛 , vector 𝒄 ∈ R𝑛 , and 𝑟, 𝑠 > 0 satisfying

𝑟𝑠/𝑡 ≥ 𝜂𝜀 (Λ) for some 𝜀 < 1/2, where 𝑡 =
√
𝑟 2 + 𝑠2, the statistical distance between 𝑄𝒄+Λ,𝑟 +𝑄𝑠 and

𝑄𝑡 is at most 4𝜀.

Lemma 2.8 states that if we take a sample from 𝑄Λ,𝑟 and add continuous Gaussian noise 𝑄𝑠

to the sample, the resulting distribution is statistically close to 𝑄√
𝑟 2+𝑠2 , which is precisely what

one would expect from adding two continuous Gaussian random variables of variance 𝑟 2 and

𝑠2, respectively. Unless specified otherwise, we always assume 𝜀 is negligibly small in 𝑛, say

𝜀 = exp(−𝜔 (log𝑛)). The following is a useful upper bound on the smoothing parameter 𝜂𝜀 (Λ).

Lemma 2.9 ([MP12, Lemma 2.3]). Let Λ ⊂ R𝑛 be a lattice with (ordered) basis 𝐵 = {𝒃1, . . . , 𝒃𝑛}, let

𝐵̃ be the Gram-Schmidt orthogonalization of 𝐵, and let 𝜀 > 0. Then,

𝜂𝜀 (Λ) ⩽ ∥𝐵̃∥ ·
√︁

ln(2𝑛(1 + 1/𝜀))/𝜋 .

In particular, for any 𝜔 (
√︁

log𝑛) function, there is a negligible 𝜀 = 𝜀 (𝑛) for which 𝜂𝜀 (Λ) ⩽ ∥𝐵̃∥ ·

𝜔 (
√︁

log𝑛).

Specializing to the one-dimensional lattice (1/𝛾)Z, we have the following useful corollary.

Corollary 2.10 (Smoothing parameter for (1/𝛾)Z). Let 𝛾 = 𝛾 (𝑛). There exists some constant 𝑐 > 0

such that 𝜂𝜀 ((1/𝛾)Z) ⩽ 1 for any 𝜀 ⩽ exp(−𝑐𝛾2).
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3 | Continuous LWE

Great talking to you yesterday! I would be interested

to see if we can prove a computational hardness

results based on LWE for their distributions.

Oded Regev1

The Learning with Errors (LWE) problem has served as a foundation for many lattice-based

cryptographic schemes [MR09; Pei16]. Informally, LWE asks one to solve noisy random linear

equations. To be more precise, the goal is to find a secret vector 𝒔 ∈ Z𝑛𝑞 given polynomially many

samples of the form (𝒂𝑖, 𝑏𝑖), where 𝒂𝑖 ∈ Z𝑛𝑞 is uniformly chosen and 𝑏𝑖 ≈ ⟨𝒂𝑖, 𝒔⟩ (mod 𝑞). In

the absence of noise, LWE can be efficiently solved using Gaussian elimination. However, LWE

is known to be hard assuming hardness of worst-case lattice problems, such as the gap shortest

vector problem (GapSVP) or shortest independent vectors problem (SIVP), in the sense that there

is a polynomial-time quantum reduction from these worst-case lattice problems to LWE [Reg05].

Continuous LWE (CLWE), which we introduced in Section 1.2, can be seen as a continuous

analogue of LWE, where equations in Z𝑛𝑞 are replaced with ones in R𝑛 (recall Figure 1.1). This

analogy provides a natural motivation to study CLWE, as it allows us to extend our understanding

of LWE to the continuous domain. Our main result is that CLWE enjoys hardness guarantees
1Email fromOded to Joan andme on Feb 19, 2019. “Their” refers to [BLPR19], who conjectured that distinguishing

Gaussian pancakes from the standard Gaussian is hard for any polynomial-time algorithm and suggested leveraging
cryptographic assumptions to prove this. Our motivation for defining Continuous LWE and proving its hardness
was largely influenced by this open problem.
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similar to those of LWE. More precisely, we show the following theorem.

Theorem 3.1 (Informal). Let 𝑛 ∈ N, 𝛽 = 𝛽 (𝑛) ∈ (0, 1) and 𝛾 = 𝛾 (𝑛) ≥ 2
√
𝑛 such that the ratio 𝛾/𝛽

is polynomially bounded. If there exists an efficient algorithm that solves CLWE𝛽,𝛾 , then there exists

an efficient quantum algorithm that approximates worst-case lattice problems to within polynomial

factors.

The continuous nature of CLWE makes it a promising candidate for establishing connections

between statistical inference problems, which are naturally defined in the continuous domain,

and worst-case lattice problems. Indeed, formulated as a supervised learning problem, CLWE

can be seen as a generalized linear model (GLM) [NW72], a class of functions extensively studied

in the context of high-dimensional inference (see e.g., [GZ17; BKMM+19; MAB20]). GLMs have

the form 𝑓 (𝒚) = 𝜙 (⟨𝒖,𝒚⟩), where 𝒖 ∈ R𝑛 is an unknown parameter and the univariate function

𝜙 : R → R (called the link function) is known. Parameterizing the model with 𝒖 ∈ S𝑛−1, CLWE

is essentially a GLM with the sequence of link functions 𝜙𝑛 (𝑡) = 𝛾𝑡 (mod 1).2

Connections to other GLMs can be established by applying different 1-periodic functions to

labels of CLWE samples. One notable example is the class of cosine neurons which are functions

defined by 𝑓 (𝒚) = cos(2𝜋𝛾 ⟨𝒖,𝒚⟩). Previous work [SVWX17; Sha18] has shown that learning co-

sine neurons over Gaussian input distributions is hard for restricted classes of algorithms, such as

gradient-based methods. In Section 3.4, we show that the hardness extends to any polynomial-

time learning algorithm if small noise is added to the labels. Since cosine neurons can be ap-

proximated by one-hidden-layer neural networks, our result implies that learning (noisy) neural

networks over the Gaussian distribution is hard. This adds to the growing literature on hardness

of learning neural networks over Gaussian distributions [GGJK+20; DKKZ20; DV21; CGKM22].

We list additional motivation for studying CLWE below.
2This is somewhat non-standard. In GLMs, link functions are typically fixed, i.e., 𝜙𝑛 = 𝜙 for all 𝑛 ∈ N.
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Cryptographic applications. Given the wide range of cryptographic applications of LWE

[Reg05; MR09; Pei16], it is only natural to expect that CLWE would also be useful for cryptogra-

phy. CLWE’s clean and symmetric definition should make it a better fit for some applications; its

continuous nature, however, might require a discretization step due to efficiency considerations.

Algorithms for lattice problems. Another motivation to study CLWE is as a possible ap-

proach to finding quantum algorithms for lattice problems. Indeed, our reduction, just like the

reduction to LWE [Reg05], can be interpreted in an algorithmic way: in order to quantumly solve

worst-case lattice problems, “all” we have to do is solve CLWE (classically or quantumly). The el-

egant geometric nature of CLWE and its connection to Gaussian pancakes (see Chapter 4) opens

up a new toolbox of techniques that can potentially be used for solving lattice problems, such as

sum-of-squares-based techniques and algorithms for learning mixtures of Gaussians [MV10].

Looking ahead, we note that the simple moment-based subexponential time algorithm from

Section 4.5 demonstrates the usefulness of CLWE as an algorithmic target. Even though this

does not imply subexponential time algorithms for lattice problems (since Theorem 1.1 requires

𝛾 >
√
𝑛), it is interesting to contrast this algorithm with an analogous algorithm for LWE by

Arora and Ge [AG11]. The two algorithms have the same running time (where 𝛾 is replaced by

the absolute noise 𝛼𝑞 in the LWE samples), and both rely on related techniques (moments in our

case, powering in Arora-Ge’s), yet the Arora-Ge algorithm is technically more involved than our

rather trivial algorithm (which just amounts to computing the empirical covariance matrix). We

interpret this as an encouraging sign that CLWE might be a better algorithmic target than LWE.

Analogy with LWE. As mentioned above, there are non-trivial differences between CLWE

and LWE, especially in terms of possible algorithmic approaches. However, there is undoubtedly

also strong similarity between the two. In terms of parameters, the𝛾 parameter in CLWE (density

of layers) plays the role of the absolute noise level 𝛼𝑞 in LWE. And the 𝛽 parameter in CLWE

plays the role of the relative noise parameter 𝛼 in LWE. Using this correspondence between the
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parameters, the hardness proved for CLWE in Theorem 1.1 is essentially identical to the one

proved for LWE in [Reg05]. The similarity extends even to the noiseless case, where 𝛼 = 0 in

LWE and 𝛽 = 0 in CLWE. In particular, there is an efficient LLL-based algorithm for solving

noiseless CLWE, which is analogous to Gaussian elimination for noiseless LWE (see Chapter 5).

3.1 Technical Overview

Broadly speaking, our proof follows the iterative structure of the original LWE hardness proof

[Reg05] (in fact, one might say most of the ingredients for CLWE were already present in that

2005 paper!). We also make use of some recent techniques, such as a way to reduce to decision

problems directly [PRS17].

In more detail, as in previous work, our main theorem boils down to solving the following

problem: we are given a CLWE𝛽,𝛾 oracle and polynomially many samples from 𝐷𝐿,𝑟 , the discrete

Gaussian distribution on 𝐿 of width 𝑟 ,3 and our goal is to solve BDD𝐿∗,𝛾/𝑟 , which is the problem

of finding the closest vector in the dual lattice 𝐿∗ given a vector 𝒕 that is within distance 𝛾/𝑟 of

𝐿∗. (It is known that BDD𝐿∗,1/𝑟 can be efficiently solved even if all we are given is polynomially

many samples from 𝐷𝐿,𝑟 , without any need for an oracle [AR05]; the point here is that the CLWE

oracle allows us to extend the decoding radius from 1/𝑟 to 𝛾/𝑟 .) Once this is established, the main

theorem follows from previous work [PRS17; Reg05]. Very briefly, the resulting BDD solution is

used in a quantum procedure to produce discrete Gaussian samples that are shorter than the ones

we started with. This process is then repeated, until eventually we end up with the desired short

discrete Gaussian samples. We remark that this process incurs a
√
𝑛 loss in the Gaussian width

(Lemma 3.18), and the reason we require 𝛾 ⩾ 2
√
𝑛 is to overcome this loss.

We now explain how we solve the above problem. For simplicity, assume for now that we

have a search CLWE oracle that recovers the secret exactly. (Our actual reduction is stronger and
3We actually require samples from 𝐷𝐿,𝑟𝑖 for polynomially many 𝑟𝑖 ’s satisfying 𝑟𝑖 ≥ 𝑟 , see Section 3.3.
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only requires a decision CLWE oracle.) Let the given BDD instance be 𝒂 + 𝒖, where 𝒂 ∈ 𝐿∗ and

∥𝒖∥ = 𝛾/𝑟 . We will consider the general case of ∥𝒖∥ ⩽ 𝛾/𝑟 in Section 3.3. The main idea is to

generate CLWE samples whose secret is essentially the desired BDD solution 𝒖, which would

then complete the proof. To begin, take a sample from the discrete Gaussian distribution𝒚 ∼ 𝐷𝐿,𝑟

(as provided to us) and consider the inner product

⟨𝒚, 𝒂 + 𝒖⟩ = ⟨𝒚, 𝒖⟩ (mod 1) ,

where the equality holds since ⟨𝒚, 𝒂⟩ ∈ Z by definition. The (𝑛+1)-dimensional vector (𝒚, ⟨𝒚, 𝒖⟩ mod

1) is almost a CLWE sample (with parameter 𝛾 since 𝛾 = 𝑟 ∥𝒖∥ is the width of ⟨𝒚, 𝒖⟩) — the only

problem is that in CLWE the 𝒚’s need to be distributed according to a standard Gaussian, but

here the 𝒚’s are distributed according to a discrete Gaussian over 𝐿. To complete the transforma-

tion into bonafide CLWE samples, we add Gaussian noise of appropriate variance to both 𝒚 and

⟨𝒚, 𝒖⟩ (and rescale 𝒚 so that it is distributed according to the standard Gaussian distribution). We

then apply the search CLWE𝛽,𝛾 oracle on these CLWE samples to recover 𝒖 and thereby solve

BDD𝐿∗,𝛾/𝑟 .

As mentioned previously, our main result actually uses a decision CLWE oracle, which does

not recover the secret 𝒖 immediately. Working with this decision oracle requires some care. To

that end, our proof will incorporate the “oracle hidden center” finding procedure from [PRS17],

the details of which can be found in Section 3.3.3.

3.2 Preliminaries

Chapter-specific notation. In this chapter, we instead denote 𝜌𝑠 (𝒙) = exp(−𝜋 ∥𝒙/𝑠 ∥2). This

rescaling is standard in lattice-based cryptography. In fact, the isotropic Gaussian of covariance

𝐼𝑛/(2𝜋) (rather than 𝐼𝑛) is often referred to as the standard Gaussian in the literature. For lattice
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𝐿 ⊂ R𝑛 , 𝑟 > 0, and vector𝒚 ∈ R𝑛 we denote the discrete Gaussian by 𝐷𝒚+𝐿,𝑟 . For𝒚 = 0, we simply

denote the discrete Gaussian distribution on lattice 𝐿 with width 𝑟 by 𝐷𝐿,𝑟 . Abusing notation, we

denote the𝑛-dimensional continuous Gaussian distributionwith zeromean and isotropic variance

𝑟 2/(2𝜋) by 𝐷R𝑛,𝑟 . Finally, we omit the subscript 𝑟 when 𝑟 = 1.

3.2.1 Worst-case lattice problems

GapSVP and SIVP are among the main computational problems on lattices and are believed to

be computationally hard (even with quantum computation) for polynomial approximation factor

𝛼 (𝑛). We also define two additional problems, DGS and BDD.

Definition 3.2 (GapSVP). For an approximation factor 𝛼 = 𝛼 (𝑛), an instance of GapSVP𝛼 is

given by an 𝑛-dimensional lattice 𝐿 and a number 𝑑 > 0. In YES instances, 𝜆1(𝐿) ≤ 𝑑 , whereas in

NO instances, 𝜆1(𝐿) > 𝛼 · 𝑑 .

Definition 3.3 (SIVP). For an approximation factor 𝛼 = 𝛼 (𝑛), an instance of SIVP𝛼 is given by

an 𝑛-dimensional lattice 𝐿. The goal is to output a set of 𝑛 linearly independent lattice vectors of

length at most 𝛼 · 𝜆𝑛 (𝐿).

Definition 3.4 (DGS). For a function 𝜑 that maps lattices to non-negative reals, an instance of

DGS𝜑 is given by a lattice 𝐿 and a parameter 𝑟 ≥ 𝜑 (𝐿). The goal is to output an independent

sample whose distribution is within negligible statistical distance of 𝐷𝐿,𝑟 .

Definition 3.5 (BDD). For an 𝑛-dimensional lattice 𝐿 and distance bound 𝑑 > 0, an instance of

BDD𝐿,𝑑 is given by a vector 𝒕 = 𝒘 + 𝒖, where 𝒖 ∈ 𝐿 and ∥𝒘 ∥ ≤ 𝑑 . The goal is to output𝒘 .

3.2.2 Bounds on the smoothing parameter

Lemma 3.6 ([PRS17, Lemma 2.5]). For any 𝑛-dimensional lattice 𝐿, real 𝜀 > 0, and 𝑟 ≥ 𝜂𝜀 (𝐿), the

statistical distance between 𝐷R𝑛,𝑟 mod 𝐿 and the uniform distribution over R𝑛/𝐿 is at most 𝜀/2.
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The following are some useful upper and lower bounds on the smoothing parameter 𝜂𝜀 (𝐿).

Lemma 3.7 ([PRS17, Lemma 2.6]). For any 𝑛-dimensional lattice 𝐿 and 𝜀 = exp(−𝑐2𝑛),

𝜂𝜀 (𝐿) ≤ 𝑐
√
𝑛/𝜆1(𝐿∗) .

Lemma 3.8 ([MR07, Lemma 3.3]). For any 𝑛-dimensional lattice 𝐿 and 𝜀 > 0,

𝜂𝜀 (𝐿) ≤
√︂

ln(2𝑛(1 + 1/𝜀))
𝜋

· 𝜆𝑛 (𝐿) .

Lemma 3.9 ([Reg05, Claim 2.13]). For any 𝑛-dimensional lattice 𝐿 and 𝜀 > 0,

𝜂𝜀 (𝐿) ≥
√︂

ln 1/𝜀
𝜋
· 1
𝜆1(𝐿∗)

.

3.2.3 Learning with errors

We now define the learning with errors (LWE) problem. This definition will not be used in the

sequel, and is included for completeness. Let 𝑛 and 𝑞 be positive integers, and 𝛼 > 0 an error

rate. We denote the quotient ring of integers modulo 𝑞 as Z𝑞 = Z/𝑞Z and quotient group of reals

modulo the integers as T = R/Z = [0, 1).

Definition 3.10 (LWE distribution). For integer 𝑞 ⩾ 2 and vector 𝒔 ∈ Z𝑛𝑞 , the LWE distribution

𝑃𝒔,𝛼,𝑞 over Z𝑛𝑞 × T is sampled by independently choosing uniformly random 𝒂 ∈ Z𝑛𝑞 and 𝑒 ∼ 𝐷R,𝛼 ,

and outputting (𝒂, (⟨𝒂, 𝒔⟩/𝑞 + 𝑒) mod 1).

Definition 3.11. For an integer 𝑞 = 𝑞(𝑛) ≥ 2 and error parameter 𝛼 = 𝛼 (𝑛) > 0, the average-

case decision problem LWE𝑞,𝛼 is to distinguish the following two distributions over Z𝑛𝑞 × T: (1)

the LWE distribution 𝑃𝒔,𝛼,𝑞 for some uniformly random 𝒔 ∈ Z𝑛𝑞 (which is fixed for all samples), or

(2) the uniform distribution.
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3.2.4 Continuous learning with errors

We now define the CLWE distribution, which is the central subject of our analysis.

Definition 3.12 (CLWE distribution). For unit vector 𝒖 ∈ R𝑛 and parameters 𝛽,𝛾 > 0, define the

CLWE distribution 𝑃𝒖,𝛽,𝛾 over R𝑛+1 to have density at (𝒚, 𝑧) proportional to

𝜌 (𝒚) ·
∑︁
𝑘∈Z

𝜌𝛽 (𝑧 + 𝑘 − 𝛾 ⟨𝒚, 𝒖⟩) .

Equivalently, a sample (𝒚, 𝑧) from theCLWEdistribution 𝑃𝒖,𝛽,𝛾 is given by the (𝑛+1)-dimensional

vector (𝒚, 𝑧) where 𝒚 ∼ 𝐷R𝑛 and 𝑧 = (𝛾 ⟨𝒚, 𝒖⟩ + 𝑒) mod 1 where 𝑒 ∼ 𝐷R,𝛽 . The vector 𝒖 is the

hidden direction, 𝛾 is the density of layers, and 𝛽 is the noise added to each equation.

Definition 3.13. For parameters 𝛽,𝛾 > 0, the average-case decision problem CLWE𝛽,𝛾 is to

distinguish the following two distributions over R𝑛 ×T: (1) the CLWE distribution 𝑃𝒖,𝛽,𝛾 for some

uniformly random unit vector 𝒖 ∈ R𝑛 (which is fixed for all samples), or (2) 𝐷R𝑛 ×𝑈 .

Note that CLWE𝛽,𝛾 is defined as an average-case problem. We could have equally well defined

them to be worst-case problems, requiring the algorithm to distinguish the distributions for all

hidden directions 𝒖 ∈ R𝑛 . The following claim shows that the two formulations are equivalent.

Claim 3.14. For any 𝛽,𝛾 > 0, there is a polynomial-time reduction from worst-case CLWE𝛽,𝛾 to

(average-case) CLWE𝛽,𝛾 .

Proof. Given CLWE samples {(𝒚𝑖, 𝑧𝑖)}poly(𝑛)
𝑖=1 from 𝑃𝒖,𝛽,𝛾 , we apply a random rotation 𝑅, giving us

samples of the form {(𝑅𝒚𝑖, 𝑧𝑖)}poly(𝑛)
𝑖=1 . Since the standard Gaussian is rotationally invariant and

⟨𝒚, 𝒖⟩ = ⟨𝑅𝒚, 𝑅𝑇𝒖⟩, the rotated CLWE samples are distributed according to 𝑃𝑅𝑇 𝒖,𝛽,𝛾 . Since 𝑅 is a

random rotation, the random direction 𝑅𝑇𝒖 is uniformly distributed on the sphere. □
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3.3 Hardness of CLWE

3.3.1 LWE background and reduction overview

In this section, we give an overview of the quantum reduction fromworst-case lattice problems to

CLWE. Our goal is to show that we can efficiently solve worst-case lattice problems, in particular

GapSVP and SIVP, using an oracle for CLWE (and with quantum computation). We first state our

main theorem, which was stated informally as Theorem 1.1 in the introduction.

Theorem 3.15. Let 𝛽 = 𝛽 (𝑛) ∈ (0, 1) and 𝛾 = 𝛾 (𝑛) ≥ 2
√
𝑛 be such that 𝛾/𝛽 is polynomially

bounded. Then there is a polynomial-time quantum reduction from DGS2
√
𝑛𝜂𝜀 (𝐿)/𝛽 to CLWE𝛽,𝛾 .

Using standard reductions from GapSVP and SIVP to DGS (see, e.g., [Reg05, Section 3.3]), our

main theorem immediately implies the following corollary.

Corollary 3.16. Let 𝛽 = 𝛽 (𝑛) ∈ (0, 1) and 𝛾 = 𝛾 (𝑛) ≥ 2
√
𝑛 such that 𝛾/𝛽 is polynomially bounded.

Then, there is a polynomial-time quantum reduction from SIVP𝛼 and GapSVP𝛼 to CLWE𝛽,𝛾 for some

𝛼 = 𝑂̃ (𝑛/𝛽).

Based on previous work, to prove Theorem 3.15, it suffices to prove the following lemma,

which is the goal of this section.

Lemma 3.17. Let 𝛽 = 𝛽 (𝑛) ∈ (0, 1) and 𝛾 = 𝛾 (𝑛) ≥ 2
√
𝑛 such that 𝑞 = 𝛾/𝛽 is polynomially

bounded. There exists a probabilistic polynomial-time (classical) algorithm with access to an oracle

that solves CLWE𝛽,𝛾 , that takes as input a lattice 𝐿 ⊂ R𝑛 , parameters 𝛽,𝛾 , and 𝑟 ≥ 2𝑞 · 𝜂𝜀 (𝐿), and

poly(𝑛) many samples from the discrete Gaussian distribution 𝐷𝐿,𝑟𝑖 for poly(𝑛) parameters 𝑟𝑖 ≥ 𝑟

and solves BDD𝐿∗,𝑑 for 𝑑 = 𝛾/(
√

2𝑟 ).

In other words, we can implement an oracle for BDD
𝐿∗,𝛾/(

√
2𝑟 ) using polynomially many dis-

crete Gaussian samples and the CLWE oracle as a sub-routine. The proof of Lemma 3.17 will
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be given in Section 3.3.2 (which is the novel contribution) and Section 3.3.3 (which mainly fol-

lows [PRS17]).

In the rest of this subsection, we briefly explain how Theorem 3.15 follows from Lemma 3.17.

This derivation is already implicit in past work [PRS17; Reg05], and is included here mainly for

completeness. Readers familiar with the reduction may skip directly to Section 3.3.2.

The basic idea is to start with samples from a very wide discrete Gaussian (which can be effi-

ciently sampled) and then iteratively sample from narrower discrete Gaussians, until eventually

we end up with short discrete Gaussian samples, as required (see Figure 3.1). Each iteration con-

sists of two steps: the first classical step is given by Lemma 3.17, allowing us to solve BDD on

the dual lattice; the second step is quantum and is given in Lemma 3.18 below, which shows that

solving BDD leads to sampling from narrower discrete Gaussian.

. . .
poly samples
from 𝐷𝐿,𝑟

oracle for
BDD

𝐿∗,𝛾/(
√

2𝑟 )
poly samples
from 𝐷𝐿,𝑟

√
𝑛/𝛾

oracle for
BDD

𝐿∗,𝛾2/(
√

2𝑛𝑟 )
poly samples
from 𝐷𝐿,𝑟𝑛/𝛾2

. . .

classical, uses CLWE

quantum

classical, uses CLWE

quantum

Figure 3.1: Two iterations of the reduction.

Lemma 3.18 ([Reg05, Lemma 3.14]). There exists an efficient quantum algorithm that, given any

𝑛-dimensional lattice 𝐿, a number 𝑑 < 𝜆1(𝐿∗)/2, and an oracle that solves BDD𝐿∗,𝑑 , outputs a sample

from 𝐷
𝐿,
√
𝑛/(
√

2𝑑) .

Similar to [PRS17], there is a subtle requirement in Lemma 3.17 that we need discrete Gaussian

samples from several different parameters 𝑟 ′ ≥ 𝑟 . However, this is a non-issue since an oracle
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for BDD
𝐿∗,𝛾/(

√
2𝑟 ) also solves BDD

𝐿∗,𝛾/(
√

2𝑟 ′) for any 𝑟
′ ⩾ 𝑟 , so Lemma 3.18 in fact allows us to

efficiently sample from 𝐷𝐿,𝑟 ′
√
𝑛/𝛾 for any 𝑟 ′ ⩾ 𝑟 .

3.3.2 CLWE samples from BDD

In this subsection we prove Lemma 3.19, showing how to generate CLWE samples from the given

BDD instance using discrete Gaussian samples. In the next subsection we will show how to solve

the BDD instance by applying the decision CLWE oracle to these samples, thereby completing

the proof of Lemma 3.17.

Lemma 3.19. There is an efficient algorithm that takes as input an 𝑛-dimensional lattice 𝐿, a vector

𝒖 + 𝒂 where 𝒂 ∈ 𝐿∗, reals 𝑟, 𝑠1, 𝑠2 > 0 such that 𝑟𝑠1/
√︁
∥𝒖∥2(𝑟𝑠1/𝑠2)2 + 𝑡2 ≥ 𝜂𝜀 (𝐿) for some 𝜀 < 1

2 and

𝑡 =

√︃
𝑟 2 + 𝑠2

1 , and samples from 𝐷𝐿,𝑟 , and outputs samples that are within statistical distance 8𝜀 of

the CLWE distribution 𝑃𝒖′,𝛽,𝛾 for 𝒖′ = 𝒖/∥𝒖∥, 𝛽 = ∥𝒖∥
√︁
(𝑟𝑠1/𝑡)2 + (𝑠2/∥𝒖∥)2 and 𝛾 = ∥𝒖∥𝑟 2/𝑡 .

Proof. We start by describing the algorithm. For each 𝒙 from the given samples from 𝐷𝐿,𝑟 , do the

following. First, take the inner product ⟨𝒙, 𝒖 + 𝒂⟩, which gives us

⟨𝒙, 𝒖 + 𝒂⟩ = ⟨𝒙, 𝒖⟩ mod 1 .

Appending this inner product modulo 1 to the sample 𝒙 , we get (𝒙, ⟨𝒙, 𝒖⟩ mod 1). Next, we

“smooth out" the lattice structure of 𝒙 by adding Gaussian noise 𝒈 ∼ 𝐷R𝑛,𝑠1 to 𝒙 and 𝑒 ∼ 𝐷R,𝑠2 to

⟨𝒙, 𝒖⟩ (modulo 1). Then, we have

(𝒙 + 𝒈, (⟨𝒙, 𝒖⟩ + 𝑒) mod 1) . (3.1)

Finally, we normalize the first component by 𝑡 so that its marginal distribution has unit width,
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giving us

((𝒙 + 𝒈)/𝑡, (⟨𝒙, 𝒖⟩ + 𝑒) mod 1) , (3.2)

which the algorithm outputs.

Our goal is to show that the distribution of (3.2) is within statistical distance 8𝜀 of the CLWE

distribution 𝑃𝒖′,𝛽,𝛾 , given by

(𝒚′, (𝛾 ⟨𝒚′, 𝒖′⟩ + 𝑒′) mod 1) ,

where 𝒚′ ∼ 𝐷R𝑛 and 𝑒′ ∼ 𝐷R,𝛽 . Because applying a function cannot increase statistical distance

(specifically, dividing the first component by 𝑡 and taking mod 1 of the second), it suffices to show

that the distribution of

(𝒙 + 𝒈, ⟨𝒙, 𝒖⟩ + 𝑒) , (3.3)

is within statistical distance 8𝜀 of that of

(𝒚, (𝑟/𝑡)2⟨𝒚, 𝒖⟩ + 𝑒′) , (3.4)

where 𝒚 ∼ 𝐷R𝑛,𝑡 and 𝑒′ ∼ 𝐷R,𝛽 . First, observe that by Lemma 2.8, the statistical distance between

the marginals on the first component (i.e., between 𝒙 + 𝒈 and 𝒚) is at most 4𝜀. It is therefore

sufficient to bound the statistical distance between the second components conditioned on any

fixed value 𝒚 of the first component. Conditioned on the first component being 𝒚, the second

component in (3.3) has the same distribution as

⟨𝒙 + 𝒉, 𝒖⟩ (3.5)

25



where 𝒉 ∼ 𝐷R𝑛,𝑠2/∥𝒖∥ , and the second component in (3.4) has the same distribution as

⟨(𝑟/𝑡)2𝒚 + 𝒉′, 𝒖⟩ (3.6)

where 𝒉′ ∼ 𝐷R𝑛,𝛽/∥𝒖∥ .

By Claim 3.20 below, conditioned on 𝒙 +𝒈 = 𝒚, the distribution of 𝒙 is (𝑟/𝑡)2𝒚+𝐷𝐿−(𝑟/𝑡)2𝒚,𝑟𝑠1/𝑡 .

Therefore, by Lemma 2.8, the conditional distribution of 𝒙 +𝒉 given 𝒙 +𝒈 = 𝒚 is within statistical

distance 4𝜀 of that of (𝑟/𝑡)2𝒚+𝒉′. Since statistical distance cannot increase by applying a function

(inner product with 𝒖 in this case), (3.5) is within statistical distance 4𝜀 of (3.6). Hence, the

distribution of (3.3) is within statistical distance 8𝜀 of that of (3.4). □

Claim 3.20. Let 𝒚 = 𝒙 + 𝒈, where 𝒙 ∼ 𝐷𝐿,𝑟 and 𝒈 ∼ 𝐷R𝑛,𝑠 . Then, the conditional distribution of 𝒙

given 𝒚 = 𝒚 is (𝑟/𝑡)2𝒚 + 𝐷𝐿−(𝑟/𝑡)2𝒚,𝑟𝑠/𝑡 where 𝑡 =
√
𝑟 2 + 𝑠2.

Proof. Observe that 𝒙 conditioned on 𝒚 = 𝒚 is a discrete random variable supported on 𝐿. The

probability of 𝒙 given 𝒚 = 𝒚 is proportional to

𝜌𝑟 (𝒙) · 𝜌𝑠 (𝒚 − 𝒙) = 𝜌𝑡 (𝒚) · 𝜌𝑟𝑠/𝑡 (𝒙 − (𝑟/𝑡)2𝒚) ∝ 𝜌𝑟𝑠/𝑡 (𝒙 − (𝑟/𝑡)2𝒚) ,

where the equality follows from Claim 2.5. Hence, the conditional distribution of 𝒙 − (𝑟/𝑡)2𝒚

given 𝒚 = 𝒚 is 𝐷𝐿−(𝑟/𝑡)2𝒚,𝑟𝑠/𝑡 . □

3.3.3 Solving BDD with the CLWE oracle

In this subsection, we complete the proof of Lemma 3.17. We first give some necessary back-

ground on the Oracle Hidden Center Problem (OHCP) [PRS17]. The problem asks one to search

for a “hidden center" 𝒖∗ using a decision oracle whose acceptance probability depends only on

the distance to 𝒖∗. The problem’s precise statement is as follows.
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Definition 3.21 (OHCP). For parameters 𝜀, 𝛿 ∈ [0, 1) and 𝜁 ≥ 1, the (𝜀, 𝛿, 𝜁 )-OHCP is an approx-

imate search problem that tries to find the “hidden" center 𝒖∗. Given a scale parameter 𝑑 > 0 and

access to a randomized oracle O : R𝑛 × R≥0 → {0, 1} such that its acceptance probability 𝑝 (𝒖, 𝑡)

only depends on exp(𝑡)∥𝒖−𝒖∗∥ for some (unknown) “hidden center" 𝒖∗ ∈ R𝑛 with 𝛿𝑑 ≤ ∥𝒖∗∥ ≤ 𝑑

and for any 𝒖 ∈ R𝑛 with ∥𝒖 − 𝒖∗∥ ≤ 𝜁𝑑 , the goal is to output 𝒖 s.t. ∥𝒖 − 𝒖∗∥ ≤ 𝜀𝑑 .

Notice that OHCP corresponds to our problem since we want to solve BDD, which is equiva-

lent to finding the “hidden" offset vector 𝒖∗, using a decision oracle for CLWE𝛽,𝛾 . The acceptance

probability of the CLWE𝛽,𝛾 oracle will depend on the distance between our guess 𝒖 and the true

offset 𝒖∗. For OHCP, we have the following result from [PRS17].

Lemma 3.22 ([PRS17], Proposition 4.4). There is a poly(𝜅, 𝑛)-time algorithm that takes as input a

confidence parameter𝜅 ≥ 20 log(𝑛+1) (and the scale parameter𝑑 > 0) and solves (exp(−𝜅), exp(−𝜅), 1+

1/𝜅)-OHCP in dimension 𝑛 except with probability exp(−𝜅), provided that the oracle O correspond-

ing to the OHCP instance satisfies the following conditions. For some 𝑝 (∞) ∈ [0, 1] and 𝑡∗ ⩾ 0,

1. 𝑝 (0, 𝑡∗) − 𝑝 (∞) ≥ 1/𝜅;

2. |𝑝 (0, 𝑡) − 𝑝 (∞)| ≤ 2 exp(−𝑡/𝜅) for any 𝑡 ≥ 0; and

3. 𝑝 (𝒖, 𝑡) is 𝜅-Lipschitz in 𝑡 for any 𝒖 ∈ R𝑛 such that ∥𝒖∥ ≤ (1 + 1/𝜅)𝑑 .

Furthermore, each of the algorithm’s oracle calls takes the form O(·, 𝑖Δ) for some Δ < 1 that depends

only on 𝜅 and 𝑛 and 0 ≤ 𝑖 ≤ poly(𝜅, 𝑛).

The main idea in the proof of Lemma 3.22 is performing a guided random walk with advice

from the decision oracle O. The decision oracle O rejects a random step with high probability if

it increases the distance ∥𝒖 − 𝒖∗∥. Moreover, there is non-negligible probability of decreasing the

distance by a factor exp(1/𝑛) unless log ∥𝒖 − 𝒖∗∥ ≤ −𝜅. Hence, with sufficiently many steps, the

random walk will reach 𝒖̂, a guess of the hidden center, which is within exp(−𝜅) distance to 𝒖∗

with high probability.
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Our goal is to show that we can construct an oracle O satisfying the above conditions using

an oracle for CLWE𝛽,𝛾 . Then, it follows from Lemma 3.22 that BDD with discrete Gaussian sam-

ples can be solved using an oracle for CLWE. We first state some lemmas useful for our proof.

Lemma 3.23 is Babai’s closest plane algorithm and Lemma 3.24 is an upper bound on the statistical

distance between two one-dimensional Gaussian distributions.

Lemma 3.23 ([LLL82a; Bab86]). For any 𝑛-dimensional lattice 𝐿, there is an efficient algorithm

that solves BDD𝐿,𝑑 for 𝑑 = 2−𝑛/2 · 𝜆1(𝐿).

Lemma 3.24 ([DMR18, Theorem 1.3]). For all 𝜇1, 𝜇2 ∈ R, and 𝜎1, 𝜎2 > 0, we have

Δ
(
N(𝜇1, 𝜎1),N(𝜇2, 𝜎2)

)
≤

3|𝜎2
1 − 𝜎2

2 |
2 max(𝜎2

1 , 𝜎
2
2 )
+ |𝜇1 − 𝜇2 |

2 max(𝜎1, 𝜎2)
,

where N(𝜇, 𝜎) denotes the Gaussian distribution with mean 𝜇 and standard deviation 𝜎 .

Now, we prove Lemma 3.17, restated below.

Lemma 3.17. Let 𝛽 = 𝛽 (𝑛) ∈ (0, 1) and 𝛾 = 𝛾 (𝑛) ≥ 2
√
𝑛 such that 𝑞 = 𝛾/𝛽 is polynomially

bounded. There exists a probabilistic polynomial-time (classical) algorithm with access to an oracle

that solves CLWE𝛽,𝛾 , that takes as input a lattice 𝐿 ⊂ R𝑛 , parameters 𝛽,𝛾 , and 𝑟 ≥ 2𝑞 · 𝜂𝜀 (𝐿), and

poly(𝑛) many samples from the discrete Gaussian distribution 𝐷𝐿,𝑟𝑖 for poly(𝑛) parameters 𝑟𝑖 ≥ 𝑟

and solves BDD𝐿∗,𝑑 for 𝑑 = 𝛾/(
√

2𝑟 ).

Proof. Let𝑑′ = (1−1/(2𝑛))·𝑑 . By [LM09, Corollary 2], it suffices to solve BDD𝐿∗,𝑑 ′ . Let𝜅 = poly(𝑛)

with 𝜅 ≥ 8𝑞𝑛ℓ be such that the advantage of our CLWE𝛽,𝛾 oracle is at least 1/𝜅, where ℓ ≥ 1 is

the number of samples required by the oracle.

Given as input a lattice 𝐿 ⊂ R𝑛 , a parameter 𝑟 ≥ 2𝑞 · 𝜂𝜀 (𝐿), samples from 𝐷𝐿,𝑟𝑖 for 1 ≤

𝑖 ≤ poly(𝑛), and a BDD instance 𝒖∗ + 𝒂 where 𝒂 ∈ 𝐿∗ and ∥𝒖∗∥ ≤ 𝑑′, we want to recover 𝒖∗.

Without loss of generality, we can assume that ∥𝒖∗∥ ≥ exp(−𝑛/2) · 𝜆1(𝐿∗) ≥ (2𝑞/𝑟 ) · exp(−𝑛/2)
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(Lemma 3.9), since we can otherwise find 𝒖∗ efficiently using Babai’s closest plane algorithm

(Lemma 3.23).

We will use the CLWE oracle to simulate an oracle O : R𝑛 × R⩾0 → {0, 1} such that the

probability that O(𝒖, 𝑡) outputs 1 (“accepts") only depends on exp(𝑡)∥𝒖 − 𝒖∗∥. Our oracle O

corresponds to the oracle inDefinition 3.21with 𝒖∗ as the “hidden center". Wewill use Lemma 3.22

to find 𝒖∗.

On input (𝒖, 𝑡), our oracle O receives ℓ independent samples from 𝐷𝐿,exp(𝑡)𝑟 . Then, we gen-

erate CLWE samples using the procedure from Lemma 3.19. The procedure takes as input these

ℓ samples, the vector 𝒂 + 𝒖∗ − 𝒖 where 𝒂 ∈ 𝐿∗, and parameters exp(𝑡)𝑟, exp(𝑡)𝑠1, 𝑠2. Our choice

of 𝑠1 and 𝑠2 will be specified below. Note that the CLWE oracle requires the “hidden direction"

(𝒖 − 𝒖∗)/∥𝒖 − 𝒖∗∥ to be uniformly distributed on the unit sphere. To this end, we apply the

worst-to-average case reduction from Claim 3.14. Let 𝑆𝒖,𝑡 be the resulting CLWE distribution.

Our oracle O then calls the CLWE𝛽,𝛾 oracle on 𝑆 ℓ𝒖,𝑡 and outputs 1 if and only if it accepts.

Using the oracle O, we can run the procedure from Lemma 3.22 with confidence parameter 𝜅

and scale parameter 𝑑′. The output of this procedure will be some approximation 𝒖̂ to the oracle’s

“hidden center" with the guarantee that ∥𝒖̂−𝒖∗∥ ≤ exp(−𝜅)𝑑′. Finally, running Babai’s algorithm

on the vector 𝒂 + 𝒖∗ − 𝒖̂ will give us 𝒖∗ exactly since

∥𝒖̂ − 𝒖∗∥ ≤ exp(−𝜅)𝑑 ≤ 𝛽 exp(−𝜅)/𝜂𝜀 (𝐿) ≤ 2−𝑛𝜆1(𝐿∗) ,

where the last inequality is from Lemma 3.7.

The running time of the above procedure is clearly polynomial in 𝑛. It remains to check that

our oracle O (1) is a valid instance of (exp(−𝜅), exp(−𝜅), 1 + 1/𝜅)-OHCP with hidden center 𝒖∗

and (2) satisfies all the conditions of Lemma 3.22. First, note that 𝑆𝒖,𝑡 will be negligibly close in
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statistical distance to the CLWE distribution with parameters

𝛽′ =
√︃
(exp(𝑡)∥𝒖 − 𝒖∗∥)2𝑠′21 + 𝑠2

2 ,

𝛾 ′ = exp(𝑡)∥𝒖 − 𝒖∗∥𝑟 ′ ,

where 𝑟 ′ = 𝑟 2/
√︃
𝑟 2 + 𝑠2

1 and 𝑠
′
1 = 𝑟𝑠1/

√︃
𝑟 2 + 𝑠2

1 as long as 𝑟, 𝑠1, 𝑠2 satisfy the conditions of Lemma 3.19.

Then, we set 𝑠1 = 𝑟/(
√

2𝑞) and choose 𝑠2 such that

𝑠2
2 = 𝛽2 − (𝑠′1/𝑟 ′)2𝛾2 = 𝛽2 − (𝑠1/𝑟 )2𝛾2 = 𝛽2/2 .

Lemma 3.19 requires 𝑟𝑠1/
√︃
𝑟 2∥𝒖 − 𝒖∗∥2(𝑠1/𝑠2)2 + 𝑟 2 + 𝑠2

1 ≥ 𝜂𝜀 (𝐿). We know that 𝑟 ≥ 2𝑞 ·𝜂𝜀 (𝐿)

and 𝑠1 ≥
√

2 · 𝜂𝜀 (𝐿), so it remains to determine a sufficient condition for the aforementioned

inequality. Observe that for any 𝒖 such that ∥𝒖 − 𝒖∗∥ ≤ 𝑑 , the condition 𝑠2 ≥ 2𝑑 · 𝜂𝜀 (𝐿) is

sufficient. Since 𝑟 ≥ 2(𝛾/𝛽) · 𝜂𝜀 (𝐿), this translates to 𝑠2 ≥ 𝛽/(
√

2). Hence, the transformation

from Lemma 3.19 will output samples negligibly close to CLWE samples for our choice of 𝑠1 and

𝑠2 as long as ∥𝒖 − 𝒖∗∥ ≤ 𝑑 (beyond the BDD distance bound 𝑑′).

Since 𝑆𝒖,𝑡 is negligibly close to the CLWE distribution, the acceptance probability 𝑝 (𝒖, 𝑡) of

O only depends on exp(𝑡)∥𝒖 − 𝒖∗∥. Moreover, by assumption ∥𝒖∗∥ ≥ exp(−𝑛/2) · (2𝑞/𝑟 ) ≥

exp(−𝜅)𝑑′. Hence, O, 𝜅, 𝑑′ correspond to a valid instance of (exp(−𝜅), exp(−𝜅), 1 + 1/𝜅)-OHCP

with “hidden center" 𝒖∗.

Next, we show that 𝑝 (𝒖, 𝑡) ofO satisfies all three conditions of Lemma 3.22 with 𝑝 (∞) taken to

be the acceptance probability of the CLWE oracle on samples from𝐷R𝑛 ×𝑈 . Item 1 of Lemma 3.22

follows from our assumption that our CLWE𝛽,𝛾 oracle has advantage 1/𝜅, and by our choice of 𝑟 ,

𝑠1, and 𝑠2, when 𝑡∗ = log(𝛾/(∥𝒖∗∥𝑟 ′)) > log(
√

2), the generated CLWE samples satisfy 𝛾 ′(𝑡∗) = 𝛾

and 𝛽′(𝑡∗) = 𝛽 . Hence, 𝑝 (0, 𝑡∗) − 𝑝 (∞) ≥ 1/𝜅.

We now show that Item 2 holds, which states that |𝑝 (0, 𝑡) − 𝑝 (∞)| ≤ 2 exp(−𝑡/𝜅) for any
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𝑡 > 0. We will show that 𝑆0,𝑡 converges exponentially fast to 𝐷R𝑛 ×𝑈 in statistical distance. Let

𝑓 (𝒚, 𝑧) be the probability density of 𝑆0,𝑡 . Then,

Δ(𝑆0,𝑡 , 𝐷R𝑛 ×𝑈 ) =
1
2

∫
|𝑓 (𝑧 |𝒚) −𝑈 (𝑧) |𝜌 (𝒚)𝑑𝒚𝑑𝑧

=
1
2

∫ ( ∫
|𝑓 (𝑧 |𝒚) −𝑈 (𝑧) |𝑑𝑧

)
𝜌 (𝒚)𝑑𝒚 .

Hence, it suffices to show that the conditional density of 𝑧 given𝒚 for 𝑆0,𝑡 converges exponentially

fast to the uniform distribution on T. Notice that the conditional distribution of 𝑧 given 𝒚 is the

Gaussian distribution with width parameter 𝛽′ ≥ exp(𝑡)∥𝒖∗∥𝑟/(2𝑞) ≥ exp(𝑡 − 𝑛/2), where we

have used our assumption that ∥𝒖∗∥ ≥ (2𝑞/𝑟 ) · exp(−𝑛/2). By Lemma 3.7 applied to Z, we know

that 𝛽′ is larger than 𝜂𝜀 (Z) for 𝜀 = exp(− exp(2𝑡 − 𝑛)). Hence, one sample from this conditional

distribution is within statistical distance 𝜀 of the uniform distribution by Lemma 3.6. By the

triangle inequality applied to ℓ samples,

Δ
(
𝑆 ℓ0,𝑡 , (𝐷R𝑛 ×𝑈 )ℓ

)
≤ min(1, ℓ exp(− exp(2𝑡 − 𝑛))) ≤ 2 exp(−𝑡/𝜅) ,

where in the last inequality, we use the the fact that we can choose𝜅 to be such that 2 exp(−𝑡/𝜅) ≥

1 unless 𝑡 ≥ 𝜅/2. And when 𝑡 ≥ 𝜅/2 ≥ 4𝑞𝑛ℓ , we have ℓ exp(− exp(2𝑡 − 𝑛)) ≪ exp(−𝑡/𝜅).

It remains to verify Item 3, which states that 𝑝 (𝒖, 𝑡) is 𝜅-Lipschitz in 𝑡 for any ∥𝒖∥ ≤ (1 +

1/𝜅)𝑑′ ≤ 𝑑 . We show this by bounding the statistical distance between 𝑆𝒖,𝑡1 and 𝑆𝒖,𝑡2 for 𝑡1 ≥ 𝑡2.

With a slight abuse in notation, let 𝑓𝑡𝑖 (𝒚, 𝑧) be the probability density of 𝑆𝒖,𝑡𝑖 and let (𝛽𝑖, 𝛾𝑖) be the

corresponding CLWE distribution parameters. For simplicity, also denote the hidden direction

by 𝒖′ = (𝒖 − 𝒖∗)/∥𝒖 − 𝒖∗∥. Then,
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Δ(𝑓𝑡1, 𝑓𝑡2) =
1
2

∫ ( ∫
|𝑓𝑡1 (𝑧 |𝒚) − 𝑓𝑡2 (𝑧 |𝒚) |𝑑𝑧

)
𝜌 (𝒚)𝑑𝒚

=

∫
Δ
(
N(𝛾1⟨𝒚, 𝒖′⟩, 𝛽1/

√
2𝜋),N(𝛾2⟨𝒚, 𝒖′⟩, 𝛽2/

√
2𝜋)

)
𝜌 (𝒚)𝑑𝒚

≤ 1
2

∫ (
3(1 − (𝛽2/𝛽1)2) +

√
2𝜋 (𝛾1 − 𝛾2)/𝛽1 · |⟨𝒚, 𝒖′⟩|

)
· 𝜌 (𝒚)𝑑𝒚 (3.7)

≤ E
𝒚∼𝜌
[𝑀 (𝒚)] ·

(
1 − exp(−2(𝑡1 − 𝑡2))

)
where𝑀 (𝒚) = 1

2

(
3 + 2
√
𝜋𝑞 · |⟨𝒚, 𝒖′⟩|

)
≤ E

𝒚∼𝜌
[𝑀 (𝒚)] · 2(𝑡1 − 𝑡2) (3.8)

≤ (𝜅/ℓ) · (𝑡1 − 𝑡2) , (3.9)

where (3.7) follows from Lemma 3.24, (3.8) uses the fact that 1− exp(−2(𝑡1 − 𝑡2)) ≤ 2(𝑡1 − 𝑡2), and

(3.9) uses the fact that E𝒚∼𝜌 [𝑀 (𝒚)] ≤ 4𝑞 ≤ 𝜅/(2ℓ). Using the triangle inequality over ℓ samples,

the statistical distance between 𝑆 ℓ𝒖,𝑡1 and 𝑆
ℓ
𝒖,𝑡2 is at most

min(1, ℓ · (𝜅/ℓ) (𝑡1 − 𝑡2)) ≤ 𝜅 (𝑡1 − 𝑡2) .

Therefore, 𝑝 (𝒖, 𝑡) is 𝜅-Lipschitz in 𝑡 . □

3.4 Hardness of Learning Cosine Neurons

A cosine neuron is a function with the form 𝑓 (𝑥) = cos(2𝜋𝛾 ⟨𝒖, 𝒙⟩), where we refer to 𝒖 ∈ S𝑛−1

as its hidden direction, and 𝛾 as its frequency. Such functions have already been investigated

by previous works [SVWX17; Sha18; SSS17] in the context of lower bounds for learning neural

networks. More precisely, [SVWX17] has shown that SQ algorithms whose queries are restricted

to be Lipschitz cannot weakly learn cosine neurons over isotropic Gaussian inputs, and [SSS17;

Sha18] have shown that gradient-based algorithms fail as well.

32



For these hard constructions, the frequency 𝛾 is taken to scale polynomially with the dimen-

sion 𝑑 . Note that as the univariate function cos(2𝜋𝛾𝑡) is 𝑂 (𝛾)-Lipschitz, the function 𝑓 is well-

approximated by one-hidden-layer ReLU network of poly(𝛾)-width on any compact set. Hence,

understanding the hardness of learning such functions is an unavoidable step towards under-

standing the hardness of learning one-hidden-layer ReLU networks.

We show that weakly learning the cosine neuron class over the standard Gaussian with small

label noise is hard. The proof is based on a simple reduction from CLWE. Our result therefore

extends the hardness of learning such functions from a restricted family of algorithms, such as

gradient-based algorithms or SQ, to all polynomial-time algorithms by leveraging cryptographic

assumptions. We remark that our result can be extended to any 1-periodic “link” function 𝜙

beyond cos(2𝜋 ·). At the heart of our reduction is the following elementary equality.

cos(2𝜋 (𝑡 mod 1)) = cos(2𝜋𝑡) . (3.10)

Theorem 3.25. Let 𝑛 ∈ N, 𝛾 = 𝛾 (𝑛) ⩾ 2
√
𝑛 and 𝜏 = 𝜏 (𝑛) ∈ (0, 1) be such that 𝛾/𝜏 = poly(𝑛),

𝛽 = 𝛽 (𝑛) be such that 𝛽/𝜏 = 𝜔 (
√︁

log𝑛). Then, a polynomial-time algorithm that weakly learns

the cosine neuron class F𝛾 under 𝛽-bounded adversarial noise implies a polynomial-time quantum

algorithm for 𝑂 (𝑑/𝜏)-GapSVP.

Proof sketch. We reduce CLWE𝜏,𝛾 to the problem of weakly learning the function class F 𝜙𝛾 . Let

𝜙 be any 1-periodic, 𝜅-Lipschitz link function (e.g., 𝜙 (𝑧) = cos(2𝜋𝑧) is 2𝜋-Lipschitz). Denote by

𝐷
𝜙
𝒖 the distribution of (𝒚, 𝜙 (𝛾 ⟨𝒚, 𝒖⟩)) induced by 𝒚 ∼ N(0, 𝐼𝑛).

Now, CLWE𝜏,𝛾 is the problem of distinguishing the distribution 𝑃𝒖,𝜏,𝛾 which outputs samples

of the form (𝒚, 𝑧) where 𝑧 = 𝛾 ⟨𝒖,𝒚⟩ + 𝜉,𝒚 ∼ N(0, 𝐼𝑛), 𝜉 ∼ N(0, 𝜏2), for some hidden direction 𝒖 ∈

S𝑛−1, from the null distribution𝑄𝑛 which outputs (𝒚, 𝑧) where𝒚 ∼ N(0, 𝐼𝑛) but 𝑧 ∼ U[−1/2, 1/2]

independent from 𝒚. Notice that (similar to Eq (3.10)) the 1-periodicity and the Lipschitzness of
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𝜙 implies that for any 𝛾 ⩾ 0, 𝒖 ∈ S𝑛−1, 𝒚 ∈ R𝑛 , and 𝜉 ∈ R,

𝜙 (𝑧𝑖) = 𝜙 (𝛾 ⟨𝒖,𝒚⟩ + 𝜉 mod 1) = 𝜙 (𝛾 ⟨𝒖,𝒚⟩ + 𝜉) = 𝜙 (𝛾 ⟨𝒖,𝒚⟩) + 𝜉′ , (3.11)

for some 𝜉 ∈ [−𝜅 |𝜉 |, 𝜅 |𝜉 |]. Using Eq. (3.11) one can then directly use 𝑚 CLWE samples with

Gaussian random noise, say, (𝒚𝑖, 𝑧𝑖), and transform them into𝑚 samples from 𝐷
𝜙
𝒖 corrupted with

bounded adversarial noise by𝜅𝜏 ⩽ 𝛽 , by simply considering the samples (𝒚𝑖, 𝜙 (𝑧𝑖)), 𝑖 = 1, 2, . . . ,𝑚.

Let us suppose now we have a learning algorithm that weakly learns the function class F 𝜙𝛾

with 𝛽-bounded adversarial noise. Then we can draw 𝑚 samples from 𝑃𝒖,𝜏,𝛾 , transform them

as above into samples from 𝐷
𝜙
𝒖 , run the (robust) learning algorithm on 𝐷𝜙𝒖 , and finally obtain a

hypothesis 𝑔 = 𝑔(𝒚𝑖, 𝜙 (𝑧𝑖)) that weakly learns the function class F 𝜙𝛾 . On the other hand, samples

from 𝑄𝑛 have labels 𝑧𝑖 independent of 𝒚𝑖 and therefore are completely uninformative for the

learning problem of interest. In particular, one can never hope to achieve weak learning of the

function class F 𝜙𝛾 , using the hypothesis function 𝑔 = 𝑔(𝒚𝑖, 𝜙 (𝑧𝑖)) on the samples (𝒚𝑖, 𝑧𝑖) now

generated from 𝑄𝑛 . This difference is quantified by the loss of the hypothesis L𝐷 (ℎ) which in

case 𝐷 = 𝑃𝒖,𝜏,𝛾 , is smaller by an Ω(1) additive factor from the trivial loss, while in the case in

case 𝐷 = 𝑄𝑛 it is lower bounded by the trivial loss. This property is what allows us to indeed

distinguish between 𝑃𝒖,𝜏,𝛾 and 𝑄𝑛 , and therefore solve CLWE𝛽,𝛾 and complete the reduction. □
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4 | Gaussian Pancakes

In the summer of 1930 ... I had been stricken by an

acute attack of a disease which at irregular intervals

afflicts all mathematicians and, for that matter, all

scientists: I became obsessed by a problem.
Mark Kac1

Gaussian pancakes can be motivated frommany angles, underscoring its importance as a fun-

damental and canonical problem in statistical inference. From a statistician’s perspective, Gaus-

sian pancakes is closely related to the problem of learning high-dimensional mixtures of Gaus-

sians, which is a classical problem in statistics and machine learning [Pea94]. In fact, the original

motivation for considering distributions with “parallel pancakes” comes from an attempt to estab-

lish lower bounds for estimating the density of Gaussian mixtures [DKS17]. In Section 4.2.1, we

show that estimating the density of Gaussian pancakes reduces to the distinguishing task. Hence,

our result on the hardness of Gaussian pancakes implies that no algorithm can learn 𝑘-mixtures

of 𝑛-dimensional Gaussians in poly(𝑛, 𝑘) time. We note that the computational complexity of

density estimation for Gaussian mixtures was an open problem prior to our work [BRST21] (see

e.g., [Moi18, Open Question 7.1] and [Dia16, Open Problem 1.7.2]), though the influential work

of [DKS17] had previously established hardness against SQ algorithms.
1[Kac87, Prologue].
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Formulated as a search (or estimation) problem of finding the secret direction 𝒖 ∈ S𝑛−1, Gaus-

sian pancakes can also be seen as a special instance of non-Gaussian component analysis (NGCA),

which is the canonical problem of finding “interesting” (i.e., non-Gaussian) directions of high-

dimensional data [BKSS+06]. A standard method in statistics precisely designed to uncover inter-

esting directions of the data is projection pursuit [FT74; Hub85; JS87], which finds such directions

by optimizing certain functionals (called the projection index) of low-dimensional projections of

the data. Thus, the Gaussian pancakes problem provides valuable insights into the complexity of

NGCA and intractability of projection pursuit-based estimators for high-dimensional data.

We remark that [DKS17; DH22] have previously shown that NGCA is hard for restricted

classes of algorithms such as SQ and low-degree polynomials. In fact, their hard instance can be

seen as a close cousin of the Gaussian pancakes we consider, in which discrete Gaussians are re-

placed with discrete distributions (with unequally spaced support) carefully constructed to match

the low-order moments of the standard Gaussian exactly. We also note the work of [NR22], who

proposed a projection pursuit-based estimator that achieves optimal statistical rate for estimating

Wasserstein distances between the more general spiked transport models (i.e., distributions that

only differ in a low-dimensional subspace) and presented evidence, in the form of an SQ lower

bound, that there are fundamental obstructions to computing this estimator efficiently.

From a cryptographer’s perspective, Gaussian pancakes are “backdoored” Gaussians which

can be used to probabilistically encrypt bits [GM84]. For example, one can encrypt 0’s with

i.i.d. samples from the standard Gaussian and 1’s with i.i.d. samples from the Gaussian pan-

cakes distribution with secret direction 𝒖 ∈ S𝑛−1, and decrypt by projecting the samples along

𝒖 and checking which ones are close to (1/𝛾)Z. Hardness of distinguishing Gaussian pancakes

guarantees that no polynomial-time adversary can decrypt the samples without knowing the

secret 𝒖. Follow-up works by cryptographers have used Gaussian pancakes to construct novel

public-key cryptosystems [BNHR22] and plant undetectable backdoors in machine learningmod-

els [GKVZ22], thereby highlighting the value of Gaussian pancakes in cryptography.
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Numerous connections to canonical problems and growing range of applications provide am-

ple motivation for studying the complexity of Gaussian pancakes. Our first result shows that

distinguishing Gaussian pancakes is as hard as worst-case lattice problems via a straightforward

reduction from CLWE (see Section 4.2). More precisely, we show

Theorem 4.1 (Informal). Let 𝑛 ∈ N, 𝛽 = 𝛽 (𝑛) ∈ (0, 1) and 𝛾 = 𝛾 (𝑛) ≥ 2
√
𝑛 such that the

ratio 𝛾/𝛽 is polynomially bounded. If there exists an efficient algorithm that solves hCLWE𝛽,𝛾 2, then

there exists an efficient quantum algorithm that approximates worst-case lattice problems to within

polynomial factors.

Next, we investigate the hardness of Gaussian pancakes beyond the parameters 𝛽 and 𝛾 cov-

ered by Theorem 4.1 through the lens of SQ algorithms and low-degree polynomials. Both results

indicate that unless one uses many samples (𝑚 ≈ exp(𝑂̃ (𝛾2))), in which the spectrum of the em-

pirical covariance is sufficient for distinguishing (see Section 4.5), algorithms require exp(Ω̃(𝑛))

time to distinguish Gaussian pancakes. Understanding the precise theorem statements requires

background knowledge of each computation model, so we defer them to their respective sections

(Sections 4.3 and 4.4). It is worth mentioning that the “low-degree hardness” of Gaussian pan-

cakes applies even to the noiseless setting, in which the pancakes have 0 thickness. Therefore, the

Gaussian pancakes problem serves as yet another instance where low degree polynomials fail to

pick up on highly informative, but brittle, structures in the data.

Below, we provide additional background and motivation for our results.

Hardness of learningGaussianmixtures. Efficient algorithms are known for learningGaus-

sian mixtures if the components are guaranteed to be sufficiently well separated (e.g., [Das99;

VW02; AK05; DS07; BV08; RV17; HL18; KSS18; DKS18]). Without such strong separation require-

ments, it is known that efficiently recovering the individual components of a mixture (technically

known as “parameter estimation") is in general impossible [MV10]; intuitively, this exponential
2Recall that we denote the distinguishing problem by hCLWE.
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(in the number of components) information theoretic lower bound holds because the Gaussian

components “blur into each other”, despite being mildly separated pairwise.

This leads to the question of whether there exists an efficient algorithm that can learn mix-

tures of Gaussianswithout strong separation requirements, not in the above parameter estimation

sense (which is impossible), but rather in the much weaker density estimation sense, where the

goal is merely to output an approximation of the given distribution’s density function. See [Dia16,

Open Problem 1.7.2] for the precise statement and [DKS17] where a super-polynomial lower

bound for density estimation is shown in the SQ model [Kea98; FGRV+17]. Our work provides a

negative answer to this open question, showing that learning Gaussian mixtures is computation-

ally hard even if the goal is only to output an estimate of the density (see Proposition 4.11). It is

worth noting that our hard instance has almost non-overlapping components, i.e., the pairwise

statistical distance between distinct Gaussian components is essentially 1, a property shared by

the SQ hard instance of [DKS17]. This property is useful for controlling the decryption error in

the public key encryption scheme proposed by [BNHR22].

Statistical-to-computational gaps and cryptography. Cryptography and statistical-to-

computational gaps share a rich history, dating back to at least the first formalization of compu-

tational indistinguishability [GM84]. Extensive studies (see e.g., [GGM86; Kha93; KV94; DGR97;

Ser99; KS09; SST12; DV21]) on how computational constraints affect statistical performance have

been carried out on the Boolean hypercube {0, 1}𝑛 , the native domain of computational complex-

ity. A standard template for such hardness results is to first start with a cryptographic primitive

exhibiting average-case hardness (e.g., pseudorandom functions), use it to construct an artificial

hard learning problem, and then show that it reduces to some natural learning problem.

In this regard, the Gaussian pancakes problem is exceptional in several ways. Firstly, it admits

a direct reduction fromworst-case lattice problems, which demonstrates its hardness in certain pa-

rameter regimes. This hardness is sufficient for constructing public key cryptosystems [BNHR22],
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as previously mentioned. Moreover, the problem of distinguishing “backdoored” Gaussians from

the “true” Gaussian is a canonical and particularly relevant task, given that Gaussians are com-

monly used for neural network initialization. In addition, Gaussian pancakes distributions have

nice analytical properties which can be leveraged to study the complexity of the problem through

alternate notions of hardness, such as SQ and low-degree hardness, beyond the regimes covered

by the reduction.

Low-degree predictions for cryptography. Our analysis of the Gaussian pancakes prob-

lem using the low-degree method [KWB22] hints at the possibility of extending the method to

“predict” whether a distinguishing problem is hard enough to serve as a cryptographic primitive

(i.e., rules out non-negligible advantage). However, our results also suggest that refinements to

the low-degree conjecture (originally from [Hop18, Hypothesis 2.1.5]; see also [KWB22, Section

4.2.4]) are necessary to get reliable predictions of hardness. Since the Gaussian pancakes prob-

lem is known to be hard based on reductions fromworst-case lattice problems and LWE [BRST21;

GVV22], it can serve as an important theoretical testbed for assessing the soundness of any future

refinements to the conjecture.

4.1 Preliminaries

Chapter-specific notation. We denote 𝜌𝑠 (𝒙) = exp(−𝜋 ∥𝒙/𝑠 ∥2) in Section 4.2, following the

tradition of lattice-based cryptography. For the other sections, we default to 𝜌𝑠 (𝒙) = exp(−∥𝒙/𝑠 ∥2/2),

following the tradition of statistics and probability theory. Differences in the scaling of the Gaus-

sian density function only affect the normalization constants of related distributions.

Adapting the hypothesis testing notation (see Chapter 2) to our setup, we denote by 𝑄𝑛 the

standard Gaussian distribution on R𝑛 . We use the caligraphic notation Q𝑛 to denote the joint

distribution of𝑚 i.i.d. standardGaussian vectors inR𝑛 , i.e.,Q𝑛 = 𝑄⊗𝑚𝑛 . Assuming the parameters 𝛽
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and 𝛾 are clear from context, we denote by 𝑃𝒖 the (single-sample) Gaussian pancakes distribution

with parameters 𝛽,𝛾 and secret direction 𝒖 ∈ S𝑛−1. We use the caligraphic notation P𝑛 to denote

the distribution induced by the two-step data generation process for Gaussian pancakes, in which

𝒖 is first drawn uniformly from S𝑛−1 and𝑚 i.i.d. samples are drawn from 𝑃𝒖 . Finally, we denote

by 𝐴𝑛 the discrete Gaussian of unit width supported on (1/𝛾)Z, where 𝛾 = 𝛾 (𝑛).

We now define the Gaussian pancakes distribution (also called hCLWE) in a way that allows

for a clear correspondence to the CLWE parameters (Definition 4.2). This definition will be used

in Section 4.2 and Section 4.3. For the other sections, we use an alternate definition (Definition 4.4)

of Gaussian pancakes which simplifies how the distribution parameters change with respect to

the Ornstein-Uhlenbeck noise operator (see Definition 4.5). This will simplify the analysis for

univariate projections of 𝑃𝒖 .

Definition 4.2 (Gaussian pancakes distribution). For any 𝒖 ∈ S𝑛−1 and parameters 𝛽,𝛾 > 0,

define the Gaussian pancakes distribution 𝑃𝒖,𝛽,𝛾 over R𝑛 to have density at 𝒙 ∈ R𝑛 proportional to

𝜌 (𝒙) ·
∑︁
𝑘∈Z

𝜌𝛽 (𝑘 − 𝛾 ⟨𝒙, 𝒖⟩) . (4.1)

We sometimes refer to the Gaussian pancakes distribution as the homogeneous CLWE distri-

bution to emphasize its connection to CLWE. The distribution can be equivalently be expressed

as a mixture of Gaussians. To see this, notice that Eq. (4.1) is equal to

∑︁
𝑘∈Z

𝜌√
𝛽2+𝛾2 (𝑘) · 𝜌 (Proj𝒖⊥ (𝒙)) · 𝜌𝛽/√𝛽2+𝛾2

(
⟨𝒙, 𝒖⟩ − 𝛾

𝛽2 + 𝛾2𝑘
)
, (4.2)

where Proj𝒖⊥ denotes the projection to the subspace orthogonal to 𝒖. Hence, 𝑃𝒖,𝛽,𝛾 can be viewed

as a mixture of Gaussian components of width 𝛽/
√︁
𝛽2 + 𝛾2 (which is roughly 𝛽/𝛾 for 𝛽 ≪ 𝛾 ) in

the secret direction, and unit width in the orthogonal space. The components are equally spaced,

with a separation of 𝛾/(𝛽2 + 𝛾2) between them (which is roughly 1/𝛾 for 𝛽 ≪ 𝛾 ).
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If 𝜌 (𝒙) = exp(−𝜋 ∥𝒙 ∥2), then integral of (4.2) (and also (4.1)) over all 𝒙 ∈ R𝑛 is

𝑍 =
𝛽√︁

𝛽2 + 𝛾2
· 𝜌

(
1√︁

𝛽2 + 𝛾2
Z

)
. (4.3)

This is easy to see since the integral over 𝒙 of the product of the last two 𝜌 terms in (4.2) is

𝛽/
√︁
𝛽2 + 𝛾2 independently of 𝑘 .

Definition 4.3. For parameters 𝛽,𝛾 > 0, the average-case decision problem hCLWE𝛽,𝛾 is to

distinguish the following two distributions over R𝑛: (1) the Gaussian pancakes distribution𝐻𝒘,𝛽,𝛾

for some uniformly random unit vector𝒘 ∈ R𝑛 (which is fixed for all samples), or (2) 𝐷R𝑛 .

For the alternate definition of Gaussian pancakes below, we denote 𝜌 (𝒙) = exp(−∥𝒙 ∥2/2).

Definition 4.4 (Alternate definition of Gaussian pancakes). For any 𝒖 ∈ S𝑛−1 and 𝛾 > 0, we

define the Gaussian pancakes distribution 𝑃𝒖 over R𝑛 to be a distribution with (mixed) density

proportional to

𝑃𝒖 (𝒙) ∝ 𝐴(⟨𝒙, 𝒖⟩) · 𝜌 (𝒙 − ⟨𝒙, 𝒖⟩𝒖) , (4.4)

where 𝐴 denotes the discrete Gaussian on (1/𝛾)Z of unit width.

Definition 4.5 (𝛽-smoothed discrete Gaussian). Let 𝛽 ∈ [0, 1]. Let 𝐴 be the discrete Gaussian

of unit width on (1/𝛾)Z. We define the 𝛽-smoothed discrete Gaussian 𝐴𝛽 to be the distribution

induced by applying the Ornstein-Uhlenbeck noise operator to 𝐴. In other words, 𝑥 ∼ 𝐴𝛽 is given

by

𝑥
d
=

√︁
1 − 𝛽2𝑥 + 𝛽𝑦 , where 𝑥 ∼ 𝐴, 𝑦 ∼ N(0, 1) .

Remark 4.6 (univariate projections). Let 𝜏 ∈ (0, 1) and let 𝒖, 𝒗 ∈ S𝑛−1 be such that ⟨𝒖, 𝒗⟩ = 𝜏 . If

𝒙 is a random sample from 𝑃𝒖 , then the marginal distribution of ⟨𝒙, 𝒗⟩ is 𝐴
√

1−𝜏2 .
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Claim 4.7. Let 𝛽 ∈ (0, 1), 𝛾 > 0. Then, the density of 𝐴𝛽 at 𝑥 ∈ R is given by

𝐴𝛽 (𝑥) = 1
√

2𝜋
𝜌 (𝑥) · 1

𝛽𝜌 ((1/𝛾)Z)
∑︁

𝑧∈(1/𝛾
√

1−𝛽2)Z

𝜌
𝛽/
√

1−𝛽2 (𝑥 − 𝑧) . (4.5)

Equivalently, we can express it in the Gaussian mixture form.

𝐴𝛽 (𝑥) = 1
𝛽
√

2𝜋
· 1
𝜌 ((1/𝛾)Z)

∑︁
𝑧∈(
√

1−𝛽2/𝛾)Z

𝜌√1−𝛽2 (𝑧) · 𝜌𝛽 (𝑥 − 𝑧) . (4.6)

Proof. Let 𝑥 ∼ 𝐴 and 𝑦 ∼ N(0, 1). We write out the formal density of
√︁

1 − 𝛽2𝑥 + 𝛽𝑦 as a convo-

lution, using Dirac deltas to express 𝐴.

√︁
1 − 𝛽2𝐴 ∗ 𝛽N(0, 1) = 1

𝜌 ((1/𝛾)Z)
∑︁

𝑧∈(
√

1−𝛽2/𝛾)Z

exp
(
− 𝑧2

2(1 − 𝛽2)

)
𝛿 (𝑥 − 𝑧) ∗ 1

√
2𝜋𝛽

exp
(
− 𝑦2

2𝛽2

)
=

1
√

2𝜋𝛽𝜌 ((1/𝛾)Z)

∑︁
𝑧∈(
√

1−𝛽2/𝛾)Z

exp
(
− 𝑧2

2(1 − 𝛽2)

)
exp

(
− (𝑥 − 𝑧)

2

2𝛽2

)
=

1
√

2𝜋
exp

(
− 𝑥

2

2

)
1

𝛽𝜌 ((1/𝛾)Z)
∑︁

𝑧∈(1/𝛾
√

1−𝛽2)Z

exp
(
− 1

2
· (𝑥 − 𝑧)

2

𝛽2/(1 − 𝛽2)

)
,

where the last line comes from straightforward algebraic manipulation.

(1/(1 − 𝛽2) + 1/𝛽2)𝑧2 − (2𝑥/𝛽2)𝑧 + 𝑥2/𝛽2 =
1

𝛽2(1 − 𝛽2)

(
𝑧 − (1 − 𝛽2)𝑥

)2
+ (𝑥2/𝛽2) (1 − (1 − 𝛽2))

=
1 − 𝛽2

𝛽2

(
𝑥 − 𝑧/(1 − 𝛽2)

)2
+ 𝑥2 .

□
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4.2 Reduction-based Hardness of Gaussian Pancakes

We now present a reduction from CLWE to Gaussian pancakes which establishes its hardness

based on worst-case lattice problems. We refer to the Gaussian pancakes problem as hCLWE to

simplify notation and emphasize its connection to CLWE. The main step of the reduction is to

transform CLWE samples to hCLWE samples using rejection sampling (Lemma 4.8).

Let𝑊𝒖,𝛽,𝛾 denote the CLWE distribution for CLWE𝛽,𝛾 and consider the samples (𝒚, 𝑧) ∼𝑊𝒖,𝛽,𝛾 .

If we condition 𝒚 on 𝑧 = 0 (mod 1) then we get exactly samples 𝒚 ∼ 𝑃𝒖,𝛽,𝛾 for hCLWE𝛽,𝛾 . How-

ever, this approach is impractical as 𝑧 = 0 (mod 1) happens with probability 0. Instead we

condition 𝒚 on 𝑧 ≈ 0 (mod 1) somehow. One can imagine that the resulting samples 𝒚 will still

have a “wavy" probability density in the direction of 𝒖 with spacing 1/𝛾 , which accords with the

picture of homogeneous CLWE. To avoid throwing away too many samples, we will do rejection

sampling with some small “window" 𝛿 = 1/poly(𝑛). Formally, we have the following lemma.

Lemma 4.8. There is a poly(𝑛, 1/𝛿)-time probabilistic algorithm that takes as input a parameter

𝛿 ∈ (0, 1) and samples from𝑊𝒖,𝛽,𝛾 , and outputs samples from 𝑃
𝒖,
√
𝛽2+𝛿2,𝛾

.

Proof. Without loss of generality assume that 𝒖 = 𝒆1. By definition, the probability density of

sample (𝒚, 𝑧) ∼𝑊𝒖,𝛽,𝛾 is

𝑝 (𝒚, 𝑧) = 1
𝛽
· 𝜌 (𝒚) ·

∑︁
𝑘∈Z

𝜌𝛽 (𝑧 + 𝑘 − 𝛾𝑦1) .

Let 𝑔 : T → [0, 1] be the function 𝑔(𝑧) = 𝑔0(𝑧)/𝑀 , where 𝑔0(𝑧) =
∑
𝑘∈Z 𝜌𝛿 (𝑧 + 𝑘) and 𝑀 =

sup𝑧∈T 𝑔0(𝑧). We perform rejection sampling on the samples (𝒚, 𝑧) with acceptance probability

Pr[accept|𝒚, 𝑧] = 𝑔(𝑧). We remark that 𝑔(𝑧) is efficiently computable (see [BLPR+13, Section
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5.2]). The probability density of outputting 𝒚 and accept is

∫
T
𝑝 (𝒚, 𝑧)𝑔(𝑧)𝑑𝑧 = 𝜌 (𝒚)

𝛽𝑀
·
∫
T

∑︁
𝑘1,𝑘2∈Z

𝜌𝛽 (𝑧 + 𝑘1 − 𝛾𝑦1)𝜌𝛿 (𝑧 + 𝑘2)𝑑𝑧

=
𝜌 (𝒚)
𝛽𝑀
·
∫
T

∑︁
𝑘,𝑘2∈Z

𝜌√
𝛽2+𝛿2 (𝑘 − 𝛾𝑦1)𝜌𝛽𝛿/√𝛽2+𝛿2

(
𝑧 + 𝑘2 +

𝛿2(𝑘 − 𝛾𝑦1)
𝛽2 + 𝛿2

)
𝑑𝑧

=
𝛿

𝑀
√︁
𝛽2 + 𝛿2

· 𝜌 (𝒚) ·
∑︁
𝑘∈Z

𝜌√
𝛽2+𝛿2 (𝑘 − 𝛾𝑦1) ,

where the second equality follows from Claim 2.5. This shows that the conditional distribution

of 𝒚 upon acceptance is indeed 𝑃
𝒆1,
√
𝛽2+𝛿2,𝛾

. Moreover, a byproduct of this calculation is that the

expected acceptance probability is Pr[accept] = 𝑍𝛿/(𝑀
√︁
𝛽2 + 𝛿2), where, according to Eq. (4.3),

𝑍 =

√︄
𝛽2 + 𝛿2

𝛽2 + 𝛿2 + 𝛾2 · 𝜌√𝛽2+𝛿2+𝛾2 (Z)

=
√︁
𝛽2 + 𝛿2 · 𝜌1/

√
𝛽2+𝛿2+𝛾2 (Z)

⩾
√︁
𝛽2 + 𝛿2 ,

and the second equality uses Lemma 2.6. Observe that

𝑔0(𝑧) =
∑︁
𝑘∈Z

𝜌𝛿 (𝑧 + 𝑘)

≤ 2 ·
∞∑︁
𝑘=0

𝜌𝛿 (𝑘)

< 2 ·
∞∑︁
𝑘=0

exp(−𝜋𝑘) < 4

since 𝛿 < 1, implying that 𝑀 ⩽ 4. Therefore, Pr[accept] ⩾ 𝛿/4, and so the rejection sampling

procedure has poly(𝑛, 1/𝛿) expected running time. □

The above lemma reduces CLWE to homogeneous CLWE with slightly worse parameters.

44



Hence, homogeneous CLWE is as hard as CLWE. Specifically, combining Theorem 3.15 (with 𝛽

taken to be 𝛽/
√

2) and Lemma 4.8 (with 𝛿 also taken to be 𝛽/
√

2), we obtain the following corollary.

Corollary 4.9 (Hardness of hCLWE). For any 𝛽 = 𝛽 (𝑛) ∈ (0, 1) and 𝛾 = 𝛾 (𝑛) ≥ 2
√
𝑛 such that

𝛾/𝛽 is polynomially bounded, there is a polynomial-time quantum reduction from DGS2
√

2𝑛𝜂𝜀 (𝐿)/𝛽 to

hCLWE𝛽,𝛾 .

We again note that other standard worst-case lattice problems, such as GapSVP and SIVP, can

be reduced to DGS (see, e.g., [Reg09, Section 3.3]).

4.2.1 Hardness of Density Estimation for Gaussian Mixtures

We rule out poly(𝑛, 𝑘) time algorithms for estimating the density of 𝑘-mixtures of 𝑛-dimensional

Gaussians by reducing hCLWE to the density estimation problem. This answers an open ques-

tion regarding its computational complexity [Dia16; Moi18]. We first formally define the density

estimation problem for Gaussian mixtures.

Definition 4.10 (Density estimation of Gaussian mixtures). Let G𝑛,𝑘 be the family of 𝑘-mixtures

of 𝑛-dimensional Gaussians. The problem of density estimation for G𝑛,𝑘 is the following. Given

𝛿 > 0 and sample access to an unknown 𝑃 ∈ G𝑛,𝑘 , with probability 2/3, output a hypothesis

distribution 𝐷 (in the form of an evaluation oracle) such that Δ(𝑃, 𝐷) ⩽ 𝛿 .

For our purposes, we fix the precision parameter 𝛿 to a very small constant, say, 𝛿 = 10−3. Now

we show a reduction from hCLWE𝛽,𝛾 to the problem of density estimation for Gaussian mixtures.

Corollary 4.9 shows that hCLWE𝛽,𝛾 is hard for 𝛾 ⩾ 2
√
𝑛 (assuming worst-case lattice problems

are hard). Hence, by taking 𝛾 = 2
√
𝑛 and 𝑔(𝑛) = 𝑂 (log𝑛) in Proposition 4.11, we rule out the

possibility of a poly(𝑛, 𝑘)-time density estimation algorithm for G𝑛,𝑘 under the same hardness

assumption.
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Proposition 4.11. Let 𝛽 = 𝛽 (𝑛) ∈ (0, 1/32), 𝛾 = 𝛾 (𝑛) ⩾ 1, and 𝑔(𝑛) ⩾ 4𝜋 . For 𝑘 = 2𝛾
√︁
𝑔(𝑛)/𝜋 ,

if there is an exp(𝑔(𝑛))-time algorithm that solves density estimation for G𝑛,2𝑘+1, then there is a

𝑂 (exp(𝑔(𝑛)))-time algorithm that solves hCLWE𝛽,𝛾 .

Proof. We apply the (hypothetical) density estimation algorithmA to the unknown given distri-

bution 𝐷 . As we will show below, with constant probability, it outputs a density estimate 𝑓 that

satisfies Δ(𝑓 , 𝐷) < 2𝛿 = 2 · 10−3 (and this is even though 𝑃𝒖,𝛽,𝛾 has infinitely many components).

We then test whether 𝐷 = 𝑄𝑛 or not using the following procedure. We repeat the following

procedure 𝑟 = 1/(6
√
𝛿) times. We draw 𝒙 ∼ 𝑄𝑛 and check whether the following holds

𝑓 (𝒙)
𝐷 (𝒙) ∈ [1 −

√
𝛿, 1 +

√
𝛿] . (4.7)

where 𝐷 denotes the density of 𝑄𝑛 . We output 𝐷 = 𝑄𝑛 if Eq. (4.7) holds for all 𝑚 independent

trials and 𝐷 = 𝑃𝒖,𝛽,𝛾 otherwise. Since Δ(𝑃𝒖,𝛽,𝛾 , 𝑄𝑛) > 1/2 (Claim 4.12), it is not hard to see that

this test solves hCLWE𝛽,𝛾 with probability at least 2/3 (see [RS09, Observation 24] for a closely

related statement). Moreover, the total running time is𝑂 (exp(𝑔(𝑛)) since this test uses a constant

number of samples.

If 𝐷 = 𝑄𝑛 , it is obvious that A outputs a close density estimate with constant probability

since𝑄𝑛 ∈ G𝑛,2𝑘+1. It remains to consider the case 𝑃 = 𝑃𝒖,𝛽,𝛾 . To this end, we observe that 𝑃𝒖,𝛽,𝛾 is

close to a (2𝑘 + 1)-mixture of Gaussians. Indeed, by Claim 4.13 below,

Δ(𝑃𝒖,𝛽,𝛾 , 𝑃𝑘) ⩽ 2 exp(−𝜋 · 𝑘2/(𝛽2 + 𝛾2)) < 2 exp(−𝜋 · 𝑘2/(2𝛾2)) ,

where 𝑃𝑘 is the distribution given by truncating 𝑃𝒖,𝛽,𝛾 to the (2𝑘 +1) central mixture components.

Hence, the statistical distance between the joint distribution of exp(𝑔(𝑛)) samples from 𝑃𝒖,𝛽,𝛾 and
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that of exp(𝑔(𝑛)) samples from 𝑃𝑘 is bounded by

2 exp(−𝜋 · 𝑘2/(2𝛾2)) · exp(𝑔(𝑛)) = 2 exp(−𝑔(𝑛)) ⩽ 2 exp(−4𝜋) .

Since the two distributions are statistically close, a standard argument shows thatA will output

𝑓 satisfying Δ(𝑓 , 𝑃𝒖,𝛽,𝛾 ) ⩽ Δ(𝑓 , 𝑃𝑘) + Δ(𝑃𝑘 , 𝑃𝒖,𝛽,𝛾 ) < 2𝛿 with constant probability. □

Claim 4.12. Let 𝛽 = 𝛽 (𝑛) ∈ (0, 1/32) and 𝛾 = 𝛾 (𝑛) ⩾ 1. Then,

Δ(𝑃𝒖,𝛽,𝛾 , 𝑄𝑛) > 1/2 .

Proof. Let 𝛾 ′ =
√︁
𝛽2 + 𝛾2 > 𝛾 . Let𝒚 ∈ R𝑛 be a random vector distributed according to 𝑃𝒖,𝛽,𝛾 . Using

the Gaussian mixture form of (4.2), we observe that ⟨𝒚, 𝒖⟩ mod 𝛾/𝛾 ′2 is distributed according to

𝐷𝛽/𝛾 ′ mod 𝛾/𝛾 ′2. Since statistical distance cannot increase by applying a function (inner product

with 𝒖 and then applying the modulo operation in this case), it suffices to lower bound the sta-

tistical distance between 𝐷𝛽/𝛾 ′ mod 𝛾/𝛾 ′2 and 𝐷 mod 𝛾/𝛾 ′2, where 𝐷 denotes the 1-dimensional

standard Gaussian.

By Chernoff, for all 𝜁 > 0, at least 1 − 𝜁 mass of 𝐷𝛽/𝛾 ′ is contained in [−𝑎 · (𝛽/𝛾 ′), 𝑎 · (𝛽/𝛾 ′)],

where 𝑎 =
√︁

log(1/𝜁 ). Hence, 𝐷𝛽/𝛾 ′ mod 𝛾/𝛾 ′2 is at least 1− 2𝑎𝛽𝛾 ′/𝛾 − 𝜁 far in statistical distance

from the uniform distribution over R/(𝛾/𝛾 ′2)Z, which we denote by𝑈 . Moreover, by Lemma 3.6

and Lemma 3.7, 𝐷 mod 𝛾/𝛾 ′2 is within statistical distance 𝜀/2 = exp(−𝛾 ′4/𝛾2)/2 from 𝑈 . There-

fore,

Δ(𝐷𝛽/𝛾 ′ mod 𝛾/𝛾 ′2, 𝐷 mod 𝛾/𝛾 ′2) ⩾ Δ(𝐷𝛽/𝛾 ′ mod 𝛾/𝛾 ′2,𝑈 ) − Δ(𝑈 , 𝐷 mod 𝛾/𝛾 ′2)

⩾ 1 − 2𝑎𝛽𝛾 ′/𝛾 − 𝜁 − 𝜀/2

> 1 − 2
√

2𝑎𝛽 − 𝜁 − exp(−𝛾2)/2 (4.8)

> 1/2 ,
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where we set 𝜁 = exp(−2) and use the fact that 𝛽 ⩽ 1/32 and 𝛾 ⩾ 1 in (4.8). □

Claim 4.13. Let 𝛽 = 𝛽 (𝑛) ∈ (0, 1), 𝛾 = 𝛾 (𝑛) ⩾ 1, and 𝑘 ∈ Z+. Then,

Δ(𝑃𝒖,𝛽,𝛾 , 𝑃𝑘) ⩽ 2 exp(−𝜋 · 𝑘2/(𝛽2 + 𝛾2)) ,

where 𝑃𝑘 is the distribution given by truncating 𝑃𝒖,𝛽,𝛾 to the central (2𝑘 + 1) mixture components.

Proof. We express 𝑃𝒖,𝛽,𝛾 in its Gaussian mixture form given in Eq. (4.2) and define a random

variable𝑋 taking on values in Z such that the probability of𝑋 = 𝑖 is equal to the probability that a

sample comes from the 𝑖-th component in 𝑃𝒖,𝛽,𝛾 . Then, we observe that 𝑃𝑘 is the distribution given

by conditioning on |𝑋 | ⩽ 𝑘 . Since 𝑋 is a discrete Gaussian random variable with distribution

𝐷
Z,
√
𝛽2+𝛾2 , we observe that Pr[|𝑋 | > 𝑘] ⩽ 𝜀 := 2 exp(−𝜋 · 𝑘2/(𝛽2 + 𝛾2)) by [MP12, Lemma 2.8].

Since conditioning on an event of probability 1− 𝜀 cannot change the statistical distance by more

than 𝜀, we have

Δ(𝑃𝒖,𝛽,𝛾 , 𝑃𝑘) ⩽ 𝜀 .

□

4.2.2 Hardness of Gaussian baguettes

We now generalize the hardness result to the setting where the distribution has ℓ ⩾ 1 hidden

directions. This follows from a standard hybrid argument.

Definition 4.14 (Gaussian baguettes distribution). For 0 ⩽ ℓ ⩽ 𝑛, matrix𝑊 ∈ R𝑛×ℓ with or-

thonormal columns 𝒖1, . . . , 𝒖ℓ , and 𝛽,𝛾 > 0, define the ℓ-hCLWE distribution 𝑃𝒖,𝛽,𝛾 over R𝑛 to
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have density at 𝒙 proportional to

𝜌 (𝒙) ·
ℓ∏
𝑖=1

∑︁
𝑘∈Z

𝜌𝛽 (𝑘 − 𝛾 ⟨𝒙, 𝒖𝑖⟩) .

Note that the ℓ = 0 corresponds to 𝑄𝑛 regardless of 𝛽 and 𝛾 .

Definition 4.15. For parameters 𝛽,𝛾 > 0 and 1 ⩽ ℓ ⩽ 𝑛, the average-case decision problem

hCLWE(ℓ)
𝛽,𝛾

is to distinguish the following two distributions over R𝑛: (1) the ℓ-hCLWE distribution

𝑃𝒖,𝛽,𝛾 for somematrix𝑊 ∈ R𝑛×ℓ (which is fixed for all samples) with orthonormal columns chosen

uniformly from the set of all such matrices, or (2) 𝑄𝑛 .

Lemma 4.16. For any 𝛽,𝛾 > 0 and positive integer ℓ = ℓ (𝑛) such that ℓ ⩽ 𝑛 and 𝑛 − ℓ = Ω(𝑛𝑐) for

some constant 𝑐 > 0, if there exists an efficient algorithm that solves hCLWE(ℓ)
𝛽,𝛾

with non-negligible

advantage, then there exists an efficient algorithm that solves hCLWE𝛽,𝛾 with non-negligible advan-

tage.

Proof. Suppose A is an efficient algorithm that solves hCLWE(ℓ)
𝛽,𝛾

with non-negligible advantage

in dimension 𝑛. Then consider the following algorithm B that uses A as an oracle and solves

hCLWE𝛽,𝛾 in dimension 𝑛′ = 𝑛 − ℓ + 1.

1. Input: 𝑛′-dimensional samples, drawn from either hCLWE𝛽,𝛾 or 𝑄𝑛′ ;

2. Choose 0 ⩽ 𝑖 ⩽ ℓ − 1 uniformly at random;

3. Append ℓ − 1 = 𝑛 −𝑛′ coordinates to the given samples, where the first 𝑖 appended coordi-

nates are drawn from 𝑃𝐼𝑖 ,𝛽,𝛾 (with 𝐼𝑖 denoting the rank-𝑖 identity matrix) and the rest of the

coordinates are drawn from 𝑄ℓ−𝑖−1;

4. Rotate the augmented samples using a uniformly random rotation from the orthogonal

group 𝑂 (𝑛);
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5. Call A with the samples and output the result.

As 𝑛 = 𝑂 (𝑛′1/𝑐), B is an efficient algorithm. Moreover, the samples passed to A are effectively

drawn from either hCLWE(𝑖+1)
𝛽,𝛾

or hCLWE(𝑖)
𝛽,𝛾
. Therefore the advantage ofB is at least 1/𝑚 fraction

of the advantage of A, which would be non-negligible (in terms of 𝑛, and thus also in terms of

𝑛′) as well. □

Combining Corollary 4.9 and Lemma 4.16, we obtain the following corollary.

Corollary 4.17. For any 𝛽 = 𝛽 (𝑛) ∈ (0, 1) and 𝛾 = 𝛾 (𝑛) ≥ 2
√
𝑛 such that 𝛾/𝛽 is polynomially

bounded, and positive integer ℓ = ℓ (𝑛) such that ℓ ⩽ 𝑛 and 𝑛 − ℓ = Ω(𝑛𝑐) for some constant 𝑐 > 0,

there is a polynomial-time quantum reduction from DGS2
√

2𝑛𝜂𝜀 (𝐿)/𝛽 to hCLWE(ℓ)
𝛽,𝛾
.

4.3 SQ Hardness of Gaussian Pancakes

Statistical Query (SQ) algorithms [Kea98] are a restricted class of algorithms that are only allowed

to query expectations of functions of the input distribution without directly accessing individ-

ual samples. To be more precise, SQ algorithms access the input distribution indirectly via the

STAT(𝜏) oracle, which given a query function 𝑓 and data distribution𝐷 , returns a value contained

in the interval E𝑥∼𝐷 [𝑓 (𝑥)] + [−𝜏, 𝜏] for some precision parameter 𝜏 .

We prove SQ hardness of distinguishing Gaussian pancakes distributions from the standard

Gaussian. In particular, we show that SQ algorithms that solve Gaussian pancakes require super-

polynomial number of queries even with super-polynomial precision. This is formalized in The-

orem 4.18.

Theorem 4.18. Let 𝛽 = 𝛽 (𝑛) ∈ (0, 1) and 𝛾 = 𝛾 (𝑛) ≥
√

2. Then, any (randomized) SQ algorithm

with precision 𝜏 ≥ 4 · exp(−𝜋 · 𝛾2/4) that successfully solves hCLWE𝛽,𝛾 with probability 𝜂 > 1/2

requires at least (2𝜂 − 1) · exp(𝑐𝑛) · 𝜏2𝛽2/(4𝛾2) statistical queries of precision 𝜏 for some constant

𝑐 > 0.
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Note that when 𝛾 = Ω(
√
𝑛) and 𝛾/𝛽 = poly(𝑛), even exponential precision 𝜏 = exp(−𝑂 (𝑛))

results in a query lower bound that grows as exp(Ω̃(𝑛)). This establishes an unconditional hard-

ness result for SQ algorithms in the parameter regime 𝛾 = Ω(
√
𝑛), which is consistent with our

computational hardness result based on worst-case lattice problems. The uniform spacing in

Gaussian pancakes gives us tight control over their pairwise correlation (see definition in (4.9)),

which leads to a simple proof of the SQ lower bound.

We first provide some necessary background on the SQ framework. We denote by B(U, 𝑄)

the decision problem in which the input distribution 𝐷 either equals 𝑄 or belongs to U, and

the goal of the algorithm is to identify whether 𝐷 = 𝑄 or 𝐷 ∈ U. For our purposes, 𝐷 will be

the standard Gaussian 𝑄𝑛 and U will be a finite set of Gaussian pancakes. Abusing notation,

we denote by 𝐷 (𝑥) the density of 𝐷 . Following [FGRV+17], we define the pairwise correlation

between two distributions 𝑃1, 𝑃2 relative to 𝑄 as

𝜒𝑄 (𝑃1, 𝑃2) := E𝒙∼𝑄
[(
𝑃1(𝒙)
𝑄 (𝒙) − 1

)
·
(
𝑃2(𝒙)
𝑄 (𝒙) − 1

)]
= E𝒙∼𝑄

[
𝑃1(𝒙)𝑃2(𝒙)
𝑄 (𝒙)2

]
− 1 . (4.9)

Lemma 4.19 below establishes a lower bound on the number of statistical queries required to

solve B(U, 𝐷) in terms of pairwise correlation between distributions inU.

Lemma 4.19 ([FGRV+17, Lemma 3.10]). Let 𝑄 be a distribution and U be a set of distributions

both over a domain 𝑋 such that for any 𝑃1, 𝑃2 ∈ U

|𝜒𝑄 (𝑃1, 𝑃2) | ≤


𝛿 if 𝑃1 = 𝑃2

𝜀 otherwise
.

Let 𝜏 ⩾
√

2𝜀. Then, any (randomized) SQ algorithm that solves B(U, 𝑄) with success probability

𝜂 > 1/2 requires at least (2𝜂 − 1) · |U| · 𝜏2/(2𝛿) queries to STAT(𝜏).

The following proposition establishes a tight upper bound on the pairwise correlation be-
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tween Gaussian pancakes. To deduce Theorem 4.18 from Lemma 4.19 and Proposition 4.20, we

take a set of unit vectors U such that any two distinct vectors 𝒖, 𝒗 ∈ U satisfy |⟨𝒖, 𝒗⟩| ≤ 1/
√

2,

and identify it with the set of Gaussian pancakes {𝑃𝒖,𝛽,𝛾 }𝒖∈U . A standard probabilistic argument

shows that such aU can be as large as exp(Ω(𝑛)), which proves Theorem 4.18.

Proposition 4.20. Let 𝒖, 𝒗 ∈ R𝑛 be unit vectors and let 𝑃𝒖, 𝑃𝒗 be 𝑛-dimensional Gaussian pancakes

with parameters 𝛾 ≥ 1, 𝛽 ∈ (0, 1), and hidden direction 𝒗 and 𝒖, respectively. Then, for any 𝛼 ⩾ 0

that satisfies 𝛾2(1 − 𝛼2) ⩾ 1,

|𝜒𝑄 (𝑃𝒖, 𝑃𝒗) | ≤


2(𝛾/𝛽)2 if 𝒖 = 𝒗

8 exp(−𝜋 · 𝛾2(1 − 𝛼2)) if |⟨𝒖, 𝒗⟩| ≤ 𝛼
.

Proof. We will show that computing 𝜒𝑄 (𝑃𝒖, 𝑃𝒗) reduces to evaluating the Gaussian mass of two

lattices 𝐿1 and 𝐿2 defined below. Then, we will tightly bound the Gaussian mass using Lemma 2.6

and Lemma 3.8, which will result in upper bounds on |𝜒𝑄 (𝑃𝒖, 𝑃𝒗) |. We define 𝐿1 and 𝐿2 by speci-

fying their bases 𝐵1 and 𝐵2, respectively.

𝐵1 =
1√︁

𝛽2 + 𝛾2

©­­«
1 0

0 1

ª®®¬ ,
𝐵2 =

1√︁
𝛽2 + 𝛾2

©­­«
1 0

− 𝛼𝛾2

𝜁
√
𝛽2+𝛾2

√
𝛽2+𝛾2

𝜁

ª®®¬ ,
where 𝜁 =

√︁
(𝛽2 + 𝛾2) − 𝛼2𝛾4/(𝛽2 + 𝛾2). Then the basis of the dual lattice 𝐿∗1 and 𝐿∗2 is 𝐵−𝑇1 and

𝐵−𝑇2 , respectively. Note that 𝜆2(𝐿1)2 = 1/(𝛽2 + 𝛾2) and that the two columns of 𝐵2 have the same
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norm, and so

𝜆2(𝐿2)2 ≤
1

𝛽2 + 𝛾2 ·max
{
1 + 𝛼2𝛾4

𝜁 2(𝛽2 + 𝛾2) ,
𝛽2 + 𝛾2

𝜁 2

}
=

1
𝜁 2 (4.10)

≤ 1
𝛾2(1 − 𝛼2) . (4.11)

Now define the density ratio 𝑇 (𝑡) := 𝐴(𝑡)/𝑄 (𝑡), where 𝑄 is the standard Gaussian and 𝐴 is

the marginal distribution of Gaussian pancakes with parameters 𝛽,𝛾 along the hidden direction.

We immediately obtain

𝑇 (𝑡) = 1
𝑍

∑︁
𝑘∈Z

𝜌𝛽/𝛾 (𝑡 − 𝑘/𝛾) , (4.12)

where 𝑍 =
∫
R
𝜌 (𝑡) ·∑𝑘∈Z 𝜌𝛽/𝛾 (𝑡 − 𝑘/𝛾)𝑑𝑡 . By Eq. (4.3), 𝑍 is given by

𝑍 =
𝛽√︁

𝛽2 + 𝛾2
· 𝜌

(
1√︁

𝛽2 + 𝛾2
Z

)
.

Moreover, we can express 𝑍 2 in terms of the Gaussian mass of (𝐿1) as

𝑍 2 =
𝛽2

𝛽2 + 𝛾2 · 𝜌 (𝐿1) .

𝜒𝑄 (𝑃𝒖, 𝑃𝒗) can be expressed in terms of 𝑇 (𝑡) as

𝜒𝑄 (𝑃𝒖, 𝑃𝒗) = E
𝒙∼𝑄

[
𝑇 (⟨𝒙, 𝒖⟩) ·𝑇 (⟨𝒙, 𝒗⟩)

]
− 1 . (4.13)

Without loss of generality, assume 𝒖 = 𝒆1 and 𝒗 = 𝛼𝒆1 + 𝜉𝒆2, where 𝜉 =
√

1 − 𝛼2. We first

compute the pairwise correlation for 𝒖 ≠ 𝒗. For notational convenience, we denote by 𝜀 =

8 · exp(−𝜋 · 𝛾2(1 − 𝛼2)).
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𝜒𝑄 (𝑃𝒖, 𝑃𝒗) + 1 = E
𝒙∼𝑄

[
𝑇 (𝑥1) ·𝑇 (𝛼𝑥1 + 𝜉𝑥2)

]
=

1
𝑍 2

∑︁
𝑘,ℓ∈Z

∫ ∫
𝜌𝛽 (𝛾𝑥1 − 𝑘) · 𝜌𝛽 ((𝛾𝛼𝑥1 + 𝛾𝜉𝑥2) − ℓ) · 𝜌 (𝑥1) · 𝜌 (𝑥2)𝑑𝑥1𝑑𝑥2

=
1
𝑍 2 ·

𝛽√︁
(𝛾𝜉)2 + 𝛽2

∑︁
𝑘,ℓ∈Z

∫
𝜌𝛽 (𝛾𝑥1 − 𝑘) · 𝜌 (𝑥1) · 𝜌√1+𝛽2/(𝛾𝜉)2 (ℓ/(𝛾𝜉) − (𝛼/𝜉)𝑥1)𝑑𝑥1

=
1
𝑍 2 ·

𝛽√︁
(𝛾𝜉)2 + 𝛽2

·
𝛽
√︁
(𝛾𝜉)2 + 𝛽2

𝜁
√︁
𝛽2 + 𝛾2

∑︁
𝑘,ℓ∈Z

𝜌√
𝛽2+𝛾2 (𝑘) · 𝜌𝜁

(
ℓ − 𝛾2𝛼 · 𝑘/(𝛽2 + 𝛾2)

)
=

√︁
𝛽2 + 𝛾2

𝜁
·

∑
𝑘,ℓ∈Z 𝜌√𝛽2+𝛾2 (𝑘) · 𝜌𝜁

(
ℓ − 𝛾2𝛼 · 𝑘/(𝛽2 + 𝛾2)

)
𝜌 (𝐿1)

=

√︁
𝛽2 + 𝛾2

𝜁
· 𝜌 (𝐿2)
𝜌 (𝐿1)

=

√︁
𝛽2 + 𝛾2

𝜁
·

det(𝐿∗2)
det(𝐿∗1)

·
𝜌 (𝐿∗2)
𝜌 (𝐿∗1)

=
𝜌 (𝐿∗2)
𝜌 (𝐿∗1)

(4.14)

∈
[ 1
1 + 𝜀 , 1 + 𝜀

]
,

In (4.14), we used the Poisson summation formula (Lemma 2.6). The last line follows from (4.11)

and Lemma 3.8, which implies that for any 2-dimensional lattice 𝐿 satisfying 𝜆2(𝐿) ≤ 1,

𝜌 (𝐿∗ \ {0}) ≤ 8 exp(−𝜋/𝜆2(𝐿)2) . (4.15)

Now consider the case 𝒖 = 𝒗. Using (4.10), we get an upper bound 𝜆2(𝐿2) ≤ 1/𝛽 when 𝛼 = 1.
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It follows that 𝜆2((𝛽/𝛾)𝐿2) ⩽ 1/𝛾 ⩽ 1. Hence,

𝜒𝑄 (𝑃𝒗, 𝑃𝒗) + 1 =

√︁
𝛽2 + 𝛾2

𝜁
· 𝜌 (𝐿2)
𝜌 (𝐿1)

≤
√︁
𝛽2 + 𝛾2

𝜁
· 𝜌 ((𝛽/𝛾)𝐿2)

𝜌 (𝐿1)

=

√︁
𝛽2 + 𝛾2

𝜁
·

det((𝛾/𝛽)𝐿∗2)
det(𝐿∗1)

·
𝜌 ((𝛾/𝛽)𝐿∗2)
𝜌 (𝐿∗1)

=
𝛾2

𝛽2 ·
𝜌 ((𝛾/𝛽)𝐿∗2)
𝜌 (𝐿∗1)

(4.16)

≤ 2(𝛾/𝛽)2 . (4.17)

where we used Lemma 2.6 in (4.16) and in (4.17), we used (4.15) and the fact that 𝜆2((𝛽/𝛾)𝐿2) ≤ 1

to deduce 𝜌 ((𝛾/𝛽)𝐿∗2 \ {0}) ≤ 1. □

4.4 Low-Degree Hardness of Gaussian Pancakes

The low-degree method is a framework for predicting the computational hardness of hypothe-

sis testing problems by computing the 𝐿2-norm of the low-degree likelihood ratio (LDLR) with

respect to the null distribution. More precisely, let 𝐿𝑛 denote the likelihood ratio between the

planted distribution P𝑛 and null distribution Q𝑛 , and let 𝐿⩽𝐷𝑛 denote its orthogonal projection

onto the subspaceV⩽𝐷 of (total) degree-𝐷 polynomials in 𝐿2(Q𝑛). The low-degree method “pre-

dicts” the computational hardness of distinguishing (P𝑛,Q𝑛) by computing bounds on ∥𝐿⩽𝐷𝑛 ∥Q𝑛 .

This method is typically used to predict hardness of strong detection (i.e., advantage tends to

1 asymptotically), and one predicts hardness if ∥𝐿⩽𝐷 ∥Q = 𝑂 (1) for degree sequences satisfy-

ing 𝐷 = 𝜔 (log𝑛). Upper bounds on ∥𝐿⩽𝐷𝑛 ∥Q𝑛 , where 𝐿𝑛 is the likelihood ratio for the Gaussian

pancakes distinguishing problem and 𝐷 = 𝐷 (𝑛), is the main technical result of this section.

There are several motivations behind analyzing the 𝐿2-norm of the low-degree likelihood ra-

tio. Onemotivation is its connection to the secondmoment method for contiguity [LeC12], which
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is a standard approach for establishing statistical indistinguishability between distributions. The

low-degree method serves as a computational analogue of this method, where degree-𝐷 poly-

nomials 𝑓 : R𝑛×𝑚 → R are viewed as proxies for decision rules Ψ : R𝑛×𝑚 → {0, 1} that can

be computed in 𝑛𝑂 (𝐷) time. Strictly speaking, formal guarantees of the low-degree method are

rather weak [KWB22, Section 4]. However, despite its formal limitations, the low-degree meth-

ods’s success in predicting computational thresholds consistent with other evidence of hardness,

its wide applicability3, and its near equivalence with other lower bounds [BBHL+20; MW22] pro-

vide strong support for the reliability of its predictions. We refer the reader to [KWB22; Kun22;

BAHS+22] for more details.

Following an extension of the framework proposed in [BAHS+22], which viewed ∥𝐿⩽𝐷 ∥Q =

1+𝑜 (1)4 as evidence thatweak detection (i.e., advantage tends to Ω(1)) is hard for𝑛𝑂 (𝐷) time algo-

rithms, we consider the possibility of extending the analogy to non-negligible detection by view-

ing bounds of the form ∥𝐿⩽𝐷 ∥Q = 1 + negl(𝑛) as evidence that achieving even non-negligible ad-

vantage is hard. Thismotivation arises from the potential application of the low-degreemethod in

predicting the run-times required to break cryptographic primitives, such as CLWE and Gaussian

pancakes. Our results suggest that refinements are necessary to extend the low-degree method to

this setting. In particular, an important aspect that requires further investigation is determining

the appropriate amount of noise to introduce into “noiseless” problems to align with the require-

ments of the low-degree conjecture. The low-degree conjecture, as discussed in [KWB22], only

applies to “noisy” problems. However, when constant Ornstein-Uhlenbeck noise is added to the

Gaussian pancakes problem, it becomes information-theoretically impossible.

Our main low-degree lower bound is given by Theorem 4.21. This lower bound applies to

any 𝛾 and even to noiseless Gaussian pancakes. This is in contrast to all known superpolynomial

SQ lower bounds for Gaussian pancakes, which require at least sub-exponential noise [DKS17;
3For example, it can also be used to predict hardness of estimation problems [SW22].
4∥𝐿⩽𝐷 ∥Q is trivially lower bounded by 1 for any 𝐷 ∈ N.
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BRST21]. It is also worth mentioning that hardness based worst-to-average case reductions re-

quires 𝛾 ⩾ 2
√
𝑛 in addition to inverse polynomial noise. Thus, our low-degree lower bound pro-

vides insight into the hardness landscape of the Gaussian pancakes problem beyond parameter

regimes studied using other techniques.

Theorem 4.21 (Total degree lower bound). Let 𝑛 ∈ N, 𝐷 = 𝐷 (𝑛) ∈ N, 𝛾 = 𝛾 (𝑛) >
√

2𝜋 be a real

number, and𝑚 = 𝑚(𝑛) ∈ N such that𝑚 ⩽ exp(2𝛾2)/(2𝛾2). Then, there exist universal constants

𝐶1,𝐶2 > 0 such that



𝐿⩽𝐷

2
Q ⩽ exp(𝑚 · exp(−𝐶1𝛾

2)) + 2𝐷 (4𝑚𝐷2/𝛾)𝐷/𝛾2
exp(−𝐶2𝑛) .

In particular, if log𝑚 = 𝑜 (𝛾2) and 𝐷 (log𝑚 + 2 log𝐷 − log𝛾) = 𝑜 (𝛾2𝑛), then

∥𝐿⩽𝐷 ∥2Q = 1 + negl(𝑛) .

The following lemma reduces the problem of bounding ∥𝐿⩽𝐷 ∥Q to computing E𝑥∼𝐴 [ℎ𝑘 (𝑥)],

where ℎ𝑘 : R→ R is the normalized 𝑘-th Hermite polynomial.

Lemma 4.22 (LDLR norm [MW21, Lemma 6.4]). Let {ℎ𝑘}𝑘∈N be the normalized Hermite polyno-

mials (so that E𝑧∼N(0,1) [ℎ𝑘 (𝑧)ℎℓ (𝑧)] = 1𝑘=ℓ ). Then,

∥𝐿⩽𝐷 ∥2 =
𝐷∑︁
𝑡=0
E

𝒖,𝒗∼𝜇
[⟨𝒖, 𝒗⟩𝑡 ]

∑︁
𝛼∈N𝑚
|𝛼 |=𝑡

𝑚∏
𝑖=1

(
E
𝑥∼𝐴
[ℎ𝛼𝑖 (𝑥)]

)2
, (4.18)

where 𝒖, 𝒗 are drawn independently from the prior distribution 𝜇 on S𝑛−1.

4.4.1 Expectation of Hermite polynomials over discrete Gaussians

To compute the LDLR norm given by Lemma 4.22, we give tight bounds on E𝑥∼𝐴 [ℎ𝑘 (𝑥)] by ex-

ploiting the lattice structure of the support of 𝐴 and using the Poisson summation formula (see
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Lemma 2.6). Note that odd-degree Hermite polynomials are of secondary importance since their

expectation evaluates to 0 for any distribution on R that is symmetric with respect to 0.

Our tight bounds on the expectation of Hermite polynomials over the univariate discrete

Gaussian of unit width provide the following two useful insights: 1) if the degree 𝑘 is “small” (𝑘 ⩽

𝛾2), then | E𝑥∼𝐴 [ℎ𝑘 (𝑥)] | has negligible magnitude (Lemma 4.26) and 2) if the degree 𝑘 is “large”

(𝑘 ⩾ 𝛾2), then | E𝑥∼𝐴 [ℎ𝑘 (𝑥)] | = 𝑂 (1/𝑘1/4). Furthermore, this upper bound is tight for 𝑘 that are in

“sync” with the spacing parameter 𝛾 of𝐴 (Lemma 4.27 and Lemma 4.28). Such “synchronization”

between 𝑘 and 𝛾2 is expected since the Hermite function ℎ𝑘 (𝑥) exp(−𝑥2/4) roughly behaves like

the cosine function with frequency Θ(
√
𝑘). Numerical illustrations for Lemma 4.27 can be found

in Figures 4.1 and 4.2.

Lemma 4.23 (Stirling bounds). Let 𝑘 ∈ Z+. Then,

√
2𝜋𝑘 (𝑘/𝑒)𝑘 ⩽ 𝑘! ⩽ 𝑒

√
𝑘 (𝑘/𝑒)𝑘 .

Claim 4.24. Let 𝑘 ∈ N and let 𝑓 (𝑥) = ℎ𝑘 (𝑥) exp(−𝑥2/2). Then, its Fourier transform is given by

𝑓 (𝑦) =
√

2𝜋 (−𝑖)𝑘 (2𝜋𝑦)
𝑘

√
𝑘!

exp(−2𝜋2𝑦2) . (4.19)

Proof. Wedenote by𝐻𝑘 , the unnormalized𝑘-thHermite polynomial. Note that𝐻𝑘 (𝑥) = ℎ𝑘 (𝑥)
√
𝑘!.

By Rodrigues’ formula,

𝐻𝑘 (𝑥) exp(−𝑥2/2) = (−1)𝑘 𝑑
𝑘

𝑑𝑥𝑘
exp(−𝑥2/2) . (4.20)

Using integration by parts, we observe that its Fourier transform is equal to (2𝜋𝑖𝑦)𝑘 times the

Fourier transform of (−1)𝑘 exp(−𝑥2/2), which is
√

2𝜋 (−1)𝑘 exp(−2𝜋2𝑦2). It follows that

F {𝐻𝑘 (𝑥) exp(−𝑥2/2)} =
√

2𝜋 (−2𝜋𝑖𝑦)𝑘 exp(−2𝜋2𝑦2) .
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□

Lemma 4.25 (Expectation of Hermite polynomials). Let 𝛾 ⩾ 1 be a real number and let 𝐴 be the

discrete Gaussian of unit width supported on (1/𝛾)Z. Then, for any 𝑘 ∈ 2N,

1
2

������∑︁𝑦∈𝛾Z𝐶𝑘 · 𝑦𝑘 exp(−2𝜋2𝑦2)

������ ⩽
���� E𝑥∼𝐴[ℎ𝑘 (𝑥)]���� ⩽

������∑︁𝑦∈𝛾Z𝐶𝑘 · 𝑦𝑘 exp(−2𝜋2𝑦2)

������ , (4.21)

where 𝐶𝑘 =
(−2𝜋𝑖)𝑘√

𝑘!
.

Proof. Using the Poisson summation formula (Lemma 2.6), and Claim 4.24, we have

���� E𝑥∼𝐴[ℎ𝑘 (𝑥)]���� = 1
𝜌√2𝜋 ((1/𝛾)Z)

������ ∑︁
𝑥∈(1/𝛾)Z

ℎ2𝑘 (𝑥) exp(−𝑥2/2)

������
=

𝛾

𝜌√2𝜋 ((1/𝛾)Z)

������∑︁𝑦∈𝛾Z√2𝜋𝐶𝑘𝑦𝑘 exp(−2𝜋2𝑦2)

������ . (4.22)

Using the loose bound 𝜌√2𝜋 ((1/𝛾)Z) ∈ (𝛾
√

2𝜋, 2𝛾
√

2𝜋) in Eq. (4.22), the result follows. □

Lemma 4.26 (Upper bound for low-degree). Let 𝛾 ⩾
√

2 be a real number and let 𝑘 ∈ Z+ be a

positive integer satisfying 𝑘 ⩽ 𝛾2. Then,���� E𝑥∼𝐴[ℎ𝑘 (𝑥)]���� ⩽ exp(−𝛾2) . (4.23)

Proof. If 𝑘 is odd, then E𝑥∼𝐴 [ℎ𝑘 (𝑥)] = 0, which trivially satisfies (4.23). Now suppose 𝑘 is even

and define 𝑔(𝑡) = log(𝑎𝑡+1/𝑎𝑡 ), where 𝑎𝑡 denotes the 𝑡-th term (to the right of 0) in the sum∑
𝑦∈𝛾Z𝐶𝑘𝑦

𝑘 exp(−2𝜋2𝑦2) and𝐶𝑘 = (−2𝜋𝑖)𝑘√
𝑘!

. The function 𝑔(𝑡) represents the decay rate of consec-

utive terms in the infinite sum. Then,

𝑔(𝑡) = 𝑘 log(1 + 1/𝑡) − 2𝜋2𝛾2 · (2𝑡 + 1) ⩽ 𝑘/𝑡 − 4𝜋2𝛾2𝑡 − 2𝜋2𝛾2 .
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Also, for any 𝑡 ⩾ 1

𝑔′(𝑡) = − 𝑘/𝑡2

1 + 1/𝑡 − 4𝜋2𝛾2 = − 𝑘

𝑡2 + 𝑡 − 4𝜋2𝛾2 < 0 .

If 𝑘 ⩽ 2𝜋2𝛾2, then 𝑔(1) ⩽ 𝑘 − 6𝜋2𝛾2 ⩽ −4𝜋2𝛾2. This implies that the terms in the sum decay

geometrically at a rate faster than exp(−4𝜋2𝛾2) < 2−36 after the first term. Hence, the first term

dominates the sum is dominant. To be more precise, this implies |E𝑥∼𝐴 [ℎ𝑘 (𝑥)] | is upper bounded

by, say 3|𝐶𝑘 |𝛾𝑘 exp(−2𝜋2𝛾2). Now we let 2 ⩽ 𝑘 ⩽ 𝛾2 (if 𝛾2 ⩽ 2, then it must be the case that 𝑘 = 1

for which the expectation is 0). Then,

|𝐶𝑘 |𝛾𝑘 exp(−2𝜋2𝛾2) ⩽ 1
√
𝑘!
(2𝜋𝛾)𝑘 exp(−2𝜋2𝛾2)

⩽
1

(2𝜋𝑘)1/4

(
4𝜋2𝛾2

𝑘/𝑒

)𝑘/2
exp(−2𝜋2𝛾2)

⩽
(
4𝜋2𝑒

)𝛾2/2 exp(−2𝜋2𝛾2) (4.24)

⩽ exp(𝛾2(log 2𝜋 + 1/2)) exp(−2𝜋2𝛾2)

⩽ exp(−𝛾2(2𝜋2 − 5/2)) ,

where we used a lower bound on the factorial (Lemma 4.23) and the fact that 2𝜋 ⩽ 𝑒2 in the last

line. Eq. (4.24) follows from the fact that 1/(2𝜋𝑘)1/4 < 1 and that (4𝜋2𝛾2𝑒/𝑘)𝑘/2 is increasing in

the interval 𝑘 ∈ [2, 𝛾2].

Hence, E𝑥∼𝐴 [ℎ𝑘 (𝑥)] ⩽ 3 · exp(−𝛾2(2𝜋2 − 5/2)) ⩽ exp(−𝛾2). □

Lemma 4.27 below states that the function mapping 𝑠 ∈ Z to the 𝑠-th term of the sum

in Eq. (4.21) behaves like a “delta” function, which has most of its mass concentrated on the

⌈
√︁
𝑘/(2𝜋2𝛾2)⌋-th term. See Figure 4.3 for a numerical illustration.
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Figure 4.1: Plot of the expectation of Her-
mite polynomials ℎ2𝑘 (𝑥) over a 1D discrete
Gaussian with 𝛾 =

√︁
20/(4𝜋2). We can see

that | E𝑥∼𝐴 [ℎ2𝑘 (𝑥)] | (Blue) lies below the upper
bound 2.01/((4𝜋𝑘)1/4) (Red), and that the up-
per bound is tight when

√︁
2𝑘/(4𝜋2𝛾2) ∈ N.
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Figure 4.2: Plot of the expectation of Her-
mite polynomials where the spacing parameter
𝛾 is set to 𝛾 (𝑘) =

√︁
2𝑘/(4𝜋2), so that it is in

“sync” with the degree𝑘 of the Hermite polyno-
mial. We can see that the 2.01/((4𝜋𝑘)1/4) up-
per bound (Red) tightly tracks | E𝑥∼𝐴 [ℎ2𝑘 (𝑥)] |
(Blue).

Lemma 4.27 (Upper bound for high-degree). Let 𝛾 ⩾
√

2 be a real number and let 𝑘 ∈ N. Then,���� E𝑥∼𝐴[ℎ𝑘 (𝑥)]���� ⩽ 2.01
(2𝜋𝑘)1/4

. (4.25)

Furthermore, if 𝑘 ∈ 2Z+ and
√︁
𝑘/(4𝜋2𝛾2) ∈ Z+, this upper bound is tight. That is,

E
𝑥∼𝐴
[ℎ𝑘 (𝑥)] = (−1)𝑘/2 2

(2𝜋𝑘)1/4
(
1 + 𝑜𝛾 (1)

)
. (4.26)

Proof. If 𝑘 is odd, then by the expecation of ℎ𝑘 (𝑥) over 𝐴 evaluates to 0, which satisfies Eq. (4.25)

trivially. Hence, for the remainder of the proof we assume 𝑘 ∈ 2Z+. Define the logarithm of the

𝑡-th term (to the right of 0) in the sum

𝑟 (𝑡) := log((𝑡𝛾)𝑘 · exp(−2𝜋2𝛾2(𝑡𝛾)2)) = 𝑘 log(𝑡𝛾) − 2𝜋2𝛾2(𝑡𝛾)2 .

Since log is an increasing function, 𝑟 (𝑡) is maximized when the term inside the logarithm is
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maximized. By differentiating 𝑟 with respect to 𝑡 , we have

𝑟 ′(𝑡) = 𝑘/𝑡 − 4𝜋2𝛾2𝑡 ,

Hence, 𝑟 (𝑡) achieves its maximum at
√︁
𝑘/(4𝜋2𝛾2). Now let 𝑎𝑡 denote the “𝑡-th” term in the

sum and again define 𝑔(𝑡) := log(𝑎𝑡+1/𝑎𝑡 ). Then,

𝑔(𝑡) = 𝑘 log(1 + 1/𝑡) − 2𝜋2𝛾2 · (2𝑡 + 1) ⩽ 𝑘/𝑡 − 4𝜋2𝛾2𝑡 − 2𝜋2𝛾2 = 𝑟 ′(𝑡) − 2𝜋2𝛾2 . (4.27)

Now denote 𝑠 =
√︁
𝑘/(4𝜋2𝛾2). By Eq. (4.27), after the 𝑠-th term, the terms decay supergeomet-

rically at a rate faster than exp(−2𝜋2𝛾2). We also show that the terms decay at a rate faster than

exp(−2𝜋2𝛾2) in the other direction away from the “𝑠-th” term. Note that log(𝑎𝑡−1/𝑎𝑡 ) = −𝑔(𝑡 −1).

Using the fact that 𝑥/(1 + 𝑥) ⩽ log(1 + 𝑥), we have for 𝑡 > 1

𝑔(𝑡) ⩾ 𝑘/𝑡
1 + 1/𝑡 − 2𝜋2𝛾2(2𝑡 + 1) = 𝑘

𝑡 + 1
− 2𝜋2𝛾2(2𝑡 + 1) .

It follows that for 𝑡 <
√︁
𝑘/(4𝜋2𝛾2)

−𝑔(𝑡 − 1) ⩽ 2𝜋2𝛾2(2𝑡 − 1) − 𝑘/𝑡 < −2𝜋2𝛾2 .

Thus, the terms decay at a rate faster than exp(−2𝜋2𝛾2) in the other direction away from 𝑠

as well. To account for rounding error for fractional 𝑠 , consider 𝑔(𝑡) = log(𝑎𝑡+1/2/𝑎𝑡 ). Then, for

𝑡 ⩾ 𝑠 ,

𝑔(𝑡) = 𝑘 log(1 + 1/(2𝑡)) − 2𝜋2𝛾2(𝑡 + 1/4) ⩽ 𝑟 ′(𝑡)/2 − 𝜋2𝛾2/2 ⩽ −𝜋2𝛾2/2 .
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Also, as before, log(𝑎𝑡−1/2/𝑎𝑡 ) = −𝑔(𝑡 − 1/2). Then, a similar calculation shows that for 𝑡 ⩽ 𝑠 ,

−𝑔(𝑡 − 1/2) ⩽ 2𝜋2𝛾2(𝑡 − 1/4) − 𝑘/(2𝑡) = −𝑟 ′(𝑡)/2 − 𝜋
2𝛾2

2
⩽ −𝜋

2𝛾2

2
.

To finally establish Eq. (4.25), we observe that

|𝐶𝑘 | · (𝑠𝛾)𝑘 · exp(−2𝜋2𝛾2𝑠2) = (2𝜋)
𝑘

√
𝑘!

(
𝑘

4𝜋2

)𝑘/2
exp(−𝑘/2)

⩽
(4𝜋2)𝑘/2

(2𝜋𝑘)1/4
· 𝑒

𝑘/2

𝑘𝑘/2
·
(
𝑘

4𝜋2

)𝑘/2
· exp(−𝑘/2)

=

(
1

2𝜋𝑘

)1/4
,

where 𝐶𝑘 =
(−2𝜋𝑖)𝑘√

𝑘!
, and we used Lemma 4.23, in particular the inequality 𝑘! ⩾ (

√
2𝜋𝑘) (𝑘/𝑒)𝑘 , in

the second-to-last line.

Putting everything together, for 𝑘 ∈ 2Z+ it holds���� E𝑥∼𝐴[ℎ𝑘 (𝑥)]���� ⩽∑︁
𝑡∈Z
|𝐶𝑘 | (𝑡𝛾)𝑘 exp(−2𝜋2(𝑡𝛾)2)

= 2
∞∑︁
𝑡=1
|𝐶𝑘 | (𝑡𝛾)𝑘 exp(−2𝜋2(𝑡𝛾)2)

⩽ 2|𝐶𝑘 | (𝑠𝛾)𝑘 exp(−2𝜋2𝛾2𝑠2)
(
1 + 𝑒−𝜋2𝛾2/2 + 2

∞∑︁
𝑟=1

𝑒−2𝜋2𝛾2𝑟

)
⩽

2.01
(2𝜋𝑘)1/4

,

where in the last inequality, we used the fact that 𝑒−𝜋2𝛾2/2 + 2
∑∞
𝑟=1 𝑒

−2𝜋2𝛾2𝑟 ⩽ 3𝑒−𝜋2
⩽ 0.005 for

𝛾 ⩾
√

2.

If𝑘 ∈ 2Z+ and 𝑠 ∈ Z+, then using again Lemma 4.23 and the fact that 𝜌√2𝜋 ((1/𝛾)Z) = 𝛾
√

2𝜋 (1+
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Figure 4.3: Plot of 𝐶𝑘 (𝑠𝛾)𝑘 exp(−2𝜋2(𝑠𝛾)2) according to the term index 𝑠 ∈ Z for various 𝛾 and 𝑘 . Note
that the plot behaves like a “delta” function supported on the index 𝑠 = ±

√︁
𝑘/(4𝜋2𝛾2).

𝑜𝛾 (1)), ���� E𝑥∼𝐴[ℎ𝑘 (𝑥)]���� ⩾ 2|𝐶𝑘 | (𝑠𝛾)𝑘 exp(−2𝜋2𝛾2𝑠2) (1 + 𝑜𝛾 (1))

⩾
2

(4𝜋𝑘)1/4
(1 + 𝑜𝛾 (1)) .

The above lower bound, together with (4.25), establishes Eq. (4.26). □

Lemma 4.28 (Dominant term for fractional 𝛾 ). Let 𝛾 ⩾
√

2 be a real number and let 𝑘 ∈ 2Z+ be

an even number such that 𝑘 = ⌈𝑠2(4𝜋2𝛾2)⌉ or 𝑘 = ⌊𝑠2(4𝜋2𝛾2)⌋ for some 𝑠 ∈ Z+. Then,

E
𝑥∼𝐴
[ℎ𝑘 (𝑥)] = Θ𝛾 (1/

√
𝑠𝛾) . (4.28)

Proof. The upper bound 𝑂 (1/√𝑠𝛾) is immediate from Lemma 4.27. Hence, it suffices to show a

lower bound of Ω(1/√𝑠𝛾). Let 𝑘 = 𝑠2(4𝜋2𝛾2) + 𝛼 (or 𝑘 = 𝑠4(4𝜋2𝛾2) − 𝛼), where 𝛼 ∈ [0, 1). Then,

the maximizing “fractional” index 𝑠 can be expressed as

𝑠 =

√︄
𝑘

4𝜋2𝛾2 =
√︁
𝑠2 + 𝛼/(4𝜋2𝛾2) ∈ [𝑠, 𝑠 · 𝑒𝛼/(4𝜋2𝛾2𝑠2)] .
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We now analyze the magnitude of the 𝑠-th term relative to the fractional “𝑠-th” term.

log
𝑎𝑠

𝑎𝑠
⩽ 𝑘𝛼/(4𝜋2𝛾2𝑠2)

= 𝛼
(
1 + 𝛼/(4𝜋2𝛾2𝑠2)

)
= 𝛼 (1 + 𝑜𝛾 (1))

= 𝑂𝛾 (𝛼) .

Since 𝛼 ∈ [0, 1), by Lemma 4.27, we have

E
𝑥∼𝐴
[ℎ𝑘 (𝑥)] = Ω𝛾 (𝑎𝑠) = Ω𝛾

(
1
√
𝑠𝛾

)
.

□

4.4.2 Low-degree lower bound for Gaussian pancakes

We now use the bounds on the expectation of univariate Hermite polynomials to prove our main

low-degree lower bound. The key lemma is Lemma 4.29. We assume for the moment that the

discrete distribution 𝐴 is smoothed by small Ornstein-Uhlenbeck noise, and thus has a density

with respect to the Lebesgue measure onR. Recall that we denote by 𝑃𝒖 the density of the planted

distribution (of a single sample) conditioned on the direction 𝒖 ∈ S𝑛−1, and 𝑃𝒖 (𝒙) = 𝑃𝒖 (𝒙)/𝑄 (𝒙).

Lemma 4.29 (Upper bounds on coefficients of 𝜑𝐷 ). Let 𝛾 ⩾
√

2 be a real number and𝑚 ∈ Z+ be

such that𝑚 ⩽ exp(2𝛾2)/(2𝛾2). If the total degree bound 𝑡 ∈ Z+ satisfies 𝑡 ⩽ 𝛾2, then

∑︁
𝛼∈N𝑚\{0}
∥𝛼 ∥1⩽𝑡

𝑚∏
𝑖=1

(
E
𝑥∼𝐴
[ℎ2𝛼𝑖 (𝑥)]

)2
⩽ 2𝑚𝛾2 exp(−2𝛾2) .
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On the other hand, if 𝑡 > 𝛾2, then

∑︁
𝛼∈N𝑚\{0}
∥𝛼 ∥1=𝑡

𝑚∏
𝑖=1

(
E
𝑥∼𝐴
[ℎ2𝛼𝑖 (𝑥)]

)2
⩽ 3

(
4𝑚𝑡
𝛾

)𝑡/𝛾2

. (4.29)

Proof. Given a non-zero degree vector 𝛼 ∈ N𝑚 \ {0}, we split the indices of its support into two

sets: 1) the set 𝐿 of low degree indices which satisfy 2𝛼𝑖 ⩽ 𝛾2, and 2) the set 𝐻 of “high” degree

indices satisfying 2𝛼𝑖 > 𝛾2. Then,

∑︁
𝛼∈N𝑚
∥𝛼 ∥1=𝑡

𝑚∏
𝑖=1

(
E
𝑥∼𝐴
[ℎ2𝛼𝑖 (𝑥)]

)2
=

𝑚∑︁
𝑠=0

∑︁
𝐿⊆[𝑚]
∥𝐿∥1⩽𝑡
∥𝐿∥0=𝑠

∑︁
𝐻⊆[𝑚]\𝐿
∥𝐻 ∥1=𝑡−∥𝐿∥1

∏
𝑖∈𝐿

(
E
𝑥∼𝐴
[ℎ2𝛼𝑖 (𝑥)]

)2
·
∏
𝑖∈𝐻

(
E
𝑥∼𝐴
[ℎ2𝛼𝑖 (𝑥)]

)2

We show an upper bound on the RHS. Let 𝛼 ∈ N𝑚 be a non-zero vector and let
∑
𝑖∈𝐿 2𝛼𝑖 = ℓ .

If ∥𝐿∥0 = 𝑠 , we observe that ℓ ⩽ 𝑠𝛾2 since 𝛼𝑖 ⩽ 𝛾2 for any 𝑖 ∈ 𝐿. By Claim 4.26, if ∥𝐿∥0 = 𝑠 we

have

∏
𝑖∈𝐿

(
E
𝑥∼𝐴
[ℎ2𝛼𝑖 (𝑥)]

)2
⩽ exp

(
−2𝛾2𝑠

)
,

If 𝑡 ⩽ 𝛾2, then 𝐿 is non-empty and

𝑚∑︁
𝑠=1

∑︁
𝐿⊆[𝑚]

∥𝐿∥1⩽𝑡,∥𝐿∥0=𝑠

∏
𝑖∈𝐿

(
E
𝑥∼𝐴
[ℎ2𝛼𝑖 (𝑥)]

)2
⩽

𝑚∑︁
𝑠=1

(
𝑚

𝑠

)
𝛾2𝑠 exp

(
−2𝛾2𝑠

)
(4.30)

⩽
𝑚∑︁
𝑠=1

(
𝑚𝛾2 exp

(
−2𝛾2) )𝑠

⩽ 2𝑚𝛾2 exp(−2𝛾2) ,

where in (4.30) we used the fact that the number of subsets 𝐿 ⊆ [𝑚] satisfying ∥𝐿∥0 = 𝑠 is loosely

upper bounded by
(𝑚
𝑠

)
𝛾2 since the number of possible values each 𝛼𝑖 can take for each 𝑖 ∈ 𝐿 is
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less than 𝛾2. In addition, we used the assumption that 𝑚𝛾2 exp(−2𝛾2) ⩽ 1/2 and bounded the

sum by the geometric series of decay rate 1/2 in the last line. This establishes the Lemma for the

case 𝑡 ⩽ 𝛾2.

Now we establish the bound for 𝑡 > 𝛾2. From Lemma 4.27, it follows that for any 𝐿 ⊂ [𝑚]

and 𝑡 ⩾ 1,

∑︁
𝐻⊆[𝑚]\𝐿
∥𝐻 ∥1=𝑑−ℓ

∏
𝑖∈𝐻

(
E
𝑥∼𝐴
[ℎ2𝛼𝑖 (𝑥)]

)2
⩽

∑︁
𝐻⊆[𝑚]
∥𝐻 ∥1=𝑡−ℓ

∏
𝑖∈𝐻

1
√
𝜋𝛼𝑖

=

⌊(𝑡−ℓ)/𝛾2⌋∑︁
𝑟=1

∑︁
𝐻⊆[𝑚]
∥𝐻 ∥1=𝑡−ℓ,
∥𝐻 ∥0=𝑟

∏
𝑖∈𝐻

1
√
𝜋𝛼𝑖

⩽

⌊(𝑡−ℓ)/𝛾2⌋∑︁
𝑟=1

(
𝑚

𝑟

) (
(𝑡 − ℓ) + 𝑟 − 1

𝑟 − 1

) (
2
𝛾

)𝑟
⩽

⌊(𝑡−ℓ)/𝛾2⌋∑︁
𝑟=1

(
𝑚

𝑟

) (
2𝑡 − 1
𝑟 − 1

) (
2
𝛾

)𝑟
⩽

⌊(𝑡−ℓ)/𝛾2⌋∑︁
𝑟=1

(
𝑚

𝑟

) (
2𝑡
𝑟

) (
2
𝛾

)𝑟
⩽

⌊(𝑡−ℓ)/𝛾2⌋∑︁
𝑟=1

(
4𝑚𝑡
𝛾

)𝑟
⩽ 2

(
4𝑚𝑡
𝛾

) ⌊(𝑡−ℓ)/𝛾2⌋
,

where we used the fact that 𝑡 > 𝛾2 in the last line.

67



Putting everything together, for any 𝑡 ∈ Z+ such that 𝑡 ⩾ 𝛾2, we have

∑︁
𝛼∈N𝑚
|𝛼 |=𝑡

𝑚∏
𝑖=1

(
E
𝑥∼𝐴
[ℎ2𝛼𝑖 (𝑥)]

)2
=

𝑚∑︁
𝑠=0

∑︁
𝐿⊆[𝑚]
∥𝐿∥0=𝑠

∑︁
𝐻⊆[𝑚]\𝐿
∥𝐻 ∥1=𝑡−ℓ

∏
𝑖∈𝐿

(
E
𝑥∼𝐴
[ℎ2𝛼𝑖 (𝑥)]

)2
·
∏
𝑖∈𝐻

(
E
𝑥∼𝐴
[ℎ2𝛼𝑖 (𝑥)]

)2

⩽
𝑚∑︁
𝑠=0

∑︁
𝐿⊆[𝑚]
∥𝐿∥0=𝑠

exp(−2𝛾2𝑠) ·
∑︁

𝐻⊆[𝑚]\𝐿
∥𝐻 ∥1=𝑡−∥𝐿∥1

∏
𝑖∈𝐻

(
E
𝑥∼𝐴
[ℎ2𝛼𝑖 (𝑥)]

)2

⩽ exp(−2𝛾2𝑚) +
𝑚−1∑︁
𝑠=0

∑︁
𝐿⊆[𝑚]
∥𝐿∥0=𝑠

exp(−2𝛾2𝑠) · 2
(
4𝑚𝑡
𝛾

) ⌊(𝑡−∥𝐿∥1)/𝛾2⌋

⩽ exp(−2𝛾2𝑚) +
𝑚−1∑︁
𝑠=0

∑︁
𝐿⊆[𝑚]
∥𝐿∥0=𝑠

exp(−2𝛾2𝑠) · 2
(
4𝑚𝑡
𝛾

) ⌊(𝑡−𝑠)/𝛾2⌋

⩽ exp(−2𝛾2𝑚) +
𝑚−1∑︁
𝑠=0

(
𝑚

𝑠

)
𝛾2𝑠 exp(−2𝛾2𝑠) · 2

(
4𝑚𝑡
𝛾

) ⌊(𝑡−𝑠)/𝛾2⌋
(4.31)

⩽ exp(−2𝛾2𝑚) + 2
(
4𝑚𝑡
𝛾

)𝑡/𝛾2 𝑚−1∑︁
𝑠=0

(
𝑚𝛾2 exp(−2𝛾2)

)𝑠
⩽ 3

(
4𝑚𝑡
𝛾

)𝑡/𝛾2

.

where in (4.31) we again used the fact that the number of multisets 𝐿 ⊆ [𝑚] satisfying ∥𝐿∥0 = 𝑠

is upper bounded by
(𝑚
𝑠

)
𝛾2. In addition, we used the assumption𝑚𝛾2 exp(−2𝛾2) ⩽ 1/2 the last

line.

□

Theorem 4.21 (Restated). Let 𝑛 ∈ N, 𝐷 = 𝐷 (𝑛) ∈ N, 𝛾 = 𝛾 (𝑛) >
√

2𝜋 be a real number, and

𝑚 =𝑚(𝑛) ∈ N such that𝑚 ⩽ exp(2𝛾2)/(2𝛾2). Then, there exist universal constants𝐶1,𝐶2 > 0 such

that



𝐿⩽𝐷

2
Q ⩽ exp(𝑚 · exp(−𝐶1𝛾

2)) + 2𝐷 (4𝑚𝐷2/𝛾)𝐷/𝛾2
exp(−𝐶2𝑛) .
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In particular, if log𝑚 = 𝑜 (𝛾2) and 𝐷 (log𝑚 + 2 log𝐷 − log𝛾) = 𝑜 (𝛾2𝑛), then

∥𝐿⩽𝐷 ∥2Q = 1 + negl(𝑛) .

Proof of Theorem 4.21. Let 𝜏 = ⟨𝒖, 𝒗⟩ denote the random variable given by random unit vectors

𝒖, 𝒗 ∈ S𝑛−1 drawn uniformly and independently, and let 𝜁 be the distribution of 𝜏 .



𝐿⩽𝐷

2
𝑄⊗𝑚 = E

𝜏∼𝜁
[𝜑𝐷 (𝜏)]

=

∫
|𝜏 |⩽𝛿

𝜑𝐷 (𝜏)𝑑𝜁 (𝜏) +
∫
|𝜏 |>𝛿

𝜑𝐷 (𝜏)𝑑𝜁 (𝜏) .

For convenience, we write 𝑅1 =
∫
|𝜏 |⩽𝛿 𝜑𝐷 (𝜏)𝑑𝜁 (𝜏) and 𝑅2 =

∫
|𝜏 |>𝛿 𝜑𝐷 (𝜏)𝑑𝜁 (𝜏). We first upper

bound 𝑅1. We remark that 𝜑𝐷1 (𝜏) ⩽ 𝜑𝐷2 (𝜏) whenever 𝐷1 ⩽ 𝐷2 since 𝜑𝐷 (𝜏) contains only even

degree monomials with non-negative coefficients. For any 𝐷 ∈ N

𝜑𝐷 (⟨𝒖, 𝒗⟩) = ⟨(𝑃⊗𝑚𝒖 )⩽𝐷 , (𝑃⊗𝑚𝒗 )⩽𝐷⟩𝑄⊗𝑚 = ⟨𝑃⩽𝐷𝒖 , 𝑃⩽𝐷𝒗 ⟩𝑚𝑄 ⩽ ⟨𝑃𝒖, 𝑃𝒗⟩
𝑚
𝑄 .

Let 𝛿 ∈ (0, 1) be a fixed constant (not dependent on 𝑛) such that 1 − 𝛿2 ⩾ 2𝜋/𝛾2. Then, by

Lemma 4.20

𝑅1 ⩽

∫
|⟨𝒖,𝒗⟩|⩽𝛿

⟨𝑃𝒖, 𝑃𝒗⟩𝑚𝑄𝑑𝜁 (⟨𝒖, 𝒗⟩)

⩽

∫
|⟨𝒖,𝒗⟩|⩽𝛿

(1 + 8 exp(−𝛾2(1 − 𝛿2)/2))𝑚𝑑𝜁 (⟨𝒖, 𝒗⟩)

⩽ (1 + 8 exp(−𝛾2(1 − 𝛿2)/2))𝑚

⩽ exp
(
𝑚 exp(−𝑂 (𝛾2)

)
,

where in the last line we used the elementary inequality 1 + 𝑥 ⩽ 𝑒𝑥 which holds for all 𝑥 ∈ R.

Next, we upper bound 𝑅2 by first upper bounding 𝜑𝐷 (𝜏) and then integrating over the region
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|𝜏 | > 𝛿 with respect to measure 𝜁 . Using Claim 4.29, we can bound 𝜑𝐷 (𝜏) on 𝜏 ∈ [0, 1] as follows.

𝜑𝐷 (𝜏) =
⌊𝐷/2⌋∑︁
𝑡=0

𝜏2𝑡 ·
∑︁
𝛼∈N𝑚
|𝛼 |=2𝑡

𝑚∏
𝑖=1

(
E
𝑥∼𝐴
[ℎ𝛼𝑖 (𝑥)]

)2

⩽ 1 +
⌊𝐷/2⌋∑︁
𝑡=1

𝑧2𝑡 · 3
(
4𝑚𝑡
𝛾

)2𝑡/𝛾2

⩽ 2𝐷
(
4𝑚𝐷
𝛾

)𝐷/𝛾2

,

where in the last line we used the fact that |𝜏 | ⩽ 1 and that for any 𝑡 ⩾ 1, it holds 2 ⩽ 4𝑚𝑡/𝛾 ⩽

4𝑚𝐷/𝛾 .

Hence,

𝑅2 ⩽ 2𝐷 (4𝑚𝐷2/𝛾)𝐷/𝛾2
∫
I[𝜏 > 𝛿] · 𝑑𝜁 (𝜏)

⩽ 2𝐷 (4𝑚𝐷2/𝛾)𝐷/𝛾2
exp(−𝑂 (𝑛)) .

where the last line follows from standard bounds on the Beta distribution. Putting it all together,

∥𝐿⩽𝐷 ∥2 ⩽ exp(𝑚 · exp(−𝑂 (𝛾2))) + 2𝐷 (4𝑚𝐷2/𝛾)𝐷/𝛾2
exp(−𝑂 (𝑛)) .

□

4.5 High-Sample Distinguisher

For 𝛾 = 𝑜 (
√
𝑛), the covariance matrix will reveal the discrete structure of Gaussian pancakes,

which will lead to a subexponential time algorithm for the problem. This clarifies why the reduc-

tion for hCLWE does not extend beyond 𝛾 ≥ 2
√
𝑛.

We define noiseless hCLWE distribution 𝑃𝒖,𝛾 as 𝑃𝒖,𝛽,𝛾 with 𝛽 = 0. We begin with a claim that
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will allow us to focus on the noiseless case.

Claim 4.31. By adding Gaussian noise 𝐷R𝑛,𝛽/𝛾 to 𝑃𝒖,𝛾 and then rescaling by a factor of 𝛾/
√︁
𝛽2 + 𝛾2,

the resulting distribution is 𝑃𝒖,𝛽,𝛾 , where 𝛾 = 𝛾/
√︁

1 + (𝛽/𝛾)2 and 𝛽 = 𝛾 (𝛽/𝛾).5

Proof. Without loss of generality, suppose 𝒖 = 𝒆1.

Let 𝒛 ∼ 𝑃𝒖,𝛾 + 𝐷R𝑛,𝛽/𝛾 and 𝒛̃ = 𝛾𝒛/
√︁
𝛽2 + 𝛾2. It is easy to verify that the marginals density of

𝒛̃ on subspace 𝒆⊥1 will simply be 𝜌 . Hence we focus on calculating the density of 𝑧1 and 𝑧1. The

density can be computed by convolving the probability densities of 𝑃𝒖,𝛾 and 𝐷R𝑛,𝛽/𝛾 as follows.

𝑃𝒖,𝛾 ∗ 𝐷R𝑛,𝛽/𝛾 (𝑧1) ∝
∑︁
𝑘∈Z

𝜌 (𝑘/𝛾) · 𝜌𝛽/𝛾 (𝑧1 − 𝑘/𝛾)

= 𝜌√
𝛽2+𝛾2/𝛾 (𝑧1) ·

∑︁
𝑘∈Z

𝜌
𝛽/
√
𝛽2+𝛾2

(
𝑘/𝛾 − 𝛾2

𝛽2 + 𝛾2𝑧1

)
= 𝜌 (𝑧1) ·

∑︁
𝑘∈Z

𝜌
𝛽

(
𝑘 − 𝛾𝑧1

)
,

where the second to last equality follows from Claim 2.5. This verifies that the resulting distri-

bution is indeed 𝑃𝒘,𝛽,𝛾 . □

Claim 4.31 implies that a Gaussian pancakes distributionwith 𝛽 > 0 is equivalent to a noiseless

Gaussian pancakes with independent Gaussian noise added. We will first analyze the noiseless

case and then derive the covariance of noisy (i.e., 𝛽 > 0) case by adding independent Gaussian

noise and rescaling.

Lemma 4.32. Let Σ ≻ 0 be the covariance matrix of the 𝑛-dimensional noiseless Gaussian pancakes

𝑃𝒖,𝛾 with 𝛾 ⩾ 1. Then,




Σ − 1
2𝜋
𝐼𝑛




 ≥ 𝛾2 exp(−𝜋𝛾2) ,

5Equivalently, in terms of the Gaussian mixture representation of Eq. (4.2), the resulting distribution has layers
spaced by 1/

√︁
𝛾2 + 𝛽2 and of width 𝛽/

√︁
𝛾2 + 𝛽2.
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where ∥ · ∥ denotes the spectral norm.

Proof. Without loss of generality, let 𝒖 = 𝒆1. Then 𝑃𝒖,𝛾 = 𝐴×𝑄𝑛−1 where 𝐿 is the one-dimensional

lattice (1/𝛾)Z. Then, Σ = diag(E𝑥∼𝐴 [𝑥2], 1
2𝜋 , . . . ,

1
2𝜋 ), so it suffices to show that

��� E
𝑥∼𝐴
[𝑥2] − 1

2𝜋

��� ⩾ 𝛾2 exp(−𝜋𝛾2) .

Define 𝑔(𝑥) = 𝑥2 · 𝜌 (𝑥). The Fourier transform of 𝜌 is itself; the Fourier transform of 𝑔 is given

by

𝑔(𝑦) =
( 1
2𝜋
− 𝑦2

)
𝜌 (𝑦) .

By definition and Poisson’s summation formula (Lemma 2.6), we have

E
𝑥∼𝐴
[𝑥2] = 𝑔(𝐿)

𝜌 (𝐿)

=
det(𝐿∗) · 𝑔(𝐿∗)
det(𝐿∗) · 𝜌 (𝐿∗) =

𝑔(𝐿∗)
𝜌 (𝐿∗) ,

where 𝐿∗ = ((1/𝛾)Z)∗ = 𝛾Z. Combining this with the expression for 𝑔, we have

��� E
𝑥∼𝐴
[𝑥2] − 1

2𝜋

��� = ∑
𝑦∈𝐿∗ 𝑦

2𝜌 (𝑦)
1 + 𝜌 (𝐿∗ \ {0})

≥ 𝛾2 exp(−𝜋𝛾2) ,

where we use the fact that for 𝛾 ⩾ 1,

𝜌 (𝛾Z \ {0}) ⩽ 𝜌 (Z \ {0}) < 2
∞∑︁
𝑘=1

exp(−𝜋𝑘) = 2 exp(−𝜋)
1 − exp(−𝜋) < 1 .

□
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Combining Claim 4.31 and Lemma 4.32, we get the following corollary for the noisy case.

Corollary 4.33. Let Σ ≻ 0 be the covariance matrix of 𝑛-dimensional Gaussian pancakes 𝑃𝒖,𝛽,𝛾

with 𝛾 ⩾ 1 and 𝛽 > 0. Then,




Σ − 1
2𝜋
𝐼𝑛




 ≥ 𝛾2 exp(−𝜋 (𝛽2 + 𝛾2)) ,

where ∥ · ∥ denotes the spectral norm.

Proof. Using Claim 4.31, we can view samples from 𝑃𝒖,𝛽,𝛾 as samples from 𝑃𝒖,𝛾 ′ with independent

Gaussian noise of width 𝛽′/𝛾 ′ added and rescaled by 𝛾 ′/
√︁
𝛽′2 + 𝛾 ′2, where 𝛽′, 𝛾 ′ are given by

𝛽′ = 𝛽
√︁

1 + (𝛽/𝛾)2 ,

𝛾 ′ =
√︁
𝛽2 + 𝛾2 .

Let Σ be the covariance of 𝑃𝒖,𝛽,𝛾 and let Σ0 be the covariance of 𝑃𝒖,𝛾 ′ . Since the Gaussian noise

added to 𝑃𝒖,𝛾 ′ is independent and 𝛽′/𝛾 ′ = 𝛽/𝛾 ,

Σ =
1

1 + (𝛽/𝛾)2
(
Σ0 +

(𝛽/𝛾)2
2𝜋

𝐼𝑛

)
.

Hence,




Σ − 1
2𝜋
𝐼𝑛




 = 1
1 + (𝛽/𝛾)2




(Σ0 +
(𝛽/𝛾)2

2𝜋
𝐼𝑛

)
− 1 + (𝛽/𝛾)2

2𝜋
𝐼𝑛





=

1
1 + (𝛽/𝛾)2




Σ0 −
1

2𝜋
𝐼𝑛





≥ 𝛾2 exp(−𝜋 (𝛽2 + 𝛾2)) .

where the last inequality follows from Lemma 4.32. □

We use the following lemma, which provides an upper bound on the error in estimating
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the covariance matrix by samples. The sub-gaussian norm of a random variable 𝑌 is defined

as ∥𝑌 ∥𝜓2 = inf{𝑡 > 0 | E[exp(𝑌 2/𝑡2)] ≤ 2} and that of an 𝑛-dimensional random vector 𝒚 is

defined as ∥𝒚∥𝜓2 = sup𝒖∈S𝑛−1 ∥⟨𝒚, 𝒖⟩∥𝜓2 .

Lemma 4.34 ([Ver18, Theorem 4.6.1]). Let 𝐴 be an𝑚 × 𝑛 matrix whose rows 𝐴𝑖 are independent,

mean zero, sub-gaussian isotropic random vectors in R𝑛 . Then for any 𝑢 ≥ 0 we have




 1
𝑚
𝐴𝑇𝐴 − 𝐼𝑛




 ≤ 𝐾2 max(𝛿, 𝛿2) where 𝛿 = 𝐶

(√︂ 𝑛

𝑚
+ 𝑢
√
𝑚

)
,

with probability at least 1 − 2𝑒−𝑢2
for some constant 𝐶 > 0. Here, 𝐾 = max𝑖 ∥𝐴𝑖 ∥𝜓𝑖 .

Combining Corollary 4.33 and Lemma 4.34, we have the following theorem for distinguishing

Gaussian pancakes and Gaussian distribution.

Theorem 4.35. Let 𝛾 = 𝑛𝜀 , where 𝜀 < 1/2 is a constant, and let 𝛽 = 𝛽 (𝑛) ∈ (0, 1). Then, there

exists an exp(𝑂 (𝑛2𝜀))-time algorithm that solves hCLWE𝛽,𝛾 .

Proof. Our algorithm takes𝑚 samples from the unknown input distribution 𝑃 and computes the

sample covariance matrix Σ𝑚 = (1/𝑚)𝑋𝑇𝑋 , where 𝑋 ’s rows are the samples, and its eigenvalues

𝜇1, . . . , 𝜇𝑛 . Then, it determines whether 𝑃 is a Gaussian pancakes distribution or not by testing

that

���𝜇𝑖 − 1
2𝜋

��� ⩽ 1
2
· 𝛾2 exp(−𝜋 (𝛽2 + 𝛾2)) for all 𝑖 ∈ [𝑛] .

The running time of this algorithm is 𝑂 (𝑛2𝑚) = exp(𝑂 (𝑛2𝜀)). To show correctness, we

first consider the case 𝑃 = 𝑄𝑛 . The standard Gaussian distribution satisfies the conditions of

Lemma 4.34 (after rescaling by 1/(2𝜋)). Hence, the eigenvalues of Σ𝑚 will be within distance

𝑂 (
√︁
𝑛/𝑚) from 1/(2𝜋) with high probability.

Now consider the case 𝑃 = 𝑃𝒖,𝛽,𝛾 . We can assume 𝒖 = 𝒆1 without loss of generality since

eigenvalues are invariant under rotations. Denote by 𝒙 a random vector distributed according to
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𝑃𝒖,𝛽,𝛾 and 𝜎2 = E𝒙∼𝑃𝒖,𝛽,𝛾 [𝑥2
1]. The covariance of 𝑃 is given by

Σ =
©­­«
𝜎2 0

0 1
2𝜋 𝐼𝑛−1

ª®®¬ . (4.32)

Now consider the sample covariance Σ𝑚 of 𝑃 and denote by 𝜎2
𝑚 = 𝒖𝑇Σ𝑚𝒖 = (1/𝑚)∑𝑚

𝑖=1𝑋
2
𝑖1. Since

𝑋𝑖1’s are sub-gaussian random variables [MP12, Lemma 2.8], 𝜎2
𝑚 − 𝜎2 is a sum of 𝑚 indepen-

dent, mean-zero, sub-exponential random variables. For𝑚 = 𝜔 (𝑛), Bernstein’s inequality [Ver18,

Corollary 2.8.3] implies that |𝜎2
𝑚 − 𝜎2 | = 𝑂 (

√︁
𝑛/𝑚) with high probability. By Corollary 4.33, we

know that

���𝜎2 − 1
2𝜋

��� ⩾ 𝛾2 exp(−𝜋 (𝛽2 + 𝛾2)) .

Hence, if we choose𝑚 = exp(𝑐𝛾2) with some sufficiently large constant 𝑐 , then Σ𝑚 will have

an eigenvalue that is noticeably far from 1/(2𝜋) with high probability. □
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5 | Lattice-Based Methods for

Noiseless Inference

No problem whatever is completely exhausted. There

remains always something to do.

George Polya1

We now show how LLL can be used to solve noiseless CLWE and hCLWE. In fact, we iden-

tify a new class of problems where the SoS hierarchy and low-degree lower bounds are provably

bypassed by a polynomial-time algorithm. This class of problems is not based on linear equa-

tions, and the suggested optimal algorithm is not based on Gaussian elimination but on lattice

basis reduction methods, which specifically seek to find a short non-zero vector in a lattice. Sim-

ilar lattice-based methods have over the recent years been able to “close” various statistical-to-

computational gaps [ZG18; AHSS17; SZB21], yet this is the first example we are aware of that

they are able to close a gap suggested by SoS lower bounds.

The problems we analyze can be motivated from several angles in theoretical computer sci-

ence andmachine learning, and can be thought of as important special cases of well-studied prob-

lems such as NGCA. One important problem, other than CLWE or hCLWE, that can be solved
1[Pol04].

76



with LLL is the following: for a hidden unit vector 𝑢 ∈ R𝑛 , we observe𝑚 independent samples

𝑧𝑖 ∼ N(𝑥𝑖𝑢, 𝐼𝑛 − 𝑢𝑢⊤), 𝑖 = 1, 2, . . . ,𝑚, (5.1)

where 𝑥𝑖 are i.i.d. uniform ±1, and the goal is to recover the hidden signs 𝑥𝑖 and the hidden direc-

tion 𝑢 (up to a global sign flip). Prior to our work, the best known poly-time algorithm required

𝑛 ≫ 𝑑2 samples2 [MW21]. Furthermore, this was believed to be unimprovable due to lower

bounds against SoS algorithms and low-degree polynomials [MS16; Kun20; MRX20; GJJP+20;

KB21; MW21; DDW21]. Nevertheless, we give a poly-time algorithm under the much weaker as-

sumption𝑛 ⩾ 𝑑+1. In fact, this sample complexity is essentially optimal for the previous recovery

problem (see [ZSWB22, Section 5]). Our result makes use of the Lenstra-Lenstra-Lovász (LLL) al-

gorithm for lattice basis reduction [LLL82b], a powerful algorithm that has seen recent, arguably

surprising, success in solving to information-theoretic optimality a few different “noiseless” sta-

tistical inference problems, some even in regimes where it was conjectured that no polynomial-

time method works: linear regression with binary coefficients [ZG18; GKZ21], phase retrieval

[AHSS17; SZB21], learning cosine neurons [SZB21], and CLWE [BRST21; SZB21]3. Yet, to the

best of our knowledge, this work is the first to establish the success of an LLL-based method in a

regime where low-degree and SoS lower bounds both suggest computational intractability. This

raises the question of whether LLL can “close” any other conjectured statistical-to-computational

gaps. We believe that understanding the power and limitations of the LLL approach is an impor-

tant direction for future research.

We also point out one weakness of the LLL approach: our algorithm is brittle to the specifics

of the model, and relies on the observations being “noiseless” in some sense. For instance, our

algorithm only solves the model in (5.1) because the 𝑥𝑖 values lie exactly in ±1 and the covariance

Σ = 𝐼 −𝑢𝑢⊤ has quadratic form𝑢⊤Σ𝑢 exactly equal to zero (or, similarly to other LLL applications
2Here are throughout, the notation≫ hides logarithmic factors.
3in the exponentially-small noise regime
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[ZG18], of exponentially small magnitude). If wewere to perturb themodel slightly, say by adding

an inverse-polynomial amount of noise to the 𝑥𝑖 ’s, our algorithm would break down because

of the known non-robustness properties of the LLL algorithm. In fact, a noisy version (with

inverse-polynomial noise) of one problem that we solve is the homogeneous Continuous Learning

with Errors problem (hCLWE), which is provably hard based on the standard assumption [MR09,

Conjecture 1.2] from lattice-based cryptography that certain worst-case lattice problems are hard

against quantum algorithms [BRST21]. All existing algorithms for statistical problems based on

LLL suffer from the same lack of robustness. In this sense, there is a strong analogy between

LLL and the other known successful polynomial-time method for noiseless inference, namely the

Gaussian elimination approach to learning parity: both exploit very precise algebraic structure

in the problem and break down in the presence of even a small amount of noise.

As discussed above, our results “break” predictions of hardness based on SoS and low-degree

lower bounds. Still, we believe that these types of lower bounds are interesting and meaningful,

but some care should be taken when interpreting them. It is in fact already well-established

that such lower bounds can sometimes be beaten on “noiseless” problems (a key example being

Gaussian elimination). However, there are some subtleties in how “noiseless” should be defined

here, and whether fundamental problems with statistical-to-computational gaps such as planted

clique—which has implications for many other inference problems via average-case reductions

(e.g., [BR13; MW15; HWX15; BBH18])—should be considered “noiseless.” We discuss these issues

further in Section 5.1.

Our main algorithmic result is informally stated as follows.

Theorem 5.1 (Informal). Let 𝛾 = 𝛾 (𝑑) be polynomial in 𝑑 . If 𝑛 = 𝑑 + 1 then there is an LLL-based

algorithm for noiseless hCLWE𝛾 which terminates in polynomial time and outputs exactly, up to a

global sign flip, both the correct labels 𝑥𝑖 ∈ (1/𝛾)Z and the correct hidden direction 𝑢 ∈ S𝑑−1 with

probability 1 − exp(−Ω(𝑑)).
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Problems LDP LB SoS LB Our Results
Planted Vector
(Rademacher) Ω̃(𝑑2) Ω̃(𝑑3/2) 𝑑 + 1

Gaussian Clustering
(SNR = ∞) Ω̃(𝑑2) Ω̃(𝑑3/2) 𝑑 + 1

hCLWE
(Noiseless) - - 𝑑 + 1

Table 5.1: Sample complexity upper and lower bounds for polynomial-time exact recovery for Planted
Rademacher Vector, Gaussian Clustering, and hCLWE.

5.1 Noiseless problems and SoS/low-degree lower bounds

SoS and low-degree lower bounds. The sum-of-squares (SoS) hierarchy [Par00; Las01] (see

also surveys [BS16; RSS18; FKP19]) and low-degree polynomials [HS17; HKPR+17; Hop18] are

two restricted classes of algorithms that are often studied in the context of stat-to-comp gaps.

These are not the only two such frameworks, but we will focus on these two because our re-

sult “breaks” lower bounds in these two frameworks. SoS is a powerful hierarchy of semidefinite

programming relaxations. Low-degree polynomial algorithms are simply multivariate polyno-

mials in the entries of the input, of degree logarithmic in the input dimension; notably, these

can capture all spectral methods (subject to some technical conditions), i.e., methods based on

the leading eigenvalue/eigenvector of some matrix constructed from the input (see Theorem 4.4

of [KWB22]). Both SoS and low-degree polynomials have been widely successful at obtaining the

best known algorithms for a wide variety of high-dimensional “planted” problems, where the goal

is to recover a planted signal buried in noisy data. While there is no formal connection between

SoS and low-degree algorithms, they are believed to be roughly equivalent in power [HKPR+17].

It is often informally conjectured that SoS and/or low-degree methods are as powerful as the

best poly-time algorithms for “natural” high-dimensional planted problems (nebulously defined).

As a result, lower bounds against SoS and/or low-degree methods are often considered strong

evidence for inherent computational hardness of statistical problems.

79



Issue of noise-robustness. In light of the above, it is tempting to conjecture optimality of

SoS and/or low-degree methods among all poly-time methods for a wide variety of statistical

problems. While this conjecture seems to hold up for a surprisingly long and growing list of

problems, there are, of course, limits to the class of problems for which this holds. As discussed

previously, a well-known counterexample is the problem of learning parity (or the closely-related

XOR-SAT problem), where Gaussian elimination succeeds in a regime where SoS and low-degree

algorithms provably fail. This counterexample is often tossed aside by the following argument:

“Gaussian elimination is a brittle algebraic algorithm that breaks down if a small amount of noise

is added to the labels, whereas SoS/low-degreemethods aremore robust to noise and are therefore

capturing the limits of poly-time robust inference, which is a more natural notion anyway. If we

restrict ourselves to problems that are sufficiently noisy then SoS/low-degree methods should be

optimal.” However, we note that in our setting, SoS/low-degree methods are strictly suboptimal

for a problem that does have plenty of Gaussian noise; the issue is that the signal and noise

have a particular joint structure that preserves certain exact algebraic relationships in the data.

This raises an important question: what exactly makes a problem “noisy” or “noiseless”, and

under what kinds of noise should we believe that SoS/low-degree methods are unbeatable? In

the following, we describe one possible answer.

Low-degree conjecture. The “low-degree conjecture” of Hopkins [Hop18, Hypothesis 2.1.5]

formalized one class of statistical problems for which low-degree polynomials are believed to be

optimal among poly-time algorithms. These are certain hypothesis testing problems where the

goal is to decide whether the input was drawn from a null (i.i.d. noise) distribution or a planted

distribution (containing a planted signal). In our setting, one should imagine testing between 𝑛

samples drawn from the model (5.1) and 𝑛 samples drawn i.i.d. from N(0, 𝐼𝑑). Computational

hardness of hypothesis testing generally implies hardness of the associated recovery/estima-

tion/learning problem (which in our case is to recover 𝑥 and 𝑢) as in Theorem 3.1 of [MW21].
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The class of testing problems considered in Hopkins’ conjecture has two main features: first, the

problem should be highly symmetric, which is typical for high-dimensional statistical problems

(although Hopkins’ precise notion of symmetry does not quite hold for the problems we consider

here). Second, and most relevant to our discussion, the problem should be noise-tolerant. More

precisely, Hopkins’ conjecture states that if low-degree polynomials fail to distinguish a null dis-

tribution Q from a planted distribution P, then no poly-time algorithm can distinguish Q from

a noisy version of P. For our setting, the appropriate “noise operator” to apply to P (which was

refined in [HW20]) is to replace each sample 𝑧𝑖 by

√
1 − 𝛿2𝑧𝑖 + 𝛿𝑧′𝑖

where 𝑧′𝑖 ∼ N(0, 𝐼𝑑) independently from 𝑧𝑖 , for an arbitrarily small constant 𝛿 > 0. This has

the effect of replacing 𝑥𝑖 with
√

1 − 𝛿2𝑥𝑖 + 𝛿𝑧𝑖 where 𝑧𝑖 ∼ N(0, 1). This noise is designed to

“defeat” brittle algorithms such as Gaussian elimination, and indeed our LLL-based algorithm is

also expected to be defeated by this type of noise.

To summarize, the problem we consider here is not noise-tolerant in the sense of Hopkins’

conjecture because the Gaussian noise depends on the signal (specifically, there is no noise in

the direction of 𝑢) whereas Hopkins posits that the noise should be oblivious to the signal. Thus,

in hindsight we should perhaps not be too surprised that LLL was able to beat SoS/low-degree

for this problem. In other words, our result does not falsify the low-degree conjecture or the

sentiment behind it (low-degree algorithms are optimal for noisy problems), with the caveat that

one must be careful about the precise meaning of “noisy.” We feel that this lesson carries an often-

overlooked conceptual message that may have consequences for other fundamental statistical

problems such as planted clique [Jer92; Kuč95].
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5.2 Preliminaries

The key component of our algorithmic results is the LLL lattice basis reduction algorithm. The

LLL algorithm receives as input 𝑑 linearly independent vectors 𝑣1, . . . , 𝑣𝑑 ∈ Z𝑑 and outputs an

integer linear combination of them with “small” ℓ2 norm. Specifically, let us define the lattice

generated by 𝑑 integer vectors as simply the set of integer linear combination of these vectors.

The LLL algorithm solves a search problem called the approximate shortest vector problem

(SVP) on a lattice 𝐿, given a basis of it.

Definition 5.2 (approximate SVP). An instance of the algorithmic 𝛼-approximate SVP for a lat-

tice 𝐿 ⊆ Z𝑑 is as follows. Given a lattice basis 𝑣1, . . . , 𝑣𝑑 ∈ Z𝑑 for the lattice 𝐿, find a vector 𝑥 ∈ 𝐿,

such that

∥𝑥 ∥2 ≤ 𝛼 · 𝜇 (𝐿) .

where 𝜇 (𝐿) = min𝑥∈𝐿,𝑥≠0 ∥𝑥 ∥2.

The following theorem holds for the performance of the LLL algorithm, whose details can be

found in [LLL82b].

Theorem 5.3 ([LLL82b]). There is an algorithm (namely the LLL lattice basis reduction algorithm),

which receives as input a basis for a lattice 𝐿 given by 𝑣1, . . . , 𝑣𝑑 ∈ Z𝑑 which

(1) returns a vector 𝑣 ∈ 𝐿 satisfying ∥𝑣 ∥2 ⩽ 2𝑑/2𝜇 (𝐿),

(2) terminates in time polynomial in 𝑑 and log
(
max𝑑𝑖=1 ∥𝑣𝑖 ∥∞

)
.

In this work, we use the LLL algorithm for an integer relation detection application, a problem

which we formally define below.
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Definition 5.4 (Integer relation detection). An instance of the integer relation detection problem

is as follows. Given a vector 𝑏 = (𝑏1, . . . , 𝑏𝑘) ∈ R𝑘 , find an 𝑚 ∈ Z𝑘 \ {0}, such that ⟨𝑏,𝑚⟩ :=∑𝑘
𝑗=1 𝑏 𝑗𝑚 𝑗 = 0. In this case,𝑚 is said to be an integer relation for the vector 𝑏.

To define our class of problems, we make use of the following two standard objects.

Definition 5.5 (Bernoulli–Rademacher vector). We say that a randomvector 𝑣 ∈ R𝑛 is a Bernoulli–

Rademacher vector with parameter 𝜌 ∈ (0, 1] and write 𝑣 ∼ BR(𝑛, 𝜌), if the entries of 𝑣 are i.i.d.

with

𝑣𝑖 =



0 with probability 1 − 𝜌,

1/√𝑛𝜌 with probability 𝜌/2,

−1/√𝑛𝜌 with probability 𝜌/2.

5.3 The LLL-based algorithm

We now present the main contribution of this work, which is an LLL-based polynomial-time

algorithm that provably solves the general problem defined in Model 5.7 with access to only

𝑛 = 𝑑 + 1 samples.

We deal formally with samples coming from 𝑑-dimensional Gaussians, which have as their

mean some unknown multiple of an unknown unit vector 𝑢 ∈ S𝑑−1, and also some unknown

covariance Σ which nullifies 𝑢 and satisfies the following weak “separability” condition.

Assumption 5.6 (Weak separability of the spectrum). Fix a unit vector 𝑢 ∈ S𝑑−1. We say that a

positive semi-definite Σ ∈ R𝑑×𝑑 is 𝑢-weakly separable if for some constant 𝐶 > 0 it holds that

(a) Σ𝑢 = 0 and,

(b) All other eigenvalues of Σ lie in the interval [𝑑−𝐶, 𝑑𝐶] .
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Notice that in particular the canonical case Σ = 𝐼−𝑢𝑢⊤ is𝑢-weakly separable as all eigenvalues

of Σ are equal to one, besides the zero eigenvalue which has multiplicity one and eigenvector 𝑢.

Under the weak separability assumption we establish the following generic result.

Model 5.7 (Our general model). Let 𝑑, 𝑛 ∈ N, known spacing level 𝑎 > 0 satisfying 𝑑−𝑐 ≤ 𝑎 ≤ 𝑑𝑐

for some constant 𝑐 > 0, and arbitrary 𝑥𝑖 ∈ Z ∩ [−2𝑑 , 2𝑑], 𝑖 = 1, . . . , 𝑛. Consider also an arbitrary

𝑢 ∈ S𝑑−1 and an arbitrary unknown Σ ∈ R𝑑×𝑑 which is 𝑢-weakly separable per Assumption 5.6.

Conditional on 𝑢, Σ and {𝑥𝑖}𝑖=1,...,𝑛 , we then draw independent samples 𝑧1, . . . , 𝑧𝑛 ∈ R𝑑 where 𝑧𝑖 ∼

N((𝑎𝑥𝑖)𝑢, Σ). The goal is to use 𝑧𝑖, 𝑖 = 1, . . . , 𝑛 to recover both {𝑥𝑖}𝑖=1,...,𝑛 and 𝑢 up to a global sign

flip, with probability 1 − exp(−Ω(𝑑)) over the samples 𝑧𝑖, 𝑖 = 1, . . . , 𝑛.

It is clear that noiseless Gaussian pancakes is a special instance of Model 5.7.

5.3.1 The algorithm and the main guarantee

In what follows, for some 𝑁 ∈ N and 𝑥 ∈ R we denote by (𝑥)𝑁 := 2−𝑁 ⌊2𝑁𝑥⌋ the truncation of 𝑥

to its first 𝑁 bits after zero.

Our proposed algorithm for solving Model 5.7 is described in Algorithm 1. Specifically we

assume the algorithm receives 𝑛 = 𝑑 + 1 independent samples according to Model 5.7. As we see

in the following theorem, the algorithm is able to recover exactly (up to a global sign flip) both

the hidden direction 𝑢 and the hidden labels 𝑥𝑖, 𝑖 = 1, . . . , 𝑛 in polynomial time.

Theorem 5.8. Algorithm 1, given as input independent samples (𝑧𝑖)𝑖=1,...,𝑑+1 from Model 5.7 with

hidden direction 𝑢, covariance Σ, and true labels {𝑥𝑖}𝑖=1,...,𝑑+1 satisfies the following with probability

1−exp(−Ω(𝑑)): there exists 𝜀 ∈ {−1, 1} such that the algorithm’s outputs {𝑥𝑖}𝑖=1,...,𝑑+1 and𝑢 ∈ 𝑆𝑑−1

satisfy

𝑥𝑖 = 𝜖𝑥𝑖 for 𝑖 = 1, . . . , 𝑑 + 1

and 𝑢 = 𝜖𝑢 .
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Algorithm 1: LLL-based algorithm for recovering 𝑢, (𝑥𝑖)𝑖=1,...,𝑑+1

Input: 𝑛 = 𝑑 + 1 samples 𝑧𝑖 ∈ R𝑑 , 𝑖 = 1, . . . , 𝑑 + 1, spacing 𝑎 > 0.
Output: Estimated labels 𝑥𝑖 ∈ Z, 𝑖 = 1, . . . , 𝑑 + 1 and unit vector 𝑢 ∈ 𝑆𝑑−1.
Construct a 𝑑 × 𝑑 matrix 𝑍 with columns 𝑧2, . . . , 𝑧𝑑+1, and let 𝑁 = ⌈𝑑4(log𝑑)2⌉.
if det(𝑍 ) = 0 then

return 𝑢 = 0 and output FAIL.
Compute 𝜆1 = 1 and 𝜆𝑖 = 𝜆𝑖 (𝑧1, . . . , 𝑧𝑑+1) given by (𝜆2, . . . , 𝜆𝑑+1)⊤ = −𝑍−1𝑧1.
Set𝑀 = 22𝑑 and 𝑣 =

(
(𝜆2)𝑁 , . . . , (𝜆𝑑+1)𝑁 , 2−𝑁

)
∈ R𝑑+1.

Output (𝑡1, 𝑡2) ∈ Z𝑑+1 × Z from running the LLL basis reduction algorithm on the lattice
generated by the columns of the following (𝑑 + 2) × (𝑑 + 2) integer-valued matrix 𝐵,

𝐵 =

(
𝑀2𝑁 (𝜆1)𝑁 𝑀2𝑁 𝑣

0(𝑑+1)×1 𝐼(𝑑+1)×(𝑑+1)

)
.

𝑢0 ← SolveLinearEquation(𝑢′, 𝑍⊤𝑢′ = 𝑎𝑡1).
if 𝑢0 = 0 then

return 𝑢 = 0 and output FAIL.
Set 𝑥𝑖 = (𝑡1)𝑖/∥𝑢0∥2, 𝑖 = 1, . . . , 𝑑 + 1.
return 𝑥𝑖, 𝑖 = 1, . . . , 𝑑 + 1 and 𝑢0/∥𝑢0∥2 and output SUCCESS.

Moreover, Algorithm 1 terminates in poly(𝑑) steps.

We now provide intuition behind the algorithm’s success. Note that for the unknown 𝑢 and

𝑥𝑖 it holds that

⟨𝑧𝑖, 𝑢⟩ = 𝑎𝑥𝑖 for all 𝑖 = 1, . . . , 𝑑 + 1; . (5.2)

In the first step, the algorithm checks a certain general-position condition on the received sam-

ples, which naturally is satisfied almost surely for our random data. In the following crucial

three steps, the algorithm attempts to recover only the hidden integer labels 𝑥𝑖 without learn-

ing 𝑢. To do this, it exploits a certain random integer linear relation that the labels 𝑥𝑖 ’s satisfy

which importantly does not involve any information about the unknown 𝑢, besides its existence.

The key observation leading to this relation is the following. Since we have 𝑑 +1 vectors 𝑧𝑖 in a 𝑑-

dimensional space, there exist scalars 𝜆1, . . . , 𝜆𝑑+1 (depending on the 𝑧𝑖 ’s) such that
∑𝑑+1
𝑖=1 𝜆𝑖𝑧𝑖 = 0.
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These are exactly the 𝜆𝑖 ’s that the algorithm computes in the second step. Using them, observe

that the following linear equation holds, due to (5.2),

𝑑+1∑︁
𝑖=1

𝜆𝑖𝑎𝑥𝑖 =

𝑑+1∑︁
𝑖=1

𝜆𝑖 ⟨𝑧𝑖, 𝑢⟩ =
〈
𝑑+1∑︁
𝑖=1

𝜆𝑖𝑧𝑖, 𝑢

〉
= ⟨0, 𝑢⟩ = 0 , (5.3)

and therefore since 𝑎 > 0 it gives the following integer linear equation

𝑑+1∑︁
𝑖=1

𝜆𝑖𝑥𝑖 = 0. (5.4)

Again note that the 𝜆𝑖 ’s can be computed from the given samples 𝑧𝑖 , so this is an equation

whose sole unknowns are the labels 𝑥𝑖 . With this integer linear equation in mind, the algorithm

in the following step employs the powerful LLL algorithm applied to an appropriate lattice. This

application of the LLL is based on the breakthrough works of [Lag84; Fri86] for solving random

subset-sum problems in polynomial-time, as well as its recent manifestations for solving various

other noiseless inference settings such as binary regression [ZG18] and phase retrieval [AHSS17;

SZB21]. To get some intuition for this connection, notice that in the case 𝑥𝑖 ∈ {−1, 1}, (5.4) is

really a (promise) subset-sum relation with weights 𝜆𝑖 and unknown subset {𝑖 : 𝑥𝑖 = 1} for which

the corresponding 𝜆𝑖 ’s sum to 1
2
∑𝑑+1
𝑖=1 𝜆𝑖 . Now, after some careful technical work, including an ap-

propriate truncation argument to work with integer-valued data, and various anti-concentration

arguments such as the Carbery–Wright anticoncentration toolkit [CW01], one can show that

the LLL step indeed recovers a constant multiple of the labels 𝑥𝑖, 𝑖 = 1, . . . , 𝑑 + 1 with probability

1−exp(−Ω(𝑑)) (see also the next paragraph for more details on this). At this point, it is relatively

straightforward to recover 𝑢 using the linear equations (5.2).

Now we close by presenting the key technical lemma which ensures that LLL recovers the

hidden labels 𝑥𝑖 by finding a “short” vector in the lattice defined by the columns of the matrix

𝐵 in Algorithm 1. Notice that if truncation at 𝑁 bits was not present, that is we were “allowed”
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to construct the lattice basis with the non-integer numbers 𝜆𝑖 instead of (𝜆𝑖)𝑁 , then a direct

calculation based on (5.4) would give that the hidden labels are embedded in an element of the

lattice simply because we would have

𝐵(0, 𝑥1, . . . , 𝑥𝑑+1)⊤ = (0, 𝑥1, . . . , 𝑥𝑑+1)⊤.

As this “hidden vector” in the lattice is 𝑀-independent (and 𝑀 is taken to be very large) this

naturally suggests that this vector may be “short” compared to the others in the lattice. The

following lemma states that with probability 1−exp(−Ω(𝑑)), this is indeed the case. The random

lattice generated by the columns of 𝐵 indeed does not contain any “spurious” short vectors other

than the vector of the hidden labels and, naturally, its integer multiples. This implies that the

LLL algorithm, despite its 2𝑑/2 approximation ratio, will indeed return the integer relation that is

“hidden in” the 𝑧𝑖 ’s.

Lemma 5.9 (No spurious short vectors). Let 𝑑 ∈ N, 𝑎 ∈ [𝑑−𝑐, 𝑑𝑐] for some constant 𝑐 > 0 and

𝑁 = ⌈𝑑4(log𝑑)2⌉. Let 𝑢 ∈ 𝑆𝑑−1 be an arbitrary unit vector, Σ ∈ R𝑑×𝑑 an arbitrary unknown 𝑢-

separable matrix, and let 𝑥𝑖 ∈ Z∩[−2𝑑 , 2𝑑] for 𝑖 = 1, . . . , 𝑑+1 be arbitrary but not all zero. Moreover,

let {𝑧𝑖}𝑖=1,...,𝑑+1 be independent samples from N((𝑎𝑥𝑖)𝑢, Σ), and let 𝐵 be the matrix constructed in

Algorithm 1 using {𝑧𝑖}𝑖=1,...,𝑑+1 as input and 𝑁 -bit precision. Then, with probability 1− exp(−Ω(𝑑))

over the samples, for any 𝑡 = (𝑡1, 𝑡2) ∈ Z𝑑+1 × Z such that 𝑡1 is not an integer multiple of 𝑥 =

(𝑥1, . . . , 𝑥𝑑+1), the following holds:

∥𝐵𝑡 ∥2 > 22𝑑 .

The proof of Lemma 5.9 is in Section 5.4.3.
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5.4 Proof of Algorithm 1 correctness

5.4.1 Towards proving Theorem 5.8: auxiliary lemmas

We present here three auxiliary lemmas for proving Theorem 5.8 and Lemma 5.9. The first lemma

establishes that given a small (in ℓ2-norm) “approximate” integer relation between real numbers,

one can appropriately truncate each real number to a sufficiently large number of bits, so that the

truncated numbers satisfy a small (in ℓ2-norm) integer relation between them. This lemma, which

is an immediate implication of [SZB21, Lemma D.6], is important for the appropriate application

of the LLL algorithm, which needs to receive integer-valued input. Recall that for a real number

𝑥 we denote by (𝑥)𝑁 its truncation to its first 𝑁 bits after zero, i.e. (𝑥)𝑁 := 2−𝑁 ⌊2𝑁𝑥⌋ .

Lemma 5.10 (“Rounding” approximate integer relations [SZB21, Lemma D.6]). Let 𝑑 ∈ N be a

number and let 𝑛 ∈ N be such that 𝑛 ≤ 𝐶0𝑑 for some constant 𝐶0 > 0. Moreover, suppose for some

constant 𝐶1 > 0, a (real-valued) vector 𝑠 ∈ R𝑛 satisfies ⟨𝑚, 𝑠⟩ = 0 for some𝑚 ∈ Z𝑛 . Then for some

sufficiently large constant 𝐶 > 0, if 𝑁 = ⌈𝑑4(log𝑑)2⌉, there is an 𝑚′ ∈ Z𝑛+1 which is equal to 𝑚

in the first 𝑛 coordinates, satisfies ∥𝑚′∥2 ≤ 𝐶𝑑
1
2 ∥𝑚∥2, and is an integer relation for the numbers

(𝑠1)𝑁 , . . . , (𝑠𝑛)𝑁 , 2−𝑁 .

We need the following anticoncentration result.

Lemma5.11 (Anticoncentration ofmisaligned integer combinations). Assume that𝑑𝑐 > 𝑎 > 1/𝑑𝑐

for some 𝑐 > 0 constant. Let 𝑢 ∈ 𝑆𝑑−1 be an arbitrary unit vector and let 𝑥1, . . . , 𝑥𝑑+1 ∈ Z be

an arbitrary sequence of integers, which are not all equal to zero. Now for a sequence of integers

𝑡 = (𝑡1, . . . , 𝑡𝑑+1) ∈ Z𝑑+1, we define the (multi-linear) polynomial 𝑃𝑡 (𝑧1, . . . , 𝑧𝑑+1) in𝑑 (𝑑+1) variables

by

𝑃𝑡 (𝑧1, . . . , 𝑧𝑑+1) = det(𝑍 )𝑡1 +
𝑑+1∑︁
𝑖=2

det(𝑍−𝑖)𝑡𝑖 , (5.5)
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where each 𝑧1, . . . , 𝑧𝑑+1 is assumed to have a 𝑑-dimensional vector form, 𝑍 denotes the 𝑑 × 𝑑 matrix

with 𝑧2, . . . , 𝑧𝑑+1 as its columns, and each 𝑍−𝑖 for 𝑖 = 2, . . . , 𝑑 + 1 denotes the 𝑑 ×𝑑 matrix formed by

swapping out the (𝑖 − 1)-th column of 𝑍 with −𝑧1.

Suppose 𝑧𝑖 ’s are drawn independently fromN((𝑎𝑥𝑖)𝑢, Σ) for some𝑢 ∈ S𝑑−1 and Σ ∈ R𝑑×𝑑 which

is 𝑢-weakly separable per Assumption 5.6 and eigenvalues 0 = 𝜆1 < 𝜆2 ≤ 𝜆3 ≤ . . . ≤ 𝜆𝑑 . Then, for

any 𝑡 ∈ Z𝑑+1 it holds that

E[𝑃𝑡 (𝑧1, . . . , 𝑧𝑑+1)] = 0 (5.6)

and

Var(𝑃𝑡 (𝑧1, . . . , 𝑧𝑑+1)) = (𝑑 − 1)!𝑎2𝑑

(
𝑑∏
𝑖=2

𝜆𝑖

)2 ∑︁
1≤𝑖< 𝑗≤𝑑+1

(𝑡𝑖𝑥 𝑗 − 𝑡 𝑗𝑥𝑖)2 . (5.7)

Furthermore, for some universal constant 𝐵 > 0 the following holds. If 𝑡 ≠ 𝑐𝑥 for any 𝑐 ∈ R, where

we denote 𝑥 = (𝑥1, . . . , 𝑥𝑑+1), then for any 𝜖 > 0,

P( |𝑃𝑡 (𝑧1, . . . , 𝑧𝑑+1) | ≤ 𝜖) ≤ 𝐵𝑑𝐵𝜖
1
𝑑 . (5.8)

Proof. We first describe how (5.8) follows from (5.6) and (5.7). First, notice that under the assump-

tion on the integer sequence 𝑡𝑖, 𝑖 = 1, . . . , 𝑑 + 1 not being a multiple of the sequence of integers

𝑥𝑖, 𝑖 = 1, . . . , 𝑑 +1 it holds that for some 𝑖, 𝑗 = 1, . . . , 𝑑 +1, 𝑖 ≠ 𝑗 with (𝑡𝑖𝑥 𝑗 −𝑡 𝑗𝑥𝑖)2 ≥ 1. In particular,

using (5.7) we have

Var(𝑃𝑡 (𝑧1, . . . , 𝑧𝑑+1)) ≥ (𝑑 − 1)!𝑎2𝑑

(
𝑑∏
𝑖=2

𝜆𝑖

)2

.
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But now notice that from Assumption 5.6 and 𝑎 > 𝑑−𝑐 , it holds for some constant 𝐶′ > 0 that

𝑎2𝑑

(
𝑑∏
𝑖=2

𝜆𝑖

)2

≥ 𝑑−𝐶′𝑑 .

Hence, it holds that

Var(𝑃𝑡 (𝑧1, . . . , 𝑧𝑑+1)) ≥ 𝑑−𝐶
′𝑑 .

Now we employ [MNV16, Theorem 1.4] (originally proved in [CW01]) which implies that for

some universal constant 𝐵 > 0, since our polynomial is multilinear and has degree 𝑑 + 1, it holds

for any 𝜖 > 0 that

P
(
|𝑃𝑡 (𝑧1, . . . , 𝑧𝑑+1) | ≤ 𝜖

√︁
Var(𝑃𝑡 (𝑧1, . . . , 𝑧𝑑+1))

)
≤ 𝐵𝑑𝜖 1

𝑑 .

Using our lower bound on the variance we conclude the result.

Now we proceed with the mean and variance calculation. As this statement is about the first

and second moment of 𝑃𝑡 and the determinant operator is invariant up to basis transformations,

we may assume without loss of generality that 𝑢 = 𝑒1, that is, 𝑢 is equal to the first standard basis

vector, and the remaining standard basis vectors are the remaining eigenvectors of Σ. Recall

that 𝑧𝑖 ’s are drawn in an independent fashion from N((𝑎𝑥𝑖)𝑢, Σ). Hence for a sequence of i.i.d.

𝑤𝑖 ∼ N(0, 𝐼𝑑−1), 𝑖 = 1, . . . , 𝑑 + 1 we may assume from now on that,

𝑧𝑖 =


𝑎𝑥𝑖

Λ𝑤𝑖

 (5.9)

for Λ := diag(𝜆2, . . . , 𝜆𝑑).

Now let us define the (𝑑 − 1) × (𝑑 − 1) matrix𝑊− 𝑗 for each 2 ⩽ 𝑗 ⩽ 𝑑 + 1 as the matrix formed
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using𝑤2, . . . ,𝑤𝑑+1 except 𝑤 𝑗 as its column vectors, and define functions𝜓𝑖 : R(𝑑−1)×(𝑑−1) → R for

each 𝑖 = 2, . . . , 𝑑 + 1 to be the determinant of𝑊− 𝑗 with the column corresponding to𝑤𝑖 swapped

by −𝑤1. For instance, if 2 ⩽ 𝑖 ≠ 𝑗 ⩽ 𝑑 + 1, then

𝜓𝑖 (𝑊− 𝑗 ) := det(𝑤2, . . . ,𝑤𝑖−1,−𝑤1,𝑤𝑖+1, . . . ,𝑤 𝑗−1,𝑤 𝑗+1, . . . ,𝑤𝑑+1). (5.10)

We abuse notation and also write

𝜓1(𝑊− 𝑗 ) := det(𝑤2, . . . ,𝑤 𝑗−1,𝑤 𝑗+1, . . .𝑤𝑑+1) = det(𝑊− 𝑗 ). (5.11)

As the result is clearly 𝑎-homogeneous of degree 2𝑑 we assume in what follows that 𝑎 = 1.

Now by direct expansion along the first row of the corresponding matrices we have

det(𝑍 ) =
𝑑+1∑︁
𝑗=2
(−1) 𝑗𝑥 𝑗 | det(Λ) |𝜓1(𝑊− 𝑗 ) ,

and for each 𝑖 ≥ 2,

det(𝑍−𝑖) := (−1)𝑖+1𝑥1 | det(Λ) |𝜓1(𝑊−𝑖) +
𝑑+1∑︁
𝑗=2, 𝑗≠𝑖

(−1) 𝑗𝑥 𝑗 | det(Λ) |𝜓𝑖 (𝑊− 𝑗 ) .

Since 𝑑 > 1 and𝑤𝑖 are i.i.d. N(0, 𝐼𝑑) we can immediately conclude that for all 𝑖 ≥ 1, 𝑗 ≥ 2, 𝑖 ≠ 𝑗 ,

E[𝜓𝑖 (𝑊− 𝑗 )] = 0.

Hence,

E[𝑃𝑡 (𝑧1, . . . , 𝑧𝑑+1)] = 𝑡1E[det(𝑍 )] +
𝑑+1∑︁
𝑖=2

𝑡𝑖E[det(𝑍−𝑖)] = 0.

Now we calculate the second moment of the polynomial. In what follows, we slightly abuse
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notation and denote 𝑍−1 := 𝑍 for notational convenience. First, again by direct expansion of the

determinant and the fact that𝑤𝑖 ’s for 𝑖 = 1, . . . , 𝑑 + 1 have i.i.d. standard Gaussian entries it holds

by direct inspection that for all 𝑖, 𝑗 ∈ [𝑑 + 1] with 𝑖 ≠ 𝑗 ,

E[𝜓𝑖 (𝑊− 𝑗 )2] = (𝑑 − 1)!| det(Λ) |2 , (5.12)

and unless {𝑖, 𝑗} = {𝑘, ℓ}, it holds that

E[𝜓𝑖 (𝑊− 𝑗 )𝜓𝑘 (𝑊−ℓ)] = 0. (5.13)

We now calculate for 2 ≤ 𝑖 ≠ 𝑗 ≤ 𝑑 + 1 the term E[𝜓𝑖 (𝑊− 𝑗 )𝜓 𝑗 (𝑊−𝑖)] .We assume without loss

of generality that 𝑖 < 𝑗 . Notice that for Π𝑐 ∈ {0, 1}𝑑−1×𝑑−1, the permutation matrix corresponding

to the cycle-permutation 𝑐 := (𝑖 − 1, 𝑖, . . . , 𝑗, 𝑗 − 1) ∈ Sym( [𝑑 − 1]), the matrix

(𝑤2, . . .𝑤𝑖−1,−𝑤1,𝑤𝑖+1, . . . ,𝑤 𝑗−1,𝑤 𝑗+1, . . . ,𝑤𝑑+1) ,

equals

Π𝑐 (𝑤2, . . .𝑤𝑖−1,𝑤𝑖+1, . . . ,𝑤 𝑗−1,−𝑤1,𝑤 𝑗+1, . . . ,𝑤𝑑+1) .

Hence,

𝜓𝑖 (𝑊− 𝑗 )𝜓 𝑗 (𝑊−𝑖) = det(Π𝑐)𝜓 2
𝑖 (𝑊− 𝑗 ) = (−1)sgn(𝑐)𝜓 2

𝑖 (𝑊− 𝑗 ) = (−1)𝑖− 𝑗+1𝜓 2
𝑖 (𝑊− 𝑗 ) .

In particular,

E[𝜓𝑖 (𝑊− 𝑗 )𝜓 𝑗 (𝑊−𝑖)] = (−1)𝑖− 𝑗+1(𝑑 − 1)!| det(Λ) |2 . (5.14)

92



Now using (5.12), (5.13), we have for each 1 ≤ 𝑖 ≤ 𝑑 + 1,

E[det(𝑍−𝑖)2] = (𝑑 − 1)!
𝑑+1∑︁
𝑗=1, 𝑗≠𝑖

𝑥2
𝑗 | det(Λ) |2 , (5.15)

and using (5.12), (5.13), and (5.14) we have for all 𝑖 ≠ 𝑗 that

E[det(𝑍−𝑖) det(𝑍− 𝑗 )] = −(𝑑 − 1)!𝑥𝑖𝑥 𝑗 | det(Λ) |2 . (5.16)

Hence, it holds that

E[𝑃𝑡 (𝑧1, . . . , 𝑧𝑑+1)2] = | det(Λ) |2
𝑑+1∑︁
𝑖, 𝑗=1

𝑡𝑖𝑡 𝑗E[det(𝑍−𝑖) det(𝑍− 𝑗 )]

= | det(Λ) |2
𝑑+1∑︁
𝑖=1

𝑡2
𝑖 E[det(𝑍−𝑖)2] +

𝑑+1∑︁
𝑖, 𝑗=1,𝑖≠ 𝑗

𝑡𝑖𝑡 𝑗E[det(𝑍−𝑖) det(𝑍− 𝑗 )]

= (𝑑 − 1)!| det(Λ) |2
(

𝑑+1∑︁
𝑖, 𝑗=1,𝑖≠ 𝑗

𝑡2
𝑖 𝑥

2
𝑗 −

𝑑+1∑︁
𝑖, 𝑗=1,𝑖≠ 𝑗

𝑡𝑖𝑡 𝑗𝑥𝑖𝑥 𝑗

)
= (𝑑 − 1)!| det(Λ) |2 ©­«

∑︁
1≤𝑖< 𝑗≤𝑑+1

(𝑡𝑖𝑥 𝑗 − 𝑡 𝑗𝑥𝑖)2ª®¬ .

□

The following lemma establishes multiple structural properties of the 𝑑 + 1 samples.

Lemma 5.12. Let 𝑢 ∈ 𝑆𝑑−1 be an arbitrary unit vector and let 𝑥𝑖 ∈ Z∩ [−2𝑑 , 2𝑑] for 𝑖 = 1, . . . , 𝑑 + 1

be arbitrary integers which are not all equal to zero. Let also spacing 𝑎 with 𝑑−𝑐 < 𝑎 < 𝑑𝑐 for

some 𝑐 > 0 and Σ which is 𝑢-weakly separable per Assumption 5.6. We observe 𝑑 + 1 samples of the

form 𝑧𝑖 , where for each 𝑖 = 1, . . . , 𝑑 + 1, 𝑧𝑖 is an independent sample from N((𝑎𝑥𝑖)𝑢, Σ). We denote

by 𝑍 ∈ R𝑑×𝑑 the (random) matrix with columns given by the 𝑑 vectors 𝑧2, . . . , 𝑧𝑑+1. The following

properties hold.
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(1) The matrix 𝑍 is invertible almost surely.

(2) With probability 1 − exp(−Ω(𝑑)) over the 𝑧𝑖 ’s,

∥𝑍−1𝑧1∥∞ = 𝑂 (22𝑑2).

(3) With probability 1 − exp(−Ω(𝑑)) over the 𝑧𝑖 ’s,

0 < |det(𝑍 ) | = 𝑂 (2𝑑2).

Proof. For the fact that 𝑍 is invertible, consider its determinant, that is, the random variable

det(𝑍 ). We claim that det(𝑍 ) ≠ 0 almost surely. Note that to prove this, by invariance of the

determinant to the change of basis, we may assume without loss of generality that 𝑢 = 𝑒1, that

is, 𝑢 is the first standard basis vector, and the remaining standard basis vectors are the remaining

eigenvectors of Σ. Under this assumption, for each 𝑖 = 1, . . . , 𝑑+1, we can write using Assumption

5.6

𝑧𝑖 =


𝑎𝑥𝑖

Λ𝑤𝑖

 ,
where Λ = diag(𝜆2, . . . , 𝜆𝑑) and 𝑤𝑖 ’s are i.i.d. samples from N(0, 𝐼𝑑−1). In other words, the first

row of 𝑍 consists of 𝑎𝑥2, . . . , 𝑎𝑥𝑑+1, and the rest are coordinates of Λ𝑤𝑖 , where each𝑤𝑖 is a vector

with i.i.d. standard Gaussian entries. Now the result follows from the fact that since not all 𝑥𝑖

are equal to zero and also none of the 𝜆𝑖 ’s are zero from Assumption 5.6, the determinant det(𝑍 )

with fixed 𝑥2, . . . , 𝑥𝑑+1 is a non-zero polynomial of the entries of 𝑤2, . . . ,𝑤𝑑+1. As all entries of

𝑤𝑖 are distributed as i.i.d. standard Gaussians, the random polynomial det(𝑍 ) is almost surely

non-zero [CT05].

For the second part, notice that by Cramer’s rule for 𝑖 = 1, . . . , 𝑑 − 1, the 𝑖-th coordinate
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of 𝑍−1𝑧1 equals the quantity 𝜆𝑖+1(𝑍 ) := det(𝑧2, . . . , 𝑧𝑖,−𝑧1, 𝑧𝑖+1, . . . , 𝑧𝑑+1)/det(𝑍 ) almost surely.

Hence, again by the rotational invariance property of the determinant operator, we may assume

that 𝑢 = 𝑒1 and the remaining standard basis vectors are the remaining eigenvectors of Σ. Let

𝑞 (𝑖) ∈ Z𝑑+1 be an integer-valued vector such that 𝑞 (𝑖)
𝑗

= 1 if 𝑖 = 𝑗 and 𝑞 (𝑖)
𝑗

= 0 otherwise. Now

using the notation of Lemma 5.11 we have that 𝑃𝑞 (𝑖 ) (𝑧1, . . . , 𝑧𝑑+1) = det(𝑍−𝑖). By applying the

anticoncentration result from Lemma 5.11 for the polynomial 𝑃𝑞 (1) (𝑧1, . . . , 𝑧𝑑+1) and 𝜖 = 2−𝑑2 we

conclude that

| det(𝑍 ) | = |𝑃𝑞 (1) (𝑧1, . . . , 𝑧𝑑+1) | ≥ 2−𝑑
2

(5.17)

with probability 1 − exp(−Ω(𝑑)). Furthermore, for all 𝑖 = 1, . . . , 𝑑 + 1 it holds that

E[𝑃𝑞 (𝑖 ) (𝑧1, . . . , 𝑧𝑑+1)2] = Var(𝑃𝑞 (𝑖 ) (𝑧1, . . . , 𝑧𝑑+1)) = 𝑎2𝑑𝑑!∥𝑥 ∥2 ⩽ 𝑎2𝑑 | det(Λ) |2210𝑑 log𝑑 ∥𝑥 ∥22 ,

where 𝑥 := (𝑥1, . . . , 𝑥𝑑+1)⊤ where Λ = diag(𝜆2, . . . , 𝜆𝑑) and 𝜆𝑖, 𝑖 > 1 are the non-zero eigenvalues

of Σ per Assumption 5.6. Hence, by Markov’s inequality, the fact that 𝑎 < 𝑑𝑐, the Assumption 5.6

and a union bound over 𝑖 , we have for all 𝑖 = 1, . . . , 𝑑 + 1 that

|𝑃𝑞 (𝑖 ) (𝑧1, . . . , 𝑧𝑑+1) | ⩽ 2𝑑
2/2∥𝑥 ∥22 (5.18)

with probability 1 − exp(−Ω(𝑑)) .

Combining Eq.(5.17) and Eq.(5.18), we conclude that for all 𝑖 = 2, . . . , 𝑑 ,

|𝜆𝑖 (𝑍 ) | = |𝑃𝑞 (𝑖 ) (𝑧1, . . . , 𝑧𝑑+1)/𝑃𝑞 (1) (𝑧1, . . . , 𝑧𝑑+1) | ≤ 23𝑑2/2∥𝑥 ∥22

with probability 1 − exp(−Ω(𝑑)). Since ∥𝑥 ∥22 = 𝑂 (22𝑑) we have ∥𝑍−1𝑧1∥∞ ≤ 23𝑑2/2∥𝑥 ∥22 ≤ 22𝑑2

with probability 1 − exp(−Ω(𝑑)). This concludes the proof of the second part.
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Finally, Eq.(5.18) for 𝑖 = 1 and the fact ∥𝑥 ∥22 = 𝑂 (22𝑑) imply

| det(𝑍 ) | = |𝑃𝑞 (1) (𝑧1, . . . , 𝑧𝑑+1) | ⩽ 2𝑑
2

(5.19)

with probability 1 − exp(−Ω(𝑑)). This concludes the proof of the third part. □

5.4.2 Proof of Theorem 5.8

We now proceed with the proof of the Theorem 5.8 using the lemmas from the previous sections.

Theorem 5.8 (Restated). Algorithm 1, given as input independent samples (𝑧𝑖)𝑖=1,...,𝑑+1 from Model

5.7 with hidden direction 𝑢, covariance Σ, and true labels {𝑥𝑖}𝑖=1,...,𝑑+1 satisfies the following with

probability 1 − exp(−Ω(𝑑)): there exists 𝜀 ∈ {−1, 1} such that the algorithm’s outputs {𝑥𝑖}𝑖=1,...,𝑑+1

and 𝑢 ∈ 𝑆𝑑−1 satisfy

𝑥𝑖 = 𝜖𝑥𝑖 for 𝑖 = 1, . . . , 𝑑 + 1

and 𝑢 = 𝜖𝑢 .

Moreover, Algorithm 1 terminates in poly(𝑑) steps.

Proof. We start with noticing that for an algorithm to recover 𝑢, 𝑥𝑖 up a to global sign flip it

suffices to recover the values of {𝑥𝑖}𝑖=2,...,𝑑+1 up to a global non-zero constant multiple. Indeed,

since we already know the value of 𝑧𝑖 ’s, if we learn the 𝑥𝑖 ’s up to a constant, call it 𝐶 > 0,

then we can solve the linear system of 𝑑 (independent) equations and with 𝑑 unknowns given

by ⟨𝑧𝑖, 𝑣⟩ = 𝐶𝑎𝑥𝑖 = 𝐶 ⟨𝑧𝑖, 𝑢⟩, 𝑖 = 2, . . . , 𝑑 + 1. Since by Lemma 5.12 the matrix 𝑍 , also formed in

Algorithm 1, which is the 𝑑 ×𝑑 matrix with 𝑧2, . . . , 𝑧𝑑+1 as its column vectors, is invertible almost

surely, one can indeed solve this linear system to recover 𝑣 = 𝐶𝑢, that is the same constant𝐶 times

𝑢. Since 𝑢 is assumed to be unit norm one can then recover the quantity |𝐶 | = ∥𝑣 ∥2, which is the

absolute value of the unknown constant. Hence one can output for some 𝜖 = 𝐶/|𝐶 | ∈ {−1, 1} the
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estimated vector 𝐶𝑢/|𝐶 | = 𝜖𝑢 and the estimated labels 𝐶𝑥𝑖/|𝐶 | = 𝜖𝑥𝑖, 𝑖 = 1, . . . , 𝑑 + 1 which are

indeed the hidden direction 𝑢 and the true labels 𝑥𝑖, 𝑖 = 1, . . . , 𝑑 + 1 up to a global sign flip.

Now our proposed Algorithm 1 follows exactly this path: it first recovers a non-zero constant

multiple of the 𝑥𝑖 ’s (this is the values of the vector 𝑡1 output by the LLL step) with probability

1 − exp(−Ω(𝑑)) . Then it uses the simple procedure described above to output both the labels

𝑥𝑖, 𝑖 = 1, . . . , 𝑑 + 1 and 𝑢 up to a global constant multiple. This second part comprises exactly the

last steps of the algorithm after the LLL step. The main procedure of our algorithm therefore is

to use an appropriate application of LLL to learn the exact values of 𝑥𝑖 up to a global sign flip.

We now analyze the success of the LLL step to recover a global constant multiple of the 𝑥𝑖 ’s with

probability 1 − exp(−Ω(𝑑)) .

Now the algorithm does not terminate in the second step exactly because of the almost sure

invertibility of the matrix 𝑍 , per Lemma 5.12. Let us now analyze the (random) lattice 𝐿 = 𝐿(𝐵)

generated by the basis 𝐵, which is constructed in the next step of Algorithm 1.

First, observe that the real numbers {𝜆𝑖}𝑖=1,2,...,𝑑+1 used in the top row of the lattice basis 𝐵,

satisfy by definition

𝑑+1∑︁
𝑖=1

𝜆𝑖𝑧𝑖 = 0 .

Hence, we conclude that since ⟨𝑧𝑖, 𝑢⟩ = 𝑎𝑥𝑖 for the unknown direction𝑢 ∈ 𝑆𝑑−1 and spacing 𝑎 > 0,

it holds that

𝑑+1∑︁
𝑖=1

𝜆𝑖𝑎𝑥𝑖 =

𝑑+1∑︁
𝑖=1

𝜆𝑖 ⟨𝑢, 𝑧𝑖⟩ = ⟨𝑢,
𝑑+1∑︁
𝑖=1

𝜆𝑖𝑧𝑖⟩ = 0 (5.20)

and therefore

𝑑+1∑︁
𝑖=1

𝜆𝑖𝑥𝑖 = 0 . (5.21)
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We now show an upper bound on the shortest vector length of 𝐿, which we denote by 𝜇 (𝐿).

More precisely, we show that

𝜇 (𝐿) = 𝑂 (𝑑2𝑑) .

To this end, define a real-valued vector 𝑠 ∈ R𝑑+1 with 𝑠𝑖 = 𝜆𝑖 for 𝑖 = 1, . . . , 𝑑 + 1, and also an

integer-valued vector𝑚 ∈ Z𝑑+1 with𝑚𝑖 = 𝑥𝑖 for 𝑖 = 1, . . . , 𝑑 + 1. Then, the integer relation (5.21)

implies that ⟨𝑠,𝑚⟩ = 0. Since |𝑥𝑖 | ≤ 2𝑑 for all 𝑖 = 1, . . . , 𝑑 + 1 it also holds almost surely that

∥𝑚∥2 = ∥𝑥 ∥2 ≤
√
𝑑2𝑑 . By Lemma 5.10, for the bit-precision 𝑁 chosen by Algorithm 1, there

exists an integer𝑚′
𝑑+2 ∈ Z such that𝑚′ = (𝑚,𝑚′

𝑑+2) ∈ Z
𝑑+2 satisfies ∥𝑚′∥2 = 𝑂 (𝑑2𝑑) and is an

integer relation for (𝜆1)𝑁 , . . . , (𝜆𝑑+1)𝑁 , 2−𝑁 .

Now define 𝑏 ∈ (2−𝑁Z)𝑑+2 given by 𝑏𝑖 = (𝜆𝑖)𝑁 for 𝑖 = 1, . . . , 𝑑 + 1, and 𝑏𝑑+2 = 2−𝑁 . Notice that

𝑏1 = (1)𝑁 = 1 and furthermore that the 𝑣 defined by the algorithm satisfies 𝑣 = (𝑏2, . . . , 𝑏𝑑+2).

On top of this, we have that the 𝑚′ defined in previous paragraph is an integer relation for 𝑏

with ∥𝑚′∥2 = 𝑂 (𝑑2𝑑). Hence, 𝐵𝑚′ = (0,𝑚′)⊤. It follows that 𝜇 (𝐿) = 𝑂 (𝑑2𝑑) with probability

1 − exp(−Ω(𝑑)), since 𝜇 (𝐿) ⩽ ∥𝐵𝑚′∥2 = 𝑂 (𝑑2𝑑).

Recall from Theorem 5.3 that the LLL algorithm is guaranteed to return a lattice vector of

ℓ2-norm smaller than 2𝑑+2
2 𝜇 (𝐿). Now we employ Lemma 5.9 which combined with the fact that

2𝑑+2
2 𝜇 (𝐿) ≤ 22𝑑 for sufficiently large 𝑑 almost surely, allows us to conclude that the LLL algorithm

returns a non-zero lattice vector 𝐵(𝑡1, 𝑡2)⊤, where 𝑡1 ∈ Z𝑑+1 and 𝑡2 ∈ Z, such that 𝑡1 is an integer

multiple of 𝑥 = (𝑥1, . . . , 𝑥𝑑+1) with probability 1 − exp(−Ω(𝑑)). Hence, using 𝑡1 the algorithm

recovers a global non-zero constant multiple of the 𝑥𝑖 ’s for 𝑖 = 1, . . . , 𝑑 + 1 with probability

1 − exp(−Ω(𝑑)).

For the termination time, it suffices to establish that the step using the LLL basis reduction

algorithm can be performed in poly(𝑑) time. To ensure poly(𝑑) time for the LLL step, it suffices

to show that the entries of the lattice basis 𝐵 are not too large with probability 1 − exp(−Ω(𝑑)).
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More precisely, the running time of LLL depends on the logarithm of the largest entry in 𝐵 by

Theorem 5.3. Clearly, 𝑁 and log𝑀 are polynomial in 𝑑 . Finally, direct inspection and Lemma

5.12 implies that the quantity log ∥𝜆∥∞, where 𝜆 = (𝜆1, . . . , 𝜆𝑑+1)⊤ is as defined in Algorithm 1,

is polynomially bounded with probability 1 − exp(−Ω(𝑑)). This establishes the poly(𝑑) running

time of the LLL step. □

5.4.3 Proof of Lemma 5.9

We focus this section on proving the key technical Lemma 5.9. As mentioned above, the proof of

the lemma is quite involved, and, potentially interestingly, it requires the use of anticoncentration

properties of the coefficients 𝜆𝑖 , which are rational functions of the coordinates of 𝑥𝑖 , as discussed

in Lemma 5.11.

Lemma 5.9 (Restated). Let 𝑑 ∈ N, 𝑎 ∈ [𝑑−𝑐, 𝑑𝑐] for some 𝑐 > 0 and 𝑁 = ⌈𝑑4(log𝑑)2⌉. Let

𝑢 ∈ 𝑆𝑑−1 be an arbitrary unit vector, Σ ∈ R𝑑×𝑑 an arbitrary 𝑢-weakly separable matrix and let

𝑥𝑖 ∈ Z ∩ [−2𝑑 , 2𝑑] for 𝑖 = 1, . . . , 𝑑 + 1 be arbitrary but not all zero. Moreover, let {𝑧𝑖}𝑖=1,...,𝑑+1 be

independent samples from 𝑁 ((𝑎𝑥𝑖)𝑢, Σ), and let 𝐵 be the matrix constructed in Algorithm 1 using

{𝑧𝑖}𝑖=1,...,𝑑+1 as input and 𝑁 -bit precision. Then, with probability 1 − exp(−Ω(𝑑)) over the samples,

for any 𝑡 = (𝑡1, 𝑡2) ∈ Z𝑑+1 × Z such that 𝑡1 is not an integer multiple of 𝑥 = (𝑥1, . . . , 𝑥𝑑+1), the

following holds:

∥𝐵𝑡 ∥2 > 22𝑑 .

Proof of Lemma 5.9. Let 𝑡 = (𝑡1, 𝑡2) ∈ Z𝑑+1 × Z be arbitrary non-zero integer coefficients. Our

proof consists of characterizing integer coefficients 𝑡 for which the corresponding lattice vector

𝐵𝑡 is “short”, that is,

∥𝐵𝑡 ∥2 ⩽ 22𝑑 . (5.22)
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In what follows, by a short lattice vector we refer to the condition (5.22).

We first show that with probability 1 − exp(−Ω(𝑑)), lattice vectors can only be short for

integer coefficients contained in some bounded rectangle R ⊂ Z𝑑+2, which we define below (see

Eq.(5.24)). Then, we apply our anticoncentration lemma (Lemma 5.11) and a union bound over a

subset of R to conlcude that with probability 1 − exp(−Ω(𝑑)), the only short lattice vectors are

ones whose integer coefficients satisfy 𝑡1 = 𝑐𝑥 for some 𝑐 ∈ Z.

To this end, we first observe that entries of the first row of 𝐵 are elements of𝑀Z, as by direct

inspection (𝐵𝑡)1 = 𝑀 (∑𝑑+1
𝑖=1

(
2𝑁 (𝜆𝑖)𝑁

)
(𝑡1)𝑖 + 𝑡2). It follows that if 𝑡 is not an integer relation for

the numbers (𝜆1)𝑁 , . . . , (𝜆𝑑+1)𝑁 , 2−𝑁 , then ∥𝐵𝑡 ∥2 ≥ 𝑀 = 22𝑑 . Hence, it suffices to restrict our

attention to 𝑡 ’s which are integer relations, that is,

𝑑+1∑︁
𝑖=1
(𝜆𝑖)𝑁 (𝑡1)𝑖 + 𝑡22−𝑁 = 0 .

Note that it cannot be the case that 𝑡1 = 0 since this implies, by the integer relation above, 𝑡2 = 0,

and therefore the pair 𝑡 = (𝑡1, 𝑡2) are zero, a contradiction. Hence, from now on we restrict

ourselves only to the case where 𝑡1 ≠ 0.

Let us denote by 𝑡 ′ the vector 𝑡 without the first coordinate (𝑡1)1, i.e., 𝑡 ′ = ((𝑡1)2, . . . , (𝑡1)𝑑+1, 𝑡2).

Our second observation is that ∥𝐵𝑡 ∥2 ⩾ ∥𝑡 ′∥∞ because of the use of the submatrix 𝐼𝑑+1 in the

definition of 𝐵. This implies that any short lattice vector 𝐵𝑡 must satisfy ∥𝑡 ′∥∞ ⩽ 22𝑑 . Moreover,

since 𝑡 is an integer relation and 𝜆1 = 1, we have

| (𝑡1)1 | =
�����𝑑+1∑︁
𝑖=2
(𝜆𝑖)𝑁 (𝑡1)𝑖 + 𝑡22−𝑁

����� ⩽ ∥𝑡 ′∥∞ (
∥𝜆∥1 + 2−𝑁

)
. (5.23)

Now in the notation of Lemma 5.12 we have 𝜆 = −𝑍−1𝑧1. Hence using Lemma 5.12 and

the elementary fact that ∥𝜆∥1 ⩽ (𝑑 + 1)∥𝜆∥∞, it holds with probability 1 − exp(−Ω(𝑑)) that

∥𝜆∥1 = 𝑂 (22𝑑2). It follows that, for sufficiently large 𝑑 , any short lattice vector 𝐵𝑡 must satisfy
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| (𝑡1)1 | ⩽ 23𝑑2 with probability 1 − exp(−Ω(𝑑)). Hence, with probability 1 − exp(−Ω(𝑑)), every

short vector 𝐵𝑡 in the random lattice 𝐿 = 𝐿(𝐵) has its integer coefficients 𝑡 contained in R, which

is defined as

R = {(𝑎, 𝑏) ∈ Z × Z𝑑+1 : |𝑎 | ⩽ 23𝑑2
, ∥𝑏∥∞ ⩽ 22𝑑} . (5.24)

From R, we also define R1 ⊂ Z𝑑+1 such that R1 = {𝑡1 ∈ Z𝑑+1 : 𝑡 = (𝑡1, 𝑡2) ∈ R}.

We now show using a union bound over 𝑡 ∈ R that with probability 1−exp(−Ω(𝑑)), the only

short lattice vectors in 𝐿 are ones whose integer coefficients 𝑡 = (𝑡1, 𝑡2) satisfy 𝑡1 = 𝑐𝑥 for some

𝑐 ∈ Z. First, observe that since |𝑡2 | ≤ 22𝑑 , the following inequality holds if 𝑡 is an integer relation:�����𝑑+1∑︁
𝑖=1
(𝜆𝑖)𝑁 (𝑡1)𝑖

����� ≤ 22𝑑2−𝑁 .

Consider T the set of all 𝑡1 ∈ Z𝑑+1 \
⋃
𝑐∈R{𝑐 (𝑥1, . . . , 𝑥𝑑+1)⊤}. To prove our result it suffices to

prove that

P

( ⋃
𝑡1∈T∩R1

{�����𝑑+1∑︁
𝑖=1
(𝜆𝑖)𝑁 (𝑡1)𝑖

����� ≤ 22𝑑/2𝑁
})
≤ exp(−Ω(𝑑))

for which, since for any 𝑥 it holds |𝑥−(𝑥)𝑁 | ≤ 2−𝑁 and ∥𝑡 ∥1 = | (𝑡1)1 |+∥𝑡 ′∥∞ ≤ 24𝑑2 for sufficiently

large 𝑑 , it suffices to prove that for large 𝑑 ,

P

( ⋃
𝑡1∈T∩R1

{�����𝑑+1∑︁
𝑖=1

𝜆𝑖 (𝑡1)𝑖

����� ≤ 25𝑑2/2𝑁
})
≤ exp(−Ω(𝑑)) .

Using the polynomial notation of Lemma 5.11 (specifically, Eq.(5.5)), as well as the fact that

by Cramer’s rule 𝜆𝑖 are rational functions of the coordinates of 𝑧𝑖 satisfying 𝜆𝑖det(𝑧2, . . . , 𝑧𝑑+1) =

101



det(. . . , 𝑧𝑖−1,−𝑧1, 𝑧𝑖+1, . . .), it suffices to show

P

( ⋃
𝑡1∈T∩R1

{|𝑃𝑡1 (𝑧1, . . . , 𝑧𝑑+1) | ≤ |det(𝑧2, . . . , 𝑧𝑑+1) |25𝑑2/2𝑁 }
)
≤ exp(−Ω(𝑑)) .

By Lemma 5.12, with probability 1 − exp(−Ω(𝑑)) there exists some constant 𝐷 > 0 such that

det(𝑧2, . . . , 𝑧𝑑+1) ⩽ 𝐷22𝑑2 . Hence, it suffices to show

P

( ⋃
𝑡1∈T∩R1

{|𝑃𝑡1 (𝑧1, . . . , 𝑧𝑑+1) | ≤ 𝐷27𝑑2/2𝑁 }
)
≤ exp(−Ω(𝑑)) .

Now since 𝑁 = 𝜔 (𝑑2 log𝑑), it suffices to show, for sufficiently large 𝑑 ,

P

( ⋃
𝑡1∈T∩R1

{|𝑃𝑡1 (𝑧1, . . . , 𝑧𝑑+1) | ≤ 2−
𝑁
2 }

)
≤ exp(−Ω(𝑑)) .

By a union bound, it suffices to show

∑︁
𝑡1∈T∩R1

P
(
|𝑃𝑡 (𝑧1, . . . , 𝑧𝑑+1) | ≤ 2−

𝑁
2

)
≤ 2−Ω(𝑑) . (5.25)

Now the number of integer points 𝑡1 with ℓ∞ norm at most 23𝑑2 is at most 23𝑑2 (𝑑+1) , since there

are at most 23𝑑2 choices per coordinate. Furthermore, using the anticoncentration inequality (5.8)

of Lemma 5.11, we have for any 𝑡1 ∈ T that for some universal constant 𝐵 > 0,

P
(
|𝑃𝑡1 (𝑧1, . . . , 𝑧𝑑+1) | ≤ 2−

𝑁
2

)
≤ 𝐵𝑑2−

𝑁
2𝑑 .

Using the above to upper bound the left hand side of (5.25), we see that the sum is at most

𝐵𝑑23𝑑2 (𝑑+1)2−
𝑁
2𝑑 = exp(𝑂 (𝑑3) − Ω(𝑁 /𝑑)) = exp(−Ω(𝑑)) ,
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where we used that 𝑁 /𝑑 = Ω(𝑑3 log𝑑). This completes the proof. □
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