The Design and Implementation of ALLOY,
a Higher Level Parallel Programming Language

by
Thanasis Mitsolides

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science
New York University
June, 1991

Approved

Malcolm C. Harrison






iii

To my parents



Acknowledgments

I would like to express my gratitute to my adviser Prof. M.C. Harrison
for his patience and cooperation through the long years of the PhD program.
Throughout the years of research, he contributed insight, fresh ideas, and al-
ternative solutions. His efforts in improving the presentation of this thesis, are
deeply appreciated. Furthermore, this thesis was prompted during discussions
with him and the two other members of the concurrent languages group N.
Markantonatos and G. Papadopoulos. I enjoyed working with them and I wish
to thank them both. Of particular importance were the individual after hours
discussions with N. Markantonatos.

Professors B. Goldberg and E. Schonberg are thanked for fitting the read-
ing of the thesis into their busy schedules. The other members of the thesis
committee, professors R. Dewar and A. Gottlieb, are also acknowledged for
participating in the presentation.

My initiation to the world of programming languages and most importantly
to the world of research is due to prof. C. Halatsis and the people of the Digital
Equipments and Computers Lab of the University of Thessaloniki, Greece. 1
consider myself lucky to have worked with them.

Special thanks are also due to all my friends in New York for providing me
with a pleasant environment away from home, where I could work productively.
H. Khan helped improve the language of this thesis.

I wish to thank my parents and brothers whose emotional support even
from so far away kept me going for all these years. This thesis would not be

possible without them.

v



The Design and Implementation of ALLOY,

a Higher Level Parallel Programming Language

Thanasis Mitsolides

Advisor: Malcolm C. Harrison

Abstract

The goal of this thesis is to show that it is possible to define a parallel higher level pro-
gramming language for programming in the large which will be able to easily express both
complicated parallel problems and traditional serial ones. Such a language would pro-
vide many good features of serial and parallel programming languages and be appropriate
for programming massively parallel computing systems. To demonstrate this a simple
language, called ALLOY, was designed. The main features of this language, could be
incorporated into other languages.

ALLOY, directly supports functional, object oriented and logic programming stylesin a
unified and controlled framework. Evaluating modes support serial or parallel execution,
eager or lazy evaluation, non-determinism or multiple solutions. These modes can be
combined freely. ALLOY is simple, utilizing only 29 primitives, half of which are for
object oriented programming.

The power of ALLOY is demonstrated through the use of an unusually wide variety
of examples. Some of the examples are: a) partition sort and FP library demonstrating
clarity, efficiency, and simple parallelism, b) prime numbers and buffering demonstrating
the ability to select between eager and lazy evaluation, c) systolic sort and merge sort
demonstrating dynamic networks of communicating processes, d) N-queens and list per-
mutations demonstrating serial and parallel searching. A library is given for programming
in logic programming styles. Finally a number of parallel objects demonstrate ALLOY’s
ability to exploit massively parallel architectures effectively.

An interpreter of ALLOY together with a number of utilities and a programming en-
vironment has been written in Common Lisp. The system is available for anonymous ftp.
It is shown that ALLOY can have reasonably efficient implementation on shared mem-
ory multiprocessor (MIMD) systems supporting highly parallel operations, on distributed

architectures, and possibly on Data Flow architectures as well.
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Chapter 1

Introduction

The availability of low-cost powerful single processors has made the use of large-scale par-
allelism an attractive alternative to the most powerful computers such as super-computers.
The latter approach to powerful computing (mainframes and supercomputers) has been
successful in a number of areas, most of which are characterized by problems in which
the flow graph of the computation is relatively static, and thus subject to analysis and
optimization for these systems.

However, in the area of what might be called “unpredictable” computations in which
the flow graph is essentially unknown, there has been much less success. These prob-
lems are exemplified by compilation, search problems, natural language analysis, simula-
tion, reasoning, high-level pattern recognition, and most problems in artificial intelligence.
These are problems in which the size and shape of data-structures is unknown, the se-
quencing of computations is unknown, there is little repetition of computation, and the
execution time of components of computation is also unknown. Such complex problems
can not be solved efficiently by supercomputers whose speed is largely due to pipelining
and vector processing.

As more knowledge of effective algorithms for these problems is developed, there will
be an increasing need for techniques for executing these algorithms efficiently. The higher
expressiveness of Parallel Languages can be essential to the description of such complex
algorithms.

Such computations do not lend themselves to SIMD or pipeline machines, with their

requirement for computational regularity. The only reasonable alternatives are very fast



2 Introduction

single processor machines and MIMD machines (shared memory or distributed), with the
possibility of data-flow machines lurking around the corner. However, there is so far no
common agreement on the best technique for exploiting such machines. Three general
approaches have attracted considerable support: functional languages, logic languages,
and object oriented languages. Unfortunately, these approaches are regarded as if they
were mutually exclusive. Once having chosen one of these languages, capabilities provided
by the others are not available. For toy problems this disadvantage does not appear; only as
real-world problems are encountered is it recognized that different aspects of the problem
require different approaches. Furthermore, adding parallelism carelessly can make some
of these languages weaker is certain important aspects. A naive mixture of programming

languages can help a little but leads to considerable confusion in the long run.

1.1 Scope of Thesis

This thesis defines a number of primitives in a unified form. Most of these primitives
appear in other languages, though some of them do not. These primitives are presented
as parts of a simple language called ALLOY.

ALLOY is, a high level parallel programming language appropriate for programming
massively parallel computing systems. ALLOY directly supports functional, object ori-
ented and logic programming styles in a simple, unified and controlled framework. Evalua-
tion modes support serial or parallel execution, eager or lazy evaluation, non-determinism
or multiple solutions. Most importantly, these modes can be combined freely.

ALLOY is simple, utilizing only 29 primitives and expressions, half of which are for
object oriented programming. It is based on a combination of ideas from functional, object
oriented and Logic Programming languages.

A full interpreter of ALLOY has been implemented in Common lisp. An easy to use
interactive environment is also provided. Parallelism is emulated in this implementation.
Under Austin-Kyoto Common Lisp the interpreter averages about 60 fc/mi (function calls

/ million (VAX equivalent) cpu instructions).
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1.2 Contents

The rest of this chapter gives a concise description of some desirable and undesirable
features (or lack thereof) found in languages following the three programming paradigms
of functional, object oriented and logic programming. It concludes with an outline of
ALLOQOY’s properties.

Chapter 2 gives a tour of the ALLOY system. A particularly wide variety of examples
are shown, tested and briefly explained. It is maybe the most important chapter in this
thesis

Chapter 3 gives a detailed description of the ALLOY primitives, expressions, and other
utilities. This chapter can serve as the manual. It should be consulted during the reading
of other chapters whenever clarification is needed.

Chapter 4 describes the functional part of ALLOY. It is a set of evaluation modes
and closures. It has only 12 primitives or expressions and yet provides serial evaluation,
and-parallelism, or-parallelism, eager and lazy evaluation, commitment, non-determinism,
and generators. Finally, the functional part is compared with languages such as Zlisp,
Multilisp, and Queue Based Multiprocessing Lisp.

Chapter 5 describes the interprocess communication facilities of ALLOY. Simple (and
frequent) communication is supported directly (by p calculus) and advanced communi-
cation through the use of parallel objects (implemented in ALLOY, not built-in). These
facilities are compared with similar features of languages such as Actors, Vulcan, and
Linda.

Chapter 6 describes the searching facilities of ALLOY. These support depth first (con-
trol backtracking) and breadth first search. They are based on the replicator control
structure in combination with the ability to control generators. These facilities are com-
pared with similar features of languages such as ICON, PROLOG, Andorra Prolog, SETL,
Scheme, and GHC.

Chapter 7 describes ALLOY’s abilities to emulate logic programming styles. It is
shown that classes of logic programs can be expressed more simply in a functional style
(some-times with generators). ALLOY is compared against languages such as PROLOG,
or-parallel Prolog, and PARLOG.

Chapter 8 describes the current implementation of ALLOY. It explains the various
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parts of the interpreter and describes in detail the data structures used by it. This is
followed by a set of benchmarks performed on a Sparcstation 1. It concludes with a
commentary on parallel implementations on shared memory MIMD and distributed ar-
chitectures.

Finally, Appendix A lists the current interpreter of ALLOY. It is written in Common
Lisp. This appendix includes the list sources, ALLOY libraries and the makefile to con-
struct the executables. The interpreter is followed by a set of benchmarks in Appendix B.

These benchmarks are used in chapter 8.

1.3 Three programming paradigms

The three programming paradigms mentioned above are examined briefly here. A short
description of these systems is followed by a reference to desirable and undesirable features
encountered in languages of these forms. It is clear that even though most languages are
really good in some important aspects, they are weak in some other important aspects.

Usually their designers concentrate on kernels, and leave the issues of higher level
features and control structures to the programmer. In some cases, it may not be clear
how some features can be provided. In other cases, the selection of one feature prevents
selection of another feature. Also, features are omitted for efficiency reasons.

In later chapters (chapter 4, chapter 5, chapter 6) these features are examined in detail.

These chapters show how ALLOY supports many of these important features.

1.3.1 Parallel Functional Programming Languages

The primary distinguishing features of functional languages [Hud89] are higher order func-
tions, anonymous functions, eager or lazy evaluation and pattern matching. Lately more
advanced features have appeared in languages of this form; these include non-deterministic
evaluation, generators, cacheing, polymorphic type inference, and implicit parallelism be-
cause of referential transparency.

These languages have been praised for their clarity and ability to express algorithms
neatly and efficiently. Their simplicity makes them an attractive base for a design.

On the other hand, many important features are missing from languages of this type.

Most PFPLs do not provide any form of backtracking, generators or a meaning of multiple
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solutions. Non-deterministic evaluation is usually absent. Often, parallelism looks artifi-
cial or weak. FEither synchronization or mutual exclusion is left weak in such languages.
Eager and lazy evaluation are rarely available both in the same language. Object oriented

programming is complicated when available and then it does not support parallel ADTs.

1.3.2 Parallel Object Oriented Programming Languages

Object oriented programs are collections of independent components each providing some
services [Wag90]. Evaluation involves interaction among these objects. This model of
computation makes these languages suitable for programming distributed architectures.

Abstraction is the first goal achieved through object oriented programming. As a re-
sult, these languages are highly suitable for programming in the very large. Re-usability
of components and easy management of complex software libraries is another major ad-
vantage.

Inheritance plays an important role in object oriented programming. It captures a
higher form of abstraction, that complements data abstraction with object management.
It provides a natural mechanism for subtyping. Alternatively, delegation simplifies the
task of multiple inheritance by giving more control to the user.

However, object oriented languages often treat simple program components with the
same techniques used for the management of very large programs. This complicates un-
necessarily simple algorithms and makes their implementations far from elegant. Parallel
object oriented languages are particularly weak in this area. Additionally, there seems to
be little support for parallel abstract data types.

Unfortunately, multiple inheritance has as many different forms as there are object
oriented languages. The problems include deciding what is to be inherited from an ob-
ject, what is shared between the two, and how ambiguities are resolved. Abstraction and
incremental modification of behavior is often sacrificed for the sake of incremental mod-
ification of code. Simplicity is often sacrificed for the sake of efficiency. For example,
classes are allowed to inherit variables of other classes. This may improve efficiency of
interaction among the two classes but damages abstraction and complicates maintenace

of the super-class.
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1.3.3 Parallel Logic Programming Languages

Logic Programming has demonstrated a high degree of expressiveness [Sha89]. This is
largely based on the flexibility of the logical variable, which needs only one operation,
unification, to read it or write it. Unification provides impressive pattern matching power.

The highly declarative nature of these languages and heavy use of non-determinism
complete their features. Programming in these languages is sometimes very close to a
detailed specification of the problem. One such example is the definite clause grammars
in Prolog. Though many programming languages have claimed that programming in them
involves describing what the problem is rather than how to solve it, logic programming
languages are the most succesfull.

However, the fact that the logical variable is very powerful, and yet the only possible
type of a variable, introduces a number of rather undesirable complications. The flow of
control, even in simple cases, can be so vague that understanding a program can degenerate
into trying to determine what is input and what is output. For the same reason compilers
have trouble producing efficient code, particularly for distributed architectures.

Parallelizing logic programming languages is not a simple task. Don’t know non-
determinism (or-parallelism) turns out to be virtually incompatible with and-parallelism
in the context of the logical variables. Thus, parallel versions of these languages lack either
full or-parallelism or full and-parallelism.

All communication is done with streams formed from logical variables. This imposes
unnecessary and inefficient serialization when there are multiple producers or consumers
for a stream. This prevents implementation of very parallel algorithms. Finally, lazy
evaluation requires different programming techniques than those employed for eager eval-
uation and that often complicates constructing and understanding programs which mix

the two evaluation modes.

1.4 ALLOY

The design of ALLOY is ability-oriented. The objective is to identify most features desir-
able to a programmer, and show that they can be provided in a simple language. Efficiency
is not the primary consideration, though care has been taken to avoid interaction among

features which could result in unexpected inefficiencies.
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During the numerous stages of its design, ALLOY’s expressiveness was tested by im-
plementing a variety of algorithms. These algorithms were selected because they are used
in papers to demonstrate some neat property of a language. Having elegant solutions for
these algorithms implied the existence of certain desirable features in ALLOY. ALLOY
supports the following:

e Clear and efficient basic functional style.

e Serial and Parallel evaluation with commitment.

Eager and Lazy evaluation.

Generators and Replicators.

Classes of Parallel Objects.

e Unrestricted combinations of the above.

It is shown that all of the above features!

are compatible, in that they cannot in-
teract in ways that prevent efficient implementations. The efficiency of each feature on
MIMD shared memory multiprocessors can be in the same order of magnitude as in the
implementation of the feature when isolated.

The kernel of ALLOY has only 29 primitives, half of which are for the support of

Object Oriented programming. For all its simplicity, it is able to provide simple and clear

solutions to problems such as the following;:

e factorial, partition sort and FP style library, each highly parallel.
e Pibonacci sequence, and prime numbers (sieve), each eager or lazy.

e systolic sort, and hamming network, each clear in spite of complex communication

patterns.

e list member, tree leaves, list permutation, and n-queens, each generating one or all

solutions.

e queue, stack, counter, and semaphore, each a parallel object without any explicit

synchronization.

e Dining philosophers, making use of abstraction and explicit synchronization.

'In particular the interaction of parallel generators and parallel objects with the rest of the
language.
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These and other examples are shown and compared with their best implementation in
the most convenient programming language(s) [Mit89b]. These comparisons are intended
to serve as an informal proof that ALLOY is a superset (in expressiveness) of some powerful

and dissimilar languages and thus provides an unusually high degree of expressiveness.

1.4.1 Features

The number of elementary operations in ALLOY is either about the same as, or a little
more that, the number of elementary operations in languages such as PARLOG, Prolog,
Scheme, Multi-lisp, Actors, Vulcan, Flavors, ICON etc. each taken independently. Even
though the elementary operations in ALLOY are not always found in that form in other
languages, its design has been influenced by Pure-Lisp, ICON, the Relational Language,
Smalltalk and Vulcan and less from Prolog and PARLOG.

Non-determinism is provided in ALLOY to permit the expression of indifference or un-
certainty in an algorithm. Generators are included to ease the development of programs
which make use of the generate-and-test technique. The replicator control structure for
driving generators allows easy expression of algorithms performing depth-first (backtrack-
ing) and/or breadth-first searches.

ALLOY provides features for expressing parallel algorithms. These include: paral-
lel evaluation of expressions (and-parallelism), non-deterministic selection of alternatives
(or-parallelism), synchronization which can be implicit (using synchronizing variables) or
explicit (by means of serial execution), and parallel abstract data types (dynamic state of
objects).

ALLOY is object oriented. Closures are just objects. Classes and other objects with
simple interfaces can be accessed with a functional syntax, in addition to the more tradi-
tional message passing syntax. Objects can be parallel and support delegation.

Overall, ALLOY has dynamic type checking, static scoping, closures, high order func-
tions, parallel objects with delegation and abstract interfaces, single assignment synchro-
nizing variables, serial and parallel execution, eager or lazy evaluation, non-deterministic

functions, generators and replicators.



Chapter 2

A Tour of ALLOY

This section is intended to stimulate the reader’s curiosity. It contains a wide variety of
example programs written in ALLOY. Each, is followed by illustrations of its use. It is
recommended that this chapter is only brushed through at first reading and that it be
re-read after chapter 3.

All these examples and many others can be found in the "mitsolid/alloy/progs direc-
tory of system spunky.cs.nyu.edu. On spunky ALLOY can be entered with the command
“mitsolid/alloy/alloy. The libraries and functions used in these examples can be loaded
with the require declaration.

The above, as well as the sources of the interpreter, some benchmarks, the manual,
a paper, and the thesis itself are all available for anonymous ftp on system cs.nyu.edu

(address 128.122.140.22) directory pub/local/alloy.

2.1 Basic Functional

The kernel of ALLOY is functional. Functional programming is clean, easy to understand,
efficient and appropriate for parallel architectures. The important points here are the
clarity in expression of simple parallel algorithms, and the power in the combination of

high order functions.
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2.1.1 Top Level

The top level behaves as if it has as local variables all possible names. Usually a program
is created in an editor then loaded in ALLOY then tested and so on until it is debugged.

The next command is executed in parallel since it is enclosed in parenthesis. Synchro-
nization is implicit, due to the synchronizing variables:

spunky % “mitsolid/alloy/alloy
ALLOY version 2.0 5/21/91

ALLOY > (list (set y3 (sum y6 y7)) (set y1 (sum y2 y3)) (set y2 (sum y4 y5))
(set (y4 y5 y6 y7) (1 2 3 4)))
==> (7 10 3 (1 2 3 4))

The next command shows the effects of suspension at the top level:

ALLOY > (sum x 2)
ALLOY > (set x 3)
==> 3
==> 5

Using a higher order function:

ALLOY > (mapcar (mu (x) (lreturn (sum 1 x))) ’(2 3 4 5))
==> (3 4 5 6)

Multiple assignment variables:

ALLOY > _x

==> NIL

ALLOY > (set _x 2)
==> 2

ALLOY > _x

==> 2

ALLOY > (set _x 3)
==> 3

2.1.2 Factorial

Even though the algorithm is serial in nature the following program makes no attempt
to explicitly synchronize processes or evaluate serially. Implicit synchronization is based
solely on the synchronizing variable:

(setfun fact(n)
(return (if (gt n 0) (times n (fact (diff n 1))) 1)))
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Test runs:

ALLOY > (fact 25)
==> 15511210043330985984000000

2.1.3 Parallel Factorial

This program makes use of the divide-and-conquer technique of distributing the task of
making the multiplications to many processors. Assuming O(n) processors are available,

this executes in O(logn) time (for appropriate implementation):

(setfun pfact(n)
(return (pfact2 1 n)))

(setfun pfact2(from to)
(return (if (ge from to) from
(let ((mid (quotient (sum from to) 2)))
(times (pfact2 from mid) (pfact2 (sum mid 1) to))))))

Test runs:

ALLOY > (pfact 25)
==> 15511210043330985984000000

2.1.4 Partition Sort using lists

This solution to Partition Sort is a good indication of how powerful implicit synchroniza-
tion can be. All function calls are evaluated in a parallel way. Assuming O(n) processors

are available it can sort a list in worst case O(n) time.

(provide "psort")
(require "putlist")

(setfun psort(l)
(return (psortrest 1 nil)))

(setfun psortrest(l rest)
(if (null-p 1) (return rest)
(return (let (((lsmall lgreat) (partition (car 1) (cdr 1))))
(psortrest lsmall (cons (car 1) (psortrest lgreat rest)))))))

(setfun partition(x 1)
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(if (null-p 1) (return ’(nil nil))
(return (let (((lsmall lgreat) (partition x (cdr 1))))
(if (1t x (car 1)) (list lsmall (cons (car 1) lgreat))
(list (cons (car 1) lsmall) lgreat))))))

Test runs:

ALLOY > (require "psort")
Redefining function: PSORT
Redefining function: PSORTREST
Redefining function: PARTITION
==>T

ALLOY > (psort (5 27 3514 2 3))
==>(12233455T7)

Note how the psort function and other supporting functions have been loaded with the
require declaration. Should this declaration be given again, these functions will not be

reloaded.

2.1.5 FP functions

Writing programs in Backus’ FP style is easy. The only disadvantage over FP is the
requirement of longer names for functors and functions (FP uses many special symbols).
Also, before a built-in ALLOY function is used, it must be made unary by applying
function fp-fun to it. Normally though, it would be simpler in ALLOY to use higher
order functions

Here are some functions written in fp style using the £p utilities:
(require "fp")

(setfun fp-list-length(e)
(return ((h-comp (h-red sum 0) (h-map (h-const 1))) e)))

(setfun fp-int-prod(e)
(return ((h-comp (h-map (fp-fun times)) fp-trans) e)))

(setfun fp-mat-prod(e)
(return (let ((f (h-compn (h-map (fp—fun sum))
(h-map fp-int-prod)
fp-distl)))
((h-compn fp-trans (h-map f) fp-distr
(h-construct car (h-comp fp-trans cadr))) e))))

Test runs:
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ALLOY > (fp-list-length ’(a s d £))

==> 4

ALLOY > (fp-int-prod ’((1 2 3) (4 5 6)))

==> NIL

ALLOY > (fp-int-prod ’((1 2 3) (4 5 6)))

==> (4 10 18)

ALLOY > ((fp—fun sum) (fp-int-prod ’((1 2 3) (4 5 6))))
==> 32

ALLOY > (fp-mat-prod ’(((1 2) (3 4)) ((5 6) (7 8))))
==> ((19 22) (43 50))

2.2 Commitment

Commitment evaluation appears in two basic forms. The most common is or-parallel

evaluation of alternatives. Less common, but not less important, is the ability of the com-

mitment mechanism to control execution of arbitrary processes. This last form becomes

easier to use when combined with object oriented programming.

2.2.1 Tree equality

The next function succeeds only if its two arguments are the same tree. It fails as soon as

the inequality is identified. Thus it avoids redundant computation:

(provide "trees")

(setfun eqtrees(ti t2)
(if (and (cons-p t1) (cons-p t2))
(if [block (block (unless (eqtrees (car t1) (car t2)) (fail))
(unless (eqtrees (cdr t1) (cdr t2)) (fail)))
(return t1))
(return (eql t1 t2))))

Test runs:

ALLOY > (eqtrees ’((1 2)((3))) *((1 2)((3N))

==> ((1 2) ((3)))

ALLOY > (eqtrees (1 ((1 2)((3)))) (2 ((1 203NN
(isotrees (1 ((1 2)((3)))) *(2 ((1 2)((3))N)

==> Uf

If a number of processors linear in the size of the trees are available the above function

determines that trees are equal in O(logn) time, where n is the depth of the trees. Note

that (depending on scheduling) the second call may fail immediately.
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2.2.2 Process management

Object proca provides simple process management operations. It provides operations for
making a call, testing if it is finished, examine the result of the call even before it is
finished, and terminate the call before it is finished. The object is defined in ALLOY as

follows:

(provide "proca')

(class-start proca
(static val _f fin ter closure args)
(methods execute value terminate finished))

(setfun new(c . a)
(set closure c)
(set args a)
(set _f %f))

(setfun execute()
[block (set val (closure . args))
(set _f ’t) (set fin ’t)]
(when fin (return val))
(when ter (return val)))

(setfun value()
(return val))

(setfun finished()
(return _f))

[setfun terminate()
(set ter ’t)
(return (if _f %f %t))]

(class-end proca)

Test runs:

ALLOY > (require "proca")
==>T

ALLOY > (set pl (’new proca sum x 2))
==> % (object of class PROCA)
ALLOY > (’execute p1)

ALLOY > (’finished p1)

==> Uf

ALLOY > (set x 5)

==> 5

==>7

ALLOY > (’finished p1)
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==> T

ALLOY > (’terminate p1)

==> '/.'_f
An object process p1 was created. Then it was called, tested if it finished, then allowed
to finish, and then an attempt was made to terminate it. It is not possible to terminate
it once it is finished.

Test runs:

ALLOY > (set p2 (’new proca (mu() (lreturn (cons 4 (sum y 2))))))
==> Y (object of class PROCA)

ALLOY > (’execute p2)

ALLOY > (’finished p2)

==> %t

ALLOY > (’value p2)
==> (4 . %w)

ALLOY > (’terminate p2)
=>T

==> (4 . %w)

ALLOY > (set y 4)

==> 4

ALLOY > (’finished p2)
==> %t

ALLOY > (’value p2)
==> (4 . %w)

In this example the created process was terminated before it finished execution. The out-
put of the process is available before and after it was terminated. Note that uninstantiated

variables are printed as %w.

2.3 Lazy Evaluation

Lazy evaluation is a natural way for the consumer of a stream of values to control the
producer. Placing a buffer between these two processes adds some advantages of asyn-
chronous communication. It is shown how a buffer can be implemented based on the same

principles.

2.3.1 Integers

The next function returns all integers from an integer on:

(setfun ints(n)
(return (cons n (ints (sum n 1)))))
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Test runs:

ALLOY > (set i (lazy (ints 5)))
ALLOY > (data (car i))

==> 5

ALLOY > (data (cadr i))
=> 6

ALLOY > (data (nth 7 1i))
==> 11

ALLOY > (set i2 (cdrn 10 i))
==> Yw

ALLOY > (data (car i2))
==> 15

ALLOY > (data (car i))
==> 5

2.3.2 Fibonacci

The following functions Fibonacci and Fibonacci return the Fibonacci sequence, the

first eagerly the second lazily:

(setfun fibonaccil()
(return (lazy (£ib 0 1))))

(setfun fibonacci()
(return (£fib 0 1)))

(setfun fib(f1 £2)
(return (let ((£f3 (sum f1 £2)))
(cons £3 (fib 2 £3)))))

Test runs:

ALLOY > (set f (fibonaccil))

ALLOY > (mapcar data (sublist 6 9 f))

==> (13 21 34 55)

ALLOY > (mapcar data (sublist 50 55 f))

==> (20365011074 32951280099 53316291173 86267571272 139583862445
225851433717)

2.3.3 Prime Numbers

Function 1primes returns lazily the list of all prime numbers in order:
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(setfun lprimes()
(return (lazy (primes))))

(setfun primes()
(return (cons 1 (sieve (ints 2)))))

(setfun sieve(l)
(return (cons (car 1) (sieve (filter (car 1) (cdr 1))))))

(setfun filter(x 1)
(if (equal (remainder (car 1) x) 0) (return (filter x (cdr 1)))
(return (cons (car 1) (filter x (cdr 1))))))

(setfun ints(n)
(return (cons n (ints (sum n 1)))))

Test runs:

ALLOY > (set p (lprimes))

ALLOY > (car p)

==> 1

ALLOY > (mapcar data (sublist 1 5 p))
==> (12357)

ALLOY > (mapcar data (sublist 20 25 p))
==> (67 71 73 79 83 89)

ALLOY > p

==> (12357 %w %w %w %w %w %w %w %w %w %w %w %w %w %w 67 71 73 79 83
89 . %w)

ALLOY > (data (nth 15 p))

==> 43

ALLOY > p

==> (12357 % %w%w %w %w %w %w %w %w 43 %w %w %w %w 67 71 73 79 83
89 . %w)

Note that elements of the list of all prime numbers which are not needed are not computed.

In general, lazy evaluation is an easy way to save unnecessary computation.

2.3.4 Buffers

It is often desirable to have a buffer between the consumer and the lazy producer of a

stream of values. This example implements a buffer of variable length.

(provide "buffer")

(setfun buffer(length 1)
(return (let ((rest (bb-1 length 1)))
(lazy (bb-2 1 rest)))))
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(setfun bb-1(n 1)
(if (1t n 1) (return 1)
[block (data (car 1))
(return (bb-1 (diff n 1) (cdr 1)))1))

[setfun bb-2(1 rest)
(data (car rest))
(return (cons (car 1) (bb-2 (cdr 1) (cdr rest))))]

Test runs:

ALLOY > (set f (fibonaccil))

ALLOY > £

==> Y%w

ALLOY > (set fb (buffer 5 f))

ALLOY > £

==> (12358 . %w)

ALLOY > fb

==> Y%w

ALLOY > (data (nth 9 fb))

==> 55

ALLOY > fb

==> (Yw %w %w %w %w %w %w %w 55 . Y%w)
ALLOY > £

==> (1 2 358 13 21 34 55 89 144 233 377 610 . Y%w)

Variable £ is the original stream. Normally, only variable £b would be used once the buffer
was created. Here we read f to see if the buffer works fine. Note that after we asked for

the 9** element of £b the original stream f got evaluated up to its 14" element.

2.4 Networks

Some algorithms are too complicated to be expressed in functional terms. These cases are
more naturally solved as networks of communicating processes. The use of appropriate

objects is convenient in cleaning up such communication.

2.4.1 Asynchronous Systolic Sort

This algorithm makes use of an object which creates a limited form of stream allowing
only back communication. When the way the object works is clear and the properties of
the returning stream understood, understanding this sorting algorithm is easy. The object

putlist is described later in this chapter.
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Each call of function ssort creates a filter (function ssortx) which finds and returns
the smallest element in the input stream (list) and places the rest of its elements in another
stream (object rest), instance of class putlist). Function ssort is called recursively on
that stream. Assuming O(n) processors are available it can sort a list in worst case O(n)

time.
(require "putlist")

(setfun ssort(l)
(return (if (null-p 1) nil
(let ((rest (’new putlist)))
(cons (ssortx (car 1) (cdr 1) rest)
(ssort (’get-orig-head rest)))))))

(setfun ssortx(x 1 rest)
[when (null-p 1) (’end rest) (return x)]
(when (cons-p 1)
[when (gt (car 1) x) (’put rest (car 1))
(return (ssortx x (cdr 1) rest))]
[when (le (car 1) x) (’put rest x)
(return (ssortx (car 1) (cdr 1) rest))]))

Test runs:

ALLOY > (ssort (527 351 4 2 3))
==>(12233455T17)

2.4.2 Merge Sort

Another basic form of streams is realized by objects of class getlist which is described
later in this chapter. Parallel merge sort is more efficient in terms of computational

requirements than systolic sort is as it needs no more than O(nlogn) computation.

(require "merge'")
(require "getlist")

(setfun msort (1)
(return (msortx (’new getlist 1) (length 1))))

(setfun msortx(gl n)
(if (gt n 1)
(return (amerge (msortx gl (quotient n 2))
(msortx gl (diff n (quotient n 2)))))
(return (list (’get gl)))))
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The definition of amerge follows:

(provide "merge")

(setfun amerge(1l1 12)
(when (null-p 11) (return 12))
(when (null-p 12) (return 11))
(when (le (car 11) (car 12))
(return (cons (car 11) (amerge (cdr 11) 12))))
(when (ge (car 11) (car 12))
(return (cons (car 12) (amerge (cdr 12) 11)))))

Test runs:

ALLOY > (msort (527 351 4 2 3))
==>(12233455T7)

2.4.3 Process Networks

The synchronizing value is powerful enough to express simple channels (streams) without
the need for objects. An example of a static network of processes communicating through
a single channel is illuminating. In the next example the stream produced contains all

numbers of the form 2% x 3¥ x f* Vz,y,z > 0:

(setfun hamming()
(return (let (ham)
(let ((mults (mu(c) (lreturn
(mapcar (mu(x) (lreturn (times c x)))

ham)))))

(set ham (cons 1 (amerge (mults 2)
(amerge (mults 3) (mults 5)))))))))

Of course, in general the network of processes does not need to be static.

2.5 Backtracking and Searching

Searching a solution over a domain of values is often necessary. In such cases, having to
create the domain and later iterate on its elements is not only inconvenient or inefficient but
can also be impossible when the domain is infinite in size. The use of generators overcomes
these problems. It is shown that generators can be used for depth first (backtracking) or
breadth first search.
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2.5.1 Generators

The next example gives some uses of simple generators. The next function intsxy returns
one or each number in a range (depending on how it has been called).

(setfun intsxy(x y)
(when (le x y)
(lreturn x)
#!(lreturn *(intsxy (sum x 1) y))))

Test runs:

ALLOY > (intsxy 1 10)

==> 1

ALLOY > #*(intsxy 1 10)

==> (123456789 10)

ALLOY > #(list *(intsxy 1 10))

==> ((1) (2) (3) (4) (5) (&) (7) (8) (9) (10))

ALLOY > #(list *(intsxy 1 2) *(intsxy 5 7))

==> ((1 5) (16) (17) (25) (286) (27))

ALLOY > #*(intsxy 1 *(intsxy 1 5))

==> (1121231234512 34)

ALLOY > #(list *(intsxy 1 *(intsxy 1 3)) =*(intsxy 6 *(intsxy 6 8)))

==> ((16) (16) (17) (16) (17) (18 (16) (16) (17) (16) (17) (138)
(26) (26) (27) (26) (27) (28) (16) (16) (17) (16) (17) (138)
(26) (26) (27) (26) (27) (28) (36) (36) (37) (36) (37) (338)

)

Note the difference in behavior between nested generators and generators in the same
level. In the one case we have a nested triggering, while in the other a cartesian product.

Function intsxy does an amount of computation linear in the number of numbers returned.

2.5.2 Intersection

This example demonstrates the use of generators. Function getmember can generate all
elements of a list using a number of computational steps linear in the size of the list. Note
the cartesian product created in function intersection. Also, all functions can be used
either normally or as generators.

(setfun getmember (1)
(when (cons-p 1) (return (car 1)) #!(return *(getmember (cdr 1)))))

(setfun intersection(sl s2)
#(lets ((x *(getmember s1)) (y *(getmember s2)))
(when (eql x y) (return x))))
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(setfun ismember(x 1)
#(if (eql x *(getmember 1)) (return x)))
Test runs:

ALLOY > (ismember 2 ’(4 2 6))

==> 2

ALLOY > (ismember 3 ’(4 2 6))
==> '/.'_f

ALLOY > (getmember ’(2 4 6 4 1))
==> 2

ALLOY > #*(getmember ’(2 4 6 4 1))
==> (2464 1)
ALLOY > (intersection (2 5 1 3) ’(8 2 6 5))

==> 5
ALLOY > #*(intersection (2 51 3) ’(8 2 6 5))
==> (2 B)

Note that by using the null replicator in function getmember we allow the function to

return the elements of a list with an amount of computation linear in the length of the

list.

2.5.3 Trees scanning

Function get-leaf will return a leaf when called simply and all the leafs when called as

a generator:

(provide "trees")

(setfun get-leaf(t)
(if (cons-p t) (block #!(return *(get-leaf (car t)))
#!(return *(get-leaf (cdr t))))
(return t)))

Test runs:

ALLOY > (get—leaf ’((1 2)((3))))

==> 1

ALLOY > (get-leaf ’((1 2)((3))))

==> 2

ALLOY > (get-leaf ’((1 2)((3))))

==> 1

ALLOY > (list #(list ’leaf *(get-leaf ’((1 2)((3))))))

==> ((LEAF 1) (LEAF 2) (LEAF NIL) (LEAF 3) (LEAF NIL) (LEAF NIL)
(LEAF NIL))

ALLOY > (list #(list ’leaf *(get-leaf *((1 . 2) 3 . 4))))

==> ((LEAF 2) (LEAF 3) (LEAF 4) (LEAF 1))
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ALLOY > (list #(list *(get-leaf °((1 . 2) 3 . 4))
*(get-leaf >((1 . 2) 3 . 4))))
==> ((11) (1 2) (13) (14) (21) (22) (23)(24) (31) (32)(33) (34)
(4 1) (42) (43 (44)

2.5.4 Permutations

This function should be called as a generator and it then produces all permutation of the

list passed to it as an argument.

(provide "perms")

(setfun permutations(1l)
(if (cons-p 1)
(1ist #(lets (((x rest) *(delete-one 1)))
#(return (cons x *(permutations rest)))))
(return nil)))

(setfun delete-one(l)
(when (cons-p 1)
(return (list (car 1) (cdr 1)))
#(return (let (((x rest) *(delete-one (cdr 1))))
(1ist x (cons (car 1) rest))))))

Test runs:

ALLOY > #*(permutations ’(1 2 3))
==> ((123) (132) (213)(231)(312)(321))

2.5.5 N queens

This program solves the N Queens problem. N queens must be placed on a chess board in
a way that they can not attack each other. The number N is given as a parameter. The
same program can find only one solution when called normally. As expected, finding one

solution can be much faster than finding all.

(require "perms")

(setfun queens(n)
(lets ((1st (make-list n)))
#(lets ((poslist (board 1lst *(permutations 1lst))))
(when (not (unsafeall poslist)) (printnl poslist)
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(return poslist)))))

(setfun unsafeall(board)
(when (cons-p board)
(when (unsafe (car board) (cdr board)) (return))
(when (unsafeall (cdr board)) (return))))

(setfun unsafe(q board)
(when (cons—p board)
(when (unsafel q (car board)) (return))
(when (unsafe gq (cdr board)) (return))))

(setfun abs(x)
(return (if (1t x 0) (diff x) x)))

(setfun unsafei(q p)
(when (eq (abs (diff (car q) (car p)))
(abs (diff (cdr q) (cdr p)))) (return)))

(setfun board(lst places)
(return (if (null-p 1st) ()
(cons (cons (car 1st) (car places))
(board (cdr 1lst) (cdr places))))))

(setfun make-list(n)
(if (ge n 1)
(return (cons n (make-list (diff n 1))))
(return ())))

Test runs:

ALLOY > (queens 4)

((4 .3 3.1)(2.4) (1.2)

==>((4 .3 3.1)(2.4) (1.2)

ALLOY > #*(queens 4)

(4.3 3.1)(@.4) (1.2)

(4.2 3.4 (2.1) 1.3

==>(((4 .3) 3. 1)(2.4)1.2)((4.2)B3.4 (2.1).3))

It is important to note here that the possible board configurations are created and tested
in parallel. Also, the space of configurations is not actually created as an entity and in fact
if only one solution is needed some configurations (or parts thereof) may not be created
at all.

A more efficient program would represent all permutations as a lazily evaluated tree.
In this way, many permutations would never be generated. Also, a lot of repeated checks
would be avoided. Of cource, using the permutations in that form would be more compli-

cated.



2.6 Parallel Objects 25

2.6 Parallel Objects

Since objects are often accessed by many processes at the same time it is important that
they do not create bottlenecks. Synchronizing variables allow objects to process many
messages in parallel and to keep their state consistent without the requirement for low

level synchronization.

2.6.1 Counter

An simple class, demonstrating implicit synchronization through dynamic synchronizing
variables, is a counter. This example makes use of the default message mechanism.

(class-start counter
(dynamic v)
(import number-p sum)
(methods eval))

(setfun new(x)
(if (number-p x) (set next-v x) (set next-v 0)))

(setfun eval(i)
(return (block2 (set next-v (sum v 1)) v)))

(class—end counter)

Test runs:

ALLOY > (set i (counter 10))

==> %(object of class COUNTER)

ALLOY > (1list (i) (Peval i) (1) (1))

==> (10 11 12 13)

ALLOY > (i)

==> 14
This object although consistent it is not parallel even if the architecture can support
such parallel operations. On a parallel architecture, we should implement it in terms of
the faa (fetch and add) object. That object is guaranteed to be completely parallel if the

architecture can support it.

Note that both the object i and class counter are treated as if they were functions.

2.6.2 Putlist

An object list whose end can be incrementally instantiated my methods. The head is

available as a normal list/channel. This stream (many-to-one communication) and the
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following one (getlist, which provides one-to-many communication) are often very useful.

The program demonstrates the use of dynamic variables in an object.

Test

(provide "putlist")

(class-start putlist
(static _orig-head)
(dynamic head)
(methods put end get-orig-head)
(interface puter put end))

(setfun new()
(set _orig-head next-head))

(setfun put(x)
(return (let() (set head (cons x next-head)) x)))

(setfun end()
(return (set head nil)))

(setfun get-orig-head()
(return [let(h) (set h _orig-head) (set head next-head)
(set _orig-head nil) hl))

(class-end putlist)

runs:

ALLOY > (list (set pl (’new putlist)) (set h (’get-orig-head pl))
(’put pl1 2) (’put pl 3) (’put pl 4) h)

==> (%(object of class PUTLIST) (2 3 4 . %w) 23 4 (23 4 . %w))

ALLOY > h

==> (23 4 . %w)

ALLOY > (’put pl 6)

==> 6

ALLOY > h

==> (23 46 . %)

2.6.3 Getlist

An object list whose head can be accessed using messages. The tail is incrementally

instantiated elsewhere. This stream provides one-to-many communication.

(provide "getlist")

(class-start getlist
(dynamic head)
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Test

(methods get))

(setfun new(tail)
(set next-head tail))

(setfun get()
(return (let ()
(set next-head (cdr head)) (car head))))

(class—end getlist)

runs:

ALLOY > (set gl (’new getlist (cons 1 gx)))
==> % (object of class GETLIST)

ALLOY > (’get gl)

==> 1

ALLOY > (’get gl)

ALLOY > (set gx ’(4))

==> (4)

==> 4

ALLOY > (’get gl)

==> It

2.6.4 Queue

A parallel queue. Elements can be enqueued or dequeued at any time. The only serializa-

tion is that a dequeue must wait for the previous message (and only the previous one) to

complete.

(provide "queue")
(require "putlist")
(require "getlist")

(class-start queue
(static puts gets)
(import putlist getlist)
(methods enqueue dequeue)
(interface enqueuer enqueue)
(interface dequeuer dequeue))

(setfun new()
(set puts (’new putlist))
(set gets (’new getlist (’get-orig-head puts))))

(setfun enqueue(x)
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(return (’put puts x)))

(setfun dequeue()
(return (’get gets)))

(class-end queue)

Test runs:

ALLOY > (1list (set g (’new queue))
(’dequeue q) (’enqueue q 1) (’enqueue q 2) (’dequeue q))
==> (%(object of class QUEUE) 1 1 2 2)
ALLOY > (’dequeue q)
ALLOY > (’enqueue q 4)
==> 4
==> 4

2.6.5 Blocking Counting Semaphore

This is a counting semaphore. The only serialization is that a p message cannot be

completed until the previous message has be processed.

(provide "semaq")
(require "queue")

(class-start semaphore
(import queue data repeat)
(static q)

(methods p v))

(setfun new(n)
(set q (’new queue))

(vs (if n n 0)))

[setfun p(n)
(ps n) (return %t)]

[setfun v(n)
(vs n) (return %t)]

(setfun ps(n)
(repeat (if n n 1) ~“(data (’dequeue q))))

(setfun vs(n)
(repeat (if n n 1) ~(’enqueue q ’t)))

(class—-end semaphore)
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Test runs:

ALLOY > (set ss (’new semaphore))
==> Y (object of class SEMAPHORE)
ALLOY > (’p ss)

ALLOY > (°v ss)

=>T

==>T

ALLOY > (°v ss)

=>T

ALLOY > (’p ss)

=>T

ALLOY > (’p ss)

2.6.6 Dining Philosophers

The following program provides a solution to the & philosophers problem. In to this
problem, a number of philosophers are having dinner. There are a number of forks equal
to the number of philosophers, placed between adjacent philosophers. A philosopher
spends some time thinking and then attempts to eat. In order to eat a philosopher needs
both forks. After he finishes eating he starts thinking until he is hungry again.

The following solution is starvation and deadlock free:

(require "semaq")

(class-start philosopher
(static id forkl fork2)
(import gt diff printnl)
(common semaphore)
(methods live))

(setfun new(f1 £2 i)
(set id i) (set forkl f1) (set fork2 £2)
(if (gt id 1) (°v c-semaphore)))

[setfun live()
(’p c-semaphore) (’p forkl) (’p fork2)
(’v forkl) (°v fork2) (’v c-semaphore)
(1ive)]

(class-end philosopher)

; Dinner for 5.

(setfun dine()
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(let ((£1
(£3

(£f5
(’live
(’live
(’live
(’live
(’live

Test runs:

(’new
(’new
(’new
(’new
(’new
(’new
(’new
(’new

ALLOY > (dine)

semaphore 1)) (f2 (’new semaphore 1))
semaphore 1)) (f4 (’new semaphore 1))
semaphore 1)))

philosopher f1 £2 1) n)

philosopher f2 £3 2) n)

philosopher £f3 f4 3) n)

philosopher f4 f5 4) n)

philosopher f5 f1 5) n)))

A general solution to this problem and one which does not make use of any particular

trick (i.e. keeping one of the philosophers out of the room) to avoid deadlocks can be

found in the progs directory.
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This chapter gives a precise definition of the small ALLOY kernel and some useful libraries.

3.1 Introduction

ALLOY is a dynamically typed, statically scoped parallel programming language based
on the programming paradigms of functional and object oriented programming, in a way
that subsumes most of the logic programming paradigm.

Evaluation modes support serial or parallel execution, eager or lazy evaluation, and
non-deterministic evaluation or multiple solutions. Multiple solutions are used and con-
trolled by the replicator control structure.

Variables are synchronizing. Any attempt to read the value of a variable returns its
current value or its future value if it has no value at the time. When a process needs to
examine the value of such a variable it suspends until a value is available from it. No
objects can be destroyed, but their space can be reused for other objects when they are
no longer accessible.

Functions can fail but if they succeed they can also return a result. They are objects,
instances of the built-in class closure. Closures evaluate when sent message ’eval. A
function call, sends the default message ’eval to an object. Any object (not only closures)
which accepts this message can be called as a function. Parameters are always passed by
value. Local and Global commitment of the evaluation of a closure are possible. When

a function commits, useless processes it created are killed. This mechanism provides or
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parallelism, non-deterministic selection, generators, and exceptions.

Functions can be called as generators. In that case, instead of committing at the
first opportunity, functions can return many values. These generators can be driven with
the replicator control structure or by other generators. The replicator and generators
are useful for searching in a serial depth first or parallel breadth first way, can provide
backtracking, and combine multiple results.

Object oriented programming is fundamental in ALLOY. Every value in ALLOY,
including classes, messages, functions, and other objects are first class objects. Any can
be used as a function. Everything, except classes, is an instance of a class.

If the name of a message to a class is omitted it is assumed to be ’new. Thus, classes
can be requested to produce an instance of themselves using a syntax like that of a function
call. For example, the basic operation for list management, cons, is a class and its instances
are pairs.

Multiple inheritance is available through delegation. Special variables self and here
have the usual meaning. Any object can have many abstract interfaces. While normal
static variables can be used to describe the state of objects, dynamic variables are useful

in the definition of parallel objects which can process many messages at the same time.

3.2 Essential expressions and primitives

This section lists and explains all the primitive expressions and operations in ALLOY. This
can be thought of as the ALLOY kernel. Most non-essential expressions and operations

are easy to to define in term of the essential ones.

3.2.1 Literal Expressions and Variables

e (quote e)

Its value is the argument itself unevaluated.

® name
A synchronizing variable. Any attempt to read the variable returns a value-to-
become object if a value is not yet available. When a process needs to examine the
value of such a variable it suspends until one is available. A variable is distinguished

as uninstantiated if it has not been assigned to anything, and set or instantiated if
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it has.

3.2.2 Essential Special Expressions

o (e1e3---€n)
A message is sent to object ez when e; evaluates to a symbol (message name).
The message is then processed by the method with that name in that object. If
no method with that name is defined (or inherited) the call fails. All expressions
evaluate in parallel and the method handling that message is called as soon as it is

available.

The message’s name is optional and is assumed to be omitted when e; is not a
symbol. In that case, if €1 is a class, it is assumed to be preceded by symbol ’new.
If e1 is a non-class object it is assumed to be preceded by symbol ’eval. This makes
functional-style calls possible. In other words, message name ’new is the default for

classes and message ’eval is the default for objects.

o (ecreg--- . ep)
Similar to the above. In general the arguments can be incomplete (or even infinite)

expressions which are matched against the formal arguments.

o [...]
Similar to (...) but arguments are evaluated serially, and the call is made after all

arguments have been evaluated.

3.2.3 Essential ALLOY primitives for functional programming

o (mu args-pattern ejeq---e,)
Creates a new function/closure. The closure is an object, an instance of class
closure. However, this class is not allowed to create closures directly with the

’new message.

The function has access to the environment that is accessible at the point of the
closure’s creation. The argument’s pattern is an expression of variables. It can
be an incomplete list, a single variable, can contain other expressions etc. When

message ’eval is sent to a closure (implicitly or explicitly,) the function is invoked
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and the expressions forming its body evaluate serially or concurrently depending on

the type of bracket the body is enclosed in, in the definition.

Unless a function is explicitly requested to succeed and return a result (see special
form return), it fails. A function that fails returns a special value which is being
refered to as the failure value. The failure value does not behave like a normal

generator and can be used in conditional expressions.

(return e)

The global return. It affects the outermost statically visible function. Useful when
it is needed to make that function return a value from a closure nested in another
closure. It can also be used for exceptions. If the function has not been called as a
generator it commits and returns the value which is the parameter of the lreturn
expression. As a result of the commitment, all processes created by that function,

except the ones created by the return expression, are killed.

If that function has been called as a generator then each return expression does
not commit execution of the function but just provides one more result for the
function. In the latter case, the return expression is not considered complete until
a new value has been requested from the generator. This is useful when we need to
control execution of a generator depending on the way the generator is used (e.g.

backtracking).

(fail)

The global failure. It affects the outermost statically visible function. If that function
has not been called as a generator then the effect of this expression is equivalent to
(return ((mu() ))) (i.e. returning a failure). If that function has been called as a

generator then its execution terminates and no more values are generated by it.

3.2.4 Essential ALLOY primitives for lazy evaluation

o (lazy e)

The argument and every expression evaluated as a result of that is evaluated lazily.
That is, it is not evaluated unless its value is needed. There is one exception:
Expressions which a) are called in functions called as a result of the evaluation of

this expression and b) are not evaluated by (1)return statements evaluate eagerly as
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soon as the result(s) of that function is needed.

o (eager e)
This results in having the argument evaluate eagerly. Used to guarantee eager exe-

cution even when the call was lazy.

3.2.5 Essential ALLOY primitives for generator calls/use

® # erpr
Replicator operator. The expression is replicated once for each combination of the
values returned by the enclosing (non-nested) generators. An attempt to form a
new replica starts as soon as a new value is needed (this can be delayed during
serial execution or lazy evaluation). New values are requested from the generators

as needed. Replicas are executed as soon as they get created.

o #! expr
Null Replicator. It replicates and evaluates its arguments like the normal replicator
does, but apart from side effects (i.e. a return statement) it looks as if no replication

has taken place. Efficient.

® * erpr
If argument is a function call the function behaves as a generator. It also returns
values on demand. See return expression. If the generator contains other generators
it is called once for each combination of the results of the enclosed (non-nested)

generators.

If argument is not a function call then is a value and generates itself. However the
failure value does not generate anything. This allows the expression of conditional

expressions.

3.2.6 Essential ALLOY primitives for object oriented programming

o (class-start class — name class-declaration-list)
Starts definition of a class. The current implementation allows such a definition only
at the top level. After the definition of the class, variable class-name will contain

the object representing this class. Thus classes, as well as messages and any other
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objects, are first class objects.

A class can contain methods and local functions while its state can be described

using static or dynamic variables.
class-definition-list is a list of any of the following declarations:

— (static name ...)
Declares the static variables describing the state of an instance. Static variables
are normal (single-assignment, synchronizing) variables. These variables are
initially uninstantiated. They can be instantiated with the set expression.
Each message while it is processed has access to these variables. An attempt to
access an uninstantiated state variable returns the future value of that variable.
An attempt to examine a future value is suspended until the future value is
known.

— (dynamic name ...)
Declares the dynamic variables describing the state of an instance. Fach mes-
sage while it is processed has access to its own set of dynamic variables, and
also to those of the next message. These variables are initially uninstantiated.
They can be instantiated with the set expression.

— (import name ...)
Declares variables imported by the class from the enclosing scope. These vari-
ables are initially uninstantiated.

— (common name ...)
For each class name an instance of it is created and called c-name. That instance
is known to all instances of the defining class.

— (methods function-name ...)
Defines the methods of the class. All other functions defined in the class are
not methods.

— (interface interface-name method-name ...)
Defines an auxiliary interface to the class. There can be any number of in-
terface declarations. interface-name becomes a method of the class returning
a restricted form of the recipient-object accepting only the interface methods.

Only interfaces which are subsets of the current interface can be requested from
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an object.

(class-end class-name)

Ends definition of a class. The top level object as well as classes during their def-
inition implicitly provide definitions for all possible variables. If a variable is used
during the definition of a class, then it is treated like a static variable. After the

definition of the class, no new variables can be created.

(’new class-object argument ...)
Creates and returns a new instance of the class described by the class object. Method

new can be customized.

next_name
Is the instance of the dynamic variable name which is/will-be current for the next

message to this object.

(set wvars-pattern e)
Gives values to uninstantiated variables. Returns the pattern of variables with their

values, but failure values wherever a variable already had a value.

(*delegate object)

Delegates current message to object. Returns the result from its processing.

(’resend object)

Re sends current message to object. Returns the result from its processing.

self
Is the first object which received the current message directly, and not as a result of

delegation.

here

Is the current object.

3.2.7 Other essential ALLOY primitives

o (eql e €3 - €p)

Returns the last of the expressions if they are equal. Otherwise returns the failure
value. Two objects are equal if they are the same object (i.e. pointers), equal

numbers, equal atoms, or equal strings.
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3.3 Non-essential special forms and primitives

The following features can be implemented either directly in the language itself or with

some simple pre-processing. These are available as built in for convenience.

3.3.1 Special forms

A special form, in contrast to a function call, does not follow the normal evaluation rules.

It can be thought of as a macro that replaces itself by some regular function call.

Obtained through pre-processing

These special forms require some non-local pre-processing. In practice it will be easier to

have them implemented directly.

e (lreturn e)

The local return. Affects the local-most function.

e (1fail)

The local failure. Affects the local-most function.

o (var-p wariable-name)

Succeeds if variable is not set. It can be implemented in terms of an enhanced sa-var

class.

e _other-name
A multiple assignment variable (experimental). This is a conventional variable. All

multiple assignment variables are initialized to nil. It can be implemented in terms

of ma-var class.

Macros
The following expressions are simple macros:

e (setfun name vars-pailtern ejes---ey,)
The same with (set name (mu wvars-pattern ejes---€,)) except that a function can
be redefined if it exists at the top level. This redefinition can, in theory, be achieved

by keeping closures inside multiple assignment variables.
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o (setfun (name vars-pattern) ejeq---ey,)

The same as above.

o (let ((wars-pattern expression) ---) bey bes --- bey,)
First evaluates expressions and binds the patterns of variables. This is done in
parallel or serially depending on whether these bindings are given in parentheses or
brackets. After that, if the bindings are evaluated serially, or in parallel, if they are
evaluated concurrently, the expressions be; in the body of let are evaluated. The
result of be, is the result of the let expression. Evaluation of the expressions in
the body is done concurrently or serially, depending on whether the let expression

is enclosed in parentheses or brackets.

If an ezpression is not available the corresponding variable is left uninstantiated.
Uninstantiated variables can be given a value with the set expression as with the
state variables of objects. This macro uses objects to create uninstantiated variables.
When be,, is a generator, and let is called as a generator, Llet can return all the results

of be,,.

o (lets ((wars-pattern expression) ---) bey bes --- bey)
Like the 1et expression but returns a failure value by default. An lreturn expression

can be used to return something else.

o (letrec ((wars-pattern expression) ---) bey bey --- bey)
Like the let expression but all ezpression can access the variables in wvars-pattern.

Useful for the definition of recursive local functions.

e (letrecs ((wars-pattern expression) ---) bey bey --- bey)
Like the letrec expression but does not return anything by default. An lreturn

expression can be used to return something.

o (when e; €9 -+ €,)
Conditional expression. It first evaluates the first argument and only when it be-
come clear that it will not fail, does it start evaluating the rest of the arguments.
Evaluation of the body expressions follow the usual rules of serial/parallel evalua-
tion. Similarly, e; does not have to finish execution before the other arguments start
executing, unless evaluation is serial. It returns the value of e, when e; succeeds,

the failure value otherwise.
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o (if e; ey e3)
Conditional expression. Evaluates and returns the second argument if the first one
succeeds but the third one otherwise. The third argument is optional and is assumed
to be the failure value if it is missing. Again, the rules of serial/parallel evaluation

are followed.

o ’ ¢
Equivalent to expression: (quote e).

[ ] €

Equivalent to expression: (mu () #(lreturn e)).

e

Equivalent to expression: [mu () #(lreturn e)].

o (delay e)

Equivalent to expression: (lazy (eager €)).

Macro expressions for useful types

e number

Returns an object representing that number.

e "siring"

Returns an object representing that string.

Other messages accepted by objects

The pre-processor adds these messages to a class at the moment of its definition.

e (’class-p class)

If argument is a class, its name is returned.

e (’object-p object)

If argument is a not a class, the name of its class is returned.

e (’class object)

Returns the class in which the object belongs.

The following function is used for conventional type checking:
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e (name-p object)

Succeeds only when the object is an instance of the class with name name.

3.3.2 Basic objects

There are special syntactic conveniences for the creation of each one of them. For example
a number can be created just by writing it normally without having to sent a *new message

to its class etc.

List management

Since lists (objects of class cons) are very useful objects, the following functions are pre-

defined to ease their use:

e (car e)

The car (first element) of a pair (an object).

o (cdr e)

The cdr (second element) of a pair.

o (cons €1 ey - €,)

Groups the expressions in a list of pairs.

o (list e; ey - €,)

Like cons but the last element of the last pair is the special atom nil.

e (null-p e)

Same as (eql e nil).

e (nth n e)

Will return the n'? element of list e.

e (carn n e)

Will return the nt? car of list e.

o (cdrn n e¢)

Will return the nt? cdr of list e.

e (sublist i j e)

Will return the part of list e from position ¢z to position j.
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e (append l; Iy --- 1)

Returns the concatenation of the lists given to it as arguments.

e (length [)
Will return the length of list /.

e (mapcar function_message [)

Will return the list of the results of the application of function_message to each of

the elements of list /.

Square List management
Square lists (printed in square brackets) are used in serial evaluation. These are objects

of class scons. The following functions are predefined for ease of use:

e (scar ¢)

The car (first element) of a square pair (an object).

o (scdr ¢)

The cdr (second element) of a square pair.

e (scons €1 ey --- €,)

Groups the expressions in a list of pairs.

Arithmetic Functions
Here are some messages accepted by numbers:

e (’string number)

Returns a string containing the characters in the decimal representation of the input

number.

The following is a list of predefined functions operating on numbers:

o (sum number ...)

Will return the sum of its arguments. Like the functions described bellow, the

operation treats its arguments in a left associative way.

o (diff number ...)

Will return the difference of its arguments.



3.3 Non-essential special forms and primitives 43
o (times number ...)
Will return the product of its arguments.
o (div number ...)
Will return the the division of its arguments.
e (quotient number ...)
Will return the quotient of the division of its arguments.
e (remainder number ...)
Will return the remainder of the division of its arguments.
o (eq number ...)
Returns first argument if all arguments are equal numbers, otherwise fails.
o (1t number ...)

Returns first argument if all arguments are numbers and of each pair of successive

ones the first is less than the second, otherwise fails.

o (gt number ...)
Returns first argument if all arguments are numbers and of each pair of successive

ones the first is greater than the second, otherwise fails.

o (le number ...)
Returns first argument if all arguments are numbers and of each pair of successive

ones the first is less than or equal to the second, otherwise fails.

o (ge number ...)
Returns first argument if all arguments are numbers and of each pair of successive

ones the first is greater than or equal to the second, otherwise fails.

Atoms

Here are some important messages accepted by atoms:

e (’string atom)

Returns a string containing the characters in the name of the input atom.

Strings

Here are some important messages accepted by strings:
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e (Patom string)

Returns an atom whose name consists of the characters in the input string.

e (’number siring)

Returns a number represented by the input string.

e (’explode string)
Causes the string to return the characters it contains as a list of strings, one for each

character.

o (’append s; Sz ... Sp)

Returns a string containing the characters of the argument strings in order.

3.4 Recommended Libraries

These are some utilities which are easily implemented in ALLOY. It may be necessary to

execute the require function before their first use, in order to have their definition loaded.

3.4.1 Higher order programming

A number of predicates facilitating higher order programming. They are defined in library

file higherf. Can be loaded using the require expression.

Functions taking functions as arguments

e (reduce function value list)

Equivalent to (function Iy ... (function I, value)).

o (filter predicate list)

Equivalent to (function Iy ... (function I, value)).

e (mapcar2 function listl vlist2)

Applies function to pairs of elements from the two lists with the same position.

Returns the list of results.

e (mapcarn function Iy I, ... 1)

Like mapcar2 but for any number of lists.
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Functions returning functions
The operation of the returned functions is given with an brief description and an example.

o (h-bu function value)
Returns a unary function which when applied to an argument a returns (function

value a).

e (h-rev function)
Returned function expects the arguments of function in the reverse order. Special

case is function h-rev2 for binary functions.

o (h-red function value)

Returned function does reduction using function and an initial value of value.

o (h-dup function)
Returns a unary function which when applied to an argument a returns (function «a

a).

o (h-comp f1 fi)

Returned function is a composition of argument functions.

o (h-compn f1 fo ... fn)

Returned function is a composition of argument functions.

e (h-Const wvalue)

Returned function always returns value.

e (h-construct f; fo ... f)

Returned function takes n arguments and passes one to each unary function f;.

o (h-mapn f; fo ... fn)
Returned function maps function f; to the elements of its i** argument successively
and returns the list of the results of each mapping. Efficient special cases are func-

tions h-map and h-map2.

FP support

A number of predicates facilitating programming in FP style is provided in library file

fp. It can be loaded using the require expression. All of these functions (except £p-fun)
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expect one physical argument which is a list of the actual arguments.

o (fp-fun function)

Returned function expects all the arguments of the original function in one list.

o (fp-rev function)

Returned function expects the argument list in the reverse order.

o (fp-trans (list; listy ... list,))
The lists in the input list must have the same length. The returned list has length
equal to the length of list; and the elements are lists of length n. The j** element

of the " sublist returned is the it" element of list;.

o (fp-distl (walue list))
Returns a list whose elements are lists of two elements the first of which is value and

the second the corresponding element from list.

o (fp-distr (walue list))

Distributes value to the right of the elements in list.

3.4.2 Input Output

Objects of these classes are responsible for I/O to the screen or files. These classes can

not be defined in ALLOY itself.

Input

Class input accepts message ’new and optionally an argument which must be a string and
must be the name of a file. If the argument is string "console" then the objects gets input
from the console. Object input-console is predefined and gets input from the console.

Objects created by this class accept the following messages:

e (’new input file-name)
Will return an object for input from the file. The file name is optional. If it is not

given, the default is "console".

e (’read input)

Will read an expression from object input.
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(’read-line input)

Will read the next line as a string from object input.

(’read-stringl input)

Will read a string of length 1 from object input.

(’eof input)

Succeeds only if end of file has been reached.

(’empty input)
Succeeds only if a character is available. This is especially useful in a parallel en-
vironment as it can be used to peek at the input stream and read only when some

input is indeed available, thus avoiding unnecessary blocking.

(Pactive input)

Succeeds only when the stream has not been closed.

(’close nput)

Closes the stream.

Output

Class output accepts message ’new and optionally an argument which must be a string
and will be the name of a file. If the argument is string "console" then the objects
sends output to the console. Object output-console is predefined and sends output to
the console. Object error-console is predefined and sends output to the error console.

Objects created by this class accept the following messages:

o (’new output file-name)
Will return an object for output to the file. The file name is optional. If it is not

given, the default is "console".

e (’print output e)

Will print expression e to object output.

e (’printnl output e)

Will print expression e to object output and sent a new line character too.

e (’nl output)

Will sent a new line character to object output.



48 Reference Manual

e (Pactive output)

Succeeds only if the stream has not been closed.

e (’close output)

Closes the stream.

A failure is printed as %£, an uninstantiated variable as %w, a class as %(class NAME),

and other objects as %(object of class NAME).

3.4.3 Miscellaneous objects

These features are provided in the form of predefined classes. They can be used directly
in the global object but have to be imported in other objects before they can be used.
Some of these objects must have certain behavior when implemented on serial or parallel

architectures.

Single Assignment Variable
Messages associated with class sa-var and its instances:

e (’new sa-var value)
Will return a new single assignment variable with initial value value. If no initial

value is given to the variable it is not initialized.

e (’put sav value)

If sa-var has no value it is set to value and that value is returned, otherwise it fails.

e (’get sav)

The value (current or future) in se-var is returned.

o (’reader sav)

Returns a version of the sav accepting only message ’get.

o (’writer sav)
Returns a version of the sav accepting only message ’put.
Multiple Assignment Variable

Messages associated with class ma-var and its instances are similar to those for the single

assignment variable except that new values can be given to it and it is initialized to nil.
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Single Assignment Vector

A collection of single assignment variables identified by an integer number (the position).
The collection has a defined size. Implementations of this object must provide constant
time access to any element without respect on the size of it. Messages associated with

class vector and its instances are:

o (’new vector size)

Will return a single assignment vector of size size. The first element has index 0.

e (’put sav position value)

Will put value in position of single assignment vector saw.

e (’get sav position)

Will return the value in position of single assignment vector saw.

Multiple Assignment Vector

Messages associated with class ma-vector and its instances are similar to those for the
single assignment vector except that new values can be assigned to the same position and
positions are initialized to nil. Implementations of this object must provide constant time

access to any element without respect on the size of it.

Single Assignment Dictionary

Messages associated with class dictionary and its instances are similar to those for the
single assignment vector except that the position is now a name instead of an integer

number. Also, no size declaration is needed.

Multiple Assignment Dictionary

Messages associated with class ma-dictionary and its instances are similar to those for the
single assignment dictionary except that new values can be assigned to the same position

and positions are initialized to nil.
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Top Level Caller

Class top-level-caller creates objects which accept the message ’top-level-funcall.
This message must be accompanied with arguments a function and the arguments of that
functions. That function call is executed at the top level. Useful in the writing of monitors.

This object must be completely parallel when implemented in parallel systems.

Fetch and Add

Class faa creates objects which accept the message ’faa. The object initially represents
the number 0. Message ’faa must be accompanied by a number y as an argument. When
a message is sent to this object the number z represented by that object is returned and
subsequently that object represents number x 4+ y. This object must be completely parallel

when implemented in parallel systems capable to support that.

Other Objects

Classes semaphore, queue, putlist, getlist, and proca are defined in ALLOY later in this
manual. They are often useful. Other useful objects and functions can be found in the

progs directory as explained earlier.

3.4.4 Miscellaneous

Variables
o If
Set to a failure value (e.g. produced by call ((mu() )).

o Ut

Set to a true (i.e. ’t).

Boolean functions
e (and €1 ey - €p)
Returns the conjunction of the arguments values as soon as possible.

o (or e1 €9 -+ €,)

Returns the disjunction of the arguments values as soon as possible.
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e (not e)

Returns the negation of the argument’s value.

e (and-call c¢; ¢o --- ¢,)
Returns the conjunction of the results returned by calling the arguments, as soon as

possible. Kills incomplete calls as soon as possible.

o (or-call c¢; cg --- ¢p)
Returns the disjunction of the results returned by calling the arguments, as soon as

possible. Kills incomplete calls as soon as possible.

o (equal €7 ey - ey)

Like eql but works for list as well.

Blocks

o (blockl e; ey - €,)

Returns the value of the first parameter.

o (blockn e; €3 --- €,)

Returns the value of the last parameter.

o (block e1 €3 --- €,)

Returns t.

Loops

e (while ¢, c.)

Calls ¢, if ¢, when called succeeds. Repeats as soon as evaluation of ¢, has completed.

e (until ¢, c.)
Calls ¢, unless ¢, when called succeeds. Repeats as soon as evaluation of ¢. has

completed.

e (repeat n c.)

Calls ¢, » times in parallel.

o (srepeat n c¢.)

Calls ¢, n times serially.



52 Reference Manual

System Functions

e (include fname)
Includes the contents of the file as if it were typed from the terminal and read at

the top level.

e (load fname)
Like include but will inhibit printing.
e (require property)
If property has been provide-ed nothing happens. Otherwise file property.a is loaded

been found the file in the appropriate path.

o (provide property)

Declares that property has been provided.

e (add-require-path directory)

Adds directory to the path of files provide-ing properties.

o (read)

Will read an expression from the console using object input-console.

e (print e)

Will print the value of expression e to the console using object output-console.

e (nl)

Will print a new-line to the console using object output-console.

e (warning-exec)

Toggles on and off various warnings during execution.

e (warning-load)

Toggles on and off various warnings during loading.

o (exit)
Will exit ALLOY.
Implementation Specific Functions

® (scheduler-switch-steps number)

Sets the number of context switches performed by the scheduler, before the scheduler
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schedules a process in random. To enhance parallelism use a small number.

(warning-exec)

Will switch execution warnings on/off.

(trace)

Will switch tracing on/off.

(time-prompt)

Will switch on/off printing of execution times.
(stats-prompt)

Will switch on/off printing of statistics.
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Chapter 4

Functions, Closures, and their

Evaluation Modes

This chapter describes the functional part of ALLOY. It consists of two parts: closures
and their evaluation modes.

ALLOY’s commitment to simplicity and unification of features appears at this basic
level too. Functions are closures, closures are objects, and objects can be used as functions.
Methods are closures.

ALLOY closures provide commitment, and can behave as either functions or genera-
tors. Evaluation can be parallel or serial, eager or lazy, single or multiple solution. These
modes can be combined freely.

The result is believed to be a more natural parallel functional environment than the im-
pure and/or complex models that have been used in other languages of this type. Finally,
the functional part of ALLOY is compared with some parallel functional programming

languages.

4.1 Introduction

The design of ALLOY closures has been greatly affected by the assumption that a practical
language using it would support object oriented programming. This consideration allowed
closures to be simple, since features such as state, powerful streams, and other abstract

data types are handled naturally with object oriented facilities.

55
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In ALLOY, closures are just instances of the special predefined class closure. Special
syntax is provided to simplify functions calls. Any object which accepts message ’eval
(like all closures do,) or an object which accepts message *new (like all classes do,) can be
called as a function.

A closure encapsulates a number of function calls with the environment at the time
of its creation. A commitment mechanism is available in closures which makes or-parallel
execution possible.

A call (or message in general) can be made serially or in parallel. It can evaluate in an
eager or lazy way. Finally, it can be requested to return one or many solutions. Chapter 3
should be consulted for the precise definitions.

Function calls requested to return all solutions are called generators. Generators are
managed by replicators. The replication process is controlled by the environment which
can make use of serial or parallel, eager or lazy evaluation modes. These abilities are
described extensively in chapter 6.

Finally, ALLOY closures and evaluation modes are compared with analogous features

in other programming languages.

4.1.1 Why another Functional Kernel?

The functional kernel of ALLOY is not simply an extension of Lambda Calculus but
is different and significantly more powerful. Pure Lambda Calculus has some serious

disadvantages:
e No generators, backtracking, or non-determinism. No facilities for searching.
e No ability to select between serial /parallel evaluation mode.
e No ability to select between eager/lazy evaluation mode.

e Cannot handle large data structures efficiently. Environment of closures cannot be

updated.
e Can not express process inter-dependencies among functions (except through simu-
lation).

Lambda Calculus has been extended during the design of many functional program-
ming languages. One significant such extension was the conditional expression which

removes the requirement for non-strict evaluation. Still, it is an extra feature for a specific
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case of non-strict evaluation.

Languages which use strict evaluation can also provide delayed evaluation (e.g. using
closures) but still do not provide lazy evaluation (possibly because of undesirable interac-
tions with other extra features). Scheme is one such language.

Another important extension is the assignment expression. This ability to give to a
variable its value after the variable has been defined allows one to create recursive functions
in a simple way as well as to create simple abstract data types' with modifiable state.
Unfortunately in this case variables are not single assignment any more.

When both serial and parallel evaluation techniques are supported, parallelism is usu-
ally provided in a way that can be weak (e.g. synchronization, mutual exclusion, or
searching may be hard,) impure (e.g. parallelism is not just an evaluation mode,) or
both. MultiL.ISP [Hal86] chose the impure way and allows arbitrary processes to deter-
mine the value of futures. Queue Based Multiprocessing LISP [GM84] provides an impure
mechanism to kill, suspend, or resume an arbitrary process.

CFL [L.S87] provides only parallel evaluation while serial evaluation is provided as the
ability to compile a function using a different compiler.

While non-deterministic execution and backtracking did appear in some serial FPLs
(i.e. LISPkit by Henderson [Hen80]), in parallel FPLs only non-deterministic evaluation
has been incorporated (i.e. CFL by Shapiro [LS87]). Generators are not available in
PFPLs to our knowledge. ICON, though not exactly functional, supports generators.

ALLOY closures and their associated evaluation modes attempt to provide a solution
to the above problems. Together with classes (of more general objects), they form the
programming language ALLOY. Special care has been taken so that ALLOY closures are

kept small, concise and efficient.

4.2 Closures

ALLOY closures are objects, instances of class closure. This is a class which must be
provided by ALLOY although it does not have to be part of the kernel. Closures provide

normal, anonymous, and higher order functions. These functions support commitment

!Environments accessible only by some functions can then be modified by that function using
set
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and can return one or many solutions.

4.2.1 Functions

Naturally, since functions are objects, they are first class values. Although objects are
formed by sending message ’new to their class, closures are formed with a special expres-
sion. This is mostly for convenience but also because it makes creation of closures more
static. If the ability to create closures with dynamically created bodies is found, in the
future, to be desirable, then class closure will be allowed to create closures directly.

Closures can be formed by using an expression like (mu formals call; cally ... call,).
Expression formals is matched against the actual arguments of the call. Any names
appearing in formals are treated as variable patterns. Constructor mu is used since pu is
the letter after A in the Greek alphabet.

Functions can fail but if they succeed they can also return a result. During evaluation
of a function’s body the function can commit evaluation of its body to return a result. A
function commits? when a return statement is reached at which point all processes created
by that function, except those created by the return statement, are killed. Commitment
can be local (1return statement) or global (return statement). Local commitment commits
evaluation of the innermost function call whereas global commitment commits evaluation
of the innermost global-function? call.

Functions can fail explicitly with a (fail) special expression. There is a local form
of this statement as well. A function called normally can also signal failure by returning
a failure value. Functions called as generators however, can only signal failure with the

(fail) special expression.

4.2.2 Environments and Values

Variables can be declared as arguments of functions. They are single assignment and
synchronizing. Such a variable is always given a value during parameter passing. A

function call returns the future of its result. At some later point in time, this future may

? This feature makes possible the definition of objects such as proca (chapter 2) which allows
for the creation and termination of an arbitrary processes. A process can only be suspended and
resumed when appropriately written.

#Global functions are functions whose definition is not local to another function. Such functions
are functions defined at the top level of a class.
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become an actual value. When a process needs to examine a future value it suspends until
the actual value is available®.

The scope of variables is static. Thus, a function created in the scope of a variable
has access to it. Type checking is dynamic. Structures can be created dynamically but
cannot be destroyed or modified® but their space is garbage-collected when they cannot be
accessed any more.

The top level of ALLOY is also an object. It is assumed to have definitions for
all possible variables. These variables form the state of the top-level object and like
other state variables they can only be initialized using the set expression (see chapter 5

subsection 5.1.1).

4.3 Evaluation Modes

In ALLOY, a program is a set of class declarations and message passing operations. This
section describes how a message can be sent or a function call be made, and shows how

to select the style of evaluation.

4.3.1 Message passing and Function Calls

To send a message with some arguments to an object the syntax is a list with first element
the name of the message (must be a symbol,) second the object itself, followed by the
arguments of the message.

When the message name is omitted, in which case the first element of the message is
not a symbol, it is assumed that the message name is ’new or ’eval depending on whether
it is sent to a class or not. Thus, closures and other objects can be called in a more
functional style. Since function calls are just special cases of messages, the terms message
and function call will be used without distinction, unless otherwise specified.

The arguments of function calls can be evaluated serially or in parallel. A function
can commit during evaluation of its body into returning a result or not. Functions can be

called as generators. Functions can evaluate in an eager or lazy way.

*The actual value may be formed in terms of future values too.
®Unless they contain objects whose state can change.
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4.3.2 Evaluation Modes

In a message (i.e. list in a position of evaluation) whose elements are surrounded by
parentheses (which we sometimes refer to as round brackets) the elements are evaluated
in parallel. As soon as the body of the function which must evaluate the message is known,
the body is evaluated. In a message whose elements are surrounded by square brackets
the elements are evaluated serially. As soon as evaluation of all elements is complete, the
respective function is called. Thus, calls made in round brackets result in a more natural
unrestricted evaluation.

Normally expressions evaluate in an eager way. However expressions evaluated in an
expression as in (lazy e) evaluate lazily. The body of a function always evaluates in an
eager way until commitment. If the call was lazy, the expression whose value the function
is committed to return, is evaluated lazily. This complication is necessary because of
the non-deterministic behavior of a function before commitment. Expressions evaluating
lazily evaluate only as much as is needed to produce the part of the result that needs to

be examined at the time. Then they suspend until a new part of the result is needed.

4.3.3 Generators

Functions can be called as generators by prefixing the call by the operator *. In that case,
a function does not commit. Thus, a function can return many results. Where a function
would fail when called normally, if called as a generator it would not return any result.
Generators exist in a replicable environment. That is a call prefixed by the operator #.
Any value is a generator of itself but a failure generates nothing.

An expression prefixed with the replicator operator # is replicated once for each set of
values of the (first level) generators in the expression. The value of a generator is needed if
it is necessary for the replication to take place. Unless the value of a generator is needed,
the return statement which provided it is not considered to be finished. This makes
possible for the replicating process to control the generator (thus making backtracking
possible).

ALLOY does not need any conditional expressions. The replicator is powerful enough
to express conditions. The idea is that we use the value of the condition as a generator

and since a failure generates nothing we can replicate and execute an expression only when
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a condition is true. More details on generators are given in chapter 6.

4.4 Macros for Local Environments

Two expressions, lets and let are available in ALLOY. As in LISP, they simplify auto-
matic creation-and-call of closures. In other words, they simplify creation of local envi-
ronments.

In addition, these two macros are made to create uninstantiated variables when no
value is given to them. In such cases the macro expansion is more complicated. For
each let expression an extra class must be created whose instances (objects) are given
all the accessible variables. These objects contain the actual body of the let expression.
The uninstantiated variables are state variable of the object. These variables can then be
initialized with the set expression as in (set formals expression) using pattern matching
as with parameter passing. The set expression is the only way to initialize state variables
of objects.

However, when the macros are defined at a lower level as they are in the current
implementation, the implementation of these expressions is simpler. The expansion makes
use of a special value. During the pattern matching of the function call with the closure
representing the let expression, the pattern matcher recognizes the special value and
leaves the respective variable uninstantiated. This special value is only known to the

macro expander and the pattern matcher.

4.4.1 The lets expression

Expression lets is very similar to the 1et macro in LISP, except that lets requires explicit
lreturn statements to return a result. In ALLOY, the macro expansion is somewhat more
complicated since lets must handle combinations of serial and parallel execution.

The following lets expression:

(Plets ("(p1e1) -+ (pi€) -+ (Pn€n))
by - by oo by)?

is expanded to:

(Cmu(py - pi - pn) b1 ---bi ---by)°
61...€i...en)l
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In this transformation brackets are marked with indexes. All brackets with the same
index are of the same kind (the two kinds being round and square).

As it is clear from the expansion, the new variables defined by the lets expression
are not available to the expressions which give them values. To define recursive functions
at that point one should define uninstantiated variables and use a set expression in the

body.

4.4.2 The let expression

The second form, let, has semantics closer to the ones of let in LISP, but its expansion
is even more complex than the expansion of lets because of the need to behave as a

generator® when its body is a generator.

(Ylet (“(pr e1) -+ (pi€i) - (pn €n))’
by - by - by)®

is expanded to:

#(Ireturn *(°(*mu dummy #(Ireturn b,))°

by - b; "'bn—l)b))
61...€i...en)l

4.5 Comparisons

This section compares the functional part of ALLOY, closures and evaluation modes, with

some parallel functional programming languages.

4.5.1 ZLISP

ZLISP [Dim8&8] provides very low level features such as a number of engines, usually equal
to the number of available processors, explicit process creation to feed the engines, and

engine interruption. These are very powerful features, but also very low level.

Since a generator can be controlled, serial and parallel evaluation mode must be preserved.
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Consider writing a parallel-or function which would evaluate its arguments in parallel
and would terminate all arguments as soon as one of them terminates successfully. The

following program makes use of a more powerful scheduler [Mit87] than the one provided

in ZLISP by default:

(defstruct par:or:syncrons

(par:or:start (make-ultraint 0))
(par:or:solution (make-ultraint 0))
(par:or:end (make-sema))

par:or:nofailed
par:or:procs
par:or:result)

(defmacro par-or nmacro(all)
(declare (zLISPopts noredefine norttest))
(cond ((endp all) nil)
((endp (cdr all)) (car all))
(t (quote! car ! (par:sys:or:n all)))))

(defmacro par-or-n nmacro(all)
(declare (zLISPopts noredefine norttest))
(cond ((endp all) ’(nil . 0))
((endp (cdr all)) (quote! coms ! (car all) 1))
(t (par:sys:or:m all))))

(defun par:sys:or:n (all)
(declare (zLISPopts static norttest))
(1ist ’prog
’( (par:sync (make-par:or:syncrons)) )
(1ist ’set-par:or:nofailed ’par:sync
(1ist ’make-ultraint (- (length all) 1)))
(1ist ’set-par:or:procs ’par:sync
(cons ’list (par:sys:create-call ’par:or:call all)))
’(free-v (par:or:start par:sync))
’(wait  (par:or:end par:sync))
’(return (par:or:result par:sync))))

(defun par:or:call lambda(n sync this-result)
(declare (zLISPopts noredefine norttest))
(cond (this-result
(when (tir (par:or:solutiom sync) 1 1)
(free-b (par:or:start sync))
(par:sys:kill-rest n (par:or:procs sync))
(set-par:or:result sync (cons this-result n))
(signal (par:or:end sync))))
(t (unless (tdr (par:or:nofailed sync) 1)
(set-par:or:result sync (cons nil 0))
(signal (par:or:end sync))))))
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Its is clearly a complex and involved program.
Here is the implementation in ALLOY:

(setfun (or-call . 1)
(when (cons-p 1) (lets (rv xv)
[when (set xv ((car 1))) (return xv)]
[when (set rv (or-call . [cdr 1])) (return rv)])))

Its simplicity is based on the powerful built in commitment mechanism. The behavior of

the two programs is precisely the same.

4.5.2 MultiLISP

MultiLISP started very modestly and has efficient implementations [KHM89,Hal84]. Real
lazy evaluation is not possible. It was possible to create processes or delay evaluation but
that was all. Those processes could not be managed in any other way (e.g. terminated).
Now, MultiLISP has been fortified with low level features for process management [Hal86].
It is now possible to determine the value of a future and kill the process which was supposed
to resolve it. Thus, MultiLISP seems to share some of ZLISP’s limitations. Similarly
MultiLISP does not attempt to provide generators (much less parallel ones).

Consider the above parallel-or function but for two arguments only.

(defmacro par-or(Exprl Expr2)
‘(let ((x nil) el e2)
(setq x (future (or (future (if (setq el ,Exprl) (determine x el)))
(future (if (setq e2 ,Expr2) (determine x e2))))))
(touch x)))
Even though the solution is simple we claim that the determine operation is dangerous

because of its arbitrary power over any future.

Here is ALLOY’s solution for two arguments (no macros):

(setfun (or-call el e2)
(lets [(r1 (e1))] (when ri1 (return ri)))
(lets [(r2 (e2))] (when r2 (return r2))))
Since ALLOY does not have macros, the arguments must be prefixed with operator ~ so
that they become closures (see chapter 3).
The above solutions have the property to wait until one process has not only succeeded
but also completed execution completely. One might claim that if we wanted to terminate

the other processes as soon as one starts to succeed we could do that more easily in
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MultiLISP because of the power of determine. However, in ALLOY, the above can be
achieved by using object proca (see chapter 2) which can be used to create a process and
later kill it by sending a message to it. The only difference would be that for a process to
be controlled by object proca it must be created by it, which in our opinion is a significant
advantage.

This follows ALLOY’s philosophy that simple things should be done simply while it
should not be hard to create the appropriate tools to make harder (and probably rarer)

tasks easy too.

4.5.3 Queue Based Multiprocessing LISP

This language extends LISP with gqlambda closures in addition to the lambda ones.
Qlambda closures are assigned processes which execute their calls thus guaranteeing mu-
tual exclusion of processes attempting to execute it. This mechanism to protect data
seems crude and too serial when compared to the synchronizing variables of ALLOY par-
allel objects.

QBML also provides very low level facilities for suspending, resuming or terminating
arbitrary processes. Termination in ALLOY is safer and easier to use in most cases.
Suspension and resumption however must be done by giving to the process an object and
having it suspend or resume by sending messages to it. Though in the general case this
can be hard, in practice it is not a problem. It is often transparent.

Here is the parallel factorial in QBML:

(setfun pfact(n)
(return (pfact2 1 n)))

(setfun pfact2(from to)
(if (ge from to) from
(let ((mid (quotient (sum from to) 2)))
(qlet ’eager ((f1 (pfact2 from mid)) (£2 (pfact2 (sum mid 1) to)))
(times f1 £2)))))

It is even simpler in ALLOY:

(setfun pfact(n)
(return (pfact2 1 n)))

(setfun pfact2(from to)
(return (if (ge from to) from
(let ((mid (quotient (sum from to) 2)))
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(times (pfact2 from mid) (pfact2 (sum mid 1) to))))))

4.5.4 Concurrent Functional Language

This language [L.S87] is translated into Guarded Horn Clauses [Ued86] first and into Flat
Concurrent Prolog (FCP) [Sha83b] eventually. Some of its advantages over FCP are given:
a) the programmer does not have to deal with input output annotations which are needed
in FCP. b) The language has both “downward” and “upward” closures. c) Using different
pre-processors, different evaluation techniques are immediately available (serial/parallel
eager/lazy).

For a simple functional program such as solving the towers of Hanoi problem, CFL is

adequate [LS87]:

Hanoi(N, A, B) <-
if N = O then cons(A, B)
also if N > O then
{ let C = free(A, B) and N1=N-1 in
cons (hanoi(N1, A, C)), cons(cons(4, B),
hanoi(N1, B, C))) }.

delete(E, L) <-
if L = [] then []
also if L = [E | T] then T
else cons(car(L), delete(E, cdr(L)).

free(A, B) <-
car(delete(A, delete(B, ‘[a, b, cl))).

The syntax of logic programming languages in CFP is evident. Of course the algorithm
is not very efficient since functions free and delete are unnecessary.

The solution in ALLOY is just as simple:

(setfun hanoi(n a b)
(when (eq n 0) (return (coms a b)))
(when (gt n 0) (return (let ((c (free a b)) (n1 (diff n 1)))
(cons (hanoi ni1 a c)
(cons (cons a b)
(hanoi n1 b ¢))))))

(setfun delete(e 1)
(when (null-p 1) (return nil))
(when (cons-p 1) (return (if (eql e (car 1)) (cdr 1)
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(cons (car 1) (delete e (cdr 1)))))))

(setfun free(a b)
(return (car (delete a (delete b ’(a b c))))))

More efficiently, and to return the movements in a flat list:

(setfun hanoi(n a b c rest)
(when (eq n 1) (return (cons (cons a b) rest)))
(when (gt n 1) (return (let ((nl (diff n 1)))
(hanoi n1 a c b
(cons (cons a b)
(hanoi n1 ¢ b a rest)))))))

In more complicated problems, however, CFL is less effective. Serial/parallel or ea-
ger/lazy evaluation cannot be combined freely in CFL. The commitment mechanism is
weak (i.e. exceptions are not possible). Generators or multiple solutions are not available.
Object oriented programming or parallel classes are missing. For example, it is not possi-
ble to solve problems like those solved by classes such as coex for co-expressions or proca
for process management. Solving the n-queens problem in a simple way is not possible

either.

4.6 Summary

The functional part of ALLOY has been presented. It has two parts: closures and evalu-
ation modes.

Closures are simple (restricted) objects accepting message ’eval augmented with static
scope. For convenience and to make closure declaration static, closures can only be created
by a special expression (similar to that in LISP). Closures, as well as objects accepting
the ’eval message, can be invoked in a functional way.

Evaluation modes support serial or parallel execution, eager or lazy evaluation, and
single or multiple solutions. Evaluation modes can be combined freely. It is shown that
commitment in combination with these powerful evaluation modes is superior in simplicity
and expressiveness (except in expressing suspension and resumption of arbitrary processes)

to similar features of other languages.
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Chapter 5

Objects and Interprocess

Communication

When processes are light-weight, ease of expressing efficient inter-process communication
is of utmost importance. At the same time, complex interprocess communication should
be strong. For efficiency and clarity, ALLOY treats these two problems separately.

In ALLOY, variables are synchronizing. These variables, while efficient compared to
logical variables, are powerful enough for basic synchronization. Their single assignment
nature, static scope, and synchronizing abilities make them clean and easy to use.

Powerful inter-process communication is provided by user definable parallel objects.
Parallel objects are possible because of the way they manage synchronizing variables. The
mechanism is said to create dynamic synchronizing variables. The dynamic synchronizing

variable is shown to be sufficiently powerful for the creation of parallel objects.

5.1 Introduction

This chapter describes the mechanisms which the language ALLOY provides for basic and
complex interprocess communication. Basic communication is achieved with the synchro-
nizing variable. Complex synchronization is possible with the support of object oriented
programming in this parallel programming environment. Messages in ALLOY can be pro-
cessed by an object in parallel. An object can have many states active at the same time

while these states communicate through synchronizing variables.
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Mechanisms are provided making possible the expression of fine-grain and efficient
synchronization during the concurrent service of messages. The basic mechanism for
message passing is synchronous but asynchronous communication comes for free since the
language is inherently parallel.

Dynamic synchronizing variables makes it possible for an object to have many states
active at one time, which can execute without any conflicts. At the same time, fine-
grain synchronization between successive instances of the object may be enforced by these
variables.

Finally, we provide a comparison of these features with analogous features in other

programming languages. Chapter 3 should be consulted for the precise definitions.

5.1.1 Classes

Every value in ALLOY is an object. This means that even classes and messages are first
class values. During the definition of a class one can define static' variables which are
conventional variables, dynamic variables explained later, objects common to all instances
of a class, variables imported from the top-level object, the methods, and subsets of
methods as abstract interfaces to instances of the class.

Both static and dynamic variables (i.e. state variables) provided to an object are
not initialized?. They can only be initialized by the object, using the set expression. An
attempt to access an uninstantiated state variable returns the future value of that variable.
An attempt to examine a future value is suspended until the future value is known.

Objects support delegation with the usual meaning for variables self and here. That
is, variable here always contains the current object while variable self contains the last
object which did not receive the current message through delegation. Objects can resend
messages instead of delegating them and then the value of variable self is not preserved.

Objects, instances of the same class, can share common objects. Finally, objects can

have many interfaces. More details are given in chapter 3.

!Static variables can also be defined indirectly by using them during the definition of the class.
2 This is the only way to create non-initialized variables in ALLOY.
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5.2 Single item communications

Single item interprocess communications are by far the most frequent in a fine grain parallel

programming language. For that reason, ALLOY provides synchronizing variables.

5.2.1 One to one (shared) Communication

Synchronizing variables are very powerful and allow ALLOY to support fine grain paral-
lelism without explicit synchronization. These variables were deemed to be preferable to
logical variables [CG83,Sha86a] since the latter are too powerful and provide both normal
and back communication in an unpredictable way. Channels [CG81] were not selected since
they also provide back communication (even though limited). Futures [Hal86] were not
satisfactory either, as they are properties of values rather than of variables and therefore
are not sufficient in an environment using uninstantiated variables.

Synchronizing variables were selected to be powerful enough to satisfy the most com-
mon synchronization needs in a parallel object oriented environment. But they are not too
powerful to have simple and clear semantics in a functional environment. The following
example combines (though not in a very useful way) the two environments:

ALLOY > (let (x y) (set y (sum x 4)) (set x (sum 1 2)) (sum x y))
==> 10

5.2.2 Many to one (shared) Communication

Objects provide the programmer with more powerful interprocess communication for de-
manding applications. In this way programs become both efficient and easy to understand
as powerful and ambiguous features are avoided.

Function gvalue returns one of these useful library objects. In a way,
logical variable = synchronizing_variable+gvalue. Function gvalue is defined as follows:

(setfun gvalue()
(return (let ((v (’new sa-var)))
(1ist (Cwriter v) (’get v)))))
(end-class gvalue)

It returns a list of two elements: a single assignment variable that can only be written

upon and its value. Thus, the gvalue object enforces strict back-communication.
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The following example is an implementation of the bubble-up function which surfaces
the n'* element of a list at its head. Auxiliary function delete-nth deletes the n'" element
of the list, returns the resulting list and back-communicates the deleted value through the

gvalue object:

(setfun bubble-up(n 1)
(return (let (((gval value) (gvalue)))
(cons value (delete-nthx n 1 gval)))))

(setfun delete-nthx(n 1 v)
(when (cons-p 1)
(return (if (le n 1)
(blockl (cdr 1) (’put v (car 1)))
(cons (car 1) (delete-nthx (diff n 1) (cdr 1) v))))))

In the above program the gvalue object is assigned to variable gval and its future value
to variable ditem. Note that the value represented by the object in gval can not be read

using that object. That object can only be used to write the value once.

5.2.3 Communication to Many

In the above situations communication to one process is called shared. It is called shared
because synchronizing values can be read by many processes. Thus, the above techniques
can also be used for communication to many processes. Whether communication is to one
or many processes depends on whether the synchronizing value has been given to one or

many processes respectively.

5.2.4 Inter-message Communication

Dynamic synchronizing variables are used to provide a transparent mechanism for com-
munication among messages to the same parallel object.

The state of an object is described with variables which can be either static or dynamic.
Static variables are variables which have one instance in every object. These are the kind
of variables normally used to describe the state of an object in programming languages.

Dynamic variables are special in that they have a new instance with every message
sent to the object of whose state they are part. Every message has access to all static
variables of that object and also to its own instances of dynamic variables together with

the instances of the dynamic variables of the next message. That latter instance is ac-
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cessed as next-var_name. Variables, whether static or dynamic, can be single or multiple
assignment.

One of the simplest examples that makes use of the dynamic synchronization variables
is the following. It creates a counter object which can be read and incremented by many
processes at the same time. Even though keeping a global counter is an exclusion problem
and not one of synchronization, it is used here to show the versatility of the dynamic

synchronizing variables.

(class-start counter
(dynamic v)
(import number-p sum)
(methods inc))

(setfun new(x)
(if (number-p x) (set next-v x) (set next-v 0)))

(setfun inc(i)
(return (let () (set next-v (sum v 1)) v)))

(class—end counter)

A more complicated example is that of a mostly parallel stack. The stack defined next can
be accessed by many processes in parallel. Any number of push messages can be processed
entirely concurrently. A pop message has to wait for the last® message to finish its action,

so pop operations are not very parallel.

(provide "estack")

(class—start eager-stack
(dynamic head)
(methods push pop))

(setfun new()
(set next-head %f))

(setfun push(x)
(return (blockl x (set next-head (cons x head)))))

(setfun pop()

(return (blockl (car head) (set next-head (cdr head)))))
(class—end eager-stack)

An attempt to pop from an empty stack results in a failure.

®Messages before the last one do not have to finish execution.
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5.2.5 Parallel Architectures

Dynamic synchronization variables are important not only because they allow the easy
description of parallel objects but also because they allow the utilization of underlying
highly parallel primitives supported by the system. In particular, shared memory MIMD
systems supporting the highly parallel fetch-and-add primitive [GLR83]* can create any
number of dynamic variables concurrently.

This can be achieved as follows. Let us assume that the object is meant to accept at
most n messages at the same time. This number need not be large since it restricts only
the number of concurrent acceptance (duplication of dynamic variables) of the message
and not the processing of it. A small array of size n is needed by that object. Each slot
of the array can keep a set of dynamic variables and two flags empty and full.

A parallel index is used to access the next available slot in the array. A message
arriving first increments that index using fetch-and-add. That index modulo the size of
the array points at the current slot. The message waits on the empty flag of that slot.
Then it creates and places in that slot a set of dynamic variables. After that, setting the
full flag it declares that the slot is filled. Finally, it waits on the full flag of the previous
slot until that is also filled.

As soon as the previous slot is filled (by the previous message), the current message
takes those dynamic variables and also the next dynamic variables it created itself and
placed in the current slot, and starts execution. The previous slot is then freed by setting
its empty flag and re-setting its £ull flag.

If a process can prevent context switches during the creation of the dynamic variables
[ELS88], busy waiting would be virtually non-existent. Otherwise, messages can measure
the length of busy waiting and when large, lock the object, replace the flags by blocking
binary semaphores, and release the object. That would remove any trace of busy waiting

(provided the blocking queues are free of busy waiting).

* fetch—and—-add is an atomic operation which allows a processe to fetch the value of a variable
and add to it another value. The execution time of the operation is not affected by the number of
processors executing the operation on the same variable.
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5.3 Stream communication

Streams are often the fundamental connecting media of networks of communicating pro-

cesses. Synchronizing values can be used to provide the basic form of streams.

5.3.1 One to one (shared) Communication

The basic stream is an incomplete list (a list whose end is a synchronizing variable). This
list can be incrementally given more elements by the process which has control of the list’s
tail. It can be read by any processes having access to its head. This is clarified in the

following example:

(setfun hamming()
(return (let (ham)
(let ((mults (mu(c) (lreturn
(mapcar (mu(x) (lreturn (times c x)))

ham)))))

(set ham (cons 1 (amerge (mults 2)
(amerge (mults 3) (mults 5)))))))))

(setfun amerge(11 12)
(when (1t (car 11) (car 12))
(return (cons (car 11) (amerge (cdr 11) 12))))
(when (gt (car 11) (car 12))
(return (cons (car 12) (amerge 11 (cdr 12)))))
(when (eq (car 11) (car 12))
(return (cons (car 11) (amerge (cdr 11) (cdr 12))))))

Function hamming returns, sorted, all numbers of the form 2¢375%Vi, j, k > 0. For that,
it creates three processes each of which multiplies all elements in the input stream by 2,
3 and 5 respectively and returns the result in a stream. Resulting streams are merged

arithmetically and the final stream is fed as input to the three processes.

5.3.2 Many to One (shared) Communication

It is often necessary to have the stream be incremented by many processes. For that
reason the following object putlist returns a stream whose tail is known to the object
only. Thus, elements can be added to the list only by those processes which have access

to the putlist object.

(provide "putlist")



76 Objects and Interprocess Communication

(class-start putlist
(static _orig-head)
(dynamic head)
(methods put end get-orig-head)
(interface puter put end))

(setfun new()
(set _orig-head next-head))

(setfun put(x)
(return (let() (set head (cons x next-head)) x)))

(setfun end()
(return (set head nil)))

(setfun get-orig-head()
(return [let(h) (set head next-head) (set h _orig-—head)
(set _orig-head nil) hl))

(class-end putlist)

An example of this object is the following implementation of the asynchronous systolic-

sort algorithm. It sorts n elements in O(n) time if O(n) processors are available.
(require "putlist")

(setfun ssort(l)
(return (if (null-p 1) nil
(let ((rest (’new putlist)))
(cons (ssortx (car 1) (cdr 1) rest)
(ssort (’get-orig-head rest)))))))

(setfun ssortx(x 1 rest)
[when (null-p 1) (’end rest) (return x)]
(when (cons-p 1)
[when (gt (car 1) x) (’put rest (car 1))
(return (ssortx x (cdr 1) rest))]
[when (le (car 1) x) (’put rest x)
(return (ssortx (car 1) (cdr 1) rest))]))

Function ssort takes as argument a list of numbers and returns it sorted. For that, it calls
auxiliary function ssortx which returns the smallest number and places the rest numbers
in object rest. The stream represented by that object is then sorted recursively by ssort.

Function ssortx takes three arguments: a number, a list of numbers and a putlist
object. It returns the smallest of the numbers and places the rest in the putlist object

rest. The stream represented by that object is sorted recursively by the ssort function.
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5.3.3 One to Many Communication

Although the streams created in previous paragraphs can be accessible by many processes,
it is often desirable to consume the stream rather than just reading it. In the latter case,
each value in the stream is taken by one process only.

This kind of an stream can be obtained by giving the head of a regular stream to an
object. That object can then serve the various consumers by giving them each successive
elements from the original stream. The getlist object does that:

(provide "getlist")
(class-start getlist

(dynamic head)
(methods get))

(setfun new(tail)
(set next-head tail))

(setfun get()
(return (let ()
(set next-head (cdr head)) (car head))))

(class—end getlist)

5.3.4 Many to Many Communication

The simple parallel queue is the basis of communication between multiple producers and
multiple consumers. This object can be implemented by combining the output of a putlist
objects with the input of a getlist object:

(provide "queue")
(require "putlist")
(require "getlist")

(class-start queue
(static puts gets)
(import putlist getlist)
(methods enqueue dequeue)
(interface enqueuer enqueue)
(interface dequeuer dequeue))

(setfun new()
(set puts (’new putlist))
(set gets (’new getlist (’get-orig-head puts))))
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(setfun enqueue(x)
(return (’put puts x)))

(setfun dequeue()
(return (’get gets)))

(class-end queue)

Note that any number of elements can be placed in this queue entirely in parallel. However
an element cannot be removed from the queue until the previous element has been removed.
More parallel queues can be implemented with vectors and highly parallel indexes such
as the faa object [GLR83]. If the architecture can support a parallel fetch-and-add then
it is required that class faa should be implemented at a low level and its instances be

completely parallel.

5.4 Examples

A lock requires many keys to be open. Otherwise it is closed. There can be many locks
with different subsets of the same set of keys. Opening many locks at the same time is
guaranteed to be a fair and deadlock free operation.

First an implementation of a blocking semaphore is given, then that of a key which is
a semaphore with an id. Then the lock itself, and finally a simple solution to the 5 dining
philosophers, using the locks. The solution to the problem of the dining philosophers is

starvation and deadlock free even though it does not make use of any special techniques.

5.4.1 Semaphore

The following program implements a counting semaphore. Messages sent to it can be
processed in parallel and without serialization except that ’p messages cannot be processed

until the previous message has completed execution.

(provide "semaq")
(require "queue")

(class-start semaphore
(import queue data repeat)
(static q)

(methods p v))
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(setfun new(n)
(set q (’new queue))
(vs (if n n 0)))

[setfun p(n)  (ps n) (return %t)]
[setfun v(n) (vs n) (return %t)]

(setfun ps(n) (repeat (if n n 1) ~(data (’dequeue g))))
(setfun vs(n) (repeat (if n n 1) ~(’enqueue q ’t)))

(class—-end semaphore)

5.4.2 Key

A key is a semaphore with an id (a unique number). One can ask for a key and suspend
until the key is available. One may return a key. Also, one can ask for the id of the key,
which is a unique number among all keys. The same messages ’p and ’v are accepted by
a key:

(provide "key")
(require "faa")
(require "semaq")

(class-start key
(import semaphore)
(common faa)
(static s id)
(methods p v id))
(setfun new(n)
(set s (’resend semaphore))
(set id (’faa c-faa 1)))
(setfun id() (return id))
(setfun p() [return (’resend s)])

(setfun v() [return (’resend s)])

(class-end key)

Note the use of an object (faa) common to all instances of the class. It ensures that each

object will have a unique id. Also, messages with their parameters are resent to the actual
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semaphore with the >resend message. In this case, since variable self is not used by the

semaphore, the message could also be *delegate-ed.

5.4.3 Lock

A lock opens as soon as all its keys are available. A lock is defined to require a set of keys
during its creation. The operations for unlocking and locking a lock are again ’p and ’v.

As soon as the lock is requested to open, it starts collecting the needed keys in a fair
and deadlock free manner. When it is locked, all keys are freed.

The keys are

(provide "lock")
(require "key")
(require "gsortcar")

(class-start lock
(static ssorted)
(import key gsortcar and mapcar)
(methods p v))

(setfun new 1
(et ((skey (if (all-key 1)
(gsortcar (idsemalist 1)) ())))
(set ssorted (mapcar cdr skey))))

(setfun idsemalist(1l)
(return (if (cons-p 1) (comns (comns (’id (car 1)) (car 1))
(idsemalist (cdr 1))) nil)))

(setfun all-key(1l)
(if (cons-p 1)
(if (and (eql (’object-p (car 1)) ’key) (all-key (cdr 1)))
(return ())

(return %f))
(return ())))

[setfun p() (msg-all ssorted ’p) (return)]
[setfun v() (msg-all ssorted ’v) (return)]

(setfun msg-all(ls msg)
(when (cons-p 1s) (msg (car 1s)) (msg-all (cdr 1ls) msg)))

(class—end lock)

In order for a lock to gather the necessary keys without creating a deadlock, it collects
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them in increasing order of their ids. Thus circles of waiting lines are avoided. Starvation
is avoided because once a key is taken it is not returned until the lock has opened and

then closed again

5.4.4 N Philosophers

The following program provides a solution to the problem of the N philosophers. The
following general solution is starvation and deadlock free:

(require "key")
(require "lock")

(class-start philosopher
(static id forks)
(import gt diff printnl lock)
(methods live))

(setfun new(f1 f2 i)
(set id i) (set forks (’new lock f1 £2)))

(setfun live(n)
(loop n))

[setfun loop(n)

(’p forks)

[printnl (list "Philosopher" id " took both forks")]
[printnl (list "Philosopher" id "started eating")]

(eat 2)

[printnl (list "Philosopher" id "stopped eating")]

[printnl (list "Philosopher" id " put down both forks")]
(v forks)

(if (gt n 0) (loop (diff n 1)))]

(setfun eat(n)
(if (gt n 0) (eat (diff n 1))))

(class-end philosopher)

And the rest of the algorithm:

[setfun dine(p n)
[printnl "The big feasting starts..."]
(dinen2 (if p p 5) (if n n 3))]

(setfun dinen2(p n)
(let ((forkl (’new key 1)) create)
(set create (mu (previous i)
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(if (gt i 1)
(let ((£ (’new key 1)))
(’live (’new philosopher previous f i) n)
(create £ (diff i 1)))
(’live (’new philosopher previous forki i) n))))
(create forki p)))

In this algorithm a fork is represented by a key. Each pair of forks potentially needed
by a philosopher are placed in a lock accessible only by that philosopher. For a philosopher

to eat it is sufficient to ask for its lock to open.

5.5 Default Messages and Modules

Modules provide only control abstraction. Some times they are convenient because their
use requires only one piece of information (i.e. the function) whereas using an object
requires more information (i.e. message and object).

The default message mechanism can be used to achieve the same simplicity of use in
objects which accept one (important or only) message. The counter example in chapter 2
demonstrates this.

The convenience of stateless modules which export many important functions can
be achieved by defining all the functions into a lets environment. The names of local
functions should be given local uninstantiated definitions. Then, the exported functions

become known outside of this environment but the local functions are hidden.

5.5.1 Bubble-Up

An example of module-like ease of use in the general case, when many functions are

exported, is the abstracted bubble-up function:

(lets (delete-nthx)
(setfun bubble-up(n 1)
(lreturn (let (((gval value) (gvalue)))
(cons value (delete-nthx n 1 gval)))))

(setfun delete-nthx(n 1 v)
(when (cons-p 1)
(lreturn (if (le n 1)
(blockl (cdr 1) (’put v (car 1)))
(cons (car 1) (delete-nthx (diff n 1) (cdr 1) v)))))))
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Function delete-nth is now hidden. More than one function can be exported by not

having a local name for it.

5.6 Objects with Perpetual Processes

An object is not available for use unless the *new message has completed execution. This
is in order to avoid synchronization problems in cases where the object makes use of
static multiple assignment objects. However this makes it harder for this message to
create processes which are active during the lifetime of the object. To facilitate this, class

top-level-funcall is defined in ALLOY and is available as a library.

5.6.1 Co-expressions

To demonstrate use of the top-level-funcall class we give the definition of an object
transforming generators into co-expressions. Message ’new creates a process to evaluate
the values of the generator:

(provide "coex"

(class-start coex
(common top-level-caller)
(dynamic latest)
(methods next))

(setfun new(closure)
(’top-level-funcall c-top-level-caller
“(set next-latest (lazy (list #*(closure))))))

(setfun next()
(return (blockl (car latest) (set next-latest (cdr latest)))))

(class—end coex)

This is a generator used to test it:

(setfun ints2p(x y)
[print 0]
[list (lreturn x) (print 1)]
[l1ist (lreturn y) (print 2)])

Here is an example of its use:

ALLOY > (1list #*(ints2p 1 2))
012==> (1 2)
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ALLOY > (set ¢ (’new coex ~!*(ints2p 1 2)))
==> Y (object of class COEX)

ALLOY > (’next c)

01==> 1

ALLOY > (’next c)

2==> 2

ALLOY > (’next c)

==> %t

It is interesting to note the use of lazy evaluation in combination with generators, as well

as the control of a generator through the use of the return statements.

5.7 Comparison with other Programming Languages

This section compares ALLOY’s inter-process communication facilities with those of other

parallel object oriented programming languages.

5.7.1 Actors

Actors [Agh86b,AH87] is a model of computation based on objects and message passing.
It has been suggested that Actors could be viewed as an assembly language for Distributed
Architectures. A disadvantage is that there seems to be no way for Actors to exploit the
full power of shared memory multiprocessors.

The low level of Actors can be seen in the following implementation of factorial:

(define (Factorial())
(Is-Communication (a doit (with customer = m) (with number = n)) do
(become Factorial)
(if (= n 0)
(then (send m 1))
(else (let (x = (new FactCust (with customer m) (with number n)))
(send Factorial
(a doit (with customer x) (with number n-1))))))))

(define (FactCust (with customer = m) (with number = n))
(Is-Communication (a number k) do
(send m n*xk)))
The same program is much simpler in ALLOY:

(setfun fact(n)
(return (if (gt n 0) (times n (fact (diff n 1))) 1)))

The complexity of such a simple program in Actors suggests that Actors be used as the

implementation language of a higher level language. One such attempt has been the Act3
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language. Act3 facilitates writing in a functional style, though it does nothing about
and-parallelism, lazy evaluation, or generators.

Actors has been promoted for its ability to create abstract data types in a parallel
system. Here is the implementation of a stack:

(define (new stack-node (with context = c) (with next-node = next))

(Is-Communication (a pop (with customer = m)) do

(if (NOT (= c empty-stack))

(then (become forwarder (next))
(send-to (m) (a popped-top (with value c))))))

(Is-Communication (a push (with new-content = v)) do

(let (x (new stack-node (with content c¢) (with next-node next)))

(become (stack-node (with content v) (with next-node x))))))

Notice that if the actor does not specify a replacement actor (using become) then by
default an identically behaving actor is used to get the next message from the mailbox.
An Actor that is no longer accessible may be removed by garbage collection. The imple-
mentation of a similar eager-stack in ALLOY was given earlier in this chapter. Here it is
shown how to define a more powerful blocking stack:

(provide "stack")
(require "semaq")
(require "estack")

(class-start stack
(static non-empty es)
(import semaphore eager-stack)
(methods push pop))

(setfun new()
(set non-empty (’new semaphore))
(set es (’new eager—stack)))

(setfun push(x)
(return [blockl (’push es x) (’v non-empty)]))

(setfun pop()
(return [blockn (’p non-empty) (’pop es)]))

(class—end stack)

ALLOY has the extra advantage of being able to make any number of push operations
in parallel (provided enough processors are available). Implementing a blocking stack like
this one in Actors would not be very easy since fine grain synchronization (here serial

evaluation) is rather complicated.



86 Objects and Interprocess Communication

5.7.2 Vulcan

Vulcan [KTMB86,KTMBS86] is a significant step in the evolution of parallel logic program-
ming languages. By adding object oriented programming to Concurrent Prolog it brings
powerful abstraction mechanisms to it. However, since it is based on logic programming,
it shares some of their problems: too many side effects (because of the logical variable),
no or-parallelism in a parallel environment, and unnecessary serialization of messages.

Vulcan, being just a pre-processor, provides objects with the same restrictions as those
of the base language. Messages can not be implemented efficiently and streams of messages
are too apparent all the time. When many processes need to send messages to the same
object, they must be given separate streams to put their messages on, and the merging has
to be explicit. Having to send all messages through streams, often imposes undesirable
synchronization. Worse, no messages can be processed unless the previous one has been
identified.

Consider how a queue object would be written in Vulcan [KTMBS86]:

class(queue, [Head, Taill).

queue :: create(Queue) :- queue : make([Head, Head], Queue).
queue :: enqueue(Item) :— Tail = [Item | (new Tail)].
queue :: dequeue(Item) :— Head = [Item | (new Head)].

The interesting property of this queue is that is can be used to dequeue elements in
advance (before they were enqueued). An instance of a queue can be created and used as
in this goal:

?7- queue:create(Q), send(Q, enqueue(1), Q2), send(Q2, dequeue(X), Q3).

Notice that while CP is inherently parallel it does not make any difference if the dequeuing
takes place before or after the enqueueing. X will finally be bound to 1. The way this queue
is defined is somewhat unusual due to the properties of the logical variable. Every time
an message is sent to the object, its current variables are duplicated into the new set of
variables. A variable that is new for one message is current for the immediately succeeding
message to that object. It is the responsibility of the methods to form a consistent state
for the object, which is visible from the next messages.

ALLOY’s dynamic synchronizing variables have been inspired by VULCAN. In AL-

LOY, however, parallelism during execution of messages has been increased considerably,
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and the use of synchronization values (with their limited scope), instead of the logical
values, reduces side-effects and is more efficient to implement (especially in a distributed
system), because of their directionality. When logical values are needed in ALLOY they
can be implemented as described in chapter 7. With the exception of object oriented pro-
gramming, ALLOY has the same advantages over Vulcan as over other logic programming

languages.

5.7.3 Linda

Linda [CG88] is not a programming language, nor a complete programming model. It is
a model for process creation and coordination that is orthogonal to the base language in
which it is embedded. Linda provides a mechanism called Tuple Space (TS) for creating
and coordinating multiple execution threads in any programming language.

Tuple Space (TS) is a global pool of tuples. Tuples are sequences of typed fields,
such as ("new stuff", 0, 16.01). Tuples can be matched to templates, where templates
may contain variables (atoms starting with ‘?), in which case the variables are set to the
corresponding values of the tuple.

Processes can be created to place a tuple in TS, and processes can be suspended
waiting for a tuple in TS. One difference between this and logical variables is that logical
variables are local, not global®. This extra freedom can create security problems and
also make implementation difficult since the search is complicated. An advantage is that
both multiple producers and multiple consumers can be handled quite easily. In order to
introduce some abstraction, there is ongoing research trying to split the Tuple Space into
sub-spaces. Each of these sub-spaces will be accessible only to some of the processes.

Here is an implementation of the n philosophers problem in Linda. A special algorithm

is used to guarantee deadlock-free operation [CG89]:

void phil(int i)

{ while(1) { think();
in("room ticket"); in("chopstick", 1i);
in("chopstick", (i+1)%Num);
eat();
out ("chopstick", i); out("chopstick", (i+1)%Num);
out ("room ticket");}

® This can be simulated in Linda by placing a unique object (address) in the tuple, and require
that anybody that needs to access the tuple, should specify that object.
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}

initialize(int i)

Num = i;

{ for(i=0; i<Num; i++) { out("chopstick", i); eval(phil(i));
if (i>0(Num-1)) out("room ticket");}

}

The special algorithm used to guarantee there are no deadlocks is to ensure that one
philosopher is always kept out of the room. This solution does not guarantee there will
be no starvation (i.e. simple semaphores implemented in Linda are not fair, probably for
efficiency reasons).

It has been shown previously in this chapter that with appropriate use of abstract
data types, one can give a clean solution to the above problem without using any special
algorithm to avoid deadlocks. However, tuple spaces are an interesting combination of
dictionaries and queues. In, ALLOY one can define a class of tuple spaces as follows:

(provide "tuples")

(require "queue")

(class-start tuples
(import dictionary var-p queue)
(common top-level-caller)
(static dict)
(methods out eval in rd))

(setfun new()
(set dict (’new dictionary)))

(setfun out(key info)
(return (let [(x (’get dict key))]
(when (var-p x) (’put dict key (’new queue)))
(’enqueue x info))))

(setfun eval(key iclosure)
(return (let ((info (’top-level-funcall c-top-level-caller iclosure)))

(out key info))))

(setfun rd(key)
(return (’top (’get dict key))))

(setfun in(key)
(return (’dequeue (’get dict key))))

(class-end tuples)

In the case of the eval message, information must be passed as a closure. This solution
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has the extra ability to be able to create many tuple spaces, thus improving abstraction.
Also, tuples are taken in a first in first out order.
As an example of the use of class tuples following is a Linda-style solution of the n

philosophers problem:

[setfun phil(i num ts)
(think)
(’in ts ’room-ticket) (’in ts (cons ’chopstick 1))
(’in ts (cons ’chopstick (quotient (sum i 1) num)))
(eat)
(’out ts (cons ’chopstick i))
(’out ts (cons ’chopstick (quotient (sum i 1))))
(’out ts ’room-ticket)
(phil i num ts)]

(setfun initialize(i)
(let ((ts (’new tuples)) (num i))
(createph (diff i 1) num ts)))

(setfun createph(i num ts)

(’out ts (cons ’chopstick i)) (’eval ts (phil i num ts))

(when (gt i 0) (’out ts ’room-ticket) (createph (diff i 1) num ts)))
This solution uses a local tuple space and is therefore safe from other processes also using,
for example, the name ’room-ticket. For the same reason this solution allows many groups
of philosophers to have dinner in separate rooms at the same time. It is also starvation
free.

On the other hand, this solution finds a tuple through pattern matching of fixed keys.

Linda performs a more powerful one way unification. If full unification is needed, the

above class of tuples can be changed to reflect this.

5.8 Summary

In ALLOY, every value is an object. Thus, classes, messages, functions, numbers etc. are
all objects. It has been shown that ALLOY can create highly parallel abstract data types
using object oriented programming. In ALLOY, objects can process messages in parallel.
Dynamic synchronizing variables make synchronization among messages transparent.
ALLOY supports basic interprocess communication through the use of synchronizing
values. More advanced communication is supported through the use of specialized parallel

objects. A comparison with a number of parallel object oriented languages indicates
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that ALLOY is clean and efficient not only for simple but also for complex interprocess

communication.



Chapter 6

Generators and the Replicator

Control Structure*

The need for searching a space of solutions appears often. Many problems, such as iteration
over a dynamically created domain, can be expressed most naturally using a generate-and-
process style. Serial programming languages typically support solutions of these problems
by providing some form of generators or backtracking.

A parallel programming language is more demanding since it needs to be able to
express parallel generation and processing of elements. Failure driven computation is no
longer sufficient and neither is multiple-assignment to generated values.

We describe the replicator control operator used in the high level parallel programming
language ALLOY. The replicator control operator provides a new view of generators which

deals with these problems.

6.1 Introduction

This chapter [MH90] describes the mechanisms which the language ALLOY provides for

dealing with non-determinism and generators in a parallel programming language. Finally,

it compares these with analogous features in other programming languages.
Non-determinism is provided in ALLOY to permit the expression of indifference or

uncertainty in an algorithm [Dij75,CG83,5Sha86a,Ued86]. Generators are included to

9*This chapter is essentially a reprint of [MH90].
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ease the development of programs which make use of the generate-and-test technique
[GG83,5586,Hen80].

In a parallel environment the natural view of generators requires them to be able to
produce their results in parallel. This implies that a failure driven model is not adequate,
since failure is inherently serial. Also, since ALLOY wuses single-assignment variables
to synchronize parallel computations, it is not clear how the (potentially) many values
returned by a generator should be handled. Furthermore, since many generators may be
operating in parallel, more powerful techniques are required for controlling the generating
procedure and combining the results of generators. ALLOY introduces the replicator

control structure to provide a new view of generators which deals with these problems.

6.1.1 Generate-and-test Problems

Iterators, generators, co-expressions, backtracking and or-parallelism, all provide ways to
express algorithms that need to search a space of possible solutions.

CLU [LSAS77] introduced the notion of iterators. Iterators provide the ability to
perform the same action over a collection of items which is represented by a function
(iterator). The iterator produces the items in the collection, one at a time as they are
requested for examination from a for control loop. Iterators are functions which can
maintain their data and control state after they return a value.

ICON [GG83] provides limited control backtracking, generators, co-expressions, and
coroutines. Generators are like iterators but can be invoked anywhere in a program.
Generators return all their values at the point (syntactically) of their invocation. They
can be driven explicitly by demand (a new value is requested) or implicitly by backtracking
on failure (processing of the last generated item failed). Generators are more powerful
than closures in that a generator maintains data/control state (e.g. values can be returned
from the middle of a loop) whereas closures only maintain an internal data state. However,
closures are first-class objects since they can be passed around in a program and get
activated at any point while their internal data state is preserved. In contrast, pure
generators generate all values at the point of their invocation as needed and then lose
both data and control state.

Co-expressions [GG83] are essentially coroutines which can return values. They com-

bine the capabilities of generators and closures. A co-expression is a generator transformed
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into a first-class object so that it can generate individual items in different places in a pro-
gram. The life-time of a co-expression can not in general be determined at compile time
and so requires more complicated runtime support (than that needed for a generator).
Co-expressions and coroutines can be emulated using (Scheme-like) continuations. Where
co-expressions are emulated using just closures, it is necessary for the programmer to
explicitly store and restore the control state of the closure.

Backtracking operates at another level and allows the expression of algorithms of the
form “assume this is the correct choice and proceed” and any time later “if the choice
is not correct forget all computation since last choice and continue from that point on”.
Control backtracking undoes only the decision made at the last backtracking point, while
full backtracking also undoes any changes to data structures. While full backtracking
is very powerful, it is often inefficient [SDDS86], as are full continuations. In Prolog, a
language where side effects are severely restricted!, backtracking is efficient. MU-Prolog
[Nai86] adds coroutining.

Scheme [RG86] provides a limited form of continuations (call-cc), which directly pro-
vide control (but not full) backtracking, and can emulate generators and coroutines
[HFWS84]. For efficiency reasons, continuations in Scheme are limited to providing only
continuation of control.

In a parallel programming language it is natural to replace backtracking, the serial
generation of possible solutions, by mechanisms which refer to the set of possible solutions,
leaving unspecified the order in which these solutions are generated. In logic languages
this corresponds to full or-parallel execution [War87]. Recent work on Aurora [LBO88],
an or-parallel Prolog language, suggests that complete or-parallelism can be implemented
efficiently.

Supporting full or-parallelism in an and-parallel parallel environment seems to be not
only inefficient, but also exceedingly hard to implement [Mit88b,CS87]. As a result, paral-
lel programming languages provide only partial solutions [Gre87,Sha86a,Mit89b]. In some
cases full solutions are given to weaker subsets of a language [Ued87a,Ued87b,CG85].
These subsets allow little or no and-parallelism. Other experimental languages attempt to

accommodate restricted and-parallelism [HB88] while others replace and-parallelism with

!Side effects are only possible by dynamically changing a program.
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coroutining [Nai88].

Ultra Prolog [Mit88a], PARLOG [CG83], and GHC [Ued86], are examples of and-
parallel logic programming languages, with limited or-parallelism (no multiple environ-
ments) [Sha89]. Concurrent Prolog [Sha86a] does provide full or-parallelism, but was
abandoned (in favor of FCP [SHHS87]) as unacceptably inefficient; no implementation of
CP on a parallel computer exists. As with Ultra Prolog [Mit88a] there is a lot of research
on the identification of language subsets which can have full or-parallelism.

Multilisp [Hal84] and Queue-Based Multiprocessing Lisp [GM84], two parallel func-
tional programming languages, make no attempt to support backtracking or even gener-
ators. It is in general hard to implement generate and test problems in these systems
(harder in Multilisp). Controlling the generation process is even harder.

ALLOY proposes a particularly flexible form of generators to deal with these issues.
First, we briefly describe those features of the language which are necessary to understand

the mechanism, followed by a description of the replicator operator.

6.2 Definitions

6.2.1 First Look at Generators

As described above, functions in ALLOY can return one of many results, possibly non-
deterministically. These functions become generators when they are called prefixed by the
operator * (star). In effect, a function becomes a generator by removing the ability of its
return statements to commit. An expression that is prefixed by the replicator operator #
(hash) is a replicable expression.

Broadly speaking, the idea is that a replicable expression is replicated once for each
combination of its generators. A generator is called once for each combination of its
generators.

The simple case of a single generator inside a replicator:

#(p ... *e ...)

is evaluated as though textually replaced by
(p...e1 ...) (... e2 ...) ... (p ... en ...)

where the expressions el, €2, ... en represent the set of values which would have been

generated by *e.
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In a later section a function (ints start stop) will be defined which, when called as
a generator, can produce all integers in the range start ... stop inclusively. Thus, the
following two calls are equivalent:

(let() #(print w *(ints 1 5)))

(let() (print w 1) (print w 2) (print w 3)
(print w 4) (print w 5))

Both of these will print a permutation of the numbers 1 2 3 4 5.

Nested generators provide a form of backtracking. In a context of serial calls this
is equivalent to depth first search, while in a context of parallel calls it is equivalent to
(parallel) breadth first search. Thus, the next two forms are equivalent:

(let() (+ #*(ints 1 *(ints 1 3))))
(let() (+ #*(ints 1 1) #*(ints 1 2) #*(ints 1 3)))

and both will return the number 10.
Other examples of uses of replicators will follow the formal definitions of generators

and the replicator.

6.2.2 Generators in a Replicator

The definitions in this section will be given in terms of the factory object?. This is a
library object (implemented in ALLOY) which in effect creates co-expressions. When an
instance of a factory object is made, it is given a generator in a closure. By sending
appropriate messages to the object we receive the values of the generator.

Some of the operations on the above object will be explained next. A generator can
be transformed into a factory as in:

(set £ (factory “*(ints—inc 1 5)))

The factory class can be defined in terms of classes coex (chapter 5) and vector (chap-
ter 3).

Just as ’e is equivalent to (quote e) in lisp, ~e is equivalent to (mu #(lreturn e)).

3

The above expression” evaluates new members, or simply provides (previously evaluated)

specific values with a call like:

?In practice however, this is not immediately possible since the factory object uses replicators
and generators itself. This object should be implemented at a lower level.
*Note that mu is the function creation function like lambda is for Lisp.
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(’nth £ 3)

The above expression will return the 37¢ value generated by that factory. If that value
has been evaluated it is simply returned otherwise it is evaluated at that time. If there is
no such value, the call fails.

A generator must be defined in the scope (static) of a replicator or of another generator.
A generator a is in the scope of a replicator b if @ is a parameter (direct or indirect) of
the replicator, is evaluated in the same scope with it, and is not in the scope of another
generator or replicator which is in the scope of b. A replicable expression is replicated
in such a way that its enclosed generators are replaced by their values. The program

fragment:
(c... #(r~~~*61~~~*ei~~~*€n~~~)r~~~)c
is transformed to:

(“let ( (fi (’new factory “*e;))

(fi (new factory “*e;))

(fn (’new factory “*e,))
(rep (mu (p1--- pi-- pp)
(1return (r... pl pz pn.)r))))

(¢~ ("rep (’nth f; 1) --- (Pnth f; 1) --- Cnth f, 1) )"
("rep (Pnth f; 1) --- Cnth f; 1) --- Cnth f, 2) )7
("rep (’nth f; 1) ... Cnth f; 1) -+ (Pnth f, my))"
("rep (Pnth f; 1) --- Cnth f; 2) --- (Pnth f, 1) )7
("rep (Pnth f; 1) --- Cnth f; 2) --- Cnth f, 2) )7
("rep (Pnth f; 1) --- Cnth f; 2) - Cnth f, my))"
("rep (Pnth f; 1) --- Cnth f; my) - Cnth f, my))"
("rep (’nth f; my) -+ Cnth f; my) - Cnth f, my))"

L)€

where generators ey ---e, are those in the scope of the replicator and must all execute

r

either concurrently or serially as specified by parentheses ‘"’. In cases where the calls to
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these generators have to be made by following a more complex synchronization pattern,
in the calls to rep the generators must be grouped? accordingly. Of course, function rep
must first take from these grouped values the values themselves.

The above transformation first creates a factory for each generator and then requests
and accesses the values of that generator by sending messages to the corresponding factory
object. The replications are done dynamically depending on the number of solutions m;
for each generator f;. For example, if at least one generator f; fails to return any result
at all, the replicable expression affecting it disappears®. Note that in a parallel call, the
above order of combinations may not be retained.

Some times a replicated expression is only important for its side effects (i.e. return
statement, changing state of objects). In cases like these, the result of the replicator is
not needed and this can be declared by the use of the null replicator #! in place of the
regular replicator #. This may improve not only the efficiency of the program but also its

complexity (see generator of integers bellow).

6.2.3 Nested Generators

A generator a is in the scope of generator b if a is a parameter (direct or indirect) of b,
is evaluated in the same scope with it, and is not in the scope of another generator or a
replicator which is in the scope of b. A generator which affects other generators is treated
in a way similar to the way a replicator would be treated except that now the replication
process is transparent and all the values that are generated appear to have been generated

by the enclosing generator. The outermost generator in the program:
(c... *(7‘ *61"'*ei"'*en"')r"')c
is transformed to:

*(“let ( (fi (Pnew factory “*ep))

(fi (new factory “*e;))

*One way to do this is to place generators as arguments of a call to function 1ist. That call
should then be concurrent or serial as needed.

®This helps to define functions simulating conditional expressions such as when. However, these
functions would then have to take closures as arguments.
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(fn Cnew factory “*e,)) )
(rep(‘mu (p1--- pi- - pPn)
#(1return *(rplpzpn )7‘))0))

#(lreturn *("rep (’nth f; 1) --- (nth f, 1) )7)
#(lreturn *("rep (’nth f; 1) .- (nth f, 2) )7)
#(lreturn *("rep (’nth f; 1) .-+ Cnth f, m,))")
#(lreturn *("rep (’nth f; 2) .- (nth f, 1) )7)
#(lreturn *("rep (’nth f; 2) --- (’nth f, 2) )7)
#(lreturn *("rep (’nth f; 2) .-+ Cnth f, m,))")
#(lreturn *("rep (’nth f; my) ... Cnth f, m,))"))°

where the internal generators are those in the scope of the external one and the calls to
rep (as well as rep itself) are modified, if needed, as described in the previous section.

The replications are done dynamically depending on the number of solutions m; for
each generator f;. Note that in a parallel call, the above order of combinations may not
be retained. The enclosing generator would not be called at all (as if it failed) if at least
one of its generators fails to produce any result at all.

A return statement in a generator is not considered to be complete (have finished
execution) until a new value is needed from that generator. This is clarified in the imple-
mentation of co-expressions (chapter 5). This of course is only useful in combination with
serial execution in the body of the generator and the environment of the replicator which

uses it. This mechanism can provide control backtracking.

6.2.4 Values are Generators

One more rule is needed to complete the definition of generators: Values are generators
of themselves. Thus, both of these examples:

*5

(let ((x B)) *x)

evaluate to the number 5. The most interesting part about this rule is its exception: The

generator of failure value generates no values at all. This allows ALLOY to define the
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when expression. For example the following two calls are equivalent:

(when condition expression)

((mu (x) #(lreturn (cdr (cons *x expression)))) condition)

Calling a function prefixed with two (or more) * operators results in calling the function

as a generator but filtering out failure values.

6.3 Examples

6.3.1 Two Functions/Generators

Using * to call functions as generators and # to replicate expressions one can define more
powerful functions. The following function ints when called normally returns a value in
the range start ... stop while as a generator returns all these numbers in a random

order.

(setfun ints(start stop)
(when (le start stop)
(return start)
#!(return *#(ints (plus start 1) stop))))

When called normally, this function can either execute the first return statement first
or attempt to replicate the replicable expression if the recursive call to ints succeeds. In
fact, it may do both at the same time since the expressions can be evaluated in parallel.

If (= start stop) then the replicable expression will disappear, in which case only the
first return statement can execute.

The serial version of this, written as:

(setfun ints-inc(start stop)
[when (le start stop)
(return start)
#!(return *(ints-inc (plus start 1) stop))])

returns number start if start is not greater than stop. Note how the two return state-
ments that form the body of when are executed serially, Of course, as soon as a return
statement (always the first one here) is executed, function ints-inc commits. When called

as a generator, the above function will return all values in order.



100 Generators and the Replicator Control Structure*

Note the use of the null generator #! here. It is the reason why the above two functions
have computational requirements linear in the number of times they succeed. If the normal
generator was used instead, the computational requirements would be quadratic in the

number of times they succeed.

6.3.2 More Examples

The formal definition of a replicator at first sight looks complex. Nevertheless, after some
experience with them their use becomes quite simple. The following examples will give an
indication of that simplicity.

(print w (list #*(ints 1 5)))

will print some permutation of the list (1 2 3 4 5), while

(print w (+ #*(ints 1 5)))

will print 15.

Generators are controlled by using serial or parallel invocations. In the next example
the values are produced by the generator and used serially, in a way which is reminiscent
of backtracking. The following two calls are equivalent:

[let() #(print w *(ints-inc 1 5))]

[let() (print w 1) (print w 2) (print w 3)
(print w 4) (print w 5)]
These will print the numbers 1 2 3 4 5in that order. A number is not evaluated until
the previous print has terminated.
A number of non-nested generators inside a replicator are defined to generate the direct
product, so the following two calls are equivalent:

(let() #(print w (cons *(ints 1 4) *(ints 5 8))))

(let() #(let ((vi *#(ints 1 4))
(v2 *(ints 5 8)))
(print w (comns vi1 v2))))
Both will print in window w some permutation of the sequence: (1 . 5) (1 . 6) ... (1
.8)(2.5)(2.86) ... (2.8) ... (4. 8).
Nested generators are affected only by the enclosing generator, so the two following

calls have the same behavior:
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(let() #(print w *(ints 1 *(ints 1 5))))

(let() #(let ((v1 *(ints 1 5)))
#(let ((v2 *(ints 1 v1)))
(print w v2))))

Both will print in window w some permutation of the sequence: 1 1 21 2312341
2 34 5.

Finally, this more complicated example:

(let() #(print w (cons *(ints 1 *(ints 1 5))
*(ints 6 *(ints 6 8)))))

will print (30, 4) * (X5gi — 5) = 15 % 6 = 90 pairs of numbers. These will be some

permutation of the sequence: (1 . 6) ... (1 . 8) (1 .86) ... (1 .8) (2.686) ... (2

.8) (1 .86) ... (3.8) ... (5.28).

6.3.3 Computing and Processing the Values of a Generator in Parallel

The following function produces either one or all permutations of a list in parallel (de-

pending on whether it is called simply or as a generator):

(setfun permutations(1l)
(when (null-p 1) (return nil))
(when (cons-p 1)
#(lets (((x rest) *(delete-one 1)))
#(return (cons x *(permutations rest)))))))

(setfun delete-one(l)
(when (cons-p 1)
(return (list (car 1) (cdr 1)))
#(return (let (((x rest) *(delete-one (cdr 1))))
(1ist x (cons (car 1) rest))))))

The let call in the permutation function is called once for each value returned by generator
*(delete-one 1), since it is the immediately enclosing generator. Furthermore, since let
is called as a generator, it will return all results of the generator in its body.

The example which follows presents an entirely parallel algorithm that provides one

or all solutions to the 8-queens problem.

(setfun queens(n)
(lets ((1st (make-list n)))
#(lets ((bd (board lst *(permutation 1lst))))
(unless (unsafeall bd) (return bd)))))
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(setfun unsafeall(board)
(when (cons-p board)
(when (unsafe (car board) (cdr board)) (return))
(when (unsafeall (cdr board)) (return))))

(setfun unsafe(q board)
(when (cons-p board)
(when (unsafel q (car board)) (return))
(when (unsafe gq (cdr board)) (return))))

(setfun abs(x)
(return (if (1t x 0) (diff x) x)))

(setfun unsafei(q p)
(when (eq (abs (diff (car q) (car p)))
(abs (diff (cdr q) (cdr p)))) (return)))

(setfun board(lst places)
(return (if (null-p 1st) ()
(cons (cons (car 1st) (car places))
(board (cdr 1lst) (cdr places))))))

(setfun make-list(n)
(if (1t n 1) (return ())
(return (cons n (make-list (diff n 1))))))

Here, all possible boards are generated in parallel and at the same time tested if they are
acceptable.
It is possible to replace function permutation, above, by another which can utilize more

Processors:

(setfun permutation(l)
#(return *(perms 1 (length 1))))

(setfun perms(l n)
(when (null-p 1) (return nil))
(when (cons-p 1)
#(lets (((x rest) *(delete-one 1 n)))
#(return (cons x *(perms rest (diff n 1)))))))

(setfun delete-one(1l n)
#(return (delete-nth *(all-ints 1 n) 1)))

(setfun all-ints(x y)
(when (eq x y) (return x))
(when (1t x y)
(lets ((middle (quotient (sum x y) 2)))
#(return *(all-ints x middle))
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#(return *(all-ints (sum middle 1) y)))))

(setfun delete-nth(n 1)
(return (let (((bc val) (’new become)))
(1ist val (delete-nthx n 1 bc)))))

(setfun delete-nthx(n 1 bc)
(when (cons-p 1)
[when (le n 1)
(’make bc (car 1)) (return (cdr 1))]
(when (gt n 1)
(return (cons (car 1)
(delete-nthx (diff n 1) (cdr 1)
bc)))))

We have a sketch of a preliminary implementation on a shared memory multiprocessor,

which suggests that the first program for 8 queens finds all solutions in O(max( cgils ,n?))

time, while the second (the one which uses the last definition of permutation) in
O(max(q?ﬁ, nlogn)) time. The number of available processing elements is cpus.

Even though the last program achieves higher processor utilization it also has consid-
erably greater overhead. This is because function delete-one in the last program requires
quadratic processing power, while in the first program only linear processing power.

Note that function delete-nth makes use of the “value to become” object (become) to

take the value deleted from the input list in a more convenient way.

6.3.4 Computing the Values of a Generator using Control Backtrack-

ing

A generator that makes use of serial execution can be controlled by the replicator and
be made to compute and produce values on demand. This is equivalent to control back-
tracking in the generator and is achieved by making some serial® calls in appropriate
places.

For example, in order to solve the above problem of the 8 queens using control back-

tracking we need a different generator for the permutations and a new driver:

(setfun permutation(l)
(when (null-p 1) (return nil))
[when (cons-p 1)

6Calls whose parameters are evaluated serially. These are declared by placing the call in square
brackets.
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#[lets (((x rest) *(delete-one 1)))
#(return (cons x *(permutation rest))])])

(setfun delete-one(l)
[when (cons-p 1)
(return (car 1) (cdr 1))
#(return (let (((x rest) *(delete-one (cdr 1))))
(1ist x (cons (car 1) rest))))])

(setfun queens(n)
[let ((1st (make-list n)))
#(lets ((bd (board lst *(permutation 1st))))
(when (not (unsafeall 1st bd))
(return bd)))]1)

Here, the possible positions of the queens on the board are generated and tested one after
the other. For this reason, it would be possible to replace replicable single assignment
variables with non-replicable multiple assignment ones. Note that a position is being
tested while it is generated. To test a position only after it is completely generated, the

last call to the 1let expression should be serial.

6.4 Implementation

6.4.1 Transformations and complications

The two transformations presented earlier can be used for the implementation of these
structures. This fact is a proof that generators and the replicator in ALLOY have no
undesirable effects on the efficiency of the rest of ALLOY.

Part of the transformations presented must be done at run time. That is the part
which depends on the number of results returned by the various factories. For this reason
and for efficiency, the transformation, taking place during pre-processing, would make use
of some low level system functions. This is also the way these structures are implemented
by the interpreter in Appendix A. The most important complications have to do with
preserving the types of evaluation (i.e serial/parallel, eager/lazy) and the controllability

of the return statements.
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6.4.2 Parallel Architectures

The replicator is particularly important in parallel systems. This is due to two reasons.
First and foremost, it allows the expression of highly parallel algorithms. Second, it often
provides parallelism of more coarse grain in the form of generators. The first point is
further explained in the following.

A high degree of parallel replication can appear in two forms. First, a generator in a
replicable expression can return many results concurrently through processes it creates.
Second, multiple non-nested generators in a replicable expression will have that expression
replicated for a number of times equal to the product of the number of results from each
generator.

In a shared memory MIMD architecture supporting a highly parallel primitive like
fetch-and-add, replications can take place in parallel. For this to happen it is sufficient
to delegate responsibility of the replication to the generators driving it.

In particular, processes in a generator directly place each result in an array, assigned
to that generator, managed by a highly parallel index. Many results can be placed in this
array concurrently. As soon as a generator co-driving a replicable expression realizes that
replication can take place (all driving generators have generated at least one result,) it
creates a multiple process to perform the replication or many replications concurrently. A
multiple process is equivalent to an arbitrary number of processes and is created in constant
time [F'G91] The cpu schedulers will behave as if many processes have been placed in the
parallel waiting queue.

A multiple process needs the fetch-and-add primitive for its realization. Each of its
instances will access the arrays of values (created by the generators) using highly parallel
indices. Each instance process of the multiple process will finally create and evaluate a
replica statement concurrently with all of the other instance processes.

The array assigned to each generator should be dynamic in size. This is possible by
implementing it as a two dimensional array whose one dimension contains only pointers
to dynamically allocated vectors. In the beginning only the first pointer is allocated a
vector. As soon as the vector pointed to by a pointer gets filled the next pointer can be

made to point to a new empty vector.
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6.5 Discussion

6.5.1 Comparison with other Languages

Icon provides control backtracking between a function and its parameters as well as be-
tween the parameters of a function. Making serial calls in ALLOY and nesting generators
results precisely in ICON-style programs. However, in ICON a function can be either a
simple function or a generator (but not both) depending on its definition. In ALLOY this
depends on the way a function is called.

Prolog always provides full backtracking, unless explicitly requested not to do so (as-
suming no side effects take place). If side effects do take place the program has to restore
their effects explicitly, as with control backtracking. Having backtracking at every point
makes expressing of many conventional programs awkward.

Since replicators in ALLOY provide control backtracking, it is not hard to translate
to ALLOY (see chapter 7) a program written in ICON or PROLOG. The transformation
whether mechanical or by hand would be simple. However in the case of translating PRO-
LOG to ALLOY the resulting program may be somewhat longer than the original one’.
It should be noted that functional programs have much less need for data backtracking
than logic programming languages, since functions can succeed repeatedly and return new
solutions without having to re-assign variables to new values.

SETL provides a different solution by allowing one to define a backtracking point inside
a function and return there from anywhere when a failure is registered. This means that
any function is a potential backtracking point if it either has a backtracking point or makes
a call to a function that may fail. Since variables whose values must be restored during
such a backtracking need to be declared, the above mechanism is not more expressive than
that of, say, [CON.

The continuation mechanism of Scheme can provide coroutining and control backtrack-
ing, and is more powerful than that provided by ICON, and also PROLOG and SETL
(except for data backtracking), since it can express and control many threads of execu-
tion some of which may be backtracking points of others. ALLOY makes no attempt to

provide continuations, which we view as almost too powerful for general use, but provides

"This is true when the parameters of a predicate are used both for input and output. In such
a case logical variables/unification (objects) will be needed.
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mechanisms which are equally expressive for most common applications of continuations,
and more expressive for others. The one application of continuations which seems difficult
to implement in ALLOY is that where continuations split threads of execution without
prior preparation.

And-parallel logic programming languages such as PARLOG, GHC, CP etc. provide
limited or-parallelism or full or-parallelism on some subset of the language. These mul-
tiple solutions must then be explicitly iterated upon. A serious disadvantage is that the
mentioned limited subset is not allowed to interact or communicate with the full language
except to provide its solutions. One can directly program in PARLOG style in ALLOY
with the only support being a class which provides logical variables and messages for their
unification.

Later research attempts to combine properties of and-parallel LPLs with or-parallel
Prolog languages. Andorra Prolog [HB88], P-Prolog [YA86] and Pandora [BG&9] all try
to provide some form of both and-parallelism and or-parallelism with suspension and
commitment mechanisms for parallel programming. These designs seem to be promising,
but it remains to be seen how powerful/efficient they are.

Multilisp and Queue-Based Multiprocessing Lisp, two of the few functional program-
ming languages which can express arbitrary parallel algorithms, make no attempt to ease
implementation of programs that need to search a space of solutions. Even with the sup-
port of a powerful library, solutions to the above problems would be far from being elegant
or convenient to read or write. Users would have to resort to the use of special-purpose

user-defined macros to express their problems in a natural way.

6.5.2 Discussion

ALLOY employs parallel execution of calls and commitment of closures. What other
languages regard as and-parallelism here is equivalent to letting processes finish execu-
tion before committing a closure. What other languages regard as or-parallelism here is
equivalent to committing a closure before some of its processes have finished execution.
Or-parallelism typically appears in the form of a set of when/return pairs.

Having functions instead of predicates makes flow of data clearer as well as reducing
the need for multiple environments during or-parallel execution. The replicator creates

new environments where necessary by replicating instances of function calls.
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Replicas of replicable expressions do not have to be made serially or to be made
by one process only. Instead, replicas can be created and executed by the generators
in the replicable expression. Depending on the hardware this may involve little or no
synchronization. This allows the programmer to express highly parallel algorithms and
the implementation to exploit various types of hardware.

Combining results of generators is considered to be most common in a parallel envi-
ronment and this is indeed what one achieves with non-nested generators. Still, calling
a generator once for each of the results of another generator is also possible by nesting
the latter into the former. This last ability is what makes (both or-parallel and serial)
Prolog-like programs simple to write.

Collecting all solutions from a generator is possible by using a convenient container
object. However, in most cases the explicit construction of this object is unnecessary as
the solutions may be used directly.

Non-deterministic commitment is possible when a function is not called as a generator.
It is trivial to write a function that merges two streams. A similar function can be used as
a generator to produce all possible resulting streams, even though that would be of little
use.

We believe that the notions of replicators and generators can be made part of most

functional programming languages, with only minor effort.

6.6 Summary

This chapter introduced the replicator control operator, which allows a particularly flexible
use and control of generators in a parallel environment. It is demonstrated in ALLOY how
these can be used to express a wide range of algorithms for searching a space of solutions,

from rigid control backtracking up to unhampered full parallelism.



Chapter 7
Logic Programming Styles

In logic programming languages it is too often the case that the programmer is forced
to hide what was meant behind vague and complicated expressions using general purpose
features. It is shown how selective use of functions with generators and/or special objects
enhances clarity, efficiency and power. This chapter also describes the mechanisms which

the language ALLOY provides for the support of full logic programming styles.

7.1 Introduction

This chapter describes techniques for programming in styles like that of Prolog, or-parallel
Prolog, and Parlog. It shows also that the full requirements (and complexities) of a logic
programming style (i.e. backtracking, logical variables, and unification) are often not
needed.

Many program components have a functional nature, for which logic programming
languages are not suitable. It is claimed that Logic Programming Languages can best be
thought of as special cases of functional languages extended with searching abilities and
object oriented programming. In such a case, selective use of functions with generators
and/or special objects provides clarity, efficiency, or-parallelism, and the option to evaluate

lazily or eagerly.

109
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7.2 Logic Programming and Styles

This section presents programs written in Prolog, or-parallel Prolog, and Parlog. It gives

examples written in various styles in each language.

7.2.1 Prolog

A Prolog [Col72,KowT74] program consists of predicates. A predicate consists of clauses.
A clause (Definite Horn Clause!) consists of a Head and a Body. The head is a term?
while the body is a conjunction of terms (predicate calls). These heads have the same
term-name, the name of the predicate. The head of a clause is true if its body is true.

Programs in Prolog use resolution [Rob65] to find out the variable bindings for which
a goal term is true. Resolution is based on unification and in Prolog proceeds in a top-
down left-to-right fashion while the program clauses are selected in order of appearance
(Selective Linear Definite or SLD clause resolution). The process is deterministic.

Variables in Prolog are called logical variables since they are objects which can be
passed around or be made part of other structures. A logical variable can be bound to
a value if and only if it is not bound to one already. After backtracking a variable may
become unbound.

The process of backing up from a search branch that fails to resolve is called back-
tracking. This process involves both control and data backtracking. Backtracking is used
until a successful branch is found.

A program often used to demonstrate the flexibility of programs written in Prolog is

the append predicate:
append([H| T], L, [H| T2]):- append(T, L, T2).
append([], L, L).

This predicate can be used with variables at any argument or any position of an argument.

Thus, it can append or split lists.

'In AI terminology, clause is a set of literals representing their disjunction, Horn Clause is a
clause with at most one positive literal and Definite Horn Clause is a Horn Clause with exactly
one positive literal.

%Since clauses are DHCs the head has to be a positive literal. This is what Prolog is lacking
from first order logic. For the same reason treatment of negation is either incomplete (eg. works
on ground terms only) or not sound (eg. negation through failure)
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While the above predicate is impressive, often reversible algorithms are either hard (e.g.
copy elements of a list to an array,) impossible (e.g differentiation,) or just meaningless
(e.g. mn-queens problem). The proliferation of the cut operation in Prolog Programs is
another indication that multi-directional programs are the exception rather than the rule.

Predicate fibonacci unifies the third argument with successive elements of the fi-
bonacci sequence with initial values the first two parameters. Though it could be made to
use as output whichever parameter the caller leaves uninstantiated, in practice it would
not be very useful and since it is not obvious how to implement it or what its exact be-
havior would be, the extra feature is ignored. Thus, predicate fibonacci is written in a

functional style:

fibonacci(X, Y, Y).
fibonacci(X, Y, V):- Z is X + Y, fibonacci(Y, Z, V).

Finally predicate length returns the length of a list. For similar reasons it is written

in a functional style:

length([], L):- L is 0.
length([_| T], L):- length(T, L2), L is L2 + 1.

7.2.2 Or Parallel Prolog

Here programs take advantage of multiprocessor systems. A predicate often mentioned

with these languages is the intersection of two lists:

intersection(L1, L2, L):- setof(X, common(L1, L2, X), L).
common(L1, L2, L):- member(X, L1), member(X, L2).

member (X, [X| _1).
member (X, [_| T]):- member(X, T).

7.2.3 Parlog

An extended description of PARLOG was given by Gregory [Gre87]. Its main objectives

include the provision of stream and-parallelism, the logical variable, efficient compilation
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and powerful metalevel programming (process control). PARLOG uses modes for param-
eters as a syntactic convenience and provides provides both serial and parallel disjunction
and conjunction.

Whenever there are many producers of some values predicate merge is used to combine
the various results, which come in streams, to one stream:

mode merge(in, in, out).

merge([X | U], Vv, [X | Z1):- merge(V, U, Z).
merge(U, [Y | VI, [Y | Z1):- merge(U, V, Z).
merge([1, [1, [1).

Another predicate often mentioned with these languages is isotree which checks if two
trees are isomorphic. This program makes use of both or-parallelism and and-parallelism:

mode isotree(in, in).

isotree([Leftl | Right1], [Left2 | Right2]):-

isotree(Leftl, Left2), isotree(Rightl, Right2) : true;
isotree([Leftl | Right1], [Left2 | Right2]):-

isotree(Leftl, Right2), isotree(Rightl, Left2) : true.
isotree(T, T).

It is possible to use the logical variable to suspend and resume execution of a predicate
and finally achieve lazy evaluation. It may require some effort until the technique is
mastered. For example consider how one may write a predicate that returns the squares
of all integers:

mode squares(?), squares(?, ?), integers_from(?, 7).
squares(List):- integers_from(1, Ints), squares(Ints, List).

squares(Ints, [S| List]):- Ints=[X| Irest], prod(X, X, S),
squares(Irest, List).

integers_from(I, [Int, Irest]):- Int=I, sum(I, 1, I1),
integers_from(I1l, Irest).
In this way, the square of an integer is evaluated only if it is requested. Using similar
techniques it is easy enough to write a lazy predicate which evaluates all primes or one that
can function as a bounded buffer to serve as an amortizing mechanism among producers

and consumers.
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7.3 Comparisons

This section gives implementations of the above programs in ALLOY. In some cases,

library prolog is used. It is defined in the next section.

7.3.1 Prolog styles

In general cases where prolog programs make full use of the logical variable and backtrack-
ing the solution provided in ALLOY is to use the prolog library. This solution however

results in verbose programs (see subsection 7.4.4 for a simpler version):

[setfun p-app(pl p2 p3)
[lets (((1) (1vs 1)))
(snest ~!'*#(unify pl ()) ~“!*(unify p2 1) ~!*(unify p3 1) ~“(return))]
[lets (((1 t r h) (1lvs 4)))
(snest “!*#(unify pl (cons h t)) ~!*(unify p3 (comns h r))
“1x(p-app t p2 r) “(return))]]

The main difference is that here logical variables have to be initialized explicitly and
unifications in the head of each clause have to be moved into the body. Depending on the
ALLOY implementation of generators, this code may be inefficient (by a constant factor)
when compared to the Prolog code.

As explained above, the arguments of Prolog predicates are often used either for input

or for output but not for both. In these cases, the functional definition can be cleaner.

This is the definition of function app in ALLOY which appends two lists:

(setfun append(11 12)
(return (if (coms-p 11) (cons (car 11) (append (cdr 11 12))) 12)))

In complex cases, functional algorithms can be much easier to understand or produce
efficient code for.

This is the definition of function fibonacci in ALLOY:

[setfun fibonacci(x y)
(return y)
#!(return *(fibonacci y (sum x y))1]

Values are generated by this function on demand. This is due to properties of the return

statement in generators (see chapter 6).

Finally, when arguments are directional and backtracking is not needed the algorithm

is clearly functional. Thus, the simplicity of function length:
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(setfun length(1)
(return (if (cons-p 1) (sum 1 (length (cdr 1))) 0)))

7.3.2 OR-parallel Prolog

Such ALLOY programs making full use of the logical variable should make use of the
prolog library. Here is the direct OR-parallel Prolog-like implementation of predicate
intersection. Fach predicate returns the new values of its arguments in a list.

(setfun intersectionp(lp2 1p3)
(return (let [((x) (lvs 1))]
[list #[rstrip *(commonp x 1p2 1p3)11)))

(setfun commonp(lpil 1p2 1p3)
(lets [((x 11 12) (copyloge (list 1lpl 1p2 1p3)))]
#(lets [((x2 11_2) *(memberp x 11)
((x3 12_2) *(memberp x 12))
(when (unify x2 x3) (return (list x3 11_2 12_2)))]

[setfun memberp(lpl 1p2)
[lets [((p1 p2) (copyloge (list 1lpl 1p2)))]
(snest ~'#(unify (cons pl (’new logvar)) p2)
“(return (list p1l p2)))]
(lets [((x p2) (copyloge (list 1lpil 1p2)))
((r h) (1vs 2))]
(snest ~!'#(unify p2 (cons h r))
“1[lets [((X2 R2) *(memberp x r))]
(return (list X2 (cons h r2)))]1))]

Again the problem is verbosity. Also, the code is not efficient.
We have some extra flexibility here. If we prefer that predicates in conjunctions do
not evaluate in parallel we can replace predicate commonp with:

(setfun commonp(lpil 1p2 1p3)
[lets [((x 11 12) (copyloge (list 1pil 1p2 1p3)))]
#[lets [((X2 11_2) *(memberp x 11))]
#[lets [((x3 12_2) *(memberp x2 12))]
(return (list x3 11_2 12_2))111)

However, since in general arguments are directional, as is the case in this example, it

is more natural to use a functional style:

(setfun intersection(sl s2)
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#(lets ((x *(getmember s1)) (y *(getmember s2)))
(when (eql x y) (return x))))

(setfun getmember(1l)
(when (cons-p 1) (return (car 1))
#!(return *(getmember (cdr 1)))))

7.3.3 Programming in Parlog Style

In PARLOG it is even more common that arguments have directionality. The few cases
where this is not true usually have to do with emulation of objects or lazy evaluation.
ALLOY directly supports object oriented programming and lazy evaluation.

Simple programs such as the merge function are also simple in ALLOY. The definition

of function merge follows:

(setfun merge(l1 12)
(when (null-p 11) (return 12))
(when (null-p 12) (return 11))
(when (cons-p 11) (return (cons (car 11) (merge 12 (cdr 11)))))
(when (cons-p 12) (return (cons (car 12) (merge (cdr 12) 11)))))

The same definition can be called lazily. If recursive calls were made replicative this func-
tion could be called as a generator to return all possible resulting streams. In PARLOG
the second is not supported at all while the first would require a different program.

In PARLOG OR-parallel calls must be safe even though safety is an undecidable
property. In ALLOY if safety is needed it is sufficient not to pass writable objects to

functions called in parallel®. Here is function isotree in ALLOY:

(setfun isotree(tl t2)
(if (and (cons-p t1) (cons-p t2))
(if (or—call ~(and-call ~(isotree (car t1) (car t2))
“(isotree (cdr t1) (cdr t2)))
“(and-call ~(isotree (car t1) (cdr t2))
“(isotree (cdr t1) (car t2))))
(return t1) (return %f))
(return (eql t1 t2))))

®This does sound like Concurrent Prolog’s abilities, though passing non-writable objects does
not have to be done at run time. Synchronizing values are already non writable.
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The functional nature of ALLOY makes lazy evaluation trivial and clean. The following

function returns the squares of all integers as a lazily evaluated stream:

(setfun squares()
(return (lazy (squaresl (ints 0)))))

(setfun squaresl(l)
(return (cons (times (car 1) (car 1)) (squaresl (cdr 1)))))

(setfun ints(x)
(return (cons x (ints (sum x 1)))))

This is the same as the eager version with the exception of the lazy declaration at the
top level. If it is not clear that the functional lazy solution is much cleaner than the logic

lazy solution the reader is invited to compare the lazy implementation of prime numbers

in ALLOY (chapter 2) with the PARLOG solution [CG86].

7.3.4 And and Or parallel algorithms

Problems such as n Queens (see chapter 2), can make use of both AND and OR paral-
lelism. In the particular case of the n Queens problem, AND parallelism can be used in
testing for safety at the same time a permutation of the Queens is being created. OR
Parallelism can be used in creating the permutations of the Queens in parallel. This is not
possible in either or-parallel Prologs or PARLOG. Though it is possible in full Concurrent
Prolog no implementations of it are available while research indicates that properties of
the language could make an efficient parallel implementation impossible. Attempts to
translate such programs to primarily and-parallel logic programming languages appear to
face complications [Ued87a,Ued87b] and often introduce serializations [Mit88a,Mar88].
Problems which can be expressed functionally can make use of both AND and OR
parallel evaluation in ALLOY. Some solutions to the » Queens problem are given in
chapter 6. These make depth first or breadth first search and can return one or all

solutions.

7.4 Supporting Library

This section describes the library of functions providing the logical variable, one way

unification, backtrackable unification, the cut operation and function snest. Library file
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prolog.a makes sure all these utilities are available.

7.4.1 Prolog

This top level file defines utilities to create logical variables, make successive backtrackable
calls, the cut operation and also makes sure everything else is loaded.

(provide "prolog")
(require "unify")

(setfun 1lvs(i)
(if (gt i 0) (return (cons (’new logvar) (lvs (diff i 1))))
(return nil)))

(setfun (snest . 1) (snestl 1))

(setfun snestl(l)
[when (cons-p 1) #[s *((car 1)) (snestl (cdr 1))11)

(setfun (s . x))

[setfun cut(global-fail)
(return 1)
(global-fail)]

Note the simplicity of the definition of function cut.

7.4.2 Unification

This file provides unification mechanisms for logical variables. The available operations
are: one-way unification, full unification and backtrackable full unification. Backtrackable
unification makes use of the ability to control the generation process (chapter 6). During
backtracking the unification operation un-does its bindings.

(provide "unify")
(require "logvar")

; Simple, non backtrackable unification.
(setfun s-unify(11 12)
(return (simpl-unify 11 12)))

; Simple, non backtrackable left unification.
(setfun s-unifyl(11 12)
(return (simpl-unifyl 11 12)))
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(setfun simpl-unifyl(11 12)
(when (logvar-p 11)
(return (if (°put 11 12) 11 (simpl-unifyl (°get 11) 12))))
(when (and (cons-p 11) (cons-p 12))
(return (and-call “(simpl-unifyl (car 11) (car 12))
“(simpl-unifyl (cdr 11) (cdr 12)))))
(when (and (scons-p 11) (scons-p 12))
(return (and-call ~(simpl-unifyl (scar 11) (scar 12))
" (simpl-unifyl (scdr 11) (scdr 12)))))
(when (atom-p 11) (return (eql 11 12))))

(setfun simpl-unify(11 12)
(when (and (cons-p 11) (cons-p 12))
(return (and-call ~(simpl-unify (car 11) (car 12))
“(simpl-unify (cdr 11) (cdr 12)))))
(when (and (scons-p 11) (scons-p 12))
(return (and-call ~(simpl-unify (scar 11) (scar 12))
“(simpl-unify (scdr 11) (scdr 12)))))
(if (logvar-p 11)
(return (if (°put 11 12) 11 (simpl-unify (’get 11) 12)))
(if (logvar-p 12)
(return (if (°put 12 11) 12 (simpl-unify (’get 12) 11)))
(when (atom-p 11) (return (eql 11 12))))))

; Backtrackable unification.
(setfun unify (11 12)
[when (and (cons-p 11) (cons-p 12))
#(return (cons *(unify (car 11) (car 12))
*(unify (cdr 11) (cdr 12))))]
[when (and (scons-p 11) (scons-p 12))
#(return (scons *(unify (scar 11) (scar 12))
*(unify (scdr 11) (scdr 12))))]
(if (logvar-p 11)
[block #(return *(unifyput 11 12))]
(if (logvar-p 12)
[block #(return *(unifyput 12 11))]
(when (atom-p 11) (when (eql 11 12) (return 11))))))

(setfun unifyput (11l 12)
[lets [(_ok %f)]
#(return (blockl *(’put 11 12) (set _ok %t)))
[unless _ok #(return *(unify (’get 11) 12))11)

(setfun copyloge(e)
(return (let ((d (’new dictionary)))
(copy-loged e d))))

[setfun copy-loged(e d)
(when (cons-p e)
(return (let [(eleft (copy-loged (car e) d))
(eright (copy-loged (cdr e) d))]
(if (and (eql (car e) eleft) (eql (cdr e) eright))
e
(cons eleft eright)))))
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(wvhen (atom-p e)
(return (let ((es (mstrip e)))
(if (logvar-p es)
(let [(esc (’get d (’age es)))]
(when (var-p esc) (’put d (’age es) (’new logvar)))
esc)

es)) )]

7.4.3 Logical Variable

The logical variable is defined here in terms of a multiple assignment variable. The ability
of this variable to undo its bindings appears in function put. The un-binding takes place
when called as a generator and requested to return a second solution. No second solution
is returned but the binding is undone.

(provide "logvar'")
(require "faa")
(require "sa-var'")

(class-start logvar
(static _value order novalue)
(import eql printnl strip)
(common faa)
(methods get put age var))

(setfun new(x)
(set novalue ’novaluel75342)
(set _value novalue)
(set order (’faa c-faa 1)))

[setfun var()
(if (eql _value novalue) (return %t) (return %f))]

(setfun get()
(return (if (eql novalue _value) here _value)))

(setfun put(vv)
(when (var)

[block (return (set _value (strip vv))) (set _value novalue)]))

(setfun age()
(return order))

(class-end logvar)

(setfun strip(x)
(return (if (var-p x) x (if (logvar-p x) (’get x) x))))
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(setfun mstrip(x)
[lets [(sx [strip x1)]
(if (var-p sx)
(return sx)
(if (eql x sx)
(return x)
(return [mstrip sx])))1)

(setfun rstrip(x)
[lets [(sx (mstrip x))]
(when (var-p sx) (return sx))
(when (cons-p sx) (return (cons [rstrip (car sx)] [rstrip (cdr sx)1)))
(when (scons-p sx) (return (scons [rstrip (scar sx)] [rstrip (scdr sx)1)))
(when (atom-p sx) (return sx))])

(setfun logvar-p(v)
(return (eql (’object-p v) ’logvar)))

7.4.4 Automating the Translation

Transformations from logic programming languages to ALLOY using the above library
can be automated easily. For serial and and-parallel logic programming languages the
transformations presented are efficient, though for or-parallel logic programming languages
it would be much better, if possible, to replace the predicates by functions.

However, the transformations are not so verbose as to be very hard to do by hand. Of
course, predicates which behave like functions should preferably be written directly into
ALLOY.

Another way to facilitate translation of Prolog programs to ALLOY is the use of some
macros. Two macros, p-clause and p-cut, could be provided for this purpose. Thus,
function/predicate p-app would become simpler:

[setfun p-app(pl p2 p3)
[p-clause (1)
(unify p1 ()) (unify p2 1) (unify p3 1) (p-cut)]

[p-clause (1 t r h)
(unify p1l (cons h t)) (unify p3 (cons h r)) (p-app t p2 r)]]
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7.5 Summary

It has been shown that general programs written in serial Prolog, or-parallel Prolog, or
Parlog can in general be translated into ALLOY. This general transformations, though
inefficient (assuming simple compilers) by a constant factor can be mixed as desired. In
the case of or-parallel prolog the transformation is naive. All transformation can be done
automatically by a simple pre-processor.

It has been shown that a considerable number of programs written in these languages
can be written in an ALLOY style. These styles are more efficient and clear since they are
functional, more flexible since they can evaluate eagerly or lazily, and more powerful since
they can provide single or multiple solutions. These problems (e.g the n Queens problem)
can make use of both AND and OR parallel evaluation. This last ability is not available
in any of the current Logic Programming Languages.

Having the synchronizing variable as the basic variable instead of the too powerful
logical variable is one reason for the above advantages. Using the replicator/generators

instead of either backtracking or or-parallelism is another reason.
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Chapter 8

An Interpreter Simulating

Parallelism

This chapter describes an interpreter of ALLOY implemented in Common Lisp. The
description is followed by some benchmarks. Finally some comments on potential op-
portunities and problems of implementations on MIMD shared memory and distributed
architectures are presented. The full source code of the interpreter is given in appendix A.

The full suite of benchmarks is given in appendix B.

8.1 Introduction

An implementation of ALLOY is dominated by the need to support:
e Serial/parallel fine grain execution.
e Eager/lazy evaluation.
e Powerful commitment.
e Synchronizing variables.
e Closures.
e Objects and dynamic variables.
e Uniformity of classes, objects, and closures.
o Generators and their behavior during serial/parallel and eager/lazy evaluation.

e Replicators with nested /non-nested generators.

123
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e Garbage collection.
Other important issues include:

e Pattern matching for function arguments.

Ability for any function to be called as a generator.

Built in expressions, functions and objects.
e Pre-processing for faster interpretation.

e Interactive environment.

ALLOY v2.0, described in this thesis, has been implemented fully as an interpreter in
Common Lisp. This implementation has been focused on simplicity so that changes could
easily be made and new features could easily be added. This implementation provides
all the features described in chapter 3 including a programming environment and some
libraries.

One important reason for this implementation has been assistance in making AL-
LOY clear, complete, and efficient. As it turned out, this implementation helped in the
illumination of a number of dark corners. Lisp was selected as the language of the im-
plementation because it allows quick changes, and provides powerfull utilites as well as a
garbage collector.

The other important reason for this implementation was to test and debug ALLOY
programs. These programs are very important in demonstrating ALLOY’s strength.

When this interpreter is compiled using Austin Kyoto Common Lisp v 1.530 it executes
with a speed of 600 function calls (or messages) per second on a SparcStation 1. Programs
which use many generators may be expected to run slower since in this implementation
the replicator/generator structures get replaced by many regular calls before they are

executed.

8.2 The interpreter in Lisp

This section describes a full interpreter of ALLOY in Common Lisp. A short description of

the logical parts for this interpreter is followed by an extensive description of the important

data structures used. The complete sources of the interpreter are given in appendix A.
In this interpreter a running program is a set of processes. Of these processes those

which are ready to execute are located either in a queue or a stack. Normally, new
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processes are placed and taken off the stack but in cases when it is known that some
processes would probably suspend for some time, they are placed in the queue.

After a (user definable) number of processes have been taken off the stack a process
is moved from the stack to the queue (to intensify non-determinism). When the stack is
empty processes are taken for execution from the queue.

When both the stack and the queue are empty, the prompt is returned to the user. In
a parallel implementation the prompt could be returned to the user while processes were

still executing.

8.2.1 Parts of the System

The important logical parts of the ALLOY system are presented here. These should be

the first step towards the understanding of the implementation.

Top Level

It is defined in subsection A.1.2 and subsection A.1.3. It provides the read-eval-execute
loop. The prompt is given to the user as soon as there are no more executing processes.
The input together with a command to print its value is translated into the internal
representation, is made known to the interpreter, and control is passed to the interpreter.

When the interpreter has nothing to do, control is returned to the read-eval-execute loop.

Parser

The actual parser is defined in subsection A.4.1. It is an interface to the Common Lisp
parser enhancing it with the ability to recognize square lists, generators, the replicator,
and closures.

The function for reading an ALLOY expression is al-read with optional argument an
input stream (default is the console). The function for printing an ALLOY expression is

al-print with optional argument an output stream (default is the console).

Pre-processor

The pre-processor checks that built-in expressions are correctly formed, replaces expres-

sions with lower level expressions and simpler function calls, and returns the result. The
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main part of the pre-processor is defined in subsection A.3.1 and the main function is
al-prep.

The basic part of the interpreter is defined in subsection A.3.1. Pre-processing of
functions and functional expressions is done here. Expressions are checked here that they
are well formed and some are translated into code which is more efficient to interpret. The
most complex of these expressions is the let expression.

A large part of pre-processing is defined in subsection A.3.2 and deals with the pre-
processing of generators and replicators. It is charged with the task of identifying replica-
tors and the properties of the environment in which they operate. Then it places generators
into groups with the appropriate drivers and flags declaring the required behavior, and cre-
ates the general form of replicable expressions. The main function for the pre-processing
of generators is gprep, which is called by the main pre-processor.

Finally, the part of the pre-processor defined in subsection A.3.3 pre-processes class
definitions, making sure they are well formed, and replacing them by expressions easier to

handle. The main function for this is oprep which is also called by the main pre-processor.

Functional Features

The main implementation of functional features is given in subsection A.2.1. These are
serial /parallel evaluation of calls, eager/lazy evaluation, calls of closures and built in func-
tions, local and global commitment, handling of synchronizing variables, and some basic
built in expressions.

Fach function becomes a process. Each process knows to which synchronizing variable
it should its result. Each process can suspend waiting for a synchronizing variable to get
a value. Each process can suspend waiting for another process to ask that a synchronizing

variable gets a value (i.e. producer of lazily evaluated value).

Object Oriented Features

The implementation of these features is given in subsection A.2.2 and even though it is
lengthy, it has no complications. Much of it deals with keeping the representation of
objects and classes consistent. Also, it defines the behavior of predefined messages for

objects and classes.
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Generators and Replicator

These are defined in subsection A.2.3 and subsection A.2.1. Their implementation is rather
involved. One must keep in mind that at each point information about lazy evaluation
and order of evaluation must be passed along consistently.

For efficiency, these functions as well as drivers of the generating and replicating pro-

cess, have to manage internal ALLOY processes at the lowest level.

Built in Functions and Expressions

Expressions (special forms) are different from function calls in that they do not follow the
normal evaluation rules. Their arguments are evaluated (if at all) in special ways. They
are declared using function add-spec in subsection A.5.1 and the basic ones are defined
in subsection A.2.1, while others which are only for internal usage from the interpreter
are declared elsewhere. Since these expressions are operating at a very low level, they

communicate with the interpreter at a very low level, using the following functions:
o (give-value <value>) makes <value> the returned value of the expression.

e (waitfor-val <variable>) declares that the current expression suspends execution

waiting for <variable> to be set.

® (next-the-same) declares that the expression must be evaluated again immediately.
Usually this happens after part of the process representing the expression has un-

dergone some changes.

Built in functions are declared using function set-noninst whose second argument
specifies whether the function should be immediately available to objects or not (in which
case it must be imported). The implementation of these functions is given in common
Lisp and those common Lisp functions interface with the ALLOY interpreter by returning

values in the following special ways:

e (sus <variable>) means that the function wants to suspend waiting for that

<variable> to be set.

e (suc <value>) means that the function wants to return <value>.
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Built in Classes

Built in classes defined in Common Lisp have two forms. Classes for “regular” objects
such as vectors, dictionaries etc. and classes for low level objects such as lists, numbers,
strings, etc.

Classes of regular objects are declared using function set-bclass and the implementa-
tion of their messages and those of their instances is given in two functions whose names
consist of the name of the class prefixed by cl-c and cl-o respectively.

Definition of classes for low level objects (such as numbers and strings) in addition
require that an instance of their class is saved in a constant and that function send-bi-obj

in subsection A.5.3 is informed of their existence.

8.2.2 Data Structures of the Functional Part

The following describes the main data structures used by the interpreter. These are used

to describe synchronizing variables, closures, processes and environments.

Synchronizing Variables

Synchronizing variables have the responsibility of handling suspension of processes and
lazy evaluation. The data structure which represents them is called alval and is defined

in subsection A.1.3. The various fields of it are:

e init is true if the variable has been set to some value (Which could be another

variable). Otherwise it is nil.
e value contains the value of the synchronizing variable if it has one.

e suspend contains pointers to processes which cannot proceed until this variable has

been set.

e delayed may contain a pointer to the process which is responsible for giving a value

to this variable but is being delayed (or in a lazy evaluation mode).

Closure

A closure is represented by a simple data structure. That data structure is called

ext—function and is defined in subsection A.1.3. It has the following fields:
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e type gives the internal type of the corresponding function which can be:

— gfunction for a global function (defined at the top level of an object).

— gbfunction for a global function which is built in (cannot be redefined).

— noninst for a built in function of low level defined in the same language that
the interpreter is written.

— argone is similar to noninst except that the implementation function expects

all arguments in one list.

e expr contains a pointer to the code of the function.

e 1mu contains a pointer to the environment of the function’s definition.

Processes

The data structures used to represent processes are rather complicated. Processes need to
know the code they are expected to evaluate, where to place their result, the environment
of their execution, the mode of execution (eager/delayed/lazy), whether another process
is waiting (among others) for it to complete, and a pointer to that other process. The

data structure is called proc and is defined in subsection A.1.3. The various fields are:

e call contains a pointer to the code this process is expected to evaluate.

e result contains a pointer to the synchronizing variable into which the result must

be stored.
e 1mu contains a pointer to the environment in which it executes.

e waitfor contains an integer equal to the number of processes whose execution must

complete before this process can start execution.

e suspended contains a pointer to a process which is waiting for this process (among
others) to complete execution before it (the suspended process) can start execution.
When the current process completes execution the waitfor number of the suspended
process is decremented. When that number becomes 0 the suspended process is

started.

e lazy contains the mode of execution (eager, delayed or lazy). The possible values

are:
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— nil FEager.
— delay Delayed.
— (t) Lazy.

— t Lazy but must give a value now.

Environment

The environment in which a process executes is represented by the most complicated data
structure in this implementation. A new environment is created every time a function
defined in ALLOY is called. For each function defined in ALLOY that executes there is
an exclusive environment given to it. The data structure is called muinfo and is defined

in subsection A.1.3. The fields of this data structure are:

e gmu A pointer to the environment of the call to the global (non-local) function which

defined this function.

e pmu A pointer to the environment of the function which called this one. This is useful

when some action needs to be charged to the caller (i.e. arguments of a function

call).
e chmus the list of environments of children functions.
e lenv the local part of the variable bindings (deep association list).
e die is true if processes accessing this environment are declared dead, nil otherwise.

e commit true if the function call using this this environment has committed, nil oth-

erwise.

e result is a pointer to the variable where the result of the called function must be

given.

e suspended the process suspended waiting for this function to complete execution.

Similar to the filed in the data structure of a process.

e lazy is true if the function has been called lazily. In this case the interpreter must

continue executing lazily after commitment.

e top is true if the function has been called by the top level of the interpreter.



8.2 The interpreter in Lisp 131

e object is a pointer to the description of the object in which this function has been

defined.

8.2.3 Data Structures for Classes

These are the most important data structures of those used exclusively for the represen-

tation of classes and objects.

Classes

A class must know of the special properties given to it, provide access to variables common
to all instances of the class with their values, and also a list of the dynamic variables for
convenience. The structure is called class and is defined in subsection A.2.2. Tt has the

following fields:

e origdef contains the list of properties given to this class by expression class-define.

e tabis a symbol table of variables with their values which are common to all instances

of this class and no other.

e ndynnammes is a list containing the number of dynamic variables followed by a list of

those names and a list of those names each prefixed by the string next-.

Objects

The data structure used to describe objects is called object, is defined in subsection A.2.2,

and has the following fields:

e class is a pointer to the object’s class.
e interface is the list of messages accepted by the object.
e inienv is a deep association list for binding of this object.

e nextdyn is the list of the next- dynamic variables which will be current to the next

object.

e createvar is true if this object can create global static variables at run time (i.e. the

top level object can do that).
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8.2.4 Data Structures for Replication and Generators

Replicators and Generators have the most complex implementation of all features in AL-
LOY. One reason for the complexity, and one of the advantages of ALLOY, is that this
simple control structure gives the writer of a compiler many opportunities for optimization.

Because many opportunities for optimization arise an efficient implementation of this
control structure would be lengthy though not very complicated. Since this implemen-
tation is meant to be simple and short, this control structure is given a very general
implementation.

The behavior of generators and the replicating process is different depending on the
environment in which the generators and the replicator exist. Depending on whether
parts of the structure are in a serial, parallel, eager, lazy, nested or flat environment the

structure can be compiled to take full advantage of the special usage.

Fake generators

Any ALLOY value (including Numbers, atoms, closures, etc.) as well as built in functions
implemented in the language in which the interpreter is written can be treated as if they
were generators. Therefore a special data structure is needed to represent them. The data

structure is called fgrec is defined in subsection A.2.3 and has the following fields:
e result is a list of the single result of the fake generator.
e expr is the fake generator itself.
e lazy is the mode in which the generator must evaluate.

e actis the action that must be taken when a value is being requested by the generator.

It can be:

— first if a value has not been requested yet.
— wait if a value has been requested already.

— regular generator if the fake generator is, in fact, a normal generator (i.e. a

real ALLOY closure).
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Normal Generator

A normal generator is a function defined in ALLOY, in other words a u closure. The data

structure used to represent it is called genstate and is defined in subsection A.2.4. Its

fields are:

e result is the list of results is generated up to that moment. The list may end in a

synchronizing variable.

e finished is the queue of gval structures each containing a process. The process is
the one executing a return (i.e. generating a result). That process suspends until

that value has been requested.

e resend is the tail of the results list. It is either a list or a synchronizing variable.

That is where the next generated element will be placed.
e next is a tail of the results list. The car is the next element to be given.

e rest holds the list of values which must follow after the generated ones. Used for

testing. Normally, it is always nil.

e suspend is a queue of processes . Every time a new value is requested from this
generator a processes is dequeued and gets awaken. In the beggining the queue only
contains the generator function. Later, every process returning a result for that
generator places its continuation in that queue. This is needed because the return

expressions of generators can be controled by the callers of the generators.

Multiple Generators

The results of multiple generators all of which are at the same level are combined in all
possible ways and the resulting expression containing them is executed.

Again, one difficulty is to preserve order in serial execution and mode of evaluation.
The data structure is called genstate and is defined in subsection A.2.4 of chapter A. Its
fields are:

e results is the list of all results of the expression with the multiple generators.
e resend is the tail of the results list. Useful to trigger generation of the next element.

e sergens true if the generators must be called the one after the other.
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8.3 Practical Considerations

This section deals with a number of practical issues.

8.3.1 Portability

Porting this interpreter to another Lisp system should be a simple task. Areas that would
need changes may include input/output, hash tables, and structures. Macro definitions
and variable number of arguments as well as tagged arguments may also need changes.
Porting this interpreter to C would not be quite so easy. The major difficulty would
be the requirement of a garbage collector. Also, the programmer would have to write
many supporting functions. However porting this interpreter in C would allow for many

optimizations of both time and space.

8.3.2 Benchmarks

On Austin-Kyoto Common Lisp about 60 function calls are performed per MIPS per
second. This translates to about 600 function calls per second on a Sparcsation 1. Gener-
ators can be expected to be slower than that since they are translated into many internal
processes.

The results of some benchmarks are given in the following tables. A small description

of these benchmarks and their code, is given in appendix B.

Basic functional:

Benchmark | msecs | Cycles | Calls | Procs | Envs | Vars | PPS | EPS | PPE
app3 50 56 35 52 10 22 | 1040 | 200 5.2
nrev30 5500 6374 | 3953 | 5878 994 | 2421 | 1068 | 180 5.9
length100 2067 2314 | 1505 | 2112 406 | 808 | 1021 | 196 5.2
whut80 2439 2725 | 1797 | 2420 530 | 1026 | 924 | 217 4.5
gsort1l 927 1247 805 | 1119 163 | 1463 | 828 | 175 6.8
ssort11 2433 2865 | 1834 | 2699 514 | 1277 | 1104 | 211 5.3
dine3-4 4274 4336 | 3134 | 3899 | 1290 | 1847 | 912 | 301 3.0

Lazy evaluation and generators:
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Benchmark | msecs | Cycles | Calls | Procs | Envs | Vars | PPS | EPS | PPE
Iprimesb 491 558 291 467 56 170 | 949 | 113 8.3
Iprimes25 15426 | 15602 | 8601 | 12907 | 1366 | 4430 | 836 87 9.4
inters33 350 623 458 537 32 300 | 1534 91 | 16.8
perms3 1927 2859 | 2047 | 2388 127 | 1212 | 1256 66 | 18.8
perms4 14117 | 12724 | 9157 | 10518 582 | 5340 | 745 41 | 18.0
queens4 13150 | 10057 | 6868 | 9222 728 | 4221 | 701 55 | 12.6
queensda 28034 | 24603 | 16813 | 22509 | 1782 | 10219 | 802 63 | 12.6
prapp2 9517 8489 | H8H6 | 7890 | 1017 | 3738 | 829 | 106 7.7
prapp2or 12217 | 14780 | 10138 | 13837 | 2001 | 6430 | 1132 | 163 6.9
pinters33or | 55183 | 44219 | 30015 | 41724 | 5490 | 19228 | 756 99 7.6

Where:

e msecs is the time in milliseconds needed for execution on a Sparcstation 1.

e cycles is the number of times the scheduler fetched a new process.

e calls is the total number (normal and internal) of function calls. This includes
normal function calls (appearing in the original program), and internal function
calls generated by the interpreter.

e procsis the numbers of processes created.

e envs is the number of different environments created (closures called).

e varsis the numbers of synchronizing variables created.

e PPSis processes per second.

e FPSis environments per second.

e PPFEis processes per environment.

8.3.3 Efficiency and Compilation

We see that the number of EPS for eager programs without generators is virtually stable

at about 190. Since the number of ALLOY function calls per closure calls (environments

created) is also stable at about 4-5 we can make general conclusions from specific programs.

By examining programs length100 and nrev30 we see that the first does 1206 and the

second 3474 function calls. Dividing these numbers by the time they take to execute, we

see that about 600 functions are called per second.
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Of the above table, of particular importance are values PPS, EPS and eventually their
ratio PPE. Unless the interpreter is written in a faster language such as C or the interpreter
is replaced by a compiler, the number of PPS created is virtually stable. The high number
of PPF implies inefficient execution. An efficient implementation would keep the number
of PPE to well below 2 maybe even below 1. This would reduce the number of PPS but
probably by no more than 50 per cent.

For the above reasons, it is reasonable to assume that an efficient compiler would be
at least 5 times faster than a naive compiler. It is also reasonable to assume that a naive
compiler of ALLOY in C would be at least 20 times faster than this naive interpreter of
ALLOY in Lisp. If these assumptions are correct, an efficient compiler for ALLOY in C
would be at least 100 times faster than this naive interpreter. This would translate to an

average of about 60,000 function calls per second on a SparcStation 1.

8.3.4 Ineffiecient Implementation of Features

The large number of PPFE with lazy evaluation and the even larger number of PPFE with
replicators and generators implies that these features have not been implemented very
efficiently. In particular, the implementation of replicators and generators is general and
thus special cases are identified at run time. That is the main reason for the large number

of processes executed per created environment.

8.3.5 Using the Interpreter

To call ALLOY after the interpreter has been loaded, execute (ALLOY). This enters the
user in the read-evaluate-execute loop. The user may use ~C to terminate execution of
ALLOY. That takes the user to the Lisp system. After exiting the debugger the user can
re-enter ALLOY in the normal way.

For more details on the use of ALLOY see chapter 3 and chapter 2.

8.4 Implementations on Parallel Architectures

Even though ALLOY is a higher level programming language it encourages the use of
features which result in programs with massive parallelism. A program can be written to

take advantage of the underlying architecture.



8.4 Implementations on Parallel Architectures 137

8.4.1 Shared Memory MIMD

There are aspects of ALLOY which can be used to exploit the power of shared memory
MIMD architectures. There is also support for the fetch and add primitive.

One such aspect is the highly parallel nature of replication especially in relation to
the combination of values returned by generators. This, and its utilization of the highly
parallel fetch-and-add operation are described further in chapter 6. Also, a large number
of (often heavy weight) processes with the same or different environment can be generated
swiftly.

Another important aspect is the dynamic variables of objects. An object can make
heavy use of these variable for inter-message communication and synchronization. Avail-
ability of the fetch and add primitive from the underlying architecture makes non-
serializing creation of many copies of these variables possible. This makes possible a
completely parallel processing of concurrent messages. This is described further in chap-
ter 5.

ALLOY provides in effect both coarse and fine grain parallelism. The large number of
light weight processes becomes of particular importance in a shared memory multiproces-

sor where fine grain processes can be implemented more efficiently.

Data Flow Architectures

It has been brought to our attention recently, that ALLOY may have efficient implemen-
tations on Data Flow architectures. This would be because ALLOY creates very fine grain
parallelism, has only single assignment variables, and is functional enough (clear flow of

data) to support lazy evaluation directly.

8.4.2 Distributed Architectures

The synchronizing value has a clear directionality, which can simplify efficient implemen-
tation on a distributed system compared to that of a system based on the logical variable.

Object Oriented programming helps program effectively distributed systems. ALLOY
additionally exploits this by encouraging the user to write small objects. This is a side-
effect of the dynamic variables in objects. Since different messages to the same object are

processed by different processes spawned by the object itself, the object may be able to
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utilize CPUs distributed into clusters.
The replicator can also help detect coarse grain parallelism for distribution to different
CPUs. This is because replication is a natural way to express similar (often complex)

processing of many data.

8.5 Summary

A full implementation of an ALLOY interpreter has been written in Common Lisp. To-
gether with a programming environment and a set of libraries this system is written in
less that 5000 lines of code.

This interpreter is focused on simplicity and flexibility and not on efficiency. It eval-
uates an average of about 60 function calls for each million of (VAX 11/780 equivalent)
CPU instructions executed. Lazy evaluation is half as fast and generators a third as fast.

This interpreter is a significant step in the direction of an efficient implementation
on a serial computer by improving understanding of the complexities and opportunities
involved. It indicates some of the possibilities for optimization and efficient exploitation

of either distributed or shared memory MIMD architectures.
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Conclusion

ALLOY, has been shown to be a simple yet powerful programming language. It is simple
enough to have a kernel of only 29 primitives and expressions without restrictions in their
usage. The set of primitives is more powerful than those of Lisp, Multilisp, [con, Parlog,
Vulcan, Actors, Linda-Lisp, and in some cases Prolog.

ALLOY closures provide full or-parallelism. Evaluating modes support serial or and-
parallel execution, eager or lazy evaluation, non-determinism or multiple solutions. These
modes can be combined freely.

There is no conflict between the implementation of the various features of ALLOY.
Many special uses of features can easily be identified and be compiled very efficiently. In
the worst case, a non-optimizing compiler could provide each feature with an efficiency
within a constant factor of the best possible implementation of that feature on a language.

Parallel implementations of ALLOY can exploit massively parallel architectures. There
are features of this languages which make good use of shared memory MIMD systems
and features which make good use of distributed memory MIMD systems. This makes
it possible for the programmer to write programs in a way suitable to the underlying
architecture.

ALLOY owes its strength in a number of simple, clean, and efficient features. During
their selection the power of their combinations was constantly considered. These features
can be included in other programming languages.

A full implementation of ALLOY is given in Common Lisp. The implementation

consists of an interpreter, libraries and some programming environment. While there has
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been no attempt at efficiency, this interpreter when run in AKCL it performs about 60
function calls per million of (VAX equivalent) CPU instructions. The full system takes less
that 5000 lines of code. An compiler in C is expected to be 20-100 times faster depending

on the degree of optimizations.



Appendix A

The Interpreter of ALLOY in

Common Lisp

This appendix lists the interpreter of ALLOY described previously. It has been imple-
mented in Common Lisp and tested with Golden Common Lisp and Austin Kyoto Com-

mon Lisp compilers.

A.1 Top level

A.1.1 alloy.l

The root file loads the whole system in, except of the higher level libraries which are
written in ALLOY itself:

1
2 ; ALLOY interpreter.

3 ; By Thanasis Mitsolides (mitsolid@cs.nyu.eduw)

4 ; Written in Common Lisp

5 ; Tested in Austin Kyoto Common Lisp and Alegro Common Lisp.

6 o __ . . — — .
7 ; Features:

8 ; - Serial/parallel execution.

9 ; - Eager/Lazy evaluation.

10 ; - Flexible commitment mechanism.

11 ; - Static scoping. Nested procedures.

12 ; - Higher order functions.

13 ; - Generators. Replicators.

14 ; - Object Oriented Programming.

15 ; - Parallel ADTs.

16 ; - Delegation.

17 ; - SIMPLICITY!

18 ;______ i i i . . .
19 ; Speed
20 ; - On a Sparcstation 1 (12 VAX MIPS) using Austin-Kyoto Common Lisp
21 - An average of 700 function calls per second.
22 - A minimum of 500 fcps.
23 - A maximum of 1200 fcps.
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24
25 ; Tested in Austin Kyoto Common Lisp and Alegro Common Lisp.

26 ;
27
28 ; Main file. Loads everything else.
29 ;
30
31 (proclaim ’(optimize (speed 3) (safety 0) (space 0)))
32

33 (load "util.1l")

34 (load "alutil.l")

35 (load "prep.l')

36 (load '"gprep.l')

37 (load "oprep.l")

38 (load "load.l")

39 (load '"values.1l")

40 (load "io.l1l")

41 (load "inter.1l")

42 (load "fcall.l")

43 (load "gcall.l")

44 (load "rcall.l")

45 (load "ocall.l")

46 (load "build.1l")

47 (load "build2.1")

48 (load "obuild.l1l")

49

50 (feval ’(load "alloylib.a'"))

51

52 ; the next command may need to be given again from the terminal.
53 (alloy)

54

55
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A.1.2 load.l

Top level and loader. Handles prompting and printing of results:

[
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51

[l
N

; The begin and the end.
; Outermost Loop.

(defvar exit-alloy-loop
(defvar exit-alloy-lisp
(defvar al-trace
(defvar al-time-prompt
(defvar al-stats-prompt
(defvar class-define
(defvar warning-exec
(defvar warning-load
(defvar create-vars

(defun alloy()
(init-structs)
(setq al-trace nil)
(setq tab global-tab)

nil
nil
nil
nil
nil
nil

(setq class—define nil)

(setq al-readers 0)

"Alloy loop exits as soon as possible.")

"Lisp and Alloy loop exits as soon as possible.')
"Alloy execution is traced.")

"Time of execiton is printed on every prompt.'")
"Statistics are printed on Prompt.'")

"When a class is being defined, holds its name.")
"Gives warnings in some situations during exec.")
"Gives warnings in some situations during load.")
"Allows creation of new variables.')

(setq exit-alloy-loop nil) (gcl-terpri)
(princ "ALLOY version 2.0 5/21/91.") (terpri) (terpri)

(prog (e)
start

(when exit-alloy-loop (go exit))
(force-output)
(setq e (al-read)) (gcl-terpri)

(princ "ALLOY > ')

(wvhen (eq e al-eof) (go exit))

(setq e (al-prep e)) (when (eq e al-f) (go start))

(when al-trace (princ "--G-> ") (al-print e) (terpri) (write e) (terpri))
(if al-time-prompt (time (feval e al-trace))

(feval e al-trace)

)

(when al-stats-prompt (pstatistics) (terpri))

(go start)
exit
(princ "Bye.')

(when exit-alloy-lisp (exit)))

t)

(defvar gcl-p t "True if gcl is used.'™)

(defun non-interactive()
(setq gcl-p nil))

; Comment next command if system replies before a <cr> is given.

(non-interactive)

(defun gcl-terpri(&optional stream)

(when gcl-p

(unless stream (setq stream *standard-output*))
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53 (unless (streamp stream) (al-error "Stream expected in: "A" stream))
54 (terpri stream)))
55

56 (defun pure-list(e)
57 (if (slist-p e) (slist-expr e) e))

58

59

60 o,
61 ; Loader.

62

63 (defun al-load(fname out)

64 (setq fname (sformat '"~A" fname))

65 (let ((f (my-open-read-file fname)))

66 (if (not f)

67 (progl al-f (p-error "Cannot open file for reading: “A" fname))
68 (progl t (al-load-file f out)))))

69

70 (defun al-load-file(f out)
71 (prog (e)

72 start

73 (force-output)

74 (setq e (al-read f)) (when (eq e al-eof) (go exit))

75 (setq e (al-prep e)) (when (eq e al-f) (go start))

76 (when al-trace (princ "--L-> ") (al-print e) (terpri) (write e) (terpri))
77 (feval (if out e (1list ’$a$no-result e)) al-trace)

78 (go start)

79 exit

80 (close £)))
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A.1.3 inter.l

The main interpreter loop, fundamental structures and initialization:

1
2 ; ALLOY Interpreter.

3 ; Data Structures, Initialization, Read-eval-execute Loop, Tracing.
4

5
6 ; Data Structures.

7

8 (proclaim ’(inline make-alval))

9 (proclaim ’(inline make-proc))

10 (proclaim ’(inline make-muinfo))

11

12 ;_____

13 ; All first class functions (i.e. not expressions) are represented as:
14

15 (defstruct (ext—function)

16 (type ’al-error)

17 (expr '"No function in ext-function structure.')
18 (1mu p-1lmuw))

19
20 ;_____
21 ; Synchronizing variables are represented as:
22
23 (defstruct (alval)
24 "ALLOY logical value"
25 (init nil)
26 (suspended nil)
27 (value nil)
28 (delayed nil))
29
30 ;_____
31 ; A process is represented as:
32
33 (defstruct (proc)
34 (call p-call)
35 (result p-result)
36 (1mu p-lmu)
37 (waitfor p-waitfor)
38 (suspended p-suspended)
39 (lazy (if p-lazy lazyd p-lazy)))
40
41 ;_____
42 ; The enviromment for a process is represented as:
43
44 (defstruct (muinfo)
45 (gmu dumb-muinfo)
46 (pmu dumb-gmu)
47 (chmus nil)
48 (lenv nil)
49 (die nil)
50 (commit nil)
51 (result dumb-alval)
52 (suspended dumb-proc)



146 The Interpreter of ALLOY in Common Lisp

53 (lazy nil)

54 (top nil) ; At top level.

55 (object (muinfo-object p-1lmu))) ; Copy object from last mu
56

57 5 _____

58 ; Declaring a process to be the child of a parent environment.

59

60 (defun make-child(ch mu)
61 (setf (muinfo-pmu ch) mu)

62 (unless (muinfo-top mu) (push ch (muinfo-chmus mu))))
63

64 ;_____

65 ; Holds global values. They can be changed by anyone.
66

67 (defstruct (gval)

68 (val nil))

69

70 5 _____

71 ; fast structures.

72

73 (proclaim ’(inline make-alval))
74 (proclaim ’(inline make—proc))
75 (proclaim ’(inline make-muinfo))

76

7 __ i i i — — .
78 ; Declarations. Top level variables.

79

80 (defvar al-cons nil "Used by fcall")

81 (defvar al-scons nil "Used by fcall")

82 (defvar proc-stack nil "The stack of processes.'")

83 (defvar proc-queue nil "The queue of processes.')

84 (defvar proc nil "Current process.')

85 (defvar tab nil "Current hashing table. Current global environment.")
86 (defvar global-tab nil "Holds the global table during class definitions.'")
87 (defvar globale-tab nil "Holds the global exported table.")

88 (defvar spec-table nil "Table of special expressions and their code.')

89 (defvar dumb-proc nil "Dumb process.')

90 (defvar dumb-alval nil "Dumb alloy variable.')

91 (defvar dumb-gmu nil "Dumb global environment.')

92 (defvar dumb-muinfo nil "Dumb local environment.'")

93 (defvar global-class nil "Current global class.'")

94 (defvar global-object nil "Current global object.")

95

96 (defvar gtq-max-org 1000

97 "Original value.')

98 (defvar gtq-max gtq-max-org

99 "Move a process from the stack to the queue every steps.")

100 (defvar gtq-cycle gtq-max "Do the move when counter becomes negative.')
101

102 (proclaim ’(type (or t nil) p-same))

103 (defvar p-same nil "Execute the same proc structure again.')

104
105 (proclaim ’ (type fixnum p-waitfor))
106 (proclaim ’ (type muinfo p-lmu))

107 (proclaim ’(type (or t nil) p-serial))
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108 (proclaim ’(type alval p-result))

109 (proclaim ’(type cons p-call))

110

111  (proclaim ’ (type proc dumb-proc))

112 (proclaim ’ (type muinfo dumb-muinfo))

113 (proclaim ’ (type alval dumb-alval))

114 (proclaim ’ (type muinfo dumb-gmu))

115 (proclaim ’(type class global-class))

116 (proclaim ’ (type object global-object))

117

118 (defvar p-serial nil "Serial-parallel part of current process')
119 (defvar p-call nil "Function Call part of current process'")
120 (defvar p-result nil "Result variable part of current process')
121  (defvar p-lmu nil "Local mu closure part of current process'")
122 (defvar p-waitfor nil "Waiting for process part of current process')
123 (defvar p-suspended nil "Suspended process part of current process")
124 (defvar p-lazy nil "Lazy not eager part of current process'")
125

126 ;______ . __ . __ __ __
127 ; Main loop

128

129 (defun fevalO(&rest args)

130 (init-structs)

131 (apply ’al-eval args))

132

133 (defun feval (&rest args)

134 (reset-stats)

135 (apply ’al-eval args))

136

137 (defun al-eval(start-expr &optional trace)

138 (let ((proc (al-eval3 start-expr

139 (if class-define (nth 2 class-define) dumb-gmu))))

140 (push proc proc-stack)

141 (al-eval-loop trace)

142 t))

143

144 (defun top-level-proc(start-expr)

145 (al-eval4 start-expr dumb-gmu))

146

147 (defun al-eval3(start-expr gmu)

148 (al-eval4 (make-slist :expr (list ’$a$finish-eval start-expr)) gmu))

149

150 (defun al-eval4(expr gmu)

151 (let* ((d-mu  gmu)

152 (d-proc (make-proc-m :lazy nil :waitfor 100))

153 (proc  (make-proc-m :call expr

154 :result (make-alval-m)

155 :1mu d-mu

156 :suspended d-proc

157 :lazy nil

158 :waitfor 0)))

159 proc))

160

161 (defvar cycles-nosx 0)

162 (defvar proc-nosx 0)
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163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217

(defvar alval-nosx 0)
(defvar muinfo-nosx 0)
(defvar funcall-nosx 0)
(defvar specall-nosx 0)

(defun al-eval-loop(trace)
(prog O
start
(incf cycles-nosx)

(wvhen (minusp (decf gtq-cycle))
(setq gtq-cycle gtq-max)
(when proc-stack (queue-put (pop proc-stack) proc-queue)))

(cond (p-same (setq p-same nil))
(proc-stack (setq proc (pop proc-stack))
(expand-proc))
((queue-nonempty proc-queue) (setq proc (queue-get proc-queue))
(expand-proc))
(t (go exit)))
(when trace (pstatus))
(wvhen (muinfo-die p-lmu) (go start))
(when (lazy-delayl-p p-lazy)
(setq p-lazy lazyl) (delay-me-expanded) (go start))
(when (lazy-delay-p p-lazy)
(setq p-lazy lazyt) (delay-me-expanded) (go start))
(unless (spec-eval)
(if p-serial (do-scall) (do-pcall)))
(go start)
exit))

(defun expand-proc()
(let ((c (proc-call proc)))
(cond ((slist-p c) (setq p-serial t) (setq p-call (slist-expr c)))

(t (setq p-serial nil) (setq p-call c))))
(setq p-result (proc-result proc))
(setq p-lmu (proc-1mu proc))
(setq p-waitfor (proc-waitfor proc))
(setq p-lazy (proc-lazy proc))

(setq p-suspended (proc-suspended proc))
(setq tab (class-tab (object-class (muinfo-object p-1lmu)))))

; Reconstruct process taking serial parallel info from previous call.
(defun construct-proc()
(setq proc (let ((c (if p-serial (make-slist :expr p-call) p-call)))
(make-proc-m :call c :result p-result
:1lmu p-lmu :waitfor p-waitfor
:suspended p-suspended :lazy p-lazy))))

; Reconstruct process taking serial parallel info from current call.

(defun construct-procc()



A.1 Top level 149
218 (check-p-serial)

219 (construct-proc))

220

221 (defun check-p-serial()

222 (cond ((slist-p p-call) (setq p-serial t) (setq p-call (slist-expr p-call)))
223 (t (setq p-serial nil))))

224

225 (defun p-ser-to-p-call()

226 (when p-serial (setq p-serial nil ) (setq p-call (make-slist-t p-call t))))
227

228

229
230 ; Initialization functions.

231 ; Set up environment.

232

233 (defun init()

234 (init-structs)

235 (setq *print-circle* t)

236 (setq *print-length* 14)

237 (setq *print-level* 6)

238 (setq spec-table (make-sym-table))

239 (setq tab (setq global-tab (make-sym-table)))

240 (setq globale-tab (make-sym-table))

241 (setq dumb-alval (make-alval))

242

243 (setq global-class

244 (make-class :origdef ’((name . global) (static)(dynamic) (common)

245 (inherit) (import) (methods))

246 :tab global-tab :ndynnames ‘(0 () (0)))

247 (setq global-object (make-object :class global-class :createvar t))

248

249 (setq dumb-gmu (def-dumb-gmu))

250 (setf (muinfo-gmu dumb-gmu) dumb-gmu)

251 (setf (muinfo-pmu dumb-gmu) dumb-gmu)

252

253 (setq dumb-proc (make-proc-m :lazy nil :waitfor 9999999

254 :result dumb-alval :suspended dumb-proc

255 :call ’( (quote toptop) ) :lmu dumb-gmu) )
256

257 (setq p-lmu dumb-gmu)

258 (setq dumb-muinfo dumb-gmu))

259

260 (defun def-dumb-gmu()

261 (make-muinfo-m :commit t :suspended dumb-proc :top t

262 :chmus nil :result dumb-alval :die nil :object global-object
263 :lenv ‘(((original-msg alloy-loop ,global-object)

264 (here ,@ global-object) (self ,@global-object)))))
265

266 (defun init-structs()

267 (reset-stats)

268 (setq gtg-cycle gtq-max)

269 (setq proc-stack nil)

270 (setq proc-queue (make-queue))

271 (setq proc nil))

272
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273 (defun reset-stats()

274 (setq cycles-nosx 0)
275 (setq muinfo-nosx 0)
276 (setq alval-nosx 0)
277 (setq proc-nosx 0)
278 (setq funcall-nosx 0)
279 (setq specall-nosx 0)

280 )

281

282
283 ; Tracing Functions.

284

285 (defun pstatistics()

286 (pprint (1ist (cons "Cycles : '" cycles-nosx)

287 (cons '"Proc : " proc-nosx)

288 (cons "Muinfo : " muinfo-nosx)

289 (cons "Alval : " alval-nosx)

290 (cons "Funcall : " funcall-nosx)

291 (cons '"Specallo: " (- specall-nosx funcall-nosx))
292 (cons "FScallt : " specall-nosx))))

293

294 (defun pstatus()
295 (print-reg p-call)
296 (princ

" ")

297 (terpri))

298

299 (defmacro print-reg(reg)

300 “(let O

301 (princ (quote ,reg)) (princ ":")

302 (princ "------- -—= -—= -—= -—= -——=")
303 (terpri) (write ,reg :length 8 :level 4 :pretty t :circle t) (terpri)))

304
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A.2 Main Interpreter

A.2.1 fcall.l

Interpretation of function calls serial and parallel. Commitment and Lazy evaluation are
handled here. Basic expressions are also executed here.

[
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; Main interpretation of calls.

; Interprets closure applications.

; Interprets Basic Special expressions.

; Delegates interpretation of build in functions and messages.

; Make parallel call a set of processes. Process is in '"proc'".

(defun do-pcall()
(let ((g-ci 0)
(g-proc (make-naddproc nil p-result p-lmu O p-suspended))
(g-calls nil))
(push g-proc proc-stack)
(setq p-call (unreverse (rm-dot-list p-call)))
(setq g-calls (do ((stk nil) expr)
((null p-call) stk)
(setq expr (pop p-call))
(push (valprocp) stk)))
(incf (proc-waitfor p-suspended) g-ci)
(nput-dot-list-nc g-calls)
(setf (proc-call g-proc) (cons ’$a$funcall-vs g-calls))))

(defmacro valprocp()
>(cond ((alcall-p expr) (let ((varres (make-alval-m)))
(incf g-ci)
(make-addproc expr varres p-lmu O p-suspended)
varres))
((get-alsym-value expr))))

(defmacro make-addproc(expr result lmu waitfor suspended)
¢ (push (make-proc-m :call ,expr :result ,result :lmu ,lmu
:waitfor ,waitfor :suspended ,suspended)
proc-stack))

(defun make-pprocess(e)
(make-addproc (to-al-call e) (make-alval-m)
p~lmu O p-suspended)
(incf (proc-waitfor p-suspended))
(car proc-stack))

(defun to-al-call(e)
(if (alcall-p e) e (list ’$a$passl e)))

; Make serial call a set of processes. Process is in 'proc".

(defun do-scall()
(et ((g-fc (make-naddproc nil p-result p-lmu 1 p-suspended))
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50 (g-calls nil))

51 (setq p-call (unreverse (rm-dot-list p-call)))

52 (setq g-calls (do ((stk nil) expr (prev g-fc))

53 ((null p-call) (setf (proc-waitfor prev) 0)

54 (push prev proc-stack) stk)

55 (setq expr (pop p-call))

56 (push (valprocs) stk)))

57 (nput-dot-list-nc g-calls)

58 (setf (proc-call g-fc) (make-slist :expr (cons ’$a$funcall-vs g-calls)))))
59

60

61 (defmacro valprocs()

62 ’(cond ((alcall-p expr) (let ((varres (make-alval-m)))

63 (setq prev (make-naddproc expr varres p-lmu 1 prev))
64 varres))

65 ((get-alsym-value expr))))

66

67 (defmacro make-naddproc(expr result lmu waitfor suspended)

68 ¢ (make-proc-m :call ,expr :result ,result :lmu ,lmu

69 :waitfor ,waitfor :suspended ,suspended) )

70

1 ______ . . . — — .
72 ; Apply a function after its arguments have been computed.

73

74 (defvar alfvs-f nil "Function name of current external function.')

75 (defvar alfvs-mu nil "When t mus are not spawned but given to alfvs-mu.'")
76

77 (defun al-funcall-vs()

78 (setq alfvs—mu nil)

79 (al-funcall-vs-main))

80

81 ;_____

82 ; Executes call unless it results in a closure application (associated mu).
83 ; In the last case returns the created closure (mu), otherwise atom nomu.
84 ; The actual result is given to the first argument to al-funcall-nomu.

85

86 (defun al-funcall-nomu()

87 (setq alfvs—mu p-result)

88 (setq p-result (cadr p-call))

89 (when (slist-p (cddr p-call)) (setq p-serial t))

90 (setq p-call (cons (car p-call) (rm-slist (cddr p-call))))

91 (al-funcall-vs-main)

92 (when (alval-p alfvs-mu) (alset-alval ’nomu alfvs-mu)))
93

94 (defun al-funcall-vs-main()

95 (let* ((args (cdr p-call))

96 (£ (strip-alval (pop args))))

97 (setq args (strip-alval args))

98 (cond ((alval-p f) (waitfor-val £))

99 ((eq £ al-f) (argone ’cl-failfunc nil))

100 ((ext-function-p f)

101 (incf funcall-nosx)

102 (setq alfvs-f f)

103 (funcall (ext-function-type f) (ext-function-expr f) args))

104 ((and (eql f ’eval) (alval-p args)) (waitfor-val args))
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((and (or (eql f ’eval) (eql f ’new)) (cons-p args)
(setq args (cons (setf (car args) (strip-alval (car args)))
(cdr args)))
(alval-p (car args)))
(waitfor-val (car args)))

((and (eql f ’eval) (cons-p args) (ext-function-p (car args)))
(setq p-call (cons (car p-call) args))

(al-funcall-vs-main))

((and (eql f ’new) (cons-p args) (round-cons-p (car args)))
(setq p-call (cons (car p-call) (cons al-cons (cdr args))))
(al-funcall-vs-main))

((and (eql f ’new) (cons-p args) (square-cons-p (car args)))
(setq p-call (cons (car p-call) (cons al-scons (cdr args))))
(al-funcall-vs—main))

((symbol-p f) (message-other f args))

((class-p 1)

(setq p-call (cons (car p-call) (cons ’new (cdr p-call))))
(al-funcall-vs—main))

(t
(setq p-call (cons (car p-call) (cons ’eval (cdr p-call))))
(al-funcall-vs—main))

(t (when warning-exec

(p-warning "Function or message expected in: A" f))
(argone ’cl-failfunc nil)))))

(defun cl-failfunc(&rest dumb) (declare (ignore dumb))
(cons ’suc al-f))

(defun pfunction(cl-fun)
(funcall cl-fun))

(defun gfunction(args-body vals)
(let ((current-gmu (select-lmu alfvs-£)))
(1function-lmu args-body vals current-gmu t)))

(defun gbfunction(args-body vals)
(let ((current-gmu (select-lmu alfvs-£)))
(1function-lmu args-body vals current-gmu t)))

(defun select-1mu(f)
(let ((lmu (ext-function-lmu f)))
(if (eq (object-class (muinfo-object p-lmu))
(object-class (muinfo-object lmu)))
p-lmu 1lmu)))

(defun lfunction(args-body vals)

(1function-lmu args-body vals (ext-function-lmu alfvs-f) nil))
; Creates a process from the application of a closure.
(defun lfunction-lmu(args-body vals lmu globalp)

(let ((body (cond ((consp args-body) (body-clist nil (cdr args-body)))
((slist-p args-body) (body-clist t (cdr (slist-expr

args-body))))
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159 ((al-error "Unexpected function definition: ~A" args—body))))
160 (args (xcar args-body)))

161 (let* ((call-env (new-env args vals (muinfo-lenv lmu)))

162 (mu (make-muinfo-m :gmu (muinfo-gmu 1lmu)

163 :lenv (cdr call-env)

164 :result p-result :lazy p-lazy

165 :suspended p-suspended

166 :object (muinfo-object 1lmu)))

167 (final (make-proc-m :call (list ’$a$alfun-fail)

168 :1lmu mu :waitfor 1

169 :lazy nil))

170 (proc2 (make-proc-m :call body

171 :result (make-alval-m)

172 :1lmu mu :suspended final :lazy nil

173 :waitfor 0)))

174 (make-child mu p-lmu)

175 (when globalp (setf (muinfo-gmu mu) mu))

176

177 (when (car call-env) (setq proc2 (lfl-carg (car call-env) proc2)))
178

179 (if alfvs-mu (progn (alset-alval proc2 alfvs-mu) (setq alfvs-mu nil))
180 (push proc2 proc-stack)))))

181

182 (defun 1fl-carg(call proc2)
183 (let ((proga (make-proc-m :call call

184 :result dumb-alval :lazy nil

185 :waitfor 0 :suspended dumb-proc)))

186 (push proga proc-stack)

187

188 (when p-serial

189 (if alfvs-mu

190 (let* ((vproc (make-alval))

191 (prest (make-proc-m :call ‘($a$pass-v ,proc2)

192 :result vproc

193 :lazy nil

194 :waitfor 1 :suspended dumb-proc)))
195 (setf (proc-suspended proga) prest) (setq proc2 vproc))

196 (progn (setf (proc-suspended proga) proc2) (incf (proc-waitfor proc2) 1)
197 (pop proc-stack) (setq proc2 proga)))))

198 proc2)

199

200 (defun body-clist(serp body)
201 (if (and (cons-p body) (null (cdr body)) (alcall-p (car body))) (car body)

202 (make-slist-t (cons ’list body) serp)))

203

204 ;_____

205 ; Build in function call which accepts all args in a list.
206

207 (defun argone(cl-func args)

208 (let ((v (funcall cl-func args)))

209 (cond ((eq (car v) ’suc) (give-value (cdr v)))

210 ((eq (car v) ’sus) (waitfor-val (cdr v)))

211 ((al-error "argone: Succeed or suspend cons expected: “A" v)))))
212

213
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; Build in function call which accepts all args separately.

(defun noninst(cl-func args)
(let ((v (apply cl-func args)))
(cond ((eq (car v) ’suc) (give-value (cdr v)))
((eq (car v) ’sus) (waitfor-val (cdr v)))
((al-error '"noninst: Succeed or suspend cons expected: "A" v)))))

; If sym is a symbol return the value given to it else return it (value).

(defun get-alsym-value(sym)
(cond ((null sym) sym)
((symbolp sym)
(strip-alval (prog2 (check-ncvars)
(get-val sym (muinfo-lenv p-lmu) tab globale-tab)
(check-cvars))))
(sym)))

; During evaluation of a special expression.
; Sleep waiting for alval to be set.

(defun waitfor-val(alval)
(wake-up-delayed alval)
(construct-proc)

(push proc (alval-suspended alval)))

(defun wake-up-delayed(alval)
(when (alval-delayed alval)
(wakeups (alval-delayed alval)) (setf (alval-delayed alval) nil)))

; During evaluation of a special expression.
; Return as a result val.

(defun give-value(val)
(alset-alval val p-result)
(check-suspended) )

; Set alloy value alval to value val.

(defun alset-alval(val alval) ; value variable
(unless (or (not (alval-p alval)) (alval-init alval))
(setq val (strip-alval val))
(setf (alval-init alval) t)
(setf (alval-value alval) val)
(let ((suspl (alval-suspended alval)))
(setf (alval-suspended alval) nil)
(if (alval-p val)
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269 (when suspl (push suspl (alval-suspended val)) (wake-up-delayed val))
270 (wakeups suspl)) t)))

271

272 (defun wakeups(1)

273 (cond ((null 1))

274 ((consp 1) (wakeups (car 1)) (wakeups (cdr 1)))
275 ((push 1 proc-stack))))

276

277  5_____

278 ; Inform waiting process (continuation) that current process has finished.
279 ; If waiting process is ready to execute make it ready.
280

281 (defun check-suspended()

282 (check-suspendedl p-suspended))

283

284 (defun check-suspendedl(proc2)

285 (when (zerop (decf (proc-waitfor proc2)))

286 (push proc2 proc-stack)))

287

288

289 ;______ . . . __ __ __
290 ; Evaluation of Special Expressions.

291 ; Treated as macros.

292

293 (defun spec-eval()

294 (let ((fun—name (get-spec-value (car p-call))))
295 (when fun-name

296 (incf specall-nosx)

297 (funcall (car fun-name)) t)))

298

299 (defun spec-quote()

300 (let ((qarg (cdr p-call)))

301 (cond ((consp qarg) (give-value (car qarg)))
302 ((null qarg) (give-value garg))

303 (t (p-error "Quote has dotted argument.')))))
304

305 (defun spec-$a$pass-v()

306 (let ((arg (cadr p-call)))

307 (give-value arg)))

308

309 (defun spec-lazy()

310 (setq p-lazy lazyd)

311 (setq p-call (cadr p-call))

312 (check-proc-call)

313 (next-the-same))

314

315 (defun spec-delay()

316 (setq p-call (cadr p-call))

317 (check-proc-call)

318 (delay-me))

319

320 (defun spec-eager()

321 (setq p-call (cadr p-call))

322 (setq p-lazy nil)

323 (check-proc-call)
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(next-the-same))

(defun delay-me()
(if (alval-suspended p-result)
(next-the-same)
(push (construct-procc) (alval-delayed p-result))))

(defun delay-me-expanded()
(p-ser-to-p-call)
(delay-me))

(defun spec-mu()
(let ((mu-call (make-slist-t (cdr p-call) p-serial)))
(give-value (if (muinfo-top p-1lmu) ; Global level.
(make-gfunction mu-call)
(make-1lfunction mu-call)))))

(defun spec-function()
(setq p-call (1list () (comns ’return (cdr p-call))))
(spec-mu))

(defun spec-$a$set-vi()
(let ((var-val (cadr p-call)))
(setq p-call (caddr p-call))
(unless (alset-alval p-result var-val)
(alset-alval al-f p-result))
(check-proc-call)
(next-the-same)))

(defun spec-set()
(spec-set-forse nil))

(defun spec-when()
(let ((condition (cadr p-call)))
(cond ((alcall-p condition)
(spec-xcond-wait ’$a$when-v condition))
((let ((c (get-alsym-value condition)))
(setq p-call (cons ’$a$when-v (cons c (cddr p-call))))
(spec-$a$when-v))))))

(defun spec-xcond-wait(code condition)
(if p-serial

(let ((alval (make-alval-m)))
(setq p-call (cons code (cons alval (cddr p-call))))
(incf p-waitfor)
(construct-proc)
(make-addproc condition alval p-lmu O proc))

(let ((alval (proc-result (make-pprocess condition))))
(setq p-call (cons code (cons alval (cddr p-call))))
(waitfor-val alval))))

(defun spec-if-wait(alval)
(setq p-call (cons ’$a$if-v (cons alval (cddr p-call))))
(waitfor-val alval))
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379 (defun spec-$a$when-v()

380 (let* ((args (strip-alval (cdr p-call)))

381 (c (strip-alval (pop args))))

382 (cond ((alval-p c) (waitfor-val c))

383 ((eq ¢ al-f) (argone ’cl-failfunc nil))
384 ((null args) (give-value c))

385 (t

386 (setq p-call

387 (make-slist-t

388 (cons ’blockn (if (rlist-p args)
389 (cons ‘($a$pass-v ,c) args)
390 args))

391 p-serial))

392 (next-the-same)))))

393

394 (defun spec-if()

395 (let ((condition (cadr p-call)))

396 (cond ((alcall-p condition)

397 (spec-xcond-wait ’$a$if-v condition))
398 ((let ((c (get-alsym-value condition)))
399 (setq p-call (cons ’$a$if-v (cons ¢ (cddr p-call))))
400 (spec-$a$if-v))))))

401

402 (defun spec-$a$if-v()

403 (let* ((args (cdr p-call))

404 (c (strip-alval (pop args))))

405 (cond ((alval-p c) (waitfor-val c))

406 ((and (eq c al-f) (null (cdr args)))

407 (give-value c))

408 ((eq c al-1)

409 (setq p-call (cadr args))

410 (check-proc-call)

411 (next-the-same))

412 (t

413 (setq p-call (car args))

414 (check-proc-call)

415 (next-the-same)))))

416

417

418 ;______ . . . __ __ _
419 ; Commitment mechanisms. Return and fail. Local and global.
420

421 (defun spec-return()

422 (spec-lreturn-lmu (muinfo-gmu p-lmu) t))

423

424 (defun spec-lreturn()

425 (spec-lreturn-lmu p-lmu nil))

426

427 (defun spec-lreturn-lmu(lmu globalp)
428 (let ((r (muinfo-result 1lmu)))

429 (spec-1r-1mus (if (muinfo-p r) r 1lmu) lmu globalp)))
430

431 (defun spec-lr-lmus(comgen-lmu lmu globalp)

432 (cond ((muinfo-commit comgen-lmu)

433 (if globalp
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(p-error "return statement executed after commitment.")
(p-error "lreturn statement executed after commitment."))
(give-value al-f))
((check-ser-return))
((let ((expr (cadr p-call)))
(gen-or-commit comgen-lmu)
(cond ((alcall-p expr)

(let ((com-mu (make-muinfo-m :gmu (muinfo-gmu 1lmu)
:chmus nil
:lenv (muinfo-lenv p-lmu)
:die nil
:commit t
:result dumb-alval

:suspended dumb-proc)))
(make-child com-mu (muinfo-pmu lmu))
(when globalp (setf (muinfo-gmu com-mu) com-mu))

(setq p-lmu com-mu)
(setq p-call expr)
(setq p-lazy (muinfo-lazy lmu))

(next-the-same)))
(t (give-value (get-alsym-value expr))))))))

(defun gen-or-commit (lmu)
(if (genstate-p (muinfo-result lmu))
(gen-lreturn-lmu lmu)
(progn (terminate-fun lmu)
(alset-alval p-result (muinfo-result lmu)))))

(defun terminate-fun(lmu)
(setq p-suspended (muinfo-suspended lmu))
(kill-mus 1lmu))

(defmacro check-ser-return()
> (when p-serial
(let* ((v (make-alval))
(prest (make-proc-m :call (list (if globalp ’return ’lreturn) v)

:result p-result :lazy nil
:1lmu p-lmu :waitfor 1 :suspended p-suspended)))

(setq p-suspended prest) (setq p-result v)

(setq p-call (cadr p-call))

(check-proc-call)

(next-the-same))

t))

(defun alcall-p(e)
(or (consp e) (slist-p e)))

(defun kill-mus (mu)
(declare (type muinfo mu))
(setf (muinfo-commit mu) t)
(setf (muinfo-die mu) t)
(let ((chmus (muinfo-chmus mu)))
(while chmus (kill-mus (pop chmus)))
(setf (muinfo-chmus mu) nil)))
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489 (defun spec-$a$no-result()

490 (alset-alval ’$a$no-result p-result)
491 (setq p-result (make-alval))

492 (setq p-call (cadr p-call))

493 (make-eager-self)

494 (check-proc-call)

495 (next-the-same))

496

497 (defun spec-alfun-fail()

498 (alset-alval al-f (muinfo-result p-lmu))
499 (check-suspendedl (muinfo-suspended p-lmu)))
500

501 (defun spec-fail()

502 (spec-fail-lmu (muinfo-gmu p-lmu) t))
503

504 (defun spec-1fail()

505 (spec-fail-lmu p-lmu nil))

506

507 (defun spec-fail-lmu(lmu globalp)

508 (let ((r (muinfo-result 1lmu)))

509 (spec—f-Imus (if (muinfo-p r) r lmu) lmu globalp)))

510

511 (defun spec-f-lmus(comgen-lmu lmu globalp) (declare (ignore lmu))
512 (cond ((muinfo-commit comgen-lmu)

513 (if globalp

514 (p-error "fail statement executed after commitment.")
515 (p—error "1lfail statement executed after commitment.')))
516 (t

517 (terminate-fun comgen-lmu)

518 (setq p-lmu comgen-lmu)

519 (if (genstate-p (muinfo-result comgen-lmu))

520 (spec-alfun-gfail)

521 (spec-alfun-fail))))

522 (give-value al-f))

523

524 (defun make-eager-self ()
525 (setq p-lazy nil))

526
527
528 ;
529 ; Utilities.

530

531 (defun next-the-same()
532 (check-p-serial)

533 (setq p-same t))

534

535 (defun check-proc-call()

536 (unless (alcall-p p-call)

537 (setq p-call (list ’$a$passl p—call))))

538
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A.2.2 ocalll

Run time execution of objects and classes:

[
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; Actual code for special expression set. Depended on current class.

(defun spec-$a$setfuni()

(let ((v (get-alsym-value (cadr p-call)))) ; Striped
(cond ((alval-p v)
(when warning-load (p-msg "Defining function : “A" (cadr p-call)))

(setq p-call (cons ’$a$resetl (cdr p-call)))
(next-the-same))
((and (ext-function-p v) (member (ext-function-type v)
’(gfunction lfunction)))
(if (get-val-env (cadr p-call) (muinfo-lenv p-lmu))
(let ()
(p-error "Cannot redefine local function: A" (cadr p-call))
(give-value al-f))
(let ()
(when warning-load (p-msg "Redefining function: "A" (cadr p-call)))
(setq p-call (cons ’$a$resetl (cdr p-call)))
(next-the-same))))
(t
(p-error "Can not define function. Symbol is not a user function: ~A"
(cadr p-call))
(give-value al-£)))))

(defun spec-$a$reset1()
(spec-set-forse t))

(defun check-ncvars()
(unless (object-createvar (muinfo-object p-lmu)) (setq create-vars nil)))

(defun check-cvars()
(setq create-vars t))

(defun spec-set-forse(forse)
(check-ncvars)
(let ((var-name (cadr p-call)))
(setq p-call (caddr p-call))
(cond (p-serial
(let* ((v (make-alval-m))
(prest (make-proc-m :call ‘(set ,var-name ,v) :result p-result
:lazy nil :1lmu p-lmu
:waitfor 1 :suspended p-suspended)))
(setq p-suspended prest) (setq p-result v)))
(t (unless (set-val var-name p-result (muinfo-lenv p-lmu) tab)
(if forse
(if (get-val-env var-name (muinfo-lenv p-lmu))
(et O
(p-error "Cannot redefine local variable: ~A"
var-name)
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53 (alset-alval al-f p-result))

54 (set-sym-value tab var-name p-result))

55 (alset-alval al-f p-result))))))

56 (check-cvars)

57 (check-proc-call)

58 (next-the-same))

59

60

61 o,
62 ; Class defginition.

63

64 (defstruct (class)

65 (origdef nil) ; name and assoc list of definition in start
66 (tab nil) ; Symbol table of set/common inherited vars
67 (ndynnames nil) ; 1 #. 2 name. 3 next-names.

68 )

69

70 (defun class-name(class)

71 (get-feature ’name (class-origdef class)))

72

73 (defun object-name(object)

74 (get-feature ’name (class-origdef (object-class object))))

75

76 (defstruct (object)

77 (class nil) ; The class

78 (interface nil) ; List of current methods.

79 (inienv nil) ; Multi alist list of static vars
80 (nextdyn (make-gval :val nil)) ; List of next dynamic variables.
81 (createvar nil) ; Can create static variables.

82 )

83

84 (defun spec-$a$class-start()

85 (let* ((defs (cdr p-call)) (cname (car defs)) (c (make-class)))

86 (setq defs (cadr defs))

87 (if (not (check-set-cdef cname)) (give-value al-f)

88 et O

89 (let ((obj-gmu (make-muinfo-m :top t :commit t)))

90 (setf (muinfo-gmu obj-gmu) obj-gmu)

91 (make-child obj-gmu p-lmu)

92 (setf (muinfo-object obj-gmu) (make-object :class c :createvar t))
93 (setq class-define (list cname c obj-gmu)))

94 (setf (class-origdef «c¢) (cons (cons ’name cname) defs))

95 (setf (class-tab c) (make-sym-table))

96 (let ((dyns (get-feature ’dynamic defs)))

97 (setf (class-ndynnames c)

98 (1ist (length dyns) dyns (ren-list dyns ’next-))))

99 (set-sym-value tab cname c)

100 (set-sym-value tab (atom-app cname ’-p)

101 (make-gbfunction ‘((e) (return (eql (’object-p e)
102 (quote ,cname))))))
103 (setq tab (class-tab c¢))

104 (set-sym-value tab ’new

105 (make-gfunction ’(() (return))))

106 (give-value c)))))

107
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108 (defun check-set-cdef(cname)

109 (let ((v (get-alsym-value cname))) ; Striped

110 (cond (class-define

111 (p-error "Nested class definition ignored: "A" cname) nil)
112 ((alval-p v)

113 (when warning-load (p-msg "~“%Defining class : A" cname)) t)
114 ((class-p v)

115 (when warning-load (p-msg "“%Redefining class: A" cname)) t)
116 (t

117 (p-error "Can not define class. Symbol is not a user class: "A" cname)
nil))))

118

119 (defun ren-list(names prefix)

120 (cond ((null names) nil)

121 ((cons (atom-app prefix (car names)) (ren-list (cdr names) prefix)))))
122

123 (defun create-objs(mytab names prefix)

124 (cond ((null names))

125 (t

126 (let* ((name (car names))

127 (args nil)

128 (oname (atom-app prefix name)) (v (make-alval)))

129 (set-sym-value mytab oname v)

130 (make-pprocessv ‘(’new ,(get-sym-value global-tab name) ,Qargs) v))
131 (create-objs mytab (cdr names) prefix))))

132

133 (defun spawn-obj-list(names prefix)

134 (when names

135 (let* ((name (car names))

136 (args nil)

137 (oname (atom-app prefix name)) (v (make-alval)))

138 (make-pprocessv ‘(’new ,(get-sym-value global-tab name) ,Qargs) v)
139 (cons (cons oname v) (spawn-obj-list (cdr names) prefix)))))

140

141 (defun spec-$a$class-end()

142 (let ((cname (cadr p-call)))

143 (if (not (eq (car class-define) cname))

144 (if (car class—define)

145 (p—msg "ERROR: end of class definition expected: “A" (car class-define))
146 (p—msg "ERROR: unexpected class conclusion: ~A" cname))

147 (let* ((c (cadr class-define)) (defs (class-origdef c)))

148 (check-methods (get-feature ’methods defs) tab)

149 (when warning-load (p-msg "Defined class: “A" cname))

150 (setq class—define nil)

151 (create-objs tab (get-feature ’common defs) ’c-)))

152 (give-value cname)))

153

1564 (defun get-feature(name alist)

155 (cdr (assoc name alist)))

156

157 (defun check-methods(mlist tab)

158 (cond ((null mlist) nil)

159 (t

160 (let* ((m (car mlist)) (def (get-sym-value tab m)))

161 (unless (ext-function-p (strip-alval def))
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162 (p-warning "Undefined method: "A" m)))

163 (check-methods (cdr mlist) tab))))

164

165 (defun link-vars(names to td)

166 (cond ((null names))

167 (t

168 (let ((name (car names)))

169 (set-sym-value td name (get-sym-value to name)))

170 (link-vars (cdr names) to td))))

171

172
173 ; Actual processing of messages (sent to class or object).

174

175 (defun message-other(f args)

176 (setq args (strip-alval args))

177 (let ((obj nil))

178 (cond ((null args)

179 (p-error "incorrect message passing in: “A" (cons f nil))
180 (argone ’cl-failfunc nil))

181 ((alval-p args) (waitfor-val args))

182 ((not (listp args))

183 (p-error "incorrect message passing in: “A" (cons f args))
184 (argone ’cl-failfunc nil))

185 ((alval-p (setq obj (strip-alval (pop args)))) (waitfor-val obj))
186 ((message-other4 f obj args obj)))))

187

188 (defun message-other4(msg obj args orig-obj)

189 (cond ((eql msg ’delegate) (delegate-message obj args))

190 ((eql msg ’resend) (resend-message obj args))

191 ((object-p obj) (send-message msg obj args orig-obj))

192 ((class-p obj) (send-m-class msg obj args orig-obj))

193 (t (send-bi-obj msg obj args orig-obj))))

194

195 (defun send-m-class(msg c args orig-obj)

196 (case msg

197 (class-p (give-value (class—name c)))

198 (object-p (give-value al-f))

199 (class (give-value al-f))

200 (name (give-value (class—name c)))

201 (new (create-instance ¢ args orig-obj))

202 (otherwise

203 (wvhen warning-exec

204 (p-warning "Message A unknown to class "A" msg (class-name c)))
205 (argone ’cl-failfunc nil))))

206

207 (defun send-message(msg obj args orig-obj)

208 (case msg

209 (object-p (give-value (object-name obj)))

210 (class-p (give-value al-f))

211 (class (give-value (object-class obj)))

212 (interface (get-interface obj args))

213 (otherwise

214 (cond ((member msg (object-interface obj)) (send-message-x msg obj args

orig-obj))
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215 ((member msg (current-interface-names obj)) (get-interface obj (list
msg)))

216 (t (when warning-exec

217 (p-warning "Message A unknown to object of class A"

218 msg (object-name obj))

219 (p-warningc "Current interface: “A" (object-interface obj)))
220 (argone ’cl-failfunc nil))))))

221

222 (defun send-message-x(msg obj args obj-self)
223 (if (bobject-p obj)

224 (send-msg-b msg obj args obj-self)

225 (send-message-x2 msg obj args obj-self)))

226

227 (defun send-message-x2(msg obj args obj-self)

228 (let* ((tabo (class-tab (object-class obj)))

229 (ndn (class—ndynnames (object-class obj)))

230 (curdyn (gval-val (object-nextdyn obj)))

231 (nextdyn (make-alvals-1 (caddr ndn)))

232 (gmu (make-muinfo-m :object obj

233 :lenv  ‘(((original-msg ,msg ,obj-self ,Q@ args)
234 (here ,@ obj) (self ,@ obj-self))
235 , (pairlis (cadr ndn) curdyn)

236 , (pairlis (caddr ndn) nextdyn)

237 ,@(object-inienv obj))

238 rcommit t)))

239 (make-child gmu p-lmu)

240 (setf (gval-val (object-nextdyn obj)) nextdyn)

241 (setf (muinfo-gmu gmu) gmu)

242 (setq p~lmu gmu)

243 (setq p-call ‘($a$funcall-nomu ,p-result ,(get-sym-value tabo msg) ,Qargs))
244 (setq p-result alfvs-mu)

245 (setq alfvs-mu nil)

246 (setq tab tabo)

247 (next-the-same)))

248

249 (defun delegate-message(obj args) (declare (ignore args))

250 (let ((last-msg (get-val ’original-msg (muinfo-lenv p-lmu) tab)))

251 (message-other4 (car last-msg) obj (cddr last-msg) (cadr last-msg))))
252

253 (defun resend-message(obj args) (declare (ignore args))

254 (let ((last-msg (get-val ’original-msg (muinfo-lenv p-lmu) tab)))

255 (message-other4 (car last-msg) obj (cddr last-msg) obj)))

256

257 (defun get-interface(obj args)
258 (cond ((null args)

259 (p-error "Name expected for interface.")

260 (argone ’cl-failfunc nil))

261 ((alval-p args) (waitfor-val args))

262 ((not (listp args))

263 (p-error "Name expected for interface.")

264 (argone ’cl-failfunc nil))

265 ((alval-p (setq args (strip-alval (car args)))) (waitfor-val args))
266 ((let ((int (get-interface-list obj args)))

267 (cond ((null int)

268 (p-error "Unknown interface: “A of a: "A object"



166 The Interpreter of ALLOY in Common Lisp

269 args (object-name obj))

270 (p-errorc "Defined interfaces: ~A"

271 (current-interface-names obj))

272 (argone ’cl-failfunc nil))

273 ((progl nil (pop int)))

274 ((set-difference int (object-interface obj))
275 (p-error "New interface “A is not a subset of: ~A"
276 int (object-interface obj))

277 (argone ’cl-failfunc nil))

278 ((let ((obj2 (copy-object obj)))

279 (setf (object-interface obj2) int)

280 (give-value 0bj2))))))))

281

282 (defun get-interface-list(obj name)

283 (let ((is (get-feature ’interfaces (class-origdef (object-class obj)))))
284 (assoc name is)))

285

286 (defun current-interface-names(obj)

287 (let ((is (get-feature ’interfaces (class-origdef (object-class obj)))))

288 (mapcar ’car is)))

289

290 ;_____

291 ; Process message new send to class.
292

293 (defun create-instance(cls args orig-obj)
294 (if (bclass-p cls)

295 (send-m-class-b ’new cls args)
296 (create-instance2 cls args orig-obj)))
297

298 (defun create-instance2(cls args obj-self)
299 (let* ((def (class-origdef «cls))

300 (tabo (class-tab cls))

301 (ndn (class-ndynnames cls))

302 (curdyn (make-alvals-1 (cadr ndn)))

303 (nextdyn (make-alvals-1 (caddr ndn)))

304 (snames (get-feature ’static def))

305 (static (make-alvals-1 snames))

306

307 (obj (make-object

308 :class cls

309 :interface (get-feature ’methods def)

310 :inienv (1ist (pairlis snames static)

311 (spawn-obj-list (get—feature ’part def) ’p-))
312 :nextdyn (make-gval :val nextdyn)))

313 (gmu (make-muinfo-m :object obj

314 :lenv  ‘(((original-msg new ,obj-self ,@ args)
315 (here ,@ obj) (self ,@ obj-self))
316 , (pairlis (cadr ndn) curdyn)

317 , (pairlis (caddr ndn) nextdyn)

318 ,@(object-inienv obj))

319 :commit t)))

320 (setf (muinfo-gmu gmu) gmu)

321 (setq p~lmu gmu)

322 (setq tab tabo)

323 (link-vars (get-feature ’import def) global-tab tab)
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324 (setq p-lazy nil) ; New function is eager.

325 (let ((prest (make-proc-m :call ‘($a$pass-v ,obj) :result p-result

326 :lazy nil

327 :lmu p-lmu :waitfor 1 :suspended p-suspended)))
328 (setq p-suspended prest))

329 (setq p-result dumb-alval)

330 (setq p-call ‘($a$funcall-vs ,(get-sym-value tabo ’new) ,Qargs))

331 (next-the-same)))

332

333 (defun make-alvals-1(lo)
334 (let ((1 nil))

335 (while lo (push (if (sassg-p (car lo)) (make-alval) nil) 1) (pop lo))
336 (nreverse 1)))
337

338 (defun make-assoc-t(names mytab)

339 (let ((1 nil))

340 (wvhile names (push (cons (car names) (get-sym-value mytab (car names))) 1)
341 (pop names))

342 1
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A.2.3 rcall.l

Handling of replicators and nested generators:

1
2 ; Handling of replicators and nested generators.

3

S
5 ; General generator call.

6 ; Run-time check for generator type (i.e. fake generator, lazy etc.).

7

8 (defstruct (fgrec)

9 (result nil)

10 (expr nil)

11 (lazy nil)

12 (act nil))

13

14 (defun spec-$a$gen-call-gq()
15 (let (fname)

16 (setq fname (caddr p-call))

17 (case fname

18 (delay (setq p-lazy ’delay) (gcgg-popcall) (next-the-same))

19 (lazy (setq p-lazy lazyd) (gcgg-popcall) (next-the-same))

20 (eager (setq p-lazy nil) (gcgq-popcall) (next-the-same))

21 (otherwise

22 (cond ((get-spec-value fname)

23 (give-value (make-fgen-call (cadr p-call)

24 (caddr p-call) (cdddr p-call))))
25 ((setq p-call

26 (make-slist-t (cons ’$a$cgen-call (cddr p-call))
27 (cadr p-call)))

28 (next-the-same)))))))

29

30 (defun gcgq-popcall()
31 (let* ((call (cadddr p-call)) serp fname args)

32 (cond ((slist-p call) (setq call (rm-slist call))

33 (setq serp t) (setq fname (car call)) (setq args (cdr call)))
34 ((1istp call)

35 (setq serp nil) (setq fname (car call)) (setq args (cdr call)))
36 (t

37 (setq serp nil) (setq fname ’passtrue) (setq args (list call))))
38 (setq p-call ‘($a$gen-call-gq ,serp ,fname ,Qargs))))

39

40 ; All lowest level generator calls are made here.

41 (defun cl-$a$cgen-call(fnargs)
42 (let ((fname (car fnargs)) (args (cdr fnargs)))

43 (cond ((alval-p (setq fname (strip-alval fname)))

44 (cons ’sus fname))

45 ((cons ’suc (make-fgen-specmu-call p-serial fname args))))))
46

47 (defun make-fgen-call(serp fname args)

48 (make-fgrec :expr (make-slist-t (cons fname args) serp)

49 :result (make-alval-m) :lazy p-lazy))

50

51 (defun make-fgen-specmu-call(serp fname args)
52 (let ((s (make-fgen-call serp fname args)))
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53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107

(setf (fgrec-act s) ’first)
s))

(defun cl-$a$fgen-next (fgrec)
(cond ((alval-p (setq fgrec (strip-alval fgrec))) (cons ’sus fgrec))
((not (fgrec-p fgrec))
(al-error "$a$fgen-next: fgrec expected in: “A" fgrec))
((fgrec-act fgrec)
(case (fgrec-act fgrec)

(first (fgen-next-act fgrec))
(wait (cons ’sus (fgrec-result fgrec)))
(otherwise

(if (genstate-p (fgrec-act fgrec))
(cl-$a$gen-next (fgrec-act fgrec))
(al-error "Internal. Unknown fake generator: A" fgrec)))))
((fgen-next fgrec))))

(defun fgen-next(fgrec)
(let ((result (strip-alval (fgrec-result fgrec))))
(cond ((not (alval-p result)) (cons ’suc al-f))
((let* ((gval (make-gval))
(ps  (make-proc—m :call ‘($a$csuspended-gl , gval)
:result dumb-alval :lazy nil
:1lmu p-lmu :waitfor 1
:suspended p-suspended))
(px  (make-pprocess (fgrec-expr fgrec))))
(setf (proc-lazy px) (fgrec-lazy fgrec))
(setf (proc-suspended px) ps)
(alset-alval (cons (cons gval (proc-result px)) nil) result)
(cons ’suc (car (strip-alval result))))))))

(defun fgen-next-act(fgrec)
(setf (fgrec-act fgrec) ’wait)
(let* ((gval (make-gval))
(res (make-alval))
(ps  (make-proc-m :call ‘($a$csuspended-gl , gval)
:result dumb-alval :lazy nil
:1lmu p-lmu :waitfor 1
:suspended p-suspended))
(px  (make-pprocess ‘($a$funcall-nomu ,res ,Q@(fgrec—expr fgrec))))
(pf  (make-pprocess ‘($a$fcnmu-final , (proc-result px) ,gval ,res ,fgrec))))
(setf (proc-lazy px) (fgrec-lazy fgrec))
(make-eager pf)
(setf (proc-suspended px) ps)
(cons ’suc (proc-result pf))))

(defun cl-$a$fcnmu-final(typ gval res fgrec)

(cond ((alval-p (setq typ (strip-alval typ))) (cons ’sus typ))
((alval-p (setq fgrec (strip-alval fgrec))) (cons ’sus fgrec))
((alval-p (setq gval (strip-alval gval))) (cons ’sus gval))
((proc-p typ)

(when (zerop (decf (proc—waitfor p-suspended)))
(al-error "$a$fcnmu-final: Internal."))
(let ((g (cdr (apply-gproc typ nil))))
(setf (fgrec-act fgrec) g)
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108 (alset-alval (genstate-result g) (fgrec-result fgrec))

109 (cons ’suc (proc-result (make-pprocess ‘($a$gen-next ,g))))))

110 (t

111 (alset-alval (1list (cons gval res)) (fgrec-result fgrec))

112 (setf (fgrec-act fgrec) nil) (cons ’suc (cons gval res)))))

113

114 e
115 ; FAST linear-time generators when #! is in use.

116

117 (defun cl-$a$directg(gl f &rest args)
118 (let* ((res (make-alval))

119 (px (make-pprocess (make-slist-t ‘($a$funcall-nomu ,res ,f ,Qargs)
p-serial)))

120 (pf (make-pprocess ‘($a$dirg-final , (proc-result px) ,gl ,res))))
121 (make-eager px) (make-eager pf)

122 (cons ’suc (proc-result pf))))

123

124 (defun cl-$a$dirg-final(typ gl res)
125 (cond ((alval-p (setq typ (strip-alval typ))) (cons ’sus typ))

126 ((alval-p (setq gl (strip-alval gl))) (cons ’sus gl))

127 ((proc-p typ)

128 (let ((Imu (if gl (muinfo-gmu p-lmu) p-lmu)))

129 (setf (muinfo-result (proc-lmu typ))

130 (if (muinfo-p (muinfo-result 1lmu)) (muinfo-result lmu) lmu)))
131 (push typ proc-stack)

132 (cons ’suc 88))

133 (t

134 (gen-or-commit (if gl (muinfo-gmu p-lmu) p-lmu))

135 (cons ’suc res))))

136

137 5 ______ i i i — — .
138 ; Run-time replicator.

139

140 (defun cl-$a$rep-driver(serp clex ggen rest)
141 (cond ((alval-p (setq serp (strip-alval serp))) (cons ’sus serp))

142 ((alval-p (setq clex (strip-alval clex))) (cons ’sus clex))
143 ((alval-p (setq ggen (strip-alval ggen))) (cons ’sus ggen))
144 ((alval-p (setq rest (strip-alval rest))) (cons ’sus rest))
145 (t

146 (make-eager (make-pprocess ‘($a$ggen-next ,ggen)))

147 (let ((pl (make-pprocess

148 (1ist ’$a$rd-loop (ggen-results ggen)

149 ggen serp clex

150 (if serp rest

151 (proc-result (make-pprocess rest)))))))
152 (cons ’suc (proc-result pl))))))

153

154 (defun make-eager (1lproc)

155 (setf (proc-lazy lproc) nil))

156

157 (defun reset-lazy-self()

158 (when (eq lazyt p-lazy) (setq p-lazy lazyd)))
159

160 (defun spec-$a$rd-loop()

161 (Qlet* ((args (cdr p-call))
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162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216

(results (strip-alval (pop args))))
(cond ((alval-p results) (waitfor-val results))
(t (apply ’rd-loop-cont (cons results args))))))

(defun rd-loop-cont(results ggen serp clex rest)
(cond ((null results)
(give-value (if serp (proc-result (make-pprocess rest)) rest)))
((let ((newend (make-alval-m))
(res (make-alval-m)))
(alset-alval (cons res newend) p-result)
(reset-lazy-self)
(setq p-result newend)
(setq p-call (cons (car p-call) (comns (cdr results) (cddr p-call))))
(if serp
(let ((pexec nil))
(incf p-waitfor)
(construct-procc)
(setq pexec (make-proc-m :call ‘($a$rd-exec ,(car results)
,ggen ,serp ,clex ,p-lazy)
:result res :lmu p-lmu :waitfor 0
:suspended proc))
(make-eager pexec)
(push pexec proc-stack))
(let O
(make-eager (make-pprocessv ‘($a$rd-exec ,(car results)
,ggen ,serp ,clex ,p-lazy)
res))
(next-the-same)))))))

(defun spec-$a$rd-exec()
(let* ((args (cdr p-call))
(gval-res (pop args)) (ggen  (pop args))
(serp (pop args)) (clex (pop args)) (lazy (pop args)))
(cond ((not serp)
(make-eager (make-pprocess ‘($a$ggen-next ,ggen)))
(setq p-call (funcall clex (cdr gval-res)))
(setq p-lazy lazy) (reset-lazy-self)
(check-proc-call)
(next-the-same))
((if-gval-sus-proc (car gval-res) proc)
(incf (proc-waitfor proc)))
((let ((pn (make-proc-m :call ‘($a$ggen-next ,ggen)
:result dumb-proc :lazy nil
:1mu p-lmu :waitfor 1
:suspended p-suspended)))
(setq p-suspended pn)
(setq p-call (funcall clex (cdr gval-res)))
(setq p-lazy lazy) (reset-lazy-self)
(check-proc-call)
(next-the-same))))))

; Nested generators driver.

(defstruct (mngrec)
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217 (results nil)
218 (resend nil)
219 (serp nil)
220 (ggen nil)
221 (clex nil))

222

223 ;Takes as parameters a general generator ggen and a cl expr producing a
224 ; general generator ggeni.

225 ; Produces all possible ggenis, calls ggenis and returns all their values.

226 (defun cl-$a$gen-driver(serp clex ggen)
227 (cond ((alval-p (setq serp (strip-alval serp))) (cons ’sus serp))

228 ((alval-p (setq clex (strip-alval clex))) (cons ’sus clex))
229 ((alval-p (setq ggen (strip-alval ggen))) (cons ’sus ggen))
230 (t

231 (let* ((v (make-alval-m))

232 (mngrec (make-mngrec :results v :resend v

233 :ggen ggen :clex clex :serp serp))

234 (pl (make-proc-m

235 :call (list ’$a$gd-loop (ggen-results ggen)

236 mngrec nil)

237 :result v :1lmu p-lmu :waitfor O

238 :suspended dumb-proc)))

239 (delay-proc pl) (push pl proc-stack)

240 (cons ’suc mngrec)))))

241

242 (defun spec-$a$gd-loop() ; global-gen-results mngrec rest

243 (let ((mngrec (caddr p-call)))

244 (make-eager (make-pprocess ‘($a$ggen-next ,(mngrec-ggen mngrec))))
245 (setq p-call (cons ’$a$gd-loop-cont (cdr p-call)))

246 (next-the-same)))

247

248 (defun spec-$a$gd-loop-cont() ; global-gen-results mngrec rest

249 (let* ((args (cdr p-call))

250 (results (strip-alval (pop args)))

251 (mngrec (pop args)) (rest (pop args)))

252 (cond ((alval-p results) (waitfor-val results))

253 ((null-p results) (give-value rest))

254 ((let ((1lgen (make-alval-m)) (fend (make-alval-m)) cont g2)
255 (setq cont (make-pprocessv

256 ‘($a$gd-loop , (cdr results) ,mngrec ,rest) fend))
257 (delay-proc cont)

2568

259 (setq g2 (funcall (mngrec-clex mngrec) (cdar results)))
260 (make-eager

261 (make-pprocessv

262 (make-slist-t

263 (cons ’$a$gen-call-gq (cons (slist-p g2) (rm-slist g2)))
264 (slist-p g2)) lgen))

265

266 (setq p-call ‘($a$genllist ,lgen ,(caar results) ,fend))
267 (cond ((mngrec-—serp mngrec)

268 (construct-procc)

269 (if (if-gval-sus-proc (caar results) proc)

270 (incf (proc-waitfor proc))

271 (next-the-same)))
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173

272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326

(t
(next-the-same))))))))

(defun spec-$a$genllist() ; coex gval rest
(let ((coex (strip-alval (cadr p-call))))
(cond ((alval-p coex) (waitfor-val coex))

(t (setq p—call (list ’$a$genlmake (ggen-results coex)
coex (cddr p-call)))
(delay-me)))))

(defun spec-$a$genlmake () ; local-results coex gval-res
(let ((coex (caddr p-call)) pnext)
(setq pnext (make-pprocess (list ’$a$ggen-next coex)))
(make-eager pnext)
(setq p-call (cons ’$a$genlmakew (cdr p-call)))
(next-the-same)))

(defun spec-$a$genlmakew() ; local-results coex gval-res
(let ((next (strip-alval (cadr p-call)))
(gval-rest (car (last p-call))))
(cond ((alval-p next) (waitfor-val next))
((null next) (give-value (cadr gval-rest)))
((let ((newend (make-alval-m))
(gval (ngen-gval (car gval-rest) (caar next))))
(alset-alval (cons (cons gval (cdar next)) newend) p-result)
(setq p-result newend)
(setq p-call (cons ’$a$genlmake (cons (cdr next) (cddr p-call))))
(delay-me))))))

(defun cl-$a$gdgen-next (mngrec)
(cond ((alval-p (setq mngrec (strip-alval mngrec))) (cons ’sus mngrec))
((not (mngrec-p mngrec))
(al-error "$a$gdgen-next: mngrec expected in: “A'" mngrec))
((mdgen-next mngrec))))

(defun mdgen-next (mngrec)
(let ((resend (strip-alval (mngrec-resend mngrec))))

(cond ((alval-p resend) (cons ’sus resend))
((null-p resend) (cons ’suc al-f))
(t ; Can now take a result.

(when (if-gval-sus-proc (caar resend) p-suspended)
(incf (proc-waitfor p-suspended)))

(setf (mngrec-resend mngrec) (cdr resend))

(cons ’suc (car resend))))))

(defun ngen-gval(gvl gv2)

(cond ((and (wake-up-gval-p gvl) (wake-up-gval-p gv2)) gvl)
((wake-up-gval-p gvl) gv2)
((wake-up-gval-p gv2) gvl)

((let ((gval (make-gval)) pwake)
(setq pwake (make-proc—m :call ‘($a$csuspended-gl ,gval)
:result dumb-alval :1lmu p-lmu :lazy nil
:waitfor 2 :suspended dumb-proc))
(push pwake (gval-val gvi))
(push pwake (gval-val gv2))
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327 gval))))

328

329
330 ; General stuff.

331

332 (defun spec-$a$ggen-next ()

333 (let ((gen (cadr p-call)))

334 (cond ((alval-p (setq gen (strip-alval gen)))

335 (waitfor-val gen))

336 ((genstate-p gen)

337 (setq p-call (1list ’$a$gen-next gen)) (next-the-same))

338 ((mgrec-p gen)

339 (setq p-call (1list ’$a$mgen-next gen)) (next-the-same))

340 ((and (fgrec-p gen) (genstate-p (fgrec-act gen)))

341 (setq p-call (list ’$a$gen-next  (fgrec-act gen))) (next-the-same))
342 ((fgrec-p gen)

343 (setq p-call (list ’$a$fgen-next gen)) (next-the-same))

344 ((mngrec-p gen)

345 (setq p-call (list ’$a$gdgen-next gen)) (next-the-same))

346 ((al-error '"Generator expected in: "A" p-call)))))

347

348 (defun ggen-results(gen)

349 (cond ((genstate-p gen) (genstate-result gen))

350 ((fgrec-p gen)  (fgrec-result gen))

351 ((mgrec-p gen)  (mgrec-results gen))

352 ((mngrec-p gen) (mngrec-results gen))

353 ((al-error "Generator expected in: “A'" gen))))

354

366 ;_____

356 ; Create association list for environment.

357

358 (defun make-blist(names values)

359 (make-blist2 names (strip-alval values)))

360

361 (defun make-blist2(names values)

362 (cond ((null-p names) nil)

363 ((symbolp names) (list (cons names values)))

364 ((cons-p names) (append (make-blist2 (car names) (car values))
365 (make-blist2 (cdr names) (cdr values))))
366 ((al-error '"make-blist2: Unexpected name structure: ~A'" names))))
367

368 (defun replace-syms(e blist)

369 (cond ((cons-p e) (cons (replace-syms (car e) blist)

370 (replace-syms (cdr e) blist)))

371 ((slist-p e) (make-slist :expr (replace-syms (slist-expr e) blist)))
372 ((symbol-p e) (let ((v (assoc e blist)))

373 (if v ‘(quote ,(cdr v)) e)))

374 (e)))

375
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A.2.4 gcalll

Handling of basic generators.

1
2 ; Actual Generator calls.

3

4 (defstruct (genstate)

5 (result nil)

6 (finished (make-queue))
7 (resend nil)

8 (next nil)

9 (rest nil)

10 (suspended (make-queue)))
11

12 (defstruct (mgrec)

13 (results nil)
14 (resend nil)
15 (sergens nil))
16
17
18 ; Generators. Calls and interpretation.
19

20 (defun apply-gproc(a-proc rest)

21 (let* ((a-mu  (proc-lmu a-proc))

22 (res (make-alval-m))

23 (coex  (make-genstate :result res

24 :resend res

25 :next res

26 :rest rest)))
27 (incf (proc-waitfor a-proc))

28 (queue-put a-proc (genstate-suspended coex))
29 (setf (muinfo-result a-mu) coex)

30 (setf (muinfo-suspended a-mu) dumb-proc)

31 (setf (proc-call (proc-suspended a-proc)) (list ’$a$alfun-gfail))
32 (cons ’suc coex)))

33

34 (defun gen-lreturn-lmu(lmu)
35 (let ((new-end (make-alval-m))

36 (coex (muinfo-result lmu)))

37 (let* ((gval (make-gval))

38 (signaler (make-proc-m :call ‘($a$csuspended-gl ,gval)
39 :result dumb-alval :lazy nil

40 :1mu p-lmu :waitfor 1

41 :suspended p-suspended)))

42 (alset-alval (cons (cons gval p-result) new-end) (genstate-resend coex))
43 (setf (genstate-resend coex) new-end)

44 (queue-put gval (genstate-finished coex))

45 (queue-put p-suspended (genstate-suspended coex))

46 (incf (proc-waitfor p-suspended))

47 (setq p-suspended signaler))))

48

49 (defun spec-alfun-gfail()

50 (let ((gstate (muinfo-result p-lmu)))

51 (alset-alval (genstate-rest gstate) (genstate-resend gstate))
52 (setf (genstate-resend gstate) nil))) ; completed
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53

DA ...,
55 ; Functions on Generators.

56

57 (defun cl-$a$gen-results(e)

58 (cl-$a$gen-results-u e))

59

60 (defun cl-$a$gen-results-u(e)

61 (let ((sval (strip-alval e)))

62 (cond ((alval-p sval) (cons ’sus sval))

63 ((not (genstate-p sval)) (cons ’suc al-f))

64 (t (cons ’suc (genstate-result sval))))))
65

66 (defun cl-$a$gen—next(e)

67 (cl-$a$gen-next-u e))

68

69 (defun cl-$a$gen-next-u(e)

70 (let ((sval (strip-alval e)))

71 (cond ((alval-p sval) (cons ’sus sval))
72 ((not (genstate-p sval)) (cons ’suc al-f))
73 (t (gen-next sval)))))
74

75 (defun gen-next(coex)

76 (let ((next (strip-alval (genstate-next coex)))

77 (q (genstate-suspended coex)))

78 (setf (genstate-next coex) next)

79 (if (queue-empty q)

80 (cond ((alval-p next) (cons ’sus next))

81 ((null-p next) (cons ’suc al-f))

82 ((al-error "gen-next: unacounted generated values in: A" next)))
83 (progn (check-suspendedl (queue-get q))

84 (gen-next-coex next coex)))))

85

86 (defun cl-$a$gen-nextw(e)
87 (cl-$a$gen-nextw-u e))

88

89 (defun cl-$a$gen-nextw-u(coex)

90 (gen-next-coex (strip-alval (genstate—next coex)) coex))
91

92 (defun gen-next-coex(next coex)
93 (cond ((alval-p next)

94 (setq p-call ‘($a$gen-nextw ,coex))

95 (cons ’sus next))

96 ((null next) (cons ’suc al-f))

97 ((let ((res (car next))

98 (sig (queue-get (genstate-finished coex))))
99 (setf (genstate-next coex) (cdr next))

100 (check-gval-sus sig)

101 (cons ’suc res)))))

102

103 (defun if-gval-sus-proc(sig proc)
104 (when (listp (gval-val sig))
105 (push proc (gval-val sig))))
106

107 (defun check-gval-sus(sig)
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108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
1561
1562
1563
154
1565
156
157
158
159
160
161
162

(when (if-gval-sus-proc sig p-suspended)
(setq p-suspended dumb-proc)))

(defun spec-$a$csuspended-gl ()
(wake-up-gval (cadr p-call))
(check-suspended))

(defun wake-up-gval-p(gval)
(eq (gval-val gval) t))

(defun wake-up-gval(gval)
(let ((1 (gval-val gval)))
(while (cons-p 1) (check-suspendedl (pop 1))))
(setf (gval-val gval) t))

; Multiple coexpressions list producing coexpression.

(defun cl-$a$mgen-call-sr(rest sergens &rest lcoex)
(cl-$a$mgen-call-u rest sergens lcoex))

(defun cl-$a$mgen-call (sergens &rest lcoex)
(cl-$a$mgen-call-u () sergens lcoex))

(defun cl-$a$mgen-call-u(rest sergens lcoex)
(cond ((alval-p (setq sergens (strip-alval sergens))) (cons ’sus sergens))
((my-member-ng
(setq lcoex (strip-alval-e lcoex))) (cons ’sus mmng-var))
((null-p lcoex) (cons ’suc ()))
((let ((v (make-alval-m)) mgrec pmg)
(setq mgrec (make-mgrec
:results v :resend v :sergens sergens))
(setq pmg (make-proc-m :call (list ’$a$mgmaker (makegens lcoex)
0O O (O mgrec rest)
:result v :1lmu p-lmu :waitfor O
:suspended dumb-proc))
(delay-proc pmg) (push pmg proc-stack)
(cons ’suc mgrec)))))

(defun delay-proc(proc)
(unless p-lazy (setf (proc-lazy proc) ’delay)))

(defun makegens(clist)
(when clist (cons (cons (car clist) (ggen-results (car clist)))
(makegens (cdr clist)))))

(defun spec-$a$mgmaker ()
(cond ((cadr p-call) (apply ’mgmaker-recs (cdr p-call)))
(t (apply ’mgmaker-ret (cdr p-call)))))

(defun mgmaker-ret (lcoex lres lresok lresfin mgrec rest)
(declare (ignore lcoex))
(setq lresok (strip-alval-e lresok))
(cond ((my-member-ng lresok) (waitfor-val mmng-var))
((not (my-andl lresok)) (give-value rest))
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163 ((let ((newres (make-alval-m)) (gval (make-gval)))

164 (alset-alval (cons (cons gval newres) rest) p-result)
165 (alset-alval (strip-alval-e (reverse lres)) newres)
166 (setq p-result dumb-alval)

167 (cond ((mgrec-sergens mgrec) (mgreturn-fin gval))

168 (t (setq lresfin (strip-alval-e lresfin))

169 (setq p-call (list ’$a$mgreturn gval))

170 (construct-procc)

171 (wait-on-gvals lresfin proc)

172 (when (zerop (proc-waitfor proc)) (mgreturn-fin gval))))))))
173

174 (defun wait-on-gvals(lgs proc)

175 (while 1gs

176 (wvhen (if-gval-sus—proc (pop 1lgs) proc) (incf (proc-waitfor proc)))))
177

178 (defun spec-$a$mgreturn()

179 (mgreturn-fin (cadr p-call)))

180

181 (defun mgreturn-fin(gval)

182 (wake-up-gval gval)

183 (check-suspended))

184

185 (defun mgmaker-recs(lcoex lres lresok lresfin mgrec rest)
186 (cond ((null (cdar lcoex)) (give-value rest))
187 ((not (alval-p (cdar lcoex)))

188 (mgm-ok 1lcoex lres lresok lresfin mgrec rest))
189 ((alval-init (cdar lcoex))

190 (mgm-ok 1lcoex lres lresok lresfin mgrec rest))
191 ((mgm-gen lcoex lres lresok lresfin mgrec rest))))
192

193 (defun mgm-ok(lcoexrs lres lresok lresfin mgrec rest)
194 (let ((midrest (make-alval-m))

195 (coexrs (strip-alval-e (pop lcoexrs))) gvalsus pl p2)
196 (setq gvalsus (caadr coexrs))

197 (setq coexrs (cons (car coexrs) (cons (cdadr coexrs) (cddr coexrs))))
198 (incf (proc-waitfor p-suspended))

199 (setq p2 (make-proc-m

200 :call (list ’$aPmgmaker

201 (cons (cons (car coexrs) (cddr coexrs)) lcoexrs)
202 lres lresok lresfin mgrec rest)

203 :result midrest :1lmu p-lmu

204 :waitfor O

205 :suspended p-suspended))

206 (push p2 proc-stack)

207 (delay-proc p2)

208 (setq pl1 (make-proc-m

209 :call (list ’$aP$mgmaker

210 lcoexrs

211 (cons (cadr coexrs) lres)

212 (cons t lresok) (cons gvalsus lresfin)
213 mgrec midrest)

214 :result p-result :1lmu p-lmu :waitfor 0

215 :suspended p-suspended))

216 (if (and (mgrec-sergens mgrec) (if-gval-sus-proc gvalsus pl))

217 (incf (proc—waitfor p1))
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218 (push pl proc-stack))))

219

220 ;_____

221 ; Executes before mgm-gen and makes sure the call is needed.

222

223 (defun spec-$a$mgmaker-wait ()

224 (let* ((args  (cdr p-call))

225 (coex (pop args)) (rres (pop args)) (lcoexrsres (pop args)) (lrest (pop
args)))

226 (setq rres (strip-alval rres))

227 (cond ((alval-p rres) (waitfor-val rres))

228 ((null-p rres) (give-value (car (last lrest))))

229 ((mgm-gen (cons (cons coex (cdr rres)) lcoexrsres)

230 (pop lrest) (pop lrest) (pop lrest) (pop lrest) (pop lrest))))))
231

232 ; Actions taken as soon as generator starts producing a result.
233 ;=====

234 (defun spec-$a$mgmaker-res()

235 (let* ((args  (cdr p-call))

236 (okres (pop args)) (oldres (pop args))

237 (finres (pop args)) (rres  (pop args)))

238 (setq rres (strip-alval rres))

239 (cond ((alval-p rres) (waitfor-val rres))

240 ((null-p rres) (alset-alval nil okres) ; No result
241 (alset-alval al-f oldres)

242 (alset-alval al-f finres)

243 (check-suspended) )

244 (t (alset-alval t okres)

245 (alset-alval (cdar rres) oldres)

246 (alset-alval (caar rres) finres)

247 (check-suspended)))))

248

249 (defun mgm-gen(lcoexrs lres lresok lresfin mgrec rest)

250 (let ((midrest (make-alval-m))

251 (serr (mgrec-sergens mgrec))

252 (coexrs (pop lcoexrs))

253 (okres  (make-alval-m)) (oldres (make-alval-m)) (finres (make-alval-m))
254 pO pl p2)

255 (incf (proc-waitfor p-suspended))

256 (unless serr (incf (proc-waitfor p-suspended)))

257 (make-pprocessv (list ’$a$mgmaker-res okres oldres finres (cdr coexrs))
258 dumb-alval)

259 (setf (proc-lazy (car proc-stack)) nil)

260 (setq p2 (make-proc-m

261 :call (list ’$a$mgmaker-wait

262 (car coexrs) (cdr coexrs) lcoexrs

263 (list lres lresok lresfin mgrec rest))
264 :result midrest :1lmu p-lmu

265 :waitfor O

266 :suspended p-suspended))

267 (push p2 proc-stack)

268 (delay-proc p2)

269 (setq pl1 (make-proc-m

270 :call (list ’$a$mgmaker

271

lcoexrs
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272 (cons oldres lres)

273 (cons okres lresok) (cons finres lresfin)

274 mgrec midrest)

275 :result p-result :1lmu p-lmu

276 :waitfor  (if serr 1 0)

277 :suspended p-suspended))

278 (unless serr (push pl proc-stack))

279 (setq p0 (make-proc-m

280 :call (list ’$a$ggen-next (car coexrs))

281 :result dumb-alval :lmu p-lmu :waitfor 0 :lazy nil

282 :suspended (if serr pl p-suspended)))

283 (push p0 proc-stack)))

284

285 (defun cl-$a$mgen-next (mgrec)

286 (cond ((alval-p (setq mgrec (strip-alval mgrec))) (cons ’sus mgrec))
287 ((not (mgrec-p mgrec))

288 (al-error "cl-$a$mgen-next: Not multiple gens record: A" mgrec))
289 (t (mgen-next mgrec))))
290

291 (defun mgen-next(mgrec)
292 (let ((resend (strip-alval (mgrec-resend mgrec))))

293 (cond ((alval-p resend) (cons ’sus resend))

294 ((null-p resend) (cons ’suc al-f))

295 (t ; Can now take a result.
296 (when (if-gval-sus-proc (caar resend) p-suspended)

297 (incf (proc-waitfor p-suspended)))

298 (setf (mgrec-resend mgrec) (cdr resend))

299 (cons ’suc (car resend))))))

300

301 ;______ . . . __ __ __
302 ; Results

303

304 (defun make-pprocessv(e v)

305 (make-addproc (to-al-call e) v p-lmu O p-suspended)

306 (incf (proc-waitfor p-suspended))

307 (car proc-stack))

308

309 (defun my-and(&rest args)

310 (my-andl args))

311

312 (defun my-andl(1)

313 (if 1 (and (car 1) (my-andl (cdr 1))) t))
314
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A.3 Pre-processor

A.3.1 prep.l

Basic pre-processor. Handles read macro expressions

1
2 ; ALLOY preprocessor. Main part.

3 ; Read macros. Syntax checking of special expressions.

4

5 (defun al-perror(&rest msgs)

6 (throw ’al-prep (apply ’sformat msgs)))

7

8 (defun al-rpp()

9 (let ((e (al-prep (al-read))))

10 (al-print e)

11 (pprint e)

12 t))

13

14 ol
15 ; Mail preprocessoring call. Takes care of error conditions.
16

17 (defun al-prep(e)

18 (let ((pe (catch ’al-prep (list (al-prep-main e)))))

19 (if (cons-p pe) (car pe)
20 (progn (p-error pe) al-f))))
21
22 (defun al-prep-main(e)
23 (oprep (gprep (prep e nil))))
24
25 (defun prep(e gok)
26 (cond ((rep-p e) (prep-rep0 e gok))
27 ((gen-p e) (prep-gen0 e gok))
28 ((not (xcons-p e)) e)
29 ((eq (xcar e) ’lets) (prep (prep-lets e) gok))
30 ((eq (xcar e) ’let) (prep (prep-let e) gok))
31 ((cons-p e) (prep-call e gok nil))
32 ((scons-p e) (setf (slist-expr e)
33 (prep-call (slist-expr e) gok t)) e)))
34
35 (defun prep-repO(e gok) (declare (ignore gok))
36 (let ((pe (prep-rep (rep-expr e))))
37 (if (outer-gen-p pe)
38 (progn (setf (rep-expr e) pe) e)
39 pel)))
40
41 (defun prep-rep(e)
42 (prep e t))
43

44 (defun prep-genO(e gok)
45 (unless gok

46 (al-perror "Unexpected generator call: “A" e))
47 (when (rep-p (gen-expr e))
48 (al-perror "Unexpected replicator call: "A" (gen-expr e)))

49 (let ((pe (prep-gen (gen-expr e))))
50 (wvhen (and (gen-p pe) (gen-p (gen-expr pe)))
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51 (setq pe (gen-expr pe)))

52 (wvhen (and (gen-p pe) (not (xcons-p (gen-expr pe))))

53 (setq pe (gen-expr pe)))

54 (setf (gen-expr e) pe) e))

55

56 (defun prep-gen(e)

57 (prep (if (xcons-p e) (case (xcar e)

58 (1let (prep-glet e))

59 (letrec (prep-gletrec (rm-slist e) (slist-p e)))
60 (letrecs  (prep-gletrecs (rm-slist e) (slist-p e)))
61 (otherwise e))

62 e) t))

63

64 (defun prep-list(e gok)
65 (cond ((null e) nil)

66 ((atom e) (prep e gok))

67 ((cons (prep (car e) gok) (prep-list (cdr e) gok)))))

68

69 (defun prep-call(e gok serp)

70 (case (car e)

71 (letrecs (pcheck-length e 2 9999) (prep (prep-letrecs e serp) gok))

72 (letrec  (pcheck-length e 2 9999) (prep (prep-letrec e serp) gok))

73 (function (pcheck-length e 2 2) (no-rep-the (cadr e))

74 ‘(mu () ,(prep (make-rep :expr ‘(lreturn ,(cadr e))) nil)))

75 (quote (pcheck-length e 2 2) (no-rep-the (cadr e)) (prep-list e gok))
76 (delay (pcheck-length e 2 2) (no-rep-the (cadr e)) (prep-list e gok))
77 (eager (pcheck-length e 2 2) (no-rep-the (cadr e)) (prep-list e gok))
78 (Qazy (pcheck-length e 2 2) (no-rep-the (cadr e)) (prep-list e gok))
79 (return  (pcheck-length e 1 2) (no-rep-the (cadr e))

80 (prep-list e gok))

81 (lreturn (pcheck-length e 1 2) (no-rep-the (cadr e))

82 (prep-list e gok))

83 (setfun  (pcheck-length e 2 9999)

84 (if (cons-p (cadr e))

85 (progn (pcheck-length e 2 9999) (no-rep-the (cadr e)))

86 (progn (pcheck-length e 3 9999) (no-rep-the (cadr e))))

87 (setq e (check-fdef (cdr e)))

88 (list ’$a$setfunl (car e)

89 (make-slist-t

90 (cons ’mu (cons (cadr e) (prep-list (cddr e) nil))) serp)))
91 (mu (pcheck-length e 2 9999) (no-rep-the (cadr e))

92 (setq e (check-fdef (cons ’none (cdr e))))

93 (cons ’mu (cons (cadr e) (prep-list (cddr e) nil))))

94 (set (pcheck-length e 3 3) (no-rep-the (caddr e))

95 (no-rep-the (cadr e))

96 (prep-set (cdr e) gok serp))

97 (when (pcheck-length e 2 9999)

98 (when (rep-p (cadr e))

99 (al-perror "Condition cannot be a replicator in: "A" e))

100 (cons ’when (prep-list (cdr e) gok)))

101 (unless  (pcheck-length e 2 9999)

102 (when (rep-p (cadr e))

103 (al-perror "Condition cannot be a replicator in: "A" e))

104 (cons ’unless (prep-list (cdr e) gok)))

105 (if (pcheck-length e 3 4)
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106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
1561
152
1563
154
1565
156
157
158
159
160

(when (rep-p (cadr e))
(al-perror '"Condition cannot be a replicator in: “A" e))
(when (rep-p (caddr e))
(al-perror '"Simple expression expected in then part: “A" e))
(when (and (cons-p (cdddr e)) (rep-p (caddr e)))
(al-perror '"Simple expression expected in else part: “A" e))
(cons ’if (prep-list (cdr e) gok)))
(otherwise
(cond ((rep-p (car e)) (prep-list (cons ’$a$funcall e) gok))
((prep-list e gok))))))

(defun no-rep-the(e)
(when (rep-p e)
(al-perror 'Unexpected replicator in: "A" e)))

(defun prep-return(local e serp)
(let ((rets (pr-makers local (cdr e) serp)))

(cond ((null rets) e)
((atom-p rets) rets)
((cons-p (cdr rets)) (cons ’list rets))
(t e))))

(defun pr-makers(local e serp)
(cond ((null-p e) nil)
((atom-p e)
(make-slist :expr
(1ist ’$a$xreturn-many (true-zero local) e)))
((cons (make-slist-t (list (if local ’lreturn ’return) (car e)) serp)
(pr-makers local (cdr e) serp)))))

(defun pcheck-length(e minsize maxsize)

(unless (full-list-p e)
(al-perror 'Complete expression expected in: ~A'" e))

(let ((s (length e)))

(cond ((< s minsize)

(al-perror "Incomplete expression in: “A" e))
((> s maxsize)
(al-perror '"Overcomplete expression in: "A" e)))))

(defun prep-set(e gok serp) (declare (ignore serp))
(unless (= (length e) 2) (al-perror "set expects two arguments in: “A" e))
(let ((bl (x-sacc (car e) ’x644824))
(v (prep (cadr e) gok)))
(cond ((symbol-p (car e)) (list ’set (car e) v))
((1list ‘(mu (x644824) (lreturn (blockl x644824 ,@bl)))

v)))))
(defun x-sacc(e how)
(cond ((null e) nil)
((symbol-p e) (list (list ’set e how)))
((cons-p e) (append (x-sacc (car e) ‘(car ,how))

(x-sacc (cdr e) ‘(cdr ,how))))
((al-perror "List structure of names expected in: "A'" e))))

(defun check-fdef (fdef)
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161 (cond ((and (symbol-p (car fdef)) (al-args-p (cadr fdef)))

162 (cons (car fdef) (cons (cadr fdef) (cddr fdef))))

163 ((and (cons-p (car fdef)) (symbol-p (caar fdef)) (al-args-p (cdar fdef)))
164 (cons (caar fdef) (cons (cdar fdef) (cdr fdef))))

165 ((al-perror "Function definition expected in: “A" fdef))))

166

167

168 (defun al-args-p(args)

169 (cond ((symbol-p args))

170 ((not (cons-p args)) nil)

171 ((al-args-p (car args)) (al-args-p (cdr args)))))
172

173

174 5 ______ i i i — — .
175 ; Preprocessing of letrec and letrecs expressions.
176

177 (defun prep-letrecs(e serp)

178 (prep-letrecx e ’lets serp nil))

179

180 (defun prep-letrec(e serp)

181 (prep-letrecx e ’let serp nil))

182

183 (defun prep-gletrecs(e serp)

184 (prep-letrecx e ’lets serp t))

185

186 (defun prep-gletrec(e serp)

187 (prep-letrecx e ’let serp t))

188

189 (defun prep-letrecx(e inlet serp genp)

190 (let* ((parbind (slist-p (cadr e)))

191 (bind (rm-slist (cadr e)))

192 (args (plx-args bind))

193 (inflet “(,inlet ,(make-slist-t (plx-aparset bind) parbind) ,@(cddr e))))
194 (make-slist-t ‘(let ,args

195 , (make-gen-t (make-slist-t inflet serp) genp)) serp)))

196

197 (defun plx-aparset(e)
198 (cond ((null-p e) nil)

199 ((symbol-p (car e)) (plx-aparset (cdr e)))

200 ((1ist-11-p (cdr (car e))) (cons (list (caar e) ‘(set ,(caar e) ,(cadar e)))
201 (plx-aparset (cdr e))))

202 ((1ist-11-p (car e)) (plx-aparset (cdr e)))

203 ((al-perror "Binding in <let> is not a list of one or two elements: A" (car
e)))))

204

205 ;____ _ _ _ __
206 ; Preprocessing of let and lets expressions.

207

208 (defun prep-let(e)

209 (prep-letx e ’let))
210

211 (defun prep-lets(e)
212 (prep-letx e ’lets))
213

214 (defun prep-glet(e)
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215 (prep-letx e ’glet))

216

217 (defun prep-letx(e kind)

218 (let ((parb t) (parp t) (body nil) (bind nil))

219 (when (slist-p e) (setq parb nil) (setq e (slist-expr e)))

220 (setq e (cdr e))

221 (setq bind (car e))

222 (when (slist-p bind) (setq parp nil) (setq bind (slist-expr bind)))
223 (setq body (cdr e))

224 (let ((mbody (plx-body body kind parb))

225 (margs (plx-args bind))

226 (mpars (plx-pars bind)) (mcall nil) (mfun nil))

227 (setq mfun (cons ’mu (cons margs mbody)))

228 (unless parb (setq mfun (make-slist :expr mfun)))

229 (setq mcall (cons mfun mpars))

230 (unless parp (setq mcall (make-slist :expr mcall)))

231 mcall)))

232

233 (defun plx-body(e kind parb)

234 (case kind

235 (’lets (if e (pls-body e) nil))

236 (’let (if e (pl-body e (not parb) nil) ’(lreturn)))

237 (’glet (if e (pl-body e (not parb) t) ’(lreturn)))))

238

239 (defun pls-body(e)

240 (cond ((null-p e) nil)

241 ((atom-p e) (al-perror "Unexpected end of <lets> as: "A" e))

242 ((cons (car e) (pls-body (cdr e))))))

243

244 (defun plx-args(e)

245 (cond ((null-p e) nil)

246 ((atom-p e) (al-perror "Unexpected end of bindings in <let> as: "A" e))
247 ((cons-p (car e)) (cons (caar e) (plx—args (cdr e))))

248 ((symbol-p (car e)) (cons (car e) (plx-args (cdr e))))

249 ((al-perror "Binding in <let> is not a list of two elements: “A" (car e)))))
250

251 (defun plx-pars(e)

252 (cond ((null-p e) nil)

253 ((symbol-p (car e)) (cons ’%non-value (plx-pars (cdr e))))
254 ((1ist-11-p (cdr (car e))) (cons (cadar e) (plx-pars (cdr e))))
255 ((1ist-11-p (car e)) (cons ’%non-value (plx-pars (cdr e))))
256 ((al-perror "Binding in <let> is not a list of one or two elements: A" (car
e))))

257

268 ;_____

259 ; Preprocessing body of let.

260

261 (defun pl-body(e serb gen)

262 (unless (full-list-p e) (al-perror "Unexpected end of <let> as: “A" e))
263 (when (null e) (setq e ’(())))

264 (let ((1st (car (last e))) (blst (butlast e)))

265 (let ((x (outer-gen-p blst)))

266 (when x (al-perror '"Unexpected generator: “A" x)))

267 (if blst (let* ((the-mu

268 (make-slist-t ‘(mu dumb-2645
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269 , (make-rep :expr (list ’lreturn 1lst)))
270 serb))

271 (the-call

272 (make-gen-t (make-slist-t (cons the-mu blst) serb) gen)))
273 (1ist (make-rep-t (make-slist-t

274 (l1ist ’lreturn the-call) serb) gen)))
275 (1ist (make-rep :expr (list ’lreturn 1lst))))))

276

277 (the-call (make-gen-t (make-slist-t (cons the-mu blst) serb) gen)))
278 (l1ist (make-rep-t (make-slist-t (list ’lreturn the-call) serb) gen)))))
279

280 (defun outer-gen-p(e)

281 (cond ((xcons-p e) (or (outer-gen-p (xcar e)) (outer-gen-p (xcdr e))))
282 ((gen—p e) t)

283 ((rep-p e) nil)

284 ((atom e) nil)))

285

286

287 ;______ . . . . . _
288 ; Testing

289

290 (defun rpp-file(fname)

291 (let ((f (my-open-read-file fname)))

292 (unless f (al-error "Cannot open file for reading: ~“A" fname))

293 (prog (e)

294 start

295 (setq e (al-read £)) (when (eq e al-eof) (go exit))

296 (pprint "<--") (al-print e)

297 (setq e (al-prep e)) (when (eq e al-f) (go start))

298 (pprint "-->") (al-print e) (go start)

299 exit

300 (close £))

301 t))

302

303 (defun make-slist-t(e ser)

304 (if ser (make-slist :expr e) e))

305

306 (defun make-gen—-t(e gen)

307 (if gen (make-gen :expr e) e))

308

309 (defun make-rep-t(e rep)

310 (if rep (make-rep :expr e) e))

311

312 (defun rm-slist(e)

313 (if (slist-p e) (slist-expr e) e))



A.3 Pre-processor 187

A.3.2 gprep.l

Pre-processing of generator/replicator related forms:

1
2 ; Generator and Replicator Preprocessor.
3
4 (defvar trace-prep nil "Trace preprocessor out put if true.")
5
6
T
8 ; Main call for generator/replicator preprocessing.
9
10 (defun gprep(e)
11 (reset-gen-temp)
12 (let ((final (gprepl ‘(list ,e))))
13 (if (cons-p (cdr final))
14 (setq final (cadr final)))
15 (when trace-prep (pprint final))
16 final))
17
18 (defun gprepi(e)
19 (cond ((cons-p e) (gprep-list nil e))
20 ((scons-p e) (setf (slist-expr e) (gprep-list t (slist-expr e))) e)
21 ((gen-p e) (setf (gen-expr e) (gprepl (gen-expr e))) e)
22 ((rep-p e) (al-perror "Unexpected Replicator at: “A" e))
23 (e)))
24
25 (defun check-sharp!(1l)
26 (when (and (cons-p (rep-expr 1)) (eql (car (rep—expr 1)) ’$a$sharp!))
27 (let ((et 1))
28 (setq et (cadr (rep-expr et)))
29 (if (and (cons-p et) (member (car et) ’(return lreturn))
30 (gen-p (cadr et)))
31 (setf (gen-expr (cadr et))
32 ‘ (passnever ,(make-slist-t
33 ‘($a$directg ,(when (eql (car et) ’return) 0)
34 ,@(rm-slist (gen—expr (cadr et))))
35 (slist-p (gen-expr (cadr et))))))
36 (setq et (make-gen :expr ‘(passnever ,et))))
37 (setf (rep-expr 1) et))
38 t))
39
40 (defun gprep-list(serp 1)
41 (cond ((cons-p 1)
42 (if (rep-p (car 1))
43 (let ((e (pop 1)) sh)
44 (setq sh (check-sharp! e))
45 (setq e (gprepl (rep—expr e)))
46 (gprep-rep serp e (gprep-list serp 1) sh))
47 (cons (gprepl (pop 1)) (gprep-list serp 1))))
48 ((null 1) nil)
49 ((gprepl 1))))
50
51 ;_____
52 ; Found replicator in front of e followed by rest.
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53

54 (defun gprep-rep(serp e rest &optional eager)
55 (setq e (1list e))

56 (let ((gens (remove-gens e)))

57 (setq e (car e))

58 (setq gens (simpl-gens gens))

59 (let* ((names (sg-names gens))

60 (cl ‘(lambda (1) (replace-syms (quote ,e) (make-blist (quote ,names) 1))))
61 (gexec (sg-exec-m gens))

62 (exrest (if (null rest) nil

63 (make-slist-t (cons ’list rest) serp)))

64 (fres (make-rlist

65 :expr ‘($a$rep-driver ,(true-zero serp) (quote ,cl)

66 , (if eager (list ’eager gexec) gexec)
67 (quote ,exrest)))))

68 fres)))

69

70 (defun sg-names(gens)
71 (cond ((null gens) nil)

72 ((eq (car gens) ’$sym$) (cadr gens))

73 (t (when (atom (car gens)) (pop gens))

74 (cons (sg-names (car gens)) (sg-names (cdr gens))))))
75

76 (defun sg-exec-m(gens)

77 (case (car gens)

78 ($sym$ (car (sg-exlist (list gens))))

79 (($ser$ $par$)

80 (let ((gexec (sg-exlist (cdr gens)))

81 (serp (case (car gens) ($ser$ t) ($par$ nil))))

82 ‘($a$mgen-call , (true-zero serp) ,@gexec)))

83 (otherwise (al-perror "Unkown. Generator preprocessing failed."))))
84

85 (defun sg-exlist(gens)

86 (cond ((null gens) nil)

87 ((eq (caar gens) ’$sym$)

88 (cons (caddar gens) (sg-exlist (cdr gens))))
89 ((cons (sg-exec—m (car gens)) (sg-exlist (cdr gens))))))
90

91 (defun simpl-gens(gens)

92 (cond ((null gens) nil)

93 ((eq (car gens) ’$sym$) gens)

94 ((let ((r (simpl-glist (car gens) (cdr gens))))

95 (case (length r)

96 (0 nil)

97 1 (al-error "simpl-gens"))

98 (2 (cadr r))

99 (otherwise r))))))

100

101 (defun simpl-glist(mode 1)
102 (when 1 (let ((sgl (simpl-gens (car 1)))

103 (sgr (simpl-glist mode (cdr 1))))
104 (cond ((and (null sgl) (null sgr)) nil)
105 ((null sgl) sgr)

106 ((null sgr) sgl)

107 ((and (eq mode (car sgl)) (eq mode (car sgr)))
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108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
1561
1562
1563
154
1565
156
157
158
159
160
161
162

(append sgl (cdr sgr)))
(t
(unless (eq mode (car sgl)) (setq sgl (list mode sgl)))
(append sgl (if (eq mode (car sgr))
(cdr sgr) (list sgr))))))))

(defun remove-gens(e)
(rg-main e))

(defun rg-main(e)
(cond ((cons-p e) (cons ’$par$ (rg-list e)))
((scons-p e) (cons ’$ser$ (rg-list (slist-expr e))))))

(defun rg-list(e)
(when (cons-p e)
(cons (if (gen-p (car e))
(let ((ece (gen-expr (car e)))
(s (gen-temp)))
(setf (car e) s)
(1ist ’$sym$ s (rem—from-gen ece)))
(rg-main (car e)))
(if (gen-p (cdr e))
(let ((ece (gen-expr (cdr e)))
(s (gen-temp)))
(setf (cdr e) s)
(list ’$sym$ s (rem—from-gen ece)))
(rg-list (cdr e))))))

(defun rem-from-gen(ingen)
(cond ((xcons-p ingen)
(remove-ggens ingen))
((remove-ggens (passtrue ,ingen)))))

(defun remove-ggens(e)
(let ((serp (slist-p e)) gens)

(setq gens (simpl-gens (rg-main e)))

(when serp (setq e (slist-expr e)))

(if (null gens) ‘($a$gen-call-gq , (true-zero serp) ,Qe)

(let* ((names (sg-names gens))
(cl ‘(lambda (1) (replace-syms (quote ,(make-slist-t e serp) )
(make-blist (quote ,names) 1))))

(gexec (sg-exec-m gens))
(fres ‘($a$gen-driver ,(true-zero serp) (quote ,cl) ,gexec)))

fres))))

; Utilities

(defun chcar-of (e)
(function (lambda (x) (rplaca e x))))

(defun chcdr-of (e)
(function (lambda (x) (rplacd e x))))
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163 (defvar gen-temp-v 0)

164

165 (defun gen-temp()

166 (intern (sformat "$a$-"A" (incf gen-temp-v))))
167

168 (defun reset-gen-temp()

169 (setq gen-temp-v 0))

170

171 (defun true-zero(c)

172 (when c 0))
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A.3.3 oprep.l

Pre-processing of object declarations:

1
2 ; Object Oriented Programming. Preprocessor hooks.
3
S
5 ; Main call for object oriented preprocessing.
6
7 (defun oprep(e) (oprepl e))
8
9 (defun oprepl(e)
10 (cond ((xcons-p e)
11 (case (xcar e)
12 (class-start (oprep-cs (cdr (rm-slist e))))
13 (class-end (oprep-ce (cdr (rm-slist e))))
14 (otherwise e)))
15 (e)))
16
17 (defun oprep-ce(defs)
18 (unless (cons-p defs) (al-perror "Name of class expected in car of: “A"
defs))
19 (unless (symbol-p (car defs)) (al-perror '"Name of class expected in: "A" (car
defs)))
20 (let ((cname (pop defs)))
21 (when defs (al-perror "Unknown features of class in: "A" defs))
22 (list ’$a$class-end cname)))
23
24 (defun oprep-cs(defs)
25 (unless (cons-p defs) (al-perror "Name of class expected in: A" defs))
26 (unless (symbol-p (car defs)) (al-perror '"Name of class expected in: "A" (car
defs)))
27 (let ((cname (pop defs)) (description nil) (tmp nil))
28 (take-item ’inherit)
29 (take-item ’common)
30 (take-item ’static)
31 (take-item ’dynamic)
32 (take-item ’import)
33 (take-item ’part)
34 (take-item ’methods)
35 (take-interfaces)
36 (when defs (al-perror "Unexpected feature of class "A in: "A" cname defs))
37 (1ist ’$a$class-start cname (reverse description))))
38
39 (defmacro take-interfaces()
40 >(let ((d1 description))
41 (setq description nil)
42 (take-item ’interface)
43 (while (cdar description) (take-item ’interface))
44 (pop description)
45 (push ‘(interface all-methods ,@(cdr (assoc ’methods d1))) description)
46 (setq description (cons (cons ’interfaces (join-inters description)) d1))))
47

48 (defun join-inters(dl)
49 (when d1 (cons (cdar d1) (join-inters (cdr d1)))))
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50

51 (defmacro take-item(type)

52 ‘(progn (setq defs (cdr (setq tmp (assoc-rmf defs ,type))))
53 (push (car tmp) description)

54 (check-symlist (car tmp))))

55

56 (defun check-symlist (1)
57 (cond ((null 1))

58 ((atom-p 1) (al-perror 'Unexpected end of list in: “A" 1))
59 ((not (symbol-p (car 1))) (al-perror "Symbol expected in: "A" (car 1)))
60 ((check-symlist (cdr 1)))))

61

62 ;

63 ;Find key in al. Create it if it does not exist and assoc it with nil.
64

65 (defun assoc-rmf(al key)

66 (let ((v (assoc-rm al key)))

67 (if (car v) v (cons (cons key nil) (cdr v)))))

68

69 (defun assoc-rm(al key)

70 (let* ((val (comns nil nil))

71 (al2 (assoc-rm-v al key val)))

72 (cons (car val) al2)))

73

74 (defun assoc-rm-v(al key val)

75 (cond ((null al) nil)

76 ((atom—-p al) (al-perror "End of list expected in: "A'" al))
77 ((atom—p (car al)) (al-perror '"List expected in: "A" (car al)))
78 ((not (symbol-p (caar al))) (al-perror "Symbol expected in: ~A" (caar al)))
79 ((eq (caar al) key) (setf (car val) (car al)) (cdr al))

80 ; (al)))

81 ((cons (car al) (assoc-rm-v (cdr al) key val)))))

82
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A.4 Utilities

A.4.1 10.l

Input output utilities:

[
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; Input/Output of ALLOY expressions.

(defstruct (rep)
"A Repicator Data Structure"
(expr nil))

(defstruct (gen)
"A generator Data Structure"
(expr nil))

(defstruct (slist)
"A Square List"
(expr nil))

(defstruct (rlist)
"A Round List"
(expr nil))

(defmacro scons-p(e)
‘(slist-p ,e))

(defun s-list(&rest args)
(make-slist :expr args))

(defconstant spc  (character ’| |[))
(defconstant excla (character ’|![))
(defconstant opar (character ’|(]))
(defconstant cpar (character ’[)]))
(defconstant ospar (character ’|[]))
(defconstant cspar (character ’[]11]))
(defconstant power (character ’|°]))
(defconstant sharp (character ’|#[))
(defconstant star (character ’[#*]))
(defconstant dot (character ’|.1))
(defconstant quo  (character ’|’1))

(defun get-cl-table()
(eval ’(copy-readtable nil)))

(defconstant cl-table (get-cl-table))
(defconstant al-table (get-cl-table))

(defun makenospec()
(let ((n 255) (aa (character ’|A])))

(while (>= n 0) (reset-mc (int-char n) aa) (decf n))))

(defun reset-mc(c &optional from)

(set-syntax—-from-char ¢ (if from from c) *readtable* cl-table))
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51 (defun make-al-table()
52 (setq *readtable* al-table)

53 (makenospec)

54 (reset-mc #\’) (reset-mc #\") (reset-mc #\;) (reset-mc #\|) (reset-mc #\\)
55 (reset-mc #\Newline) (reset-mc #\Return) (reset-mc #\Space) (reset-mc #\Tab)
56 (set-macro-character quo ’read-quo t)

57 (set-macro-character dot ’read-dot t)

58 (set-macro-character power ’read-power nil)

59 (set-macro-character star ’read-star nil)

60 (set-macro-character sharp ’read-sharp nil)

61 (set-macro-character opar ’read-opar)

62 (set-macro-character ospar ’read-ospar)

63 (set-macro-character cpar ’read-cpar)

64 (set-macro-character cspar ’read-cspar)

65 (setq *readtablex* (get-cl-table)))

66

67 (make-al-table)

68

69 (defun read-pass(stream char)

70 (declare (ignore stream))

71 char)

72

73 (defun read-power (stream char)
74 (declare (ignore char))

75 (let ((c (read-char stream nil spc nil)) e)

76 (unless (eql c excla) (unread-char c¢ stream))

77 (setq e (list ’mu () (make-rep :expr (list ’lreturn (read-one stream)))))
78 (if (eql c excla) (make-slist :expr e) e)))

79

80 (defun read-sharp(stream char)

81 (declare (ignore char))

82 (let ((c (read-char stream nil spc nil)) e)

83 (unless (eql c excla) (unread-char ¢ stream))

84 (setq e (read-one stream))

85 (make-rep :expr (if (eql ¢ excla) ‘($a$sharp! ,e) e))))
86

87 (defun read-star(stream char)

88 (declare (ignore char))

89 (make-gen :expr (read-one stream)))
90

91 (defun read-quo(stream char)

92 (declare (ignore char))

93 (1ist ’quote (read-one stream)))

94

95 (defun read-opar(stream char)

96 (declare (ignore char))

97 (al-read-list stream cpar cspar))
98

99 (defun read-ospar(stream char)

100 (declare (ignore char))

101 (let ((e (al-read-list stream cspar cpar)))
102 (if e (make-slist :expr e) nil)))
103

104 (defun al-read-list(stream end other)
105 (let ((e (read-any stream)))
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106
107
108
109
110
111
112
113
114
115
116
117
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119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
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137
138
139
140
141
142
143
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148
149
150
1561
152
1563
154
155
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159
160

(cond ((eq e end) mnil)
((eq e other) (throw ’al-read "Unmached parenthesis.'))
((eq e dot) (let ((lel (read-one stream))
(1e2 (read-any stream)))
(when (eq other le2)
(throw ’al-read "Mismathed Parenthesis.™))
(unless (eq end le2)
(throw ’al-read '"Parenthesis expected.'))
lel))
((cons e (al-read-list stream end other))))))

(defun read-dot(stream char)
(declare (ignore stream))
char)

(defun read-cpar(stream char)
(declare (ignore stream))
char)

(defun read-cspar(stream char)
(declare (ignore stream))
char)

(defun read-one(stream)
(let ((e (read-any stream)))
(when (or (eq e cpar) (eq e cspar))
(throw ’al-read "Unexpected closing Parenthesis."))

e))

(defun read-any(stream)
(let ((e (read stream nil al-f nil)))
(when (eq e al-f) (throw ’al-read "Unexpected End of Input."))
e))

; Main reader function.
(defvar al-readers 0 '"How many processes read at the moment.'")

(defun al-read(&optional stream quiet)

(when (null stream) (setq stream *standard-input*))

(let ((expr nil))
(when (= (incf al-readers 1) 1) (setq *readtable* al-table))
(setq expr (catch ’al-read (list (read stream nil al-eof nil))))
(when (= (decf al-readers 1) 0) (setq *readtable* cl-table))
(if (consp expr) (car expr)

(progn (unless quiet (p-error expr)) al-f))))

; Main printer function.

(defun al-print(e &optional stream)
(when (null stream) (setq stream *standard-output*))
(cond ((numberp e) (princ e stream))
((symbolp e) (princ e stream))
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161 ((stringp e) (princ e stream))

162 ((cons-p e) (al-print-list e opar cpar stream))

163 ((slist-p e) (al-print-list (slist-expr e) ospar cspar stream))
164 ((rep-p e) (princ ’|#| stream) (al-print (rep-expr e) stream))
165 ((gen-p e) (princ ’|*| stream) (al-print (gen-expr e) stream))
166 ((alval-p e) (princ ’|%w| stream))

167 ((eq al-f e) (princ ’|%f| stream))

168 ((ext-function-p e) (princ ’|%(object of class CLOSURE)| stream))
169 ((class-p e) (princ ’|%(class | stream)

170 (princ (class-name e) stream ) (princ ’|)| stream))
171 ((object-p e) (princ ’|%(object of class | stream)

172 (princ (object-name e) stream ) (princ ’|)| stream))
173 (t (princ ’|%ul stream))))

174

175 (defun al-print-list(e op cl stream)
176 (cond ((null e) (princ ’|nil| stream))

177 (t (princ op stream)

178 (al-print (car e) stream) (al-print-listx (cdr e ) stream)
179 (princ cl stream))) t)

180

181 (defun al-print-listx(e stream)

182 (cond ((null-p e) nil)

183 ((cons-p e) (princ ’| | stream) (al-print (car e) stream)
184 (al-print-listx (cdr e) stream))

185 (t (princ ’| . | stream) (al-print e stream))))
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A.4.2 values.]

Local and global environment handling functions:

1
2 ; Local and global environment handling.

3

4 (defconstant hassvstr ’#*1*noval*l¥*)

5

6 (defun get-val(var env tab &optional tab2)

7 (let ((v nil))

8 (cond ((setq v (get-val-env var env))

9 (cdr v))

10 ((and tab2 (not (eq (setq v (has-sym-value tab2 var)) hassvstr))) v)
11 ((get-sym-value tab var)))))

12

13 (defun set-val(var val env tab)

14 (if (sassg-p var) (let ((v (get-val var env tab)))
15 (when (alset-alval val v) t))
16 (let ((v (get-val-env var env)))
17 (if v (setf (cdr v) val)

18 (set-sym-value tab var val)) t)))
19
20 (defun get-val-env(var e)
21 (cond ((null e) nil)
22 ((assoc var (car e)))
23 ((get-val-env var (cdr e)))))
24
25 (defconstant char-und (char "____" 1))
26
27 (defmacro massg-p(varname)
28 ‘(eq (char (string ,varname) 0) char-und))
29
30 (defmacro sassg-p(varname)
31 ‘(not (massg-p ,varname)))
32
33
34 ; ALLOY local environments.
35
36 (defvar pb-bs nil "Contains bind list.'")
37 (defvar pb-ss nil "Contains set list.")
38
39 (defun new-env(vars vals e)
40 (setq pb-bs nil) (setq pb-ss nil)
41 (new-env2 vars vals)
42 (cons (when pb-ss (cons ’list pb-ss))
43 (cons pb-bs e)))
44
45 (defun makev-fail(vars)
46 (cond ((null vars))
47 ((symbol-p vars) (push (cons vars al-f) pb-bs))
48 ((cons-p vars) (makev-fail (car vars)) (makev-fail (cdr vars)))
49 ((al-error '"Invalid parameters in: "A" vars))))
50
51 (defun new-env2(vars vals)
52 (cond ((null vars))
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53 ((symbol-p vars) ; end of vars is a var
54 (new-bind vars vals))

55 ((null vals) (makev-fail vars))

56 ((atom-p vals) ; end of vals is a val
57 (struct-bind vars vals))

58 ((cons-p vars)

59 (new-env2 (car vars) (car vals))

60 (new-env2 (cdr vars) (cdr vals)))

61 ((al-error '"Invalid parameters in: "A" vars))))

62

63 (defun new-bind(name val)

64 (push (cons name (if (eq val al-n) (make-alval) val)) pb-bs))
65

66 (defun struct-bind(1 how)

67 (cond ((null 1))

68 ((symbol-p 1) (let ((var (make-alval)))

69 (push (cons 1 var) pb-bs)

70 (push (list ’$a$set-vl var how) pb-ss)))
71 ((cons-p 1) (struct-bind (car 1) ‘(car ,how))

72 (struct-bind (cdr 1) ‘(cdr ,how)))

73 ((al-error '"Invalid parameter structure in: “A" 1))))

74

75

76 5 ______ i i i . . .
77 ; Hash tables.

78

79 (defun make-sym—table()
80 (make-hash-table :test ’eq :size 10))

81

82 (defun has-sym-value(sym-table name)

83 (gethash name sym-table hassvstr))

84

85 (defun has-sym-value-p(sym-table name)

86 (not (eq (gethash name sym-table hassvstr) hassvstr)))
87

88 (defun get-sym-value(sym-table name)

89 (let ((hval (gethash name sym-table hassvstr)))

90 (if (eq hval hassvstr) (set-sym-valuec sym-table name
91 (if (massg-p name) nil (make-alval)))
92 hval)))

93

94 (defun set-sym-value(sym-table name value)
95 (if (has-sym-value-p sym—table name)

96 (set-sym-valuex sym-table name value)

97 (set-sym-valuec sym-table name value)))

98

99 ; name is known not to exist in table. Must be created.

100 (defun set-sym-valuec(sym-table name value)

101 (if create-vars (setf (gethash name sym-table) value)

102 (progn (p-warning '"Cannot define new variable: “A" name)
103 al-f)))

104

105 ; name is known to exist in table.

106 (defun set-sym-valuex(sym-table name value)
107 (setf (gethash name sym-table) value))
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108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124

; Interpreters special function table.

(defun get-spec-value(name)
(let ((hval (gethash name spec-table al-t)))
(if (eq hval al-t) nil (1list hval))))

(defun set-spec-value(name value)
(setf (gethash name spec-table) value))

(defun add-spec(name value)
(set-spec-value name value))

(defun add-specs(1)
(when 1 (add-spec (caar 1) (cdar 1))
(add-specs (cdr 1))))
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A.4.3 alutil.l
This file contains utilities more specific to ALLOY:

; Special values.
(defconstant al-eof ’#**end-of-file*** "End of file starting ALLOY Reading.')
(defstruct (al-failure))

(defstruct (al-success))
(defstruct (al-nonvalue))

[
= O W 0 ~NO U W N =

12 (defconstant al-f (make-al-failure))
13 (defconstant al-t (make—al-success))
14 (defconstant al-n (make—al-nonvalue))
15

16 (defconstant lazyd ’(t))

17 (defconstant lazyt t)
18 (defconstant lazyl nil)
19

20 (defun lazy-delay-p(e)
21 (consp e))

22

23 (defun lazy-delayl-p(e)

24 (eq e ’delay))

25

26 (defstruct (eerror)

27 (expr '"Some error occured."))

28

29

30 ;______ . . . __ __ _
31 ; Utilities.

32

33 (defun strip-alval(e)

34 (cond ((and (alval-p e) (alval-init e))

35 (setf (alval-value e) (strip-alval (alval-value e))))
36 (e)))

37

38 (defun strip-alval-e(e)

39 (cond ((consp e) (setf (car e) (strip-alval-e (car e)))

40 (setf (cdr e) (strip-alval-e (cdr e))))
41 ((slist-p e) (setf (slist-expr e) (strip-alval-e (slist-expr e))))
42 ((let ((es (strip-alval e)))

43 (unless (eql es e) (setq e (strip-alval-e es))))))
44 e)

45

46 (defun strip-alval-1(e)
47 (cond ((consp e) (setf (car e) (strip-alval (car e)))

48 (setf (cdr e) (strip-alval-1 (cdr e))))

49 ((slist-p e) (setf (slist-expr e) (strip-alval-1l (slist-expr e))))
50 ((let ((es (strip-alval e)))

51 (unless (eql es e) (setq e (strip-alval-1l es))))))

52 e)
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53
54 (defun ground-p(e)
55 (cond ((xcons-p e) (and (ground-p (xcar e)) (ground-p (xcdr e))))

56 ((and (alval-p e) (not (alval-init e))) nil)
57 )
58

59 (defun member-ng(l)

60 (cond ((xcons-p 1) (or (member-ng (xcar 1)) (member-ng (xcdr 1))))
61 ((and (alval-p 1) (mot (alval-init 1))) 1)))

62

63 ;_____

64 ; Macros

65

66 (defmacro noteq(x y)

67 ‘(not (eq ,x ,y)))

68

69 (defun compile-all-alloy()

70 (shell (str-app4 "cat safe.l util.l alutil.l prep.l gprep.l oprep.l "

71 "load.l values.l io.l inter.l "

72 "fcall.l gcall.l rcall.l ocall.l "

73 "build.l build2.1l obuild.l >> allal.l"))
74 (compile-file "allal.l"))

75

76 (defun compile-all-alloy-f()
77 (shell (str-app4 "cat fast.l util.l alutil.l prep.l gprep.l oprep.l "

78 "load.l values.l io.l inter.l "

79 "fcall.l gcall.l rcall.l ocall.l "

80 "build.l build2.1l obuild.l >> allal.l"))
81 (compile-file "allal.l"))

82

83 (defun compile-alloy()
84 (mapc ’compile-file ’("util.1l" "alutil.l" "prep.l" "gprep.l"

85 "oprep.l'" "load.l"

86 "values.l" "io.l" "inter.1l" "fcall.l" '"gcall.l"

87 "rcall.l" "ocall.l" "build.l" "build2.1l" "obuild.1")))
88

89 (defun load-calloy()
90 (mapc ’load ’("util" "alutil' "prep" '"gprep'" "oprep" "load"

91 "values" "io'" '"inter'" 'fcall' '"gcall"
92 "rcall" "ocall" "build" "build2" "obuild")))
93

94 (defun compile-all-alloy-gcl()

95 ; (sys:dos "makesafe")

96 (compile-file "allal.l"))

97

98 (defun compile-all-alloy-f-gcl()

99 ; (sys:dos "makefast")

100 (compile-file "allal.l"))

101

102 (defmacro make-proc-m(&rest args)

103 ‘(progn (incf proc-nosx) (make-proc ,Qargs)))

104

105 ; Create muinfo. Preserve counter.

106 (defmacro make-muinfo-m(&rest args)
107 ‘(progn (incf muinfo-nosx) (make-muinfo ,Qargs)))
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108

109 (defmacro make-alval-m(&rest args)

110 ‘(progn (incf alval-nosx) (make-alval ,Qargs)))

111

112 (defun xcons-p(e)

113 (or (cons-p e) (scons-p e)))

114

115 (defun xcar(e)

116 (cond ((cons-p e) (car e))

117 ((scons-p e) (car (slist-expr e)))

118 ((al-error '"xcar expected cons or scons in "A" e))))
119

120 (defun xcdr(e)

121 (cond ((cons-p e) (cdr e))

122 ((scons-p e) (let ((e (cdr (slist-expr e))))

123 (if e (make-slist :expr e) nil)))
124 ((al-error '"xcdr expected cons or scons in "A" e))))
125

126

127 (defvar rm-dot-t nil "True if last rm-dot-list acted.")
128

129 (defun rm-dot-list(e)

130 (setq rm-dot-t nil)

131 (rm-dot-1listl e))

132

133 (defun rm-dot-list1(e)

134 (cond ((null e) nil)

135 ((atom e) (setq rm-dot-t t)

136 (1ist (if (rlist-p e) (rlist-expr e) e)))
137 ((cons-p e) (cons (car e) (rm-dot-listl (cdr e))))))
138

139 (defun nput-dot-list-nc(e)

140 (when rm-dot-t

141 (cond ((cddr e) (nput-dot-list-nc (cdr e)))

142 ((setf (cdr e) (cadr e))))))

143

144 (defun p-error(&rest msgs)

145  (terpri) (princ "ALLOY ERROR -- ")

146 (princ (apply ’sformat msgs) *error-output#)

147 (terpri) nil)

148

149 (defun p-errorc(&rest msgs)

150 (princ " - "

151 (princ (apply ’sformat msgs) *error-output#)

152 (terpri) nil)

1563

154 (defun p-warning(&rest msgs)

155  (terpri) (princ "ALLOY WARNING -- ")

156 (princ (apply ’sformat msgs) *error-output#)

157 (terpri) nil)

158

159 (defun p-warningc(&rest msgs)

160 (princ " - "

161 (princ (apply ’sformat msgs) *error-output#)

162 (terpri) nil)
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163
164
165
166
167
168
169
170
171
172

(defun al-error(str &rest msgs)
(apply ’error (cons (sformat "“ATA" "ALLOY ERROR -- " str) msgs))
(terpri) nil)
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A.4.4 utill

This file contains general utilities used by the interpreter:

1
2 ; General Utilities for lisp.

3

4 (defun loadl(fname)

5 (load (format nil ""ATA" fname ".1")))

6

7 (defmacro 11(fname)

8 ‘(loadl (quote ,fname)))

9

10 (defmacro loadq(fname)

11 (load fname :verbose nil))

12

13 (defun atom-app(x y)

14 (intern (format nil ""ATA" x y)))

15

16 (defun str-app4(x y z w)

17 (format nil ""ATATATA" x y z w))

18

19 (defun sformat(&rest args)
20 (apply ’format (cons nil args)))
21
22 (defmacro xreturn(value)
23 ‘(return—-from ’exit ,value))
24
25 (defmacro rpush(stack val)
26 ‘(push ,val ,stack))
27
28 (defmacro set-list-end(1l end)
29 ‘(append ,1 ,end))
30
31 (defstruct (queue (:constructor make-queue-simpl))
32 (head nil)
33 (tail nil))
34
35 (defun make-queue()
36 (let ((q (cons nil nil)))
37 (make-queue-simpl :head q :tail q)))
38
39 (defun queue-empty(q)
40 (eq (queue-head q) (queue-tail q)))
41
42 (defun queue-nonempty(q)
43 (not (eq (queue-head q) (queue-tail q))))
44
45 (defun queue-get(q)
46 (when (queue-empty q) (al-error "Attempt to get from an empty queue.'))
47 (let ((x (cadr (queue-tail @))))
48 (setf (queue-tail q) (cdr (queue-tail q)))
49 x))
50
51 (defun queue-put(x q)
52 (setf (cdr (queue-head q)) (cons x nil))
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53 (setf (queue-head q) (cdr (queue-head q))) x)

54

55 (defmacro while(cond &rest args)
56 “(do O

57 ((not ,cond))
58 ,Qargs))

59

60 (defmacro until(cond &rest args)
61 “(do O

62 (,cond)

63 ,0args))

64

65 (defmacro cons-p(e)

66 ‘(consp ,e))

67

68 (defmacro atom-p(e)

69 ‘(atom ,e))

70

71 (defmacro null-p(e)

72 ‘(null ,e))

73

74 (defmacro number-p(e)
75 ¢ (numberp ,e))

76

77 (defmacro symbol-p(e)
78 ¢ (symbolp ,e))

79

80 (defun list-11-p(e)

81 (and (cons-p e) (null-p (cdr e))))
82

83 (defun full-list-p(e)

84 (cond ((null e))

85 ((cons-p e) (full-list-p (cdr e)))))

86

87 (defun my-open-read-file(fname)

88 (open fname :direction :input :if-does-not-exist nil))
89

90 (defun my-open-write-file(fname)

91 (open fname :direction :output))

92

93 (defun my-close-file(fname)
94 (close (open fname)))

95

96 (defun p-msg(&rest msgs)

97 (princ (apply ’sformat msgs) *error-output#)
98 (terpri) nil)

99

100 (defun remainder(x y)

101 (* (cadr (multiple-value-list (floor (/ x y)))) y))
102

103 (defun last-p(e)

104 (cond ((cons-p e) (atom-p (cdr e)))

105 ((al-error '"last-p: List expected in: "A" e))))
106

107 (defun compilel-file(fname)
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108 (compile-file (sformat "“A.1" fname))
109 (load fname))

110

111  (defun explode(s)

112 (when (stringp s)

113 (let ((1 (length s)) (1s nil))

114 (while (>= (decf 1) 0) (push (string (char s 1)) 1s))
115 1s)))

116

117 (defun implode(ls)
118 (format nil "~{"A}'" 1s))

119

120 (defun someend(pred seq)

121 (cond ((not (cons-p seq)) seq)

122 ((funcall pred (car seq)) (list (car seq)))

123 ((someend pred (cdr seq)))))
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A.5 Built in functions and objects

A.5.1 build.]

Utilities for the creation of built in expressions, declarations, and basic functions: built in
functions:

1
2 ; Built in functions of ALLOY.

3 ; Basic Library

4

5 -

6 ; Initialize structures.

7

8 (init)

9

10 5 __
11 ; Utilities for function declarations.

12

13 (defun make-power (p-func)

14 (make-ext-function :type ’pfunction :expr p—func))

15

16 (defun make-gfunction(args-body)

17 (make-ext-function :type ’gfunction :expr args-body))

18

19 (defun make-gbfunction(args-body)
20 (make-ext-function :type ’gbfunction :expr args-body))
21
22 (defun make-lfunction(args-body)
23 (make-ext-function :type ’lfunction :expr args-body))
24
25 (defun make-argone(al-name)
26 (make-ext-function :type ’argone :expr (atom-app ’cl- al-name)))
27
28 (defun make-noninst(al-name)
29 (make-ext-function :type ’noninst :expr (atom-app ’cl- al-name)))
30
31 (defmacro set-in-table(val)
32 ‘(set-sym-value (if export globale-tab global-tab) al-name ,val)
33 )
34
35 (defun set-argone(al-name &optional export)
36 (set-in-table (make-argone al-name)))
37
38 (defun set-noninst(al-name &optional export)
39 (set-in-table (make-noninst al-name)))
40
41 (defun set-power(al-name &optional export)
42 (set-in-table (make-power al-name)))
43
44 (defun set-global(al-name args-body &optional export)
45 (set-in-table (make-gfunction args-body)))
46
47 (defun set-globalb(al-name args-body &optional export)
48 (set-in-table (make-gbfunction args-body)))

1
©0
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50 (defun add-specl(al-name)

51 (add-spec al-name (atom-app ’spec- al-name)))

52

53 (defun global2globalb(al-name)

54 (let ((args-body (strip-alval (get-sym-value tab al-name))))
55 (set-globalb al-name (ext-function-expr args-body)))

56 t)

57

B8 ..,
59 ; Build in Values.

60

61 (set-sym-value globale-tab ’%non-value al-n)

62 (set-sym-value globale-tab ’%t ’t)

63 (set-sym-value globale-tab ’%f al-f)

64

65 ;______ I I I o o __
66 ; special function declarations & noninstant declared elsewhere.
67

68 (add-spec ’$a$funcall-vs ’al-funcall-vs)

69 (add-spec ’$a$alfun-fail ’spec-alfun-fail)

70 (add-spec ’$a$alfun-gfail ’spec-alfun-gfail)

71 (add-spec ’$a$if-v ’spec-$a$if-v)
72 (add-spec ’$a$set-vi ’spec-$a$set-v1)
73 (add-spec ’$a$pass-v ’spec-$a$pass-v)
74

75 (add-spec ’quote ’spec-quote)

76 (add-spec ’function ’spec-function)
77 (add-spec ’set ’spec-set)

78 (add-spec ’mu ’spec-mu)

79 (add-spec ’lreturn ’spec-lreturn)

80 (add-spec ’return ’spec-return)

81 (add-spec ’when ’spec-when)

82 (add-spec ’$a$when-v ’spec-$a$when-v)
83 (add-spec ’if ’spec-if)

84 (add-spec ’delay ’spec-delay)

85 (add-spec ’eager ’spec-eager)

86 (add-spec ’lazy ’spec-lazy)

87 (add-specl ’unless)

88 (add-specl ’fail)

89 (add-specl ’1fail)

90 (add-specl ’$a$no-result)

91 (add-specl ’$a$resetl)

92 (add-specl ’$a$setfuni)

93 (add-specl ’$a$class-start)

94 (add-specl ’$a$class-end)

95

96 ; Generator specific.

97

98 (add-specl ’$a$csuspended-gl)
99 (set-noninst ’$a$gen-call-sr t)
100 (set-noninst ’$a$gen-call t)
101 (set-noninst ’$a$gen-next t)
102 (set-noninst ’$a$gen—nextw t)
103 (set-noninst ’$a$gen-results t)
104
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105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
1562
153
154
1565
156
157
158
159

(add-specl ’$a$genlmakew)
(add-specl ’$a$genlmake)
(add-specl ’$a$genllist)
(add-specl ’$a$gen-call-dl)

(set-noninst ’$a$mgen-call-sr t)
(set-noninst ’$a$mgen-call t)
(set-noninst ’$a$mgen-next t)
(add-specl  ’$a$mgmaker)
(add-specl  ’$a$mgmaker-wait)
(add-specl  ’$a$mgmaker-res)
(add-specl  ’$a$mgreturn)

(add-specl ’$a$gen-call-gq)
(add-specl ’$a$rd-loop)
(add-specl ’$a$rd-exec)

(add-specl ’$a$ggen-next)
(add-specl ’$a$gd-loop)
(add-specl ’$a$gd-loop-cont)

(set-noninst ’$a$rep-driver t)
(set-noninst ’$a$gen-driver t)
(set-noninst ’$a$gdgen—next t)

(set-argone ’$a$cgen-call t)

(set-noninst ’$a$fgen-next t)

(add-spec ’$a$funcall-nomu ’al-funcall-nomu)
(set-noninst ’$a$fcnmu-final t)

(set-noninst ’$a$directg t)

(set-noninst ’$a$dirg-final t)

(add-specl ’$a$sharp!)

; Build in basic non-instant Functions.

(defmacro 1list-11(1)
‘(endp (cdr ,1)))

(set-noninst ’$a$finish-eval t)
(defun cl-$a$finish-eval(arg)
(let ((val (strip-alval-e arg)))
(unless (and (symbol-p val) (eq val ’$a$no-result))
(princ "==> ") (al-print val) (terpri))
(cons ’suc t)))

(set-noninst ’$a$passl t)
(defun cl-$a$passi(arg &rest args) (declare (ignore args))
(cons ’suc arg))

(defun spec-unless()
(setq p-call ‘(when (not ,(cadr p-call)) ,@(cddr p-call)))
(next-the-same))
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160 (set-noninst ’caar t)
161 (set-noninst ’cadr t)
162 (set-noninst ’cdar t)
163 (set-noninst ’cddr t)

164

165 (defun cl-caar(arg &rest args) (declare (ignore args))
166 (let ((p (make-pprocess ‘(car (car ($a$pass-v ,arg))))))

167 (cons ’suc (proc-result p))))

168

169 (defun cl-cadr(arg &rest args) (declare (ignore args))
170 (let ((p (make-pprocess ‘(car (cdr ($a$pass-v ,arg))))))

171 (cons ’suc (proc-result p))))

172

173 (defun cl-cdar(arg &rest args) (declare (ignore args))
174 (let ((p (make-pprocess ‘(cdr (car ($a$pass-v ,arg))))))

175 (cons ’suc (proc-result p))))

176

177 (defun cl-cddr(arg &rest args) (declare (ignore args))
178 (let ((p (make-pprocess ‘(cdr (cdr ($a$pass-v ,arg))))))

179 (cons ’suc (proc-result p))))

180

181 (set-globalb ’passtrue

182 >((x) (when x (return x))) t)

183

184 (set-globalb ’passnever

185 (O) B)

186

187 (defun spec-$a$sharp! ()

188 (setq p-call (cadr p-call))
189 (check-proc-call)

190 (next-the-same))

191

192 ;______ . . . __ __ __
193 ; argone system functions.

194

195 (defmacro condsval(&rest args)

196 ‘(let ((sval nil))

197 (cond ((alval-p (setq args (strip-alval args))) (cons ’sus args))
198 ((atom-p args) (cons ’suc al-f))
199 ((alval-p (setq sval (strip-alval (car args)))) (cons ’sus sval))
200 ,@ args)))

201

202 (defmacro condsvar(&rest args)

203 ‘(let ((sval nil))

204 (cond ((alval-p (setq args (strip-alval args))) (cons ’sus args))
205 ((atom-p args) (cons ’suc al-f))
206 ((progl nil (setq sval (strip-alval (car args)))))

207 ,@ args)))

208

209

210 (set-argone ’$a$call-lisp t)

211  (defun cl-$a$call-lisp(args)

212 (condsval ((cons ’suc (eval sval)))))
213

214 (set-argone ’$a$make-bi t)
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215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
nil)

(defun cl-$a$make-bi(args)
(condsval ((cons ’suc (global2globalb sval)))))

(set-argone ’load t)
(defun cl-load(args)
(condsval ((cons ’suc (suc-al-load sval nil)))))

(set-argone ’include t)
(defun cl-include(args)
(condsval ((cons ’suc (suc-al-load sval t)))))

(defun suc-al-load(sval output)
(let ((p1l (construct-proc))
(v (al-load sval output)))
(setq proc pl) (expand-proc)
v))

(set-argone ’provide t)
(defun cl-provide(args)
(condsval ((cons ’suc (if (or (symbolp sval) (stringp sval) (numberp sval))
(let* ((fname (atom-app sval ".a"))
(key (atom—app "$a$loaded-" fname)))
(set-sym-value globale-tab key t))
al-£)))))

(defvar require-path ‘("'") "Path to search for -required- files")

(defun exist-pathf (paths fname)
(cond ((null paths) fname)
((let* ((pfname (atom-app (car paths) fname))
(f (my-open-read-file pfname)))
(if f (progl pfname (close f))
(exist-pathf (cdr paths) fname))))))

(set-argone ’add-require-path)
(defun cl-add-require-path(args)
(let ((sval nil))

(cond ((alval-p (setq args (strip-alval args))) (cons ’sus args))
((null-p args) (cons ’suc require-path))
((atom-p args) (cons ’suc al-f))

((alval-p (setq sval (strip-alval (car args)))) (cons ’sus sval))
((or (symbolp sval) (numberp sval) (stringp sval))
(setq require-path (append require-path (list sval)))

(cons ’suc require-path))
(t (cons ’suc al-£)))))

(set-argone ’require t)
(defun cl-require(args)
(condsval ((cons ’suc (if (or (symbolp sval) (stringp sval) (numberp sval))
(let* ((fname (atom-app sval '".a"))
(key (atom—app "$a$loaded-" fname)))
(if (has-sym-value-p globale-tab key) t
(progn (suc-al-load (exist-pathf require-path fname)
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269 (if (has-sym-value-p globale-tab key) t
al-£))))

270 al-£)))))

271

272
273 ; Other System functioms.

274

275 (set-argone ’trace t)

276 (defun cl-trace(args) (declare (ignore args))
277 (cond (al-trace (setq al-trace nil) (cons ’suc al-f))

278 (t (setq al-trace t) (cons ’suc t))))

279

280 (set-argone ’time-prompt)

281 (defun cl-time-prompt(args) (declare (ignore args))
282 (cond (al-time-prompt (setq al-time-prompt nil) (cons ’suc al-f))

283 (t (setq al-time-prompt t) (cons ’suc t))))

284

285 (set-argone ’stats-prompt)

286 (defun cl-stats-prompt(args) (declare (ignore args))
287 (cond (al-stats-prompt (setq al-stats—prompt nil) (cons ’suc al-f))

288 (t (setq al-stats-prompt t) (cons ’suc t))))

289

290 (set-argone ’warning-exec)

291 (defun cl-warning-exec(args) (declare (ignore args))
292 (cond (warning-exec (setq warning-exec nil) (cons ’suc al-f))

293 (t (setq warning-exec t) (cons ’suc t))))

294

295 (set-argone ’warning-load)

296 (defun cl-warning-load(args) (declare (ignore args))
297 (cond (warning-load (setq warning-load nil) (cons ’suc al-f))

298 (t (setq warning-load t) (cons ’suc t))))

299

300 (set-argone ’exit t)

301 (defun cl-exit(args) (declare (ignore args))

302 (setq exit-alloy-lisp t)
303 (cons ’suc (setq exit-alloy-loop t)))

304

305 (set-argone ’bye t)

306 (defun cl-bye(args) (declare (ignore args))
307 (cl-exit 1))

308

309 (set-argone ’quit t)

310 (defun cl-quit(args) (declare (ignore args))
311 (cl-exit 1))

312

313 (set-argone ’quit-al)

314 (defun cl-quit-al(args) (declare (ignore args))
315 (cons ’suc (setq exit-alloy-loop t)))

316

317 (set-argone ’scheduler-switch-steps)

318 (defun cl-scheduler-switch-steps(args)

319 (let ((sval nil))

320 (cond ((alval-p (setq args (strip-alval args))) (cons ’sus args))
321 ((null-p args) (cons ’suc gtq-max))
322 ((atom-p args) (cons ’suc al-f))
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323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338

((alval-p (setq sval (strip-alval (car args)))) (cons ’sus sval))
((and (integerp sval) (> sval 0))

(cons ’suc (setq gtq-max sval)))
((cons ’suc al-f)))))

(set-argone ’blockl t)
(defun cl-blocki(args)
(condsvar ((cons ’suc sval))))

(set-argone ’blockn t)
(defun cl-blockn(args)
(cl-last-arg args))

(set-argone ’block t)
(defun cl-block(args) (declare (ignore args))
(cons ’suc t))
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A.5.2 build2.]

Other basic built in functions:

e
2 ; Other built in predicates.

3

S
5 ; Functions with one argument containing all actual arguments. Do not suspend.

6

7 (set-argone ’list t)

8 (defun cl-list(args)

9 (cons ’suc args))

10

11 (set-argone ’nl)

12 (defun cl-nl(args &optional stream) (declare (ignore args))

13 (terpri stream) (force-output stream)

14 (cons ’suc t))

15

16 5 ______ — — — — — -
17 ; Functions with one argument containing all actual arguments. May suspend.

18

19 (set-argone ’var-p)

20 (defun cl-var-p(args)
21 (cl-var args))

22

23 (set-argone ’var)

N
'S

(defun cl-var(args)

25 (let ((sval nil))

26 (cond ((alval-p (setq args (strip-alval args))) (cons ’sus args))
27 ((atom-p args) (cons ’suc al-f))
28 ((alval-p (setq sval (strip-alval (car args)))) (cons ’suc t))

29 ((cons ’suc al-f)))))

30

w
[

(set-argone ’$a$funcall t)

32 (defun cl-$a$funcall(args)

33 (cond ((alval-p (setq args (strip-alval args))) (cons ’sus args))

34 ((atom-p args) (cons ’suc nil))

35 ((let ((p (make-pprocess (make-slist-t (cons ’$a$funcall-vs args) p-serial))))
36 (cons ’suc (proc-result p))))))

37

38 (set-argone ’read)

39 (defun cl-read(args &optional stream) (declare (ignore args))
40 (cons ’suc (let ((e (al-read stream)))

41 (if (eq e al-eof) al-f e))))

42

43 (set-argone ’print)

44 (defun cl-print(args &optional stream)

45 (cond ((alval-p (setq args (strip-alval args))) (cons ’sus args))
46 ((atom-p args) (cons ’suc al-f))
47 ((let ((val (strip-alval-e (car args))))

48 (al-print val stream) (force-output stream)

49 (cons ’suc val)))))

50

51 (set-argone ’printnl)

[l
N

(defun cl-printnl(args &optional stream)
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53 (cond ((alval-p (setq args (strip-alval args))) (cons ’sus args))
54 ((atom-p args) (terpri stream) (cons ’suc al-f))
55 ((let ((val (strip-alval-e (car args))))

56 (al-print val stream) (terpri stream) (force-output stream)
57 (cons ’suc val)))))

58

59 (set-argone ’random t)
60 (defun cl-random(args)

61 (condsval ((number-p sval) (cons ’suc (random sval)))
62 (t (cons ’suc al-f))))
63

64 (set-argone ’car t)
65 (defun cl-car(args)

66 (condsval ((consp sval) (cons ’suc (car sval)))
67 (t (cons ’suc al-f))))
68

69 (set-argone ’cdr t)
70 (defun cl-cdr(args)

71 (condsval ((consp sval) (cons ’suc (cdr sval)))
72 (t (cons ’suc al-f))))
73

74 (set-argone ’scar t)
75 (defun cl-scar(args)

76 (condsval ((slist-p sval) (cons ’suc (car (slist-expr sval))))
77 (t (cons ’suc al-f))))
78

79 (set-argone ’scdr t)
80 (defun cl-scdr(args)
81 (condsval ((slist-p sval) (cons ’suc (let ((c (cdr (slist-expr sval))))

82 (if (cons-p c) (make-slist :expr c) c))))
83 (t (cons ’suc al-f))))
84

85 (set-argone ’data)

86 (defun cl-data(args)

87 (condsval (t (cons ’suc sval))))
88

89 (set-argone ’null-p t)

90 (defun cl-null-p(args)

91 (condsval ((null sval) (cons ’suc sval))
92 (t (cons ’suc al-f))))
93

94 (set-argone ’number-p)
95 (defun cl-number-p(args)

96 (condsval ((number-p sval) (cons ’suc sval))
97 (t (cons ’suc al-f))))
98

99 (set-argone ’string-p)
100 (defun cl-string-p(args)

101 (condsval ((stringp sval) (cons ’suc sval))
102 (t (cons ’suc al-f))))
103

104 (set-argone ’closure-p t)

105 (defun cl-closure-p(args)

106 (condsval ((ext-function-p sval) (cons ’suc sval))
107 (t (cons ’suc al-f))))
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108
109 (set-argone ’atom-p t)
110 (defun cl-atom-p(args)

111 (condsval ((consp sval) (cons ’suc al-f))
112 ((slist-p sval) (cons ’suc al-f))
113 (t (cons ’suc sval))))
114

115 (set-argone ’cons-p t)
116 (defun cl-cons-p(args)

117 (condsval ((consp sval) (cons ’suc sval))
118 (t (cons ’suc al-f))))
119

120 (set-argone ’scons-p t)
121 (defun cl-scons-p(args)

122 (condsval ((slist-p sval) (cons ’suc sval))
123 (t (cons ’suc al-f))))
124

125 (set-argone ’not t)
126 (defun cl-not(args)
127 (condsval ((eq sval al-f) (cons ’suc t))

128 (t (cons ’suc al-f))))

129

130 5 ______ e e e e e .
131 ; Other functions. May need an argument to have a value.
132

133 (defmacro wait-out (e)

134 ‘(catch ’out (cons ’suc ,e)))

135

136 (defmacro get-out(e)

137 ‘(throw ’out (cons ’sus ,e)))

138

139 (setq al-cons (set-argone ’cons t))
140 (defun cl-cons(args)
141 (cond ((alval-p (setq args (strip-alval-1l args))) (cons ’sus args))

142 ((atom-p args) (cons ’suc nil))

143 ((alval-p (cdr args)) (cons ’sus (cdr args)))
144 ((atom-p  (cdr args)) (cons ’suc (car args)))
145 ((cons ’suc (cons (car args) (cadr args))))))

146

147 (setq al-scons (set-argone ’scons t))
148 (defun cl-scons(args)
149 (cond ((alval-p (setq args (strip-alval-1l args))) (cons ’sus args))

150 ((atom-p args) (cons ’suc nil))

151 ((alval-p (cdr args)) (cons ’sus (cdr args)))
152 ((atom-p  (cdr args)) (cons ’suc (car args)))
153 ((cons ’suc (make-slist :expr (cons (car args) (cadr args)))))))
154

165 ; (set-argone ’last-arg t)
156 (defun cl-last-arg(args)
157 (cond ((alval-p (setq args (strip-alval-1l args))) (cons ’sus args))

158 ((atom-p args) (cons ’suc al-f))
159 ((wait-out (cl-last-argl args)))))
160

161 (defun cl-last-argl(args)
162 (let ((rest (cdr args)))
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163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217

(cond ((alval-p rest) (get-out rest))
((atom-p rest) (car args))
((cl-last-argl (cdr args))))))

; Arithmetic functions.

(defvar mmng-var nil "Variable containing value of last call to my-member-ng.')

(defun my-member-ng(1)
(setq mmng-var (member-ng 1)))

(defun cl-arith(op x rest)
(cond ((alval-p rest)
((atom-p rest)
((alval-p (car rest))
((not (numberp (car rest)))

(set-argone ’sum)
(defun cl-sum(args)

(get-out

x)

(get-out
al-f)
((cl-arith op (funcall op x (car rest)) (cdr rest)))))

(cond ((alval-p (setq args (strip-alval-l args))) (cons

((wait-out (cl-arith ’+ 0 args)))))

(set-argone ’times)
(defun cl-times(args)

(cond ((alval-p (setq args (strip-alval-l args))) (cons

((wait-out (cl-arith ’* 1 args)))))

(set-argone ’diff)
(defun cl-diff (args)

(cond ((alval-p (setq args (strip-alval-l args))) (cons

((atom-p args)

((alval-p (car args))
((alval-p (cdr args))

((not (number-p (car args)))
((atom-p  (cdr args))

(set-argone ’div)
(defun cl-div(args)

(cons
(cons
(cons
(cons

(cond ((alval-p (setq args (strip-alval-l args))) (cons

((atom-p args)

((alval-p (car args))
((alval-p (cdr args))

((not (number-p (car args)))
((atom-p  (cdr args))

(defun cl-quotx2(x y) (floor (/ x y)))

(set-argone ’quotient)
(defun cl-quotient (args)

(cons
(cons
(cons
(cons

’sus

’sus

’sus
’suc
’sus
’sus
’suc

’sus
’suc
’sus
’sus
’suc

rest))

(car rest)))

args))

args))

args))

0))

(car args)))
(cdr args)))
al-f))

(cons ’suc (- 0 (car args))))
((wait-out (cl-arith ’- (car args) (cdr args))))))

args))

1))

(car args)))
(cdr args)))
al-f))

(cons ’suc (/ 1 (car args))))
((wait-out (cl-arith ’/ (car args) (cdr args))))))

(cond ((alval-p (setq args (strip-alval-1l args))) (cons ’sus args))
(cons ’suc 1))

((atom-p args)



218 The Interpreter of ALLOY in Common Lisp
218 ((alval-p (car args)) (cons ’sus (car args)))
219 ((alval-p (cdr args)) (cons ’sus (cdr args)))
220 ((not (number-p (car args))) (cons ’suc al-f))

221 ((atom-p  (cdr args)) (cons ’suc (cl-quotx2 1 (car args))))
222 ((wait-out (cl-arith ’cl-quotx2 (car args) (cdr args))))))

223

224 (set-argone ’remainder)

225 (defun cl-remainder(args)

226 (cond ((alval-p (setq args (strip-alval-1l args))) (cons ’sus args))

227 ((atom-p args) (cons ’suc 1))

228 ((alval-p (car args)) (cons ’sus (car args)))
229 ((alval-p (cdr args)) (cons ’sus (cdr args)))
230 ((not (number-p (car args))) (cons ’suc al-f))

231 ((atom-p  (cdr args)) (cons ’suc (remainder 1 (car args))))
232 ((wait-out (cl-arith ’remainder (car args) (cdr args))))))

233

234 ;______ . . . __ __ __
235 ; Comparison functions.

236

237 (defun cl-comp(op x rest)

238 (cond ((alval-p rest) (get-out rest))

239 ((atom—p rest) t)

240 ((alval-p (car rest)) (get-out (car rest)))
241 ((when (funcall op x (car rest)) (cl-comp op (car rest) (cdr rest))))))
242

243 (set-argone ’eql t)

244 (defun cl-eql(args)

245 (cond ((alval-p (setq args (strip-alval-1l args))) (cons ’sus args))

246 ((atom-p args) (cons ’suc t))

247 ((alval-p (car args)) (cons ’sus (car args)))
248 ((wait-out (if (cl-comp ’eql (car args) (cdr args))

249 (car args) al-f)))))

250

261 ;______ . . . __ __ __
252 ; Arithmetic Comparison functions.

253

254 (defun cl-arcomp(op x rest)

255 (cond ((alval-p rest) (get-out rest))

256 ((atom-p rest) t)

257 ((alval-p (car rest)) (get-out (car rest)))
258 ((not (numberp (car rest))) nil)

259 ((when (funcall op x (car rest)) (cl-arcomp op (car rest) (cdr rest))))))
260

261 (set-argone ’1t)

262 (defun cl-1t(args)

263 (cond ((alval-p (setq args (strip-alval-1l args))) (cons ’sus args))

264 ((atom-p args) (cons ’suc t))

265 ((alval-p (car args)) (cons ’sus (car args)))
266 ((not (number-p (car args))) (cons ’suc al-f))

267 ((wait-out (if (cl-arcomp ’< (car args) (cdr args))

268 (car args) al-f)))))

269

270 (set-argone ’gt)

271 (defun cl-gt(args)

272 (cond ((alval-p (setq args (strip-alval-1l args))) (cons ’sus args))
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273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305

((atom-p args) (cons ’suc
((alval-p (car args)) (cons ’sus
((not (number-p (car args))) (cons ’suc

((wait-out (if (cl-arcomp ’> (car args) (cdr args))
(car args) al-f)))))

(set-argone ’eq)
(defun cl-eq(args)
(cond ((alval-p (setq args (strip-alval-l args))) (cons ’sus

((atom-p args) (cons ’suc
((alval-p (car args)) (cons ’sus
((not (number-p (car args))) (cons ’suc
((wait-out (if (cl-arcomp ’= (car args) (cdr args))

(car args) al-f)))))

(set-argone ’le)
(defun cl-le(args)
(cond ((alval-p (setq args (strip-alval-l args))) (cons ’sus

((atom-p args) (cons ’suc
((alval-p (car args)) (cons ’sus
((not (number-p (car args))) (cons ’suc

((wait-out (if (cl-arcomp ’<= (car args) (cdr args))
(car args) al-f)))))

(set-argone ’ge)
(defun cl-ge(args)
(cond ((alval-p (setq args (strip-alval-l args))) (cons ’sus

((atom-p args) (cons ’suc
((alval-p (car args)) (cons ’sus
((not (number-p (car args))) (cons ’suc

((wait-out (if (cl-arcomp ’>= (car args) (cdr args))
(car args) al-f)))))

)
(car args)))
al-f))

args))

)

(car args)))
al-f))

args))

t))

(car args)))
al-f))

args))

)

(car args)))
al-f))



220 The Interpreter of ALLOY in Common Lisp

A.5.3 obuild.l

Basic built in Classes:

1
2 ; Library of built-in objects.

3

S
5 ; General Utilities.

6

7 (defun make-bclass(name interfaces)

8 (let ((cl-names (cons (atom-app ’cl-c- name) (atom-app ’cl-o- name))))
9 (make-class :origdef ‘((name ,Q@ name) (interfaces ,Q@interfaces))

10 :tab cl-names :ndynnames ’#**bclass**)))

11

12 (defmacro bclass-clo(bc)

13 ‘(cdr (class-tab ,bc)))

14

15 (defmacro bclass-clc(bc)

16 ‘(car (class-tab ,bc)))

17

18 (defun set-bclass(al-name inter &optional export)

19 (cl-provide (list al-name))
20 (cl-provide (list (string-downcase (string al-name))))
21 (set-in-table (make-bclass al-name inter))
22 (set-bc-test (atom-app al-name ’-p) al-name export))
23
24 (defun set-bc-test(al-name cname &optional export)
25 (unless (or (has-sym-value-p tab al-name) (has-sym-value-p globale-tab al-name))
26 (set-in-table (make-gbfunction ‘((e) (return (eql (’object-p e)
27 (quote ,cname))))))))
28
29 (defmacro bclass-p(c)
30 ‘(eq (class-ndynnames ,c) ’#**bclass#**))
31
32 (defmacro bobject-p(o)
33 ‘(bclass-p (object-class ,0)))
34
35 (defun send-msg-b(msg obj args obj-self) (declare (ignore obj-self))
36 (funcall (bclass-clo (object-class obj)) msg (bobject-value obj) args))
37
38 (defun send-m-class-b(msg cls args)
39 (funcall (bclass-clc cls) msg cls args))
40
41 (defun make-bobject(class value)

42 (let* ((is (get-feature ’interfaces (class-origdef class)))
43 (int (get-feature ’all-methods is)))

44 (make-object :class class :interface int :inienv value)))
45

46 (defmacro bobject-value(obj)

47 ‘(object-inienv ,obj))

48

49 (defmacro condsvsl(&rest args)

50 ‘(let ((sval nil))

51 (cond ((alval-p (setq args (strip-alval args))) (waitfor-val args))
52 ((atom-p args) (give-value al-f))



A.5 Built in functions and objects 221

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107

((alval-p (setq sval (strip-alval (pop args)))) (waitfor-val sval))
,Q@ args)))

(defmacro condsvs2(&rest args)
‘(let ((sval nil)(sval2 nil))

(cond ((alval-p (setq args (strip-alval args))) (waitfor-val args))
((atom-p args) (give-value al-f))
((alval-p (setq sval (strip-alval (pop args)))) (waitfor-val sval))
((alval-p (setq args (strip-alval args))) (waitfor-val args))
((atom-p args) (give-value al-f))
((alval-p (setq sval2 (strip-alval (pop args)))) (waitfor-val sval2))
,@ args)))

; Library objects. with build in special representation.

; Closure
(set-bclass ’closure ’((all-methods val eval)) t)

(defconstant dumb-oclosure (make-bobject (get-sym-value globale-tab ’closure) 0))

(defun cl-c-closure(msg c args) (declare (ignore args c))
(give-value (case msg
(new al-£))))
; (new (make-gfunction ’>(() (return)))))))
(defun cl-o-closure(msg value args) (declare (ignore value))
(case msg
(val (condsvs1
(t (give-value sval))))
(eval (condsvs1

(t (give-value nil))))))

; Number
(set-bclass ’number ’((all-methods val string)) t)

(defconstant dumb-onumber (make-bobject (get-sym-value globale-tab ’number) 0))

(defun cl-c-number (msg c args) (declare (ignore args c))
(give-value (case msg
(new 0))))
(defun cl-o-number (msg value args) (declare (ignore value))
(case msg
(val (condsvs1

(t (give-value sval))))
(string (condsvsl
(t (give-value (format nil "~"A" sval)))))))
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108 ; String

109

110 (set-bclass ’string ’((all-methods val atom number explode append)) t)

111

112 (defconstant dumb-ostring (make-bobject (get-sym-value globale-tab ’string) 0))
113

114 (defun cl-c-string(msg c args) (declare (ignore args c))

115 (give-value (case msg

116 (new "))

117

118 (defun cl-o-string(msg value args) (declare (ignore value))

119 (case msg

120 (val (condsvsl

121 (t (give-value sval))))

122 (atom (condsvsl (t (give-value (intern sval)))))

123 (number (condsvsl (t (give-value (let ((n (al-read

124 (make-string-input-stream
125 sval) t)))

126 (if (number-p n) n al-£))))))

127 (explode (condsvsl (t (give-value (explode sval)))))

128 (append (let ((x (someend ’nstringp (setq args (strip-alval-e args)))))
129 (cond ((null x) (give-value (implode args)))

130 ((alval-p x) (waitfor-val x))

131 ((and (cons-p x) (alval-p (car x))) (waitfor-val (car x)))
132 ((give-value al-£)))))))

133

134 (defun nstringp(x) (not (stringp x)))

135

136 ;______ . . . __ __ __
137 ; Comns

138

139 (set-bclass ’cons ’((all-methods val car cdr)) t)

140

141 (defconstant al-cons-cl (get-sym-value globale-tab ’cons))
142 (defconstant dumb-ocons (make-bobject al-cons-cl 0))

143

144 (defun round-cons-p (e) (eql al-cons-cl e))

145

146 (defun cl-c-cons(msg c args) (declare (ignore c))
147 (case msg

148 (new (condsvs2

149 (t (give-value (cons sval sval2)))))))
150

1561 (defun cl-o-cons(msg value args) (declare (ignore value))
152 (case msg

153 (car (condsvsl

154 (t (give-value (car sval)))))

155 (cdr (condsvsl

156 (t (give-value (cdr sval)))))

157 (val (condsvsl

158 (t (give-value sval))))))

159

160

161 ; Scons
162
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163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209

(set-bclass ’scons ’((all-methods val car cdr)) t)

(defconstant al-scons-cl (get-sym-value globale-tab ’scons))
(defconstant dumb-oscons (make-bobject al-scons-cl () ))

(defun square-cons-p (e) (eql al-scons-cl e))

(defun cl-c-scons(msg c args) (declare (ignore c))

(case msg
(new (condsvs2
(t (give-value (make-slist

(defun cl-o-scons(msg value args)
(case msg
(car (condsvsl

:expr (comns sval sval2))))))))

(declare (ignore value))

(t (give-value (car (slist-expr sval))))))

(cdr (condsvsi

(t (give-value (let ((c (cdr (slist-expr sval))))

(if (cons-p c¢) (make-slist :expr c) c))))))

(val (condsvsil
(t (give-value sval))))))

(set-bclass ’symbol ’((all-methods val string)) t)

(defconstant dumb-osymbol (make-bobject (get-sym-value globale-tab ’symbol) 0))

(defun cl-c-symbol(msg c args) (declare (ignore args c))
(give-value (case msg
(new nil))))
(defun cl-o-symbol (msg value args) (declare (ignore value))

(case msg
(val (condsvsi
(t (give-value sval))))
(string (condsvsl

(t (give-value (string sval)))))))

; Special-Class

(set-bclass ’special-class ’((all-methods val)) t)

(defconstant dumb-ospecial-class (make-bobject (get-sym-value globale-tab

’special-class) 0))

210
211
212
213
214
215
216

(defun cl-c-special-class(msg c args)
(give-value (case msg
(new al-£))))

(defun cl-o-special-class(msg value args)
(case msg

(declare (ignore args c))

(declare (ignore value))
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217 (val (condsvsl

218 (t (give-value sval))))))

219

220
221 ; Main Body of built in objects driver:

222

223 (defun send-bi-obj(msg obj args orig-obj)

224 (cond ((number-p obj) (send-message msg dumb-onumber (cons obj args) orig-obj))
225 ((symbol-p obj) (send-message msg dumb-osymbol (cons obj args) orig-obj))
226 ((stringp obj) (send-message msg dumb-ostring (cons obj args) orig-obj))
227 ((cons-p obj) (send-message msg dumb-ocons

228 (cons obj args) orig-obj))
229 ((slist-p obj) (send-message msg dumb-oscons

230 (cons obj args) orig-obj))
231 ((ext-function-p obj)

232 (send-message msg dumb-oclosure (cons obj args) orig-obj))
233 (t (send-message msg dumb-ospecial-class

234 (cons obj args) orig-obj))))
235

236 ;______ . . . __ __ _
237 ; Library objects.

238

239 ;______ . . . __ __ __
240 ; Multiple assignement variable.

241

242 (set-bclass ’ma-var ’((all-methods get put) (reader get) (writer put)))
243

244 (defun cl-c-ma-var(msg c args)

245 (case msg

246 (new (if (alval-p (setq args (strip-alval args)))

247 (waitfor-val args)

248 (give-value (make-bobject

249 c (make-gval :val (if (cons-p args) (car args)
al-£))))))))

250

251 (defun cl-o-ma-var(msg value args)
252 (case msg

253 (get (give-value (gval-val value)))

254 (put (if (alval-p (setq args (strip-alval args)))

255 (waitfor-val args)

256 (give-value (setf (gval-val value) (if (cons-p args) (car args)
al-£)))))))

257

258 ;____ _ _ _ __
259 ; Single assignement variable.

260

261 (set-bclass ’sa-var ’((all-methods get put) (reader get) (writer put)))
262

263 (defun cl-c-sa-var(msg c args)

264 (case msg

265 (new (if (alval-p (setq args (strip-alval args)))

266 (waitfor-val args)

267 (give-value (make-bobject ¢ (if (cons-p args)

268 (cons t (car args))

269 (cons nil (make-alval-m)))))))))
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270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324

(defun cl-o-sa-var(msg value args)
(case msg
(get (give-value (cdr value)))
(put (if (alval-p (setq args (strip-alval args)))
(waitfor-val args)
(give-value (if (car value)
al-f
(progl (car args) (setf (car value) t)

(alset-alval (if (cons-p args) (car args) al-f)

(cdr value)))))))))

; Single Assignment Dictionary.

(set-bclass ’dictionary ’>((all-methods get put) (reader get) (writer put)))

(defun cl-c-dictionary(msg c args) (declare (ignore args))
(give-value (case msg
(new (make-bobject ¢ (make-hash-table

:size 10 :test ’equal))))))

(defmacro symnamp(v)
‘(or (numberp ,v) (symbolp ,v)))

(defun cl-o-dictionary(msg value args)
(case msg
(get (condsvsl
; ((not (symnamp sval)) (give-value al-f))
((give-value (let ((v (has-sym-value value sval)))
(cond ((eq v ’**1*noval*l**)
(set-sym-value value sval (make-alval-m)))
@NNN
(put (condsvs2
; ((not (symnamp sval)) (give-value al-f))
((give-value (let ((v (has-sym-value value sval)))
(cond ((eq v ’**1*noval*1l**)
(set-sym-value value sval sval2))
((alval-p (setq v (strip-alval v)))
(alset-alval sval2 v) sval2)
(al-£)))))))))

; Single Assignment Vector.
(set-bclass ’vector ’((all-methods get put) (reader get) (writer put)))

(defun cl-c-vector(msg c args)
(case msg
(new (condsvsl
((not (numberp sval)) (give-value al-f))
((give-value (let ((v (make-array (list sval)

:initial-element ’#**1%noval*1%*)))

(make-bobject ¢ v))))))))
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325
326 (defun cl-o-vector(msg value args)
327 (case msg

328 (get (condsvsl

329 ((not (symnamp sval)) (give-value al-f))

330 ((not (array-in-bounds-p value sval)) (give-value al-f))

331 ((give-value (let ((v (aref value sval)))

332 (cond ((eq v ’**1*noval*1k*)

333 (setf (aref value sval) (make-alval-m)))
334 NN

335 (put (condsvs2

336 ((not (symnamp sval)) (give-value al-f))

337 ((not (array-in-bounds-p value sval)) (give-value al-f))

338 ((give-value (let ((v (aref value sval)))

339 (cond ((eq v ’**1*noval*1l**)

340 (setf (aref value sval) sval2))

341 ((alval-p (setq v (strip-alval v)))

342 (alset-alval sval2 v) sval2)

343 (al-£3)))))N

344

345 ;______ . . . __ __ __
346 ; Multiple Assignment Vector.

347

348 (set-bclass ’ma-vector ’((all-methods get put) (reader get) (writer put)))
349

350 (defun cl-c-ma-vector(msg c args)

351 (give-value

352 (case msg

353 (new (condsvsl

354 ((not (numberp sval)) (give-value al-f))

355 ((let ((v (make-array (list sval)

356 :initial-element ’nil)))
357 (make-bobject c v))))))))

358

359 (defun cl-o-ma-vector(msg value args)
360 (case msg

361 (get (condsvsl

362 ((not (symnamp sval)) (give-value al-f))
363 ((not (array-in-bounds-p value sval)) (give-value al-f))
364 ((give-value (aref value sval)))))

365 (put (condsvs2

366 ((not (symnamp sval)) (give-value al-f))

367 ((not (array-in-bounds-p value sval)) (give-value al-f))
368 ((give-value (setf (aref value sval) sval2)))))))

369

370 ;____ _ _ _ __
371 ; Multiple Assignment Dictionary.

372

373 (set-bclass ’ma-dictionary ’((all-methods get put del) (reader get) (writer put
del)))

374

375 (defun cl-c-ma-dictionary(msg c args) (declare (ignore args))
376 (give-value (case msg

377 (new (make-bobject ¢ (make-hash-table

378 :size 10 :test ’equal))))))
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379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433

(defmacro symnamp(v)
‘(or (numberp ,v) (symbolp ,v)))

(defun cl-o-ma-dictionary(msg value args)
(case msg
(get (condsvsl
; ((not (symnamp sval)) (give-value al-f))
((give-value (let ((v (has-sym-value value sval)))
(cond ((eq v ’**1*noval*1**) al-f)
®NNN
(del (condsvsl
; ((not (symnamp sval)) (give-value al-f))
((give-value (let ((v (has-sym-value value sval)))
(cond ((eq v ’**1*noval*1**) al-f)
(t (remhash sval value) v)))))))
(put (condsvs2
((not (symnamp sval)) (give-value al-f))
((give-value (set-sym-value value sval sval2)))))))

; Top Level Caller. Used to make calls charged at the top level.
; Useful to define monitors without suspending the creator.

(set-bclass ’top-level-caller
’((all-methods top-level-funcall) () ()))

(defun cl-c-top-level-caller(msg c args) (declare (ignore args))
(give-value (case msg
(new (make-bobject ¢ nil)))))

(defun cl-o-top-level-caller(msg value args) (declare (ignore value))
(case msg
(top-level-funcall

(let ((proc (top-level-proc (make-slist-t (list ’$a$passl args) p-serial))))

(push proc proc-stack)
(give-value (proc-result proc))))))

(set-bclass ’input
>((all-methods read read-line read-stringl
eof empty active close) () O))

(defconstant in-con (make-bobject (get-sym-value global-tab ’input) (cons nil nil)))

(set-sym-value global-tab ’input-console in-con)
Y g P

(defun cl-c-input(msg c args)
(case msg
(new
(if (null args) (give-value (make-bobject c (cons nil nil)))
(condsvs1
((not (stringp sval)) (give-value al-f))
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434 ((equal sval "console") (give-value (make-bobject c¢ (cons nil nil))))
435 ((give-value (let ((stream (my-open-read-file sval)))

436 (if (eq al-f stream) al-f

437 (make-bobject ¢ (cons nil stream)))))))))))

438

439 (defun cl-o-input(msg value args) (declare (ignore args))

440 (cond ((car value) (give-value al-f))

441 ((let ((stream (cdr value)))

442 (case msg

443 (read-line (give-value (read-line stream nil al-f)))

444 (read-stringl (give-value (let ((c (read-char stream nil al-f)))
445 (if (eq c al-f) al-f

446 (string c)))))

447 (read (give-value (let ((e (al-read stream)))

448 (if (eq e al-eof) al-f e))))

449 (eof (give-value (if (eq al-eof (peek-char nil stream nil
al-eof))

450 t al-f)))

451 (empty (give-value (if (peek-char nil stream nil nil) al-f t)))
452 (close (setf (car value) t) (when stream (close stream))

453 (give-value t))

454 (active (give-value t)))))))

455

456 ;______ . . . . . _
457 ; Output.

458

459 (set-bclass ’output

460 >((all-methods print printnl nl active close) (O ()))

461

462 (defconstant out-con (make-bobject (get-sym-value global-tab ’output) (cons nil nil)))
463 (set-sym-value global-tab ’output-console out-con)

464

465 (defconstant err-con (make-bobject (get-sym-value global-tab ’output)
466 (cons nil #*error-output*)))

467 (set-sym-value global-tab ’error-console err-con)

468

469 (defun cl-c-output(msg c args)
470 (case msg

471 (new

472 (if (null args) (give-value (make-bobject c (cons nil nil)))

473 (condsvs1

474 ((not (stringp sval)) (give-value al-f))

475 ((equal sval "console") (give-value (make-bobject c¢ (cons nil nil))))
476 ((equal sval "error") (give-value (make-bobject c (cons nil
*error-output*))))

477 ((give-value (let ((stream (my-open-write-file sval)))

478 (if (eq al-f stream) al-f

479 (make-bobject ¢ (cons nil stream)))))))))))
480

481 (defun cl-o-output(msg value args)
482 (cond ((car value) (give-value al-f))

483 ((let ((stream (cdr value)))
484 (case msg
485 (print (cl-print args stream) (give-value args))

486 (printnl  (cl-printnl args stream) (give-value args))
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487
488
489
490

(nl
(close

(active

(cl-nl nil stream) (give-value t))

(setf (car value) t) (when stream (close stream))
(give-value t))

(give-value t)))))))



230 The Interpreter of ALLOY in Common Lisp

A.6 Library in ALLOY

A.6.1 alloylib.a
Higher level built in functions written in ALLOY:

1
2 ; Alloy Library written in Alloy.

3

4 ; Change these to point to your own directories of ALLOY program utilties.
5

6 (add-require-path "/harpo.a/student/mitsolid/alloy/progs/")

7 (add-require-path "/spunky.a/student/mitsolid/alloy/progs/")

8

9

10 ; Do not change the rest lines in this file:

11

12 (setfun (xxmake-bi 1)

13 (when (cons-p 1) ($a$make-bi (car 1)) (xxmake-bi (cdr 1))))
14

15 (load "lists.a")

16 (load "bool.a")

17 (load "loop.a")

18 (load "misc.a"

19
20 (load "higherf.a")
21 (load "fp.a")
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A.6.2 lists.a

Utilities dealing with lists:
1

; List primitives

2
3
4 (setfun (append 11 12)

5 (if (cons-p 11) (lreturn (cons (car 11) (append (cdr 11) 12)))
6 (1return 12)))

7

8

9

(setfun length(1)
(return (if (cons-p 1) (sum 1 (length (cdr 1))) 0)))

10

11  (setfun mapcar(f 1)

12 (return (if (cons-p 1) (cons (£ (car 1)) (mapcar f (cdr 1)))
13 O

14

15 (setfun nth(n 1)

16 (return (if (gt n 1) (nth (diff n 1) (cdr 1)) (car 1))))

17

18 (setfun cdrn(n 1)

19 (return (if (ge n 1) (cdrn (diff n 1) (cdr 1)) 1)))

20

21 (setfun carn(n 1)

22 (return (if (ge n 1) (carn (diff n 1) (car 1)) 1)))

23

24 (setfun first-n-list(n 1)

25 (return (if (ge n 1) (cons (car 1) (first-n-list (diff n 1) (cdr 1))) nil)))
26

27 (setfun sublist(x y 1)

28 (return (first-n-list (diff y x -1) (cdrn (diff x 1) 1))))
29

30 (setfun reverse(l)

31 (return (reverse2 1 nil)))

32

33 (setfun reverse2(l r)

34 (return (if (cons-p 1) (reverse2 (cdr 1) (cons (car 1) r))
35 r)))

36

37 (xxmake-bi ’(append length mapcar nth carn cdrn first-n-list sublist
38 reverse reverse2))

39
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A.6.3 bool.a

Utilities dealing with boolean expressions:

1

O ~NO U WN

©

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

; Boolean expressions

(setfun (and . 1)
(if (cons-p 1)
[block (block (unless (car 1) (fail))
(unless (and . [cdr 1]) (fail)))
(return (car 1))]
(return)))

(setfun (and-call . 1)
(if (comns-p 1)
[lets (xv) (block [unless (set xv ((car 1))) (fail)]
[unless (and-call . [cdr 1]1) (fail)])
(return xv)]
(return)))

(setfun (or . 1)
(when (cons-p 1) (lets (rv xv)
(when (set xv (car 1)) (return xv))
(when (set rv (or . [cdr 1])) (return rv)))))

(setfun (or-call . 1)
(when (cons-p 1) (lets (rv xv)

[when (set xv ((car 1))) (return xv)]
[when (set rv (or-call . [cdr 1])) (return rv)])))

(setfun equal(x y)
(if (eql x y)
(return x)
(if (cons-p x)

(if (and (cons-p y) (equal (car x) (car y)) (equal (cdr x) (cdr y)))

(return x) (return %f))
(if (scons-p x)

(if (and (scons-p y) (equal (scar x) (scar y)) (equal (scdr x) (scdr y)))

(return x) (return %£))))))

(setfun ground(x)

(if (cons-p x) (when (and (ground (car x)) (ground (cdr x))) (return x))
(if (scons-p x) (when (and (ground (scar x)) (ground (scdr x)))

(return x))

40
41
42

[return (data x)1)))

(xxmake-bi ’(ground and or and-call or-call equal))
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A.6.4 loop.a
Utilities dealing with loops:

e
2 ; Loops

3

4 (setfun repeat(n code)

5 (wvhen (gt n 0) (code) (repeat (diff n 1) code)))
6

7 (setfun srepeat(n code)

8 [when (gt n 0) (code) (srepeat (diff n 1) code)])
9

10 (setfun while(cond code)

11 [when (cond) (code) (while cond code)l])

12

13 (setfun until(cond code)

14 [unless (cond) (code) (until cond code)])

15

16 (xxmake-bi ’(repeat srepeat while until))

[y
~
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A.6.5 misc.a

Miscellaneous utilities:
B

2 ; Miscelaneous.

3

4 (setfun gvalue()

5 (return (let ((v (’new sa-var)))

6 (list (’writer v) (’get v)))))
7
8

(xxmake-bi ’(gvalue))
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A.6.6 hifherf.a

Higher order functions:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

; Drivers of functions

(setfun reduce(f init 1)
(return (if (cons-p 1) (f (car 1) (reduce f init (edr 1)))
init)))

(setfun filter(pred 1)
(return (if (cons-p 1)
(if (pred (car 1)) (comns (car 1) (filter pred (cdr 1)))
(filter pred (cdr 1)))
nil)))

(setfun mapcar2(£f2 11 12)
(return (if (cons-p 11)
(cons (£2 (car 11) (car 12)) (mapcar2 f2 (cdr 11) (cdr 12)))
O

(setfun mapcarn(fn . 11) (return (mapcarn-fix fn 11)))

(setfun mapcarn-fix(fn 11)
(return (if (cons-p (car 11))
(cons (let ((cars (mapcar car 11))) (fn . cars))
(mapcarn-fix fn (mapcar cdr 11)))

O

; These Produce functions

(setfun h-bu(f2 ai)
(return (mu(a2) (lreturn (£2 al a2)))))

(setfun h-rev2(£2)
(return (mu(x y) (lreturn (£2 y x)))))

(setfun h-rev(f)
(return (mu 1 (lreturn (f . [reverse 11)))))

(setfun h-red(f2 a)
(return (mu(l) (lreturn (reduce f2 a 1)))))

(setfun h-dup(£2)
(return (mu(x) (lreturn (£2 x x)))))

(setfun h-comp(f g)
(return (mu x (lreturn (£ (g . x))))))
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53

54 (setfun h-const(a)

55 (return (mu x (lreturn a))))

56

57 (setfun h-map(f1)

58 (return (mu(l) (lreturn (mapcar f1 1)))))

59

60 (setfun h-map2(£2)

61 (return (mu(11 12) (lreturn (mapcar2 £2 11 12)))))
62

63 (setfun h-mapn(fn)

64 (return (mu 11 (lreturn (mapcarn fn . 11)))))

65

66 (setfun h-construct 1lfs

67 (return (mu(arg) (lreturn ((h-map (mu(f) (lreturn (f arg)))) 1£fs)))))
68

69 (setfun h-compn 1lfs

70 (return (mu (arg) (lreturn (ccallse 1lfs arg)))))
71

72 (setfun ccallse (1fs e)
73 (return (if (cons-p 1fs) ((car 1fs) (ccallse (cdr 1lfs) e)) e)))
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A.6.7 fp.a
Utilities for programming in FP style:
S
2 ; FP like support function for higher level functional programming.
3
4
5 (provide "fp")
6 (require "higherf")
7
8 (setfun fp-map2(£2) (return (fp-fun (h-map2 £2))))
9
10 (setfun fp-rev2(£2)
11 (return (mu((x y)) (lreturn (£2 (list y x))))))
12
13 (setfun fp-rev(f)
14 (return (mu(l) (lreturn (f (reverse 1))))))
15
16 (setfun fp-trans(1l)
17 (return (mapcarn list . 11)))
18
19 (setfun fp-distl((a 1))
20 (return (mapcar (mu(x) (lreturn (list a x))) 1)))
21
22 (setfun fp-distr((a 1))
23 (return (mapcar (mu(x) (lreturn (list x a))) 1)))
24

25 (setfun fp-fun(fn)
26 (return (mu(l) (lreturn (fn . 1)))))
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A.7 Creating ALLOY

This sections lists the files useful to create and maintain ALLOY in a system with UNIX.

A.7.1 Makefile

The following file is the file which is used by UNIX command make to build ALLOY:
# Make the ALLOY interpreter.
Tested with AKCL Common Lisp interpreter.
If another version of Common Lisp is used correct file alakcl.l
If lisp system does not require a CR to give line for processing
(e.g. Golden CL) check function interactive in file load.l
You must change the path in file alloylib.a to point to you library dir.
This is the library of ALLOY sources (in progs.tar.Z)
In this Makefile, replace all occurances of ".o"

#
#
#
#
#
#
#
# with the suffix of your lisp’s compiled files.

- =
B O W 00N U WN =

[
N

# Or if alloy is not available use these:
#LISP=cl
#PREXEC=" (load "alloy.1l")’

e
[«2 ¢ 2 I ~ N V)

# If an old version of ALLOY is available use these:
LISP=alloy

=
~

18 PREXEC="(quit-al)"

19

20

21  HHBBEBERERBRBRB RS SR H 3

N
N

# Main part of Makefile

23 HEEHREHREREHRER SR RS RRE

24

25 .SUFFIXES: .1 .o .a

26 SHELL=/bin/sh

27

28 0BJS=fast.o util.o alutil.o prep.o gprep.o oprep.o load.o values.o io.o\
29 inter.o fcall.o gcall.o rcall.o ocall.o build.o build2.o0 obuild.o
30

31 LSPS=fast.l util.l alutil.l prep.l gprep.l oprep.l load.l values.l io.l\

w
N

inter.l fcall.l gcall.l rcall.l ocall.l build.l build2.1 obuild.l

w w
> W

ALIB=alloylib.a lists.a loop.a bool.a misc.a higherf.a fp.a

w W
o o

akclalloy: sysal
@echo DONE

w W w
© 0~

sysal: ${0BJS} ${ALIB}
makesysal

BB
N = O

.1l.0:
execfirst ${LISP} ${PREXEC} "(compile-file " \"$*.1\" " )"

BB
[Sa " V)

# Compile all files after puting them into one file. SLOW.

Ll
~N o

onesysal: allal.o ${ALIB}
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48 makesall

49 mv -f sysal onesysal

50

51 allal.o: allal.l

52 execfirst ${LISP} ${PREXEC} "(compile-file " \"$*x.1\" " )"
53

54 allal.l: ${LSPS}

55 rm -f allal.l

56 cat ${LSPS} > allal.l

57

58 clean:

59 rm -fr *.o0 *~ allal.l RCS SCCS
60
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A.7.2 execfirst

The following executable file is used by make and allows automated execution of lisp
commands from UNIX:

1 #! /bin/csh -f
# Call first arg and give as input rest args.

set EXEC=$1
shift

${EXEC} << ENDEND
LES
ENDEND

O 0 N U WN



Appendix B

Benchmarks

This appendix lists a number of programs used for testing and benchmarking the ALLOY

interpreter. These programs are loaded and executed automatically by calling script bench:

#! /bin/csh -f
# Run all benchmarks

(time ; a ; time) < bench.a > bench.out

which marks the system time before and after loading file bench.a:

(alloy)
(time-prompt)
(stats-prompt)
(load "benchl.a'")
(benchia)
(benchib)
(benchic)

(load "bench2.a')
(bench2a)
(bench2b)
(bench2c)

(load "bench3.a')
(bench3)

(load "bench4.a')
(bench4a)
(bench4b)

(load "bench5.a')
(benchba)

(load "benché6.a')
(bench6a)
(bench6b)

(load "bench7.a")
(bench7a)

(load "bench8.a")
(bench8)

(load "bench9.a")
(bench9)

(load "benchi0.a")

241



242 Benchmarks

(benchi10a)
(bench10b)
(load "benchiil.a")
(benchiia)
(benchi11b)
(benchiic)
(load "benchi2.a')
(benchi12)
(benchi12b)
(load "benchi3.a')
(benchi13a)
(benchi13b)
(benchi13c)
(bench13d)

(exit)

This way ALLOY is instructed to print various statistics on the execution of each
command. As it can be seen many more benchmarks are performed than those presented
in a table of chapter 8. This is what each benchmark of that table is called here: app3
is benchla, nrev30 is benchic, length100 is bench3, whut80 is bench9, gsortil is benchba,
ssortilis bench7a, lprimes5 is bench4a, 1primes25 is bench4b, inters33 is bench12b, perms3
is bench6a, perms4 is bench6b, queens4 is bench10a, queens4a is bench10b, prapp2 is benchiia,
prapp2or is bench11b, pinters33or is benchlic, dine3-4 is bench8.

The rest of this appendix lists the alloy programs forming the full suit of benchmarks.

B.1 Simple Functional
B.1.1 Append and naive reverse

; Benchmark set no 1.
; Append and Naive reverse.

(setfun app(11 12)
(return (if (cons-p 11)
(cons (car 11) (app (cdr 11) 12))
12)))

(setfun nrev(l)
(return (if (comns-p 1)
(app (nrev (cdr 1)) (1list (car 1)))
nil)))

(setfun benchila()
(return (app ’(1 2 3) ’(4 5 6)) ))

(setfun benchib()
(return (nrev (1 2 3)) ))
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(setfun benchic()
(return (nrev (1 23 4567 89 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30)) ))

B.1.2 Make and find length of list

; Benchmark set no 3.
; Make a list and count its length.

(setfun make-listl(n)
(return (if (1t n 1) nil (cons n (make-listl (diff n 1))))))

(setfun get-length(l)
(return (if (cons-p 1) (sum 1 (get-length (cdr 1))) 0)))

(setfun bench3()
(return (get-length (make-1listl 100))))

B.1.3 While and until

; Benchmark set no 9.
; While and until statements.

(setfun bench9()
[lets ((_x 0))
(while “(1t _x 20) "“[lets() [set _x (sum _x 1)] [print _x]1]) (nl)
(until ~(1t _x 1) “[lets() [set _x (diff _x 1)] [print _x]1]) (nl)
(while ~(1t _x 20) "“[lets() [set _x (sum _x 1)] [print _x]1]) (nl)
(until (1t _x 1) “[lets() [set _x (diff _x 1)] [print _x]1]) (@a1)1)

B.2 Sorting
B.2.1 Quick sort using lists

; Benchmark set no 5.
; Bench mark 5. Quicksort.

(load "gsort.a")

(setfun benchba()
(return (gsort (5626 3745 247))))

and file gsort.a:
i ; S========= ALLOY version 0.1 ============= 10/ 10/89

2 ; gsort.a
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3 ; Fast Quick sort. Input and utput are lists.

4 e
5 ; This program demonstrates how fine grain parallelism is possible

6 ; in many cases without any need for synchronization.

7 ; Assuming an adequate number of processors is available,

8 ; this program has a worst case execution time of 0(n).

Q T
10

11  (setfun gsort(1)

12 (return (gsortrest 1 nil)))

13

14 (setfun gsortrest(l rest)

15 (if (null-p 1) (return rest)

16 (return (let (((1small lgreat) (partition (car 1) (cdr 1))))

17 (gsortrest lsmall (cons (car 1) (gsortrest lgreat rest)))))))
18

19 (setfun partition(x 1)

20 (if (null-p 1) (return ’(nil nil))

21 (return (let (((1small lgreat) (partition x (cdr 1))))

22 (if (1t x (car 1)) (1list 1lsmall (cons (car 1) lgreat))

23 (list (cons (car 1) lsmall) lgreat))))))

24

25

B.2.2 Systolic sort

; Benchmark set no 7.
; Systolic sort.

(load "ssort.a')
(setfun bench7a()

(return (ssort (6 26 37 45 247))))

and file ssort.a:

1 ============ ALLOY version 0.1 ============= 10/10/89

2 ; ssort.a

3 ; Fast Systolic Sort. Input and utput are lists.

4 ; Executes in O(N) time for input of size N. Needs N processors.

5 ;-—————- -—= -—= -—= -—- -—- -
6 ; Shows how one can use the type of streams most convenient.

7 5---- - - - -
8

9 (load "putlist.a")

10

11  (setfun ssort(l)

12 (return (if (aull-p 1)

13 nil

14 (let ((rest (’new putlist)))

15 (cons (ssortx (car 1) (cdr 1) rest)

16 (ssort (’get-orig-head rest)))))))

17

18 (setfun ssortx(x 1 rest)



B.3 Lazy evaluation 245

19 [when (null-p 1) (’end rest) (return x)]

20 (when (cons-p 1)

21 [when (gt (car 1) x) (’put rest (car 1)) (return (ssortx x (cdr 1) rest))]
22 [when (le (car 1) x) (’put rest x) (return (ssortx (car 1) (cdr 1)
rest))1))

B.3 Lazy evaluation
B.3.1 Prime numbers

; Benchmark set no 4.
; Prime numbers, lazily.

(load "sieved.a")
(load "printn.a")

(setfun bench4a()
(return (printn 5 (lprimes))))

(setfun bench4b()
(return (printn 25 (lprimes))))

file sieved.a:

1 ;========= ALLOY version 0.1 ============= 10/10/89

2 ; sieve.a

3 ; Evaluates eagerly or lazily all prime numbers.

4 ;----— - - - -—= -—= -
5 ; This program demonstrates how a program that evaluates eagerly

6 ; can be made to evaluate lazyly.

7T 3----— - - - -—= -—= -
8

9 (setfun lprimes()
10 (return (lazy (primes))))

12 (setfun primes()
13 (return (cons 1 (sieve (ints 2)))))

15 (setfun sieve(l)
16 (return (cons (car 1) (sieve (filter (car 1) (cdr 1))))))

18 (setfun filter(x 1)
19 (if (equal (remainder (car 1) x) 0) (return (filter x (cdr 1)))

20 (return (cons (car 1) (filter x (cdr 1))))))
21

22 (setfun ints(n)

23 (return (cons n (ints (sum n 1)))))

file printn.a:
; Prints n elements from list

(setfun printn(i 1)
[when (gt i 0) [print (data (car 1))] (nl) (printn (diff i 1) (cdr 1))1)

B W N =
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B.4 Generators

B.4.1 Intersection

; Benchmark set no 1.
; NU11l replicator in list intersection.

(load "member.a')

(setfun bench12()
(return (list #*(intersection (2 4 6 1) (352 6 7 1)))))

(setfun benchi12b()
(return (list #*(intersection (5 1 2) ’(2 4 5)))))

file member.a:

;========== ALLOY version 0.1 ============= 10/10/89
; member.a
; Membership and intersection.

; This program demonstrates the use of multiple generators in a way that
; can replace prolog’s backtracking.

(setfun getmember (1)
(when (cons-p 1) (return (car 1)) #(return *(getmember (cdr 1)))))

(setfun intersection(sl s2)
#(lets ((x *(getmember s1)) (y *(getmember s2)))
(when (eql x y) (return x))))

(setfun ismember(x 1)
#(if (eql x *(getmember 1)) (return)))

B.4.2 Permutations

3
4

; Benchmark set no 1.
; All permutations.

(load "perms.a')

(setfun bench6a()
(return (list ##(permutations ’(1 2 3)))))

(setfun bench6b()
(return (list ##(permutations ’(1 2 3 4)))))

file perms.a:
s========== ALLOY version 0.1 ============= 10/10/89

; perms.a 77
; Return one or all permutations of a list.

; If called normally will return one of the possible permutations of the list.
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5 ; If called appropriatelly it will return all permutations of the list.

6 § ——mmm
7 ; This program demonstrates how a non-deterministic function can be made

8 ; to return all possible solutions.

9 § T
10

11  (provide "perms")

12

13 (setfun permutations(1)
14 (if (cons-p 1)

15 (1ist #(lets (((x rest) *(delete-one 1)))

16 #(return (cons x *(permutations rest)))))
17 (return nil)))

18

19 (setfun lpermutations(1)
20 (if (cons-p 1)

21 (1ist #(lets (((x rest) *(delete-one 1)))

22 #(return (cons x *(lpermutations rest)))))
23 (return nil)))

24

25 (setfun delete-one(1l)
26 (when (cons-p 1)

27 (return (list (car 1) (cdr 1)))
28 #(return (let (((x rest) *(delete-one (cdr 1))))
29 (list x (coms (car 1) rest))))))

B.4.3 Queens

; Benchmark set no 10.
; 4 queens. One solution and all solutions.

(load "queens.a")

(setfun bench10a()
(return (queens 4)))

(setfun bench10b()
(return (list ##(queens 4))))

file queens.a:

1 ;========== ALLOY version 0.1 ============= 10/10/89

2 ; queens.a

3 ; Solves the n queens problem.

4 ; Evaluates and returns one or all possible places, as requested.

5 _______ —_ —_ —_ —_ —_ J—

6 ; This program demonstrates the ability to find multiple solutions
7 ; while at the same time maximum parallelism is used.

8 ; Here, Checking of a configuration proceeds in parallel with the
9 ; creation of the permutation that describes the configuration.

10 ;--—- - - -
12 (require "perms")

14 (setfun queens(n)
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15 (lets ((1st (make-list n)))

16 #(lets ((poslist (board lst *(permutations 1st))))
17 (when (not (unsafeall poslist)) (printnl poslist) (return poslist)))))
18

19 (setfun unsafeall(board)
20 (when (cons-p board)

21 (when (unsafe (car board) (cdr board)) (return))
22 (when (unsafeall (cdr board)) (return))))
23

24 (setfun unsafe(q board)
25 (when (cons-p board)

26 (when (unsafel q (car board)) (return))
27 (when (unsafe q (cdr board)) (return))))
28

29 (setfun abs(x)

30 (return (if (1t x 0) (diff x) x)))

31

32 (setfun unsafel(q p)

33 (when (eq (abs (diff (car q) (car p)))

34 (abs (diff (cdr q) (cdr p)))) (return)))
35

36 (setfun board(lst places)

37 (return (if (null-p 1lst) QO

38 (cons (cons (car 1lst) (car places))
39 (board (cdr 1st) (cdr places))))))
40

41 (setfun make-list(n)
42 (if (ge n 1)

43 (return (cons n (make-list (diff n 1))))
44 (return )))
B.5 Prolog

B.5.1 Append, Or Parallel Append, and Or Parallel Intersection

; Benchmark set no 11.
; Prolog append. Or parallel Prolog append. Or parallel Prolog Interesction.

(load "p-app.a™)
(load "p-app-or.a')
(load "p-inters.a")

(setfun benchila()
(return (test-app)))

(setfun benchl1b()
(return (test-app-or)))

(setfun benchlic()
(return (intersectionp (5 1 2) ’(2 4 5))))

file p-app.a:
i ; S========= ALLOY version 0.1 ============= 10/ 10/89
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2 ; prolapp.a
3 ; prolog style append functions.
4 ; When called as a generator returns all solutions.
5 ; Usually called with logical variables as arguments.
6
7 ; Shows how prolog style functions can be written in ALLOY.
8 ; To add a cut anywhere in the program, insert "#(unless *(cut) (fail)"
9 ; Where function cut is defined as '"(setfun cut() (return))"
10 ;- e -—- -—- -
11
12 ; Prolog Program.
13 ; append([], L, L ).
14 ; append([H| T1, L, [H| Rl):- append(T, L, R).
15
16 ; Simplified Prolog Program.
17 ; append(P1, P2, P3):- unify(P1,[]1), unify(P2, L), unify(P3, L).
18 ; append(P1, P2, P3):- unify(P1, [H| T]), unify(P3, [H| R]), append(T, P2, R).
19
20 ; The result of a mechanical transformation. No optimizatiomns.
21
22 (require "unify")
23
24 [setfun p-app(pl p2 p3)
25 [lets ((1 (’new logvar)))
26 #[s *(unify p1 ) #[s *(unify p2 1) #[s *(unify p3 1) (return)]]]]
27 [lets ((1 (’new logvar)) (t (’new logvar)) (r (’new logvar)) (h (’new logvar)))
28 #[s *(unify pl (cons h t)) #[s *(unify p3 (cons h r)) #[s *(p-app t p2 r)
(return)1111]
29
30 (setfun (s x))
31
32 (setfun test-app()
33 (return [let (((_vl _v2) [list (’new logvar) (’new logvar)]))
34 [1ist #[blockn *(p-app _vl _v2 ’>(1 2)) [rstrip (list _v1 _v2)]1111))
file p-app-or.a:
1 ============ ALLOY version 0.1 ============= 10/10/89
2 ; prolapp.a
3 ; OR-parallel prolog style append functions.
4 ; When called as a generator returns all solutions.
5 ; Usually called with logical variables as arguments.
6 ;-———- - - - -
7 ; Shows how or-parallel prolog style functions can be written in ALLOY.
8 ; To add a cut anywhere in the program, insert "*(unless *(cut) (fail)"
9 ; Where function cut is defined as '"(setfun cut() (returmn))"
10 ;---- - - - -
11
12 ; Prolog Program.
13 ; append([], L, L ).
14 ; append([H| T1, L, [H| R1):- append(T, L, R).
15
16 ; Simplified Prolog Program.
17 ; append(P1, P2, P3):- unify(P1,[]1), unify(P2, L), unify(P3, L).
18 ; append(P1, P2, P3):- unify(P1, [H| T]), unify(P3, [H| R]), append(T, P2, R).
19
20 ; Mechanical transformation. No optimizations.
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21 ; Cut would mean that all branches of the predicate failed.
22
23 (require "prolog")

24

25 (setfun p-app-or(1lpi 1p2 1p3)

26 (let [((p1 p2 p3) [copyloge (list 1pl 1p2 1p3)1)

27 (1) (1vs 1))]

28 (snest “!*(unify pl ()) ~!*(unify p2 1) ~!*(unify p3 1)

29 “(return (list p1 p2 p3))))

30 (let [((p1l p2 p3) [copyloge (list 1pl 1p2 1p3)1)

31 (1t rh) (Qvs 4))]

32 (snest “!*(unify pl (cons h t)) ~!*(unify p3 (cons h r))

33 “![lets [((T2 L2 R2) #(p-app-or t p2 r))]

34 (return (list (cons h T2) 12 (cons h R2)))1)))

35

36 (setfun test-app-or()

37 (return [let (((_vl _v2) [list (’new logvar) (’new logvar)]))

38 [1ist #[printnl [rstrip *(p-app-or _v1 _v2 °>(1 2)>1111))
file p-inters.a:

{ j========== ALLOY version 0.1 ============= 10/10/89

2 ; proinsp.a

3 ; OR-parallel prolog style intersection with member function.

4 ; Usually called with logical variables as arguments.

5 _______ —_ —_ —_ —_ —_ J—

6 ; Shows how or-parallel prolog style functions can be written in ALLOY.
7 ; Demonstrates double use of the member predicate.

8 ; To add a cut anywhere in the program, insert "*(unless *(cut) (fail)"
9 ; Where function cut is defined as '"(setfun cut() (returmn))"

10 _______ —_ —_ —_ —_ —_—

12 ; Prolog Program.

13 ; memberp(X, [X| _1).

14 ; memberp(X, [_| R]):- memberp(X, R).

15 ; common(X, L1, L2):- memberp(X, L1), memberp(X, L2).

16 ; intersection(L, L1, L2):- bagof(X, common(X, L1, L2), L).

18 ; Simplified Prolog Program.

19 ; memberp(X, P2):- unify(P2, [X| _1).

20 ; memberp(X, P2):- unify(P2, [_| R]), memberp(X, R).

21 ; commonp(X, L1, L2):- memberp(X, L1), memberp(X, L2).

22 ; intersectionp(L, L1, L2):- bagof(X, commonp(X, L1, L2), L).

24 ; Mechanical transformation. Minimal optimizations (nested lets).
25 ; Cut would mean that all branches of the predicate failed.

27 (require "prolog™)

28

29 [setfun memberp(lpl 1p2)

30 [lets [((p1 p2) (copyloge (list 1lpl 1p2)))]

31 (snest ~!'#(unify (cons pl (’new logvar)) p2)
32 “(return (list p1 p2)))]

33 (lets [((x p2) (copyloge (list 1lpl 1p2)))

34 ((r b) Qvs 2]

35 (snest " !*(unify p2 (cons h r))

36 “1[lets [((X2 R2) *(memberp x r))]
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37
38
39
40
41
42
43
44
45
46
47

B.

(return (list X2 (cons h r2)))1))]

(setfun commonp(lpl 1p2 1p3)

[lets [((x 11 12) (copyloge (list 1lpl 1p2 1p3)))]
#[lets [((X2 11_2) *(memberp x 11))]
#[lets [((x3 12_2) *(memberp x2 12))]
(return (list x3 11_2 12_2))111)

(setfun intersectionp(1lp2 1p3)
(return (let [((x) (1lvs 1))]

[1ist #[rstrip *(commonp x 1p2 1p3)11)))

6 Miscellaneous

B.6.1 Dining Philosophers

; Benchmark set no 8.
; Philosophers

(load "aphil.a")

(setfun bench8()

(dine 3 4))
file phil.a:

1 — — — — -

2 ; N Philosophers.

3

4 (class-start philosopher

5 (static id forkl fork2)

6 (import print nl gt diff printnl sum)

7 (common faa semaphore)

8 (methods live))

9

10 (setfun new(f1 £2)

11 (set id (sum (’faa c-faa 1) 1)) (set forkl f1) (set fork2 £2)

12 (if (gt id 1) (°v c-semaphore)))

13

14 (setfun live(n)

15 (loop n))

16

17 [setfun loop(n)

18 (’p c-semaphore) [printnl (list "Philosopher" id '"entered room.")]

19 (’p forkl) [printnl (list "Philosopher" id " took left
fork'")]

20 (’p fork2) [printnl (list "Philosopher" id " took right
fork'")]

21 [printnl (list "Philosopher'" id "started eating")]

22 (eat 2)

23 [printnl (list "Philosopher'" id "stoped eating')]

24 [printnl (1ist "Philosopher" id " put down left fork")] (°v forkl)
25 [printnl (1ist "Philosopher" id " put down right fork")] (°v fork2)
26 (’v c-semaphore) [printnl (list "Philosopher" id '"exited room.")]
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27 (if (gt n 0) (loop (diff n 1)))]

28

29 (setfun eat(n)

30 (if (gt n 0) (eat (diff n 1))))

31

32 (class-end philosopher)

33

34 e _

35 ; Dinner for p philosophers n times.

36

37 [setfun dine(p n)

38 [printnl "The big feasting starts..."]

39 (dinen2 (if p p 5) (if n n 3))]

40

41 (setfun dinen2(p n)

42 (let ((forkl (’new semaphore 1)) create)

43 (set create (mu (previous i)

44 (if (gt i 1)

45 (let ((f (’new semaphore 1)))
46 (’live (’new philosopher previous f) n)
47 (create £ (diff i 1)))

48 (’live (’new philosopher previous forkl) n))))

49 (create forkl p)))
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