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ABSTRACT

We consider two new algorithms with practical application to the problem of designing

controllers for linear dynamical systems with input and output: a new spectral value

set based algorithm called hybrid expansion-contraction intended for approximating the

H∞ norm, or equivalently, the complex stability radius, of large-scale systems, and a

new BFGS SQP based optimization method for nonsmooth, nonconvex constrained op-

timization motivated by multi-objective controller design. In comprehensive numerical

experiments, we show that both algorithms in their respect domains are significantly

faster and more robust compared to other available alternatives. Moreover, we present

convergence guarantees for hybrid expansion-contraction, proving that it converges at

least superlinearly, and observe that it converges quadratically in practice, and typically

to good approximations to the H∞ norm, for problems which we can verify this. We

also extend the hybrid expansion-contraction algorithm to the real stability radius, a

measure which is known to be more difficult to compute than the complex stability ra-

dius. Finally, for the purposes of comparing multiple optimization methods, we present

a new visualization tool called relative minimization profiles that allow for simultane-

ously assessing the relative performance of algorithms with respect to three important

performance characteristics, highlighting how these measures interrelate to one another

and compare to the other competing algorithms on heterogenous test sets. We employ

relative minimization profiles to empirically validate our proposed BFGS SQP method

in terms of quality of minimization, attaining feasibility, and speed of progress compared

to other available methods on challenging test sets comprised of nonsmooth, nonconvex

constrained optimization problems arising in controller design.
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2.1 The algorithm by Guglielmi, Gürbüzbalaban, and Overton . . . . . . . 17

2.2 Approximating the spectral value set abscissa and radius . . . . . . . . 20

2.3 The breakdown case of the GGO algorithm . . . . . . . . . . . . . . . 28

vi



3 A fast and breakdown-free algorithm for approximating the H∞ norm 35

3.1 Hybrid expansion-contraction: a breakdown-free algorithm . . . . . . . 35

3.2 The convergence rate of hybrid expansion-contraction . . . . . . . . . . 43

3.3 Contracting early . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.4 A fast new method to find an initial upper bound . . . . . . . . . . . . . 52

4 An improved SVSAR subroutine 56

4.1 Extending SVSAR to large-scale D matrices . . . . . . . . . . . . . . . 56

4.2 Accelerating SVSAR’s linear convergence . . . . . . . . . . . . . . . . 63

4.2.1 A vector extrapolation based acceleration technique . . . . . . . 65

4.2.2 A comparison with subspace acceleration for pseudospectra . . 69

4.3 Improvements to the line search for monotonicity . . . . . . . . . . . . 76

4.4 A randomized variant of SVSAR . . . . . . . . . . . . . . . . . . . . . 79

5 Hybrid expansion-contraction in practice 82

5.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2 Tolerances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.3 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.3.1 Upper bound method variants . . . . . . . . . . . . . . . . . . . 87

5.3.2 Small-scale evaluation . . . . . . . . . . . . . . . . . . . . . . 90

5.3.3 Large-scale matrices . . . . . . . . . . . . . . . . . . . . . . . 92

5.3.4 Convergence rates of hybrid expansion-contraction . . . . . . . 95

6 Hybrid expansion-contraction for the real structured stability radius 98

6.1 A brief introduction to the real structured stability radius . . . . . . . . 98

6.2 A high-level overview for adapting hybrid expansion-contraction . . . . 101

vii



6.3 The necessary modifications for real-valued rank-2 perturbations . . . . 103

6.3.1 Adapting the contraction phase . . . . . . . . . . . . . . . . . . 103

6.3.2 Convergence results . . . . . . . . . . . . . . . . . . . . . . . . 108

6.3.3 Adapting the SVSAR line search to ensure monotonicity . . . . 111

6.3.4 Normalizing large-scale rank-2 perturbations . . . . . . . . . . 121

6.3.5 Vector extrapolation for rank-2 perturbations . . . . . . . . . . 123

6.4 Handling static boundary points of real spectral value sets . . . . . . . . 128

6.5 A randomized SVSAR method for the real-valued spectral norm case . . 131

7 Simultaneous optimization of multiple stability measures 132

7.1 Nonsmooth, nonconvex constrained optimization . . . . . . . . . . . . 133

7.2 A nonsmooth penalty parameter approach . . . . . . . . . . . . . . . . 135

7.3 A steering strategy for nonsmooth constrained problems . . . . . . . . . 137

7.4 Nonsmooth, nonconvex constrained optimization examples . . . . . . . 144

7.4.1 Static output feedback controller design . . . . . . . . . . . . . 144

7.4.2 Multi-objective spectral radius optimization . . . . . . . . . . . 145

7.4.3 Multi-objective pseudospectral radius optimization . . . . . . . 150

7.5 Comparing nonsmooth, nonconvex optimization algorithms . . . . . . . 155

7.5.1 Relative minimization profiles . . . . . . . . . . . . . . . . . . 156

7.5.2 Comparing time via multiple relative minimization profiles . . . 159

7.6 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

7.6.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . 164

7.6.2 Multi-objective spectral radius optimization . . . . . . . . . . . 166

7.6.3 Multi-objective pseudospectral radius optimization comparison . 169

7.6.4 The effect of regularizing the Hessian approximation . . . . . . 171

viii



7.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

Conclusion 174

Appendices 176

Bibliography 191

ix



LIST OF FIGURES

2.1 The GGO Algorithm Demonstrating Breakdown on CM3 and CM4. . . . 29

2.2 How the GGO Algorithm Breaks Down: A Visual Progression . . . . . 31

3.1 HEC is an Adaptively Negatively/Positively Damped Newton Method. . 49

4.1 Acceleration of SVSAR via Vector Extrapolation on ROC3 and ROC5. . 68

4.2 SVSAR Iterates on boeing(’0’) . . . . . . . . . . . . . . . . . . . 76

4.3 A Randomized SVSAR Method: Two Illustrative Examples . . . . . . . 81

7.1 Multi-objective Spectral Radius: Ex. 1 Iterates . . . . . . . . . . . . . . 148

7.2 Multi-objective Spectral Radius: Ex. 1 Spectral Plots . . . . . . . . . . 149

7.3 Multi-objective Pseudospectral Radius: Ex. 1 Iterates . . . . . . . . . . 153

7.4 Multi-objective Pseudospectral Radius: Ex. 1 Pseudospectral Plots . . . 154

7.5 Multi-objective Spectral Radius Optimization Comparison. . . . . . . . 168

7.6 Multi-objective Pseudospectral Radius Optimization Comparison . . . . 170

7.7 Multi-objective Spectral Radius Optimization Regularization . . . . . . 172

B.1 Multi-Objective Spectral Radius: Ex. 2 Iterates. . . . . . . . . . . . . . 182

B.2 Multi-Objective Spectral Radius: Ex. 2 Spectral Plots . . . . . . . . . . 183

B.3 Multi-Objective Spectral Radius: Ex. 3 Iterates. . . . . . . . . . . . . . 184

B.4 Multi-Objective Spectral Radius: Ex. 3 Spectral Plots . . . . . . . . . . 185

C.1 Multi-Objective Pseudospectral Radius: Ex. 2 Iterates . . . . . . . . . . 187

C.2 Multi-Objective Pseudospectral Radius: Ex. 2 Pseudospectral Plots . . . 188

x



C.3 Multi-Objective Pseudospectral Radius: Ex. 3 Iterates . . . . . . . . . . 189

C.4 Multi-Objective Pseudospectral Radius: Ex. 3 Pseudospectral Plots . . . 190

xi



LIST OF TABLES

4.1 SVSAR Acceleration Comparison: Small-scale ‖∆‖ = 10−2 . . . . . . 73

4.2 SVSAR Acceleration Comparison: Small-scale ‖∆‖ = 10−4 . . . . . . 74

4.3 SVSAR Acceleration Comparison: Large-scale ‖∆‖ = 10−2 . . . . . . 75

5.1 Comparison of Upper Bound Methods for HEC: Small-scale. . . . . . . 89

5.2 HEC Overall Performance: Small-scale . . . . . . . . . . . . . . . . . . 91

5.3 Per-Problem Speedups of HEC Relative to hinfnorm: Small-scale . . 92

5.4 HEC Overall Performance: Large-scale . . . . . . . . . . . . . . . . . . 93

5.5 Per-Problem Speedups of HEC Relative to hinfnorm: Large-scale . . 95

5.6 HEC Rate of Convergence . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.7 Per-Problem Convergence of HEC . . . . . . . . . . . . . . . . . . . . 96

xii



LIST OF ALGORITHMS

1 [x?, . . .] = newton bisection(f(·), xlb, xub) . . . . . . . . . . . . . . . . 18

2 [uk, vk] = compute next uv(ε, uk−1, vk−1, λk−1, xk−1, yk−1) . . . . . . . 24

3 [ut, vt, λt, xt, yt] = uv line search(ε, uk, vk, uk−1, vk−1, λk−1) . . . . . . 25

4 [uk, vk, λk, xk, yk] = svsar(ε, u0, v0, λ0, x0, y0, kmax) . . . . . . . . . . . 27

5 [λk, εk] = hybrid expansion contraction(ε0, u0, v0, λ0, x0, y0, ksvsar) . . 41

6 [ε, u, v] = find upper bound(ε0, u0, v0) . . . . . . . . . . . . . . . . . 55

7 [dk, µnew] = sqp steering strategy(xk, Hk, µcurrent) . . . . . . . . . . . 140

8 [x?, f?, v?] = bfgs sqp(f(·), c(·), x0, µ0) . . . . . . . . . . . . . . . . . . 143

xiii



LIST OF APPENDICES

A Contributions to Third-Party Codes . . . . . . . . . . . . . . . . . . . 177

B Multi-Objective Spectral Radius Additional Examples . . . . . . . . . 181

C Multi-Objective Pseudospectral Radius Additional Examples . . . . . 186

xiv



INTRODUCTION

An important problem occurring in many engineering applications is that of controller

design, which usually involves stabilizing and optimizing a given dynamical system

with inputs and outputs, according to some specified stability measure. However, in

practice, the mathematical model given by the dynamical system is almost unquestion-

ably an imperfect representation of reality and it may even not be apparent to what

degree its accuracy holds. Thus, it is imperative to consider robust stability measures,

that is, measures which can quantify the least amount of perturbation a linear dynamical

system with input and output can incur such that asymptotically stabiltiy can no longer

be guaranteed. As robust stability measures are typically nonsmooth, nonconvex, ex-

pensive to compute, and sometimes even difficult to approximate, improved algorithms

for the controller design problem may be realized not only by improved optimization

algorithms but also by improved methods for calculating or approximating the stability

measures themselves.

Perhaps the most well known and important robust stability measure arising in ap-

plications is the H∞ norm, or equivalently, the complex stability radius. Calculating

it however is an expensive proposition of finding a global optimum of a nonconvex

and nonsmooth optimization problem, and while the standard Boyd-Balakrishnan-Bru-

insma-Steinbuch (BBBS) algorithm [BB90, BS90] can find the optimal solution, its

cubic cost per iteration limits the algorithm’s applicability to rather small-dimensional

systems. For large-dimensional systems, one approach is to use model reduction tech-

niques, where one approximates a large-scale system by a smaller surrogate model,

sufficiently reduced in size so that the H∞ norm of it can be tractably computed via the
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standard BBBS algorithm.

However, there has been a recent flurry of interest in approximating the H∞ norm

for large and sparse systems without reducing the dimensions of the original matrices,

notably by [GGO13] and, for related descriptor systems, by [BV14, FSVD14]. Though

the last of these algorithms relies on solving linear systems, and is thus unlikely to

scale as well as the first two methods, all three methods are much faster than the BBBS

algorithm for large problems and appear to be able to compute good approximations to

the H∞ norm.

On the other hand, the algorithm presented by Guglielmi, Gürbüzbalaban, and Over-

ton [GGO13], which we call the GGO algorithm, assumes that the otherwise large and

sparse systems have relatively few inputs and outputs, while its main computational

subroutine only converges linearly. Also, we demonstrate that the GGO algorithm can

sometimes break down, which can potentially lead to a poor approximation of the H∞

norm. Fortunately, it is usually trivial to check whether the method has incurred break-

down after the fact and it appears that the algorithm often does converge properly with-

out incident on most problems. However, in the case of breakdown, it is difficult to

assess whether the approximation quality has suffered and running time of the algo-

rithm is typically greatly increased. Though this appears to be a somewhat infrequent

scenario, it nonetheless is a real consideration if the method is to be used for designing

controllers in actual applications.

In practice, it is often desirable to not just stabilize and enhance a single linear dy-

namical system with respect to some stability measure, but to in fact design a single

controller which can simultaneously stabilize and enhance the stability of multiple dy-

namical systems. Even the single-objective case typically amounts to a nonsmooth,

nonconvex optimization problem, one for which the objective may not even be locally
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Lipschitz. Designing a controller with multiple objectives amounts to nonsmooth, non-

convex constrained optimization, a difficult problem for which there are few general

methods.

In this thesis, we focus on improving the current state of the art in fast and reliable

algorithms with application to controller design, both for approximating robust stability

measures in large-scale settings and for designing controllers in multi-objective settings.

We make the following contributions:

• We analyze the GGO algorithm for approximating the H∞ norm and demonstrate

how it can sometimes critically break down in practice by failing to converge to

even stationary points of the optimization problem, a behavior that had gone un-

noticed until the author of this thesis discovered it. We further detail how the

inherent unpredictable nature of the main computational subroutine strongly sug-

gests that merely modifying the Newton-bisection method used as the algorithm’s

outer iteration is unlikely to result in a provably breakdown-free method.

• Motivated by this, we present an improved spectral value set based algorithm

using a novel hybrid expansion-contraction scheme that, under no additional as-

sumptions, guarantees convergence to a stationary point of the optimization prob-

lem without incurring breakdown. In practice, we find that our method almost

always converges to local maximizers that provide good approximations to the

H∞ norm and often, to the exact value, for cases where it is tractable to check

this. Furthermore, we prove that hybrid expansion-contraction must converge at

least superlinearly, and observe that it often converges quadratically. In its sim-

plest form, that is, without further optimizations, we demonstrate that our method

completes a large-scale test set almost six times faster than the GGO algorithm

3



while being up to 57 times faster for a single problem in the set.

• To address the slow convergence of the linearly converging subroutine used by

both hybrid expanion-contraction and the GGO algorithm, we present several op-

timizations for accelerating our method and the shared subroutine, some of which

could also apply to the GGO algorithm. We further improve the subroutine by

extending it to efficiently handle systems where the number of inputs and outputs

may be large. The resulting optimizations, when enabled simultaneously, enabled

hybrid expansion-contraction to complete the large-scale test set over 26 times

faster than the implementation of the GGO algorithm while being over 82 times

faster on a single problem.

• We further extend the hybrid expansion-contraction algorithm to the real stability

radius, a measure which is known to be more difficult to compute than the complex

stability radius. We show that superlinear convergence also holds in the real case

and adapt the optimizations developed for the complex rank-one case to the real

rank-two case.

• For the problem of multi-objective controller design, we propose combining a

Broyden-Fletcher-Goldfarb-Shanno method with sequential quadratic program-

ming, resulting in a method we call BFGS SQP and which is applicable for the

general setting of nonsmooth, nonconvex constrained optimization. Though we do

not provide convergence results, we demonstrate that BFGS SQP is exceptionally

fast and reliable on challenging problems arising in controller design, and gener-

ally, greatly outperforms a competing algorithm which does provide convergence

results for this nonsmooth, nonconvex constrained setting.
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• We propose a new visualization tool called relative minimization profiles that al-

low for simultaneously assessing the relative performance of algorithms with re-

spect to three important performance characteristics, highlighting how these mea-

sures interrelate to one another and compare to the other competing algorithms on

heterogenous test sets. We employ relative minimization profiles to empirically

validate our proposed BFGS SQP method in terms of quality of minimization,

attaining feasibility, and speed of progress compared to other available methods

on test sets comprised of difficult nonsmooth, nonconvex constrained optimiza-

tion problems. We also mention that relative minimization profiles may be useful

in other contexts as well, such as comparing methods for unconstrained and/or

convex optimization.

The thesis is organized as follows. In the first chapter we define spectral value sets

and then establish their fundamental properties and their relationship to the H∞ norm

necessary to discuss the algorithms in question. In Chapter 2, we outline the algorithm

proposed in [GGO13] and characterize how that algorithm may break down. Then in

Chapter 3, we present our new algorithm, hybrid expansion-contraction, for approxi-

mating the H∞ norm, along with its convergence results. We further present a new

fast upper bound procedure to initialize the method and discuss a key optimization of

“contracting early” in order to increase efficiency. In Chapter 4, we present several opti-

mizations to improve the efficiency of the aforementioned slowly converging subroutine

and to extend it to handle systems with many inputs and outputs. Chapter 5 discusses

the details of implementing hybrid expansion-contraction and gives extensive numeri-

cal experiments comparing our method to the GGO algorithm as well as measuring the

effects of the numerous optimizations we have developed here. In Chapter 6, we extend

5



the hybrid expansion-contraction algorithm and optimizations developed for the com-

plex case to the real stability radius and prove analogous convergence results. Finally, in

Chapter 7, we switch gears and present BFGS SQP as an efficient and robust algorithm

for nonsmooth, nonconvex optimization and propose relative minimization profiles as a

powerful visualization tool for comparing algorithms.

Remark 0.1. In this thesis, we use the following notation. The set of nonnegative real

numbers is denoted by R+, the set of strictly positive real numbers is denoted by R++,

and σ(·) is the spectrum of a matrix. In Chapters 1 through 5, ‖ · ‖ specifies the spectral

norm, while in Chapter 6, the spectral and Frobenius are specifically notated via ‖ · ‖2
and ‖ · ‖F respectively when necessary and by ‖ · ‖ when the norm can be either. In

Chapter 7, all norms are notated specifically and ‖ · ‖ is not used.

Remark 0.2. We make several notational changes from that used in [GGO13]. We

denote the perturbation matrix as ∆ instead of E to avoid confusion and allow future

notational compatibility with theE matrices used in related descriptor systems [Dai89],

which use E to represent a possibly singular matrix on the left hand side of (1.1) and

(1.2). As a consequence, the ∆ and ∆̃ matrices appearing in [GGO13] are now denoted

here as Φp and Φm. We re-appropriate ∆̃ to denote the scaled versions of the rank-1

perturbations ∆, which have D appearing in the denominator, instead of the previously

used F , to make the similarity of ∆ and ∆̃ more obvious. Also, we change the indexing

relation between perturbation ∆k and any associated eigenvalue and eigenvectors such

that λk ∈ σ(M(∆k)) with right and left eigenvectors xk and yk, which we believe

provides a clearer algorithmic presentation than the mixed indexing previously used.

Finally, following [HP05, Section 5.1], we use w and z in (1.1) and (1.2) to denote

the disturbance feedback and output respectively, in lieu of u and y, to help eliminate

6



possible confusion with the u vectors appearing in the rank-1 perturbations constructed

by the algorithms discussed in this paper and their associated eigenvectors y. However,

we continue to use x for both the state space vector in (1.1) and (1.2) as well as the

eigenvectors x that appear in the algorithms, due to lack of a satisfactory alternative.
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1
THE H∞ NORM AND SPECTRAL VALUE SETS

1.1 Linear dynamical systems with input and output

Consider the continuous-time linear dynamical system with input and output defined by

ẋ(t) = Ax(t) +Bw(t) (1.1)

z(t) = Cx(t) +Dw(t)

and the discrete-time analogue

xk+1 = Axk +Bwk (1.2)

zk = Cxk +Dwk

where A ∈ Cn,n, B ∈ Cn,p, C ∈ Cm,n, and D ∈ Cm,p and w is a disturbance feedback

depending linearly on the output z [HP05, p.538].

Before formally defining the H∞ norm for systems (1.1) and (1.2), we first consider

their related spectral value sets.

1.2 Spectral value sets

This section follows the development in [HP05, Section 5.1] and [GGO13, Section 2];

we only provide the proof for a new fundamental result (Lemma 1.15) presented here

which doesn’t appear in either of these references.

Given matrices A,B,C,D defining the linear dynamical system (1.1), consider the

8



perturbed system matrix1

M(∆) = A+B∆(I −D∆)−1C for ∆ ∈ Cp,m, (1.3)

assuming I −D∆ is invertible, and the associated transfer matrix [HP05, p.549]

G(λ) = C(λI − A)−1B +D for λ ∈ C\σ(A).

Definition 1.1. Let ε ∈ R+ such that ε‖D‖ < 1, and define the spectral value set

σε(A,B,C,D) =
⋃
{σ(M(∆)) : ∆ ∈ Cp,m, ‖∆‖ ≤ ε} .

Remark 1.2. The sets σε are called spectral value sets in [HP05, Kar03] and are also

sometimes known as structured pseudospectra. In the special case B = I , C = I ,

D = 0, the sets σε are called pseudospectra [TE05]. In contrast to the references just

mentioned, our use of the non-strict inequalities above implies that the set σε(A,B,C,D)

is compact for fixed ε.

Corollary 1.3. Let ε ∈ R+ such that ε‖D‖ < 1. Then

σε(A,B,C,D)\σ(A) ≡
⋃
{σ(M(∆)) : ∆ ∈ Cp,m, ‖∆‖ ≤ ε, rank(∆) = 1} (1.4)

≡
⋃{

λ ∈ C\σ(A) : ‖G(λ)‖ ≥ ε−1
}
.

Remark 1.4. The corollary is a restatement of [GGO13, Corollary 2.4] which is an

immediate consequence of [GGO13, Theorem 2.1 and Remark 2.2].

1To motivate this formula, write w = ∆z and observe that it then follows from (1.1) that ẋ = M(∆)x
or from (1.2) that xk+1 = M(∆)xk [HP05, p.538].
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Definition 1.5. The spectral abscissa of the matrix A is

α(A) = max{Re (λ) : λ ∈ σ(A)}

with A Hurwitz stable if α(A) < 0. For ε ∈ R+ with ε‖D‖ < 1, the spectral value set

abscissa is

αε(A,B,C,D) := max {Re (λ) : λ ∈ σε(A,B,C,D)} (1.5)

≡ max
{

Re (λ) : λ ∈ σ(A) or ‖G(λ)‖ ≥ ε−1
}
, (1.6)

with the equivalence following by Corollary 1.3 and α0(A,B,C,D) = α(A).

Definition 1.6. The spectral radius of the matrix A is

ρ(A) = max{|λ| : λ ∈ σ(A)}

with A Schur stable if ρ(A) < 1. For ε ∈ R+ with ε‖D‖ < 1, the spectral value set

radius is

ρε(A,B,C,D) := max {|λ| : λ ∈ σε(A,B,C,D)} (1.7)

≡ max
{
|λ| : λ ∈ σ(A) or ‖G(λ)‖ ≥ ε−1

}
, (1.8)

with the equivalence following by Corollary 1.3 and ρ0(A,B,C,D) = ρ(A).
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1.3 The H∞ norm

We now formally define the H∞ norm in terms of spectral value sets which states that

the H∞ norm is the reciprocal of the largest ε such that σε(A,B,C,D) is contained in

the left half-plane for the continuous-time case or is contained in the unit circle around

the origin for the discrete-time case.

Definition 1.7. The H∞ norm of the transfer matrix function G for continuous and

discrete-time systems respectively is:

‖G‖c∞ =

{
inf

ε‖D‖<1
{ε : αε(A,B,C,D) ≥ 0}

}−1
, (1.9)

‖G‖d∞ =

{
inf

ε‖D‖<1
{ε : ρε(A,B,C,D) ≥ 1}

}−1
(1.10)

where by convention ‖G‖c∞ = ‖D‖−1 if the set is empty and similarly for ‖G‖d∞.

The following lemma states an equivalent definition of the H∞ norm, which is actu-

ally the standard one:

Lemma 1.8.

‖G‖c∞ =


∞ if α(A) ≥ 0

supω∈R ‖G(iω)‖ otherwise

, (1.11)

‖G‖d∞ =


∞ if ρ(A) ≥ 1

supθ∈[0,2π] ‖G(eiθ)‖ otherwise

. (1.12)

Remark 1.9. We use ‖G‖∞ without a superscript to generically refer to the H∞ norm

for continuous or discrete-time systems.
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Remark 1.10. The reciprocal of the H∞ norm, which we denote by ε? := ‖G‖−1∞ ,

is called the complex stability radius [HP05, Section 5.3] (complex because complex

perturbations are admitted even if the data are real, and radius in the sense of the

perturbation space, not the complex plane). When B = I, C = I , and D = 0 this is

also known as the distance to instability [VL85] for the matrix A.

1.4 Locally rightmost and outermost points of spectral value sets

We now consider locally rightmost or locally outermost points of spectral value sets and

how they relate to the norm of the transfer function.

Definition 1.11. A rightmost point of a set S ⊂ C is a point where the maximal value

of the real part of the points in S is attained. A locally rightmost point of a set S ⊂ C is

a point λ which is a rightmost point of S ∩N for some neighborhood N of λ.

Definition 1.12. An outermost point of a set S ⊂ C is a point where the maximal value

of the modulus of the points in S is attained. A locally outermost point of a set S ⊂ C is

a point λ which is an outermost point of S ∩N for some neighborhood N of λ.

Remark 1.13. Since σε(A,B,C,D) is compact, its locally rightmost or locally outer-

most points, that is the local maximizers of the optimization problems in (1.5) and (1.7),

lie on its boundary. There can only be a finite number of these; otherwise, the boundary

would need to contain an infinite number of points with the same real part or modu-

lus, which can be ruled out by an argument similar to [GO11, Lemma 2.5], exploiting

[HP05, Lemma 5.3.30].

Assumption 1.14. Let ε ∈ R++ such that ε‖D‖ < 1, and let λ 6∈ σ(A) be a locally

rightmost or locally outermost point of σε(A,B,C,D). Then:

12



1. the largest singular value ε−1 of G(λ) is simple.

2. letting u and v be corresponding right and left singular vectors and setting ∆ =

εuv∗, the eigenvalue λ of M(∆) is simple.

Lemma 1.15. Under Assumption 1.14, a necessary condition for λ 6∈ σ(A) to be a local

maximizer of the optimization problem in (1.6) is

‖G(λ)‖ = ε−1 and v∗C (λI − A)−2Bu ∈ R++, (1.13)

where u and v are respectively right and left singular vectors corresponding to the

largest singular value ε−1 of G(λ).

Remark 1.16. Note that right and left singular vectors u and v in Lemma 1.15 are

reversed from standard SVD notation to maintain notational consistency with [GO11,

GGO13].

Lemma 1.17. If λ ∈ σε(A,B,C,D)\σ(A) satisfies the first-order necessary conditions

of Lemma 1.15 and Re (λ) = 0, then Im (λ) is a stationary point of ‖G(iω)‖ and fur-

thermore for λ ∈ σε(A,B,C,D)\σ(A) with Re (λ) = 0, if λ is a locally rightmost point

of σε(A,B,C,D), then Im (λ) is a local maximizer of ‖G(iω)‖.

Proof. The standard first-order necessary condition for ζ̂ ∈ R2 to be a local maximizer

of an optimization problem max{f(ζ) : g(ζ) ≤ 0, ζ ∈ R2}, when f , g are continuously

differentiable and g(ζ̂) = 0,∇g(ζ̂) 6= 0, is the existence of a Lagrange multiplier µ ≥ 0

such that ∇f(ζ̂) = µ∇g(ζ̂). Identifying λ ∈ C with ζ = [ζ1, ζ2] = [Re (λ), Im (λ)] ∈

13



R2, we equivalently write the optimization problem in (1.6) as objective and constraint

f(ζ) = ζ1,

g(ζ) =
1

ε
− ‖C((ζ1 + iζ2)I − A)−1B +D‖.

The constraint g(ζ) is differentiable with respect to ζ by Assumption 1.14 and using

standard perturbation theory for singular values [HJ90, Theorem 7.3.7], [GO11, Lemma

2.3], we thus have that∇f(ζ̂) = µ∇g(ζ̂) for (1.6) is equivalent to

 1

0

 = µ

 Re(v∗C((ζ̂1 + iζ̂2)I − A)−2Bu)

Im(v∗C((ζ̂1 + iζ̂2)I − A)−2Bu)

 , (1.14)

where u and v are respectively the right and left singular vectors corresponding to the

singular value ε−1 = ‖G(ζ̂1 + iζ̂2)‖. By Lemma 1.15, it is clear that

Im(v∗C((ζ̂1 + iζ̂2)I − A)−2Bu) = 0,

and since by assumption λ = [0, ζ̂2] must satisfy (1.14), we have that

d

dζ2
g(ζ)

∣∣∣∣
ζ=[0,ζ̂2]

= − d

dω
‖G(iω)‖

∣∣∣∣
ω=ζ̂2

= 0.

Thus, ζ̂2 = Im (λ) is a stationary point of ‖G(iω)‖.

For the second part of the Lemma, let λ ∈ σε(A,B,C,D)\σ(A) be a locally right-

most point with Re (λ) = 0 and let λI := Im (λ). Suppose λI is not a local maximizer

of ‖G(iω)‖, that is there exists δ ∈ R++ such that ‖G(iλI)‖ < ‖G(i(λI + tδ))‖ for all

t ∈ [0, 1]. By Corollary 1.3, all points i(λI + tδ) ∈ σε(A,B,C,D) and since λ = iy is

14



a locally rightmost point of σε(A,B,C,D) by assumption, for some sufficiently small

value t̂ ∈ R++ we have that the points i(λI+tδ) for 0 ≤ t < t̂must also be locally right-

most. Thus, σε(A,B,C,D) must have an infinite number of locally rightmost points,

contradicting Remark 1.13.

Remark 1.18. We note that local maximizers of ‖G(iω)‖ can be associated with either

locally rightmost or locally leftmost points of σε(A,B,C,D) that lie on the imaginary

axis. However, even if A is Hurwitz stable, it is still not clear whether σε(A,B,C,D)

can have locally leftmost points that lie on the imaginary axis. If not, then the second

part of Lemma 1.17 would become an if and only if condition with the addition of a

simple argument in the proof. However, as this property is not germane to the discussion

of the algorithms presented in this thesis, we do not explore the matter further.

Lemma 1.19. Under Assumption 1.14, a necessary condition for λ 6∈ σ(A) to be a local

maximizer of the optimization problem in (1.8) is

‖G(λ)‖ = ε−1 and λ
(
v∗C (λI − A)−2Bu

)
∈ R++, (1.15)

where u and v are respectively right and left singular vectors corresponding to the

largest singular value ε−1 of G(λ).

Lemma 1.20. If λ ∈ σε(A,B,C,D)\σ(A) satisfies the first-order necessary conditions

of Lemma 1.19 and |λ| = 1, then ∠λ is a stationary point of ‖G(eiθ)‖ and further-

more for λ ∈ σε(A,B,C,D)\σ(A) with |λ| = 1, if λ is a locally outermost point of

σε(A,B,C,D), then ∠λ is a local maximizer of ‖G(eiθ)‖.

Proof. The proof follows analogously to the proof of Lemma 1.17 except with ζ =

[ζ1, ζ2] = [|λ|,∠λ] ∈ R2.
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Remark 1.21. For any λ satisfying the assumption of either Lemma 1.17 or Lemma 1.20,

we denote ε̃? := ‖G(λ)‖−1 ≥ ε? = ‖G‖−1∞ .
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2
AN IDEALIZED LARGE-SCALE ALGORITHM FOR

APPROXIMATING THE H∞ NORM

2.1 The algorithm by Guglielmi, Gürbüzbalaban, and Overton

Consider the continuous-time case and assume that A is Hurwitz stable, so that the H∞

norm is finite. We start by observing that the spectral value set abscissa αε(A,B,C,D)

is a monotonically increasing function of ε, and we may thus compute the H∞ norm of

the transfer function (1.9) by finding the single root of the following equation:

gα(ε) := αε(A,B,C,D). (2.1)

For the discrete-time case and assuming that A is Schur stable, we similarly observe

that ρε(A,B,C,D) is also a monotonically increasing function of ε, and we may thus

correspondingly compute the H∞ norm of the transfer function (1.10) by finding the

single root of

gρ(ε) := ρε(A,B,C,D)− 1. (2.2)

For convenience, we define the function

gαρ(ε) :=


gα(ε) if (A,B,C,D) is a continuous-time system

gρ(ε) if (A,B,C,D) is a discrete-time system
(2.3)

17



and function fαρ : R 7→ R× R:

fαρ(ε) :=
(
gαρ(ε), g

′
αρ(ε)

)
. (2.4)

In order to find the root ε? of (2.3), the algorithm by Guglielmi, Gürbüzbalaban, and

Overton [GGO13], henceforth called the GGO algorithm, attempts to first bracket and

then converge to ε? using a Newton-based scheme, thus computing H∞ = ε−1? . How-

ever, since a pure Newton method may only converge slowly or even fail to converge

at all if it is not initialized sufficient close to ε? and furthermore cannot handle en-

countering points of (2.3) where its derivative is not defined, the GGO algorithm instead

employs a hybrid Newton-bisection iteration, which we’ve defined as a generic interface

as Procedure 1. By providing (2.4) as input to Procedure 1 along with proper bounds,

that is εlb < ε? < εub, convergence to ε? should be guaranteed.

Procedure 1 [x?, . . .] = newton bisection(f(·), xlb, xub)
Input:

Function f : R 7→ R×R providing g(x) and g′(x) (g(x) continuous & differentiable)
Lower and upper bounds xlb and xub

Output:
x? such that g(x?) = 0 and xlb ≤ x? ≤ xub

May return optional output arguments related to root x? and function g

Find a root of g(·) between xlb and xlb using Newton and bisection steps.

In order to provide a characterization of the derivatives of (2.1) and (2.2) necessary

to employ a Newton-based scheme for finding their roots, it will be useful to first have

the following definitions pertaining to eigenvalues and their associated left and right

eigenvectors.
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Definition 2.1. A pair of complex vectors x, y ∈ Cn is called RP(z)-compatible if ‖x‖ =

‖y‖ = 1 and y∗x is a positive real multiple of z ∈ C. When the argument z is omitted,

it is understood to be 1 and y∗x is simply real and positive.

Definition 2.2. A complex number λ and vectors x, y ∈ Cn comprise an RP(z)-

compatible eigentriple (λ, x, y) if x and y are RP(z)-compatible right and left eigen-

vectors respectively for a simple eigenvalue λ of some matrix A. When the argument z

is omitted, it is understood to be 1 so that y∗x is simply real and positive.

For some ε̂ ∈ R+ with ε̂‖D‖ < 1, consider a point λ ∈ σε̂(A,B,C,D) with corre-

sponding perturbation vectors u and v, that is λ ∈ σ(M(ε̂uv∗)). In [GGO13, Section 4],

the authors show that if λ is the globally rightmost point of σε̂(A,B,C,D) and (λ, x, y)

is an RP-compatible eigentriple or alternatively, if λ is the globally outermost point of

σε̂(A,B,C,D) and (λ, x, y) is an RP(λ)-compatible eigentriple, then respectively

g′α(ε)

∣∣∣∣
ε=ε̂

=
1

βγy∗x
and g′ρ(ε)

∣∣∣∣
ε=ε̂

=
1

βγ|y∗x|
(2.5)

where via [GGO13, Equations (3.9) and (3.12)]

β =
1− ε̂u∗D∗v
u∗B∗y

and γ =
1− ε̂v∗Du
v∗Cx

(2.6)

though we omit the full set of conditions under which these equations hold for brevity.1

Remark 2.3. Although not explicitly stated in [GGO13], if λ is only a locally rightmost

or outermost point of σε̂(A,B,C,D), then the right-hand sides of the two equations in

1Actually, in [GGO13], β appears unconjugated, but this is because it is assumed that u and v have
been normalized so that β, γ ∈ R++; see [GGO13, p.721-2]. We also note that in the proof of Theorem
3.2 and the statement of Corollary 4.2 of [GGO13], the scalings of x and y are reversed: x should be
scaled by γ or 1/γ respectively, and y by β or 1/β respectively.
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(2.5) still provide the derivatives of Re (λ′(ε)) and |λ′(ε)| respectively at ε = ε̂.

Unfortunately, like the standard BBBS algorithm for computing the H∞ norm, com-

puting either αε(A,B,C,D) or ρε(A,B,C,D) also requires a cubic order of operations

and thus the benefit of this alternative formulation of calculating the H∞ norm is not

immediately apparent. In order to scale to large-dimensional problems, the GGO algo-

rithm makes use of a subroutine called SVSAR (Spectral Value Set Abscissa or Radius)

with desirable scaling properties that instead approximates (2.4) by generalizing a recent

method of [GO11] for approximating the pseudospectral abscissa and radius of a matrix.

The benefit is that the GGO algorithm can forgo any need to directly work with the norm

of the transfer function, which involves the expensive calculation of (λkI − A)−1B at

any iterate λk, and instead only requires the computation of a rightmost (or outermost)

eigenvalue of M(∆k) for a sequence of matrices {∆k} for which sparse eigenvalue

solvers based on matrix-vector products such as [LS96] may be used.

As the subroutine SVSAR only provides approximations to the spectral value set

abscissa and radius, the GGO algorithm cannot guarantee that Procedure 1 will converge

to ε?. Yet in practice, SVSAR does in fact often return the true values of αε(A,B,C,D)

and ρε(A,B,C,D) or at least values close to them, and hence a hybrid Newton-bisection

outer iteration seems to be an effective strategy to approximating ε?. However, as we

will describe in Section 2.3, the GGO method can sometimes critically break down.

2.2 Approximating the spectral value set abscissa and radius

We now describe the fast subroutine SVSAR developed and used by the GGO algorithm

in detail, both because our improved algorithm will also make use of SVSAR, along

with some of its components, but also to take the opportunity to present a corrected

20



version of one of these SVSAR components that addresses a small corner-case bug in

the original description in [GGO13]. We will generally refer to the abscissa case but

will make notes of the necessary changes to adapt the method to instead approximate

the spectral value set radius.

Remark 2.4. By (1.4), σε(A,B,C,D)\σ(A) may be characterized solely by rank-1

perturbations and thus for ∆ = εuv∗, by [GGO13, Lemma 2.8]

M(∆) ≡ A+B∆̃C where ∆̃ =
εuv∗

1− εv∗Du,

and ε ∈ R++ with ε‖D‖ < 1 and vectors u ∈ Cp, v ∈ Cm are normalized such that

‖u‖ = ‖v‖ = 1.

For some fixed value ε ∈ R++ and vectors uk−1 ∈ Cp and vk−1 ∈ Cm of unit

norm, consider the matrix ∆k−1 = εuk−1v
∗
k−1 and the corresponding rank-1 structured

perturbation of A

M(∆k−1) = A+B∆̃k−1C where ∆̃k−1 =
εuk−1v

∗
k−1

1− εv∗k−1Duk−1
.

The core of the SVSAR procedure is how to choose the next rank-1 matrix ∆k such

that a chosen eigenvalue λk−1 ∈ σ(M(∆k−1)), say the rightmost (or outermost), may

be “pushed” farther rightward (or outward) to some λk ∈ σε(A,B,C,D). To that end,

we consider the matrix-valued linear function

K(t) = A+B∆̃k−1C + tB
(

∆̃k − ∆̃k−1

)
C

with t ∈ R, noting thatK(0) = A+B∆̃k−1C andK(1) = A+B∆̃kC. Let (λk−1, xk−1,
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yk−1) be an RP-compatible eigentriple of K(0) = A + B∆̃k−1C and define λk−1(t) to

be the eigenvalue of K(t) that converges to λk−1 as t → 0. Using standard first-order

perturbation theory for eigenvalues [HJ90, Theorem 6.3.12], [GO11, Lemma 2.1], we

have

λ′k−1(0) :=
dλk−1(t)

dt

∣∣∣∣
t=0

=
y∗k−1B

(
∆̃k − ∆̃k−1

)
Cxk−1

y∗k−1xk−1

= ε
y∗k−1B

(
ukv
∗
k

1−εv∗kDuk

)
Cxk−1

y∗k−1xk−1
− ε

y∗k−1B
(

uk−1v
∗
k−1

1−εv∗k−1Duk−1

)
Cxk−1

y∗k−1xk−1
. (2.7)

If (A,B,C,D) is a continuous-time system, then it will be desirable to choose vectors

uk and vk such that Re (λ′k−1(0)) is maximized to ensure that the next perturbation ∆k

moves λk−1 towards the right to some λk. Noting that the second term on the right-hand

side of (2.7) is fixed and y∗k−1xk−1 > 0 by RP-compatibility, the next uk and vk are

chosen by explicitly solving the following optimization problem:

max
uk∈Cp,‖uk‖=1
vk∈Cm,‖vk‖=1

Re

(
y∗k−1B

(
ukv

∗
k

1− εv∗kDuk

)
Cxk−1

)
. (2.8)

In the special case whenD = 0, it is clear that the maximal solution is attained by setting

uk := B∗yk−1/‖B∗yk−1‖ and vk := C∗xk−1/‖C∗xk−1‖. For the explicit solutions for the

D 6= 0 case as well as the discrete-time analogue where we wish to maximize |λ′k−1(0)|,
we refer to the pseudocode in Procedure 2 and [GGO13] for justification. However, just

choosing uk and vk such that Re (λ′k−1(0)) > 0 is not sufficient to guarantee that the

Re (λk) > Re (λk−1).
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Instead, consider the continuous matrix family

N(t) = A+B∆̃(t)C where ∆̃(t) =
εu(t)v(t)∗

1− εv(t)∗Du(t)
(2.9)

with

u(t) =
tuk + (1− t)uk−1
‖tuk + (1− t)uk−1‖

and v(t) =
tvk + (1− t)vk−1
‖tvk + (1− t)vk−1‖

, (2.10)

where uk and uk−1 defining u(t) are fixed and vk and vk−1 defining v(t) are fixed. In the

case that Re (λk) < Re (λk−1), where λk is a rightmost eigenvalue of N(1) ≡ K(1),

and λk−1 is a rightmost eigenvalue of N(0) ≡ K(0), we can instead choose t ∈ (0, 1)

such that the rightmost eigenvalue of N(t) has real part greater than Re (λk−1). Now

let λk−1(t) denote the eigenvalue of N(t) converging to λk−1 as t → 0. Again from

standard eigenvalue perturbation theory we have

λ′k−1(0) :=
dλk−1(t)

dt

∣∣∣∣
t=0

=
y∗k−1N

′(0)xk−1

y∗k−1xk−1
=

ψk
y∗k−1xk−1

(2.11)

We refer to [GGO13] for an elaboration on the derivation of ψk, and instead present an

equivalent more compact formulation:

ψk =
εy∗k−1B

1− εv∗k−1Duk−1

(
(v∗k−1Cxk−1)(uk − ηuk−1) + (v∗kCxk−1)uk−1

)
(2.12)

+
ε2(y∗k−1Buk−1)(v

∗
k−1Cxk−1)

(1− εv∗k−1Duk−1)2
(
v∗k−1D(uk − ηuk−1) + v∗kDuk−1

)
,

where η = Re (u∗kuk−1) + Re (v∗kvk−1). Again recalling that y∗k−1xk−1 > 0 by RP-

compatibility, we see by (2.11) that Re (λ′k−1(0)) > 0 if and only if ψk > 0. Thus,
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if Re (ψk) < 0, we may simply change the signs of both uk and vk to ensure that

Re (ψk) > 0 instead holds.

Procedure 2 [uk, vk] = compute next uv(ε, uk−1, vk−1, λk−1, xk−1, yk−1)
Input:

Perturbation level ε ∈ R++, ε‖D‖ < 1
Vectors uk−1 ∈ Cp and vk−1 ∈ Cm defining ∆k−1 with ‖uk−1‖ = ‖vk−1‖ = 1

RP-compatible eigentriple (λk−1, xk−1, yk−1) of A+B∆̃k−1C
Constants: Matrices B ∈ Cn,p, C ∈ Cm,p, and D ∈ Cp,m

Output:
Vectors uk, vk such that Re(λ′k−1(0)) > 0 and ‖uk‖ = ‖vk‖ = 1

Solve b = (I − ε2D∗D)−1B∗yk−1 and c = (I − ε2DD∗)−1Cxk−1
Set ρ =

√
‖b‖2−‖εDb‖2
‖c‖2−‖εD∗c‖2 and subsequently β = 1

‖b+ρεD∗c‖
Set uk = β (b+ ρεD∗c) and vk = β (ρc+ εDb)
Set ψk as in (2.12)
if Re (ψk) < 0 then

Set uk = −uk and vk = −vk
end if

NOTE: For the discrete-time case, Procedure 2, compute next uv(·), will compute vectors uk, vk such

that |λ′k−1(0)| > 0 if it is provided with an input eigentriple that is RP(λ)-compatible rather than just

RP-compatible. See [GGO13] for more details.

Having computed uk and vk via Procedure 2, if Re (λk) < Re (λk−1), Procedure 3

can be used to perform a backtracking line search on t to find an intermediate perturba-

tion ∆̃(t) that produces an eigenvalue λk such that Re (λk) > Re (λk−1). We present

Procedure 3 in detail because it contains a necessary modification to the simple line

search originally stated in [GGO13], which was not entirely correct. The issue is that

the GGO algorithm assumes that it is highly unlikely that neither

tuk + (1− t)uk−1 nor tvk + (1− t)vk−1 (2.13)
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will pass directly through the origin and thus (2.10) should both be well-defined. Ironi-

cally, as the GGO algorithm also assumes that p,m� n, the odds are greatly increased

that one or both of (2.13) might pass through the origin and certainly this will occur if

for example p = 1 and uk = −uk−1, which is exactly what has been observed in practice

on occasion.

Procedure 3 [ut, vt, λt, xt, yt] = uv line search(ε, uk, vk, uk−1, vk−1, λk−1)
Input:

Perturbation level ε ∈ R++, ε‖D‖ < 1
Vectors uk, uk−1 ∈ Cp and vk, vk−1 ∈ Cm defining ∆k and ∆k−1 such that:

‖uk‖ = ‖vk‖ = ‖uk−1‖ = ‖vk−1‖ = 1 and
ψk of (2.12) is positive.

λk−1 is a rightmost computed eigenvalue of A+B∆̃k−1C
Constants: Matrices B ∈ Cn,p, C ∈ Cm,p, and D ∈ Cp,m and fixed δ, 0 < δ � 1

Output:
Vectors ut, vt defining perturbation ∆t with ‖ut‖ = ‖vt‖ = 1

RP-compatible eigentriple (λt, xt, yt) of A+B∆̃tC such that Re (λt) > Re (λk−1)

Set t = 1
repeat

Set t = 1
2
t

Set ut = tuk + (1− t)uk−1 and vt = tvk + (1− t) vk−1
while ut = 0 or vt = 0 do

Set t = (1− δ) t
Set ut = tuk + (1− t)uk−1 and vt = tvk + (1− t) vk−1

end while
ut = ut

‖ut‖ and vt = vt
‖vt‖

∆̃t =
εutv∗t

1−εv∗tDut

Compute rightmost RP-compatible eigentriple (λt, xt, yt) of A+B∆̃tC
until Re (λt) > Re (λk−1)

NOTE: For the discrete-time case, Procedure 3, uv line search(·), can compute ut and vt by

changing occurrences of “rightmost” to “outermost”, “RP-compatible” to “RP(λt)-compatible” and

Re (λt) > Re (λk−1) to |λt| > |λk−1|.
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The SVSAR method for approximating the spectral value set abscissa or radius, as

described in pseudocode in Procedure 4, simply repeatedly calls Procedure 2 with the

current uk−1 and vk−1 perturbation vectors to produce the next uk and vk along with its

resulting rightmost eigenvalue λk of A+B∆̃kC, and only performs a line search using

Procedure 3 if Re (λk) ≤ Re (λk−1), which we note is usually not necessary. Thus,

the SVSAR process continually pushes an eigenvalue rightward until it has hopefully

reached a globally rightmost point of σε(A,B,C,D).

However, SVSAR is not guaranteed to converge to a globally rightmost point of

σε(A,B,C,D) and in fact, it is only known to converge to locally rightmost points

if ε is sufficiently small. In practice though and for any valid value of ε, we observe

that SVSAR does often converge to a globally rightmost point of σε(A,B,C,D), and

in the cases it does not, it typically finds locally rightmost points which provide good

approximations to the globally optimal value. If SVSAR does not converge to a locally

rightmost point, then we observe that it is often that case that it instead converges to

a point λ satisfying the first-order necessary conditions of Lemma 1.15, provided that

‖G(λ)‖ = ε−1. Unfortunately, even though ε−1 is guaranteed to be a singular value of

G(λ) by [GGO13, Theorem 3.2], it is not necessarily the largest singular value and it

is possible that SVSAR may terminate at a point λ strictly in the interior of the given

spectral value set.

Assumption 2.5. We assume that SVSAR at least always converges to a point λ satis-

fying the first-order necessary conditions of Lemma 1.15 or Lemma 1.19 corresponding

to whether the spectral value set abscissa or radius is requested, respectively.

Remark 2.6. A justification of Assumption 2.5 is in order. The authors of [GGO13]

conjecture that the only attractive fixed points for SVSAR correspond to points λ that
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Procedure 4 [uk, vk, λk, xk, yk] = svsar(ε, u0, v0, λ0, x0, y0, kmax)
Input:

Perturbation level ε ∈ R++, ε‖D‖ < 1
Vectors u0 ∈ Cp and v0 ∈ Cm defining ∆0 = εu0v

∗
0 with ‖u0‖ = ‖v0‖ = 1

RP-compatible eigentriple (λ0, x0, y0) of A+B∆̃0C
Positive integer kmax specifying max number of iterations
Constants: Matrices A ∈ Cn,n, B ∈ Cn,p, C ∈ Cm,p, and D ∈ Cp,m

Output:
Vectors uk, vk defining perturbation ∆k with ‖uk‖ = ‖vk‖ = 1

RP-compatible eigentriple (λk, xk, yk) of A+B∆̃kC with λk satisfying Lemma 1.15
// Typically λk will be a locally or globally rightmost point of σε(A,B,C,D)

for k = 1, 2, . . . until Re (λk) ≤ Re (λk−1) or k > kmax do
[uk, vk] = compute next uv(ε, uk−1, vk−1, λk−1, xk−1, yk−1)
∆̃k =

εukv
∗
k

1−εv∗kDuk

Compute rightmost RP-compatible eigentriple (λk, xk, yk) of A+B∆̃kC
if Re (λk) ≤ Re (λk−1) then

[uk, vk, λk, xk, yk] = uv line search(ε, uk, vk, uk−1, vk−1, λk−1)
end if

end for

NOTE: For the discrete-time case, Procedure 4, svsar(·), can instead approximate approximate the spec-

tral value set radius by changing all occurrences of “RP-compatible” to “RP(λk)-compatible”, “locally

rightmost” to “locally outermost”, “Lemma 1.15” to “Lemma 1.19”, “Compute rightmost” to “Com-

pute outermost”, Re (λk) ≤ Re (λk−1) to |λk| ≤ |λk−1|, and making the corresponding changes to

uv line search(·) as outlined in the note for Procedure 3.

are locally rightmost or outermost points of σε(A,B,C,D). Consider the case that

SVSAR does not converge as intended, that is, it halts at some λk such that ε−1 is not the

largest singular value of G(λk) and thus λk is strictly in the interior of σε(A,B,C,D).

It thus seems reasonable that SVSAR can be restarted by perturbing the final ∆k matrix

with the hope of pushing rightward or outward past the undesired interior fixed point

encountered at λk. In practice, we have noted this is a viable strategy and furthermore,
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has been effective for restarting SVSAR even if it converges to a point on the boundary

of the spectral value set that satisfies the first-order necessary conditions of Lemma 1.15

or Lemma 1.19 but is not actually a locally rightmost or outermost point. Note however

that Assumption 2.5 does not make the stronger claim that SVSAR converges to a locally

rightmost or outermost point.

2.3 The breakdown case of the GGO algorithm

We have previously mentioned in Section 2.2 that SVSAR may not necessarily converge

to a locally rightmost or outermost point λ ∈ σε(A,B,C,D). In these cases, we should

not expect SVSAR to provide a fair approximation to the spectral value set abscissa or

radius and thus, it is likely that any hybrid Newton-bisection iteration will either fail

or converge to an inaccurate approximation of the H∞ norm. However, even under the

stronger assumption that SVSAR always guarantees convergence to either locally right-

most or outermost points of σε(A,B,C,D), the GGO algorithm can still sometimes

critically break down. Though the circumstances leading to breakdown are briefly dis-

cussed in [GGO13], we describe the problem in significantly more detail here as it was

in fact myself who discovered and analyzed the breakdown case [GGO13, Acknowl-

edgements] and it has motivated the development of our new improved method.

Let us first examine the problematic breakdown cases of examples CM3 and CM4

reported in [GGO13] where notably only bisection steps were taken and every Newton

step was rejected. In Figure 2.1, we plot ‖G(iω)‖ and the approximations produced by

the GGO algorithm. Under the assumption that SVSAR always converges to locally

rightmost points when the abscissa is requested, one would hope that the GGO algo-

rithm would return local, possibly global, maximizers of the norm of the transfer func-
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FIGURE 2.1: Left: example CM3. Right: example CM4. Each panel plots the norm of the transfer function

evaluated along the imaginary axis in blue with the resulting approximations (ω̃, ε̃) returned by the GGO

algorithm as red crosses. In CM3, the GGO algorithm appears to have returned an accurate value of ω̃ to

be a maximizer of ‖G(iω)‖ but its computed value of ε̃ is inaccurate as (ω̃, ε̃−1) does not lie on the graph

of ‖G(iω)‖. In CM4, this situation is worse as it can clearly be seen that neither ω̃ or ε̃ are accurate.

tion evaluated along the imaginary axis. Here, we see that the approximations returned

by GGO do not even lie on the graphs of the functions and while the approximation for

CM3 seems to at least accurately approximate the vicinity of a local maximizer, even

though it underestimates its function value, the approximation for CM4 seems partic-

ularly egregious as it clearly neither locates a maximizer nor approximates a maximal

function value well.

As the spectral value sets of CM3 and CM4 have quite needle-like shapes that make

visualization difficult and the boundaries are expensive to compute, we present an anal-

ogous synthetic example in Figure 2.2 where it is easier to see how the GGO algorithm

breaks down, even when SVSAR always finds locally rightmost points. In the top left

panel, for ε1 = 0.08 we see that SVSAR initially finds a locally rightmost point λ1 in

the left half-plane and accordingly, its lower bound εlb is updated to 0.08. Recalling

the definition of ε? := ‖G‖−1∞ from Remark 1.10, it can clearly be seen that ε? < 0.08.

Yet, it appears that εlb is still a valid lower bound for some locally rightmost point of
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αε̃?(A,B,C,D), with ε̃? > ε1, on the imaginary axis immediately to the right of the

current iterate λ1. In the top-right panel however, with ε2 = 0.1, we see that the struc-

ture of the boundary of the larger spectral value set has only two locally rightmost points

instead of three as before and that the locally rightmost point λ2 found by SVSAR is in

quite a different region than λ1. Nonetheless, since λ2 is in the right half-plane, SVSAR

updates its upper bound εub to 0.1 and subsequently attempts a smaller value of ε than

0.1. However, what we observe in the bottom-left panel is that the Newton step εN which

approximates ε? is now rejected since εN ≈ ε? < εlb = 0.08. As a result, the hybrid

Newton-bisection outer iteration is forced to take a bisection step with ε3 = 0.09. As we

see in the bottom-right panel, this slow march of bisection steps towards ε1 = 0.08 con-

tinues on every subsequent iteration until the termination tolerance is reached at a locally

rightmost point strictly in the right half-plane, thus demonstrating the breakdown.

To make the discussion more concrete, for a fixed value of ε ∈ R++, ε‖D‖ < 1,

consider the set

Λr
ε(A,B,C,D) := {λ : λ a locally rightmost point of σε(A,B,C,D)}.

By continuity, for λ ∈ Λr
ε(A,B,C,D), at least generically, we can construct a contin-

uous path λr(t) consisting only of locally rightmost points of σt(A,B,C,D) for t ∈
(ε − δ, ε + δ) for some sufficiently small value of δ ∈ R++ and where λr(ε) = λ.

Let λ1 be the upper rightmost point in Λr
ε1

(A,B,C,D) shown in the top left panel of

Figure 2.2, and let λ2 be the upper rightmost point in Λr
ε2

(A,B,C,D) shown in the top
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FIGURE 2.2: Progression of breakdown of the GGO algorithm on a synthetic example. Iterates of

SVSAR are in orange-red, spectral value set boundaries are in blue-green, and eigenvalues of A are

black dots. Top left: GGO finds a locally rightmost point λ1 in left half-plane for ε1 = 0.08 and sets

εlb = 0.08. Top right: GGO attempts ε2 = 0.1 and finds new locally rightmost point λ2 in right half-

plane and sets εub = 0.1. Bottom left: GGO rejects leftwards Newton step εN towards imaginary axis,

since εN < εlb, and instead via bisection step, finds a locally rightmost point λ3 in right half-plane and

updates εub = 0.09. Bottom right: GGO continually rejects leftward Newton steps εNk towards the imag-

inary axis, since εNk < εlb and erroneously Re (λk) → γ > 0 and εk → 0.08 as k → ∞, with slow

convergence due to only bisection steps being taken, though we only depict two bisection steps and the

last step for clarity. The value for εk and the number of SVSAR steps to find a locally rightmost for that

level are listed in the bottom-corner of each panel.
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right panel, and consider their respective continuous paths of locally rightmost points

λr1(t) where t ∈ (ε1 − δ1, ε1 + δ1) and λr1(ε1) = λ1

λr2(t) where t ∈ (ε2 − δ2, ε2 + δ2) and λr2(ε2) = λ2,

for some fixed values {δ1, δ2} ⊂ R++. From the plots in Figure 2.2, we see that λr1(t)

does not extend to t = 0.1 while presumably λr2(t) extends leftward to cross the imag-

inary axis. The breakdown arises because εlb corresponds to a lower bound for which

λr1(t) crosses the imaginary axis but all subsequent computed upper bounds actually

correspond to upper bounds on where λr2(t) crosses the imaginary axis.

In [GGO13], the authors state that the breakdown results from what they call an “in-

valid update to the lower bound” but we note that this is a bit of a misnomer. Actually,

SVSAR is providing valid bounds on where specific paths of locally rightmost points,

such as λr1(t) and λr2(t), might cross the imaginary axis. While bounds for such paths

may be a good proxy for approximating (2.1), SVSAR neither gives concrete indication

of which path it has bounded nor guarantees any consistency that it will bound the same

path as εk changes. If circumstances are fortunate, then at some point, all remaining

lower and upper bound updates computed in the GGO algorithm will correspond to one

particular path of locally rightmost points that crosses the imaginary axis and the method

will thus converge to a local maximizer of ‖G(iω)‖. If circumstances are not so fortu-

nate, as in CM3 and CM4, the lower and upper bound updates may at some point fail to

correspond to the same path, potentially preventing the GGO algorithm from converging

to a locally rightmost point on the imaginary axis. Thus, the breakdown is more aptly

described as a lower and upper bound mismatch error and we say that bound mismatch

error is fatal if it ultimately prevents convergence to the imaginary axis.
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Remark 2.7. Though in the examples presented here the breakdown has occurred by

converging to a point in the right half-plane, we see no reason why the GGO algorithm

cannot also break down by converging to a point in the left half-plane.

Remark 2.8. Note that while we have only specifically discussed bound mismatch errors

for the continuous-time case, the discrete-time version of the GGO algorithm is similarly

susceptible to such breakdowns in an analogous manner where a fatal bound mismatch

error may induce the GGO algorithm to converge to a point strictly outside or inside the

unit circle.

The authors of [GGO13] suggest that the GGO algorithm might overcome a bound

mismatch error by reconsidering a lower or upper bound, since breakdown is easily

detected once the sequence of computed locally rightmost points converges to a point

strictly in the left or right half-plane to some prescribed termination tolerance. However,

there are a number of potential problems with this approach. The first of these is the

aforementioned issue that under breakdown, the outer iteration of the GGO algorithm is

essentially downgraded to a pure bisection method, and thus incurring slow convergence

to detect breakdown is a doubly unappealing proposition. Unfortunately, it is not clear

how to provide reliable early detection that a bound mismatch error has occurred and

it is even less clear how to predict if such a bound mismatch error will be fatal or not.

A heuristic approach might keep a history of the past few iterations, recording both the

direction of the Newton steps and whether they were accepted. A consecutive run of

rejected Newton steps all in the same direction could indicate and provide early warning

that a potentially fatal bound mismatch error has occurred, allowing the algorithm to

override the bisection step in favor of the Newton step, despite that it will move the next

value of εk outside the current lower and upper bound bracket. Yet, even if this ad hoc
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procedure successfully prevents the bound mismatch error from being fatal, there is no

guarantee the algorithm won’t subsequently encounter another mismatch error. Worse

still, if the lower and upper bounds are allowed to be rolled back, it seems conceivable

that such an algorithm might be able to enter infinite loops.

A different approach for preventing fatal bound mismatch errors in the GGO algo-

rithm is to instead attempt to coax the SVSAR subroutine to only return lower and up-

per bounds for a single path of locally rightmost points that crosses the imaginary axis.

However, as we have seen from Figure 2.2, taming the unpredictable nature of where

SVSAR might converge seems to hinge upon only making small changes to εk, which

is squarely at odds with an algorithm that is designed to be fast by using Newton steps.

Furthermore, one might assume that warm-starting SVSAR with the last perturbation

computed for εk−1 might help ensure SVSAR converges to a point on the same path of

locally rightmost points for εk but, ironically for the synthetic example demonstrating

breakdown, the induced consistency provided by warm-starting prevented SVSAR from

possibly rediscovering the first path λr1(t). If SVSAR is cold-started from the rightmost

eigenvalue of A for every εk, then breakdown does not occur on the synthetic example.

However, this is clearly not a solution and comes at a great increase in computational

cost. Lastly, as the GGO algorithm must first attempt to bracket ε? by lower and upper

bounds to then be able to apply the Newton-bisection outer iteration, these initial and

often quite large steps of the algorithm with respect to εk may return bounds for many

different paths of locally rightmost points and thus a fatal bound mismatch error may be

seeded at the outset of the algorithm.
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3
A FAST AND BREAKDOWN-FREE ALGORITHM

FOR APPROXIMATING THE H∞ NORM

We now present our new H∞ norm approximation algorithm that sheds the Newton-

bisection outer iteration of the GGO algorithm and replaces it with a novel hybrid

expansion-contraction scheme. Under the same assumptions as the GGO algorithm,

we provably demonstrate that hybrid expansion-contraction converges to a stationary

point of the norm of the transfer function evaluated along the imaginary axis or unit

circle without incurring breakdown, and furthermore, converges to a local maximizer

if the subroutine SVSAR finds locally rightmost or outermost points of spectral value

sets. We also prove that in the worst case, our algorithm converges at least superlinearly,

while in practice, the observed convergence rate is often quadratic or faster.

3.1 Hybrid expansion-contraction: a breakdown-free algorithm

Key Observation 3.1. Lower bounds on ε? reported by Procedure 4 cannot be trusted

to be accurate, that is, they may only be valid locally, for some ε̃? > ε? corresponding

to where some continuous path of locally rightmost points of spectral value sets crosses

the imaginary axis. However, upper bounds reported by Procedure 4 always bound ε?.

Thus, our new approach to finding a local optimizer of the norm of the transfer

function using SVSAR is to forgo the use of any approximations to lower bounds on

ε?, since they may be unreliable, and to instead focus on monotonically reducing some

initial given upper bound εub > ε? as much as possible, hopefully to ε?.
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Now consider the matrix family with respect to the single parameter ε for a fixed

rank-1 perturbation uv∗:

Muv(ε) := A+B∆̃uv(ε)C where ∆̃uv(ε) :=
εuv∗

1− εv∗Du (3.1)

with ε ∈ R+, ε‖D‖ < 1 along with a corresponding eigenvalue λuv(ε) of Muv(ε).

Key Observation 3.2. Let ε ∈ R++, ε‖D‖ < 1, and fixed non-zero vectors u ∈ Cp,

v ∈ Cm be given. If Re (λuv(ε)) > 0 and Muv(0) = A is Hurwitz stable, then by

continuity of λuv(·) there exists ε̂ such that 0 < ε̂ < ε and Re (λuv(ε̂)) = 0. Similarly,

if |λuv(ε)| > 1 and Muv(0) is Schur stable, then there exists ε̂ such that 0 < ε̂ < ε and

|λuv(ε̂)| = 1.

Thus, given ε, u and v which demonstrate that ε > ε?, that is matrix Muv(ε) has at

least one eigenvalue λuv(ε) such that Re (λuv(ε)) > 0 or |λuv(ε)| > 1 respectively, by

Key Observation 3.2, it is clear that we may always contract ε to ε̂ such that ε? < ε̂ < ε

by finding a root of the function

gcuv(ε) := Re (λuv(ε)) or gduv(ε) := |λuv(ε)| − 1. (3.2)

For convenience, we define

guv(ε) :=


gcuv(ε) if (A,B,C,D) is a continuous-time system

gduv(ε) if (A,B,C,D) is a discrete-time system
(3.3)

so that λuv(ε) is on the boundary of the stability region if and only if guv(ε) = 0 for

either the continuous or discrete-time cases depending on the context. Unlike the hybrid
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Newton-bisection outer iteration in GGO where the lower bounds cannot be trusted, we

have a priori true lower and upper bounds of 0 and ε for finding a root of (3.3) using a

hybrid Newton-bisection routine. Furthermore, though the derivative of (3.3) may have

points where it is nonsmooth, we typically find in practice that either this is not the case

or we do not encounter them during the iteration. It is possible that Muv(·) may have

several eigenvalues in the right half-plane, or outside the unit circle for the discrete-time

case, and thus (3.3) may correspondingly have several roots, but we note this is not

problematic. However, we have yet to observe a case where (3.3) has more than a single

root of multiplicity one (or a single conjugate pair in the real case).

Assumption 3.3. For any matrix A, a sparse eigenvalue solver always returns at least

one eigenvalue λ ∈ σ(A) such that Re (λ) = α(A) or |λ| = ρ(A), depending on

whether largest real part or largest modulus is requested, respectively.

Remark 3.4. It is important to note that Assumption 3.3 is implicitly assumed in

[GGO13] in order for their algorithm to work as well, so it is not an additional as-

sumption we are making here.

Key Observation 3.5. Let ε ∈ R++, ε‖D‖ < 1 and fixed non-zero vectors u ∈ Cp,

v ∈ Cm be given. Under Assumption 3.3, if α(Muv(ε)) > 0 and Muv(0) = A is Hurwitz

stable, then a Newton-bisection method will converge to some positive ε̂ < ε such that

α(Muv(ε̂)) = 0. Similarly, if ρ(Muv(ε)) > 1 andMuv(0) is Schur stable, then a Newton-

bisection method will converge to some positive ε̂ < ε such that ρ(Muv(ε̂)) = 1.

To obtain the derivatives of (3.2) with respect to ε for calculating the Newton step,

we first find the derivative of the matrix family of (3.1) with respect to ε by the quotient
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rule:

M ′
uv(ε) = B

(uv∗(1− εv∗Du) + εuv∗(v∗Du)

(1− εv∗Du)2

)
C =

Buv∗C

(1− εv∗Du)2
. (3.4)

For an RP-compatible eigentriple (λuv(ε), xuv(ε), yuv(ε)) of (3.1), again by standard

first-order perturbation theory of simple eigenvalues [HJ90, Theorem 6.3.12], [GO11,

Lemma 2.1], we have that

λ′uv(ε) =
yuv(ε)

∗M ′
uv(ε)xuv(ε)

yuv(ε)∗xuv(ε)
, (3.5)

and the derivatives with respect to ε of (3.2) for the continuous and discrete-time cases

are:

g′cuv(ε) = Re (λ′uv(ε)) and g′duv(ε) = Re

(
λuv(ε)λ

′
uv(ε)

|λuv(ε)|

)
. (3.6)

We note that if (λuv(ε), xuv(ε), yuv(ε)) is instead an RP(λuv(ε))-compatible eigentriple,

then we may reformulate the discrete-time derivative in (3.6) as

g′duv(ε) = Re

(
yuv(ε)

∗M ′
uv(ε)xuv(ε)

|yuv(ε)∗xuv(ε)|

)
. (3.7)

We may thus find a root of (3.3) by providing the function fuv : R 7→ R×R defined by

fuv(ε) := (guv(ε), g
′
uv(ε)) (3.8)

as an input to Procedure 1 along with lower bound 0 and upper bound ε.

Remark 3.6. In fact, at a locally rightmost or outermost point λ of a spectral value

set, the derivatives specified in (3.6) are equivalent to the derivatives specified on the
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right-hand sides of (2.5) which we state formally as Lemma 3.7.

Lemma 3.7. Let ε̂ ∈ R++, ε̂‖D‖ < 1 and a point λuv ∈ σε̂(A,B,C,D) with corre-

sponding perturbation vectors u and v, that is λuv ∈ σ(Muv(ε̂)), with corresponding

right and left eigenvectors x and y be given. If λuv is a locally rightmost point of

σε̂(A,B,C,D) and (λuv, x, y) is an RP-compatible eigentriple or alternatively, if λuv

is a locally outermost point of σε̂(A,B,C,D) and (λuv, x, y) is an RP(λuv)-compatible

eigentriple, then respectively

g′cuv(ε)

∣∣∣∣
ε=ε̂

=
1

βγy∗x
and g′duv(ε)

∣∣∣∣
ε=ε̂

=
1

βγ|y∗x|
(3.9)

where β and γ are as defined in (2.6).

Proof. Using (3.4) and (3.5) and then substituting in (2.6), we see that

λ′uv(ε)

∣∣∣∣
ε=ε̂

=
(y∗Bu)

(1− ε̂v∗Du)

(v∗Cx)

(1− ε̂v∗Du)

1

y∗x
=

1

βγy∗x
.

We note that βγ = µ−1 ∈ R++ where µ is given in [GGO13, Equation (3.8)], and thus,

in the locally rightmost case where the eigenvectors are RP-compatible, we have that

g′cuv(ε̂) = Re (λ′uv(ε̂)) = λ′uv(ε̂).

In the locally outermost case, where the eigenvectors are RP(λuv)-compatible, using

(3.7) we see that

g′duv(ε̂) = Re

(
1

βγ|y∗x|

)
=

1

βγ|y∗x|
.

Remark 3.8. As a consequence of Lemma 3.7, we see that at a locally rightmost or
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outermost point λuv of a spectral value set with corresponding perturbation vectors u

and v, that taking the real part of either derivative in (3.6) respectively is superfluous

but only when λuv is locally rightmost or outermost.

Remark 3.9. It is worth stressing that the equivalences in Lemma 3.7 are only applica-

ble at a point λuv ∈ σε̂(A,B,C,D) that is either truly locally rightmost (or outermost).

Since Procedure 4 won’t typically converge exactly to λuv, the derivative computed by

the GGO algorithm may suffer some loss of precision with respect to the true value.

On the other hand, the derivatives (3.6) used in hybrid expansion-contraction are valid

at any λuv ∈ σε̂(A,B,C,D) such that (λuv, x, y) is an RP-compatible eigentriple of

Muv(ε̂) for some nonzero perturbation vectors u and v.

Given a perturbation defined by ε and vectors u and v such that (3.3) is nonnegative,

indicating ε ≥ ε?, hybrid expansion-contraction is the alternating process of moving the

eigenvalue λuv(ε) back to the boundary of the stability region (if it’s not there already)

by contracting ε to ε̂ while keeping the perturbation vectors u and v fixed and then sub-

sequently pushing eigenvalue λuv(ε̂) away from the boundary again, either rightward or

outward from the origin, by now instead keeping ε̂ fixed and only modifying the pertur-

bation vectors u and v via the SVSAR iteration, as shown in pseudocode Procedure 5.

The algorithm repeats this expansion-contraction process in a loop until SVSAR can no

longer find a new perturbation that moves λuv(ε̂) outward from the stability boundary,

thus signaling that a stationary point of the norm of the transfer function has been found,

provided that SVSAR has returned a point satisfying the first-order necessary conditions

of Lemma 1.15 or Lemma 1.19.

Theorem 3.10. Given an initial perturbation ∆ = ε0uv
∗ with ε0 ∈ R++, ε0‖D‖ < 1

and vectors u ∈ Cp and v ∈ Cm such that ‖u‖ = ‖v‖ = 1, if Assumption 3.3 holds,
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Procedure 5 [λk, εk] = hybrid expansion contraction(ε0, u0, v0, λ0, x0, y0, ksvsar)
Input:

Initial perturbation level ε0 ∈ R++, ε0‖D‖ < 1
Vectors u := u0 ∈ Cp and v := v0 ∈ Cm defining ∆ = ε0uv

∗ with ‖u‖ = ‖v‖ = 1

RP-compatible eigentriple (λ0, x0, y0) of A+B∆̃uv(ε0)C such that Re(λ0) ≥ 0
Positive integer ksvsar specifying max number of iterations for svsar(·) subroutine
Constants: Matrices A ∈ Cn,n, B ∈ Cn,p, C ∈ Cm,p, and D ∈ Cp,m

Output:
Eigenvalue λk of A+B∆̃uv(εk)C s.t. Im (λk) is a stationary point of ‖G(iω)‖
εk ≤ ε0 such that ‖G(i Im (λk))‖ = ε−1k

for k = 0, 1, 2, . . . until Re (λk) = 0 do
Set u := uk and v := vk
Set function fuv(·) to (3.8) via (3.2), (3.3) and (3.6)
// (λuv(εk), xuv(εk), yuv(εk)) ≡ (λk, xk, yk)
[ε̂k, λ̂k, x̂k, ŷk] := newton bisection(fuv(·), 0, εk)
// (λ̂k, x̂k, ŷk) is an RP-compatible eigentriple of A+B∆̃uv(ε̂)C s.t. Re(λ̂k) = 0
[uk+1, vk+1, λk+1, xk+1, yk+1] := svsar(ε̂k, uk, vk, λ̂k, x̂k, ŷk, ksvsar)
εk+1 := ε̂k

end for

NOTE: For the discrete-time case, the hybrid expansion-contraction process described in Procedure 5 is

easily modified by changing Re(λ0) ≥ 0 to |λ0| ≥ 1, “locally rightmost” to “locally of largest modulus”,

Re(λk) = 0 to |λk| = 1, Re(λ̂k) = 0 to |λ̂k| = 1, and correspondingly setting svsar(·) to approximate the

radius instead of the abscissa of spectral value sets. The output conditions are correspondingly changed

such that ∠λk is a stationary point of ‖G(eiθ)‖ and ‖G(ei∠λk)‖ = ε−1k .

then:

1. For the continuous-time case, under Assumption 2.5 that SVSAR always returns

a point satisfying the first-order necessary conditions of Lemma 1.15 and addi-

tionally α(Muv(ε0)) ≥ 0, hybrid expansion-contraction converges to λ ∈ C and

ε ∈ R++ such that Im (λ) is a stationary point of ‖G(iω)‖ with stationary value

ε−1 and furthermore, if λ is a locally rightmost point of σε(A,B,C,D), then
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Im (λ) is a local maximizer of ‖G(iω)‖ with locally maximal value ε−1.

2. For the discrete-time case, under Assumption 2.5 that SVSAR always returns a

point satisfying the first-order necessary conditions of Lemma 1.19 and addition-

ally ρ(Muv(ε0)) ≥ 1, hybrid expansion-contraction converges to λ ∈ C and

ε ∈ R++ such that ∠λ is a stationary point of ‖G(eiθ)‖ with stationary value ε−1

and furthermore, if λ is a locally outermost point of σε(A,B,C,D), then ∠λ is a

local maximizer of ‖G(eiθ)‖ with locally maximal value ε−1.

Proof. For the continuous-time case, assume that hybrid expansion-contraction stag-

nates and thus Re (λk) 6= 0 for all k ∈ {1, 2, . . .} and the sequence {Re (λk)} 6→ 0.

By Key Observation 3.5, the contraction phase of hybrid expansion-contraction ensures

that from any iterate with εk and Re (λk) > 0, the algorithm will find λ̂k such that

Re (λ̂k) = 0 corresponding to root ε̂k ≡ εk+1 < εk of (3.3) for the current perturbation

vectors u := uk and v := vk. As the SVSAR method is monotonic and Re (λ0) ≥ 0, it

then follows that Re (λk+1) > Re (λ̂k) = 0 must hold for all k in the expansion phases of

the algorithm. While the sequence {Re (λk)} is not necessarily monotonic, Re (λk) ≤
αε0(A,B,C,D) must hold for all k since {εk} is a monotically decreasing sequence.

Thus, there exists a monotone convergent subsequence {Re (λkj)} → β > 0. Since

{Re (λkj)}may be either decreasing or increasing, by setting γ = min{β,Re (λk0)} we

have that 0 < γ ≤ Re (λkj) for all j ∈ {0, 1, 2, . . .}.

Letting u := ukj and v := ukj and recalling that λkj ≡ λuv(εkj), Re (λuv(ε̂kj)) = 0
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by Key Observation 3.2, and ε̂kj ≡ εkj+1, it then follows that:

0 < γ ≤ Re
(
λkj
)

= Re
(
λuv(εkj)

)
(3.10)

= Re
(
λuv(εkj)

)
− Re

(
λuv(ε̂kj)

)
= Re

(
λuv(εkj)

)
− Re

(
λuv(εkj+1)

)
.

By continuity of the eigenvalue λuv(ε), (3.10) implies that there exists a fixed real value

δ > 0 such that

δ ≤ εkj − εkj+1

for all j which in turn implies that

lim
j→∞

εkj = −∞.

As εk ≥ 0 for all k, we thus have a contradiction and therefore hybrid expansion-

contraction guarantees convergence to λ such that Re (λ) = 0. Since λ is computed by

SVSAR, the rest of the statement follows directly from Assumption 2.5 and Lemma 1.17.

The proof is analogous for the discrete-time case, using Lemma 1.20.

3.2 The convergence rate of hybrid expansion-contraction

We now describe how the hybrid expansion-contraction process of Procedure 5 is ac-

tually an adaptively positively or negatively damped Newton method, in contrast to the

Newton-bisection outer iteration of the GGO algorithm. Though we limit the discussion

here to the continuous-time case, the analysis holds for the discrete-time case as well.

Given some εk ∈ R++, εk‖D‖ < 1, let λuv be a locally or globally rightmost point
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of σεk(A,B,C,D) such that Re (λuv) > 0 and let u and v denote its corresponding

optimal vectors, that is (λuv, x, y) is a globally rightmost eigentriple of Muv(εk), and

furthermore let gcuv(·) be defined for λuv as in (3.2) along with its derivative given in

(3.6). In the contraction phase, the first updated value from εk attempting to make

gcuv(·) = Re (λuv(·)) zero is

εC = εk −
gcuv(εk)

g′cuv(εk)
.

If α(Muv(ε
C)) < 0, it then follows that a locally rightmost point computed by SVSAR

for perturbation level εC and starting vectors u and v could be in the left half-plane,

which might potentially cause the breakdown scenario observed in the GGO algorithm.

Thus, the contraction phase instead finds ε̂k > εC such that α(Muv(ε̂k)) ≥ 0 holds to

ensure that the next locally rightmost point found by SVSAR resides in the right half-

plane. Similarly, if α(Muv(ε
C)) > 0, it is guaranteed that the next locally rightmost

point computed by SVSAR will be in the right half-plane (as SVSAR is a monotonic

method) and thus the contraction phase can take an even larger reduction than provided

via εC by instead finding ε̂k < εC such that α(Muv(ε̂k)) = 0.

However, as λuv is a locally rightmost point of σεk(A,B,C,D), by Lemma 3.7, εC

is actually equivalent to the Newton step εN the GGO algorithm would have taken from

εk and λuv, provided that the conditions for a bisection step were not triggered in either

routine. As a consequence, the contraction phase of hybrid expansion-contraction is

actually scaling the Newton step of the GGO algorithm by either damping it sufficiently

to avoid the potential breakdown that may have occurred if εC ≡ εN had been accepted

or alternatively, by enlarging the step size when possible. In fact, by finding ε̂k such

that α(Muv(ε̂k)) = 0, we see that the contraction phase is either damping the step εN

the minimal amount when α(Muv(ε
N)) < 0 or increasing it the maximal amount when
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α(Muv(ε
N)) > 0 such that breakdown can still be guaranteed to not occur via evaluating

α(Muv(·)).

We now present two assumptions in order to formally state and prove a worst-case

convergence rate for hybrid expansion-contraction.

Assumption 3.11. Given a sequence of rightmost points computed by hybrid expansion-

contraction, that is the sequence {λk} such that each λk is a locally rightmost point of

σεk(A,B,C,D) for all k, we assume that the points λk all lie along a single continu-

ously differentiable branch of locally rightmost points of σε(A,B,C,D) defined for at

least ε ∈ [min εk,max εk]. Analogously, if {λk} is such that each λk is a locally outer-

most point of σεk(A,B,C,D) for all k, we then assume that the points λk all lie along a

single continuously differentiable branch of locally outermost points of σε(A,B,C,D).

Remark 3.12. Note that we make Assumption 3.11 only for the sake of simplicity of

the convergence rate analysis. In fact, hybrid expansion-contraction always converges

regardless of whether, for example in the continuous-time case, it stays upon one path of

locally rightmost points or jumps amongst several. In contrast, such jumps are precisely

why the GGO algorithm can potentially incur a fatal bound mismatch error. For ana-

lyzing the converge rate however, Assumption 3.11 allows us to preclude the possibility

that hybrid expansion-contraction oscillates between different branches as it converges,

that is, the case where hybrid expansion-contraction is converging to a root of a function

that is actually changing over the course of the algorithm.

Assumption 3.13. Given ε ∈ R++, ε‖D‖ < 1 and λuv a locally rightmost point of

σε(A,B,C,D) such that Re (λuv) > 0 and where u and v denote its corresponding

optimal vectors, that is λuv is a rightmost eigenvalue of Muv(ε), we assume that gcuv(·)
as defined in (3.2) is a monotonically increasing function. Analogously, if λuv is instead
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a locally outermost point of σε(A,B,C,D) such that |λuv| > 1 and λuv is an outermost

eigenvalue of Muv(ε), we then assume that gduv(·) as defined in (3.2) is a monotonically

increasing function.

Remark 3.14. We note that we make Assumption 3.13 for simplicity of presentation

here, and furthermore, have yet to observe a situation in practice where the assumption

doesn’t hold. Nonetheless, we conjecture that the assumption is likely not necessary for

the convergence rate result of Theorem 3.15 to hold. In lieu of assuming the functions

g
(k)
uv (·) are monotonic, it seems that we can allow for these functions to change direction

and to even have several roots. We then might proceed to instead define a monotonic

weighting function that assigns an appropriate value of the damping factor parameter

γk based on the relative position of εCk along the length of the path of the eigenvalue

and whether λ(k)uv (εCk ) is in the left or right half-plane. In the case of several roots, we

would instead need to separate the path λ(k)uv (·) into separate pieces and define indi-

vidual monotone damping factor weighting functions separately for each piece. As this

complicates the essential argument of the proof without providing much additional in-

sight, or even utility in the sense that doing so addresses a problem we haven’t observed,

we present the proof using Assumption 3.13.

Theorem 3.15. Let {λk} and {εk} respectively be the sequences produced by hybrid

expansion-contraction where {λk} is the sequence of either locally rightmost points of

σεk(A,B,C,D) or locally outermost points of σεk(A,B,C,D), for the continuous and

discrete-time cases respectively, while {εk} is the corresponding strictly decreasing per-

turbation levels εk converging to some ε?̃ ∈ R++. Under Assumption 3.11 and assuming

Assumption 3.13 holds for each pair λk and εk, then hybrid expansion-contraction con-

verges to ε?̃ at least superlinearly.
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Proof. We first consider the continuous-time case where {λk} is a sequence of locally

rightmost points of σεk(A,B,C,D). Let λ(k)uv = λk, where u and v denote the specific

corresponding optimal vectors for λ(k)uv , that is λ(k)uv is an eigenvalue of Muv(εk). Fur-

thermore, let g(k)uv (·) be defined for λ(k)uv for the continuous-time case, that is as defined

by gcuv(·) in (3.2), and let λr(ε) be the continuous path of locally rightmost points in

Assumption 3.11.

At a locally rightmost point λ(k)uv computed by hybrid expansion-contraction, the first

value considered so to make g(k)uv (·) = Re (λ
(k)
uv (·)) zero is

εCk := εk −
g
(k)
uv (εk)

g
′(k)
uv (εk)

, (3.11)

assuming εCk > 0, since the contraction phase is implemented by a Newton-bisection

method initialized with a lower bound of zero. Since λ(k)uv is a locally rightmost point,

by Lemma 4.7 it follows that the update to εk given by a Newton step to find the root of

Re (λr(·)) has the following equivalence

εNk+1 := εk −
Re (λr(εk))

Re (λr(εk))
′ = εk −

g
(k)
uv (εk)

g
′(k)
uv (εk)

(3.12)

and thus by (3.11), we see that εNk+1 = εCk . However, since at every iteration hybrid

expansion-contraction instead chooses εk+1 = ε̂k such that g(k)uv (ε̂k) = 0, we may instead

consider hybrid expansion-contraction as an adaptive positively or negatively damped

Newton method given by the update function

εk+1 := εk − γk
g
(k)
uv (εk)

g
′(k)
uv (εk)

= εk − γk
Re (λr(εk))

Re (λr(εk))
′ ,
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where γk > 1 if g(k)uv (εCk ) > 0 or 0 < γk < 1 if g(k)uv (εCk ) < 0. Furthermore, we may also

rewrite the damped Newton update step as an inexact Newton step as follows:

εk+1 = εk − γk
Re (λr(εk))

Re (λr(εk))
′ = εk −

Re (λr(εk))

Re (λr(εk))
′ + (1− γk)

Re (λr(εk))

Re (λr(εk))
′

= εk −
Re (λr(εk))

Re (λr(εk))
′ +

rk

Re (λr(εk))
′ , (3.13)

where rk := (1 − γk) Re (λr(εk)) is defined as the residual from not having solved the

regular Newton step exactly. Consider the forcing sequence {ηk} defined by

ηk :=
|rk|

|Re (λr(εk))|
= |1− γk|.

As εk → ε?̃, by [DES82, Corollary 3.5(a)], it follows that if ηk → 0, then the inexact

Newton method converges at least superlinearly. For hybrid expansion-contraction, it

thus suffices to show that γk → 1 as k →∞.

Let {γk} be the sequence of damping factors in hybrid expansion-contraction. We

first consider the case where γk > 1 holds for all k and thus g(k)uv (εCk ) > 0 holds as well.

Hence, for all k, we have that

0 = g(k)uv (ε̂k) < g(k)uv (εCk ) < g(k)uv (εk),

as shown in the left panel of Figure 3.1. By Theorem 4.1, g(k)uv (εk) → 0 as k → ∞
and thus g(k)uv (ε̂k) = g

(k)
uv (εCk ) holds in the limit. Since g(k)uv (·) is always a monotonically

increasing function by Assumption 3.13, it follows that ε̂k = εCk holds in the limit as

well and thus γk → 1.

Now let us consider the case when γk < 1 holds for all k and thus g(k)uv (εCk ) < 0
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FIGURE 3.1: Left: negative damping. Right: positive damping. In the left panel, we see that the initial

contraction attempt falls short of reaching the imaginary axis and thus hybrid expansion contraction can

take an accelerated step compared to the Newton step of the GGO algorithm, that is with γk > 1. In

the right panel, we see that the initial contraction attempt overshoots the imaginary axis and thus it must

be damped in comparison to the Newton step of the GGO algorithm, that is with γk ∈ (0, 1), to ensure

breakdown cannot occur.

holds. It then follows for all k, that

g(k)uv (εCk ) < 0 < g(k)uv (εk), (3.14)

as shown in the right panel of Figure 3.1. Consider the ratio

g
(k)
uv (εk)

g
(k)
uv (εk)− g(k)uv (εCk )

=
1

1− g
(k)
uv (εCk )

g
(k)
uv (εk)

, (3.15)

noting that it is always in the interval (0, 1). Since εCk = εNk+1, it follows that

g
(k)
uv (εCk )

g
(k)
uv (εk)

=
g
(k)
uv (εNk+1)

g
(k)
uv (εk)
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and thus since Newton’s method converges quadratically, it additionally follows that

lim
k→∞

g
(k)
uv (εNk+1)

g
(k)
uv (εk)

= 0.

Thus, the ratio in (3.15) must go to one in the limit as well, which then implies that

g
(k)
uv (ε̂k) = g

(k)
uv (εCk ) also holds in the limit. Again by Assumption 3.13, g(k)uv (·) is always

a monotonically increasing function and hence it again follows that ε̂k = εCk must hold

in the limit and thus γk → 1 as k →∞.

Finally, we consider the case when {γk} is mixed in the sense that it contains some

damping factors that are less than one and some damping factors that are greater than

one. Consider the subsequence {γkj} of {γk} consisting of all the damping factors

strictly greater than one. Thus, it follows that γkj > 1 holds for all kj . If εkj → ε?̃ holds,

then we have already shown that it must follow that γkj → 1. Otherwise, εkj 6→ ε?̃

must hold and consequently, it must be that {εkj} and {γkj} are finite sequences, since

εk → ε?̃ by assumption. Thus, there exists some positive integer l for {γk} such that

0 < γk ≤ 1 holds for all k > l. However, by the earlier part of the proof, this again

implies that γk → 1. The argument follows analogously if we had instead chosen the

subsequence {γkj} of {γk} consisting of all the damping factors strictly between zero

and one, and hence γk → 1 holds generically.

The proof also holds for the discrete-time by taking g
(k)
uv (·) to be defined for the

discrete-time case, that is as defined by gduv(·) in (3.2) and by replacing all occurrences

of Re (λr(·)) by |λo(·)|−1, where λo(ε) is a continuous path of locally outermost points

as in Assumption 3.11.

As a consequence of Theorem 3.15, even in the pessimistic case where the steps

50



of hybrid expansion-contraction are positively damped compared to the Newton steps

of the GGO algorithm, hybrid expansion-contraction still converges at least superlin-

early and possibly quadratically if it is started sufficiently near a root of gcuv(·). On the

other hand, when hybrid expansion-contraction is negatively damped in comparison to

the GGO algorithm, since the sequence of εk values is monotonically decreasing and

the method is actually taking accelerated steps (that is, larger steps than the GGO algo-

rithm), we can expect hybrid expansion-contraction to be an exceptionally fast method

and to demonstrate at least quadratic convergence in some cases. In fact, as we report

in Section 5.3, we observe quadratic convergence on most and perhaps all the problems

tested.

3.3 Contracting early

Since SVSAR’s slow convergence in the expansion phase is potentially expensive, an

open question is whether we can terminate SVSAR early, thus reducing the number

of eigentriples that need to be computed while still converging to a locally or globally

optimal value. With the Newton-bisection outer iteration of the GGO, this is potentially

quite dangerous, as terminating SVSAR early while it is in the left half-plane could

result in making fatal bound mismatch errors more likely. Furthermore, terminating

SVSAR early may degrade the quality of GGO’s Newton steps towards the imaginary

axis due to loss of accuracy in the corresponding derivation computation. However,

under hybrid expansion-contraction, as long as the expansion phase makes significant

progress into the right half-plane, the procedure can always begin contracting again

early, in lieu of incurring the full number of iterations for SVSAR to converge to a

locally rightmost point. A natural choice then is to not just terminate the expansion
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phase if the step size becomes minuscule but to also considering terminating it if the

current step length falls below, say for example, one percent of the max step size taken

so far for that particular value of ε̂k. A benefit to this scheme is that it is self-scaling,

meaning that as hybrid expansion-extraction converges, the expansion phase will be

permitted to take smaller and smaller steps before switching back to the contraction

phase. In other words, in the limit, such a relative step size termination condition has

no effect and thus does not alter the theoretical rate of convergence guarantees shown in

Section 3.2.

Remark 3.16. Alternatively, one might consider a relative step termination condition

trigged by when the step size falls below some specify percentage of the sum of the all

previous step sizes taken so far for a given value of ε. This could allow for even earlier

termination of SVSAR but potentially at the expense of increased iterations for hybrid

expansion-contraction. We however do not explore this strategy or alternate variants

when evaluating enabling relative step size termination in the experiments in Chapter 5.

3.4 A fast new method to find an initial upper bound

In order for the GGO algorithm to apply the outer Newton-bisection iteration, it first

must find an upper bound on ε? to initialize the bracket range necessary for bisection.

The implementation of the GGO algorithm, version 1.02 of hinfnorm [Hin], does

this by first calculating an initial ε0 along with vectors u0 and v0. From that perturba-

tion, it calls SVSAR to expand rightward as far as possible for ε0. If the final eigen-

value returned by SVSAR is still in the left half-plane, then hinfnorm increases ε0

via εk = min(2εk−1, 0.5(εk−1 + ‖D‖−1)) and again calls SVSAR. Unfortunately, this

precomputation phase to initialize the bracket range that provides an upper bound to ε?
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can be very expensive as SVSAR’s mere linear convergence may be incurred multiple

times before a large enough value of ε is found. Increasing ε via taking, say double, the

Newton step with respect to the spectral value set abscissa is a potentially better strategy

but it still might require several calls to SVSAR being made before an upper bound is

found.

On the other hand, for a given value of ε, hybrid expansion-contraction can be ini-

tialized from any point λ0 ∈ σε(A,B,C,D) if Re (λ0) ≥ 0. Thus, a more efficient

procedure for finding a suitable upper bound to start hybrid expansion contraction is

to take some initial ε0 and perturbation vectors u and v and consider α(Muv(ε0)). If

α(Muv(ε0)) ≥ 0, then hybrid expansion-contraction can begin. If not, we first attempt

to set ε1 > ε0 via taking double the Newton step with respect to α(Muv(ε0)) using

(3.5) and (3.6). Of course, attempting such a step is only sensible if (3.6) is positive,

a condition which is not guaranteed but often holds in practice. However, even if (3.6)

is indeed positive, it may still be that α(Muv(ε1)) < α(Muv(ε0)), in which case a line

search may be performed to find ε̂1 ∈ [ε0, ε1] such that α(Muv(ε̂1)) > α(Muv(ε0)) is

attained. After attempting to increase the perturbation level from ε0, successfully or not,

we then update the perturbation vectors u and v by taking a single step of the SVSAR

subroutine. Until we find some perturbation level ε with perturbation vectors u and v

such that α(Muv(ε)) ≥ 0, we continue alternating between attempting to increase the

perturbation level ε and doing a single SVSAR update step to perturbation vectors u

and v. The benefit is that at no point do we incur SVSAR’s linear convergence and by

attempting to increase the perturbation level ε before updating the perturbation vectors,

we can expect that the SVSAR update step will typically be quite large as it will be

updating from a point in the interior of the spectral value set for that perturbation level.

However, a concern with Procedure 6’s efficient strategy is whether it compromises the
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likelihood of hybrid expansion-contraction converging to a globally optimal value com-

pared to the bound bracketing procedure used in hinfnorm. As a compromise, it may

be beneficial to make a single call to SVSAR once Procedure 6 has found an eigenvalue

in the right half-plane before commencing hybrid expansion-contraction.
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Procedure 6 [ε, u, v] = find upper bound(ε0, u0, v0)
Input:

Initial perturbation level ε0 ∈ R++, ε0‖D‖ < 1
Vectors u := u0 ∈ Cp and v := v0 ∈ Cm defining ∆ = ε0u0v

∗
0 with ‖u‖ = ‖v‖ = 1

Output:
ε, u and v such that α(Muv(ε)) ≥ 0

while α(Muv(ε0)) < 0 do
Set function guv(·) to (3.3) for a rightmost eigenvalue λuv of Muv(ε0).
if g′uv(ε0) > 0 then

Set ε := min(ε0 − 2guv(ε0)
g′uv(ε0)

, 1
2
(ε0 + ‖D‖−1))

while α(Muv(ε)) ≤ α(Muv(ε0)) do
Set ε := 1

2
(ε0 + ε)

end while
if α(Muv(ε)) ≥ 0 then

break
end if

else
Set ε := ε0

end if
// (λuv, xuv, yuv) is a rightmost RP-compatible eigentriple of Muv(ε)
// Update vectors u and v by a single iteration of svsar(·)
[u, v, λuv, xuv, yuv] := svsar(ε, u, v, λuv, xuv, yuv, 1)
if α(Muv(ε)) ≥ 0 then

break
end if
Set ε0 := ε

end while

NOTE: For the discrete-time case, Procedure 6, find upper bound(·), is easily modified by changing all

occurrences of α(·) to ρ(·) and “rightmost” to “outermost”. Furthermore, the procedure can be modified

as the user desires to instead first call svsar(·), to expand ε using the derivative of the spectral value

set abscissa (2.3) (described in [GGO13]) which would increase ε more slowly and to optionally call

svsar(·) with its normal limit on its max iteration count before beginning hybrid expansion-contraction of

Procedure 5.

55



4
AN IMPROVED SVSAR SUBROUTINE

4.1 Extending SVSAR to large-scale D matrices

A potential downside of using the default SVSAR subroutine, in either the original

GGO algorithm or in our improved algorithm, is that at every iteration of SVSAR, the

following two linear systems must be solved:

Φpbk = B∗yk and Φmck = Cxk (4.1)

where

Φp = (Ip − ε2D∗D) and Φm = (Im − ε2DD∗)

and xk and yk are the right and left computed eigenvectors at the k-th iteration, a cost that

is compounded by the fact that SVSAR’s linear convergence may lead to many iterations

and thus solves being incurred. Indeed, this not only motivated the strong assumption

that p,m� n in [GGO13] but also that the version 1.02 implementation of GGO simply

used MATLAB’s backslash operator for every solve involving Φp and Φm in a given

SVSAR call. Noting that both Φp and Φm are Hermitian, a more efficient approach

is to precompute Cholesky factorizations of each for a given value of ε and then use

the factorized forms for efficient backsolves at each iterate within a call to SVSAR. Of

course, such an optimization can only reduce SVSAR’s runtime by a constant factor but

this can be quite a significant savings in runtime performance if p and/or m are more

moderately sized. However, even this is still an overly pessimistic assessment of using

SVSAR on large-scale problems.
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By the Sherman-Morrison-Woodbury formula [GV83], we observe the following

equivalence:

Φ−1p = (Ip − ε2D∗D)−1 = Ip + ε2D∗(Im − ε2DD∗)−1D = Ip + ε2D∗Φ−1m D

and similarly

Φ−1m = (Im − ε2DD∗)−1 = Im + ε2D(Ip − ε2D∗D)−1D∗ = Im + ε2DΦ−1p D∗.

Hence, solving both linear systems of (4.1) may instead be done by creating a only single

Cholesky factorization of say Φp = LL∗ and then, using MATLAB notation, performing

the two pairs of backsolves as follows:

Φpb = B∗yk =⇒ b = L∗\(L\(B∗yk))

Φmc = Cxk =⇒ c = Cxk + ε2D(L∗\(L\(D∗(Cxk))).

Furthermore, we can opportunistically choose whether to factorize Φp or Φm by opting

for the smaller dimensional one of the two, thus relaxing the condition on SVSAR’s

viability to only requiring that min(p,m) is small, while max(p,m) is free to be on the

order of n.

For the case when both p and m may be large, it is helpful to first examine the

typical structure that the matrix D may have. In many applications, the linear time

invariant systems (1.1) and (1.2) whose H∞ norm is desired arises from the following
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standard state-space open loop system [BHLO06]:


ẋ

z

y

 =


A1 B1 B2

C1 D11 D12

C2 D21 D22



x

w

u

 (4.2)

where x contains the states, u and w are the physical (control) and performance inputs

respectively, and y and z are the physical (measured) and performance outputs respec-

tively. However, to improve the stability and robustness of the open loop system (4.2),

customarily a controller K is designed

 ˙̂x

u

 = K

 x̂

y

 =

 Â B̂

Ĉ D̂

 x̂

y


where x̂ ∈ Rn̂ is the controller state and n̂ is the order of the controller, to minimize the

H∞ norm of the resulting closed loop system:


ẋ

˙̂x

z

 =

 A B

C D



x

x̂

w


with, assuming D22 = 0 purely for conciseness of notation,

A =

 A1 +B2D̂C2 B2Ĉ

B̂C2 Â

 , B =

 B1 +B2D̂D21

B̂D21

 ,

C =
[
C1 +D12D̂C2 D12Ĉ

]
, D =

[
D11 +D12D̂D21

]
.

(4.3)
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We focus on the design of low-order controllers for which the matrices of the controller,

Â, B̂, Ĉ, and D̂, are relatively small, because this makes it much easier to physically

implement the controller in hardware. However, the best way to design such controllers

seems to be using nonsmooth, nonconvex optimization, for which we cannot guarantee

finding global minimizers. Perhaps the most promising method is this domain has been

full BFGS [BHLO06, Hif], which requires work per iteration that is quadratic in the

number of variables.

With this in mind, we now consider the structure of the matrixD for the generic case

of D22 6= 0

D = D11 +D12(I − D̂D22)
−1D̂D21.

When p andm are both large, we can reasonably assume thatD11 is sparse and that (I−
D̂D22)

−1 is cheaply computable, as otherwise merely forming D for input to SVSAR

or doing a matrix-vector product with D would be an expensive operation. Given that

the D̂ matrix of controller variables is typically small, we also note that

D12(I − D̂D22)
−1D̂D21 = D̃12D21 = D12D̃21

will often be a low-rank outer product, with rank(D̃12D21) � min(p,m) if both p and

m are large. If D11 = 0, then we have an a priori low-rank factorization of D. Even if

D11 6= 0, it may still be known that rank(D11) is small and thus a low-rank factorization

of D can be quickly computed or provided as input.

Assuming D is given as a rank-k outer product

D = DLD
∗
R,
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with k � n, one potential option for quickly solving the linear systems of (4.1) is to

use CHOLMOD [DH99, DH09] to create a sparse Cholesky factorization of a low-rank

update to the identity matrix. Furthermore, as only ε changes for every call to SVSAR,

the nonzero structure of Φp and Φm remains constant and thus the symbolic analysis

required for computing the factorizations done by CHOLMOD need only be computed

once and can be subsequently reused to alleviate some of the cost of updating the factor-

izations for new values of ε. Unfortunately, such specialized routines of CHOLMOD are

not currently exposed to the user in MATLAB. As an alternative, once again by the

Sherman-Morrison-Woodbury formula, we see that

(Ip − ε2D∗D)−1 = (Ip − ε2(DLD
∗
R)∗(DLD

∗
R))−1

= (Ip − ε2(DRD
∗
LDL)D∗R)−1

= Ip + ε2(DRD
∗
LDL)(Ik − ε2(D∗RDR)(D∗LDL))−1D∗R

and similarly

(Im − ε2DD∗)−1 = Im + ε2(DLD
∗
RDR)(Ik − ε2(D∗LDL)(D∗RDR))−1D∗L,

thus providing efficient forms for solving the linear systems of (4.1) where we only need

to do LU factorizations on two small k-by-k matrices.

In the case when rank(D11) is large, it will generally be best to provide D as a

function handle, unlessD12 orD21 happen to be zero. IfD = D11, then CHOLMOD may

be used to create a sparse factorization. However, if D12 6= 0 and D21 6= 0, forming D

explicitly could cause dense fill-in due to the low-rank D̃12D21 term, hence the need to

provideD as a function handle for applyingD to an input vector. As an aside, likewise to
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avoid fill-in from the low-rank terms in (4.3), function handles should also be provided

for applying matrices A, B, and C.

Without an explicit form for D, solving (4.1) must be done via an iterative method

such as conjugate gradient, which can unfortunately be slow without a good precondi-

tioner. Furthermore, even constructing the preconditioner must also be done iteratively

in this case. It is thus conceivable that the cost of building preconditioners for whenD is

not given explicitly may outweigh any performance enhancement they provide, unless

they are particularly effective, cheap to compute, and/or reusable across many problems

before an updated preconditioner is required. On the other hand, within SVSAR, we

may be able to use information from the previous iterate to effectively warm-start con-

jugate gradient for the current one, despite the fact that the right-hand sides of (4.1),

B∗yk and Cxk, may not necessarily form convergent sequences.

Consider the following two solutions to the linear systems from both the current and

previous iterates within the SVSAR subroutine:

ck := Φ−1m Cxk (4.4)

ck−1 := Φ−1m Cxk−1. (4.5)

If we are solving (4.4) iteratively, we expect that for an initial vector c̃k, the smaller

the value of ‖ck − c̃k‖ is, the less number of iterations will be necessary to find ck to

acceptable tolerance. As the eigenvectors xk and yk are scaled at each iteration to be RP-

compatible, we cannot expect that ‖Cxk−Cxk−1‖ is necessarily a diminishing quantity

as k → ∞. However, each eigenvector is only unique up to a unimodular scalar, and
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thus any computed solution to (4.5) trivially provides all the solutions to

eiθck−1 = Φ−1m C
(
eiθxk−1

)
(4.6)

for all θ ∈ [0, 2π). Subtracting (4.6) from (4.4) and using the Cauchy-Schwartz inequal-

ity, we see that ∥∥ck − eiθck−1
∥∥ ≤ ∥∥Φ−1m C

∥∥∥∥xk − eiθxk−1
∥∥ . (4.7)

Thus, we can minimize the worst-case of how well eiθck−1 approximates ck by choosing

θ such that the right-hand side of (4.7) is minimized, that is we choose

θmin = arg min
θ∈[0,2π)

∥∥xk − eiθxk−1
∥∥ . (4.8)

We first derive the derivative of the objective of (4.8) with respect to θ:

d

dθ

∥∥xk − eiθxk−1
∥∥ =

d
dθ

(
xk − eiθxk−1

)∗ (
xk − eiθxk−1

)
2 ‖xk − eiθxk−1‖

(4.9)

=
d
dθ

(
2− e−iθx∗k−1xk − eiθx∗kxk−1

)
2 ‖xk − eiθxk−1‖

=
ie−iθx∗k−1xk − ieiθx∗kxk−1

2 ‖xk − eiθxk−1‖
.

Setting d
dθ

∥∥xk − eiθxk−1
∥∥ = 0 to find the stationary points of the minimization problem
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(4.8), we see that the numerator of (4.9) must be 0:

ie−iθ̂x∗k−1xk − ieiθ̂x∗kxk−1 = 0 =⇒ e2iθ̂ =
x∗k−1xk

x∗kxk−1
=

(
x∗k−1xk

)2∣∣x∗k−1xk∣∣2
=⇒ θ̂ =

1

2i
log

((
x∗k−1xk

)2∣∣x∗k−1xk∣∣2
)
.

Since (4.8) is sinusoidal with a period of 2π, computing θ̂ will either yield a minimizer

or a maximizer and thus it suffices to set

θmin =


θ̂ if ‖xk − eiθ̂xk−1‖ < ‖xk − ei(θ̂+π)xk−1‖

θ̂ + π otherwise

and to then correspondingly set the initial vector for conjugate gradient to solve (4.4) as

c̃k := eiθminck−1. (4.10)

Analogously, we apply the same procedure to provide the initial vector b̃k for iteratively

solving bk = Φ−1p B∗yk.

4.2 Accelerating SVSAR’s linear convergence

As mentioned previously, the linear convergence of SVSAR can be quite slow in prac-

tice, a cost which is amplified by the fact that it is used as a subroutine in both the orig-

inal GGO algorithm and our new hybrid expansion-contraction scheme. Warm-starting

SVSAR can help alleviate these costs, and is done in both methods, but if ε is changing

significantly, the warm starts may not be particularly close to a local optimum and thus
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not helpful for side-stepping the slow convergence.

For the special case of B = I , C = I , and D = 0, a superlinearly converging

subspace acceleration method for computing the ε-pseudospectral abscissa was recently

presented [KV14], but the technique seems quite difficult to extend to the structured

perturbations involved with spectral value sets. Furthermore, this algorithm involves

computing the smallest singular value of A − µkI for each µk ∈ C that it produces per

iteration. To that end, the inverse of (A−µkI)−1 is applied to a vector using an LU fac-

torization of A−µkI but the authors note that for some examples, the factorization cost

can offset the acceleration gains resulting in an overall slower running time, presumably

due to fill-in in the sparse factorizations on those problems. In such cases, they recom-

mend an iterative method to be used instead of LU factorization but such a strategy can

present its own problems with respect to reliability and efficiency.

In our own experiments, we have had much success using Aitken’s ∆2 pro-

cess [Ait26] to produce useful extrapolates λ?̃ from short sequences of consecutive it-

erates of the λk eigenvalues produced by SVSAR that are converging to some locally

optimal eigenvalue λ?. However, while extrapolating the eigenvalue itself is an extraor-

dinarily cheap procedure, computing the right and left singular vectors of

‖C(λ?̃I − A)−1B +D‖

to recover the corresponding perturbation u?̃v∗?̃ necessary to continue to the next iteration

is prohibitively expensive for large-scale problems. Like the authors of [KV14], we too

have observed numerous example problems where computing a sparse factorization of

(λ?̃I − A) is costly due to a large amount of fill-in. Indeed, for precisely such reasons,

GGO and our algorithm are specifically designed to avoid doing any solves involving
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A yet alone solving (λ?̃I − A)−1B where the number of columns of B may be on the

order of n. We thus turn our focus to vector extrapolation methods.

4.2.1 A vector extrapolation based acceleration technique

Given a converging sequence of vectors {ak} with ak ∈ Cn and

lim
k→∞

ak = a?,

vector extrapolation methods [GM94, JS00, SFS87] attempt to approximate a? by es-

timating it from a small subset of vectors from the sequence. This can be particularly

useful for accelerating many methods where some final a? is desired but may only be

attained by the expensive and successive computations of each vector ak in a slowly

convergence sequence. Though the sequence of eigenvalues {λk} computed by SVSAR

almost always converges, the corresponding eigenvectors xk and yk will not necessar-

ily do so, as they are only unique up to a scalar and may be scaled differently at every

iteration to satisfy RP-compatibility. Similarly, the associated perturbation vectors uk

and vk may not form converging sequences either and thus cannot be reliably used for

extrapolation.

The perturbation matrices ∆k, on the other hand, do constitute a convergent se-

quence with

lim
k→∞

∆k = ∆? = εu?v
∗
?

such that the computed rightmost or largest-modulus eigenvalue λ? of A + B∆̃?C is

locally optimal, for continuous and discrete-time cases respectively, assuming SVSAR

converges to a locally rightmost or outermost point. Since ε is constant, we can consider
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the matrices ∆k = ukv
∗
k with ε dropped and the sequence

lim
k→∞

ukv
∗
k = u?v

∗
? = ∆̂?. (4.11)

While we could conceivably use (4.11) directly to produce some ∆̂?̃ ≈ ∆̂? from which

to recover vectors u?̃ ≈ u? and v?̃ ≈ u?, we do not wish to explicitly form any of

the ∆̂k matrices since we desire an algorithm that can scale to cases where both p and

m are large. However, since each ∆̂k is rank-1, we can instead extrapolate the matrix

sequence implicitly by only extrapolating over a single row and column pair of ∆̂? and

from which we can then recover our extrapolated perturbation vectors u?̃ and v?̃.

For ease of notation, let us consider the first extrapolation attempt using the first k

iterates produced by SVSAR. Using MATLAB notation, let

r? = ∆̂?(i, :)

c? = ∆̂?(:, j)

for some i ∈ {1, . . . , p}

for some j ∈ {1, . . . ,m}

be a row and column respectively of the matrix ∆̂? that we wish to implicitly extrapolate.

For reasons that will become clear later, we’d like to choose (i, j) such that |∆̂?(i, j)| is
large but since we don’t want to fully extrapolate ∆̂?, we must instead guess a candidate

(i, j) pair determined from the vector sequences that we do have, namely {u1, . . . , uk}
and {v1, . . . , vk}. One possible simple heuristic is to assume that uk and vk are good

approximations of u? and v? and thus choose

i = arg max
l∈{1,...,p}

|uk(l)| and j = arg max
l∈{1,...,m}

|vk(l)|.
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To extrapolate r? and c?, we construct row and column vectors

rk = ∆̂k(i, :) = uk(i)v
∗
k

ck = ∆̂k(:, j)= vk(j)uk

and similarly construct vectors r1, . . . , rk−1 and c1, . . . , ck−1. We then apply vector ex-

trapolation to both sequences {r1, . . . , rk} and {c1, . . . , ck} to give us r?̃ and c?̃. As

r? = u?(i)v
∗
?

c? = v?(j)u?,

recovering u? and v? constitutes finding p+m unknowns while we only have p+m− 1

equations (since row vector r? and column vector c? intersect at ∆̂?(i, j)). Thus, we

have the freedom to assume v?(j) = 1. By doing so, and instead using our r?̃ and c?̃

extrapolated vectors, we have that

u?̃ = c?̃

and thus u?̃(i) = c?̃(i) and so we may also recover:

v?̃ =
r?̃
c?̃(i)

.

As we must divide by c?̃(i) = ∆̂?̃(i, j), it is now clear why we wish to choose (i, j),

such that |∆̂?̃(i, j)| is large.

Though we have now recovered a pair of vectors u?̃ and v?̃ such that u?̃v∗?̃ = ∆̂?̃, we

have no guarantee that ‖∆̂?̃(i, j)‖ = 1. Therefore, we must always normalize u?̃ and v?̃
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FIGURE 4.1: Left: example ROC3 (continuous-time). Right: example ROC5 (discrete-time). Each panel

depicts a region of the spectral value set boundary of each problem for perturbation level ε = 10−2 in

blue. The iterates of SVSAR without vector extrapolation enabled are plotted as dark grey ×’s while the

iterates of SVSAR with vector extrapolation enabled are plotted on top in orange ×’s. For each panel,

the final point that both variants converge to is indicated by the green circle.

to each be unit norm, that is

u?̃ :=
u?̃
‖u?̃‖

and v?̃ :=
v?̃
‖v?̃‖

. (4.12)

Provided that the extrapolated perturbation indeed does provide progress, we then warm

start SVSAR with the vectors of (4.12) until SVSAR completes another k more itera-

tions. If the extrapolated perturbation does not yield an improvement, it is discarded and

SVSAR is allowed to complete another k iterations continuing from uk and vk. In either

case, an extrapolation can be attempted every k iterations of SVSAR. We note that it is

often better to discard the initial few iterates of SVSAR before attempting extrapolation

since those steps are typically quite large and yield poor extrapolations.

For computing the vector extrapolations, we use the minimum polynomial extrapo-

lation (MPE) method of [CJ76], whose main cost is solving an over-determined linear

least squares problem. Extrapolating a row and column from k implicitly formed rank-

1 matrices requires O((p + m)k2) flops, and as k will typically be small, such as 10,
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the method can scale to problems where D has large dimensions as well as the special

pseudospectral case when B = I , C = I , and D = 0 and uk, vk ∈ Cn. In Figure 4.1,

we see that the vector extrapolation technique on sets of five vectors at a time sub-

stantially accelerates SVSAR, reducing the number of iterations from 136 to 18 on the

continuous-time problem ROC3 and from 548 to 28 on the discrete-time problem ROC5.

4.2.2 A comparison with subspace acceleration for pseudospectra

For the special case of pseudospectra, that is problems where B = C = I and D =

0, the vector extrapolation technique for accelerating SVSAR can still be computed

efficiently, namely with onlyO(nk2) operations where k is the number of iterates used to

per extrapolation. As such, we now empirically investigate its performance compared to

subspace pspa1, the implementation of the subspace acceleration method presented

by [KV14] to accelerate the pseudospectral abscissa or radius approximation algorithm

of [GO11], which itself is a special case and a precursor to the SVSAR method.

While the subspace acceleration method provides a provable superlinear conver-

gence rate, in [KV14] the authors actually observe local quadratic convergence rates

in practice. However, it is unclear if the technique can be extended beyond the spe-

cial case of pseudospectra to generic spectral value sets and indeed this appears to be a

quite difficult problem. Furthermore, as previously mentioned, the subspace accelera-

tion method relies on being being able to quickly solve linear systems at every iteration

and depending on the problem, this can sometimes be so prohibitively expensive that it

negates any benefit of the subspace acceleration. While the vector extrapolation tech-
1Due to an apparent bug in both the 0.1 and 0.2 versions of subspace pspa [Sps], the routine ap-

pears to erroneously return an incorrect value for its computed pseudospectral abscissa approximation.
However, this bug appears to only be limited to the return value while the correct approximation is ob-
tainable via the history of iterates that is also optionally passed back to the user, which is the value we use
for the experiments here. See Appendix A for more details.
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nique we propose does not provide any guarantees, in practice we find that it is typically

highly effective at mitigating the slow linear convergence of SVSAR.

For the comparison, we use the same problems used in [KV14] for the test suite,

with the exception of the particular dimension used for sparserandom. Many of the

problems tested in [KV14] were chosen as to replicate the test set from [GO11] but with

the discrepancy of 1000 being used in lieu of 10000 for sparserandom, as was done

in [GO11]. Since the larger dimensional problem is more difficult and to be consistent

with the earlier source, we have chosen to use 10000 for sparserandom.

In an attempt to improve the test suite for the purposes of evaluating the effective-

ness of vector extrapolation, an adversarial initialization strategy was chosen to try to

increase the likelihood that SVSAR would experience slow convergence on many of the

problems, in contrast to the typical initialization procedure used for the experiments in

[KV14] and discussed in [GO11]. To that end, each problem was warm-started from

a randomly generated complex-valued pair of vectors u0 and v0 using randn twice to

generate the real and imaginary parts, normalized so that ‖u‖ = ‖v‖ = 1. Thus, the

algorithms were initialized at some λ0 ∈ C such that λ0 is a rightmost eigenvalue of

A+ εu0v
∗
0 for the specified perturbation level ε, with the idea being that SVSAR might

be more likely to first encounter the boundary of the pseudospectrum far from a locally

rightmost point, and thereby incur an increased number of iterations until convergence.

For the purposes of a fair comparison, subspace pspa was also warm-started from

the same point, that is opts.start z = λ0. This adversarial initialization strategy

proved effective in increasing the SVSAR’s iteration count on many of the problems

tested while in constrast, it probably had a little effect on the convergence behavior of

subspace pspa. Furthermore, it likely also disproportionally increased the FLOP

count for the SVSAR algorithm compared to subspace pspa, due to the increased
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operations necessary to handle complex matrices over real ones at every iteration.

The 0.2 version of subspace pspa was used for the experiments with a max iter-

ation count set to 1000 iterations, a termination tolerance of 10−12 and the following de-

fault parameters specified: opts.exact = false, opts.restart = 30, and

opts.sparse = issparse(A). SVSAR was also allowed up to 1000 iterations

with an absolute step size termination condition of 10−12 and correspondingly only in-

voked eigs in lieu of eig when issparse(A) held. For the sparse problems, eigs

was set with k = 1, that is to request only one single eigenvalue, to be consistent with

the experiments of [KV14].

Remark 4.1. In contrast to the experiments performed here, we note that it is typically

safer when using SVSAR to instead request a handful of eigenvalues from eigs, though

this does increase the running time of the algorithm. If only one eigenvalue is requested,

it is more likely that the rightmost eigenvalue will not be returned, since it typically won’t

be the first to converge in the Krylov subspace used by eigs. Furthermore, requesting

more than one eigenvalue to converge from eigs also increases the probability that

a proper match will be found when computing the right and left eigenvectors at every

iteration of SVSAR, which involves two separate calls to eigs.

Unlike the results in [KV14] where psapsr was used, the results here neither use

the psapsr code implementing the algorithm of [GO11] nor use the svsar routine

included with hinfnorm [Hin]. Instead, the routines from the new hybrid expansion-

contraction (HEC) codebase were employed for these experiments, which is a complete

rewrite of psapsr and svsar (see Chapter 5.1 for details). As the implementation of

HEC uses an object-oriented design intended for large-scale use, the interpretation speed

of the code may be noticeably slower than either psapsr and svsar on small-scale
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test problems.

As a result of the differences in both initialization and the different codes used,

the relative timing results reported here for SVSAR compared to the running times for

subspace pspa are not necessarily comparable to the results reported in [KV14].

Additionally, the timings and iteration counts for all the algorithms reported here do not

include the cost of computing λ0 for initialization.

Regarding the new vector extrapolation technique for accelerating SVSAR, experi-

ments were run with it completely disabled as a baseline and then with it enabled where

vector extrapolation was attempted every five iterates, using only the previous five iter-

ates. Attempting extrapolation every five iterates, using the previous 10 iterates, as well

as attempting extrapolation every 10 iterates, using the previous 20 iterates, were also

explored. While these variants were also successful in providing acceleration, in general

they were not as effective as extrapolating every five iterates using just the previous five

iterates (probably due to their decreased opportunity to extrapolate) and we thus do not

report the detailed results.

Besides reporting the running times and iteration counts for each algorithm, we ad-

dress the accuracy of their solutions. For the small-scale problems in Tables 4.1 and

4.2, where it is computationally tractable to compute the true value of the pseudospec-

tral abscissa via the criss-cross algorithm [BLO03], we use pspa [Psp] to assess the

relative differences in the computed solutions by each algorithm from the actual value

given by pspa. For the large-scale problems in Table 4.3 where it is not feasible to use

pspa, we instead report per problem relative differences for each algorithm’s solution

compared to the largest value reported for the pseudospectral abscissa amongst the three

algorithms.

Fom the results contained in Tables 4.1 for the special case of pseudospectra, we
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SVSAR Acceleration Comparison: Small-scale ‖∆‖ = 10−2

SVSAR SVSAR + E SPSA

Problem (n = 100) Rel. Diff. Iters. Sec. Rel. Diff. Iters. Sec. Rel. Diff. Iters. Sec.

airy(n) -2×10−12 12 0.91 -3×10−13 12 1.06 -3×10−13 4 0.16
basor(n) -6×10−15 5 0.44 -6×10−15 5 0.43 -8×10−15 3 0.15
boeing(’O’) -6×10−11 285 7.11 -2×10−12 125 3.68 5×10−12 17 0.54
boeing(’S’) -1×10−11 102 3.18 -1×10−11 102 3.57 6×10−12 15 0.44
chebspec(n) -1×10−12 64 5.64 4×10−12 17 2.46 1×10−11 9 0.31
convdiff(n) -1×10−11 204 15.07 -4×10−12 27 3.16 -6×10−13 7 0.24
davies(n) -1×10−15 2 0.14 -1×10−15 2 0.15 -1×10−15 2 0.11
frank(n) -2×10−12 59 6.55 -2×10−16 11 1.57 6×10−14 9 0.30
gaussseidel({n,’C’}) -2×10−12 32 4.81 -1×10−12 19 3.31 2×10−15 3 0.18
gaussseidel({n,’D’}) -3×10−12 55 8.26 3×10−15 22 4.35 0 7 0.35
gaussseidel({n,’U’}) -3×10−11 487 76.35 -1×10−11 33 5.92 4×10−15 6 0.25
grcar(n) -2×10−11 424 44.14 -8×10−12 28 3.45 -5×10−15 7 0.34
hatano(n) -4×10−13 15 1.70 -7×10−15 12 1.60 4×10−15 5 0.18
kahan(n) -2×10−12 51 5.07 -1×10−13 18 2.06 -3×10−15 6 0.25
landau(n) -2×10−14 5 0.27 -2×10−14 5 0.28 -7×10−16 3 0.11
orrsommerfeld(n) -3×10−11 58 6.26 -2×10−11 28 4.20 -2×10−11 8 0.54
random(n) -3×10−15 7 1.19 -3×10−15 7 1.38 -4×10−15 4 0.29
randomtri(n) -3×10−12 62 8.41 -4×10−12 56 8.81 1×10−15 9 0.49
riffle(n) -1×10−12 37 2.75 -2×10−12 25 2.15 -6×10−15 6 0.25
transient(n) -5×10−11 168 28.01 -9×10−12 14 2.66 -2×10−15 8 0.54
twisted(n) -2×10−15 5 0.71 -2×10−15 5 0.72 2×10−15 4 0.26

TABLE 4.1: SVSAR denotes the implementation from the HEC code while E denotes that vector extrapo-

lation is additionally enabled. SPSA denotes the 0.2 version of subspace pspa. Rel. Diff. denotes the

relative difference of each algorithm’s computed value calculated compared to the true value calculated

by pspa.m.

generally conclude that the SVSAR vector extrapolation method is indeed highly effec-

tive at mitigating the potential cost of the slow linear convergence rate of the subroutine

and we note that we typically observe such beneficial effects across most of the prob-

lems. However, vector extrapolation still does not quite meet the stellar convergence

rate of the subspace acceleration method suggesting that extension of the subspace ac-

celeration technique to the case of generic spectral value sets, if possible, could have

substantial impact on improving SVSAR, even compared to when vector extrapolation

is enabled.
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SVSAR Acceleration Comparison: Small-scale ‖∆‖ = 10−4

SVSAR SVSAR + E SPSA

Problem Rel. Diff. Iters. Sec. Rel. Diff. Iters. Sec. Rel. Diff. Iters. Sec.

airy(100) −1× 10−13 3 0.32 −1× 10−13 3 0.33 −3× 10−13 4 0.28
airy(200) −2× 10−13 3 1.35 −2× 10−13 3 1.35 1× 10−11 5 1.46
airy(300) −3× 10−13 3 3.41 −3× 10−13 3 3.41 1× 10−11 4 2.74
grcar(100) −3× 10−11 429 45.28 −1× 10−12 22 2.75 2× 10−14 10 0.37
grcar(200) −5× 10−11 855 430.07 −2× 10−14 33 20.10 −2× 10−14 8 1.07
grcar(300) −6× 10−10 1000 1218.89 −8× 10−14 33 54.77 −4× 10−14 8 2.60
landau(100) −3× 10−15 2 0.10 −3× 10−15 2 0.11 −4× 10−16 2 0.08
landau(200) −3× 10−15 2 0.63 −3× 10−15 2 0.65 9× 10−16 2 0.40
landau(300) 8× 10−16 3 2.20 8× 10−16 3 2.20 2× 10−15 3 1.11

TABLE 4.2: SVSAR denotes the implementation from the HEC code while E denotes that vector extrapo-

lation is additionally enabled. SPSA denotes the 0.2 version of subspace pspa. Rel. Diff. denotes the

relative difference of each algorithm’s computed value calculated compared to the true value calculated

by pspa.m.

Still, in Table 4.3, we see that the potential expense of solving a large linear system

can be problematic. For sparserandom(10000), the cost of the sparse LU is so

significant that subspace pspa ends up being over 558 times slower than SVSAR.

Even in the experiments of [KV14], where a dimension of 1000 was used for this prob-

lem, subspace pspa was still reported to be about 10 times slower than the SVSAR

algorithm. Of course, sparserandom is an extremely poor candidate for efficient

sparse LU factorization, as its structure is generated randomly and thus fill-in is high.

However, the authors of [KV14] also report faster running times for SVSAR compared

to subspace pspa on problem skewlap3d(30). Though the results in Table 4.3

do not immediately reflect that conclusion, that appears to only be a consequence of the

adversarial initialization strategy used to increase the number of SVSAR iterations for

the test set. In Table 4.3, we indeed see that subspace pspa actually incurs a much

higher cost with respect to CPU time per iteration compared to SVSAR, indicating that

a sparse LU factorization is also somewhat expensive for skewlap3d(30).
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SVSAR Acceleration Comparison: Large-scale ‖∆‖ = 10−2

SVSAR SVSAR + E SPSA

Problem Rel. Diff. Iters. Sec. Rel. Diff. Iters. Sec. Rel. Diff. Iters. Sec.

dwave(2048) −4× 10−12 41 12.69 0 30 11.29 −3× 10−15 3 1.90
convdiff fd(10) −3× 10−11 304 78.21 −3× 10−12 60 30.27 0 9 0.82
markov(100) −2× 10−7 1000 1297.27 −2× 10−10 46 74.05 0 6 6.02
olmstead(500) 0 3 3.51 −5× 10−14 3 3.52 −9× 10−14 2 0.44
pde(2961) −9× 10−14 11 3.18 −9× 10−14 11 3.81 0 4 2.79
rdbrusselator(3200) −1× 10−13 4 3.95 0 4 3.18 −8× 10−14 2 2.37
sparserandom(10000) −2× 10−15 5 1.27 0 5 1.02 −1× 10−14 4 569.54
skewlap3d(30) −4× 10−10 200 859.38 0 27 193.42 −3× 10−11 10 128.80
supg(20) −5× 10−11 119 5.41 −6× 10−12 69 3.79 0 6 0.12

HF2D9 −2× 10−13 3 1.41 0 3 1.63 −2× 10−13 2 1.02
HF2D IS2 M529 0 3 0.28 −3× 10−15 3 0.27 −2× 10−14 3 0.15
HF2D IS4 M484 −8× 10−15 3 0.15 0 3 0.26 −9× 10−15 2 0.07
HF2D CD3 M576 −1× 10−15 3 0.25 −2× 10−15 3 0.25 0 3 0.14
HF2D IS4 −1× 10−14 2 1.05 −1× 10−14 2 1.11 0 2 1.09
HF2D CD3 −2× 10−15 3 2.63 0 3 2.57 −1× 10−14 3 2.29

TABLE 4.3: SVSAR denotes the implementation from the HEC code while E denotes that vector extrapo-

lation is additionally enabled. SPSA denotes the 0.2 version of subspace pspa. Rel. Diff. denotes the

relative difference of each algorithm’s computed value calculated compared to the largest value computed

by the three variants.

In Table 4.1, we observe that boeing(’O’) and boeing(’S’) seem to be par-

ticularly challenging problems. For boeing(’O’), enabling vector extrapolation is

only able to reduce the 285 iterations normally needed for SVSAR to converge to 125,

which is a considerable improvement but nonetheless still a quite large number of it-

erations. Even worse is the performance on boeing(’S’), where vector extrap-

olation fails to eliminate even one of the 102 iterations of SVSAR. By comparison,

subspace pspa is able to converge to the same level of accuracy in just 17 and 15

iterations respectively for these two examples. As we observe in Figure 4.2, the inability

of vector extrapolation to be very effective for these problems seems to stem from the

fact the sequence of iterates produced by SVSAR is both oscillating and quite irregular.

Unfortunately simple smoothing measures, such as averaging consecutive pairs of vec-

tors or only using the odd or even numbered vectors for extrapolation, were completely
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FIGURE 4.2: Left: Iterates of SVSAR on boeing(’0’) in grey. Right: Iterates of subspace pspa

on boeing(’0’) in orange. Each panel depicts the region of the pseudospectral boundary for pertur-

bation level ε = 10−2 in blue while the final point that each method converges to is indicated by a green

circle. Note that the methods converged to conjugates of each other and thus returned the same value for

the pseudospectral abscissa.

ineffective in improving the extrapolation results for either Boeing problem.

4.3 Improvements to the line search for monotonicity

Recall the continuous matrix family

N(t) = A+B∆̃(t)C where ∆̃(t) =
εu(t)v(t)∗

1− εv(t)∗Du(t)

with

u(t) =
tuk + (1− t)uk−1
‖tuk + (1− t)uk−1‖

and v(t) =
tvk + (1− t)vk−1
‖tvk + (1− t)vk−1‖

,

and uk, uk−1 ∈ Cp and vk, vk−1 ∈ Cm are all fixed. Let (λk−1, xk−1, yk−1) be an RP-

compatible eigentriple where λk−1 is rightmost eigenvalue of N(0) and let λk−1(t) de-

fined on the interval [0, 1] be the continuous path of eigenvalues ofN(t) emanating from

λk−1(0) = λk−1 and ending at some point λk−1(1). By standard eigenvalue perturbation
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theory we have

λ′k−1(0) :=
dλk−1(t)

dt

∣∣∣∣
t=0

=
y∗k−1N

′(0)xk−1

y∗k−1xk−1
=

ψk
y∗k−1xk−1

,

where ψk is defined in (2.12). Recalling that the sign of ψk can be flipped by flipping

both the signs of uk and vk, assuming ψk 6= 0, it is ensured that one can always find a

value tm ∈ (0, 1) such that Re (λk−1(tm)) > Re (λk−1(0)) holds, thereby ensuring the

monotonicity of the iterates of SVSAR.

One practical concern not addressed in [GGO13] is that if Re (ψk) defined is small

in magnitude, its sign may not be accurate and thus Procedure 3 may subsequently fail

no matter how much it reduces t from one to zero. If Procedure 3 fails or perhaps even

just fails in the first few reductions of t, it seems prudent to just reattempt the line search

with uk = −uk and vk = −vk rather than rely on some arbitrarily prescribed tolerance

on Re (ψk) when it is too small for its sign to be trusted. In practice, it is more efficient

to perform both line searches in parallel and to terminate as soon as one of the searches

yields a rightward step for some reduced value of t.

A second practical concern is that the backtracking bisection strategy of Procedure 3

can be slow. It is first worth noting that the line search is typically not invoked for most

of the iterates of SVSAR, if at all, depending on the problem. Most often, the line search

is only called on the last few iterates or even just the last iterate, where the failure of

the line search indicates that SVSAR has indeed converged to a locally rightmost point.

As a consequence, the cost of the backtracking line search is usually not a dominant

factor in the running time of SVSAR. Nonetheless, it is still a cost that can most likely

be mitigated by using a quadratic or cubic line search model [NW06, Chapter 3.5] to

dynamically determine the amount of reduction for t at each iteration in Procedure 3 in
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lieu of the bisection strategy. That is, let

f(t) := Re (λk−1(t))

be defined for t ∈ [0, 1] and let {tk} denote the sequence of t values computed by

Procedure 3. At the start of the routine, t1 = 1 and we correspondingly have the values

of f(0), f ′(0) and f(1). In lieu of a bisection step, we can alternatively construct an

interpolating quadratic function and set t2 to its maximizer. In practice, we must check

that the maximizer resides in (0, 1) and resort to a bisection otherwise, which can happen

if ψk is very small in magnitude and possibly has an incorrect sign. If f(t2) > 0 does not

hold then, at every subsequent iteration, the values of f(0), f ′(0), f(tk−1) and f(tk−2)

are available and we can either construct an interpolating quadratic using f(0), f ′(0) and

f(tk−1) or alternatively, an interpolating cubic using f(0), f ′(0), f(tk−1) and f(tk−2),

and subsequently take the best maximizer of either that resides in (0, 1) for tk. We

present brief results in Section 5.3.3 comparing the effect of using cubic models or

standard bisection steps in the line search.

Remark 4.2. Note the goal of the line search is to merely find any acceptable tm ∈
(0, 1) such that Re (λk−1(tm)) > Re (λk−1(0)) holds, as opposed to trying to maxi-

mize Re (λk−1(t)). It is unclear whether there would be a net benefit to maximizing

Re (λk−1(t)) since the next step of SVSAR may produce a more rightward point, possi-

bly without requiring the line search.

Remark 4.3. It is also possible to construct a cubic line search search model for the

initial reduction step but it requires that we derive an analogous value to ψk for N ′(1)

to provide the value of f ′(1), which is a is a straightforward calculation since it is

symmetric in the sense that derivative is taken at λk instead of λk−1. Furthermore, we
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may alternatively construct cubic models using f(tk−1) and f ′(tk−1) at any iteration in

the line search, as opposed to using f(tk−1) and f(tk−2) and it is possible that these

would be better models. However, obtaining f ′(t) for t ∈ (0, 1) is somewhat more

complicated algebraically. As we feel that using already quadratic or cubic models as

stated in lieu of bisection in the line search is already a rather minor optimization, we

do not investigate either of these additional options here.

4.4 A randomized variant of SVSAR

Let ε ∈ R++ with ε‖D‖ < 1 and uk−1 ∈ Cp and vk−1 ∈ Cm with ‖uk−1‖ = ‖vk−1‖ = 1

and let (λ, xk−1, yk−1) be an RP-compatible eigentriple of M(εuk−1v
∗
k−1). Given an-

other fixed pair of vectors uk ∈ Cp and vk ∈ Cm defining M(εukv
∗
k) with ‖uks‖ =

‖vk‖ = 1, we note that ψk as defined in (2.12) allows for an exceptionally cheap com-

putation of the derivative of real part of λ as it is “pushed” by smoothly changing its

corresponding matrix M(εuk−1v
∗
k−1) to M(εukvk) (see Section 2.2 for details). As a

consequence, a natural question to ask is whether Procedure 2 is actually necessary for

a viable SVSAR method. That is, given uk−1 and vk−1, we may instead consider ran-

domly sampling rank-1 updates (normalized so that each random vector has norm one)

and take the one which most maximizes |ψk|. It seems likely that doing so won’t neces-

sarily produce an as large of step as compared to what is produced by Procedure 2 but as

long as ψk is not zero for at least one of the randomly generated samples, then progress

can still be made. Though we expect this might be a slow method, it may however be

quite robust. Furthermore, we can typically evaluate ψk many many times and all more

cheaply than doing a single eigenvalue solve.

We briefly consider this approach, presented here for two selected small randomly
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generated examples, as shown in Figure 4.3, though we have successfully used a ran-

domized approach on many more examples. The only difference between the regular

SVSAR method and the randomized version is that Procedure 2 is replaced by a loop

that randomly generates rank-1 perturbations of unit norm and evaluates ψk, and then

returns the best perturbation found, that is, the one which maximizes |ψk|. We attempted

various number of samples to be generated and found that even as few as 20 samples

was often enough to achieve high accuracy for converging to a locally rightmost point.

However, the randomized method can be excruciatingly slow and often requires that the

step size tolerance be set extremely low (e.g. to machine precision) for the random-

ized method to achieve full accuracy (though occasionally the randomized method is

more accurate than the regular method). As we can visually gather from Figure 4.3,

the randomized method is indeed taking much smaller and more numerous steps before

terminating. Interestingly though, in both examples, we observe that the randomized

method is actually able to push out of stationary points, even a locally rightmost point,

though this latter case is quite exceptional. Though not shown, we have also observed

cases where the regular SVSAR method can stagnate at a point in the interior of the

spectral value set while the randomized version can reliably push beyond that same

point. It thus suggests that although the randomized variant is slow, it might perhaps be

used sparingly in concert with the regular SVSAR method to increase robustness and

encourage convergence to globally rightmost points.
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FIGURE 4.3: Each panel shows a small randomly generated continuous-time spectral value set example,

with the left panel showing a spectral value set for real-valued system and the right panel showing a

portion of the spectral value set for a complex-valued system. The spectral value set boundaries are

shown in grey and the eigenvalues of A are shown as black dots. The blue lines depict the progress of

the regular SVSAR method while the red lines depict the progress of the randomized SVSAR routine. The

crosses for each depict the actual iterates of both methods.
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5
HYBRID EXPANSION-CONTRACTION IN

PRACTICE

5.1 Implementation

Our new hybrid expansion-contraction algorithm, along with the vector extrapolation

acceleration technique and the ability to scale up to large-dimensional D matrices, has

been implemented from scratch in MATLAB. There are also several additional opti-

mizations realized in the new code as well. The first improvement is that the code is

now written such that it stores the state of all relevant computations so that none of

them need to be redone, for instance when switching between contraction and expan-

sion. Furthermore, our new code minimizes the number of matrix-vector products, most

notably by precomputing Buk and v∗kC and then utilizing the resulting vectors in the

function that multiplies a vector by M(εukv
∗
k) to be used with an iterative eigenvolver

such as eigs so that we don’t form the matrix explicitly, which would cause fill-in.

Thus, the number of matrix-vector products involving B,C and D is typically about

double the number of eigentriples calculated during the course of the algorithm. By

contrast, for hinfnorm, the number of multiplies involving matrices B,C and D is

the same as the number of multiplies with A, which is approximately the sum of the

iterations each call to eigs requires to converge for every eigentriple calculated. As

the optimizations in Section 4.1 allow the algorithm to scale to cases where p,m are

both large, the reduction in matrix-vector products should provide an additional tangi-

ble benefit for high-dimensional problems and accordingly, our new code now supports
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A,B,C and D to each be given as function handles. Lastly, as the algorithm is generat-

ing a converging sequence of matrices, our new code now optionally supports recycling

the previous eigenvectors corresponding to the rightmost (or outermost) eigenvalue, or

if k > 1 eigenvalues have been requested, one may also choose to use the average of

all the eigenvectors returned by eigs as the initial vector for the next eigenproblem to

solve. Either option can potentially help reduce the number of iterations required in the

implicitly restarted Arnoldi method used by eigs.

As a result of the additional complexity of all these configurable features, we have

elected to implement the new algorithm using an object-oriented architecture. However,

we have facilitated this by not actually using true classes but instead via liberal use of the

nested function feature in MATLAB, with the hope that MATLAB’s code interpretation

overhead would be lower with this approach than using full-blown objects, though we

have not done a comparison. In any case, we thus expect the interpretation speed of

our new code to be slower than hinfnorm, but this difference should have a negligible

effect on large-scale problems.

Another departure from hinfnorm is that we use our implementation of a hybrid

Newton-bisection routine for the contraction procedure instead of rtsafe, though we

use the same heuristic from rtsafe to choose when to switch to a bisection step.

5.2 Tolerances

We now describe the main tolerance criteria necessary to realize a practical implemen-

tation of hybrid expansion-contraction. For Procedure 4, we set the expansion to ter-

minate if Re (λk) − Re (λk−1) < τuv|Re (λk)|, for some small user-provided tolerance

τuv ∈ R++, where λk are iterates of Procedure 4 in this context. Thus, once the step size

83



for updating vectors uk, vk shrinks to a negligible amount, contraction will begin again.

For the contraction-phase, since hybrid expansion-contraction requires all iterates to re-

main strictly in the right half-plane, finding the root of α(Muv(·)) to some tolerance is

potentially problematic since it could result in a solution just slightly in the left half-

plane. To address this, we instead have the Newton-bisection routine find the root ε̂k of

α(Muv(·))− 0.5τε for some small user-provided tolerance τε ∈ R++ and have it termi-

nate when |α(Muv(ε̂k))− 0.5τε| < 0.5τε. By doing so, we ensure a contracted value ε̂k

such that 0 < α(Muv(ε̂k)) < τε. Furthermore, we also set the Newton-bisection itera-

tion to terminate the contraction process if ε̂k < τεεk and α(Muv(ε̂k)) > 0 is satisfied.

Lastly, the contraction routine keeps track of the most contracted value of ε̂k such that

α(Muv(ε̂k)) > 0 is satisfied and will return that best encountered value of ε̂k. In the case

that all the subsequent iterates in the Newton-bisection iteration are in the left half-plane

though possibly closer to the imaginary axis, hybrid expansion-contraction can at least

continue with some amount of contraction while remaining in the right half-plane, even

if its termination tolerances were not satisfied.

The hybrid expansion-contraction algorithm described in Procedure 5 is set to ter-

minate once it can no longer make progress contracting and expanding via tolerances

τε and τuv respectively. We thus terminate hybrid expansion-contraction when either

both methods fail to make any progress consecutively, in either order, or if for λuv pro-

duced by SVSAR, Re (λuv) < τε + τuv holds. The latter condition is necessary since

SVSAR will typically always at least take a single step, assuming the line search of

Procedure 3 doesn’t fail. If we were to set the tolerance condition any tighter, hybrid

expansion-contraction might take a long sequence of alternating expansion-contraction

steps where SVSAR only is able to take a single step of exceedingly small step size less

than τε while the contraction phases fail to reduce εk any further.

84



Remark 5.1. The tolerance criteria for the discrete-time case is described analogously

by replacing Re (λk)− Re (λk−1) < τuv|Re (λk)| by |λk| − |λk−1| < τuv|λk|, changing

the condition α(·) > 0 to ρ(·) > 1, and finally changing Re (λuv) < τε + τuv to |λuv| <
1 + τε + τuv.

5.3 Numerical results

In order to evaluate hybrid expansion-contraction relative to version 1.02 of hinfnorm,

we ran experiments using the small and large-scale test sets contained in [GGO13] and

present the data in the aggregate. Of these 34 small-scale continuous and discrete-

time problems, we discarded the results from ROC2 due to hinfnorm encountering a

platform-specific bug with eig (not eigs) when running on this particular problem.

Though we were able to run hinfnorm successfully on ROC2 using a Mac, the timings

would not have been comparable to the rest of the data computed on our Linux machine.

As a consequence, the test sets we use here comprise a set of 33 small-scale problems

and a second set of 14 large-scale problems. All experiments were done using MATLAB

R2014a running on a single-user desktop with Ubuntu 14.04 (64-bit) and an Intel i7-

3770K CPU with 8 GB of RAM.

For our hybrid expansion-contraction code, which we abbreviate HEC, we used τε =

10−10 and τuv = 10−12 for its termination tolerances. Correspondingly for hinfnorm,

we reused τε for rtsafe’s tolerance and τuv for SVSAR. We allowed HEC to take a

maximum of 100 iterations to find an upper bound using Procedure 6 and similarly let

the hybrid expansion-contraction convergent phase also have up to 100 iterations. As

hinfnorm doesn’t provide a user option to individually set max iteration limits for

the upper bound and Newton-bisection phases separately, we set its max iteration limit

85



to 200. Both HEC and hinfnorm were set such that SVSAR could take up to 1000

iterations per call.

Remark 5.2. The rtsafe code used by hinfnorm to perform the Newton-bisection

iteration makes no check upon how close the function value is to zero. Instead, it merely

terminates once progress in εk has slowed but this is no guarantee that hinfnorm

has converged to a point on or acceptably near the imaginary axis. As a consequence,

hinfnorm may terminate at a point significantly farther away from the imaginary axis

and we observe this in practice on some problems. For evaluative purposes, it isn’t

so problematic if hinfnorm terminates while at a locally rightmost point in the right

half-plane, since doing so will simply lower the reported approximation to ‖G‖∞ and

thus its results reflect that is hasn’t converged in these cases. If it instead terminates

at a locally rightmost point that is in the left-plane to a significant degree, hinfnorm

will incorrectly report a value of ‖G‖∞ that may in fact be too large. Thus, we consider

hinfnorm to have failed if its last locally rightmost point λk found satisfies Re (λk) <

−100τε (or |λk| < 1 − 100τε for the discrete-time problems). We could have modified

hinfnorm using analogous conditions to the ones described in Section 5.1 for HEC

but that would have been at odds with our goal of making a baseline comparison with

HEC.

For HEC, we employ the new dual line-search technique discussed in Section 4.3,

though we set it to only be adaptively invoked when the absolute value of (2.12) falls

below 10−10. Likewise for HEC only, we evaluated vector extrapolation using sets of

5, 10 and 20 vectors and similarly evaluated the effect of enabling early contraction

via enabling the relative step size termination tolerance discussed in Section 3.3 using

relative tolerances of 10−2, 10−4, 10−6 and 10−8. However, we only report the results
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from extrapolation with 5 vectors and a relative step size tolerance of 10−2 since they

provided the best performance on the test sets used here.

5.3.1 Upper bound method variants

In order to measure how efficient Procedure 6 is for finding upper bounds compared to

the strategy employed by hinfnorm, we ran both methods on the small-scale problems

and counted the total number of computed eigentriples that each method required to

compute their upper bounds for all the problems in the test set. As we expected, we

see in Table 5.1 that indeed Procedure 6 is exceptionally fast, requiring a total of just

121 computed eigentriples to find all 33 upper bounds and furthermore, that number

also includes calculating the rightmost or outermost eigenvalue of A for each of those

problems, which is not necessary if the user initializes the routine with any acceptable

nonzero perturbation ∆0 = ε0u0v
∗
0 . In stark contrast, hinfnorm’s bounding phase

required computing a total of 5606 eigentriples.

Despite its efficiency however, Procedure 6’s lazy upper bound approach appears to

come at a steep penalty in terms of the number of worse (lower) local maximizers HEC

ultimately converges to and in fact, we observe this consistently for enabling the lazy

upper bound option across all the upper bound variants. As a consequence, for HEC,

we thus always use Procedure 6 to first quickly find an upper bound on ε?, followed

by single SVSAR call to subsequently expand out as much as possible via updating the

perturbation vectors uk and vk before commencing hybrid expansion-contraction. While

it is not nearly as fast as Procedure 6 alone, the total of 2507 computed eigentriples to

produce upper bounds for the 33 problems in the data set is still a significant reduction

compared to all the other non-lazy upper bound approaches, since we avoid calling

87



SVSAR more than once per problem as compared to the other methods. Furthermore,

Procedure 6 coupled with SVSAR to find an upper bound appears to also be nearly the

best in terms of the number of good quality approximations HEC ultimately converges

to on the data set.

Remark 5.3. A possible explanation for why initializing HEC from a lazy upper bound

seems to cause convergence to an overall greater number of worse (lower) local maxi-

mizers is that, at a general level, the number of locally rightmost points of σε(A,B,C,D)

tends to decrease as ε increases, and sometimes it decreases to just one. Consider the

panels of Figure 2.2, where we see that the loss of a locally rightmost point of the spec-

tral value set for ε = 0.1 in the top-right panel causes the GGO algorithm to break

down. Now, suppose Procedure 6 has found a point in the upper right region of the

spectral value set in the right half-plane for ε = 0.1, near where SVSAR begins its

iteration. If SVSAR is called immediately after Procedure 6, then it is likely that HEC

will converge to the globally rightmost point on the imaginery axis for this problem,

as is shown in top-right panel for the GGO algorithm. However, if the initial contrac-

tion phase is begun immediately after Procedure 6, then it seems very likely that HEC

will instead converge to the topmost only locally rightmost point on the imaginary axis

of the spectral value for some value ε?̃ slightly less then 0.09, as we can see from the

bottom-left panel.

88



Comparison of Upper Bound Methods for HEC: Small-scale

Totals for U.B. # Rel. Diff. to ‖G‖∞
U.B. Alg. εk uk, vk λRP 10−8 10−6 10−4 S

NB 124 n/a 5606 18 22 25 30
HEC + D 105 3063 3809 22 26 29 33
HEC + D,W 105 3036 3775 21 26 29 33
HEC + D,L 105 216 670 17 22 27 33
HEC + S 95 2972 3416 21 26 29 33
HEC + S,W 95 2953 3361 21 25 29 33
HEC + S,L 95 180 417 18 23 27 33
HEC + A 99 2160 2507 21 25 29 33
HEC + A,L 99 22 121 16 22 26 33

TABLE 5.1: NB denotes the hinfnorm code while HEC is the implementation of hybrid-expansion

contraction coupled with the following upper bound procedures (described for the continuous-time case;

replace all occurrences of “rightmost” with “outermost” for the corresponding discrete-time versions):

D is a new implementation of the “doubling of εk” strategy employed by hinfnorm based off suc-

cessively computing locally rightmost points, S is a similar strategy but instead increases εk by taking

double the Newton step with respect to each locally rightmost point computed, while A specifies using

Procedure 6 to warm-start a single call of SVSAR so that the first contraction phase not only commences

outside the stability region but also typically at a locally rightmost point. For variants D and S, option W

specifies warm-starting the next SVSAR call via the previously computed locally rightmost point. Option

L specifies enabling a lazy upper bound, whereby any of the procedures immediately terminate as soon

as they encounter an iterate outside the stability region. The case of A,L implies that just Procedure 6

is called to find an upper bound without the followup SVSAR call, meaning the first contraction phase

typically contracts a point already in the interior of the initial spectral value set but still outside of the

stability region. Totals for U.B. lists the number of updates to the perturbation level εk, the number of up-

dates to the perturbation vectors uk, vk, and λRP is the number of eigentriples computed in the course of

finding upper bounds for all the problems. The columns # Rel Diff to ‖G‖∞ show the number of problems

a given algorithm successfully converged on to these varying degrees of precision with respect to the true

value. S is the number of problems that a particular code successfully converged on, solely according to

the convergence failure criteria of Remark 5.2.

89



5.3.2 Small-scale evaluation

In order to numerically validate our new hybrid expansion-contraction method, we con-

sider the number of approximations computed by HEC over the test set that agree to

varying levels of precision with respect to the true value of the H∞-norm for each prob-

lem, as computed by MATLAB’s getPeakGain. We consider these counts at multi-

ple levels of precision since HEC and hinfnorm may only find local maximizers in

some cases. We compute the relative differences of the approximations compared to the

value computed by getPeakGain given a tolerance of 10−10. For a precision level

of 10−8, we count the number of approximations that are either strictly greater than the

value computed by getPeakGain or have a relative difference of at most 10−8. We

also tabulate counts for precision levels of 10−6 and 10−4. However, for the counts for

hinfnorm, we do not include any result that satisfies the failure-to-converge condi-

tion described in Remark 5.2 (there are three such problems in the small-scale test set:

ROC3, AC17 and AC6). We note that as long as HEC finds an upper bound, which it

did successfully for all the problems, HEC cannot fail in this way.

In Table 5.2, we see that HEC is nearly two and half times faster than hinfnorm at

going through the entire test set and furthermore, HEC mostly finds find good approxi-

mations to ‖G‖∞. Enabling vector extrapolation on HEC shows a dramatic reduction in

the number of eigentriples calculated over the test set but because these are small scale

problems, it does not fully translate to a correspondingly large reduction in total CPU

time. It appears that enabling extrapolation also pushed the convergence of a couple

problems to different local maximizers but that is not to be unexpected as different op-

tions are enabled in the code. Enabling the relative step size termination condition in

SVSAR for HEC also dramatically reduces the number of computed eigentriples, allow-
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HEC Overall Performance: Small-scale

Totals # Rel Diff to ‖G‖∞
Alg + Opts λRP sec 10−8 10−6 10−4 S

NB 32112 465.49 18 22 25 30
HEC 16665 199.99 21 25 29 33
HEC + E 9708 168.71 19 23 28 33
HEC + RS 10565 99.70 21 25 28 33
HEC + E,RS 6767 89.64 21 25 28 33

TABLE 5.2: NB denotes the hinfnorm code while HEC is the implementation of hybrid-expansion

contraction with upper bound Procedure 6 followed by a single call to SVSAR to expand out before the

first contraction phase. E denotes that vector extrapolation is enabled and RS denotes that the relative

step size termination tolerance is enabled for SVSAR with a value of 10−2. λRP is the number of

computed eigentriples. The columns # Rel Diff to ‖G‖∞ show the number of problems a given algorithm

successfully converged on to these varying degrees of precision with respect to the true value. S is the

number of problems that a particular code successfully converged on, solely according to the convergence

failure criteria of Remark 5.2.

ing HEC to complete the test set over four and half times faster than hinfnorm, while

additionally enabling extrapolating increases the speedup factor to over five. As there is

a high amount of variability in the test set, the totals shown in Table 5.2 are only so in-

formative and thus we provide average, median, and range data on the relative speedup

per problem with respect to the number of eigentriples computed and with respect to the

CPU running time in Table 5.3. We see that HEC with the relative step size termination

option enabled is up to nearly 47 times faster (on CSE2) in terms of CPU time and when

vector extrapolation is also enabled, we see that speedup per problem ranges from ap-

proaching twice as fast to almost five times as fast compared to hinfnorm as reported

by the median and average respectively.
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Per-Problem Speedups of HEC Relative to hinfnorm: Small-scale

w.r.t. # of Computed λRP w.r.t. CPU Time

Opts Avg Med Range Avg Med Range

- 2.25 1.32 [0.16, 16.22] 1.20 0.72 [0.19, 5.47]
E 4.47 2.64 [0.21, 21.89] 2.27 1.13 [0.22, 11.71]
RS 9.19 3.12 [0.26, 169.93] 3.55 1.20 [0.30, 46.87]
E,RS 12.38 3.45 [0.26, 169.93] 4.71 1.71 [0.18, 45.41]

TABLE 5.3: Average, median and range of per-problem speedups with respect to number of eigentriples

λRP computed and the CPU time required for each problem.

5.3.3 Large-scale matrices

We present analogous data to the small-scale results in Tables 5.4 and 5.5 for the large-

scale test set, with the following notable exceptions. First, as we cannot tractably com-

pute the true value of ‖G‖∞ for these large-dimensional problems, we instead use the

largest approximation computed from all the methods for each problem as a surrogate

to compute the relative differences used in tabulating how many approximations for a

given method agreed to a given level of precision with the best of the results calculated.

Second, as these matrices are all large, we use eigs with its default options to com-

pute the rightmost or outermost eigentriples but with 8 eigenvalues requested per call to

eigs (done for the right and left eigenvectors separately), to be consistent with the ex-

periments in [GGO13]. We also additionally evaluated both eigenvector recycling types

that are optionally available in our code to attempt to lessen the number of iterations

eigs requires. Both seemed to have a beneficial effect with respect to run-times on

the large-scale test set but we only report the results for recycling the average of the

k computed eigenvectors from the previous computed eigentriple, as it outperformed

recycling just the previously selected eigenvector. We also note that hinfnorm again
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fails to converge on a problem in the test-set (skewlap3d), according to the criterion

in Remark 5.2.

HEC Overall Performance: Large-scale

Totals # Rel Diff to Best

Alg + Opts λRP sec 10−8 10−6 10−4 S

NB 4196 20920 11 11 11 13
HEC 2338 3756 9 10 12 14
HEC + V 2336 2362 10 11 13 14
HEC + E 636 1504 10 12 13 14
HEC + E,V 690 1110 10 11 13 14
HEC + RS 861 1046 9 10 11 14
HEC + RS,V 849 919 10 11 12 14
HEC + E,RS 700 960 9 10 11 14
HEC + E,RS,V 794 841 11 12 13 14

TABLE 5.4: NB denotes the hinfnorm code while HEC is the implementation of hybrid-expansion

contraction with upper bound Procedure 6 followed by a single call to SVSAR to expand out before the

first contraction phase. E denotes that vector extrapolation is enabled and RS denotes that the relative

step size termination tolerance is enabled for SVSAR with a value of 10−2. V denotes that eigenvector

recycling is enabled such that the initial vector for eigs is set to the average of the k = 8 requested

eigenvectors computed by eigs for the previous computed eigentriple. λRP is the number of computed

eigentriples. The columns # Rel Diff to Best show the number of problems a given algorithm successfully

converged on to those varying degrees of precision with respect to the best of the computed values for each

problem. S is the number of problems that a particular code successfully converged on, solely according

to the convergence failure criteria of Remark 5.2.

In Table 5.4, as in the small-scale test set, we find overall that HEC appears to

be successfully converging to good local or possibly global maximizers. Furthermore,

even without any options enabled, HEC completes the entire test set 5.6 times faster

than hinfnorm. Enabling eigenvector recycling results in a 14 − 59% speed boost,

depending on what other options are simultaneously enabled. In contrast to the small-

scale results, the substantial reduction in the number of computed eigentriples over the
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large-scale test set by enabling extrapolation is actually overshadowed by an even larger

reduction in total running time, resulting in an overall speedup factor of 13.9 when com-

pared to the total CPU time of hinfnorm. Enabling eigenvector recycling on top of

extrapolation substantially increases that CPU time speedup factor to 18.8, even though

it actually also increased the number of computed eigentriples by 8.5%. Enabling just

the relative step size termination feature provides an even greater speedup factor of 20.0

times faster, again despite an increase in the number of eigentriples computed compared

to the extrapolation variants. Simultaneously enabling extrapolation, relative step size

termination, and eigenvector recycling allows HEC to complete the large-scale test set

24.9 times faster than hinfnorm. Though we don’t report full results here for addi-

tionally enabling cubic models for the SVSAR line search, as discussed in Section 4.3,

we have found that it does in fact provide a modest performance boost across all the

variants, ranging from a speedup factor of 5.8 times faster for HEC with no options en-

abled to 26.2 times faster for HEC with extrapolation, relative step size termination, and

eigenvector recycling all enabled.

Referring to the per-problem speedup results in Table 5.5, we see that depending on

the problem, HEC with relative step size termination and eigenvector recycling enabled

can be over 82 times faster than hinfnorm (on skewlap3d in the discrete-time prob-

lem set). Judging from the per-problem speedup median values, HEC appears to gen-

erally be two and half times faster than hinfnorm when all acceleration options are

enabled and an order of magnitude faster as reported by the average time per problem.

It is also worth noting that in the worst-case, for problems where HEC is slower than

hinfnorm, the running time is usually only worse by, at most, just under a factor of

two. Comparing the individual approximations computed by HEC to the ones provided

by hinfnorm, at worst we found that HEC only agreed to 2 digits (on the discrete-time
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version of skewlap3d). However, this was far from typical as the median of the com-

puted relative differences compared to the best approximation reported demonstrated

that HEC usually agreed to 11 digits with hinfnorm on the large-scale test set and fur-

thermore, for markov in the discrete-time test set, HEC found an approximation three

times larger than the one found by hinfnorm.

Per-Problem Speedups of HEC Relative to hinfnorm: Large-scale

# of Computed λRP CPU Time

Opts Avg Med Range Avg Med Range

- 3.99 1.33 [0.54, 21.50] 8.80 1.62 [0.41, 57.28]
V 3.56 1.46 [0.51, 18.63] 11.48 2.09 [0.64, 64.86]
E 5.48 1.68 [0.65, 23.29] 9.30 1.72 [0.23, 64.80]
E,V 4.07 1.52 [0.50, 14.81] 13.92 2.20 [0.57, 78.51]
RS 4.94 1.89 [0.50, 25.41] 13.79 2.40 [0.53, 66.41]
RS,V 4.77 2.22 [0.50, 21.50] 15.24 2.55 [0.71, 82.43]
E,RS 5.42 2.21 [0.80, 25.41] 14.51 1.88 [0.52, 66.19]
E,RS,V 5.16 2.05 [0.50, 18.63] 15.77 2.56 [0.75, 75.31]

TABLE 5.5: Average, median and range of per-problem speedups with respect to number of eigentriples

λRP computed and the CPU time required for each problem. See the caption of Table 5.4 for definitions

of HEC options E, RS, and V.

5.3.4 Convergence rates of hybrid expansion-contraction

We now turn to empirically evaluating how fast hybrid expansion-contraction actually

converges in practice, given the worst-case superlinear rate of convergence result proven

in Section 3.2 and the claim that quadratic convergence can also be expected. In Ta-

ble 5.6, we see that on the continuous-time problems pde and rdbrusselator from

the large-scale test set, the sequence of εk values produced by the hybrid expansion-

contraction process indeed appears to be converging quadratically. In reviewing the
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corresponding convergence data for all the other problems tested, we see a similar and

consistent picture of fast convergence.

HEC Rate of Convergence

pde rdbrusselator

k εk εk − ε5 εk εk − ε5
1 0.156550945115623397 1.54× 10−1 0.0012451852810304153 7.10× 10−4

2 0.002744700134015856 3.28× 10−5 0.0005428221115940368 7.58× 10−6

3 0.002711903931832482 3.91× 10−8 0.0005352544476893113 8.11× 10−9

4 0.002711864788294241 1.25× 10−13 0.0005352463336213466 2.77× 10−14

5 0.002711864788169188 0 0.0005352463335936135 0

TABLE 5.6: Observed convergence rate of HEC to its final values of εk for two continuous-time problems

from the large-scale test set.

Per-Problem Convergence of HEC

Small-scale Large-scale

Avg Med Range Avg Med Range

NB Iters 8.21 6.00 [4, 28] 5.79 5.00 [4, 12]
HEC Iters 4.21 4.00 [2, 10] 2.50 2.00 [1, 4]
HEC+RS Iters 5.36 5.00 [3, 14] 2.86 2.00 [1, 5]

TABLE 5.7: Average, median and range of the number of iterations in the NB (Newton-bisection) con-

verging phase of hinfnorm and HEC across the small-scale test set and the large-scale test set.

In Table 5.7, we report the average, median, and range of iterations that hybrid

expansion-contraction incurred to converge over the small and large-scale test sets. On

the small-scale problems, at worst HEC took nine and ten iterations to converge on prob-

lems AC11 and AC6 but upon closer analysis, we observed that HEC in fact resolved

the first eight digits of each approximation within four iterations and the remaining it-

erations of HEC were due to τε and τuv being set too tight. We note that this is a

limitation of double-precision hardware for problems that are exceptionally sensitive to
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changes in ε. We also show the corresponding statistics for the Newton-bisection itera-

tion of hinfnorm for comparison and find that hybrid expansion-contraction typically

requires even fewer iterations than the Newton-bisection iteration, most likely due to

hybrid expansion-contraction’s ability to safely take an even larger step than offered

by the GGO algorithm. One might argue that this is an unfair comparison because a

single iteration of hybrid expansion-contraction comprises calling both the contraction

method and SVSAR to expand while in contrast, the only work done in a single itera-

tion of Newton-bisection is a single call to SVSAR. However, we have found that the

employment of Newton-bisection for the contraction phase is exceedingly efficient and

reliable and that on average, it only computes three eigentriples before converging to

the imaginary axis or unit circle. Finally, we see that enabling HEC’s relative step size

termination tolerance does in fact increase the number of hybrid expansion-contraction

iterations but only slightly and it is certainly not a cause for concern given the large

overall performance increase it provides.
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6
HYBRID EXPANSION-CONTRACTION FOR THE

REAL STRUCTURED STABILITY RADIUS

6.1 A brief introduction to the real structured stability radius

Remark 6.1. This introduction section is merely meant as a primer on the real struc-

tured stability radius to provide sufficient yet minimal context for detailing the author’s

contributions in adapting the hybrid expansion-contraction algorithm to approximate

the real structured stability radius with Frobenius norm bounded perturbations, pre-

sented in [GGMO14], as well as to present some initial steps towards a viable variant

of hybrid expansion-contraction for the case of spectral norm bounded perturbations.

For a more complete discourse of the background and theory, we refer the reader to

[GGMO14]

Given matrices A,B,C,D defining the linear dynamical system (1.1), recall the

perturbed system matrix

M(∆) = A+B∆(I −D∆)−1C for ∆ ∈ Cp,m,

assuming I −D∆ is invertible, and the associated transfer matrix

G(λ) = C(λI − A)−1B +D for λ ∈ C\σ(A).

Definition 6.2. Let A ∈ Kn,n, B ∈ Kn,p, C ∈ Km,n and D ∈ Km,p. Let ε ∈ R+ be such

that ε ‖D‖2 < 1 and define the spectral value set with respect to the norm ‖·‖ and the
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field K as

σK,‖·‖
ε (A,B,C,D) =

⋃{
σ(M(∆)) : ∆ ∈ Kp×m, ‖∆‖ ≤ ε

}
.

Note that σK,‖·‖
ε (A,B,C,D) ⊃ σ

K,‖·‖
0 (A,B,C,D) = σ(A) and furthermore, that

Definition 6.2 is a generalization of the ε-spectral value sets defined in Definition 1.1,

that is for the specific case when K := C and ‖·‖ := ‖·‖2. However, in contrast to when

complex perturbations are allowed, spectral value sets defined for K := R cannot be

solely be defined in terms of rank-1 perturbations (as in Corollary 1.3) and instead must

consider the possibility of rank-2 perturbations as well [QBR+95, GGMO14]. More

concretely, for K := R and when ‖·‖ is either the spectral or Frobenius norm, then

σR,‖·‖
ε (A,B,C,D) =

⋃
{σ(M(∆)) : ∆ ∈ Rp,m, ‖∆‖ ≤ ε, rank(∆) ≤ 2} . (6.1)

Definition 6.3. For ε ∈ R+ and ε ‖D‖2 < 1, the real spectral value set abscissa and

real spectral value set radius are defined respectively as

αR,‖·‖
ε (A,B,C,D) = max{Re (λ) : λ ∈ σK,‖·‖

ε (A,B,C,D)}

ρR,‖·‖ε (A,B,C,D) = max{|λ| : λ ∈ σK,‖·‖
ε (A,B,C,D)}

where αR,‖·‖
0 (A,B,C,D) = α(A) and ρR,‖·‖0 (A,B,C,D) = ρ(A).

Definition 6.4. The µ-value of any matrix A ∈ Km,p with respect to the norm ‖·‖ is

defined by

µ
‖·‖
K (A) = [inf {‖∆‖ : ∆ ∈ Kp,m, det(I −∆A) = 0}]−1 . (6.2)
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with the convention that µ‖·‖K (A) = 0 when A = 0.

Definition 6.5. The real structured stability radius for continuous and discrete-time sys-

tems are defined respectively as

r
‖·‖,c
R (A,B,C,D) := inf{‖∆‖ : α(M(∆)) ≥ 0 or det(I −D∆) = 0} (6.3)

r
‖·‖,d
R (A,B,C,D) := inf{‖∆‖ : ρ(M(∆)) ≥ 1 or det(I −D∆) = 0}. (6.4)

For ‖·‖ = ‖·‖2 or ‖·‖ = ‖·‖F, by [HP05, Section 5.3.3] and [GGMO14] respectively,

(6.3) and (6.4) may be equivalently written as

r
‖·‖,c
R (A,B,C,D) = min

([
µ
‖·‖
R (D)

]−1
, inf
ω∈R

[
µ
‖·‖
R (G(iω))

]−1)
(6.5)

= min

(
‖D‖−12 , inf

ε‖D‖2<1

{
ε : αR,‖·‖

ε (A,B,C,D) ≥ 0
})

(6.6)

and

r
‖·‖,d
R (A,B,C,D) = min

([
µ
‖·‖
R (D)

]−1
, inf
θ∈[0,2π)

[
µ
‖·‖
R
(
G(eiθ)

)]−1)
(6.7)

= min

(
‖D‖−12 , inf

ε‖D‖2<1

{
ε : ρR,‖·‖ε (A,B,C,D) ≥ 1

})
, (6.8)

with the conventions that ‖D‖−12 = ∞ if D = 0 and r‖·‖,cR (A,B,C,D) = ‖D‖−12 if the

set over which the infimum is taken is empty and similarly for r‖·‖,dR (A,B,C,D).

Definition 6.6. For ε ∈ R++ with ε‖D‖2 < 1, a point λ ∈ C is said to be a static

boundary point of σR,‖·‖
ε (A,B,C,D) if λ is on the boundary of σR,‖·‖

ε (A,B,C,D) and

there exists nonnegative real numbers δ1 and δ2 such that δ1 + δ2 > 0 and λ is also a

boundary point of σR,‖·‖
ε̃ (A,B,C,D) for all ε̃ such that ε− δ1 < ε̃ < ε+ δ2.
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Remark 6.7. For the usual case of spectral value sets where the perturbations are complex-

valued and rank-1, static boundary points cannot occur. We refer to [GGMO14] as to

how such points can arise in the case of real spectral value sets.

6.2 A high-level overview for adapting hybrid expansion-contraction

We now consider the modifications that must be made in order for the hybrid expansion-

contraction algorithm to approximate the real structured stability radius for some speci-

fied norm ‖·‖.

• As per (6.1), the contraction phase must be modified to handle the possibility of

rank-2 perturbations in addition to rank-1 perturbations. We discuss this modifi-

cation in Section 6.3.1.

• In order for Procedure 4 (SVSAR) to converge to a locally rightmost or outer-

most point of a real spectral value set for some prescribed value of ε ∈ R++ and

ε ‖D‖2 < 1, the following modifications must be made:

– Given Uk−1 ∈ Rp,2 and Vk−1 ∈ Rm,2 such that Uk−1V T
k−1 is at most rank two

with ‖Uk−1V T
k−1‖ = 1 and λk−1 is a rightmost or outermost eigenvalue of

M(εUk−1V
T
k−1), Procedure 2 must be adapted so that it produces Uk ∈ Rp,2

and Vk ∈ Rm,2 with the rank of UkV T
k being at most two and ‖UkV T

k ‖ =

1 such that λk−1 can be “pushed” rightward (or outward for the discrete-

time case) by changing M(εUk−1V
T
k−1) to M(εUkV

T
k ), or merely toward

M(εUkV
T
k ) in the case that a line search is necessary to ensure monotonic-

ity. In the case of complex perturbations, the computed step as described
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in Section 2.2 is due to [GGO13] while for the case of real Frobenius norm

bounded perturbations, the computed step is presented in [GGMO14].

– Given Uk−1 ∈ Rp,2 and Vk−1 ∈ Rm,2 such that Uk−1V T
k−1 is at most rank

two with ‖Uk−1V T
k−1‖ = 1, λk−1 is a rightmost or outermost eigenvalue of

M(εUk−1V
T
k−1) and UkV T

k is as computed by the modified version of Pro-

cedure 2 described above, hybrid expansion-contraction also requires that

some mechanism in Procedure 4 enforces monotonicity of the iterates. For

the continuous-time case, if the rightmost eigenvalue λk of M(εUkV
T
k ) is

such that Re (λk) > Re (λk−1) does not hold, then Uk and Vk must be suit-

ably modified to ensure monotonicity holds. Likewise for the discrete-time

case, if the outermost eigenvalue λk ofM(εUkV
T
k ) is such that |λk| < |λk−1|

does not hold, then Uk and Vk must again be suitably modified to ensure

monotonicity holds. In Section 6.3.3, we show how the line search approach

of Procedure 3 for the complex case of rank one perturbations can be ex-

tended to the case of real-valued perturbations that may be up to rank two

and bounded by either the Frobenius or spectral norms respectively.

• Finally, in the case of real spectral value sets, there is the possibility of encounter-

ing points on the boundary that are insensitive to changes in the perturbation level,

that is, as ε changes, there can be portions of the boundary of a real spectral value

set that do not move [GGMO14]. Such static boundary points do not prevent hy-

brid expansion-contraction from converging to λ ∈ C and ε ∈ R++ such that λ

is a locally rightmost point of σR,‖·‖
ε (A,B,C,D) and Re (λ) = 0 or alternatively,

such that λ is a locally outermost point of σR,‖·‖
ε (A,B,C,D) and |λ| = 1, for the

continuous and discrete-time cases respectively. However, if λ happens to be a
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static boundary point, then there is no guarantee that hybrid expansion-contraction

will have converged to the minimal value of ε for this particular locally rightmost

point on the imaginary axis or alternatively, this particular locally outermost point

on the unit circle. In Section 6.4, we present an outline of a method to call after

hybrid expansion-contraction that minimizes the perturbation level ε in the case

that λ is a static boundary point, though we note that in practice, we expect to

never encounter such points.

6.3 The necessary modifications for real-valued rank-2 perturba-

tions

6.3.1 Adapting the contraction phase

We begin by stating some useful results that will be helpful to concisely extend hybrid

expansion-contraction to rank-2 perturbations.

Lemma 6.8. Let U ∈ Rp,k and V ∈ Rm,k be such that UV T 6= 0, D ∈ Rm,p and ε ∈ R+

such that ε‖D‖2 < 1. Then ‖DεUV T‖2 < ‖UV T‖F.

Proof. If ε = 0 or D = 0, then the result is immediate. Otherwise, the result follows

from

‖DεUV T‖2 ≤ ε‖D‖2‖UV T‖2 < ‖UV T‖2 ≤ ‖UV T‖F.

Lemma 6.9. Let U ∈ Rp,k, V ∈ Rm,k, and D ∈ Rm,p be given with ε ∈ R+ and
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‖DεUV T‖2 < 1. Then the following three identities hold:

V T(I −DεUV T)−1 = (I + T (ε))V T (6.9)

(I − εUV TD)−1U = U(I + T (ε)) (6.10)

where

T (ε) := εV TDU(I − εV TDU)−1 = ε(I − εV TDU)−1V TDU. (6.11)

Proof. We begin by noting the following equivalences due to the Sherman-Morrison-

Woodbury formula [GV83]:

(I −DεUV T)−1 = I + εDU(I − εV TDU)−1V T

(I − εUV TD)−1 = I + εU(I − εV TDU)−1V TD,
(6.12)

where (I − εV TDU)−1 ∈ Rk,k. Using the first identity of (6.12), we have that

V T(I −DεUV T)−1 = V T
(
I + εDU(I − εV TDU)−1V T

)
= V T + εV TDU(I − εV TDU)−1V T

=
(
I + εV TDU(I − εV TDU)−1

)
V T

= (I + T (ε))V T, (6.13)

thus demonstrating (6.9).
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As ‖DεUV T‖2 < 1, it follows that

V TDU(I − εV TDU)−1 = V TDU
∞∑
k=0

(εV TDU)k = (I − εV TDU)−1V TDU (6.14)

and hence V TDU commutes with (I − εV TDU)−1, that is, (6.11) holds.

By the second identity of (6.12) and (6.11), we have the following equivalences:

(I − εUV TD)−1U =
(
I + εU(I − εV TDU)−1V TD

)
U

= U + εU(I − εV TDU)−1V TDU

= U(I + T (ε)), (6.15)

thereby proving (6.10).

Let U ∈ Rp,2 and V ∈ Rm,2 be two matrices such that ‖UV T‖ = 1 where ‖ · ‖ is

either the Frobenius or spectral norm and consider the following matrix family where U

and V are fixed and ε ∈ R+ and ε ‖D‖2 < 1:

MUV (ε) :=A+BεUV T(I −DεUV T)−1C. (6.16)

If the given ε, U and V demonstrate that ε > ε?, that is matrix MUV (ε) has at least

one eigenvalue λUV (ε) such that Re (λUV (ε)) > 0 or |λUV (ε)| > 1 respectively, then

again by Key Observation 3.2, it is clear that we may always contract ε to ε̂ such that

ε? < ε̂ < ε by finding a root of the function

gcUV (ε) := Re (λUV (ε)) or gdUV (ε) := |λUV (ε)| − 1. (6.17)
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For convenience, we define

gUV (ε) :=


gcUV (ε) if (A,B,C,D) is a continuous-time system

gdUV (ε) if (A,B,C,D) is a discrete-time system
(6.18)

so that λUV (ε) is on the boundary of the stability region if and only if gUV (ε) = 0 for ei-

ther the continuous or discrete-time cases depending on the context. The corresponding

derivatives of (6.17) with respect to ε are:

g′cUV (ε) = Re (λ′UV (ε)) and g′dUV (ε) = Re

(
λUV (ε)λ′UV (ε)

|λUV (ε)|

)
. (6.19)

In order to compute the derivatives in (6.19), we must consider the derivative of (6.16).

By Lemma 6.8 and using (6.9) and (6.10) of Lemma 6.9, we may rewrite (6.16) as:

MUV (ε) = A+BεU (I + T (ε))V TC

= A+BU (ε+ εT (ε))V TC.

Taking the derivative with respect to ε, we have that

M ′
UV (ε) = BU (ε+ εT (ε))′ V TC

= BU (I + T (ε) + εT ′(ε))V TC (6.20)
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where

εT ′(ε) = ε
(
εV TDU(I − εV TDU)−1

)′
= ε

[
V TDU(I − εV TDU)−1 + εV TDU

(
(I − εV TDU)−1

)′]
= T (ε) + ε2V TDU

[
(I − εV TDU)−1V TDU(I − εV TDU)−1

]
= T (ε) + T (ε)2. (6.21)

Substituting (6.21) into (6.20), it follows that

M ′
UV (ε) = BU (I + 2T (ε) + εT ′(ε))V TC

= BU(I + T (ε))2V TC. (6.22)

Thus for a simple eigenvalue λUV (ε) of MUV (ε) with associated right and left RP-

compatible eigenvectors x(ε) and y(ε), again by standard first-order perturbation theory

of simple eigenvalues [HJ90, Theorem 6.3.12], [GO11, Lemma 2.1], we have that

λ′UV (ε) =
y(ε)∗M ′

UV (ε)x(ε)

y(ε)∗x(ε)
=
y(ε)∗BU (I + T (ε))2 V TCx(ε)

y(ε)∗x(ε)
(6.23)

using (6.22) and (6.11). Thus, the contraction phase of hybrid expansion-contraction is

adapted to the case of purely real perturbations by replacing fuv(·) appearing in Proce-

dure 5 to

fUV (ε) := (gUV (ε), g′UV (ε)) (6.24)

using (6.18), the appropriate functions in (6.17) and (6.19), (6.23) and (6.11).
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6.3.2 Convergence results

In order to adapt the assertion of Theorem 3.10 that hybrid expansion-contraction con-

verges for the case of real structured stability radius, we must first demonstrate anal-

ogous results to Lemmas 1.17 and 1.20 that respectively relates locally rightmost and

outermost points of real spectral value sets on the corresponding stability boundary and

their µ‖·‖R values.

Lemma 6.10. Let λ ∈ σR,‖·‖
ε (A,B,C,D)\σ(A) be such that Re (λ) = 0 and suppose

that µ‖·‖R (G(iω)) defined for ω ∈ R is continuous in a neighborhood of Im (λ), where

‖ · ‖ specifies either the spectral or Frobenius norm. If λ is a locally rightmost point of

σ
R,‖·‖
ε (A,B,C,D), then Im (λ) is a local maximizer of µ‖·‖R (G(iω)).

Proof. Suppose that Im (λ) is not a maximizer of µ‖·‖R (G(iω)). As a consequence there

exists y1 := Im (λ) + δ1 such that µ‖·‖R (G(iy1)) > µ
‖·‖
R (G(i Im (λ))) = ε−1 for some

δ1 ∈ R with |δ1| > 0 arbitrary small. By [HP05, Theorem 5.2.9] and [GGMO14], it

follows that iy1 ∈ σR,‖·‖
ε (A,B,C,D) and furthermore iy1 must be strictly in the interior.

Thus, there exists y2 := δ2 + iy1 = δ2 + i(Im (λ) + δ1) for some sufficiently small real

value δ2 > 0 such that y2 ∈ σR,‖·‖
ε (A,B,C,D) as well. However, since Re (y2) = δ2 >

0 = Re (λ) and δ1 and δ2 can be chosen to be arbitrary small, λ cannot be a locally

rightmost point of σR,‖·‖
ε (A,B,C,D) and hence we have a contradiction.

Lemma 6.11. Let λ ∈ σR,‖·‖
ε (A,B,C,D)\σ(A) be such that |λ| = 1 and suppose that

µ
‖·‖
R (G(ieiθ)) defined for θ ∈ [0, 2π) is continuous in a neighborhood of ∠λ, where

‖ · ‖ specifies either the spectral or Frobenius norm. If λ is a locally outermost point of

σ
R,‖·‖
ε (A,B,C,D), then ∠λ is a local maximizer of µ‖·‖R (G(ieiθ)).

Proof. The proof is a straightforward adaptation of the argument for Lemma 6.10.
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Theorem 6.12. Let RSVSAR be an adaptation of Procedure 4 such that it always con-

verges to either a locally rightmost or outermost point of σR,‖·‖
ε (A,B,C,D) for the con-

tinuous and discrete-time cases respectively, where ‖·‖ specifies the spectral or Frobe-

nius norm and for any ε ∈ R+ with ε‖D‖2 < 1. Given an initial perturbation ∆ =

ε0UV
T such that ε0 ∈ R++, ε‖D‖2 < 1 and ‖UV T‖ = 1 holds for the specified norm

and matrices U ∈ Rp×2 and V ∈ Rm,2 then, if Assumption 3.3 holds:

1. For the continuous-time case, if α(MUV (ε0)) ≥ 0, hybrid expansion-contraction

converges to λ ∈ C and ε ∈ R++ such that λ is a locally rightmost point of

σ
R,‖·‖
ε (A,B,C,D) and Re (λ) = 0. Furthermore, if µ‖·‖R (G(iω)) is continuous in

a neighborhood of Im (λ), then Im (λ) is a local maximizer of µ‖·‖R (G(iω)) with

locally maximal value ε−1.

2. For the discrete-time case, if ρ(MUV (ε0)) ≥ 1, hybrid expansion-contraction

converges to λ ∈ C and ε ∈ R++ such that λ is a locally outermost point of

σ
R,‖·‖
ε (A,B,C,D) and |λ| = 1. Furthermore, if µ‖·‖R (G(ieiθ)) is continuous in a

neighborhood of ∠λ, then ∠λ is a local maximizer of µ‖·‖R (G(ieiθ)) with locally

maximal value ε−1.

Proof. The proof of the first part of the statements for the continuous and discrete-time

cases follows from a near verbatim argument from the proof of Theorem 3.10. The

second part of the statements for the continuous and discrete-time cases follows from

Lemmas 6.10 and 6.11 respectively.

In order to show that the convergence rate analysis of hybrid expansion-contraction

detailed in Section 3.2 also holds for the case of the real structured stability radius with

Frobenius norm bounded perturbations, we need only show that an analogous version of
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Lemma 3.7 holds here as well, though for brevity we only present the continuous-time

case. We begin by stating the following result of [GGMO14]:

Theorem 6.13. Let λr(ε) be a single continuous branch of locally rightmost points

of σR,‖·‖F
ε̂ (A,B,C,D) defined for a neighborhood N of ε̂ ∈ R++ with ε̂‖D‖2 < 1

and where (λr(ε̂), y, x) is an RP-compatible eigentriple of M(ε̂UV T) for the rank-2

perturbation defined by matrices U ∈ Rp,2 and V ∈ Rm,2 such that ‖UV T‖F = 1.

Assuming that Re (λr(·)) is smooth in N and Re (uv∗) 6= 0, where

u := (I − ε̂UV TD)−TBTy

v := (I −Dε̂UV T)−1Cx,
(6.25)

then
d

dε
Re (λr(ε))

∣∣∣∣
ε=ε̂

=
‖Re (uv∗)‖F

y∗x
. (6.26)

We now turn to the equivalence of (6.26) and the continuous-time derivative speci-

fied in (6.19) for the contraction phase.

Lemma 6.14. Let ε̂ ∈ R++, ε̂‖D‖2 < 1 and λUV ∈ σR,‖·‖F
ε̂ (A,B,C,D) be such that

(λUV , x, y) is an RP-compatible eigentriple of MUV (ε̂) with corresponding matrices

U ∈ Rp,2 and V ∈ Rm,2 and ‖UV T‖F = 1. If λUV is a locally rightmost point of

σ
R,‖·‖F
ε̂ (A,B,C,D), then

g′cUV (ε)

∣∣∣∣
ε=ε̂

=
‖Re (uv∗)‖F

y∗x
(6.27)

where u and v are defined in (6.25).

Proof. By the proof of Theorem 6.13 contained in [GGMO14], we have the following
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equivalences:

‖Re (uv∗)‖F = Re
(
u∗
(
ε̂UV T

)
v
)

= Re
(
y∗B(I − ε̂UV TD)−1ε̂UV T(I −Dε̂UV T)−1Cx

)
(6.28)

By Lemmas 6.8 and 6.9, we may substitute (6.9) and (6.10) into (6.28) yielding

‖Re (uv∗)‖F = Re
(
y∗Bε̂U(I + T (ε̂))2V TCx

)
,

noting that this is the numerator of the continuous-time derivative specified in (6.19) via

(6.23), thus demonstrating the result.

As a consequence, in the case of real spectral value sets bounded by the spectral

or Frobenius norm, hybrid expansion-contraction will converge at least superlinearly to

a local maximizer ω̃ of µ‖·‖FR (G(iω)), provided µ‖·‖FR (G(iω)) is continuous in a neigh-

borhood of ω̃. Furthermore, as explained in Section 3.2 and empirically shown in Sec-

tion 5, this is a worst-case convergence rate and we can often expect hybrid expansion-

contraction to converge quadratically in practice and in some cases, possibly even faster.

6.3.3 Adapting the SVSAR line search to ensure monotonicity

We now consider a line search approach for ensuring monotonicity of the iterates of

SVSAR for the case where ∆ ∈ Rp,m may be up to rank-2. The resulting algorithm will

be analogous to the line search procedure specified by Procedure 3 for the simpler case

when ∆ is always rank-1, with some modifications.
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Recall the perturbed system matrix:

M(∆) = A+B∆(I −D∆)−1C,

where ∆ = εUV T such that ‖∆‖ = ε for some norm ‖·‖. Analogously to the line search

derivation of [GGO13] and also presented in Section 2.2, let us consider the perturbation

∆(t) for t ∈ [0, 1]:

∆(t) =
εU(t)V (t)T

‖U(t)V (t)T‖

where

U(t) = tUk + (1− t)Uk−1

V (t) = tVk + (1− t)Vk−1

and Uk−1 ∈ Rp,2 and Vk−1 ∈ Rm,2 define the perturbed system matrix M(εUk−1V
T
k−1)

such that ‖Uk−1V T
k−1‖ = 1 while Uk ∈ Rp,2 and Vk ∈ Rm,2 are also normalized such

that ‖UkV T
k ‖ = 1. Furthermore, let λ(t) a rightmost or outermost eigenvalue M(∆(t)),

where λ(0) ∈ σ(M(εUk−1V
T
k−1)). We will show that if Re (λ′(0)) < 0, then flipping

the signs of both Uk and Vk will flip the sign of Re (λ′(0)) from negative to positive and

likewise for |λ(0)|′.

We thus consider the matrix family for t ∈ [0, 1]:

N(t) = A+B∆(t)(I −D∆(t))−1C (6.29)

= A+B∆̃(t)C,
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where ∆̃(t) := ∆(t)(I −D∆(t))−1 has its corresponding derivative:

∆̃′(t) =
d

dt
∆(t)(I −D∆(t))−1

= ∆′(t)(I −D∆(t))−1 + ∆(t)(I −D∆(t))−1D∆′(t)(I −D∆(t))−1

=
[
I + ∆(t)(I −D∆(t))−1D

]
∆′(t)(I −D∆(t))−1. (6.30)

For a simple eigenvalue λ(t) of N(t) with RP-compatible right and left eigenvectors x

and y, we have

λ′(t) =
y∗N ′(t)x

y∗x
=
y∗B∆̃′(t)Cx

y∗x
(6.31)

and thus, the sign of Re (λ′(t)) is determined by the sign of ∆̃′(t), which in turn is

determined by the sign of ∆′(t) as shown in (6.30). Letting

f(t) = U(t)V (t)T

g(t) = ‖U(t)V (t)T‖
where

f(0) = Uk−1V
T
k−1

g(0) = ‖Uk−1V T
k−1‖ = 1,

(6.32)

we see that:

∆′(t) =
d

dt

εU(t)V (t)T

‖U(t)V (t)T‖ =
d

dt

εf(t)

g(t)
=
ε[f ′(t)g(t)− f(t)g′(t)]

[g(t)]2
=
εP (t)

[g(t)]2
(6.33)

and thus the sign of ∆′(t) is determined by:

P (t) := f ′(t)g(t)− f(t)g′(t). (6.34)

Differentiating both equations in (6.32) yields:

f ′(t) = U ′(t)V (t)T + U(t)V ′(t)T
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so evaluating this at t = 0, we have

f ′(0) = (Uk − Uk−1)V T
k−1 + Uk−1(Vk − Vk−1)T

= UkV
T
k−1 + Uk−1V

T
k − 2Uk−1V

T
k−1. (6.35)

Using (6.32) and (6.35), it follows that (6.34) evaluated at t = 0 is

P (0) = (UkV
T
k−1 + Uk−1V

T
k − 2Uk−1V

T
k−1)− (Uk−1V

T
k−1)g

′(0). (6.36)

The Frobenius norm case

In the case that ‖ · ‖ is the Frobenius norm, the derivative of g(t) given in (6.32) is

g′(t) =
d

dt
‖U(t)V (t)T‖F =

d

dt

(
Tr
(
(U(t)V (t)T)TU(t)V (t)T

)) 1
2

=
Tr
(
d
dt
U(t)TU(t)V (t)TV (t)T

)
2‖U(t)V (t)T‖F

.

Denoting Ũ(t) := U(t)TU(t), then

Ũ(t) = t2UT
k Uk + (1− t)2UT

k−1Uk−1 − (1− t)t
(
UT
k−1Uk + UT

k Uk−1
)

Ũ ′(t) = 2tUT
k Uk − 2(1− t)UT

k−1Uk−1 + (2t− 1)
(
UT
k−1Uk + UT

k Uk−1
)

and

Ũ(0) = UT
k−1Uk−1

Ũ ′(0) = −2UT
k−1Uk−1 − UT

k−1Uk − UT
k Uk−1
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and for Ṽ (t) := V (t)TV (t), we also have the analogous equations for Ṽ (t) and Ṽ ′(t)

evaluated at t = 0. Recalling that ‖Uk−1V T
k−1‖F = 1, we have that

g′(0) =
1

2
Tr

(
d

dt

∣∣∣∣
t=0

Ũ(t)Ṽ (t)T
)

=
1

2
Tr
(
Ũ ′(0)Ṽ (0)T + Ũ(0)Ṽ ′(0)T

)
=

1

2
Tr (W ) (6.37)

where

W =
(
−2UT

k−1Uk−1 − UT
k−1Uk − UT

k Uk−1
)
V T
k−1Vk−1

+ UT
k−1Uk−1

(
−2V T

k−1Vk−1 − V T
k−1Vk − V T

k Vk−1
)T
.

Regrouping terms, we see that:

W = −4UT
k−1Uk−1V

T
k−1Vk−1 −

(
UT
k−1Uk + UT

k Uk−1
)
V T
k−1Vk−1

− UT
k−1Uk−1

(
V T
k−1Vk + V T

k Vk−1
)

and thus, since Tr(4UT
k−1Uk−1V

T
k−1Vk−1) = 4‖Uk−1V T

k−1‖2F = 4,

Tr(W ) = −4− Tr
((
UT
k−1Uk + UT

k Uk−1
)
V T
k−1Vk−1

)
− Tr

(
UT
k−1Uk−1

(
V T
k−1Vk + V T

k Vk−1
))
.

(6.38)

Using (6.37), we can rewrite (6.36) for the Frobenius norm case as:

P (0) =
(
UkV

T
k−1 + Uk−1V

T
k − 2Uk−1V

T
k−1
)
− Uk−1V T

k−1

(
1

2
Tr (W )

)
. (6.39)
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Substituting (6.38) into (6.39) cancels the ±2Uk−1V
T
k−1 terms, yielding

P (0) = UkV
T
k−1 + Uk−1V

T
k + ηR,FUk−1Vk−1 (6.40)

where

ηR,F = −1

2

[
Tr
((
UT
k−1Uk + UT

k Uk−1
)
V T
k−1Vk−1

)
+ Tr

(
UT
k−1Uk−1

(
V T
k−1Vk + V T

k Vk−1
)) ]

.

(6.41)

It is now clear that the sign of (6.40) flips if the signs of Uk and Vk are both flipped and

thus for the Frobenius norm case, we have that the sign of

∆′(0) = ε
[
UkV

T
k−1 + Uk−1V

T
k − ηR,FUk−1V T

k−1
]
. (6.42)

also flips, thereby demonstrating the result.

The spectral norm case

In the case that ‖ · ‖ is the spectral norm, the derivative of g(t) given in (6.32) is

g′(t) =
d

dt
‖U(t)V (t)T‖2. (6.43)

Let

R(t) := U(t)V (t)T (6.44)

= (tUk + (1− t)Uk−1) (tVk + (1− t)Vk−1)T , (6.45)
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which has the corresponding derivative

R′(t) = 2tUkV
T
k + (1− 2t)

[
UkV

T
k−1 + Uk−1V

T
k

]
+ (2t− 2)Uk−1V

T
k−1. (6.46)

Consider the function σR(t) := ‖R(t)‖2 where σR(0) = ‖R(0)‖2 = ‖Uk−1V T
k−1‖2 = 1

and let uR and vR denote the right and left singular vectors of σR(0). Assuming σR(0)

is a simple singular value, by standard perturbation theory for singular values, [HJ90,

Theorem 7.3.7], [GO11, Lemma 2.3], we have that

g′(0) =
d

dt
σR(t)

∣∣∣∣
t=0

= u∗RR
′(0)vR

= u∗R
(
UkV

T
k−1 + Uk−1V

T
k − 2Uk−1V

T
k−1
)
vR

= u∗R
(
UkV

T
k−1 + Uk−1V

T
k

)
vR − 2u∗RR(0)vR

= u∗R
(
UkV

T
k−1 + Uk−1V

T
k

)
vR − 2. (6.47)

Substituting (6.47) into (6.36) and noting that the ±2Uk−1V
T
k−1 now cancel, we have for

the spectral norm case that:

P (0) = UkV
T
k−1 + Uk−1V

T
k − ηR,2Uk−1V T

k−1 (6.48)

where

ηR,2 = u∗R
(
UkV

T
k−1 + Uk−1V

T
k

)
vR. (6.49)

As in the Frobenius norm case, it is now clear that the sign of (6.48) flips if the signs of

Uk and Vk are both flipped and thus for the spectral norm case, we have that the sign of

∆′(0) = ε
[
UkV

T
k−1 + Uk−1V

T
k − ηR,2Uk−1V T

k−1
]
. (6.50)
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also flips, thereby demonstrating the result.

Calculating the line search derivative

In order to derive the exact formula for (6.31), that is the corresponding value to ψk

defined in (2.12) when the perturbations are instead restricted to be real and may thus

be up to rank-2, it will be useful to have the following definitions.

First define

S1(t) := I + ∆(t) (I −D∆(t))−1D

S2(t) := ∆′(t) (I −D∆(t))−1

so that we may rewrite (6.30) as

∆̃′(t) =
[
I + ∆(t)(I −D∆(t))−1D

]
∆′(t)(I −D∆(t))−1

= S1(t)S2(t). (6.51)

We further define

Û := Uk − ηRUk−1 (6.52)

T (ε) := ε
(
V T
k−1DUk−1

) (
I − εV T

k−1DUk−1
)−1

(6.53)

T̂ (ε) := ε
(
V T
k DUk−1

) (
I − εV T

k−1DUk−1
)−1

, (6.54)

where ηR is either defined by (6.41) or (6.49) and noting that only difference between

T (ε) and T̂ (ε) is that the first occurrence of Vk−1 is replaced with Vk. Therefore, we
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generically have for the Frobenius and spectral norm cases that

∆′(0) = ε
[
UkV

T
k−1 + Uk−1V

T
k − ηRUk−1V T

k−1
]
. (6.55)

By Lemma 6.8 along with (6.9) of Lemma 6.9 and (6.53), a straightforward calculation

shows that

S1(0) = I + ∆(0) (I −D∆(0))−1D

= I + εUk−1V
T
k−1
(
I −DεUk−1V T

k−1
)−1

D

= I + εUk−1 (I + T (ε))V T
k−1D. (6.56)

Also by a straightforward calculation, using the identity of (6.12) and substituting in

(6.52) and (6.55), we correspondingly have that

S2(0) = ∆′(0) (I −D∆(0))−1

= ε
[
UkV

T
k−1 + Uk−1V

T
k − ηRUk−1V T

k−1
] (
I −DεUk−1V T

k−1
)−1

= ε
[
ÛV T

k−1 + Uk−1V
T
k

] (
I −DεUk−1V T

k−1
)−1

= ε
[
ÛV T

k−1 + Uk−1V
T
k

] (
I + εDUk−1

(
I − εV T

k−1DUk−1
)−1

V T
k−1

)
.

Carrying out the multiplication, regrouping terms, and substituting in (6.53) and (6.54),
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we see that

S2(0) = εÛV T
k−1

(
I + εDUk−1

(
I − εV T

k−1DUk−1
)−1

V T
k−1

)
+ εUk−1V

T
k

(
I + εDUk−1

(
I − εV T

k−1DUk−1
)−1

V T
k−1

)
= εÛ (I + T (ε))V T

k−1 + εUk−1

[
V T
k + T̂ (ε)V T

k−1

]
. (6.57)

Substituting both (6.56) and (6.57) into (6.51) and then carrying out the multiplication

and regrouping terms yields

∆̃′(0) = S1(0)S2(0)

= εÛ (I + T (ε))V T
k−1 + εUk−1

[
V T
k + T̂ (ε)V T

k−1

]
+ εUk−1 (I + T (ε))V T

k−1D
(
εÛ (I + T (ε))V T

k−1

)
+ εUk−1 (I + T (ε))V T

k−1D
(
εUk−1

[
V T
k + T̂ (ε)V T

k−1

])
= ε

[
Û + εUk−1 (I + T (ε))

(
V T
k−1DÛ

)]
(I + T (ε))V T

k−1 (6.58)

+ εUk−1
(
I + ε (I + T (ε))

(
V T
k−1DUk−1

)) [
V T
k + T̂ (ε)V T

k−1

]
.

Letting

¯̄U :=
[
Û + εUk−1 (I + T (ε))

(
V T
k−1DÛ

)]
(6.59)

¯̄V :=
[
V T
k + T̂ (ε)V T

k−1

]T
, (6.60)

and noting that ¯̄U ∈ Rp,2 and ¯̄V ∈ Rm,2, using (6.58), (6.59), and (6.60), we can finally
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completely derive the numerator of (6.31) evaluated at t = 0 as

ψR
k = y∗B∆̃′(0)Cx

= y∗B
[
ε ¯̄U (I + T (ε))V T

k−1

]
Cx

+ y∗B
[
εUk−1

(
I + ε (I + T (ε))

(
V T
k−1DUk−1

)) ¯̄V T
]
Cx.

Regrouping terms was once again yields:

ψR
k = ε

[
y∗
(
B ¯̄U
)]

[I + T (ε)]
[(
V T
k−1C

)
x
]

+ ε [y∗ (BUk−1)]
[
I + ε (I + T (ε))

(
V T
k−1DUk−1

)] [( ¯̄V TC
)
x
]
,

(6.61)

using (6.52), (6.53), (6.54), (6.59), (6.60) and either (6.41) or (6.49) for the Frobenius

and spectral norm cases respectively. For the special case of D = 0, (6.61) simplifies to

ψR
k = ε

[
y∗
(
BÛ
)] [(

V T
k−1C

)
x
]

+ ε [y∗ (BUk−1)]
[(
V T
k C
)
x
]
. (6.62)

While we note that (6.61) is somewhat complicated, it is actually quite efficient to com-

pute. Assuming A, B, C and D are all sparse matrices, the specified multiplication

groupings allow (6.61) to be efficiently computed in O(n+ p+m) operations and fur-

thermore, only requires two matrix vector products per matrices B, CT, and D.

6.3.4 Normalizing large-scale rank-2 perturbations

In the case of complex perturbations, where we have rank-1 perturbations defined by

uv∗ with u ∈ Cp and v ∈ Cm, it is efficient and straightforward to normalize u and v

such that ‖u‖2 = ‖v‖2 = 1 to ensure that ‖uv∗‖2 = 1 holds. However, by restricting
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perturbations to be real, we must now consider normalizing rank-2 perturbations UV T

to have unit norm, where U ∈ Rp,2 and V ∈ Rm,2.

For the Frobenius case, ‖UV T‖F has an efficient formulation with only O(p + m)

operations by the following equivalences:

‖UV T‖F =
[
Tr
((
UV T

)∗ (
UV T

))] 1
2

=
[
Tr
(
V UTUV T

)] 1
2

=
[
Tr
((
UTU

) (
V TV

))] 1
2 . (6.63)

In the case of the spectral norm, there does not seem to be a simple analogous for-

mula. The routine svds in MATLAB would perform a sparse SVD decomposition of

UV T by computing the eigenvalues and eigenvectors of the matrix

 0 UV T

(UV T)∗ 0

 =

 0 UV T

V UT 0

 (6.64)

via eigs. Unfortunately, and in contrast to eigs, the MATLAB R2014a version of

svds does not currently provide a facility to supply the matrix as a function handle

for performing the matrix-vector product and instead must be provided with an explicit

matrix as input. However, it is potentially very expensive to form (6.64) explicitly, as

UV T is typically dense and both p and m might be large. Fortunately, it is fairly easy to

create a simple routine to compute the largest singular value of UV T, along with its right

and left singular vectors, by providing a function handle to eigs that multiples a vector

by (6.64) without forming UV T. Each matrix-vector product is O(p + m) operations

and we have found that eigs consistently converges to the largest singular value in only
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one iteration when using the default Krylov subspace dimension of 20, that is a total of

20 matrix-vector products, for randomly generated U ∈ Rp,2 and V ∈ Rm,2 matrices.

Though we cannot empirically assess the accuracy of this approach when p and m are

both large, we have found it to be accurate on smaller dimensional test problems where

we can tractably call svd for comparison while it is also able to efficiently handle cases

up to when p = m = 106, which was the largest we tested.

6.3.5 Vector extrapolation for rank-2 perturbations

For the real Frobenius-bounded perturbation case, we must consider the sequences of

perturbations defined by sequences {U1, . . . , Uk} and {V1, . . . , Vk}, which may be mixed

sequences of single and double column matrices and where ‖UlVl‖T = 1 holds for

l = 1, . . . , k. In the case that the sequences are comprised entirely of single column

matrices, we may just use the rank-1 perturbation extrapolation procedure described in

Section 4.2.1. We also exclude the case where eitherm = 1 or p = 1, as the perturbation

matrices must then also all be rank-1 in that case. Otherwise, if the sequences contain

double column matrices, then we must consider the possibility that the extrapolated ma-

trix ∆̂? = U?V
T
? may be rank-2 instead of rank-1.

Let
r(1)? = ∆̂?(i1, :)

r(2)? = ∆̂?(i2, :)

c(1)? = ∆̂?(:, j1)

c(2)? = ∆̂?(:, j2)

for some {i1, i2} ⊂ {1, . . . , p} such that i1 6= i2 and similarly, for some {j1, j2} ⊂
{1, . . . ,m} such that j1 6= j2. Since ∆̂? may be rank-2, we construct the two row
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vectors

r
(1)
k = ∆̂k(i1, :) = u

(1)
k (i1)v

(1)T
k + u

(2)
k (i1)v

(2)T
k

r
(2)
k = ∆̂k(i2, :) = u

(1)
k (i2)v

(1)T
k + u

(2)
k (i2)v

(2)T
k

and two column vectors

c
(1)
k = ∆̂k(:, j1) = v

(1)
k (j1)u

(1)
k + v

(2)
k (j1)u

(2)
k

c
(2)
k = ∆̂k(:, j2) = v

(1)
k (j2)u

(1)
k + v

(2)
k (j2)u

(2)
k

where

u
(1)
k = Uk(:, 1)

v
(1)
k = Vk(:, 1)

and

u
(2)
k = Uk(:, 2)

v
(2)
k = Vk(:, 2)

or
u
(2)
k = 0 ∈ Rp×1 if Uk ∈ Rp×1

v
(2)
k = 0 ∈ Rm×1 if Vk ∈ Rm×1

 ,

and similarly construct the row vectors r(1)1 , . . . , r
(1)
k−1 and r(2)1 , . . . , r

(2)
k−1 and the column

vectors c(1)1 , . . . , c
(1)
k−1 and c(2)1 , . . . , c

(2)
k−1. We then apply vector extrapolation to each of

the four sequences:

{r(1)1 , . . . , r
(1)
k }

{r(2)1 , . . . , r
(2)
k }

{c(1)1 , . . . , c
(1)
k }

{c(2)1 , . . . , c
(2)
k }

to yield r(1)? , r(2)? , c(1)? and c(2)? . As

r(1)? = u(1)? (i1)v
(1)T
? + u(2)? (i1)v

(2)T
? (6.65)

r(2)? = u(1)? (i2)v
(1)T
? + u(2)? (i2)v

(2)T
? (6.66)
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and

c(1)? = v(1)? (j1)u
(1)
? + v

(2)
k (j1)u

(2)
? (6.67)

c(2)? = v(1)? (j2)u
(1)
? + v

(2)
k (j2)u

(2)
? , (6.68)

recovering U? ∈ Rp×2 and V? ∈ Rm×2 requires determining 2(m+ p) unknowns. How-

ever, (6.65), (6.66), (6.67) and (6.68) only provide 2(m + p) − 4 equations since r(1)? ,

r
(2)
? , c(1)? , and c(2)? combined share four entries of ∆̂?. Thus, we are free to choose four

entries of say V? and assume them to be as follows:

v(1)? (j1) = 1

v(1)? (j2) = 1

v(2)? (j1) = 1

v(2)? (j2) = −1.
(6.69)

Substituting (6.69) into (6.67) and (6.68) and then adding (6.67) and (6.68) yields:

u(1)? =
c
(1)
? + c

(2)
?

2

and likewise subtracting (6.68) from (6.67) yields:

u(2)? =
c
(1)
? − c(2)?

2
.

With u(1)? and u(2)? both determined numerically, we may now recover

v(1)? =
u
(2)
? (i2)r

(1)T
? − u(2)? (i1)r

(2)T
?

u
(1)
? (i1)u

(2)
? (i2)− u(1)? (i2)u

(2)
? (i1)

(6.70)
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and

v(2)? =
u
(1)
? (i2)r

(1)T
? − u(1)? (i1)r

(2)T
?

u
(1)
? (i2)u

(2)
? (i1)− u(1)? (i1)u

(2)
? (i2)

, (6.71)

provided that u(1)? and u(2)? are rank two, as otherwise (6.70) and (6.71) will be undefined

as their denominators will be zero. If this is indeed the case, we may instead fallback

to just attempting a rank one extrapolation via the method in Section 4.2.1. Otherwise,

assuming that both u(1)? and u(2)? are rank two, we recover

U? =
[
u
(1)
? u

(2)
?

]
and V? =

[
v
(1)
? v

(2)
?

]
.

Analogously to the rank-1 case, there is no guarantee that ‖U?V T
? ‖ = 1 so we must

finally renormalize by computing

β̂ :=
√
‖U?V T

? ‖

and setting

U? :=
U?

β̂
and V? :=

V?

β̂
.

Given the divisions necessary to compute (6.70) and (6.71), we thus will strive to

choose a set of indices {i1, i2, j1, j2} such that

|u(1)? (i1)u
(2)
? (i2)− u(1)? (i2)u

(2)
? (i1)| � 0.

By noting the equivalence

2
(
u(1)? (i1)u

(2)
? (i2)− u(1)? (i2)u

(2)
? (i1)

)
=

∆̂?(i1, j1)∆̂?(i2, j2)− ∆̂?(i1, j2)∆̂?(i2, j1),
(6.72)

126



we could our indices so that the absolute value of the righthand side of (6.72) is suffi-

ciently larger than 0. We might consider using Uk and Vk as approximations to U? and

V?, and then select {i1, j1} as is done in the rank-1 case (which attempts to maximize

|∆̂k(i1, j1)|) and then randomly choose {i2, j2} randomly and compute:

τ :=
∣∣∣∆̂k(i1, j1)∆̂k(i2, j2)− ∆̂k(i1, j2)∆̂k(i2, j1)

∣∣∣ . (6.73)

If τ is not sufficiently large enough, we choose another set of indices randomly and

recompute τ until we have found an acceptable choice of pivot indices. However, Uk

and Vk may be single vectors, even if U? and V? are rank-2. Thus, it may just be more

efficient to choose all four indices randomly and only discard them and choose again if

(6.73) is too small.

Unfortunately, we do not know a priori whether the extrapolated row pair and col-

umn pair will constitute a rank-1 or rank-2 perturbation. For example, if the sequence

of perturbation matrices is alternating between rank-1 and rank-2, it may be unclear

whether it is converging to a rank-1 or rank-2 perturbation. However, we note that

constructing a rank-1 extrapolation is a fairly minimal cost if a rank-2 construction has

already been attempted (even if it failed), since we can reuse the extrapolated vectors

r
(1)
? and c(1)? for the rank-1 recovery from r? and c? with i = i1 and j = j1. Thus, it may

be wise to just always compute both reconstructions and then choose whichever one bet-

ter approximates the extrapolated pair of rows and pair of columns of the perturbation

matrix we have attempted to extrapolate implicitly. We thus compare the residual for
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the rank-2 reconstruction:

∥∥∥∥∥∥
 r

(1)
?

r
(2)
?

−
 U?(i1, :)

U?(i2. :)

V T
?

∥∥∥∥∥∥+

∥∥∥∥∥∥∥
[
c
(1)
? c

(2)
?

]
− U?

 V?(j1, :)

V?(j2. :)

T
∥∥∥∥∥∥∥

with the residual of the corresponding rank-1 reconstruction:

‖r? − u?(i)v∗?‖+
∥∥∥c? − v?(j)u?∥∥∥

and select whichever yields a smaller residual.

6.4 Handling static boundary points of real spectral value sets

We now present an outline of a procedure to handle minimizing the perturbation level if

in fact hybrid expansion-contraction converges to a static boundary point. For brevity,

we only present the continuous-time case as it is straightforward to adapt the procedure

for the discrete-time case.

Let λUV ∈ C and ε ∈ R++ with ε‖D‖2 < 1 be the pair of values that hybrid

expansion-contraction converges to, where λUV is an eigenvalue of M(εUV T) and a

locally rightmost point of σR,‖·‖
ε (A,B,C,D) with Re (λUV ) = 0. However, assume

that λUV is a static boundary point and furthermore, that ε is not its corresponding

minimal value. That is, there exists some minimal value 0 < ε?̃ < ε such that λ

is also a boundary point of σR,‖·‖
ε?̃ (A,B,C,D). As in the contraction phase of hybrid

expansion-contraction, let λUV (t) be the path of eigenvalues for fixed U and V , that

is λUV (t) ∈ σ(M(tUV T)), and consider running RSVSAR initialized at λUV (ε̂) for

some ε̂ < ε to find a locally rightmost of σR,‖·‖
ε̂ (A,B,C,D). Under the assumption
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that RSVSAR always converges to a locally rightmost point, there are three possible

outcomes:

1. RSVSAR converges to a locally rightmost point λ̂ strictly in the right-half plane.

This is in fact the best case scenario as it means that hybrid expansion-contraction

can be restarted to further reduce to a perturbation level smaller than ε̂. However,

it is possible that hybrid expansion-contraction may again converge to a static

boundary point. So we must still consider contracting ε̂ to some even smaller

value ε̃.

2. RSVSAR converges to a locally rightmost point λ̂ on the imaginary axis. In this

case, we have successfully reduced ε to some smaller value ε̂ but λ̂ may still also

be a static boundary point. As above, we must again consider contracting ε̂ to

even smaller value ε̃.

3. RSVSAR converges to a locally rightmost point λ̂ strictly in the left half-plane. In

this case and similar to the breakdown case of the GGO algorithm, we do not know

if ε̂ < ε?̃ holds. Furthermore, we do not know if there exists a single continuous

branch of locally rightmost points λr(t) such that λr(t) goes through both λUV

and λ̂, that is λr(ε) = λUV and λr(ε̂) = λ̂. Thus, we reject both ε̂ and λ̂, and

return to λUV and consider a lesser contraction, that is λUV (ε̃) where ε̂ < ε̃ < ε.

If we repeat this process of contraction into the left half-plane and expanding rightward

in a loop to continually reduce and update ε, as prescribed by outcomes one, two, and

three, it follows that the process must eventually terminate, due to the facts that the

optimization problem is bounded below and the perturbation level is monotonically de-

creasing. Furthermore, the method still converges to a locally rightmost point of a real
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spectral value set along the imaginary axis, since it has to throw away any iterate λ̂ that

is in the left half-plane while if it is in the right half-plane, hybrid expansion-contraction

is restarted, thereby producing a new locally rightmost point on the imaginary axis. Fi-

nally, the process cannot stagnate as at every iteration of the loop, the method is free to

try any reduction of the current perturbation level to attempt to move the static bound-

ary point to the left of the imaginary axis. As a consequence of monotonicity and local

continuity of the spectral value set at λ, the method will eventually converge to a point

where even the slightest contraction will break the static boundary point off of the imag-

inary axis, thereby indicating that the method has converged to ε̂, assuming outcome

one did not occur. Otherwise, if outcome one does occur, the method converges to some

other locally minimal value.

One potential problem of this method for handling static boundary points is that

convergence will most likely be slow and furthermore, it is unclear how to choose how

much to contract by, beyond guessing and bisection steps, since indeed the boundary

point is static. In the case of outcome three, it may sometimes be possible to use a

Newton step computed using the point λ̂ which is strictly in the left half-plane to help

locate ε?̃ but it must be that for such a Newton step εN that εN < ε holds for the current

value of perturbation level ε, and furthermore, the locally rightmost point computed for

the εN real spectral value set must also be either be on the imaginary axis or reside in

the right half-plane, for which in the latter case again hybrid expansion-contraction can

be restarted. Finally, as these static boundary points seem to be a degenerate case and

we do not expect to encounter them in practice, it makes sense to initially try only the

smallest of contraction step sizes above the termination tolerance of the procedure and

to only increase the contraction step size if RSVSAR converges back to the imaginary

axis, indicating that λwas a static boundary point. If λ is not a static boundary point, the
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initial tiny steps allow the method to quickly detect this and thus permit a near immedi-

ate termination without incurring a lengthy convergence process to confirm that ε was

actually the minimal value ε?̃. Thus, the potentially slow method is at least only slow

for actual static boundary points while it is optimized to be as inexpensive as possible

for the typical non-degenerate case we expect to only ever observe in practice.

6.5 A randomized SVSAR method for the real-valued spectral norm

case

We note that though we don’t yet have an explicit adaption of Procedure 2 for the real

spectral norm case, we can instead employ the same random sampling strategy used in

Section 4.4. Though this is not necessarily a practical method by itself, it nonetheless

could be interesting to develop these ideas further.
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7
SIMULTANEOUS OPTIMIZATION OF MULTIPLE

STABILITY MEASURES

We now turn our focus to the problem of optimizing stability measures in a multi-

objective setting, that is, optimization subject to constraints. This is an important ap-

plication in control where it is often desirable to design and build a single controller that

can simultaneously govern and enhance the robustness of multiple dynamical systems

[GHMO09]. However, as in the case of the H∞ norm, stability measures are often both

nonconvex and nonsmooth, and sometimes not even locally Lipschitz, making optimiza-

tion potentially difficult, and even more so in the constrained setting. On the other hand,

the nonsmooth points of these measures are typically limited to a set of measure zero,

implying that gradient-based methods can still be effective. Even so, we expect, and in

fact do observe in practice, that such methods may encounter the nonsmooth manifolds

during the course of optimization as well as at minimizers, which can potentially cause

slowdown, stagnation, and even breakdown of such methods. Without assuming any

special structure, we consider employing BFGS (Broyden-Fletcher-Goldfarb-Shanno)

Hessian approximations within a sequential quadratic programming method for general

constrained optimization where both the objective and constraints may be nonsmooth

and nonconvex. We call the resulting algorithm BFGS SQP. This chapter is joint work

with Frank E. Curtis and Michael L. Overton.
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7.1 Nonsmooth, nonconvex constrained optimization

Consider the functions f : Rn → R and c : Rn → Rm in the general inequality

constrained optimization problem:

min
x
f(x) s.t. ci(x) ≤ 0, i = 1, . . . , p. (7.1)

Here, we presume that f(·) and ci(·) are both nonconvex and nonsmooth yet are still

differentiable almost everywhere. We make note that our proposed method is also appli-

cable to problems that have equality constraints, via relaxation with slack variables, but

for the purpose of clearer and more concise exposition, we only consider the inequality

constrained problem.

For the unconstrained nonsmooth problem, that is where m = 0 in (7.1), the authors

of [BLO05] proposed a gradient sampling (GS) algorithm with provable global conver-

gence results that hold with probability one, provided that f(·) is locally Lipschitz and

its level sets are bounded. In [Kiw07], it was further shown that the convergence results

of GS could be strengthened by removing the requirement that the level sets be compact.

In practice, GS has been shown to be an extremely robust method on many challeng-

ing nonsmooth problems and surprisingly, this holds even in cases where the objective

function is not locally Lipschitz, even though the convergence results do not extend to

such problems. However, the GS technique requires that O(n) gradients be evaluated

per iteration, which can be a quite costly endeavor for expensive-to-compute functions,

such as the H∞ norm, and as a result in many applications, GS is not a viable algorithm.

On the other hand, it has recently been strongly advocated in [LO13] that for nons-

mooth unconstrained optimization, a simple BFGS method using inexact line searches

133



is actually much more efficient in practice than gradient sampling, although the BFGS

approximation to the Hessian typically becomes very ill-conditioned and no general

convergence results are known. In fact, the authors argue that the ill-conditioning of the

Hessian approximation is actually beneficial, analogous to the ill-conditioning that oc-

curs in interior point methods, and tantalizingly show an example indicating that, when

the objective function is partly smooth in the sense of [Lew03], BFGS seems to be able

to automatically identify the smooth U and nonsmooth V -spaces associated with the

objective function near the minimizer.

For the more challenging case of constrained nonsmooth, nonconvex optimization,

where m ≥ 1 in (7.1), a sequential quadratic programming approach employing gradi-

ent sampling (SQP-GS) was presented in [CO12] with convergence to stationary points

provably holding with probability one. This algorithm uses a BFGS approximation to

define a Hessian matrix that appears in the quadratic programs, but intriguingly and in

contrast to the argument of [LO13] regarding the benefit of ill-conditioning for the un-

constrained problem, the constrained case convergence result required enforcing upper

and lower bounds on the eigenvalues of the BFGS approximations used in the algo-

rithm. Still, the reliance on gradient sampling, both theoretically for the convergence

results but more importantly, in the actual algorithm, again makes SQP-GS ill-suited for

optimizing expensive-to-compute objective and constraint functions.

Thus, our aim is to eschew a costly gradient sampling approach entirely and to in-

stead find an efficient and effective extension of the simple BFGS approach for uncon-

strained problems to the domain of constrained nonsmooth, nonconvex optimization.
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7.2 A nonsmooth penalty parameter approach

Consider the fixed nonsmooth penalty function and its gradient

φ(x;µ) = µf(x) + v(x) (7.2)

∇φ(x;µ) = µ∇f(x) +
∑
i∈Px

∇ci(x), (7.3)

where µ ∈ R++ is the penalty parameter and v(·) is the total violation cost over the

constraints, that is:

v(x) =
∑
i∈Px

ci(x) where Px = {i ∈ {1, . . . ,m} : ci(x) > 0}. (7.4)

We note that the penalty function itself is inherently nonsmooth, even if the objective

and constraint functions are smooth, and thus if we are to use such a penalty scheme,

we must consider corresponding optimization algorithms for nonsmooth functions. If

we happen to know a priori of an acceptable value for the penalty parameter µ such that

minimizers of (7.2) correspond to feasible minimizers of (7.1), then a straightforward

BFGS method can be a practical approach, where at each iterate xk, the standard search

direction dk is calculated by solving the quadratic program:

min
d
q(d;xk, µ) (7.5)
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where

q(d;xk, µ) := φ(xk;µ) +∇φ(xk;µ)Td+ 1
2
dTHkd

= µf(xk) +
∑
i∈Px

ci(x) +

[
µ∇f(xk) +

∑
i∈Px

∇ci(x)

]T
d+ 1

2
dTHkd (7.6)

and Hk is the BFGS approximation to the Hessian of (7.2).1 Unfortunately, we often

do not know what value the penalty parameter should take and as such, it is typical

that BFGS will converge to a stationary point (assuming it converges at all) that is ac-

tually infeasible for the original problem of (7.1) if the penalty parameter weighting the

objective is set too high.

One might consider a simple strategy of using a sequential fixed penalty parameter

(SFPP) restarting scheme with BFGS, that is, to lower µ and restart BFGS continually in

a loop until a feasible solution has been found. An immediate pertinent issue with such

an approach is the question of how accurately BFGS should attempt to minimize (7.2)

for a given value of µ before deciding whether it is necessary to lower the penalty pa-

rameter. There is a delicate balance here between the cost of computation to concretely

confirm that the penalty parameter needs to be lowered to obtain a feasible solution ver-

sus too aggressively lowering the penalty parameter so that a feasible solution is found

but potentially increasing the difficulty of optimizing the penalty function itself and thus

perhaps lowering the rate of progress of the method. Furthermore, if f(·) is unbounded

below, then (7.2) may also be unbounded below, even if f(·) is bounded below on the

feasible set. One goal of our proposed algorithm is to address the case when f(·) is

1Note that we use Hk here to denote an approximation to the Hessian at the k-th iterate, as opposed to
the notation used in [LO13] and [NW06, page 140], where Hk is used to denote a BFGS approximation
to the inverse of the Hessian.
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unbounded below off the feasible set.

7.3 A steering strategy for nonsmooth constrained problems

As a potential solution to the issues of when to adjust the penalty parameter and handling

the case of f(·) being potentially unbounded below, we consider adapting the steering

strategy of [BNW08] and [BLCN12]. Although originally intended for the case where

the objective and constraints are both smooth, we propose using such a steering strategy

to permit a modified BFGS search direction calculation in our present setting where both

the objective and constraint functions may be nonsmooth. Specifically, we replace the

standard BFGS search direction given in (7.5) by a penalty-SQP method [Fle87] where

the search directions are computed via solving

min
d,s

µ(f(xk) +∇f(xk)
Td) + eTs+ 1

2
dTHkd

s.t. c(xk) +∇c(xk)Td ≤ s, s ≥ 0,

(7.7)

which has the corresponding dual

max
λ

µf(xk) + c(xk)
Tλ− 1

2
(µ∇f(xk) +∇c(xk)λ)TH−1k (µ∇f(xk) +∇c(xk)λ)

s.t. 0 ≤ λ ≤ e,

and where e is a vector of m ones, s ∈ Rm is a vector of slack variables and λ ∈ Rm.

The primal solution component dk can be recovered from the dual solution λk via the

relationship dk = −H−1k (µ∇f(xk) +∇c(xk)λk). Note that we recover the usual BFGS

search direction when there are no constraints so µ can be taken as one. In the presence

of constraints, the resulting dk computed by solving (7.7) indeed provides a descent
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direction for (7.2) at xk with the current penalty parameter µ. The search direction

computed from (7.7) can be viewed as balancing the two, sometimes opposing, goals of

minimizing the objective and pushing towards a feasible solution, the latter of which is

measured by the size of the linear model of constraint violation

l(d;xk) := ‖max{c(xk) +∇c(xk)Td, 0}‖1 (7.8)

at xk given direction d (in other words, how small eTs is at the solution to (7.7)). Fur-

thermore, that balance is shifted as the penalty parameter is changed: at one extreme,

when µ is set high, the search direction dk will be heavily weighted towards minimizing

the objective, regardless of whether it results in pushing towards feasibility or not, while

at the other extreme when µ = 0, dk will almost entirely be weighted towards satisfying

the linear model of constraint violation, and thus hopefully produce a direction towards

the feasible set. (Note that in the case when µ = 0, we say “almost entirely” as Hk will

contain curvature information for both the objective and violated constraints.) Thus, a

good so-called “steering strategy” will dynamically adjust µ to ensure that search direc-

tions dk computed by solving (7.7) maintain a good balance of minimizing the objective

while simultaneously pushing towards feasibility over the course of the optimization.

Let the reduction in the linear model of constraint violation given in (7.8) at the

current iterate xk and for any search direction d be defined as

lδ(d;xk) := l(0;xk)− l(d;xk)

= v(xk)− ‖max{c(xk) +∇c(xk)Td, 0}‖1.
(7.9)

For any search direction d at xk, (7.9) predicts how much progress towards feasibility

d may make. The basic tenet of the steering strategy defined in Procedure 7 is to over-
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all promote progress towards feasibility during every iteration, which it does by first

evaluating the predicted violation reduction for the search direction dk produced for the

current value of the penalty parameter. If the resulting predicted violation reduction for

dk seems inadequate, the steering strategy alternatively assesses the predicted violation

reduction for the reference search direction d̃k, which is the direction resulting from

solving (7.7) with µ set to zero. By essentially biasing the search direction calculation

to the extreme of only promoting progress towards feasibility regardless of the effect on

the objective, the predicted violation reduction given for d̃k gives an indication of the

largest violation reduction the algorithm may hope to achieve when taking a step from

xk. If the predicted violation reduction for dk is still inadequate compared to the pre-

dicted reduction given by the reference direction, then the steering strategy iteratively

lowers the current value of the penalty parameter until (7.7) produces a search direction

satisfactorily balanced in terms of progress towards the feasible set and minimizing the

objective.

The benefits of such a strategy are that the penalty parameter can be dynamically

updated at every iteration (though not necessarily) and the amount of reduction in the

penalty parameter is dynamically determined by how difficult it appears to be to promote

progress towards the feasible set any given iterate. In contrast, with the simple fixed

penalty parameter restarting scheme SFPP, one must either wait for BFGS to converge

a stationary point (which can be slow for nonsmooth problems) to assess whether it

is necessary to lower the penalty parameter and restart, or terminate BFGS early and

blindly adjust the penalty parameter. Moreover, the steering strategy of Procedure 7

decreases the likelihood of divergence ensuing in the case that f(·) is unbounded below.

As we expect the penalty function to be nonsmooth at minimizers, we cannot expect

the norm of its gradient to decrease as iterates approach these nonsmooth minimizers.
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Procedure 7 [dk, µnew] = sqp steering strategy(xk, Hk, µcurrent)
Input:

Current iterate xk and BFGS Hessian approximation Hk

Current value of the penalty parameter µcurrent

Constants: fixed values cv ∈ (0, 1) and cµ ∈ (0, 1)
Output:

Search direction dk
µnew ≤ µcurrent

Solve QP given in (7.7) using µ := µcurrent to obtain search direction dk
if lδ(dk;xk) < cvv(xk) then

Solve (7.7) using µ = 0 to obtain “reference direction” d̃k
while lδ(dk;xk) < cvlδ(d̃k;xk) do
µcurrent := cµµcurrent

Solve QP given in (7.7) using µ := µcurrent to obtain search direction dk
end while

end if
µnew := µcurrent

NOTE: The steering strategy first checks whether the computed search direction dk for the initial value of

µ is predicted to at least reduce a reasonable fraction of the violation, which is specified by constant cv .

If not, the method alternatively computes the “reference direction” with µ = 0 in order to estimate how

much the violation might actually be reduced by taking any step from xk, since a reduction of cvv(xk) or

more may not be obtainable. If the predicted reduction in violation given by dk is at least a reasonable

fraction of the predicted reduction given by d̃k, then dk is returned and the penalty parameter is not up-

dated. However, if by comparison, the reference direction still shows a much greater predicted reduction

in violation than what is offered by dk, the penalty parameter is then iteratively reduced and new search

directions dk are computed until the specified sufficient fraction of predicted violation reduction for dk
compared to the reference direction is achieved.

Consequently, we must consider an alternative stopping strategy compared to the usual

criteria for optimizing smooth functions. To that end, following the approach taken in

[LO13] for the unconstrained problem, consider l consecutive iterates of the algorithm
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that are considered “close” in some sense of distance and define:

G := [∇f(xk+1−l) . . .∇f(xk)]

Ji := [∇ci(xk+1−l) . . .∇ci(xk)] .

Our stationarity measure is derived by first forming a QP subproblem designed to com-

pute a step toward minimizing the penalty function along the same lines as (7.7). How-

ever, we augment the QP with previously computed gradient information (from G and

Ji) in order to capture changes in the problem functions in a neighborhood around the

current iterate. The motivation is similar in gradient sampling where one aims to ap-

proximate subdifferential information by the random sampling of gradients in a neigh-

borhood of a given point. Here however, we are reusing the gradients of the objective

and constraints of previously computed points {xk+1−l, . . . , xk} to form G and Ji, pro-

vided that this set of previous iterates is sufficiently close to the xk. If the solution of the

resulting QP is sufficiently small in norm, then we have reason to believe that we are in

a small neighborhood of a stationary point for the constrained optimization problem. In

the dual formulation, this is written as

max
σ,λ

m∑
i=1

ci(xk)e
Tλi − 1

2
[σ, λ] [G, J1, . . . , Jm]TH−1k [G, J1, . . . , Jm]

 σ

λ

 (7.10)

s.t. 0 ≤ λi ≤ e

eTσ = µ

σ ≥ 0
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where the smallest vector is given explicitly by

d� = H−1k [G, J1, . . . , Jm]

 σ

λ

 . (7.11)

Remark 7.1. For brevity, we omit the primal form of (7.10) and instead refer the reader

to the thorough discussion in [CO12] for more details. As a consequence, note that

we have actually defined BFGS SQP in terms of both the primal and the dual (for the

steering QP given by (7.7) and the stationarity QP given by (7.10) respectively) as we

feel doing so provides a much more concise explanation of how our algorithm works.

In an actual implementation, we must choose one convention or the other and for our

code, we used the dual as noted in Section 7.6.1.

For some fixed tolerance τ ∈ R++, we terminate the BFGS SQP iteration once

‖d�‖2 ≤ τ is satisfied, provided that the constraints are also satisfied to a desired accu-

racy. Furthermore, we discard the current set of l “close” iterates and begin collecting a

new set of “close” iterates any time BFGS takes a sufficiently large step.

We present pseudocode for the BFGS SQP method in Procedure 8.
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Procedure 8 [x?, f?, v?] = bfgs sqp(f(·), c(·), x0, µ0)
Input:

Objective f : Rn → R and inequality constraints c : Rn → Rm given as f(·) and c(·)
Initial starting point x0 ∈ Rn and finite penalty parameter µ0 ∈ R++

Constants: positive stopping tolerances τ� (stationarity) and τv (violation)
Output:

Best solution x? encountered with corresponding objective value f? and violation v?

Set H0 := I and µ := µ0

Set φ(·) as the penalty function given in (7.2) using f(·) and c(·)
Set∇φ(·) and v(·) as the associated gradient (7.3) and violation function (7.4)
for k = 0, 1, 2, . . . do

Evaluate φk := φ(xk;µ), ∇φk := ∇φ(xk;µ), and vk := v(xk)
[dk, µ̂] := sqp steering strategy(xk, Hk, µ)
if µ̂ ≤ 0 then

// µ̂ ≤ 0 is used to indicate steering failed - terminate algorithm
break

else if µ̂ < µ then
// Penalty parameter has been lowered by steering - update current iterate
Set µ := µ̂
Reevaluate φk := φ(xk;µ),∇φk := ∇φ(xk;µ), and vk := v(xk)

end if
[xk, φk,∇φk, vk, s] := inexact linesearch(xk, φk,∇φk, dk, φ(·),∇φ(·))
if s ≤ 0 then

// Step size s ≤ 0 is used to indicate line search failed - terminate algorithm
break

end if
Compute d� via (7.10) and (7.11) // Note the use of dual form here using H−1k
if ‖d�‖2 < τ� and vk < τv then

// Stationarity and feasibility sufficiently attained - terminate successfully
break

end if
Set Hk+1 using BFGS update formula

end for

NOTE: For brevity, we omit the specifics for tracking the best optimizer encountered so far and the set

of previous gradients which are considered “close” to the current iterate. For details on the inexact line

search method and the BFGS update formula for the Hessian, not its inverse, we refer to [LO13, Han]

and [NW06, pages 140-143] respectively.
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7.4 Nonsmooth, nonconvex constrained optimization examples

7.4.1 Static output feedback controller design

Consider the discrete-time linear dynamical system with input and output defined by

xk+1 = Axk +Bwk

zk = Cxk

and the associated static output feedback plant [Blo99, BHLO06, Ove14]

A+BXC,

where matrices A ∈ Rn,n, B ∈ Rn,m, and C ∈ Rp,n are fixed, X ∈ Rm,p is an em-

bedded variable controller matrix and wk ∈ Rm is the control input and zk ∈ Rp is the

output. A well known and an important problem in applications is the goal of design-

ing the controller matrix X such that with respect to some chosen measure of stability

for dynamical systems, the stability of the static output feedback plant is enhanced as

much as possible. Typically controller design for static output feedback plants amounts

to solving a nonsmooth, nonconvex optimization problem, one which may not even be

locally Lipschitz depending on which stability measure is specified in the problem. Fur-

thermore, as the controller is optimized, we typically observe that an increasing degree

of nonsmoothness in the problem is encountered by the algorithm as it progresses.
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7.4.2 Multi-objective spectral radius optimization

Definition 7.2. The spectral radius of a square matrix A is defined as

ρ(A) := max{|λ| : λ ∈ σ(A)}

where

σ(A) = {λ ∈ C : det(A− λI) = 0}.

We say that A is (Schur) stable if ρ(A) < 1.

Remark 7.3. The discrete-time dynamical system xk+1 = Axk with x0 ∈ Rn is (asymp-

totically) stable, that is xk → 0 as k →∞ holds for all x0, if and only if ρ(A) < 1.

Remark 7.4. Though the spectral radius is nonconvex, nonsmooth, and furthermore not

locally Lipschitz [BO01], it is in fact still differentiable almost everywhere and as such,

makes for a good and challenging candidate function for comparing gradient-based

nonsmooth, nonconvex optimization methods.

Remark 7.5. If the task of optimizing a controller for a single static output feedback

plant is done with respect to the spectral radius, then the stability for the system will be

enhanced by decreasing the spectral radius to as close to zero as possible. However, as

the spectral radius is decreased, we generally observe that more and more eigenvalues

of the static output feedback plant have moduli that attain the spectral radius. We can

consider the number of such “active” eigenvalues, minus one, (the number of “activi-

ties”) as a measure of nonsmoothness at the solution. When complex active eigenvalues

coincide with each other, the degree of nonsmoothness is higher still, since both the real

and imaginary parts coincide, not only the modulus: this also tends to happen as the
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spectral radius is decreased. See [Ove14] for further discussion of this phenomenon.

We now consider the following multi-objective nonconvex and nonsmooth constrained

optimization problem

min
X

max{ρ(Ai +BiXCi) : i = 1, . . . , p}

s.t. ρ(Ai +BiXCi) < 1, i = p+ 1, . . . , k

(7.12)

where each static output feedback plant Ai + BiXCi is defined by the fixed matrices

Ai ∈ Rn,n, Bi ∈ Rn,m, and Ci ∈ Rp,n and the matrix X ∈ Rm,p is an embedded variable

controller for all k plants. The goal is to design a matrixX such that stability of the static

output feedback plants in the objective are all enhanced while simultaneously ensuring

that the plants appearing in the constraint functions remain stable, as measured by the

spectral radius.

In Figure 7.1, we compare SFPP (where the number of iterations for each fixed value

of the penalty parameter is limited to 20), BFGS SQP, and SQP-GS for designing a con-

troller for (7.12) on a randomly generated example of dimension n = 13 comprised of

three plants in the objective and one in the constraint and where the controller matrix

has mp = 23 × 2 = 46 variables and was initially set to 0, a feasible starting point.

(See Section 7.6.1 for more details on the experimental setup.) We see that SFPP im-

mediately stepped outside of the feasible set and then, even with a relatively frequent

penalty parameter update, struggled for well over 100 iterations before any real progress

towards feasibility was made, due to the penalty parameter remaining too high for those

iterations. In contrast, BFGS SQP, although also initially stepping outside of the feasible

set, immediately made quick progress back towards it while SQP-GS in fact maintained

feasibility at almost every iterate, and both algorithms simultaneously minimized the ob-
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jective significantly more than SFPP. By viewing the time at which BFGS SQP finished

its 500 iterations relative to SQP-GS, it is manifestly apparent that BFGS SQP is well

over an order of magnitude faster in terms of CPU time. For this particular problem, we

see that BFGS SQP happens to reduce the objective more than SQP-GS, which appears

to reach its max iteration count before it has actually converged.

In Figure 7.2, we show the final spectral configurations of the three controllers ulti-

mately produced by SFPP, BFGS SQP and SQP-GS for this particular example. These

are all plots in the complex plane, symmetric about the real axis because the matrix data

and controller X are all real. In all configurations, in accordance with Remark 7.5, we

observe that the moduli of several eigenvalues attain the relevant spectral radius value.

For example, in the third plant in the objective for BFGS SQP’s controller we see the

moduli of all thirteen eigenvalues close to attaining the spectral radius, with two com-

plex conjugate pairs being close to coincident. A count of the number of eigenvalues

in this case shows that two real eigenvalues must actually be coincident, though this

can’t be observed from the plot, but a close-up view indicates that, unlike the others,

the positive real eigenvalue does not quite have its modulus attaining the spectral ra-

dius. Furthermore, we see that the spectral radii of the different plants in the objective

are nearly the same, further increasing the overall number of activities encountered at

these solutions and demonstrating the inherent high degree of nonsmoothness in the op-

timization problem. The plants in the constraint also show activities, with the moduli of

several eigenvalues attaining the value one imposed by the constraint, thus demonstrat-

ing that the algorithms converged to controllers where both the objective and constraint

are nonsmooth. (See Appendix B for additional spectral radius examples similar to the

one shown here in Figures 7.1 and 7.2.)
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FIGURE 7.1: The plots in the top row track the value of the spectral radius based objective function in

terms of iteration number for SFPP (left), BFGS SQP (middle), and SQP-GS (right) on a randomly gen-

erated example of dimension n = 13 comprised of three plants in the objective and one in the constraint

and where the controller matrix has mp = 23 × 2 = 46 variables. The vertical dashed black line in the

top right plot indicates the time at which BFGS SQP terminated while the horizontal dashed black line

indicates the value of BFGS SQP’s best feasible solution. The log-scaled plots in the bottom row show

the amount of violation tracking with the iteration counts with green and red indicating whether each

iterate is feasible or infeasible respectively.
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FIGURE 7.2: The three rows show the final spectral configurations of the three controllers found by

SFPP (top), BFGS SQP (middle), and SQP-GS (bottom) respectively a randomly generated example of

dimension n = 13 comprised of three plants in the objective and one in the constraint and where the

controller matrix has mp = 23 × 2 = 46 variables. Blue is used to indicate the plants in the objective

while red is used to indicate plants in the constraints, with the plus signs indicating the eigenvalues

and the colored circles indicating the spectral radius of each plant. The dashed black circle on the

plots for constraints is the unit circle (the stability boundary). The dashed black circle on the objective

plots (barely visible) corresponds to the max spectral radius of the three plants in the objective for that

particular algorithm’s controller.
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7.4.3 Multi-objective pseudospectral radius optimization

Definition 7.6. The pseudospectral radius of a matrix A ∈ Cn,n is defined as

ρε(A) := max{|λ| : λ ∈ σ(A+ ∆),∆ ∈ Cn,n, ‖∆‖2 ≤ ε}.

We say that A is considered (Schur) stable with respect to perturbation level ε ≥ 0 if

ρε(A) < 1, noting that ρ0(A) = ρ(A).

Remark 7.7. Note that the pseudospectral radius can be equivalently defined in terms

of the norm of the resolvent as [TE05]

ρε(A) := max
{
|λ| : λ ∈ C, ‖(A− λI)−1‖2 ≥ ε−1

}
where we use the convention that ‖(A− λI)−1‖2 =∞ when A− λI is singular.

Remark 7.8. Like the spectral radius, the pseudospectral radius is also nonconvex, non-

smooth, and differentiable almost everywhere. However and in contrast to the spectral

radius, the pseudospectral radius is also locally Lipschitz [GO12] and is thus potentially

an easier function to optimize. For example, the known convergence rates for gradient

sampling hold for the pseudospectral radius but not the spectral radius. On the other

hand, the pseudospectral radius (along with its gradient) is significantly more expensive

to compute than the spectral radius [MO05].

Remark 7.9. In contrast to the spectral radius, the pseudospectral radius can be con-

sidered a robust stability measure, in the sense that it can account for where asymptotic

stability of the linear dynamical system is guaranteed under the influence of noise up to

a specified amount.
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For a given perturbation level of ε = 10−1, we now consider the following multi-

objective nonconvex and nonsmooth constrained optimization problem

min
X

max{ρε(Ai +BiXCi) : i = 1, . . . , p}

s.t. ρε(Ai +BiXCi) < 1, i = p+ 1, . . . , k

(7.13)

which we may view as a locally Lipschitz regularization of (7.12). The goal is still

to still design a matrix X such that stability of the static output feedback plants in the

objective are all enhanced while simultaneously ensuring that the plants appearing in

the constraint functions remain stable, except here stability means that any plant must

remain stable under any perturbation up to norm ε = 10−1.

In Figure 7.3, we again compare SFPP, BFGS SQP, and SQP-GS (using the same

experimental setup as used in Section 7.4.2 and described in Section 7.6.1) for designing

a controller for (7.12) on a randomly generated example of dimension n = 5 comprised

of three plants in the objective and one in the constraint and where the controller matrix

has mp = 13 × 2 = 26 variables and was initially set to 0, again a feasible point. For

this particular pseudospectral multi-objective optimization problem, we see that SFPP

performed even worse than it did on the multi-objective spectral radius example problem

after initially stepping outside of the feasible set, where here over 160 iterations were

incurred before the penalty parameter was sufficiently lowered to promote any signifi-

cant progress towards satisfying feasibility. BFGS SQP again initially stepped outside

the feasible region but quickly progressed back towards it while SQP-GS maintained

feasibility a majority of the time, and both algorithms simultaneously minimized the

objective more than SFPP once again. Interestingly, as on the multi-objective spectral

radius problem, BFGS SQP found a much better controller than SQP-GS, even though
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SQP-GS’s convergence results hold for this particular problem (as it’s locally Lipschitz)

while BFGS SQP provides no guarantees. As we expect, the higher number of func-

tion evaluations per iteration required by SQP-GS cause it to be dramatically slower the

BFGS SQP with respect to CPU time.

In Figure 7.4, we show the final pseudospectral configurations (generated via MAT-

LAB’s contour by evaluating the norm of the resolvent on a grid) of the three con-

trollers controlled ultimately produced by SFPP, BFGS SQP and SQP-GS for this par-

ticular example. For almost all the plants, we see that the resulting pseudospectral con-

figurations show that there are multiple nonsmoothness activities with respect to the

pseudosepctral radius (without counting conjugacy) and we see further activities due to

the fact that pseudospectral radii for the three plants in the objectives are all tied as well.

The plants in the constraint also show activities, demonstrating that both the objective

and the constraint are indeed nonsmooth at the solutions found by each algorithm. (See

Appendix C for additional pseudospectral radius examples similar to the one shown here

in Figures 7.3 and 7.4.)
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FIGURE 7.3: The plots in the top row track the value of the pseudospectral radius based objective function

in terms of iteration number for SFPP (left), BFGS SQP (middle), and SQP-GS (right) on a randomly

generated example of dimension n = 5 comprised of three plants in the objective and one in the constraint

and where the controller matrix has mp = 13 × 2 = 26 variables. The vertical dashed black line in the

top right plot indicates the time at which BFGS SQP terminated while the horizontal dashed black line

indicates the value of BFGS SQP’s best feasible solution. The log-scaled plots in the bottom row show

the amount of violation tracking with the iteration counts with green and red indicating whether each

iterate is feasible or infeasible respectively.
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FIGURE 7.4: The three rows show the final pseudospectral configurations of the three controllers found

by SFPP (top), BFGS SQP (middle), and SQP-GS (bottom) respectively a randomly generated example

of dimension n = 5 comprised of three plants in the objective and one in the constraint and where the

controller matrix hasmp = 13×2 = 26 variables. Blue is used to indicate the pseudospectral boundaries

for the plants in the objective while red is used to indicate the pseudospectral boundaries of the plants

in the constraints, with the plus signs indicating the eigenvalues. The dashed black circle on the plots

for constraints is the unit circle, that is the stability boundary. The dashed black circle on the objective

plots corresponds to the max pseudospectral radius of the three plants in the objective for that particular

algorithm’s controller.
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7.5 Comparing nonsmooth, nonconvex optimization algorithms

For the case of evaluating convex optimization codes, a popular visualization tool is

that of performance profiles [DM02], which simultaneously give an indication of how

well any given algorithm is doing on a test set, in terms of the percentage of problems

it has successfully globally minimized, as well as how fast the algorithm is making its

way through the test relative to the fastest algorithm per problem. The ingenuity of

performances profiles is that they allow both the success rate and speed of computation

to be concisely combined in an easily read plot, while additionally providing information

on how the computation time of each algorithm changes with respect to the individual

difficulty of each problem. As data sets can be quite varied in the level of difficulty of the

problems, performance profiles allow the reader to gauge the range and frequency of the

different difficulty levels in the test set in terms of each algorithm’s specific ability for

those problems, that is, the easy problems for one algorithm are not necessarily the same

set of problems for a second algorithm. If an algorithm performs disastrously badly on

one particular problem but exceptionally well on all the others, an assessment based

on the overall running time to complete the test set could cause the algorithm to look

inferior, even if it is better than its competition 99% of the time, whereas performance

profiles would make this important distinction clear.

Making any comparison of optimization codes for nonconvex problems however can

be quite a challenge, yet alone attempting to make a fair comparison. In the nonconvex

setting, we can neither expect that the codes will find global minimizers for the test prob-

lems nor can we expect the codes to find the same local minimizers for a given problem

or even local minimizers at all. The general state of affairs is that for any nonconvex

problem, the codes being evaluated may each return their own distinct stationary point

155



and in nonsmooth settings, the algorithms may stagnate before convergence is reached.

Thus there is an inherent ambiguity, at least at a fine level, as to whether the time to

run a code on a nonconvex, nonsmooth problem is attributable to the algorithm’s im-

plementation/design or to the particular ease or difficulty inherent in the problem itself

for finding any given stationary point. As a consequence, even in the event that one

algorithm consistently finds better (lower) minimizers and/or stationary points across a

test set of nonconvex problems, there is often little to no grounds for attributing such

a success to the properties and design of the algorithm. Unfortunately, performance

profiles do not address these issues. Furthermore, our setting is not just nonconvex opti-

mization, but constrained nonconvex optimization where we must also assess feasibility

of the different candidate minimizers that are found, in addition to both the amount of

minimization of the objective achieved as well as the overall cost incurred.

7.5.1 Relative minimization profiles

Let us first consider evaluating algorithms with respect to the quality (amount) of ob-

jective minimization achieved and feasibility of solutions over a test set of multiple

problems, without considering running time. We propose producing a plot, which we

call a relative minimization profile (RMP), where the amount of per problem objective

minimization achieved for individual algorithms, relative to the lowest objective value

found on the feasible set across all the algorithms (in terms of the number of digits that

agree) and measured on the x-axis, is related with the percentage of feasible solutions2

that the algorithms found over the entire data set, measured on the y-axis. At the far

2In fact, relative minimization profiles can be useful for comparing methods in unconstrained and/or
convex settings. However, as our main focus in here is to compare algorithms for nonsmooth, nonconvex,
constrained optimization, we present and motivate RMPs for this specific context. We refer the reader to
Remarks 7.12 and 7.16 for brief discussions on the applicability of RMPs to other settings.
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right side of an RMP, the algorithms are purely assessed on the percentage of problems

in the data set for which they found feasible solutions, regardless of the objective values

achieved at these solutions or even if the objective values were in fact increased from

the initial starting points. However, on the far left side, an algorithm’s feasible solutions

are only counted in its “percentage of feasible solutions found” score if the amount of

per problem objective minimization attained matches the lowest objective value found

on the feasible set across all the algorithms to 16 digits. In the middle, an RMP depicts

how the percentage of feasible solutions increases as the required number of digits that

agree is relaxed.

Remark 7.10. Requiring a 16 digit agreement of an algorithm’s per problem objective

minimization to the objective value attained by the best feasible point found across all

the algorithms might seem excessive. However, the intention of a relative minimization

profile is to demonstrate how the percentage of feasible solutions varies in the range

between requiring that an algorithm always demonstrates the largest reduction in the

minimization objective that is known to be possible while remaining feasible, to requir-

ing only feasibility, regardless of the resulting objective values.

Remark 7.11. As our setting is for inequality constrained optimization, it is reasonable

to require strict feasibility of the solutions for them to be counted in an algorithm’s

percentage score. For the case of equality constrained optimization, a tolerance should

be used to only require a sufficiently close to feasibility condition since attaining exact

feasibility is unlikely to be possible.

A relative minimization profile, which is visually interpreted like a receiver operat-

ing characteristic [Wik14] or ROC curve, highlights when an algorithm’s performance

is subpar, such as when it either frequently fails to satisfy feasibility or tends to stagnate,
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while simultaneously showing which algorithms most frequently and closely match the

most amount of minimization that is known to be attainable on the feasible sets for the

test problems. In fact, an RMP is quite similar to that of a normal performance profile,

but with a twist in the sense that feasibility is used to determine whether an algorithm

succeeded or failed while the performance metric compares the algorithms against each

other in terms of the number of digits that they were able to match in the objective value

being minimized compared to the best known solution per problem. By contrast, regular

performance profiles use a relative ratio with respect to the selected performance metric

(usually running time) of the best performing algorithm per problem. However, this is

a poor choice of scaling for assessing how closely two or more algorithms are able to

minimize objectives over the data set, which is a crucial consideration when compar-

ing optimization methods for nonconvex and/or nonsmooth problems where methods

may either converge to completely different stationary points or to ones that provide

approximately the same amount of minimization but only to a certain degree of preci-

sion. By instead using a base 10 logarithmic scaling of the relative differences from the

lowest known feasible objective value for each problem, it can be clearly seen with what

frequency the algorithms are either finding the same quality of solutions (and to what

precision) or different solutions altogether and how the algorithms’ scores in terms of

percentage of feasible solutions found over the test set improve as the required precision

for matching the best known feasible objective value for each problem is reduced. As a

result, there is no need to set an arbitrary limit on how much minimization is required

in order to determine an algorithm’s success / failure on any particular problem, which

is an issue when using performance profiles, even for convex problems where typically

the solution value is used as the success metric and running time is used as the perfor-

mance metric. Furthermore, there is no need for a probabilistic interpretation (as is done

158



in performance profiles) as the pertinent statistics of each algorithms’ behavior relating

frequency of success over the data set and amount of minimization is explicit in the FPM

itself.

Remark 7.12. As alluded to, relative minimization profiles are not just applicable for

comparing optimization methods on constrained nonconvex problems but also on con-

strained convex problems, where it is important to assess the accuracy of the solutions,

and/or the amount of minimization achieved before reaching a solution, in concert with

how frequently feasibility was satisfied. This is particularly important in the nonsmooth

setting where algorithms may slow down or stagnate as they approach a minimizer of

a convex constrained problem or for cases when just finding a point in the feasible set

itself is difficult (e.g. when the feasible set has measure zero) and there thus may be

little consistency in the corresponding objective values found by the algorithms being

compared.

7.5.2 Comparing time via multiple relative minimization profiles

As a single relative minimization profile makes no indication of the relative running

times of the algorithms, we may instead generate several of them, where each RMP

corresponds to a particular set of maximum time limits allowed for each problem. For

example, if we wish to assess how well algorithm A compares to algorithms B and C,

we can generate an RMP where each algorithm is only scored upon the best solution it

has found so far at the time that algorithm A finishes for each particular problem. Thus,

algorithm A is not held to any time restriction while algorithms B and C potentially

are, specifically on the problems for which they take longer to converge than algorithm

A does. If we then suspect that while algorithm A might usually be fastest but that it
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also often stagnates compared to the other algorithms, we can generate a second RMP

where we allow algorithms B and C to have, say 10 times the amount of CPU time per

problem as algorithm A needed per problem, to see whether algorithms B and C, when

given a time advantage, make additional progress beyond what is achieved by algorithm

A. Thus, for a relative specified amount of CPU time per problem compared to one

algorithm’s running times, we can assess which algorithm has made the most progress

across the entire data set, both in terms of whether feasible solutions have been attained

and by how much they reduce the objectives. A combination of several of these plots, for

different relative amounts of CPU time, allows us to roughly gauge the performance of a

specific algorithm to the competition in terms of relative rates of progress for satisfying

feasibility and amount of minimization of the objectives. The actual relative time factors

chosen to highlight the key performance differences between algorithms will of course

be specific to any given evaluation and as such, the time factors must not only be chosen

sensibly but also in an unbiased manner.

Remark 7.13. It is not necessary to use relative time factors with respect to the times

per problem for one chosen algorithm when generating a set of relative minimization

profiles. For example, one could consider using relative time factors with respect to the

fastest time per problem over all the algorithms. A potential concern with this approach

however is when the comparison contains an algorithm which is particularly quick but

is also particularly bad, which could require very large relative time factors to be chosen

for each additional RMP and could thus be potentially misleading. Using the average or

median time per problem is most likely a good overall choice for any general comparison

using multiple RMPs. However, when the purpose is to just evaluate a single algorithm

in comparison to one or more other algorithms, as opposed to an all-pairs comparison,
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using relative factors with respect to just the running times of the algorithm in question

is quite appropriate.

Remark 7.14. In fact, it is not necessary to use relative time factors at all with respect to

a chosen algorithm in a set of relative minimization profiles. However, doing so avoids

the problem of how to choose specific per problem time limits on a test set that may be

comprised of instances of varying dimension as well as difficulty, the latter of which may

not even be a consistent property across algorithms and could be a complete unknown,

such as when a test set is used for the first time.

Note that while relative minimization profiles precisely depict the amount of mini-

mization achieved versus the frequency of satisfying feasibility, the effect of changing

the maximum amount of time allowed per problem is only coarsely approximated across

two or more RMPs. This is due to several reasons. First, timing information is inher-

ently variable, in contrast to assessing feasibility of the solution and its corresponding

objective value. Second, by the discrete nature of the iterates, there will also be an

unavoidable quantization effect when trying to compare two or more algorithms at any

given point in time. Third, depending on the codes being compared, obtaining accurate

histories of the iterates and at what time in the computation they were computed may

not always be a practical endeavor.

In the case when a code does not return timing data, coupling the implementations

of the objective and constraints functions to some persistent storage (e.g. via object-

oriented programming) that records each evaluation and the time at which it occurred

is typically an effective strategy to obtain timing data unbeknownst to the optimization

code. However, this can introduce significant overhead and affect the timing data. Fur-

thermore, there is little to no way of reliably determining which evaluations correspond
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to the actual iterates accepted by the algorithm at every step though this is not necessar-

ily a problem for producing RMPs. Provided that the codes at least return a history of

the iterates, calculating the average time per iterate and using it as a proxy to determine

what progress an algorithm has made by any given time can however often be a suitable

and easily attained approximation. Though there may be variability in the time each

iteration takes, if the data set is sufficiently large and a high number of iterations is typ-

ically needed for any method to converge on the problems, then such an approximation

is likely to be good enough for qualitative running time comparisons for a set of plots

made with different per problem time limits.

Despite any inaccuracies in the timing data, if the methods are indeed significantly

different in terms of speed, that property itself will most likely be the dominant factor

in determining what is presented by the plots, not the inherent limitation of having to

estimate the exact timing data. On the other hand, if comparing the relative speeds of the

algorithms requires high precision, then it suggests that running time is not a particularly

discriminating performance characteristic amongst the codes being compared. In such

cases, a single RMP without a per problem time limit specified should be sufficient,

perhaps with the overall time reported for each algorithm to complete the entire data

set. As a result, we typically envision using a set of multiple RMPs to show significant

differences in running times between algorithms, where the relative time factors selected

are well above the level of error in the timing data. For example, any issues in the timing

data would most likely be inconsequential if the relative time factors were chosen to be

one, two and four.

Remark 7.15. Some comments on data profiles [MW09] are in order. Data profiles are

visualization tools that are also interpreted as ROC curves and are thus similar in ap-
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pearance to performance profiles, but instead attempt to measure the overall progress

of an algorithm towards solutions in a test set with respect to some constraint on the

computational resources. Specifically, they propose using the number of function and/or

gradient evaluations to assess the cost of the algorithms and measure the percentage

of problems in the test set that are solved to some specified level of accuracy. As the

allowed number of function and/or gradient evaluations is increased, the algorithms

can potentially return more and more accurate solutions, and thus the percentage of

problems considered to be solved sufficiently well monotonically increases. By creating

multiple data profiles, one plot for each different level of accuracy permitted to be con-

sidered an acceptable solution to any given problem, one can assess which algorithms

are fastest for obtaining only approximate solutions versus which are fastest for resolv-

ing accurate solutions to a high precision. However, data profiles do not provide a direct

way for additionally assessing feasibility for constrained problems nor do they address

the possibility of obtaining different quality of solutions in the nonconvex setting.

Data profiles are precise in terms of the cost to run the algorithms but only give an

approximate indication of the accuracy of the solutions achieved unless many plots are

made for various specified accuracy levels. By contrast, relative minimization profiles

are precise in terms of both the frequency of feasible solutions found and the quality of

minimization achieved over the data set (and their relationship to each other) while the

number of RMPs produced and what relative time factors are used determine how fine-

grained the timing comparison is amongst the algorithms being compared. We believe

this latter approach is typically a more useful prioritization for comparing algorithms,

at least in a nonconvex and/or nonsmooth setting.

Remark 7.16. In fact, even in an unconstrained convex setting, a set of relative mini-
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mization profiles could be used in lieu of data profiles to compare the relative rates of

progress of algorithms for different computational budgets (with an RMP produced for

each budget specified), particularly useful when one desires a fine-grained assessment

of the relative level of minimizations achieved per problem at different relative times to

thus track which algorithm is best for each computational budget and level of accuracy

specified.

7.6 Numerical results

7.6.1 Experimental setup

In order to empirically validate that BFGS SQP is both an efficient and reliable method

for nonsmooth, nonconvex constrained optimization, we created two test sets comprised

of 100 problems each, where the problems for one set are of the form given in (7.12)

while the problems in the second set are of the form given in (7.13). For both the

multi-objective spectral radius and pseudospectral radius test sets, each problem was

comprised of two to five plants, split randomly between the objective and constraints

(ensuring at least one plant one was assigned to each). In order to compare to SQP-

GS, since gradient sampling is so expensive, we chose to generate small dimensional

test problems, where n was chosen randomly from {4, . . . , 20} for the spectral radius

problems and from {4, . . . , 8} for the more expensive-to-compute pseudospectral radius

problems. The dimensions for m and p were loosely generated with a preference to

be in the interval (0.5kn, 1.5kn). Matrices Ai were generated using randn(n) and

were subsequently destabilized if they were in the objective and stabilized otherwise,

by successively multiplying the matrices by a constant greater/lesser than one respec-

tively. Many of the Bi and Ci matrices were similarly generated via randn(n,p)
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and randn(m,n) respectively, but we also generated Bi matrices that consisted of a

column of ones followed by a randomly generated distribution of positive and negative

ones over the remaining entries of the matrix while Ci was sometimes set to consist of

rows of the identity matrix. Since the origin is a feasible point for all the problems, each

algorithm was initialized with X = 0 and µ = 16.

We used the 1.1 version of SQP-GS so we could compare BFGS SQP to a method

that provides provable convergence guarantees for nonsmooth, nonconvex optimization,

even though its expensive but robust gradient sampling technique makes its unlikely

to be efficient. As both SQP-GS and BFGS SQP require a QP solver and for these

experiments we used MOSEK 7. We implemented SFPP using the unmodified BFGS

routine from the 2.02 version of the HANSO optimization package [Han] implemented

in MATLAB, with a set limit of 20 iterations per BFGS call before lowering the penalty

parameter if the 20th iterate was infeasible.

To implement BFGS SQP, we modified the BFGS routine from HANSO, replacing

the standard BFGS search direction computation with the steering strategy of Proce-

dure 7. However, as the BFGS version from HANSO actually approximates the inverse

of the Hessian, we chose to adapt Procedure 7 and Procedure 8 using the dual form

of the QPs, instead of the primal as stated in the pseudo codes. For tolerances, we set

cv := 0.1 and cµ := 0.5 in Procedure 7 and limited its loop to a most ten iterations,

while for Procedure 8 we set τ� to machine precision (even though this is quite unusual

in practice) and τv := 0.

In order to encourage the algorithms to run as long as possible, as per our choice of

tolerances for BFGS SQP, we also set the termination and violation tolerances of SQP-

GS and SFPP to machine precision and zero respectively and set a max iteration limit of

500 for all, since creating multiple relative minimization profiles allows us to evaluate
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the algorithms at particular points in time that we specify. For the experiments here, we

chose relative time factors of 1, 5, 10 and ∞ with respect to the per problem running

times of BFGS SQP. For example, for a time factor of 5, SQP-GS and SFPP were each

given five times the amount of time BFGS SQP took to converge per problem, while

the time factor of ∞ means that the SQP-GS and SFPP were not restricted by time

specifically but only by the maximum iteration count of 500 or whether they terminated

themselves before that. As per iterate timing data was not a feature available in either the

SQP-GS or HANSO’s BFGS codes, we chose to approximate the timing data by using an

average time per iterate proxy. Given the large difference in running times between the

algorithms and the fact the convergence is generally slow on the nonconvex, nonsmooth

constrained optimization problems created for our test sets, it is unlikely that using an

average time per iterate proxy would skew a set of RMPs for comparing the relative

rates of progress for the algorithms.

All experiments in this chapter were run on an Intel Xeon X5650 2.67 Ghz CPU

using MATLAB R2012b.

7.6.2 Multi-objective spectral radius optimization

We begin analyzing the relative performance of the three codes over the multi-objective

spectral radius test set by first turning our attention to the bottom right RMP in Fig-

ure 7.5. Here, each algorithm was allowed to run without any time restriction and we

see that despite the promising example shown earlier in Figure 7.1, SQP-GS ended up

finding over 80% of the best optimizers while BFGS SQP only found just under 20% of

the best optimizers. Furthermore, we see that BFGS SQP’s performance over the data

set only starts to look better if we greatly relax how much of the minimization of the
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best known solution is necessary to be considered a success, indicating that BFGS SQP

in general either converged to different optimizers (and worse ones at that for this test

set) or perhaps was stagnating early compared to SQP-GS. On the other hand, SFPP

appears to be completely uncompetitive by comparison to either BFGS SQP and SQP-

GS. Though this doesn’t initially appear promising for BFGS SQP, the fact remains that

SQP-GS actually took 27.4 times longer to run.

However, if we look at the progress SQP-GS has made when it is allowed to run 10

times longer than BFGS SQP per problem, as shown in the bottom left RMP, we see

that SQP-GS actually did slightly worse than BFGS SQP, even though it had a tenfold

time advantage. If we further consider the RMP in the top right, where SQP-GS is only

allowed up to five times as much time as BFGS SQP per problem, we see that the relative

performance of the two algorithms has practically reversed, where it is now clear that

BFGS SQP performed significantly better than SQP-GS, even though SQP-GS still is

being evaluated with a fivefold time advantage. Finally, in the top left RMP, where SPQ-

GS and SFPP are assessed at the per problems times at which BFGS SQP terminated,

we that BFGS SQP completely outclasses SQP-GS due to its much higher efficiency.

Impressively for both BFGS SQP and SQP-GS is that they are able to be effective at all,

and in fact quite so, when attempting to optimize functions that are not locally Lipschitz,

even though neither algorithm has convergence results in this setting.
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FIGURE 7.5: Overall performance assessment on the multi-objective constrained spectral radius opti-

mization problems of BFGS SQP, SQP-GS, and SFPP, with relative time factors of 1, 5, 10, and ∞
compared to the per problem times of BFGS SQP. In the top left panel for a time factor of 1, we see

that the other two algorithms have barely made progress towards feasibility and minimizing the objective

function when BFGS SQP has terminated. In the top right, even with the opportunity to run 5 times longer

per problem than BFGS SQP, we see that SQP-GS and SFPP are still nowhere near as competitive. In

the bottom left, when given the opportunity to run 10 times longer per problem than BFGS SQP, we see

that SQP-GS is starting to come close to matching BFGS SQP. In the bottom right panel, where all the

algorithms have no limits on running time besides the 500 max iteration count, we finally see SQP-GS

outperforming BFGS SQP and by a significant margin, though it took 27.4 times longer to do so. Even

without a time restriction, SFPP is indeed extremely ineffective and, interestingly, ran in only 0.435 of

the time that BFGS SQP took, perhaps indicating that SFPP often suffered from early stagnation and/or

breakdown on this test set of non locally Lipschitz optimization problems.
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7.6.3 Multi-objective pseudospectral radius optimization comparison

On the multi-objective pseudospectral radius problems, we see that even in the bottom

right RMP, where no running time restrictions were put on the algorithms, BFGS SQP

slightly outperformed SQP-GS over the test set. To put that in context, BFGS SQP

produced just as good or better minimizers compared to SQP-GS, and in fact did so

more frequently, while also being 29.6 times faster than SQP-GS. This is a remarkable

outcome given that the convergence results for SQP-GS hold for the problems in the

multi-objective pseudospectral radius test set (as they are locally Lipschitz) while BFGS

SQP provides no theoretical guarantees. Indeed, it is a stark contrast to what we observe

on the multi-objective spectral radius test set, where SQP-GS could ultimately still pull

ahead compared to BFGS SQP, albeit when allowed to run 27.4 times longer. Interest-

ingly, we also see that SFPP appears to do better on the Lipschitz problems though it

is still quite unimpressive to say the least. As we look at smaller relative time factors

for the other RMPs in Figure 7.6, we see that the comparison is ever more in favor of

BFGS SQP. In other words, SQP-GS was not only just 29.6 times slower than BFGS

SQP on the pseudospectral radius problems, but it apparently needed that much of a

time advantage to be at all competitive in terms of the quality of the computed solutions.
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FIGURE 7.6: Overall performance assessment on the multi-objective pseudospectral radius optimization

problems of BFGS SQP, SQP-GS, and SFPP, with relative time factors of 1, 5, 10, and∞ compared to

the per problem times of BFGS SQP. In the top left panel for a time factor of 1, we see that the other

two algorithms have barely made progress towards feasibility and minimizing the objective function when

BFGS SQP has terminated. In the top right, even with the opportunity to run 5 times longer per problem

than BFGS SQP, the other algorithms SQP-GS and SFPP are still nowhere near as competitive. In the

bottom left, when given the opportunity to run 10 times longer per problem than BFGS SQP, we see that

performance of SQP-GS is improving but is still nowhere near to matching BFGS SQP. In the bottom

right panel, where all the algorithms have no limits on running time besides the 500 max iteration count,

we finally see that SQP-GS starts to approach the performance of BFGS SQP though it takes 29.6 times

longer to do so. On the other, SFPP is still extremely ineffective and even takes 1.35 times as long to

complete the test set compared to BFGS SQP.
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7.6.4 The effect of regularizing the Hessian approximation

As the enforced limits on the conditioning of the Hessian approximation required for

SQP-GS’s convergence results seem to be at odds with the argument in the unconstrained

case that ill-conditioning is actually beneficial [LO13], we explore the effect of reg-

ularizing the Hessian approximation in BFGS SQP. However, as BFGS SQP requires

solving QPs inside the BFGS iteration, there is also a potential tradeoff of regularizing

to improve the QP solves for determining a search direction versus not regularizing to

retain the ill-conditioning in the BFGS Hessian approximation. To assess the effect of

regularization, we reran the BFGS SQP experiments multiple times, where for each the

Hessian approximation was regularized such that its condition number was no more than

102j , for j = 0, . . . , 8, where the case of j = 0 corresponds to replacing the Hessian

approximation by a multiple of the identity.

For the spectral radius problems, as shown in Figure 7.7, we generally see that any

regularization hurts performance and more regularization is worse. We suspect that

regularization can make BFGS stagnation more likely and certainly this is case when the

Hessian approximation is completely regularized to be a multiple of the identity, where

BFGS reduces to a steepest descent method. For the locally Lipschitz problems however,

where pseudospectral radii are being minimized, we see in Figure 7.7 that moderate

levels of regularization (such as 106) seems to have a strikingly clear beneficial effect

compared to not regularizing at all. It is hard to say why we observe this behavior but it

is conceivable that the regularization helped improve the accuracy of the QP solves more

than it hurt the effectiveness of BFGS. However, it is apparent that the observed effects

of regularization is problem dependent since there is no parallel to the regularization

results for the spectral radius test set. Certainly more investigation into this matter would
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FIGURE 7.7: Left: the spectral radius test set. Right: the pseudospectral radius test set. Both panels show

how the performance of BFGS SQP changes over the test sets when increasing amount of regularization

is applied to the the inverse of the Hessian approximation.

be a worthwhile pursuit.

7.7 Conclusion

We have shown that our proposed BFGS SQP constrained optimization method for the

case of nonsmooth, nonconvex objective and constraints is not only highly efficient but

is also very reliable at finding good solutions, both in terms of satisfying feasibility and

minimizing the objective compared to the competing algorithms. Not only did BFGS

SQP completely outperform the baseline SFPP method, it also outperformed SQP-GS

on a challengingly test set comprised of locally Lipschitz problems, while performing

quite respectably compared to SQP-GS on an even harder test test, where the objec-

tives and constraints are not locally Lipschitz. Our findings indicate that despite a lack

of convergence results for BFGS SQP, it is a highly practical method due to its cheap

cost per iteration, ability to quickly promote progress towards the feasible region and its

generally robustness on exceptionally difficult problems in nonsmooth, nonconvex con-
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strained optimization. Finally, we have proposed relative minimization profiles (RMPs)

as a new tool for comparing algorithms for nonsmooth, potentially nonconvex, con-

strained optimization, which allow for a concise yet detailed visualization for compar-

ing the pertinent performance characteristics of algorithms, and how they interrelate,

and which facilitated the algorithmic comparison done here.
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CONCLUSION

In this thesis, we have developed two exceptionally fast and robust algorithms, one

for approximating stability measures with provable convergence guarantees and another

more general routine, with applications outside the scope of this thesis, intended for

optimizing nonsmooth stability measures in a constrained setting. As the first algorithm,

hybrid expansion-contraction, allows for efficiently approximating the H∞ norm for

large-dimensional systems, an interesting subject for future work would be to build on

this further to develop a new version of HIFOO [Hif] for designing and optimizing fixed-

order controllers for large-dimensional dynamical systems. Furthermore, the extension

of the algorithm to stability measures restricted to real-valued perturbations, bounded

by the Frobenius or spectral norm, could add useful new performance measures to the

HIFOO toolbox.

The second algorithm, BFGS SQP, by contrast offers no theoretical guarantees, but

nonetheless appears to be a remarkably reliable and efficient optimization method in

practice, often performing as well or better than the provably robust gradient sampling

based algorithm SQP-GS, while being many times faster as well. As the latest release

of HIFOO actually uses a version of the simple SFPP algorithm to design and optimize

multi-objective controllers, there is likely much to be gained by replacing it with BFGS

SQP in a future version.

For comparing numerical algorithms, we have proposed a novel visualization tool

called relative minimization profiles that allows for evaluating multiple algorithms with

respect to three important performance characteristics, highlighting how these measures

interrelate to one another and compare to the other competing algorithms. In the com-
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parison done here, we evaluated the algorithms on test sets comprised of nonsmooth,

nonconvex, constrained optimization problems, where we used the profiles to evaluate

attaining feasibility, amount of minimization achieved, and relative rates of progress

of the algorithms. However, we have noted that relative minimization profiles could be

useful analysis tools in other settings, such as for the unconstrained or convex cases, and

it would be interesting to compare their utility with other more established comparison

tools available, such as performance and data profiles [DM02, MW09], in these problem

spaces.

Many important considerations remain open. As hybrid expansion-contraction can

only be expected to find local maxima, it is worthwhile to investigate strategies for en-

couraging convergence to global maximizers or at least good local maximizers, which

is an important consideration if the algorithm is to be used for designing controllers.

While the numerous optimizations presented in this thesis have greatly reduced the po-

tential cost incurred by the slow linear convergence of SVSAR, we note that for the spe-

cial case of pseudospectra, our proposed vector extrapolation based technique, though

quite good, is still often slightly outperformed by the subspace acceleration method of

[KV14]. Though it indeed seems very difficult to extend the latter method to the general

case of spectral value sets, any improved acceleration technique for SVSAR could fur-

ther increase the efficiency of hybrid expansion-contraction. Finally, while much of the

algorithm has been adapted to the real-valued spectral norm case, it remains to be seen

how to compute the next perturbation vectors so that each iterate of the SVSAR subrou-

tine makes guaranteed rightward/outward progress in the spectral value set. Though our

randomized SVSAR variant can be used as a substitute in this case and appears to be

effective in terms of reliability, it is generally too slow to be of much practical use.
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A
CONTRIBUTIONS TO THIRD-PARTY CODES

• ARPACK

In 2011, I discovered and patched a nasty bug in ARPACK where if eigenvectors

were requested and the number of converged Ritz values returned was less than

number of eigenvalues requested, then ARPACK might erroneously return wrong

eigenpairs. For example, if ARPACK is set to find eigenvalues with the largest

real parts, under the aforementioned conditions of this bug, ARPACK could erro-

neously return Ritz values from the Krylov subspace that did not correspond to

the desired ordering, and thus the eigenvalues of largest real part would not nec-

essarily be returned to the user, if those Ritz values had converged. Furthermore,

some of the returned pairs might not even be accurate eigenpairs since the val-

ues returned to the user might not even have converged. The bug was due to a

reordering procedure not being properly called to first sort the output so that the

desired converged pairs were in the beginning of the array, which was where the

output Ritz values were copied from. I submitted my patch along with demo codes

in MATLAB and Fortran to replicate the bug to the ARPACK authors, The Math-

Works, and the community maintained repository, arpack-ng, which has been

replacing the official ARPACK source in many Linux distributions. My ARPACK

patch ships by default with MATLAB versions R2012b and later.

• eigsPlus v1.0 / eigs

The routine eigsPlus is my own small fork of the standard MATLAB routine

eigs, motivated by the fact the standard version of eigs used to return zeros for

Ritz values that didn’t converge, which the user may unwittingly mistake as actual
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eigenvalues. For example, if the rightmost eigenvalue of the matrix in question re-

sides strictly in the left half-plane and if say 6 eigenvalues are requested but not

all of them converge, then max(real(eigs(A,6,’LR’))) would mislead-

ing return 0 as the spectral abscissa, even if the largest real part eigenvalue had

converged. Even more problematic is that this erroneous value of 0 may then be

silently propagated to subsequent code without the user or programmer realizing

it. At my urging that this is an important issue, The MathWorks have since up-

dated eigs such that it instead uses NaN’s as placeholders for Ritz values so this

is no longer an issue for the standard eigs routine in MATLAB releases R2013b

and later. However, eigsPlus still has some additional features that are not as

of yet available in the latest release of eigs. For one, eigsPlus only returns

the converged Ritz values and it always returns them in a vector, rather than a

matrix, even if the eigenvectors are requested. As the number of eigenvalues re-

turned (and correspondingly, the number of eigenvectors returned, if requested)

will indicate whether all the requested Ritz values converged or not, eigsPlus

removes the optional third output argument flag and instead returns the num-

ber of ARPACK iterations incurred until convergence. The eigsPlus routine is

used by dtiApprox (the upcoming release of the hybrid expansion-contraction

algorithm), hinfnorm v1.02, psapsr v1.3, and subspace pspa codes.

• hinfnorm v1.02

The v1.0 release of the routine hinfnorm is Mert Gürbüzbalaban’s original im-

plementation of the GGO algorithm, which was the first fast algorithm for approx-

imating the H-infinity norm of large-scale dynamical systems, under the assump-

tions that the corresponding matrices are sparse and that the system has relatively
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few inputs and outputs. I discovered several bugs in the v1.0 code and released

a patched v1.02 version that addressed many of these issues, one of which was

critical enough to cause the v1.0 code to sometimes stagnate (different from the

breakdown case). I additionally made some minor algorithmic improvements in

the v1.02 release and ran the numerical experiments for the revised version of

[GGO13] using the updated v1.02 code. Of note, it was this project that led to me

to discover the breakdown case of the GGO algorithm and ultimately, the devel-

opment of hybrid expansion-contraction.

• psapsr v1.3

The v1.01 release of the routine psapsr is Michael Overton’s implementation

of the pseudospectral abscissa or radius approximation algorithm presented in

[GO11] and is the predecessor to the generalized subroutine svsar for approx-

imating the abscissa or radius of spectral value sets and used in hinfnorm. I

discovered that the v1.01 release (as well as the v1.2 release) mistakenly ignored

the user-supplied starting vectors and furthermore, even without that issue, the

code would have proceeded incorrectly from the user-supplied initial vectors. I

released psapsr v1.3 which addressed both of these issues and provided another

fix for an unrelated minor bug. I additionally refactored some of the included

subroutines for efficiency as well as clarity for the v1.3 code.

• pspr / EIGTOOL

The routine pspr is Emre Mengi’s code for computing the pseudospectral radius

[MO05]. In 2013, I noticed and reported that the included copy of pspr that is

bundled with EIGTOOL is actually out-of-date and may sometimes give incorrect

answers. The problem and its solution is discussed in [BLO03, pages 371-373]
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for the related criss-cross algorithm for computing the pseudospectal abscissa.

Fortunately, Emre Mengi’s newer routine pspr properly handles this issue and

gives accurate results, and will hopefully be bundled in EIGTOOL in the near

future. At this time, I also pointed out and proposed a solution for a very minor

plotting related bug in Emre Mengi’s version of pspr, which he promptly fixed.

• subspace pspa

The routine subspace pspa is Daniel Kressner’s and Bart Vandereycken’s im-

plementation of the subspace acceleration method for approximating the pseudo-

spectral abscissa [KV14]. As noted in Section 4.2.2, I recently discovered that

subspace pspa, v0.1 and v0.2, erroneously reports an incorrect value for its

pseudospectral abscissa approximation, which appears to be in fact some inter-

mediate value in the computation rather than the actual approximation computed.

Fortunately, the correct value can apparently be obtained from the optional second

argument, that is, by calling [f,info] = susbspace pspa(·), ignoring

the incorrect return value of f and instead using real(info.z pspa(end)).

The issue has been reported to the authors, along with a comment that the console

printing may contain a bug since it intriguingly doesn’t always print out updates

at every iteration.
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B
MULTI-OBJECTIVE SPECTRAL RADIUS

ADDITIONAL EXAMPLES

181



100 200 300 400 500
0

1

2

3

4

5
SFPP

iteration #

o
b
je

c
ti
v
e

100 200 300 400 500

−Inf
−16

−14

−12

−10

−8

−6

−4

−2

0

2

4

iteration #

v
io

la
ti
o
n

100 200 300 400 500
0

1

2

3

4

5
BFGS SQP

iteration #

100 200 300 400 500

−Inf
−16

−14

−12

−10

−8

−6

−4

−2

0

2

4

iteration #

100 200 300 400 500
0

1

2

3

4

5
SQP−GS

iteration #

100 200 300 400 500

−Inf
−16

−14

−12

−10

−8

−6

−4

−2

0

2

4

iteration #

FIGURE B.1: The plots in the top row track the value of the spectral radius based objective function

in terms of iteration number for SFPP (left), BFGS SQP (middle), and SQP-GS (right) on a randomly

generated example of dimension n = 5 comprised of one plant in the objective and one in the constraint

and where the controller matrix has mp = 4 × 2 = 8 variables. The vertical dashed black line in the

top right plot indicates the time at which BFGS SQP terminated while the horizontal dashed black line

indicates the value of BFGS SQP’s best feasible solution. The log-scaled plots in the bottom row show

the amount of violation tracking with the iteration counts with green and red indicating whether each

iterate is feasible or infeasible respectively.
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FIGURE B.2: The three rows show the final spectral configurations of the three controllers found by

SFPP (top), BFGS SQP (middle), and SQP-GS (bottom) respectively a randomly generated example of

dimension n = 5 comprised of one plant in the objective and one in the constraint and where the controller

matrix has mp = 4 × 2 = 8 variables. Blue is used to indicate the plants in the objective while red is

used to indicate plants in the constraints, with the plus signs indicating the eigenvalues and the colored

circles indicating the spectral radius of each plant. The dashed black circle on the plots for constraints

is the unit circle (the stability boundary). The dashed black circle on the objective plots (barely visible)

corresponds to the max spectral radius of the three plants in the objective for that particular algorithm’s

controller.
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FIGURE B.3: The plots in the top row track the value of the spectral radius based objective function

in terms of iteration number for SFPP (left), BFGS SQP (middle), and SQP-GS (right) on a randomly

generated example of dimension n = 10 comprised of one plant in the objective and four in the constraint

and where the controller matrix has mp = 16 × 1 = 16 variables. The vertical dashed black line in the

top right plot indicates the time at which BFGS SQP terminated while the horizontal dashed black line

indicates the value of BFGS SQP’s best feasible solution. The log-scaled plots in the bottom row show

the amount of violation tracking with the iteration counts with green and red indicating whether each

iterate is feasible or infeasible respectively.
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FIGURE B.4: The three rows show the final spectral configurations of the three controllers found by

SFPP (top), BFGS SQP (middle), and SQP-GS (bottom) respectively a randomly generated example of

dimension n = 10 comprised of one plant in the objective and four in the constraint and where the

controller matrix has mp = 16 × 1 = 16 variables. Blue is used to indicate the plants in the objective

while red is used to indicate plants in the constraints, with the plus signs indicating the eigenvalues

and the colored circles indicating the spectral radius of each plant. The dashed black circle on the

plots for constraints is the unit circle (the stability boundary). The dashed black circle on the objective

plots (barely visible) corresponds to the max spectral radius of the three plants in the objective for that

particular algorithm’s controller.
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FIGURE C.1: The plots in the top row track the value of the pseudospectral radius based objective

function in terms of iteration number for SFPP (left), BFGS SQP (middle), and SQP-GS (right) on a

randomly generated example of dimension n = 6 comprised of one plant in the objective and one in the

constraint and where the controller matrix has mp = 7 × 1 = 7 variables. The vertical dashed black

line in the top right plot indicates the time at which BFGS SQP terminated while the horizontal dashed

black line indicates the value of BFGS SQP’s best feasible solution. The log-scaled plots in the bottom

row show the amount of violation tracking with the iteration counts with green and red indicating whether

each iterate is feasible or infeasible respectively.
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FIGURE C.2: The three rows show the final pseudospectral configurations of the three controllers found

by SFPP (top), BFGS SQP (middle), and SQP-GS (bottom) respectively a randomly generated example

of dimension n = 6 comprised of one plant in the objective and one in the constraint and where the

controller matrix has mp = 7× 1 = 7 variables. Blue is used to indicate the pseudospectral boundaries

for the plants in the objective while red is used to indicate the pseudospectral boundaries of the plants

in the constraints, with the plus signs indicating the eigenvalues. The dashed black circle on the plots

for constraints is the unit circle, that is the stability boundary. The dashed black circle on the objective

plots corresponds to the max pseudospectral radius of the three plants in the objective for that particular

algorithm’s controller.
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FIGURE C.3: The plots in the top row track the value of the pseudospectral radius based objective

function in terms of iteration number for SFPP (left), BFGS SQP (middle), and SQP-GS (right) on a

randomly generated example of dimension n = 7 comprised of two plants in the objective and three in

the constraint and where the controller matrix hasmp = 5×4 = 20 variables. The vertical dashed black

line in the top right plot indicates the time at which BFGS SQP terminated while the horizontal dashed

black line indicates the value of BFGS SQP’s best feasible solution. The log-scaled plots in the bottom

row show the amount of violation tracking with the iteration counts with green and red indicating whether

each iterate is feasible or infeasible respectively.
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FIGURE C.4: The three rows show the final pseudospectral configurations of the three controllers found

by SFPP (top), BFGS SQP (middle), and SQP-GS (bottom) respectively a randomly generated example

of dimension n = 7 comprised of two plants in the objective and three in the constraint and where the

controller matrix has mp = 5×4 = 20 variables. Blue is used to indicate the pseudospectral boundaries

for the plants in the objective while red is used to indicate the pseudospectral boundaries of the plants

in the constraints, with the plus signs indicating the eigenvalues. The dashed black circle on the plots

for constraints is the unit circle, that is the stability boundary. The dashed black circle on the objective

plots corresponds to the max pseudospectral radius of the three plants in the objective for that particular

algorithm’s controller.
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