TIME SERIES MODELING
WITH HIDDEN VARIABLES

AND GRADIENT-BASED ALGORITHMS

BY

P10oTR MIROWSKI

A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY
DEPARTMENT OF COMPUTER SCIENCE
COURANT INSTITUTE OF MATHEMATICAL SCIENCES

NEW YORK UNIVERSITY

JANUARY, 2011

YANN LECUN

(© Piotr Mirowski
All Rights Reserved, 2011

il

In memory of Sam Roweis,
who laid the foundations

for this research

Acknowledgements

These past five and a half years of doctoral studies at New York University have
constituted a personally transformative experience (and I am claiming this indepen-
dently of the jazz clubs, concert halls and vibrant community populating the greater
Greenwich Village area). During these years, I have benefited from countless con-
tributions that are impossible to acknowledge in a few lines. I will limit myself to
mentioning a few individuals who directly enabled this work, hoping to eventually
have the opportunity to contribute to someone else’s development in return.

I would like to immensely thank my adviser, Prof. Yann LeCun, for providing me
with resources, guidance, and freedom to pursue my research. Merci beaucoup pour
avoir cru en moi, Yann. Yann LeCun’s lab is an intellectual hub with connections
far beyond the field of Machine Learning, and therefore a very exciting research
environment. Pursuing there my doctoral work has provided me with a constant
source of instructive interactions. On a personal level, I admire Yann’s wide range
of musical, robotic, political, culinary and cultural interests as well as his ability to
convert extremely complex mathematics and neuroscience into tangible and intuitive
concepts in order to build things. I also greatly appreciate his “open door” policy
that enabled us to discuss research for long hours and that sustained my motivation
in the darkest hours of debugging.

The development of the techniques described in this doctoral work and the need
for proofs of concept were only a pretext to start highly stimulating collaborations
and to discover amazing researchers and specialists in fields I cannot comprehend. I
will begin with Dr. Ruben Kuzniecky and Dr. Deepak Madhavan, who originated
my research on the prediction of epileptic seizures from EEG and who provided me

with three semesters and two summers of funding through NYU’s FACES (Finding A

v

Cure for Epilepsy and Seizures) foundation. Thanks to them, I learned the patient’s
perspective on the statistical concepts of “false positive” and “false negative”. Still in
the field of epilepsy prediction, I would also like to acknowledge fruitful discussions
with Profs Nandor Ludvig, Sertac Artan and Thomas Thesen.

Second, I am very grateful to Prof. Dennis Shasha, for providing me with a difficult
and defining problem for my doctoral studies, with an application to Computational
Biology. Dennis Shasha invested a lot of time and attention in my research, supporting
my many endeavors and professional aspirations, and effectively making me a member
of his lab and of the NYU Center for Genomics and Systems Biology. Along with
Gabriel Krouk, who tried to teach me genetics, and with Jesse Lingeman, we made a
fine team with whom I would like to maintain close ties.

Third, I would like to thank Craig Friedman from Standard & Poor’s, who pro-
vided me with precious feedback, intellectual stimulation, statistical rigour and sum-
mer support for my work on sentiment analysis and text categorization, and who
sparked my research interest in dynamic topic modeling.

And last but not least among the external collaborations, I am very grateful to
Sumit Chopra, Suhrid Balakrishnan and Srinivas Bangalore for an extremely enjoy-
able summer at AT&T Labs Research and for an exciting and promising work on
statistical language modeling.

During my doctoral years I enjoyed the company and friendship of talented fel-
low students and post-docs. While I extend my gratitude to everyone, I would like
to especially thank Marc’Aurelio Ranzato for numerous collaborations (Grazie mille,
Marc’Aurelio: non ho rimpianti per aver iniziato questi studi!), as well as Graham
Taylor, Karol Gregor and Koray Kavukcuoglu, for their precious feedback on this
research. Thank you all for contributing to a nurturing and supportive research

environment. I would also like to acknowledge people who supported me on the ad-

ministrative side: Rosemary Amico, Robb Biffano, Profs Michael Overton, Margaret
Wright and Denis Zorin.

I am grateful for the advice and guidance provided by the members of my thesis
committee: Yann, Dennis and Srinivas, as well as Profs Vladimir Pavlovic and Chris
Bregler. Their ideas and suggestions have given me the opportunity to considerably
improve this dissertation. I would also like to thank Tin Kam Ho, from Bell Labs,
for believing in me and my research.

Pursuing my doctoral research in machine learning has been possible in the first
place thanks to my colleagues at Schlumberger: David McCormick, Claude Signer,
Romain Prioul and Gilles Mathieu. I owe them having introduced me to rigorous
applied research at an early stage of my career, having deeply stimulated my interest
for statistical learning, and I am profoundly grateful to them for facilitating my
transition from a comfortable engineer’s life to that of a starving student.

I would like to acknowledge the support of Profs Alain Ayache and Vincent
Charvillat, from ENSEEIHT in Toulouse, and of Gérard Aublet at Lycée Sainte
Geneviéve in Versailles. They represent two outstanding learning institutions that
gave me a very competitive and thorough education in Math and Computer Science.

The butterfly effect originated with my parents, Teresa and Janusz Mirowski, as
well as my brother Adam, who ignited my passion for science and engineering. They
subsequently practiced reinforcement learning on me, while providing me with their
unconditioned support, and thus enabled me to pursue my dreams. Dziekuje wam
najbardziej serdecznie za wszystko.

But my decision to embark in doctoral studies comes from Alessia Pannese, who
has continuously demonstrated the power of unsupervised learning and a passion for
knowledge and discovery in any field. Merci pour tout et pour étre mon compagnon

de voyage, Alessia.

vi

Abstract

We collect time series from real-world phenomena, such as gene interactions in bi-
ology or word frequencies in consecutive news articles. However, these data present
us with an incomplete picture, as they result from complex dynamical processes in-
volving unobserved state variables. Research on state-space models is motivated by
simultaneously trying to infer hidden state variables from observations, as well as
learning the associated dynamic and generative models.

To address this problem, I have developed tractable, gradient-based methods for
training Dynamic Factor Graphs (DFG) with continuous latent variables. DFGs
consist of (potentially highly nonlinear) factors modeling joint probabilities between
hidden and observed variables. My hypothesis is that a principled inference of hid-
den variables is achievable in the energy-based framework, through gradient-based
optimization to find the minimum-energy state sequence given observations. This en-
ables higher-order nonlinearities than graphical models. Maximum likelihood learning
is done by minimizing the expected energy over training sequences with respect to the
factors’ parameters. These alternated inference and parameter updates constitute a
deterministic EM-like procedure.

Using nonlinear factors such as deep, convolutional networks, DFGs were shown to
reconstruct chaotic attractors, to outperform a time series prediction benchmark, and
to successfully impute motion capture data in presence of occlusions. In a joint work
with the NYU Plant Systems Biology Lab, DFGs have been subsequently employed
to the discovery of gene regulation networks by learning the dynamics of mRNA
expression levels.

DFGs have also been extended into a deep auto-encoder architecture for time-

stamped text documents, with word frequencies as inputs. I focused on collections of

vil

documents exhibiting temporal structure. Working as dynamic topic models, DFGs
could extract latent trajectories from consecutive political speeches; applied to news
articles, they achieved state-of-the-art text categorization and retrieval performance.

Finally, I used DFGs to evaluate the likelihood of discrete sequences of words in
text corpora, relying on dynamics on word embeddings. Collaborating with AT&T
Labs Research on a project in speech recognition, we have improved on existing
continuous statistical language models by enriching them with word features and

long-range topic dependencies.

viil

Abstract en Francais

Modélisation de séries temporelles avec variables cachées et
descente de gradient

Nous pouvons collecter des séries temporelles en mesurant toutes sortes de phéno-
meénes tels que les interactions entres génes, l'activité électro-physiologique du cerveau
voire les fréquences de mots dans des articles de journaux. Ces données nous apportent
cependant une vision partielle de la réalité, car elles dérivent de processus dynamiques
complexes dont les variables aléatoires internes (variables ou vecteurs d’état) sont
inconnues. La recherche sur la modélisation des représentation d’état est confrontée
au double probléme inverse de 1) reconstruire la séquence de variables cachées, et 2)
d’apprendre les paramétres du modele dynamique sous-jacent.

Pour répondre & ce probléme, j’ai mis au point un nouvel algorithme d’appren-
tissage statistique pour entrainer des réseaux Bayésiens dynamiques (“Dynamic Fac-
tor Graphs”, DFG; Graphes Dynamiques Factoriels, GFD) avec variables aléatoires
cachées continues (réelles). Leur inférence repose sur une optimisation par descente
de gradient. Chaque “facteur” correspond & un systéme d’équations non-linéaires,
avec une composante aléatoire, et peut étre exprimé comme une fonction de transfert
avec des entrées et des sorties, suivies d'un terme d’erreur qui suit une loi de prob-
abilité. Un GFD définit une loi de probabilité conjointe, aussi bien sur les variables
aléatoires observées que sur les variables cachées; toutes ces variables sont échantil-
lonnées dans le temps et les variables cachées constituent une chaine de Markov. A
chaque combinaison de variables aléatoire, est assignée une probabilité; 'objectif de
I’algorithme d’inférence est de maximiser cette probabilité en trouvant la séquence
de variables cachées qui explique au mieux les variables observées, pour un modéle

dynamique donné. Je propose un algorithme d’inférence approximatif, lequel, au lieu

1X

de calculer exactement la distribution des variables cachées, trouve seulement la con-
figuration la plus probable des variables cachées (maximum a posteriori) a travers une
minimisation par descente de gradient. Mon hypothése est que les approximations de
ma méthode d’inférence MAP sont largement contre-balancées par une plus grande
versatilité fonctionnelle. Je prouve en effet que mon algorithme permet d’utiliser des
fonctions d’évolution et d’observation bien plus complexes que celles permises par les
réseaux Bayésiens traditionnels (tels que les modéles de Markov cachés ou les filtres
de Kalman). Les paramétres du modéle sont appris par I'estimation du maximum
de vraisemblance, en utilisant diverses optimisation telles que descente de gradient
ou gradient conjugué. L’alternance entre inférence et optimisation par gradient peut
étre vue comme une version déterministe de l'algorithme d’espérance-maximisation

Les applications des GFDs sont multiples et aussi nombreuses que leurs architec-
tures fonctionnelles. Par exemple, grace a des fonctions de transfert consistant en
réseaux de neurones convolutionnels, les GFDs ont ainsi prouvés pouvoir modéliser
des séquences non-linéaires en reconstruisant des attracteurs chaotiques et surpasser
en performance d’autres algorithmes sur des données d’une compétition de prédiction
de séries temporelles. Appliqués aux données de capture de mouvement (coordonnées
tri-dimensionnelles de marqueurs corporels), les GFDs ont pu reconstruire parfaite-
ment la totalité des mouvement d’un squelette 3D en présence d’occlusions impor-
tantes (Mirowski & LeCun, ECML 2009). Les GFDs ont aussi été appliqués a la
bio-informatique, en collaboration avec le centre de biologie moléculaire de New York
University. En particulier, les GFDs ont été employés pour découvrir des réseaux
de régulation génétique, en apprenant le modéle dynamique sous-jacent des niveaux
d’expressions génétique des ARN messagers, mesurés au moyen de puces a ADN

(Mirowski et al, Genome Biology 2010).

Un autre champ d’application des GFDs sont les documents texte structurés dans
le temps, par exemple les articles de journaux, discours politiques ou publications
scientifiques. Une architecture spécifique des GFDs, exprimés sous forme de réseaux
de neurones auto-encodeurs, a ainsi pu étre appliquée a ce type de séries temporelles,
en utilisant la fréquence des mots en variable d’entrée du systéme. En utilisant
des GFDs, j’ai ainsi pu étudier la dynamique des sujets cachés dans les discours
politiques, prédire la volatilité des cours de marché a partir d’informations finan-
ciéres, ou obtenir une performance inégalée dans la classification de documents texte
et dans le data-mining (“fouille de données”; Mirowski et al, NIPS Deep Learning
Workshop 2010). Une extension possible de cette architecture GFD serait son appli-
cation a mes recherches précédentes sur la prédiction des crises d’épilepsie & partir
d’enregistrements d’électro-encéphalogrammes (Mirowski et al, IEEE MLSP 2008;
Clinical Neurophysiology 2009; dépot de brevet industriel en cours).

Pour finir, j’ai utilisé les GFDs pour évaluer la vraisemblance de séquences de nom-
bres entiers (suites de mots dans un corpus de documents écrits ou oraux), en inférant
la dynamique cachée des représentations vectorielles de ces mots, et en augmentant
ces représentations avec des informations syntactiques et avec des dépendances sé-
mantiques au niveau de plusieurs phrases consécutives. Au cours d’un projet sur la
reconnaissance de la parole, en collaboration avec AT&T Labs Research, nous avons
ainsi pu améliorer la performance des modeéles statistiques du langage, utiliser ces
modéles en conjonction avec un modéle acoustique pour réduire le taux d’erreur par
mots lors de la reconnaissance vocale, et atteindre 1’état de I'art dans ce domaine

(Mirowski et al, IEEE SLT 2010; dépot de brevet industriel en cours).

x1

CONTENTS

Dedication

Acknowledgementso

Abstract

Abstract en Francais

List of Figures.

List of Tables

1 Introduction

1.1 Time Series Problems

1.1.1

Imprecise Sampling, Incompleteness and Time-Variance

1.2 Time Series Modeling Without Hidden Variables

1.2.1
1.2.2
1.2.3
1.24
1.2.5
1.2.6
1.2.7
1.2.8

Time-Delay Embedding and Markov Property
Probabilistic Models: n-grams on Discrete Sequences
Maximum Likelihood Formulation: Gaussian Regression

Predicting One Time Series from Another
Limitation of Memoryless Time Series Models
Linear time series models
Chaotic Time Series

Nonlinear Models: Time-Delay Neural Networks

x1i

1.2.9 Nonlinear Models: Kernel Methods 17

1.2.10 Regularization Lo 20

1.3 Time Series Modeling with Hidden Variables 22
1.3.1 Recurrent Neural Networks and Vanishing Gradients 23

1.3.2 Models Capable of Inferring Latent Variables. 24

1.3.3 Discrete Sequence Hidden Variable Models 25
1.3.4 Linear Dynamical Systems 26

1.3.5 Nonlinear Dynamical Systems 28

1.3.6 Mixed Models for Switching Dynamics 31
1.3.7 Recurrent Boltzman Machines 32

1.3.8 Gaussian Processes with Latent Variables 32

1.3.9 Limitations of Existing Hidden Variable Models 33

2 Common Framework: Dynamical Factor Graphs 35
2.1 Our Factor Graph formalism 36
2.1.1 Factor Graphs 36
2.1.2 Maximum Likelihood and Factor Graphs 38
2.1.3 Factors Used in This Work 39

2.2 Maximum Likelihood Energy-Based Inference 41
2.2.1 Energy as Negative Log-Likelihood 41
2.2.2 Intractable Partition Functions 42
2.2.3 Maximum A Posteriori Approximation 43
2.2.4 Summing Energies from Diverse Factors 45
2.2.5 Interpretation in Terms of Lagrange Multipliers 47
2.2.6 Inference of Latent Variables 48
2.2.7 What DFGs Can Do That Graphical Models Cannot 49

xiil

2.2.8 On the Difference Between Hidden and Latent Variables

2.3 Expectation Maximization-Like Learning of DFG
2.3.1 Expectation Maximization Algorithm
2.3.2 Our Simplification and Approximation
2.3.3 Alternated E-Step and M-Step Procedure.

2.4 Discussion
2.4.1 Avoiding Flat Energy Surfaces During Inference
2.4.2 Bounding the Hidden Representation

2.4.3 Avoiding Local Minima When Learning the Model

Application to Time Series Modeling and to Dynamical Systems
3.1 Introduction
3.1.1 Background oo
3.1.2 Dynamical Factor Graphs
3.2 Methods
3.2.1 A Dynamic Factor Graph
3.2.2 Inference in Dynamic Factor Graphs
3.2.3 Prediction in Dynamic Factor Graphs
3.2.4 Training of Dynamic Factor Graphs
3.2.5 Smoothness Penalty on Latent Variables
3.3 Experimental Evaluation
3.3.1 Asynchronous Superimposed Sine Waves
3.3.2 Lorenz Chaotic Data
3.3.3 CATS Time Series Competition
3.3.4 Estimation of Missing Motion Capture Data

3.4 DIScussiono

Xiv

3.4.1 Comparison with Nonlinear Dynamical Systems 78

3.4.2 A New Algorithm for Recurrent Neural Networks 80
3.4.3 Ideas of Further Experiments 81
3.5 Conclusions 81
Application to the Inference of Gene Regulation Networks 84
4.1 Machine Learning Approaches to Modeling GRNs 86
4.1.1 Gene Regulatory Networks 86
4.1.2 mRNA Micro-arrays 86
4.1.3 Reverse-engineering of Gene Regulation Networks 87
4.1.4 Biological Datasets Used in Our Experiments 92
4.2 Gradient-Based Biological State-Space Models 95
4.2.1 Representing Protein TF Levels as Hidden Variables 96
4.2.2 Representing Noise-Free mRNA as Hidden Variables 98
4.2.3 Learning Gradient-Based DFGs 99
4.3 GRN of the Arabidopsis Response toNOs_ 103
4.3.1 Comparative Study of State-Space Model Optimization 103
4.3.2 Over-Expression of a Potential Network Hub (SPL9) Modifies
NOs_ Response of Sentinel Genes. 108
4.4 Inferring Protein Levels from Micro-arrays 110
4.4.1 Inferring Human p53 Protein Levels from mRNA 110
4.4.2 Inferring Drosophila Mef2 Protein Levels from mRNA 111
4.4.3 Inferring Multiple Protein Levels: Human p53, TGF-g 111
4.5 Conclusions and Further Work 112
Application to Topic Modeling of Time-Stamped Documents 117
5.1 Information Retrieval, Topic Models and Auto-Encoders 118

XV

5.1.1
5.1.2

Document Representation for Information Retrieval

Probabilistic Topic Modeling with Dynamics on the Topics . .

5.2 Methods: Dynamic Auto-Encoders

5.2.1
0.2.2
5.2.3

Auto-Encoder Architecture on Bag-of-Words Histograms . . .
Dynamic Factor Graphs and the MAP Approximation

Minimizing Topic Model Perplexity

5.3 Results Obtained with Dynamic Auto-Encoders

0.3.1
5.3.2
5.3.3
5.3.4

Perplexity of Unsupervised Dynamic Auto-Encoders
Plotting Topic Trajectories
Text Categorization and Information Retrieval

Prediction of Stock Market Volatility from Online News

5.4 Conclusions and Futher Work

5.4.1

Application to Epileptic Seizure Prediction from EEG

Application to Statistical Language Modeling

6.1 Statistical Language Modeling

6.2 Proposed Extensions to Continuous Statistical Language Modeling . .

121
122
123
125
127
130
130
131
133
134
138
138

141
142
144

6.3 Architecture of Our Statistical Language Model with Hidden Variables 146

6.3.1
6.3.2
6.3.3
6.3.4
6.3.5
6.3.6
6.3.7

Log-BiLinear Language Models
Non-Linear Extension to LBL
Training the LBL(N) Model
Extension 1: Constraining the Hidden Word Embeddings . . .
Extension 2: Adding Part-Of-Speech Tags
Extension 3: Incorporating Supertags

Extension 4: Topic Mixtures in LBL(N)

6.4 Results Obtained with Feature-Rich Log-BiLinear Language Model

Xvi

146

6.4.1 Language Corpora

6.4.2 Decrease in Language Model Perplexity

6.4.3 Increase in Speech Recognition Word Accuracy

6.4.4 Examples of Word Embeddings on the AP News Corpus

6.4.5 Computational Requirements

6.5 Conclusions

7 Conclusion

Bibliography

XVvil

170

173

LIST OF FIGURES

1.1

2.1
2.2
2.3

3.1
3.2
3.3
3.4
3.5
3.6

4.1
4.2
4.3
4.4
4.5
4.6
4.7

Time-Delay Neural Network and Recurrent Neural Network 24
Input-Output Dynamic Factor Graph 37
Input-Output Dynamic Factor Graph 38
General Description of a Factor 40
Dynamic Factor Graph with First-Order Markov Dependency 61
Dynamic Factor Graph with Dependencies on Observed Variables . . 62
Energy-Based Schema of a Dynamic Factor Graph 66
Inference of Hidden Representation on the 5 Sine Dataset 73
Inference of Latent Representation on the Lorenz Dataset 74
Reconstruction of Missing Motion Capture Markers 83
Factor Graph Representations of SSMs for Protein Level Inference . . 96
Factor Graph Representation of SSMs for Noisy mRNA Data 97
Leave-Out-Last Procedure for the Arabidopsis GRN Inference 104
Optimal Hyperparameters for the Arabidopsis GRN Inference 105
Comparison of Algorithms for the Arabidopsis GRN Inference 106
Gene Knock-Out Validation for the Arabidopsis GRN Inference . . . 113

Gene Regulation Network Involved in the Arabidopsis Response to NO3_ 114

xXviil

4.8
4.9

Inference of Human p53 Protein Levels from mRNA

Inference of Drosophila Mef2 Protein Levels from mRNA

4.10 Inference of Multiple Latent Variables from Large mRNA Datasets

4.11 Microarray Data Collected for the Arabidopsis GRN Inference

5.1
5.2
5.3
5.4

6.1
6.2
6.3
6.4
6.5
6.6

Factor Graph Representation of the Dynamical Auto-Encoder
Energy-Based View of the First Layer of the Dynamic Auto-Encoder.
2D “Trajectories” of State-of-the-Union Addresses.

Examples of Epileptic EEG and EEG Synchronization Patterns

Feature-rich Log-BiLinear architecture
2D Projection of the Word Embedding Obtained on AP News
“Countries” on the 2D Projection of AP News Word Embeddings . . .
“US States” on the 2D Projection of AP News Word Embeddings
“Occupations” on the 2D Projection of AP News Word Embeddings .
“Verbs” on the 2D Projection of AP News Word Embeddings

XixX

120
124
132
140

164
165
166
167
168

LIST OF TABLES

1.1

3.1
3.2
3.3

4.1

5.1
5.2
5.3
5.4
5.5

6.1
6.2
6.3
6.4
6.5
6.6
6.7

Summary of Existing Hidden Variable Models and of Their Limitations. 34

Time Series Prediction on the Lorenz Dataset 75
Time Series Prediction on the CATS Benchmark 76
Missing Motion Capture Markers Reconstruction Results 7
Number of Microarrays Used for the Arabidopsis Nitrate Study . .. 94
Test Set Perplexity on NIPS Articles. 131
Test Set Perplexity on State-of-the-Union Addresses. 133
Test Set AUPR for Information Retrieval on Reuters Articles 135
Test Set Macro/Micro-Averaged F; Scores on Reuters Articles. 135

Volatility Prediction from 2008 Financial News About Dow 30 Stocks. 137

Hyperparameters of the Feature-Rich Log-BiLinear language models . 149
Datasets Used for Statistical Language Modeling 155

Language Model Perplexity on the Air Travel Information Service Set 156

Language Model Perplexity on Wall Street Journal Articles 158
Language Model Perplexity on Reuters Newswires 159
Language Model Perplexity on the AP News Corpus. 160
Speech Recognition on TV Broadcast Transcripts 161

6.8 Speech Recognition on TV Broadcast Transcripts, with Reference

6.9 Hidden Word Embedding Derived from AP News

poel

CHAPTER 1

INTRODUCTION

The future ain’t what it used to be.

YoGI BERRA

IME series are ordered sequences of data points. They typically correspond

to measurements taken from real-world natural or man-made phenomena,

but could as well be the outputs of numerical simulation. Examples of

time series that I investigated during my doctoral studies include mRNA expression

levels, spatial positions of markers used in motion capture, electro-encephalographic

recordings of brain activity, financial stock market volatility, word frequencies in

streams of news articles, written or spoken language, as well as, on the purely artificial
side, chaotic data.

This introductory chapter gives an overview of the time series problem that can

be addressed (and for a large part, that have been touched in this work), as well as

a glimpse of the state-of-the-art associated techniques. Most importantly, it provides

the rationale for modeling time series with additional, hidden variables.

1.1 Time Series Problems

Although traditional time series problems are univariate (typically when one is inter-
ested in the “history” of successive values taken by one variable, or in its statistical
distribution), additional insight about the real-world phenomenon can be gained from
multivariate time series, exhibiting the interaction of several variables.

In their common definition, time series are implicitly continuously-valued. In
this thesis, we have however encompassed specific cases where we could apply to
discrete sequences methods that were actually designed for continuously-valued time
series. Those two cases correspond to “bag-of-words” representations of word counts in
consecutive documents, and to sub-sequences of words. The crucial difference between
a sequence of discrete events and a one-dimensional time series is that continuous
(real) numbers have a natural metric that discrete events lack: e.g. 0.1 can be
quantified as being closer to 0 than to 3, while it would be more difficult (or more
arbitrary) to establish which word among “sat” or “cat” is closer to “mat”. For this
reason, real-valued time series problems on one hand and discrete sequence problems
on the other hand often resort to different mathematical tools (e.g. linear models vs.
count-based n-gram models). Of course, one can always convert a “one-dimensional”
string of discrete events (where each event is chosen out of a vocabulary of N possible
items) into an N-dimensional time series of event counts or frequencies, and thereby
consider it as a sequence of multivariate real-valued numbers.

Time series modeling is motivated by a wealth of interesting problems:

e forecasting, i.e. predicting future time points from previous ones. In subse-
quent chapters, I will evoke time series prediction on chaotic data (Chapter 3),

as well as predictive modeling on biological mRNA levels (Chapter 4). Fore-

casting can be conducted at various time horizons, and can consist in iterating

a time series model to produce successive time point predictions.

imputation, i.e. the recovery of missing time points. This problem is slightly
different from forecasting, as both past and future data points, as well as non-
missing values (in the case of multivariate time series) can be used for prediction.
I will explain an application to the reconstruction of motion capture data in

Chapter 3.

inference of a hidden representation: I will introduce in this chapter the
concept of hidden explanatory variables for time series. Two examples of hid-
den variables inference that I have worked on include the reconstruction of a
chaotic attractor and the separation of an oscillatory signal into components (in
Chapter 3), as well as the projection (compression) of word counts taken from
consecutive State-of-the-Union presidential addresses onto a two-dimensional
space which could symbolize a “political” (if not lexical) trajectory (see Chap-

ter 5).

learning a dynamical system, i.e. understanding how a time series is gener-
ated and how the measured variables interact. A key application is the reverse-

engineering of gene regulation networks described in Chapter 4.

classification and regression of sub-sequences. Regression of stock-market
log-volatility from streams of online financial news, as well as the text catego-
rization of documents, are two examples of such tasks, detailed in Chapter 5.
One problem that I tackled during my studies but that I did not cover in this
thesis is the prediction of epileptic seizures from electro-encephalograms by clas-

sifying short patterns of EEG as “pre-ictal” or “interictal” (Mirowski et al., 2008,

2009a,b).

e as a corollary to classification, the estimation of the likelihood of a sequence.
This problem has been addressed for discrete sequences of words and applied

to statistical language modeling in Chapter 6.

1.1.1 Imprecise Sampling, Incompleteness and Time-Variance

A key limitation of time series is that they are an incomplete observation of reality,
for three different reasons (upon which I stumbled during my research).

First, one observes data only at specific sampling points (generally regularly
spaced), whereas the process which generated them exists beyond those infinitesi-
mal sampling instants. This limitation makes the learning of a dynamical system
inherently approximate.

Second, only a subset of the variables that would be required to understand the
process is available. This problem is particularly striking in the case of genetic data,
where the process (transcription of mRNA by proteins) involves more biological actors
than are measured with current instrumentation, or with EEG recordings, where each
electrode measures electrophysiological signals (post-synaptic potentials) averaged
over millions of neuronal cells. Those two biological examples of incomplete observed
data, are among the justifications for introducing additional, hidden variables to the
time series, under appropriate models and constraints on those unknown variables.

Third, the time series might derive from a process that is not time-invariant!.
In that case, the time series model has an explicit dependency on the time variable.
More precisely, given input x(t) at time ¢, the model predicts y(t), but an identical

input z(t + At) at a later time ¢ + At would be associated to a different prediction

'We could also say that the time series is non-stationary, which means that the joint distribution
of the random variables changes over time.

y(t + At) # y(t). In some specific cases, the time-variance of the process can be
recovered solely from the available data X and Y, using a model with long-range
dependencies, such as a model with “switching dynamics” or with a “memory” (both
of which can be enabled by hidden variables). In other cases, the process generating
the time series is unfortunately different between the (historical) training set and the
(future) test set, and therefore any statistical model fitted to historical data would
become useless for predicting future data points?.

As a side note, I shall point out that this thesis focuses on time series analysis
from a time-domain point of view (i.e. by studying the explicit relationships between
consecutive data points)®. Another approach would have consisted in looking at the
frequency domain of time series (Box and Jenkins, 1976; Weigend and Gershenfeld,

1994), using spectral or wavelet (Mallat, 1999) analyses.

1.2 Time Series Modeling Without Hidden Variables

1.2.1 Time-Delay Embedding and Markov Property

Throughout the thesis, I note y(t) or y; the instance of the univariate time series
observed at time ¢, y(f) or y; for multivariate time series, and Y for the entire
sequence. Using the simplification that the time sampling interval is At = 1, I note
the time-delay embedding of past p time-points before t as yi:ll,. The time-delay

embedding operation is here merely a concatenation of the vectors corresponding to

2In the specific case of econometrics and sociology, where human actors interact in complex
networks, within an open system, this “inability to predict” from historical data has been vehemently
exhibited in (Taleb, 2007). The author laid the blame on our obstination to fit statistical models
with Gaussian distributions to historical data, while the distributions of those time series are both
time-dependent and fat-tailed.

3With one exception: in the chapter devoted to statistical language modeling, we do exploit the
structured interaction of word “variables” in a sentence, in order to derive rich word features such
as part-of-speech tags or supertags.

successive time points of the time series. One often refers to this as the state-space
representation of the time series (Weigend and Gershenfeld, 1994).

The most common assumption when designing continuous models for time series
is that the model should follow the Markov property, which states that any current
value y(t) of the time series at time ¢ depends only on its short history* (Durrett,
1996), namely on past p values yﬁ:‘,{l}. Such a model is by consequence time-invariant,
for a specific value of Markov order p.

Another way of rephrasing the Markov property is that the time series forms a
Markov chain where each data point y(t) is conditionally independent of its long-term
history y' ? ~! given its immediate history yi:;.

As a result of the time-delay embedding, the training dataset consists of 7" — p
couples {(y},yp+1), (V5™ ¥psa)s - (V1 y1) }-

Time-delay embedding raises the issue of choosing the order p of the embedding,
and specific models address that question in different ways. For example, linear or
probabilistic models rely on the Bayesian Information Criterion (Box and Jenkins,
1976) or the Akaike Information Criterion (Akaike, 1973), which essentially place a
penalty on large values of the order p (or on the number of model parameters) relative
to the sequence length T

The Markov property can also be extended to highly nonlinear time series with
chaotic dynamics (whose definition we remind in Section 1.2.7). It often is the case
that univariate chaotic time series are produced by a multivariate system of nonlinear
equations, like for instance the 3-variate Lorenz model (Lorenz, 1963). The Takens
theorem (Takens, 1981) establishes, for these univariate chaotic time series, that one

can reconstruct the original multivariate state-space attractor by time-delay embed-

4The original definition by Russian mathematician Andryi Markov applies to stochastic processes
in continuous time and on a single “time-step” dependency. Multi-step histories can be recovered by
time-delay embedding and a state-space representation.

ding; various techniques for the estimation of the state-space dimension of the chaotic

attractor have been summarized in (Abarbanel et al., 1993).

1.2.2 Probabilistic Models: n-grams on Discrete Sequences

In the case of discrete sequences, one can express the Markov property in terms of
n-grams®. yi_, ... n-grams can be computed as absolute counts on the data, or
estimated from the sequence as conditional probabilities P (y,|y;~,.1). The latter

results in the joint likelihood of the full sequence Y of length 7" being equal to:

P(yl) =P) [P wlyih) (1.1)

t=n

The strength of n-grams is that, unlike their continuously-valued counterpart, they
can define any conditional distribution, including multi-modal ones. Their major lim-
itation is that as the size of the context (i.e. the embedding dimension) n increases,
the size of the corpus needed to reliably estimate the probabilities grows exponen-
tially with n. Because the language corpora are generally limited in size, they do
not cover all the possible n-grams. In order to overcome this sparsity, back-off mech-
anisms (Katz, 1987) are used to approximate n'* order statistics with lower-order
ones, and missing probabilities may be further approximated by probability smooth-
ing (Chen and Goodman, 1996), which essentially amounts to giving a low-probability
prior to unseen n-grams.

We will keep the Markov chain likelihood formulation (Eq. 1.1) in what follows.

Sn-grams can be attributed to Claude Shannon’s work in information theory, illustrated on con-
ditional probabilities of a letter given the previous n — 1 letters (Wikipedia).

1.2.3 Maximum Likelihood Formulation: Gaussian Regression

The first approach to continuously-valued time series modeling considers observations
Y as the result of a purely auto-regressive linear or non-linear process. In other words,
one hypothesizes that there exists a deterministic mapping® f from the time-delay

embedding of y,t;ll, to y;. That mapping f, which generates a prediction y,; from a

t—1

linear sum or a nonlinear function over y,—,,

is perturbed by an additional noise term

n(t) that stems from a unimodal, zero-mean, distribution:

y(t) = f (vi=,) +n(t) (1.2)

Equation (1.2) expresses the 1-step inference and can be iterated to generate the
continuation of y(¢) for long-term prediction.

By restating problem (Eq. 1.2) as a probability P (y(t) = f (yi—,) lyi_,) under
the distribution of residual noise 7(t), and using the conditionally independent Markov
chain of (Eq. 1.1), one can solve for the mapping f by maximizing the likelihood of
P (Y). Numerical optimization is usually conducted by expressing the product P (Y)
as a sum in logarithmic domain.

Theoretically, the statistical learning techniques used for solving for f would re-
quire the data points {(yf,ypﬂ), (yé’“,prrg), . (y?:[l,,yT)} to be independently
and identically distributed. Clearly, the time series Y itself is not i.i.d., since there
are serial correlation between consecutive samples y;_1,y¢, Y¢+1,- ... But the Markov
property ensures the conditional independence of outputs/targets y(t) given their as-
sociated inputs/features yﬁ:;, and thus enables the likelihood P(Y) to be expressed
as a product (Eq. 1.1).

Regarding the identical distribution requirement, it means that the residual noise

6This mapping can be seen as a discrete version of a continuous system of differential equations.

n(t) has to be stationary, i.e. that the joint distribution of {... n;_1, 7, M1, Mea2, - - - }
needs to have the same zero mean and same variance, regardless of time localization
t (Box and Jenkins, 1976). Another way of rephrasing this requirement is that residual
noise should not exhibit visible structure when plotting it across time or against
the data (Weigend and Gershenfeld, 1994). This assumption, generally tested by
statisticians during exploratory data analysis, is however often ignored by the machine
learning community.

Luckily, there are recipes to cope with non-stationarity. For instance, when a
time series displays a local variance of y(¢) that is clearly a function of the amplitude
of y(t) (e.g. the variance of the noise is large for large values of y(¢), and small
for small values of y(t)), then it might be sufficient to apply exponentiation or the
logarithm to all time points y(¢), in order to correct for that obvious non-stationarity.
Other transformations on time series consist in de-trending (removing obvious linear
trends) or correcting for seasonality (e.g. removing a periodic oscillation from the
data points”).

Using the normal distribution for n(t), the Gaussian regression problem corre-

sponds in logarithmic domain to “sum of least squares” (LS) optimization:

—log P (Y|O®) x Z | y(@®) — f (yiZ)) |13 +const (1.3)

t=p+1
In the above equation, ® corresponds to model parameters. Gaussian regression
is the Maximum Likelihood (ML) formulation used in most chapters of this thesis.
Other ML formulations include Laplace regression (sum of absolute values) in Chap-
ter 5, multinomial (Softmax) regression in Chapters 5 and 6 and logistic (binomial)

regression in Chapter 5.

"The concept of seasonality often arises in data collected over the time course of a year, where
one can distinguish the effect of “seasons”.

Learning time series models under the ML formulation consists in finding the
optima of —log P (Y) w.r.t. model parameters ®. This is achieved by differentiating

—log P (Y) w.r.t. each parameter variable, and finding zero-crossings:

9 (—log P(Y[®))

k
vk, 00y,

=0 (1.4)

1.2.4 Predicting One Time Series from Another

Some multivariate time series problems fall into the more usual setting (predict some
output y(¢) from corresponding inputs x(¢) lying in a different data space). They
consist in learning to predict one part of the variables at time t (so-called “targets”
or “outputs”) from the other part of the data point (so-called “features” or “inputs”),

and can be expressed by the following equation:

yi = h(x:) +e(t) (1.5)

The mapping h, which generates a prediction y; from a linear sum or a nonlinear
function over x;, is perturbed by an additional noise term €(¢) that stems from a
unimodal, zero-mean, distribution. Although the usual maximum likelihood-based
methods can be applied to fit function h, the remarks made in the previous section
about the non i.i.d. nature of X and Y are still valid.

Examples of such problems include the categorization of consecutive news arti-
cles (Joachims, 1998; Kolenda and Kai Hansen, 2000), the regression of stock market
volatility from word counts in consecutive financial news articles (Gidofalvi and Elkan,
2003; Robertson et al., 2007) (see Chapter 5) or the prediction of power transformers’

time-to-failure from dated chemical measurements of dissolved gases in transformer

10

oil® (Mirowski et al., manuscript in preparation). In those cases, although the basic
predictive model uses only data from a single time point, the temporal structure in
the data could probably benefit the model learning.

One solution is time-delay embedding on the inputs x;, which can be concatenated
into xi_p, although this might prove expensive in the case of high-dimensional vectors
x;. Another potential approach is based on the use of hidden variables and “memory”

from sample (x;—1,y;—1) at time ¢ — 1 to sample (x;,y;) at time t.

1.2.5 Limitation of Memoryless Time Series Models

The drawback of time-embedding-based models is indeed that they do not have any
“memory” of the full time series and of long-term dependencies (Bengio et al., 1994):
during the learning procedure, each training sample is considered independently of
its time location ¢, and, at time ¢, the system’s memory of Y (and optionally, of
X) goes only as far back in time as its time-delay embedding dimension p permits.
As such, “memoryless” architectures yield satisfactory results on time series with
simple stationary dynamics but may have difficulties with long-term prediction or
with capturing long-range dynamics.

Let us nevertheless enunciate the most popular approaches to solve for (Eq. 1.2)
and (Eq. 1.5) without the use of hidden variables. Most of these methods are indeed

the building blocks for memory-enabled models.

8This work, which was not included in this thesis, was conducted in collaboration with NYU Poly
and Consolidated Edison.

11

1.2.6 Linear time series models

Auto-Regressive AR(p) Models

We start with a simple one, the univariate p-th order linear Auto-Regressive model:

P
Y = Z OrYt—1 + N (1.6)

k=1

The driving noise 7; in equation 1.6, also called innovation, makes the time series
“Interesting”. We notice that AR(1) models where ¢; = 1 correspond to random walks.
Without noise, if one iterated AR(1) models (¢, # 1) for multi-step prediction, then
the resulting time series would either decay exponentially (if ¢; < 1) or diverge (grow)
exponentially (if ¢; > 1). AR(p) models with p > 1 introduce oscillations. Again,
without innovation noise, they would either decay or diverge exponentially and in an
oscillatory way, depending on the values of their coefficients ®. AR(p) models that
decay exponentially are called mean-reverting and are stationary (Tsay, 2005).

Although the coefficients ® can be fitted by linear regression, the tool of choice
is the auto-correlation function defined by I-lag autocorrelation coefficients. Auto-
correlation coefficients (Eq. 1.7) describe how much, on average, two values of a time
series that are [time steps apart co-vary with each other (Weigend and Gershenfeld,

1994).

_ Cov (e, ye—1)

p— _ p— 1.
Vi, pr= p_ Var (yt) (7)

These autocorrelation coefficients (Eq. 1.7) can be used to define a system of p
Yule-Walker equations (Eq. 1.8) in order to solve for ® (Weigend and Gershenfeld,
1994; Tsay, 2005).

12

Vke{l,...,p}, pr = O1p1—k + G2p2—k + -+ Op_1Pp—1-k T PpPp—i (1.8)

Vector Auto-Regressive VAR(p) Models

The multivariate equivalent to AR(p) are the Vector Auto-Regressive models VAR(p),

driven by multivariate, zero-mean uncorrelated noise 7, with covariance matrix 3:

p
yi = Z Ppyi—1 + (1.9)
k=1

V AR(p) models behave like AR(p) models, but instead of scalar coefficients ¢y,
they have square matrix coefficients ®y, and first order VAR(1) already exhibit an
oscillatory behavior. In the specific case of VAR(1), it can also be shown (Tsay, 2005)
that the condition for stationarity (i.e. mean reversion of the iterated prediction) is
for the coefficient matrix ®; to have eigenvalues smaller than 1.

VAR(p) and even VAR(1) models are relatively powerful: it is for instance a
commonly used benchmark for the inference of gene regulation networks, by learning
to model the linear dynamics between consecutive micro-array-based measures y; of
mRNA expression levels during the time course of a biological experiment (Alvarez-
Buylla et al., 2007; Bonneau et al., 2006, 2007; Efron et al., 2004; Lozano et al., 2009;
Shimamura et al., 2009; Wahde and Hertz, 2001; Wang et al., 2006b; Zou and Hastie,
2005) (see Chapter 4).

In order to solve for the parameters ®;, one can rely on maximum likelihood based
methods, such as performing a linear regression for each dimension of y;. Alterna-
tively, by introducing [-lag cross-correlation matrices I';, one can resort to the matrix

equivalent of the Yule-Walker equations (Tsay, 2005).

13

Moving Average M A(q) Models

AR(p) models can be described as convolutions and in terms of Infinite Impulse
Response (IIR) filters (Weigend and Gershenfeld, 1994), which grosso modo means
that input y; can be felt beyond time point ¢ + p. The other type of filters are
Finite Impulse Response (FIR) filters, where, in absence of input, the output v, is
guaranteed to go to zero after ¢ time steps. To design such a filter/model, one simply
needs to separate the input time series X from the output time series Y. Hence the

definition for univariate ¢-th order Moving Average models:

q
ye =Y Urtik+m (1.10)

k=1
M A(q) coefficients W are estimated using maximum likelihood techniques. Their

auto-correlation coefficients p; vanish after lag [.

Auto-Regressive Moving Average ARM A(p,q) Models

The final linear model that we mention® are Auto-Regressive Moving Average models:

p q
Yo = Ok — Y Uik + T (1.11)
k=1 k=1

Various techniques have been derived over years to identify ARM A(p, q), i.e. to
select model orders p and g before fitting the coefficients (Tsay, 2005). This procedure
is a bit more complicated, but the general idea is that after fitting a good model with

correct order, the residual noise should become structureless (Weigend and Gershen-

9Gince the focus of this thesis is not specifically on financial time series, we will skip further
description of Heteroscedastic models (ARCH, GARCH, etc. ..), which essentially focus on modeling
the variance of the innovation noise 7; in non-stationary linear models (Tsay, 2005). In the case of
time series measuring the financial returns Y of stock market prices, the main application of such
heteroscedastic models is modeling the time-dependent structure of stock volatility. We will simply
use in Chapter 5 the observation that volatility depends on external factors (such as news).

14

feld, 1994). One notion that can be introduced at that point is the number of degrees
of freedom of the model, which corresponds both to the number of parameters to esti-
mate, and to the number of previous “states” that the time series can retain (Weigend
and Gershenfeld, 1994).

There are however many time series datasets where linear models “break down”,
as one cannot choose between a linear model driven by stochastic noisy input, or a
deterministic nonlinear model with a small number of degrees of freedom (Weigend
and Gershenfeld, 1994). Before dwelling into nonlinear models, we shall make the ob-
servation that, after all, commonly used random number generators (which provide
the seemingly independently and identically distributed noise in computer simula-
tions), are essentially the iterated prediction of a chaotic (highly nonlinear) time

series model (Herring and Palmore, 1995).

1.2.7 Chaotic Time Series

As we introduced in the previous subsections, nonlinear mappings can generate chaotic
dynamics. The general definition of chaos is “aperiodic long-term behavior in a de-
terministic system that exhibits sensitive dependence on initial conditions” (Strogatz,
1994).

This means that if one iterates function f over yi:ll, to make successive predictions,
then an initial perturbation in the time series grows exponentially in time (which
causes the forecasting problem to remain difficult (Casdagli, 1989)). Let us note y;
and y} two initial values, and Ay, their initial separation. After n iterations of f, we
obtain respectively y,, = f" (yo) and y,, = " (y;). We can quantify the rate of this

separation using Lyapunov exponents!?.)\ defined as following:

10As one can obtain different values of A depending on the direction of the initial perturbation,
there actually exist a full spectrum of Lyapunov exponents, for which we can extract the maximum

15

I Ay [l e || Ay | (1.12)

It is important to distinguish between diverging systems and chaotic systems:
chaotic time series have aperiodic behavior and the values of y(t) lie on a manifold

that is also called strange attractor (Strogatz, 1994).

1.2.8 Nonlinear Models: Time-Delay Neural Networks

Neural networks (Rumelhart et al., 1986) are a multi-layer, nonlinear architectures!!,
that are capable, theoretically at least, to learn a “universal approximation” to any
nonlinear function h (Cybenko, 1989). Neural networks can be likened to a stack of D
multivariate linear regressions (i.e. a matrix-vector multiplication with matrix W,
where [€ {1,..., D}), each followed by a nonlinearity such as the hyperbolic tangent
sigmoid tanh(x) or the logistic sigmoid 1/(1+e~*). In our case, the input to the first
layer is vector x; or yi:;, and there are intermediary (hidden) variable vectors zgl)
(where | € {1, D —1}) that are generated between each layer. Note however that the
traditional maximum likelihood-based learning algorithm (Rumelhart et al., 1986) for
neural networks does not optimize explicitly for that hidden representation (with a
few early exceptions suggested in (Krogh et al., 1990; Rohwer, 1989)).

Trained neural networks can be iterated on time series y(t), modeling nonlinear
dynamical equations f; as a matter of fact, they can exhibit chaotic behavior (Stro-
gatz, 1994). Time-Delay Neural Networks (TDNN) (Lang and Hinton, 1988; Waibel

et al., 1989) are a specialization of neural nets, which exploit the time structure of

the input by performing convolutions on overlapping windows. Similarly to the two-

Lyapunov exponent.

T will spare the enlightened reader with reminders about the neural network architecture and
about gradient-based learning; a good reference is Chris Bishop’s comprehensive textbook (Bishop,
2006).

16

dimensional convolutional networks applied to image recognition problems (LeCun
et al., 1998a), TDNN are not fully connected and share weights across the time di-
mension, performing de facto convolutional FIR filtering on the time series. Although
it is easier to design TDNNs using 3D arrays, one can view their 2D matrix parameters
{W(l)}le{l, p} as very sparse and with replicated columns.

In previous doctoral work (Mirowski et al., 2007), I modeled the dynamics of
EEG at the onset of an epileptic seizure using a TDNN architecture. As another
example, TDNNs managed to obtain very good prediction results on the Lorenz-like
laser chaotic dataset (Wan, 1993), where they successfully predicted the first 100
time-step continuation of a time series. As detailed in (Weigend and Gershenfeld,
1994), TDNN however performed poorly on longer prediction horizons on that same
dataset, and the predicted time series did not “look” like the original chaotic attractor
anymore.

In its basic version, the open-loop training algorithm of TDNN minimizes the
one-step prediction error (i.e. tries to maximize the likelihood of Eq. 1.2) instead of
multi-step prediction errors, which are necessary for good long-term prediction per-
formance. Further research in that field (Kuo and Principe, 1994; Bakker et al., 2000)
attempted better long-term (iterated) predictions using Back-Propagation Through

Time (BPTT) and closed-loop training.

1.2.9 Nonlinear Models: Kernel Methods

The philosophy behind Kernel-based methods can be seen as being at the opposite of
parametric models such as VAR(p) or TDNNs, and they are often qualified as non-

parametric (even if they do need a few hyper-parameters). They require the evaluation

17

of a T x T Gram matrix'? K on the learning dataset {(x1,y1), (X2,¥2); - -, (X, y7)}

(general case) or on {(y’f, Vpi1), V5 Ypaa), oo (v P yT+p)} (in the case of auto-

regressive models).

13 and

The Gram matrix K = {k; ;}icq1,.. 1yjeqn,..ry 1s called the kernel matrix
one can also define a kernel function k(x,x’) between any two datapoints x and x'.
The two types of kernel matrices that were used during the experiments conducted
in this thesis were the popular linear kernel k(x,x’) = x'x’, and the Gaussian kernel

k(x,x') =exp (— || x —x' || /20?), the latter depending on the bandwidth parameter

o (Bishop, 2006). For auto-regressive models, one simply needs to replace the x; by

Yiia-
Weighted Kernel Regression

The simple Weighted Kernel Regression (WKR), also called the Nadaraya-Watson
regression (Bishop, 2006), proposes to predict the value yy of a new datapoint yﬁf:;
as a locally-based average of the entire support S = {1,...,T} of the training dataset
(Eq. 1.13), using the Gaussian kernel function. WKR make univariate predictions,
and correspond to Radial Basis Functions with a basis function at every training set

datapoint.

t'—1 t—1
ZteS k (yt/_p7 Yt—p) Yt
t'—1 t—1
Diesk (Y0, ¥isy)
12Gram matrices define a Hermitian inner product between T’ vectors, such as for instance the
dot product in Euclidian space.

13Gram matrix K is symmetric, semi-definite positive, which means that for any non-zero vector
A € RT, K has the following hermitian property: AKX > 0 (Bishop, 2006).

Yo = (1.13)

18

Support Vector Regression

Support Vector Regression (SVR) (Muller et al., 1999) with Gaussian kernels can be
viewed as a specialization of WKR, with a sparse support S C {1,...,T}. Without
going into the specifics of Support Vector Machines (Cortes and Vapnik, 1995)*, we
can say that SVR provides with predictions g; = > . Mk (yi;:ll,, yi:;) +b, where b is
a bias term,)\; are positive Lagrange coeflicients, and where the subset S of training
samples is chosen so that the predictions g; on the training datapoints ¢ € {1,...,T},
satisfy the following constraint: |y, — 7;| < €, for a fixed e. There can be a few
exceptions, which are outlier datapoints that cannot be fitted. The datapoints where
lys — yi| = € are called the margin support vectors. Datapoints where |y, — ;| < € are
not part of the set of support vector S (their Lagrange coefficient is A\, = 0).

When Gaussian kernels are used, the solution to SVR can be seen as a manifold in
an N + 1 dimensional space (where N is the number of dimensions in inputs yf:zl) and
the last dimension is covered by targets y, and predictions ;); that manifold tries to
keep within a distance of € of all the training datapoints. Its smoothness, as well as
the number of outliers, depend on the bandwidth parameter o.

SVR has been very successfully applied to time series prediction. In (Mattera
and Haykin, 1999; Mukherjee et al., 1997; Muller et al., 1999), SVR made long-term
iterated predictions on the Lorenz (Lorenz, 1963) and Mackay-Glass chaotic datasets.
In particular, SVR was capable of staying within the chaotic attractor’s orbit, unlike
most neural networks-based predictors. On the downside, SVR theoretically requires
the training data to be i.i.d., an assumption which is clearly violated (Mattera and
Haykin, 1999), and it does not explicitly model dynamical equations (i.e. the inter-

action of variables) on the time series.

4Note that SVM and SVR. are optimized using a different formulation than maximum likelihood.

19

Gaussian Processes

Gaussian Processes (GP) (Williams and Rasmussen, 1996) are particular kernel-based
method. GPs assume that the time series {y1,42,...,yr} is jointly Gaussian, and
express the covariance between any two training samples ¢ and ¢’ as a Gaussian kernel

function on x; and xy:

0
Cov) = o) = Boexp (= 1 =0 [8) + 02+ baxd e (110

In order to regress yy given x and the training dataset {(x;,v;)}, GPs compute
the Gaussian conditional probability P(y»|Y). As such, GPs do not approximate
(non)linear dynamical systems on the observed variables, but compute the pairwise
similarity between the inputs of training samples. To learn a GP model means to
compute the kernel matrix and to fit the hyperparameters ©, which is achieved using
maximum likelihood.

GPs have been applied to iterated time series prediction (Girard et al., 2003),

using time-delay embedding yi:ll) in lieu of x;.

1.2.10 Regularization

When learning a time series model, it is important not to overfit the training dataset,
which would preclude the generalization faculty of the model to unseen time points.
This can be achieved by regularization, which is the addition of a prior on the model
parameters © to the likelihood P(Y) of the time series (Bishop, 2006). That prior
says that the values of the weights should be small or sparse, as this is a simple

way not to overfit the data. The two most common regularizations are the Lo-norm

20

Tikhonov regularization!® (zero-mean Gaussian distribution prior on @) and the L;-
norm regularization (or the so-called parameter shrinkage, with a zero-mean fat-tail
Laplace distribution prior on @), formulated by Tibshirani (Tibshirani, 1996)'6. For
a model parameterized by ©, the Gaussian regression from (Eq. 1.3) can be expressed

as respectively (Eq. 1.15) and (Eq. 1.16), with regularization coefficient \:

—log P(Y|©®) Z |y — f (yi2h) |3 +X] © |3 +const (1.15)
t= p+1

—log P(Y|©) Z ly(t)—f(yiz,) I3 +)\Z|9k| +const (1.16)
t=p+1

In summary, we have seen several “memoryless” time series models that model
the interaction between time-embedded variables, or the similarity between the time
embeddings, but do not incorporate dynamics between hidden variables that represent
long term memory. For every time step ¢, their dynamical model uses information
only from the previous p time steps, and ignores longer-range dependencies.

Such models can be perfectly appropriate for learning simple dynamical systems,
for time series forecasting, for the classification or regression of subsequences, and for
evaluating the likelihood of a sequence. They cannot however be used for imputing
missing values, and of course, do not provide with hidden sequence representation,
neither do they incorporate unobserved data that might be useful for dynamical
modeling (such as unknown protein levels in the case of genetic mRNA microarray

data).

15 Also called ridge regression for linear models.
6Note that SVM and SVR express their Ly-norm regularization in different terms of mazimum
margins (Cortes and Vapnik, 1995).

21

1.3 Time Series Modeling with Hidden Variables

Y

The previously mentioned “memory”, also called state information, consists of addi-
tional variables Z that interact with the observed multivariate time series Y (in the
case when we separate output time series Y from input time series X, the hidden vari-
ables Z interact also with X). Most importantly, the notion of memory is entertained
by a dynamical relationship between consecutive values ...,z; 1,2, Z¢11,

What each hidden variable z; represents is a summary of the time series Y and
X up to time-point t. We can exploit this “summary” while learning the time series
model, by “inferring” the hidden representation corresponding to the observed time
series. Let us for instance ignore X and only consider the following standard system

of observation (1.17) and dynamical (1.17) equations, also called first Markov order

state-space model:

yi =9 (2t) (1.17)

zy = f(21-1) (1.18)

One can recursively express the above system as y; = g (f@) (zt,p)), for any order

p (up to p — o0), and not involving the observed variables yi:;. Because, in this
generative model, each y; is generated from z;, the recursive formulation implicitly
establishes a p-order dependency on the past observed values of the time series, while

maintaining a simple first-order Markov system of equations.

22

1.3.1 Recurrent Neural Networks and Vanishing Gradients

Let us illustrate this notion of memory using the Time-Delay Neural Network archi-
tecture. TDNNs work by outputting a prediction y; to an input yi:; or X, and use
temporary inter-layer variables z,}{l} at each layer [; their output y; and variables z,;{l}
depend solely on that input. Their difference with Recurrent Neural Networks (RNN)
is that RNN keep the values of intermediary layers’ activations z,}{l} in memory, and
for a new sample ¢t 4 1, compute the values of the new activations z;{fl by adding the
result of nonlinear operations on the new input to existing values of zt{l} at each hid-
den layer [. One speaks about recurrent connections modeling temporal dependencies
between hidden states. Figure 1.1 illustrates the difference between a TDNN and a
RNN on two toy architectures.

Unfortunately, RNNs require special learning procedures, and ML algorithms
based on exact gradient descent (Rumelhart et al., 1986) such as Backpropagation
Through Time (BPTT) or Real-Time Recurrent Learning (RTRL) (Williams and
Zipser, 1995), fail. The well-known problem of vanishing gradients is responsible for
RNN to forget, during training, outputs or activations that are more than a dozen
time steps back in time (Bengio et al., 1994). Several alternative training algorithms
have been proposed to avoid the vanishing gradient problem in RNN. One of them
consists in using Kalman Filtering as a second-order method to optimize the weights
of the RNN (Puskorius and Feldkamp, 1994). Another one, called Long Short-Term
Memory (LSTM) consists in designing a new type of units with gates that prevent

these nodes from forgetting information (Hochreiter and Schmidhuber, 1995; Wierstra

et al., 2005).

23

Figure 1.1: Example of an elementary Time-Delay Neural Network architecture (left),
and of an associated Recurrent Neural Network (right). The TDNN defines a 37-
order Markov dependency on the input data Y, predicting y, from y!~3. It relies
on temporary “inter-layer” variables z! ,, which are connected to the inputs y! 3
and which share two weights w; ; and w; 5 (each hidden variable is predicted by the
same convolutional kernel of size 2, parameterized by [w 1, w; 2]; notice how we have
called the two hidden nodes). In closed-loop training and at time point ¢ + 1, node
z;_1 takes the same value as node z; at time point ¢, which is a consequence of
deterministic prediction from consecutive segments of Y and of weight sharing. The
two hidden variables z!_; predict in turn y; (through connection weights wy; and
ws2). In the elementary RNN architecture, those hidden variables are dynamically
connected, from one time step to the next one (here, through a single connection of
weight wy3). Because they feel the effects of their activations from previous time
steps (so-called “memory”), those two hidden nodes may have different values (we use
a different notation z,; and z; o to stress the fact that those two hidden nodes acquire
a different behavior).

1.3.2 Models Capable of Inferring Latent Variables

We notice that contrary to procedures evoked in the next sections, gradient descent-
based BPTT and RTRL in RNN do not try to optimize the values of hidden variables
z;{l} with respect to the model likelihood.

Let us now introduce methods that explicitly optimize the distribution of the

latent variables. All of the methods below try to represent the modeled time series

Y and the hidden sequence Z in terms of probabilities.

24

With a few exceptions, most of the models presented subsequently use maximum
likelihood for model learning (introduced in Section 1.2.3), and require an iterative
learning procedure based on Expectation Maximization (EM) (Dempster et al., 1977),
which will be explained in further details in Chapter 2.

There are several differences between these models, which lie in the inference
procedure (finding the distribution of the latent variables Z conditional on the model),
in the linear or nonlinear nature of the model, and in the discrete or continuous nature

of the sequences.

1.3.3 Discrete Sequence Hidden Variable Models

Hidden Markov Models

Perhaps the most commonly used hidden variable model, introduced for speech recog-
nition, is the Hidden Markov Model (Rabiner, 1989), which consists of a sequence of
discrete state observations z! that are governed by a probabilistic transition table
and a prior distribution on the M states. At each time point ¢, a state z; can emit a
multivariate observation y; that has a Gaussian distribution. HMMs are therefore a
generative model.

Assuming a trained HMM, the full inference of the distribution of each z! can be
done using the message-passing forward-backward algorithm; alternatively the most
likely sequence Z! can be found using the Viterbi decoding, which is essentially a dy-
namic programming algorithm. Because of the Gaussian, finite nature of the HMMs,
learning and inference are tractable and can be done in an EM framework, recapitu-
lated in Chapter 2.

Input-Output Hidden Markov Models (IOHMM) (Bengio and Frasconi, 1995) ex-

tend HMMs by conditioning the latent variables on additional input time series X.

25

Conditional Random Fields

Conditional Random Fields (CRF) are a more recent model (Lafferty et al., 2001)
that is specific to discrete sequences Y, and which does away with the i.i.d. assump-
tion taken by HMMs. Instead of being a generative model, CRFs can be viewed as
undirected graphs that condition the distribution of the latent variables on Y, with a
Markov assumption on the graph of Y (not necessarily a chain). The value of interest

is P (Z]Y). CRFs are typically used for labeling and segmentation problems.

1.3.4 Linear Dynamical Systems

HMMs and CRFs, though powerful, do not fit most of our continuous domain time

series. Let us therefore introduce their continuously-valued counterparts.
State-Space Models (SSM) are a general category of models for time series that

incorporate a continuously-valued hidden variable z;, also called state variable, which

follows a first-order Markov dynamic and generates the observed vector y; (Ghahra-

mani, 1998).

ze = f(ze1)+m (1.19)

y: = h(Zt)+€t (1.20)

Linear Dynamical Systems (LDS) are a linear embodiment of SSMs, which means
that functions f and h are linear operation (respectively matrix F and H). Sometimes,
function f can also depend on additional time series inputs x;, which means that

z; = Fz, 1 + Cx; + ;. The dynamic and observation noises are distributed as

26

multivariate Gaussians'”. LDS were introduced as Kalman Filters (Kalman, 1960).
Both the State-Space Models and the Hidden Markov Models fall into the cate-
gory of Dynamic Bayesian Networks (DBN), which are directed graphical models for
sequences and time series (Ghahramani, 1998). Similar to HMM, and because of their
linear nature and of the Gaussian distributions, LDS benefit from a tractable forward-
backward inference and tractable ML learning, in the EM framework. One makes the
difference between Kalman Smoothing, which is a bidirectional forward-backward
inference of the distribution of the latent variables, and which takes advantage of “fu-
ture” values of Y, X and Z, and the forward-only Kalman Filtering. During forward
and backward recursion, the distribution of Z is computed by forward- or backward-

propagating the noise covariances.

Parameter Learning as a Dual Filtering Problem

A simplified learning procedure for finding some or all the parameters of a Kalman
Filter-based dynamical systems is “dual filtering”, when the parameters are “filtered”
(estimated) simultaneously with the latent states (Nelson and Stear, 1976; Wan and
Nelson, 1996). Dual filtering consists of adding the parameters ® of the model as
additional dimensions to the state variable Z, and in applying the forward Kalman
filtering inference to update 6, w.r.t. observations x; and y; as well as “observations”
coming from the latent variables z;. The dynamics on 6; are assumed to be a random
walk.

Of course, LDS have inherent limitations, which is that they cannot model non-

linear dynamics, which are the object of next section.

1"Note that all these matrices and Gaussian covariance matrices could be non-stationary, and
depend on t, but in practice the models are time-invariant.

27

Conditional State Space Models

Similar to CRF, one can define linear SSM in terms of undirected graphs, and con-
dition the continuously-valued latent variable Z on the observed variables Y, instead
of a generative model from Z to Y. This approach, with linear first-order Markov
dynamics on Z, was adopted by (Kim and Pavlovic, 2007). Latent variable inference
was done using a Kalman filter, and ML learning was done using gradient descent on

the parameters's.

1.3.5 Nonlinear Dynamical Systems

Suppose now that we replace linear functions f and h in Equations (1.19) and (1.20)
by any nonlinear relationship.

Because the inference in DBN is probabilistic, a closed-form solution might not
exist, and that inference might become difficult or even intractable in the case of
highly nonlinear dynamics and observation models, as is illustrated with the diffi-
culties encountered by so-called Extended Kalman Filters/Smoothers. The root of
the problem is in the propagation of the covariance matrices: the nonlinearity that
predicts z;,; from z; makes the distribution of z;,; no longer Gaussian. Because of
the issues with latent variable inference, and because of the partition function prob-
lem explained in Section 2.2.2, the learning of the parameters is made all the more
difficult, as it cannot easily be expressed in closed form and is not tractable.

Several workarounds have been devised in the past decade, which we enumer-
ate below. Beforehand, we shall only mention that, keeping the imperfect Extended

Kalman Filter/Smoother architecture, (Wan and Nelson, 1996) devised a dual fil-

8Tnterestingly, because the latent variables (consisting in human poses, associated to observed
silhouettes from videos) in the training dataset were known, the hidden variable model was actually
trained discriminatively.

28

tering /smoothing approach for joint state and parameter estimation, which at least

greatly simplified the learning procedure.

Unscented and Particle Filtering for Inference

A popular algorithm for latent variable inference in nonlinear models is the Unscented
Kalman Filter/Smoother (Wan and Van Der Merwe, 2000). Instead of propagating
the mean and covariance matrix of z; through the nonlinearity, the UKF propagates
the mode and 2M “particles”, 2 particles per dimension of z;, on each side of the
peak of the distribution and in each dimension. This works very well for unimodal
distributions. For more complex distributions, one can use the Particle Filter (PF),
with a cloud of (thousands of) particles {z;} propagated at each time step, out of
which one can sample the distribution of z,. UKF and PF resort to joint filtering for

parameter estimation, though.

Making the Learning Tractable

The main issue with learning Nonlinear Dynamic Systems, and hidden variable models
in general, will be explicited in Section 2.2.2, and is linked to the fact that one can-
not properly compute the probability distribution over Z, because of the intractable
partition function (in short, one would need to sum over all the possible values of
Z., which can be done easily only for a limited number of distributions such as the
Gaussian). As a consequence, DBNs that are more complex than LDS and HMMs
break out once certain nonlinear architectures are designed (Ghahramani, 1998).
Several approaches have been designed to overcome the issue of the partition
function, including the expensive sampling techniques, and the sometimes compli-
cated Variational Bayes derivations to the EM learning procedure. Those approxi-

mate techniques enable approximate inference of the full distribution of the hidden

29

variables®.

On one hand, (Ghahramani and Roweis, 1999) introduced an NDS where the
dynamic function f consisted of Radial Basis Functions, i.e. a mixture of Gaussians.
This enabled an exact inference and learning steps in the EM algorithm, but required
the RBF centers to be properly initialized.

On the other hand, (Ilin et al., 2004) simplified the NDS to first-order Markov
dynamics (it was effectively an SSM), where the nonlinearities were represented by
Multi-Layer Perceptrons (MLP) with one hidden layer with tanh nonlinearity. This
enabled to devise a variational Bayes approximation for approximating the distribu-
tion of Z. Their algorithm was applied to model chaotic attractors and to detect
changes in nonlinear dynamics.

Both the RBF and MLP nonlinearities employed in NDS were relatively simple
compared to the kind of nonlinearities (convolutional networks) used in Chapter 3 of

this doctoral work.

NDS with Approximate Inference of Hidden Variables

An early model of nonlinear dynamical system with inferred hidden variables is the
Hidden Control Neural Network (Levin, 1993), where a latent variable z(t) is added
as an additional input to mapping (1.2). Although the dynamical model remains
unchanged (thus stationary) across the whole time series, the latent variable z(t)
modulates the dynamics of (1.2), enabling a behavior more complex than in pure
autoregressive systems. The training algorithm iteratively optimizes the sequence

Z of latent variables (1.21) and the weights W of the Time-Delay Neural Network

19 As explained in the next chapter, I used in my doctoral work a different approach to the inference
of hidden variables, performing maximum a-posteriori inference of the most likely configuration of
the hidden variables. By “cutting corners” in the inference process, my technique is able to handle a
much richer class of nonlinearities (essentially, any kind of nonlinear function that is differentiable)
than traditional graphical models.

30

(TDNN) (equation 1.22):

7 = argr%i/nE(Y(t),W,Z’):argrr%i/nzH v — f (yee1, Z; W) |2 (1.21)
t

W = argn\}\i]pE(Y,Z;W’) (1.22)

The latter algorithm, which is likened to approximate maximum likelihood train-
ing, is the starting point for my own method, which relies on the same iterative
learning, but instead of finding a sequence of dynamic-modulating latent variables,
finds the latent variables Z that generate the observations Y, as in DBNs. Moreover,

I propose to consider non-Markovian (or higher-order Markovian) dynamics where

t—1
t—p-

hidden states z; depend on a time-delay embedding of z

A more recent model of DBN with deterministic dynamics and explicit inference
of latent variables was introduced in (Barber, 2003). However, the inference of the
hidden variables was done by message passing in the forward direction only, and

the dynamics were first-order Markov only. Both these algorithms were successfully

applied to short-sequence speech recognition problems.

1.3.6 Mixed Models for Switching Dynamics

A large area of research has been focusing on mixed state-space models that model
switching dynamics and cope with nonstationarity. For instance (Kohlmorgen et al.,
1994, 1998) employ a mixture of HMMs and Neural Networks experts (such as Radial
Basis Functions RBF) for identification of wake/sleep in physiological recordings,
whereas (Pavlovic et al., 1999) employs a mixture of HMMs and LDS for modeling

and classifying time series corresponding to different motions.

31

1.3.7 Recurrent Boltzman Machines

An alternative nonlinear generative model with explicit inference of latent variables
is the Restricted Boltzman Machine (RBM). RBMs contain stochastic binary latent
variables and real-valued observations (Hinton et al., 1995) with an EM-like inference
and learning procedure. Multilayer RBM architectures (Hinton et al., 2006) enable
non-linear dynamics, and (Sutskever and Hinton, 2006) enables p'* order temporal
dependencies on the latent and visible units. Although difficult and long to train,
RBMs have been successfully applied to difficult time series, such as motion recon-
struction and even long-term prediction (Taylor et al., 2006). Their stochastic nature
enables them to create more interesting but still realistic trajectories and to ‘“‘jump”

out of fixed attractors.

1.3.8 (Gaussian Processes with Latent Variables

It is possible to incorporate lower-dimension latent variables into Gaussian Processes
Latent Variable Models (GPLVM). In that case, one expresses the probability of the
observed variables Y conditional on X by using a covariance matrix based on a Gaus-
sian kernel on X, and in the ML formulation, tries to maximize the log-likelihood not
only w.r.t. the hyperparameters of the kernel function, but also w.r.t. the kernel
matrix itself. Because of computational complexity involved in that learning pro-
cess, a special kernel algorithm is required (Lawrence, 2004). The GPLVM can be
extended by adding dynamics to X (Wang et al., 2006a), notably by expressing x; as
a Gaussian Process on x;_1. The Gaussian Process Dynamical Model (GPDM) thus
comprises a low-dimensional latent space with associated dynamics, and a map from
the latent space to an observation space, with a closed-form marginalization of the

model parameters for both the dynamics and the observation mappings.

32

A further embodiment of the GPLVM can be achieved by adding a third GP on in-
put variables X, with an architecture similar to IOHMM or illustrated on Figure 2.2.
When both the data X and Y are known (e.g. images features and pose, respec-
tively), the model can be trained discriminatively to infer a hidden representation
that matches both the inputs and the outputs. On new data X, one can infer the
latent variables Z then the predictions Y (Moon and Pavlovic, 2008).

GPLVM/GPDM have been applied to modeling dynamics on motion capture data,
and more recently, to the inference of latent protein transcription factors (Zhang
et al., 2010). It seems however that the kernel nature of the algorithm precludes long

sequences.

1.3.9 Limitations of Existing Hidden Variable Models

Let us conclude this introductory section by Table 1.1, which recapitulates the strengths
of all the common methods for time series modeling with hidden variables. As I sug-
gest in the last line of that table, I introduce in this thesis a new algorithm, Dynamic

Factor Graphs (DFG) that is more versatile than the state-of-the-art.

33

Table 1.1: Summary of existing hidden variable time series models and of their limi-
tations. The table recapitulates the following algorithms: Recurrent Neural Networks
(RNN), Long Short-Term Memory (LSTM), Hidden Markov Models (HMM), Condi-
tional Random Fields (CRF), Linear Dynamical Systems (LDS) and Kalman Filters
(KF), Nonlinear Dynamical Systems (NDS) and Extended Kalman Filters (EKF),
Unscented Kalman Filters (UKF) and Particle Filters (PF), Conditional Restricted
Boltzmann Machines (RBM), Gaussian Process Latent Variable Models (GPLVM),
and finally, the method developed in this thesis, Dynamic Factor Graphs (DFG).
For each method, we listed whether the method performs a proper inference of hid-
den representations, whether the model is trainable, whether that representation is
continuously-valued (real), whether it enables complex nonlinearities and whether it
handles long sequences in linear time.

Method | Infers hidden Trainable Real- Complex Long
variables Valued Nonlinearity Sequences
RNN v v v v
LSTM v v v v
HMM v v discrete v
CRF v v discrete v v
LDS v v v v
NDS v v v/ 1% order Markov v
UKF, PF v joint infer. v 1%t order Markov v
CRBM v v binary v v
GPLVM v v v 15¢ order Markov

DFG v v v v v

34

CHAPTER 2

COMMON FRAMEWORK: DYNAMICAL FACTOR GRAPHS

Let’s do the time warp again!

RICHARD O’BRIEN

In this chapter, I explain how we define a new inference and training algorithm
for modeling time series with Recurrent Neural Networks, using approximate iterative
inference and learning algorithms derived from state-space model such as Dynamic
Bayesian Networks, and using the Factor Graphs formalism. [will stress the impor-
tance on the most important contribution of this doctoral thesis, which is to perform
Maximum A Posteriori inference of continuously-valued hidden variables, while main-
taining the partition function constant by construction, thereby enabling to model
any kind of differentiable nonlinear dynamics and observation functions (in particu-
lar, any Markov order p), and thus achieving a much stronger representative power

than usual Graphical Models.

35

2.1 Our Factor Graph formalism

2.1.1 Factor Graphs

According to their definition (Kschischang et al., 2001; Bishop, 2006), a factor graph
is a bipartite graph with two types of nodes, variables y, and factors g; (which are
functions of variables). Each variable node can be connected only to factor nodes,
and each factor node can be connected only to variables nodes. Factor graphs express
a global function ¢ of all variables as a product of functions on the subset of variables
to which they are directly connected. It means that function g; takes as arguments
only variables {y;},. s, to which it is directly connected in the graph. For 7' variables

and P functions, we have the following factorization:

P

9 (ylaYQa s >YT) = ng ({yt}tesi) (21)

i=1

Because of their factorial nature, factor graphs can represent, among others,
bayesian models (such as Hidden Markov Models), modeling the joint probability
of the full model as a product of conditional probabilities at each factor. Even if
ones does not use probabilities but hard constraints (one constraint per factor), the
conjunction of all the hard constraints in the model can be expressed as a product of
boolean indicators, one per factor (Kschischang et al., 2001).

When the graph structure is a tree, one can directly compute the marginal function
g (y¢) for any variable y; using the sum-product algorithm for factor graphs, which is
based on message passing between the variable nodes. The sum-product algorithm
is the factor graph equivalent of both the forward-backward algorithm for hidden

sequence inference and of the Viterbi algorithm in HMMs, and for linear dynamical

36

Yi—2 Yio1 y: Yis1 Yi—o Yio1 y: Yit

Zt—2 Zt_1 Zt Zi4+1 Zi_9 Zi_1 Z¢ Ziy1

Yi_o Yio1 A\ Yit1 Yi—2 Yio1 Y Yit1

Figure 2.1: Several Dynamic Factor Graphs that admit observed variables Y and
latent variables Z, which are factorized by observation (h) and dynamic (f) factors.

systems, corresponds to Kalman filtering (Kschischang et al., 2001). Figure 2.1 (top
left) illustrates the factor graph representation that is common to HMM and to one
embodiment of the algorithms discussed in the next chapters (specifically, the one we
used for learning the gene regulation network of the Arabidopsis in Chapter 4).
Several state-space models consist in Directed Acyclic Graphs (DAG), but an
undirected factor graph representation cannot be represented by a tree. The sum-
product algorithm nevertheless works for undirected factor graphs with cycles, it
simply needs to be repeated and has no guarantees of convergence (in the general
case). Figure 2.1 illustrates other factor graphs architectures that I will use. Among
others I investigated n-th order Markov dependencies (top right of the figure) for
modeling chaotic dynamics in Chapter 3. For the inference of protein transcription
factors in Chapter 4, I used observation and dynamic models that expressed the rates

of change of y; and of z; (bottom part of the figure). Finally, Figure 2.2 shows

37

Yi—2 Yi-1 Y Yit1

Zi_2 Zi 1 Zy Ziy1

Xt—2 Xt—1 Xt Xt4+1

Figure 2.2: Dynamic Factor Graph that admits two types of observed variables:
inputs X and outputs Y, as well as latent variables Z, which are all factorized by
observation (h), dynamic (f) and input (g) factors.

an input-output architecture that separates observed sequences into X and Y; this
architecture corresponds to supervised auto-encoders with dynamical dependencies
between hidden variables in Chapter 5. Since all the aforementioned factor graphs
are specialized for sequence modeling, I call them Dynamic Factor Graphs.

The Factor Graph formalism has already been applied to model data where the la-
tent variable had a spatial structure, notably for modeling house prices. In that case,
the price y; of the i-th house in the dataset was considered as depending both on asso-
ciated input variables x; and on a latent desirability factor z; that was geographically

smooth (Chopra et al., 2007).

2.1.2 Maximum Likelihood and Factor Graphs

As T suggested in the first chapter, model learning and the inference of hidden repre-
sentations in this thesis is done using a maximum likelihood framework!. For numer-

ical reasons, this is performed in logarithmic space, using the negative log-likelihood

"'We cannot apply discriminative learning of the hidden representations because we cannot eval-
uate the partition function of our nonlinear model with continuous hidden variables.

38

instead. For the case of a Dynamical Bayesian Network such as an Input-Output
HMM (Bengio and Frasconi, 1995) (which can be described by the factor graph of
Figure 2.2), the joint likelihood (Eq. 2.2) and negative log-likelihood (Eq. 2.4) are

expressed as:

P(X,Y,Z) = HP(zt|zt_1)P(zt|xt)P(yt|Zt)P(xt) (2.2)
NLL = —logP(X,Y,Z) (2.3)

NLL = const+ Z —log P (z¢|z,—1) — log P (z|x:) — log P (y:|z¢) (2.4)
t

Consistently with DBNs, we keep the factor graph formalism while operating in
the logarithmic space, which simply means that we add each factor’s contributions

instead of multiplying them.

2.1.3 Factors Used in This Work

Different factors will be detailed in subsequent chapters, but we can express now
their common properties. Our factors contain two modules. The first one consists
in a deterministic function (let us call it g) that takes argument variables a; and
generates prediction variables 0,. Those predictions are then compared to the actual
target variable o, and an error term is computed. The function that evaluates the
error constitutes the second module of the factor. Function ¢ is parameterized by
parameters W, which we shall learn in order to minimize the prediction error of the
factor. Figure 2.3 recapitulates these concepts.

We notice that factor graphs are undirected; one can see them as “springs” between

variables. The main idea in our algorithm is that even if the functions are directed

39

(from arguments to predictions), the error term is not. Therefore, during inference
of latent variables, one can try to minimize the error by acting both on the latent
variable arguments of the function and on the latent variable that are targets of that
same function. This principle is similar to Kalman smoothing, which is bidirectional,

as opposed to Kalman filtering (Kalman, 1960), which is forward only.

Figure 2.3: General description of a factor linking variables a; and o; through function
g, with energy term F (a;, 0;).

We considered several types of functions ¢ in this work, enumerated below:

e identity function, for instance for modeling random walk dynamics on latent
variables, or latent variables that are a de-noised version of observed variables:

Oy = ¢
e linear matrixz operations: o, = Way,

e [inear matriz operations followed by a nonlinearity such as the hyperbolic tan-

gent tanh: 6, = tanh (Way),

e linear matriz operations followed by a softmaz function, to produce probability

eWkat

distributions over the output dimension space: Vk, oy, = IR
J

40

e a highly nonlinear TDNN or convolutional network, typically for modeling
chaotic dynamics on the latent variables. Note that contrary to (LeCun et al.,
1998a), we did not resort to 2D convolutions, as we used only convolutions

across time, not across channels.

Similarly, we considered different types of errors, which would all correspond to
negative log-likelihoods: most commonly the sum of squares (Gaussian distribution)
and sum of absolute values (Laplace), but also the logistic error (Binomial) and
the cross-entropy error (Multinomial) for classification. The latter two errors are

reminded in Chapters 5.

2.2 Maximum Likelihood Energy-Based Inference

Now that we have defined the building blocks of our architecture, involving latent and
hidden variables, we would like to be able to infer the sequence of hidden variables
Z that optimally represents the observed sequence Y (and X, if relevant) under the
model. This is a simpler problem than that of inferring a full distribution over Z,
which is normally done for Dynamic Bayesian Networks and (Non)-Linear Dynamical

Systems (Ghahramani, 1998; Ghahramani and Roweis, 1999).

2.2.1 Energy as Negative Log-Likelihood

Let us introduce the notion of energy, which is among others reviewed in (LeCun
et al., 2006). Using the notation from Figure 2.3, our energy term E (a;,0;) at each
factor merely corresponds to the error that results from predicting o, instead of oy.
Using the factor graph formalism in the logarithmic domain, the energy of the whole

sequence of observed and hidden variables is a sum of energies at all the factors,

41

and is noted E(Y,Z) or F(X,Y,Z). Without loss of generality, let us focus on
models without inputs X, and also include the model parameters W into the energy
term: F(Y,Z;W). As we mentioned earlier, we make our energy proportional to

the negative log-likelihood of joint variables Y and Z:

E(Y,Z;W) x —log P(Y,Z|W) + const (2.5)

2.2.2 Intractable Partition Functions

Note that energy in Equation (2.5) does not define by itself a probability distribu-
tion, because the normalization terms are unknown. For a proper normalization and
to obtain the actual value of P (Y,Z|W), one would need to resort to the so-called
Boltzmann distribution (LeCun et al., 2006) with an additional “temperature” co-
efficient 1/8 (Eq. 2.6). The Boltzmann distribution, used in statistical mechanics,
provides with the maximum entropy distribution? that is still compatible with the

observations.

e_ﬁE(szvw)

P (Y7 Z|W) = fY/ fZ/ e_BE(Y,aZ,§W)dY/dZ, (26)

Iyz

The normalization constant I'y ; is called the partition function.
For a given configuration of energies F(Y,Z|W), the lower the temperature 1/,
the more peaked the associated Boltzmann distribution (conversely, the higher the

temperature, the more uniform the distribution). At sufficiently low temperatures, in

%i.e. most uniformly random

42

the limit of § — oo, the associated distribution would become unimodal, even if the
energy surface admitted local minima; therefore, the joint configuration of observed
and hidden variables given the model would seem simpler than it actually is.

In order to evaluate the likelihood of observed sequence Y, one needs to marginal-

ize P(Y,Z|W) and (Eq. 2.6) over all the values that hidden sequence Z can take:

P(YIW) = / P(Y,Z|W)dzZ' (2.8)

o —BE(Y.Z/;W)

= /
= - fY’ fZ” efﬁE'(Ylyz//;W)dY/dZHdZ (29)

Evaluating the integrals of (Eq. 2.6) and (Eq. 2.9) over all observed and hidden
sequences is intractable for continuous variables under non-Gaussian distributions. It
is similarly difficult when the distributions are Gaussian but the factors are nonlinear.
As we detailed in the first chapter, DBN, LDS and NDS algorithms have resorted to

various approximations involving sampling and variational Bayes approximations.

2.2.3 Maximum A Posteriori Approximation

Similarly to previous work in that field conducted in Prof. LeCun’s lab (LeCun et al.,
2006; Chopra et al., 2007; Ranzato et al., 2007), we propose to use a maximum a
posteriori (MAP) approximation, which foregoes the full distribution in favor of its
mode. What follows is an analogy to the proofs derived in (Ranzato, 2009).

Let us first define the “marginal” energy of the observed sequence Y, after having
integrated away the latent variables. This definition is arbitrary but fits nicely into

previous equation (2.9):

43

1 /
E(Y;:W) = ——log / e PPEW) gz (2.10)
R 7
e BEYW) /e—ﬁE(YZ’;W)dZ/ (2.11)
P(Y|W) = (2.12)

Jy e PR Y

We will show that a) £ (Y; W) can be approximated by argming F (Y, Z; W),
and that b) argming F (Y,Z; W) = argmaxz P (Z|Y,W). Let us begin with the
second statement.

By the Bayes rule P (Y,Z|W) = P (Z|Y, W) P (Y|W), maximizing P (Y,Z|W)
w.r.t. Z is akin to maximizing P (Z|Y, W) w.r.t. Z since P (Y|W) does not depend
on Z. Then, using Equation (2.6), argmaxz P (Z|Y, W) = argmaxgz e #F(,%W)

because the partition function is independent of the variables. Hence:

arg mzinE’ (Y,Z; W) = arg mZaXP (Z|Y, W) (2.13)

Now, to prove that £ (Y; W) can be approximated by arg ming E (Y,Z; W), we
take Equation (2.10) to the limit in 5. Assuming that the energy F (Y,Z; W) is

positive and admits a zero minimum in Zg (which is the case for instance for quadratic

errors):
1 ' 1 .
lim —— log / e PENZEW) g7/ — lim ——log / Oz—z e PEYZWI71(2.14)
oo 3 z' pooo 3 z'
1 .
= lim ——log (eiﬂE(Y’ZO’W)) (2.15)
fooo 3
— E(Y,Zy;W) (2.16)

44

In the rest of this work, we subsequently note that, for an observed sequence Y
and given a model parameterized by W, the result of the latent variable inference is

the minimum energy state of the model for that sequence:
E(Y;W) =arg mZinE (Y,Z; W) (2.17)

2.2.4 Summing Energies from Diverse Factors

As illustrated on Figures 2.1 and 2.2, our factor graphs contain several types of factors
replicated over the time dimension of the sequences. We therefore need to sum up,
for all time points, energies from various factors.

We design our factor graph and energy functions under the assumption that all
time series including the latent variables Z are identically distributed, with conditional
independencies beyond the reach of each factor (see section 1.2.3). This means that
for a given type of factor, the additive normalization term (due to the partition
function) —logI'zy(f) remains constant across time samples ¢ € {1,...,T}. This
also means that, for exponential distributions (such as Laplace and Gaussian), the
multiplicative scale coefficients for each data point are constant across time. Recall
that for the Gaussian distribution, these scale coefficients are linked to the inverse of
the covariance matrix 3. As many latent variable techniques in the machine learning
literature do, we will claim® that the covariance matrix is diagonal with identical
terms across the diagonal: X =o1.

However, because we did not properly normalize the energies of our factors, we
are left with “guessing” the relative weight of the scales o for each type of factors. For

a clearer picture, let us focus for instance on a DFG composed of observation A and

3We can of course design latent variables such that their covariance is diagonal, and we can
always standardize the observed time series Y to zero-mean and unit variance for each dimension,
and then apply a principal component analysis to de-correlate the rows of Y.

45

dynamic f factors (as in Chapters 3 and 4), with associated energies Ej, (y;,z:; W)
and Ef (zt p,th). Let us assume (as is the case in those chapters) that their
underlying distributions are Gaussian, which also means that their error terms are

Gaussian:

Vt, P(y: —h(ze W) lze) ~ N(0,5,) =N(0,041y) (2.18)

Vt, Pz — f(2i_);W)) ~ N(0,5)) =N (0,071y) (2.19)

In our energy-based framework, we simply replace the scales 05, and o by their
relative weight coefficient v (e.g. coefficient of the dynamic factor). The total energy
of a sequence of observed Y and hidden variables Z is written as (Eq. 2.20), and the

inference problem becomes (Eq. 2.21).

E(Y,Z:W) = Y Ey(yizs W +72Ef 2=}, z; W) (2.20)
t

E(Y;W) = argn%iln{;Eh(yt,zt, +72Ef zi_). %)} (2.21)

We can use a few tricks to make the guessing of « easier. First of all, if there are
several factors with similar types of energies (e.g. Gaussian sum of square errors), then
we can normalize the energies by the number of dimensions of the variables involved.
Secondly, varying the relative contributions of each factor type can be treated like
adjusting additional hyper-parameters with an intuitive explanation: the coefficient
v is related to the “weight” or “importance” we want to give to the dynamic factor;

the larger the v, the tighter the scale or bandwidth of that factor. Finally, v can be

46

adjusted with the usual arsenal of techniques such as cross-validation.

2.2.5 Interpretation in Terms of Lagrange Multipliers

Another explanation of the v can be provided from the Lagrange multipliers tech-
nique, developed by French mathematician Joseph Louis Lagrange. Let us consider
indeed the energy minimization problem (Eq. 2.17) with two factors®, one for the
observation (h) and one for the dynamics (f), as a constrained optimization problem

with an objective (Eq. 2.22) and a constraint (Eq. 2.23):

mzin En(Y,Z; W) (2.22)

subject to: Vt, z; = f (zi—1; W) (2.23)

The Lagrange multiplier technique proposes to integrate those constraints into one
Lagrange function A (Z, \), after multiplying each constraint (over all time points and

for all M dimensions of Z) by a corresponding Lagrange coefficient A ¢:

T M
AMZ,A) = Ep (Y, Z W)+)0 Mt (2 — i (20-1; W) (2.24)

t=2 k=1

The Lagrange function enables to define the notion of a Lagrangien A (\), which is
a lower bound on A for a specific configuration of the Lagrange multipliers (Eq. 2.25).
We can set equal constraints on all time points (conditional i.i.d. assumption) and
on all dimensions of Z (not favoring one hidden dimension over another), to obtain a

simplified Lagrangien depending on a single variable (Eq. 2.26).

4For simplicity, but without loss of generality, we assumed that the Markov order p was one in
constrain (Eq. 2.23).

47

AN = mzm{Eh(Y ZW) A+ Nt (2 — fi (ztl;W))} (2.25)

t=2 k=1
Z Zkt fk Zi— 17W))>} (2'26)

k=1

Ms

= mzin{Eh (Y,Z; W) + A (

t

[|
N

The last equation (Eq. 2.26) shows the analogy to the energy-based inference (Eq.
2.21). Note however that in numerical optimization, the solution (Z,\) to the La-
grange optimization does not correspond to the optimum of A (Z, \), but rather to a
so-called saddle-point or critical point, which is at the same time a minimum w.r.t.

Z and a maximum w.r.t. the Lagrange coefficients \.

2.2.6 Inference of Latent Variables

As we will illustrate in the next chapters, inference of latent variables in an MAP
setting becomes extremely simple. For a given configuration of the pseudo-Lagrange
coefficients, one simply needs to find the optimum of £ (Y, Z; W), i.e. to differentiate
the total sequence energy (Eq. 2.20) w.r.t. the latent variables, and therefore to solve

for:

OF (Y,Z; W)

o —0 (2.27)

This can be achieved using the well-known gradient descent algorithm. As evoked
earlier, we back-propagate (Rumelhart et al., 1986) the gradients from the energy
modules in both directions, and update each z; by summing up the contributions

coming from all the factors it is connected to. We repeat the gradient step using a

48

small learning rate, until a convergence criterion.

2.2.7 What DFGs Can Do That Graphical Models Cannot

The most important contribution of this doctoral thesis can be summarized in a single
sentence: Thanks to our Mazimum A Posteriori approzimation during the inference of
continuously-valued hidden representations of time series, and because we maintain
the partition function constant by construction, we are able to model any kind of
differentiable nonlinear dynamics and observation functions, with any dependencies
between the variables (in particular, any Markov order p), achieving a much stronger

representative power than usual Graphical Models.

2.2.8 On the Difference Between Hidden and Latent Variables

I would like to highlight at this point the difference between hidden and latent vari-
ables Z. Both are variables that are not observed and that need to be extracted from
observed data. However only the latent variables correspond to a maximum likelihood
solution that is obtained through inference. The maximum likelihood solution corre-
sponds to the mode of the distribution of Z for DBNs, and to the minimum energy
sequence w.r.t. Z for our DFGs. If we think in terms of message passing through the
factor graph, a hidden representation is obtained through a simple “forward” mes-
sage passing (e.g. direct prediction by an encoder), whereas the latent representation
is obtained after an iteration of “forward” and “backward” message passings, in a
so-called relaxation procedure, until the hidden representation converges to a stable
fixed point.

As such, the hidden variables in the language modeling task from Chapter 6 are

not properly latent, since they are obtained through a deterministic look-up table

49

from a discrete observed sequence y7, without a relaxation step w.r.t. the dynamic
energy linking the hidden variables. We abstained from full relaxation on the hidden
variables because of the computational complexity of the language model on large

vocabularies and large text corpora.

2.3 Expectation Maximization-Like Learning of DFG

2.3.1 Expectation Maximization Algorithm

In its original form, Expectation Maximization (EM) (Dempster et al., 1977) is an
iterative and probabilistic maximum likelihood algorithm for estimating missing data
and learning the parameters of the joint distribution of observed and missing data.
EM alternates between parameter estimation/learning (M-step) and latent variables
inference (E-step), and can be referred to as coordinate ascent of the likelihood. The
main limitation of EM is that it converges to a local maximum likelihood.

In a nutshell, EM strives at maximizing the joint likelihood P (Y,Z|®) of com-
plete data (observed and hidden) that one could obtain given a model parameterized
by ©. In other words, it tries to find the optimal ® such that P (Y,Z|®) is max-
imal. Because Z is unknown, it tries instead to maximize the expectation of the
log-likelihood of the complete data under the model. The first step (E-step) consists
in evaluating E [log P (Y, Z|®(k))} given the current estimate ®*)of the parameters.
The second step (M-step) consists in maximizing that quantity with respect to the
parameters ©, i.e. assigning @ *™) = argmaxe E [log P (Y, Z|©@W)].

As one can guess, the quantities enunciated above can be evaluated in closed
form if one can compute the full distribution P (Y,Z|®), for instance in HMM or

LDS. It is however more difficult in the case of intractable partition functions and

20

distributions. An alternative explanation of EM, in terms of free energy and entropy
is given in (Ghahramani, 1998). In particular, the distribution P (Y,Z|®), which
is unknown, is replaced by an approximate distribution @ (Y,Z|®) that is known,
and during the E-step, instead of maximizing the expectation of P (Y,Z|®), one
maximizes the log-likelihood of @ (Y, Z|®), which is proved to be a lower bound on
the log-likelihood of P (Y,Z|©)°.

Since its inception, EM has found a wealth of applications in many fields, for
instance in various fields of signal processing (Moon, 1996). Generalized EM (GEM)
is a version of EM with truncated M-step that only partially improves the likelihood
of the parameters given the latent variables inferred in the E-step. Stochastic and

incremental (Neal and Hinton, 1998) variants of the EM are also possible.

2.3.2 Our Simplification and Approximation

The link between EM and our work is very simple, albeit simplistic. As we said
earlier, instead of evaluating the full distribution P (Y,Z|®) (or P (Z|Y,®), for that
matter) we replace it by its MAP approximation (its argmax). Then, maximizing the
conditional likelihood of the hidden variables is equivalent to minimizing the energy,
according to Equation (2.13). Since we are treating the “inferred” distribution of Z as
its mode, or more plainly, as a fixed quantity (just like Y), we can solve the M-step

learning in a quantity of ways.

2.3.3 Alternated E-Step and M-Step Procedure

In summary, learning in an DFG consists in adjusting the parameters W in order to

minimize the sum of energies at each factor. Because we introduce a regularization

®Such a formulation is useful for Variational Bayes inferrence (MacKay, 2003).

o1

term R (W) on the parameters (see Section 1.2.10) as well as another regularization
term R.(Z) on the latent representation (see Section 2.4.2), we speak instead of a
loss function £(Y,Z; W), defined in Equation (2.28). That loss function contains a
crucial additional term, the log partition function —logI'y.z, which is constant by
construction in our case and can by consequence be ignored during minimization.
Coming back to the example exhibited in the last section, the iterative procedure can

be written as:

LY, Z;W) = Y (Bu(t) +7Es(1)) + R.(Z) + R(W) —logT'y ; (2.28)

E-step: Z = argn%i/nL(Y,Z’;W) (2.29)

M-step: W = argr%i,pL(Y,Z;W') (2.30)

Minimization of the loss is done iteratively in an Expectation-Maximization-like
fashion in which the states Z play the role of auxiliary variables. The inference
described in part and equation (2.29) can be considered as the E-step (state update)
of a deterministic gradient-based version of the EM algorithm. During the parameter-
adjusting M-step (weight update) described by (2.30), the latent variables are frozen.
This means that we are back into the non-hidden variable framework, and that we
perform any kind of optimization® to adjust W.

The E-step inference can be done either on the full sequence, or on mini-batches
(we used sequence length ranging from 20 to 1000 samples) with an M-step parameter
update after each mini-batch inference. In the latter case, during one epoch of train-

ing, the batches should be selected randomly, similar to regular stochastic gradient

6Tn the next chapters, we show that we investigated several ways to perform the M-step parameter
learning.

02

with no latent variables (LeCun et al., 1998b; Bottou, 2004), in order to speed up the

learning of the weight parameters.

2.4 Discussion

Hidden/latent models are not without certain limitations, which need to be handled.

This section recapitulates the three most important ones.

2.4.1 Avoiding Flat Energy Surfaces During Inference

Hidden representations may raise the issue of flat energy surfaces. This means, that
no matter what observed sequence Y is supplied to the hidden-variable model, the
model can infer a good representation Z of Y, where “good” means that its energy
E(Y) is very low (e.g. E(Y) = 0). If the model can infer the same F(Y) = 0 no
matter what Y, then it is not able to discriminate between sequences, and is not very
informative. This could typically be acute in over-complete representations, where
the dimension of the latent variables is greater than the dimension of the observed
variables (Olshausen and Field, 1997; Ranzato et al., 2007).

In his thesis on that subject (Ranzato, 2009), Marc’Aurelio Ranzato provided two
theorems and proofs that flat energy surfaces can be avoided, under some conditions.
The first condition is that the dimension M of latent variables is smaller than the
dimenion N of observed variables: this is the case for instance for all the models in
Chapter 5 and some models in Chapter 4. The second condition, when M > N, is to
have a sparse prior on the latent representation Z, which corresponds to limiting the
information content of the representation.

In Chapter 3, we introduce latent variables with M > N, while in Chapter 4,

we have some models with M = N. Let us now prove, in a simple way, that our

23

dynamical constraint/model still prevents flat energy surfaces.

Without loss of generality, let us assume that the observation model h and the
dynamical model f are linear (matrices H € RY*M and F € RV*V), that we have the
HMM-like DFG architecture from Figure 2.1 (top-left), and that the Markov order is

RNXT

p = 1, with a time series Y € of length T'. Then, for each time-point and for

each dimension of Y, we have a linear combination of hidden variables Z:

Vte{l,....T} VEe{1,... N}, yp(t) = Y hiizi(t) (2.31)

This yields N x T equations of M x T unknowns (elements of Z), and we have
N xT < M x T. However, the dynamical equations bring additional M x (7" — 1)

equations, keeping the same M x T unknowns:

M
Vte{2,... T}, Vie{l,...,M}, z(t) =) fizt-1) (2.32)

Trivially, provided that N x T" < M, the system is overdetermined. Hence we
might not find, for any Y, a solution Z that fits Y perfectly. Moreover, our en-
ergies (typically Gaussian) are not flat, but convex. Therefore, for sufficiently long
sequences, flat energy surfaces can be avoided.

The specific case of sequence likelihood estimation in Chapter 6 does not fall into
the flat energy trap, because the observation factor is a look-up table (which means
that the latent representation of a discrete sequence Y is produced deterministically),
and because the dynamical energy on sequences of hidden vectors Z integrates the
partition function, which means that for each input zi:}? to the dynamical function
f, there is only one possible output z; that achieves minimal energy, and that output
might be in contradiction with the embedding of y;. Hence the energy surface of all

possible sequences Y is certainly not flat: actually, we use that model to discriminate

o4

between more or less “valid” sequences Y.

2.4.2 Bounding the Hidden Representation

Although the learning and inference algorithms for DFGs turn out to be simple and
flexible, and the energy surface of £ (Y; W) cannot be flat, the hidden state inference
might however still be under-constrained, particularly so when the number M of
dimensions in latent variables Z is higher than the number N of dimensions of the
observed variables Y.

On one hand, there is for instance a risk that latent variables take extremely
large or extremely low values, which we would like to avoid. On the other hand, we
might want the latent variables to have a reproducible “appearance” from one learning
procedure to another, or we would like to inject a prior on that appearance.

For this reason, we propose to (in)directly constrain and regularize the hidden

variables in several ways.

Constraining the Observation Model

We could set some or all the parameters of the observation model to a fixed value. For
instance, when the latent variable represents a hidden phenomenon (e.g. a protein
transcription factor) and we want to know the influence of that phenomenon Z on
the observed time series Y, we could set the interaction between Z and one observed
variable yj to a certain value, and measure the interactions between Z and the other
observed variables y; relatively to yj (see Chapter 4).

Alternatively, when there are more hidden variables than observed variables (M >
N), we could even fix the observation model, and keep degrees of freedom of the sys-

tem only on the dynamics (see Chapter 3). Models that contain more hidden variables

95

than observed variables can indeed be useful for modeling nonlinear dynamics.
Finally, even if the observation model retains most degrees of freedom, it can be
constrained to have a fixed norm (e.g. a vector norm equal to 1). For instance if the
observation model A is a linear matrix operation, we have y;, = Wz, and because
the norm of the observed variables y; is fixed, the norm of z, is fixed as well. This

solution is typically used in sparse coding (Olshausen and Field, 1997).

Regularization of the Hidden Variables

The obvious way to bound the magnitude of latent variables is to add a regularization
penalty to the inference gradient descent (E-step). An Lo-norm regularization limits
their overall magnitude, while an L;-norm enforces their sparsity both in time and
across dimensions (Tibshirani, 1996).

In the case when the hidden variables are not latent but produced directly from a
look-up table, without inference, the regularization shall be applied during parameter
learning.

A third type of constraints on the latent variables is the smoothness penalty. This
penalty is somewhat contradictory with the dynamical model f, since it forces two
consecutive variables z; and z;,; to be similar. We can however view this penalty as an
attempt at inferring slowly varying hidden states and at reducing noisy oscillations in
the latent variables (which is particularly relevant when observations Y are sampled
at a high frequency)”. By consequence, the dynamics of the latent states become

smoother and perhaps simpler to learn:

R (z") = 1z — zeni|ls = Y (a(t) = z:(t + 1)) (2.33)

=1

"Note that we are not merely modeling Brownian motion dynamics, because this regularization
penalty on the hidden variables comes in addition to the other dynamics modeled by function f.

o6

2.4.3 Avoiding Local Minima When Learning the Model

The author wishes he could write an extensive section on the matter of local minima
avoidance. Unfortunately, Expectation Maximization (Dempster et al., 1977) and all
derived algorithms and approximations (Neal and Hinton, 1998; Baldi and Rosen-
Zvi, 2005; Chopra et al., 2007; Ranzato et al., 2007) are prone to local minima,
which means here that depending on the initial guess of latent variables’ values or

distributions, one can end up with suboptimal solutions for the model.

Solution 1: Stochastic Learning

There are luckily a few workarounds to this problem. One of them is the inclusion
of randomness into the learning procedure, by performing alternated E-steps and M-
steps on short subsequences of the total sequence, and by selecting those subsequences
in a random order, according to the stochastic learning principle (Bottou, 2004). This

technique is used in Chapters 3 and 6.

Solution 2: Initializing Low-Dimensional Z Optimally w.r.t. Observations

Another workaround, specialized to models with a linear observation factor and where
the latent variables have fewer dimensions than the observed variables, is to initialize
the latent variables with a standard dimensionality reduction technique, such as Sin-
gular Value Decomposition, followed by Independent Component Analysis, consisting
in rotating the latent variables’ space in order to make them as independent as possi-
ble. This way, we start the optimization process with a latent variable configuration
that is already very good w.r.t. the linear observation factor, and the learning is
dedicated mostly to incorporate the dynamical factor’s (and other potential factors’)

constraints into the latent representation. This technique was utilized in Chapters 4

57

and 5.

Solution 3: Bootstrapping

Finally, when the time series to be modeled is desperately short (such as mRNA level
micro-arrays for gene regulation experiments, in Chapter 4), one can repeat the full
learning procedure multiple times, and in a bootstrapping approach, draw statistics
from all the models and inferred latent sequences.

The following four chapters all consist in various embodiments of Dynamic Factor
Graphs. In particular, Chapters 3, 5 and 6 exhibit the advantage of using a sim-
ple, efficient MAP inference of hidden representations, that enables highly-nonlinear

factors.

o8

CHAPTER 3

APPLICATION TO TIME SERIES MODELING AND TO

DYNAMICAL SYSTEMS

Prediction is very difficult,

especially about the future

NI1ELS BOHR

This chapter presents the first application of Dynamic Factor Graphs (DFG) to
the modeling of linear or chaotic time series by learning a dynamical system on the
hidden continuously-valued representation. It has been published in (Mirowski and
LeCun, 2009) and presented at the ECML 2009 conference.

In summary, our DFG includes factors modeling joint probabilities between hid-
den and observed variables, and factors modeling dynamical constraints on hidden
variables. The DFG assigns a scalar energy to each configuration of hidden and ob-
served variables. A gradient-based inference procedure finds the minimum-energy
state sequence for a given observation sequence. Because the factors are designed to
ensure a constant partition function, they can be trained by minimizing the expected
energy over training sequences with respect to the factors’ parameters. These alter-

nated inference and parameter updates can thus be seen as a deterministic EM-like

29

procedure.

Using smoothing regularizers, DFGs are shown to reconstruct chaotic attractors
and to separate a mixture of independent oscillatory sources perfectly. DFGs outper-
form the best known algorithm on the CATS competition benchmark for time series
prediction. Finally, we illustrate an application of DFGs to the reconstruction of

missing motion capture data.

3.1 Introduction

3.1.1 Background

Time series collected from real-world phenomena are often an incomplete picture of
a complex underlying dynamical process with a high-dimensional state that cannot
be directly observed. For example, human motion capture data gives the positions
of a few markers that are the reflection of a large number of joint angles with com-
plex kinematic and dynamical constraints. The aim of this chapter is to deal with
situations in which the hidden state is continuous and high-dimensional, and the un-
derlying dynamical process is highly non-linear, but essentially deterministic. It also
deals with situations in which the observations have lower dimension than the state,
and the relationship between states and observations may be non-linear. The situ-
ation occurs in numerous problems in speech and audio processing, financial data,
and instrumentation data, for such tasks as prediction and source separation. It ap-
plies in particular to univariate chaotic time series which are often the projection of a
multidimensional attractor generated by a multivariate system of nonlinear equations.

The simplest approach to modeling time series relies on time-delay embedding:

the model learns to predict one sample from a number of past samples with a lim-

60

y(-2) y(@-1) y(@®) y(+1)

observation
model g

—(_—8——*=

: dynamic _
z(1-2) model z(t-1) z(1) z(t+1)

Figure 3.1: A simple Dynamical Factor Graph with a 1%* order Markovian property,
as used in HMMs and state-space models such as Kalman Filters.
ited temporal span. This method can use linear auto-regressive models, as well as
non-linear ones based on kernel methods (e.g. support-vector regression (Mattera
and Haykin, 1999; Muller et al., 1999)), neural networks (including convolutional
networks such as time delay neural networks (Lang and Hinton, 1988; Wan, 1993)),
and other non-linear regression models. By Takens’ theorem (Takens, 1981) the orig-
inal multivariate chaotic attractor can indeed be theoretically reconstructed by using
time-delay embedding of the observed sequence, but the forecasting problem (Cas-
dagli, 1989) nevertheless remains difficult. The weakness of the above time-delay
embedding approaches is that they have a hard time capturing hidden dynamics with
long-term dependency because the state information is only accessible indirectly (if
at all) through a (possibly very long) sequence of observations (Bengio et al., 1994).
One approach for time series prediction or modeling is to learn the temporal de-
pendency between consecutive samples of the observed time series. In this chapter, we
propose to address this problem by simultaneously inferring the unobserved variables
and learning their dynamics. For instance, instead of learning to predict chaotic time
series, we infer an underlying latent multivariate attractor, constrained by nonlinear
dynamics.

To capture long-term dynamical dependencies, the model must have an internal

61

y(&-2) y(@-1) y(@) y(r+l)

observation
model g

_ dynamic _
z(1-2) model f z(t-1) Z(?) z(t+1)

Figure 3.2: A Dynamic Factor Graph where dynamics depend on the past two values
of both latent state Z and observed variables Y.

state with dynamical constraints that predict the state at a given time from the
states and observations at previous times (e.g. a state-space model). In general, the
dependencies between state and observation variables can be expressed in the form of
a Factor Graph (Kschischang et al., 2001) for sequential data, in which a graph motif
is replicated at every time step. An example of such a representation of a state-space
model is shown in Figure 3.1. Groups of variables (circles) are connected to a factor
(square) if a dependency exists between them. The factor can be expressed in the
negative log domain: each factor computes an energy value that can be interpreted as
the negative log likelihood of the configuration of the variables it connects with. The
total energy of the system is the sum of the factors’ energies, so that the maximum
likelihood configuration of variables can be obtained by minimizing the total energy.

Figure 3.1 shows the structure used in Hidden Markov Models (HMM) and Kalman
Filters, including Extended Kalman Filters (EKF) which can model non-linear dy-
namics. HMMs can capture longer range dependencies, but they are limited to dis-
crete sequences. Discretizing the state space of a high-dimensional continuous dynam-
ical process to make it fit into the HMM framework is often impractical. Conversely,
EKFs deal with continuous state spaces with non-linear dynamics, but much of the

machinery for inference and for training the parameters is linked to the problem of

62

marginalizing over hidden state distributions and to propagating and estimating the
covariances of the state distributions. This has lead several authors to limit the dis-
cussion to dynamics and observation functions that are linear, radial-basis functions
networks (Wan and Nelson, 1996; Ghahramani and Roweis, 1999) or single-hidden
layer perceptrons (Ilin et al., 2004). More recently, Gaussian Processes with dynam-
ics on latent variables have been introduced (Wang et al., 2006b), but they suffer

from a quadratic dependence on the number of training samples.

3.1.2 Dynamical Factor Graphs

By contrast with current state-space methods, our primary interest is to model pro-
cesses whose underlying dynamics are essentially deterministic, but can be highly
complex and non-linear. Hence our model will allow the use of complex functions
to predict the state and observations, and will sacrifice the probabilistic nature of
the inference. Instead, our inference process (including during learning) will produce
the most likely (minimum energy) sequence of states given the observations. We call
this method Dynamic Factor Graph (DFG), a natural extension of Factor Graphs
specifically tuned for sequential data.

To model complex dynamics, the proposed model allows the state at a given
time to depend on the states and observations over several past time steps. The
corresponding DFG is depicted in Figure 3.2. The graph structure is somewhat similar
to that of Taylor and Hinton’s Conditional Restricted Boltzmann Machine (Taylor
et al., 2006). Ideally, training a CRBM would consist in minimizing the negative
log-likelihood of the data under the model. But computing the gradient of the log
partition function with respect to the parameters is intractable, hence Taylor and

Hinton propose to use a form of the contrastive divergence procedure, which relies on

63

Monte-Carlo sampling. To avoid costly sampling procedures, we design the factors
in such a way that the partition function is constant, hence the likelihood of the
data under the model can be maximized by simply minimizing the average energy
with respect to the parameters for the optimal state sequences. To achieve this, the
factors are designed so that the conditional distributions of state z(t) given previous
states and observation, and the conditional distribution of the observation y(t) given
the state z(t) are both Gaussians with a fixed diagonal covariance matrix. Other
types of distributions (e.g. Laplace) with constant partition function are possible, all
depending on how the energy (error) is measured (e.g. sum of L; norms for Laplace
distribution). As long as the noise term is independent of time ¢, we can use the
constant partition function assumption.

In a nutshell, the proposed training method is as follows. Given a training ob-
servation sequence, the optimal state sequence is found by minimizing the energy
using a gradient-based minimization method. Second, the parameters of the model
are updated using a gradient-based procedure so as to decrease the energy. These two
steps are repeated over all training sequences. The procedure can be seen as a sort
of deterministic generalized EM procedure in which the latent variable distribution is
reduced to its mode, and the model parameters are optimized with a stochastic gra-
dient method. The procedure assumes that the factors are differentiable with respect
to their input variables and their parameters. This simple procedure will allow us to
use sophisticated non-linear models for the dynamical and observation factors, such
as stacks of non-linear filter banks (temporal convolutional networks). It is important
to note that the inference procedure operates at the sequence level, and produces the
most likely state sequence that best explains the entire observation. In other words,
future observations may influence previous states.

In the DFG shown in Figure 3.1, the dynamical factors compute an energy term

64

of the form Ey(t) =|| z(t) — f(x(t),z(t — 1)) ||, which can seen as modeling the
state z(t) as f(x(t),z(t — 1)) plus some Gaussian noise variable with a fixed diagonal
covariance €(t) (inputs x(¢) are not used in experiments in this chapter). Similarly,
the observation factors compute the energy FE,(t) =| y(t) — g(z(t)) ||?, which can be
interpreted as y(t) = ¢ (z(t)) + w(t), where w(t) is a Gaussian random variable with
fixed diagonal covariance.

Our chapter is organized in three additional sections. First, we explain the
gradient-based approximate algorithm for parameter learning and deterministic latent
state inference in the DFG model (3.2). We then evaluate DFGs on toy, benchmark
and real-world datasets (3.3). Finally, we compare DFGs to previous methods for

deterministic nonlinear dynamical systems and to training algorithms for Recurrent

Neural Networks (3.4).

3.2 Methods

The following subsections detail the deterministic nonlinear (neural networks-based)
or linear architectures of the proposed Dynamic Factor Graph (3.2.1) and define the
EM-like, gradient-based inference (3.2.2) and learning (3.2.4) algorithms, as well as

how DFGs are used for time series prediction (3.2.3).

3.2.1 A Dynamic Factor Graph

Similarly to Hidden Markov Models, our proposed Dynamic Factor Graph contains
an observation and a dynamical factors/models (see Figure 3.1), with corresponding
observed outputs and latent variables.

The observation model g links latent variable z(t) (an m-dimensional vector) to

the observed variable Y (¢) (an n-dimensional vector) at time ¢ under Gaussian noise

65

y(t-1) y()

E,(t—1) E,(1)
Iyt =51 3] Iy =53]
: y(t—1) y(t)
g (ze-1; Wo)| g (z1; Wo)
|zt — 2 |3
ey || =0)
z(t —1 : — — : z(t
A (2 yish Wa)|
A * _________________ K4

Figure 3.3: Energy-based graph of a DFG with a 1! order Markovian architecture
and additional dynamical dependencies on past observations. Observations y(t) are
inferred as y(t) from latent variables z(¢) using the observation model parameterized
by W,. The (non)linear dynamical model parameterized by W, produces transitions

from a sequence of latent variables zi:; and observed output variables yi:; to z(t)

(here p = 1). The total energy of the configuration of parameters and latent variables
is the sum of the observation F,(.) and dynamic Ey4(.) errors.

model w(t) (because the quadratic observation error is minimized). g can be nonlinear,
but we considered in this chapter linear observation models, i.e. an n X m matrix
parameterized by a weight vector W,. This model can be simplified even further by
imposing each observed variable y;(t) of the multivariate time series Y to be the sum
of k latent variables, with m = k x n, and each latent variable contributing to only

one observed variable. In the general case, the generative output is defined as:

y(t) = ¥(t) + w(t), where y(t) = g (W, (1)) (3.1)

In its simplest form, the linear or nonlinear dynamical model f establishes a causal

t—1

i_p and latent variable z(t),

relationship between a sequence of p latent variables z
under Gaussian noise model €(¢) (because the quadratic dynamic error is minimized).

(3.2) thus defines p™* order Markovian dynamics (see Figure 3.1 where p = 1). The

66

dynamical model is parameterized by vector Wy.

z(t) = Z(t) + €(t), where z(t) = f (W, z{_,) (3.2)

Typically, one can use simple multivariate autoregressive linear functions to map
the state variables, or can also resort to nonlinear dynamics modeled by a Convolu-
tional Network (LeCun et al., 1998a) with convolutions (FIR filters) across time, as
in Time-Delay Neural Networks (Lang and Hinton, 1988; Wan, 1993).

Other dynamical models, different from the Hidden Markov Model, are also pos-

sible. For instance, latent variables z(¢) can depend on a sequence of p past latent

1

, and p past observations yﬁ:;, using the same error term €(t), as ex-

variables z!~

plained in (3.3) and illustrated on Figure 3.2.

z(t) = Z(t) + ¢(t), where Z(t) = f (Wa,2{_,. yi_,) (3.3)

Figure 3.3 displays the interaction between the observation (3.1) and dynamical
(3.3) models, the observed Y and latent Z variables, and the quadratic error terms.
As will be explained in the next sections, hidden variables Z are initialized ran-
domly, and several priors on their distribution (e.g. bounded representation, sparsity

or smoothness) are incorporated thanks to regularization.

3.2.2 Inference in Dynamic Factor Graphs

Let us define the following total (3.4), dynamical (3.5) and observation (3.6) ener-
gies (quadratic errors) on a given time interval [t,, ..., %], where respective weight

coefficients «a, 3 are positive constants (in this chapter, « = 5 = 0.5):

67

ty

E(We,Wo, Y1) =) [aEy(t) + BE,(t)] (3.4)

t=tq

Eq4(t) = mlnEd (Wa,zi—),2(t)) (3.5)

B,(t) = minE, (W,,a(t),Y (1)) (3.6)

Inferring the sequence of latent variables {z(¢)}, in (3.4) and (3.5) is equivalent to
simultaneous minimization of the sum of dynamical and observation energies at all

times ¢:

Eq(Wa, 2,2y, 2(t)) = | 2(t) —2(1) |I2 (3.7)

Eo(Wo,z(t),y(1)) = [I5(t) —y(t) |3 (3.8)

Observation and dynamical errors are expressed separately, either as Normalized

Mean Square Errors (NMSE) or Signal-to-Noise Ratio (SNR).

3.2.3 Prediction in Dynamic Factor Graphs

Assuming fixed parameters W of the DFG, two modalities are possible for the pre-

diction of unknown observed variables Y.

e Closed-loop (iterated) prediction: when the continuation of the time series is
unknown, the only relevant information comes from the past. One uses the
dynamical model to predict Z(t) from y;~, and inferred z;_), set z(t) = Z(t),

use the observation model to compute prediction y(¢) from z(¢), and iterate as

long as necessary. If the dynamics depend on past observations, one also needs

68

to rely on predictions y(¢) in (3.3).

e Prediction as inference: this is the case when only some elements of Y are
unknown (e.g. estimation of missing motion-capture data). First, one infers
latent variables through gradient descent, and simply does not backpropagate
errors from unknown observations. Then, missing values g;(t) are predicted
from corresponding latent variables z(t). In this way, we can incorporate a

dependency on future values of the observed time series.

3.2.4 Training of Dynamic Factor Graphs

Learning in an DFG consists in adjusting the parameters W = [Wg, W(ﬂ in order

to minimize the loss £(W,Y,Z):

LW,Y,Z) = E(W,Y)+R.(Z)+ R(W) (3.9)
7 = arg mzin L(W,Y,Z) (3.10)
W = arg H‘lg]n LW,Y, Z) (3.11)

where R(W) is a regularization term on the weights W, and W,,, and R,(Z) rep-
resents additional constraints on the latent variables further detailed. Minimization
of this loss is done iteratively in an Expectation-Maximization-like fashion in which
the states Z play the role of auxiliary variables, as explained in Chapter 2. During
inference, values of the model parameters are clamped and the hidden variables are
relaxed to minimize the energy. The inference described in part (3.2.2) and equation
(3.10) can be considered as the E-step (state update) of a gradient-based version of

the EM algorithm. During learning, model parameters W are optimized to give lower

69

energy to the current configuration of hidden and observed variables. The parameter-
adjusting M-step (weight update) described by (3.11) is also gradient-based.

In its current implementation, the E-step inference is done by gradient descent
on Z, with learning rate 7, typically equal to 0.5. The convergence criterion is when
energy (3.4) stops decreasing. The M-step parameter learning is implemented as
a stochastic gradient descent (diagonal Levenberg-Marquard) (LeCun et al., 1998b)
with individual learning rates per weight (re-evaluated every 10000 weight updates)
and global learning rate n,, typically equal to 0.01. These parameters were found by
trial and error (cross-validation) on a grid of possible values.

The state inference is not done on the full sequence at once, but on mini-batches
(typically 20 to 100 samples), and the weights get updated once after each mini-batch
inference, similarly to the Generalized EM algorithm. During one epoch of training,
the batches are selected randomly and overlap in such a way that each state variable
Z(t) is re-inferred at least a dozen times in different mini-batches. This learning
approximation echoes the one in regular stochastic gradient with no latent variables
and enables to speed up the learning of the weight parameters.

The learning algorithm turns out to be particularly simple and flexible. The hid-
den state inference is however under-constrained, because of the higher dimensionality
of the latent states and despite the dynamical model. For this reason, this chapter
proposes to (in)directly regularize the hidden states in several ways. First, one can
add to the loss function an L, regularization term R(W) on the weight parameters.
This way, the dynamical model becomes “sparse” in terms of its inputs, e.g. the latent
states. Regarding the term R.(Z), an L, norm on the hidden states z(t) limits their
overall magnitude, and an L; norm enforces their sparsity both in time and across

dimensions. Regularization coefficients A, and \, typically range from 0 to 0.1.

70

Algorithm 1 Pseudo-Code of the EM-Like Learning and Inference in DFGs
while epoch < nepocns do
for randomly selected I C [1,7] do
repeat
fort el do
Forward-propagate zi:; through f to get z,
Forward-propagate z; through g to get y,
Back-propagate errors from || z; — z; ||3, add to Az
Back-propagate errors from || y; — y; ||3, add to Az
end for
Update latent states z;c; using gradients Az;c;
until convergence, when energy F(I) stops decreasing
fort € I do
Back-propagate errors from || z; — Z; ||, add to AW
Back-propagate errors from || y; — ¥, ||3, add to AW
end for
Update parameters W using gradients AW
end for
end while

3.2.5 Smoothness Penalty on Latent Variables

The second type of constraints on the latent variables is the smoothness penalty. In
an apparent contradiction with the dynamical model (3.2), this penalty forces two
consecutive variables z;(¢) and z;(t + 1) to be similar. One can view it as an attempt
at inferring slowly varying hidden states and at reducing noise in the states (which
is particularly relevant when observation Y is sampled at a high frequency). By
consequence, the dynamics of the latent states are smoother and simpler to learn.
Constraint (3.12) is easy to derivate w.r.t. a state z;(¢) and to integrate into the

gradient descent optimization (3.10):

R. (zi™) = (zi(t) — zi(t + 1)) (3.12)

i

In addition to the smoothness penalty, we have investigated the decorrelation of

71

multivariate latent variables z(t) = (21(t), z2(t), ..., zm(t)). The justification was to
impose to each component z; to be independent, so that it followed its own dynamics,
but we have not obtained satisfactory results yet. As reported in the next section,
the interaction of the dynamical model, weight sparsification and smoothness penalty

already enables the separation of latent variables.

3.3 Experimental Evaluation

First, working on toy problems, we investigate the latent variables that are inferred
from an observed time series. We show that using smoothing regularizers, DFGs
are able to perfectly separate a mixture of independent oscillatory sources (3.3.1), as
well as to reconstruct the Lorenz chaotic attractor in the inferred state space (3.3.2).
Secondly, we apply DFGs to two time series prediction and modeling problems. Sub-
section (3.3.3) details how DFGs outperform the best known algorithm on the CATS
competition benchmark for time series prediction. In (3.3.4) we reconstruct realistic

missing human motion capture marker data in a walk sequence.

3.3.1 Asynchronous Superimposed Sine Waves

The goal is to model a time series constituted by a sum of 5 asynchronous sinusoids:
y(t) = Z?zl sin(\;t) (see Fig. 3.4a). Each component z,(¢) can be considered as
a “source”’, and y(t) is a mixture. This problem has previously been tackled by em-
ploying Long-Short Term Memory (LSTM) (Hochreiter and Schmidhuber, 1995), a
special architecture of Recurrent Neural Networks that needs to be trained by genetic
optimization (Wierstra et al., 2005).

After EM training and inference of hidden variables z(¢) of dimension m = 5,

frequency analysis of the inferred states on the training (Fig. 3.4b) and testing (Fig.

72

g % g ; 24
2 2 | 3 > :
g 203 | [
= . - i B
=0 & i “\‘ 3 & i Z3
— —
[0} Il -z o Z
-2 2 I 4 2 : ! 4
g (-z o [' 1 |—Z
|\ 5 n— ‘ ; ; 5

00 1200 1400 0O 05 1.0 05
Time t (sec) Frequency (rad/s) Frequency (rad/s)

(a) (b) (c)

Figure 3.4: (a) Superposition of five asynchronous sinusoids: y(t) = 25:1 sin(\;t)
where \; = 0.2, Ay = 0.311, A3 = 0.42, A, = 0.51 and A5 = 0.74. Spectrum analysis
shows that after learning and inference, each reconstructed state z; isolates only one
of the original sources z;, both on the training (b) and testing (c) datasets.

3.4c) datasets showed that each latent state z;(t) reconstructed one individual sinu-
soid. In other words, the 5 original sources from the observation mixture y(t) were
inferred on the 5 latent states. The observation SNR of 64dB, and the dynamical SNR
of 54dB, on both the training and testing datasets, proved both that the dynamics of
the original time series y(t) were almost perfectly reconstructed. DFGs outperformed
LSTMs on that task since the multi-step iterated (closed-loop) prediction of DFG did
not decrease in SNR even after thousands of iterations, contrary to (Wierstra et al.,
2005) where a reduction in SNR was already observed after around 700 iterations.
As architecture for the dynamical model, 5 independent Finite Impulse Response
(FIR) filters of order 25 were chosen to model the state transitions: each of them acts
as a band-pass filter and models an oscillator at a given frequency. One can hypothe-
size that the smoothness penalty (3.12), weighted by a small coefficient of 0.01 in the
state regularization term R,(Z) helped shape the hidden states into perfect sinusoids.
Note that the states or sources were made independent by employing five independent
dynamical models for each state. This specific usage of DFG can be likened to Blind

Source Separation from an unique source, and the use of independent filters for the

73

Figure 3.5: Lorenz chaotic attractor (left) and the reconstructed chaotic attractor
from the latent variables z(t) = {z1(t), 22(t), 23(¢)} after inference on the testing
dataset (right).

latent states (or sources) echoes the approach of BSS using linear predictability and
adaptive band-pass filters.

Obviously, the above problem could have been solved trivially using spectral anal-
ysis, and the point of this small exercise was simply to illustrate the inference of
a simple hidden representation underlying a more complex time series. The follow-
ing examples actually make use of nonlinear dynamics that cannot be recovered by

spectral analysis.

3.3.2 Lorenz Chaotic Data

As a second application, we considered the 3-variable (xi, x5, x3) Lorenz dynamical
system (Lorenz, 1963) generated by parameters p = 16,b = 4,r = 45.92 as in (Mattera
and Haykin, 1999) (see Fig. 3.5a). Observations consisted in one-dimensional time
series y(t) = Z?Zl z;(t).

The DFG was trained on 50s (2000 samples) and evaluated on the following 40s

74

Table 3.1: Comparison of 1-step prediction error using Support Vector Regression,
with the errors of the dynamical and observation models of DFGs, measured on the
Lorenz test dataset and expressed as signal-to-noise ratios.

ARCHITECTURE SVR DFG
DyNaMICc SNR 41.6 dB 46.2 dB
OBSERVATION SNR - 31.6 dB

(1600 samples) of Y. Latent variables Z(t) = (21(t), 22(t), 23(t)) had dimension m =
3, as it was greater than the attractor correlation dimension of 2.06 and equal to the
number of explicit variables (sources). The dynamical model was implemented as
a 3-layered convolutional network. The first layer contained 12 convolutional filters
covering 3 time steps and one latent component, replicated on all latent components
and every 2 time samples. The second layer contained 12 filters covering 3 time steps
and all previous hidden units, and the last layer was fully connected to the previous
12 hidden units and 3 time steps. The dynamical model was autoregressive on p = 11
past values of Z, with a total of 571 unique parameters. “Smooth” consecutive states
were enforced (3.12), thanks to the state regularization term R,(Z) weighted by a
small coefficient of 0.01. After training the parameters of DFG, latent variables Z
were inferred on the full length of the training and testing dataset, and plotted in 3D
values of triplets (z1(t), 22(%), 25(t)) (see Fig. 3.5b).

The 1-step dynamical SNR obtained with a training set of 2000 samples was higher
than the 1-step prediction SNR reported for Support Vector Regression (SVR) (Mat-
tera and Haykin, 1999) (see Table 3.1). According to the Takens theorem (Takens,
1981), it is possible to reconstruct an unknown (hidden) chaotic attractor from an
adequately long window of observed variables, using time-delay embedding on y(?),
but we managed to reconstruct this attractor on the latent states (z;(t), z2(), z3(t))

inferred both from the training or testing datasets (Fig. 3.5). Although one of the

5

Table 3.2: Prediction results on the CATS competition dataset comparing the best
algorithm (Kalman Smoothers (Sarkka et al., 2004)) and Dynamic Factor Graphs.
E; and E5 are unnormalized MSE, measured respectively on all five missing segments
or on the first four missing segments.

ARCHITECTURE KALMAN SMOOTHER DFG
E1 (5 SEGMENTS) 4.08 3.90
E2 (4 SEGMENTS) 3.46 2.88

“wings” of the reconstructed butterfly-shaped attractor is slightly twisted, one can
clearly distinguish two basins of attraction and a chaotic orbit switching between one
and the other. The reconstructed latent attractor has correlation dimensions 1.89

(training dataset) and 1.88 (test dataset).

3.3.3 CATS Time Series Competition

Dynamic Factor Graphs were evaluated on time series prediction problems using the
CATS benchmark dataset (Lendasse et al., 2004). The goal of the competition was
the prediction of 100 missing values divided into five groups of 20, the last group being
at the end of the provided time series. The dataset presented a noisy and chaotic
behaviour commonly observed in financial time series such as stock market prices.
In order to predict the missing values, the DFG was trained for 10 epochs on the
known data (5 chunks of 980 points each). 5-dimensional latent states on the full 5000
point test time series were then inferred in one E-step, as described in section 3.2.3.
The dynamical factor was the same as in section 3.3.2. As shown in Table 3.2, the
DFG outperformed the best results obtained at the time of the competition, using a
Kalman Smoother (Sarkka et al., 2004), and managed to approximate the behavior

of the time series in the missing segments.

76

Table 3.3: Reconstruction error (NMSE) for 4 sets of missing joint angles from motion
capture data (two blocks of 65 consecutive frames, about 2s, on either the left leg
or entire upper body). DFGs are compared to standard nearest neighbors matching,.
Because of different normalizations, we cannot directly compare our performance to
the one achieved by CRBMs in (Taylor et al., 2006), but in both cases, we observe a
comparable reduction in error of the order of 20%.

METHOD NEAREST NEIGHB. DFG
MISSING LEG 1 0.77 0.59
MISSING LEG 2 0.47 0.39
MISSING UPPER BODY 1 1.24 0.9
MISSING UPPER BODY 2 0.8 0.48

3.3.4 Estimation of Missing Motion Capture Data

Finally, DFGs were applied to the problem of estimating missing motion capture data.
Such situations can arise when “the motion capture process |is| adversely affected by
lighting and environmental effects, as well as noise during recording” (Taylor et al.,
2006). The estimation of missing markers is a difficult problem that was traditionally
handled using simple algorithmic solutions, such as nearest neighbors, piece-wise lin-
ear modeling (Liu and McMillan, 2006), or Kalman Filtering (Aristidou et al., 2008).
Motion capture data! Y consisted of three 49-dimensional time series representing
joint angles derived from 17 markers and coccyx, acquired on a subject walking and
turning, and downsampled to 30Hz. Two sequences of 438 and 3128 samples were
used for training, and one sequence of 260 samples for testing.

We reproduced the experiments from (Taylor et al., 2006), where Conditional
Restricted Boltzman Machines (CRBM) were utilized. On the test sequence, two

different sets of joint angles were erased, either the left leg (1) or the entire upper

'We used motion capture data from the MIT database as well as sample Matlab code for motion
playback and conversion, developed or adapted by Taylor, Hinton and Roweis, available at: http:
//www.cs.toronto.edu/ gwtaylor/.

7

body (2). After training the DFG on the training sequences, missing joint angles
y;(t) were inferred through the E-step inference. The DFG was the same as in sec-
tions 3.3.2 and 3.3.3, but with 147 hidden variables (3 per observed variable) and no
smoothing. Table 3.3 shows that DFGs significantly outperformed nearest neighbor
interpolation (detailed in (Taylor et al., 2006)), by taking advantage of the motion dy-
namics modeled through dynamics on latent variables. Contrary to nearest neighbors
matching, DFGs managed to infer smooth and realistic leg or upper body motion.
Videos comparing the original walking motion sequence, and the DFG- and nearest
neighbor-based reconstructions are available at

http://cs.nyu.edu/ mirowski/pub/mocap/. Figure 3.6 illustrates the DFG-based
reconstruction (we did not include nearest neighbor interpolation resuts because the

reconstructed motion was significantly more “hashed” and discontinuous).

3.4 Discussion

In this section, we establish a comparison with other nonlinear dynamical systems
with latent variables (3.4.1) and suggest that DFGs could be seen as an alternative

method for training Recurrent Neural Networks (3.4.2).

3.4.1 Comparison with Nonlinear Dynamical Systems

An earlier model of nonlinear dynamical system with hidden states is the Hidden
Control Neural Network (Levin, 1993), where latent variables z(t) are added as an
additional input to the dynamical model on the observations. Although the dynam-
ical model is stationary, the latent variable z(¢) modulates its dynamics, enabling a
behavior more complex than in pure autoregressive systems. The training algorithm

iteratively optimizes the weights W of the Time-Delay Neural Network (TDNN) and

78

latent variables Z, inferred as

Z = argming y_, || y(t) — fw (v(t —1),2(1)) |I*.

The latter algorithm is likened to approximate maximum likelihood estimation,
and iteratively finds a sequence of dynamic-modulating latent variables and learns
dynamics on observed variables. DFGs are more general, as they allow the latent
variables z(t) not only to modulate the dynamics of observed variables, but also
to generate the observations y(t), as in DBNs. Moreover, (Levin, 1993) does not
introduce dynamics between the latent variables themselves, whereas DFGs model
complex nonlinear dynamics where hidden states z(t) depend on past states yi:;
and observations zi:;. Because our method benefits from highly complex non-linear
dynamical factors, implemented as multi-stage temporal convolutional networks, it
differs from other latent states and parameters estimation techniques, which generally
rely on radial-basis functions (Wan and Nelson, 1996; Ghahramani and Roweis, 1999).

The DFG introduced in this chapter also differs from another, more recent, model
of DBN with deterministic nonlinear dynamics and explicit inference of latent vari-
ables. In (Barber, 2003), the hidden state inference is done by message passing in
the forward direction only, whereas our method suggests hidden state inference as an
iterative relaxation, i.e. a forward-backward message passing until “equilibrium”.

In a limit case, DFGs could be restricted to a deterministic latent variable gener-
ation process like in (Barber, 2003). One can indeed interpret the dynamical factor
as hard constraints, rather than as an energy function. This can be done by setting

the dynamical weight a to be much larger than the observation weight 5 in (3.4).

79

3.4.2 A New Algorithm for Recurrent Neural Networks

An alternative way to model long-term dependencies is to use recurrent neural net-
works (RNN). The main difference with the proposed DFG model is that RNN use
fully deterministic noiseless mappings for the state dynamics and the observations.
Hence, there is no other inference procedure than running the network forward in
time. Unlike with DFG, the state at time t is fully determined by the previous
observations and states, and does not depend on future observations.

Exact gradient descent learning algorithms for Recurrent Neural Networks (RNN),
such as Backpropagation Through Time (BPTT) or Real-Time Recurrent Learning
(RTRL) (Williams and Zipser, 1995), have limitations. The well-known problem
of vanishing gradients is responsible for RNN to forget, during training, outputs or
activations that are more than a dozen time steps back in time (Bengio et al., 1994).
This is not an issue for DFG because the inference algorithm effectively computes
“virtual targets” for the function f at every time step.

The faster of the two algorithms, BPTT, requires O (T'|W]) weight updates per
training epoch, where |W]| is the number of parameters and T the length of the
training sequence. The proposed EM-like procedure, which is dominated by the
E-step, requires O (aT |[W]) operations per training epoch, where a is the average
number of E-step gradient descent steps before convergence (a few to a few dozens if
the state learning rate is set properly).

Moreover, because the E-step optimization of hidden variables is done on mini-
batches, longer sequences T' simply provide with more training examples and thus

facilitate learning; the increase in computational complexity is linear with 7.

80

3.4.3 Ideas of Further Experiments

A number of further experiments could have been conducted in this doctoral work.
For instance, one could try to model a time series Y where only a subset of the
dimensions (a subset of the measurements) is relevant, the rest being noise (or highly
corrupted by nonlinear noise); it would then be interesting to know whether a properly
regularized (with L; sparsity constraints) DFG algorithm could learn to ignore the
noisy entries of Y.

One could also try to use the DFG model to classify sequences based on their
energy (as a proxy for likelihood); a further extension could even consist in learning
DFGs discriminatively.

A third problem to explore would be the combination of both nonlinear dynamics
and changes of dynamics: [suspect that a hierarchical model, with small range
dynamical dependencies (for modeling nonlinear dynamics) and long-range dynamical
dependencies (for modeling “switching” dynamics) would be more appropriate. A
glimpse of the solution is provided in Chapter 6, where a Latent Dirichlet Allocation-
based topic model encodes long-range changes of dynamics (but it is appropriate for

discrete observations Y).

3.5 Conclusions

This chapter introduces a new method for learning deterministic nonlinear dynamical
systems with highly complex dynamics. Our approximate training method is gradient-
based and can be likened to Generalized Expectation-Maximization.

We have shown that with proper smoothness constraints on the inferred latent

variables, Dynamical Factor Graphs manage to perfectly reconstruct multiple oscil-

81

latory sources or a multivariate chaotic attractor from an observed one-dimensional
time series. DFGs also outperform Kalman Smoothers and other neural network tech-
niques on a chaotic time series prediction tasks, the CATS competition benchmark.
Finally, DFGs can be used for the estimation of missing motion capture data. Proper
regularization such as smoothness or a sparsity penalty on the parameters enable to
avoid trivial solutions for high-dimensional latent variables.

This initial work on DFG was subsequently applied to the inference of genetic reg-

ulatory networks from mRNA expression levels, which is the object of next chapter.

82

. 5 y
+ =) N 3000 8 .
0 w0 100 S0 2000 2500 LI A N

i T

3 \ T \
-2000 -1500 -1000 -500 O 500 1000 1500

i

(a) (d)

| — reconstructed left leg

1 v T ¥ 1Y]
-2000 -1500 -1000 -500 O 500 1000 1500

X

(b) (e)

Y

—— reconstructed left arm
—— reconstructed right arm
— reconstructed torso

— reconstructed left arm
reconstructed right arm
i8] \ | — reconstructed torso ‘ i

IS L S T S

- v \ \
jo00 150 2000 2500 3000 -2000 -1500 -1000 -500 O 500 1000 1500

y x

(c) ()

Figure 3.6: Application of a DFG for the reconstruction of missing joint angles from
motion capture marker data (1 test sequence of 260 frames at 30Hz). 4 sets of joint
angles were alternatively “missing” (erased from the test data): 2 sequences of 65
frames, of either left leg or the entire upper body. (a) Subsequence of 65 frames
at the beginning of the test data. (b) Reconstruction result after erasing the left
leg markers from (a). (c¢) Reconstruction results after erasing the entire upper body
markers from (a). (d) Subsequence of 65 frames towards the end of the test data. (e)
Reconstruction result after erasing the left leg markers from (d). (f) Reconstruction
results after erasing the entire upper body markers from (d).

83

CHAPTER 4

APPLICATION TO THE INFERENCE OF GENE

REGULATION NETWORKS

Time flies like an arrow;

fruit flies like a banana.

GROUCHO MARX

We present in the chapter how Dynamic Factor Graphs can be used in molecular
biology, as a new and flexible algorithm for learning state-space models represent-
ing gene regulation networks. In one embodiment, our factor graph model contains
observation (transcriptional) and dynamic factors, connected to two types of vari-
ables: observed mRNA expression levels, and hidden transcription factor sequences
(e.g. protein concentrations). In a second embodiment, the latent variables simply
correspond to a de-noised version of the observed mRNA expression levels, and we
try to model dynamics on idealized hidden variables instead of noisy mRNA.

Our formalisms covers most state-space models in the biological literature, while
giving them a common learning and inference procedure that is simpler and faster than
MCMC, Variational Bayes approaches for Dynamic Bayesian Networks and Gaussian

Processes. Learning our factor graphs is still done by maximizing their joint likeli-

84

hood, but we use an approximate gradient-based MAP inference to obtain the most
likely configuration of the hidden sequence.

Our biological state-space model has been applied to two different studies, one
about reverse-engineering a gene regulation network by understanding gene-gene in-
teractions, and another about inferring levels of protein transcription factors, which
are typically difficult to measure, using only mRNA data.

The first set of experiments, submitted for publication to Genome Biology (Krouk
et al., Provisionally accepted for publication), focuses on NO3_, a nitrogen source and
a signaling molecule that controls many aspects of plant development. We try to learn
a gene network involved in plant adaptation to fluctuating nitrate environments, and
specifically to build core regulatory networks involved in Arabidopsis root adaptation
to NO3_ provision. Our experimental approach is to monitor genome response to
NOs_ at 7 time points, using micro-array chips. A state-space model inferred from
the micro-array data successfully predicted gene behavior in unlearnt conditions, and
suggested to investigate a specific gene, that was then shown to be involved in the
NO3_ response.

In a second set of experiments, we demonstrate our algorithm on several datasets:
the p53 protein dataset (related to human cancer), the Mef2 protein from the Drosophila
and the TGF-f protein (human cancer). We show that our algorithm is able the infer

the time course of a single or multiple transcription factor proteins.

85

4.1 Machine Learning Approaches to Modeling GRNs

4.1.1 Gene Regulatory Networks

An excellent biological definition for our problem is provided by (Segal et al., 2003).
“The complex functions of a living cell are carried out through the concerted activity of
many genes |...|. This activity is often coordinated by the organization of the genome
into regulatory modules, or sets of co-requlated genes |...]”. Genes encode proteins,
and the proteins themselves serve as transcription factors to other genes. One of the
goals of modern molecular biology is to identify the interactions between genes (via
proteins) in order to understand, now that the genome has been sequenced, the actual
functioning of the living organisms.

In that context, one can grossly simplify the highly complex biology by a Ge-
netic Regulatory Network (GRN), which can be formalized by a graph connecting
gene, mRNA or protein nodes, and where the links among nodes stand for regulatory

interactions (Alvarez-Buylla et al., 2007).

4.1.2 mRNA Micro-arrays

The tool of choice are so-called gene chips, or DNA micro-arrays. Micro-arrays cor-
respond to small, organism-specific, collections of tiny probes that can bind mRNA!.
Each probe corresponds to a specific gene. After the hybridization process, the
micro-arrays are scanned to measure the concentration of bound mRNA at each
probe (Krouk, personal communication). By conducting specific experiments (e.g.
response to stress conditions, cell development and differentiation), one can initiate a

regulatory circuit (Spellman et al., 1998). Then, by destructively sampling microarray

!Standard micro-arrays are the Affymetriz chips.

86

data every few minutes of the experiment, one can obtain a short, high-dimensional
time series of expression levels for thousands of genes. Using the assumption that
the temporal behavior of the multivariate time series represents causal dependencies
between the time series, we can search for protein-encoding transcripts in the genome.

The mRNA time series are typically extremely short (a few measures, sampled
every few minutes to hours). This short duration is a major limitation, given the
number of genes. Moreover, each micro-array experiment is destructive, and therefore
the cells which are sampled at consecutive time points are not the same (Krouk,
personal communication). Each sampling experiment is however repeated a few times,
and one gene expression level has several replicates differing slightly in their value.
Often, the reported gene expression level is the average of these replicates, but one
can consider the replicates separately. Using replicates, one can artificially multiply
the number of microarray time series to obtain more sequences, hence more time

points (Shasha, personal communication).

4.1.3 Reverse-engineering of Gene Regulation Networks

Time series of gene expression levels can provide us with a detailed picture of the
behavior of a Genetic Regulation Network (GRN) over time, and help understand
the biological functions of an organism.

Unfortunately, the micro-array measurements of mRNA expression levels contain
highly noisy, scarce, and incomplete information. Typically, the concentration levels
of proteins, which serve as transcription factors to genes, are absent because they
are difficult to measure. Moreover, their specific influence on genes is unknown and
requires reverse engineering (Jaeger and Monk, 2010). In their review article, Jaeger

and Monk pointed out that this reverse-engineering task in the presence of few time-

87

point measurements, many genes, measurement errors and random fluctuations in the
environment is inherently difficult (Jaeger and Monk, 2010), the main limitation com-
ing from the paucity of data relative to the number of possible connections between
the genes (and the proteins).

An additional challenge of systems biology is to be able to model systems pre-
cisely enough that the model can predict untested conditions, which is equivalent to

constructing a robust dynamical system.

Dynamical Predictive Modeling of Regulatory Gene Networks

Among the several approaches to this modeling problem, dynamical models have
gained prominence as they simultaneously encode the topology of the gene interaction
graph, and its functional evolution model. Such a model can in turn also be used for
predictive modeling of gene expression at further time steps or upon perturbation.
These dynamical models essentially consist of a mathematical function that gov-
erns the transitions of the state of a GRN over time. Interactions between genes and
transcription factors (e.g. proteins) can be simplified as a dynamical model involving
their concentration levels. Typically, dynamical models of mRNA levels consist of
ordinary differential equations (ODEs) (Jaeger and Monk, 2010). For a given gene 1,
ODEs can, for instance, define the rate of change of mRNA level y;(¢) as a function
of the weighted influences of M transcription factors z;(t), with an optional mRNA’s
degradation term (coefficient d;) and a basal rate term (coefficient b), as in Equa-
tion (4.1). The coefficient of the degradation term can be replaced with a kinetic

constant 7; on the derivative on y;(¢), as in Equation (4.2).

88

yi(t)

ot = gi(z(t)) — diyi(t) + b (4.1)
P (alt) —) b (42)

In the equations above, the transcription factors z; can be the unknown protein
levels, or in a very simplistic setting, other mRNA levels (in which case z;, = y;).
In one set of experiments (on p53, Mef2 and TGF-£ proteins), we used z; to model
unknown protein levels, while in another set of experiments on the Arabidopsis, we
directly used the observed mRNA levels. In the case of protein transcription factors,
the relationship between a protein z;(t) and its encoding gene y;(t) is generally mod-
eled as a first-order ODE involving z;(t) and y;(¢): hence, assuming z, = y; is not
terribly wrong.

In our studies, we considered dynamics with the mRNA degradation term (the
so-called kinetic model (Bonneau et al., 2006, 2007)) and without it (the so-called
Brownian motion (Wang et al., 2006b) model). Assuming degradation (kinetic ODE)
worked better in our experiments with the Arabidopsis.

Since micro-array data are discretely sampled over time, Equation (4.1) or (4.2) is
linearized; hence it explains how gene expressions at time ¢ influence gene expressions
at time ¢ 4 1.

The data paucity limitation defined two major groups of methods for compu-
tational inference of gene regulation networks: a) either a nonlinear or state-space
based modeling of the complex interactions between a restricted number of genes with
hidden protein transcription factors, or b) simpler, but linear, models of TF-gene in-
teractions (Bonneau et al., 2006, 2007; Wang et al., 2006b; Shimamura et al., 2009),

relying on larger (hundreds to thousands) number of mRNA micro-array measure-

89

ments?.

Hidden Variable Approaches: State-Space Models

State-space models (SSM) are a general category of machine learning algorithms
that model the dynamics of a sequence of data by encoding the joint likelihood of
observed Y and hidden Z variables. State-space models assume an observed sequence
y(t) (in our case, gene expression data) to be generated from an underlying unknown
sequence z(t) also called “hidden states”. Consecutive hidden states form a Markov
chain z(1),...,z(T —1),z(T).

A popular probabilistic example of state-space models that have been applied to
gene expression data are Dynamical Bayesian Networks (Murphy and Mian, 1999)
such as Linear Dynamical Systems (Beal et al., 2005; Hirose et al., 2008; Rangel
et al., 2004; Yamaguchi et al., 2007, 2010; Angus et al., 2010). Examples of such
LDS , are (Beal et al., 2005) and (Angus et al., 2010) who infered the profiles of 14
hidden transcription factors for 10 observed genes. Their modeling was however done
either without predictive validation (Beal et al., 2005), or on synthetically generated
data (Angus et al., 2010). Other researchers (Hirose et al., 2008; Yamaguchi et al.,
2007, 2010) used a trainable Kalman smoother-like approach to learn 4 to 5 hidden
variables (so-called modules) explaining the behavior of hundreds of genes, but neither
validated their model on out-of-sample data points, nor drew conclusions on gene-gene
interactions.

LDS also suffer from their linearity, and may be insufficient to model the nonlin-

2In the above enumeration, we actually omitted one group of methods that consist in highly
nonlinear Boolean Networks with binary ON/OFF values for gene expression levels, and linear,
nonlinear or stochastic dynamics (Lahdesmaki et al., 2003; Alvarez-Buylla et al., 2007). In such
boolean networks, one typically starts from a hypothesis on the GRN, and then simulates the
dynamics of a boolean network, looking for attractors. The objective does not consist in fitting
mRNA expression levels.

90

ear regulation of genes by proteins; whereas the derivation of the variational Bayes

solution to nonlinear dynamical systems might be difficult.

Hidden Variable Approaches: Gaussian Processes

The other main approaches devised to solve the ODEs involved in gene regulation
networks consists in Gaussian Processes (GPs) (Lawrence and Sanguinetti, 2007; Gao
et al., 2008; Alvarez et al., 2009), which model the latent protein concentration as a
latent function z;(t) that follows a Gaussian prior with a specified covariance.

That model was further improved in (Zhang et al., 2010), using Gaussian Process
Latent Variable models (Wang et al., 2006a) to infer the profile of a single transcrip-
tion factor (the tumor suppressor p53) and explained the activity of a large collection
of genes using that TF only. GPs however require to analytically derive the covariance

function and can be computationally expensive.

Large-Scale Linear Models Without Hidden Variables

Because the SSM or GP models described in the previous sections can prove com-
putationally expensive and define too many degrees of freedom w.r.t. available data,
the simplification “mRNA = transcription factor” is often used, and a simple linear
model is employed.

Examples of first-order linear dynamical models on gene expressions include the
Inferelator by (Bonneau et al., 2006, 2007). The Inferelator consists of a kinetic
ODE, that follows the Wahde and Hertz equation (Wahde and Hertz, 2001) and
where transcription factors contribute linearly. This ODE also includes an mRNA
degradation term. Some instances of the Inferelator introduce nonlinear AND, OR
and XOR relationships between pairs of genes, based on a previous bi-clustering of

genes. One has to note that the Inferelator has been mostly applied to datasets with

91

hundreds of data-points (e.g. the Halobacterium).

Other examples include the first-order vector autoregressive models VAR(1) (Shi-
mamura et al., 2009), or the Brownian motion (which is a VAR(1) model on the
change of the mRNA concentration (Wang et al., 2006b)). Lozano et al. suggested
using a dynamic dependency on the past 2, 3, or 4 time-steps (Lozano et al., 2009),
but this was impractical in our case given the relatively small number of micro-array

measurements in our experiments.

4.1.4 Biological Datasets Used in Our Experiments

Arabidopsis Thaliana’s Response to NO;_

This research, from the hypothesis and experimental protocol through the experi-
mental manipulation and data analysis, was devised and conducted by Dr. Gabriel
Krouk, at the time post-doctoral researchers in Prof. Gloria Coruzzi’s® Plant Sys-
tems Biology lab* at the NYU Center for Genomics and Systems Biology at New
York University. Additional feedback about GRN inference was provided from the
author and from Prof. Dennis Shasha.

Higher plants constitute a main entry of nitrogen in food chains, and acquire nitro-
gen mainly as NO3_. Soil concentration of this mineral ion can fluctuate dramatically
in the rhizosphere, often resulting in limited growth and yield. Thus, understanding
plant adaptation to fluctuating nitrogen levels is a challenging task with potential
consequences for health, the environment, and economy (Krouk et al., 2010).

The first genomic approaches studying NO3;_ responses were published 10 years
ago (Wang et al., 2000). To date, data from more than 100 Affymetrix ATH1 chips

have been published that monitor gene expression in response to NO3_ provision.

3Research page at: http://biology.as.nyu.edu/object/GloriaCoruzzi.html
4http://coruzzilab.bio.nyu.edu/home/

92

Analysis of the N-treated microarray data sets from several different labs demon-
strated that at least a tenth of the genome can be regulated by nitrogen provision,
depending on the context (Gutierrez et al., 2007). Despite these extensive efforts of
characterization, only a limited number of molecular actors that alter NO3_ induced
gene regulation have been identified so far.

In this study, our aim was to provide a systems view of NO3_ signal propagation
though dynamic regulatory gene networks. To do so, a high-resolution dynamic NO3_
transcriptome from plants treated with nitrate from 0 to 20 min was generated. The
micro-arrays contained 7 full-genome mRNA measures at 0, 3, 6, 9, 12, 15 and 20 min;
in the cross-validation leave-out-last study, we used measures between 0 and 15 min
to fit the model for each gene i (by tuning the parameters of associated dynamical
functions), and tested the fitted model on the last time step (prediction of the mRNA
level at 20 min).

Two micro-array replicates were acquired in this study, listed in Table 4.1. Since
each replicate is independent of all micro-arrays preceding and following in time,
there were four possible transitions between any two time points ¢ and ¢ 4+ 1, and we

therefore used 4 replicate sequences to train the machine learning algorithm.

p53, Mef2 and TGF-5 Protein Datasets

Our first dataset consisted in the p53 human genome data from (Barenco et al., 2006).
pb3is a “tumor repressor activated during DNA damage. |...| Irradiation is performed
to disrupt the equilibrium of the p53 network stimulating transcription of p53 target
genes. Seven samples [of mRNA| in three replicas |were| collected as the raw time

course data” (Gao et al., 2008)°. Previous studies on that dataset included (Barenco

We used both the pre-processes data available at Neil Lawrence’s website:
http://staffwww.dcs.shef.ac.uk /people/N.Lawrence /software.html, and the raw mRNA associ-
ated to the experiment conducted by (Barenco et al., 2006), and available as supplemental

93

Table 4.1: Number of microarrays used for the study of the Gene Regulation Network
of the Arabidopsis that is involved in the plant’s reaction to nitrates. The table is
sorted by time-point and experimental condition. All the 26 microarrays are consid-
ered independent experiments. Note that we based our predictive modeling only on
the nitrate data.

Time-point NOs3_ KC1

0 min 2 replicates -

3 min 2 replicates 2 replicates
6 min 2 replicates 2 replicates
9 min 2 replicates 2 replicates
12 min 2 replicates 2 replicates
15 min 2 replicates 2 replicates
20 min 2 replicates 2 replicates

et al., 2006; Lawrence and Sanguinetti, 2007; Gao et al., 2008; Alvarez et al., 2009;
Zhang et al., 2010). The predicted p53 protein levels were compared to experimental
Western Blot measures.

We also considered the data associated with the development of the mesoderm in
Drosophila, involving the Mef2 transcription factor (Gao et al., 2008)%. Protein levels
were not available, but we compared our predictions to the ones made in the study.

Finally, we demonstrate that our experimental approach can infer the levels of 3
proteins from 70 mRNAs on the human Transforming Growth Factor (TGF) (§ data
from (Keshamouni et al., 2009). Our predictions for protein levels were compared to
the experimental data acquired a new methodology, iTRAQ. Both data were supplied

in the journal article.

material.
6We used data available at Neil Lawrence’s website.

94

4.2 Gradient-Based Biological State-Space Models

We propose a new and simple algorithm for learning SSMs representing gene reg-
ulation networks, that can incorporate nonlinear protein-gene interactions or focus
on gene-gene interactions. It is grounded in the factor graph formalism (Kschischang
et al., 2001), which expresses the joint likelihood of the hidden and observed variables
as a product of likelihoods at each factor. Our SSM includes two types of factors: ob-
servation and dynamic factors, which may be connected to two types of variables:
observed mRNA expression levels, and hidden transcription factor sequences (ei-
ther transcription factors, e.g. protein concentrations, or a noise-free time-course

of mRNA), as illustrated respectively on Figure 4.2 or on Figure 4.1.

A “Plug-And-Play” Architecture for SSMs

Our model is flexible because one can essentially "plug-and-play” different types of fac-
tors to suit various types of SSMs in the biological literature. Each factor is expressed
in the negative log domain, and computes an energy value that can be interpreted as
the negative log likelihood of the configuration of the variables it connects with. The
total energy of the system is the sum of the factors’ energies, so that the maximum
likelihood configuration of variables can be obtained by minimizing the total energy.
Learning our factor graphs is still done by maximizing their joint likelihood, but we
use an approximate gradient-based MAP inference to obtain the most likely config-
uration of the hidden sequence. Such approximate approaches have been applied on
chaotic and motion capture time series modeling problems (Mirowski and LeCun,
2009). Our algorithm is also faster than MCMC or Variational Bayes approaches for

Dynamic Bayesian Networks and than Gaussian Processes.

95

y(t-1) MO) y(tl)

observed *
variables
(mRNA)

y(&-1) y(?) y(t+1)

observed
variables
(mRNA)

observation
model /

hidden
variables
(TFs)

hidden
variables

(TFs)
z(t-1) z(1) z(t+1) z(t-1) z(1) z(t+1)

Figure 4.1: Two factor graph representations of the state-space model for gene regu-
lation networks. In both DFGs, the observation models incorporate a dependency on
the previous mRNA expression level y; i, as we are modeling the rate of change of
Y by a first-order linearized ODE. Left: the dynamical model f follows random walk
or AR(1) dynamics. Right: the dynamical model f incorporates the influence of the
mRNA in protein encoding.

4.2.1 Representing Protein TF Levels as Hidden Variables

We assume, as in Barenco et al. (2006); Gao et al. (2008), that for a gene i, the rate
of change of the mRNA level follows a dynamic that involves its basal transcription
rate b;, its decay rate d; and a weighted contribution of its M transcription factors
z;(t). The contribution of each TF can be modeled as a linear (identity) Barenco
et al. (2006) or nonlinear activation function o. The transcriptional dynamics can
thus be expressed as an ODE (4.3). After linearization between two consecutive time
steps ¢t and ¢t + At, the kinetic function (4.3) can be approximated by a Markovian

model (4.4), namely a function h; with added Gaussian noise term ¢;:

dy; -
= bi—dwi(t) + ; 5i0 (2;(t)) + €4 (4.3)
M
Yitrnr = hi (Yie, 2e) + €0 = Ui+ (1 —d))yie + Z 8§,j0 (2j) + € (4.4)
j=1

In this study, we considered two kinds of dynamics on the hidden TFs z;, illus-
trated on Figure 4.1. In a first, simplistic model, we can assume that z;(¢) follows

a Gaussian random walk, which is equivalent to imposing a Gaussian prior on z;(t)

96

noisy
measurements y(-1) y(®) y(t+1)

-

hidden z(t-1) z(1) z(t+1)

observation
model A

dynamical
model f'

‘noise-free”
sequence

Genes

Transcription Factors

Figure 4.2: Factor graph representation of the state-space model used for modeling
gene-gene interactions under the assumption that mRNA are a noisy observation of
an “idealized” gene expression level time-course. The observation factor is the identity
function.

as in Lawrence and Sanguinetti (2007); Gao et al. (2008): zj11at = fj (21) + 1t =
Zjt + Mt

The second dynamic actually takes into account the encoding of proteins by their

corresponding genes (mRNA), and models that interaction as an ODE. The encoding

of each TF j is modulated by the mRNA levels of the associated gene with sensitiv-

ity w;, with decay term d;. After linearization, this ODE can be approximated by
Eq. (4.6), i.e. a function f; with additional Gaussian noise 7;:

dz;

dt

Zisrar = f Yje 2ia) F e = (1= 620 + Wiyse + i (4.6)

= —0;2(t) + wiy;(t) +nje (4.5)

97

4.2.2 Representing Noise-Free mRNA as Hidden Variables

In a departure from previous state-space model frameworks, our second approach uses
the hidden variables to represent an idealized, “true” sequence of gene expressions
z(t) that would be measured if there were no noise. The set of all genes at time
t is modeled by a “latent” (i.e., hidden) variable (denoted z(t)), about which noisy
observations y () are made. Specifically, we a) model the dynamics on hidden states
z(t) instead of modeling them directly on the Affymetrix data y(¢), as well as b) have
the hidden sequence z(t) generate the actual observed sequence y(t) of mRNA, while
incorporating measurement uncertainty. Such an approach has been used in robotics
to cope with errors coming from sensors.

As shown in Figure 4.2, the relationship between consecutive latent variables z(t)
and z(t + 1) is a Markov chain: each latent gene’s expression value at time ¢ 4 1 is
assumed to depend only on the state of potentially all the latent gene expressions at
the previous time point ¢t. For each gene i, this relationship stems from the kinetic
ODE involving the rate of mRNA change (with a kinetic time constant 7), mRNA
degradation, and a linear function f; of transcription factor concentrations for that
specific gene. So-called “Brownian motion” dynamics correspond to kinetic dynamics
without the mRNA degradation term. In linearized (discretized) form, the overall
dynamical model f can be represented by an N x M matrix F where N is the
total number of genes and M the number of transcription factors (M < N, and
transcription factors are given indexes from 1 to M), plus a bias term b and a Gaussian

error term with zero mean and fixed covariance:

98

A0) = he)) (4.7)

Alt(zi(t+1)—zi(t))+zi(t) - 2Fi7j2j(t)+bi+ni(t) (4.8)

This linear Markovian model which represents a kinetic (RNA degrades) or Brow-
nian motion (RNA doesnOt degrade) ODE, is the simplest and requires the fewest
parameters (there is one parameter per TF-gene interaction, and an additional offset
for each target gene). We conjecture that model thus helps to avoid over-fitting scarce
gene data.

The observation model A is essentially an N x N identity matrix with a Gaussian

error term:

yi(t) = h(zi(t)) + €(t) (4.9)

yi(t) = zi(t) +e(t) (4.10)

Because our algorithm is efficient, simple and tractable, as explained in next sec-
tion, it can handle larger numbers of genes (we focussed on 76 genes) than other

state-space model approaches, given enough genes Beal et al. (2005), Angus et al.

(2010), Zhang et al. (2010).

4.2.3 Learning Gradient-Based DFGs

The above functions f; and h; are only a subset of the possible factors that our method

can handle, and they could be substituted by any function that is differentiable with

99

respect to both its parameters and the latent variables. Unlike methods based on
Gaussian Processes Lawrence and Sanguinetti (2007); Alvarez et al. (2009); Zhang
et al. (2010), on expensive MCMC sampling Barenco et al. (2006), or on Variational
Bayes Beal et al. (2005), our method only requires to compute the gradients of all

functions f; and h;, both w.r.t. parameters ©® and w.r.t. latent variables Z.

Expectation-Maximization-Like Coordinate Descent

Learning and inference are performed by minimizing the negative log-likelihood loss
of the factor graph (i.e. is a sum of square errors because of the Gaussian prior on the
error/noise terms). On a sequence Y of 7' micro-array measurements (including repli-
cate sequences) over N genes, corresponding latent variables Z, under an observation
(and dynamic) models parameterized by ©, and for given hyperparameters v (which
controls the weight of the dynamical and observation errors) and A (for the L;-norm
regularization), the loss is expressed as (4.11). Latent variables Z and parameters ©
are initialized to small random values. Then the iterative procedure consists of a) the
inference step, where the loss (4.11) is minimized with respect to the latent variables
Z thanks to gradient descent; and of b) the learning step, where the loss (4.11) of
the observation (and dynamical, if relevant) modules is minimized w.r.t. parameters
© using conjugate gradient optimization or Least-Angle Regression and Shrinkage
(LARS) if the factor is linear (Tibshirani, 1996). We use small learning rates and

validate the hyperparameters v and A on the training data (typically, A = 0.01 and

v=1).

T M N
vy 1
bvzos =3 (J3d 4) aten
j=1 i=1

t=1

The learning algorithm is run for 100 or 1000 consecutive epochs over all the

100

replicate sequences. In order to retain the optimal set of parameters of f, one selects
the epoch where the dynamic or observation error on the training dataset is minimal.

In the case of model architecture from Section 4.2.2. one run of the learning proce-
dure provides with a matrix F of signed (positive: excitatory or negative: inhibitory)
interactions between transcription factors and genes. Each element Fj; represents

the action of the j-th transcription factor on the i-th gene.

Hyperparameters and Recovering Existing Methods

Two main hyper-parameters were explored in our learning experiments: the amount of
L1-norm regularization A (explained in the Methods) and the Lagrange-like coefficient
v linked to the state-space model. When trying to learn GRN from mRNA (in
Section 4.2.2), we used the kinetic coefficient 7 as an additional hyperparameter.
Note that when the state-space coefficient is v = 0, and using the configuration
from Section 4.2.2), we can recover non-SSM algorithms: (Efron et al., 2004), as used
for instance by Bonneau et al. (Bonneau et al., 2006, 2007) and Elastic Nets (Zou and
Hastie, 2005), as used for instance by Shimamura et al. (Shimamura et al., 2009). In
that case, we simply have Y = Z. Moreover, if we do not use the mRNA degradation
term in the kinetic ODE, and use instead “Brownian motion” dynamics, and if we set
the state-space coefficient to v = 0, we recover an approach comparable to the one
published by Wang et al. (Wang et al., 2006b) (although their optimization algorithm

was based on the SVD of the micro-array data).

Regularization

During the learning step, sparse gene regulation networks are obtained by penalizing
dense solutions using L;-norm regularization, which amounts to adding a A\-weighted

penalty to the dynamical error term, as in the LASSO initially described by Tibshirani

101

Tibshirani (1996). Employing regularization on parameters also helps avoiding local
optima in the solutions.

LARS is a fast implementation of Tibshirani’s popular LASSO regression with L1-
norm regularization (Tibshirani, 1996). Elastic Nets are an improvement over LARS
and LASSO, and their main advantage is to group variables (in our case genes) as

opposed to choosing one gene and leaving out correlated ones.

Selection of Gene Regulation Network by Bootstrapping

Using a bootstrapping approach based on random initialization of latent variables
z(t), we further repeat the SSM iterative procedure 20 times and take the final average
model.

In the case of the dynamical model on noise-free mRNA described in Section 4.2.2,
we use bootstrapping to determine the statistically significant gene-gene links. The
above-explained algorithm for learning state-space models starts with random initial
values for both the dynamical model (in other words, matrix F) and for the latent
variables Z. We repeat the whole procedure 20 times in order to perform the following
bootstrapping evaluation. Each run k of the algorithm might converge to a slightly dif-
ferent solution F*(k). We then take the average TF-gene interactions weights obtained
from all solutions F*(k) and call it F*. The table on Figure 4.4 reports comparative
results on the average solutions. In parallel, we also generate 1000 random permuta-
tions of each matrix F*(k), defined respectively as P*(k, 1), P*(k, 2),...,P*(k, 1000),
and then compute 1000 average matrices P*(1), P*(2),...,P*(1000) of those “scram-
bled” matrices (we take the averages over the 20 runs). We compare each average
element F’; to the empirical distribution of the 1000 permuted averages and thus ob-
tain an empirical p-value. The final genetic regulation network consists in elements

F}; that have a p-value p < 0.001.

102

4.3 GRN of the Arabidopsis Response to NO3_

In this study, instead of learning the dynamics directly on the gene expression se-
quence, we took into account uncertainty and acquisition errors, and used a state-
space model. The latter defined the observed gene expression time series (denoted as
y(t)) as being generated by a hidden “true” sequence of gene expressions z(t). This
approach enabled us to both incorporate uncertainty about the measured mRNA and
to model the gene regulation network by simple linear dynamics on the hidden vari-
ables (so-called “states”), thus reducing the number of (unknown) free parameters and
the associated risk of over-fitting the observed data.

Our DFG-based method delivered a coherent regulatory model that was good
enough to predict the direction of gene change (up regulation or down regulation) on
future data points. This coherence allowed us to propose a gene influence network
involving transcription factors and “sentinel genes” involved in the primary NO3_ re-
sponse (such as NO3_ transporters or NO3_ assimilation genes). The role of a predicted
hub in this network was evaluated in further biological experiments by over-expressing

it, and indeed lead to changes in the NO3_ driven gene expression of sentinel genes.

4.3.1 Comparative Study of State-Space Model Optimization

Out of the 550 N-regulated genes we extracted 67 genes which correspond to all
the predicted transcription factors and 9 N-regulated genes that belonged to the N-
assimilation pathway (including sentinel genes). Their mRNA over 7 time points and
for 2 replicates is shown on Figure 4.3. The transcription factors have been used
as explanatory variables (inputs to f) as well as explained values (output from f),

whereas the N-assimilation genes are only explained values. We then optimized the

103

Leave-out-last
15 min - 20 min
53 consistent genes

Figure 4.3: 76-gene micro-array used for the Arabidopsis study. The last time-point,
corresponding to time ¢ = 20 min, was out-of-sampled and used for evaluating the
predictive capability of our dynamical model of gene regulation.

state-space model, using different algorithms, in order to fit it to the observed data
matrix, and compared all our results in the table on Figure 4.4. We also compared
our SSM approach to non-SSM approaches (Bonneau et al., 2006, 2007; Wang et al.,
2006b; Efron et al., 2004; Zou and Hastie, 2005; Shimamura et al., 2009) in in the
table on Figure 4.5.

For each type of ODE (kinetic or “Brownian motion”) and type of optimization
algorithm, we exhaustively explored the space of hyper-parameters (v, A, p) in order
to optimize the quality of fit of each model to the first six time-points (0 min, 3 min,
6 min, 9 min, 12 min and 15 min). As can be seen in the table on Figure 4.4, we
identified the state-space model relying on the kinetic ODE, and with either LARS or
conjugate gradient optimizations, as the two best (having the highest Signal-to-Noise

Ratio (SNR)) optimization algorithms on the MAS5 training datasets. The signal-to-

104

Best hyperparameters (w.r.t. |Perf. on|Perf. on test
SNR on leave-1 train dataset) |train set set
gamma SNR (in| Percentage
(state- tau lambda | dB)on | of correct
space | (kinetic [(regulariza-|leave-1| signs on
Normal- coeffi- time tion para- | train |leave-1 test
Dynamics ization Optimization] cient) |constant)] meter) dataset| dataset
kinetic MAS5 gradien 1 3 0.0001 32.4 68%
kinetic MAS5 LAR 0.1 3 0.1 324 74%
kinetic MAS5 Elastic Net 0.1 7 0.05 32.2 71%
Brownian MAS5 gradien 0.1 n/a 0.0001 32.1 65%
Brownian MAS5 LAR 0 n/a 0.05 321 63%
Brownian MAS5 Elastic Net 0 n/a 0.05 321 63%
Naive trend MASS n/a n/a n/a n/a 52%
prediction

Figure 4.4: The kinetic ODE and both the conjugate gradient and LARS optimization
algorithms obtain the best fit to [0, 15] min data, with good leave-out-last predictions.
Each line in the table represents the type of ODE for the dynamical model of TF-
gene regulation (either kinetic, with mRNA degradation, or OBrownian motion”,
without mRNA degradation), the type of micro-array data normalization, and the
optimization algorithm for learning the parameters of the dynamical model. For each
of those, we selected the best hyperparameters, namely the state-space coefficient -,
the kinetic time constant 7 (in minutes) and the parameter regularization coefficient
A, based on the quality of fit to the training data ([0,15] min), as measured by
the signal-to-noise ratio, in dB. We then performed a leave-out-last prediction and
counted the number of times the sign of the mRNA change between 15 min and 20
min was correct. We compared these results to a naTve extrapolation (based on the
trend between 12 min and 15 min) and obtained statistically significant results at
p = 0.0145. Reproduced from the table published in (Krouk et al., Provisionally
accepted for publication).

noise ratio is a monotonic function of the Normalized Mean Square Error (NMSE) on
the predicted values of mRNA; all algorithms used in this article aim at minimizing
the NMSE, i.e. at maximizing the SNR.

Having chosen the two best algorithms using all time points up to and including
15 min as training data, we performed a “leave-out-last” test, consisting of predicting
both the direction and magnitude of the change of the genes between 15 and 20 min.
Using those algorithms with those parameter settings, we made predictions about

whether gene expression levels would increase (positive sign) or decrease (negative

105

Best hyperparameters (w.r.t. |Perf. on|Perf. on test
SNR on leave-1 train dataset) |train set set
gamma SNR (in| Percentage
(state- tau lambda | dB)on | of correct
space | (kinetic [(regulariza-|leave-1| signson Reference
Normal- coeffi- time tion para- | train |leave-1 test
Dynamics ization Optimization] cient) |constant)] meter) dat_aset dataset
kinetic MAS5 gradien 1 3 0.0001 32.4 68% This article
kinetic MAS5 LAR 0.1 3 0.1 324 74% This article
kinetic MAS5 LAR 0 3 0.05 32.1 74% Bonneau 2006
kinetic MAS5 Elastic Net 0 3 0.05 32.1 74% Shimamura 2009
Brownian MAS5 gradien 0 n/a 0.005 32.1 66% Wang 2006
Brownian MAS5 LAR 0 n/a 0.05 32.1 63% Wang 2006
Brownian MASS5 Elastic Net 0 n/a 0.05 32.1 63% Wang 2006
Naive trend MAS5 n/a n/a n/a n/a 52%
prediction

Figure 4.5: The quality of fit of our State-Space Model approach slightly outper-
forms the non-SSM approaches. We compared our State-Space Model-based technique
(SSM, with a non-zero state-space model parameter gamma) to previously published
algorithms for learning gene regulation networks by enforcing gamma—0 (see Meth-
ods). We notice that the LARS algorithm (Tibshirani, 1996), used in the Inferelator
by Bonneau et al. (Bonneau et al., 2006, 2007), as well as Elastic Nets (Zou and
Hastie, 2005; Shimamura et al., 2009), obtain a slightly worse quality of fit (signal-to-
noise ratio, in dB) than when combined with our state-space modeling, for the same
leave-out-last performance as our SSM + LARS. Not using an mRNA degradation
term, as in Wang et al. (Wang et al., 2006b), degrades the leave-out-last perfor-
mance. Reproduced from the table published in (Krouk et al., Provisionally accepted
for publication).

sign) in 20 min compared with 15 min.

As the table on Figure 4.4 shows, a state-space model relying on the kinetic ODE
and with LARS optimization (kinetic LARS) gives correct results 74% of the time
on a set of 53 genes (47 TFs and 6 N-assimilation genes) that are “consistent” among
the two biological replicates in their behavior (consistently up or down-regulated in
both replicates) for the transition from 15 min to 20 min. When we considered all
76 genes, regardless of their “consistency” across replicates, kinetic LARS still gave
correct results 71% of the time. Corresponding figures for the other chosen algorithm

(kinetic ODE with conjugate gradient optimization) yielded 68% correct results on

106

both the 53 consistent genes and on all 76 genes. By contrast, a naive algorithm,
that would extrapolate the trend between 12 min and 15 min, was correct for only
52% of the consistent genes, just slightly better than random (this result implies that
48% of the consistent genes changed “direction” at 15 min). Thus, our state-space
model does significantly better (p = 0.0145) than the naive trend forecast based on a
binomial test on a coin that is biased to be correct 52% of the time.

Using the hyper-parameters (v, A, p) corresponding to the two best solutions (ki-
netic LARS and kinetic conjugate gradient), we retrained two State Space Models
on all the available data (0 to 20 min) to obtain corresponding gene regulatory net-
works. Finally, we performed a statistical analysis of the bootstrap networks, in order
to retain TF-gene links that were statistically significant at p = 0.001. We ultimately
selected the conjugate gradient-optimized network as it gave a less sparse solution
(394 links) than the LARS-optimized GRN (22 links). We used this network (next
section) to analyze the NO3_ response of sentinel genes to transcription factors.

Although the number of samples in the dataset is extremely small (7 time-points,
corresponding to 26 different time points using replicate time series), all the dynam-
ical models (our state-space model in particular) were able to learn the system well
enough to predict the direction of changes to gene expression. This suggests that we
might have learnt some consistent and biologically meaningful networks involved in
NO3_ response pathway. Since the dynamical functions f model the gene regulation
network learned during the leave-out-last test, we conclude by presenting the function
f obtained from the full time sequence 0-20 min. This function f can be displayed
as an influence matrix (Figure 4.7), or as a gene network where each node is a gene
and edges represent potential influences.

The study of this network as a whole system is discussed below.

107

4.3.2 Over-Expression of a Potential Network Hub (SPL9)

Modifies NO3_ Response of Sentinel Genes.

In order to probe the role of a transcription factor/hub in the predicted network pre-
sented on Figure 4.7, transgenic plants (pSLP9:rSPL9) expressing an altered version
of the mRNA for the SPL9 transcription factor plants were compared to WT (wild
type) plants for their response to NOs_ provision, using another mRNA measuring
technique called QPCR. Results are shown on Figure 4.6.

The SPL9 gene has been selected for several reasons: (i) it is induced at very early
time points (3 and 6 minutes), (ii) the inferred network predicts that SPL9 potentially
controls at least 6 genes including 2 sentinel genes. This places it as the 3rd most
influential TF on sentinels, and (iii) it is the most strongly influenced gene in both
number of connections as well as the magnitude of the regulations controlling it.

What follows is the biologist’s interpretation of the QPCR study, described in

further details in (Krouk et al., Provisionally accepted for publication).

As such SPL9 constitutes a potential crucial bottleneck in the flux of
information mediated by the proposed network. We first considered SPL9
mutants and monitored sentinel expression in this genetic background.
However even if some defects have been observed no consistent phenotype
could have been reported. This can be easily explained by the topological
redundancy of the network. Thus one could expect that its over-expression
triggers a detectable effect on the sentinels and on the network behavior.
SPLJY is a transcription factor identified to control shoot development and
flowering transitions, and it also appears as a potential central regulator

in our network derived from the state space model.

108

In our experimental set-up, transgenic SPL9 mRNA is over-expressed an
average 20 to 4 times in the plants. In parallel, mRNA transcription levels
of several sentinel genes has been followed in this SPL9 transgenic line.
The most dramatic effect recorded is for the NIR gene. Interestingly, the
NIR gene has previously been demonstrated to be one of the most robustly
NO;_ regulated gene based on a meta analysis of microarray data from N-
treated plants (Gutierrez et al., 2007). Thus, over-expression of the SPL9
gene leads to significantly advance the NIR NO3_ response by about 10 min,
and attenuates its magnitude of regulation for later time points (60 min).
Less dramatic but still significant (over 3 independent experiments) effects
has been recorded for NRT1.1/CIPK23 genes, belonging the NO3_ sensing
module, and for the NIA2 gene. These results demonstrate a role of the
SPL9 transcription factor in the control of the NO3_ primary response. To
further investigate the role of SPL9 over-expression on the transcription
levels of genes in the network over time. SPL9 is also regulated transiently
as well as earlier than the sentinel genes we measured their dynamics of
mRNA accumulation in this experiment. Interestingly, SPL9 seems to
have an effect on the vast majority of the genes that we have tested. The
diversity of the mis-regulations is high. For instance for 4 out of the 14
tested genes display an early effect (between 0 and 20min) of the SPL9
over-expression. However, 11 genes display modified gene expression in

transgenic plants at later time points (40 and 60min).

This high-resolution time course analysis demonstrated that the previously known
primary nitrate response is actually preceded by very fast (within 3 min) gene expres-

sion modulation, involving genes/functions needed to prepare plants to use/reduce

109

NO3_. The experiments and methods allow us to propose a temporal working model
for NO3_-driven gene networks. The over-expression of a predicted gene hub encoding
an early induced transcription factor indeed leads to the modification of the NO5_

response kinetic of sentinel genes such as NIR, NIA2, and NRT1.1.

4.4 Inferring Protein Levels from Micro-arrays

4.4.1 Inferring Human p53 Protein Levels from mRNA

In a first series of experiments, we reproduced the results from Lawrence and San-
guinetti (2007); Gao et al. (2008); Alvarez et al. (2009); Zhang et al. (2010) who
tried to infer the single human p53 (tumor repressor) protein level from 5 mRNA ex-
pression levels (not including the mRNA of TP53) in reaction to irradiation Barenco
et al. (2006). Using data preprocessed by Gao et al. (2008), we investigated shar-
ing the latent variables Z across the 3 replicates, random walk dynamics on Z and
the use of nonlinear activation (Michaelis-Menten “bottleneck” kinetics) o(z(t)) =
20/ + 2(0).

Using the micro-array data available with Barenco et al. (2006), we added a 6th
gene (phH3-encoding TP53) and enforced TP53-governed kinetics (Eq. 4.6) on p53,
with or without sharing the latent variables Z across replicates. Figure 4.8 shows
that the experimental profile of p53 was well recovered from 6-gene datasets. All
experiments were repeated 10 times, starting from random initializations, and the
errors bars were small. The TF value at time ¢ = 0 was set to 0, and the sensitivity
of p21 was set to 1, as in Gao et al. (2008). In terms of reconstruction error, all
experiments achieved an observation Signal-to-Noise Ratio of about 16dB, and the

6-gene experiments had a dynamic SNR of about 13dB.

110

4.4.2 Inferring Drosophila Mef2 Protein Levels from mRNA

A similar experiment was repeated with 7-gene data used for the inference of the Mef2
protein in the Drosophila Gao et al. (2008), where one of the genes encoded Mef2 and
the 6 others genes were targets of the TF. As illustrated on Figure 4.9, the inferred
TF was similar to the one in Gao et al. (2008) but the mRNA fitted the observed

data more closely than in Gao et al. (2008), with 10dB SNR.

4.4.3 Inferring Multiple Protein Levels: Human p53, TGF-4

Coming back to pb3 data, but using 50 mRNAs, we investigated the inference of
multiple (3) hidden TFs. No constraints were enforced on the TFs, but for each
realization, we ultimately sorted the TFs according to their average cross-correlation
among replicates (TF3 being the most correlated). As Figure 4.10 shows, the profile
of most-correlated TF3 was consistent among the realizations and had a comparable
shape to the Western blot experimental p53 measures from Barenco et al. (2006).
Finally, we applied our model to a new human cancer dataset containing both
mRNA and protein levels. Using only mRNA, we succeeded in inferring the protein
levels of 3 proteins (f-actin, cofilin and moesin) involved in the TGF-3 Epithelial-
Mesenchymal Transition. We used normalized mRNA data averaged over replicates
and taken from Keshamouni et al. (2009), defined 4 TFs, with an encoding kinetic
(Eq. 4.6) on 3 TFs (respectively encoded by ACTB, CFL1 and MSN), and set the
TFs levels to be equal to 1 at time ¢ = 8h (because the experimental protein time
series started at that point and were defined as ratios). The learning experiment
was repeated 5 times with random initializations. Figure 4.10 shows that the first

3 inferred TFs match the profile of experimental protein ratios measured using the

iTRAQ method.

111

4.5 Conclusions and Further Work

Using experimental validation, we demonstrated that our simple and fast gradient-
based state-space model algorithm can infer protein profiles from mRNA datasets,
and match experimental measures of protein concentration levels.

We have also shown that they can be applied to the problem of reverse-engineering
gene regulation networks from mRNA, by using hidden variables to model the noise
in mRNA data. Using predictive modeling, we were able to predict the direction
taken by gene expression levels on out-of-sample micro-arrays, confirming that our
dynamic model succeeded in capturing the influences of the gene regulatory network.

We are now planning on further evaluating our method for reverse-engineering
GRNs by directly modeling transcription factors and by replacing gene-gene inter-
actions by gene-TF and TF-gene interactions. In our factor graph notation, that
corresponds to replacing a model with dynamics on hidden variables Z and an iden-

. 9
tity observation function Y = h(Z) by a proper transcription function =t = h(z)

and a translation function 92 = f (y,). Our current work is inspired by the module-
networks SSM approaches described in (Hirose et al., 2008; Yamaguchi et al., 2007,
2010) and by the fully-fledged Dynamic Bayesian Network approaches in (Rangel

et al., 2004; Beal et al., 2005).

112

-@- WT (Col)
-@- pSPLY:rSPL9

1.6
14 14
12 1.2
-~ 10 .0f v)
- 3
~ 08 0.8 X
% 0.6 0.6 8
0.4 0.4
0.2 0.2
0.0 0.0
1.4 | o 12 05
1.2 | 1.0 o
03
~ 1o 0.8 o2 E
~ 008 01
Q 08 0.00 0.6 o x| N
= 06 0z4s810 vzasnn
04
04
0.2 0-2
0.0 0.0
100 0.8
04
* i 03
0.6
10 o
o >k * o1 2
- :
Y : 04f 2
(7] 1 0246810 PR
I\f'f\{/. 0.2 =
0.1 0.0
1.0
0.0 * 35.5 141 o4
1.2 *
0z
X 1.0 "
2 038 =
06 rryYYTH S
-
04
0.2
0.0
0 20 40 60
time (min)

Figure 4.6: Gene knock-out validation for the Arabidopsis GRN inference The “wild-
type” expression (WT, in black) corresponds to the normal time-course of mRNA
levels, while the pSPL9:rSPLY time-course (in red) corresponds to mRNA levels after
the gene SPL9 has been knocked-out.

113

Diagonal: Self-influences

EEEREEEEEEEEEEEEEEEREEEEREEERRREER

ErEk
=

Regulated (OUT)

SPL9 as a controller

WTTETT

L IEEREERE

T TR T T T T

Sentinels
E:

At5g5346

Agas 6
Agdss7l
At3g04060)
Agoe3sd
Azgoesad)
ABg07340}
At3gda76d
A3g50750)
At3g53340)
Agss0sd)
Ags7300)
A13g60430)

Arag18780
Arag1888—

Atdg23gstt- -
At4g24020+

A
®
Q
=
)
(=g
o
“
»
g
Z

A5g258 101 - -
At5g5217(H
A5g53900)
aBgs1420)
ages210L
ABgBSB4CH
A5g88350H |

SPL9 as a
<

controlled gene

0.36469
0.27352
0.18234

- 0.091172

~-0.091172

aoJuan|ul Jo |[9AdT]

-0.18234

-0.27352

Figure 4.7: Gene Regulation Network involved in the Arabidopsis’s response to NO3_,
represented as a matrix of signed gene-gene influences.

o
)

o
)

p53 TF level

o
IS

0.2}

““““ 6-gene data, rep. 1
“““ 6-gene data, rep. 2

6-gene data, rep. 3
- = = 5-gene data, shared rep., MM
~ '~ 6-gene data, shared rep.
Experimental profile

Gene mRNA level

Y-.

N
s

Time (h)

4.5

4

3.5

3

25

—©—- DDB2

—— BIK

—¥— TNFRSF10b
Clp1/p21
p26 sesni
p53

6
Time (h)

Figure 4.8: Left: inferred p53 protein levels using different techniques, compared with
the experimental data using Western blots. Right: mRNA levels from replicate 1, as
measured (solid line) and predicted by the 6-gene shared model (dashed line).

114

Mef2 protein TF level

0.8~
0.6~
04f
0.2+

Time (h)

Gene mRNA level

—*— FBgn0011656, Mef2

—<— FBgn0011286, Rya-r44F

—k— FBgn0022740, HLH54F
FBgn0003870, ttk

—£— FBgn0026239, gukh
FBgn0004885, tok

~—<— FBgn0031037, HspB8
3 ?

Time (h)

Figure 4.9: Left: inferred Mef2 protein (10 different realizations). Right: mRNA
levels from replicate 1, as measured (solid line) and predicted by the model (dashed

line).

Hidden protein TF levels

Time (h) for 3 replicates

= —
TFA™ moesin MSN (iTRAQLSZ"
) g
Q c
3 el
TR, e
c v =
2 —==
[47 _edfilin. CFL1 (iTRAQ)
(-3 Ve
S yZ
Q Ve
g TR2f
x L e

-
/{, ={=actin ACTB (iTRAQ)
.

05 1

2 4 8 16 24 72

Time (h)

Figure 4.10: Left: inferred profiles of 3 latent variables, across 3 replicates, for the
50-gene pb3 dataset. For each of the 10 realizations, the latent factors were sorted
by cross-correlation among replicates. TF3 has the strongest cross-correlation and
resembles the p53 experimental profile. Right: inferrred profiles of 4 latent variables
for the 70-gene TGF-/3 dataset. TF1, TF2 and TF3 are respectively encoded by the
ACTB, CFL1 and MSN genes and show very good fit to experimental iTRAQ ratios.

115

3 6 9 121520 min

Figure 4.11: Partial view of the microarray data collected from 26 Affymetriz gene
chips on the Arabidopsis Thaliana in response to NO3_ and to a control stimulation by
KC1. The values show the log, of the ratio between the mRNA levels for each gene in
response to NO3_ and the same genes’ mRNA levels in response to KC1. Values have
been averaged over the 2 replicates, and are shown for time-points at 3, 6, 9, 12, 15
and 20 min.

116

CHAPTER D

APPLICATION TO TOPIC MODELING OF TIME-STAMPED

DOCUMENTS

The Times They Are a-Changin’

BoB DyYLAN

This chapter introduces new applications for Dynamic Factor Graphs, consisting
in topic modeling, text classification and information retrieval. DFGs are tailored
here to sequences of time-stamped documents.

Based on the auto-encoder architecture, our nonlinear multi-layer model is trained
stage-wise to produce increasingly more compact representations of bags-of-words at
the document or paragraph level, thus performing a semantic analysis. It also incor-
porates simple temporal dynamics on the latent representations, to take advantage
of the inherent (hierarchical) structure of sequences of documents, and can simulta-
neously perform a supervised classification or regression on document labels, which
makes our approach unique. Learning this model is done by maximizing the joint like-
lihood of the encoding, decoding, dynamical and supervised modules, and is possible
using an approximate and gradient-based maximum-a-posteriori inference.

We demonstrate that by minimizing a weighted cross-entropy loss between his-

117

tograms of word occurrences and their reconstruction, we directly minimize the topic-
model perplexity, and show that our topic model obtains lower perplexity than the
Latent Dirichlet Allocation on the NIPS and State of the Union datasets. We illus-
trate how the dynamical constraints help the learning while enabling to visualize the
topic trajectory. Finally, we demonstrate superior information retrieval and classifica-
tion results on the Reuters collection, as well as an application to volatility forecasting
from financial news.

This work will be presented at the 2010 NIPS Deep Learning Workshop (Mirowski

et al., 2010c), and has been submitted for publication.

5.1 Information Retrieval, Topic Models and Auto-
Encoders

We propose in this article a new model for sequences of observations of discrete data,
specifically word counts in consecutive (or time-stamped) text documents, such as on-
line news, recurrent scientific publications or periodic political discourses. We build
upon the classical bag-of-words approach, which ignores the syntactic dependencies
between words, and focuses on the text semantics by looking at vocabulary distribu-
tions at the paragraph or document level. Our method can automatically discover
and exploit sequences of low-dimensional latent representations of such documents.
Unlike most latent variable or topic models, our latent representations can be simul-
taneously constrained both with simple temporal dependencies and with document
labels. One of our motivations is the sentiment analysis of streams of documents,
and has interesting business applications, such as ratings prediction. In this work,

we predict the volatility of a company’s stock, by capturing the opinion of investors

118

manifested in online news about that company.

5.1.1 Document Representation for Information Retrieval

Simple word counts-based techniques, such as the Term Frequency - Inverse Docu-
ment Frequency (TF-IDF) remain a standard method for information retrieval (IR)
tasks (for instance returning documents of the relevant category in response to a
query). TF-IDF can also be coupled with a classifier (such as an SVM with linear or
Gaussian kernels) to produce state-of-the-art text classifiers (Joachims, 1998; Debole
and Sebastiani, 2005). We thus show in Results section 5.3.3 how our low-dimensional
document representation measures up to TF-IDF or TF-IDF + SVM benchmarks on
information retrieval and text categorization tasks.

Plain TF-IDF relies on a high-dimensional representation of text (over all V' words
in the vocabulary) and compact representations are preferable for index lookup be-
cause of storage and speed issues. A candidate for such low-dimensional representa-
tions is Latent Semantic Analysis (LSA) (Deerwester et al., 1990), which is based on
singular value decomposition (SVD). Alternatively, one can follow the dimensionality
reduction by independent components analysis (ICA), to obtain statistically inde-
pendent latent variables (Kolenda and Kai Hansen, 2000) (and, as we show in the
Results section, ICA-based LSA can achieves a better performance than simple LSA
in both information retrieval and text categorization tasks). Unfortunately, because
they perform lossy compression and are not trained discriminatively w.r.t. the task,
SVD and ICA achieve worse IR performance than the full TF-IDF.

Instead of linear dimensionality reduction, our approach is to build auto-encoders.
An auto-encoder is an architecture trained to provide with a latent representation

(encoding) of its input, thanks to a nonlinear encoder module and an associated

119

decoder module. Auto-encoders can be stacked and made into a deep (multi-layer)
neural network architecture (Bengio et al., 2006; Hinton and Salakhutdinov, 2006;
Ranzato et al., 2007; Salakhutdinov and Hinton, 2007). A (semi-)supervised deep
auto-encoder for text has been introduced in (Ranzato and Szummer, 2008) and

achieved state-of-the-art classification and IR.

y(z-1) y(®) y(+1)

document 23 (+1)
classifier g3
(z-1)
p encoder f3,
decoder /3
document 2 (+1)
classifier g»
y(&-1)
encoder f2,
decoder /2
document 20+ 1)
classifier g
dynamical
model s encoder fi,
decoder A
x(+-1) x0) (QxD

Figure 5.1: Factor Graph Representation of Our Deep Auto-Encoder Architecture
with Dynamical Dependencies Between Latent Variables.

There are three crucial differences between our model and Ranzato and Szummer’s
(Ranzato and Szummer, 2008). First of all, our model makes use of latent variables.
These variables are inferred though the minimization of an energy (over a whole
sequence of documents) that involves the reconstruction, the temporal dynamics, the
code prediction, and the category (during supervised learning), whereas in (Ranzato
and Szummer, 2008), the codes are simply computed deterministically by feed-forward

encoders (their inference does not involve energy minimization and relaxation). It is

120

the same difference as between a dynamic Bayesian net and a simple feed-forward
neural net. Secondly, our cross-entropy loss function is specifically constructed to
minimize topic model perplexity, unlike in (Ranzato and Szummer, 2008). Instead
of merely predicting word counts (through an un-normalized Poisson regression), we
predict the smoothed word distribution. This allows us to actually model topics
probabilistically. Lastly, our model has a hierarchical temporal structure, and because

of its more flexible nature, is applicable to a wider variety of tasks.

5.1.2 Probabilistic Topic Modeling with Dynamics on the Top-
ics
Several auto-encoders have been designed as probabilistic graphical models in or-
der to model word counts, using binary stochastic hidden units and a Poisson de-
coder (Gehler et al., 2006; Salakhutdinov and Hinton, 2007) or a Softmax decoder (Salakhut-
dinov and Hinton, 2009). Despite not being a true graphical model when it comes
to the inference of the latent representation, our own auto-encoder approach is also
based on the Softmax decoder, and, as explained in Methods section 5.2.3, we also
do take into account varying document lengths when training our model. Moreover,
and unlike (Gehler et al., 2006; Salakhutdinov and Hinton, 2007, 2009), our method
is supervised and discriminative, and further allows for a latent dynamical model.
Another kind of graphical models specifically designed for word counts are topic
models. Our benchmark is the Latent Dirichlet Allocation (Blei et al., 2003), which
defines a posterior distribution of K topics over each document, and samples words
from sampled topics using a word-topic matrix and the latent topic distribution. We
also considered its discriminative counterpart, Supervised Topic Models (Blei and

McAulife, 2007) with a simple linear regression module, on our financial prediction

121

task (in Results section 5.3.4). We show in Results section 5.3.1 that we managed to
achieve lower perplexity than LDA.

Some topic models have introduced dynamics on the topics, modeled as Gaussian
random walks (Blei and Lafferty, 2006), or Dirichlet processes (Pruteanu-Malinici
et al., 2010). A variant to explicit dynamics consists in modeling the influence of
a “time” variable (Wang and McCallum, 2006). Some of those techniques can be
expensive: in Dynamic Topic Models (Blei and Lafferty, 2006), there is one topic-word
matrix per time step, used to model drift in topic definition. Moreover, inference in
such topic models is intractable and replaced either by complex Variational Bayes, or
by Gibbs sampling. Finally, all the above temporal topic models are purely generative.

The major problem with the Gaussian random walks underlying (Blei and Lafferty,
2006) is that they describe a smooth dynamic on the latent topics. This might be
appropriate for domains such as scientific papers, where innovation spreads gradually
over time (Blei and Lafferty, 2006), but might be inexact for political or financial
news, with sudden “revolutions” (as vehemently advocated in (Taleb, 2007)). For this
reason, we considered Laplace random walks, that allow for “jumps”; and illustrated

in section 5.3.2 the trajectory of the U.S. State of the Union speeches.

5.2 Methods: Dynamic Auto-Encoders

For each text corpus, we assume a vocabulary of V unique tokens, which can be
words, word stems, or named entities!. The input to the system is a V-dimensional
bag-of-words representation x; of each document 4, in the form of a histogram of word

. v . .
counts n;,, with N; = >’ n;,. To avoid zero-valued priors on word occurrences,

'We built a named-entity recognition pipeline, using libraries from the General Architecture for
Text Engineering (http://gate.ac.uk), and relying on gazetteer lists enriched with custom lists of
company names.

122

probabilities x; can be smoothed with a small coefficient 3 (here set to 1073):

Niw + ﬁ
N; + pvV

Xi

(5.1)

5.2.1 Auto-Encoder Architecture on Bag-of-Words Histograms

The goal of our system is to extract a hierarchical, compact representation from very
high-dimensional input vectors X = {x;}; and potential scalar or multivariate labels
Y = {y;};. This latent representation consists in D layers Z{!} = {zz{l}}i (where
[€ {1,D}) of decreasing dimensionality V' > K; > Ky, > --- > Kp (see Fig.
5.1). We produce this representation using deep (multi-layer) auto-encoders (Bengio
et al., 2006; Hinton and Salakhutdinov, 2006; Ranzato et al., 2007; Salakhutdinov and
Hinton, 2007) with additional dynamical constraints on the latent variables. Each
layer of the auto-encoder is composed of modules, which consist in a parametric
deterministic function plus an error (loss) term, and can be interpreted as conditional
probabilities.

The encoder module of the [-th layer transforms the inputs (word distribution x;

{i-1} {1}

if [= 1) or variables from the previous layer z; into a latent representation z; .

;{l} or fi(x;) +e€ = zl{l}is parametric (with

The encoding function fi(z!") + ¢; = z
parameters noted W,). Typically, we use the classical tanh sigmoid non-linearity,
or a sparsifying non-linearity z3/(z* + 6) where 6 is positive?. The mean square loss
term ¢; represents Gaussian regression of latent variables.

Conversely, there is a linear decoder module (parameterized by W4 on the same

[-th layer that reconstructs the layer’s inputs from the latent representation hl(zz{l}) +

2The sparsifying nonlinearity is asymptotically linear but shrinks small values to zero. # should
be optimized during the learning, but we decided, after exploratory analysis on training data, to set
it to a fixed value of 10~*

123

.............

M

Figure 5.2: Energy-based view of the first layer of the dynamic auto-encoder. The
reconstruction factor comprises a decoder module h with cross-entropy loss L4 w.r.t.
word distribution {z¥*}V_,, and an encoder module f with Gaussian loss L., for a
total factor’s loss aLc; + Lq;. The latent variables z;, are averaged by time unit
into Zy_1,Zy, ..., and the latter follow Gaussian or Laplace random walk dynamics
defined by the dynamical factor and associated loss oLy (for simplicity, we assumed
here 1 document for time unit ¢’ and one for previous time unit ¢' — 1). There
is an optional supervised classification/regression module g (here with a Gaussian

regression loss a.L.;).
0; = z;-{l_l}, with a Gaussian loss 9;. Layer 1 is special, with a normal encoder but

with a Softmax decoder h; and a cross-entropy loss term, as in (Salakhutdinov and

Hinton, 2009):

eXp(dez{l}

= i)
Y, exp(Wayzth (5.2)

U
)

The dynamical module of the [-th layer corresponds to a simple random walk from a

document at time step ¢ to next document at time step ¢+1: z;{fl = zfl}+ni. The error

124

term 7; can be either a sum of squared element-wise differences (Lo-norm) between
the consecutive time-unit averages of latent codes of documents (i.e. a Gaussian
random walk, that enforces smooth dynamics), or a sum of absolute values of those
element-wise differences (Li-norm, i.e. Laplace random walk).

There can be multiple documents with the same timestamp, in which case, there
should be no direct constraints between z,; and z;; of two documents a and b sharing
the same time-stamp ¢. In the case of such hierarchical temporal dynamics, we define
a dynamic between consecutive values of the averages < z >; of the latent variables
from same time-unit documents (for a set I; of N, articles published on the same
day t, each average is defined as <z >; = 1/N; Y _,.; z;). The intuition behind the
time-specific averages of topics is that they capture the topic “trend” for each time
stamp (e.g. year for NIPS proceedings or for State-of-the-Union speeches).

Finally, there is a classification /regression module g; that classifies [-th layer latent
variables. Typically, we considered multi-variate logistic regression (for classification
problems) or linear regression with logistic loss or Gaussian loss, respectively.

Those models can be learned in a greedy, sequentially layer-wise approach (Bengio
et al., 2006), by considering each layer as an approximated graphical model (see Fig.
5.2) and by minimizing its negative log-likelihood using an Expectation Maximization
(EM) procedure with an approximate maximum-a-posteriori inference (see next sub-
section 5.2.2). We finally prove how our learning procedure minimizes the topic model

perplexity (sub-section 5.2.3).

5.2.2 Dynamic Factor Graphs and the MAP Approximation

As explained in the previous chapters of the thesis, we use the Dynamic Factor Graph

formalism to express the joint likelihood of all visible and hidden variables. We re-

125

trieve through a MAP inference the most likely sequence of hidden topics Z (minimiza-
tion of an unnormalized negative log-likelihood). Our gradient-based EM algorithm

is a coordinate descent on the log-likelihood over the sequence:

()

LiX,Z;Wq) +

acle(Z,Y; W) +
LIX,Y; W) = mzin X (5.3)

acle(X,Z; W) +

osL(Z)

\ Ve

Each iterative inference (E-step) and learning (M-step) consists in a full relaxation
w.r.t. latent variables or parameters, like in the original EM algorithm. We use simple
gradient descent to minimize negative log-likelihood loss w.r.t. latent variables, and
conjugate gradient with line search to mimize £ w.r.t. parameters. Because each
relaxation is until convergence and done separately, everything else being fixed, the
various hyperparameters for learning the modules can be tuned independently, and
the only subtlety is in the choice of the weights a., a. and a,. The a, coefficients
control the relative importance of the encoder, decoder, dynamics and supervised
modules in the total energy, and they can be chosen by cross-validation.

We add an additional Laplace prior on the weights and latent variables (using
Ly-norm regularization, and multiplying learning rates by A, = A\, = 10™*). Finally,
we normalize the decoder to unit column weights as in the sparse decomposition (Ol-
shausen and Field, 1997). Because we initialize the latent variable by first propagating
the inputs of the layer through the encoder, then doing a relaxation, the relaxation
always gives the same latent variables for given parameters, inputs and labels.

As a variation on a theme, we can directly encode x; using the encoders f1, fao, ..., fp,
like in (Ranzato and Szummer, 2008), in order to perform fast inference (e.g. for in-

formation retrieval or for prediction, as we did on experiments in sections 5.3.3 or

126

5.3.4).

Algorithm 2 EM-Type Learning of the Latent Representation at Layer [of the
Dynamic Factor Graph

if [=1 then
Use bag-of-words histograms X as inputs to the first layer
else

Use K;_;-dimensional hidden representation Z{U~} as inputs to layer I
end if
Initialize the latent variables Z{" using K;-dimensional ICA
while epoch < nepocns do
// M-step on the full training sequence:
Optimize the softmax (I = 1) or Gaussian decoder h; by minim. loss £ w.r.t.
W,
Optimize the nonlinear encoder f; by minimizing loss £ w.r.t. W,
Optimize the logistic classifier or linear regressor g; by minim. loss £ w.r.t. W,
// E-step on the full training sequence:
Infer the latent variables Z{"} using the encoder f;
Store associated loss L'(epoch)
Continue inference of Z by minim. loss £ (Eq. 5.11) w.r.t. Z{} (relaxation)
if encoder-only loss L'(epoch) is the lowest so far then
Store the “optimal” parameters {W., W,, W_}
end if
end while
Infer Z{" using “optimal” parameters and the encoder f; only
Optional: continue the inference by minimizing loss £ w.r.t. Z{"

5.2.3 Minimizing Topic Model Perplexity

In the field of topic models, the perplexity measures the difficulty of predicting doc-
uments after training model €2, and is evaluated on held out test sets. Under an

independence assumption, and on a set {w;}7_; of T' documents, containing N; words

127

each, perplexity is defined in (Blei et al., 2003) as the exponential of the cross-entropy:

1

P = p({wi}L Q) =L (5.4)
— exp | — Z;F:I log p (w;|€2)
~ exp (S) (5.5)

In most topic models, each document ¢ is associated with a latent representation 6;
(e.g. the multinomial posterior distribution over topics in LDA), and one assumes the
document to be a bag of N; conditionally independent words w; = {wm}ﬁzl. Hence,

the marginal distribution of w; is:

piwi) = [p(6l2) (ﬂzo(wi,nw@-,m) b, (5.6
~ ﬂp(wm|9~,,ﬂ) (5.7)

Estimating the likelihood of a document given a topic model is intractable even for
small number of topics, documents and vocabulary size, although approximate tech-
niques based on particle filtering were recently suggested in (Buntine, 2009). Here,
we use the standard approximation made by LDA, which is that the topic assignment
distribution 6; is inferred for each document d from observed word occurrences using
variational inference (Blei et al., 2003) or Gibbs sampling (Griffiths and Steyvers,
2004). In our maximum-a-posteriori approach, we replace the full distribution over 6;

by a delta distribution with a mode at 6; that maximizes the likelihood. We rewrite

128

equation (5.6):

N;
logp (wilf, @) = 3" logp(wi,lfi,) (5.8)
n=1
14
ni,v 0
= Ni) | logp(v)f: Q) (5.9)
v=1 v

By defining the empirical conditional distribution of words in document d as p;(v) =

Niv

N;

, which we substitute in (5.8), and by noting the model conditional distribution as
gi(v) = p(v[éi.ﬂ), equation (5.8) become proportional to the cross-entropy between
the empirical and the model conditional distributions over words for document :
H (pi(v),q;(v)) = = >, pi(v)loggi(v). Given this derivation and MAP approxima-
tion, the perplexity of our topic model can be expressed in terms of a weighted sum

of cross-entropies (the weights are proportional to the documents’ lengths):

T

N 1

PxP=exp| —S NH(pi, g 5.10
p(ZiT:lNE (p Q)> (5.10)

i =1

Minimizing LDA perplexity (5.4) is equivalent to minimizing the negative log-likelihood
of the model probabilities of words in all documents, i.e. to a maximum likelihood so-
lution. This is what we do in our approximate maximum-a-posteriori (MAP) solution,
by minimizing a weighted cross-entropy loss (5.11) with respect to both the model
parameters 2 and the latent representations {6;}7_,. Using an unnormalized latent
document representation z; (instead of LDA’s simplex 6;), and in lieu of model distri-
bution ¢;, our model reconstructs a V-dimensional output vector X; of positive values
summing to 1 through the sequence of decoding functions (we write it X; = h(z;)).
However, instead of integrating over the latent variables as in (5.6), we minimize the

reconstruction loss (5.11) over the hidden representation. For a document 4, the cross-

129

entropy — > %;,log Z;, is measured between the actually observed distribution x;,

and the predicted distribution X;.

Li({pi}i=1;92) = min (ZMH Pis g) (5.11)

{ai}i

= mm(ZX logxz> (5.12)

5.3 Results Obtained with Dynamic Auto-Encoders

5.3.1 Perplexity of Unsupervised Dynamic Auto-Encoders

In order to evaluate the quality of Dynamic Auto-Encoders as topic models, we per-
formed a comparison of DAE vs. Latent Dirichlet Allocation. More specifically, for a
100-30-10-2 DAE architecture, we compared the perplexity of 100-topic LDA vs. the
perplexity of the 1st layer of the DAE, then the perplexities of 30-topic LDA vs. the
2nd DAE layer, and so on for 10-topic and 2-topic LDA.

The dataset, consisting in 2483 NIPS articles published from 1987 to 2003, was
separated into a training set (2286 articles until 2002) and a test set (197 articles from
2003). We kept the top V' = 2000 words with the highest TF-IDF score. 100-, 30-, 10-
and 2-topic LDA “encodings” (Blei et al., 2003) were performed using Gibbs sampling
inference® (Griffiths and Steyvers, 2004). Our 100-30-10 DAE with encoding weight
a. = 0 achieved lower perplexity? than LDA on the first two layers (see Table 5.1).

We also empirically compared L; or Ly dynamical penalties vs. no dynamics (a5 = 0).

3Using Xuan-Hieu Phan’s GibbsLDA++ package, available at http://gibbslda.sourceforge.net/,
we trained Gibbs-sampled sLDA for 2000 iterations, with standard and recommended priors o =
50/M and 8 =20/V

4Note that we did not evaluate the perplexity of unigram representations of text, which have
been shown in (Blei et al., 2003) to perform much worse than LDA.

130

Table 5.1: Test Set Perplexity on NIPS Articles. We used a 100-30-10 DAE with 3 dif-
ferent dynamical models (none, Laplace L; random walk, Gaussian Ly random walk).
Each layer of DAE is compared to LDA with the same number K of latent topics. The
last, 10-unit layer is outperformed by 10-topic LDA, which might be a consequence
of training the model stage-wise, without a global end-to-end optimization from X
up to the last layer Z{3}

K LDA DAE,_, DAEY_, DAE!’,
100 657 518 522 522
30 760 698 695 695
10 848 903 909 960

There was little difference between the three types on the first 2 layers. However, L,
norm (Laplace) dynamics instead of (Gaussian) Ly helped for further layers, as on the
3rd layer, no dynamics and L; decreased perplexity by 10%. Moreover, L; allowed a
large “jump” in topic space between 2001 and 2002 (that jump was smeared out by

Ly dynamics).

5.3.2 Plotting Topic Trajectories

We reproduced a study on the U.S. State of the Union speeches from (Pruteanu-
Malinici et al., 2010). We selected the top V' = 2000 common words and named
entities (using the same method as in section 5.3.4), and defined a training set con-
sisting in 17,350 paragraphs from 196 yearly speeches through 1989, and a test set of
1965 paragraphs from 19 speeches (1990 to 2010). After training a 100-30-10-2 DAE
with L; dynamics, we visualized the 2D topic trajectories taken by the yearly aver-
ages of latent variables on the 4th layer, and compared them with a non-dynamical
DAE (same architecture) and a 3-topic LDA (with 2 degrees of freedom). As Figure

5.3 shows, using dynamics on the latent variables during the E-step inference helps

131

to produce a latent representation that can be useful when we expect a dynamical
structure in the data.

The latter 2D latent representation provided us with a historical interpretation. It
appeared that the five strongest discontinuities in the L; norm between 4-th hidden
topics were, in that order: Harry Truman (1946), Ronald Reagan (1982, inaugural),
Andrew Jackson (1829, inaugural), Woodrow Wilson (1913, inaugural) and Franklin
Roosevelt (1934, inaugural), and on the test data, George W Bush (2001, inaugu-
ral), William Clinton (1996) and Barack Obama (2009, inaugural), which seemed to

confirm historical intuitions.

Hierarchical trajectory over time of latent topics

Hierarchical trajectory over time of latent topics
N
|
1 |
1982H0na\gReagan

8&"4&%‘5&‘3%‘

YA
y/ Dabariohrmyier
~

x
0.8} 197QBwt:jardN|xpn

people efficiency world combine dollar
vs. treaty convention arbitration commissioner GREAT,RITAIN

/
1)?75GeréldRFord -08 ¢ T

X X
06} 1878Ji Cart “x1797JohnAdams
A1961JohnFKenfed aner

| ,
L 04 -02 04 08 1
0.4 1953HarrySTruman ! 954waghtDElsenhower axpendllure ﬁscal recelp\ estimate TREASURV
vs. preserve region regard independence standard

>¢953‘DW|ghtDE|senhowFr Hierarchical rajctory over ime o latent opis (3-opic LDA)

1946HarrySTruman X

1 9<1 3WoodrowWilson
188989n|ammHamson oJe
oM _ — _ _ _J9k9HerbertHoover
-0.2| - = = =X xs¥7WilliamMeKinles * o 1921WarrenHard|ng
)ﬁSBSGroverCleveland
1877RutherfordBHayes- 1881ChesterAArhur — — - —1923CaNvinCoolidge

ﬁSﬁﬁAbfah ipcoln
>4 865ArTew Ik gi F?U'”C Adams — ' —.-x809 JamesMadison 1909W‘1I\amHTatt

5 —0.41 1B57JamesBucha ma‘Jeﬂ'erson 1797JohnAdams 1790GeorgeWashington

wSOy;gﬁﬁmm ankllnPlerce 1829AndrewJackson
X

tonight challenge ahead commitment AMERICA woman dream
vs. deem government proper unjurious manner object regard

06 ‘ - »emm mesPok ‘ ‘ ‘
0.2 -0.15 —0.1 —0.05 0 0.05 0.1 0.15 0.2 0.25
preserve mutual understanding strengthen independence - z

vs. expenditure receipt TREASURY fiscal sum UNITED STATES power GOVERNMENT cizen subject country law trealy government act

Figure 5.3: 2D “Trajectories” of State-of-the-Union Addresses. Left: We visualize
the 4th layer yearly topic averages (over paragraphs) of 196 addresses, produced by
a 100-30-10-2 DAE, with dynamical weight oy, = 1. On each axis, “vs.” opposes the
words at the two extremes of that axis. Latent variables were inferred per paragraph
and averaged by year. Top right: same figure for a DAE without dynamics (as = 0).
Bottom right: same figure for a 3-topic LDA (2 degrees of freedom).

132

Table 5.2: Test Set Perplexity on State-of-the-Union Addresses (using the same ar-
chitectures as in Table 5.1).

K LDA DAE,_, DAEX

as=1

100 739 197 218
30 951 481 514
10 1154 1008 859
2 1428 1553 1206

5.3.3 Text Categorization and Information Retrieval

The standard Reuters-21578 “ModApte” collection® contains 12,902 financial articles
published by the Reuters news aggregator, split into 9603 train and 3998 test sam-
ples. Each article belongs to zero, one or more categories (in this case, the type of
commodity described), and we considered the traditional set of the 10 most popu-
lated categories (note that both (Gehler et al., 2006) and (Ranzato and Szummer,
2008) mistakenly interpreted that collection as a dataset of 11,000 train and 4000 test
single-class articles). We generated stemmed word-count matrices from raw text files
using the Rainbow toolbox®, selecting the top V' = 2000 word stems with respect to
an information gain criterion, and arranging articles by publication date.

To our knowledge, TF-IDF is the best representation for IR on the Reuters col-
lection, and the state-of-the-art classification technique on that set remains Support
Vector Machines with linear or Gaussian kernels (Joachims, 1998). We focused on
linear SVMs and used the standard liblinear software package’, and performed a five-
fold cross-validation to select the regularization hyperparameter C' through exhaustive

search on a coarse, then on a fine grid.

® Available at Alessandro Moschitti’s webpage: http://dit.unitn.it/~moschitt/corpora.htm
6 Andrew McCallum’s toolbox is available at http://www.cs.cmu.edu/~mccallum/bow /rainbow/
"See http://www.csie.ntu.edu.tw/~cjlin/liblinear/

133

We compared our 100-30-10-2 DAE with a single-hidden-layer Multi-Layer Per-
ceptron encoder to TF-IDF, TF-IDF+ICA (Kolenda and Kai Hansen, 2000), TF-
IDF+SVD (Deerwester et al., 1990), LDA (Blei et al., 2003; Griffiths and Steyvers,
2004), and auto-encoders (Ranzato and Szummer, 2008). The Area Under the Precision-
Recall (AUPR) curve for information retrieval (interpolated as in (Davis and Goad-
rich, 2006)) by TF-IDF was 0.51, and 0.54 using 10-dimensional LDA (which was by
far the best among unsupervised techniques). After optimizing the inference weights
on the training data (o, = o, = 10 and ay = 1), our DAE vastly outperformed
TF-IDF and unsupervised techniques in terms of AUPR (see Table 5.3). For the
multi-class classification task, we computed multi-class precision, recall and F} scores
using micro and macro-averaging (Joachims, 1998; Debole and Sebastiani, 2005). Us-
ing an SVM with linear kernel trained on the latent variables, we matched full TF-IDF
(F1,, = 0.91, Fy 5 = 0.83)® and outperformed TF-IDF-+ICA (see Table 5.4).

Auto-encoders (Ranzato and Szummer, 2008) with the same architecture as DAE
performed slightly better than DAE in terms of AUPR for IR, which might be at-
tributed to the fact that they have no relaxation step on the latent variables during
learning, only direct inference, which might help to better train the encoder. We can
nevertheless claim that DAEs are close to the state of the art for information retrieval

and text classification.

5.3.4 Prediction of Stock Market Volatility from Online News

There is some evidence in recent history that financial markets (over)react to public
information. In a simpler setting, one can restrict this observation to company-
specific news and associated stock movements, quantified with volatility o2. The

problems of stock price movement or volatility forecasting from financial news have

8TF-IDF with Gaussian SVR achieved (F1,, =0.92, Fy 3y = 0.84).

134

Table 5.3: Test Set Area Under the Prediction-Recall for Information Retrieval on
Reuters-21578 Articles. We used a 100-30-10-2 DAE with 2 different dynamical mod-
els (none vs. Laplace L; random walk). Each layer of DAE is compared to LDA,
TFIDF+ICA or TFIDF+SVD with the same number K of latent topics (TFIDF+ICA
performed the best). We outperformed full TFIDF (0.51) and all unsupervised tech-
niques. We also compared our architecture to auto-encoders in (Ranzato and Szum-
mer, 2008) with a similar 100-30-10-2 architecture.

K LDA DAE}Z DAE}_ ", DAE}" DAE}'” R&S

as=0 as=0
100 0.42 0.86 0.86 0.90 0.89 0.87
30 0.49 0.85 0.81 0.62 0.63 0.93
10 0.54 0.86 0.80 0.81 0.78 0.89
2 0.25 0.73 0.78 0.71 0.75 0.70

Table 5.4: Test Set Macro/Micro-Averaged F; Scores Using Linear SVM on Reuters-
21578 Articles. We used the same architectures as in Table 5.3.

K ICA DAE}Z, DAE{<), DAE)Z" DAE}Y R&S

Ll:aszl Llyaszl

100 0,90, 0.81 0.91, 0.84 091,084 0.92,0.86 0.92,0.85 0.92,0.85
30 0.86,0.70 0,91, 0.85 091,083 0.92,0.86 0.92,0.85 0.92,0.85
10 0.73,0.40 0.91, 0.84 091,084 0.92,0.86 0.92,0.85 0.92,0.84
2 053,009 0.81,0.52 0.85,0.63 0.83,0.54 0.83,0.51 0.75,0.19

been formulated as supervised text categorization problems, and addressed in an
intra-day setting, respectively in (Gidofalvi and Elkan, 2003) and in (Robertson et al.,
2007). In the latter, it was proved that the arrival of some “shock” news about
an asset j impacted its volatility (by switching to a “high-volatility” mode) for a
duration of at least 15 min. In this article, we tried to solve a slightly more difficult
problem than in (Robertson et al., 2007), by considering the volatility o3, estimated

from daily stock prices® of a company j. We normalized volatility dividing it by the

9Stock market data were acquired at http://finance.yahoo.com. Volatility was estimated from
daily open, close, high and low prices (Yang and Zhang, 2000).

135

median volatility across all companies j on that same day, then taking its logarithm:
Y+ = log sz,t — loga?. Using the Bloomberg Professional service, we collected over
90,000 articles, published between January 1 and December 31, 2008, on 30 companies
that were components of the Dow Jones index on June 30, 2008. We extracted each
document’s time stamp and matched it to the log-volatility measure y;; at the earliest
following market closing time. Common words and named entities were extracted, and
numbers (dollar amounts, percentages) were binned. In order to make the problem
challenging, we split the dataset into 51,362 test articles (after July 1, 2008, in a crisis
market) and 38,968 training articles (up to June 30, 2008, corresponding to a more
optimistic market).

Our benchmark was linear regression on the 2000-word TF-IDF representation,
which achieved R? = 0.267. Support Vector Regression with Gaussian kernels'® (and
a Gaussian “spread" parameter equal to v = 1) achieved a higher score of R? = 0.285.
Note that kernel methods are expensive on this large Bloomberg dataset with 51k
training examples. sSLDA ™ (Blei and Lafferty, 2006) performed surprisingly poorly,
with R? < 0.1, for 100, 30, 10 or 2 topics.

As we report in Table 5.5, our DAE with a 100-30-10-2 architecture, L; dynamics,
tanh encoders f and linear decoders g achieves, at each hidden layer, a higher coeffi-
cient of determination R? on the test set than linear encodings (K-dimensional ICA
on TF-IDF) or probabilistic topic models (K-topic LDA). We observe that the latent
representation on the 3rd and 4th layer of our DAE architecture also performs better
than the full high-dimensional sparse representation (TF-IDF). DAE were however

outperformed by the auto-encoders from (Ranzato and Szummer, 2008), for similar

10We used the liblinear SVM library, available at: http://www.csie.ntu.edu.tw/ cjlin/libsvm/

"Using Jonathan Chang’s LDA package available at http://cran.r-project.org/web /packages/lda,
we trained Gibbs-sampled sLDA with 100 M steps and 20 E steps, with priors @ = 50/M and
B =20V

136

Table 5.5: Prediction of Median-Adjusted Log-Volatility From 2008 Financial News
About the Dow 30 Components. We used linear regression fits on bag-of-words-
derived representations (V' = 2000). We report the coefficient of determination R?
on the test set (articles published after June 30). The 3rd and 4th layer of DAE
outperformed TF-IDF with linear regression (R* = 0.267) and the 4th layer matched
TF-IDF with nonlinear Gaussian SVR (R? = 0.285) but not the non-relaxed auto-
encoders by Ranzato & Szummer (Ranzato and Szummer, 2008).

K LDA ICA DAE!" R&S

100 0.134 0.219 0.261 0.293
30 0.083 0.155 0.263 0.297
10 0.062 -0.073 0.271 0.300
2 -0.036 -0.123 0.283 0.304

reasons as on the information retrieval tasks on the Reuters corpus from the previous
section.

Finally, those compact representations of the early 2008 financial articles high-
lighted informative text features about stock market uncertainty: for instance, the
two 2nd-layer hidden topics that were the most positive regressors of log-volatility had
the following topic definitions (top 10 words): topic 1: GM, sale, US, vehicle, BOE-
ING, world, +20%, automaker, +10%, plant and topic 2: rating, credit, financial,
information, debt, MOODY’S, FITCH, flow, security, AIG .

Note that by construction, volatility has strong temporal correlation. A naive
predictor for next-day volatility based solely on historical prices (or actually, on the
previous’ day volatility) gets a very high score of R? = 0.99. This might be the main
reason why a text-based TF-IDF linear regressor of next-day log-volatility achieves a

relatively good R? = 0.274, which compares to R? = 0.267 for same-day volatility.

137

5.4 Conclusions and Futher Work

We have introduced a new method for information retrieval, text categorization and
topic modeling, that can be trained in a both purely generative and discriminative
ways. It can give word probabilities per document, like in a topic model, and incorpo-
rates temporal dynamics on the topics. Moreover, learning and inference in our model
is simple, as it relies on an approximate MAP inference and a greedy approach for
multi-layer auto-encoders. This results in a few hours of learning time on moderately
large text corpora, using unoptimized Matlab code. Our initial results on standard
text collections are very promising. As further avenues of work, we are planning on
designing better (nonlinear) encoder modules, and in optimizing the gradient-based
algorithms for training individual components of the DAE, in order to speed-up the

method for very large datasets.

5.4.1 Application to Epileptic Seizure Prediction from EEG

[am also planning on applying Dynamic Auto-Encoders to our patent-pending (Mirowski
et al., 2009b) seizure prediction methodology. The latter consists in classifying pat-
terns x; of bi-variate EEG synchronization features into two types: pre-ictal (i.e. a few
minutes before a seizure) and interictal (far from seizure). The motivation behind
our work is that, despite the current lack of a complete neurological understand-
ing of the pre-ictal brain state, researchers increasingly hypothesize that brainwave
synchronization patterns might differentiate interictal, preictal and ictal (seizure)
states (Le Van Quyen et al., 2003). The meaures that we use for synchronization
are bivariate (between any two electrodes of multi-channel EEG), and can consist in

such features as cross-correlation, nonlinear interdependence (Arnhold et al., 1999)

138

or Wavelet analysis-based phase-locking synchony (Le Van Quyen et al., 2001). In
our previous published work (Mirowski et al., 2008, 2009a), we showed that by train-
ing patient-specific convolutional network classifiers, we can successfully predict all
seizures without false positives on the test set, in 15 patients out of 21, using a publicly
available EEG database!?, and thus obtaining state-of-the-art performance on that
data, outperforming previous studies (Aschenbrenner-Scheibe et al., 2003; Maiwald
et al., 2004; Schelter et al., 2006a,b; Schulze-Bonhage et al., 2006).

In my future work on epileptic seizure prediction, instead of treating it as a clas-
sification problem, I will approach it as a time-to-next-seizure 1; regression problem
and introduce latent variables z¢ with simple dynamics (Ls-norm Gaussian random
walk) to add temporal consistency and thus reduce the chance of false alarms. For this
reason, [will use the same auto-encoder architecture as on the volatility prediction

problem, but with a simple Gaussian decoder on the first layer.

12This evaluation was conducted on the EEG dataset of the University of Freiburg, Germany,
available at: https://epilepsy.uni-freiburg.de/

139

(a) EEG on 06-Dec-2001, 12:00 (interictal) (c) EEG on 12-Dec-2001, 06:20 (preictal)

ez *)"W(”WW\/‘,’WW\f'\»w.w\n\M,WW.»\J\»AMWJ\WWW\\,MW‘,MW\A e WW”M‘M \'\'\M‘M\LW ey "W“‘(MAWWW‘M MW iy
TLBB R A AR A i M/\\ //q \ I"'\. o B3 WW‘W“"‘LW\ H’\WAWM\W’ MWW/MW‘JWVM'%‘W.WW/f M‘MWWI{’AWVWWWW
Y
TLB2 PV A AN A e e e ’W?W'JWMW]W s vj“‘ Wi i bbesibor sy el
R i l : [HR_nW»J‘vwWMWMMWJ\W\/“MMWMMVWM‘«A\\M*J\J«W\i"\NMNW‘iJWWMN‘WW
- ATV— - oA MM i
[TBAK] ottt o ,. [Tadl »W‘JJMMWM”"N)\/‘W\‘"WMMWW (‘\'/\“WW’MW‘WWM\’
12:00:00 12‘0‘[]‘15 12‘0‘[]".(0 12‘0‘0 45 12‘0‘1 00 06:20:00 DET.Z‘D 30 06: 2‘] 00
Time ime
(b) Features C on 06-Dec-2001, 12:00 (interictal) (d) Features C on 12-Dec-2001, 06:20 (preictal)
TLB3 TLC2 Highst TLB3 TLC2 Highest
TLB2 TLC2 TLB2TLC2 -
TLB2TLB3 x TLB2 TLB3 x|
[HR_7] TLC2X| [HR_7] TLC2 x|
[HR_7) TLB3 x [HR_7] TLB3 x|
2 mraTe: & HR7ITLE2
a [TBB6] TLC2x : g- [TBB6] TLC2x
o [TBESTLB3x o [TEBSITLB3X.
g [TBB6] TLB2X g [TBB6] TLB2 X -
= [TBB6] [HR_7]x| = [TBBB][HR_7] x|
o 5}
[TBA4] TLC2 x| [TBA4] TLC2x
[TBA4] TLB3 x [TBA4] TLB3 X
[TBA4] TLB2 o [TBA4] TLB2 ©
[TBA4][HR_7] o [TBA4][HR_7] 0
[TBA4][TBBS] o [TBA4][TBE6] o
Lowest Lowest
2 4 _ 6 . 8 10 12 2 4 _ 6 R 8 10 12
Time (frames) Time (frames)

Figure 5.4: Examples of two 1-min EEG recordings (upper panels) and corresponding
patterns of cross-correlation features (lower panels) for interictal (left panels) and
preictal (right panels) recordings from patient 012. EEG was acquired on M = 6
channels. Cross-correlation features were computed on 5 s windows and on p =
M x (M —1)/2 = 15 pairs of channels. Each pattern contains 12 frames of bivariate
features (1 min). Please note that channel TLB3 shows a strong, time-limited artifact;
however, the patterns of features that we use for classification are less sensitive to
single time-limited artifacts than to longer duration or repeated phenomena. This
figure is reproduced from (Mirowski et al., 2009a).

140

CHAPTER O

APPLICATION TO STATISTICAL LANGUAGE MODELING

Whenever [fire a linguist our system

performance improves

At IBM Research in Speech Recognition

FREDERICK JELINEK

Accepting [...] that I really said it, I must
first of all affirm that I never fired anyone,

and a linguist least of all.

In “Some of My Best Friends Are Linguists"
Jelinek (2005)

FREDERICK JELINEK

This final applications chapter presents an adaptation of Dynamical Factor Graphs
for language modeling. It was presented at the IEEE Spoken Language Technology
workshop in December 2010 (Mirowski et al., 2010a), has been submitted for publica-
tion, and is the object of a patent application filed by AT&T Labs Research (Mirowski
et al., 2010b). Because we are trying to model discrete events (words) using hidden

variables, we resort to a major simplification in the latent variable inference. The

141

observation model is now simply a lookup table, which maps a 100-dimensional hid-
den vector to each word of the vocabulary, and contains no energy term. There is
no proper relaxation on the hidden variables either, therefore we cannot call them
latent anymore. On the upside, we gain the ability of full energy-based learning on
the dynamics.

Probabilistic models of text such as n-grams require an exponential number of
examples as the size of the context grows - a problem that is due to the discrete
word representation. They were recently outperformed by language models that use
a continuously valued and low-dimensional representation of words. In these models
word probabilities result from non-linear dynamics in the latent space. We propose
to build on Log-Bilinear models, and to enrich them with additional inputs such
as part-of-speech tags, almost-parsed supertags, a mixture topic model and by using
graph constraints based on word similarity. We demonstrate that our additions result
in significantly lower perplexity on different text corpora, as well as improved word
accuracy rate on speech recognition tasks, as compared to state-of-the-art N-gram

and existing continuous language models.

6.1 Statistical Language Modeling

A key problem in natural language processing (both written and spoken) is designing
a metric to score sentences according to their well-formedness in a language, also
known as statistical language modeling. In speech recognition applications, statistical
language models are generally used to rank the list of candidate hypotheses that are
generated based on acoustic match to the input speech. An example is N-gram
language models which assume that the probability of a word w,; depends only on a

short, fixed history wj_}., of n — 1 previous words (a Markov approximation). This

142

results in the joint likelihood of a sequence of T" words being given by:

T

P(wl) =P wi)] P (wlwiohy) (6.1)

t=n

The conditional probabilities in N-gram models are estimated by keeping track of
the n-gram counts in a training corpus. Their main limitation is that as the size of the
history increases, the size of the corpus needed to reliably estimate the probabilities
grows exponentially. In order to overcome this sparsity, back-off mechanisms (Katz,
1987) are used to approximate n'" order statistics with lower-order ones, and sparse
or missing probabilities may be further approximated by smoothing (Chen and Good-
man, 1996).

In contrast to discrete n-gram models, recently-developed Continuous Statistical
Language Models (CSLM) (Bengio et al., 2003; Morin and Bengio, 2005; Schwenk
and Gauvain, 2003; Schwenk, 2010; Blitzer et al., 2004; Mnih and Hinton, 2007, 2008;
Mnih et al., 2009; Collobert and Weston, 2008; Sarikaya et al., 2010) embed the words
of the |W|-dimensional vocabulary into a low-dimensional and continuously valued
space RIZ!, and rather than making predictions based on the sequence of discrete
words wy, wy_1,...,w; operate instead on the sequence of embedded word vectors
Zi,Z_1,...,21. The advantage of such models over discrete n-gram models is that
they allow for a natural way of smoothing for unseen n-gram events. Furthermore,
the representations for the words are discriminatively trained in order to optimize the
word prediction task.

In this paper, we describe a novel CSLM that extends previously presented models.
First, our model is capable of incorporating similarity graph constraints on word
representations. Second, the model can efficiently use word meta-features, like part-

of-speech tags or “almost parse” supertags (fragments of parse trees). Finally, the

143

model is also flexible enough to handle long range information derived from topic
models. Thus our architecture synthesizes and extends many of the strengths of the
state-of-the-art CSLMs (see Figure 6.1). While language modeling is our task and
hence test perplexity is a natural evaluation metric, we also evaluate our model on

word accuracy for speech recognition.

6.2 Proposed Extensions to Continuous Statistical
Language Modeling

The best-known CSLM is the Neural Probabilistic Language Model (NPLM) (Bengio
et al., 2003), which consists of a neural network that that takes as input a word
window history, embeds this in latent space, z.} 41 and is trained to directly predict
the probability of the next word w; (the probability is over the entire vocabulary).
Trainable parameters of this system are both the word embedding function (the way
in which words, w; are projected to their low-dimensional representations, z;) as well
as the network combination weights (how the z’s in the context are combined to
make the prediction). A variant of this model has been successfully applied to speech
recognition (Schwenk and Gauvain, 2003) and machine translation (Schwenk, 2010).

Since the NPLM architecture does not allow constraints to be added to the word
embeddings, we only adopt from this methods the non-linear architecture (single
hidden layer neural network) and the trainability of the embedding. Instead we base
our model on the Log-BiLinear (LBL) architecture (Mnih and Hinton, 2007, 2008;
Mnih et al., 2009). This probabilistic energy-based model is trained to predict the
embedding Zz; of the next word w;. The key elements of the LBL architecture are

explained in Sections 6.3.1, 6.3.2 and 6.3.3. We demonstrate in Section 6.4.2, that

144

LBL models outperform n-gram language models.

Other nonlinear classifiers (hierarchical logistic regression (Blitzer et al., 2004)) or
state-space models (Tied-Mixture Language Models, (Sarikaya et al., 2010)) used for
CSLM have been considered that initialize the word representation by computing a
square word co-occurrence matrix (bigrams) and reducing its dimensionality through
Singular Value Decomposition to the desired number of hidden factors |Z]. We fol-
low this work in initializing the LBL word embeddings as explained in Section 6.3.4.
We also explain there how one can impose similarity constraints on the word rep-
resentation, using for instance information about word similarity from the WordNet
taxonomy.

A third, major extension of our LBL model (section 6.3.5), is our incorporation of
part-of-speech tag features as additional inputs, similar to the Deep Neural Networks
with Multitask Learning (Collobert and Weston, 2008). The latter study, however,
addresses different supervised NLP tasks other than language modeling. We also
investigated the use of supertags, which are multi-level elements of a Tree-Adjoining
Grammar (Joshi, 1987).

Finally, in Section 6.3.7, we investigate the influence of the long-range depen-
dencies between words in the current and few previous sentences, or in the current
document. For this reason, we integrate our CSLM with unsupervised topic mod-
els for text, in a spirit similar to HMM-LDA (Griffiths et al., 2005)." All the four
proposed improvements over LBL are evaluated both in terms of language model

perplexity and of speech recognition word accuracy in section 6.4.

ITheir language model was a simple discrete bigram.

145

6.3 Architecture of Our Statistical Language Model

with Hidden Variables

In a typical Continuous Statistical Language Model one tries to compute the proba-
bility distribution of the next word in a sequence using the distributed representation
of the preceding words. One class of models tries to achieve this by capturing the
dependencies/interactions between the distributed representation of the next word
and the distributed representations of the preceding words in the sequence. This is
achieved by defining an energy function (a cost) between the variables that capture
these dependencies. Learning in such models involves adjusting the parameters such
that low energies are assigned to the valid sequences of words and high energies to the
invalid ones. This is typically achieved by maximizing the likelihood of the training

corpus (LeCun et al., 2006).

6.3.1 Log-BiLinear Language Models

Log-Bilinear models, recently proposed by Mnih et al. in (Mnih and Hinton, 2007,
2008; Mnih et al., 2009) form our basic model class. Let us denote by wi = [w ... wr]
a discrete word sequence of length 7', and its corresponding low dimensional real-
valued representation by z! = [z ...z7] (where V¢, 2z, € R4l). The LBL model tries
to predict the distributed representation of the next word z;. It outputs Zz; using a
linear function of the distributed representations of the preceding words z,~} +1, where

7,1 1 denotes a stacked history of the previous word embedding (a vector of length

(n —1)|Z]):

= Cz;_ iL-s-l +bc = fc (Zt n+1) (6.2)

146

Matrix C is a learnable parameter matrix that expresses the bilinear interactions
between the distributed representations of the previous words and the representation
of the current word. The vector bg is the corresponding vector of biases. For any
word w, in the vocabulary with embedding z,, the energy associated with respect to

the current sequence is a bilinear function and is given by:

E(t,v) = %, 2z, — b, (6.3)

Intuitively, this energy can be viewed as expressing the similarity between the
predicted distributed representation of the current word, and the distributed repre-
sentation of any other word w, in the vocabulary. The similarity is measured by the
dot product between the two representations. Using these energies one can assign the

probabilities to all the words w, in the vocabulary:

1) B e—E(t,v)

P ('LUt = wU’Wt_n+l Sl E— (64)
ZL/:|1 e~ Eltv)

Training an LBL model involves maximizing the likelihood of all the words in a
corpus, treating each word as a target. This is equivalent to minimizing the negative
log likelihood L; over a data set:

(W]

Ly = E(t,v) + log Z e Bt (6.5)

v'=1

6.3.2 Non-Linear Extension to LBL

The LBL model as described above is capable of capturing only linear interactions

between representations of the previous words and the representation of the next

147

word, via the matrix C. However, expressing it as an energy-based model allows us
to add more complex interactions among the representations just as easily. This is
achieved by simply increasing the complexity of the energy function. For instance,
one can capture non-linear dependencies among the representations of the previous
words, and the next word by adding a single hidden layer neural network, as proposed
in (Mnih et al., 2009). In particular let matrices A and B be the two learnable
parameter matrices and the vectors by and by be the corresponding biases. Let
o denote the tanh sigmoid transfer function which acts on hidden layer outputs.
Then the prediction given by this nonlinear component, which captures non-linear

dependencies among representations, is given by:

faB (Zi:}l—i-l) = BU(AZE:}%H +ba) + bg. (6.6)

Then, prediction by both the linear and the non-linear component of the LBL

(LBLN) is given by the sum of the two terms:

ze= fas (2 i) + fc (Ziohi) - (6.7)

The energy of the system is defined in exactly the same way as in equation (6.3),
and the loss function is defined in the same way as in equation (6.5). The system is

again trained by maximizing the likelihood of the training corpus.

6.3.3 Training the LBL(IN) Model

Throughout this study the dimensions of the distributed representation of words was

set to |Z] = 100, and the number of hidden units in the neural network were set to

148

500 (in the case of LBLN).

As mentioned in the previous section, training of LBLN models involves maxi-
mizing the log-likelihood of the target words in all the sequences of the training set,
which is achieved by minimizing the negative log-likelihood (equation 6.5) for the
corpus. This minimization is accomplished by a stochastic gradient descent proce-
dure on mini-batches of 1000 words, as given in (Mnih and Hinton, 2007; Mnih et al.,
2009). Typically, equation (6.5) is differentiated w.r.t. the prediction z;, the target
word representation z,, and the other word representations z,, and the gradients are
propagated through the linear C and nonlinear A, B modules up to the word rep-
resentations R themselves, as well as to the respective biases. Following (Mnih and
Hinton, 2007; Mnih et al., 2009), weight momentum g is added to all parameters.
In addition, the word embedding R, and all weight matrices (except the biases) are
subject to Ly-norm regularization. Table 6.1 summarizes the various hyperparameter
values, some of which were taken from (Mnih et al., 2009) and others optimized by
cross-validation on a small dataset.

We now discuss the various extensions to the LBLN model that we explored in
the present study.

Table 6.1: Hyperparameters (Learning rates 7, regularization A and momentum pu

coefficients) Used in the LBL Architecture of This Article. Values in boldface are
taken from (Mnih et al., 2009).

nc un nB NR Ula A %
103 10 105 104 10% 10° 0.5

149

6.3.4 Extension 1: Constraining the Hidden Word Embed-
dings

All the parameters A, B, C, R are initialized randomly. We use the rule of thumb
of generating zero-mean normally distributed words of variance equal to the inverse
of the matrix fan-in (LeCun et al., 1998b). Biases are initialized to zero, with the
exception of b,, which are initially equal to the unigram statistics of the training data.
Some CSLM architectures (Blitzer et al., 2004; Sarikaya et al., 2010) are however
dependent on the initial hidden word representation, and in order to evaluate this
dependency, we followed a procedure similar to (Sarikaya et al., 2010) which initializes
R using Singular Value Decomposition on the bi-gram (n-gram) co-occurrence matrix.

As can be shown in section 6.4.4, the low-dimensional nature of the word em-
bedding in CSLMs (|Z| << |W/|, with |Z| = 100 and |W| typically over 10,000)
and the word co-occurrence in the text tend to cluster word representations z,,
according to their syntactic co-occurrence and semantic equivalence. In order to
speed-up the learning of our model and to potentially help achieve better perfor-
mance, we considered imposing a graph constraint on the words. For each word w,
we defined its neighborhood N, obtained through the hierarchical WordNet? tree
and using the WordNet::Similarity module® (specifically, we used Resnik similar-
ity (Resnik, 1999), keeping in N,, only words whose Resnik score was higher than
8). During learning time, the graph constraint was imposed by adding a penalty

term -~y Zg‘jl | 2w — ﬁ > wen, Zo |3 to the total log-likelihood (we set v = 1).

2See http://wordnet.princeton.edu
3 Available at http://wn-similarity.sourceforge.net/

150

6.3.5 Extension 2: Adding Part-Of-Speech Tags

The most important improvement over the LBL (Mnih and Hinton, 2007) and the
LBLN (Mnih et al., 2009) was the addition of Part-of-Speech (POS) tags to each word.
Conceptually, this step is identical to the word embedding: for each word, discrete
POS tags (out of a vocabulary of |X|, here between 30 and 52) are mapped into a
low-dimensional embedding %/4x! through a linear operation (matrix F). The matrix
F was also initialized randomly in the same way as discussed in Section 6.3.4. We also
considered the case | X| = |Zx|, with an identity transform F = I|x|. Those tags can
then be concatenated with the |Zy/|-dimensional word representations into a history
of n—1 word and feature representations, and used as an input to the predictive model
(Figure 6.1), just like in (Collobert and Weston, 2008). As explained below, POS tag

features can be trivially extended to accommodate other types of word features.

6.3.6 Extension 3: Incorporating Supertags

Supertags are elementary trees of a lexicalized tree grammar such as a Tree-Adjoining
Grammar (TAG) (Joshi, 1987). Unlike context-free grammar rules which are single
level trees, supertags are multi-level trees which encapsulate both predicate-argument
structure of the anchor lexeme (by including nodes at which its arguments must
substitute) and morpho-syntactic constraints such as subject-verb agreement within
the supertag associated with the anchor. There are a number of supertags for each
lexeme to account for the different syntactic transformations (relative clause, wh-
question, passivization etc.). For example, the verb give will be associated with at

least these two trees, which we will call tdi and tdi-dat, illustrated below:

151

tdi tdi-dat

S S
/\ /\
NPy | VP NPy | VP
I I
Vo NP, | PP VO NP, [NPy |

Pl
PNP, |
|
to

Supertagging is the task of disambiguating among the set of supertags associated
with each word in a sentence, given the context of the sentence. In order to arrive
at a complete parse, the only step remaining after supertagging is establishing the
attachments among the supertags. Hence the result of supertagging is termed as an
“almost parse” (Bangalore and Joshi, 1999). We use the same set of 500 supertags
derived from the Penn Treebank as discussed in (Bangalore, 1997) in the experiments

for this paper.

6.3.7 Extension 4: Topic Mixtures in LBL(IN)

A fourth improvement over the LBL and LBLN architecture that we considered was
the long-range dependency of the language model on the current topic, simplified as
a dependency on the bag-of-words vocabulary statistics. Our main motivation was
that such a context-dependent model would enable domain adaptation of the latent
embedding and combination weights. This adaptation can be done at document-level
(or paragraph-level). When proper document segmentation is not available, such
as in broadcast transcripts, a “document” can be defined by considering the last D

sentences, assuming that the speakers do not change topic too often.

152

We decided to implement a topic model based on the popular Latent Dirichlet
Allocation* (Blei et al., 2003), a graphical model that is trained to extract a word-
topic matrix from a collection of documents, and that can infer latent topic posterior
distributions 6, for each test document d. As can be seen on Fig. 6.1, the K-
dimensional topic vector (where), 6 = 1) can be used as weights of a mixture model.
Because the predictions made by each component of the mixture add-up for the final
prediction Z; (6.8), the implementation of the topic-dependent LBL(N) architecture

is a simple extension of the previously described LBLN-based architectures.

7z =

ek (ka (Zi:,'l.b_,’_l) + fAk,Bk (Zi::t—&—l)) (68)

11

As can be seen in the next section, adding a topic model mixture holds promise in
terms of language model perplexity but still requires additional experimental evalua-
tion.

Note that we could have used the topic model developed in Chapter 5 of my
thesis, but we initially preferred an out-of-the-box solution provided by LDA. Another
reason for our choice of topic models was the fact that LDA computes a topic simplex

(multinomial distribution over topics) which is very handy for mixture model weights.

6.4 Results Obtained with Feature-Rich Log-BiLinear
Language Model

The following section summarizes several sets of experiments performed on four dis-
tinct datasets (section 6.4.1), aimed at assessing the test set perplexity of the respec-

tive language models (section 6.4.2),; and at measuring the word accuracy performance

4We used the Gibbs-based implementation of LDA, available at http://gibbslda.sourceforge.net/

153

for speech recognition tasks (section 6.4.3). Finally, we illustrate the power of clus-

tering words with low-dimensional representations (section 6.4.4).

6.4.1 Language Corpora

We have evaluated our models on five distinct, public datasets: 1) the Airline Travel
Information System (ATIS), a small corpus containing short sentences concerning air
travel, 2) the Wall Street Journal (WSJ) set, containing sentences from business news,
3) the Reuters-21578 corpus® of business news articles, which is normally used for text
categorization, 4) TV broadcast news transcripts HUB-4 from the LDC (reference
2000S88), with audio information, and 5) the large AP News corpus used in (Bengio
et al., 2003; Mnih and Hinton, 2007, 2008; Mnih et al., 2009). Table 6.2 summarizes
the statistics of each dataset.

For the WSJ set, we used POS tags to identify and replace all numbers (tag CD)
and proper nouns (tags NNP and NNPS), as well as words with 3 or fewer occurrences,
by generic tags resulting in a considerable reduction in the vocabulary size. For
the Reuters set, each article was split into sentences using the Maximum Entropy
sentence-splitter by Adwait Ratnaparkhi®, and then tagged using the Stanford Log-
linear Part-of-Speech Tagger”. We replaced numbers and rare words (i.e. appearing
less than four times) by special tags, as well as out-of-vocabulary test words by {unk}.
For the HUB-4 corpus, we obtained 100-best hypotheses for each audio file in the test
set using a speech recognition system comprising of a trigram language model that
was trained on about 813,975 training sentences. In all the experiments but on AP
News, 5% of the training data were set apart during learning for cross-validation

(the model with the best performance on the cross-validation set was retained). The

®See: http://disi.unitn.it/moschitti/corpora.htm
6See: http://sites.google.com/site/adwaitratnaparkhi/
"See: http://nlp.stanford.edu/software/tagger.shtml

154

1M-word validation set of AP News had already been defined.

Table 6.2: Description of the datasets evaluated in this study: size of vocabulary |/,
number of training words T}, and sentences/documents D,., number of test words Tj.
and sentences/documents Dj..

Dataset |W| Ty, D, T, D,.
ATIS 1,311 116k 11k 23k 2,369
WSJ 10222 1,079k 46k 42k 2,266

Reuters 11,742 1,445k 10k 462k 3,299
AP News 17,964 13,995k 649k 963k 46k
HUB-4 25,520 813k 19k 32k 827

6.4.2 Decrease in Language Model Perplexity

Assuming a language model is defined by the conditional probability distribution ¢
over the vocabulary, its perplexity intuitively corresponds to a word uncertainty given

a context. On a corpus of T words, it is defined as:

1 T
P = exp (—? Z log P (wt|w§£+1)> (6.9)

t=1

In the absence of task-specific evaluation, such as word accuracy for speech recog-
nition, perplexity is the measure of choice for language models. Therefore, and similar
to (Bengio et al., 2003; Mnih and Hinton, 2007, 2008; Mnih et al., 2009), we used per-
plexity to compare our continuous language models to probabilistic n-gram models.
We chose the best performing n-gram models that include a back-off mechanism for
handling unseen n-grams (Katz, 1987) and the Kneser-Ney smoothing of probability
estimates (Chen and Goodman, 1996), using an implementation provided by the SRI

Language Modeling Toolkit® (Stolcke, 2002). We did not consider n-gram models ex-

8See: http://www-speech.sri.com /projects/srilm/

155

tended with POS tags. For each corpus, we selected the n-gram order that minimized
the test set perplexity.

We performed an extensive evaluation of many configurations of the LBL-derived
architectures and improvements. All the results presented here were achieved in less
than 100 learning epochs (i.e. less than 100 passes on the entire training set), and
with the set of hyperparameters specified in Table 6.1. As can be seen in Tables
6.3, 6.4, 6.5 and 6.6, most of the linear and all the non-linear LBL language models
are superior to n-grams, as they achieve a lower perplexity. Various initializations
(random or bi-gram/n-gram SVD-based) or WordNet::Similarity constraints do not
seem to significantly improve the language model for LBLNs, and they might even
be detrimental to linear LBLs.

We markedly reduced the perplexity of LBL. and LBLN when using word features
such as POS tags or supertags, as inputs to the model. The relative improvement was
between 5% and 10% on ATIS (using all the 30 POS tags as inputs to the dynamical
model), around 2%-5% on WSJ when using a 5-dimensional embedding of POS tags,
of 5% on the Reuters corpus, and slightly below 3% for AP News. Supertags achieved
a drastic reduction in perplexity between 20% and 25% on the WSJ set.

Table 6.3: Language model perplexity results on the ATIS test set. LBLN with 200
hidden nodes, |Zy/| = 100 dimensionial word representation and all |Zx| = 30 POS
tags achieved the lowest perplexity (below 11.6), outperforming the Kneser-Ney 4-

gram model (13.5). Bigram SVD-derived initialization and WordNet::Similarity graph
constraints on word embeddings did not improve LBLN results, and worsened LBL’s.

LBL| LBL| LBLN| LBLN
POS POS

no constraints | 15.45| 14.30 12.32] 11.60
rand. + graph| 16.14| 14.65 12.35| 11.48

SVD init | 15.96| 14.51 12.37| 11.54
SVD + graph| 16.38| 14.90 12.39| 11.61

156

Taking advantage of the small size of the ATIS dataset, we investigated the influ-
ence of several hyper-parameters on the performance of the LBL model: the linear
model learning rate 7¢, as well as the word embedding learning rate ng, the first layer
14 and second layer np nonlinear module learning rates. We conducted an exhaustive
search on a coarse grid of the above hyper-parameters, assuming an LBL(N) archi-
tecture with |Zy/| = 100 dimensional word representation and |H| = 0, 50, 100 or
200 hidden nonlinear nodes, as well as |Zx| = 0 or 3 dimensional embedding of POS
tag features. Evidently, as suggested in (Mnih et al., 2009), the number of hidden
non-linear nodes had a positive influence on the performance, and our addition of
POS tags were beneficial to the language model. Regarding the learning rates, the
most sensitive rates were nr and 7, then n4 and finally ng. The optimal results were
achieved for the hyper-parameter values in Table 6.1. We then selected the optimal
LBLN architecture with |Zy/| = 100 and |H| = 200 and further evaluated the joint
influence of the feature learning rate ng, the graph constraint coefficient ~, the di-
mension of the POS tag embedding |Zx|, and the random or bigram initialization of
the word embeddings. The most important factor was 7, which needed to be smaller
than 1073, and the presence or absence of POS features (larger embedding sizes did
not seem to significantly improve the model).

In a subsequent set of experiments, we evaluated the benefit of adding a topic
model to the (syntactic) language model, focusing on the Reuters and AP News
datasets (organized in documents) and on the HUB-4 transcripts (a window of five
consecutive sentences was treated as a document; results reported in section 6.4.3).
We used the standard Latent Dirichlet Allocation topic model to produce a simplex
of topic posteriors {6;1,...,0: x} for K = 5 topics, for each “document”, and used
these coefficients as weights of a 5-mixture model. We retained, for each mixture

component, the same LBL and LBLN architectures as in the previous experiments,

157

Table 6.4: Language model perplexity results on the WSJ test set. Kneser-Ney 5-
grams attain a perplexity of 86.53. Similar architectures to the one in Table 6.5
were used. While the benefit of initializing the word representation and enforcing
WordNet::Similarity graph constraints (noted as {R}) is not obvious, POS tags clearly
reduce the perplexity of LBL and LBLN, and supertags are even better. We control
for the size |Zx| of the feature embedding, showing that supertags are far superior
to POS tags. Learning was stopped after 100 epochs, and results in italics show LBL
models that did not reach their optimum.

LBL| LBL| LBLN| LBLN
{R} {R}
No features | 93.4| 98.0 84.9 84.4
|Zx|pos =5| 90.3| 95.8 82.6 81.1
|Zx|pos =50 | 88.7| 93.5 83.0 82.6
| Zx |super = 50| 69.6| 724 66.7 66.3

and experimented with adding POS features. As Table 6.5 suggests, adding a topic
model improved the plain LBL perplexity (but not LBLN’s) on the medium-size
Reuters set, and it significantly improved the perplexity on the large AP News corpus

(the combined topic+POS reduction in perplexity was 8% on both LBL and LBLN).

6.4.3 Increase in Speech Recognition Word Accuracy

In Table 6.7, we present the results of speech recognition experiments using our
language model. We used AT&T Watson ASR (Goffin et al., 2005) (with a trigram
language model trained on HUB-4 training set) to produce 100-best hypotheses for
each of the test audio files of the HUB-4 task. The 1-best and the 100-best oracle
word accuracies are 63.7% and 66.6% respectively. Using a range of language models
(including a 4-gram discrete LM), we re-ranked the 100-best hypotheses according
to LM perplexity (ignoring the scores from ASR), and selected the top one from
each list. The top-ranking hypothesis resulting from LBLN models had significantly

better word accuracies than any discrete language models. Adding a topic mixture

158

Table 6.5: Language model perplexity results on the Reuters test set. All LBL(N)s
had |Zy | = 100 dimensional word representation, and LBLNs had 500 hidden nodes.
Word representations were optionally initialized by SVD on 5-gram co-occurrence
matrices. LBLNs with POS tags embedded into |Zx| = 5 dimensions outperformed
not only the Kneser-Ney 5-gram model, but also the vanilla LBLN. Adding a K =5
dimensional topic mixture based on LDA posteriors (i.e. creating a 5-mixture model
of LBL and LBLN) seemed to improve the perplexity of LBL but not of LBLN.

Method Init. POS |Zx| Topics Perplex.

5-gram - - - 80.78
LBL rand. - - 78.30
LBL rand. - 5 73.12
LBLN rand. - - 63.92
LBLN SVD - - 63.67
LBLN rand. 5 - 60.34
LBLN SVD 5 - 60.42
LBLN rand. - 5 65.50
LBLN SVD - 5 66.74
LBLN rand. 5 5 61.85
LBLN SVD 5 5 62.07

model further increased the word accuracy on the HUB-4 dataset compared to vanilla
LBLN. In order to measure the efficacy of the language model in selecting the correct
hypothesis if it were present in the k-best list, we included the reference sentence
as one of the candidates to be ranked. Table 6.8 shows that we significantly out-
performed the best n-gram model on this task as well.

Finally, we compare the trade-off between the language model and the acoustic
model. It can be seen that the acoustic model alone produces poor predictions.
We noticed that combining the acoustic model with language model makes good
predictions only when the language model is given a stronger (even infinite) weight,

which is due to the fact that we are operating on a 100-best list.

159

Table 6.6: Language model perplexity results on the AP News test set. We evaluated
LBL(N) architectures with |Zy/| = 100 dimensions for the word representation, and
replicated the results from (Mnih et al., 2009) for the LBL and 500-hidden node LBLN
architectures. We also evaluated the impact of adding 40 part-of-speech tags (with
a |Zx| = 40-dimensional representation) and K-topic models. Although the results
that we obtained on vanilla LBL(N) had a little higher perplexity than in (Mnih et al.,
2009), we nonetheless considerably improve upon LBLN using either POS features
or topics (or both). We ultimately beat both the state-of-the-art LBLN and Gated
LBLN architectures from (Mnih et al., 2009), as well as the Neural Probabilistic
Language Model (Bengio et al., 2003) (marked with a *). We did not consider trivial
improvements such as combining LBLs with probabilistic n-grams, or extending the
size of the context to 10.

Method |H| POS |Zx| Topics Perplex.
KN 5-gram - - - 123.2
LBL - - - 127.7
LBL - 40 - 123.6
LBL - - d 121.0
LBL - 40 5 117.5
LBLN 500 - - 104.4
LBLN 500 40 - 101.5
LBLN 500 - 5 98.5
LBLN 500 40 5 96.1
NPLM* 200 - - 109.0
LBL* - - - 117.0
LBLN* 200 - - 99.0
GLBLN* 200 - - 96.8

6.4.4 Examples of Word Embeddings on the AP News Corpus

For the visualization of the word embedding, we chose the AP News corpus (although
it is smaller than the 386M word and 30k vocabulary Wikipedia set from (Collobert
and Weston, 2008)). Table 6.9 illustrates the word embedding neighborhood of a few
randomly selected "seed” words, after training an LBLN with POS tag features and a
5-topic mixture. Although word representations were initialized randomly and Word-

Net::Similarity was not enforced, we clearly succeeded in capturing functionally and

160

Table 6.7: Speech recognition results on the HUB-4 task. For each target sentence,
100-best lists were produced by the AT&T Watson system, and language models were
used to select the candidate with lowest NLL score. We indicate the best and worst
possible word accuracies that can be achieved on these lists (“Oracle”), as well as
the one obtained by the acoustic model alone. LBLNs with 5-topic mixture models,
and either POS tag features or bigram SVD-derived initialization achieve the highest
word accuracy, outperforming a state-of-the-art speech recognition baseline, Kneser-
Ney 4-gram models, and plain LBLNs.

Method Accuracy
AT&T Watson 63.7 %
100-best list, acoustic model only — 61.7 %
100-best list, “oracle” 66.6 %
Worst “oracle” on 100-best list 57.8 %
Back-off KN 4-gram 63.5 %
LBLN 64.1 %
LBLN-+init 64.2 %
LBLN + POS(34) 64.1 %
LBLN+POS(34)+init 64.2 %
LBLN+topics 64.2 %
LBLN-+topics-+init 64.6 %
LBLN-+POS(5)+topics 64.3 %

LBLN+POS(3)+topics+init 64.6 %

semantically (e.g. both synonymic and antonymic) similar words in the neighborhood
of these seed words.

To provide with a simpler representation of the word embeddings, we further
projected them onto a two-dimensional plan using the t-SNE algorithm (Van der
Maaten and Hinton, 2008). Figures 6.2, 6.3, 6.4, 6.5 and 6.6 respectively illustrate
the full word embedding, as well as details focusing on “country names”, “US states”,

“occupations” and “verbs”.

161

Table 6.8: Speech recognition results on HUB-4 transcripts. We used the same train-
ing and test sets as in Table 6.7, but with the true sentence to be predicted included
among the 101-best candidates.

Method Accuracy
Back-off KN 4-gram 86.9 %

LBLN-+POS-+init 94.0 %
“Oracle” 100 %

6.4.5 Computational Requirements

We implemented our LBL-derived architectures under Matlab. The training was lin-
ear in the size of the dataset (i.e. the number of words). As observed for previous
CSLM models (Bengio et al., 2003) or (Mnih and Hinton, 2007), the bulk of the com-
putations consisted in evaluating the word likelihood (6.4) and in differentiating the
loss (6.5), which was theoretically linear in the size of the vocabulary |W|. However,
thanks to the BLAS and LAPACK numerical libraries, it was sublinear in practice.
Typically, training our LBL architectures on moderately sized datasets (WSJ, Reuters
and TV broadcasts) would take about a day on a multi-core server. Because of the
possible book-keeping overhead that might arise from sampling approximations, or
because of the decreased language model performance (higher perplexity) when hier-
archical word representation are used (Morin and Bengio, 2005), or of the LBL (Mnih

and Hinton, 2008), we restrict ourselves to the exact solution.

6.5 Conclusions

We presented an energy based statistical language model with a flexible architec-
ture that allows for novel and diverse extensions of the log-bilinear model formulated

in (Mnih and Hinton, 2007, 2008; Mnih et al., 2009). We also explored initializations

162

Table 6.9: Examples of 10 closest neighbors in the $!°° word embedding space on
AP News. We used the best LBLN+POS-+topics architecture from Table 6.6. The 7
seed words were selected randomly, and cosine similarity was used to compare any

two word vectors.

frustrations tried immune marble
feelings stopped harmful lgranite
achievements threatened [resistant velvet
accomplishments [sought susceptible bronze
advantages decided prone silk
origins returned addictive leather
vigor met abnormal flower
successes moved transmitted mahogany
weaknesses kkept unsafe brick
strength refused beneficial neon
enthusiasm offered harmless 'wooden

crime _rate technologies savings and_loans

work force industries thrift

standard of living [systems law _firm

inflation rate foods estate

budget deficit brands investment company

unemployment rate [carriers real estate

demise laboratories transaction

stock market suppliers bank account

peso enterprises iguaranty

value products cartel

net methods icorporation

of word embeddings and word similarity constraints via a word-graph, with mixed

results, but we demonstrated consistent and significant predictive improvements by

incorporating part-of-speech tags or supertags as word features, as well as long range

(document level) topic information. Our results show that our model significantly

advances the state-of-the-art, beating both n-gram models and the best continuous

language models on test perplexity. Finally, we demonstrated the utility of this im-

proved language modeling by obtaining better word accuracy on a speech recognition

task.

163

word
embedding
space R1#¥
(POS) feature

embedding L L A L L
N

ARy AR yA%| yAS] AR

space RI#
(POS) feature
embedding

word
embedding

discrete (POS)
features {0, 1} WordNet
graph of
words
discrete sentence or
o document
word space °
{1, ... |W[} [) [topic simplex
Wt-5 t-4 Wt-3 Wt-2 We-|
thecat sat on the mat

Figure 6.1: Enhanced log-biLinear architecture. Given a word history wi_} ., a low-

dimensional embedding z,~),; is produced using R and is fed into a linear C matrix,
as well as into a non-linear (neural network) architecture (parameterized by A and
B) to produce a prediction Z;. If one uses a topic model with K topics, the predictor
becomes a mixture of K modules, controlled by topic weights 61, ..., 0 obtained for
the current sentence of document from a topic model such as LDA. That prediction
is compared to the embedding of all words in the vocabulary using a log-bilinear
loss E, which is normalized to give a distribution. Part-of-Speech features can be
also embedded using matrix F, alongside the words, and the embeddings can have

WordNet::Similarity constraints.

164

Visualization of 100—dimensional word embeddings obtained with an LBLN with 40 POS tags and 5 topics
100 T T T \ \ T T

80 == s i
60 S AR - }

401 e e = .

t—SNE dimension 2
o
T
|

| OO | | | | | | |
-80 -60 -40 -20 0 20 40 60 80

t—SNE dimension 1

Figure 6.2: 2D representation of the word embedding, obtained by applying the t-
SNE algorithm on the word embedding matrix R from our best LBLN architecture
with POS tags and topic mixtures. Only 8983 words are shown out of the full 17965-
word vocabulary. This figure requires is designed for the electronic version of the
document, as it requires zooming.

165

Visualization of 100—dimensional word embeddings obtained with an LBLN with 40 POS tags and 5 topics

68 T T T T T T T T T
neighboring
kuwait sinn+fein
syria
67 lebanerthern+ireland
burlHi@"8erbia
netherlands croatia
zaire
sri+lanka
kosovo libya china
bahrain .
burma pakistan
66 I~ cuba
bihar I macedonia thefivitishn
west+africa angola guatemala
niger saudi+ i france
[a\] m&éﬂk& ukraine
c azerbaijan greece
o 65 | germany a
) sicily . italy
c zambia ghana nicaragua
malaysia .
o . 4 spain mexico
€ mongolia
o yemen zimbabwe norway
L estonia austria thailand colombia
=z = i brazil —
) 64 . tunisia Swedenirelanq/ ‘
I papua+new+guinea lithuanic enezuela
— ithuania AnAms
panama australia
qatar kenya
the+netherlands
guinea
lesotho
631 MOroceo lyxembourg _
slovakia romania singapore
korea asia
latin+america
62 _
mozambique
south+america
siberia
61 nagasgki I I I I I I I I
48 49 50 51 52 53 54 55 56 57 58

t—SNE dimension 1

Figure 6.3: Detail of Figure 6.2 focusing on “country names”. Note that
and "the-+british” seem to be on top of each other.

166

"the-+{rench”

t—SNE dimension 2

Visualization of 100—dimensional word embeddings obtained with an LBLN with 40 POS tags and 5 topics

85 T T T T T T T T
a8l new+york+state i
84.6 west+virginia . 7
hews kentu&y 9 wyoming
ReBladka .
84.41 new+mexico-
gaol missQHfhnesota 4
alabama
84| hiawaii
delaware
colorado
83.8 _ |
new-+jersey wisconsin massachusetitah
oregon
83.6 _
83.41 4
georgia maine
83.21 |
california
83 1 1 1 1 1 1 1 1
49 49.2 49.4 496 498 50 50.2 50.4 50.6 50.8
t—SNE dimension 1
Figure 6.4: Detail of Figure 6.2 focusing on “US states”.

167

Visualization of 100—dimensional word embeddings obtained with an LBLN with 40 POS tags and 5 topics

70 T T T T T T T T T
songwriters
68 - groom N
saint
heavyweight czar
civil+rights+leader
narrator
66 B tenor |
irigoon rorfan
oSt gntertainer lord
i~ choreographer desigifgrano freEn
S arommer guitarist poet
n 64 dancer bishop N
C . musici p, OB
o) inventor %H er
artis
g music+director cardinal
© champion
L author
Z 62 i
()] business-+editor
| board+member X
Lot patriarch
—auth co-founder
co-author chief+operating+officer assembfyman
organizer I st magazine+publisher
columnis
principal heir ERPR
editor commentator o sen
superintendent p
58 diregigsociate cv:)ngresé“ls'‘rzﬁtz?nr 1
ad¥fsignt
mayor governor
SPOKRRMASREY head
56 | | | | | | | | |

Figure 6.5:

t—SNE dimension 1

Detail of Figure 6.2 focusing on “occupations”.
“chief+-executive+officer”, “chief-+executive”, “general+manager”’, etc...

Note how ‘“ceo”,
are super-

imposed. This figure requires is designed for the electronic version of the document,

as it requires zooming.

168

Visualization of 100—dimensional word embeddings obtained with an LBLN with 40 POS tags and 5 topics
-30 T T T T T T T -

t—SNE dimension 2
&
o
T
|

-70
-60 -55 -50 -45 -40 -35 -30 -25 -20

t—SNE dimension 1

Figure 6.6: Detail of Figure 6.2 focusing on “verbs”. This figure requires is designed
for the electronic version of the document, as it requires zooming.

169

CHAPTER

CONCLUSION

Parsifal - the kind of opera that starts at six
o’clock and after it has been going three
hours, you look at your watch and it says

6:20

DAviD RANDOLPH, CONDUCTOR

Dear Reader, thank you for navigating through this extended account of my doc-
toral work. It introduced a new and simple methodology to modeling time series and
sequences, resorting to dynamics on hidden variable representations.

The major obstacle to overcome was the intractable problem of inferring latent rep-
resentations of sequences with (non)linear dynamics. Although numerous approaches
had been introduced in the past decade to solve that problem, consisting mostly of
variational Bayes and sampling methods, I proposed a simple maximum a posteriori
gradient-based inference enabled by a constant partition function, and a deterministic
Expectation-Maximization learning procedure. I justified that these approximations
were principled, and demonstrated the efficiency of my method on several real world
problems and datasets, where I achieved state-of-the-art results.

There are multiple reasons that explain why DFGs work so well with a MAP ap-

170

proximation of latent variables, even though the distribution of the latent variables
could theoretically be multimodal. These reasons differ from dataset to dataset. For
instance, most of the dataset that I considered, with the exception of the gene reg-
ulation data, were relatively long, dispensing with the need to model uncertainty in
the data, and thus well suited for energy-based methods. In the only case when the
dataset was very short (mRNA micro-arrays), I used heavily regularized simple linear
or nonlinear models. Secondly, I would always regularize the hidden representations
to limit their information content. Thirdly, I would in some cases initialize the hid-
den representations in an unsupervised way, using Singular Value Decomposition, to
further avoid suboptimal (local minima) solutions.

This multiple proof of principle demonstrated that a MAP inference was a valid
simplification, whose benefits were multiple: thanks to DFGs, one could learn long
sequences in linear time, handle high-dimensional hidden and observed variables, and
most importantly, model highly nonlinear dynamics and observation functions. As
I explained in Chapter 3, the computational complexity of DFGs is dominated by
the E-step inference, and it is linear in the number T of training samples, linear in
the number of observed variables and quadratic in the number of hidden variables.
More precisely, if we note |W| the number of parameters of the model, the total
computational complexity of one inference step over the full sequence is O (T'|W]).
The DFG algorithm is therefore comparable, in terms of running time, to Back-
Propagation Through Time for Recurrent Neural Networks, but unlike the latter, it
explicitly optimizes the hidden representations.

Further investigations are envisioned, regarding the inference of gene regulation

networks and epileptic seizure prediction from EEG.

171

A word on the software implementation

The factor graph formulation makes our algorithm inherently modular and relatively
easy to implement as software!.

Each module needs only two functions to be defined, which we call fprop and
backprop. The fprop function is used to forward-propagate the variables through the
factor’s function and to evaluate the energy of the factor; the backprop function is used
to evaluate the derivatives of the loss of the factor with respect to both the function’s
parameters and the latent variables (if they serve as inputs to the function). For this
reason, any function and energy/loss that are differentiable can be used. The loss
function £ consists in the sum of energies at each factor, plus regularization terms on
the latent variables and on the parameters of the module.

One then needs to define an E-step relaxation function that performs iterated fprop
and backprop on the latent variables until convergence, and several M-step functions,
one per type of factor/module. Both the E-step and M-step can consist in simple
gradient descents; the M-step can further benefit from other types of optimizations,
such as stochastic gradient (Bottou, 2004), exact solution to ridge regression, or
conjugate gradient (LeCun et al., 1998b).

Remaining portions of code deal with data pre-processing, early stopping strate-
gies and bookkeeping the energies and statistics on latent variables and parameters.

Although we ultimately made four different implementations of our software for
the four problems we handled, all the algorithms possessed the same properties enun-
ciated above. Two implementations are currently being used by other researchers,
respectively for the inference of gene regulation networks and for statistical lan-

guage modeling. A third software release is planned, concerning the Dynamic Auto-

"Which we did in Lush (available at http://lush.sourceforge.net) and Matlab (by Mathworks).

172

Encoders, which could be applied not only to text but also other types of data, such

as features derived from EEG or perhaps even musical notation ...

173

BIBLIOGRAPHY

Abarbanel, H., Brown, R., Sidorowich, J. and Tsimring, L. (1993). The
analysis of observed chaotic data in physical systems. Reviews of Modern Physics

65.

Akaike, H. (1973). Information theory and an extension to the maximum likelihood

principle. In 2nd International Symposium on Information Theory.

Alvarez, M., Luengo, D. and Lawrence, N. (2009). Latent force models. In
ICML.

Alvarez-Buylla, E., Benitez, M., Balleza-Davila, E., Chaos, A., Espinosa-
Soto, C. and Padilla-Longoria, P. (2007). Gene regulatory network models for

plant development. Current Opinion in Plant Biology 10, 83-91.

Angus, J., Beal, M., Li, J., Rangel, C. and Wild, D. (2010). Inferring tran-
scriptional networks using prior biological knowledge and constrained state-space
models. In M. R. Neil Lawrence, Mark Girolami and G. Sanguinetti, eds., Learn-
ing and Inference in Computational Systems Biology. Cambridge, MA: MIT Press,
pages 117-153.

174

Aristidou, A., Cameron, J. and Lasenby, J. (2008). Real-time estimation of
missing markers in human motion capture. In Proceedings of the 2nd International

Conference on Bioinformatics and Biomedical Engineering I[CBBE’08.

Arnhold, J., Grassberger, P., Lehnertz, K. and Elger, C. (1999). A robust
method for detecting interdependence: applications to intracranially recorded EEG.

Physica D 134, 419-430.

Aschenbrenner-Scheibe, R., Maiwald, T., Winterhalder, M., Voss, H. and
Timmer, J. (2003). How well can epileptic seizures be predicted? An evaluation

of a nonlinear method. Brain 126, 2616-2626.

Bakker, R., Schouten, J., Giles, C., Takens, F. and van den Bleek, C.
(2000). Learning chaotic attractors by neural networks. Neural Computation 12,

2355-2383.

Baldi, P. and Rosen-Zvi, M. (2005). On the relationship between deterministic
and probabilistic directed graphical models: From bayesian networks to recursive

neural networks. Neural Networks 18, 1080-1086.

Bangalore, S. (1997). Complexity of Lexical Descriptions and its Relevance to Par-

tial Parsing. Ph.D. thesis, University of Pennsylvania, Philadelphia, PA.

Bangalore, S. and Joshi, A. (1999). Supertagging: An approach to almost parsing.

Computational Linguistics 25.

Barber, D. (2003). Dynamic bayesian networks with deterministic latent tables.
In NIPS’03: Advances in Neural Information Processing Systems. Cambridge MA:
MIT Press.

175

Barenco, M., Tomescu, D., Brewer, D., Callard, R., Stark, J. and Hubank,
M. (2006). Ranked prediction of p53 targets using hidden variable dynamic mod-

eling. Genome Biology 7.

Beal, M., Falciani, F., Ghahramani, Z., Rangel, C. and Wild, D. (2005).
A bayesian approach to reconstructing genetic regulatory networks with hidden

factors. Bioinformatics 21, 349-356.

Bengio, Y., Ducharme, R., Vincent, P. and Jauvin, C. (2003). A neural

probabilistic language model. Journal of Machine Learning Research 3, 1137-1155.

Bengio, Y. and Frasconi, P. (1995). An input/output HMM architecture. In
G. Teusauro, D. Touretzky and T. Leen, eds., Advances in Neural Information

Processing Systems NIPS’94. Cambridge, MA: Morgan Kaufmann, MIT Press.

Bengio, Y., Lamblin, P., Popovici, D. and Larochelle, H. (2006). Greedy

layer-wise training of deep belief networks. In NIPS.

Bengio, Y., Simard, P. and Frasconi, P. (1994). Learning long-term dependencies
with gradient descent is difficult. IFEE Transactions on Neural Networks 5, 157

166.

Bishop, C. (2006). Pattern recognition and machine learning. New York, NY:

Springer.
Blei, D. and Lafferty, J. (2006). Dynamic topic models. In I/CML.
Blei, D. and McAulife, J. (2007). Supervised topic models. In NIPS.

Blei, D., Ng, A. and Jordan, M. (2003). Latent dirichlet allocation. Journal of
Machine Learning Research 3, 993-1022.

176

Blitzer, J., Weinberger, K., Saul, L. and Pereira, F. (2004). Hierarchical
distributed representations for statistical language modeling. In Advances in Neural

Information Processing Systems.

Bonneau, R., Facciotti, M., Reiss, D., Schmid, A., Pan, M., Kaur, A.,
Thorsson, V., Shannon, P., Johnson, M., Bare, J. and et al (2007). A
predictive model for transcriptional control of physiology in a free living cell. Cell

131, 1354-1365.

Bonneau, R., Reiss, D., Shannon, P., Facciotti, M., Hood, L., Baliga, N.
and Thorsson, V. (2006). The inferelator: an algorithm for learning parsimonious

regulatory networks from systems-biology data sets de novo. Genome Biology 7.

Bottou, L. (2004). Stochastic learning. In U. v. L. O. Bousquet, ed., Advanced

Lectures on Machine Learning. Berlin: Springer Verlag, pages 146-168.

Box, G. and Jenkins, G. (1976). Time Series Analysis, Forecasting and Control.

Oakland, CA: Holden Day, 2nd edition edition.

Buntine, W. (2009). Estimating likelihoods for topic models. In Z.-H. Zhou and
T. Washio, eds., Advances in Machine Learning, volume 5828 of Lecture Notes in

Computer Science. Springer Berlin / Heidelberg, pages 51-64.

Casdagli, M. (1989). Nonlinear prediction of chaotic time series. Physica D 35,
335-356.

Chen, S. F. and Goodman, J. (1996). An empirical study of smoothing techniques
for language modeling. In Proceedings of the Thirty-Fourth Annual Meeting of
the Association for Computational Linguistics. San Francisco: Morgan Kaufmann

Publishers.

177

Chopra, S., Thampy, T., Leahy, J., Caplin, A. and LeCun, Y. (2007). Dis-
covering the hidden structure of house prices with a non-parametric latent manifold

model. In Knowledge Discovery and Data Mining.

Collobert, R. and Weston, J. (2008). A unified architecture for natural lan-
guage processing: deep neural networks with multitask learning. In ICML ’08:

Proceedings of the 25th international conference on Machine learning. ISBN 978-
1-60558-205-4.

Cortes, C. and Vapnik, V. (1995). Support vector networks. Machine Learning
20, 273-97.

Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function.

Mathematics of Control, Signals and Systems 2, 303-314.

Davis, J. and Goadrich, M. (2006). The relationship between precision-recall and
roc curves. In ICML.

Debole, F. and Sebastiani, F. (2005). An analysis of the relative hardness of the
Reuters-21578 subsets. Journal of the American Society for Information Science

and Technology 56, 584-596.

Deerwester, S., Dumais, S., Furnas, G., Landauer, T. and Harshman, R.
(1990). Indexing by latent semantic analysis. Journal of the American Society for

Information Science 41, 391-407.

Dempster, A., Laird, N. and Rubin, D. (1977). Maximum likelihood from
incomplete data via the EM algorithm. Journal of the Royal Statistical Society B
39, 1-38.

178

Durrett, R. (1996). Stochastic Calculus: A Practical Introduction. Boca Raton, FL:
CRC Press.

Efron, B., Hastie, T., Johnstone, I. and R., T. (2004). Least angle regression.

Annals of Statistics 32, 407—499.

Gao, P., Honkela, A., Rattray, M. and Lawrence, N. (2008). Gaussian process
modeling of latent chemical species: applications to inferring transcription factor

activities. Bioinformatics 24, i70-75.

Gehler, P., Holub, A. and Welling, M. (2006). The rate adapting poisson model

for information retrieval and object recognition. In ICML.

Ghahramani, Z. (1998). Learning Dynamic Bayesian Networks. Lecture Notes in

Artificial Intelligence. Berlin: Springer-Verlag, pages 168-197.

Ghahramani, Z. and Roweis, S. (1999). Learning nonlinear dynamical systems
using an em algorithm. In Advances in Neural Information Processing Systems

NIPS’99. Cambridge, MA: Morgan Kaufmann, MIT Press.

Gidofalvi, G. and Elkan, C. (2003). Using news articles to predict stock price
movements. Technical report, Department of Computer Science and Engineering,

University of California, San Diego.

Girard, A., Rasmussen, C., Candela, J. and Murray-Smith, R. (2003). Gaus-
sian process priors with uncertain inputs - application to multiple-step ahead time
series forecasting. In Advances in Neural Information Processing Systems NIPS’03.

Cambridge, MA: MIT Press.

179

Goffin, V., Allauzen, C., Bocchieri, E., Hakkani-Tur, D., Ljolje, A.,
Parthasarathy, S., Rahim, M., Riccardi, G. and Saraclar, M. (2005). The
AT&T WATSON Speech Recognizer. In Proceedings of ICASSP. Philadelphia, PA.

Griffiths, T. and Steyvers, M. (2004). Finding scientific topics. PNAS 10, 5228—
5235.

Griffiths, T., Steyvers, M., Blei, D. and Tenenbaum, J. (2005). Integrating

topics and syntax. In Advances in Neural Information Processing Systems.

Gutierrez, R., Gifford, M., Poultney, C., Wang, R., Shasha, D., Coruzzi,
G. and Crawford, N. (2007). Insights into the genomic nitrate response using

genetics and the sungear software system. Journal of Ezperimental Botanics 58,

2359-2367.

Herring, C. and Palmore, J. (1995). Random number generators are chaotic.

Communications of the ACM 38.

Hinton, G., Dayan, P., Frey, B. and Neal, R. (1995). The wake-sleep algorithm

for unsupervised neural networks. Science 268, 1158-1161.

Hinton, G., Osindero, S. and Teh, W.-H. (2006). A fast learning algorithm for

deep belief nets. Neural Computation 18, 1527-1554.

Hinton, G. and Salakhutdinov, R. (2006). Reducing the dimensionality of data

with neural networks. Science 313, 504-507.

Hirose, O., Yoshida, R., Imoto, S., Yamaguchi, R., Higuchi, T., Charnock-
Jones, D., Print, C. and Miyano, S. (2008). Statistical inference of transcrip-
tional module-based gene networks from time course gene expression profiles by

using state space models. Bioinformatics 24, 932-942.

180

Hochreiter, S. and Schmidhuber, J. (1995). Long short-term memory. Neural
Computation 9, 1735-1780.

Ilin, A., Valpola, H. and Oja, E. (2004). Nonlinear dynamical factor analysis for

state change detection. IEEFE Transactions on Neural Networks 15, 559-575.

Jaeger, J. and Monk, N. (2010). Reverse engineering of gene regulatory networks.
In M. R. Neil Lawrence, Mark Girolami and G. Sanguinetti, eds., Learning and
Inference in Computational Systems Biology. Cambridge, MA: MIT Press, pages
9-35.

Jelinek, F. (2005). Some of my best friends are linguists. Language Resources and

Fvaluation 39, 25-34. ISSN 1574-020X. 10.1007/s10579-005-2693-4.

Joachims, T. (1998). Text categorization with support vector machines: Learning

with many relevant features. In ECML.

Joshi, A. K. (1987). An introduction to tree adjoining grammars. In A. Manaster-

Ramer, ed., Mathematics of Language. Amsterdam: John Benjamins.

Kalman, R. E. (1960). A new approach to linear filtering and prediction problems.
Transaction of the ASME - Journal of Basic Engineering , 35—45.

Katz, S. (1987). Estimation of probabilities from sparse data for the language moel
component of a speech recognizer. IEEE Transactions on Acoustics, Speech and

Signal Processing ASSP-35, 400—401.

Keshamouni, V., Jagtap, P., Michailidis, G., Strahler, J. and Kuick, R.
(2009). Temporal quantitative proteomics by iTRAQ 2D-LC-MS/MS and cor-

responding mRNA expression analysis identify post-transcriptional modulation

181

of actin-cytoskeleton regulators during TGF-beta-induced epithelial-mesenchymal

transition. Journal of Proteome Research 8, 35-47.

Kim, M. and Pavlovic, V. (2007). Conditional state space models for discrimina-

tive motion estimation. In IEEFE International Conference on Computer Vision.

Kohlmorgen, J., Muller, K.-R. and Pawelzik, K. (1994). Competing predictors
segment and identify switching dynamics. In P. M. M. Marinaro, ed., ICANN’94:
Proceedings of the International Conference on Artificial Neural Networks. London

Berlin Heidelberg: Springer.

Kohlmorgen, J., Muller, K.-R. and Pawelzik, K. (1998). Analysis of drifting
dynamics with neural network hidden markov models. In NIPS’97: Advances in

Neural Information Processing Systems. Cambridge, MA: MIT Press.

Kolenda, T. and Kai Hansen, L. (2000). Independent components in text. In

Advances in Independent Component Analysis.

Krogh, A., Thorbergsson, G. and Hertz, J. (1990). A cost function for internal

representation. In Advances in Neural Information Processing Systems.

Krouk, G., Crawford, N., Coruzzi, G. and Tsay, Y. (2010). Nitrate signaling:

adaptation to fluctuating environments. Current Opinion in Plant Biology .

Krouk, G., Mirowski, P., Yann, Y., Shasha, D. and Coruzzi, G. (Provi-
sionally accepted for publication). High-resolution dynamics of transcriptome re-
sponses to no3- in arabidopsis roots: Molecular physiology and predictive modeling.

Genome Biology .

Kschischang, F., Frey, B. and Loeliger, H.-A. (2001). Factor graphs and the

sum-product algorithm. IEEE Transactions on Information Theory 47, 498-519.

182

Kuo, J.-M. and Principe, J. (1994). Reconstructed dynamics and chaotic signal

modeling. In IEEFE International Conference on Neural Networks.

Lafferty, J., McCallum, A. and Pereira, F. (2001). Conditional random fields:
Probabilistic models for segmenting and labeling sequence data. In Proceedints of
the International Conference on Machine Learning. San Francisco, CA: Morgan

Kaufmann.

Lahdesmaki, H., Shmulevich, I. and Yli-Harja, O. (2003). On learning gene
regulatory networks under the boolean network model. Machine Learning 52, 147

167.

Lang, K. and Hinton, G. (1988). The development of the time-delay neural
network architecture for speech recognition. Technical Report CMU-CS-88-152,

Carnegie-Mellon University.

Lawrence, N. (2004). Gaussian process latent variable models for visualisation of
high dimensional data. In Advances in Neural Information Processing Systems

NIPS’04. Cambridge, MA: MIT Press.

Lawrence, N. and Sanguinetti, G. (2007). Modelling trancriptional regulation

using gaussian processes. In NIPS.

Le Van Quyen, M., Foucher, J., Lachaux, J.-P., Rodriguez, E., Lutz, A.,
Martinerie, J. and Varela, F. (2001). Comparison of hilbert transform and

wavelet methods for the analysis of neuronal synchrony. Journal of Neuroscience

Methods 11, 83-98.

183

Le Van Quyen, M., Navarro, V., Martinerie, J., Baulac, M. and Varela, F.
(2003). Toward a neurodynamical understanding of ictogenesis. FEpilepsia 44/12,
30-43.

LeCun, Y., Bottou, L., Bengio, Y. and Haffner, P. (1998a). Gradient-based

learning applied to document recognition. Proceedings of the IEEE 86, 2278-2324.

LeCun, Y., Bottou, L., Orr, G. and Muller, K. (1998b). Efficient backprop. In
K. M. G. Orr, ed., Neural Networks: Tricks of the trade, Lecture Notes in Computer

Science. Berlin/Heidelberg: Springer, pages 9-50.

LeCun, Y., Chopra, S., Hadsell, R. and Huang, F. (2006). A tutorial on

energy-based learning. In Predicting Structured Outputs. MIT Press.

Lendasse, A., Oja, E. and Simula, O. (2004). Times series prediction competi-
tion: The cats benchmark. In Proceedings of IEEE International Joint Conference

on Neural Networks (IJCNN), volume 2.

Levin, E. (1993). Hidden control neural architecture modeling of nonlinear time-
varying systems and its applications. IEEE Transactions on Neural Networks 4,

109-116.

Liu, G. and McMillan, L. (2006). Estimation of missing markers in human motion

capture. The Visual Computer 22, 721-728.

Lorenz, E. (1963). Deterministic nonperiodic flow. Journal of Atmospheric Sciences

20, 130-141.

Lozano, A., Abe, N., Liu, Y. and Rosset, S. (2009). Grouped graphical granger
modeling for gene expression regulatory networks discovery. Bioinformatics 25,

110-118.

184

MacKay, D. (2003). Information Theory, Inference and Learning. Cambridge, UK:

Cambridge University Press.

Maiwald, T., Winterhalder, M., Aschenbrenner-Scheibe, R., Voss, H. and
Schulze-Bonhage, A. (2004). Comparison of three nonlinear seizure prediction

methods by means of the seizure prediction characteristic. Physica D 194, 357-368.

Mallat, S. (1999). A Wavelet Tour of Signal Processing. San Diego, CA: Elsevier,

Academic Press.

Mattera, D. and Haykin, S. (1999). Support vector machines for dynamic recon-
struction of a chaotic system. In A. S. B. Scholkopf, C.J.C. Burges, ed., Advances
in Kernel Methods: Support Vector Learning. Cambridge, MA: MIT Press, pages
212-239.

Mirowski, P., Chopra, S., Balakrishnan, S. and Bangalore, S. (2010a).
Feature-rich continuous language models for speech recognition. In Proceedings

of the IEEE Workshop on Spoken Language Technology.

Mirowski, P., Chopra, S., Balakrishnan, S. and Bangalore, S. (2010b). Sys-
tem and method for feature-rich continuous space language models. US Patent

Application AT&T Docket 2010-0851.

Mirowski, P. and LeCun, Y. (2009). Dynamic factor graphs for time series mod-

eling. In European Conference on Machine Learning.

Mirowski, P., Madhavan, D. and LeCun, Y. (2007). Time-delay neural networks
and independent component analysis for eeg-based prediction of epileptic seizures

propagation. In AAAI.

185

Mirowski, P., Madhavan, D., LeCun, Y. and Kuzniecky, R. (2008). Compar-
ing svm and convolutional networks for epileptic seizure prediction from intracra-
nial eeg. In Proceedings of the IEEE Workshop on Machine Learning for Signal

Processing.

Mirowski, P., Madhavan, D., LeCun, Y. and Kuzniecky, R. (2009a). Clas-
sification of patterns of eeg synchronization for seizure prediction. Clinical Neuro-

physiology 120, 1927-1940.

Mirowski, P., Madhavan, D., LeCun, Y. and Kuzniecky, R. (2009b). Method,
system and computer-accessible medium for classification of at least one ictal state.

International Patent Publication WO 2009/149126 A2.

Mirowski, P., Ranzato, M. and LeCun, Y. (2010c). Dynamic auto-encoders for
semantic indexing. In Proceedings of the NIPS Deep Learning and Unsupervised

Learning Workshop.

Mnih, A. and Hinton, G. (2007). Three new graphical models for statistical
language modelling. In 24th International Conference on Machine Learning ICML.
ISBN 978-1-59593-793-3.

Mnih, A. and Hinton, G. (2008). A scalable hierarchical distributed language

model. In Advances in Neural Information Processing Systems NIPS.

Mnih, A., Zhang, Y. and Hinton, G. (2009). Improving a statistical language
model through non-linear prediction. Neurocomputing 72, 1414 — 1418. ISSN
0925-2312.

186

Moon, K. and Pavlovic, V. (2008). 3D human motion tracking using dynamic
probabilistic latent semantic analysis. In Canadian Conference on Computer and

Robot Vision CRV0S.

Moon, T. (1996). The expectation-maximization algorithm. IEEE Signal Processing
Magazine 13, 47-60.

Morin, F. and Bengio, Y. (2005). Hierarchical probabilistic neural network lan-

guage model. In Advances in Neural Information Processing Systems NIPS.

Mukherjee, S., Osuna, E. and Girosi, F. (1997). Nonlinear prediction of chaotic
time series using support vector machines. In Proceedings of IEEE Workshop on

Neural Networks for Signal Processing NNSP’97.

Muller, K., Smola, A., Ratsch, G., Scholkopf, B., Kohlmorgen, J. and
Vapnik, V. (1999). Using support vector machines for time-series prediction. In
A. J. S. B. Scholkopf, C. J. C. Burges, ed., Advances in Kernel Methods: Support
Vector Learning. Cambridge, MA: MIT Press, pages 212-2309.

Murphy, K. and Mian, S. (1999). Modelling gene expression data using dynamic
bayesian networks. Technical report, Computer Science Division, University of

California and Life Sciences Division, Lawrence Berkeley National Laboratory.

Neal, R. and Hinton, G. (1998). A view of the em algorithm that justifies in-
cremental, sparse, and other variants. In M. Jordan, ed., Learning in Graphical

Models. Cambridge, MA: MIT Press, pages 355-370.

Nelson, L. and Stear, E. (1976). The simultaneous on-line estimation of parameters

and states in linear systems. IFEE Transactions on Automatic Control 21, 94-98.

187

Olshausen, B. and Field, D. (1997). Sparse coding with an overcomplete basis

set: a strategy employed by V17 Vision Research 37, 3311-3325.

Pavlovic, V., Frey, B. and Huang, T. (1999). Time-series classification us-
ing mixed-state dynamic bayesian networks. In Proceedings of the Conference on
Computer Vision and Pattern Recognition CVPR’99, volume 2. IEEE Computer

Society.

Pruteanu-Malinici, I., Ren, L., Pailsey, J., Wang, E. and Carin, L. (2010).
Hierarchical bayesian modeling of topics in time-stamped documents. IEEE Trans-

actions on Pattern Analysis and Machine Intelligence 32, 996-1011.

Puskorius, G. and Feldkamp, L. (1994). Neurocontrol of nonlinear dynamical sys-
tems with kalman filter trained recurrent networks. IEEE Transactions on Neural

Networks 5, 279-297.

Rabiner, L. (1989). A tutorial on hidden markov models and selected applications
in speech recognition. Proceedings of the IEEE 77, 257-286.

Rangel, C., Angus, J., Ghahramani, Z., Lioumi, M., Sotheran, E., Gaiba,
A., Wild, D. and Falciani, F. (2004). Modeling t-cell activation using gene

expression profiling and state-space models. Bioinformatics 20, 1361-1372.

Ranzato, M. (2009). Unsupervised Learning of Feature Hierarchies. Ph.D. thesis,

Courant Institute of Mathematical Sciences, New York University.

Ranzato, M., Boureau, Y. and LeCun, Y. (2007). Sparse feature learning for
deep belief networks. In NIPS.

Ranzato, M. and Szummer, M. (2008). Semi-supervised learning of compact

document representations with deep networks. In ICML.

188

Resnik, P. (1999). Semantic similarity in a taxonomy: An information-based mea-
sure and its application to problems of ambiguity in natural language. Journal of

Artificial Intelligence Research 11, 95-130.

Robertson, C., Geva, S. and Wolff, R. (2007). News aware volatility forecast-
ing: Is the content of the news important? 1In Sixth Australasian Data Mining

Conference.

Rohwer, R. (1989). The moving targets training algorithm. Neural Networks 412,
100-109.

Rumelhart, D., Hinton, G. and Williams, R. (1986). Learning representations

by back-propagating errors. Nature 323, 533-536.

Salakhutdinov, R. and Hinton, G. (2007). Semantic hashing. In ACM SIGIR

Workshop on Information Retrieval and Applications of Graphical Models.
Salakhutdinov, R. and Hinton, G. (2009). Replicated softmax. In ICML.

Sarikaya, R., Emami, A., Afify, M. and Ramabhadran, B. (2010). Contin-
uous space language modeling technique. In IEEFE International Conference on

Acoustics, Speech and Speech Processing I[CASSP.

Sarkka, S., Vehtari, A. and Lampinen, J. (2004). Time series prediction by
kalman smoother with cross-validated noise density. In Proceedings of IEEE Inter-

national Joint Conference on Neural Networks (IJCNN), volume 2.

Schelter, B., Winterhalder, M., Maiwald, T., Brandt, A. and Schad, A.
(2006a). Do false predictions of seizures depend on the state of vigilance? a report
from two seizure-prediction methods and proposed remedies. FEpilepsia 47, 2058

2070.

189

Schelter, B., Winterhalder, M., Maiwald, T., Brandt, A. and Schad, A.
(2006b). Testing statistical significance of multivariate time series analysis tech-

niques for epileptic seizure prediction. Chaos 16.

Schulze-Bonhage, A., Kurth, C., Carius, A., Steinhoff, B. and Mayer, T.
(2006). Seizure anticipation by patients with focal and generalized epilepsy: a

multicentre assessment of premonitory symptoms. Epilepsy Research 70, 83-88.

Schwenk, H. (2010). Continuous-space language models for statistical machine

translation. The Prague Bulletin of Mathematical Linguistics 93, 137-146.

Schwenk, H. and Gauvain, J.-L. (2003). Using continuous space language models
for conversational speech recognition. In IEEE Workshop on Spontaneous Speech

Processing and Recognition SSPR.

Segal, E., Shapira, M., Regev, A., Pe’er, D., Botstein, D., Koller, D. and
Friedman, N. (2003). Module networks: identifying regulatory modules and their

condition-specific regulators from gene expression data. Nature Genetics 34, 166—

176.

Shimamura, T., Imoto, S., Yamaguchi, R., Fujita, A., Nagasaki, M. and
Miyano, S. (2009). Recursive regularization for inferring gene networks from

time-course gene expression profiles. BMC' Systems Biology 3.

Spellman, P., Sherlock, G., Zhang, M., Iyer, V., Anders, K., Eisen, M.,
Brown, P., Botstein, D. and Futcher, B. (1998). Comprehensive identification
of cell cycle-regulated genes of the yeast saccharomyces cerevisiae by microarray

hybridization. Molecular Biology of the Cell 9, 3273-3297.

190

Stolcke, A. (2002). Srilm - an extensible language modeling toolkit. In 7th Interna-

tional Conference on Spoken Language Processing ICSLP.

Strogatz, S. (1994). Nonlinear Dynamics and Chaos. With Applications to Physics,
Biology, Chemistry, and Engineering. Studies in Nonlinearity. Westview Books,
Perseus Books Publishing, Cambridge, MA.

Sutskever, I. and Hinton, G. (2006). Learning multilevel distributed representa-
tions for high-dimensional sequences. In NIPS’06: Advances in Neural Information

Processing Systems. Cambridge, MA: Morgan Kaufmann, MIT Press.

Takens, F. (1981). Detecting strange attractors in turbulence, volume 898 of Lecture

Notes in Mathematics. Warwick, UK: Springer, pages 336-381.

Taleb, N. (2007). The Black Swan: The Impact of the Highly Improbable. New York,
NY: Random House.

Taylor, G., Hinton, G. and Roweis, S. (2006). Modeling human motion using
binary latent variables. In NIPS’06: Advances in Neural Information Processing

Systems. Cambridge, MA: Morgan Kaufmann, MIT Press.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of

the Royal Statistics Society B 58, 267-288.

Tsay, R. (2005). Analysis of Financial Time Series. Wiley Series in Probability and

Statistics. Hoboken, NJ: John Wiley and Sons, second edition edition.

Van der Maaten, L. and Hinton, G. (2008). Visualizing data using t-SNE. JMLR
9.

Wahde, M. and Hertz, J. (2001). Modeling genetic regulatory dynamic in neural

development. Journal of Computational Biology 8, 429-442.

191

Waibel, A., Hanazawa, T., Hinton, G., Shikano, K. and Lang, K. (1989).
Phoneme recognition using time-delay neural networks. IEEE Transactions in Ac-

coustics, Speech, Signal Processing 37, 328-339.

Wan, E. (1993). Time series prediction by using a connectionist network with internal
delay lines. In N. A. G. A. S. Weigend, ed., Time Series Prediction: Forecasting the
Future and Understanding the Past. Reading, MA: Addison-Wesley, pages 195-217.

Wan, E. and Nelson, A. (1996). Dual kalman filtering methods for nonlinear pre-
diction, estimation, and smoothing. In Advances in Neural Information Processing

Systems, volume 9. Cambridge, MA: Morgan Kaufmann, MIT Press.

Wan, E. and Van Der Merwe, R.. (2000). The unscented kalman filter for nonlin-
ear estimation. In Proceedings of the IEEE 2000 Symposium on Adaptive Systems

for Signal Processing, Communications, and Control AS-SPCC.

Wang, J., Fleet, D. and Hertzmann, A. (2006a). Gaussian process dynamical
models. In Advances in Neural Information Processing Systems NIPS’06. Cam-

bridge, MA: MIT Press.

Wang, R., Guegler, K., LaBrie, S. and Crawford, N. (2000). Genomic analysis
of a nutrient response in Arabidopsis reveals diverse expression patterns and novel
metabolic and potential regulatory genes induced by nitrate. Plant Cell 12, 1491—
1510.

Wang, X. and McCallum, A. (2006). Topics over time: A non-markov continuous-

time model of topical trends. In KDD.

192

Wang, Y., Joshi, T., Zhang, X.-S., Xu, D. and Chen, L. (2006b). Inferring
gene regulatory networks from multiple microarray datasets. Bioinformatics 22,

2413-2420.

Weigend, A. and Gershenfeld, N. (1994). Time series prediction: Forecasting

the future and understanding the past. Reading, MA: Addison-Wesley.

Wierstra, D., Gomez, F. and Schmidhuber, J. (2005). Modeling systems with
internal state using evolino. In Proceedings of the 2005 Conference on Genetic and

Evolutionary Computation.

Williams, C. and Rasmussen, C. (1996). Gaussian processes for regression. In
Advances in Neural Information Processing Systems NIPS’96. Cambridge, MA:
MIT Press.

Williams, R. and Zipser, D. (1995). Gradient-Based Learning Algorithms for
Recurrent Networks and Their Computational Complezity. Lawrence Erlbaum As-

sociates, pages 433-486.

Yamaguchi, R., Imoto, S. and Satoru, M. (2010). Network-based predictions
and simulations by biological state space models for drug mode of action. Journal

of Computer Science and Technology 25, 131-153.

Yamaguchi, R., Yoshida, R. and Imoto, S. (2007). Finding module-based gene

networks with state-space models. IEEFE Signal Processing Magazine 37.

Yang, D. and Zhang, Q. (2000). Drift independent volatility estimation based on

high, low, open and close prices. Journal of Business 73, 477-491.

193

Zhang, Y., Hatch, K., Bacon, J. and Wernisch, L. (2010). An integrated
machine learning approach for predicting dosr-regulated genes in mycobacterium

tuberculosis. BMC' Systems Biology 4.

Zou, H. and Hastie, T. (2005). Regularization and variable selection via the elastic

net. Journal of Royal Statistical Society B 67, 301-320.

194

