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Abstract

We collect time series from real-world phenomena, such as gene interactions in bi-

ology or word frequencies in consecutive news articles. However, these data present

us with an incomplete picture, as they result from complex dynamical processes in-

volving unobserved state variables. Research on state-space models is motivated by

simultaneously trying to infer hidden state variables from observations, as well as

learning the associated dynamic and generative models.

To address this problem, I have developed tractable, gradient-based methods for

training Dynamic Factor Graphs (DFG) with continuous latent variables. DFGs

consist of (potentially highly nonlinear) factors modeling joint probabilities between

hidden and observed variables. My hypothesis is that a principled inference of hid-

den variables is achievable in the energy-based framework, through gradient-based

optimization to find the minimum-energy state sequence given observations. This en-

ables higher-order nonlinearities than graphical models. Maximum likelihood learning

is done by minimizing the expected energy over training sequences with respect to the

factors’ parameters. These alternated inference and parameter updates constitute a

deterministic EM-like procedure.

Using nonlinear factors such as deep, convolutional networks, DFGs were shown to

reconstruct chaotic attractors, to outperform a time series prediction benchmark, and

to successfully impute motion capture data in presence of occlusions. In a joint work

with the NYU Plant Systems Biology Lab, DFGs have been subsequently employed

to the discovery of gene regulation networks by learning the dynamics of mRNA

expression levels.

DFGs have also been extended into a deep auto-encoder architecture for time-

stamped text documents, with word frequencies as inputs. I focused on collections of
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documents exhibiting temporal structure. Working as dynamic topic models, DFGs

could extract latent trajectories from consecutive political speeches; applied to news

articles, they achieved state-of-the-art text categorization and retrieval performance.

Finally, I used DFGs to evaluate the likelihood of discrete sequences of words in

text corpora, relying on dynamics on word embeddings. Collaborating with AT&T

Labs Research on a project in speech recognition, we have improved on existing

continuous statistical language models by enriching them with word features and

long-range topic dependencies.
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Abstract en Français

Modélisation de séries temporelles avec variables cachées et

descente de gradient

Nous pouvons collecter des séries temporelles en mesurant toutes sortes de phéno-

mènes tels que les interactions entres gènes, l’activité électro-physiologique du cerveau

voire les fréquences de mots dans des articles de journaux. Ces données nous apportent

cependant une vision partielle de la réalité, car elles dérivent de processus dynamiques

complexes dont les variables aléatoires internes (variables ou vecteurs d’état) sont

inconnues. La recherche sur la modélisation des représentation d’état est confrontée

au double problème inverse de 1) reconstruire la séquence de variables cachées, et 2)

d’apprendre les paramètres du modèle dynamique sous-jacent.

Pour répondre à ce problème, j’ai mis au point un nouvel algorithme d’appren-

tissage statistique pour entrainer des réseaux Bayésiens dynamiques (“Dynamic Fac-

tor Graphs”, DFG; Graphes Dynamiques Factoriels, GFD) avec variables aléatoires

cachées continues (réelles). Leur inférence repose sur une optimisation par descente

de gradient. Chaque “facteur” correspond à un système d’équations non-linéaires,

avec une composante aléatoire, et peut être exprimé comme une fonction de transfert

avec des entrées et des sorties, suivies d’un terme d’erreur qui suit une loi de prob-

abilité. Un GFD définit une loi de probabilité conjointe, aussi bien sur les variables

aléatoires observées que sur les variables cachées; toutes ces variables sont échantil-

lonnées dans le temps et les variables cachées constituent une chaîne de Markov. A

chaque combinaison de variables aléatoire, est assignée une probabilité; l’objectif de

l’algorithme d’inférence est de maximiser cette probabilité en trouvant la séquence

de variables cachées qui explique au mieux les variables observées, pour un modèle

dynamique donné. Je propose un algorithme d’inférence approximatif, lequel, au lieu

ix



de calculer exactement la distribution des variables cachées, trouve seulement la con-

figuration la plus probable des variables cachées (maximum a posteriori) à travers une

minimisation par descente de gradient. Mon hypothèse est que les approximations de

ma méthode d’inférence MAP sont largement contre-balancées par une plus grande

versatilité fonctionnelle. Je prouve en effet que mon algorithme permet d’utiliser des

fonctions d’évolution et d’observation bien plus complexes que celles permises par les

réseaux Bayésiens traditionnels (tels que les modèles de Markov cachés ou les filtres

de Kalman). Les paramètres du modèle sont appris par l’estimation du maximum

de vraisemblance, en utilisant diverses optimisation telles que descente de gradient

ou gradient conjugué. L’alternance entre inférence et optimisation par gradient peut

être vue comme une version déterministe de l’algorithme d’espérance-maximisation

(EM).

Les applications des GFDs sont multiples et aussi nombreuses que leurs architec-

tures fonctionnelles. Par exemple, grâce à des fonctions de transfert consistant en

réseaux de neurones convolutionnels, les GFDs ont ainsi prouvés pouvoir modéliser

des séquences non-linéaires en reconstruisant des attracteurs chaotiques et surpasser

en performance d’autres algorithmes sur des données d’une compétition de prédiction

de séries temporelles. Appliqués aux données de capture de mouvement (coordonnées

tri-dimensionnelles de marqueurs corporels), les GFDs ont pu reconstruire parfaite-

ment la totalité des mouvement d’un squelette 3D en présence d’occlusions impor-

tantes (Mirowski & LeCun, ECML 2009). Les GFDs ont aussi été appliqués à la

bio-informatique, en collaboration avec le centre de biologie moléculaire de New York

University. En particulier, les GFDs ont été employés pour découvrir des réseaux

de régulation génétique, en apprenant le modèle dynamique sous-jacent des niveaux

d’expressions génétique des ARN messagers, mesurés au moyen de puces à ADN

(Mirowski et al, Genome Biology 2010).
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Un autre champ d’application des GFDs sont les documents texte structurés dans

le temps, par exemple les articles de journaux, discours politiques ou publications

scientifiques. Une architecture spécifique des GFDs, exprimés sous forme de réseaux

de neurones auto-encodeurs, a ainsi pu être appliquée à ce type de séries temporelles,

en utilisant la fréquence des mots en variable d’entrée du système. En utilisant

des GFDs, j’ai ainsi pu étudier la dynamique des sujets cachés dans les discours

politiques, prédire la volatilité des cours de marché à partir d’informations finan-

cières, ou obtenir une performance inégalée dans la classification de documents texte

et dans le data-mining (“fouille de données”; Mirowski et al, NIPS Deep Learning

Workshop 2010). Une extension possible de cette architecture GFD serait son appli-

cation à mes recherches précédentes sur la prédiction des crises d’épilepsie à partir

d’enregistrements d’électro-encéphalogrammes (Mirowski et al, IEEE MLSP 2008;

Clinical Neurophysiology 2009; dépot de brevet industriel en cours).

Pour finir, j’ai utilisé les GFDs pour évaluer la vraisemblance de séquences de nom-

bres entiers (suites de mots dans un corpus de documents écrits ou oraux), en inférant

la dynamique cachée des représentations vectorielles de ces mots, et en augmentant

ces représentations avec des informations syntactiques et avec des dépendances sé-

mantiques au niveau de plusieurs phrases consécutives. Au cours d’un projet sur la

reconnaissance de la parole, en collaboration avec AT&T Labs Research, nous avons

ainsi pu améliorer la performance des modèles statistiques du langage, utiliser ces

modèles en conjonction avec un modèle acoustique pour réduire le taux d’erreur par

mots lors de la reconnaissance vocale, et atteindre l’état de l’art dans ce domaine

(Mirowski et al, IEEE SLT 2010; dépôt de brevet industriel en cours).
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Chapter 1

Introduction

The future ain’t what it used to be.

Yogi Berra

T ime series are ordered sequences of data points. They typically correspond

to measurements taken from real-world natural or man-made phenomena,

but could as well be the outputs of numerical simulation. Examples of

time series that I investigated during my doctoral studies include mRNA expression

levels, spatial positions of markers used in motion capture, electro-encephalographic

recordings of brain activity, financial stock market volatility, word frequencies in

streams of news articles, written or spoken language, as well as, on the purely artificial

side, chaotic data.

This introductory chapter gives an overview of the time series problem that can

be addressed (and for a large part, that have been touched in this work), as well as

a glimpse of the state-of-the-art associated techniques. Most importantly, it provides

the rationale for modeling time series with additional, hidden variables.
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1.1 Time Series Problems

Although traditional time series problems are univariate (typically when one is inter-

ested in the “history” of successive values taken by one variable, or in its statistical

distribution), additional insight about the real-world phenomenon can be gained from

multivariate time series, exhibiting the interaction of several variables.

In their common definition, time series are implicitly continuously-valued. In

this thesis, we have however encompassed specific cases where we could apply to

discrete sequences methods that were actually designed for continuously-valued time

series. Those two cases correspond to “bag-of-words” representations of word counts in

consecutive documents, and to sub-sequences of words. The crucial difference between

a sequence of discrete events and a one-dimensional time series is that continuous

(real) numbers have a natural metric that discrete events lack: e.g. 0.1 can be

quantified as being closer to 0 than to 3, while it would be more difficult (or more

arbitrary) to establish which word among “sat” or “cat” is closer to “mat”. For this

reason, real-valued time series problems on one hand and discrete sequence problems

on the other hand often resort to different mathematical tools (e.g. linear models vs.

count-based n-gram models). Of course, one can always convert a “one-dimensional”

string of discrete events (where each event is chosen out of a vocabulary of N possible

items) into an N -dimensional time series of event counts or frequencies, and thereby

consider it as a sequence of multivariate real-valued numbers.

Time series modeling is motivated by a wealth of interesting problems:

• forecasting, i.e. predicting future time points from previous ones. In subse-

quent chapters, I will evoke time series prediction on chaotic data (Chapter 3),

as well as predictive modeling on biological mRNA levels (Chapter 4). Fore-
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casting can be conducted at various time horizons, and can consist in iterating

a time series model to produce successive time point predictions.

• imputation, i.e. the recovery of missing time points. This problem is slightly

different from forecasting, as both past and future data points, as well as non-

missing values (in the case of multivariate time series) can be used for prediction.

I will explain an application to the reconstruction of motion capture data in

Chapter 3.

• inference of a hidden representation: I will introduce in this chapter the

concept of hidden explanatory variables for time series. Two examples of hid-

den variables inference that I have worked on include the reconstruction of a

chaotic attractor and the separation of an oscillatory signal into components (in

Chapter 3), as well as the projection (compression) of word counts taken from

consecutive State-of-the-Union presidential addresses onto a two-dimensional

space which could symbolize a “political” (if not lexical) trajectory (see Chap-

ter 5).

• learning a dynamical system, i.e. understanding how a time series is gener-

ated and how the measured variables interact. A key application is the reverse-

engineering of gene regulation networks described in Chapter 4.

• classification and regression of sub-sequences. Regression of stock-market

log-volatility from streams of online financial news, as well as the text catego-

rization of documents, are two examples of such tasks, detailed in Chapter 5.

One problem that I tackled during my studies but that I did not cover in this

thesis is the prediction of epileptic seizures from electro-encephalograms by clas-

sifying short patterns of EEG as “pre-ictal” or “interictal” (Mirowski et al., 2008,
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2009a,b).

• as a corollary to classification, the estimation of the likelihood of a sequence.

This problem has been addressed for discrete sequences of words and applied

to statistical language modeling in Chapter 6.

1.1.1 Imprecise Sampling, Incompleteness and Time-Variance

A key limitation of time series is that they are an incomplete observation of reality,

for three different reasons (upon which I stumbled during my research).

First, one observes data only at specific sampling points (generally regularly

spaced), whereas the process which generated them exists beyond those infinitesi-

mal sampling instants. This limitation makes the learning of a dynamical system

inherently approximate.

Second, only a subset of the variables that would be required to understand the

process is available. This problem is particularly striking in the case of genetic data,

where the process (transcription of mRNA by proteins) involves more biological actors

than are measured with current instrumentation, or with EEG recordings, where each

electrode measures electrophysiological signals (post-synaptic potentials) averaged

over millions of neuronal cells. Those two biological examples of incomplete observed

data, are among the justifications for introducing additional, hidden variables to the

time series, under appropriate models and constraints on those unknown variables.

Third, the time series might derive from a process that is not time-invariant1.

In that case, the time series model has an explicit dependency on the time variable.

More precisely, given input x(t) at time t, the model predicts y(t), but an identical

input x(t + ∆t) at a later time t + ∆t would be associated to a different prediction
1We could also say that the time series is non-stationary, which means that the joint distribution

of the random variables changes over time.
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y(t + ∆t) 6= y(t). In some specific cases, the time-variance of the process can be

recovered solely from the available data X and Y, using a model with long-range

dependencies, such as a model with “switching dynamics” or with a “memory” (both

of which can be enabled by hidden variables). In other cases, the process generating

the time series is unfortunately different between the (historical) training set and the

(future) test set, and therefore any statistical model fitted to historical data would

become useless for predicting future data points2.

As a side note, I shall point out that this thesis focuses on time series analysis

from a time-domain point of view (i.e. by studying the explicit relationships between

consecutive data points)3. Another approach would have consisted in looking at the

frequency domain of time series (Box and Jenkins, 1976; Weigend and Gershenfeld,

1994), using spectral or wavelet (Mallat, 1999) analyses.

1.2 Time Series Modeling Without Hidden Variables

1.2.1 Time-Delay Embedding and Markov Property

Throughout the thesis, I note y(t) or yt the instance of the univariate time series

observed at time t, y(t) or yt for multivariate time series, and Y for the entire

sequence. Using the simplification that the time sampling interval is ∆t = 1, I note

the time-delay embedding of past p time-points before t as yt−1
t−p. The time-delay

embedding operation is here merely a concatenation of the vectors corresponding to
2In the specific case of econometrics and sociology, where human actors interact in complex

networks, within an open system, this “inability to predict” from historical data has been vehemently
exhibited in (Taleb, 2007). The author laid the blame on our obstination to fit statistical models
with Gaussian distributions to historical data, while the distributions of those time series are both
time-dependent and fat-tailed.

3With one exception: in the chapter devoted to statistical language modeling, we do exploit the
structured interaction of word “variables” in a sentence, in order to derive rich word features such
as part-of-speech tags or supertags.
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successive time points of the time series. One often refers to this as the state-space

representation of the time series (Weigend and Gershenfeld, 1994).

The most common assumption when designing continuous models for time series

is that the model should follow the Markov property, which states that any current

value y(t) of the time series at time t depends only on its short history4 (Durrett,

1996), namely on past p values yt−1
t−p. Such a model is by consequence time-invariant,

for a specific value of Markov order p.

Another way of rephrasing the Markov property is that the time series forms a

Markov chain where each data point y(t) is conditionally independent of its long-term

history yt−p−1
1 given its immediate history yt−1

t−p.

As a result of the time-delay embedding, the training dataset consists of T − p

couples
{

(yp1,yp+1), (yp+1
2 ,yp+2), . . . , (yT−1

T−p,yT )
}
.

Time-delay embedding raises the issue of choosing the order p of the embedding,

and specific models address that question in different ways. For example, linear or

probabilistic models rely on the Bayesian Information Criterion (Box and Jenkins,

1976) or the Akaike Information Criterion (Akaike, 1973), which essentially place a

penalty on large values of the order p (or on the number of model parameters) relative

to the sequence length T .

The Markov property can also be extended to highly nonlinear time series with

chaotic dynamics (whose definition we remind in Section 1.2.7). It often is the case

that univariate chaotic time series are produced by a multivariate system of nonlinear

equations, like for instance the 3-variate Lorenz model (Lorenz, 1963). The Takens

theorem (Takens, 1981) establishes, for these univariate chaotic time series, that one

can reconstruct the original multivariate state-space attractor by time-delay embed-
4The original definition by Russian mathematician Andryi Markov applies to stochastic processes

in continuous time and on a single “time-step” dependency. Multi-step histories can be recovered by
time-delay embedding and a state-space representation.
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ding; various techniques for the estimation of the state-space dimension of the chaotic

attractor have been summarized in (Abarbanel et al., 1993).

1.2.2 Probabilistic Models: n-grams on Discrete Sequences

In the case of discrete sequences, one can express the Markov property in terms of

n-grams5. ytt−n+1. n-grams can be computed as absolute counts on the data, or

estimated from the sequence as conditional probabilities P
(
yt|yt−1

t−n+1

)
. The latter

results in the joint likelihood of the full sequence Y of length T being equal to:

P
(
yT1
)

= P
(
yn−1

1

) T∏

t=n

P
(
yt|yt−1

t−n+1

)
(1.1)

The strength of n-grams is that, unlike their continuously-valued counterpart, they

can define any conditional distribution, including multi-modal ones. Their major lim-

itation is that as the size of the context (i.e. the embedding dimension) n increases,

the size of the corpus needed to reliably estimate the probabilities grows exponen-

tially with n. Because the language corpora are generally limited in size, they do

not cover all the possible n-grams. In order to overcome this sparsity, back-off mech-

anisms (Katz, 1987) are used to approximate nth order statistics with lower-order

ones, and missing probabilities may be further approximated by probability smooth-

ing (Chen and Goodman, 1996), which essentially amounts to giving a low-probability

prior to unseen n-grams.

We will keep the Markov chain likelihood formulation (Eq. 1.1) in what follows.
5n-grams can be attributed to Claude Shannon’s work in information theory, illustrated on con-

ditional probabilities of a letter given the previous n− 1 letters (Wikipedia).
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1.2.3 Maximum Likelihood Formulation: Gaussian Regression

The first approach to continuously-valued time series modeling considers observations

Y as the result of a purely auto-regressive linear or non-linear process. In other words,

one hypothesizes that there exists a deterministic mapping6 f from the time-delay

embedding of yt−1
t−p to yt. That mapping f , which generates a prediction ȳt from a

linear sum or a nonlinear function over yt−1
t−p, is perturbed by an additional noise term

η(t) that stems from a unimodal, zero-mean, distribution:

y(t) = f
(
yt−1
t−p
)

+ η(t) (1.2)

Equation (1.2) expresses the 1-step inference and can be iterated to generate the

continuation of y(t) for long-term prediction.

By restating problem (Eq. 1.2) as a probability P
(
y(t) = f

(
yt−1
t−p
)
|yt−1
t−p
)
under

the distribution of residual noise η(t), and using the conditionally independent Markov

chain of (Eq. 1.1), one can solve for the mapping f by maximizing the likelihood of

P (Y). Numerical optimization is usually conducted by expressing the product P (Y)

as a sum in logarithmic domain.

Theoretically, the statistical learning techniques used for solving for f would re-

quire the data points
{

(yp1,yp+1), (yp+1
2 ,yp+2), . . . , (yT−1

T−p,yT )
}

to be independently

and identically distributed. Clearly, the time series Y itself is not i.i.d., since there

are serial correlation between consecutive samples yt−1,yt,yt+1, . . . . But the Markov

property ensures the conditional independence of outputs/targets y(t) given their as-

sociated inputs/features yt−1
t−p, and thus enables the likelihood P (Y) to be expressed

as a product (Eq. 1.1).

Regarding the identical distribution requirement, it means that the residual noise
6This mapping can be seen as a discrete version of a continuous system of differential equations.
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η(t) has to be stationary, i.e. that the joint distribution of {. . . , ηt−1, ηt, ηt+1, ηt+2, . . . }

needs to have the same zero mean and same variance, regardless of time localization

t (Box and Jenkins, 1976). Another way of rephrasing this requirement is that residual

noise should not exhibit visible structure when plotting it across time or against

the data (Weigend and Gershenfeld, 1994). This assumption, generally tested by

statisticians during exploratory data analysis, is however often ignored by the machine

learning community.

Luckily, there are recipes to cope with non-stationarity. For instance, when a

time series displays a local variance of y(t) that is clearly a function of the amplitude

of y(t) (e.g. the variance of the noise is large for large values of y(t), and small

for small values of y(t)), then it might be sufficient to apply exponentiation or the

logarithm to all time points y(t), in order to correct for that obvious non-stationarity.

Other transformations on time series consist in de-trending (removing obvious linear

trends) or correcting for seasonality (e.g. removing a periodic oscillation from the

data points7).

Using the normal distribution for η(t), the Gaussian regression problem corre-

sponds in logarithmic domain to “sum of least squares” (LS) optimization:

− logP (Y|Θ) ∝
T∑

t=p+1

‖ y(t)− f
(
yt−1
t−p
)
‖2

2 +const (1.3)

In the above equation, Θ corresponds to model parameters. Gaussian regression

is the Maximum Likelihood (ML) formulation used in most chapters of this thesis.

Other ML formulations include Laplace regression (sum of absolute values) in Chap-

ter 5, multinomial (Softmax) regression in Chapters 5 and 6 and logistic (binomial)

regression in Chapter 5.
7The concept of seasonality often arises in data collected over the time course of a year, where

one can distinguish the effect of “seasons”.
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Learning time series models under the ML formulation consists in finding the

optima of − logP (Y) w.r.t. model parameters Θ. This is achieved by differentiating

− logP (Y) w.r.t. each parameter variable, and finding zero-crossings:

∀k, ∂ (− logP (Y|Θ))

∂θk
= 0 (1.4)

1.2.4 Predicting One Time Series from Another

Some multivariate time series problems fall into the more usual setting (predict some

output y(t) from corresponding inputs x(t) lying in a different data space). They

consist in learning to predict one part of the variables at time t (so-called “targets”

or “outputs”) from the other part of the data point (so-called “features” or “inputs”),

and can be expressed by the following equation:

yt = h (xt) + ε(t) (1.5)

The mapping h, which generates a prediction ȳt from a linear sum or a nonlinear

function over xt, is perturbed by an additional noise term ε(t) that stems from a

unimodal, zero-mean, distribution. Although the usual maximum likelihood-based

methods can be applied to fit function h, the remarks made in the previous section

about the non i.i.d. nature of X and Y are still valid.

Examples of such problems include the categorization of consecutive news arti-

cles (Joachims, 1998; Kolenda and Kai Hansen, 2000), the regression of stock market

volatility from word counts in consecutive financial news articles (Gidofalvi and Elkan,

2003; Robertson et al., 2007) (see Chapter 5) or the prediction of power transformers’

time-to-failure from dated chemical measurements of dissolved gases in transformer
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oil8 (Mirowski et al., manuscript in preparation). In those cases, although the basic

predictive model uses only data from a single time point, the temporal structure in

the data could probably benefit the model learning.

One solution is time-delay embedding on the inputs xt, which can be concatenated

into xtt−p, although this might prove expensive in the case of high-dimensional vectors

xt. Another potential approach is based on the use of hidden variables and “memory”

from sample (xt−1,yt−1) at time t− 1 to sample (xt,yt) at time t.

1.2.5 Limitation of Memoryless Time Series Models

The drawback of time-embedding-based models is indeed that they do not have any

“memory” of the full time series and of long-term dependencies (Bengio et al., 1994):

during the learning procedure, each training sample is considered independently of

its time location t, and, at time t, the system’s memory of Y (and optionally, of

X) goes only as far back in time as its time-delay embedding dimension p permits.

As such, “memoryless” architectures yield satisfactory results on time series with

simple stationary dynamics but may have difficulties with long-term prediction or

with capturing long-range dynamics.

Let us nevertheless enunciate the most popular approaches to solve for (Eq. 1.2)

and (Eq. 1.5) without the use of hidden variables. Most of these methods are indeed

the building blocks for memory-enabled models.
8This work, which was not included in this thesis, was conducted in collaboration with NYU Poly

and Consolidated Edison.
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1.2.6 Linear time series models

Auto-Regressive AR(p) Models

We start with a simple one, the univariate p-th order linear Auto-Regressive model:

yt =

p∑

k=1

φkyt−1 + ηt (1.6)

The driving noise ηt in equation 1.6, also called innovation, makes the time series

“interesting”. We notice that AR(1) models where φ1 = 1 correspond to random walks.

Without noise, if one iterated AR(1) models (φ1 6= 1) for multi-step prediction, then

the resulting time series would either decay exponentially (if φ1 < 1) or diverge (grow)

exponentially (if φ1 > 1). AR(p) models with p > 1 introduce oscillations. Again,

without innovation noise, they would either decay or diverge exponentially and in an

oscillatory way, depending on the values of their coefficients Φ. AR(p) models that

decay exponentially are called mean-reverting and are stationary (Tsay, 2005).

Although the coefficients Φ can be fitted by linear regression, the tool of choice

is the auto-correlation function defined by l-lag autocorrelation coefficients. Auto-

correlation coefficients (Eq. 1.7) describe how much, on average, two values of a time

series that are l time steps apart co-vary with each other (Weigend and Gershenfeld,

1994).

∀l, ρl = ρ−l =
Cov (yt, yt−l)

Var (yt)
(1.7)

These autocorrelation coefficients (Eq. 1.7) can be used to define a system of p

Yule-Walker equations (Eq. 1.8) in order to solve for Φ (Weigend and Gershenfeld,

1994; Tsay, 2005).
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∀k ∈ {1, . . . , p}, ρk = φ1ρ1−k + φ2ρ2−k + · · ·+ φp−1ρp−1−k + φpρp−k (1.8)

Vector Auto-Regressive V AR(p) Models

The multivariate equivalent to AR(p) are the Vector Auto-Regressive models V AR(p),

driven by multivariate, zero-mean uncorrelated noise ηt with covariance matrix Σ:

yt =

p∑

k=1

Φkyt−1 + ηt (1.9)

V AR(p) models behave like AR(p) models, but instead of scalar coefficients φk,

they have square matrix coefficients Φk, and first order V AR(1) already exhibit an

oscillatory behavior. In the specific case of V AR(1), it can also be shown (Tsay, 2005)

that the condition for stationarity (i.e. mean reversion of the iterated prediction) is

for the coefficient matrix Φ1 to have eigenvalues smaller than 1.

V AR(p) and even V AR(1) models are relatively powerful: it is for instance a

commonly used benchmark for the inference of gene regulation networks, by learning

to model the linear dynamics between consecutive micro-array-based measures yt of

mRNA expression levels during the time course of a biological experiment (Alvarez-

Buylla et al., 2007; Bonneau et al., 2006, 2007; Efron et al., 2004; Lozano et al., 2009;

Shimamura et al., 2009; Wahde and Hertz, 2001; Wang et al., 2006b; Zou and Hastie,

2005) (see Chapter 4).

In order to solve for the parameters Φk, one can rely on maximum likelihood based

methods, such as performing a linear regression for each dimension of yt. Alterna-

tively, by introducing l-lag cross-correlation matrices Γl, one can resort to the matrix

equivalent of the Yule-Walker equations (Tsay, 2005).

13



Moving Average MA(q) Models

AR(p) models can be described as convolutions and in terms of Infinite Impulse

Response (IIR) filters (Weigend and Gershenfeld, 1994), which grosso modo means

that input yt can be felt beyond time point t + p. The other type of filters are

Finite Impulse Response (FIR) filters, where, in absence of input, the output yt+q is

guaranteed to go to zero after q time steps. To design such a filter/model, one simply

needs to separate the input time series X from the output time series Y. Hence the

definition for univariate q-th order Moving Average models:

yt =

q∑

k=1

ψkxt−k + ηt (1.10)

MA(q) coefficients Ψ are estimated using maximum likelihood techniques. Their

auto-correlation coefficients ρl vanish after lag l.

Auto-Regressive Moving Average ARMA(p, q) Models

The final linear model that we mention9 are Auto-Regressive Moving Average models:

yt =

p∑

k=1

φkyt−k −
q∑

k=1

ψkxt−k + ηt (1.11)

Various techniques have been derived over years to identify ARMA(p, q), i.e. to

select model orders p and q before fitting the coefficients (Tsay, 2005). This procedure

is a bit more complicated, but the general idea is that after fitting a good model with

correct order, the residual noise should become structureless (Weigend and Gershen-
9Since the focus of this thesis is not specifically on financial time series, we will skip further

description of Heteroscedastic models (ARCH, GARCH, etc. . . ), which essentially focus on modeling
the variance of the innovation noise ηt in non-stationary linear models (Tsay, 2005). In the case of
time series measuring the financial returns Y of stock market prices, the main application of such
heteroscedastic models is modeling the time-dependent structure of stock volatility. We will simply
use in Chapter 5 the observation that volatility depends on external factors (such as news).
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feld, 1994). One notion that can be introduced at that point is the number of degrees

of freedom of the model, which corresponds both to the number of parameters to esti-

mate, and to the number of previous “states” that the time series can retain (Weigend

and Gershenfeld, 1994).

There are however many time series datasets where linear models “break down”,

as one cannot choose between a linear model driven by stochastic noisy input, or a

deterministic nonlinear model with a small number of degrees of freedom (Weigend

and Gershenfeld, 1994). Before dwelling into nonlinear models, we shall make the ob-

servation that, after all, commonly used random number generators (which provide

the seemingly independently and identically distributed noise in computer simula-

tions), are essentially the iterated prediction of a chaotic (highly nonlinear) time

series model (Herring and Palmore, 1995).

1.2.7 Chaotic Time Series

As we introduced in the previous subsections, nonlinear mappings can generate chaotic

dynamics. The general definition of chaos is “aperiodic long-term behavior in a de-

terministic system that exhibits sensitive dependence on initial conditions” (Strogatz,

1994).

This means that if one iterates function f over yt−1
t−p to make successive predictions,

then an initial perturbation in the time series grows exponentially in time (which

causes the forecasting problem to remain difficult (Casdagli, 1989)). Let us note y1

and y′1 two initial values, and ∆y1 their initial separation. After n iterations of f , we

obtain respectively yn = fn (y0) and y′n = fn (y′0). We can quantify the rate of this

separation using Lyapunov exponents10. λ defined as following:
10As one can obtain different values of λ depending on the direction of the initial perturbation,

there actually exist a full spectrum of Lyapunov exponents, for which we can extract the maximum
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‖ ∆yn ‖≈ eλt ‖ ∆y1 ‖ (1.12)

It is important to distinguish between diverging systems and chaotic systems:

chaotic time series have aperiodic behavior and the values of y(t) lie on a manifold

that is also called strange attractor (Strogatz, 1994).

1.2.8 Nonlinear Models: Time-Delay Neural Networks

Neural networks (Rumelhart et al., 1986) are a multi-layer, nonlinear architectures11,

that are capable, theoretically at least, to learn a “universal approximation” to any

nonlinear function h (Cybenko, 1989). Neural networks can be likened to a stack of D

multivariate linear regressions (i.e. a matrix-vector multiplication with matrix W(l),

where l ∈ {1, . . . , D}), each followed by a nonlinearity such as the hyperbolic tangent

sigmoid tanh(x) or the logistic sigmoid 1/(1 + e−x). In our case, the input to the first

layer is vector xt or yt−1
t−p, and there are intermediary (hidden) variable vectors z

(l)
t

(where l ∈ {1, D− 1}) that are generated between each layer. Note however that the

traditional maximum likelihood-based learning algorithm (Rumelhart et al., 1986) for

neural networks does not optimize explicitly for that hidden representation (with a

few early exceptions suggested in (Krogh et al., 1990; Rohwer, 1989)).

Trained neural networks can be iterated on time series y(t), modeling nonlinear

dynamical equations f ; as a matter of fact, they can exhibit chaotic behavior (Stro-

gatz, 1994). Time-Delay Neural Networks (TDNN) (Lang and Hinton, 1988; Waibel

et al., 1989) are a specialization of neural nets, which exploit the time structure of

the input by performing convolutions on overlapping windows. Similarly to the two-

Lyapunov exponent.
11I will spare the enlightened reader with reminders about the neural network architecture and

about gradient-based learning; a good reference is Chris Bishop’s comprehensive textbook (Bishop,
2006).
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dimensional convolutional networks applied to image recognition problems (LeCun

et al., 1998a), TDNN are not fully connected and share weights across the time di-

mension, performing de facto convolutional FIR filtering on the time series. Although

it is easier to design TDNNs using 3D arrays, one can view their 2D matrix parameters

{W(l)}l∈{1,D} as very sparse and with replicated columns.

In previous doctoral work (Mirowski et al., 2007), I modeled the dynamics of

EEG at the onset of an epileptic seizure using a TDNN architecture. As another

example, TDNNs managed to obtain very good prediction results on the Lorenz-like

laser chaotic dataset (Wan, 1993), where they successfully predicted the first 100

time-step continuation of a time series. As detailed in (Weigend and Gershenfeld,

1994), TDNN however performed poorly on longer prediction horizons on that same

dataset, and the predicted time series did not “look” like the original chaotic attractor

anymore.

In its basic version, the open-loop training algorithm of TDNN minimizes the

one-step prediction error (i.e. tries to maximize the likelihood of Eq. 1.2) instead of

multi-step prediction errors, which are necessary for good long-term prediction per-

formance. Further research in that field (Kuo and Principe, 1994; Bakker et al., 2000)

attempted better long-term (iterated) predictions using Back-Propagation Through

Time (BPTT) and closed-loop training.

1.2.9 Nonlinear Models: Kernel Methods

The philosophy behind Kernel-based methods can be seen as being at the opposite of

parametric models such as V AR(p) or TDNNs, and they are often qualified as non-

parametric (even if they do need a few hyper-parameters). They require the evaluation
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of a T ×T Gram matrix12 K on the learning dataset {(x1,y1), (x2,y2), . . . , (xT ,yT )}

(general case) or on
{

(yp1,yp+1), (yp+1
2 ,yp+2), . . . , (yT+p−1

T ,yT+p)
}
(in the case of auto-

regressive models).

The Gram matrix K = {ki,j}i∈{1,...,T},j∈{1,...,T} is called the kernel matrix 13, and

one can also define a kernel function k(x,x′) between any two datapoints x and x′.

The two types of kernel matrices that were used during the experiments conducted

in this thesis were the popular linear kernel k(x,x′) = xTx′, and the Gaussian kernel

k(x,x′) = exp (− ‖ x− x′ ‖2
2 /2σ

2), the latter depending on the bandwidth parameter

σ (Bishop, 2006). For auto-regressive models, one simply needs to replace the xt by

yt−1
t−p.

Weighted Kernel Regression

The simple Weighted Kernel Regression (WKR), also called the Nadaraya-Watson

regression (Bishop, 2006), proposes to predict the value yt′ of a new datapoint yt
′−1
t′−p

as a locally-based average of the entire support S = {1, . . . , T} of the training dataset

(Eq. 1.13), using the Gaussian kernel function. WKR make univariate predictions,

and correspond to Radial Basis Functions with a basis function at every training set

datapoint.

yt′ =

∑
t∈S k

(
yt

′−1
t′−p,y

t−1
t−p

)
yt

∑
t∈S k

(
yt

′−1
t′−p,y

t−1
t−p
) (1.13)

12Gram matrices define a Hermitian inner product between T vectors, such as for instance the
dot product in Euclidian space.

13Gram matrix K is symmetric, semi-definite positive, which means that for any non-zero vector
λ ∈ RT , K has the following hermitian property: λTKλ ≥ 0 (Bishop, 2006).

18



Support Vector Regression

Support Vector Regression (SVR) (Muller et al., 1999) with Gaussian kernels can be

viewed as a specialization of WKR, with a sparse support S ⊂ {1, . . . , T}. Without

going into the specifics of Support Vector Machines (Cortes and Vapnik, 1995)14, we

can say that SVR provides with predictions ȳ′t =
∑

t∈S λtk
(
yt

′−1
t′−p,y

t−1
t−p

)
+b, where b is

a bias term, λt are positive Lagrange coefficients, and where the subset S of training

samples is chosen so that the predictions ȳt on the training datapoints t ∈ {1, . . . , T},

satisfy the following constraint: |yt − ȳt| ≤ ε, for a fixed ε. There can be a few

exceptions, which are outlier datapoints that cannot be fitted. The datapoints where

|yt− ȳt| = ε are called the margin support vectors. Datapoints where |yt− ȳt| < ε are

not part of the set of support vector S (their Lagrange coefficient is λt = 0).

When Gaussian kernels are used, the solution to SVR can be seen as a manifold in

an N +1 dimensional space (where N is the number of dimensions in inputs yt−1
t−p and

the last dimension is covered by targets yt and predictions ȳt); that manifold tries to

keep within a distance of ε of all the training datapoints. Its smoothness, as well as

the number of outliers, depend on the bandwidth parameter σ.

SVR has been very successfully applied to time series prediction. In (Mattera

and Haykin, 1999; Mukherjee et al., 1997; Muller et al., 1999), SVR made long-term

iterated predictions on the Lorenz (Lorenz, 1963) and Mackay-Glass chaotic datasets.

In particular, SVR was capable of staying within the chaotic attractor’s orbit, unlike

most neural networks-based predictors. On the downside, SVR theoretically requires

the training data to be i.i.d., an assumption which is clearly violated (Mattera and

Haykin, 1999), and it does not explicitly model dynamical equations (i.e. the inter-

action of variables) on the time series.
14Note that SVM and SVR are optimized using a different formulation than maximum likelihood.
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Gaussian Processes

Gaussian Processes (GP) (Williams and Rasmussen, 1996) are particular kernel-based

method. GPs assume that the time series {y1, y2, . . . , yT} is jointly Gaussian, and

express the covariance between any two training samples t and t′ as a Gaussian kernel

function on xt and xt′ :

Cov (yt, yt′) = k (xt,xt′) = θ0 exp

(
−θ1

2
‖ xt − xt′ ‖2

2

)
+ θ2 + θ3x

T
t xt′ (1.14)

In order to regress yt′ given xt′ and the training dataset {(xt, yt)}, GPs compute

the Gaussian conditional probability P (yt′ |Y). As such, GPs do not approximate

(non)linear dynamical systems on the observed variables, but compute the pairwise

similarity between the inputs of training samples. To learn a GP model means to

compute the kernel matrix and to fit the hyperparameters Θ, which is achieved using

maximum likelihood.

GPs have been applied to iterated time series prediction (Girard et al., 2003),

using time-delay embedding yt−1
t−p in lieu of xt.

1.2.10 Regularization

When learning a time series model, it is important not to overfit the training dataset,

which would preclude the generalization faculty of the model to unseen time points.

This can be achieved by regularization, which is the addition of a prior on the model

parameters Θ to the likelihood P (Y) of the time series (Bishop, 2006). That prior

says that the values of the weights should be small or sparse, as this is a simple

way not to overfit the data. The two most common regularizations are the L2-norm
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Tikhonov regularization15 (zero-mean Gaussian distribution prior on Θ) and the L1-

norm regularization (or the so-called parameter shrinkage, with a zero-mean fat-tail

Laplace distribution prior on Θ), formulated by Tibshirani (Tibshirani, 1996)16. For

a model parameterized by Θ, the Gaussian regression from (Eq. 1.3) can be expressed

as respectively (Eq. 1.15) and (Eq. 1.16), with regularization coefficient λ:

− logP (Y|Θ) ∝
T∑

t=p+1

‖ y(t)− f
(
yt−1
t−p
)
‖2

2 +λ ‖ Θ ‖2
2 +const (1.15)

− logP (Y|Θ) ∝
T∑

t=p+1

‖ y(t)− f
(
yt−1
t−p
)
‖2

2 +λ
∑

k

|θk|+ const (1.16)

In summary, we have seen several “memoryless” time series models that model

the interaction between time-embedded variables, or the similarity between the time

embeddings, but do not incorporate dynamics between hidden variables that represent

long term memory. For every time step t, their dynamical model uses information

only from the previous p time steps, and ignores longer-range dependencies.

Such models can be perfectly appropriate for learning simple dynamical systems,

for time series forecasting, for the classification or regression of subsequences, and for

evaluating the likelihood of a sequence. They cannot however be used for imputing

missing values, and of course, do not provide with hidden sequence representation,

neither do they incorporate unobserved data that might be useful for dynamical

modeling (such as unknown protein levels in the case of genetic mRNA microarray

data).
15Also called ridge regression for linear models.
16Note that SVM and SVR express their L2-norm regularization in different terms of maximum

margins (Cortes and Vapnik, 1995).
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1.3 Time Series Modeling with Hidden Variables

The previously mentioned “memory”, also called state information, consists of addi-

tional variables Z that interact with the observed multivariate time series Y (in the

case when we separate output time series Y from input time series X, the hidden vari-

ables Z interact also with X). Most importantly, the notion of memory is entertained

by a dynamical relationship between consecutive values . . . , zt−1, zt, zt+1, . . . .

What each hidden variable zt represents is a summary of the time series Y and

X up to time-point t. We can exploit this “summary” while learning the time series

model, by “inferring” the hidden representation corresponding to the observed time

series. Let us for instance ignore X and only consider the following standard system

of observation (1.17) and dynamical (1.17) equations, also called first Markov order

state-space model:

yt = g (zt) (1.17)

zt = f (zt−1) (1.18)

One can recursively express the above system as yt = g
(
f (p)(zt−p)

)
, for any order

p (up to p → ∞), and not involving the observed variables yt−1
t−p. Because, in this

generative model, each yt is generated from zt, the recursive formulation implicitly

establishes a p-order dependency on the past observed values of the time series, while

maintaining a simple first-order Markov system of equations.
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1.3.1 Recurrent Neural Networks and Vanishing Gradients

Let us illustrate this notion of memory using the Time-Delay Neural Network archi-

tecture. TDNNs work by outputting a prediction yt to an input yt−1
t−p or xt, and use

temporary inter-layer variables z
{l}
t at each layer l; their output yt and variables z

{l}
t

depend solely on that input. Their difference with Recurrent Neural Networks (RNN)

is that RNN keep the values of intermediary layers’ activations z
{l}
t in memory, and

for a new sample t+ 1, compute the values of the new activations z
{l}
t+1 by adding the

result of nonlinear operations on the new input to existing values of z
{l}
t at each hid-

den layer l. One speaks about recurrent connections modeling temporal dependencies

between hidden states. Figure 1.1 illustrates the difference between a TDNN and a

RNN on two toy architectures.

Unfortunately, RNNs require special learning procedures, and ML algorithms

based on exact gradient descent (Rumelhart et al., 1986) such as Backpropagation

Through Time (BPTT) or Real-Time Recurrent Learning (RTRL) (Williams and

Zipser, 1995), fail. The well-known problem of vanishing gradients is responsible for

RNN to forget, during training, outputs or activations that are more than a dozen

time steps back in time (Bengio et al., 1994). Several alternative training algorithms

have been proposed to avoid the vanishing gradient problem in RNN. One of them

consists in using Kalman Filtering as a second-order method to optimize the weights

of the RNN (Puskorius and Feldkamp, 1994). Another one, called Long Short-Term

Memory (LSTM) consists in designing a new type of units with gates that prevent

these nodes from forgetting information (Hochreiter and Schmidhuber, 1995; Wierstra

et al., 2005).
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Figure 1.1: Example of an elementary Time-Delay Neural Network architecture (left),
and of an associated Recurrent Neural Network (right). The TDNN defines a 3rd-
order Markov dependency on the input data Y, predicting yt from yt−1

t−3. It relies
on temporary “inter-layer” variables ztt−1, which are connected to the inputs yt−1

t−3

and which share two weights w1,1 and w1,2 (each hidden variable is predicted by the
same convolutional kernel of size 2, parameterized by [w1,1, w1,2]; notice how we have
called the two hidden nodes). In closed-loop training and at time point t + 1, node
zt−1 takes the same value as node zt at time point t, which is a consequence of
deterministic prediction from consecutive segments of Y and of weight sharing. The
two hidden variables ztt−1 predict in turn yt (through connection weights w2,1 and
w2,2). In the elementary RNN architecture, those hidden variables are dynamically
connected, from one time step to the next one (here, through a single connection of
weight w2,3). Because they feel the effects of their activations from previous time
steps (so-called “memory”), those two hidden nodes may have different values (we use
a different notation zt,1 and zt,2 to stress the fact that those two hidden nodes acquire
a different behavior).

1.3.2 Models Capable of Inferring Latent Variables

We notice that contrary to procedures evoked in the next sections, gradient descent-

based BPTT and RTRL in RNN do not try to optimize the values of hidden variables

z
{l}
t with respect to the model likelihood.

Let us now introduce methods that explicitly optimize the distribution of the

latent variables. All of the methods below try to represent the modeled time series

Y and the hidden sequence Z in terms of probabilities.
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With a few exceptions, most of the models presented subsequently use maximum

likelihood for model learning (introduced in Section 1.2.3), and require an iterative

learning procedure based on Expectation Maximization (EM) (Dempster et al., 1977),

which will be explained in further details in Chapter 2.

There are several differences between these models, which lie in the inference

procedure (finding the distribution of the latent variables Z conditional on the model),

in the linear or nonlinear nature of the model, and in the discrete or continuous nature

of the sequences.

1.3.3 Discrete Sequence Hidden Variable Models

Hidden Markov Models

Perhaps the most commonly used hidden variable model, introduced for speech recog-

nition, is the Hidden Markov Model (Rabiner, 1989), which consists of a sequence of

discrete state observations zT1 that are governed by a probabilistic transition table

and a prior distribution on the M states. At each time point t, a state xt can emit a

multivariate observation yt that has a Gaussian distribution. HMMs are therefore a

generative model.

Assuming a trained HMM, the full inference of the distribution of each zT1 can be

done using the message-passing forward-backward algorithm; alternatively the most

likely sequence z̄T1 can be found using the Viterbi decoding, which is essentially a dy-

namic programming algorithm. Because of the Gaussian, finite nature of the HMMs,

learning and inference are tractable and can be done in an EM framework, recapitu-

lated in Chapter 2.

Input-Output Hidden Markov Models (IOHMM) (Bengio and Frasconi, 1995) ex-

tend HMMs by conditioning the latent variables on additional input time series X.
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Conditional Random Fields

Conditional Random Fields (CRF) are a more recent model (Lafferty et al., 2001)

that is specific to discrete sequences Y, and which does away with the i.i.d. assump-

tion taken by HMMs. Instead of being a generative model, CRFs can be viewed as

undirected graphs that condition the distribution of the latent variables on Y, with a

Markov assumption on the graph of Y (not necessarily a chain). The value of interest

is P (Z|Y). CRFs are typically used for labeling and segmentation problems.

1.3.4 Linear Dynamical Systems

HMMs and CRFs, though powerful, do not fit most of our continuous domain time

series. Let us therefore introduce their continuously-valued counterparts.

State-Space Models (SSM) are a general category of models for time series that

incorporate a continuously-valued hidden variable zt, also called state variable, which

follows a first-order Markov dynamic and generates the observed vector yt (Ghahra-

mani, 1998).

zt = f (zt−1) + ηt (1.19)

yt = h (zt) + εt (1.20)

Linear Dynamical Systems (LDS) are a linear embodiment of SSMs, which means

that functions f and h are linear operation (respectively matrix F and H). Sometimes,

function f can also depend on additional time series inputs xt, which means that

zt = Fzt−1 + Cxt + ηt. The dynamic and observation noises are distributed as
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multivariate Gaussians17. LDS were introduced as Kalman Filters (Kalman, 1960).

Both the State-Space Models and the Hidden Markov Models fall into the cate-

gory of Dynamic Bayesian Networks (DBN), which are directed graphical models for

sequences and time series (Ghahramani, 1998). Similar to HMM, and because of their

linear nature and of the Gaussian distributions, LDS benefit from a tractable forward-

backward inference and tractable ML learning, in the EM framework. One makes the

difference between Kalman Smoothing, which is a bidirectional forward-backward

inference of the distribution of the latent variables, and which takes advantage of “fu-

ture” values of Y, X and Z, and the forward-only Kalman Filtering. During forward

and backward recursion, the distribution of Z is computed by forward- or backward-

propagating the noise covariances.

Parameter Learning as a Dual Filtering Problem

A simplified learning procedure for finding some or all the parameters of a Kalman

Filter-based dynamical systems is “dual filtering”, when the parameters are “filtered”

(estimated) simultaneously with the latent states (Nelson and Stear, 1976; Wan and

Nelson, 1996). Dual filtering consists of adding the parameters Θ of the model as

additional dimensions to the state variable Z, and in applying the forward Kalman

filtering inference to update θt w.r.t. observations xt and yt as well as “observations”

coming from the latent variables zt. The dynamics on θt are assumed to be a random

walk.

Of course, LDS have inherent limitations, which is that they cannot model non-

linear dynamics, which are the object of next section.
17Note that all these matrices and Gaussian covariance matrices could be non-stationary, and

depend on t, but in practice the models are time-invariant.
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Conditional State Space Models

Similar to CRF, one can define linear SSM in terms of undirected graphs, and con-

dition the continuously-valued latent variable Z on the observed variables Y, instead

of a generative model from Z to Y. This approach, with linear first-order Markov

dynamics on Z, was adopted by (Kim and Pavlovic, 2007). Latent variable inference

was done using a Kalman filter, and ML learning was done using gradient descent on

the parameters18.

1.3.5 Nonlinear Dynamical Systems

Suppose now that we replace linear functions f and h in Equations (1.19) and (1.20)

by any nonlinear relationship.

Because the inference in DBN is probabilistic, a closed-form solution might not

exist, and that inference might become difficult or even intractable in the case of

highly nonlinear dynamics and observation models, as is illustrated with the diffi-

culties encountered by so-called Extended Kalman Filters/Smoothers. The root of

the problem is in the propagation of the covariance matrices: the nonlinearity that

predicts zt+1 from zt makes the distribution of zt+1 no longer Gaussian. Because of

the issues with latent variable inference, and because of the partition function prob-

lem explained in Section 2.2.2, the learning of the parameters is made all the more

difficult, as it cannot easily be expressed in closed form and is not tractable.

Several workarounds have been devised in the past decade, which we enumer-

ate below. Beforehand, we shall only mention that, keeping the imperfect Extended

Kalman Filter/Smoother architecture, (Wan and Nelson, 1996) devised a dual fil-
18Interestingly, because the latent variables (consisting in human poses, associated to observed

silhouettes from videos) in the training dataset were known, the hidden variable model was actually
trained discriminatively.

28



tering/smoothing approach for joint state and parameter estimation, which at least

greatly simplified the learning procedure.

Unscented and Particle Filtering for Inference

A popular algorithm for latent variable inference in nonlinear models is the Unscented

Kalman Filter/Smoother (Wan and Van Der Merwe, 2000). Instead of propagating

the mean and covariance matrix of zt through the nonlinearity, the UKF propagates

the mode and 2M “particles”, 2 particles per dimension of zt, on each side of the

peak of the distribution and in each dimension. This works very well for unimodal

distributions. For more complex distributions, one can use the Particle Filter (PF),

with a cloud of (thousands of) particles {zt} propagated at each time step, out of

which one can sample the distribution of zt. UKF and PF resort to joint filtering for

parameter estimation, though.

Making the Learning Tractable

The main issue with learning Nonlinear Dynamic Systems, and hidden variable models

in general, will be explicited in Section 2.2.2, and is linked to the fact that one can-

not properly compute the probability distribution over Z, because of the intractable

partition function (in short, one would need to sum over all the possible values of

Z, which can be done easily only for a limited number of distributions such as the

Gaussian). As a consequence, DBNs that are more complex than LDS and HMMs

break out once certain nonlinear architectures are designed (Ghahramani, 1998).

Several approaches have been designed to overcome the issue of the partition

function, including the expensive sampling techniques, and the sometimes compli-

cated Variational Bayes derivations to the EM learning procedure. Those approxi-

mate techniques enable approximate inference of the full distribution of the hidden
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variables19.

On one hand, (Ghahramani and Roweis, 1999) introduced an NDS where the

dynamic function f consisted of Radial Basis Functions, i.e. a mixture of Gaussians.

This enabled an exact inference and learning steps in the EM algorithm, but required

the RBF centers to be properly initialized.

On the other hand, (Ilin et al., 2004) simplified the NDS to first-order Markov

dynamics (it was effectively an SSM), where the nonlinearities were represented by

Multi-Layer Perceptrons (MLP) with one hidden layer with tanh nonlinearity. This

enabled to devise a variational Bayes approximation for approximating the distribu-

tion of Z. Their algorithm was applied to model chaotic attractors and to detect

changes in nonlinear dynamics.

Both the RBF and MLP nonlinearities employed in NDS were relatively simple

compared to the kind of nonlinearities (convolutional networks) used in Chapter 3 of

this doctoral work.

NDS with Approximate Inference of Hidden Variables

An early model of nonlinear dynamical system with inferred hidden variables is the

Hidden Control Neural Network (Levin, 1993), where a latent variable z(t) is added

as an additional input to mapping (1.2). Although the dynamical model remains

unchanged (thus stationary) across the whole time series, the latent variable z(t)

modulates the dynamics of (1.2), enabling a behavior more complex than in pure

autoregressive systems. The training algorithm iteratively optimizes the sequence

Z of latent variables (1.21) and the weights W of the Time-Delay Neural Network
19As explained in the next chapter, I used in my doctoral work a different approach to the inference

of hidden variables, performing maximum a-posteriori inference of the most likely configuration of
the hidden variables. By “cutting corners” in the inference process, my technique is able to handle a
much richer class of nonlinearities (essentially, any kind of nonlinear function that is differentiable)
than traditional graphical models.
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(TDNN) (equation 1.22):

Z = arg min
Z′

E (Y (t),W,Z′) = arg min
Z′

∑

t

‖ yt − f (yt−1,Z
′; W) ‖2

2 (1.21)

W = arg min
W′

E (Y,Z; W′) (1.22)

The latter algorithm, which is likened to approximate maximum likelihood train-

ing, is the starting point for my own method, which relies on the same iterative

learning, but instead of finding a sequence of dynamic-modulating latent variables,

finds the latent variables Z that generate the observations Y, as in DBNs. Moreover,

I propose to consider non-Markovian (or higher-order Markovian) dynamics where

hidden states zt depend on a time-delay embedding of zt−1
t−p.

A more recent model of DBN with deterministic dynamics and explicit inference

of latent variables was introduced in (Barber, 2003). However, the inference of the

hidden variables was done by message passing in the forward direction only, and

the dynamics were first-order Markov only. Both these algorithms were successfully

applied to short-sequence speech recognition problems.

1.3.6 Mixed Models for Switching Dynamics

A large area of research has been focusing on mixed state-space models that model

switching dynamics and cope with nonstationarity. For instance (Kohlmorgen et al.,

1994, 1998) employ a mixture of HMMs and Neural Networks experts (such as Radial

Basis Functions RBF) for identification of wake/sleep in physiological recordings,

whereas (Pavlovic et al., 1999) employs a mixture of HMMs and LDS for modeling

and classifying time series corresponding to different motions.
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1.3.7 Recurrent Boltzman Machines

An alternative nonlinear generative model with explicit inference of latent variables

is the Restricted Boltzman Machine (RBM). RBMs contain stochastic binary latent

variables and real-valued observations (Hinton et al., 1995) with an EM-like inference

and learning procedure. Multilayer RBM architectures (Hinton et al., 2006) enable

non-linear dynamics, and (Sutskever and Hinton, 2006) enables pth order temporal

dependencies on the latent and visible units. Although difficult and long to train,

RBMs have been successfully applied to difficult time series, such as motion recon-

struction and even long-term prediction (Taylor et al., 2006). Their stochastic nature

enables them to create more interesting but still realistic trajectories and to “jump”

out of fixed attractors.

1.3.8 Gaussian Processes with Latent Variables

It is possible to incorporate lower-dimension latent variables into Gaussian Processes

Latent Variable Models (GPLVM). In that case, one expresses the probability of the

observed variables Y conditional on X by using a covariance matrix based on a Gaus-

sian kernel on X, and in the ML formulation, tries to maximize the log-likelihood not

only w.r.t. the hyperparameters of the kernel function, but also w.r.t. the kernel

matrix itself. Because of computational complexity involved in that learning pro-

cess, a special kernel algorithm is required (Lawrence, 2004). The GPLVM can be

extended by adding dynamics to X (Wang et al., 2006a), notably by expressing xt as

a Gaussian Process on xt−1. The Gaussian Process Dynamical Model (GPDM) thus

comprises a low-dimensional latent space with associated dynamics, and a map from

the latent space to an observation space, with a closed-form marginalization of the

model parameters for both the dynamics and the observation mappings.
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A further embodiment of the GPLVM can be achieved by adding a third GP on in-

put variables X, with an architecture similar to IOHMM or illustrated on Figure 2.2.

When both the data X and Y are known (e.g. images features and pose, respec-

tively), the model can be trained discriminatively to infer a hidden representation

that matches both the inputs and the outputs. On new data X, one can infer the

latent variables Z then the predictions Ȳ (Moon and Pavlovic, 2008).

GPLVM/GPDM have been applied to modeling dynamics on motion capture data,

and more recently, to the inference of latent protein transcription factors (Zhang

et al., 2010). It seems however that the kernel nature of the algorithm precludes long

sequences.

1.3.9 Limitations of Existing Hidden Variable Models

Let us conclude this introductory section by Table 1.1, which recapitulates the strengths

of all the common methods for time series modeling with hidden variables. As I sug-

gest in the last line of that table, I introduce in this thesis a new algorithm, Dynamic

Factor Graphs (DFG) that is more versatile than the state-of-the-art.
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Table 1.1: Summary of existing hidden variable time series models and of their limi-
tations. The table recapitulates the following algorithms: Recurrent Neural Networks
(RNN), Long Short-Term Memory (LSTM), Hidden Markov Models (HMM), Condi-
tional Random Fields (CRF), Linear Dynamical Systems (LDS) and Kalman Filters
(KF), Nonlinear Dynamical Systems (NDS) and Extended Kalman Filters (EKF),
Unscented Kalman Filters (UKF) and Particle Filters (PF), Conditional Restricted
Boltzmann Machines (RBM), Gaussian Process Latent Variable Models (GPLVM),
and finally, the method developed in this thesis, Dynamic Factor Graphs (DFG).
For each method, we listed whether the method performs a proper inference of hid-
den representations, whether the model is trainable, whether that representation is
continuously-valued (real), whether it enables complex nonlinearities and whether it
handles long sequences in linear time.

Method Infers hidden Trainable Real- Complex Long
variables Valued Nonlinearity Sequences

RNN ! ! ! !

LSTM ! ! ! !

HMM ! ! discrete !

CRF ! ! discrete ! !

LDS ! ! ! !

NDS ! ! ! 1st order Markov !

UKF, PF ! joint infer. ! 1st order Markov !

CRBM ! ! binary ! !

GPLVM ! ! ! 1st order Markov
DFG ! ! ! ! !
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Chapter 2

Common Framework: Dynamical Factor Graphs

Let’s do the time warp again!

Richard O’Brien

In this chapter, I explain how we define a new inference and training algorithm

for modeling time series with Recurrent Neural Networks, using approximate iterative

inference and learning algorithms derived from state-space model such as Dynamic

Bayesian Networks, and using the Factor Graphs formalism. I will stress the impor-

tance on the most important contribution of this doctoral thesis, which is to perform

Maximum A Posteriori inference of continuously-valued hidden variables, while main-

taining the partition function constant by construction, thereby enabling to model

any kind of differentiable nonlinear dynamics and observation functions (in particu-

lar, any Markov order p), and thus achieving a much stronger representative power

than usual Graphical Models.
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2.1 Our Factor Graph formalism

2.1.1 Factor Graphs

According to their definition (Kschischang et al., 2001; Bishop, 2006), a factor graph

is a bipartite graph with two types of nodes, variables yt and factors gi (which are

functions of variables). Each variable node can be connected only to factor nodes,

and each factor node can be connected only to variables nodes. Factor graphs express

a global function g of all variables as a product of functions on the subset of variables

to which they are directly connected. It means that function gi takes as arguments

only variables {yt}t∈Si
to which it is directly connected in the graph. For T variables

and P functions, we have the following factorization:

g (y1,y2, . . . ,yT ) =
P∏

i=1

gi
(
{yt}t∈Si

)
(2.1)

Because of their factorial nature, factor graphs can represent, among others,

bayesian models (such as Hidden Markov Models), modeling the joint probability

of the full model as a product of conditional probabilities at each factor. Even if

ones does not use probabilities but hard constraints (one constraint per factor), the

conjunction of all the hard constraints in the model can be expressed as a product of

boolean indicators, one per factor (Kschischang et al., 2001).

When the graph structure is a tree, one can directly compute the marginal function

g (yt) for any variable yt using the sum-product algorithm for factor graphs, which is

based on message passing between the variable nodes. The sum-product algorithm

is the factor graph equivalent of both the forward-backward algorithm for hidden

sequence inference and of the Viterbi algorithm in HMMs, and for linear dynamical

36



zt+1zt−1zt−2 zt

yt yt+1yt−1yt−2

h

f

zt+1zt−1zt−2 zt

yt yt+1yt−1yt−2

h

f

zt+1zt−1zt−2 zt

yt yt+1yt−1yt−2

h f

zt+1zt−1zt−2 zt

yt yt+1yt−1yt−2

h f

Figure 2.1: Several Dynamic Factor Graphs that admit observed variables Y and
latent variables Z, which are factorized by observation (h) and dynamic (f) factors.

systems, corresponds to Kalman filtering (Kschischang et al., 2001). Figure 2.1 (top

left) illustrates the factor graph representation that is common to HMM and to one

embodiment of the algorithms discussed in the next chapters (specifically, the one we

used for learning the gene regulation network of the Arabidopsis in Chapter 4).

Several state-space models consist in Directed Acyclic Graphs (DAG), but an

undirected factor graph representation cannot be represented by a tree. The sum-

product algorithm nevertheless works for undirected factor graphs with cycles, it

simply needs to be repeated and has no guarantees of convergence (in the general

case). Figure 2.1 illustrates other factor graphs architectures that I will use. Among

others I investigated n-th order Markov dependencies (top right of the figure) for

modeling chaotic dynamics in Chapter 3. For the inference of protein transcription

factors in Chapter 4, I used observation and dynamic models that expressed the rates

of change of yt and of zt (bottom part of the figure). Finally, Figure 2.2 shows
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fg
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Figure 2.2: Dynamic Factor Graph that admits two types of observed variables:
inputs X and outputs Y, as well as latent variables Z, which are all factorized by
observation (h), dynamic (f) and input (g) factors.

an input-output architecture that separates observed sequences into X and Y; this

architecture corresponds to supervised auto-encoders with dynamical dependencies

between hidden variables in Chapter 5. Since all the aforementioned factor graphs

are specialized for sequence modeling, I call them Dynamic Factor Graphs.

The Factor Graph formalism has already been applied to model data where the la-

tent variable had a spatial structure, notably for modeling house prices. In that case,

the price yi of the i-th house in the dataset was considered as depending both on asso-

ciated input variables xi and on a latent desirability factor zi that was geographically

smooth (Chopra et al., 2007).

2.1.2 Maximum Likelihood and Factor Graphs

As I suggested in the first chapter, model learning and the inference of hidden repre-

sentations in this thesis is done using a maximum likelihood framework1. For numer-

ical reasons, this is performed in logarithmic space, using the negative log-likelihood
1We cannot apply discriminative learning of the hidden representations because we cannot eval-

uate the partition function of our nonlinear model with continuous hidden variables.
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instead. For the case of a Dynamical Bayesian Network such as an Input-Output

HMM (Bengio and Frasconi, 1995) (which can be described by the factor graph of

Figure 2.2), the joint likelihood (Eq. 2.2) and negative log-likelihood (Eq. 2.4) are

expressed as:

P (X,Y,Z) =
∏

t

P (zt|zt−1)P (zt|xt)P (yt|zt)P (xt) (2.2)

NLL = − logP (X,Y,Z) (2.3)

NLL = const+
∑

t

− logP (zt|zt−1)− logP (zt|xt)− logP (yt|zt)(2.4)

Consistently with DBNs, we keep the factor graph formalism while operating in

the logarithmic space, which simply means that we add each factor’s contributions

instead of multiplying them.

2.1.3 Factors Used in This Work

Different factors will be detailed in subsequent chapters, but we can express now

their common properties. Our factors contain two modules. The first one consists

in a deterministic function (let us call it g) that takes argument variables at and

generates prediction variables ōt. Those predictions are then compared to the actual

target variable ot and an error term is computed. The function that evaluates the

error constitutes the second module of the factor. Function g is parameterized by

parameters W, which we shall learn in order to minimize the prediction error of the

factor. Figure 2.3 recapitulates these concepts.

We notice that factor graphs are undirected; one can see them as “springs” between

variables. The main idea in our algorithm is that even if the functions are directed
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(from arguments to predictions), the error term is not. Therefore, during inference

of latent variables, one can try to minimize the error by acting both on the latent

variable arguments of the function and on the latent variable that are targets of that

same function. This principle is similar to Kalman smoothing, which is bidirectional,

as opposed to Kalman filtering (Kalman, 1960), which is forward only.

at

g (at;W)

ot

ōt

E (at,ot)

error (ot, ōt)

Figure 2.3: General description of a factor linking variables at and ot through function
g, with energy term E (at,ot).

We considered several types of functions g in this work, enumerated below:

• identity function, for instance for modeling random walk dynamics on latent

variables, or latent variables that are a de-noised version of observed variables:

ōt = at

• linear matrix operations: ōt = Wat,

• linear matrix operations followed by a nonlinearity such as the hyperbolic tan-

gent tanh: ōt = tanh (Wat),

• linear matrix operations followed by a softmax function, to produce probability

distributions over the output dimension space: ∀k, ōk,t = ewkatP
j e

wjat ,
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• a highly nonlinear TDNN or convolutional network, typically for modeling

chaotic dynamics on the latent variables. Note that contrary to (LeCun et al.,

1998a), we did not resort to 2D convolutions, as we used only convolutions

across time, not across channels.

Similarly, we considered different types of errors, which would all correspond to

negative log-likelihoods: most commonly the sum of squares (Gaussian distribution)

and sum of absolute values (Laplace), but also the logistic error (Binomial) and

the cross-entropy error (Multinomial) for classification. The latter two errors are

reminded in Chapters 5.

2.2 Maximum Likelihood Energy-Based Inference

Now that we have defined the building blocks of our architecture, involving latent and

hidden variables, we would like to be able to infer the sequence of hidden variables

Z that optimally represents the observed sequence Y (and X, if relevant) under the

model. This is a simpler problem than that of inferring a full distribution over Z,

which is normally done for Dynamic Bayesian Networks and (Non)-Linear Dynamical

Systems (Ghahramani, 1998; Ghahramani and Roweis, 1999).

2.2.1 Energy as Negative Log-Likelihood

Let us introduce the notion of energy, which is among others reviewed in (LeCun

et al., 2006). Using the notation from Figure 2.3, our energy term E (at,ot) at each

factor merely corresponds to the error that results from predicting ōt instead of ot.

Using the factor graph formalism in the logarithmic domain, the energy of the whole

sequence of observed and hidden variables is a sum of energies at all the factors,
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and is noted E (Y,Z) or E (X,Y,Z). Without loss of generality, let us focus on

models without inputs X, and also include the model parameters W into the energy

term: E (Y,Z; W). As we mentioned earlier, we make our energy proportional to

the negative log-likelihood of joint variables Y and Z:

E (Y,Z; W) ∝ − logP (Y,Z|W) + const (2.5)

2.2.2 Intractable Partition Functions

Note that energy in Equation (2.5) does not define by itself a probability distribu-

tion, because the normalization terms are unknown. For a proper normalization and

to obtain the actual value of P (Y,Z|W), one would need to resort to the so-called

Boltzmann distribution (LeCun et al., 2006) with an additional “temperature” co-

efficient 1/β (Eq. 2.6). The Boltzmann distribution, used in statistical mechanics,

provides with the maximum entropy distribution2 that is still compatible with the

observations.

P (Y,Z|W) =
e−βE(Y,Z;W)

∫
Y′

∫
Z′ e−βE(Y′,Z′;W)dY′dZ′

(2.6)

=
e−βE(Y,Z;W)

ΓY,Z
(2.7)

The normalization constant ΓY,Z is called the partition function.

For a given configuration of energies E(Y,Z|W), the lower the temperature 1/β,

the more peaked the associated Boltzmann distribution (conversely, the higher the

temperature, the more uniform the distribution). At sufficiently low temperatures, in
2i.e. most uniformly random
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the limit of β →∞, the associated distribution would become unimodal, even if the

energy surface admitted local minima; therefore, the joint configuration of observed

and hidden variables given the model would seem simpler than it actually is.

In order to evaluate the likelihood of observed sequence Y, one needs to marginal-

ize P (Y,Z|W) and (Eq. 2.6) over all the values that hidden sequence Z can take:

P (Y|W) =

∫

Z′
P (Y,Z′|W) dZ′ (2.8)

=

∫

Z′

e−βE(Y,Z′;W)

∫
Y′

∫
Z′′ e−βE(Y′,Z′′;W)dY′dZ′′

dZ′ (2.9)

Evaluating the integrals of (Eq. 2.6) and (Eq. 2.9) over all observed and hidden

sequences is intractable for continuous variables under non-Gaussian distributions. It

is similarly difficult when the distributions are Gaussian but the factors are nonlinear.

As we detailed in the first chapter, DBN, LDS and NDS algorithms have resorted to

various approximations involving sampling and variational Bayes approximations.

2.2.3 Maximum A Posteriori Approximation

Similarly to previous work in that field conducted in Prof. LeCun’s lab (LeCun et al.,

2006; Chopra et al., 2007; Ranzato et al., 2007), we propose to use a maximum a

posteriori (MAP) approximation, which foregoes the full distribution in favor of its

mode. What follows is an analogy to the proofs derived in (Ranzato, 2009).

Let us first define the “marginal” energy of the observed sequence Y, after having

integrated away the latent variables. This definition is arbitrary but fits nicely into

previous equation (2.9):
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E (Y; W) = − 1

β
log

∫

Z′
e−βE(Y,Z′;W)dZ′ (2.10)

e−βE(Y;W) =

∫

Z′
e−βE(Y,Z′;W)dZ′ (2.11)

P (Y|W) =
e−βE(Y;W)

∫
Y′ e−βE(Y′;W)dY′

(2.12)

We will show that a) E (Y; W) can be approximated by arg minZE (Y,Z; W),

and that b) arg minZE (Y,Z; W) = arg maxZ P (Z|Y,W). Let us begin with the

second statement.

By the Bayes rule P (Y,Z|W) = P (Z|Y,W)P (Y|W), maximizing P (Y,Z|W)

w.r.t. Z is akin to maximizing P (Z|Y,W) w.r.t. Z since P (Y|W) does not depend

on Z. Then, using Equation (2.6), arg maxZ P (Z|Y,W) = arg maxZ e
−βE(Y,Z;W)

because the partition function is independent of the variables. Hence:

arg min
Z
E (Y,Z; W) = arg max

Z
P (Z|Y,W) (2.13)

Now, to prove that E (Y; W) can be approximated by arg minZE (Y,Z; W), we

take Equation (2.10) to the limit in β. Assuming that the energy E (Y,Z; W) is

positive and admits a zero minimum in Z0 (which is the case for instance for quadratic

errors):

lim
β→∞

− 1

β
log

∫

Z′
e−βE(Y,Z′;W)dZ′ = lim

β→∞
− 1

β
log

∫

Z′
δZ′=Z0e

−βE(Y,Z′;W)dZ′(2.14)

= lim
β→∞

− 1

β
log
(
e−βE(Y,Z0;W)

)
(2.15)

= E (Y,Z0; W) (2.16)
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In the rest of this work, we subsequently note that, for an observed sequence Y

and given a model parameterized by W, the result of the latent variable inference is

the minimum energy state of the model for that sequence:

E (Y; W) = arg min
Z
E (Y,Z; W) (2.17)

2.2.4 Summing Energies from Diverse Factors

As illustrated on Figures 2.1 and 2.2, our factor graphs contain several types of factors

replicated over the time dimension of the sequences. We therefore need to sum up,

for all time points, energies from various factors.

We design our factor graph and energy functions under the assumption that all

time series including the latent variables Z are identically distributed, with conditional

independencies beyond the reach of each factor (see section 1.2.3). This means that

for a given type of factor, the additive normalization term (due to the partition

function) − log ΓZ,Y (t) remains constant across time samples t ∈ {1, . . . , T}. This

also means that, for exponential distributions (such as Laplace and Gaussian), the

multiplicative scale coefficients for each data point are constant across time. Recall

that for the Gaussian distribution, these scale coefficients are linked to the inverse of

the covariance matrix Σ. As many latent variable techniques in the machine learning

literature do, we will claim3 that the covariance matrix is diagonal with identical

terms across the diagonal: Σ = σI.

However, because we did not properly normalize the energies of our factors, we

are left with “guessing” the relative weight of the scales σ for each type of factors. For

a clearer picture, let us focus for instance on a DFG composed of observation h and
3We can of course design latent variables such that their covariance is diagonal, and we can

always standardize the observed time series Y to zero-mean and unit variance for each dimension,
and then apply a principal component analysis to de-correlate the rows of Y.
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dynamic f factors (as in Chapters 3 and 4), with associated energies Eh (yt, zt; W)

and Ef
(
zt−1
t−p, zt; W

)
. Let us assume (as is the case in those chapters) that their

underlying distributions are Gaussian, which also means that their error terms are

Gaussian:

∀t, P (yt − h (zt; W) |zt) ∼ N (0,Σh) = N (0, σhIN) (2.18)

∀t, P
(
zt − f

(
zt−1
t−p; W

))
∼ N (0,Σf ) = N (0, σfIM) (2.19)

In our energy-based framework, we simply replace the scales σh and σf by their

relative weight coefficient γ (e.g. coefficient of the dynamic factor). The total energy

of a sequence of observed Y and hidden variables Z is written as (Eq. 2.20), and the

inference problem becomes (Eq. 2.21).

E (Y,Z; W) =
∑

t

Eh (yt, zt; W) + γ
∑

t

Ef
(
zt−1
t−p, zt; W

)
(2.20)

E (Y; W) = arg min
Z′

{∑

t

Eh (yt, zt; W) + γ
∑

t

Ef
(
zt−1
t−p, zt; W

)
}

(2.21)

We can use a few tricks to make the guessing of γ easier. First of all, if there are

several factors with similar types of energies (e.g. Gaussian sum of square errors), then

we can normalize the energies by the number of dimensions of the variables involved.

Secondly, varying the relative contributions of each factor type can be treated like

adjusting additional hyper-parameters with an intuitive explanation: the coefficient

γ is related to the “weight” or “importance” we want to give to the dynamic factor;

the larger the γ, the tighter the scale or bandwidth of that factor. Finally, γ can be
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adjusted with the usual arsenal of techniques such as cross-validation.

2.2.5 Interpretation in Terms of Lagrange Multipliers

Another explanation of the γ can be provided from the Lagrange multipliers tech-

nique, developed by French mathematician Joseph Louis Lagrange. Let us consider

indeed the energy minimization problem (Eq. 2.17) with two factors4, one for the

observation (h) and one for the dynamics (f), as a constrained optimization problem

with an objective (Eq. 2.22) and a constraint (Eq. 2.23):

min
Z
Eh (Y,Z; W) (2.22)

subject to: ∀t, zt = f (zt−1; W) (2.23)

The Lagrange multiplier technique proposes to integrate those constraints into one

Lagrange function Λ (Z, λ), after multiplying each constraint (over all time points and

for all M dimensions of Z) by a corresponding Lagrange coefficient λk,t:

Λ (Z, λ) = Eh (Y,Z; W) +
T∑

t=2

M∑

k=1

λk,t (zk,t − fk (zt−1; W)) (2.24)

The Lagrange function enables to define the notion of a Lagrangien Λ (λ), which is

a lower bound on Λ for a specific configuration of the Lagrange multipliers (Eq. 2.25).

We can set equal constraints on all time points (conditional i.i.d. assumption) and

on all dimensions of Z (not favoring one hidden dimension over another), to obtain a

simplified Lagrangien depending on a single variable (Eq. 2.26).
4For simplicity, but without loss of generality, we assumed that the Markov order p was one in

constrain (Eq. 2.23).
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Λ (λ) = min
Z

{
Eh (Y,Z; W) +

T∑

t=2

M∑

k=1

λk,t (zk,t − fk (zt−1; W))

}
(2.25)

= min
Z

{
Eh (Y,Z; W) + λ

(
T∑

t=2

M∑

k=1

(zk,t − fk (zt−1; W))

)}
(2.26)

The last equation (Eq. 2.26) shows the analogy to the energy-based inference (Eq.

2.21). Note however that in numerical optimization, the solution (Z, λ) to the La-

grange optimization does not correspond to the optimum of Λ (Z, λ), but rather to a

so-called saddle-point or critical point, which is at the same time a minimum w.r.t.

Z and a maximum w.r.t. the Lagrange coefficients λ.

2.2.6 Inference of Latent Variables

As we will illustrate in the next chapters, inference of latent variables in an MAP

setting becomes extremely simple. For a given configuration of the pseudo-Lagrange

coefficients, one simply needs to find the optimum of E (Y,Z; W), i.e. to differentiate

the total sequence energy (Eq. 2.20) w.r.t. the latent variables, and therefore to solve

for:

∂E (Y,Z; W)

∂Z
= 0 (2.27)

This can be achieved using the well-known gradient descent algorithm. As evoked

earlier, we back-propagate (Rumelhart et al., 1986) the gradients from the energy

modules in both directions, and update each zt by summing up the contributions

coming from all the factors it is connected to. We repeat the gradient step using a
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small learning rate, until a convergence criterion.

2.2.7 What DFGs Can Do That Graphical Models Cannot

The most important contribution of this doctoral thesis can be summarized in a single

sentence: Thanks to our Maximum A Posteriori approximation during the inference of

continuously-valued hidden representations of time series, and because we maintain

the partition function constant by construction, we are able to model any kind of

differentiable nonlinear dynamics and observation functions, with any dependencies

between the variables (in particular, any Markov order p), achieving a much stronger

representative power than usual Graphical Models.

2.2.8 On the Difference Between Hidden and Latent Variables

I would like to highlight at this point the difference between hidden and latent vari-

ables Z. Both are variables that are not observed and that need to be extracted from

observed data. However only the latent variables correspond to a maximum likelihood

solution that is obtained through inference. The maximum likelihood solution corre-

sponds to the mode of the distribution of Z for DBNs, and to the minimum energy

sequence w.r.t. Z for our DFGs. If we think in terms of message passing through the

factor graph, a hidden representation is obtained through a simple “forward” mes-

sage passing (e.g. direct prediction by an encoder), whereas the latent representation

is obtained after an iteration of “forward” and “backward” message passings, in a

so-called relaxation procedure, until the hidden representation converges to a stable

fixed point.

As such, the hidden variables in the language modeling task from Chapter 6 are

not properly latent, since they are obtained through a deterministic look-up table
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from a discrete observed sequence yT1 , without a relaxation step w.r.t. the dynamic

energy linking the hidden variables. We abstained from full relaxation on the hidden

variables because of the computational complexity of the language model on large

vocabularies and large text corpora.

2.3 Expectation Maximization-Like Learning of DFG

2.3.1 Expectation Maximization Algorithm

In its original form, Expectation Maximization (EM) (Dempster et al., 1977) is an

iterative and probabilistic maximum likelihood algorithm for estimating missing data

and learning the parameters of the joint distribution of observed and missing data.

EM alternates between parameter estimation/learning (M-step) and latent variables

inference (E-step), and can be referred to as coordinate ascent of the likelihood. The

main limitation of EM is that it converges to a local maximum likelihood.

In a nutshell, EM strives at maximizing the joint likelihood P (Y,Z|Θ) of com-

plete data (observed and hidden) that one could obtain given a model parameterized

by Θ. In other words, it tries to find the optimal Θ such that P (Y,Z|Θ) is max-

imal. Because Z is unknown, it tries instead to maximize the expectation of the

log-likelihood of the complete data under the model. The first step (E-step) consists

in evaluating E
[
logP

(
Y,Z|Θ(k)

)]
given the current estimate Θ(k)of the parameters.

The second step (M-step) consists in maximizing that quantity with respect to the

parameters Θ, i.e. assigning Θ(k+1) = arg maxΘ E
[
logP

(
Y,Z|Θ(k)

)]
.

As one can guess, the quantities enunciated above can be evaluated in closed

form if one can compute the full distribution P (Y,Z|Θ), for instance in HMM or

LDS. It is however more difficult in the case of intractable partition functions and
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distributions. An alternative explanation of EM, in terms of free energy and entropy

is given in (Ghahramani, 1998). In particular, the distribution P (Y,Z|Θ), which

is unknown, is replaced by an approximate distribution Q (Y,Z|Θ) that is known,

and during the E-step, instead of maximizing the expectation of P (Y,Z|Θ), one

maximizes the log-likelihood of Q (Y,Z|Θ), which is proved to be a lower bound on

the log-likelihood of P (Y,Z|Θ)5.

Since its inception, EM has found a wealth of applications in many fields, for

instance in various fields of signal processing (Moon, 1996). Generalized EM (GEM)

is a version of EM with truncated M-step that only partially improves the likelihood

of the parameters given the latent variables inferred in the E-step. Stochastic and

incremental (Neal and Hinton, 1998) variants of the EM are also possible.

2.3.2 Our Simplification and Approximation

The link between EM and our work is very simple, albeit simplistic. As we said

earlier, instead of evaluating the full distribution P (Y,Z|Θ) (or P (Z|Y,Θ), for that

matter) we replace it by its MAP approximation (its argmax). Then, maximizing the

conditional likelihood of the hidden variables is equivalent to minimizing the energy,

according to Equation (2.13). Since we are treating the “inferred” distribution of Z as

its mode, or more plainly, as a fixed quantity (just like Y), we can solve the M-step

learning in a quantity of ways.

2.3.3 Alternated E-Step and M-Step Procedure

In summary, learning in an DFG consists in adjusting the parameters W in order to

minimize the sum of energies at each factor. Because we introduce a regularization
5Such a formulation is useful for Variational Bayes inferrence (MacKay, 2003).
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term R (W) on the parameters (see Section 1.2.10) as well as another regularization

term Rz(Z) on the latent representation (see Section 2.4.2), we speak instead of a

loss function L(Y,Z; W), defined in Equation (2.28). That loss function contains a

crucial additional term, the log partition function − log ΓY,Z , which is constant by

construction in our case and can by consequence be ignored during minimization.

Coming back to the example exhibited in the last section, the iterative procedure can

be written as:

L(Y,Z; W) =
∑

t

(Eh(t) + γEf (t)) +Rz(Z) +R (W)− log ΓY,Z (2.28)

E-step: Z = arg min
Z′

L(Y,Z′; W) (2.29)

M-step: W = arg min
W′

L(Y,Z; W′) (2.30)

Minimization of the loss is done iteratively in an Expectation-Maximization-like

fashion in which the states Z play the role of auxiliary variables. The inference

described in part and equation (2.29) can be considered as the E-step (state update)

of a deterministic gradient-based version of the EM algorithm. During the parameter-

adjustingM-step (weight update) described by (2.30), the latent variables are frozen.

This means that we are back into the non-hidden variable framework, and that we

perform any kind of optimization6 to adjust W.

The E-step inference can be done either on the full sequence, or on mini-batches

(we used sequence length ranging from 20 to 1000 samples) with an M-step parameter

update after each mini-batch inference. In the latter case, during one epoch of train-

ing, the batches should be selected randomly, similar to regular stochastic gradient
6In the next chapters, we show that we investigated several ways to perform the M-step parameter

learning.
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with no latent variables (LeCun et al., 1998b; Bottou, 2004), in order to speed up the

learning of the weight parameters.

2.4 Discussion

Hidden/latent models are not without certain limitations, which need to be handled.

This section recapitulates the three most important ones.

2.4.1 Avoiding Flat Energy Surfaces During Inference

Hidden representations may raise the issue of flat energy surfaces. This means, that

no matter what observed sequence Y is supplied to the hidden-variable model, the

model can infer a good representation Z of Y, where “good” means that its energy

E(Y) is very low (e.g. E(Y) = 0). If the model can infer the same E(Y) = 0 no

matter what Y, then it is not able to discriminate between sequences, and is not very

informative. This could typically be acute in over-complete representations, where

the dimension of the latent variables is greater than the dimension of the observed

variables (Olshausen and Field, 1997; Ranzato et al., 2007).

In his thesis on that subject (Ranzato, 2009), Marc’Aurelio Ranzato provided two

theorems and proofs that flat energy surfaces can be avoided, under some conditions.

The first condition is that the dimension M of latent variables is smaller than the

dimenion N of observed variables: this is the case for instance for all the models in

Chapter 5 and some models in Chapter 4. The second condition, when M ≥ N , is to

have a sparse prior on the latent representation Z, which corresponds to limiting the

information content of the representation.

In Chapter 3, we introduce latent variables with M > N , while in Chapter 4,

we have some models with M = N . Let us now prove, in a simple way, that our
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dynamical constraint/model still prevents flat energy surfaces.

Without loss of generality, let us assume that the observation model h and the

dynamical model f are linear (matrices H ∈ RN×M and F ∈ RN×N), that we have the

HMM-like DFG architecture from Figure 2.1 (top-left), and that the Markov order is

p = 1, with a time series Y ∈ RN×T of length T . Then, for each time-point and for

each dimension of Y, we have a linear combination of hidden variables Z:

∀t ∈ {1, . . . , T}, ∀k ∈ {1, . . . , N}, yk(t) =
M∑

i=1

hk,izi(t) (2.31)

This yields N × T equations of M × T unknowns (elements of Z), and we have

N × T ≤ M × T . However, the dynamical equations bring additional M × (T − 1)

equations, keeping the same M × T unknowns:

∀t ∈ {2, . . . , T}, ∀i ∈ {1, . . . ,M}, zi(t) =
M∑

j=1

fi,jzj(t− 1) (2.32)

Trivially, provided that N × T ≤ M , the system is overdetermined. Hence we

might not find, for any Y, a solution Z that fits Y perfectly. Moreover, our en-

ergies (typically Gaussian) are not flat, but convex. Therefore, for sufficiently long

sequences, flat energy surfaces can be avoided.

The specific case of sequence likelihood estimation in Chapter 6 does not fall into

the flat energy trap, because the observation factor is a look-up table (which means

that the latent representation of a discrete sequence Y is produced deterministically),

and because the dynamical energy on sequences of hidden vectors Z integrates the

partition function, which means that for each input zt−1
t−p to the dynamical function

f , there is only one possible output zt that achieves minimal energy, and that output

might be in contradiction with the embedding of yt. Hence the energy surface of all

possible sequences Y is certainly not flat: actually, we use that model to discriminate
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between more or less “valid” sequences Y.

2.4.2 Bounding the Hidden Representation

Although the learning and inference algorithms for DFGs turn out to be simple and

flexible, and the energy surface of E (Y; W) cannot be flat, the hidden state inference

might however still be under-constrained, particularly so when the number M of

dimensions in latent variables Z is higher than the number N of dimensions of the

observed variables Y.

On one hand, there is for instance a risk that latent variables take extremely

large or extremely low values, which we would like to avoid. On the other hand, we

might want the latent variables to have a reproducible “appearance” from one learning

procedure to another, or we would like to inject a prior on that appearance.

For this reason, we propose to (in)directly constrain and regularize the hidden

variables in several ways.

Constraining the Observation Model

We could set some or all the parameters of the observation model to a fixed value. For

instance, when the latent variable represents a hidden phenomenon (e.g. a protein

transcription factor) and we want to know the influence of that phenomenon Z on

the observed time series Y, we could set the interaction between Z and one observed

variable yk to a certain value, and measure the interactions between Z and the other

observed variables yj relatively to yk (see Chapter 4).

Alternatively, when there are more hidden variables than observed variables (M >

N), we could even fix the observation model, and keep degrees of freedom of the sys-

tem only on the dynamics (see Chapter 3). Models that contain more hidden variables
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than observed variables can indeed be useful for modeling nonlinear dynamics.

Finally, even if the observation model retains most degrees of freedom, it can be

constrained to have a fixed norm (e.g. a vector norm equal to 1). For instance if the

observation model h is a linear matrix operation, we have ȳt = Whzt, and because

the norm of the observed variables yt is fixed, the norm of zt is fixed as well. This

solution is typically used in sparse coding (Olshausen and Field, 1997).

Regularization of the Hidden Variables

The obvious way to bound the magnitude of latent variables is to add a regularization

penalty to the inference gradient descent (E-step). An L2-norm regularization limits

their overall magnitude, while an L1-norm enforces their sparsity both in time and

across dimensions (Tibshirani, 1996).

In the case when the hidden variables are not latent but produced directly from a

look-up table, without inference, the regularization shall be applied during parameter

learning.

A third type of constraints on the latent variables is the smoothness penalty. This

penalty is somewhat contradictory with the dynamical model f , since it forces two

consecutive variables zt and zt+1 to be similar. We can however view this penalty as an

attempt at inferring slowly varying hidden states and at reducing noisy oscillations in

the latent variables (which is particularly relevant when observations Y are sampled

at a high frequency)7. By consequence, the dynamics of the latent states become

smoother and perhaps simpler to learn:

Rz

(
zt+1
t

)
= ||zt − zt+1||22 =

M∑

i=1

(zi(t)− zi(t+ 1))2 (2.33)

7Note that we are not merely modeling Brownian motion dynamics, because this regularization
penalty on the hidden variables comes in addition to the other dynamics modeled by function f .
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2.4.3 Avoiding Local Minima When Learning the Model

The author wishes he could write an extensive section on the matter of local minima

avoidance. Unfortunately, Expectation Maximization (Dempster et al., 1977) and all

derived algorithms and approximations (Neal and Hinton, 1998; Baldi and Rosen-

Zvi, 2005; Chopra et al., 2007; Ranzato et al., 2007) are prone to local minima,

which means here that depending on the initial guess of latent variables’ values or

distributions, one can end up with suboptimal solutions for the model.

Solution 1: Stochastic Learning

There are luckily a few workarounds to this problem. One of them is the inclusion

of randomness into the learning procedure, by performing alternated E-steps and M-

steps on short subsequences of the total sequence, and by selecting those subsequences

in a random order, according to the stochastic learning principle (Bottou, 2004). This

technique is used in Chapters 3 and 6.

Solution 2: Initializing Low-Dimensional Z Optimally w.r.t. Observations

Another workaround, specialized to models with a linear observation factor and where

the latent variables have fewer dimensions than the observed variables, is to initialize

the latent variables with a standard dimensionality reduction technique, such as Sin-

gular Value Decomposition, followed by Independent Component Analysis, consisting

in rotating the latent variables’ space in order to make them as independent as possi-

ble. This way, we start the optimization process with a latent variable configuration

that is already very good w.r.t. the linear observation factor, and the learning is

dedicated mostly to incorporate the dynamical factor’s (and other potential factors’)

constraints into the latent representation. This technique was utilized in Chapters 4
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and 5.

Solution 3: Bootstrapping

Finally, when the time series to be modeled is desperately short (such as mRNA level

micro-arrays for gene regulation experiments, in Chapter 4), one can repeat the full

learning procedure multiple times, and in a bootstrapping approach, draw statistics

from all the models and inferred latent sequences.

The following four chapters all consist in various embodiments of Dynamic Factor

Graphs. In particular, Chapters 3, 5 and 6 exhibit the advantage of using a sim-

ple, efficient MAP inference of hidden representations, that enables highly-nonlinear

factors.
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Chapter 3

Application to Time Series Modeling and to

Dynamical Systems

Prediction is very difficult,

especially about the future

Niels Bohr

This chapter presents the first application of Dynamic Factor Graphs (DFG) to

the modeling of linear or chaotic time series by learning a dynamical system on the

hidden continuously-valued representation. It has been published in (Mirowski and

LeCun, 2009) and presented at the ECML 2009 conference.

In summary, our DFG includes factors modeling joint probabilities between hid-

den and observed variables, and factors modeling dynamical constraints on hidden

variables. The DFG assigns a scalar energy to each configuration of hidden and ob-

served variables. A gradient-based inference procedure finds the minimum-energy

state sequence for a given observation sequence. Because the factors are designed to

ensure a constant partition function, they can be trained by minimizing the expected

energy over training sequences with respect to the factors’ parameters. These alter-

nated inference and parameter updates can thus be seen as a deterministic EM-like
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procedure.

Using smoothing regularizers, DFGs are shown to reconstruct chaotic attractors

and to separate a mixture of independent oscillatory sources perfectly. DFGs outper-

form the best known algorithm on the CATS competition benchmark for time series

prediction. Finally, we illustrate an application of DFGs to the reconstruction of

missing motion capture data.

3.1 Introduction

3.1.1 Background

Time series collected from real-world phenomena are often an incomplete picture of

a complex underlying dynamical process with a high-dimensional state that cannot

be directly observed. For example, human motion capture data gives the positions

of a few markers that are the reflection of a large number of joint angles with com-

plex kinematic and dynamical constraints. The aim of this chapter is to deal with

situations in which the hidden state is continuous and high-dimensional, and the un-

derlying dynamical process is highly non-linear, but essentially deterministic. It also

deals with situations in which the observations have lower dimension than the state,

and the relationship between states and observations may be non-linear. The situ-

ation occurs in numerous problems in speech and audio processing, financial data,

and instrumentation data, for such tasks as prediction and source separation. It ap-

plies in particular to univariate chaotic time series which are often the projection of a

multidimensional attractor generated by a multivariate system of nonlinear equations.

The simplest approach to modeling time series relies on time-delay embedding:

the model learns to predict one sample from a number of past samples with a lim-
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dynamic
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Figure 3.1: A simple Dynamical Factor Graph with a 1st order Markovian property,
as used in HMMs and state-space models such as Kalman Filters.

ited temporal span. This method can use linear auto-regressive models, as well as

non-linear ones based on kernel methods (e.g. support-vector regression (Mattera

and Haykin, 1999; Muller et al., 1999)), neural networks (including convolutional

networks such as time delay neural networks (Lang and Hinton, 1988; Wan, 1993)),

and other non-linear regression models. By Takens’ theorem (Takens, 1981) the orig-

inal multivariate chaotic attractor can indeed be theoretically reconstructed by using

time-delay embedding of the observed sequence, but the forecasting problem (Cas-

dagli, 1989) nevertheless remains difficult. The weakness of the above time-delay

embedding approaches is that they have a hard time capturing hidden dynamics with

long-term dependency because the state information is only accessible indirectly (if

at all) through a (possibly very long) sequence of observations (Bengio et al., 1994).

One approach for time series prediction or modeling is to learn the temporal de-

pendency between consecutive samples of the observed time series. In this chapter, we

propose to address this problem by simultaneously inferring the unobserved variables

and learning their dynamics. For instance, instead of learning to predict chaotic time

series, we infer an underlying latent multivariate attractor, constrained by nonlinear

dynamics.

To capture long-term dynamical dependencies, the model must have an internal
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Figure 3.2: A Dynamic Factor Graph where dynamics depend on the past two values
of both latent state Z and observed variables Y.

state with dynamical constraints that predict the state at a given time from the

states and observations at previous times (e.g. a state-space model). In general, the

dependencies between state and observation variables can be expressed in the form of

a Factor Graph (Kschischang et al., 2001) for sequential data, in which a graph motif

is replicated at every time step. An example of such a representation of a state-space

model is shown in Figure 3.1. Groups of variables (circles) are connected to a factor

(square) if a dependency exists between them. The factor can be expressed in the

negative log domain: each factor computes an energy value that can be interpreted as

the negative log likelihood of the configuration of the variables it connects with. The

total energy of the system is the sum of the factors’ energies, so that the maximum

likelihood configuration of variables can be obtained by minimizing the total energy.

Figure 3.1 shows the structure used in Hidden Markov Models (HMM) and Kalman

Filters, including Extended Kalman Filters (EKF) which can model non-linear dy-

namics. HMMs can capture longer range dependencies, but they are limited to dis-

crete sequences. Discretizing the state space of a high-dimensional continuous dynam-

ical process to make it fit into the HMM framework is often impractical. Conversely,

EKFs deal with continuous state spaces with non-linear dynamics, but much of the

machinery for inference and for training the parameters is linked to the problem of
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marginalizing over hidden state distributions and to propagating and estimating the

covariances of the state distributions. This has lead several authors to limit the dis-

cussion to dynamics and observation functions that are linear, radial-basis functions

networks (Wan and Nelson, 1996; Ghahramani and Roweis, 1999) or single-hidden

layer perceptrons (Ilin et al., 2004). More recently, Gaussian Processes with dynam-

ics on latent variables have been introduced (Wang et al., 2006b), but they suffer

from a quadratic dependence on the number of training samples.

3.1.2 Dynamical Factor Graphs

By contrast with current state-space methods, our primary interest is to model pro-

cesses whose underlying dynamics are essentially deterministic, but can be highly

complex and non-linear. Hence our model will allow the use of complex functions

to predict the state and observations, and will sacrifice the probabilistic nature of

the inference. Instead, our inference process (including during learning) will produce

the most likely (minimum energy) sequence of states given the observations. We call

this method Dynamic Factor Graph (DFG), a natural extension of Factor Graphs

specifically tuned for sequential data.

To model complex dynamics, the proposed model allows the state at a given

time to depend on the states and observations over several past time steps. The

corresponding DFG is depicted in Figure 3.2. The graph structure is somewhat similar

to that of Taylor and Hinton’s Conditional Restricted Boltzmann Machine (Taylor

et al., 2006). Ideally, training a CRBM would consist in minimizing the negative

log-likelihood of the data under the model. But computing the gradient of the log

partition function with respect to the parameters is intractable, hence Taylor and

Hinton propose to use a form of the contrastive divergence procedure, which relies on
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Monte-Carlo sampling. To avoid costly sampling procedures, we design the factors

in such a way that the partition function is constant, hence the likelihood of the

data under the model can be maximized by simply minimizing the average energy

with respect to the parameters for the optimal state sequences. To achieve this, the

factors are designed so that the conditional distributions of state z(t) given previous

states and observation, and the conditional distribution of the observation y(t) given

the state z(t) are both Gaussians with a fixed diagonal covariance matrix. Other

types of distributions (e.g. Laplace) with constant partition function are possible, all

depending on how the energy (error) is measured (e.g. sum of L1 norms for Laplace

distribution). As long as the noise term is independent of time t, we can use the

constant partition function assumption.

In a nutshell, the proposed training method is as follows. Given a training ob-

servation sequence, the optimal state sequence is found by minimizing the energy

using a gradient-based minimization method. Second, the parameters of the model

are updated using a gradient-based procedure so as to decrease the energy. These two

steps are repeated over all training sequences. The procedure can be seen as a sort

of deterministic generalized EM procedure in which the latent variable distribution is

reduced to its mode, and the model parameters are optimized with a stochastic gra-

dient method. The procedure assumes that the factors are differentiable with respect

to their input variables and their parameters. This simple procedure will allow us to

use sophisticated non-linear models for the dynamical and observation factors, such

as stacks of non-linear filter banks (temporal convolutional networks). It is important

to note that the inference procedure operates at the sequence level, and produces the

most likely state sequence that best explains the entire observation. In other words,

future observations may influence previous states.

In the DFG shown in Figure 3.1, the dynamical factors compute an energy term
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of the form Ed(t) =‖ z(t) − f (x(t), z(t− 1)) ‖2, which can seen as modeling the

state z(t) as f(x(t), z(t− 1)) plus some Gaussian noise variable with a fixed diagonal

covariance ε(t) (inputs x(t) are not used in experiments in this chapter). Similarly,

the observation factors compute the energy Eo(t) =‖ y(t)− g(z(t)) ‖2, which can be

interpreted as y(t) = g (z(t)) + ω(t), where ω(t) is a Gaussian random variable with

fixed diagonal covariance.

Our chapter is organized in three additional sections. First, we explain the

gradient-based approximate algorithm for parameter learning and deterministic latent

state inference in the DFG model (3.2). We then evaluate DFGs on toy, benchmark

and real-world datasets (3.3). Finally, we compare DFGs to previous methods for

deterministic nonlinear dynamical systems and to training algorithms for Recurrent

Neural Networks (3.4).

3.2 Methods

The following subsections detail the deterministic nonlinear (neural networks-based)

or linear architectures of the proposed Dynamic Factor Graph (3.2.1) and define the

EM-like, gradient-based inference (3.2.2) and learning (3.2.4) algorithms, as well as

how DFGs are used for time series prediction (3.2.3).

3.2.1 A Dynamic Factor Graph

Similarly to Hidden Markov Models, our proposed Dynamic Factor Graph contains

an observation and a dynamical factors/models (see Figure 3.1), with corresponding

observed outputs and latent variables.

The observation model g links latent variable z(t) (an m-dimensional vector) to

the observed variable Y (t) (an n-dimensional vector) at time t under Gaussian noise
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Figure 3.3: Energy-based graph of a DFG with a 1st order Markovian architecture
and additional dynamical dependencies on past observations. Observations y(t) are
inferred as ȳ(t) from latent variables z(t) using the observation model parameterized
by Wo. The (non)linear dynamical model parameterized by Wd produces transitions
from a sequence of latent variables zt−1

t−p and observed output variables yt−1
t−p to z(t)

(here p = 1). The total energy of the configuration of parameters and latent variables
is the sum of the observation Eo(.) and dynamic Ed(.) errors.

model ω(t) (because the quadratic observation error is minimized). g can be nonlinear,

but we considered in this chapter linear observation models, i.e. an n × m matrix

parameterized by a weight vector Wo. This model can be simplified even further by

imposing each observed variable yi(t) of the multivariate time series Y to be the sum

of k latent variables, with m = k × n, and each latent variable contributing to only

one observed variable. In the general case, the generative output is defined as:

y(t) = ȳ(t) + ω(t), where ȳ(t) ≡ g (Wo, z(t)) (3.1)

In its simplest form, the linear or nonlinear dynamical model f establishes a causal

relationship between a sequence of p latent variables zt−1
t−p and latent variable z(t),

under Gaussian noise model ε(t) (because the quadratic dynamic error is minimized).

(3.2) thus defines pth order Markovian dynamics (see Figure 3.1 where p = 1). The

66



dynamical model is parameterized by vector Wd.

z(t) = z̄(t) + ε(t), where z̄(t) ≡ f
(
Wd, z

t−1
t−p
)

(3.2)

Typically, one can use simple multivariate autoregressive linear functions to map

the state variables, or can also resort to nonlinear dynamics modeled by a Convolu-

tional Network (LeCun et al., 1998a) with convolutions (FIR filters) across time, as

in Time-Delay Neural Networks (Lang and Hinton, 1988; Wan, 1993).

Other dynamical models, different from the Hidden Markov Model, are also pos-

sible. For instance, latent variables z(t) can depend on a sequence of p past latent

variables zt−1
t−p and p past observations yt−1

t−p, using the same error term ε(t), as ex-

plained in (3.3) and illustrated on Figure 3.2.

z(t) = z̄(t) + ε(t), where z̄(t) ≡ f
(
Wd, z

t−1
t−p,y

t−1
t−p
)

(3.3)

Figure 3.3 displays the interaction between the observation (3.1) and dynamical

(3.3) models, the observed Y and latent Z variables, and the quadratic error terms.

As will be explained in the next sections, hidden variables Z are initialized ran-

domly, and several priors on their distribution (e.g. bounded representation, sparsity

or smoothness) are incorporated thanks to regularization.

3.2.2 Inference in Dynamic Factor Graphs

Let us define the following total (3.4), dynamical (3.5) and observation (3.6) ener-

gies (quadratic errors) on a given time interval [ta, . . . , tb], where respective weight

coefficients α, β are positive constants (in this chapter, α = β = 0.5):
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E
(
Wd,Wo,Y

tb
ta

)
=

tb∑

t=ta

[αEd(t) + βEo(t)] (3.4)

Ed(t) ≡ min
Z
Ed
(
Wd, z

t−1
t−p, z(t)

)
(3.5)

Eo(t) ≡ min
Z
Eo (Wo, z(t), Y (t)) (3.6)

Inferring the sequence of latent variables {z(t)}t in (3.4) and (3.5) is equivalent to

simultaneous minimization of the sum of dynamical and observation energies at all

times t:

Ed
(
Wd, z

t−1
t−p, z(t)

)
= ‖ z̄(t)− z̄(t) ‖2

2 (3.7)

Eo (Wo, z(t),y(t)) = ‖ ȳ(t)− y(t) ‖2
2 (3.8)

Observation and dynamical errors are expressed separately, either as Normalized

Mean Square Errors (NMSE) or Signal-to-Noise Ratio (SNR).

3.2.3 Prediction in Dynamic Factor Graphs

Assuming fixed parameters W of the DFG, two modalities are possible for the pre-

diction of unknown observed variables Y.

• Closed-loop (iterated) prediction: when the continuation of the time series is

unknown, the only relevant information comes from the past. One uses the

dynamical model to predict z̄(t) from yt−1
t−p and inferred zt−1

t−p, set z(t) = z̄(t),

use the observation model to compute prediction ȳ(t) from z(t), and iterate as

long as necessary. If the dynamics depend on past observations, one also needs
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to rely on predictions ȳ(t) in (3.3).

• Prediction as inference: this is the case when only some elements of Y are

unknown (e.g. estimation of missing motion-capture data). First, one infers

latent variables through gradient descent, and simply does not backpropagate

errors from unknown observations. Then, missing values ȳi(t) are predicted

from corresponding latent variables z(t). In this way, we can incorporate a

dependency on future values of the observed time series.

3.2.4 Training of Dynamic Factor Graphs

Learning in an DFG consists in adjusting the parameters W =
[
WT

d ,W
T
o

]
in order

to minimize the loss L(W,Y, Z̃):

L(W,Y,Z) = E (W,Y) +Rz(Z) +R (W) (3.9)

Z̃ = arg min
Z
L(W̃,Y,Z) (3.10)

W̃ = arg min
W
L(W,Y, Z̃) (3.11)

where R(W) is a regularization term on the weights Wd and Wo, and Rz(Z) rep-

resents additional constraints on the latent variables further detailed. Minimization

of this loss is done iteratively in an Expectation-Maximization-like fashion in which

the states Z play the role of auxiliary variables, as explained in Chapter 2. During

inference, values of the model parameters are clamped and the hidden variables are

relaxed to minimize the energy. The inference described in part (3.2.2) and equation

(3.10) can be considered as the E-step (state update) of a gradient-based version of

the EM algorithm. During learning, model parameters W are optimized to give lower
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energy to the current configuration of hidden and observed variables. The parameter-

adjusting M-step (weight update) described by (3.11) is also gradient-based.

In its current implementation, the E-step inference is done by gradient descent

on Z, with learning rate ηz typically equal to 0.5. The convergence criterion is when

energy (3.4) stops decreasing. The M-step parameter learning is implemented as

a stochastic gradient descent (diagonal Levenberg-Marquard) (LeCun et al., 1998b)

with individual learning rates per weight (re-evaluated every 10000 weight updates)

and global learning rate ηw typically equal to 0.01. These parameters were found by

trial and error (cross-validation) on a grid of possible values.

The state inference is not done on the full sequence at once, but on mini-batches

(typically 20 to 100 samples), and the weights get updated once after each mini-batch

inference, similarly to the Generalized EM algorithm. During one epoch of training,

the batches are selected randomly and overlap in such a way that each state variable

Z(t) is re-inferred at least a dozen times in different mini-batches. This learning

approximation echoes the one in regular stochastic gradient with no latent variables

and enables to speed up the learning of the weight parameters.

The learning algorithm turns out to be particularly simple and flexible. The hid-

den state inference is however under-constrained, because of the higher dimensionality

of the latent states and despite the dynamical model. For this reason, this chapter

proposes to (in)directly regularize the hidden states in several ways. First, one can

add to the loss function an L1 regularization term R(W) on the weight parameters.

This way, the dynamical model becomes “sparse” in terms of its inputs, e.g. the latent

states. Regarding the term Rz(Z), an L2 norm on the hidden states z(t) limits their

overall magnitude, and an L1 norm enforces their sparsity both in time and across

dimensions. Regularization coefficients λw and λz typically range from 0 to 0.1.
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Algorithm 1 Pseudo-Code of the EM-Like Learning and Inference in DFGs
while epoch ≤ nepochs do
for randomly selected I ⊂ [1, T ] do
repeat
for t ∈ I do

Forward-propagate zt−1
t−p through f to get z̄t

Forward-propagate zt through g to get ȳt
Back-propagate errors from ‖ zt − z̄t ‖2

2, add to ∆zt
Back-propagate errors from ‖ yt − ȳt ‖2

2, add to ∆zt
end for
Update latent states zt∈I using gradients ∆zt∈I

until convergence, when energy E(I) stops decreasing
for t ∈ I do

Back-propagate errors from ‖ zt − z̄t ‖2
2, add to ∆W

Back-propagate errors from ‖ yt − ȳt ‖2
2, add to ∆W

end for
Update parameters W using gradients ∆W

end for
end while

3.2.5 Smoothness Penalty on Latent Variables

The second type of constraints on the latent variables is the smoothness penalty. In

an apparent contradiction with the dynamical model (3.2), this penalty forces two

consecutive variables zi(t) and zi(t+ 1) to be similar. One can view it as an attempt

at inferring slowly varying hidden states and at reducing noise in the states (which

is particularly relevant when observation Y is sampled at a high frequency). By

consequence, the dynamics of the latent states are smoother and simpler to learn.

Constraint (3.12) is easy to derivate w.r.t. a state zi(t) and to integrate into the

gradient descent optimization (3.10):

Rz

(
zt+1
t

)
=
∑

i

(zi(t)− zi(t+ 1))2 (3.12)

In addition to the smoothness penalty, we have investigated the decorrelation of

71



multivariate latent variables z(t) = (z1(t), z2(t), . . . , zm(t)). The justification was to

impose to each component zi to be independent, so that it followed its own dynamics,

but we have not obtained satisfactory results yet. As reported in the next section,

the interaction of the dynamical model, weight sparsification and smoothness penalty

already enables the separation of latent variables.

3.3 Experimental Evaluation

First, working on toy problems, we investigate the latent variables that are inferred

from an observed time series. We show that using smoothing regularizers, DFGs

are able to perfectly separate a mixture of independent oscillatory sources (3.3.1), as

well as to reconstruct the Lorenz chaotic attractor in the inferred state space (3.3.2).

Secondly, we apply DFGs to two time series prediction and modeling problems. Sub-

section (3.3.3) details how DFGs outperform the best known algorithm on the CATS

competition benchmark for time series prediction. In (3.3.4) we reconstruct realistic

missing human motion capture marker data in a walk sequence.

3.3.1 Asynchronous Superimposed Sine Waves

The goal is to model a time series constituted by a sum of 5 asynchronous sinusoids:

y(t) =
∑5

j=1 sin(λjt) (see Fig. 3.4a). Each component xj(t) can be considered as

a “source”, and y(t) is a mixture. This problem has previously been tackled by em-

ploying Long-Short Term Memory (LSTM) (Hochreiter and Schmidhuber, 1995), a

special architecture of Recurrent Neural Networks that needs to be trained by genetic

optimization (Wierstra et al., 2005).

After EM training and inference of hidden variables z(t) of dimension m = 5,

frequency analysis of the inferred states on the training (Fig. 3.4b) and testing (Fig.
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Figure 3.4: (a) Superposition of five asynchronous sinusoids: y(t) =
∑5

j=1 sin(λjt)
where λ1 = 0.2, λ2 = 0.311, λ3 = 0.42, λ4 = 0.51 and λ5 = 0.74. Spectrum analysis
shows that after learning and inference, each reconstructed state zi isolates only one
of the original sources xj, both on the training (b) and testing (c) datasets.

3.4c) datasets showed that each latent state zi(t) reconstructed one individual sinu-

soid. In other words, the 5 original sources from the observation mixture y(t) were

inferred on the 5 latent states. The observation SNR of 64dB, and the dynamical SNR

of 54dB, on both the training and testing datasets, proved both that the dynamics of

the original time series y(t) were almost perfectly reconstructed. DFGs outperformed

LSTMs on that task since the multi-step iterated (closed-loop) prediction of DFG did

not decrease in SNR even after thousands of iterations, contrary to (Wierstra et al.,

2005) where a reduction in SNR was already observed after around 700 iterations.

As architecture for the dynamical model, 5 independent Finite Impulse Response

(FIR) filters of order 25 were chosen to model the state transitions: each of them acts

as a band-pass filter and models an oscillator at a given frequency. One can hypothe-

size that the smoothness penalty (3.12), weighted by a small coefficient of 0.01 in the

state regularization term Rz(Z) helped shape the hidden states into perfect sinusoids.

Note that the states or sources were made independent by employing five independent

dynamical models for each state. This specific usage of DFG can be likened to Blind

Source Separation from an unique source, and the use of independent filters for the
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Figure 3.5: Lorenz chaotic attractor (left) and the reconstructed chaotic attractor
from the latent variables z(t) = {z1(t), z2(t), z3(t)} after inference on the testing
dataset (right).

latent states (or sources) echoes the approach of BSS using linear predictability and

adaptive band-pass filters.

Obviously, the above problem could have been solved trivially using spectral anal-

ysis, and the point of this small exercise was simply to illustrate the inference of

a simple hidden representation underlying a more complex time series. The follow-

ing examples actually make use of nonlinear dynamics that cannot be recovered by

spectral analysis.

3.3.2 Lorenz Chaotic Data

As a second application, we considered the 3-variable (x1, x2, x3) Lorenz dynamical

system (Lorenz, 1963) generated by parameters ρ = 16, b = 4, r = 45.92 as in (Mattera

and Haykin, 1999) (see Fig. 3.5a). Observations consisted in one-dimensional time

series y(t) =
∑3

j=1 xj(t).

The DFG was trained on 50s (2000 samples) and evaluated on the following 40s
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Table 3.1: Comparison of 1-step prediction error using Support Vector Regression,
with the errors of the dynamical and observation models of DFGs, measured on the
Lorenz test dataset and expressed as signal-to-noise ratios.

Architecture SVR DFG
Dynamic SNR 41.6 dB 46.2 dB
Observation SNR - 31.6 dB

(1600 samples) of Y. Latent variables Z(t) = (z1(t), z2(t), z3(t)) had dimension m =

3, as it was greater than the attractor correlation dimension of 2.06 and equal to the

number of explicit variables (sources). The dynamical model was implemented as

a 3-layered convolutional network. The first layer contained 12 convolutional filters

covering 3 time steps and one latent component, replicated on all latent components

and every 2 time samples. The second layer contained 12 filters covering 3 time steps

and all previous hidden units, and the last layer was fully connected to the previous

12 hidden units and 3 time steps. The dynamical model was autoregressive on p = 11

past values of Z, with a total of 571 unique parameters. “Smooth” consecutive states

were enforced (3.12), thanks to the state regularization term Rz(Z) weighted by a

small coefficient of 0.01. After training the parameters of DFG, latent variables Z

were inferred on the full length of the training and testing dataset, and plotted in 3D

values of triplets (z1(t), z2(t), z3(t)) (see Fig. 3.5b).

The 1-step dynamical SNR obtained with a training set of 2000 samples was higher

than the 1-step prediction SNR reported for Support Vector Regression (SVR) (Mat-

tera and Haykin, 1999) (see Table 3.1). According to the Takens theorem (Takens,

1981), it is possible to reconstruct an unknown (hidden) chaotic attractor from an

adequately long window of observed variables, using time-delay embedding on y(t),

but we managed to reconstruct this attractor on the latent states (z1(t), z2(t), z3(t))

inferred both from the training or testing datasets (Fig. 3.5). Although one of the
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Table 3.2: Prediction results on the CATS competition dataset comparing the best
algorithm (Kalman Smoothers (Sarkka et al., 2004)) and Dynamic Factor Graphs.
E1 and E2 are unnormalized MSE, measured respectively on all five missing segments
or on the first four missing segments.

Architecture Kalman smoother DFG
E1 (5 segments) 4.08 3.90
E2 (4 segments) 3.46 2.88

“wings” of the reconstructed butterfly-shaped attractor is slightly twisted, one can

clearly distinguish two basins of attraction and a chaotic orbit switching between one

and the other. The reconstructed latent attractor has correlation dimensions 1.89

(training dataset) and 1.88 (test dataset).

3.3.3 CATS Time Series Competition

Dynamic Factor Graphs were evaluated on time series prediction problems using the

CATS benchmark dataset (Lendasse et al., 2004). The goal of the competition was

the prediction of 100 missing values divided into five groups of 20, the last group being

at the end of the provided time series. The dataset presented a noisy and chaotic

behaviour commonly observed in financial time series such as stock market prices.

In order to predict the missing values, the DFG was trained for 10 epochs on the

known data (5 chunks of 980 points each). 5-dimensional latent states on the full 5000

point test time series were then inferred in one E-step, as described in section 3.2.3.

The dynamical factor was the same as in section 3.3.2. As shown in Table 3.2, the

DFG outperformed the best results obtained at the time of the competition, using a

Kalman Smoother (Sarkka et al., 2004), and managed to approximate the behavior

of the time series in the missing segments.
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Table 3.3: Reconstruction error (NMSE) for 4 sets of missing joint angles from motion
capture data (two blocks of 65 consecutive frames, about 2s, on either the left leg
or entire upper body). DFGs are compared to standard nearest neighbors matching.
Because of different normalizations, we cannot directly compare our performance to
the one achieved by CRBMs in (Taylor et al., 2006), but in both cases, we observe a
comparable reduction in error of the order of 20%.

Method Nearest Neighb. DFG
Missing leg 1 0.77 0.59
Missing leg 2 0.47 0.39
Missing upper body 1 1.24 0.9
Missing upper body 2 0.8 0.48

3.3.4 Estimation of Missing Motion Capture Data

Finally, DFGs were applied to the problem of estimating missing motion capture data.

Such situations can arise when “the motion capture process [is] adversely affected by

lighting and environmental effects, as well as noise during recording” (Taylor et al.,

2006). The estimation of missing markers is a difficult problem that was traditionally

handled using simple algorithmic solutions, such as nearest neighbors, piece-wise lin-

ear modeling (Liu and McMillan, 2006), or Kalman Filtering (Aristidou et al., 2008).

Motion capture data1 Y consisted of three 49-dimensional time series representing

joint angles derived from 17 markers and coccyx, acquired on a subject walking and

turning, and downsampled to 30Hz. Two sequences of 438 and 3128 samples were

used for training, and one sequence of 260 samples for testing.

We reproduced the experiments from (Taylor et al., 2006), where Conditional

Restricted Boltzman Machines (CRBM) were utilized. On the test sequence, two

different sets of joint angles were erased, either the left leg (1) or the entire upper
1We used motion capture data from the MIT database as well as sample Matlab code for motion

playback and conversion, developed or adapted by Taylor, Hinton and Roweis, available at: http:
//www.cs.toronto.edu/~gwtaylor/.
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body (2). After training the DFG on the training sequences, missing joint angles

yi(t) were inferred through the E-step inference. The DFG was the same as in sec-

tions 3.3.2 and 3.3.3, but with 147 hidden variables (3 per observed variable) and no

smoothing. Table 3.3 shows that DFGs significantly outperformed nearest neighbor

interpolation (detailed in (Taylor et al., 2006)), by taking advantage of the motion dy-

namics modeled through dynamics on latent variables. Contrary to nearest neighbors

matching, DFGs managed to infer smooth and realistic leg or upper body motion.

Videos comparing the original walking motion sequence, and the DFG- and nearest

neighbor-based reconstructions are available at

http://cs.nyu.edu/~mirowski/pub/mocap/. Figure 3.6 illustrates the DFG-based

reconstruction (we did not include nearest neighbor interpolation resuts because the

reconstructed motion was significantly more “hashed” and discontinuous).

3.4 Discussion

In this section, we establish a comparison with other nonlinear dynamical systems

with latent variables (3.4.1) and suggest that DFGs could be seen as an alternative

method for training Recurrent Neural Networks (3.4.2).

3.4.1 Comparison with Nonlinear Dynamical Systems

An earlier model of nonlinear dynamical system with hidden states is the Hidden

Control Neural Network (Levin, 1993), where latent variables z(t) are added as an

additional input to the dynamical model on the observations. Although the dynam-

ical model is stationary, the latent variable z(t) modulates its dynamics, enabling a

behavior more complex than in pure autoregressive systems. The training algorithm

iteratively optimizes the weights W of the Time-Delay Neural Network (TDNN) and
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latent variables Z, inferred as

Z̃ ≡ argminZ

∑
t ‖ y(t)− fW̃ (y(t− 1), z(t)) ‖2.

The latter algorithm is likened to approximate maximum likelihood estimation,

and iteratively finds a sequence of dynamic-modulating latent variables and learns

dynamics on observed variables. DFGs are more general, as they allow the latent

variables z(t) not only to modulate the dynamics of observed variables, but also

to generate the observations y(t), as in DBNs. Moreover, (Levin, 1993) does not

introduce dynamics between the latent variables themselves, whereas DFGs model

complex nonlinear dynamics where hidden states z(t) depend on past states yt−1
t−p

and observations zt−1
t−p. Because our method benefits from highly complex non-linear

dynamical factors, implemented as multi-stage temporal convolutional networks, it

differs from other latent states and parameters estimation techniques, which generally

rely on radial-basis functions (Wan and Nelson, 1996; Ghahramani and Roweis, 1999).

The DFG introduced in this chapter also differs from another, more recent, model

of DBN with deterministic nonlinear dynamics and explicit inference of latent vari-

ables. In (Barber, 2003), the hidden state inference is done by message passing in

the forward direction only, whereas our method suggests hidden state inference as an

iterative relaxation, i.e. a forward-backward message passing until “equilibrium”.

In a limit case, DFGs could be restricted to a deterministic latent variable gener-

ation process like in (Barber, 2003). One can indeed interpret the dynamical factor

as hard constraints, rather than as an energy function. This can be done by setting

the dynamical weight α to be much larger than the observation weight β in (3.4).
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3.4.2 A New Algorithm for Recurrent Neural Networks

An alternative way to model long-term dependencies is to use recurrent neural net-

works (RNN). The main difference with the proposed DFG model is that RNN use

fully deterministic noiseless mappings for the state dynamics and the observations.

Hence, there is no other inference procedure than running the network forward in

time. Unlike with DFG, the state at time t is fully determined by the previous

observations and states, and does not depend on future observations.

Exact gradient descent learning algorithms for Recurrent Neural Networks (RNN),

such as Backpropagation Through Time (BPTT) or Real-Time Recurrent Learning

(RTRL) (Williams and Zipser, 1995), have limitations. The well-known problem

of vanishing gradients is responsible for RNN to forget, during training, outputs or

activations that are more than a dozen time steps back in time (Bengio et al., 1994).

This is not an issue for DFG because the inference algorithm effectively computes

“virtual targets” for the function f at every time step.

The faster of the two algorithms, BPTT, requires O (T |W|) weight updates per

training epoch, where |W| is the number of parameters and T the length of the

training sequence. The proposed EM-like procedure, which is dominated by the

E-step, requires O (aT |W|) operations per training epoch, where a is the average

number of E-step gradient descent steps before convergence (a few to a few dozens if

the state learning rate is set properly).

Moreover, because the E-step optimization of hidden variables is done on mini-

batches, longer sequences T simply provide with more training examples and thus

facilitate learning; the increase in computational complexity is linear with T .
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3.4.3 Ideas of Further Experiments

A number of further experiments could have been conducted in this doctoral work.

For instance, one could try to model a time series Y where only a subset of the

dimensions (a subset of the measurements) is relevant, the rest being noise (or highly

corrupted by nonlinear noise); it would then be interesting to know whether a properly

regularized (with L1 sparsity constraints) DFG algorithm could learn to ignore the

noisy entries of Y.

One could also try to use the DFG model to classify sequences based on their

energy (as a proxy for likelihood); a further extension could even consist in learning

DFGs discriminatively.

A third problem to explore would be the combination of both nonlinear dynamics

and changes of dynamics: I suspect that a hierarchical model, with small range

dynamical dependencies (for modeling nonlinear dynamics) and long-range dynamical

dependencies (for modeling “switching” dynamics) would be more appropriate. A

glimpse of the solution is provided in Chapter 6, where a Latent Dirichlet Allocation-

based topic model encodes long-range changes of dynamics (but it is appropriate for

discrete observations Y).

3.5 Conclusions

This chapter introduces a new method for learning deterministic nonlinear dynamical

systems with highly complex dynamics. Our approximate training method is gradient-

based and can be likened to Generalized Expectation-Maximization.

We have shown that with proper smoothness constraints on the inferred latent

variables, Dynamical Factor Graphs manage to perfectly reconstruct multiple oscil-
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latory sources or a multivariate chaotic attractor from an observed one-dimensional

time series. DFGs also outperform Kalman Smoothers and other neural network tech-

niques on a chaotic time series prediction tasks, the CATS competition benchmark.

Finally, DFGs can be used for the estimation of missing motion capture data. Proper

regularization such as smoothness or a sparsity penalty on the parameters enable to

avoid trivial solutions for high-dimensional latent variables.

This initial work on DFG was subsequently applied to the inference of genetic reg-

ulatory networks from mRNA expression levels, which is the object of next chapter.
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Figure 3.6: Application of a DFG for the reconstruction of missing joint angles from
motion capture marker data (1 test sequence of 260 frames at 30Hz). 4 sets of joint
angles were alternatively “missing” (erased from the test data): 2 sequences of 65
frames, of either left leg or the entire upper body. (a) Subsequence of 65 frames
at the beginning of the test data. (b) Reconstruction result after erasing the left
leg markers from (a). (c) Reconstruction results after erasing the entire upper body
markers from (a). (d) Subsequence of 65 frames towards the end of the test data. (e)
Reconstruction result after erasing the left leg markers from (d). (f) Reconstruction
results after erasing the entire upper body markers from (d).
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Chapter 4

Application to the Inference of Gene

Regulation Networks

Time flies like an arrow;

fruit flies like a banana.

Groucho Marx

We present in the chapter how Dynamic Factor Graphs can be used in molecular

biology, as a new and flexible algorithm for learning state-space models represent-

ing gene regulation networks. In one embodiment, our factor graph model contains

observation (transcriptional) and dynamic factors, connected to two types of vari-

ables: observed mRNA expression levels, and hidden transcription factor sequences

(e.g. protein concentrations). In a second embodiment, the latent variables simply

correspond to a de-noised version of the observed mRNA expression levels, and we

try to model dynamics on idealized hidden variables instead of noisy mRNA.

Our formalisms covers most state-space models in the biological literature, while

giving them a common learning and inference procedure that is simpler and faster than

MCMC, Variational Bayes approaches for Dynamic Bayesian Networks and Gaussian

Processes. Learning our factor graphs is still done by maximizing their joint likeli-
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hood, but we use an approximate gradient-based MAP inference to obtain the most

likely configuration of the hidden sequence.

Our biological state-space model has been applied to two different studies, one

about reverse-engineering a gene regulation network by understanding gene-gene in-

teractions, and another about inferring levels of protein transcription factors, which

are typically difficult to measure, using only mRNA data.

The first set of experiments, submitted for publication to Genome Biology (Krouk

et al., Provisionally accepted for publication), focuses on NO3−, a nitrogen source and

a signaling molecule that controls many aspects of plant development. We try to learn

a gene network involved in plant adaptation to fluctuating nitrate environments, and

specifically to build core regulatory networks involved in Arabidopsis root adaptation

to NO3− provision. Our experimental approach is to monitor genome response to

NO3− at 7 time points, using micro-array chips. A state-space model inferred from

the micro-array data successfully predicted gene behavior in unlearnt conditions, and

suggested to investigate a specific gene, that was then shown to be involved in the

NO3− response.

In a second set of experiments, we demonstrate our algorithm on several datasets:

the p53 protein dataset (related to human cancer), the Mef2 protein from theDrosophila

and the TGF-β protein (human cancer). We show that our algorithm is able the infer

the time course of a single or multiple transcription factor proteins.
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4.1 Machine Learning Approaches to Modeling GRNs

4.1.1 Gene Regulatory Networks

An excellent biological definition for our problem is provided by (Segal et al., 2003).

“The complex functions of a living cell are carried out through the concerted activity of

many genes [...]. This activity is often coordinated by the organization of the genome

into regulatory modules, or sets of co-regulated genes [...]”. Genes encode proteins,

and the proteins themselves serve as transcription factors to other genes. One of the

goals of modern molecular biology is to identify the interactions between genes (via

proteins) in order to understand, now that the genome has been sequenced, the actual

functioning of the living organisms.

In that context, one can grossly simplify the highly complex biology by a Ge-

netic Regulatory Network (GRN), which can be formalized by a graph connecting

gene, mRNA or protein nodes, and where the links among nodes stand for regulatory

interactions (Alvarez-Buylla et al., 2007).

4.1.2 mRNA Micro-arrays

The tool of choice are so-called gene chips, or DNA micro-arrays. Micro-arrays cor-

respond to small, organism-specific, collections of tiny probes that can bind mRNA1.

Each probe corresponds to a specific gene. After the hybridization process, the

micro-arrays are scanned to measure the concentration of bound mRNA at each

probe (Krouk, personal communication). By conducting specific experiments (e.g.

response to stress conditions, cell development and differentiation), one can initiate a

regulatory circuit (Spellman et al., 1998). Then, by destructively sampling microarray
1Standard micro-arrays are the Affymetrix chips.
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data every few minutes of the experiment, one can obtain a short, high-dimensional

time series of expression levels for thousands of genes. Using the assumption that

the temporal behavior of the multivariate time series represents causal dependencies

between the time series, we can search for protein-encoding transcripts in the genome.

The mRNA time series are typically extremely short (a few measures, sampled

every few minutes to hours). This short duration is a major limitation, given the

number of genes. Moreover, each micro-array experiment is destructive, and therefore

the cells which are sampled at consecutive time points are not the same (Krouk,

personal communication). Each sampling experiment is however repeated a few times,

and one gene expression level has several replicates differing slightly in their value.

Often, the reported gene expression level is the average of these replicates, but one

can consider the replicates separately. Using replicates, one can artificially multiply

the number of microarray time series to obtain more sequences, hence more time

points (Shasha, personal communication).

4.1.3 Reverse-engineering of Gene Regulation Networks

Time series of gene expression levels can provide us with a detailed picture of the

behavior of a Genetic Regulation Network (GRN) over time, and help understand

the biological functions of an organism.

Unfortunately, the micro-array measurements of mRNA expression levels contain

highly noisy, scarce, and incomplete information. Typically, the concentration levels

of proteins, which serve as transcription factors to genes, are absent because they

are difficult to measure. Moreover, their specific influence on genes is unknown and

requires reverse engineering (Jaeger and Monk, 2010). In their review article, Jaeger

and Monk pointed out that this reverse-engineering task in the presence of few time-
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point measurements, many genes, measurement errors and random fluctuations in the

environment is inherently difficult (Jaeger and Monk, 2010), the main limitation com-

ing from the paucity of data relative to the number of possible connections between

the genes (and the proteins).

An additional challenge of systems biology is to be able to model systems pre-

cisely enough that the model can predict untested conditions, which is equivalent to

constructing a robust dynamical system.

Dynamical Predictive Modeling of Regulatory Gene Networks

Among the several approaches to this modeling problem, dynamical models have

gained prominence as they simultaneously encode the topology of the gene interaction

graph, and its functional evolution model. Such a model can in turn also be used for

predictive modeling of gene expression at further time steps or upon perturbation.

These dynamical models essentially consist of a mathematical function that gov-

erns the transitions of the state of a GRN over time. Interactions between genes and

transcription factors (e.g. proteins) can be simplified as a dynamical model involving

their concentration levels. Typically, dynamical models of mRNA levels consist of

ordinary differential equations (ODEs) (Jaeger and Monk, 2010). For a given gene i,

ODEs can, for instance, define the rate of change of mRNA level yi(t) as a function

of the weighted influences of M transcription factors zj(t), with an optional mRNA’s

degradation term (coefficient di) and a basal rate term (coefficient b), as in Equa-

tion (4.1). The coefficient of the degradation term can be replaced with a kinetic

constant τi on the derivative on yi(t), as in Equation (4.2).
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∂yi(t)

∂t
= gi (z(t))− diyi(t) + bi (4.1)

τ
∂yi(t)

∂t
= gi (z(t))− yi(t) + bi (4.2)

In the equations above, the transcription factors zt can be the unknown protein

levels, or in a very simplistic setting, other mRNA levels (in which case zt = yt).

In one set of experiments (on p53, Mef2 and TGF-β proteins), we used zt to model

unknown protein levels, while in another set of experiments on the Arabidopsis, we

directly used the observed mRNA levels. In the case of protein transcription factors,

the relationship between a protein zi(t) and its encoding gene yi(t) is generally mod-

eled as a first-order ODE involving zi(t) and yi(t): hence, assuming zt = yt is not

terribly wrong.

In our studies, we considered dynamics with the mRNA degradation term (the

so-called kinetic model (Bonneau et al., 2006, 2007)) and without it (the so-called

Brownian motion (Wang et al., 2006b) model). Assuming degradation (kinetic ODE)

worked better in our experiments with the Arabidopsis.

Since micro-array data are discretely sampled over time, Equation (4.1) or (4.2) is

linearized; hence it explains how gene expressions at time t influence gene expressions

at time t+ 1.

The data paucity limitation defined two major groups of methods for compu-

tational inference of gene regulation networks: a) either a nonlinear or state-space

based modeling of the complex interactions between a restricted number of genes with

hidden protein transcription factors, or b) simpler, but linear, models of TF-gene in-

teractions (Bonneau et al., 2006, 2007; Wang et al., 2006b; Shimamura et al., 2009),

relying on larger (hundreds to thousands) number of mRNA micro-array measure-

89



ments2.

Hidden Variable Approaches: State-Space Models

State-space models (SSM) are a general category of machine learning algorithms

that model the dynamics of a sequence of data by encoding the joint likelihood of

observed Y and hidden Z variables. State-space models assume an observed sequence

y(t) (in our case, gene expression data) to be generated from an underlying unknown

sequence z(t) also called “hidden states”. Consecutive hidden states form a Markov

chain z(1), . . . , z(T − 1), z(T ).

A popular probabilistic example of state-space models that have been applied to

gene expression data are Dynamical Bayesian Networks (Murphy and Mian, 1999)

such as Linear Dynamical Systems (Beal et al., 2005; Hirose et al., 2008; Rangel

et al., 2004; Yamaguchi et al., 2007, 2010; Angus et al., 2010). Examples of such

LDS , are (Beal et al., 2005) and (Angus et al., 2010) who infered the profiles of 14

hidden transcription factors for 10 observed genes. Their modeling was however done

either without predictive validation (Beal et al., 2005), or on synthetically generated

data (Angus et al., 2010). Other researchers (Hirose et al., 2008; Yamaguchi et al.,

2007, 2010) used a trainable Kalman smoother-like approach to learn 4 to 5 hidden

variables (so-called modules) explaining the behavior of hundreds of genes, but neither

validated their model on out-of-sample data points, nor drew conclusions on gene-gene

interactions.

LDS also suffer from their linearity, and may be insufficient to model the nonlin-
2In the above enumeration, we actually omitted one group of methods that consist in highly

nonlinear Boolean Networks with binary ON/OFF values for gene expression levels, and linear,
nonlinear or stochastic dynamics (Lahdesmaki et al., 2003; Alvarez-Buylla et al., 2007). In such
boolean networks, one typically starts from a hypothesis on the GRN, and then simulates the
dynamics of a boolean network, looking for attractors. The objective does not consist in fitting
mRNA expression levels.
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ear regulation of genes by proteins; whereas the derivation of the variational Bayes

solution to nonlinear dynamical systems might be difficult.

Hidden Variable Approaches: Gaussian Processes

The other main approaches devised to solve the ODEs involved in gene regulation

networks consists in Gaussian Processes (GPs) (Lawrence and Sanguinetti, 2007; Gao

et al., 2008; Alvarez et al., 2009), which model the latent protein concentration as a

latent function zj(t) that follows a Gaussian prior with a specified covariance.

That model was further improved in (Zhang et al., 2010), using Gaussian Process

Latent Variable models (Wang et al., 2006a) to infer the profile of a single transcrip-

tion factor (the tumor suppressor p53) and explained the activity of a large collection

of genes using that TF only. GPs however require to analytically derive the covariance

function and can be computationally expensive.

Large-Scale Linear Models Without Hidden Variables

Because the SSM or GP models described in the previous sections can prove com-

putationally expensive and define too many degrees of freedom w.r.t. available data,

the simplification “mRNA = transcription factor” is often used, and a simple linear

model is employed.

Examples of first-order linear dynamical models on gene expressions include the

Inferelator by (Bonneau et al., 2006, 2007). The Inferelator consists of a kinetic

ODE, that follows the Wahde and Hertz equation (Wahde and Hertz, 2001) and

where transcription factors contribute linearly. This ODE also includes an mRNA

degradation term. Some instances of the Inferelator introduce nonlinear AND, OR

and XOR relationships between pairs of genes, based on a previous bi-clustering of

genes. One has to note that the Inferelator has been mostly applied to datasets with
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hundreds of data-points (e.g. the Halobacterium).

Other examples include the first-order vector autoregressive models VAR(1) (Shi-

mamura et al., 2009), or the Brownian motion (which is a VAR(1) model on the

change of the mRNA concentration (Wang et al., 2006b)). Lozano et al. suggested

using a dynamic dependency on the past 2, 3, or 4 time-steps (Lozano et al., 2009),

but this was impractical in our case given the relatively small number of micro-array

measurements in our experiments.

4.1.4 Biological Datasets Used in Our Experiments

Arabidopsis Thaliana’s Response to NO3−

This research, from the hypothesis and experimental protocol through the experi-

mental manipulation and data analysis, was devised and conducted by Dr. Gabriel

Krouk, at the time post-doctoral researchers in Prof. Gloria Coruzzi’s3 Plant Sys-

tems Biology lab4 at the NYU Center for Genomics and Systems Biology at New

York University. Additional feedback about GRN inference was provided from the

author and from Prof. Dennis Shasha.

Higher plants constitute a main entry of nitrogen in food chains, and acquire nitro-

gen mainly as NO3−. Soil concentration of this mineral ion can fluctuate dramatically

in the rhizosphere, often resulting in limited growth and yield. Thus, understanding

plant adaptation to fluctuating nitrogen levels is a challenging task with potential

consequences for health, the environment, and economy (Krouk et al., 2010).

The first genomic approaches studying NO3− responses were published 10 years

ago (Wang et al., 2000). To date, data from more than 100 Affymetrix ATH1 chips

have been published that monitor gene expression in response to NO3− provision.
3Research page at: http://biology.as.nyu.edu/object/GloriaCoruzzi.html
4http://coruzzilab.bio.nyu.edu/home/
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Analysis of the N-treated microarray data sets from several different labs demon-

strated that at least a tenth of the genome can be regulated by nitrogen provision,

depending on the context (Gutierrez et al., 2007). Despite these extensive efforts of

characterization, only a limited number of molecular actors that alter NO3− induced

gene regulation have been identified so far.

In this study, our aim was to provide a systems view of NO3− signal propagation

though dynamic regulatory gene networks. To do so, a high-resolution dynamic NO3−

transcriptome from plants treated with nitrate from 0 to 20 min was generated. The

micro-arrays contained 7 full-genome mRNA measures at 0, 3, 6, 9, 12, 15 and 20 min;

in the cross-validation leave-out-last study, we used measures between 0 and 15 min

to fit the model for each gene i (by tuning the parameters of associated dynamical

functions), and tested the fitted model on the last time step (prediction of the mRNA

level at 20 min).

Two micro-array replicates were acquired in this study, listed in Table 4.1. Since

each replicate is independent of all micro-arrays preceding and following in time,

there were four possible transitions between any two time points t and t+ 1, and we

therefore used 4 replicate sequences to train the machine learning algorithm.

p53, Mef2 and TGF-β Protein Datasets

Our first dataset consisted in the p53 human genome data from (Barenco et al., 2006).

p53 is a “tumor repressor activated during DNA damage. [...] Irradiation is performed

to disrupt the equilibrium of the p53 network stimulating transcription of p53 target

genes. Seven samples [of mRNA] in three replicas [were] collected as the raw time

course data” (Gao et al., 2008)5. Previous studies on that dataset included (Barenco
5We used both the pre-processes data available at Neil Lawrence’s website:

http://staffwww.dcs.shef.ac.uk/people/N.Lawrence/software.html, and the raw mRNA associ-
ated to the experiment conducted by (Barenco et al., 2006), and available as supplemental

93



Table 4.1: Number of microarrays used for the study of the Gene Regulation Network
of the Arabidopsis that is involved in the plant’s reaction to nitrates. The table is
sorted by time-point and experimental condition. All the 26 microarrays are consid-
ered independent experiments. Note that we based our predictive modeling only on
the nitrate data.

Time-point NO3− KCl

0 min 2 replicates -
3 min 2 replicates 2 replicates
6 min 2 replicates 2 replicates
9 min 2 replicates 2 replicates
12 min 2 replicates 2 replicates
15 min 2 replicates 2 replicates
20 min 2 replicates 2 replicates

et al., 2006; Lawrence and Sanguinetti, 2007; Gao et al., 2008; Alvarez et al., 2009;

Zhang et al., 2010). The predicted p53 protein levels were compared to experimental

Western Blot measures.

We also considered the data associated with the development of the mesoderm in

Drosophila, involving the Mef2 transcription factor (Gao et al., 2008)6. Protein levels

were not available, but we compared our predictions to the ones made in the study.

Finally, we demonstrate that our experimental approach can infer the levels of 3

proteins from 70 mRNAs on the human Transforming Growth Factor (TGF) β data

from (Keshamouni et al., 2009). Our predictions for protein levels were compared to

the experimental data acquired a new methodology, iTRAQ. Both data were supplied

in the journal article.

material.
6We used data available at Neil Lawrence’s website.
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4.2 Gradient-Based Biological State-Space Models

We propose a new and simple algorithm for learning SSMs representing gene reg-

ulation networks, that can incorporate nonlinear protein-gene interactions or focus

on gene-gene interactions. It is grounded in the factor graph formalism (Kschischang

et al., 2001), which expresses the joint likelihood of the hidden and observed variables

as a product of likelihoods at each factor. Our SSM includes two types of factors: ob-

servation and dynamic factors, which may be connected to two types of variables:

observed mRNA expression levels, and hidden transcription factor sequences (ei-

ther transcription factors, e.g. protein concentrations, or a noise-free time-course

of mRNA), as illustrated respectively on Figure 4.2 or on Figure 4.1.

A “Plug-And-Play” Architecture for SSMs

Our model is flexible because one can essentially ”plug-and-play” different types of fac-

tors to suit various types of SSMs in the biological literature. Each factor is expressed

in the negative log domain, and computes an energy value that can be interpreted as

the negative log likelihood of the configuration of the variables it connects with. The

total energy of the system is the sum of the factors’ energies, so that the maximum

likelihood configuration of variables can be obtained by minimizing the total energy.

Learning our factor graphs is still done by maximizing their joint likelihood, but we

use an approximate gradient-based MAP inference to obtain the most likely config-

uration of the hidden sequence. Such approximate approaches have been applied on

chaotic and motion capture time series modeling problems (Mirowski and LeCun,

2009). Our algorithm is also faster than MCMC or Variational Bayes approaches for

Dynamic Bayesian Networks and than Gaussian Processes.
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Figure 4.1: Two factor graph representations of the state-space model for gene regu-
lation networks. In both DFGs, the observation models incorporate a dependency on
the previous mRNA expression level yt−1, as we are modeling the rate of change of
Y by a first-order linearized ODE. Left: the dynamical model f follows random walk
or AR(1) dynamics. Right: the dynamical model f incorporates the influence of the
mRNA in protein encoding.

4.2.1 Representing Protein TF Levels as Hidden Variables

We assume, as in Barenco et al. (2006); Gao et al. (2008), that for a gene i, the rate

of change of the mRNA level follows a dynamic that involves its basal transcription

rate bi, its decay rate di and a weighted contribution of its M transcription factors

zj(t). The contribution of each TF can be modeled as a linear (identity) Barenco

et al. (2006) or nonlinear activation function σ. The transcriptional dynamics can

thus be expressed as an ODE (4.3). After linearization between two consecutive time

steps t and t + ∆t, the kinetic function (4.3) can be approximated by a Markovian

model (4.4), namely a function hi with added Gaussian noise term εi:

dyi
dt

= bi − diyi(t) +
M∑

j=1

si,jσ (zj(t)) + εi,t (4.3)

yi,t+∆t = hi (yi,t, zt) + εi,t = b′i + (1− d′i)yi,t +
M∑

j=1

s′i,jσ (zj,t) + εi,t (4.4)

In this study, we considered two kinds of dynamics on the hidden TFs zj, illus-

trated on Figure 4.1. In a first, simplistic model, we can assume that zj(t) follows

a Gaussian random walk, which is equivalent to imposing a Gaussian prior on zj(t)
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Figure 4.2: Factor graph representation of the state-space model used for modeling
gene-gene interactions under the assumption that mRNA are a noisy observation of
an “idealized” gene expression level time-course. The observation factor is the identity
function.

as in Lawrence and Sanguinetti (2007); Gao et al. (2008): zj,t+∆t = fj (zj,t) + ηj,t =

zj,t + ηj,t.

The second dynamic actually takes into account the encoding of proteins by their

corresponding genes (mRNA), and models that interaction as an ODE. The encoding

of each TF j is modulated by the mRNA levels of the associated gene with sensitiv-

ity wj, with decay term δj. After linearization, this ODE can be approximated by

Eq. (4.6), i.e. a function fj with additional Gaussian noise ηi:

dzj
dt

= −δjzj(t) + wjyj(t) + ηj,t (4.5)

zj,t+∆t = fj (yj,t, zj,t) + ηi,t = (1− δ′i)zj,t + w′jyj,t + ηj,t (4.6)
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4.2.2 Representing Noise-Free mRNA as Hidden Variables

In a departure from previous state-space model frameworks, our second approach uses

the hidden variables to represent an idealized, “true” sequence of gene expressions

z(t) that would be measured if there were no noise. The set of all genes at time

t is modeled by a “latent” (i.e., hidden) variable (denoted z(t)), about which noisy

observations y(t) are made. Specifically, we a) model the dynamics on hidden states

z(t) instead of modeling them directly on the Affymetrix data y(t), as well as b) have

the hidden sequence z(t) generate the actual observed sequence y(t) of mRNA, while

incorporating measurement uncertainty. Such an approach has been used in robotics

to cope with errors coming from sensors.

As shown in Figure 4.2, the relationship between consecutive latent variables z(t)

and z(t + 1) is a Markov chain: each latent gene’s expression value at time t + 1 is

assumed to depend only on the state of potentially all the latent gene expressions at

the previous time point t. For each gene i, this relationship stems from the kinetic

ODE involving the rate of mRNA change (with a kinetic time constant τ), mRNA

degradation, and a linear function fi of transcription factor concentrations for that

specific gene. So-called “Brownian motion” dynamics correspond to kinetic dynamics

without the mRNA degradation term. In linearized (discretized) form, the overall

dynamical model f can be represented by an N × M matrix F where N is the

total number of genes and M the number of transcription factors (M ≤ N , and

transcription factors are given indexes from 1 toM), plus a bias term b and a Gaussian

error term with zero mean and fixed covariance:
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τ
dzi(t)
dt

+ zi(t) = fi (z(t)) + ηi(t) (4.7)

τ

∆t
(zi(t+ 1)− zi(t)) + zi(t) =

Ni∑

j=1

Fi,jzj(t) + bi + ηi(t) (4.8)

This linear Markovian model which represents a kinetic (RNA degrades) or Brow-

nian motion (RNA doesnÕt degrade) ODE, is the simplest and requires the fewest

parameters (there is one parameter per TF-gene interaction, and an additional offset

for each target gene). We conjecture that model thus helps to avoid over-fitting scarce

gene data.

The observation model h is essentially an N ×N identity matrix with a Gaussian

error term:

yi(t) = h (zi(t)) + εi(t) (4.9)

yi(t) = zi(t) + εi(t) (4.10)

Because our algorithm is efficient, simple and tractable, as explained in next sec-

tion, it can handle larger numbers of genes (we focussed on 76 genes) than other

state-space model approaches, given enough genes Beal et al. (2005), Angus et al.

(2010), Zhang et al. (2010).

4.2.3 Learning Gradient-Based DFGs

The above functions fi and hj are only a subset of the possible factors that our method

can handle, and they could be substituted by any function that is differentiable with
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respect to both its parameters and the latent variables. Unlike methods based on

Gaussian Processes Lawrence and Sanguinetti (2007); Alvarez et al. (2009); Zhang

et al. (2010), on expensive MCMC sampling Barenco et al. (2006), or on Variational

Bayes Beal et al. (2005), our method only requires to compute the gradients of all

functions fi and hj, both w.r.t. parameters Θ and w.r.t. latent variables Z.

Expectation-Maximization-Like Coordinate Descent

Learning and inference are performed by minimizing the negative log-likelihood loss

of the factor graph (i.e. is a sum of square errors because of the Gaussian prior on the

error/noise terms). On a sequence Y of T micro-array measurements (including repli-

cate sequences) over N genes, corresponding latent variables Z, under an observation

(and dynamic) models parameterized by Θ, and for given hyperparameters γ (which

controls the weight of the dynamical and observation errors) and λ (for the L1-norm

regularization), the loss is expressed as (4.11). Latent variables Z and parameters Θ

are initialized to small random values. Then the iterative procedure consists of a) the

inference step, where the loss (4.11) is minimized with respect to the latent variables

Z thanks to gradient descent; and of b) the learning step, where the loss (4.11) of

the observation (and dynamical, if relevant) modules is minimized w.r.t. parameters

Θ using conjugate gradient optimization or Least-Angle Regression and Shrinkage

(LARS) if the factor is linear (Tibshirani, 1996). We use small learning rates and

validate the hyperparameters γ and λ on the training data (typically, λ = 0.01 and

γ = 1).

L(Y,Z; Θ, γ, λ) =
T∑

t=1

(
γ

2

M∑

j=1

η2
j,t +

1

2

N∑

i=1

ε2i,t

)
+ λ ‖ Θ ‖1 (4.11)

The learning algorithm is run for 100 or 1000 consecutive epochs over all the
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replicate sequences. In order to retain the optimal set of parameters of f , one selects

the epoch where the dynamic or observation error on the training dataset is minimal.

In the case of model architecture from Section 4.2.2. one run of the learning proce-

dure provides with a matrix F of signed (positive: excitatory or negative: inhibitory)

interactions between transcription factors and genes. Each element Fi,j represents

the action of the j-th transcription factor on the i-th gene.

Hyperparameters and Recovering Existing Methods

Two main hyper-parameters were explored in our learning experiments: the amount of

L1-norm regularization λ (explained in the Methods) and the Lagrange-like coefficient

γ linked to the state-space model. When trying to learn GRN from mRNA (in

Section 4.2.2), we used the kinetic coefficient τ as an additional hyperparameter.

Note that when the state-space coefficient is γ = 0, and using the configuration

from Section 4.2.2), we can recover non-SSM algorithms: (Efron et al., 2004), as used

for instance by Bonneau et al. (Bonneau et al., 2006, 2007) and Elastic Nets (Zou and

Hastie, 2005), as used for instance by Shimamura et al. (Shimamura et al., 2009). In

that case, we simply have Y = Z. Moreover, if we do not use the mRNA degradation

term in the kinetic ODE, and use instead “Brownian motion” dynamics, and if we set

the state-space coefficient to γ = 0, we recover an approach comparable to the one

published by Wang et al. (Wang et al., 2006b) (although their optimization algorithm

was based on the SVD of the micro-array data).

Regularization

During the learning step, sparse gene regulation networks are obtained by penalizing

dense solutions using L1-norm regularization, which amounts to adding a λ-weighted

penalty to the dynamical error term, as in the LASSO initially described by Tibshirani
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Tibshirani (1996). Employing regularization on parameters also helps avoiding local

optima in the solutions.

LARS is a fast implementation of Tibshirani’s popular LASSO regression with L1-

norm regularization (Tibshirani, 1996). Elastic Nets are an improvement over LARS

and LASSO, and their main advantage is to group variables (in our case genes) as

opposed to choosing one gene and leaving out correlated ones.

Selection of Gene Regulation Network by Bootstrapping

Using a bootstrapping approach based on random initialization of latent variables

z(t), we further repeat the SSM iterative procedure 20 times and take the final average

model.

In the case of the dynamical model on noise-free mRNA described in Section 4.2.2,

we use bootstrapping to determine the statistically significant gene-gene links. The

above-explained algorithm for learning state-space models starts with random initial

values for both the dynamical model (in other words, matrix F) and for the latent

variables Z. We repeat the whole procedure 20 times in order to perform the following

bootstrapping evaluation. Each run k of the algorithm might converge to a slightly dif-

ferent solution F∗(k). We then take the average TF-gene interactions weights obtained

from all solutions F∗(k) and call it F∗. The table on Figure 4.4 reports comparative

results on the average solutions. In parallel, we also generate 1000 random permuta-

tions of each matrix F∗(k), defined respectively as P∗(k, 1),P∗(k, 2), . . . ,P∗(k, 1000),

and then compute 1000 average matrices P∗(1),P∗(2), . . . ,P∗(1000) of those “scram-

bled” matrices (we take the averages over the 20 runs). We compare each average

element F ∗i,j to the empirical distribution of the 1000 permuted averages and thus ob-

tain an empirical p-value. The final genetic regulation network consists in elements

F ∗i,j that have a p-value p < 0.001.
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4.3 GRN of the Arabidopsis Response to NO3−

In this study, instead of learning the dynamics directly on the gene expression se-

quence, we took into account uncertainty and acquisition errors, and used a state-

space model. The latter defined the observed gene expression time series (denoted as

y(t)) as being generated by a hidden “true” sequence of gene expressions z(t). This

approach enabled us to both incorporate uncertainty about the measured mRNA and

to model the gene regulation network by simple linear dynamics on the hidden vari-

ables (so-called “states”), thus reducing the number of (unknown) free parameters and

the associated risk of over-fitting the observed data.

Our DFG-based method delivered a coherent regulatory model that was good

enough to predict the direction of gene change (up regulation or down regulation) on

future data points. This coherence allowed us to propose a gene influence network

involving transcription factors and “sentinel genes” involved in the primary NO3− re-

sponse (such as NO3− transporters or NO3− assimilation genes). The role of a predicted

hub in this network was evaluated in further biological experiments by over-expressing

it, and indeed lead to changes in the NO3− driven gene expression of sentinel genes.

4.3.1 Comparative Study of State-Space Model Optimization

Out of the 550 N-regulated genes we extracted 67 genes which correspond to all

the predicted transcription factors and 9 N-regulated genes that belonged to the N-

assimilation pathway (including sentinel genes). Their mRNA over 7 time points and

for 2 replicates is shown on Figure 4.3. The transcription factors have been used

as explanatory variables (inputs to f) as well as explained values (output from f),

whereas the N-assimilation genes are only explained values. We then optimized the

103



Figure 3

Figure 4.3: 76-gene micro-array used for the Arabidopsis study. The last time-point,
corresponding to time t = 20 min, was out-of-sampled and used for evaluating the
predictive capability of our dynamical model of gene regulation.

state-space model, using different algorithms, in order to fit it to the observed data

matrix, and compared all our results in the table on Figure 4.4. We also compared

our SSM approach to non-SSM approaches (Bonneau et al., 2006, 2007; Wang et al.,

2006b; Efron et al., 2004; Zou and Hastie, 2005; Shimamura et al., 2009) in in the

table on Figure 4.5.

For each type of ODE (kinetic or “Brownian motion”) and type of optimization

algorithm, we exhaustively explored the space of hyper-parameters (γ, λ, ρ) in order

to optimize the quality of fit of each model to the first six time-points (0 min, 3 min,

6 min, 9 min, 12 min and 15 min). As can be seen in the table on Figure 4.4, we

identified the state-space model relying on the kinetic ODE, and with either LARS or

conjugate gradient optimizations, as the two best (having the highest Signal-to-Noise

Ratio (SNR)) optimization algorithms on the MAS5 training datasets. The signal-to-
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Figure 4.4: The kinetic ODE and both the conjugate gradient and LARS optimization
algorithms obtain the best fit to [0, 15] min data, with good leave-out-last predictions.
Each line in the table represents the type of ODE for the dynamical model of TF-
gene regulation (either kinetic, with mRNA degradation, or ÒBrownian motion”,
without mRNA degradation), the type of micro-array data normalization, and the
optimization algorithm for learning the parameters of the dynamical model. For each
of those, we selected the best hyperparameters, namely the state-space coefficient γ,
the kinetic time constant τ (in minutes) and the parameter regularization coefficient
λ, based on the quality of fit to the training data ([0, 15] min), as measured by
the signal-to-noise ratio, in dB. We then performed a leave-out-last prediction and
counted the number of times the sign of the mRNA change between 15 min and 20
min was correct. We compared these results to a naŢve extrapolation (based on the
trend between 12 min and 15 min) and obtained statistically significant results at
p = 0.0145. Reproduced from the table published in (Krouk et al., Provisionally
accepted for publication).

noise ratio is a monotonic function of the Normalized Mean Square Error (NMSE) on

the predicted values of mRNA; all algorithms used in this article aim at minimizing

the NMSE, i.e. at maximizing the SNR.

Having chosen the two best algorithms using all time points up to and including

15 min as training data, we performed a “leave-out-last” test, consisting of predicting

both the direction and magnitude of the change of the genes between 15 and 20 min.

Using those algorithms with those parameter settings, we made predictions about

whether gene expression levels would increase (positive sign) or decrease (negative
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Figure 4.5: The quality of fit of our State-Space Model approach slightly outper-
forms the non-SSM approaches. We compared our State-Space Model-based technique
(SSM, with a non-zero state-space model parameter gamma) to previously published
algorithms for learning gene regulation networks by enforcing gamma=0 (see Meth-
ods). We notice that the LARS algorithm (Tibshirani, 1996), used in the Inferelator
by Bonneau et al. (Bonneau et al., 2006, 2007), as well as Elastic Nets (Zou and
Hastie, 2005; Shimamura et al., 2009), obtain a slightly worse quality of fit (signal-to-
noise ratio, in dB) than when combined with our state-space modeling, for the same
leave-out-last performance as our SSM + LARS. Not using an mRNA degradation
term, as in Wang et al. (Wang et al., 2006b), degrades the leave-out-last perfor-
mance. Reproduced from the table published in (Krouk et al., Provisionally accepted
for publication).

sign) in 20 min compared with 15 min.

As the table on Figure 4.4 shows, a state-space model relying on the kinetic ODE

and with LARS optimization (kinetic LARS) gives correct results 74% of the time

on a set of 53 genes (47 TFs and 6 N-assimilation genes) that are “consistent” among

the two biological replicates in their behavior (consistently up or down-regulated in

both replicates) for the transition from 15 min to 20 min. When we considered all

76 genes, regardless of their “consistency” across replicates, kinetic LARS still gave

correct results 71% of the time. Corresponding figures for the other chosen algorithm

(kinetic ODE with conjugate gradient optimization) yielded 68% correct results on
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both the 53 consistent genes and on all 76 genes. By contrast, a naive algorithm,

that would extrapolate the trend between 12 min and 15 min, was correct for only

52% of the consistent genes, just slightly better than random (this result implies that

48% of the consistent genes changed “direction” at 15 min). Thus, our state-space

model does significantly better (p = 0.0145) than the naive trend forecast based on a

binomial test on a coin that is biased to be correct 52% of the time.

Using the hyper-parameters (γ, λ, ρ) corresponding to the two best solutions (ki-

netic LARS and kinetic conjugate gradient), we retrained two State Space Models

on all the available data (0 to 20 min) to obtain corresponding gene regulatory net-

works. Finally, we performed a statistical analysis of the bootstrap networks, in order

to retain TF-gene links that were statistically significant at p = 0.001. We ultimately

selected the conjugate gradient-optimized network as it gave a less sparse solution

(394 links) than the LARS-optimized GRN (22 links). We used this network (next

section) to analyze the NO3− response of sentinel genes to transcription factors.

Although the number of samples in the dataset is extremely small (7 time-points,

corresponding to 26 different time points using replicate time series), all the dynam-

ical models (our state-space model in particular) were able to learn the system well

enough to predict the direction of changes to gene expression. This suggests that we

might have learnt some consistent and biologically meaningful networks involved in

NO3− response pathway. Since the dynamical functions f model the gene regulation

network learned during the leave-out-last test, we conclude by presenting the function

f obtained from the full time sequence 0-20 min. This function f can be displayed

as an influence matrix (Figure 4.7), or as a gene network where each node is a gene

and edges represent potential influences.

The study of this network as a whole system is discussed below.

107



4.3.2 Over-Expression of a Potential Network Hub (SPL9)

Modifies NO3− Response of Sentinel Genes.

In order to probe the role of a transcription factor/hub in the predicted network pre-

sented on Figure 4.7, transgenic plants (pSLP9:rSPL9) expressing an altered version

of the mRNA for the SPL9 transcription factor plants were compared to WT (wild

type) plants for their response to NO3− provision, using another mRNA measuring

technique called QPCR. Results are shown on Figure 4.6.

The SPL9 gene has been selected for several reasons: (i) it is induced at very early

time points (3 and 6 minutes), (ii) the inferred network predicts that SPL9 potentially

controls at least 6 genes including 2 sentinel genes. This places it as the 3rd most

influential TF on sentinels, and (iii) it is the most strongly influenced gene in both

number of connections as well as the magnitude of the regulations controlling it.

What follows is the biologist’s interpretation of the QPCR study, described in

further details in (Krouk et al., Provisionally accepted for publication).

As such SPL9 constitutes a potential crucial bottleneck in the flux of

information mediated by the proposed network. We first considered SPL9

mutants and monitored sentinel expression in this genetic background.

However even if some defects have been observed no consistent phenotype

could have been reported. This can be easily explained by the topological

redundancy of the network. Thus one could expect that its over-expression

triggers a detectable effect on the sentinels and on the network behavior.

SPL9 is a transcription factor identified to control shoot development and

flowering transitions, and it also appears as a potential central regulator

in our network derived from the state space model.
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In our experimental set-up, transgenic SPL9 mRNA is over-expressed an

average 20 to 4 times in the plants. In parallel, mRNA transcription levels

of several sentinel genes has been followed in this SPL9 transgenic line.

The most dramatic effect recorded is for the NIR gene. Interestingly, the

NIR gene has previously been demonstrated to be one of the most robustly

NO3− regulated gene based on a meta analysis of microarray data from N-

treated plants (Gutierrez et al., 2007). Thus, over-expression of the SPL9

gene leads to significantly advance the NIR NO3− response by about 10 min,

and attenuates its magnitude of regulation for later time points (60 min).

Less dramatic but still significant (over 3 independent experiments) effects

has been recorded for NRT1.1/CIPK23 genes, belonging the NO3− sensing

module, and for the NIA2 gene. These results demonstrate a role of the

SPL9 transcription factor in the control of the NO3− primary response. To

further investigate the role of SPL9 over-expression on the transcription

levels of genes in the network over time. SPL9 is also regulated transiently

as well as earlier than the sentinel genes we measured their dynamics of

mRNA accumulation in this experiment. Interestingly, SPL9 seems to

have an effect on the vast majority of the genes that we have tested. The

diversity of the mis-regulations is high. For instance for 4 out of the 14

tested genes display an early effect (between 0 and 20min) of the SPL9

over-expression. However, 11 genes display modified gene expression in

transgenic plants at later time points (40 and 60min).

This high-resolution time course analysis demonstrated that the previously known

primary nitrate response is actually preceded by very fast (within 3 min) gene expres-

sion modulation, involving genes/functions needed to prepare plants to use/reduce
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NO3−. The experiments and methods allow us to propose a temporal working model

for NO3−-driven gene networks. The over-expression of a predicted gene hub encoding

an early induced transcription factor indeed leads to the modification of the NO3−

response kinetic of sentinel genes such as NIR, NIA2, and NRT1.1.

4.4 Inferring Protein Levels from Micro-arrays

4.4.1 Inferring Human p53 Protein Levels from mRNA

In a first series of experiments, we reproduced the results from Lawrence and San-

guinetti (2007); Gao et al. (2008); Alvarez et al. (2009); Zhang et al. (2010) who

tried to infer the single human p53 (tumor repressor) protein level from 5 mRNA ex-

pression levels (not including the mRNA of TP53) in reaction to irradiation Barenco

et al. (2006). Using data preprocessed by Gao et al. (2008), we investigated shar-

ing the latent variables Z across the 3 replicates, random walk dynamics on Z and

the use of nonlinear activation (Michaelis-Menten “bottleneck” kinetics) σ(z(t)) =

z(t)/(µ+ z(t)).

Using the micro-array data available with Barenco et al. (2006), we added a 6th

gene (p53-encoding TP53) and enforced TP53-governed kinetics (Eq. 4.6) on p53,

with or without sharing the latent variables Z across replicates. Figure 4.8 shows

that the experimental profile of p53 was well recovered from 6-gene datasets. All

experiments were repeated 10 times, starting from random initializations, and the

errors bars were small. The TF value at time t = 0 was set to 0, and the sensitivity

of p21 was set to 1, as in Gao et al. (2008). In terms of reconstruction error, all

experiments achieved an observation Signal-to-Noise Ratio of about 16dB, and the

6-gene experiments had a dynamic SNR of about 13dB.
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4.4.2 Inferring Drosophila Mef2 Protein Levels from mRNA

A similar experiment was repeated with 7-gene data used for the inference of the Mef2

protein in the Drosophila Gao et al. (2008), where one of the genes encoded Mef2 and

the 6 others genes were targets of the TF. As illustrated on Figure 4.9, the inferred

TF was similar to the one in Gao et al. (2008) but the mRNA fitted the observed

data more closely than in Gao et al. (2008), with 10dB SNR.

4.4.3 Inferring Multiple Protein Levels: Human p53, TGF-β

Coming back to p53 data, but using 50 mRNAs, we investigated the inference of

multiple (3) hidden TFs. No constraints were enforced on the TFs, but for each

realization, we ultimately sorted the TFs according to their average cross-correlation

among replicates (TF3 being the most correlated). As Figure 4.10 shows, the profile

of most-correlated TF3 was consistent among the realizations and had a comparable

shape to the Western blot experimental p53 measures from Barenco et al. (2006).

Finally, we applied our model to a new human cancer dataset containing both

mRNA and protein levels. Using only mRNA, we succeeded in inferring the protein

levels of 3 proteins (β-actin, cofilin and moesin) involved in the TGF-β Epithelial-

Mesenchymal Transition. We used normalized mRNA data averaged over replicates

and taken from Keshamouni et al. (2009), defined 4 TFs, with an encoding kinetic

(Eq. 4.6) on 3 TFs (respectively encoded by ACTB, CFL1 and MSN), and set the

TFs levels to be equal to 1 at time t = 8h (because the experimental protein time

series started at that point and were defined as ratios). The learning experiment

was repeated 5 times with random initializations. Figure 4.10 shows that the first

3 inferred TFs match the profile of experimental protein ratios measured using the

iTRAQ method.
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4.5 Conclusions and Further Work

Using experimental validation, we demonstrated that our simple and fast gradient-

based state-space model algorithm can infer protein profiles from mRNA datasets,

and match experimental measures of protein concentration levels.

We have also shown that they can be applied to the problem of reverse-engineering

gene regulation networks from mRNA, by using hidden variables to model the noise

in mRNA data. Using predictive modeling, we were able to predict the direction

taken by gene expression levels on out-of-sample micro-arrays, confirming that our

dynamic model succeeded in capturing the influences of the gene regulatory network.

We are now planning on further evaluating our method for reverse-engineering

GRNs by directly modeling transcription factors and by replacing gene-gene inter-

actions by gene-TF and TF-gene interactions. In our factor graph notation, that

corresponds to replacing a model with dynamics on hidden variables Z and an iden-

tity observation function Y = h (Z) by a proper transcription function ∂yt

∂t
= h (zt)

and a translation function ∂zt

∂t
= f (yt). Our current work is inspired by the module-

networks SSM approaches described in (Hirose et al., 2008; Yamaguchi et al., 2007,

2010) and by the fully-fledged Dynamic Bayesian Network approaches in (Rangel

et al., 2004; Beal et al., 2005).
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Figure 5

Figure 4.6: Gene knock-out validation for the Arabidopsis GRN inference The “wild-
type” expression (WT, in black) corresponds to the normal time-course of mRNA
levels, while the pSPL9:rSPL9 time-course (in red) corresponds to mRNA levels after
the gene SPL9 has been knocked-out.
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Figure 4

Figure 4.7: Gene Regulation Network involved in the Arabidopsis’s response to NO3−,
represented as a matrix of signed gene-gene influences.
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Figure 4.8: Left: inferred p53 protein levels using different techniques, compared with
the experimental data using Western blots. Right: mRNA levels from replicate 1, as
measured (solid line) and predicted by the 6-gene shared model (dashed line).
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Figure 4.9: Left: inferred Mef2 protein (10 different realizations). Right: mRNA
levels from replicate 1, as measured (solid line) and predicted by the model (dashed
line).
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Figure 4.10: Left: inferred profiles of 3 latent variables, across 3 replicates, for the
50-gene p53 dataset. For each of the 10 realizations, the latent factors were sorted
by cross-correlation among replicates. TF3 has the strongest cross-correlation and
resembles the p53 experimental profile. Right: inferrred profiles of 4 latent variables
for the 70-gene TGF-β dataset. TF1, TF2 and TF3 are respectively encoded by the
ACTB, CFL1 and MSN genes and show very good fit to experimental iTRAQ ratios.

115



Figure 1

Figure 4.11: Partial view of the microarray data collected from 26 Affymetrix gene
chips on the Arabidopsis Thaliana in response to NO3− and to a control stimulation by
KCl. The values show the log2 of the ratio between the mRNA levels for each gene in
response to NO3− and the same genes’ mRNA levels in response to KCl. Values have
been averaged over the 2 replicates, and are shown for time-points at 3, 6, 9, 12, 15
and 20 min.
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Chapter 5

Application to Topic Modeling of Time-Stamped

Documents

The Times They Are a-Changin’

Bob Dylan

This chapter introduces new applications for Dynamic Factor Graphs, consisting

in topic modeling, text classification and information retrieval. DFGs are tailored

here to sequences of time-stamped documents.

Based on the auto-encoder architecture, our nonlinear multi-layer model is trained

stage-wise to produce increasingly more compact representations of bags-of-words at

the document or paragraph level, thus performing a semantic analysis. It also incor-

porates simple temporal dynamics on the latent representations, to take advantage

of the inherent (hierarchical) structure of sequences of documents, and can simulta-

neously perform a supervised classification or regression on document labels, which

makes our approach unique. Learning this model is done by maximizing the joint like-

lihood of the encoding, decoding, dynamical and supervised modules, and is possible

using an approximate and gradient-based maximum-a-posteriori inference.

We demonstrate that by minimizing a weighted cross-entropy loss between his-
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tograms of word occurrences and their reconstruction, we directly minimize the topic-

model perplexity, and show that our topic model obtains lower perplexity than the

Latent Dirichlet Allocation on the NIPS and State of the Union datasets. We illus-

trate how the dynamical constraints help the learning while enabling to visualize the

topic trajectory. Finally, we demonstrate superior information retrieval and classifica-

tion results on the Reuters collection, as well as an application to volatility forecasting

from financial news.

This work will be presented at the 2010 NIPS Deep Learning Workshop (Mirowski

et al., 2010c), and has been submitted for publication.

5.1 Information Retrieval, Topic Models and Auto-

Encoders

We propose in this article a new model for sequences of observations of discrete data,

specifically word counts in consecutive (or time-stamped) text documents, such as on-

line news, recurrent scientific publications or periodic political discourses. We build

upon the classical bag-of-words approach, which ignores the syntactic dependencies

between words, and focuses on the text semantics by looking at vocabulary distribu-

tions at the paragraph or document level. Our method can automatically discover

and exploit sequences of low-dimensional latent representations of such documents.

Unlike most latent variable or topic models, our latent representations can be simul-

taneously constrained both with simple temporal dependencies and with document

labels. One of our motivations is the sentiment analysis of streams of documents,

and has interesting business applications, such as ratings prediction. In this work,

we predict the volatility of a company’s stock, by capturing the opinion of investors
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manifested in online news about that company.

5.1.1 Document Representation for Information Retrieval

Simple word counts-based techniques, such as the Term Frequency - Inverse Docu-

ment Frequency (TF-IDF) remain a standard method for information retrieval (IR)

tasks (for instance returning documents of the relevant category in response to a

query). TF-IDF can also be coupled with a classifier (such as an SVM with linear or

Gaussian kernels) to produce state-of-the-art text classifiers (Joachims, 1998; Debole

and Sebastiani, 2005). We thus show in Results section 5.3.3 how our low-dimensional

document representation measures up to TF-IDF or TF-IDF + SVM benchmarks on

information retrieval and text categorization tasks.

Plain TF-IDF relies on a high-dimensional representation of text (over all V words

in the vocabulary) and compact representations are preferable for index lookup be-

cause of storage and speed issues. A candidate for such low-dimensional representa-

tions is Latent Semantic Analysis (LSA) (Deerwester et al., 1990), which is based on

singular value decomposition (SVD). Alternatively, one can follow the dimensionality

reduction by independent components analysis (ICA), to obtain statistically inde-

pendent latent variables (Kolenda and Kai Hansen, 2000) (and, as we show in the

Results section, ICA-based LSA can achieves a better performance than simple LSA

in both information retrieval and text categorization tasks). Unfortunately, because

they perform lossy compression and are not trained discriminatively w.r.t. the task,

SVD and ICA achieve worse IR performance than the full TF-IDF.

Instead of linear dimensionality reduction, our approach is to build auto-encoders.

An auto-encoder is an architecture trained to provide with a latent representation

(encoding) of its input, thanks to a nonlinear encoder module and an associated
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decoder module. Auto-encoders can be stacked and made into a deep (multi-layer)

neural network architecture (Bengio et al., 2006; Hinton and Salakhutdinov, 2006;

Ranzato et al., 2007; Salakhutdinov and Hinton, 2007). A (semi-)supervised deep

auto-encoder for text has been introduced in (Ranzato and Szummer, 2008) and

achieved state-of-the-art classification and IR.

z{1}(t-1) z{1}(t) z{1}(t+1)document
classifier g1

dynamical
model s

x(t-1) x(t) x(t+1)

z{2}(t-1) z{2}(t) z{2}(t+1)document
classifier g2

y(t-1) y(t) y(t+1)

z{3}(t-1) z{3}(t) z{3}(t+1)document
classifier g3

encoder f3,
decoder h3

y(t-1) y(t) y(t+1)

y(t-1) y(t) y(t+1)
encoder f2,
decoder h2

encoder f1,
decoder h1

Figure 5.1: Factor Graph Representation of Our Deep Auto-Encoder Architecture
with Dynamical Dependencies Between Latent Variables.

There are three crucial differences between our model and Ranzato and Szummer’s

(Ranzato and Szummer, 2008). First of all, our model makes use of latent variables.

These variables are inferred though the minimization of an energy (over a whole

sequence of documents) that involves the reconstruction, the temporal dynamics, the

code prediction, and the category (during supervised learning), whereas in (Ranzato

and Szummer, 2008), the codes are simply computed deterministically by feed-forward

encoders (their inference does not involve energy minimization and relaxation). It is
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the same difference as between a dynamic Bayesian net and a simple feed-forward

neural net. Secondly, our cross-entropy loss function is specifically constructed to

minimize topic model perplexity, unlike in (Ranzato and Szummer, 2008). Instead

of merely predicting word counts (through an un-normalized Poisson regression), we

predict the smoothed word distribution. This allows us to actually model topics

probabilistically. Lastly, our model has a hierarchical temporal structure, and because

of its more flexible nature, is applicable to a wider variety of tasks.

5.1.2 Probabilistic Topic Modeling with Dynamics on the Top-

ics

Several auto-encoders have been designed as probabilistic graphical models in or-

der to model word counts, using binary stochastic hidden units and a Poisson de-

coder (Gehler et al., 2006; Salakhutdinov and Hinton, 2007) or a Softmax decoder (Salakhut-

dinov and Hinton, 2009). Despite not being a true graphical model when it comes

to the inference of the latent representation, our own auto-encoder approach is also

based on the Softmax decoder, and, as explained in Methods section 5.2.3, we also

do take into account varying document lengths when training our model. Moreover,

and unlike (Gehler et al., 2006; Salakhutdinov and Hinton, 2007, 2009), our method

is supervised and discriminative, and further allows for a latent dynamical model.

Another kind of graphical models specifically designed for word counts are topic

models. Our benchmark is the Latent Dirichlet Allocation (Blei et al., 2003), which

defines a posterior distribution of K topics over each document, and samples words

from sampled topics using a word-topic matrix and the latent topic distribution. We

also considered its discriminative counterpart, Supervised Topic Models (Blei and

McAulife, 2007) with a simple linear regression module, on our financial prediction
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task (in Results section 5.3.4). We show in Results section 5.3.1 that we managed to

achieve lower perplexity than LDA.

Some topic models have introduced dynamics on the topics, modeled as Gaussian

random walks (Blei and Lafferty, 2006), or Dirichlet processes (Pruteanu-Malinici

et al., 2010). A variant to explicit dynamics consists in modeling the influence of

a “time” variable (Wang and McCallum, 2006). Some of those techniques can be

expensive: in Dynamic Topic Models (Blei and Lafferty, 2006), there is one topic-word

matrix per time step, used to model drift in topic definition. Moreover, inference in

such topic models is intractable and replaced either by complex Variational Bayes, or

by Gibbs sampling. Finally, all the above temporal topic models are purely generative.

The major problem with the Gaussian random walks underlying (Blei and Lafferty,

2006) is that they describe a smooth dynamic on the latent topics. This might be

appropriate for domains such as scientific papers, where innovation spreads gradually

over time (Blei and Lafferty, 2006), but might be inexact for political or financial

news, with sudden “revolutions” (as vehemently advocated in (Taleb, 2007)). For this

reason, we considered Laplace random walks, that allow for “jumps”, and illustrated

in section 5.3.2 the trajectory of the U.S. State of the Union speeches.

5.2 Methods: Dynamic Auto-Encoders

For each text corpus, we assume a vocabulary of V unique tokens, which can be

words, word stems, or named entities1. The input to the system is a V -dimensional

bag-of-words representation xi of each document i, in the form of a histogram of word

counts ni,v, with Ni =
∑V

v=1 ni,v. To avoid zero-valued priors on word occurrences,

1We built a named-entity recognition pipeline, using libraries from the General Architecture for
Text Engineering (http://gate.ac.uk), and relying on gazetteer lists enriched with custom lists of
company names.
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probabilities xi can be smoothed with a small coefficient β (here set to 10−3):

xi ≡
ni,v + β

Ni + βV
(5.1)

5.2.1 Auto-Encoder Architecture on Bag-of-Words Histograms

The goal of our system is to extract a hierarchical, compact representation from very

high-dimensional input vectors X = {xi}i and potential scalar or multivariate labels

Y = {yi}i. This latent representation consists in D layers Z{l} = {z{l}i }i (where

l ∈ {1, D}) of decreasing dimensionality V > K1 > K2 > · · · > KD (see Fig.

5.1). We produce this representation using deep (multi-layer) auto-encoders (Bengio

et al., 2006; Hinton and Salakhutdinov, 2006; Ranzato et al., 2007; Salakhutdinov and

Hinton, 2007) with additional dynamical constraints on the latent variables. Each

layer of the auto-encoder is composed of modules, which consist in a parametric

deterministic function plus an error (loss) term, and can be interpreted as conditional

probabilities.

The encoder module of the l-th layer transforms the inputs (word distribution xi

if l = 1) or variables from the previous layer z
{l−1}
i into a latent representation z

{l}
i .

The encoding function fl(z
{l−1}
i ) + εi = z

{l}
i or fl(xi) + εi = z

{1}
i is parametric (with

parameters noted We). Typically, we use the classical tanh sigmoid non-linearity,

or a sparsifying non-linearity x3/(x2 + θ) where θ is positive2. The mean square loss

term εi represents Gaussian regression of latent variables.

Conversely, there is a linear decoder module (parameterized by Wd on the same

l-th layer that reconstructs the layer’s inputs from the latent representation hl(z
{l}
i )+

2The sparsifying nonlinearity is asymptotically linear but shrinks small values to zero. θ should
be optimized during the learning, but we decided, after exploratory analysis on training data, to set
it to a fixed value of 10−4
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Figure 5.2: Energy-based view of the first layer of the dynamic auto-encoder. The
reconstruction factor comprises a decoder module h with cross-entropy loss Ld,t w.r.t.
word distribution {xwt }Vw=1, and an encoder module f with Gaussian loss Le,t, for a
total factor’s loss αeLe,t + Ld,t. The latent variables zt are averaged by time unit
into Zt′−1,Zt′ , . . . , and the latter follow Gaussian or Laplace random walk dynamics
defined by the dynamical factor and associated loss αsLs,t′ (for simplicity, we assumed
here 1 document for time unit t′ and one for previous time unit t′ − 1). There
is an optional supervised classification/regression module g (here with a Gaussian
regression loss αcLc,t).

δi = z
{l−1}
i , with a Gaussian loss δi. Layer 1 is special, with a normal encoder but

with a Softmax decoder h1 and a cross-entropy loss term, as in (Salakhutdinov and

Hinton, 2009):

x̄vi =
exp(Wdvz

{1}
i )

∑
v′ exp(Wdv′z

{1}
i )

(5.2)

The dynamical module of the l-th layer corresponds to a simple random walk from a

document at time step t to next document at time step t+1: z
{l}
t+1 = z

{l}
t +ηi. The error
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term ηi can be either a sum of squared element-wise differences (L2-norm) between

the consecutive time-unit averages of latent codes of documents (i.e. a Gaussian

random walk, that enforces smooth dynamics), or a sum of absolute values of those

element-wise differences (L1-norm, i.e. Laplace random walk).

There can be multiple documents with the same timestamp, in which case, there

should be no direct constraints between za,t and zb,t of two documents a and b sharing

the same time-stamp t. In the case of such hierarchical temporal dynamics, we define

a dynamic between consecutive values of the averages < z >t of the latent variables

from same time-unit documents (for a set It of Nt articles published on the same

day t, each average is defined as < z >t ≡ 1/Nt

∑
i∈It zi). The intuition behind the

time-specific averages of topics is that they capture the topic “trend” for each time

stamp (e.g. year for NIPS proceedings or for State-of-the-Union speeches).

Finally, there is a classification/regression module gl that classifies l-th layer latent

variables. Typically, we considered multi-variate logistic regression (for classification

problems) or linear regression with logistic loss or Gaussian loss, respectively.

Those models can be learned in a greedy, sequentially layer-wise approach (Bengio

et al., 2006), by considering each layer as an approximated graphical model (see Fig.

5.2) and by minimizing its negative log-likelihood using an Expectation Maximization

(EM) procedure with an approximate maximum-a-posteriori inference (see next sub-

section 5.2.2). We finally prove how our learning procedure minimizes the topic model

perplexity (sub-section 5.2.3).

5.2.2 Dynamic Factor Graphs and the MAP Approximation

As explained in the previous chapters of the thesis, we use the Dynamic Factor Graph

formalism to express the joint likelihood of all visible and hidden variables. We re-
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trieve through a MAP inference the most likely sequence of hidden topics Z (minimiza-

tion of an unnormalized negative log-likelihood). Our gradient-based EM algorithm

is a coordinate descent on the log-likelihood over the sequence:

L(X,Y; W) = min
Z





Ld(X,Z; Wd) +

αcLc(Z,Y; Wc) +

αeLe(X,Z; We) +

αsLs(Z)





(5.3)

Each iterative inference (E-step) and learning (M-step) consists in a full relaxation

w.r.t. latent variables or parameters, like in the original EM algorithm. We use simple

gradient descent to minimize negative log-likelihood loss w.r.t. latent variables, and

conjugate gradient with line search to mimize L w.r.t. parameters. Because each

relaxation is until convergence and done separately, everything else being fixed, the

various hyperparameters for learning the modules can be tuned independently, and

the only subtlety is in the choice of the weights αc, αe and αs. The α∗ coefficients

control the relative importance of the encoder, decoder, dynamics and supervised

modules in the total energy, and they can be chosen by cross-validation.

We add an additional Laplace prior on the weights and latent variables (using

L1-norm regularization, and multiplying learning rates by λw = λz = 10−4). Finally,

we normalize the decoder to unit column weights as in the sparse decomposition (Ol-

shausen and Field, 1997). Because we initialize the latent variable by first propagating

the inputs of the layer through the encoder, then doing a relaxation, the relaxation

always gives the same latent variables for given parameters, inputs and labels.

As a variation on a theme, we can directly encode xi using the encoders f1, f2, . . . , fD,

like in (Ranzato and Szummer, 2008), in order to perform fast inference (e.g. for in-

formation retrieval or for prediction, as we did on experiments in sections 5.3.3 or
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5.3.4).

Algorithm 2 EM-Type Learning of the Latent Representation at Layer l of the
Dynamic Factor Graph
if l = 1 then

Use bag-of-words histograms X as inputs to the first layer
else

Use Kl−1-dimensional hidden representation Z{l−1} as inputs to layer l
end if
Initialize the latent variables Z{l} using Kl-dimensional ICA
while epoch ≤ nepochs do
// M-step on the full training sequence:
Optimize the softmax (l = 1) or Gaussian decoder hl by minim. loss L w.r.t.
Wd

Optimize the nonlinear encoder fl by minimizing loss L w.r.t. We

Optimize the logistic classifier or linear regressor gl by minim. loss L w.r.t. Wc

// E-step on the full training sequence:
Infer the latent variables Z{l} using the encoder fl
Store associated loss L′(epoch)
Continue inference of Z{l} by minim. loss L (Eq. 5.11) w.r.t. Z{l} (relaxation)
if encoder-only loss L′(epoch) is the lowest so far then

Store the “optimal” parameters {We,Wd,Wc}
end if

end while
Infer Z{l} using “optimal” parameters and the encoder fl only
Optional: continue the inference by minimizing loss L w.r.t. Z{l}

5.2.3 Minimizing Topic Model Perplexity

In the field of topic models, the perplexity measures the difficulty of predicting doc-

uments after training model Ω, and is evaluated on held out test sets. Under an

independence assumption, and on a set {wi}Ti=1 of T documents, containing Ni words
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each, perplexity is defined in (Blei et al., 2003) as the exponential of the cross-entropy:

P ≡ p
(
{wi}Ti=1|Ω

)− 1PT
i=1

Ni (5.4)

= exp

(
−
∑T

i=1 log p (wi|Ω)∑T
i=1Ni

)
(5.5)

In most topic models, each document i is associated with a latent representation θi

(e.g. the multinomial posterior distribution over topics in LDA), and one assumes the

document to be a bag of Ni conditionally independent words wi = {wi,n}Ni
n=1. Hence,

the marginal distribution of wi is:

p (wi|Ω) =

∫

θi

p (θi|Ω)

(
Ni∏

n=1

p(wi,n|θi,Ω)

)
dθi (5.6)

≈
Ni∏

n=1

p(wi,n|θ̃i,Ω) (5.7)

Estimating the likelihood of a document given a topic model is intractable even for

small number of topics, documents and vocabulary size, although approximate tech-

niques based on particle filtering were recently suggested in (Buntine, 2009). Here,

we use the standard approximation made by LDA, which is that the topic assignment

distribution θ̃i is inferred for each document d from observed word occurrences using

variational inference (Blei et al., 2003) or Gibbs sampling (Griffiths and Steyvers,

2004). In our maximum-a-posteriori approach, we replace the full distribution over θi

by a delta distribution with a mode at θ̃i that maximizes the likelihood. We rewrite
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equation (5.6):

log p
(
wi|θ̃i,Ω

)
=

Ni∑

n=1

log p(wi,n|θ̃i,Ω) (5.8)

= Ni

V∑

v=1

ni,v
Ni

log p(v|θ̃i,Ω) (5.9)

By defining the empirical conditional distribution of words in document d as pi(v) ≡
ni,v

Ni
, which we substitute in (5.8), and by noting the model conditional distribution as

qi(v) ≡ p(v|θ̃i.Ω), equation (5.8) become proportional to the cross-entropy between

the empirical and the model conditional distributions over words for document i:

H (pi(v), qi(v)) = −∑v pi(v) log qi(v). Given this derivation and MAP approxima-

tion, the perplexity of our topic model can be expressed in terms of a weighted sum

of cross-entropies (the weights are proportional to the documents’ lengths):

P ≈ P̃ = exp

(
1∑T
i=1Ni

T∑

i=1

NiH(pi, qi)

)
(5.10)

Minimizing LDA perplexity (5.4) is equivalent to minimizing the negative log-likelihood

of the model probabilities of words in all documents, i.e. to a maximum likelihood so-

lution. This is what we do in our approximate maximum-a-posteriori (MAP) solution,

by minimizing a weighted cross-entropy loss (5.11) with respect to both the model

parameters Ω and the latent representations {θi}Ti=1. Using an unnormalized latent

document representation zi (instead of LDA’s simplex θi), and in lieu of model distri-

bution qi, our model reconstructs a V -dimensional output vector x̄i of positive values

summing to 1 through the sequence of decoding functions (we write it x̃i = h(zi)).

However, instead of integrating over the latent variables as in (5.6), we minimize the

reconstruction loss (5.11) over the hidden representation. For a document i, the cross-
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entropy −∑v xi,v log x̄i,v is measured between the actually observed distribution xi,

and the predicted distribution x̄i.

Ld
(
{pi}Ti=1; Ω

)
≡ min

{qi}i

(
T∑

i=1

NiH(pi, qi)

)
(5.11)

= min
x̃i

(
−

T∑

i=1

xTi log x̃i

)
(5.12)

5.3 Results Obtained with Dynamic Auto-Encoders

5.3.1 Perplexity of Unsupervised Dynamic Auto-Encoders

In order to evaluate the quality of Dynamic Auto-Encoders as topic models, we per-

formed a comparison of DAE vs. Latent Dirichlet Allocation. More specifically, for a

100-30-10-2 DAE architecture, we compared the perplexity of 100-topic LDA vs. the

perplexity of the 1st layer of the DAE, then the perplexities of 30-topic LDA vs. the

2nd DAE layer, and so on for 10-topic and 2-topic LDA.

The dataset, consisting in 2483 NIPS articles published from 1987 to 2003, was

separated into a training set (2286 articles until 2002) and a test set (197 articles from

2003). We kept the top V = 2000 words with the highest TF-IDF score. 100-, 30-, 10-

and 2-topic LDA “encodings” (Blei et al., 2003) were performed using Gibbs sampling

inference3 (Griffiths and Steyvers, 2004). Our 100-30-10 DAE with encoding weight

αe = 0 achieved lower perplexity4 than LDA on the first two layers (see Table 5.1).

We also empirically compared L1 or L2 dynamical penalties vs. no dynamics (αs = 0).
3Using Xuan-Hieu Phan’s GibbsLDA++ package, available at http://gibbslda.sourceforge.net/,

we trained Gibbs-sampled sLDA for 2000 iterations, with standard and recommended priors α =
50/M and β = 20/V

4Note that we did not evaluate the perplexity of unigram representations of text, which have
been shown in (Blei et al., 2003) to perform much worse than LDA.
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Table 5.1: Test Set Perplexity on NIPS Articles. We used a 100-30-10 DAE with 3 dif-
ferent dynamical models (none, Laplace L1 random walk, Gaussian L2 random walk).
Each layer of DAE is compared to LDA with the same numberK of latent topics. The
last, 10-unit layer is outperformed by 10-topic LDA, which might be a consequence
of training the model stage-wise, without a global end-to-end optimization from X
up to the last layer Z{3}.

K LDA DAEαs=0 DAEL1
αs=1 DAEL2

αs=1

100 657 518 522 522
30 760 698 695 695
10 848 903 909 960

There was little difference between the three types on the first 2 layers. However, L1

norm (Laplace) dynamics instead of (Gaussian) L2 helped for further layers, as on the

3rd layer, no dynamics and L1 decreased perplexity by 10%. Moreover, L1 allowed a

large “jump” in topic space between 2001 and 2002 (that jump was smeared out by

L2 dynamics).

5.3.2 Plotting Topic Trajectories

We reproduced a study on the U.S. State of the Union speeches from (Pruteanu-

Malinici et al., 2010). We selected the top V = 2000 common words and named

entities (using the same method as in section 5.3.4), and defined a training set con-

sisting in 17,350 paragraphs from 196 yearly speeches through 1989, and a test set of

1965 paragraphs from 19 speeches (1990 to 2010). After training a 100-30-10-2 DAE

with L1 dynamics, we visualized the 2D topic trajectories taken by the yearly aver-

ages of latent variables on the 4th layer, and compared them with a non-dynamical

DAE (same architecture) and a 3-topic LDA (with 2 degrees of freedom). As Figure

5.3 shows, using dynamics on the latent variables during the E-step inference helps

131



to produce a latent representation that can be useful when we expect a dynamical

structure in the data.

The latter 2D latent representation provided us with a historical interpretation. It

appeared that the five strongest discontinuities in the L1 norm between 4-th hidden

topics were, in that order: Harry Truman (1946), Ronald Reagan (1982, inaugural),

Andrew Jackson (1829, inaugural), Woodrow Wilson (1913, inaugural) and Franklin

Roosevelt (1934, inaugural), and on the test data, George W Bush (2001, inaugu-

ral), William Clinton (1996) and Barack Obama (2009, inaugural), which seemed to

confirm historical intuitions.

Hierarchical trajectory over time of latent topics (3−topic LDA)
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Figure 5.3: 2D “Trajectories” of State-of-the-Union Addresses. Left: We visualize
the 4th layer yearly topic averages (over paragraphs) of 196 addresses, produced by
a 100-30-10-2 DAE, with dynamical weight αs = 1. On each axis, “vs.” opposes the
words at the two extremes of that axis. Latent variables were inferred per paragraph
and averaged by year. Top right: same figure for a DAE without dynamics (αs = 0).
Bottom right: same figure for a 3-topic LDA (2 degrees of freedom).
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Table 5.2: Test Set Perplexity on State-of-the-Union Addresses (using the same ar-
chitectures as in Table 5.1).

K LDA DAEαs=0 DAEL1
αs=1

100 739 197 218
30 951 481 514
10 1154 1008 859
2 1428 1553 1206

5.3.3 Text Categorization and Information Retrieval

The standard Reuters-21578 “ModApte” collection5 contains 12,902 financial articles

published by the Reuters news aggregator, split into 9603 train and 3998 test sam-

ples. Each article belongs to zero, one or more categories (in this case, the type of

commodity described), and we considered the traditional set of the 10 most popu-

lated categories (note that both (Gehler et al., 2006) and (Ranzato and Szummer,

2008) mistakenly interpreted that collection as a dataset of 11,000 train and 4000 test

single-class articles). We generated stemmed word-count matrices from raw text files

using the Rainbow toolbox6, selecting the top V = 2000 word stems with respect to

an information gain criterion, and arranging articles by publication date.

To our knowledge, TF-IDF is the best representation for IR on the Reuters col-

lection, and the state-of-the-art classification technique on that set remains Support

Vector Machines with linear or Gaussian kernels (Joachims, 1998). We focused on

linear SVMs and used the standard liblinear software package7, and performed a five-

fold cross-validation to select the regularization hyperparameter C through exhaustive

search on a coarse, then on a fine grid.
5Available at Alessandro Moschitti’s webpage: http://dit.unitn.it/∼moschitt/corpora.htm
6Andrew McCallum’s toolbox is available at http://www.cs.cmu.edu/∼mccallum/bow/rainbow/
7See http://www.csie.ntu.edu.tw/∼cjlin/liblinear/
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We compared our 100-30-10-2 DAE with a single-hidden-layer Multi-Layer Per-

ceptron encoder to TF-IDF, TF-IDF+ICA (Kolenda and Kai Hansen, 2000), TF-

IDF+SVD (Deerwester et al., 1990), LDA (Blei et al., 2003; Griffiths and Steyvers,

2004), and auto-encoders (Ranzato and Szummer, 2008). The Area Under the Precision-

Recall (AUPR) curve for information retrieval (interpolated as in (Davis and Goad-

rich, 2006)) by TF-IDF was 0.51, and 0.54 using 10-dimensional LDA (which was by

far the best among unsupervised techniques). After optimizing the inference weights

on the training data (αe = αc = 10 and αs = 1), our DAE vastly outperformed

TF-IDF and unsupervised techniques in terms of AUPR (see Table 5.3). For the

multi-class classification task, we computed multi-class precision, recall and F1 scores

using micro and macro-averaging (Joachims, 1998; Debole and Sebastiani, 2005). Us-

ing an SVM with linear kernel trained on the latent variables, we matched full TF-IDF

(F1,µ = 0.91, F1,M = 0.83)8 and outperformed TF-IDF+ICA (see Table 5.4).

Auto-encoders (Ranzato and Szummer, 2008) with the same architecture as DAE

performed slightly better than DAE in terms of AUPR for IR, which might be at-

tributed to the fact that they have no relaxation step on the latent variables during

learning, only direct inference, which might help to better train the encoder. We can

nevertheless claim that DAEs are close to the state of the art for information retrieval

and text classification.

5.3.4 Prediction of Stock Market Volatility from Online News

There is some evidence in recent history that financial markets (over)react to public

information. In a simpler setting, one can restrict this observation to company-

specific news and associated stock movements, quantified with volatility σ2. The

problems of stock price movement or volatility forecasting from financial news have
8TF-IDF with Gaussian SVR achieved (F1,µ = 0.92, F1,M = 0.84).
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Table 5.3: Test Set Area Under the Prediction-Recall for Information Retrieval on
Reuters-21578 Articles. We used a 100-30-10-2 DAE with 2 different dynamical mod-
els (none vs. Laplace L1 random walk). Each layer of DAE is compared to LDA,
TFIDF+ICA or TFIDF+SVD with the same numberK of latent topics (TFIDF+ICA
performed the best). We outperformed full TFIDF (0.51) and all unsupervised tech-
niques. We also compared our architecture to auto-encoders in (Ranzato and Szum-
mer, 2008) with a similar 100-30-10-2 architecture.

K LDA DAEαc=10
αs=0 DAEαc=10

L1,αs=1 DAEαc=100
αs=0 DAEαc=100

L1,αs=1 R&S

100 0.42 0.86 0.86 0.90 0.89 0.87
30 0.49 0.85 0.81 0.62 0.63 0.93
10 0.54 0.86 0.80 0.81 0.78 0.89
2 0.25 0.73 0.78 0.71 0.75 0.70

Table 5.4: Test Set Macro/Micro-Averaged F1 Scores Using Linear SVM on Reuters-
21578 Articles. We used the same architectures as in Table 5.3.

K ICA DAEαc=10
αs=0 DAEαc=10

L1,αs=1 DAEαc=100
αs=0 DAEαc=100

L1,αs=1 R&S

100 0,90, 0.81 0.91, 0.84 0.91, 0.84 0.92, 0.86 0.92, 0.85 0.92, 0.85
30 0.86, 0.70 0,91, 0.85 0.91, 0.83 0.92, 0.86 0.92, 0.85 0.92, 0.85
10 0.73, 0.40 0.91, 0.84 0.91, 0.84 0.92, 0.86 0.92, 0.85 0.92, 0.84
2 0.53, 0.09 0.81, 0.52 0.85, 0.63 0.83, 0.54 0.83, 0.51 0.75, 0.19

been formulated as supervised text categorization problems, and addressed in an

intra-day setting, respectively in (Gidofalvi and Elkan, 2003) and in (Robertson et al.,

2007). In the latter, it was proved that the arrival of some “shock” news about

an asset j impacted its volatility (by switching to a “high-volatility” mode) for a

duration of at least 15 min. In this article, we tried to solve a slightly more difficult

problem than in (Robertson et al., 2007), by considering the volatility σ2
j,t estimated

from daily stock prices9 of a company j. We normalized volatility dividing it by the
9Stock market data were acquired at http://finance.yahoo.com. Volatility was estimated from

daily open, close, high and low prices (Yang and Zhang, 2000).
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median volatility across all companies j on that same day, then taking its logarithm:

yj,t = log σ2
j,t − log σ̄2

t . Using the Bloomberg Professional service, we collected over

90,000 articles, published between January 1 and December 31, 2008, on 30 companies

that were components of the Dow Jones index on June 30, 2008. We extracted each

document’s time stamp and matched it to the log-volatility measure yj,t at the earliest

following market closing time. Common words and named entities were extracted, and

numbers (dollar amounts, percentages) were binned. In order to make the problem

challenging, we split the dataset into 51,362 test articles (after July 1, 2008, in a crisis

market) and 38,968 training articles (up to June 30, 2008, corresponding to a more

optimistic market).

Our benchmark was linear regression on the 2000-word TF-IDF representation,

which achieved R2 = 0.267. Support Vector Regression with Gaussian kernels10 (and

a Gaussian “spread" parameter equal to γ = 1) achieved a higher score of R2 = 0.285.

Note that kernel methods are expensive on this large Bloomberg dataset with 51k

training examples. sLDA 11 (Blei and Lafferty, 2006) performed surprisingly poorly,

with R2 < 0.1, for 100, 30, 10 or 2 topics.

As we report in Table 5.5, our DAE with a 100-30-10-2 architecture, L1 dynamics,

tanh encoders f and linear decoders g achieves, at each hidden layer, a higher coeffi-

cient of determination R2 on the test set than linear encodings (K-dimensional ICA

on TF-IDF) or probabilistic topic models (K-topic LDA). We observe that the latent

representation on the 3rd and 4th layer of our DAE architecture also performs better

than the full high-dimensional sparse representation (TF-IDF). DAE were however

outperformed by the auto-encoders from (Ranzato and Szummer, 2008), for similar
10We used the liblinear SVM library, available at: http://www.csie.ntu.edu.tw/ cjlin/libsvm/
11Using Jonathan Chang’s LDA package available at http://cran.r-project.org/web/packages/lda,

we trained Gibbs-sampled sLDA with 100 M steps and 20 E steps, with priors α = 50/M and
β = 20/V
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Table 5.5: Prediction of Median-Adjusted Log-Volatility From 2008 Financial News
About the Dow 30 Components. We used linear regression fits on bag-of-words-
derived representations (V = 2000). We report the coefficient of determination R2

on the test set (articles published after June 30). The 3rd and 4th layer of DAE
outperformed TF-IDF with linear regression (R2 = 0.267) and the 4th layer matched
TF-IDF with nonlinear Gaussian SVR (R2 = 0.285) but not the non-relaxed auto-
encoders by Ranzato & Szummer (Ranzato and Szummer, 2008).

K LDA ICA DAEL1
1 R&S

100 0.134 0.219 0.261 0.293
30 0.083 0.155 0.263 0.297
10 0.062 -0.073 0.271 0.300
2 -0.036 -0.123 0.283 0.304

reasons as on the information retrieval tasks on the Reuters corpus from the previous

section.

Finally, those compact representations of the early 2008 financial articles high-

lighted informative text features about stock market uncertainty: for instance, the

two 2nd-layer hidden topics that were the most positive regressors of log-volatility had

the following topic definitions (top 10 words): topic 1: GM, sale, US, vehicle, BOE-

ING, world, +20%, automaker, +10%, plant and topic 2: rating, credit, financial,

information, debt, MOODY’S, FITCH, flow, security, AIG .

Note that by construction, volatility has strong temporal correlation. A naive

predictor for next-day volatility based solely on historical prices (or actually, on the

previous’ day volatility) gets a very high score of R2 = 0.99. This might be the main

reason why a text-based TF-IDF linear regressor of next-day log-volatility achieves a

relatively good R2 = 0.274, which compares to R2 = 0.267 for same-day volatility.
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5.4 Conclusions and Futher Work

We have introduced a new method for information retrieval, text categorization and

topic modeling, that can be trained in a both purely generative and discriminative

ways. It can give word probabilities per document, like in a topic model, and incorpo-

rates temporal dynamics on the topics. Moreover, learning and inference in our model

is simple, as it relies on an approximate MAP inference and a greedy approach for

multi-layer auto-encoders. This results in a few hours of learning time on moderately

large text corpora, using unoptimized Matlab code. Our initial results on standard

text collections are very promising. As further avenues of work, we are planning on

designing better (nonlinear) encoder modules, and in optimizing the gradient-based

algorithms for training individual components of the DAE, in order to speed-up the

method for very large datasets.

5.4.1 Application to Epileptic Seizure Prediction from EEG

I am also planning on applying Dynamic Auto-Encoders to our patent-pending (Mirowski

et al., 2009b) seizure prediction methodology. The latter consists in classifying pat-

terns xt of bi-variate EEG synchronization features into two types: pre-ictal (i.e. a few

minutes before a seizure) and interictal (far from seizure). The motivation behind

our work is that, despite the current lack of a complete neurological understand-

ing of the pre-ictal brain state, researchers increasingly hypothesize that brainwave

synchronization patterns might differentiate interictal, preictal and ictal (seizure)

states (Le Van Quyen et al., 2003). The meaures that we use for synchronization

are bivariate (between any two electrodes of multi-channel EEG), and can consist in

such features as cross-correlation, nonlinear interdependence (Arnhold et al., 1999)
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or Wavelet analysis-based phase-locking synchony (Le Van Quyen et al., 2001). In

our previous published work (Mirowski et al., 2008, 2009a), we showed that by train-

ing patient-specific convolutional network classifiers, we can successfully predict all

seizures without false positives on the test set, in 15 patients out of 21, using a publicly

available EEG database12, and thus obtaining state-of-the-art performance on that

data, outperforming previous studies (Aschenbrenner-Scheibe et al., 2003; Maiwald

et al., 2004; Schelter et al., 2006a,b; Schulze-Bonhage et al., 2006).

In my future work on epileptic seizure prediction, instead of treating it as a clas-

sification problem, I will approach it as a time-to-next-seizure yt regression problem

and introduce latent variables zt with simple dynamics (L2-norm Gaussian random

walk) to add temporal consistency and thus reduce the chance of false alarms. For this

reason, I will use the same auto-encoder architecture as on the volatility prediction

problem, but with a simple Gaussian decoder on the first layer.

12This evaluation was conducted on the EEG dataset of the University of Freiburg, Germany,
available at: https://epilepsy.uni-freiburg.de/
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(a) EEG on 06-Dec-2001, 12:00 (interictal) (c) EEG on 12-Dec-2001, 06:20 (preictal)

(b) Features C on 06-Dec-2001, 12:00 (interictal) (d) Features C on 12-Dec-2001, 06:20 (preictal)
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Figure 5.4: Examples of two 1-min EEG recordings (upper panels) and corresponding
patterns of cross-correlation features (lower panels) for interictal (left panels) and
preictal (right panels) recordings from patient 012. EEG was acquired on M = 6
channels. Cross-correlation features were computed on 5 s windows and on p =
M × (M − 1)/2 = 15 pairs of channels. Each pattern contains 12 frames of bivariate
features (1 min). Please note that channel TLB3 shows a strong, time-limited artifact;
however, the patterns of features that we use for classification are less sensitive to
single time-limited artifacts than to longer duration or repeated phenomena. This
figure is reproduced from (Mirowski et al., 2009a).
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Chapter 6

Application to Statistical Language Modeling

Whenever I fire a linguist our system

performance improves

At IBM Research in Speech Recognition

Frederick Jelinek

Accepting [...] that I really said it, I must

first of all affirm that I never fired anyone,

and a linguist least of all.

In “Some of My Best Friends Are Linguists"

Jelinek (2005)

Frederick Jelinek

This final applications chapter presents an adaptation of Dynamical Factor Graphs

for language modeling. It was presented at the IEEE Spoken Language Technology

workshop in December 2010 (Mirowski et al., 2010a), has been submitted for publica-

tion, and is the object of a patent application filed by AT&T Labs Research (Mirowski

et al., 2010b). Because we are trying to model discrete events (words) using hidden

variables, we resort to a major simplification in the latent variable inference. The
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observation model is now simply a lookup table, which maps a 100-dimensional hid-

den vector to each word of the vocabulary, and contains no energy term. There is

no proper relaxation on the hidden variables either, therefore we cannot call them

latent anymore. On the upside, we gain the ability of full energy-based learning on

the dynamics.

Probabilistic models of text such as n-grams require an exponential number of

examples as the size of the context grows - a problem that is due to the discrete

word representation. They were recently outperformed by language models that use

a continuously valued and low-dimensional representation of words. In these models

word probabilities result from non-linear dynamics in the latent space. We propose

to build on Log-Bilinear models, and to enrich them with additional inputs such

as part-of-speech tags, almost-parsed supertags, a mixture topic model and by using

graph constraints based on word similarity. We demonstrate that our additions result

in significantly lower perplexity on different text corpora, as well as improved word

accuracy rate on speech recognition tasks, as compared to state-of-the-art N-gram

and existing continuous language models.

6.1 Statistical Language Modeling

A key problem in natural language processing (both written and spoken) is designing

a metric to score sentences according to their well-formedness in a language, also

known as statistical language modeling. In speech recognition applications, statistical

language models are generally used to rank the list of candidate hypotheses that are

generated based on acoustic match to the input speech. An example is N -gram

language models which assume that the probability of a word wt depends only on a

short, fixed history wt−1
t−n+1 of n− 1 previous words (a Markov approximation). This

142



results in the joint likelihood of a sequence of T words being given by:

P
(
wT

1

)
= P

(
wn−1

1

) T∏

t=n

P
(
wt|wt−1

t−n+1

)
(6.1)

The conditional probabilities in N -gram models are estimated by keeping track of

the n-gram counts in a training corpus. Their main limitation is that as the size of the

history increases, the size of the corpus needed to reliably estimate the probabilities

grows exponentially. In order to overcome this sparsity, back-off mechanisms (Katz,

1987) are used to approximate nth order statistics with lower-order ones, and sparse

or missing probabilities may be further approximated by smoothing (Chen and Good-

man, 1996).

In contrast to discrete n-gram models, recently-developed Continuous Statistical

Language Models (CSLM) (Bengio et al., 2003; Morin and Bengio, 2005; Schwenk

and Gauvain, 2003; Schwenk, 2010; Blitzer et al., 2004; Mnih and Hinton, 2007, 2008;

Mnih et al., 2009; Collobert and Weston, 2008; Sarikaya et al., 2010) embed the words

of the |W |-dimensional vocabulary into a low-dimensional and continuously valued

space <|Z|, and rather than making predictions based on the sequence of discrete

words wt, wt−1, . . . , w1 operate instead on the sequence of embedded word vectors

zt, zt−1, . . . , z1. The advantage of such models over discrete n-gram models is that

they allow for a natural way of smoothing for unseen n-gram events. Furthermore,

the representations for the words are discriminatively trained in order to optimize the

word prediction task.

In this paper, we describe a novel CSLM that extends previously presented models.

First, our model is capable of incorporating similarity graph constraints on word

representations. Second, the model can efficiently use word meta-features, like part-

of-speech tags or “almost parse” supertags (fragments of parse trees). Finally, the
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model is also flexible enough to handle long range information derived from topic

models. Thus our architecture synthesizes and extends many of the strengths of the

state-of-the-art CSLMs (see Figure 6.1). While language modeling is our task and

hence test perplexity is a natural evaluation metric, we also evaluate our model on

word accuracy for speech recognition.

6.2 Proposed Extensions to Continuous Statistical

Language Modeling

The best-known CSLM is the Neural Probabilistic Language Model (NPLM) (Bengio

et al., 2003), which consists of a neural network that that takes as input a word

window history, embeds this in latent space, zt−1
t−n+1 and is trained to directly predict

the probability of the next word wt (the probability is over the entire vocabulary).

Trainable parameters of this system are both the word embedding function (the way

in which words, wt are projected to their low-dimensional representations, zt) as well

as the network combination weights (how the z’s in the context are combined to

make the prediction). A variant of this model has been successfully applied to speech

recognition (Schwenk and Gauvain, 2003) and machine translation (Schwenk, 2010).

Since the NPLM architecture does not allow constraints to be added to the word

embeddings, we only adopt from this methods the non-linear architecture (single

hidden layer neural network) and the trainability of the embedding. Instead we base

our model on the Log-BiLinear (LBL) architecture (Mnih and Hinton, 2007, 2008;

Mnih et al., 2009). This probabilistic energy-based model is trained to predict the

embedding z̄t of the next word wt. The key elements of the LBL architecture are

explained in Sections 6.3.1, 6.3.2 and 6.3.3. We demonstrate in Section 6.4.2, that
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LBL models outperform n-gram language models.

Other nonlinear classifiers (hierarchical logistic regression (Blitzer et al., 2004)) or

state-space models (Tied-Mixture Language Models, (Sarikaya et al., 2010)) used for

CSLM have been considered that initialize the word representation by computing a

square word co-occurrence matrix (bigrams) and reducing its dimensionality through

Singular Value Decomposition to the desired number of hidden factors |Z|. We fol-

low this work in initializing the LBL word embeddings as explained in Section 6.3.4.

We also explain there how one can impose similarity constraints on the word rep-

resentation, using for instance information about word similarity from the WordNet

taxonomy.

A third, major extension of our LBL model (section 6.3.5), is our incorporation of

part-of-speech tag features as additional inputs, similar to the Deep Neural Networks

with Multitask Learning (Collobert and Weston, 2008). The latter study, however,

addresses different supervised NLP tasks other than language modeling. We also

investigated the use of supertags, which are multi-level elements of a Tree-Adjoining

Grammar (Joshi, 1987).

Finally, in Section 6.3.7, we investigate the influence of the long-range depen-

dencies between words in the current and few previous sentences, or in the current

document. For this reason, we integrate our CSLM with unsupervised topic mod-

els for text, in a spirit similar to HMM-LDA (Griffiths et al., 2005).1 All the four

proposed improvements over LBL are evaluated both in terms of language model

perplexity and of speech recognition word accuracy in section 6.4.
1Their language model was a simple discrete bigram.
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6.3 Architecture of Our Statistical Language Model

with Hidden Variables

In a typical Continuous Statistical Language Model one tries to compute the proba-

bility distribution of the next word in a sequence using the distributed representation

of the preceding words. One class of models tries to achieve this by capturing the

dependencies/interactions between the distributed representation of the next word

and the distributed representations of the preceding words in the sequence. This is

achieved by defining an energy function (a cost) between the variables that capture

these dependencies. Learning in such models involves adjusting the parameters such

that low energies are assigned to the valid sequences of words and high energies to the

invalid ones. This is typically achieved by maximizing the likelihood of the training

corpus (LeCun et al., 2006).

6.3.1 Log-BiLinear Language Models

Log-Bilinear models, recently proposed by Mnih et al. in (Mnih and Hinton, 2007,

2008; Mnih et al., 2009) form our basic model class. Let us denote by wT
1 = [w1 . . . wT ]

a discrete word sequence of length T , and its corresponding low dimensional real-

valued representation by zT1 = [z1 . . . zT ] (where ∀t, zt ∈ <|Z|). The LBL model tries

to predict the distributed representation of the next word zt. It outputs z̄t using a

linear function of the distributed representations of the preceding words zt−1
t−n+1, where

zt−1
t−n+1 denotes a stacked history of the previous word embedding (a vector of length

(n− 1)|Z|):

z̄t = Czt−1
t−n+1 + bC = fC

(
zt−1
t−n+1

)
(6.2)
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Matrix C is a learnable parameter matrix that expresses the bilinear interactions

between the distributed representations of the previous words and the representation

of the current word. The vector bC is the corresponding vector of biases. For any

word wv in the vocabulary with embedding zv, the energy associated with respect to

the current sequence is a bilinear function and is given by:

E(t, v) = −z̄Tt zv − bv (6.3)

Intuitively, this energy can be viewed as expressing the similarity between the

predicted distributed representation of the current word, and the distributed repre-

sentation of any other word wv in the vocabulary. The similarity is measured by the

dot product between the two representations. Using these energies one can assign the

probabilities to all the words wv in the vocabulary:

P
(
wt = wv|wt−1

t−n+1

)
=

e−E(t,v)

∑|W |
v′=1 e

−E(t,v′)
. (6.4)

Training an LBL model involves maximizing the likelihood of all the words in a

corpus, treating each word as a target. This is equivalent to minimizing the negative

log likelihood Lt over a data set:

Lt = E(t, v) + log

|W |∑

v′=1

e−E(t,v′). (6.5)

6.3.2 Non-Linear Extension to LBL

The LBL model as described above is capable of capturing only linear interactions

between representations of the previous words and the representation of the next
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word, via the matrix C. However, expressing it as an energy-based model allows us

to add more complex interactions among the representations just as easily. This is

achieved by simply increasing the complexity of the energy function. For instance,

one can capture non-linear dependencies among the representations of the previous

words, and the next word by adding a single hidden layer neural network, as proposed

in (Mnih et al., 2009). In particular let matrices A and B be the two learnable

parameter matrices and the vectors bA and bB be the corresponding biases. Let

σ denote the tanh sigmoid transfer function which acts on hidden layer outputs.

Then the prediction given by this nonlinear component, which captures non-linear

dependencies among representations, is given by:

fA,B

(
zt−1
t−n+1

)
= Bσ(Azt−1

t−n+1 + bA) + bB. (6.6)

Then, prediction by both the linear and the non-linear component of the LBL

(LBLN) is given by the sum of the two terms:

z̄t = fA,B

(
zt−1
t−n+1

)
+ fC

(
zt−1
t−n+1

)
. (6.7)

The energy of the system is defined in exactly the same way as in equation (6.3),

and the loss function is defined in the same way as in equation (6.5). The system is

again trained by maximizing the likelihood of the training corpus.

6.3.3 Training the LBL(N) Model

Throughout this study the dimensions of the distributed representation of words was

set to |Z| = 100, and the number of hidden units in the neural network were set to

148



500 (in the case of LBLN).

As mentioned in the previous section, training of LBLN models involves maxi-

mizing the log-likelihood of the target words in all the sequences of the training set,

which is achieved by minimizing the negative log-likelihood (equation 6.5) for the

corpus. This minimization is accomplished by a stochastic gradient descent proce-

dure on mini-batches of 1000 words, as given in (Mnih and Hinton, 2007; Mnih et al.,

2009). Typically, equation (6.5) is differentiated w.r.t. the prediction z̄t, the target

word representation zw and the other word representations zv, and the gradients are

propagated through the linear C and nonlinear A,B modules up to the word rep-

resentations R themselves, as well as to the respective biases. Following (Mnih and

Hinton, 2007; Mnih et al., 2009), weight momentum µ is added to all parameters.

In addition, the word embedding R, and all weight matrices (except the biases) are

subject to L2-norm regularization. Table 6.1 summarizes the various hyperparameter

values, some of which were taken from (Mnih et al., 2009) and others optimized by

cross-validation on a small dataset.

We now discuss the various extensions to the LBLN model that we explored in

the present study.

Table 6.1: Hyperparameters (Learning rates η, regularization λ and momentum µ
coefficients) Used in the LBL Architecture of This Article. Values in boldface are
taken from (Mnih et al., 2009).

ηC ηA ηB ηR ηF λ µ

10−3 10−1 10−5 10−4 10−4 10−5 0.5
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6.3.4 Extension 1: Constraining the Hidden Word Embed-

dings

All the parameters A,B,C,R are initialized randomly. We use the rule of thumb

of generating zero-mean normally distributed words of variance equal to the inverse

of the matrix fan-in (LeCun et al., 1998b). Biases are initialized to zero, with the

exception of bv, which are initially equal to the unigram statistics of the training data.

Some CSLM architectures (Blitzer et al., 2004; Sarikaya et al., 2010) are however

dependent on the initial hidden word representation, and in order to evaluate this

dependency, we followed a procedure similar to (Sarikaya et al., 2010) which initializes

R using Singular Value Decomposition on the bi-gram (n-gram) co-occurrence matrix.

As can be shown in section 6.4.4, the low-dimensional nature of the word em-

bedding in CSLMs (|Z| << |W |, with |Z| = 100 and |W | typically over 10,000)

and the word co-occurrence in the text tend to cluster word representations zw

according to their syntactic co-occurrence and semantic equivalence. In order to

speed-up the learning of our model and to potentially help achieve better perfor-

mance, we considered imposing a graph constraint on the words. For each word w,

we defined its neighborhood Nw obtained through the hierarchical WordNet2 tree

and using the WordNet::Similarity module3 (specifically, we used Resnik similar-

ity (Resnik, 1999), keeping in Nw only words whose Resnik score was higher than

8). During learning time, the graph constraint was imposed by adding a penalty

term γ
∑|W |

w=1 ‖ zw − 1
|Nv |

∑
v∈Nw

zv ‖2
2 to the total log-likelihood (we set γ = 1).

2See http://wordnet.princeton.edu
3Available at http://wn-similarity.sourceforge.net/
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6.3.5 Extension 2: Adding Part-Of-Speech Tags

The most important improvement over the LBL (Mnih and Hinton, 2007) and the

LBLN (Mnih et al., 2009) was the addition of Part-of-Speech (POS) tags to each word.

Conceptually, this step is identical to the word embedding: for each word, discrete

POS tags (out of a vocabulary of |X|, here between 30 and 52) are mapped into a

low-dimensional embedding <|ZX | through a linear operation (matrix F). The matrix

F was also initialized randomly in the same way as discussed in Section 6.3.4. We also

considered the case |X| = |ZX |, with an identity transform F = I|X|. Those tags can

then be concatenated with the |ZW |-dimensional word representations into a history

of n−1 word and feature representations, and used as an input to the predictive model

(Figure 6.1), just like in (Collobert and Weston, 2008). As explained below, POS tag

features can be trivially extended to accommodate other types of word features.

6.3.6 Extension 3: Incorporating Supertags

Supertags are elementary trees of a lexicalized tree grammar such as a Tree-Adjoining

Grammar (TAG) (Joshi, 1987). Unlike context-free grammar rules which are single

level trees, supertags are multi-level trees which encapsulate both predicate-argument

structure of the anchor lexeme (by including nodes at which its arguments must

substitute) and morpho-syntactic constraints such as subject-verb agreement within

the supertag associated with the anchor. There are a number of supertags for each

lexeme to account for the different syntactic transformations (relative clause, wh-

question, passivization etc.). For example, the verb give will be associated with at

least these two trees, which we will call tdi and tdi-dat, illustrated below:
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tdi tdi-dat

S

NP0 ↓ VP

V♦ NP1 ↓ PP

P

to

NP2 ↓

S

NP0 ↓ VP

V♦ NP2 ↓NP1 ↓

Supertagging is the task of disambiguating among the set of supertags associated

with each word in a sentence, given the context of the sentence. In order to arrive

at a complete parse, the only step remaining after supertagging is establishing the

attachments among the supertags. Hence the result of supertagging is termed as an

“almost parse” (Bangalore and Joshi, 1999). We use the same set of 500 supertags

derived from the Penn Treebank as discussed in (Bangalore, 1997) in the experiments

for this paper.

6.3.7 Extension 4: Topic Mixtures in LBL(N)

A fourth improvement over the LBL and LBLN architecture that we considered was

the long-range dependency of the language model on the current topic, simplified as

a dependency on the bag-of-words vocabulary statistics. Our main motivation was

that such a context-dependent model would enable domain adaptation of the latent

embedding and combination weights. This adaptation can be done at document-level

(or paragraph-level). When proper document segmentation is not available, such

as in broadcast transcripts, a “document” can be defined by considering the last D

sentences, assuming that the speakers do not change topic too often.
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We decided to implement a topic model based on the popular Latent Dirichlet

Allocation4 (Blei et al., 2003), a graphical model that is trained to extract a word-

topic matrix from a collection of documents, and that can infer latent topic posterior

distributions θd for each test document d. As can be seen on Fig. 6.1, the K-

dimensional topic vector (where
∑

k θk = 1) can be used as weights of a mixture model.

Because the predictions made by each component of the mixture add-up for the final

prediction z̄t (6.8), the implementation of the topic-dependent LBL(N) architecture

is a simple extension of the previously described LBLN-based architectures.

z̄t =
K∑

k=1

θk
(
fCk

(
zt−1
t−n+1

)
+ fAk,Bk

(
zt−1
t−n+1

))
(6.8)

As can be seen in the next section, adding a topic model mixture holds promise in

terms of language model perplexity but still requires additional experimental evalua-

tion.

Note that we could have used the topic model developed in Chapter 5 of my

thesis, but we initially preferred an out-of-the-box solution provided by LDA. Another

reason for our choice of topic models was the fact that LDA computes a topic simplex

(multinomial distribution over topics) which is very handy for mixture model weights.

6.4 Results Obtained with Feature-Rich Log-BiLinear

Language Model

The following section summarizes several sets of experiments performed on four dis-

tinct datasets (section 6.4.1), aimed at assessing the test set perplexity of the respec-

tive language models (section 6.4.2), and at measuring the word accuracy performance
4We used the Gibbs-based implementation of LDA, available at http://gibbslda.sourceforge.net/
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for speech recognition tasks (section 6.4.3). Finally, we illustrate the power of clus-

tering words with low-dimensional representations (section 6.4.4).

6.4.1 Language Corpora

We have evaluated our models on five distinct, public datasets: 1) the Airline Travel

Information System (ATIS), a small corpus containing short sentences concerning air

travel, 2) the Wall Street Journal (WSJ) set, containing sentences from business news,

3) the Reuters-21578 corpus5 of business news articles, which is normally used for text

categorization, 4) TV broadcast news transcripts HUB-4 from the LDC (reference

2000S88), with audio information, and 5) the large AP News corpus used in (Bengio

et al., 2003; Mnih and Hinton, 2007, 2008; Mnih et al., 2009). Table 6.2 summarizes

the statistics of each dataset.

For the WSJ set, we used POS tags to identify and replace all numbers (tag CD)

and proper nouns (tags NNP and NNPS), as well as words with 3 or fewer occurrences,

by generic tags resulting in a considerable reduction in the vocabulary size. For

the Reuters set, each article was split into sentences using the Maximum Entropy

sentence-splitter by Adwait Ratnaparkhi6, and then tagged using the Stanford Log-

linear Part-of-Speech Tagger7. We replaced numbers and rare words (i.e. appearing

less than four times) by special tags, as well as out-of-vocabulary test words by {unk}.

For the HUB-4 corpus, we obtained 100-best hypotheses for each audio file in the test

set using a speech recognition system comprising of a trigram language model that

was trained on about 813,975 training sentences. In all the experiments but on AP

News, 5% of the training data were set apart during learning for cross-validation

(the model with the best performance on the cross-validation set was retained). The
5See: http://disi.unitn.it/moschitti/corpora.htm
6See: http://sites.google.com/site/adwaitratnaparkhi/
7See: http://nlp.stanford.edu/software/tagger.shtml
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1M-word validation set of AP News had already been defined.

Table 6.2: Description of the datasets evaluated in this study: size of vocabulary |W |,
number of training words Ttr and sentences/documents Dtr, number of test words Tte
and sentences/documents Dte.

Dataset |W | Ttr Dtr Tte Dte

ATIS 1,311 116k 11k 23k 2,369
WSJ 10,222 1,079k 46k 42k 2,266
Reuters 11,742 1,445k 10k 462k 3,299
AP News 17,964 13,995k 649k 963k 46k
HUB-4 25,520 813k 19k 32k 827

6.4.2 Decrease in Language Model Perplexity

Assuming a language model is defined by the conditional probability distribution q

over the vocabulary, its perplexity intuitively corresponds to a word uncertainty given

a context. On a corpus of T words, it is defined as:

p = exp

(
− 1

T

T∑

t=1

logP
(
wt|wt−1

t−n+1

)
)

(6.9)

In the absence of task-specific evaluation, such as word accuracy for speech recog-

nition, perplexity is the measure of choice for language models. Therefore, and similar

to (Bengio et al., 2003; Mnih and Hinton, 2007, 2008; Mnih et al., 2009), we used per-

plexity to compare our continuous language models to probabilistic n-gram models.

We chose the best performing n-gram models that include a back-off mechanism for

handling unseen n-grams (Katz, 1987) and the Kneser-Ney smoothing of probability

estimates (Chen and Goodman, 1996), using an implementation provided by the SRI

Language Modeling Toolkit8 (Stolcke, 2002). We did not consider n-gram models ex-
8See: http://www-speech.sri.com/projects/srilm/
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tended with POS tags. For each corpus, we selected the n-gram order that minimized

the test set perplexity.

We performed an extensive evaluation of many configurations of the LBL-derived

architectures and improvements. All the results presented here were achieved in less

than 100 learning epochs (i.e. less than 100 passes on the entire training set), and

with the set of hyperparameters specified in Table 6.1. As can be seen in Tables

6.3, 6.4, 6.5 and 6.6, most of the linear and all the non-linear LBL language models

are superior to n-grams, as they achieve a lower perplexity. Various initializations

(random or bi-gram/n-gram SVD-based) or WordNet::Similarity constraints do not

seem to significantly improve the language model for LBLNs, and they might even

be detrimental to linear LBLs.

We markedly reduced the perplexity of LBL and LBLN when using word features

such as POS tags or supertags, as inputs to the model. The relative improvement was

between 5% and 10% on ATIS (using all the 30 POS tags as inputs to the dynamical

model), around 2%-5% on WSJ when using a 5-dimensional embedding of POS tags,

of 5% on the Reuters corpus, and slightly below 3% for AP News. Supertags achieved

a drastic reduction in perplexity between 20% and 25% on the WSJ set.

Table 6.3: Language model perplexity results on the ATIS test set. LBLN with 200
hidden nodes, |ZW | = 100 dimensionial word representation and all |ZX | = 30 POS
tags achieved the lowest perplexity (below 11.6), outperforming the Kneser-Ney 4-
gram model (13.5). Bigram SVD-derived initialization andWordNet::Similarity graph
constraints on word embeddings did not improve LBLN results, and worsened LBL’s.

LBL LBL LBLN LBLN
POS POS

no constraints 15.45 14.30 12.32 11.60
rand. + graph 16.14 14.65 12.35 11.48

SVD init 15.96 14.51 12.37 11.54
SVD + graph 16.38 14.90 12.39 11.61
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Taking advantage of the small size of the ATIS dataset, we investigated the influ-

ence of several hyper-parameters on the performance of the LBL model: the linear

model learning rate ηC , as well as the word embedding learning rate ηR, the first layer

ηA and second layer ηB nonlinear module learning rates. We conducted an exhaustive

search on a coarse grid of the above hyper-parameters, assuming an LBL(N) archi-

tecture with |ZW | = 100 dimensional word representation and |H| = 0, 50, 100 or

200 hidden nonlinear nodes, as well as |ZX | = 0 or 3 dimensional embedding of POS

tag features. Evidently, as suggested in (Mnih et al., 2009), the number of hidden

non-linear nodes had a positive influence on the performance, and our addition of

POS tags were beneficial to the language model. Regarding the learning rates, the

most sensitive rates were ηR and ηC , then ηA and finally ηB. The optimal results were

achieved for the hyper-parameter values in Table 6.1. We then selected the optimal

LBLN architecture with |ZW | = 100 and |H| = 200 and further evaluated the joint

influence of the feature learning rate ηF , the graph constraint coefficient γ, the di-

mension of the POS tag embedding |ZX |, and the random or bigram initialization of

the word embeddings. The most important factor was ηF , which needed to be smaller

than 10−3, and the presence or absence of POS features (larger embedding sizes did

not seem to significantly improve the model).

In a subsequent set of experiments, we evaluated the benefit of adding a topic

model to the (syntactic) language model, focusing on the Reuters and AP News

datasets (organized in documents) and on the HUB-4 transcripts (a window of five

consecutive sentences was treated as a document; results reported in section 6.4.3).

We used the standard Latent Dirichlet Allocation topic model to produce a simplex

of topic posteriors {θt,1, . . . , θt,K} for K = 5 topics, for each “document”, and used

these coefficients as weights of a 5-mixture model. We retained, for each mixture

component, the same LBL and LBLN architectures as in the previous experiments,
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Table 6.4: Language model perplexity results on the WSJ test set. Kneser-Ney 5-
grams attain a perplexity of 86.53. Similar architectures to the one in Table 6.5
were used. While the benefit of initializing the word representation and enforcing
WordNet::Similarity graph constraints (noted as {R}) is not obvious, POS tags clearly
reduce the perplexity of LBL and LBLN, and supertags are even better. We control
for the size |ZX | of the feature embedding, showing that supertags are far superior
to POS tags. Learning was stopped after 100 epochs, and results in italics show LBL
models that did not reach their optimum.

LBL LBL LBLN LBLN
{R} {R}

No features 93.4 98.0 84.9 84.4
|ZX |POS = 5 90.3 95.8 82.6 81.1
|ZX |POS = 50 88.7 93.5 83.0 82.6
|ZX |super = 50 69.6 72.4 66.7 66.3

and experimented with adding POS features. As Table 6.5 suggests, adding a topic

model improved the plain LBL perplexity (but not LBLN’s) on the medium-size

Reuters set, and it significantly improved the perplexity on the large AP News corpus

(the combined topic+POS reduction in perplexity was 8% on both LBL and LBLN).

6.4.3 Increase in Speech Recognition Word Accuracy

In Table 6.7, we present the results of speech recognition experiments using our

language model. We used AT&T Watson ASR (Goffin et al., 2005) (with a trigram

language model trained on HUB-4 training set) to produce 100-best hypotheses for

each of the test audio files of the HUB-4 task. The 1-best and the 100-best oracle

word accuracies are 63.7% and 66.6% respectively. Using a range of language models

(including a 4-gram discrete LM), we re-ranked the 100-best hypotheses according

to LM perplexity (ignoring the scores from ASR), and selected the top one from

each list. The top-ranking hypothesis resulting from LBLN models had significantly

better word accuracies than any discrete language models. Adding a topic mixture
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Table 6.5: Language model perplexity results on the Reuters test set. All LBL(N)s
had |ZW | = 100 dimensional word representation, and LBLNs had 500 hidden nodes.
Word representations were optionally initialized by SVD on 5-gram co-occurrence
matrices. LBLNs with POS tags embedded into |ZX | = 5 dimensions outperformed
not only the Kneser-Ney 5-gram model, but also the vanilla LBLN. Adding a K = 5
dimensional topic mixture based on LDA posteriors (i.e. creating a 5-mixture model
of LBL and LBLN) seemed to improve the perplexity of LBL but not of LBLN.

Method Init. POS |ZX | Topics Perplex.
5-gram - - - 80.78
LBL rand. - - 78.30
LBL rand. - 5 73.12
LBLN rand. - - 63.92
LBLN SVD - - 63.67
LBLN rand. 5 - 60.34
LBLN SVD 5 - 60.42
LBLN rand. - 5 65.50
LBLN SVD - 5 66.74
LBLN rand. 5 5 61.85
LBLN SVD 5 5 62.07

model further increased the word accuracy on the HUB-4 dataset compared to vanilla

LBLN. In order to measure the efficacy of the language model in selecting the correct

hypothesis if it were present in the k-best list, we included the reference sentence

as one of the candidates to be ranked. Table 6.8 shows that we significantly out-

performed the best n-gram model on this task as well.

Finally, we compare the trade-off between the language model and the acoustic

model. It can be seen that the acoustic model alone produces poor predictions.

We noticed that combining the acoustic model with language model makes good

predictions only when the language model is given a stronger (even infinite) weight,

which is due to the fact that we are operating on a 100-best list.
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Table 6.6: Language model perplexity results on the AP News test set. We evaluated
LBL(N) architectures with |ZW | = 100 dimensions for the word representation, and
replicated the results from (Mnih et al., 2009) for the LBL and 500-hidden node LBLN
architectures. We also evaluated the impact of adding 40 part-of-speech tags (with
a |ZX | = 40-dimensional representation) and K-topic models. Although the results
that we obtained on vanilla LBL(N) had a little higher perplexity than in (Mnih et al.,
2009), we nonetheless considerably improve upon LBLN using either POS features
or topics (or both). We ultimately beat both the state-of-the-art LBLN and Gated
LBLN architectures from (Mnih et al., 2009), as well as the Neural Probabilistic
Language Model (Bengio et al., 2003) (marked with a ∗). We did not consider trivial
improvements such as combining LBLs with probabilistic n-grams, or extending the
size of the context to 10.

Method |H| POS |ZX | Topics Perplex.
KN 5-gram - - - 123.2
LBL - - - 127.7
LBL - 40 - 123.6
LBL - - 5 121.0
LBL - 40 5 117.5
LBLN 500 - - 104.4
LBLN 500 40 - 101.5
LBLN 500 - 5 98.5
LBLN 500 40 5 96.1
NPLM∗ 500 - - 109.0
LBL∗ - - - 117.0
LBLN∗ 500 - - 99.0
GLBLN∗ 500 - - 96.8

6.4.4 Examples of Word Embeddings on the AP News Corpus

For the visualization of the word embedding, we chose the AP News corpus (although

it is smaller than the 386M word and 30k vocabulary Wikipedia set from (Collobert

and Weston, 2008)). Table 6.9 illustrates the word embedding neighborhood of a few

randomly selected ”seed” words, after training an LBLN with POS tag features and a

5-topic mixture. Although word representations were initialized randomly and Word-

Net::Similarity was not enforced, we clearly succeeded in capturing functionally and
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Table 6.7: Speech recognition results on the HUB-4 task. For each target sentence,
100-best lists were produced by the AT&T Watson system, and language models were
used to select the candidate with lowest NLL score. We indicate the best and worst
possible word accuracies that can be achieved on these lists (“Oracle”), as well as
the one obtained by the acoustic model alone. LBLNs with 5-topic mixture models,
and either POS tag features or bigram SVD-derived initialization achieve the highest
word accuracy, outperforming a state-of-the-art speech recognition baseline, Kneser-
Ney 4-gram models, and plain LBLNs.

Method Accuracy
AT&T Watson 63.7 %
100-best list, acoustic model only 61.7 %
100-best list, “oracle” 66.6 %
Worst “oracle” on 100-best list 57.8 %
Back-off KN 4-gram 63.5 %
LBLN 64.1 %
LBLN+init 64.2 %
LBLN+POS(34) 64.1 %
LBLN+POS(34)+init 64.2 %
LBLN+topics 64.2 %
LBLN+topics+init 64.6 %
LBLN+POS(5)+topics 64.3 %
LBLN+POS(3)+topics+init 64.6 %

semantically (e.g. both synonymic and antonymic) similar words in the neighborhood

of these seed words.

To provide with a simpler representation of the word embeddings, we further

projected them onto a two-dimensional plan using the t-SNE algorithm (Van der

Maaten and Hinton, 2008). Figures 6.2, 6.3, 6.4, 6.5 and 6.6 respectively illustrate

the full word embedding, as well as details focusing on “country names”, “US states”,

“occupations” and “verbs”.
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Table 6.8: Speech recognition results on HUB-4 transcripts. We used the same train-
ing and test sets as in Table 6.7, but with the true sentence to be predicted included
among the 101-best candidates.

Method Accuracy
Back-off KN 4-gram 86.9 %
LBLN+POS+init 94.0 %
“Oracle” 100 %

6.4.5 Computational Requirements

We implemented our LBL-derived architectures under Matlab. The training was lin-

ear in the size of the dataset (i.e. the number of words). As observed for previous

CSLM models (Bengio et al., 2003) or (Mnih and Hinton, 2007), the bulk of the com-

putations consisted in evaluating the word likelihood (6.4) and in differentiating the

loss (6.5), which was theoretically linear in the size of the vocabulary |W |. However,

thanks to the BLAS and LAPACK numerical libraries, it was sublinear in practice.

Typically, training our LBL architectures on moderately sized datasets (WSJ, Reuters

and TV broadcasts) would take about a day on a multi-core server. Because of the

possible book-keeping overhead that might arise from sampling approximations, or

because of the decreased language model performance (higher perplexity) when hier-

archical word representation are used (Morin and Bengio, 2005), or of the LBL (Mnih

and Hinton, 2008), we restrict ourselves to the exact solution.

6.5 Conclusions

We presented an energy based statistical language model with a flexible architec-

ture that allows for novel and diverse extensions of the log-bilinear model formulated

in (Mnih and Hinton, 2007, 2008; Mnih et al., 2009). We also explored initializations
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Table 6.9: Examples of 10 closest neighbors in the <100 word embedding space on
AP News. We used the best LBLN+POS+topics architecture from Table 6.6. The 7
seed words were selected randomly, and cosine similarity was used to compare any
two word vectors.

frustrations tried immune marble
feelings stopped harmful granite
achievements threatened resistant velvet
accomplishments sought susceptible bronze
advantages decided prone silk
origins returned addictive leather
vigor met abnormal flower
successes moved transmitted mahogany
weaknesses kept unsafe brick
strength refused beneficial neon
enthusiasm offered harmless wooden

crime_rate technologies savings_and_loans
work_force industries thrift
standard_of_living systems law_firm
inflation_rate foods estate
budget_deficit brands investment_company
unemployment_rate carriers real_estate
demise laboratories transaction
stock_market suppliers bank_account
peso enterprises guaranty
value products cartel
net methods corporation

of word embeddings and word similarity constraints via a word-graph, with mixed

results, but we demonstrated consistent and significant predictive improvements by

incorporating part-of-speech tags or supertags as word features, as well as long range

(document level) topic information. Our results show that our model significantly

advances the state-of-the-art, beating both n-gram models and the best continuous

language models on test perplexity. Finally, we demonstrated the utility of this im-

proved language modeling by obtaining better word accuracy on a speech recognition

task.
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Figure 6.1: Enhanced log-biLinear architecture. Given a word history wt−1
t−n+1, a low-

dimensional embedding zt−1
t−n+1 is produced using R and is fed into a linear C matrix,

as well as into a non-linear (neural network) architecture (parameterized by A and
B) to produce a prediction z̄t. If one uses a topic model with K topics, the predictor
becomes a mixture of K modules, controlled by topic weights θ1, . . . , θK obtained for
the current sentence of document from a topic model such as LDA. That prediction
is compared to the embedding of all words in the vocabulary using a log-bilinear
loss E, which is normalized to give a distribution. Part-of-Speech features can be
also embedded using matrix F, alongside the words, and the embeddings can have
WordNet::Similarity constraints.
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Figure 6.2: 2D representation of the word embedding, obtained by applying the t-
SNE algorithm on the word embedding matrix R from our best LBLN architecture
with POS tags and topic mixtures. Only 8983 words are shown out of the full 17965-
word vocabulary. This figure requires is designed for the electronic version of the
document, as it requires zooming.
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Figure 6.3: Detail of Figure 6.2 focusing on “country names”. Note that ”the+french”
and ”the+british” seem to be on top of each other.
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Figure 6.4: Detail of Figure 6.2 focusing on “US states”.
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Figure 6.5: Detail of Figure 6.2 focusing on “occupations”. Note how “ceo”,
“chief+executive+officer”, “chief+executive”, “general+manager”, etc... are super-
imposed. This figure requires is designed for the electronic version of the document,
as it requires zooming.
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Figure 6.6: Detail of Figure 6.2 focusing on “verbs”. This figure requires is designed
for the electronic version of the document, as it requires zooming.
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Chapter 7

Conclusion

Parsifal - the kind of opera that starts at six

o’clock and after it has been going three

hours, you look at your watch and it says

6:20

David Randolph, conductor

Dear Reader, thank you for navigating through this extended account of my doc-

toral work. It introduced a new and simple methodology to modeling time series and

sequences, resorting to dynamics on hidden variable representations.

The major obstacle to overcome was the intractable problem of inferring latent rep-

resentations of sequences with (non)linear dynamics. Although numerous approaches

had been introduced in the past decade to solve that problem, consisting mostly of

variational Bayes and sampling methods, I proposed a simple maximum a posteriori

gradient-based inference enabled by a constant partition function, and a deterministic

Expectation-Maximization learning procedure. I justified that these approximations

were principled, and demonstrated the efficiency of my method on several real world

problems and datasets, where I achieved state-of-the-art results.

There are multiple reasons that explain why DFGs work so well with a MAP ap-
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proximation of latent variables, even though the distribution of the latent variables

could theoretically be multimodal. These reasons differ from dataset to dataset. For

instance, most of the dataset that I considered, with the exception of the gene reg-

ulation data, were relatively long, dispensing with the need to model uncertainty in

the data, and thus well suited for energy-based methods. In the only case when the

dataset was very short (mRNA micro-arrays), I used heavily regularized simple linear

or nonlinear models. Secondly, I would always regularize the hidden representations

to limit their information content. Thirdly, I would in some cases initialize the hid-

den representations in an unsupervised way, using Singular Value Decomposition, to

further avoid suboptimal (local minima) solutions.

This multiple proof of principle demonstrated that a MAP inference was a valid

simplification, whose benefits were multiple: thanks to DFGs, one could learn long

sequences in linear time, handle high-dimensional hidden and observed variables, and

most importantly, model highly nonlinear dynamics and observation functions. As

I explained in Chapter 3, the computational complexity of DFGs is dominated by

the E-step inference, and it is linear in the number T of training samples, linear in

the number of observed variables and quadratic in the number of hidden variables.

More precisely, if we note |W| the number of parameters of the model, the total

computational complexity of one inference step over the full sequence is O (T |W|).

The DFG algorithm is therefore comparable, in terms of running time, to Back-

Propagation Through Time for Recurrent Neural Networks, but unlike the latter, it

explicitly optimizes the hidden representations.

Further investigations are envisioned, regarding the inference of gene regulation

networks and epileptic seizure prediction from EEG.
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A word on the software implementation

The factor graph formulation makes our algorithm inherently modular and relatively

easy to implement as software1.

Each module needs only two functions to be defined, which we call fprop and

backprop. The fprop function is used to forward-propagate the variables through the

factor’s function and to evaluate the energy of the factor; the backprop function is used

to evaluate the derivatives of the loss of the factor with respect to both the function’s

parameters and the latent variables (if they serve as inputs to the function). For this

reason, any function and energy/loss that are differentiable can be used. The loss

function L consists in the sum of energies at each factor, plus regularization terms on

the latent variables and on the parameters of the module.

One then needs to define an E-step relaxation function that performs iterated fprop

and backprop on the latent variables until convergence, and several M-step functions,

one per type of factor/module. Both the E-step and M-step can consist in simple

gradient descents; the M-step can further benefit from other types of optimizations,

such as stochastic gradient (Bottou, 2004), exact solution to ridge regression, or

conjugate gradient (LeCun et al., 1998b).

Remaining portions of code deal with data pre-processing, early stopping strate-

gies and bookkeeping the energies and statistics on latent variables and parameters.

Although we ultimately made four different implementations of our software for

the four problems we handled, all the algorithms possessed the same properties enun-

ciated above. Two implementations are currently being used by other researchers,

respectively for the inference of gene regulation networks and for statistical lan-

guage modeling. A third software release is planned, concerning the Dynamic Auto-
1Which we did in Lush (available at http://lush.sourceforge.net) and Matlab (by Mathworks).
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Encoders, which could be applied not only to text but also other types of data, such

as features derived from EEG or perhaps even musical notation . . .
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