
Real-Space Localization Methods for

Minimizing the Kohn-Sham Energy

by

Marc Millstone

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctorate of Philosphy

Department of Computer Science

Courant Institute of Mathematical Sciences

New York University

May 2011

Michael Overton



© Marc Millstone

All Rights Reserved, 2011



To Anne: your love, kindness and support have made all of this possible

iii



Abstract

The combination of ever increasing computational power and new mathemati-

cal models has fundamentally changed the field of computational chemistry.

One example of this is the use of new algorithms for computing the charge

density of a molecular system from which one can predict many physical

properties of the system.

This thesis presents two new algorithms for minimizing the Kohn-Sham

energy, which is used to describe a system of non-interacting electrons through

a set of single-particle wavefunctions. By exploiting a known localization region

of the wavefunctions, each algorithm evaluates the Kohn-Sham energy function

and gradient at a set of iterates that have a special sparsity structure. We

have chosen to represent the problem in real-space using finite-differences,

allowing us to efficiently evaluate the energy function and gradient using

sparse linear algebra. Detailed numerical experiments are provided on a set of

representative molecules demonstrating the performance and robustness of

these methods.
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1

Electronic Structure and the

Kohn-Sham energy

Proposed in 1926, the many-electron Schrödinger equation describes the fun-

damental behavior of non-relativistic electrons. Although there exist special

cases where its solution can be obtained analytically, most interesting problems

require the numerical solution of the large eigenvalue problem

HΨ(r1, r2, . . . , rne) = λΨ(r1, r2, . . . , rne) (1.1)

whereH is the many-body Schrödinger Hamiltonian and Ψ(r1, r2, . . . , rne) is

the many-body wavefunction, that is a function of the position, ri ∈ R3, of the

ne electrons. Additionally, because of physical constraints, these wavefunc-

tions must be orthogonal and antisymmetric. Mathematically, this is equivalent

to

∫ Ψ∗Ψ = 1, (1.2)

Ψ(r1, . . . , ri, . . . , rj, . . . , rne) = −Ψ(r1, . . . , rj, . . . , ri, . . . , rne) (1.3)

for 1 ≤ i ≤ j ≤ ne. This many-body wavefunction describes the probabilistic

properties of the system. For example, ‖Ψ(r1, r2, . . . , rne)‖2dr1dr2 . . . drne

represents the probability of finding the first electron in a small volume in r1,

the second electron around a small volume around r2, etc.
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We apply the Born-Oppenheimer approximation and assume that the nuclei

of the molecule are fixed in space at locations r̂j, j = 1,2, . . . , nu where nu is

the number of nuclei. The HamiltonianH is then defined as:

H = −1
2

ne∑
1

∆ri − nu∑
j=1

ne∑
i=1

zj
||ri − r̂j||

+
∑

1≤i,j≤ne

1
‖ri − rj‖

, (1.4)

where zj is the charge of the jth nucleus and ∆ri is the Laplacian associated

with the ith electron. Observe that the dimension ofH is large even for trivial

systems consisting of fewer than five electrons, meaning a direct solution to the

eigenvalue problem (1.1) is computationally impractical. A direct calculation

by Yang et al. [44] shows that equation (1.1) can be viewed as the first-order

necessary conditions to the minimization problem

min
∫ Ψ∗HΨ , (1.5)

subject to both the orthogonality and antisymmetry constraints described in

conditions (1.3).

Since 1950, two different approaches have been used to allow practical

solutions to system (1.1) with great success. Originally, scientists followed the

Hartree-Fock approach, as it described the chemical bonds of the molecule to

reasonable accuracy. A more recent approach is based on Density Functional

Theory (DFT). DFT is an exact approach if one knew the exact functional.

It, however, relies fundamentally upon the exchange-correlation energy that

attempts to model the complicated, many-body electron effects in a single

term. Although this term is known to exist, the proof is non-constructive and

no simple, exact expression is yet known.
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1.1 A quick tour of Density Functional Theory

In their influential work, Hohenberg and Kohn [14] showed that, at ground

state, the total energy of an electronic system can be described not by the

many-body wavefunction, but instead solely by the electron charge density

ρ(r) defined as

ρ(r) = ne
∫ Ψ∗(r , r2, . . . , rne)Ψ(r , r2, . . . , rne)dr2dr3 . . . drne . (1.6)

Physically, this term describes the probability of finding an electron at a point

in space near r .

Later, Kohn and Sham [21] proposed a practical formulation for the total

energy of the system proven to exist earlier. This energy functional approxi-

mates the total energy of the system as a function of ne single-particle wave

functions ψi that do not interact. The charge density is then computed as

ρ(r) =
ne∑
1

ψ∗i (r)ψi(r). (1.7)

Next, the Local Density Approximation (LDA) is used to approximate the

exchange-correlation energy

Exc(ρ) =
∫
ρ(r)εxc[ρ(r)]dr , (1.8)

where ε[ρ] computes the exchange-correlation energy per particle in a uni-

form gas of density ρ. The term, ε[ρ] approximates the electron-electron

interactions and various approximations are used in practice [32]. The Kohn-

Sham energy is then defined as a function of ne orthogonal, single-particle

wavefunctions
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EKS[{ψj}] =
ne∑
1

∫
ψj(−

1
2
∆ψj)dr + ∫ Vion(r)ρ(r)dr

+1
2

∫ ∫
ρ(r)ρ(r ′)
||r − r ′|| drdr

′ + Exc(ρ).
(1.9)

The function Vion =
∑nu

1
zj

‖r−r̂j‖ denotes the ionic potential induced by the

nuclei. The optimization problem associated with equation (1.9) is given by

min EKS({ψj})

s.t.
∫
ψ∗i ψj = δi,j for i = 1,2, . . . , ne.

(1.10)

The first-order necessary conditions for this minimization problem give the

Kohn-Sham equations

HKS(ρ)ψi = λiψi, (1.11)∫
ψ∗i ψj = δi,j, for i = 1,2, . . . , ne. (1.12)

The Kohn-Sham HamiltonianHKS is given by

HKS = −
1
2
∆+ Vion(r)+ ρ(r)∗ 1

||r || + Vxc(ρ), (1.13)

where ∗ denotes the convolution operator and Vxc is the derivative of the right-

side of equation (1.8) with respect to ρ. As ρ depends on the wavefunctions ψi,

the Kohn-Sham equations can be viewed as a nonlinear eigenvalue problem.

1.1.1 Removing the orthogonality constraint

The orthogonality constraint in the optimization problem (1.10) can be removed

through a modification of the energy function and charge density. Let S
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denote the overlap matrix for nonorthogonal, single-particle wavefunctions

{ψi} defined by

Sij =
∫
ψ∗i ψjdr. (1.14)

We extend the Kohn-Sham energy to non-orthogonal wavefunctions by letting

ρ(r) =
∑
j

∑
k

ψj(r)∗(S−1)jkψk(r) (1.15)

and rewrite the energy as

E({ψj}) =
∑
j

∑
k

(S−1)jk
∫
ψj(−

1
2
∆ψk)dr + ∫ Vion(r)ρ(r)dr

+1
2

∫ ∫
ρ(r)ρ(r ′)
||r − r ′|| drdr

′ + Exc(ρ).
(1.16)

A direct calculation shows that this form of the energy is independent of

the basis chosen for the subspace spanned by {ψi}, i.e., given two sets of

wavefunctions, {ψi} and {ψ̂i} such that

span{ψi} = span{ψ̂i} (1.17)

it follows that

E({ψi}) = E({ψ̂i}) (1.18)

We will refer to the formulations of the Kohn-Sham energy given by equations

(1.9) and (1.16) as the orthogonal Kohn-Sham energy and the nonorthogonal

Kohn-Sham energy respectively. The formulations of both the orthogonal and

nonorthogonal Kohn-Sham energies will be analyzed in Chapter 2.

Although the extension of the Kohn-Sham energy to a nonorthogonal basis

increases the complexity of the objective function, it allows the exploitation

of locality in evaluating the function and computing a solution. When using
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an orthogonal basis, the influence of a particular wavefunction covers the

entire domain. For many molecular systems, however, it is known that the set

of wavefunctions can be represented in a basis such that, each vector in the

basis influences only a small region of space. Exploiting this property allows

the design of new algorithms that scale better as the number of atoms in the

system is increased. Specifically, each wavefunction can be assumed to have

support only on a small, finite region of the domain. This locality, referred to

as “nearsightedness" in [22] is not reflected in the standard electronic structure

calculations as most diagonalization approaches explicitly generate orthogonal

iterates.

In this work, locality is understood in the following terms; let r ∈ R3 be

a point in space. The charge density ρ(r) will only be influenced by nearby

atoms in a region of some support radius.

For a complete overview of the material in this section see Goedecker

[13], Kaxiras [17], Payne et al. [31].

6



2

Approaches to solving the

Electronic Structure Problem

No matter the method, the first step in solving either the energy minimization

problems in Chapter 1 or the related Kohn-Sham eigenvalue problems involves

choosing a discretization. Many schemes exist, from standard wavelet [3],

finite-difference [2, 4, 8] and finite-element [30, 39] techniques to the more

physically realistic planewave [23, 24, 31] and Wannier function [25] approach

to discretization. In any case, the discretization generates a finite basis in

which the method is able to represent the wavefunctions, Laplacian operator,

etc. Two standard discretizations, planewaves and finite-differences, will be

described in the Sections 2.1.1 and 2.1.2 respectively.

After the discretization is chosen, one must solve either the Kohn-Sham

eigenvalue problem or directly minimize the Kohn-Sham energy. General

approaches to solving these problems will be described in Section 2.2 and

Section 2.3.

2.1 Choosing a discretization

2.1.1 Planewaves

The central idea in using a plane wave discretization is to represent the wave-

function ψ(r) as a linear combination of terms of the form eig
T
j r where r ∈ R3
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and each gj ∈ R3 is a frequency vector. The main advantage of such a

planewave discretization is that the necessary energy functions are straight-

forward to implement and their computation can take advantage of the Fast

Fourier Transform (FFT).

For periodic systems, such as solids, the planewave basis is a natural choice.

For non-periodic systems, planewaves can be used by embedding the structure

in a fictitious supercell that is then periodically extended throughout the entire

domain [31].

A wavefunction is represented by the Fourier series

ψ(r) =
∞∑

j=−∞
cjeig

T
j r (2.1)

where cj denotes the Fourier coefficient

cj =
∫ R/2
R/2
ψ(r)e−ig

T
j rdr

and R is the period of the single-particle wavefunction.

As described, the Fourier series is infinite, so to compute the values numer-

ically, one must truncate the series to allow only a finite number of terms. If

care is not taken, this will lead to a large number of terms as Vion(r) contains

a singularity at the position of each nuclei r̂j . These singularities require

high frequency planewaves to approximate the wavefunction closely. However,

inner electrons—electrons close to the nuclei—are not active in chemical reac-

tions between atoms. The outer electrons, or valence electrons, are responsible

for the majority of physical properties present in an atomic system. The

wavefunctions of these valence electrons can be represented using relatively

few planewaves.
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The pseudopotential approximation [34, 35, 46], is a method of formalizing

this observation. It attempts to model the inner electrons as part of the ionic

core, while allowing the valence electrons to be treated separately. A detailed

overview of different pseudopotentials and their properties is well beyond this

dissertation, however, their use will allow

• Vion to have no singularities, which in turn allows a small number of

planewaves (or in the next section, a larger mesh-size) in representing a

wavefunction;

• the reduction of the number of electrons in a prescribed system to only

the valence electrons [44].

Using the pseudopotential then allows ψ(r) to be represented by the finite

sum

ψ(r) =
ng∑
j=1

cjeig
T
j r , (2.2)

for some small constant ng that depends only on the parameters of the system

and the property of the system one wishes to study.

The Kohn-Sham energy is then written as

EKS(X) = EkineticIonic(X)+ EHartree(X)+ Exc(X), (2.3)

9



where

EkineticIonic = trace
(
X∗

(
−1

2
L+ Vion

)
X
)
,

EHartree =
1
2
ρTL†ρ,

Exc = ρTεxc[ρ],

ρ(X) = diag [XX∗] .

The discretized wavefunctions are naturally orthogonal given their construc-

tion.

The discretized Laplacian operator, L, can be written as

L = F∗DgF, (2.4)

where F is the Discrete Fourier Transform matrix and Dg is a diagonal matrix

with elements ‖gj‖2 on the diagonal. Due to the assumed periodic boundary

conditions, the Laplacian is singular. We replace the inverse of L with a

pseudo-inverse defined by

L† = F∗D†gF, (2.5)

where the diagonal elements of D†g are ‖gj‖−2 when gj ≠ 0 and 0 otherwise.

2.1.2 Finite differences

We first consider a one-dimensional domain of radius r centered about the

origin. This interval is discretized with a uniform mesh size of h. A function

ψ(r) is represented as a value ψ(xi) for each grid point xi ∈ [−r , r]. We can

expand this function to the points xi+1 = xi + h and xi−1 = xi − h via the

Taylor series as follows:

10



ψ(xi+1) = ψ(xi)+ψ1h+ 1
2
ψ2(xi)h2 + 1

6
ψ3(xi)h3 + 1

24
ψ4(xi)h4 + . . . (2.6)

ψ(xi−1) = ψ(xi)−ψ1h+ 1
2
ψ2(xi)h2 − 1

6
ψ3(xi)h3 + 1

24
ψ4(xi)h4 + . . . (2.7)

where ψk denotes the kth derivative of the function ψ. Adding these two

equations and rearranging the terms we obtain the well-known second-order,

finite-difference approximation for the Laplacian

ψ2(xi) =
1
h2
(ψ(xi−1)− 2ψ(xi)+ψ(xi+1))+O(h2). (2.8)

By collecting the values of ψ(xi) into a vector, we obtain the well-known

discrete Laplacian matrix, L,

1
h2



2 −1 0 0 · · · 0 0 0 0 0

−1 2 −1 0 · · · 0 0 0 0 0

0 −1 2 −1 · · · 0 0 0 0 0

0 0
. . . . . . . . . 0 0 0 0 0

0 0 0
. . . . . . . . . 0 0 0 0

0 0 0 0
. . . . . . . . . 0 0 0

0 0 0 0 0 · · · −1 2 −1 0

0 0 0 0 0 0 · · · −1 2 −1



(2.9)

As described above, the finite-difference error is O(h2). This error can be

decreased by using a higher-order approximation

ψ2(xi) =
M∑

j=−M
Cjψ(xi + jh)+O(h2(M+1)). (2.10)
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where the sum bounds M and the coefficients Cn are defined in [11]. Unless

otherwise specified, this work uses eighth-order finite-difference approxima-

tions, as is standard in other real-space methods, such as rsdft described in

Chapter 5. The use of a higher-order Laplacian will result in a slightly denser

(but still sparse) Laplacian matrix; however, the number of grid points required

for a given accuracy will be fewer.
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Figure 2.1: Eighth-order Laplacian sparsity structure

The finite-difference approximation can be extended to three dimensions

by discretizing along each coordinate direction and then summing the one-

dimensional case along each axis. Although, no longer tridiagonal, the Lapla-

cian matrix is sparse and banded once a consistent ordering of the grid points

12



is determined. Figure 2.1 shows the sparsity pattern of the three-dimensional

eighth-order Laplacian matrix. A negative aspect of using a finite-difference

discretization is that this discretization is not variational; as the mesh size

decreases the errors in approximating the true wavefunctions can be positive

or negative.

After choosing an ordering of grid points, each wave function x can be

collected into the matrix X = [x1, x2, . . . , xne].

Combining the above, the Kohn-Sham energy is written

E(X) = EkineticIonic(X)+ EHartree(X)+ Exc(X), (2.11)

where

EkineticIonic = trace
(
X∗X)−1X∗

(
−1

2
L+ Vion

)
X
)
,

EHartree =
1
2
ρTL†ρ,

Exc = ρTεxc[ρ],

ρ(X) = diag
[
X(X∗X)−1X∗

]
.

Observe that the matrix of wave functions, X, need not be orthogonal.

As stated above, L is the Laplacian matrix represented using finite-differences.

The Hartree potential L†ρ is computed iteratively via the solution to the Poisson

problem

Lv = 4πρ, (2.12)

with periodic boundary condition, where ρ is evaluated at the current set of

wavefunctions X.
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A direct computation shows that the Kohn-Sham energy is independent of

the basis: we have the relationship

E(X) = E(XG) (2.13)

where G ∈ Rne×ne is an invertible matrix.(See equation (1.18). Similarly, the

charge-density, ρ, is also independent of the basis chosen.

For completeness, the gradient of each term in the nonorthogonal Kohn-

Sham energy (2.11) is given by

∇EkineticIonic = −XS−1X∗(L+ Vion)XS−1 + (L+ Vion)XS−1,

∇EHartree = Diag(L†ρ)XS−1 −XS−1X∗ Diag(L†ρ)XS−1,

∇Exc = Diag(VxcXS−1 −X ∗ (S−1 ∗X∗ Diag(VxcXS−1)).

Observe that the gradient requires computing (or applying) the inverse of the

overlap matrix, S. Implementation details regarding the computation of this

term are provided in Section 5.1.

2.2 Solving the Kohn-Sham Eigenvalue Problem

After choosing a discretization, one standard approach to computing solutions

to the Kohn-Sham eigenvalue problem defined by equations (1.12) is the Self-

Consistent Field (scf) iteration. The scf algorithm is a fixed-point algorithm

and is described in detail in Algorithm 2.1. In a basic implementation, each

iteration requires a full orthogonalization of the Hamiltonian. Moreover, con-

vergence to a fixed-point is not guaranteed. Yang et al. [43] showed that, for a

simple model problem, the scf iteration can generate a sequence containing
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two limit points, neither of which is self-consistent. Heuristics, such as charge

mixing, are used in practice, making the algorithm more reliable and rapidly

convergent (Johnson [16], Kerker [19], Pulay [36], Raczkowski et al. [37]).

Algorithm 2.1 The scf iteration
1: function SCF(X0 ∈ Rn×ne )

2: Let Xk = X0

3: repeat

4: Compute the charge-density ρk = ρ(Xk)

5: Form the Hamiltonian H(k) = H(ρk)

6: Solve the Kohn-Sham eigenvalue problem by computing an Xk+1 such

that

H(k)Xk+1 = Xk+1Λ
where Λ contains the ne smallest eigenvalues of H(k).

7: until ‖ρk − ρk−1‖ is sufficiently small

8: end function

In Gao and E [12], the authors propose a novel method for solving the

Kohn-Sham eigenvalue problem. The algorithm replaces the expensive eigen-

decomposition with a direct minimization of the Rayleigh quotient

R(X) = trace
(
(X∗X)−1X∗H(ρ)X

)
, (2.14)

where H(ρ) is the Kohn-Sham Hamiltonian evaluated at the previous charge

density ρ. The authors then propose a modification of steepest descent

and conjugate gradients that includes an explicit localization procedure that

attempts to minimize R(X) over sparse matrices X that contain a number of
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non-zero entries that is linearly proportional to the number of wavefunctions

in the molecule. By evaluating the function and gradient at only these sparse

iterates, the algorithm obtains better scaling than if the matrix was fully dense.

Section 2.4 provides an overview of this procedure.

2.3 Directly minimizing the Kohn-Sham Energy

A different approach is to minimize Kohn-Sham energy directly. These meth-

ods differ in whether they handle the orthogonality constraint explicitly—by

choosing an orthogonal basis [26, 28], optimizing over the manifold of orthog-

onal matrices [9] or solving a constrained optimization problem [1, 42]— or

implicitly—by minimizing a form of the non-orthogonal Kohn-Sham energy

[5, 33]. We provide a brief overview of methods directly related to this thesis.

Pfrommer et al. [33] present an unconstrained optimization approach to

minimizing the Kohn-Sham energy. In this work, the authors apply a standard

nonlinear conjugate gradient method to minimize the nonorthogonal energy

function (1.16). Additionally, they use a Taylor approximation to the matrix

(X∗X)−1 to speed up the function evaluations within the linesearch.

In Adhikari and Baer [1], the authors propose an augmented Lagrangian

method that attempts to minimize an energy functional, Ef , as a function of

the density matrix, D = XX∗, as opposed to the matrix of wave functions. The

density matrix is related to the charge density via the relationship

ρ = diag(D). (2.15)
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The optimization problem is written as

min Ef (D)

s.t. trace(D) = ne

D2 = D.

(2.16)

For an overview of density-matrix based methods for solving the Kohn-Sham

energy, see the references listed at the end of Chapter 1. Observe that in a

finite-difference representation of the Kohn-Sham energy, the matrix D is a

sparse N ×N matrix where N is the number of grid points.

2.4 Exploiting locality to gain sparsity

When working with a finite-difference representation, locality, described in

Section 1.1.1, can be directly exploited by allowing each wave function to

have non-zero support on a constant number of gridpoints. When working

with a finite-difference representation of the Kohn-Sham energy, the matrix

of wavefunctions X = [x1, x2, . . . , xne] is a sparse matrix with O(ne) nonzero

elements as opposed to a dense matrix N ∗ne, where N is the number of grid

points in the entire domain. An example of a such a sparse matrix X in one

dimension is depicted in Figure 2.2.

Choosing the support region, location and size for each wavefunction is

molecule dependent; however, a rough starting point is to place a neighbor-

hood about the midpoint of an atom and each of its nearest neighbors. When

choosing the size of this region, a trade-off must be made between the com-

putational efficiency of the method and the error allowed in the final solution
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quality. Figure 2.3 demonstrates one particular choice of localization region

for methane, CH4.
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Figure 2.2: Sparsity structure of X: Support region size 30, n = 100, ne = 5

An overview of notation for truncation

LetM = [m1,m2, . . . ,mk] be a rectangular matrix with dimensions n×k where

n > k. Let S be 0/1-rectangular matrix of the same dimensions as M . We

define the truncation of the matrix M onto S as

(M)T (i, j) =


M(i, j) if S(i, j) = 1

0 otherwise

(2.17)
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Figure 2.3: A localization region for CH4. Each colored circle depicts a region

of space where a particular wavefunction is allowed to have support.

where M(i, j) and S(i, j) denote the (i, j)-entry of each respective matrix. The

support region of a column mi is given by the corresponding column of the

matrix S. If we assume each entry of the column mi corresponds to a point

(x,y, z) ∈ R3 (as when M comes from the finite difference discretization) the

set of points Si = {j : S(i, j) = 1} can be viewed as a region of space known

as the localization region of the column mi. This duality between the sparsity

structure of the matrix M and the localization region of each column will be

critical when M is not a general matrix, but a matrix of wavefunctions.

Finally, it will be necessary to truncate all columns of the matrix M onto a
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particular support region Sk. Specifically, we define

(M)Tk(i, j) =


M(i, j) if j ∈ Sk

0 otherwise.
(2.18)

2.4.1 A method for localization

Equation (2.13) describes a condition on X stating that the Kohn-Sham energy

is invariant with respect to the basis in which X is represented. Gao and E [12]

exploit this condition by computing the closest “localized” subspace so that

the Kohn-Sham energy can be efficiently computed at a sparse matrix.

Given a dense matrix X = [x1, x2, . . . , xne] corresponding to the finite

difference discretizations of the wavefunctions ψi and a fixed support region

S, it will be necessary to compute a sparse, localized matrix X̃ such that the

spans of the two are equal (or nearly equal).

The localization matrix, G is then computed as the minimizer of the problem

||XG − (XG)T ||F (2.19)

under the condition that G is invertible. If the support region S is chosen

appropriately, computational experiments show that

E(XG) ≈ E((XG)T ). (2.20)

The matrix G can be computed column-by-column in the following manner:

First let Yi = X − (X)Ti . Letting G = [g1, g2, . . . , gne], where gi denotes the ith

column of the matrix G, the problem reduces to finding solutions, gi, to the

ne minimization problems

min ||Yigi||2. (2.21)

20



To ensure that the problem gives non-trivial solutions, we must also add an

additional constraint on the columns of G. The form of this constraint leads to

different solutions. For example, if it is specified that gTi (1,1, . . . ,1) = 1, then

the problem reduces to the standard least-squares problem. Another choice

would be to specify that each column of G satisfies ‖gi‖2 = 1. In this case, the

solution is given by a singular vector corresponding to the minimum singular

value of Yi. In this work, we use the first method in our localization procedure,

as it is computationally more efficient.

It should be noted that the above solution replaces the global invertibility

condition required for G with a column-wise constraint on the norm. Therefore,

solutions of these problems do not necessarily guarantee the invertibility of the

full matrix G nor that it is well-conditioned. For example, if the support regions

for two columns are identical (or have much overlap), the corresponding two

columns of G could be identical (or very similar). In such cases, localization

may not be appropriate.
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3

Localized Optimization

As larger molecular systems are analyzed computationally, the inherent scaling

found in either evaluating the Kohn-Sham energy and gradient functions (in the

case of optimization-based methods) or in solving the Kohn-Sham eigenvalue

problem (in the case of scf) quickly limits the size of systems able to be

considered. Recently, much work has been published in constructing linear-

scaling methods, i.e. methods that scale linearly in the number of electrons of

the system (See Goedecker [13] for an overview of such methods). These linear-

scaling methods fundamentally exploit the localizability of the wavefunctions

under consideration. It should be clear that in the methods described in the

following two chapters, no claims of linear-scaling are made; however, these

methods are shown to be efficient experimentally. As opposed to evaluating

the energy and gradient function a dense n×ne matrix, both methods evaluate

these functions at a sparse matrix with a number of non-zero entries that are

linearly proportional to the number of wavefunctions of the system under

consideration. This is a necessary first-step in the design of future linear-

scaling methods using the techniques described in the subsequent chapters.

In this chapter, we consider the unconstrained, nonorthogonal Kohn-Sham

energy defined in equation (2.11). The goal is to minimize this energy directly

over the matrix of wavefunctions X ∈ Rn×ne ; however, to achieve better scaling,

we wish to only evaluate the energy function and gradient at sparse, localized

iterates. First, given a sparse iterate Xk, an unmodified optimization algorithm
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cannot be expected to generate a new iterate Xk+1 that is also sparse. For

example, if each new iterate is computed by the steepest descent update

Xk+1 = Xk −αk∇E(Xk), (3.1)

where α is a scalar, the gradient ∇E(Xk) cannot be expected to have the same

sparsity structure as the iterate Xk.

Simple experiments show that direct truncation onto a given support region—

setting Xk+1 = ((Xk+1)T )—can lead to local solutions far from the global

optimum, especially if care is not taken in choosing a good initial set of

wavefunctions[20]. Gao and E [12] demonstrate a method of integrating the

previously described localization procedure directly into the optimization

algorithm by localizing each subsequent iterate. However, as described in their

paper, even though a given iterate may be sparse, the computed search direc-

tion may be dense, and the linesearch will be required to evaluate the energy

function at non-sparse iterates so increases in scaling are hard to observe.

The increased density of the search direction stems from the gradient of the

nonorthogonal Kohn-Sham energy, given at the end of Section 2.1.2, which is

itself dense. This chapter describes a new localization-based algorithm that

overcomes this issue.

In the following sections, the optimization algorithm will not be specified,

i.e. the choice of search direction Pk is only required to be a descent direction.

Possible choices include computing the search direction based on a conjugate

gradient type method, a quasi-Newton approach or a direction based on the

full Newton direction. In our computational experiments reported in Chapter 5,

we use a a search direction based on the (limited-memory) BFGS method and
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compute a step length, α, that satisfies the weak-Wolfe conditions:

Armijo condition:

E(Xk +αPk) ≤ E(Xk)+ c1α∇(E(Xk))TPk, (3.2)

curvature condition:

∇(E(Xk +αXk))TPk ≤ c2∇(E(Xk))TPk. (3.3)

where 0 < c1 < c2 < 1 are the Wolfe parameters.

For an overview of the optimization methods, see Nocedal and Wright [27].

3.1 Projected Localization

Instead of localizing each iterate, we will use localization to determine our

search direction. The inspiration and intuition for this approach stems from

the projected gradient methods described in [18]. For clarity, if a matrix has a

known, exploitable sparsity structure, we will denote it with a tilde, as in M̃ . A

matrix without a tilde may or may not be be sparse.

Let X̃k be our current, sparse, iterate and Pk be the possibly dense search

direction. We define the new, sparse, search direction as

P̃ =
(
(X̃k + Pk)Gk

)
T
− X̃k, (3.4)

where

Gk = arg min‖
(
X̃k + Pk

)
G − ((X̃k + Pk)G)T‖F (3.5)

as described in Section 2.4. For efficiency, we use the variation based upon a

least-squares method. Visually, this procedure is described in Figure 3.1.
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Figure 3.1: Procedure to generate new search direction

As the new search direction and the iterate share the same sparsity pattern,

we ensure that the energy is only evaluated at sparse iterates. The complete

algorithm is given in Algorithm 3.1.

The first question that needs exploring is whether this procedure maintains

the descent condition of the search direction. Mathematically, this is equivalent

to

trace
(
P̃∗∇E(X)

)
< 0. (3.6)

Although theoretically this condition need not be maintained, practice shows

that a loss of descent is rarely observed. To provide computational evidence

that this procedure is robust in maintaining the descent property of the search

direction, we apply this localization procedure to random iterates using the

steepest descent direction and verify if descent is maintained. Specifically,

we generate a random matrix of wave functions X, apply the localization

procedure to P = −∇(E(X)) and compute the descent condition given in

equation (3.6). Table 3.1 displays this experiment for two molecules C2H6 and

C12H26.

25



Molecule N ne nnz in support nnz/N nnz/(N ∗ne) trials %success

C2H6 46656 7 80532 .2466 1.726 280 100

C12H26 405224 37 1,069,140 2.63 .0713 21 100

Table 3.1: Experiment demonstrating that localization maintains descent. N is

the number of grid points, ne is the number of electrons. nnz is the number

of non-zero elements in the specific support. %success is the percentage of

trials that maintain descent.

Even given the evidence that localization maintains descent, care must

be taken if this is not the case. One seemingly successful heuristic is to

ignore the localization procedure completely and simply set the sparse search

direction as the truncated search direction. If this truncation step is not

required too often, the advantages of the localization procedure early in the

optimization algorithms progress will not be lost in avoiding local, spurious

minima. Additionally, experiments have shown the stopping the localization

procedure after a constant number of iterations and simply truncating the

search direction onto the provided support does not affect the solution quality

and increases the rate of convergence of the algorithm. The intuitive reasoning

behind this is that once the algorithm reaches an iterate sufficiently close to

the final solution, the fill-in or off-support entries in the search direction P will

be sufficiently small, leading to an ill-conditioned localization step. A typical

value for this constant is maxLocalizationIter = 20.

The main workload of each iteration is divided between the necessary func-

tion and gradient evaluations required by the linesearch and the localization

procedure required to compute the new search direction. When evaluating the
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energy and gradient functions, the overlap matrix, S must be inverted as well

as the necessary matrix multiplications must be performed. Theoretically, the

matrix multiplication computations can be performed in time proportional to

the number of non-zero entries of the given matrices; however, as described

in Chapter 5, the actual implementation is not optimal. Moreover, care must

be taken to maintain proper scaling when inverting the overlap matrix, S.

Section 5.1 provides specific implementation details as well as references to

computing this term efficiently. The localization procedure used requires

solving ne least-square problems each of size proportional to the number of

elements outside of the support of each column. Given the expensive nature

of this computation, future work must be performed to make the localization

procedure more tractable.
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Algorithm 3.1 KSLocOpt: Kohn-Sham Localized Optimization

1: function KSLocOpt(Initial iterate X̃0 ∈ Rn×ne with support region S)

2: Let X̃k = X̃0

3: Compute the initial search direction, Pk

4: repeat

5: if current iteration ≤maxLocalizationIter then

6: Let Yk = X̃k + Pk

7: Set Ỹk = (YkG)T where G is computed as in equation (3.5)

8: Set the new search direction as P̃k = Ỹk − X̃k

9: else

10: P̃k = (Pk)T

11: end if

12: Choose αk from a weak-Wolfe linesearch on E(X̃k +αkP̃k) guarantee-

ing that conditions (3.2) and (3.3) hold.

13: Set X̃k+1 = X̃k +αkP̃k

14: Compute a new search direction Pk+1.

15: until ‖∇(E(Xk))‖F is sufficiently small

16: end function
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4

A sparse Augmented Lagrangian

Algorithm

In Chapter 3, an unconstrained optimization algorithm was described that

minimized the nonorthogonal Kohn-Sham energy. Ignoring orthogonality

entirely, however, can lead to scaling issues as different columns of the matrix

X may have drastically different scales. This bad scaling can be seen by

observing that E(XG) = E(X) for all invertible G. In particular, by choosing G

as the diagonal matrix diag(ε,1,1, . . . ,1, 1
ε ) the scaling of XG can be arbitrarily

bad.

We will first describe the augmented Lagrangian equations specialized for

the Kohn-Sham energy function. Subsequent sections will describe how this

approach can then be extended to exploit locality to ensure the complex energy

function is only evaluated at sparse iterates.

4.1 A dense augmented Lagrangian algorithm

The specific optimization problem we consider is given by

min E(X)

s.t. X∗X − I = 0,
(4.1)

where E is the nonorthogonal Kohn-Sham energy discretized using a finite-

difference representation. Observe the constraint X∗X − I = 0 provides only
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ne(ne+1)
2 independent constraints. Without loss of generality, we consider only

the lower triangular portion of this matrix, denoted by Ol(X) = tril(X∗X − I)

(As a mnemonic, the O is for orthogonality and the ’l’ is for lower triangular).

The augmented Lagrangian function is written in terms of the matrix X and

the matrix of constraints X∗X − I by observing that, for compatible matrices

U and V

trace(U∗V) = vec(U)∗ vec(V), (4.2)

where vec(M) is the vector consisting of the stacked columns of matrix M .

This observation simplifies the necessary gradient computations by avoiding

the otherwise necessary Kronecker products.

The augmented Lagrangian function is then given, in matrix form, by

LKSµ (X,Λ) = E(X)+ trace(Λ∗Ol(X)))+ 1
2µ

trace(Ol(X)∗Ol(X)), (4.3)

where Λ is a lower-triangular matrix approximating the Lagrange multipliers.

The gradient is given by

∇LKSµ (X,Λ) = ∇E(X)+X(V + V∗), (4.4)

where

V = tril(Λ+ 1
µ
(X∗X − I)). (4.5)

The augmented Lagrangian algorithm is given in Algorithm 4.1. Additional

implementation details are provided in Chapter 5. The inner minimization

problem found on line 4.1.3 of Algorithm 4.1 can be solved using a standard

unconstrained minimization algorithm. In our computational experiments,

LMBFGS is used (for a detailed description of the implementation of LMBFGS

used as well as other implementation details, see Section 5.2).
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Algorithm 4.1 The augmented Lagrangian method
1: function Augmented Lagrangian(X0, µ0, Λ0)

2: repeat

3: Xk+1 = arg minLµk(X,Λk)
4: Update µk+1 according to Algorithm 5.2

5: Update Λk+1 = Λk + 1
µk+1
Ol(Xk+1)

6: until Convergence criteria are met

7: end function

The main advantages of the augmented Lagrangian approach to minimizing

the Kohn-Sham energy is that it directly handles the orthogonality constraint

while avoiding computing the full Jacobian of the constraint matrix X∗X − I as

required by other constrained optimization algorithms. For completeness, this

Jacobian is given by

∂
∂X
(X∗X − I) = (In2 − P)(In ⊗X∗), (4.6)

where In and In2 are the n× n and n2 × n2 identity matrices respectively, P

is the n2 × n2 matrix that maps vec(X) → vec(X′) and ⊗ is the standard

Kronecker product. The matrix multiplication X(V + V∗) is still required.

4.1.1 An aside on minimizing the augmented Lagrangian subproblem in the

specific case of the Rayleigh quotient

Let H ∈ Rn×n be a symmetric, positive-definite matrix. It is well-known that

the solution of the minimization problem

minX∈Rn×k trace(X∗HX)

s.t. X∗X = I
(4.7)
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is given by
k∑
1

λi, (4.8)

where λ1 ≤ λ2 . . . λk are the k smallest eigenvalue of H (Fan [10]).

As described above, the augmented Lagrangian method solves a sequence

of unconstrained optimization problems of the form

minX∈Rn×ne Lµ(X,Λ), (4.9)

where

Lµ(X,Λ) = trace(X∗HX)+ trace(Λ∗Ol(X)))+ 1
2µ

trace(Ol(X)∗Ol(X)). (4.10)

One approach to solving this inner minimization problem is Newton’s

method, where the search direction is computed as the solution to the system

∇2Lµ(Xk,Λ)pk = −∇Lµ(Xk,Λ). (4.11)

The Hessian ∇2Lµ(Xk,Λ) has dimension (nk × nk) so for large systems it

will not be computationally feasible to form and store this matrix. However,

a variation of Newton’s method, the truncated Newton method solves sys-

tem (4.11) approximately using the conjugate-gradient method [27, 38]. By

using conjugate gradients, only Hessian-vector products are required and the

full Hessian need never be formed. Let D be an arbitrary n× k matrix. We can

compute the Hessian-vector product by first defining

Φ(X,D) = trace(∇Lµ(Xk,Λ)∗D). (4.12)

The gradient of the Hessian applied to the vector vecD is then computed as

∂Φ(X,D)
∂X

= ∇2Lµ(Xk,Λ) vec(D). (4.13)
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What is important to note is that this can be computed without forming the

Hessian itself. In the case of equation (4.10), equation (4.13) is given by

mat(∇2Lµ(Xk,Λ) vec(D)) = F1(X,D)+ F2(X,D)+ F3(X,D), (4.14)

where

F1(X,D) = HD +DV,

F2(X,D) =
1
µ
X (tril(X∗D)+ tril(X∗D)∗)) ,

F3(X,D) =
1
µ
X (tril(D∗X)+ tril(D∗X)∗)) ,

and V is defined in equation (4.5).

Initial experiments show that this approach will converge to a solution with

the expected objective value requiring between 4-50 conjugate gradient steps

to compute the search direction. Future work will explore both the application

of this technique to solve sequences of trace minimization problems, for

example, in solving the eigenvalue subproblem in the scf iteration as well as

using such techniques for directly minimizing the Kohn-Sham energy. A key

component of this exploration will be proper preconditioning of the Hessian

when only Hessian-vector products are available to reduce the required number

of conjugate gradient iterations.

4.2 Introducing locality to the augmented Lagrangian

The augmented Lagrangian algorithm as explained above requires multiple

dense matrix multiplications as the orthogonality condition is a global con-
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straint affecting the entire domain under consideration. Locality is introduced

into the optimization problem by assuming that wavefunctions only interact

with other nearby wavefunctions over a limited volume of the domain. Orthog-

onality will then be enforced locally, only among groups of wavefunctions. As

with the choice of localization region, the choice of clusters will be dependent

on the molecule in consideration. By allowing some wavefunctions to belong

to multiple clusters of wavefunctions, it is expected that proper scaling and

conditioning will be maintained throughout the entire system. Such “mutual

orthogonality” is difficult to apply in other methods and is often handled via

similar tricks of choosing overlapping regions. See Wang et al. [41] for the use

of such ideas when working with a plane-wave basis on a local scale.

To represent this new problem, let Ci denote the indices of the ith cluster

of wavefunctions. The matrix XCi denotes the columns of X at indices Ci. If

there is only one cluster C0 = {1,2,3, . . . , ne} then the problem reduces to the

situation described above. Similarly, if the only specified cluster C0 is empty,

the formulation reduces to the unconstrained, non-orthogonal Kohn-Sham

energy minimization problem described in Section 2.3.

After choosing the necessary clusters and support regions, the new opti-

mization problem becomes

min E(XT )

s.t. X∗CiXCi − I = 0 for i = 1,2, . . . k
(4.15)

where k is the number of clusters and the corresponding augmented Lagrangian
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is

LKSµ (X,Λ) =E(XT )+∑
i

trace(Λ∗i Ol(XCi))
+ 1

2µ

∑
i

trace(Ol(XCi)
∗Ol(XCi)).

(4.16)

The nonorthogonal Kohn-Sham energy must be used in equation (4.15) as

although individual subsets of columns of X will be orthogonal, the entire

matrix will not be. Observe that the matrix X is always truncated onto its

support region before any function, gradient or constraint evaluations. The

complete algorithm is described in Algorithm 4.2 with implementation details

given in Section 5.2.

The gradient computation is straightforward as above, although some care

must be taken when accounting for wavefunctions that appear in multiple

clusters.

The main computation time of each inner iteration is the energy and gradi-

ent function evaluation. As in the previous chapter, these evaluations require

inverting the overlap matrix, S. The rest of the workload only requires sparse

or small matrix-matrix multiplications when computing the energy and gradi-

ent functions or orthogonality constraint terms in the augmented Lagrangian

respectively.

A key computational advantage of KSSpALOpt over KSLocOpt, is that

elements outside the specified support region need not be stored nor computed.

The localization procedure used in KSLocOpt requires accessing elements

outside of the specified support when computing the required localization

matrix.
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Algorithm 4.2 KSSpALOpt: Kohn-Sham Sparse augmented Lagrangian method
1: function KSSpALOpt(X0,Support S, Clusters Ci,µ0, Λ0)

2: repeat

3: Xk+1 = arg minLµk(XT ,Λk)
4: Update µk+1 according to Algorithm 5.2

5: Update Λk+1 = Λk + 1
µk+1
Ol(Xk+1)

6: until Convergence criteria are met

7: end function
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5

Implementation Details and

Numerical Experiments

All algorithms are implemented in Matlab and run using Matlab version

R2010a. The implementations focus on algorithm experimentation as op-

posed to speed. Methods for computing the Hartree potential and exchange-

correlation energy terms, as well as the computing and loading of molecule

dependent data such as domain size into the system are borrowed from the

Matlab package RSDFT [7, 47, 48]. RSDFT is a real-space, finite-difference

based code that solves the Kohn-Sham eigenvalue problem using a variation of

scf. In addition to code reuse, using RSDFT as a basis for energy calculations

allows the solutions generated by our new algorithms to be compared directly

to a known solution.

In all implementations, the sparsity structure is not exploited explicitly;

instead the Matlab sparse matrix functionality is used. Future implemen-

tations will allow for better performance, as the sparsity structure on the

wavefunctions X can be exploited directly without the overhead needed for

representing general sparse matrices. Moreover, both implementations only

support basic parallelization as provided by Matlab.

The experiments described in Sections 5.5, 5.6 and 5.8 were conducted on

a Macbook Pro with a 2.66Ghz Intel 513 Core i7 processor and 4GB of RAM.

The larger experiments described in Sections 5.7 and 5.9 were run on a Intel
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Xeon 659 node with eight 2.33GHz cpus and 32 GB of RAM.

For reference, the algorithm names are given in Table: 5.1.

Algorithm Meaning Reference

Rsdft Real-Space Density Functional Theory [7, 47, 48]

KSLocOpt Kohn-Sham Localized Optimization Section 3.1

KSALOpt Kohn-Sham Augmented Lagrangian Optimization Section 4.1

KSSpALOpt Kohn-Sham Sparse Augmented Lagrangian Optimization Section 4.2

Table 5.1: Algorithm names

5.1 Some comments regarding the overlap matrix

S = X∗X and its inverse

In computing both the nonorthogonal Kohn-Sham energy and its gradient, a

key step is both the computation and factorization of the matrix S = X∗X.

In general, computing S−1 would require O(n3
e) operations. However, given

the supplied structure on the matrix X, the matrix S is sparse and diagonally

dominant. Although not true in general, the inverse of this matrix is observed

computationally to also be diagonally dominant. Figures 5.1(a) and 5.1(b)

shows surface plots depicting the magnitude of each element of the matrices

S and S−1 for a specific molecule.

Given this structure, techniques exist that can compute the inverse of the

overlap matrix with scaling linear in ne. See Jansík et al. [15] for one such

approach. In this work, different approaches using the incomplete Cholesky

factorization (see Challacombe [6]) were implemented and profiled; however,
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Figure 5.1: Surface plot of (i, j, S(i, j)) and (i, j, S−1(i, j)) for C12H26.

given the relatively small size of the matrix S, the straightforward use of the

Matlab backslash operator, ’\’ , proved to be the fastest means to compute

the required inverse. In future work, as these ideas are extended to larger

systems, this decision will need to be revisited.

5.2 Details involving the optimization algorithm imple-

mentations

In both Chapter 3 and Chapter 4, the algorithms presented require solving

an unconstrained minimization problem. A full Newton algorithm or quasi-

Newton method is not practical for this problem as the required Hessian or

quasi-Newton matrices are both expensive to compute and too large to store.

Therefore, either the Limited-Memory BFGS (LMBFGS) method or a conjugate

gradient-based method seem appropriate. Given that most CG methods require
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the stricter, strong-Wolfe linesearch, whereas LMBFGS requires only a weak-

Wolfe linesearch, the latter is used. For a complete overview of this material

see Nocedal and Wright [27].

The LMBFGS details are as follows:

Algorithm: LMBFGS

Linesearch: generates an iterate satisfying the weak Wolfe conditions. Uses

bisection to compute the step length as fewer function evaluations are

required. The chosen linesearch parameters are c1 = .01, c2 = .99. The

choice seeks to minimize the number of function evaluations required by

each linesearch. The code used is a slightly modified version of the code

released as part of the hanso package (Overton [29]).

Algorithm specific options:

History length: The LMBFGS update is computed using the three pairs

{(sk−2, yk−2), (sk−1, yk−1), (sk, yk)}.

Sigma update formula: When computing the LMBFGS search direction,

an initial approximation to the inverse Hessian matrix is required.

We follow the standard procedure of choosing a scaled identity

matrix σI where σ is computed as

σ = 1
2

(
s′kyk
y ′kyk

+ s
′
ksk
s′kyk

)

and sk = Xk+1 −Xk and yk = ∇E(Xk+1)−∇E(Xk).

In addition to the options above, the implementation uses a heuristic that

replaces σk with νσk, attempting to generate future search directions that lead
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to the linesearch taking a step of length one. The damping parameter ν is

initially set to 1 and updated according to Algorithm 5.1.

Algorithm 5.1 Heuristic for updating the damping parameter ν
if αk < 1 then

ν =max
(
10−5, 1

2ν
)

else

ν =min (1,2∗ ν)

end if

Both the heuristic for updating ν and the update formula for σ were suggested

by Waechter [40].

The augmented Lagrangian based methods details are as follows:

Algorithms: KSAlOptand KSSpAlOpt

Initial Lagrange multipliers: All multipliers are initialized to 0

Initial penalty parameter: µ0 = 1

Penalty parameter update: The penalty parameter µ is updated using the

heuristic described in Algorithm 5.2.

Termination Conditions for inner, optimization problem: LMBFGS is run for

a maximum of 50 iterations. LMBFGS will terminate early if it generates

an iterate satisfying

‖∇(E(Xk))‖F ≤max(10−4,10−i)

where i is the current outer iteration number.

41



Termination Conditions for outer loop: Each method is run for a specified

maximum number of outer iterations, typically 10. The outer loop exits

early if the inner optimization method generates a solution, X∗, satisfying

‖∇(E(X∗))‖F ≤ 10−4

and with maximum infeasibility less than 10−4, i.e.,

max |Ol(X∗)| ≤ 10−4

where Ol(X) is defined as in Section 4.1.

Algorithm 5.2 Heuristic for updating the penalty parameter µ
if max |Ol(Xk+1)| ≥ .75 max |Ol(Xk)| then

µk+1 =max
(
10−5, 1

2µk
)

else

µk+1 = µk

end if

5.3 Choice of the initial set of wavefunctions

It is well known that the choice of initial iterate is crucial to fast convergence

for most optimization algorithms. We compute the initial iterate based on

physical considerations as follows: For a given wavefunction corresponding to

an atom pair (a column of the matrix X), the modified Gaussian

e
−
(
(x−px)2+(y−py)2+(z−pz)2

)

is centered about the midpoint p = (px, py , pz).
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In the case of the projected Localization algorithm, the algorithm is started

at the localized iterate Y0 = (X0G)T where G is the computed localization ma-

trix. For the sparse augmented Lagrangian method, the initial set of wavefunc-

tions, X0, is first orthogonalized via the (thin) QR decomposition, X0 = Q0R0,

and the initial iterate is set as Y0 = (Q0)T .

Another, more expensive option is to run the scf iteration for exactly one

iteration. This approach may be useful when the collection of midpoints may

not be easily determined due to lack of a priori knowledge of the system’s

structure.

5.4 Experiment Overview

The following sections compare the solutions generated by each optimization

algorithms described in this dissertation with that of RSDFT . The mesh size,

h, and domain size are determined by RSDFT and based on the molecule under

consideration. The goal is to compute a sparse solution with approximately

the same energy and charge density at the solution. The trade-off between

sparsity (and scaling) and solution quality requires careful consideration and is

dependent on the system under consideration. A solution computed by RSDFT

will be denoted X∗, with energy E∗ and charge-density ρ∗. RSDFT uses its own

starting point. In figures where multiple runs of KSLocOpt and KSSpALOpt

are compared, the energy computed by RSDFT is plotted repeatedly to better

depict the variation and quality of the optimization based methods.

The figures depicting each molecule are in the public domain and found on

Wikipedia.
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5.5 Methane(CH4)

Methane, shown in Figure 5.2, is the simplest natural gas, containing only 4

valence electrons in its outer shell.

Figure 5.2: Methane(CH4)

The domain used is a three-dimensional box with a radius of 8.25 atomic

units (a.u.) that contains 34 grid points in each dimension (the mesh size is

h = 1
2 a.u.). The eighth-order Laplacian has dimension 39304×39304 with only

913,240 nonzero entries (≈ .0006% sparsity). RSDFT computes an orthogonal

solution X∗ with Kohn-Sham energy −16.034 Rydbergs (Ry).

5.5.1 Choosing the localization region for KSLocOpt

The localization region is chosen as in Figure 5.3. For ease of computation, the

region is chosen as a box, as opposed to a sphere, about the midpoint of each

adjacent atom pair.
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support radius

Figure 5.3: Support for KSLocOpt for CH4)

5.5.2 Choosing the localization region for KSSpALOpt

When using the sparse augmented Lagrangian, the support for each wave-

function is chosen as the region about the center Carbon atom as shown

in Figure 5.4. Experiments have shown that for wavefunctions that are con-

strained to be orthogonal (in this case all of them), the support regions should

be chosen to be identical to each other in order to meet this orthogonality

constraint.

5.5.3 Computational Experiments

Given the relatively small size of matrices required for these computations a

detailed analysis of both algorithms is presented for this molecule.

45



support radius

Figure 5.4: Support for KSSpALOpt for CH4)

5.5.4 Avoiding spurious local minima

It is well-known that simple truncation of the wavefunctions onto their re-

spective support regions leads to multiple local-minima [12, 20]. The first

experiment exhibits the ability of both algorithms to compute solutions with

similar Kohn-Sham energies. Each algorithm is run from the same random

initial matrix of wavefunctions. The localization region is chosen to cover ≈

45% of the domain (the support radius is 6.5 a.u.). It should be noted that com-

paring both methods with the same localization radius is not exactly fair. For a

given radius, both methods will have slightly different localization regions and

a different number and pattern of non-zero elements in the their respective

support matrices. More specifically, given that the regions are staggered when

choosing the support for KSLocOpt, more of the domain is covered with at

least one grid point.
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Figure 5.5 compares the final energies computed by each method, with

the energy computed by RSDFT as well as the energy at the solution from

RSDFT localized onto the support region described in Section 5.5.1 (denoted

by E(X∗) and E((X∗G)T respectively). These values should provide an approx-

imate lower bound or goal energy value for both KSSpALOpt and KSLocOpt.

(The bound is approximate, as RSDFT is an iterative algorithm with its own

termination conditions).
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Figure 5.5: Methane (CH4): Energy at the solution starting from 50 random

initial iterates. The energy at the solution computed by RSDFT as well as the

energy of the localized solution from RSDFT are repeated for convenience.

This experiment shows a common trend in comparing both new methods.

KSLocOpt can outperform KSSpALOpt (as well as rsdft) for a given support

region; however, the sparse augmented Lagrangian method tends to be more

consistent in solution quality.

The central tenet of density functional theory is that at the solution, the

properties of a molecule can be derived from the charge density. We compare

the final charge density, ρ∗, computed by RSDFT with the final charge density
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computed by each method in Figure 5.6. In addition to the sparse augmented

Lagrangian, we include the solution computed by augmented Lagrangian with

complete support. Figure 5.6 demonstrates that the final charge density

computed by each method is comparable to the charge density computed by

rsdft.

0E+00

5E-05

1E-04

1.5E-04

2E-04

2.5E-04

3E-04

0 10 20 30 40 50

‖ 
ρ 

-ρ
*‖

 

Trial #

KSLocOpt KSSpALOpt KSALOpt

Figure 5.6: Methane (CH4): ‖ρ − ρ∗‖2 at the final solution (log scale)

5.5.5 The effect of the support radius on solution quality

The next experiment compares the effect of the size of the support region

on the quality of the computed solution. Each method is started from the

same iterate, while increasing the support region until the support covers

the entire domain. Figure 5.7 depicts the results for a particular run of each

method. The number of iterations shown for KSSpALOpt is the total number

of inner iterations summed over all outer iterations required to meet the given

termination conditions.

For smaller support regions, KSLocOpt computes a solution with a smaller

energy than KSSpALOpt ; however, Table 5.2 shows that the projected Local-
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Figure 5.7: Methane (CH4): Energy at the solution vs. the size of the support

ization method has a higher variability in the number of iterations required

for convergence. Again, it should be noted that comparing the number of

iterations is not completely fair as each method has slightly different termina-

tion conditions, as KSSpALOpt must meet both gradient norm and constraint

tolerances. However, given that KSLocOpt requires an additional localization

step in each iteration, this seems to be the fairest metric for comparison.

5.5.6 Rate of convergence from a good starting point

We now run each optimization algorithm from the initial iterate described in

Section 5.3. The support radius is chosen as 6.5 a.u.. The results are shown

in Figure 5.8. The convergence to a matrix of wave functions with energy

equal to that computed by RSDFT is more rapid with both methods reaching a

stationary point in fewer iterations than from a random starting point.
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Support % KSLocOpt iters KSSpALOpt iters

0.069815 74 102

0.10421 159 102

0.14838 337 117

0.20354 384 118

0.27091 272 119

0.35172 105 118

0.44718 125 116

0.55852 184 116

0.68695 202 120

0.80765 183 113

0.94118 145 120

0.97059 86 120

Table 5.2: Methane (CH4): Size of support vs. the number of iterations to

solution

5.5.7 Timing experiments from a good starting point

Comparing timings is subtle, given variations in machine workload, etc. How-

ever, it is still beneficial to compare the cost per iteration of both optimization-

based approaches with RSDFT. It should be noted, that neither optimization

algorithm described in this thesis nor RSDFT are implemented for peak perfor-

mance, nor do they take advantage of parallelization.
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(log scale)

RSDFT KSSpALOpt KSLocOpt

iters 11 45 107

mean(secs) 1.79 .56 .82

min(secs) 1.45 .47 .68

max(secs) 4.24 .67 1.78

Table 5.3: Timing Experiments for CH4. Time is seconds per inner iteration

5.6 Ethane (C2H6)

Ethane (depicted in Figure 5.9) is a colorless, orderless gas and a byproduct of

petroleum refinement and contains 7 valence electrons. RSDFT computes an

51



orthogonal solution, X∗, with Kohn-Sham energy −29.4534Ry . The domain is

chosen as a box of radius 8.75 a.u. using a mesh size h = 1
2 a.u..

Figure 5.9: Ethane (C2H6)

5.6.1 Choosing the localization region for KSLocOpt and KSSpALOpt

In the case of KSOptLoc, the support region is chosen as in methane: a box is

placed around the midpoint of each atom-atom pair.

With larger molecules, the difference between the necessary support regions

required by KSLocOpt and KSSpALOpt become more pronounced. Ethane

consists of a C-C bond and 6 C-H corresponding to the 7 wavefunctions. The

support for the columns of X corresponding to the C-H bonds is chosen as a box

about the nearest carbon atom. The support for the final C-C bond is chosen as

the union of the support. Figure 5.10 demonstrates the structure on the matrix
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of wavefunctions X. Observe that columns one to three (corresponding to the

first set of C-H bonds) share the same support as do columns five to seven

(corresponding to the second set of C-H bonds). Column 4, corresponding to

the single C-C bond, has a support region that that is the union of both of

these clusters.
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Figure 5.10: Ethane (C2H6): Wavefunction support matrix

5.6.2 The effect of the support radius on the solution quality

Figure 5.11 compares the energy at the computed solution as a function of in-

creasing support radius (decreasing sparsity). As with the methane experiment,

for smaller support regions, KSLocOpt outperforms KSSpALOpt. However,
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when the support is chosen so that the matrix of wavefunctions X has sparsity

of about 20%, the computed energy is nearly identical for both methods.
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Figure 5.11: Ethane (C2H6): Size of the support versus energy at the solution

5.6.3 Rate of convergence from a good starting point

The support is chosen so that the matrix of wavefunctions has a sparsity of

approximately 25% for each method. The difference between the energy at

each iterate and the known energy E∗ from RSDFT is shown in Figure 5.12.

KSSpALOpt converges more quickly to a solution with correct energy in both

time and the number of iterations required.

5.7 Dodecane (C12H26)

Dodecane (C12H26), shown in Figure 5.13, is the final molecule of the form

CnH2n+2 we will consider in this dissertation. It consists of 74 electrons

corresponding to 37 wavefunctions. RSDFT computes an orthogonal solution
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Figure 5.12: Ethane (C2H6): (Ek − E∗) from a good starting point (log scale)

with energy −167.389 Ry. The domain is a box of radius 18.25 a.u. using mesh

size of h = 1
2 a.u.. The Laplacian has dimensions 405,224× 405,224 with a

sparsity of less than 6× 10−5%.

The localization regions are chosen in the same manner as for both methane

and ethane. For KSLocOpt, the localization region is placed as a box about

each atom-atom pair. In the case of KSSpALOpt, the regions are constructed as

in Section 5.6.1, repeated about each of the 12 carbon atoms. The wavefunction

corresponding to a C-C pair is constrained to be orthogonal to both the cluster

to its left and the one to its right. For both methods, the support regions are

chosen to have radius 7.5 a.u. giving a sparsity of approximately 11%. This

support region was chosen so that the energy computed at the solution equals

the energy computed by scf.

Both KSLocOpt and KSSpALOpt are run from an initial iterate of wavefunc-

tions described in Section 5.3. The convergence of the energy to the energy

computed by RSDFT is shown in Figure 5.14. Figure 5.15 shows the isosurface
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Figure 5.13: Dodecane (C12H26)

of the charge density at the solution computed by KSSpALOpt(the surface is

computed at a value determined by Matlab). Table 5.4 details statistics as to the

timing of each inner iteration. Observe that as the number of wavefunctions

increase, the difference in timing between KSLocOpt and KSSpALOpt increase.

The localization procedure is an expensive operation.

Method KSSpAlOpt KSLocOpt RSDFT

iter 118 500 14

Energy −167.386 −167.382 −167.389

mean(secs) 24.7 32.3 72.69

min (secs) 22.1 24.7 60.18

max (secs) 25.6 39.0 206.71

Table 5.4: Timing experiments for Dodecane (C12H26)
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Figure 5.15: The computed charge density of the Dodecane (C12H26) molecule

5.8 Si2H4

The following experiment demonstrates that KSSpALOpt can be applied to

molecules with double bonds where multiple wavefunctions will share support.
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The molecule Si2H4 consists of four single Si-H bonds and one double S-S bond

for a total of six wavefunctions. Due to this double bond, KSLocOpt is not

directly applicable, as two wavefunctions will have identical support. In future

work, we will extend the localization procedure to handle such situations

by introducing a local orthogonalization step [45]. However, the KSSpALOpt

method can still be applied with the appropriate choice of clusters and support

regions (see Section 4.2). Three clusters are chosen as to include the different

atom pairs follows:

C1 = {Si1-H(1), Si1-H(2), Si1-Si2(3)}

C2 = {Si1-Si2(3), Si2-Si1(4)}

C3 = {Si2-H(5), Si2-H(6), Si1-Si2(4)}

where Si1 and Si2 denote two different silicon atoms. The number in parenthesis

denotes the column of the matrix X corresponding to the given atom-atom

pair. Orthogonality between wavefunctions will only be enforced within each

cluster. The support for the matrix of wavefunctions (shown in Figure 5.16) is

chosen as follows:

• Columns 1-2 and 5-6 corresponding to the Si-H pairs have support in a

box about the nearest Si atom;

• Column 3 corresponding to the first wavefunction of the double Si-Si

bond has support about the midpoint of the atom pair unioned with the

support of columns 1 and 2;

• Column 4 corresponding to the second wavefunction of the double Si-Si
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bond has support that is the union of the region about the midpoint of

the atom pair and the support of columns 5 and 6.
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Figure 5.16: (Si2H4): Wavefunction support matrix

RSDFT computes an orthogonal solution with Kohn-Sham energy -12.316

Ry. The domain consists of a box of radius 9.3 a.u. using a mesh-size of h = 3
5

a.u..

5.8.1 Rate of convergence from a good starting point

The starting point is chosen as described in Section 5.3 for the case of the

sparse augmented Lagrangian method. Figure 5.17 shows the convergence

behavior of both the energy and the charge density as a function of the iteration.

As is often observed when running KSSpALOpt, the initial convergence is rapid,
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with progress slowing down as the solution is approached. Figure 5.18 shows

the isosurface of the charge density, ρ, at the solution computed by KSSpALOpt.
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5.8.2 Timing experiments

Using the same machine as described in Section 5.5.7, we compare the time

for an inner iteration of both RSDFT and KSSpALOpt. The latter consists

of one iteration of LMBFGS, including function and gradient evaluations as

part of the linesearch and the search-direction computation. Again, we stress

that neither implementation explicitly exploits parallelism, nor is written with

peak-performance as the main goal. RSDFT is run using two different options

to handle the required diagonalization. The first method, referred to as RSDFT-
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Figure 5.18: The computed charge density of the Si2H4 molecule

Lanczos, applies the Lansczos method to solve the necessary eigenvalue

problem required in each iteration of scf. The second method, referred to as

RSDFT-Chebyshev, uses the Lanczos algorithm for the initial eigenvalue solve;

however, each subsequent iteration uses the faster Chebyshev-filtered subspace

iteration [47].

RSDFT-Lanczos RSDFT-Chebyshev KSSpALOpt

iters 9 11 500

mean(secs) 5.87 1.62 .57

max(secs) 8.17 4.33 .93

min(secs) 5.38 1.29 .46

Table 5.5: Timing experiments for Si2H4

The time per iteration is much faster for KSSpALOpt; however, future work

must be done to reduce the number of iterations required to reach convergence.
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This can be accomplished via a better choice of convergence criteria or by

determining a better initial iterate. Moreover, given that the bottleneck in this

method is the function and gradient evaluation time, a new implementation

that better exploits the structured sparsity of the matrices involved as well as

parallelism will be able to reduce the time per iteration significantly.

5.9 C60

Buckminsterfullerene, displayed in Figure 5.19, is a spherical molecule named

after the spherical domes designed by Buckminster Fuller. Its structure is not

obviously amenable to the localization approaches described in this thesis,

but the full augmented Lagrangian method, KSALOpt, is still applicable and

competitive with standard scf computations.

C60 has 240 valence electrons corresponding to 120 unique wavefunctions.

RSDFT computes an orthogonal solution of −687.504 Ry. The domain is a box

with radius 12.75 a.u. using a mesh size of h = 1
2 a.u..

KSALOpt is run twice, from two different initial matrices of wavefunctions.

The first is a random matrix of the proper dimension. The second initial

iterate is the matrix of wavefunctions computed after exactly one iteration

of rsdft. Both experiments give solutions with an energy slightly better that

rsdft (see Table 5.6). Figure 5.20 and Figure 5.21 show the rate of convergence

of both methods to this better solution. RSDFT is run using only Chebyshev

filtering. When using the Lanzcos method for diagonalization, the method did

not converge. The isosurface of ρ at the solution computed by KSALOpt is

shown in Figure 5.22.
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Figure 5.19: Buckminsterfullerene (C60)
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Figure 5.20: (C60): (Ek − E∗KSALOpt) (log scale)
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Figure 5.21: (C60): ‖ρk − ρ∗KSALOpt‖2 (log scale)

Method KSALOpt KSALOpt RSDFT

random starting point good starting point

iter 191 92 14

Energy -687.5046 -687.5046 -687.5042

mean(secs) 20.7 20.5 61.35

min (secs) 15.2 15.6 52.7

max (secs) 21.48 21.3 168.7

Table 5.6: (C60) Final energies and timings for each method
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Student Version of MATLAB

Figure 5.22: Buckminsterminsterfullerene: The computed charge density of

the C60 molecule
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Conclusion

This dissertation presents two new algorithms for minimizing the Kohn-Sham

energy that exploit locality to evaluate the objective and gradient functions at

sparse iterates. On a small, yet diverse set of test problems, both algorithms

are demonstrated to converge to a solution with energies comparable to the

energy at a known orthogonal solution computed by rsdft. Critical to the

performance of each method is the choice of the support or localization region.

Experimentally, KSLocOpt is shown to be able to converge to a solution with

lower energy than KSSpALOpt when using a smaller specified support region;

however, the convergence of KSLocOpt is more dependent on the choice of the

initial iterate and requires an expensive localization computation. When the

localization region is not obvious a priori, KSALOpt is demonstrated to con-

verge rapidly in both time and the number of iterations required even though

the Kohn-Sham energy and gradient must be computed at dense iterates.
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