
A Model-Based 3-D Object Recognition
System using Geometric Hashing with

Attributed Features

Jyh-Jong Liu

A Dissertation Submitted in Partial Ful�llment

of the Requirements for the Degree of

Doctor of Philosophy

Department of Computer Science

New York University

January, 1996

Approved:

Professor Robert Hummel

Research Advisor

c
Copyright by Jyh-Jong Liu, 1996

All rights Reserved

To My Family

iii

Acknowledgments

I would like to express my deepest gratitude to my advisor Professor Robert Hummel

for his guidance, support, and encouragement over these years. He taught me the spirit

of attacking problems. Most of my Ph.D. research could not have been ful�lled without

his ideas and inspiration.

My special thanks are to Professor Richard Wallace and Professor St�ephane Mallat

for being in my Oral Committee. They have helped me throughout my graduate school

years. I would like to express my gratitude to Dr. Isidore Rigoutsos. This thesis work

is built upon and bene�ted by his work. I also thank Dr. Davi Geiger for generously

discussing topics with me. Many thanks go to Dr. Xiaonan Tan and Professor Jiawei

Hong. Without them, I would not be able to go through the tough time during my study.

I am also grateful to all of the friends I met in NYU. Their companionship made the stay

in New York City a pleasant experience. In particular, my thanks are due to Dr. Chee-Da

Tsai, Dr. Jen-Lung Chiu and Mr. Yaw-Tai Lee for their helpful discussions. We shared

memorable times together.

Finally, I would like to express my deeply gratitude to my family. I am indebted to

my sister and brother for their constant encouragement, as well as my parents for their

love and persistent support. They always have con�dence in me, and always accompany

me to go through tough moment even though they are on the other side of the earth.

iv

Abstract

We build an object recognition system that is able to recognize 3-D objects such as

vehicles embedded in highly complicated backgrounds. We use the geometric hashing

method, augmenting the approach through the use of attributed features, k-d trees for

access to features, and the use of bounds in order to limit the search.

We make use of expressive features to improve the performance of a geometric hashing

object recognition system. Various kinds of attributed features, such as the midpoint of

a line segment with its orientation, the endpoints of a line segment with its orientation,

and the center and the circle features are extracted and used in our system.

The number of features as well as the type of features in each model can vary. We

make use of weighted voting, which has a Bayesian interpretation. The distribution of

the invariants for various features as well as the bounds of the weighted voting formula

are analyzed. In order to improve the performance of the system, we use a k-d tree to

search entries in high-dimensional hash tables. The method is generalized in order to treat

variables taking on values from a non-interval domain, such as data measuring angles.

To make use of available computer resources, we distribute the computation, assigning

evidence accumulation for a single hypothesis to one processor in a multiple processor

and multiple workstation environment. The implementation reduces the communication

overhead to minimum. The system is implemented using theKhoros software development

system.

The results of target recognition are reported in numerous experiments. The exper-

iments show that the use of more expressive features improves the performance of the

recognition system.

v

Contents

1 Introduction 1

1.1 A Brief Review of Geometric Hashing : 1

1.2 Outline of Thesis : 3

2 Related Work in Object Recognition 4

2.1 Imaging Models : 4

2.2 Object Recognition : 6

2.3 Monocular Image Methods : 8

2.3.1 Matched �lter : 8

2.3.2 Generalized Hough transform : 8

2.3.3 Iteration method : 9

2.3.4 Interpretation tree : 10

2.3.5 Alignment : 10

2.3.6 Indexing method : 11

2.4 Multiple Images Methods : 12

2.4.1 Point correspondences : 13

2.4.2 Line correspondence : 15

2.4.3 Multisensor fusion : 16

2.5 Invariant Theory : 17

2.5.1 Non-existence of general-case view invariants : : : : : : : : : : : : : 17

2.5.2 Invariant features : 17

3 Bayesian Updating 21

3.1 Bayesian Formulation of Geometric Hashing : : : : : : : : : : : : : : : : : 23

3.2 Variable number of features for each model : : : : : : : : : : : : : : : : : : 25

3.2.1 Individual non-obscuration ratio of features : : : : : : : : : : : : : : 27

3.3 The Distribution of Invariants : 28

3.3.1 Exact matching hypothesis : 31

3.3.2 Approximate matching hypothesis : : : : : : : : : : : : : : : : : : : 31

vi

3.4 The Bounds for Weighted Voting : 33

3.4.1 Maximum vote : 34

3.4.2 Deviations : 38

3.4.3 Number of features within a region : : : : : : : : : : : : : : : : : : 39

3.4.4 Estimation of accumulated vote : 42

3.5 Larger Vote Under Rearrangement : 42

4 Attributed Features 44

4.1 Formulation for Orientation-Attributed Features : : : : : : : : : : : : : : : 44

4.2 Orientation-Attributed Features : 48

4.3 Derivations of the Covariance Matrices : 49

4.3.1 Endpoints under the approximate matching hypothesis : : : : : : : 50

4.3.2 Endpoints under the exact matching hypothesis : : : : : : : : : : : 52

4.3.3 Midpoints under the approximate matching hypothesis : : : : : : : 53

4.3.4 Midpoints under the exact matching hypothesis : : : : : : : : : : : 55

4.3.5 Bisectors under the approximate matching hypothesis : : : : : : : : 56

4.4 Separability of the Density Function for Midpoints : : : : : : : : : : : : : : 60

4.5 Abstract Attributed Features : 61

5 E�cient and Distributed Implementation 64

5.1 Linear Access and Binning : 64

5.2 K-d Tree and Its Generalizations : 76

5.2.1 K-d tree for angular data : 77

5.2.2 K-d tree for multi-angle features : : : : : : : : : : : : : : : : : : : 78

5.2.3 K-d tree for heterogeneous data : 80

5.3 Distributing the Hash Table : 81

6 Experimental Results 88

6.1 Model Database : 88

6.2 Feature Extraction : 93

6.3 Target Recognition and Veri�cation : 97

7 Discussion 116

7.1 Multiresolution Feature Extraction : 116

7.2 Design of Attributed Features : 116

7.3 Other Invariants : 118

7.4 Aspect Graph Considerations : 118

7.5 Parameter Selection : 119

vii

Bibliography 120

A Direct Proof of the Independence Property 129

B Descriptions of the Khoros Modules 132

B.1 Cox-Boie Edge Detector : 132

B.2 Feature Extraction : 133

B.3 Model Building : 134

B.4 Recognition : 135

B.5 MVF Utilities : 136

viii

List of Figures

3.1 The geometric hashing scheme for the case of similarity transformation.

Point pair (p�; p�) is used as a basis which de�nes a coordinate system.

The normalized coordinate (�; �) for feature point p is used as the key to

index into the hash table. : 22

3.2 The con�gurations for (1) translation, (2) similarity, and (3) a�ne trans-

formation invariant. Point pi's is used as the basis to de�ne a coordinate

system. The coordinate of a point p in the de�ned coordinate system is

used as the invariant. : 29

3.3 The plot of two Gaussian functions: G(x) and G(x
2
). Depending on x,

G(x) may be larger than G(x
2
) or vice versa. : : : : : : : : : : : : : : : : : 33

3.4 The visualization of weighted voting formula for exact matching hypothesis

with uniform background density. The x and y deviation is in original

image space. : 34

3.5 The function of the maximum vote as a function of � and n, where the

number of scene features s = 300, and the number of perfectly matched

features equals to � � nk . The non-obscuration ratio � varies from 0 to 1.

The number of features nk in model k varies from 5 to 40. : : : : : : : : : 35

3.6 The function of the maximum vote as a function of � and the number of

perfectly matched features, where the number of scene features s = 300,

and the number of features nk in the model k is 30. The non-obscuration

ratio � varies from 0 to 1. : 36

3.7 The function of the maximum vote as a function of � and the number of

scene features, where the number of the number of features in the model

n = 30. The non-obscuration ratio � varies from 0 to 1. The number of

scene features s varies from 30 to 300. : 37

ix

3.8 The function of the maximum vote we can obtain as a function of the

number of detected perfectly matched features d and the number of features

in the model n, where the number of scene features s = 300, the non-

obscuration ratio � is �xed as 0.8. The number of features nk in the model

k varies from 5 to 40. : 37

3.9 The function of the lower bound of the number of the features within the

speci�ed region as a function of nk . Here, a = 1=10, the number of scene

features s = 300, the non-obscuration ratio � is �xed as 0.8. The number

of features nk in the model k varies from 10 to 40. The dotted line indicates

the lower bound for the region �� = 1, while the solid line indicates the

lower bound for the region �� = 0:2. The standard deviation in the original

image space � is 4 pixels. We assume that the accumulated vote z is 20.

The dashed line is the function n1 = nk : 40

3.10 The function of the upper bound of the number of the features within the

speci�ed region as a function of nk . Again, a = 1=10, the number of

scene features s = 300, the non-obscuration ratio � is �xed as 0.8. The

number of features nk in the model k varies from 10 to 40. The dotted

line indicates the lower bound for the region �� = 0:1, while the solid line

indicates the lower bound for the region �� = 0:05. The standard deviation

in the original image space � is 4 pixels. We assume that the accumulated

vote z is 10. The dashed line is the function n2 = nk . : : : : : : : : : : : : 41

3.11 Rearrangement of assignment may produce a better result. The features

pa and pb are two hash entries, and pc and pd are two normalized features.

Distance relations are jjpapdjj < jjpbpdjj and jjpapdjj < jjpapcjj. According
to our rule, pd contributes to pa, even though rearrangement of assignment

such that pc is associated with pa and pd is associated with pb can contribute

more vote to this hypothesis. : 43

4.1 A false alarm for the recognition of polygon. The positions of endpoints

for the extracted line segments are used as the features. Without the

orientation information, an incorrect model can match to incorrect position

easily. : 45

4.2 A false alarm for the recognition of Buick LeSabre. The positions of mid-

points for the extracted line segments are used as the features. Eighteen

midpoints out of 27 model features (from the model of Honda Prelude)

match the scene features in this example. : : : : : : : : : : : : : : : : : : : 45

4.3 The construction of the hash function, h(p�; p� ; p). : : : : : : : : : : : : : : 46

x

4.4 The three methods of obtaining orientation-attributed features. (a) End-

points of line segments as the attributed features. (b) Midpoints of line

segments as the attributed features. (c) Bisectors of the corners formed by

pairs of line segments as the attributed features. : : : : : : : : : : : : : : : 49

4.5 The con�guration of basis pair (p1; p2) and line segment p3p4 for endpoint

feature. : 50

4.6 The con�guration of basis pair (p1; p2) and line segment p3p4 for midpoint

feature. : 53

4.7 The con�guration of a corner formed by p3; p4, and p5. : : : : : : : : : : : 56

4.8 Heterogeneous types of features f0 : : : f3 are mapped to universal feature

type for similarity transformation. The (x; y) components of feature type

f0 and feature type f3 are mapped to the same �elds e00 and e01 respectively

since f0 and f3 are compatible. : 63

5.1 The histogram analysis of u-v space for the hash table of �fteen polygon

models. : 66

5.2 The histogram analysis of u-v space for the hash table of �fteen polygon

models. The �gure focus on the center of the histogram in Figure 5.1. : : : 67

5.3 The histogram analysis for the hash table of �fteen polygon models. Top:

The center of the histogram of Figure 5.2. Bottom: The histogram for the

angular attribute of the entries. : 68

5.4 The histogram analysis for the hash table of �fteen polygon models. The

�gure shows the histogram of the angular attribute of the bases for two

di�erent quantization steps. : 69

5.5 The histogram analysis for the hash table of fourteen car models. : : : : : : 70

5.6 The histogram analysis for the hash table of fourteen car models. The

�gure focus on the center of the histogram in Figure 5.5. : : : : : : : : : : 71

5.7 The histogram analysis for the hash table of fourteen car models. Top:

The center of the histogram of Figure 5.6. Bottom: The histogram for the

angular attribute of the entries. : 72

5.8 The histogram analysis for the hash table of fourteen car models. The

�gure shows the histogram of the angular attribute of the bases for two

di�erent quantization steps. : 73

5.9 The space partition for �� when � and � + � are considered as the same,

where �� = �� �i. The comparison function kdt compare returns either

left son or right son according to the range of ��. : : : : : : : : : : : : 78

5.10 The space partition for �� when � and � + � are considered as di�erent. : 79

5.11 Distribution of trial basis. : 83

xi

5.12 The partition of the hash table with one k-d tree sits on top of each partition. 84

5.13 Distribution of hash table. : 85

5.14 The snapshot shows the implementation for method (4) as Khoros modules. 86

5.15 Here is a di�erent snapshot of the revised implementation. This implemen-

tation handles the case of heterogeneous feature types. : : : : : : : : : : : : 87

6.1 The collection of �fteen polygon models. : : : : : : : : : : : : : : : : : : : 90

6.2 The collection of nineteen CAD models. : 91

6.3 The collection of fourteen car models. : 92

6.4 The collection of three tank models. : 93

6.5 The collection of thirty twomilitary vehicle models. The edges are obtained

by applying extraction software to ray-traced depth images. Ideally, the

depth images would be converted to simulated EO (Electronic Optics)

images, but this has not been done for these experiments, and was not

necessary to obtain rich edge maps. In some cases, internal edges have

been lost. : 94

6.6 The Cox-Boie edge detector implemented as glyphs in Khoros environment. 95

6.7 The extraction of circular features for industrial parts. The edge map is

shown to the left. The detected circles are overlaid on top of the original

image which is shown to the right. : 97

6.8 The extraction of circular features frommid-wave infrared image of an M60

tank. Again, the edge map is shown to the left and the detected circles are

overlaid on top of the original image which is shown to the left. : : : : : : : 98

6.9 Left: the test image with the extracted bisector features overlaid on top.

Right: the correct recognition of the industrial part, the edge map of the

model which accumulates the largest vote is rotated and scaled according

to the matched basis. : 99

6.10 The top three model/basis vote-getters for the recognition result. There

are only three models which can accumulate vote by using this basis. : : : 99

6.11 A false alarm for the recognition of an industrial part. : : : : : : : : : : : : 100

6.12 Veri�cations for the recognition of the industrial parts. : : : : : : : : : : : 101

6.13 Another test image for industrial parts. Left: the extracted bisector fea-

tures overlaid on top of the original image. Right: the edge map. : : : : : : 102

6.14 The top nine model/basis vote-getters for the recognition result of indus-

trial parts. The top vote-getter is a false alarm. The third vote-getter is

the correct recognition. : 102

6.15 The recognition result for the �rst and the third vote-getters. The third

vote-getter is the correct match. : 103

xii

6.16 A test image, Buick LeSabre. Left: the test image with extracted midpoint

features overlaid on top. Right: the extracted edge map. : : : : : : : : : : 104

6.17 The recognition result of the top vote-getters for Buick LeSabre. Left: the

test image with recognized model overlaid on top. Right: the result of

veri�cation. : 105

6.18 The top nine model/basis vote-getters for the recognition result of Buick

LeSabre. : 105

6.19 Another test image, the picture is shrunk and embedded into another im-

age. Left: the test image with extracted midpoint features overlaid on top.

Right: the extracted edge map. : 106

6.20 The recognition result of the top vote-getters for the embedded Buick

LeSabre. Left: the test image with recognized model overlaid on top.

Right: the result of veri�cation. : 107

6.21 The top nine candidates for the recognition result of the embedded Buick

LeSabre. : 107

6.22 The original test image for military vehicles. : : : : : : : : : : : : : : : : : 108

6.23 The features extracted from the original image resized by a factor of three

on each side. : 108

6.24 The recognition result for an M60 tank. : 109

6.25 The top nine candidates for the recognition result of the military vehicle. : 109

6.26 A false alarm for the recognition of an M60 tank. : : : : : : : : : : : : : : 110

6.27 The veri�cation for the recognition of military vehicle. Left: a correct

recognition. Right: a false alarm. : 110

6.28 The test image for military vehicles. Left: the test image with extracted

midpoint features and circles overlaid on top. Right: the extracted edge

map. : 112

6.29 The recognition result of an M60 tank. Left: the test image with recognized

model overlaid on top. Right: the result of veri�cation. : : : : : : : : : : : 112

6.30 The top nine candidates for the recognition result of military vehicle. : : : 115

xiii

List of Tables

2.1 A summary of invariants given by di�erent authors, organized by reference.

For each invariant, preconditions and comments are given. : : : : : : : : : 20

5.1 The statistics of the histogram for the hash table of �fteen-polygon models. 74

5.2 The statistics of the histogram for the hash table of fourteen-car models. : : 75

6.1 The information for the model database used in our experiments. : : : : : : 89

6.2 The statistics for the recognition result of industrial part. The search radius

is 6 pixels and the penalty factor is 1.5. The mark \
p
" indicates a correct

recognition, while the mark \�" indicates a false alarm. : : : : : : : : : : : 100
6.3 The statistics for another recognition result of industrial part. Again, the

search radius is 6 pixels and the penalty factor is 1.5. The data shown is

for the top nine candidates corresponding to the same trial basis. : : : : : : 104

6.4 The statistics for the recognition result of military vehicle. The search

radius is 6 pixels and the penalty factor is 1.5. The data shown for the �rst

nine rows is for the top nine candidates corresponding to the same trial

basis. The last row is the statistics for the false alarm corresponding to the

wrong trial basis. : 111

6.5 The statistics for the recognition result of military vehicles. Again, the

search radius is 6 pixels and the penalty factor is 1.5. The data shown for

the �rst nine rows is for the top nine candidates corresponding to a single

trial basis. The model M35 (C) represents an M35 truck with canvas

attached. Hum (T) represents Humvee troop vehicle. The number pair

below each model name represents the (tilt, pan) angle pair. The vote is

computed by using the exact matching hypothesis with non-obscuration

ratio � equal to 0.5. : 113

xiv

6.6 The statistics for the recognition result of military vehicles. Again, the

search radius is 6 pixels and the penalty factor is 1.5. The data shown for

the last nine rows is for the top nine candidates corresponding to the same

trial basis. The model Hum (C) represent Humvee cargo vehicle. The vote

is computed by using exact matching hypothesis with non-obscuration ratio

� equals 0.9. The correct model appears at the third place. : : : : : : : : : 114

xv

Chapter 1

Introduction

One of the major goals for computer vision researchers is to build a vision system that

can recognize 3-D objects and interpret a 3-D scene from 2-D images. The system should

be robust enough so that it can work for real data. On the other hand, the method should

be e�cient so that even though the problem is ill-formulated, we are still able to get a

reasonable answer within a reasonable time.

The 3-D recognition problem can be stated as follows: Given prior knowledge of 3-D

objects, we want to determine the occurrence of objects from the given imagery data. In

addition, the position of the objects in the image should be determined.

This research is an attempt to build a 3-D object recognition system that is able to

recognize 3-D objects such as vehicles embedded in a highly complicated background. The

method that we use is called geometric hashing. We give a brief review of the geometric

hashing method in the next section. A complete description of the modern form for

geometric hashing method can be found in the paper written by Lamdan and Wolfson

[64]. Our contributions to the development of geometric hashing centers on attributed

features. Further, to improve the performance of the system, we use a k-d tree to search

entries in high-dimensional hash tables. To make use of available computer resources, we

distribute the computation into pieces. We will address these issues in Chapter 4 and

Chapter 5 respectively.

1.1 A Brief Review of Geometric Hashing

The idea of geometric hashing is to use invariants to index from an extracted scene into a

prestored hash table in order to discover the possible candidate matches. The method is an

e�cient technique that uses spatial arrangements of features to locate instances of models.

Because this method does not matchmodels one by one, it is capable of recognizing objects

e�ectively with very large databases. The invariants are the result of normalization which

usually depend upon the choice of a basis set. Thus the basis information as well as the

model index are recorded in the hash space in the preprocessing stage. A voting process

is involved to recover the transformation between the object in the scene and the object

in the model database during the recognition stage.

The original idea of geometric hashing comes from the research work of matching

boundary curves [54]. The research done by Schwartz and Sharir [99], Wolfson [119],

Hong and Wolfson [49], all rely on the technique of geometric hashing. They develop the

technique of �nding invariants for boundary curves that are called footprints. Hong and

Wolfson [49] mention the idea of weighted footprints in order to improve the robustness

of the system. Gu�eziec and Ayache [42, 43] use di�erential invariants and the geometric

hashing scheme for 3-D curve matching to register 3-D medical images.

Lamdan and Wolfson give a description of the geometric hashing method [64]. Early

prototype systems for recognizing
at industrial parts and synthesized 3-D objects are

reported by Lamdan et al. [62, 61, 60, 63]. The features are called \interest points." That

is, the geometric hashing method performs point pattern matching in these experiments.

They also analyze the error of geometric hashing by computing the probability of false

matches. Their conclusion is that geometric hashing should be viewed as a \�ltering"

procedure which can eliminate a lot of candidate false solutions before direct veri�cation

is applied [65]. Gavrila and Groen use a geometric hashing system to recognize 3-D CAD

models [37].

A parallel implementation of geometric hashing on the ConnectionMachine is reported

by Rigoutsos and Hummel [87, 90], and also one by Khokhar and Prasanna [56]. Rigoutsos

and Hummel also report a distributed version of geometric hashing for object recognition

[91].

Rigoutsos and Hummel [88, 89] assume the appearance of Gaussian noise for the

position of point pattern and derive analytic solutions for the features in hash space. A

precise weighted voting formula with a Bayesian interpretation for geometric hashing is

given. Tsai [108] analyzes the a�ne invariants for line features, where line features are

represented as a point in (�; r) space.

Grimson and Huttenlocher [39] analyze the performance of geometric hashing by as-

suming that the noise model of the feature points is an �-disc. Lamdan and Wolfson

derive the false alarm rate empirically and analytically. Their analysis is performed on

(r; �) space with a bounded error model. Sarachik and Grimson [98, 97] investigate the

performance of geometric hashing with the assumption of a Gaussian noise model. With

a Gaussianly-distributed noise model, they obtain predictions of operating characteris-

tics of simple recognition systems, which show acceptable performance under low-noise

conditions.

Califano and Mohan [14, 15] use higher-order features to improve the performance as

2

well as the fault tolerance of the recognition system. Liu and Hummel [69] also adopt the

strategy of using higher order features, i.e., features are attributed with extra information.

The discrimination power of attributed features is such that a 3-D object embedded in a

complicated background can still be recognized.

This thesis is based on the previous work done by Rigoutsos and Hummel [86]. Several

ideas are introduced in order to make this object recognition system more robust, more

e�cient, more general, and more adequate for the task of automatic target recognition.

Speci�cally, the concept of attributed features, i.e., features endowed with additional infor-

mation that can be used to �lter the matches, is introduced so that an object embedded in

a highly complicated background can be recognized. The generalization to the case when

each model has di�erent number of features makes the object recognition system more

realistic. The use of a k-d tree data structure makes the search in a high dimensional

hash table e�cient. We also propose a method of partitioning the hash table so that the

computation can be performed in a distributed computer system. Our implementation

is based upon the Khoros [57] software development environment, which is suitable for

information processing and visualization.

1.2 Outline of Thesis

The rest of this thesis is organized as follows. We review the recent development of model-

based object recognition systems in Chapter 2. Chapter 3 discusses the formulation of

current geometric hashing. Chapter 4 describes our use of attributed features. Imple-

mentation issues for e�cient and distributed computation are addressed in Chapter 5.

We present our results in Chapter 6. Finally, Chapter 7 gives concluding remarks and

describes the future research which is related to the scope of this work.

3

Chapter 2

Related Work in Object Recognition

2.1 Imaging Models

Object recognition is one of the most important task of the �eld of computer vision.

Given a set of input images, we are interested in knowing if the speci�c object appears

in the scene, and if so, where? There are several issues related to this task, namely, the

representation of the object, the detection of the object, and the location of the object.

In this section, we consider the kinds of models that have been applied in the past

to the imaging process. There are several kinds of assumptions about the objects, for

example, rigid or nonrigid, two dimensional or three dimensional, curvilinear or polyhe-

dral, occluded or not occluded. The pixel size, shape and connectivity might even be

nonuniform over the whole image [111]. These assumptions drastically a�ect the kinds of

images that must be analyzed.

There are various kinds of images that are obtained by di�erent sensors. Basically,

they can be categorized into two classes, intensity images and range images. A pixel

value in an intensity image represents the intensity of a speci�c spectral distribution, for

example, the gray images for visible light and FLIR image for infrared. A pixel value in

a range image represents the distance metric at that position, as in a LADAR image (an

image captured by a laser radar device) or a raw HRR image (an image captured by a

high resolution ranging radar [81]).

There are di�erent assumptions for the image model, namely, an orthographic projec-

tion, weak perspective projection, or perspective projection. The choice of the projection

model a�ects the features that we can use. The orthographic model is based on the as-

sumption that the depth of the objects in the scene and their variance are small compared

to the focal length of the camera. The projection collapses the scene onto a plane by an

orthogonal mapping. Thus the z-coordinate is discarded, and only x and y-coordinates

are kept.

4

The weak perspective imaging model is approximated by an orthographic projection

plus a scale factor [51]. The weak perspective imaging model is more accurate than the

orthographic projection, but still allows simple computation. The underlying assumption

is that the depth of the centroids of the objects in the scene is large compared to the focal

length of the camera, and that the depth variation of the objects are small compared to

the depth of their centroids. This model uses a single scale factor to capture the size of

the change that occurs with increasing distance. The approximation becomes poor when

an object is deep with respect to its distance from the viewer. This approximation can

be modeled by a similarity transformation, i.e., rotation, translation, and scale.

Some researchers also use a�ne transformations to approximate the perspective pro-

jection [62, 61, 64, 2]. This approximation is more general than the similarity trans-

formation since it can handle shear e�ects. Under the same assumption as the weak

perspective model, two di�erent images of the same
at object can also be related by an

a�ne transformation.

In some application areas, the a�ne approximation is still inappropriate. For example,

oblique views of roadways, landing strips, and buildings are not modeled well by a�ne

transformations. In general, when the depth variation of the objects are comparable

to the focal length of the camera, we need a more accurate model|the pinhole camera

model. The pinhole camera model is a �rst-order approximation to the model of imaging

devices. The projection is modeled by mapping scene points onto the image plane by

a line through a single point which is the lens center. This projection process is also

called perspective projection. The physical layout of pinhole camera model is that the

lens center lies between the image plane and scene points. Usually it is more convenient

to use a revised camera model [4, 100, 28]. The point of projection lies between the lens

center and the corresponding scene point. The mathematics is the same, but the revised

camera model is more intuitive and easier to compute.

Perspective approximations are also studied for application to object recognition. For

example, two other perspective approximations, namely, paraperspective and orthoper-

spective transformations are surveyed by Aloimonos [1]. He gives formulas relating the

image to the world for the properties of length and area. Both approximations are formed

by two steps: orthographically projecting to a particular plane passing through the center

of mass of the region, and then perspectively projecting to the image plane. The particular

plane is parallel to the image plane for paraperspective projection and perpendicular to

the line connecting the focal point of the camera for orthoperspective projection.

There are assumptions for the number of images to be used (monocular image, binoc-

ular image, trinocular image) or image sequence. There are also two categories of the

approaches, passive vision and active vision, depending upon whether the algorithm has

the direct control of camera parameters, including view angle and focusing distance

5

[58, 111, 32].

There are di�erent characteristics for the recognition methods, for example, shape

from texture, shape from contour, shape from shading, etc. Depending on the properties

of the images and the objects, we can categorize the various recognition problems into

the following classes: 2-D from 2-D, 3-D from 2-D, 3-D from 3-D. We can also have the

factor of time as another dimension; then the problem becomes very complicated.

The di�culty is that many problems are ill-posed and there is no benchmark to eval-

uate the performance of various approaches. Even though facing these di�culties, re-

searchers in this area focus on various subproblems: model building [118, 46, 16, 104],

model localization [26, 40], object recognition [2, 13, 14, 15, 22, 29, 33, 37, 62, 51],

2-D or 3-D curve matching [119, 42, 43, 44, 54, 99, 49], motion parameter estima-

tion [17, 30, 31, 84, 92, 71, 68, 73, 109], motion tracking [77], camera calibration

[66, 72, 48, 85, 114, 115, 20, 41], correspondence problem [23, 38, 78, 113], invariant

theory [6, 11, 34, 80, 7, 102, 116], etc. A comprehensive survey of previous work related

to the �eld of 3-D object recognition can be found in Besl and Jain [9], Suetens et al.

[105], Chin and Dyer [22], and Dohond and Aggarwal [27]. We do not intend to review

all the problems in the whole �eld, instead, we only survey the work related to our ap-

proach involving geometric hashing. However, we are concerned with matching patterns

to patterns, and so we include treatments of the correspondence problem, stereo vision,

as well as model-based object recognition. We discuss approaches for di�erent problems

and their relations to the task of object recognition in the following sections.

2.2 Object Recognition

We �rst categorize the approaches to 3-D object recognition into two classes, i.e., the

methods that use a monocular image and the methods that use multiple images. For

monocular image methods, only one snapshot of the scene is given. The recognition task

is performed using the information from a single image. Usually prior knowledge about

the object is available. Methods that use prior knowledge of the objects are also called

\model-based". To our knowledge, most successful recognition systems are model-based

[86]. The matching is performed in the 2-D image space either by searching the parameters

that map the 3-D objects to 2-D image [75, 51], or using view invariant features to extract

the correct model [62, 61, 64, 91, 37]. Matching 3-D objects in 3-D space using a single

2-D image is di�cult, since there are in�nitely many object shapes in 3-D space that all

yield the same image after projection [55].

For multiple image methods, 3-D depth information is reconstructed using multiple

images before performing matching in 3-D space. There are several ways to obtain 3-D

information from multiple images. Current methods include binocular or stereo vision

6

systems [27, 118, 16], trinocular vision systems [3, 32], and depth from image sequences

[109, 71, 103]. Most of the approaches emphasize the extraction of parameters, i.e., the

parameters related to these multiple images and the parameters related to the world coor-

dinate and camera coordinate systems. There are several uses for the motion parameters.

For example, motion parameters can be used to estimate of the movement of the object,

or to reconstruct the depth information of the objects. There are other methods to obtain

the depth information using special sensors, for example, LADAR images or other radar

modalities. Pixel values in a range image are then related to the depth information. For

example, Flynn and Jain [33] use range images and a hashing scheme to recognize 3-D

objects.

Kanatani [55] classi�es matching methods into two classes: 3-D Euclidean approaches

and 2-D non-Euclidean approaches. In the �rst class, 3-D shapes are backprojected into

3-D space given the 2-D intensity image. Some constraints on the object are applied to

select a particular solution. The disadvantage of this approach is that the resulting 3-D

recovery equation may be very complicated; analytical solutions are di�cult to obtain.

Numerical methods always su�er from the di�culty that the iterations may not converge,

multiple solutions may exist, and the computation time may be long. For the second

class, the matching is performed in the image space using image characteristics. In this

approach, various invariant properties over groups of transformations are used. The

di�culty is that it is not easy to �nd good invariant properties that are rich enough to

describe a broad range of objects and robust enough to noise. The noise comes from

the sensor as well as the feature detectors. Sometimes the distinction between these two

approaches is not clear-cut. Hybrid methods that mix these two classes also exist. Our

classi�cation of the approaches is similar to Kanatani's. The di�erence is that the methods

that use multiple images belong to a 3-D Euclidean approach in his classi�cation scheme,

while the methods that use monocular images belong to 2-D non-Euclidean [62] or hybrid

approaches [51].

Usually a model-based object recognition system can be divided into four modules:

feature extraction, model building, matching, and the veri�cation and re�nement module.

The feature extraction module feeds the extracted features to the model building module

and the matching module. The reason for the use of feature extraction is not only for the

reduction of matching complexity, but also for robustness and
exibility of the recognition

system. The goal is to recognize the object from the test image which is di�erent from the

images that are prestored in the database. Matching the objects in the test image from the

prestored image database directly is unrealistic. The features can be classi�ed as region

based or edge based. For a region based approach, several methods have been proposed

in order to segment stable regions. For example, there are energy minimization methods

[93], and multiresolution schemes [77]. For edge based approaches, high curvatures, line

7

segments, circles, etc., are extracted based on an edge map and are used as the matching

primitives.

In next two sections, we review related work based on our classi�cation scheme. Their

relationship to the task of object recognition will be discussed. In the last section, we

review several results of invariant theory, which is related to the use an indexing approach

to the task of object recognition.

2.3 Monocular Image Methods

Applications that use monocular images are surveyed in this section. The subsequent

section is devoted to methods that use multiple images.

2.3.1 Matched �lter

Novak and Netishen [81] use four spatial matched �lter classi�ers for the problem of

automatic target recognition (ATR) using synthetic aperture radar (SAR). The concept

of a matched �lter has been applied to the area of signal processing for years [82]. The

candidate regions of interest are extracted by a CFAR (constant false alarm rate) detector.

Then the position and orientation of the detected object are determined by a template

matching process. This step is equivalent to applying a 2-D matched �lter to the candidate

objects. Three textural features, the standard deviation, the fractal dimension, and the

ranked �ll ratio, are also extracted at this stage. Finally, a four-class classi�er is used to

reject false alarms and to classify the detected objects. The approach is like the classical

template matching method but performed in a more e�cient way. The method can not

handle targets at variable scales and orientations other than those of the predetermined

models.

2.3.2 Generalized Hough transform

The original idea of the Hough transform is that instead of performing the search by

template matching, we can transform the problem to searching for a peak in parameter

space. The Hough transform provides a robust scheme for the extraction of various

features even when occlusion occurs [28]. A comprehensive survey of variant Hough

transforms is given by Illingworth and Kittler [52].

Linnainmaa at al. [68] use the technique of generalized Hough transforms to solve

the pose determination problem. By matching triples of points on the object to possibly

corresponding triples in the image, all six parameters of the object position are estimated.

Arti�cial polyhedral objects are used in their experiments. The result can be used to build

the model or to reconstruct the model from the image so that we can perform matching

in 3-D space.

8

Both the Hough transform and geometric hashing involve a voting process. The

main di�erence between the generalized Hough transform and geometric hashing is the

representation of the index space for the recognition stage. In the generalized Hough

transform, the range of parameters is a continuous unbounded space (unless geometric

constraints are used to limit the space), whereas in geometric hashing, the voting process

uses a discrete predictable collection of object model transformations.

2.3.3 Iteration method

Lowe proposes the SCERPO computer vision system to recognize 3-D objects from un-

known viewpoints in a single gray-scale image [75]. The objects are represented as polyhe-

dral solids. By using viewpoint invariants as trigger features to initiate a search process,

the best viewpoint parameters are found by means of a least-squares-error process in

image space. Newton's method is used to guide the optimization.

One of the major contributions of his approach is the proposed perceptual organization

process [74, 75]. Perceptual organization can be de�ned as the ability of the human visual

system to draw relevant groupings and data structures from an image without any prior

knowledge of its contents. He uses groupings of image elements to assist in establishing

the spatial correspondence between the model features and their image counterparts.

Collinearity, proximity, and parallelism, are viewpoint invariant, and are used as the basis

for grouping line features. However, parallel lines are not entirely perspective invariant,

but they are invariant under a weak perspective imaging model. This grouping process

can reduce the search space such that only a few initial matches are required.

The least-squares minimization process has been extended by Lowe to treat parame-

terized 3-D objects [76]. That is, the 3-D object is not necessarily rigid and is modeled

by parameters. One of the innovations of his minimization process is to adjust the pa-

rameters simultaneously, which is di�erent from a more typical approach to solving the

parameters by separating the rotation part and translation part [72]. The author argues

that although the projection from 3-D to 2-D is a nonlinear operation, it is a smooth

and well-behaved transformation. Thus, it is a promising candidate for the application of

Newton's method. The experimental results suggest that the method can apply to models

with curved surfaces and a large number of internal parameters.

Chen and Stockman [19, 18] also use an iteration method to match curved 3-D objects

using sets of 2-D image edge maps. Their approach includes the use of internal edges of

the object in order to compute more accurate computation of pose [18]. Newton's method

and least-squares minimization is used to compute the parameters of the transformation

of 3-D objects to 2-D image space. A process analogous to template-matching is used to

�nd the correspondences for the pixels on the curves. A quite accurate starting point is

required in order for the solution to converge to the global minimum.

9

The iteration method can give only one solution when convergence is obtained. The

solution may be wrong and is dependent on the initial value. The iteration method

provides a way to re�ne the �nal result after a good initial matching is derived.

2.3.4 Interpretation tree

Grimson and Lozano-P�erez propose a method called the interpretation tree to organize the

search for consistent matches between sensed data and object surfaces [40]. The method

can be categorized as a hypothesis-and-test paradigm. The generation and exploration

of the hypotheses for possible matching model and image features is performed by con-

structing a tree in depth-�rst fashion. Certain geometric constraints are used to prune the

search tree. However, the tree can potentially grow exponentially and the search process

can become exhaustive search.

2.3.5 Alignment

Huttenlocher and Ullman use the term alignment to refer to the transformation frommodel

to image coordinate frames [51]. They also de�ne the alignment system to �nd analytic

solutions for the parameters from corresponding model features and image features. They

propose a method for computing a transformation from three non-collinear points under

a weak perspective assumption. The system is operated in a prediction-and-veri�cation

fashion. After a possible alignment from a pair of triplets of points is determined, com-

plete edge contours are then used to verify the hypothesized match. For m model points

and n image points, there are

m

3

!
n

3

!
3! possible alignments, which are explored

in an exhaustive search. In their implementation, each model point is associated with an

orientation attribute. The intersection of two lines which are de�ned by two points and

their orientations are used to induce the third point. Thus each pairing of two model and

two image points forms an alignment. Using this technique, they reduce the number of

alignments to

m

2

!
n

2

!
2!. Each possible alignment must be veri�ed by matching

the transformed model with the image. They organize the veri�cation process in a hier-

archical fashion: segment endpoints are used for initial veri�cation �rst, and only those

alignments that pass the initial veri�cation use the entire contour to perform detailed

veri�cation. Actually, the solution they �nd is unique up to a re
ection ambiguity. Since

the alignment of features is local and is obtained by identifying corners and in
ections in

edge contours, the features are insensitive to partial occlusion. On the other hand, this

method can be viewed as the estimation of the transformation parameters, which requires

a least squares �t to improve the �nal position estimate as in Lowe's system.

Compared with Huttenlocher and Ullman's approach, Dhome et al. use triplets of

10

lines to compute the alignment under a full perspective transformation assumption [26].

The origin of the image coordinate system and the image lines form an interpretation

plane. Using the condition that the line corresponding to the image line must lie on the

interpretation plane, they obtain an equation related to rotation parameters only. Instead

of solving the system of equations directly, they de�ne another model coordinate system

and viewer coordinate system and derive a polynomial equation of degree eight in one

unknown. Special line con�gurations such as coplanar lines simplify the equation to fourth

degree. By solving the equation iteratively, they derive several solutions that need to be

pruned by the geometric constraints.

Horaud et al. provide an analytic solution using four non-coplanar points [50]. The

non-coplanar points are equivalent to a pencil of three non-coplanar lines that share one

of the four points. Instead of solving the transformation between the object coordinate

system and the camera coordinate system directly, they also introduce another image

coordinate system that is rigidly attached to the projections of the object features. The

solution can be derived by solving a biquadratic polynomial equation in one unknown.

Research in this direction involves �nding a way to derive a system of equations that

can be solved analytically. Usually a special con�guration for the model is assumed. But

analytic solutions are usually not available. These systems all derive sets of equations

whose solutions provide the transformations from model to image coordinate frames. The

transformations form hypotheses that need further veri�cation.

2.3.6 Indexing method

Based on a�ne invariant features, Lamdan et al. [62, 61, 64] develop an e�cient technique,

geometric hashing, for the model-based recognition task. A brief review of geometric

hashing is given in Chapter 1. The basic idea of this method will be further addressed in

Chapter 3.

Compared with the alignment method which performs an exhaustive enumeration over

all possible pairs of minimal sets of model and image features, geometric hashing can be

viewed as an indexing scheme that trades space for computation complexity in an average

case setting. One of the distinct features of the geometric hashing method is that the

matching among the models is performed simultaneously. That is, the information in

each model is not matched to the scene one after another.

Clemens and Jacobs [25] discuss the fundamental limitations on the minimum amount

of information that must be stored and on the speed up of the recognition process when

using this kind of hashing.

11

2.4 Multiple Images Methods

In this section, we discuss the methods using multiple images. We review several results

for motion parameter estimation. Based on the primitives used in the recovery equation,

we classify the methods into two categories, namely, the methods based on point cor-

respondence and the methods based on line correspondence. We can use the estimated

motion parameters to build the models or to reconstruct the depth information in order to

match the object in 3-D space. Finally, we review the methods that fuse the information

provided by multiple sensors.

To perform 3-D motion analysis one can assumes that either the objects are moving

or the observer is moving. Generally speaking, the problem for both cases are essentially

the same. If all of the objects in the scene moving in the same direction, the situation is

the same as if the observer were moving in the opposite direction. The most complicated

case is that there are several objects in the scene and each object moves with di�erent

motion parameters. If the motion is large, the techniques such as optical
ow analysis are

not applicable. Then the problem of estimating the three-dimensional motion parameters

can be divided into three steps: establishing the feature correspondences for all pairs of

consecutive images in the sequence; estimating motion parameters from these correspon-

dences; and then using the computed motion parameters to understand the local motion

or to recognize objects based on the pre-established object models. The �rst step is usu-

ally the most di�cult one, since an image may have more than one object and thus many

features to choose from.

There are many researchers focusing on the correspondence problem. The early work

done by Barnard and Thompson [5] �nd point correspondences by relaxation to perform

disparity analysis between two images. Wang et al. [113] also use a relaxation method

based on patterns of local features to �nd the correspondences. They use corner features

between pairs of images. Grimson [38] develops a modi�ed algorithm based on Marr and

Poggio's work. In Grimson's paper, experiments using natural images are also provided.

Mohan et al. [78] use the �gural continuity constraint on the disparity data and develop an

algorithm for error detection and correction of disparity. The �gural continuity constraint

on disparities is de�ned as the condition that the disparity along an edge contour changes

smoothly, i.e., there should be no disparity discontinuities along a contour. The algorithm

may be used for edgel based stereo matching, where an edgel is an edge having an extent of

one pixel. Experiments using natural stereo images are also described in Mohan's paper.

Ho� and Ahuja [46] integrate the processes of feature matching, contour detection, and

surface interpolation to extract surfaces from stereo. Planar and quadratic patches are

used as local models of the surface of objects, i.e., the approach uses surface information as

the matching primitives instead of using feature points. Dohond and Aggarwal [27] review

12

recent developments in establishing stereo correspondence for the purpose of �nding the

3-D structure of a scene. Chen and Huang [17] perform matching of 3-D line segments for

correspondence analysis. They divide the matching step into two stages: �rst dealing with

the orientation using tree-search and then dealing with the position of the line segments

using a Hough clustering technique. They argue that some of the distance metrics that

previous researchers used were not very suitable. The method developed by Yeshurun

and Schwartz [120] is an interesting method among all these approaches. Their algorithm

is motivated by the observed pattern of ocular dominance columns of a one-eyed macaque

monkey. By arranging the image data in a columnar fashion, the algorithm can e�ciently

detect the disparity of the two images by using a \cepstral �lter". The algorithm is

suitable for implementing a real-time binocular vision system.

In general, there is a trade-o� in computing the solution to the correspondence problem

and accuracy of the information extracted from the images. That is, if the images are

quite di�erent, then more information can be extracted and the data will be more accurate.

However, di�culty arises when we try to establish correspondences between the features.

The di�culty for the correspondence problem arising from the 3-D objects themselves

will be the distortion by perspective projection and occlusion of parts of objects by the

other objects in the scene.

2.4.1 Point correspondences

The pioneer work done by Roach and Aggarwal [92] depends on numerical methods to de-

rive the motion parameters by solving a system of nonlinear equations. They note that two

views of six points or three views of four points are needed to provide an overdetermined

set of equations when the images are noisy. Their paper does not provide experimental

results.

There is no developed systematic theory for solving systems of nonlinear equations.

Consequently, the equations have to be solved by numerical methods. The di�culty with

numerical methods is that they sometimes fail because either they fail to converge or they

converge to the wrong answer. The numerical methods also require proper initial guesses

for the unknowns. Thus it is generally preferable to �nd closed-form solutions.

The work done by Tsai and Huang [109] is the �rst to solve this problem analytically.

They use techniques in linear algebra to derive a closed-form solution to the problem.

They show that seven point correspondences are su�cient to uniquely determine the

motion parameters from two perspective views. They introduce a set of \essential pa-

rameters" that can uniquely determine the motion parameters up to a scale factor and

can be derived from eight image points. That is, given eight point correspondences in

general position, the essential matrix E can be determined uniquely by solving eight linear

equations. The approach is of uncertain noise immunity. According to their simulation

13

results, the error grows rapidly as the perturbation of image points grows. As an example,

when the noise in the location of image points is one percent of the disparities, the error

for translation and rotation parameters can be up to 54% and 15% respectively. If twenty

point correspondences are given, the error can be reduced to around 10% for translation

parameters and 1% for rotation parameters, which is still quite large. It is quite easy to

produce one percent error positional information during image processing.

Although the work done by Fang and Huang [30, 31] still uses point correspondences

and numerical methods. They show experiments using real world images. In the �rst

paper, they compare di�erent numerical methods based on results from Tsai and Huang's

work [109]. A more detailed error analysis is also provided. They show that if nine points

are not on a second-order surface passing through the viewing point, then the solution

of the motion parameters can be uniquely determined. According to the experiments

reported by Fang and Huang, a modi�ed Newton method and a modi�ed Levenberg-

Marquardt method behave well for these motion equations, yielding an average success

rate of 70%. The failures are due to the procedure converging to a local minimum which is

not the global minimum, or the procedure not converging. Their experiment is based on

54 sets of solutions with rotation angles varying from 0.01 to 0.1 radians and the distance

of the object from the camera, z, ranging between 5 and 50 focal lengths. One important

result is that the distance z has a large impact on the accuracy of the solution to the

equations: the larger the distance, the more di�cult the task is, which Fang and Huang

conjecture is due to the e�ect of round-o� errors.

In a subsequent paper, Fang and Huang [31] give a method to �nd coordinates of corner

features to subpixel accuracy. They use real images to �nd the motion parameters. The

main conclusion is that the estimation of the general 3-D motion parameters is sensitive

to errors in the raw data. This situation becomes more serious when they use real-world

images from a low resolution camera. A small rotation (2-4�) is helpful for obtaining good

results. A larger rotation makes it di�cult to obtain a good initial guess for solving the

nonlinear equations. The amount of translation in the z-direction, i.e., the relative scale

between the two images, has a signi�cant e�ect on the accuracy of the results. The larger

the translation in the z-direction, the more accurate1 the results. But a larger translation

in the z-direction causes a larger scale di�erence in the two images, which makes matching

the corresponding points more di�cult. There are also interactions between the rotation

and the translation. The results for motion parameter estimation using a TV camera are

not very accurate and the angle of rotation can only be in the range of 1-5�.

Weng et al. [117] treat the problem of motion parameter estimation from point cor-

respondences beginning from the work of Tsai and Huang [109]. Their contribution is to

1Note that this result is opposite to the one reported in the �rst paper [30], even though the algorithm

is the same.

14

provide further error analysis and error estimation involving least-squares optimization

or pseudoinverse.

2.4.2 Line correspondence

All the works surveyed in the previous section use point correspondences, whereas the

work done by Liu and Huang [71] uses line correspondences. The signi�cance of using line

correspondences is that precise point correspondences are not required, and that the less

informative matching of pairs of lines is likely to be more robust. Since it can be shown

that it is impossible to solve the rigid body motion problem with line correspondences

over only two frames, they use three frames to solve the problem. More speci�cally, they

assumed that a 3-D object moves and three image views are taken by a stationary camera

at three time instants. Correspondences of a line over three image frames are obtained.

Then, there are two sets of motion parameters: R12 and T12 for the object moving from

position 1 to position 2, and R23 and T23 for the object moving from position 2 to position

3. Each set of parameters contains rotation parameters R and translation parameters T .

Using the constraint that the normals of the three corresponding interpretation planes

are coplanar, an equation with six unknowns results. Their approach uses an iterative

method to solve this nonlinear equation based on six or more line correspondences over

three frames, yielding the rotation part. After the rotation parameters are found, the

remaining unknown is the translation. Again, they considered the relations between the

three parallel lines, and derived a linear equation from each line correspondence pair.

They provide experimental result by simulation. Reasonable results are obtained when

the noise is less than 1%.

The main advantages of their approach is that (1) they use line correspondences only;

(2) they separate the rotation part and the translation part. However, since the input

data for determining the translation involves the results of the rotation estimation, the

computed results of the translation estimation are sensitive to the errors of the solution of

the rotation part. What is worse, iterative methods that are used in solving the rotation

part often converge to a local minimum instead of the global minimum. These methods

must start with a good initial guess to obtain good results. Liu and Huang's experiments

shows that convergence to the correct solution requires that the rotation lie in a quite

small range (�3� to �5�). Liu et al. [72] use line or point correspondences to determine

the camera location, following up on their previous work [71], and making use of the work

of Liu and Huang.

Spetsakis and Aloimonos [103] also compute the 3-D motion and structure from dy-

namic imagery using line correspondences only. As compared with Liu and Huang's

approach which uses an iterative method to solve the nonlinear equations for the rotation

parameters, they develop a calculus to obtain a closed-form solution for this problem.

15

Instead of separating the rotation part and translation part, they adopt the concept de-

veloped by Tsai and Huang [109] for computing the essential matrix with 26 variables

(essential parameters).2 Two independent linear equations3 can be obtained from one line

correspondence. Thus they require at least thirteen lines to solve for the 26 parameters.

Two methods are suggested to derive the solutions when more than thirteen corre-

sponding lines are available: the least-squares technique and a Singular Value Decom-

position (SVD) method. The main result is that they derive a closed-form solution for

the motion parameters from the essential parameters. The uniqueness of the solution is

also discussed. Experimental results from simulations show that their algorithm is un-

stable for a small number of lines but becomes stable as the number of lines increases.

For 1% error4 in input locations and for thirty line correspondences, they obtain about

1.8% error in translation estimation. As compared with Tsai and Huang's work [109],

this shows that the line-based algorithm is more stable than an algorithm based on point

correspondences.

2.4.3 Multisensor fusion

Since there are several kinds of sensors and several kinds of feature detectors are avail-

able nowadays, the fusion of various information becomes an appealing approach. The

cooperative-method paradigm has been applied to various applications. For example,

Schufelt and McKeown, Jr. [101] fuse hypotheses to detect man-made structures visible

in aerial images. The information provided by four kinds of building extractors, BASE,

SHADE, SHAVE, and GROUPER, are fused together by a simple strategy. The BASE

(builtup area building extraction) building extractor uses lines and corners to extract

buildings. The SHADE (shadow detection) building extractor is based on a shadow anal-

ysis method. The SHAVE (shadow veri�cation) is a hypothesis veri�cation system using

shadow analysis. The GROUPER is a system for grouping fragmented building hypothe-

ses using the edge information of buildings and shadows. The segmentations of the �nal

result are generated by applying connected component region extraction to the accumula-

tor image of the building extractors followed by a thresholding. The threshold value one

is used in their experiments which in fact the resulting regions are the geometric unions of

the regions detected by these building detectors. Their experiments show the performance

improvement over individual building extraction methods.

Chu and Aggarwal [24] combine region and edge information extracted from di�erent

types of sensors and image processing methods. A cost function is de�ned and a maxi-

2These unknowns are dependent; only �ve of them are independent.
3The equations are nonlinear in terms of the motion parameters but are linear in terms of the essential

parameters.
4I.e., the length of the error vector is f=100, where f is the focal length.

16

mum likelihood estimation strategy is used to optimize the criteria of �delity, smoothness

and connectivity. Combining di�erent sources of information, they obtain a better seg-

mentation results.

2.5 Invariant Theory

In this section, we review the work that addresses invariant theory. As described in the

previous section, to facilitate the recognition process, projective invariant features may

be needed, using either a�ne invariance or perspective invariance. The purpose of the

study of the invariant theory is to design suitable and stable invariant features that can

be used in 3-D object recognition systems.

2.5.1 Non-existence of general-case view invariants

It is desirable to de�ne a general-case feature that is viewpoint invariant. But Burns

et al. [11, 12] provide an argument that proves that there is no general-case viewpoint

invariant feature de�ned for any number of points under orthographic, weak perspective,

or perspective models. Only in special-case, that is, only for special con�gurations of 3-D

points, do invariant features exist.

Their argument shows that general case non-trivial view invariant does not exist for

the orthographic, the weak perspective, and the perspective projection models. Only for

special con�gurations such as coplanar points will invariants exist.

In next section, we list several results for various invariants.

2.5.2 Invariant features

We use invariant features to recognize an object by its intrinsic properties, independent

of the particular view. Invariant features are de�ned in terms of a speci�c projection

model. Some features are invariant with respect to a�ne transformation, whereas some

are invariant to perspective transformation. The invariant should be formulated in terms

that they are easy to compute from a particular image of the object and robust to the

existence of noise.

The well known cross-ratio [28, 94] relates collinear points in the plane to the pro-

jections through a point onto a line. It is a concept relating distances between collinear

points. The cross-ratio depends only on relative distances along the line and is indepen-

dent of the coordinate system.

The cross ratio is an invariant quantity under linear fractional transformations which

can be formulated by two general methods [6]: the ratio-of-determinants method and a

homogeneous equations method. Linear fractional transformations are mappings that take

17

each complex point z into a complex point w according to the equation

w = T (z) =
az + b

cz + d
;

where ad� bc 6= 0.

The spirit of the ratio-of-determinants method is to judiciously select combinations of

points so that the determinants involving the parameters (a; b; c; d) cancel in the numerator

and the denominator of a ratio; leaving the desired invariant as a residue. The idea of the

homogeneous equation method is to use the constants in the linear fractional transforma-

tion as place-holders that de�ne a homogeneous relationship among the \object-points"

z1; : : : ; z4 and \image-points" w1; : : : ; w4. This method is useful in making generalization.

Generalizing from the idea of the cross-ratio, Barrett et al. [6] develop the following

invariants:

� Cross-ratios in two-dimensions (noncollinear object points) for binocular images.

The generalization to multiple nonparallel images by using the homogeneous equa-

tions method involves nine images with six image points.

� Cross ratio between the coplanar object points and their corresponding projected

image. The generalization to multiple nonparallel images by using the homogeneous

equations method involves nine images with six image points.

� Cross ratio between the coplanar object points and their corresponding projected

image.

� Cross ratio in three-dimensions (noncoplanar object points) for binocular images.

The generalization to multiple nonparallel images involve 34 images with eight ob-

ject points which are distributed in 3-D space. The ratio of functions of image

points is equal to the ratio of functions of volumes of tetrahedron de�ned by the

object points.

Arbter et al. [2] develop a method to produce a set of normalized coe�cients for

Fourier descriptors which are invariant under a�ne transformations. Fourier descriptors

are a method of describing the shape of a closed �gure, and has been used in aircraft

identi�cation for years [112, 59, 21]. Note that the contour descriptors su�er di�culty

when objects are occluded.

Forsyth et al. [34] construct shape descriptors for planar objects that are una�ected by

the transformation between the object and the image plane. In addition to the invariants

in the previous paragraphs, some other invariant examples that may be interesting can

be found in their review. For example, they de�ne:

18

� Di�erential invariants, which are invariant functions of the position and derivatives

of a curve such as curvature and torsion at a single point.

� Projective invariants for pairs of plane conics. By writing planar conic as ~xtC~x = 0

for ~xt = (x; y; 1) and a symmetric matrix C, a pair of coplanar conics has two scalar

invariants IC1C2
and IC2C1

. Here IC1C2
= trace(C�1

1
C2).

� Projectively invariant measurements. If there is a distinguished conic curve in the

plane (say, C), then for two points ~x1 and ~x2 that do not lie on the conic, the

function
(~x1

tC ~x2)
2

(~x1
tC ~x1)(~x2

tC ~x2)

is independent of the frame in which the points and the conic are measured.

� Permutation invariants. By using symmetric functions, they can de�ne new invari-

ants based on the original invariants that are una�ected by permutations of their

argument.

Forsyth et al. also discuss two techniques for constructing the invariants [34], the

in�nitesimal method and the symbolic method. The in�nitesimal method gives invariants

as the solutions to a system of di�erential equations which is applicable to all Lie groups.

Symbolic methods have been used for �nding invariants of forms under the action of a

range of groups by a number of mathematicians in the nineteenth century.

The a�ne invariant of planar point sets used by Lamdan et al. [62, 61, 64] is based

on the concept that when an a�ne basis is speci�ed by a triplet of non-collinear points,

then the coordinates of all the other points that are given in the coordinate system of the

triplet are a�ne invariant. That is, suppose three non-collinear points e00, e10, and e01

are used as an a�ne basis. Then any point v in the plane can be represented as

v = �(e10 � e00) + �(e01� e00) + e00:

That is, v has coordinate (�; �) in the coordinate system formed by e00, e01, and e10. The

coordinate (�; �) for point v is an invariant quantity if the entire plane is transformed by

an a�ne transformation.

Similarly, Lamdan and Wolfson further extend the above concept to the case of a�ne

transformation from 3-D space to a 2-D image [64]. The singular a�ne transformation

is to approximate the perspective transformation. A set of four non-coplanar points

e0
0
; : : : ; e0

3
in 3-D space is chosen as the 3-D a�ne basis. Any 3-D point e0 is de�ned

by its coordinate triplet in this coordinate system. Since in the 2-D image space, only

two linearly independent vectors are required to span the space, the invariant coordinate

of a point in 3-D space is no longer one-to-one corresponding to a single point in 2-D

19

Reference Name & Features Special con�guration Comment
[28] Cross ratio Collinear Distance of points and
[94] (four points) their projection on the

line
Angle cross ratio & Noncollinear in a plane Between binocular
area cross ratio images
(�ve points)
Volume cross ratio Noncollinear in a plane Between nine nonparallel
(six points) image planes

[6] Area cross ratio Coplanar object point Object points and their
(�ve points) projected image points
Volume cross ratio Noncoplanar object Binocular images, volume
(six points) points of object points
Volume cross ratio Noncoplanar object Between 34 nonparallel
(eight points) points image planes, their

volume of object points
[2] Relative invariant Coplanar Invariant under

(contour descriptor) a�ne transformation
Conic cross ratio Coplanar Similarity transformation,
(two conics) projective transformation

[34] Distance invariant Coplanar but points do Projective transformation
(two points & one conic) not lie on the conic

[62] Point invariant Noncollinear A�ne transformation
[61] (three points as basis) from 2-D to 2-D
[64] Point invariant Noncoplanar A�ne transformation

(four points as basis) from 3-D to 2-D

Table 2.1: A summary of invariants given by di�erent authors, organized by reference.
For each invariant, preconditions and comments are given.

space. Instead, it corresponds to a line in 3-D hash space. The derivation is based on the

linearity of the a�ne transformation for vectors.

Various invariants and their special con�gurations are summerized in Table 2.1. Other

invariants can also be found [116, 80, 102]. We may �nd that some of the special con-

�gurations are too restricted. The goal is to �nd projective invariant features that are

robust to noise, easy to compute, and functionally independent. In addition, the special

con�gurations should be easily found in most objects that we want to recognize.

20

Chapter 3

Bayesian Updating

The basic idea of geometric hashing can be described as follows. In the model building

phase, we normalize the features by using the notion of a basis set. The normalized

features are tagged with the basis information together with the information of the model

that possess these features. This process is done for every model and is repeated for every

possible basis. The result is stored in a hash table. During the recognition phase, we

randomly choose a basis in the test image and normalize the features. Those entries in

the hash table that are close to the normalized features in the test image contribute votes.

The votes with the same tag information are accumulated. Since we build the hash table

redundantly, once we select a correct basis, we expect that the corresponding model with

the correct basis will accumulate a large vote. The geometric hashing scheme for the case

of similarity transformation is shown in Figure 3.1.

More precisely, a model consists of a prototype collection of features f(xi; yi)gni=1. We

will have many models, m1; : : : ; mn, so thatmk = f(xk;i; yk;i)g
nk
i=1. Di�erent models may

have di�erent number of features nk.

If T is a similarity transformation, then T can be described as a translation by some

vector (a; b), followed by a rotation angle �, followed by a scaling by s:

T = Ss � R� � T(a;b);

T(a;b)(x; y) = (x+ a; y + b);

R�(x; y) = (x cos�� y sin�; x sin�+ y cos�);

Ss(x; y) = (sx; sy):

In general, T could be a translation transformation, an a�ne transformation, or a pro-

jective transformation, and the dimension of the features can also vary. Speci�cally, for

the case of similarity transformation, consider model mk and basis points (xk;�; yk;�),

21

model 1, basis 1

model 1, basis 2

model m, basis k

p = (x; y)

(�; �)

�

1

2

1

2

p� = (x�; y�)

p� = (x� ; y�)

Figure 3.1: The geometric hashing scheme for the case of similarity transformation.
Point pair (p�; p�) is used as a basis which de�nes a coordinate system. The normalized
coordinate (�; �) for feature point p is used as the key to index into the hash table.

(xk;� ; yk;�) from model k, which we will denote by p� and p� respectively. For every other

point p = (xk;i; yk;i) in mk , we de�ne the hash function

h(p�; p� ; p) = (�; �); (3.1)

where (�; �) gives the feature value of T (p), where T is de�ned to be the similarity

transformation such that

T (xk;�; yk;�) = (�1=2; 0);

T (xk;� ; yk;�) = (1=2; 0):

Unlike the typical computer science notion of a hash function, h is continuous in all

variables.

The object recognition problem is then stated as follows. Given a collection of models

m1; : : :mn, with each model formed by a set of features mk = f(xk;i; yk;i)g
nk
i=1 and given

a scene S = f(x̂j; ŷj)gsj=1; �nd instances of models in the scene. An instance is de�ned to

be a model number k, a transformation T , and a subset S0 of S such that for each feature

(x̂j ; ŷj) 2 S 0 in the subset of scene features, some transformedmodel feature approximates

it: T (xk;i; yk;i) � (x̂j ; ŷj). In order to be a valid instance, the number of features in the

subset S0 must be some large fraction of the number of features nk in model mk.

During the preprocessing stage of geometric hashing, hash entries are formed by com-

puting the normalized features given by Equation 3.1. Each hash entry is tagged with

information (mk; p�; p�). The process is repeated for all reasonable bases for all models.

22

Conceptually, a �lter is formed by all the normalized features corresponding to the same

(model, basis) information. The hash table consists of a set of �lters. The recognition

problem becomes the problem of �nding the �lter with the maximum response given the

normalized scene features. In reality, all the �lters are collapsed together and form the

entire hash space.

In the recognition stage, features are extracted from a scene, yielding a set of S =

fp̂j = (x̂j; ŷj)gsj=1. A pair of points are chosen as a trial basis, say p� and p� . Using the

trial basis, we perform a set of probes, which together constitute a single trial. A probe

consists of the computation of a hash value h(p�; p�; p) = (�; �), based on a point p 2 S

and then a determination of all entries that lie close to (�; �) in hash space. For each

such entry, we can compute a distance from its location to (�; �), and we then increment

an accumulator associated with its tag (a model number k and a pair of point indices in

mk , say (�; �)), by an amount related to that distance. This is done for every entry near

(�; �) and is repeated for all possible probes as p varies over S. The exact meaning of

\near" in the hash space, the distance metric, and the accumulator increment function,

are components of the geometric hashing algorithm that are speci�ed by the Bayesian

reasoning interpretation. We next turn to this interpretation.

Geometric hashing has a Bayesian interpretation [86, 91]. Our interpretation will

extend this formulation, but the resulting formula will remain essentially the same. We

describe our Bayesian interpretation in the next section. The Bayesian interpretation

provides a basis for assigning the proper weight for the vote of a normalized scene feature

voting to a nearby entry in hash table. The generalization for the case that various number

of features for each model and the case that each feature carries its own individual non-

obscuration ratio are also discussed. The de�nition of non-obscuration will be addressed

later. We conclude this chapter with the derivation of distribution for invariants. The

formula will be used in the implementation.

3.1 Bayesian Formulation of Geometric Hashing

The Bayesian framework for geometric hashing is described in this section. Our treatment

re
ects the work of Rigoutsos and Hummel [86, 91], although some re�nements in the

formulation are incorporated. We form the hypothesis that model mk is present in the

scene with basis B in mk matching the basis B0 in the scene. We denote the hypothesis

as the event E(mk; B; B
0). We are interested in knowing which hypothesis has higher

probability Pr(E(mk; B; B
0)jS), where S represents the normalized scene features,

S = f ~uj j1 � j � sg;

23

and s is number of features in the scene. From Bayes' theorem [82, 28], we can compute the

a posteriori probability Pr(E(mk; B; B
0)jS) from a priori probability Pr(E(mk; B; B

0)):

Pr(E(mk; B; B
0)jS) =

f(SjE(mk; B; B
0)) � Pr(E(mk; B; B

0))

f(S)
;

where f denotes the probability density function. If we assume that all prior probabilities

of the events E(mk; B; B
0) are uniform, then we are asked to compute and maximize

f(SjE(mk; B; B
0))

f(S)
: (3.2)

Actually, if model mk is present in the scene, there may be many pairs of (B;B0) for

which the event E(mk; B; B
0) is true. However, we need to �nd one such pair if the model

appears in the scene. It is equivalent to maximize the logarithm of Equation 3.2. That

is, we wish to compute and maximize

log

�
f(SjE(mk; B; B

0))

f(S)

�
(3.3)

for each hypothesis E(mk; B; B
0).

If the features are conditionally independent, Equation 3.3 can be decomposed further.

That is, we assume that

f(SjE(mk; B; B
0)) =

sY
j=1

f(~uj jE(mk; B; B
0));

then Equation 3.3 becomes:

logK +
sX

j=1

log

f(~uj jE(mk; B; B

0))

f(~uj)

!
;

where

K =

Qs
j=1 f(~uj)

f(S)
:

Since K is independent of E(mk; B; B
0), the log(K) term can be ignored. Thus, we need

to compute the following equation:

sX
j=1

log

f(~uj jE(mk; B; B

0))

f(~uj)

!
: (3.4)

The denominator f(~uj) is the prior probability that a normalized feature appears at

location ~uj . The features are chosen randomly from a random scene. We will assume in

24

many cases that the features are uniformly distributed in the entire image domain. For

example, suppose that the features represent normalized position information, where the

normalization induces an a�ne transformation

~u = A~x+~b;

the density distribution is modeled by

f(~u) =
1

det(A�1) � jRj
; (3.5)

where jRj is the area of the image domain, det(A�1) is the Jacobian of the transformation

from the image domain to the normalized feature domain. In other cases, the distribution

is nonuniform, such as the case described by Rigoutsos and Hummel [91, 86].

The numerator of Equation 3.4, f(~uj jE(mk; B; B
0)), will be derived in the next section.

We will also discard the assumption that every model has a uniform number of features.

Instead, we will assume that model mk has nk features.

3.2 Variable number of features for each model

Prior formulations of implementations of Bayesian-based geometric hashing have assumed

that each model mk has an equal number of features. Our treatment below relaxes this

restriction.

The probability density function f(~uj jE(mk; B; B
0)) is computed under the condition

that event E(mk; B; B
0) is true. That is, we know that the normalized features f~xig,

for i = 1; � � �nk, are embedded in the scene. We assume that each occurrence of model

feature is represented by a Gaussian spike in the distribution function at this moment.

We will derive the distribution for a normalized model feature in Section 3.3. A residual

background distribution is also included. The conditional density function is thus:

f(~ujE(mk; B; B
0)) = ~�(~u) =

s� �nk
s

� f(~u) +
�

s
�
nkX
i=1

GCi
(~u� ~xi); (3.6)

where xi's represent the expected features and each Ci represents the covariance matrix

for its variation. Here, s is the number of features in the scene, and nk is the number of

features in model mk. Further, GCi
represents multi-dimensional Gaussian function with

Ci as its covariance matrix. We also assume that a certain amount of non-obscuration,

having a non-obscured percentage of the expected features, which we denote as �. The

generalization for the case that each individual feature possesses its own non-obscuration

rate will be discussed in Section 3.2.1. Plugging Equation 3.6 into Bayesian formula

25

(Equation 3.4), we have

sX
j=1

log

s � �nk

s
+

�

s�(~uj)

nkX
i=1

GCi
(~uj � ~xi)

!
;

which is equivalent to

�s log

�
s

s� �nk

�
+

sX
j=1

log

1 +

�

(s� �nk) � �(~uj)

nkX
i=1

GCi
(~uj � ~xi)

!
:

The function � is an instance of the background distribution f . We can stop here. How-

ever, for any scene feature ~uj , we would like to associate it with at most one of the model

features ~xi that is the nearest. The reason is that a scene feature can not be matched to

several model features when a basis is given. Note that a scene feature still can contribute

to several hash entries if these entries come from a di�erent model or if they are nor-

malized by di�erent bases. Suppose the closest entry is indexed by ij . The summation

of Gaussian can be approximated by a single term GCij
(~uj � ~xij). Thus, we obtain the

following weighted voting formula:

�s log

�
s

s � �nk

�
+

sX
j=1

log

1 +

�

(s� �nk) � �(~uj)
GCij

(~uj � ~xij)

!
: (3.7)

The Gaussian term GCij
(~uj � ~xij) will contribute a vote to the corresponding bucket

if the hash entry ~xij lies within a certain range of the normalized scene feature ~uj . It

will contribute zero if the closest entry is too far away from ~uj , or if the hash entry ~xij
has been \occupied" by another closer scene feature. In that case, the normalized scene

feature ~uj will be considered as a background feature which will contribute a vote with

the amount of log
�
s��nk

s

�
.

Due to the way we have formulated things, we observe that each scene feature ~uj
increments s, and hence has an e�ect on the bias term, and may (or may not) contribute

to the second term. Disregarding the derivation of the formula, we could consider two

plausible approaches for contributions by scene features:

(1) When a scene feature is associated with a model feature, the scene feature can

contribute both to the log bias term and the Gaussian term. The reason is that the

summation of these two terms is the the value of the conditional density function

for that realization. The other Gaussian terms are neglected. In this case, we need

the assumption that two model features are far enough that the contributions to all

but one of the model features is negligible. If a scene feature can not be associated

with any model feature due to the closest model feature being occupied, or, if it is

too far from any model feature, it will contribute a vote to the amount of the log

bias term only.

26

(2) When a scene feature is associated with a model feature, the scene feature con-

tributes the Gaussian term only. Scene features without an association contribute

to the log bias term. Again, we can use the �rst order approximation. Thus, there

are at most nk Gaussian terms and at least s� nk log terms summing together.

In either case, our formula given by the above derivation works if the number of

scene features s is large compared to � � nk . When s is close to � � nk , or even smaller

than � � nk , the analysis does not work. We need a more complicated analysis of the

association of scene features to model features. For example, a model can accumulate the

same vote regardless the number of background scene features in some cases. But our

current formulation does not cover this case.

In the following sections, we will assume that s is large compared to � � nk and use

Equation 3.7 as the weighted voting formula.

3.2.1 Individual non-obscuration ratio of features

The above formula (Equation 3.7) assumes that the non-obscuration ratio for features is

a constant. Suppose each feature has its own non-obscuration ratio. The revised formula

gives important features more weight, where important features are ones that are more

likely to be detected in the image of the model.

We recall that the expected density distribution for features under the condition that

event E(mk; B; B
0) is true is ~� :

~�(~x) =
s � �nk

s
� �(~x) +

�

s
�
nkX
i=1

GCi
(~x� ~xi):

Now we assume that each feature xi has its own non-obscuration ratio �i; the condi-

tional density function becomes:

~�(~x) =
s �

Pnk
i=1 �i
s

� �(~x) +
1

s
�
nkX
i=1

�iGCi
(~x� ~xi):

When each �i is a constant �, the revised formula is the same as the old formula.

Following the same derivation as before, the revised weighted voting formula for nor-

malized scene feature becomes:

�s log(
s

s� �t
) +

sX
j=1

log

1 +

�ijGCij
(~uj � ~xij)

(s� �t)�(~uj)

!
; (3.8)

where

�t =
nkX
i=1

�i;

27

and index ij refers to the nearest normalized model feature. In reality, we can decompose

each non-obscuration ratio �i into two parts, �G and ~�i, where �i equals to �G � ~�i.

We call �G the global non-obscuration ratio, which describes the visibility of the whole

object. This constant can be assigned for each test image during the recognition stage.

The local non-obscuration ratio ~�i describes the individual visibility of each feature and

is determined in the model building phase.

The covariance matrix Ci captures the dispersion of each feature while the non-

obscuration ratio �i describes the importance and detectability of each feature.

3.3 The Distribution of Invariants

We next derive the formula for the distribution of normalized features (see Equation 3.7).

Our derivation is systematic and is a standard procedure to compute the distributions

when a Gaussian noise model is adopted. We compute only to a �rst order approximation,

so that the transformation of a Gaussianly-distributed random variable will still be a

Gaussian according to our formulas. As in [106], we make use of the following results,

quoted from [47]:

Theorem 3.1 Let X1; X2; :::; Xn have a multivariate Gaussian distribution with vector u

of means and positive de�nite covariance matrix�. Then the moment-generating function

of the multivariate Gaussian p:d:f: is given by exp[tTu+ tT�t

2]; for all real vectors of t:

Corollary 3.2 Let YT = (Y1; : : : ;Ym) such that Y = WX, where XT =

(X1; X2; :::; Xn) and W =

0
BB@

w11 w12 � � � w1n
...

...

wm1 wm2 � � � wmn

1
CCA, a real m � n matrix. Then the

random variable Y is N (Wu;W�WT).

In the corollary, N (Wu;W�WT) means that Y is Gaussian with mean Wu and co-

variance W�WT , where Y = WX is a linear transformation of X, which in turn is a

multivariate Gaussian distribution with vector u of means and covariance matrix�. This

result allows us to compute the statistics of a linear transformation of Gaussian random

variables.

Sometimes the transformation is not linear. We use a �rst order approximation to

represent the transformed random variable as a linear combination of original random

variables. Thus, for a transformation Y = f(X), we approximate

f(X+�X) = Y +�Y;

�Y � rf(X) ��X; (3.9)

28

p

p3

p1 p1p1

p2

p2

p p

Figure 3.2: The con�gurations for (1) translation, (2) similarity, and (3) a�ne trans-
formation invariant. Point pi's is used as the basis to de�ne a coordinate system. The
coordinate of a point p in the de�ned coordinate system is used as the invariant.

where �X and X are generalized to n�1 vectors. VectorrX represents the perturbation

of vector X. The �rst derivative of function f should exist and be continuous. The r

operator is de�ned as a mapping from R to Rn, i.e.,

rf(x1; x2; : : : ; xn) = [
@f

@x1
;
@f

@x2
; : : : ;

@f

@xn
]:

We generalize the function f in Equation (3.9) to am�1 vector of functions so that every

element of the vector represents a function of x. Thus, the r operator can be generalized

as a mapping from Rm to Rm�n. That is,

rf(x) =

2
66664
rf1(x)

rf2(x)
...

rfm(x)

3
77775

= ffi;jgm�n = [WT
1 ;W

T
2 ; : : : ;W

T
m]

T ;

where

ffi;jgm�n =
@fi
@xj

:

Using Equation (3.9) and the moment generating function of the multivariate Gaussian

probability density function (Corollary 3.2), we are able to compute the covariance matrix

of the distribution of the transformed values throughout this thesis. In Figure 3.2, we

display the transformations used for the translation, similarity, and a�ne cases. Points

pi's with coordinate (xi; yi) are used as the basis to de�ne a coordinate system. The

coordinate of a point p in the new de�ned coordinate system is used as the invariant. The

29

general form of the invariant for 2-D point matching is:

hq(p1;p2; � � � ;pq;p) =

"
u

v

#
= A�1

q bq;

where Aq is 2 � 2 a matrix, bq is a 2 � 1 vector, and q = 1 for translation, q = 2 for

similarity, q = 3 for a�ne transformation. That is, for translation invariance, we have:"
u

v

#
=

"
x� x1
y � y1

#
;

for similarity invariance, we have:"
x2 � x1 �y2 + y1
y2 � y1 x2 � x1

"
u

v

#
=

"
x� (x1 + x2)=2

y � (y1 + y2)=2

#
;

and �nally, for an a�ne transformation, we have:"
x2 � x1 x3 � x1
y2 � y1 y3 � y1

#"
u

v

#
=

"
x� (x1 + x2 + x3)=3

y � (y1 + y2 + y3)=3

#
:

Matrices Aq and bq are given as follows:

A1 = I; (the identity matrix),

A2 =

"
x2 � x1 �y2 + y1
y2 � y1 x2 � x1

#
;

A3 =

"
x2 � x1 x3 � x1
y2 � y1 y3 � y1

#
;

and

b1 =

"
x� x1
y � y1

#
; b2 =

"
x� (x1 + x2)=2

y � (y1 + y2)=2

#
; b3 =

"
x� (x1 + x2 + x3)=3

y � (y1 + y2 + y3)=3

#
:

Depending on whether the basis points are perturbed or not, we use the distributions for

the exact matching hypothesis and the approximate matching hypothesis as derived in the

next two sections. We will use the following notation:

�ij = xi � xj ; (3.10)

�ij = yi � yj : (3.11)

30

3.3.1 Exact matching hypothesis

Recall that we need to compute the density function under the condition that event

(mk; B; B
0) is true (Equation 3.6). Suppose basis B in model mk matches basis B0

in the scene exactly, i.e., there is no perturbation for basis points, then the invariant is

a linear combination of the x and y-coordinates of p. Assume that point p is Gaussian

distributed with covariance �2 in both the x-coordinate and y-coordinate. We also assume

that the deviation in x-coordinate and y-coordinates are uncorrelated. By Corollary 3.2,

matrixW is equal to A�1
q , and we conclude that the invariant hq(p1; � � � ; pq;p) is Gaussian

distributed with covariance Cq, where

Cq = �2 � [AT
q Aq]

�1:

Thus, the covariance matrix for each case is given by

C1 = �2 � I;

C2 =
�2

k p2 � p1 k2
� I; (3.12)

and

C3 =
�2

j �21 � �31 j2
�

"
�231 + �231 ��21�31 � �21�31

��21�31 � �21�31 �221 + �221

#
; (3.13)

where (�21 � �31) is de�ned as (�21�31 � �31�21):

3.3.2 Approximate matching hypothesis

If the hypothesis for event (mk; B; B
0) is that basis B in model mk matches basis B0 in

the scene approximately, i.e., there are perturbations applied on coordinate of p as well as

all the basis points pi's. The covariance matrix for invariant h1 becomes �1,

�1 = 2�2 � I = r1C1; (3.14)

where r1 = 2, and C1 is de�ned by (3.12). The invariants hq's are no longer linear

combinations of coordinates of pi's for q � 2. We use Equation 3.9 to derive the �rst order

approximation and express the invariant as the linear combination of pi's. By plugging the

variables for Aq and bq and arranging the random variables as Xi;Yi; (i = 1 : : :q);X;Y,

we have the following relations for the coe�cients and covariance matrices.

For the similarity transformation (q = 2), we have

W2 =
1

k p2 � p1 k2
�

31

"
�21(u�

1
2) + �21v ��21v + �21(u�

1
2) ��21(u+

1
2)� �21v

��21(u�
1
2) + �21v �21v + �21(u�

1
2) �21(u+

1
2)� �21v

�21v � �21(u+
1
2) �21 �21

��21v � �21(u+
1
2) ��21 �21

#
;

Applying Corollary 3.2, we have

�2 =
(4 k (u; v) k2 +3)�2

2 k p2 � p1 k2
� I

= r2C2; (3.15)

where

r2 =
(4 k (u; v) k2 +3)

2
: (3.16)

Again, C2 is the covariance matrix from the exact matching hypothesis case, in Equa-

tion 3.12. Note that r2 > 1 always.

For a�ne transformation (q = 3), we have

W3 =
1

(�21 � �31)
�

"
��31(

1
3 � u� v) �31(

1
3 � u� v) ��31(

1
3 + u) �31(

1
3 + u)

�21(
1
3 � u� v) ��21(

1
3 � u � v) �21(

1
3 + u) ��21(

1
3 + u)

��31(
1
3 + v) �31(

1
3 + v) ��31 ��31

�21(
1
3 + v) ��21(

1
3 + v) ��21 �21

#
;

Applying Corollary 3.2 again, we have

�3 =
(2(u2+ v2 + uv) + 4=3)�2

j �21 � �31 j2
�

"
�231 + �231 ��21�31 � �21�31

��21�31 � �21�31 �221 + �221

#
: (3.17)

By comparing Equation 3.13 and Equation 3.17, we �nd that C3 and �3 again are related

only by a constant factor. We have

�3 = r3C3;

where

r3 = 2(u2 + v2 + uv) +
4

3

= 2(u+
v

2
)2 +

3v2

2
+
4

3
: (3.18)

Once again, note that r3 > 1 always.

32

-4 -2 2 4

0.1

0.2

0.3

0.4

Figure 3.3: The plot of two Gaussian functions: G(x) and G(x2). Depending on x, G(x)
may be larger than G(x2) or vice versa.

From Equation 3.14, Equation 3.16, and Equation 3.18, we observe that the probabil-

ity density functions for the invariant values under the exact matching hypothesis and the

approximate matching hypothesis have similar form to �rst order when the noise model

is Gaussian. The covariance matrices for both cases are di�erent by a constant factor

which is dependent upon the coordinate of the normalized feature. The exact matching

hypothesis possesses a smaller covariance than under the approximate matching hypoth-

esis. As shown in Figure 3.3, depending on the distance to the mean, one hypothesis may

accumulate a larger total vote than the other.

3.4 The Bounds for Weighted Voting

Given the weighted voting formula (Equation 3.7), we can consider the following problems:

1. What is the maximum vote that a single model/basis candidate can accumulate?

2. If the total vote is below a preset threshold, can we bound the number of votes and

the proximity of those votes to model parameters?

3. Given a total vote, what is the range for the number of entries that lie within a given

bound?

We analyze the above questions in the following subsections. We focus on the similarity

case only. Since the covariance matrix is independent of the hash location for the exact

matching hypothesis,1 we discuss the case of the exact matching hypothesis with a uniform

1
We assume that the variance of x and y-coordinate for each feature is uniform here.

33

-10

0

10

x -10

0

10

y

-15

-10

-5

0

vote

-10

0

10

x -10

0

10

y

-15

-10

-5

0

Figure 3.4: The visualization of weighted voting formula for exact matching hypothesis
with uniform background density. The x and y deviation is in original image space.

background density. Plugging Equation 3.12 and Equation 3.5 into Equation 3.7, we have

the weighted voting formula:

�s log

�
s

s� �nk

�
+

sX
j=1

log

1 +

� � jRj

2��2 � (s� �nk)
e
�jjp2�p1jj

2 �jj ~uj� ~xij
jj2

2�2

!
; (3.19)

where p1 and p2 are the selected basis. Equation 3.19will be used in the following sections.

A visualization of Equation 3.19 is shown in Figure 3.4. When numbers are required, we

will assume that the original image is of the size 512� 512 pixels, and that the standard

deviation for both the x and y coordinates are 5 pixels. The number of features in the

test image s is assumed to be 300, while the number of features in the model nk is 30.

The non-obscuration ratio � is assumed to be 0.6. In Figure 3.4, we also assume that

there are typically �fteen features that contribute to the vote (i.e., � = 0:5). The x and

y deviation is in the original image space.

3.4.1 Maximum vote

We are interested in knowing the maximum vote that we can get during the recognition

phase. Let us call a feature perfectly matched if it coincides with the corresponding

normalized feature in a model; i.e., there is no deviation for a perfectly matched feature.

The exponential term becomes one for perfectly matched features. There are at most nk
features that can matched perfectly for model k. Thus the formula for the maximum vote

34

0

0.2

0.4

0.6

0.8

1

beta 10

20

30

40

n

0

10

20

30

max. weight

0

0.2

0.4

0.6

0.8

1

beta 10

20

30

40

n

0

10

20

30

Figure 3.5: The function of the maximum vote as a function of � and n, where the
number of scene features s = 300, and the number of perfectly matched features equals
to � �nk . The non-obscuration ratio � varies from 0 to 1. The number of features nk in
model k varies from 5 to 40.

becomes:

�s log

�
s

s � �nk

�
+ nk log

�
1 +

� � jRj

2��2 � (s� �nk)

�
:

When d is the number of features in the scene that exactly match model features, then

the vote will be d times the maximum biased by a constant, thus:

� s log

�
s

s� �nk

�
+ d log

�
1 +

� � jRj

2��2 � (s� �nk)

�
: (3.20)

The value of Equation 3.20 as a function of various subsets of (nk; �; s; d) is shown in

Figures 3.5, 3.6, 3.7, and 3.8, �xing certain variables and varying two other variables.

In Figure 3.5, the number of perfectly matched features d is assumed to be equal to

� � nk , which assumes that we can estimate the non-obscuration ratio � accurately. The

maximum vote that we may obtain becomes larger as the number of features in a model

increases.

Figure 3.6 shows the dependence on the estimated non-obscuration ratio and the num-

ber of detected perfectly matched features. We assume that the number of model features

is 30. We can obtain a larger total vote if we estimate the non-obscuration ratio �

correctly and detect a larger number of perfectly matched features. The maximum attain-

able vote decreases when the number of features detected does not achieve the estimated

non-obscuration ratio. The bias term �s log(s
s��nk

) will dominate Equation 3.20 if the

non-obscuration ratio is low. On the other hand, it is possible that we can obtain a

35

0

0.2

0.4

0.6

0.8

1

beta

0

10

20

30

detected n

-20

0

20

max. weight

0

0.2

0.4

0.6

0.8

1

beta

0

10

20

30

detect

-20

0

0

Figure 3.6: The function of the maximum vote as a function of � and the number of
perfectly matched features, where the number of scene features s = 300, and the number
of features nk in the model k is 30. The non-obscuration ratio � varies from 0 to 1.

larger vote with a lower non-obscuration ratio even though the number of detected fea-

tures is smaller. For example, suppose d1 = 6 and �1 = 0:3; the maximum vote is then

z1 = �3:13292. On the other hand, when d2 = 8 and �2 = 0:8, we have z2 = �10:9004.

Even though d1 is smaller than d2, we have z1 larger than z2 because we overestimate the

non-obscuration ratio in the latter case. Correct estimation of the non-obscuration ratio

thus certainly will a�ect recognition results.

The dependence on the non-obscuration ratio � and the number of scene features s is

shown in Figure 3.7, assuming that we estimate � accurately, i.e., the number of detected

features perfectly matches the predicted number of features and is equal to � �nk. A large

total vote can be obtained when the number of scene features approaches the number of

detected perfectly matched features, which means that only object features appear in the

scene, and no background features are detected. However, when the signal to noise ratio

is lower, a good estimation of � is less important.

The relation between the maximum vote and the number of features in the model nk
and the number of detected perfectly matched features d is shown in Figure 3.8. The

non-obscuration ratio � is �xed as 0.8. For �xed nk , the maximum vote is linearly

proportional to the number of detected perfectly matched features d. For �xed d, the

maximum vote decreases if the number of features in the model increases. If we change

the non-obscuration ratio �, the slope of the relation will be changed accordingly.

To sum up, we may conclude that

1. Accurate estimation of the non-obscuration ratio � is important, which may a�ect

36

0

0.2

0.4

0.6

0.8

1

beta

100

200

300

s

0

50

100

max. weight

0

0.2

0.4

0.6

0.8

1

beta

100

200

300

s

0

50

00

Figure 3.7: The function of the maximum vote as a function of � and the number of
scene features, where the number of the number of features in the model n = 30. The
non-obscuration ratio � varies from 0 to 1. The number of scene features s varies from
30 to 300.

10

20

30

40

n

10

20

30

40detected n

-40

-20

0

20

max. weight

10

20

30

40

n

10

20

30

40detected n

-40

20

0

20

Figure 3.8: The function of the maximum vote we can obtain as a function of the number
of detected perfectly matched features d and the number of features in the model n, where
the number of scene features s = 300, the non-obscuration ratio � is �xed as 0.8. The
number of features nk in the model k varies from 5 to 40.

37

the recognition result;

2. We expect a larger total vote when the number of detected perfectly matched features

is larger for a �xed non-obscuration ratio �;

3. When the number of scene features is only slightly greater than the number of

detected perfectly matched features, we can obtain a very large vote;

4. The threshold value for recognition should be dependent upon the number of features

in the scene s, the non-obscuration ratio �, and the number of features in each model

nk .

3.4.2 Deviations

Suppose that a scene feature contributes less than z to a particular model feature in the

voting process. How close can it be to the model feature?

Let the actual vote be zj ,

zj = log

1 +

� � jRj

2��2 � (s� �nk)
e
�jjp2�p1jj

2 �jj ~uj� ~xij
jj2

2�2

!

= log(1 + b � e�
x2

2a2):

Here, a = �
jjp2�p1jj

, which is the standard deviation in hash space; x = jj ~uj � ~xij jj, which

is the distance of a scene feature a model feature in hash space; and b = ��jRj
2��2�(s��nk)

,

which is the coe�cient of the exponential term. We have that

log(1 + b � e�
x2

2a2) � z:

That is,

1 + b � e�
x2

2a2 � ez ;

�
x2

2a2
� log

�
ez � 1

b

�
;

jxj �

�
2a2 � log

�
b

ez � 1

��1=2
= c(z) � a;

where

c(z) =

s
2 log

�
b

ez � 1

�
:

Thus, we see that for the case of the similarity invariant formula, if the entry contributes

vote less than z, then the deviation will be at least c(z) � a, where c(z) is given above and

a is the standard deviation in hash (i.e., feature) space.

38

3.4.3 Number of features within a region

Suppose that we accumulate a total vote of z (see Equation 3.19); we are interested in

knowing howmany features lie within a region �� of the predicted locations. We will claim

that there are n� features with deviations less than ��, where n� = n�(��; z). In this case,

we know that at most nk � n� features lie outside the �� region. The case that leads to

the largest vote is that there are n� features matched perfectly and nk�n� features lie on

the boundary of the region. We have the following inequality for the accumulated vote:

n� � log(1 + b) + (nk � n�) log(1 + b � e�
��2

2a2) � z0;

where

z0 = z + s log

�
s

s� �nk

�
:

That is, at least n1 features lie within the range ��,

n� �

"
log

1 + b

1 + b � e�
��2

2a2

!#
� z0 � nk � log(1 + b � e�

��2

2a2):

We have

n� � n1;

where

n1 =

66666664
z0 � nk � log(1 + b � e�

��2

2a2)

log

1+b

1+b�e
���2

2a2

!
77777775 : (3.21)

In other words, we have the following result for estimating the lower bound of the number

of features within the speci�ed region:

Result 3.1 Given the parameters nk , z, and ��, there are at least n1 = n1(nk ; z; �
�)

features that land within a region �� of the predicated locations, where n1 is given in

Equation 3.21.

The function of the lower bound of the number of the features within the speci�ed region

as a function of nk is shown in Figure 3.9.

On the other hand, if we ignore the vote contributed by the entries that has deviation

larger than �� and assume that n� features land on the boundary of �� region, we have

another inequality for the accumulated vote:

n� � log(1 + b � e�
��2

2a2) � z0:

39

15 20 25 30 35 40
nk

15

20

25

30

n1

Figure 3.9: The function of the lower bound of the number of the features within the
speci�ed region as a function of nk. Here, a = 1=10, the number of scene features
s = 300, the non-obscuration ratio � is �xed as 0.8. The number of features nk in
the model k varies from 10 to 40. The dotted line indicates the lower bound for the
region �� = 1, while the solid line indicates the lower bound for the region �� = 0:2.
The standard deviation in the original image space � is 4 pixels. We assume that the
accumulated vote z is 20. The dashed line is the function n1 = nk

40

15 20 25 30 35 40
nk

15

20

25

30

35

40

n2

Figure 3.10: The function of the upper bound of the number of the features within the
speci�ed region as a function of nk. Again, a = 1=10, the number of scene features
s = 300, the non-obscuration ratio � is �xed as 0.8. The number of features nk in
the model k varies from 10 to 40. The dotted line indicates the lower bound for the
region �� = 0:1, while the solid line indicates the lower bound for the region �� = 0:05.
The standard deviation in the original image space � is 4 pixels. We assume that the
accumulated vote z is 10. The dashed line is the function n2 = nk .

Thus we have

n� � n2;

where

n2 =

2
666

z0

log(1 + b � e�
��2

2a2)

3
777 : (3.22)

In other words, we have the following result for estimating the upper bound of the number

of features within the speci�ed region:

Result 3.2 Given the parameters z, and ��, there are no more than n2 = n2(z; �
�)

features within the range �� of predicted locations, where n2 is given in Equation 3.22.

The function of the upper bound of the number of the features within the speci�ed region

as a function of nk is shown in Figure 3.10.

Thus, given nk ; z; and �
�, we can use Equation 3.21 and 3.22 to �nd integer solutions

for n� to estimate the number of features within the region ��.

41

3.4.4 Estimation of accumulated vote

Let zt be the accumulated total vote without the bias term �s log
�

s
s��nk

�
(see Equa-

tion 3.19).

Result 3.3 Suppose there are at least n1 features that lie within a region of size ��. The

total vote must be greater than the vote when n1 features lie on the �� boundary. If we

ignore all other votes, we see that

zt � n1 log(1 + b � e�
��2

2a2): (3.23)

Result 3.4 Suppose that there are no more than n2 features lie within the range �� of

the predicted locations, then the total accumulated vote is no more than z2, where z2 is

de�ned as:

z2 = n2 � log(1 + b) + (nk � n2) log(1 + b � e�
��2

2a2): (3.24)

Given the range of the number of features within the region ��, we can use Equations 3.23

and 3.24 to estimate the range of total accumulated vote.

3.5 Larger Vote Under Rearrangement

We described the algorithm for geometric hashing at the beginning of this chapter. Al-

though we did not express it explicitly, we indeed use the following rules in the imple-

mentation:

1. For a feature in the scene, at most one entry in a �lter may accumulate a vote,

namely the closest one.

2. A feature in the scene may contribute to several hash entries if they are in di�erent

�lters.

3. For each hash entry, at most one feature in the scene may contribute a vote to that

entry.

As shown in Figure 3.1, a �lter is constructed by the normalized features for a speci�ed

basis from a model. We do not allow that a scene feature contributes more than one entry

if the entries are from the same �lter, otherwise, a scene feature is associated with many

entries based on the same hypothesis, which can not be true in the real case.

42

pa

pd

pb

pc

Figure 3.11: Rearrangement of assignment may produce a better result. The features
pa and pb are two hash entries, and pc and pd are two normalized features. Distance
relations are jjpapdjj < jjpbpdjj and jjpapdjj < jjpapcjj. According to our rule, pd con-
tributes to pa, even though rearrangement of assignment such that pc is associated with
pa and pd is associated with pb can contribute more vote to this hypothesis.

In Rule 1, we choose the closest entry in order to accumulate the highest vote. This

is our heuristic which is quite natural when we are dealing with the features in the scene

one by one. We do not intend to �nd all combinations of assignment in order to �nd the

best assignment, due to computational consideration.

However, sometimes this heuristic will not work. Let us consider the following scenario.

As shown in Figure 3.11, suppose pa and pb are two entries in a �lter, pc and pd represent

two normalized features in the scene. Distance jjpapdjj is smaller than distance jjpapcjj,

and distance jjpapdjj is smaller than distance jjpbpdjj. According to our rule, pd will be

associated with pa as shown in the arrow sign in the �gure. The normalized feature pc
will not contribute a vote in this occasion since pa is already occupied. Entry pb will not

receive a vote since when we compute distance at pc and pd, the closest entry is entry

pa. If we rearrange the assignment such that pc is assigned to pa and pd is assigned

to pb as shown in the dash arrow in Figure 3.11, then both normalized features pc and

pd can contribute vote to this hypothesis. It is possible that this new arrangement can

accumulate more vote for this hypothesis. This new arrangement could be quite reasonable

since the position of basis may be inaccurate so that the new arrangement should be the

correct assignment. Even though we face this kind of di�culty, we argue that this kind

of situation does not occur very often.

43

Chapter 4

Attributed Features

In Chapter 3, we discussed the fundamental theory for geometric hashing. The formulation

given there is based upon matching of 2-D point patterns. When the object is embedded

in a complicated background, the recognition system can easily fail due to false alarms.

The reason is that when the background is complicated, feature points behave like random

dots, and it is easy to get a satis�able match. As shown in Figure 4.1, even for this simple

example, the recognition result is incorrect. Figure 4.2 shows another example of incorrect

matching for real image. The problem occurs owing to insu�cient discrimination power of

the feature points with positional information only. A close examination of the examples

shown in Figure 4.1 and Figure 4.2 suggests that we may attach more information to

the point features in order to increase the discrimination power. A possible choice is the

orientation of the line segments. Thus, the features are attributed. We posit that by using

this kind of higher-order features, we may reduce the likelihood of accidental matches.

Orientation information is simply one realization of attributed features; we may extend

the theory to other kinds of attributes if the attributes are invariant. Invariant means that

the value is preserved under transformation from a speci�ed class of transformations.

In the following sections, we will describe a particular formulation of a geometric

hashing system using point features and orientation attributes. This system will be used

with realistic images to �nd objects that contain many line segment features. The density

function for the weighted voting formula of our orientation-attributed features is addressed

in this chapter. We conclude this chapter by discussing abstraction of the attributed

features.

4.1 Formulation for Orientation-Attributed Fea-
tures

Suppose a single feature consists of a point location (x; y) and an orientation �. We

name the features to be attributed features since positional information (x; y), which is

44

Figure 4.1: A false alarm for the recognition of polygon. The positions of endpoints for
the extracted line segments are used as the features. Without the orientation informa-
tion, an incorrect model can match to incorrect position easily.

Figure 4.2: A false alarm for the recognition of Buick LeSabre. The positions of mid-
points for the extracted line segments are used as the features. Eighteen midpoints out
of 27 model features (from the model of Honda Prelude) match the scene features in this
example.

45

�

1

2

1

2

p = (x; y; �)

p� = (x� ; y�; ��)

p� = (x�; y�; ��) (�; �;)

Figure 4.3: The construction of the hash function, h(p�; p�; p).

su�cient to de�ne the transformation as described in Chapter 3, has been supplemented.

The orientation information � is used as the attribute that provides more information

about the features. Other kinds of attributes are possible; we will discuss this issue later

on. Orientations are not directed, so 0 � � < �. In practice, � is stored as a cosine/sine

pair to avoid trigonometric evaluations.

Following the same notation as in Chapter 3, we assume that T is a similarity trans-

formation. Although T is a transformation of point features, it operates on attributed

features (x; y; �) by transforming (x; y) to T (x; y), and rotating � to �+�, where � is the

rotation induced by the similarity transformation T . This is because a line through the

point (x; y) having orientation � will be transformed under T to a line through T (x; y)

having orientation � + �. The new orientation should be regarded as being modulo �, so

that

T (x; y; �) = (T (x; y); �+ � mod �):

Figure (4.3) displays graphically the de�nition of the hash function h. Note that the hash

function h(p�; p�; p) ignores the information in �� and �� .

Now, for a model to be matched, not only will all locations of the features match,

the orientation information should also match in order for the instance to be a valid

embedding. In fact, even the orientation information of the transformed basis points

should match.

Compared to the formulation described in Chapter 3, an attribute is used as an addi-

tional constraint for feature points to be matched. We can expect that the discrimination

power of attributed features will be increased. Under this formulation, this realization of

attributed features can �t into our geometric hashing paradigm naturally. If we assume

46

that attributed features are also Gaussian distributed, we can use the weighted voting

formula described in Chapter 3 directly (see Equation 3.7). In the presence of noise, there

will be variability in the positions of the normalized features in the hash space. We will

assume that individual features in the scene domain are subject to Gaussian perturbations.

Thus a position of feature (x; y) belonging to a model in the scene can be perturbed by

a distance in the Euclidean plane with standard deviation �, and the orientation � can

be rotated by an angle whose standard deviation is � radians. In practice, we measure

the angle deviation using the sine of the angle di�erence, rather than the actual angle

di�erence. For small angular perturbations, the two are the same.

To use the Bayesian framework, we need the assumption of independence of the per-

turbations. The validity of this assumption will depend on the models and choice of

the features. Independence means the following: Under the assumption that a particular

model mk is embedded in the scene, and under the assumption that basis pair p� and p�
in mk match a particular basis of scene points, say p1 and p2, then the joint density distri-

bution function in multiple (x; y; �)-space for any collection of t features, t � s, is simply

the product of t density distribution functions in (x; y; �)-space for single features. On

the other hand, if the orientation information is also independent of the positional infor-

mation for the attributed features, the Gaussian density function is separable which will

simplify the computation for the weighted voting formula. We discuss the validity of the

independence assumption for various feature representations (using orientation-attributed

features) in the next section.

Using the above assumptions and using Equation 3.7 for uniform background, we have

the following weighted voting formula for orientation-attributed features:

�s log

�
s

s� �nk

�
+ (4.1)

sX
j=1

log

1 +

� � jRj

(2�)
3
2�2� � (s� �nk)

exp

�
jjp2 � p1jj

2 � jj ~uj � ~xij jj
2

2�2
�

sin2(�� �)

2�2

!!
;

where p1 and p2 are the selected basis from the scene, ~xij is the nearby hash entry with

angle � associated as its attribute, ~uj is a normalized feature of a scene con�guration with

angle � attached as its attribute.

Tsai [108, 107] uses a di�erent approach for the recognition problem of 2-D
at objects

with line features. The line features are encoded as (r; �) pairs. He derives the close-form

formula for the density function for the a�ne invariants when the (r; �) parameters are

perturbed by Gaussian noise. Several experiments with
at 2-D objects cluttered with a

noisy background are reported. However, by representing lines by two parameters, line

equations are represented as lines, and two line segments will match if they lie on the

same line.

47

4.2 Orientation-Attributed Features

We discuss three cases for orientation-attributed features that are used in our experiments.

We assume that the orientation information is Gaussianly perturbed and is independent

of the positional information for attributed features in Equation 4.2. That is, the condi-

tional density function is assumed to be separable. The covariance matrix without this

independence assumption for each case will be discussed in this section also.

We have three ways to extract the orientation-attributed features:

1. Endpoints of the line segments as the attributed point features, with a separate

entry for each oriented segment emanating from the point;

2. Midpoints of the line segments as the attributed point features, with a single entry

using the line orientation as the attribute;

3. Bisectors of corners formed by pairs of line segments as the attributed point features,

with a single entry located at the intersection of two lines and using the bisector of

the angle formed by the two lines as the attribute.

In the case of method (1), we do not have the property of independence of the features.

We ignore the lack of independence at this moment. In the case of method (2), attributed

features are independent of each other intuitively, since given the information of one

midpoint, we cannot predict the appearance of the other midpoints. Furthermore, we

can show that the orientation information is independent of the positional information,

which means that the probability density function is indeed separable. The proof is

given in Section 4.4 and Appendix A. Another advantage of midpoint features over

endpoints is that the number of features is reduced by one-half, since each line segment

only has one hash entry instead of two hash entries. This means that the size of the hash

table is reduced to one-eighth of the size using endpoints [69]. The computation time

is also a�ected accordingly. Intuitively, in the case of method (3), attributed features

are independent of each other. Again, one appearance of a bisector cannot predict the

other bisectors. We do not use the opening of the corner at this moment. We can use

this information as another attribute, however. Figure 4.4 shows these three methods of

obtaining orientation-attributed features.

When using attributed point features, there is extra information attached to the basis

points. To form a hypothesis, we only make use of the positional information of the

selected basis. We may use the orientation information of the selected basis to �lter

out impossible hypotheses. In any case, when the basis points participate the evidence

accumulations, orientation mismatches will also penalize the total accumulation.

We next turn to the derivations of covariance matrices for each case by assuming �rst

order approximation and a Gaussian model.

48

(a) (b) (c)

Figure 4.4: The three methods of obtaining orientation-attributed features. (a) End-
points of line segments as the attributed features. (b) Midpoints of line segments as the
attributed features. (c) Bisectors of the corners formed by pairs of line segments as the
attributed features.

4.3 Derivations of the Covariance Matrices

We want to compute the conditional density function for attributed features. A Gaussian

noise model for the positional information is assumed. We also assume that the orientation

information of the attributed features is derived from the three methods that we described

in the previous sections. Similar to the derivations we discussed in Section 3.3, the

basic tool we use to derive the covariance matrix is Corollary 3.2 and the �rst order

approximation (see Equation 3.9).

Furthermore, to avoid trigonometric computations, we use sin(��) instead of �� to

compute the deviation of the orientation invariant �. For small angular perturbations, the

two are the same. Suppose the orientation invariant � is a function of vector x, where

vector x is the coordinate of the attributed features. In order to use Corollary 3.2 to

compute the covariance matrices, we are required to computer�(x) and express it as the

linear combination of xi. We have

r�(x) =
1

cos �
� r sin(�(x)):

Suppose points p1 and p2 are the selected basis. Points p3 and p4 form a line segment.

The orientation of ~p1p2 and ~p3p4 is �b and �3 respectively (see Figure 4.5). The sine of

the orientation invariant is:

sin(�3 � �b) = s3b = s3cb � c3sb;

where "
cb
sb

#
=

"
�21=N21

�21=N21

#
;

49

p3

�3

p4

p6

p2

�bp1

p5

Figure 4.5: The con�guration of basis pair (p1; p2) and line segment p3p4 for endpoint
feature.

and "
c3
s3

#
=

"
�43=N43

�43=N43

#
:

Here, we denote sin(�k) as sk and cos(�k) as ck for convinence. We also denote �i� �b as

�ib, where i = 1; 2; � � �. Recall that for �ij and �ij are de�ned in Equation 3.11 as

�ij = xi � xj ;

�ij = yi � yj :

We also de�ne Nij as

Nij = dist(pi; pj) = jj(xi; yi)� (xj ; yj)jj =
q
�2ij + �2ij:

In the following sections, we discuss the case for similarity transformation only. Recall

that the order of the random variables are organized as [x1; y1; x2; y2; : : : ; xn; yn], where

(xi; yi) is the coordinate for point pi. We also assume that the variances for each random

variable xi and yi are independent of each other with standard deviation �.

4.3.1 Endpoints under the approximate matching hypothe-
sis

Let us ignore the orientation information of basis pair p1 and p2 for the moment. For the

case of endpoint analysis, suppose (u; v) is the positional invariant of p3, and s3b is the

50

orientation invariant of p3, then the coe�cient matrix for �rst order approximation the

under similarity transformation is

W1 =
1

N2
21

[�21(u�
1

2
) + �21v;��21v + �21(u�

1

2
);

��21(u+
1

2
)� �21v; �21v � �21(u+

1

2
);

�21; �21; 0; 0];

W2 =
1

N2
21

[��21(u�
1

2
) + �21v; �21v + �21(u�

1

2
);

�21(u+
1

2
)� �21v;��21v � �21(u+

1

2
);

��21; �21; 0; 0];

W3 =
1

N21N43
[�N43sb; N43cb; N43sb; �N43cb;

N21s3; �N21c3; �N21s3; N21c3]; (4.2)

where row vector Wi is i-th row vector of matrix W de�ned in Corollary 3.2. The

covariance matrix for random vector [u; v; �3b] is �̂:

�̂ =

2
64
W1

W2

W3

3
75� [WT

1 ;W
T
2 ;W

T
3]

=
�2

N2
21

2
6664

4(u2+v2)+3
2 0 �2v + N21

N43
s3b

0 4(u2+v2)+3
2 2u� N21

N43
c3b

�2v + N21
N43

s3b 2u� N21
N43

c3b 2 +
2N2

21
N2
43

3
7775 ; (4.3)

where � is the covariance matrix of random vector [x1; y1; : : : ; xn; yn], i.e., �
2 � I8�8.

Now let us consider the statistics of the orientation attributes associated with the basis

points, i.e., we compute the covariance matrix for random vector [u; v; �3b; �1b; �2b]. The

dimension of the covariance matrix becomes 5 by 5. We introduce other feature points p5
and p6 as shown in Figure 4.5; vector ~p1p5 and vector ~p2p6 give the orientation information

for the basis p1 and p2 respectively. That is, two extra row vectors W4 and W5 are:

W4 =
1

c1b
[cb � rs1 � sb � rc1 + s1 � rcb � c1 � rsb]

= [
s1
N51

�
sb
N21

; �
c1
N51

+
cb
N21

;
sb
N21

; �
cb
N21

; 0; 0; 0; 0; �
s1
N51

;
c1
N51

; 0; 0]

W5 =
1

c2b
[cb � rs2 � sb � rc2 + s2 � rcb � c2 � rsb]

= [�
sb
N21

;
cb
N21

;
s2
N62

+
sb
N21

; �
c2
N62

�
cb
N21

; 0; 0;

51

0; 0; 0; 0; �
s2
N62

;
c2
N62

]: (4.4)

The vectorsW1;W2, and W3 become 1 by 10 row matrices with 0's appended at the end.

We have the following result:

�̂14 = �̂41 =
�2

N2
21

�2v +

N21(s1b(u�
1
2) + c1bv)

N51

!
;

�̂15 = �̂51 =
�2

N2
21

�2v �

N21(s2b(u+
1
2) + c2bv)

N62

!
;

�̂24 = �̂42 =
�2

N2
21

2u�

N21(c1b(u�
1
2)� s1bv)

N51

!
;

�̂25 = �̂52 =
�2

N2
21

2u+

N21(c2b(u+
1
2)� s2bv)

N62

!
;

�̂34 = �̂43 =
�2

N2
21

�
2�

N21c1b
N51

�
;

�̂35 = �̂53 =
�2

N2
21

�
2 +

N21c2b
N62

�
;

�̂44 =
2�2

N2
21

1 +

N2
21

N2
51

�
N21c1b
N51

!
;

�̂45 = �̂54 =
�2

N2
21

�
2�

N21c1b
N51

+
N21c2b
N62

�
;

�̂55 =
2�2

N2
21

1 +

N2
21

N2
62

+
N21c2b
N62

!
;

where �̂ij is the (i; j) element of the covariance matrix �̂. The other elements of this 5�5

covariance matrix are given in Equation 4.3 as its 3� 3 submatrix.

4.3.2 Endpoints under the exact matching hypothesis

We derive 5 � 5 and 3 � 3 covariance matrices for endpoint features under the exact

matching hypothesis. Exact matching hypothesis means the basis pair (p1; p2) can be

matched exactly, i.e., there are no deviations for the position of basis pair (p1; p2).

We use the Equation 4.2 and 4.4 and discard the elements that correspond to random

variables x1; y1; x2; and y2. The 5 � 5 covariance matrix for exact matching hypothesis

52

p1

p0

1

�b

�3

p5

p3

p4

p6

p2

p0

2

Figure 4.6: The con�guration of basis pair (p1; p2) and line segment p3p4 for midpoint
feature.

is:

�̂ = �2

2
666666664

1
N2
21

0 s3b
N21N43

0 0

0 1
N2
21

� c3b
N21N43

0 0
s3b

N21N43
� c3b

N21N43

2
N2
43

0 0

0 0 0 1
N2
51

0

0 0 0 0 1
N2
62
:

3
777777775
: (4.5)

The 3�3 covariance matrix for this case is simply the upper-left three by three submatrix

in Equation 4.5.

4.3.3 Midpoints under the approximate matching hypothe-
sis

For the case of midpoint analysis, suppose (u; v) is the positional invariant of the midpoint

for line segment p3p4, and the basis points (p1; p2) are the midpoints of the other two line

segments p01p5 and p02p6 respectively. We organize the random variables before transfor-

mation as [x01; y
0

1; x
0

2; y
0

2; x3; y3; : : : ; x6; y6]. The con�guration is shown in Figure 4.6. We

have W1;W2; and W3 as

W1 =
1

2N2
21

[�21(u�
1

2
) + �21v; ��21v + �21(u�

1

2
);

53

��21(u+
1

2
)� �21v; �21v � �21(u+

1

2
);

�21; �21; �21; �21;

�21(u�
1

2
) + �21v; ��21v + �21(u�

1

2
);

��21(u+
1

2
)� �21v; �21v � �21(u+

1

2
)];

W2 =
1

2N2
21

[��21(u�
1

2
) + �21v; �21v + �21(u�

1

2
);

�21(u+
1

2
)� �21v; ��21v � �21(u+

1

2
);

��21; �21; ��21; �21;

��21(u�
1

2
) + �21v; �21v + �21(u�

1

2
);

�21(u+
1

2
)� �21v; ��21v � �21(u+

1

2
)];

W3 =
1

N21N43
[�

N43sb
2

;
N43cb
2

;
N43sb
2

; �
N43cb
2

; N21s3; �N21c3;

�N21s3; N21c3; �
N43sb
2

;
N43cb
2

;
N43sb
2

; �
N43cb
2

]: (4.6)

Note that the variances of x and y component for points p1 and p2 become �2=2, which

are di�erent from the variations of the endpoints of a line segment in the previous section.

The computed covariance matrix for [u; v; �3b] is:

�̂ =

2
64
W1

W2

W3

3
75� [WT

1 ;W
T
2 ;W

T
3]

=
�2

N2
21

2
664

4(u2+v2)+3
4 0 �v

0 4(u2+v2)+3
4 u

�v u 1 +
2N2

21
N2
43

3
775 : (4.7)

Again, if we consider the orientation attributes for the basis pair, we need to compute

W4 and W5. They are given as

W4 =
1

c1b
[cb �

ds1
dx

� sb �
dc1
dx

+ s1 �
dcb
dx

� c1 �
dsb
dx

]

=
1

2
[
s1
N51

�
sb
N21

; �
c1
N51

+
cb
N21

;
sb
N21

; �
cb
N21

; 0; 0; 0; 0;

�
s1
N51

�
sb
N21

;
c1
N51

+
cb
N21

;
sb
N21

; �
cb
N21

]

W5 =
1

c2b
[cb �

ds2
dx

� sb �
dc2
dx

+ s2 �
dcb
dx

� c2 �
dsb
dx

]

54

=
1

2
[�

sb
N21

;
cb
N21

;
s2
N62

+
sb
N21

; �
c2
N62

�
cb
N21

; 0; 0; 0; 0;

�
sb
N21

;
cb
N21

; �
s2
N62

+
sb
N21

;
c2
N62

�
cb
N21

]: (4.8)

The 5� 5 covariance matrix for random vector [u; v; �3b; �1b; �2b] is:

�̂ =
�2

N2
21

2
6666666664

4(u2+v2)+3
4 0 �v �v �v

0 4(u2+v2)+3
4 u u u

�v u 1 +
2N2

21

N2
43

1 1

�v u 1 1 +
N2
21

2N2
51

1

�v u 1 1 1 +
N2
21

2N2
62

3
7777777775
:

Unlike the case of endpoints, the basis pair (p1; p2) is dependent upon p5 and p6 for

midpoint case. Because of the symmetry of the midpoint representation, the covariance

matrices are simpler than that of the endpoints case.

4.3.4 Midpoints under the exact matching hypothesis

The case for midpoint features under exact matching hypothesis is di�erent from the case

of endpoint features as described in Section 4.3.2. The reason is that under exact matching

hypothesis, the basis points p1 and p2 are matched to the selected basis points in the test

image. Since p1 and p2 are the midpoints of line segments p01p5 and p02p6 respectively

(see Figure 4.6), the endpoints of these two line segments are not independent. However,

when the midpoints p1 and p2 are �xed, we can determine the location of p01 and p02 if

the Gaussianly perturbed points p5 and p6 are given. We can again discard the terms

corresponding to random variables x01; y
0

1; x
0

2; and y
0

2 inW1; : : : ;W5 which are described in

Equation 4.6 and 4.8. Furthermore, since the basis pair (p1; p2) is �xed now, the deviation

of points p5 and p6 will a�ect the orientation attributes of the basis, i.e, �1b and �2b only.

The resulting W vectors for random vector [x3; y3; : : :x6; y6] become

W1 =
1

2N2
21

[�21; �21; �21; �21; 0; 0; 0; 0];

W2 =
1

2N2
21

[��21; �21; ��21; �21; 0; 0; 0; 0];

W3 =
1

N43
[s3; �c3; �s3; c3; 0; 0; 0; 0];

W4 =
1

N51
[0; 0; 0; 0; �s1; c1; 0; 0];

W5 =
1

N62
[0; 0; 0; 0; 0; 0; �s2; c2]:

55

p5

p0

5

p4

p3

p

p0

4

Figure 4.7: The con�guration of a corner formed by p3; p4, and p5.

The resulting 5� 5 covariance matrix becomes:

�̂ = �2

2
666666664

1
2N2

21
0 0 0 0

0 1
2N2

21
0 0 0

0 0 2
N2
43

0 0

0 0 0 1
N2
51

0

0 0 0 0 1
N2
62

3
777777775
: (4.9)

Again, the 3�3 covariance matrix is simply the three by three submatrix of Equation 4.9.

The covariance matrix shows that the covariance is smaller if the line segment is longer,

which means the information is more stable. Note that the covariance for the positional

information is dependent upon the length of the basis, which is independent of the hash

location. While the covariance for the orientation information is dependent upon each

hash location.

4.3.5 Bisectors under the approximate matching hypothesis

We next derive the covariance matrix for bisector case by introducing another two points

p4 and p5. The con�guration of the corner is shown in Figure (4.7). We normalize vectors

~p3p4 and ~p3p5 to unit vectors ~p3p
0

4 and
~p3p
0

5 respectively. Then vector ~p3p = ~p3p
0

4 +
~p3p
0

5

bisects the angle \p4p3p5. Let the angle formed by vector ~p3p be �3, then we have

[c3; s3] = [
N53�43 +N43�53

N3
;
N53�43 +N43�53

N3
];

56

where

N3 =
q
(N53�43 +N43�53)2 + (N53�43 +N43�53)2

Again, we use the sine of the angle perturbation to approximate the angle perturbation.

Following the same procedure as before, we have

W1 =
1

N2
21

[�21(u�
1

2
) + �21v; ��21v + �21(u�

1

2
);

��21(u+
1

2
)� �21v; �21v � �21(u+

1

2
);

�21; �21; 0; 0; 0; 0];

W2 =
1

N2
21

[��21(u�
1

2
) + �21v; �21v + �21(u�

1

2
);

�21(u+
1

2
)� �21v; ��21v � �21(u+

1

2
);

��21; �21; 0; 0; 0; 0];

and

W3 =

�
��21
N2
21

;
�21
N2
21

;
�21
N2
21

;
��21
N2
21

;

1

N2
3

�
(�53�43 � �43�53)

�
�43N53

N43
�

�53N43

N53

�
+ (N43+N53)(�53N43 + �43N53)

�
;

1

N2
3

�
(�53�43 � �43�53)

�
�43N53

N43
�

�53N43

N53

�
� (N43 +N53)(�53N43 + �43N53)

�
;

�1

N2
3

�
(�53�43 � �43�53)

�43N53

N43
+N53(�53N43 + �43N53)

�
;

�1

N2
3

�
(�53�43 � �43�53)

�43N53

N43
�N53(�53N43 + �43N53)

�
;

1

N2
3

�
(�53�43 � �43�53)

�53N43

N53
�N43(�53N43 + �43N53)

�
;

1

N2
3

�
(�53�43 � �43�53)

�53N43

N53
+N43(�53N43 + �43N53)

��
:

The �nal result for every element of �̂ is shown as follows:

�̂11 = �̂22 =
�2(4(u2+ v2) + 3)

2N2
21

;

�̂12 = �̂21 = 0;

�̂13 = �̂31 =
�2

N2
21

f�2v +
N21(N43+N53)s3b

N3
+

57

(�53�43 � �43�53)

N2
3

[�21(
�43N53

N43
�

�53N43

N53
) + �21(

�43N53

N43
�

�53N43

N53
)]g

=
�2

N2
21

f�2v +
N21(N43 +N53)s3b

N3
+

(dx53�43 � �43�53)N21

N2
3

[
N3(N53�N43)c3b

N43N53
+ cb(�43 � �53) + sb(�43 � �53)]g;

�̂23 = �̂32 =
�2

N2
21

f2u�
N21(N43+N53)c3b

N3
+

(�53�43 � �43�53)

N2
3

[�21(
�43N53

N43
�

�53N43

N53
)� �21(

�43N53

N43
�

�53N43

N53
)]g

=
�2

N2
21

f2u�
N21(N43+N53)c3b

N3
+

(�53�43 � �43�53)N21

N2
3

[
N3(N53�N43)s3b

N43N53
� sb(�43 � �53) + cb(�43 � �53)]g;

�̂33 = 2�2f
1

N2
21

+
1

N4
3

[(N2
43+N43N53 +N2

53)N
2
3 �

(�53�43 � �43�53)
2(�43�53 + �43�53 + (N43 +N53)

2)]g:

We can also derive the covariance matrix for random vector [u; v; �3b; �1b; �2b] by

introducing p5; : : : ; p8 for bisector case. The angles \p6p1p7 and \p8p2p9 provide the

directional information for the basis p1 and p2. Again, we use sine of the angle variations

to approximate the angle variations. The result is listed in the following equations:

�̂14 = �̂41 =
�2

N2
21

f�2v +
N21(N61+N71)(s1b(u�

1
2) + c1bv)

N1
+

N21(�71�61 � �61�71)

N1
[
(N71�N61)(c1b(u�

1
2)� s1bv)

N61N71
+

1

N1
((�61� �71)(cb(u�

1

2
) + sbv) + (�61� �71)(sb(u�

1

2
)� cbv))]g;

�̂15 = �̂51 =
�2

N2
21

f�2v �
N21(N82 +N92)(s2b(u+

1
2) + c2bv)

N2
�

N21(�92�82 � �82�92)

N2
[
(N92�N82)(c2b(u+

1
2)� s2bv)

N82N92
+

1

N2
((�82� �92)(cb(u+

1

2
) + sbv) + (�82 � �92)(sb(u+

1

2
)� cbv))]g;

�̂24 = �̂42 =
�2

N2
21

f2u�
N21(N61 +N71)(c1b(u�

1
2)� s1bv)

N1
+

N21(�71�61 � �61�71)

N1
[
(N71�N61)(s1b(u�

1
2) + c1bv)

N61N71
�

58

1

N1
((�61� �71)(sb(u�

1

2
)� cbv)� (�61� �71)(cb(u�

1

2
) + sbv))]g;

�̂25 = �̂52 =
�2

N2
21

f2u+
N21(N82+N92)(c2b(u+

1
2)� s2bv)

N2
�

N21(�92�82 � �82�92)

N2
[
(N92�N82)(s2b(u+

1
2) + c2bv)

N82N92
�

1

N2
((�82� �92)(sb(u+

1

2
)� cbv)� (�82 � �92)(cb(u+

1

2
) + sbv))]g;

�̂34 = �̂43 =
�2

N2
21

f2�
N21(N61 +N71)c1b

N1
+

N21(�71�61 � �61�71)

N1
[
(N71�N61)s1b

N61N71
�

(�61 � �71)sb � (�61� �71)cb
N1

]g;

�̂35 = �̂53 =
�2

N2
21

f2 +
N21(N82+N92)c2b

N2
�

N21(�92�82 � �82�92)

N2
[
(N92�N82)s2b

N82N92
�

(�82 � �92)sb � (�82� �92)cb
N2

]g;

�̂44 =
2�2

N2
21

+
2�2

N21N
2
1

[(�71�61 � �61�71)(
N1(N71�N61)s1b

N61N71
�

(�61� �71)sb + (�61 � �71)cb)�N1(N61+N71)c1b] +

2�2

N4
1

[N2
1 (N

2
61 +N61N71 +N2

71) + 2N1(�71�61 � �61�71)((�61N61 � �71N71)s1 �

(�61N61 � �71N71)c1)� (�71�61 � �61�71)
2(�61�71 + �61�71 + 2N61N71)];

�̂45 = �̂54 =
2�2

N2
21

+
�2

N21
f
(�71�61 � �61�71)

N2
1

[
N1(N71�N61)s1b

N61N71
�

(�61� �71)sb + (�61 � �71)cb]�
(�92�82 � �82�92)

N2
2

[
N2(N92 �N82)s2b

N82N92
�

(�82� �92)sb + (�82 � �92)cb]�
(N61+N71)c1b

N1
+
(N82 +N92)c2b

N2
g;

�̂55 =
2�2

N2
21

�
2�2

N21N2
2

[(�92�82 � �82�92)(
N2(N92 �N82)s2b

N82N92
�

(�82� �92)sb + (�82 � �92)cb)�N2(N82+N92)c2b] +

2�2

N4
2

[N2
2 (N

2
82 +N82N92 +N2

92) + 2N2(�92�82 � �82�92)((�82N82 � �92N92)s2 �

(�82N82 � �92N92)c2)� (�92�82 � �82�92)
2(�82�92 + �82�92 + 2N82N92)]:

We assume that the basis pair and the encoded features are of the same type in the

derivation described in previous sections. For the case of heterogeneous feature types and

nonuniform variances, the closed form formula for the covariance matrices are compli-

59

cated. We may resort to empirical solutions.

4.4 Separability of the Density Function for Mid-
points

In our formulation, we need several assumptions of independence. For example, we re-

quire independence among the features and independence of the positional information

and the orientation attribute. Usually, it is di�cult to justify these assumptions. The in-

dependence property of the positional attribute and orientation attribute for an attributed

feature can simplify the computation since the conditional density function becomes sep-

arable. The midpoint of a line segment possesses such an independence property under

certain assumptions. We provide both an indirect proof and a direct proof. In the proofs,

we do not use �rst order approximations as we did in previous sections. Here, we show

an indirect proof of the independence of the positional information and orientation infor-

mation for midpoint features. The direct proof is given in an Appendix.

We show that the positional attribute and orientation attribute are independent for

the midpoint of a line segment. We need the following lemmas, taken from [82], �rst.

Lemma 4.1 If two random variables are uncorrelated they are not necessarily indepen-

dent. However, for normal random variables uncorelatedness is equivalent to indepen-

dence.

Lemma 4.2 If random variables X and Y are independent, then random variables g(X)

and h(Y) are also independent.

Lemma 4.3 Consider two random variables X and Y such that EfX2g = EfY 2g, then

Ef(X+Y)(X�Y)g = Ef(X2�Y 2)g = 0. That is, X +Y and X �Y are uncorrelated.

From Lemma 4.1 and Lemma 4.3, if X and Y are normal random variables with the

same variance, then random variables X + Y and X � Y are independent. The random

variables g(X + Y) and h(X � Y) are also independent.

The above lemmas can be extended to random vectors. We have the following theorem:

Theorem 4.4 The positional attribute and orientation attribute for the midpoint of a

line segment are independent.

Proof: Suppose the coordinates for the endpoints of a line segment are P1 = (X1; Y1) and

P2 = (X2; Y2) respectively. The Xi and Yi are Gaussian random variables with the same

variance. The positional attribute of the midpoint for that line segment is (X1+X2
2 ; Y1+Y22),

60

which is a function of P1 + P2. The orientation attribute of the midpoint for that line

segment is tan�1
(Y2�Y1)
(X2�X1)

, which is a function of P1 � P2. From Lemmas 4.1, 4.2, and

4.3, the positional attribute and the orientation attribute are independent.

The above argument uses the assumption that the variances are the same for every

random variable.

4.5 Abstract Attributed Features

We discussed three realizations of attribute features in Section 4.2. We generalize this

idea to heterogeneous feature types. With heterogeneous features, the information accu-

mulation is based upon the features that are not of the same type. In this way, multisensor

fusion is possible, since the image could be formed by di�erent kinds of sensors, and the

features could be extracted by di�erent kinds of feature detectors. We could combine

various sources of information after we �nd candidates for the target object. We discuss

an alternative here, i.e., we mix various kinds of features together during the voting pro-

cess. Various types of normalized features carry their own attributes in the same hash

space. The resulting performance is dependent upon the implementation method for pat-

tern matching. Recall that a pattern is de�ned as a collection of normalized attributed

features based upon a normalization basis of a model. We will discuss the implementation

issues in Chapter 5.

An abstract attributed feature is de�ned as ~v, where ~v = (v1; : : : ; vt), and t is depen-

dent upon the type of feature. Conceptually, two attributed features of di�erent types

could have some common �elds and the values in common �elds can be compared. On

the other hand, two �elds in the same coordinate location from di�erent features may not

form a common �eld. This can happen even if the features have the same dimensionality.

For example, the position of the midpoint of a line can not be matched to a bisector lo-

cated at the same position. Even though their positional information can match perfectly,

we can not accumulate votes since these two features are not compatible. On the other

hand, di�erent types of features could match together in certain situations. For example,

a bisector for a corner could match to a multi-angle corner, since a single corner may be

detected at a multi-angle corner due to noise. Even though the dimensionality of the two

features are di�erent, they could match to each other.

Conceptually, we map every kind of feature to a universal attributed feature. The

features are uni�ed by the universal attributed feature type. Those �elds from di�erent

feature types that point to the same �elds in a universal attributed feature type can be

compared and matched together. Figure 4.8 shows this concept. Heterogeneous features

f0 : : : f3 are mapped to the universal attributed feature which contains the union of the

�elds for all feature types. From now on, we discuss the heterogeneous attributed features

61

using this universal attributed feature platform.

Basically, a universal feature is composed of essential components and annotative

components. Essential components are essential to de�ne the transformation. For exam-

ple, since the (x; y) components of a basis in our orientation-attributed features are used

to de�ne the coordinate system for a similarity transformation, both x and y components

are essential. The angle � in an orientation-attributed feature is simply an attribute that

provides an additional description of the feature; it is an annotative component. To �t

into our geometric hashing method, a feature must contain essential components. As

shown in Figure 4.8, recall that feature type f1 and f2 are midpoint and endpoint fea-

tures respectively; since they are not compatible to each other, the x, y, and � �elds

are mapped to di�erent essential components of universal feature. Feature type f0 is

the corner feature which is found by the intersection of two line segments, while feature

type f3 is the bisector of the corner feature. Since feature type f0 and f3 are compatible

to each other, the x and y �elds are mapped to the same essential components e10 and

e11. The importance of each feature can be de�ned by �i as described in Section 3.2.1.

In general, some �elds will be missing in a universal feature space when a feature type

is mapped to universal feature. We may associate an always TRUE or always FALSE

function to these missing �elds during the matching process. The interpretation of these

�elds is that the distance is 0 (or1) when that �eld is missing. Note that the basis that

de�nes the transformation of the coordinate system is also attributed, and the attributed

information can be mapped to annotative components of universal feature when a feature

is normalized. The basis set can also be heterogeneous.

In this fashion, heterogeneous features are uni�ed by the universal feature type so that

the fusion of various information is possible.

62

f0 x y f3 x y �

e00 e01 e10 e11 e20 e21 a0 a1 a2

f1 x y � f2 x y �

Figure 4.8: Heterogeneous types of features f0 : : :f3 are mapped to universal feature
type for similarity transformation. The (x; y) components of feature type f0 and feature
type f3 are mapped to the same �elds e00 and e01 respectively since f0 and f3 are
compatible.

63

Chapter 5

E�cient and Distributed

Implementation

Having the formulation for our geometric hashing method described in Chapter 3 and

Chapter 4, we now consider e�cient implementation methods. The key capability is to

�nd e�ciently the closest hash entries for a given normalized attributed feature. We

discuss alternatives for accessing the hash table, i.e., linear access, a binning idea, and a

binary tree search.

In order to make use of a distributed computing environment, we can divide the hash

table into several pieces. Our method of distributed computationmakes this object recog-

nition system an ideal application example that can �t into many distributed computation

models.

5.1 Linear Access and Binning

We �rst discuss three methods of accessing the hash table, namely, linear access, binning,

and binary tree search. However, our focus is on the last method, more speci�cally, k-d

tree search, which is the generalization of binary tree search in k-dimensional space.

Recall that in Section 3.5, we need to �nd the nearby entries for the normalized scene

features in order to accumulate votes for various hypotheses. The naive way is to compute

the distance from the given hash location to each hash entry and to maintain minimums

for all �lters. In essence, this kind of linear access method has no power of \hashing".

A better performance can be achieved if we make use of the attribute information of

the basis to quickly discard improper �lters. Recall that a �lter is de�ned as all the

normalized features corresponding to the same (model, basis) hypothesis (i.e., a model

pattern). When the hash table is organized as one �lter after another, we can use the

attribute information of the basis to skip �lters that have no chance of matching. A

64

particular implementation shows the performance improvement is about four times faster

than the linear approach, when the number of features per �lter averages thirty. An even

better performance improvement can be achieved if we store the �lters in the table indexed

by the attributed information of the basis. Only the �lters with proper attributed basis

information then participate in the computation.

If the hash entries are approximately uniformly distributed in the whole hash space,

then the binning idea can be used. That is, we may partition the hash space into bins.

Bins can be uniform or nonuniform, i.e., the size of each bin can vary if the hash space

density is nonuniform. The entries located in the bins that are close to the normalized

scene features are the candidates for vote accumulations. The entries in a bin can be

stored as a linear list, or a binary search tree. Ideally, if we have a large number of

partitions, there is at most one entry in each bin, thus achieving the \hashing" power in

O(1) time. In reality, this is not practical if the domain which we partition represents

only feature positional information. Figure 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7 and 5.8 shows

the histogram analysis of a hash table for synthesized polygons and fourteen car models.

From top to bottom, the �rst �ve �gures show the histogram in u-v space, then the

histogram for orientation information of the hash entries. The last two �gures show the

density distribution of the angular attributes of the bases. Recall that (u; v) is

the coordinate of a feature in the coordinate system de�ned by the selected basis. The

statistics of the corresponding histograms are shown in Table 5.1 and 5.2. The �gures

show that an extremely high peak occurs near the origin for the histogram in u-v space.

For the case of �fteen-polygon models, the bounding box for including all the hash entries

in u-v space is (�8:5419;�12:6836) and (8:5419; 12:6836). We have a quasi-uniform

distribution for each bin in the range of (�0:4188;�0:6220) and (0:4188; 0:6220) which

is about 10� � 10� in area. The distribution for hash entries and basis attributes are

more likely to be uniform, which shows the feasibility of using basis attributes as the

indexing key as just described. For the case of fourteen car models, the bounding box

for including all hash entries extends to (�32:7800;�62:9728) and (32:7800; 62:9728). An

almost uniform distribution of the entries occurs when in the range of (�0:3128;�0:1564)

and (0:3128; 0:1564) which is around 10��5� in area. Note that there are a large number

of entries which have a horizontal orientation attribute. The reason is that there are

many horizontal line segments in the car models. We will describe the data set for the

experiments in Chapter 6. It is possible to use a rehashing function to redistribute the

hash entries [86]. However, the disadvantage of rehashing is that the neighborhood relation

among the hash entries might not be preserved.

The binning idea can be extended to the ellipse selection method as described in the

following. Recall the covariance matrices that we derived in Chapter 4 de�ne ellipsoids.

In the hash table, instead of �nding nearby entries from the nearby bins during the

65

u-axisv-axis

nu
m

be
r

of
 e

nt
ri

es

histogram in u-v space

-10

-5

0

5

10

-20

-10

0

10

20
0

500

1000

1500

2000

2500

3000

3500

4000

u-axisv-axis

nu
m

be
r

of
 e

nt
ri

es

histogram in u-v space

-6
-4

-2
0

2
4

-10

-5

0

5

10
0

200

400

600

800

1000

Figure 5.1: The histogram analysis of u-v space for the hash table of �fteen polygon
models.

66

u-axisv-axis

nu
m

be
r

of
 e

nt
ri

es

histogram in u-v space

-2

-1

0

1

2

-4

-2

0

2

4
0

50

100

150

200

250

300

u-axisv-axis

nu
m

be
r

of
 e

nt
ri

es

histogram in u-v space

-1

-0.5

0

0.5

1

-2

-1

0

1

2
0

10

20

30

40

50

60

70

Figure 5.2: The histogram analysis of u-v space for the hash table of �fteen polygon
models. The �gure focus on the center of the histogram in Figure 5.1.

67

u-axisv-axis

nu
m

be
r

of
 e

nt
ri

es

histogram in u-v space

-0.6
-0.4

-0.2
0

0.2
0.4

-1

-0.5

0

0.5

1
0

5

10

15

20

25

0 0.5 1 1.5 2 2.5 3 3.5
70

80

90

100

110

120

130

140

150

angle in radian

nu
m

be
r

of
 e

nt
ri

es

histogram for attribute of entries

Figure 5.3: The histogram analysis for the hash table of �fteen polygon models. Top:
The center of the histogram of Figure 5.2. Bottom: The histogram for the angular
attribute of the entries.

68

angle for basis 0 in radianangle for basis 1 in radian

nu
m

be
r

of
 e

nt
ri

es

histogram for basis attribute

0

1

2

3

4

0

1

2

3

4
0

2

4

6

8

10

angle for basis 0 in radianangle for basis 1 in radian

nu
m

be
r

of
 e

nt
ri

es

histogram for basis attribute

0
0.5

1
1.5

2
2.5

3

0

1

2

3
0

5

10

15

Figure 5.4: The histogram analysis for the hash table of �fteen polygon models. The
�gure shows the histogram of the angular attribute of the bases for two di�erent quan-
tization steps.

69

u-axisv-axis

nu
m

be
r

of
 e

nt
ri

es

histogram in u-v space

-40

-20

0

20

40

-100

-50

0

50

100
0

0.5

1

1.5

2

x 10
5

u-axisv-axis

nu
m

be
r

of
 e

nt
ri

es

histogram in u-v space

-3
-2

-1
0

1
2

3

-2

-1

0

1

2
0

2000

4000

6000

8000

10000

Figure 5.5: The histogram analysis for the hash table of fourteen car models.

70

u-axisv-axis

nu
m

be
r

of
 e

nt
ri

es

histogram in u-v space

-1.5
-1

-0.5
0

0.5
1

1.5

-1

-0.5

0

0.5

1
0

500

1000

1500

2000

u-axisv-axis

nu
m

be
r

of
 e

nt
ri

es

histogram in u-v space

-1

-0.5

0

0.5

1

-0.4

-0.2

0

0.2

0.4
0

100

200

300

400

500

600

Figure 5.6: The histogram analysis for the hash table of fourteen car models. The �gure
focus on the center of the histogram in Figure 5.5.

71

u-axisv-axis

nu
m

be
r

of
 e

nt
ri

es

histogram in u-v space

-0.4

-0.2

0

0.2

0.4

-0.2

-0.1

0

0.1

0.2
60

70

80

90

100

110

120

130

0 0.5 1 1.5 2 2.5 3 3.5
1500

2000

2500

3000

3500

4000

4500

5000

angle in radian

nu
m

be
r

of
 e

nt
ri

es

histogram for attribute of entries

Figure 5.7: The histogram analysis for the hash table of fourteen car models. Top: The
center of the histogram of Figure 5.6. Bottom: The histogram for the angular attribute
of the entries.

72

angle for basis 0 in radianangle for basis 1 in radian

nu
m

be
r

of
 e

nt
ri

es

histogram for basis attribute

0

1

2

3

4

0

1

2

3

4
0

10

20

30

40

50

60

angle for basis 0 in radianangle for basis 1 in radian

nu
m

be
r

of
 e

nt
ri

es

histogram for basis attribute

0
0.5

1
1.5

2
2.5

3

0

1

2

3
0

20

40

60

80

100

120

140

Figure 5.8: The histogram analysis for the hash table of fourteen car models. The �gure
shows the histogram of the angular attribute of the bases for two di�erent quantization
steps.

73

histogram name u-v-0 u-v-1 u-v-2
number of entries 9858 9858 9858
bounding box (�8:5419;�12:6836) (�4:0196;�5:9688) (�1:8916;�2:8088)

(8:5419; 12:6836) (4:0196; 5:9688) (1:8916; 2:8088)
number of grids 17� 17 17� 17 17� 17
entries discarded 0 108 858

step size (1.0049, 1.4922) (0.4729, 0.7022) (0.2225, 0.3304)
bounding box (�0:5025;�0:7461) (�0:2364;�0:3511) (�0:3338;�0:4957)
for peak cell (0:5025; 0:7461) (0:2364; 0:3511) (�0:1113;�0:1652)

number of peaks 1 1 2
maximum 3868 972 264
minimum 0 0 0
mean 34.1107 33.7370 31.1419

standard deviation 250.0370 114.9270 51.5005

histogram name u-v-3 u-v-4
number of entries 9858 9858
bounding box (�0:8900;�1:3216) (�0:4188;�0:6220)

(0:8900; 1:3216) (0.4188, 0.6220)
number of grids 17� 17 17� 17
entries discarded 3180 6916

step size (0.1047, 0.1555) (0:0493; 0:0732)
bounding box (�0:0524;�0:3887) (�0:0246;�0:3293)
for peak cell (0:0524;�0:2332) (0:0246;�0:2561)

number of peaks 2 4
maximum 68 21
minimum 0 1
mean 23.1073 10.1799

standard deviation 16.4853 3.9375

histogram name hash entry attribute basis attribute-0 basis-attribute-1
number of entries 9858 1176 1176
bounding box (0; �) (0; �)(0; �) (0; �)(0; �)
number of grids 90 30� 30 20� 20
entries discarded 0 0 0

step size 0.0349 (0:1047; 0:1047) (0:1571; 0:1571)
bounding box (0:0698; 0:1047) (2:7727; 0:4189) (2:6704; 0:4712)
for peak cell (2:8274; 0:5236) (2:8274; 0:6283)

number of peaks 2 2 2
maximum 150 9 15
minimum 74 0 0
mean 109.5330 1.3067 2.9400

standard deviation 15.0497 1.3455 2.2730

Table 5.1: The statistics of the histogram for the hash table of �fteen-polygon models.

74

histogram name u-v-0 u-v-1 u-v-2
number of entries 211362 211362 211362
bounding box (�32:7800;�62:9768) (�3:0000;�1:5000) (�1:4116;�0:7060)

(32:7800; 62:9728) (3:0000; 1:5000) (1:4116; 0:7060)
number of grids 17� 17 17� 17 17� 17
entries discarded 0 34988 78218

step size (3.8565, 7.4086) (0.3529, 0.1765) (0.1661, 0.0831)
bounding box (�1:9282;�3:7043) (�0:1765;�0:0882) (�0:0830;�0:0415)
for peak cell (1:9282; 3:7043) (0:1765; 0:0882) (0:0830; 0:0415)

number of peaks 1 1 1
maximum 178820 8214 1986
minimum 0 40 85
mean 731.3560 610.2910 460.7060

standard deviation 10533.6000 1189.5000 433.5660

histogram name u-v-3 u-v-4
number of entries 211362 211362
bounding box (�0:6644;�0:3324) (�0:3128;�0:1564)

(0:6644; 0:3324) (0.3128, 0.1564)
number of grids 17� 17 17� 17
entries discarded 138144 186502

step size (0.0782, 0.0391) (0:0368; 0:0184)
bounding box (�0:0391;�0:0196) (�0:0184;�0:0092)
for peak cell (0:0391; 0:0196) (0:0184; 0:0092)

number of peaks 1 1
maximum 502 130
minimum 95 61
mean 253.3490 86.0208

standard deviation 99.5292 10.9079

histogram name hash entry attribute basis attribute-0 basis-attribute-1
number of entries 211362 8826 8826
bounding box (0; �) (0; �)(0; �) (0; �)(0; �)
number of grids 90 30� 30 20� 20
entries discarded 0 0 0

step size 0.0349 (0:1047; 0:1047) (0:1571; 0:1571)
bounding box (0:0000; 0:0349) (0:0000; 0:0000) (0:0000; 0:0000)
for peak cell (0:1047; 0:1047) (0:1571; 0:1571)

number of peaks 1 1 1
maximum 4914 60 128
minimum 1592 0 6
mean 2348.4700 9.8067 22.0650

standard deviation 852.6690 6.2543 12.7703

Table 5.2: The statistics of the histogram for the hash table of fourteen-car models.

75

recognition stage, we can precompile the hash table so that each bin stores all the hash

entries that we need to examine. Once a normalized scene feature is computed, it hashes

to one of the bins and retrieves all the entries stored in that bin. Since a hash entry is

now replicated to occur in all the bins enveloped by the ellipsoid, this method requires

larger memory space than the method described before.

5.2 K-d Tree and Its Generalizations

In this section, we discuss another approach that can be used to access the nearby entries

in O(logn) time on average, namely, k-d tree search. The k-d tree implementation will

be used in our experiments. We will describe the experiments in Chapter 6.

A k-d tree is a generalization of the data structure of a binary search tree [96], where

k denotes the dimensionality of the spatial data being represented. In essence, the k-d

tree is a binary search tree. The di�erence between an ordinary binary search tree and

a k-d tree is that the discriminator for a k-d tree is chosen from one of the k-�elds.

The discriminator for a node n means the key used to perform the comparison, which

determines whether the search proceeds to the left, right, or down both sub-branches of n.

We will denote the discriminator for the node n as disc(n). The choice of discriminator

can lead to various k-d trees, such as an optimized k-d tree [8] or an adaptive k-d tree

[36]. For simplicity, we discuss the original k-d tree, i.e., the discriminator of successive

levels is simply the next �eld of the discriminator in the current level. In our application,

our main concern is with the construction of a k-d tree and the search process in a k-d

tree, since we never delete a node from the tree.

The use of a k-d tree permits us to perform the range query of spatial data quite

e�ciently. In this section, we discuss the generalization of the discriminator values in

k-d tree search so that the data can be non-linear; speci�cally, cyclic data, such as an-

gles. Further generalizations for searching multi-angle data such as tri-corners are also

discussed.

There are three issues related to the search in a k-d tree, namely:

(1) The de�nition of the comparison function, kdt compare;

(2) The method for searching; and

(3) The method for pruning the branches.

Once we have de�ned the comparison function, issues (2) and (3) can be solved accord-

ingly. The returned value of the comparison function is either left son or right son.

The idea of the k-d tree for ordinary one-dimensional data de�ned on an interval is

as follows. Suppose we want to query all the nodes that represent data lying within

76

the range of (kmin; kmax). The comparison is ordinary linear comparison. That is, if

n:disc(ni) � ni:disc(ni), we know that node n is located at the left branch of node ni

(include the node ni if equality occurs). Similarly, we should visit the right branch if

n:disc(ni) > ni:disc(ni). Here, we use the notation that n:j represents the j-th �eld of

the data stored in node n. Tree pruning occurs if

� kdt compare(kmin; ni) is a right son, then we cut o� the left branch including

node ni,

� kdt compare(kmax; ni) is a left son, then we cut o� the right branch including

node ni.

For the case that neither of the above two conditions are true, we have to visit both left

and right branches. The principle behind the search is that when we visit a node of the

tree, we divide the space into two partsR+ andR� according to the chosen discriminator,

so that we need only to search one of the two branches in most cases when tree pruning

occurs. Furthermore, we should make sure that comparison function and space partition

method preserve the transitive property. That is, if a node nB is in the left branch of

node nA and a node nC is in the left branch of the node nB, we can conclude that the

node nC is in the left branch of the node nA.

5.2.1 K-d tree for angular data

The generalization of the k-d tree for cyclic data such as angular data is straitforward.

For example, suppose the midpoint feature (ui; vi; �i) is stored at the node ni. If the

discriminator for n is �n, the notation for ordinary comparison is not useful since the

angle data is cyclic. Suppose that angle � and angle �+ � are treated as a perfect match.

Let us assume the range query is (�1; �2), where �1 = � � �� , and �2 = � + �� . We also

assume that �� <
�

4
. The function kdt compare can be de�ned as

kdt compare(�; �i) =

(
left son if j� � �ij �

�

4

right son otherwise.

The tree is organized such that the left branch stores all the nodes with an angle di�erence

from �i less than
�

4
, while the right branch store the rest of the nodes. During the search,

when we visit a node ni of the tree, the tree pruning can be performed as follows:

� if the result of kdt compare(�1; �i) and kdt compare(�2; �i) are both left son,

then we prune the right branch,1 and

1If (�1 � �i) � (�2 � �i) > 0, then node ni can be excluded also.

77

left son left son

right son

right son

��

Figure 5.9: The space partition for �� when � and � + � are considered as the same,
where �� = � � �i. The comparison function kdt compare returns either left son or
right son according to the range of ��.

� if the results of kdt compare(�1; �i) and kdt compare(�2; �i) are both right son,

then we prune the left branch including node �i.

The space partition for the di�erence of the angle �� = � � �i is shown as Figure 5.9.

If we consider angle � and angle � + � as a mismatch, we can modify the method of

space partition as shown in Figure 5.10 and use the similar method as described above to

search and prune tree.

5.2.2 K-d tree for multi-angle features

The generalization to multi-angle features such as tri-corners can be achieved in the

following. We make use of the k-d tree in a slightly di�erent way than described in the

previous sections.

A multi-angle corner C is represented as (u; v; �1; �2; : : :), which is a corner located at

the position (u; v) with several distinct angular components (�1; �2; : : :). We will require

a notion of when two multi-angle features match. Let C1 = (u; v; �1; �2; : : :�m) and

C2 = (u0; v0; �01; �
0

2; : : :�
0

n). We have the following three matching de�nitions for multi-

angle corners:

Strong matching: We say that C1 strongly matches C2 if (u; v) = (u0; v0), m = n, and

f�1; �2; : : :�mg = f�01; �
0

2; : : :�
0

mg:

78

right son

right son

left son

left son

��

Figure 5.10: The space partition for �� when � and � + � are considered as di�erent.

Weak matching: We say that C1 weakly matches C2 if (u; v) = (u0; v0), and

f�1; �2; : : :�mg � f�01; �
0

2; : : :�
0

ng or f�1; �2; : : :�mg � f�01; �
0

2; : : :�
0

ng.

Partial matching: We say that C1 partially matches C2 if (u; v) = (u0; v0), and

f�1; �2; : : :�mg \ f�
0

1; �
0

2; : : :�
0

ng 6= �:

Each notion of matching extends naturally to a notion of approximate matching.

When testing scene multi-angle features to see if they match model multi-angle fea-

tures, a k-d tree approach can be used to speed the associations. Depending on the level

of matching, the pruning strategy of the k-d tree will vary. We discuss pruning strategies

below. The position of the multi-angle corner typically will be considered at the other

levels of the k-d tree. We only consider the multi-angle �elds here. Further, we consider

only strong matching.

Although we could order the partition elements �1 < �2 < : : : < �m, and make use of

this ordering to assist in organizing the search in the k-d tree, it is simpler to make use

of the fact that for any given location (u; v), there are likely to be only a small number

of multi-corners stored at the given location (each will belong to a di�erent model). We

can de�ne the following distance measure D for strong matching:

D(f�1; : : :�mg; f�
0

1; : : :�
0

m
g) = min

P
D(P(�1; : : :�m); (�

0

1; : : :�
0

m
));

where P runs over the set of permutations, andD measures the di�erence between vectors

79

of ordered angular components as de�ned by:

D((�1; : : :�m); (�
0

1; : : :�
0

m)) =
mX
i=1

(j�i � �0ij (mod �)):

Even though the cost of �nding the distance for a multi-angle corner is relatively high,

they are not likely to occur often. The structure of the k-d tree is organized so as to

place matched and neighboring corners in the left branch and the mismatched corners

in the right branch. The tree is unbalance at this level, which can be balanced back to

some degree at the other levels using other attributes as discriminators. Accordingly, we

construct a tree such that each node contains a set of angles f�1; : : :�ng, constituting

the union of angles at the children nodes, and each angle is marked as being derived

from the left, right, or both children. Locating an entry then becomes a simple matter

of testing successive angles for set membership, and walking down the tree. Leaf nodes

represent stored multicorners. For strong matching, we must check that the number of

angles match. For weak matching, all descendent leaf nodes, after exhausting the angles

in the test multicorner, constitute weak matches.

There is no obvious way to speed weak matching and partial matching other than by

brute force. The problem is that it is di�cult to de�ne a distance measure with transitivity

property using these two matching de�nition. In essence, if a node a matches node b and

b matches node c, we are not sure if node a can match node c.

5.2.3 K-d tree for heterogeneous data

We have assumed that all the nodes inserted into the k-d tree are of the same type. That is,

the dimensionality and the corresponding �elds for all nodes are homogeneous. Suppose

that some of the nodes have some �elds missing and the nodes inserted into the k-d tree

are heterogeneous. Consider the situation that we are currently visiting an internal node

n of the k-d tree. We need to decide how to insert an new hash entry n0 to the tree, even

though n0 does not have the �eld corresponding to the current discriminator of node n.

If we treat that missing �eld as a perfect match (distance 0) in all cases, we can insert

n0 to the left branch of the current node n. During the search process, we need to �nd

all the entries that are close to n0. Again, suppose that a feature n0 does not have the

�eld corresponding to the current discriminator of the internal node n. We can not prune

branches of the tree from node n. That is, we should search both branches. The reason

is that both branches may contain nodes with that missing �eld �lled. All of them are

considered as perfect matches to node n0.

On the other hand, if we treat that missing �eld as a totally mismatch (distance 1),

we can insert the new node to the right branch. In the search process, if the visited

internal node n uses a �eld as the discriminator which does not exist for the feature n0,

80

the left branch should include node n and can be pruned during the search. We still need

to continue the search process to the right branch of node n. The reason is that the right

branch may contain the nodes with that �eld missing also, and they might match the

feature n0. Recall that in Section 4.5, heterogeneous features can be realized by de�ning

mappings to a universal feature. Di�erent search and pruning procedures for a k-d tree

are associated to various �elds of the universal feature.

5.3 Distributing the Hash Table

To make use of the power of the current computer network to speed up the computation,

we distribute the computation among processors. Our platform is based upon loosely

coupled workstations communicating over a network. We discuss various distribution

methods in this section. Depending upon the access method for the hash table, one

distribution method could be more feasible than others. There are several possibilities:

(1) Every processor handles a portion of the hash space;

(2) Every processor handles a portion of the total trials;

(3) Every processor handles one or several models, which is the method adopted by

Rigoutsos and Hummel [91];

(4) Every processor handles a collection of (model, basis) hypotheses, which is the

method we use in our current implementation (with k-d tree search).

Method (1) has the following disadvantages:

1. Since the distribution of the hash entries in hash space is not uniform (see Figure 5.1

and 5.5), the partition should be nonuniform in order to balance the work load for

each processor. For higher-dimensional features, the partition can become very

complicated to compute.

2. For each normalized feature in the test image, it is possible that more than one

partition is involved in the voting computation, which means that there must be

interprocessor communication involved in the total vote computation for each nor-

malized feature.

3. Again, there is interprocessor communication involved in vote accumulation for each

(model, basis) hypothesis.

The problem is that more than one processor must be involved in the evidence accumu-

lation for a hypothesis. The communication overhead makes this method impractical.

81

If each processor has enough memory to store the whole hash table, each processor

can generate a set of trial basis and perform the vote accumulations. Ideally, we should

be able to decide an a priori threshold for the stopping criterion so that once a processor

�nds a trial basis which support a hypothesis with su�cient con�dence, the processor

then broadcasts this message to the rest of processors. This distribution method is shown

in Figure 5.11, which is an example of loosely synchronous complex system as described

by Fox et al [35]. The disadvantage of this method is that the whole hash table must be

replicated for each processor. However, this drawback can be solved if we combine this

idea with method (3) or method (4). We will discuss this hybrid issue again later.

Method (4) is similar to method (3). However, method (4) partitions the computation

more �nely which makes it more practical if the number of features for a model varies.

Finer granularity means we can divide the computation load more evenly. On the other

hand, we maintain the property that only one processor is involved in the evidence accu-

mulation for a single hypothesis. The main problem with method (4), like method (3), is

that the hash space must be replicated for each processor. If we make use of the binning

idea as described in Section 5.1, although each processor stores a portion of the hash

table, each processor still needs a large amount of memory for the quantization array.

Figure 5.12 shows the partition of the hash table where one k-d tree sits on top of

each partition. During the initialization stage, each processor reads in the corresponding

part of the hash table and its own k-d tree. Note that the k-d tree can be built in a

preprocessing stage once the partition has been determined. There is no communication

required during the evidence accumulation stage until a trial with su�cient evidence is

found or a certain number of trials is �nished. The computation
ow for this method is

shown as Figure 5.13. Ideally, the size of each partition can depend upon the computa-

tion power of each processor, which is determined statically beforehand. This partitioning

method is easily invoked using the parallel execution mode and remote execution mode of

cantata in the Khoros software development environment [57]. A depiction of the cantata

implementation for method (4) is shown as Figure 5.14. The glyph labeled vbuild is a

procedure for building the hash table and the corresponding k-d tree. Its expansion is

shown at left-bottom corner, containing vsim which builds the hash table for similarity-

invariant recognition. Three instances of vkdt build three distinct k-d trees which depend

on (command-line) parameters. The glyph labeled vrecog is a procedure for the recogni-

tion stage whose expansion is shown at right-bottom corner. The glyph vpresim initializes

and generates the set of trial basis. Three glyphs follow, labeled voting, which computes

the evidence for the hypotheses. Note that two of the voting glyphs are executed remotely

by the machine wilma and fred, and the third is executed locally by the host simulation.

Finally, a glyph labeled vlogf combines the results produced by voting's. The implemen-

tation is the realization of the computational model described in Figure 5.13.

82

no

veri�cation

combining �nal result

broadcastbroadcast

yes yes

no
stop?stop?

vote accumulation

feature normalization

generate trial basis generate trial basis

feature normalization

vote accumulation

initialization

Figure 5.11: Distribution of trial basis.

83

-d treek

Hash table:

Figure 5.12: The partition of the hash table with one k-d tree sits on top of each partition.

Each partition together with the computation for a trial can be viewed as a task to

be performed. Then the entire computation is composed of a list of tasks to be �nished.

From this point of view, the \work farm" model of parallel computation and the language

PLinda[53] would be ideal for its implementation. A snapshot of the revised implementa-

tion is shown as Figure 5.15. This implementation uses the concept of abstract attributed

features (Section 4.5) to handle the case of heterogeneous feature types (Section 5.2.3). It

also contains supporting modules to display the recognition results. Detailed information

for each module is described in Appendix B.

A hybrid parallel approach using methods (2) and (4) is also reasonable. Each proces-

sor computes the evidence for its own portion of the set of hypotheses based on the trial

bases it generates. The set of trial bases for every processor is di�erent, which means

that the ranking of the evidence for a trial basis may be incorrect. However, as long as we

can de�ne a threshold value for the evidence, the solution we �nd is still reasonable. We

may distribute the hypotheses of a model among the processors, so that each processor

has the chance to �re the correct matching if that model indeed appears in the test image.

We introduce this randomization to reduce the probability of unbalanced work load.

84

initialization

partition hash table

(generate trial basis set)

feature normalization

no

veri�cation

combining �nal result

broadcastbroadcast

stop? stop?

yes

no

yes

vote accumulation vote accumulation

feature normalization

Figure 5.13: Distribution of hash table.

85

Figure 5.14: The snapshot shows the implementation for method (4) as Khoros modules.

86

Figure 5.15: Here is a di�erent snapshot of the revised implementation. This implemen-

tation handles the case of heterogeneous feature types.

87

Chapter 6

Experimental Results

We present results from many experiments. We �rst describe the model database used

in our experiments. The feature extractors for various cases are described next. The

recognition results are given in the last section.

6.1 Model Database

We �rst describe the models used in our experiment. Five sets of experiments are per-

formed during our research. The model databases that we use for each set of experiments

are respectively:

(1) Fifteen polygonal object models,

(2) Nineteen industrial part models,

(3) Fourteen views of car models,

(4) Three views of military land vehicles, from gray scale imagery.

(5) Thirty two views military land vehicles created from CAD-CAM models.

In subsequent experiments, the database in set (5) was increased to 88 views. The �rst set

consists of a collection of �fteen synthesized polygons which are used to test the validity

of the various programs. The models are shown in Figure 6.1.

The second set consists of a collection of nineteen industrial parts. Some of the objects

have multiple stable states. An image of each stable state is built as a model. The images

for models and test images are taken using a Sony CCD camera [69]. The gray-scale

images of the models are shown in Figure 6.2.

The third set consists of seven brands of commercial vehicles. The pictures are taken

from the street. For model images, the pictures are scanned using a
atbed scanner. Tires

88

name size of hash number of feature number of number of data source
table (bytes) entries type models objects

poly15 221196 9858 midpoints 15 15 synthesized
cad19 1059188 49742 bisectors 19 9 Sony CCD

camera
car14 4404268 211362 midpoints 14 7 Sony CCD

camera,
Silver scanner

tank3 993580 47760 endpoints 3 2 CCD camera
brl32 15994036 NA hybrid 32 8 CAD model

(midpoints,
circles)

Table 6.1: The information for the model database used in our experiments.

and background are removed. For test images, the pictures are obtained using the CCD

camera [69, 70]. The extracted edge maps for the models are shown in Figure 6.3.

The forth set of models consists of two kinds of military vehicles, the M60 tank and

M113 vehicle. The images are obtained from the black-and-white portion of a color image,

taken from a range of about 500 meters by a color CCD camera. The data was obtained

from the Demo B imagery of the Unmanned Ground Vehicle program, made available to

the RSTA (Reconnaissance, Surveillance, and Target Acquisition) research community

[70]. For the M60 tank, we
ip the image of the M60 to get the mirror re
ective version

of the model. The test image is from the same data set, but a di�erent image than the

model. The edge maps of the models are shown in Figure 6.4.

The �fth set of models consists of four kinds of military vehicles. Since the M35 truck

has di�erent appearance when a canvas is attached, we treat it as another object. The

M35 truck with canvas attached and M60 tank have snapshots from two di�erent tilt

angles. Also, each object has four snapshots from four di�erent pan angles. The data

is generated from the imagery that was generated using BRL-CAD models. The SAIL

software (Synthetic Assembly Image Layout) is used to generate simulated laser radar

images (i.e., range images) from BRL-CAD models. The test image is from a dataset

provided by Wright Laboratory, having been taken using a Cincinnati Electronics Indium-

Antimonide (InSb)mid-wave infrared (MWIR) camera. The information for the model

database used in our experiments is listed in Table 6.1.

Figure 6.1: The collection of �fteen polygon models.

90

Figure 6.2: The collection of nineteen CAD models.

91

Figure 6.3: The collection of fourteen car models.

92

Figure 6.4: The collection of three tank models.

6.2 Feature Extraction

Currently our experiments rely on the extraction of line segments which is grouped from

edges. To extract edges, we use a version of Cox-Boie edge extractor [10], which we

have ported to Khoros. The Cox-Boie edge detector uses a matched �lter approach to

detect and locate the edges in an image. The input image is convolved with a Gaussian

mask and uses four di�erential edge operators aligned at intervals of �=4 radians and

the maximum response among these four directions is determined. The pixel with the

response larger than a threshold signi�es that a candidate edge pixel is detected. The

location of the edge is found by computing a zero-crossing along the detected edge pro�le.

An improved result can be achieved using a hysteresis analysis that follows. Those pixels

above a low threshold that are within a connected segment of contour already marked

as edge pixels are also marked as edges. This strategy can achieve the goal of retaining

high sensitivity as well as maintaining small probability of marking noise edges. Finally,

the last module in the Cox-Boie edge detector is a non-maximum suppression thinning

algorithm to ensure that only one response to a single edge is reported. The snapshot

of the Cantata screen of an implementation in Khoros is shown in Figure 6.6. The glyph

labeled v�lter generates the 1-D Gaussian mask. The glyphs vconv and vtranspos represent

convolution and transposition of the 1-D mask respectively. The four glyphs vdet represent

di�erential edge operators on four directions. The glyph vedge performs zero-crossing edge

localization and hysteresis analysis. The last glyph vthin represents the non-maximum

suppression thinning.

After edge elements are extracted, they are grouped to form line features. The group

process uses the following steps:

1. Trace the edges via their 8-connected neighbors. This is implemented by means of

the region tracing algorithm given by Pavlidis [83].

2. Line approximation by iteratively splitting the traced segments as long as the max-

93

Figure 6.5: The collection of thirty two military vehicle models. The edges are obtained
by applying extraction software to ray-traced depth images. Ideally, the depth images
would be converted to simulated EO (Electronic Optics) images, but this has not been
done for these experiments, and was not necessary to obtain rich edge maps. In some
cases, internal edges have been lost.

94

Figure 6.6: The Cox-Boie edge detector implemented as glyphs in Khoros environment.

95

imum distance deviation is larger than a certain threshold. The distance deviation

is de�ned by the distance of an edge point to the base line which is de�ned by con-

necting the endpoints of the segment. This is the conventional iterative \endpoint

�ts" approach [28, 79].

3. Compute the orientation of each line in a least-squares sense [28, 4] for the seg-

ments found in the previous step. Nearby line segments with the same orientations

are merged together. Other merging criterion for collinear lines can be found in

Venkateswar and Chellappa [110]. Conceptually, the merge process �nds the con-

nected components of a graph G, where G = (E; V). Each line segment is repre-

sented by a vertex in V . An edge (vi; vj) exists if the lines labeled by vi and vj

satis�es the merging criterion.

4. Compute the least-squares line approximation for each of the merged segments. The

endpoints of each line segment are orthogonally projected onto the corresponding

�tted line segment. The distance between these two projected points is the extent

of the line segment.

The bisector features are obtained by extracting the intersected line features �rst, then we

compute the intersections and the bisectors. The intersected line features are determined

using an additional intersection criterion in step 3 above. We build another graph G0 =

(E0; V) for the intersected lines. Recall that a line segment is represented by a vertex

in V . If an edge vi lies within the neighborhood of one of the endpoint of an edge vj

and the slopes of vi di�ers than the slope of vj for a certain amount, then we say that

the line segment vi and the line segment vj satisfy the intersection criterion so that the

edge (vi; vj) belongs to E
0. The intersections for all the line segments within a connected

component of G0 are computed.

We also extract circular features. The idea is that instead of �tting the small segments

into lines, we �t the segments into circles in a least-squares sense. The merging process

combines arcs that are centered at the same position with the same radii. Haralick and

Shapiro [45] provide a closed-form formula for �tting circles in the least-squares sense.

Essentially, we use the same split-and-merge process 1-4 above, but replace step 3 with

a least-squares circle �tting process. The circular features extracted from a snapshot

of industrial parts is shown in Figure 6.7. Figure 6.8 shows another example of the

extractions of circular features; there is only one wheel that is missed for the target tank

M60. The image is a mid-wave infrared image of an M60 tank which is obtained using a

Cincinnati Electronics Indium InSb mid-wave IR sensor. It is resampled to increase the

sampling rate by a factor of two in both dimensions using bilinear interpolation.

Other methods to extract features can be found in literature. For example, Leung

and Huang [67] also study the problem of wheel detection for military vehicle. Stereo

96

Figure 6.7: The extraction of circular features for industrial parts. The edge map is
shown to the left. The detected circles are overlaid on top of the original image which
is shown to the right.

images and circle extraction by template matching and Hough transform are used in their

experiments. Roth and Levine [95] extract geometric primitives such as lines, circles and

ellipses using robust statics. A number of minimal subsets are chosen from the geometric

data randomly, followed by the evaluation of each subset based on the cost function. The

primitive with the minimum cost is then extracted from the geometric data.

6.3 Target Recognition and Veri�cation

This section contains four sets of experiments. The �rst set of experiments is based on

images of industrial parts. Bisector features are used in the experiment. The left hand

side of Figure 6.9 shows the test image with features overlaid on top. The white dots

indicate the position of extracted bisectors, associated with line segments to indicate the

orientations of the bisectors. The right hand side of Figure 6.9 shows the correct recog-

nition of the industrial part. The approximate matching hypothesis is used, and eighty

trials are performed in the experiment. Weighted accumulation according to formula 3.15

and 3.16 is used. E�cient access to hash table entries is performed using the k-d tree

construction of section 5.2. The recognized object (i.e., the model-basis with the greatest

97

Figure 6.8: The extraction of circular features from mid-wave infrared image of an M60
tank. Again, the edge map is shown to the left and the detected circles are overlaid on
top of the original image which is shown to the left.

vote) is indicated by an overlay of the model which is rotated and scaled according to the

matched basis. Figure 6.10 shows an array of model/basis pairs that received substantial

weighted vote corresponding to this trial. The panels show the sketches of the models

with the bars above them to display the magnitude of the vote. The length of the bar is

normalized linearly by the following formula:

bar length = 0:5p � (1 + vi

max(vmin; vmax)
);

where p is the width of the panel, vi is the vote accumulated for the model, vmin and vmax

are the minimum and the maximum of the vote accumulated among the top (model, basis)

hypotheses.

Figure 6.11 displays a false alarm. Although it looks like a random match, however,

from the given bisector features, the false alarm matches quite well. The accumulated

vote, and other statistic information is shown in Table 6.2. The \touched number" refers

to the number of the features of the scene that lie within a certain range of the feature

for that model. This example demonstrates the power of recognition of the attributed

features combined with a veri�cation stage. Even with a small number of features (seven

features in both cases), we are able to �lter out a number of candidate matches based on

a veri�cation step. We use the following strategy to verify the validity of the recognition

results. Since we can transform the model to overlap on top of the test image based on

the basis information, we can verify the recognition result using the edge information.

98

Figure 6.9: Left: the test image with the extracted bisector features overlaid on top.
Right: the correct recognition of the industrial part, the edge map of the model which
accumulates the largest vote is rotated and scaled according to the matched basis.

Figure 6.10: The top three model/basis vote-getters for the recognition result. There
are only three models which can accumulate vote by using this basis.

99

Figure 6.11: A false alarm for the recognition of an industrial part.

remark vote touched model number of number matched matched distance

number name features of edges edges portion variancep
1.0322 2 model 6.1 7 420 363 86.43% 17.50

� 0.5921 2 model 7 7 534 341 63.86% 27.77

Table 6.2: The statistics for the recognition result of industrial part. The search radius
is 6 pixels and the penalty factor is 1.5. The mark \

p
" indicates a correct recognition,

while the mark \�" indicates a false alarm.

100

Figure 6.12: Veri�cations for the recognition of the industrial parts.

For each transformed edge pixel of the model, we search the edge pixels of the test image

within a certain bound. The minimum distance between the matched edge pixel from the

scene and from the model is computed. The accumulated squared distances together with

the matched portion are used as an indicator for the quality of the recognition. An edge

pixel m in the model belongs to the matched portion if there is an edge pixel of the test

image within a prede�ned search range centered at the edge pixel m. For the distance

variance of the unmatched portion, we de�ne a penalty factor which is multiplied by the

square of the search radius. Figure 6.12 shows the edge pixels that are matched to the

edges in the model with minimum distances for Figure 6.9 and 6.11. Note that the results

shown in Figure 6.9 and 6.11 are corresponding to two di�erent trial bases.

Figure 6.13 shows another test image for industrial parts with extracted bisector

features. The recognition result for the top vote-getter and the third highest vote-getter

corresponding to the same scene basis are shown in Figure 6.15. The length-encoded

weight for the top nine model/basis corresponding to the trial with the largest vote is

shown in Figure 6.14. In this case, the third and the fourth vote-getters are the correct

matches. Because the number of bisector features for each model is usually smaller than

other types of features, the descriptive power of the pattern of bisector features alone is

quite limited. However, with the veri�cation stage, we can easily reject the false alarms.

Corresponding to Figure 6.14, Table 6.3 shows the statistics of the veri�cation stage

101

Figure 6.13: Another test image for industrial parts. Left: the extracted bisector fea-
tures overlaid on top of the original image. Right: the edge map.

Figure 6.14: The top nine model/basis vote-getters for the recognition result of indus-
trial parts. The top vote-getter is a false alarm. The third vote-getter is the correct
recognition.

102

Figure 6.15: The recognition result for the �rst and the third vote-getters. The third
vote-getter is the correct match.

for top nine candidates corresponding to this trial basis. Note that the percentage of

the matched portion for the correct matches are 81.07% and 82.96% respectively. The

distance variances for the correct matches are 16.77 and 15.87 pixels. This information

can be used to reject the incorrect matches easily.

Figure 6.16 shows a test image with midpoint features overlaid on top of the original

image for the recognition of commercial vehicles. The extracted features are shown as

square dots, with a line segment passing through them in order to indicate the orientation

information. The edge extracted from the image is shown to the right of Figure 6.16.

Figures 6.17 and 6.18 show the recognition result.

To demonstrate the scale invariant capabilities, we shrink the image down to sixty

percent on each side and embed the image of one car in the image of another car, as

shown by Figure 6.19. The number of pixels on target is reduced from 43000 pixels to

15000 pixels, roughly. The correct car model, a Buick LeSabre, is still recognized at the

correct location, which is shown in Figure 6.20 and 6.21. Further reduction in size often

results in failed recognition. The limitation on recognition ability comes from the power

of feature extraction. When reliable features are undetectable due to the small size of the

object in the image, the recognition system may fail even though we use features with

descriptive attributes. Note that the signal to noise ratio (the number of features in Buick

103

remark vote touched model number of number matched matched distance

number name features of edges edges portion variance

� 2.1464 3 model 4 10 283 137 48.41% 32.67

� 2.1464 3 model 5.1 10 604 144 23.84% 44.04p
1.2343 8 model 5.4 20 581 471 81.07% 16.77p
-0.8259 7 model 5.4 20 581 482 82.96% 15.87

� -2.8092 1 model 1.2 10 232 114 49.14% 34.22

� -3.9826 1 model 5.3 16 737 441 59.84% 29.09

� -5.1182 1 model 5.4 20 581 247 42.51% 36.72

� -5.1995 1 model 5.3 16 737 230 31.21% 40.91

� -5.5628 1 model 5.4 20 581 68 11.70% 49.39

Table 6.3: The statistics for another recognition result of industrial part. Again, the

search radius is 6 pixels and the penalty factor is 1.5. The data shown is for the top

nine candidates corresponding to the same trial basis.

Figure 6.16: A test image, Buick LeSabre. Left: the test image with extracted midpoint

features overlaid on top. Right: the extracted edge map.

104

Figure 6.17: The recognition result of the top vote-getters for Buick LeSabre. Left: the

test image with recognized model overlaid on top. Right: the result of veri�cation.

Figure 6.18: The top nine model/basis vote-getters for the recognition result of Buick
LeSabre.

105

Figure 6.19: Another test image, the picture is shrunk and embedded into another
image. Left: the test image with extracted midpoint features overlaid on top. Right:
the extracted edge map.

LeSabre divided by the number of features in the background) in Figure 6.20 is quite low

(28 / 166 = 0.18767). The success of the recognition shows that if we can extract stable

features from the images, our recognition scheme is able to recognize objects even when

the background is quite complicated.

Next we discuss results for recognizing military vehicles. An original image is shown

in Figure 6.22. For the target tank, an M60, there are roughly 2064 pixels on target (86

by 24) in the original image. In order to extract stable features without modi�cation of

the existing feature extractors, we extract a portion of the original image and enlarge

the image by three times using bilinear interpolation on each side. The resulting image

with the extracted endpoint features overlaid on top is shown in Figure 6.23. With more

sophisticated multiresolution feature extractors, this result could be obtained without

rescaling the image. The recognition result is shown in Figure 6.24. Figure 6.25 shows

the top vote-getters among the various (model/basis) hypotheses.

Figure 6.26 shows a false alarm. In this case, a tank has been recognized in the

upside-down con�guration which can be rejected by further �ltering. The veri�cation

process for the correct recognition of the target and the incorrect recognition are shown

in Figure 6.27. Both recognitions pass this particular veri�cation process. The match-

ing statistics for these two cases are listed in Table 6.4, showing that both candidates

106

Figure 6.20: The recognition result of the top vote-getters for the embedded Buick

LeSabre. Left: the test image with recognized model overlaid on top. Right: the result

of veri�cation.

Figure 6.21: The top nine candidates for the recognition result of the embedded Buick

LeSabre.

107

Figure 6.22: The original test image for military vehicles.

Figure 6.23: The features extracted from the original image resized by a factor of three

on each side.

108

Figure 6.24: The recognition result for an M60 tank.

Figure 6.25: The top nine candidates for the recognition result of the military vehicle.

109

Figure 6.26: A false alarm for the recognition of an M60 tank.

(including the incorrect one) that passed these statistical �lters.

Finally, the last experiment demonstrates the power of using hybrid features. The

feature types that we currently use are midpoints and circles. The test image and the im-

ages for model database are from di�erent sources, as discussed in Section 6.1. Therefore,

the pixel values in the images have di�erent meanings. For laser radar image, the pixel

values represent the distance from the observer, while in the infrared image, each pixel

value represents the temperature. We simply make use of the discontinuity information of

these two di�erent physical properties regardless of their original physical meaning. The

size of the original test image is 160 by 120 pixels with roughly 4000 pixels on the target

Figure 6.27: The veri�cation for the recognition of military vehicle. Left: a correct
recognition. Right: a false alarm.

110

remark vote touched model number of number matched matched distance
number name features of edges edges portion variancep

4.4420 17 M60 32 2648 2615 98.75% 4.58p
-0.3663 16 M60 32 2648 2648 99.02% 7.12

� -2.3446 7 M113 22 1170 610 52.14% 30.75
� -3.1363 11 M60 32 2648 1810 68.35% 23.87

� -6.2055 7 M60 (
ip) 22 2689 1378 51.25% 30.98
� -6.2602 5 M60 (
ip) 22 2689 1859 69.13% 23.72
� -6.8075 12 M60 32 2648 1979 74.74% 22.07

� -7.2112 7 M60 32 2648 1247 47.09% 33.27
� -7.4540 3 M113 32 1170 819 70.00% 23.11

� 2.9743 19 M60 32 2648 1911 72.17% 22.24

Table 6.4: The statistics for the recognition result of military vehicle. The search radius
is 6 pixels and the penalty factor is 1.5. The data shown for the �rst nine rows is for the
top nine candidates corresponding to the same trial basis. The last row is the statistics
for the false alarm corresponding to the wrong trial basis.

(100 pixels by 40 pixels). In order to extract stable features using our feature extractors,

we enlarge the original image by two times on each side using bilinear interpolation. The

resulting image with the extracted hybrid features overlaid on top is shown in Figure 6.28.

The recognition result and the result of veri�cation are shown in Figure 6.29. Figure 6.30

shows the top vote-getters among the model/basis hypotheses. The matching statistics

are listed in Table 6.5. In this experiment, we use the exact matching hypothesis, and the

non-obscuration ratio equals 0.5. Note that even for the correct matching, the number of

features that contribute to this recognition is 9 out of 28 features. If we expect a very

high non-obscuration ratio, say, 0.9, but in reality we have less than half of the features

matched, then the recognition result may be incorrect. This means that we are looking

for the model with 90% features matched, but a much lower percentage of features actu-

ally match. In this case, the bias term can dominate the vote. The impact of di�erent

parameter settings on the bounds of weighted voting has been discussed in Section 3.4.

Table 6.6 lists the matching statistics with the non-obscuration ratio set to 0.9. Giving

the same trial basis pair, the correct model appears in the third place. Furthermore, there

is another trial basis that produces an incorrect recognition with a higher total vote than

the correct one. However, there is only one feature that contributes to the total vote in

this process, and we conclude that the bias term favors models with fewer features.

111

Figure 6.28: The test image for military vehicles. Left: the test image with extracted
midpoint features and circles overlaid on top. Right: the extracted edge map.

Figure 6.29: The recognition result of an M60 tank. Left: the test image with recognized
model overlaid on top. Right: the result of veri�cation.

112

remark vote touched model number of number matched matched distance
number name features of edges edges portion variancep

-0.9702 9 M60 28 2602 2435 93.58% 8.97
(0, 285)

� -6.5728 1 M113 16 983 272 27.67% 41.67
(0, 195)

� -7.7181 1 M113 16 983 274 27.87% 41.35
(0, 195)

� -8.0811 2 Hum (T) 20 1031 513 49.76% 32.07
(0, 15)

� -8.2363 2 M35 (C) 23 1301 827 63.57% 25.05
(0, 285)

� -9.1707 2 M113 24 1326 1026 77.38% 18.74
(0, 105)

� -9.7398 3 M113 24 1326 580 43.74% 34.12
(0, 105)

� -10.0345 1 M113 24 1326 589 44.42% 33.31
(0, 105)

� -10.3548 1 M113 24 1326 979 73.87% 21.55
(0, 105)

Table 6.5: The statistics for the recognition result of military vehicles. Again, the search
radius is 6 pixels and the penalty factor is 1.5. The data shown for the �rst nine rows
is for the top nine candidates corresponding to a single trial basis. The model M35 (C)
represents an M35 truck with canvas attached. Hum (T) represents Humvee troop
vehicle. The number pair below each model name represents the (tilt, pan) angle pair.
The vote is computed by using the exact matching hypothesis with non-obscuration ratio
� equal to 0.5.

113

remark vote touched model number of number matched matched distance
number name features of edges edges portion variance

� -11.5198 1 Hum (C) 13 762 391 51.31% 14.84
(0, 195)

� -11.6601 1 M113 16 983 453 46.08% 15.07
(0, 195)

� -13.6062 1 M113 16 983 233 23.70% 19.72
(0, 195)p

-13.9617 9 M60 28 2602 2297 88.28% 6.66
(0, 285)

� -15.3147 1 M113 16 983 242 24.62% 19.49
(0, 195)

� -18.2008 2 Hum (T) 20 1031 422 40.93% 16.33
(0, 15)

� -20.5822 2 M35 (C) 23 1301 717 55.11% 13.45
(0, 285)

� -22.6215 1 Hum (T) 22 1341 916 68.31% 11.11
(0, 285)

� -23.3255 2 M113 24 1326 502 37.86% 16.80
(0, 105)

� -23.3775 2 Hum (T) 22 1341 390 29.08% 18.66
(0, 285)

� -23.4678 1 Hum (T) 22 1341 354 26.40% 19.12
(0, 285)

Table 6.6: The statistics for the recognition result of military vehicles. Again, the
search radius is 6 pixels and the penalty factor is 1.5. The data shown for the last
nine rows is for the top nine candidates corresponding to the same trial basis. The
model Hum (C) represent Humvee cargo vehicle. The vote is computed by using exact
matching hypothesis with non-obscuration ratio � equals 0.9. The correct model appears
at the third place.

114

Figure 6.30: The top nine candidates for the recognition result of military vehicle.

115

Chapter 7

Discussion

We have extended the �eld of object recognition with geometric hashing in many ways.

In Chapter 3 we discussed the generalization to di�erent numbers of features for each

model. The use of attributed features is discussed in Chapter 4. E�cient and distributed

implementation is addressed in Chapter 5. Our experiments shows that good recognition

relies on good detection of features. Future work of target recognition can be explored in

the following ways.

7.1 Multiresolution Feature Extraction

In our experiments, we experienced di�culty with target recognition of very small ob-

jects embedded in complicated backgrounds. Although the recognition scheme can handle

objects at di�erent scales, if the feature extractors can not detect stable features from

the targets, the recognition system will fail. In some of our experiments, we had to

rescale the entire image in order to obtain stable features. Alternatively, we could have

changed parameters in the feature extractors. We could instead design multiresolution

feature extractors and use a coarse-to-�ne strategy to locate candidate locations for fea-

tures. Although our feature extractors in this project worked only at a �xed resolution,

a multiresolution feature extraction process can tag features with a scale factor. Then,

by transforming the scale factor according to the scale of the scene basis, the scale factor

can be incorporated into the matching process.

7.2 Design of Attributed Features

The use of attributed features in geometric hashing enhances the discrimination power of

this method. The experiments using midpoints of line segments with the orientation as

the attribute and high curvature points with bisector directions as the attribute are two

realizations of this concept. We consider other realizations so that curved objects can

116

also be recognized. What criteria are appropriate to judge attributed features that can

be applied to our method? We suggest the following design criteria:

� Conciseness|The representation of the feature should be concise so that we can

compute variations easily. We want to keep the dimension of the attribute low.

� Robustness|The representation should be robust to noise and occlusion.

� Positional information|To �t into our method, the representation should carry

positional information. While non-positional features are possible, they are likely

to be less stable and trickier to associate.

� Ease of computation|We need to compute the normalized features e�ciently. In

our case, we want to compute the similarity transformed version of the attribute

e�ciently. For example, we need to subtract the angle induced by the similarity

transformation for each orientation attribute. For a length attribute, we multiply

by the scaling factor. For an area attribute, we can multiply by the square of the

scaling factor.

� Description power of the representation|Although we do not require that the rep-

resentation uniquely identi�es the entity that it describes, we do require the repre-

sentation describes the entity to some extent, providing some degree of �ltering of

the candidate models and bases.

Applying these criteria, the following ideas for other kinds of attributed features may

be explored in the future. The goal is to describe general 3-D objects with curved features.

� Ellipse|We can use the center of the ellipse as the point feature, and the axis lengths

of the ellipse are its attribute. The normalization of the attribute is accomplished

simply by multiplying the axis lengths with a scaling factor.

� Closed curve|We can use a �rst order moment as the point feature and use higher

order moments, say, second order moments as the attribute. Suppose (xi; yi) are

the coordinates of points along the curve. The moment of order (p+ q) of the curve

can be de�ned as:

mpq =
1

n

X
i

xpi y
q
i ;

where n is the number of points along the curve. (We can assume that the origin

(x; y) = (0; 0) is placed at the center of mass, so that m10 = m01 = 0 in all cases.)

Assume m0

pq is the corresponding (p + q) moment of the curve transformed by a

117

similarity transformation T . (Again, the origin is moved so that m0

10 = m0

01 = 0.)

We have

(m0

10; m
0

01) = T (m10; m01)

m0

20 = s2[m20 cos
2 � +m02 sin

2 �]

m0

02 = s2[m20 sin
2 � +m02 cos

2 �];

where � and s are the rotation angle and scaling factor of T .

� Curve segment|We can use the following information: the maximum distance from

the point along the curve to the base line, the length of the base line, the relative

location of the projection of the point of maximum distance from the base line onto

the base line. The base line is de�ned as the line connecting two end points of the

curve.

7.3 Other Invariants

Our experiments is the coordinates of normalized features as the invariants. It is possible

to use other kinds of invariants. The criteria for choosing invariants are the same as

described in the previous section, and that the new invariant should be insensitive to noise.

The invariant should not involve too many features, so that the probability of choosing

combinations of features in the scene matching combinations in the model are reasonable.

In our case, suppose there are m features in the target among s scene features. Then the

probability of choosing one correct basis pair is m(m � 1)=s(s� 1). The probability of

hitting one of the correct basis pair is proportional to the square of signal-to-noise ratio.

The other consideration of choosing invariants is the ability of describing various

objects. The invarint should be rich enough so that it can be applied to many application

areas. An invariant with many restrictions are not useful.

7.4 Aspect Graph Considerations

Another direction of improving the recognition system is to automate the model building

process. Suppose that we have complete 3-D geometric data of an object. We can simulate

various sensors and predict the features that will be detected in various directions for the

test image. As successive models are built, they should be tested for recognition in the

existing database. The model database is built incrementally by adding those models

which can not be recognized in the current model database. In other words, aspects

with similar models will be fused into a single model. A feeback loop can be formed by

combining the recognition module and model building module.

118

7.5 Parameter Selection

There are several parameters need to be set during the recognition process. For example,

the covarance of the extracted features and the non-obscuration ratio � in Equation 3.7.

If these parameters are not set properly, the recognition result may be incorrect. The

impact of di�erent parameters setting has been discussed in Section 3.4. Automated

selection of these system parameters would enhance the object recognition system, and

deserves further study.

119

Bibliography

[1] John Y Aloimonos. Perspective approximations. Image and Vision Computing,
8(3):179{192, Aug. 1990.

[2] Klaus Arbter, Wesley E. Snyder, Hans Burkhardt, and Gerd Hirzinger. Application
of a�ne-invariant fourier descriptors to recognition of 3-D objects. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 12(7):640{647, July 1990.

[3] Nicholas Ayache and Francis Lustman. Trinocular stereo vision for robotics. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 13(1):73{85, Jan. 1991.

[4] Dana H. Ballard and Christopher M. Brown. Computer Vision. Prentice-Hall Inc.,
1982.

[5] Stephen T. Barnard and William B. Thompson. Disparity analysis of images.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2(4):333{340,
July 1980.

[6] Eamon B. Barrett, Paul M. Payton, Nils N. Naag, and Michael H. Brill. General
methods for determining projective invariants in imagery. CVGIP: Image Under-
standing, 53(1):46{65, Jan. 1991.

[7] Eamon B. Barrett, Paul M. Payton, Nils N. Naag, and Michael H. Brill. General
methods for determing projective invariants in imagery. CVGIP: Image Under-
standing, 53(1):46{65, Jan. 1991.

[8] Jon Louis Bentley. Multidimensional binery search trees used for associative search-
ing. Communications of the ACM, 18(9):509{517, Sep. 1975.

[9] Paul J. Besl and Ramesh C. Jain. Three-dimensional object recognition. ACM
Computing Surveys, 17(1):75{145, Mar. 1985.

[10] Robert A. Boie, Ingemar J. Cox, and Pavel Rehak. On optimum edge recognition
using matched �lters. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 100{108, June 1986.

[11] J. Brain Burns, Richard Weiss, and Edward M. Riseman. View variation of point
set and line segment features. In Proceedings of the DARPA Image Understanding
Workshop, pages 650{659, 1990.

[12] Edited by Joseph L. Mundy and Andrew Zisserman. Geometric Invariance in
Computer Vision. MIT press, Cambridge, Massachusetts, 1992.

120

[13] A. Califano. Feature recognition using correlated information contained in multiple
neighborhoods. In Seventh AAAI 2, pages 831{836, 1988.

[14] Andrea Califano and Rakesh Mohan. Multidimensional indexing for recognizing
visual shapes. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, Jun. 1991.

[15] Andrea Califano and Rakesh Mohan. Multidimensional indexing for recognizing
visual shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence,
16(4):373{392, Apr. 1994.

[16] Homer H. Chen. Determining motion and depth from bincular orthographic views.
CVGIP: Image Understanding, 54(1):47{55, July 1991.

[17] Homer H. Chen and Thomas S. Huang. Matching 3-D line segments with applica-
tions to multiple-object motion estimation. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 12(10):1002{1008, Oct. 1990.

[18] Jin-Long Chen and George C. Stockman. Matching curved 3D object models to
2D images. In Proceesdings of the Second CAD-Based Vision Workshop, pages
210{218, Champion, Pennsylvania, Feb. 1994.

[19] Jin-Long Chen, George C. Stockman, and Kashi Rao. Recovering and tracking pose
of curved 3D object from 2D images. In Computer Vision and Pattern Recognition,
pages 393{399. IEEE Computer Society, June 1993.

[20] William Chen and Bernard C. Jiang. 3-D camera calibration using vanishing point
concept. Pattern Recognition, 24(1):57{67, 1991.

[21] Zen Chen and Shinn-Ying Ho. Computer vision for robust 3D aircraft recognition
with fast library search. Pattern Recognition, 24(5):375{390, 1991.

[22] Roland T. Chin and Charles R. Dyer. Model-based recognition in robot vision.
ACM Computing Surveys, 18(1):67{108, March 1986.

[23] Sheng-Lin Chou and Wen-Hsiang Tsai. Line segment matching for 3D computer
vision using a new iteration scheme. Machine Vision and Applications, 6:191{205,
1993.

[24] Chen-Chau Chu and J. K. Aggarwal. The integration of image segmentation maps
using region and edge information. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 15(12):1241{1249, Dec. 1993.

[25] David T. Clemens and David W. Jacobs. Space and time bounds on indexing 3-D
models from 2-D images. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 13(10):1007{1017, Oct. 1991.

[26] Michel Dhome, Marc Richetin, Jean-Thierry Laprest�e, and G�erard Rives. Determi-
nation of the attitude of 3-D objects from a single perspective view. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 11(12):1265{1278, Dec. 1989.

[27] Umesh R. Dohond and J. K. Aggarwal. Structure from stereo{a review. IEEE
Transactions on Systems, Man, and Cybernetics, 19(6):1489{1510, Dec. 1989.

121

[28] Richard O. Duda and Peter E. Hart. Pattern Classi�cation and Scene Analysis.
Wiley, New York, 1973.

[29] Ting-Jun Fan, Gerard Medioni, and Ramakant Nevatia. Recognizing 3-D objects
using surface descriptions. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 11(11):1140{1157, Nov. 1989.

[30] J.-Q. Fang and Thomas S. Huang. Solving three-dimensional small-rotation mo-
tion equations: Uniqueness, algorithms, and numerical results. Computer Vision,
Graphics, and Image Processing, 26:183{206, 1984.

[31] Jia-Qi Fang and Thomas S. Huang. Some experiments on estimating the 3-D motion
parameters of a rigid body from two consecutive image frames. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 6(5):545{554, Sep. 1984.

[32] John C. Fiala, Ronald Lumia, Karen J. Roberts, and Albert J. Wavering. TRI-
CLOPS: A tool for studying active vision. International Journal of Computer
Vision, 12(2/3):231{250, Apr. 1994.

[33] Patrick J. Flynn and Anil K. Jain. 3D object recognition using invariant feature
indexing of interpretation tables. CVGIP: Image Understanding, 55(2):119{129,
Mar. 1992.

[34] David Forsyth, Joseph L. Mundy, Andrew Zisserman, Chris Coelho, Aaron Heller,
and Charles Rothwell. Invariant descriptors for 3-D object recognition and pose.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(10):971{991,
Oct. 1991.

[35] Geo�rey C. Fox, Roy D.Williams, and Paul C.Messina. Parallel Computing Works.
Morgan Kaufmann Publishers, Inc., San Francisco, California, 1982.

[36] Jerome H. Friedman, Jon Louis Bentley, and Raphael Ari Finkel. An algorithm for
�nding best matches in logarithmic expected time. ACM Transactions on Mathe-
matical Software, 3(3):209{226, Sep. 1977.

[37] D. M. Gavrila and F. C. A. Groen. 3D object recognition from 2D images using
geometric hashing. Pattern Recognition Letters, 13(4):263{278, Apr. 1992.

[38] W. Grimson. Computational experiments with a feature based stereo algorithm.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 7(1):17{34, Jan.
1985.

[39] W. Grimson and D. Huttenlocher. On the sensitivity of geometric hashing. In
International Conference on Computer Vision, pages 334{338, Osaka, Japan, Dec.
1990.

[40] W. Grimson and Tom�as Lozano-P�erez. Localizing overlapping parts by search-
ing the interpretation tree. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 9(4):469{482, July 1987.

[41] William I. Grosky and Louis A. Tamburino. A uni�ed approach to the linear
camera calibration problem. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 12(7):663{671, July 1990.

122

[42] Andr�e Gu�eziec and Nicholas Ayache. Smoothing and matching of 3-D-space curves.
In Second European Conference on Computer Vision, Santa Margherita Ligure,
Italy, May 1992.

[43] Andr�e Gu�eziec and Nicholas Ayache. New developments on geometric hashing for
curve matching. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, New York City, New York, Jun. 1993.

[44] Andr�e Gu�eziec and Nicholas Ayache. Smoothing and matching of 3-D space curves.
International Journal of Computer Vision, 12(1):79{104, Feb. 1994.

[45] Robert M. Haralick and Linda G. Shapiro. Computer and Robot Vision, volume
1-2. Addison-Wesley Publishing Company, New York, 1992.

[46] William Ho� and Narendra Ahuja. Surfaces from stereo: Integrating feature match-
ing, disparity estimation, and contour detection. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 11(2):121{136, Feb. 1989.

[47] Robert V. Hogg and Allen T. Craig. Introduction to Mathematical Statistics.
Macmillan Publishing Co., Inc., NewYork, fourth edition, 1978.

[48] Robert J. Holt and Arun N. Netravali. Camera calibration problem: Some new
results. CVGIP: Image Understanding, 54(3):368{383, Nov. 1991.

[49] Jiawei Hong and Haim J. Wolfson. An improved model-based matching method
using footprints. In Proceedings of the 9th International Conference on Pattern
Recognition, pages 72{78, 1988.

[50] Radu Horaud, Bernard Conio, and Olivier Leboulleux. An analytic solution for the
perspective 4-point problem. Computer Vision, Graphics, and Image Processing,
47:33{44, 1989.

[51] Daniel P. Huttenlocher and Shimon Ullman. Recognizing solid objects by alignment
with an image. International Journal of Computer Vision, 5(2):195{212, 1990.

[52] J. Illingworth and J. Kittler. A survey of the Hough transform. Computer Vision,
Graphics, and Image Processing, 44:87{116, 1988.

[53] Karpjoo Jeong and Dennis Shasha. PLinda 2.0: A transactional/checkpointing
approach to fault tolerant Linda. In Proceedings of the 13th Symposium on Reliable
Distributed Systems, 1994.

[54] Alan Kalvin, Edith Schonberg, Jacob T. Schwartz, and Micha Sharir. Two-
dimensional, model-based, boundary matching using footprints. The International
Journal of Robotics Research, 5(4):38{55, 1986.

[55] Kenichi Kanatani. 3D Euclidean versus 2D non-Euclidean: Two approaches to
3D recovery from images. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 11(3):329{332, March 1989.

[56] Ashfaq Khokhar and Viktor K. Prasanna. Scalable data parallel geometric hashing:
Experiments on MasPar MP-1 and on Connection Machine CM-5. In Proceedings
of the DARPA Image Understanding Workshop, pages 851{859, 1993.

123

[57] Konstantinos Konstantinides and John R. Rasure. The Khoros software develop-
ment environment for image and signal processing. IEEE Transactions on Image
Processing, 3(3):243{252, May 1994.

[58] Eric Krotkov and Ruzena Bajcsy. Active vision for reliable ranging: Cooperating
focus, stereo, and vergence. International Journal of Computer Vision, 11(2):187{
203, Oct. 1993.

[59] Frank P. Kuhl, O. Robert Mitchell, Marcus E. Glenn, and Didier J. Charpentier.
Global shape recognition of 3-D objects using a di�erential library storage. Com-
puter Vision, Graphics, and Image Processing, 27:97{114, 1984.

[60] Yehezkel Lamdan. Geometric Hashing. PhD thesis, New York University, June
1989.

[61] Yehezkel Lamdan, Jacob T. Schwartz, and Haim J. Wolfson. Object recognition
by a�ne invariant matching. In Proc. Computer Vision and Pattern Recognition,
pages 335{344, 1988.

[62] Yehezkel Lamdan, Jacob T. Schwartz, and Haim J. Wolfson. On recognition of 3-D
objects from 2-D images. In Proc. IEEE International Conference on Robotics and
Automation, pages 1407{1413, 1988.

[63] Yehezkel Lamdan, Jacob T. Schwartz, and Haim J. Wolfson. A�ne invariant
model-based object recognition. IEEE Transactions on Robotics and Automation,
5(6):578{589, Oct. 1990.

[64] Yehezkel Lamdan and Haim J. Wolfson. Geometric hashing: A general and e�-
cient model-based recognition scheme. In Proc. Second International Conference
on Computer Vision, pages 238{249, 1988.

[65] Yehezkel Lamdan and Haim J. Wolfson. On the error analysis of `geometric hash-
ing'. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 22{27, 1991.

[66] R. K. Lenz and Roger Y. Tsai. Techniques for calibration of the scale factor and
image center for high-accuracy 3-D machine metrology. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 10(5):713{720, Sep. 1988.

[67] Mun K. Leung and Thomas S. Huang. Detecting the wheel pattern of a vehicle
using stereo images. Pattern Recognition, 24(12):1139{1151, 1991.

[68] Seppo Linnainmaa, David Harwood, and Larry S. Davis. Pose determination of
a three-dimensional object using triangle pairs. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 10(5):634{647, Sep. 1988.

[69] Jyh-Jong Liu and Robert Hummel. Geometric hashing with attributed features. In
Proceesdings of the Second CAD-Based Vision Workshop, pages 9{16, Champion,
Pennsylvania, Feb. 1994.

[70] Jyh-Jong Liu and Robert Hummel. Geometric hashing with attributed features.
In Proceesdings of ATR Systems and Technology Conference, Monterey, California,
Nov. 1994.

124

[71] Yuncai Liu and Thomas S. Huang. Estimation of rigid body motion using straight
line correspondences. Computer Vision, Graphics, and Image Processing, 43(1):37{
52, May 1988.

[72] Yuncai Liu, Thomas S. Huang, and Olivier D. Faugeras. Determination of camera
location from 2-D to 3-D line and point correspondences. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 12(1):28{37, Jan. 1990.

[73] Yuncai Liu, Thomas S. Huang, and Olivier D. Faugeras. Three-dimensional motion
determination from real scene images using straight line correspondences. Pattern
Recognition, 25(6):617{639, 1992.

[74] David G. Lowe. Perceptual Organization and Visual Recognition. Kluwer, Boston,
MA, 1985.

[75] David G. Lowe. Three-dimensional object recognition from single two-dimensional
images. Arti�cial Intelligence, 31:355{395, 1987.

[76] David G. Lowe. Fitting parameterized three-dimensional models to images. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 13(5):441{450, May
1991.

[77] Fran�cois G. Meyer and Patric Bouthemy. Region-based tracking using a�ne motion
models in long image sequences. CVGIP: Image Understanding, 60(2):119{140,
Sep. 1994.

[78] Rakesh Mohan, G�erard Medioni, and Ramakant Nevatia. Stereo error detection,
correction, and evaluation. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 11(2):113{120, Feb. 1989.

[79] R. Nevatia and K. R. Babu. Linear feature extraction and description. J. of Com-
puter Graphics and Image Processing, 13:257{269, 1980.

[80] Lars Nielsen and Gunnar Sparr. Projective area-invariants as an extension of the
cross-ratio. CVGIP: Image Understanding, 54(1):145{159, July 1991.

[81] Leslie M. Novak, Gregory J. Owirka, and Christine M. Netishen. Radar target iden-
ti�cation using spatial matched �lters. Pattern Recognition, 27(4):607{617, 1994.

[82] Athanasios Papoulis. Probability, Random Variables, and Stochastic Process.
McGraw-Hill, New York, second edition, 1984.

[83] Theo Pavlidis. Algorithms for Graphics and Image Processing. Computer Science
Press, Rockville, MD, 1981.

[84] Johan Philip. Estimation of three-dimensional motion of rigid objects from noisy
observations. IEEE Transactions on Pattern Analysis and Machine Intelligence,
13(1):61{66, Jan. 1991.

[85] P. Puget and T. Skordas. Calibrating a mobile camera. Image and Vision Com-
puting, 8(4):341{348, Nov. 1990.

[86] Isidore Rigoutsos. Massively Parallel Bayesian Object Recognition. PhD thesis,
New York University, July 1992.

125

[87] Isidore Rigoutsos and Robert Hummel. Implementation of geometric hashing on the
Connection machine. In IEEE Workshop on Directions in Automated CAD-Based
Vision, Maui, Hawaii, June 1991.

[88] Isidore Rigoutsos and Robert Hummel. Robust similarity invariant matching in
the presence of noise. In Proceedings of the 8th Israeli Conference on Arti�cial
Intelligence and Computer Vision, Tel Aviv, Israel, Dec. 1991.

[89] Isidore Rigoutsos and Robert Hummel. Several results on a�ne invariant geometric
hashing. In Proceedings of the 8th Israeli Conference on Arti�cial Intelligence and
Computer Vision, Tel Aviv, Israel, Dec. 1991.

[90] Isidore Rigoutsos and Robert Hummel. Massively parallel model matching: Ge-
ometric hashing on the connection machine. IEEE Computer: Special Issue on
Parallel Processing for Computer Vision and Image Understanding, Feb. 1992.

[91] Isidore Rigoutsos and Robert Hummel. Distributed Bayesian object recognition. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
New York City, New York, Jun. 1993.

[92] John W. Roach and J. K. Aggarwal. Determining the movement of objects from a
sequence of images. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 2(6):554{562, Nov. 1980.

[93] R�emi Ronfard. Region-based strategies for active contour models. International
Journal of Computer Vision, 13(2):229{251, Oct. 1994.

[94] Azriel Rosenfeld and Avinash C. Kak. Digital Picture Processing, volume 2. Aca-
demic Press, New York, second edition, 1982.

[95] Gerhard Roth and Martin D. Levine. Extracting geometric primitives. CVGIP:
Image Understanding, 58(1):1{22, Jul. 1993.

[96] Hannan Samet. The Design and Analysis of Spatial Data Structures. Addison-
Wesley Publishing Company, New York, 1989.

[97] K. B. Sarachik and W. E. L. Grimson. Gaussian error models for object recog-
nition. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, New York City, New York, Jun. 1993.

[98] Karen B. Sarachik. Limitations of geometric hashing in the presence of Gaussian
noise. Technical Report 1395, M.I.T. AI Lab, Oct. 1992.

[99] Jacob T. Schwartz and Micha Sharir. Identi�cation of partially obscured objects
in two and three dimensions by matching noisy characteristic curves. The Interna-
tional Journal of Robotics Research, 6(2):29{44, 1987.

[100] Yoshiaki Shirai. Three-Dimensional Computer Vision. Springer-Verlag, New York,
1987.

[101] Je�erey A. Shufelt and Jr. David M. McKeown. Fusion of monocular cues to detect
man-made structures in aerial imagery. CVGIP: Image Understanding, 57(3):307{
330, May 1993.

126

[102] Gunnar Sparr. Projective invariants for a�ne shapes of point con�gurations. Ex-
tended manuscript for the \Workshop on Invariants in Vision", Reykjavik, 1991.

[103] Minas E. Spetsakis and John Aloimonos. Structure from motion using line corre-
spondences. International Journal of Computer Vision, 4:171{183, 1990.

[104] J. Ross Stenstrom and C. Ian Connolly. Constructing object models from multiple
images. International Journal of Computer Vision, 9(3):185{212, 1992.

[105] Paul Suetens, Pascal Fua, and Andrew J. Hanson. Computational strategies for
object recognition. ACM Computing Surveys, 24(1):5{61, March 1992.

[106] Frank Chee-Da Tsai. A statistical approach to a�ne invariant matching with line
features. Technical Report 621, Computer Science Department, Courant Institution
of Mathematical Sciences, New York University, Nov. 1992.

[107] Frank Chee-Da Tsai. A Probabilistic Approach to Geometric Hashing Using Line
Features. PhD thesis, New York University, July 1993.

[108] Frank Chee-Da Tsai. Robust a�ne invariant matching with application to line
features. In Computer Vision and Pattern Recognition, pages 393{399. IEEE Com-
puter Society, June 1993.

[109] Roger Y. Tsai and Thomas S. Huang. Uniqueness and estimation of three-
dimensional motion parameters of rigid objects with curved surfaces. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 6(1):13{27, Jan. 1984.

[110] V. Venkateswar and Rama Chellappa. Extractions of straight lines in aerial images.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(11):1111{
1114, Nov. 1992.

[111] Richard S. Wallace, Ping-Wen Ong, Benjamin B. Bederson, and Eric L. Schwartz.
Space variant image processing. International Journal of Computer Vision,
13(1):71{90, Sep. 1994.

[112] Timothy P. Wallace and Paul A. Wintz. An e�cient three-dimensional aircraft
recognition algorithm using normalized fourier descriptors. Computer Vision,
Graphics, and Image Processing, 13:99{126, 1980.

[113] Cheng-Ye Wang, Hanfang Sun, Shiro Yada, and Azriel Rosenfeld. Some exper-
iments in relaxation image matching using corner features. Pattern Recognition,
16(2):167{182, 1983.

[114] Ling-Ling Wang and Wen-Hsiang Tsai. Computing camera parameters using
vanishing-line information from a rectangular parallelepiped. Machine Vision and
Applications, 3:129{141, 1990.

[115] Ling-Ling Wang and Wen-Hsiang Tsai. Camera calibration by vanishing lines for
3-D computer vision. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, 13(4):370{376, Apr. 1991.

[116] Isaac Weiss. Projective invariants of shapes. In Proceedings of the DARPA Image
Understanding Workshop, pages 1125{1134, 1988.

127

[117] Juyang Weng, Thomas S. Huang, and Narendra Ahuja. Motion and structure from
two perspective views: Algorithms, error analysis, and error estimation. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 11(5):451{476, May
1989.

[118] Richard P. Wildes. Direct recovery of three-dimensional scene geometry from binoc-
ular stereo disparity. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, 13(8):761{774, Aug. 1991.

[119] HaimWolfson. On curve matching. In Proceedings of IEEE Workshop on Computer
Vision, pages 307{310, 1987.

[120] Yehezkel Yeshurun and Eric L. Schwartz. Cepstral �ltering on a columnar image ar-
chitecture: A fast algorithm for binocular stereo segmentation. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 11(7):759{767, July 1989.

128

Appendix A

Direct Proof of the Independence

Property

This section we show the independence property by computing the joint density function

for the positional attribute and orientation attribute directly. An indirect proof was given

in Section 4.4.

Assume that the endpoints of a line segment are (X1; Y1) and (X2; Y2). The position

of the midpoint of the line segment is (X; Y), where X = X1+X2

2 ; Y = Y1+Y2
2 . The slope

of the line segment is K, where K = Y2�Y1
X2�X1

. Random variables X and Y represent the

positional attribute of the midpoint, while random variable K represents the orientation

attribute of the midpoint. We also assume that the random variables Xi and Yi are

Gaussian distributed with the statistical parameters (�i; �) and (�i; �) respectively. The

density functions for the positional attribute for the endpoints are

f(x1; y1) =
1

2��2
exp

"
�(x1 � �1)

2 + (y1 � �1)
2

2�2

#

and

f(x2; y2) =
1

2��2
exp

"
�(x2 � �2)2 + (y2 � �2)2

2�2

#
:

We can compute the joint distribution function for random variables X; Y and K.

F (x; y; k) = PfX � x; Y � y;K � kg
= PfX1 +X2

2
� x;

Y1 + Y2
2

� y;
Y2 � Y1
X2 �X1

� kg

=
Z
R

1

(2��2)2
exp

"
�(x1 � �1)

2 + (y1 � �1)
2

2�2

#
�

exp

"
�(x2 � �2)2 + (y2 � �2)

2

2�2

#
dx1dx2dy1dy2;

129

where R is the region that X1 +X2 � 2x; Y1 + Y2 � 2y; Y2�Y1
X2�X1

� k.

The goal is to compute the joint density function f(x; y; k), where

f(x; y; k) =
@3

@x@y@k
F (x; y; k):

We have

@2

@x@y
F (x; y; k)�x�y

� F (x+�x; y+ �y; k)� F (x; y +�y; k)� F (x+�x; y; k)+ F (x; y; k)

=
Z
R0

1

(2��2)2
exp

"
�(x1 � �1)

2 + (y1 � �1)
2

2�2

#
�

exp

"
�(x2 � �2)

2 + (y2 � �2)
2

2�2

#
dx1dx2dy1dy2

=

Z
R0

1

(2��2)2
exp

"
�(x1 � �1)2 + (y1 � �1)2

2�2

#
�

exp

"
�(2x� x1 � �2)

2 + (2y � y1 � �2)
2

2�2

#
dx1dx2dy1dy2

=
Z Z

y�y1

x�x1
�k

(Z 2(x+�x)�x1

2x�x1
dx2

Z 2(y+�y)�y1

2y�y1
dy2�

1

(2��2)2
exp

"
�(x1 � �1)2 + (y1 � �1)2

2�2

#
�

exp

"
�(2x� x1 � �2)

2 + (2y � y1 � �2)
2

2�2

#)
dx1dy1;

where R0 specify the region that 2x � x1 + x2 � 2(x+ �x); 2y � y1 + y2 � 2(y + �y),

and y2�y1
x2�x1

� k. Dividing �x�y on both side and let �x�y! 0, we get

@2F (x; y; k)

@x@y

= 4

Z Z
y�y1

x�x1
�k

(
1

(2��2)2
exp

"
�(x1 � �1)2 + (y1 � �1)2

2�2

#
�

exp

"
�(2x� x1 � �2)

2 + (2y � y1 � �2)
2

2�2

#)
dx1dy1:

We change variables by letting x1 = x+ r cos �; y1 = y + r sin �. Then we have

@2F (x; y; k)

@x@y

130

= 4

Z 1

0

(Z tan�1 k

��

2

+

Z tan�1 k+�

�

2

!
1

(2��2)2
�

exp

"
�(x+ r cos � � �1)

2 + (y + r sin � � �1)
2

2�2

#
�

exp

"
�(x� r cos � � �2)

2 + (y � r sin � � �2)
2

2�2

#
d�

)
rdr

= 4

Z 1

0

(Z tan�1 k

��

2

+

Z tan�1 k+�

�

2

!
1

(2��2)2
�

exp

"
�2[x

2 + y2 � (�1 + �2)x� (�1 + �2)y + r2] + �21 + �22 + �21 + �22
2�2

#
�

exp

�
�(�2 � �1)r cos � + (�2 � �1)r sin �

�2

�
d�

�
rdr

=
1

(��2)2
exp

"
�2[x

2 + y2 � (�1 + �2)x� (�1 + �2)y] + �21 + �22 + �21 + �22
2�2

#
�

(Z 1

0

" Z tan�1 k

��

2

+

Z tan�1 k+�

�

2

!
�

exp

"
�r

2 + (�2 � �1)r cos � + (�2 � �1)r sin �

�2

#
d�

#
rdr

)
:

Therefore,

f(x; y; k)

=
@3F (x; y; k)

@x@y@k

=
1

(��2)2
exp

"
�2[x

2 + y2 � (�1 + �2)x� (�1 + �2)y] + �21 + �22 + �21 + �22
2�2

#
�

Z 1

0

1

1 + k2
exp

"
� r2

�2

#
�
"
exp

"
�((�2 � �1) + (�2 � �1)k)r=

p
1 + k2

�2

#
+

exp

"
((�2 � �1) + (�2 � �1)k)r=

p
1 + k2

�2

##
rdr

= f1(x; y)� f2(k):

The joint density function for random variables (X; Y;K) can be separated into two parts,

which proves that the positional attribute and orientation attribute for the midpoint of a

line segment are independent. We may also see that the formula is too complicated to be

useful in real applications.

131

Appendix B

Descriptions of the Khoros Modules

The software modules can be categorized into �ve classes: Cox-Boie edge detector [10],

feature extraction, model building, recognition, and MVF (Multiple Vectors File Format)

utilities. They will be discussed in the following sections.

B.1 Cox-Boie Edge Detector

There are �ve modules in this class. The module vdet, vedge, vthin, and v�lter are

based on the programs written by Ingemar J. Cox, Deborah A. Wallach, and W. J.

Krop
 (c
copyrighted 1988 by Robotics Principles Research Department, AT&T Bell

Laboratories). The algorithms are described in [10]. We adapted and ported the code to

Khoros modules with permission.

vconv We reimplement the 2-D convolution program in a more e�cient way. To save

the computation time, the zeros in the kernel will be skipped. The reversed kernel

is built �rst before the convolution computation begins. We provide three modes to

handle the boundary conditions: re
ect boundary, warp boundary, and pad zeros.

For re
ect boundary mode, we treat a pixel outside the image the same as its mirror

image. Thus the gray value of a pixel located at (�x;�y) is the same as the gray
value of the pixel located at (x; y); For warp boundary mode, the gray value at

location (�x;�y) is the same as the gray value located at (W � x;H � y), where

W and H are width and height of the input image respectively; For pad zero mode,

those pixels outside the input image are ignored.

vdet The module computes the central di�erence of the input image in four directions.

The four directions are de�ned as the direction along x-axis, along45� direction,

along y-axis, and along 135� direction. This module should be used with the modules

vedge, and vthin together.

132

vedge The module takes the input produced by vdet and produces the edge map by

�nding zero crossings in four directions. The module provides an option to turn on

the hysteresis analysis in order to produce a better result.

vthin The module takes the input produced by the module vedge and generates the edges

with one pixel wide.

v�lter Produces an 1-D Gaussian mask with the speci�ed size.

The Cox-Boie edge detector is composed by the above �ve modules. We have discussed

it in Section 6.2.

B.2 Feature Extraction

There are seven modules in this class. They are used for extracting primitive features.

vbf The module traces the edges and produces the coordinates of the edges. Edge points

are linked and grouped via their 8-connected neighbors. The coordinates and the

chain codes are stored as VIFF (Khoros Visualization/Image File Format). The

default background gray value is 0 which is modi�able by resetting the input pa-

rameter. This module also produces an optional line label image. The corresponding

edge pixels are converted to their traced line labels.

vlapx The module takes the result of vbf and computes the line approximation. It checks

the distance deviation of all points in the line segment and break the line into two line

segments iteratively if the maximum distance deviation is greater than the speci�ed

threshold. The distance deviation is de�ned by the distance of an edge point to the

base line which is de�ned by connecting the endpoints of the segment. The result

is stored in VIFF format.

vline The module merges the nearby split line segments into longer line segments ac-

cording to the detected slope. Four options are provided in this module to produce

four kinds of feature primitives: endpoints of line segments without orientation in-

formation, midpoints of line segments with orientation information, endpoints of

line segment with orientation information, and bisectors of corners with orientation

information. For the bisector features, the corners are extracted by �nding the in-

tersections of line features. The resulting features are stored in ASCII �le format

as well as MVF format. The MVF format will be discussed in Section B.5.

vcircle The module extracts circles in several runs. We �rst estimate the circles by

�tting the segments into circles in a least-squares sense. Then the merging process

133

combines arcs that are centered at the same position with the same radius. We

can optionally turn on the circle veri�cation process to �lter out false alarms and

produces more stable circles. The resulting features are stored in ASCII �le format

as well as MVF format.

vmark The module marks the extracted features on top of the input image. Hybrid

features can be marked simultaneously. The attributes as well as the feature iden-

ti�cation number can be marked optionally.

vmixf The module can mix two kinds of features together and produces hybrid features.

The result is stored in MVF format.

vstrf The module stripes o� the attribute part of the features. The positional information

is kept untouched. Since the semantic meaning of the positional information is

di�erent from one feature type to another, we attach di�erent tag on the stripped

features depending on the original feature types.

B.3 Model Building

There are six modules in this class. The module vsim, vkdt, vhist are based on the

assumption that the features are of the same type. The enhanced version vhsim, vhkdt

are capable of handling the case of heterogeneous feature type. The internal �le format

used in the enhanced version is MVF format, while some of the internal �les in the original

version is in VIFF format.

vsim The module build the hash table for the case of similarity transformation. The input

parameter speci�es the model database which contains the �les that participate in

this model building process. The feature type is assumed to be homogeneous. For a

particular model, all combinations of basis pairs are used to normalize the features

if they meet the speci�ed length criteria.

vhsim This is the enhanced version of vsim. The features used can be heterogeneous.

The basis set is produced by the module vgenbas so that it could be di�erent than

the features that we want to normalize. Thus it provide one more level of
exibility.

This module is used for prepare the hash table as well as the feature normalization

for test image.

vkdt, vhkdt The module vkdt and vhkdt are used for building the k-d tree for the hash

table computed by vsim and vhsim respectively. The input parameter specify the

number of pieces of the hash table to be split. Then the module can work on the

134

speci�ed piece. The distributed computation is performed by building several k-d

tree on top of the hash table as described in Section 5.3.

vhist This module computes the histogram of the hash table. The input hash table is

assumed to be the one produced by vsim.

vgenbas The module generates the basis which can be used in the module vhsim. There

are two ways to use this module: we can use this module to generate the basis set for

model building; we can also use this module to generate the basis set to normalize

the other features during the recognition process.

B.4 Recognition

There are eleven modules in this class. The module voting, vpresim, and vlogf are based on

the assumption that all the features are of the same type. Their corresponding enhanced

version vhmatch, vhpresim and vhlogf are capable of handling the case of heterogeneous

feature type. The internal �le format used in the enhanced version is MVF format, while

some of the internal �les in the original version is in VIFF format.

voting The module performs the weighted voting computation for similarity case. The

system parameters are speci�ed in the module vpresim. This module uses one piece

of k-d tree information to derive part of the result. The partial results are then

combined by the module vlogf to produce the �nal result.

vhmatch This is the enhanced version of the module voting which is capable of handling

the case of hybrid features.

vpresim Prepare the system parameters, for example, the matching hypothesis, the stan-

dard deviation, and the number of candidates that we are interested. Note that the

basis set for test image is selected by this module.

vhpresim Prepare the system parameters for the enhanced version of vmatch. In partic-

ular, we separate the basis set selection into the other module (vgenbas) to increase

one level of
exibility.

vlogf This module combines the partial results of vote computation (produced by voting).

At this moment, we assume that we only distribute the computations into at most

ten pieces.

vhlogf This is the enhanced version of vlogf which is capable of handling the case of

hybrid features.

135

vover This module displays the recognition result. The edgemap of the model is overlaid

on top of the input test image. We can optionally specify which trial and which

candidate we are interested in.

vmkbas This module can display the selected basis set on the screen on the
y.

v�t The module resize the edgemap to speci�ed size. Both forward transformation and

back transformation modes are provided. The module is internally called by the

module vbars.

vbars The module display the model/basis vote-getters for the recognition result. The

model name, the basis in the model, and the length-encoded vote are displayed. We

can optionally specify which trial we want to display.

verify The module performs the veri�cation of the recognition result as described in

Section 6.3. The number of edge pixels that match to the edge pixels in the model,

the distance deviation, and the other statistics are reported. The edgemap of the

matched portion is also produced. We can optionally specify which trial and which

candidate we are interested in.

vmoddb The module display the edgemaps of the model database. The number of

models displayed in a row and the number of the models displayed in a column

are con�gurable. The hybrid features can be overlaid on top of the each model

optionally.

B.5 MVF Utilities

The Khoros standard �le format VIFF is not general enough for our inter module com-

munications. We de�ne a new �le format MVF (Multiple Vectors File Format) which

can handle multiple vectors with di�erent vector lengths and data types. The semantic

meaning of each use of MVF �le is left unde�ned. We attach a tag for each MVF �le

so that each module can use the tag to check if the input �le is produced by the correct

module. The class contains �ve modules for MVF utilities.

vmv�nfo The module can dump a �le with MVF format to ASCII format. This is a

general purpose MVF utilities regardless the associated MVF tag.

vmv2asc The module can dump a feature �le with MVF format to ASCII format.

vasc2mvf The module converts an ASCII �le with features to MVF �le.

136

vmvf2vi� The module converts the features which are stored in MVF format to VIFF

format. This is no longer used in the enhanced version of modules discussed in the

previous sections. The features are assumed to be of the same type.

vi�2mvf The module converts the features which are stored in VIFF format to MVF

format. This is no longer used in the enhanced version of the modules in the previous

sections.

137

