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Abstract

The world has witnessed the remarkable success of large language models (LLMs), led by the

fast-growing popularity of ChatGPT. However, it is challenging to serve these language models

and deliver both high throughput and low latency due to the iterative nature of language models.

This thesis identifies two key issues impacting the performance of existing systems: (1) Coarse-

grained batching at the request level results in wasteful computation for requests with variable

input and output lengths; (2) The lack of stateful context management results in duplicate compu-

tation for applications that engage in multi-turn interactions with the LLM model. Two systems,

𝐵𝑎𝑡𝑐ℎ𝑀𝑎𝑘𝑒𝑟 and 𝑃𝑒𝑛𝑠𝑖𝑒𝑣𝑒 , are then presented to address these issues.

𝐵𝑎𝑡𝑐ℎ𝑀𝑎𝑘𝑒𝑟 proposes a technique called cellular batching to improve the throughput and

latency of language model inference. Existing systems use batch execution of the dataflow graphs

of a fixed set of requests. By contrast, 𝐵𝑎𝑡𝑐ℎ𝑀𝑎𝑘𝑒𝑟 makes finer-grained batching decisions at each

token processing step, and dynamically assembles a batch for execution as requests join and leave

the system.

𝑃𝑒𝑛𝑠𝑖𝑒𝑣𝑒 is a system optimized for multi-turn conversation LLM serving. It maintains the

conversation state across requests from the same conversation by caching previously processed

history to avoid duplicate processing. 𝑃𝑒𝑛𝑠𝑖𝑒𝑣𝑒’s multi-tier caching strategy utilizes both GPU

andCPUmemory to store and retrieve cached data efficiently. 𝑃𝑒𝑛𝑠𝑖𝑒𝑣𝑒 also generalizes the recent

PagedAttention kernel to support attention between multiple input tokens whose KV cache is

spread over non-contiguous GPU memory.
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Experiments on various workloads show that 𝐵𝑎𝑡𝑐ℎ𝑀𝑎𝑘𝑒𝑟 improves throughput by 25-80%

while reducing latency by 18-90% latency, and 𝑃𝑒𝑛𝑠𝑖𝑒𝑣𝑒 improves 33-100% throughput and re-

duces latency by 40-77%.
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1 | Introduction

In the past decade, Deep Neural Networks (DNNs) have achieved remarkable success in many

important areas such as visual recognition, natural language processing, recommendation, etc.

Among the various DNN models, Language Models based on Transformer [101] are receiving

widespread attention due to the incredible success of ChatGPT [76, 107], which has led the world

to believe that we have made a huge step towards Artificial General Intelligence (AGI) [41, 43].

Although there is plenty of debate [11, 17, 42, 65] on whether we are close to AGI or not, it is

abundantly clear that we are on the cusp of a revolution that will fundamentally change the way

we obtain and process knowledge.

Even though training language models is computationally expensive, costing millions of GPU

hours [56, 106], the real elephant in the room is the cost to serve them. Once trained, a model

can be deployed at a large scale with the same fixed weights and used repeatedly to serve many

requests for an extended period. It is estimated that it cost $3.2M to train ChatGPT on 10,000

graphics cards [95] and $700K per day [79] to operate and serve users worldwide. As a result,

serving costs overshadow the cost of training over time. Meanwhile, low service response time

improves user experience, especially for real-time applications like chatbots. Therefore, develop-

ing fast-serving systems that can process live requests with low latency and high throughput is

crucial.

This thesis primarily focuses on the serving side of language models. We identify issues with

current solutions when applied directly to language model serving, and seek to develop new
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strategies and techniques to exploit features of language models and the hardware stack. We de-

sign and implement two systems, 𝐵𝑎𝑡𝑐ℎ𝑀𝑎𝑘𝑒𝑟 and 𝑃𝑒𝑛𝑠𝑖𝑒𝑣𝑒 , and demonstrate their effectiveness

in improving the efficiency of serving Language Models.

1.1 Evolution of Language Models

Learning-based language models have rapidly matured from experimental research to real-world

deployments. It started when Recurrent Neural Networks (RNNs) were introduced to model se-

quence data by recursively processing each token in the sequence while maintaining an aggre-

gated hidden representation of the sequence. Example uses of RNNs include speech recogni-

tion [6, 44], machine translation [7, 108], image captioning [102], question answering [94, 110]

and video to text [37]. The attention mechanism, which nowadays is at the core of all language

models, is also used as an integral part to connect encoder and decoder inside RNN Models.

In 2017, the famous Transformer model [101] by Google proposed an architecture fully based

on the attention module for sequence processing. The Transformer model quickly became the

foundation of many state-of-the-art models, including BERT [35], GPT [83], etc., thanks to its

ability to model long-range dependencies and associate different parts with learnable importance

weights, and to be executed in a massively parallel fashion, making it possible to train on a much

larger dataset within a reasonable time.

Recently, the success of so-called Large Language Models (LLMs) like GPT-3 [10] and Chat-

GPT [76] have further demonstrated the power and potential of language models. An LLM is a

generative language model based on the decoder part of Transformer architecture and has a par-

ticularly large model size (e.g. 10s or 100s of billions of parameters). It is an autoregressive model

that iteratively predicts the next output token based on the current context which includes the

sequence of input prompt tokens followed by output tokens generated in the previous iterations.

The most popular use of LLMs is for chatbots, with applications like ChatGPT demonstrating an
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astounding capability of chatting and answering questions like real humans. Other LLM-backed

applications are also being applied to automate a variety of tasks, such as writing ads, responding

to emails, doing literature reviews, etc. As LLM continues its explosive growth, it is imperative

to develop fast and efficient LLM serving systems.

1.2 Importance of Model Serving

The typical lifecycle of a deep neural network (DNN) deployment consists of two phases. In the

training phase, a specific model is chosen after many design iterations and its parameter weights

are computed based on a training dataset. And in this phase, what matters is the system through-

put, i.e. how fast we can get the model to iterate through the dataset and tune the parameters to

convergence. In the inference phase, the pre-trained model is used to process live application re-

quests using the computed weights. Unlike training, DNN inference places much more emphasis

on low latency in addition to good throughput. As applications often desire real-time response,

inference latency has a big impact on the user experience. As a DNN model matures, it is the

inference phase that consumes the most computing resources and provides the most bang for the

buck for performance optimization.

The popular and successful language models face the biggest performance challenge since

they are designed to model variable length inputs. The dynamic nature of the language inputs

makes execution scheduling less straightforward. With the increasingly large model sizes and the

need to store hidden embeddings of all tokens of the context required by the attentionmechanism,

the memory footprint has dramatically increased. These new challenges must be addressed for

efficient language model serving.
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1.3 Challenges in Serving Language Models

Existing frameworks and systems are not well-suited for the properties of Language Models.

Here, we discuss the challenges that arise when serving Language Models.

1.3.1 Coarse-grained Batching

The biggest performance booster for executing any Deep Neural Network model is batching,

which performs the same computation for multiple inputs in a parallel manner and is extremely

efficient onmodern GPUs. This powerful batching technique requires that computation for differ-

ent inputs be identical, which is usually the case for models like Convolutional Neural Networks

(CNNs) that take in fixed-size images as its input.

However, language model, or more generally a sequence model, differs from other popular

DNN architectures in that it is designed to represent a iterative or recursive computation. The

input to a language model is a sequence that can vary in length or even be organized in a tree

structure like TreeLSTM [93]. In the encoder setup where the model tries to produce a hidden

representation for the sequence, the input length or structure is known but can vary from one

input to another. In the decoder setup where the model iteratively generates tokens one at a time

based on the context, the output length is unknown.

Therefore, when expressing computation in a dataflow-based deep learning system, the re-

sulting “unfolded” dataflow graph is not fixed but varies depending on each input. This dynamic

nature of Language Models makes batching requests for language models challenging as the un-

derlying structures for each input are different.

Existing systems have focused on improving training throughput. As such, they batch at the

granularity of unfolded dataflow graphs, which we refer to as graph batching. Graph batching

collects a batch of inputs, combines their dataflow graphs into a single graph whose operators
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represent batched execution of corresponding operators in the original graphs, and submits the

combined graph to the backend for execution. The most common form of graph batching is to

pad inputs to the same length so that the resulting graphs become identical and can be easily

combined. This is done in TensorFlow [1], MXNet [14] and PyTorch [78]. Another form of graph

batching is to dynamically analyze a set of input-dependent dataflow graphs and fuse equiva-

lent operators to generate a conglomerate graph. This form of batching is done in TensorFlow

Fold [58] and DyNet [67].

Graph batching harms both the latency and throughput of model inference. First, unlike

training, the inputs for inference arrive at different times. With graph batching, a newly arrived

request must wait for an ongoing batch of requests to finish their execution, which imposes a

significant latency penalty. Second, when inputs have varying sizes, not all operators in the

combined graph can be batched fully after merging the dataflow graphs for different inputs. An

insufficient amount of batching reduces throughput under high load.

1.3.2 Lack of Context State Management

Large Language Models are commonly used in the conversational setup, like ChatGPT. The user

and the chatbot are engaged in a dialogue that may last many turns. For the chatbot not to “lose

memory” of what has been said so far when responding, the cumulative history of the dialogue

must be part of the context for the Large LanguageModel’s autoregressive generation. As existing

serving systems are stateless across requests, clients send a growing log of conversation history

alongside each new request as the input prompt to be processed from scratch. This causes much

duplicate processing for multi-turn conversations.

How canwe avoid duplicate processing of the chat history? The solution is to have the serving

system save any previously processed context data with the best effort. When new requests from

the same conversation arrive, the saved context data can be re-used and subsequently augmented.

5



Essentially, the serving system is allowed to keep some cached state containing processed context

across requests. Doing so enables the serving system to exploit the opportunity that when users

are actively chatting with an AI chatbot, follow-up requests usually arrive within a reasonably

short time to leverage the cached state.

Caching state across requests is straightforward at the high level, but several challenges re-

main to make it work. First, where do we save the data? Keeping it in the GPU makes it fast to

retrieve, but is very constrained by the relatively small GPU memory size, whereas putting it on

disk would incur much longer load latency, hurting the user experience. A two-tier caching solu-

tion spanning both GPU and CPUmemory is promising, but care must be taken to cope with each

tier’s capacity limit and to swap in/out the saved context data from/to the GPU without damag-

ing performance. Second, how do we reuse saved context data efficiently when processing a new

request? When restoring a conversation’s context data from CPU to GPU, how do we merge it

with the conversation’s existing context that is already cached in the GPU? Furthermore, due to

the limit of cache capacity, dropping is inevitable in some cases and what has been saved might

not be complete. How do we handle dropped cache?

1.4 Contributions

We argue that we should schedule languagemodel inference in a fine-grained and stateful manner

to address the aforementioned challenges. This thesis makes the following two contributions

towards efficient serving of language models:

1.4.1 Batching at finer token granularity

To avoid the inefficiency of coarse-grained graph batching, this thesis proposes a newmechanism,

called cellular batching, that can significantly improve the latency and throughput of Language

Model inference. Our key insight is to realize that an iterative language model computation is
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made up of varying numbers of similar computation units connected, much like an organism is

composed of many cells. As such, we propose to perform batching and execution at the granu-

larity of cells (aka common subgraphs in the dataflow graph) instead of the entire organism (aka

the whole dataflow graph), as is done in existing systems.

We build the BatchMaker inference system based on cellular batching. As each input arrives,

BatchMaker breaks its computation graph into a graph of cells and dynamically decides the set

of common cells that should be batched together for the execution. Cellular batching is highly

flexible, as the set of batched cells may come from requests arriving at different times or even

from the same request. As a result, a newly arrived request can immediately join the ongoing

execution of existing requests, without needing to wait for them to finish. Long requests also

do not decrease the amount of batching when they are batched together with short ones: each

request can return to the user as soon as its last cell finishes and a long request effectively hitches

a ride with multiple short requests over its execution lifetime.

When batching and executing at the granularity of cells, BatchMaker also faces several tech-

nical challenges. What cells should be grouped to form a batched task? Given multiple batched

tasks, which one should be scheduled for execution next? When multiple GPU devices are used,

how should BatchMaker balance the loads of different GPUs while preserving the locality of ex-

ecution within a request? How can BatchMaker minimize the overhead of GPU kernel launches

when a request’s execution is broken up into multiple pieces?

We address these challenges and develop a prototype implementation of BatchMaker based

on the codebase of MXNet. We have evaluated BatchMaker using several well-known RNNmod-

els (LSTM [46], Seq2Seq [92] and TreeLSTM [93]) on different datasets. We also compare the

performance of BatchMaker with existing systems including MXNet, TensorFlow, TensorFlow

Fold and DyNet. Experiments show that BatchMaker reduces the latency by 17.5-90.5% and im-

proves the throughput by 25-60% for LSTM and Seq2Seq compared to TensorFlow and MXNet.

The inference throughput of BatchMaker for TreeLSTM is 4× and 1.8× that of TensorFlow Fold
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and DyNet, respectively, and the latency reductions are 87% and 28%.

1.4.2 Stateful Conversation Context Management

To avoid recomputation and efficiently support serving conversations that could last multiple

turns, we design a stateful LLM serving system, called Pensieve, which saves hidden representa-

tions of a conversation’s processed context in a two-tier GPU-CPU cache. It evicts cached data to

the next tier (or discards it) according to how long the conversation has been inactive and how

large the conversation’s saved context has accumulated. The eviction is done at the granularity

of a suffix of the conversation instead of the whole. Therefore, a conversation’s saved context

might span both tiers of the cache and also be partially trimmed. Pensieve uses ahead-of-time

swapping and pipelined transfer to overlap computation with the data movement between cache

tiers. Dropped contexts are handled via recomputation.

Evicting and restoring cause a conversation’s cached context to occupy non-contiguous GPU

memory. We develop a newGPUkernel to compute attention [101] betweenmultiple input tokens

and cached context residing in non-contiguousmemory, which is missing in existing LLM serving

systems. Our kernel is a generalized version of the PagedAttention kernel in vLLM [54].

We have built the Pensieve and evaluated its performance on the ShareGPT dataset [86]

against vLLM [54], the state-of-the-art serving system that does not cache state across requests.

Experiments show that Pensieve can improve serving throughput by 33-100% and reduce latency

by 40-77%.
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2 | BatchMaker

2.1 Overview

This chapter presents BatchMaker, a system that recognizes the dynamic and iterative nature in

language model inference due to the varying input sizes and structures, and avoids the ineffi-

ciencies of making batching decisions at full request granularity. BatchMaker proposes cellular

batching which breaks the request dataflow graph into recurrent common structures called cells

and makes fine-grained batching decisions at the cell level. Cellular batching also allows the re-

quest to join or leave the batch whenever needed without waiting for the entire batch to finish,

and thus can achieve better latency.

BatchMaker was originally developed for Recurrent Neural Network (RNN) models, which

were a dominant model architecture for language models before the era of Transformer. There-

fore, in this chapter, wewill still use RNNs as themotivating application and evaluationworkload.

However, the core idea of cellular batching generally applies to all iterative language models

including Transformers (discussed in §2.9). Nowadays, this fine-grained batching approach of

making decisions at each generation step is widely used in Transformer-based Large Language

Models (LLMs).
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weights.
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Figure 2.2: An unfolded tree-structured RNN. There are two types of RNN cells, leaf cell (grey) and
internal cell (white). All RNN cells of the same type share the same parameter weights.

2.2 Background

In this section, we explain the unique characteristics of RNNs, the difference between model

training and inference, the importance of batching, and how it is done in existing deep learning

systems.

2.2.1 A primer on recurrent neural networks

Recurrent Neural Network (RNN) is a family of neural networks designed to process sequential

data of variable length. RNN is particularly suited for language processing, with applications

ranging from speech recognition [6], machine translation [7, 108], to question answering [94,

110].
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In its simplest form, we can view RNNs as operating on an input sequence,

𝑋 = [𝑥 (1), 𝑥 (2), ..., 𝑥 (𝜏)]

, where 𝑥 (𝑖) represents the input at the 𝑖-th position (or timestep). For language processing, the

input 𝑋 would be a sentence, and 𝑥 (𝑖) would be the vector embedding of the 𝑖-th word in the sen-

tence. RNN’s key advantage comes from parameter sharing when processing different positions.

Specifically, let 𝑓𝜃 be a function parameterized with 𝜃 , RNNs represent the recursive computation

ℎ(𝑡) = 𝑓𝜃 (ℎ(𝑡−1), 𝑥 (𝑡)), where ℎ(𝑡) is viewed as the value of the hidden unit after processing the

input sequence up to the 𝑡-th position. The function 𝑓𝜃 is commonly referred to as an RNN cell.

An RNN cell can be as simple as a fully connected layer with an activation function, or the more

sophisticated Long Short-Term Memory (LSTM) cell. The LSTM cell [46] contains internal cell

states that store information and uses several gates to control what goes in or out of those cell

states and whether to erase the stored information.

RNNs can be used to model a natural language, solving tasks such as predicting the most

likely word following an input sentence. For example, we can use an RNN to process the input

sentence “system research is” and to derive the most likely next word from the RNN’s output.

Figure 2.1 shows the unfolded dataflow graph for this input. At each time step, one input position

is consumed and the calculated value of the hidden unit is then passed to the successor cell in the

next time step. After unfolding three steps, the output will have the context of the entire input

sentence and can be used to predict the next word. It is important to note that each RNN cell in

the unfolded graph is just a copy, meaning that all unfolded cells share the same model parameter

𝜃 .

Although sequential data are common, RNNs are not limited to chain-like structures. For

example, TreeLSTM [93] is a tree-structured RNN. It takes as input a tree structure (usually, the

parse tree of a sentence [90]) and unfolds the computation graph to that structure, as shown
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Figure 2.3: Latency vs. throughput for computing a single step of LSTM cell at different batch sizes for
CPU and GPU. The value on the marker denotes the batch size.

in Figure 2.2. TreeLSTM has been used for classifying the sentiment of a sentence [77] and the

semantic relatedness of two sentences [60].

2.2.2 Training vs. inference, and the importance of batching

Deploying a DNN is a two-phase process. During the offline training phase, a model is selected

and its parameter weights are computed using a training dataset. Subsequently, during the online

inference phase, the pre-trained model is used to process application requests.
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At a high level, DNN training is an optimization problem to compute parameter weights that

minimize some loss function. The optimization algorithm is minibatch-based Stochastic Gradient

Descent (SGD), which calculates the gradients of the model parameters using a mini-batch of a

few hundred training examples, and updates the parameter weights along computed gradients for

the subsequent iteration. The gradient computation involves forward-propagation (computing

the DNN outputs for those training samples) and backward-propagation (propagating the errors

between the outputs and true labels backward to determine parameter gradients). Training cares

about throughput: the higher the throughput, the faster one can scan the entire training dataset

many times to arrive at good parameter weights. Luckily, the minibatch-based SGD algorithm

naturally results in batched gradient computation, which is crucial for achieving high throughput.

DNN inference uses pre-trained parameter weights to process application requests as they

arrive. Compared to training, there’s no backward-propagation and no parameter updates. How-

ever, as applications desire real-time response, inference must strive for low latency as well as

high throughput, which are at odds with each other. Unlike training, there is no algorithmic need

for batching during inference1. Nevertheless, batching is still required by inference for achieving

good throughput.

To see the importance of batching for performance, we conduct a micro-benchmark that per-

forms a single LSTM computation step using varying batch sizes (𝑏)2. The GPU experiment uses

NVIDIA Tesla V100 GPU and NVIDIA CUDA Toolkit 9.0. Figure 2.3 (bottom) shows the execu-

tion time of a batch vs. the overall throughput, for batch sizes 𝑏 = 2, 4, ...2048. We can see that

the execution time of a batch remains almost unchanged at first and then increases sublinearly

with 𝑏. When 𝑏 > 512, the execution time approximately doubles as 𝑏 doubles. Thus, setting

𝑏 = 512 results in the best throughput. We also ran CPU experiments on Intel Xeon Processor
1The SGD algorithm used in training is best done in mini-batches. This is because the gradient averaged across

many inputs in a batch results in a better estimate of the true gradient than that computed using a single input.
2We configure the LSTM hidden unit size ℎ = 1024. The LSTM implementation involves several element-wise

operations and one matrix multiplication operation with input tensor shapes 𝑏 × 2ℎ and 2ℎ × 4ℎ.
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Figure 2.4: Existing systems perform graph batching

E5-2698 v4 with 32 virtual cores. The LSTM cell is implemented using Intel’s Math Kernel Li-

brary (2018.1.163). As Figure 2.3 (top) shows, batching is equally important for the CPU. On both

the GPU and CPU, batching improves throughput because increasing the amount of computation

helps saturate available computing cores and masks the overhead of off-chip memory access. As

the CPU performance lags far behind that of the GPU, we focus our system development on the

GPU.

2.2.3 Existing solutions for batching RNNs

Batching is straightforwardwhen all inputs have the same computation graph. This is the case for

certain DNNs such as Multi-layer Perceptron (MLP) and Convolution Neural Networks (CNNs).

However, for RNNs, each input has a potentially different recursion depth and results in an un-

folded graph of different sizes. This input-dependent structure makes batching for RNNs chal-
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lenging.

Existing systems fall into two camps in terms of how they batch for RNNs:

1. TensorFlow/MXNet/PyTorch/Theano: These systems pad a batch of input sequences to

the same length. As a result, each input has the same computation graph and the execu-

tion can be batched easily. An example of batching via padding is shown in Figure 2.4(a).

However, padding is not a general solution and can only be applied to RNNs that han-

dle sequential data using a chain-like structure. For non-chain RNNs such as TreeLSTMs,

padding does not work.

2. TensorFlow-Fold/DyNet: In these two recent works, the system first collects a batch of

input samples and generates the dataflow graph for each input. The system then merges all

these dataflow graphs into one graphwhere some operatormight correspond to the batched

execution of operations in the original graphs. An example is shown in Figure 2.4(b).

Both above existing strategies try to collect a set of inputs to form a batch and find a dataflow

graph that’s compatible with all inputs in the batch. As such, we refer to both strategies as

graph batching. Existing systems use graph batching for both training and inference. We note

that graph batching is ideal for RNN training. First, since all training inputs are present before

training starts, there is no delay in collecting a batch. Second, it does not matter if a short input

is merged with a long one because the mini-batch (synchronous) SGD must wait for the entire

batch to finish to compute the parameter gradient anyway.

Unfortunately, graph batching is far from ideal for RNN inference and negatively affects both

the latency and throughput. Graph batching incurs extra latency due to unnecessary synchro-

nization because the input cannot start executing unless all requests in the current batch have

finished. This is further exacerbated in practice when inputs have varying lengths, causing some

long inputs to delay the completion of the entire batch. Graph batching can also result in subop-

timal throughput, either due to performing useless computation for padding or failing to batch
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Figure 2.5: The timeline of graph batching and Cellular Batching when processing 8 requests from req1
to req8. The number shown in parenthesis is the request’s sequence length, e.g. req1(2) means req1 has a
sequence length of 2. Each row marks the lifetime of a request starting from its arrival time. Req1-4 are
Running Requests as they arrive at time 0 and have started execution. Req5-8 are Upcoming Requests that
arrive after the Req1-4.

at the optimal level for all operators in the merged dataflow graph.

2.3 Our Approach: Cellular batching

We propose cellular batching for RNN inference. RNN has the unique feature that it contains

many identical computational units connected. Cellular batching exploits this feature to 1) batch

at the level of RNN cells instead of whole dataflow graphs, and 2) let new requests join the exe-

cution of the current requests and let requests return to the user as soon as they finish.
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2.3.1 Batching at the granularity of cells

Graph batching is not efficient for inference because it performs batching at a coarse granularity–

a dataflow graph. The recursive nature of RNN enables batching at a finer granularity–an RNN

cell. Since all unfolded RNN cells share the same parameter weights, there is ample opportunity

for batching at the cell level: each unfolded cell of request X can be batched with any other

unfolded cell from request Y. In this way, RNN cells resemble biological cells which constitute

all kinds of organisms. Although organisms have numerous types and shapes, the number of

cell types they have is much more limited. Moreover, regardless of the location of a cell, cells of

the same type perform the same functionality (and can be batched together). This characteristic

makes it more efficient to batch at the cell level instead of the organism (dataflow graph) level.

More generally, we allow programmers to define a cell as a (sub-)dataflow graph and to use

it as a basic computation unit for expressing the recurrent structure of an RNN. A simple cell

contains a few tensor operators (e.g. matrix-matrix multiplication followed by an element-wise

operation); a complex cell such as LSTM not only contains many operators but also its internal

recursion. Grouping operators into cell allows us to make the unfolded dataflow graph coarse-

grained, where each node represents a cell and each edge depicts the direction in which data

flows from one cell to another. We refer to this coarse-grained dataflow graph as cell graph.

There may be more than one type of cells in the dataflow graph. Two cells are of the same

type if they have identical sub-graphs, share the same parameter weights, and expect the same

number of identically shaped input tensors. Cells with the same type can be batched together if

there is no data dependency between them.

2.3.2 Joining and leaving the ongoing execution

In graph batching, the system collects a batch of requests, finishes executing all of them, and

then moves on to the next batch. By contrast, in the cellular batching, there is no notion of a
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fixed batch of requests. Rather, new requests continuously join the ongoing execution of existing

requests without waiting for them to finish. This is possible because a new request’s cells at an

earlier recursion depth can be batched together with existing requests’ cells at later recursion

depths.

Existing deep learning systems such as TensorFlow, MXNet and DyNet schedule an entire

dataflow graph for execution. To support continuous join, we need a different system imple-

mentation that can dynamically batch and schedule individual cells. More concretely, our system

unfolds each incoming request’s execution into a graph of cells and continuously forms batched

tasks by grouping cells of the same type. When a task has batched sufficiently many cells, it

is submitted to a GPU device for execution. Therefore, as long as an ongoing request still has

remaining cells that have not been executed, they will be batched together with any incoming

requests. Furthermore, our system also returns a request to the user as soon as its last cell fin-

ishes. As a result, a short request is not penalized with increased latency when it’s batched with

longer requests.

Figure 2.5 illustrates the different batching behavior of Cellular Batching and graph batching

when processing the same 8 requests. We assume a chain-structured RNN model and that each

RNN cell in the chain takes one unit of time to execute. Each request corresponds to an input

sequence whose length is shown in the parentheses. In the Figure, each row shows the lifetime

of one request, starting from its arrival time. The example uses a batch size of 4.

At the beginning of time (t=0), the first 4 requests (req1-4) arrive. Under graph batching, these

4 requests form a batch, and their corresponding dataflow graphs are fused and submitted to the

backend for execution. The system does not finish executing the fused graph until time t=5, as

the longest request in the batch (req4) has a length of 5. In the meanwhile, newly arrived requests

(req5-8) are being queued up and form the next batch. The system starts executing the next batch

at t=5 and finishes at t=12. Under cellular batching, among the first 4 requests, the system forms

two fully batched tasks, each performing the execution of a single (4-way batched) RNN cell. At
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t=2, the second task finishes, causing req1 to complete and leave the system. Since a new request

(req5) has already arrived, the system forms its third fully batched task containing req2-5 at t=2.

After finishing this task, another two existing requests (req2,req3) depart, and two new ones are

added (req6, req7) to form the fourth task. As shown in this example, cellular batching not only

reduces the latency of each request (due to less queuing) but also increases the overall system

throughput (due to tighter batching).

2.4 System Design

We build an inference system, called BatchMaker, based on cellular batching. This section de-

scribes the basic system design.

2.4.1 User Interface

To use BatchMaker, users must provide two pieces of information: the definition of each cell (i.e.

the cell’s dataflow graph) and a user-defined function that unfolds each request/input into its cor-

responding cell graph. We expect users to obtain a cell’s definition from their training programs

for MXNet or TensorFlow. Specifically, users define each RNN cell using MXNet/TensorFlow’s

Python interface and save the cell’s dataflow graph in a JSON file using existing MXNet/Ten-

sorFlow facilities. The saved file is given to BatchMaker as the cell definition. In our current

implementation, the user-defined unfolding logic is expressed as a C++ function which uses our

given library functions to create a dataflow graph of cells.

2.4.2 Software Architecture

BatchMaker runs on a single machine with potentially many GPU devices. Its overall system ar-

chitecture is depicted in Figure 2.6. BatchMaker has two main components: Manager andWorker.
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means nodes whose input is ready, and white means input dependency is not satisfied.
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The manager processes arriving requests and submits batched computation tasks to workers for

execution. Depending on the number of GPU devices equipped, there may be multiple workers,

each of which is associated with one GPU device. Workers execute tasks on GPUs and notify the

manager when their tasks are complete.

System initialization. Upon startup, BatchMaker loads each cell’s definition and its pre-

trained weights from files. BatchMaker “embeds” the weights into cells so that weights are part

of the internal state as opposed to the inputs to a cell. For a cell to be considered batchable, the

first dimension of each of its input tensors should be the batch dimension. BatchMaker identifies

the type of each cell by its definition, weights, and input tensor shapes.

The workflow of a reqest. The manager consists of two submodules, request processor and

scheduler. The request processor tracks the progress of execution for each request and the sched-

uler determines which cells from different requests would form a batched task, and selects a

worker to execute the task.

When a new request arrives, the request processor runs the user code to unfold the recursion

and generates the corresponding cell graph for the request. In this cell graph, each node repre-

sents a cell and is labeled with a unique node ID as well as its cell type. Request processor will

track and update the dependencies of each node. When a node’s dependencies have been satis-

fied (its inputs are ready), the node is ready to be scheduled for execution (§2.4.3). The scheduler

forms batched tasks among ready nodes of the same cell type. Each type of cell has a desired max-

imum batch size, which is determined through offline benchmarking. Once a task has reached a

desired batch size, it is pushed into the task queue of one of the workers.

Workers execute tasks on GPUs. Since the GPU kernel execution is asynchronous, the worker

moves a task from the task queue to the in-progress queue once the task’s corresponding GPU

kernel has been issued. The worker uses a pooling mechanism to see whether some task has
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finished. It pops the finished task from the in-progress queue and pushes it into the completion

queue in the request processor. The request processor updates node dependencies based on the

completed task and checks whether a request is finished. If so, its result is immediately returned.

We give a more detailed example of the request workflow in §2.4.4.

2.4.3 Batching and Scheduling

The scheduler needs to make decisions on what nodes should be batched together to form a task

and what tasks to be pushed to which workers. The design must take into account three factors,

locality, priority, and utilization of multiple GPUs, which are often in conflict with each other.

Locality refers to the preference that 1) the same set of requests should be batched together

if they are to execute the same sequence of nodes, and 2) the execution of that sequence of nodes

should stick to the same GPU. The reason for both 1) and 2) is to avoid memory copy. Before

execution, the batched inputs of a cell must be laid out in contiguous GPU memory. Since the

batched outputs of the execution are also stored in contiguous memory, there is no need for mem-

ory copy before each cell execution when executing the same set of requests on the same GPU.

Conversely, if the batch of requests changes between two successive cell executions, one must

do a memory copy, called “gather”, to ensure contiguous inputs. Furthermore, if the execution of

successive cells switches from one GPU to another, one must copy data from one GPU to another.

Priority refers to the ability to prefer the execution of one type of cell over another. Many

practical RNNmodels havemultiple types of cells. For example, as shown in Figure 2.2, TreeLSTM

has leaf cells and internal cells. The popular RNN-based Seq2Seq model has encoder cells and

decoder cells. For these models, one can achieve better latency by preferentially executing DNN

types that occur later in the computation graph. Therefore, in TreeLSTMs, internal nodes should

be given preference over leaf nodes. In Seq2Seq models, decoder nodes should have priority over

encoder nodes.
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Algorithm 1: Scheduling and Batching Algorithm
1 Bsizes: a set of supported batch sizes.
2 CellTypes: a set of cell types, each associated with a priority.
3 MaxTasksToSubmit: the maximum number of tasks that can be submitted to a worker.

4 def Schedule(worker):
5 𝑆 ← {𝑐𝑡 ∈ CellTypes | 𝑐𝑡 .NumReadyNodes() ≥ Bsizes.Max()};
6 if 𝑆 .Size() = 0 :
7 𝑆 ← {𝑐𝑡 ∈ CellTypes | 𝑐𝑡 .NumRunningTasks() = 0 and 𝑐𝑡 .NumReadyNodes() > 0};
8 if 𝑆 .Size() = 0 :
9 𝑆 ← { 𝑐𝑡 ∈ CellTypes | 𝑐𝑡 .NumReadyNodes() > 0};

10 𝑐𝑡 ← GetCellTypeWithMaxPriority(S);
11 Batch(ct, worker);

12 def Batch(ct, worker):
13 𝑛𝑢𝑚_𝑡𝑎𝑠𝑘𝑠 ← 0;
14 while 𝑛𝑢𝑚_𝑡𝑎𝑠𝑘𝑠 < MaxTasksToSubmit :
15 𝑏𝑎𝑡𝑐ℎ← FormBatchedTask(ct, worker);
16 if 𝑏𝑎𝑡𝑐ℎ.Size() >= Bsizes.Min() or 𝑛𝑢𝑚_𝑡𝑎𝑠𝑘𝑠 = 0 :
17 SubmitBatchedTask(batch, worker);
18 UpdateNodesDependency(batch);
19 𝑛𝑢𝑚_𝑡𝑎𝑠𝑘𝑠++;
20 for subgraph ∈ batch :
21 𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ.𝑝𝑖𝑛𝑛𝑒𝑑 ← 𝑤𝑜𝑟𝑘𝑒𝑟 .𝑖𝑑 ;

# 𝑝𝑖𝑛𝑛𝑒𝑑 is unset once 𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ has no task running

22 else:
23 break;

24 def FormBatchedTask(ct, worker):
25 𝑏𝑎𝑡𝑐ℎ← { };
26 for subgraph ∈ ct.subgraphs :
27 if subgraph.pinned ∈ {None, worker.id} :
28 for node ∈ subgraph’s ready nodes :
29 𝑏𝑎𝑡𝑐ℎ← 𝑏𝑎𝑡𝑐ℎ

⋃
{𝑛𝑜𝑑𝑒};

30 if 𝑏𝑎𝑡𝑐ℎ.Size() = Bsizes.Max() :
31 return 𝑏𝑎𝑡𝑐ℎ;
32 return 𝑏𝑎𝑡𝑐ℎ;
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We design a scheduling policy to make the trade-off between locality, priority, and good uti-

lization of multiple GPUs. We support the locality preference by constructing and scheduling a

batched task containing multiple node invocations instead of a single one. To enable this, the

request processor analyzes the cell graph of a request to find a subgraph to pass to the scheduler.

A subgraph contains a single node or many connected nodes with the property that all external

dependencies to other parts of the graph have been satisfied. Furthermore, all nodes of a sub-

graph must be of the same cell type. For example, in the case of Seq2Seq, a sequence of encoders

cells forms one subgraph and the sequence of decoder cells forms another subgraph.

Scheduling subgraphs. The scheduling algorithm is shown in Algorithm 1. For each type

of cell, scheduler maintains a queue of subgraphs (the type of a cell is the same as the type of

nodes in the subgraphs). The scheduler’s “Schedule”’ function (line 4) is invoked whenever some

worker becomes idle, and it picks a cell type 𝑐𝑡 for execution in the following order: (a) 𝑐𝑡 whose

queue contains more ready nodes (meaning nodes whose data dependency is satisfied) than the

maximum batch size (line 5); (b) 𝑐𝑡 whose queue contains some ready nodes but that has no

running tasks (lines 6-7); (c) 𝑐𝑡 whose queue contains some ready nodes (lines 8-9). If there are

multiple choices from the same criterion, the scheduler chooses the one with the highest cell

priority (line 10). Once a cell type is chosen, scheduler invokes “Batch” to form batched tasks

(line 11).

Batching subgraphs. Given a cell type, “Batch” function (line 12) selects nodes from sub-

graphs in the cell’s queue to form a batched task (line 15) and to submit to the device for execution

(line 17). “FormBatchedTask” function (line 24) scans the queue to select nodes whose dependen-

cies are satisfied (line 28) for a batched task. Each invocation of “FormBatchedTask” forms at most

one batched task. For better locality, the scheduler submits several tasks to the same worker for

execution. The number of tasks submitted is limited by the configurable parameter “MaxTasksTo-

Submit” (line 14). Setting the limit to a small number (default is 5) avoids forming too many tasks

belonging to one cell type, which gives other types of cell a chance to be scheduled, allows new
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requests to join execution, and avoids the decrease in effective batch size if one cell type does not

have enough ready nodes.

Once a batched task is submitted to the GPU worker, the scheduler updates the dependencies

of those nodes in the batch (line 18) so a new set of cell nodes can be scheduled in subsequent

batched tasks. Additionally, the scheduler pins those subgraphs to the same worker (lines 20-

21) to avoid scheduling the subsequent nodes in those subgraphs to a different worker (line 27).

This is crucial to the correctness of the scheduling algorithm because tasks involving the same

subgraph have data dependency. Tasks submitted to the same device will execute in the order

of submission, and thus their dependency is fulfilled. By contrast, there is no such guarantee

for tasks submitted to different workers. Besides, this also improves locality because all nodes in

the same subgraph are preferentially scheduled to the same worker. The scheduler maintains a

counter for each subgraph to count how many batched tasks contain nodes from this subgraph.

When this counter is decreased to zero, the scheduler unpins the subgraph from a worker so that

this subgraph may be scheduled on other workers in the future.

2.4.4 An example of TreeLSTM scheduling

To give a concrete example, we show the detailed workflow of a TreeLSTM request. When a

TreeLSTM request 𝑥 arrives at our system, the request processor applies the user-defined unfold-

ing function to generate the cell graph for request 𝑥 . Then the request processor analyzes the

cell graph and breaks it up into subgraphs based on cell types. A TreeLSTM model has two types

of cell: leaf cell and internal cell. Suppose request 𝑥 is a complete binary tree with 16 leaf nodes.

Then its cell graph will be partitioned into 17 subgraphs: one subgraph contains 31 internal tree

nodes; each of the other 16 subgraphs contains a single leaf node. The set of leaf subgraphs is im-

mediately passed to the scheduler because their dependencies are satisfied, whereas the subgraph

of internal nodes remains at the request processor.
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The scheduler maintains two queues, one for the internal cell type, and the other for the leaf

cell type. When the leaf cell type is scheduled, leaves of 𝑥 will be put into potentially several

batched tasks with leaf nodes from other requests. Batched tasks are pushed to the worker and

executed. The request processor is notified when subgraphs finish. When all the leaf subgraphs of

request 𝑥 finish, the subgraph containing 𝑥 ’s internal nodes has its dependencies satisfied and is

then passed to the scheduler. When the internal cell type is scheduled, the scheduler puts the cells

of 𝑥 at successive levels of the tree in successive batched tasks to ensure that their dependencies

are obeyed. The number of nodes from request 𝑥 decreases at higher tree levels. But the scheduler

will batch nodes from request 𝑥 with nodes from other requests to keep the batch size close to the

maximum allowed. Once all internal nodes of request 𝑥 finish execution, the request processor

gets notified. When there is no more subgraph to execute, request 𝑥 departs immediately.

2.5 GPU Optimization

The manager and workers threads in BatchMaker run on the CPU and RNN cells are scheduled

to execute on the GPUs. The synchronization between CPU and GPU is non-trivial and has a big

impact on the utilization of GPUs. In this section, we explain two optimizations in BatchMaker

that are crucial for achieving good performance on GPUs.

Keeping the GPU busy. One should not schedule a GPU kernel for execution one at a time. Do-

ing so is terrible for performance as the GPU sits idle waiting for the next kernel to be scheduled

and launched. In BatchMaker, the worker asynchronously pushes all GPU kernels for a given task

to the GPU’s driver queue without waiting for any to finish. To ensure that the dependencies of

each kernel are satisfied, the worker performs a topological sort of all operators within the cell

and pushes kernels according to the sort order to the same GPU stream. This works because the

GPU driver guarantees that kernels in the same stream are executed in the FIFO order. A worker
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may receive up to MaxTaskToSubmit number of tasks from the scheduler. The order in which

the workers receive these tasks already correctly reflects the dependencies between cells. Thus,

the worker also launches the kernels for multiple tasks based on their order in the task queue.

By launching as many kernels as possible while obeying dependencies, we effectively reduce the

kernel launch gap between operators and tasks.

Asynchronous Completion Notification. The worker cannot synchronously wait for a task

to finish execution on the GPU. Nevertheless, the worker must learn quickly when a task has

finished so that it can inform the manager who will issue the next set of nodes to the scheduler.

Existing solutions supporting asynchronous notification use the callback mechanism provided

by GPU device drivers. However, these callback mechanisms have performance limitations. For

example, the NVIDIA CUDA driver’s callback mechanism blocks all kernel execution until the

callback function finishes[25].

To let the worker learn of task completion asynchronously, we add a signaling kernel to the

end of each task. The signaling GPU kernel changes a signal variable, which is an unsigned

integer in our implementation. The signal variable is allocated in pinned host memory which can

be accessed by GPU using zero copy. Whenever a task finishes execution, the signaling kernel

will execute next and increase the signal variable by one, which means the GPU has finished the

execution of one more task. On the worker side, it pushes the tasks that have been issued to GPU

in a FIFO queue called in-progress queue. The worker uses a thread to continuously poll the status

of the signal variable. Once the signal variable changes, the worker learns that the task at the top

of the in-progress queue has been finished. It then pushes the completed task to the manager’s

completion queue.
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2.6 Implementation

We implemented our system using the codebase of MXNet (version 0.10.0). In our current pro-

totype, users need to define each cell in a JSON file exported by MXNet’s Python API. Users also

need to provide a user-defined C++ function to generate the unfolded cell graph for each request.

During initialization, BatchMaker aims to materialize all the cells for each supported batch

size on every available GPU device. Such materialization requires knowledge of the type and

shape information of each operator’s input/output tensors to allocate GPU memory and perform

other compiler-level optimizations such as those done by NNVM [20], TensorFlow XLA [21].

We reuse the MXNet parsing mechanism to perform type and shape inference for each type

of cell. However, to do that, BatchMaker needs to know how cells can be connected, and how the

outputs of one cell may be used by other cells. Ideally, BatchMaker should learn this knowledge

on the flywhen real requests come in. To simplify implementation, our current prototype requires

the user to provide an example request so that BatchMaker can apply the user-defined unfolding

function to generate an example cell graph. This allows BatchMaker to perform type and shape

inference and materialize cells during initialization.

During inference, BatchMaker re-usematerialized cells over and over. For example, to execute

an LSTM chain with a length of 5, our worker will execute the same materialized LSTM cell for

5 times.

2.7 Evaluation

We evaluate BatchMaker on microbenchmarks and several popular RNN applications with real-

world datasets. Our evaluation shows that BatchMaker provides significant performance advan-

tages over existing systems (including MXNet, TensorFlow, TensorFlow Fold and DyNet).

The highlights of our results are:
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• BatchMaker achieves much lower latency than existing systems. Under moderate load

(meaning that the load is less than half of the baseline system’s peak), we reduce the 90-

percentile latency by 37.5%-90.5% (for LSTM) and 17.5%-82.6% (for Seq2Seq) compared to

TensorFlow and MXNet. For TreeLSTM, we reduce 90-percentile latency by 28% and 87%

compared to DyNet and TensorFlow Fold respectively.

• BatchMaker also provides good throughput improvements. The throughput improvement

over MXNet and TensorFlow is 25% (for LSTM) and 60% (for Seq2Seq). For TreeLSTM, the

throughput of BatchMaker is 1.8× that of DyNet and 4× that of TensorFlow Fold.

• Our latency improvement mainly comes from reducing the queuing time of new requests.

The performance advantage of BatchMaker is increased when the variance in the sequence

length is large.

2.7.1 Experimental Setup

The Testbed. We run our tests on a Linux server with 4 NVIDIA TESLA V100 GPU cards are

connected by NVLink; each GPU has 16GB of memory. The operating system is Ubuntu 16.04.1

LTS with Linux kernel version 4.13.0. NVIDIA CUDA Toolkit version is 9.0.

Applications, datasets, and workloads. We choose three popular RNN applications, LSTM,

Seq2Seq, and TreeLSTM.All RNN cells used in these applications use hidden state size 1024. LSTM

and Seq2Seq are both chain-structured RNNs. We use WMT-15 [99] Europarl German-English

translation as our dataset. For LSTM, we randomly sample 100k English sentences. For Seq2Seq,

we randomly sample 100k German-English sentence pairs. The maximum sentence length is 330

and the average length is 24. For TreeLSTM, We use Stanford’s TreeBank [91] dataset with 10K

parse trees of English sentences.
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When evaluating an application, we sample a request from the dataset and issue it to the sys-

tem with Poisson inter-arrival times. We adjust the average inter-arrival time to test the system’s

performance under varying loads.

Baseline Systems We compare against MXNet (v0.12.0), TensorFlow (v1.4), TensorFlow Fold

(v0.0.1) and DyNet (v2.0). MXNet and TensorFlow are representative systems that rely on padding

to achieve batching. TensorFlow Fold and DyNet are two existing systems that perform graph

batching by dynamically merging a set of dataflow graphs. For chain-structured RNNs, MXNet

and TensorFlow achieve much better performance than TensorFlow Fold and DyNet and thus

we focus on comparing BatchMaker to these two systems for LSTM and Seq2Seq benchmarks.

As padding does not work with tree-structured RNNs, we focus on comparing BatchMaker to

TensorFlow Fold and DyNet for the TreeLSTM benchmarks.

Bucketing optimization for MXNet and TensorFlow. Since padding wastes computation,

we reduce the amount of padding in MXNet and TensorFlow by only batching requests of similar

lengths. We refer to this as the “bucketing” strategy. Specifically, we assign each incoming request

to a bucket based on its length. The width of a bucket refers to the maximum difference in lengths

among requests in a bucket. We use the bucket width of 10 by default, which gives the best

performance for our applications (§2.7.2). Since the WMT-15 dataset has a maximum sentence

length of 330, using a width of 10 results in 33 buckets in total. The 𝑖-th bucket handles requests

of length in the range (10𝑖, 10𝑖 + 10]. We perform round-robin scheduling across buckets. To

reduce latency when running in MXNet and TensorFlow, we materialize a dataflow graph for

each bucket during initialization. This is because the cost of materializing a dataflow graph is

substantial, owing to compiler optimization and GPU memory allocation.

Batching configuration and optimization. Unless otherwise mentioned, we set the maxi-

mum batch size to be 𝑏𝑚𝑎𝑥 = 512, which optimizes for throughput based on Figure 2.3 (bottom).
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In our evaluation of MXNet and TensorFlow, we do not use explicit timeouts when accumulating

requests to form a batch; rather, even if it’s not full, a batch can start execution (as a smaller

batch) as long as some GPU device is idle and it is the batch’s turn to execute according to the

round-robin policy. As a result, when the request rate is low, the actual batch size executed in

a system could be lower than the configured maximum. As we will demonstrate in (§2.7.2), this

enables a large 𝑏𝑚𝑎𝑥 to achieve the same low latency as a small 𝑏𝑚𝑎𝑥 . Additionally, we found that

this strategy achieves lower latency than any configuration of the timeout-based strategy.

2.7.2 Application Performance: LSTM

We evaluate LSTM inference performance on the WMT-15 Europarl dataset and compare Batch-

Maker with MXNet and TensorFlow. Figure 2.7 shows the throughput vs. latency results of all

systems as the load increases (by reducing the request inter-arrival time). We set the bucket width

of 10 by default for MXNet and TensorFlow.

Latency. Figure 2.7 (a) shows the 90-percentile latency vs. throughput (𝑏𝑚𝑎𝑥 = 512). As can be

seen in the figure, BatchMaker achieves significantly lower latency than MXNet and TensorFlow.

The 90p-latency of BatchMaker stays unchanged (12ms) when the throughput is less than 8K

req/s, and goes slightly up afterward until peak throughput (20K req/s). This is because when

the load is moderate(< 8K req/s), BatchMaker executes most requests in batch sizes no larger

than 64. And as the throughput goes up, the batch sizes increase (up to 𝑏𝑚𝑎𝑥 = 512), leading to a

gradual increase in latency. By comparison, the smallest 90p latency of MXNet and TensorFlow

is 25ms and the latency increases quickly as the request rate increases. BatchMaker reduces

latency because it allows incoming requests to join the currently executing batch, resulting in

less queuing time. By comparison, in MXNet and TensorFlow, a new request may need to wait

for multiple batches from different buckets to finish execution. Thus, the latency of MXNet and

TensorFlow is much higher and increases quickly with increasing load. The latency variance for
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(a) LSTM with maximum batch size 512

0 2500 5000 7500 10000 12500 15000 17500 20000
Throughput (req/s)

0

100

200

300

400

500

La
te

nc
y 

(m
s)

TensorFlow
MXNet
BatchMaker

(b) LSTM with maximum batch size 64

Figure 2.7: LSTM performance on the WMT-15 Europarl dataset using 1 GPU. The figures plot the 90-
percentile latency. MXNet and TensorFlow use a bucket width of 10.
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BatchMaker is alsomuch smaller and is caused by varying request sequence lengths. In § 2.7.3, we

conduct additional experiments to confirm the reasons for BatchMaker’s latency improvements.

Throughput. In Figure 2.7 (a), the peak throughput of BatchMaker is 20K req/s (𝑏𝑚𝑎𝑥 = 512),

higher than those of MXNet and TensorFlow. As the load increases in MXNet and TensorFlow,

a request must wait for more buckets to finish execution and each bucket also executes a larger

batch of requests at a time. This causes the overall latency to shoot up beyond 500ms as the

load increases to 16K req/s. By contrast, BatchMaker can maintain a low queuing delay while

packing more requests into a batch as the input load increases, resulting in much a higher peak

throughput.

Effect of different maximum batch sizes. Figure 2.7 (b) shows the latency vs. throughput

results using a smaller maximum batch size, 𝑏𝑚𝑎𝑥 = 64. 64 and 512 are interesting batch size

choices because any batch size 𝑏 < 64 has similar latency (for executing one step of LSTM) but

lower throughput (than that of 𝑏 = 64), and any batch size 𝑏 > 512 has similar throughput but

higher latency (than that of 𝑏 = 512), as shown micro-benchmark in Figure 2.3 (bottom). Com-

paring Figure 2.7 (a) with (b), we see that 𝑏𝑚𝑎𝑥 = 512 achieves similar latency as 𝑏𝑚𝑎𝑥 = 64 (at low

to moderate load) but much higher throughput. This is because, at low load, all systems execute

with effective batch sizes much smaller than the configured maximum. Therefore, the optimal

configuration for all systems is to set the maximum batch size that optimizes the throughput.

The bucketwidth trade-off inMXNet andTensorFlow. The granularity of buckets creates a

trade-off between throughput and latency. Fine-grained bucketing reduces padding and wasteful

computation. However, fine-grained bucketing uses a large number of buckets. This causes a

batch for any given bucket to wait longer for batches from other buckets to finish execution

before it catches its turn under the round-robin policy. By contrast, coarse-grained bucketing

uses fewer buckets which results in shorter waiting time but increases the amount of padding
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Figure 2.8: LSTM performance using MXNet with different bucket widths (bw *). The maximum batch
size is 512.

and wasteful computation.

Figure 2.8 shows the latency vs. throughput for MXNet under varying bucket widths. As the

figure shows, coarse-grained bucketing (width 40) achieves better latency under low load (due to

less waiting) but its peak throughput is also lower (due to more padding). On the contrary, using

the smallest bucket width of 1 has the best peak throughput, but at the cost of higher latency for

low to moderate load. Using the bucket width of 10 achieves a good tradeoff of low latency and

high peak throughput.

2.7.3 Reasons for the performance gain

We investigate in detail the reasons why BatchMaker achieves better latency and throughput

over baseline systems.

Reasons for the latency improvement. BatchMaker reduces the latency of a request in two

aspects: 1) it reduces the queuing time by allowing a newly arrived request to join the execution

of existing requests. 2) it reduces computation time by allowing shorter requests to be returned
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Figure 2.9: Request queuing and computation time for LSTM on WMT-15 Europarl dataset under low
load (5K req/s).
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immediately upon completion without waiting for the longer ones. Figure 2.9 (a) and (b) show the

CDF of queuing time and computation time for LSTM on the WMT-15 Europarl dataset. Queuing

time is measured from a request’s arrival to its start of execution. Computation time is measured

from a request’s start of execution to the return of the execution result by the system. The lines

in Figure 2.9 correspond to the points in Figure 2.7 (a) where the throughputs of all three systems

are ∼5K req/s. The x-axis is shown in the log scale.

In Figure 2.9(a), the 99-percentile queuing time for BatchMaker is 1.38 milliseconds, compared

to > 100milliseconds for MXNet and TensorFlow. In BatchMaker under low load, a newly arrived

request waits for the current set of tasks to finish before joining the execution of an existing batch

of requests. With the input load 5K req/s, we find that BatchMaker executes LSTM cells with

batch size 64 most of the time, which takes takes about 185 microseconds in microbenchmarks

(Figure 2.3 bottom). Due to scheduling and gathering overhead, BatchMaker needs about 250

microseconds to execute an LSTM step. Since BatchMaker submits at most 5 steps of LSTM

cell to GPU (by setting the “MaxTasksToSubmit” in Algorithm 1 line 3), the incoming request

can wait up to 0.25*5 = 1.25 milliseconds, which roughly matches BatchMaker’s 99-percentile

queuing time (1.38 ms). The queuing time of MXNet and TensorFlow is much larger; not only an

incoming request has to wait for many buckets (out of 33 total buckets) to complete execution,

but also each bucket’s execution takes as many LSTM steps as the longest sequence in the batch.

As Figure 2.9 (b) shows, the computation time of BatchMaker is also less than that of MXNet

and TensorFlow. Bucketing results in CDF lines with “jumps”, as sequences with different lengths

within the range of a bucket will be padded to the identical length to form a batch and complete

their execution at the same time. When the bucket width is set to 10 for MXNet and TensorFlow,

a request of length 21 will be padded to length 30, resulting in almost 50% padding overhead and

latency increase. By contrast, BatchMaker allows any request that has completed its execution to

be returned immediately, with the tradeoff of having to incur scheduling and gathering overhead

in the middle of a request execution.
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Figure 2.10: CDF of the sequence length in the WMT-15 Europarl dataset.

Comparing Figure 2.9(a) and (b), we can see that reduced queuing time is the more dominant

factor for BatchMaker’s latency improvement.

The impact of variable-length sequences. We examine how BatchMaker and baseline sys-

tems perform on artificial datasets with different variances of sequence lengths. Figure 2.10 shows

the sequence length CDF of the WMT-15 Europarl dataset. We can see that about 99 percent of

sequences have a length of less than 100. And the longest sequence length is 330. We generate

an artificial dataset with a fixed sequence length of 24, which is the average sequence length of

the WMT-15 dataset. Additionally, we sample two different datasets with different variances in

sequence length from the WMT-15 dataset by clipping the maximum sequence length to be no

longer than 50, and 100 respectively.

Figure 2.11 shows the performance of different systems under fixed-length inputs and inputs

with a maximum length of 50 and 100. We can see that increasing the variance of input length

causes the latency and throughput of baseline systems to get much worse. The increase in latency

is due to requests waiting for more buckets as inputs with higher variance in length use more

buckets. The decrease in throughput is due to baseline systems executing with smaller effective
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Figure 2.11: Performance under different sequence length variations. From top to bottom, the experi-
ments use an artificial dataset of identical sequence length (24), a sampled WMT-15 dataset with maxi-
mum sequence length 50, and another one with a maximum sequence length of 100.
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Figure 2.12: Seq2Seq with “feed previous” decoder

batch sizes when inputs with higher variance in length are spread across more buckets. By con-

trast, BatchMaker can maintain the same latency under low to moderate load despite increased

input length variance.

Using the fixed-length artificial dataset, the baseline systems achieve better throughput than

BatchMaker. Under the high load, baseline systems can form a full batch of 512 fixed-length

inputs. As the execution time of one LSTM cell is approximately 784 microseconds for the batch

size 512, one can execute at most 1
784∗10−6∗24 = 53 batches per second for inputs with length 24.

Thus, the maximum system throughput is about 27136 req/s, which is closely matched by those

of the baseline systems. By contrast, the throughput of BatchMaker is about 87% of the maximum

throughput, due to the overhead of scheduling and gathering. Although it is hard to see from the

figure, BatchMaker still achieves better latency than baseline systems under low load by allowing

new requests to join the execution of currently executing ones.

2.7.4 Application Performance: Seqence to Seqence

Background on Seq2Seq. Sequence to Sequence (Seq2Seq as an abbreviation) is a widely used

RNN model in machine translation. A basic Seq2Seq model contains two types of RNN cells: en-

coder and decoder, as depicted in Figure 2.12. The encoder takes in a sequence of words as input.

In each step, the encoder and decoder will convert a word to a vector by doing an embedding
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lookup, and then feed this vector to an RNN Cell. The first decoder cell takes in the output state

of the encoder and a < 𝑔𝑜 > symbol as input and computes states, which are passed to the suc-

ceeding decoder cell. In addition to the state, the decoder cell outputs a word as well, which is

obtained by applying a linear transformation and an argmax3 [22]. The output word is also fed

to the next step as the input. When the decoder outputs the <𝑒𝑜𝑠> symbol, it means the decoder

has finished, and there will be no more decoder steps.

In our evaluation, we use LSTM as the RNN cell. Encoder and decoder cells do not share

weights. We use the sampled WMT-15 Europarl German to English translation dataset with a

vocabulary size of 30K. When doing inference using Seq2Seq, the decoded sequence length is not

known a priori. Deployed systems typically configure the maximum decoding length to be the

input sequence length plus a fixed threshold of extra steps. Decoding terminates when either

the <𝑒𝑜𝑠> symbol is generated or when the maximum decoding length is reached. For simplicity,

in our Seq2Seq experiments, for a given input German sentence, we decode until the number of

steps is equal to the corresponding English sequence length. We do not use the knowledge of

decoding length in any of our batching or scheduling decisions.

Batching and bucketing configuration. The Seq2Seq model is different from LSTM in that

it has two phases and the computation is very unbalanced. The decoding phase constitutes about

75% of the entire computation due to performing the output projection from the hidden dimen-

sion to the vocabulary dimension, which contains a large matrix multiplication. Our microbench-

marks show that batch size 256 is the best for decoder cells while 512 remains the best for encoder

cells. Since graph batching requires that all operators in the dataflow graph use the same batch

size, we use 𝑏𝑚𝑎𝑥 = 256 for MXNet and TensorFlow to optimize for decoder performance. As

BatchMaker supports different batch sizes for different cells, we evaluate two configurations; one

using 𝑏𝑚𝑎𝑥 = 256 for both encoders and decoders, and the other using 𝑏𝑚𝑎𝑥 = 512 for encoders
3Argmax operator is not optimized in MXNet and TensorFlow, resulting in unacceptably slow performance. We

implemented an optimized argmax CUDA kernel for all systems.
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(a) Seq2Seq on 2 GPUs
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(b) Seq2Seq on 4 GPUs

Figure 2.13: Performance of Seq2Seq on the WMT-15 Europarl German-to-English dataset using 2 and 4
GPUs. BatchMaker-x,y denotes configuring our system to use maximum batch size 𝑥 for the encoder and
𝑦 for the decoder. TensorFlow and MXNet use a maximum batch size of 256 and a bucket width of 10.
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and 𝑏𝑚𝑎𝑥 = 256 for decoders. We have also evaluated different bucketing choices for the baseline

systems and found that using the bucket width of 10 produces the best performance for baseline

systems.

Multi-GPU performance. In the presence of more than one type of cells, BatchMaker can

make more interesting scheduling choices when there are multiple GPU devices. Figure 2.13

shows the performance of various systems using 2 or 4 GPUs. Compared to baseline systems, the

peak throughput of BatchMaker is much higher at around 8.5K req/s for 2 GPUs and 17K req/s for

4 GPUs. The latency of BatchMaker is also much lower; it is mostly flat at the beginning and goes

up slowly until the throughput reaches the peak. By comparison, the latency of other systems

goes up quickly as the load increases. We do not repeat the detailed performance breakdown

analysis here as in section 2.7.3. One interesting feature of BatchMaker worth pointing out is

that a request can leave the encoding phase sooner and also commence the execution of decoding

earlier than baseline systems, thereby magnifying BatchMaker’s performance improvement.

Configuring different 𝑏𝑚𝑎𝑥 for encoding and decoding cells results in a small throughput im-

provement for BatchMaker (3.5-6%). Although using 𝑏𝑚𝑎𝑥 = 512 improves the throughput of

LSTM encoding cell execution by 20% (Figure 2.3), the overall throughput improvement is much

less because the encoding phase constitutes only 25% of the overall computation.

2.7.5 Application Performance: TreeLSTM

As padding does not support batching for non-sequential inputs, we compare against TensorFlow

Fold and DyNet for the TreeLSTM experiments.

We use the popular Stanford TreeBank dataset [91]. Although all systems under evaluation

can support arbitrary tree structure, the TreeBank dataset [91] contains only binary tree samples.
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Figure 2.14: TreeLSTM performance on the TreeBank dataset with a maximum batch size 64.

Baseline system configuration and optimization. Weperformmicrobenchmarks using var-

ious input batch sizes and find that batching at most 64 input trees achieves the best performance

for TensorFlow Fold and DyNet. We note that the batch size configured for DyNet and Ten-

sorFlow Fold bounds the maximum number of input trees rather than the number of operators

merged into a single batched operator. For instance, even if a batch only contains one request

which is a complete binary tree with 16 leaf nodes, TensorFlow Fold can concatenate all 16 leaf

nodes together and execute the leaf TreeLSTM cell at batch size 16. It can execute the level above

the leaf layer with batch size 8, and so on with the root level executed with batch size 1. As

this example shows, the amount of batching decreases at higher levels of the trees. To be fair to

baseline systems, BatchMaker is also configured to limit the number of batched cells in a task to

64.

TensorFlow Fold and DyNet perform batching by first generating the dataflow graph for each

request and then merging the dataflow graphs. For TensorFlow Fold, this step takes much longer

than performing the actual computation. We optimize TensorFlow Fold by overlapping its graph
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construction/merging with actual execution4. We did not implement similar optimization for

DyNet because of its code complexity. We note that DyNet’s graph construction/merging over-

head is much smaller than that of TensorFlow Fold,

TensorFlow Fold does not work with the latest TensorFlow version (v1.4) and is only com-

patible with v1.05. Hence, we evaluate TensorFlow Fold using TensorFlow v1.0 and CUDA 8.06.

To see the performance disadvantage of using older versions, we conduct microbenchmarks on

a single LSTM step using both versions and find that using the older versions (TensorFlow v1.0

and CUDA 8.0) has a slowdown of about 20%.

Performance on the TreeBank dataset. Figure 2.14 shows the latency vs. throughput for

TreeLSTMon the TreeBank dataset. Due to its slow graph construction andmerging, the through-

put and latency of TensorFlow Fold are much worse than DyNet. Under moderate load (at 1K re-

q/s), the 90-percentile latency of BatchMaker is 6.8ms, compared to 9.5ms for DyNet. BatchMaker

achieves much better peak throughput than DyNet (3.1K req/s vs. 2.1K req/s). The throughput

difference is due to DyNet’s overhead in performing runtime dataflow graph merging and insuf-

ficient amount of batching at the higher levels of the trees.

Performance on a synthetic dataset of identical input trees. How does the variance in

input tree structures contribute to BatchMaker’s performance improvement? To understand this,

we conduct experiments using a fake dataset whose input requests have an identical tree structure

(a complete binary tree of 16 leaf nodes). We implement an ideal baseline system by hardcoding in

TensorFlow a dataflow graph matching the fixed binary tree structure. Each node in this dataflow

graph can execute up to 64 corresponding operations, one for each input in a batch size of 64. We

evaluate the performance of all systems including the ideal baseline using the fixed tree dataset.
4The overlapping is not perfect due to Python’s poor multi-threading support.
5https://github.com/tensorflow/fold/issues/57
6TensorFlow v1.0 does not support CUDA 9
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Figure 2.15: TreeLSTM performance on a synthetic dataset where each sample has the identical binary
tree structure. The ideal line represents the ideal performance of executing these identical samples in a
maximum batch size of 64.

The results are shown in Figure 2.15. As the figure shows, the peak throughput of BatchMaker

is approximately 30% less than that of the ideal baseline. Note that the ideal baseline’s latency is

higher than that of BatchMaker and DyNet. This is because the ideal baseline executes a series of

31 TreeLSTM cells for a batch of inputs. By comparison, DyNet can batch cells within a request

together if they are at the same tree depth; BatchMaker can additionally batch cells from different

requests together if they arrive at different times.

2.8 Related Work

Batching via padding. Theano [9], Caffe [52], TensorFlow [1], MXNet [14], Torch [18], Py-

Torch [78] and CNTK [23] are widely used deep learning frameworks. Theano, TensorFlow,

MXNet, and CNTK require users to build a static dataflow graph before training or inference.

PyTorch is more imperative and allows the computation graph to be built dynamically as execu-

tion happens [96]. Gluon [19] is a recent package for MXNet supporting dynamic computation
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graphs. When handling variable-sized inputs, all of these systems support batching via padding.

CNTK [32] additionally, introduce an optimization on padding that tries to fill up padded space

with shorter requests. Doing so can improve system throughput by reducing the amount of

wasted computation due to padding. As we mentioned earlier, padding does not work for non-

chain-structured RNNs such as the TreeLSTM. Therefore, these systems do not natively support

batching for the TreeLSTM.

Batching by merging dataflow graphs dynamically. As non-chain-structured RNNs such

as TreeLSTM become popular, TensorFlow Fold [58] and DyNet [67] are developed to support

batching for TreeLSTMs. Both systems use a similar approach to batch TreeLSTMs (called Dy-

namic Batching and on-the-fly batching [68] respectively). They first generate a dataflow graph

for each data sample and then attempt to merge all dataflow graphs into one graph by combin-

ing nodes corresponding to the same operation while maintaining the data dependency. Graph

batching allows both systems to support the batched execution of variable computation graphs

without padding, including TreeLSTM. The difference between them is that TensorFlow Fold,

like our system, batches at the granularity of a cell whereas DyNet batches at the granularity of

a single dataflow operator. Both TensorFlow Fold and DyNet try to batch a fixed set of dataflow

graphs at a given time. By contrast, BatchMaker batches at the cell level and allows a request to

dynamically join and leave the ongoing requests.

Systems specialized for inference. Several frameworks address the challenges during infer-

ence. LASER [2] and Velox [26] are systems that focus on optimizing the training and serving

pipeline for traditional machine learning models such as logistic regression and matrix factor-

ization. LASER and Velox address issues such as how to re-train models quickly upon observing

additional data during deployment, how to balance exploration vs. exploitation to gain useful

feedback while maintaining a good user experience. These issues are orthogonal to the prob-
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lem addressed by our system, namely, how to reduce the latency of batched execution for RNN

inference. Clipper [28] is a general-purpose serving system that supports a variety of machine

learning system backends, such as TensorFlow, Spark MLlib [61], and Caffe [52]. It uses existing

batching techniques to achieve good throughput and additionally perform dynamic batch size

adjustment to match requests’ latency objective.

TensorFlow-Serving [74], a system developed for serving TensorFlow models, introduces

“Batch” and “Unbatch” operators to TensorFlow’s dataflow graphs. It is claimed that these op-

erators “bear similarities to the batching approach of DyNet” [74]. The current implementation

for these operators is not yet ready for deployment and thus we have not compared BatchMaker

with TensorFlow-Serving.

Optimization for deep learning computation. TensorRT [24] is a deep learning inference

optimizer and runtime for deep learning applications. For a given neural network, its optimizer

and runtime will generate a fused kernel to reduce the kernel launch overhead and memory

footprint. TensorFlow XLA [21] is a domain-specific compiler that optimizes TensorFlow com-

putation. It also applies optimization like kernel fusion to reduce the kernel launch overhead.

These optimizations are orthogonal to our work and can be applied to optimize the execution

of each cell in our system. Persistent RNN [36] exploits the weight-sharing feature of RNN to

accelerate the computation. In particular, persistent RNN store weights in the on-chip memory

of the GPU (e.g. register files) and reuse them across many timesteps. Doing so avoids loading

weights from the global memory (which is much more expensive than on-chip memory) at each

time step. Weight persistence reduces but does not eliminate the need for batching. Thus, it is

complementary to the cellular batching; both can be used together for additional performance

improvements.

47



Batching and pipelined execution in other systems. In database systems, one query may

contain many operators like scan, join, sort, aggregate, etc. Instead of executing independent

queries separately, there are many systems[12, 40, 45, 59, 81, 100] that batch the execution of

certain operators from different queries. Since the results of these operators can be reused for

different queries, the database throughput can be improved. However, multi-query batching in

database systems does not always improve performance, e.g. when the load is light and there is

little or no overlap in the data processed by different queries. By contrast, the recursive nature of

RNNs results in completed overlapped computation across different inputs, and we leverage this

feature to guarantee improved latency and throughput in all scenarios. Additionally, a key feature

of the cellular batching is to enable a new request to join the execution of existing requests, which

is not done in multi-query batching in the database.

Compared with traditional pipelining (in the context of hardware pipelining and software

pipelining, e.g. SEDA[105]), our system is different in two aspects: 1) Traditional pipelining in-

volves multiple processing elements each of which is sequential and operates independently of

each other. By contrast, each GPU device represents a single processing element that is mas-

sively parallel and thus is best utilized using a kernel that performs batched execution. Cellular

batching improves latency by allowing new requests to dynamically join existing requests in a

series of batched kernel executions. 2) Different processing elements in a hardware pipeline have

different functionalities. In our setting, different GPU devices have the same functionalities and

can be used interchangeably. Therefore, instead of dictating a fixed pipelined path of execution

across different GPU devices, it is better for performance and load balancing to use a general task

scheduler to assign kernels to different GPUs, as is done in BatchMaker.
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2.9 Applicability

BatchMaker’s techniques can be generalized beyond Recurrent Neural Networks. In fact, the idea

of making fine-grained batching decisions at each iteration step and batching requests at different

steps naturally applies to any model that involves an iterative process as long as model weights

are fixed and shared across different steps.

Notably, follow-up works like [111] have applied BatchMaker’s solution to Generative Pre-

trained Transformer (GPT) models which iteratively output the next token in the auto-regressive

generation phase. The most important difference between RNNs and Transformer-based models

is that an RNNmodel only uses the output from the preceding step whereas the attention module

in Transformer models takes in hidden representations of all previous steps. Such an extension

can be achieved by properly managing states of the full context during incremental decoding as

in [103] and utilizing an attention implementation that supports processing a batch of requests

with different context sizes (e.g. FlashAttention [30], MemoryEfficient Attention [82]).

Nowadays, this fine-grained batching technique is commonly known as in-flight batching

or continuous batching, and is widely adopted in most Large Language Models (LLMs) serving

systems like TensorRT-LLM [73], DeepSpeed-FastGen [47], etc.

2.10 Summary

To sum up, we present a novel approach, called cellular batching, to achieve low-latency infer-

ence for language models. Cellular batching batches the execution of inference requests at the

granularity of a cell, which can be an RNN cell or a Transformer layer. Doing so allows a new

request to join the execution of a batch of existing requests and to be returned as soon as its com-

putation finishes without waiting for others in the batch to complete. We have built a serving

system called BatchMaker using cellular batching.
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Experiments with three popular RNN applications using real-world datasets show that Batch-

Maker reduces latency by 17.5-90.5% and improves throughput by 25-80% compared with state-

of-the-art systems including TensorFlow, MXNet, TensorFlow Fold, and DyNet.
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3 | Pensieve

3.1 Overview

It is well known that Large LanguageModels (LLMs) require very expensive computation because

LLMs have huge parameter sizes (10s or 100s of billions) with a trend of growing even larger, and

because LLMs need to support a large context size (2K to 32K tokens) to be useful. There has been

related work which improves the performance of LLM serving from various angles, including

better batching [111], operation fusion [30], better GPU memory utilization [54], faster output

generation [13, 55], low rank adaptation [48] and quantization [33] (see §3.7).

In contrast to these works, we take a step back and examine inefficiencies that arise in the

context of a specific but very popular LLM use case today, aka as a multi-turn conversational

chatbot. Naturally, a chatbot should be able to memorize the conversation and generate coherent

responses. However, such burden is placed on the user (or a client application), which needs to

keep track of the conversation history, concatenate it with a new user prompt, and send it to

the chatbot as the new request. This straightforward stateless approach has severe performance

issues: the chatbot has to reprocess the entire history over and over again, whose lengths grow

as the conversation goes on.

In this chapter, we present Pensieve, a serving system designed for the the scenario of multi-

turn conversation by providing efficient context management for Large Language Models.
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Figure 3.1: Inference of Transformer-based Large Language Models

3.2 Background

In this section, we provide a brief background on LLM, its core attention operation, and how

existing systems serve LLMs.

3.2.1 LLM and the Attention Mechanism

Popular large language models, e.g. GPT-3 [10], OPT [113], Llama [97, 98], are all based on the

Transformer architecture [101]. A model consists of many transformer layers, each of which is

composed of an attention module, seen as the dashed box Figure 3.1, and a 2-layer feed-forward

network. The model takes as input a sequence of token IDs representing the natural language

sentence and feeds them through an embedding layer to obtain a continuous representation (aka

embedding) for each token before feeding them through transformer layers. For simplicity, we

refer to token embeddings as “tokens”, and refer to token IDs as “raw tokens”. LLM is autoregres-

sive in the sense that it iteratively predicts the next output token based on the current context

which includes the input prompt tokens followed by output tokens generated in the previous

iterations.

The success of the Transformer originates from the capability of its attentionmodule. For each
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layer, the attention module first performs linear transformations on its input token embedding

(𝑋 ) to produce three new embeddings Query (𝑄), Key (𝐾 ), and Value (𝑉 ):

𝑄 = 𝑋𝑊𝑞𝑢𝑒𝑟𝑦

𝐾 = 𝑋𝑊𝑘𝑒𝑦 (3.1)

𝑉 = 𝑋𝑊𝑣𝑎𝑙𝑢𝑒

where𝑊𝑞𝑢𝑒𝑟𝑦 , 𝑊𝑘𝑒𝑦 and𝑊𝑣𝑎𝑙𝑢𝑒 are trainable weights. We refer to the 𝐾 and 𝑉 embeddings as

KV-tokens. The module then computes all-to-all attention scores using the dot product between

each pair of tokens’ query and key:

𝐴 =
𝑄𝐾𝑇

𝑠𝑐𝑎𝑙𝑒
(3.2)

where scale is a normalization factor. This attention score is then normalized using softmax and

used for weighted aggregation of the token embeddings in 𝑉 :

𝑂 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝐴)𝑉 (3.3)

The above equations show the process of so-called single-head attention. In practice, multi-head

attention is used, where𝑄 , 𝐾 ,𝑉 produced by Equation (3.1) are divided into groups, called atten-

tion heads. Each attention head independently performs attention as Equation (3.2) and (3.3).

3.2.2 How LLM is Served

The prefill vs. generation phase To perform inference using an LLM, one needs to keep

a KV cache in GPU to avoid recomputation during the autoregressive output generation. Fig-

ure 3.1 shows the typical LLM inference process adopted by systems like FasterTransformer [72],

ORCA [111], vLLM [54]. It is divided into two phases: 1) The prefill phase processes all the in-
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put prompt tokens together to generate the 𝐾 and𝑉 token embeddings (aka KV-tokens) for each

Transformer layer and initialize the KV cache with the resulting KV-tokens. The embedding of

the last token of the prompt from the last layer’s 𝑂 tensor is used to generate the first output

token; 2) The iterative generation phase takes in the token generated by the last step as a single

new input token. For each layer, it computes the𝑄 ,𝐾 ,𝑉 embedding for the new token, updates the

KV cache, and performs attention using the new token’s 𝑄 embedding with the entire context’s

KV-tokens.

Iteration-level batching For LLMs that have variable-sized input and output, batching gran-

ularity has a huge impact on system throughput and serving latency. If scheduling is performed

at the request granularity, executing a batch of requests with different input prompt lengths

requires padding tensors to the maximum length and waiting for the request with the longest

output to finish. Iteration-level batching strategy, originally proposed by BatchMaker [38] for

non-transformer-based sequence-to-sequence models, performs batching at token granularity.

Whenever a request finishes an iterative generation step, the scheduler checks whether it has

reached the end of a sequence and can leave the batch, making room for a request to start its

computation immediately. As we advance into the Transformer era, ORCA [111] extends this

approach to support the LLM workload.

Memory management. For each request, the model performs iterative generation until either

the special end-of-sentence token (EOS) is emitted or the preconfigured maximum decoding

length is reached. Systems like FasterTransformer [72] and ORCA [111] reserve slots in KV cache

for each request based on the maximum decoding size. A more recent system, vLLM [54], can

dynamically grow the allocated cache slots for each request and allow these slots to reside in

non-contiguous GPU memory. vLLM develops PagedAttention to handle the generation phase

with non-contiguous KV cache. Existing serving systems are stateless across requests. In other
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Request 1 User: Hello!
LLM: Hi!

Request 2 User: What’s the weather?
LLM: It’s sunny.

A multi-turn conversation Input tokens to LLM

Hello!

Hello! Hi! What’s the weather?

Conversation history New request

Response 1

Response 2

Figure 3.2: Existing serving systems send a cumulative history with each request in a multi-turn conver-
sation.

words, they de-allocate all the cache slots used by a request as soon as it finishes.

3.3 Motivation and Challenges

3.3.1 Motivation

Existing techniques for serving Large Language Models mostly focus on improving the inference

time or memory efficiency of a single request. We take a step back and examine inefficiencies

that arise in the context of a specific but very popular LLM use case today, aka as a multi-turn

conversational chatbot.

In a multi-turn conversation, the user has multiple rounds of conversations with the chatbot

and LLM needs to be aware of the conversation history to generate an appropriate response.

This is done by prefixing each new request with the entire cumulative conversation history, due

to the stateless nature of existing serving systems, as shown in Figure 3.2. As the interaction

between the user and chatbot goes on, conversation history grows, making the cost of the prefill

phase soon overshadow that of the iterative generation phase. Unfortunately, much of the history

processing is redundant.

The goal of this project is to minimize redundant computation of the conversation history.

This can be done by caching any previously processed embeddings at the serving system and

re-using them across requests from the same conversation. More concretely, one can save the
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KV-tokens in the KV cache belonging to a previous request and only process the new prompts

for the next follow-up request.

Figure 3.3 demonstrates the heavy cost of prompt initiation phase under an artificial workload

where each request generates 200 tokens and has varying conversation history sizes. As shown

in the figure, the cost of recomputing the conversation history (solid blue line) causes the cost of

the prefill phase to soon outgrow the generation phase.

3.3.2 Challenges

Limited GPU memory for caching. LLM has very large model parameters, which results in

large KV-tokens. For example, a 13 billion parameter GPT-3 model has 40 layers and a hidden

size of 5120. Assuming the use of 16-bit half-precision numbers, storing each KV-token takes 2

* 40 (layer) * 5120 (units/layer) * 2 (bytes/unit) = 0.78MB memory space. Under the current GPU

memory limit, depending on the history lengths, only a few dozen or hundreds of conversation

histories can be kept in the GPU. We must extend our cache space to use the more abundant CPU

memory.
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Figure 3.5: Layout of a request’s KV-token context. Shaded areas indicate that the actual computation
in the prefill phase happens at both ends if KV-tokens were dropped by the CPU cache.

Cache management and recovery When using a multi-tier GPU-CPU cache, the serving sys-

temmust be able to evict and restore cached data. The system has to make best-effort decisions to

swap cached KV-tokens from GPU to CPU to make room for requests from other conversations.

Later, it needs to recover the swapped out KV-tokens as fast as possible.

When the system is under CPUmemory pressure, some cached KV-tokens need to be dropped.

Although each token in the context occupies the same amount of memory space, the recomputa-

tion cost of each token is different because reconstruction of the embeddings of a dropped token

requires performing attention over all preceding tokens in the context. Therefore, the later a

token is, the larger the context it needs to attend to. Figure 3.4 shows the execution time of per-

forming the attention operator versus the context size normalized by the execution time of all

other non-attention operators in a Transformer layer. As shown in the figure, the cost of atten-
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tion grows linearly with context size. Hence whenever we need to drop tokens to reclaim CPU

memory, it is preferable to drop leading tokens of conversations.

However, dropping past KV-tokens from the leading end brings additional complexity. Fig-

ure 3.5 illustrates the layout of a request from a resuming conversation in its prefill phase. New

prompt tokens are appended to the end of the context and dropped tokens are at the beginning

while tokens in between can be directly reused. Such separation of token computation at both

ends of the context breaks the assumption of all existing high-performance attention kernels that

the input tokens correspond to consecutive context regions.

In short, we need a low-overhead solution to manage memory space and swapping and deal

with the case that some parts of the conversation history embeddings are no longer available in

the system.

Handling non-contiguous KV cache. In the multi-turn conversation setup, whenever a new

request comes in an existing conversation, the request’s new prompt, which in all likelihood has

more than one input token, needs to be processed along cached KV-tokens as part of the prefill

phase. For any cached KV-token that has been previously evicted to the CPU, there is no guar-

antee they are restored to the GPU in a contiguous memory region next to existing KV-tokens
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cached in the GPU. Figure 3.6 illustrates the computation pattern of attention. The batch contains

request 0 which is currently performing generation using the last generated token, and request 1

which just arrives with a 7-token new prompt. To perform attention operation, request 0 needs to

iterate over tokens in KV cache blocks 3 and 1, and request 1 needs to iterate over tokens in cache

blocks 0, 4, 5, 2, and 7. Existing high-performance attention kernels, e.g. MemoryEfficientAtten-

tion [82], FlashAttention [30], require inputs to reside in contiguous memory space and therefore

cannot work with non-contiguous paged memory management. Although vLLM has developed

the PagedAttention GPU kernel, it is designed to be solely used in the generation phase and thus

has the limitation that each request in the batch can have at most one input token. Hence, the

PagedAttention kernel cannot support prompt initiation for request 1 in Figure 3.6. And due

to the design of single-token PagedAttention, no trivial way is available to extend it to support

multi-token attention. An alternative approach might be to process the new prompt query in the

same iterative manner as incremental decoding, one token at a time so that the PagedAttention

kernel can be applied. But this approach gives up the parallelization opportunity available in the

prefill phase due to the extra query dimension and will lead to significantly longer computation

time for long input prompts.

3.4 System Design

In this section, we describe the system design of Pensieve. At a high level, we aim to save a

conversation’s KV-tokens across multiple turns, if there is enough cache space to do so. To re-

alize the potential performance benefits, we need to make cache swapping and missing token

recomputation fast and efficient, by developing a few techniques to address the challenges in

§3.3.
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Figure 3.7: Overview of Pensieve

3.4.1 System Overview

Figure 3.7 shows the overall system architecture. Pensieve consists of a single scheduler and a

worker engine to manage the GPU. The scheduler has two jobs: 1) it is responsible for batching

requests for execution, and 2) it ensures that requests in the batch have sufficient GPU memory

for execution. For 1), the scheduler performs fine-grained iteration-level batching [38, 54, 111]

so that a new request can join the batch with existing requests while the latter is in the process

of performing autoregressive generation. For 2), the scheduler manages the allocation of slots in

the KV cache and when to swap between the GPU and CPU KV cache.

The worker also has two jobs: 1) it invokes kernels to execute the LLM computation for a

batch of requests. 2) it performs the actual data movements between the GPU and CPU KV cache

based on a batch’s cache plan received from the scheduler.
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3.4.2 A unified batch scheduler

Pensieve performs fine-grained iteration-level batching [38, 54, 111]. However, our batching strat-

egy differs from existing LLM serving systems. ORCA only batches non-attention operations and

handles attention operations for each request individually [111]. By contrast, Pensieve batches

both non-attention and attention operations, like vLLM [54]. However, unlike vLLM which only

forms a batch among requests in the same phase and thus processes each of the two types of

batches in a separate model execution, Pensieve handles both the prefill phase and generation

phase in a unified way. In other words, the Pensieve scheduler forms a batch of requests regard-

less of which phase they are in. In the same batch, some could be in their generation phase while

others are in their prefill phase. Such unified batching is made possible by Pensieve’s multi-token

attention kernel design (§3.4.4.1).

Pensieve’s iteration-level scheduler is “clocked” for action by the completion of a generation

step. In particular, after each iteration of token generation, the worker returns any finished re-

quest that has either emitted the end-of-sentence token or reached maximum decoding length.

The scheduler finds the next request in its wait queue to join the batch, if there is room (i.e. the

number of total tokens in the batch is fewer than some pre-configured threshold). We use the

simple first-come-first-serve scheduling policy when choosing which new requests to join the

batch.

For unified batch formation, the scheduler concatenates the tokens to be processed from all

requests. Each new request that has just joined the batch has a sequence of tokens corresponding

to its prompt. Each existing request in the batch has a single token corresponding to the last

generation step’s output token. By combining the prefill phase together with the generation

phase, we avoid running separate small kernels and can thus improve GPU utilization.
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3.4.3 KV cache management

Traditionally, the KV cache in GPU only serves as a computationworkspace. In Pensieve, the GPU

KV cache also serves as storage space to cache the KV-tokens of recently completed requests of

active conversations. Pensieve adopts a two-tier hierarchical caching strategy and uses the much

larger CPU memory as the second-tier cache space. The scheduler determines the caching plan

and instructs the worker to perform the actual data movements between GPU and CPU.

The scheduler tracks the amount of free GPU KV cache slots left. Before handing off a batch

of requests to the worker, the scheduler tries to ensure that any new request’s past KV-tokens will

reside in the GPU and there is sufficient GPU memory for the execution. Specifically, suppose

a request in the batch has any KV-tokens that have been swapped out to the CPU memory or

dropped, the scheduler determines how many additional GPU KV cache slots are needed to swap

in or re-calculate those absent KV-tokens. If there is sufficient space, the scheduler instructs the

worker to perform the necessary allocation and to start swapping those KV-tokens from the CPU

as part of the batch’s cache plan.

3.4.3.1 Eviction Policy

With the observation from Figure 3.4 that leading tokens of a conversation are cheaper to re-

compute than trailing ones, we design a fine-grained eviction policy that performs eviction from

the leading end of a conservation context. However, recomputation cost alone is not sufficient to

make the cache system perform well. We have no prior knowledge about whether a conversation

will continue after its current request is served, and if it does, when its next request prompt will

arrive. If the tokens saved are never used or only to be used in the remote future, keeping them

reduces the valuable space we could use to store other tokens. Therefore, we need to make our

best bet to assess the overall merit of saving a token in the system. To do so, we define a function

to determine the value of tokens based on their recomputation cost, the time passed since the
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conversation it belongs to was last active, and the probability of receiving another request from

the same conversation after seeing a certain number of turns. We evict those with the lowest

value to the CPU and drop them when necessary.

Eviction granularity. To reduce the overhead caused by frequent eviction decision-making

and moving a small amount of memory over the PCIe bus, we group KV-tokens into chunks

and make eviction decisions at the granularity of chunks. This chunk size is configurable in our

system, but in practice, we find that a chunk size of 32 tokens works well.

Value function of a chunk. We define the following value function to capture the above-

mentioned factors and determine the value of a chunk.

𝑉𝑎𝑙𝑢𝑒 =
𝐶𝑜𝑠𝑡 (𝑠, 𝑙)

𝑇
(3.4)

𝐶𝑜𝑠𝑡 (𝑠, 𝑙) represents the cost of recomputing a chunk of size 𝑠 with a context of size 𝑙 . The

denominator 𝑇 is the amount of time that has past since the conversation was last active, which

resembles the classic Least Recently Used (LRU) eviction policy emphasizing temporal locality.

We assume that our users who are actively interacting with the chatbot tend to send in their next

requests within a short amount of time, and therefore longer time past is an indicator that the

conversation is less likely to resume in a close future, which reduces the merit of keeping the

chunk. Pensieve uses Equation (3.4) to determine the value all chunks and prioritize saving those

with expensive costs to recover and those from recently active conversations.

Estimating recomputation cost. We view the cost to reconstruct the embedding of a chunk

as the sum of recomputing the LLM model’s attention component and non-attention ones.

𝐶𝑜𝑠𝑡 (𝑠, 𝑙) = 𝐶𝑜𝑠𝑡𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 (𝑠, 𝑙) +𝐶𝑜𝑠𝑡𝑜𝑡ℎ𝑒𝑟 (𝑠) (3.5)
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The non-attention part consists of linear layers, layer normalizations, non-linear activations, etc.,

and therefore is independent of the context size. On the contrary, attention requires accessing

and performing computations with all 𝑙 context tokens. We profile these two parts offline with

chunk size 𝑠 = 32. However, since it’s not feasible to profile all possible context sizes, we only

measure context sizes that are powers of 2 and use the measured values to interpolate the cost for

other context sizes. And because we make fine-grained eviction decisions on fixed-size chunks

of 32 tokens, we can simplify the cost function by treating the cost of non-attention parts as a

constant 𝑐 .

𝐶𝑜𝑠𝑡 (𝑙) = 𝐶𝑜𝑠𝑡𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 (𝑙) + 𝑐 (3.6)

3.4.3.2 Ahead-of-the-time swapping

Since Pensieve tries to preserve KV-tokens in the GPU for reuse across multi-turn conversations,

the scheduler does not immediately release a request’s GPU cache slots as soon as it finishes,

unlike existing systems [54]. Instead of waiting until the GPU cache has run out, the scheduler

asks the worker to copy (aka swap out) selected KV-tokens to the CPU if less than a threshold

(e.g. 25%) of the GPU cache slots are available. The corresponding GPU memory is reclaimed

lazily and is not immediately released until the scheduler later decides to allocate the same slots

to another conversation.

When the CPU cache does not have enough space to store the swapped out KV-tokens, the

same eviction policy (Equation 3.4) is triggered to decide which KV-tokens to drop. Performing

ahead-of-the-time swapping allows the scheduler to overlap the eviction decision-making and

the actual memory transfer with GPU computation, thus fully hiding the latency of swapping.

3.4.3.3 Pipelined KV cache recovery.

The scheduler does not wait for a request’s KV-tokens to be fully swapped in from the CPU

before handing it off to the worker for execution. Rather, we follow the pipelined approach [8]
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Figure 3.8: Perform attention module for a request whose leading tokens were dropped and needs to
prefill both dropped tokens and new prompt tokens. Dropped tokens are prepended to new prompt tokens
as they are fed through the model layers, and are viewed as two sub-requests that share the underlying
context when performing attention.

to overlap computation with data transfer. Specifically, we exploit the fact that an LLM model

has many layers and each layer’s KV-token is only used in this layer’s self-attention calculation.

Instead of waiting for all layers to finish data transfer before starting the execution, we initiate

the transfer layer by layer and start model computation at the same time. The worker uses GPU

events to preserve data dependency: it only starts a layer’s self-attention kernel once that layer’s

KV-tokens have been fully copied to the GPU. Pipelining transfer with computation allows us to

hide the swap-in latency.

3.4.3.4 Handling dropped tokens.

If a request has some of its KV-tokens dropped due to CPUmemory pressure, we resort to recom-

putation to handle such dropped tokens. Figure 3.5 illustrates the most general scenario for the

whereabouts of a new request’s KV-tokens. As we always evict cached tokens from the leading

end of a conversation, the GPU cache generally holds the request’s last tokens and the CPU cache

holds the middle, while the rest may have been dropped.

The scheduler swaps in those tokens cached in the CPU. For dropped tokens, the scheduler

will fetch their corresponding raw text tokens from the conversation history saved in a persistent
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store (Figure 3.7). These retrieved raw tokens will be merged into (i.e. prepended to) the new

request’s prompt and become part of the batch’s input tokens, as shown in Figure 3.8 (step a).

In the prefill phase, the embedding of dropped tokens and new prompt tokens are concatenated

together as they are fed through the model layers. At each Transformer layer, Query, Key, and

Value are generated (step b). Key and Value are stored in KV cache, and Pensieve maintains

the KV locations for the entire conversation context including previously cached tokens (step c),

which can then be used to perform attention.

However, as discussed in §3.3.2, a side effect of dropping leading tokens is that tokens in query

tensor correspond to two disconnected ranges in the context, while all existing attention kernels

assume that the Query tensor region is consecutive. To address this, we view these two ranges as

two sub-requests that share the underlying context. Each row in Figure 3.8 step d represents the

new Query tensor and KV context locations of a sub-request of the original request. Thanks to

our multi-token attention kernel design (§3.4.4) which supports variable lengths in Query tensor

for different requests in the batch and accepts KV-token locations as input, Pensieve only needs

to update auxiliary data structures and no memory copy is incurred.

3.4.3.5 Suspending reqests during generation

Despite ahead-of-time eviction, the scheduler might still encounter scenarios when the genera-

tion phase runs out of GPU cache since requests’ decoding lengths are not known a priori. In

this situation, the scheduler suspends some requests’ execution by taking them out of the current

batch, swaps out their corresponding KV-tokens to the CPU, and puts them back in the waiting

queue. It chooses which request to suspend according to the descending order of their arrival

time. As suspension causes increased latency (due to waiting for the swap-out), we try to avoid

it by conservatively reserving 10% of GPU cache slots for the execution of existing requests that

are in the generation phase. In other words, the scheduler stops adding new requests into the

running batch unless there are more than 10% free GPU cache slots.
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3.4.4 Multi-token attention for non-contiguous cache

How to combine existing KV-tokens in the GPU cache with those just swapped in from the CPU?

The most naive solution is to allocate a contiguous memory region in the GPU to hold them

both. However, doing so would incur expensive memory copying, since KV-tokens are large. A

more promising solution is to allocate separate space only for those swapped-in KV-tokens and

to design an attention kernel implementation that can handle non-contiguous memory in its KV

cache.

vLLM’s PagedAttention kernel [54] can handle non-contiguous KV cache in the generation

phase. However, for the prefill phase, it still uses existing kernels which require all KV-tokens to

reside in contiguous memory. We cannot use PagedAttention because it assumes each request in

a batch has exactly one input token, which is the case for generation but not prefill. Thus, we re-

fer to PagedAttention as a single-token attention kernel because it computes the attention scores
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between a single input token’s query representation (Q) and the KV cache. We need to build a

multi-token attention kernel that supports performing attention between the query representa-

tions (Q) of multiple input tokens per request and the KV cache over non-contiguous memory.

Our new kernel is similar to that of vLLM to the extent that both kernels need to support load-

ing KV cache from non-contiguous GPU global memory into on-chip shared memory. Their main

difference is illustrated in Figure 3.9. As vLLM’s kernel performs attention between a request’s

single input token and the existing KV-tokens, its underlying computation can be described as

twomatrix-vector multiplication operations, as shown in Figure 3.9 1. In contrast, our kernel han-

dles multiple input tokens for each request, computing attention scores between all pairs of input

tokens and the conversation’s existing KV-tokens. Therefore, its underlying computation can be

described as two matrix-matrix multiplication operations, and the batched version of our kernel

performs batched matrix-matrix multiplications. Like vLLM, we fuse the two multiplication op-

erations according to [30]. Because of the additional dimension in the Q tensor, our kernel has

more parallelization and tiling opportunities on the GPU. However, care must be taken to handle

the new challenge that different requests in the batch have different numbers of input tokens.

When multiple input tokens of a request are handled together in a kernel, we need to apply

causal masking so that a later input token does not “attend” to the earlier tokens. This requires

setting a corresponding upper triangular part of the attention score matrix to 0, as shown by

the red shaded area in Figure 3.9. Causal masking is not needed for the single-token attention

kernel since it only processes one input token. We fuse the causal masking operation inside the

multi-token attention kernel to avoid materializing the intermediate attention score matrix [30].

Matrix-matrix multiplication kernels are much more complex than those for matrix-vector

multiplication because they typically use sophisticated algorithms to extract additional data reuse

opportunities with GPU’s on-chip shared memory and to leverage GPU’s tensor core primitives.

Therefore, instead of trying to extend vLLM’s PagedAttention kernel for multi-token attention,
1The batched version of PagedAttention performs batched matrix-vector multiplications.
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we base our implementation on an existingmulti-token attention kernel from PyTorch and extend

it to handle non-contiguous KV cache. Our kernel uses the high-performance thread-block level

matrix-matrix multiplication provided by NVIDIA Cutlass template library [70].

3.4.4.1 Unifying the prefill and generation phase

As discussed in §3.4.2, in Pensieve’s batch formation, new requests in their prefill phase can

be grouped with existing requests in their generation phase. This is enabled by our multi-token

attention kernel because single-query attention performed in the generation phase can be treated

as a special case of multi-token attention with query size equal to 1.

More concretely, Pensieve’s scheduler concatenates the input tokens to be processed from all

requests, regardless of whether they correspond to prompts of new requests or the last step’s

output token from existing requests. Some auxiliary data structure is maintained to keep track of

each request’s corresponding region. During execution by the worker, these batched input tokens

are fed through linear layers to generate each token’s QKV representations. Newly generated

KV-tokens are stored in the allocated slots in the GPU’s KV cache. Then the worker applies our

multi-token attention kernel to produce the output tokens for all requests.

3.5 Implementation

We have implemented our prototype serving system Pensieve with ∼7K lines of C++/CUDA code.

Pensieve manages KV cache and auxiliary data structure needed by multi-token attention on the

GPU, but relies on PyTorch C++ front-end APIs to execute GPU operators in Large Language

Models. Based on PyTorch’s fused memory efficient attention, we develop our own fused multi-

token attention kernel using NVIDIA Cutlass library to support performing attention with KV-

tokens that reside in non-contiguous memory.
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3.5.1 Optimization: Prioritize data retrieving over eviction

Although PCIe sends data full-duplex bidirectionally, in practice, we found that when CPU-to-

GPU transfer is overlapped with GPU-to-CPU transfer, there is a significant throughput drop (18-

20%) in both directions. Similar issues have been reported2. Since Pensieve performs KV-token

backup ahead of time, there is no urgency to finish the transfer right away. To prevent evicting

from slowing down swapping in past KV-token, we set up a blocking mechanism. Whenever

a worker plans to issue a GPU-to-CPU copy, it first checks if there is any swap-in task in the

system, and waits until the swap-in task is done. Although this conservative approach does not

fully utilize duplexed PCIe bandwidth, due to the existence of generation phase, we find that this

optimization performs well and we never run into the situation that the backup can’t catch up.

3.6 Evaluation

In this section, we present the evaluation results of Pensieve.

3.6.1 Experimental Setup

System Environment We evaluate Pensieve on Microsoft Azure NC A100 v4 series, which are

equipped with up to 4 A100-80GB GPUS. For each A100 GPU, 24 non-multithreaded AMD EPYC

Milan processor cores and 220 GB system memory are supplied. Pensieve and all baselines use

CUDA version 11.8 and PyTorch 2.0. We configure each system to allocate 40GB GPU memory

to KV cache for a fair comparison.

Models We use the OPT [113] and Llama 2 [98] as our benchmark models. OPT has an almost

identical model architecture to the famous GPT-3 [10] model while providing an open-source
2https://forums.developer.nvidia.com/t/data-transfers-are-slower-when-overlapped-than-

when-running-sequentially/187542
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Model OPT-13B OPT-66B Llama 2-13B Llama 2-70B
# layer 40 64 40 80
# hidden 5120 9216 5120 8192
# head 40 72 40 64

# KV head 40 72 10∗ 8
Head size 128 128 128 128
# GPU used 1 4 1 4

Table 3.1: Model parameters for OPT and Llama 2 evaluated in this work. ∗For Llama 2-13B, we set the
number of KV heads to 10 (originally 40) to show the effect of Grouped-query Attention (GQA).

ShareGPT
# conversations 48159
Mean # turns 5.56

Mean request input length 37.77
Mean request output length 204.58

Table 3.2: Dataset staticstics

codebase and pre-trained model parameters. Llama 2 is a more recent model that shares a sim-

ilar design of GPT models but applies many advanced techniques like rotary embedding, RMS

Layernorm [112], SiLU, etc. Notably, Llama 2 follows the trend of adopting Grouped-query At-

tention [4] which divides query heads into groups, and within each group, only one KV head is

used. Such a design significantly reduces memory consumption of KV-tokens, allowing Pensieve

to store more past KV-tokens.

We evaluate two different scales for each model: a small one on a single GPU, and a large

one partitioned onto 4 GPUs using Tensor Parallelization as done in Megatron-LM [89]. Detailed

model hyper-parameters can be found in Table 3.1. By default, Llama 2 only uses Grouped-query

Attention for models with over 70 billion parameters. To demonstrate Pensieve’s effectiveness

when used with Grouped-query Attention, we modified Llama 2-13B and decreased the number

of KV heads from 40 to 10. In all experiments, the 16-bit half-precision float format is used for

bothmodel parameters and intermediate hidden representations. Model parameters are randomly

initialized.
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Dataset We evaluate Pensieve on ShareGPT [86], a public dataset containing user-shared Chat-

GPT conversations3. Statistics about datasets are listed in Table 3.2. Figure 3.10 shows the distri-

bution of the number of conversation turns. Figure 3.11 shows the CDF graph of conversation’s

total context size. In this evaluation, we limited the maximum context size to 16384 tokens and

dropped 0.57% of the conversations in ShareGPT dataset that exceed this limit.

We extract the input and output lengths of each conversation turn from these datasets to

construct requests. To ensure that the same computation amount is performed by each system, we

ignore any early stop criterion, e.g. end-of-sentence (EOS) token, and keep generating until the

ground-truth output length is reached. This ground-truth output length is only used to terminate

token generation and is not disclosed to the system for making scheduling decisions.

Workload Since the dataset does not provide timestamps for when each user prompt is re-

ceived, we sample the arrival time for each request from Poisson distribution under different

request rates. We maintain the causal dependency for requests belonging to the same conver-

sation: a new user prompt is only sent to the system after earlier ones from the conversation

have already received their response. In addition, in real-life chatting scenarios, it takes time for

users to reply. We sample such reaction time from an exponential distribution with an average

reaction time of 1 minute. Hence once a conversation finishes generating output tokens for its

current turn, no new request from this conversation will be emitted until at least the sampled

reaction time has passed. We study the impact of reaction time later in §3.6.5.

Baseline We evaluate our system against the state-of-the-art vLLM serving system [54] (ver-

sion v0.2.0), which uses a stateless serving API. For each request, a new user prompt is appended

to the history and then sent together as an input request. Since vLLM is an execution engine with-

out a perpetual serving loop that drives the engine to continue execution, we implement such a
3We used https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered, which per-

formed additional filtering like removing HTML tags and non-English conversation.

73

https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered


driver that adds newly arrived requests into vLLM job queue and invokes the engine execution

until all requests are fully processed.

We also implement a variant of Pensieve called Pensieve (GPU cache) that shares the same

eviction policy as Pensieve but that does not use CPU memory. Pensieve (GPU cache) saves

past KV-tokens in spare GPU memory spaces to reuse them in the future. Whenever an eviction

happens due to memory pressure, selected past KV-tokens are dropped from the GPU memory.

This variant is used to demonstrate the necessity of CPU memory in Pensieve.

Performance Metric Pensieve is designed to optimize both peak throughput and latency

of serving LLM in conversational scenarios. Following prior work [54, 111], we measure the

achieved serving throughput and 90-percentile normalized latency, which is calculated as the

end-to-end request serving latency divided by the number of output tokens.

3.6.2 End-to-end Pensieve Performance

Figure 3.12 shows the normalized latency vs throughput for OPT-13B and Llama 2-13B served

with a single A100-80GB GPU. Pensieve can achieve a 25% throughput gain on OPT-13B and

a 52% throughput gain on Llama 2-13B over vLLM and Pensieve (GPU cache) baselines. Our

improvement on Llama 2-13B is more significant because as mentioned in §3.6.1, this version of

Llama 2-13B uses Group-query Attention with group size 4 (i.e. every four query heads share

a single key-value head). As a result, the amount of memory required to store past KV-tokens

is reduced by 4x. This allows both Pensieve (GPU cache) and Pensieve to store more past KV-

tokens in the system, and therefore, have a larger chance to retrieve them in the future and avoid

recomputing KV-tokens from scratch.

When Pensieve is used without CPU cache, i.e. Pensieve (GPU cache), it still reduces up to

20% of the normalized latency compared to vLLM for OPT-13B and up to 40% for Llama 2-13B

before reaching the peak throughput. This is because vLLM always recomputes past KV-tokens
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Figure 3.12: Normalized latency vs throughput for OPT-13B and Llama 2-13B on 1 GPU
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for requests from a returning conversation, and thus, the number of tokens it needs to process

in prefill phase is on average larger, causing it to take longer time. But under relatively higher

request rates, GPU cache is quickly exhausted, and Pensieve (GPU cache) behaves similarly to

vLLM as it also resorts to recomputing past KV-tokens from scratch.

Figure 3.13 shows the performance of Pensieve on larger models, OPT-66B and Llama 2-70B,

when served with four A100-80GB GPUs. Larger models amplify Pensieve’s advantage over the

baselines because the computation amount grows faster than the memory usage of KV-tokens.

For example, from OPT-13B to OPT-66B, the model parameter size and computation amount

increase by more than 4x, while the hidden size only increases 1.8x from 5120 to 9216 (Table 3.1).

Since the number of GPUs and CPU memory are usually scaled linearly with the model size,

Pensieve can store more past KV-tokens in its KV cache.

Pensieve is able to achieve a 1.5x throughput gain on OPT-66B and a 1.6x throughput gain on

Llama 2-70B over vLLM and Pensieve (GPU cache) baselines. The improvement is more signifi-

cant on Llama 2-70B because it uses Group-query Attention with group size 8, which reduces the

memory requirement for past KV-tokens by 8x. This reduced memory consumption in KV-tokens

increases the number of KV-tokens that can be stored in GPU cache, which significantly benefits

the throughput of Pensieve (GPU cache).

3.6.3 Eviction Policy

In this section, we compare Pensieve’s caching policy (Equation 3.4) against the classic Least

Recently Used (LRU) policy, which only considers the amount of time since the chunk was last

accessed. We use OPT-13B as the workload for this evaluation. From Figure 3.14, both policies

exhibit similar performance until reaching a workload rate of 3 requests per second, and then

Pensieve’s policy starts to outperform LRU.

Based on execution traces, both policies started to experience CPU cache misses starting from
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Figure 3.13: Normalized latency vs throughput for OPT-66B and Llama 2-70B on 4 GPUs
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Figure 3.14: Pensieve performance for serving OPT-13B with different eviction policies.

a workload of 2 requests per second, but their CPU cache hit rates remain close. Even though

the cache hit rate decreases as the request rate increases, the GPU still has enough computation

capacity to recover missing tokens without significantly increasing latency. After the request rate

of 3.2 requests per second, both policies drop below 80% cache hit rate, but Pensieve’s policy has

up to 4.4 percentage points higher cache hit rate than LRU. On average, Pensieve’s policy reduces

the number of recomputed KV-tokens by up to 14.6%.

3.6.4 Conversation with More Turns

Pensieve is designed for multi-turn conversations. The more times past KV-tokens are reused,

the more effective Pensieve is. However, as shown in Figure 3.10, ShareGPT dataset is mostly

comprised of conversations with a small number of turns and we have no way to tell if a conver-

sation will resume in the future. Worse still, storing short conversations causes cache pollution

as they may evict past KV-tokens of other conversations. To evaluate the impact of conversation

length on Pensieve, we craft a new dataset from ShareGPT to exclude conversations with less

than 5 turns. 36% of the original dataset is retained in the new dataset.
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Figure 3.15: Pensieve performance on ShareGPT dataset with at least 5 turns.
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Figure 3.16: Pensieve performance with different average user reaction time using Llama 2-13B.

Figure 3.15 shows Pensieve’s performance for OPT-13B and Llama 2-13B on the new dataset.

Compared to Figure 3.12, we observe decreases in throughput for all systems because the work-

load now contains requests with longer average conversation histories. Larger history context

sizes make attention operation slower, but this hurts vLLM baseline most as recomputing past

KV-tokens from scratch now becomes a lot more expensive. Compared to running on the full

ShareGPT dataset, Pensieve’s throughput gain over vLLM increases to 30% for OPT-13B and to

70% for Llama 2-13B.

3.6.5 User Reaction Time

Another important factor that affects the performance of Pensieve is the user’s reaction time.

Pensieve is designed with the assumption that an active user sends out the next request shortly

after receiving the response so that there is a larger chance past KV-tokens are still available in

the system for reusing. Figure 3.16 evaluates the impact of different average reaction times on

the performance of Pensieve using Llama 2-13B. We sample reaction time from an exponential

distribution with an average reaction time of 30, 60, and 120 seconds respectively. Since vLLM is
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Figure 3.17: Execution time of Pensieve’smulti-token attention kernel over non-contiguous contextmem-
ory with different context size. Measured with batch size 32 and query size 8.

stateless and recomputes past KV-tokens for each request, even though the request arrival order

changes, over a long period, vLLM should still process the same set of requests, and thus can

serve as a reference point.

As can be seen from the figure, with the increase of average user reaction time, the throughput

of Pensieve decreases, because the chance of past KV-tokens being dropped from the cache in-

creases. When the reaction time increases to 120 seconds, Pensieve’s throughput advantage over

vLLM reduces to around 40%. Still, under low request rates, Pensieve can maintain a significantly

lower latency compared to vLLM.

3.6.6 Efficiency of Multi-token attention Kernel

Figure 3.17 shows the advantage of Pensieve’s multi-token attention kernel when used to prefill

KV-tokens of prompts from new requests with their past KV-tokens. In this microbenchmark, a

batch of 32 requests performs attention between a prompt of 8 query tokens and different num-
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bers of past KV-tokens stored in non-contiguous GPU memory. As described in §3.3.1, existing

attention kernels are not directly applicable. We compare against two straw-man implementa-

tions: 1) allocate additional contiguous GPU memory space to copy out past KV-tokens and then

apply a fused attention kernel (orange bar), and 2) apply multiple rounds of vLLM’s single-query

PagedAttention to process one token from the prompt at a time (green bar). We also present

the performance of the ideal situation which assumes that past KV-tokens are already in con-

tiguous memory space (blue bar). From Figure 3.17, both straw-man solutions add significant

overhead compared to the ideal performance. Copy out requires extra memory space and gath-

ers past KV-tokens from non-contiguous space. Such cost is proportional to the number of past

KV-tokens. Applying multiple rounds of PagedAttention, on the other hand, gives up paralleliza-

tion opportunities on prompt tokens, leading to linear execution time to the number of tokens in

the prompt. Pensieve’s kernel shows slightly better performance than the ideal baseline because

we offload auxiliary data computing (like calculating the cumulative sum for the sequence length

of a batch) to the CPU. Since each transformer layer in the model shares the same caching plan,

these auxiliary data can be reused by all layers.

3.6.7 Unified Scheduling

In this section, we evaluate the benefit of using a unified scheduler for both prefill and generation

phases. We evaluated the performance of Pensieve using Llama 2-13B on the ShareGPT dataset

with unified scheduling disabled so that whenever new requests are waiting in the queue, the

scheduler pauses the generation phase and executes the prefill phase of new requests. Figure 3.18

shows the performance of Pensievewith andwithout unified scheduling. Compared to processing

prefill and generation phases separately, unifying them into a single execution step avoids exe-

cuting the prefill phase with a small number of requests and delaying generation phase of current

running requests. As a result, Pensieve with unified scheduling achieves better throughput and
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Figure 3.18: Pensieve performance of serving Llama 2-13B with and without unified scheduling.

latency.

3.7 Related Works

3.7.1 LLM inference and serving systems

Many systems have been recently developed to serve language models with better performance

including vLLM [54], Orca [111], TensorRT-LLM [73], FasterTransformer [72], LightSeq [103],

DeepSpeed [5] and [80]. These systems investigate different performance improvement oppor-

tunities than Pensieve. Thewide range of proposed techniques include incremental decoding [72],

iteration-level batching [38, 111], supporting paged KV cache over non-contiguous GPU mem-

ory [54, 73], finding an efficient multi-device partitioning plan [80], better load balancing between

prefill and generation to reduce pipeline parallelism bubbles [3, 47], kernel fusion [30, 31, 82],

speculative decoding [13, 55], and quantization [34, 39, 66, 109].

The system described in [80] can keep a fixed-sized KV cache for each conversation in TPU

device memory. Such caching is too rigid. By contrast, Pensievemanages the cache across all con-
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versations and can also swap to CPU to relieve GPU memory pressure. Another recent system,

CacheGen [57], addresses the problem of reducing the context-loading delay for long contexts

stored in remote network storage. CacheGen proposes an adaptive compression scheme to ac-

celerate the transfer of the KV cache over a bandwidth-limited and bursty network. As Pensieve

only keeps the KV cache in local GPU and CPU memory, CacheGen’s techniques are orthogonal

to those of Pensieve. For conversational chatbots, Pensieve using local cache can already bring

significant performance gains.

3.7.2 Non-LLM specific DNN serving systems

Many systems like Clipper [29], TensorFlow Serving [75], Nexus [87], NVIDIA Triton Inference

Server [71], and InferLine [27] serve as scheduling components of a general-purpose DNN serv-

ing system. They are mostly model-agnostic and execution backend-agnostic and apply general

system techniques like batching, caching, and software pipelining to serve DNN models. Some

are also in charge of properly provisioning compute resources to improve overall cluster effi-

ciency. A few existing works target model-less serving and provide inference as a service: they

automatically select models to meet the accuracy and latency requirements of a given user task.

For example, INFaaS [85] and Tabi [104] serve requests with a small model and only re-route to

a larger model when the output confidence score is low.

3.7.3 Techniqes addressing the GPU memory limit

These include GPU-CPU swapping, recomputation, and unified memory. Most of the systems

described below are not specifically targeted for LLM serving.

GPU-CPU Swapping SwapAdvisor [49] swaps weight and activation tensors for DNN train-

ing. It uses the dataflow graph to determine an optimal plan that involves operator execution or-
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der, memory allocation, and swapping. Zero-Offload [84] offloads optimizer state and gradients to

the CPU during LLM training with a single GPU. DeepSpeed-ZeroInference [5] and FlexGen [88]

use offloading to serve LLM with a weak GPU. DeepSpeed-ZeroInference offloads entire model

weights to CPU or NVMe memory. FlexGen offloads currently unused model weights, activa-

tion, or KV cache to CPU memory or disk. As a result of frequent data movement and high disk

latency, these two systems require a large batch size to hide the offloading latency. Therefore,

they mainly target latency-insensitive applications. Neither system persists the KV cache across

requests.

Recomputation For DNN training, recomputing activation on the backward pass [16] is a pop-

ular technique used to reduce memory footprint. The decision for which tensors to compute is

done at the granularity of layers [16], a group of operators within a layer (aka modules) [53], or

individual operators [50]. Unlike these works, Pensieve’s fine-grained recomputation is done at

the token(chunk)-level, to exploit the insight that earlier tokens in a sequence incur less recom-

putation cost due to the causal nature of attention.

UnifiedMemory andDirectHostAccess Swapping betweenCPU andGPUmemory can also

be achieved transparently through Unified Memory [69], which automatically triggers memory

page migration between CPU and GPU using a page fault mechanism. The Direct Host Ac-

cess [63] feature allows a GPU kernel to directly read from the CPU memory, thereby allowing

a subset of the threads to execute as soon as their data is ready without waiting for the entire

transfer to finish. It has been used to enable better overlap of data transfer and kernel computa-

tion when swapping in a model from CPU [64] or accessing large graph neural network features

on the CPU [51].

For our implementation of Pensieve, we choose not to use Unified Memory nor Direct Host

Access because these mechanisms trigger memory transfer only when the data is accessed by a
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GPU kernel and we want to manage data movement explicitly to prefetch the KV cache. Further-

more, for Direct Host Access, since the copied data is not explicitly stored in GPU memory, it has

to be loaded from the CPU again if it is repeatedly used. In our workload, the context cache is

not only used to prefill the prompt tokens but also in every generation step, which makes Direct

Host Access significantly less efficient.

3.7.4 Techniqes that speed up LLM inference

Kernel Fusion Deep Neural Networks often have a lot of memory-bound operations, e.g.,

element-wise operators, that read a large amount of data while performing little computation.

A common technique to improve GPU efficiency is kernel fusion [15, 21], which fuses multiple

kernels as one single kernel to avoid storing intermediate data in GPU global memory and later

loading them back. Attention in LLM can also benefit from kernel fusion. Memory efficient atten-

tion [82] and Flash Attention [30] fuse all attention-related operations into one kernel to avoid

materializing the attention score tensor. The attention kernel we implemented in Pensieve is a

generalization of aforementioned fused kernels, with support to efficiently attend new tokens

with past KV-tokens stored in non-contiguous memory. Recently, Flash-decoding [31] further

parallelizes the processing of KV-tokens for single query token attention, which can significantly

speed up the generation phase. With prefill phase taking up a larger portion of the total compu-

tation, Pensieve’s optimization for prefill phase may become even more beneficial.

Quantization Quantization techniques use lower precision floating point or integer repre-

sentation to speed up execution and reduce memory footprint [39, 66]. 16-bit half precision

is widely adopted in LLM inference and mixed precision training [62]. And recently, several

works [33, 34, 88] have shown that quantizing to 4-bit can still maintain good LLM inference

quality. In this work, we focus only on 16-bit half-precision to deliver unchanged inference re-

sults. But in general, quantization-based methods are also applicable to our system.
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Speculative Decoding Recently, speculative decoding [13, 55] is proposed to speed up the gen-

eration phase in LLM inference. Instead of running a costly LLM model to sequentially produce

1 output token in each model iteration, speculative techniques use a smaller and faster model to

generate a draft of a series of tokens, which get evaluated by a larger and more powerful LLM

model later with more efficient parallel execution. The adoption of speculative decoding signifi-

cantly reduces the execution time of generation phase, which makes Pensieve’s optimization of

prefill phase in multi-turn conversation serving more important.

3.8 Summary

We identify that a major inefficiency in serving Large Language Models for introduce Pensieve, a

stateful LLM serving system that preserves context data in a multi-tier GPU-CPU cache and we

develop a new GPU attention kernel that supports performing attention between requests’ new

multi-token input and their saved context stored in non-contiguous GPU memory. Experiments

show that Pensieve improves serving throughput by 33-100% and reduces latency by 40-77% com-

pared to the state-of-the-art system vLLM.
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4 | Conclusion

This thesis presents two systems, BatchMaker and Pensieve, for efficient serving of language

models by fine-grained and stateful scheduling.

BatchMaker proposes a novel approach called cellular batching to achieve low-latency infer-

ence on Language Models. cellular batching batches the execution of an inference request at the

granularity of a cell. Doing so allows a new request to join the execution of a batch of existing

requests and to be returned as soon as its computation finishes without waiting for others in the

batch to complete. We demonstrated the effectiveness of this approach by building BatchMaker

and evaluating using RNN workloads.

Pensieve is a serving system designed for the scenario ofmulti-turn conversation by providing

efficient context management for Large Language Models (LLMs). Pensieve preserves context

data in a multi-tier GPU-CPU cache and we develop a new GPU attention kernel that supports

performing attention between requests’ new multi-token input and their saved context stored in

non-contiguous GPU memory.

4.1 Future Work

Although this thesis has laid out a general framework for efficient serving of language models,

which includes two fundamental perspectives: fine-grained scheduling and context state man-

agement, it still has many design limitations worth further exploration.
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4.1.1 Unbalanced workload when used with pipeline parallelism

Withmodel size growing larger and larger, it is common to distribute computation acrossmultiple

GPUs. Cellular batching proposed by BatchMaker works well with Tensor Parallelism where

each model layer is partitioned into equal-sized chunks and distributed onto different GPUs, and

therefore all GPUs share identical computation.

However, another commonly used distribution strategy called Pipeline Parallelism partitions

a model into stages and each GPU (or a group of GPUs) is only responsible for a single stage. With

Pipeline Parallelism, there are multiple running batches in the system, each executing a different

stage in parallel. Since new requests arrive from time to time and each request may have variable

output lengths and require a different number of generation steps, each batch will have different

numbers of requests. Such differences in batch size at different stages will lead to differences in

computation time, causing the pipeline to stall. Therefore, it is necessary to design a mechanism

to better balance the amount of work across different batches.

4.1.2 Multi-host load balancing

In real deployment, one single machine is rarely enough to handle all the requests. But in a

multi-host setup, a conversation’s saved history states are only useful when its future requests

are also served by the same machine. Since different conversations are likely to have different

numbers of turns, there is a potential load-balancing issue when some hosts are overloaded with

long conversations while others are idle.

Therefore, rebalancing or job-stealing must be supported. There are at least two possible

designs. One is to resort to recomputation when switching the requests of a conversation to a

different machine than the one holding the history KV cache. Another is to store the KV history

cache in a fast disaggregated in-memory cache service.
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4.1.3 Support for various storage backends

Pensieve relies on a GPU-CPU cache to store the context data. However, even though CPU mem-

ory is generally considered cheap and abundant, it is still limited in size. For example, as calcu-

lated in §3.3.2, the key-value representation of a token for the GPT-3 model requires 0.78MB to

store. A system with e.g. 200GB total memory can only store about 260K tokens. As the system

keeps serving new conversations, the cache will run out of space and suffer from a low hit rate,

leading to performance degradation.

An interesting direction to explore is to support more storage backends, such as a distributed

database. However, remote storage tends to have higher access latency. Therefore, it is impor-

tant to further explore the trade-off between recomputation and retrieving along with other tech-

niques like compression and quantization that can reduce transmission time.

4.1.4 Conversations with similar texts

The main contribution of Pensieve is to go beyond the boundary of requests and maintain states

for conversations that last multiple turns. However, it could be even more beneficial to take one

step further to exploit similarities among conversations and share states across multiple con-

versations. At the moment, Pensieve is designed to handle unique conversations and does not

consider sharing states among different conversation sessions. But in certain scenarios, conver-

sations from different users may share similar texts. For example, a ChatBot providing customer

services may receive similar service requests from users. In the meanwhile, these ChatBots tend

to generate similar responses since they are trained with a limited number of template responses

from the dataset. As a result, different conversations may have a high chance of having similar

texts.

Therefore, one way to boost Pensieve’s performance is to allow sharing states across multiple

conversations. There are two main benefits. First, attention key-value states from one conver-

90



sation can be cached and reused to avoid processing similar texts again in another conversation.

Second, the system can avoid saving multiple copies of states for the same piece of text. How-

ever, additional care is needed to properly identify texts that are similar enough to reuse and to

correctly handle position-dependent model components like positional encoding.
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