
Building Trustworthy Storage Services

out of

Untrusted Infrastructure

Jinyuan Li

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science

Courant Institute of Mathematical Sciences

New York University

September 2006

Prof. David Mazières

To my parents Shuzhong Li, Yulan Zhou

and my sister Jinyang Li

Acknowledgments

I am greatly indebted to Prof. David Mazières for his supervision throughout my five years

in graduate school. Without his steady encouragement and insightful inspiration, I would

never have been able to complete this work. Also, his enthusiastic approach to life has

deeply impressed and transformed everyone around.

I would like to thank Prof. Vijay Karamcheti, Prof. Lakshminarayanan Subramanian,

Prof. Dawson Engler and Prof. Mendel Rosenblum for their suggestive comments to the

work and for kindly serving on the committee. I have also learned a lot from Prof. Dennis

Shasha, when working with him on SUNDR.

There are few other places more exciting to work in other than our Secure Computer

Systems Group. Without Maxwell Krohn’s high performance bstor, SUNDR would be a

less convincing story; Siddhartha Annapureddy is now interested in delivering jitterless on-

demand video to large numbers of users; Michael Freedman develops and manages Coral,

a CDN used world-wide; Antonio Nicolosi is always keen to answer our cryptography

questions.

I am also grateful to my friends for making my life in New York City and California

more enjoyable – Zilin Du, Zhihua Wang, Junfeng Yang, Feng Qin, Lu Zhang, Yuanxing

Dong, Peng Zhang, Ziyang Wang, Xiaojian Zhao, Feng Ning, Yuxing Yang, Chie Mishiro,

Min Luo, Xin Pu, Chingching Shih, Ya-Yunn Su, Ying Xu, Nina Liu and Xiang Jin.

iv

Abstract

As the Internet has become increasingly ubiquitous, it has seen tremendous growth in

the popularity of online services. These services range from online CVS repositories like

sourceforge.net, shopping sites, to online financial and administrative systems, etc. It is

critical for these services to provide correct and reliable execution for clients. However,

given their attractiveness as targets and ubiquitous accessibility, online servers also have a

significant chance of being compromised, leading to Byzantine failures.

Designing and implementing a service to run on a machine that may be compromised is

not an easy task, since infrastructure under malicious control may behave arbitrarily. Even

worse, as any monitoring facility may also be subverted at the same time, there is no easy

way for system behavior to be audited, or for malicious attacks to be detected.

We propose our solution to the problem by reducing the trust needed on the server side

in the first place. In the other words, our system is designed specifically for running on

untrusted hosts. In this thesis, we realize this principle by two different approaches. First,

we design and implement a new network file system – SUNDR. In SUNDR, malicious

servers cannot forge users’ operations or tamper with their data without being detected. In

the worst case, attackers can only conceal users’ operations from each other. Still, SUNDR

is able to detect this misbehavior whenever users communicate with each other directly.

The limitation of the approach above lies in that the system cannot guarantee ideal

v

consistency with even one single failure. In the second approach, we use replicated state

machines to tolerate some fraction of malicious server failures, which is termed Byzantine

Fault Tolerance (BFT) in the literature. Classical BFT systems assume less than 1/3 of the

replicas are malicious, to provide ideal consistency. In this thesis, we push the boundary

from 1/3 to 2/3. With fewer than 1/3 of replicas faulty, we provide the same guarantees as

classical BFT systems. Additionally, we guarantee weaker consistency, instead of arbitrary

behavior, when between 1/3 and 2/3 of replicas fail.

vi

Contents

Acknowledgments iv

Abstract v

List of Figures xi

List of Tables xiii

1 Introduction 1

1.1 Motivations . 1

1.2 Organization . 6

2 Fork consistency and

Fork* consistency 7

2.1 Fetch-modify consistency . 8

2.2 Fork consistency . 10

2.2.1 Limitations of fork consistency 14

2.2.2 Impossibility Proof . 14

2.3 A two-round protocol . 16

2.4 Fork* consistency . 18

vii

3 SUNDR 20

3.1 Setting . 21

3.2 The SUNDR protocol . 23

3.2.1 A straw-man file system . 24

3.2.2 Implications of fork consistency 26

3.2.3 Serialized SUNDR . 27

3.2.3.1 Data structures . 27

3.2.3.2 Protocol . 29

3.2.4 Concurrent SUNDR . 32

3.2.4.1 Update certificates . 32

3.2.4.2 Update conflicts . 34

3.2.4.3 Example . 36

3.3 Discussion . 37

3.4 File system implementation . 39

3.4.1 File system client . 40

3.4.2 Signature optimization . 41

3.4.3 Consistency server . 42

3.5 Block store implementation . 42

3.5.1 Interface . 43

3.5.2 Index . 44

3.5.3 Data management . 45

3.6 Performance . 46

3.6.1 Experimental setup . 46

3.6.2 Microbenchmarks . 47

3.6.2.1 bstor . 47

viii

3.6.2.2 Cryptographic overhead 49

3.6.3 End-to-end evaluation . 49

3.6.3.1 LFS small file benchmark 50

3.6.3.2 Group contention . 52

3.6.3.3 Real workloads . 53

3.6.3.4 CVS on SUNDR . 54

4 BFT2F 56

4.1 Background . 58

4.1.1 PBFT in a nutshell . 59

4.2 BFT2F Algorithm . 60

4.2.1 BFT2F Variables . 61

4.2.2 BFT2F Node Behavior . 62

4.2.3 Garbage Collection . 64

4.2.4 Server View Change . 65

4.2.5 An Example . 67

4.3 Proof Sketch . 69

4.3.1 Normal case operations . 69

4.3.2 Servers view change . 72

4.4 Discussion . 74

4.5 Performance . 75

4.5.1 Implementation . 75

4.5.2 Micro benchmark . 75

4.5.3 Application-level benchmark . 76

ix

5 Related Work 77

5.1 Cryptographic file systems . 77

5.2 Byzantine Fault Tolerant systems . 80

5.3 Encapsulation of hostile behavior . 81

5.4 Anonymity systems . 82

6 Conclusion 84

6.1 Future work . 84

6.2 Conclusion . 85

References 88

x

List of Figures

1.1 An example of an integrity attack. Suppose a client first stores a file F to

the server. Later on when the client fetches the file, the server returns a

modified one. 2

1.2 An example of a freshness attack. Suppose a client first stores a file F 1 to

the server, and updates the same file to a new version F 2 afterwards. Later

on when the client fetches the file, the server returns with the old version

of the file F 1. 3

2.1 An example of fork consistency. Since the server deceives client b about

a’s operation op2, both client a’s result list 〈op1, op2〉, and b’s result list

〈op1, op3〉 are fork consistent only (Strictly speaking, client a still has fetch-

modify consistency at this moment, should op2 be ordered before op3. How-

ever, client a will miss fetch-modify consistency hereafter.). 12

2.2 In a one-server system, the formation of two forked sets implies the server

has been malicious. In a replicated state system, the intersection of two fork

sets can only consists of provable malicious servers, while the partition that

excludes the intersection part might have honest, and “malicious”, but not

yet misbehaving servers, which we call probable malicious servers. 13

xi

2.3 Two malicious servers (p and q) wear different hats when talking to dis-

tinct honest servers (u or w). In this way, p and q, with u, return result list

〈opb, opa〉 to client a; p and q, with w, return 〈opa, opb〉 to client b. 15

2.4 A two-round protocol. 16

2.5 Pseudocode for a two-round protocol. 17

3.1 Basic SUNDR architecture. 21

3.2 User and group i-handles. An i-handle is the root of a hash tree containing

a user or group i-table. (H denotes SHA-1, while H∗ denotes recursive

application of SHA-1 to compute the root of a hash tree.) A group i-table

maps group inode numbers to user inode numbers. A user i-table maps a

user’s inode numbers to i-hashes. An i-hash is the hash of an inode, which

in turn contains hashes of file data blocks. 28

3.3 A version structure containing a group i-handle. 29

3.4 Signed version structures with a forking attack. 31

3.5 i-table for group g, showing the change log. t′g is a recent i-table; applying

the log to t′g yields tg. 32

3.6 Concurrent updates to /sundr/tmp/ by different users. 35

3.7 A pending update by user u1, reflected in user u2’s version structure. 37

3.8 bstor throughput measurements with the block cache disabled. 48

3.9 Single client LFS Small File Benchmark. 1000 operations on files with

1 KB of random content. 50

3.10 Concurrent LFS Small File Benchmark, create phase. 1000 creations of

1 KB files. (Relative standard deviation for SUNDR in 3 concurrent clients

case is 13.7%) . 52

xii

3.11 Installation procedure for emacs 20.7 . 53

3.12 Concurrent untar of emacs 20.7.tar . 54

4.1 An example of two forked result lists. The timeline in the middle shows

the result list that would have been executed by a non-faulty (never-forked)

system. The timeline above it shows in a forked system, one fork set has

executed a forked result list, which does not reflect operation op′2. The

timeline below it shows another forked result list that omits operation op2. . 67

4.2 An example of join-at-most-once property. Suppose op3 has been used to

join two forked result lists as in Figure 4.1. Diagram (a) shows the com-

mit and reply stages for operation op3. Since the result lists of the two fork

sets are already forked, the HCD field of sequence number 3 for non-faulty

replicas in different fork sets is different: HCD3 for u and HCD′3 for w

respectively. Client a accepts the reply from fork set FSα, and updates its

Va accordingly. Notice a cannot receive the reply from (non-faulty) replicas

(e.g., w) in FSβ simultaneously, without w being able to detect the system

faulty. Diagram (b) shows the impossibility of any future operation by c

appearing in both fork sets’ result lists again. For example, if the next oper-

ation op4 reaches non-faulty replicas in both fork sets, then the HCD check

in pre-prepare stage could only succeed at one of them. 68

4.3 From section 4.3.1, either SLv or SLv+1 delivers fork* consistency, respec-

tively, within its own view. We only need to show, when considering com-

pleted operations from both sub result lists, it also preserves fork* consistency. 72

xiii

List of Tables

3.1 Run times for CVS experiments (in seconds). 55

4.1 Performance comparison of different file system implementation (in seconds). 76

xiv

Chapter 1

Introduction

1.1 Motivations

People rely on online storage systems to save and share various types of critical data nowa-

days. For example, millions of users use Yahoo’s online email service [6] for their daily

email communications. Many people publish Blogs to share personal journals and solicit

comments from friends and others. Amazon recently launched S3 [1] that lets users store,

retrieve, and share their personal data conveniently via a web-based interface.

A well-behaved storage service guarantees the integrity and freshness (also called con-

sistency) of the data it stores on behalf of its clients. Despite their popularity and impor-

tance, it is very difficult for today’s online storage systems to provide users any security

guarantees. This is because in the current usage model for storage systems, clients trust

the storage servers completely to faithfully store data. This trust model is fundamentally

flawed because it is hard to secure a server in practice. First, a dependable server requires

a trustworthy administrator who does not tamper with stored data. Second, the server re-

quires a competent administrator who promptly patches known security holes as they are

1

�����������������������������������
�����������������������������������

���������������������������������������
���������������������������

STORE

FETCH

client server

F ′

F

Figure 1.1: An example of an integrity attack. Suppose a client first stores a file F to the
server. Later on when the client fetches the file, the server returns a modified one.

discovered. Both of these requirements are hard to meet in the real world. Being widely ac-

cessible, the server in an online storage system is much more likely to become the victim of

an attack, which leads to arbitrary failures. Furthermore, given their importance in serving

possibly millions of users, online storage services also become attractive targets of attacks.

Consequently, a compromised server results in the total loss of any guarantee of the entire

online storage service.

Because servers are trusted in the current storage system model, they lack the ability

to attest to clients whose data they have received and stored. Hence, compromised storage

servers can return arbitrary result to clients, because they are not expected to present such

proofs for data integrity and freshness anyway. Figure 1.1 and Figure 1.2 show two ex-

ample attacks that a compromised server can carry out on trusting clients. In Figure 1.1, a

malicious server returns to the client a modified version of the file which is different from

what has been stored previously. In Figure 1.2, a malicious server returns to the client a

valid, but outdated version of the file. In both examples, since the client completely trusts

the server, there is no mechanism for the server to demonstrate to the client the correctness

of the data it provides. As a result, a compromised server can cause the client to accept

arbitrary data.

2

�����������������������������������
�����������������������������������

���������������
	�	�		�	�		�	�	

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�����������������������������������

client

F 1

STORE

STORE

FETCH

server

F 1

F 2

Figure 1.2: An example of a freshness attack. Suppose a client first stores a file F 1 to the
server, and updates the same file to a new version F 2 afterwards. Later on when the client
fetches the file, the server returns with the old version of the file F 1.

These concerns are no mere academic exercise, as we have seen server compromises

due to malicious system administrators or software vulnerabilities. Recently, a former UBS/

PaineWebber network administrator was convicted for deleting files on over 1,000 ma-

chines, and this caused about a $3M loss to the company [10]. Furthermore, according to

an FBI statistic [9], discontented employees and former employees account for up to 65%

of such security breaches.

Even with trustworthy administrators, systems might still fail. For example, the Debian

GNU/Linux development cluster was compromised in November 2003 [11]. An unautho-

rized attacker used a sniffed password and a kernel vulnerability to gain superuser access to

Debian’s primary CVS and Web servers. After detecting the break-in, administrators were

forced to freeze development for several days, as they employed manual and ad-hoc sanity

checks to assess the extent of the damage. Finally, the bug was fixed, and the kernel was

patched up. Unfortunately, this does not prevent Debian CVS from suffering the same fate

again: it was broken into in July 2006 [13], and the reason still remains unidentified at this

moment. Similar attacks have also succeeded in the past against Apache [8], Gnome [12],

and other popular projects.

3

Currently, there lack systematic solutions to building secure storage systems. Most ex-

isting work keeps with the current trust model, but aims to secure the server better by using

firewalls, intrusion detection systems, and other defensive approaches. This approach has

two main drawbacks. First, experience shows that people usually do not build high enough

fences (or sometimes entrust fences to administrators who are not completely trustwor-

thy). Second and more importantly, higher fences are inconvenient: they restrict the ways

in which people can access, update, and manage data.

In this thesis, we take a new direction; instead of requiring clients to trust the servers,

we propose ways to construct secure storage systems out of untrusted servers. Unlike tra-

ditional systems, our design requires untrusted servers to explicitly demonstrate to clients

the integrity and freshness of the data they provide.

When all servers fail arbitrarily, it is impossible to guarantee data freshness. However,

this does not mean that the overall system should necessarily behave arbitrarily. For exam-

ple, in Figure 1.2, if the client is required to remember the latest version of the data block

it has previously provided to the server, it will be able to detect this particular freshness

attack by the server immediately. The focus of our work is to constrain the implications of

servers’ (mis)behavior, and to extract the strongest possible weak guarantees for a storage

system built out of untrusted servers. Such weak guarantees are useful because they enable

clients to audit and prove the misbehavior of servers and detect server compromises.

In this thesis, we formalize two new weak consistency models – fork consistency and

fork* consistency – which are achievable even when all or a majority of servers are ma-

licious. In both models, malicious servers can cause clients to accept an older version of

the data. However, once servers misbehave, evidence of the attack cannot be subsequently

erased. This feature makes fork consistency useful in detecting any past consistency viola-

tions by the servers.

4

We first demonstrate our ideas in the context of a distributed file system by design-

ing and building SUNDR (Secure UNtrusted Data Repository). SUNDR provably achieves

fork consistency in the case of one unreplicated server. SUNDR does not require any trusted

component on the server side. Clients make requests to the server and can detect any con-

sistency or integrity failures injected by a compromised server, as long as they see other

peers’ latest operations.

Unfortunately, fork consistency requires heavy protocols that need at least two rounds

of communication between a client and server for each operation. The extra round of com-

munication leads to higher latency, increased message overhead and additional server state.

Furthermore, it complicates the system design because we need to handle the case when

the client fails prematurely after finishing just the first round. To simplify the design, we

propose a slightly weaker consistency model, fork* consistency, that can be realized with

just one round of communication for each request.

We then design and build BFT2F, a distributed file system in the context of multiple

replicated servers. BFT2F takes the same replicated state machine approach as used by the

classical Castro-Liskov Practical Byzantine Fault Tolerance model (PBFT) [25]. Instead of

relying on one single honest or compromised server, PBFT replicates servers and assumes

more than two thirds of the replicas honest, to achieve ideal consistency [21]. However,

when this requirement is not met, PBFT guarantees nothing. Building from PBFT, BFT2F

further reduces the trust needed in servers by exploiting the design space beyond this as-

sumption. Specifically, BFT2F provides fork* consistency when one third or more, but

fewer than two thirds of the replicas fail. Though BFT2F cannot guarantee liveness in this

case, it is still preferable to arbitrary behavior in most situations.

This thesis develops two practical secure storage systems: SUNDR and BFT2F. In short,

they share the principle of “eliminating, or reducing the need to trust storage servers”.

5

We demonstrate how to design client-server protocols such that clients are aware in the

first place that servers might be malicious, or potentially corrupted. They also can reveal

any past violation of the expected storage semantics. We implemented and evaluated both

systems. Measurements show performance is only slightly worse than comparable, but less

secure systems. Yet by reducing the amount of trust placed in the server, both systems

increase people’s options for managing data and significantly improve the security of their

files.

1.2 Organization

The thesis is organized as follows: First, we formalize fork consistency and fork* consis-

tency, and discuss their difference in detail in chapter 2. In particular, we prove the impos-

sibility of achieving fork consistency with one round of communication between clients

and servers for each request. We then describe SUNDR, which achieves fork consistency,

in chapter 3. In chapter 4, we propose BFT2F, an extension to PBFT. BFT2F guarantees

fork* consistency with more than f , but no more than 2f faulty replicas out of a 3f + 1

replicas system. We give a brief survey of related work in chapter 5, discuss future work

and conclude in chapter 6.

6

Chapter 2

Fork consistency and

Fork* consistency

It is not always possible to achieve ideal consistency in the presence of arbitrary server

failures. For example, if the only server in a non-replicated online storage system is com-

promised, there is no way of preventing it from concealing one client’s newly updated file

from other clients’ subsequent fetch requests of the same file because clients do not always

communicate among each other directly. However, ideally, the server should only be al-

lowed to misbehave in a certain way, and the evidence of such attacks should not be erased.

We define a weaker consistency model, fork consistency, to capture this desired property;

the new weak consistency models make it as easy as possible to detect whether there has

been any consistency failure in the past, and to limit servers only to consistency violations,

as opposed to arbitrary attacks.

7

2.1 Fetch-modify consistency1

We first discuss the ideal consistency guarantees of a storage system. In the distributed

file system literature, close-to-open consistency [45] is widely accepted to define the con-

sistency of related operations. Loosely speaking, a newly “opened” file should reflect all

modifications by other clients that previously “closed” the file. The advantage of close-to-

open consistency is that a client can read from local cache, or delay writing to the server

when the file is opened, but not yet closed. Unfortunately, not all file system operations in-

cur file opens or closes: for example, the truncate system call modifies a file synchronously,

without opening or closing it, and the effect of file truncate should be immediately visible

to other users. Also, storage systems besides file systems often do not have the notion file

open and close. Consequently, to be more generally applicable, we will speak of fetch and

modify operations in this thesis, rather than opens and closes. A fetch operation is when a

client either validates its local cached copy of a file or downloads a new version from the

server. A modify operation is when a client makes new file contents visible to other clients.

Higher-level filesystem calls can be translated to fetch and modify operations accordingly.

Definition 1 Each request has two wall-clock times associated with it – issue time and

completion time.

Conceptually, the issue time corresponds to the time at which the fetch or modify oper-

ation is invoked, which would return at some later time, called completion time. We do not

assume clients have synchronized clocks, so a client will not know the issue or completion

time of its own operation.

1This and the next section borrows heavily from the definition given by Mazières and Shasha in [60].

8

Definition 2 A set of fetch and modify operations in a system is orderable, if there is a

partial order, happens before (≺), on the operations such that:

1. If the completion time of operation op1 is earlier than the issue time of operation op2,

then op1 happens before op2.

2. Happens before orders any two operations by the same client.

3. Happens before totally orders all modifications to a given file.

4. Happens before orders any fetch of a file with respect to all modifications to the same

file.

Orderability does not fully dictate the order of operations. For concurrent, overlapping

operations, the system is free to choose any order, as long as all dependent operations have

a definite order.

Definition 3 A set of fetch and modify operations is fetch-modify consistent iff the oper-

ations are orderable and any fetch f of a file F returns the contents of the file produced

by exactly the modifications that happened before f , in the order specified by the happens

before relation.

In any system, the result of each operation should be determined by a list of previously

executed operations. We call these lists result lists. In a fetch-modify consistent (well-

behaved) system, A well-formed result list is an ordered list of all previous operations:

Lall = 〈op1, op2, ..., opn〉, and Lall should be fetch-modify consistent. While in a faulty

system, the result list for an operation might not include all the operations that happen

before it, because the malicious server might conceal it. Even worse, the malicious server

could return to distinct clients different result lists for the same operation. Nevertheless, we

9

assume malicious servers can not make up operations that clients have never issued This

can be implemented by having clients sign their issued operations with their private keys.

Fetch-modify consistency is stronger than one-copy serializability [18], in the sense

that two externally non-overlapping operations must be temporally ordered. The notion

of fetch-modify consistency is not completely new, it is equivalent to linearizability for

concurrent objects [44], and 1SR+EXT in TACT [85]. In this thesis, we will also use the

terms fetch-modify consistency and ideal consistency interchangeably.

2.2 Fork consistency

Fetch-modify consistency may be violated when servers become malicious. However, it is

still possible to achieve a weaker consistency that allows clients to detect any past consis-

tency violation conducted by the server.

In defining fork consistency, we make a distinction between operations issued by cor-

rect clients, which obey the protocol, and malicious clients that don’t. We use the term

result lists only for replies to operations issued by correct clients, as it makes little sense to

talk about results seen by clients that do not implement the protocol.

Definition 4 A system is fork consistent if and only if it satisfies the following require-

ments:

• Sublist Property: At any given time, every result list L is a sublist of one specific

well-formed result list Lall. 2

Since L is a sublist of Lall, this implies operations in L should have the same or-

dering relations as those in Lall, which should preserve the temporal order of non-
2For example, both 〈op1, op3〉, and 〈op1, op2〉 are sublists of 〈op1, op2, op3〉, but 〈op3, op2〉 is not.

10

overlapping operations by honest clients,

• Self-consistency Property: Each honest client sees all past operations from itself: if

the same client a issues an operation opi before opj , then opi also appears in opj’s

result list.

This property ensures that a client has a consistent view w.r.t. its own operations. For

example, in a file system, a client always sees the effect of its own writes.

• No-join Property: Every result list that contains an operation op by an honest client

is identical up to op.

As a corollary, the no-join property implies that when two clients see each others’

latest operation, they have also seen all of each other’s past operations in the same

order. This makes it possible to audit the system; if we can collect all clients’ current

knowledge and check that all have seen each others’ latest operations, we can be sure

that the system has never violated fetch-modify consistency in the past.

We say two result lists are forked if neither one is an (improper) prefix of the other.

For instance, result list 〈op1, op2〉 and result list 〈op1, op3〉 are forked, while 〈op1, op2〉 and

〈op1, op2, op3〉 are not. Informally speaking, a forked result list represents a failure of the

server to deliver ideal consistency. In the example above, forked result lists 〈op1, op2〉 and

〈op1, op3〉 indicate the server’s failure to deliver ideal consistency immediately after op1.

If the system consists of multiple servers which replicate the system state, it is also use-

ful to categorize servers by the responses they return. We say servers are in different fork

sets if they reflect forked result lists. A fork set consists of a set of servers who return the

same result lists to the client, although, in an asynchronous system, some of them might

not reach the client before the operation completes. Intuitively, any correct server cannot

11

fork branch β

fork branch α

system state is forked
a:op1

result list for client a: 〈op1, op2〉.

result list for client b: 〈op1, op3〉.

b:op 3

a:op
2

Figure 2.1: An example of fork consistency. Since the server deceives client b about
a’s operation op2, both client a’s result list 〈op1, op2〉, and b’s result list 〈op1, op3〉
are fork consistent only (Strictly speaking, client a still has fetch-modify consistency
at this moment, should op2 be ordered before op3. However, client a will miss
fetch-modify consistency hereafter.).

be in more than one fork set. A malicious server, however, can simultaneously be in multi-

ple fork sets – presenting different system states to different clients, and might even return

results that do not reflect any well-formed result-list. To achieve ideal consistency, all cor-

rect servers must be in the same fork set, and execute the protocol faithfully. When correct

servers are forked into different fork sets, clients can no longer achieve ideal consistency

and may accept results from different fork sets.

Figure 2.1 shows an example where fork consistency differs from ideal consistency.

Initially, all clients have the same result list 〈op1〉. Client a issues a request op2, and gets

back the result list 〈op1, op2〉 from fork set FSα; after that, client b’s operation op3 returns

with the result list 〈op1, op3〉 from fork set FSβ . This means the server deceives b about

a’s completed operation op2. Therefore, client a’s result list and client b’s are forked. At

this moment, one can verify that the system has delivered fork consistency, but failed to

provide fetch-modify consistency.

Figure 2.2 shows an oracle’s view of the system at this time. We mean oracle by an

12

p

pu

replicated state servers:

one server:
FSβ

FSβFSα

FSα

q v

probably malicious provably malicious

Figure 2.2: In a one-server system, the formation of two forked sets implies the server
has been malicious. In a replicated state system, the intersection of two fork sets can only
consists of provable malicious servers, while the partition that excludes the intersection
part might have honest, and “malicious”, but not yet misbehaving servers, which we call
probable malicious servers.

external entity who can globally observe the current system state. However, in a real system,

such knowledge usually cannot be collected. If the system only has one server p, which

implies FSα = FSβ = {p}, then p must be malicious. If the system consists of multiple

servers as replicated state machines, then FSα

⋂
FSβ

3 must have only malicious servers

that have attacked (e.g., p). FSα\(FSα

⋂
FSβ) 4 and FSβ\(FSα

⋂
FSβ) could include

either honest servers (e.g., u, v), or malicious servers who have not misbehaved so far (e.g.,

q), i.e., indistinguishable from honest servers, but might attack later. However, once they

do so, they will be classified in FSα

⋂
FSβ , as observed by the oracle, and can not move

back again.

3FSα

⋂
FSβ means the intersection of FSα and FSβ .

4FSα\(FSα

⋂
FSβ) means the partition of FSα which excludes FSα

⋂
FSβ .

13

2.2.1 Limitations of fork consistency

A practical consistency protocol requires that both the number of messages sent and the

latency of each operation be small. To complete an operation, a client issues requests to

servers and waits for the corresponding replies. In a one-round protocol, message exchange

between a client and the servers happens exactly once for every operation. The number of

rounds in a protocol affects its performance; each additional round results in increased la-

tency and extra messages sent between clients and servers. Additionally, a protocol of more

than one round needs to keep extra state about clients, which results in extra complexity.

Finally, a client that fails prematurely after just the first round of the protocol poses signifi-

cant difficulty to the system, since other clients who depend its operation completing would

be blocked indefinitely. 5 Consequently, most consistency protocols designed for replicated

state systems are one-round protocols, such as PBFT [25].

Unfortunately, in a system without sufficient trust on the server side, it is impossible

to achieve fork consistency with one round of communication for each operation. For in-

stance, when more than f servers fail in an asynchronous BFT system of 3f + 1 servers, at

least two rounds of communication are required to achieve fork consistency. We prove this

below.

2.2.2 Impossibility Proof

Theorem: When more than f out of 3f + 1 servers fail in an asynchronous system, no

one-round protocol can achieve fork consistency.

Proof Sketch: In a single-round protocol, an operation sends a single message which,

finally convinces honest replicas to alter their state by executing an operation. Consider the

5Further discussion on this can be found in Section 3.2.4.

14

�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�

u

q

p
a

w

bSE
RV

ER
A

G
R

EE

message dropped

op
b

opa

REPLY

REPLY

Figure 2.3: Two malicious servers (p and q) wear different hats when talking to distinct
honest servers (u or w). In this way, p and q, with u, return result list 〈opb, opa〉 to client a;
p and q, with w, return 〈opa, opb〉 to client b.

case when two clients, a and b, issue two requests, opa and opb concurrently. Neither client

could have known about the other’s request when issuing its operation. Thus, either opa or

opb is capable of being executed before the other.

If, for instance, the network delays opa, opb could have been executed before opa arrives,

and vice versa. Moreover, because of liveness, request opa must be capable of executing if

both client b and replica w are unreachable, as long as the remaining three replicas respond

to the protocol. Figure 2.3 illustrates this case, where client a was eventually returned with

result list 〈opb, opa〉.

The same reasoning also applies to client b, who might get result list 〈opa, opb〉, when

replica u is unreachable. These two out-of-order result lists reflect the (malicious) servers’

ability to reorder concurrent requests at will, if a single message is allowed to change the

system state atomically. This clearly violates no-join property of fork consistency.

15

SERVER CHECK ROUND1

CLIENT CHECK COMMIT client a

server x

C
O

M
M

IT
: [

S
c
u
r
r

a
, o

p]
K

−

1
a

A
C

Q
U

IR
E-A

C
K: S

c
u
r
r

x

R
E

PLY: res, S
c
u
r
r

x

A
C

Q
U

IR
E:

S
c
u
r
r

a

SERVER CHECK EXECUTE ROUND2

Figure 2.4: A two-round protocol.

2.3 A two-round protocol

We proceed to explain why the above contradiction does not arise with a two-round pro-

tocol. Figure 2.4 shows the generic structure of a two-round protocol; a client sends an

acquire request to acquire the system’s latest state in the first round, and a server replies

to the client with its current state. In the second round the client commits the request

op, servers execute op and send back the reply. For simplicity of discussion, we assume

clients’ two rounds of accesses to be atomic, i.e., servers would queue other concurrent

requests until they finish the one in progress. Figure 2.5 shows how server x generates the

acquire-ack message in round one and how client a generates a corresponding commit

message upon the receipt of acquire-ack. Scurr
n represents node n’s latest knowledge of

the system state.

Here, Scurr could be realized by a log of all previous requests that have led to the current

state. Each log entry has the format of [commit, Scurr
a , op]Ka

−1 , signed by client a’s private

key Ka
−1. Scurr

a is client a’s knowledge of the system state before a commits message op.

Since a updates Scurr
a in the first round of communication with servers, Scurr

a is guaranteed

to be up-to-date.

16

//executed by server x in the first round upon receiving acquire.
procedure SERVER CHECK ROUND1(Scurr

a)
if Scurr

a ≺ Scurr
x

send [acquire-ack, Scurr
x] to client a;

else
//either a is faulty, or x has been forked

//executed by client a to collect acquire-acks and generate commit.
procedure CLIENT CHECK COMMIT(op)
decide on the system’s current state Scurr based on 2f + 1
matching acquire-acks from servers
Scurr

a ← Scurr

sends [commit, Scurr
a , op]Ka

−1 to all servers

//executed by server x in the second round upon receiving commit.
procedure SERVER CHECK EXECUTE ROUND2(op, Scurr

a)

(Scurr
x , op)← SERVERAGREE(Scurr

x , op)

if Scurr
a = Scurr

x

//x’s knowledge is the same as a’s, execute op, update state
(Scurr

x , res)← EXECUTE(Scurr
x , op)

send [reply, Scurr
x , res] to client a;

else
//either a is faulty, or x has been forked

Figure 2.5: Pseudocode for a two-round protocol.

In the example above: if, for client b, opa is ordered before opb by the servers, opa’s cor-

responding log entry would be [commit, S0, opa]Ka
−1 . S0 is the system state before client a

and client b issue their operations. However, if opb is ordered before opa in client a’s view,

opa’s log entry would be [commit, S1, opa]Ka
−1 , where S1 is the system state after applying

opb to initial state S0. An honest client would not sign different log entries for the same

17

operation. Consequently, so long as it is possible to determine the relative ordering of two

states like S0 and S1 by examining them, even malicious servers cannot order opa and opb

differently for two clients.

As should be clear from the above discussion, the benefit of a two-round protocol is

the ability to improve clients’ knowledge of the system state in the first round, and thus

to prevent malicious servers from deceiving oblivious clients. If the system state is ever

forked before a (non-faulty) client makes its request, malicious servers can present at most

one current state to the client, so the client’s operation cannot be reflected in more than one

fork branch.

2.4 Fork* consistency

Since a two-round protocol is expensive and complicated, we propose a slightly weaker

consistency model, fork* consistency, which can be achieved with a one-round protocol.

Essentially, fork* consistency relaxes the no-join property in fork consistency to join-at-

most-once, i.e., two forked result lists can be joined by at most one operation from the

same correct client.

Join-at-most-once Property: If two result lists contain two operations op′ and op from the

same client a, and op′ precedes op, then the two result lists are identical up to op′.

As shown in the previous section, with a one-round protocol, client a’s operation op

might be applied to servers in both fork sets, if a has no clue that the system state has been

forked when she issues op. Then the servers in FSα or FSβ would update their system state

Sα or Sβ respectively, which violates the no-join property of fork consistency. However,

client a is only going to accept the reply from one of the fork sets, e.g., FSα, and adopt

18

its new state Sα, as her freshest knowledge of the system state. If the protocol can prohibit

states in one forked branch from appearing to happen before those in other branches, as a

consequence, all future operations from client a can be only applied to servers in fork set

FSα, preserving the join-at-most-once property of fork* consistency.

The join-at-most-once property is still useful for system auditing. We can periodically

collect all clients’ current knowledge to check that all have seen each others’ latest opera-

tions. Suppose we have made a sequence of checks at times t1, t2 ... tn, where tn is the time

of the latest check, then the join-at-most-once property guarantees that, up to time tn−1, the

system has never violated ideal consistency.

As in the example in section 2.2, after client a finishes with result list 〈op1, op2〉 and

client b with 〈op1, op3〉, there might come along another operation op4 from client c that

shows up in both a and b’s result lists. Now, for client a, the new result list is 〈op1, op2, op4〉,

and for b, it is 〈op1, op3, op4〉. Yet, the system still delivers fork* consistency at this mo-

ment, but not fork consistency, nor fetch-modify consistency. However, fork* consistency

prevents malicious servers from showing c’s future operations to both a and b from this

moment on.

19

Chapter 3

SUNDR

In this chapter, we describe a new network file system, SUNDR, that achieves fork consistency

while placing minimal trust in the storage infrastructure. SUNDR needs much less trust on

the server side than previous approaches. In particular, SUNDR does not trust any of its

server component. Through the SUNDR protocol, clients can detect any unauthorized op-

eration and most data tampering immediately. In the worst case, malicious servers can con-

ceal users’ operations from each other; SUNDR still can detect this misbehavior whenever

the invloved users communicate with each other directly.

We discuss the system setting for SUNDR in section 3.1. Then we describe the SUNDR

protocol in stages in section 3.2. First, we show a naı̈ve design that achieves fork consistency,

albeit at a prohibitive cost. Second, we give a preliminary SUNDR protocol, in which all

file system operations are serialized by a global (though untrusted) lock. Finally, we present

the full-fledged SUNDR protocol. We also discuss the implementation and evaluate it af-

terwards.

20

3.1 Setting

SUNDR provides a file system interface to remote storage, like NFS [74] and other network

file systems. To secure a source code repository, for instance, members of a project can

mount a remote SUNDR file system on directory /sundr and use /sundr/cvsroot as

a CVS repository. All checkouts and commits then take place through SUNDR, ensuring

users will detect any attempts by the hosting site to tamper with repository contents.

Figure 3.1 shows SUNDR’s basic architecture. When applications access the file sys-

tem, the client software internally translates their system calls into a series of fetch and

modify operations, where fetch means retrieving a file’s contents or validating a cached

local copy, and modify means making new file system state visible to other users. Fetch

and modify, in turn, are implemented in terms of SUNDR protocol RPCs to the server.

Section 3.2 explains the protocol, while Section 3.4 describes the server design.

RPC

application

Client

syscall

security layer
modify

fetch/
cache layer

consistency server

Server

block store

Figure 3.1: Basic SUNDR architecture.

To set up a SUNDR server, one runs the server software on a networked machine with

dedicated SUNDR disks or partitions. The server can then host one or more file systems. To

create a file system, one generates a public/private superuser signature key pair and gives

the public key to the server, while keeping the private key secret. The private key provides

exclusive write access to the root directory of the file system. It also directly or indirectly

allows access to any file below the root. However, the privileges are confined to that one file

21

system. Thus, when a SUNDR server hosts multiple file systems with different superusers,

no single person has write access to all files.

Each user of a SUNDR file system also has a signature key. When establishing ac-

counts, users exchange public keys with the superuser. The superuser manages accounts

with two superuser-owned file in the root directory of the file system: .sundr.users lists

users’ public keys and numeric IDs, while .sundr.group designates groups and their

membership. To mount a file system, one must specify the superuser’s public key as a

command-line argument to the client, and must furthermore give the client access to a

private key. (SUNDR could equally well manage keys and groups with more flexible cer-

tificate schemes; the system only requires some way for users to validate each other’s keys

and group membership.)

Throughout this paper, we use the term user to designate an entity possessing the private

half of a signature key mapped to some user ID in the .sundr.users file. Depending on

context, this can either be the person who owns the private key, or a client using the key to

act on behalf of the user. However, SUNDR assumes a user is aware of the last operation

he or she has performed. In the implementation, the client remembers the last operation it

has performed on behalf of each user. To move between clients, a user needs both his or

her private key and the last operation performed on his or her behalf (concisely specified by

a version number). Alternatively, one person can employ multiple user IDs (possibly with

the same public key) for different clients, assigning all file permissions to a personal group.

SUNDR’s architecture draws an important distinction between the administration of

servers and the administration of file systems. To administer a server, one does not need

any private superuser keys.1 In fact, for best security, key pairs should be generated on

1The server does actually have its own public key, but only to prevent network attackers from “framing”
honest servers; the server key is irrelevant to SUNDR’s security against compromised servers.

22

separate, trusted machines, and private keys should never reside on the server, even in

memory. Important keys, such as the superuser key, should be stored off line when not in

use (for example on a floppy disk, encrypted with a passphrase).

3.2 The SUNDR protocol

SUNDR’s protocol lets clients detect unauthorized attempts to modify files, even by attack-

ers in control of the server. When the server behaves correctly, a fetch reflects exactly the

authorized modifications that happened before it. This property is fetch-modify consistency,

as defined in section 2.1.

If the server is dishonest, clients enforce a slightly weaker property, namely fork con-

sistency. Intuitively, under fork consistency, a dishonest server could cause a fetch by a

user A to miss a modify by B. However, either user will detect the attack upon seeing a

subsequent operation by the other. Thus, to perpetuate the deception, the server must fork

the two user’s views of the file system. Put equivalently, if A’s client accepts some modi-

fication by B, then at least until B performed that modification, both users had identical,

fetch-modify-consistent views of the file system.

We have formally specified fork consistency in chapter 2, and, assuming digital sig-

natures and a collision-resistant hash function, proven SUNDR’s protocol achieves it in

[61]. Therefore, a violation of fork consistency means the underlying cryptography was

broken, the implementation deviated from the protocol, or there is a flaw in our mapping

from high-level Unix system calls to low-level fetch and modify operations.

23

3.2.1 A straw-man file system

In the roughest approximation of SUNDR, the straw-man file system, we avoid any con-

current operations and allow the system to consume unreasonable amounts of bandwidth

and computation. The server maintains a single, untrusted global lock on the file system.

To fetch or modify a file, a user first acquires the lock, then performs the desired operation,

then releases the lock. So long as the server is honest, the operations are totally ordered and

each operation completes before the next begins.

The straw-man file server stores a complete, ordered list of every fetch or modify op-

eration ever performed. Each operation also contains a digital signature from the user who

performed it. The signature covers not just the operation but also the complete history of

all operations that precede it. For example, after five operations, the history might appear

as follows:

sig
user A

sig

mod(f3)
user B

fetch(f3)fetch(f2)
user A

sig sig
user A

mod(f2)

sig

fetch(f2)
user B

To fetch or modify a file, a client acquires the global lock, downloads the entire history

of the file system, and validates each user’s most recent signature. The client also checks

that its own user’s previous operation is in the downloaded history (unless this is the user’s

very first operation on the file system).

The client then traverses the operation history to construct a local copy of the file sys-

tem. For each modify encountered, the client additionally checks that the operation was

actually permitted, using the user and group files to validate the signing user against the

file’s owner or group. If all checks succeed, the client appends a new operation to the list,

signs the new history, sends it to the server, and releases the lock. If the operation is a mod-

ification, the appended record contains new contents for one or more files or directories.

24

Now consider, informally, what a malicious server can do. To convince a client of a file

modification, the server must send it a signed history. Assuming the server does not know

users’ private keys and cannot forge signatures, any modifications clients accept must ac-

tually have been signed by an authorized user. The server can still trick users into signing

inappropriate histories, however, by concealing other users’ previous operations. For in-

stance, consider what would happen in the last operation of the above history if the server

failed to show user B the most recent modification to file f2. Users A and B would sign the

following histories:

user B:

user A:

sig

sig

sig

sig

fetch(f2)

sig

sig

sig

sig
user B user A user A

user Buser Auser Buser A
fetch(f2)

mod(f3) fetch(f3) mod(f2)

mod(f3) fetch(f3)

user A

fetch(f2)

Neither history is a prefix of the other. Since clients always check for their own user’s

previous operation in the history, from this point on, A will sign only extensions of the first

history and B will sign only extensions of the second. Thus, while before the attack the

users enjoyed fetch-modify consistency, after the attack the users have been forked.

Suppose further that the server acts in collusion with malicious users or otherwise

comes to possess the signature keys of compromised users. If we restrict the analysis to

consider only histories signed by honest (i.e., uncompromised) users, we see that a simi-

lar forking property holds. Once two honest users sign incompatible histories, they cannot

see each others’ subsequent operations without detecting the problem. Of course, since the

server can extend and sign compromised users’ histories, it can change any files compro-

mised users can write. The remaining files, however, can be modified only in honest users’

histories and thus continue to be fork consistent.

25

3.2.2 Implications of fork consistency

Fork consistency is the strongest notion of integrity possible without on-line trusted parties.

Suppose user A comes on line, modifies a file, and goes off line. Later, B comes on line and

reads the file. If B doesn’t know whether A has accessed the file system, it cannot detect

an attack in which the server simply discards A’s changes. Fork consistency implies this is

the only type of undetectable attack by the server on file integrity or consistency. Moreover,

if A and B ever communicate or see each other’s future file system operations, they can

detect the attack.

Given fork consistency, one can leverage any trusted parties that are on line to gain

stronger consistency, even fetch-modify consistency. For instance, as described later in

Section 3.4, the SUNDR server consists of two programs, a block store for handling data,

and a consistency server with a very small amount of state. Moving the consistency server

to a trusted machine trivially guarantees fetch-modify consistency. The problem is that

trusted machines may have worse connectivity or availability than untrusted ones.

To bound the window of inconsistency without placing a trusted machine on the crit-

ical path, one can use a “time stamp box” with permission to write a single file. The box

could simply update that file through SUNDR every 5 seconds. All users who see the box’s

updates know they could only have been partitioned from each other in the past 5 seconds.

Such boxes could be replicated for Byzantine fault tolerance, each replica updating a single

file.

Alternatively, direct client-client communication can be leveraged to increase consis-

tency. Users can write login and logout records with current network addresses to files so

as to find each other and continuously exchange information on their latest operations. If

a malicious server cannot disrupt network communication between clients, it will be un-

able to fork the file system state once on-line clients know of each other. Those who deem

26

malicious network partitions serious enough to warrant service delays in the face of client

failures can conservatively pause file access during communication outages.

3.2.3 Serialized SUNDR

The straw-man file system is impractical for two reasons. First, it must record and ship

around complete file system operation histories, requiring enormous amounts of bandwidth

and storage. Second, the serialization of operations through a global lock is impractical for

a multi-user network file system. This subsection explains SUNDR’s solution to the first

problem; we describe a simplified file system that still serializes operations with a global

lock, but is in other respects similar to SUNDR. Subsection 3.2.4 explains how SUNDR

lets clients execute non-conflicting operations concurrently.

Instead of signing operation histories, as in the straw-man file system, SUNDR effec-

tively takes the approach of signing file system snapshots. Roughly speaking, users sign

messages that tie together the complete state of all files with two mechanisms. First, all

files writable by a particular user or group are efficiently aggregated into a single hash

value called the i-handle using hash trees [62]. Second, each i-handle is tied to the latest

version of every other i-handle using version vectors [66].

3.2.3.1 Data structures

Before delving into the protocol’s details, we begin by describing SUNDR’s storage in-

terface and data structures. Like several recent file systems [39, 63], SUNDR names all

on-disk data structures by cryptographic handles. The block store indexes most persistent

data structures by their 20-byte SHA-1 [35] hashes, making the server a kind of large,

high-performance hash table. It is believed to be computationally infeasible to find any two

different data blocks with the same SHA-1 hash. Thus, when a client requests the block

27

H∗(tg)

i-handle
group g’s

2→ H(i2)

3→ H(i3)

4→ H(i4)

5→ H(i5)

6→ H(i6)
...

0K→ H(d0)

8K→ H(d1)
...

(maps offset→data)i-handle

group g’s i-table (tg)

H∗(tu2
)

(maps i#→〈user,i#〉)

user u2’s

metadata

inode i4

(maps i#→i-hash)
user u2’s i-table (tu2

)

data block d0

... "locore.S"→ 〈u2, 5〉

"main.c"→ 〈g, 4〉

...
inode i6

2→ 〈u1, 7〉

3→ 〈u2, 4〉

4→ 〈u1, 2〉
. . .

(maps name→ 〈u/g, i#〉)
directory block

Figure 3.2: User and group i-handles. An i-handle is the root of a hash tree containing a
user or group i-table. (H denotes SHA-1, while H∗ denotes recursive application of SHA-
1 to compute the root of a hash tree.) A group i-table maps group inode numbers to user
inode numbers. A user i-table maps a user’s inode numbers to i-hashes. An i-hash is the
hash of an inode, which in turn contains hashes of file data blocks.

with a particular hash, it can check the integrity of the response by hashing it. An inci-

dental benefit of hash-based storage is that blocks common to multiple files need be stored

only once.

SUNDR also stores messages signed by users. These are indexed by a hash of the public

key and an index number (so as to distinguish multiple messages signed by the same key).

Figure 3.2 shows the persistent data structures SUNDR stores and indexes by hash, as

well as the algorithm for computing i-handles. Every file is identified by a 〈principal, i-number〉

pair, where principal is the user or group allowed to write the file, and i-number is a per-

principal inode number. Directory entries map file names onto 〈principal, i-number〉 pairs.

A per-principal data structure called the i-table maps each i-number in use to the corre-

sponding inode. User i-tables map each i-number to a hash of the corresponding inode,

which we call the file’s i-hash. Group i-tables add a level of indirection, mapping a group

i-number onto a user i-number. (The indirection allows the same user to perform multi-

28

u2’s version
structure (yu2

)
u2’s i-table (tu2

)
2→ H(i2)

3→ H(i3)
...

3→ 〈u2, 4〉

2→ 〈u1, 7〉

g’s i-table (tg)

...

H∗(tu2
)

u2

g : H∗(tg)

version vector:

u2’s signature

〈u1-7 u2-3
g-5 . . .〉

Figure 3.3: A version structure containing a group i-handle.

ple successive writes to a group-owned file without updating the group’s i-handle.) Inodes

themselves contain SHA-1 hashes of file data blocks and indirect blocks.

Each i-table is stored as a B+-tree, where internal nodes contain the SHA-1 hashes of

their children, thus forming a hash tree. The hash of the B+-tree root is the i-handle. Since

the block store allows blocks to be requested by SHA-1 hash, given a user’s i-handle, a

client can fetch and verify any block of any file in the user’s i-table by recursively requesting

the appropriate intermediary blocks. The next question, of course, is how to obtain and

verify a user’s latest i-handle.

3.2.3.2 Protocol

i-handles are stored in digitally-signed messages known as version structures, shown in

Figure 3.3. Each version structure is signed by a particular user. The structure must always

contain the user’s i-handle. In addition, it can optionally contain one or more i-handles of

groups to which the user belongs. Finally, the version structure contains a version vector

consisting of a version number for every user and group in the system.

When user u performs a file system operation, u’s client acquires the global lock and

29

downloads the latest version structure for each user and group. We call this set of version

structures the version structure list, or VSL. (Much of the VSL’s transfer can be elided if

only a few users and groups have changed version structures since the user’s last operation.)

The client then computes a new version structure z by potentially updating i-handles and

by setting the version numbers in z to reflect the current state of the file system.

More specifically, to set the i-handles in z, on a fetch, the client simply copies u’s

previous i-handle into z, as nothing has changed. For a modify, the client computes and

includes new i-handles for u and for any groups whose i-tables it is modifying.

The client then sets z’s version vector to reflect the version number of each VSL entry.

For any version structure like z, and any principal (user or group) p, let z[p] denote p’s

version number in z’s version vector (or 0 if z contains no entry for p). For each principal

p, if yp is p’s entry in the VSL (i.e., the version structure containing p’s latest i-handle), set

z[p]← yp[p].

Finally, the client bumps version numbers to reflect the i-handles in z. It sets z[u] ←

z[u] + 1, since z always contains u’s i-handle, and for any group g whose i-handle z con-

tains, sets z[g]← z[g] + 1.

The client then checks the VSL for consistency. Given two version structures x and y,

we define x ≤ y iff ∀p x[p] ≤ y[p]. To check consistency, the client verifies that the VSL

contains u’s previous version structure, and that the set of all VSL entries combined with z

is totally ordered by ≤. If it is, the user signs the new version structure and sends it to the

server with a COMMIT RPC. The server adds the new structure to the VSL and retires the

old entries for updated i-handles, at which point the client releases the file system lock.

Figure 3.4 revisits the forking attack from the end of Section 3.2.1, showing how version

vectors evolve in SUNDR. With each version structure signed, a user reflects the highest

version number seen from every other user, and also increments his own version number

30

1.

2.

3.

4.

5.

sigA hA 〈A-1〉

sig

sig

sig

sig

〈A-1 B-1〉

〈A-2 B-1〉

〈A-3 B-1〉

〈A-2 B-2〉

A

A

B

B

hA

h′

A

hB

hB

Figure 3.4: Signed version structures with a forking attack.

to reflect the most recent i-handle. A violation of consistency causes users to sign incom-

patible version structures—i.e., two structures x and y such that x 6≤ y and y 6≤ x. In

this example, the server performs a forking attack after step 3. User A updates his i-handle

from hA to h′
A in 4, but in 5, B is not aware of the change. The result is that the two version

structures signed in 4 and 5 are incompatible.

Just as in the straw-man file system, once two users have signed incompatible version

structures, they will never again sign compatible ones, and thus cannot ever see each other’s

operations without detecting the attack (as proven in [60]).

One optimization worth mentioning is that SUNDR amortizes the cost of recomputing

hash trees over several operations. As shown in Figure 3.5, an i-handle contains not just a

hash tree root, but also a small log of changes that have been made to the i-table. The change

log furthermore avoids the need for other users to fetch i-table blocks when re-validating a

cached file that has not changed since the hash tree root was last computed.

31

4→ 〈u1, 2〉

5→ 〈u3, 4〉

3→ 〈u2, 4〉

2→ 〈u1, 7〉

...

group g’s i-table (tg)
(maps i#→〈user,i#〉)

group g’s
i-handle
H∗(t′g)

change log:
∆1

...
∆2

Figure 3.5: i-table for group g, showing the change log. t′g is a recent i-table; applying the
log to t′g yields tg.

3.2.4 Concurrent SUNDR

While the version structures in SUNDR detect inconsistency, serialized SUNDR is too con-

servative in what it prohibits. Each client must wait for the previous client’s version vector

before computing and signing its own, so as to reflect the appropriate version numbers.

Instead, we would like most operations to proceed concurrently. The only time one client

should have to wait for another is when it reads a file the other is in the process of writing.2

3.2.4.1 Update certificates

SUNDR’s solution to concurrent updates is for users to pre-declare a fetch or modify op-

eration before receiving the VSL from the server. They do so with signed messages called

update certificates. If yu is u’s current VSL entry, an update certificate for u’s next opera-

tion contains:

• u’s next version number (yu[u] + 1, unless u is pipelining multiple updates),

• a hash of u’s VSL entry (H(yu)), and

2One might wish to avoid waiting for other clients even in the event of such a read-after-write conflict.
However, this turns out to be impossible with untrusted servers. If a single signed message could atomically
switch between two file states (as shown in the proof in section 2.2.2), the server could conceal the change
initially, then apply it long after forking the file system, when users should no longer see each others’ updates.

32

• a (possibly empty) list of modifications to perform.

Each modification (or delta) can be one of four types:

• Set file 〈user, i#〉 to i-hash h.

• Set group file 〈group, i#〉 to 〈user, i#〉.

• Set/delete entry name in directory 〈user/group, i#〉.

• Pre-allocate a range of group i-numbers (pointing them to unallocated user i-numbers).

The client sends the update certificate to the server in an UPDATE RPC. The server replies

with both the VSL and a list of all pending operations not yet reflected in the VSL, which

we call the pending version list or PVL.

Note that both fetch and modify operations require UPDATE RPCs, though fetches con-

tain no deltas. (The RPC name refers to updating the VSL, not file contents.) Moreover,

when executing complex system calls such as rename, a single UPDATE RPC may contain

deltas affecting multiple files and directories, possibly in different i-tables.

An honest server totally orders operations according to the arrival order of UPDATE

RPCs. If operation op1 is reflected in the VSL or PVL returned for op2’s UPDATE RPC,

then op1 happened before op2. Conversely, if op2 is reflected in op1’s VSL or PVL, then op2

happened before op1. If neither happened before the other, then the server has mounted a

forking attack.

When signing an update certificate, a client cannot predict the version vector of its next

version structure, as the vector may depend on concurrent operations by other clients. The

server, however, knows precisely what operations the forthcoming version structure must

reflect. For each update certificate, the server therefore calculates the forthcoming version

structure, except for the i-handle. This unsigned version structure is paired with its update

33

certificate in the PVL, so that the PVL is actually a list of 〈update certificate, unsigned

version structure〉 pairs.

The algorithm for computing a new version structure, z, begins as in serialized SUNDR:

for each principal p, set z[p] ← yp[p], where yp is p’s entry in the VSL. Then, z’s version

vector must be incremented to reflect pending updates in the PVL, including u’s own.

For user version numbers, this is simple; for each update certificate signed by user u, set

z[u] ← z[u] + 1. For groups, the situation is complicated by the fact that operations may

commit out of order when slow and fast clients update the same i-table. For any PVL

entry updating group g’s i-table, we wish to increment z[g] if and only if the PVL entry

happened after yg (since we already initialized z[g] with yg[g]). We determine whether or

not to increment the version number by comparing yg to the PVL entry’s unsigned version

vector, call it `. If ` 6≤ yg, set z[g] ← z[g] + 1. The result is the same version vector one

would obtain in serialized SUNDR by waiting for all previous version structures.

Upon receiving the VSL and PVL, a client ensures that the VSL, the unsigned version

structures in the PVL, and its new version structure are totally ordered. It also checks for

conflicts. If none of the operations in the PVL change files the client is currently fetching

or group i-tables it is modifying, the client simply signs a new version structure and sends

it to the server for inclusion in the VSL.

3.2.4.2 Update conflicts

If a client is fetching a file and the PVL contains a modification to that file, this signifies a

read-after-write conflict. In this case, the client still commits its version structure as before

but then waits for fetched files to be committed to the VSL before returning to the appli-

cation. (A FETCHPENDING RPC lets clients request a particular version structure from the

server as soon as it arrives.)

34

∆1: set 〈u2, 10〉 → hY

∆2: add entry (“Y” → 〈u2, 10〉)

∆3: set 〈g, 4〉 → 〈u2, 11〉

to directory 〈g, 4〉
∆2: add entry (“X” → 〈u1, 7〉)

∆1: set 〈u1, 7〉 → hX

∆3: set 〈g, 4〉 → 〈u1, 8〉

to directory 〈g, 4〉

. . .

. . .

. . .

4 → 〈u1, 8〉

g’s i-table at T1

user u1

“X” → 〈u1, 7〉
T2 “Y” → 〈u2, 10〉

metadata

(/sundr/tmp)
u2’s inode 11

4 → 〈u2, 11〉

. . .

. . .

. . .

g’s i-table at T2

“X” → 〈u1, 7〉

(/sundr/tmp)
u1’s inode 8

Server

update

upd
ate

u1’s signature

H(yu1
)u1 version 7 version 3 H(yu2

)u2

u2’s update certificateu1’s update certificate
user u2

VSL
PVL = (u

1 , u
2 ’s updates,

unsigned version structures)

com
mit

commit

T1

unsigned versio
n stru

cture)
VSL

PVL = (u1
’s update,

u2’s signature

. . .

metadata

Figure 3.6: Concurrent updates to /sundr/tmp/ by different users.

A trickier situation occurs when the PVL contains a modification to a group i-handle

that the client also wishes to modify, signifying a write-after-write conflict. How should a

client, u, modifying a group g’s i-table, tg, recompute g’s i-handle, hg, when other opera-

tions in the PVL also affect tg? Since any operation in the PVL happened before u’s new

version structure, call it z, the handle hg in z must reflect all operations on tg in the PVL.

On the other hand, if the server has behaved incorrectly, one or more of the forthcoming

version structures corresponding to these PVL entries may be incompatible with z. In this

case, it is critical that z not somehow “launder” operations that should have alerted people

to the server’s misbehavior.

Recall that clients already check the PVL for read-after-write conflicts. When a client

sees a conflicting modification in the PVL, it will wait for the corresponding VSL entry

even if u has already incorporated the change in hg. However, the problem remains that a

malicious server might prematurely drop entries from the PVL, in which case a client could

incorrectly fetch modifications reflected by tg but never properly committed.

35

The solution is for u to incorporate any modifications of tg in the PVL not yet reflected

in yg, and also to record the current contents of the PVL in a new field of the version

structure. In this way, other clients can detect missing PVL entries when they notice those

entries referenced in u’s version structure. Rather than include the full PVL, which might

be large, u simply records, for each PVL entry, the user performing the operation, that

user’s version number for the operation, and a hash of the expected version structure with

i-handles omitted.

When u applies changes from the PVL, it can often do so by simply appending the

changes to the change log of g’s i-handle, which is far more efficient than rehashing the

i-table and often saves u from fetching uncached portions of the i-table.

3.2.4.3 Example

Figure 3.6 shows an example of two users u1 and u2 in the group g modifying the same

directory. u1 creates file X while u2 creates Y, both in /sundr/tmp/. The directory is group-

writable, while the files are not. (For the example, we assume no other pending updates.)

Assume /sundr/tmp/ is mapped to group g’s i-number 4. User u1 first calculates the

i-hash of file X, call it hX , then allocates his own i-number for X, call it 7. u1 then allocates

another i-number, 8, to hold the contents of the modified directory. Finally, u1 sends the

server an update certificate declaring three deltas, namely the mapping of file 〈u1, 7〉 to

i-hash hX , the addition of entry (“X”→ 〈u1, 7〉) to the directory, and the re-mapping of g’s

i-number 4 to 〈u1, 8〉.

u2 similarly sends the server an update certificate for the creation of file Y in /sundr/

tmp/. If the server orders u1’s update before u2’s, it will respond to u1 with the VSL and

a PVL containing only u1’s update, while it will send u2 a PVL reflecting both updates.

u2 will therefore apply u1’s modification to the directory before computing the i-handle

36

u1

version 7

H(yu1
)

u1’s signature
∆1,∆2,∆3

u1’s unsigned
version

(`u1
)

structure
H∗(tu2

)

u2

g : H∗(tg)

u2’s version
structurecertificate

u1’s update

...
〈u1-7 u2-2

〈u1-7 u2-3

...

u2’s signature
〈u1-7-H(`u1

)〉

g-4 . . .〉
g-5 . . .〉

Figure 3.7: A pending update by user u1, reflected in user u2’s version structure.

for g, incorporating u1’s directory entry for X. u2 would also ordinarily incorporate u1’s

re-mapping of the directory 〈g, 4〉 → 〈u1, 7〉, except that u2’s own re-mapping of the same

directory supersedes u1’s.

An important subtlety of the protocol, shown in Figure 3.7, is that u2’s version structure

contains a hash of u1’s forthcoming version structure (without i-handles). This ensures that

if the server surreptitiously drops u1’s update certificate from the PVL before u1 commits,

whoever sees the incorrect PVL must be forked from both u1 and u2.

3.3 Discussion

SUNDR only detects attacks; it does not resolve them. Following a server compromise, two

users might find themselves caching divergent copies of the same directory tree. Resolving

such differences has been studied in the context of optimistic file system replication [50,

77], though invariably some conflicts require application-specific reconciliation. With CVS,

users might employ CVS’s own merging facilities to resolve forks.

SUNDR’s protocol leaves considerable opportunities for compression and optimiza-

tion. In particular, though version structure signatures must cover a version vector with all

37

users and groups, there is no need to transmit entire vectors in RPCs. By ordering entries

from most- to least-recently updated, the tail containing idle principals can be omitted on

all but a client’s first UPDATE RPC. Moreover, by signing a hash of the version vector and

hashing from oldest to newest, clients could also pre-hash idle principals’ version numbers

to speed version vector signatures. Finally, the contents of most unsigned version struc-

tures in the PVL is implicit based on the order of the PVL and could be omitted (since the

server computes unsigned version structures deterministically based on the order in which

it receives UPDATE RPCs). None of these optimizations is currently implemented.

SUNDR’s semantics differ from those of traditional Unix. Clients supply file modifica-

tion and inode change times when modifying files, allowing values that might be prohibited

in Unix. There is no time of last access. Directories have no “sticky bit.” A group-writable

file in SUNDR is not owned by a user (as in Unix) but rather is owned by the group; such

a file’s “owner” field indicates the last user who wrote to it. In contrast to Unix disk quo-

tas, which charge the owner of a group-writable file for writes by other users, if SUNDR’s

block store enforced quotas, they would charge each user for precisely the blocks written

by that user.

One cannot change the owner of a file in SUNDR. However, SUNDR can copy arbi-

trarily large files at the cost of a few pointer manipulations, due to its hash-based storage

mechanism. Thus, SUNDR implements chown by creating a copy of the file owned by the

new user or group and updating the directory entry to point to the new copy. Doing so

requires write permission on the directory and changes the semantics of hard links (since

chown only affects a single link).

Yet another difference from Unix is that the owner of a directory can delete any entries

in the directory, including non-empty subdirectories to which he or she does not have write

permission. Since Unix already allows users to rename such directories away, additionally

38

allowing delete permission does not appreciably affect security. In a similar vein, users can

create multiple hard links to directories, which could confuse some Unix software, or could

be useful in some situations. Other types of malformed directory structure are interpreted as

equivalent to something legal (e.g., only the first of two duplicate directory entries counts).

SUNDR does not yet offer read protection or confidentiality. Confidentiality can be

achieved through encrypted storage, a widely studied problem [20, 42, 47, 82].

In terms of network latency, SUNDR is comparable with other polling network file sys-

tems. SUNDR waits for an UPDATE RPC to complete before returning from an application

file system call. If the system call caused only modifies, or if all fetched data hit in the

cache, this is the only synchronous round trip required; the COMMIT can be sent in the

background (except for fsync). This behavior is similar to systems such as NFS3, which

makes an ACCESS RPC on each open and writes data back to the server on each close. We

note that callback- or lease-based file systems can actually achieve zero round trips when

the server has committed to notifying clients of cache invalidations.

3.4 File system implementation

The SUNDR client is implemented at user level, using a modified version of the xfs device

driver from the ARLA file system [81] on top of a slightly modified FreeBSD kernel.

Server functionality is divided between two programs, a consistency server, which handles

update certificates and version structures, and a block store, which actually stores data,

update certificates, and version structures on disk. For experiments in this paper, the block

server and consistency server ran on the same machine, communicating over Unix-domain

sockets. They can also be configured to run on different machines and communicate over

an authenticated TCP connection.

39

3.4.1 File system client

The xfs device driver used by SUNDR is designed for whole-file caching. When a file

is opened, xfs makes an upcall to the SUNDR client asking for the file’s data. The client

returns the identity of a local file that has a cached copy of the data. All reads and writes are

performed on the cached copy, without further involvement of SUNDR. When the file is

closed (or flushed with fsync), if it has been modified, xfs makes another upcall asking the

client to write the data back to the server. Several other types of upcalls allow xfs to look

up names in directories, request file attributes, create/delete files, and change metadata.

As distributed, xfs’s interface posed two problems for SUNDR. First, xfs caches infor-

mation like local file bindings to satisfy some requests without upcalls. In SUNDR, some

of these requests require interaction with the consistency server for the security properties

to hold. We therefore modified xfs to invalidate its cache tokens immediately after getting

or writing back cached data, so as to ensure that the user-level client gets control when-

ever the protocol requires an UPDATE RPC. We similarly changed xfs to defeat the kernel’s

name cache.

Second, some system calls that should require only a single interaction with the SUNDR

consistency server result in multiple kernel vnode operations and xfs upcalls. For example,

the system call “stat ("a/b/c", &sb)” results in three xfs GETNODE upcalls (for the

directory lookups) and one GETATTR. The whole system call should require only one UP-

DATE RPC. Yet if the user-level client does not know that the four upcalls are on behalf of

the same system call, it must check the freshness of its i-handles four separate times with

four UPDATE RPCs.

To eliminate unnecessary RPCs, we modified the FreeBSD kernel to count the number

of system call invocations that might require an interaction with the consistency server. We

increment the counter at the start of every system call that takes a pathname as an argument

40

(e.g., stat, open, readlink, chdir). The SUNDR client memory-maps this counter and

records the last value it has seen. If xfs makes an upcall that does not change the state of

the file system, and the counter has not changed, then the client can use its cached copies

of all i-handles.

3.4.2 Signature optimization

The cost of digital signatures on the critical path in SUNDR is significant. Our implemen-

tation therefore uses the ESIGN signature scheme,3 which is over an order of magnitude

faster than more popular schemes such as RSA. All experiments reported in this paper use

2,048-bit public keys, which, with known techniques, would require a much larger work

factor to break than 1,024-bit RSA.

To move verification out of the critical path, the consistency server also processes and

replies to an UPDATE RPC before verifying the signature on its update certificate. It verifies

the signature after replying, but before accepting any other RPCs from other users. If the

signature fails to verify, the server removes the update certificate from the PVL and and

drops the TCP connection to the forging client. (Such behavior is acceptable because only

a faulty client would send invalid signatures.) This optimization allows the consistency

server’s verification of one signature to overlap with the client’s computation of the next.

Clients similarly overlap computation and network latency. Roughly half the cost of

an ESIGN signature is attributable to computations that do not depend on the message

contents. Thus, while waiting for the reply to an UPDATE RPC, the client precomputes its

next signature.

3Specifically, we use the version of ESIGN shown secure in the random oracle model by [64], with
parameter e = 8.

41

3.4.3 Consistency server

The consistency server orders operations for SUNDR clients and maintains the VSL and

PVL as described in Section 3.2. In addition, it polices client operations and rejects invalid

RPCs, so that a malicious user cannot cause an honest server to fail. For crash recovery, the

consistency server must store the VSL and PVL to persistent storage before responding to

client RPCs. The current consistency server stores these to the block server. Because the

VSLs and PVLs are small relative to the size of the file system, it would also be feasible to

use non-volatile RAM (NVRAM).

3.5 Block store implementation

A block storage daemon called bstor handles all disk storage in SUNDR. Clients interact

directly with bstor to store blocks and retrieve them by SHA-1 hash value. The consistency

server uses bstor to store signed update and version structures. Because a SUNDR server

does not have signature keys, it lacks permission to repair the file system after a crash.

For this reason, bstor must synchronously store all data to disk before returning to clients,

posing a performance challenge. bstor therefore heavily optimizes synchronous write per-

formance.

bstor’s basic idea is to write incoming data blocks to a temporary log, then to move

these blocks to Venti-like storage in batches. Venti [68] is an archival block store that ap-

pends variable-sized blocks to a large, append-only IDE log disk while indexing the blocks

by SHA-1 hash on one or more fast SCSI disks. bstor’s temporary log relaxes the archival

semantics of Venti, allowing short-lived blocks to be deleted within a small window of

their creation. bstor maintains an archival flavor, though, by supporting periodic file sys-

tem snapshots.

42

The temporary log allows bstor to achieve low latency on synchronous writes, which

under Venti require an index lookup to ensure the block is not a duplicate. Moreover, bstor

sector-aligns all blocks in the temporary log, temporarily wasting an average of half a sector

per block so as to avoid multiple writes to the same sector, which would each cost at least

one disk rotation. The temporary log improves write throughput even under sustained load,

because transferring blocks to the permanent log in large batches allows bstor to order

index disk accesses.

bstor keeps a large in-memory cache of recently used blocks. In particular, it caches all

blocks in the temporary log so as to avoid reading from the temporary log disk. Though

bstor does not currently use special hardware, in Section 4.5 we describe how SUNDR’s

performance would improve if bstor had a small amount of NVRAM to store update cer-

tificates.

3.5.1 Interface

bstor exposes the following RPCs to SUNDR clients:

store (header, block)

retrieve (hash)

vstore (header, pubkey, n, block)

vretrieve (pubkey, n, [time])

decref (hash)

snapshot ()

The store RPC writes a block and its header to stable storage if bstor does not already

have a copy of the block. The header has information encapsulating the block’s owner

and creation time, as well as fields useful in concert with encoding or compression. The

43

retrieve RPC retrieves a block from the store given its SHA-1 hash. It also returns the

first header stored with the particular block.

The vstore and vretrieve RPCs are like store and retrieve, but for signed blocks.

Signed blocks are indexed by the public key and a small index number, n. vretrieve, by

default, fetches the most recent version of a signed block. When supplied with a timestamp

as an optional third argument, vretrieve returns the newest block written before the given

time.

decref (short for “decrement reference count”) informs the store that a block with a

particular SHA-1 hash might be discarded. SUNDR clients use decref to discard tem-

porary files and short-lived metadata. bstor’s deletion semantics are conservative. When a

block is first stored, bstor establishes a short window (one minute by default) during which

it can be deleted. If a client stores then decrefs a block within this window, bstor marks

the block as garbage and does not permanently store it. If two clients store the same block

during the dereference window, the block is marked as permanent.

An administrator should issue a snapshot RPC periodically to create a coherent file

system image that clients can later revert to in the case of accidental data disruption. Upon

receiving this RPC, bstor simply immunizes all newly-stored blocks from future decref’s

and flags them to be stored in the permanent log. snapshot and vretrieve’s time argu-

ment are designed to allow browsing of previous file system state, though this functionality

is not yet implemented in the client.

3.5.2 Index

bstor’s index system locates blocks on the permanent log, keyed by their SHA-1 hashes. An

ideal index is a simple in-memory hash table mapping 20-byte SHA-1 block hashes to 8-

byte log disk offsets. If we assume that the average block stored on the system is 8 KB, then

44

the index must have roughly 1/128 the capacity of the log disk. Although at present such

a ratio of disk to memory is possible with commodity components, we are not convinced

that memory will keep up with hard disks in the future.

We instead use Venti’s strategy of striping a disk-resident hash table over multiple high-

speed SCSI disks. bstor hashes 20-byte SHA-1 hashes down to 〈index-disk-id, index-disk-offset〉

pairs. The disk offsets point to sector-sized on-disk data structures called buckets, which

contain 15 index-entries, sorted by SHA-1 hash. index-entries in turn map SHA-1 hashes

to offsets on the permanent data log. Whenever an index-entry is written to or read from

disk, bstor also stores it in an in-memory LRU cache.

bstor accesses the index system as Venti does when answering retrieve RPCs that

miss the block cache. When bstor moves data from the temporary to the permanent log, it

must access the index system sometimes twice per block (once to check a block is not a

duplicate, and once to write a new index entry after the block is committed the permanent

log). In both cases, bstor sorts these disk accesses so that the index disks service a batch of

requests with one disk arm sweep. Despite these optimizations, bstor writes blocks to the

permanent log in the order they arrived; randomly reordering blocks would hinder sequen-

tial read performance over large files.

3.5.3 Data management

To recover from a crash or an unclean shutdown, the system first recreates an index con-

sistent with the permanent log, starting from its last known checkpoint. Index recovery is

necessary because the server updates the index lazily after storing blocks to the permanent

log. bstor then processes the temporary log, storing all fresh blocks to the permanent log,

updating the index appropriately.

Venti’s authors argue that archival storage is practical because IDE disk capacity is

45

growing faster than users generate data. For users who do not fit this paradigm, however,

bstor could alternatively be modified to support mark-and-sweep garbage collection. The

general idea is to copy all reachable blocks to a new log disk, then recycle the old disk.

With two disks, bstor could still respond to RPCs during garbage collection.

3.6 Performance

The primary goal in testing SUNDR was to ensure that its security benefits do not come at

too high a price relative to existing file systems. In this section, we compare SUNDR’s over-

all performance to NFS. We also perform microbenchmarks to help explain our application-

level results, and to support our claims that our block server outperforms a Venti-like ar-

chitecture in our setting.

3.6.1 Experimental setup

We carried out our experiments on a cluster of 3 GHz Pentium IV machines running

FreeBSD 4.9. All machines were connected with fast Ethernet with ping times of 110 µs.

For block server microbenchmarks, we additionally connected the block server and client

with gigabit Ethernet. The machine running bstor has 3 GB of RAM and an array of disks:

four Seagate Cheetah 18 GB SCSI drives that spin at 15,000 RPM were used for the index;

two Western Digital Caviar 180 GB 7200 RPM EIDE drives were used for the permanent

and temporary logs.

46

3.6.2 Microbenchmarks

3.6.2.1 bstor

Our goals in evaluating bstor are to quantify its raw performance and justify our design

improvements relative to Venti. In our experiments, we configured bstor’s four SCSI disks

each to use 4 GB of space for indexing. If one hopes to maintain good index performance

(and not overflow buckets), then the index should remain less than half full. With our con-

figuration (8 GB of usable index and 32-byte index entries), bstor can accommodate up to

2 TB of permanent data. For flow control and fairness, bstor allowed clients to make up to

40 outstanding RPCs. For the purposes of the microbenchmarks, we disabled bstor’s block

cache but enabled an index cache of up to 100,000 entries. The circular temporary log was

720 MB and never filled up during our experiments.

We measured bstor’s performance while storing and fetching a batch of 20,000 unique

8 KB blocks. Figure 3.8 shows the averaged results from 20 runs of a 20,000 block exper-

iment. In all cases, standard deviations were less than 5% of the average results. The first

two results show that bstor can absorb bursts of 8 KB blocks at almost twice fast Ethernet

rates, but that sustained throughput is limited by bstor’s ability to shuffle blocks from the

temporary to the permanent logs, which it can do at 11.9 MB/s. The bottleneck in storeing

blocks to the temporary log is currently CPU, and future versions of bstor might eliminate

some unnecessary memcpys to achieve better throughput. On the other hand, bstor can pro-

cess the temporary log only as fast as it can read from its index disks, and there is little

room for improvement here unless disks become faster or more index disks are used.

To compare with a Venti-like system, we implemented a Venti-like store mechanism.

In venti store, bstor first checks for a block’s existence in the index and stores the block

to the permanent log only if it is not found. That is, each venti store entails an access

47

Operation MB/s
store (burst) 18.4
store (sustained) 11.9
venti store 5.1
retrieve (random + cold index cache) 1.2
retrieve (sequential + cold index cache) 9.1
retrieve (sequential + warm index cache) 25.5

Figure 3.8: bstor throughput measurements with the block cache disabled.

to the index disks. Our results show that venti store can achieve only 27% of store’s

burst throughput, and 43% of its sustained throughput.

Figure 3.8 also presents read measurements for bstor. If a client reads blocks in the

same order they are written (i.e., “sequential” reads), then bstor need not seek across the

permanent log disk. Throughput in this case is limited by the per-block cost of locating

hashes on the index disks and therefore increases to 25.5 MB/s with a warm index cache.

Randomly-issued reads fare poorly, even with a warm index cache, because bstor must seek

across the permanent log. In the context of SUNDR, slow random retrieves should not

affect overall system performance if the client aggressively caches blocks and reads large

files sequentially.

Finally, the latency of bstor RPCs is largely a function of seek times. store RPCs do

not require seeks and therefore return in 1.6 ms. venti store returns in 6.7 ms (after one

seek across the index disk at a cost of about 4.4 ms). Sequential retrieves that hit and

miss the index cache return in 1.9 and 6.3 ms, respectively. A seek across the log disk takes

about 6.1 ms; therefore random retrieves that hit and miss the index cache return in 8.0

and 12.4 ms respectively.

48

3.6.2.2 Cryptographic overhead

SUNDR clients sign and verify version structures and update certificates using 2,048-bit

ESIGN keys. Our implementation (based on the GNU Multiprecision library version 4.1.4)

can complete signatures in approximately 150 µs and can verify them 100 µs. Precomput-

ing a signature requires roughly 80 µs, while finalizing a precomputed signature is around

75 µs. We observed that these measurements can vary on the Pentium IV by as much as

a factor of two, even in well-controlled micro-benchmarks. By comparison, an optimized

version of the Rabin signature scheme with 1,280-bit keys, running on the same hardware,

can compute signatures in 3.1 ms and can verify them in 27 µs.

3.6.3 End-to-end evaluation

In end-to-end experiments, we compare SUNDR to both NFS2 and NFS3 servers running

on the same hardware. To show NFS in the best possible light, the NFS experiments run

on the fast SCSI disks SUNDR uses for indexes, not the slower, larger EIDE log disks. We

include NFS2 results because NFS2’s write-through semantics are more like SUNDR’s.

Both NFS2 and SUNDR write all modified file data to disk before returning from a close

system call, while NFS3 does not offer this guarantee.

Finally, we described in Section 3.4.3 that SUNDR clients must wait for the consistency

server to write small pieces of data (VSLs and PVLs) to stable storage. The consistency

server’s storing of PVLs in particular is on the client’s critical path. We present result sets

for consistency servers running with and without flushes to secondary storage. We intend

the mode with flushes disabled to simulate a consistency server with NVRAM.

All application results shown are the average of three runs. Relative standard deviations

are less than 8% unless otherwise noted.

49

create read unlink
0

5

10

R
un

 T
im

e
(s

)

NFS2
NFS3
SUNDR
SUNDR / NVRAM

Figure 3.9: Single client LFS Small File Benchmark. 1000 operations on files with 1 KB
of random content.

3.6.3.1 LFS small file benchmark

The LFS small file benchmark [73] tests SUNDR’s performance on simple file system

operations. This benchmark creates 1,000 1 KB files, reads them back, then deletes them.

We have modified the benchmark slightly to write random data to the 1 KB files; writing

the same file 1,000 times would give SUNDR’s hash-based block store an unfair advantage.

Figure 3.9 details our results when only one client is accessing the file system. In the

create phase of the benchmark, a single file creation entails system calls to open, read and

close. On SUNDR/NVRAM, the open call involves two serialized rounds of the consistency

protocol, each of which costs about 2 ms; the write call is a no-op, since file changes

are buffered until close; and the close call involves one round of the protocol and one

synchronous write of file data to the block server, which the client can overlap. Thus, the

entire sequence takes about 6 ms. Without NVRAM, each round of the protocol takes

approximately 1-2 ms longer, because the consistency server must wait for bstor to flush.

Unlike SUNDR, an NFS server must wait for at least one disk seek when creating a

50

new file because it synchronously writes metadata. A seek costs at least 4 ms on our fast

SCSI drives, and thus NFS can do no better than 4 ms per file creation. In practice, NFS

requires about 6 ms to service the three system calls in the create stage.

In the read phase of the benchmark, SUNDR performs one round of the consistency

protocol in the open system call. The NFS3 client still accesses the server with an access

RPC, but the server is unlikely to need any data not in its buffer cache at this point, and

hence no seeking is required. NFS2 does not contact the server in this phase.

In the unlink stage of the benchmark, clients issue a single unlink system call per

file. An unlink for SUNDR triggers one round of the consistency protocol and an asyn-

chronous write to the block server to store updated i-table and directory blocks. SUNDR

and SUNDR/NVRAM in particular can outperform NFS in this stage of the experiment

because NFS servers again require at least one synchronous disk seek per file unlinked.

We also performed experiments with multiple clients performing the LFS small file

benchmark concurrently in different directories. Results for the create phase are reported

in Figure 3.10 and the other phases of the benchmark show similar trends. A somewhat

surprising result is that SUNDR actually scales better than NFS as client concurrency in-

creases in our limited tests. NFS is seek-bound even in the single client case, and the num-

ber of seeks the NFS servers require scale linearly with the number of concurrent clients.

For SUNDR, latencies induced by the consistency protocol limit individual client perfor-

mance, but these latencies overlap when clients act concurrently. SUNDR’s disk accesses

are also scalable because they are sequential, sector-aligned writes to bstor’s temporary

log.

51

1 2 31 2 3
Concurrent Clients

0

10

20

30

A
ve

ra
ge

 R
un

 T
im

e
(s

)

NFS2
NFS3
SUNDR
SUNDR / NVRAM

Figure 3.10: Concurrent LFS Small File Benchmark, create phase. 1000 creations of 1 KB
files. (Relative standard deviation for SUNDR in 3 concurrent clients case is 13.7%)

3.6.3.2 Group contention

The group protocol incurs additional overhead when folding other users’ changes into a

group i-table or directory. We characterized the cost of this mechanism by measuring a

workload with a high degree of contention for a group-owned directory. We ran a micro-

benchmark that simultaneously created 300 new files in the same, group-writable directory

on two clients. Each concurrent create required the client to re-map the group i-number in

the group i-table and apply changes to the user’s copy of the directory.

The clients took an average of 4.60 s and 4.26 s on SUNDR/NVRAM and NFS3 respec-

tively. For comparison, we also ran the benchmark concurrently in two separate directories,

which required an average of 2.94 s for SUNDR/NVRAM and 4.05 s for NFS3. The results

suggests that while contention incurs a noticeable cost, SUNDR’s performance even in this

case is not too far out of line with NFS3.

52

untar config make install clean
0

20

40

60

R
un

 T
im

e
(s

)

NFS2
NFS3
SUNDR
SUNDR / NVRAM

Figure 3.11: Installation procedure for emacs 20.7

3.6.3.3 Real workloads

Figure 3.11 shows SUNDR’s performance in untaring, configuring, compiling, installing

and cleaning an emacs 20.7 distribution. During the experiment, the SUNDR client sent

a total of 42,550 blocks to the block server, which totaled 139.24 MB in size. Duplicate

blocks, which bstor discards, account for 29.5% of all data sent. The client successfully

decrefed 10,747 blocks, for a total space savings of 11.3%. In the end, 25,740 blocks

which totaled 82.21 MB went out to permanent storage.

SUNDR is faster than NFS2 and competitive with NFS3 in most stages of the Emacs

build process. We believe that SUNDR’s sluggish performance in the install phase is an

artifact of our implementation, which serializes concurrent xfs upcalls for simplicity (and

not correctness). Concurrent xfs upcalls are prevalent in this phase of the experiment due

to the install command’s manipulation of file attributes.

Figure 3.12 details the performance of the untar phase of the Emacs build as client

concurrency increases. We noted similar trends for the other phases of the build process.

These experiments suggest that the scalability SUNDR exhibited in the LFS small file

53

1 2 31 2 3
Concurrent Clients

20

40

60

80

100

A
ve

ra
ge

 R
un

 T
im

e
(s

)

NFS2
SUNDR
NFS3
SUNDR / NVRAM

Figure 3.12: Concurrent untar of emacs 20.7.tar

benchmarks extends to real file system workloads.

3.6.3.4 CVS on SUNDR

We tested CVS over SUNDR to evaluate SUNDR’s performance as a source code repos-

itory. Our experiment follows a typical progression. First, client A imports an arbitrary

source tree—in this test groff-1.17.2, which has 717 files totaling 6.79 MB. Second,

clients A and B check out a copy to their local disks. Third, A commits groff-1.18,

which affects 549 files (6.06 MB). Lastly, B updates its local copy. Figure 3.1 shows the

results.

SUNDR fares badly on the commit phase because CVS repeatedly opens, memory

maps, unmaps, and closes each repository file several times in rapid succession. Every open

requires an iteration of the consistency protocol in SUNDR, while FreeBSD’s NFS3 appar-

ently elides or asynchronously performs access RPCs after the first of several closely-

54

Phase SUNDR SUNDR NFS3 SSH
NVRAM

Import 13.0 10.0 4.9 7.0
Checkout 13.5 11.5 11.6 18.2
Commit 38.9 32.8 15.7 11.5
Update 19.1 15.9 13.3 11.5

Table 3.1: Run times for CVS experiments (in seconds).

spaced open calls. CVS could feasibly cache memory-mapped files at this point in the

experiment, since a single CVS client holds a lock on the directory. This small change

would significantly improve SUNDR’s performance in the benchmark.

55

Chapter 4

BFT2F

We describe the design and implementation of SUNDR in the previous chapter. SUNDR

is concerned with guaranteeing fork consistency without trusting any of its servers. How-

ever, because of this assumption, SUNDR also has a limitation: it can only guarantee ideal

consistency if none of its servers fails in any way. When the servers fail benignly (i.e., in a

fail-stop fashion), SUNDR loses liveness; When servers fail in a Byzantine way, SUNDR

merely promises fork consistency in this worst case.

However, failure must be considered the common case in today’s large scale storage

systems, not the exception [41]. To deliver continuous service, one has to provide some sort

of fault tolerance. Replication is one of the most common approaches. Further complicating

the matter, masking some servers’ malicious (Byzantine) behavior requires significantly

more complicated replication and agreement protocols. The resulting replication systems

are termed Byzantine Fault Tolerant systems (BFT) in the literature, and have received

extensive study in the past 20+ years [51, 21, 55, 25, 22].

Unfortunately, all BFT systems require a ”strong” assumption that at least some prede-

termined fraction of servers are honest. For example, the highest fraction of failures that an

56

asynchronous BFT system can survive without jeopardizing linearizability or liveness is f

out of 3f + 1 servers. The reason is that asynchronous communication makes it impossi-

ble to differentiate slow replicas from failed ones. To progress safely with f unresponsive

replicas, a majority of the remaining 2f + 1 responsive replicas must be honest.

In the smallest configuration, a BFT system requires four servers and remains secure as

long as no two are compromised. These numbers limit BFT’s effectiveness against software

vulnerabilities, because it is hard to run four machines with entirely uncorrelated software

flaws. For example, while Windows and Linux seldom have the same exploitable bugs,

a number of flaws have affected both Linux and other Unix-like operating systems. BSD

variants share a lot of code and are even more likely to experience correlated vulnerability.

Making matters worse, the security of today’s best-known BFT algorithms fails com-

pletely given f + 1 compromised nodes. For example, an attacker who compromises two

out of four replicas can return arbitrary results to any request by any client, including in-

venting past operations that were never requested by any user or rolling back history to

undo operations that were already revealed to clients. In fact, it is not a priori harder to

compromise two out of four different replicas than one secure server. Whether existing

BFT algorithms exacerbate or mitigate the effects software bugs depends on the details of

a specific deployment.

Fortunately, linearizability and total failure are not the only options. The goal of this

chapter is to improve security when more than f out of 3f + 1 servers in a replicated state

system fail. Specifically, we explore the fork* consistency model introduced in section 2.2

to bound system’s behavior when between f + 1 and 2f replicas have failed. When 2f +

1 or more replicas fail, it is unfortunately not possible to make any guarantees without

simultaneously sacrificing liveness for cases where fewer than f replicas fail.

Our proposed BFT2F protocol provides exactly the same linearizability guarantee as

57

PBFT when less than 1/3 of replicas have failed. When at least 1/3 but less than 2/3 have

failed, two outcomes are possible. (1) The system may cease to make progress—In other

words, BFT2F does not guarantee liveness when 1/3 of replicas or more are compromised.

Fortunately, for most applications, denial of service is much less harmful than arbitrary

behavior. (2) The system may continue to operate and offer fork* consistency, which again

for many applications is considerably preferable to arbitrary behavior.

The rest of the chapter is organized as follows. We start by giving a brief survey of

the background of BFT systems in section 4.1. Then we present BFT2F, our extension

of Castro-Liskov’s PBFT in section 4.2. We prove the correctness of the protocol in sec-

tion 4.3, and finally evaluate the system in section 4.5.

4.1 Background

BFT systems are inspired by The Byzantine General’s problem [51]. The Byzantine Gen-

eral’s problem states that several generals encircle an enemy city, and need to formulate a

common plan of attack. The generals communicate with each other by messenger. How-

ever, some of the generals are traitorous, and try to prevent loyal generals from reaching

an agreement.

The problem is significantly complicated by the fact that traitorous generals could be-

have inconsistently. For instance, if three generals (G0, G1, G2) are voting, and G2 is

serving as the commanding general sending an order to his lieutenants G0 and G1. The

malicious general G2 sends G0 the same vote as his, while sending G1 the same vote as

hers (not necessary the same as the G0’s.). Therefore, G0 and G1 do not reach an agree-

ment, if they vote differently. The problem must have algorithms that satisfy the following

conditions.

58

1. All loyal lieutenants obey the same order.

2. If the commanding general is loyal, then every loyal lieutenant obeys his order.

It has been shown that there is no protocol that could achieve agreement with one third

or more of the generals traitorous. Furthermore, two algorithms [51], one for oral messages

and the other for signed messages, were presented given no more than one third of the

generals are traitorous.

4.1.1 PBFT in a nutshell

Most BFT algorithms require expensive public-key cryptography to authenticate messages.

Consequently, they perform at least an order of magnitude slower than those do not tolerate

Byzantine failures. Castro and Liskov propose a first practical algorithm – PBFT [25] –

that makes BFT system use feasible in real-world scenarios.

PBFT operates for 3f +1 replicated state machines in an asynchronous network, where

f is the maximum number of faulty replicas the algorithm can tolerate. PBFT evolves over

a series of views [65]. Within each view, one replica is designated the primary. A primary

is responsible for assigning a specific order to operations in the system. A client sends a

request message m to the primary. Then the algorithm passes through three phases: pre-

prepare, prepare, commit. During the pre-prepare phase, the primary gives m a sequence

number n, and sends m with assigned sequence number n to all other backup replicas.

During the prepare phase, all replicas inform others about their receipt of m with n. When

receiving 2f + 1 such matching receipts, one replica can obtain the knowledge K [43] that

there must be at least f +1 non-faulty replicas agreeing m with n, therefore there won’t be

another f +1 non-faulty replicas accepting different m′ with n within the same view. In the

commit phase, one sends K to all other peers. Consequently, when receiving 2f + 1 such

59

Ks, they can be combined to form a proof of a common knowledge CK [43]: the replica

knows that at least f +1 non-faulty replicas know K. This process ensures m with n would

be passed to the new view, whenever the current primary becomes faulty. Once the commit

phase finishes, replicas can safely execute m, and send the reply r back to the client. The

client accepts r, after receiving f + 1 matching replies.

When the primary is detected as faulty, a view-change is triggered to elect a new pri-

mary in a new view. The new primary is responsible for (re)generating a new pre-prepare

message for each message m that has passed through the prepare phase in the old view, or

a null message, if a sequence number is within the gap, but without the corresponding

message.

PBFT uses a lot of optimization to make it fast [27]. First, to authenticate a message,

PBFT appends a vector of MACs, one for each different recipient, avoiding the use of much

more expensive public-key cryptography in the common case. Second, only one replica

needs to send back the reply r, while others can just send digest replies. Third, a replica

can tentatively execute a request after prepare phase, once all previous requests of lower

sequence numbers have been committed. A client accepts the corresponding tentative reply

on receiving 2f + 1 matching ones.

4.2 BFT2F Algorithm

In this section, we present BFT2F, an extension of the original PBFT protocol [25], which

guarantees fork* consistency when more than f , but not more than 2f out of 3f +1 servers

fail in an asynchronous system.

Like PBFT, BFT2F uses a three-phase commit protocol [75]. The three phases are

pre-prepare, prepare, and commit. In view number view, replica p acts as the primary if

60

p = view mod 3f + 1. The primary replica assigns a new sequence number to each client

operation.

4.2.1 BFT2F Variables

Below, we describe major new variables and message fields introduced in BFT2F. We use

superscripts to denote sequence number, e.g. msgn refers to the message with sequence

number n. We use subscripts to distinguish variables kept at different nodes.

Hash Chain Digest (HCD): A HCD encodes all the operations a replica has committed

and the commit order. A replica updates its current HCD to be HCDn = D(D(msgn)◦

HCDn−1) upon committing msgn, where D is a cryptographic hash function and ◦

is a concatenation function. Replicas and clients use HCDs to verify if they have the

same knowledge of the current system state.

Hash Chain Digest History: To check if a replica’s current knowledge of the system state

is strictly fresher than another replica’s, but not forked. each replica keeps a history

of its past HCDs. We denote the past HCD entry at replica p upon processing msgn

as Tp[n].

Version Vector: Every node i represents its knowledge of the system state in a version

vector Vi. The version vector consists of 3f + 1 entries, one for each replica. Each

entry has the form 〈r, view, n,HCDn〉Kr
−1 , where r is the replica number, view is

the view number, n is the highest sequence number that node i knows that replica

r has committed, and HCDn is r’s HCD after n operations. The entry is signed

by node r’s private key Kr
−1. We denote replica r’s entry in Vi by Vi[r], and the

corresponding HCD field as Vi[r].HCD.

61

Let V [p] and V ′[p] be two version entries for the same replica p. We say V [p] domi-

nates V ′[p] if the sequence number in V [p] is greater than that in V ′[p] or both entries

have the same view number, sequence number, and HCDs. We say Vj supersedes Vi,

iff for all replicas p, Vj[p] dominates Vi[p]. Upon receiving a different version vector,

a node always updates its current version vector by replacing each entry with the

dominating new entry.

4.2.2 BFT2F Node Behavior

In describing BFT2F, we borrow heavily from PBFT [25]. However, we point out two

major differences between BFT2F and PBFT. First, unlike in PBFT, BFT2F replicas do

not allow out of order commits. This requirement does not pose much overhead as replicas

must execute client operations in increasing sequence numbers anyway. Second, BFT2F

requires clients to wait for at least 2f + 1 matching replies before considering an operation

completed, as opposed to the f + 1 matching replies required in PBFT.

Client Request Behavior

A client a sends a request for operation 〈request, op, ts, a, Va〉Ka
−1 to the primary

replica, where ts is the timestamp, Va is client a’s version vector and the message is signed

by a’s private key Ka
−1.

Server Behavior

Upon receiving a request message (msg = 〈request, op, ts, a, Va〉Ka
−1) from client a,

the primary replica p authenticates the message and assigns it a sequence number n. It then

multicasts a pre-prepare message 〈〈pre-prepare, p, view, n,D(msgn)〉Kp
−1 ,msgn〉 to

all other replicas.

Upon receiving a pre-prepare message, replica q first checks that it has not accepted

the same sequence number n for a different message msg ′n in the same view view. Replica

62

q also verifies that its knowledge of the system supersedes client a’s by checking that all

HCDs in a’s version vector Va have an existing matching entry in q’s HCD history Tq.

Replica q then multicasts a prepare message 〈prepare, q, view, n,D(msgn)〉Kq
−1 to all

other replicas.

A replica u tries to collect 2f matching prepare messages (including one from itself)

with the same sequence number n as that in the original pre-prepare message. When it

succeeds, we say replica u has prepared the request message msgn. Unlike PBFT, u does

not commit out of order, i.e. it enters the commit phase only after having committed all

requests with lower sequence numbers. To start committing, replica u updates its latest

HCD to HCDn = D(msgn ◦ HCDn−1), adds (n,HCDn) to its HCD history Tu, and

multicasts a commit message 〈commit, u, view, n,HCDn〉Ku
−1 to all other replicas.

When replica w receives a commit message from replica u, it updates the entry for u

in its current version vector,Vw[u], to 〈u, view, n,HCDn〉Ku
−1 . Replica w commits msgn

when it receives 2f + 1 matching commit messages (including its own) for the same se-

quence number n and the same HCD (HCDn).

Replica w executes the operation after it has committed the corresponding request mes-

sage msgn. It sends a reply message to the client containing the result of the computation

as well as its current version vector Vw. Since w has collected 2f + 1 matching commit

messages, we know that these 2f + 1 replicas are in the same fork set, up to sequence

number n.

Behavior of Client Receiving Replies

A reply from replica w has the format, 〈reply, view, ts, a, w, res, Vw〉Kw
−1 , where

view is the current view number, ts is the original request’s timestamp, res is the result

of executing the requested operation and Vw is w’s version vector. A client considers an op-

eration completed after accepting at least 2f +1 replies each of which contains the same ts,

63

res and a valid version vector V . A valid version vector contains ≥ 2f + 1 entries with the

same sequence number n and HCDn. This check ensures the client only accepts a system

state agreed upon by at least 2f + 1 replicas. Therefore, if no more than 2f replicas fail,

the accepted system state reflects that of at least one correct replica. Client a also updates

the entry for replica w in its own version vector, Va[w], to Vw[w] obtained from the 2f + 1

replying replies.

To deal with unreliable communication, client a starts a timer after issuing a request

and retransmits if it does not receive the required 2f + 1 replies before the timer expires.

Replicas discard any duplicate messages.

4.2.3 Garbage Collection

Each replica keeps all received messages in a message log. Replicas can use the same

algorithm as in PBFT to truncate their message logs while preserving fork* consistency

when no more than 2f replicas fail.

If replicas wish to be able to rewind and restore the system state to an ideally consistent

state upon detecting a forking attack, they have to truncate message logs more conserva-

tively than PBFT nodes. In particular, replica r can only safely discard all the messages

whose sequence number is no more than the lowest sequence number, nlow in Vr. This en-

sures all replicas have executed the same sequence of operations prior to the head of the

message log. Unfortunately, this implies that one faulty replica can cause message logs at

correct replicas to grow indefinitely. To truncate a HCD history, replica r can delete all

entry whose sequence number is less than nlow.

64

4.2.4 Server View Change

The view change algorithm differs in two aspects from PBFT [25]. The first lies in view-

change message. A replica r triggers a timeout by sending a view-change message

〈view-change, view + 1, n,HCDn, P 〉Kr
−1 to all other replicas. Here (n,HCDn) is r’s

highest committed sequence number - HCD pair. P is a set of sets Pm of pre-prepare

messages, for each prepared message m with sequence number higher than n, and 2f cor-

responding matching prepare messages.

When the primary p in the new view view+1 receives 2f valid view-change messages,

it multicasts a new-view message 〈new-view, view +1, V, O〉Kp
−1 . V is the set containing

2f + 1 valid view-change messages sent by backup replicas (including p’s own). O is a

set of pre-prepare messages constructed as below:

1. p determines min-s as the lowest sequence number in all view-change messages in

V , and max-s as the highest sequence number in prepared messages in V .

2. For each sequence number n between min-s and max-s, p either (1) constructs a

pre-prepare message in the new view, if a Pm in one of the view-change messages

corresponding to the sequence number n, or (2) constructs a special null request

〈〈pre-prepare, p, view + 1, n,D(null)〉Kp
−1 , null〉 to fill in the sequence number

gap.

A backup replica u in the new view accepts the new-view message if u validates the

message. In particular, it needs to check whether the (min-s, HCDmin-s) pair matches that

in its hash chain digest history Tu. If it does not exist in Tu, u sends a state transfer request

to all other replicas, as will be discussed in the rest of the section. It also verifies O is

properly constructed by the step above. If so, then it sends a prepare message for each

message in O, and proceeds normally in the new view.

65

When there are no more than f faulty replicas, the above algorithm is essentially the

same as PBFT. When more than f , but no more than 2f replicas fail, fork* consistency

would not be violated across view changes: since min-s is picked as the lowest committed

sequence number of 2f +1 replicas in V , this guarantees that these 2f +1 replicas were in

the same fork set up to min-s. Subsequently, for each pre-prepare message m in O, it can

not be used to join already forked replicas, because the HCD fields in the commit messages

for m in the new view would disagree, preventing m from committing at all of them.

The second difference is how to transfer state S from others upon missing some mes-

sages. In PBFT, replica r just fetches the missing state from 2f +1 other replicas. However,

in BFT2F, when more than f replicas fail, malicious servers could join r’s forked state with

that of the non-faulty ones which have been forked along a different path (i.e., in a differ-

ent fork set) in the replying replicas. Instead, BFT2F requires replying replicas to present

all the messages from r’s current committed sequence number to S’s (highest) sequence

number.1 When getting 2f +1 such matching replies, r verifies whether there exists a valid

state transition path from its current state to S by executing these messages tentatively. If

such a path exists, r accepts S as its new state.

In the worst case, when 2f replicas fail maliciously, up to f + 1 view changes might

succeed concurrently, leading to f +1 fork sets. There are two cases to consider: (1) (Non-

faulty) replica r has the state (represented as HCD) that is agreed upon by 2f +1 replicas in

the new view, in which case r is assured to be in the same fork set as those replicas, whose

view-change messages are listed in V , across the view change. (2) Or r misses S, since

it can only update its state to S by applying all the missing messages in the same order. If

it reaches the same S, then it means that r was, and is still in the same fork set with those

2f +1 replying replicas up till state S. In either case, fork* consistency is preserved across

1This requires nodes to take the conservative garbage collection approach.

66

view changes. Finally, a prepared message in the old view is not guaranteed to propagate

to every new view, or maybe none of the new views. Still, this only affects liveness, not the

safety guarantee of fork* consistency. BFT2F relies on clients to re-issue such messages in

the new view to make progress.

4.2.5 An Example

op1 op2 op′2 op3

The order executed by fork set FSβ :〈op1, op′2, op3〉

The order executed by fork set FSα:〈op1, op2, op3〉

The temporal order:〈op1, op2, op′2, op3〉

T3

Figure 4.1: An example of two forked result lists. The timeline in the middle shows the re-
sult list that would have been executed by a non-faulty (never-forked) system. The timeline
above it shows in a forked system, one fork set has executed a forked result list, which does
not reflect operation op′2. The timeline below it shows another forked result list that omits
operation op2.

We demonstrate the join-at-most-once property of BFT2F during normal case opera-

tions using a simple example. Similar to the example in section 2.2, the system consists of

four replicas u, p, q, w with p being the primary in the current view and two replicas p, q

being malicious.

Here we explain the intuition that join-at-most-once property can be achieved with a

one-round protocol. Suppose if the system is forked into two fork sets just before client c

issues two operations, op1 and op3, then op1 might show up in two fork sets, because it is

indistinguishable to the non-faulty replicas in both fork sets from the case in which the sys-

tem is never forked. But op3 will reflect the result of op1, which commits c to compatibility

with only one of the fork sets. Thus, op3 will only appear in the fork set from which c gets

the reply for op1.

67

�
��
���

���
� p
q

w

a

u

fork set FSβ :

Vu:
u, 3, HCD3

p, 3, HCD3

q, 3, HCD3

Vw :
u, 1, HCD1

fork set FSα :

〈op1, op2, op3〉

〈op1, op′2, op3〉

Va:
u, 3, HCD3

message dropped

(view number is not
shown in V)

commit stage for op3 reply stage for op3

w, 1, HCD1

w, 3, HCD′3
q, 3, HCD′3
p, 3, HCD′3

q, 3, HCD3

p, 3, HCD3

w, 1, HCD1

T3

(a)

�
��
�
��

w

a

u

fork set FSβ :

Vu:
u, 3, HCD3

p, 3, HCD3

q, 3, HCD3

w, 1, HCD1

Vw:
u, 1, HCD1

fork set FSα :

〈op1, op2, op3〉

〈op1, op′2, op3〉

Va:
u, 3, HCD3

p, 3, HCD3

q, 3, HCD3

w, 1, HCD1

pre-prepare stage for op4request stage for op4

p

q

HCD check failed: HCD3 6= HCD′3

HCD check successful

q, 3, HCD′3
p, 3, HCD′3

w, 3, HCD′3

T3

(b)

Figure 4.2: An example of join-at-most-once property. Suppose op3 has been used to join
two forked result lists as in Figure 4.1. Diagram (a) shows the commit and reply stages for
operation op3. Since the result lists of the two fork sets are already forked, the HCD field
of sequence number 3 for non-faulty replicas in different fork sets is different: HCD3 for
u and HCD′3 for w respectively. Client a accepts the reply from fork set FSα, and updates
its Va accordingly. Notice a cannot receive the reply from (non-faulty) replicas (e.g., w) in
FSβ simultaneously, without w being able to detect the system faulty. Diagram (b) shows
the impossibility of any future operation by c appearing in both fork sets’ result lists again.
For example, if the next operation op4 reaches non-faulty replicas in both fork sets, then
the HCD check in pre-prepare stage could only succeed at one of them.

68

Now we consider a detailed example where client a issues the first (op1) and fourth

operation (op3) and some other clients issue the second (op2) and third (op′2) operation.

The result list 〈op1, op2, op′2, op3〉 would have reflected the order assigned in an otherwise

non-faulty system, as shown in Figure 4.1. Replica p shows all replicas the first operation

from client a and assigns sequence number 1 to the operation (op1). Subsequently, p only

shows the second operation (op2) to u and the third operation (op′2) to w, but it assigns

both operations with the same sequence number 2. As a result, two fork sets FSα and FSβ

are formed, where FSα contains u which has seen 〈op1, op2〉 and FSβ contains w which

has seen 〈op1, op′2〉. Replica p then manages to join two forked result lists for the first time

with the same operation op3; the two result lists become 〈op1, op2, op3〉 and 〈op1, op′2, op3〉,

respectively. Suppose client a gets the required 2f +1 = 3 replies for op3 from the fork set

FSα = u, p, q. Consequently, client a’s version vector contains HCD3 = D(op3 ◦D(op2 ◦

D(op1))), while replica w in FSβ has a different version vector Vw containing HCD′ 3 =

D(op3 ◦ D(op′2 ◦ D(op1))) (shown in Figure 4.2(a)). Thereafter, when malicious servers

try to join the two forked result lists again with a’s future operation, say, op4, the HCD3

included in a’s request would conflict with that in w’s HCD history, because sequence

number 3 is associated with a different HCD: HCD3 6= Tw[3] (shown in Figure 4.2(b)).

4.3 Proof Sketch

4.3.1 Normal case operations

Sublist operation Lemma: Every result list is a sublist of Lall, which contains all com-

pleted operations in a specific order.

Proof Sketch (Trivial): Suppose V is the version vector contained in one of the replies for

69

the completed operation op. According to the constraint test for a client to accept the reply

of an operation: at least 2f + 1 entries in V must have the same sequence number n, and

HCDn. Since at least one of the replicas in these entries is non-faulty, the honest replica’s

HCDn should encode the result list it has executed. Without loss of generality, we assume

it is L = 〈opα1, opα2, ..., opαi, op〉 (HCDn = D(op ◦ ... ◦D(opα2 ◦D(opα1)))). Therefore,

op reflects the result list L.

Self-consistency Lemma: Each honest user’s operation appears in all his subsequent op-

erations’ result lists.

Proof Sketch: Suppose client c issues an operation opi
c before opj

c. First we prove that opi
c

appears in c’s next operation opi+1
c ’s result list.

Since at least 2f + 1 replicas’ reply messages are required for client c to complete

operation opi
c, suppose these 2f + 1 replying replicas are in the fork set FS, the sequence

number is n and HCD HCDn. Then the version vector Vci,post in the request for c’s next

operation opi+1
c must have 2f + 1 matching entries with sequence number n and HCD

HCDn. In order for c to complete operation opi+1
c , at least one of the replying replicas for

opi+1
c must be non-faulty, let it be w. When w checks the pre-prepare message for opi+1

c ,

it must ensure that the (n,HCDn) pair also appears in Tw. If it succeeds, this means w was

also in FS at least until n. So the result list for operation opi+1
c would contain opi

c.

Then by induction, opi
c would appear in opj

c’s result list, provided j > i.

Join-at-most-once Lemma: If two result lists contain two operations op′ and op from the

same honest client, and op′ precedes op, then the two result lists are identical up to op′.

Proof Sketch: We prove it by contradiction. Assume two forked result lists

Lα = 〈opα1, opα2, ..., opαi, opi
c, ..., op

j
c〉, Lβ = 〈opβ1, opβ2, ..., opβj , opi

c..., op
j
c〉 are joined

70

twice by operation opi
c and opj

c from client c (j > i), and Lα1−αi 6= Lβ1−βj . 2 Assume the

fork set that generates Lα is FSα, with u as the non-faulty replica in FSα; and the fork set

for Lβ is FSβ , with w as the non-faulty replica.

Suppose client c gets the reply for operation opi
c from fork set FSα, and Vci,post is

c’s version vector after receiving the reply for opi
c (Notice c can not receive replies for

operation opi
c from both fork sets.). When c issues operation opj

c (not necessary the next

operation to opi
c), suppose the version vector included in the request is Vcj ,pre. Then by the

self-consistency lemma, the 2f +1 matching entries in Vcj ,pre encode a result list L′, which

has the prefix 〈opα1, opα2, ..., opαi, opi
c〉. Assume these matching entries have the sequence

number nc, HCD HCDnc (HCDnc encodes the result list L′). Assume replica x is one of

the non-faulty replicas that generate L′.

Suppose that w’s current sequence number (before committing request opj
c) is nw, and

also at least 2f + 1 entries (in fork set FSβ) in Vw have the sequence number nw, since

this is the prerequisite for w to commit w’s last executed operation. When w receives the

pre-prepare message for opj
c from the primary, it checks that the sequence number and

HCD pair in each entry in Vcj ,pre matches those in Tw. If nc > nw + 1, then w would not

commit the operation opj
c as its next operation, which violates the assumption that w exe-

cutes opj
c. Then we must have nc ≤ nw + 1, which means w has executed the operation for

sequence number nc, and has the corresponding HCD in its hash chain digest history Tw.

Because x is the non-faulty replica from which c gets the reply for its previous operation

to opi, Vcj ,pre[x].HCD = HCDnc . This implies x evolves over result list L′ whose prefix

is 〈opα1, opα2, ..., opαi, opi
c〉. But Tw[nc].HCD equals w’s HCD at sequence number nc, up

to the point where w evolves over 〈opβ1, opβ2, ..., opβj , opi
c, ...〉. Because Lα1−αi 6= Lβ1−βj ,

and cryptographic hash function D is collision-resistant, so HCDnc 6= Tw[nc].HCD, and

2We use Li−j to denote consecutive sublist from index i to j.

71

the check would fail. Thus, w could not commit and execute operation opj
c, which contra-

dicts the assumption.

Theorem: BFT2F satisfies fork* consistency.

Proof Sketch: Immediately follows from three lemmas above.

4.3.2 Servers view change

In the section above, we sketched the proof that BFT2F achieves fork* consistency during

normal case operations. For the case of servers performing view change, since the prepared

messages (O) issued by the new primary (in the new-view message) also go through the

same three-phase protocol, the result sublist generated after the view change (as shown in

Figure 4.3, SLv+1) also has fork* consistency in the new view. 3 Now we only need to

show that when result lists consist of operations completed in both the old view and the

new view, fork* consistency is still preserved.

view change

SLv+1 = 〈opv+1,1, opv+1,2, ...〉

view: v + 1

SLv = 〈opv,1, opv,2, ...〉

view: v

Figure 4.3: From section 4.3.1, either SLv or SLv+1 delivers fork* consistency, respec-
tively, within its own view. We only need to show, when considering completed operations
from both sub result lists, it also preserves fork* consistency.

Sublist operation Lemma: Every result list is a sublist of Lall, which contains all com-

3Result sublist here means that it only contains operations completed in a specific view.

72

pleted operations in a specific order.

Proof Sketch (Trivial): It does not matter whether there has been a view change or not.

At least one non-faulty replying replica for operation op ensures that the result list for op is

some sublist of Lall.

Self-consistency Lemma: Each honest user’s operation appears in all his subsequent op-

erations’ result lists.

Proof Sketch: As in the corresponding proof for the normal case, here we need to consider

the case where opi
c is an operation completed in view v, and opi+1

c in view v + 1.

Regardless whether opi+1
c is an operation passed in O from the old view, or is a brand

new operation submitted in the new view, the request of opi+1
c contains the version vector

Vci,post that client c updates from the reply of opi
c in the old view. As usual, Vci,post would

contain at least 2f + 1 matching entries of the same sequence number and HCD. Without

loss of generality, suppose it is (n,HCDn). Then, in order for opi+1
c to complete in the

new view, at least one non-faulty replica w needs to check (n,HCDn) is in its Tw, which

guarantees that the result list for opi+1
c would contain operation opi

c.

Join-at-most-once Lemma: If two result lists contain two operations op′ and op from the

same client, and op′ precedes op, then the two result lists are identical up to op′.

Proof Sketch: Again, similiarily, we consider the case where opi
c is an operation completed

in view v, and opj
c in view v + 1. Then the proof follows as above.

73

4.4 Discussion

Ideal consistency requires quorum intersection; any two quorums should intersect in at

least one non-faulty replica. Fork* consistency requires only quorum inclusion; any quorum

should include at least one non-faulty replica. Because there is at least one correct replica

witness, quorum inclusion ensures that no legitimate operation is “lost” in the system. Like

PBFT, BFT2F achieves ideal consistency when no more than f out of 3f + 1 replicas

fail, additionally, BFT2F provides fork* consistency when no more than 2f replicas fail.

Unfortunately, BFT2F cannot guarantee quorum availability, i.e., liveness, with more than

f faulty replicas.

One might wonder if there exist protocols that guarantee fork* consistency with even

larger numbers of failures, e.g. up to 3f failures. The answer is yes, in fact, BFT2F can

be easily modified to require 3f + 1 matching replies instead of 2f + 1 ones, achieving

fork* consistency with up to 3f failures at the cost of sacrificing liveness when there is

any failure in the system. Actually, we can conceptually view SUNDR as a system that

is able to tolerate any number of failures in the system, yet does not guarantee liveness.

System operators that care more about security than availability might tune the protocol to

guarantee fork* consistency up to 3f failures.

Both SUNDR and BFT2F use version vectors to represent a node’s knowledge of the

current system state, with one major difference. SUNDR’s version vector has one entry per

client and BFT2F’s version vector has one entry per server. This difference brings BFT2F

two advantages. First, BFT2F’s version vector is more efficient, as a distributed system

typically has many more clients than servers. Second, in both protocols, a node does not

see any updates for version entries of nodes in a different fork set. In SUNDR, a stagnant

entry might also indicate that a client has been offline or has not performed any operations:

74

both are legitimate client actions. In contrast, as servers always remain online and process

user operations, a stagnant server version entry in BFT2F is a good indication that the

system might have forked.

4.5 Performance

We built a prototype implementation of the BFT2F algorithm on FreeBSD 4.11, based on

our ported version of the BASE [72] library.

4.5.1 Implementation

BFT2F’s additional guarantee over BFT [25] to allow detection of past consistency vio-

lations comes at the expense of much increased use of computationally expensive public

key signatures instead of the symmetric session-key based Message Authentication Codes

(MACs) used by PBFT. We use NTT’s ESIGN with key length of 2048 bits in BFT2F. On

a 3 GHz P4, it takes 150 µs to generate signatures, 100 µs to verify. For comparison, 1280

bits Rabin signatures take 3.1 ms to generate, 27 µs to verify.

All experiments run on four machines; three 3.0 GHz P4 machines and a 1.4 GHz

Athlon machine. Clients run on a different set of 2.3 GHz Celeron machines. All machines

are equipped with 1-3 GB memory and connected with each other via a 100 Mbps switch.

4.5.2 Micro benchmark

Our micro benchmark is the built-in simple program in BASE, which sends a null operation

to servers and waits for the reply. Authenticating each message with public keys has higher

cost over using MAC, resulting in BFT2F having higher latency (2.06 ms) than BASE

75

(1.10 ms) for each request.

4.5.3 Application-level benchmark

We modify NFS to run over BFT2F, and compare it to the native NFSv2, NFS-BASE

running on 4 servers, and SUNDR running on 1 server. The evaluation takes five phases:

(1) copy a software distribution package nano-1.2.5.tar.gz into the file system, (2)

uncompress it in place, (3) untar the package, (4) compile the package, (5) clean the build

objects.

NFSv2 (no replication) NFS-BASE NFS-BFT2F SUNDR
Phase 1 0.302 1.296 1.351 0.135
Phase 2 1.169 5.371 5.671 0.690
Phase 3 2.815 7.724 8.759 3.260
Phase 4 4.151 7.107 7.332 6.714
Phase 5 0.101 0.175 0.220 0.157

Total 8.538 21.673 23.333 10.956

Table 4.1: Performance comparison of different file system implementation (in seconds).

As Table 4.1 shows, the application-level performance slowdown in NFS-BFT2F rela-

tive to NFS-BASE is much less than that observed in our micro benchmark. This is because

the high cost of public key operations is amortized over that of processing requests. Both

BFT2F and NFS-BASE achieve much lower performance than NFSv2 and SUNDR, re-

flecting the cost of replication.

76

Chapter 5

Related Work

5.1 Cryptographic file systems

Protecting data with user-level tools like crypt can be a cumbersome burden for users. For

example, one might forget to delete the cleartext after encrypting it; each access to the pro-

tected file requires one to type a password. Conversely, encryption can be also performed at

a lower-level: on-disk encryption hardware encrypts data before it reaches physical media.

Though transparent to end users, low-level disk encryption lacks flexible control: many

users might have to use the same key, and sharing among users could also be difficult.

CFS [20] is the first system that enforces security at file systems level, while enjoying the

advantages of both.

CFS associates each protected directory with a key. Each file stored in the directory

is encrypted on the way to the underlying block driver, and decrypted when read back.

Cleartext is never left on the underlying disks, or remote file servers, which protects the file

content in case the disk is stolen.

TCFS [28] addresses some practical drawback of CFS. It generates an independent

77

key for each different block, and stores it in the file inode. TCFS also improves users’

experience by only requiring them to remember one passphrase for each protected file

system.

Both CFS and TCFS are mostly suitable for the single-writer and single-reader sce-

nario. The limitation arises in several aspects: (1) to enable multi-writer or multi-reader

sharing, the keys to encrypt file data need to be shared. However, there is no easy way to

distribute or revoke encryption keys scalably. (2) Most importantly, with untrusted servers,

it is impossible to guarantee correct consistency semantics, which is critical for network

file systems.

Plutus [47] and Chefs [38] address the first limitation aforementioned. Plutus groups

related files into filegroups, and uses one file lockbox to manage all (symmetric) keys used to

encrypt file data. By doing so, Plutus significantly reduces the number of keys that need to

be exchanged when sharing files. Plutus/Chefs also introduce a novel concept, key rotation,

to revoke access rights lazily: a file to which some users have been revoked access does not

get (re)encrypted immediately until new modifications occur. Users with the latest key can

derive all old versions of the key, but not vice versa.

SUNDR lacks some useful features of the above systems, while it mainly tries to ad-

dress the second difficulty: how best a system can preserve its consistency guarantees with

an untrusted server, which none of the previous systems have addressed.

SFS [59] eases key management by separating it from file systems security. A file server

embeds its public key into a self-certifying file pathname. Each SFS pathname has the

following format: /sfs/@location,hostid/pathname, where location is the hostname

of the server, and hostid is the SHA-1 hash of the server’s public key. Once a client has an

SFS pathname, he/she can be assured to connect to the server securely, without having to

commit to any particular key management policy ahead of time. However, SFS does rely on

78

honest servers, and handles corrupted servers by propagating self-authenticating revocation

certificates in a best-effort way.

SFSRO [39] is a read-only version of SUNDR. Aiming at distributing content with un-

trusted hosts, SFSRO takes the same Merkle hash tree approach as in SUNDR. Content

distributors sign the root of the tree with their private keys. Untrusted hosts cannot tam-

per with any of these blocks, since the root block is protected by the signature, and all

lower-level blocks are protected by the cryptographic hashes. Duchamp [33], TDB [54],

OceanStore [19], and Pond [71] all have made use of Merkle hash trees for comparing data

or checking the integrity of part of a larger collection of data.

Staging data on untrusted surrogates has also been proposed in [36]. Read-only data is

prefetched to a nearby surrogate to speed up mobile access. It provides both integrity and

confidentiality protection to the data. However, writes still go directly to the trusted home

server. Surrogates rely on CODA-style callbacks [50] to guarantee consistency.

SiRiUS [42] builds a secure file system layered upon existing insecure network file sys-

tems. SiRiUS shares some similarity with Plutus on achieving confidentiality and integrity.

Yet it provides freshness (consistency) guarantees in a unique way. Every user’s root direc-

tory contains a meta-data freshness file (mdf-file), which ties a timestamp to a Merkle hash

tree of meta-data of all the files in the root directory. A freshness daemon updates mdf-file

periodically. Readers who verify the timestamp can be assured they would not accept files

older than that. However, it is not completely clear how feasible a 24/7 online daemon

would be: attackers can subvert the system easily by launching DoS attacks on the daemon.

Still, this idea can be adapted in SUNDR to build a trusted time-stamp box to detect forking

attacks.

79

5.2 Byzantine Fault Tolerant systems

PBFT/BFT2F builds on replicated state machines. Replicated state machines generally deal

with concurrency more efficiently than quorum systems, but scale poorly [14]. Many other

BFT systems [69, 23] take this approach. Some wide area file systems [71, 15] run PBFT

on their core servers. Instead of replicated state machines, another popular way to toler-

ate Byzantine faults is to use Byzantine Quorum Systems [55, 56, 57, 87]. Quorums have

simpler construction and are generally more scalable [14]. However, quorums usually only

provide low-level semantics, like read and write, which makes building arbitrary applica-

tions more challenging.

Some work has been done to reduce BFT’s assumption barrier and to minimize the

chance of potential violations of the assumption that no more than f replicas might fail.

Proactive recovery [26] reduces the assumption of no more than f faulty replicas during

the life time of the service to a window of vulnerability. It achieves this by periodically

rebooting replicas to an uncompromised state. It shares the same problem with BFT when

more than f replicas fail during this window of time. Furthermore, some problems such

as software bugs persist across reboots. BASE [72] aims to reduce correlated failures. It

abstracts well-specified state out of complex systems, and thus increases the chance of

using different existing mature implementations. By separating execution replicas from

agreement replicas [83], one can tolerate more failures within execution replicas or reduce

replication cost. BAR [16] explicitly takes the behavior of selfish nodes into account, thus

it is able to tolerate these faults which are not possible in traditional BFT systems. Dynamic

Byzantine quorum systems [17] can adjust f on the fly, based on the observation of system

behavior.

BFT2F’s contribution lies in that it further limits the potential damage of not meeting

80

BFT’s f threshold assumption. It allows the system to monitor any past consistency vi-

olations with more than f , but no more than 2f faulty replicas, yet still provides 100%

compatibility with classical BFT system when no more than f replicas fail.

5.3 Encapsulation of hostile behavior

In this thesis, our approaches consider all servers (as in SUNDR), or a fraction of servers

(as in BFT2F) completely untrusted, and rely on carefully-designed protocols to reveal

malicious behavior to end users. Another direction is to enforce security policies within

the server domain itself. Such systems usually need a small trusted computing base (TCB)

underneath the untrusted components, either in software, hardware, or both, to host such a

service.

By far, the most popular place to accommodate such a TCB is in a virtual machine mon-

itors (VMM) [30]. A VMM is considerably simpler and smaller, because it only provides

a narrow hardware-level interface rather than a full set of operating system abstractions.

Thus, it is more easily verifiable, and less vulnerable to security holes. Service in a VMM

would continue to run correctly even with guest operating systems subverted by attackers.

VMMs also improve portability, since hardware interfaces evolve much more slowly than

their software counterparts. Furthermore, by emulating hardware in software, VMMs gain

additional advantages: First, it is easier to modify virtual machines to add additional func-

tionalities. Second, virtual machine state can be manipulated more flexibly. The difficulty

of the VMM approach is bridging the gap of hardware and guest operating system seman-

tics. For example, one needs to traverse an emulated MMU to tie an application variable

to a watched memory location. In the past, systems like secure logging/reply [34], intru-

sion backtracking [49], dynamic taint analysis [31], and predicate checking [46] have been

81

developed with this approach.

The VMM approach is still limited to the hardware emulated. Most current platforms

lack any basic security measures. For instance, even attesting to the currently running

software is hard now. Thus, trusted computing platforms, such as TCPA [7], have been

proposed. With such “trusted” hardware support, essentially no other trust [53], or little

trust [40] (in a secure VMM) is needed to let authors control their applications. However,

as closed black-boxes that end users have no direct control of, whether such platforms can

succeed is still unclear at the moment.

5.4 Anonymity systems

Finally, anonymity systems are of particular interest to us in the sense that some untrusted

servers behave maliciously according to the identities of the clients. For example, if a bad

server intends to hide some update from some clients, it would be much harder for him

to do so if clients anonymized themselves when fetching updates, since the creator of the

update could also anonymously fetch her own update to do a sanity check from time to

time, and detect the attack with some probability.

In anonymity systems, clients do not want to reveal their identities to servers, but oth-

erwise trust the servers to provide the advertised service honestly. This can be achieved by

establishing anonymous channels between clients and the server. Thus, the server cannot

trace back which client initiates the connection. The simplest solution is to route traffic

through a centralized proxy [2]. However, this approach introduces a single point of fail-

ure: The failure of the proxy would discontinue the service entirely. Such systems are also

vulnerable to an attacker that controls the proxy, since he can easily reveal the correla-

tion between incoming and outgoing communication. Another classical approach is to use

82

mix-net, first introduced by Chaum in [29]. By encrypting and randomly shuffling all in-

coming and outgoing messages through a mix, a local eavesdropper cannot pinpoint the

initiator. By chaining multiple mixes in cascade, one can also tolerate some fraction of

hostile mixes. Examples of such systems include anonymous routing [76, 37], anonymous

publishing [79, 78], and anonymous email [58].

Yet another alternative is based on the idea of “blending into crowds”. Crowds [70]

aims to make web browsing anonymous. When a request is initiated, it can be submitted

directly the server, or forwarded to another peer, depending on a local biased coin flip.

Then the request goes on recursively through all peers en route, until it finally reaches the

server. This process makes each peer in the crowd equal likely to be the originator, thus

anonymizing the true originator.

83

Chapter 6

Conclusion

6.1 Future work

With the increasing popularity of P2P systems, such as Bittorrent [32], KaZaA [4], eMule [3],

and gnutella [5], it is natural that peers trust each other even less than a client would typ-

ically trust a server. As a consequence, a system that takes the inherent distrustfulness of

participants into consideration in its design would be more likely to survive such a hostile

operating environment. Bittorrent assumes nodes are mainly selfish, and establish transient

trust relation based on other nodes’ current behavior. It explicitly takes the “Tit-for-Tat”

strategy as a part of its protocol: nodes upload files in high bit rates only to those who also

do the same reciprocally. Largely due to this fact, Bittorrent has overtaken others as the

most popular P2P file sharing protocol.

Academic effort have also tried to solve the whom to trust problem in many other ways.

Reputation systems [48, 80] allocate resources based on nodes’ past behavior, to distin-

guish “bad” nodes from “good” ones. However, such systems have a drawback: first, the

reputation system itself could be a target of attack, and therefore needs good a defense

84

mechanism. Second, malicious nodes can pretend to be good for a period of time, and then

launch attacks in a well-coordinated fashion to inflict more damage. Social networks map

people’s real-world trust relationships into cyberspace. Using your friends’ computers as

peers in the network, rather than random ones as in the current systems, could result in sig-

nificantly more reliable storage [52]. Forcing social links on routing structure [84] reduces

the danger of Sybil attacks, since malicious users can easily forge many identities in the

network, but not friend relationships in the real world. Nevertheless, the success of this ap-

proach still largely depends how much people would like to reveal their personal friendship

information, and how wise they are in selecting “friends”.

6.2 Conclusion

Placing unconditional trust on centralized storage systems, as in traditional approaches, is

questionable. Not only is this unnecessary: for example, system administrators should not

be able to access or modify your files; but also dangerous: your data might be tampered

with by outside attackers without your ability to detect this fact promptly, and your re-

trieval might return stale data. In this thesis, we advocate building data storage systems on

untrusted (or in other words, possibly compromised) hosts. Designing a system specifically

for running over untrusted servers in the first place makes the consequences of a potential

break-in clear, minimizes the resulting damages, and eases detection of any past attacks.

Through our experience with untrusted systems, several points are worth emphasizing:

1. Graceful degradation

“Something is better than nothing.”

85

Graceful degradation specifies the behavior of a system when something goes wrong,

if the system still supports audit, termination, and recovery. In a word, it should

provide at least some protection in the worst-case scenario.

Most BFT systems are well known for “all-or-nothing”: they either guarantee ideal

consistency when the f-threshold assumption holds, or nothing at all. This may be

one factor that has slowed adoption of BFT systems. As we show in chapter 4, it is

desirable and feasible to provide some form of weak guarantees when more than 1/3

of the nodes fail.

2. Constrained behavior

“Absolute power leads to absolute corruption.”

Constrained behavior means that a compromised node, no matter how important it

is, cannot change the system behavior in an arbitrary manner. This means responsi-

bility and trust are more evenly distributed in the system. Furthermore, constrained

behavior effectively limits the scope of damage that does occur.

For example, in SUNDR, a compromised server cannot inject fake updates, or tamper

with users’ data. In some DHTs [24], a malicious node is not allowed to arbitrarily

pollute others’ routing tables.

3. Accountability

“Freedom and responsibility without control?”

Accountability makes it possible to catch any past malicious behavior eventually,

and provide a non-repudiable, tamper-resistant, and self-verifiable proof of the entity

86

that is responsible for the violation [67, 86]. Additionally, accountability could be a

powerful deterrent to attacks.

Often, accountability is at odds with anonymity. [58] describes a case where anony-

mous email was abused. The failure of the anonymous email system in this case

demonstrates the importance of accountability.

We propose two different solutions in this thesis. In the first approach, we design and

implement SUNDR, which runs on one untrusted server. Even though there is no trusted

party online, SUNDR still effectively minimizes the damage a malicious server can cause.

A compromised server cannot arbitrarily tamper with users’ data undetectably. The worst

thing it can do is to conceal users’ updates, and serve stale, but valid data. When the server

does this, the SUNDR protocol forks mistreated users into different fork groups, where

they can never see updates from users in other groups again. We call this fork consistency.

Fork consistency significantly constrains the server’s ability to prolong attacks, since any

sort of out-of-band communication between users in different fork groups can reveal the

attack.

Measurements of our implementation show performance that is usually close to and

sometimes better than the popular NFS file system. Yet by reducing the amount of trust

required in the server, SUNDR both increases people’s options for managing data and sig-

nificantly improves the security of their files.

The alternative solution is to use replicated state machines. Byzantine Fault Tolerant

Systems (BFT) have been well known in the community to tolerate some fraction of ma-

licious servers. However, to make BFT deliver ideal consistency, faulty replicas cannot

exceed some threshold. (For example, in an asynchronous BFT system, no more than one

third of the replicas can be faulty at the same time.) Little has been done to investigate

the realm beyond this threshold assumption. We propose BFT2F, an extension to Castro-

87

Liskov’s PBFT algorithm, to further bound malicious behavior when more than one third

but no more than two thirds of the replicas fail, within which range BFT2F provides a

weaker consistency guarantee – fork* consistency. Though weaker than fork consistency

or ideal consistency, fork* consistency allows simpler and more efficient protocols. BFT2F

does not guarantee liveness in the situation, but we believe the resulting system is still

preferable to a system that exhibits arbitrary behavior when there are more than f fail-

ures. Evaluations of our prototype implementation show that BFT2F’s additional guarantee

comes with only a modest performance penalty.

88

Bibliography

[1] Amazon web services store: Amazon S3. http://aws.amazon.com/s3/.

[2] Anonymizer. http://www.anonymizer.com/.

[3] eMule. http://www.emule-project.net/.

[4] Gnutella. http://www.gnutella.com/.

[5] kaZaA. http://www.kazza.com/.

[6] Yahoo! mail. http://mail.yahoo.com/.

[7] The Trusted Computing Alliance. http://www.trustedpc.com/, 2000.

[8] Apache.org compromise report. http://www.apache.org/info/

20010519-hack.html, May 2001.

[9] Business beware - the enemy lies within. http://www.suntimes.co.za/2002/08/

04/business/surveys/survey22.asp, August 2002.

[10] Disgruntled UBS Painewebber employee charged with allegedly unleash-

ing ”logic bomb” on company computers. http://www.cybercrime.gov/

duronioIndict.htm, December 2002.

89

[11] Debian investigation report after server compromises. http://www.debian.org/

News/2003/20031202, December 2003.

[12] Intrusion on www.gnome.org. http://mail.gnome.org/archives/

gnome-announce-list/2004-March/msg00114.html, March 2004.

[13] Compromise of gluck.debian.org, lock down of other debian.org machines. http:/

/lists.debian.org/debian-devel-announce/2006/07/msg00003.html, July

2006.

[14] Michael Abd-El-Malek, Gregory R. Ganger, Garth R. Goodson, Michael K. Reiter,

and Jay J. Wylie. Fault-scalable Byzantine fault-tolerant services. In Proceedings of

the 20th ACM Symposium on Operating Systems Principles, pages 59–74, Brighton,

United Kingdom, October 2005. ACM.

[15] Atul Adya, William J. Bolosky, Miguel Castro, Gerald Cermak, Ronnie Chaiken,

John R. Douceur, Jon Howell, Jacob R. Lorch, Marvin Theimer, and Roger P. Wat-

tenhofer. FARSITE: Federated, available, and reliable storage for an incompletely

trusted environment. In Proceedings of the 5th Symposium on Operating Systems

Design and Implementation, pages 1–14, December 2002.

[16] Amitanand S. Aiyer, Lorenzo Alvisi, Allen Clement, Michael Dahlin, Jean-Philippe

Martin, and Carl Porth. BAR fault tolerance for cooperative services. In Proceedings

of the 20th ACM Symposium on Operating Systems Principles, pages 45–58, Brighton,

United Kingdom, October 2005. ACM.

[17] Lorenzo Alvisi, Dahlia Malkhi, Evelyn Pierce, Michael K. Reiter, and Rebecca N.

Wright. Dynamic Byzantine quorum systems. In Proceedings of the the International

90

Conference on Dependable Systems and Networks (FTCS 30 and DCCA 8), pages

283–292, June 2000.

[18] Philip Bernstein, Vassco Hadzilacos, and Nathan Goodman. In Concurrency control

and recovery in database systems, Boston, MA, 1987. Addison-Wesley.

[19] David Bindel, Yan Chen, Patrick Eaton, Dennis Geels, Ramakrishna Gummadi, Sean

Rhea, Hakim Weatherspoon, Westley Weimer, Westley Weimer, Christopher Wells,

Ben Zhao, and John Kubiatowicz. Oceanstore: An exteremely wide-area storage sys-

tem. In Proceedings of the 9th International Conference on Architectural Support for

Programming Languages and Operating Systems, pages 190–201, 2000.

[20] Matt Blaze. A cryptographic file system for Unix. In 1st ACM Conference on Com-

munications and Computing Security, pages 9–16, November 1993.

[21] Gabriel Bracha and Sam Toueg. Asynchronous consensus and broadcast protocols.

Journal of the ACM, 32(4):824–840, October 1985.

[22] Christian Cachin, Klaus Kursawe, Frank Petzold, and Victor Shoup. Secure and effi-

cient asynchronous broadcast protocols. In CRYPTO’01, pages 524–541, 2001.

[23] Christian Cachin and Jonathan A. Poritz. Secure intrusion-tolerant replication on the

internet. In Proceedings of the 2002 International Conference on Dependable Systems

and Networks, pages 167–176, 2002.

[24] Miguel Castro, Peter Druschel, Ayalvadi Ganesh, Antony Rowstron, and Dan S. Wal-

lach. Secure routing for structured peer-to-peer overlay networks. In Proceedings of

the 5th Symposium on Operating Systems Design and Implementation, Boston, MA,

December 2002.

91

[25] Miguel Castro and Barbara Liskov. Practical Byzantine fault tolerance. In Proceed-

ings of the 3rd Symposium on Operating Systems Design and Implementation, pages

173–186, New Orleans, LA, February 1999.

[26] Miguel Castro and Barbara Liskov. Proactive recovery in a Byzantine-fault-tolerant

system. In Proceedings of the 4th Symposium on Operating Systems Design and

Implementation, pages 273–288, San Diego, CA, October 2000.

[27] Miguel Castro and Barbara Liskov. Byzantine fault tolerance can be fast. In Interna-

tional Conference on Dependable Systems and Networks, pages 513–518, Goteborg,

Sweden, July 2001.

[28] G. Cattaneo, L. Catuogno, A. Del Sorbo, and P. Persiano. The design and implementa-

tion of a transparent cryptographic file system for unix. In USENIX Annual Technical

Conference 2001, Freenix Track, June 2001.

[29] David L. Chaum. Untraceable electronic mail, return addresses, and digital

pseudonyms. Communications of the ACM, 24(2), Feb 1981.

[30] Peter Chen and Brian Noble. When virtual is better than real. In Proceedings of

the 8th Workshop on Hot Topics in Operating Systems, Elmau/Oberbayern, Germany,

May 2001.

[31] Jim Chow, Ben Pfaff, Tal Garfinkel, Kevin Christopher, and Mendel Rosenblum. Un-

derstanding data lifetime via whole system simulation. In 13th USENIX Security

Symposium, pages 321–336, San Diego, CA, August 2004.

[32] Bram Cohen. Incentives build robustness in bittorrent. In First Workshop on the

Economics of Peer-to-Peer Systems, June 2003.

92

[33] Dan Duchamp. A toolkit approach to partially disconnected operation. In Proceedings

of the 1997 USENIX, pages 305–318. USENIX, January 1997.

[34] George W. Dunlap, Samuel T. King, Sukru Cinar, Murtaza A. Basrai, and Peter M.

Chen. Revirt: Enabling intrusion analysis through virtual-machine logging and replay.

[35] FIPS 180-1. Secure Hash Standard. U.S. Department of Commerce/N.I.S.T., National

Technical Information Service, Springfield, VA, April 1995.

[36] Jason Flinn, Shafeeq Sinnamohideen, Niraj Tolia, and M. Satyanaryanan. Data stag-

ing on untrusted surrogates. In 2nd USENIX conference on File and Storage Tech-

nologies (FAST ’03), San Francisco, CA, April 2003.

[37] Michael J. Freedman and Robert Morris. Tarzan: A peer-to-peer anonymizing net-

work layer. In Proceedings of the 9th ACM Conference on Computer and Communi-

cations Security (CCS 2002), Washington, D.C., 2002.

[38] Kevin Fu. Integrity and Access Control in Untrusted Content Distribution Networks.

PhD thesis, Massachusetts Institute of Technology, September 2005.

[39] Kevin Fu, M. Frans Kaashoek, and David Mazières. Fast and secure distributed read-

only file system. In Proceedings of the 4th Symposium on Operating Systems Design

and Implementation, 2000.

[40] Tal Garfinkel, Ben Pfaff, Jim Chow, Mendel Rosenblum, and Dan Boneh. Terra: a

virtual machine-based platform for trusted computing. In Proceedings of the 19th

ACM Symposium on Operating Systems Principles, pages 193–206, Bolton Landing,

NY, October 2003. ACM.

93

[41] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The Google file system.

In Proceedings of the 19th ACM Symposium on Operating Systems Principles, pages

29–43, Bolton Landing, NY, October 2003. ACM.

[42] Eu-Jin Goh, Hovav Shacham, Nagendra Modadugu, and Dan Boneh. SiRiUS: Secur-

ing Remote Untrusted Storage. In Proceedings of the Tenth Network and Distributed

System Security (NDSS) Symposium, pages 131–145. Internet Society (ISOC), Febru-

ary 2003.

[43] Joseph Y. Halpern and Yoram Moses. Knowledge and common knowledge in a dis-

tributed environment. In Proceedings of the 3rd Symposium on Principle of Dis-

tributed Computing, pages 50–61, Vancouver, BC, Canada, August 1984.

[44] Maurice P. Herlihy and Jeannette M. Wing. Linearizability: a correctness condi-

tion for concurrent objects. ACM Transactions on Programming Languages Systems,

12(3):463–492, 1990.

[45] John H. Howard, Michael L. Kazar, Sherri G. Menees, David A. Nichols, M. Satya-

narayanan, Robert N. Sidebotham, and Michael J. West. Scale and performance in a

distributed file system. ACM Transactions on Computer Systems, 6(1):51–81, Febru-

ary 1988.

[46] Ashlesha Joshi, Samuel King, George Dunlap, and Peter Chen. Detecting past and

present intrusions through vulnerability-specific predicates. In Proceedings of the

20th ACM Symposium on Operating Systems Principles, pages 91–104, Brighton,

United Kingdom, October 2005. ACM.

94

[47] Mahesh Kallahalla, Erik Riedel, Ram Swaminathan, Qian Wang, and Kevin Fu. Plu-

tus: Scalable secure file sharing on untrusted storage. In 2nd USENIX conference on

File and Storage Technologies (FAST ’03), San Francisco, CA, April 2003.

[48] Sepandar D. Kamvar, Mario T. Schlosser, and Hector Garcia-Molina. The eigentrust

algorithm for reputation management in P2P networks. In Proceedings of the 12th

international conference on World Wide Web, pages 640–651, May 2003.

[49] Samuel King and Peter Chen. Backtracking intrusions. In Proceedings of the 19th

ACM Symposium on Operating Systems Principles, pages 223–236, Bolton Landing,

NY, October 2003. ACM.

[50] James J. Kistler and M. Satyanarayanan. Disconnected operation in the coda file

system. ACM Transactions on Computer Systems, 10(1):3–25, 1992.

[51] Leslie Lamport. The Byzantine generals problem. ACM Transactions on Program-

ming Languages and Systems, 4(3):382–401, 1982.

[52] Jinyang Li and Frank Dabek. F2F: Reliable storage in open networks. In Proceed-

ings of the 5th International Workshop on Peer-to-Peer Systems (IPTPS ’06), Santa

Barbara, CA, February 2006.

[53] David Lie, Chandramohan A. Thekkath, and Mark Horowitz. Implementing an un-

trusted operating system on trusted hardware. In Proceedings of the 19th ACM Sympo-

sium on Operating Systems Principles, pages 178–192, Bolton Landing, NY, October

2003. ACM.

95

[54] Umesh Maheshwari and Radek Vingralek. How to build a trusted database system on

untrusted storage. In Proceedings of the 4th Symposium on Operating Systems Design

and Implementation, San Diego, CA, October 2000.

[55] Dahlia Malkhi and Michael Reiter. Byzantine quorum system. In Proceedings of the

ACM Symposium on Theory of Computing, pages 569–578, El Paso, TX, May 1997.

[56] Dahlia Malkhi and Michael Reiter. Secure and scalable replication in Phalanx. In

Proceedings of the 7th IEEE Symposium on Reliable Distributed Systems, pages 51–

58, October 1998.

[57] Dahlia Malkhi, Michael K. Reiter, Daniela Tulone, and Elisha Ziskind. Persistent ob-

jects in the Fleet system. In Proceedings of the 2nd DARPA Information Survivability

Conference and Exposition (DISCEX II), 2001.

[58] David Mazières and M. Frans Kaashoek. The design, implementation and operation of

an email pseudonym server. In Proceedings of the 5th ACM Conference on Computer

and Communications Security, pages 27–36, 1998.

[59] David Mazières, Michael Kaminsky, M. Frans Kaashoek, and Emmett Witchel. Sep-

arating key management from file system security. In Proceedings of the 17th ACM

Symposium on Operating Systems Principles, pages 124–139, Kiawa Island, SC, De-

cember 1999. ACM.

[60] David Mazières and Dennis Shasha. Building secure file systems out of Byzantine

storage. In Proceedings of the 21st Annual ACM SIGACT-SIGOPS Symposium on

Principles of Distributed Computing, pages 108–117, July 2002.

96

[61] David Mazières and Dennis Shasha. Building secure file systems out of Byzantine

storage. Technical Report TR2002–826, NYU Department of Computer Science,

May 2002.

[62] Ralph C. Merkle. A digital signature based on a conventional encryption function.

In Carl Pomerance, editor, Advances in Cryptology—CRYPTO ’87, volume 293 of

Lecture Notes in Computer Science, pages 369–378, Berlin, 1987. Springer-Verlag.

[63] Athicha Muthitacharoen, Robert Morris, Thomer M. Gil, and Benjie Chen. Ivy: A

read/write peer-to-peer file system. In Proceedings of the 5th Symposium on Operat-

ing Systems Design and Implementation, pages 31–44, December 2002.

[64] Tatsuaki Okamoto and Jacques Stern. Almost uniform density of power residues and

the provable security of ESIGN. In Advances in Cryptology – ASIACRYPT, pages

287–301, 2003.

[65] Brian Oki and Barbara Liskov. Viewstamped replication: a general primary copy. In

Proceedings of the 7th annual ACM Symposium on Principles of Distributed Comput-

ing, pages 8–17, Ontario, Canada, August 1988.

[66] D. Stott Parker, Jr., Gerald J. Popek, Gerard Rudisin, Allen Stoughton, Bruce J.

Walker, Evelyn Walton, Johanna M. Chow, David Edwards, Stephen Kiser, and

Charles Kline. Detection of mutual inconsistency in distributed systems. IEEE Trans-

actions on Software Engineering, SE-9(3):240–247, May 1983.

[67] Bogdan C. Popescu, Bruno Crispo, and Andrew S. Tanenbaum. Secure data repli-

cation over untrusted hosts. In Proceedings of the 9th Workshop on Hot Topics in

Operating Systems, Lihue, HI, May 2003.

97

[68] Sean Quinlan and Sean Dorward. Venti: a new approach to archival storage. In First

USENIX conference on File and Storage Technologies (FAST ’02), Monterey, CA,

January 2002.

[69] Michael K. Reiter. The Rampart toolkit for building highintegrity services. Lecture

Notes in Computer Science 938, pages 99–110, 1994.

[70] Michael K. Reiter and Aviel D. Rubin. Crowds: Anonymity for web transactions.

Technical Report 97-15, DIMACS, April 1997.

[71] Sean Rhea, Patrick Eaton, and Dennis Geels. Pond: The OceanStore prototype. In

2nd USENIX conference on File and Storage Technologies (FAST ’03), San Francisco,

CA, April 2003.

[72] Rodrigo Rodrigues, Miguel Castro, and Barbara Liskov. BASE: Using abstraction to

improve fault tolerance. In Proceedings of the 18th ACM Symposium on Operating

Systems Principles, pages 15–28, Chateau Lake Louise, Banff, Canada, October 2001.

ACM.

[73] Mendel Rosenblum and John Ousterhout. The design and implementation of a log-

structured file system. In Proceedings of the 13th ACM Symposium on Operating

Systems Principles, pages 1–15, Pacific Grove, CA, October 1991. ACM.

[74] Russel Sandberg, David Goldberg, Steve Kleiman, Dan Walsh, and Bob Lyon. Design

and implementation of the Sun network filesystem. In Proceedings of the Summer

1985 USENIX, pages 119–130, Portland, OR, 1985. USENIX.

[75] Dale Skeen. Nonblocking commit protocols. In Proceedings of the 1981 ACM SIG-

MOD International Conference on Management of Data, Ann Arbor, MI, April 1981.

98

[76] Paul F. Syverson, David M. Goldschlag, and Michael G. Reed. Anonymous connec-

tions and onion routing. In Proceedings of the 18th annual Symposium on Security

and Privacy, pages 44–54, Oakland, CA, May 1997. IEEE.

[77] Jr. T. W. Page, R. G. Guy, J. S. Heidemann, D. H. Rather, P. L. Reiher, A. Goel, G. H.

Kuenning, and G. J. Popek. Perspectives on optimistically repllicated, peer-to-peer

filinga. Software - Practice and Experience, 28(2):155–180, February 1998.

[78] Marc Waldman and David Mazières. Tangler – a censorship-resistant publishing sys-

tem based on document entanglements. In Proceedings of the 8th ACM Conference

on Computer and Communications Security, pages 126–135, November 2001.

[79] Marc Waldman, Aviel D. Rubin, and Lorrie Faith Cranor. Publius: A robust, tamper-

evident, censorship-resistant, web publishing system. In Proceedings of the 9th

USENIX Security Symposium, pages 59–72, Denver, CO, August 2000.

[80] Kevin Walsh and Emin Gun Sirer. Experience with an object reputation system for

peer-to-peer filesharing. In Proceedings of the 3rd Symposium on Networked Systems

Design and Implementation, pages 1–14, San Jose, CA, May 2006. USENIX.

[81] Assar Westerlund and Johan Danielsson. Arla—a free AFS client. In Proceedings of

the 1998 USENIX, Freenix track, New Orleans, LA, June 1998. USENIX.

[82] Charles P. Wright, Michael Martino, and Erez Zadok. NCryptfs: A secure and con-

venient cryptographic file system. In Proceedings of the Annual USENIX Technical

Conference, pages 197–210, June 2003.

[83] Jian Yin, Jean-Philippe Martin, Arun Venkataramani, Lorenzo Alvisi, and Mike

Dahlin. Separating agreement from execution for Byzantine fault tolerant services.

99

In Proceedings of the 19th ACM Symposium on Operating Systems Principles, pages

253–267, Bolton Landing, NY, October 2003. ACM.

[84] Haifeng Yu, Michael Kaminsky, Phillip B. Gibbons, and Abraham Flaxman. Sybil-

Guard: Defending against sybil attacks via social networks. In ACM SIGCOMM, Pisa,

Italy, September 2006.

[85] Haifeng Yu and Amin Vahdat. Design and evaluation of a continuous consistency

model for replicated services. In Proceedings of the 4rd Symposium on Operating

Systems Design and Implementation, pages 305–318, October 2000.

[86] Aydan R. Yumerefendi and Jeffrey S. Chase. The role of accountability in dependable

distributed systems. In Proceedings of the First Workshop on Hot Topics in System

Dependability, Yokohama, Japan, June 2005.

[87] Lidong Zhou, Fred B. Schneider, and Robbert van Renesse. COCA: A secure dis-

tributed on-line certification authority. ACM Transactions on Computer Systems,

20(4):329–368, November 2002.

100

