
Simple Structures in Neural Networks:

On Expressiveness, Optimization and Data Distribution

by

Lei Chen

A dissertation submitted in partial fulfillment

of the reqirements for the degree of

Doctor of Philosophy

Department of Computer Science

New York University

May, 2025

Professor Joan Bruna

© Lei Chen

all rights reserved, 2025

To all who illuminated this path

“The way ahead is long and has no ending;

yet high and low I’ll search with my will unbending”

— Qu Yuan, 340 BC - 278 BC

iii

Acknowledgements

First I would like to thank my advisor, Joan Bruna, for his insightful guidance and unconditional

support throughout my PhD study. He always encouraged me to work on truly interesting and

important problems. He was also a great cheerleader when our manuscripts were rejected due to

randomness in reviewing. Beyond academic research, he is the best role model for being generous

to students, peer researchers and family members. It was one of the best decisions of my life to

continue my PhD study in his group after my master study. In the application season for the 2020

fall, I felt a possibility of switchingmy research directions from graphmachine learning to general

deep learning in the future, and then Joan would be an ideal advisor because of his expertise and

ambitiousness in almost all areas in the intersection of mathematics and deep learning. This turns

out to be true because I switched my directions twice.

I want to thank my committee members, Alberto Bietti, Andrew Gordon Wilson, Kyunghyun

Cho and Rob Nowak. Alberto is a wonderful collaborator sharing his deep understanding of

theory and experiments in Large Language Models. Andrew and Kyunghyun have been bring-

ing significant help through discussing on my research, providing internship opportunities and

teaching excellent courses at NYU. Rob runs a great lab in Madison, where I spent an unforget-

table summer, made many friends and shared research interests.

I want to thank Zhengdao Chen especially for his guidance on my research. He is knowledge-

able and modest, implicitly teaching me to keep challenging and improving ideas. I also want to

thank Soledad Villar for her help on my research and PhD applications. Zhengdao and Soledad

iv

are wonderful teammates when facing very close deadlines. I also got great support from my

lab and office mates, including but not limited to, Aaron Zweig, Carles Domingo-Enrich, Cedric

Gerbelot, Cinjon Resnick, David Brandfonbrener, Denny Wu, Evan Dogariu, Karl Otness, Loucas

Pillaud-Vivien, Min Jae Song, Noah Amsel, Richard Pang and Samy Jelassi. I would like to thank

Alex Damian, Jingfeng Wu and Jeremy Cohen for discussion on optimization.

I want to thank the following external collaborators, Micheal Bronstein, Shunwang Gong and

Justin Gilmer. Michael and Shunwang host my visit to London and provided a different view of

geometric deep learning. Justin taught me how to empirically analyze optimization problems in

Large Language Models.

I want to thank my friends to get me in a good mood every day, including but not limited

to, Meng Wang, Guangyu Xue, Xiao Xu, Chengpeng Xue, Fangjun Zhang, Xuan Tang, Jialiang

Cao, Yihan He, Junwen Yang and Yiyang Wen. Meng inspired me to switch my PhD major from

Engineering to Computer Science, as he did. He is also an amateur poet and singer, bringing joy

during difficult times. Yihan, Junwen and Yiyang helped make my decision to work in quantative

finance after PhD graduation. In Seattle, I met many great friends to enjoy food and discuss re-

search with, including BingbingWen, Yujie Li, Chen Liang, Runlong Zhou, Zhihan Xiong, Qiwen

Cui, Haozhe Jiang and Weihang Xu. In Madison, I started precious friendships with Jifang Zhang

and Joe Shenouda.

I quit my first PhD program of Civil Engineering at Tsinghua University in 2018. I would like

to thank my advisors, Jianguo Nie and Congzhen Xiao, for their understanding of my decision

and encouraging me to chaise my interests. This experience has inspired me to make better

decisions in my life. When some peers were struggling in taking everything into consideration,

I was extremely fortunate to be able to follow my heart.

I want to thank my parents, Shaoming Chen and Cuiqin Xie, for their unconditional support.

It was not an easy decision to quit from a decent PhD program and then start my master and PhD

study in a foreign country. All they want is to see me happy every day. They are my rock, as they

v

gave me a name with three rocks in Chinese. Someday, I hope I could be their rock as well.

Finally, I want to thank my love, Yifang Chen. We enrolled in and will graduate from PhD

programs at the same time. I cannot imagine how I could enjoy this journey so much without

her. The initial condition was quite distant, as she was in Seattle and I was in New York. But we

will get a global convergence towards the same place, motivated by the momentum of love, and

live happily ever after.

vi

Abstract

In this era of Large Language Models (LLMs) and other giant neural networks, we aim to analyze

simplified settings from scratch, as foundational steps towards understanding the functionality

of the giant models. We present our understanding from three aspects.

On expressive power, we investigate the function class of simplified graph networks, i.e.,

Graph-Augmented Multi-layer Perceptrons (GA-MLPs), against the classic Graph Neural Net-

works (GNNs) using measurements of graph isomorphism testing and counting attributed walks.

On optimization, we theoretically study instabilities from large learning rates in training neu-

ral networks, i.e., Edge of Stability. We investigate the conditions of how the loss landscape con-

tains such unstable training trajectories, especially oscillating in a low-dimensional subspace.

Then we leverage such property in simple, yet representative, learning problems in a teacher-

student style, including two-layer single-neuron homogeneous networks and matrix factoriza-

tion.

On data distribution of reasoning tasks, we propose a decomposition of next-token prediction

into two parts: in-context reasoning and distributional association. We study this decomposition

empirically and theoretically in a controlled synthetic setting, and find that feed-forward layers

tend to learn simple distributional associations such as bigrams, while attention layers focus on

in-context reasoning. Finally, based on such understanding, we provide empirical evidence on

how modifying the feed-forward layers can improve the performance of LLMs on certain tasks.

vii

Contents

Dedication iii

Acknowledgments iv

Abstract vii

List of Figures xiii

List of Tables xx

1 Introduction 1

1.1 Expressive Power of Simplified Graph Neural Networks 1

1.2 Simplicity Induced by Optimization . 3

1.3 Roles of Feed-Forward Layers and Attention in Transformers 4

2 Expressive Power of Graph Neural Networks 6

2.1 Introduction and Our Contributions . 6

2.2 Related Works . 8

2.3 Preliminaries . 10

2.3.1 Notations . 10

2.3.2 Graph Neural Networks (GNNs) . 10

2.3.3 Graph-Augmented Multi-Layer Peceptrons (GA-MLPs) 11

viii

2.4 Expressive Power as Graph Isomorphism Tests . 12

2.5 Expressive Power as Functions on Rooted Graphs 14

2.6 Experiments . 18

2.6.1 Number of equivalence classes of rooted graphs 19

2.6.2 Counting attributed walks . 19

2.6.3 Community detection on Stochastic Block Models (SBM) 20

2.7 Conclusions . 22

3 Optimization Instabilities in Low-dimensional Space 23

3.1 Introduction and Our Contributions . 23

3.1.1 Connections between theoretical results 25

3.1.2 Implications from low-dimension to high-dimension 27

3.2 Related Works . 28

3.3 Preliminaries . 31

3.4 Stable oscillation on 1-D functions: fixed point of two-step update 32

3.4.1 Existence of fixed points . 33

3.4.2 Convergence to fixed points . 36

3.5 On a two-layer single-neuron homogeneous network 38

3.6 Matrix Factorization and beyond . 41

3.6.1 Observations from Matrix Factorization 41

3.6.2 Implications for more complicated settings 45

3.7 Experiments on MLPs and MNIST . 49

3.7.1 2-layer high-dim homogeneous ReLU NNs with planted teacher neurons . 49

3.7.2 3, 4, 5-layer non-homogeneous MLPs on MNIST 51

3.8 Conclusions . 52

ix

4 Memorization of Training Distribution in Transformer Modules 58

4.1 Introduction and Our Contributions . 58

4.2 Related Works . 60

4.3 Preliminaries . 61

4.3.1 Reasoning from Context . 61

4.3.2 Truncating Weights with LASER [Sharma et al. 2023] 63

4.4 Two-layer Transformer on Noisy In-context Recall 64

4.4.1 Feed-forward layers store the generic noise 69

4.4.2 Attention attends to in-context targets and avoids noise 70

4.4.3 No feed-forward Layers: value matrix stores generic noise association . . 72

4.4.4 How Does the Two-layer Model Solve Noisy In-context Recall? 75

4.4.5 Multiple Triggers . 82

4.5 Experiments on Pre-trained LLMs . 86

4.5.1 An Investigation on GPT-2 Small and Pythia Models 86

4.5.2 The effect of truncating feed-forward layers on GSM8K 89

4.6 Discussion and Limitations . 89

A Appendix: Supplementary Materials for Chapter 2 92

A.1 GA-MLP with general equivariant graph operators for node feature augmentation 92

A.2 Examples of existing GA-MLP models . 95

A.3 Equivalence classes induced by GNNs and GA-MLPs among real graphs 95

A.4 Additional notations . 96

A.5 Proof of Proposition 2.2 . 97

A.6 Proof of Proposition 2.3 . 99

A.7 Proof of Proposition 2.4 . 101

A.8 Proof of Proposition 2.6 . 102

x

A.9 Proof of Proposition 2.7 . 107

A.10 Proof of Proposition 2.1 . 108

A.11 Experiment Details . 113

B Appendix: Supplementary Materials for Chapter 3 116

B.1 Additional Results . 116

B.2 Additional Experiments . 120

B.3 Proof of Theorem 3.1 . 123

B.4 Proof of Lemma 3.2 . 125

B.5 Proof of Prop 1 . 128

B.6 Proof of Theorem 3.3 . 131

B.7 Proof of Theorem 3.4 . 137

B.8 Proof of Lemma B.2 . 142

B.9 Proof of Theorem 3.5 . 145

B.10 Proof of Matrix Factorization . 174

B.11 Useful lemmas . 193

B.12 Illustration of period-2 and period-4 orbits . 193

C Appendix: Supplementary Materials for Chapter 4 194

C.1 More Experiments on Pythia . 194

C.2 Proof of Theorem 4.1 . 197

C.3 Proof for First and Second moments in Lemma C.2 217

C.4 Proof of Theorem 4.2: Training Dynamics of the Attention Layer 243

C.5 Experiments Setup: Linear Associative Memory 252

C.6 Useful Lemmas . 255

C.7 Input Examples for LLMs . 258

C.8 Synthetic IOI Task . 260

xi

Bibliography 266

xii

List of Figures

2.1 A pair of graphs that can be distinguished by 2 iterations of the WL test but not by GA-

MLPs with Ω ⊆ {𝐴𝑘 : 𝑘 ∈ N}, as proved in Appendix A.10. 13

2.2 An illustration of rooted graphs and rooted aggregation trees. Left: a pair of

graphs, 𝐺 and 𝐺′. Center : the rooted graphs of 1 in 𝐺 and 𝐺′, 𝐺 [1] and 𝐺′[1] .

Right: the rooted aggregation tree that both 𝐺 [1] and 𝐺′[1] correspond to. 15

2.3 Apair of rooted graphs,𝐺 [1] (left) and𝐺 ′[1] (right), in which blue nodes have node feature

0 and green nodes have node feature 1. They belong to the same equivalence class induced

by any GA-MLP with operators that only depend on the graph structure, but different

equivalence classes induced by GNNs. In particular, 𝐺 [1] and 𝐺 ′[1] ∈ T2,2,(1,1,3) (defined

in Appendix A.8), and |W2(𝐺 [1] ; (1, 1)) | = 1 whereas |W2(𝐺 ′[1] ; (1, 1)) | = 0. 17

2.4 Community detection on binary SBM with 5 choices of in- and out-group connectivities,

each yielding to a different SNR. Higher overlap means better performance. 21

3.1 Connections between our presented theoretical results. The arrows stand for “im-

plies”. LG stands for Local Geometry. MF stands for Matrix Factorization. 26

3.2 Matrix Factorization: grid search of 𝜂𝜎2
1 v.s. 𝜂𝜎

2
2 onwhether GD diverges or not.

(a) Generic initialization: it verifies the condition 𝜂
(
𝜎2

1 + 𝜎2
2
)
< 2. (b-c) Quasi-

symmetric initialization: it verifies the predicted bound 𝜂 ·
(
𝜎2

1/𝛼2 + 𝜎2
2𝛼

2) < 2 in

Eq.(3.9) as a sufficient condition. 45

xiii

3.3 Matrix Factorization: 𝜎max(Y), 𝜎max(Z) for different 𝜂’s. For each 𝜂, the last

10 iterations are sampled for report, due to periodic and chaotic phenomenon.

Observations: (1) when 𝜂𝜎2
1 ∈ (1, 1.38), all cases have 𝜎max(Y) = 𝜎max(Z); (2)

when 𝜂𝜎2
1 ∈ (1, 1.23), it converges to a period-2 orbit; (3) when 𝜂𝜎2

1 ∈ (1.23, 1.28),

it converges to a period-4 orbit; (4) when 𝜂𝜎2
1 > 1.28, it is rather chaotic; (5) when

𝜂𝜎2
1 < 1, there is no oscillation. 46

3.4 Trajectories of minimizing 𝐿(𝑥,𝑦) = 1/2(𝑥𝑦 − 1)2 with 𝜂 = 1.08, 0.95. For 𝜂 = 1.08,

the manifoldM proposed by Damian et al. [2022b] does not exist. For 𝜂 = 0.95,

the manifoldM exists, but the projection onto it does not change for the first few

steps. 47

3.5 Result of 2-layer 16-neuron teacher-student experiment. 54

3.6 Result of 3-layer ReLU MLPs on MNIST. Both (c) and (d) are for learning rate as

0.5. 55

3.7 Result of 4-layer ReLU MLPs on MNIST. 56

3.8 Result of 5-layer ReLU MLPs on MNIST. 57

4.1 Distributional association v.s. in-context reasoning. In this work, we de-

compose tasks of next-token prediction into the distributional and the in-context

ones, finding that MLPs learn distributional associations before attention devel-

ops in-context reasoning capabilities. Furthermore, truncating MLPs promotes

in-context reasoning by weakening distributional associations. See Figure 4.13

for an example of this on the Pythia model [Biderman et al. 2023]. 60

xiv

4.2 Noisy in-context recall. Purpose of design: understand mechanisms of atten-

tion and feed-forward layers for tasks with in-context reasoning (predict 𝑦)

and distributional association (predict 𝜏). Task: predict tokens 𝑦 v.s. 𝜏 from

a sentence [. . . , 𝑞,𝑦, . . . , 𝑞, 𝜏, . . . , 𝑞] where 𝑞 is trigger, 𝑦 is sampled target token

for a sentence, and 𝜏 is a fixed generic token across sentences. Our findings: in a

two-layer transformer, the second-layer attention (Attn-2) only attends towards

target tuples [𝑞,𝑦] while the feed-forward layer (FF-2) learns to predict 𝜏 66

4.3 Left three: Average probability of predicting correct and noise tokens, and test

loss on clean data (𝛼 = 0), with different fractions 𝜌 of preserved rank in 𝑈𝑖𝑛 of

the second-layer MLP 𝐹2. The full model learns to predict noise with probability

around 𝛼 = 0.5, as expected from training data. When 𝐹2 is dropped (𝜌 = 0),

the model predicts the correct token 𝑦 with probability ≈ 0.98. Rightmost: the

FF-2 margin of 𝜏 v.s. all the other tokens with input as 𝑞, i.e., [W𝑈 𝐹2(W𝐸 (𝑞))]𝜏 −

max𝑘⩽𝑁 [W𝑈 𝐹2(W𝐸 (𝑞))]𝑘 . It reveals that FF-2 learns trigger-noise association in

early steps. 67

4.4 The second-layer attention scores of models trained with noise (left), fine-tuned

with noise (right, initialized as a model pre-trained without noise), given the

same input. It turns out both models learn to attend to the informative struc-

ture “[trigger]+𝑦” instead of “[trigger]+noise”. This implies that the attention in

these models is only responsible to predict 𝑦, although the training input and

output have noise with probability 𝛼 = Θ(1). The fine-tuning setting is in Ap-

pendix 4.4.4.1. 68

xv

4.5 Pure-label loss for rank-1,2,3,4 models with 𝑛 = 3, 𝛼 = 0.03 and 𝑑 = 12 (left) or 8

(right). Only full models are trained, and we report low-rank results by conducting

SVD in each step without manipulating the training. In both figures, the exper-

iments are run for 20 times to examine the randomness. For each rank, we plot

curves of the median, 25% and 75% out of 20 runs. It turns out: i) rank-2 mod-

els are very likely to have significantly lower pure-label loss thant full models

(rank⩾ 3), and ii) the larger dimension 𝑑 has more stable results. 74

4.6 Left: first-layer attention attending to the previous token from the current token.

Middle: logits to predict noise from ⟨𝐹2(W𝐸 (𝑖)),W𝑈 (𝑗)⟩ with input 𝑖 ∈ [𝑁 + 1]

and output 𝑗 ∈ [𝑁 + 1], where the output channel 2 is set as the noise channel.

It turns out, for all input 𝑖 , the logits on output 2 are large, which matches our

construction that, at least for trigger 𝑞 as input, the output 2 has large logits.

Right: logits to predict singal from ⟨W2
𝑉
W𝐸 (𝑖),W𝑈 (𝑗)⟩ for input 𝑖 ∈ [𝑁 + 1]

and output 𝑗 ∈ [𝑁 + 1]. It matches our construction that 𝑖 = 𝑗 has large logits.

Meanwhile, 𝑖 = 𝑗 = 2 does not have large logits since 2 is the noise channel. . . . 77

4.7 Fractions of predicting the noise token and the other non-noise tokens with 𝛼 =

0.5. (Left) pretraining steps on noisy data; (right) finetuning steps on noisy data,

after pretraining on clean data with 𝛼 = 0. In both cases, the models learn to

predict noise with probability nearly 0.5. In the first few (∼ 5) steps, the models

quickly learn to predict noise with probability close to 1. The fine-tuning setting

is in Appendix 4.4.4.1. 78

4.8 Logits of ⟨W1
𝑉
W𝐸 (𝑖)⊤,W2

𝑄𝐾
W𝐸 (𝑗)⟩ for input 𝑖 and output 𝑗 when there is one

trigger (left, 𝑞 = 1) and five triggers (right, 𝑞 ∈ 𝑄 = {1, 39, 43, 53, 58}). In both

cases, the logits only have large values when 𝑖 = 𝑗 = 𝑞, verifies the matching

mechanism in Appendix 4.4.4.2. 83

xvi

4.9 Test performance of fully dropping 𝐹1, 𝐹2 when both 𝐹1, 𝐹2 are two-layer MLPs.

It turns out, while dropping 𝐹2 makes the model predict correctly w.p. near 1,

dropping 𝐹1 has the model predict noise with high probability. 84

4.10 Test performance of fully dropping 𝐹1, 𝐹2 when both 𝐹1 is MLPs and 𝐹2 Linear.

Both dropping methods turn out to help predict more correctly than the full

model. Meanwhile, dropping the MLP 𝐹1 is better with lower test loss. 84

4.11 Test performance of fully dropping 𝐹1, 𝐹2 when both 𝐹1 is Linear and 𝐹2 MLPs.

Only dropping 𝐹2 helps predict more correctly. Dropping 𝐹1 makes the model

predicting noise more. 85

4.12 Test performance of low-rank truncating ofW1
𝑂
when there is no 𝐹1, 𝐹2. Here 𝜌 is

the fraction of preserved rank ofW1
𝑂
, where actually we re-parametrize the first-

layer value matrix in attention as W1
𝑂
W1

𝑉
∈ R𝑑×𝑑 . It turns out the best 𝜌 = 0.05

improves the model’s prediction a little. Meanwhile, a smaller 𝜌 destroys the

model’s performance. 86

4.13 Left: average probability of tokens [IO], [S] and “the” in 100-sentence IOI task in

the prediction by Pythia-1B along training. Right: average probability of tokens

“Spain” and “the” in a factual task predicted by Pythia-1B along training, with

input as “Madrid is located in”. In both tasks, the full model learns to predict

“the” with high probability starting from ∼10 steps, and then learns to solve the

tasks. LASER boosts the probability of correct answers against “the” in both tasks:

the average probability ratio of correct answers against “the” improves from 2.3×

to 12.3× (in IOI) and from 0.16× to 11.3× (in factual) at 14K steps. 88

4.14 The training loss of approximating the global bigram 𝜋𝑏 with various allocations

of parameters in MLP and Attentions. For each configuration of total parameters

and ratios, we use the corresponding best learning rate after search to train 100

steps. 91

xvii

A.1 A pair of graphs with identical node features, 𝐺 (left) and 𝐺′ (right), which can

be distinguished by 2 iterations of the WL test but not by the GA-MLP with Ω ⊆

{𝐴𝑘}𝑘∈N. 108

B.1 Running GD around the local minima of 𝑓 (𝑥) = 1
4 (𝑥

2 − 1)2 (left two) and 𝑓 (𝑥) =

2 sin(𝑥) (right two) with learning rate 𝜂 = 1.01 > 2
𝑓 ′′ (𝑥) = 1. Stars denote the start

points. It turns out both functions allow stable oscillation around the local minima. 121

B.2 Running GD in the teacher-student setting with learning rate 𝜂 = 2.2 = 1.1𝑑 ,

trained on 1000 points uniformly sampled from sphereS1 of ∥𝑥 ∥ = 1. The teacher

neuron is �̃� = [1, 0] and the student neuron is initialized as 𝑤 (0) = [0, 0.1] with

𝑣 (0) = 0.1. 121

B.3 Symmetric and Quasi-symmetric Matrix factorization: running GD around flat

(𝛼 = 1) and sharp (𝛼 = 0.8) minima. In both cases, their leading singular values

converge to the same period-2 orbit (about 6.1 and 5.3). (Left: Training loss. Mid-

dle: Largest singular value of symmetric case. Right: Largest singular values of

quasi-symmetric case.) . 122

B.4 Running GD on 𝑓 (𝑥,𝑦) = 1
2 (𝑥𝑦−1)2 with learning rate 𝜂 = 1.05 (top) and 𝜂 = 1.25

(bottom). When 𝜂 = 1.05, it converges to a period-2 orbit. When 𝜂 = 1.25, it

converges to a period-4 orbit. In both cases, |𝑥 − 𝑦 | decays sharply. 123

B.5 The convergent orbits of GD on 𝑓 (𝑥) = 1
4 (𝑥

2 − 1)2 with learning rate=1.05, 1.235

and 1.237. The first two smaller learning rates drive to period-2 orbits while the

last one goes to an period-4 orbit. The significant bound between period-2 and

period-4 is predictable by Taylor expansion around the period-2 orbit, as 𝜂 =

√
5 − 1 ≈ 1.236. 193

xviii

C.1 Average ranking of tokens “the” in the prediction by Pythia-160M/410M/1B along

training. The inputs are 30 preposition words (left) and 40 sentences ending with

prepositions. It turns out “the” becomes one of top predictions around 10 steps. . 195

C.2 The prediction distributions of Pythia-410M and 1B on the IOI task. The setting

is the same as in Fgure 4.13 (left). The evaluated models are the final checkpoints

after training. LASER turns out to decrease the probability of ”the” while keeping

that of the correct [IO] high. 196

C.3 The prediction distributions of Pythia-1B, 1.4B and 2.8B on more examples of

factual recall. Compared with the setting in Figure 4.13 (right), here we use 20

examples in Table C.3. LASER turns out to significantly decrease the probability

of ”the” against the correct tokens. 263

C.4 Predicted probability for 𝑐 ∈ {“Mary”, “them”, “the”, “John”}. LASER is conducted

on input matrices of MLP layers on the layer 𝑙 = 9, 10, 11, 12 of GPT-2 Small.

The input is “When Mary and John went to a store, John gave a drink to”. The

horizontal is the fraction of perserved rank, 𝜌 ∈ [0, 1], where 𝜌 = 1 stands for the

full model. It turns out LASER clearly decreases probability of “the” and “them”

when 𝜌 ∈ [0.1, 0.8] for layer 𝑙 = 9, 10, 11, compared with the full model. 264

C.5 Synthetic IOI trained with SGD: test loss and accuracy for transformers with

different layers. Dropping the last-layer MLP consistently improves the test ac-

curacies across all models. 264

C.6 Synthetic IOI trained with Adam: test loss and accuracy for transformers with

layers 𝐿 = 3, 4, 5. Truncating the last-layer MLP’s input weights with 𝜌 = 0.01

improves the test performances for 𝐿 = 3, 4, while the model fails to converge for

𝐿 = 5. 265

xix

List of Tables

2.1 The number of equivalence classes of rooted graphs induced by GNN and GA-MLP on

node classification datasets with node features removed. 19

2.2 MSE loss divided by label variance for counting attributed walks on the Cora graph and

RRG. The models denoted as “+” contain twice as many powers of the operator. 19

4.1 Probabilities of the top-5 next-tokens in Pythia-1B before and after LASER. The

input prompt is “Madrid is located in”. Probabilities of two generic words, i.e.,

“the” and “a”, drop sharply after LASER, while probabilities of meaningful words

increase, especially the target “Spain”. 63

4.2 Few-shot accuracy (%) of pretrained and finetuned language models on GSM8K.

TruncatingMLPs (LASER) improves reasoning performances in few-shot CoT set-

tings while it has worse performance in the standard 8-shot setting. The LASER

hyper-parameters are in Appendix C.1.2. 89

A.1 The number of equivalence classes of graphs induced by GNN and GA-MLP on

real datasets with node features removed. The last row gives the ground-truth

number of isomorphism classes of graphs computed from the implementation of

[Ivanov et al. 2019]. 96

A.2 Results for community detection on binary SBM by GA-MLP-�̃�(1) 115

xx

C.1 𝜇 (𝑗, 𝑘), 𝜎2(𝑗, 𝑘), 𝑅(𝑗, 𝑘) for different choices of (𝑗, 𝑘) in Lemma C.2. 200

C.2 All lemmas about the seven cases classified by 𝑦 and 𝑘 218

C.3 Inputs and Outputs of Factual Knowledge . 261

xxi

1 | Introduction

Large language models (LLMs) have achieved remarkable success in the past years. However,

while these models have shown impressive capabilities on a variety of tasks, they remain largely

black boxes. A better understanding of the role of Transformer layers and how they are affected

by the training process could enable newmonitoring and editing techniques, better training data,

and ultimately more reliable LLMs. This requires a rigorous study under the constraint of limited

computational resources. The first possibility is to train large models in a more efficient way, such

as fine-tuning with low-rank adapters [Hu et al. 2022]. Nevertheless, involving nonlinear dynam-

ics with a large number of pre-trained parameters on complicated data, it is still challenging to

understand the training process of large models. The second possibility is to study simplified

settings from scratch, as foundational steps towards understanding the functionality of the giant

models. In this thesis, we present our understanding on this from three aspects.

1.1 Expressive Power of Simplified Graph Neural Networks

Graphs are ubiquitous in many real-world applications, such as social networks, molecular struc-

tures, multi-body systems and transportation systems. As a modern method of learning rep-

resentations of graphs, Graph Neural Networks (GNNs) have been widely applied to various

tasks including node classification, link prediction and graph classification [Kipf and Welling

2016; Hamilton et al. 2017; Xu et al. 2019; Zhang and Chen 2018; You et al. 2018]. A large por-

1

tion of GNNs belong to the framework of Message Passing [Gilmer et al. 2017], where the node

representations are updated by aggregating information from their neighbors iteratively. This

neighborhood-aggregation mechanism allows GNNs to learn representations of nodes by com-

bining information from their local neighborhoods, and by increasing the depth of such GNNs,

we increase the size of the receptive field, which hopefully captures more global information of

the graph.

Based on such a message-passing framework, there are two lines of research that have gained

significant attention in the GNN community. The first one is to study the expressive power

of GNNs, which refers to their ability to distinguish non-isomorphic graphs or to approximate

certain functions on graphs [Xu et al. 2019; Morris et al. 2019; Maron et al. 2018, 2019a; Chen

et al. 2020b; Zhang et al. 2023]. The second one is to improve the training and scalability of

GNNs, especially for deep GNNs, by addressing issues such as over-smoothing, oversquashing

and efficiency [Kipf andWelling 2016; Li et al. 2018b; Oono and Suzuki 2020; Alon and Yahav 2020;

Rossi et al. 2020]. However, there is still a gap between these two lines of research. Typically,

when studying expressive power, the community references message-passing GNNs as a baseline

model, and compares it with othermore complexmodels, such as GNNswith higher-order tensors

[Maron et al. 2019a], aggregated permutation-sensitive functions over permutations [Murphy

et al. 2019; Chen et al. 2020b]. But these models are often much less scalable than the original

message-passing GNNs, and thus not practical for real-world applications. On the contrary, when

improving the training and scalability of GNNs, most works focus on simplifying the architecture

of GNNs, such as using fewer layers or reducing the number of parameters, without considering

the expressive power of these simplified models. Therefore, we aim to bridge this gap by, for

the first time, understanding the expressive power of a simplified GNN architecture, which has

proven to be both scalable and effective in practice. The details are in Chapter 2.

2

1.2 Simplicity Induced by Optimization

While the expressive power of general neural networks is one of the main factors of their suc-

cess, i.e., universal approximation theorem [Cybenko 1989], it always remains meaningful to

study where optimization methods lead to among such a large space of functions. If the effect

of optimization is not sufficiently considered, more expressive models may have less guarantee

of generalization, following theory of classic machine learning [Mohri et al. 2018]. However,

overparametrization, i.e., the number of parameters is much larger than the number of training

samples, has been shown to be beneficial for generalization in deep learning [Zhang et al. 2016;

Neyshabur et al. 2017; Arora et al. 2018]. This direction of studying how optimization affects

the learnt functions is termed as implicit regularization. Generally this direction has unveiled a

series of intriguing results that the learnt functions by certain optimization methods are simple

although the parametric model family is quite large. Such kinds of results typically involve two

conditions - certain intialization and limited learning rates. Different initialization scales induces

different training regimes. The large initialization is often referred to as lazy learning [Jacot

et al. 2018; Chizat et al. 2019], where the optimization dynamics are close to linear, and the opti-

mization trajectory is close to the initialization. The small initialization is usually about feature

learning, where informative features are inherent in data, then the optimization trajectory is dom-

inated by gradient from such features, e.g., single-index models [Arous et al. 2021; Damian et al.

2024] imitate neural networks to learn a single neuron buried in high-dimensional space. Regard-

ing optimization methods, majority of results are for gradient descent (GD) with small learning

rates, exactly or approximately following the trajectory of gradient flow, i.e., GD with infinitesi-

mal learning rates, then the continuous dynamics are easier to solve following ODEs instead the

discrete one.

However, all of these regimes are still limited in some subspace. The lazy learning stays

around initialization, the feature learning moves closely to the subspace from sparse features,

3

and small learning rates are easier to be stuck around a local minima. Meanwhile, small learning

rates in the beginning might be not small any more along training [Cohen et al. 2020], since

the curvature of the loss landscape may increase during training, then the trajectory becomes

sensitive to the choice of learning rates. Therefore, this motivates us to study what happens

when the learning rate is large, especially in the regime that theory tools from classical (convex)

optimization cannot guarantee convergence. We study the dynamics with large learning rates in

several settings, including 1-D functions, two-layer single-neuron homogeneous networks and

matrix factorization. While large learning rates help escape from initialization and sharp local

minima, the trajectories are still attracted by certain simple structures, such as period-2 orbits

and symmetric solutions. The details are in Chapter 3.

1.3 Roles of Feed-Forward Layers and Attention in

Transformers

Next-token prediction is a fundamental task in large language models (LLMs), where the model

learns to predict the next word in a sequence given the previous words. Such an autoregressive

training objective turns out to bring impressive capabilities in various tasks, including language

understanding, generation, and even reasoning. However, the underlying mechanisms of how

these models achieve such performance remain largely unclear. In particular, the roles of dif-

ferent components in the Transformer architecture, such as feed-forward layers and attention

mechanisms, and their connections with training data distribution are still under active investi-

gation.

We start from a simple yet representative definition of data distribution, as a mixture of in-

context reasoning and fixed associations. Such a mixture is inspired by an observation in English.

Prepositions like “to”, “for”, “above” are often followed by nouns, and nouns likely begin with

“the” or “a”, whichmeans there is a strong co-occurrence between prepositions and “the”. We refer

4

to this co-occurrence as distributional association, against in-context reasoning where models

need to infer the next word based on the context. Then, we train a two-layer Transformer model

on this mixture of data distribution, and find that the feed-forward layers play a crucial role

in learning the associations, while the attention layers are essential for in-context reasoning.

This observation is consistent with the training dynamics of the model, where the feed-forward

layers learn tomemorize the associations quickly, while the attention layers gradually capture the

in-context reasoning patterns. Moreover, based on this understanding, modifying feed-forward

layers in pre-trained LLMs can significantly lower the model’s predicted probability for such

associations. The details are in Chapter 4.

5

2 | Expressive Power of Graph Neural

Networks

2.1 Introduction and Our Contributions

While multi-layer Graph Neural Networks (GNNs) have gained popularity for their applications

in various fields, recently authors have started to investigate what their true advantages over

baselines are, and whether they can be simplified. On one hand, GNNs based on neighborhood-

aggregation allows the combination of information present at different nodes, and by increasing

the depth of such GNNs, we increase the size of the receptive field. On the other hand, it has

been pointed out that deep GNNs can suffer from issues including over-smoothing, exploding

or vanishing gradients in training as well as bottleneck effects [Kipf and Welling 2016; Li et al.

2018b; Luan et al. 2019; Oono and Suzuki 2020; Rossi et al. 2020; Alon and Yahav 2020].

Recently, a series of models have attempted at relieving these issues of deep GNNs while

retaining their benefit of combining information across nodes, using the approach of firstly aug-

menting the node features by propagating the original node features through powers of graph

operators such as the (normalized) adjacencymatrix, and secondly applying a node-wise function

to the augmented node features, usually realized by a Multi-Layer Perceptron (MLP) [Wu et al.

2019; NT and Maehara 2019; Chen et al. 2019a; Rossi et al. 2020]. Because of the usage of graph

operators for augmenting the node features, we will refer to such models as Graph-Augmented

6

MLPs (GA-MLPs). These models have achieved competitive performances on various tasks, and

moreover enjoy better scalability since the augmented node features can be computed during

preprocessing [Rossi et al. 2020]. Thus, it becomes natural to ask what advantages GNNs have

over GA-MLPs.

In this section, we ask whether GA-MLPs sacrifice expressive power compared to GNNswhile

gaining these advantages. A popular measure of the expressive power of GNNs is their ability

to distinguish non-isomorphic graphs [Hamilton et al. 2017; Xu et al. 2019; Morris et al. 2019].

In this section, besides studying the expressive power of GA-MLPs from the viewpoint of graph

isomorphism tests, we propose a new perspective that better suits the setting of node-prediction

tasks: we analyze the expressive power of models including GNNs and GA-MLPs as node-level

functions, or equivalently, as functions on rooted graphs. Under this perspective, we prove an

exponential-in-depth gap between the expressive powers of GNNs and GA-MLPs. We illustrate

this gap by finding a broad family of user-friendly functions that can be provably approximated

by GNNs but not GA-MLPs, based on counting attributed walks on the graph. Moreover, via the

task of community detection, we show a lack of flexibility of GA-MLPs, compared to GNNs, to

learn the best operators to use.

In summary, our main contributions are:

• Finding graph pairs that several GA-MLPs cannot distinguish while GNNs can, but also

proving there exist simple GA-MLPs that distinguish almost all non-isomorphic graphs.

• From the perspective of approximating node-level functions, proving an exponential gap

between the expressive power of GNNs and GA-MLPs in terms of the equivalence classes

on rooted graphs that they induce.

• Showing that the functions that count a particular type of attributed walk among nodes

can be approximated by GNNs but not GA-MLPs both in theory and numerically.

• Through community detection tasks, demonstrating that GNNs have higher flexibility in

7

learning than GA-MLPs due to the fixed choice of the operator family in the latter.

2.2 Related Works

Depth in GNNs. [Kipf andWelling 2016] observe that the performance of Graph Convolutional

Networks (GCNs) degrade as the depth grows too large, and the best performance is achievedwith

2 or 3 layers. Along the spectral perspective on GNNs [Bruna et al. 2013; Defferrard et al. 2016;

Bronstein et al. 2017; NT and Maehara 2019], [Li et al. 2018b] and [Wu et al. 2019] explain the

failure of deep GCNs by the over-smoothing of the node features. [Oono and Suzuki 2020] show

an exponential loss of expressive power as the depth in GCNs increases in the sense that the hid-

den node states tend to converge to Laplacian sub-eigenspaces as the depth increases to infinity.

[Alon and Yahav 2020] show an over-squashing effect of deep GNNs, in the sense that the width

of the hidden states needs to grow exponentially in the depth in order to retain all information

about long-range interactions. In comparison, our work focuses on more general GNNs based on

neighborhood-aggregation that are not limited in the hidden state widths, and demonstrates the

their advantage in expressive power compared to GA-MLP models at finite depth, in terms of dis-

tinguishing rooted graphs for node-prediction tasks. On the other hand, there exist examples of

useful deep GNNs. [Chen et al. 2019b] apply 30-layer GNNs for community detection problems,

which uses a family of multi-scale operators as well as normalization steps [Ioffe and Szegedy

2015; Ulyanov et al. 2016]. Recently, [Li et al. 2019, 2020a] and [Chen et al. 2020a] build deeper

GCN architectures with the help of various residual connections [He et al. 2016] and normaliza-

tion steps to achieve impressive results in standard datasets, which further highlights the need to

study the role of depth in GNNs. [Gong et al. 2020] propose geometrically principled connections,

which improve upon vanilla residual connections on graph- and mesh-based tasks.

8

Existing GA-MLP-type models. Motivated by better understanding GNNs as well as enhanc-

ing computational efficiency, several models of the GA-MLP type have been proposed and they

achieve competitive performances on various datasets. [Wu et al. 2019] propose the Simple Graph

Convolution (SGC), which removes the intermediary weights and nonlinearities in GCNs. [Chen

et al. 2019a] propose the Graph Feature Network (GFN), which further adds intermediary pow-

ers of the normalized adjacency matrix to the operator family and is applied to graph-prediction

tasks. [NT andMaehara 2019] propose the Graph Filter Neural Networks (gfNN), which enhances

the SGC in the final MLP step. [Rossi et al. 2020] propose Scalable Inception Graph Neural Net-

works (SIGNs), which augments the operator familywith Personalized-PageRank-based [Klicpera

et al. 2018, 2019] and triangle-based [Monti et al. 2018; Chen et al. 2019b] adjacency matrices.

Expressive Power of GNNs. [Xu et al. 2019] and [Morris et al. 2019] show that GNNs based

on neighborhood-aggregation are no more powerful than the Weisfeiler-Lehman (WL) test for

graph isomorphism [Weisfeiler and Leman 1968], in the sense that these GNNs cannot distin-

guish between any pair of non-isomorphic graphs that the WL test cannot distinguish. They also

propose models that match the expressive power of the WL test. Since then, many attempts have

been made to build GNN models whose expressive power are not limited by WL [Morris et al.

2019; Maron et al. 2019a; Chen et al. 2019c; Morris and Mutzel 2019; You et al. 2019; Bouritsas

et al. 2020; Li et al. 2020b; Flam-Shepherd et al. 2020; Sato et al. 2019, 2020]. Other perspectives

for understanding the expressive power of GNNs include function approximation [Maron et al.

2019b; Chen et al. 2019c; Keriven and Peyré 2019], substructure counting [Chen et al. 2020b], Tur-

ing universality [Loukas 2020] and the determination of graph properties [Garg et al. 2020]. [Sato

2020] provides a survey on these topics. In this paper, besides studying the expressive power of

GA-MLPs along the line of graph isomorphism tests, we propose a new perspective of approxi-

mating functions on rooted graphs, which is motivated by node-prediction tasks, and show a gap

between GA-MLPs and GNNs that grows exponentially in the size of the receptive field in terms

9

of the equivalence classes that they induce on rooted graphs.

2.3 Preliminaries

2.3.1 Notations

Let𝐺 = (𝑉 , 𝐸) denote a graph, with𝑉 being the vertex set and 𝐸 being the edge set. Let 𝑛 denote

the number of nodes in 𝐺 , 𝐴 ∈ R𝑛×𝑛 denote the adjacency matrix, 𝐷 ∈ R𝑛×𝑛 denote the diagonal

degree matrix with 𝐷𝑖𝑖 = 𝑑𝑖 being the degree of node 𝑖 . We call 𝐷−
1
2𝐴𝐷−

1
2 the (symmetrically)

normalized adjacency matrix, and 𝐷−𝛼𝐴𝐷−𝛽 a generalized normalized adjacency matrix for any

𝛼, 𝛽 ∈ R. Let 𝑋 ∈ R𝑛×𝑑 denote the matrix of node features, where 𝑋𝑖 denotes the 𝑑-dimensional

feature that node 𝑖 possesses. For a node 𝑖 ∈ 𝑉 , let N(𝑖) denote the set of neighbors of 𝑖 . We

assume that the edges do not possess features. In a node prediction task, the labels are given by

𝑌 ∈ R𝑛 .

For a positive integer 𝐾 , we let [𝐾] = {1, ..., 𝐾}. We use {...}𝑚 to denote a multiset, which

allows repeated elements. We say a function 𝑓 (𝐾) is doubly-exponential in 𝐾 if log log 𝑓 (𝐾) is

polynomial in 𝐾 , and poly-exponential in 𝐾 if log 𝑓 (𝐾) is polynomial in 𝐾 , as 𝐾 tends to infinity.

2.3.2 Graph Neural Networks (GNNs)

Following the notations in [Xu et al. 2019], we consider 𝐾-layer GNNs defined generically as

follows. For 𝑘 ∈ [𝐾], we compute the hidden node states 𝐻 ∈ R𝑛×𝑑 (𝑘) iteratively as

𝑀
(𝑘)
𝑖

= AGGREGATE(𝑘) ({𝐻 (𝑘−1)
𝑗

: 𝑗 ∈ N (𝑖)}) , 𝐻 (𝑘)
𝑖

= COMBINE(𝑘) (𝐻 (𝑘−1)
𝑖

, 𝑀
(𝑘)
𝑖
) , (2.1)

where we set 𝐻 (0) = 𝑋 to be the node features. If a graph-level output is desired, we finally let

𝑍𝐺 = READOUT({𝐻 (𝐾)
𝑖

: 𝑖 ∈ 𝑉 }) , (2.2)

10

Different choices of the trainable COMBINE, AGGREGATE and READOUT functions result in dif-

ferent GNN models, though usually AGGREGATE and READOUT are chosen to be permutation-

invariant. As graph-level functions, it is shown in [Xu et al. 2019] and [Morris et al. 2019] that

the maximal expressive power of models of this type coincides with running 𝐾 iterations of the

WL test for graph isomorphism, in the sense that any two non-isomorphic graphs that cannot be

distinguished by the latter cannot be distinguished by the 𝐾-layer GNNs, either. For this reason,

we will not distinguish between GNN and WL in discussions on expressive powers.

2.3.3 Graph-Augmented Multi-Layer Peceptrons (GA-MLPs)

GA-MLPs are models that consist of two steps - first augmenting the node features with some

operators based on the graph topology, and then applying a node-wise learnable function. Below

we focus on using linear graph operators to augment the node features, while an extension of

the definition as well as some of the theoretical results in Section 2.5 to GA-MLPs using general

graph operators is given in Appendix A.1. Let Ω = {𝜔1(𝐴), ..., 𝜔𝐾 (𝐴)} ⊆ R𝑛×𝑛 be a set of (usually

multi-hop) linear operators that are functions of the adjacency matrix, 𝐴. Common choices of

the operators are powers of the (normalized) adjacency matrix, and several particular choices of

Ω that give rise to existing GA-MLP models are listed in Appendix A.2. In its general form, a

GA-MLP first computes a series of augmented features via

�̃�𝑘 = 𝜔𝑘 (𝐴) · 𝜑 (𝑋) ∈ R𝑛×𝑑 , (2.3)

with 𝜑 : R𝑑 → R𝑑 being a learnable function acting as a feature transformation applied to each

node separately. It can be realized by an MLP, e.g. 𝜑 (𝑋) = 𝜎 (𝑋𝑊1)𝑊2, where 𝜎 is a nonlinear

activation function and𝑊1,𝑊2 are trainable weight matrices of suitable dimensions. Next, the

11

model concatenates �̃�1, ..., �̃�𝐾 into �̃� = [�̃�1, ..., �̃�𝐾] ∈ R𝑛×(𝐾𝑑) , and computes

𝑍 = 𝜌 (�̃�) ∈ R𝑛×𝑑 ′ , (2.4)

where 𝜌 : R𝐾𝑑 → R𝑑 ′ is also a learnable node-wise function, again usually realized by an MLP. If

a graph-level output is desired, we can also add a READOUT function as in (2.2).

A simplified version of the model sets 𝜑 to be the identity function, in which case (2.3) and

(2.4) can be written together as

𝑍 = 𝜌 ([𝜔1(𝐴) · 𝑋, ..., 𝜔𝐾 (𝐴) · 𝑋]) (2.5)

Such a simplification improves computational efficiency since the matrix products 𝜔𝑘 (𝐴) ·𝑋 can

be pre-computed before training [Rossi et al. 2020]. Since we are mostly interested in an upper

bounds on the expressive power of GA-MLPs, we will work with the more general update rule

(2.3) in this paper, but the lower-bound result in Proposition 2.2 remains valid even when we

restrict to the subset of models where 𝜑 is taken to be the identity function.

2.4 Expressive Power as Graph Isomorphism Tests

We first study the expressive power of GA-MLPs via their ability to distinguish non-isomorphic

graphs. It is not hard to see that when Ω = {𝐼 , �̃�, ..., �̃�𝐾 }, where �̃� = 𝐷−𝛼𝐴𝐷−𝛽 for any 𝛼, 𝛽 ∈

R generalizes the normalized adjacency matrix, this is upper-bounded by the power of 𝐾 + 1

iterations ofWL.We next askwhether it can fall strictly below. Indeed, for two common choices of

Ω, we can find concrete examples: 1) If Ω consists of integer powers of any normalized adjacency

matrix of the form 𝐷−𝛼𝐴𝐷−(1−𝛼) for some 𝛼 ∈ [0, 1], then it is apparent that the GA-MLP cannot

distinguish any pair of regular graphs with the same size but different node degrees; 2) If Ω

consists of integer powers of the adjacency matrix,𝐴, then the model cannot distinguish between

12

1 2

3 4 5 6 7 8 9 10

11 12 13 14

1 2

3 4 5 6 7 8 9 10

11 12 13 14

Figure 2.1: A pair of graphs that can be distinguished by 2 iterations of the WL test but not by GA-MLPs
with Ω ⊆ {𝐴𝑘 : 𝑘 ∈ N}, as proved in Appendix A.10.

the pair of graphs shown in Figure 1, which can be distinguished by 2 iterations of the WL test.

The proof of the latter result is given in Appendix A.10. Together, we summarize the results as:

Proposition 2.1. If Ω ⊆ {�̃�𝑘 : 𝑘 ∈ N}, with either �̃� = 𝐴 or �̃� = 𝐷−𝛼𝐴𝐷−(1−𝛼) for some 𝛼 ∈ [0, 1],

there exists a pair of graphs which can be distinguished by GNNs but not this GA-MLP.

Nonetheless, if we focus on not particular counterexamples but rather the average perfor-

mance in distinguishing random graphs, it is not hard for GA-MLPs to reach the same level as

WL, which is known to distinguish almost all pairs of random graphs under a uniform distribu-

tion [Babai et al. 1980]. Specifically, building on the results in [Babai et al. 1980], we prove in

Appendix A.5 that:

Proposition 2.2. For all 𝑛 ∈ N+, ∃𝛼𝑛 > 0 such that any GA-MLP that has {𝐷,𝐴𝐷−𝛼𝑛 } ⊆ Ω can

distinguish almost all pairs of non-isomorphic graphs of at most𝑛 nodes, in the sense that the fraction

of graphs on which such a GA-MLP fails to test isomorphism is 1 − 𝑜 (1) as 𝑛 →∞.

The hypothesis that distinguishing non-isomorphic graphs is not difficult on average for ei-

ther GNNs or GA-MLPs is further supported by the numerical results provided in Appendix A.3,

in which we count the number of equivalence classes that either of them induce on graphs that

occur in real-world datasets. This further raises the question of whether graph isomorphism tests

along suffice as a criterion for comparing the expressive power of models on graphs, which leads

us to the explorations in the next section.

Lastly, we remark that with suitable choices of operators in Ω, it is possible for GA-MLPs to go

beyond the power ofWL. For example, if Ω contains the power graph adjacency matrix introduced

13

in [Chen et al. 2019b], min(𝐴2, 1), then the GA-MLP can distinguish between a hexagon and a

pair of triangles, which WL cannot distinguish.

2.5 Expressive Power as Functions on Rooted Graphs

To study the expressive power beyond graph isomorphism tests, we consider the setting of node-

wise prediction tasks, for which the final readout step (2.2) is dropped in both GNNs and GA-

MLPs. Whether the learning setup is transductive or inductive, we can consider the models as

functions on rooted graphs, or egonets [Preciado and Jadbabaie 2010], which are graphs with one

node designated as the root {𝑖1, ..., 𝑖𝑛} is a set of nodes in the graphs {𝐺1, ...,𝐺𝑛} (not necessarily

distinct) and with node-level labels {𝑌𝑖1, ..., 𝑌𝑖𝑛 } known during training, respectively, then the goal

is to fit a function to the input-output pairs (𝐺 [𝑖𝑛]𝑛 , 𝑌𝑖𝑛), where we use 𝐺 [𝑖] to denote the rooted

graph with 𝐺 being the graph and the node 𝑖 in 𝐺 being the root. Thus, we can evaluate the

expressive power of GNNs and GA-MLPs by their ability to approximate functions on the space

of rooted graphs, which we call E.

To do so, we introduce a notion of induced equivalence relations on E, analogous to the

equivalence relations on G introduced in Appendix A.3. Given a family of functions F on E,

we can define an equivalence relation ≃E;F among all rooted graphs such that ∀𝐺 [𝑖],𝐺′[𝑖′] ∈ E,

𝐺 [𝑖] ≃E;F 𝐺
′[𝑖′] if and only if ∀𝑓 ∈ F , 𝑓 (𝐺 [𝑖]) = 𝑓 (𝐺′[𝑖′]). By examining the number and sizes of

the induced equivalence classes of rooted graphs, we can evaluate the relative expressive power

of different families of functions on E in a quantitative way.

In the rest of this section, we assume that the node features belong to a finite alphabetX ⊆ N

and all nodes have degree at most𝑚 ∈ N+. Firstly, GNNs are known to distinguish neighborhoods

up to the rooted aggregation tree, which can be obtained by unrolling the neighborhood aggre-

gation steps in the GNNs as well as the WL test [Xu et al. 2019; Morris et al. 2019; Garg et al.

2020]. The depth-𝐾 rooted aggregation tree of a rooted graph 𝐺 [𝑖] is a depth-𝐾 rooted tree with a

14

1 2

3

1

2

3

4

5

6

1 2

3

1

2

3

4

5

6

1

Figure 2.2: An illustration of rooted graphs and rooted aggregation trees. Left : a pair of graphs, 𝐺 and
𝐺 ′. Center : the rooted graphs of 1 in 𝐺 and 𝐺 ′, 𝐺 [1] and 𝐺 ′ [1] . Right : the rooted aggregation tree that
both 𝐺 [1] and 𝐺 ′ [1] correspond to.

(possibly many-to-one) mapping from every node in the tree to some node in 𝐺 [𝑖] , where (i) the

root of the tree is mapped to node 𝑖 , and (ii) the children of every node 𝑗 in the tree are mapped

to the neighbors of the node in 𝐺 [𝑖] to which 𝑗 is mapped. An illustration of rooted graphs and

rooted aggregation trees is given in Figure 2.2. Hence, each equivalence class in E induced by the

family of all depth-𝐾 GNNs consists of all rooted graphs that share the same rooted aggregation

tree of depth-𝐾 . Thus, to estimate the number of equivalence classes on E induced by GNNs, we

need to estimate the number of possible rooted aggregation trees, which is given by LemmaA.6 in

Appendix A.6. Thus, we derive the following lower bound on the number of equivalence classes

in E that depth-𝐾 GNNs induce:

Proposition 2.3. Assume that |X| ≥ 2 and 𝑚 ≥ 3. The total number of equivalence classes of

rooted graphs induced by GNNs of depth 𝐾 grows at least doubly-exponentially in 𝐾 .

In comparison, we next demonstrate that the equivalence classes induced by GA-MLPs are

more coarsened. To see this, let’s first consider the example where we take Ω = {𝐼 , �̃�, �̃�2, ..., �̃�𝐾 },

in which �̃� = 𝐷−𝛼𝐴𝐷−𝛽 with any 𝛼, 𝛽 ∈ R is a generalization of the normalized adjacency matrix.

15

From formula (2.3), by expanding the matrix product, we have

(�̃�𝑘𝜑 (𝑋))𝑖 =
∑︁

(𝑖1,...,𝑖𝑘)∈W𝑘 (𝐺 [𝑖])
𝑑−𝛼𝑖 𝑑

−(𝛼+𝛽)
𝑖1

...𝑑
−(𝛼+𝛽)
𝑖𝑘−1

𝑑
−𝛽
𝑖𝑘
𝜑 (𝑋𝑖𝑘) , (2.6)

where we defineW𝑘 (𝐺 [𝑖]) = {(𝑖1, ..., 𝑖𝑘) ⊆ 𝑉 : 𝐴𝑖,𝑖1, 𝐴𝑖1,𝑖2, ..., 𝐴𝑖𝑘−1,𝑖𝑘 > 0} to be set of all walks of

length 𝑘 in the rooted graph𝐺 [𝑖] starting from node 𝑖 (an illustration is given in Figure 2.3). Thus,

the 𝑘th augmented feature of node 𝑖 , (�̃�𝑘𝜑 (𝑋))𝑖 , is completely determined by the number of each

“type” of walks in 𝐺 [𝑖] of length 𝑘 , where the type of a walk, (𝑖1, ..., 𝑖𝑘), is determined jointly by

the degree multiset, {𝑑𝑖1, ..., 𝑑𝑖𝑘−1} as well as the degree and the node feature of the end node, 𝑑𝑖𝑘

and𝑋𝑖𝑘 . Hence, to prove an upper bound on the total number of equivalence classes on E induced

by such a GA-MLP, it is sufficient to upper-bound the total number of possibilities of assigning

the counts of all types of walks in a rooted graph. This allows us to derive the following result,

which we prove in Appendix A.7.

Proposition 2.4. Fix Ω = {𝐼 , �̃�, �̃�2, ..., �̃�𝐾 }, where �̃� = 𝐷−𝛼𝐴𝐷−𝛽 for some 𝛼, 𝛽 ∈ R. Then the total

number of equivalence classes in E induced by such GA-MLPs is poly-exponential in 𝐾 .

Compared with Proposition 2.3, this shows that the number of equivalence classes on E in-

duced by such GA-MLPs is exponentially smaller than that by GNNs. In addition, as the other

side of the same coin, these results also indicate the complexity of these hypothesis classes. Build-

ing on the results in [Chen et al. 2019c, 2020b] on the equivalence between distinguishing non-

isomorphic graphs and approximating arbitrary permutation-invariant functions on graphs by

neural networks, and by the definition of VC dimension [Vapnik and Chervonenkis 1971; Mohri

et al. 2018], we conclude that

Corollary 2.5. The VC dimension of all GNNs of 𝐾 layers as functions on rooted graphs grows

at least doubly-exponentially in 𝐾 ; Fixing 𝛼, 𝛽 ∈ R, the VC dimension of all GA-MLPs with Ω =

{𝐼 , �̃�, �̃�2, ..., �̃�𝐾 } as functions on rooted graphs is at most poly-exponential in 𝐾 .

16

1

2 3

4 5 6 7

1

2 3

4 5 6 7

Figure 2.3: A pair of rooted graphs, 𝐺 [1] (left) and 𝐺 ′[1] (right), in which blue nodes have node feature
0 and green nodes have node feature 1. They belong to the same equivalence class induced by any GA-
MLP with operators that only depend on the graph structure, but different equivalence classes induced
by GNNs. In particular, 𝐺 [1] and 𝐺 ′[1] ∈ T2,2,(1,1,3) (defined in Appendix A.8), and |W2(𝐺 [1] ; (1, 1)) | = 1
whereas |W2(𝐺 ′[1] ; (1, 1)) | = 0.

Meanwhile, for more general operators, we can show that the equivalence classes induced

by GA-MLPs are coarser than those induced by GNNs at least under some measurements. For

instance, the pair of rooted graphs in Figure 2.3 belong to the same equivalence class induced by

any GA-MLP (as we prove in Appendix A.8) but different equivalence classes induced by GNNs.

Rigorously, we characterize such a gap in expressive power by finding certain equivalence classes

in E induced by GA-MLPs that intersect with many equivalence classes induced by GNNs. In

particular, we have the following general result, which we prove in Appendix A.8:

Proposition 2.6. If Ω is any family of equivariant linear operators on the graph that only depend

on the graph topology of at most 𝐾 hops, then there exist exponentially-in-𝐾 many equivalence

classes in E induced by the GA-MLPs with Ω, each of which intersects with doubly-exponentially-

in-𝐾 many equivalence classes in E induced by depth-𝐾 GNNs, assuming that |X| ≥ 2 and𝑚 ≥ 3.

Conversely, in constrast, if Ω = {𝐼 , �̃�, �̃�2, ..., �̃�𝐾 }, in which �̃� = 𝐷−𝛼𝐴𝐷−𝛽 with any 𝛼, 𝛽 ∈ R, then

each equivalence class in E induced by depth-(𝐾 + 1) GNNs is contained in one equivalence class

induced by the GA-MLPs with Ω.

In essence, this result establishes that GA-MLP circuits can express fewer (exponentially

fewer) functions than GNNs with equivalent receptive field. Taking a step further, we can find

explicit functions on rooted graphs that can be approximated by GNNs but not GA-MLPs. In the

framework that we have developed so far, this occurs when the image of each equivalence class

in E induced by GNNs under this function contains a single value, whereas the image of some

equivalence class in E induced by GA-MLPs contains multiple values. Inspired by the proofs of

17

the results above, a natural candidate is the family of functions that count the number of walks

of a particular type in the rooted graph. We can establish the following result, which we prove

in Appendix A.9:

Proposition 2.7. For any sequence of node features {𝑥𝑘}𝑘∈N+ ⊆ X, consider the sequence of func-

tions 𝑓𝑘 (𝐺 [𝑖]) := |W𝑘 (𝐺 [𝑖] ; (𝑥1, ..., 𝑥𝑘)) | on E. For all𝑘 ∈ N+, the image under 𝑓𝑘 of every equivalence

class in E induced by depth-𝑘 GNNs contains a single value, while for any GA-MLP using equivari-

ant linear operators that only depend on the graph topology, there exist exponentially-in-𝑘 many

equivalence classes in E induced by this GA-MLP whose image under 𝑓𝑘 contains exponentially-in-𝑘

many values.

In other words, there exist graph instances where the attributed-walk-counting-function 𝑓𝑘

takes different values, yet no GA-MLP model can predict them apart – and there are exponen-

tially many of these instances as the number of hops increases. This suggests the possibility of

lower-bounding the average approximation error for certain functions by GA-MLPs under vari-

ous random graph families, which we leave for future work.

2.6 Experiments

The baseline GA-MLP models we consider has operator family Ω = {𝐼 , 𝐴, ..., 𝐴𝐾 } for a certain

𝐾 , and we call it GA-MLP-𝐴. In Section 2.6.2 and 2.6.3, we also consider GA-MLPs with Ω =

{𝐼 , �̃�(1), ..., �̃�𝐾(1)} (�̃�(𝜖) is defined in Appendix A.2), denoted as GA-MLP-�̃�(1) . For the experiments

in Section 2.6.3, due to the large 𝐾 as well as the analogy with spectral methods [Chen et al.

2019b], we use instance normalization [Ulyanov et al. 2016]. Further details are described in

Appendix A.11.

18

Cora Citeseer Pubmed

Nodes 2708 3327 19717
𝐾 GNN GA-MLP GNN GA-MLP GNN GA-MLP

1 37 37 31 31 82 82
2 1589 756 984 506 8059 3762
3 2301 2158 1855 1550 12814 12014
4 2363 2359 2074 2019 12990 12979
5 2365 2365 2122 2115 12998 12998

Table 2.1: The number of equivalence classes of rooted
graphs induced by GNN and GA-MLP on node classifica-
tion datasets with node features removed.

Cora RRG

Model Train Test Train Test

GIN 3.98E-6 9.72E-7 3.39E-5 2.61E-4
GA-MLP-𝐴 1.23E-1 1.56E-1 1.75E-2 2.13E-2
GA-MLP-𝐴+ 1.87E-2 6.44E-2 1.69E-2 2.13E-2
GA-MLP-�̃�(1) 4.22E-1 5.79E-1 1.02E-1 1.58E-1
GA-MLP-�̃�(1)+ 4.00E-1 5.79E-1 1.12E-1 1.52E-1

Table 2.2: MSE loss divided by label variance
for counting attributed walks on the Cora
graph and RRG. The models denoted as “+”
contain twice as many powers of the opera-
tor.

2.6.1 Number of eqivalence classes of rooted graphs

Motivated by Propositions 2.3 and 2.4, we numerically count the number of equivalence classes

induced by GNNs and GA-MLPs among the rooted graphs found in actual graphs with node

features removed. For depth-𝐾 GNNs, we implement a WL-like process with hash functions to

map the depth-𝐾 egonet associated with each node to a string before comparing across nodes.

For GA-MLP-𝐴, we compare the augmented features of each egonet computed via (2.3). From the

results in Table 2.1, we see that indeed, the number of equivalence classes induced by GA-MLP-𝐴

is smaller than that by GNNs, with the highest relative difference occurring at𝐾 = 2. The contrast

is much more visible than their difference in the number of graph equivalence classes given in

Appendix A.3.

2.6.2 Counting attributed walks

Motivated by Proposition 2.7, we test the ability of GNNs and GA-MLPs to count the number of

walks of a particular type in synthetic data. We take graphs from the Cora dataset (with node

features removed) as well as generate a random regular graph (RRG) with 1000 nodes and the

node degree being 6. We assign node feature blue to all nodes with even index and node feature

red to all nodes with odd index, due to which the node feature is given by 2-dimensional one-

hot encoding. On the Cora graph, a node 𝑖’s label is given by the number of walks of the type

19

blue−→blue−→blue starting from 𝑖 . On the RRG, the label is given by the number of walks of the

type blue−→blue−→blue−→blue starting from 𝑖 . The number of nodes for training and testing is split

as 1000/1708 for the Cora graph and 300/700 for the random regular graph. We test four GA-

MLP models, two with as many powers of the operator as the walk length and the other two with

twice as many operators, and compare their performances against that of the Graph Isomorphism

Network (GIN), a GNN model that achieves the expressive power of the WL test [Xu et al. 2019].

From Table 2.2, we see that GIN significantly outperforms GA-MLPs in both training and testing

on both graphs, consistent with the theoretical result in Proposition 2.7 that GNNs can count

attributed walks while GA-MLPs cannot. Thus, this points out an intuitive task that lies in the

gap of expressive power between GNNs and GA-MLPs.

2.6.3 Community detection on Stochastic Block Models (SBM)

We use the task of community detection to illustrate another limitation of GA-MLP models: a

lack of flexibility to learn the family of operators. SBM is a random graph model in which nodes

are partitioned into underlying communities and each edge is drawn independently with a prob-

ability that only depends on whether the pair of nodes belong to the same community or not.

The task of community detection is then to recover the community assignments from the con-

nectivity pattern. We focus on binary (that is, having two underlying communities) SBM in the

sparse regime, where it is known that the hardness of detecting communities is characterized by

a signal-to-noise ratio (SNR) that is a function of the in-group and out-group connectivity [Abbe

2017]. We select 5 pairs of in-group and out-group connectivity, resulting in 5 different hardness

levels of the task.

Among all different approaches to community detection, spectral methods are particularly

worth mentioning here, which usually aim at finding a certain eigenvector of a certain operator

that is correlated with the community assignment, such as the second largest eigenvector of

the adjacency matrix or the second smallest eigenvector of the Laplacian matrix or the Bethe

20

Hessian matrix [Krzakala et al. 2013]. In particular, the Bethe Hessian matrix is known to be

asymptotically optimal in the hard regime, provided that a data-dependent parameter is known.

Note that spectral methods bear close resemblance to GA-MLPs and GNNs. In particular, [Chen

et al. 2019b] propose a spectral GNN (sGNN) model for community detection that can be viewed

as a learnable generalization of power iterations on a collection of operators. Further details on

Bethe Hessian and sGNN are provided in Appendix A.11.

1 2 3 4 5
Rank of hardness

0.0

0.2

0.4

0.6

0.8

O
ve

rla
p

0.18

0.24

0.40

0.78

0.94

0.16

0.22

0.36

0.71

0.94

0.17

0.25

0.42

0.76

0.94sGNN
GA-MLP-A
GA-MLP-H

Figure 2.4: Community detection on binary SBMwith 5 choices of in- and out-group connectivities, each
yielding to a different SNR. Higher overlap means better performance.

We first compare two variants of GA-MLP models: GA-MLP-𝐴 with 𝐾 = 120, and GA-MLP-𝐻

with Ω generated from the Bethe Hessian matrix with the oracle data-dependent parameter also

up to 𝐾 = 120. From Figure 2.4, we see that the latter consistently outperforms the former, indi-

cating the importance of the choice of the operators for GA-MLPs. As reported in Appendix A.11,

replacing 𝐴 by �̃�(1) yields no improvement in performance. Meanwhile, we also test a variant

of sGNN that is only based on powers of the 𝐴 and has the same receptive field as GA-MLP-𝐴

(further details given in Appendix A.11). We see that its performance is comparable to that of

GA-MLP-𝐻 . Thus, this demonstrates a scenario in which GA-MLP with common choices of Ω do

not work well, but there exists some choice of Ω that is a priori unknown, with which GA-MLP

can achieve good performance. In contrast, a GNNmodel does not need to rely on the knowledge

of such an oracle set of operators, demonstrating its superior capability of learning.

21

2.7 Conclusions

We have studied the separation in terms of representation power between GNNs and a popu-

lar alternative that we coined GA-MLPs. This latter family is appealing due to its computational

scalability and its conceptual simplicity, whereby the role of topology is reduced to creating ‘aug-

mented’ node features then fed into a generic MLP. Our results show that while GA-MLPs can

distinguish almost all non-isomorphic graphs, in terms of approximating node-level functions,

there exists a gap growing exponentially-in-depth between GA-MLPs and GNNs in terms of the

number of equivalence classes of nodes (or rooted graphs) they induce. Furthermore, we find a

concrete class of functions that lie in this gap given by the counting of attributed walks. More-

over, through community detection, we demonstrate the lack of GA-MLP’s ability to go beyond

the fixed family of operators as compared to GNNs. In other words, GNNs possess an inherent

ability to discover topological features through learnt diffusion operators, while GA-MLPs are

limited to a fixed family of diffusions.

While we do not attempt to provide a decisive answer of whether GNNs or GA-MLPs should

be preferred in practice, our theoretical framework and concrete examples help to understand

their differences in expressive power and indicate the types of tasks in which a gap is more likely

to be seen – those exploiting stronger structures among nodes like counting attributed walks, or

those involving the learning of graph operators. That said, our results are purely on the repre-

sentation side, and disregard optimization considerations; integrating the possible optimization

counterparts is an important direction of future improvement. Finally, another open question is

to better understand the links between GA-MLPs and spectral methods, and how this can help

learning diffusion operators.

22

3 | Optimization Instabilities in

Low-dimensional Space

3.1 Introduction and Our Contributions

Given a differentiable objective function 𝑓 (𝜃), where 𝜃 ∈ R𝑑 is a high-dimensional parameter

vector, the most basic and widely used optimization method is gradient descent (GD), defined as

𝜃 (𝑡+1) = 𝜃 (𝑡) − 𝜂∇𝜃 𝑓 (𝜃 (𝑡)), (3.1)

where 𝜂 is the learning rate. For all its widespread application across many different ML setups,

a basic question remains: what are the convergence guarantees (even to a local minimiser) under

typical objective functions, and how they depend on the (only) hyperaparameter 𝜂? In the mod-

ern context of large-scale ML applications, an additional key question is not only to understand

whether or not GD converges to minimisers, but towhich ones, since overparametrisation defines

a wholemanifold of global minimisers, all potentially enjoying drastically different generalisation

performance.

The sensible regime to start the analysis is 𝜂 → 0, where GD inherits the local convergence

properties of the Gradient Flow ODE via standard arguments from numerical integration. How-

ever, in the early phase of training, a large learning rate has been observed to result in better

23

generalization [LeCun et al. 2012; Bjorck et al. 2018; Jiang et al. 2019; Jastrzebski et al. 2021],

where the extent of “large” is measured by comparing the learning rate 𝜂 and the curvature of

the loss landscape, measured with 𝜆(𝜃) := 𝜆max
[
∇2
𝜃
𝑓 (𝜃)

]
, the largest eigenvalue of the Hessian

with respect to learnable parameters. Although one requires sup𝜃 𝜆(𝜃) < 2/𝜂 to guarantee the

convergence of GD [Bottou et al. 2018] to (local) minimisers 1, the work of [Cohen et al. 2020]

noticed a remarkable phenomena in the context of neural network training: even in problems

where 𝜆(𝜃) is unbounded (as in NNs), for a fixed 𝜂, the curvature 𝜆(𝜃 (𝑡)) increases along the

training trajectory (3.1), bringing 𝜆(𝜃 (𝑡)) ⩾ 2/𝜂 [Cohen et al. 2020]. After that, a surprising phe-

nomena is that 𝜆(𝜃 (𝑡)) stably hovers above 2/𝜂 and the neural network still eventually achieves

a decreasing training loss — the so-called “Edge of Stability”. We would like to understand and

analyse the conditions of such convergence with a large learning rate under a variety models that

capture such observed empirical behavior.

Recently, some works have built connections between EoS and implicit bias [Arora et al. 2022;

Lyu et al. 2022; Damian et al. 2021, 2022b] in the context of large, overparametrised models such

as neural networks. In this setting, GD is expected to converge to a manifold of minimisers,

and the question is to what extent a large learning rate ‘favors’ solutions with small curvature. In

essence, these works show that under certain structural assumptions, GD is asymptotically track-

ing a continuous sharpness-reduction flow, in the limit of small learning rates. Compared with

these, we study non-asymptotic properties of GD beyond EoS, by focusing on certain learning

problems (e.g., single-neuron ReLU networks and matrix factorization). In particular, we charac-

terize a range of learning rates 𝜂 above the EoS such that GD dynamics hover around minimisers.

Moreover, in the matrix factorization setup, where minimisers form a manifold with varying

local curvature, our results give a non-asymptotic analogue of the ‘Sharpness-Minimisation’ ar-

guments from [Arora et al. 2022; Lyu et al. 2022; Damian et al. 2022b].

The straightforward starting point for the local convergence analysis is via Taylor approxi-
1One can replace the uniform curvature bound by sup𝜃 ;𝑓 (𝜃)≤ 𝑓 (𝜃 (0)) 𝜆(𝜃).

24

mations of the loss function. However, in a quadratic Taylor expansion, gradient descent diverges

once 𝜆(𝜃) > 2/𝜂 [Cohen et al. 2020], indicating that a higher order Taylor approximation is re-

quired. By considering a 1-D function with local minima 𝜃 ∗ of curvature 𝜆∗ = 𝜆(𝜃 ∗), we show

the existence of fixed points of two-step updates around the minima with 𝜂 slightly above the

threshold 2/𝜆∗, provided its high order derivative satisfies mild conditions as in Theorem 3.1,

with generalization into matrix factorization in Theorem B.3 and experiments of MLPs in Ap-

pendix 3.7.2. A typical example of such functions is 𝑓 (𝑥) = 1
4 (𝑥

2 − 𝜇)2 with 𝜇 > 0. Furthermore,

we prove that it converges to an orbit of period 2 from a more global initialization rather than

the analysis of high-order local approximation.

As it turns out, the analysis of such stable one-dimensional oscillations is sufficiently intrinsic

to become useful in higher-dimensional problems. First, we leverage the analysis to a two-layer

single-neuron ReLU network, where the task is to learn a teacher neuron with data on a uniform

high-dimensional sphere. We show a convergence result under population loss with GD beyond

EoS, where the direction of the teacher neuron can be learnt and the norms of two-layer weights

stably oscillate, with empirical evidence of 16-neuron networks in Appendix 3.7.1. We then focus

on matrix factorization, a canonical non-convex problem whose geometry is characterized by a

manifold of minimisers having different local curvature. We provide novel observations of its

convergence to period-2 orbit with comprehensive theoretical intuition of the dynamics. Finally,

we extend previous works by proposing two models with observations in matrix factorization

compatible for future analysis.

3.1.1 Connections between theoretical results

In this section, we discuss the connections between our presented theoretical results, as illustrated

in Figure 3.1.

Theorem 3.1 and Lemma 3.2 present (local) intrinsic geometric properties for a 1-D function

to allow stable oscillations. Such properties provide us the 1-D function 𝑓 (𝑥) = (𝜇 − 𝑥2)2 and,

25

Local Geometry (Thm. 3.1)

High-order LG (Lem. 3.2) 1-D case (Thm. 3.3) LG for MF (Thm. B.3)

(𝑔(𝑥) − 𝑦)2 (Prop. 1) 2-D case (Prop. 3) Balancing effect (Thm. 3.4)

Composition rule of 𝑔 (Prop 2) Single-neuron (Prop. 4) Quasi-sym MF (Obs. 2)

𝑤𝑦 → 0 (Thm. 3.5)

Figure 3.1: Connections between our presented theoretical results. The arrows stand for “implies”. LG
stands for Local Geometry. MF stands for Matrix Factorization.

furthermore, we generalize the local property to a global convergence result in Theorem 2. Then

we are to generalize the 1-D analysis to cases of i) multi-parameter, ii) nonlinear and iii) high-

dimension.

(a) Multi-parameter. Compared with 1-D 𝑓 (𝑥) = (𝜇 − 𝑥2)2, the 2-D function 𝑓 (𝑥,𝑦) = (𝜇 −

𝑥𝑦)2 can be viewed as the simplest setting of two-layer models. We prove that the 2-D case

converges to the region of 𝑥 = 𝑦 in Theorem 3.4 in Section 3.4.2, which means it shares the

same convergence as the 1-D model. Also, 𝑥 = 𝑦 means its sharpness is the flattest.

(b) Nonlinear. We extend the 2-D model to a two-layer single-neuron ReLU model in Sec-

tion 3.5. Although the student neuron can be initialized far from the direction of the teacher

neuron, we prove the student neuron converges to the correct direction (as𝑤𝑦 → 0) in The-

orem 3.5. Then the problem degenerates to the above 2-D analysis, which means it shares

the same convergence with the 2-D, where (𝑣,𝑤𝑥) corresponds to (𝑥,𝑦) in 2-D.

(c) High-dimension. We extend the 2-D model to quasi-symmetric matrix factorization in

Section 3.6. Although the parameters are initialized near a sharp minima, GD still walks

towards the flattest minima, as shown in Observation 2. At convergence, the top singular

26

values of Y,Z are the same, following the 2-D analysis. So the singular values are in the

same period-2 orbit as the 1-D case.

Meanwhile, from Theorem 3.1 and Lemma 3.2, we prove a condition for base models 𝑔 in

regression tasks to allow stable oscillation in Prop 1. Furthermore, we provide a composition rule

of two base models to find a more complicated model that allows stable oscillation in Prop 2.

3.1.2 Implications from low-dimension to high-dimension

Wewould like to emphasize that, although our current simple settings are a little far frompractical

NNs, it still helps understand the ability of GD at large LRs to discover flat minima in three steps

as follows. We include more experiments in Appendix 3.7 to present the following hopes for

complicated networks:

(a) By Theorem 3.1, especially its second condition, we wish to discover an intrinsic geometric

property around local minima of more complicated models. The key is to investigate the

1-D function at the cross-section of the leading eigenvector and the loss landscape.

◆ Theoretical: we prove the 1-D condition holds at any minima for non-trivial matrix

factorization, shown as Theorem B.3 in Appendix B.1.2.

✽ Empirical: we show the 1-D condition holds around minima of 3,4,5-layer ReLUMLPs

on MNIST, shown in Figure 3.6(d), 3.7(d), 3.8(d) in Appendix 3.7.2.

(b) With the above intrinsic geometric property, the next question is whether the training

trajectory utilizes this property.

◆ Theoretical: in the case of quasi-symmetric matrix factorization, we observe and pro-

vide theoretical intuition that the training trajectory follows the leading eigenvector

of the Hessian (i.e. the leading component of X0) in Observation 2, where the only

top components of weights are changing in 𝜔 (𝜖).

27

✽ Empirical: for MLPs on MNIST, we show the almost perfect alignment of the gradient

and the top Hessian eigenvector in Figure 3.6(c), 3.7(c), 3.8(c).

(c) The final implication is the implicit bias of EoS after such oscillation. It turns out GD is

driven to flatter minima from sharper minima. In the 1-D case, obviously there is nothing

about implicit bias since the only thing GD is doing is to approximate the target value.

However, an implicit bias from the oscillation appears starting from the 2-D case.

◆ Theoretical 1: in the 2-D case in Theorem 3.4, we prove the two learnable parameters

𝑥,𝑦 will converge to the same values after oscillations of their product 𝑥𝑦. Actually

in the minimum manifold, smaller |𝑥 − 𝑦 | means a flatter minimizer.

◆ Theoretical 2: in the single-neuron ReLU network in Theorem 3.5 and Prop 4, we show

the model degenerates to the 2-D case since𝑤𝑦 → 0. The 2-D argument tells that this

nonlinear model also walks towards the balanced situation, verified with experiments

in Figure B.2.

◆ Theoretical 3: in the quasi-symmetric MF in Obs 2, although the initialization is

around a sharpminima, GD is still driven towards the flattestminimawhere𝜎max(Y) =

𝜎max(Z).

✽ Empirical 1: for 2-layer 16-neuron ReLU network in a student-teacher setting, it turns

out learning rate decay after beyond-EoS oscillations drives the model very close to

the flattest minima, as shown in Figure 3.5 and in Appendix 3.7.1.

✽ Empirical 2: for 3,4,5-layer MLPs on MNIST, larger learning rate drives to a flatter

minima, as shown in Figure 3.6(b).

3.2 Related Works

Edge of stability. Cohen et al. [2020] observes a two-stage process in gradient descent, where

28

the first is loss curvature grows until the sharpness touches the bound 2/𝜂, and the second is the

curvature hovers around the bound and training loss still decreases in a macro view regardless

of local instability. Gilmer et al. [2021] reports similar observations in stochastic gradient de-

scent and conducts comprehensive experiments of loss sharpness on learning rates, architecture

choices and initialization. Lewkowycz et al. [2020] argues that gradient descent would “catapult”

into a flatter region if loss landscape around initialization is too sharp.

Some concurrent works [Ahn et al. 2022; Ma et al. 2022; Arora et al. 2022; Damian et al.

2022b] are also theoretically investigating the edge of stability. Ahn et al. [2022] suggests that

unstable convergence happens when the loss landscape of neural networks forms a local forward-

invariant set near the minima due to some ingredients, such as tanh as the nonlinear activation.

Ma et al. [2022] empirically observes a multi-scale structure of loss landscape and, with it as an

assumption, shows that gradient descent with different learning rates may stay in different levels.

Arora et al. [2022] shows the training provably enters the edge of stability with modified gradient

descent or modified loss, and then its associated flow goes to flat regions. Under mild conditions,

Damian et al. [2022b] proves that GD beyond EoS follows an optimization trajectory subjected

to a sharpness constraint so that a flatter region is found. Note that our learning rate is strictly

larger than that of Damian et al. [2022b] so that their proposed manifold does not exists in our

settings, as discussed in Section 3.6.2.

Implicit regularization. Due to its theoretical closeness to gradient descent with a small

learning rate, gradient flow is a common setting to study the training behavior of neural net-

works. Barrett and Dherin [2020] suggests that gradient descent is closer to gradient flow with

an additional term regularizing the norm of gradients. Through analysing the numerical error

of Euler’s method, Elkabetz and Cohen [2021] provides theoretical guarantees of a small gap de-

pending on the convexity along the training trajectory. Neither of them fits in the case of our

interest, because it is hard to track the parametric gap when 𝜂 > 1/𝜆. For instance, in a quadratic

29

function, the trajectory jumps between the two sides once 𝜂 > 1/𝜆. Damian et al. [2021] shows

that SGD with label noise is implicitly subjected to a regularizer penalizing sharp minimizers but

the learning rate is constraint strictly below the edge of stability threshold.

Balancing effect. Du et al. [2018] proves that gradient flow automatically preserves the norm

differences between different layers of a deep homogeneous network. [Ye and Du 2021] shows

that gradient descent on matrix factorization with a constant small learning rate still enjoys the

auto-balancing property. Also in matrix factorization, Wang et al. [2021] proves that gradient

descent with a relatively large learning rate leads to a solution with a more balanced (perhaps

not perfectly balanced) solution while the initialization can be in-balanced. In a similar spirit, we

extend their finding to a larger learning rate, with which the perfect balance may be achieved

in our setting. We estimate our learning rate is strictly larger than theirs [Wang et al. 2021],

where they show GD with large learning rates converges to a flat region in the interpolation

manifold while the flat region w.r.t. our larger learing rate does not exists so GD is forced to

wander around the flattest minima. Note that the implication of balancing effect is to get close

to a flatter solution in the global minimum manifold, which may help improve generalization in

some common arguments in the community.

Learning a single neuron. Yehudai and Ohad [2020] studies necessary conditions on both

the distribution and activation functions to guarantee a one-layer single student neuron align-

ing with the teacher neuron under gradient descent, SGD and gradient flow. Vardi et al. [2021]

extends the investigation into a neuron with a bias term. Vardi and Shamir [2021] empirically

studies the training dynamics of a two-layer single neuron, focusing on its implicit bias. In this

work, we present a convergence analysis of a two-layer single-neuron ReLU network trained

with population loss in a large learning rate beyond the edge of stability.

30

3.3 Preliminaries

We consider a differentiable objective function 𝑓 (𝜃) with 𝜃 ∈ R𝑑 , and the GD algorithm from

(3.1).

Definition 1. A differentiable function 𝑓 is 𝐿-gradient Lipschitz if

∥∇𝑓 (𝜃1) − ∇𝑓 (𝜃2)∥ ⩽ 𝐿 ∥𝜃1 − 𝜃2∥ , ∀ 𝜃1, 𝜃2. (3.2)

The above definition is equivalent to saying that the spectral norm of the Hessian is bounded

by 𝐿, or the local curvature at each point is bounded by 𝐿. Then 𝜂 needs to be bounded by 1/𝐿 in

GD so that it is guaranteed to visit an approximate first-order stationary point [Nesterov 1998].

The perturbed GD requires 𝜂 = 1/𝐿 to visit an approximate second-order stationary point [Jin

et al. 2021], and stochastic variants share similar assumptions [Ghadimi and Lan 2013; Jin et al.

2021].

However, in practice, such an assumption may be violated, or even impossible to satisfy when

∥∇2𝑓 ∥ is not uniformly bounded. Cohen et al. [2020] observes that, with learning rate 𝜂 fixed,

the largest eigenvalue 𝜆1 of the loss Hessian of a neural network is below 2/𝜂 at initialization,

but it grows above the threshold along training. Such a phenomena is more obvious when the

network is deeper or narrower. This reveals the non-smooth nature of the loss landscape of neural

networks.

Furthermore, another observation from Cohen et al. [2020] is that once 𝜆1 ⩾ 2/𝜂, the train-

ing loss stops the monotone decreasing. This is not surprising because GD would diverge in a

quadratic function with such a large curvature. However, despite of local instability, the training

loss still decreases in a longer range of steps, during which the local curvature stays around 2/𝜂.

A further phenomena is that, when GD is at the edge of stability, if the learning rate suddenly

changes to a smaller value 𝜂𝑠 < 𝜂, then the local curvature quickly grows to 2/𝜂𝑠 — indicating

31

the ability to ‘manipulate’ the local curvature by adjusting the learning rate.

Besides the analysis of GD, the local curvature itself has also received a lot of attention. Due

to the nature of over-parameterization in modern neural networks, the global minimizers of the

objective 𝑓 form a manifold of solutions. There have been active directions to understand the

implicit bias of GD methods, namely where do they converge to in the manifold, and why some

points in the manifold are more preferable than others. For the former question, it is believed that

(stochastic) GD prefers flatter minima [Barrett and Dherin 2020; Smith et al. 2021; Damian et al.

2021; Ma and Ying 2021]. For the latter, flatter minima brings better generalization [Hochreiter

and Schmidhuber 1997; Li et al. 2018a; Keskar et al. 2016; Ma and Ying 2021; Ding et al. 2022]. It

would be meaningful if flatter minima could be obtained via GD with a large learning rate.

More specifically, it has been shown that the eigenvalues of the hessian of a deep homoge-

neous network could be manipulated to infinity via rescaling the weights of each layer [Elkabetz

and Cohen 2021]. Fortunately, gradient flow preserves the difference of norms across layers along

the training [Du et al. 2018]. As a result, a balanced initialization induces balanced convergence,

while GD would break this balancing effect due to finite learning rate. However, recently it has

been observed that GD with large learning rates enjoys a balancing effect [Wang et al. 2021],

where it converges to a (not perfect) balanced result despite of imbalanced initialization.

Motivated by the connections of optimization, loss landscape and generalization, we would

like to understand the training behavior of gradient descent with a large learning rate, from low-

dimensional to representative models.

3.4 Stable oscillation on 1-D functions: fixed point of

two-step update

In this section, we provide conditions of existence of fixed points of two-step GD on generic

1-D functions, which are on the third or higher derivatives at the local minima (Theorem 3.1

32

and Lemma 3.2). More specifically, in the regression setting, these local conditions allow many

differentiable non-linear activation functions to the base model (Prop 1), and a composition rule

is established to build complicated base models with simple base models (Prop 2).

Within the framework of Theorem 3.1, we identify a specific 1-D function to investigate more:

we show the convergence to the fixed points (Theorem 3.3), alongwith its 2-D extension in Prop 3,

serving as the foundation of nonlinear (Section 3.5) and high-dimensional (Section 3.6) cases.

Empirical verification of all theorems are provided in Appendix B.2.

3.4.1 Existence of fixed points

Definition 2. (Period-2 stable oscillation and fixed point of two-step update 𝐹 2
𝜂 .) Consider GD on

a function 𝑓 in domain Ω. Denote the update rule of GD as 𝐹𝜂 (𝑥) for 𝑥 ∈ Ω with learning rate 𝜂.

A period-2 stable oscillation is ∃ 𝑥 ∈ Ω such that 𝐹𝜂 (𝐹𝜂 (𝑥)) = 𝑥 and 𝑥 is not a minima of 𝑓 .

Equivalently speaking, ∃ 𝑥 ∈ Ω is a fixed point of the two-step update 𝐹 2
𝜂 (·) ≜ 𝐹𝜂 (𝐹𝜂 (·)).

Remark 1. It is obvious that fixed points of 𝐹 2
𝜂 exist in pairs by the nature of period-2 oscillation.

We initiate our analysis of existence of fixed point of 𝐹 2
𝜂 in 1-D. Starting from a condition on

general 1-D functions, we look into several specific 1-D functions to verify our arguments. Then,

focusing on a function in the form of 𝑓 (𝑥) = (𝑥2 − 𝜇)2, we present the convergence analysis as

a foundation for the following discussions. Furthermore, to shed light on the multi-layer setting,

we propose a balancing effect on a 2-D function to make a connection to the 1-D analysis.

General 1-D functions. Consider a 1-D function 𝑓 (𝑥) with a learnable parameter 𝑥 ∈ R. The

parameter updates following GD with the learning rate 𝜂 as

𝑥 (𝑡+1) = 𝐹𝜂 (𝑥 (𝑡)) B 𝑥 (𝑡) − 𝜂𝑓 ′(𝑥 (𝑡)). (3.3)

33

Assuming 𝑓 is differentiable and all derivatives are bounded, the function value in the next step

can be approximated by

𝑓 (𝑥 (𝑡+1)) = 𝑓 (𝑥 (𝑡)) − 𝜂 [𝑓 ′(𝑥 (𝑡))]2
(
1 − 𝜂

2
𝑓 ′′(𝑥 (𝑡))

)
+ 𝑜 ((𝑥 (𝑡+1) − 𝑥 (𝑡))2).

If 𝜂 < 2/𝑓 ′′(𝑥 (𝑡)), this approximation reveals that the function monotonically decreases for each

step of GD, ignoring higher terms. Such an assumption would guarantee the convergence to a

global minimum in a convex function. However, our interest is what happens if 𝜂 > 2/𝑓 ′′(𝑥). For

instance, if 𝑓 is a quadratic function, the second-order derivative 𝑓 ′′ is constant. As a result, once

𝜂 > 2/𝑓 ′′, GD diverges except when being initialized at the optimum. However, when trained

with a large learning rate 𝜂 > 2/𝑓 ′′(𝑥), there is still some hope for a function to stay around a

local minima 𝑥 , as stated in the following theorem.

Theorem 3.1. Consider any 1-D differentiable function 𝑓 (𝑥) around a local minima 𝑥 , satisfying

(i) 𝑓 (3) (𝑥) ≠ 0, and (ii) 3[𝑓 (3)]2 − 𝑓 ′′𝑓 (4) > 0 at 𝑥 . Then, there exists 𝜖 with sufficiently small |𝜖 |

and 𝜖 · 𝑓 (3) > 0 such that: for any point 𝑥0 between 𝑥 and 𝑥 − 𝜖 , there exists a learning rate 𝜂 such

that 𝐹 2
𝜂 (𝑥0) = 𝑥0, and

2
𝑓 ′′(𝑥) < 𝜂 <

2
𝑓 ′′(𝑥) − 𝜖 · 𝑓 (3) (𝑥)

.

Remark 1. Here obviously we have𝜂 > 2/𝑓 ′′(𝑥) beyond EoS. If we take 𝑓 ′′(𝑥0) ≈ 𝑓 ′′(𝑥)−𝜖′𝑓 (3) (𝑥)

with 𝜖′ ≈ 𝜖 , it holds𝜂 < 2
𝑓 ′′ (𝑥0) . Symmetrically, it holds 2

𝑓 ′′ (𝐹𝜂 (𝑥0)) <
2

𝑓 ′′ (𝑥) . Hence, 𝜂 upper bounded

by the EoS at one point in the period-2 orbit.

Remark 2. We prove the key condition, 3[𝑓 (3)]2− 𝑓 ′′𝑓 (4) > 0, in the case of matrix factorization

around any minima as Theorem B.3 in Appendix B.10.1. Meanwhile, we verify this condition in

multi-layer networks on MNIST, as shown in Figure 3.6, 3.7, 3.8 in Appendix 3.7.2.

The details of proof are presented in the Appendix B.3. As stated in the Theorem 3.1, we

34

provide a sufficient condition for existence of fixed point of 𝐹 2
𝜂 around a local minima. But still

we cannot tell whether or not some functions have it with 𝑓 (3) (𝑥) = 0. For instance, a quadratic

function does not satisfy this condition since 𝑓 (3) = 𝑓 (4) ≡ 0 and it diverges when GD is beyond

the edge of stability. But for 𝑓 (𝑥) = sin(𝑥) around 𝑥 = −𝜋2 where 𝑓 (3) (𝑥) = 0, it turns out the

fixed point exists. Therefore, we extend the argument in Theorem 3.1 to a higher order case

in Lemma 3.2. As a result, we verify that the sine function does allow stable oscillation as in

Corollary 1, because its lowest order of nonzero derivative (except 𝑓 ′′) at the local minima is

𝑓 (4) (𝑥) < 0.

Lemma 3.2. Consider any 1-D differentiable function 𝑓 (𝑥) around a local minima 𝑥 , satisfying that

the lowest order non-zero derivative (except the 𝑓 ′′) at 𝑥 is 𝑓 (𝑘) (𝑥) with 𝑘 ⩾ 4. Then, there exists 𝜖

with sufficiently small |𝜖 | such that: for any point 𝑥0 between 𝑥 and 𝑥 − 𝜖 , and

1. if 𝑘 is odd and 𝜖 · 𝑓 (𝑘) (𝑥) > 0, 𝑓 (𝑘+1) (𝑥) < 0, then there exists 𝜂 ∈ (2
𝑓 ′′ ,

2
𝑓 ′′−𝑓 (𝑘)𝜖𝑘−2),

2. if 𝑘 is even and 𝑓 (𝑘) (𝑥) < 0, then there exists 𝜂 ∈ (2
𝑓 ′′ ,

2
𝑓 ′′+𝑓 (𝑘)𝜖𝑘−2),

such that 𝐹 2
𝜂 (𝑥0) = 𝑥0.

The details of proof are presented in the Appendix B.4.

𝐿2 loss on general 1-D functions. However, we have to admit that the local conditions above

are 1) too abstract to directly write down a meaningful function in this family, or 2) too compli-

cated to compute the higher-order derivatives of a given non-trivial function.

Fortunately, both Theorem 3.1 and Lemma 3.2 provide a guarantee that squared-loss on any

base function 𝑔 provably allows stable oscillation once 𝑔 satisfies some mild conditions, as stated

in Prop 1. Moreover, we provide a straightforward method to build a more complicated model

from two simple base models, as stated in Prop 2.

35

Proposition 1. Consider a 1-D function 𝑔(𝑥) , and define the loss function 𝑓 as 𝑓 (𝑥) = (𝑔(𝑥) −𝑦)2.

Assuming (i)𝑔′ is not zero when𝑔(𝑥) = 𝑦, (ii)𝑔′(𝑥)𝑔(3) (𝑥) < 6[𝑔′′(𝑥)]2, then it satisfies the condition

in Theorem 3.1 or Lemma 3.2 have a fixed point of 𝐹 2
𝜂 around 𝑥 .

This setup covers a broad family of generic non-linear least squares problems, including the

base model 𝑔 being sine, tanh, high-order monomial, exponential, logarithm, sigmoid,

softplus, gaussian, etc. Many of these nonlinear (activation) functions are widely used in em-

pirical or theoretical deep learning, together with the composition rule (Prop 2), shedding light

for future analysis of practical models with these as building blocks.

Proposition 2 (Composition Rule). Consider two 1-D functions 𝑝, 𝑞. Assume both 𝑝 (𝑥), 𝑞(𝑦) at

𝑥 = 𝑥,𝑦 = 𝑝 (𝑥) satisfies the conditions of 𝑔 in Prop 1. Then 𝑞(𝑝 (𝑥)) also satisfies the conditions to

have a fixed point of 𝐹 2
𝜂 around 𝑥 = 𝑥 .

In Appendix B.4 and B.5, we provide the proof details of these settings of 𝑔(𝑥) as Corollaries

1-8, along with all lemmas and proposition.

After the above discussions on local conditions, a natural question rises up as

Q1: with existence of a fixed point of 𝐹 2
𝜂 , can iterative runnings of 𝐹 2

𝜂 converge to it?

With such a question, we are going to present a careful analysis on 𝑔(𝑥) = 𝑥2.

3.4.2 Convergence to fixed points

A special 1-D function. Consider 𝑓 (𝑥) = 1
4 (𝑥

2 − 𝜇)2 with 𝜇 > 0, 𝑓 (3) (√𝜇) = 6√𝜇, 𝑓 ′′(√𝜇) =

2𝜇. Note that this function is more special to us because it can be viewed as a symmetric scalar

factorization problem subjected to the squared loss. Later we will leverage it to gain insights

for asymmetric initialization, two-layer single-neuron networks and matrix factorization. Before

that, we would like to show where it converges to when 𝜂 > 2
𝑓 ′′ (√𝜇) as follows.

36

Theorem 3.3. For 𝑓 (𝑥) = 1
4 (𝑥

2 − 𝜇)2, consider GD with 𝜂 = 𝐾 · 1
𝜇
where 1 < 𝐾 <

√
4.5− 1 ≈ 1.121,

and initialized on any point 0 < 𝑥0 <
√
𝜇. Then it converges to an orbit of period 2, except for

a measure-zero initialization where it converges to

√
𝜇. More precisely, the period-2 orbit are the

solutions 𝑥 = 𝛿1 ∈ (0,
√
𝜇), 𝑥 = 𝛿2 ∈ (

√
𝜇, 2√𝜇) of solving 𝛿 in

𝜂 =
1

𝛿2
(√︃

𝜇

𝛿2 − 3
4 +

1
2

) . (3.4)

The details of proof are presented in the Appendix B.6. As shown above, Theorem 3.1 and

Theorem 3.3 stand in two different levels: Theorem 3.1 restricts the discussion in a local view

because of Taylor approximation, while Theorem 3.3 starts from local convergence and then

generalizes it into a global view. However, Theorem 3.1 builds a foundation for Theorem 3.3

because the latter would degenerate to the former when 𝐾 is extremely close to 1.

A special 2-D function. Similarly, consider a 2-D function 𝑓 (𝑥,𝑦) = 1
2 (𝑥𝑦−𝜇)

2 under different

initialization for 𝑥 and𝑦, which we would call “in-balanced” initialization. Note that all the global

minima in 2-D case form a manifold {(𝑥,𝑦) |𝑥𝑦 = 𝜇} while the 1-D case only has two points of

global minima. So we need to distinguish all points in the manifold by their sharpness. When

𝑥𝑦 = 𝜇, the leading eigenvalue of the loss Hessian is 𝜆1 = (𝑥−𝑦)2+2𝜇. Hence, in the global minima

manifold, the local curvature of each point is larger if its two parameters are more imbalanced.

Among all these points, the smallest curvature appears to be 𝜆1 = 2𝜇 when 𝑥 = 𝑦 =
√
𝜇. In

other words, if the learning rate 𝜂 > 2/2𝜇, all points in the manifold would be too sharp for GD

to converge. We would like to investigate the behavior of GD in this case. It turns out the two

parameters are driven to a perfect balance although they initialized differently, as follows.

Theorem 3.4. For 𝑓 (𝑥,𝑦) = 1
2 (𝑥𝑦 − 𝜇)

2
, consider GD with learning rate 𝜂 = 𝐾 · 1

𝜇
. Assume both 𝑥

and 𝑦 are always positive during the whole process {𝑥𝑖, 𝑦𝑖}𝑖⩾0. In this process, denote a series of all

37

points with 𝑥𝑦 > 𝜇 as P = {(𝑥𝑖, 𝑦𝑖) |𝑥𝑖𝑦𝑖 > 𝜇}𝑖⩾0. Then |𝑥 −𝑦 | decays to 0 in P, for any 1 < 𝐾 < 1.5.

Theorem 3.4 shows an effect that the two parameters are squeezed to a single variable, which

re-directs to our 1-D analysis in Theorem 3.3. Therefore, actually both cases converge to the same

orbit when 1 < 𝐾 < 1.121, as stated in Prop 3.

Proposition 3. Follow the setting in Theorem 3.4. Further assume 1 < 𝐾 <
√

4.5− 1 ≈ 1.121. Then

GD converges to an orbit of period 2. The orbit is formally written as {(𝑥 = 𝑦 = 𝛿𝑖) |𝑖 = 1, 2}, with

𝛿1 ∈ (0,
√
𝜇), 𝛿2 ∈ (

√
𝜇, 2√𝜇) as the solutions of solving 𝛿 in

𝜂 =
1

𝛿2
(√︃

𝜇

𝛿2 − 3
4 +

1
2

) .

A natural follow-up question is what implications Theorem 3.3 and Prop 3 bring, because 1-D

and 2-D is far from the practice of neural networks that contain multi-layer structures, nonlin-

earity and high dimensions. We precisely incorporate two layers and nonlinearity in Section 3.5,

and high dimensions in Section 3.6.

3.5 On a two-layer single-neuron homogeneous network

We denote a two-layer single-neuron network as 𝑓 (𝑥 ;𝜃) = 𝑣 · 𝜎 (𝑤⊤𝑥) where 𝑣 ∈ R,𝑤 ∈ R𝑑 , the

set of trained parameters 𝜃 = (𝑣,𝑤⊤) ∈ R𝑑+1, and the nonlinearity 𝜎 is ReLU. We will keep such

an order in 𝜃 to view it as a vector. The input 𝑥 ∈ R𝑑 is drawn uniformly from a unit sphere S𝑑−1.

The parameters are trained by GD subjected to 𝐿2 population loss, as

𝜃𝑡+1 = 𝜃𝑡 − 𝜂∇𝜃𝐿(𝜃𝑡), 𝐿(𝜃𝑡) = E𝑥∈S𝑑−1
(
𝑓 (𝑥 ;𝜃𝑡) − 𝑦

)2
.

38

We generate labels from a single teacher neuron function, as 𝑦 |𝑥 = 𝜎 (�̃�⊤𝑥). Hence �̃� is our

target neuron to learn. We denote the angle between 𝑤 and �̃� as 𝛼 ⩾ 0. Note that 𝛼 is set as

non-negative because the loss function is symmetric w.r.t. the angle. Moreover, the rotational

symmetry of the population data distribution results in a loss landscape that only depends on𝑤

through the angle 𝛼 and the norm ∥𝑤 ∥. Indeed, from the definition, we have

∇𝜃𝐿 =
1
𝑑

𝑣 ∥𝑤 ∥22 −

∥𝑤 ∥
𝜋

(
sin𝛼 + (𝜋 − 𝛼) cos𝛼

)
∥�̃� ∥

𝑣2𝑤 − 𝑣
𝜋
(𝜋 − 𝛼 + 1

2 sin 2𝛼) · �̃� − 𝑣
𝜋
(−1

2 cos 2𝛼 + 1
2) ∥�̃� ∥ �̃�⊥

,
where we denote �̃�⊥ as the normalized of𝑤 − proj�̃� 𝑤 . Consider the Hessian

𝐻 ≜

𝜕2
𝑣𝐿 𝜕𝑤 𝜕𝑣𝐿

𝜕𝑣𝜕𝑤𝐿 𝜕2
𝑤𝐿

if 𝑣𝑤 = �̃�
===

1
𝑑

∥𝑤 ∥2 𝑣𝑤⊤

𝑣𝑤 𝑣2I

 ∈ R
(𝑑+1)×(𝑑+1) . (3.5)

Hence, in the global minima manifold where 𝑣𝑤 = �̃� , the eigenvalues of the Hessian are 𝜆1 =

∥𝑤 ∥2+𝑣2

𝑑
, 𝜆2...𝑑 = 𝑣2

𝑑
, 𝜆𝑑+1 = 0. Therefore, the largest eigenvalue 𝜆1 measures the imbalance (i.e.,

| ∥𝑤 ∥ − 𝑣 |) between the two layers again as 𝜆1 =
(∥𝑤 ∥−𝑣)2+2∥�̃� ∥

𝑑
similar to the 2-D case in Sec-

tion 3.4.2. So we would like to investigate where GD converges if 𝜂 > 2
2∥�̃� ∥/𝑑 = 𝑑/∥�̃� ∥ that is too

large even for the flattest minima. Note that a key difference between the current case and the

previous 2-D analysis is that the current one includes a neuron as a vector and a nonlinear ReLU

unit.

From the second row of ∇𝜃𝐿, which is ∇𝑤𝐿, it is clear that updates of 𝑤 always stay in the

plane spanned by �̃� and𝑤 (0) . Hence, this problem can be simplified to three variables (𝑣,𝑤𝑥 ,𝑤𝑦)

with the target neuron �̃� = [1, 0]. The three variables stand for

𝑣 (𝑡) B 𝑣 (𝑡), 𝑤
(𝑡)
𝑥 B proj�̃� 𝑤

(𝑡),

𝑤
(𝑡)
𝑦 B proj�̃�⊥𝑤

(𝑡) =

√︃𝑤 (𝑡)2 − (𝑤 (𝑡)𝑥)2.

39

Wekeep𝑤𝑦 as nonnegative because the loss 𝐿 is invariant to its sign and our previous notation

𝛼 ⩾ 0 requires a non-negative𝑤𝑦 . Then we show that𝑤𝑦 decays to 0 as follows.

Theorem 3.5. In the above setting, consider a teacher neuron �̃� = [1, 0] and set the learning rate

𝜂 = 𝐾𝑑 with 𝐾 ∈ (1, 1.1]. Initialize the student as
𝑤 (0) = 𝑣 (0) ≜ 𝜖 ∈ (0, 0.10] and ⟨𝑤 (0), �̃�⟩ ⩾ 0.

Then, for 𝑡 ⩾ 𝑇1 + 4,𝑤 (𝑡)𝑦 decays as

𝑤
(𝑡)
𝑦 < 0.1 · (1 − 0.030𝐾)𝑡−𝑇1−4, 𝑇1 ⩽

⌈
log2.56

1.35
𝜋𝛽2

⌉
,

𝛽 =

(
1 + 1.1

𝜋

)
𝜖.

The details of proof are presented in the Appendix B.9.

With the guarantee of𝑤𝑦 decaying in the above theorem, the dynamics of the single-neuron

ReLU network follow the convergence of the 2-D case in Section 3.4.2, with a convergence result

as follows.

Proposition 4. The single-neuron model in Theorem 3.5 converges to a period-2 orbit where𝑤𝑦 = 0

and (𝑣,𝑤𝑥) ∈ 𝛾𝐾 with 𝛾𝐾 = {(𝛿1, 𝛿1), (𝛿2, 𝛿2)}. Here 𝛿1 ∈ (0, 1), 𝛿2 ∈ (1, 2) are the solutions 𝛿 in

𝐾 =
1

𝛿2
(√︃

1
𝛿2 − 3

4 +
1
2

) . (3.6)

Remark 2. Actually this convergence is close to the flattest minima because: if the learning rate

decays to infinitesimal after sufficient oscillations, then the trajectory walks towards the flattest

minima (𝑣 = 𝑤𝑥 = 1,𝑤𝑦 = 0). Note that we provide an experiment on 16-neuron networks in

Appendix 3.7.1, where GD converges to the period-2 orbit near the flattest minima while being

initialized near unbalanced (sharp) minima.

40

To summarize, the single-neuron model goes through three phases of training dynamics, with

an intialization of the angle ∡(𝑤, �̃�) as 𝜋
2 at most. First, the angle decreases monotonically but,

due to the growth of norms, the absolute deviation 𝑤𝑦 still increases. Meanwhile, the imbalance

𝑣 −𝑤𝑥 stays in a bounded level. Second,𝑤𝑦 starts to decrease and the parameters fall into a basin

within four steps. Third, in the basin, 𝑤𝑦 decreases exponentially and, after 𝑤𝑦 at a reasonable

low level, the model approximately follows the dynamic of the 2-D case and the imbalance 𝑣 −𝑤𝑥

decreases as well, following Theorem 3.4. The model converges to a period-2 orbit as in the 1-D

case in Theorem 3.3.

3.6 Matrix Factorization and beyond

In the last two sections, we have presented theoretical results that GD beyond EoS converges to

the fixed points of 𝐹 2
𝜂 from initialization that is far away. In this section, we address these follow-

up questions, by raising observations inMatrix Factorization and discuss whether existingmodels

can explain our observations or not:

Q2: does such a period-2 orbit exist in more complicated settings?

Q3: what does the appropriate model need to cover such oscillation in high-dim problems?

Q4: what will happen if the learning rate grows more?

3.6.1 Observations from Matrix Factorization

Consider a matrix factorization problem, parameterized by learnable weights Y ∈ R𝑑×𝑑 , Z ∈ R𝑑×𝑑 ,

and the target matrix is C ∈ R𝑑×𝑑 , which is symmetric and positive definite. The loss 𝐿 is defined

as

𝐿(Y,Z) = 1
2
YZ⊤ − C2

𝐹
. (3.7)

41

Obviously {(Y,Z) : YZ⊤ = C} forms a minimummanifold. Although we prove that the necessary

1-D condition holds around minimum as Theorem B.3 (in Appendix B.1.2), which is analogous

to Theorem 3.1, it is more attracting to investigate GD in high dimensions. We propose our first

observation that Matrix Factorization converges to a period-2 orbit, i.e., fixed points of 𝐹 2
𝜂 , as

follows.

Observation 1 (Matrix Factorization with period-2 orbit). Consider GD with learning rate 𝜂 satis-

fying 𝜂𝜎2
1 ∈ (1, 1.121) and 𝜂

(
𝜎2

1 + 𝜎2
2
)
< 2 where 𝜎2

1 , 𝜎
2
2 are the first and second largest eigenvalues

of C. Then, there exists non-measure-zero initialization, from which GD converges to a period-2 orbit

in the form of (𝑖 ∈ {1, 2})

Y = 𝜌𝑖𝑢𝑣
⊤ +

𝑑∑︁
𝑗=2

𝜎𝑦,𝑗𝑢𝑦,𝑗𝑣
⊤
𝑦,𝑗 ,

Z = 𝜌𝑖𝑢𝑣
⊤ +

𝑑∑︁
𝑗=2

𝜎𝑧, 𝑗𝑢𝑧, 𝑗𝑣
⊤
𝑧, 𝑗 ,

YZ⊤ − C = (𝜌2
𝑖 − 𝜎2

1)𝑢𝑢⊤,

where 𝑢 is the leading eigenvector of C, 𝑣 is arbitrary unit vector in R𝑑 , {𝜌𝑖}𝑖=1,2 are the two positive

roots of

𝜂𝜎2
1 =

1

𝜌2
(√︃

1
𝜌2 − 3

4 +
1
2

) , (3.8)

and the decompositions of Y,Z are SVD.

Remark 3. At any minimizer (X,Y) satisfying XY⊤ = C, the largest eigenvalue of loss Hessian

w.r.t. parameters is 𝜎max(X)2 +𝜎max(Y)2. Consequently, the flattest minima has sharpness as 2𝜎2
1 ,

because 𝜎2
1 = 𝜆max(C) ⩽ 𝜎max(X)𝜎max(Y) ⩽ 0.5

(
𝜎max(X)2 + 𝜎max(Y)2

)
.

To our knowledge, this observation is beyond all previous results. Damian et al. [2022b] tracks

42

the trajectory’s projection onto the manifold with sharpness < 2/𝜂. Wang et al. [2021] proposes

that GD in a sharper region (sharpness> 2/𝜂) converges to flatter region (sharpness< 2/𝜂) for

matrix factorization problem. But such a manifold (or flatter region) containing any minimizer

does not exist in our setting because 𝜂𝜎2
1 > 1 makes the flattest minima sharper than 2/𝜂, which

means the probability of converging to a stationary point is zero [Ahn et al. 2022].

However, it is difficult to prove Observation 1 rigorously. Meanwhile, general initializa-

tion cannot illustrate well the phenomena that GD walks to flatter minima from a sharper one.

Therefore, we provide an observation of a limited version of matrix factorization, called quasi-

symmetric, along with sufficient intuition on its dynamics and careful discussion on what is re-

maining to prove it.

Definition 3 (Quasi-symmetric Matrix Factorization). Given a symmetric and positive definite

target matrix C ≜ X0X⊤0 , where X0 = R𝑑×𝑑 . Quasi-symmetric MF is solving the factorization

problem with initialization near an unbalanced minima, where the minima is (𝛼X0, 1/𝛼X0) with

𝛼 ≠ 1.

Observation 2 (Quasi-symmetric Matrix Factorization with period-2 orbit). Consider the above

quasi-symmetric matrix factorization with learning rate𝜂 ∈ (1/𝜎2
1, 1.121/𝜎2

1). Consider aminima (Y0 =

𝛼X0,Z0 = 1/𝛼X0), 𝛼 > 0. The initialization is around the minimum, as Y1 = Y0+ΔY1,Z1 = Z0+ΔZ1.

When

𝜂 ·max
{
(
𝜎2

1
𝛼2 + 𝜎

2
2𝛼

2,
𝜎2

2
𝛼2 + 𝜎

2
1𝛼

2)
}
⩽ 2 (3.9)

GD would converge to a period-2 orbit 𝛾𝜂 approximately with error in O(𝜖), formally written as,

(𝑖 = 1, 2)

(Y𝑡 ,Z𝑡) → 𝛾𝜂 + (ΔY,ΔZ), ∥ΔY∥ , ∥ΔZ∥ = O(𝜖),

𝛾𝜂 = {
(
Y0 + (𝜌𝑖 − 𝛼) 𝜎1𝑢1𝑣

⊤
1 ,Z0 + (𝜌𝑖 − 1/𝛼) 𝜎1𝑢1𝑣

⊤
1
)
},

43

where 𝜌1 ∈ (1, 2), 𝜌2 ∈ (0, 1) are the same as in Eq.(3.8)

Remark 4. The intuition on the dynamics in Observation 2 is provided in Appendix B.10.2, along

with a discussion on what is missing for rigorous proof for future development. Without loss

of generality, assume X0 = diag([𝜎1, 𝜎2, . . . , 𝜎𝑑]) ∈ R𝑑×𝑑 , where (X0)𝑖,𝑖 = 𝜎𝑖 and 0 in all other

entries. Intuitively, the dynamics of the system is following

Y =

𝛼𝜎1 0

0 diag([𝛼𝜎𝑖]𝑑𝑖=2)

 +𝑂 (𝜖) →

𝜌𝑖 0

0 diag([𝛼𝜎𝑖]𝑑𝑖=2)

 +𝑂 (𝜖),
Z =

𝛼𝜎1 0

0 diag([𝜎𝑖/𝛼]𝑑𝑖=2)

 +𝑂 (𝜖) →

𝜌𝑖 0

0 diag([𝜎𝑖/𝛼]𝑑𝑖=2)

 +𝑂 (𝜖),
YZ⊤ =

𝜎2

1 0

0 diag([𝜎2
𝑖]𝑑𝑖=2)

 +𝑂 (𝜖) →

𝜌2
𝑖 0

0 diag([𝜎2
𝑖]𝑑𝑖=2)

 .
Note that the top singular values of Y,Z are always the same in the orbit although it is unbalanced

at initialization. A benefit of this is that, if 𝜂 decays below 1/𝜎2
1 after reaching the orbit, it would

converge to Y,Z with same top singular value 𝜎1, satisfying YZ⊤ = C.

How tight are Observation 1 and 2? There are two aspects we would like to address: 𝜂𝜎2
1

and 𝜂𝜎2
2 . The former 𝜂𝜎2

1 is a natural constraint because it is necessary to carefully set its upper

bound in 1-D analysis to contain the oscillation in some finite level set. However, the second

𝜂𝜎2
2 is novel (and tight) to our knowledge, which is respectively 𝜂 (𝜎2

1 + 𝜎2
2) < 2 in Observation 1

and 𝜂 ·
(
𝜎2

1/𝛼2 + 𝜎2
2𝛼

2) < 2 in Observation 2. The tightness of this bound is verified in Figure 3.2,

where it approximates the linearity of the empirical boundary between infinite and finite well

when 𝜂𝜎2
1 > 1 slightly. Furthermore, although we do not prefer asserting too much beyond our

theorems, the linear trend between 𝜂𝜎2
1 and 𝜂𝜎2

2 keeps well when 𝜂𝜎2
1 goes beyond 1.121 for a

long range. Intuitively, We gain the insight of this bound from the analysis of Observation 2 in

Appendix B.10.2. More precisely, it appears in Eq.(B.184) to guarantee a transition matrix to be

semi-convergent, whose largest absolute eigenvalue is no larger than 1.

44

1.0 1.2 1.4 1.6 1.8 2.0
2
1

0.0

0.5

1.0

1.5

2.0
2 2

finite
diverge
(2

1 + 2
2) < 2

1.0 1.2 1.4 1.6 1.8 2.0
2
1

0.0

0.5

1.0

1.5

2.0

2 2

finite
diverge
predicted bound

(a) Generic init (b) Quasi-sym init (𝛼 = 0.9)

1.0 1.2 1.4 1.6 1.8 2.0
2
1

0.0

0.5

1.0

1.5

2.0

2 2

finite
diverge
predicted bound

(c) Symmetric init (𝛼 = 1 in Quasi case)

Figure 3.2: Matrix Factorization: grid search of 𝜂𝜎2
1 v.s. 𝜂𝜎

2
2 on whether GD diverges or not. (a) Generic

initialization: it verifies the condition 𝜂
(
𝜎2

1 + 𝜎2
2
)
< 2. (b-c) Quasi-symmetric initialization: it verifies the

predicted bound 𝜂 ·
(
𝜎2

1/𝛼2 + 𝜎2
2𝛼

2) < 2 in Eq.(3.9) as a sufficient condition.

Is there any other phenomena beyondperiod-2 orbitwhen𝜂 grows larger? The answer

is yes. We conduct experiments of matrix factorization with generic initialization with different

𝜂’s, as shown in Figure 3.3. It turns out when 𝜂𝜎2
1 ∈ (1, 1.23), it converges to period-2 orbit. When

𝜂𝜎2
1 ∈ (1.23, 1.28), it converges to a period-4 orbit, although the period-2 orbit still exists once

𝜂𝜎2
1 < 1.5 as shown in Eq.(B.17) (because the existence cannot guarantee convergence, and even

local convergence does not hold). When 𝜂𝜎2
1 > 1.28, it is rather chaotic. However, during most

of these, the balancing effect holds, i.e., 𝜎max(Y) = 𝜎max(Z).

3.6.2 Implications for more complicated settings

Existing models fromMa et al. [2022] and Damian et al. [2022b]. Ma et al. [2022] proposes

45

0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6
2
1

0.4

0.6

0.8

1.0

1.2

m
ax

/
1

max(Y)
max(Z)

Figure 3.3: Matrix Factorization: 𝜎max(Y), 𝜎max(Z) for different 𝜂’s. For each 𝜂, the last 10 iterations are
sampled for report, due to periodic and chaotic phenomenon. Observations: (1) when 𝜂𝜎2

1 ∈ (1, 1.38),
all cases have 𝜎max(Y) = 𝜎max(Z); (2) when 𝜂𝜎2

1 ∈ (1, 1.23), it converges to a period-2 orbit; (3) when
𝜂𝜎2

1 ∈ (1.23, 1.28), it converges to a period-4 orbit; (4) when 𝜂𝜎2
1 > 1.28, it is rather chaotic; (5) when

𝜂𝜎2
1 < 1, there is no oscillation.

a decomposition of high-dimensional functions into separable functions in eigendirections, in the

form of

𝑓 (𝜃) = 𝑓1(𝑝⊤1 𝜃) + 𝑓2(𝑝⊤2 𝜃) + · · · + 𝑓𝑑 (𝑝⊤𝑑 𝜃), (3.10)

where {𝑝𝑖 ∈ R𝑑} is an orthogonal basis of R𝑑 , 𝜃 ∈ R𝑑 is the parameter and each 𝑓𝑖 is a function

that allows stable oscillation. Within such a framework, all 𝑝⊤𝑖 𝑥 can stably oscillation since the

dynamics is separable in each eigendirection. However, this framework cannot explain the dy-

namics of matrix factorization, because our experiments in Figure 3.2 have shown that GD will

blow up once 𝜂𝜎2 > 1, which means the eigen-directions associated with 𝜎2
1 and 𝜎2

2 cannot be

disentangled in this case.

Damian et al. [2022b] proposes to track the trajectory’s projection onto manifoldM = {𝜃 :

𝜆(𝜃) < 2/𝜂,∇𝐿(𝜃) · 𝑢 (𝜃) = 0}, where 𝜆(𝜃) and 𝑢 (𝜃) are the leading eigenvalue and eigenvector

of Hessian of loss 𝐿. However, such a manifold does not exist in the 2-D case we have studied in

Section 3.4.1 because our setting is strictly beyond EoS. Furthermore, in high-order cases, such a

manifold containing any minimizer does not exist (Proposition 7).

46

Proposition 5. For 𝐿(𝑥,𝑦) = 1/2(𝑥𝑦 − 1)2 with 𝜂 > 1 on {𝑥 > 0, 𝑦 > 0}, such a manifoldM does

not exist.

Proposition 6. For 𝐿(𝑥,𝑦) = 1/2(𝑥𝑦 − 1)2 with 𝜂 < 1 on {𝑥 > 0, 𝑦 > 0}, M = {(𝑥,𝑦) : 𝑥𝑦 =

1, 𝑥 + 𝑦 <
√︁

2 + 2/𝜂}.

Proposition 7. For 𝐿({𝑥𝑖}𝑛𝑖=1) =
1
𝑛
(∏𝑛

𝑖=1 𝑥𝑖 − 1)2 with 𝜂 > 1 on {𝑥𝑖 > 0, ∀𝑖}, such a manifoldM

containing any minimizer does not exist.

Moreover, althoughM exists when 𝜂 < 1 (Proposition 6), the size ofM is limited, which

means the trajectory’s projection onto it stays unchanged in the early steps, although the trajec-

tory is moving efficiently from sharper region to flatter region, as shown in Figure 3.4(b).

0.0 0.5 1.0 1.5 2.0

x

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

y

trajectory
xy = 1

0.0 0.5 1.0 1.5 2.0

x

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

y

trajectory
xy = 1

 from Damian et al.

(a) 𝜂 = 1.08 (b) 𝜂 = 0.95

Figure 3.4: Trajectories of minimizing 𝐿(𝑥,𝑦) = 1/2(𝑥𝑦 − 1)2 with 𝜂 = 1.08, 0.95. For 𝜂 = 1.08, the
manifoldM proposed by Damian et al. [2022b] does not exist. For 𝜂 = 0.95, the manifoldM exists, but
the projection onto it does not change for the first few steps.

Two candidate models. From the above discussion, we would like to raise two candidate

models to contain the observations from matrix factorization, based on the models proposed in

Damian et al. [2022b] and Ma et al. [2022].

Following Damian et al. [2022b], we would like to propose

47

Definition 4 (Projection onto manifold). M𝑐 = {𝜃 : 𝜆2(𝜃) < 2/𝜂,∇𝐿(𝜃) · 𝑢 (𝜃) = 0}, where 𝜆2(𝜃)

and 𝑢 (𝜃) are the second largest eigenvalue and the leading eigenvector of Hessian of loss 𝐿.

The motivation ofM𝑐 is to contain points that have the leading eigenvalue greater than 1. For

example, in the case of 1/2(𝑥𝑦 − 1)2, it isM𝑐 = {(𝑥,𝑦) : 𝑥𝑦 = 1} allowing to track the trajectory

walking from sharper region to flatter region. Instead of constraining 𝜆 < 2/𝜂, we set 𝜆2 < 2/𝜂 to

make it compatible with our observations in matrix factorization.

The gap between Ma et al. [2022] and observations from matrix factorization is that they

assume the orthogonal decomposition of the loss function. However, even in the simplest setting

of matrix factorization, this assumption does not hold. Taking a symmetric matrix factorization

as an example, we have

𝐿(X) = 1
4

XX⊤ −

1 0

0 1

2

𝐹

=
1
4

((X0,:
2 − 1

)2
+

(X1,:
2 − 1

)2
+ 2

(
⟨X0,:,X1,:⟩

)2
)
, (3.11)

where the first two terms in the last line are 𝑓𝑖 (𝑝⊤𝑖 𝑥) in Eq.(3.10) since the included are orthog-

onal to each other. However, the last term ⟨X0,:,X1,:⟩ breaks the separability in the decomposi-

tion. Meanwhile,
(
⟨X0,:,X1,:⟩

)2 is implicitly
(
⟨X0,:,X1,:⟩ − 0

)2, becauseX0,:,X1,: ∈ R2 are expressive

enough to form an orthogonal pair satisfying the constraints of norms.

In a similar spirit, we propose an extensive model of Eq.(3.10) [Ma et al. 2022] as follows

𝑓 (𝜃) =
𝑑∑︁
𝑖=1

𝑔𝑖 (𝑝⊤𝑖 𝜃 ;𝑎𝑖) +
𝑑∑︁

(𝑖, 𝑗)∈E
ℎ𝑖 𝑗 (𝑝⊤𝑖 𝜃, 𝑝⊤𝑗 𝜃 ;𝑏𝑖 𝑗), (3.12)

where 𝑔𝑖, ℎ𝑖 𝑗 are functions allowing stable oscillation parameterized by 𝑎𝑖, 𝑏𝑖 𝑗 , {𝑝𝑖}𝑑𝑖=1 are orthog-

onal basis of R𝑑 and E ⊂ [𝑑] × [𝑑] is a selected subset of tuples. A simple but effective exam-

ple to imitate matrix factorization is 𝑔𝑖 (𝑥 ;𝑎) ≜ (∥𝑥 ∥2 − 𝑎)2 and ℎ𝑖 𝑗 (𝑥,𝑦 |𝑏) ≜ (⟨𝑥,𝑦⟩ − 𝑏)2 and

48

E = [𝑑] × [𝑑]. Intuitively, such a model with larger |E | allows fewer eigenvalues of Hessian to

go beyond 2/𝜂. Conversely, if E = ∅, it allows all eigenvalues beyond 2/𝜂, which degenerates to

Eq.(3.10) [Ma et al. 2022].

3.7 Experiments on MLPs and MNIST

In this section, we perform two experiments in relatively higher dimension settings. We are to

show two observations that coincide with our discussions in the low dimension:

Observation 3. GD beyond EoS drives to flatter minima.

Observation 4. GD beyond EoS is in a similar style with the low dimension.

3.7.1 2-layer high-dim homogeneous ReLU NNs with planted teacher

neurons

We conduct a synthetic experiment in the high-dimension teacher-student framework.

The teacher network is in the form of

𝑦 |𝑥 B 𝑓teacher(𝑥 ;𝜃) =
16∑︁
𝑖=1

ReLU(e⊤𝑖 𝑥), (3.13)

where 𝑥 ∈ R16 and ei is the 𝑖-th vector in the standard basis of R16. The student and the loss are

in forms of

𝑓 (𝑥 ;𝜃) =
16∑︁
𝑖=1

𝑣𝑖 · ReLU(𝑤⊤𝑖 𝑥), (3.14)

𝐿(𝜃 ;𝜃) = 1
𝑚

16∑︁
𝑖

(𝑓 (𝑥 ;𝜃) − 𝑦 |𝑥𝑖)2 . (3.15)

49

Apparently, the global minimummanifold contains the following setM as (w.l.o.g., ignoring any

permutation)

M = {(𝑣𝑖,𝑤𝑖)16
𝑖=1 | ∀𝑖 ∈ [16],𝑤𝑖 = 𝑘𝑖 · e𝑖, 𝑣𝑖 =

1
𝑘𝑖
, 𝑘𝑖 > 0}. (3.16)

However, different choices of {𝑘𝑖}16
𝑖=1 induce different extents of sharpness around each minima.

Our aim is to show that GD with a large learning rate beyond the edge of stability drives

to the flattest minima from sharper minima.

Initialization. We initialize all student neurons directionally aligned with the teachers as𝑤𝑖 ∥

e𝑖 but choose various 𝑘𝑖 , as 𝑘𝑖 = 1 + 0.0625(𝑖 − 1). Obviously, such a choice of {𝑘𝑖}16
𝑖=1 is not at the

flattest minima, due to the isotropy of teacher neurons. Also we add small noise to 𝑤𝑖 to make

the training start closely (but not exactly) from a sharp minima, as

𝑤𝑖 = 𝑘𝑖 · (e𝑖 + 0.01𝜖), 𝜖 ∼ N(0, 𝐼). (3.17)

Data. We uniformly sample 10000 data points from the unit sphere S15.

Training. We run gradient descent with two learning rates 𝜂1 = 0.5, 𝜂2 = 2.6. Later we will

show with experiments that the EoS threshold of learning rate is around 2.5, so 𝜂2 is beyond

the edge of stability. GD with these two learning rates starts from the same initialization for

100 epochs. Then we extend another 20 epochs with learning rate decay to 0.5 from 2.6 for the

learning-rate case.

Results. All results are provided in Figure 3.5. Both Figure 3.5 (a, b) present the gap between

these two trajectories, where GDwith a small learning rate stays around the sharp minima, while

that with a larger one drives to flatter minima. Then GD stably oscillates around the flatter

minima.

50

Meanwhile, from Figure 3.5 (b), when we decrease the learning rate from 2.6 to 0.5 after 100

epochs, GD converges to a nearby minima which is significantly flatter, compared with that of

lr=0.5.

Figure 3.5 (c) provides a more detailed view of ∥𝑤𝑖 ∥
𝑣𝑖

for all 16 neurons. All neurons with

lr=0.5 stay at the original ratio 𝑘2
𝑖 . But those with lr=2.6 all converge to the same ratio around

𝑘2 =
∥𝑤 ∥
𝑣

= 1.21, as shown in Figure 3.5 (d). We compute the relationship between the sharpness

of global minima inM and different choices of 𝑘 , as shown in Figure 3.5 (e, f). Actually, 𝑘2 = 1.21

is the best choice of {𝑘𝑖}16
𝑖=1 such that the minima is the flattest.

Therefore, we have shown that, in such a setting of high-dimension teacher-student

network, GD beyond the edge of stability drives to the flattest minima.

3.7.2 3, 4, 5-layer non-homogeneous MLPs on MNIST

We conduct an experiment on real data to show that our finding in the low-dimension setting

in Theorem 3.1 is possible to generalize to high-dimensional setting. More precisely, our

goals are to show, when GD is beyond EoS,

1. the oscillation direction (gradient) aligns with the top eigenvector of Hessian.

2. the 1D function at the cross-section of oscillation direction and high-dim loss landscape

satisfies the conditions in Theorem 3.1.

Network, dataset and training. We run 3, 4, 5-layer ReLU MLPs on MNIST [LeCun et al.

1998]. The networks have 16 neurons in each layer. To make it easier to compute high-order

derivatives, we simplify the dataset by 1) only using 2000 images from class 0 and 1, and 2)

only using significant input channels where the standard deviation over the dataset is at least

110, which makes the network input dimension as 79. We train the networks using MSE loss

subjected to GD with large learning rates 𝜂 = 0.5, 0.4, 0.35 and a small rate 𝜂 = 0.1 (for 3-layer).

51

Note that the larger ones are beyond EoS.

Definition 5 (line search minima). Consider a function 𝑓 . Consider learning rate 𝜂 and a point

𝑥 ∈ domain(𝑓). We call 𝑥 as the line search minima of 𝑥 if

𝑥 = 𝑥 − 𝑐∗ · 𝜂∇𝑓 (𝑥), (3.18)

𝑐∗ = argmin𝑐∈[0,1] 𝑓 (𝑥 − 𝑐 · 𝜂∇𝑓 (𝑥)) . (3.19)

The line search minima 𝑥 can interpreted as the lowest point on the 1D function induced by

the gradient at 𝑥 . If GD is beyond EoS, 𝑥 stays in the valley below the oscillation of 𝑥 .

Results. All results are presented in Figure 3.6, 3.7 and 3.8.

Take the 3-layer as an example. From Figure 3.6 (a, b), GD is beyond EoS during epochs 10-14

and 21-60. For these epochs, cosine similarity between the top Hessian eigenvector 𝑣1 and the

gradient is pretty close to 1, as shown in Figure 3.6 (c), which verifies our goal 1.

In Figure 3.6 (d), we compute 3[𝑓 (3)]2 − 𝑓 (2) 𝑓 (4) at line search minima along training, which

is required to be positive in Theorem 3.1 to allow stable oscillation. Then it turns out most points

have 3[𝑓 (3)]2 − 𝑓 (2) 𝑓 (4) > 0 except a few points, all of which are not in the EoS regime, and

these few exceptional points might be due to approximation error to compute the fourth-order

derivative since their negativity is quite small. This verifies our goal 2.

Both the above arguments are the same in the cases of 4 and 5 layers as shown in Figure 3.7

and 3.8.

3.8 Conclusions

In this work, we investigate gradient descent with a large step size that crosses the threshold of

local stability, via investigating convergence of two-step updates instead of convergence of one-

step updates. In the low dimensional setting, we provide conditions on high-order derivatives

52

that guarantees the existence of fixed points of two-step updates. For a two-layer single-neuron

ReLU network, we prove its convergence to align with the teacher neuron under population loss.

Formatrix factorization, we prove that the necessary 1-D condition holds around anyminima. We

provide novel observations of its convergence to period-2 orbit with comprehensive theoretical

intuition of the dynamics. Finally, we extend previous works by proposing two models with

observations in matrix factorization compatible for future analysis.

53

0 20 40 60 80 100 120
epoch

10 4

10 3

10 2

10 1

100

lo
ss

lr=0.5
lr=2.6
change to lr=0.5

0 20 40 60 80 100 120
epochs

0.4

0.6

0.8

1.0

1.2

1.4

sh
ar

pn
es

s

lr=2.6
lr=0.5
change to lr=0.5

(a) Training loss (b) Sharpness

0 20 40 60 80 100 120
epochs

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

|w
i|/

v i

neurons: lr=2.6
neurons: lr=0.5
change to lr=0.5

2 4 6 8 10 12 14
No. of neurons

1.18

1.20

1.22

1.24
||w

i||
/v

i

neuron
predicted

(c) ratio of ∥𝑤𝑖 ∥ and 𝑣𝑖 during training (d) final ratio of ∥𝑤𝑖 ∥ and 𝑣𝑖 when lr=2.6

0.8 1.0 1.2 1.4 1.6 1.8
k

0.8

0.9

1.0

1.1

1.2

1.3

1.4

sh
ar

pn
es

s

1.000 1.025 1.050 1.075 1.100 1.125 1.150 1.175
k

0.800

0.805

0.810

0.815

sh
ar

pn
es

s

(e) sharpness for different ratio
√︃
∥𝑤𝑖 ∥
𝑣𝑖

(f) sharpness for different ratio
√︃
∥𝑤𝑖 ∥
𝑣𝑖

(zoom-in)

Figure 3.5: Result of 2-layer 16-neuron teacher-student experiment.

54

0 20 40 60 80 100
time = epochs x lr

10 2

10 1

lo
ss

lr=0.5
line search minima of lr=0.5
lr=0.1

0 20 40 60 80 100
time = epochs x lr

2

3

4

5

6

7

8

sh
ar

pn
es

s

lr=0.5
2 / lr = 4
lr=0.1

(a) Training loss (b) Sharpness

0 25 50 75 100 125 150 175 200
epochs

10 2

10 1

100

1
- |

co
s(

v1
, g

ra
d

L)
|

1 - |cos(v1, grad L)|

0 25 50 75 100 125 150 175 200
epochs

0
25
50
75

100
125
150
175

3[
f(3

)]2
f(2

)
f(4

)

3[f(3)]2 f(2) f(4)

non-positive

(c) similarity of gradient and top eig-vector 𝑣1 (d) 3[𝑓 (3)]2 − 𝑓 (2) 𝑓 (4) at line search minima

Figure 3.6: Result of 3-layer ReLU MLPs on MNIST. Both (c) and (d) are for learning rate as 0.5.

55

0 25 50 75 100 125 150 175 200
epochs

10 2

10 1

lo
ss

real lr=0.4
line search minima

0 25 50 75 100 125 150 175 200
epochs

2

4

6

8

10

sh
ar

pn
es

s

sharpness
2 / lr

(a) Training loss (b) Sharpness

0 25 50 75 100 125 150 175 200
epochs

10 2

10 1

100

1
- |

co
s(

v1
, g

ra
d

L)
|

1 - |cos(v1, grad L)|

0 25 50 75 100 125 150 175 200
epochs

0

200

400

600

800

1000

1200

1400

3[
f(3

)]2
f(2

)
f(4

)

3[f(3)]2 f(2) f(4)

non-positive

(c) similarity of gradient and top eig-vector 𝑣1 (d) 3[𝑓 (3)]2 − 𝑓 (2) 𝑓 (4) at line search minima

Figure 3.7: Result of 4-layer ReLU MLPs on MNIST.

56

0 25 50 75 100 125 150 175 200
epochs

10 2

10 1

100

lo
ss

real lr=0.35
line search minima

0 25 50 75 100 125 150 175 200
epochs

2.5

5.0

7.5

10.0

12.5

15.0

sh
ar

pn
es

s

sharpness
2 / lr

(a) Training loss (b) Sharpness

0 25 50 75 100 125 150 175 200
epochs

10 2

10 1

100

1
- |

co
s(

v1
, g

ra
d

L)
|

1 - |cos(v1, grad L)|

0 25 50 75 100 125 150 175 200
epochs

0
200
400
600
800

1000
1200
1400

3[
f(3

)]2
f(2

)
f(4

)

3[f(3)]2 f(2) f(4)

non-positive

(c) similarity of gradient and top eig-vector 𝑣1 (d) 3[𝑓 (3)]2 − 𝑓 (2) 𝑓 (4) at line search minima

Figure 3.8: Result of 5-layer ReLU MLPs on MNIST.

57

4 | Memorization of Training

Distribution in Transformer

Modules

4.1 Introduction and Our Contributions

Large language models (LLMs) have shown impressive capabilities on a variety of tasks, from

generating coherent and grammatically correct text, to language understanding and basic mathe-

matical reasoning [Brown et al. 2020; Touvron et al. 2023]. At the heart of this success is the Trans-

former architecture [Vaswani et al. 2017], which relies on a sequence of self-attention and feed-

forward layers to efficiently combine information from the input context and patterns learned

from training data. Despite recent progress on interpreting the mechanisms learned by different

layers [Meng et al. 2022; Wang et al. 2022], these models remain largely black boxes. A better

understanding of the role of Transformer layers and how they are affected by the training process

could enable new monitoring and editing techniques, better training data, and ultimately more

reliable LLMs.

The task of next-token prediction in languagemodeling inherently involves different subtasks

that may be at odds with each other, as shown in Figure 4.1. For instance, given the context “John

gave a book to”, the word “the” is a natural and grammatically correct next word to predict,

58

and relying on global bigram statistics might be enough to predict it given the last word “to”.

Nonetheless, if another character is present in the context, say Mary, then the name “Mary”

may be a better prediction, and this would require a more involved form of reasoning over the

context to retrieve this name. In the context of Transformer language models, previous work on

interpretability has found that circuits of attention heads seem responsible for such in-context

predictions [Wang et al. 2022], while feed-forward layers may be storing more general statistics

such as the bigram “to the” or factual knowledge [Geva et al. 2021; Meng et al. 2022; Bietti et al.

2023]. To further strengthen this observation, the recent work [Sharma et al. 2023] found that

selectively replacing certain layer weights to their low-rank approximation, particularly late feed-

forward layers, may improve performance on various reasoning benchmarks, and observed that

the truncated components were often responsible for predicting “generic” tokens such as the

word “the”.

In this chapter, we provide a finer understanding of these phenomena by studying how such

mechanisms arise during training, in particular how simple distributional associations, such as the

bigram “to the”, tend to be localized in feed-forward layers, while attention focuses on in-context

reasoning. We first provide a fine-grained study of training dynamics on a synthetic task with

two-layer transformers exhibiting similar properties, where the task is in-context recall [Bietti

et al. 2023] with additional noise on in-context tokens consisting of a fixed “generic” token:

• In a two-layer model with feed-forward layers (FF), we show that the generic noise token is

mainly learned in FF and the attention attends towards correct in-context targets. Removing

the feed-forward layers then leads to clean in-context predictions. We provide some theoretical

justification through early training steps.

• In a model without FF, we show that the generic noise can be identified in a rank-one subspace

of the value matrix in attention block. When the noise level is small, low-rank truncation can

filter it out and predict clean outputs.

59

MLP learns
distribution

Madrid is located in
distributional association

in-context reasoning

P(y |x)

Training steps

Attention learns
in-context reasoning

the

Spain Truncating MLP promotes
in-context reasoning

x y

Figure 4.1: Distributional association v.s. in-context reasoning. In this work, we decompose tasks
of next-token prediction into the distributional and the in-context ones, finding that MLPs learn distribu-
tional associations before attention develops in-context reasoning capabilities. Furthermore, truncating
MLPs promotes in-context reasoning by weakening distributional associations. See Figure 4.13 for an ex-
ample of this on the Pythia model [Biderman et al. 2023].

We then investigate such a separation between distributional association and in-context rea-

soning on pre-trained language models, namely the Pythia family, which has checkpoints avail-

able at different training steps [Biderman et al. 2023]. Overall, we provide a useful description of

how distributional associations and in-context reasoning mechanisms are learned during train-

ing, and tend to be disentangled in different parts of the model, such that selectively removing

certain components may lead to better predictions in reasoning tasks.

4.2 Related Works

[Sharma et al. 2023] recently empirically observed that a low-rank approximation of someweights

in some pre-trained LLMs can improve reasoning capabilities. Several interpretability works have

looked at the role of attention versus feed-forward layers for different tasks. The prominence

of feed-forward/MLP layers for storing “global” or “persistent” associations or facts has been

observed in [Sukhbaatar et al. 2019; Geva et al. 2021;Meng et al. 2022; Geva et al. 2023]. In contrast,

several works have investigated the role of attention heads for “reasoning” or computation over

the context, e.g., for simple copying mechanisms with so-called induction heads [Elhage et al.

2021; Olsson et al. 2022; Bietti et al. 2023], or for more complex tasks [Merrill et al. 2022; Wang

et al. 2022; Zhang et al. 2022; Liu et al. 2023; Sanford et al. 2024b].

60

Training dynamics of transformers and attention have been studied in various works [Snell

et al. 2021; Jelassi et al. 2022; Li et al. 2023; Oymak et al. 2023; Tian et al. 2023; Bietti et al. 2023;

Reddy 2024; Tian et al. 2024; Zhang et al. 2024; Nichani et al. 2024; Edelman et al. 2024]. In par-

ticular, the two-layer model and copy task we consider are similar to Bietti et al. [2023], yet their

data model does not involve noise on in-context predictions, and they do not study learning of

global associations. Chan et al. [2022]; Reddy [2024] study in-context vs. in-weights learning em-

pirically, on different tasks than ours. Cabannes et al. [2024] study training dynamics of linear

associative memories, but focuses on deterministic data while our setup has generic noise. Train-

ing dynamics were also studied empirically for interpretability [Olsson et al. 2022; Nanda et al.

2023; Quirke et al. 2023; Chen et al. 2024]. Edelman et al. [2022]; Bai et al. [2023]; Abernethy et al.

[2024] studied sample complexity of self-attention and in-context learning, but did not consider

training dynamics.

4.3 Preliminaries

In this section, we provide some background and motivation on reasoning tasks, and describe the

weight truncation technique which we use for ablating weights.

4.3.1 Reasoning from Context

Recent LLMs have shown promising results in more complex “reasoning” tasks which may in-

volve multiple steps of logical or computational processing from context or prompt [Srivastava

et al. 2022; Wei et al. 2022; Bubeck et al. 2023; Dziri et al. 2024], as opposed to simple pattern

matching or memorization of training data, for instance using learned n-gram predictions.

While it is difficult to clearly separate reasoning frommemorization, in this workwewill make

the simplifying distinction that in-context reasoning involves dependencies between multiple

tokens potentially far away in the context, while we consider distributional associations as

61

simpler predictions that only depend on the last token, e.g., through a bigrammodel. Thus, due to

the residual structure of Transformers, reasoningwill typically require using attention operations

in Transformers over context, while feed-forward layers should suffice for learning distributional

associations. We note that our assumption of distributional associations depending only on the

last token is mainly for convenience of our analysis, and could be extended to depend on the

last token’s residual stream [Elhage et al. 2021], which may contain additional information from

the context. For instance, this could include previous tokens thanks to position-based attention

heads [Voita et al. 2019; Elhage et al. 2021; Akyürek et al. 2024], which allows capturing n-grams

instead of just bigrams.

Under this definition, we list a few simple examples of reasoning that we will consider below:

• In-context recall: when the last token is a, we’d like to copy the token that follows previous

occurrences of a in the context. This [.. a b .. a]→ b pattern typically requires a two-layer

induction head mechanism [Elhage et al. 2021; Bietti et al. 2023; Sanford et al. 2024a];

• Indirect object identification (IOI): we consider contexts of the form “WhenMary and Johnwent

to the store, John gave the ice cream to” where the prediction should be “Mary” (IO, the indirect

object), instead of “John” (S, the subject). Wang et al. [2022] found a circuit of several attention

heads that perform this task by copying the name which only occurs once in the context;

• Factual recall: sentences of the form “Paul Citroen is a native speaker of” with target “Dutch”

as in [Sharma et al. 2023]. While this may be seen as retrieving a distributional association,

we will treat it here as reasoning since it involves combining the subject and relation from the

context, while a bigram model that only depends on the last token “of” might instead predict

the generic word “the”.

62

4.3.2 Truncating Weights with LASER [Sharma et al. 2023]

In order to assess the importance of different weight components for certain predictions, we use

the weight truncation technique introduced by Sharma et al. [2023]. They observed that reducing

the rank of MLP matrices in certain layers of LLMs effectively brings better performance on sev-

eral reasoning benchmarks. Their proposed method, Layer-Selective Rank Reduction (LASER),

replaces any matrix in the full model by its low-rank approximation with fraction 𝜌 , i.e., a matrix

W ∈ R𝑑in,𝑑out would be replaced by its rank-⌊𝜌 ·min{𝑑in, 𝑑out}⌋ approximation via Singular Value

Decomposition (SVD). After searching for the best parameters of different models on different

datasets, [Sharma et al. 2023] found that applying their method to weight matrices of MLPs on

relatively deep layers can enhance in-context reasoning performance on various benchmarks,

consistent with our findings. The optimal 𝜌 is smaller than 0.2 for many datasets.

Another observation from [Sharma et al. 2023] is that, when LASER improves the model’s

prediction on some samples, the full model often predicts “generic” words while the improved

model is able to predict the ground-truth answer. For instance, given an input “Madrid is lo-

cated in”, the full model predicts “the” while the truncated model predicts the target “Spain” in

Table 4.1. Here, the generic word is consistent with our definition of distributional associations

in Section 4.3.1, as it may naturally follow from a bigram distribution conditioned on “in”, while

the factual answer is more akin to reasoning from context. Thus, we would like to better un-

derstand how such a modification of feed-forward layers improves the model from predicting

generic words to inferring the answer from context, and how such a gap appears during training.

Table 4.1: Probabilities of the top-5 next-tokens in Pythia-1B before and after LASER. The input prompt
is “Madrid is located in”. Probabilities of two generic words, i.e., “the” and “a”, drop sharply after LASER,
while probabilities of meaningful words increase, especially the target “Spain”.

“the” “Spain” “a” “southern” “northern”

Full 0.499 0.079 0.069 0.023 0.021
LASER 0.027 0.300 0.002 0.044 0.046

63

4.4 Two-layer Transformer on Noisy In-context Recall

In this section, we consider simple one- or two-layer transformers on an in-context recall task

with added generic token noise, which allows us to study the trade-offs between MLPs and atten-

tion layers for storing in-context versus distributional associations, in a controlled setting. We

empirically show how transformers solve this task by storing the generic noise token in feed-

forward layers, while attention implements the in-context mechanism. We then provide theory

showing that feed-forward layers are more likely to store the distributional association (generic

token) while attention learns to attend to in-context targets. Finally, we show that when the

model has no feed-forward layers, the value matrix in attention stores both in-context and dis-

tributional information, in different subspaces.

Data and task. The data model we consider is similar to Bietti et al. [2023], with additional

noise. Consider a vocabularyV = {1, 2, . . . , 𝑁 , 𝑁 + 1}. The token 𝜏 ≜ 𝑁 + 1 is the generic noise

token. We fix a trigger token 𝑞 ∈ [𝑁], which governs in-context recall, and a context length 𝑇 .

Each sequence of tokens 𝑧1:𝑇 = [𝑧1, 𝑧2, . . . , 𝑧𝑇] is generated as follows:

i. Sample a correct output token 𝑦 uniformly in [𝑁].

ii. Sample 𝑧1:𝑇−1 according to the following Markov process (𝜋𝑢, 𝜋𝑏 are distributions on [𝑁]

defined later): 𝑧1 ∼ 𝜋𝑢 (·), and

𝑧𝑡+1 |𝑧𝑡 ∼

𝜋𝑏 (·|𝑧𝑡), if 𝑧𝑡 ≠ 𝑞,

𝑝𝛼,𝑦 (·), otherwise,
𝑝𝛼,𝑦 (𝑥) =

1 − 𝛼, if 𝑥 = 𝑦,

𝛼, if 𝑥 = 𝜏,

0, otherwise.

iii. Set 𝑧𝑇 = 𝑞, and sample the final output 𝑦 = 𝑧𝑇+1 ∼ 𝑝𝛼,𝑦 (·).

Note that the true 𝑦 varies across sequences, so that the model needs to infer it from context,

64

e.g., using an induction head as in [Bietti et al. 2023]. Predicting 𝑦 may thus be seen as a basic

“reasoning” task, yet when trainingwith 𝛼 > 0, the noisy output also requires themodel to learn a

distributional trigger-noise association, similar to the “of/in the” bigram discussed in Section 4.3.

We also consider using multiple trigger tokens in Appendix 4.4.5 and Figure 4.8.

Two-layer transformer. We consider a simplified two-layer transformer formulated below.

The input is a sequence of tokens 𝑧1:𝑇 = [𝑧1, . . . , 𝑧𝑇] ∈ [𝑁 + 1]𝑇 , and the output is 𝜉 . The

embedding matrixW𝐸 ∈ R(𝑁+1)×𝑑 and un-embedding matrixW𝑈 ∈ R(𝑁+1)×𝑑 are fixed at random

initialization. The two attention layers have learnable weights W1
𝑄𝐾
,W1

𝑉
,W2

𝑄𝐾
,W2

𝑉
∈ R𝑑×𝑑 with

𝜎 (·) the softmax on a vector. The two feed-forward layers 𝐹1, 𝐹2 are also learnable, and typically

we set them as two-layer MLPs with ReLU activation. We will discuss different architectural

choices of 𝐹1, 𝐹2 in Appendix 4.4.5.1. We use the cross-entropy loss to predict 𝑦 = 𝑧𝑇+1 from the

logits 𝜉𝑇 ∈ R𝑁+1.

𝑥𝑡 ≜ W𝐸 (𝑧𝑡) + 𝑝𝑡 ,

ℎ1
𝑡 ≜

∑︁
𝑠⩽𝑡

[
𝜎 (𝑥⊤𝑡 W1

𝑄𝐾𝑥1:𝑡)
]
𝑠
·W1

𝑉𝑥𝑠,

𝑥1
𝑡 ≜ 𝑥𝑡 + ℎ1

𝑡 + 𝐹1(𝑥𝑡 + ℎ1
𝑡),

ℎ2
𝑡 ≜

∑︁
𝑠⩽𝑡

[
𝜎 (𝑥1

𝑡

⊤W2
𝑄𝐾𝑥

1
1:𝑡)

]
𝑠
·W2

𝑉𝑥
1
𝑠 ,

𝑥2
𝑡 ≜ 𝑥

1
𝑡 + ℎ2

𝑡 + 𝐹2(𝑥1
𝑡 + ℎ2

𝑡),

𝜉𝑡 ≜ W𝑈𝑥
2
𝑡 .

(4.1)

Experimental observations. Following [Bietti et al. 2023], we take 𝜋𝑢 and 𝜋𝑏 to be the

unigram and brigram character-level distributions estimated from the tiny Shakespeare dataset

with 𝑁 = 65. The model setup includes 𝑑 = 256 and two-layer MLPs with ReLU for both 𝐹1, 𝐹2.

The training setup includes batch size as 512 and the context length 𝑇 = 256. When evaluating

trained models, we consider LASER on the input weight 𝑈𝑖𝑛 of 𝐹2. We consider a noise level

𝛼 = 0.5 for training data (though any other constant value would lead to similar observations).

65

pt1−1 WE(q)

q

pt1 WE(ȳ)

ȳ

⋯

pt2−1 WE(q)

q

pt2 WE(τ)

τ

⋯

pT WE(q)

q

⋯ ⋯⋯

⋯

⋯

⋯

⋯

⋯

⋯

⋯

⋯

⋯ ⋯ ȳ τ

Layer 0

Layer 1

Layer 2

Attn-2:∑
k≠τ

(W̃E(q) + WE(k))WE(q)⊤ FF-2: (q → τ) ∼ Ptrain

Attn-1 Attn-1

⋯ ⋯ ⋯

ȳ sampled target token τ fixed generic tokenq trigger token

Sequence

WE(ȳ)W̃E(q) W̃E(q) WE(τ) ⋯ WE(q)

Figure 4.2: Noisy in-context recall. Purpose of design: understand mechanisms of attention and feed-
forward layers for tasks with in-context reasoning (predict 𝑦) and distributional association (predict
𝜏). Task: predict tokens 𝑦 v.s. 𝜏 from a sentence [. . . , 𝑞,𝑦, . . . , 𝑞, 𝜏, . . . , 𝑞] where 𝑞 is trigger, 𝑦 is sampled
target token for a sentence, and 𝜏 is a fixed generic token across sentences. Our findings: in a two-layer
transformer, the second-layer attention (Attn-2) only attends towards target tuples [𝑞,𝑦] while the feed-
forward layer (FF-2) learns to predict 𝜏 .

During test time, we set 𝛼 = 0 to compute the test loss, aiming to measure how likely the (full or

after-truncation) model predicts the ground-truth 𝑦.

Experimental results are reported in Figure 4.3 and 4.7. The full model predicts noise with

probability close to 𝛼 , which is expected since it is trained to predict the noise token w.p. 𝛼 .

However, when dropping the second-layer MLP 𝐹2, the truncated model predicts the ground-

truth 𝑦 with an almost perfect probability ≈ 0.98. This suggests that 𝐹2 is responsible for storing

the distributional association “[trigger] + [noise]”. Another observation is that the full model first

learns to predict the noisewith high probability in very early steps, after which it starts learning to

predict the correct 𝑦, which resembles the dynamics observed for learning the “to/in the” bigram

in Pythia models in Figure 4.13. This suggests that learning the (distributional) trigger-noise

association is easier than predicting 𝑦, and we will study this theoretically in Section 4.4.1.

After the distributional noise association is learned, we observe a slower learning of an in-

duction head mechanism, with similar dynamics to Bietti et al. [2023]. Compared to Bietti et al.

[2023], we notice that the induction head (i.e., the second layer attention head) filters out the

66

0 500 1000 1500 2000
Training step

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ili

ty
Average prob for correct token

MLP2: = 0
MLP2: = 0.2
full

0 500 1000 1500 2000
Training step

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ili

ty

Average prob for noise token

MLP2: = 0
MLP2: = 0.2
full

0 500 1000 1500 2000
Training step

10 1

100

Lo
ss

Test loss

MLP2: = 0
MLP2: = 0.2
full

0 500 1000 1500 2000
Training step

0

1

2

M
ar

gi
n

FF-2 Margin: q max([N])

Figure 4.3: Left three: Average probability of predicting correct and noise tokens, and test loss on clean
data (𝛼 = 0), with different fractions 𝜌 of preserved rank in 𝑈𝑖𝑛 of the second-layer MLP 𝐹2. The full
model learns to predict noise with probability around 𝛼 = 0.5, as expected from training data. When 𝐹2
is dropped (𝜌 = 0), the model predicts the correct token 𝑦 with probability ≈ 0.98. Rightmost: the FF-2
margin of 𝜏 v.s. all the other tokens with input as 𝑞, i.e., [W𝑈 𝐹2(W𝐸 (𝑞))]𝜏 −max𝑘⩽𝑁 [W𝑈 𝐹2(W𝐸 (𝑞))]𝑘 . It
reveals that FF-2 learns trigger-noise association in early steps.

noise tokens and only attends to non-noisy output tokens following the trigger, corresponding to

the correct 𝑦, as shown in Figure 4.4. We present theoretical understanding for this mechanism

in Section 4.4.2. Figure 4.2 and Appendix 4.4.4.2 summarize the roles of all components of the

two-layer transformer in this task.

Simplified architecture and data for theoretical analysis. Understanding the full dy-

namics of the model used in our experiments is out of the scope of the present paper, due to the

many moving parts and the complexity of non-linear MLPs. Instead, we focus on a simpler model

involving one linear feed-forward layer and one attention layer, and look at the gradient dynam-

ics near initialization. We consider the following simplified 1-layer model. The input 𝑥𝑡 ∈ R𝑑 at

position 𝑡 is defined as 𝑥𝑡 ≜ W𝐸 (𝑧𝑡) + W̃𝐸 (𝑧𝑡−1), where 𝑧𝑡 ∈ [𝑁 + 1] is the token at position 𝑡 ,

W𝐸 (𝑧𝑡) is its embedding and W̃𝐸 (𝑧𝑡−1) is a different embedding of the previous token to a differ-

ent direction, as in the previous token head construction of Bietti et al. [2023], where the value

matrix remaps the previous token to a different subspace. We assume all embeddings to be or-

thogonal (Assumption C.2.1), which requires large enough 𝑑 , and holds in the infinite-width limit

with random embeddings. This model allows us to simplify our analysis by considering a single

attention layer with no positional embeddings, while capturing the difficulty of long-range inter-

actions. We note that such a simplification is standard in the in-context learning literature [e.g.,

67

Token position

0
1
2
4
8

16
32
50
75

100
125
150
175
200
225
250

Tr
ai

ni
ng

 st
ep

Train: second-layer attention scores

Token position

0
1
2
4
8

16
32
50
75

100
125
150
175
200
225
250

Tr
ai

ni
ng

 st
ep

Finetune: second-layer attention scores

0.0

0.2

0.4

0.6

0.8

trigger
noise
correct

Figure 4.4: The second-layer attention scores of models trained with noise (left), fine-tuned with noise
(right, initialized as a model pre-trained without noise), given the same input. It turns out both models
learn to attend to the informative structure “[trigger]+𝑦” instead of “[trigger]+noise”. This implies that
the attention in these models is only responsible to predict𝑦, although the training input and output have
noise with probability 𝛼 = Θ(1). The fine-tuning setting is in Appendix 4.4.4.1.

Akyürek et al. 2023; Mahankali et al. 2024; Zhang et al. 2024], For data generation, 𝜋𝑢 and 𝜋𝑏 are

uniform distributions on [𝑁] . Given a sequence of inputs, 𝑥1:𝑇 ∈ R𝑇×𝑑 , the output of model is

𝜉 ≜ 𝜉attn + 𝜉ff as

𝑥𝑡 ≜ W𝐸 (𝑧𝑡) + W̃𝐸 (𝑧𝑡−1) ∈ R𝑑 ,

𝜙 (𝑥𝑇 , 𝑥1:𝑇) ≜
∑︁
𝑡⩽𝑇

[
𝜎

(
𝑥⊤𝑇 W𝑄𝐾𝑥1:𝑇

)]
𝑡
·W𝑉𝑥𝑡 ∈ R𝑑 ,

𝜉attn(𝑥1:𝑇) ≜ W𝑈𝜙 (𝑥𝑇 , 𝑥1:𝑇) ∈ R𝑁+1,

𝜉ff(𝑥1:𝑇) ≜ W𝑈 𝐹 (𝑥𝑇) = W𝑈W𝐹𝑥𝑇 ∈ R𝑁+1,

(4.2)

where W𝑈 ∈ R(𝑁+1)×𝑑 is the unembedding matrix, 𝜙 (𝑠, 𝑡) is the attention module with query 𝑠

and context 𝑡 , and 𝐹 (·) is a linear feed-forward layer. This architecture is similar to a one-layer

transformer, but already highlights the difference between feed-forward and attention layers in a

way that we expect to still hold for more layers. In the above parametrization, the learnable ma-

trices are W𝑄𝐾 ,W𝐹 ,W𝑉 ∈ R𝑑×𝑑 . At initialization, we set W𝑄𝐾 ,W𝐹 ,W𝑉 = 0, noting that random

initialization in high dimension would lead to similar behaviors thanks to near-orthogonality.

68

4.4.1 Feed-forward layers store the generic noise

As we saw in Figure 4.3 and 4.7, the model very quickly learns to predict the noise token after a

few steps. Then the gap between 𝜌 = 0 and 1 in Figure 4.3 suggests that the feed-forward layer 𝐹2

is responsible for storing the distributional association about noise, which is verified in Figure 4.6

(middle). We now provide theoretical justification for this behavior. In particular, we will show

that, at initialization, the gradients over the feed-forward parameters are much more informative

than the attention gradient, which is dominated by noise unless the sample size is very large. This

shows that the feed-forward layer is much more likely to capture the distributional association.

We now look at the first gradient step from initialization, which has commonly been used to

understand feature learning and sample complexity in neural networks [Damian et al. 2022a; Ba

et al. 2022; Dandi et al. 2023; Oymak et al. 2023; Bietti et al. 2023]. Note thatW𝑄𝐾 has no gradient

at initialization, so that the gradient ofW𝑉 is most relevant initially [see also Snell et al. 2021; Li

et al. 2023; Oymak et al. 2023; Bietti et al. 2023].

Theorem 4.1 (Logits after one gradient step). Assume 𝑁,𝑇 ≫ 1, 𝛼 = Θ(1). For the model in

Eq(4.2), consider one gradient step update from zero-initialization on 𝑚 i.i.d. samples of 𝑧1:𝑇 with

separate learning rates 𝜂 𝑓 for W𝐹 and 𝜂𝑣 for W𝑉 (note that the gradient on W𝑄𝐾 is zero). With

probability 1 − 𝛿 , the resulting logits for the feed-forward and attention blocks satisfy, for any test

sequence 𝑧1:𝑇 ,

��Δ(𝜉ff(𝑥1:𝑇)) − 𝜂 𝑓 · 𝛼
�� ⩽ 𝜂 𝑓 ·𝑂 ©«

√︄
ln 2(𝑁+1)

𝛿

𝑚

ª®®¬ ,���Δ(𝜉attn(𝑥1:𝑇)) −
𝜂𝑣

𝑁
· 𝛼

��� ⩽ 𝜂𝑣 ·𝑂 ©«
√︄
(1
𝑇𝑁
+ 1
𝑁 2) ln 2(𝑁+1)

𝛿

𝑚
+

ln 2(𝑁+1)
𝛿

𝑚

ª®®¬ ,
where Δ(𝜉) = 𝜉𝑁+1 − max 𝑗∈[𝑁] 𝜉 𝑗 is the margin of predicting the generic noise token and 𝛼 =

(𝛼2𝑞 + 𝛼 (1 − 𝑞)), where 𝑞 = 1
𝑇

∑
𝑡⩽𝑇 1{𝑧𝑡 = 𝑁 + 1} is the fraction of noise tokens in 𝑧1:𝑇 .

69

The margin Δ(𝜉) reflects how much signal there is in the logits for predicting the noise to-

ken, and the theorem provides concentration bounds on the contributions of the updates onW𝐹

and W𝑉 to the margin. Note that 𝑞 ≪ 1 w.h.p. for large 𝑁,𝑇 , so 𝛼 ≈ 𝛼 . We make the following

observations:

i. When𝑚 = Ω̃(1), there is enough signal in W𝐹 to predict the noise, say with 𝜂 𝑓 = 1, and a

choice of𝜂𝑣 = 𝑂 (1)will lead to a small but controlled contribution to the prediction fromW𝑉 .

ii. When 𝑚 = Ω̃(𝑁), W𝑉 can also reliably predict the noise by setting 𝜂𝑣 = Θ(𝑁) (i.e., with

small deviation on the r.h.s.), at the cost of many more samples.

Our result shows that in the initial phase of training, feed-forward layers are more likely to pick

up the noise token, leading to a structure of the formW𝐹 ≈W𝑈 (𝑁 + 1)W𝐸 (𝑞)⊤, while attention

will be slower due to additional noise and possibly smaller step-sizes. We may then expect the

attention layers to focus instead on in-context reasoning, as we observe empirically and discuss

next.

4.4.2 Attention attends to in-context targets and avoids noise

When the feed-forward weight learns to predict the noise as shown in Theorem 4.1, Figure 4.4

reveals that the second-layer attention in the two-layer model attends only towards the correct

tokens. In contrast, a model pre-trained without noise has second-layer attention attend towards

all tokens just after the triggers [Bietti et al. 2023], as observed in the attention pattern at the

first step in Figure 4.4(right). Then, after being fine-tuned on noise data, the attention becomes

only focused on the correct tokens. Understanding this mechanism requires the analysis of the

dynamics ofW𝑄𝐾 .

Following the simplified model and data distribution in Eq(4.2), we take a step towards under-

standing how attention “avoids” the noise tokens. Concretely, this mechanism appears because,

after the initial training phase when FF learns noise association much faster than the attention,

70

W𝑉 has a structure of
∑
𝑘⩽𝑁+1 W𝑈 (𝑘) (W𝐸 (𝑘)+W̃𝐸 (𝑘))⊤, similar to the non-noise setting in [Bietti

et al. 2023]. After such aW𝑉 is learned, the trigger-label association provides a stronger gradient

signal onW𝑄𝐾 than the trigger-noise association. We show this in the following theorem.

Theorem 4.2 (Attention attends to in-context targets). Assume 𝑁,𝑇 ≫ 1 and Assumption C.4.1

hold. Consider the simplified model in Eq(4.2) with infinite samples as 𝑚 → ∞. After W𝐹 learns

the noise association as in Theorem 4.1, in one step the attention weight W𝑄𝐾 learns to attend to

positions 𝑡 ∈ [𝑇] where the correct label follows a trigger word, i.e., 𝑧𝑡−1 = 𝑞, 𝑧𝑡 = 𝑦.

More concretely, W𝑄𝐾 has the following structure

𝜉𝑞→ 𝑗 − 𝜉𝑘→𝑙 = Ω(𝑁 −3) > 0, if 𝑘 ≠ 𝑞, ∀ 𝑗, 𝑙, (4.3)

𝜉𝑞→ 𝑗 − 𝜉𝑞→𝑁+1 = Ω(𝑁 −4) > 0, ∀ 𝑗 ⩽ 𝑁, (4.4)

where 𝜉𝑖→ 𝑗 ≜ W𝐸 (𝑞)⊤W𝑄𝐾 (W̃𝐸 (𝑖) +W𝐸 (𝑗)) denotes the attention logit for different combinations

of 𝑧𝑡−1 = 𝑖, 𝑧𝑡 = 𝑗 , with 𝑖, 𝑗 ⩽ 𝑁 + 1.

Note that a set of logits induces a probability distribution via differences between them as

exp(𝜉𝑖)/
∑
𝑗 exp(𝜉 𝑗) = 1/∑ 𝑗 exp(𝜉 𝑗 − 𝜉𝑖). Therefore, the above theorem reveals that the attention

has two patterns: Eq. (4.3) shows that W𝑄𝐾 prefers attending to locations just after a trigger 𝑞,

i.e., such that 𝑧𝑡−1 = 𝑞, similar to [Bietti et al. 2023], and Eq. (4.4) shows that among all positions

that follow a trigger 𝑞, W𝑄𝐾 places less attention on the noise token, i.e., 𝑧𝑡 = 𝑁 + 1, compared

to correct tokens 𝑧𝑡 = 𝑦 ⩽ 𝑁 . Such a key difference for attention between noisy and non-noise

tasks verifies our experimental observations in Figure 4.4.

71

4.4.3 No feed-forward Layers: value matrix stores generic noise

association

In the above discussion, we’ve seen separate roles of attention and feed-forward layers play to

conduct noisy in-context learning. A natural question is, when there is no feed-forward layer,

how the attention layer stores both in-context and distributional information. Figure 4.12 indi-

cates that the value matrix stores the noise association in subspace with smaller singular values.

In this section, we propose a setting of linear associative memory with noise to understand this

mechanism.

Unlike Theorem 4.1 and 4.2 showing the separate roles of attention and FF, the attention in a

non-FF model has to handle both noise and in-context information once the model is sufficiently

trained to reach a global minimum. Due to symmetry from uniformly random sampling 𝑦 from

𝑁 tokens, we consider passing the output 𝑥 ∈ R𝑑 of the attention to the value matrix W𝑉 and

output matrix W𝑈 to predict next-token probability 𝑦 ∈ R𝑁+1 given 𝑧1:𝑇 ∈ [𝑁 + 1]𝑇 with noise

probability of 𝛼 as follows

𝑥 |𝑦, 𝑧1:𝑇 ≜ W𝐸 (𝑦) +W(𝑧1:𝑇) ∈ R𝑑 , 𝜉 ≜ W𝑈W𝑉𝑥 ∈ R𝑁+1,

𝑝𝛼 (𝑦 |𝑦) = (1 − 𝛼) · 1{𝑦 = 𝑦} + 𝛼 · 1{𝑦 = 𝑁 + 1},
(4.5)

where W(𝑧1:𝑇) is an aggregate embedding independent of 𝑦. When 𝑇 → ∞, W(𝑧1:𝑇) converges

to a fixed embedding W independent of 𝑦, so that we may consider a simplified model 𝑥 |𝑦 ≜

W𝐸 (𝑦), 𝜉 ≜ W𝑥 ∈ R𝑁+1 with W ∈ R(𝑁+1)×𝑑 , since W only contributes a fixed offset in all logits

that can be easily canceled in the softmax predictions. Therefore, we investigate the following

linear associative memory with noise.

Model and data. Consider a learnable weight matrix W ∈ R𝑑×𝑑 with 𝑑 > 𝑁 . Consider

embeddings for 𝑁 input tokens as {𝑒𝑖}𝑁𝑖=1 ⊂ R𝑑 and embeddings for (𝑁 + 1) output tokens as

72

{𝑢𝑖}𝑁+1𝑖=1 ⊂ R𝑑 . Given any pair of input and output tokens, the associative memory model takes

the form 𝑓 (𝑖, 𝑗 ;W) ≜ ⟨𝑢 𝑗 ,W𝑒𝑖⟩, ∀ 𝑖, 𝑗 ∈ [𝑁] × [𝑁 + 1], as logits to approximate 𝑝𝛼 (·|𝑖) in (4.5).

When 𝑘 ⩽ 𝑑 , we denote the rank-𝑘 approximation of 𝑓 as 𝑓 (𝑘) by replacingW withW(𝑘) , where

W(𝑘) is its rank-𝑘 approximation.

Experiments. During training, the dataset D𝛼 is generated with non-zero noise probability

𝛼 > 0. At test time, the datasetD0 is without noise as 𝛼 = 0, so the computed loss is called pure-

label loss. The full model is trained with Gradient Descent (GD) subjected to cross-entropy loss.

The results are reported in Figure 4.5, with more discussions in Appendix C.5.

Low-rank subspace stores noise. In Figure 4.5, the rank-1 subspace corresponding to the

smallest non-zero singular value is responsible to store the noise. We prove this mechanism as

follows. Note that, here 𝑁 = 2 is for simplicity, which is easy to extend to any 𝑁 > 2.

Theorem 4.3. Assume Assumptions C.5.1 and C.5.2 hold, considering 𝑁 = 2 and 𝛼 ∈ (0.2, 0.4),

we train the full model 𝑓 (·, ·;W) with gradient flow. Denote 𝑃 (𝑖, 𝑗 ;W) as the model’s predicted

probability for output 𝑗 conditioned on input 𝑖 . Then, for 𝑡 →∞ and 𝑖 ∈ {1, 2}, we have

𝑃 (𝑖, 𝑗 ;W) = (1 − 𝛼) · 1{ 𝑗 = 𝑖} + 𝛼 · 1{ 𝑗 = 𝑁 + 1},

𝑃 (𝑖, 𝑗 ;W(1)) = (1 − Θ(𝑡−1/2)) · 1{ 𝑗 = 𝑖} + Θ(𝑡−1/2) · 1{ 𝑗 = 𝑁 + 1}.

The above theorem implies, the full model always predicts noise w.p. 𝛼 , while the rank-1

model eventually predicts correctly without noise, although training is only on the full model

with noise. Actually when 𝑁 > 2, the noise is stored in rank-1 subspace and the correct corre-

spondence is stored in rank-(𝑁 − 1) space. Therefore, this explains how the value matrix stores

both in-context and noise information when the model is without FF.

Randomness in experiments. Assume both {𝑒𝑖}𝑛𝑖=1 and {𝑢𝑖}𝑐𝑖=1 are i.i.d. uniformly drawn

from sphere S𝑑−1. Also assume the model is initialized as W𝑖, 𝑗 ∼ N(0, 1
𝑑
). Due to randomness

73

from embeddings and model initialization, let’s first conduct 20 runs of experiments to obtain

significant factors before moving the theoretical argument.

Note that only full models are trained, and we track loss for low-rank models by conducting

SVD in each step without manipulating training. In Figure 4.5, we illustrate the pure-label loss

v.s. training steps for models of different ranks, where 𝑛 = 3, 𝛼 = 0.03 and 𝑑 = 8 or 12. It turns

out, while the full model (rank⩾ 3) has a constant pure-label loss (∼ 0.03, dependent on 𝛼), the

rank-2 model is very likely to have a significant loss than the full model. Meanwhile, the larger

𝑑 has more stable results than small 𝑑 .

0 500 1000 1500 2000
Training step

10 3

10 2

10 1

100

Lo
ss

Pure-label loss for rank-1,2,3,4 models: dim=12

0 500 1000 1500 2000
Training step

10 3

10 2

10 1

100
Lo

ss
Pure-label loss for rank-1,2,3,4 models: dim=8

rank-1
rank-2
rank-3
rank-4

Figure 4.5: Pure-label loss for rank-1,2,3,4 models with 𝑛 = 3, 𝛼 = 0.03 and 𝑑 = 12 (left) or 8 (right). Only
full models are trained, and we report low-rank results by conducting SVD in each step without manip-
ulating the training. In both figures, the experiments are run for 20 times to examine the randomness.
For each rank, we plot curves of the median, 25% and 75% out of 20 runs. It turns out: i) rank-2 models
are very likely to have significantly lower pure-label loss thant full models (rank⩾ 3), and ii) the larger
dimension 𝑑 has more stable results.

Therefore, we can qualify the following important factors for this model:

i. 𝑑 v.s. 𝑛, 𝑐: when 𝑑 ≫ 𝑛, 𝑐 , random drawn embeddings tend to be orthogonal to each other,

with inner product in 𝑂 (1/√𝑑). If 𝑛, 𝑐 = Ω(𝑑), embeddings will be in strong correlations,

making the problem extremely difficult to understand. [Cabannes et al. 2024] also discussed

about such particle interaction in associative memory.

ii. Low-rank subspace storing the noise. In Figure 4.5, the rank-1 subspace between the full

74

and rank-2 models is responsible to store the noise, removing which will induce a model

ideally predicting the ground-truth without noise. This is understandable if the embeddings

are orthogonal, as shown in Theorem 4.3.

iii. 𝛼 v.s. 𝑛. When 𝑛 is large, orthogonal embeddings still induces a low-rank subspace storing

the noise, but 𝛼 decides whether the low-rank subspace corresponds to the smallest singular

values ofW. If not, it requiresmore careful manipulation of the spectrum instead of low-rank

approximation ofW.

4.4.4 How Does the Two-layer Model Solve Noisy In-context Recall?

4.4.4.1 Training settings

In most parts of this work, we consistently train the model with a fixed level of 𝛼 > 0. However,

we also present numerical results of fine-tuning in Figure 4.7 and 4.4 to show the mechanism

of avoiding generic noise token in the second-layer attention. The details of such a fine-tuning

setting is as follows.

Fine-tuning: there are two phases of training as

• phase 1 (pre-training): starting from a model with random initialized weights, we train the

model on data generated with 𝛼 = 0. This is exactly the same as [Bietti et al. 2023]. At

the end of this phase, the second-layer attention is expected to attend all tokens after the

trigger token, i.e., 𝑡 ⩽ 𝑇 such that 𝑧𝑡−1 = 𝑞 no matter what 𝑧𝑡 is.

• phase 2 (fine-tuning): starting from a model after phase 1, we train all weights in the model

on data generated with 𝛼 > 0. At the end of this phase, the second-layer attention learns to

avoid the generic noise token, i.e., 𝑡 ⩽ 𝑇 such that 𝑧𝑡 = 𝑁1, 𝑧𝑡−1 = 𝑞, as shown in Figure 4.4.

75

4.4.4.2 Summarizing: roles of key components in the two-layer transformer

Recall the architecture of two-layer transformers in Section 4.4 as

𝑥𝑡 ≜ W𝐸 (𝑧𝑡) + 𝑝𝑡 ,

ℎ1
𝑡 ≜

∑︁
𝑠⩽𝑡

[
𝜎 (𝑥⊤𝑡 W1

𝑄𝐾𝑥1:𝑡)
]
𝑠
·W1

𝑉𝑥𝑠,

𝑥1
𝑡 ≜ 𝑥𝑡 + ℎ1

𝑡 + 𝐹1(𝑥𝑡 + ℎ1
𝑡),

ℎ2
𝑡 ≜

∑︁
𝑠⩽𝑡

[
𝜎 (𝑥1

𝑡

⊤W2
𝑄𝐾𝑥

1
1:𝑡)

]
𝑠
·W2

𝑉𝑥
1
𝑠 ,

𝑥2
𝑡 ≜ 𝑥

1
𝑡 + ℎ2

𝑡 + 𝐹2(𝑥1
𝑡 + ℎ2

𝑡),

𝜉𝑡 ≜ W𝑈𝑥
2
𝑡 .

When the task is without noise, i.e., 𝛼 = 0, [Bietti et al. 2023] point out the first-layer attention

attends to the previous token throughW1
𝑄𝐾

=
∑𝑇
𝑡=2 𝑝𝑡−1𝑝

⊤
𝑡 . Therefore, when 𝑧𝑡 = 𝑦 with 𝑧𝑡−1 = 𝑞,

the output of the first layer is 𝑥1
𝑡 ≈ W𝐸 (𝑦) +W1

𝑉
W𝐸 (𝑞). Then they show that the second-layer

attention matches such 𝑥1
𝑡 with 𝑧𝑇 = 𝑞 byW2

𝑄𝐾
= (W𝑉W𝐸 (𝑞))W𝐸 (𝑞)⊤, through which the infor-

mation of 𝑦 in 𝑥1
𝑡 is copied to last token as ℎ2

𝑇
≈W2

𝑉
W𝐸 (𝑦). FinallyW2

𝑉
=

∑
𝑧∈[𝑁]W𝑈 (𝑧)W𝐸 (𝑧)⊤

helps output the correct label of 𝑦.

In our work with noise 𝛼 > 0, the key difference is that there is a fixed probability 𝛼 for a

noise token 𝑁 + 1 to appear after each trigger 𝑞. This requiresW2
𝑄𝐾

to not only match the trigger

but also avoid the noise token after trigger. Let’s first summarize the whole pipeline of this model

for our task.

Roles of key components. The first layer will be basically the same as [Bietti et al. 2023],

where W1
𝑄𝐾

=
∑𝑇
𝑡=2 𝑝𝑡−1𝑝

⊤
𝑡 attends to the previous token. Consider two positions 𝑡1, 𝑡2 with

𝑧𝑡1−1 = 𝑧𝑡2−1 = 𝑞, 𝑧𝑡1 = 𝑦, 𝑧𝑡2 = 𝑁 + 1, then outputs of the first layer at these two positions

are 𝑥1
𝑡1
≈ W𝐸 (𝑦) +W1

𝑉
W𝐸 (𝑞), 𝑥1

𝑡2
≈ W𝐸 (𝑁 + 1) +W1

𝑉
W𝐸 (𝑞). Then the second-layer attention

W𝑄𝐾 = (W𝑉W𝐸 (𝑞) − 𝑐 ·W𝐸 (𝑁 + 1))W𝐸 (𝑞)⊤ with some positive 𝑐 makes the attention attend

76

0 5 10 15
context position

0

5

10

15

cu
rr

en
t p

os
iti

on
First-layer attention scores

0 20 40 60
output token

0

10

20

30

40

50

60

in
pu

t t
ok

en

Memory recall: noise

0 20 40 60
output token

0

10

20

30

40

50

60

in
pu

t t
ok

en

Memory recall: signal

Figure 4.6: Left: first-layer attention attending to the previous token from the current token. Middle:
logits to predict noise from ⟨𝐹2(W𝐸 (𝑖)),W𝑈 (𝑗)⟩ with input 𝑖 ∈ [𝑁 + 1] and output 𝑗 ∈ [𝑁 + 1], where the
output channel 2 is set as the noise channel. It turns out, for all input 𝑖 , the logits on output 2 are large,
which matches our construction that, at least for trigger 𝑞 as input, the output 2 has large logits. Right:
logits to predict singal from ⟨W2

𝑉
W𝐸 (𝑖),W𝑈 (𝑗)⟩ for input 𝑖 ∈ [𝑁 + 1] and output 𝑗 ∈ [𝑁 + 1]. It matches

our construction that 𝑖 = 𝑗 has large logits. Meanwhile, 𝑖 = 𝑗 = 2 does not have large logits since 2 is the
noise channel.

to 𝑡1 and avoid 𝑡2 simultaneously, matching with the last token 𝑧𝑇 = 𝑞. Therefore, the output

of the second-layer attention at 𝑇 is basically ℎ2
𝑇
≈ W2

𝑉
W𝐸 (𝑦). Similar to the noiseless case,

W2
𝑉
=

∑
𝑧∈[𝑁]W𝑈 (𝑧)W𝐸 (𝑧)⊤ helps output the correct label of𝑦. Meanwhile, note that 𝑥1

𝑇
actually

contains W𝐸 (𝑞) through 𝑥𝑇 , so 𝐹2 is able to predict the noise 𝑁 + 1 when seeing a fixed W𝐸 (𝑞).

As a result, combining the two streams from ℎ2
𝑇
and 𝐹2(𝑥1

𝑇
), the full model is able to predict any

𝑦 w.p. 1 − 𝛼 and predict the noise 𝑁 + 1 w.p. 𝛼 .

Evidence. Figure 4.4 illustrates that the second-layer attention learns to attend to 𝑧𝑡1 = 𝑦 and

avoid 𝑧𝑡2 = 𝑁 +1, with Appendix 4.4.4.3 presenting a primitive exploration on how the avoidance

is learnt in a simplified setting. Figure 4.6 (left) shows the attention pattern fromW1
𝑄𝐾

of attending

to the previous token. Figure 4.6 (middle) shows the memory recall ofW𝑈 (𝑁 + 1)⊤𝐹2(W𝐸 (𝑞)) to

predict the noise. Figure 4.6 (right) illustrates the memory recall of W𝑈 (𝑖)⊤W2
𝑉
W𝐸 (𝑖) to predict

the correct token.

77

0 100 200 300 400
training steps

0.0

0.2

0.4

0.6

0.8

1.0
Pre-train: prediction diversity

0 100 200 300 400
training steps

0.0

0.2

0.4

0.6

0.8

1.0
Fine-tuning: prediction diversity

pred: Non-noise
pred: Noise

Figure 4.7: Fractions of predicting the noise token and the other non-noise tokens with 𝛼 = 0.5. (Left)
pretraining steps on noisy data; (right) finetuning steps on noisy data, after pretraining on clean data
with 𝛼 = 0. In both cases, the models learn to predict noise with probability nearly 0.5. In the first few
(∼ 5) steps, the models quickly learn to predict noise with probability close to 1. The fine-tuning setting
is in Appendix 4.4.4.1.

4.4.4.3 How does attention attend less towards the noise token?

Weuse the same simplifiedmodel as in Section 4.4.1 to understand how the second-layer attention

learns to avoid the noise. When using the same learning rate 𝜂 = 𝜂𝑣 = 𝜂 𝑓 , Theorem 4.1 implies

that the feed-forwardW𝐹 makes the most contribution for predicting the noise after the first-step

update. Denote the logits for the noise of the model at time 𝑡 as 𝜉𝑡 . The arguments in this section

make the following assumptions, which hold at least after the first-step update:

i. W𝐹 dominates the logits 𝜉𝑡 of predicting the noise token, compared withW𝑉 .

ii. Logits for predicting any 𝑘 ⩽ 𝑁 is close to 0, which means the predicted probability 𝑝𝑡 is

approximately 𝑝𝑡 ≈ exp(𝜉𝑡)
𝑁+exp(𝜉𝑡) .

iii. The predicted probability 𝑝𝑡 < 𝛼 .

iv. The attention matrixW𝑄𝐾 is approximately 0, inducing a uniform attention.

v. The dataset has 𝑇, 𝑁 ≫ 1 and𝑚 →∞, so the gradient is from population loss.

The first assumption holds after the first step from Theorem 4.1 with 𝜂 𝑓 = 𝜂𝑣 .

78

Then, since |W𝑈 (𝑘)⊤(∇W𝐹
𝐿)W𝐸 (𝑞) | = 𝑂 (1

𝑁
) · |W𝑈 (𝑁 + 1)⊤(∇W𝐹

𝐿)W𝐸 (𝑞) | for any 𝑘 ⩽ 𝑁 in

Lemma C.1, the second assumption holds. Meanwhile, the projection of ∇W𝑉
𝐿 onto any direction

in Lemma C.2 is also smaller thanW𝑈 (𝑁 + 1)⊤(∇W𝐹
𝐿)W𝐸 (𝑞) by a factor of 𝑂 (1/𝑁).

Let’s check the condition of the third assumption. In the proof of Lemma C.1, the gradient of

W𝐹 has the form of

W𝑈 (𝑁 + 1)⊤(−∇W𝐹
𝐿)W𝐸 (𝑞) = 𝛼 − 𝑝𝑡 .

This update induces 𝜉𝑡 to increase by 𝜂 (𝛼 − 𝑝𝑡). This implies

𝜉𝑡 ≈ 𝜉𝑡−1 + 𝜂
(
𝛼 − exp(𝜉𝑡)

𝑁 + exp(𝜉𝑡)

)
, ∀ 𝑡 ⩾ 1.

This sequence {𝜉𝑡 }𝑡⩾1 has stationary point 𝜉∗ = log𝑁 + log(𝛼
1−𝛼). Denoting 𝜉𝑡 ≜ 𝜉𝑡 − 𝜉∗ with

𝜉1 = −𝜉∗ < 0, the iteration becomes

𝜉𝑡+1 ≈ 𝜉𝑡 + 𝜂
(
𝛼 − exp(𝜉𝑡)

1−𝛼
𝛼
+ exp(𝜉𝑡)

)
.

If we would like to have 𝜉𝑡 not hit the positive region by controlling 𝜂, it suffices to bound 𝜂 with

any 𝜉 < 0,

𝜂 ⩽
𝜉

exp(𝜉)
1−𝛼
𝛼
+exp(𝜉)

− 𝛼
,

where RHS is continuous and decreasing on 𝜉 < 0 when 𝛼 < 0.5. Hence, we have 𝜂 ⩽ 1
𝛼 (1−𝛼)

evaluated at 𝜉 = 0 by L’Hospital rule. This bound of 𝜂 is very strong, since 𝜂 = 𝑂 (log𝑁) can still

have 𝜉 < 0 after one step.

The fourth assumption is basically from what we will show at the end of this section, as the

second observation.

79

Then consider the dynamics of W𝑉 , which is much slower than W𝐹 . From the proof of

Lemma C.2, the gradient ofW𝑉 satisfies

∇W𝑉
𝐿 = E𝑥

[
𝑁+1∑︁
𝑘=1
(𝑝W(𝑘 |𝑥) − 1{𝑦 = 𝑘})W𝑈 (𝑘)

(
1
𝑇

𝑡∑︁
𝑡=1

𝑥𝑡

)⊤]
,

W𝑈 (𝑁 + 1)⊤(−∇W𝑉
𝐿)W𝐸 (𝑘) ≈

1
𝑁

∑︁
𝑡⩾1
(𝛼 − 𝑝𝑡) (1{𝑘 ⩽ 𝑁 } + 𝛼 · 1{𝑘 = 𝑁 + 1})

≜ 𝑐 · 1{𝑘 ⩽ 𝑁 } + 𝑐 · 𝛼 · 1{𝑘 = 𝑁 + 1} = Θ(1
𝑁
),

(4.6)

where the projection on𝑊𝐸 (𝑁 + 1) is always positive and smaller than that on other directions

when 𝑝𝑡 < 𝛼 . Projections onto other directionsW𝑈 (𝑗)W𝐸 (𝑘)⊤, ∀ 𝑗 ⩽ 𝑁 , are smaller as Θ(1
𝑁 2).

Finally, let’s consider the dynamics of W𝑄𝐾 . At initialization, W𝑄𝐾 = 0 and ∇W𝑄𝐾
𝐿 = 0 due

to zero initialization of W𝑉 . After one-step, W𝑉 has such a structure in Eq.(4.6). Then, with

𝑥1:𝑇 ≜
1
𝑇

∑
1⩽𝑡⩽𝑇 𝑥𝑡 from uniform attention, the gradient ofW𝑄𝐾 satisfies

−∇W𝑄𝐾
𝐿 = E𝑥

[
𝑁∑︁
𝑘=1
(1{𝑦 = 𝑘} − 𝑝W(𝑘 |𝑥))

1
𝑇

𝑇∑︁
𝑡=1
(W𝑈 (𝑘)⊤W𝑉𝑥𝑡) · (𝑥𝑡 − 𝑥1:𝑇)W𝐸 (𝑞)⊤

]
≈

𝑁∑︁
𝑘=1

(
1 − 𝛼
𝑁
− 1 − 𝑝𝑡

𝑁

)
E

[
1
𝑇

𝑇∑︁
𝑡=1

W𝑈 (𝑘)⊤W𝑉𝑥𝑡 · (𝑥𝑡 − 𝑥1:𝑇)W𝐸 (𝑞)⊤
]

︸ ︷︷ ︸
≜𝐴

+ (𝛼 − 𝑝𝑡) E
[

1
𝑇

𝑇∑︁
𝑡=1
(W𝑈 (𝑁 + 1)⊤W𝑉𝑥𝑡) · (𝑥𝑡 − 𝑥1:𝑇)W𝐸 (𝑞)⊤

]
︸ ︷︷ ︸

≜𝐵

.

(4.7)

80

Then, we have

W𝐸 (𝑁 + 1)⊤𝐵W𝐸 (𝑞) = E
[

1
𝑇

𝑇∑︁
𝑡=1
(W𝑈 (𝑁 + 1)⊤W𝑉𝑥𝑡) ·W𝐸 (𝑁 + 1)⊤(𝑥𝑡 − 𝑥1:𝑇)

]
(𝑎)
= E

[
1
𝑇

𝑇∑︁
𝑡=1
(𝑐 + 𝑐 (𝛼 − 1) · 1{𝑧𝑡 = 𝑁 + 1}) ·W𝐸 (𝑁 + 1)⊤(𝑥𝑡 − 𝑥1:𝑇)

]
(𝑏)
= E

[
1
𝑇

𝑇∑︁
𝑡=1
(𝑐 (𝛼 − 1) · 1{𝑧𝑡 = 𝑁 + 1}) ·W𝐸 (𝑁 + 1)⊤(𝑥𝑡 − 𝑥1:𝑇)

]
=
𝛼

𝑁
· 𝑐 (𝛼 − 1) (1 − 𝛼

𝑁
) = Θ(1

𝑁 2) < 0.

where (a) is from Eq.(4.6), (b) is due to 𝑥1:𝑇 = 1
𝑇

∑
𝑡 𝑥𝑡 and note that 𝑐 = Θ(1

𝑁
).

Similarly, we also have

W𝐸 (𝑁 + 1)⊤𝐴W𝐸 (𝑞) = E
[

1
𝑇

𝑇∑︁
𝑡=1
(W𝑈 (𝑘)⊤W𝑉𝑥𝑡)W𝐸 (𝑁 + 1)⊤ · (𝑥𝑡 − 𝑥1:𝑇)

]
= E

[
1
𝑇

𝑇∑︁
𝑡=1

Θ(1
𝑁 2) · 1{𝑧𝑡 = 𝑁 + 1}W𝐸 (𝑁 + 1)⊤ · (𝑥𝑡 − 𝑥1:𝑇)

]
= Θ(1

𝑁 3).

For any 𝑘 ⩽ 𝑁 , we have

W𝐸 (𝑘)⊤𝐵W𝐸 (𝑞) = E
[

1
𝑇

𝑇∑︁
𝑡=1
(W𝑈 (𝑁 + 1)⊤W𝑉𝑥𝑡) ·W𝐸 (𝑘)⊤(𝑥𝑡 − 𝑥1:𝑇)

]
= E

[
1
𝑇

𝑇∑︁
𝑡=1
(𝑐 (𝛼 − 1) · 1{𝑧𝑡 = 𝑘}) ·W𝐸 (𝑁 + 1)⊤(𝑥𝑡 − 𝑥1:𝑇)

]
=
𝛼

𝑁
· 𝑐 (𝛼 − 1) (− 1

𝑁
) = Θ(1

𝑁 3) > 0,

81

and

W𝐸 (𝑘)⊤𝐴W𝐸 (𝑞) = E
[

1
𝑇

𝑇∑︁
𝑡=1
(W𝑈 (𝑘)⊤W𝑉𝑥𝑡)W𝐸 (𝑘)⊤ · (𝑥𝑡 − 𝑥1:𝑇)

]
= E

[
1
𝑇

𝑇∑︁
𝑡=1

Θ(1
𝑁 2) · 1{𝑧𝑡 = 𝑁 + 1}W𝐸 (𝑘)⊤ · (𝑥𝑡 − 𝑥1:𝑇)

]
= Θ(1

𝑁 4).

Combining the above four esimation of projections of 𝐴 and 𝐵 with Eq.(4.7), we have

W𝐸 (𝑁 + 1)⊤(−∇W𝑄𝐾
𝐿)W𝐸 (𝑞) = Θ(1

𝑁 2) < 0,

∀ 𝑘 ⩽ 𝑁, W𝐸 (𝑘)⊤(−∇W𝑄𝐾
𝐿)W𝐸 (𝑞) = Θ(1

𝑁 3) > 0.

Then we have three observations

i. W𝑄𝐾 in this phase avoids the noise token 𝑁 + 1 and uniformly attends to all tokens 𝑘 ⩽ 𝑁 .

ii. The update of W𝑄𝐾 is in Θ(1
𝑁 2), while the update of W𝐹 is Θ(1) in Lemma C.1 and that

of W𝑉 is Θ(1
𝑁
) in Lemma C.2. These three levels of updating speed also coincide with the

assumptions that W𝐹 dominates first and then W𝑉 has a micro structure that induces the

evolving ofW𝑄𝐾 .

iii. The current proof for W𝑄𝐾 strongly depends on the fact that the noise token appears less

than other token by a factor 𝛼 in expectation. The proof will have the opposite result if the

noise token is made to appear more by manipulating the data distribution. Therefore, we

leave a new proof that is robust to such an assumption in data distribution as future work.

4.4.5 Multiple Triggers

In Section 4.4, we assume there is only one fixed trigger 𝑞 ∈ [𝑁] for simplicity. Actually the

case of multiple triggers has the same mechanism. As discussed by [Bietti et al. 2023] and

82

Appendix 4.4.4.2, for the case of only one trigger, the second-layer attention has large logits

in ⟨W1
𝑉
W𝐸 (𝑖)⊤,W2

𝑄𝐾
W𝐸 (𝑗)⟩ only for 𝑖 = 𝑗 = 𝑞. For the case of multiple triggers, basically

⟨W1
𝑉
W𝐸 (𝑖)⊤,W2

𝑄𝐾
W𝐸 (𝑗)⟩ only have large values when 𝑞 ∈ 𝑄 . This is verified in Figure 4.8.

0 20 40 60
output token

0

10

20

30

40

50

60

in
pu

t t
ok

en

One trigger: attention

0 20 40 60
output token

0

10

20

30

40

50

60
in

pu
t t

ok
en

Five triggers: attention

Figure 4.8: Logits of ⟨W1
𝑉
W𝐸 (𝑖)⊤,W2

𝑄𝐾
W𝐸 (𝑗)⟩ for input 𝑖 and output 𝑗 when there is one trigger (left,

𝑞 = 1) and five triggers (right, 𝑞 ∈ 𝑄 = {1, 39, 43, 53, 58}). In both cases, the logits only have large values
when 𝑖 = 𝑗 = 𝑞, verifies the matching mechanism in Appendix 4.4.4.2.

4.4.5.1 Architectural Choices

In Section 4.4 and Appendix 4.4.4.2, we were focused on experiments with both 𝐹1, 𝐹2 being two-

layer ReLU MLPs. Meanwhile, we have also tried other choices of 𝐹1, 𝐹2 and then search for the

best truncation method for each architecture. In this section, we would like to summarize our

experimental results for better understanding of all modules in the two-layer transformer.

Generally, the feed-forward layer can be two-layer ReLU MLPs, one-layer Linear or “None”,

where None stands for there is no feed-forward layer so that the value matrices in attention layers

are the only weight matrices that transform features.

Both 𝐹1, 𝐹2 are two-layer MLPs. This is our main setting. The best truncation method is to

fully drop 𝐹2. We also try to fully drop 𝐹1, as reported in Figure 4.9. It turns out fully dropping 𝐹1

makes the model predict the noise with high probability.

83

0 200 400 600 800
Training step

0.0

0.2

0.4

0.6

0.8

1.0
Te

st
 a

cc
ur

ac
y

Both MLPs: Test accuracy

drop F_1
drop F_2
full

0 200 400 600 800
Training step

10 1

100

Lo
ss

Both MLPs: Test loss

drop F_1
drop F_2
full

Figure 4.9: Test performance of fully dropping 𝐹1, 𝐹2 when both 𝐹1, 𝐹2 are two-layer MLPs. It turns out,
while dropping 𝐹2 makes the model predict correctly w.p. near 1, dropping 𝐹1 has the model predict noise
with high probability.

𝐹1 is MLPs and 𝐹2 is Linear. Figure 4.10 reports the results. Dropping 𝐹1 and 𝐹2 both im-

prove the correct prediction, and dropping 𝐹1 is better with lower test loss. Note that, when test

accuracies are near 100%, lower test loss is a better measurement of the prediction quality, be-

cause accuracies are taken by argmax over the output logits while test loss are about the exactly

predicted probability.

0 2000 4000 6000 8000
Training step

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 a
cc

ur
ac

y

MLPs + Linear: Test accuracy

drop F_1
drop F_2
full

0 2000 4000 6000 8000
Training step

10 1

100

Lo
ss

MLPs + Linear: Test loss

drop F_1
drop F_2
full

Figure 4.10: Test performance of fully dropping 𝐹1, 𝐹2 when both 𝐹1 is MLPs and 𝐹2 Linear. Both dropping
methods turn out to help predict more correctly than the full model. Meanwhile, dropping the MLP 𝐹1 is
better with lower test loss.

𝐹1 is Linear and 𝐹2 is MLPs. Figure 4.11 reports the results. Dropping 𝐹2 improves the

84

correct prediction while dropping 𝐹1 makes the model predict noise more.

0 2000 4000 6000 8000
Training step

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 a
cc

ur
ac

y

Linear + MLPs: Test accuracy

drop F_1
drop F_2
full

0 2000 4000 6000 8000
Training step

10 1

100

Lo
ss

Linear + MLPs: Test loss

drop F_1
drop F_2
full

Figure 4.11: Test performance of fully dropping 𝐹1, 𝐹2 when both 𝐹1 is Linear and 𝐹2 MLPs. Only dropping
𝐹2 helps predict more correctly. Dropping 𝐹1 makes the model predicting noise more.

Both 𝐹1 and 𝐹2 areNone. Figure 4.12 reports the results. While there is no feed-forward layer

anymore, low-rank truncating a partW1
𝑂
of the first-layermatrix improves themodel’s prediction

a little. This implies that, when there is not feed-forward layers, the noise association is possible

stored in the first-layer value matrix of attention. Note that the improvement of such low-rank

truncation is clearly smaller than fully dropping one of feed-forward layers in the previous cases.

Meanwhile, a smaller 𝜌 = 0.01 destroys the model’s performance. This implies fully dropping

is not the optimal choice for low-rank truncation of the value matrix, and there is low-rank

subspace in it that is useful for predicting the correct tokens. Our discussion of the role ofW1
𝑉
in

Appendix 4.4.4.2 is a possible answer to this phenomena.

4.4.5.2 Training Details about Experiments

All of the training is with SGD optimization with learning rate in {0.001, 0.03}. The batch size is

512. The dimension is 256. The context length is 256. All results in the experiments are stable

for any learning rate between 0.001 and 0.03. Each run of experiments is on a single Nvidia Tesla

V100 GPU. It takes 3 hours to finish each run for 2K steps, which probably can be optimized a

85

0 2000 4000 6000 8000 10000
Training step

0.0

0.2

0.4

0.6

0.8

Te
st

 a
cc

ur
ac

y
No Feed-forward: Test accuracy

W1
O : = 0.05

W1
O : = 0.01

full

0 2000 4000 6000 8000 10000
Training step

100Lo
ss

No Feed-forward: Test loss

W1
O : = 0.05

W1
O : = 0.01

full

Figure 4.12: Test performance of low-rank truncating ofW1
𝑂
when there is no 𝐹1, 𝐹2. Here 𝜌 is the fraction

of preserved rank of W1
𝑂
, where actually we re-parametrize the first-layer value matrix in attention as

W1
𝑂
W1
𝑉
∈ R𝑑×𝑑 . It turns out the best 𝜌 = 0.05 improves the model’s prediction a little. Meanwhile, a

smaller 𝜌 destroys the model’s performance.

lot since we are tracking a lot of measurement along training, not limited to hundreds of possible

truncations at each test time.

4.5 Experiments on Pre-trained LLMs

In this section, we empirically investigate how LLMs process distributional vs in-context associ-

ations, and how this evolves during training. Meanwhile, we provide numerical results of how

much low-rank truncation improves complex reasoning on a real-world reasoning benchmark,

GSM8K. Appendix C.8 provides another synethetic IOI dataset that requires counting tokens.

4.5.1 An Investigation on GPT-2 Small and Pythia Models

We consider GPT-2 small and Pythia models on the indirect object identification (IOI) and factual

recall tasks described in Section 4.3.1.

Quick demonstration: IOI on GPT2 Small. Different from [Wang et al. 2022], we would

like to consider whether a model proposes an output beyond the input 𝑥 . A quick demonstration

86

is to consider the IOI task with input 𝑥 =“When Mary and John went to a store, John gave a

drink to”1. The top 4 predicted tokens for GPT-2 Small [Radford et al. 2019] on 𝑥 are [“Mary”,

“them”, “the”, “John”]. Although GPT-2 Small successfully predicts Mary (the IO target) instead

of John (S), the other two top candidate tokens, i.e., “them” and “the”, do not even appear in the

context. This prominence of such “generic” words is similar to the factual recall example from

Section 4.3.2, and plausibly follows from a distributional associative mechanism conditioned on

the preposition “to”.

Comprehensive experiment: IOI on Pythia-1B. Now we would like to verify this obser-

vation on more models and, more comprehensively, track the behavior of these models along

training. We choose to conduct the IOI experiments on Pythia [Biderman et al. 2023], a fam-

ily of models ranging in sizes from 14M to 12B trained on web data, with hundreds of training

checkpoints for each size. We generate an IOI dataset of 100 sentences with random names for

[IO] and [S] in each sample. Figure 4.13 reports the test results of Pythia-1B along training. Here

LASER is conducted on MLP weights, with parameters given in Appendix C.1.2. LASER boosts

the probability ratio of [IO] over “the” from 2.3× to 12.3× at 14K steps.

Factual recall on Pythia-1B. As in Table 4.1, we verify factual recall with input as “Madrid

is located in”. The full model of Pythia-1B generates “Madrid is located in the north of Spain”,

while the model after LASER generates “Madrid is located in Spain”. We track the probability of

predicting “Spain” and “the” along training in Figure 4.13. LASER turns out to boost the proba-

bility ratio of “Spain” over “the” from 0.16× to 11.3× at 14K steps. We note that better prompting

could avoid the need for LASER in this case (e.g., “Madrid is located in the country of” predicts

“Spain”), but increases the context length and thus the inference cost, though this is outside the

scope of this paper.

Training dynamics on Pythia. The behavior of the Pythia models on the IOI and factual
1Note that here we use “a” store instead of “the” store in the original example of [Wang et al. 2022]. The reason

is to rule out the word “the“ from the input context.

87

100 101 102 103 104 105

training steps

10 5

10 4

10 3

10 2

10 1

100

pr
ob

ab
ili

ty

IOI: average probability

[IO]: full
[IO]: LASER
[S]: full
[S]: LASER
'the': full
'the': LASER

100 101 102 103 104 105

training steps

10 5

10 4

10 3

10 2

10 1

100

pr
ob

ab
ili

ty

Factual: average probability

'the': full
'the': LASER
'Spain': full
'Spain': LASER

Figure 4.13: Left: average probability of tokens [IO], [S] and “the” in 100-sentence IOI task in the predic-
tion by Pythia-1B along training. Right: average probability of tokens “Spain” and “the” in a factual task
predicted by Pythia-1B along training, with input as “Madrid is located in”. In both tasks, the full model
learns to predict “the” with high probability starting from ∼10 steps, and then learns to solve the tasks.
LASER boosts the probability of correct answers against “the” in both tasks: the average probability ratio
of correct answers against “the” improves from 2.3× to 12.3× (in IOI) and from 0.16× to 11.3× (in factual)
at 14K steps.

recall tasks during their pre-training process displays several phases, as shown in Figure 4.13. For

IOI, we observe:

i. Initialization: all tokens have similar logits since the weights are random initialized.

ii. Between 10 and 1000 steps: the models consistently output “the”. They cannot solve IOI task

at all, as long as they have almost the same prediction for [IO] and [S]. After 500 steps, [IO]

starts the growth towards one of the top predictions.

iii. After 2000 steps: Pythia starts to be able to solve IOI task by preferring [IO] than [S] and

“the”. Meanwhile, the benefit of LASER appears as enhancing the leading position of [IO].

Therefore, the training process reveals the capacity of predicting “the” is learnt much earlier

than predicting [IO]. The reason might be that predicting “the” requires a simpler grammar struc-

ture, while predicting [IO] requires a complicated architecture of attention heads of different roles

across layer [Wang et al. 2022]. Then we note that the IOI task always has “to” before the masked

[IO], which means “to” may be an indicator for the model to predict “the” with non-negligible

probability. Similarly, for factual recall we see early learning of the “generic” answer, while the

factual answer is learned later. Conceptually, if LLMs are able to write natural text or have been

trained sufficiently with natural texts, it is not surprising for the model to predict “the” with high

88

probability after seeing “to”. This is verified in Appendix C.1.1.

4.5.2 The effect of truncating feed-forward layers on GSM8K

As our previous examples of in-context reasoning tasks are too simple for real-world reasoning,

we verify whether truncating MLPs improves reasoning on the GSM8K benchmark [Cobbe et al.

2021]. As shown in Table 4.2, LASER improves the few-shot Chain-of-Thought [Wei et al. 2022]

reasoning performance on GSM8K when only using 1 or 2 shots, although the performance is

worse in the standard 8-shot setting. This suggests that truncating MLPs may help promote in-

context reasoning even in more complex settings, perhaps by removing spurious distributional

associations.

Table 4.2: Few-shot accuracy (%) of pretrained and finetuned language models on GSM8K. Truncating
MLPs (LASER) improves reasoning performances in few-shot CoT settings while it has worse performance
in the standard 8-shot setting. The LASER hyper-parameters are in Appendix C.1.2.

1-shot 2-shot 4-shot 8-shot (standard)

Phi-3 [Abdin et al. 2024] 56.0 72.2 78.2 82.7
Phi-3 + LASER 66.1 74.4 77.0 82.3

Llama-3.1-8B [AI@Meta 2024] 44.7 50.0 57.6 56.0
Llama-3.1-8B + LASER 46.1 50.7 55.9 53.8

Llama-3.1-8B-Instruct [AI@Meta 2024] 72.6 74.7 78.5 79.7
Llama-3.1-8B-Instruct + LASER 73.6 75.6 77.7 77.0

4.6 Discussion and Limitations

In this chapter, we studied the questions of how transformer language models learn to process

distributional associations differently than in-context inputs, and how truncating specific weights

or layers, particularly feed-forward layers, can help in-context reasoning. While our work pro-

vides some initial theoretical understanding of how this may arise on simple controlled settings,

89

it would be interesting to study how these ideas may extend to more complex tasks where in-

context reasoning and distributional knowledge interact in more intricate ways.

Our contribution focuses on understanding the different roles of attention and FF weights in

disentangling distributional vs in-context associations, both empirically and theoretically. The

application of low-rank truncation is simply a way to verify our claims, and is consistent with

the findings in the LASER paper that truncating some FF layers may improve performance on

some reasoning tasks.

Nevertheless, our perspective based on distributional associations versus in-context reasoning

may be helpful in thinking about how to allocate parameters to feed-forward versus attention

layers: for instance, in Figure 4.14 on our synthetic task, we found that for a fixed total parameter

budget, models with fewerMLP parameters achieve higher loss on distributional predictions (e.g.,

non-contextual bigrams) compared to models with more MLP parameters (and fewer attention

parameters). These notions may also provide a different way to reason about circuit discovery

in mechanistic interpretability from the perspective of training dynamics and properties of the

training data. Finally, this disentanglement may inform more effective ways to fine-tune models,

e.g., by selectively choosing which layers to fine-tune.

90

104 105

#parameters in total

1.75

2.00

2.25

2.50

2.75

3.00

3.25

3.50

bi
gr

am
 lo

ss

Bigram Loss after 100 Steps

#Params - MLP : Attention
0:8
1:7
4:4
7:1

Figure 4.14: The training loss of approximating the global bigram 𝜋𝑏 with various allocations of parame-
ters in MLP and Attentions. For each configuration of total parameters and ratios, we use the correspond-
ing best learning rate after search to train 100 steps.

91

A | Appendix: Supplementary Materials

for Chapter 2

A.1 GA-MLP with general eqivariant graph operators

for node feature augmentation

For a graph 𝐺 = (𝑉 , 𝐸) with 𝑛 nodes, assume without loss of generality that 𝑉 = [𝑛]. Let S𝑛

denote the set of permutations of 𝑛, and ∀𝜋 ∈ S𝑛 , it maps a node 𝑖 ∈ [𝑛] to 𝜋 (𝑖) ∈ [𝑛]. For 𝜋 ∈ S𝑛

and a matrix 𝑀 ∈ R𝑛×𝑛 , we use 𝜋 ★𝑀 ∈ R𝑛×𝑛 to denote the 𝜋-permuted version of 𝑀 , that is,

(𝜋 ★𝑀)𝑖, 𝑗 = 𝑀𝜋 (𝑖),𝜋 (𝑗) . For 𝜋 ∈ S𝑛 and a matrix 𝑍 ∈ R𝑛×𝑑 , we use 𝜋 ★ 𝑍 ∈ R𝑛×𝑑 to denote the

𝜋-permuted version of𝑀 , that is, (𝜋 ★𝑍)𝑖,𝑝 = 𝑍𝜋 (𝑖),𝑝 .

Below, we define a more general form of GA-MLP models that extend the use of equivariant

linear operators for node feature propagation to that of general equivariant graph operators. We

first define a map 𝜔 : R𝑛×𝑛 × R𝑛×𝑑 → R𝑛×𝑑 ′ , whose first input argument is always the adjacency

matrix of a graph, 𝐴, and second input argument is a node feature matrix. We say the map

satisfies equivariance to node permutations if ∀𝜋 ∈ S𝑛 , ∀𝑍 ∈ R𝑛×𝑑 , there is 𝜔 (𝜋 ★ 𝐴, 𝜋 ★ 𝑍) =

𝜋 ★𝜔 (𝐴,𝑍). With a slight abuse of notations, we also use 𝜔 [𝐴] (𝑍) to denote 𝜔 (𝐴,𝑍), thereby

considering 𝜔 [𝐴] : R𝑛×𝑑 → R𝑛×𝑑 ′ as an operator on node features. If 𝜔 satisfies equivariance to

node permutations as defined above, we then call 𝜔 [𝐴] an equivariant graph operator. We can

92

then define a general (nonlinear) GA-MLP model as

�̃� = 𝜔 [𝐴] (𝑋)

𝑍 = 𝜌 (�̃�) (A.1)

where 𝜔 is an equivariant graph operator, and 𝜌 is a node-wise function.

It is easy to see that

Proposition A.1. If 𝜔 [𝐴] (𝑋) = 𝑚(𝐴) · 𝑋 , where𝑚(·) = R𝑛×𝑛 → R𝑛×𝑛 is an entry-wise function

or matrix product or compositions thereof, then 𝜔 [𝐴] is an equivariant graph operator.

A.1.1 Extending the proof of Proposition 2.6 and 2.7 to general

GA-MLPs

An extension of the first half of Proposition 2.6 is

Proposition A.2. If 𝜔 [𝐴] is an equivariant graph operator, then there exist exponentially-in-𝐾

many equivalence classes in E induced by the general GA-MLPs with 𝜔 [𝐴], each of which intersects

with doubly-exponentially-in-𝐾 many equivalence classes in E induced by depth-𝐾 GNNs, assuming

that |X| ≥ 2 and𝑚 ≥ 3.

Proof : Similar to the proof of Proposition 2.6 given in Appendix A.8, we consider the set of

full𝑚-ary rooted trees of depth 𝐾 , T𝑚,𝐾,X , that is all rooted trees of depth 𝐾 in which the nodes

have features belonging to the discrete set X ⊆ N and all non-leaf nodes have𝑚 children. T𝑚,𝐾,X

is a subset of E, the space of all rooted graphs. Suppose 𝑓 is a function represented by a general

GA-MLP defined in (A.1) with an equivariant graph operator𝜔 [𝐴]. Let𝑉𝑘 denote the set of nodes

at depth 𝑘 of 𝑇 . Notice the following symmetry among nodes in each 𝑉𝑘 : if 𝜋 is the permutation

of a pair of nodes in some 𝑉𝑘 for 1 ≤ 𝑘 ≤ 𝐾 , then 𝜋 ★𝐴 = 𝐴. By the equivariance property of 𝜔 ,

93

this implies that

𝜔 [𝐴] (𝜋 ★𝑍) =𝜔 [𝜋 ★𝐴] (𝜋 ★𝑍)

=𝜋 ★𝜔 [𝐴] (𝑍) (A.2)

Let𝑋 denote the node feature matrix associated with𝑇 , and 𝜋★𝑇 denote the rooted tree in T𝑚,𝐾,X

with the same topology (i.e., also a full𝑚-ary rooted tree) but node feature matrix 𝜋 ★𝑋 . Then,

since the root node is not permuted under 𝜋 , we know that

𝑓 (𝑇) =𝜌
(
𝜔 [𝐴] (𝑋)1,:

)
=𝜌

(
(𝜋 ★𝜔 [𝐴] (𝑋))1,:

)
=𝜌

(
𝜔 [𝐴] (𝜋 ★𝑋)1,:

)
=𝑓 (𝜋 ★𝑇) (A.3)

This implies that for two trees𝑇 and𝑇 ′ ∈ T𝑚,𝐾,X , if∀0 ≤ 𝑘 ≤ 𝐾,∀𝑥 ∈ X, they satisfy |W𝑘 (𝑇 ;𝑥) | =

|W𝑘 (𝑇 ′;𝑥) |, then 𝑓 (𝑇) = 𝑓 (𝑇 ′) for all such 𝑓 ’s, and hence 𝑇 and 𝑇 ′ belong to the same equiva-

lence class in E induced by GA-MLPs. Therefore, by the rest of the argument given in Proposi-

tion 2.6, Proposition A.2 can be proven analogously for GA-MLPs with general equivariant graph

operators. □

Similarly, Proposition 2.7 can also be extended to

Proposition A.3. For any sequence of node features {𝑥𝑘}𝑘∈N+ ⊆ X, consider the sequence of func-

tions 𝑓𝑘 (𝐺 [𝑖]) := |W𝑘 (𝐺 [𝑖] ; (𝑥1, ..., 𝑥𝑘)) | on E. For all 𝑘 ∈ N+, the image under 𝑓𝑘 of every equiv-

alence class in E induced by depth-𝑘 GNNs contains a single value, while for any GA-MLP using

equivariant graph operators, there exist exponentially-in-𝑘 many equivalence classes in E induced

by this GA-MLP whose image under 𝑓𝑘 contains exponentially-in-𝑘 many values.

The proof replies on the same extension as described above in the proof of Proposition A.2.

94

A.2 Examples of existing GA-MLP models

For 𝜖 ∈ R, let 𝐴(𝜖) = 𝐴 + 𝜖𝐼 , �̄� (𝜖) be the diagonal matrix with �̄� (𝜖),𝑖𝑖 =
∑
𝑗 𝐴𝑖 𝑗 + 𝜖 , and �̃�(𝜖) =

�̄�
−1/2
(𝜖) 𝐴(𝜖)�̄�

−1/2
(𝜖) .

• Simple Graph Convolution [Wu et al. 2019]:

Ω(𝐴) = {(�̃�(1))𝐾 } for some 𝐾 > 0. In addition, 𝜑 is the identity function and 𝜌 (𝐻) =

𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝐻𝑊) for some trainable weight matrix𝑊 .

• Graph Feature Network [Chen et al. 2019a]:

Ω(𝐴) = {𝐼 , 𝐷, �̃�(𝜖), ..., (�̃�(𝜖))𝐾 } for some 𝐾 > 0 and 𝜖 > 0. In addition, 𝜑 is the identity

function and 𝜌 is an MLP.

• Scalable Inception Graph Networks [Rossi et al. 2020]:

Ω(𝐴) = {𝐼 }∪Ω1(𝐴) ∪Ω2(𝐴) ∪Ω3(𝐴), where Ω1(𝐴) is a family of simple / normalized adja-

cency matrices, Ω2(𝐴) is a family of Personalized-PageRank-based adjacency matrices, and

Ω3(𝐴) is a family of triangle-based adjacencymatrices. In addition, writing �̃� = [�̃�1, ..., �̃�𝐾],

there is 𝑍 = 𝜌 (�̃�) = 𝜎1(𝜎2([�̃�1𝑊1, ..., �̃�𝐾𝑊𝐾])𝑊out), with 𝜎1 and 𝜎2 being nonlinear activa-

tion functions and𝑊1, ...,𝑊𝐾 and𝑊out being trainable weight matrices of suitable dimen-

sions.

A.3 Eqivalence classes induced by GNNs and GA-MLPs

among real graphs

Given a space of graphs,G, and a familyF of functionsmappingG toR, F induces an equivalence

relation that we denote by ≃G;F among graphs in G such that for 𝐺1,𝐺2 ∈ G, 𝐺1 ≃G;F 𝐺2 if and

only if ∀𝑓 ∈ F , 𝑓 (𝐺1) = 𝑓 (𝐺2). For example, if F is powerful enough to distinguish all pairs

of non-isomorphic graphs, then each equivalence class under ≃G,F contains exactly one graph.

95

IMDBBINARY IMDBMULTI REDDITBINARY REDDITMULTI5K COLLAB

Graphs 1000 1500 2000 5000 5000
𝐾 GNN GA-MLP GNN GA-MLP GNN GA-MLP GNN GA-MLP GNN GA-MLP

1 51 51 49 49 781 781 1365 1365 294 294
2 537 537 387 387 1998 1998 4999 4999 4080 4080
3 537 537 387 387 1998 1998 4999 4999 4080 4080

ground truth 537 387 1998 4999 4080

Table A.1: The number of equivalence classes of graphs induced by GNN and GA-MLP on real datasets
with node features removed. The last row gives the ground-truth number of isomorphism classes of graphs
computed from the implementation of [Ivanov et al. 2019].

Thus, by examining the number or sizes of the equivalence classes induced by different families

of functions on G, we can evaluate their relative expressive power in a quantitative way.

Hence, we supplement the theoretical result of Proposition 2.2 with the following numeri-

cal results on five real-world datasets for graph-predictions. For graphs in each of the two real

datasets, we remove their node features and count the total number of equivalence classes among

them induced by depth-𝐾 GNNs (equivalent to 𝐾-iterations of the WL test, as discussed in Sec-

tion 2.3.2) as well as GA-MLPs with Ω = {𝐼 , 𝐴, ..., 𝐴𝐾 } for different 𝐾 ’s. We see from the results

in Table A.1 that as soon as 𝐾 ≥ 2, the number of equivalence classes induced by GNNs and the

GA-MLPs are both close to the total number of graphs up to isomorphism, implying that they

are indeed both able to distinguish almost all pairs of non-isomorphic graphs among the ones

occurring in these datasets.

A.4 Additional notations

For any 𝑘 ∈ N+ and any rooted graph 𝐺 [𝑖] = (𝑉 , 𝐸, 𝑖) ∈ E, define

W𝑘 (𝐺 [𝑖]) = {(𝑖1, ..., 𝑖𝑘) ⊆ 𝑉 : 𝐴𝑖,𝑖1, 𝐴𝑖1,𝑖2, ..., 𝐴𝑖𝑘−1,𝑖𝑘 > 0} (A.4)

W𝑘 (𝐺 [𝑖]) = {(𝑖1, ..., 𝑖𝑘) ∈ W𝑘 (𝐺 [𝑖]) : 𝑖 ≠ 𝑖2, 𝑖1 ≠ 𝑖3, ..., 𝑖𝑘−3 ≠ 𝑖𝑘−1, 𝑖𝑘−2 ≠ 𝑖𝑘} (A.5)

96

as the sets of walks and non-backtracking walks of length 𝑘 in 𝐺 [𝑖] starting from the root node,

respectively. Note that when 𝐺 [𝑖] is a rooted tree, a non-backtracking walk of length 𝑘 is a path

from the root node to a node at depth 𝑘 . In addition, for 0 ≤ 𝑑1, ..., 𝑑𝑘 ≤ 𝑚 and 𝑥1, ..., 𝑥𝑘 ∈ X,

define the following subsets ofW𝑘 (𝐺 [𝑖]):

W𝑘

(
𝐺 [𝑖] ; (𝑑1, ..., 𝑑𝑘), 𝑥𝑘

)
= {(𝑖1, ..., 𝑖𝑘) ∈ W𝑘 (𝐺 [𝑖]) : {𝑑𝑖1, ..., 𝑑𝑖𝑘 }𝑚 = {𝑑1, ..., 𝑑𝑘}𝑚, 𝑋𝑖𝑘 = 𝑥𝑘} (A.6)

W𝑘

(
𝐺 [𝑖] ; (𝑥1, ..., 𝑥𝑘)

)
= {(𝑖1, ..., 𝑖𝑘) ∈ W𝑘 (𝐺 [𝑖]) : (𝑋𝑖1, ..., 𝑋𝑖𝑘) = (𝑥1, ..., 𝑥𝑘)} (A.7)

W𝑘 (𝐺 [𝑖] ;𝑥𝑘) = {(𝑖1, ..., 𝑖𝑘) ∈ W𝑘 (𝐺 [𝑖]) : 𝑋𝑖𝑘 = 𝑥𝑘} (A.8)

We also defineW𝑘

(
𝐺 [𝑖] ; (𝑑1, ..., 𝑑𝑘), 𝑥𝑘

)
,W𝑘

(
𝐺 [𝑖] ; (𝑥1, ..., 𝑥𝑘)

)
andW𝑘 (𝐺 [𝑖] ;𝑥𝑘) similarly.

A.5 Proof of Proposition 2.2

With node features being identical in the random graphs, we take 𝑋 ∈ R𝑛×1 to be the all-1 vector.

Thus,

(𝐷𝑋)𝑖 = 𝑑𝑖 , (A.9)

and

(𝐴𝐷−𝛼𝑋)𝑖 =
∑︁
𝑗∈N (𝑖)

𝑑−𝛼𝑗 . (A.10)

Since (2.4) and (2.2) together can approximate arbitrary permutation-invariant functions on mul-

tisets [Zaheer et al. 2017], if two graphs 𝐺 = (𝑉 , 𝐸) and 𝐺′ = (𝑉 ′, 𝐸′) cannot be distinguished by

the GA-MLP with an operator family Ω that includes {𝐷,𝐴𝐷−𝛼 } under any choice of its parame-

ters, it means that the twomultisets {(𝑑𝑖,
∑
𝑗∈N (𝑖) 𝑑

−𝛼
𝑗
) : 𝑖 ∈ 𝑉 }𝑚 = {(𝑑𝑖′,

∑
𝑗 ′∈N (𝑖′) 𝑑

−𝛼
𝑗 ′) : 𝑖′ ∈ 𝑉 ′}𝑚 ,

97

and therefore both of the following hold:

{𝑑𝑖 : 𝑖 ∈ 𝑉 }𝑚 ={𝑑𝑖′ : 𝑖′ ∈ 𝑉 ′}𝑚 (A.11)

{
∑︁
𝑗∈N (𝑖)

𝑑−𝛼𝑗 : 𝑖 ∈ 𝑉 }𝑚 ={
∑︁

𝑗 ′∈N (𝑖′)
𝑑−𝛼𝑗 ′ : 𝑖′ ∈ 𝑉 ′}𝑚 (A.12)

To see what this means, we need the two following lemmas.

Lemma A.4. Let S𝑛 be the set of all multisets consisting of at most 𝑛 elements, all of which are

integers between 0 and 𝑛. Consider the function ℎ𝛼 (𝑆) :=
∑
𝑢∈𝑆 𝑢

−𝛼
defined for multisets 𝑆 . If

𝛼 >
log𝑛

log𝑛−log(𝑛−1) , ℎ𝛼 is an injective function on S𝑛 .

Proof of Lemma A.4: For ℎ𝛼 to be injective on S𝑛 , it suffices to require that ∀𝑙 ≤ 𝑛 − 1, there is

𝑙−𝛼 > 𝑛(𝑙 + 1)−𝛼 , for which it is sufficient to require that (𝑛 − 1)−𝛼 > 𝑛−𝛼+1, or 𝛼 >
log𝑛

log𝑛−log(𝑛−1) . □

LemmaA.5 ([Babai et al. 1980], Theorem 1). Consider the space of graphs with𝑛 vertices, G𝑛 . There

is a subset K𝑛 ⊆ G𝑛 that contains almost all such graphs (i.e. the fraction converges to 1 as 𝑛 →∞)

such that the following algorithm yields a unique identifier for every graph 𝐺 = (𝑉 , 𝐸) ∈ K𝑛 :

Algorithm 1: Set 𝑟 = [3 log𝑛/log 2], and let 𝑑 (𝐺) be the degree of the node in 𝑉 with the 𝑟 th

largest degree; For each node 𝑖 in 𝐺 , define the multiset 𝛾𝑖 = {𝑑 𝑗 : 𝑗 ∈ N (𝑖), 𝑑 𝑗 > 𝑑 (𝐺)}𝑚 ; Finally

define a multiset associated with 𝐺 , 𝐹 (𝐺) = {𝛾𝑖 : 𝑖 ∈ 𝑉 }𝑚 , which is the output of the algorithm.

In other words, ∀𝐺,𝐺′ ∈ K𝑛 , 𝐺 and 𝐺′ are isomorphic if and only if 𝐹 (𝐺) = 𝐹 (𝐺′) as multisets.

In particular, we can choose K𝑛 such that the top 𝑟 node degrees of every graph in K𝑛 are distinct.

Based on these lemmas, we will show that when 𝛼 >
log𝑛

log𝑛−log(𝑛−1) and for 𝐺,𝐺′ ∈ K𝑛 , (A.11)

and (A.12) together imply that 𝐺 is isomorphic to 𝐺′. To see this, suppose that (A.11) and (A.12)

hold. Because of (A.11), we know that 𝐺 and 𝐺′ share the same degree sequence, and hence

𝑑 (𝐺) = 𝑑 (𝐺′). Because of (A.12), we know that there is a bijective map 𝜎 from 𝑉 to 𝑉 ′ such that

98

∀𝑖 ∈ 𝑉 , ∑︁
𝑗∈N (𝑖)

𝑑−𝛼𝑗 =
∑︁

𝑗 ′∈N (𝑖′)
𝑑−𝛼𝑗 ′ , (A.13)

which, by Lemma A.4, implies that {𝑑 𝑗 : 𝑗 ∈ N (𝑖)}𝑚 = {𝑑 𝑗 ′ : 𝑗 ′ ∈ N (𝑖′)}𝑚 . We then have

𝛾𝑖 = {𝑑 𝑗 : 𝑗 ∈ N (𝑖)}𝑚 = {𝑑 𝑗 : 𝑗 ∈ N (𝑖)}𝑚 ∩ (𝑑 (𝐺),∞) = {𝑑 𝑗 ′ : 𝑗 ′ ∈ N (𝑖′)}𝑚 ∩ (𝑑 (𝐺′),∞) = 𝛾𝑖′ ,

and therefore 𝐹 (𝐺) = 𝐹 (𝐺′), which implies that 𝐺 and 𝐺′ are isomorphic by Lemma A.5. This

shows a contradiction. Therefore, if 𝐺,𝐺′ ∈ K𝑛 are not isomorphic, then it cannot be the case

that both (A.11) and (A.12) hold, and hence there exists a choice of parameters for the GA-MLP

with {𝐷,𝐴𝐷−𝛼 } ⊆ Ω that makes it return different outputs when applied to𝐺 and𝐺′. This proves

Proposition 2.2. □

A.6 Proof of Proposition 2.3

As argued in the main text, to estimate the number of equivalence classes on E induced by GNNs,

we need to estimate the number of possible rooted aggregation trees. In particular, to lower-

bound the number of equivalence classes on E induced by GNNs, we only need to focus on a

subset of all possible rooted aggregation trees, namely those in which every node has exactly𝑚

children. Letting TA
𝑚,𝐾,X denote the set of all rooted aggregation trees of depth 𝐾 in which each

non-leaf node has degree exactly 𝑚 and the node features belong to X, we will first prove the

following lemma:

Lemma A.6. If |X| ≥ 2, then |TA
𝑚,𝐾,X | ≥ (𝑚 − 1) (2𝐾−1)

.

Note that a rooted aggregation tree needs to satisfy the constraint that each of its node must

have its parent’s feature equal to one of its children’s feature, and so this lower bound is not

as straightforward to prove as lower-bounding the total number of rooted subtrees. As argued

above, this will allow us to derive Proposition 2.3.

Proof of Lemma A.6: Define B := {0, 1}. Since |X| ≥ 2, we assume without loss of generality that

99

B ⊆ X. To prove a lower-bound on the cardinality of TA
𝑚,𝐾,X , it suffices to restrict our attention to

its subset, TA
𝑚,𝐾

:= TA
𝑚,𝐾,B , where all nodes have feature either 0 or 1. Furthermore, it is sufficient

to restrict our attention to the subset of TA
𝑚,𝐾

which contain all 2𝐾 possible types of paths of length

𝐾 from the root to the leaves. Formally, withW𝑘 defined as in Appendix A.4, we let

T̃A
𝑚,𝐾 = {𝑇 ∈ TA

𝑚,𝐾 : ∀𝑥1, ..., 𝑥𝐾 ∈ B,W𝐾 (𝑇 ; (𝑥1, ..., 𝑥𝐾)) ≥ 1} , (A.14)

and it is sufficient to prove a lower bound on the cardinality of T̃A
𝑚,𝐾

. Define P𝑘 = {(𝑥1, ..., 𝑥𝑘) :

𝑥1, ..., 𝑥𝑘 ∈ B} to be the set of all binary 𝑘-tuples. By the definition of (A.14), we know that

∀𝜏 ∈ P𝐾 , |W𝐾 (𝑇 ;𝜏) | ≥ 1. This means that ∀𝜏 ∈ P𝐾 , there exists at least one leaf node in 𝑇 such

that the path from the root node to this node consists of a sequence of nodes with features exactly

as given by 𝜏 . We call any such node a node under 𝜏 .

We show such a lower bound on the cardinality of T̃A
𝑚,𝐾

inductively. For the base case, we

know that T̃A
𝑚,1 consists of all binary-featured depth-1 rooted trees with at least 1 leaf node of

feature 0 and 1 leaf node of feature 1, and hence T̃A
𝑚,1 = 2(𝑚 − 1). Next, we consider the inductive

step. For every 𝐾 ≥ 1 and every 𝑇 ∈ T̃A
𝑚,𝐾

, we can generate rooted aggregation trees belonging

to 𝑇 ∈ T̃A
𝑚,𝐾+1 by assigning children of feature 0 or 1 to the leaf nodes of 𝑇 . First note that, from

two non-isomorphic rooted aggregation trees𝑇 and𝑇 ′ ∈ T̃A
𝑚,𝐾

, we obtain non-isomorphic rooted

aggregation trees in T̃A
𝑚,𝐾+1 in this way. Moreover, as we will show next, for every 𝑇 ∈ T̃A

𝑚,𝐾
, we

can lower-bound the number of distinct rooted aggregation trees belonging to T̃A
𝑚,𝐾+1 obtained

from 𝑇 in this way.

There are many choices to assign the children. To get a lower-bound on the cardinality of

T̃A
𝑚,𝐾+1, we only need to consider a subset of these choices of assignments, namely, those that

assign the same number of children with feature 0 to every node under the same 𝜏 ∈ P𝐾 . Thus,

we let 𝑞𝐾+1,𝜏 denote the number of children of feature 0 assigned to every node in 𝜏 . Due to the

constraint that each node in the rooted aggregation tree must have its parent’s feature equal to

100

one of its children’s feature, not all choices of {𝑞𝐾+1,𝜏 }𝜏∈P𝐾 lead to legitimate rooted aggregation

trees. Nonetheless, when restricting to the choices where ∀𝜏 ∈ P𝐾 , 1 ≤ 𝑞𝐾+1,𝜏 ≤ 𝑚 − 1, we see

that every leaf node of𝑇 gets assigned at least one child of feature 0 and another child of feature

1, thereby satisfying the constraint above whether its parent has feature 0 or 1. Moreover, for

such choices, the rooted aggregation tree of depth 𝐾 + 1 obtained in this way contains all 2𝐾+1

possible paths of length 𝐾 + 1, and therefore belongs to T̃A
𝑚,𝐾+1. Hence, it remains to show a

lower bound on how many distinct trees in T̃A
𝑚,𝐾+1 can be obtained in this way from each𝑇 . Since

for 𝜏, 𝜏′ ∈ P𝐾 such that 𝜏 ≠ 𝜏′, a node under 𝜏 is distinguishable from a node under 𝜏′, we see

that every legitimate choice of the tuple of 2𝐾 integers, (𝑞𝐾+1,𝜏)𝜏∈P𝐾 , leads to a distinct rooted

aggregation tree of depth 𝐾 + 1, and there are (𝑚 − 1)2𝐾 of these choices. Hence, we have derived

that |T̃A
𝑚,𝐾+1 | ≥ (𝑚 − 1)2𝐾 |T̃A

𝑚,𝐾
|, and therefore |T̃A

𝑚,𝐾
| ≥ (𝑚 − 1)

∑𝐾
𝑘=1 2𝑘 = (𝑚 − 1)2𝐾−1.

□

A.7 Proof of Proposition 2.4

According to the formula (2.3), by expanding the matrix product, we have

(�̃�𝑘𝜑 (𝑋))𝑖 =
∑︁

(𝑖1,...,𝑖𝑘)∈W𝑘 (𝐺 [𝑖])
𝑑−𝛼𝑖 𝑑

−(𝛼+𝛽)
𝑖1

...𝑑
−(𝛼+𝛽)
𝑖𝑘−1

𝑑
−𝛽
𝑖𝑘
𝜑 (𝑋𝑖𝑘)

=𝑑−𝛼𝑖
∑︁

{𝑑1,...,𝑑𝑡−1}𝑚,
𝑑𝑘 ,𝑥

∑︁
(𝑖,𝑖1,...,𝑖𝑘)∈

W𝑘 (𝐺 [𝑖] ;{𝑑1,...,𝑑𝑘−1}𝑚,𝑑𝑘 ,𝑥)

(𝑑1...𝑑𝑘−1)−(𝛼+𝛽)𝑑𝑘𝜑 (𝑥)

=𝑑−𝛼𝑖
∑︁

{𝑑1,...,𝑑𝑘−1}𝑚,
𝑑𝑘 ,𝑥

(
(𝑑1...𝑑𝑘−1)−(𝛼+𝛽)𝑑𝑘𝜑 (𝑥)

) ���W𝑘 (𝐺 [𝑖] ; {𝑑1, ..., 𝑑𝑡−1}𝑚, 𝑑𝑘 , 𝑥)
��� , (A.15)

withW𝑘 (𝐺 [𝑖] ; {𝑑1, ..., 𝑑𝑡−1}𝑚, 𝑑𝑘 , 𝑥) defined in Appendix A.4. Hence, for two different nodes 𝑖 in

𝐺 and 𝑖′ in 𝐺′ (𝐺 and 𝐺′ can be the same graph), the node-wise outputs of the GA-MLP at 𝑖

101

and 𝑖′ will be identical if the rooted graphs 𝐺𝑖 and 𝐺′[𝑖
′] satisfyW𝑘 (𝐺 [𝑖] ; {𝑑1, ..., 𝑑𝑘−1}𝑚, 𝑑𝑘 , 𝑥) =

W𝑘 (𝐺′[𝑖
′] ; {𝑑1, ..., 𝑑𝑘−1}𝑚, 𝑑𝑘 , 𝑥) for every combination of choices on the multiset {𝑑1, ..., 𝑑𝑘−1}𝑚 ,

the integer 𝑑𝑘 and the node feature 𝑥 , under the constraints of 𝑑1, ..., 𝑑𝑘 ≤ 𝑚 and 𝑥 ∈ X. Note

that there are at most
(𝑘+𝑚−2
𝑚−1

)
≤ (𝑘 +𝑚 − 2)𝑚−1 possible choices of the multiset {𝑑1, ..., 𝑑𝑘−1}𝑚 ,𝑚

choices of 𝑑𝑘 and |X| choices of 𝑥 , thereby allowing at most |X|𝑚(𝑘 +𝑚 − 2)𝑚−1 possible choices.

Because of the constraint

∑︁
{𝑑1,...,𝑑𝑘−1}𝑚,

𝑑𝑘 ,𝑥

���W𝑘 (𝐺 [𝑖]𝐾 ; {𝑑1, ..., 𝑑𝑡−1}𝑚, 𝑑𝑘 , 𝑥)
��� = |W𝑘 (𝐺 [𝑖]) | ≤ 𝑚𝑘 , (A.16)

We see that the total number of equivalence classes on E induced by such a GA-MLP is upper-

bounded by
(𝑚𝑘+|X|𝑚(𝑘+𝑚−2)𝑚−1−1
|X|𝑚(𝑘+𝑚−2)𝑚−1

)
, which is on the order of𝑂 (𝑚𝑘𝑚)with𝑘 growing and𝑚 bounded.

Finally, since the total number of equivalence classes induced bymultiple operators can be upper-

bounded by the product of the number of equivalence classes induced by each operator separately,

we derive the proposition as desired.

A.8 Proof of Proposition 2.6

Consider the set of full𝑚-ary rooted trees of depth 𝐾 , T𝑚,𝐾,X , that is all rooted trees of depth 𝐾 in

which the nodes have features belonging to the discrete set X ⊆ N and all non-leaf nodes have

𝑚 children. T𝑚,𝐾,X is a subset of E, the space of all rooted graphs. If 𝑓 is a function represented

by a GA-MLP using operators of at most 𝐾-hop, then for 𝑇 ∈ T𝑚,𝐾,X , we can write

𝑓 (𝑇) = 𝜌 (
∑︁
𝑗∈𝑉

𝑎 𝑗𝑋 𝑗) , (A.17)

where we denote the node set of 𝑇 by 𝑉 and the vectors 𝑎 𝑗 ’s depend only on the topological

relationship between 𝑗 and the root node. Let 𝑉𝑘 denote the set of nodes at depth 𝑘 of 𝑇 . By the

102

assumption that the operators depend only on the graph topology, and thanks to the topological

symmetry of such full𝑚-ary trees among all nodes on the same depth, we have that ∀1 ≤ 𝑘 ≤ 𝐾

and ∀𝑗, 𝑗 ′ ∈ 𝑉𝑘 , there is 𝑎 𝑗 = 𝑎′𝑗 =: 𝑎 [𝑘] . Thus, we can write

𝑓 (𝑇) =𝜌 (
∑︁

0≤𝑘≤𝐾

∑︁
𝑗∈𝑉𝑘

𝑎 [𝑘]𝜙 (𝑋 𝑗))

=𝜌 (
∑︁

0≤𝑘≤𝐾

∑︁
𝑥∈X

𝑎 [𝑘],𝑥 |W𝑘 (𝑇 ;𝑥) |) (A.18)

for some other set of coefficients 𝑎𝑉𝑘 ,𝑥 ’s, and whereW𝑘 (𝑇 ;𝑥) is defined in Appendix A.4. In

other words, for two trees 𝑇 and 𝑇 ′ ∈ T𝑚,𝐾,X , if ∀0 ≤ 𝑘 ≤ 𝐾,∀𝑥 ∈ X, they satisfy |W𝑘 (𝑇 ;𝑥) | =

|W𝑘 (𝑇 ′;𝑥) |, then 𝑓 (𝑇) = 𝑓 (𝑇 ′) for all such 𝑓 ’s, and hence 𝑇 and 𝑇 ′ belong to the same equiva-

lence class in E induced by GA-MLPs. Thus, for a certain subset of these equivalence classes, we

can lower-bound the number of equivalence classes in E induced by GNNs that they intersect

by lower-bounding the number of distinct trees in T𝑚,𝐾,X that they contain, because GNNs are

able to distinguish non-isomorphic rooted subtrees. In particular, as a lower-bound is sufficient,

we restrict attention to the subset of those trees with node features either 0 or 1, that is, trees

belonging to T𝑚,𝐾 := T𝑚,𝐾,B , with B := {0, 1}.

In a rooted tree 𝑇 ,W𝑘 (𝑇 ;𝑥) gives the total number of nodes with feature 𝑥 at depth 𝑘 . For

integers 𝑞0, 𝑞1, ..., 𝑞𝐾 such that 0 ≤ 𝑞𝑘 ≤ 𝑚𝑘 , ∀𝑘 ≤ 𝐾 , define

T𝑚,𝐾,(𝑞0,𝑞1,...,𝑞𝐾) = {𝑇 ∈ T𝑚,𝐾 : ∀𝑘 ≤ 𝐾, |W𝑘 (𝑇 ; 0) | = 𝑞𝑘} , (A.19)

that is, the subset of trees whose per-level-node-counts, {|W𝑘 (𝑇 ; 0) |}𝑘≤𝐾 (and then, therefore,

{|W𝑘 (𝑇 ;𝑥) |}𝑘≤𝐾,𝑥∈B) are given by the tuple (𝑞0, 𝑞1, ..., 𝑞𝑘). From the argument above, all trees

in the same T𝑚,𝐾,(𝑞0,𝑞1,...,𝑞𝐾) belong to the same equivalence class in E induced by GA-MLPs. On

the other hand, every pair of non-isomorphic trees belong to different equivalence class in E in-

duced by GNNs. Thus, to show Proposition 2.6, it is sufficient to find sufficiently many choices of

103

(𝑞0, 𝑞1, ..., 𝑞𝐾) such that T𝑚,𝐾,(𝑞0,𝑞1,...,𝑞𝐾) contains sufficiently many non-isomorphic trees. Specifi-

cally, we will show the following:

Lemma A.7. For all integers 𝑞0, 𝑞1, ..., 𝑞𝐾 such that ∀2 ≤ 𝑘 ≤ 𝐾 ,

2𝑘 − 2𝑘−2 ≤ 𝑞𝑘 ≤
1
2
𝑚𝑘 , (A.20)

there is

|T𝑚,𝐾,(𝑞0,𝑞1,...,𝑞𝐾) | ≥ 22𝐾−1−1 (A.21)

Proof of Lemma A.7: To prove such a lower bound on the cardinality of T𝑚,𝐾,(𝑞0,𝑞1,...,𝑞𝐾) , it is suffi-

cient to prove a lower bound on the cardinality of its subset,

T̃𝑚,𝐾,(𝑞0,𝑞1,...,𝑞𝐾) = {𝑇 ∈ T𝑚,𝐾,(𝑞0,𝑞1,...,𝑞𝐾) : ∀𝑥1, ..., 𝑥𝐾 ∈ B,W𝐾 (𝑇 ; (𝑥1, ..., 𝑥𝐾)) ≥ 1} . (A.22)

A similar construction is involved in the proof of Lemma A.6 in Appendix A.6. Then, we will

prove this lemma by induction on 𝐾 . For the base cases, it is obvious that |T̃𝑚,0,(0) | = |T̃𝑚,0,(1) | = 1,

and |T̃𝑚,1,(0,0) | = |T̃𝑚,1,(0,1) | = |T̃𝑚,1,(0,2) | = |T̃𝑚,1,(1,0) | = |T̃𝑚,1,(1,1) | = |T̃𝑚,1,(1,2) | = 1. We next prove the

inductive hypothesis that, for 𝐾 ≥ 2 and when 𝑞0, 𝑞1, ..., 𝑞𝐾 satisfying (A.20), there is

|T̃𝑚,𝐾,(𝑞0,𝑞1,...,𝑞𝐾) | ≥ 22𝐾−2 · |T̃𝑚,𝐾−1,(𝑞0,𝑞1,...,𝑞𝐾−1) | . (A.23)

To see this, we will next show that ∀𝑇 ∈ T̃𝑚,𝐾−1,(𝑞0,𝑞1,...,𝑞𝐾−1) , we can generate enough number of

depth-𝐾 trees in T̃𝑚,𝐾,(𝑞0,𝑞1,...,𝑞𝐾) by appending children to the leaf nodes of𝑇 . Since any two depth-

𝐾 trees generated from two non-isomorphic depth-(𝐾 − 1) trees in this way are non-isomorphic,

this will allow us to lower-bound the total number of trees in T̃𝑚,𝐾,(𝑞0,𝑞1,...,𝑞𝐾) .

Consider the set of binary 𝑘-tuples, P𝑘 = {(𝑥1, ..., 𝑥𝑘) : 𝑥1, ..., 𝑥𝑘 ∈ B}, of cardinality 2𝑘 .

As 𝑇 ∈ T̃𝑚,𝐾−1,(𝑞0,𝑞1,...,𝑞𝐾−1) , we know that ∀𝜏 ∈ P𝐾−1, |W𝐾−1(𝑇 ;𝜏) | ≥ 1. This means that ∀𝜏 ∈

104

P𝑘 , there exists at least one leaf node in 𝑇 such that the path from the root node to this node

consists of a sequence of nodes with features given by 𝜏 . We call any such node a node under

𝜏 . The total number of the children of all nodes under 𝜏 is thus 𝑚 · |W𝐾−1(𝑇 ;𝜏) | ≥ 𝑚. Thus,

the total number of children with feature 0 of all nodes under 𝜏 is bounded between 0 and 𝑚 ·

|W𝐾−1(𝑇 ;𝜏) |. Conversely, for any 2𝐾−1-tuple of non-negative integers, (𝑞𝐾,𝜏)𝜏∈P𝐾−1 , which satisfy

∀𝜏 ∈ P𝐾−1, 1 ≤ 𝑞𝐾,𝜏 ≤ 𝑚 · |W𝐾−1(𝑇 ;𝜏) | − 1 can be “realized" by at least some depth-𝐾 tree 𝑇 ′

obtained by appending children to the leaf nodes of𝑇 , in the sense that ∀𝜏 = (𝑥1, ..., 𝑥𝐾−1) ∈ P𝐾−1,

there isW𝐾 (𝑇 ′; (𝑥1, ..., 𝑥𝐾−1, 0)) = 𝑞𝐾,𝜏 andW𝐾 (𝑇 ′; (𝑥1, ..., 𝑥𝐾−1, 1)) = 𝑚 · |W𝐾−1(𝑇 ;𝜏) | − 𝑞𝐾,𝜏 ,

and hence 𝑇 ′ ∈ T𝑚,𝐾,(𝑞0,...,𝑞𝐾−1,𝑞𝐾) , with 𝑞𝐾 =
∑
𝜏∈P𝐾−1 𝑞𝐾,𝜏 . Because of the requirement that 1 ≤

𝑞𝐾,𝜏 ≤ 𝑚 · |W𝐾−1(𝑇 ;𝜏) | − 1, we further have that ∀𝜏′ ∈ P𝐾 ,W𝐾 (𝑇 ′, 𝜏′) ≥ 1, which implies that

𝑇 ′ ∈ T̃𝑚,𝐾,(𝑞0,...,𝑞𝐾−1,𝑞𝐾) . Therefore, for some fixed 𝑞𝐾 , in order to lower-bound the cardinality of

T̃𝑚,𝐾,(𝑞0,...,𝑞𝐾) by that of T̃𝑚,𝐾−1,(𝑞0,...,𝑞𝐾−1) , it is sufficient to show a lower bound (which is uniform

for all 𝑇 ∈ T̃𝑚,𝐾−1,(𝑞0,𝑞1,...,𝑞𝐾−1)) on the number of 2𝐾−1-tuples, (𝑞𝐾,𝜏)𝜏∈P𝐾−1 , which satisfy

𝑞𝐾 =
∑︁

𝜏∈P𝐾−1

𝑞𝐾,𝜏

∀𝜏 ∈ P𝐾−1, 1 ≤𝑞𝐾,𝜏 ≤ 𝑚 · |W𝐾−1(𝑇 ;𝜏) | − 1 (A.24)

A simple bound can be obtained in the following way. For every such 𝑇 , we sort the 2𝐾−1-

tuples in P𝐾−1 in ascending order of |W𝐾−1(𝑇 ; ·) |, and define P′
𝐾−1,𝑇 to be the subset of the first

2𝐾−2 of these elements according to this order. Thus, for example, ∀𝜏 ∈ P′
𝐾−1,𝑇 ,∀𝜏′ ∈ P𝐾−1\P′𝐾−1,𝑇 ,

there is |W𝐾−1(𝑇 ;𝜏) | ≤ |W𝐾−1(𝑇 ;𝜏′) |. As a consequence, we have
∑
𝜏∈P′

𝐾−1,𝑇
|W𝐾−1(𝑇 ;𝜏) | ≤∑

𝜏∈P𝐾−1\P′𝐾−1,𝑇
|W𝐾−1(𝑇 ;𝜏) |, and so

∑
𝜏∈P′

𝐾−1,𝑇
|W𝐾−1(𝑇 ;𝜏) | ≤ 1

2
∑
𝜏∈P𝐾−1 |W𝐾−1(𝑇 ;𝜏) | = 1

2𝑚
𝐾−1 ≤∑

𝜏∈P𝐾−1\P′𝐾−1,𝑇
|W𝐾−1(𝑇 ;𝜏) |.

Lemma A.8. Let 𝐾 ≥ 2 and 𝑞𝐾 satisfy (A.20). Then for all choices of the 2𝐾−2
-tuple of integers,

(𝑞𝐾,𝜏)𝜏∈P′
𝐾−1,𝑇

, such that ∀𝜏 ∈ P′
𝐾−1,𝑇 , 𝑞𝐾,𝜏 = 1 or 2, we can complete it into at least one 2𝐾−1

-tuple of

integers, (𝑞𝐾,𝜏)𝜏∈P𝐾−1 , which satisfy (A.24).

105

Proof of Lemma A.8: For any such 2𝐾−2-tuple, (𝑞𝐾,𝜏)𝜏∈P′
𝐾−1,𝑇

, in order to satisfy the constraints of

(A.24), it is sufficient to find another 2𝐾−2 integers, (𝑞𝐾,𝜏)𝜏∈P𝐾−1\P′𝐾−1,𝑇
, which satisfy

∑︁
𝜏∈P𝐾−1\P′𝐾−1,𝑇

𝑞𝐾,𝜏 =𝑞𝐾 −
∑︁

𝜏∈P′
𝐾−1,𝑇

𝑞𝐾,𝜏 (A.25)

∀𝜏 ∈ P𝐾−1 \ P′𝐾−1,𝑇 , 1 ≤𝑞𝐾,𝜏 ≤ 𝑚 · |W𝐾−1(𝑇 ;𝜏) | − 1 (A.26)

On one hand, since 𝑞𝐾,𝜏 = 1 or 2, ∀𝜏 ∈ P′
𝐾−1,𝑇 , there is 𝑞𝐾 − 2𝐾−1 ≤ 𝑞𝐾 −

∑
𝜏∈P′

𝐾−1,𝑇
𝑞𝐾,𝜏 ≤

𝑞𝐾 − 2𝐾−2. On the other hand, with the only other constraint being (A.26), it is possible to find

(𝑞𝐾,𝜏)𝜏∈P𝐾−1\P′𝐾−1,𝑇
such that

∑
𝜏∈P𝐾−1\P′𝐾−1,𝑇

equals any integer between 2𝐾−2 and

𝑚 ·
∑︁

𝜏∈P𝐾−1\P′𝐾−1,𝑇

|W𝐾−1(𝑇 ;𝜏) | − 2𝐾−2,

and hence any integer between 2𝐾−2 and 𝑚 · 1
2𝑚

𝐾−1 − 2𝐾−2 = 1
2𝑚

𝐾 − 2𝐾−2. Hence, as long as

2𝐾 − 2𝐾−2 ≤ 𝑞𝐾 ≤ 1
2𝑚

𝐾 , which is the assumption of (A.20), Lemma A.8 holds true. □

Lemma A.8 implies that ∀𝑇 ∈ T̃𝑚,𝐾−1,(𝑞0,𝑞1,...,𝑞𝐾−1) , there are at least 22𝐾−2 distinct choices

of 2𝐾−1-tuples (𝑞𝐾,𝜏)𝜏∈P𝐾−1 that satisfy the constraint of (A.24), and hence at least 22𝐾−2 non-

isomorphic trees in T̃𝑚,𝐾,(𝑞0,𝑞1,...,𝑞𝐾−1,𝑞𝐾) obtained by appending children to the leaf nodes of 𝑇 .

This proves the inductive hypothesis. Hence, we have

|T̃𝑚,𝐾,(𝑞0,𝑞1,...,𝑞𝐾) | ≥
𝐾∏
𝑘=2

22𝑘−2
= 22𝐾−1−1 , (A.27)

which implies Lemma A.7. □

Since𝑚 ≥ 2 by assumption, 1
2𝑚

𝐾 − (2𝐾 − 2𝐾−2) grows exponentially in 𝐾 . This proves Propo-

sition 2.6.

106

A.9 Proof of Proposition 2.7

Since the number of walks of a particular type that has length at most 𝑘 is completely determined

by the rooted aggregation tree structure of depth 𝑘 , it is straightforward to see that all egonets in

the same equivalence class induced by 𝑘 iterations of WL (and therefore GNNs of depth 𝑘), which

yield the same rooted aggregation tree, will get mapped to the same value by 𝑓𝑘 .

For the second part of the claim pertaining to GA-MLPs, we assume for simplicity that X =

B = {0, 1}, as the extension to the general case is straightforward but demanding heavier nota-

tions. Following the strategy in the proof of Proposition 2.6, it is sufficient to find exponentially-

in-𝑘 many choices of the tuple (𝑞0, 𝑞1, ..., 𝑞𝑘), with 0 ≤ 𝑞𝑘 ≤ 𝑚𝑘 , such that image of T𝑚,𝑘,(𝑞0,𝑞1,...,𝑞𝑘)

(as defined in (A.19)) under 𝑓𝑘 contains exponentially-in-𝑘 many values.

To make it simpler to refer to different nodes in the tree, we index each node in a rooted

tree by a tuple of natural numbers: for example, the index-tuple [1, 3, 2] refers to the node at

depth 3 that is the second children of the third children of the first children of the root. Since

there is no intrinsic ordering to different children of the same node, there exist multiple ways of

consistently indexing the nodes in a rooted tree. However, to specify a tree, it suffices to specify

the node features of all nodes under one such way of indexing.

Given 𝑥1, ..., 𝑥𝑘 ∈ B, we consider a set of depth-𝑘 full𝑚-ary trees that satisfy the following:

∀𝑘′ ≤ 𝑘 − 1 and 𝑙1, ..., 𝑙𝑘 ′ ∈ [𝑚], 𝑥 [𝑙1,𝑙2,...,𝑙𝑘′] = 𝑥𝑘 ′ if 𝑙1 = 1 and ¬𝑥𝑘 ′ if 𝑙1 > 1. Note that these

trees satisfy, for 𝑘′ ≤ 𝑘 − 1, 𝑞𝑘 ′ = 𝑚𝑘 ′−1 if 𝑥𝑘 ′ = 0 and 𝑞𝑘 ′ = (𝑚 − 1)𝑚𝑘 ′−1 if 𝑥𝑘 ′ = 1. Thus,

∀𝑙2, ..., 𝑙𝑘 ∈ [𝑚], the node [1, 𝑙2, ..., 𝑙𝑘] is under the path 𝜏 = (𝑥1, ..., 𝑥𝑘) if and only if 𝑥 [1,𝑙2,...,𝑙𝑘] = 𝑥𝑘 ,

whereas for 𝑙1 > 1, the node [𝑙1, 𝑙2, ..., 𝑙𝑘] is not under the path 𝜏 regardless of the feature of

[1, 𝑙2, ..., 𝑙𝑘]. Therefore, 𝑓𝑘 (𝐺 [𝑖]) = |W𝑘 (𝐺 [𝑖] ; (𝑥1, ..., 𝑥𝑘)) | equals the number of node of feature 𝑥𝑘

among the set of𝑚𝑘−1 nodes, {[1, 𝑙2, ..., 𝑙𝑘]}𝑙2,...,𝑙𝑘∈[𝑚] . Hence, if for 𝑘′ ≤ 𝑘 − 1, we set 𝑞𝑘 ′ =𝑚𝑘 ′−1 if

𝑥𝑘 ′ = 0 and 𝑞𝑘 ′ = (𝑚−1)𝑚𝑘 ′−1 if 𝑥𝑘 ′ = 1, then choosing any 𝑞𝑘 between𝑚𝑘−1 and (𝑚−1)𝑚𝑘−1, we

have that for every integer between 0 and𝑚𝑘−1, there exists a tree𝑇 in T𝑚,𝑘,(𝑞0,...,𝑞𝑘) such that 𝑓𝑘 (𝑇)

107

1 2

3 4 5 6 7 8 9 10

11 12 13 14

1 2

3 4 5 6 7 8 9 10

11 12 13 14

Figure A.1: A pair of graphs with identical node features, 𝐺 (left) and 𝐺 ′ (right), which can be distin-
guished by 2 iterations of the WL test but not by the GA-MLP with Ω ⊆ {𝐴𝑘 }𝑘∈N.

equals this integer. Since there are (𝑚 − 2)𝑚𝑘−1 choices of 𝑞𝑘 (and therefore the tuple (𝑞0, ..., 𝑞𝑘))

and𝑚𝑘−1 + 1 values in the image of T𝑚,𝑘,(𝑞0,...,𝑞𝑘) under 𝑓𝑘 , this proves the proposition.

A.10 Proof of Proposition 2.1

We will first prove that the pair of graphs cannot be distinguished by any GA-MLP with Ω ⊆

{𝐴𝑘}𝑘∈N. Let 𝑋 and 𝐴, 𝑋 ′ and 𝐴′ be the node feature vector and adjacency matrix of the two

graphs, 𝐺 and 𝐺′, respectively. As these two graphs both contain 14 nodes that have identical

features, we have 𝑋,𝑋 ′ ∈ R14×1 both being the all-1 vector. Moreover, ∀𝑖 ∈ [14],

(𝐴𝑘𝑋)𝑖 = 𝑤𝑘 (𝑖) , ((𝐴′)𝑘 (𝑋 ′))𝑖 = 𝑤 ′𝑘 (𝑖) (A.28)

where we use𝑤𝑘 (𝑖) and𝑤 ′𝑘 (𝑖) to denote the numbers of walks (allowing backtracking) of length

𝑘 starting from node 𝑖 in graphs 𝐺 and 𝐺′, respectively. Thus, to show that any GA-MLP with

Ω ⊆ {𝐴𝑘}𝑘∈N necessarily returns the same output on 𝐺 and 𝐺′, it is sufficient to show that

∀𝑘 ∈ N, 𝐴𝑘𝑋 = (𝐴′)𝑘 (𝑋 ′), and therefore sufficient to show that ∀𝑘 ∈ N and ∀𝑖 ∈ [14], there is

𝑤𝑘 (𝑖) = 𝑤 ′𝑘 (𝑖). In fact, we will prove the following lemma:

108

Lemma A.9. ∀𝑘 ∈ N,

𝑤𝑘 (𝑖) =𝑤 ′𝑘 (𝑖), ∀𝑖 ∈ [14] (A.29)

𝑤𝑘 (1) =𝑤𝑘 (2) (A.30)

𝑤𝑘 (3) +𝑤𝑘 (9) =𝑤𝑘 (6) +𝑤𝑘 (8) (A.31)

𝑤𝑘 (5) +𝑤𝑘 (7) =𝑤𝑘 (4) +𝑤𝑘 (10) (A.32)

Proof of Lemma A.9: We prove this lemma by induction. For the base case, we have that 𝑤0(𝑖) =

𝑤 ′0(𝑖),∀𝑖 ∈ [14]. Next, we assume that (A.29) - (A.32) hold for some 𝑘 ∈ N and prove it for 𝑘 + 1.

A first property to note is that ∀𝑘 ∈ N, 𝑤𝑘+1(𝑖) =
∑
𝑗∈N (𝑖)𝑤𝑘 (𝑗) and 𝑤 ′𝑘+1(𝑖) =

∑
𝑗∈N ′ (𝑖)𝑤

′
𝑘
(𝑗),

where we use N(𝑖) and N ′(𝑖) to denote the neighborhood of 𝑖 in 𝐺 and 𝐺′, respectively.

To show (A.29) for 𝑘 + 1, we look at each node separately:

• 𝑖 = 1

𝑤𝑘+1(1) =𝑤𝑘 (3) +𝑤𝑘 (5) +𝑤𝑘 (7) +𝑤𝑘 (9)

=𝑤𝑘 (5) +𝑤𝑘 (6) +𝑤𝑘 (7) +𝑤𝑘 (8)

=𝑤 ′
𝑘
(5) +𝑤 ′

𝑘
(6) +𝑤 ′

𝑘
(7) +𝑤 ′

𝑘
(8)

=𝑤 ′
𝑘+1(1) (A.33)

• 𝑖 = 2

𝑤𝑘+1(2) =𝑤𝑘 (4) +𝑤𝑘 (6) +𝑤𝑘 (8) +𝑤𝑘 (10)

=𝑤𝑘 (3) +𝑤𝑘 (4) +𝑤𝑘 (9) +𝑤𝑘 (10)

=𝑤 ′
𝑘
(3) +𝑤 ′

𝑘
(4) +𝑤 ′

𝑘
(9) +𝑤 ′

𝑘
(10)

=𝑤 ′
𝑘+1(2) (A.34)

109

• 𝑖 = 3

𝑤𝑘+1(3) =𝑤𝑘 (1) +𝑤𝑘 (11) +𝑤𝑘 (12)

=𝑤𝑘 (2) +𝑤𝑘 (11) +𝑤𝑘 (12)

=𝑤 ′
𝑘
(2) +𝑤 ′

𝑘
(11) +𝑤 ′

𝑘
(12)

=𝑤 ′
𝑘+1(3) (A.35)

• 𝑖 = 4

𝑤𝑘+1(4) =𝑤𝑘 (2) +𝑤𝑘 (13) +𝑤𝑘 (14)

=𝑤 ′
𝑘
(2) +𝑤 ′

𝑘
(13) +𝑤 ′

𝑘
(14)

=𝑤 ′
𝑘+1(4) (A.36)

• 𝑖 = 5

𝑤𝑘+1(5) =𝑤𝑘 (1) +𝑤𝑘 (13)

=𝑤 ′
𝑘
(1) +𝑤 ′

𝑘
(13)

=𝑤 ′
𝑘+1(5) (A.37)

• 𝑖 = 6

𝑤𝑘+1(6) =𝑤𝑘 (2) +𝑤𝑘 (11)

=𝑤𝑘 (1) +𝑤𝑘 (11)

=𝑤 ′
𝑘
(1) +𝑤 ′

𝑘
(11)

=𝑤 ′
𝑘+1(6) (A.38)

110

• 𝑖 = 7

𝑤𝑘+1(7) =𝑤𝑘 (1) +𝑤𝑘 (13)

=𝑤 ′
𝑘
(1) +𝑤 ′

𝑘
(13)

=𝑤 ′
𝑘+1(7) (A.39)

• 𝑖 = 8

𝑤𝑘+1(8) =𝑤𝑘 (2) +𝑤𝑘 (12)

=𝑤𝑘 (1) +𝑤𝑘 (12)

=𝑤 ′
𝑘
(1) +𝑤 ′

𝑘
(12)

=𝑤 ′
𝑘+1(8) (A.40)

• 𝑖 = 9

𝑤𝑘+1(9) =𝑤𝑘 (1)

=𝑤𝑘 (2)

=𝑤 ′
𝑘
(2)

=𝑤 ′
𝑘+1(9) (A.41)

• 𝑖 = 10

𝑤𝑘+1(10) =𝑤𝑘 (2)

=𝑤 ′
𝑘
(2)

=𝑤 ′
𝑘+1(10) (A.42)

• 𝑖 ∈ {11, ..., 14}

111

For each of these 𝑖’s, N(𝑖) = N ′(𝑖). Therefore,

𝑤𝑘+1(𝑖) =
∑︁
𝑗∈N (𝑖)

𝑤𝑘 (𝑗)

=
∑︁

𝑗∈N ′ (𝑖)
𝑤 ′
𝑘
(𝑗)

=𝑤 ′
𝑘+1(𝑖) (A.43)

Next, for (A.30) - (A.32) at 𝑘 + 1,

𝑤𝑘+1(1) =𝑤𝑘 (3) +𝑤𝑘 (5) +𝑤𝑘 (7) +𝑤𝑘 (9)

=𝑤𝑘 (4) +𝑤𝑘 (6) +𝑤𝑘 (8) +𝑤𝑘 (10)

=𝑤𝑘+1(2) (A.44)

𝑤𝑘+1(3) +𝑤𝑘+1(9) =2𝑤𝑘 (1) +𝑤𝑘 (11) +𝑤𝑘 (12)

=2𝑤𝑘 (2) +𝑤𝑘 (11) +𝑤𝑘 (12)

=𝑤𝑘+1(6) +𝑤𝑘+1(8) (A.45)

𝑤𝑘+1(5) +𝑤𝑘+1(7) =2𝑤𝑘 (1) +𝑤𝑘 (13) +𝑤𝑘 (14)

=2𝑤𝑘 (2) +𝑤𝑘 (13) +𝑤𝑘 (14)

=𝑤𝑘+1(4) +𝑤𝑘+1(10) (A.46)

This proves the inductive hypothethis for 𝑘 + 1. □

We next argue that these two graphs can be distinguished by WL in 2 iterations. This is

because 2 iterations of WL distinguish neighborhoods up to the depth-2 rooted aggregation trees

(as will be defined in Section 2.5), and it is not hard to see that the multiset of depth-2 rooted

aggregation trees are different for the two graphs. Note that a depth-2 rooted subtree can be

represented by the multiset of the degrees of the depth-1 children. Then for example, the depth-2

112

rooted aggregation trees of 1 and 2 in𝐺 are both {3, 2, 2, 1}𝑚 , while their rooted aggregation trees

in 𝐺′ are {2, 2, 2, 2}𝑚 and {3, 3, 1, 1}𝑚 , respectively.

A.11 Experiment Details

A.11.1 Specific Architectures

In Section 2.6, we show experiments on several tasks to confirm our theoretical results with

several related architectures. Here are some explanations for them:

• GIN: Graph Isomorphism Networks proposed by [Xu et al. 2019]. In our experiment of

counting attributed walks, we take the depth of GIN as same as the depth of target walks.

The number of hidden dimensions is searched in {8, 16, 32, 64, 256}. The model is trained

with the Adam optimizer [Kingma and Ba 2014]. The learning rates are selected from

{0.1, 0.02, 0.01, 0.005, 0.001}. We also train a variant with Jumping Knowledge [Xu et al.

2018].

• sGNN: Spectral GNN proposed by [Chen et al. 2019b], which can be viewed as a learnable

generalization of power iterations on a collection of operators. While the best performing

variant utilizes the non-backtracking operator on the line graph, for a fairer comparison

with GA-MLPs, we choose a variant with the base collection of operators being {𝐼 , 𝐴,𝐴2}

on each layer and depth 60, which then has the same receptive field as the chosen GA-MLP

models. The model is trained with the Adam optimizer with learning rate selected from

{0.001, 0.002, 0.004}.

• GA-MLP: a multilayer perceptron following graph augmented features. For counting at-

tributed walks, we choose the operators from {𝐼 , 𝐴𝑘{𝜖}}. The number of hidden dimensions

is searched in {8, 32, 64, 256}. We take the highest order of operators as the twice depth of

113

target walks at most. For comminity detection, we choose the operators from {𝐼 , 𝐴𝑘{𝜖}, �̃�
𝑘}

where �̃� is induced from the Bethe Hessian matrix 𝐻 . The highest order of operators is

searched in {30, 60, 120}. The number of hidden dimensions is searched in {10, 20}. On both

tasks, the model is trained with the Adam optimizer [Kingma and Ba 2014] with learning

rate selected from {0.1, 0.02, 0.01, 0.005, 0.001, 0.0001}. Additionally, we use Batch Normal-

ization [Ioffe and Szegedy 2015] in community detection after propagating through each

operator, following the normalization strategy from [Chen et al. 2019b]. We choose 𝜑 to

be the identity function.

A.11.2 Bethe Hessian

The Bethe Hessian matrix is defined as

𝐻 (𝑟) := (𝑟 2 − 1)𝐼 − 𝑟𝐴 + 𝐷.

with 𝑟 being a flexible parameter. In SBM, an optimal choice is 𝑟𝑐 =
√
𝑐 , where 𝑐 is the average

degree. Spectral clustering [Saade et al. 2014] can be performed by computing the eigenvectors

associated with the negative eigenvalues of 𝐻 (𝑟𝑐) to get clustering information in assortative bi-

nary stochastic blockmodel, which is the scenariowe consider. In order to utilize power iterations

for eigenvector extraction, we induce a new matrix �̃� as

�̃� := 𝜅𝐼 − 𝐻 (𝑟𝑐),

so that the smallest eigenvalues of 𝐻 become the largest eigenvalues of �̃� . We choose 𝜅 = 8 in

our experiments. For GA-MLP-𝐻 , we then let Ω = {𝐼 , �̃� , ..., �̃�𝐾 }.

A.11.3 Results for GA-MLP-�̃�(1) in community detection

114

Table A.2: Results for community detection on binary SBM by GA-MLP-�̃� (1)

Rank of hardness 1 2 3 4 5
Overlap 0.128 0.164 0.262 0.707 0.563

115

B | Appendix: Supplementary Materials

for Chapter 3

B.1 Additional Results

B.1.1 On a 2-D function

Similar to 𝑓 (𝑥) = 1
4 (𝑥

2 − 𝜇)2, consider a 2-D function 𝑓 (𝑥,𝑦) = 1
2 (𝑥𝑦 − 𝜇)

2. Apparently, if 𝑥

and 𝑦 initialize as the same, then (𝑥 (𝑡), 𝑦 (𝑡)) would always align with the 1-D case from the same

initialization. Therefore, it is significant to analyze this problem under different initialization for

𝑥 and 𝑦, which we would call “in-balanced” initialization. Meanwhile, another giant difference is

that all the global minima in 2-D case form a manifold {(𝑥,𝑦) |𝑥𝑦 = 𝜇} while the 1-D case only

has two points of global minima. It would be great if we could understand which points in the

global minima manifold, or in the whole parameter space, are preferable by GD.

Note that reweighting the two parameters would manipulate the curvature to infinity as

in [Elkabetz and Cohen 2021], so the inbalance strongly affects the local curvature. Viewing 𝑓 (𝑥)

as a symmetric scalar factorization problem, we treat 𝑓 (𝑥,𝑦) as asymmetric scalar factorization.

The update rule of GD is

𝑥 (𝑡+1) B 𝑥 (𝑡) − 𝜂 (𝑥 (𝑡)𝑦 (𝑡) − 𝜇)𝑦 (𝑡), 𝑦 (𝑡+1) B 𝑦 (𝑡) − 𝜂 (𝑥 (𝑡)𝑦 (𝑡) − 𝜇)𝑥 (𝑡) . (B.1)

116

Consider the Hessian as

𝐻 ≜

𝜕2
𝑥 𝑓 𝜕𝑦𝜕𝑥 𝑓

𝜕𝑥 𝜕𝑦 𝑓 𝜕2
𝑦 𝑓

 =

𝑦2 2𝑥𝑦 − 𝜇

2𝑥𝑦 − 𝜇 𝑥2

 . (B.2)

When 𝑥𝑦 = 𝜇, the eigenvalues of 𝐻 are 𝜆1 = 𝑥
2 + 𝑦2, 𝜆2 = 0. Note that 𝜆1 = (𝑥 − 𝑦)2 + 2𝜇. Hence,

in the global minima manifold, the local curvature of each point is larger if its two parameters

are more inbalanced. Among all these points, the smallest curvature appears to be 𝜆1 = 2𝜇 when

𝑥 = 𝑦 =
√
𝜇. In other words, if the learning rate 𝜂 > 2/2𝜇, all points in the manifold would be

too sharp for GD to converge. We would like to investigate the behavior of GD in this case. It

turns out the two parameters are driven to a perfect balance although they initialized differently,

as follows.

Theorem B.1 (Restatement of Theorem 3.4). For 𝑓 (𝑥,𝑦) = 1
2 (𝑥𝑦 − 𝜇)

2
, consider GD with learning

rate 𝜂 = 𝐾 · 1
𝜇
. Assume both 𝑥 and 𝑦 are always positive during the whole process {𝑥𝑖, 𝑦𝑖}𝑖⩾0. In this

process, denote a series of all points with 𝑥𝑦 > 𝜇 as P = {(𝑥𝑖, 𝑦𝑖) |𝑥𝑖𝑦𝑖 > 𝜇}. Then |𝑥 −𝑦 | decays to 0

in P, for any 1 < 𝐾 < 1.5.

Proof sketch The details of proof are presented in the Appendix B.7. Start from a point

(𝑥 (𝑡), 𝑦 (𝑡)) where 𝑥 (𝑡)𝑦 (𝑡) > 𝜇. Because 𝑦 (𝑡+1) − 𝑥 (𝑡+1) = (𝑦 (𝑡) − 𝑥 (𝑡)) (1 + 𝜂 (𝑥 (𝑡)𝑦 (𝑡) − 𝜇)), it suffices

to show ����𝑦 (𝑡+2) − 𝑥 (𝑡+2)𝑦 (𝑡) − 𝑥 (𝑡)

���� = | (1 + 𝜂 (𝑥 (𝑡)𝑦 (𝑡) − 𝜇)) (1 + 𝜂 (𝑥 (𝑡+1)𝑦 (𝑡+1) − 𝜇)) | < 1. (B.3)

Since 1 + 𝜂 (𝑥 (𝑡)𝑦 (𝑡) − 𝜇) > 1, the analysis of 1 + 𝜂 (𝑥 (𝑡+1)𝑦 (𝑡+1) − 𝜇) is divided into three cases

considering the coupling of (𝑥 (𝑡), 𝑦 (𝑡)), (𝑥 (𝑡+1), 𝑦 (𝑡+1)). □

Remark 5. Actually, for a larger 𝐾 ⩾ 1.5, it is possible for GD to converge to an inbalanced orbit.

For instance, Figure 15 in [Wang et al. 2021] shows inbalanced orbits for 𝑓 (𝑥) = 1
2 (𝑥𝑦 − 1)2 with

117

𝐾 = 1.9.

Combining with the fact that the probability of GD converging to a stationary point that has

sharpness beyond the edge of stability is zero [Ahn et al. 2022], Theorem 3.4 reveals 𝑥 and𝑦 would

converge to a perfect balance. Note that this balancing effect is different from that of gradient

flow [Du et al. 2018], where the latter states that gradient flow preserves the difference of norms

of different layers along training. As a result, in gradient flow, inbalanced initialization induces

inbalanced convergence, while in our case inbalanced-initialized weights converge to a perfect

balance. Furthermore, Theorem 3.4 shows an effect that the two parameters are squeezed to a

single variable, which re-directs to our 1-D analysis in Theorem 3.3. Therefore, actually both

cases converge to the same orbit when 1 < 𝐾 < 1.121, as stated in Prop 3. Numerical results are

presented in Figure B.4.

Proposition 8 (Restatement of Prop 3). Following the setting in Theorem 3.4. Further assume

1 < 𝐾 <
√

4.5 − 1 ≈ 1.121. Then GD converges to an orbit of period 2. The orbit is formally written

as {(𝑥 = 𝑦 = 𝛿𝑖) |𝑖 = 1, 2}, with 𝛿1 ∈ (0,
√
𝜇), 𝛿2 ∈ (

√
𝜇, 2√𝜇) as the solutions of solving 𝛿 in

𝜂 =
1

𝛿2
(√︃

𝜇

𝛿2 − 3
4 +

1
2

) .

Remark 6. Actually this convergence is close to the flattest minima because: if the learning rate

decays to infinitesimal after sufficient oscillations, then the trajectory walks towards the flattest

minima.

However, one thing to notice is that the inbalance at initialization needs to be bounded in

Theorem 3.4 because both 𝑥 and𝑦 are assumed to stay positive along the training. More precisely,

we have

𝑥 (𝑡+1)𝑦 (𝑡+1) = 𝑥 (𝑡)𝑦 (𝑡) (1 − 𝜂 (𝑥 (𝑡)𝑦 (𝑡) − 𝜇))2 − 𝜂 (𝑥 (𝑡)𝑦 (𝑡) − 𝜇) (𝑥 (𝑡) − 𝑦 (𝑡))2, (B.4)

118

and then 𝑥 (𝑡+1)𝑦 (𝑡+1) < 0 when |𝑥 (𝑡) − 𝑦 (𝑡) | is large with 𝑥 (𝑡)𝑦 (𝑡) > 𝜇 fixed. Therefore, we provide

a condition to guarantee both 𝑥,𝑦 positive as follows, with details presented in the Appendix B.8.

Lemma B.2. In the setting of Theorem 3.4, denote the initialization as𝑚 =
|𝑦0−𝑥0 |√

𝜇
and 𝑥0𝑦0 > 𝜇.

Then, during the whole process, both 𝑥 and 𝑦 will always stay positive, denoting 𝑝 = 4(
𝑚+
√
𝑚2+4

)2 and

𝑞 = (1 + 𝑝)2, if

max
{
𝜂 (𝑥0𝑦0 − 𝜇),

4
27
(1 + 𝐾)3 +

(
2
3
𝐾2 − 1

3
𝐾 + 𝑞𝐾2

2(𝐾 + 1)𝑚
2
)
𝑞𝑚2 − 𝐾

}
< 𝑝.

B.1.2 On Matrix Factorization

In this section, we present two additional results of matrix factorization.

B.1.2.1 Asymmetric Case: 1D function at the minima

Before looking into the theorem, we would like to clarify the definition of the loss Hessian. Inher-

ently, we squeeze X,Y into a vector 𝜃 = vec(X,Y) ∈ R𝑚𝑝+𝑝𝑞 , which vectorizes the concatnation.

As a result, we are able to represent the loss Hessian w.r.t. 𝜃 as a matrix in R(𝑚𝑝+𝑝𝑞)×(𝑚𝑝+𝑝𝑞) .

Meanwhile, the support of the loss landscape is in R𝑚𝑝+𝑝𝑞 . Similarly, we use (ΔX,ΔY) in the

same shape of (X,Y) to denote . In the following theorem, we are to show the leading eigenvec-

tor Δ ≜ vec(ΔX,ΔY) ∈ R𝑚𝑝+𝑝𝑞 of the loss Hessian. Since the cross section of the loss landscape

and Δ forms a 1D function 𝑓Δ, we would also show the stable-oscillation condition on 1D function

holds at the minima of 𝑓Δ.

Theorem B.3. For a matrix factorization problem, assume XY = C. Consider SVD of both matrices

asX =
∑min{𝑚,𝑝}
𝑖=1 𝜎𝑥,𝑖𝑢𝑥,𝑖𝑣

⊤
𝑥,𝑖 andY =

∑min{𝑝,𝑞}
𝑖=1 𝜎𝑦,𝑖𝑢𝑦,𝑖𝑣

⊤
𝑦,𝑖 , where both groups of 𝜎·,𝑖 ’s are in descending

order and both top singular values𝜎𝑥,1 and𝜎𝑦,1 are unique. Also assume 𝑣⊤𝑥,1𝑢𝑦,1 ≠ 0. Then the leading

119

eigenvector of the loss Hessian is Δ = vec(𝐶1𝑢𝑥,1𝑢
⊤
𝑦,1,𝐶2𝑣𝑥,1𝑣

⊤
𝑦,1) with 𝐶1 =

𝜎𝑦,1√︃
𝜎2
𝑥,1+𝜎2

𝑦,1

,𝐶2 =
𝜎𝑥,1√︃

𝜎2
𝑥,1+𝜎2

𝑦,1

.

Denote 𝑓Δ as the 1D function at the cross section of the loss landscape and the line following the

direction of Δ passing vec(ΔX,ΔY). Then, at the minima of 𝑓Δ, it satisfies

3[𝑓 (3)Δ]
2 − 𝑓 (2)Δ 𝑓

(4)
Δ > 0. (B.5)

The proof is provided in Appendix B.10.1. This theorem aims to generalize our 1-D analysis

into higher dimension, and it turns out the 1-D condition is sastisfied around anyminima for two-

layer matrix factorization. In Theorem 3.1 and Lemma 3.2, if such 1-D condition holds, there must

exist a period-2 orbit around the minima for GD beyond EoS. However, this is not straightforward

to generalize to high dimensions, because 1) directions of leading eigenvectors and (nearby) gra-

dient are not necessarily aligned, and 2) it is more natural and practical to consider initialization

in any direction around the minima instead of strictly along leading eigenvectors. Therefore, be-

low we present a convergence analysis with initialization near the minima, but in any direction

instead.

B.2 Additional Experiments

In Appendix B.2.1, we provide numerical experiments to verify our theorems. Then, we provide

additional experiments on MLP and MNIST.

B.2.1 Proven Settings

1-D functions. As discussed in the Section 3.4.1, we have 𝑓 (𝑥) = 1
4 (𝑥

2 − 1)2 satisfying the

condition in Theorem 3.1 and 𝑔(𝑥) = 2 sin(𝑥) satisfying Lemma 3.2, so we estimate that both 𝑓

and 𝑔 allow stable oscillation around the local minima. It turns out GD stably oscillates around

120

the local minima on both functions, when 𝜂 > 2
𝑓 ′′ (𝑥) slightly, as shown in Figure B.1.

0.9 1.0 1.1
x

0.000

0.005

0.010
f(x

)

100 101 102

epochs

0.95

1.00

1.05

x

1.75 1.50
x

2.000

1.975

1.950

1.925

f(x
)

100 101 102

epochs

1.8

1.6

1.4

x

Figure B.1: Running GD around the local minima of 𝑓 (𝑥) = 1
4 (𝑥

2 − 1)2 (left two) and 𝑓 (𝑥) = 2 sin(𝑥)
(right two) with learning rate 𝜂 = 1.01 > 2

𝑓 ′′ (𝑥) = 1. Stars denote the start points. It turns out both
functions allow stable oscillation around the local minima.

Two-layer single-neuron model. As discussed in the Section 3.5, with a learning rate 𝜂 ∈

(𝑑, 1.1𝑑], a single-neuron network 𝑓 (𝑥) = 𝑣 · 𝜎 (𝑤⊤𝑥) is able to align with the direction of the

teacher neuron under population loss. We train such amodel in empirical loss on 1000 data points

uniformly sampled from a sphere S1, as shown in Figure B.2. The student neuron is initialized

orthogonal to the teacher neuron. In the end of training, 𝑤𝑦 decays to a small value before the

inbalance |𝑣 −𝑤𝑥 | decays sharply, which verifies our argument in Section 3.5. With a small 𝑤𝑦 ,

this nonlinear problem degenerates to a 2-D problem on 𝑣,𝑤𝑥 . Then, the balanced propertymakes

it align with the 1-D problem where 𝑣 and 𝑤𝑥 converge to a period-2 orbit. Note that the small

residuals of |𝑣 −𝑤𝑥 | and𝑤𝑦 are due to the difference between population loss and empirical loss.

100 101 102

epochs

0.05

0.10

0.15

0.20

0.25
loss

100 101 102

epochs

0.0

0.2

0.4

0.6

0.8

1.0

v, w_x, w_y

v
w_x
w_y

100 101 102

epochs

10 3

10 2

10 1
|v-w_x|

100 101 102

epochs

10 2

10 1

w_y

Figure B.2: Running GD in the teacher-student setting with learning rate 𝜂 = 2.2 = 1.1𝑑 , trained on 1000
points uniformly sampled from sphere S1 of ∥𝑥 ∥ = 1. The teacher neuron is �̃� = [1, 0] and the student
neuron is initialized as𝑤 (0) = [0, 0.1] with 𝑣 (0) = 0.1.

121

Quasi-symmetric matrix factorization. As discussed in the Section 3.6, with mild assump-

tions, the quasi-symmetric case stably wanders around the flattest minima. We train GD on a

matrix factorization problem with X0X⊤0 = C ∈ R8×8. The learning rate is 1.02× EoS threshold.

Following the setting in Section 3.6, for symmetric case, the training starts near (X0,X0) and, for

quasi-symmetric case, it starts near (𝛼X0, 1/𝛼X0) with 𝛼 = 0.8, as shown in Figure B.3. Although

starting with a re-scaling, the quasi-symmetric case achieves the same top singular values in Y

and Z, which verifies the balancing effect of 2-D functions in Theorem 3.4. Then, the top singular

values of both cases converge to the same period-2 orbit, which verifies Observation 2.

100 101 102 103

steps

10 7

10 5

10 3

10 1

101

lo
ss

alpha=0.8
alpha=1

100 101 102 103

steps

5.4

5.6

5.8

6.0

1

1(X)

100 101 102 103

steps

4

5

6

7

1

1(Y)
1(Z)

Figure B.3: Symmetric and Quasi-symmetric Matrix factorization: running GD around flat (𝛼 = 1) and
sharp (𝛼 = 0.8) minima. In both cases, their leading singular values converge to the same period-2 orbit
(about 6.1 and 5.3). (Left: Training loss. Middle: Largest singular value of symmetric case. Right: Largest
singular values of quasi-symmetric case.)

B.2.2 2-D function

As discussed in the Appendix B.1.1, on the function 𝑓 (𝑥,𝑦) = 1
2 (𝑥𝑦 − 1)2, we estimate that |𝑥 −𝑦 |

decays to 0 when 𝜂 ∈ (1, 1.5), as shown in Figure B.4. Since it achieves a perfect balance, the two

parameters follows convergence of the corresponding 1-D function 𝑓 (𝑥) = 1
4 (𝑥

2 − 1)2. As shown

in Figure B.4, 𝑥𝑦 with 𝜂 = 1.05 converges to a period-2 orbit, as stated in the 1-D discussion of

Theorem 3.3 while 𝑥𝑦 with 𝜂 = 1.25 converges to a period-4 orbit, which is out of our range in

the theorem. But still it falls into the range for balance in Theorem 3.4.

122

100 101 102

epochs

0.6

0.8

1.0

1.2

1.4
xy

100 101 102

epochs

0.6

0.8

1.0

1.2

x, y
x
y

100 101 102

epochs

10 5

10 4

10 3

10 2

10 1

100
|x-y|

(a) 𝜂 = 1.05

100 101 102

epochs

0.25

0.50

0.75

1.00

1.25

1.50
xy

100 101 102

epochs

0.2

0.4

0.6

0.8

1.0

1.2

1.4
x, y

x
y

100 101 102

epochs

10 14

10 11

10 8

10 5

10 2

|x-y|

(b) 𝜂 = 1.25

Figure B.4: Running GD on 𝑓 (𝑥,𝑦) = 1
2 (𝑥𝑦 − 1)2 with learning rate 𝜂 = 1.05 (top) and 𝜂 = 1.25 (bottom).

When 𝜂 = 1.05, it converges to a period-2 orbit. When 𝜂 = 1.25, it converges to a period-4 orbit. In both
cases, |𝑥 − 𝑦 | decays sharply.

B.3 Proof of Theorem 3.1

TheoremB.4 (Restatement of Theorem 3.1). Consider any 1-D differentiable function 𝑓 (𝑥) around

a local minima 𝑥 , satisfying (i) 𝑓 (3) (𝑥) ≠ 0, and (ii) 3[𝑓 (3)]2 − 𝑓 ′′𝑓 (4) > 0 at 𝑥 . Then, there exists

𝜖 with sufficiently small |𝜖 | and 𝜖 · 𝑓 (3) > 0 such that: for any point 𝑥0 between 𝑥 and 𝑥 − 𝜖 , there

exists a learning rate 𝜂 such that the update rule 𝐹𝜂 of GD satisfies 𝐹𝜂 (𝐹𝜂 (𝑥0)) = 𝑥0, and

2
𝑓 ′′(𝑥) < 𝜂 <

2
𝑓 ′′(𝑥) − 𝜖 · 𝑓 (3) (𝑥)

.

Proof. For simplicity, we assume 𝑓 (3) (𝑥) > 0. Imagine a starting point 𝑥0 = 𝑥 − 𝜖, 𝜖 > 0. We omit

𝑓 ′(𝑥), 𝑓 ′′(𝑥), 𝑓 (3) (𝑥), 𝑓 (4) (𝑥) as 𝑓 ′, 𝑓 ′′, 𝑓 (3), 𝑓 (4) . After running two steps of gradient descent, we

123

have

𝑥0 = 𝑥 − 𝜖,

𝑓 ′(𝑥0) = 𝑓 ′ − 𝑓 ′′𝜖 +
1
2
𝑓 (3)𝜖2 − 1

6
𝑓 (4)𝜖3 + O(𝜖4)

= −𝑓 ′′𝜖 + 1
2
𝑓 (3)𝜖2 − 1

6
𝑓 (4)𝜖3 + O(𝜖4),

𝑥1 = 𝑥0 − 𝜂𝑓 ′(𝑥0) = 𝑥 − 𝜖 − 𝜂
(
− 𝑓 ′′𝜖 + 1

2
𝑓 (3)𝜖2 − 1

6
𝑓 (4)𝜖3) + O(𝜖4),

𝑓 ′(𝑥1) = 𝑓 ′′ · (𝑥1 − 𝑥) +
1
2
𝑓 (3) · (𝑥1 − 𝑥)2 +

1
6
𝑓 (4) · (𝑥1 − 𝑥)3 + O(𝜖4),

𝑥2 = 𝑥1 − 𝜂𝑓 ′(𝑥1),
𝑥2 − 𝑥0

𝜂
= −

(
−𝑓 ′′𝜖 + 1

2
𝑓 (3)𝜖2 − 1

6
𝑓 (4)𝜖3

)
− 𝑓 ′′ ·

(
−𝜖 − 𝜂

(
− 𝑓 ′′𝜖 + 1

2
𝑓 (3)𝜖2 − 1

6
𝑓 (4)𝜖3))

− 1
2
𝑓 (3)

(
−𝜖 − 𝜂

(
− 𝑓 ′′𝜖 + 1

2
𝑓 (3)𝜖2 − 1

6
𝑓 (4)𝜖3))2

− 1
6
𝑓 (4) · (−𝜖 − 𝜂 (−𝑓 ′′𝜖))3 + O(𝜖4)

= (2𝑓 ′′ − 𝜂𝑓 ′′𝑓 ′′) 𝜖 +
(
−1

2
𝑓 (3) + 1

2
𝜂𝑓 ′′𝑓 (3) − 1

2
𝑓 (3) (−1 + 𝜂𝑓 ′′)2

)
𝜖2

+
(
1
6
𝑓 (4) − 1

6
𝜂𝑓 ′′𝑓 (4) + 1

2
(−1 + 𝜂𝑓 ′′)𝜂𝑓 (3) 𝑓 (3) − 1

6
(−1 + 𝜂𝑓 ′′)3𝑓 (4)

)
𝜖3 + O(𝜖4).

When 𝜂 = 2
𝑓 ′′ , it holds

𝑥2 − 𝑥0

𝜂
=

(
1
2
𝜂𝑓 (3) 𝑓 (3) − 1

3
𝑓 (4)

)
𝜖3 + O(𝜖4), (B.6)

which would be positive if 1
2𝜂𝑓

(3) 𝑓 (3) − 1
3 𝑓
(4) = 1

3𝑓 ′′ (3[𝑓
(3)]2 − 𝑓 ′′𝑓 (4)) > 0 and |𝜖 | is sufficiently

small.

When 𝜂 = 2
𝑓 ′′−𝜖 ·𝑓 (3) then 𝜂𝑓

′′ = 2 + 2 𝑓
(3)

𝑓 ′′ 𝜖 + O(𝜖
2), it holds

𝑥2 − 𝑥0

𝜂
= −2𝑓 (3)𝜖2 +

(
−1

2
𝑓 (3) + 𝑓 (3) − 1

2
𝑓 (3)

)
𝜖2 + O(𝜖3) = −2𝑓 (3)𝜖2 + O(𝜖3), (B.7)

which is negative when |𝜖 | is sufficiently small.

124

Therefore, there exists a learning rate𝜂 ∈ (2
𝑓 ′′ ,

2
𝑓 ′′−𝜖 ·𝑓 (3)) such that𝑥2 = 𝑥0 due to the continuity

of (𝑥2 − 𝑥0) with respect to 𝜂.

The above proof can be generalized to the case of 𝑥0 = 𝑥 − 𝜖′ with 𝜖′ ∈ (0, 𝜖] and the learning

rate is still bounded as 𝜂 ∈ (2
𝑓 ′′ ,

2
𝑓 ′′−𝜖 ·𝑓 (3)). □

B.4 Proof of Lemma 3.2

Lemma B.5 (Restatement of Lemma 3.2). Consider any 1-D differentiable function 𝑓 (𝑥) around a

local minima 𝑥 , satisfying that the lowest order non-zero derivative (except the 𝑓 ′′) at 𝑥 is 𝑓 (𝑘) (𝑥)

with 𝑘 ⩾ 4. Then, there exists 𝜖 with sufficiently small |𝜖 | such that: for any point 𝑥0 between 𝑥 and

𝑥 − 𝜖 , and

1. if 𝑘 is odd and 𝜖 · 𝑓 (𝑘) (𝑥) > 0, 𝑓 (𝑘+1) (𝑥) < 0, then there exists 𝜂 ∈ (2
𝑓 ′′ ,

2
𝑓 ′′−𝑓 (𝑘)𝜖𝑘−2),

2. if 𝑘 is even and 𝑓 (𝑘) (𝑥) < 0, then there exists 𝜂 ∈ (2
𝑓 ′′ ,

2
𝑓 ′′+𝑓 (𝑘)𝜖𝑘−2),

such that: the update rule 𝐹𝜂 of GD satisfies 𝐹𝜂 (𝐹𝜂 (𝑥0)) = 𝑥0.

125

Proof. (1) If 𝑘 is odd, assuming 𝑓 (𝑘) > 0 for simplicity, we have

𝑥0 = 𝑥 − 𝜖,

𝑓 ′(𝑥0) = −𝑓 ′′𝜖 +
1

(𝑘 − 1)! 𝑓
(𝑘)𝜖𝑘−1 − 1

𝑘!
𝑓 (𝑘+1)𝜖𝑘 + O(𝜖𝑘+1),

𝑥1 = 𝑥0 − 𝜂𝑓 ′(𝑥0) = 𝑥 − 𝜖 + 𝜂𝑓 ′′𝜖 −
1

(𝑘 − 1)!𝜂𝑓
(𝑘)𝜖𝑘−1 + 1

𝑘!
𝜂𝑓 (𝑘+1)𝜖𝑘 + O(𝜖𝑘+1),

𝑓 ′(𝑥1) = 𝑓 ′′ · (𝑥1 − 𝑥) +
1

(𝑘 − 1)! 𝑓
(𝑘) · (𝑥1 − 𝑥)𝑘−1 + 1

𝑘!
𝑓 (𝑘+1) · (𝑥1 − 𝑥)𝑘 + O(𝜖𝑘+1),

𝑥2 − 𝑥0

𝜂
=
𝑥1 − 𝜂𝑓 ′(𝑥1) − 𝑥0

𝜂
= −𝑓 ′(𝑥0) − 𝑓 ′(𝑥1)

= (2𝑓 ′′ − 𝜂𝑓 ′′𝑓 ′′) 𝜖

+
(
− 1
(𝑘 − 1)! 𝑓

(𝑘) + 1
(𝑘 − 1)!𝜂𝑓

′′𝑓 (𝑘) − 1
(𝑘 − 1)! 𝑓

(𝑘) · (−1 + 𝜂𝑓 ′′)𝑘−1
)
𝜖𝑘−1

+
(

1
𝑘!
𝑓 𝑘+1 − 1

𝑘!
𝜂𝑓 ′′𝑓 (𝑘+1) − 1

𝑘!
𝑓 (𝑘+1) · (−1 + 𝜂𝑓 ′′)𝑘

)
𝜖𝑘 + O(𝜖𝑘+1)

When 𝜂 = 2
𝑓 ′′ , it holds

𝑥2 − 𝑥0

𝜂
= − 2

𝑘!
𝑓 (𝑘+1)𝜖𝑘 + O(𝜖𝑘+1). (B.8)

When 𝜂 = 2
𝑓 ′′−𝑓 (𝑘)𝜖𝑘−2 then 𝜂𝑓 ′′ = 2 + 2 𝑓

(𝑘)

𝑓 ′′ 𝜖
𝑘−2 + O(𝜖2𝑘−4), then it holds

𝑥2 − 𝑥0

𝜂
= −2𝑓 (𝑘)𝜖𝑘−1 + O(𝜖𝑘). (B.9)

Since 𝑘 is odd and 𝜖 · 𝑓 (𝑘) (𝑥) > 0, 𝑓 (𝑘+1) (𝑥) < 0, the above two estimations of 𝑥2−𝑥0/𝜂 have one

positive and one negative exactly. Therefore, due to the continuity of 𝑥2 − 𝑥0 wrt 𝜂, there exists

a learning rate 𝜂 ∈ (2
𝑓 ′′ ,

2
𝑓 ′′−𝑓 (𝑘)𝜖𝑘−2) such that 𝑥2 = 𝑥0.

The above proof can be generalized to any 𝑥0 between 𝑥 and 𝑥 −𝜖 with the same bound for 𝜂.

126

(2) If 𝑘 is even, we have

𝑥0 = 𝑥 − 𝜖,

𝑓 ′(𝑥0) = −𝑓 ′′𝜖 −
1

(𝑘 − 1)! 𝑓
(𝑘)𝜖𝑘−1 + O(𝜖𝑘),

𝑥1 = 𝑥0 − 𝜂𝑓 ′(𝑥0) = 𝑥 − 𝜖 + 𝜂𝑓 ′′𝜖 +
1

(𝑘 − 1)!𝜂𝑓
(𝑘)𝜖𝑘−1 + O(𝜖𝑘),

𝑓 ′(𝑥1) = 𝑓 ′′ · (𝑥1 − 𝑥) +
1

(𝑘 − 1)! 𝑓
(𝑘) · (𝑥1 − 𝑥)𝑘−1 + O(𝜖𝑘),

𝑥2 − 𝑥0

𝜂
=
𝑥1 − 𝜂𝑓 ′(𝑥1) − 𝑥0

𝜂
= −𝑓 ′(𝑥0) − 𝑓 ′(𝑥1)

= (2𝑓 ′′ − 𝜂𝑓 ′′𝑓 ′′) 𝜖

+
(

1
(𝑘 − 1)! 𝑓

(𝑘) − 1
(𝑘 − 1)!𝜂𝑓

′′𝑓 (𝑘) − 1
(𝑘 − 1)! (−1 + 𝜂𝑓 ′′)𝑘−1

)
𝜖𝑘−1 + O(𝜖𝑘).

When 𝜂 = 2
𝑓 ′′ , it holds

𝑥2 − 𝑥0

𝜂
= − 2
(𝑘 − 1)! 𝑓

(𝑘)𝜖𝑘−1 + O(𝜖𝑘).

When 𝜂 = 2
𝑓 ′′+𝑐 ·𝑓 (𝑘)𝜖𝑘−2 with 𝑐 > 0 as some constant implying 𝜂𝑓 ′′ = 2(1−𝑐 𝑓

(𝑘)

𝑓 ′′ 𝜖
𝑘−2)+O(𝜖2𝑘−4),

then it holds

𝑥2 − 𝑥0

𝜂
= 2

(
𝑐 − 1
(𝑘 − 1)!

)
𝑓 (𝑘)𝜖𝑘−1 + O(𝜖𝑘),

where we then set 𝑐 = 1.

Hence, the above two estimations of 𝑥2−𝑥0/𝜂 have one positive and one negative with suffi-

ciently small |𝜖 |. Therefore, due to the continuity of 𝑥2 − 𝑥0, there exists a learning rate 𝜂 ∈

(2
𝑓 ′′ ,

2
𝑓 ′′+𝑓 (𝑘)𝜖𝑘−2) such that 𝑥2 = 𝑥0.

The above proof can be generalized to any 𝑥0 between 𝑥 and 𝑥 − 𝜖 with the same bound for

𝜂. □

127

Corollary 1. 𝑓 (𝑥) = sin(𝑥) allows stable oscillation around its local minima 𝑥 .

Proof. Its lowest order nonzero derivative (expect 𝑓 ′′) is 𝑓 (4)𝑥 = sin(𝑥) = −1 < 0 and the order 4

is even. Then Lemma 3.2 gives the result. □

B.5 Proof of Prop 1

Proposition 9 (Restatement of Prop 1). Consider a 1-D function 𝑔(𝑥) , and define the loss function

𝑓 as 𝑓 (𝑥) = (𝑔(𝑥) − 𝑦)2. Assuming (i) 𝑔′ is not zero when 𝑔(𝑥) = 𝑦, (ii) 𝑔′(𝑥)𝑔(3) (𝑥) < 6[𝑔′′(𝑥)]2,

then it satisfies the condition in Theorem 3.1 or Lemma 3.2 to allow period-2 stable oscillation around

𝑥 .

Proof. From the definition, we have

𝑓 ′′(𝑥) = 2[𝑔(𝑥) − 𝑦]𝑔′′(𝑥) + 2[𝑔′(𝑥)]2, (B.10)

𝑓 (3) (𝑥) = 2[𝑔(𝑥) − 𝑦]𝑔(3) (𝑥) + 6𝑔′′(𝑥)𝑔′(𝑥), (B.11)

𝑓 (4) (𝑥) = 2[𝑔(𝑥) − 𝑦]𝑔(4) (𝑥) + 6𝑔′′(𝑥)𝑔′′(𝑥) + 8𝑔′(𝑥)𝑔(3) (𝑥). (B.12)

Then at the global minima where𝑔(𝑥) = 𝑦, we have 𝑓 ′′(𝑥) = 2[𝑔′(𝑥)]2 and 𝑓 (3) (𝑥) = 6𝑔′′(𝑥)𝑔′(𝑥).

If we assume 𝑦 is not a trivial value for 𝑔(𝑥), which means 𝑔′(𝑥) ≠ 0 at the minima, and 𝑔 is

not linear around the minima (implies 𝑔′′ ≠ 0), then 𝑓 satisfies 𝑓 (3) (𝑥) ≠ 0 in Theorem 3.1.

Meanwhile, we need 3𝑓 (3) 𝑓 (3) − 𝑓 ′′𝑓 (4) > 0 as in Theorem 3.1, hence it requires

1
2𝑔′(𝑥)𝑔′(𝑥) 36𝑔′′(𝑥)𝑔′′(𝑥)𝑔′(𝑥)𝑔′(𝑥) − 1

3

(
6𝑔′′(𝑥)𝑔′′(𝑥) + 8𝑔′(𝑥)𝑔(3) (𝑥)

)
> 0 (B.13)

6𝑔′′(𝑥)𝑔′′(𝑥) > 𝑔′(𝑥)𝑔(3) (𝑥). (B.14)

The remaining case is, if 𝑔′(𝑥) ≠ 0 and 𝑔′′ = 0 at the minima, it satisfies the condition for

Lemma 3.2 with 𝑘 = 4, because 𝑓 (3) = 0 and 𝑓 (4) < 0 due to (B.12, B.14) □

128

Corollary 2. 𝑓 (𝑥) = (𝑥2 − 1)2 allows stable oscillation around the local minima 𝑥 = 1.

Proof. With 𝑔(𝑥) = 𝑥2, it has 𝑔′(1) = 2 ≠ 0, 𝑔′′(1) = 2 ≠ 0. All higher order derivatives of 𝑔 are

zero. Then Prop 1 gives the result. □

Corollary 3. 𝑓 (𝑥) = (sin(𝑥) −𝑦)2 allows stable oscillation around the local minima 𝑥 = arcsin(𝑦)

with 𝑦 ∈ (−1, 1).

Proof. With 𝑔(𝑥) = sin(𝑥), it has 𝑔′(𝑥) = cos(𝑥) ≠ 0, 𝑔(3) (𝑥) = − cos(𝑥). We have 𝑔(3) (𝑥) is

bounded as 𝑔′𝑔(3) − 6[𝑔′′]2 = − cos2(𝑥) − 6 sin2(𝑥) < 0. Then Prop 1 gives the result. □

Corollary 4. 𝑓 (𝑥) = (tanh(𝑥)−𝑦)2 allows stable oscillation around the localminima𝑥 = tanh−1(𝑦)

with 𝑦 ∈ (−1, 1).

Proof. With𝑔(𝑥) = tanh(𝑥), it has𝑔′(𝑥) = sech2(𝑥) ≠ 0, and𝑔(3) (𝑥) = −2sech4(𝑥)+4sech2(𝑥) tanh2(𝑥)

is bounded as

𝑔′𝑔(3) − 6[𝑔′′]2 = −2sech6 + 4sech4 tanh2 −24sech4 tanh2 = −2sech6 − 20sech4 tanh2 < 0.

Then Prop 1 gives the result. □

Corollary 5. 𝑓 (𝑥) = (𝑥𝛼−𝑦)2 (with 𝑘 ∈ Z, 𝑘 ⩾ 2) allows stable oscillation around the local minima

𝑥 = 𝑦
1/𝛼

except 𝑦 = 0.

Proof. With 𝑔(𝑥) = 𝑥𝛼 , it has 𝑔′(𝑥) = 𝛼𝑥𝛼−1, 𝑔′′(𝑥) = 𝛼 (𝛼 − 1)𝑥𝛼−2, 𝑔(3) (𝑥) = 𝛼 (𝛼 − 1) (𝛼 − 2)𝑥𝛼−3.

Then we have 𝑔′𝑔(3) − 6[𝑔′′]2 = 𝛼2(𝛼 − 1) (−5𝛼 + 4)𝑥2𝛼−4 < 0. Then Prop 1 gives the result. □

Corollary 6. 𝑓 (𝑥) = (exp(𝑥) −𝑦)2 allows stable oscillation around the local minima 𝑥 = log𝑦 for

𝑦 > 0.

Proof. With𝑔(𝑥) = exp𝑥 , it has𝑔′(𝑥) = 𝑔′′(𝑥) = 𝑔(3) (𝑥) = exp(𝑥). Then we have𝑔′𝑔(3)−6[𝑔′′]2 <

0. Then Prop 1 gives the result. □

129

Corollary 7. 𝑓 (𝑥) = (log(𝑥) − 𝑦)2 allows stable oscillation around the local minima 𝑥 = exp𝑦.

Proof. With 𝑔(𝑥) = 𝑙𝑜𝑔𝑥 , it has 𝑔′(𝑥) = 1
𝑥
, 𝑔′′(𝑥) = − 1

𝑥2 , 𝑔
(3) (𝑥) = − 2

𝑥3 . Then we have 𝑔′𝑔(3) −

6[𝑔′′]2 < 0. Then Prop 1 gives the result. □

Corollary 8. 𝑓 (𝑥) = (1
1+exp(−𝑥) − 𝑦)

2
allows stable oscillation around the local minima 𝑥 =

sigmoid
−1(𝑦) for 𝑦 ∈ (0, 1).

Proof. With 𝑔(𝑥) = 1
1+exp(−𝑥) , it has 𝑔

′(𝑥) =
exp(−𝑥)

(exp(−𝑥)+1)2 , 𝑔
′′(𝑥) = − exp(𝑥) (exp(𝑥)−1)

(exp(𝑥)+1)3 , 𝑔(3) (𝑥) =

exp(𝑥) (−4 exp(𝑥)+exp(2𝑥)+1)
(exp(𝑥)+1)4 . Then we have𝑔′𝑔(3)−6[𝑔′′]2 ∝ −4 exp(𝑥)+exp(2𝑥)+1−6(exp(𝑥)−1)2 <

0. Then Prop 1 gives the result. □

Proposition 10 (Restatement of Prop 2). Consider two functions 𝑓 , 𝑔. Assume both 𝑓 (𝑥), 𝑔(𝑦) at

𝑥 = 𝑥,𝑦 = 𝑓 (𝑥) satisfies the conditions in Prop 1 to allow stable oscillations. Then 𝑔(𝑓 (𝑥)) allows

stable oscillation around 𝑥 = 𝑥 .

Proof. Denote 𝐹 (𝑥) ≜ 𝑔(𝑓 (𝑥)). Then we have

𝐹 ′(𝑥) = 𝑔′(𝑓 (𝑥)) 𝑓 ′(𝑥),

𝐹 ′′(𝑥) = 𝑔′′(𝑓 (𝑥)) [𝑓 ′(𝑥)]2 + 𝑔′(𝑓 (𝑥)) 𝑓 ′′(𝑥),

𝐹 (3) (𝑥) = 𝑔(3) (𝑓 (𝑥)) [𝑓 ′(𝑥)]3 + 3𝑔′′(𝑓 (𝑥)) 𝑓 ′(𝑥) 𝑓 ′′(𝑥) + 𝑔′(𝑓 (𝑥)) 𝑓 (3) (𝑥).

Thus, omitting all variables 𝑥 and 𝑓 (𝑥) in the derivatives, it holds

𝐹 ′(𝑥)𝐹 (3) (𝑥) − 6[𝐹 ′′(𝑥)]2 = 𝑔′𝑓 ′
(
𝑔(3) (𝑓 ′)3 + 3𝑔′′𝑓 ′𝑓 ′′ + 𝑔′𝑓 (3)

)
− 6

(
𝑔′′(𝑓 ′)2 + 𝑔′𝑓 ′′

)2

⩽ −9𝑔′𝑔′′(𝑓 ′)2𝑓 ′′,

where the inequality is due to all conditions in Prop 1. So the only problem is whether we can

achieve 𝑔′𝑔′′𝑓 ′′ > 0. The good news is that, even if it holds 𝑔′𝑔′′𝑓 ′′ < 0, we can still find functions

130

to re-represent 𝑔(𝑓 (𝑥)) as 𝑔(𝑓 (𝑥)) such that 𝑔′𝑔′′𝑓 ′′ < 0 and all other conditions in Prop 1 are

satisfied by 𝑔, 𝑓 .

For 𝑔′𝑔′′𝑓 ′′ < 0, construct 𝑔(𝑦) ≜ 𝑔(−𝑦), 𝑓 (𝑥) ≜ −𝑓 (𝑥). In this sense, it holds 𝑔(𝑓 (𝑥)) =

𝑔(𝑓 (𝑥)). It is easy to verify that both 𝑔, 𝑓 at 𝑦 = −𝑓 (𝑥), 𝑥 = 𝑥 satisfy the conditions in Prop 1,

because

𝑔′(𝑦) = −𝑔′(−𝑦) = −𝑔′(𝑓 (𝑥)), 𝑔′′(𝑦) = 𝑔′′(−𝑦) = 𝑔′′(𝑓 (𝑥)), 𝑔(3) (𝑦) = −𝑔(3) (−𝑦) = −𝑔(3) (𝑓 (𝑥)),

𝑓 ′(𝑥) = −𝑓 ′(𝑥), 𝑓 ′′(𝑥) = −𝑓 ′′(𝑥), 𝑓 (3) (𝑦) = −𝑓 (3) (𝑥).

Then, it has𝑔′(𝑦)𝑔′′(𝑦) 𝑓 ′′(𝑥) = −𝑔′𝑔′′𝑓 ′′ > 0 at𝑦 = −𝑓 (𝑥), 𝑥 = 𝑥 . Therefore, we have 𝐹 ′(𝑥)𝐹 (3) (𝑥)−

6[𝐹 ′′(𝑥)]2 < 0 and Prop 1 gives the result. □

B.6 Proof of Theorem 3.3

Theorem B.6 (Restatement of Theorem 3.3). For 𝑓 (𝑥) = 1
4 (𝑥

2 − 𝜇)2, consider GD with 𝜂 = 𝐾 · 1
𝜇

where 1 < 𝐾 <
√

4.5− 1 ≈ 1.121, and initialized on any point 0 < 𝑥0 <
√
𝜇. Then it converges to an

orbit of period 2, except for a measure-zero initialization where it converges to

√
𝜇. More precisely,

the period-2 orbit are the solutions 𝑥 = 𝛿1 ∈ (0,
√
𝜇), 𝑥 = 𝛿2 ∈ (

√
𝜇, 2√𝜇) of solving 𝛿 in

𝜂 =
1

𝛿2
(√︃

𝜇

𝛿2 − 3
4 +

1
2

) . (B.15)

Proof. Assume the 2-period orbit is (𝑥0, 𝑥1), which means

𝑥1 = 𝑥0 − 𝜂 · 𝑓 ′(𝑥0) = 𝑥0 + 𝜂 · (𝜇 − 𝑥2
0)𝑥0,

𝑥0 = 𝑥1 − 𝜂 · 𝑓 ′(𝑥1) = 𝑥1 + 𝜂 · (𝜇 − 𝑥2
1)𝑥1.

First, we show the existence and uniqueness of such an orbit when 𝐾 ∈ (1, 1.5] via solving

131

a high-order equation, some roots of which can be eliminated. Then, we conduct an analysis of

global convergence by defining a special interval 𝐼 . GD starting from any point following our

assumption will enter 𝐼 in some steps, and any point in 𝐼 will back to this interval after two steps

of iteration. Finally, any point in 𝐼 will converge to the orbit (𝑥0, 𝑥1).

Before diving into the proof, we briefly show it always holds 𝑥 > 0 under our assumption. If

𝑥𝑡−1 > 0 and 𝑥𝑡 ⩽ 0, the GD rule reveals 𝜂 (𝜇 − 𝑥2
𝑡−1) ⩽ −1 which implies 𝑥2

𝑡−1 ⩾ 𝜇 +
1
𝜂
. However,

the maximum of 𝑥+𝜂 (𝜇−𝑥2)𝑥 on 𝑥 ∈ (0,
√︃
𝜇 + 1

𝜂
) is achieved when 𝑥2 = 1

3 (𝜇+
1
𝜂
) so the maximum

value is
√︃

1
3 (𝜇 +

1
𝜂
) (23 +

2
3𝜂𝜇) ⩽ 1.4

√︃
1
3 (𝜇 +

1
𝜂
) <

√︃
𝜇 + 1

𝜂
. As a result, it always holds 𝑥 > 0.

Part I. Existence and uniqueness of (𝑥0, 𝑥1).

In this part, we simply denote both 𝑥0, 𝑥1 as 𝑥0. This means 𝑥0 in all formulas in this part can

be interpreted as 𝑥0 and 𝑥1. Then the GD update rule tells, for the orbit in two steps,

𝑥0 ↦→ 𝑥1 B 𝑥0 + 𝜂 (𝜇 − 𝑥2
0)𝑥0,

𝑥1 ↦→ 𝑥0 = 𝑥1 + 𝜂 (𝜇 − 𝑥2
1)𝑥1,

which means

0 = 𝜂 (𝜇 − 𝑥2
0)𝑥0 + 𝜂

(
𝜇 −

(
𝑥0 + 𝜂 (𝜇 − 𝑥2

0)𝑥0
)2

) (
𝑥0 + 𝜂 (𝜇 − 𝑥2

0)𝑥0
)
,

0 = 𝜇 − 𝑥2
0 +

(
𝜇 −

(
𝑥0 + 𝜂 (𝜇 − 𝑥2

0)𝑥0
)2

) (
1 + 𝜂 (𝜇 − 𝑥2

0)
)
.

Denote 𝑧 B 1 + 𝜂 (𝜇 − 𝑥2
0), it is equivalent to

0 = 𝜇 − 𝑥2
0 + (𝜇 − 𝑧2𝑥2

0)𝑧 = (𝑧 + 1) (−𝑥2
0𝑧

2 + 𝑥2
0𝑧 + 𝜇 − 𝑥2

0)

= (𝑧 + 1)
(
−𝑥2

0 (𝑧 −
1
2
)2 + 𝜇 − 3

4
𝑥2

0

)
.

If 𝑧 + 1 = 0, it means 𝑥1 = −𝑥0 which is however out of the range of our discussion on the 𝑥 > 0

132

domain. So we require −𝑥2
0 (𝑧 −

1
2)

2 + 𝜇 − 3
4𝑥

2
0 = 0. To ensure the existence of solutions 𝑧, it is

natural to require

𝜇 − 3
4
𝑥2

0 ⩾ 0.

Then, the solutions are

𝑧 =
1
2
±

√︄
𝜇

𝑥2
0
− 3

4
.

However, 𝑧 = 1
2 −

√︃
𝜇

𝑥2
0
− 3

4 can be ruled out. If it holds, 𝜂 (𝜇 − 𝑥2
0) = 𝑧 − 1 < −1

2 which means

𝑥2
0 > 𝜇 + 1

2𝜂 . Since we restrict 𝜂𝜇 ∈ (1, 1.121], it tells 𝑥2
0 > 𝜇 (1 + 1

1.242) contradicting with 𝜇 ⩾
3
4𝑥

2
0 .

Hence, 𝑧 = 1
2 +

√︃
𝜇

𝑥2
0
− 3

4 is the only reasonable solution, which is saying

𝜂 (𝜇 − 𝑥2
0) = −

1
2
+

√︄
𝜇

𝑥2
0
− 3

4
.

Given a certain 𝜂, the above expression is a third-order equation of 𝑥2
0 to solve. Apparently

𝑥2
0 = 𝜇 is one trivial solution, since for any learning rate, the gradient descent stays at the global

minimum. Then the two other solutions are exactly the orbit (𝑥0, 𝑥1), if the equation does have

three different roots. This also guarantees the uniqueness of such an orbit.

Assuming 𝑥2
0 ≠ 𝜇, the above expression can be reformulated as

𝜂 =
1

𝑥2
0

(√︃
𝜇

𝑥2
0
− 3

4 +
1
2

) . (B.16)

One necessary condition for existence is 𝜇 ⩾ 3
4𝑥

2
0 . Note that here 𝑥0 can be both 𝑥0, 𝑥1, one

of which is larger than √𝜇. For simplicity, we assume 𝑥0 <
√
𝜇 < 𝑥1. Since 𝜂 from Eq(B.16) is

133

increasing with 𝑥2
0 when 𝜇 < 𝑥2

0 , let 𝑥
2
0 = 4

3𝜇 and achieve the upper bound as

𝜂𝜇 ⩽
3
2
, (B.17)

which is satisfied by our assumption 1 < 𝜂𝜇 <
√

4.5 − 1 ≈ 1.121.

Therefore, we have shown the existence and uniqueness of a period-2 orbit.

Part II. Global convergence to (𝑥0, 𝑥1).

The proof structure is as follows:

1. There exists a special interval 𝐼 B [𝑥𝑠,
√
𝜇) such that any point in 𝐼 will back to this interval

surely after two steps of gradient descent. And 𝑥0 ∈ 𝐼 .

2. Initialized from any point in 𝐼 , the gradient descent process will converge to 𝑥0 (every two

steps of GD).

3. Initialized from any point between 0 and √𝜇, the gradient descent process will fall into 𝐼 in

some steps.

(II.1) Consider a function 𝐹𝜂 (𝑥) = 𝑥 + 𝜂 (𝜇 − 𝑥2)𝑥 performing one step of gradient descent.

Since 𝐹 ′𝜂 (𝑥) = 1 + 𝜂𝜇 − 3𝜂𝑥2, we have 𝐹 ′𝜂 (𝑥) > 0 for 0 < 𝑥2 < 1
3

(
𝜇 + 1

𝜂

)
and 𝐹 ′𝜂 (𝑥) < 0 otherwise.

It is obvious that the threshold has 𝑥2
𝑠 B

1
3

(
𝜇 + 1

𝜂

)
< 𝜇. In the other words, for any point on the

right of 𝑥𝑠 , GD returns a point in a decreasing manner.

To prove anything further, we would like to restrict 𝑥0 ⩾ 𝑥𝑠 , which is

𝑥2
0 ⩾

1
3

(
𝜇 + 1

𝜂

)
=

1
3

(
𝜇 + 𝑥2

0

(√︄
𝜇

𝑥2
0
− 3

4
+ 1

2

))
.

Solving this inequality tells

𝑥2
0 ⩾

3 +
√

2
7

𝜇. (B.18)

134

Consequently, by applying Eq(B.16), we have

𝜂𝜇 ⩽
√

4.5 − 1 ≈ 1.121. (B.19)

With the above discussion of 𝑥𝑠 , we are able to define the special internal 𝐼 B [𝑥𝑠,
√
𝜇). From

the definition of 𝐹𝜂 , consider a function representing two steps of gradient descent 𝐹 2
𝜂 (𝑥) B

𝐹𝜂 (𝐹𝜂 (𝑥)). From previous discussion, we know 𝐹 2
𝜂 (𝑥0) = 𝑥0. What about 𝐹 2

𝜂 (𝑥𝑠)?

It turns out 𝐹 2
𝜂 (𝑥𝑠) > 𝑥𝑠 : we have 𝐹𝜂 (𝑥𝑠) = 𝑥𝑠 (1 + 𝜂𝜇 − 𝜂𝑥2

𝑠) = 𝑥𝑠 · 2
3 (1 + 𝜂𝜇) and, furthermore,

𝐹 2
𝜂 (𝑥𝑠) = 𝐹𝜂 (𝑥𝑠 · 2

3 (1 + 𝜂𝜇)) = 𝑥𝑠 · 2
3 (1 + 𝜂𝜇) ·

(
1 + 𝜂𝜇 − 4

27 (1 + 𝜂𝜇)
3) . Then we get 𝐹 2

𝜂 (𝑥𝑠) > 𝑥𝑠

because

2
3
(1 + 𝜂𝜇) ·

(
1 + 𝜂𝜇 − 4

27
(1 + 𝜂𝜇)3

)
> 1 if 𝜂𝜇 ∈ (1,

√
4.5 − 1). (B.20)

Combining the following facts, i) 𝐹 2
𝜂 (𝑥) −𝑥 is continous wrt 𝑥 , ii) 𝐹 2

𝜂 (𝑥𝑠) −𝑥𝑠 > 0, and iii) 𝐹 2
𝜂 (𝑥0) −

𝑥0 = 0 is the only zero point on 𝑥 ∈ [𝑥𝑠, 𝑥0], we can conclude that

𝐹 2
𝜂 (𝑥) > 𝑥, ∀𝑥 ∈ [𝑥𝑠, 𝑥0). (B.21)

Meanwhile, we can prove 𝐹 2
𝜂 (𝑥) < 𝑥 for any 𝑥 ∈ (𝑥0,

√
𝜇). Since 𝐹 2

𝜂 (𝜇)−𝜇 = 0 and 𝐹 2
𝜂 (𝑥0)−𝑥0 =

0 are the only two zero cases, we only need to show ∃ 𝑥 ∈ (𝑥0,
√
𝜇), such that 𝐹 2

𝜂 (𝑥) < 𝑥 . We

compute the derivative of 𝐹 2
𝜂 (𝑥)−𝑥 at 𝑥2 = 𝜇, which is 𝑑

𝑑𝑥
𝐹 2
𝜂 (𝑥)−𝑥 |𝑥2=𝜇 = −1+𝐹 ′(𝐹 (𝑥))𝐹 ′(𝑥) |𝑥2=𝜇 =

−1 + [𝐹 ′(√𝜇)]2 = −1 + (1 − 2𝜂𝜇)2 > 0. Then combining it with 𝐹 2
𝜂 (𝑥0) = 𝑥0, there exists a point

𝑥 ∈ (𝑥0,
√
𝜇) that is very close to √𝜇 such that 𝐹 2

𝜂 (𝑥) < 𝑥 . Hence, we can conclude that

𝐹 2
𝜂 (𝑥) < 𝑥, ∀𝑥 ∈ (𝑥0,

√
𝜇). (B.22)

Since 𝐹𝜂 (·) is decreasing on [𝑥𝑠,∞) and 𝐹𝜂 (𝑥) > 𝑥𝑠 for 𝑥 ∈ [𝑥𝑠,
√
𝜇], it is fair to say 𝐹 2

𝜂 (𝑥) is

135

increasing on 𝑥 ∈ [𝑥𝑠,
√
𝜇]. Hence, we have 𝐹 2

𝜂 (𝑥) ⩽ 𝐹 2
𝜂 (𝑥0) = 𝑥0, ∀𝑥 ∈ [𝑥𝑠, 𝑥0]. And 𝐹 2

𝜂 (𝑥) ⩾

𝐹 2
𝜂 (𝑥0) = 𝑥0, ∀𝑥 (𝑥0,

√
𝜇)

Combining the above results, we have

𝐹 2
𝜂 (𝑥) ∈ (𝑥, 𝑥0], ∀𝑥 ∈ [𝑥𝑠, 𝑥0), (B.23)

𝐹 2
𝜂 (𝑥) ∈ [𝑥0, 𝑥), ∀𝑥 ∈ (𝑥0,

√
𝜇). (B.24)

(II.2) A consequence of Exp(B.23, B.24) is that any point in 𝐼 will converge to 𝑥0 with even

steps of gradient descent. For simplicity, we provide the proof for 𝑥 ∈ [𝑥𝑠, 𝑥0).

Denote 𝑎0 ∈ [𝑥𝑠, 𝑥0) and 𝑎𝑛 B 𝐹 2
𝜂 (𝑎𝑛−1), 𝑛 ⩾ 1. The series {𝑎𝑖}𝑖⩾0 satisfies

𝑥0 ⩾ 𝑎𝑛+1 > 𝑎𝑛 > 𝑎0. (B.25)

Since the series is bounded and strictly increasing, it is converging. Assume it is converging

to 𝑎. If 𝑎 < 𝑥0, then

𝑥0 ⩾ 𝐹
2
𝜂 (𝑎) > 𝑎 > 𝐹 2

𝜂 (𝑎𝑛).

Since 𝐹 2
𝜂 (·) is continuous, so ∃ 𝛿 > 0, such that, when |𝑥 − 𝑎 | < 𝛿 , we have

|𝐹 2
𝜂 (𝑥) − 𝐹 2

𝜂 (𝑎) | < 𝐹 2
𝜂 (𝑎) − 𝑎. (B.26)

Since 𝑎 is the limit, so ∃ 𝑁 > 0, such that, when 𝑛 > 𝑁 , 0 < 𝑎 − 𝐹 2
𝜂 (𝑎𝑛) < 𝛿 . So, combining with

Exp(B.26), we have

|𝐹 2
𝜂 (𝐹 2

𝜂 (𝑎𝑛)) − 𝐹 2
𝜂 (𝑎) | < 𝐹 2

𝜂 (𝑎) − 𝑎.

But LHS = 𝐹 2
𝜂 (𝑎) − 𝑎𝑛+2 > 𝐹 2

𝜂 (𝑎) − 𝑎, so we reach a contradiction.

Hence, we have {𝑎𝑖} converges to 𝑥0.

(II.3)Obviously, any initialization in (0,√𝜇) will have gradient descent run into (i) the interval

136

𝐼 , or (ii) the interval on the right of √𝜇, i.e., (√𝜇,∞). The first case is exactly our target.

Now consider the second case. From the definition of 𝑥𝑠 in part III.1, we know 𝐹𝜂 (𝑥𝑠) =

max𝑥∈[0,√𝜇] 𝐹𝜂 (𝑥). So it is fair to say this case is 𝑥𝑛 ∈ (
√
𝜇, 𝐹𝜂 (𝑥𝑠)]. Then the next step will go into

the interval 𝐼 , because

𝐹𝜂 (𝑥𝑛) ⩾ 𝐹𝜂 (𝐹𝜂 (𝑥𝑠)) = 𝐹 2
𝜂 (𝑥𝑠) > 𝑥𝑠,

where the first inequality is from the decreasing property of 𝐹𝜂 (·) and the second inequality is

due to 𝐹 2
𝜂 (𝑥) > 𝑥 on 𝑥 ∈ [𝑥𝑠, 𝑥0). □

B.7 Proof of Theorem 3.4

Theorem B.7 (Restatement of Theorem 3.4). For 𝑓 (𝑥,𝑦) = 1
2 (𝑥𝑦 − 𝜇)

2
, consider GD with learning

rate 𝜂 = 𝐾 · 1
𝜇
. Assume both 𝑥 and 𝑦 are always positive during the whole process {𝑥𝑖, 𝑦𝑖}𝑖⩾0. In this

process, denote a series of all points with 𝑥𝑦 > 𝜇 as P = {(𝑥𝑖, 𝑦𝑖) |𝑥𝑖𝑦𝑖 > 𝜇}. Then |𝑥 −𝑦 | decays to 0

in P, for any 1 < 𝐾 < 1.5.

Proof. Consider the current step is at (𝑥𝑡 , 𝑦𝑡) with 𝑥𝑡𝑦𝑡 > 𝜇. After two steps of gradient descent,

we have

𝑥𝑡+1 = 𝑥𝑡 + 𝜂 (𝜇 − 𝑥𝑡𝑦𝑡)𝑦𝑡 (B.27)

𝑦𝑡+1 = 𝑦𝑡 + 𝜂 (𝜇 − 𝑥𝑡𝑦𝑡)𝑥𝑡 (B.28)

𝑥𝑡+2 = 𝑥𝑡+1 + 𝜂 (𝜇 − 𝑥𝑡+1𝑦𝑡+1)𝑦𝑡+1 (B.29)

𝑦𝑡+2 = 𝑦𝑡+1 + 𝜂 (𝜇 − 𝑥𝑡+1𝑦𝑡+1)𝑥𝑡+1, (B.30)

137

with which we have the difference evolve as

𝑦𝑡+1 − 𝑥𝑡+1 = (𝑦𝑡 − 𝑥𝑡) (1 − 𝜂 (𝜇 − 𝑥𝑡𝑦𝑡)) (B.31)

𝑦𝑡+2 − 𝑥𝑡+2 = (𝑦𝑡+1 − 𝑥𝑡+1) (1 − 𝜂 (𝜇 − 𝑥𝑡+1𝑦𝑡+1)) . (B.32)

Meanwhile, we have

𝑥𝑡+1𝑦𝑡+1 = 𝑥𝑡𝑦𝑡 + 𝜂 (𝜇 − 𝑥𝑡𝑦𝑡)
(
𝑥2
𝑡 + 𝑦2

𝑡

)
+ 𝜂2 (𝜇 − 𝑥𝑡𝑦𝑡)2 𝑥𝑡𝑦𝑡

= 𝑥𝑡𝑦𝑡 (1 + 𝜂 (𝜇 − 𝑥𝑡𝑦𝑡))2 + 𝜂 (𝜇 − 𝑥𝑡𝑦𝑡) (𝑥𝑡 − 𝑦𝑡)2 (B.33)

Note that the second term in Eq(B.33) vanishes when 𝑥 and 𝑦 are balanced. When they are not

balanced, if 𝑥𝑡𝑦𝑡 > 𝜇, it holds 𝑥𝑡+1𝑦𝑡+1 < 𝑥𝑡𝑦𝑡 (1 + 𝜂 (𝜇 − 𝑥𝑡𝑦𝑡))2. Incorporating this inequality

into Eq(B.31, B.32) and assuming 𝑦𝑡 − 𝑥𝑡 > 0, it holds

𝑦𝑡+2 − 𝑥𝑡+2 < (𝑦𝑡 − 𝑥𝑡) (1 − 𝜂 (𝜇 − 𝑥𝑡𝑦𝑡))
(
1 − 𝜂

(
𝜇 − 𝑥𝑡𝑦𝑡 (1 + 𝜂 (𝜇 − 𝑥𝑡𝑦𝑡))2

))
. (B.34)

To show that |𝑥 − 𝑦 | is decaying as in the theorem, we are to show

1. 𝑦𝑡+2 − 𝑥𝑡+2 < 𝑦𝑡 − 𝑥𝑡

2. 𝑦𝑡+2 − 𝑥𝑡+2 > −(𝑦𝑡 − 𝑥𝑡)

Note that, although 𝑥𝑡𝑦𝑡 > 𝜇, it is not sure to have 𝑥𝑡+2𝑦𝑡+2 > 𝜇. However, for any 0 < 𝑥𝑖𝑦𝑖 < 𝜇

and 𝐾 < 2, we have

|𝑥𝑖+1 − 𝑦𝑖+1 |
|𝑥𝑖 − 𝑦𝑖 |

= |1 − 𝜂 (𝜇 − 𝑥𝑖𝑦𝑖) | < 1, (B.35)

which is saying |𝑥 − 𝑦 | decays until it reaches 𝑥𝑦 > 𝜇. So it is enough to prove the above two

inequalities, whether or not 𝑥𝑡+2𝑦𝑡+2 > 𝜇.

138

Part I. To show 𝑦𝑡+2 − 𝑥𝑡+2 < 𝑦𝑡 − 𝑥𝑡

Since we wish to have 𝑦𝑡+2 − 𝑥𝑡+2 < 𝑦𝑡 − 𝑥𝑡 , it is sufficient to require

(1 − 𝜂 (𝜇 − 𝑥𝑡𝑦𝑡))
(
1 − 𝜂

(
𝜇 − 𝑥𝑡𝑦𝑡 (1 + 𝜂 (𝜇 − 𝑥𝑡𝑦𝑡))2

))
< 1. (B.36)

Since we assume 𝑥𝑡+1, 𝑦𝑡+1 > 0, Eq (B.27, B.28) tells 𝜂 (𝜇 − 𝑥𝑡𝑦𝑡) > −min{𝑥𝑡
𝑦𝑡
,
𝑦𝑡
𝑥𝑡
}, which is

equivalent to 1 − 𝜂 (𝜇 − 𝑥𝑡𝑦𝑡) < 1 +min{𝑥𝑡
𝑦𝑡
,
𝑦𝑡
𝑥𝑡
}.

(I.1) If 𝜂 (𝜇 − 𝑥𝑡+1𝑦𝑡+1) ⩾ 1
2

Then we have 1 − 𝜂 (𝜇 − 𝑥𝑡+1𝑦𝑡+1) ⩽ 1
2 . As a result,

𝑦𝑡+2 − 𝑥𝑡+2
𝑦𝑡 − 𝑥𝑡

= (1 − 𝜂 (𝜇 − 𝑥𝑡𝑦𝑡)) (1 − 𝜂 (𝜇 − 𝑥𝑡+1𝑦𝑡+1)) <
(
1 +min{𝑥𝑡

𝑦𝑡
,
𝑦𝑡

𝑥𝑡
}
)
× 1

2
(B.37)

=
1
2
+ 1

2
min{𝑥𝑡

𝑦𝑡
,
𝑦𝑡

𝑥𝑡
} (B.38)

(I.2) If 𝜂 (𝜇 − 𝑥𝑡+1𝑦𝑡+1) < 1
2 and 𝑥𝑡+1𝑦𝑡+1 ⩽ 𝑥2

𝑠 =
1
3

(
𝜇 + 1

𝜂

)
The second condition reveals

𝑦𝑡+2 − 𝑥𝑡+2
𝑦𝑡+1 − 𝑥𝑡+1

= 1 − 𝜂 (𝜇 − 𝑥𝑡+1𝑦𝑡+1) ⩽ 1 − 𝜂
(
𝜇 − 1

3

(
𝜇 + 1

𝜂

))
=

4
3
− 2

3
𝐾. (B.39)

The first condition is equivalent to 𝑥𝑡+1𝑦𝑡+1 > 𝜇 − 1
2𝜂 . Since the second term in Eq(B.33) is

negative, we have

𝑥𝑡𝑦𝑡 (1 + 𝜂 (𝜇 − 𝑥𝑡𝑦𝑡))2 > 𝜇 − 1
2𝜂
, (B.40)

with which we would like to find an upper bound of 𝑥𝑡𝑦𝑡 .

Denoting 𝑏 = 𝑥𝑡𝑦𝑡 , consider a function 𝑞(𝑏) = 𝑏 (1 + 𝜂 (𝜇 − 𝑏))2. Obviously 𝑞(𝜇) = 𝜇. Its

139

derivative is 𝑞′(𝑏) = (1 + 𝜂𝜇 − 𝜂𝑏) (1 + 𝜂𝜇 − 3𝜂𝑏) < 0 on the domain of our interest. If we can

show an (negative) upper bound for the derivative as 𝑞′(𝑏) < −1 on a proper domain, then it is

fair to say that, from Exp(B.40), 𝑥𝑡𝑦𝑡 < 𝜇 + 1
2𝜂 . Then we have

𝑦𝑡+1 − 𝑥𝑡+1
𝑦𝑡 − 𝑥𝑡

= 1 − 𝜂 (𝜇 − 𝑥𝑡𝑦𝑡) < 1 − 𝜂
(
𝜇 −

(
𝜇 − 1

2𝜂

))
=

3
2
. (B.41)

Then, combining Exp(B.41, B.39), it tells

𝑦𝑡+2 − 𝑥𝑡+2
𝑦𝑡 − 𝑥𝑡

< 2 − 𝐾. (B.42)

The remaining is to show 𝑞′(𝑏) < −1 on a proper domain. We have 𝑞′(𝑏) = (1 + 𝜂𝜇 −

2𝜂𝑏)2 − (𝜂𝑏)2, which is equal to 1 − 2𝜂𝜇 < −1 when 𝑏 = 𝜇. Meanwhile, the derivative of 𝑞′(𝑏) is

𝑞′′(𝑏) = −2𝜂 (𝜂𝑏 + (1 + 𝜂𝜇 − 2𝜂𝑏)) = −2𝜂 (1 + 𝜂𝜇 − 𝜂𝑏), which is negative when 𝑏 < 𝜇 + 1
𝜂
. As a

result, it always holds 𝑞′(𝑏) < −1 when 𝑏 < 𝜇 + 1
𝜂
.

(I.3) If 𝑥𝑡+1𝑦𝑡+1 ⩾ 𝑥2
𝑠

Denoting again 𝑏 = 𝑥𝑡𝑦𝑡 , the above inequality in is saying, with 𝑏 > 𝜇,

𝑝 (𝑏) = (1 − 𝜂 (𝜇 − 𝑏))
(
1 − 𝜂

(
𝜇 − 𝑏 (1 + 𝜂 (𝜇 − 𝑏))2

))
< 1. (B.43)

After expanding 𝑝 (·), we have

𝑝 (𝑏) − 1 = 𝜂 (𝜇 − 𝑏)
(
−2 + 𝜂 (𝜇 − 𝑏) + 2𝜂𝑏 − 𝜂2𝑏 (𝜇 − 𝑏) − 𝜂3𝑏 (𝜇 − 𝑏)2

)
.

Apparently 𝑝 (𝜇) = 1. So it is necessary to investigate whether 𝑝′(𝑏) < 0 on 𝑏 > 𝜇, as

𝑝′(𝑏) = 2 − 2𝜂𝑏 + (𝜇 − 𝑏)
(
𝜂2 (1 + 𝜂 (𝜇 − 𝑏)) (−𝜇 + 3𝑏) + 𝜂3𝑏 (𝜇 − 𝑏)

)
.

140

Since 𝜂𝑏 > 1 and 𝑏 > 𝜇, it is enough to require

(1 + 𝜂 (𝜇 − 𝑏)) (−𝜇 + 3𝑏) + 𝜂𝑏 (𝜇 − 𝑏) > 0

(1 + 𝜂 (𝜇 − 𝑏)) (−𝜇 + 𝑏) + 𝜂𝑏 (𝜇 − 𝑏) + 2𝑏 (1 + 𝜂 (𝜇 − 𝑏)) > 0.

It suffices to show

𝜂 (𝜇 − 𝑏) + 2(1 + 𝜂 (𝜇 − 𝑏)) = 2 + 3𝜂 (𝜇 − 𝑏) > 0. (B.44)

Since 𝑥𝑡+1𝑦𝑡+1 ⩾ 𝑥2
𝑠 =

1
3

(
𝜇 + 1

𝜂

)
, it holds

𝑏 (1 + 𝜂 (𝜇 − 𝑏))2 ⩾ 1
3

(
𝜇 + 1

𝜂

)
2 + 3𝜂 (𝜇 − 𝑏) ⩾

√√
3
(
𝜇 + 1

𝜂

)
𝑏

− 1 > 0,

where the last inequality holds because: if 𝑏 ⩾ 3
(
𝜇 + 1

𝜂

)
, then 1+𝜂 (𝜇 −𝑏) ⩽ −2𝜂𝜇 − 2 < 0, which

contradicts with the assumption that both 𝑥𝑡+1, 𝑦𝑡+1 are positive. As a result, the above argument

gives

𝑦𝑡+2 − 𝑥𝑡+2
𝑦𝑡 − 𝑥𝑡

< 𝑝 (𝑏) < 1 − 2(𝐾 − 1) (𝑏 − 𝜇). (B.45)

Part II. To show 𝑦𝑡+2 − 𝑥𝑡+2 > −(𝑦𝑡 − 𝑥𝑡)

Since 𝑥𝑡𝑦𝑡 > 𝜇, we have 1 − 𝜂 (𝜇 − 𝑥𝑡𝑦𝑡) > 1. Combining with 1 − 𝜂 (𝜇 − 𝑥𝑡𝑦𝑡) < 2, it holds

𝑦𝑡+1 − 𝑥𝑡+1
𝑦𝑡 − 𝑥𝑡

= 1 − 𝜂 (𝜇 − 𝑥𝑡𝑦𝑡) ∈ (1, 2).

141

So the remaining is to have 𝑦𝑡+2−𝑥𝑡+2
𝑦𝑡+1−𝑥𝑡+1 > −0.5. Actually it is 1 − 𝜂 (𝜇 − 𝑥𝑡+1𝑦𝑡+1) ⩾ 1 − 𝜂𝜇 = 1 − 𝐾 .

Therefore, we have

𝑦𝑡+2 − 𝑥𝑡+2
𝑦𝑡 − 𝑥𝑡

> −1 + (3 − 2𝐾), (B.46)

as required.

Part III. To show 𝑦𝑡 − 𝑥𝑡 converges to 0

From Exp (B.38, B.42, B.45, B.46), we have for points in P, |𝑦 − 𝑥 | is a monotone strictly

decreasing sequence lower bounded by 0. Hence it is convergent. Actually it converges to 0. If

not, assuming it converges to 𝜖 > 0, the next point will have the difference as 𝜖 < 𝜖 as well as all

following points. Hence, the contradiction gives the convergence to 0. □

B.8 Proof of Lemma B.2

Lemma B.8 (Restatement of Lemma B.2). In the setting of Theorem 3.4, denote the initialization

as𝑚 =
|𝑦0−𝑥0 |√

𝜇
and 𝑥0𝑦0 > 𝜇. Then, during the whole process, both 𝑥 and 𝑦 will always stay positive,

denoting 𝑝 = 4(
𝑚+
√
𝑚2+4

)2 and 𝑞 = (1 + 𝑝)2, if

max
{
𝜂 (𝑥0𝑦0 − 𝜇),

4
27
(1 + 𝐾)3 +

(
2
3
𝐾2 − 1

3
𝐾 + 𝑞𝐾2

2(𝐾 + 1)𝑚
2
)
𝑞𝑚2 − 𝐾

}
< 𝑝.

Proof. Considering 𝑥𝑡𝑦𝑡 > 𝜇, one step of gradient descent returns

𝑥𝑡+1 = 𝑥𝑡 + 𝜂 (𝜇 − 𝑥𝑡𝑦𝑡)𝑦𝑡

𝑦𝑡+1 = 𝑦𝑡 + 𝜂 (𝜇 − 𝑥𝑡𝑦𝑡)𝑥𝑡 .

142

To have both 𝑥𝑡+1 > 0, 𝑦𝑡+1 > 0, it suffices to have

𝜂 (𝑥𝑡𝑦𝑡 − 𝜇) < min
{
𝑦𝑡

𝑥𝑡
,
𝑥𝑡

𝑦𝑡

}
. (B.47)

This inequality will be the main target we need to resolve in this proof.

First, we are to show

min
{
𝑦0

𝑥0
,
𝑥0

𝑦0

}
>

4(
𝑚 +
√
𝑚2 + 4

)2 .

With the difference fixed as𝑚 = (𝑦0−𝑥0)/
√
𝜇, assuming𝑦0 > 𝑥0, we have𝑚/𝑦0 = (1−𝑥0/𝑦0)/

√
𝜇.

if 𝑥0𝑦0 increases, both 𝑥0 and 𝑦0 increase then𝑚/𝑦0 decreases, which means 𝑥0/𝑦0 increases. As

a result, we have

min
{
𝑦0

𝑥0
,
𝑥0

𝑦0

}
> min

{
𝑦0

𝑥0
,
𝑥0

𝑦0

} �����
𝑥0𝑦0=𝜇

=
4(

𝑚 +
√
𝑚2 + 4

)2 .

Therefore, at initialization, to have positive 𝑥1 and 𝑦1, it is enough to require

𝜂 (𝑥0𝑦0 − 𝜇) <
4(

𝑚 +
√
𝑚2 + 4

)2 ≜ 𝑟 .

From Theorem 3.4, it is guaranteed that |𝑥𝑡 − 𝑦𝑡 | < |𝑥0 − 𝑦0 | with 𝑡 ⩾ 2 until it reaches 𝑥𝑡𝑦𝑡 > 𝜇,

with which 𝑟 is still a good lower bound for min{𝑦𝑡/𝑥𝑡 , 𝑥𝑡/𝑦𝑡 }. So what remains to show is it

satisfies 𝜂 (𝑥𝑡𝑦𝑡 − 𝜇) < 𝑟 for the next first time 𝑥𝑡𝑦𝑡 > 𝜇. If this holds, we can always iteratively

show, for any 𝑥𝑡𝑦𝑡 > 𝜇 along gradient descent,

𝜂 (𝑥𝑡𝑦𝑡 − 𝜇) < 𝑟 < min
{
𝑦𝑡

𝑥𝑡
,
𝑥𝑡

𝑦𝑡

}
.

Note that 𝑟 itself is independent of 𝑥𝑡𝑦𝑡 and all the history, so it is ideal to compute a uniform

143

upper bound of 𝜂 (𝑥𝑡𝑦𝑡 − 𝜇) with any pair of (𝑥𝑡−1, 𝑦𝑡−1) satisfying 𝑥𝑡−1𝑦𝑡−1 < 𝜇. Actually it is

possible, since we have |𝑥𝑡−1 − 𝑦𝑡−1 | bounded as in Theorem 3.4.

Assume 𝑥𝑖𝑦𝑖 > 𝜇 and it satisfies the condition of 𝜂 (𝑥𝑖𝑦𝑖 − 𝜇) < 𝑟 and |𝑥𝑖 − 𝑦𝑖 | < |𝑥0 − 𝑦0 |. As

in (B.31), we have

𝑥𝑖+1 − 𝑦𝑖+1
𝑥𝑖 − 𝑦𝑖

= 1 − 𝜂 (𝜇 − 𝑥𝑖𝑦𝑖) ∈ (1, 1 + 𝑟). (B.48)

Hence, it suffices to get the maximum value of 𝑔(𝑧), with 𝑧 ∈ (0, 𝜇), as

𝑔(𝑧) = 𝑧 (1 + 𝜂 (𝜇 − 𝑧))2 + 𝜂 (𝜇 − 𝑧) (1 + 𝑟)2(𝑥0 − 𝑦0)2, (B.49)

which is from (B.33). Denote 𝑧 = argmax 𝑔(𝑧). Obviously 𝑧 < 1
3 (𝜇 +

1
𝜂
) ≜ 𝑧𝑏 , because the first

term of 𝑔(𝑧) achieves maximum at 𝑧 = 1
3 (𝜇 +

1
𝜂
) and the second term is in a decreasing manner

with 𝑧. Then let’s take the derivative of 𝑔(𝑧) as

𝑔′(𝑧) = (1 + 𝜂 (𝜇 − 𝑧)) (1 + 𝜂𝜇 − 3𝜂𝑧) − 𝜂 (1 + 𝑟)2(𝑥0 − 𝑦0)2

= (1 + 𝜂 (𝜇 − 𝑧))
(
1 + 𝜂𝜇 − 3𝜂𝑧 − 𝜂 (1 + 𝑟)

2(𝑥0 − 𝑦0)2
1 + 𝜂 (𝜇 − 𝑧)

)
,

where the first term is always positive, so we have

1 + 𝜂𝜇 − 3𝜂𝑧 − 𝜂 (1 + 𝑟)
2(𝑥0 − 𝑦0)2

1 + 𝜂 (𝜇 − 𝑧) = 0, (B.50)

144

which means

𝑧 =
1

3𝜂

(
1 + 𝜂𝜇 − 𝜂 (1 + 𝑟)

2(𝑥0 − 𝑦0)2
1 + 𝜂 (𝜇 − 𝑧)

)
(B.51)

>
1

3𝜂

(
1 + 𝜂𝜇 − 𝜂 (1 + 𝑟)

2(𝑥0 − 𝑦0)2

1 + 𝜂 (𝜇 − 1
3 (𝜇 +

1
𝜂
))

)
(B.52)

=
1
3

(
𝜇 + 1

𝜂
− 3(1 + 𝑟)2

2(𝜂 + 1) (𝑥0 − 𝑦0)2
)

(B.53)

≜ 𝑧𝑠, (B.54)

where the inequality is from 𝑧 < 1
3 (𝜇 +

1
𝜂
). As a result, it is safe to say

𝑔(𝑧) ⩽ 𝑧 (1 + 𝜂 (𝜇 − 𝑧))2
����
𝑧=𝑧𝑏

+ 𝜂 (𝜇 − 𝑧) (1 + 𝑟)2(𝑥0 − 𝑦0)2
����
𝑧=𝑧𝑠

(B.55)

=
4
27
(1 + 𝜂𝜇)3 · 1

𝜂
+ 𝜂 (1 + 𝑟)2

(
2
3
𝜇 − 1

3𝜂
+ 2
𝜂𝜇 + 1

(𝑥0 − 𝑦0)2
)
(𝑥0 − 𝑦0)2, (B.56)

with which we are able to compute max 𝜂 (𝑔(𝑧) − 𝜇), which is exactly the final result. □

B.9 Proof of Theorem 3.5

Theorem B.9 (Restatement of Theorem 3.5). In the above setting, consider a teacher neuron �̃� =

[1, 0] and set the learning rate 𝜂 = 𝐾𝑑 with 𝐾 ∈ (1, 1.1]. Initialize the student as
𝑤 (0) = 𝑣 (0) ≜

𝜖 ∈ (0, 0.10] and ⟨𝑤 (0), �̃�⟩ ⩾ 0. Then, for 𝑡 ⩾ 𝑇1 + 4,𝑤 (𝑡)𝑦 decays as

𝑤
(𝑡)
𝑦 < 0.1 · (1 − 0.030𝐾)𝑡−𝑇1−4, 𝑇1 ⩽

⌈
log2.56

1.35
𝜋𝛽2

⌉
, 𝛽 =

(
1 + 1.1

𝜋

)
𝜖.

145

Proof sketch The proof is divided into two stages, depending on whether 𝑤𝑦 grows or not.

The key is that the change of𝑤𝑦 follows (omitting all superscripts 𝑡)

Δ𝑤𝑦

𝑤𝑦
∝ −𝑣𝑤𝑥 +

1
𝜋

𝑤𝑦

𝑤𝑥

1 + (𝑤𝑦
𝑤𝑥
)2
, 𝑤

(𝑡+1)
𝑦 =

��𝑤𝑦 + Δ𝑤𝑦 �� . (B.57)

where the second term in Δ𝑤𝑦/𝑤𝑦 is bounded in [0, 1
2𝜋]. In stage 1 where 𝑣𝑤𝑥 is relatively small, we

show the growth ratio of𝑤𝑦 is smaller than those of𝑤𝑥 and 𝑣𝑤𝑥 , resulting in an upper bound of

number of iterations for 𝑣𝑤𝑥 to reach 1
2𝜋 , so max(𝑤𝑦) is bounded too. Although the initialization

is balanced as 𝑣 (0) =
𝑤 (0) for simplicity of proof, 𝑣 −𝑤𝑥 is also bounded at the end of stage 1.

From the beginning of stage 2, thanks to the relatively narrow range of𝐾 , we are able to compute

the bounds of three variables (including 𝑣 −𝑤𝑥 , 𝑣𝑤𝑥 and𝑤𝑦) and they turn out to fall into a basin

in the parameter space after four iterations. In this basin, 𝑤𝑦 decays exponentially with a linear

rate of 0.97 at most. □

Proof. We restate the update rules as

Δ𝑣 (𝑡) B 𝑣 (𝑡+1) − 𝑣 (𝑡) = 𝐾𝑤 (𝑡)𝑥

[
(−𝑣 (𝑡)𝑤 (𝑡)𝑥 + 1) − 𝑣 (𝑡)𝑤 (𝑡)𝑦

𝑤
(𝑡)
𝑦

𝑤
(𝑡)
𝑥

− 1
𝜋

(
arctan

(
𝑤
(𝑡)
𝑦

𝑤
(𝑡)
𝑥

)
−
𝑤
(𝑡)
𝑦

𝑤
(𝑡)
𝑥

)]
,

= 𝐾𝑤
(𝑡)
𝑥

[
(−𝑣 (𝑡)𝑤 (𝑡)𝑥 + 1) − 1

𝜋

(
arctan

(
𝑤
(𝑡)
𝑦

𝑤
(𝑡)
𝑥

)
−
𝑤
(𝑡)
𝑥 𝑤

(𝑡)
𝑦𝑤 (𝑡)2

)]
+ 𝐾
(𝑤 (𝑡)𝑦)2

𝑣 (𝑡)

(
−(𝑣 (𝑡))2 +

𝑣 (𝑡)𝑤 (𝑡)𝑦

𝜋
𝑤 (𝑡)2

)
(B.58)

Δ𝑤 (𝑡)𝑥 B 𝑤
(𝑡+1)
𝑥 −𝑤 (𝑡)𝑥 = 𝐾𝑣 (𝑡)

[
(−𝑣 (𝑡)𝑤 (𝑡)𝑥 + 1) − 1

𝜋

(
arctan

(
𝑤
(𝑡)
𝑦

𝑤
(𝑡)
𝑥

)
−
𝑤
(𝑡)
𝑥 𝑤

(𝑡)
𝑦𝑤 (𝑡)2

)]
, (B.59)

Δ𝑤 (𝑡)𝑦 = 𝑤
(𝑡)
𝑦 · 𝐾

(
−(𝑣 (𝑡))2 +

𝑣 (𝑡)𝑤 (𝑡)𝑦

𝜋
𝑤 (𝑡)2

)
, (B.60)

𝑤
(𝑡+1)
𝑦 =

���𝑤 (𝑡)𝑦 + Δ𝑤 (𝑡)𝑦 ��� . (B.61)

For simplicity, we will omit all superscripts of time 𝑡 unless clarification is necessary. From (B.61),

146

if the target is to show𝑤𝑦 decaying with a linear rate, it suffices to bound the factor term in (B.60)

(by a considerable margin) as

−2 < 𝐾

(
−𝑣2 +

𝑣𝑤𝑦

𝜋 ∥𝑤 ∥2

)
< 0. (B.62)

The technical part is the second inequality of (B.62). If 𝑣,𝑤𝑥 > 0, it is equivalent to

𝑣𝑤𝑥 >
𝑤𝑥𝑤𝑦

𝜋 ∥𝑤 ∥2
=

𝑤𝑥𝑤𝑦

𝜋 (𝑤2
𝑥 +𝑤2

𝑦)
,

where the RHS is smaller than or equal to 1
2𝜋 . Hence,

1
2𝜋 is a special threshold with which we

will frequently compare 𝑣𝑤𝑥 . Another important variable to control is 𝑣 − 𝑤𝑥 that reveals how

the two layers are balanced. If it is too large, for the iteration 𝑣 (𝑡+1)𝑤 (𝑡+1)𝑥 may explode as shown

in the 2-D case.

The main idea of our proof is that

• Stage 1 with 𝑣𝑤𝑥 ⩽
𝑤𝑥𝑤𝑦

𝜋 ∥𝑤 ∥2 : in this stage, 𝑤𝑦 grows but it grows in a smaller rate than that

of 𝑣 and 𝑤𝑥 . Therefore, since we have an upper bound for 𝑣𝑤𝑥 to stay in this stage, we

are able to compute the upper bound of #iterations to finish this stage, which is 𝑇1 in the

theorem. At the end of this stage, both of 𝑣 −𝑤𝑥 and𝑤𝑦 are bounded under our assumption

of initialization.

• Stage 2 with 𝑣𝑤𝑥 >
𝑤𝑥𝑤𝑦

𝜋 ∥𝑤 ∥2 : in this stage, 𝑤𝑦 decreases. Since our range of a large learning

rate is relatively narrow (1 < 𝐾 ⩽ 1.1), we are able to compute bounds of 𝑣𝑤𝑥 , 𝑣 −𝑤𝑥 and

𝑤𝑦 . After eight iterations, it falls into (and stays in) a bounded basin of these three terms,

in which𝑤𝑦 decays at least in a linear rate.

Stage 1.

We are to show that, in the last iteration of this stage, there are three facts: 1) 𝑣𝑤𝑥 ⩽ 1
2𝜋 , 2)

𝑣 −𝑤𝑥 ∈ [−0.017, 0.17], and 3)𝑤𝑦 ⩽ 0.44.

147

At initialization, we assume 𝑣 (0) =
𝑤 (0). Denote 𝛼0 = arctan(𝑤 (0)𝑦 /𝑤 (0)𝑥) ∈ [0, 𝜋/2]. So for

next iteration we have

𝑤
(1)
𝑦 = 𝑣 (0)

(
1 + 𝐾

(
−(𝑣 (0))2 + 1

𝜋
sin𝛼0

))
, (B.63)

𝑤
(1)
𝑥 = 𝑣 (0)

[
cos𝛼0 + 𝐾

(
1 − (𝑣 (0))2 cos𝛼0 +

cos𝛼0 sin𝛼0 − 𝛼0

𝜋

)]
. (B.64)

Apparently𝑤 (1)𝑦 increases with 𝛼0 increasing. And

𝜕𝛼0𝑤
(1)
𝑥 = 𝑣 (0)

[
− sin𝛼0 + 𝐾

(
(𝑣 (0))2 sin𝛼0 +

− sin2 𝛼0 + cos2 𝛼0 − 1
𝜋

)]
= 𝑣 (0)

[
− sin𝛼0 + 𝐾

((
(𝑣 (0))2 − sin𝛼0

𝜋

)
sin𝛼0 +

− sin2 𝛼0

𝜋

)]
.

Since in stage 1 it holds Δ𝑤𝑦 > 0 which means −(𝑣 (0))2 + 1
𝜋

sin𝛼0 > 0 in (B.63). So it follows

𝜕𝛼0𝑤
(1)
𝑥 ⩽ 0. Combining the above arguments, we have

𝑤
(1)
𝑥 ⩾ 𝑤

(1)
𝑥 |𝛼0=

𝜋
2
=
𝐾

2
𝑣 (0),

𝑤
(1)
𝑦 ⩽ 𝑤 (1)𝑦 |𝛼0=

𝜋
2
=

(
1 + 𝐾

𝜋
− 𝐾 (𝑣 (0))2

)
𝑣 (0) ⩽

(
1 + 𝐾

𝜋

)
𝑣 (0),

𝑤
(1)
𝑦

𝑤
(1)
𝑥

⩽
2 + 2𝐾

𝜋

𝐾
⩽ 2.7.

Regarding 𝑣
𝑤𝑦

, it has 𝑣 (0) ⩾ 𝑤 (0)𝑦 at initialization due to 𝑣 (0) =
𝑤 (0). From (B.58, B.59, B.60),

we have 𝑣Δ𝑣 = 𝑤𝑥Δ𝑤𝑥 +𝑤𝑦Δ𝑤𝑦 . So it holds 𝑣Δ𝑣 ⩾ 𝑦Δ𝑦. Meanwhile, Δ𝑤𝑦
𝑣

= 𝐾 (−𝑣𝑤𝑦 +
𝑤2
𝑦

𝜋 ∥𝑤 ∥2) ∈

[0, 𝐾
𝜋
]. From Lemma B.11, given 𝑣 (𝑡) ⩾ 𝑤 (𝑡)𝑦 and Δ𝑤𝑦

𝑣
∈ [0, 1] for any 𝑡 in this stage, it always

holds 𝑣 (𝑡+1) ⩾ 𝑤 (𝑡+1)𝑦 .

Therefore, it is fair to say

𝑣 (1)𝑤 (1)𝑥

(𝑤 (1)𝑦)2
⩾

1
2.7

.

148

Additionally, to bound the term 𝑣𝑤𝑦/∥𝑤 ∥2 in Δ𝑤𝑦 , we would like to show it always has 𝑣𝑤𝑦 ⩽

∥𝑤 ∥2. At initialization, it naturally holds. Then, for the every next iteration, given it holds in the

last iteration, we have

(𝑣 + Δ𝑣) (𝑤𝑦 + Δ𝑤𝑦) − [(𝑤𝑥 + Δ𝑤𝑥)2 + (𝑤𝑦 + Δ𝑤𝑦)2]

= (𝑣 +
𝑤𝑥Δ𝑤𝑥 +𝑤𝑦Δ𝑤𝑦

𝑣
) (𝑤𝑦 + Δ𝑤𝑦) − [(𝑤𝑥 + Δ𝑤𝑥)2 + (𝑤𝑦 + Δ𝑤𝑦)2]

= 𝑣𝑤𝑦 + 𝑣Δ𝑤𝑦 +𝑤𝑥Δ𝑤𝑥 (
𝑤𝑦

𝑣
+
Δ𝑤𝑦

𝑣
) + (𝑤𝑦Δ𝑤𝑦 + (Δ𝑤𝑦)2)

𝑤𝑦

𝑣
− [(𝑤𝑥 + Δ𝑤𝑥)2 + (𝑤𝑦 + Δ𝑤𝑦)2]

⩽ 𝑣𝑤𝑦 + 𝑣Δ𝑤𝑦 +𝑤𝑦Δ𝑤𝑦
𝑤𝑦

𝑣
− (𝑤2

𝑥 +𝑤2
𝑦 + 2𝑤𝑦Δ𝑤𝑦 + (Δ𝑤𝑥)2)

⩽ 𝑣Δ𝑤𝑦 +𝑤𝑦Δ𝑤𝑦
𝑤𝑦

𝑣
− 2𝑤𝑦Δ𝑤𝑦 − (Δ𝑤𝑥)2

= 𝑣Δ𝑤𝑦 (1 −
𝑤𝑦

𝑣
)2 − (Δ𝑤𝑥)2

⩽ 𝑣Δ𝑤𝑦 − (Δ𝑤𝑥)2

where the first equality uses 𝑣Δ𝑣 = 𝑤𝑥Δ𝑤𝑥 +𝑤𝑦Δ𝑤𝑦 , the first inequality uses the proven 𝑣 ⩾ 𝑤𝑦

and 𝑣 ⩾ Δ𝑤𝑦 , the second inequality uses the assumption 𝑣𝑤𝑦 ⩽ ∥𝑤 ∥2. Now we are to show

𝑣Δ𝑤𝑦 − (Δ𝑤𝑥)2 ⩽ 0. We have

𝑣Δ𝑤𝑦 − (Δ𝑤𝑥)2 ⩽ 𝐾𝑣2 𝑤2
𝑦

𝜋 ∥𝑤 ∥2
− 𝐾2𝑣2

(
1 − 1

2𝜋
− 𝛾 (𝑡)

)2
,

𝛾 (𝑡) =
1
𝜋

(
arctan

(
𝑤
(𝑡)
𝑦

𝑤
(𝑡)
𝑥

)
−
𝑤
(𝑡)
𝑥 𝑤

(𝑡)
𝑦𝑤 (𝑡)2

)
.

Since we have proven𝑤 (1)𝑦 /𝑤 (1)𝑥 ⩽ 2.7, it is easy to check that

1

𝜋

(
1 + (𝑤

(1)
𝑥

𝑤
(1)
𝑦

)2
) ⩽ (1 − 1

2𝜋
− 𝛾 (1))2.

As a result, 𝑣Δ𝑤𝑦 − (Δ𝑤𝑥)2 ⩽ 0 at time 1. Furthermore, by checking each term, 𝑣Δ𝑤𝑦 − (Δ𝑤𝑥)2

149

decreases with 𝑤𝑦/𝑤𝑥 decreasing. We will soon show that 𝑤𝑦/𝑤𝑥 itself decreases, by showing

the growth ratio of𝑤𝑥 is larger than that of𝑤𝑦 .

Our target lower bound of the growth ratio of𝑤𝑥 is that

Δ𝑤𝑥
𝑤𝑥
⩾ 1 − 1

𝜋
− 𝛾, (B.65)

which is larger than the growth ratio of 𝑤𝑦 bounded by 1
𝜋
due to 𝑣Δ𝑤𝑦 < ∥𝑤 ∥2. So it suffices to

show 𝐾𝑣/𝑤𝑥 ⩾ 1. Assuming 𝐾𝑣/𝑤𝑥 ⩾ 1 for the current step, we need to show 𝐾𝑣 (𝑡+1)/𝑤 (𝑡+1)𝑥 ⩾ 1

also holds for the next step. Let’s denote

𝐴(𝑡) = 𝐾

[
(−𝑣 (𝑡)𝑤 (𝑡)𝑥 + 1) − 1

𝜋

(
arctan

(
𝑤
(𝑡)
𝑦

𝑤
(𝑡)
𝑥

)
−
𝑤
(𝑡)
𝑥 𝑤

(𝑡)
𝑦𝑤 (𝑡)2

)]
. (B.66)

Then

(𝑣 + Δ𝑣) − 1
𝐾
(𝑤𝑥 + Δ𝑤𝑥) ⩾ 𝑣 +𝐴𝑤𝑥 −

𝑤𝑥

𝐾
− 𝐴𝑣
𝐾

= (𝑣 − 𝑤𝑥
𝐾
) (1 − 𝐾𝐴) + 𝑣 (𝐾 − 1

𝐾
)𝐴. (B.67)

If 𝐾𝐴 ⩽ 1, since 𝐾 > 1 and 𝐴 > 0, we have (B.67) as positive, which is what we need. If 𝐾𝐴 > 1,

then

(𝐵.67) ⩾ (𝑣 − 𝑤𝑥
𝐾
) (1 − 𝐾2) + 𝑣 (𝐾 − 1

𝐾
)𝐴

= ((−𝐾 +𝐴)𝑣 +𝑤𝑥) (𝐾 −
1
𝐾
),

where the first inequality is due to 𝐴 ⩽ 𝐾 and the assumption of 𝐾𝑣 (𝑡)/𝑤 (𝑡)𝑥 ⩾ 1. Then it suffices

to show (−𝐾 +𝐴)𝑣 +𝑤𝑥 ⩾ (−𝐾 + 1
𝐾
)𝑣 +𝑤𝑥 ⩾ 0. Note that −𝐾 + 1/𝐾 ∈ (−0.2, 0] when 𝐾 ∈ (1, 1.1].

It is easy to verify that 𝑣 (1) ⩽ 5𝑤 (1)𝑥 . Then, for the next step, we need to show 𝑣 (𝑡+1) ⩽ 5𝑤 (𝑡+1)𝑥

150

given 𝑣 (𝑡) ⩽ 5𝑤 (𝑡+1) . To prove this, we are to bound 𝑣 −𝑤𝑥 , as

𝑣 (𝑡+1) −𝑤 (𝑡+1)𝑥 = (1 −𝐴) (𝑣 −𝑤) + 𝐾
𝑤2
𝑦

𝑣
(−𝑣2 +

𝑣𝑤𝑦

𝜋 ∥𝑤 ∥2
)

⩽ 0.4(𝑣 −𝑤) + 𝐾𝑤𝑦
𝑤2
𝑦

𝜋 ∥𝑤 ∥2
⩽ 0.4(𝑣 −𝑤) +

𝐾𝑤𝑦

𝜋
, (B.68)

where the first inequality is due to, when𝑤𝑦/𝑤𝑥 ⩽ 2.7,

𝐴 = 𝐾

[
−𝑣 (𝑡)𝑤 (𝑡)𝑥 +

1
𝜋

𝑤
(𝑡)
𝑥 𝑤

(𝑡)
𝑦𝑤 (𝑡)2

]
+ 𝐾

[
1 − 1

𝜋
arctan

(
𝑤
(𝑡)
𝑦

𝑤
(𝑡)
𝑥

)]
⩾ 𝐾

[
1 − 1

𝜋
arctan

(
𝑤
(𝑡)
𝑦

𝑤
(𝑡)
𝑥

)]
⩾ 0.6.

We will later show that 𝑣 (𝑡+1) −𝑤 (𝑡+1) ⩾ −0.1(𝑣 (𝑡) −𝑤 (𝑡)). Combining this with (B.68), it is safe

to say

𝑣 (𝑡+1) −𝑤 (𝑡+1) ⩽ 0.4(𝑣 −𝑤) +
𝐾𝑤𝑦

𝜋
⩽ 0.4 × 4𝑤 + 𝐾 × 5𝑤

𝜋
⩽ 4𝑤,

where the second inequality is due to 𝑣 ⩽ 5𝑤 and 𝑣 ⩾ 𝑤𝑦 . Since 𝑤 (𝑡+1) ⩾ 𝑤 (𝑡) (due to 𝐴 > 0) in

this stage, we have 𝑣 (𝑡+1) ⩽ 5𝑤 (𝑡+1)𝑥 .

Combining the above discussion, we have prove (B.65). Obviously, when 𝑤𝑦/𝑤𝑥 ⩽ 2.7, RHS

of (B.65) is at least 0.55, larger than 1.1/𝜋 , which is the upper bound of the Δ𝑤𝑦/𝑤𝑦 . As a result,

𝑤𝑦/𝑤𝑥 keeps decreasing.

The next step is to show the growing ratio of 𝑣𝑤𝑥 is much larger than that of𝑤𝑦 . From (B.59,

B.60), it holds

𝑣 (𝑡+1)𝑤 (𝑡+1)𝑥 = (𝑣 + Δ𝑣) (𝑤𝑥 + Δ𝑤𝑥) ⩾ 𝑣𝑤𝑥 + 𝐾𝐴(𝑣2 +𝑤2
𝑥) + 𝐾2𝐴2𝑣𝑤𝑥

⩾ 𝑣𝑤𝑥 (1 +𝐴)2,

151

where the first inequality is due to Δ𝑤𝑦 ⩾ 0. It follows 𝑣 (𝑡+1)𝑤 (𝑡+1)𝑥 /𝑣 (𝑡)𝑤 (𝑡)𝑥 ⩾ 1.62 = 2.56.

So far, we have shown the following facts: under the defined initialization at time 0, starting

from time 1, we have

1. 𝑣𝑤𝑥 ⩽ 1/2𝜋 .

2. Δ𝑤𝑥/𝑤𝑥 + 1 ⩾ 1.55.

3. Δ𝑤𝑦/𝑤𝑦 + 1 ⩽ 1 + 𝐾/𝜋 .

4. 𝑤𝑦/𝑤𝑥 ⩽ 2.7 and keeps decreasing.

5. 𝑣 (𝑡+1)𝑤 (𝑡+1)𝑥 /𝑣 (𝑡)𝑤 (𝑡)𝑥 ⩾ 2.56.

6. 𝑣 ⩾ 𝑤𝑦 .

7. 𝑣Δ𝑤𝑦 < (Δ𝑤𝑥)2.

Now we are to use the above facts to bound 𝑣𝑤𝑥 ,𝑤𝑦 and 𝑣 −𝑤𝑥 to the end of stage 1.

For 𝑣𝑤𝑥 , in previous discussion, we have shown that 𝑣𝑤𝑥 ⩽ 1
2𝜋 . Actually, there is another

special value

𝑤𝑥𝑤𝑦

𝜋 (𝑤2
𝑥 +𝑤2

𝑦)
= 0.104 when𝑤𝑦/𝑤𝑥 = 2.7. (B.69)

This value is slightly larger than 1/4𝜋 . Hence, we would like to split the analysis into three parts:

in the first step of stage 2,

1. 𝑣𝑤𝑥 ⩾ 1
2𝜋 .

2. 1
4𝜋 ⩽ 𝑣𝑤𝑥 < 1

2𝜋 .

3. 𝑣𝑤𝑥 < 1
4𝜋 .

152

Note that, althoughwe are discussing the stage 1 in this section, investigating the lower bound

of the first step in stage 2 helps calculate the number of iterations in stage 1. Furthermore, it helps

bound several variables in stage 1.

Case (I). If 𝑣𝑤𝑥 ⩾ 1
2𝜋 in first step of stage 2:

Since we have prove 𝑣 (1)𝑤 (1)𝑥
(𝑤 (1)𝑦)2

⩾ 1/2.7 and 𝑣 (𝑡+1)𝑤 (𝑡+1)𝑥 /𝑣 (𝑡)𝑤 (𝑡)𝑥 ⩾ 2.56, the number of iterations

for 𝑣𝑤𝑥 to reach 1/2𝜋 is at most

𝑇1 ⩽

⌈
log2.56

1
2𝜋

(𝑤 (1)𝑦)2/2.7

⌉
. (B.70)

Meanwhile, starting from time 1, the growth ratio of𝑤𝑦 is

(𝑤𝑦 + Δ𝑤𝑦)/𝑤𝑦 ⩽ 1 + 𝐾 (−𝑣2 + 1/𝜋) ⩽ 1 + 1.1/𝜋 − (𝑣 (1))2 ⩽ 1 + 1.1/𝜋 − (𝑤 (1)𝑦)2, (B.71)

where the first inequality is due to 𝑣𝑤𝑦 ⩽ ∥𝑤 ∥2, the second is due to 𝐾 > 1 and the third is from

𝑣 ⩾ 𝑤𝑦 . Therefore, combining with (B.70), we can bound𝑤𝑦 in the end of stage 1 as

𝑤𝑦 ⩽
(
1 + 1.1/𝜋 − (𝑤 (1)𝑦)2

)⌈log2.56

1
2𝜋

(𝑤 (1)𝑦)2/2.7

⌉
. (B.72)

Since it initializes as
𝑤 (0) ⩽ 0.1, we have𝑤 (1)𝑦 ⩽ 0.1(1+ 1.1/𝜋) = 0.135. Then, it can be verified

that, when𝑤 (1)𝑦 ∈ (0, 0.135], it holds

𝑤𝑦 ⩽ 0.44. (B.73)

153

The next is to bound 𝑣 −𝑤𝑥 . Combining the update rules of 𝑣 and𝑤𝑥 in (B.58, B.59), we have

Δ(𝑣 −𝑤𝑥) B (𝑣 (𝑡+1) −𝑤 (𝑡+1)𝑥) − (𝑣 (𝑡) −𝑤 (𝑡)𝑥)

= 𝐾 (𝑣 −𝑤𝑥) ©«𝑣𝑤𝑥 − 1 +
arctan(𝑤𝑦/𝑤𝑥) −

𝑤𝑥𝑤𝑦

∥𝑤 ∥2

𝜋

ª®¬ + 𝐾
𝑤2
𝑦

𝑣
(−𝑣2 +

𝑣𝑤𝑦

𝜋 ∥𝑤 ∥2
). (B.74)

Note that

−1 ⩽ 𝑣𝑤𝑥 − 1 +
arctan(𝑤𝑦/𝑤𝑥) −

𝑤𝑥𝑤𝑦

∥𝑤 ∥2

𝜋
⩽ −1 +

arctan(𝑤𝑦/𝑤𝑥)
𝜋

, (B.75)

where the left is due to 𝑣𝑤𝑥 > 0 and , the right is from Δ𝑤𝑦 ⩾ 0. When 𝑤𝑦/𝑤𝑥 ⩽ 2.7, the RHS

follows −1 + arctan(𝑤𝑦/𝑤𝑥)
𝜋

⩽ −0.6. So combining both sides tells

1 + 𝐾 ©«𝑣𝑤𝑥 − 1 +
arctan(𝑤𝑦/𝑤𝑥) −

𝑤𝑥𝑤𝑦

∥𝑤 ∥2

𝜋

ª®¬ ∈ [−𝐾 + 1, 0.4] ⊂ [−0.1, 0.4] . (B.76)

Since Δ𝑤𝑦 ⩾ 0, we have 0 ⩽ 𝐾
𝑤2
𝑦

𝑣
(−𝑣2 + 𝑣𝑤𝑦

𝜋 ∥𝑤 ∥2) ⩽
𝐾
𝜋
𝑤𝑦

𝑤2
𝑦

∥𝑤 ∥2 . Note that at initialization

𝑤
(0)
𝑥 ⩽ 𝑣

(0) . Then it is easy to verify that

−0.01 ⩽ −0.1(𝑣 (0) −𝑤 (0)) ⩽ 𝑣 (1) −𝑤 (1) ⩽ (1 + 𝐾
𝜋
− 𝐾

2
)𝑣 (0) ⩽ 0.082. (B.77)

Because the coefficient on the positive side in (B.76) is larger than 0.4 > 0.1, it is appropriate to

154

upper bound the 𝑣 −𝑤𝑥 as

𝑣 −𝑤𝑥 ⩽ max

{
0.082, 0.082 · 0.4𝑇 +

𝑇∑︁
𝑡=1

0.4𝑡−1𝐾

𝜋
𝑤
(𝑡)
𝑦

(𝑤 (𝑡)𝑦)2𝑤 (𝑡)2

}

⩽ max

0.082, 0.082 · 0.4𝑇 +
𝑇∑︁
𝑡=1

0.4𝑡−1𝐾

𝜋
𝑤
(𝑡)
𝑦

1

1 + 1
2.7

(
1.55

1+𝐾/𝜋

)2(𝑡−1)

⩽ max

0.082, 0.082 · 0.4𝑇 +
𝑇∑︁
𝑡=1

0.4𝑡−1 1.1 · 4.4
𝜋

1

1 + 1
2.7

(
1.55

1+1.1/𝜋

)2(𝑡−1)

 ,
where the second inequality is from the different growth ratios of𝑤𝑥 and𝑤𝑦 . Note that here we

take all 𝑇 ⩾ 1 and pick the largest value of RHS to bound𝑤𝑦 . It turns out

𝑣 −𝑤𝑥 ⩽ 0.17. (B.78)

Furthermore, to lower bound 𝑣 −𝑤𝑥 , since obviously |𝑣 −𝑤𝑥 | ⩽ 0.17, it follows

𝑣 −𝑤𝑥 ⩾ −0.1 · |𝑣 −𝑤𝑥 |max ⩾ −0.017. (B.79)

Case (II). If 1
4𝜋 ⩽ 𝑣𝑤𝑥 < 1

2𝜋 in first step of stage 2:

Similar to the discussion in Case (I), we are able to compute the number of iterations for 𝑣𝑤𝑥

to reach 1/4𝜋 . It is at most

𝑇1 ⩽ ⌈log2.56

1
4𝜋

(𝑤 (1)𝑦)2/2.7
⌉ . (B.80)

Accordingly,𝑤𝑦 is bounded as

𝑤𝑦 ⩽
(
1 + 1.1/𝜋 − (𝑤 (1)𝑦)2

) ⌈log2.56

1
4𝜋

(𝑤 (1)𝑦)2/2.7
⌉
⩽ 0.37. (B.81)

155

For simplicity, we just keep the bounds for 𝑣 −𝑤𝑥 as in Case (I), as

𝑣 −𝑤𝑥 ∈ [−0.017, 0.17] . (B.82)

Case (III). If 𝑣𝑤𝑥 < 1
4𝜋 in first step of stage 2:

From the condition, we know 𝑣𝑤𝑥 < 1
4𝜋 as well in the last step of stage 1. Since Δ𝑤𝑦 > 0 in

stage 1, it tells

1
𝜋

𝑤𝑥𝑤𝑦

∥𝑤 ∥2
< 𝑣𝑤𝑥 ⩽

1
4𝜋
, (B.83)

which means

max{𝑤𝑥
𝑤𝑦
,
𝑤𝑦

𝑤𝑥
} ⩾ 2 +

√
3. (B.84)

Since 2 +
√

3 > 2.7, if 𝑤𝑦/𝑤𝑥 ⩾ 2 +
√

3, then for time 1, (𝑣 (1),𝑤 (1)𝑥 ,𝑤
(1)
𝑦) is already in the stage

2. However, it is not possible because
𝑤 (0) = 𝑣 (0) ⩽ 0.1, which means 𝑣 (1)𝑤 (1)𝑥 can not reach

1
𝜋

2.7
1+2.72 .

Therefore, the only possible is 𝑤𝑥
𝑤𝑦
⩾ 2 +

√
3. In this case, we are able to bound𝑤𝑦 as

𝑤𝑦 ⩽ (2 −
√

3)𝑤𝑥 ⩽ (2 −
√

3)
(√︂

1
4𝜋
+ 0.00852 + 0.0085

)
⩽ 0.078, (B.85)

where the second inequality is due to 𝑣𝑤𝑥 ⩽ 1
4𝜋 and 𝑣 −𝑤𝑥 ⩾ −0.017. Note that here we still use

the bound of 𝑣 −𝑤𝑥 from Case (I), although it is loose somehow but it is enough for our analysis.

We leave the analysis of the bound of number of iterations to the end of this section.

Stage 2.

In the case (I) of stage 1, where the first step in stage 2 is with 𝑣𝑤𝑥 ⩾ 1
2𝜋 , it has 𝑣 − 𝑤𝑥 ∈

156

[−0.017, 0.17] and𝑤𝑦 ⩽ 0.44. In the case (II), where the first step of stage 2 is with 𝑣𝑤𝑥 ∈ [1
4𝜋 ,

1
2𝜋],

it has 𝑣 − 𝑤𝑥 ∈ [−0.017, 0.17] and 𝑤𝑦 ⩽ 0.37. In the case (III), where the first step of stage 2 is

with 𝑣𝑤𝑥 ∈ [1
4𝜋 ,

1
2𝜋], it has 𝑣 −𝑤𝑥 ∈ [−0.017, 0.17] and𝑤𝑦 ⩽ 0.078.

To upper bound 𝑣𝑤𝑥 in the first step of stage 2, there are two candidates. One is from the case

(I),

𝑣 (𝑡+1)𝑤 (𝑡+1)𝑥 = 𝑣𝑤𝑥
©«1 + 𝐾 (1 − 𝑣𝑤𝑥 −

arctan(𝑤𝑦
𝑤𝑥
) − 𝑤𝑦/𝑤𝑥

1+(𝑤𝑦/𝑤𝑥)2

𝜋
)ª®¬

2

+ 𝐾
𝑤𝑥𝑤

2
𝑦

𝑣

(
−𝑣2 +

𝑣𝑤𝑦

𝜋 ∥𝑤 ∥2

)
+ 𝐾 (𝑣 −𝑤𝑥)2 ©«1 + 𝐾 (1 − 𝑣𝑤𝑥 −

arctan(𝑤𝑦
𝑤𝑥
) − 𝑤𝑦/𝑤𝑥

1+(𝑤𝑦/𝑤𝑥)2

𝜋
)ª®¬

⩽ 𝑣𝑤𝑥 (1 + 𝐾 (1 − 𝑣𝑤𝑥))2 + 𝐾
𝑤𝑥𝑤

2
𝑦

𝑤𝑥

(
−𝑣𝑤𝑥 +

𝑤𝑥𝑤𝑦

𝜋 ∥𝑤 ∥2

)
+ 𝐾 (𝑣 −𝑤𝑥)2 (1 + 𝐾 (1 − 𝑣𝑤𝑥))

⩽
1

2𝜋

(
1 + 1.1(1 − 1

2𝜋
)
)2
+ 1.1 · 0.442

(
− 1

4𝜋
+ 1

2𝜋

)
+ 1.1 · 0.172

(
1 + 1.1(1 − 1

2𝜋
)
)

⩽ 0.668, (B.86)

where we use 𝑣𝑤𝑥 ⩾ 1/4𝜋 , 𝑥/(1 + 𝑥2) ⩽ 0.5 for any 𝑥 .

One is from the case (II),

𝑣 (𝑡+1)𝑤 (𝑡+1)𝑥 ⩽ 𝑣𝑤𝑥 (1 + 𝐾 (1 − 𝑣𝑤𝑥))2 + 𝐾
𝑤𝑥𝑤

2
𝑦

𝑤𝑥

(
−𝑣𝑤𝑥 +

𝑤𝑥𝑤𝑦

𝜋 ∥𝑤 ∥2

)
+ 𝐾 (𝑣 −𝑤𝑥)2 (1 + 𝐾 (1 − 𝑣𝑤𝑥))

⩽
1

4𝜋

(
1 + 1.1(1 − 1

4𝜋
)
)2
+ 1.1 · 0.372

(
1

2𝜋

)
+ 1.1 · 0.172

(
1 + 1.1(1 − 1

4𝜋
)
)

⩽ 0.48, (B.87)

where we use 𝑣𝑤𝑥 ⩽ 1/4𝜋 , 𝑥/(1 + 𝑥2) ⩽ 0.5 for any 𝑥 .

157

Therefore, we can see that, in the first step of stage 2,

𝑣𝑤𝑥 ⩽ 0.668. (B.88)

Next we are going to show how the iteration goes in the stage 2. In Case (I), there are three

facts:

1. 𝑤𝑦 ⩽ 0.44.

2. 𝑣 −𝑤𝑥 ∈ [−0.017, 0.17].

3. 𝑣𝑤𝑥 ∈ [1
2𝜋 , 0.668].

Similarly, in Case (II), there are three facts as well:

1. 𝑤𝑦 ⩽ 0.37.

2. 𝑣 −𝑤𝑥 ∈ [−0.017, 0.17].

3. 𝑣𝑤𝑥 ∈ [1
4𝜋 ,

1
2𝜋].

Themain idea is to find a basin that any iterationwith the above properties (i.e., in the interval)

will converge to and then stay in. The method is to iteratively compute the ranges of the variables

for several steps, thanks to the narrow range of 𝐾 . Before explicitly computing the ranges, let’s

write down the computing method, depending on whether or not 𝑣𝑤𝑥 ⩾ 1.

Consider any iteration with 𝑣𝑤𝑥 ∈ [𝑚1,𝑚2], 𝑣 −𝑤𝑥 ∈ [𝑑1, 𝑑2],𝑤𝑦 ⩽ 𝑒 , we compute the bounds

of 𝑣 (𝑡+1)𝑤 (𝑡+1)𝑥 , 𝑣 (𝑡+1) −𝑤 (𝑡+1)𝑥 ,𝑤
(𝑡+1)
𝑦 in the following process (naturally assuming 𝑑1 < 0 < 𝑑2)

1. If𝑚1 ⩾ 1:

(a) Compute𝑤𝑥 ⩾
√︁
𝑚1 + (𝑑2/2)2 − 𝑑2/2 ≜ 𝑓 .

(b) Compute 𝑤𝑦

𝑤𝑥
⩽ 𝑒/𝑓 ≜ 𝑔.

158

(c) Compute
arctan(𝑤𝑦/𝑤𝑥)−

𝑤𝑥𝑤𝑦

∥𝑤 ∥2
𝜋

⩽
arctan(𝑔)−𝑔/(1+𝑔2)

𝜋
≜ ℎ.

(d) Compute 𝑣 (𝑡+1)𝑤 (𝑡+1)𝑥 ⩾ 𝑚2(1 + 1.1(1 −𝑚2 − ℎ))2 + 1.1(1 −𝑚2 − ℎ)max{|𝑑1 |, |𝑑2 |}2 −

1.1𝑒2𝑚2. This is from

𝑣 (𝑡+1)𝑤 (𝑡+1)𝑥 ⩾ 𝑣𝑤𝑥 (1 + 𝐾 (1 − 𝑣𝑤𝑥 − ℎ))2 + 𝐾
𝑤𝑥𝑤

2
𝑦

𝑣

(
−𝑣2 +

𝑣𝑤𝑦

𝜋 ∥𝑤 ∥2

)
+ 𝐾 (𝑣 −𝑤𝑥)2 (1 + 𝐾 (1 − 𝑣𝑤𝑥 − ℎ))

⩾ 𝑣𝑤𝑥 (1 + 𝐾 (1 − 𝑣𝑤𝑥 − ℎ))2 − 𝐾𝑤2
𝑦 · 𝑣𝑤𝑥

+ 𝐾 (𝑣 −𝑤𝑥)2 (1 + 𝐾 (1 − 𝑣𝑤𝑥 − ℎ)) .

(e) Compute 𝑣 (𝑡+1)𝑤 (𝑡+1)𝑥 ⩽ 𝑚1(1+1.0(1−𝑚1))2. This is due to 𝑥 (1+𝐾 (1−𝑥))2 decreases

with 𝑥 increasing when 𝑥 ⩾ 1.

(f) Compute 𝑣 (𝑡+1)−𝑤 (𝑡+1)𝑥 ∈ [𝑑1(1+1.1(𝑚2−1+ℎ)−1.1𝑒2 · (
√︁
𝑚2 + (𝑑2/2)2+𝑑2/2)), 𝑑2(1+

1.1(𝑚2 − 1 + ℎ))]. This is due to

Δ𝑣 − Δ𝑤𝑥 = 𝐾 (𝑣 −𝑤𝑥)
(
𝑣𝑤𝑥 − 1 + 1

𝜋
(arctan(𝛼) −

𝑤𝑥𝑤𝑦

∥𝑤 ∥2
)
)
+ 𝐾

𝑤2
𝑦

𝑣

(
−𝑣2 +

𝑣𝑤𝑦

𝜋 ∥𝑤 ∥2

)
,

where 𝑣𝑤𝑥 ⩾ 1, the last term is between −𝐾𝑣𝑤2
𝑦 and 0.

(g) Compute𝑤 (𝑡+1)𝑦 ⩽ 𝑒 ·max{| 𝑗1 |, | 𝑗2 |}, where

𝑗1 = 1 + 1.1
√︁
𝑚1 + (𝑑2/2)2 + 𝑑2/2√︁
𝑚1 + (𝑑2/2)2 − 𝑑2/2

· (−𝑚2), (B.89)

𝑗2 = 1 + 1.0
√︁
𝑚1 + (𝑑1/2)2 − 𝑑1/2√︁
𝑚1 + (𝑑1/2)2 + 𝑑1/2

· (−𝑚1 +
1

2𝜋
) . (B.90)

This is due to
Δ𝑤𝑦

𝑤𝑦
= 𝐾

𝑣

𝑤𝑥
(−𝑣𝑤𝑥 +

1
𝜋

𝑤𝑥𝑤𝑦

∥𝑤 ∥2
),

159

then we would like to have the smallest value as 𝑗1 − 1 and the largest value as 𝑗2 − 1.

Since𝑤𝑦 is always non-negative, taking the maximum absolute value gives the upper

bound.

2. If𝑚2 < 1:

(a) Compute𝑤𝑥 ⩾
√︁
𝑚1 + (𝑑2/2)2 − 𝑑2/2 ≜ 𝑓 .

(b) Compute 𝑤𝑦

𝑤𝑥
⩽ 𝑒/𝑓 ≜ 𝑔.

(c) Compute
arctan(𝑤𝑦/𝑤𝑥)−

𝑤𝑥𝑤𝑦

∥𝑤 ∥2
𝜋

⩽
arctan(𝑔)−𝑔/(1+𝑔2)

𝜋
≜ ℎ.

(d) Compute 𝑣 (𝑡+1)𝑤 (𝑡+1)𝑥 ⩾ min𝑥∈[𝑚1,𝑚2] 𝑥 (1+1.0(1−𝑥−ℎ))2−1.1𝑒2𝑥 . Compared with the

case of𝑚1 ⩾ 1, we drop the term 1.1(1−𝑚2 −ℎ)max{|𝑑1 |, |𝑑2 |}2 because it is possible

to have 𝑣 −𝑤𝑥 = 0 in some iterations.

(e) Compute 𝑣 (𝑡+1)𝑤 (𝑡+1)𝑥 ⩽ max𝑥∈[𝑚1,𝑚2] 𝑥 (1 + 1.1(1 − 𝑥))2 + 1.1(1 − 𝑥)max{|𝑑1 |, |𝑑2 |}2.

Compared with the case of 𝑚1 ⩾ 1, we add a term depending on the |𝑣 − 𝑤𝑥 |max

because it enlarges 𝑣𝑤𝑥 in the in-balanced case.

(f) Compute 𝑣 (𝑡+1)−𝑤 (𝑡+1)𝑥 ∈ [𝑑1(1+1.1(𝑚2−1+ℎ)−1.1𝑒2 · (
√︁
𝑚2 + (𝑑2/2)2+𝑑2/2)), 𝑑2(1+

1.1(𝑚2 − 1 + ℎ))]. In fact, a rigorous left bound should include more terms to select a

minimum from. Here it is simple because it keeps 1 +𝐾 (𝑚1 − 1) ⩾ 0 in the following

computing, so we do not need to worry about the flipping sign of 𝑑1 and 𝑑2.

(g) Compute 𝑤 (𝑡+1)𝑦 ⩽ 𝑒 · max{| 𝑗1 |, | 𝑗2 |}, where 𝑗1, 𝑗2 are the same with those in the case

of𝑚1 ⩾ 1.

Therefore, with the above process, we are able to brutally compute the ranges of 𝑣 (𝑡+1)𝑤 (𝑡+1)𝑥 ,

𝑣 (𝑡+1) − 𝑤 (𝑡+1)𝑥 , 𝑤 (𝑡+1)𝑦 from the current ranges. Note that this process plays a role of building a

mapping from one interval to another interval, which covers all points from the source interval.

However, it is loose to some extent because gradient descent is a mapping from a point to another

160

point. The advantage of such a loose method is feasibility of obtaining bounds while losing

tightness. To achieve tightness, later we will also include some wisdom in a point-to-point style.

Also note that, a nice way to combine tightness and efficiency in this method is to split and

to merge intervals when necessary.

For Case (I):

Now we are to compute the ranges starting from the interval where 𝐼 = {𝑤𝑦 ⩽ 0.44, 𝑣 −𝑤𝑥 ∈

[−0.017, 0.17], 𝑣𝑤𝑥 ∈ [1
2𝜋 , 0.668]}. First, we split it into three intervals:

1. 𝐼1 = {𝑤𝑦 ⩽ 0.44, 𝑣 −𝑤𝑥 ∈ [−0.017, 0.17], 𝑣𝑤𝑥 ∈ [0.213, 0.4]}.

2. 𝐼2 = {𝑤𝑦 ⩽ 0.44, 𝑣 −𝑤𝑥 ∈ [−0.017, 0.17], 𝑣𝑤𝑥 ∈ [0.4, 0.668]}.

3. 𝐼30 = {𝑤𝑦 ⩽ 0.44, 𝑣 −𝑤𝑥 ∈ [−0.017, 0.17], 𝑣𝑤𝑥 ∈ [1
2𝜋 , 0.213]}.

Then, following the above method with splitting and merging intervals, we have

1. Starting from 𝐼1,

(a) Step 1: 𝐼1 mapps to 𝐼3 = {𝑤𝑦 ⩽ 0.416, 𝑣 −𝑤𝑥 ∈ [−0.162, 0.068], 𝑣𝑤𝑥 ∈ [0.55, 1.12131]}.

(b) Step 2: Splitting 𝐼3, we have

i. 𝐼4 = {𝑤𝑦 ⩽ 0.416, 𝑣 −𝑤𝑥 ∈ [−0.162, 0.068], 𝑣𝑤𝑥 ∈ [0.55, 0.8]}.

ii. 𝐼5 = {𝑤𝑦 ⩽ 0.416, 𝑣 −𝑤𝑥 ∈ [−0.162, 0.068], 𝑣𝑤𝑥 ∈ [0.8, 0.9]}.

iii. 𝐼6 = {𝑤𝑦 ⩽ 0.416, 𝑣 −𝑤𝑥 ∈ [−0.162, 0.068], 𝑣𝑤𝑥 ∈ [0.9, 1.0]}.

iv. 𝐼7 = {𝑤𝑦 ⩽ 0.416, 𝑣 −𝑤𝑥 ∈ [−0.162, 0.068], 𝑣𝑤𝑥 ∈ [1.0, 1.12131]}.

Then, we have

i. 𝐼4 mapps to

𝐼8 = {𝑤𝑦 ⩽ 0.214, 𝑣 −𝑤𝑥 ∈ [−0.309, 0.0545], 𝑣𝑤𝑥 ∈ [0.942, 1.25786]}.

ii. 𝐼5 mapps to

𝐼9 = {𝑤𝑦 ⩽ 0.0966, 𝑣 −𝑤𝑥 ∈ [−0.335, 0.0613], 𝑣𝑤𝑥 ∈ [0.880, 1.19649]}.

161

iii. 𝐼6 mapps to

𝐼10 = {𝑤𝑦 ⩽ 0.0756, 𝑣 −𝑤𝑥 ∈ [−0.362, 0.068], 𝑣𝑤𝑥 ∈ [0.777894, 1.11178]}.

iv. 𝐼7 mapps to

𝐼11 = {𝑤𝑦 ⩽ 0.134, 𝑣 −𝑤𝑥 ∈ [−0.394, 0.0782], 𝑣𝑤𝑥 ∈ [0.595, 1]}.

(c) Step 3: Splitting and merging 𝐼8, 𝐼9, 𝐼10, 𝐼11, we have

i. 𝐼12 = {𝑤𝑦 ⩽ 0.134, 𝑣 −𝑤𝑥 ∈ [−0.394, 0.078], 𝑣𝑤𝑥 ∈ [0.595, 0.777]}.

ii. 𝐼13 = {𝑤𝑦 ⩽ 0.214, 𝑣 −𝑤𝑥 ∈ [−0.394, 0.078], 𝑣𝑤𝑥 ∈ [0.777, 1]}.

iii. 𝐼14 = {𝑤𝑦 ⩽ 0.214, 𝑣 −𝑤𝑥 ∈ [−0.362, 0.068], 𝑣𝑤𝑥 ∈ [1, 1.11178]}.

iv. 𝐼15 = {𝑤𝑦 ⩽ 0.214, 𝑣 −𝑤𝑥 ∈ [−0.309, 0.061], 𝑣𝑤𝑥 ∈ [1.11178, 1.25786]}.

Then, we have

i. 𝐼12 mapps to

𝐼16 = {𝑤𝑦 ⩽ 0.0372, 𝑣 −𝑤𝑥 ∈ [−0.317, 0.061], 𝑣𝑤𝑥 ∈ [1.14493, 1.31246]}.

ii. 𝐼13 mapps to

𝐼17 = {𝑤𝑦 ⩽ 0.0432, 𝑣 −𝑤𝑥 ∈ [−0.448, 0.078], 𝑣𝑤𝑥 ∈ [0.943633, 1.24393]}.

iii. 𝐼14 mapps to

𝐼18 = {𝑤𝑦 ⩽ 0.0662, 𝑣 −𝑤𝑥 ∈ [−0.462, 0.077], 𝑣𝑤𝑥 ∈ [0.77846, 1]}.

iv. 𝐼15 mapps to

𝐼20 = {𝑤𝑦 ⩽ 0.0998, 𝑣 −𝑤𝑥 ∈ [−0.456, 0.0785], 𝑣𝑤𝑥 ∈ [0.550, 0.878]}.

2. Starting from 𝐼2,

(a) Step 1: 𝐼2 mapps to 𝐼21 = {𝑤𝑦 ⩽ 0.332, 𝑣−𝑤𝑥 ∈ [−0.205, 0.114], 𝑣𝑤𝑥 ∈ [0.864, 1.25894]}

(b) Step 2: Splitting 𝐼21, we have

i. 𝐼22 = {𝑤𝑦 ⩽ 0.332, 𝑣 −𝑤𝑥 ∈ [−0.205, 0.114], 𝑣𝑤𝑥 ∈ [0.864, 1]}.

ii. 𝐼23 = {𝑤𝑦 ⩽ 0.332, 𝑣 −𝑤𝑥 ∈ [−0.205, 0.114], 𝑣𝑤𝑥 ∈ [1, 1.125894]}.

162

Then, we have

i. 𝐼22 mapps to

𝐼24 = {𝑤𝑦 ⩽ 0.081, 𝑣 −𝑤𝑥 ∈ [−0.336, 0.114], 𝑣𝑤𝑥 ∈ [0.858, 1.14813]}.

ii. 𝐼23 mapps to

𝐼25 = {𝑤𝑦 ⩽ 0.184, 𝑣 −𝑤𝑥 ∈ [−0.409, 0.148], 𝑣𝑤𝑥 ∈ [0.463, 1]}.

(c) Step 3: Splitting and merging 𝐼24, 𝐼25, we have

i. 𝐼26 = {𝑤𝑦 ⩽ 0.184, 𝑣 −𝑤𝑥 ∈ [−0.409, 0.148], 𝑣𝑤𝑥 ∈ [0.463, 1]}.

ii. 𝐼27 = {𝑤𝑦 ⩽ 0.081, 𝑣 −𝑤𝑥 ∈ [−0.336, 0.114], 𝑣𝑤𝑥 ∈ [1, 1.14813]}.

Then, we have

i. 𝐼26 mapps to

𝐼28 = {𝑤𝑦 ⩽ 0.083, 𝑣 −𝑤𝑥 ∈ [−0.452, 0.148], 𝑣𝑤𝑥 ∈ [0.952783, 1.31778]}.

ii. 𝐼27 mapps to

𝐼29 = {𝑤𝑦 ⩽ 0.034, 𝑣 −𝑤𝑥 ∈ [−0.399, 0.133], 𝑣𝑤𝑥 ∈ [0.777, 1]}.

3. Starting from 𝐼30,

(a) Step 1: 𝐼30 mapps to 𝐼31 = {𝑤𝑦 ⩽ 0.44, 𝑣 −𝑤𝑥 ∈ [−0.124, 0.037], 𝑣𝑤𝑥 ∈ [0.422, 0.767]}

(b) Step 2: Splitting 𝐼31, we have

i. 𝐼32 = {𝑤𝑦 ⩽ 0.44, 𝑣 −𝑤𝑥 ∈ [−0.124, 0.037], 𝑣𝑤𝑥 ∈ [0.422, 0.5]}.

ii. 𝐼33 = {𝑤𝑦 ⩽ 0.44, 𝑣 −𝑤𝑥 ∈ [−0.124, 0.037], 𝑣𝑤𝑥 ∈ [0.5, 0.6]}.

iii. 𝐼34 = {𝑤𝑦 ⩽ 0.44, 𝑣 −𝑤𝑥 ∈ [−0.124, 0.037], 𝑣𝑤𝑥 ∈ [0.6, 0.767]}.

Then, we have

i. 𝐼32 mapps to

𝐼35 = {𝑤𝑦 ⩽ 0.301, 𝑣 −𝑤𝑥 ∈ [−0.218, 0.0185], 𝑣𝑤𝑥 ∈ [0.901, 1.20971]}.

ii. 𝐼33 mapps to

𝐼36 = {𝑤𝑦 ⩽ 0.262, 𝑣 −𝑤𝑥 ∈ [−0.245, 0.023], 𝑣𝑤𝑥 ∈ [0.96322, 1.25093]}.

163

iii. 𝐼34 mapps to

𝐼37 = {𝑤𝑦 ⩽ 0.213, 𝑣 −𝑤𝑥 ∈ [−0.288, 0.029], 𝑣𝑤𝑥 ∈ [0.947, 1.25345]}.

(c) Step 3: Splitting and merging 𝐼35, 𝐼36, 𝐼37, we have

i. 𝐼38 = {𝑤𝑦 ⩽ 0.301, 𝑣 −𝑤𝑥 ∈ [−0.288, 0.029], 𝑣𝑤𝑥 ∈ [0.901, 1]}.

ii. 𝐼39 = {𝑤𝑦 ⩽ 0.301, 𝑣 −𝑤𝑥 ∈ [−0.288, 0.029], 𝑣𝑤𝑥 ∈ [1, 1.1]}.

iii. 𝐼40 = {𝑤𝑦 ⩽ 0.301, 𝑣 −𝑤𝑥 ∈ [−0.288, 0.029], 𝑣𝑤𝑥 ∈ [1.1, 1.25093]}.

iv. 𝐼41 = {𝑤𝑦 ⩽ 0.262, 𝑣 −𝑤𝑥 ∈ [−0.245, 0.029], 𝑣𝑤𝑥 ∈ [1.25093, 1.25345]}.

Then, we have

i. 𝐼38 mapps to

𝐼42 = {𝑤𝑦 ⩽ 0.0404, 𝑣 −𝑤𝑥 ∈ [−0.392, 0.029], 𝑣𝑤𝑥 ∈ [0.888, 1.11696]}.

ii. 𝐼39 mapps to

𝐼43 = {𝑤𝑦 ⩽ 0.0740, 𝑣 −𝑤𝑥 ∈ [−0.428, 0.033], 𝑣𝑤𝑥 ∈ [0.741, 1]}.

iii. 𝐼40 mapps to

𝐼44 = {𝑤𝑦 ⩽ 0.125, 𝑣 −𝑤𝑥 ∈ [−0.482, 0.038], 𝑣𝑤𝑥 ∈ [0.497, 0.891]}.

iv. 𝐼41 mapps to

𝐼45 = {𝑤𝑦 ⩽ 0.109, 𝑣 −𝑤𝑥 ∈ [−0.400, 0.038], 𝑣𝑤𝑥 ∈ [0.534, 0.702]}.

(d) Step 4: Splitting and merging 𝐼42, 𝐼43, 𝐼44, 𝐼45, we have

i. 𝐼46 = {𝑤𝑦 ⩽ 0.125, 𝑣 −𝑤𝑥 ∈ [−0.482, 0.038], 𝑣𝑤𝑥 ∈ [0.497, 0.891]}.

ii. 𝐼47 = {𝑤𝑦 ⩽ 0.074, 𝑣 −𝑤𝑥 ∈ [−0.428, 0.033], 𝑣𝑤𝑥 ∈ [0.891, 1]}.

iii. 𝐼48 = {𝑤𝑦 ⩽ 0.041, 𝑣 −𝑤𝑥 ∈ [−0.40, 0.029], 𝑣𝑤𝑥 ∈ [1, 1.11696]}.

Then, we have

i. 𝐼46 mapps to

𝐼49 = {𝑤𝑦 ⩽ 0.0424, 𝑣 −𝑤𝑥 ∈ [−0.442, 0.034], 𝑣𝑤𝑥 ∈ [1.07853, 1.34708]}.

164

ii. 𝐼47 mapps to

𝐼50 = {𝑤𝑦 ⩽ 0.0110, 𝑣 −𝑤𝑥 ∈ [−0.435, 0.033], 𝑣𝑤𝑥 ∈ [0.993, 1.13943]}.

iii. 𝐼48 mapps to

𝐼51 = {𝑤𝑦 ⩽ 0.0109, 𝑣 −𝑤𝑥 ∈ [−0.454, 0.033], 𝑣𝑤𝑥 ∈ [0.497, 0.891]}.

For Case (II):

Now we are to compute the ranges starting from the interval where 𝐼 = {𝑤𝑦 ⩽ 0.37, 𝑣 −𝑤𝑥 ∈

[−0.017, 0.17], 𝑣𝑤𝑥 ∈ [1
4𝜋 ,

1
2𝜋]}. First, we denote it as

1. 𝐼52 = {𝑤𝑦 ⩽ 0.37, 𝑣 −𝑤𝑥 ∈ [−0.017, 0.17], 𝑣𝑤𝑥 ∈ [1
4𝜋 ,

1
2𝜋].

Then, following the above method with splitting and merging intervals, we have

1. Starting from 𝐼52,

(a) Step 1: 𝐼52 mapps to 𝐼53 = {𝑤𝑦 ⩽ 0.37, 𝑣 −𝑤𝑥 ∈ [−0.079, 0.0271], 𝑣𝑤𝑥 ∈ [0.222, 0.616]}.

(b) Step 2: 𝐼53 mapps to 𝐼54 = {𝑤𝑦 ⩽ 0.343, 𝑣−𝑤𝑥 ∈ [−0.171, 0.017], 𝑣𝑤𝑥 ∈ [0.621, 1.24894]}.

(c) Step 3: Splitting 𝐼54, we have

i. 𝐼55 = {𝑤𝑦 ⩽ 0.343, 𝑣 −𝑤𝑥 ∈ [−0.171, 0.017], 𝑣𝑤𝑥 ∈ [0.621, 1}.

ii. 𝐼56 = {𝑤𝑦 ⩽ 0.343, 𝑣 −𝑤𝑥 ∈ [−0.171, 0.017], 𝑣𝑤𝑥 ∈ [1, 1.24894]}.

Then, we have

i. 𝐼55 mapps to

𝐼57 = {𝑤𝑦 ⩽ 0.150, 𝑣 −𝑤𝑥 ∈ [−0.305, 0.017], 𝑣𝑤𝑥 ∈ [0.840, 1.25908]}.

ii. 𝐼56 mapps to

𝐼58 = {𝑤𝑦 ⩽ 0.137, 𝑣 −𝑤𝑥 ∈ [−0.367, 0.022], 𝑣𝑤𝑥 ∈ [0.472, 1]}.

(d) Step 4: Splitting and merging 𝐼57, 𝐼58, we have

i.

165

ii. 𝐼59 = {𝑤𝑦 ⩽ 0.150, 𝑣 −𝑤𝑥 ∈ [−0.367, 0.022], 𝑣𝑤𝑥 ∈ [0.472, 1}.

iii.

iv. 𝐼60 = {𝑤𝑦 ⩽ 0.150, 𝑣 −𝑤𝑥 ∈ [−0.305, 0.017], 𝑣𝑤𝑥 ∈ [1, 1.25908}.

Then, we have

i. 𝐼59 mapps to

𝐼61 = {𝑤𝑦 ⩽ 0.0705, 𝑣 −𝑤𝑥 ∈ [−0.393, 0.022], 𝑣𝑤𝑥 ∈ [0.971, 1.304]}.

ii. 𝐼60 mapps to

𝐼62 = {𝑤𝑦 ⩽ 0.0613, 𝑣 −𝑤𝑥 ∈ [−0.421, 0.0219], 𝑣𝑤𝑥 ∈ [0.583, 1]}.

For both Cases (I, II):

From 𝐼16−20, 𝐼28, 𝐼29, 𝐼49−51, 𝐼61, 𝐼62, we can see that it has fallen into an interval 𝐼 𝑓 = {𝑤𝑦 <

0.1, 𝑣 −𝑤𝑥 ∈ [−0.462, 0.148], 𝑣𝑤𝑥 ∈ [0.497, 1.34078]}. Something special here is that𝑤𝑦 has been

much smaller than𝑤𝑥 . More broadly, let’s define an interval 𝐼𝑠 generated by 𝐼𝑔 = {𝑤𝑦 = 0, 𝑣−𝑤𝑥 ∈

[−0.464, 0.148], 𝑣𝑤𝑥 ∈ [1, 1.5]}. Here “generated” means

𝐼𝑠 =
⋃
𝑇⩾𝑡

{(𝑣 (𝑇),𝑤 (𝑇)𝑥 ,𝑤
(𝑇)
𝑦) | (𝑣 (𝑡)𝑡 ,𝑤

(𝑡)
𝑥 ,𝑤

(𝑡)
𝑦) ∈ 𝐼𝑔}. (B.91)

Then each element (𝑣,𝑤𝑥 ,𝑤𝑦) ∈ 𝐼𝑠 has the following properties:

1. 𝑤𝑦 = 0.

2. 𝑣𝑤𝑥 ∈ [0.181, 1.5].

3. If 𝑣𝑤𝑥 ⩽ 1, then 𝑣 −𝑤𝑥 ∈ [−0.735, 0.23]. If 𝑣𝑤𝑥 > 1, then 𝑣 −𝑤𝑥 ∈ [−0.474, 0.148].

The first property is obvious. The third can be proven as follows: for each element (𝑣,𝑤𝑥 ,𝑤𝑦) ∈ 𝐼𝑔,

it has 𝑣 (𝑡+1)−𝑤 (𝑡+1)𝑥 = (𝑣−𝑤𝑥) (1 + 𝐾 (𝑣𝑤𝑥 − 1)), where the ratio 1+𝐾 (𝑣𝑤𝑥−1) ∈ [1, 1+1.1(1.5−1)]

when 𝑣𝑤𝑥 ∈ [1, 1.5]. Furthermore, in the proven 2-D case, we have shown that “if 𝑣𝑤𝑥 > 1 with

some mild conditions, then 𝑣 (𝑡+2)−𝑤 (𝑡+2)𝑥

𝑣−𝑤𝑥 ∈ (−1, 1)”. Actually it can be tighter as 𝑣 (𝑡+2)−𝑤 (𝑡+2)𝑥

𝑣−𝑤𝑥 ∈

166

(−0.2, 1) because here 𝐾 ⩽ 1.1 while the original bound is for 𝐾 ⩽ 1.5. The condition of bounded

|𝑣 − 𝑤𝑥 | can also be verified, the purpose of which is to keep 𝑣,𝑤𝑥 always positive. Then the

bound [−0.2, 1] will tell 𝑣 −𝑤𝑥 ∈ [−0.474, 0.148] on 𝑣𝑤𝑥 ⩾ 1, because

0.148
0.474

> 0.2,
0.474
0.148

> 0.2.

For the second property, the left bound can be verified as

min
𝑥∈[1,1.5]

𝑥 (1 + 1.1(1 − 𝑥))2 + 1.1(1 − 𝑥) · 0.4742 =

(
𝑥 (1 + 1.1(1 − 𝑥))2 + 1.1(1 − 𝑥) · 0.4742

)����
𝑥=1.5

⩾ 0.181.

The right bound can be verified as

max
𝑥∈[0,1]

𝑥 (1 + 1.1(1 − 𝑥))2 + 1.1(1 − 𝑥) ∗ 0.7352 < 1.5.

After proving these three properties, we would like to bound how far 𝐼 𝑓 is away from 𝐼𝑠 . More

precisely, the distance is measured by𝑤𝑦 . We are going to show𝑤𝑦 decays exponentially.

Remind the update rules in (B.58, B.59). Denote 𝛾 = 1
𝜋
(arctan(𝛼) − 𝑤𝑥𝑤𝑦

∥𝑤 ∥2) again and 𝛿 =

𝐾
𝑤2
𝑦

𝑣
(−𝑣2 + 𝑣𝑤𝑦

𝜋 ∥𝑤 ∥2), then it is

Δ𝑣 = 𝐾𝑤𝑥 (−𝑣𝑤𝑥 + 1) − 𝐾𝑤𝑥𝛾 + 𝛿, (B.92)

Δ𝑤𝑥 = 𝐾𝑣 (−𝑣𝑤𝑥 + 1) − 𝐾𝑣𝛾, (B.93)

𝛿 ∈ [−𝐾𝑣𝑤2
𝑦, 0] . (B.94)

Note that both 𝛾 and 𝛿 are very small, so we are to show their effects separately, which is

enough to be a good approximation.

Consider an iteration where 𝑣 (𝑡)𝑤 (𝑡)𝑥 > 1 and the corresponding 𝛾 (𝑡) . Let’s denote 𝑣 (𝑡+1),𝑤 (𝑡+1)𝑥

167

as the next parameters with no corruption from 𝛾 (𝑡) . Similarly, we denote 𝑣 (𝑡+1),𝑤𝑥 (𝑡+1) are

corrupted with 𝛾 (𝑡) . From the 2-D analysis, we know

𝑣 (𝑡+2) −𝑤 (𝑡+2)𝑥

𝑣 (𝑡) −𝑤 (𝑡)𝑥
= (1 + 𝐾 (𝑣 (𝑡)𝑤 (𝑡)𝑥 − 1)) (1 + 𝐾 (𝑣 (𝑡+1)𝑤 (𝑡+1)𝑥 − 1)) < 1. (B.95)

We would like to show, with a small 𝛾 (𝑡) and ignoring 𝛿 ,

𝑣 (𝑡+2) −𝑤𝑥 (𝑡+2)

𝑣 (𝑡) −𝑤 (𝑡)𝑥
= (1 + 𝐾 (𝑣 (𝑡)𝑤 (𝑡)𝑥 − 1 + 𝛾 (𝑡))) (1 + 𝐾 (𝑣 (𝑡+1)𝑤𝑥 (𝑡+1) − 1 + 𝛾 (𝑡+1))) ⪅ 1, (B.96)

where 𝛾 (𝑡+1) is in time (𝑡 + 1) accordingly. The difference of LHS of the above two expressions

turns out to be

(𝐵.96) − (𝐵.95) = 𝐾𝛾 (𝑡) (1 + 𝐾 (𝑣 (𝑡+1)𝑤 (𝑡+1)𝑥 − 1))

+ (1 + 𝐾 (𝑣 (𝑡)𝑤 (𝑡)𝑥 − 1))𝐾 (𝑣 (𝑡+1)𝑤𝑥 (𝑡+1) − 𝑣 (𝑡+1)𝑤 (𝑡+1)𝑥 + 𝛾 (𝑡+1)) + O(𝛾2)

= 𝐾𝛾 (𝑡) (1 + 𝐾 (𝑣 (𝑡+1)𝑤 (𝑡+1)𝑥 − 1))

+ 𝐾 (1 + 𝐾 (𝑣 (𝑡)𝑤 (𝑡)𝑥 − 1)) (−𝐾 (𝑣 (𝑡))2𝛾 (𝑡) − 𝐾 (𝑤 (𝑡)𝑥)2𝛾 (𝑡) + 𝛾 (𝑡+1)) + O(𝛾2)

⩽ 𝐾𝛾 (𝑡)
(
1 + (1 + 𝐾 (𝑣 (𝑡)𝑤 (𝑡)𝑥 − 1))

(
− 𝐾 (𝑣 (𝑡))2 − 𝐾 (𝑤 (𝑡)𝑥)2 +

𝛾 (𝑡+1)

𝛾 (𝑡)
))
+ O(𝛾2)

⩽ 𝐾𝛾 (𝑡)
(
1 + (1 + 𝐾 (𝑣 (𝑡)𝑤 (𝑡)𝑥 − 1))

(
− 2𝐾𝑣 (𝑡)𝑤 (𝑡)𝑥 +

𝛾 (𝑡+1)

𝛾 (𝑡)
))
+ O(𝛾2). (B.97)

Since Δ𝑤𝑥
𝑤𝑥

= 𝐾 𝑣
𝑤𝑥
(−𝑣𝑤𝑥 + 1 − 𝛾), we have

𝑤
(𝑡+1)
𝑥

𝑤
(𝑡)
𝑥

= 1 + 𝐾 𝑣
(𝑡)

𝑤
(𝑡)
𝑥

(−𝑣 (𝑡)𝑤 (𝑡)𝑥 + 1 − 𝛾 (𝑡)) < 1. (B.98)

168

Also we have

𝛾 (𝑡+1)

𝛾 (𝑡)
=

arctan(𝑤
(𝑡+1)
𝑦

𝑤
(𝑡+1)
𝑥

) − 𝑤
(𝑡+1)
𝑥 𝑤

(𝑡+1)
𝑦

∥𝑤 (𝑡+1) ∥2

arctan(𝑤
(𝑡)
𝑦

𝑤
(𝑡)
𝑥

) − 𝑤
(𝑡)
𝑥 𝑤

(𝑡)
𝑦

∥𝑤 (𝑡) ∥2

. (B.99)

Since𝑤 (𝑡+1)𝑦 ⩽ 𝑤 (𝑡)𝑦 and

arctan(𝑚𝑥) − 𝑚𝑥
1+𝑚2𝑥2

arctan(𝑥) − 𝑥
1+𝑥2

⩽ 𝑚3, for any𝑚 > 0, 𝑥 > 0, (B.100)

we have

𝛾 (𝑡+1)

𝛾 (𝑡)
⩽

1(
1 + 𝐾 𝑣 (𝑡)

𝑤
(𝑡)
𝑥

(−𝑣 (𝑡)𝑤 (𝑡)𝑥 + 1 − 𝛾 (𝑡))
)3 . (B.101)

For general 𝑣𝑤𝑥 ∈ (1, 1.5], (B.101) holds as

𝛾 (𝑡+1)

𝛾 (𝑡)
⪅

1

(1 + 1.1
√

1+0.0742+0.074√
1+0.0742−0.074

(−1.5 + 1))3
⩽ 22. (B.102)

Since 1 + 𝐾 (𝑣 (𝑡)𝑤 (𝑡)𝑥 − 1) ⩽ 1 + 1.1 ∗ 0.5 = 1.55, it is fair to say

(𝐵.96) − (𝐵.95) ⪅ 𝐾𝛾 (𝑡) (1 + 1.55 ∗ (−2 + 22)) + O(𝛾2) = 35.2𝛾 (𝑡) + O(𝛾2). (B.103)

Actually 𝛾 (𝑡) is bounded by

𝑤
(𝑡)
𝑦

𝑤
(𝑡)
𝑥

⩽
0.099

√
1 + 0.0742 − 0.074

= 0.1066, (B.104)

𝛾 (𝑡) ⩽
arctan(𝑥) − 𝑥

1+𝑥2

𝜋
⩽ 2.6 × 10−4. (B.105)

169

As a result,

(𝐵.96) − (𝐵.95) ⪅ 0.0084. (B.106)

Note that this small value is very easy to cover in (B.95), requiring

1 − 𝑣
(𝑡+2) −𝑤 (𝑡+2)𝑥

𝑣 (𝑡) −𝑤 (𝑡)𝑥
⩾ 0.0084, (B.107)

except when 𝑣𝑤𝑥 is pretty close to 1. When 𝑣𝑤𝑥 −→ 1, from the analysis of 2-D case, (derived from

the case of 𝑥𝑡+1𝑦𝑡+1 ⩾ 𝑥2
𝑠)

1 − 𝑣
(𝑡+2) −𝑤 (𝑡+2)𝑥

𝑣 (𝑡) −𝑤 (𝑡)𝑥
⩾ (2𝐾 − 2) (𝑣 (𝑡)𝑤 (𝑡)𝑥 − 1) . (B.108)

For (𝐵.96) − (𝐵.95), denote a function 𝑝 (𝑥) as

𝑝 (𝑥) = 1 + (1 + 𝐾𝑥)
©«−2𝐾 (𝑥 + 1) + 1(

1 + 𝐾 𝑣
𝑤𝑥
(−𝑥)

)3

ª®®¬ , (B.109)

where 𝑥 = 𝑣 (𝑡)𝑤 (𝑡)𝑥 − 1 in (B.97, B.101). It is obvious that 𝑝 (0) = 1 + (−2𝐾 + 1) < 0. When 𝑥 is

small, it turns out

𝑝 (𝑥) = −2𝐾 + 2 + 𝐾
(
−2𝐾 − 1 + 3

𝑣 (𝑡)

𝑤
(𝑡)
𝑥

)
𝑥 + O(𝑥2) (B.110)

As a result, (𝐵.96) − (𝐵.95) < 0 when 𝑣𝑤𝑥 − 1 = 𝑜 (𝐾 − 1). What if 𝑣𝑤𝑥 − 1 = Ω(𝐾 − 1)? Actually,

170

we can get a better bound by a more care analysis, as

(𝐵.96) − (𝐵.95)
𝐾𝛾 (𝑡)

⩽ 1 + (1 + 𝐾 (𝑣 (𝑡)𝑤 (𝑡)𝑥 − 1))
(
− 𝐾 (𝑣 (𝑡))2 − 𝐾 (𝑤 (𝑡)𝑥)2 +

𝛾 (𝑡+1)

𝛾 (𝑡)
)

+ 𝐾
[
𝑣 (𝑡)𝑤 (𝑡)𝑥 (1 + 𝐾 (1 − 𝑣 (𝑡)𝑤 (𝑡)𝑥))2 − 1

]
, (B.111)

where the last term is due to 𝑣 (𝑡+1)𝑤 (𝑡+1)𝑥 ⩽ 𝑣 (𝑡)𝑤 (𝑡)𝑥 (1+𝐾 (1− 𝑣 (𝑡)𝑤 (𝑡)𝑥))2. Hence, with this bound,

by expanding the last term, (B.110) becomes

𝑝 (𝑥) = −2𝐾 + 2 + 𝐾
(
−2𝐾 − 1 + 3

𝑣 (𝑡)

𝑤
(𝑡)
𝑥

)
𝑥 + 𝐾 (1 − 2𝐾)𝑥 + O(𝑥2) (B.112)

= −2𝐾 + 2 + 𝐾
(
−4𝐾 + 3

𝑣 (𝑡)

𝑤
(𝑡)
𝑥

)
𝑥 + O(𝑥2), (B.113)

which is definitely negative because

𝑣 (𝑡)

𝑤
(𝑡)
𝑥

⩽

√
1 + 0.0742 + 0.074
√

1 + 0.0742 − 0.074
< 1.16 <

4
3
. (B.114)

Meanwhile, we are to prove the 𝛿 in (B.92) will not make 𝐼𝑠 make 𝑣 − 𝑤𝑥 < −0.474 starting

from 𝑣 −𝑤𝑥 ⩾ −0.462. First, in the region of {𝑣𝑤𝑥 ∈ [1, 1.5], 𝑣 −𝑤𝑥 ⩽ 0.148}, we have 𝐾𝑣𝑤2
𝑦 ⩽

1.1 · (
√

1.5 + 0.0742 + 0.074) ∗ 0.12 ⩽ 0.0144. Also note that in this region with 𝑣 −𝑤𝑥 ⩾ −0.462,

we have

𝑤
(𝑡+1)
𝑦

𝑤𝑦
⩽ 1 −

√
1 + 0.2312 − 0.231
√

1 + 0.2312 + 0.231
= 0.37. (B.115)

Hence𝐾𝑣 (𝑤 (𝑡)𝑦)2+𝐾𝑣 (𝑤 (𝑡+1)𝑦)2 ⩽ 0.0144∗ (1+0.372) = 0.0164. Since |𝑣 (𝑡+2) −𝑤 (𝑡+2) | < |𝑣 (𝑡) −𝑤 (𝑡) |

if there is no 𝛿 , we shall see that there is no need to discuss the case of 𝑣 −𝑤𝑥 ⩾ −0.462+0.0164 =

−0.4456 because it still holds 𝑣 (𝑡+1) −𝑤 (𝑡+1)𝑥 > −0.462. When 𝑣 (𝑡) −𝑤 (𝑡)𝑥 ∈ [−0.462,−0.4456], we

171

shall see that in (B.36), after adding the term of 𝛿 in 𝑣 ,

𝑣 (𝑡+2) −𝑤 (𝑡+2)𝑥

𝑣 (𝑡) −𝑤 (𝑡)𝑥
⩽ 1 − (1 + 𝐾 (𝑣𝑤𝑥 − 1)) · 𝐾𝑤𝑥𝛿, (B.116)

which means the absolute value of 𝑣 − 𝑤𝑥 decays at least by a margin depending on 𝛿 . After

multiplying the current difference 𝑣 (𝑡) −𝑤 (𝑡)𝑥 on both side, it gives

(𝑣 (𝑡+2) −𝑤 (𝑡+2)𝑥) − (𝑣 (𝑡) −𝑤 (𝑡)𝑥) ⩾ 𝑣 (𝑡)𝑤 (𝑡)𝑥 𝑤
(𝑡)
𝑥 𝛿. (B.117)

Note that here 𝑣 (𝑡+2) − 𝑤 (𝑡+2)𝑥 does not include 𝛿 (𝑡) and 𝛿 (𝑡+1) . As stated above, we have 𝛿 (𝑡+1)

𝛿 (𝑡)
⩽

0.372 ⩽ 0.16 due to the decay of 𝑤𝑦 . So it is safe to say 𝛿 (𝑡) + 𝛿 (𝑡+1) ⩾ 1.16𝛿 (𝑡) . Combining with

the above inequality, it gives

(𝑣 (𝑡+2) −𝑤 (𝑡+2)𝑥) − (𝑣 (𝑡) −𝑤 (𝑡)𝑥) + 𝛿 (𝑡) + 𝛿 (𝑡+1) ⩾ (𝑣 (𝑡)𝑤 (𝑡)𝑥 𝑤
(𝑡)
𝑥 + 1.16)𝛿 (𝑡), (B.118)

where

𝑣 (𝑡)𝑤 (𝑡)𝑥 𝑤
(𝑡)
𝑥 + 1.16 ⩽ 𝑣𝑤𝑥 · (

√︂
𝑣𝑤𝑥 + (

0.4456
2
)2 − 0.4456

2
) + 1.16 ⩽ 0.6. (B.119)

Furthermore, from our previous discussion, 𝑤 (𝑡+2)𝑦 < 𝑤
(𝑡+2)
𝑦 gives that the sum of (B.118) is

bounded by

0.6
1 − 0.16

𝛿 (𝑡) ⩾
0.6

1 − 0.16
· (−0.0144) ⩾ −0.0103. (B.120)

Since −0.474− (−0.462) < −0.0103, we shall see that the term of 𝛿 cannot drive 𝑣 −𝑤𝑥 < −0.472.

Note that (B.118) shall include a factor (< 1) in front of 𝛿 (𝑡) , but we have ignored it to show a

more aggressive bound.

Therefore, we are able to say an Interval 𝐼𝑠 generated by 𝐼 𝑓 also has the following properties:

172

for each element (𝑣,𝑤𝑥 ,𝑤𝑦) ∈ 𝐼𝑠 ,

1. 𝑣𝑤𝑥 ∈ [0.181, 1.5].

2. If 𝑣𝑤𝑥 ⩽ 1, then 𝑣 −𝑤𝑥 ∈ [−0.735, 0.23]. If 𝑣𝑤𝑥 > 1, then 𝑣 −𝑤𝑥 ∈ [−0.472, 0.148].

Then the decreasing ratio of Δ𝑤𝑦/𝑤𝑦 is bounded by

Δ𝑤𝑦

𝑤𝑦
= 𝐾

𝑣

𝑤𝑥

(
−𝑣𝑤𝑥 +

1
𝜋

𝑤𝑥𝑤𝑦

∥𝑤 ∥2

)
(B.121)

∈
[
−1.1(

√
1.5 + 0.0742 + 0.074)2,−0.030𝐾

]
(B.122)

= [−1.87,−0.030𝐾] . (B.123)

Hence,𝑤𝑦 decays with a linear ratio of 0.97 (or 1 − 0.030𝐾) at most for Cases (I, II) in stage 2.

For Case (III), in the first step of stage 2, it already has𝑤𝑦 ⩽ 0.078 and 𝑣 −𝑤𝑥 ∈ [−0.017, 0.17].

So surely it will also converge to 𝐼𝑠 .

Here we present the time analysis for Case (III) of both stages. The number of iterations in

the first stage is apparently similar to that of case (I, II), as

𝑇1 ⩽ log2.56

⌈
2.7𝜓
𝛽2

⌉
, (B.124)

where𝜓 < 1
4𝜋 is the value of 𝑣𝑤𝑥 in the first step of stage 2. In stage 2, since our target is to find

how many steps are necessary to get 𝑣𝑤𝑥 ⩾ 0.181, so it is

𝑣 (𝑡+1)𝑤 (𝑡+1)𝑥 ⩾ 𝑣 (𝑡)𝑤 (𝑡)𝑥
©«1 − 0.181 + 1 −

arctan(2 −
√

3) − 2−
√

3
1+(2−

√
3)2

𝜋
− 1.1𝑤2

𝑦

ª®®¬ (B.125)

⩾ 3.28𝑣 (𝑡)𝑤 (𝑡)𝑥 . (B.126)

where obviously it still holds 𝑤𝑦

𝑤𝑥
⩽ 2 −

√
3 and 𝑤2

𝑦 < 0.12 in stage 2. Since 3.28 > 2.56, we have

173

the total number of steps to have 𝑣𝑤𝑥 > 0.181 bounded as

⌈
log2.56

2.7𝜓
𝛽2

⌉
+

⌈
log3.28

0.181
𝜓

⌉
⩽

⌈
log2.56

0.675
𝜋𝛽2

⌉
+

⌈
log3.28

0.181
1

4𝜋

⌉
+ 2

⩽

⌈
log2.56

0.675
𝜋𝛽2

⌉
+ 3

<

⌈
log2.56

1.35
𝜋𝛽2

⌉
+ 4,

which is not beyond the bound for Cases (I, II). □

B.10 Proof of Matrix Factorization

Consider a two-layer matrix factorization problem. It’s parameterized by learnable weights X ∈

R𝑚×𝑝 , Y ∈ R𝑝×𝑞 , and the target matrix is C ∈ R𝑚×𝑞 . The loss 𝐿 is defined as

𝐿(X,Y) = 1
2
∥XY − C∥2𝐹 . (B.127)

Obviously {X,Y : XY = C} forms a minimum manifold. Focusing on this manifold, our targets

are: 1) to prove our condition for stable oscillation on 1D functions holds at the minimum of 𝐿 for

any setting of dimensions, and 2) to provide an observation of walking towards flattest minima

with theoretical intuition.

B.10.1 Asymmetric Case: 1D function at the minima

Before looking into the theorem, we would like to clarify the definition of the loss Hessian. Inher-

ently, we squeeze X,Y into a vector 𝜃 = vec(X,Y) ∈ R𝑚𝑝+𝑝𝑞 , which vectorizes the concatnation.

As a result, we are able to represent the loss Hessian w.r.t. 𝜃 as amatrix inR(𝑚𝑝+𝑝𝑞)×(𝑚𝑝+𝑝𝑞) . Mean-

while, the support of the loss landscape is in R𝑚𝑝+𝑝𝑞 . In the following theorem, we are to show

the leading eigenvector Δ ≜ vec(ΔX,ΔY) ∈ R𝑚𝑝+𝑝𝑞 of the loss Hessian. Since the cross section

174

of the loss landscape and Δ forms a 1D function 𝑓Δ, we would also show the stable-oscillation

condition on 1D function holds at the minima of 𝑓Δ.

TheoremB.10. For amatrix factorization problem, assumeXY = C. Consider SVD of bothmatrices

asX =
∑min{𝑚,𝑝}
𝑖=1 𝜎𝑥,𝑖𝑢𝑥,𝑖𝑣

⊤
𝑥,𝑖 andY =

∑min{𝑝,𝑞}
𝑖=1 𝜎𝑦,𝑖𝑢𝑦,𝑖𝑣

⊤
𝑦,𝑖 , where both groups of 𝜎·,𝑖 ’s are in descending

order and both top singular values𝜎𝑥,1 and𝜎𝑦,1 are unique. Also assume 𝑣⊤𝑥,1𝑢𝑦,1 ≠ 0. Then the leading

eigenvector of the loss Hessian is Δ = vec(𝐶1𝑢𝑥,1𝑢
⊤
𝑦,1,𝐶2𝑣𝑥,1𝑣

⊤
𝑦,1) with 𝐶1 =

𝜎𝑦,1√︃
𝜎2
𝑥,1+𝜎2

𝑦,1

,𝐶2 =
𝜎𝑥,1√︃

𝜎2
𝑥,1+𝜎2

𝑦,1

.

Denote 𝑓Δ as the 1D function at the cross section of the loss landscape and the line following the

direction of Δ passing vec(ΔX,ΔY). Then, at the minima of 𝑓Δ, it satisfies

3[𝑓 (3)Δ]
2 − 𝑓 (2)Δ 𝑓

(4)
Δ > 0. (B.128)

Proof. To obtain the direction of the leading Hessian eigenvector at parameters (X,Y), consider

a small deviation of the parameters as (X+ΔX,Y+ΔY). With XY = C, evaluate the loss function

as

𝐿(X + ΔX,Y + ΔY) = 1
2
∥ΔXY + XΔY + ΔXΔY∥2𝐹 . (B.129)

Expand these terms and split them by orders of ΔX,ΔY as follows:

Θ(∥ΔX∥2 + ∥ΔY∥2) :
1
2
∥ΔXY + XΔY∥2𝐹 , (B.130)

Θ(∥ΔX∥3 + ∥ΔY∥3) : ⟨ΔXY + XΔY,ΔXΔY⟩, (B.131)

Θ(∥ΔX∥4 + ∥ΔY∥4) :
1
2
∥ΔXΔY∥2𝐹 . (B.132)

From the second-order terms, the leading eigenvector of ∇2𝐿 is the solution of

vec(ΔX,ΔY) = arg max
∥ΔX∥2𝐹+∥ΔY∥

2
𝐹=1
∥ΔXY + XΔY∥2𝐹 . (B.133)

175

Since both the top singular values of X,Y are unique, the solution shall have both ΔX,ΔY of rank

1. Actually the solution is (here for simplicity we eliminate the sign of both)

ΔX =
𝜎𝑦,1√︃

𝜎2
𝑥,1 + 𝜎2

𝑦,1

𝑢𝑥,1𝑢
⊤
𝑦,1, ΔY =

𝜎𝑥,1√︃
𝜎2
𝑥,1 + 𝜎2

𝑦,1

𝑣𝑥,1𝑣
⊤
𝑦,1. (B.134)

Equipped with the top eigenvector of Hessian, vec(ΔX,ΔY), we consider the 1-D function 𝑓Δ

generated by the cross-section of the loss landscape and the eigenvector, passing the minima

(X,Y). Define the function as

𝑓Δ(𝜇) = 𝐿(X + 𝜇ΔX,Y + 𝜇ΔY), 𝜇 ∈ R. (B.135)

Then, around 𝜇 = 0, we have

𝑓Δ(𝜇) =
1
2
∥ΔXY + XΔY∥2𝐹 · 𝜇2 + ⟨ΔXY + XΔY,ΔXΔY⟩ · 𝜇3 + 1

2
∥ΔXΔY∥2𝐹 · 𝜇4. (B.136)

Therefore, the several order derivatives of 𝑓Δ(𝜇) at 𝜇 = 0 can be obtained from Taylor expansion

as

𝑓
(2)
Δ (0) = ∥ΔXY + XΔY∥

2
𝐹 , (B.137)

𝑓
(3)
Δ (0) = 6⟨ΔXY + XΔY,ΔXΔY⟩, (B.138)

𝑓
(4)
Δ (0) = 12 ∥ΔXΔY∥2𝐹 . (B.139)

Then we compute the condition of stable oscillation of 1-D function as

[
3[𝑓 (3)Δ]

2 − 𝑓 (2)Δ 𝑓
(4)
Δ

]
(0) = 108⟨ΔXY + XΔY,ΔXΔY⟩2 − 12 ∥ΔXY + XΔY∥2𝐹 ∥ΔXΔY∥

2
𝐹 (B.140)

= 96 ∥ΔXY + XΔY∥2𝐹 ∥ΔXΔY∥
2
𝐹 > 0, (B.141)

176

because all of ΔXY,XΔY,ΔXΔY are parallel to 𝑢𝑥,1𝑣⊤𝑦,1 and 𝑣
⊤
𝑥,1𝑢𝑦,1 ≠ 0.

□

B.10.2 Quasi-symmetric case: walk towards flattest minima

Observation 5 (Restatement of Observation 2). Consider the quasi-symmetric matrix factoriza-

tion with learning rate 𝜂 = 1
𝜎2

1
+ 𝛽 . Assume 0 < 𝛽𝜎2

1 <
√

4.5−1 ≈ 1.121. Consider a minimum (Y0 =

𝛼X0,Z0 = 1/𝛼X0), 𝛼 > 0. The initialization is around theminimum, asY1 = Y0 + ΔY1,Z1 = Z0 + ΔZ1,

with the deviations satisfying 𝑢⊤1 ΔY1𝑣1 ≠ 0, 𝑢⊤1 ΔZ1𝑣1 ≠ 0 and ∥ΔY1∥ , ∥ΔZ1∥ ⩽ 𝜖 . The second

largest singular value of X0 needs to satisfy

𝜂 ·max
{
(
𝜎2

1
𝛼2 + 𝜎

2
2𝛼

2,
𝜎2

2
𝛼2 + 𝜎

2
1𝛼

2)
}
⩽ 2. (B.142)

Then GD would converge to a period-2 orbit 𝛾𝜂 approximately with error in O(𝜖), formally written

as

(Y𝑡 ,Z𝑡) → 𝛾𝜂 + (ΔY,ΔZ), ∥ΔY∥ , ∥ΔZ∥ = O(𝜖), (B.143)

𝛾𝜂 =

{ (
Y0 + (𝜌𝑖 − 𝛼) 𝜎1𝑢1𝑣

⊤
1 ,Z0 + (𝜌𝑖 − 1/𝛼) 𝜎1𝑢1𝑣

⊤
1
) }
, (𝑖 = 1, 2) (B.144)

where 𝜌1 ∈ (1, 2), 𝜌2 ∈ (0, 1) are the two solutions of solving 𝜌 in

1 + 𝛽𝜎2
1 =

1

𝜌2
(√︃

1
𝜌2 − 3

4 +
1
2

) . (B.145)

Remark 7. What is missing for a rigorous proof?

1. Control of error terms in non-asymptotic analysis.

2. Resolving assumptions of spectrum Q𝛼,𝜂,𝑝 (𝑦𝑡 , 𝑧𝑡) in early stages.

177

Proof. Without loss of generality, we assume X0 = diag([𝜎1, 𝜎2, . . . , 𝜎𝑑]) ∈ R𝑑×𝑑 , where (X0)𝑖,𝑖 =

𝜎𝑖 or 0 in all other entries. This can be easily achieved by rotating singular vectors of X0. Accord-

ingly, we have Y0 = diag([𝜎1𝛼, 𝜎2𝛼, . . . , 𝜎𝑑𝛼]) ∈ R𝑑×𝑑 and Z0 = diag([𝜎1/𝛼, 𝜎2/𝛼, . . . , 𝜎𝑑/𝛼]) ∈

R𝑑×𝑑 .

Starting from time 𝑡 = 1, we denote the learnable parameter matrices as Y𝑡 ,Z𝑡 , and their

deviation as ΔY𝑡 ≜ Y𝑡 − Y0,ΔZ𝑡 ≜ Z𝑡 − Z0. By assumptions, we have ∥ΔY1∥ < 𝜖, ∥ΔZ1∥ < 𝜖 .

Furthermore, we split ΔY𝑡 ,ΔZ𝑡 as follows,

ΔY𝑡 =

①𝑡 ③𝑡

②𝑡 ④𝑡

 ,ΔZ𝑡 =

⑤𝑡 ⑦𝑡

⑥𝑡 ⑧𝑡

 , (B.146)

①𝑡 ,⑤𝑡 ∈ R, ②𝑡 ,⑥𝑡 ∈ R(𝑑−1)×1, ③𝑡 ,⑦𝑡 ∈ R1×(𝑑−1), ④𝑡 ,⑧𝑡 ∈ R(𝑑−1)×(𝑑−1) . (B.147)

Since the update rules of Y𝑡 ,Z𝑡 are

Y𝑡+1 = Y𝑡 − 𝜂
(
ΔY𝑡Z⊤0 + Y0ΔZ⊤𝑡 + ΔY𝑡ΔZ⊤𝑡

)
(Z0 + ΔZ𝑡) (B.148)

Z𝑡+1 = Z𝑡 − 𝜂
(
ΔZ𝑡Y⊤0 + Z0ΔY⊤𝑡 + ΔZ𝑡ΔY⊤𝑡

)
(Y0 + ΔY𝑡) (B.149)

178

The update rules of ① −⑧ are

①𝑡+1 = ①𝑡 − 𝜂I⊤1
(
ΔY𝑡Z⊤0 + Y0ΔZ⊤𝑡 + ΔY𝑡ΔZ⊤𝑡

)
(Z0 + ΔZ𝑡)I1 (B.150)

②𝑡+1 = ②𝑡 − 𝜂I⊤⩾2
(
ΔY𝑡Z⊤0 + Y0ΔZ⊤𝑡 + ΔY𝑡ΔZ⊤𝑡

)
(Z0 + ΔZ𝑡)I1 (B.151)

③𝑡+1 = ③𝑡 − 𝜂I⊤1
(
ΔY𝑡Z⊤0 + Y0ΔZ⊤𝑡 + ΔY𝑡ΔZ⊤𝑡

)
(Z0 + ΔZ𝑡)I⩾2 (B.152)

④𝑡+1 = ④𝑡 − 𝜂I⊤⩾2
(
ΔY𝑡Z⊤0 + Y0ΔZ⊤𝑡 + ΔY𝑡ΔZ⊤𝑡

)
(Z0 + ΔZ𝑡)I⩾2 (B.153)

⑤𝑡+1 = ⑤𝑡 − 𝜂I⊤1
(
ΔZ𝑡Y⊤0 + Z0ΔY⊤𝑡 + ΔZ𝑡ΔY⊤𝑡

)
(Y0 + ΔY𝑡) I1 (B.154)

⑥𝑡+1 = ⑥𝑡 − 𝜂I⊤⩾2
(
ΔZ𝑡Y⊤0 + Z0ΔY⊤𝑡 + ΔZ𝑡ΔY⊤𝑡

)
(Y0 + ΔY𝑡) I1 (B.155)

⑦𝑡+1 = ⑦𝑡 − 𝜂I⊤1
(
ΔZ𝑡Y⊤0 + Z0ΔY⊤𝑡 + ΔZ𝑡ΔY⊤𝑡

)
(Y0 + ΔY𝑡) I⩾2 (B.156)

⑧𝑡+1 = ⑧𝑡 − 𝜂I⊤⩾2
(
ΔZ𝑡Y⊤0 + Z0ΔY⊤𝑡 + ΔZ𝑡ΔY⊤𝑡

)
(Y0 + ΔY𝑡) I⩾2, (B.157)

where I1 = (I𝑑):,1 ∈ R𝑑×1, I⩾2 = (I𝑑):,2:𝑑 ∈ R𝑑×(𝑑−1) are the dimension-reduction matrix, defined

from blocks of the 𝑑 × 𝑑 identity matrix I. In other words, I1 (respectively I⩾2) is to pick the first

row/column (respectively all remaining rows/columns) from amatrix, which is extracting①𝑡−⑧𝑡

from ΔY𝑡 ,ΔZ𝑡 .

Denote M𝑡 ≜
(
ΔY𝑡Z⊤0 + Y0ΔZ⊤𝑡 + ΔY𝑡ΔZ⊤𝑡

)
= Y𝑡Z⊤𝑡 − X0X⊤0 .

At initialization, we assume all of ①1,②1,③1,④1,⑤1,⑥1,⑦1,⑧1 are in Θ(𝜖), which means all

∥I1M1I1∥ , ∥I⩾2M1I1∥ , ∥I1M1I⩾2∥ , ∥I⩾2M1I⩾2∥ are in Θ(𝜖) as well. Our goal is to show that, as

𝑡 →∞,

1. ①∞, ⑤∞ are in a period-2 orbit,

2. ②∞,③∞,④∞,⑥∞,⑦∞,⑧∞ are in Θ(𝜖),

3. ∥I⩾2M∞I1∥ , ∥I1M∞I⩾2∥ , ∥I⩾2M∞I⩾2∥,
I⊤1 Z∞Z⊤∞I⩾2

, I⊤⩾2Y∞Y
⊤
∞I⩾2

 decay to zero.

179

Then, following the above definitions, we have another representation of

(
ΔY𝑡Z⊤0 + Y0ΔZ⊤𝑡 + ΔY𝑡ΔZ⊤𝑡

)
,

or equivalently its transpose
(
ΔZ𝑡Y⊤0 + Z0ΔY⊤𝑡 + ΔZ𝑡ΔY⊤𝑡

)
, as

I⊤1
(
ΔY𝑡Z⊤0 + Y0ΔZ⊤𝑡 + ΔY𝑡ΔZ⊤𝑡

)
I1 = ①𝑡 I

⊤
1 Z
⊤
0 I1 + I⊤1 Y0I1⑤𝑡 +①𝑡⑤𝑡 +③𝑡⑦

⊤
𝑡 (B.158)

I⊤⩾2
(
ΔY𝑡Z⊤0 + Y0ΔZ⊤𝑡 + ΔY𝑡ΔZ⊤𝑡

)
I1 = ②𝑡 I

⊤
1 Z
⊤
0 I1 + I⊤⩾2Y0I⩾2⑦

⊤
𝑡 +②𝑡⑤𝑡 +④𝑡⑦

⊤
𝑡 (B.159)

I⊤1
(
ΔY𝑡Z⊤0 + Y0ΔZ⊤𝑡 + ΔY𝑡ΔZ⊤𝑡

)
I⩾2 = ③𝑡 I

⊤
⩾2Z
⊤
0 I⩾2 + I⊤1 Y0I1⑥

⊤
𝑡 +①𝑡⑥

⊤
𝑡 +③𝑡⑧

⊤
𝑡 (B.160)

I⊤⩾2
(
ΔY𝑡Z⊤0 + Y0ΔZ⊤𝑡 + ΔY𝑡ΔZ⊤𝑡

)
I⩾2 = ④𝑡 I

⊤
⩾2Z
⊤
0 I⩾2 + I⊤⩾2Y0I⩾2⑧

⊤
𝑡 +②𝑡⑥

⊤
𝑡 +④𝑡⑧

⊤
𝑡 . (B.161)

180

After substituting with ①𝑡+1 −⑧𝑡+1, we have

I⊤1 M𝑡+1I1 = I
⊤
1 M𝑡 I1 − 𝜂I⊤1 M𝑡 (Z0 + ΔZ𝑡)I1I⊤1 Z⊤0 I1 − 𝜂I⊤1 Y0I1I

⊤
1 (Y0 + ΔY𝑡)⊤M𝑡 I1

− 𝜂①𝑡 I
⊤
1 (Y0 + ΔY𝑡)⊤M𝑡 I1 − 𝜂I⊤1 M𝑡 (Z0 + ΔZ𝑡)I1⑤𝑡 − 𝜂I⊤1 M𝑡 (Z0 + ΔZ𝑡)I⩾2⑦

⊤
𝑡

− 𝜂③𝑡 I
⊤
⩾2 (Y0 + ΔY𝑡)⊤M𝑡 I1 + 𝜂2I⊤1 M𝑡 (Z0 + ΔZ𝑡)I⩾2I

⊤
⩾2 (Y0 + ΔY𝑡)⊤M𝑡 I1

+ 𝜂2I⊤1 M𝑡 (Z0 + ΔZ𝑡)I1I⊤1 (Y0 + ΔY𝑡)⊤M𝑡 I1

= I⊤1 M𝑡 I1 − 𝜂I⊤1 M𝑡 (I1I⊤1 + I⩾2I
⊤
⩾2) (Z0 + ΔZ𝑡)I1I⊤1 Z⊤0 I1

− 𝜂I⊤1 Y0I1I
⊤
1 (Y0 + ΔY𝑡)⊤ (I1I⊤1 + I⩾2I

⊤
⩾2)M⊤𝑡 I1

− 𝜂①𝑡 I
⊤
1 (Y0 + ΔY𝑡)⊤ (I1I⊤1 + I⩾2I

⊤
⩾2)M𝑡 I1 − 𝜂I⊤1 M𝑡 (I1I⊤1 + I⩾2I

⊤
⩾2) (Z0 + ΔZ𝑡)I1⑤𝑡

− 𝜂I⊤1 M𝑡 (I1I⊤1 + I⩾2I
⊤
⩾2) (Z0 + ΔZ𝑡)I⩾2⑦

⊤
𝑡 − 𝜂③𝑡 I

⊤
⩾2 (Y0 + ΔY𝑡)⊤ (I1I⊤1 + I⩾2I

⊤
⩾2)M𝑡 I1

+ 𝜂2I⊤1 M𝑡 (I1I⊤1 + I⩾2I
⊤
⩾2) (Z0 + ΔZ𝑡)I⩾2I

⊤
⩾2 (Y0 + ΔY𝑡)⊤ (I1I⊤1 + I⩾2I

⊤
⩾2)M𝑡 I1

+ 𝜂2I⊤1 M𝑡 (I1I⊤1 + I⩾2I
⊤
⩾2) (Z0 + ΔZ𝑡)I1I⊤1 (Y0 + ΔY𝑡)⊤ (I1I⊤1 + I⩾2I

⊤
⩾2)M𝑡 I1

= I⊤1 M𝑡 I1 − 𝜂I⊤1 M𝑡 I1I
⊤
1 Z0I1I

⊤
1 Z
⊤
0 I1 − 𝜂I⊤1 M𝑡 I1⑤𝑡 I

⊤
1 Z
⊤
0 I1 − 𝜂I⊤1 M𝑡 I⩾2⑥𝑡 I

⊤
1 Z
⊤
0 I1

− 𝜂I⊤1 Y0I1I
⊤
1 Y0I1I

⊤
1 M𝑡 I1 − 𝜂I⊤1 Y0I1①𝑡 I

⊤
1 M𝑡 I1 − 𝜂I⊤1 Y0I1②

⊤
𝑡 I
⊤
⩾2M𝑡 I1

− 𝜂①𝑡 I
⊤
1 Y0I1I

⊤
1 M𝑡 I1 − 𝜂①𝑡①𝑡 I

⊤
1 M𝑡 I1 − 𝜂①𝑡②

⊤
𝑡 I
⊤
⩾2M𝑡 I1

− 𝜂I⊤1 M𝑡 I1I
⊤
1 Z0I1⑤𝑡 − 𝜂I⊤1 M𝑡 I1⑤𝑡⑤𝑡 − 𝜂I⊤1 M𝑡 I⩾2⑥𝑡⑤𝑡

− 𝜂I⊤1 M𝑡 I1I
⊤
1 Z0I⩾2⑦

⊤
𝑡 − 𝜂I⊤1 M𝑡 I1⑦𝑡⑦

⊤
𝑡 − 𝜂I⊤1 M𝑡 I1⑧𝑡⑦

⊤
𝑡

− 𝜂③𝑡 I
⊤
⩾2Y0I⩾2I

⊤
⩾2M𝑡 I1 − 𝜂③𝑡④

⊤
𝑡 I
⊤
1 M𝑡 I1 − 𝜂③𝑡③

⊤
𝑡 I
⊤
⩾2M𝑡 I1

+ 𝜂2I⊤1 M𝑡 (I⩾2I
⊤
⩾2Z0I⩾2 + I1⑦𝑡 + I⩾2⑧𝑡) (I⊤⩾2Y0I⩾2I

⊤
⩾2 +③⊤𝑡 I

⊤
1 +④⊤𝑡 I

⊤
⩾2)M𝑡 I1

+ 𝜂2I⊤1 M𝑡 (I1I⊤1 Z0I1 + I1⑤𝑡 + I⩾2⑥𝑡) (I⊤1 Y0I1I
⊤
1 +①𝑡 I

⊤
1 +②⊤𝑡 I

⊤
⩾2)M𝑡 I1

181

I⊤⩾2M𝑡+1I1 = I
⊤
⩾2M𝑡 I1 − 𝜂I⊤⩾2M𝑡 (Z0 + ΔZ𝑡)I1I⊤1 Z⊤0 I1 − 𝜂I⊤⩾2Y0I⩾2I

⊤
⩾2 (Y0 + ΔY𝑡)⊤M𝑡 I1

− 𝜂②𝑡 I
⊤
1 (Y0 + ΔY𝑡)⊤M𝑡 I1 − 𝜂I⊤⩾2M𝑡 (Z0 + ΔZ𝑡)I1⑤𝑡 − 𝜂I⊤⩾2M𝑡 (Z0 + ΔZ𝑡)I⩾2⑦

⊤
𝑡

− 𝜂④𝑡 I
⊤
⩾2 (Y0 + ΔY𝑡)⊤M𝑡 I1 + 𝜂2I⊤⩾2M𝑡 (Z0 + ΔZ𝑡)I⩾2I

⊤
⩾2 (Y0 + ΔY𝑡)⊤M𝑡 I1

+ 𝜂2I⊤⩾2M𝑡 (Z0 + ΔZ𝑡)I1I⊤1 (Y0 + ΔY𝑡)⊤M𝑡 I1

= I⊤⩾2M𝑡 I1 − 𝜂I⊤⩾2M𝑡 (I1I⊤1 + I⩾2I
⊤
⩾2) (Z0 + ΔZ𝑡)I1I⊤1 Z⊤0 I1

− 𝜂I⊤⩾2Y0I⩾2I
⊤
⩾2 (Y0 + ΔY𝑡)⊤ (I1I⊤1 + I⩾2I

⊤
⩾2)M𝑡 I1

− 𝜂②𝑡 I
⊤
1 (Y0 + ΔY𝑡)⊤ (I1I⊤1 + I⩾2I

⊤
⩾2)M𝑡 I1 − 𝜂I⊤⩾2M𝑡 (I1I⊤1 + I⩾2I

⊤
⩾2) (Z0 + ΔZ𝑡)I1⑤𝑡

− 𝜂I⊤⩾2M𝑡 (I1I⊤1 + I⩾2I
⊤
⩾2) (Z0 + ΔZ𝑡)I⩾2⑦

⊤
𝑡 − 𝜂④𝑡 I

⊤
⩾2 (Y0 + ΔY𝑡)⊤ (I1I⊤1 + I⩾2I

⊤
⩾2)M𝑡 I1

+ 𝜂2I⊤⩾2M𝑡 (I1I⊤1 + I⩾2I
⊤
⩾2) (Z0 + ΔZ𝑡)I⩾2I

⊤
⩾2 (Y0 + ΔY𝑡)⊤ (I1I⊤1 + I⩾2I

⊤
⩾2)M𝑡 I1

+ 𝜂2I⊤⩾2M𝑡 (I1I⊤1 + I⩾2I
⊤
⩾2) (Z0 + ΔZ𝑡)I1I⊤1 (Y0 + ΔY𝑡)⊤ (I1I⊤1 + I⩾2I

⊤
⩾2)M𝑡 I1

= I⊤⩾2M𝑡 I1 − 𝜂I⊤⩾2M𝑡 I1I
⊤
1 Z0I1I

⊤
1 Z
⊤
0 I1 − 𝜂I⊤⩾2M𝑡 I1⑤𝑡 I

⊤
1 Z
⊤
0 I1 − 𝜂I⊤⩾2M𝑡 I⩾2⑥𝑡 I

⊤
1 Z
⊤
0 I1

− 𝜂I⊤⩾2Y0I⩾2I
⊤
⩾2Y0I⩾2I

⊤
⩾2M𝑡 I1 − 𝜂I⊤⩾2Y0I⩾2③

⊤
𝑡 I
⊤
1 M𝑡 I1 − 𝜂I⊤⩾2Y0I⩾2④

⊤
𝑡 I
⊤
⩾2M𝑡 I1

− 𝜂②𝑡 I
⊤
1 Y0I1I

⊤
1 M𝑡 I1 − 𝜂②𝑡①𝑡 I

⊤
1 M𝑡 I1 − 𝜂②𝑡②

⊤
𝑡 I
⊤
⩾2M𝑡 I1

− 𝜂I⊤⩾2M𝑡 I1I
⊤
1 Z0I1⑤𝑡 − 𝜂I⊤⩾2M𝑡 I1⑤𝑡⑤𝑡 − 𝜂I⊤⩾2M𝑡 I⩾2⑥𝑡⑤𝑡

− 𝜂I⊤⩾2M𝑡 I⩾2I
⊤
⩾2Z0I⩾2⑦

⊤
𝑡 − 𝜂I⊤⩾2M𝑡 I1⑦𝑡⑦

⊤
𝑡 − 𝜂I⊤⩾2M𝑡 I⩾2⑧𝑡⑦

⊤
𝑡

− 𝜂④𝑡 I
⊤
⩾2Y0I⩾2I

⊤
⩾2M

⊤
𝑡 I1 − 𝜂④𝑡③

⊤
𝑡 I
⊤
1 M𝑡 I1 − 𝜂④𝑡④

⊤
𝑡 I
⊤
⩾2M𝑡 I1

+ 𝜂2I⊤⩾2M𝑡 (I⩾2I
⊤
⩾2Z0I⩾2 + I1⑦𝑡 + I⩾2⑧𝑡) (I⊤⩾2Y0I⩾2I

⊤
⩾2 +③⊤𝑡 I

⊤
1 +④⊤𝑡 I

⊤
⩾2)M𝑡 I1

+ 𝜂2I⊤⩾2M𝑡 (I1I⊤1 Z0I
⊤
1 + I1⑤𝑡 + I⩾2⑥𝑡) (I⊤1 Y0I1I

⊤
1 +①𝑡 I

⊤
1 +②⊤𝑡 I

⊤
⩾2)M𝑡 I1

182

I⊤1 M𝑡+1I⩾2 = I
⊤
1 M𝑡 I⩾2 − 𝜂I⊤1 M𝑡 (Z0 + ΔZ𝑡)I⩾2I

⊤
⩾2Z
⊤
0 I⩾2 − 𝜂I⊤1 Y0I1I

⊤
1 (Y0 + ΔY𝑡)⊤M𝑡 I⩾2

− 𝜂①𝑡 I
⊤
1 (Y0 + ΔY𝑡)⊤M𝑡 I⩾2 − 𝜂I⊤1 M𝑡 (Z0 + ΔZ𝑡)I1⑥⊤𝑡 − 𝜂I⊤1 M𝑡 (Z0 + ΔZ𝑡)I⩾2⑧

⊤
𝑡

− 𝜂③𝑡 I
⊤
⩾2 (Y0 + ΔY𝑡)⊤M𝑡 I⩾2 + 𝜂2I⊤1 M𝑡 (Z0 + ΔZ𝑡)I⩾2I

⊤
⩾2 (Y0 + ΔY𝑡)⊤M𝑡 I⩾2

+ 𝜂2I⊤1 M𝑡 (Z0 + ΔZ𝑡)I1I⊤1 (Y0 + ΔY𝑡)⊤M𝑡 I⩾2

= I⊤1 M𝑡 I⩾2 − 𝜂I⊤1 M𝑡 (I1I⊤1 + I⩾2I
⊤
⩾2) (Z0 + ΔZ𝑡)I⩾2I

⊤
⩾2Z
⊤
0 I⩾2

− 𝜂I⊤1 Y0I1I
⊤
1 (Y0 + ΔY𝑡)⊤ (I1I⊤1 + I⩾2I

⊤
⩾2)M𝑡 I⩾2

− 𝜂①𝑡 I
⊤
1 (Y0 + ΔY𝑡)⊤ (I1I⊤1 + I⩾2I

⊤
⩾2)M𝑡 I⩾2 − 𝜂I⊤1 M𝑡 (I1I⊤1 + I⩾2I

⊤
⩾2) (Z0 + ΔZ𝑡)I1⑥⊤𝑡

− 𝜂I⊤1 M𝑡 (I1I⊤1 + I⩾2I
⊤
⩾2) (Z0 + ΔZ𝑡)I⩾2⑧

⊤
𝑡 − 𝜂③𝑡 I

⊤
⩾2 (Y0 + ΔY𝑡)⊤ (I1I⊤1 + I⩾2I

⊤
⩾2)M𝑡 I⩾2

+ 𝜂2I⊤1 M𝑡 (I1I⊤1 + I⩾2I
⊤
⩾2) (Z0 + ΔZ𝑡)I⩾2I

⊤
⩾2 (Y0 + ΔY𝑡)⊤ (I1I⊤1 + I⩾2I

⊤
⩾2)M𝑡 I⩾2

+ 𝜂2I⊤1 M𝑡 (I1I⊤1 + I⩾2I
⊤
⩾2) (Z0 + ΔZ𝑡)I1I⊤1 (Y0 + ΔY𝑡)⊤ (I1I⊤1 + I⩾2I

⊤
⩾2)M𝑡 I⩾2

= I⊤1 M𝑡 I⩾2 − 𝜂I⊤1 M𝑡 I⩾2I
⊤
⩾2Z0I⩾2I

⊤
⩾2Z
⊤
0 I⩾2 − 𝜂I⊤1 M𝑡 I1⑦𝑡 I

⊤
⩾2Z
⊤
0 I⩾2

− 𝜂I⊤1 M𝑡 I⩾2⑧𝑡 I
⊤
⩾2Z
⊤
0 I⩾2

− 𝜂I⊤1 Y0I1I
⊤
1 Y0I1I

⊤
1 M𝑡 I⩾2 − 𝜂I⊤1 Y0I1①𝑡 I

⊤
1 M𝑡 I⩾2 − 𝜂I⊤1 Y0I1②

⊤
𝑡 I
⊤
⩾2M𝑡 I⩾2

− 𝜂①𝑡 I1I
⊤
1 Y0I1I

⊤
1 M𝑡 I⩾2 − 𝜂①𝑡①𝑡 I

⊤
1 M𝑡 I⩾2 − 𝜂①𝑡②

⊤
𝑡 I
⊤
⩾2M𝑡 I⩾2

− 𝜂I⊤1 M𝑡 I1I
⊤
1 Z0I1⑥

⊤
𝑡 − 𝜂I⊤1 M𝑡 I1⑤𝑡⑥

⊤
𝑡 − 𝜂I⊤1 M𝑡 I⩾2⑥𝑡⑥

⊤
𝑡

− 𝜂I⊤1 M𝑡 I⩾2I
⊤
⩾2Z0I⩾2⑧

⊤
𝑡 − 𝜂I⊤1 M𝑡 I1⑦𝑡⑧

⊤
𝑡 − 𝜂I⊤1 M𝑡 I⩾2⑧𝑡⑧

⊤
𝑡

− 𝜂③𝑡 I
⊤
⩾2Y0I⩾2I

⊤
⩾2M𝑡 I⩾2 − 𝜂③𝑡③

⊤
𝑡 I
⊤
1 M𝑡 I⩾2 − 𝜂③𝑡④

⊤
𝑡 I
⊤
⩾2M𝑡 I⩾2

+ 𝜂2I⊤1 M𝑡 (I⩾2I
⊤
⩾2Z0I⩾2 + I1⑦𝑡 + I⩾2⑧𝑡) (I⊤⩾2Y0I⩾2I

⊤
⩾2 +③⊤𝑡 I

⊤
1 +④⊤𝑡 I

⊤
⩾2)M𝑡 I⩾2

+ 𝜂2I⊤1 M𝑡 (I1I⊤1 Z0I
⊤
1 + I1⑤𝑡 + I⩾2⑥𝑡) (I⊤1 Y0I1I

⊤
1 +①𝑡 I

⊤
1 +②⊤𝑡 I

⊤
⩾2)M𝑡 I⩾2

183

I⊤⩾2M𝑡+1I⩾2 = I
⊤
⩾2M𝑡 I⩾2 − 𝜂I⊤⩾2M𝑡 (Z0 + ΔZ𝑡)I⩾2I

⊤
⩾2Z
⊤
0 I⩾2 − 𝜂I⊤⩾2Y0I⩾2I

⊤
⩾2 (Y0 + ΔY𝑡)⊤M𝑡 I⩾2

− 𝜂②𝑡 I
⊤
1 (Y0 + ΔY𝑡)⊤M𝑡 I⩾2 − 𝜂I⊤⩾2M𝑡 (Z0 + ΔZ𝑡)I1⑥⊤𝑡 − 𝜂I⊤⩾2M𝑡 (Z0 + ΔZ𝑡)I⩾2⑧

⊤
𝑡

− 𝜂④𝑡 I
⊤
⩾2 (Y0 + ΔY𝑡)⊤M𝑡 I⩾2 + 𝜂2I⊤⩾2M𝑡 (Z0 + ΔZ𝑡)I⩾2I

⊤
⩾2 (Y0 + ΔY𝑡)⊤M𝑡 I⩾2

+ 𝜂2I⊤⩾2M𝑡 (Z0 + ΔZ𝑡)I1I⊤1 (Y0 + ΔY𝑡)⊤M𝑡 I⩾2

= I⊤⩾2M𝑡 I⩾2 − 𝜂I⊤⩾2M𝑡 (I1I⊤1 + I⩾2I
⊤
⩾2) (Z0 + ΔZ𝑡)I⩾2I

⊤
⩾2Z
⊤
0 I⩾2

− 𝜂I⊤⩾2Y0I⩾2I
⊤
⩾2 (Y0 + ΔY𝑡)⊤ (I1I⊤1 + I⩾2I

⊤
⩾2)M𝑡 I⩾2

− 𝜂②𝑡 I
⊤
1 (Y0 + ΔY𝑡)⊤ (I1I⊤1 + I⩾2I

⊤
⩾2)M𝑡 I⩾2 − 𝜂I⊤⩾2M𝑡 (I1I⊤1 + I⩾2I

⊤
⩾2) (Z0 + ΔZ𝑡)I1⑥⊤𝑡

− 𝜂I⊤⩾2M𝑡 (I1I⊤1 + I⩾2I
⊤
⩾2) (Z0 + ΔZ𝑡)I⩾2⑧

⊤
𝑡

− 𝜂④𝑡 I
⊤
⩾2 (Y0 + ΔY𝑡)⊤ (I1I⊤1 + I⩾2I

⊤
⩾2)M𝑡 I⩾2

+ 𝜂2I⊤⩾2M𝑡 (I1I⊤1 + I⩾2I
⊤
⩾2) (Z0 + ΔZ𝑡)I⩾2I

⊤
⩾2 (Y0 + ΔY𝑡)⊤ (I1I⊤1 + I⩾2I

⊤
⩾2)M𝑡 I⩾2

+ 𝜂2I⊤⩾2M𝑡 (I1I⊤1 + I⩾2I
⊤
⩾2) (Z0 + ΔZ𝑡)I1I⊤1 (Y0 + ΔY𝑡)⊤ (I1I⊤1 + I⩾2I

⊤
⩾2)M𝑡 I⩾2

= I⊤⩾2M𝑡 I⩾2 − 𝜂I⊤⩾2M𝑡 I⩾2I
⊤
⩾2Z0I⩾2I

⊤
⩾2Z
⊤
0 I⩾2 − 𝜂I⊤⩾2M𝑡 I⩾2⑧𝑡 I

⊤
⩾2Z
⊤
0 I⩾2

− 𝜂I⊤⩾2M𝑡 I1⑦𝑡 I
⊤
⩾2Z
⊤
0 I⩾2

− 𝜂I⊤⩾2Y0I⩾2I
⊤
⩾2Y0I⩾2I

⊤
⩾2M𝑡 I⩾2 − 𝜂I⊤⩾2Y0I⩾2④

⊤
𝑡 I
⊤
⩾2M𝑡 I⩾2 − 𝜂I⊤⩾2Y0I⩾2③

⊤
𝑡 I
⊤
1 M𝑡 I⩾2

− 𝜂②𝑡 I
⊤
1 Y0I1I

⊤
1 M𝑡 I⩾2 − 𝜂②𝑡①𝑡 I

⊤
1 M𝑡 I⩾2 − 𝜂②𝑡③

⊤
𝑡 I
⊤
1 M𝑡 I⩾2

− 𝜂I⊤⩾2M𝑡 I1I
⊤
1 Z0I1⑥

⊤
𝑡 − 𝜂I⊤⩾2M𝑡 I1⑤𝑡⑥

⊤
𝑡 − 𝜂I⊤⩾2M𝑡 I⩾2⑥𝑡⑥

⊤
𝑡

− 𝜂I⊤⩾2M𝑡 I⩾2I
⊤
⩾2Z0I⩾2⑧

⊤
𝑡 − 𝜂I⊤⩾2M𝑡 I1⑦⑧⊤𝑡 − 𝜂I⊤⩾2M𝑡 I⩾2⑧⑧⊤𝑡

− 𝜂④𝑡 I
⊤
⩾2Y0I⩾2I

⊤
⩾2M𝑡 I⩾2 − 𝜂④𝑡③

⊤
𝑡 I
⊤
1 M𝑡 I⩾2 − 𝜂④𝑡④

⊤I⊤⩾2M𝑡 I⩾2

+ 𝜂2I⊤⩾2M𝑡 (I⩾2I
⊤
⩾2Z0I⩾2 + I1⑦𝑡 + I⩾2⑧𝑡) (I⊤⩾2Y0I⩾2I

⊤
⩾2 +③⊤𝑡 I

⊤
1 +④⊤𝑡 I

⊤
⩾2)M𝑡 I⩾2

+ 𝜂2I⊤⩾2M𝑡 (I1I⊤1 Z0I
⊤
1 + I1⑤𝑡 + I⩾2⑥𝑡) (I⊤1 Y0I1I

⊤
1 +①𝑡 I

⊤
1 +②⊤𝑡 I

⊤
⩾2)M𝑡 I⩾2

In the following equations, red terms are expected to be 𝑂 (1) while blue terms are expected

184

to be 𝑂 (𝜖).

①𝑡+1 = ①𝑡 − 𝜂I⊤1 M𝑡 (Z0 + ΔZ𝑡)I1 (B.162)

= ①𝑡 − 𝜂I⊤1 M𝑡 I1I
⊤
1 (Z0 + ΔZ𝑡)I1 − 𝜂I⊤1 M𝑡 I⩾2I

⊤
⩾2(Z0 + ΔZ𝑡)I1 (B.163)

= ①𝑡 − 𝜂I⊤1 M𝑡 I1I
⊤
1 Z0I1 − 𝜂I⊤1 M𝑡 I1⑤𝑡 − 𝜂I⊤1 M𝑡 I⩾2⑥𝑡 , (B.164)

②𝑡+1 = ②𝑡 − 𝜂I⊤⩾2M𝑡 I1I
⊤
1 (Z0 + ΔZ𝑡)I1 − 𝜂I⊤⩾2M𝑡 I⩾2I

⊤
⩾2(Z0 + ΔZ𝑡)I1 (B.165)

= ②𝑡 − 𝜂I⊤⩾2M𝑡 I1I
⊤
1 Z0I1 − 𝜂I⊤⩾2M𝑡 I1⑤𝑡 − 𝜂I⊤⩾2M𝑡 I⩾2⑥𝑡 , (B.166)

③𝑡+1 = ③𝑡 − 𝜂I⊤1 M𝑡 I1I
⊤
1 (Z0 + ΔZ𝑡)I⩾2 − 𝜂I⊤1 M𝑡 I⩾2I

⊤
⩾2(Z0 + ΔZ𝑡)I⩾2 (B.167)

= ③𝑡 − 𝜂I⊤1 M𝑡 I1⑦𝑡 − 𝜂I⊤1 M𝑡 I⩾2I
⊤
⩾2Z0I⩾2 − 𝜂I⊤1 M𝑡 I⩾2⑧𝑡 , (B.168)

④𝑡+1 = ④𝑡 − 𝜂I⊤⩾2M𝑡 I1I
⊤
1 (Z0 + ΔZ𝑡)I⩾2 − 𝜂I⊤⩾2M𝑡 I⩾2I

⊤
⩾2(Z0 + ΔZ𝑡)I⩾2 (B.169)

= ④𝑡 − 𝜂I⊤⩾2M𝑡 I1⑦𝑡 − 𝜂I⊤⩾2M𝑡 I⩾2I
⊤
⩾2Z0I⩾2 − 𝜂I⊤⩾2M𝑡 I⩾2⑧𝑡 , (B.170)

⑤𝑡+1 = ⑤𝑡 − 𝜂I⊤1 M⊤𝑡 I1I⊤1 (Y0 + ΔY𝑡) I1 − 𝜂I⊤1 M⊤𝑡 I⩾2I
⊤
⩾2 (Y0 + ΔY𝑡) I1 (B.171)

= ⑤𝑡 − 𝜂I⊤1 M⊤𝑡 I1I⊤1 Y0I1 − 𝜂I⊤1 M⊤𝑡 I1①𝑡 − 𝜂I⊤1 M⊤𝑡 I⩾2②𝑡 , (B.172)

⑥𝑡+1 = ⑥𝑡 − 𝜂I⊤⩾2M
⊤
𝑡 I1I

⊤
1 (Y0 + ΔY𝑡) I1 − 𝜂I⊤⩾2M

⊤
𝑡 I⩾2I

⊤
⩾2 (Y0 + ΔY𝑡) I1 (B.173)

= ⑥𝑡 − 𝜂I⊤⩾2M
⊤
𝑡 I1I

⊤
1 Y0I1 − 𝜂I⊤⩾2M

⊤
𝑡 I1①𝑡 − 𝜂I⊤⩾2M

⊤
𝑡 I⩾2②𝑡 , (B.174)

⑦𝑡+1 = ⑦𝑡 − 𝜂I⊤1 M⊤𝑡 I1I⊤1 (Y0 + ΔY𝑡) I⩾2 − 𝜂I⊤1 M⊤𝑡 I⩾2I
⊤
⩾2 (Y0 + ΔY𝑡) I⩾2 (B.175)

= ⑦𝑡 − 𝜂I⊤1 M⊤𝑡 I1③𝑡 − 𝜂I⊤1 M⊤𝑡 I⩾2I
⊤
⩾2Y0I⩾2 − 𝜂I⊤1 M⊤𝑡 I⩾2④𝑡 , (B.176)

⑧𝑡+1 = ⑧𝑡 − 𝜂I⊤⩾2M
⊤
𝑡 I1I

⊤
1 (Y0 + ΔY𝑡) I⩾2 − 𝜂I⊤⩾2M

⊤
𝑡 I⩾2I

⊤
⩾2 (Y0 + ΔY𝑡) I⩾2 (B.177)

= ⑧𝑡 − 𝜂I⊤⩾2M
⊤
𝑡 I1③𝑡 − 𝜂I⊤⩾2M

⊤
𝑡 I⩾2I

⊤
⩾2Y0I⩾2 − 𝜂I⊤⩾2M

⊤
𝑡 I⩾2④𝑡 , (B.178)

185

By expanding the definition of I1M𝑡 I1, the update rules of ①𝑡 and ⑤𝑡 are

①𝑡+1 = ①𝑡 − 𝜂 (①𝑡

𝜎1

𝛼
+ 𝜎1𝛼⑤𝑡 +①𝑡⑤𝑡 +③𝑡⑦

⊤
𝑡) (

𝜎1

𝛼
+⑤𝑡) − 𝜂I⊤1 M𝑡 I⩾2⑥𝑡 (B.179)

= ①𝑡 − 𝜂 (①𝑡

𝜎1

𝛼
+ 𝜎1𝛼⑤𝑡 +①𝑡⑤𝑡) (

𝜎1

𝛼
+⑤𝑡) − 𝜂I⊤1 M𝑡 I⩾2⑥𝑡 − 𝜂③𝑡⑦

⊤
𝑡 (
𝜎1

𝛼
+⑤𝑡), (B.180)

⑤𝑡+1 = ⑤𝑡 − 𝜂 (①𝑡

𝜎1

𝛼
+ 𝜎1𝛼⑤𝑡 +①𝑡⑤𝑡 +③𝑡⑦

⊤
𝑡) (𝜎1𝛼 +①𝑡) − 𝜂I⊤1 M⊤𝑡 I⩾2②𝑡 (B.181)

= ⑤𝑡 − 𝜂 (①𝑡

𝜎1

𝛼
+ 𝜎1𝛼⑤𝑡 +①𝑡⑤𝑡) (𝜎1𝛼 +①𝑡) − 𝜂I⊤1 M⊤𝑡 I⩾2②𝑡 − 𝜂③𝑡⑦

⊤
𝑡 (𝜎1𝛼 +①𝑡) (B.182)

At initialization 𝑡 = 1, all of I⊤1 M𝑡 I⩾2,②𝑡 ,③𝑡 ,⑥𝑡 ,⑦𝑡 are in O(𝜖)

Since we have assumed

I⊤⩾2M𝑡+1I⩾2 ≈ I⊤⩾2M𝑡 I⩾2 − 𝜂I⊤⩾2M𝑡 I⩾2I
⊤
⩾2Z0I⩾2I

⊤
⩾2Z
⊤
0 I⩾2

− 𝜂I⊤⩾2Y0I⩾2I
⊤
⩾2Y0I⩾2I

⊤
⩾2M𝑡 I⩾2

+ O(𝜖 · 𝜖𝑡)

186

I⊤1 M𝑡+1I⩾2 ≈ I⊤1 M𝑡 I⩾2 − 𝜂I⊤1 M𝑡 I⩾2I
⊤
⩾2Z0I⩾2I

⊤
⩾2Z
⊤
0 I⩾2 − 𝜂I⊤1 M𝑡 I1⑦𝑡 I

⊤
⩾2Z
⊤
0 I⩾2

− 𝜂I⊤1 Y0I1I
⊤
1 Y0I1I

⊤
1 M𝑡 I⩾2 − 𝜂I⊤1 Y0I1①𝑡 I

⊤
1 M𝑡 I⩾2

− 𝜂①𝑡 I1I
⊤
1 Y0I1I

⊤
1 M𝑡 I⩾2 − 𝜂①𝑡①𝑡 I

⊤
1 M𝑡 I⩾2

− 𝜂I⊤1 M𝑡 I1I
⊤
1 Z0I1⑥

⊤
𝑡 − 𝜂I⊤1 M𝑡 I1⑤𝑡⑥

⊤
𝑡

− 𝜂I⊤1 M𝑡 I1⑦𝑡⑧
⊤
𝑡

+ 𝜂2I⊤1 M𝑡 I1(I⊤1 Z0I
⊤
1 +⑤𝑡) (I⊤1 Y0I1 +①𝑡)I⊤1 M𝑡 I⩾2

+ O(𝜖 · 𝜖𝑡)

= I⊤1 M𝑡 I⩾2 − 𝜂I⊤1 M𝑡 I⩾2
(
I⊤1 Y0I1 +①𝑡

)2 − 𝜂I⊤1 M𝑡 I⩾2I
⊤
⩾2Z0I⩾2I

⊤
⩾2Z
⊤
0 I⩾2

− 𝜂I⊤1 M𝑡 I1
(
I⊤1 Z0I1⑥

⊤
𝑡 +⑤𝑡⑥

⊤
𝑡 +⑦𝑡⑧

⊤
𝑡 +⑦𝑡 I

⊤
⩾2Z
⊤
0 I⩾2

)︸ ︷︷ ︸
=I⊤1 (Z0+ΔZ𝑡) (Z0+ΔZ𝑡)⊤I⩾2

+ 𝜂2I⊤1 M𝑡 I1(I⊤1 Z0I
⊤
1 +⑤𝑡) (I⊤1 Y0I1 +①𝑡)I⊤1 M𝑡 I⩾2

+ O(𝜖 · 𝜖𝑡)

187

I⊤⩾2M𝑡+1I1 ≈ I⊤⩾2M𝑡 I1 − 𝜂I⊤⩾2M𝑡 I1I
⊤
1 Z0I1I

⊤
1 Z
⊤
0 I1 − 𝜂I⊤⩾2M𝑡 I1⑤𝑡 I

⊤
1 Z
⊤
0 I1

− 𝜂I⊤⩾2Y0I⩾2I
⊤
⩾2Y0I⩾2I

⊤
⩾2M𝑡 I1 − 𝜂I⊤⩾2Y0I⩾2③

⊤
𝑡 I
⊤
1 M𝑡 I1

− 𝜂②𝑡 I
⊤
1 Y0I1I

⊤
1 M𝑡 I1 − 𝜂②𝑡①𝑡 I

⊤
1 M𝑡 I1

− 𝜂I⊤⩾2M𝑡 I1I
⊤
1 Z0I1⑤𝑡 − 𝜂I⊤⩾2M𝑡 I1⑤𝑡⑤𝑡

− 𝜂④𝑡③
⊤
𝑡 I
⊤
1 M𝑡 I1

+ 𝜂2I⊤⩾2M𝑡 I1(I⊤1 Z0I
⊤
1 +⑤𝑡) (I⊤1 Y0I1 +①𝑡)I⊤1 M𝑡 I1

= I⊤⩾2M𝑡 I1 − 𝜂I⊤⩾2M𝑡 I1
(
I⊤1 Z0I1 +⑤𝑡

)2 − 𝜂I⊤⩾2Y0I⩾2I
⊤
⩾2Y0I⩾2I

⊤
⩾2M𝑡 I1

− 𝜂I⊤1 M𝑡 I1
(
I⊤⩾2Y0I⩾2③

⊤
𝑡 +②𝑡 I

⊤
1 Y0I1 +②𝑡①𝑡 +④𝑡③

⊤
𝑡

)︸ ︷︷ ︸
=I⊤⩾2 (Y0+ΔY𝑡) (Y0+ΔY𝑡)⊤I1

+ 𝜂2I⊤⩾2M𝑡 I1(I⊤1 Z0I
⊤
1 +⑤𝑡) (I⊤1 Y0I1 +①𝑡)I⊤1 M𝑡 I1

I⊤1 M𝑡+1I1 ≈ I⊤1 M𝑡 I1 − 𝜂I⊤1 M𝑡 I1I
⊤
1 Z0I1I

⊤
1 Z
⊤
0 I1 − 𝜂I⊤1 M𝑡 I1⑤𝑡 I

⊤
1 Z
⊤
0 I1

− 𝜂I⊤1 Y0I1I
⊤
1 Y0I1I

⊤
1 M𝑡 I1 − 𝜂I⊤1 Y0I1①𝑡 I

⊤
1 M𝑡 I1

− 𝜂①𝑡 I
⊤
1 Y0I1I

⊤
1 M𝑡 I1 − 𝜂①𝑡①𝑡 I

⊤
1 M𝑡 I1

− 𝜂I⊤1 M𝑡 I1I
⊤
1 Z0I1⑤𝑡 − 𝜂I⊤1 M𝑡 I1⑤𝑡⑤𝑡

+ 𝜂2I⊤1 M𝑡 I1(I⊤1 Z0I1 +⑤𝑡) (I⊤1 Y0I1 +①𝑡)I⊤1 M𝑡 I1

188

I⊤⩾2 (Y0 + ΔY𝑡+1) (Y0 + ΔY𝑡+1)⊤ I1

= I⊤⩾2 (Y0 + ΔY𝑡) (Y0 + ΔY𝑡)⊤ I1

− 𝜂I⊤⩾2M𝑡 (Z0 + ΔZ𝑡)I⩾2③
⊤
𝑡 − 𝜂 (I⊤⩾2Y0I⩾2 +④𝑡)I⊤⩾2(Z0 + ΔZ𝑡)⊤M⊤𝑡 I1

− 𝜂I⊤⩾2M𝑡 (Z0 + ΔZ𝑡)I1(①𝑡 + 𝜎1𝛼) − 𝜂②I⊤1 (Z0 + ΔZ𝑡)⊤M⊤𝑡 I1

+ 𝜂2I⊤⩾2M𝑡 (Z0 + ΔZ𝑡)I⩾2I
⊤
⩾2(Z0 + ΔZ𝑡)⊤M⊤𝑡 I1

+ 𝜂2I⊤⩾2M𝑡 (Z0 + ΔZ𝑡)I1I⊤1 (Z0 + ΔZ𝑡)⊤M⊤𝑡 I1

= I⊤⩾2 (Y0 + ΔY𝑡) (Y0 + ΔY𝑡)⊤ I1

− 𝜂I⊤⩾2M𝑡 I⩾2I
⊤
⩾2Z0I⩾2③

⊤
𝑡 − 𝜂I⊤⩾2M𝑡 I

⊤
1 ⑦𝑡③

⊤
𝑡 − 𝜂I⊤⩾2M𝑡 I

⊤
⩾2⑧𝑡③

⊤
𝑡

− 𝜂 (I⊤⩾2Y0I⩾2 +④𝑡)I⊤⩾2Z0I⩾2I
⊤
⩾2M

⊤
𝑡 I1 − 𝜂 (I⊤⩾2Y0I⩾2 +④𝑡)⑦⊤𝑡 I⊤1 M⊤𝑡 I1

− 𝜂 (I⊤⩾2Y0I⩾2 +④𝑡)⑧⊤𝑡 I⊤⩾2M
⊤
𝑡 I1

− 𝜂I⊤⩾2M𝑡 I1I
⊤
1 Z0I1(①𝑡 + 𝜎1𝛼) − 𝜂I⊤⩾2M𝑡 I1⑤𝑡 (①𝑡 + 𝜎1𝛼)

− 𝜂I⊤⩾2M𝑡 I⩾2⑥𝑡 (①𝑡 + 𝜎1𝛼)

− 𝜂②I⊤1 Z0I1I
⊤
1 M
⊤
𝑡 I1 − 𝜂②⑤𝑡 I

⊤
1 M
⊤
𝑡 I1 − 𝜂②⑥⊤𝑡 I

⊤
⩾2M

⊤
𝑡 I1

+ 𝜂2I⊤⩾2M𝑡 (Z0 + ΔZ𝑡)I⩾2I
⊤
⩾2(Z0 + ΔZ𝑡)⊤M⊤𝑡 I1

+ 𝜂2I⊤⩾2M𝑡 (Z0 + ΔZ𝑡)I1I⊤1 (Z0 + ΔZ𝑡)⊤M⊤𝑡 I1

≈ I⊤⩾2 (Y0 + ΔY𝑡) (Y0 + ΔY𝑡)⊤ I1 − 𝜂I⊤⩾2Y0I⩾2I
⊤
⩾2Z0I⩾2I

⊤
⩾2M

⊤
𝑡 I1

− 𝜂 (①𝑡 + 𝜎1𝛼) (⑤𝑡 +
𝜎1

𝛼
)I⊤⩾2M𝑡 I1

− 𝜂I⊤1 M𝑡 I1
(
②I⊤1 Z0I1 +②⑤𝑡 I

⊤
1 + (I⊤⩾2Y0I⩾2 +④𝑡)⑦⊤𝑡

)︸ ︷︷ ︸
=I⊤⩾2M𝑡 I1

+ 𝜂2I⊤⩾2M𝑡 I1(I⊤1 Z0I1 +⑤𝑡) (I⊤1 Z0I1 +⑤𝑡)I⊤1 M⊤𝑡 I1

= I⊤⩾2 (Y0 + ΔY𝑡) (Y0 + ΔY𝑡)⊤ I1 − 𝜂I⊤⩾2Y0I⩾2I
⊤
⩾2Z0I⩾2I

⊤
⩾2M

⊤
𝑡 I1

− 𝜂
(
(①𝑡 + 𝜎1𝛼) (⑤𝑡 +

𝜎1

𝛼
) + I⊤1 M𝑡 I1(1 − 𝜂 (⑤𝑡 +

𝜎1

𝛼
)2)

)
I⊤⩾2M𝑡 I1

189

I⊤1 (Z0 + ΔZ𝑡+1) (Z0 + ΔZ𝑡+1)⊤ I⩾2

≈ I⊤1 (Z0 + ΔZ𝑡) (Z0 + ΔZ𝑡)⊤ I⩾2

− 𝜂
(
(①𝑡 + 𝜎1𝛼) (⑤𝑡 +

𝜎1

𝛼
) + I⊤1 M𝑡 I1(1 − 𝜂 (①𝑡 + 𝜎1𝛼)2)

)
I⊤1 M𝑡 I⩾2

− 𝜂I⊤⩾2Y0I⩾2I
⊤
⩾2Z0I⩾2I

⊤
1 M
⊤
𝑡 I⩾2

Therefore, we have built a 4 × 4 matrix to characterize the dynamics of I⊤⩾2M𝑡 I1, I⊤1 M𝑡 I⩾2,

I⊤⩾2 (Y0 + ΔY𝑡+1) (Y0 + ΔY𝑡+1)⊤ I1, I⊤1 (Z0 + ΔZ𝑡+1) (Z0 + ΔZ𝑡+1)⊤ I⩾2 as, for ∀𝑝 ∈ {2, 3, . . . , 𝑑}

[I⊤⩾2 (Y0 + ΔY𝑡+1) (Y0 + ΔY𝑡+1)⊤ I1]𝑝

[I⊤1 (Z0 + ΔZ𝑡+1) (Z0 + ΔZ𝑡+1)⊤ I⩾2]𝑝

[I⊤⩾2M𝑡+1I1]𝑝

[I⊤1 M𝑡+1I⩾2]𝑝

← Q𝛼,𝜂,𝑝 (𝑦𝑡 , 𝑧𝑡)

[I⊤⩾2 (Y0 + ΔY𝑡) (Y0 + ΔY𝑡)⊤ I1]𝑝

[I⊤1 (Z0 + ΔZ𝑡) (Z0 + ΔZ𝑡)⊤ I⩾2]𝑝

[I⊤⩾2M𝑡 I1]𝑝

[I⊤1 M𝑡 I⩾2]𝑝

,

Q𝛼,𝜂,𝑝 (𝑦𝑡 , 𝑧𝑡) ≜

1 0 𝑢1,𝑡 −𝜂𝜎2
𝑝

0 1 −𝜂𝜎2
𝑝 𝑢2,𝑡

−𝜂 (𝑦𝑡𝑧𝑡 − 𝜎2
1) 0 𝑤1,𝑡 0

0 −𝜂 (𝑦𝑡𝑧𝑡 − 𝜎2
1) 0 𝑤2,𝑡

,

𝑦𝑡 ≜ ①𝑡 + 𝜎1𝛼, 𝑧𝑡 ≜ ⑤𝑡 + 𝜎1/𝛼𝑝,

𝑢1,𝑡 ≜ −𝜂
(
𝑦𝑡𝑧𝑡 + (𝑦𝑡𝑧𝑡 − 𝜎2

1) (1 − 𝜂𝑧2
𝑡)

)
,

𝑢2,𝑡 ≜ −𝜂
(
𝑦𝑡𝑧𝑡 + (𝑦𝑡𝑧𝑡 − 𝜎2

1) (1 − 𝜂𝑦2
𝑡)

)
,

𝑤1,𝑡 ≜ 1 − 𝜂𝑧2
𝑡 − 𝜂𝜎2

𝑝𝛼
2 + 𝜂2𝑦𝑡𝑧𝑡 (𝑦𝑡𝑧𝑡 − 𝜎2

1),

𝑤2,𝑡 ≜ 1 − 𝜂𝑦2
𝑡 − 𝜂𝜎2

𝑝/𝛼2 + 𝜂2𝑦𝑡𝑧𝑡 (𝑦𝑡𝑧𝑡 − 𝜎2
1),

where [·]𝑝 means the 𝑝-th value in a vector.

190

Recall we have 𝑦𝑡 , 𝑧𝑡 following the training dynamics of minimizing 1
2 (𝜎

2
1 −𝑦𝑧)2 with learning

rate 𝜂 > 1
𝜎2

1
, where leads to 𝑦 = 𝑧 = 𝛾𝑖 , with 𝛾𝑖 (𝑖 = 1, 2) are the two roots of solving the 1-

D function (3.4) as 𝛿 . We denote their corresponding Q as Q𝛼,𝜂,𝑝 (𝛾1, 𝛾1) and Q𝛼,𝜂,𝑝 (𝛾2, 𝛾2). We

assume that their product Q𝛼,𝜂,𝑝 (𝛾2, 𝛾2)Q𝛼,𝜂,𝑝 (𝛾1, 𝛾1) is diagonalizable with all eigenvalues falling

into (−1, 1), which means its infinite power lim𝑘→∞ [Q𝛼,𝜂,𝑝 (𝛾2, 𝛾2)Q𝛼,𝜂,𝑝 (𝛾1, 𝛾1)]𝑘 = 0. Meanwhile,

due to the 2-D analysis of dynamics of GD on 1
2 (𝜎

2
1 − 𝑦𝑧)2, we know (𝑦𝑡 , 𝑧𝑡) → {(𝛾1, 𝛾1), (𝛾2, 𝛾2)}

exponentially after finite steps. This is equivalent to say, there exists finite 𝑡0, for any 𝑡 > 𝑡0, there

exists 𝑖 ∈ {1, 2}, constant 𝐶0 and R𝑡 ∈ R4×4, such that

Q𝛼,𝜂,𝑝 (𝑦𝑡+1, 𝑧𝑡+1)Q𝛼,𝜂,𝑝 (𝑦𝑡 , 𝑧𝑡) = Q𝛼,𝜂,𝑝 (𝛾3−𝑖, 𝛾3−𝑖)Q𝛼,𝜂,𝑝 (𝛾𝑖, 𝛾𝑖) + R𝑡 , ∥R𝑡 ∥ ⩽ 𝐶0𝑟
𝑡 , 0 < 𝑟 < 1.

The decay rate 𝑟 can be estimated via local analysis around the convergence orbit. As a result, it

is safe to say lim𝑡→∞Q𝛼,𝜂,𝑝 (𝑦2𝑡+1, 𝑧2𝑡+1)Q𝛼,𝜂,𝑝 (𝑦2𝑡 , 𝑧2𝑡) = 0, which means all of I⊤⩾2M𝑡 I1, I⊤1 M𝑡 I⩾2,

I⊤⩾2 (Y0 + ΔY𝑡+1) (Y0 + ΔY𝑡+1)⊤ I1, I⊤1 (Z0 + ΔZ𝑡+1) (Z0 + ΔZ𝑡+1)⊤ I⩾2 exponentially go to zero.

There is one concern here: what happens before 𝑡0? More concretely, 𝑡0 is dependent of 1/𝜖

because it requires more steps (intuitively proportional to log 1/𝜖) to increase to a certain value

from a small 𝜖 . Assuming 𝑡0 ∼ log 1/𝜖 holds, the product {Q𝛼,𝜂,𝑝 (𝑦2𝑡+1, 𝑧2𝑡+1)Q𝛼,𝜂,𝑝 (𝑦2𝑡 , 𝑧2𝑡)}𝑡⩾1

gives a (loose) upper bound with the norm of products grows exponentially with time log 1/𝜖,

which introduces 1/𝜖 to the upper bound of
I⊤⩾2M𝑡 I1

 and I⊤1 M𝑡 I⩾2
, breaking the assumption of

the norms staying in O(𝜖). Fortunately, there are two aspects to resolve this. Firstly, with initial-

ization 𝜖 small enough, for a relative long time, Q𝛼,𝜂,𝑝 (𝑦2𝑡+1, 𝑧2𝑡+1)Q𝛼,𝜂,𝑝 (𝑦2𝑡 , 𝑧2𝑡) is approximately

191

having eigenvalues bounded by 1. More precisely, Q and the product are

Q𝛼,𝜂,𝑝 (·, ·) ≈

1 0 −𝜂𝜎2
1 −𝜂𝜎2

𝑝

0 1 −𝜂𝜎2
𝑝 −𝜂𝜎2

1

0 0 1 − 𝜂𝜎2
1/𝛼2 − 𝜂𝜎2

𝑝𝛼
2 0

0 0 0 1 − 𝜂𝜎2
1𝛼

2 − 𝜂𝜎2
𝑝/𝛼2

, (B.183)

Λ(Q𝛼,𝜂,𝑝 (·, ·)Q𝛼,𝜂,𝑝 (·, ·)) = {1, 1, (1 − 𝜂𝜎2
1/𝛼2 − 𝜂𝜎2

𝑝𝛼
2)2, (1 − 𝜂𝜎2

1𝛼
2 − 𝜂𝜎2

𝑝/𝛼2)2, } (B.184)

where the eigenvalues in Λ are upper bounded by 1, if assuming 𝜂 (𝜎2
1/𝛼2 + 𝜎2

𝑝𝛼
2) < 2 and 1 −

𝜂𝜎2
1𝛼

2 − 𝜂𝜎2
𝑝/𝛼2 < 2. As a result, in these steps,

I⊤⩾2M𝑡 I1
 and

I⊤1 M𝑡 I⩾2
 stay in O(𝜖) due

to Q𝛼,𝜂,𝑝 (·, ·)Q𝛼,𝜂,𝑝 (·, ·) is a semi-convergent matrix. Secondly, the eigenvectors of Q𝛼,𝜂,𝑝Q𝛼,𝜂,𝑝

corresponding to eigenvalue 1 are [1, 0, 0, 0]⊤ and [0, 1, 0, 0]⊤, which means both
I⊤⩾2M𝑡 I1

 andI⊤1 M𝑡 I⩾2
 are decaying exponentially. Therefore, it’s fair to say smaller 𝜖 strengthens the as-

sumption of
I⊤⩾2M𝑡 I1

 and I⊤1 M𝑡 I⩾2
 staying in O(𝜖) instead of breaking it.

Also note that
I⊤⩾2M𝑡+1I⩾2

 ⪅ I⊤⩾2M𝑡 I⩾2
 ·max{|1 − 𝜂𝜎2

(
𝛼2 + 1/𝛼2

)
|, |1 − 𝜂𝜎𝑑−1

(
𝛼2 + 1/𝛼2

)
|},

so
I⊤⩾2M𝑡+1I⩾2

 decays exponentially.
Since all of

I⊤⩾2M𝑡 I1
, I⊤1 M𝑡 I⩾2

 and I⊤⩾2M𝑡+1I⩾2
 decay exponentially after some steps, all of

them are have the sum upper-bounded, which means ∥②𝑡 ∥ , ∥③𝑡 ∥ , ∥④𝑡 ∥ , ∥⑥𝑡 ∥ , ∥⑦𝑡 ∥ , ∥⑧𝑡 ∥ stay

in O(𝜖).

To summarize, it holds

1. ∥②𝑡 ∥ , ∥③𝑡 ∥ , ∥④𝑡 ∥ , ∥⑥𝑡 ∥ , ∥⑦𝑡 ∥ , ∥⑧𝑡 ∥ stay in O(𝜖).

2.
I⊤1 M𝑡 I⩾2

 and I⊤⩾2M𝑡+1I⩾2
 decays to zero.

3.
I⊤1 M𝑡 I1

 stays in a period-2 orbit.

□

192

B.11 Useful lemmas

Lemma B.11. Assume 𝑎 · Δ𝑎 ⩾ 𝑏 · Δ𝑏 and 𝑎 ⩾ 𝑏. All of 𝑎, 𝑏,Δ𝑎,Δ𝑏 are positive. If Δ𝑏 ⩽ 𝑎, then

𝑎 + Δ𝑎 ⩾ 𝑏 + Δ𝑏.

Proof. (𝑎 + Δ𝑎) − (𝑏 + Δ𝑏) ⩾ 𝑎 + 𝑏 Δ𝑏
𝑎
− 𝑏 − Δ𝑏 = (Δ𝑏

𝑎
− 1) (𝑏 − 𝑎) ⩾ 0. □

B.12 Illustration of period-2 and period-4 orbits

In the setting of 𝑓 (𝑥) = 1
4 (𝑥

2−1)2, local convergence is guaranteed if 𝜂 <
√

5−1 ≈ 1.236 by taylor

expansion of 𝐹 2
𝜂 around the orbit. Conversely, if the learning rate is larger than it, although the

period-2 orbit still exists, GD starting from a point infinitesimally close to the orbit still escapes

from it. This is when GD converges to a higher-order orbit.

Figure B.5 precisely shows the effectiveness of such a bound where GD converges to the

period-2 orbit when 𝜂 = 1.235 <
√

5 − 1 and a period-4 orbit when 𝜂 = 1.237 >
√

5 − 1.

0.8 1.0
x

0.00

0.02

0.04

0.06

0.08

f(x
)

lr=1.05

0.8 1.0
x

0.00

0.02

0.04

0.06

0.08

f(x
)

lr=1.235

0.8 1.0
x

0.00

0.02

0.04

0.06

0.08

f(x
)

lr=1.237

Figure B.5: The convergent orbits of GD on 𝑓 (𝑥) = 1
4 (𝑥

2 − 1)2 with learning rate=1.05, 1.235 and 1.237.
The first two smaller learning rates drive to period-2 orbits while the last one goes to an period-4 orbit. The
significant bound between period-2 and period-4 is predictable by Taylor expansion around the period-2
orbit, as 𝜂 =

√
5 − 1 ≈ 1.236.

193

C | Appendix: Supplementary Materials

for Chapter 4

C.1 More Experiments on Pythia

C.1.1 Learning Association with Prepositions

We would like to verify our guess about the structure of “to + the” in Pythia in Section 4.5.1. To

make the argument generalizable than IOI dataset, we consider a structure of “[preposition] +

the”, where [preposition] has a pool of 30 prepositions in English, including “to”. The input is

a raw “[preposition]” or a random sentence ending with “[preposition]”, with some examples in

Appendix C.7.1. For both kinds of inputs, Pythia-160M/410M/1B turns out to learn the structure

of “[preposition] + the” around 10 steps, as shown in Figure C.1.

C.1.2 LASER Parameters for Evaluated LLMs

Following the definition of LASER in Section 4.3.2, we search for the optimal layer, 𝜌 and target

weights in Pythia models and GPT-2 Small for each dataset.

IOI on Pythia-410M. Themodel has 24 layers. The truncation is on the input matrix of MLPs

on the 22-th layer with 𝜌 = 0.02.

IOI on Pythia-1B. The model has 16 layers. The truncation is on the input matrix of MLPs

194

100 101 102 103 104 105

training steps

100

101

102

103

104

ra
nk

average ranking of ' the': input = prepositions

100 101 102 103 104 105

training steps

100

101

102

103

104

ra
nk

average ranking of ' the': input = sentence + prepositions

160M
410M
1B

Figure C.1: Average ranking of tokens “the” in the prediction by Pythia-160M/410M/1B along training.
The inputs are 30 preposition words (left) and 40 sentences ending with prepositions. It turns out “the”
becomes one of top predictions around 10 steps.

on the 11-th layer with 𝜌 = 0.008.

Factual recall on Pythia-1B. The truncation is on the input matrix of MLPs on the 16-th

layer with 𝜌 = 0.0125.

Factual recall on Pythia-1.4B. The model has 24 layers. The truncation is on the input

matrix of MLPs on the 24-th layer with 𝜌 = 0.025.

Factual recall on Pythia-2.8B. The model has 32 layers. The truncation is on the input

matrix of MLPs on the 32-th layer with 𝜌 = 0.04.

IOI on GPT2 Small. Related parameters have been contained in Section 4.5.1.

Phi-3 on GSM8K. The model has 32 layers. The truncation is on the output matrix of MLPs

on the 28-th layer with 𝜌 = 0.02.

Llama3.1-8B(-instruct) on GSM8K. The models have 32 layers. The truncation is on the

output of MLPs on the 27-th layer with 𝜌 = 0.02.

C.1.3 Other Pythia models on IOI and More Examples of Factual Recall

IOI. In the same setting of Figure 4.13 (left), we plot the prediction distributions of Pythia-410M

and 1B on the 100 IOI inputs in Figure C.2. Themodel checkpoints are the final ones after training.

LASER turns out to decrease the probability of ”the” while keeping that of the correct [IO] high.

195

More examples of Factual Recall. In additional to the factual query “Madrid is located

in” in Figure 4.13 (right), we consider more such examples in Table C.3. We plot the prediction

distributions of Pythia-1B, 1.4B and 2.8B on these inputs in Figure C.3, where LASER significantly

lowers the probability of predicting ”the” vesus the correct outputs.

[IO]: full [IO]: LASER [S]: full [S]: LASER 'the': full 'the': LASER
0.0

0.2

0.4

0.6

0.8

1.0

pr
ob

ab
ili

ty

Pre-trained Pythia-410M evaludated on IOI

[IO]: full [IO]: LASER [S]: full [S]: LASER 'the': full 'the': LASER
0.0

0.2

0.4

0.6

0.8

1.0

pr
ob

ab
ili

ty

Pre-trained Pythia-1B evaludated on IOI

Figure C.2: The prediction distributions of Pythia-410M and 1B on the IOI task. The setting is the same
as in Fgure 4.13 (left). The evaluated models are the final checkpoints after training. LASER turns out to
decrease the probability of ”the” while keeping that of the correct [IO] high.

196

C.2 Proof of Theorem 4.1

In this section, we will present the expectations and variances of ∇W𝑉
�̂� and ∇W𝐹

�̂� with W𝑉 =

W𝐹 = 0 at initialization. The targets are to show:

1. a gap between lim𝑚→∞ ∇W𝑉
�̂� and lim𝑚→∞ ∇W𝐹

�̂� so that a step of GD with large learning

rates is enough to learn the noise inW𝐹 , and

2. sample complexity of ∇W𝑉
�̂� and ∇W𝐹

�̂� based on expectations and variances.

Assumption C.2.1 (Orthonormal embeddings). The embeddings 𝑢𝑘 ∈ R𝑑 are assumed to be or-

thonormal, i.e., 𝑢⊤𝑖 𝑢 𝑗 = 1{𝑖 = 𝑗}. Meanwhile, if a matrix W ∈ R𝑑×𝑑 is random initialized, it holds

𝑢⊤𝑖 W𝑢 𝑗 = 0.

C.2.1 Gradient for the Feed-forward MatrixW𝐹

LemmaC.1. Consider zero initialization,W𝑉 = W𝐹 = W𝑄𝐾 = 0 and𝑁 ≫ 1. Thenwith probability

1 − 𝛿 , for any 𝑗, 𝑘 ∈ [𝑁 + 1], it holds

��W𝑈 (𝑘)⊤(∇W𝐹
�̂�)W𝐸 (𝑞) − 𝜇 (𝑘)

��
⩽

√︄
4𝜎2(𝑘)

(
ln(𝑁 + 1) + ln(2

𝛿
)
)

𝑚
+

4𝑅(𝑘)
(
ln(𝑁 + 1) + ln(2

𝛿
)
)

𝑚
,

(C.1)

where 𝜇 (𝑘), 𝜎2(𝑘), 𝑅(𝑘) are expectation, variance and range for different choices of 𝑘 ∈ [𝑁] as

follows:

𝜇 (𝑁 + 1) = −𝛼, 𝜎2(𝑁 + 1) = 𝛼 (1 − 𝛼), 𝑅(𝑁 + 1) = max{𝛼, 1 − 𝛼},
∀ 𝑘 ⩽ 𝑁 : 𝜇 (𝑘) = 1

𝑁+1 −
1−𝛼
𝑁
, 𝜎2(𝑘) = 1−𝛼

𝑁
, 𝑅(𝑘) = 1.

Proof. Due to zero initialization, i.e., W𝑉 = W𝐹 = 0, the current predicted probability is uniform

197

as 𝑝W(𝑘 |𝑥𝑖) ≡ 1
𝑁+1 for all 𝑖 ∈ [𝑚] and 𝑘 ∈ [𝑁 + 1]. Therefore, from Lemma C.12, we have

∇W𝐹
�̂� =

1
𝑚

𝑚∑︁
𝑖=1

[
𝑁+1∑︁
𝑘=1

(
1

𝑁 + 1
− 1{𝑦𝑖 = 𝑘}

)
W𝑈 (𝑘)𝑥⊤𝑖,𝑇

]
,

where 𝑥𝑖,𝑇 ∈ R𝑑 = W𝐸 (𝑧𝑖,𝑇) + 𝑝𝑇 is the input embedding with input token 𝑧𝑖,𝑇 at position 𝑇 in

sequence 𝑖 , together with positional encoding 𝑝𝑇 for position 𝑇 . Since 𝑧𝑖,𝑇 is set to be the trigger

𝑞 in the data generation process and 𝑝𝑇 is assumed to orthogonal to any other vector in W𝐸 in

Assumption C.2.1, we have the following projections for ∇W𝐹
�̂�: ∀ 𝑘 ∈ [𝑁 + 1],

W𝑈 (𝑘)⊤(∇W𝐹
�̂�)W𝐸 (𝑞) =

1
𝑚

𝑚∑︁
𝑖=1

(
1

𝑁 + 1
− 1{𝑦𝑖 = 𝑘}

)
.

From the data generation process, it is obvious to get

E(𝑥,𝑦)

[
1

𝑁 + 1
− 1{𝑦 = 𝑘}

]
=

1
𝑁 + 1

− 𝛼 · 1{𝑘 = 𝑁 + 1} − 1 − 𝛼
𝑁
· 1{𝑘 ⩽ 𝑁 }. (C.2)

Since 𝛼 = Θ(1) is much larger than 1
𝑁+1 when 𝑁 ≫ 1, due to law of large numbers, we have the

population gradient ∇W𝐹
𝐿 satisfying

W𝑈 (𝑁 + 1)⊤(−∇W𝐹
𝐿)W𝐸 (𝑞) ≈ 𝛼 = Θ(1),

∀ 𝑘 ⩽ 𝑁 : W𝑈 (𝑘)⊤(−∇W𝐹
𝐿)W𝐸 (𝑞) < 0, with absolute value in 𝑂 (1/𝑁).

The variance of the gradient projection ontoW𝑈 (𝑁 +1)W𝐸 (𝑞)⊤ of a single data point follows

that of Bernoulli distribution with parameter 𝛼 , which means

Var
[

1
𝑁 + 1

− 1{𝑦 = 𝑁 + 1}
]
= 𝛼 (1 − 𝛼). (C.3)

Similarly, for any 𝑘 ⩽ 𝑁 , the variance of the gradient projection onto W𝑈 (𝑁 + 1)W𝐸 (𝑞)⊤ of a

198

single data point follows that of Bernoulli distribution with parameter 1−𝛼
𝑁

, which means

Var
[

1
𝑁 + 1

− 1{𝑦 = 𝑘}
]
=

1 − 𝛼
𝑁

(
1 − 1 − 𝛼

𝑁

)
= Θ(1/𝑁) . (C.4)

The ranges of the gradient projections’ deviation from the expectation are���� 1
𝑁 + 1

− 1{𝑦 = 𝑁 + 1} −
(

1
𝑁 + 1

− 𝛼
)���� ⩽ max{𝛼, 1 − 𝛼},

∀ 𝑘 ⩽ 𝑁 :
���� 1
𝑁 + 1

− 1{𝑦 = 𝑘} −
(

1
𝑁 + 1

− 1 − 𝛼
𝑁

)���� ⪅ 1.
(C.5)

For each choice of 𝑘 ∈ [𝑁 + 1] individually, after having the expectation 𝜇 (𝑘), variance 𝜎2(𝑘)

and range 𝑅(𝑘), by applying Bernstein’s inequality, then: for each 𝑘 ∈ [𝑁 + 1], with probability

1 − 𝛿 , it holds

��W𝑈 (𝑘)⊤(∇W𝐹
�̂�)W𝐸 (𝑞) − 𝜇 (𝑘)

�� ⩽ √︄
4𝜎2(𝑘) ln(2

𝛿
)

𝑚
+

4𝑅(𝑘) ln(2
𝛿
)

𝑚
.

Then by the union bound in probability, we need (𝑁 + 1) events above to hold at the same

time, so we can substitute 𝛿 with 𝛿
𝑁+1 to have: with probability 1−𝛿 , for any 𝑘 ∈ [𝑁 + 1], it holds

��W𝑈 (𝑘)⊤(∇W𝐹
�̂�)W𝐸 (𝑞) − 𝜇 (𝑘)

�� ⩽ √︄
4𝜎2(𝑘)

(
ln(𝑁 + 1) + ln(2

𝛿
)
)

𝑚
+

4𝑅(𝑘)
(
ln(𝑁 + 1) + ln(2

𝛿
)
)

𝑚
.

(C.6)

□

199

C.2.2 Gradient for the Value MatrixW𝑉

Lemma C.2. Consider zero initialization, W𝑉 = W𝐹 = W𝑄𝐾 = 0. Then with probability 1 − 𝛿 , for

any 𝑗, 𝑘 ∈ [𝑁 + 1], it holds

��W𝑈 (𝑗)⊤(∇W𝑉
�̂�)W𝐸 (𝑘) − 𝜇 (𝑗, 𝑘)

��
⩽

√︄
4𝜎2(𝑗, 𝑘)

(
2 ln(𝑁 + 1) + ln(2

𝛿
)
)

𝑚
+

4𝑅(𝑗, 𝑘)
(
2 ln(𝑁 + 1) + ln(2

𝛿
)
)

𝑚
,

(C.7)

where 𝜇 (𝑗, 𝑘), 𝜎2(𝑗, 𝑘), 𝑅(𝑗, 𝑘) are expectation, variance and range for different choices of (𝑗, 𝑘) at

listed in Table C.1.

Table C.1: 𝜇 (𝑗, 𝑘), 𝜎2(𝑗, 𝑘), 𝑅(𝑗, 𝑘) for different choices of (𝑗, 𝑘) in Lemma C.2.

𝑗 𝑘 𝜇 𝜎2 𝑅

𝑁 + 1 𝑁 + 1 −𝛼2

𝑁
𝛼2

𝑇𝑁
+ 𝛼3−𝛼4

𝑁 2
1
2

𝑁 + 1 𝑞 − 𝛼
𝑁

𝛼
𝑇𝑁
+ 𝛼−𝛼2

𝑁 2 1
𝑁 + 1 [𝑁] \ {𝑞} − 𝛼

𝑁
𝛼
𝑇𝑁
+ 𝛼−𝛼2

𝑁 2 1

𝑞 𝑁 + 1 2𝛼−1
𝑁 2

1
𝑇𝑁 2 + 𝛼2−𝛼+1

𝑁 3
1
2

𝑞 𝑞 2𝛼−1
𝛼𝑁 2

𝛼3−𝛼2−𝛼+2
𝛼3𝑇𝑁 2 + 𝛼2−𝛼+1

𝛼2𝑁 3 1
𝑞 [𝑁] \ {𝑞} 𝛼

𝑁 2 (2 − 𝛼) ·
(

1
𝑇𝑁 2 + 1

𝑁 3

)
1

[𝑁] \ {𝑞} 𝑁 + 1 𝛼2

𝑁 2 (2 − 𝛼)
(
𝛼

𝑇𝑁 2 + 𝛼2

𝑁 3

)
1
3

[𝑁] \ {𝑞} 𝑞 𝛼
𝑁 2 (2 − 𝛼)

(
1

𝑇𝑁 2 + 1
𝑁 3

)
1
2

[𝑁] \ {𝑞} 𝑗 −𝛼2+3𝛼−1
𝑁 2

1+(1−𝛼) (2−𝛼)
𝑇𝑁 2 + 1+(1−𝛼) (2−𝛼)2

𝑁 3 1
[𝑁] \ {𝑞} [𝑁] \ {𝑞, 𝑗} 𝛼

𝑁 2 (2 − 𝛼)
(

1
𝑇𝑁 2 + 1

𝑁 3

)
1

Proof. Due to zero initialization, i.e., W𝑉 = W𝐹 = 0, the current predicted probability is uniform

as 𝑝W(𝑘 |𝑥𝑖) ≡ 1
𝑁+1 for all 𝑖 ∈ [𝑚] and 𝑘 ∈ [𝑁 + 1]. Meanwhile, the attention score is uniform as

200

1
𝑇
for all context positions due toW𝐾 = 0. Therefore, from Lemma C.12, we have

∇W𝐹
�̂� =

1
𝑚

𝑚∑︁
𝑖=1

[
𝑁+1∑︁
𝑘=1

(
1

𝑁 + 1
− 1{𝑦𝑖 = 𝑘}

)
W𝑈 (𝑘)

(
1
𝑇

𝑇∑︁
𝑡=1

𝑥𝑖,𝑡

)⊤]
,

where 𝑥𝑖,𝑡 ∈ R𝑑 = W𝐸 (𝑧𝑖,𝑡) + 𝑝𝑡 is the input embedding with input token 𝑧𝑖,𝑡 at position 𝑡 in se-

quence 𝑖 , together with positional encoding 𝑝𝑡 for position 𝑡 . With the assumption of orthonor-

mality in Assumption C.2.1, we have the projection of ∇W𝐹
�̂�: ∀ 𝑗, 𝑘 ∈ [𝑁 + 1],

W𝑈 (𝑗)⊤(∇W𝑉
�̂�)W𝐸 (𝑘) =

1
𝑚

𝑚∑︁
𝑖=1

[(
1

𝑁 + 1
− 1{𝑦𝑖 = 𝑗}

) (
1
𝑇

𝑇∑︁
𝑡=1

1{𝑧𝑖,𝑡 = 𝑘}
)]
.

Since each sample is drawn i.i.d., it suffices to discuss the expectation and variance of

Γ𝑖 (𝑗, 𝑘) ≜
(

1
𝑁 + 1

− 1{𝑧𝑖,𝑇+1 = 𝑗}
) (

1
𝑇

𝑇∑︁
𝑡=1

1{𝑧𝑖,𝑡 = 𝑘}
)
,

Γ̂(𝑗, 𝑘) ≜ 1
𝑚

𝑚∑︁
𝑖=1

Γ𝑖 (𝑗, 𝑘),

where we use the fact 𝑦𝑖 = 𝑧𝑖,𝑇+1.

Recall that, for each sample in the data generation process, the trigger 𝑞 is fixed while the

correct next token 𝑦 ∼ Uniform([𝑁]). Hence, conditioning on 𝑧𝑖,𝑇 = 𝑞, it has probability 𝛼 for

𝑧𝑖,𝑇+1 = 𝑁 +1 and probability 1−𝛼 for 𝑧𝑖,𝑇+1 = 𝑦. This leads to the necessity of discussing whether

or not 𝑦 = 𝑘 . Meanwhile, a corner case of 𝑦 = 𝑞 is also necessary to consider, as this implies an

event that increases the counting 1
𝑇

∑𝑇
𝑡=1 1{𝑧𝑖,𝑡 = 𝑞} than the case of 𝑦 ≠ 𝑞.

Therefore, generally there are 10 cases due to different choices of (𝑗, 𝑘) as follows:

1. 𝑗 = 𝑁 + 1, 𝑘 = 𝑁 + 1,

2. 𝑗 = 𝑁 + 1, 𝑘 = 𝑞,

3. 𝑗 = 𝑁 + 1, 𝑘 ∈ [𝑁] \ {𝑞},

201

4. 𝑗 = 𝑞, 𝑘 = 𝑁 + 1,

5. 𝑗 = 𝑞, 𝑘 = 𝑞,

6. 𝑗 = 𝑞, 𝑘 ∈ [𝑁] \ {𝑞},

7. 𝑗 ∈ [𝑁] \ {𝑞}, 𝑘 = 𝑁 + 1,

8. 𝑗 ∈ [𝑁] \ {𝑞}, 𝑘 = 𝑞,

9. 𝑗 ∈ [𝑁] \ {𝑞}, 𝑘 = 𝑗 ,

10. 𝑗 ∈ [𝑁] \ {𝑞}, 𝑘 ∈ [𝑁] \ {𝑞, 𝑗}.

For each Γ𝑖 (𝑗, 𝑘) individually, if we have its expectation 𝜇 (𝑗, 𝑘), variance 𝜎2(𝑗, 𝑘) and range

𝑅(𝑗, 𝑘), by applying Bernstein’s inequality, then: for each 𝑗, 𝑘 ∈ [𝑁 + 1], with probability 1− 𝛿 , it

holds

��Γ̂(𝑗, 𝑘) − 𝜇 (𝑗, 𝑘)�� ⩽ √︄
4𝜎2(𝑗, 𝑘) ln(2

𝛿
)

𝑚
+

4𝑅(𝑗, 𝑘) ln(2
𝛿
)

𝑚
.

Then by the union bound in probability, we need (𝑁 + 1)2 events above to hold at the same

time, so we can substitute 𝛿 with 𝛿
(𝑁+1)2 to have: with probability 1 − 𝛿 , for any 𝑗, 𝑘 ∈ [𝑁 + 1], it

holds

��Γ̂(𝑗, 𝑘) − 𝜇 (𝑗, 𝑘)�� ⩽ √︄
4𝜎2(𝑗, 𝑘)

(
2 ln(𝑁 + 1) + ln(2

𝛿
)
)

𝑚
+

4𝑅(𝑗, 𝑘)
(
2 ln(𝑁 + 1) + ln(2

𝛿
)
)

𝑚
. (C.8)

As a final step of the proof, now we elaborate the expectation, variance and range of Γ𝑖 (𝑗, 𝑘)

for these 10 cases.

Case 1: 𝑗 = 𝑁 + 1, 𝑘 = 𝑁 + 1.

202

There is probability 1
𝑁
for 𝑦 = 𝑞 and probability 𝑁−1

𝑁
for 𝑦 ≠ 𝑞. Hence, we have

E[Γ𝑖 (𝑗, 𝑘)] =
1
𝑁
E[Γ𝑖 (𝑗, 𝑘) |𝑦 = 𝑞] + 𝑁 − 1

𝑁
E[Γ𝑖 (𝑗, 𝑘) |𝑦 ≠ 𝑞],

E[Γ𝑖 (𝑗, 𝑘)2] =
1
𝑁
E[Γ𝑖 (𝑗, 𝑘)2 |𝑦 = 𝑞] + 𝑁 − 1

𝑁
E[Γ𝑖 (𝑗, 𝑘)2 |𝑦 ≠ 𝑞] .

From Lemma C.5 and the independence between 1{𝑧𝑖,𝑇+1 = 𝑁 + 1} and ∑
𝑡⩽𝑇 1{𝑧𝑖,𝑡 = 𝑘},

we have

E[Γ𝑖 (𝑗, 𝑘) |𝑦 = 𝑞] ≈ −𝛼 · 1
𝑁
,

E[Γ𝑖 (𝑗, 𝑘)2 |𝑦 = 𝑞] ≈ 𝛼 ·
(

1
𝑇𝑁
+ 1
𝑁 2

)
,

where the second is from

E

[(
1

𝑁 + 1
− 1{𝑧𝑖,𝑇+1 = 𝑁 + 1}

)2]
= (1 − 𝛼) ·

(
1

𝑁 + 1

)2
+ 𝛼 ·

(
1

𝑁 + 1
− 1

)2
≈ 𝛼.

Similarly, from Lemma C.8, we have

E[Γ𝑖 (𝑗, 𝑘) |𝑦 ≠ 𝑞] ≈ −𝛼 · 𝛼
𝑁
,

E[Γ𝑖 (𝑗, 𝑘)2 |𝑦 ≠ 𝑞] ≈ 𝛼 ·
(
𝛼

𝑇𝑁
+ 𝛼

2

𝑁 2

)
.

203

Therefore, it holds

E[Γ𝑖 (𝑗, 𝑘)] =
1
𝑁

−𝛼
𝑁
+ 𝑁 − 1

𝑁

−𝛼2

𝑁
≈ −𝛼

2

𝑁
,

E[Γ𝑖 (𝑗, 𝑘)2] =
1
𝑁
E[Γ𝑖 (𝑗, 𝑘)2 |𝑦 = 𝑞] + 𝑁 − 1

𝑁
E[Γ𝑖 (𝑗, 𝑘)2 |𝑦 ≠ 𝑞]

≈ 1
𝑁
𝛼 ·

(
1
𝑇𝑁
+ 1
𝑁 2

)
+ 𝑁 − 1

𝑁
𝛼 ·

(
𝛼

𝑇𝑁
+ 𝛼

2

𝑁 2

)
≈ 𝛼2

𝑇𝑁
+ 𝛼

3

𝑁 2 ,

Var[Γ𝑖 (𝑗, 𝑘)] = E[Γ𝑖 (𝑗, 𝑘)2] − E[Γ𝑖 (𝑗, 𝑘)]2 ≈
𝛼2

𝑇𝑁
+ 𝛼

3 − 𝛼4

𝑁 2 .

The range of Γ𝑖 (𝑗, 𝑘) is

|Γ𝑖 (𝑗, 𝑘) − E[Γ𝑖 (𝑗, 𝑘)] | ⩽
1
2
,

and the extreme case is when half of the sequence is 𝑁 + 1 with the rest all being 𝑞.

Case 2: 𝑗 = 𝑁 + 1, 𝑘 = 𝑞.

Similar to Case 1, we have 1{𝑧𝑖,𝑇+1 = 𝑁 + 1} is independent of ∑𝑡⩽𝑇 1{𝑧𝑖,𝑡 = 𝑘}.

From Lemma C.4, we have

E[Γ𝑖 (𝑗, 𝑘) |𝑦 = 𝑞] ≈ −𝛼 · 1
𝛼𝑁

,

E[Γ𝑖 (𝑗, 𝑘)2 |𝑦 = 𝑞] ≈ 𝛼 ·
(

1
𝛼𝑇𝑁

(
−1 + 2

𝛼2

)
+ 1
𝛼2𝑁 2

)
.

From Lemma C.7, we have

E[Γ𝑖 (𝑗, 𝑘) |𝑦 ≠ 𝑞] ≈ −𝛼 · 1
𝑁
,

E[Γ𝑖 (𝑗, 𝑘)2 |𝑦 ≠ 𝑞] ≈ 𝛼 ·
(

1
𝑇𝑁
+ 1
𝑁 2

)
.

204

Therefore, we have

E[Γ𝑖 (𝑗, 𝑘)] =
1
𝑁
E[Γ𝑖 (𝑗, 𝑘) |𝑦 = 𝑞] + 𝑁 − 1

𝑁
E[Γ𝑖 (𝑗, 𝑘) |𝑦 ≠ 𝑞] ≈ − 𝛼

𝑁
,

E[Γ𝑖 (𝑗, 𝑘)2] =
1
𝑁
E[Γ𝑖 (𝑗, 𝑘)2 |𝑦 = 𝑞] + 𝑁 − 1

𝑁
E[Γ𝑖 (𝑗, 𝑘)2 |𝑦 ≠ 𝑞] ≈ 𝛼

𝑇𝑁
+ 𝛼

𝑁 2 ,

Var[Γ𝑖 (𝑗, 𝑘)] = E[Γ𝑖 (𝑗, 𝑘)2] − E[Γ𝑖 (𝑗, 𝑘)]2 ≈
𝛼

𝑇𝑁
+ 𝛼 − 𝛼

2

𝑁 2 .

The range of Γ𝑖 (𝑗, 𝑘) is

|Γ𝑖 (𝑗, 𝑘) − E[Γ𝑖 (𝑗, 𝑘)] | ⪅ 1,

and the extreme case is when 𝑦 = 𝑞 and the sequence is all 𝑞’s.

Case 3: 𝑗 = 𝑁 + 1, 𝑘 ∈ [𝑁] \ {𝑞}.

Similar to Case 1, we have 1{𝑧𝑖,𝑇+1 = 𝑁 + 1} is independent of ∑𝑡⩽𝑇 1{𝑧𝑖,𝑡 = 𝑘}.

From Lemma C.6, we have

E[Γ𝑖 (𝑗, 𝑘) |𝑦 = 𝑞] ≈ −𝛼 · 1
𝑁
,

E[Γ𝑖 (𝑗, 𝑘)2 |𝑦 = 𝑞] ≈ 𝛼 ·
(

1
𝑇𝑁
+ 1
𝑁 2

)
.

From Lemma C.10, we have

E[Γ𝑖 (𝑗, 𝑘) |𝑦 ≠ 𝑞] ≈ −𝛼 · 1
𝑁
,

E[Γ𝑖 (𝑗, 𝑘)2 |𝑦 ≠ 𝑞] ≈ 𝛼 ·
(

1
𝑇𝑁
+ 1
𝑁 2

)
.

205

Therefore, we have

E[Γ𝑖 (𝑗, 𝑘)] ≈ −𝛼 ·
1
𝑁
,

E[Γ𝑖 (𝑗, 𝑘)2] ≈ 𝛼 ·
(

1
𝑇𝑁
+ 1
𝑁 2

)
,

Var[Γ𝑖 (𝑗, 𝑘)] = E[Γ𝑖 (𝑗, 𝑘)2] − E[Γ𝑖 (𝑗, 𝑘)]2 ≈
𝛼

𝑇𝑁
+ 𝛼 − 𝛼

2

𝑁 2 .

The range of Γ𝑖 (𝑗, 𝑘) is

|Γ𝑖 (𝑗, 𝑘) − E[Γ𝑖 (𝑗, 𝑘)] | ⪅ 1,

and the extreme case is when all of the sequence except the last one is 𝑘 .

Case 4: 𝑗 = 𝑞, 𝑘 = 𝑁 + 1.

If 𝑦 ≠ 𝑞, we always have 𝑧𝑖,𝑇+1 ≠ 𝑞 because 𝑧𝑖,𝑇+1 ∈ {𝑦, 𝑁 + 1}. If conditioning on 𝑦 = 𝑞, it

has probability 1 − 𝛼 for 𝑧𝑖,𝑇+1 = 𝑞, independent of
∑
𝑡⩽𝑇 1{𝑧𝑖,𝑡 = 𝑁 + 1}.

From Lemma C.8, we have

E[Γ𝑖 (𝑗, 𝑘) |𝑦 ≠ 𝑞] ≈ 1
𝑁 + 1

· 𝛼
𝑁
,

E[Γ𝑖 (𝑗, 𝑘)2 |𝑦 ≠ 𝑞] ≈ 1
𝑁 + 1

·
(
𝛼

𝑇𝑁
+ 𝛼

2

𝑁 2

)
.

From Lemma C.5, we have

E[Γ𝑖 (𝑗, 𝑘) |𝑦 = 𝑞] ≈ −(1 − 𝛼) · 1
𝑁
,

E[Γ𝑖 (𝑗, 𝑘)2 |𝑦 = 𝑞] ≈ (1 − 𝛼) ·
(

1
𝑇𝑁
+ 1
𝑁 2

)
.

206

Therefore, we have

E[Γ𝑖 (𝑗, 𝑘)] =
1
𝑁
E[Γ𝑖 (𝑗, 𝑘) |𝑦 = 𝑞] + 𝑁 − 1

𝑁
E[Γ𝑖 (𝑗, 𝑘) |𝑦 ≠ 𝑞] ≈ 2𝛼 − 1

𝑁 2 ,

E[Γ𝑖 (𝑗, 𝑘)2] =
1
𝑁
E[Γ𝑖 (𝑗, 𝑘)2 |𝑦 = 𝑞] + 𝑁 − 1

𝑁
E[Γ𝑖 (𝑗, 𝑘)2 |𝑦 ≠ 𝑞] ≈ 1

𝑇𝑁 2 +
𝛼2 − 𝛼 + 1

𝑁 3 ,

Var[Γ𝑖 (𝑗, 𝑘)] = E[Γ𝑖 (𝑗, 𝑘)2] − E[Γ𝑖 (𝑗, 𝑘)]2 ≈
1

𝑇𝑁 2 +
𝛼2 − 𝛼 + 1

𝑁 3 .

The range of Γ𝑖 (𝑗, 𝑘) is

|Γ𝑖 (𝑗, 𝑘) − E[Γ𝑖 (𝑗, 𝑘)] | ⪅
1
2
,

and the extreme case is when 𝑦 = 𝑞 and half of the sequence is 𝑁 + 1 with the rest all being

𝑞.

Case 5: 𝑗 = 𝑞, 𝑘 = 𝑞.

Similar to Case 4, if 𝑦 ≠ 𝑞, we always have 𝑧𝑖,𝑇+1 ≠ 𝑞. If conditioning on 𝑦 = 𝑞, it has

probability 1 − 𝛼 for 𝑧𝑖,𝑇+1 = 𝑞, independent of
∑
𝑡⩽𝑇 1{𝑧𝑖,𝑡 = 𝑞}.

From Lemma C.7, we have

E[Γ𝑖 (𝑗, 𝑘) |𝑦 ≠ 𝑞] ≈ 1
𝑁 + 1

· 1
𝑁
,

E[Γ𝑖 (𝑗, 𝑘)2 |𝑦 ≠ 𝑞] ≈ 1
𝑁 + 1

·
(

1
𝑇𝑁
+ 1
𝑁 2

)
.

From Lemma C.4, we have

E[Γ𝑖 (𝑗, 𝑘) |𝑦 = 𝑞] ≈ −(1 − 𝛼) · 1
𝛼𝑁

,

E[Γ𝑖 (𝑗, 𝑘)2 |𝑦 = 𝑞] ≈ (1 − 𝛼) ·
(

1
𝛼𝑇𝑁

(
−1 + 2

𝛼2

)
+ 1
𝛼2𝑁 2

)
.

207

Therefore, we have

E[Γ𝑖 (𝑗, 𝑘)] =
1
𝑁
E[Γ𝑖 (𝑗, 𝑘) |𝑦 = 𝑞] + 𝑁 − 1

𝑁
E[Γ𝑖 (𝑗, 𝑘) |𝑦 ≠ 𝑞] ≈ 2𝛼 − 1

𝛼𝑁 2 ,

E[Γ𝑖 (𝑗, 𝑘)2] =
1
𝑁
E[Γ𝑖 (𝑗, 𝑘)2 |𝑦 = 𝑞] + 𝑁 − 1

𝑁
E[Γ𝑖 (𝑗, 𝑘)2 |𝑦 ≠ 𝑞]

≈ 𝛼
3 − 𝛼2 − 𝛼 + 2
𝛼3𝑇𝑁 2 + 𝛼

2 − 𝛼 + 1
𝛼2𝑁 3 ,

Var[Γ𝑖 (𝑗, 𝑘)] = E[Γ𝑖 (𝑗, 𝑘)2] − E[Γ𝑖 (𝑗, 𝑘)]2 ≈
𝛼3 − 𝛼2 − 𝛼 + 2

𝛼3𝑇𝑁 2 + 𝛼
2 − 𝛼 + 1
𝛼2𝑁 3 .

The range of Γ𝑖 (𝑗, 𝑘) is

|Γ𝑖 (𝑗, 𝑘) − E[Γ𝑖 (𝑗, 𝑘)] | ⪅ 1,

and the extreme case is when 𝑦 = 𝑞 and all of the sequence are 𝑞.

Case 6: 𝑗 = 𝑞, 𝑘 ∈ [𝑁] \ {𝑞}.

Similar to Case 4, if 𝑦 ≠ 𝑞, we always have 𝑧𝑖,𝑇+1 ≠ 𝑞. If conditioning on 𝑦 = 𝑞, it has

probability 1 − 𝛼 for 𝑧𝑖,𝑇+1 = 𝑞, independent of
∑
𝑡⩽𝑇 1{𝑧𝑖,𝑡 = 𝑘}.

Moreover, we need to consider whether 𝑦 = 𝑘 or not.

From Lemma C.9, we have

E[Γ𝑖 (𝑗, 𝑘) |𝑦 ≠ 𝑞, 𝑘 = 𝑦] ≈ 1
𝑁 + 1

· 2 − 𝛼
𝑁

,

E[Γ𝑖 (𝑗, 𝑘)2 |𝑦 ≠ 𝑞, 𝑘 = 𝑦] ≈ 1
𝑁 + 1

·
(
2 − 𝛼
𝑇𝑁

+ (2 − 𝛼)
2

𝑁 2

)
.

208

From Lemma C.10, we have

E[Γ𝑖 (𝑗, 𝑘) |𝑦 ≠ 𝑞, 𝑘 ∈ [𝑁] \ {𝑞,𝑦}] ≈ 1
𝑁 + 1

· 1
𝑁
,

E[Γ𝑖 (𝑗, 𝑘)2 |𝑦 ≠ 𝑞, 𝑘 ∈ [𝑁] \ {𝑞,𝑦}] ≈ 1
𝑁 + 1

·
(

1
𝑇𝑁
+ 1
𝑁 2

)
.

From Lemma C.6, we have

E[Γ𝑖 (𝑗, 𝑘) |𝑦 = 𝑞] ≈ −(1 − 𝛼) · 1
𝑁
,

E[Γ𝑖 (𝑗, 𝑘)2 |𝑦 = 𝑞] ≈ (1 − 𝛼) ·
(

1
𝑇𝑁
+ 1
𝑁 2

)
.

Therefore, we have

E[Γ𝑖 (𝑗, 𝑘)] =
1
𝑁
E[Γ𝑖 (𝑗, 𝑘) |𝑦 = 𝑞] + 1

𝑁
E[Γ𝑖 (𝑗, 𝑘) |𝑦 ≠ 𝑞, 𝑘 = 𝑦]

+ 𝑁 − 2
𝑁
E[Γ𝑖 (𝑗, 𝑘) |𝑦 ≠ 𝑞, 𝑘 ∈ [𝑁] \ {𝑞,𝑦}]

≈ 𝛼

𝑁 2 ,

E[Γ𝑖 (𝑗, 𝑘)2] =
1
𝑁
E[Γ𝑖 (𝑗, 𝑘)2 |𝑦 = 𝑞] + 1

𝑁
E[Γ𝑖 (𝑗, 𝑘)2 |𝑦 ≠ 𝑞, 𝑘 = 𝑦]

+ 𝑁 − 2
𝑁
E[Γ𝑖 (𝑗, 𝑘)2 |𝑦 ≠ 𝑞, 𝑘 ∈ [𝑁] \ {𝑞,𝑦}]

≈ (2 − 𝛼) ·
(

1
𝑇𝑁 2 +

1
𝑁 3

)
,

Var[Γ𝑖 (𝑗, 𝑘)] = E[Γ𝑖 (𝑗, 𝑘)2] − E[Γ𝑖 (𝑗, 𝑘)]2 ≈ (2 − 𝛼) ·
(

1
𝑇𝑁 2 +

1
𝑁 3

)
.

The range of Γ𝑖 (𝑗, 𝑘) is

|Γ𝑖 (𝑗, 𝑘) − E[Γ𝑖 (𝑗, 𝑘)] | ⪅ 1,

and the extreme case is when all of the sequence except the last one are 𝑘 .

209

Case 7: 𝑗 ∈ [𝑁] \ {𝑞}, 𝑘 = 𝑁 + 1.

If 𝑦 ≠ 𝑗 , we always have 𝑧𝑖,𝑇+1 ≠ 𝑗 because 𝑧𝑖,𝑇+1 ∈ {𝑦, 𝑁 + 1}. If conditioning on 𝑦 = 𝑗 , it

has probability 1 − 𝛼 for 𝑧𝑖,𝑇+1 = 𝑗 , independent of
∑
𝑡⩽𝑇 1{𝑧𝑖,𝑡 = 𝑁 + 1}.

Moreover, in the case of 𝑦 ≠ 𝑗 , we need to discuss whether or not 𝑦 = 𝑞.

From Lemma C.5, we have

E[Γ𝑖 (𝑗, 𝑘) |𝑦 = 𝑞] ≈ 1
𝑁 + 1

· 1
𝑁
,

E[Γ𝑖 (𝑗, 𝑘)2 |𝑦 = 𝑞] ≈ 1
𝑁 + 1

·
(

1
𝑇𝑁
+ 1
𝑁 2

)
.

From Lemma C.8, we have

E[Γ𝑖 (𝑗, 𝑘) |𝑦 ≠ 𝑞,𝑦 ≠ 𝑗] ≈ 1
𝑁 + 1

· 𝛼
𝑁
,

E[Γ𝑖 (𝑗, 𝑘)2 |𝑦 ≠ 𝑞,𝑦 ≠ 𝑗] ≈ 1
𝑁 + 1

·
(
𝛼

𝑇𝑁
+ 𝛼

2

𝑁 2

)
.

From Lemma C.8, we have

E[Γ𝑖 (𝑗, 𝑘) |𝑦 = 𝑗] ≈ −(1 − 𝛼) · 𝛼
𝑁
,

E[Γ𝑖 (𝑗, 𝑘)2 |𝑦 = 𝑗] ≈ (1 − 𝛼) ·
(
𝛼

𝑇𝑁
+ 𝛼

2

𝑁 2

)
.

210

Therefore, we have

E[Γ𝑖 (𝑗, 𝑘)] =
1
𝑁
E[Γ𝑖 (𝑗, 𝑘) |𝑦 = 𝑞] + 1

𝑁
E[Γ𝑖 (𝑗, 𝑘) |𝑦 = 𝑗] + 𝑁 − 2

𝑁
E[Γ𝑖 (𝑗, 𝑘) |𝑦 ≠ 𝑞,𝑦 ≠ 𝑗]

≈ 𝛼2

𝑁 2 ,

E[Γ𝑖 (𝑗, 𝑘)2] =
1
𝑁
E[Γ𝑖 (𝑗, 𝑘)2 |𝑦 = 𝑞] + 1

𝑁
E[Γ𝑖 (𝑗, 𝑘)2 |𝑦 = 𝑗] + 𝑁 − 2

𝑁
E[Γ𝑖 (𝑗, 𝑘)2 |𝑦 ≠ 𝑞,𝑦 ≠ 𝑗]

≈ (2 − 𝛼)
(
𝛼

𝑇𝑁 2 +
𝛼2

𝑁 3

)
,

Var[Γ𝑖 (𝑗, 𝑘)] = E[Γ𝑖 (𝑗, 𝑘)2] − E[Γ𝑖 (𝑗, 𝑘)]2 ≈ (2 − 𝛼)
(
𝛼

𝑇𝑁 2 +
𝛼2

𝑁 3

)
.

The range of Γ𝑖 (𝑗, 𝑘) is

|Γ𝑖 (𝑗, 𝑘) − E[Γ𝑖 (𝑗, 𝑘)] | ⪅
1
3
,

and the extreme case is when𝑦 = 𝑗 and one-third of the sequence are 𝑘 , where the sequence

has a repeated pattern like [𝑞, 𝑗, 𝑁 + 1, 𝑞, 𝑗, 𝑁 + 1, . . .].

Case 8: 𝑗 ∈ [𝑁] \ {𝑞}, 𝑘 = 𝑞.

Similar to Case 7, if 𝑦 ≠ 𝑗 , we always have 𝑧𝑖,𝑇+1 ≠ 𝑗 . If conditioning on 𝑦 = 𝑗 , it has

probability 1 − 𝛼 for 𝑧𝑖,𝑇+1 = 𝑗 , independent of
∑
𝑡⩽𝑇 1{𝑧𝑖,𝑡 = 𝑁 + 1}.

Moreover, in the case of 𝑦 ≠ 𝑗 , we need to discuss whether or not 𝑦 = 𝑞.

From Lemma C.4, we have

E[Γ𝑖 (𝑗, 𝑘) |𝑦 = 𝑞] ≈ 1
𝑁 + 1

· 1
𝛼𝑁

,

E[Γ𝑖 (𝑗, 𝑘)2 |𝑦 = 𝑞] ≈ 1
𝑁 + 1

·
(
𝑇

𝛼𝑁

(
−1 + 2

𝛼2

)
+ 𝑇 2

𝛼2𝑁 2

)
.

211

From Lemma C.7, we have

E[Γ𝑖 (𝑗, 𝑘) |𝑦 ≠ 𝑞,𝑦 ≠ 𝑗] ≈ 1
𝑁 + 1

· 1
𝑁
,

E[Γ𝑖 (𝑗, 𝑘)2 |𝑦 ≠ 𝑞,𝑦 ≠ 𝑗] ≈ 1
𝑁 + 1

·
(

1
𝑇𝑁
+ 1
𝑁 2

)
.

From Lemma C.7, we have

E[Γ𝑖 (𝑗, 𝑘) |𝑦 = 𝑗] ≈ −(1 − 𝛼) · 1
𝑁
,

E[Γ𝑖 (𝑗, 𝑘)2 |𝑦 = 𝑗] ≈ (1 − 𝛼) ·
(

1
𝑇𝑁
+ 1
𝑁 2

)
.

Therefore, we have

E[Γ𝑖 (𝑗, 𝑘)] =
1
𝑁
E[Γ𝑖 (𝑗, 𝑘) |𝑦 = 𝑞] + 1

𝑁
E[Γ𝑖 (𝑗, 𝑘) |𝑦 = 𝑗] + 𝑁 − 2

𝑁
E[Γ𝑖 (𝑗, 𝑘) |𝑦 ≠ 𝑞,𝑦 ≠ 𝑗]

≈ 𝛼

𝑁 2 ,

E[Γ𝑖 (𝑗, 𝑘)2] =
1
𝑁
E[Γ𝑖 (𝑗, 𝑘)2 |𝑦 = 𝑞] + 1

𝑁
E[Γ𝑖 (𝑗, 𝑘)2 |𝑦 = 𝑗] + 𝑁 − 2

𝑁
E[Γ𝑖 (𝑗, 𝑘)2 |𝑦 ≠ 𝑞,𝑦 ≠ 𝑗]

≈ (2 − 𝛼)
(

1
𝑇𝑁 2 +

1
𝑁 3

)
,

Var[Γ𝑖 (𝑗, 𝑘)] = E[Γ𝑖 (𝑗, 𝑘)2] − E[Γ𝑖 (𝑗, 𝑘)]2 ≈ (2 − 𝛼)
(

1
𝑇𝑁 2 +

1
𝑁 3

)
.

The range of Γ𝑖 (𝑗, 𝑘) is

|Γ𝑖 (𝑗, 𝑘) − E[Γ𝑖 (𝑗, 𝑘)] | ⪅
1
2
,

and the extreme case is when 𝑦 = 𝑗 and half of the sequence are 𝑞.

Case 9: 𝑗 ∈ [𝑁] \ {𝑞}, 𝑘 = 𝑗 .

Similar to Case 7, if 𝑦 ≠ 𝑗 , we always have 𝑧𝑖,𝑇+1 ≠ 𝑗 . If conditioning on 𝑦 = 𝑗 , it has

212

probability 1 − 𝛼 for 𝑧𝑖,𝑇+1 = 𝑗 , independent of
∑
𝑡⩽𝑇 1{𝑧𝑖,𝑡 = 𝑁 + 1}.

Moreover, in the case of 𝑦 ≠ 𝑗 , we need to discuss whether or not 𝑦 = 𝑞.

From Lemma C.6, we have

E[Γ𝑖 (𝑗, 𝑘) |𝑦 = 𝑞] ≈ 1
𝑁 + 1

· 1
𝑁
,

E[Γ𝑖 (𝑗, 𝑘)2 |𝑦 = 𝑞] ≈ 1
𝑁 + 1

·
(

1
𝑇𝑁
+ 1
𝑁 2

)
.

From Lemma C.10, we have

E[Γ𝑖 (𝑗, 𝑘) |𝑦 ≠ 𝑞,𝑦 ≠ 𝑗] ≈ 1
𝑁 + 1

· 1
𝑁
,

E[Γ𝑖 (𝑗, 𝑘)2 |𝑦 ≠ 𝑞,𝑦 ≠ 𝑗] ≈ 1
𝑁 + 1

·
(

1
𝑇𝑁
+ 1
𝑁 2

)
.

From Lemma C.9, we have

E[Γ𝑖 (𝑗, 𝑘) |𝑦 = 𝑗] ≈ −(1 − 𝛼) · 2 − 𝛼
𝑁

,

E[Γ𝑖 (𝑗, 𝑘)2 |𝑦 = 𝑗] ≈ (1 − 𝛼) ·
(
2 − 𝛼
𝑇𝑁

+ (2 − 𝛼)
2

𝑁 2

)
.

Therefore, we have

E[Γ𝑖 (𝑗, 𝑘)] =
1
𝑁
E[Γ𝑖 (𝑗, 𝑘) |𝑦 = 𝑞] + 1

𝑁
E[Γ𝑖 (𝑗, 𝑘) |𝑦 = 𝑗] + 𝑁 − 2

𝑁
E[Γ𝑖 (𝑗, 𝑘) |𝑦 ≠ 𝑞,𝑦 ≠ 𝑗]

≈ −𝛼
2 + 3𝛼 − 1
𝑁 2 ,

E[Γ𝑖 (𝑗, 𝑘)2] =
1
𝑁
E[Γ𝑖 (𝑗, 𝑘)2 |𝑦 = 𝑞] + 1

𝑁
E[Γ𝑖 (𝑗, 𝑘)2 |𝑦 = 𝑗] + 𝑁 − 2

𝑁
E[Γ𝑖 (𝑗, 𝑘)2 |𝑦 ≠ 𝑞,𝑦 ≠ 𝑗]

≈ 1 + (1 − 𝛼) (2 − 𝛼)
𝑇𝑁 2 + 1 + (1 − 𝛼) (2 − 𝛼)2

𝑁 3 ,

Var[Γ𝑖 (𝑗, 𝑘)] = E[Γ𝑖 (𝑗, 𝑘)2] − E[Γ𝑖 (𝑗, 𝑘)]2 ≈
1 + (1 − 𝛼) (2 − 𝛼)

𝑇𝑁 2 + 1 + (1 − 𝛼) (2 − 𝛼)2
𝑁 3 .

213

The range of Γ𝑖 (𝑗, 𝑘) is

|Γ𝑖 (𝑗, 𝑘) − E[Γ𝑖 (𝑗, 𝑘)] | ⪅ 1,

and the extreme case is when 𝑦 = 𝑗 and all of the sequence are 𝑗 = 𝑘 .

Case 10: 𝑗 ∈ [𝑁] \ {𝑞}, 𝑘 ∈ [𝑁] \ {𝑞, 𝑗}.

Similar to Case 7, if 𝑦 ≠ 𝑗 , we always have 𝑧𝑖,𝑇+1 ≠ 𝑗 . If conditioning on 𝑦 = 𝑗 , it has

probability 1 − 𝛼 for 𝑧𝑖,𝑇+1 = 𝑗 , independent of
∑
𝑡⩽𝑇 1{𝑧𝑖,𝑡 = 𝑁 + 1}.

Moreover, in the case of 𝑦 ≠ 𝑗 , we need to discuss whether or not 𝑦 = 𝑞.

From Lemma C.6, we have

E[Γ𝑖 (𝑗, 𝑘) |𝑦 = 𝑞] ≈ 1
𝑁 + 1

· 1
𝑁
,

E[Γ𝑖 (𝑗, 𝑘)2 |𝑦 = 𝑞] ≈ 1
𝑁 + 1

·
(

1
𝑇𝑁
+ 1
𝑁 2

)
.

From Lemma C.10, we have

E[Γ𝑖 (𝑗, 𝑘) |𝑦 = 𝑗] ≈ −(1 − 𝛼) · 1
𝑁
,

E[Γ𝑖 (𝑗, 𝑘)2 |𝑦 = 𝑗] ≈ (1 − 𝛼) ·
(

1
𝑇𝑁
+ 1
𝑁 2

)
.

From Lemma C.9, we have

E[Γ𝑖 (𝑗, 𝑘) |𝑦 = 𝑘] ≈ 1
𝑁 + 1

· 2 − 𝛼
𝑁

,

E[Γ𝑖 (𝑗, 𝑘)2 |𝑦 = 𝑘] ≈ 1
𝑁 + 1

·
(
2 − 𝛼
𝑇𝑁

+ (2 − 𝛼)
2

𝑁 2

)
.

214

From Lemma C.10, we have

E[Γ𝑖 (𝑗, 𝑘) |𝑦 ≠ 𝑞,𝑦 ≠ 𝑗, 𝑦 ≠ 𝑘] ≈ 1
𝑁 + 1

· 1
𝑁
,

E[Γ𝑖 (𝑗, 𝑘)2 |𝑦 ≠ 𝑞,𝑦 ≠ 𝑗, 𝑦 ≠ 𝑘] ≈ 1
𝑁 + 1

·
(

1
𝑇𝑁
+ 1
𝑁 2

)
.

Therefore, we have

E[Γ𝑖 (𝑗, 𝑘)] =
1
𝑁
E[Γ𝑖 (𝑗, 𝑘) |𝑦 = 𝑞] + 1

𝑁
E[Γ𝑖 (𝑗, 𝑘) |𝑦 = 𝑗] + 1

𝑁
E[Γ𝑖 (𝑗, 𝑘) |𝑦 = 𝑘]

+ 𝑁 − 3
𝑁
E[Γ𝑖 (𝑗, 𝑘) |𝑦 ≠ 𝑞,𝑦 ≠ 𝑗]

≈ 𝛼

𝑁 2 ,

E[Γ𝑖 (𝑗, 𝑘)2] =
1
𝑁
E[Γ𝑖 (𝑗, 𝑘)2 |𝑦 = 𝑞] + 1

𝑁
E[Γ𝑖 (𝑗, 𝑘)2 |𝑦 = 𝑗] + 1

𝑁
E[Γ𝑖 (𝑗, 𝑘)2 |𝑦 = 𝑘]

+ 𝑁 − 3
𝑁
E[Γ𝑖 (𝑗, 𝑘)2 |𝑦 ≠ 𝑞,𝑦 ≠ 𝑗]

≈ (2 − 𝛼)
(

1
𝑇𝑁
+ 1
𝑁 2

)
,

Var[Γ𝑖 (𝑗, 𝑘)] = E[Γ𝑖 (𝑗, 𝑘)2] − E[Γ𝑖 (𝑗, 𝑘)]2 ≈ (2 − 𝛼)
(

1
𝑇𝑁 2 +

1
𝑁 3

)
.

The range of Γ𝑖 (𝑗, 𝑘) is

|Γ𝑖 (𝑗, 𝑘) − E[Γ𝑖 (𝑗, 𝑘)] | ⪅ 1,

and the extreme case is when 𝑦 = 𝑗 and all of the sequence except the last are 𝑘 .

□

215

C.2.3 Completing the Proof of Theorem 4.1

TheoremC.3 (Restatement of Theorem 4.1). Assume𝑁,𝑇 ≫ 1, 𝛼 = Θ(1). Consider a one gradient

step update from zero-initialization on𝑚 i.i.d. samples of 𝑧1:𝑇 with separate learning rates 𝜂 𝑓 forW𝐹

and 𝜂𝑣 for W𝑉 (note that the gradient on W𝑄𝐾 is zero). For a test sequence 𝑧1:𝑇 , the resulting logits

for the feed-forward and attention blocks satisfy, with probability 1 − 𝛿

��Δ(𝜉ff(𝑥1:𝑇)) − 𝜂 𝑓 · 𝛼
�� ⩽ 𝜂 𝑓 ·𝑂 ©«

√︄
ln 2(𝑁+1)

𝛿

𝑚

ª®®¬ ,���Δ(𝜉attn(𝑥1:𝑇)) −
𝜂𝑣

𝑁
· (𝛼2𝑞 + 𝛼 (1 − 𝑞))

��� ⩽ 𝜂𝑣 ·𝑂 ©«
√︄
(1
𝑇𝑁
+ 1
𝑁 2) ln 2(𝑁+1)

𝛿

𝑚
+

ln 2(𝑁+1)
𝛿

𝑚

ª®®¬ ,
where Δ(𝜉) = 𝜉𝑁+1 −max 𝑗∈[𝑁] 𝜉 𝑗 is the margin of predicting the noise token and 𝑞 = 1

𝑇

∑
𝑡⩽𝑇 1{𝑧𝑡 =

𝑁 + 1}.

Proof. For W𝐹 , since the input is always 𝑧𝑇 = 𝑞, the logits will be [𝜉ff]𝑘 = W𝑈 (𝑘)⊤W𝐹W𝐸 (𝑞),

∀𝑘 ∈ [𝑁 +1]. AsW𝐹 is initialized from 0 and updated by GDwith learning rate 𝜂 𝑓 , after one-step

update, we have

𝜉ff = W𝑈 (𝑘)⊤
(
− 𝜂 𝑓 ∇W𝐹

�̂�

����
W𝐹=0

)
W𝐸 (𝑞) ∈ R𝑁+1.

By Lemma C.1, with probability 1 − 1
2𝛿 , we have

��[𝜉ff]𝑁+1 − 𝜂 𝑓 · 𝛼 �� ⩽ 𝜂 𝑓 ·𝑂 ©«
√︄

ln 2(𝑁+1)
𝛿

𝑚

ª®®¬ ,
∀ 𝑘 ⩽ 𝑁,

����[𝜉ff]𝑘 − 𝜂 𝑓 · (1 − 𝛼
𝑁
− 1
𝑁 + 1

)���� ⩽ 𝜂 𝑓 ·𝑂 ©«
√︄

ln 2(𝑁+1)
𝛿

𝑁𝑚
+

ln 2(𝑁+1)
𝛿

𝑚

ª®®¬ ,

216

and then triangle inequality finishes the proof for 𝜉ff.

ForW𝑉 , since the gradient onW𝑄𝐾 at initialization is zero,W𝑄𝐾 being zero after the first step

induces a uniform attention over the input sequence. Consider the input sequence {𝑧𝑖}𝑇𝑖=1, then

the logits will be [𝜉attn] 𝑗 = W𝑈 (𝑗)⊤W𝑉
1
𝑇

∑𝑇
𝑡=1 W𝐸 (𝑧𝑡), ∀ 𝑗 ∈ [𝑁 + 1].

Then considering the concentration bound of W𝑉 after one-step update in Lemma C.2, de-

noting Γ(𝑗, 𝑘) = W𝑈 (𝑗)⊤W𝑉W𝐸 (𝑘), we have

[𝜉attn] 𝑗 =
1
𝑇

∑︁
𝑡⩽𝑇

Γ(𝑗, 𝑧𝑡) =
1
𝑇

∑︁
𝑘⩽𝑁+1

𝑛𝑘 · Γ(𝑗, 𝑘),

with concentration bound for each Γ(·, ·) in Lemma C.2. From Table C.1, note that for all 𝑗 =

𝑁 + 1, 𝑘 ⩽ 𝑁 , the expectation and variances are the same, while 𝑘 = 𝑁 + 1 has slightly dif-

ferent expectation and variance (but still in the same order of the others). Hence, denoting

𝑞 = 1
𝑇

∑
𝑡⩽𝑇 1{𝑧𝑡 = 𝑁 + 1} dependent of the test sample 𝑧1:𝑇 , we have

���[𝜉attn(𝑥1:𝑇)]𝑁+1 −
𝜂𝑣

𝑁
· (𝛼2𝑞 + 𝛼 (1 − 𝑞))

��� ⩽ 𝜂𝑣 ·𝑂 ©«
√︄
(1
𝑇𝑁
+ 1
𝑁 2) ln 2(𝑁+1)

𝛿

𝑚
+

ln 2(𝑁+1)
𝛿

𝑚

ª®®¬ .
Meanwhile, as the terms in Table C.1 for 𝑗 ≠ 𝑁 + 1 always have much smaller mean and variance

by a factor 1/𝑁 , using the Bernstein’s inequalites for these terms in Lemma C.2 finishes the proof

for W𝑉 .

□

C.3 Proof for First and Second moments in Lemma C.2

In this section, we will show the proof of the first and second moments of
[∑

1⩽𝑡⩽𝑇 1{𝑧𝑡 = 𝑘}|·
]

for all cases. Note that we do not consider 𝑧𝑇 = 𝑞, but including it will not change the results, as

𝑇 ≫ 1 and 𝑧𝑇 is explicitly fixed as 𝑞 during data generation in Section 4.4. Generally, there are

217

three factors to classify the cases as follows:

1. The i.i.d. uniformly sampled correct token 𝑦 ∈ [𝑁]:

(a) 𝑦 = 𝑞,

(b) 𝑦 ≠ 𝑞.

2. The target token 𝑘 ∈ [𝑁 + 1]:

(a) 𝑘 = 𝑞,

(b) 𝑘 = 𝑁 + 1.

(c) 𝑘 ⩽ 𝑁,𝑘 ≠ 𝑞, 𝑘 ≠ 𝑦,

(d) (if 𝑦 ≠ 𝑞) 𝑘 ⩽ 𝑁,𝑘 ≠ 𝑞, 𝑘 = 𝑦,

3. A condition about the token 𝑧0 before the sequence {𝑧𝑡 }𝑡⩾1:

(a) 𝑧0 = 𝑞,

(b) 𝑧0 ∈ [𝑁 + 1] \ {𝑞}.

Note that when 𝑧0 will be implicitly or explicitly considered. When there is no condition on the

first token, which means 𝑧1 ∼ Uniform([𝑁]), this belongs to Case (3b), i.e., 𝑧0 ∈ [𝑁 + 1] \ {𝑞},

following the data generation process.

Table C.2 summarizes all lemmas about the seven cases classified by the first two factors. The

third factor about 𝑧0 is explicitly presented in the proof of each corresponding lemma.

Table C.2: All lemmas about the seven cases classified by 𝑦 and 𝑘 .

(2a) (2b) (2c) (2d)

(1a) C.4 C.5 C.6 N/A
(1b) C.7 C.8 C.10 C.9

218

C.3.1 When 𝑦 = 𝑞

Lemma C.4 (𝑦 = 𝑞, 𝑘 = 𝑞). Following the data generation process, assuming 𝑁,𝑇 ≫ 1 and 𝛼 =

Θ(1), if 𝑦 = 𝑞 and 𝑘 = 𝑞, it holds

E

[∑︁
𝑡⩽𝑇

1{𝑧𝑡 = 𝑘}
����𝑦 = 𝑞, 𝑘 = 𝑞

]
≈ 𝑇

𝛼𝑁
,

E

[(∑︁
𝑡⩽𝑇

1{𝑧𝑡 = 𝑘}
)2����𝑦 = 𝑞, 𝑘 = 𝑞

]
≈ 𝑇

𝛼𝑁

(
−1 + 2

𝛼2

)
+ 𝑇 2

𝛼2𝑁 2 .

(C.9)

Proof. For simplicity, we omit the condition of 𝑦 = 𝑞, 𝑘 = 𝑞 in this proof. Denote

𝑌 (𝑇) ≜ E
[∑︁
𝑡⩽𝑇

1{𝑧𝑡 = 𝑘}
����𝑧0 = 𝑞

]
,

𝑌 (𝑇) ≜ E
[∑︁
𝑡⩽𝑇

1{𝑧𝑡 = 𝑘}
����𝑧0 ∈ [𝑁 + 1], 𝑧0 ≠ 𝑞

]
.

Then the data generation process implies, ∀𝑇 ⩾ 1,

𝑌 (𝑇) = 𝑝 (𝑧1 = 𝑞 |𝑧0 = 𝑞) · (1 + 𝑌 (𝑇 − 1)) + 𝑝 (𝑧1 = 𝑁 + 1|𝑧0 = 𝑞) · 𝑌 (𝑇 − 1),

𝑌 (𝑇) = 𝑝 (𝑧1 = 𝑞 |𝑧0 ≠ 𝑞) · (1 + 𝑌 (𝑇 − 1)) + 𝑝 (𝑧1 ∈ [𝑁] \ {𝑞}|𝑧0 ≠ 𝑞) · 𝑌 (𝑇 − 1).

The iteration becomes

𝑌 (𝑇) = (1 − 𝛼) · 𝑌 (𝑇 − 1) + 𝛼 · 𝑌 (𝑇 − 1) + 1 − 𝛼,

𝑌 (𝑇) = 1
𝑁
· 𝑌 (𝑇 − 1) + 𝑁 − 1

𝑁
· 𝑌 (𝑇 − 1) + 1

𝑁
.

219

This gives

𝑌 (𝑇) − 𝑌 (𝑇) = (1 − 𝛼 − 1
𝑁
) (𝑌 (𝑇 − 1) − 𝑌 (𝑇 − 1)) + 1 − 𝛼 − 1

𝑁
,

1
𝑁
𝑌 (𝑇) + 𝛼𝑌 (𝑇) = 1

𝑁
𝑌 (𝑇 − 1) + 𝛼𝑌 (𝑇 − 1) + 1

𝑁
.

Consider the initialization 𝑌 (0) = 𝑌 (0) = 0. This implies

𝑌 (𝑇) − 𝑌 (𝑇) =
1 − 𝛼 − 1

𝑁

𝛼 + 1
𝑁

(
1 −

(
1 − 𝛼 − 1

𝑁

)𝑇)
,

1
𝑁
𝑌 (𝑇) + 𝛼𝑌 (𝑇) = 1

𝑁
𝑇 .

Then we obtain

𝑌 (𝑇) ≈ 1
𝛼𝑁 + 1

(𝑇 − 𝛼𝑁) + 𝛼

(𝛼 + 1
𝑁
)2

=
1

𝛼𝑁 + 1

(
𝑇 − 𝛼𝑁 + 𝑁 2

𝛼𝑁 + 1

)
≈ 𝑇

𝛼𝑁
− 1 + 1

𝛼2 ,

𝑌 (𝑇) ≈ 1
𝛼𝑁 + 1

𝑇 − 𝑁

(𝛼𝑁 + 1)2 +
1

𝛼𝑁 + 1

≈ 𝑇

𝛼𝑁
.

Since the data generation process implicitly assumes 𝑧0 ≠ 𝑞, we have the desired expectation as

E

[∑︁
𝑡⩽𝑇

1{𝑧𝑡 = 𝑘}
����𝑦 = 𝑞, 𝑘 = 𝑞

]
= 𝑌 (𝑇) ≈ 𝑇

𝛼𝑁
.

To obtain the expectation of the quadratic term, we similarly denote the following terms with

220

different 𝑧0:

𝑍 (𝑇) ≜ E
[(∑︁

𝑡⩽𝑇

1{𝑧𝑡 = 𝑘}
)2����𝑧0 = 𝑞

]
,

𝑍 (𝑇) ≜ E
[(∑︁

𝑡⩽𝑇

1{𝑧𝑡 = 𝑘}
)2����𝑧0 ∈ [𝑁 + 1], 𝑧0 ≠ 𝑞

]
.

Then the data generation process implies, ∀𝑇 ⩾ 1,

𝑍 (𝑇) = 𝑝 (𝑧1 = 𝑞 |𝑧0 = 𝑞) · (1 + 2𝑌 (𝑇 − 1) + 𝑍 (𝑇 − 1)) + 𝑝 (𝑧1 = 𝑁 + 1|𝑧0 = 𝑞) · 𝑍 (𝑇 − 1),

𝑍 (𝑇) = 𝑝 (𝑧1 = 𝑞 |𝑧0 ≠ 𝑞) · (1 + 2𝑌 (𝑇 − 1) + 𝑍 (𝑇 − 1)) + 𝑝 (𝑧1 ≠ 𝑞 |𝑧0 ≠ 𝑞) · 𝑍 (𝑇 − 1),

where 2𝑌 (𝑇 − 1) is due to E[(1 +∑
2⩽𝑡⩽𝑇 ·)2] = 1 + 2E[∑2⩽𝑡⩽𝑇 ·] + E[(

∑
2⩽𝑡⩽𝑇 ·)2].

Then the iteration becomes

𝑍 (𝑇) = (1 − 𝛼) · (1 + 2𝑌 (𝑇 − 1) + 𝑍 (𝑇 − 1)) + 𝛼 · 𝑍 (𝑇 − 1)

= (1 − 𝛼)𝑍 (𝑇 − 1) + 𝛼𝑍 (𝑇 − 1) + (1 − 𝛼) (1 + 2𝑌 (𝑇 − 1)),

𝑍 (𝑇) = 1
𝑁
· (1 + 2𝑌 (𝑇 − 1) + 𝑍 (𝑇 − 1)) + 𝑁 − 1

𝑁
· 𝑍 (𝑇 − 1)

=
1
𝑁
𝑍 (𝑇 − 1) + 𝑁 − 1

𝑁
𝑍 (𝑇 − 1) + 1

𝑁
(1 + 2𝑌 (𝑇 − 1)) .

This gives

𝑍 (𝑇) − 𝑍 (𝑇) = (1 − 𝛼 − 1
𝑁
) (𝑍 (𝑇 − 1) − 𝑍 (𝑇 − 1)) + (1 − 𝛼 − 1

𝑁
) (1 + 2𝑌 (𝑇 − 1)),

1
𝑁
𝑍 (𝑇) + 𝛼𝑍 (𝑇) = 1

𝑁
𝑍 (𝑇 − 1) + 𝛼𝑍 (𝑇 − 1) + 1

𝑁
(1 + 2𝑌 (𝑇 − 1)) .

221

Considering the initialization 𝑍 (0) = 𝑍 (0) = 0, we have

𝑍 (𝑇) − 𝑍 (𝑇) =
∑︁
𝑡⩽𝑇−1

(1 − 𝛼 − 1
𝑁
)𝑇−𝑡 (1 + 2𝑌 (𝑡))

≈
∑︁
𝑡⩽𝑇−1

(1 − 𝛼 − 1
𝑁
)𝑇−𝑡

(
1 + 2𝑡

𝛼𝑁
− 2 + 2

𝛼2

)
≈

(
−1 + 2

𝛼2

)
1 − 𝛼
𝛼
+ 2(1 − 𝛼)

𝛼2 · 𝑇
𝑁
.

1
𝑁
𝑍 (𝑇) + 𝛼𝑍 (𝑇) = 𝑇

𝑁
+ 2
𝑁

∑︁
1⩽𝑡⩽𝑇−1

𝑌 (𝑡)

≈ 𝑇
𝑁
+ 2
𝑁

∑︁
1⩽𝑡⩽𝑇−1

(
𝑡

𝛼𝑁
− 1 + 1

𝛼2

)
≈ 𝑇
𝑁

(
−1 + 2

𝛼2

)
+ 𝑇 2

𝛼𝑁 2 .

Then we obtain

𝑍 (𝑇) ≈ 𝑇
𝑁

(
− 3
𝛼
+ 2
𝛼2 +

2
𝛼3

)
+ 𝑇 2

𝛼2𝑁 2 +
1 − 𝛼
𝛼
(2
𝛼2 − 1),

𝑍 (𝑇) ≈ 𝑇

𝛼𝑁

(
−1 + 2

𝛼2

)
+ 𝑇 2

𝛼2𝑁 2 .

Since the data generation process implicitly assumes 𝑧0 ≠ 𝑞, we have the desired expectation as

E

[(∑︁
𝑡⩽𝑇

1{𝑧𝑡 = 𝑘}
)2����𝑦 = 𝑞, 𝑘 = 𝑞

]
= 𝑍 (𝑇) ≈ 𝑇

𝛼𝑁

(
−1 + 2

𝛼2

)
+ 𝑇 2

𝛼2𝑁 2 .

□

Lemma C.5 (𝑦 = 𝑞, 𝑘 = 𝑁 + 1). Following the data generation process, assuming 𝑁,𝑇 ≫ 1 and

222

𝛼 = Θ(1), if 𝑦 = 𝑞 and 𝑘 = 𝑁 + 1, it holds

E

[∑︁
𝑡⩽𝑇

1{𝑧𝑡 = 𝑘}
����𝑦 = 𝑞, 𝑘 = 𝑁 + 1

]
≈ 𝑇
𝑁
,

E

[(∑︁
𝑡⩽𝑇

1{𝑧𝑡 = 𝑘}
)2����𝑦 = 𝑞, 𝑘 = 𝑁 + 1

]
≈ 𝑇
𝑁
+ 𝑇

2

𝑁 2 .

(C.10)

Proof. For simplicity, we omit the condition of 𝑦 = 𝑞, 𝑘 = 𝑁 + 1 in this proof. Denote

𝑌 (𝑇) ≜ E
[∑︁
𝑡⩽𝑇

1{𝑧𝑡 = 𝑘}
����𝑧0 = 𝑞

]
,

𝑌 (𝑇) ≜ E
[∑︁
𝑡⩽𝑇

1{𝑧𝑡 = 𝑘}
����𝑧0 ∈ [𝑁 + 1], 𝑧0 ≠ 𝑞

]
.

Then the data generation process implies, ∀𝑇 ⩾ 1,

𝑌 (𝑇) = 𝑝 (𝑧1 = 𝑞 |𝑧0 = 𝑞) · 𝑌 (𝑇 − 1) + 𝑝 (𝑧1 = 𝑁 + 1|𝑧0 = 𝑞) · (1 + 𝑌 (𝑇 − 1)),

𝑌 (𝑇) = 𝑝 (𝑧1 = 𝑞 |𝑧0 ≠ 𝑞) · 𝑌 (𝑇 − 1) + 𝑝 (𝑧1 ∈ [𝑁] \ {𝑞}|𝑧0 ≠ 𝑞) · 𝑌 (𝑇 − 1).

The iteration becomes

𝑌 (𝑇) = (1 − 𝛼) · 𝑌 (𝑇 − 1) + 𝛼 · 𝑌 (𝑇 − 1) + 𝛼,

𝑌 (𝑇) = 1
𝑁
· 𝑌 (𝑇 − 1) + 𝑁 − 1

𝑁
· 𝑌 (𝑇 − 1).

This gives

𝑌 (𝑇) − 𝑌 (𝑇) = (1 − 𝛼 − 1
𝑁
) (𝑌 (𝑇 − 1) − 𝑌 (𝑇 − 1)) + 𝛼,

1
𝑁
𝑌 (𝑇) + 𝛼𝑌 (𝑇) = 1

𝑁
𝑌 (𝑇 − 1) + 𝛼𝑌 (𝑇 − 1) + 𝛼

𝑁
.

223

Consider the initialization 𝑌 (0) = 𝑌 (0) = 0. This implies

𝑌 (𝑇) − 𝑌 (𝑇) = 𝛼

𝛼 + 1
𝑁

(
1 −

(
1 − 𝛼 − 1

𝑁

)𝑇)
,

1
𝑁
𝑌 (𝑇) + 𝛼𝑌 (𝑇) = 𝛼

𝑁
𝑇 .

Then we obtain

𝑌 (𝑇) ≈ 𝑇
𝑁
+ 1,

𝑌 (𝑇) ≈ 𝑇
𝑁
.

Since the data generation process implicitly assumes 𝑧0 ≠ 𝑞, we have the desired expectation as

E

[∑︁
𝑡⩽𝑇

1{𝑧𝑡 = 𝑘}
����𝑦 = 𝑞, 𝑘 = 𝑁 + 1

]
= 𝑌 (𝑇) ≈ 𝑇

𝑁
.

To obtain the expectation of the quadratic term, we similarly denote the following terms with

different 𝑧0:

𝑍 (𝑇) ≜ E
[(∑︁

𝑡⩽𝑇

1{𝑧𝑡 = 𝑘}
)2����𝑧0 = 𝑞

]
,

𝑍 (𝑇) ≜ E
[(∑︁

𝑡⩽𝑇

1{𝑧𝑡 = 𝑘}
)2����𝑧0 ∈ [𝑁 + 1], 𝑧0 ≠ 𝑞

]
.

Then the data generation process implies, ∀𝑇 ⩾ 1,

𝑍 (𝑇) = 𝑝 (𝑧1 = 𝑞 |𝑧0 = 𝑞) · 𝑍 (𝑇 − 1) + 𝑝 (𝑧1 = 𝑁 + 1|𝑧0 = 𝑞) · (1 + 2𝑌 (𝑇 − 1) + 𝑍 (𝑇 − 1)),

𝑍 (𝑇) = 𝑝 (𝑧1 = 𝑞 |𝑧0 ≠ 𝑞) · 𝑍 (𝑇 − 1) + 𝑝 (𝑧1 ≠ 𝑞 |𝑧0 ≠ 𝑞) · 𝑍 (𝑇 − 1),

where 2𝑌 (𝑇 − 1) is due to E[(1 +∑
2⩽𝑡⩽𝑇 ·)2] = 1 + 2E[∑2⩽𝑡⩽𝑇 ·] + E[(

∑
2⩽𝑡⩽𝑇 ·)2].

224

Then the iteration becomes

𝑍 (𝑇) = (1 − 𝛼) · 𝑍 (𝑇 − 1) + 𝛼 · (1 + 2𝑌 (𝑇 − 1) + 𝑍 (𝑇 − 1))

= (1 − 𝛼)𝑍 (𝑇 − 1) + 𝛼𝑍 (𝑇 − 1) + 𝛼 (1 + 2𝑌 (𝑇 − 1)),

𝑍 (𝑇) = 1
𝑁
· 𝑍 (𝑇 − 1) + 𝑁 − 1

𝑁
· 𝑍 (𝑇 − 1).

This gives

𝑍 (𝑇) − 𝑍 (𝑇) = (1 − 𝛼 − 1
𝑁
) (𝑍 (𝑇 − 1) − 𝑍 (𝑇 − 1)) + 𝛼 (1 + 2𝑌 (𝑇 − 1)),

1
𝑁
𝑍 (𝑇) + 𝛼𝑍 (𝑇) = 1

𝑁
𝑍 (𝑇 − 1) + 𝛼𝑍 (𝑇 − 1) + 𝛼

𝑁
(1 + 2𝑌 (𝑇 − 1)) .

Considering the initialization 𝑍 (0) = 𝑍 (0) = 0, we have

𝑍 (𝑇) − 𝑍 (𝑇) =
∑︁
𝑡⩽𝑇−1

𝛼 (1 − 𝛼 − 1
𝑁
)𝑇−1−𝑡 (1 + 2𝑌 (𝑡))

≈
∑︁
𝑡⩽𝑇−1

𝛼 (1 − 𝛼 − 1
𝑁
)𝑇−1−𝑡

(
1 + 2𝑡

𝑁

)
≈ 2𝑇
𝑁
+ 1,

1
𝑁
𝑍 (𝑇) + 𝛼𝑍 (𝑇) = 𝛼𝑇

𝑁
+ 2𝛼
𝑁

∑︁
1⩽𝑡⩽𝑇−1

𝑌 (𝑡)

≈ 𝛼𝑇
𝑁
+ 2𝛼
𝑁

∑︁
1⩽𝑡⩽𝑇−1

𝑡

𝑁

≈ 𝛼𝑇
𝑁
+ 𝛼𝑇

2

𝑁 2 .

Then we obtain

𝑍 (𝑇) ≈ 3𝛼
𝑇

𝑁
+ 𝛼 𝑇

2

𝑁 2 + 𝛼,

𝑍 (𝑇) ≈ 𝑇
𝑁
+ 𝑇

2

𝑁 2 .

225

Since the data generation process implicitly assumes 𝑧0 ≠ 𝑞, we have the desired expectation as

E

[(∑︁
𝑡⩽𝑇

1{𝑧𝑡 = 𝑘}
)2����𝑦 = 𝑞, 𝑘 = 𝑁 + 1

]
= 𝑍 (𝑇) ≈ 𝑇

𝑁
+ 𝑇

2

𝑁 2 .

□

Lemma C.6 (𝑦 = 𝑞, 𝑘 ⩽ 𝑁,𝑘 ≠ 𝑞). Following the data generation process, assuming 𝑁,𝑇 ≫ 1 and

𝛼 = Θ(1), if 𝑦 = 𝑞 and 𝑘 ∈ [𝑁] \ {𝑞}, it holds

E

[∑︁
𝑡⩽𝑇

1{𝑧𝑡 = 𝑘}
����𝑦 = 𝑞, 𝑘 ∈ [𝑁] \ {𝑞}

]
≈ 𝑇
𝑁
,

E

[(∑︁
𝑡⩽𝑇

1{𝑧𝑡 = 𝑘}
)2����𝑦 = 𝑞, 𝑘 ∈ [𝑁] \ {𝑞}

]
≈ 𝑇
𝑁
+ 𝑇

2

𝑁 2 .

(C.11)

Proof. For simplicity, we omit the condition of 𝑦 = 𝑞, 𝑘 ∈ [𝑁] \ {𝑞} in this proof. Denote

𝑌 (𝑇) ≜ E
[∑︁
𝑡⩽𝑇

1{𝑧𝑡 = 𝑘}
����𝑧0 = 𝑞

]
,

𝑌 (𝑇) ≜ E
[∑︁
𝑡⩽𝑇

1{𝑧𝑡 = 𝑘}
����𝑧0 ∈ [𝑁 + 1], 𝑧0 ≠ 𝑞

]
.

Then the data generation process implies, ∀𝑇 ⩾ 1,

𝑌 (𝑇) = 𝑝 (𝑧1 = 𝑞 |𝑧0 = 𝑞) · 𝑌 (𝑇 − 1) + 𝑝 (𝑧1 = 𝑁 + 1|𝑧0 = 𝑞) · 𝑌 (𝑇 − 1),

𝑌 (𝑇) = 𝑝 (𝑧1 = 𝑞 |𝑧0 ≠ 𝑞) · 𝑌 (𝑇 − 1)

+ 𝑝 (𝑧1 ∈ [𝑁] \ {𝑞}|𝑧0 ≠ 𝑞) · (𝑝 (𝑧1 = 𝑘 |𝑧1 ∼ Uniform([𝑁] \ {𝑞}) + 𝑌 (𝑇 − 1)) .

226

The iteration becomes

𝑌 (𝑇) = (1 − 𝛼) · 𝑌 (𝑇 − 1) + 𝛼 · 𝑌 (𝑇 − 1),

𝑌 (𝑇) = 1
𝑁
· 𝑌 (𝑇 − 1) + 𝑁 − 1

𝑁
· (𝑌 (𝑇 − 1) + 1

𝑁 − 1
).

This gives

𝑌 (𝑇) − 𝑌 (𝑇) = (1 − 𝛼 − 1
𝑁
) (𝑌 (𝑇 − 1) − 𝑌 (𝑇 − 1)) − 1

𝑁
,

1
𝑁
𝑌 (𝑇) + 𝛼𝑌 (𝑇) = 1

𝑁
𝑌 (𝑇 − 1) + 𝛼𝑌 (𝑇 − 1) + 𝛼

𝑁
.

Consider the initialization 𝑌 (0) = 𝑌 (0) = 0. This implies

𝑌 (𝑇) − 𝑌 (𝑇) =
− 1
𝑁

𝛼 + 1
𝑁

(
1 −

(
1 − 𝛼 − 1

𝑁

)𝑇)
,

1
𝑁
𝑌 (𝑇) + 𝛼𝑌 (𝑇) = 𝛼

𝑁
𝑇 .

Then we obtain

𝑌 (𝑇) ≈ 𝑇
𝑁
,

𝑌 (𝑇) ≈ 𝑇
𝑁
.

Since the data generation process implicitly assumes 𝑧0 ≠ 𝑞, we have the desired expectation as

E

[∑︁
𝑡⩽𝑇

1{𝑧𝑡 = 𝑘}
����𝑦 = 𝑞, 𝑘 = 𝑁 + 1

]
= 𝑌 (𝑇) ≈ 𝑇

𝑁
.

To obtain the expectation of the quadratic term, we similarly denote the following terms with

227

different 𝑧0:

𝑍 (𝑇) ≜ E
[(∑︁

𝑡⩽𝑇

1{𝑧𝑡 = 𝑘}
)2����𝑧0 = 𝑞

]
,

𝑍 (𝑇) ≜ E
[(∑︁

𝑡⩽𝑇

1{𝑧𝑡 = 𝑘}
)2����𝑧0 ∈ [𝑁 + 1], 𝑧0 ≠ 𝑞

]
.

Then the data generation process implies, ∀𝑇 ⩾ 1,

𝑍 (𝑇) = 𝑝 (𝑧1 = 𝑞 |𝑧0 = 𝑞) · 𝑍 (𝑇 − 1) + 𝑝 (𝑧1 = 𝑁 + 1|𝑧0 = 𝑞) · 𝑍 (𝑇 − 1),

𝑍 (𝑇) = 𝑝 (𝑧1 = 𝑞 |𝑧0 ≠ 𝑞) · 𝑍 (𝑇 − 1) + 𝑝 (𝑧1 ≠ 𝑞 |𝑧0 ≠ 𝑞) · 𝑍 (𝑇 − 1)

+ 𝑝 (𝑧1 = 𝑘 |𝑧0 ≠ 𝑞) · (1 + 2𝑌 (𝑇 − 1)),

where 2𝑌 (𝑇 − 1) is due to E[(1 +∑
2⩽𝑡⩽𝑇 ·)2] = 1 + 2E[∑2⩽𝑡⩽𝑇 ·] + E[(

∑
2⩽𝑡⩽𝑇 ·)2].

Then the iteration becomes

𝑍 (𝑇) = (1 − 𝛼) · 𝑍 (𝑇 − 1) + 𝛼 · 𝑍 (𝑇 − 1),

𝑍 (𝑇) = 1
𝑁
· 𝑍 (𝑇 − 1) + 𝑁 − 1

𝑁
· 𝑍 (𝑇 − 1) + 1

𝑁
(1 + 2𝑌 (𝑇 − 1)) .

This gives

𝑍 (𝑇) − 𝑍 (𝑇) = (1 − 𝛼 − 1
𝑁
) (𝑍 (𝑇 − 1) − 𝑍 (𝑇 − 1)) − 1

𝑁
(1 + 2𝑌 (𝑇 − 1)),

1
𝑁
𝑍 (𝑇) + 𝛼𝑍 (𝑇) = 1

𝑁
𝑍 (𝑇 − 1) + 𝛼𝑍 (𝑇 − 1) + 𝛼

𝑁
(1 + 2𝑌 (𝑇 − 1)) .

228

Considering the initialization 𝑍 (0) = 𝑍 (0) = 0, we have

𝑍 (𝑇) − 𝑍 (𝑇) = − 1
𝑁

∑︁
𝑡⩽𝑇−1

(1 − 𝛼 − 1
𝑁
)𝑇−1−𝑡 (1 + 2𝑌 (𝑡))

≈ − 1
𝑁

∑︁
𝑡⩽𝑇−1

(1 − 𝛼 − 1
𝑁
)𝑇−1−𝑡

(
1 + 2𝑡

𝑁

)
≈ − 1

𝛼𝑁

(
2𝑇
𝑁
+ 1

)
,

1
𝑁
𝑍 (𝑇) + 𝛼𝑍 (𝑇) = 𝛼𝑇

𝑁
+ 2𝛼
𝑁

∑︁
1⩽𝑡⩽𝑇−1

𝑌 (𝑡)

≈ 𝛼𝑇
𝑁
+ 2𝛼
𝑁

∑︁
1⩽𝑡⩽𝑇−1

𝑡

𝑁

≈ 𝛼𝑇
𝑁
+ 𝛼𝑇

2

𝑁 2 .

Then we obtain

𝑍 (𝑇) ≈ 𝑇
𝑁
+ 𝑇

2

𝑁 2 ,

𝑍 (𝑇) ≈ 𝑇
𝑁
+ 𝑇

2

𝑁 2 .

Since the data generation process implicitly assumes 𝑧0 ≠ 𝑞, we have the desired expectation as

E

[(∑︁
𝑡⩽𝑇

1{𝑧𝑡 = 𝑘}
)2����𝑦 = 𝑞, 𝑘 ∈ [𝑁] \ {𝑞}

]
= 𝑍 (𝑇) ≈ 𝑇

𝑁
+ 𝑇

2

𝑁 2 .

□

229

C.3.2 When 𝑦 ≠ 𝑞

Lemma C.7 (𝑦 ≠ 𝑞, 𝑘 = 𝑞). Following the data generation process, assuming 𝑁,𝑇 ≫ 1 and 𝛼 =

Θ(1), if 𝑦 ≠ 𝑞 and 𝑘 = 𝑞, it holds

E

[∑︁
𝑡⩽𝑇

1{𝑧𝑡 = 𝑘}
����𝑦 ≠ 𝑞, 𝑘 = 𝑞

]
≈ 𝑇
𝑁
,

E

[(∑︁
𝑡⩽𝑇

1{𝑧𝑡 = 𝑘}
)2����𝑦 ≠ 𝑞, 𝑘 = 𝑞

]
≈ 𝑇
𝑁
+ 𝑇

2

𝑁 2 .

(C.12)

Proof. For simplicity, we omit the condition of 𝑦 ≠ 𝑞, 𝑘 = 𝑞 in this proof. Denote

𝑌 (𝑇) ≜ E
[∑︁
𝑡⩽𝑇

1{𝑧𝑡 = 𝑘}
����𝑧0 = 𝑞

]
,

𝑌 (𝑇) ≜ E
[∑︁
𝑡⩽𝑇

1{𝑧𝑡 = 𝑘}
����𝑧0 ∈ [𝑁 + 1], 𝑧0 ≠ 𝑞

]
.

Then the data generation process implies, ∀𝑇 ⩾ 1,

𝑌 (𝑇) = 𝑌 (𝑇 − 1),

𝑌 (𝑇) = 𝑝 (𝑧1 = 𝑞 |𝑧0 ≠ 𝑞) · (1 + 𝑌 (𝑇 − 1)) + 𝑝 (𝑧1 ∈ [𝑁] \ {𝑞}|𝑧0 ≠ 𝑞) · 𝑌 (𝑇 − 1).

The iteration becomes

𝑌 (𝑇) = 𝑌 (𝑇 − 1),

𝑌 (𝑇) = 1
𝑁
· 𝑌 (𝑇 − 1) + 𝑁 − 1

𝑁
· 𝑌 (𝑇 − 1) + 1

𝑁
.

230

This gives

𝑌 (𝑇) − 𝑌 (𝑇) = − 1
𝑁
(𝑌 (𝑇 − 1) − 𝑌 (𝑇 − 1)) − 1

𝑁
,

1
𝑁
𝑌 (𝑇) + 𝑌 (𝑇) = 1

𝑁
𝑌 (𝑇 − 1) + 𝑌 (𝑇 − 1) + 1

𝑁
.

Consider the initialization 𝑌 (0) = 𝑌 (0) = 0. This implies

𝑌 (𝑇) − 𝑌 (𝑇) =
− 1
𝑁

1 + 1
𝑁

(
1 −

(
− 1
𝑁

)𝑇)
,

1
𝑁
𝑌 (𝑇) + 𝑌 (𝑇) = 1

𝑁
𝑇 .

Then we obtain

𝑌 (𝑇) ≈ 𝑇
𝑁
,

𝑌 (𝑇) ≈ 𝑇
𝑁
.

Since the data generation process implicitly assumes 𝑧0 ≠ 𝑞, we have the desired expectation as

E

[∑︁
𝑡⩽𝑇

1{𝑧𝑡 = 𝑘}
����𝑦 ≠ 𝑞, 𝑘 = 𝑞

]
= 𝑌 (𝑇) ≈ 𝑇

𝑁
.

To obtain the expectation of the quadratic term, we similarly denote the following terms with

different 𝑧0:

𝑍 (𝑇) ≜ E
[(∑︁

𝑡⩽𝑇

1{𝑧𝑡 = 𝑘}
)2����𝑧0 = 𝑞

]
,

𝑍 (𝑇) ≜ E
[(∑︁

𝑡⩽𝑇

1{𝑧𝑡 = 𝑘}
)2����𝑧0 ∈ [𝑁 + 1], 𝑧0 ≠ 𝑞

]
.

231

Then the data generation process implies, ∀𝑇 ⩾ 1,

𝑍 (𝑇) = 𝑍 (𝑇 − 1),

𝑍 (𝑇) = 𝑝 (𝑧1 = 𝑞 |𝑧0 ≠ 𝑞) · (1 + 2𝑌 (𝑇 − 1) + 𝑍 (𝑇 − 1)) + 𝑝 (𝑧1 ∈ [𝑁] \ {𝑞}|𝑧0 ≠ 𝑞) · 𝑍 (𝑇 − 1),

where 2𝑌 (𝑇 − 1) is due to E[(1 +∑
2⩽𝑡⩽𝑇 ·)2] = 1 + 2E[∑2⩽𝑡⩽𝑇 ·] + E[(

∑
2⩽𝑡⩽𝑇 ·)2].

Then the iteration becomes

𝑍 (𝑇) = 𝑍 (𝑇 − 1),

𝑍 (𝑇) = 1
𝑁
𝑍 (𝑇 − 1) + 𝑁 − 1

𝑁
𝑍 (𝑇 − 1) + 1

𝑁
(1 + 2𝑌 (𝑇 − 1)) .

This gives

𝑍 (𝑇) − 𝑍 (𝑇) = − 1
𝑁
(𝑍 (𝑇 − 1) − 𝑍 (𝑇 − 1)) − 1

𝑁
(1 + 2𝑌 (𝑇 − 1)),

1
𝑁
𝑍 (𝑇) + 𝑍 (𝑇) = 1

𝑁
𝑍 (𝑇 − 1) + 𝑍 (𝑇 − 1) + 1

𝑁
(1 + 2𝑌 (𝑇 − 1)) .

Considering the initialization 𝑍 (0) = 𝑍 (0) = 0, we have

𝑍 (𝑇) − 𝑍 (𝑇) = − 1
𝑁

∑︁
𝑡⩽𝑇−1

(− 1
𝑁
)𝑇−1−𝑡 (1 + 2𝑌 (𝑡))

≈ − 1
𝑁

∑︁
𝑡⩽𝑇−1

(− 1
𝑁
)𝑇−1−𝑡

(
1 + 2𝑡

𝑁

)
≈ − 1

𝑁
− 2𝑇
𝑁 2 ,

1
𝑁
𝑍 (𝑇) + 𝑍 (𝑇) = 𝑇

𝑁
+ 2
𝑁

∑︁
1⩽𝑡⩽𝑇−1

𝑌 (𝑡)

≈ 𝑇
𝑁
+ 2
𝑁

∑︁
1⩽𝑡⩽𝑇−1

𝑡

𝑁

≈ 𝑇
𝑁
+ 𝑇

2

𝑁 2 .

232

Then we obtain

𝑍 (𝑇) ≈ 𝑇
𝑁
+ 𝑇

2

𝑁 2 ,

𝑍 (𝑇) ≈ 𝑇
𝑁
+ 𝑇

2

𝑁 2 .

Since the data generation process implicitly assumes 𝑧0 ≠ 𝑞, we have the desired expectation as

E

[(∑︁
𝑡⩽𝑇

1{𝑧𝑡 = 𝑘}
)2����𝑦 = 𝑞, 𝑘 ∈ [𝑁] \ {𝑞}

]
= 𝑍 (𝑇) ≈ 𝑇

𝑁
+ 𝑇

2

𝑁 2 .

□

Lemma C.8 (𝑦 ≠ 𝑞, 𝑘 = 𝑁 + 1). Following the data generation process, assuming 𝑁,𝑇 ≫ 1 and

𝛼 = Θ(1), if 𝑦 ≠ 𝑞 and 𝑘 = 𝑁 + 1, it holds

E

[∑︁
𝑡⩽𝑇

1{𝑧𝑡 = 𝑘}
����𝑦 ≠ 𝑞, 𝑘 = 𝑁 + 1

]
≈ 𝛼𝑇
𝑁
,

E

[(∑︁
𝑡⩽𝑇

1{𝑧𝑡 = 𝑘}
)2����𝑦 ≠ 𝑞, 𝑘 = 𝑁 + 1

]
≈ 𝛼𝑇
𝑁
+ 𝛼

2𝑇 2

𝑁 2 .

(C.13)

Proof. For simplicity, we omit the condition of 𝑦 ≠ 𝑞, 𝑘 = 𝑁 + 1 in this proof. Denote

𝑌 (𝑇) ≜ E
[∑︁
𝑡⩽𝑇

1{𝑧𝑡 = 𝑘}
����𝑧0 = 𝑞

]
,

𝑌 (𝑇) ≜ E
[∑︁
𝑡⩽𝑇

1{𝑧𝑡 = 𝑘}
����𝑧0 ∈ [𝑁 + 1], 𝑧0 ≠ 𝑞

]
.

233

Then the data generation process implies, ∀𝑇 ⩾ 1,

𝑌 (𝑇) = 𝑌 (𝑇 − 1) + 𝑝 (𝑧1 = 𝑁 + 1|𝑧0 = 𝑞),

𝑌 (𝑇) = 𝑝 (𝑧1 = 𝑞 |𝑧0 ≠ 𝑞) · 𝑌 (𝑇 − 1) + 𝑝 (𝑧1 ∈ [𝑁] \ {𝑞}|𝑧0 ≠ 𝑞) · 𝑌 (𝑇 − 1).

The iteration becomes

𝑌 (𝑇) = 𝑌 (𝑇 − 1) + 𝛼,

𝑌 (𝑇) = 1
𝑁
· 𝑌 (𝑇 − 1) + 𝑁 − 1

𝑁
· 𝑌 (𝑇 − 1) .

This gives

𝑌 (𝑇) − 𝑌 (𝑇) = − 1
𝑁
(𝑌 (𝑇 − 1) − 𝑌 (𝑇 − 1)) + 𝛼,

1
𝑁
𝑌 (𝑇) + 𝑌 (𝑇) = 1

𝑁
𝑌 (𝑇 − 1) + 𝑌 (𝑇 − 1) + 𝛼

𝑁
.

Consider the initialization 𝑌 (0) = 𝑌 (0) = 0. This implies

𝑌 (𝑇) − 𝑌 (𝑇) = 𝛼

1 + 1
𝑁

(
1 −

(
− 1
𝑁

)𝑇)
,

1
𝑁
𝑌 (𝑇) + 𝑌 (𝑇) = 𝛼

𝑁
𝑇 .

Then we obtain

𝑌 (𝑇) ≈ 𝛼𝑇
𝑁
+ 𝛼,

𝑌 (𝑇) ≈ 𝛼𝑇
𝑁
.

234

Since the data generation process implicitly assumes 𝑧0 ≠ 𝑞, we have the desired expectation as

E

[∑︁
𝑡⩽𝑇

1{𝑧𝑡 = 𝑘}
����𝑦 ≠ 𝑞, 𝑘 = 𝑞

]
= 𝑌 (𝑇) ≈ 𝛼𝑇

𝑁
.

To obtain the expectation of the quadratic term, we similarly denote the following terms with

different 𝑧0:

𝑍 (𝑇) ≜ E
[(∑︁

𝑡⩽𝑇

1{𝑧𝑡 = 𝑘}
)2����𝑧0 = 𝑞

]
,

𝑍 (𝑇) ≜ E
[(∑︁

𝑡⩽𝑇

1{𝑧𝑡 = 𝑘}
)2����𝑧0 ∈ [𝑁 + 1], 𝑧0 ≠ 𝑞

]
.

Then the data generation process implies, ∀𝑇 ⩾ 1,

𝑍 (𝑇) = 𝑍 (𝑇 − 1) + 𝑝 (𝑧1 = 𝑁 + 1|𝑧0 = 𝑞) · (1 + 2𝑌 (𝑇 − 1)),

𝑍 (𝑇) = 𝑝 (𝑧1 = 𝑞 |𝑧0 ≠ 𝑞) · 𝑍 (𝑇 − 1) + 𝑝 (𝑧1 ∈ [𝑁] \ {𝑞}|𝑧0 ≠ 𝑞) · 𝑍 (𝑇 − 1),

where 2𝑌 (𝑇 − 1) is due to E[(1 +∑
2⩽𝑡⩽𝑇 ·)2] = 1 + 2E[∑2⩽𝑡⩽𝑇 ·] + E[(

∑
2⩽𝑡⩽𝑇 ·)2].

Then the iteration becomes

𝑍 (𝑇) = 𝑍 (𝑇 − 1) + 𝛼 (1 + 2𝑌 (𝑇 − 1)),

𝑍 (𝑇) = 1
𝑁
𝑍 (𝑇 − 1) + 𝑁 − 1

𝑁
𝑍 (𝑇 − 1).

This gives

𝑍 (𝑇) − 𝑍 (𝑇) = − 1
𝑁
(𝑍 (𝑇 − 1) − 𝑍 (𝑇 − 1)) + 𝛼 (1 + 2𝑌 (𝑇 − 1)),

1
𝑁
𝑍 (𝑇) + 𝑍 (𝑇) = 1

𝑁
𝑍 (𝑇 − 1) + 𝑍 (𝑇 − 1) + 𝛼

𝑁
(1 + 2𝑌 (𝑇 − 1)) .

235

Considering the initialization 𝑍 (0) = 𝑍 (0) = 0, we have

𝑍 (𝑇) − 𝑍 (𝑇) = 𝛼
∑︁
𝑡⩽𝑇−1

(− 1
𝑁
)𝑇−1−𝑡 (1 + 2𝑌 (𝑡))

≈ 𝛼
∑︁
𝑡⩽𝑇−1

(− 1
𝑁
)𝑇−1−𝑡

(
1 + 2𝛼𝑡

𝑁

)
≈ 2𝛼2𝑇

𝑁
+ 𝛼,

1
𝑁
𝑍 (𝑇) + 𝑍 (𝑇) = 𝛼𝑇

𝑁
+ 2𝛼
𝑁

∑︁
1⩽𝑡⩽𝑇−1

𝑌 (𝑡)

≈ 𝛼𝑇
𝑁
+ 2𝛼
𝑁

∑︁
1⩽𝑡⩽𝑇−1

𝛼𝑡

𝑁

≈ 𝛼𝑇
𝑁
+ 𝛼

2𝑇 2

𝑁 2 .

Then we obtain

𝑍 (𝑇) ≈ 𝑇
𝑁
(2𝛼2 + 𝛼) + 𝛼

2𝑇 2

𝑁 2 + 𝛼,

𝑍 (𝑇) ≈ 𝛼𝑇
𝑁
+ 𝛼

2𝑇 2

𝑁 2 .

Since the data generation process implicitly assumes 𝑧0 ≠ 𝑞, we have the desired expectation as

E

[(∑︁
𝑡⩽𝑇

1{𝑧𝑡 = 𝑘}
)2����𝑦 = 𝑞, 𝑘 ∈ [𝑁] \ {𝑞}

]
= 𝑍 (𝑇) ≈ 𝛼𝑇

𝑁
+ 𝛼

2𝑇 2

𝑁 2 .

□

Lemma C.9 (𝑦 ≠ 𝑞, 𝑘 = 𝑦). Following the data generation process, assuming 𝑁,𝑇 ≫ 1 and 𝛼 =

236

Θ(1), if 𝑦 ≠ 𝑞 and 𝑘 = 𝑦, it holds

E

[∑︁
𝑡⩽𝑇

1{𝑧𝑡 = 𝑘}
����𝑦 ≠ 𝑞, 𝑘 = 𝑦

]
≈ (2 − 𝛼) 𝑇

𝑁
,

E

[(∑︁
𝑡⩽𝑇

1{𝑧𝑡 = 𝑘}
)2����𝑦 ≠ 𝑞, 𝑘 = 𝑦

]
≈ (2 − 𝛼)𝑇

𝑁
+ (2 − 𝛼)

2𝑇 2

𝑁 2 .

(C.14)

Proof. For simplicity, we omit the condition of 𝑦 ≠ 𝑞, 𝑘 = 𝑦 in this proof. Denote

𝑌 (𝑇) ≜ E
[∑︁
𝑡⩽𝑇

1{𝑧𝑡 = 𝑘}
����𝑧0 = 𝑞

]
,

𝑌 (𝑇) ≜ E
[∑︁
𝑡⩽𝑇

1{𝑧𝑡 = 𝑘}
����𝑧0 ∈ [𝑁 + 1], 𝑧0 ≠ 𝑞

]
.

Then the data generation process implies, ∀𝑇 ⩾ 1,

𝑌 (𝑇) = 𝑌 (𝑇 − 1) + 𝑝 (𝑧1 = 𝑦 |𝑧0 = 𝑞),

𝑌 (𝑇) = 𝑝 (𝑧1 = 𝑞 |𝑧0 ≠ 𝑞) · 𝑌 (𝑇 − 1) + 𝑝 (𝑧1 ∈ [𝑁] \ {𝑞}|𝑧0 ≠ 𝑞) · 𝑌 (𝑇 − 1) + 𝑝 (𝑧1 = 𝑦 |𝑧0 ≠ 𝑞) .

The iteration becomes

𝑌 (𝑇) = 𝑌 (𝑇 − 1) + (1 − 𝛼),

𝑌 (𝑇) = 1
𝑁
· 𝑌 (𝑇 − 1) + 𝑁 − 1

𝑁
· 𝑌 (𝑇 − 1) + 1

𝑁
.

This gives

𝑌 (𝑇) − 𝑌 (𝑇) = − 1
𝑁
(𝑌 (𝑇 − 1) − 𝑌 (𝑇 − 1)) + (1 − 𝛼 − 1

𝑁
),

1
𝑁
𝑌 (𝑇) + 𝑌 (𝑇) = 1

𝑁
𝑌 (𝑇 − 1) + 𝑌 (𝑇 − 1) + 2 − 𝛼

𝑁
.

237

Consider the initialization 𝑌 (0) = 𝑌 (0) = 0. This implies

𝑌 (𝑇) − 𝑌 (𝑇) =
1 − 𝛼 − 1

𝑁

1 + 1
𝑁

(
1 −

(
− 1
𝑁

)𝑇)
,

1
𝑁
𝑌 (𝑇) + 𝑌 (𝑇) = 2 − 𝛼

𝑁
𝑇 .

Then we obtain

𝑌 (𝑇) ≈ (1 − 𝛼) + (2 − 𝛼) 𝑇
𝑁
,

𝑌 (𝑇) ≈ (2 − 𝛼) 𝑇
𝑁
.

Since the data generation process implicitly assumes 𝑧0 ≠ 𝑞, we have the desired expectation as

E

[∑︁
𝑡⩽𝑇

1{𝑧𝑡 = 𝑘}
����𝑦 ≠ 𝑞, 𝑘 = 𝑞

]
= 𝑌 (𝑇) ≈ (2 − 𝛼) 𝑇

𝑁
.

To obtain the expectation of the quadratic term, we similarly denote the following terms with

different 𝑧0:

𝑍 (𝑇) ≜ E
[(∑︁

𝑡⩽𝑇

1{𝑧𝑡 = 𝑘}
)2����𝑧0 = 𝑞

]
,

𝑍 (𝑇) ≜ E
[(∑︁

𝑡⩽𝑇

1{𝑧𝑡 = 𝑘}
)2����𝑧0 ∈ [𝑁 + 1], 𝑧0 ≠ 𝑞

]
.

Then the data generation process implies, ∀𝑇 ⩾ 1,

𝑍 (𝑇) = 𝑍 (𝑇 − 1) + 𝑝 (𝑧1 = 𝑦 |𝑧0 = 𝑞) · (1 + 2𝑌 (𝑇 − 1)),

𝑍 (𝑇) = 𝑝 (𝑧1 = 𝑞 |𝑧0 ≠ 𝑞) · 𝑍 (𝑇 − 1) + 𝑝 (𝑧1 ∈ [𝑁] \ {𝑞}|𝑧0 ≠ 𝑞) · 𝑍 (𝑇 − 1)

+ 𝑝 (𝑧1 = 𝑦 |𝑧0 ≠ 𝑞) · (1 + 2𝑌 (𝑇 − 1)),

238

where 2𝑌 (𝑇 − 1) is due to E[(1 +∑
2⩽𝑡⩽𝑇 ·)2] = 1 + 2E[∑2⩽𝑡⩽𝑇 ·] + E[(

∑
2⩽𝑡⩽𝑇 ·)2].

Then the iteration becomes

𝑍 (𝑇) = 𝑍 (𝑇 − 1) + (1 − 𝛼) (1 + 2𝑌 (𝑇 − 1)),

𝑍 (𝑇) = 1
𝑁
𝑍 (𝑇 − 1) + 𝑁 − 1

𝑁
𝑍 (𝑇 − 1) + 1

𝑁
(1 + 2𝑌 (𝑇 − 1)) .

This gives

𝑍 (𝑇) − 𝑍 (𝑇) = − 1
𝑁
(𝑍 (𝑇 − 1) − 𝑍 (𝑇 − 1)) + (1 − 𝛼 − 1

𝑁
) (1 + 2𝑌 (𝑇 − 1)),

1
𝑁
𝑍 (𝑇) + 𝑍 (𝑇) = 1

𝑁
𝑍 (𝑇 − 1) + 𝑍 (𝑇 − 1) + 2 − 𝛼

𝑁
(1 + 2𝑌 (𝑇 − 1)).

Considering the initialization 𝑍 (0) = 𝑍 (0) = 0, we have

𝑍 (𝑇) − 𝑍 (𝑇) = (1 − 𝛼 − 1
𝑁
)

∑︁
𝑡⩽𝑇−1

(− 1
𝑁
)𝑇−1−𝑡 (1 + 2𝑌 (𝑡))

≈ (1 − 𝛼 − 1
𝑁
)

∑︁
𝑡⩽𝑇−1

(− 1
𝑁
)𝑇−1−𝑡

(
1 + 2(2 − 𝛼)𝑡

𝑁

)
≈ (1 − 𝛼)

(
1 + 2(2 − 𝛼)𝑇

𝑁

)
,

1
𝑁
𝑍 (𝑇) + 𝑍 (𝑇) = (2 − 𝛼)𝑇

𝑁
+ 2(2 − 𝛼)

𝑁

∑︁
1⩽𝑡⩽𝑇−1

𝑌 (𝑡)

≈ (2 − 𝛼)𝑇
𝑁

+ 2(2 − 𝛼)
𝑁

∑︁
1⩽𝑡⩽𝑇−1

(2 − 𝛼)𝑡
𝑁

≈ (2 − 𝛼)𝑇
𝑁

+ (2 − 𝛼)
2𝑇 2

𝑁 2 .

Then we obtain

𝑍 (𝑇) ≈ 𝑇
𝑁
(2 − 𝛼) (3 − 2𝛼) + (2 − 𝛼)

2𝑇 2

𝑁 2 + (1 − 𝛼),

𝑍 (𝑇) ≈ (2 − 𝛼)𝑇
𝑁

+ (2 − 𝛼)
2𝑇 2

𝑁 2 .

239

Since the data generation process implicitly assumes 𝑧0 ≠ 𝑞, we have the desired expectation as

E

[(∑︁
𝑡⩽𝑇

1{𝑧𝑡 = 𝑘}
)2����𝑦 = 𝑞, 𝑘 ∈ [𝑁] \ {𝑞}

]
= 𝑍 (𝑇) ≈ (2 − 𝛼)𝑇

𝑁
+ (2 − 𝛼)

2𝑇 2

𝑁 2 .

□

Lemma C.10 (𝑦 ≠ 𝑞, 𝑘 ⩽ 𝑁,𝑘 ≠ 𝑞, 𝑘 ≠ 𝑦). Following the data generation process, assuming

𝑁,𝑇 ≫ 1 and 𝛼 = Θ(1), if 𝑦 ≠ 𝑞 and 𝑘 ∈ [𝑁] \ {𝑦, 𝑞}, it holds

E

[∑︁
𝑡⩽𝑇

1{𝑧𝑡 = 𝑘}
����𝑦 ≠ 𝑞, 𝑘 ∈ [𝑁] \ {𝑦, 𝑞}

]
≈ 𝑇
𝑁
,

E

[(∑︁
𝑡⩽𝑇

1{𝑧𝑡 = 𝑘}
)2����𝑦 ≠ 𝑞, 𝑘 ∈ [𝑁] \ {𝑦, 𝑞}

]
≈ 𝑇
𝑁
+ 𝑇

2

𝑁 2 .

(C.15)

Proof. For simplicity, we omit the condition of 𝑦 ≠ 𝑞, 𝑘 ∈ [𝑁] \ {𝑦, 𝑞} in this proof. Denote

𝑌 (𝑇) ≜ E
[∑︁
𝑡⩽𝑇

1{𝑧𝑡 = 𝑘}
����𝑧0 = 𝑞

]
,

𝑌 (𝑇) ≜ E
[∑︁
𝑡⩽𝑇

1{𝑧𝑡 = 𝑘}
����𝑧0 ∈ [𝑁 + 1], 𝑧0 ≠ 𝑞

]
.

Then the data generation process implies, ∀𝑇 ⩾ 1,

𝑌 (𝑇) = 𝑌 (𝑇 − 1),

𝑌 (𝑇) = 𝑝 (𝑧1 = 𝑞 |𝑧0 ≠ 𝑞) · 𝑌 (𝑇 − 1) + 𝑝 (𝑧1 ∈ [𝑁] \ {𝑞}|𝑧0 ≠ 𝑞) · 𝑌 (𝑇 − 1) + 𝑝 (𝑧1 = 𝑘 |𝑧0 ≠ 𝑞).

240

The iteration becomes

𝑌 (𝑇) = 𝑌 (𝑇 − 1) + (1 − 𝛼),

𝑌 (𝑇) = 1
𝑁
· 𝑌 (𝑇 − 1) + 𝑁 − 1

𝑁
· 𝑌 (𝑇 − 1) + 1

𝑁
.

Note that these two equations are exactly the same as those in Lemma C.7 with same initial-

ization as 𝑌 (0) = 𝑌 (0) = 0. Therefore, we have

𝑌 (𝑇) ≈ 𝑇
𝑁
,

𝑌 (𝑇) ≈ 𝑇
𝑁
.

Since the data generation process implicitly assumes 𝑧0 ≠ 𝑞, we have the desired expectation

as

E

[∑︁
𝑡⩽𝑇

1{𝑧𝑡 = 𝑘}
����𝑦 ≠ 𝑞, 𝑘 = 𝑞

]
= 𝑌 (𝑇) ≈ 𝑇

𝑁
.

To obtain the expectation of the quadratic term, we similarly denote the following terms with

different 𝑧0:

𝑍 (𝑇) ≜ E
[(∑︁

𝑡⩽𝑇

1{𝑧𝑡 = 𝑘}
)2����𝑧0 = 𝑞

]
,

𝑍 (𝑇) ≜ E
[(∑︁

𝑡⩽𝑇

1{𝑧𝑡 = 𝑘}
)2����𝑧0 ∈ [𝑁 + 1], 𝑧0 ≠ 𝑞

]
.

241

Then the data generation process implies, ∀𝑇 ⩾ 1,

𝑍 (𝑇) = 𝑍 (𝑇 − 1),

𝑍 (𝑇) = 𝑝 (𝑧1 = 𝑞 |𝑧0 ≠ 𝑞) · 𝑍 (𝑇 − 1) + 𝑝 (𝑧1 ∈ [𝑁] \ {𝑞}|𝑧0 ≠ 𝑞) · 𝑍 (𝑇 − 1)

+ 𝑝 (𝑧1 = 𝑘 |𝑧0 ≠ 𝑞) · (1 + 2𝑌 (𝑇 − 1)),

where 2𝑌 (𝑇 − 1) is due to E[(1 +∑
2⩽𝑡⩽𝑇 ·)2] = 1 + 2E[∑2⩽𝑡⩽𝑇 ·] + E[(

∑
2⩽𝑡⩽𝑇 ·)2].

Then the iteration becomes

𝑍 (𝑇) = 𝑍 (𝑇 − 1),

𝑍 (𝑇) = 1
𝑁
𝑍 (𝑇 − 1) + 𝑁 − 1

𝑁
𝑍 (𝑇 − 1) + 1

𝑁
(1 + 2𝑌 (𝑇 − 1)) .

Again note that, since 𝑌 (𝑇) ≈ 𝑌 (𝑇), these two equations are the same as those in Lemma C.7.

Therefore, we have

𝑍 (𝑇) ≈ 𝑇
𝑁
+ 𝑇

2

𝑁 2 ,

𝑍 (𝑇) ≈ 𝑇
𝑁
+ 𝑇

2

𝑁 2 .

Since the data generation process implicitly assumes 𝑧0 ≠ 𝑞, we have the desired expectation

as

E

[(∑︁
𝑡⩽𝑇

1{𝑧𝑡 = 𝑘}
)2����𝑦 = 𝑞, 𝑘 ∈ [𝑁] \ {𝑞}

]
= 𝑍 (𝑇) ≈ 𝑇

𝑁
+ 𝑇

2

𝑁 2 .

□

242

C.4 Proof of Theorem 4.2: Training Dynamics of the

Attention Layer

We consider the following simplified 1-layer model for the noisy in-context recall task.

𝑥𝑡 ≜ W𝐸 (𝑧𝑡) + W̃𝐸 (𝑧𝑡−1) ∈ R𝑑 ,

𝜙 (𝑥𝑇 , 𝑥1:𝑇) ≜
∑︁
𝑡⩽𝑇

[
𝜎

(
𝑥⊤𝑇 W𝑄𝐾𝑥1:𝑇

)]
𝑡
·W𝑉𝑥𝑡 ∈ R𝑑 ,

𝜉attn(𝑥1:𝑇) ≜ W𝑈𝜙 (𝑥𝑇 , 𝑥1:𝑇) ∈ R𝑁+1,

𝜉ff(𝑥1:𝑇) ≜ W𝑈 𝐹 (𝑥𝑇) = W𝑈W𝐹𝑥𝑇 ∈ R𝑁+1,

(C.16)

With zero initialization of W𝑄𝐾 ,W𝑉 ,W𝐹 , we analyze the training dynamics of these three

matrices in three phases:

1. W𝐹 learns the noise association in 𝑂 (1
𝜂
) time,

2. W𝑉 learns to be identity for all tokens 𝑘 ∈ [𝑁 + 1],

3. W𝑄𝐾 attends to any position 𝑡 such that 𝑧𝑡−1 = 𝑞 and 𝑧𝑡 = 𝑦.

Assumption C.4.1. In this section, we make the following assumptions

1. (orthonormal embedding) W𝐸 (𝑖)⊤W𝐸 (𝑗) = W̃𝐸 (𝑖)⊤W̃𝐸 (𝑗) = 1{𝑖 = 𝑗} and W𝐸 (𝑖)⊤W̃𝐸 (𝑗) =

0 for any 𝑖, 𝑗 ∈ [𝑁 + 1].

2. (Feed-forward learns noise association) After phase 1, the prediction for noise always satisfies

𝑝 (𝑁 + 1|𝑧1:𝑇) = 𝛼 for any 𝑧1:𝑇 ∈ [𝑁 + 1]⊗𝑇 . If 𝑝 deviates from 𝛼 , W𝐹 will learn the noise

association in a more quick speed than the other weights, so that it is fair to assume 𝑝 = 𝛼 for

computing gradients of these weights.

3. (Infinite samples)𝑚 →∞ so the training loss 𝐿 is population loss.

243

4. 𝛼 ⩽ 1.5 −
√

5/2 ≈ 0.38. This is to ensure the sign W𝑈 (𝑗)⊤(−∇W𝑉
𝐿)W𝐸 (𝑘) > 0 for any

𝑗 = 𝑘 ⩽ 𝑁 in (C.18).

Phase 1: In this phase, the impact of W̃𝐸 (𝑧𝑇−1) on W𝐹 and W𝑉 is negligible compared with

that ofW𝐸 (𝑧𝑇) because 𝑍𝑇−1 is close to uniform in [𝑁 + 1] while 𝑧𝑇 = 𝑞 is fixed.

Lemma C.1 gives

W𝑈 (𝑘)⊤(−∇W𝐹
𝐿)W𝐸 (𝑞) =

Θ(1), if 𝑘 = 𝑁 + 1,

Θ(1
𝑁
), if 𝑘 ⩽ 𝑁 .

Lemma C.2 gives

W𝑈 (𝑗)⊤(−∇W𝑉
𝐿)W𝐸 (𝑘) =

Θ(1

𝑁
), if 𝑗 = 𝑁 + 1,∀ 𝑘,

Θ(1
𝑁 2), if 𝑗 ⩽ 𝑁,∀ 𝑘.

(C.17)

Note that the entries of the above projection have the following signs, with details as −𝜇 in

Table C.1,

W𝑈 (𝑗)⊤(−∇W𝑉
𝐿)W𝐸 (𝑘)

> 0, if (𝑗 = 𝑁 + 1) or (𝑗 = 𝑘) or (𝑗 = 𝑞, 𝑘 = 𝑁 + 1),

< 0, otherwise.
(C.18)

The arguments in Appendix 4.4.4.3 show

W𝐸 (𝑗)⊤(−∇W𝑄𝐾
𝐿)W𝐸 (𝑞) =

−Θ(1

𝑁 2), if 𝑗 = 𝑁 + 1,

Θ(1
𝑁 3), if 𝑗 ⩽ 𝑁 .

(C.19)

Therefore, during this phase, W𝐹 learns the noise association with effective graident norm

of Θ(1) as W𝑈 (𝑁 + 1)⊤(−∇W𝐹
𝐿)W𝐸 (𝑞) = Θ(1). Meanwhile, W𝐹 moves in the other directions

244

uniformly in Θ(1
𝑁
) as W𝑈 (𝑘)⊤(−∇W𝐹

𝐿)W𝐸 (𝑞) = Θ(1
𝑁
) for any 𝑘 ⩽ 𝑁 , which in fact ensures

𝑝 (𝑘 |𝑧1:𝑇) = 1−𝑝 (𝑁+1|𝑧1:𝑇)
𝑁

for any 𝑘 ⩽ 𝑁 and 𝑧1:𝑇 ∈ [𝑁 + 1]⊗𝑇 .

After𝑂 (𝜂−1) steps in this phase, we have 𝑝 (𝑁 +1|𝑧1:𝑇) = 𝛼 and 𝑝 (𝑘 |𝑧1:𝑇) = 1−𝛼
𝑁

for any 𝑘 ⩽ 𝑁

and 𝑧1:𝑇 .

Phase 2: Assume 𝑝 (𝑁 +1|·) = 𝛼 starting from the beginning of this phase as discussed above.

Due to symmetry for the rest 𝑘 channels, we have 𝑝 (𝑘 |·) = 1−𝛼
𝑁

. Note that the attention scores in

𝜙 (·, ·) are still close to uniform, i.e.,
[
𝜎

(
𝑥⊤
𝑇
W𝑄𝐾𝑥1:𝑇

)]
𝑡
≈ 1

𝑇
, since the update ofW𝑄𝐾 is in𝑂 (𝑁 −2)

whose impact on attention scores is also in 𝑂 (𝑁 −2) through exp(𝑥) ≈ 1 + 𝑥 for 𝑥 ≈ 0. Then we

track the movement ofW𝑉 under these conditions.

Since 𝑚 → ∞, taking 𝑥 ≜ 1
𝑇

∑𝑇
𝑖=1 𝑥𝑖 , 𝜇𝑘 ≜ E[𝑥 |𝑦 = 𝑘] and 𝜇𝑘 ≜ E[𝑝 (𝑘 |𝑥)𝑝 (𝑦=𝑘)𝑥] = E[𝑥] since

𝑝 (𝑘 |𝑥) = 𝛼1{𝑘 = 𝑁 + 1} + 1−𝛼
𝑁
1{𝑘 ⩽ 𝑁 } = 𝑝 (𝑦 |𝑘), Lemma C.12 gives

∇W𝑉
𝐿 =

𝑁+1∑︁
𝑘=1

𝑝 (𝑦 = 𝑘)W𝑈 (𝑘) (E[𝑥] − E[𝑥 |𝑦 = 𝑘])⊤

=

𝑁∑︁
𝑘=1

𝑝 (𝑦 = 𝑘)W𝑈 (𝑘) (E[𝑥] − E[𝑥 |𝑦 = 𝑘])⊤

=

𝑁∑︁
𝑘=1

1 − 𝛼
𝑁

W𝑈 (𝑘) (E[𝑥] − E[𝑥 |𝑦 = 𝑘])⊤

= −1 − 𝛼
𝑁 2

𝑁∑︁
𝑘=1

W𝑈 (𝑘) (W𝐸 (𝑘) −W𝐸 + W̃𝐸 (𝑘) − W̃𝐸)⊤,

where the second equality is due to E[𝑥] = E[𝑥 |𝑦 = 𝑁 + 1] due to 𝑦 = 𝑁 + 1 is uniform for any

correct token 𝑦 ⩽ 𝑁 , and the last equality is from

E[𝑥] − E[𝑥 |𝑦 = 𝑘] ≈ − 1
𝑁
(W𝐸 (𝑘) −W𝐸) −

1
𝑁
(W̃𝐸 (𝑘) − W̃𝐸)

with W𝐸 = 𝑁 −1 ∑𝑁
𝑖=1 W𝐸 (𝑖), W̃𝐸 = 𝑁 −1 ∑𝑁

𝑖=1 W̃𝐸 (𝑖) because E[𝑥] = E𝑦 [E𝑥 [𝑥 |𝑦]], and the ex-

pected number of the tuple (𝑞,𝑦) in a context length𝑇 isΘ(𝑇
𝑁
) by comparing LemmaC.9 and C.10.

245

Therefore, the gradient forW𝑉 has the following structure

W𝑈 (𝑗)⊤(−∇W𝑉
𝐿)W𝐸 (𝑘) ≈

1
𝑁 21{ 𝑗 = 𝑘} +𝑂

(
1
𝑁 3

)
,∀ 𝑗, 𝑘 ⩽ 𝑁,

W𝑈 (𝑗)⊤(−∇W𝑉
𝐿)W̃𝐸 (𝑘) ≈

1
𝑁 21{ 𝑗 = 𝑘} +𝑂

(
1
𝑁 3

)
,∀ 𝑗, 𝑘 ⩽ 𝑁 .

(C.20)

Denote steps of phase 1 and phase 2 as 𝑡1 and 𝑡2. Combined with the structure ofW𝑉 in phase

1 as in Eq.(C.17,C.18), ignoring projections that are 𝑂 (𝑁 −3) or negative, W𝑉 has the following

structure after phase 2

W𝑈 (𝑗)⊤W𝑉W𝐸 (𝑘) =

Θ(𝜂𝑡1𝑁 −1), if 𝑗 = 𝑁 + 1,∀𝑘,

Θ(𝜂𝑡1𝑁 −2 + 𝜂𝑡2𝑁 −2), if 𝑗 = 𝑘 ⩽ 𝑁,

Θ(𝜂𝑡1𝑁 −2), if 𝑗 = 𝑞, 𝑘 = 𝑁 + 1,

W𝑈 (𝑗)⊤W𝑉 W̃𝐸 (𝑘) = Θ(𝜂𝑡2𝑁 −2), if 𝑗 = 𝑘 ⩽ 𝑁 .

(C.21)

Phase 3: now assume W𝑉 has the structure in Eq(C.21). The model still predicts 𝑝W(𝑘 |𝑧) =

𝛼1{𝑘 = 𝑁 +1} + 1−𝛼
𝑁
1{𝑘 ⩽ 𝑁 } because the above projections ofW𝑉 ontoW𝑈 (𝑗 : 𝑗 ⩽ 𝑁) is 𝑜 (1

𝑁
).

Meanwhile, the attention scores are uniform as 1
𝑇
asW𝑄𝐾 ≈ 0. Therefore, the gradient ofW𝑄𝐾 is

∇W𝑄𝐾
𝐿 =

1
𝑇

𝑁+1∑︁
𝑘=1

∑︁
𝑡⩽𝑇

𝑝 (𝑦 = 𝑘) (E[(W𝑈 (𝑘)⊤W𝑉𝑥𝑡) · 𝑥𝑇 (𝑥𝑡 − 𝑥)⊤]

− E[(W𝑈 (𝑘)⊤W𝑉𝑥𝑡) · 𝑥𝑇 (𝑥𝑡 − 𝑥)⊤ |𝑦 = 𝑘])

=
1 − 𝛼
𝑇𝑁

𝑁∑︁
𝑘=1

∑︁
𝑡⩽𝑇

(E[(W𝑈 (𝑘)⊤W𝑉𝑥𝑡) · 𝑥𝑇 (𝑥𝑡 − 𝑥)⊤]

− E[(W𝑈 (𝑘)⊤W𝑉𝑥𝑡) · 𝑥𝑇 (𝑥𝑡 − 𝑥)⊤ |𝑦 = 𝑘]),

where 𝑥 = 𝑇 −1 ∑
𝑡⩽𝑇 𝑥𝑡 and the last equality holds due to the condition of 𝑦 = 𝑁 + 1 uniform

for any correct token 𝑦 ⩽ 𝑁 . Then, considering the above structure of W𝑉 , we notice that

246

W𝑈 (𝑗)⊤W𝑉𝑥𝑡 ≈ 𝛽11{𝑧𝑡 = 𝑗} + 𝛽21{𝑧𝑡−1 = 𝑗} with 𝛽1 = 𝜂𝑡1𝑁
−2 +𝜂𝑡2𝑁 −2 and 𝛽2 = 𝜂𝑡2𝑁

−2 for any

𝑗, 𝑘 ⩽ 𝑁 . Here note that we ignore the projection of 𝑗 = 𝑞, 𝑘 = 𝑁 + 1 in Eq(C.21) because 𝑦 = 𝑞 is

with probability 1/𝑁 = 𝑜 (1) so that it will not influence much the following derivation.

Plug-inW𝑈 (𝑗)⊤W𝑉𝑥𝑡 and we get

W𝐸 (𝑞)⊤(−∇W𝑄𝐾
𝐿) (W𝐸 (𝑏1) + W̃𝐸 (𝑏2)) =

1 − 𝛼
𝑇𝑁

∑︁
𝑘⩽𝑁

∑︁
𝑡⩽𝑇

E[𝐴(𝑡)
𝑘,𝑏1,𝑏2

|𝑦 = 𝑘] − E[𝐴(𝑡)
𝑘,𝑏1,𝑏2
] (C.22)

where

𝐴
(𝑡)
𝑘,𝑏1,𝑏2

= (𝛽11{𝑧𝑡 = 𝑘} + 𝛽21{𝑧𝑡−1 = 𝑘})

·
(
1{𝑧𝑡 = 𝑏1} −

∑
𝑠⩽𝑇 1{𝑧𝑠 = 𝑏1}

𝑇
+ 1{𝑧𝑡−1 = 𝑏2} −

∑
𝑠⩽𝑇 1{𝑧𝑠−1 = 𝑏2}

𝑇

)
.

Now we are to control Δ𝑘,𝑏1,𝑏2 ≜
∑
𝑡⩽𝑇 E[𝐴

(𝑡)
𝑘,𝑏1,𝑏2

|𝑦 = 𝑘] − E[𝐴(𝑡)
𝑘,𝑏1,𝑏2
] for different choices of

𝑏1, 𝑏2. Note that 𝑏1 and 𝑏2 co-exist by sum in 𝐴(𝑡)
𝑘,𝑏1,𝑏2

, so the additivity of expectation allows us to

discuss choices of 𝑏1, 𝑏2 separately and then combine the results. Denote

𝐵
(𝑡)
𝑘,𝑏1

= (𝛽11{𝑧𝑡 = 𝑘} + 𝛽21{𝑧𝑡−1 = 𝑘})
(
1{𝑧𝑡 = 𝑏1} −

∑
𝑠⩽𝑇 1{𝑧𝑠 = 𝑏1}

𝑇

)
,

𝐶
(𝑡)
𝑘,𝑏2

= (𝛽11{𝑧𝑡 = 𝑘} + 𝛽21{𝑧𝑡−1 = 𝑘})
(
1{𝑧𝑡−1 = 𝑏2} −

∑
𝑠⩽𝑇 1{𝑧𝑠−1 = 𝑏2}

𝑇

)
.

(C.23)

Controlling
∑
𝑡⩽𝑇 E[𝐵

(𝑡)
𝑘,𝑏1
|𝑦 = 𝑘] − E[𝐵 (𝑡)

𝑘,𝑏1
]:

• If 𝑏1 = 𝑘 , from Lemma C.9 and C.10, we have

E

[∑︁
𝑡⩽𝑇

𝛽11{𝑧𝑡 = 𝑘}1{𝑧𝑡 = 𝑘}
����𝑦 = 𝑘

]
− E

[∑︁
𝑡⩽𝑇

𝛽11{𝑧𝑡 = 𝑘}1{𝑧𝑡 = 𝑘}
]
= 𝛽1(1 − 𝛼)

𝑇

𝑁
.

247

E

[
−

∑︁
𝑡⩽𝑇

𝛽11{𝑧𝑡 = 𝑘}
∑
𝑠⩽𝑇 1{𝑧𝑠 = 𝑘}

𝑇

����𝑦 = 𝑘

]
− E

[
−

∑︁
𝑡⩽𝑇

𝛽11{𝑧𝑡 = 𝑘}
∑
𝑠⩽𝑇 1{𝑧𝑠 = 𝑘}

𝑇

]
= −E

[
𝛽1𝑇
−1(

∑︁
𝑠⩽𝑇

1{𝑧𝑠 = 𝑘})2 |𝑦 = 𝑘

]
+ E

[
𝛽1𝑇
−1(

∑︁
𝑠⩽𝑇

1{𝑧𝑠 = 𝑘})2
]

= 𝛽1𝑇
−1

(
𝑇

𝑁
+ 𝑇

2

𝑁 2 −
(2 − 𝛼)𝑇

𝑁
− (2 − 𝛼)

2𝑇 2

𝑁 2

)
= 𝑜

(
𝛽1
𝑇

𝑁

)
.

The terms involving 1{𝑧𝑡−1 = 𝑘} are negligible as 𝑂 (𝑇 /𝑁 2). Therefore, we have

∑︁
𝑡⩽𝑇

E[𝐵 (𝑡)
𝑘,𝑘
|𝑦 = 𝑘] − E[𝐵 (𝑡)

𝑘,𝑘
] = 𝛽1(1 − 𝛼)

𝑇

𝑁
. (C.24)

• If 𝑏1 ≠ 𝑘 , all terms are 𝑂 (𝑇 /𝑁 2) because

– If 𝑏1 ⩽ 𝑁 , it holds 𝑝 (𝑧𝑡 = 𝑏1 |𝑧𝑡−1 = 𝑘) = 1/𝑁 with the expected number of 𝑘 in context

of length 𝐿 being Θ(𝑇 /𝑁) from lemmas in Appendix C.3.

– If 𝑏1 = 𝑁 + 1, it holds 𝑝 (𝑧𝑡 = 𝑁 + 1|𝑧𝑡−1 = 𝑘) = 𝑂 (1/𝑁) · 1{𝑘 = 𝑞} and the expected

number of 𝑞 in context of length 𝑇 is Θ(𝑇 /𝑁) from Lemma C.4 and C.7.

– E[∑𝑡 1{𝑧𝑡−1 = 𝑘}#𝑏1/𝑇 |·] = E[#𝑘 · #𝑏1/𝑇] = 𝑂 (𝑇 /𝑁 2) no matter it is with condition

𝑦 = 𝑘 or not.

Therefore, for any 𝑏1 ≠ 𝑘 , we have

∑︁
𝑡⩽𝑇

E[𝐵 (𝑡)
𝑘,𝑏1
|𝑦 = 𝑘] − E[𝐵 (𝑡)

𝑘,𝑏1
] = 𝑜 (𝑇 /𝑁). (C.25)

Controlling
∑
𝑡⩽𝑇 E[𝐶

(𝑡)
𝑘,𝑏2
|𝑦 = 𝑘] − E[𝐶 (𝑡)

𝑘,𝑏2
]:

248

• If 𝑏2 = 𝑞, Lemma C.7 gives

E

[∑︁
𝑡⩽𝑇

𝛽11{𝑧𝑡 = 𝑘}
(
1{𝑧𝑡−1 = 𝑞} −

#𝑞
𝑇

) ����𝑦 = 𝑘

]
−E

[∑︁
𝑡⩽𝑇

𝛽11{𝑧𝑡 = 𝑘}
(
1{𝑧𝑡−1 = 𝑞} −

#𝑞
𝑇

)]
= (1 − 𝑝 (𝑦 = 𝑘)) · E

[∑︁
𝑡⩽𝑇

𝛽11{𝑧𝑡 = 𝑘}
(
1{𝑧𝑡−1 = 𝑞} −

#𝑞
𝑇

) ����𝑦 = 𝑘

]
+ 𝑜

(
𝛽1
𝑇

𝑁

)
≈ 𝛽1(1 − 𝛼)

𝑇

𝑁
,

where the last equality is from 𝑝 (𝑧𝑡 = 𝑘 |𝑦 = 𝑘, 𝑧𝑡−1 = 𝑞) = 1 − 𝛼 .

All the other terms are negligible with the same reason as above.

Therefore, we have

∑︁
𝑡⩽𝑇

E[𝐶 (𝑡)
𝑘,𝑞
|𝑦 = 𝑘] − E[𝐶 (𝑡)

𝑘,𝑞
] = 𝛽1(1 − 𝛼)

𝑇

𝑁
. (C.26)

• If 𝑏2 = 𝑘 , similar to the above discussion about 𝐵𝑘,𝑘 , we have

∑︁
𝑡⩽𝑇

E[𝐶 (𝑡)
𝑘,𝑘
|𝑦 = 𝑘] − E[𝐶 (𝑡)

𝑘,𝑘
] = 𝛽2(1 − 𝛼)

𝑇

𝑁
. (C.27)

Note that the key difference is that here we use 𝛽2 instead of 𝛽1, and 𝛽2 < 𝛽1.

• If 𝑏2 ≠ 𝑞 and 𝑏2 ≠ 𝑘 , similar to the discussion for Eq(C.25), we have

∑︁
𝑡⩽𝑇

E[𝐶 (𝑡)
𝑘,𝑏2
|𝑦 = 𝑘] − E[𝐶 (𝑡)

𝑘,𝑏2
] = 𝑜 (𝑇 /𝑁). (C.28)

Therefore, combining the above results in Eq(C.24, C.25, C.26, C.27, C.28), taking sums of the

249

corresponding 𝐵 and 𝐶 from Eq(C.23) gives

Δ𝑘,𝑏1,𝑏2 =

𝛽1(1 − 𝛼)𝑇𝑁 −1 + 𝛽1(1 − 𝛼)𝑇𝑁 −1, if 𝑏1 = 𝑘, 𝑏2 = 𝑞,

𝛽1(1 − 𝛼)𝑇𝑁 −1 + 𝛽2(1 − 𝛼)𝑇𝑁 −1, if 𝑏1 = 𝑘, 𝑏2 = 𝑘,

𝛽1(1 − 𝛼)𝑇𝑁 −1, if 𝑏1 = 𝑘, other 𝑏2,

𝛽1(1 − 𝛼)𝑇𝑁 −1, if 𝑏1 ≠ 𝑘, 𝑏2 = 𝑞,

𝛽2(1 − 𝛼)𝑇𝑁 −1, if 𝑏1 ≠ 𝑘, 𝑏2 = 𝑘,

𝑂 (𝑇𝑁 −1), otherwise.

To take the summation over all 𝑘 ⩽ 𝑁 in Eq(C.22), we discuss the following cases of 𝑏1 and

𝑏2 forW𝐸 (𝑞)⊤(−∇W𝑄𝐾
𝐿) (W𝐸 (𝑏1) + W̃𝐸 (𝑏2)).

• If 𝑏1 ⩽ 𝑁,𝑏1 ≠ 𝑏2, 𝑏2 = 𝑞:

– when 𝑘 = 𝑏1, we take Δ𝑘,𝑏1,𝑏2 under the condition of 𝑏1 = 𝑘,𝑏2 = 𝑞.

– when 𝑘 ≠ 𝑏1, we take Δ𝑘,𝑏1,𝑏2 under the condition of 𝑏1 ≠ 𝑘, 𝑏2 = 𝑞. Note that there

are (𝑁 − 1) such 𝑘 .

Therefore, it holds

W𝐸 (𝑞)⊤(−∇W𝑄𝐾
𝐿) (W𝐸 (𝑏1) + W̃𝐸 (𝑞)) =

1 − 𝛼
𝑇𝑁

𝛽1(1 − 𝛼)𝑇 (1 + 𝑁 −1). (C.29)

• If 𝑏1 = 𝑏2 = 𝑞:

– when 𝑘 = 𝑏1, we take Δ𝑘,𝑏1,𝑏2 under the condition of 𝑏1 = 𝑘,𝑏2 = 𝑘 to achieve a lower

bound of the gap later.

– when 𝑘 ≠ 𝑏1, we take Δ𝑘,𝑏1,𝑏2 under the condition of 𝑏1 ≠ 𝑘, 𝑏2 = 𝑞. Note that there

are (𝑁 − 1) such 𝑘 .

250

Therefore, it holds

W𝐸 (𝑞)⊤(−∇W𝑄𝐾
𝐿) (W𝐸 (𝑏1) + W̃𝐸 (𝑞)) ⩾

1 − 𝛼
𝑇𝑁

(
𝛽1(1 − 𝛼)𝑇 + 𝛽2(1 − 𝛼)𝑇𝑁 −1) . (C.30)

• If 𝑏1 = 𝑁 + 1, 𝑏2 = 𝑞: for any 𝑘 ⩽ 𝑁 , it holds 𝑘 ≠ 𝑏1, so we take Δ𝑘,𝑏1,𝑏2 under the condition

of 𝑏1 ≠ 𝑘, 𝑏2 = 𝑞. Therefore, it holds

W𝐸 (𝑞)⊤(−∇W𝑄𝐾
𝐿) (W𝐸 (𝑁 + 1) + W̃𝐸 (𝑞)) =

1 − 𝛼
𝑇𝑁

𝛽1(1 − 𝛼)𝑇 . (C.31)

• If 𝑏2 ≠ 𝑞,∀ 𝑏1: To get an upper bound of the projection length, we take Δ𝑘,𝑏1,𝑏2 under the

condition of 𝑏=𝑘, 𝑏2 = 𝑘 or 𝑏1 ≠ 𝑘,𝑏2 = 𝑘 . Therefore, it holds

W𝐸 (𝑞)⊤(−∇W𝑄𝐾
𝐿) (W𝐸 (𝑏1) + W̃𝐸 (𝑏2)) ⩽

1 − 𝛼
𝑇𝑁
(𝛽1 + 2𝛽2) (1 − 𝛼)𝑇𝑁 −1. (C.32)

Comparing the above four cases, for any 𝑦 ⩽ 𝑁 , the attention weightW𝑄𝐾 to attend more to

𝑥𝑡 = W𝐸 (𝑦) + W̃𝐸 (𝑞) than to 𝑥𝑡 = W𝐸 (𝑁 + 1) + W̃𝐸 (𝑞), with

W𝐸 (𝑞)⊤(−∇W𝑄𝐾
𝐿) (W𝐸 (𝑦) + W̃𝐸 (𝑞)) −W𝐸 (𝑞)⊤(−∇W𝑄𝐾

𝐿) (W𝐸 (𝑁 + 1) + W̃𝐸 (𝑞))

⩾
(1 − 𝛼)2
𝑁 2 𝛽2.

Meanwhile, any other setting of 𝑏1, 𝑏2 has smaller projection in (−∇W𝑄𝐾
𝐿).

In summary, W𝑄𝐾 has the following patterns

1. it learns to attend to indices 𝑡 such that 𝑧𝑡−1 = 𝑞 is the trigger word,

2. when there are multiple 𝑡𝑖 ’s such that 𝑧𝑡𝑖−1=𝑞 , it learns to attend to those with 𝑧𝑡 = 𝑦 more

than 𝑧𝑡 = 𝑁 + 1.

251

C.5 Experiments Setup: Linear Associative Memory

In Section 4.4, we showed that fully truncating a feed-forward layer can be helpful for reasoning.

We now present a setting where noisy associations are stored in a rank-one subspace of a layer,

so that intermediate levels of truncation are more useful to remove noise.

Model and data. We consider a simple associative memory setting where the goal is learn

an fixed permutation from input tokens to output tokens (w.l.o.g. taken to be the identity), with

a linear model similar to Cabannes et al. [2024]. Consider a learnable weight matrix W ∈ R𝑑×𝑑 .

Consider embeddings for 𝑛 input tokens as {𝑒𝑖}𝑛𝑖=1 ⊂ R𝑑 and embeddings for 𝑐 output tokens as

{𝑢𝑖}𝑐𝑖=1 ⊂ R𝑑 . In contrast to Cabannes et al. [2024], we consider an additional “common noise”

output token 𝑐 = 𝑛 + 1, which is chosen for any input with probability 𝛼 ∈ (0, 1). For any input

𝑥 ∈ [𝑛], the target distribution 𝑝𝛼 (·|𝑥) is defined by

𝑝𝛼 (𝑦 |𝑥) = (1 − 𝛼) · 1{𝑦 = 𝑥} + 𝛼 · 1{𝑦 = 𝑐}. (C.33)

In other words, the last channel (𝑐) for output is the common noise with probability 𝛼 for

any input. The training dataset D𝛼 consists of uniformly distributed inputs 𝑥 ∈ [𝑛], and outputs

conditionally sampled as 𝑦 |𝑥 ∼ 𝑝𝛼 (·|𝑥).

Given any pair of input and output tokens, the associative memory model takes the form

𝑓 (𝑖, 𝑗 ;W) ≜ ⟨𝑢 𝑗 ,W𝑒𝑖⟩, ∀ 𝑖, 𝑗 ∈ [𝑛] × [𝑐], (C.34)

When 𝑘 ⩽ 𝑑 , we denote the rank-𝑘 approximation of 𝑓 as 𝑓 (𝑘) by replacing W with W(𝑘) ,

where W(𝑘) is the rank-𝑘 approximation ofW.

Training. During training, the datasetD𝛼 is generatedwith non-zero noise probability𝛼 > 0.

At test time, the dataset D0 is without noise as 𝛼 = 0, so the computed loss is called pure-label

252

loss. The model is trained with Gradient Descent (GD) subjected to cross-entropy loss.

C.5.1 Proof of Theorem 4.3

Now we present a theoretical analysis of this problem with some assumptions.

Assumption C.5.1 (Orthonormality). Embeddings of input and output tokens are orthonormal,

i.e., 𝑒⊤𝑖 𝑒 𝑗 = 1{𝑖 = 𝑗},∀ 𝑖, 𝑗 and 𝑢⊤𝑖 𝑢 𝑗 = 1{𝑖 = 𝑗},∀ 𝑖, 𝑗 .

Assumption C.5.2 (Initialization). The learnable matrixW is initialized from 0 when 𝑡 = 0.

Theorem C.11 (Restatement of Theorem 4.3). Assume Assumptions C.5.1 and C.5.2 hold, consid-

ering 𝑛 = 2, 𝑐 = 3 and 𝛼 ∈ (0.2, 0.4), we train the full model 𝑓 (·, ·;W) with gradient flow. Denote

𝑃 (𝑖, 𝑗 ;W) as the model’s predicted probability for output 𝑗 conditioned on input 𝑖 . Then, for 𝑡 →∞

and 𝑖 ∈ {1, 2}, we have

𝑃 (𝑖, 𝑗 ;W) = (1 − 𝛼) · 1{ 𝑗 = 𝑖} + 𝛼 · 1{ 𝑗 = 𝑐},

𝑃 (𝑖, 𝑗 ;W(1)) = (1 − Θ(𝑡−1/2)) · 1{ 𝑗 = 𝑖} + Θ(𝑡−1/2) · 1{ 𝑗 = 𝑐}.

Remark 8. Note that here the assumption 𝛼 ∈ (0.2, 0.4) is a technical choice. In experiments, any

value 𝛼 ∈ (0, 0.4) still has the same result.

Proof. W.l.o.g., we assume the embeddings are standard basis inR𝑑 . For anyW, the gradient ∇W𝐿

can be decomposed as

∇W𝐿 = 𝛾1

1

−1

0

[
1 −1 0

]
+ 𝛾2

1

1

−2

[
1 1 0

]
. (C.35)

253

SinceW initializes from zero, this impliesW can always be decomposed with the same basis

W = 𝛽1

1

−1

0

[
1 −1 0

]
+ 𝛽2

1

1

−2

[
1 1 0

]
. (C.36)

Then gradient flow gives the following ODE

¤𝛽1 = −𝛾1 =
exp(−𝛽1 + 𝛽2) − exp(𝛽1 + 𝛽2)

exp(−𝛽1 + 𝛽2) + exp(𝛽1 + 𝛽2) + exp(−2𝛽2)
+ 1 − 𝛼

=
exp(−2𝛽1) − 1

exp(−2𝛽1) + exp(−𝛽1 − 3𝛽2) + 1
+ 1 − 𝛼,

¤𝛽2 = −𝛾2 =
3 exp(−2𝛽2)

exp(−𝛽1 + 𝛽2) + exp(𝛽1 + 𝛽2) + exp(−2𝛽2)
− 3𝛼

=
3 exp(−𝛽1 − 3𝛽2)

exp(−2𝛽1) + exp(−𝛽1 − 3𝛽2) + 1
− 3𝛼.

(C.37)

Denoting 𝑎 = −2𝛽1, 𝑏 = −𝛽1 − 3𝛽2, the ODE becomes

¤𝑎 =
2 − 2 exp(𝑎)

exp(𝑎) + exp(𝑏) + 1
− 2 + 2𝛼,

¤𝑏 =
2 − 8 exp(𝑏)

exp(𝑎) + exp(𝑏) + 1
− 2 + 10𝛼.

(C.38)

Lemma C.14 gives the solution as, when 𝑡 →∞,

𝑎 → − log(𝑡) − log(1 − 𝛼) (4 − 2𝛼), 𝑏 → log
𝛼

1 − 𝛼 .

For the full model, taking the scores W1,: of the first input token as an example, we have

W11 = 𝛽1 + 𝛽2,W12 = −𝛽1 + 𝛽2,W13 = −2𝛽2, so the margins are

W11 −W12 = 2𝛽1 = −𝑎,W11 −W13 = 𝛽1 + 3𝛽2 = −𝑏.

254

For the rank-1 model (assuming 𝛽1 > 𝛽2), the margins are

W(1)11 −W
(1)
12 = 2𝛽1,W

(1)
11 −W

(1)
13 = 𝛽1.

The proof finishes by computing softmax on the margins. □

C.6 Useful Lemmas

Lemma C.12. Let 𝑝 be a data distribution on (𝑥,𝑦) ∈ R𝑑 × [𝑁]. Consider training data as𝑚 i.i.d.

samples D ≜ {(𝑥𝑖, 𝑦𝑖)}𝑚𝑖=1 ⊂ R𝑑 × [𝑁 + 1] from 𝑝 . Consider the following classification problem,

with fixed output embeddingsW𝑈 :

�̂�(W) = 1
𝑚

𝑚∑︁
𝑖=1
[𝑙 (𝑦𝑖,W𝑈W𝑥𝑖)] .

The gradients take the following form: denoting 𝑝W(𝑘 |𝑥𝑖) as the current predicted probability of class

𝑘 in [𝑁 + 1] classes for input 𝑥𝑖 ,

∇W�̂�(W) =
1
𝑚

𝑚∑︁
𝑖=1

[
𝑁+1∑︁
𝑘=1
(𝑝W(𝑘 |𝑥𝑖) − 1{𝑦𝑖 = 𝑘})W𝑈 (𝑘)𝑥⊤𝑖

]
.

When𝑚 →∞, the above equation becomes

∇W𝐿(W) =
𝑁+1∑︁
𝑘=1

𝑝 (𝑦 = 𝑘)W𝑈 (𝑘) (𝜇𝑘 − 𝜇𝑘)⊤,

where 𝜇𝑘 ≜ E[𝑥 |𝑦 = 𝑘] and 𝜇𝑘 ≜ E𝑥 [𝑝W (𝑘 |𝑥)𝑝 (𝑦=𝑘) 𝑥].

Remark 9. This lemma is from Lemma 2 in [Bietti et al. 2023].

255

Proof. Recall the form of the cross-entropy loss for classification with 𝐾 classes:

𝑙 (𝑦, 𝜖) = −
𝐾∑︁
𝑘=1

1{𝑦 = 𝑘} log
𝑒𝜉𝑘∑
𝑗 𝑒
𝜉 𝑗
.

Its derivatives take the form

𝜕𝑙

𝜕𝜉𝑘
(𝑦, 𝜉) = 𝑠 (𝜉)𝑘 − 1{𝑦 = 𝑘},

where 𝑠 (𝜉)𝑘 = 𝑒𝜉𝑘∑
𝑗 𝑒
𝜉 𝑗
.

The gradient of 𝐿 is then given by

∇W�̂�(W) =
1
𝑚

𝑚∑︁
𝑖=1

[
𝑁+1∑︁
𝑘=1

𝜕𝑙

𝜕𝜉𝑘
(𝑦𝑖,W𝑈W𝑥𝑖)∇W(W𝑈 (𝑘)⊤W𝑥𝑖)

]
=

1
𝑚

𝑚∑︁
𝑖=1

[
𝑁+1∑︁
𝑘=1
(𝑝W(𝑘 |𝑥𝑖) − 1{𝑦𝑖 = 𝑘})W𝑈 (𝑘)𝑥⊤𝑖

]
.

When𝑚 →∞, the above equation becomes

∇W𝐿(W) =
𝑁+1∑︁
𝑘=1

W𝑈 (𝑘)E[𝑝W(𝑘 |𝑥)𝑥⊤] −
𝑁+1∑︁
𝑘=1
E[1{𝑦 = 𝑘}W𝑈 (𝑘)E[𝑥 |𝑦]⊤]

=

𝑁+1∑︁
𝑘=1

W𝑈 (𝑘)E[𝑝W(𝑘 |𝑥)𝑥⊤] −
∑︁
𝑗,𝑘

𝑝 (𝑦 = 𝑘)1{ 𝑗 = 𝑘}W𝑈 (𝑘)E[𝑥 |𝑦 = 𝑗]⊤

=

𝑁+1∑︁
𝑘=1

𝑝 (𝑦 = 𝑘)W𝑈 (𝑘) (𝜇𝑘 − 𝜇𝑘)⊤.

□

Lemma C.13. Consider a sequence {𝑆𝑡 }𝑡⩾1 with 𝑆𝑡 = 𝑎
𝑡 · 𝑡 where 𝑎 ≠ 1. Then

∑
1⩽𝑡⩽𝑇 𝑆𝑡 =

𝑎(1−𝑎𝑇)
(𝑎−1)2 +

𝑎𝑇+1·𝑇
𝑎−1 .

Proof. Denote 𝑋𝑡 ≜
∑

1⩽𝑡⩽𝑇 𝑆𝑡 . Then we have 𝑎 · 𝑋𝑡 =
∑

2⩽𝑡⩽𝑇+1 𝑎
𝑡 · (𝑡 − 1). Hence, it holds

256

(𝑎 − 1)𝑋𝑡 = −
∑

2⩽𝑡⩽𝑇 𝑎
𝑡 − 𝑎 + 𝑎𝑇+1 ·𝑇 = −𝑎(1−𝑎

𝑇)
1−𝑎 + 𝑎

𝑇+1 ·𝑇 . Therefore, we have

𝑋𝑡 =
𝑎(1 − 𝑎𝑇)
(𝑎 − 1)2 +

𝑎𝑇+1 ·𝑇
𝑎 − 1

.

□

Lemma C.14. Consider the following ODE with with 𝑎(0) = 𝑏 (0) = 0 and 𝛼 ∈ (0.2, 0.4),

¤𝑎 =
2 − 2 exp(𝑎)

exp(𝑎) + exp(𝑏) + 1
− 2 + 2𝛼,

¤𝑏 =
2 − 8 exp(𝑏)

exp(𝑎) + exp(𝑏) + 1
− 2 + 10𝛼.

Then, when 𝑡 →∞, we have

𝑎 → − log(𝑡) − log(1 − 𝛼) (4 − 2𝛼), 𝑏 → log
𝛼

1 − 𝛼 .

Proof. The ODE can be re-written as

¤𝑎 = 2 · (𝛼 − 2) exp(𝑎) + (𝛼 − 1) exp(𝑏) + 𝛼
exp(𝑎) + exp(𝑏) + 1

≜
2𝐷

exp(𝑎) + exp(𝑏) + 1
,

¤𝑏 = 10 ·
(𝛼 − 1

5) exp(𝑎) + (𝛼 − 1) exp(𝑏) + 𝛼
exp(𝑎) + exp(𝑏) + 1

≜
10𝐸

exp(𝑎) + exp(𝑏) + 1
.

At 𝑡 = 0, it holds ¤𝑎(0) < 0, ¤𝑏 (0) < 0 since 𝐷 = 3𝛼 − 3 < 0, 𝐸 = 3𝛼 − 6
5 < 0. Hence, 𝑎 and 𝑏 start to

decrease from 𝑡 = 0. The ending of the decreasing happens when one of 𝐷 and 𝐸 gets positive.

Let’s show 𝐷 and 𝐸 will never be positive when 𝛼 ∈ (0.2, 0.4) by contradiction.

Assume time 𝑇1 is when one of 𝐸 and 𝐸 equals to 0 for the first time. This means 𝐸 = 0,

because, for any time 𝑡 , it always holds 𝐷 < 𝐸 since exp(𝑎) > 0 for any 𝑎 ∈ R. Then at 𝑇1, we

have ¤𝑎 < 0, ¤𝑏 = 0, which means exp(𝑎) will decrease for any small time window Δ𝑡 > 0 and

257

exp(𝑏) stays unchanged. Together with 𝛼 > 0.2, this means it has 𝐸 < 0 again at time 𝑇1 + Δ𝑡 .

Therefore, it is possible for 𝐸 to be 0, but 𝐸 will never be positive. Meanwhile, this also guarantees

𝐷 will always be negative because 𝐷 < 𝐸.

Then, we make an observation that when 𝐷 is always negative and 𝐸 is always non-positive,

the decreasing nature of 𝑎 will have 𝐷 ≈ 𝐸 when 𝑡 →∞ by exp(𝑎) ≈ 0. This implies 𝑏 = log 𝛼
1−𝛼 .

Then, by taking exp(𝑎) = 𝛽 · 𝑡−𝛾 , the ODE gives

−𝛾 1
𝑡
=
(2𝛼 − 4)𝛽 · 𝑡−𝛾

𝛽 · 𝑡−𝛾 + 1
1−𝛼

,

which gives 𝛾 = 1, 𝛽 = 1
(1−𝛼) (4−2𝛼) .

Therefore, when 𝑡 →∞, we have

𝑎 → log
(

1
(1 − 𝛼) (4 − 2𝛼) 𝑡

−1
)
, 𝑏 → log

𝛼

1 − 𝛼 .

□

C.7 Input Examples for LLMs

C.7.1 Examples for Prepositions

For experiments in Appendix C.1.1, we use two synthetic datasets: inputs are 30 prepositions,

and inputs are 40 incomplete sentences ending with a preposition.

The 30 prepositions are:

"about", "above", "across", "after", "against", "along", "around", "at", "before", "behind", "below",

"beneath", "beside", "between", "by", "during", "for", "from", "in", "inside", "into", "near", "of", "on",

"over", "through", "to", "under", "with", "without".

Generated by Claude 3 [Anthropic 2024], the 40 incomplete sentences are:

258

["Inspired painter gazed at pristine canvas, envisioning next creation about", "Children’s

delighted squeals filled yard as they frolicked, stumbling across", "Singer inhaled deeply, calm-

ing nerves before gracing stage before", "Ominous storm clouds amassed, promising downpour

that would soon roll in", "Awestruck trekker admired breathtaking summit vista, looking over",

"Rich aroma of freshly roasted beans permeated cozy cafe, enticing during", "With deft sleight of

hand, illusionist made coin vanish, leaving spectators in awe without", "Majestic oak stood tall,

branches reaching skyward above", "Gentle waves caressed shoreline, soothing rhythm lulling

along", "Meticulous investigator scoured crime scene, searching for any evidence left behind",

"Radiant sunbeams filtered through sheer curtains, warming hardwood floor beneath", "Con-

cert pianist’s nimble fingers glided across ivory keys, room resonating with melody around",

"Crickets’ evening chorus filled silent field from nearby meadow during", "Jubilant laughter re-

sounded down corridor as jovial group headed towards celebration without", "Struggling poet

tapped pen restlessly, seeking words to capture elusive emotion beneath", "Soothing patter of

raindrops danced on windowpane, inviting serene relaxation with", "Mouthwatering scent of

fresh bread beckoned passersby into cozy bakery without", "Mighty waves thundered against

jagged cliffs, echoing roar along rugged shoreline around", "Seasoned trekker carefully navi-

gated winding trail, cautiously avoiding exposed roots and rocks beneath", "Graceful ballerina

flowed across stage, movements blending seamlessly with melody during", "Crackling campfire

cast dancing shadows across gathered faces around", "Vibrant brush strokes danced across can-

vas, bold hues bursting into life before", "Photographer framed breathtaking sunset, capturing

fleeting beauty over glistening ocean without", "Stern librarian hushed raucous group, reminding

them to stay quiet inside", "Ink flowed from author’s pen, words brimming with raw passion as

page filled during", "Earthy aroma of freshly steeped tea perfumed air, inviting moment of seren-

ity along", "Masterful guitarist’s fingers danced nimbly across strings, room alive with haunt-

ing melody around", "Meticulous chef artfully garnished plate, adding delicate finishing touches

over", "Indomitable marathoner pushed through punishing final stretch, fortitude driving every

259

stride before", "Engrossed scientist examined specimen’s intricate structures through microscope

beneath", "Nervous thespian steadied breathing, striding into dazzling spotlight, delivering flaw-

less performance with", "Skilled artist’s pencil glided gracefully, deftly capturing subject’s essence

without", "Weary hiker paused to catch breath, marveling at sweeping panorama from lofty peak

above", "Deep in thought, writer drummed fingers, seeking perfect phrasing to convey profound

emotion without", "Lost in reverie, violinist swayed gently, fingers dancing across delicate strings

during", "Painter’s brushstrokes burst into radiant life, canvas ablaze with vivid sunset hues over",

"Adept photographer framed picturesque scene, preserving landscape’s beauty without", "World-

renowned chef meticulously garnished plate, each component strategically placed around", "Ded-

icated researcher scrutinized specimen under microscope, documenting minute details beneath",

"Seasoned actor inhaled deeply, embodying character as bright lights engulfed stage with",].

C.7.2 More Examples of Factual Recall

We consider more examples of factual recall with pairs of input and output shown in Table C.3.

C.8 Synthetic IOI Task

Data and task. Here we consider a synthetic data model similar to the IOI task [Wang et al.

2022], with additional noise. Consider a vocabularyV = {1, 2, . . . , 𝑁 , 𝑁 +1}. The token 𝜏 ≜ 𝑁 +1

is the generic noise token. We fix a trigger token 𝑞 ∈ [𝑁], which governs in-context recall, and

a context length 𝑇 . Each sequence of tokens 𝑧1:𝑇 = [𝑧1, 𝑧2, . . . , 𝑧𝑇] is generated as follows:

i. Sample a correct output token 𝑦 and a different distractor token 𝑦𝐷 uniformly in [𝑁].

ii. Sample three indices 𝑖1, 𝑖2, 𝑖3 ∈ [𝑇 − 2] such that their distances are no smaller than 2. (This

is for non-overlapping.)

260

Table C.3: Inputs and Outputs of Factual Knowledge

Input Target output

The Great Wall is located in China
Mount Kilimanjaro is located in Tanzania
The Nobel Prize is awarded in Sweden
The Statue of Liberty stands in New York Harbor
Vatican City is enclosed within Rome
The Acropolis is situated in Athens
The Sydney Opera House is located on Bennelong Point
The Galápagos Islands belong to Ecuador
The Aurora Borealis can be seen in Norway
The Amazon River flows through Brazil
The Andes Mountains extend through Chile
Machu Picchu is found in Peru
The Kremlin is located in Moscow
Uluru is a landmark found in Australia
Petra is an archaeological city in Jordan
Angkor Wat is located in Cambodia
The city of Toronto is in Canada
The city of Barcelona is in Spain
The city of Mumbai is in India
The Eiffel Tower is located in Paris

iii. Set 𝑧𝑖1 = 𝑧𝑖2 = 𝑧𝑖3 = 𝑞. Among the three indices 𝑖1 + 1, 𝑖2 + 1, 𝑖3 + 1, random select one of them

with 𝑧𝑖𝑘+1 = 𝑦 with the other two as 𝑧𝑖𝑘+1 = 𝑦𝐷 .

iv. Set 𝑧𝑇 = 𝑞 and sample 𝑧𝑇+1 ∼ 𝑝𝛼,𝑦 (·) with

𝑝𝛼,𝑦 (𝑥) =

1 − 𝛼, if 𝑥 = 𝑦,

𝛼, if 𝑥 = 𝜏,

0, otherwise.

v. Random fill with tokens fromV\{𝑞} into the remaining positions in [𝑇 +1] \{𝑖1, 𝑖1+1, 𝑖2, 𝑖2+

1, 𝑖3, 𝑖3 + 1,𝑇 ,𝑇 + 1}.

261

The key difference between the above data and noisy in-context recall in Section 4.4 is that,

in additional to detecting the tokens 𝑦 and 𝑦𝐷 after the trigger 𝑞, this task also requires counting

to decide which of 𝑦 and 𝑦𝐷 appear more. This mechanism is exactly the definition of the correct

IO token in [Wang et al. 2022].

Most of the other settings are the same as that in Section 4.4, including the training procedure,

the architecture of a transformer layer, dimensionality and the vocabulary size.

Results. Figure C.5 shows the test performance for models with layers 𝐿 = 3, 4, 5, 6, 7, where

the models are trained with SGD. Dropping the last-layer MLP consistently improves the test

performance across all models. Figure C.6 shows the test performance for 𝐿 = 3, 4, 5 trained

with Adam [Kingma and Ba 2014]. Truncating the last MLP’s input weights with 𝜌 = 0.01

significantly improves the performance for 𝐿 = 3, 4. We also note that the model fails to converge

for 𝐿 = 5, possibly because we do not use any normalization technique in the architecture, so the

Adam training is less stable for deep transformers.

262

Correct: full Correct: LASER 'the': full 'the': LASER
0.0

0.2

0.4

0.6

0.8

1.0

pr
ob

ab
ili

ty

Pre-trained Pythia-1B on Factual Recall

Correct: full Correct: LASER 'the': full 'the': LASER
0.0

0.2

0.4

0.6

0.8

1.0

pr
ob

ab
ili

ty

Pre-trained Pythia-1.4B on Factual Recall

Correct: full Correct: LASER 'the': full 'the': LASER
0.0

0.2

0.4

0.6

0.8

1.0

pr
ob

ab
ili

ty

Pre-trained Pythia-2.8B on Factual Recall

Figure C.3: The prediction distributions of Pythia-1B, 1.4B and 2.8B on more examples of factual recall.
Compared with the setting in Figure 4.13 (right), here we use 20 examples in Table C.3. LASER turns out
to significantly decrease the probability of ”the” against the correct tokens.

263

0.0 0.2 0.4 0.6 0.8 1.0

10 2

10 1

100

pr
ed

ic
te

d
pr

ob
ab

ili
ty

LASER on 9-th Layer

0.0 0.2 0.4 0.6 0.8 1.0

10 2

10 1

100

pr
ed

ic
te

d
pr

ob
ab

ili
ty

LASER on 10-th Layer

0.0 0.2 0.4 0.6 0.8 1.0

10 2

10 1

100

pr
ed

ic
te

d
pr

ob
ab

ili
ty

LASER on 11-th Layer

0.0 0.2 0.4 0.6 0.8 1.0

10 2

10 1

100

pr
ed

ic
te

d
pr

ob
ab

ili
ty

LASER on 12-th Layer

Mary
John
the
them

Figure C.4: Predicted probability for 𝑐 ∈ {“Mary”, “them”, “the”, “John”}. LASER is conducted on input
matrices of MLP layers on the layer 𝑙 = 9, 10, 11, 12 of GPT-2 Small. The input is “When Mary and John
went to a store, John gave a drink to”. The horizontal is the fraction of perserved rank, 𝜌 ∈ [0, 1], where
𝜌 = 1 stands for the full model. It turns out LASER clearly decreases probability of “the” and “them” when
𝜌 ∈ [0.1, 0.8] for layer 𝑙 = 9, 10, 11, compared with the full model.

3 4 5 6 7
L-layer model

0.5

1.0

1.5

2.0

Te
st

 L
os

s

Test Loss vs Model Layers

3 4 5 6 7
L-layer model

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y

Test Accuracy vs Model Layers

Full Drop L-th MLP Drop (L 1)-th MLP

Figure C.5: Synthetic IOI trained with SGD: test loss and accuracy for transformers with different
layers. Dropping the last-layer MLP consistently improves the test accuracies across all models.

264

0 5000 10000 15000 20000
Training steps

100

101

Te
st

 L
os

s

3 layers: Test Loss along Training

0 5000 10000 15000 20000
Training steps

0.0

0.2

0.4

0.6

0.8

Te
st

 A
cc

ur
ac

y

3 layers: Test Accuracy along Training

Full Last MLP: = 0.01 Last MLP: = 0

0 5000 10000 15000 20000
Training steps

101

Te
st

 L
os

s

4 layers: Test Loss along Training

0 5000 10000 15000 20000
Training steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Te
st

 A
cc

ur
ac

y

4 layers: Test Accuracy along Training

Full Last MLP: = 0.01 Last MLP: = 0

0 5000 10000 15000 20000
Training steps

101

Te
st

 L
os

s

5 layers: Test Loss along Training

0 5000 10000 15000 20000
Training steps

0.0

0.1

0.2

0.3

0.4

0.5

Te
st

 A
cc

ur
ac

y

5 layers: Test Accuracy along Training

Full Last MLP: = 0.01 Last MLP: = 0

Figure C.6: Synthetic IOI trained with Adam: test loss and accuracy for transformers with layers
𝐿 = 3, 4, 5. Truncating the last-layer MLP’s input weights with 𝜌 = 0.01 improves the test performances
for 𝐿 = 3, 4, while the model fails to converge for 𝐿 = 5.

265

Bibliography

Abbe, E. (2017). Community detection and stochastic block models: recent developments. The

Journal of Machine Learning Research, 18(1):6446–6531.

Abdin, M., Jacobs, S. A., Awan, A. A., Aneja, J., Awadallah, A., Awadalla, H., Bach, N., Bahree, A.,

Bakhtiari, A., Behl, H., et al. (2024). Phi-3 technical report: A highly capable language model

locally on your phone. arXiv preprint arXiv:2404.14219.

Abernethy, J., Agarwal, A., Marinov, T. V., and Warmuth, M. K. (2024). A mechanism for sample-

efficient in-context learning for sparse retrieval tasks. In International Conference on Algorith-

mic Learning Theory.

Ahn, K., Zhang, J., and Sra, S. (2022). Understanding the unstable convergence of gradient descent.

arXiv preprint arXiv:2204.01050.

AI@Meta (2024). Llama 3 model card.

Akyürek, E., Schuurmans, D., Andreas, J., Ma, T., and Zhou, D. (2023). What learning algorithm is

in-context learning? investigations with linear models. In International Conference on Learning

Representations (ICLR).

Akyürek, E., Wang, B., Kim, Y., and Andreas, J. (2024). In-context language learning: Arhitectures

and algorithms. arXiv preprint arXiv:2401.12973.

266

Alon, U. and Yahav, E. (2020). On the bottleneck of graph neural networks and its practical

implications. arXiv preprint arXiv:2006.05205.

Anthropic, A. (2024). The claude 3 model family: Opus, sonnet, haiku. Claude-3 Model Card.

Arora, S., Ge, R., Neyshabur, B., and Zhang, Y. (2018). Stronger generalization bounds for deep

nets via a compression approach. In International conference on machine learning, pages 254–

263. PMLR.

Arora, S., Li, Z., and Panigrahi, A. (2022). Understanding gradient descent on edge of stability in

deep learning. arXiv preprint arXiv:2205.09745.

Arous, G. B., Gheissari, R., and Jagannath, A. (2021). Online stochastic gradient descent on

non-convex losses from high-dimensional inference. Journal of Machine Learning Research,

22(106):1–51.

Ba, J., Erdogdu, M. A., Suzuki, T., Wang, Z., Wu, D., and Yang, G. (2022). High-dimensional

asymptotics of feature learning: How one gradient step improves the representation. Advances

in Neural Information Processing Systems.

Babai, L., Erdos, P., and Selkow, S. M. (1980). Random graph isomorphism. SIaM Journal on

computing, 9(3):628–635.

Bai, Y., Chen, F., Wang, H., Xiong, C., andMei, S. (2023). Transformers as statisticians: Provable in-

context learning with in-context algorithm selection. Advances in neural information processing

systems.

Barrett, D. and Dherin, B. (2020). Implicit gradient regularization. In International Conference on

Learning Representations.

Biderman, S., Schoelkopf, H., Anthony, Q. G., Bradley, H., O’Brien, K., Hallahan, E., Khan, M. A.,

Purohit, S., Prashanth, U. S., Raff, E., et al. (2023). Pythia: A suite for analyzing large language

267

models across training and scaling. In International Conference on Machine Learning, pages

2397–2430. PMLR.

Bietti, A., Cabannes, V., Bouchacourt, D., Jegou, H., and Bottou, L. (2023). Birth of a transformer:

A memory viewpoint. Advances in Neural Information Processing Systems.

Bjorck, N., Gomes, C. P., Selman, B., and Weinberger, K. Q. (2018). Understanding batch normal-

ization. Advances in neural information processing systems, 31.

Bottou, L., Curtis, F. E., and Nocedal, J. (2018). Optimization methods for large-scale machine

learning. Siam Review, 60(2):223–311.

Bouritsas, G., Frasca, F., Zafeiriou, S., and Bronstein, M. M. (2020). Improving graph neural net-

work expressivity via subgraph isomorphism counting. arXiv preprint arXiv:2006.09252.

Bronstein, M. M., Bruna, J., LeCun, Y., Szlam, A., and Vandergheynst, P. (2017). Geometric deep

learning: Going beyond euclidean data. IEEE Signal Processing Magazine, 34(4):18–42.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan, A., Shyam,

P., Sastry, G., Askell, A., et al. (2020). Language models are few-shot learners. In Advances in

Neural Information Processing Systems.

Bruna, J., Zaremba, W., Szlam, A., and LeCun, Y. (2013). Spectral networks and locally connected

networks on graphs. arXiv preprint arXiv:1312.6203.

Bubeck, S., Chandrasekaran, V., Eldan, R., Gehrke, J., Horvitz, E., Kamar, E., Lee, P., Lee, Y. T., Li,

Y., Lundberg, S., et al. (2023). Sparks of artificial general intelligence: Early experiments with

gpt-4. arXiv preprint arXiv:2303.12712.

Cabannes, V., Simsek, B., and Bietti, A. (2024). Learning associative memories with gradient

descent. arXiv preprint arXiv:2402.18724.

268

Chan, S., Santoro, A., Lampinen, A., Wang, J., Singh, A., Richemond, P., McClelland, J., and Hill,

F. (2022). Data distributional properties drive emergent in-context learning in transformers.

Chen, A., Schwartz-Ziv, R., Cho, K., Leavitt, M. L., and Saphra, N. (2024). Sudden drops in the loss:

Syntax acquisition, phase transitions, and simplicity bias in mlms. In International Conference

on Learning Representations.

Chen, M., Wei, Z., Huang, Z., Ding, B., and Li, Y. (2020a). Simple and deep graph convolutional

networks. arXiv preprint arXiv:2007.02133.

Chen, T., Bian, S., and Sun, Y. (2019a). Are powerful graph neural nets necessary? a dissection

on graph classification. arXiv preprint arXiv:1905.04579.

Chen, Z., Chen, L., Villar, S., and Bruna, J. (2020b). Can graph neural networks count substruc-

tures? arXiv preprint arXiv:2002.04025.

Chen, Z., Li, L., and Bruna, J. (2019b). Supervised community detection with line graph neural

networks. Internation Conference on Learning Representations.

Chen, Z., Villar, S., Chen, L., and Bruna, J. (2019c). On the equivalence between graph isomor-

phism testing and function approximation with gnns. In Advances in Neural Information Pro-

cessing Systems, pages 15868–15876.

Chizat, L., Oyallon, E., and Bach, F. (2019). On lazy training in differentiable programming. Ad-

vances in neural information processing systems, 32.

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H., Kaiser, L., Plappert, M., Tworek, J., Hilton,

J., Nakano, R., Hesse, C., and Schulman, J. (2021). Training verifiers to solve math word prob-

lems. arXiv preprint arXiv:2110.14168.

269

Cohen, J., Kaur, S., Li, Y., Kolter, J. Z., and Talwalkar, A. (2020). Gradient descent on neural

networks typically occurs at the edge of stability. In International Conference on Learning Rep-

resentations.

Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Mathematics of

control, signals and systems, 2(4):303–314.

Damian, A., Lee, J., and Soltanolkotabi, M. (2022a). Neural networks can learn representations

with gradient descent. In Conference on Learning Theory.

Damian, A., Ma, T., and Lee, J. D. (2021). Label noise sgd provably prefers flat global minimizers.

Advances in Neural Information Processing Systems, 34.

Damian, A., Nichani, E., and Lee, J. D. (2022b). Self-stabilization: The implicit bias of gradient

descent at the edge of stability. arXiv preprint arXiv:2209.15594.

Damian, A., Pillaud-Vivien, L., Lee, J. D., and Bruna, J. (2024). Computational-statistical gaps in

gaussian single-index models. arXiv preprint arXiv:2403.05529.

Dandi, Y., Krzakala, F., Loureiro, B., Pesce, L., and Stephan, L. (2023). Learning two-layer neural

networks, one (giant) step at a time. arXiv preprint arXiv:2305.18270.

Defferrard, M., Bresson, X., and Vandergheynst, P. (2016). Convolutional neural networks on

graphs with fast localized spectral filtering. In Advances in neural information processing sys-

tems, pages 3844–3852.

Ding, L., Drusvyatskiy, D., and Fazel, M. (2022). Flat minima generalize for low-rank matrix

recovery. arXiv preprint arXiv:2203.03756.

Du, S. S., Hu, W., and Lee, J. D. (2018). Algorithmic regularization in learning deep homogeneous

models: Layers are automatically balanced. Advances in Neural Information Processing Systems,

31.

270

Dziri, N., Lu, X., Sclar, M., Li, X. L., Jiang, L., Lin, B. Y., Welleck, S., West, P., Bhagavatula, C.,

Le Bras, R., et al. (2024). Faith and fate: Limits of transformers on compositionality. Advances

in Neural Information Processing Systems.

Edelman, B. L., Edelman, E., Goel, S., Malach, E., and Tsilivis, N. (2024). The evolution of statistical

induction heads: In-context learning markov chains. arXiv preprint arXiv:2402.11004.

Edelman, B. L., Goel, S., Kakade, S., and Zhang, C. (2022). Inductive biases and variable creation

in self-attention mechanisms. In International Conference on Machine Learning.

Elhage, N., Nanda, N., Olsson, C., Henighan, T., Joseph, N., Mann, B., Askell, A., Bai, Y., Chen, A.,

Conerly, T., DasSarma, N., Drain, D., Ganguli, D., Hatfield-Dodds, Z., Hernandez, D., Jones, A.,

Kernion, J., Lovitt, L., Ndousse, K., Amodei, D., Brown, T., Clark, J., Kaplan, J., McCandlish, S.,

and Olah, C. (2021). A mathematical framework for transformer circuits. Transformer Circuits

Thread.

Elkabetz, O. and Cohen, N. (2021). Continuous vs. discrete optimization of deep neural networks.

Advances in Neural Information Processing Systems, 34.

Flam-Shepherd, D., Wu, T., Friederich, P., and Aspuru-Guzik, A. (2020). Neural message passing

on high order paths. arXiv preprint arXiv:2002.10413.

Garg, V. K., Jegelka, S., and Jaakkola, T. (2020). Generalization and representational limits of

graph neural networks.

Geva, M., Bastings, J., Filippova, K., and Globerson, A. (2023). Dissecting recall of factual asso-

ciations in auto-regressive language models. In Conference on Empirical Methods in Natural

Language Processing (EMNLP).

Geva, M., Schuster, R., Berant, J., and Levy, O. (2021). Transformer feed-forward layers are key-

value memories. In Conference on Empirical Methods in Natural Language Processing (EMNLP).

271

Ghadimi, S. and Lan, G. (2013). Stochastic first-and zeroth-order methods for nonconvex stochas-

tic programming. SIAM Journal on Optimization, 23(4):2341–2368.

Gilmer, J., Ghorbani, B., Garg, A., Kudugunta, S., Neyshabur, B., Cardoze, D., Dahl, G., Nado, Z.,

and Firat, O. (2021). A loss curvature perspective on training instability in deep learning. arXiv

preprint arXiv:2110.04369.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and Dahl, G. E. (2017). Neural message

passing for quantum chemistry. In Proceedings of the 34th International Conference on Machine

Learning-Volume 70, pages 1263–1272. JMLR. org.

Gong, S., Bahri, M., Bronstein, M. M., and Zafeiriou, S. (2020). Geometrically principled connec-

tions in graph neural networks. In Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition, pages 11415–11424.

Hamilton, W., Ying, Z., and Leskovec, J. (2017). Inductive representation learning on large graphs.

In Advances in Neural Information Processing Systems, pages 1024–1034.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recognition. In

Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778.

Hochreiter, S. and Schmidhuber, J. (1997). Flat minima. Neural computation, 9(1):1–42.

Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., Wang, L., Chen, W., et al. (2022). Lora:

Low-rank adaptation of large language models. ICLR, 1(2):3.

Ioffe, S. and Szegedy, C. (2015). Batch normalization: Accelerating deep network training by

reducing internal covariate shift. arXiv preprint arXiv:1502.03167.

Ivanov, S., Sviridov, S., and Burnaev, E. (2019). Understanding isomorphism bias in graph data

sets. arXiv preprint arXiv:1910.12091.

272

Jacot, A., Gabriel, F., and Hongler, C. (2018). Neural tangent kernel: Convergence and general-

ization in neural networks. Advances in neural information processing systems, 31.

Jastrzebski, S., Arpit, D., Astrand, O., Kerg, G. B., Wang, H., Xiong, C., Socher, R., Cho, K., and

Geras, K. J. (2021). Catastrophic fisher explosion: Early phase fisher matrix impacts general-

ization. In International Conference on Machine Learning, pages 4772–4784. PMLR.

Jelassi, S., Sander, M., and Li, Y. (2022). Vision transformers provably learn spatial structure. In

Advances in Neural Information Processing Systems.

Jiang, Y., Neyshabur, B., Mobahi, H., Krishnan, D., and Bengio, S. (2019). Fantastic generalization

measures and where to find them. arXiv preprint arXiv:1912.02178.

Jin, C., Netrapalli, P., Ge, R., Kakade, S. M., and Jordan, M. I. (2021). On nonconvex optimization

for machine learning: Gradients, stochasticity, and saddle points. Journal of the ACM (JACM),

68(2):1–29.

Keriven, N. and Peyré, G. (2019). Universal invariant and equivariant graph neural networks. In

Advances in Neural Information Processing Systems, pages 7092–7101.

Keskar, N. S., Mudigere, D., Nocedal, J., Smelyanskiy, M., and Tang, P. T. P. (2016). On large-

batch training for deep learning: Generalization gap and sharp minima. arXiv preprint

arXiv:1609.04836.

Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint

arXiv:1412.6980.

Kipf, T. N. and Welling, M. (2016). Semi-supervised classification with graph convolutional net-

works. arXiv preprint arXiv:1609.02907.

Klicpera, J., Bojchevski, A., and Günnemann, S. (2018). Predict then propagate: Graph neural

networks meet personalized pagerank. In International Conference on Learning Representations.

273

Klicpera, J., Weißenberger, S., and Günnemann, S. (2019). Diffusion improves graph learning. In

Advances in Neural Information Processing Systems, pages 13354–13366.

Krzakala, F., Moore, C., Mossel, E., Neeman, J., Sly, A., Zdeborová, L., and Zhang, P. (2013). Spec-

tral redemption in clustering sparse networks. Proceedings of the National Academy of Sciences,

110(52):20935–20940.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning applied to doc-

ument recognition. Proceedings of the IEEE, 86(11):2278–2324.

LeCun, Y. A., Bottou, L., Orr, G. B., andMüller, K.-R. (2012). Efficient backprop. InNeural networks:

Tricks of the trade, pages 9–48. Springer.

Lewkowycz, A., Bahri, Y., Dyer, E., Sohl-Dickstein, J., and Gur-Ari, G. (2020). The large learning

rate phase of deep learning: the catapult mechanism. arXiv preprint arXiv:2003.02218.

Li, G., Muller, M., Thabet, A., and Ghanem, B. (2019). Deepgcns: Can gcns go as deep as cnns? In

Proceedings of the IEEE International Conference on Computer Vision, pages 9267–9276.

Li, G., Xiong, C., Thabet, A., and Ghanem, B. (2020a). Deepergcn: All you need to train deeper

gcns. arXiv preprint arXiv:2006.07739.

Li, H., Xu, Z., Taylor, G., Studer, C., and Goldstein, T. (2018a). Visualizing the loss landscape of

neural nets. Advances in neural information processing systems, 31.

Li, P., Wang, Y., Wang, H., and Leskovec, J. (2020b). Distance encoding–design provably more

powerful gnns for structural representation learning. arXiv preprint arXiv:2009.00142.

Li, Q., Han, Z., and Wu, X.-M. (2018b). Deeper insights into graph convolutional networks for

semi-supervised learning. In Proceedings of the Thirty-Second AAAI Conference on Artificial

Intelligence (AAAI-18), pages 3538–3545. Association for the Advancement of Artificial Intelli-

gence.

274

Li, Y., Li, Y., and Risteski, A. (2023). How do transformers learn topic structure: Towards a mech-

anistic understanding. In International Conference on Machine Learning.

Liu, B., Ash, J. T., Goel, S., Krishnamurthy, A., and Zhang, C. (2023). Transformers learn shortcuts

to automata. In International Conference on Learning Representations.

Loukas, A. (2020). What graph neural networks cannot learn: depth vs width. In International

Conference on Learning Representations.

Luan, S., Zhao, M., Chang, X.-W., and Precup, D. (2019). Break the ceiling: Stronger multi-scale

deep graph convolutional networks. In Advances in neural information processing systems,

pages 10945–10955.

Lyu, K., Li, Z., and Arora, S. (2022). Understanding the generalization benefit of normalization

layers: Sharpness reduction. arXiv preprint arXiv:2206.07085.

Ma, C., Wu, L., and Ying, L. (2022). The multiscale structure of neural network loss functions:

The effect on optimization and origin. arXiv preprint arXiv:2204.11326.

Ma, C. and Ying, L. (2021). The sobolev regularization effect of stochastic gradient descent. arXiv

preprint arXiv:2105.13462.

Mahankali, A., Hashimoto, T. B., and Ma, T. (2024). One step of gradient descent is provably the

optimal in-context learner with one layer of linear self-attention. In International Conference

on Learning Representations (ICLR).

Maron, H., Ben-Hamu, H., Serviansky, H., and Lipman, Y. (2019a). Provably powerful graph

networks. In Advances in Neural Information Processing Systems, pages 2153–2164.

Maron, H., Ben-Hamu, H., Shamir, N., and Lipman, Y. (2018). Invariant and equivariant graph

networks.

275

Maron, H., Fetaya, E., Segol, N., and Lipman, Y. (2019b). On the universality of invariant net-

works. volume 97 of Proceedings of Machine Learning Research, pages 4363–4371, Long Beach,

California, USA. PMLR.

Meng, K., Bau, D., Andonian, A., and Belinkov, Y. (2022). Locating and editing factual associations

in gpt. Advances in Neural Information Processing Systems.

Merrill, W., Sabharwal, A., and Smith, N. A. (2022). Saturated transformers are constant-depth

threshold circuits. Transactions of the Association for Computational Linguistics, 10:843–856.

Mohri, M., Rostamizadeh, A., and Talwalkar, A. (2018). Foundations of machine learning. MIT

press.

Monti, F., Otness, K., and Bronstein, M. M. (2018). Motifnet: a motif-based graph convolutional

network for directed graphs. In 2018 IEEE Data Science Workshop (DSW), pages 225–228. IEEE.

Morris, C. and Mutzel, P. (2019). Towards a practical 𝑘-dimensional weisfeiler-leman algorithm.

arXiv preprint arXiv:1904.01543.

Morris, C., Ritzert, M., Fey, M., Hamilton, W. L., Lenssen, J. E., Rattan, G., and Grohe, M. (2019).

Weisfeiler and leman go neural: Higher-order graph neural networks. Association for the Ad-

vancement of Artificial Intelligence.

Murphy, R. L., Srinivasan, B., Rao, V., and Ribeiro, B. (2019). Relational pooling for graph repre-

sentations. arXiv preprint arXiv:1903.02541.

Nanda, N., Chan, L., Liberum, T., Smith, J., and Steinhardt, J. (2023). Progress measures for

grokking via mechanistic interpretability. In International Conference on Learning Represen-

tations.

Nesterov, Y. (1998). Introductory lectures on convex programming.

276

Neyshabur, B., Bhojanapalli, S., McAllester, D., and Srebro, N. (2017). Exploring generalization in

deep learning. Advances in neural information processing systems, 30.

Nichani, E., Damian, A., and Lee, J. D. (2024). How transformers learn causal structure with

gradient descent. In International Conference on Learning Representations.

NT, H. and Maehara, T. (2019). Revisiting graph neural networks: All we have is low-pass filters.

arXiv preprint arXiv:1905.09550.

Olsson, C., Elhage, N., Nanda, N., Joseph, N., DasSarma, N., Henighan, T., Mann, B., Askell, A., Bai,

Y., Chen, A., Conerly, T., Drain, D., Ganguli, D., Hatfield-Dodds, Z., Hernandez, D., Johnston,

S., Jones, A., Kernion, J., Lovitt, L., Ndousse, K., Amodei, D., Brown, T., Clark, J., Kaplan, J.,

McCandlish, S., and Olah, C. (2022). In-context learning and induction heads. Transformer

Circuits Thread.

Oono, K. and Suzuki, T. (2020). Graph neural networks exponentially lose expressive power for

node classification. In International Conference on Learning Representations.

Oymak, S., Rawat, A. S., Soltanolkotabi, M., and Thrampoulidis, C. (2023). On the role of attention

in prompt-tuning. In International Conference on Machine Learning.

Preciado, V. M. and Jadbabaie, A. (2010). From local measurements to network spectral properties:

Beyond degree distributions. In 49th IEEE Conference on Decision and Control (CDC), pages

2686–2691. IEEE.

Quirke, L., Heindrich, L., Gurnee, W., and Nanda, N. (2023). Training dynamics of contextual

n-grams in language models. arXiv preprint arXiv:2311.00863.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I., et al. (2019). Language models

are unsupervised multitask learners. Technical report, OpenAI.

277

Reddy, G. (2024). The mechanistic basis of data dependence and abrupt learning in an in-context

classification task. In International Conference on Learning Representations.

Rossi, E., Frasca, F., Chamberlain, B., Eynard, D., Bronstein, M., andMonti, F. (2020). Sign: Scalable

inception graph neural networks. arXiv preprint arXiv:2004.11198.

Saade, A., Krzakala, F., and Zdeborová, L. (2014). Spectral clustering of graphs with the bethe

hessian. In Advances in Neural Information Processing Systems, pages 406–414.

Sanford, C., Hsu, D., and Telgarsky, M. (2024a). One-layer transformers fail to solve the induction

heads task. arXiv preprint arXiv:2408.14332.

Sanford, C., Hsu, D., and Telgarsky, M. (2024b). Transformers, parallel computation, and loga-

rithmic depth. arXiv preprint arXiv:2402.09268.

Sato, R. (2020). A survey on the expressive power of graph neural networks. arXiv preprint

arXiv:2003.04078.

Sato, R., Yamada, M., and Kashima, H. (2019). Approximation ratios of graph neural networks for

combinatorial problems. In Advances in Neural Information Processing Systems, pages 4081–

4090.

Sato, R., Yamada, M., and Kashima, H. (2020). Random features strengthen graph neural networks.

arXiv preprint arXiv:2002.03155.

Sharma, P., Ash, J. T., and Misra, D. (2023). The truth is in there: Improving reasoning in language

models with layer-selective rank reduction. arXiv preprint arXiv:2312.13558.

Smith, S. L., Dherin, B., Barrett, D. G., and De, S. (2021). On the origin of implicit regularization

in stochastic gradient descent. arXiv preprint arXiv:2101.12176.

278

Snell, C., Zhong, R., Klein, D., and Steinhardt, J. (2021). Approximating how single head attention

learns. arXiv preprint arXiv:2103.07601.

Srivastava, A., Rastogi, A., Rao, A., Shoeb, A. A. M., Abid, A., Fisch, A., Brown, A. R., Santoro,

A., Gupta, A., Garriga-Alonso, A., et al. (2022). Beyond the imitation game: Quantifying and

extrapolating the capabilities of language models. arXiv preprint arXiv:2206.04615.

Sukhbaatar, S., Grave, E., Lample, G., Jegou, H., and Joulin, A. (2019). Augmenting self-attention

with persistent memory. arXiv preprint arXiv:1907.01470.

Tian, Y., Wang, Y., Chen, B., and Du, S. S. (2023). Scan and snap: Understanding training dynamics

and token composition in 1-layer transformer. In Advances in Neural Information Processing

Systems.

Tian, Y., Wang, Y., Zhang, Z., Chen, B., and Du, S. (2024). Joma: Demystifying multilayer trans-

formers via joint dynamics of mlp and attention.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S.,

Bhargava, P., Bhosale, S., et al. (2023). Llama 2: Open foundation and fine-tuned chat models.

arXiv preprint arXiv:2307.09288.

Ulyanov, D., Vedaldi, A., and Lempitsky, V. (2016). Instance normalization: Themissing ingredient

for fast stylization. arXiv preprint arXiv:1607.08022.

Vapnik, V. N. and Chervonenkis, A. Y. (1971). On the uniform convergence of relative frequencies

of events to their probabilities. Theory of Probability & Its Applications, 16(2):264–280.

Vardi, G. and Shamir, O. (2021). Implicit regularization in relu networks with the square loss. In

Conference on Learning Theory, pages 4224–4258. PMLR.

Vardi, G., Yehudai, G., and Shamir, O. (2021). Learning a single neuron with bias using gradient

descent. Advances in Neural Information Processing Systems, 34.

279

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., and Polo-

sukhin, I. (2017). Attention is all you need. In Advances in Neural Information Processing

Systems.

Voita, E., Talbot, D., Moiseev, F., Sennrich, R., and Titov, I. (2019). Analyzing multi-head self-

attention: Specialized heads do the heavy lifting, the rest can be pruned. In Proceedings of the

57th Annual Meeting of the Association for Computational Linguistics.

Wang, K., Variengien, A., Conmy, A., Shlegeris, B., and Steinhardt, J. (2022). Interpretability in the

wild: a circuit for indirect object identification in gpt-2 small. arXiv preprint arXiv:2211.00593.

Wang, Y., Chen, M., Zhao, T., and Tao, M. (2021). Large learning rate tames homogeneity: Con-

vergence and balancing effect. arXiv preprint arXiv:2110.03677.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E., Le, Q. V., Zhou, D., et al. (2022).

Chain-of-thought prompting elicits reasoning in large language models. Advances in neural

information processing systems.

Weisfeiler, B. and Leman, A. (1968). The reduction of a graph to canonical form and the algebra

which appears therein. Nauchno-Technicheskaya Informatsia, 2(9):12-16.

Wu, F., Souza, A., Zhang, T., Fifty, C., Yu, T., and Weinberger, K. (2019). Simplifying graph convo-

lutional networks. volume 97 of Proceedings of Machine Learning Research, pages 6861–6871,

Long Beach, California, USA. PMLR.

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. (2019). How powerful are graph neural networks? In

International Conference on Learning Representations.

Xu, K., Li, C., Tian, Y., Sonobe, T., Kawarabayashi, K.-i., and Jegelka, S. (2018). Representation

learning on graphs with jumping knowledge networks. In International Conference on Machine

Learning, pages 5453–5462.

280

Ye, T. and Du, S. S. (2021). Global convergence of gradient descent for asymmetric low-rank

matrix factorization. Advances in Neural Information Processing Systems, 34.

Yehudai, G. and Ohad, S. (2020). Learning a single neuron with gradient methods. In Conference

on Learning Theory, pages 3756–3786. PMLR.

You, J., Ying, R., and Leskovec, J. (2019). Position-aware graph neural networks. In International

Conference on Machine Learning, pages 7134–7143.

You, J., Ying, R., Ren, X., Hamilton, W. L., and Leskovec, J. (2018). Graphrnn: A deep generative

model for graphs. CoRR, abs/1802.08773.

Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B., Salakhutdinov, R. R., and Smola, A. J. (2017).

Deep sets. In Advances in neural information processing systems, pages 3391–3401.

Zhang, B., Luo, S., Wang, L., and He, D. (2023). Rethinking the expressive power of gnns via graph

biconnectivity. arXiv preprint arXiv:2301.09505.

Zhang, C., Bengio, S., Hardt, M., Recht, B., and Vinyals, O. (2016). Understanding deep learning

requires rethinking generalization. arXiv preprint arXiv:1611.03530.

Zhang, M. and Chen, Y. (2018). Link prediction based on graph neural networks. In Advances in

Neural Information Processing Systems, pages 5165–5175.

Zhang, R., Frei, S., and Bartlett, P. L. (2024). Trained transformers learn linear models in-context.

Journal of Machine Learning Research, 25(49):1–55.

Zhang, Y., Backurs, A., Bubeck, S., Eldan, R., Gunasekar, S., and Wagner, T. (2022). Unveiling

transformers with lego: a synthetic reasoning task. arXiv preprint arXiv:2206.04301.

281

	Dedication
	Acknowledgments
	Abstract
	List of Figures
	List of Tables
	Introduction
	Expressive Power of Simplified Graph Neural Networks
	Simplicity Induced by Optimization
	Roles of Feed-Forward Layers and Attention in Transformers

	Expressive Power of Graph Neural Networks
	Introduction and Our Contributions
	Related Works
	Preliminaries
	Expressive Power as Graph Isomorphism Tests
	Expressive Power as Functions on Rooted Graphs
	Experiments
	Conclusions

	Optimization Instabilities in Low-dimensional Space
	Introduction and Our Contributions
	Related Works
	Preliminaries
	Stable oscillation on 1-D functions: fixed point of two-step update
	On a two-layer single-neuron homogeneous network
	Matrix Factorization and beyond
	Experiments on MLPs and MNIST
	Conclusions

	Memorization of Training Distribution in Transformer Modules
	Introduction and Our Contributions
	Related Works
	Preliminaries
	Two-layer Transformer on Noisy In-context Recall
	Experiments on Pre-trained LLMs
	Discussion and Limitations

	Appendix: Supplementary Materials for Chapter 2
	GA-MLP with general equivariant graph operators for node feature augmentation
	Examples of existing GA-MLP models
	Equivalence classes induced by GNNs and GA-MLPs among real graphs
	Additional notations
	Proof of Proposition 2.2
	Proof of Proposition 2.3
	Proof of Proposition 2.4
	Proof of Proposition 2.6
	Proof of Proposition 2.7
	Proof of Proposition 2.1
	Experiment Details

	Appendix: Supplementary Materials for Chapter 3
	Additional Results
	Additional Experiments
	Proof of Theorem 3.1
	Proof of Lemma 3.2
	Proof of Prop 1
	Proof of Theorem 3.3
	Proof of Theorem 3.4
	Proof of Lemma B.2
	Proof of Theorem 3.5
	Proof of Matrix Factorization
	Useful lemmas
	Illustration of period-2 and period-4 orbits

	Appendix: Supplementary Materials for Chapter 4
	More Experiments on Pythia
	Proof of Theorem 4.1
	Proof for First and Second moments in Lemma C.2
	Proof of Theorem 4.2: Training Dynamics of the Attention Layer
	Experiments Setup: Linear Associative Memory
	Useful Lemmas
	Input Examples for LLMs
	Synthetic IOI Task

	Bibliography

