
Low-level Image Priors and Laplacian Preconditioners for

Applications in Computer Graphics and Computational

Photography

by

Dilip Krishnan

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science

New York University

May, 2013

——————————–

Rob Fergus

To Meghana

i

Acknowledgements

I thank my advisor, Rob Fergus, for teaching me computer vision and machine learning. From

him, I have learnt the process of conducting and writing about research. I shall always remember

his admonishments of “don’t waffle” when reviewing my writing or presentations. His enthusiastic

endorsements of my work and many personal kindnesses have made my PhD studies a most

enjoyable experience. Thanks, Rob!

I am grateful to Rick Szeliski for mentoring me during a 2010 summer internship at Microsoft

Research, which started us on a fruitful collaboration on a very interesting topic. I also thank him

for being on my thesis committee and supporting my career. It has been wonderful to collaborate

with Raanan Fattal. I have learnt much from him on multigrid, wavelets and numerical linear

algebra. Raanan’s humor and tolerance of my mistakes makes working with him even more

enjoyable.

Thanks to Michael Overton for teaching me much about optimization and agreeing to write me

reference letters even though I did not get good results from our work together! I thank those

who have offered me technical advice and guidance for which I am grateful: Bill Freeman, Anat

Levin, Yair Weiss, Denis Zorin, Yann LeCun, Chris Bregler and Fredo Durand.

Many PhD students and postdocs made the 12th floor of 715 Broadway a fun place to be. I

have also learnt much from discussions with them. Thanks to: Koray Kavukcuoglu, Karol Gre-

gor, David Eigen, Joan Bruna, Matt Zeiler, Nathan Silberman, Arthur Szlam, Clement Farabet

and Shravan Veerapaneni. I thank my parents and my wife’s parents for their support and

encouragement, and Eka for bringing me immense joy in the last two years.

I dedicate this thesis to my dear wife, Meghana, for her love, understanding and many sacrifices

in support of my studies.

ii

Abstract

In the first part of this thesis, we develop novel image priors and efficient algorithms for image

denoising and deconvolution applications. Our priors and algorithms enable fast, high-quality

restoration of images corrupted by noise or blur. In the second part, we develop effective pre-

conditioners for Laplacian matrices. Such matrices arise in a number of computer graphics and

computational photography problems such as image colorization, tone mapping and geodesic

distance computation on 3D meshes.

The first prior we develop is a spectral prior that models correlations between different spectral

bands. We introduce a prototype camera and flash system, used in conjunction with the spectral

prior, to enable taking photographs at very low light levels. Our second prior is a sparsity-based

measure for blind image deconvolution. This prior gives lower costs to sharp images than blurred

ones, enabling the use simple and efficient Maximum a-Posteriori algorithms.

We develop a new algorithm for the non-blind deconvolution problem. This enables extremely

fast deconvolution of images blurred by a known blur kernel. Our algorithm uses Fast Fourier

Transforms and Lookup Tables to achieve real-time deconvolution performance with non convex

gradient-based priors. Finally, for certain image restoration problems with no clear formation

model, we demonstrate how learning a direct mapping between original/corrupted patch pairs

enables effective restoration.

We develop multi-level preconditioners to solve discrete Poisson equations. Existing multilevel

preconditioners have two major drawbacks: excessive bandwidth growth at coarse levels; and

the inability to adapt to problems with highly varying coefficients. Our approach tackles both

these problems by introducing sparsification and compensation steps at each level. We interleave

the selection of fine and coarse-level variables with the removal of weak connections between

potential fine-level variables (sparsification) and compensate for these changes by strengthening

nearby connections. By applying these operations before each elimination step and repeating the

procedure recursively on the resulting smaller systems, we obtain highly efficient schemes. The

construction is linear in time and memory. Numerical experiments demonstrate that our new

schemes outperform state of the art methods, both in terms of operation count and wall-clock

time, over a range of 2D and 3D problems.

iii

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Summary of contributions . 5

2 Literature Survey 7

2.1 Inverse problems . 7

2.2 Image priors . 9

2.3 Image denoising . 12

2.4 Multiple images for denoising and other applications 14

2.5 Non-blind deconvolution . 15

2.6 Blind deconvolution . 19

2.7 Localized corruption removal . 22

2.8 Preconditioners and solvers for Laplacian matrices 24

3 Dark Flash Photography 30

3.1 Introduction . 30

3.2 Related work . 31

3.3 Dark flash hardware . 33

3.4 Dark flash processing . 37

3.4.1 Spectral constraints . 37

3.4.2 Spatial-spectral cost function . 38

3.4.3 Pre & post-processing . 39

3.5 Results . 40

3.5.1 Comparison experiments . 40

3.5.2 Fluorescence . 41

3.5.3 Photometric flash measurements . 42

3.6 Other applications . 42

3.6.1 Estimation of spectral reflectance . 42

3.6.2 Color-band denoising . 43

3.7 Discussion . 43

4 Fast Image Deconvolution Using Hyper-Laplacian Priors 56

4.1 Introduction . 56

4.2 Algorithm . 58

iv

4.2.1 x sub-problem . 59

4.2.2 w sub-problem . 60

4.2.3 Summary of algorithm . 62

4.3 Results . 63

4.4 Discussion . 64

5 Blind Deconvolution Using a Normalized Sparsity Measure 68

5.1 Introduction . 68

5.2 Motivation . 69

5.3 Approach . 71

5.3.1 Blind Kernel Estimation . 72

5.3.2 Image recovery . 74

5.3.3 Speed and robustness . 75

5.3.4 Extension to in-plane rotation . 75

5.3.5 Extension to 3-D rotations . 76

5.4 Experiments . 76

5.4.1 Spatially invariant kernel . 76

5.4.2 In-Plane rotation . 78

5.4.3 3-D Rotation . 79

5.5 Connections with the blind equalization literature 79

5.6 Discussion . 85

6 Removing Localized Corruption from Natural Images 87

6.1 Introduction . 87

6.2 Approach . 88

6.2.1 Gaussian mixture model . 89

6.2.2 Joint sparse coding . 89

6.2.3 Neural network . 90

6.2.4 Mean-Covariance RBM . 90

6.3 Datasets . 92

6.3.1 Synthetic corruption . 92

6.3.2 Water droplets dataset . 93

6.4 Results . 93

6.4.1 Water droplet removal . 94

6.5 Discussion . 95

7 Efficient Preconditioning of Laplacian Matrices for Computer Graphics 98

7.1 Introduction . 98

7.2 Mathematical background . 101

7.2.1 Laplacian matrices . 101

7.2.2 Hierarchical preconditioning . 103

7.3 Sparsification and coloring . 104

7.3.1 Matrix sparsification for the HSC preconditioner 106

v

7.3.2 Compensation for ABF and HSC . 107

7.3.3 Coloring algorithm . 112

7.3.4 Updating the HSC preconditioner for diagonal shifts 116

7.3.5 Efficient multilevel eigensolver . 116

7.4 Results . 118

7.4.1 2D Problems . 120

7.4.2 3D Meshes . 121

7.5 Discussion . 122

8 Conclusions 126

Appendices 128

A Coarse Level matrices are Laplacian . 128

B Bounds on Energy Deviation after Sparisification 129

C Characterization of Sparsified Spaces and Compensation 130

vi

List of Figures

1.1 Noise at Low Light Levels . 2

1.2 Many solutions to the blind deconvolution problem 3

1.3 Raindrop image . 4

1.4 Problem which gives rise to a Laplacians . 4

2.1 Spectral Magnitude of derivative filters . 10

2.2 2D FFT of Derivative Filter and Morlet Wavelet 11

2.3 Fields of Experts . 11

2.4 KSVD Dictionary Elements . 12

2.5 BM3D Result . 13

2.6 Flash/no-flash processing . 15

2.7 Handling of Saturated Areas in Non-blind Deconvolution 18

2.8 Spatially invariant blind deconvolution . 19

2.9 Inverted costs under standard priors . 20

2.10 Cho-Lee deblurring workflow . 21

2.11 Power spectrum of natural images . 22

2.12 Snow removal . 23

2.13 Thin occluder removal . 24

2.14 Graph Laplacian Correspondence . 25

2.15 Half-Octave Coarsening . 27

3.1 Illustration of dark flash system . 32

3.2 Camera/Flash spectrum . 35

3.3 Flash brightness . 36

3.4 If (λ) and H(λ), see text for details. 36

3.5 Motivation of spectral prior . 38

3.6 Denoising of faces - 1 of 2 . 45

3.7 Denoising of faces - 2 of 2 . 46

3.8 Denoising of scenes . 47

3.9 Denoising of scenes . 48

3.10 Denoising of person . 49

3.11 Comparison with Sony NightShot . 50

3.12 Comparison with Sony NightShot . 51

3.13 Need for UV and IR illumination . 52

3.14 Comparison with other methods . 53

vii

3.15 Varying α . 54

3.16 Estimating spectral reflectance . 54

3.17 Comparison with other techniques . 55

3.18 Candelight scene denoising . 55

4.1 Heavy-tailed Distributions . 58

4.2 Crops from Two Images . 65

5.1 Motivation for our new prior . 70

5.2 A visualization of `1 , `1/`2 and `0 functions . 71

5.3 Cumulative histograms . 77

5.4 Recovery of 27× 27 kernel . 78

5.5 . 79

5.6 Recovery of a real-world kernel . 80

5.7 Recovery of a real-world kernel . 80

5.8 In-plane rotational deblurring . 81

5.9 3D rotational deblurring . 81

5.10 Blind Equalization Model . 82

5.11 Gaussian, Sub-Gaussian and Super-Gaussian Signals 82

5.12 Blurring increases kurtosis of a sub-Gaussian signal 83

5.13 Blurring decreases kurtosis of a super-Gaussian signal 84

5.14 Illustration of Shalvi-Weinstein algorithm . 84

5.15 Proof of optimality . 84

5.16 Sensitivity of Kurtosis measure . 86

6.1 Examples of synthetic corruptions . 93

6.2 Comparison of approaches on an image corrupted with synthetic “snow”. 95

6.3 Two test images corrupted by real rain drops . 97

7.1 Two-dimensional discrete Poisson problems. 99

7.2 Geodesic Distance Computation . 99

7.3 Mesh Segmentation . 100

7.4 Effect of Sparsification . 105

7.5 ABF Sparsification . 106

7.6 Sparsification and Compensation in a Triangle 109

7.7 Modeling Fourier Modes . 110

7.8 Scheme Progression . 113

7.9 Mesh Segmentation using Spectral Embedding 117

7.10 Independence to System Size . 119

7.11 Performance comparison for 2D problems with varying degrees of homogenity . . 124

7.12 Example of mesh smoothing . 125

viii

List of Tables

4.1 SNR and Running Time Comparisons . 64

4.2 Run-time Comparisons . 64

4.3 SNR and Runtime Comparisons . 66

6.1 Mean PSNR over 10 test images . 94

6.2 Log progabilities . 96

7.1 Effect of compensation on condition numbers . 112

7.2 Total wall-clock time taken for 2D grids . 120

7.3 Condition numbers achieved by the solvers . 120

7.4 Wall clock time to compute the lowest 3 eigenvectors 122

7.5 Wall clock time to compute geodesic distances . 122

7.6 Wall clock time to smooth noisy meshes . 123

ix

Chapter 1

Introduction

1.1 Motivation

The first part of this thesis considers a range of inverse problems. Inverse problems in low-level

computer vision are almost always ill-posed. Examples of such problems are image denoising,

blind deconvolution, and superresolution. Non-parametric methods tackle the ill-posed nature of

inverse problems by the use of more data, but a non-parametric approach is often not possible.

In a parametric model, the inverse problem can be made well-posed by the use of image priors.

These priors quantify important properties of the latent uncorrupted image. From a practical

perspective, priors must be efficient to use on megapixel images.

When images are captured using a camera, short exposure times are needed to avoid motion blur.

This leads to high noise at low light levels; an example is given in Figure 1.1. The problem of

image denoising has probably received the most attention of any low-level vision problem. This

is for good reason: noise is visually annoying, and causes problems for other algorithms such

as depth estimation, image segmentation or object recognition. Single-image non-parametric

denoising methods have reached close to optimal performance, as shown recently in [98]. These

performance levels are, however, still not satisfactory for extremely noisy images resulting from

low-light photography. The authors of [98] suggest that further improvements require the use of

parametric methods.

Image blur results from the opposite situation to image noise: exposure times are long. Image

blur has a variety of causes. Camera shake during the exposure, or moving objects in the scene,

all result in a blurred image. In astronomical imaging from ground-based telescopes, blur occurs

due to atmospheric turbulence. The atmosphere acts as a low-pass filter, thereby causing point

light sources to appear as blobs. In fluorescence microscopy, imaged objects may be out of focus

due to tiny movements, and often appear blurred. Image deblurring is therefore an important

and difficult problem.

At each pixel in the blurred image, the blur is a result of convolution of the image with a blur

1

Figure 1.1: An image taken with illumination from a a candlelight. High noise levels are clearly
visible, especially in the blue channel. Even state-of-the-art denoising methods do not perform
well at such low signal-to-noise ratios.

kernel. This kernel may be spatially varying or spatially invariant. Spatially invariant blur is

due to camera translation. Spatially varying blur has many causes, including camera rotation,

and object motion. The blurred image is expressed as y = K(x), where K is a spatially variant

operator. In the spatially invariant case, K is a matrix (linear operator) with shifted versions of

the same blur kernel in each row. In this case, the blur formation model is written as: y = x⊕k,

where x is the sharp image, k is the blur kernel and y is the observed blurred image. When both

x and k are unknown, the problem is called blind deconvolution. If k is known and x is unknown,

it is non-blind deconvolution.

For the non-blind deconvolution problem, successful low-level priors have been developed. By

“low-level”, we mean that the priors are simple functions of the image pixel values. These priors

usually take the form of heavy-tailed distributions on the marginal statistics of the uncorrupted

images. These statistics are derived by convolving the images with a set of fixed or learned

filters and give good quality results. However, the priors are often non-convex and numerically

expensive to use in a minimization framework. The question then becomes one of speed: how

can we deconvolve megapixel images fast, but without losing output quality?

The blind deconvolution problem is considerably harder, because the number of unknowns exceeds

the number of known variables (when only a single image is provided). Figure 1.2 shows that

the same blurred image can be explained as the convolution of many different image and kernel

combinations. High-quality results therefore require priors that are well-tuned to the specific

problem of deblurring. It is now well known [101] that using a simple Maximum a-Posteriori

(MAP) framework with the same priors effective for non-blind deconvolution lead to trivial

solutions in blind deconvolution. In these trivial solutions, the output image is the corrupted

input and the blur kernel is the “delta” kernel (the first row in Figure 1.2).

2

Figure 1.2: The blind deconvolution problem is ill-posed. The observed blurred image y can
be explained as the convolution of many different sharp images x with kernels k. To get good
deconvolution results, priors are required which prefer the true sharp solution (in this case, the
middle row).

For denoising and deconvolution problems, the formation model is well understood: additive

(or multiplicative) noise in the former case, and convolution with a blur kernel in the latter.

For many other types of corruption, it is very difficult to develop a corruption model. Such

corruptions often arise due to natural phenomena such as rain, dust/dirt or fog. For example,

imagine taking a photograph through a window with rain drops or dust on it ; an example is

given in Figure 1.3. Every pixel in the image has a certain probability of being corrupted. The

formation model needs to account for both the probability and the intensity of corruption at

every pixel. It is unclear how one may formulate a tractable model of the corruption process.

Such restoration problems are of significant practical interest and not much progress has been

made in solving them.

In the second part of this thesis, we develop preconditioners for the efficient solution of Laplacian

linear systems. Discrete elliptic partial differential equations (PDEs) arise in many computer

graphics and vision problems. An example is shown in Figure 1.4. The solutions to these problems

usually involve a large linear system of equations. The common factor in these linear systems

is the presence of Laplacian matrices. Laplacians have a one-to-one association with weighted

graphs defined on a domain [146]. In the case of 2D images, the vertices of the underlying graph

are the image pixels and the graph edge weights are a function of image intensities. In the case

of 3D surfaces, the graph structure is associated with the finite element discretization of the

domain.

Laplacians measure the smoothness of a vector x over the 2D or 3D surface. The large size

of 2D images and 3D meshes (usually in the millions of vertices) give rise to large Laplacian

matrices. Efficient solvers are required to solve these linear systems in reasonable time and

3

Figure 1.3: An image taken through a window with raindrops. The raindrops are random in size,
color and position; it is hard to specify a formation model.

Figure 1.4: Image Colorization (figure taken from [97]): the user scribbles some patterns on a
gray-scale image (left). These scribbles are propagated through the entire image while respecting
the gradients (right). Finding the colorized image requires solving a Laplacian linear system.

memory requirements. Direct solvers are robust and give machine-precision accurate solutions.

However, they tend to be memory intensive and are complex to port to different environments,

e.g. Graphics Processing Units (GPU). Furthermore, the machine-precision accuracy of direct

solvers is not necessary for most problems in graphics. This opens the door to significant efficiency

gains using iterative solvers such as Preconditioned Conjugate Gradient (PCG). Our focus is on

developing efficient and practical preconditioners for Laplacians arising from a number of 2D and

3D problems.

4

1.2 Summary of contributions

We summarize the main contributions of this thesis, addressing the problems outlined in the

previous section. Chapter 2 presents a literature survey and Chapter 8 presents conclusions and

directions for future work.

1. We present a novel mechanism for low-light photography (Chapter 3).

A new approach to the specific problem of taking photographs in low light conditions is

presented. Long exposures lead to image blur, but short exposures lead to noise. The use

of a flash allows short exposures without noise, but it dazzles people who are in front of

the camera and changes the illumination. We develop a prototype camera and flash that

uses near infra-red and near ultra-violet light to provide illumination. The resulting flash

is 200 times dimmer than a conventional camera flash. A pair of images is captured, one

with and one without the flash. The non-flash image is then denoised taking into account

the spectral correlations between the pair of images. For this purpose, we develop a novel

spectral image prior. The resulting algorithm is able to effectively denoise images captured

at light levels close to 1 Lux.

2. We develop an algorithm for non-blind deconvolution, which is significantly

faster than state of the art methods without loss of quality (Chapter 4).

It is well known that the distribution of image gradients follow heavy-tailed distributions.

These distributions are very effective priors for non-blind deconvolution. However, due to

their non-convexity, the resulting optimization problems are computationally expensive to

solve. We present a simple and effective operator splitting scheme which enables the use

of Fast Fourier Transforms (FFT) and Look Up Tables (LUT). Our resulting algorithm is

orders of magnitude faster than existing methods, without any loss of quality.

3. We propose a new prior for blind deconvolution which overcomes a key problem

with existing priors (Chapter 5).

The heavy-tailed priors used in non-blind deconvolution are commonly used for blind de-

convolution as well. It is observed that using these priors leads to a trivial solution. Instead,

we develop a novel prior based on the ratio of the l1 and l2 norms of image gradients. We

show that this prior overcomes the problem of trivial solutions, and enables the use of much

more efficient algorithms without loss of quality. Our prior has interesting connections with

the blind equalization literature in digital communications. We examine similarities and

differences between our approach and a classical blind equalization method.

4. We study methods to remove localized corruptions from images (Chapter 6).

We present a learning-based approach to the restoration of images corrupted by raindrops

or dust. Developing formation models for such problems seems difficult. Instead, we use a

training set consisting of pairs of clean and corrupted patches to learn mappings from the

corrupted patches to the clean patches. We experiment with two techniques to learn the

mappings: a conditional Gaussian Mixture Model (GMM); and a joint GMM. The joint

GMM gives promising reconstruction results.

5

5. We develop efficient preconditioners for Laplacian matrices arising from a range

of computer graphics problems (Chapter 7).

We present two new multi-level preconditioning schemes which draw on ideas from the

multigrid and combinatorial preconditioning literature. Our preconditioners can be con-

structed in linear time and memory. They achieve excellent condition numbers and wall-

clock time performance on a wide range of Laplacians. We also develop an efficient multi-

scale eigensolver based on one of these preconditioners. We compare our resulting linear

system solvers and eigensolver to a number of state of the art iterative and direct solvers.

In all cases considered, we equal or outperform other solvers. Our solvers are simple to

implement on parallel platforms such as GPUs.

6

Chapter 2

Literature Survey

Extensive research into low-level image priors for inverse problems has been conducted in both

the image processing and computer vision literature. In this chapter, we review some of the most

relevant work. We also review the literature on image denoising and deconvolution (both blind

and non-blind).

Preconditioners for matrices arising in elliptic PDE problems have also been studied extensively.

Most of these preconditioners are developed under the umbrella of multigrid or hierarchical

preconditioners. Recently, the study of linear solvers for Laplacian systems has seen fundamental

theoretical breakthroughs in the linear-time construction of preconditioners. A different approach

to solving PDE’s is by transforming them into integral equations, and solving the integral equation

using Fast Multipole Methods. These methods are outside the scope of this thesis and will not

be considered.

2.1 Inverse problems

Most parametric formulations of inverse problems explain the corrupted image y as the output

of a corruption process A on the latent image x. With the addition of white Gaussian noise, this

process can be written as:

y = Ax+ n (2.1)

The operator A can explain image blurring [55], noise [129], image downsampling [182] and other

processes. A may be a nonlinear function instead of a matrix [8]. Given the observation y, the

inverse problem is the recovery of a solution x̂ which is close to x, usually in terms of mean square

error. When A is known, the problem of recovering x is called non-blind; when A is unknown

and must also be estimated, the problem is called blind.

A probabilistic model of the inverse recovery process may be formulated using Bayes’ rule. In

7

the blind setting, using Bayes’ theorem [175] gives us:

p(x,A|y) ∝ p(y|x,A)p(x)p(A) (2.2)

where we assume that x and A are independent of each other; and for a variable x, p(x) refers

to the probability of x. Then p(x) and p(A) are the prior distributions on the image and the

corruption process, respectively. p(y|x,A) is called the likelihood. In the non-blind setting, since

y and A are given, we are interested in estimating x, using the following relationship:

p(x|y,A) ∝ p(y|x,A)p(x) (2.3)

Hence, finding a good approximation to p(x) is of great importance in both blind and non-blind

settings. p(A) is of importance in some problems such as spatially varying blind deconvolution

with object motion where the dimensionality of A may be of the same order as x. In this

thesis, we do not consider such problems and assume very simple parametric forms for p(A)

(such as uniform distributions). The distributions p(x,A|y) and p(x|y,A) are called posterior

distributions.

Once the posterior distribution is specified, the solution to the inverse problem is commonly

determined in one of two ways: Maximum a-Posteriori (MAP) or Variational approximation.

In the MAP framework, we look for the values of the unknowns that correspond to modes of

the distribution (i.e. the most probable values of the unknowns). Therefore, the corresponding

optimization problems for the blind and non-blind problems are, respectively:

(x̂, Â) = arg max
x,A

p(x,A|y) or (2.4)

x̂ = arg max
x

p(x|y,A) (2.5)

One may directly attempt to find the MAP solutions using the probabilistic form. An equivalent

approach is to transform the probability maximization problem into an energy minimization

problem, usually because the distributions are written in the form of products of exponentials.

Then, taking a logarithm of the distribution gives the minimization problems:

(x̂, Â) = arg min
x,A
− log p(x,A|y) = arg min

x,A
− log p(y|x,A)− log p(x)− log p(A) or (2.6)

x̂ = arg min
x
− log p(x|y,A) = arg min

x
− log p(y|x,A)− log p(x) (2.7)

In the variational approach to solving the inverse problem, the solutions are found as an ap-

proximation to the expected value of the unknowns under the given distribution. The expected

solution to Eq. 2.3 is given by:

x̂ =

∫
x p(x|y,A)dx (2.8)

In practice, p(x|y,A) is usually intractable and so the variational approach approximates p(x|y,A)

with a tractable distribution q(x|y,A). This approximation is usually determined by minimizing

the KL divergence between p(x|y,A) and q(x|y,A) [113]. The variational approach has the

8

advantage of taking into account uncertainties associated with different solutions. Thus, a mode

of the distribution with relatively low density does not necessarily have preference over a solution

in a region with high probability density.

Stochastic approximation methods such as Markov Chain Monte Carlo [121] attempt to evalu-

ate the integrals by drawing samples from the true posterior distribution. On the other hand,

parametric approximation methods [113] approximate the true posterior distribution with other,

more tractable distributions. The computational effort is spent in computing the parameters of

the approximation.

The MAP and variational methods are the most common techniques to solving inverse problems

in vision. But there are other techniques for solving parametric inverse problems which are

problem-specific. An example are the spectral methods in blind deconvolution Section 2.6.

2.2 Image priors

Image priors quantify certain properties of natural images. Low-level priors are functions of the

pixels in an image. Usually they are non-linear and non-convex.

Derivative-based priors. Whether the MAP or variational methods are used, image priors

p(x) are necessary to break the ill-posed nature of the inverse problem. Most priors have been

constructed based on trying to fit the distributions of certain statistics of natural images. One

of the earliest examples of such a statistic was that the amplitude of the power spectrum of an

image x followed a power law distribution [57]: |X(ω)|2 ∝ 1/ω2 , where ω is the frequency and

X(ω) is the Fourier transform of x. This is a phenomenon that is generally observed in many

natural images. In the spatial domain, this can be approximated by using a Gaussian prior on

derivative filters [13, 185, 116]: − log p(x) ∝ ‖x⊕f‖2 where f is a derivative filter. Unfortunately,

these Gaussian priors are insensitive to phase shifts in x (due to the use of the modulus sign).

In practice, this means simple Gaussian priors are not very robust in inverse problems.

A natural extension of Gaussian priors is to use a non-Gaussian function. One of the first non-

Gaussian, and probably the most famous prior, is the TV norm of Rudin et al. [137]. Here the

exponent of 2 is replaced with 1, to give − log p(x) ∝ ‖x ⊕ f‖1. The motivation of Rudin et

al. was the minimization of the total variation (TV) in an image, which means that piecewise

constant, rather than oscillatory, signals are preferred in x. This is a reasonable description of

many natural images, especially urban and indoor scenes. This prior indeed performs much better

than the Gaussian prior, especially for image denoising and non-blind deconvolution problems.

It is also convex, which can be exploited to develop efficient algorithms. Some recent efficient

algorithms based on the Bregman distance have been proposed [183, 64], that allow fast solution

to inverse problems using TV priors.

Using an exponent even lower than 1 leads to hyper-Laplacian priors. Unlike the TV norm,

these priors were motivated by the distribution of the gradients of many natural images [56].

An example is shown in Figure 4.1. The use of an exponent less than 1 leads to non convex

9

−50 −40 −30 −20 −10 0 10 20 30 40 50
0

0.5

1

1.5

2

2.5

3

3.5

4

w
|F

(w
)|

Spectral magnitudes of derivative filters

[−1 2 −1]

[−1 1]

Figure 2.1: Spectral magnitude of derivative filters for image of size 512× 512: derivative filters
have very broad spectral signatures. Hence their use as image priors contains statistics from all
scales and orientations of the image.

pseudo-norm priors of the form − log p(x) = ‖x⊕ f‖α which are significantly harder to optimize

than the convex Gaussian or TV norm priors. Hyper-Laplacian image priors have been used in

a range of settings: super-resolution [155], transparency separation [100] and motion deblurring

[95]. The exponent used is usually in the range of 0.5 to 0.8.

Wavelet-based priors. The frequency spectrum of a derivative filter is broad, as seen in

Figure 2.1. This means that statistics at all scales and orientations are combined in derivative-

based priors. Wavelets and associated constructions such as curvelets have, by design, much

better frequency and spatial localization properties. In Figure 2.2, we show the Fourier spectrum

of a derivative filter compared to that of a Morlet wavelet for an image of size 512 × 512.

These priors have been popular with the applied mathematics and signal processing communities

[149, 24]. These transforms can provide a sparser representations of images than derivative filters,

especially for highly textured images. Sparsity here refers to the number of coefficients of the

transformed image which are close to zero. The resulting priors are of the form − log p(x) =

‖Ψx‖1, where Ψx is the wavelet/curvelet transform of x. Curvelets have also been used as

priors for motion blur kernels [22], owing to the assumption that many motion blur kernels

are directional and spatially sparse i.e. − log p(k) = ‖Ψk‖, where k is a blur kernel and Ψ is

a curvelet transform. A recent interesting paper adapts the non-parametric image denoising

algorithm BM3D [39] into a parametric prior that is wavelet-like in it’s construction [41].

Learnt filters. The priors discussed so far are fixed filters based on certain statistical or mathe-

matical properties of images. Learning-based approaches try to learn filters from large databases

of natural image patches. Zhu and Mumford [189] learn arbitrary energy functions for a set of

oriented derivative filters via Gibbs sampling in a maximum likelihood approach. Roth and Black

[136] introduce the Fields of Experts model that employs student-T potential functions and learn

10

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

Figure 2.2: The frequency magnitude spectrum of a horizontal derivative filter (left) and a
wavelet (right). Wavelets have much better localization in frequency. This means that they
can discriminate better between different types of signals such as textures and piecewise smooth
signals.

Figure 2.3: From Roth and Black [136]: Examples of filters learnt using the Fields of Experts
model.

the filters using contrastive divergence (Figure 2.3). In this case the prior is given by

− log p(x) =
∑

i∈patches

∑
j∈filters

|x⊕ fj |i (2.9)

Weiss and Freeman [169] propose a simpler learning scheme for the Fields of Experts model

that allows the efficient training of large filters. Raj and Zabih [131] propose a discrete Markov

random field based smoothness prior that can efficiently be minimized using graph cuts. Zoran

and Weiss [191] have recently introduced a model that uses Mixtures of Gaussians over image

patches:

− log p(x) =
∑

i∈patches

log
∑

k∈comp.

πkN (Pix|µk,Σk) (2.10)

The parameters of the model are learnt by training over a large set of 2 million image patches.

Since − log p(x) does not have a simple form, they introduce approximations to enable inference

of the MAP solution in applications.

Dictionaries. In the Fields of Experts and other filter-based models, sparsity is enforced over

the response of each filter learnt by the model. These filters do not resemble image patches.

Another related approach to learning priors over image patches has been the use of image dic-

tionaries. The idea here is to represent an image patch directly as a sparse linear combination of

canonical patches. The canonical patches are overcomplete representations known as dictionar-

11

Figure 2.4: From Mairal et al. [110]: Image patches learnt from the color KSVD model. The
dictionary elements are RGB patches of size 8× 8.

ies. An example is the KSVD algorithm of [47, 110]. Examples of dictionary elements learnt by

KSVD are shown in Figure 2.4. Dictionary-based methods do not lend themselves to a proba-

bilistic interpretation since the representation of a patch depends on solving a sparsity inducing

minimization problem.

Modern images are almost always multi-spectral (usually RGB). Exploiting inter-spectral cor-

relations can provide strong cues to develop priors. Recently Chakrabarti and Zickler [26] have

studied the statistical properties of hyper spectral images for natural world scenes. They also

propose a basis in which hyperspectral image patches may be efficiently represented. It may be

possible to extend such representations into useful multi-spectral image priors.

An implicit assumption in constructing priors been that the distributions of corrupted images

are significantly different from that of uncorrupted images. In other words, the probability

distribution generated by p(x) gives a higher probability to clean images than to corrupted

images. In the case of additive Gaussian noise, this seems to hold empirically, although the

priors were not designed with this explicit goal in mind. But as we shall see in Chapter 5, this

is not so for image blur and new priors are required.

2.3 Image denoising

Image denoising has been intensively investigated for many decades. Significant advances have

been made in the last 10 years. We present a brief literature survey of some of the state-of-the-

art methods. Image denoising corresponds to a corruption process A = I in Eq. 2.1. Broadly

speaking, denoising algorithms can be divided into parametric and non-parametric methods.

12

Figure 2.5: Image denoising example achieved using BM3D [39]. The original image on the left
has noise of standard deviation 30 added to give the middle image (PSNR 18.6). The denoised
image is on the right (PSNR 31.3).

Parametric methods work by introducing image prior and likelihood terms, and maximizing the

posterior distribution. Non-parametric methods rely on a training set of patches which give an

empirical estimate of the posterior. The most influential and effective non-parametric methods

are the non-local means [21] and BM3D [39]. In the non-local means method, a patch is denoised

by using weighted averaging of a set of patches that are similar to the source patch in Euclidean

distance and intensity. The BM3D denoising also works by grouping together similar patches.

However, instead of averaging in the spatial domain, a group of patches is transformed using

a specially developed shape-adaptive Discrete Cosine Transform (DCT). Then thresholding is

applied to the resulting coefficients. Inverting the thresholded coefficients gives a clean sample

for a group of pixels. Multiple samples are averaged over multiple neighborhoods to give the

final denoised result. Figure 2.5 gives an example of a noisy image and denoising achieved with

BM3D.

In the computer graphics community, bilateral filtering [159, 125] has proved quite popular.

This is a non-parametric non-local method which is based on very similar principles as non-

local means. It is used in both 2D image denoising and 3D mesh denoising [58]. The idea

of the bilateral filter is to replace a noisy pixel with a weighted average of a number of other

pixels. These other pixels are weighted based on their geometric distance to the noisy pixel,

and their gray-level distance. The weights are based on two Gaussians with variances that are

user-defined. The non-local means method can be considered a generalization of the bilateral

filter where neighborhoods around pixels are used to compute distances (instead of distances

over single pixels). This makes the distance computation more robust (at the expense of greater

computation). The cross-bilateral filter is a generalization of the bilateral filter where two images

are used, and the weights corresponding to gray-level distances are computed on the second image

(where they are more reliable due to lack of noise).

Parametric methods rely on image prior models to achieve effective denoising. The KSVD algo-

rithm [110], the GMM model of Zoran and Weiss [191] and the Gaussian Scale Mixtures (GSM)

Model of [129] are state-of-the-art parametric denoising methods. As explained in Section 2.2,

13

the KSVD method uses a dictionary-based image prior. The Gaussian Scale Mixture (GSM)

model of Portilla et al. [129] uses a prior based on a wavelet decomposition of the image along

with the statistical dependence of nearby coefficients in the decomposition. The denoising process

uses this prior in a Bayesian framework to estimate the most likely denoised coefficient from the

set of noisy wavelet coefficients (taking into account statistical dependence between coefficients).

The GMM model of Zoran and Weiss [191] uses a Mixture of Gaussians, giving results as good

as BM3D. This model (called EPLL) has a further advantage that it may be used for problems

other than denoising, such as non-blind deconvolution.

In two recent papers, Levin et al. [98, 99] have shown that single-image denoising results obtained

by current state-of-the-art algorithms such as BM3D and EPLL are close to optimal for most

patch sizes and noise levels. To overcome this limit therefore requires the use of more than one

image with statistically different properties. A number of recent papers have taken this approach

for image denoising and other applications, and we review this literature in the next section.

2.4 Multiple images for denoising and other applications

When multiple images are captured at different spectral bands or under varying illumination, the

statistics images vary between bands. However, there are strong correlations and dependencies,

such as the presence of edges at the same spatial location. This allows denoising to potentially

be more effective than using one image. In the flash/no-flash technique ([1, 128, 46]), two images

are captured: one without flash and the other with a standard camera flash. Agrawal et al. [1]

focused on the removal of artifacts such as flash hotspots or self-reflections. An example is shown

in Figure 2.6. Petschnigg et al. [128] use the flash/no-flash pair to denoise the ambient image

using the edges in the noise-free flash image as a guide for denoising the noisy ambient. Eisemann

et al. [46] combine the flash and no-flash images to to give a new image with the ambience of

the no-flash and the color information from the flash image. Both these approaches are similar

in that they use a cross-bilateral filter [125] and detail transfer.

Bennett et al. [11], show how video captured in low-light conditions can be denoised using

continuous IR illumination. They make use of temporal smoothing to achieve high quality results.

Wang et al. [166] show how IR illumination can be used to relight faces in well-lit scenes. Both

these works rely on cross-bilateral filtering to combine the IR and visible signals.

Yuan [187] use a pair of images, one noisy and one blurred, to provide better deblurring per-

formance. Their idea is to use the (noisy) edges from the noisy image to stabilize the blind

deconvolution process. However, they assume perfect registration between the pair of images, so

any object motion would cause problems for their setup. [156] go even further, capturing a stack

of noisy images. However, clearly the image registration problem is even more pronounced.

Tai et al. [154] capture two streams of video and use a high-frame rate, low-resolution video

to deblur a low-frame rate, high-resolution video. They use optical flow between the high-frame

rate video frames to determine motion blur. Their setup requires the use of an optical bench to

14

Figure 2.6: Self-reflection removal from am ambient image using a flash/no-flash pair (image
taken from[1]).

ensure the images to the two cameras are aligned.

2.5 Non-blind deconvolution

In this section, we review existing literature on non-blind deconvolution in the spatially invariant

and spatially varying settings. The classical non-blind deconvolution algorithms are Richardson-

Lucy [109, 134] and Wiener deconvolution [174]. Richardson-Lucy is a iterative non-blind algo-

rithm that finds a maximum likelihood solution under the assumption of multiplicative (Poisson)

noise. There is no image prior assumed in the original version of this algorithm. Due to this, it is

well-known that the classical Richardson-Lucy can lead to artifacts due to noise amplification if

iterated for too long. Iterations are terminated early to avoid this behavior. Wiener deconvolu-

tion finds a maximum a-posteriori solution under the assumption of Gaussian priors and additive

white Gaussian noise. Due to the use of quadratic likelihood term and Gaussian priors, Wiener

deconvolution can be efficiently implemented in the Fourier domain. This is simple to see: the

posterior term in Eq. 2.3 is written as a product of the likelihood and prior terms. Under the

assumption of additive Gaussian noise with variance η2, the likelihood term can be written as:

p(y|x, k) ∝ e−
1

2η2
‖x⊕k−y‖2

and the Gaussian prior is written as: p(x) ∝ e−‖x‖2 , where we have replaced the general operator

A in Eq. 2.3 with the specific blur kernel k so that Ax ≡ x⊕ k.

Taking the negative log of the product of p(y|x, k) and p(x), gives a cost function of the form:

minx λ‖x⊕k−y‖2+‖x‖2, where λ is a constant that weights the importance of the two terms; λ =

15

1/σ2, where sigma is the noise level. By Parseval’s theorem: ‖x‖2 = ‖X(ω)‖2. Furthermore, the

Fourier transform makes a convolution in the spatial domain into a point wise multiplication in the

frequency domain. This gives us an equivalent frequency domain cost function: minX λ‖X(ω) ◦
K(ω) − Y (ω)‖2 + ‖X(ω)‖2, where ◦ refers to point-wise multiplication. Taking the gradient

of this with respect to X(ω) gives us a closed form solution for X(ω), which results in Weiner

deconvolution:

X(ω) =
K(ω) ◦ Y (ω)

1 + λ|K(ω)|2
(2.11)

However, the assumption of Gaussian priors on images is not very accurate (see Figure 4.1) and

leads to mediocre performance of Weiner deconvolution. More sophisticated image priors such as

the heavy-tailed priors and GMM model were described in Section 2.2. The use of these priors

in the model Eq. 2.3 leads to a non-quadratic and almost always a non-convex problem. As

a result, the minimization of the resulting cost function is not possible with simple frequency

domain transformations.

For priors such as the heavy-tailed derivative priors and Fields of Experts, the prior is of the

form − log p(x) =
∑
i |(x ⊕ f)i|α where i corresponds to entries of the vector x i.e. the priors

are point-wise. For point-wise priors, the Iterative Least Squares (IRLS) algorithm [42] is an

effective numerical scheme for minimization of the posterior p(x|y, k). As the name suggests, the

idea is to solve a series of weighted least squares problems, where the weights are modified at

every iteration. Suppose the likelihood term is of the form − log p(y|x,A) = ‖Ax− y‖2, then the

minimization problem is given by:

x∗ = arg min
x
λ‖Ax− y‖2 +

∑
i

|(x⊕ f)i|α (2.12)

Eq. 2.12 is not a quadratic problem when α < 2. The idea behind IRLS is to solve a series of

weighted least squares problems of the form xk+1 = arg minx ‖W k(Ax−y)‖2, where the diagonal

entries of the matrix W k are determined by the current iterate xk. Solving the weighted least

squares gives us a new iterate xk+1. Let ρi(x) = |(x ⊕ f)|i. W k is a diagonal matrix with

(diagonal) entries W k
i,i = ∂ρ(x)

∂xi
/ρi(x), xk being the iterate at the kth iteration. Given W k,a least

squares problem is solved to give the xk+1 = arg minx ‖W k(Ax − y‖2. This inner problem can

be solved using preconditioned conjugate gradients (PCG) [138] to give xk+1 and then W k+1 is

computed. IRLS is a very effective algorithm which enjoys convergence guarantees under certain

assumptions on A [42].

IRLS can be quite slow for large problems, as we will see in Chapter 4. For the convex TV

regularizer [137], faster algorithms have been proposed, based on half-quadratic splitting , origi-

nally proposed by Geman and colleagues [61, 62]. Wang et al. [167] showed how how splitting

could be used with a total-variation (TV) norm for non-blind deconvolution. Instead of creat-

ing a quadratic problem using re-weighting, they introduce auxiliary variables to decouple the

16

likelihood and prior terms. With a TV norm prior, the original problem Eq. 2.12 is given by:

x∗ = arg min
x
λ‖Ax− y‖2 +

∑
i

‖(∇x)i‖ (2.13)

where ∇ is the discrete differential operator and gives us a vector output at each pixel (consisting

of the gradient values). Auxiliary variables wi are introduced to modify the problem to:

min
x,w

λ‖Ax− y‖2 +
β

2

∑
i

‖wi − (∇x)i‖2 +
∑
i

‖wi‖ (2.14)

This problem is still convex in x and wi and may be solved by alternating minimization. First

fix the current value of x and update wi (for all i); then fix wi and update x. The sub-problem in

x is now quadratic and the sub-probem in the wi’s is an `1 minimization problem. Each of these

sub-problems may be solved very efficiently when A is a convolution. The x sub-problem can

be solved fast using FFT’s; and the w sub-problem can be solved using a point-wise shrinkage

algorithm [167]. For convex problems, this leads to algorithms with provable convergence rates.

We adopt these techniques in our work on non convex non-blind deconvolution Chapter 4. IRLS

cannot be used for the EPLL prior of Zoran et al. [191]. They also use a numerical scheme based

on half-quadratic splitting,

Introducing auxiliary variables to simplify the solution of optimization problems has been studied

in other contexts. In the numerical solution of partial differential equations, these techniques are

called operator splitting [130]. In the optimization community, a similar family of methods is

termed Alternating Direction Method of Multipliers [17] and proximal method algorithms [37].

While these methods differ in their assumptions and details, the overall idea is to introduce

new variables into a problem, and then solve a sequence of subproblems which are tied together

through the newly introduced variables.

Schmidt et al. [139] have recently introduced an algorithm for non-blind deconvolution which

directly tries to find a minimum mean square estimate from the posterior distribution, using a

sampling-based approach. This approach is computationally demanding, but has the advantage

of not requiring hyperparameter tuning. [28] also present a Bayesian approach to non-blind

deconvolution.

Cho et al. [34] try to improve reconstructed image quality by develop a global prior based on

matching gradient distributions of the unknown image to a reference gradient distribution. Their

algorithm uses a two-step process to first update a penalty term, which is then used to reconstruct

the latent image. Their method leads to greater perceptual improvement, especially of textured

regions in the image.

There are a number of practical issues that arise in image deconvolution. The most serious is the

presence of noise, which is usually a problem in low-light situations. In MAP approaches, this is

handled by a step of noise estimation followed by setting the λ hyperparameter (e.g. in Eq. 2.13)

in a heuristic manner. Setting this parameter too low leads to an over regularized (usually blurry)

result. Setting it too high leads to ringing artifacts which manifest as oscillations around sharp

17

Figure 2.7: A figure taken from [172] which shows artifacts that are caused if saturated pixels
are not handled. The smaller figures at the bottom show zooms taken from the areas marked
by yellow boxes. “Krishnan and Fergus” refers to our algorithm from Chapter 4 which does not
handle saturated pixels.

edges. Bayesian methods such as [139] handle this in a more principled manner by integrating

out the noise level. This however comes at a significant computational cost.

Another practical issue is the presence of clipped (saturated) regions in the blurry image. A

simple non-blind deconvolution will lead to significant artifacts around clipped pixels. Whyte et

al. [172] introduce a non-blind deconvolution scheme to handle artifacts arising due to saturated

pixels (see Figure 2.7). Cho et al. [33] use an EM-like approach to alternately estimate the

latent image and the saturated pixels. At each step, the estimated saturated pixel map is used

to formulate a constrained deblurring problem. Harmeling et al. [68] use thresholding to ignore

saturated pixels during deconvolution in a multi-frame deconvolution framework.

18

Figure 2.8: An example from [55] showing spatially invariant blind deconvolution of an image.
On the left is the blurred image and the deblurrred image is shown on the right.

2.6 Blind deconvolution

Blind deconvolution has been studied for a long time in both the image processing and data

communications communities, being known as blind equalization in the latter. An early survey is

given in [91]. The simplest form of the blind deconvolution problem is when the blur is assumed

to be due to translational motion of the camera, so that the model for the blurred image is

y = x ⊕ k + n i.e. the blurring operator A is given by a filter k, and n is additive Gaussian

noise. When only a single observation y is given, the number of unknowns is greater than the

number of observed variables. Multiple solutions are therefore possible (see Figure 1.2). This is

also easy to see from the form of the equation y = x ⊕ k - we can perturb k and find an x to

satisfy the formation model approximately (within noise level tolerance). An example of blind

deconvolution from [55] is shown in Figure 2.8.

A more straightforward way to overcome the ill-posedness is to increase the number of obser-

vations. This is the approach taken in [187] where a pair of images is captured, one being

blurred with a long exposure and the other being noisy due to a short exposure. Now there are

more observed variables than unknowns. The noisy image has sharp edges that provide a strong

constraint to aid the blind deconvolution problem. However, this method requires perfect regis-

tration of the blurred/noisy pair. Another method to estimate the blur kernel is to use additional

hardware. This is the approach taken in [76, 154]. In the former, gyroscopes and accelerometers

attached to the camera allow measurement of camera motion. In the latter, 2 cameras are used

- this approach is explained in Section 2.4.

Single-image methods have been studied for many years. When a single image is used, the image

and kernel priors take on great importance. Single-image methods may be into three main classes:

Variational, Maximum A-Posteriori (MAP) and and spectral methods. The variational and MAP

methods were introduced in Section 2.2. Spectral methods use frequency-domain information and

do not have a probabilistic interpretation.

In two recent papers [101, 103], Levin et al. have explained the reasons behind the failure of naive

19

Figure 2.9: Inverted costs under standard priors. The heavy-tailed prior [96] and the EPLL prior
[191] give a higher cost (lower probability) to noisy images than clean ones. But, the situation
is inverted for image blur: the blurred image is given a lower cost (higher probability) than the
clean image.

MAP methods and the success behind variational algorithms such as that of [55]. The problem

lies with the use of image priors that are unsuitable for blind deconvolution. Existing image priors

such as EPLL [191], heavy-tailed priors [96] and Fields of Experts [136] give a higher probability

to blurred images than to sharp ones. Hence this biases simple MAP estimators towards the

trivial solution, where the output image x is the same as the input y and the kernel k is the

δ kernel (identity). An example of this situation is shown in Figure 2.9. Here we see that the

EPLL prior and heavy-tailed gradent priors give a lower cost to the blurred image than the sharp

image.

Most MAP methods overcome this fundamental problem by introducing various heuristics to

prevent the collapse into a trivial solution. In [32], shock filtering is used to enhance the edges

of the image iterates. Shock filtering [123] is a non-linear process which smooths out small

edges, while enhancing (increasing the gradient of) larger edges. This edge map with some

edges smoothed and others enhanced is used to determine a blur kernel, following which a new

estimate of the latent image is computed. The shock filtering is shown to stabilize the MAP

estimation process and gives good blind deconvolution performance. The workflow of Cho and

Lee is shown in Figure 2.10. The idea of shock filtering is also used in other papers [68, 69, 181].

Unfortunately there is no clear understanding of why non-linear filtering works well to stabilize

the MAP processing. A plausible, although incomplete, explanation is that keeping only strong

edges while suppressing others prevents instability due to noise.

A much more principled way of handling the blind deconvolution problem is the variational

approach, used in [55, 103, 104]. As explained in Section 2.1, the variational approach finds

an (approximate) expected value of k by marginalizing out over x in the posterior distribution

p(x, k|y). Since p(x, k|y) is usually intractable, this marginalization is carried out by using an

approximation: p(x, k|y) ≈ q1(x)q2(k), where q1(x) and q2(k) are more tractable distributions

(usually Gaussians or mixture of Gaussians). The parameters of q1 and q2 are chosen to approx-

20

Figure 2.10: The deblurring workflow from Cho et al. [32].

imate closely the posterior p(x, k|y). Levin et al. [103] provide an EM-based method to perform

this marginalization more efficiently and robustly than in [55].

Due to the commutativity of the convolution operator, the formation model y = x⊕k+n can be

reasonably approximated as ∇y = ∇x⊕ k+n where ∇x is the gradient of x. When heavy-tailed

gradient priors are used, they are of the form − log p(x) = ‖∇x‖α, in which case the posterior

can be expressed as p(∇x, k|∇y). It has been empirically observed in [103] that the gradient-

space approach provides much better solutions than the image-space approach. However, the

gradient-space approach ignores the dependence between gradients in different directions and

integrability constraints. It is possible that higher-quality results may be achieved by taking this

dependence into account. A disadvantage of the gradient-space approach is that the output of

the blind deconvolution only results in a useful kernel k. The original blurred image must then

be deconvolved with a non-blind technique using the kernel k from the first step. This adds

additional computational expense.

A third class of blind deconvolution methods are spectral methods which cannot be interpreted

in probabilistic terms. These methods rely on the properties of the Fourier spectrum of natural

images. A recent paper in this class is [63]. It is well-known that natural images exhibit a

power-law decay in their spectrum; given an image x with Fourier transform X(ω), |X(ω)|2 ∝
‖ω‖−2. However, for many images, it is shown in [63] that the constant in the decay is actually

dependent on the frequency ω (see Figure 2.11). This is due to the presence of long edges.

That is ‖X(ω)‖2 ≈ cθ(ω)‖ω‖2, where θ(ω) is the angle of the vector ω. The authors present

a sophisticated algorithm to determine the orientation specific constants cθ(ω), and thereby the

kernel k. The key advantage of this technique is that only the statistics of the blurred image

y are required. The sharp image x is never repeatedly estimated as happens in the MAP and

variational methods. This makes their technique very fast and robust to scene content. However,

it is unclear how to extend this method to spatially varying blur, since the Fourier techniques

21

Figure 2.11: A figure from [63] showing: (a) two natural images; (b) their power spectra; (c)
log-log plots of the cross-sections of the power spectra. According to the classical theory, the
spectrum in column (b) should be close to a constant and the curves with each plot in (c) should
overlap. This is clearly not the case and there is a multiplicative offset.

are global in nature.

Until now, we have considered spatially invariant blur. However, in practice, camera rotations

and object motion in the scene lead to spatially varying blur. A number of recent papers have ad-

dressed the spatially varying blur problem. Whyte et al. [173] modified the variational approach

of [55] to address the case of camera shake that is not purely translational. They achieved this

by parametrizing the camera motion in terms of 3D rotations of the camera. Hirsch et al. [69]

address general spatially varying blur by dividing the image into overlapping patches and com-

puting a blur kernel for each patch. Their method assumes that the blur kernel varies smoothly

across the image, and is therefore also restricted to camera shake. In contrast, Levin [95] provides

a simple algorithm to handle motion blur that is unidirectional and constant. Her algorithm is

based on the empirical observation that the horizontal and vertical gradients of an image exhibit

similar statistical properties (for most images which have significant gradients in all directions).

Furthermore, unidirectional blur (for example, horizontal blur) changes the statistics of one of

these two derivatives. The amount of horizontal blur may then be determined by blurring the

image in the vertical direction until the statistics of the blurred gradients match. Deconvolving

images blurred by general object motions remains an open research problem.

2.7 Localized corruption removal

Images can be corrupted in many ways. Additive white Gaussian noise and motion blur are two

such corruption types. Localized corruptions are caused due to dirt on the camera lens, or taking

22

Figure 2.12: A figure from [8] showing: (Left) A frame from a video sequence shot during snow;
and (Right) the same frame with snow removed.

pictures through a transparent surface with dirt or dust. Another example is taking images or

video during rain or snow. The restoration of such images is of importance for vision-based driver

assistance, robotics, and aesthetics. The main stumbling block in these problems is the lack of

a formation model for the corruption process: the corruption may occur randomly at different

pixels and at different locations.

To overcome this, most existing approaches use a combination of physics-based models and

multiple video frames for restoration. The removal of rain from videos has been investigated

by Garg and Nayar [59], and Barnum et al. [8]. These methods are based on spatio-temporal

filtering of a video sequence to detect and remove rain. The approach of Barnum et al. [8] can

also be extended to snow removal, and snow and rain enhancement. Figure 6.2 shows an example

of snow removal from their paper.

Garg and Nayar [60] also consider how the optics of the camera (exposure and depth of field)

may be adjusted to reduce or remove the appearance of rain. This approach works well for rain

drops and is real-time. However, it requires control over the camera aperture and depth of field

settings which is often not possible. Furthermore, it is not clear whether this approach may be

extended to snow removal.

Gu et al. [66] have considered the problem of removing image artifacts caused by “thin occluders”,

usually due to the presence of dust or dirt on camera lenses or other objects such as fences. They

rely on the defocus property of lens and make the assumption that the artifact is predominantly

a low frequency aberration. They use multiple video frames (and assuming perfect registration)

and simple point wise operations to detect and reconstruct the artifacts. An example from their

paper in shown in Figure 2.13.

Jancsary et al. [72] have proposed a non-parametric model based on Regression Tree Fields

where the parameters of the model are learnt from a training set. The loss function that guides

the training process may be a mean square error between the predicted output and the true

(uncorrupted) output images, as a function of the input image or other kinds of loss functions.

23

Figure 2.13: A figure from [66] showing: (Left) A frame from a video sequence with thin lens
occluders causing low frequency artifacts; and (Right) the same frame with corruptions removed.

They show results on removing synthetically generated localized corruption.

Removing localized corruption can be considered a form of blind inpainting, where the position

of the corrupted regions is not given, unlike traditional inpainting [2]. Dong et al. [45] show

how salt-and-pepper noise can be removed, but the approach does not extend to multi-pixel

corruption.

2.8 Preconditioners and solvers for Laplacian matrices

The solution of linear systems involving Laplacian matrices has attracted significant research

interest in recent years. This is due to the close connection between Laplacians and graphs, and

the fact that Laplacians arise in the solution of discrete partial differential equations (PDEs).

Consider an undirected graph G given by a triplet (V,E,w) where V is the set of vertices, E is

the set of edges, and w is a weight function that assigns a real value to every edge. For a vector

x ∈ R|V |, the Laplacian measures of the smoothness of x over the graph, and the quadratic form

is given by:

EL(x) ≡ xTLx =
∑

(u,v)∈E

wu,v(x(u)− x(v))2 (2.15)

The Laplacian L associated with the graph G is defined as follows. The off-diagonal entries of

L are given by Luv = −wu,v, u 6= v and the diagonal entries of each row are given by L(uu) =∑
u 6=v wu,v. This definition arises naturally from Eq. 2.15. Graphs and Laplacians therefore have

a one-to-one correspondence. Figure 2.14 demonstrates this correspondence.

Due to the above definition, Laplacians are symmetric and positive definite when the edge weights

w are non-negative. Laplacians corresponding to graphs with non-negative edges are also sym-

metric diagonally dominant (SDD), and are called M -matrices. This means that the diagonal

24

Figure 2.14: A graph with 5 vertices and the corresponding Laplacian matrix, which is a 5× 5
matrix. The weights on the edges are indicated by the numbers on each edge. The vertices are
numbered within the circles and form the rows of the Laplacian matrix, in order. For example,
node 1 corresponds to the first row of the matrix and therefore it has non-zero entries in columns
2 and 5, since it is connected to nodes 2 and 5 in the graph.

entry in each row of L is greater than or equal to the absolute sum of the off-diagonals:

Lii ≥
∑
j 6=i

|Lij | (2.16)

SDD matrices are positive definite. The theoretical research community has focused on the

solution of SDD linear systems [161, 148, 147, 82, 81] . Systems involving SDD matrices can be

shown to be equivalent to systems involving larger M -matrices. However, not all Laplacians are

SDD. Particularly, many Laplacians arising in computer graphics and computational photography

are not SDD.

Laplacians arise in a number of applications. Wardetzy et al. [168], provide a comprehensive

taxonomy of the most common Laplacian matrices arising in 2D and 3D computer graphics.

The most important of these are Laplacians arising from discrete partial differential equations.

Examples of these applications are given in Chapter 7. Laplacians also arise in other domains

such as image segmentation and graph clustering. Due to their wide applicability, the efficient

solution of linear systems involving Laplacians is of importance.

State of the art sparse direct solvers [43] are based on the nested dissection method [105]. From

a theoretical perspective, nested dissection has strong guarantees on fill-in for systems arising

from planar graphs. The best known algorithms for planar graphs run in time O(n1.5) and are

incorporated as direct solvers in software packages such as MATLAB. General dense direct solvers

such as Gaussian elimination and LU factorization run in O(n3) time [79]. The latter however,

is often used for matrix preconditioning by dropping terms from the complete LU factorization

[138].

While direct solvers provide machine precision accuracy, the modern versions are complex to code

and are expensive in computation and memory requirement. The machine precision accuracy

is not necessary in many applications. Therefore, one may consider the use of iterative solvers.

Iterative linear solvers such as Jacobi, Gauss-Seidel and Conjugate Gradients (CG) are applicable

for diagonally dominant and positive semi-definite matrices [79] including the Laplacian matrices

we are considering. Since these methods consist of matrix-vector multiplications, each iteration

25

runs in O(n) time when solving sparse systems. However, the number of iterations taken by

these methods depends on the condition number of the Laplacian matrix.

The condition number of a symmetric positive definite matrix is defined as

κ(L)=
λmax

λmin
=
EL(xmax)

EL(xmin)
=

maxxEL(x)

minxEL(x)
, (2.17)

where λmax and λmin are the maximal and minimal non-zero eigenvalues of L and xmax and xmin

are their corresponding eigenvectors. The last equality results from the fact that eigenvalues of

L are the extremal values of EL.

The number of iterations it takes iterative solvers to achieve a certain accuracy depends on κ(L):

O(κ) iterations for Jacobi and Gauss-Seidel and O(
√
κ) for conjugate gradients [138]. In the

case of homogeneous matrices, κ(L) =O(l2), where l is the domain’s length, l ∝ d
√
n, and d is

the spatial dimension (d=2 for images). Inhomogenous Laplacian (defined below) often contain

approximate zero modes [160], which, according to (2.17), lead to very high values of κ(L).

The condition number of a matrix can be reduced by converting the linear system, Lx=b, into

a related problem by multiplying it with a preconditioning matrix Q−1 such that the condition

number ofQ−1L is significantly lower than that of L. In order to achieve effective preconditioning,

the matrix Q−1 must meet several additional requirements. Iterative linear solvers such as Jacobi,

Gauss-Seidel and CG consist of repeated matrix-vector multiplications with Q−1L, which is

typically computed in succession, with L and then with Q−1. Therefore, multiplying a vector

with Q−1 must not be significantly more expensive than multiplication with L. For example,

in the case of sparse Laplacian matrices, these operations must cost no more than O(n). Note

that this does not require Q−1 to be sparse; there just needs to be an efficient procedure for

multiplying it with vectors, which is the case with various hierarchical schemes (Section 7.2.2).

Another important aspect is that Q−1L must meet solver-specific requirements, for example

maintaining the positive definiteness of L in case of the Preconditioned Conjugate Gradient

(PCG) method.

Since iterative solvers are often the method of choice, the search for efficient linear system solvers

boils down the construction of efficient preconditioners for Laplacian matrices. The classical

preconditioners are based on multigrid and multilevel ideas. The fundamental idea here is to

recursively construct smaller (coarser) versions of the original problem in such a manner that

the coarser versions enable a good approximate solution to the fine problem. This is visually

depicted in Figure 2.15.

The fundamental reason that multigrid methods are useful is as follows. When a linear system

Lx = b needs to be solved, the solution x can be expressed as a linear combination of the eigen-

vectors of L: x =
∑
i αivi, where vi are the eigenvectors of L. The components αi corresponding

the largest eigenvectors are quickly resolved by iterative methods. However, it is well known that

the components corresponding to the smallest eigenvectors are extremely slow to be resolved.

This is because these components correspond to long range interactions between variables. To

overcome this slow convergence, it is useful to create a coarser version of the problem Lx = b

26

Figure 2.15: A multilevel pyramid with regular half-octave coarsening [153].

using a subset of variables of x. If this coarser problem can be solved, then by interpolation we

can find an approximate solution to the fine level problem, and thereby accelerate the solution

process. Repeating this logic recursively gives rise to a multigrid method.

There are three key components to a multigrid method: coarsening, smoothing and interpolation.

The coarsening step decides which variables form the coarse-level problem, and which stay at the

fine level. The smoothing step corresponds to an iterative solver such as Jacobi or Gauss-Seidel.

This is applied at every level of the hierarchy to improve the iterative solution. The interpolation

provides coarse-to-fine transfer of the solution. Various choices for these components give rise to

different multigrid methods. The multigrid hierarchy may be used as a standalone solver or as a

preconditioner. In most cases, the hierarchy works best as a preconditioner for CG.

The earliest versions of multigrid preconditioners were developed for homogenous Laplacian ma-

trices. Homogenous Laplacians correspond to graphs with all edges having the same weight. The

resulting Laplacians have all (non-zero) off-diagonals with the same value. The optimal multigrid

scheme for homogenous problems is the geometric multigrid method (GMG) [18]. It is optimal in

the sense that the matrix preconditioned by a GMG preconditioner achieves a constant condition

number regardless of the matrix size. This is theoretically proven [160] using Fourier analysis

techniques. As the name suggests, GMG takes advantage of the geometry of a problem. It is

thus only useful for problems where an underlying grid structure is available, such as in the case

of 2D images. In the case of a 2D grid, a coarse level created by selecting every fourth grid point,

to give full octave coarsening.

The hierarchical basis methods [186, 152] use a similar approach to GMG, where a multi-level

basis is used to precondition the matrix when solved by an iterative solver. Linear running time

is achieved by applying iterative solvers in combination with multigrid or multi-level methods.

27

Inhomogenous Laplacians arise from graphs with different weights on the edges. The multigrid

theory for such problems is much less well-developed. However, these methods are empirically

shown to work well. The condition number of inhomogenous Laplacian matrices is often consid-

erably higher than their homogeneous counterparts; clusters of strongly-connected variables that

are weakly connected to the rest of the system introduce very weak modes, known as approxi-

mate zero modes, which increase the condition number [160]. Here “strongly-connected” refers

to variables with large edge weights and “weakly-connected” refers to variables with small edge

weights. Spatially homogeneous solvers, such as GMG, fail to capture these spatially irregular

modes and do not perform effectively on such problems.

The algebraic multigrid method (AMG) [19] generalizes its geometric counterpart and has a

better ability to isolate and rescale the weak modes in spatially varying matrices. Adaptive

coarse-grid selection plays a key role in AMG’s success in capturing these modes, but at the

same time, it leads to a growth in the bandwidth of non-zero matrix elements at coarse levels.

This is an important practical problem because successive levels are not significantly lower in

cost if the smaller size of the problem is offset by significantly higher bandwidths. The reason

for the increase in bandwidth is easy to see: whenever a variable is eliminated, the neighbors of

that variables become connected to each other.

The aggregation-based AMG [160] and its smoothed version [162] limit the number of non-zero

elements in the prolongation matrices that relate successive levels. This is equivalent to limiting

how many coarse neighbors of a fine level variable are used to interpolate the fine level solution.

This avoids the growth in the matrix bandwidth but also lowers its preconditioning abilities and

increases the number of required cycles. The recently developed lean AMG (LAMG) solver [108]

falls into this category but offers a more sophisticated agglomeration rule as well as a correction

step that improves the representation of weak modes at coarser levels. The use of fixed coarsening

is another way to avoid growth in the matrix bandwidth [188, 120]. A hierarchical basis analogue

of the AMG that also employs regular grid selection is described [153]. A careful comparison,

however, shows that methods that use adaptive grid selection offer better overall performance on

highly irregular problems [89, 84].

Several multigrid solvers have been adapted for specific computer graphics purposes. A streaming

multigrid solver capable of solving very large problems, arising from processing gigapixel images,

is described in [77]. Farbman et al. [50] describe a highly optimized pyramid-based solver for

tone mapping and interpolation. A multigrid framework for the simulation of high-resolution

elastic deformable models, supporting linear and co-rotational linear elasticity, is described in

[190].

The multigrid based iterative solvers are very amenable to parallel processing and so can be

significantly optimized, such as with GPU processing, for example. [143] develop a multigrid

solver to handle mesh deformation problems. They show significant speedup over direct solvers

for meshes of upto 3 million vertices. [14] present a GPU-based multigrid solver. However, they

restrict their numerical experiments to small grids with less than 200K vertices.

Recent work in theoretical computer science has led to the development of preconditioners for

28

graph-Laplacian matrices. A general umbrella term for these methods is combinatorial precondi-

tioning [146]. The key is to construct a sparser approximation of the original matrix that is easy

to invert and to then use it as a preconditioning matrix. For example, Vaidya [161] suggested

preconditioning with the Laplacian of a maximum spanning tree derived from the graph of the

original Laplacian. The justification for this is that inverting a tree is computationally very effi-

cient. This construction, however, does not offer an attractive bound on the resulting condition

number. Boman and Hendrickson [15] showed that better bounds are attained using low-stretch

spanning trees. A low-stretch spanning tree is one where the edges are “evenly” distributed in

their weight. This intuitively makes sense as it avoids extremely large or extremely small edges

in the tree. Extremely small edges would effectively decouple variables. However, decoupled

variables are not a problem for iterative solvers since they can be simultaneously solved. On

the other extreme, including extremely large edges would lead to the exclusion of small edges.

However, constructions of low-stretch spanning trees require O(n log n) operations and still do

not guarantee that the resulting condition number is independent of n.

Vaidya [161] also suggests improving the preconditioning by adding O(n) edges to the spanning

tree. This construction, which is known as an ultra-sparsifier, solves sparse Laplacian matrices

in O(n log15 n) time and is constructed in nearly linear time in a seminal work [148]. The fastest

known ultra-sparsifier based solver is described in [82] and runs in O(n log2 n(log log n)2) time.

A recent paper [78] uses a non hierarchical approach for solving linear systems involving SDD

matrices.

A fundamental theorem in combinatorial matrix preconditioning shows that the effectiveness of

Q−1 as a preconditioning matrix depends on how well EQ approximates EL. More specifically,

given a, b>0 such that

∀x, aEQ(x) ≤ EL(x) ≤ bEQ(x), (2.18)

κ(Q−1L) ≤ b/a [16, Prop. 2.4].

The theoretical works based on combinatorial preconditioning provide a solid foundation for

nearly-linear time solvers. Unfortunately, to date no practical solver has been developed based

on these ideas. A number of practical solvers, however, have been developed in the multigrid

community. Some examples are PyAMG [10] and HyPre [49]. Recently, Koutis et al. [83] used

the notion of conductance from the support theory of graphs to derive an aggregation-based

AMG method. They call the algorithm Combinatorial Multigrid (CMG).

There are also specialized methods that work well in some applications normally solved using

Laplacian matrices. The edge-avoiding wavelets in [52] offer fast running times for edge-preserving

interpolation and tone mapping. However, they consist of a regular sampling strategy and

produce results of limited accuracy. Edit propagation using KD-trees in [180] is another example.

29

Chapter 3

Dark Flash Photography

3.1 Introduction

The work described in this chapter is joint work with Rob Fergus. It was published in SIGGRAPH

2009 [85], and resulted in a patent filing [54].

The introduction of digital camera sensors has transformed photography, permitting new levels

of control and flexibility over the imaging process. Coupled with cheap computation, this has

precipitated a wide range of novel photographic techniques, collectively known as Computational

Photography. Modern camera sensors, be they in a cellphone or a high-end DSLR, use either a

CCD or CMOS sensor based on silicon. The raw sensor material responds to light over a wide

range of wavelengths, typically 350–1200nm. Colored dyes are deposited onto the sensor pixels

in a Bayer pattern, resulting in 3 groups of pixels (red, green and blue). Each responds to a

limited range of wavelengths, approximating the sensitivities of the three types of cone cell in

our retina. However, silicon is highly sensitive to infra-red (IR) wavelengths and it is difficult

to manufacture dyes that have sufficient attenuation in this region, thus an extra filter is placed

on top of most sensors to block IR light. This gives a sensor that records only over the range

400-700nm, matching our own color perception, but a considerable restriction of the intrinsic

range of the device.

One solution to capturing photographs in low light conditions is to use a flash unit to add

light to the scene. Although it provides the light to capture otherwise unrecordable scenes, the

flash makes the photographic process intrusive. The sudden burst of light not only alters the

illumination but disturbs any people present, making them aware that a photo has just been

taken and possibly dazzling them if they happen to be looking toward the camera. For example,

a group photo in a dark restaurant or bar using a bright camera flash leaves the subjects unable

to see clearly for some moments afterward. From an aesthetic perspective, the illumination of

the flash often alters the look of the photograph, rendering it “flat” and unappealing.

In this paper we introduce a camera/flash system that is based around off-the-shelf consumer

30

equipment, with a number of minor modifications. First, the camera is a standard DSLR with

the IR-block filter removed, thus restoring much of the original spectral range of the sensor.

Second, we use a modified flash that emits light over a wider spectral range than normal, which

we filter to remove visible wavelengths. This dark flash allows us to add light to the scene in

such a way that it can be recorded by the camera, but not by our own visual system. Using the

dark flash we can illuminate a dimly lit scene without dazzling people present, or significantly

disturbing those around. Furthermore, it allows a fast shutter speed to be used, thus avoiding

camera shake. However, the difficulty is that people want images with colors that match their

visual experience and this will not be the case for images captured using the dark flash.

To overcome this, we acquire a pair of images in the manner of flash/no-flash photography

[46, 128], one using the dark flash and the second using ambient illumination alone. For the

latter to be blur-free a fast shutter speed must be used, resulting in high noise levels in dim

light. A key observation is that if the non-visible and visible channels are close in wavelength,

strong correlations will exist between them. We introduce a novel spectral prior that exploits

correlations between spectral bands. Using this constraint, the edge structure of the dark flash

image can be used to remove the noise from the ambient image, yielding a high quality result

that lacks the shadow and specularity artifacts present in the flash image. Figure 3.1 illustrates

our overall scheme.

We also show how our camera/flash hardware and spectral constraints can be used in a range

of additional applications, including: inferring spectral reflectance functions of materials in the

scene and denoising individual color channels of images captured with standard cameras.

3.2 Related work

Our approach can be regarded as a multi-spectral version of the flash/no-flash technique intro-

duced by [1], [128] and [46]. These papers were reviewed in Chapter 2. However, [1] did not use

their technique for denoising, but for flash artifact removal. [128] use the cross-bilateral filteral

for denoising the ambient, but as we show, the cross-bilateral filter works poorly when the flash

has non-overlapping spectral channels.

The closest work to ours is that of [11], who show how video captured in low-light conditions can

be denoised using continuous IR illumination. However, they make use of temporal smoothing to

achieve high quality results, something not possible in our photography setting. [166] show how

IR illumination can be used to relight faces in well-lit scenes. Both these works differ from ours in

a number of ways: (i) they use complex optical bench based setups with twin cameras and beam-

splitters – we use a single portable DSLR camera and temporally multiplex instead; (ii) both

use IR alone rather than the near-UV and IR that we use (both being necessary for high quality

reconstructions); (iii) both rely on cross-bilateral filtering to combine the IR and visible signals,

an approach which we demonstrate to have serious short-comings. In contrast, we propose a

principled mechanism for propagating information between spectral bands. We integrate this

into a unified cost function that combines the denoising and detail transfer mechanisms, treated

31

F A R L

Figure 3.1: Our camera and flash system offers dazzle-free photography by hiding the flash in
the non-visible spectrum. A pair of images are captured at a blur-free shutter speed, one using a
multi-spectral flash (F), the other using ambient illumination (A) which in this case is 1/100th of
that required for a correct exposure. The pair are combined to give an output image (R) which
is of comparable quality to a reference long exposure shot (L). The figures in this paper are best
viewed on screen, rather than in print.

separately in cross-bilateral filtering and related methods, such as [51]. This allows us to operate

in dimmer conditions than those considered by [46] or [128].

The methods cited above use a (bright) visible flash, whereas ours is designed to be almost

invisible by using illumination outside the visible range. Although [128] pondered the possibility

of using an infra-red flash, they did not go on to explore it. Extra challenges are posed by our

flash using different wavelengths to the ambient illumination. As [46] transfer the colors from

the flash image, their approach will not work in our scenario. The cross-bilateral filter, unlike

our proposed approach, does not explicitly model the spectral correlations between the flash and

ambient images.

Infra-red imaging has a long history in areas such as astronomy and night-vision. In consumer

photography the most prominent use has been the Sony Nightshot where the IR-block filter can

be switched out to use the near-IR part of the spectrum. The images are monochrome (with

a greenish tint) and no attempt is made to restore natural colors to them. Other imaging ap-

proaches use Far-IR wavelengths to record the thermal signature of people or vehicles. However,

this requires specialized optics and sensors and thus has limited relevance to consumer pho-

tography. Ultra-violet (UV) photography has received little attention, other than from flower

photography enthusiasts [135]. Many flowers that look plain to humans have vibrant patterns

under UV light to attract insects sensitive to these wavelengths.

Multi-spectral recording using visible wavelengths has been explored by several authors. [126]

32

used multiplexed illumination via arrays of colored LEDs to recover spectral reflectance functions

of the scene at video frame rates. Our system can be used in a similar manner for still scenes,

being able to estimate the reflectance functions beyond the visible range. [115] use a diffraction

grating in conjunction with an LCD mask to give control over the color spectrum for applications

including metamer detection and adaptive color primaries.

Our processing of the flash/no-flash pair exploits the correlations between nearby spectral bands.

Most work on image priors has focused on capturing spatial correlations within a band. For

example, priors based on the heavy tailed distributions of image gradients have proven highly

effective in a wide range of problems such as denoising [129], deblurring [55] and separating

reflections [100]. However, models that exploit dependencies between color channels are less

common. The K-SVD denoising approach of [2] does so implicitly by vector quantizing color

patches. The fields-of-experts approach of [136] has also been extended to model color images

[112] and uses color marginal filters. However, neither of these approaches explicitly model

the inter-channel correlations, unlike our method. Explicit spectral models are used in color

constancy problems and joint spatial-spectral models have been proposed [145, 25] for this task,

but these assume a noise-free image. [118] measured the spatial gradients of far IR images

gathered with a specialized camera, demonstrating their similarity to those of visible light images.

Spectral priors have also been used with near-IR in a tomography application [20].

Flash-based methods are not the only solution to taking pictures in low-light levels. Wide aper-

ture lenses gather more light but are heavy and expensive, making them impractical for most

photographers. Limited physical footprints on mobile phones prevent the possibility of large aper-

tures in these environments. Anti-shake hardware can be used to capture blur-free images at slow

shutter speeds. Recently developed “inverted CMOS” sensors have much greater light-gathering

capabilities. These techniques can be combined with our approach to extend performance to

even lower light levels. Software-based deblurring techniques [55, 75] can only cope with modest

levels of blur and typically have artifacts in their output. Denoising techniques [159, 129] have

similar performance issues, and cannot cope with the noise levels we address in this paper. Joint

denoising/deblurring techniques, such as that of Yuan [187], provide better performance but still

require a problematic deconvolution operation, which can introduce artifacts. Methods that reg-

ister and combine a stack of noisy images, such as [156], have the inconvenience of needing to

capture far more than two images. Finally, a visible flash can be made non-dazzling by using

a diffuser and aiming at the ceiling. This methods works well but is limited to indoors settings

with a fairly low ceiling of neutral color.

3.3 Dark flash hardware

In our approach we capture a pair of images, one with the dark flash (F) and another using

ambient lighting alone (A). The pixel value p in channel j of image F depends on three terms:

the spectral response of each camera channel Cj(λ) at wavelength λ; the illumination spectrum

of the dark flash If (λ); and the surface reflectance function S(p, λ) at the point in the scene.

33

These combine in a linear fashion:

Fj(p) =

∫
Cj(λ)If (λ)S(p, λ) dλ (3.1)

with j = {1, 2, 3} being the index of the camera channel. Note we assume even illumination

(i.e. If (λ) does not depend on p). The ambient image A is formed in a similar fashion, using

illumination Ia(λ) which scales with the exposure interval. A1, A2 and A3 record red, green

and blue wavelengths respectively under typical illumination. Through the choice of flash and

camera, we can control If (λ) and the channel sensitivities Cj(λ).

A primary design constraint is that off-the-shelf consumer hardware should be used where pos-

sible, making the system cheap and easily reproducible. Our camera is a Fuji IS Pro, which is

marketed for applications involving UV and IR work since it lacks an IR sensor filter. The flash

is a Nikon SB-14UV. We use a standard Nikon 50mm f/1.8 lens, which transmits light down to

350nm, hence is not the limiting factor in the camera’s UV response. A MaxMax CC3 filter was

attached to the lens at all times. The purpose of this filter is to block IR light above 850nm,

which would otherwise distort the colors of the ambient image (as the naked sensor’s response

extends out to 1100nm). This filter does not block either visible light or the dark flash. The

flash is a clone of the Nikon SB-14UV, adapted from a standard SB-14 by removing the UV

absorbent coating on the Xenon flash tube. A Hoya U360 filter was attached to the flash at all

times to filter out visible light. The standard visible flash used in comparisons was equipped

with a MaxMax CC1 filter to block its significant IR output.

The response functions Cj(λ) in Figure 3.2(a) include the filter and lens. These filters remain

in place for both shots, thus the pair of images can be taken in quick succession, limited only

by the 3 frames/sec rate of the camera. In Section 3.7, we show how the camera hardware can

be modified to allow capturing only one image. The flash is used at full power for all shots, the

cycle time being sufficiently long that it does not fire for the second shot, giving an image with

ambient illumination alone. The system is no more complex to operate than a standard DSLR

(see Figure 3.3(top left) for a picture of the system).

We now describe the form of If (λ) and how it can be recorded by the camera while remaining

largely invisible to humans. The spectral response of each camera channel Cj(λ) is shown in

Figure 3.2(a). Note that with no IR sensor filter, the responses extend considerably beyond the

visible range (400-700nm). The spectrum of the dark flash If (λ) is shown in Figure 3.2(b). It has

two distinct emission lobes, both just outside the visible range. The first, consisting of UV light,

couples with the small part of channel j = 3’s response extending below 400nm. The second lobe

in the IR region between 700 and 800nm is picked up by channel j = 1 which responds strongly.

Thus, the dark flash allows the recording of two independent measurements at each location in

a scene within a single image: one in UV recorded in F3, the other in IR recorded in F1.

The flash/no-flash image pair captures the scene at 5 different spectral bands, assuming the

ambient illumination is dim compared to the output of the flash: 1. UV (370–400nm) in F3;

2. Blue (∼ 400–500nm) in A3; 3. Green (∼ 500–600nm) in A2; 4. Red (∼ 600-700nm) in A1 and

34

5. IR (700nm–800nm), recorded in F1. In Figure 3.3, we show a Macbeth color chart in each of

these five bands.

For comparison purposes, we also use a standard visible flash whose power is adjusted to give

comparable camera exposure to the dark flash. In Figure 3.3(top) we attempt to show the relative

perceived brightness of the dark and visible flashes by capturing them using a standard DSLR

whose spectral response is close to that of our eyes (thus the brightness in the image should

correspond to our perception). See Section 3.5.3 for a quantitative analysis of their relative

brightness.

Safety issues. As shown in Figure 3.2(b), our dark flash emits energy just outside visible

wavelengths, centered around 380nm with negligible energy below 360nm or above 400nm (until

the IR lobe at 700nm). The health hazard posed by UV light depends strongly on the wavelength,

those close to visible (400nm) being orders of magnitude safer than the shorter wavelength

components of sunlight. Our flash is very close to visible, even closer than black-lights found

in bars and nightclubs, which have a broader spectral width centered at 360nm. In the USA,

the acknowledged regulations regarding the safe daily exposure to UV light are given in the

Threshold Limit Values (TLV) booklet, published by the government body ACGIH [157]. We

carefully measured the absolute spectral irradiance of our flash using a spectrometer.

0

1

2

3

S
p
e
c
tr

a
l
re

s
p
o
n
s
e

(a) j=1

j=2

j=3

0

5

10

15

(b)

A
b
s
o
lu

te
 I
rr

a
d
ia

n
c
e

 a
t
1
m

 (
u
J
/c

m
2
/n

m
)

350 400 450 500 550 600 650 700 750 800
0

2

4

6

8

S
e
n
s
o
r

re
s
p
o
n
s
e

UV Wavelength (nm) IR

(c)

Figure 3.2: (a) Spectral response curves Cj(λ), j = {1, 2, 3} for each of the camera’s three color
channels. (b) Absolute irradiance 1m from the dark flash If (λ). (c) Spectrum received by the
camera sensor when imaging a perfect white surface (S(p, λ)=1) illuminated by the dark flash.
The curves are the product of those shown in (a) and (b). The recorded pixel values for the three
channels are the integrals of these curves (see Eq. 3.1). Note under the dark flash: no channel
records in the visible range (black dashed lines); channel j=3 measures in the UV and channel
j=1 responds to IR.

35

Visible flash with 220x attenuation

Dark flash

Visible IR Red Green

Dark flash Blue UV UV w/block

Figure 3.3: Top left: Our camera and dark flash system. Top right: The perceived brightness
of the dark flash and a visible flash that gives a comparable camera exposure. To capture them
in a single image, it was necessary to attenuate the visible flash by a factor of 220 using neutral
density filters. Without these, the dark flash would not be visible in a non-saturated 8-bit image.
Bottom: A color chart captured with a pair of flash images (visible and dark), separated out
into five spectral bands. The bottom right subplot shows the UV band with a UV-block filter
attached to the camera that has a sharp cut-off at 400nm. The low intensities in this band show
that our camera is genuinely recording UV light, not blue light from fluorescence caused by the
UV part of the flash. See Section 3.5.2 for further discussion.

The threshold limit values (TLVs) for UV radiation 180–400nm incident on the eye (the most

sensitive part of the body) over any 8 hour period are given by the formula on p.155 of [157],

reproduced in Eqn. 3 below. It relates the maximum number of flashes to the effective irradiance

EEff, relative to a monochromatic source at 270nm. EEff is computed, using Eqn. 4 below,

from the spectral irradiance of the flash If (λ) (units: µJ/cm2/nm/flash) and a hazard weighting

function H(λ) (which is 1 at 270nm), given on p.157 of [157]. In Figure 3.4, we show If (λ) and

H(λ). Integrating over the product of the two and inserting EEff into Eqn. 3, we arrive at the

value of 130,000 flashes. Note that this number scales with the inverse square of distance, so at

2m the max safe limit would be 520,000 flashes.

320 340 360 380 400
0

1

2

3

4

5

6
x 10

−4

Wavelength (nm)

H
a
z
a
rd

 f
a
c
to

r
−

 H
(λ

)

320 340 360 380 400
0

2

4

6

8

10

12

F
la

s
h
 i
rr

a
d
ia

n
c
e
 I

f (λ
)

a
t
1
m

Max flashes = 3000
EEff

EEff =
∫
H(λ)If (λ) dλ

Figure 3.4: If (λ) and H(λ), see text for details.

Putting the above numbers in another way, if we assume that 30 minutes outside in the sun results

in the maximum permissible UV dose on a bright summer day, then each flash is equivalent to

being outside for 1/100th second. Hence our dark flash poses no significant safety hazard.

36

3.4 Dark flash processing

The pair of images, F and A are captured using a shutter speed sufficient to avoid camera shake.

We assume that the ambient illumination is weak, thus A will typically be very noisy and the

illumination in F will be dominated by the dark flash If (λ). We seek an image R whose edges

are close to those in F and whose intensities are close to a denoised version of A, hopefully being

similar to a long-exposure shot of the scene L.

Standard approaches to denoising use spatial priors that enforce sparsity on image gradients [129].

In the flash/no-flash scenario, F contains high-frequency details that can assist the denoising

process. But unlike conventional flash/no-flash photography, our flash and ambient illuminations

If (λ) and Ia(λ) are by design almost non-overlapping, thus the colors in F will be quite different

to those in the ambient image A or the long-exposure L. We propose a solution that uses

the strong correlations between color channels as a constraint in an optimization scheme which

computes R from A and F .

3.4.1 Spectral constraints

Consider the 1-D example in Figure 3.5 which shows a scanline across 3 squares in the color chart

from Figure 3.3. Figure 3.5(a) shows the intensities from the red channel of a long exposure shot

(L1, in magenta) and IR from the dark flash (F1, in black). Although the intensities are quite

different, the edges are aligned, since the spectral reflectance at red and IR wavelengths are

correlated with one another. The alignment of the edges is apparent in Figure 3.5(b) where

the gradients along the scanline ∇F1 and ∇L1 are shown (∇F1(p) = F1(p) − F1(p − 1), the

difference between adjacent pixels p). As is widely known, this gradient signal is sparse, being

close to zero everywhere but a few locations. Now, if we consider the difference between the two

gradient signals ∇F1 − ∇L1 (Figure 3.5(c)) then this too will be sparse, as shown by shape of

the histogram in Figure 3.5(d). Now consider a dark flash and noisy ambient image pair, shown

in Figure 3.5(e)–(h). The difference between gradients ∇F1 −∇A1 (in Figure 3.5(g)) is now no

longer sparse, as shown by it’s Gaussian-shaped histogram in Figure 3.5(h).

Reflecting the sparse distribution of ∇F1 − ∇L1 in Figure 3.5(d), our spectral constraints take

the form of a sparse norm on the gradient difference between channels in the reconstructed image

R and the flash image F1, i.e. |∇Rj −∇F1|α where α ≤ 1. This encourages the edge structures

in Rj to align spatially with those in F1 while allowing their magnitudes to differ. Thus, when

transitioning between two materials, it does not matter if the spectral reflectances are different

in visible and IR/UV bands, provided that there is an significant edge in IR/UV. If an `2 norm

were used, this would not be the case, and ∇Rj and ∇F1 would have to closely match, even at

material transitions, so causing artifacts in Rj (see Figure 3.15). While a conventional spatial

prior, such as |∇Rj |α, α < 1, would also reduce noise, it would not encourage the edges to align

with those of F which are close to those of the desired solution L.

We also impose a similar constraint to the UV channel: |∇Rj −∇F3|α, recalling that F3 records

37

UV and F1 records IR. For R3 (the blue channel), this will be a strong constraint since, in terms

of wavelength, blue is much closer to UV than to IR. In this example, we have only considered

1-D gradients but in the real problem we use both x and y gradients, with separate terms for

each. For brevity, we use ∇ to refer to both ∇x and ∇y.

0

100

200

 Long Exposure

100

−50

0

50

100

0 50 100

−20

0

20

−30 −20 −10 0 10 20 30
0

10

20

30

40

50

Ambient

0 50 100

−30 −20 −10 0 10 20 30

Reconstruction

0 50 100

−30 −20 −10 0 10 20 30

In
te

n
si

ty
G

ra
d

ie
n

t
D

i"
e

re
n

ce
 o

f

G
ra

d
ie

n
ts

 (
D

O
G

)
D

O
G

 H
is

to
g

ra
m

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

(k)

(l)

Figure 3.5: 1-D example of the spectral constraints in our model, using a a scan line across 3
squares in the color chart of Figure 3.3. See text for explanation.

3.4.2 Spatial-spectral cost function

Our cost function consists of three main terms: (i) Likelihood: the intensities of the reconstruc-

tion Rj should be close to those of the noisy ambient image A under an `2 norm, assuming a

Gaussian noise model. (ii) Spatial prior: ∇Rj should be small under a sparse norm, reflecting

the heavy-tailed nature of image gradients. The spatial prior term helps to give a further boost

to image quality. (iii) Spectral constraint: ∇Rj should be close to both ∇F1 (IR) and ∇F3

(UV) under a sparse norm, as explained above.

As with existing flash/no-flash techniques, we use a shadow and specularity mask m(p) which

removes artifacts from the flash image. Details of the mask construction are given in Section 3.4.3

below. The overall cost function for each channel j is:

argmin
Rj

∑
p

[
µj m(p)(Rj(p)−Aj(p))2︸ ︷︷ ︸

Likelihood

+κ m(p)|∇Rj(p)|α︸ ︷︷ ︸
Spatial

+

|∇Rj(p)−∇F1(p)|α︸ ︷︷ ︸
IR Spectral

+ |∇Rj(p)−∇F3(p)|α︸ ︷︷ ︸
UV Spectral

]
(3.2)

In our experiments, unless otherwise stated, we use κ = 1, α = 0.7. We solve for each each

channel j separately. m(p) has the effect of increasing the weight on the likelihood and spatial

terms in regions of shadows or specularities. We also assumed the UV and IR spectral terms to

have equal weight for all channels j. Hence the weighting on the reconstruction term for each

38

channel µj is the only important parameter in the model and strongly depends on the noise level

of the ambient image A. Since the blue channel is often significantly noisier than the others,

we use a different value for µ3 than for µ1 and µ2 (which are set to be the same). Intuitively,

if µj is set to a large value then the colors of R will be close to those of A at the expense of

increased noise. Conversely, if µj is small then the noise in R is reduced, but the colors will

deviate from those in A. Choosing the value of µj can be done semi-automatically from the level

of under-exposure of A (given by the camera’s exposure meter) and the camera’s ISO setting. If

needed, the value may be fine-tuned on a small image patch, before processing the entire image.

Typical values range from µj = 5 (high noise) to µj = 40 (low noise).

Returning to our 1-D example in Figure 3.5, we show the scanline across the color chart for our

reconstructed image R in Figure 3.5(i)–(l). Despite the spectral reflectances of the squares being

quite different, the intensities of R1 shown in orange in Figure 3.5(i) closely match those of the

desired solution L1 in Figure 3.5(a). Note that R1 is kept close to A1 (shown in Figure 3.5(e))

by the likelihood term, while the sparse norm on the spectral terms removes the noise.

Eq. 3.2 may be optimized for any α ≤ 1 with the fast numerical algorithm of Chapter 4, which

takes less than a minute for a megapixel image to process all 3 color channels. This is faster than

the cross-bilateral filter while giving superior quality results.

3.4.3 Pre & post-processing

Pre-processing. All images were captured in RAW mode. They were then demosaiced and

manually white-balanced using some neutral-colored object (e.g. a wall or calibration target) in

the scene. The mask m(p) was built using the same methods used in [128], namely the shadows

were detected by finding areas where |F −A| is very small. Specularities were found by looking

for pixels saturated in F1 (IR channel). In areas of shadow/specularity m(p) = 5 and m(p) = 1

in all other areas, smoothly varying between the two at the boundaries. In high noise conditions,

we apply a small Gaussian smoothing to Aj to break up any spurious image structure formed

by the noise. The optimization is then performed on the linear tonescale images (i.e. without

gamma correction).

Post-processing. If the ambient light levels are very low, the colors in the ambient image can

become imbalanced, particularly with a blue tint due to excessive noise levels in the blue channel.

Hence the output of the optimization will also have a similar color cast and will not look similar to

a long-exposure shot L. To compensate for this, we use an additional color correction operation

that applies a global color mapping to R. To generate this mapping function, we determined the

tone response curve of our camera for each color channel using a stack of images taken over a

wide range of exposures [44]. Particular care was taken when fitting the parametric model to the

low intensity part of the curve. In this regime, the sensor noise causes the curve to be non-linear,

in turn giving rise to the color casts observed in very noisy images (e.g. Figure 3.6). By passing

each Rj through its appropriate mapping function, we can infer the true value of each pixel,

yielding colors close to those in a long-exposure shot L. Finally, we gamma-correct the images

39

for display, using γ = 1.8.

3.5 Results

3.5.1 Comparison experiments

We compare our method to a range of different hardware and software approaches. In Figure 3.13

we explore in turn the importance of having UV and IR in our dark flash by removing the

corresponding spectral term in the cost function of Eq. 3.2. The figure shows the need for both

the UV and IR components, since if either is removed, the adjacent spectral bands (blue and red,

respectively) in R become degraded.

For the dark flash system to be practical it must achieve high quality reconstructions in low

levels of ambient illumination. In Figure 3.6, Figure 3.7, Figure 3.8 and Figure 3.9, we show 4

test examples: two portrait shots and two still scenes. The test images were captured using two

different types of ambient illumination (tungsten and compact fluorescent) and contain a wide

range of materials and colors. The images in Figure 3.6, Figure 3.7, Figure 3.8 and Figure 3.9

are high resolution so are best viewed under magnification, in order that fine details and noise

may be seen. To show how the noise levels vary across color channel we show a small region in

two of the images, separated out into its constituent color planes. This typically reveals the blue

channel to be far noisier than the others.

In Figure 3.10, Figure 3.12 and Figure 3.11 we show an example of denoising with different skin

tones.The scene illumination was below 1 Lux in all cases. This is dimmer than the illumination

form a candle. In Figure 3.10, we compare our result to that of a state-of-the-art denoising

method, BM3D [40]. Our method is able to suppress the noise and recover edges better than

BM3D, althoughthere are some color artifacts on the coat. In Figure 3.12 and Figure 3.11, we

compare our result with the output of a Sony camera, a state-of-the-art camera enabling low-light

photography. The Sony images are taken without flash. Our output has less noise and better

image recovery.

To make comparisons straightforward, the shutter speed used to capture the flash/no-flash pair is

varied, thus simulating different levels of ambient illumination. In practice however, the shutter

speed would be set to the slowest level that avoids camera shake, irrespective of the level of

ambient light. As the light levels drop, the ambient image becomes noisier (the dark flash image

F stays constant, however) thus making the reconstruction harder. Three different noise scenarios

are explored: (i) Low, where it is possible to achieve reconstructions close to a long exposure

reference shot; (ii) Medium, where the reconstruction is acceptable in terms of quality and (iii)

High, where a significant degradation in quality is visible and the failure modes of the algorithm

are evident. At each noise level, the degree of under-exposure of the ambient image A, relative

to the long exposure reference L, is quoted. These range from 1/32nd of ambient illumination

(Figure 3.8(top)), down to 1/256th for the portrait shots. Assuming 1/30th of a second is

required to avoid camera shake, the results are equivalent to taking pictures in conditions where

40

exposures ranging from 1 second to 8 seconds would otherwise be required. Techniques that

permit blur-free photography at slow shutter speeds, such as image stabilizers, would extend the

range of operation of the dark flash system to even longer equivalent exposures.

Ensuring accurate alignment between F and A is an important practical issue since the spec-

tral constraints require this. While a range of software approaches for image registration exist

(e.g. [6]), any commercial implementation of the system would use a hardware approach based on

sensors that can capture pairs of images with virtually no delay between them (e.g. Fuji Finepix

Z10fd), guaranteeing good alignment. With our prototype, we sidestep this issue and capture

the shots using a tripod. It is difficult to draw comparisons with Petschnigg et al. [128] since

they do not specify the exposures used to capture their images, but qualitatively the majority

of their examples correspond to our low noise case, with a single case being equivalent to our

medium noise level.

At high noise levels, some color deviations and loss of detail can be observed. This is a con-

sequence of low µj values which give the likelihood term little weight in the optimization. At

all noise levels, our reconstructions contain some artifacts that result from the dark flash illu-

mination. If a material absorbs both UV and IR strongly, then F will contain no gradients to

guide the reconstruction. Examples of this include: the freckles on the man in Figure 3.1 &

Figure 3.7 and the red lips of the doll in Figure 3.8. Fortunately, this is relatively uncommon,

as demonstrated by the range of colors and materials in our shots, the vast majority of which

are accurately recovered. In particular, human skin and hair, two materials relevant to the dark

flash application, are plausibly reproduced.

In Figure 3.14 we compare our algorithm to alternate methods, using the mid-noise case. First, we

use the processing pipeline based on the cross-bilateral filter and detail enhancement, as described

in [128]. Using the dark flash/ambient image pair with their system, the results obtained are

inferior to our approach. The range term in the cross-bilateral filter causes the edge strength

in the flash image F to directly influence the smoothing of the ambient image A. Thus it will

only operate correctly if the edges in F and A are closely matched in magnitude, an unrealistic

assumption since spectral reflectances typically differ between bands. In contrast, our model

permits the edge magnitudes to differ when α ≤ 1 in Eq. 3.2, giving a reconstruction of superior

quality. Second, we tried two approaches that attempt to directly denoise the ambient image:

(i) bilateral filtering [159] and (ii) a commercial denoising tool, Noise Ninja [35]. Both methods

perform poorly compared to the flash/no-flash approaches.

In Figure 3.15 we explore how the value of α in Eq. 3.2 effects the reconstruction. When a non-

sparse norm is used (α = 2), the ambient colors bleed. This can be prevented by using α ≤ 1,

with some improvement in quality for α = 0.7.

3.5.2 Fluorescence

Certain materials fluoresce when illuminated by the UV component of our flash, the most common

instances being white items of clothing such as the stripes in Figure 3.6. Fluorescence manifests

41

itself as visible blue light that gives an unnaturally bright intensity in F3 in that part of the

scene. Experimentally, we find the phenomenon to be relatively rare: our test scenes contain

a wide range of materials, natural and man-made, yet it only occurs in a few locations. It is

certainly not the dominant source of signal in F3, as demonstrated by Figure 3.3(bottom). Where

it does occur, it can produce some minor purple artifacts. Another drawback is that other people

observing the subjects during the photograph may see a glow from the clothing, thus making the

flash not so invisible to them, although the subjects themselves, if looking at the camera, will

not notice this.

3.5.3 Photometric flash measurements

One of the main objectives of our dark flash is that it should be as unnoticeable as possible

to human subjects. We measured the dark flash output with a spectrometer to determine the

spectral irradiance (shown in Figure 3.2(b)) 1m from the flash. This was then converted to

photometric units, using the photopic luminosity function of Vos [163]. The luminous exposure

for the dark flash was 1.6 lux seconds. A visible flash set to produce an image V of similar

intensity to a dark flash image F had luminous exposure of 362 lux seconds, a factor of 226

times brighter. This ratio agrees closely with the experiment of Figure 3.3(top right) where

an attenuation of 220 times was required to make the visible flash of comparable brightness to

the dark flash. In Figure 3.6 and Figure 3.7, we show images D captured with a visible flash

attenuated by this factor. The resulting images are unacceptably noisy.

Subjectively, people report that when looking directly at the flash they see a weak purple light

that does not dazzle, or leave an after-image. They also report that if not looking directly at

the dark flash, the burst of light is very easy to miss. By contrast, when using a visible flash

that gives a comparable scene exposure, the burst of light is highly dazzling and leaves a strong

after-image.

3.6 Other applications

Although our main focus has been the dark flash application, both the hardware and software

elements of our system can be used in a variety of other ways.

3.6.1 Estimation of spectral reflectance

By taking two images, one with the dark flash, the other with a visible flash, we can obtain 5

different spectral measurements at each point in the scene: UV,B,G,R,IR as opposed to 3 obtained

with a conventional camera. The spectral reflectances of real world materials can be accurately

modeled in a low-dimensional subspace using PCA with relatively few components [164]. Using

a spectrometer and reflectance probe, we measured 255 different materials in the real world and

computed a set of 5 PCA basis functions for the range 360–800nm. We then used the constrained

42

least squares formulation introduced in [126] to solve for the spectral reflectance functions for

all points in the scene (S(p, λ) in Eq. 3.1). In Figure 3.16(left), we show the estimated spectral

reflectance for four squares from the color chart in Figure 3.8, along with ground truth. Note

that we are able to accurately infer the spectrum beyond the visible range. In Figure 3.16(right)

we compare the RMS error between our spectra and the ground truth over the visible range. We

achieve very similar total error to the approach of Park et al. [126]: 0.82 and 0.79 respectively,

compared to 1.19 when using R,G,B channels alone.

3.6.2 Color-band denoising

The spectral constraints used in our dark flash approach can be applied to images captured

by standard cameras. One example, as shown in Figure 3.17, is for conventional flash/no-flash

processing, using a visible flash/ambient pair. When using our algorithm in this configuration,

the spectral constraint reduces to a single term linking each channel in the flash image to its

corresponding channel in the ambient, hence the term no longer links between different spectral

bands. Our algorithm yields better results than the cross-bilateral based method.

Another application is where one color channel is much noisier than the others. For example,

candle-light is very weak in the blue part of the spectrum, compared to red and green. Hence

when trying to white balance a candle-lit image, the blue channel must be multiplied by a large

factor, increasing the noise levels. Using spectral constraints, the blue channel can be denoised

using the red and green channels (in place of F1 and F3 in Eq. 3.2). This gives a superior result

to denoising the blue channel using spatial priors and likelihood alone. See Figure 3.18 for this

technique applied to a candle-lit image captured with an unmodified Canon 40D.

3.7 Discussion

We have demonstrated a camera and flash system that can take pictures in low light conditions

using a flash that is far less noticeable and disruptive than a conventional one. The system uses

standard hardware for the most part, combined with novel image processing techniques. The

spectral constraints are a powerful way of combining the images, yielding good quality results

in low light conditions. In addition, we have shown that the hardware and software techniques

introduced in this paper can be used in a number of other applications.

Our hardware is a prototype and can be improved in a number of ways. An obvious limitation

is the need to take two images of the scene. This precludes the capture of fast moving scenes

and adds to the overall complexity of the system. However, by modifying the Bayer pattern on

the sensor to include UV-only and IR-only pixels (for a total of 5 channels), we would be able to

implement the dark flash concept using a single image. Additionally, our large flash unit could

be replaced with compact UV and IR LEDs giving a more controllable pulse duration and a

more precise spectral emission, perhaps further reducing the visibility of the flash. This would

also permit the dark flash concept to be implemented in small platforms such as cell-phones,

43

where a flash is often needed due to poor low-light performance on account of the small sensor

size. Recently, new cameras with “inverted CMOS” sensors have been introduced which improve

the low-light performance of standard cameras. Our algorithm may be used in conjunction with

these new sensors to enable photographs at even lower light levels than conventional sensors.

44

F
A

 −
 L

o
w

 n
o

is
e

A
 −

 M
e

d
.

n
o

is
e

A
 −

 H
ig

h
 n

o
is

e
V

L
R

 −
 L

o
w

 n
o

is
e

R
 −

 M
e

d
.

n
o

is
e

R
 −

 H
ig

h
 n

o
is

e
D

Figure 3.6: A portrait shot captured with our camera/flash under tungsten illumination. Column
1 shows the dark flash shot (F) and long exposure reference (L). Our results are shown in Columns
2,3 & 4. For each ambient image (A) of decreasing exposure (yielding increased noise), we show
the reconstructed output (R). Column 5 shows a visible flash image (V), along with a visible
flash shot (D) attenuated with neutral density filters so that it is comparably dazzling to F. The
Low, Medium and High noise levels correspond to 6, 7 and 8 stops of underexposure respectively
(corresponding to 1/64th, 1/128th and 1/256th of ambient long exposure).

45

F
A

 −
 L

o
w

 n
o

is
e

A
 −

 M
e

d
.

n
o

is
e

A
 −

 H
ig

h
 n

o
is

e
V

L
R

 −
 L

o
w

 n
o

is
e

R
 −

 M
e

d
.

n
o

is
e

R
 −

 H
ig

h
 n

o
is

e
D

Figure 3.7: A portrait shot captured with our camera/flash under tungsten illumination. Column
1 shows the dark flash shot (F) and long exposure reference (L). Our results are shown in Columns
2,3 & 4. For each ambient image (A) of decreasing exposure (yielding increased noise), we show
the reconstructed output (R). Column 5 shows a visible flash image (V), along with a visible
flash shot (D) attenuated with neutral density filters so that it is comparably dazzling to F. The
Low, Medium and High noise levels correspond to 6, 7 and 8 stops of underexposure respectively
(corresponding to 1/64th, 1/128th and 1/256th of ambient long exposure). We also show a
zoomed-in section, separated into red, green, blue color channels.

46

L
V

F

A
 −

 L
o

w
 n

o
is

e
A

 −
 M

e
d

.
n

o
is

e
A

 −
 H

ig
h

 n
o

is
e

R
 −

 L
o

w
 n

o
is

e
R

 −
 M

e
d

.
n

o
is

e
R

 −
 H

ig
h

 n
o

is
e

Figure 3.8: A scene captured with our camera/flash under fluorescent illumination. Rows 1 &
2 show shots under ambient illumination (A) of decreasing exposure (yielding increased noise)
and our reconstructed output (R). Row 3 shows, from left to right: Long exposure reference (L),
Visible flash shot (V) and dark flash shot (F). Low, Medium and High noise levels correspond
to 5, 6 and 7 stops of underexposure respectively (equating to 1/32nd, 1/64th and 1/128th of
ambient long exposure).

47

L
V

F

A
 −

 L
o

w
 n

o
is

e
A

 −
 M

e
d

.
n

o
is

e
A

 −
 H

ig
h

 n
o

is
e

R
 −

 L
o

w
 n

o
is

e
R

 −
 M

e
d

.
n

o
is

e
R

 −
 H

ig
h

 n
o

is
e

Figure 3.9: A scene captured with our camera/flash under fluorescent illumination. Rows 1 &
2 show shots under ambient illumination (A) of decreasing exposure (yielding increased noise)
and our reconstructed output (R). Row 3 shows, from left to right: Long exposure reference (L),
Visible flash shot (V) and dark flash shot (F). Low, Medium and High noise level correspond to
5.5, 6.5 and 7.5 stops underexposed (corresponding to 1/45th, 1/90th and 1/180th of ambient
long exposure).

48

Figure 3.10: Denoising at extremely low light levels (0.9 Lux). Top-left: Flash shot; Top-right:
Ambient; Bottom-left: Our reconstruction; Bottom-right: Best reconstruction of BM3D [40].

49

Figure 3.11: Denoising at extremely low light levels (0.7 Lux). Top-left: UV/IR Flash shot;
Top-right: Noisy Ambient; Bottom-left: Our reconstruction; Bottom-right: Image taken from
Sony NightShot camera.

50

Figure 3.12: Denoising at extremely low light levels (0.7 Lux). Top-left: UV/IR Flash shot;
Top-right: Noisy Ambient; Bottom-left: Our reconstruction; Bottom-right: Image taken from
Sony NightShot camera.

51

UV + IR (blue channel) UV + IR (red channel)

IR only (blue channel) UV only (red channel)

Figure 3.13: Closeup of Figure 3.8 , showing the need for both spectral terms in Eq. 3.2. Top
left: Blue channel of reconstructed image R using both UV and IR spectral terms. Bottom left:
Blue channel using only IR spectral term. Top right: Red channel of reconstructed image R
using both UV and IR spectral terms. Bottom right: Red channel using only UV spectral term.
Note that the removal of the flash in the adjacent band causes a degraded result.

52

R CB

B NN

UV/IR flash

Ambient only

Figure 3.14: Comparison of our approach to different processing methods, showing two crops
from Figure 3.8, along with the blue channel of the first crop. The top set uses a dark flash /
ambient image pair, while the bottom uses the ambient image only. Key. R: Our reconstruction
using spectral constraints. CB: Pipeline from [128] based on cross-bilateral filter and detail
enhancement. B: Bilateral filter of ambient image [159]. NN: Noise Ninja commercial denoising
plugin for Photoshop [35]. Our reconstruction approach produces superior results to the cross-
bilateral approach and the standard denoising methods.

53

α=0.7

α=1

α=2

Figure 3.15: Effect of varying α in Eq. 3.2. For values ≤ 1, R contains crisp edges, even if the
spectral reflectances of the materials in visible and non-visible wavelengths differ somewhat, as is
typically the case. Setting α = 2 has the undesirable effect of causing the colors to bleed between
regions. When α = 2 the spectral constraints force the edges in the UV/IR flash and ambient to
be the same, an unrealistic assumption given that they are captured at different wavelengths.

0

0.2

0.4

0.6

0.8

1

400 500 600 700 800
0

0.2

0.4

0.6

0.8

1

400 500 600 700 800

Wavelength (nm) Wavelength (nm)

S
p

e
ct

ra
l R

e
�

e
ct

a
n

ce
S

p
e

ct
ra

l R
e

�
e

ct
a

n
ce

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Color chart square index

R
M

S
 e

rr
o

r

Ours

Park et al.

Figure 3.16: Using a dark/visible flash pair we are able to accurately infer the spectral reflectance
of objects. Left: Spectra of four different squares from the color chart in Figure 3.8. Solid line
is inferred spectrum, dashed line is ground truth. Line colors correspond to square color. Right:
RMS estimation errors for all 24 squares in color chart over 400-700nm range, compared to results
of multi-spectral illumination approach of Park et al. [126].

54

R − Vis CB − Vis

Figure 3.17: The model in Eq. 3.2 being used in a visible flash/no-flash setting. The two crops
are taken from Figure 3.8, with the center row showing the the blue channel of the first row.
R - Vis: reconstruction with our model using spectral constraints. CB - Vis: Pipeline from [128]
based on cross-bilateral filter and detail enhancement.

Ambient Without spectral With spectral

Figure 3.18: Close up of scene in Figure 3.8 illuminated by candlelight. Left: Blue channel
of white-balanced ambient shot, showing high noise due to lack of blue wavelengths in candle-
light. Middle: Denoising of ambient using likelihood and spatial priors only. Right: Denoising of
ambient using spectral constraints from the red and green channels, in addition to the likelihood
and spatial priors. The spectral constraints significantly improve performance.

55

Chapter 4

Fast Image Deconvolution Using

Hyper-Laplacian Priors

4.1 Introduction

In this chapter, we consider the development of a novel and efficient non-blind deconvolution

algorithm. Non-blind deconvolution seeks to deblur an image when the blur kernel is known.

There are many approaches, both in hardware and software, to estimate the blur kernel; these

will be considered in (Chapter 5). This is joint work with Rob Fergus and was published in NIPS

2009 [87].

Natural image statistics have been used very effectively as priors for problems in image processing,

computer vision and computational photography. Some examples are denoising [129], deblurring

[55], transparency separation [100] and super-resolution [155]. Further examples are provided in

Chapter 2. Priors based on natural image statistics can regularize ill-posed problems to yield

high-quality results. However, digital cameras now have sensors that record images with tens of

megapixels (MP), e.g. the latest Canon DSLRs have over 20MP. Solving the above tasks for such

images in a reasonable time frame (i.e. a few minutes or less), poses a severe challenge to existing

algorithms. This is usually (but not always) because the regularizers are non-convex. In this

paper we focus on one particular problem: non-blind deconvolution, and propose an algorithm

that is practical for very large images while still yielding high quality results.

Numerous non-blind deconvolution approaches exist, varying greatly in their speed and sophis-

tication. Simple filtering operations such as classical Wiener deconvolution are very fast but

typically yield poor results. The reasons for this are twofold: blurring attenuates high frequen-

cies and a naive boosting of these frequencies leads to ringing artifacts; real-world blurred images

have noise in them and Wiener deconvolution is highly sensitive to the noise parameter setting.

Most of the best-performing approaches [96, 139] solve globally for the corrected image, encour-

aging the marginal statistics of a set of filter outputs to match those of uncorrupted images.

56

These statistics act as a prior to regularize the problem. For these methods, a trade-off exists

between accurately modeling the image statistics and being able to solve the ensuing optimiza-

tion problem efficiently. If the marginal distributions are assumed to be Gaussian, a closed-form

solution exists in the frequency domain and FFTs can be used to recover the image very quickly

- this is essentially Wiener deconvolution.

However, real-world images typically have marginals that are non-Gaussian, as shown in Fig-

ure 4.1, and thus the output is often of mediocre quality. A common approach is to assume the

marginals have a Laplacian distribution. Since the likelihood (image formation) term is quadratic

and the Laplacian form is convex, the overall resulting problem is convex. This allows a num-

ber of fast `1 and related TV-norm methods [137, 167] to be deployed, which give good results

in a reasonable time. However, studies of real-world images have shown the marginal distribu-

tions have significantly heavier tails than a Laplacian, being well modeled by a hyper-Laplacian

[56, 96, 144]. Although such priors give the best quality results, they are typically far slower

than methods that use either Gaussian or Laplacian priors. This is a direct consequence of the

problem becoming non-convex for hyper-Laplacians with α < 1, meaning that many of the fast `1

or `2 tricks are no longer applicable. Instead, standard optimization methods such as conjugate

gradient (CG) must be used. One variant that works well in practice is iteratively reweighted

least squares (IRLS) [150] that solves a series of weighted least-squares problems with CG, each

one an `2 approximation to the non-convex problem at the current point. In both cases, typically

hundreds of CG iterations are needed, each involving an expensive convolution of the blur kernel

with the current image estimate.

Recent papers have highlighted the benefits of using non-convex regularizers in the context of

compressive sensing [30, 29, 31, 42]. The results from these papers can be summarized as: it is

beneficial to use non-convex regularizers of the form ‖x‖p, p < 1, to promote greater sparsity in

the solution x; (ii) using p < 1 can give sparser solutions than p = 1; and (iii) IRLS can give very

good performance even in the non convex problems. In the scenario of non-blind deconvolution,

we are forced into the regime of non-convex regularizers owing to the nature of the problem.

An interesting direction for future work would be to see if results from the compressive sensing

literature can be used to further improve non-blind deconvolution.

We introduce an efficient scheme for non-blind deconvolution of images using a hyper-Laplacian

image prior for 0 < α ≤ 1. Our algorithm uses an alternating minimization scheme where the

non-convex part of the problem is solved in one phase, followed by a quadratic phase which can be

efficiently solved in the frequency domain using FFTs. We focus on the first phase where at each

pixel we are required to solve a non-convex separable minimization. We present two approaches to

solving this sub-problem. The first uses a lookup table (LUT); the second is an analytic approach

specific to two values of α. For α = 1/2 the global minima can be determined by finding the

roots of a cubic polynomial analytically. In the α = 2/3 case, the polynomial is a quartic whose

roots can also be found efficiently in closed-form. Both IRLS and our approach solve a series of

approximations to the original problem. However, in our method each approximation is solved by

alternating between the two phases above a few times, thus avoiding the expensive CG descent

used by IRLS. This allows our scheme to operate several orders of magnitude faster. Although

57

−100 −80 −60 −40 −20 0 20 40 60 80 100

−14

−12

−10

−8

−6

−4

−2

Gradient

lo
g
 P

ro
b
a
b
ili

ty

Empirical

Gaussian (α=2)

Laplacian (α=1)

Hyper−Laplacian (α=0.66)

Figure 4.1: A hyper-Laplacian with exponent α = 2/3 is a better model of image gradients than a
Laplacian or a Gaussian. Left: A typical real-world scene. Right: The empirical distribution of
gradients in the scene (blue), along with a Gaussian fit (cyan), a Laplacian fit (red) and a hyper-
Laplacian with α = 2/3 (green). Note that the hyper-Laplacian fits the empirical distribution
closely, particularly in the tails.

we focus on the problem of non-blind deconvolution, it would be straightforward to adapt our

algorithm to other related problems, such as denoising or super-resolution.

The alternating minimization that we adopt is closely related to half-quadratic splitting, [61, 62,

167]. We also use a half-quadratic minimization, but the per-pixel sub-problem is quite different.

With the TV norm it can be solved with a straightforward shrinkage operation. In our work, as

a consequence of using a sparse prior, the problem is non-convex and solving it efficiently is one

of the main contributions of this paper.

Chartrand [29, 30] has introduced non-convex compressive sensing, where the usual `1 norm on

the signal to be recovered is replaced with a `p quasi-norm, where p < 1, resulting in a non-

convex per-pixel sub-problem. To solve this, a Huber approximation (see [29]) to the quasi-norm

is used. This allows the derivation of a generalized shrinkage operator to solve the non-convex

sub-problem efficiently. However, this approximates the original sub-problem.

4.2 Algorithm

We now introduce the non-blind deconvolution problem. x is the original uncorrupted linear

grayscale image of N pixels; y is an image degraded by blur and/or noise, which we assume to

be produced by convolving x with a blur kernel k and adding zero mean Gaussian noise. We

assume that y and k are given and seek to reconstruct x. Given the ill-posed nature of the task,

we regularize using a penalty function |.|α that acts on the output of a set of filters f1, . . . , fj

applied to x. A weighting term λ controls the strength of the regularization. From a probabilistic

perspective, we seek the MAP estimate of x: p(x|y,k) ∝ p(y|x,k)p(x), the first term being a

Gaussian likelihood and second being the hyper-Laplacian image prior. Maximizing p(x|y,k) is

equivalent to minimizing the cost − log p(x|y,k):

58

min
x

N∑
i=1

λ
2

(x⊕ k− y)2
i +

J∑
j=1

|(x⊕ fj)i|α
 (4.1)

where i is the pixel index, and ⊕ is the 2-dimensional convolution operator. For simplicity, we

use two first-order derivative filters f1 = [1 -1] and f2 = [1 -1]T , although additional ones can

easily be added (e.g. learned filters [124, 136], or higher order derivatives). For brevity, we denote

F ji x ≡ (x⊕ fj)i for j = 1, .., J .

Using the half-quadratic penalty method [61, 62, 167], we now introduce auxiliary variables w1
i

and w2
i (together denoted as w) at each pixel that allow us to move the F ji x terms outside the

|.|α expression, giving a new cost function:

min
x,w

∑
i

(
λ

2
(x⊕ k− y)2

i +
β

2

(
‖F 1

i x− w1
i ‖22 + ‖F 2

i x− w2
i ‖22
)

+ |w1
i |α + |w2

i |α
)

(4.2)

where β is a weight that we will vary during the optimization, as described in Section 4.2.3. As

β → ∞, the solution of Eq. 4.2 converges to that of Eq. 4.1. Minimizing Eq. 4.2 for a fixed β

can be performed by alternating between two steps, one where we solve for x, given values of w

and vice-versa. The novel part of our algorithm lies in the w sub-problem, but first we briefly

describe the x sub-problem and its straightforward solution.

4.2.1 x sub-problem

Given a fixed value of w from the previous iteration, Eq. 4.2 is quadratic in x. The optimal x is

thus: (
F 1TF 1 + F 2TF 2 +

λ

β
KTK

)
x = F 1Tw1 + F 2Tw2 +

λ

β
KTy (4.3)

where Kx ≡ x ⊕ k. Assuming circular boundary conditions, we can apply 2D Fast Fourier

Transforms (FFT) which diagonalize the convolution matrices F 1, F 2,K, enabling us to find the

optimal x directly:

x = F−1

(
F(F 1)∗ ◦ F(w1) + F(F 2)∗ ◦ F(w2) + (λ/β)F(K)∗ ◦ F(y)

F(F 1)∗ ◦ F(F 1) + F(F 2)∗ ◦ F(F 2) + (λ/β)F(K)∗ ◦ F(K)

)
(4.4)

where ∗ is the complex conjugate; ◦ denotes component-wise multiplication; F is the forward

FFT; and F−1 is the inverse FFT. The division is also performed component-wise. Solving

Eq. 4.4 requires only 3 FFT’s at each iteration since many of the terms can be precomputed.

The form of this sub-problem is identical to that of [167].

59

4.2.2 w sub-problem

Given a fixed x, finding the optimal w consists of solving 2N independent 1D problems of the

form:

w∗ = arg min
w
|w|α +

β

2
(w − v)2 (4.5)

where v ≡ F ji x. We now describe two approaches to finding w∗.

Lookup table

For a fixed value of α, w∗ in Eq. 4.5 only depends on two variables, β and v, hence can easily

be tabulated off-line to form a lookup table. The cost function in Eq. 4.5 is smooth away from

0, and so interpolation using a LUT is accurate for the purposes of image deconvolution. We

numerically solve Eq. 4.5 for 10, 000 different values of v over the range encountered in our

problem (−0.6 ≤ v ≤ 0.6). This is repeated for different β values, namely integer powers of√
2 between 1 and 256. Although the LUT gives an approximate solution, it allows the w

sub-problem to be (approximately) solved very quickly for any α > 0.

Analytic solution

For some specific values of α, it is possible to derive exact analytical solutions to the w sub-

problem. For α = 2, the sub-problem is quadratic and thus easily solved. If α = 1, Eq. 4.5

reduces to a 1-D shrinkage operation [167]. For some special cases of 1 < α < 2, there exist

analytic solutions [179]. Here, we address the more challenging case of α < 1 and we now

describe a way to solve Eq. 4.5 for two special cases of α = 1/2 and α = 2/3. For non-zero w,

setting the derivative of Eq. 4.5 w.r.t w to zero gives:

α|w|α−1sign(w) + β(w − v) = 0 (4.6)

For α = 1/2, this becomes, with successive simplification:

|w|−1/2sign(w) + 2β(w − v) = 0 (4.7)

|w|−1 = 4β2(v − w)2 (4.8)

w3 − 2vw2 + v2w − sign(w)/4β2 = 0 (4.9)

At first sight Eq. 4.9 appears to be two different cubic equations with the ±1/4β2 term, however

we need only consider one of these as v is fixed and w∗ must lie between 0 and v. Hence we can

replace sign(w) with sign(v) in Eq. 4.9:

w3 − 2vw2 + v2w − sign(v)/4β2 = 0 (4.10)

60

For the case α = 2/3, using a similar derivation, we arrive at:

w4 − 3vw3 + 3v2w2 − v3w +
8

27β3
= 0 (4.11)

there being no sign(w) term as it conveniently cancels in this case. Hence w∗, the solution of

Eq. 4.5, is either 0 or a root of the cubic polynomial in Eq. 4.10 for α = 1/2, or equivalently

a root of the quartic polynomial in Eq. 4.10 for α = 2/3. Although it is tempting to try the

same manipulation for α = 3/4, this results in a 5th order polynomial, which can only be solved

numerically (since no analytic solution exists). Other larger values of α result in polynomials of

order above 4, and therefore our analytic approach is limited to these two special cases above.

Finding the roots of the cubic and quartic polynomials: Analytic formulae exist for

the roots of cubic and quartic polynomials [170, 171] and they form the basis of our approach,

as detailed in Algorithm 4.3 and Algorithm 4.3. In both the cubic and quartic cases, the com-

putational bottleneck is the cube root operation. Analternative way of find the roots of the

polynomials Eq. 4.10 and Eq. 4.11 is to use a numerical root-finder such as Newton-Raphson.

In our experiments, we found Newton-Raphson to be slower and less accurate than either the

analytic method or the LUT approach (see [88] for futher details).

Selecting the correct roots: Given the roots of the polynomial, we need to determine which

one corresponds to the global minima of Eq. 4.5. When α = 1/2, the resulting cubic equation

can have: (a) 3 imaginary roots; (b) 2 imaginary roots and 1 real root, or (c) 3 real roots. In the

case of (a), the |w|α term means Eq. 4.5 has positive derivatives around 0 and the lack of real

roots implies the derivative never becomes negative, thus w∗ = 0. For (b), we need to compare

the costs of the single real root and w = 0, an operation that can be efficiently performed using

Eq. 4.13 below. In (c) we have 3 real roots. Examining Eq. 4.7 and Eq. 4.8, we see that the

squaring operation introduces a spurious root above v when v > 0, and below v when v < 0.

This root can be ignored, since w∗ must lie between 0 and v. The cost function in Eq. 4.5 has a

local maximum near 0 and a local minimum between this local maximum and v. Hence of the 2

remaining roots, the one further from 0 will have a lower cost. Finally, we need to compare the

cost of this root with that of w = 0 using Eq. 4.13.

We can use similar arguments for the α = 2/3 case. Here we can potentially have: (a) 4 imaginary

roots, (b) 2 imaginary and 2 real roots, or (c) 4 real roots. In (a), w∗ = 0 is the only solution.

For (b), we pick the larger of the 2 real roots and compare the costs with w = 0 using Eq. 4.13,

similar to the case of 3 real roots for the cubic. Case (c) never occurs: the final quartic polynomial

Eq. 4.11 was derived with a cubing operation from the analytic derivative. This introduces 2

spurious roots into the final solution, both of which are imaginary, thus only cases (a) and (b)

are possible.

In both the cubic and quartic cases, we need an efficient way to pick between w = 0 and a real

root that is between 0 and v. We now describe a direct mechanism for doing this which does not

involve the expensive computation of the cost function in Eq. 4.51.

1This requires the calculation of a fractional power, which is slow, particularly if α = 2/3.

61

Let r be the non-zero real root. 0 must be chosen if it has lower cost in Eq. 4.5. This implies:

|r|α +
β

2
(r − v)2 >

βv2

2

sign(r)|r|α−1 +
β

2
(r − 2v) ≶ 0 , r ≶ 0 (4.12)

Since we are only considering roots of the polynomial, we can use Eq. 4.6 to eliminate sign(r)|r|α−1

from Eq. 4.6 and Eq. 4.12, yielding the condition:

r ≶ 2v
(α− 1)

(α− 2)
, v ≷ 0 (4.13)

since sign(r) = sign(v). So w∗ = r if r is between 2v/3 and v in the α = 1/2 case or between v/2

and v in the α = 2/3 case. Otherwise w∗ = 0. Using this result, picking w∗ can be efficiently

coded, e.g. lines 12–16 of Algorithm 4.3. Overall, the analytic approach is slower than the LUT,

but it gives an exact solution to the w sub-problem.

4.2.3 Summary of algorithm

We now give the overall algorithm using a LUT for the w sub-problem. As outlined in Algorithm 1

below, we minimize Eq. 4.2 by alternating the x and w sub-problems T times, before increasing

the value of β and repeating. Starting with some small value β0 we scale it by a factor βInc

until it exceeds some fixed value βMax. In practice, we find that a single inner iteration suffices

(T = 1), although more can sometimes be needed when β is small.

Algorithm 1 Fast image deconvolution using hyper-Laplacian priors

Require: Blurred image y, kernel k, regularization weight λ, exponent α (¿0)
Require: β regime parameters: β0, βInc, βMax

Require: Number of inner iterations T .
1: β = β0, x = y
2: Precompute constant terms in Eq. 4.4.
3: while β < βMax do
4: iter = 0
5: for i = 1 to T do
6: Given x, solve Eq. 4.5 for all pixels using a LUT to give w
7: Given w, solve Eq. 4.4 to give x
8: end for
9: β = βInc · β

10: end while
11: return Deconvolved image x

As with any non-convex optimization problem, it is difficult to derive any guarantees regarding

the convergence of Algorithm 1. However, we can be sure that the global optimum of each sub-

problem will be found, given the fixed x and w from the previous iteration. Like other methods

that use this form of alternating minimization[61, 62, 167], there is little theoretical guidance

for setting the β schedule. We find that the simple scheme shown in Algorithm 1 works well

to minimize Eq. 4.2 and its proxy Eq. 4.1. We also note that empirically, the results are quite

62

robust to the choice of β schedule. The experiments in Section 4.3 show our scheme achieves

very similar SNR levels to IRLS, but at a greatly lower computational cost.

4.3 Results

We evaluate the deconvolution performance of our algorithm on images, comparing them to

numerous other methods: (i) `2 (Gaussian) prior on image gradients; (ii) Lucy-Richardson [133];

(iii) the algorithm of Wang et al. [167] using a total variation (TV) norm prior and (iv) a variant

of [167] using an `1 (Laplacian) prior; (v) the IRLS approach of Levin et al. [96] using a hyper-

Laplacian prior with α = 1/2, 2/3, 4/5. Note that only IRLS and our method use a prior with

α < 1. We note that the sampling-based deconvolution approach in [139] outperforms both our

method and IRLS, although running times are much slower. However, the unavailability of code

prevents us from comparing our method to theirs, and so we refer the readers to their paper for

experiments.

For the IRLS scheme, we used the implementation of [96] with default parameters, the only

change being the removal of higher order derivative filters to enable a direct comparison with other

approaches. Note that IRLS and `2 directly minimize Eq. 4.1, while our method, and the TV and

`1 approaches of [167] minimize the cost in Eq. 4.2, using T = 1, β0 = 1, βInc = 2
√

2, βMax = 256.

In our approach, we use α = 1/2 and α = 2/3, and compare the performance of the LUT and

analytic methods as well. All runs were performed with multithreading enabled (over 4 CPU

cores).

We evaluate the algorithms using a set of blurry images, created in the following way. 7 in-focus

grayscale real-world images were downloaded from the web. They were then blurred by real-world

camera shake kernels from [101]. 1% Gaussian noise was added, followed by quantization to 255

discrete values. In any practical deconvolution setting the blur kernel is never perfectly known.

Therefore, the kernel passed to the algorithms was a minor perturbation of the true kernel,

to mimic kernel estimation errors. In experiments with non-perturbed kernels (not shown), the

results are similar to those in Tables 4.3 and 4.1 but with slightly higher SNR levels. See Figure 4.2

for an example of a kernel from [101] and its perturbed version. Our evaluation metric was the

SNR between the original image x̂ and the deconvolved output x, defined as 10 log10
‖x̂−µ(x̂)‖2
‖x̂−x‖2 ,

µ(x̂) being the mean of x̂.

In Table 4.1 we compare the algorithms on 7 different images, all blurred with the same 19×19

kernel. For each algorithm we exhaustively searched over different regularization weights λ to

find the value that gave the best SNR performance, as reported in the table. In Table 4.3

we evaluate the algorithms with the same 512×512 image blurred by 8 different kernels (from

[101]) of varying size. Again, the optimal value of λ for each kernel/algorithm combination was

chosen from a range of values based on SNR performance. Table 4.2 shows the running time

of several algorithms on images up to 3072×3072 pixels. Figure 4.2 shows a larger 27×27 blur

being deconvolved from two example images, comparing the output of different methods.

63

The tables and figures show our method with α = 2/3 and IRLS with α = 4/5 yielding higher

quality results than other methods. However, our algorithm is around 300 to 1000 times faster

than IRLS depending on whether the analytic or LUT method is used. This speedup factor is

independent of image size, as shown by Table 4.2. The `1 method of [167] is the best of the other

methods, being of comparable speed to ours but achieving lower SNR scores. The SNR results for

our method are almost the same whether we use LUTs or analytic approach. Hence, in practice,

the LUT method is preferred, since it is approximately 5 times faster than the analytic method

and can be used for any value of α.

Image IRLS IRLS IRLS Ours Ours
Blurry `2 Lucy TV `1 α=1/2 α=2/3 α=4/5 α=1/2 α=2/3

1 6.42 14.13 12.54 15.87 16.18 14.61 15.45 16.04 16.05 16.44

2 10.73 17.56 15.15 19.37 19.86 18.43 19.37 20.00 19.78 20.26

3 12.45 19.30 16.68 21.83 22.77 21.53 22.62 22.95 23.26 23.27

4 8.51 16.02 14.27 17.66 18.02 16.34 17.31 17.98 17.70 18.17

5 12.74 16.59 13.28 19.34 20.25 19.12 19.99 20.20 21.28 21.00

6 10.85 15.46 12.00 17.13 17.59 15.59 16.58 17.04 17.79 17.89

7 11.76 17.40 15.22 18.58 18.85 17.08 17.99 18.61 18.58 18.96

Av. SNR gain 6.14 3.67 8.05 8.58 7.03 7.98 8.48 8.71 8.93

Av. Time 79.85 1.55 0.66 0.75 354 354 354 L:1.01 L:1.00
(secs) A:5.27 A:4.08

Table 4.1: Comparison of SNRs and running time of 9 different methods for the deconvolution
of 7 576×864 images, blurred with the same 19×19 kernel. L=Lookup table, A=Analytic. The
best performing algorithm for each kernel is shown in bold. Our algorithm with α = 2/3 beats
IRLS with α = 4/5, as well as being much faster. On average, both these methods outperform
`1, demonstrating the benefits of a sparse prior.

Image `1 IRLS Ours (LUT) Ours (Analytic)
size α=4/5 α=2/3 α=2/3

256×256 0.24 78.14 0.42 0.7

512×512 0.47 256.87 0.55 2.28

1024×1024 2.34 1281.3 2.78 10.87

2048×2048 9.34 4935 10.72 44.64

3072×3072 22.40 - 24.07 100.42

Table 4.2: Run-times of different methods for a range of image sizes, using a 27×27 kernel. Our
algorithm is more than 300 times faster than the IRLS method of [96].

4.4 Discussion

We have described an image deconvolution scheme that is fast, conceptually simple and yields

high quality results. Our algorithm takes a novel approach to the non-convex optimization prob-

lem arising from the use of a hyper-Laplacian prior, by using a splittting approach that allows the

non-convexity to become separable over pixels. Using a LUT to solve this sub-problem allows for

orders of magnitude speedup in the solution over existing methods. Our Matlab implementation

is available online at http://cs.nyu.edu/~dilip/research/fast-deconvolution/.

64

http://cs.nyu.edu/~dilip/research/fast-deconvolution/

Original

 L
2

SNR=14.89
t=0.1

 L
1

SNR=18.10
t=0.8

Blurred
SNR=7.31

Ours α=2/3

SNR=18.96
t=1.2

IRLS α=4/5

SNR=19.05
t=483.9

Original

 L
2

SNR=11.58
t=0.1

 L
1

SNR=13.64
t=0.8

Blurred
SNR=2.64

Ours α=2/3

SNR=14.15
t=1.2

IRLS α=4/5

SNR=14.28
t=482.1

Figure 4.2: Crops from two images (#1 & #5) being deconvolved by 4 different algorithms,
including ours using a 27×27 kernel (#7). In the bottom left inset, we show the original kernel
from [101] (lower) and the perturbed version provided to the algorithms (upper), to make the
problem more realistic. This figure is best viewed on screen, rather than in print.

65

Kernel IRLS IRLS IRLS Ours Ours
/ size Blurry `2 Lucy TV `1 α=1/2 α=2/3 α=4/5 α=1/2 α=2/3

#1: 13×13 10.69 17.22 14.49 19.21 19.41 17.20 18.22 18.87 19.36 19.66

#2: 15×15 11.28 16.14 13.81 17.94 18.29 16.17 17.26 18.02 18.14 18.64

#3: 17×17 8.93 14.94 12.16 16.50 16.86 15.34 16.36 16.99 16.73 17.25

#4: 19×19 10.13 15.27 12.38 16.83 17.25 15.97 16.98 17.57 17.29 17.67

#5: 21×21 9.26 16.55 13.60 18.72 18.83 17.23 18.36 18.88 19.11 19.34

#6: 23×23 7.87 15.40 13.32 17.01 17.42 15.66 16.73 17.40 17.26 17.77

#7: 27×27 6.76 13.81 11.55 15.42 15.69 14.59 15.68 16.38 15.92 16.29

#8: 41×41 6.00 12.80 11.19 13.53 13.62 12.68 13.60 14.25 13.73 13.68

Av. SNR gain 6.40 3.95 8.03 8.31 6.74 7.78 8.43 8.33 8.67

Av. Time 57.44 1.22 0.50 0.55 271 271 271 L:0.81 L:0.78
(sec) A:2.15 A:2.23

Table 4.3: Comparison of SNRs and running time of 9 different methods for the deconvolution of
a 512×512 image blurred by 7 different kernels. L=Lookup table, A=Analytic. Our algorithm
beats all other methods in terms of quality, with the exception of IRLS on the largest kernel size.
However, our algorithm is far faster than IRLS, being comparable in speed to the `1 approach.

Algorithm 2: Solve Eq. 4.5 for α = 1/2

Require: Target value v, Weight β
1: ε = 10−6

2: {Compute intermediary terms m, t1, t2, t3}
3: m = −sign(v)/4β2

4: t1 = 2v/3

5: t2 =
3
√
−27m− 2v3 + 3

√
3
√

27m2 + 4mv3

6: t3 = v2/t2
7: {Compute 3 roots, r1, r2, r3:}
8: r1 = t1 + 1/(3 · 21/3) · t2 + 21/3/3 · t3
9: r2 = t1 − (1−

√
3i)/(6 · 21/3) · t2

− (1 +
√

3i)/(3 · 22/3) · t3
10: r3 = t1 − (1 +

√
3i)/(6 · 21/3) · t2

− (1−
√

3i)/(3 · 22/3) · t3
11: {Pick global minimum from (0, r1, r2, r3)}
12: r = [r1, r2, r3]
13: c1 = (abs(imag(r)) < ε) {Root must be real}
14: c2 = real(r)sign(v) > (2/3 · abs(v))
{Root must obey bound of Eq. 4.13}

15: c3 = real(r)sign(v) < abs(v) {Root < v}
16: w∗= max((c1 & c2 & c3)real(r)sign(v))sign(v)

return w∗

Algorithm 3: Solve Eq. 4.5 for α = 2/3

Require: Target value v, Weight β
1: ε = 10−6

2: {Compute intermediary terms m, t1, . . . , t7:}
3: m = 8/(27β3)
4: t1 = −9/8 · v2
5: t2 = v3/4
6: t3 = −1/8 ·mv2
7: t4 = −t3/2 +

√
−m3/27 +m2v4/256

8: t5 = 3
√
t4

9: t6 = 2(−5/18 · t1 + t5 +m/(3 · t5))
10: t7 =

√
t1/3 + t6

11: {Compute 4 roots, r1, r2, r3, r4:}
12: r1 = 3v/4 + (t7 +

√
−(t1 + t6 + t2/t7))/2

13: r2 = 3v/4 + (t7 −
√
−(t1 + t6 + t2/t7))/2

14: r3 = 3v/4 + (−t7 +
√
−(t1 + t6 − t2/t7))/2

15: r4 = 3v/4 + (−t7 −
√
−(t1 + t6 − t2/t7))/2

16: {Pick global minimum from (0, r1, r2, r3, r4)}
17: r = [r1, r2, r3, r4]
18: c1 = (abs(imag(r)) < ε) {Root must be real}
19: c2 = real(r)sign(v) > (1/2 · abs(v))
{Root must obey bound in Eq. 4.13}

20: c3 = real(r)sign(v) < abs(v) {Root < v}
21: w∗ = max((c1&c2&c3)real(r)sign(v))sign(v)

return w∗

A potential drawback to our method, common to the TV and `1 approaches of [167], is its use of

frequency domain operations which assume circular boundary conditions, something not present

in real images. These give rise to boundary artifacts which can be overcome to some extent

with the edge tapering operations that we use. However, our algorithm is suitable for very large

66

images where the boundaries are a small fraction of the overall image. Furthermore, the use of

FFT and LUT operations makes this algorithm suitable for deployment in mobile platforms.

Although we focus on deconvolution, our scheme can be adapted to a range of other problems

which rely on natural image statistics. For example, by setting k = 1 the algorithm can be used

to denoise, or if k is a defocus kernel it can be used for super-resolution. The speed offered by

our algorithm makes it practical to perform these operations on the multi-megapixel images from

modern cameras. Our algorithm has been used in a number of other works on denoising and

non-blind image deconvolution [191, 68, 27]. A GPU implementation has been developed [80]

which achieves real-time performance for images of size 710× 470 on an NVIDIA GeForce GTX

260 GPU: nearly 2 orders of magnitude speedup over our CPU implementation.

Schmidt et al. [139] have recently developed a Bayesian approach to non-blind deconvolution

which outperforms our method in terms of PSNR. Their sampling-based technique is, however,

significantly slower than our algorithm. There are a number of ways in which the quality of our

method may be improved: the use of higher order filters such as the Fields of Experts [136];

improved handling of the boundary to minimize artifacts due to FFT; and a more finely tuned

β schedule. A practical deblurring algorithm must be robust to outliers such as saturated pixels

in the blurred image. Recent papers such [172] addressed this issue although with different

optimization schemes. By modifying the likelihood term appropriately, our algorithm has been

used for spatially varying deconvolution [68, 69].

67

Chapter 5

Blind Deconvolution Using a

Normalized Sparsity Measure

5.1 Introduction

In this chapter, we develop a novel image prior for the blind deconvolution problem. This is joint

work with Rob Fergus and Terence Tay and was published in CVPR 2011 [90].

As described in Chapter 2, a wide range of parametric image priors have been proposed for

inverse problems such as denoising, non-blind deconvolution and super resolution [100, 136,

191]. These priors are developed by fitting parametric distributions or learning schemes to some

statistics of sharp uncorrupted images. However, when used in an optimization setting for blind

deconvolution, they prove to be ineffective. As noted by Levin et al. [101] and Fergus et al. [55],

somewhat counter-intuitively, the above image models all favor blurry images to sharp images.

In other words, blurry images have lower cost (are more probable) than sharp images. This

is a direct result of the learned/chosen potential functions decreasing toward zero: since blur

attenuates high frequencies, the response of any derivative-type filter will also be reduced and

consequently will have a lower cost under the model. This phenomenon is illustrated in Figure 5.1,

where we show the cost (negative log probability) of a sharp image blurred by different amounts.

As a consequence, for blind deconvolution, which is highly ill-posed and hence reliant on the image

prior standard maximum a-posterori (MAP) based approaches do not work. Correspondingly,

a number of more complex methods have been proposed. These include: marginalization over

all possible images [55, 101, 114]; dynamic adaptation of the cost function [142]; alpha-matt

extraction [74]; re-weighting of the image edges [32]; determination of the edge locations using

shock filtering [117].

In this paper we introduce a novel type of image prior that favors sharp images over blurry and

show how this prior can be used in a framework for blind deconvolution. Compared to other

methods, our approach is very simple – it requires none of the complexities needed by other

68

methods to overcome shortcomings of existing priors in an MAP setting. The resulting scheme

is also quick since it can take advantage of existing fast `1 methods to estimate the kernel and

sharp image.

5.2 Motivation

The regularization function we propose is the ratio of the `1 norm to the `2 norm on the high fre-

quencies of an image. `1/`2 is an unusual function and its relevance to blind image deconvolution

is not immediately clear. We first motivate its use in this setting, before explaining our method.

First consider the `1 norm. The `1 norm is widely used to impose signal sparsity, but it is scale

variant so the norm can be minimized by simply reducing the signal. In an image setting, the

`1 norm is typically used to penalize the high frequency bands. As image noise presents itself

in these bands, boosting their `1 norm, minimizing the norm is a way of denoising the image.

However, in the case of image blur, the opposite situation holds since blur attenuates the high

frequency bands so reducing their `1 norm. Consequently, in a blind deconvolution setting where

the kernel is only loosely constrained, minimizing the `1 norm on the high frequencies of the

image will result in a blurry image (and a delta function kernel). This behavior, studied in [101],

is illustrated in Figure 5.1.

The simplest interpretation of the `1/`2 function is that it is a normalized version of `1 , making it

scale invariant. If applied to the high frequency bands of an image, it is equivalent to the `1 norm

of the edges rescaled by their total energy. Although blur decreases both the `1 and `2 norms,

crucially the latter is reduced more, thus the ratio of the two will be increased by blur (see the

magenta curve in Figure 5.1).

To understand why this is so, consider the visualization of the `1/`2 function for a two dimensional

signal in Figure 5.2. The minima lie along the axes with the cost increasing smoothly in between.

The high frequency bands of natural scenes are typically sparse in that the magnitudes are mostly

either zero or very small, but occasionally large. If these bands are represented as a single high

dimensional vector, it would be close to the axes in many dimensions and have a low `1/`2 value.

Blur smears out the large magnitude elements and reduces the number of zero elements in the

vector, so rotating it diagonally away from the axes, increasing the `1/`2 value.

Given that the `1/`2 function behaves correctly for blur, it is natural to wonder if added noise

or sharpening operations might result in a lower cost than the true image. Noise added to the

signal increases the `1/`2 value, as do sharpening operations (see left side of Figure 5.1).

Most of the energy in images is contained in the low and mid frequency bands, which are barely

affected by blur. As a consequence, the `1/`2 function will not be changed significantly if mea-

suring the entire image (i.e. all frequency bands). Instead, the `1/`2 function must be applied

to just the high frequency part of the image if it is to discriminate between sharp and blurry

images.

69

−10 −8 −6 −4 −2 0 2 4 6 8 10
0.2

0.4

0.6

0.8

1

1.2

Blur size (pixels)

Re
la

tiv
e

co
st

L 0.5
L1
L2
L1/L2

Sharpened Blurred

Original

1.4

1.6

1.8

2

2.2

Figure 5.1: A comparison of our novel image regularizer to existing approaches. For a typical
real world scene I (inset), we add Gaussian blur b ranging from 0 to 11 pixels in size and
measure the cost: ‖(∇x(I ⊗ b))‖α + ‖(∇y(I ⊗ b))‖α where ∇x,∇y are the x and y derivatives
respectively. Existing image regularizers use α = 0.5 (red), 1 (green), 2 (blue). Our image

regularizer
‖[∇x(I⊗b),∇y(I⊗b)]‖1
‖[∇x(I⊗b),∇y(I⊗b)]‖2 is shown in magenta. The y-axis shows cost relative to that of

the sharp image. A negative blur size corresponds to an unsharp mask filter. Note that the
existing priors incorrectly have a lower cost for blurry images than sharp ones. By contrast, our
regularizer correctly gives lowest cost to the original image.

The `1/`2 function is one of a number of sparsity measures in the literature [71] but is relatively

rare, being previously used for matrix factorization [70, 119]. In [71], different sparsity measures

are compared using 6 heuristic criteria and the `1/`2 function satisfies all them. Following our

paper, the `1/`2 function has been used with a wavelet transform instead of the derivative trans-

form in [73] with similar justifications, although they use a different optimization algorithm. The

`1/`2 function may be generalized to `p/`q with p < q.

Sparsity has a natural interpretation using an `0 measure. However, `0 is difficult to optimize

because of the lack of gradient information everywhere. It is therefore convenient to use a convex

measure such as `1 instead [23]. But, as illustrated in Figure 5.2, `1 has a very different shape

to `0 and it is also not scale invariant. The `1/`2 function, on the other hand, is scale invariant

and has minima along the axes, just as `0 does. It also has the advantage of gradient information

which can be exploited to give a tractable optimization algorithm.

The `1/`2 function does have several drawbacks. First, it is non-convex, unlike `1 , thus there

are multiple local-minima. Second, it is hard to optimize directly but we introduce approximate

methods that can overcome this. Finally, it cannot be expressed as a probabilistic prior as∫
exp(−‖x‖1/‖x‖2)dx = ∞, due to the scale invariance. This is in direct contrast to `p norms

(0.7 ≤ p ≤ 1) which correspond to probabilistic models of image gradients, having a (hyper)-

70

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 x1x1

x1 x1

x2

x2

||x||1 ||x||0||x||1
||x||2

∇||x||1 ||x||1
||x||2

∇

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

∇||x||0

Figure 5.2: A visualization of `1 , `1/`2 and `0 functions (top row) and their gradient fields (bottom
row) for a two dimensional vector (dark corresponds to a lower value). The l1 function is smallest
at the origin and the gradient field uniformly points towards the origin. The `1/`2 function has
minima along the axes, with smoothly increasing cost in the diagonal directions. Its gradient field
is purely radial: starting at arbitrary location the gradient leads to the nearest axis, preserving
distance from the origin. Note that the minima structure of `1/`2 is very similar that `0 . However,
the `0 norm is difficult to use, having zero gradient everywhere, except near the axes where it is
infinite.

Laplacian form. However, since we intend to use a non-probabilistic framework, it does not

matter that the energy surface is not normalized.

5.3 Approach

We assume the formation model of a sharp image u blurred by a matrix K along with the addition

of Gaussian i.i.d noise N :

g = Ku+N (5.1)

We observe the resulting blurry image g and our goal is to recover the unknown sharp image u

and the blurring matrix K. Algorithm 2 outlines our approach.

In Section 5.3.1, we first consider the case when the blur is spatially constant. In this case, the

matrix K reduces to a 2-dimensional convolution operation with a kernel k. We then show how

our algorithm can be extended to the case of pure in-plane rotation in Section 5.3.4. Finally, we

consider the case of general 3-D rotations of the camera in Section 5.3.5. The overall algorithm

is implemented in a multiscale framework, described in Section 5.3.1.

71

Algorithm 2 : Overall Algorithm

Require: Observed blurry image g, Maximum kernel size h.
Apply derivative filters to g, creating a high-freq. image y.
1. Blind estimation of blur matrix K (Section 5.3.1) from y.

Loop over coarse-to-fine levels:
Alternate:

- Update sharp high-frequency image x
(Section 5.3.1) using l1/l2 regularization.

- Update blurring matrix K (Section 5.3.1).
Interpolate solution to finer level as initialization.

2.Image recovery using non-blind algorithm of [86] (Section 5.3.2).
- Deblur g using K to give sharp image u.

return Sharp image u.

5.3.1 Blind Kernel Estimation

Our kernel estimation is performed on the high frequencies of the image. Given the blurry and

noisy input g, we use discrete filters ∇x = [1,−1] and ∇y = [1,−1]T to generate a high-frequency

version y = [∇xg,∇yg]1. The cost function for spatially invariant blurring is:

min
x,k

λ‖x⊗ k − y‖22 +
‖x‖1
‖x‖2

+ ψ‖k‖1 (5.2)

subject to the contraints that k ≥ 0,
∑
i ki = 1. Here x is the unknown sharp image in the

high-frequency space, k is the unknown blurring kernel (ki are individual elements) and ⊗ is the

2D convolution operator.

Eq. 5.2 consists of 3 terms. The first term is the likelihood that takes into account the formation

model Eq. 5.1. The second term is the new l1/l2 regularizer on x which encourages scale-

invariant sparsity in the reconstruction. To reduce noise in the kernel, we add `1 regularization

on k. The constraints on k (sum-to-1 and non-negativity) follow from the physical principles of

blur formation. The scalar weights λ and ψ control the relative strength of the kernel and image

regularization terms.

Eq. 5.2 is nonconvex. The standard approach to optimizing such a problem is to start with an

initialization on x and k, and then alternate between x and k updates [55]. To make consistent

progress along each of the unknowns and avoid local minima as far as possible, only a few

iterations are performed in each update.

x Update

The x sub-problem is given by:

min
x
λ‖x⊗ k − y‖22 +

‖x‖1
‖x‖2

(5.3)

1y is a concatenation of the two gradient images ∇xg and ∇yg.

72

This sub-problem is non-convex due to the presence of the new regularization term ‖x‖1
‖x‖2 . However,

if one fixes the denominator of the regularizer from the previous iterate, the problem then becomes

a convex l1-regularized problem. Fast algorithms to solve l1-regularized problems are well-known

in the compressed sensing literature [9, 184]. One such algorithm is the iterative shrinkage-

thresholding algorithm (ISTA) [9]. ISTA, detailed in Algorithm 3, is a fast method to solve

general linear inverse problems of the form:

min
x
λ‖Kx− y‖22 + ‖x‖1 (5.4)

In our application K is the blurring matrix.

Algorithm 3 : Iterative Shrinkage-Thresholding Algorithm (ISTA)

Require: Operator K, regularization parameter λ
Require: Initial iterate x0, observed image y
Require: Threshold t, maximum iterations N
1: for j = 0 to N − 1 do
2: v = y − tKT (Kxj − y)
3: xj+1 = Stλ(v)
4: end for
5: return Output image xN

Here, the operator S is the soft shrinkage operation on a vector. It shrinks each component of

the input vector towards zero:

Sα(x)i = max(|xi| − α, 0)sign(xi) (5.5)

ISTA is very simple and fast, involving only multiplications of the matrix K with vector x,

followed by the component-wise shrinkage operation.

We use the ISTA step as the inner iteration in our x-update algorithm. The outer loop then

simply re-estimates the weighting on the likelihood term in Eq. 5.3 by updating the denominator

‖x‖2. The overall x-update algorithm is as follows:

Algorithm 4 : x Update

Require: Blur kernel k from previous k update
Require: Image x0 from previous x update
Require: Regularization parameter λ = 20
Require: Maximum outer iterations M = 2, inner its. N = 2
Require: ISTA threshold t = 0.001
1: for j = 0 to M − 1 do
2: λ′ = λ‖xj‖2
3: xj+1 = ISTA(k, λ′, xj , t, N)
4: end for
5: return Updated image xM .

Despite the non-convexity of the problem, in practice this inner-outer iteration is effective in

reducing the cost function in Eq. 5.3. After an x-update step, we update the kernel estimate k.

73

k Update

The kernel update sub-problem is given by:

min
k
λ‖x⊗ k − y‖22 + ψ‖k‖1 (5.6)

subject to the constraints k ≥ 0,
∑
i ki = 1. We use unconstrained iterative re-weighted least

squares (IRLS) [96] followed by a projection of the resulting k onto the contraints (setting negative

elements to 0, and renormalizing). During the iterations we run IRLS for just 1 iteration, with

the weights being computed from the kernel of the previous k update. We solve the inner IRLS

system to a low level of accuracy, using 5 conjugate gradient (CG) iterations.

An important practical point is that after recovering the kernel at the finest level, we threshold

small elements of the kernel to zero, thereby increasing robustness to noise. This is similar to

other blind deconvolution methods [55, 173].

Multiscale Implementation

For large kernels, an excessive number of x and k updates may be required to converge to a

reasonable solution. To mitigate this problem, we perform multiscale estimation of the kernel

using a coarse-to-fine pyramid of image resolutions, in a similar manner as in [55]. We always

use 4 levels with a size ratio of
√

2 between them (in each dimension). We downsample the input

blurry image and then take discrete gradients to form the input y each level.

At each scale level we perform 100 alternating updates of x and k. Once a kernel estimate k

and sharp gradient image x are computed, they are upsampled to act as the initialization of

the kernel and sharp image at the next finer level. All of the resizing operations are done using

bilinear interpolation.

5.3.2 Image recovery

Once the kernel k for the finest level has been estimated, we can use a variety of non-blind

deconvolution methods to recover the full-spectrum sharp image u from g. The simplest is

Richardson-Lucy (RL). The disadvantage of RL is that this method is sensitive to a wrong kernel

estimate, which results in ringing artifacts in u. Therefore, we choose to use the non-blind

deconvolution method from Chapter 4, since it is fast and robust to small kernel errors. This

algorithm uses a continuation method to solve the following cost function:

min
u
λ‖u⊗ k − g‖22 + ‖∇xg‖α + ‖∇yg‖α (5.7)

where ∇x and ∇y are the same derivative filters used in Section 5.3.1. We use λ = 3000, α = 0.8

for all results.

74

A natural question is why we do not use the `1/`2 prior itself as a regularizer for the non-blind

deconvolution. Non-blind deconvolution has fewer unknowns than the blind problem; as such

it is less sensitive to the choice of prior. Secondly, in the non-blind step, we need to work in

the image domain where the `1/`2 prior is defined on the gradient domain. So we have to deal

with the ratios of `1 and `2 norms of gradients. This is a considerably more difficult optimization

problem and we have no efficient means of solution. Due to this we choose to use a simpler

regularizer for the image recovery step.

5.3.3 Speed and robustness

Our cost function Eq. 5.2 is of a simple form. The x and k update steps involve a few matrix-

vector (or convolution) operations. As a result, our algorithm is quite fast as compared to existing

algorithms such as [55]. For a 255× 255 pixel image, and when estimating a 35× 35 size kernel,

our algorithm takes 3 minutes, compared to 6 minutes for the method of [55].2 Our method is

amenable to speedups such as GPU acceleration and the use of the Intel IPP libraries.

In our experiments, we find the algorithm to be robust to the choice of parameters and use the

same settings for all results reported in this paper. The ψ parameter depends on the user-specified

kernel size h, according to the formula: ψ = 3
13h. This robustness is a major advantage of our

algorithm over existing schemes that require parameter adjustment for different input images.

5.3.4 Extension to in-plane rotation

We extend the cost function of Eq. 5.2 to the case where the blurring process arises purely

from rotation of the camera around the Z-axis (axis perpendicular to the sensor plane), thus is

no longer spatially constant. Similar to the non-uniform blurring model developed in [173], we

assume that the blurred image arises form a linear combination of discretely sampled rotations

of the sharp image:

g =
∑
θ∈ω

kθRθ(u) +N (5.8)

where ω is a discrete set of angles, and the operator Rθ(u) rotates the image u by angle θ. For

this formation model our blur kernel is the vector k with entries kθ. The minimization problem

is then a modified version of Eq. 5.2, given by:

min
x,k

λ‖
∑
θ∈ω

kθRθ(x)− y‖22 +
‖x‖1
‖x‖2

+ ψ‖k‖1 (5.9)

subject to the constraints that k ≥ 0 and
∑
θ∈ω kθ = 1. We can now adopt exactly the same

approach as for the spatially invariant case, except replacing 2-dimensional convolutional opera-

tions with sums of rotations. The use of rotations significantly increases the computational cost

of the overall processing. This can be somewhat mitigated by using a coarsely sampled set ω.

2Using a single-threaded Matlab on a 2.66Ghz CPU.

75

5.3.5 Extension to 3-D rotations

By extending the set of rotations ω to the X and Y axes, our model can be generalized to the full

non-uniform blur model. It has been demonstrated in [173] that rotations of the camera about X

and Y cause more significant blur than translations. Accordingly, we adopt the model proposed

in [173] that samples discretely from all 3 planes of rotation. The final formation model and cost

function formulation are analogous to Eq. 5.8 and Eq. 5.9:

min
x,k

λ‖
∑

θxyz∈ω

kθRθxyz (x)− y‖22 +
‖x‖1
‖x‖2

+ ψ‖k‖1 (5.10)

where θxyz refers to a particular combination of rotations around all 3 axes. The approach in

[173] uses a multi-scale method to determine the form of the kernel. Surprisingly, we find that

just using a single scale with very few iterations allows us to recover the rotational kernel very

accurately. This greatly increases the speed of our method as compared to [173] which can take

hours for even a small image. In contrast, our method takes less than 10 minutes for the kernel

estimation process for a 255× 255 image.

ω is a set of discrete angles of rotation about each axis. For spatially varying kernels arising

from camera rotations, the non-blind deconvolution algorithm must be modified to take into

account the different formation model. We extend the non-blind deconvolution algorithm of [86]

accordingly.

Gupta et al. [67] present a blur formation model based on in-plane rotations combined with

translations. They also use a set of discretized basis functions. By replacing the basis functions

Rθxyz in Eq. 5.10 with their basis functions, we can support their model with our new regularizer.

5.4 Experiments

In this section, we present results of our algorithm and compare it to the algorithms of [55],[142]

and [173]. We consider spatially invariant, pure in-plane rotation and 3-D rotational blurring

models. We show results on both synthetic and real-world examples. The images are best viewed

on screen.

5.4.1 Spatially invariant kernel

Synthetic data

We first test the algorithm on the spatially invariant kernels from the dataset in Levin et al. [101].

This dataset consists of 4 images of size 255 × 255 and 8 different kernels ranging in size from

13 × 13 to 27 × 27 to give a total of 32 blurred images. The blurred data, ground truth data

and ground truth kernels are provided. We compare our kernel estimation results with the blind

76

deconvolution algorithms of Fergus et al. [55] and Shan et al. [142]. For kernels estimated by

the 3 different methods, we perform non-blind deconvolution using the algorithm of [86] with the

same parameter settings. The error metric used is the same as [101]3.

In Figure 5.3, we plot the cumulative histograms of the error ratios for the 3 algorithms. The

performance of our algorithm is similar to that of Fergus et al. [55]. Both these algorithms

significantly out perform that of Shan et al. [142]. Additionally, there are a few examples in the

dataset (see [102] for details) when the algorithm of [55] fails dramatically, whereas our algorithm

is still able to recover a reasonable kernel. In addition, our algorithm is considerably simpler and

faster than that of [55].

 1 2 3 4 5 >=6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Error Ratios

Pe
rc

en
ta

ge
s

Fergus

Ours

Shan

Figure 5.3: Cumulative histograms of the error ratios across the dataset of Levin et al. [101].
See text for details.

Figure 5.4 shows results with a kernel size 27× 27. In Figure 5.5, we show a failure case for both

[55] and [142]. By constrast, our algorithm is able to recover a reasonable kernel. This illustrates

the robustness provided by our new l1/l2 regularization function.

Real data

Next we compare the performance of our algorithm on some real-world examples presented in

different blind deconvolution papers. As before, we use the different blind algorithms to estimate

the kernel and then use the same non-blind algorithm (that of [86]) with identical parameter

settings to perform the deconvolution. Figure 5.6 shows the kernel recovery and reconstruction

for an image provided in the online code of Fergus et al. [55], along with their result. The output

of [55] shows artefacts, for example on the right cheek of the statue. Figure 5.7 compares kernel

3The measure is the ratio of SSD (sum of squared differences) error between: (i) the deconvolved output and
the known ground truth image and (ii) deconvolved output using the ground truth kernel and the ground truth
image.

77

Figure 5.4: Recovery of a 27 × 27 kernel. Top-left: original; top-right: blurred; middle-left:
deblurred with ground truth kernel; middle-right: deblurred with our estimated kernel; bottom-
left: deblurred with kernel of [55]; bottom-right: deblurred with kernel of [142]. Corresponding
kernels are shown as insets at the bottom left of each image.

recovery and reconstruction of another image from [55]. Our results were obtained using the

same parameter settings as for the synthetic data.

5.4.2 In-Plane rotation

We now take a synthetic example presented in [173] of pure in-plane rotation of the camera. We

use the model of Eq. 5.8 to perform the kernel estimation. In this case, we use only a single

scale of processing (the finest scale) to speed up the computation. The other settings such as

the number of iterations, and regularization parameter λ remain unchanged from the spatially

invariant setting. We deblur the image (with 2% noise added) with both our algorithm and that

of [173]. We use the online code provided by [173] to generate their result. The results are shown

in Figure 5.8. The method of [173] took over 3 hours for the entire processing, whereas our

method takes 10 minutes on the same CPU.

78

Figure 5.5: Recovery of a 27 × 27 kernel. Top-left: original; top-right: blurred; middle-left:
deblurred with ground truth kernel; middle-right: deblurred with our estimated kernel; bottom-
left: deblurred with kernel of [55]; bottom-right: deblurred with kernel of [142].

5.4.3 3-D Rotation

Finally, we compare our kernel estimation on a real world example given in [173]. The ground

truth kernel is unknown in this case. We use the model of Eq. 5.10 with the same discretized set

of 3D rotation angles as used in the online code of [173]. Our results, shown in Figure 5.9, are

very similar to those of [173].

5.5 Connections with the blind equalization literature

The `1/`2 prior has interesting connections with some of the classical blind equalization literature,

pointed out to us by Professor Yair Weiss. In this section, we explore these connections. Blind

equalization is the one-dimensional equivalent of blind deconvolution. In digital data communi-

cations, it is also called channel equalization. The problem is illustrated in Figure 5.10. Here x

is the input 1-D signal, assumed to consist of zero-mean IID samples. The only restriction on

79

Figure 5.6: Recovery of a real-world kernel. Left: Input blurry image; middle: deblurred with
kernel of [55]; right: deblurred with our estimated kernel.

Figure 5.7: Recovery of a real-world kernel. Left: Input blurry image; Middle: Deblurred with
kernel of [55]; Right: Deblurred with our estimated kernel.

the distribution from which x is drawn is that it is is non-Gaussian. k is the impulse response

of the communication channel, the equivalent of a blur kernel. y is the observed blurred signal

such that y = x⊕ k. The purpose of channel equalization is to process y to recover an equalized

signal z, which is close to x. One of the most successful methods for blind deconvolution is the

algorithm introduced by Shalvi and Weinstein [140, 141]. Variants of their technique are still

used in millions of wireless devices today for blind equalization. Here we present a simplified

version of the algorithm developed by Shalvi and Weinstein. We start with the definition of the

kurtosis of a zero-mean IID signal x:

κ =
∑
i

(
xi

std(x)

)4

(5.11)

80

Figure 5.8: In-plane rotational deblurring. Top-left: input sharp image; top-right: blurry im-
age with pure in-plane rotation; bottom-left: deblurred with code of [173]; bottom-right: our
deblurred result.

Figure 5.9: 3D rotational deblurring. Left: Input blurry image; middle: deblurred with algorithm
of [173]; right: deblurred with our algorithm.

where xi is element i of the vector x and std(x) is the standard deviation of x. It is well-

known [178] that a Gaussian signal has the value κ = 3. Sub-Gaussian signals are defined

as those signals with κ < 3 and super-Gaussian those with κ > 3. Sub-Gaussian signals are

wider than the Gaussian around the origin and super-Gaussian signals have heavier tails then a

Gaussian. Examples of these signals are given in Figure 5.11. Image gradient distributions are

super-Gaussian.

The Central Limit Theorem [176] states that as IID variables are averaged together, they become

81

Figure 5.10: Blind Equalization Model. x is the input, k the channel impulse respone and y the
output.

Figure 5.11: Gaussian, Sub-Gaussian and Super-Gaussian signals. It is seen that the super-
Gaussian signal has a heavier tail than the Gaussian. Image gradient distributions follow super-
Gaussian distributions.

more Gaussian-like. This means that blur makes a signal more Gaussian. In Figure 5.12, we see

that a sub-Gaussian signal becomes more Gaussian like as it is blurred i.e. it’s kurtosis increases

towards 3. In Figure 5.13, the kurtosis of a super-Gaussian signal reduces towards 3, making it

more Gaussian. In both cases, a simple Gaussian filter was used to blur the signal although this

behavior holds with any other kind of filter.

Shalvi and Weinstein put together these key observations into a novel algorithm for blind equal-

ization. Assuming that the impulse response k was invertible, their idea is to search for an

equalizing filter e which is the inverse of k, such that e⊕ k = δ, where δ is the delta kernel. The

observed signal y is then convolved with the equalizing filter e to give the recovered signal z,

which is a phase-shifted version of x. Figure 5.14 illustrates the overall approach.

The Shalvi-Weinstein algorithm is based on maximizing the non-Gaussanity of the reconstructed

signal z. Based on the above, this leads to a simple criterion for the blind equalization in the

82

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

100

200

300

400

500

600

700

800

900

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

300

350

Figure 5.12: Blurring a sub-Gaussian signal increases it’s kurtosis towards 3. Top-left: original
IID signal (κ = 1); Top-right: the histogram of the signal; Bottom-left: the blurred version of
the signal (κ = 2.78); Bottom-right: histogram of the blurred signal. The signals are all 1D but
shown as images for clarity.

case of super-Gaussian x:

e∗ = arg max
e
κ(y ⊕ e) (5.12)

In the case of a sub-Gaussian x, the max in Eq. 5.12 is replaced by a min. The only inputs to

the algorithm are whether the unknown distribution is sub-Gaussian or super-Gaussian, and the

power (`2 norm) of x. After recovering e∗, z may be recovered as z = y ⊕ e∗.

Under the assumptions that k has an inverse filter e, and that x is comprised on IID non-Gaussian

measurements, there is a simple and elegant proof of the global optimality of the Shalvi-Weinstein

algorithm. The simplified version of the proof is now presented. It relies on the joint cumulants

of a signal x. The second-order and fourth-order joint cumulants of a signal x are given as:

Cx2 = E(x2)Cx4 = E(x4)− 3E(x2)2 (5.13)

where E(x) is the expectation of x. Joint cumulants enjoy the following properties [177]: linearity

i.e. C(ax)p = apC(x)2; and the joint cumulant of independent variables is 0. A key property of

the kurtosis of a zero-mean IID signal is that it can be expressed in terms of cumulants:

κ(x) =
Cx4

(Cx2)2
(5.14)

83

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2
0

100

200

300

400

500

600

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2
0

20

40

60

80

100

120

140

Figure 5.13: Blurring a super-Gaussian signal decreases it’s kurtosis towards 3. Top-left: original
IID signal with (κ = 116.2); Top-right: the histogram of the signal; Bottom-left: the blurred
version of the signal (κ = 14.7); Bottom-right: histogram of the blurred signal. The signals are
all 1D but shown as images for clarity.

Figure 5.14: Illustration of the Shalvi-Weinstein algorithm: e is an inverse filter to k; and z is
the recovered signal. y = x⊕ k and z = y ⊕ e.

Figure 5.15: We look for a filter s such that s = k⊕e and z = x⊕s. s is therefore a phase-shifted
version of the δ.

The proof of global optimality for the super-Gaussian case, starts by introducing a filter s such

that s = k ⊕ e; see Figure 5.15. Hence z = y ⊕ e = y ⊕ e ⊕ k = x ⊕ s. We want s = δ. Now,

z = x ⊕ s. By the properties of cumulants, this means that Cz4 = Cx4
∑
i s

4
i , where si are the

84

taps of filter s. Simiarly Cz2 = Cx2
∑
i s

2
i . Now if we restrict the power of z to be equal to the

power of x, then Cz2 = C2
x, which implies that

∑
i s

2
i = 1. Now maximizing the kurtosis of z is,

by Eq. 5.14, equivalent to the constrained optimization problem:

maxCz4

s.t. Cz2 = Cx2

By the above, this is equivalent to

max
∑
i

s4
i

s.t.
∑
i

s2
i = 1

which has clearly only one maximum which is s = δ. It can be shown using Lagrange multipliers

that all other extrema of this problem are unstable saddle points [141]. Furthermore, this algo-

rithm in s can be converted to an algorithm in terms of e. This algorithm converges extremely

fast and is robust to noise. Other variants of this algorithm and more general proofs are given

in [141].

Using the Shalvi-Weinstein directly for image deconvolution is problematic. The assumption of

x being IID is clearly untrue. Furthermore, many image blur kernels do not have compactly

supported inverses. Kurtosis is a measure of non-Gaussanity of the recovered signal. From

Eq. 5.11 we see that computing the kurtosis required taking the fourth power. If instead, we

use a power of 1, we recover our `1/`2 prior (for zero-mean signals). The `1/`2 prior is therefore

another way of measuring the non-Gaussanity of a signal. Kurtosis is extremely sensitive to

outliers. An example of this sensitivity is shown in Figure 5.16. A single value in the original

signal (blue) is perturbed to give the signal in red. We see that the kurtosis measure changes

dramatically, but the `1/`2 measure is much more stable and therefore useful in practice.

5.6 Discussion

Our approach to blind deconvolution is motivated by a re-analysis of the interaction between

image regularizers and the effects of blur on the high frequencies in an image. The crucial com-

ponent of our algorithm is the introduction of a novel scale-invariant regularizer that compensates

for the attenuation of high frequencies and therefore greatly stabilizes the kernel estimation pro-

cess. However, since this regularizer is non-convex, we introduce a minimization scheme that

amounts to solving a series of l1 problems with different regularization parameters. The result-

ing algorithm is applicable to different models of blur formation and is fast and robust to the

choice of parameters. All Matlab code for our algorithm and the experiments in this paper are

available at www.cs.nyu.edu/~dilip/research/blind-deconvolution/.

Our measure has been used in [63] as a relative measure of the amount of blur in a signal.

85

www.cs.nyu.edu/~dilip/research/blind-deconvolution/

Figure 5.16: The Kurtosis measure is much more sensitive than the `1/`2 measure to outliers.

However, our regularizer is by no means the final word in blind deconvolution. While it works

well for images with highly sparse gradients, such as city and indoor scenes, it tends to fail when

textures dominate the image. The gradients of textured images have a kurtosis very close to

that of Gaussian. Therefore their gradients are not sparse. For such images, the `1/`2 measure

behaves unpredictably - with the cost of blurred images being lower than that of sharp ones. As a

result, `1/`2 is not robust enough for practical applications. This was numerically demonstrated

in [165] over a large range of images. The workaround proposed in [165] is not a new regularizer

but a combination of the variational method of [103] and [32]. A regularizer that works well for

all types of natural images is therefore still an open research problem.

86

Chapter 6

Removing Localized Corruption

from Natural Images

The work described in this chapter is done jointly with David Eigen and Rob Fergus, and an

extension of this work is currently under review.

Traditional approaches to removing image corruption such as blur or noise combine a natural

image prior with a reconstruction term. The latter relies on a good generative model of the

corruption — which may not exist for many distortions encountered in the real world. In this

paper we explore approaches for learning a direct mapping from the corrupt input image to the

clean image, obviating the need for any kind of generative model. We evaluate the approaches

on several types of synthetic corruption, finding that neural-network based models perform the

best. Our techniques can be used for many types of localized corruption. We demonstrate this

using photographs of real-world scenes taken behind a pane of glass with water droplets, akin

to a rainy window. Our model removes most of the raindrops without significant blur, the first

such demonstration of this application.

6.1 Introduction

Natural image priors (as seen in earlier chapters) are an important tool, allowing the recovery

of images in a range of under-constrained problems, such as denoising, deblurring and super-

resolution. In these problems, the input is a corrupted image y and the goal is to estimate

the original uncorrupted image x. Knowledge about the corruption process is embodied in a

formation function K(x) that applies the corruption to the estimate of x, which can then be

compared to the observed image y. In non-blind problems K(.) is given, but in blind problems

(e.g. blind deconvolution) it may have latent variables that must also be inferred. Using a

87

probabilistic interpretation, the overall problem can be written as:

p(x|y,K) ∝ p(y|x,K)p(x)p(K) (6.1)

The likelihood term p(y|x,K) imposes the formation constraint and p(x) is a prior on natural

images. Since these image restoration problems are under-determined, many values of x have

a high likelihood and p(x) selects the most natural-looking solution. One attraction of this

approach is that a image prior can be built off-line from many examples of natural images and

then applied to a wide range of problems, each having a different formation model K.

But what if the image contains a type of corruption for which we cannot write down an accurate

K? For example, consider the example shown in Figure 6.3(top left), which shows a photo taken

through glass with rain drops on it. An accurate formation model would require latent variables

for each rain drop (position, size, orientation) that would have to be inferred – impractical for a

real image with hundreds or thousands of rain drops. Without a viable K, the likelihood term

in Eq. 6.1 cannot be formulated and the framework above cannot be used.

In this chapter we explore a different approach that directly models the posterior p(x|y) in Eq. 6.1

(so K is not needed). This can be thought of as a conditional image prior: the probability of a

clean image x, given the corrupted input y. If a point estimate of x will suffice, then this reduces

to a function that maps the noisy image to the clean one. This function must be learned from

pairs of clean/noisy patches and so adapts to the specific type of corruption (unlike the p(x)

prior in Eq. 6.1). The function must have high capacity, since it needs to capture the the joint

space between all possible natural image structures and all possible types of corruption. In this

paper we explore four different options for the mapping, showing results on both synthetic and

real-world examples of corruption that cannot effectively be removed with other approaches. A

literature survey was given in Section 2.7.

6.2 Approach

Given a noisy image y, our goal is to recover the true clean image x∗. From pairs of clean/noisy

images, we learn a conditional model p(x|y) such that arg maxx p(x|y) is close to x∗. We eval-

uate four different models for p(x|y): (i) a Gaussian mixture model; (ii) joint sparse-coding;

(iii) a convolutional neural network and (iv) a mean-covariance restricted Boltzmann machine

(mcRBM).

Given that most of the inter-pixel dependencies in natural images are local in nature, we follow

many other approaches and represent the image as a set of small overlapping 8×8 patches, which

are assumed to be independent to one another. A linear patchification operator P converts an

image y into a set of patches {yi}. The corresponding unpatchification operator PT converts the

set of patches back into an image (effectively averaging all patches at a given location). Although

operating on patches makes our approach tractable, it limits the size of the corruption that can

be removed since it must fit within a single patch.

88

6.2.1 Gaussian mixture model

Directly modeling the conditional patch distribution p(xi|yi) with a Gaussian mixture would

require that the parameters of each component be functions of yi. However, noting that (i) only

arg maxx is required, not the full distribution and (ii) yi is observed with zero uncertainty, we

can instead model the joint p(xi, yi) since the denominator p(yi) is a constant for each patch.

We thus model the joint space of clean/noisy patches with a 128 dimensional Gaussian mixture

on raw pixel values:

p(x|y) ∝
∏
i

p(xi, yi) =
∏
i

∑
c

πcN (xi, yi|µc,Σc) (6.2)

where πc and µc are the component weights and means respectively and Σc are full covariance

matrices. We train this model using EM, initializing πc, µc using k-means. One important issue

is the preponderance of low contrast patches in natural images – to prevent the model from

concentrating on them, all patches with a variance less than 0.001 are removed from the training

set.

At test time, we initialize each xi to yi and maximize ∂ log p(x|y)
∂x (as given in Eq. 6.2) using con-

jugate gradient descent. As we use large models with 70 components, each having full covariance

matrices, there are a large number of parameters that must be estimated in training. Despite

training on millions of patch pairs, some components may only see a small portion of the training

data, hence we find that Laplace smoothing is beneficial at test time. We implement this by

adding εI to the covariance of each component, ε being determined on validation data (values

given in Table 6.2).

6.2.2 Joint sparse coding

We adapt the joint sparse coding framework, introduced by Yang et al.[182], to compute a clean

patch xi, given the input noisy patch yi. In this approach, the idea is to have a latent sparse

feature vector αi that reconstructs both the clean and noisy patches, via separate over-complete

dictionaries. In training the goal is to learn the clean and noisy dictionaries Dx and Dy:

min
D,αi

∑
i

‖Dαi − zi‖2 + λ‖αi‖1 (6.3)

where D =

[
Dx

Dy

]
, zi =

[
xi

yi

]
and λ controls the sparsity of the common feature vector.

Evaluation of a new image y proceeds in three stages: (i) For each patch the optimal sparse

vector α∗i is inferred using the noisy dictionary Dy:

α∗i = arg min
αi
‖Dyαi − yi‖2 + λ‖αi‖1 (6.4)

(ii) the estimated clean patch is directly computed: xi = Dxα
∗
i . (iii) the clean image x is

89

recovered from the set of patches {xi} using PT . In all our experiments, we use λ = 0.15 and

4096 element dictionaries for both Dx and Dy.

6.2.3 Neural network

In this approach, we directly model the prediction function f(y) = arg maxx p(x|y) using a

neural network for f . Specifically, we train a multi-layer perceptron with hyperbolic tangent

nonlinearities and a linear output layer:

f0(y) = y

fl(y) = tanh(Wlfl−1(y) + bl), l = 1, ..., n− 1

f(y) = Wnfn−1(y) + bn

where Wl and bl are weights and biases for each layer. Since these weights are shared between all

patches in the image, this constitutes a Convolutional Neural Network [92]. In our application,

we use two hidden layers (i.e. n = 3), with 512 units each. We train the network using stochastic

gradient descent to minimize the mean squared error loss,

L(W1, ...,Wn, b1, ..., bn) =
1

2|D|
∑
i∈D

Li(yi) =
1

2|D|
∑
i∈D
||f(yi)− x∗i ||2

where yi iterates over each corrupted patch and x∗i is the corresponding clean patch.

To cover the full linear range of the hyperbolic tangent, we transform the data by subtracting

the mean and dividing by the standard deviation computed across all pixels in a sample of the

training set. We initialize the weights in each layer l by sampling from a uniform distribution on

(−m−1/2
l−1 ,m

−1/2
l−1), where ml−1 is the number of units in the previous layer [93].

6.2.4 Mean-Covariance RBM

While the neural network is simple and direct in modeling the prediction function, different shifts

of pixel intensities need to be modeled separately, leading to duplication of weights for each filter.

The Mean-Covariance Restricted Boltzmann Machine (mcRBM) [132] overcomes this limitation

by splitting the hidden layer into two types of units: mean units, which model the pixel values

on an absolute scale, and covariance units, which model the interactions between pixels. This is

defined by an energy function that augments the regular RBM energy for Gaussian visible units

x and binary mean hiddens hm with binary covariance hidden units hc:

EmcRBM (x, hm, hc) = −hmTWTx+
1

2
xTCdiag(hc)CTx+

1

2
xTx− bxTx− bmThm

Here, W is a R×M matrix that connects pixels and mean hiddens, and C is a R×F matrix that

connects pixels and covariance factors. Each factor Cf produces a rank-1 modification hcfCfC
T
f

90

of the inverse covariance for the patch: same-sign entries have positive partial correlation, while

opposite-sign entries are anti-correlated.

Given the hidden units, the conditional distribution of the visibles is a normal distribution; given

the visibles, the hidden units are Bernoulli variables:

p(x|hm, hc) = N (Σ(Whm + bx),Σ), where Σ−1 = Cdiag(hc)CT + I

p(hmi = 1|x) = σ(WT
i x+ bmi), p(hcf = 1|x) = σ(−1

2
(CTf x)2)

where σ(t) = et/(1 + et) is the sigmoid function.

In our denoising application, we use two mcRBM’s placed back-to-back: one that connects the

noisy patch input with the hidden layer, and one between the hidden layer and cleaned-up patch

output. The new energy function then becomes

EmcRBM2(x, y, hm, hc) = −hmTWT
1 x− hm

TWT
2 y − bxTx− byT y − bmThm

+
1

2
xTC1diag(hc)CT1 x+

1

2
yTC2diag(hc)CT2 y

+
1

2
xTx+

1

2
yT y (6.5)

To infer a clean x given a noisy y, we marginalize out the hidden units to obtain the free energy of

just x and y, and use CG to minimize E(x, y) as a function of x. Using a binomial factorization

of the possible combinations of mean and covariance unit states, the free energy is

E(x, y) = − log
∑

hm∈{0,1}M

∑
hc∈{0,1}F

exp(−EmcRBM2(x, y, hm, hc))

= −bxTx− byT y −
M∑
i=1

log(1 + exp(WT
1,ix+WT

2,iy + bmi))

+
1

2
xTx+

1

2
yT y −

F∑
f=1

log(1 + exp(−1

2
((CT1,fx)2 + (CT2,fy)2)) (6.6)

We train the model as a structured perceptron with stochastic gradient descent [36, 94]. The

loss function is

L(θ) =
∑
i∈D

E(x∗i , yi)− E(xi, yi)

For each training pair (x∗i , yi), we first perform inference to produce a predicted clean patch xi

from the noisy yi. Then, we update the weights with a gradient step,

θt+1 ← θt − ηt
(
∂E

∂θ
(x∗i , yi)−

∂E

∂θ
(xi, yi)

)
where θ = (W1,W2, C1, C2, b

x, by, bm) is the combined weights. For the final weight estimate,

we use the average of the weights in the last iteration over all the datapoints. That is, θ̃ =
1
|D|
∑t0+|D|
t=t0

θt where t0 is the last epoch start time. We found this averaging was needed to

91

reduce undue influence of the most recent examples.

The network we use has 512 covariance and 512 mean units. To initialize the network, we

sample the covariance filters from a normal distribution, Cf ∼ US−1/2N (0, I), where USUT is

the singular value decomposition of the clean training patches’ covariance. This distribution is

spherical in the PCA-whitened space of the data, and hence in pixel space it has relatively large

low-frequency components. The two layers of covariance filters are set initially to be the same,

C1 = C2 at t = 0.

The mean filters are initialized by training a 2-layer neural network with the same connections

as the mean half of the mcRBM. This is motivated by the fact that if one ignores the feedback

influences of the output x, inference is solved by feed-forward propagation. To see this, consider

Eq. 6.6: by setting its derivative equal to zero and ignoring WT
1,ix and CT1,ix (i.e. zeroing them),

this (modified) function is minimized at x = bx +
∑M
i=1W

T
1,iσ(WT

2,iy + bmi)—a feed-forward

network.

6.3 Datasets

6.3.1 Synthetic corruption

We tested each of the above models on five different types of synthetic noise, examples of which

are shown in Figure 6.1:

1. Snow : Small white line segments between 5-8 pixels in length, 2-3 pixels in width and one

of 10 different orientations are added at random image locations.

2. Mixed Snow : A more challenging version of “snow,” with transparency chosen uniformly

at random between 0 and 1.

3. Scratches: Five curves generated using a cubic spline of 6 random points are added to each

image. The gray and transparency levels of each curve are chosen uniformly at random

between 0 and 1. These are meant to mimic the scratches often found in archival film.

4. 3× 3 Blur : Each image is blurred using a 3× 3 Gaussian kernel. This kernel is typical of

those used for super-resolution.

5. 7× 7 Blur : Each image is blurred using a 7× 7 Gaussian kernel.

The snow and scratch corruption are typical of the localized noise that is hard to model gen-

eratively and thus challenging for conventional restoration methods. However, the two types of

blur can be well modeled by standard deblurring methods based on likelihood + natural image

priors. We include them to see how well our approaches fare against existing algorithms. The

training set for each corruption consists of 10 million patches chosen randomly from 15000 images

from the PASCAL VOC 2011 [48] and the Berkeley Segmentation Database [111]. We filtered

the training set so that all patch pairs had at least 1 pixel difference between clean and corrupt

92

Figure 6.1: Examples of corruptions. L to R: “Snow,” “Mixed Snow,” “Scratches” and “7 × 7
Blur”

versions. The test set consists of 10 images drawn at random from PASCAL VOC 2011 (and

from which no training patches were taken).

6.3.2 Water droplets dataset

Photographs captured through a rainy window are locally corrupted by water droplets which

refract light from the scene. As the position and size of the water droplets are essentially random

they are difficult to remove with conventional approaches. For example, one approach would

be to try to identify the rain drops and then use a standard inpainting approach to remove

them. But since the appearance of the rain drops varies considerably, they are difficult to detect

without erroneously including parts of uncorrupted image. The water drops therefore represent

the awkward type of real-world corruption for which our techniques are well-suited.

We simulate the rainy window by photographing real-world scenes through a piece of anti-

reflective glass onto which water has been sprayed. Removing the glass allows us to obtain

a ground truth clean image. We gathered a dataset of 49 real-world clean/noisy image pairs, of

which 3 were held out for testing. From the training images, we generated 3.5 million 8×8 patch

pairs for learning our models.

6.4 Results

Table 6.1 shows the performance of each of the four approaches, applied to the five different types

of synthetic corruption. For each model/corruption combination we train a separate model on

the corresponding training set and then compute the PSNR between the output of each approach

and ground truth image, averaged across the 10 image test set. While all methods improve the

input image, the neural network model outperforms the others, except on the small 3 × 3 blur

where the GMM dominates.

The performance of the GMM and neural net on the synthetic blur images compares favorably

with leading deblurring methods. The algorithm of Krishnan et al. [86] gives the following mean

PSNRs on the test set – 3x3 blur: 32.79 (+7.08) and 7x7 blur: 25.96 (+2.24). These results are

worse than the +8.53 and +2.78 obtained by the GMM for 3x3 blur and neural net for 7x7 blur

93

Corrupt GMM JointSC NN mcRBM
Time(s) - 1.2× 104 2.0× 103 37.4 849.7
Snow 23.43 27.83 (+4.40) 26.74 (+4.03) 32.59 (+9.16) 28.78 (+5.35)
Scratches 24.21 - 24.81 (+0.41) 28.63 (+4.42) 25.44 (+1.23)
Mixed Snow 27.54 - 27.80 (+0.60) 32.26 (+4.72) 28.69 (+1.15)
3× 3 Blur 25.73 34.26 (+8.53) 26.07 (+0.36) 30.79 (+5.07) 28.80 (+3.08)
7× 7 Blur 23.29 25.47 (+2.19) 23.91 (-1.81) 26.07 (+2.78) 24.54 (+1.26)

Table 6.1: Mean PSNR over the 10 test images for different combinations of corruption type and
model. Numbers in parentheses show the relative PSNR gain over the corrupt image. The first
row gives the time taken in seconds to test the model on a single image of size 500× 350 pixels
on a single Xeon 2.67GHz core.

respectively. This shows that directly modeling the posterior in Eq. 6.1 is a viable approach,

even when a good generative model for the corruption exists.

Figure 6.2 shows a qualitative comparison between models for a single image with the “snow”

corruption. Most methods preserve the clean patches in the image well, while removing the

corruptions. The neural network result is the cleanest, followed by the GMM. The mcRBM pro-

duces ringing artifacts around the edges, while the joint sparse coding model leaves blurry regions.

Further comparison images for the other corruption types can be found in the supplementary

material.

For the “scratch” and “mixed snow” corruption, the GMM model did not move from the initial

corrupt image. On closer examination, we found that for these two types of corruption, which

are less distinctive than others, the probability of a clean/noisy (c, n) patch pair under the

trained model was lower than that of a noisy/noisy (n, n) pair1. Since the latter is used as an

initialization, there is no way the model can improve the patch and in practice it does not move

from the initialization. Table 6.2 compares log p(c, n) to log p(n, n) for GMM models trained on

the different corruption types. Since the GMM focuses on modeling p(x, y) rather than ensuring

arg maxx p(x, y) is close to x∗, it is unable to distinguish less noticeable forms of corruption from

clean patches.

The mcRBM removes much of the corruption, but often leaves more artifacts than the neural

net. Although the NN has stacked hidden layers, we found that the NN performance with a

single 1024-unit hidden layer was between those of the stacked NN and mcRBM. A reason for

this may be that the MSE loss used by the NN modulates its gradient on a per-pixel basis, while

the perceptron loss we use for the mcRBM works at a per-datapoint level and does not target

errors in specific pixels.

6.4.1 Water droplet removal

Figure 6.3 shows two test cases of water droplet removal. A 5 × 5 median filter is shown as a

baseline, but this significantly blurs the image. We also tried a bilateral filter, but this produced

1This was the case for all values of the smoothing parameter ε.

94

Clean

Neural Net
PSNR=29.84

Noisy
PNSR=24.89

mcRBM
PNSR=26.15

GMM
PNSR=26.65

Joint Dict.
PNSR=25.80

Figure 6.2: Comparison of approaches on an image corrupted with synthetic “snow”.

even worse results. Our neural-network model does a good job of removing the small droplets,

although some artifacts remain from larger drops. Full size versions of these images, and further

examples can be found in the supplementary material.

6.5 Discussion

We have explored four different approaches that attempt to learn a direct mapping from a

corrupted input image to a clean output. This allows us to remove corruption that cannot be

addressed by existing methods. Results on synthetic forms of corruption surprisingly show that

a neural network model consistently outperforms other approaches. We then demonstrate that

the neural network approach can be used to remove water droplets from a real image, a novel

application that has considerable practical relevance (e.g. for cameras mounted outdoors).

However, our approach has several drawbacks: (i) we must collect training images with and

95

Snow Scratches Mixed Snow Blur (3× 3) Blur (7× 7)
ε 10−4 - - 0 0
log p(c, n) 279.5 296.3 376.5 406.2 408.2
log p(n, n) 273.3 320.4 385.1 -2364.4 -57.4

Table 6.2: Log probability for each GMM model for the 5 different corruption types, averaged
over the training set. (c, n) = clean/noisy patch pair; (n, n) = noisy/noisy patch pair. The
larger the gap between log p(c, n) and log p(n, n), the better the model performs. The reversal
for “scratches” and “mixed snow” explains why the GMM model does not work in these cases.
The first row shows the optimal value of ε, selected on a validation set.

without the corruption, which might be difficult in some practical applications; (ii) the model is

trained for one type of corruption, so may not be robust to changes in the corruption encountered

in test images and (iii) we can only remove corruption that is localized and cannot handle, for

example, large blurs.

96

Noisy
PNSR=28.56

Median 5x5
PNSR=26.79

Neural Net
PNSR=29.12

Noisy
PNSR=27.14

Median 5x5
PNSR=25.82

Neural Net
PNSR=28.84

Figure 6.3: Two test images corrupted by real rain drops. A 5 × 5 median filter removes the
small drops but significantly blurs the image, decreasing the PSNR. Our neural network removes
most of the rain with minimal blurring. This figure is best viewed in electronic form.

97

Chapter 7

Efficient Preconditioning of

Laplacian Matrices for Computer

Graphics

7.1 Introduction

The work described in this chapter is done jointly with Rick Szeliski and Raanan Fattal. We

develop two preconditioners for linear systems involving Laplacian matrices. The first solver was

published in SIGGRAPH Asia 2011 [89] and the second solver in SIGGRAPH 2013 [84].

A large number of problems in computer graphics and computational photography are formulated

as norms over gradients and solved using discrete Poisson equations. Examples in computational

photography include gradient-domain tone mapping [53], Poisson blending [127], alpha mat-

ting [151], image colorization [97], tonal adjustment [106], edge-preserving smoothing [51], and

image relighting and non-photorealistic rendering [12]. Figure 7.1 illustrates some common 2D

problems.

Three-dimensional geometric processing applications include mesh segmentation [107] and geodesic

distance computation [38]. Examples are shown in Figure 7.3 and Figure 7.2. While the Pois-

son equation approach excels in terms of quality and mathematical conciseness, it comes at a

considerable computational cost, as it requires solving very large and poorly-conditioned linear

systems.

The matrices in these linear systems are Laplacians. The connections between Laplacians and

graphs has been given in Section 2.8. These Laplacians are M-matrices (non-positive off-diagonals

and positive diagonal elements), and so they are symmetric and positive-semidefinite (SPD).

When only local interactions in the image or mesh are modeled, they are sparse and banded as

well. By sparsity, we mean that the maximum number of non-zero elements in each row of the

98

dynamic-range compression detail enhancement image colorization

Figure 7.1: Examples of two-dimensional problems that involve the solution of discrete Poisson
equations. From left to right are: dynamic range compression [53], detail enhancement [51] and
image colorization [97].

Figure 7.2: An example of geodesic distance computation [38]. A point on the nose of the 3D
model is marked as source and distances to it are computed using heat diffusion. The left figure
shows the distance to the source point (red is closer, blue is further) and the right figure shows
isoline contours.The overall algorithm requires two Poisson equation solves involving the same
Laplacian with different diagonal shifts and different right-hand sides.

matrix is a fixed, small constant much less than the dimension n of the Laplacian. When the

problem is defined uniformly in space, or equivalently, when the rows (and columns) of the matrix

consist of the same values, just shifted, the resulting Laplacian is homogenous and is otherwise

called inhomogenous.

In most computer graphics and computational photography applications, the size of the Laplacian

n is very large. As explained in Section 2.8, an exact solution is not necessary and iterative

solvers are typically used to approximate the solution. In the case of sparse matrices, each

iteration consists of O(n) operations. The problem is that the number of iterations needed to

achieve a particular accuracy depends on the condition number of the matrix and in the case of

Laplacian matrices, this number grows with n. Inhomogeneous Laplacian matrices often have

substantially higher condition numbers and require more iterations to solve. While we have

shown in Section 2.8 how Laplacians are related to graphs, we provide a more direct definition

99

Figure 7.3: Mesh Segmentation using mesh planar embedding [107]. The 3D mesh on the left
is embedded into a planar shape by projecting it onto the two lowest non-zero eigenvectors. The
planar shape is then contour analyzed to determine segmentation. Note how the two legs of the
creature get mapped to the two spikes in the planar region, thereby making segmentation easier.

of Laplacian matrices is Section 7.2 which sheds light on how the Poisson problems in graphics

usually arise.

Our new preconditioners are highly efficient and have an overall linear O(n) construction time and

memory complexity. Our experiments show that one of the methods outperforms or equals other

state of the art methods, both in terms of operation count and wall-clock time. This speedup

results from the new methods ability to dramatically reduce the matrix condition number. Our

experiments also show that condition numbers of orders of 106 due to severe spatial irregularities

are reduced to less than 10.

In the case of homogenous problems, our algorithms reduce to the GMG method and hence

achieve optimal performance. For linear or tree-like inhomogeneous regions, our algorithm de-

volves to linear time cyclic reduction [65] and (parallel) tree-based preconditioners. Performing

well on these extreme cases makes our method well suited for mixed systems that contain large

uniform regions separated by strong discontinuities, which often arise in graphics applications,

such as edge-preserving smoothing [51]. Our optimized MATLAB/Mex code is available for

download at www.cs.nyu.edu/~dilip/hsc/.

[143] develop a multigrid solver to handle mesh deformation problems. They show significant

speedup over direct solvers for meshes of upto 3 million vertices. The HSC solver we present in

this chapter is faster in wall-clock time. For example, the solver in [143] takes 2.8 seconds to

process a mesh with 800K vertices on a Pentium 4, 3.8GHz. We process a mesh of the same size

in about 0.5s on a single-core Xeon 2.7GHz. [14] present a GPU-based multigrid solver. However,

they restrict their numerical experiments to small grids with less than 200K vertices whereas we

consider problems upto tens of millions of vertices.

100

www.cs.nyu.edu/~dilip/hsc/

7.2 Mathematical background

In this section, we review Laplacian matrices and their connection to quadratic regularization

problems. The connections between Laplacians and graphs have already been made previously,

in Section 7.1. This will help us to establish notations as well as define the scope of computer

graphics applications that we are considering. We use bold letters to denote vectors, e.g., x =

(x1, ..., xn) ∈ Rn, capital letters to denote matrices, and calligraphic letters for sets. We use n as

the number of variables and denote the set of indices by I = {1..n}.

7.2.1 Laplacian matrices

Laplacian matrices result from minimizing objective functions of the form

F (x)=
∑
i∈I

[
ui(xi − yi)2 +

∑
j∈Ni

wij(xi − xj − zij)2
]
. (7.1)

The first sum contains data terms that measure the proximity of x to a given input data vector y.

The second sum contains smoothness terms that measure the derivatives (pairwise differences)

between every variable xi and its neighbors xj , j ∈Ni, with respect to (potentially zero) input

derivatives zij . As we describe later, in the applications we are interested in, each set of neighbors

Ni consists of a small number of variables that are geometrically close to xi. Typical choices in the

case of two-dimensional regular arrays of pixels are the four- or eight-nearest pixels. The weights

ui and wij define the cost for deviating from the data and smoothness objectives respectively and

are non-negative. The problem becomes spatially homogeneous when ui and wij are constant

and is considered spatially inhomogeneous otherwise.

The objective F (x) can be expressed in matrix-vector form as

F (x)=(x− y)>U(x− y) + (Dx− z)>W (Dx− z), (7.2)

where the matrix D is the discrete derivative operator whose rows correspond to pairs of neigh-

boring variables i and j ∈ Ni. The weights matrix W is diagonal and contains wij on the row

that corresponds to the interaction between the i-th and j-th elements. The data weights matrix

U is an n-by-n diagonal matrix with Uii=ui.

The minimum of this discrete quadratic form is obtained by setting dF/dx=0, which amounts

to solving the following linear system

Lx=Uy +WD>z, (7.3)

where L is the discrete Laplacian matrix given by

L = U +D>WD. (7.4)

101

The matrix L is, by construction, symmetric and positive semi-definite since x>Lx = x>Ux +

x>D>WDx = x>Ux+ (Dx)>W (Dx) and both U and W are diagonal with non-negative values.

The off-diagonal elements of L are all non-positive and given by Lij = −wij . The diagonal entries

are given by Lii = ui +
∑
j∈Ni wij and are hence non-negative. These Laplacian matrices are

associated with a graph whose vertices are the variables i and whose edges are weighted by wij .

The data terms ui can be considered as weights of edges connecting the vertices with a set of

auxiliary variables.

The solvers we describe in this chapter applies for the general family of Laplacian matrices

described by Eq. 7.1. This family includes a large portion of Laplacian matrices used in computer

graphics and computational photography applications. For example. the image colorization of

Levin et al. [97] uses ui = 1 at pixels i containing user input colors yi and ui = 0 elsewhere. The

weights wij depend inversely on the difference between the i and j pixels gray-level values. The

reference gradient field is set to zero, zij = 0. The weighted least squares (WLS) edge-preserving

smoothing of Farbman et al. [51] uses a similar definition for the smoothness weights but sets all

data terms ui = 1 and provides the input image as the data y. The dynamic range compression

algorithm of Fattal et al. [53] and Poisson blending of Perez et al. [127] use ui = 0 and set zij to

the manipulated gradient field being integrated. This problem is homogeneous, i.e., wij = 1.

In 3D geometry processing applications, the Laplacian occurs in such problems as mesh segmen-

tation [107] and geodesic distance computation [38]. The Laplacian can either be homogeneous

or based on the local curvature or geometry (inter-vertex distances and angles) in the 3D mesh.

Some of these Laplacian variants, e.g., the co-tangent Laplacian [38], may result in negative

weights wij .

Given that most AMG methods, as well as our methods, are applicable to Laplacian matrices

with strictly negative off-diagonal (M-matrices), we restrict the formulation of 3D processing

problems to this class of matrices. In many cases, defining such matrices while preserving the

same qualitative nature of the operator is possible. For example, Crane et al. [38] describe their

algorithm for arbitrary discretization of the Lapacian operator and then provide two alternatives.

In Section 7.4, we show a particular discretization that results in an M-matrix and at the same

time achieves the desired result.

In computer vision applications, problems of the form Eq. 7.1 arise from Gauss-Markov MRF

models. The data terms are known as unary potentials and the smoothness terms as binary (or

pairwise) potentials. Example application of such models is optical flow regularization [7].

Energy Function. The Laplacian matrix L assigns an energy value to each vector x, defined

by the Rayleigh quotient

EL(x)=(x>Lx)/(x>x). (7.5)

The energy values are always non-negative due to the positive semi-definiteness of L. The

eigenvalues of L are the energy values assigned to their corresponding eigenvectors, since if

Lx=λx, (x>Lx)/(x>x)=(x>λx)/(x>x)=λ.

The input data values yi and derivatives zij contribute only to the right-hand side of Eq. 7.3 and

102

hence do not affect the properties of L. The energy function EL is therefore an intrinsic function

of the Laplacian matrix and it is closely related to the solvability of Eq. 7.3.

7.2.2 Hierarchical preconditioning

The definition of condition number and preconditioners was given in Eq. 2.17 and Section 2.8.

Hierarchical preconditioners are constructed by formulating a smaller version of the original

problem and using its solution as the approximate inverse for the original problem [160, 138, 153].

Geometric multigrid techniques use a regular set of decimation rules (e.g., full octave or half-

octave decimation) and standard interpolation operators as their basis, and are particularly well

suited for homogeneous problems [160]; an example is shown in Figure 2.15. Algebraic multigrid

techniques use both adaptive coarsening strategies and adaptive interpolation weights, which

make them better suited for inhomogeneous problems. Unfortunately, the elimination of fine-

level variables results in an increase the in matrix bandwidth, or, alternatively, a sub-exponential

decrease in the matrix size (Figure 7.4). In order to reduce the bandwith growth (fill-in) in

coarser problems, AMG techniques drop small off-diagonal terms.

Adaptive basis functions, introduced in [153] perform the sparsification (element elimination)

before creating the coarser-level (smaller) problem, which allows them to compensate for these

eliminations by increasing nearby connections. Our first preconditioner (which we call ABF) [89]

is an extension of the adaptive basis functions solver developed in [153].

In Section 7.3.2, we derive an alternative compensation strategy that is based on an analysis of

the spaces spanned by the fine and coarse variables and hence produces a better preconditioner

(slower growth in condition number). This leads to our second preconditioner, which we call

Hierarchical Sparsify and Compensate (HSC).

For both ABF and HSC, once the Laplacian matrix has been sparsified and compensated, we

divide the variables into coarse C and fine F sets. ABF is non-adaptive in it’s selection, and uses

a fixed half-octave scheme to select the coarse and fine variable sets. On the other hand, HSC is

adaptive in its selection procedure. The coarse variables are chosen to encode the low-frequency

modes in the solutions, i.e., the modes that are not well solved by local smoothing or relaxation,

and the fine level variables have no remaining connections between each other. The exact method

for selecting these variables, which in HSC is interleaved with the sparsification step, is described

in Section Section 3.4.

Once the selection of coarse and fine variables has been done, we rearrange the indices in I such

that the C come first followed by the F . Under this permutation, the matrix L becomes

L=

[
LCC LCF

LFC LFF

]
, (7.6)

where LCC contains only the connections between the coarse variables, LFC =L>CF contains the

connections between coarse and fine variables, and LFF among the fine variables. Since the fine

103

variables are uncoupled, LFF is diagonal. The elimination of the fine variables is obtained by

computing the Schur complement using the transformation matrix

P =

[
ICC 0

−L−1
FFLFC IFF

]
, (7.7)

which is applied to L on both sides,

P>LP =

[
LCC−LCFL−1

FFLFC 0

0> LFF

]
. (7.8)

Note that the matrix L−1
FF is an inverse of a diagonal matrix and is trivial to compute, and that

S = L−1
FFLFC is the interpolation (or prolongation) matrix used in hierarchically preconditioned

conjugate gradient [89, Algorithm 1]. Since L is a sparse matrix, so is P , and this elimination

step is computed in linear time.

The resulting two-block matrix in Eq. 7.8 describes two systems that are solved independently.

The fine system, LFF , is diagonal and solved exactly. In Appendix A, we show that the coarser

system, LCC−LCFL−1
FFLFC , is a Laplacian matrix like the original matrix L. In the multigrid

literature, the operation P>LP is also known as the Galerkin step. This allows us to apply

the same procedure again over this system, compute a Schur matrix, and repeat this process

recursively over the resulting coarse system. At each level, we do not operate on the fine variables

eliminated in the previous levels and hence obtain a sequence of of n-by-n transfer matrices

P 1, P 2, .. that contain the current level’s prolongation matrix as the top-left block and are identity

over the remaining coordinates (corresponding to the fine variables of all previous levels). The

recursive elimination process is terminated once the number of coarse variables falls below some

threshold (e.g., 1024, although changing this to 512 or 2048 does not affect our performance),

since the direct solution of such small systems using Cholesky decomposition takes a negligible

amount of time compared to finer-level operations.

7.3 Sparsification and coloring

In the previous section, we presented a general framework encompasing previously developed

hierarchical preconditioning algorithms for the solution of sparse Poisson equations. How do our

new approaches, ABF and HSC, differ from these other techniques?

The adaptive hierarchical basis function algorithm of [153] relies on fixed half-octave coarsening.

At each level, half the variables are chosen as coarse and the other half as fine, following a

red-black scheme. In [153], the next step is to sparsity “diagonal” connections between pairs

of coarse and pairs of fine variables. These diagonal connections correspond to nodes which

are furthest neighbors in a clique. After a connection is dropped, compensation is performed

on adjacent edges (Section 7.3.2. Figure 7.5 shows the sparsification process. The process in

[153] leads to a 5-band sparsified Laplacian matrix if one starts with a 9-band Laplacian matrix

104

Figure 7.4: Effect of Sparsification. The left graph shows how our sparsification step maintains
an average bandwidth below 4 (blue curve) in all the hierarchy levels. Without the sparsification
the (red curve) bandwidth grows until it reaches the matrix dimension. The right graph shows
the scheme’s ability to achieve an exponential reduction in the number of variables (blue curve),
where without sparsification, fewer variables can be marked as fine and get eliminated (red curve).
We used an inhomogeneous two-dimensional regular five-point Laplacian matrix in this example.
Note that the sparsified hierarchy has fewer levels, as it more quickly reaches target coarse level
size.

(for 2D nearest-neighbor problems). ABF is a simple extension of this sparsification scheme. It

is not necessary to drop connections between coarse variables, since they are re-introduced at

the next level anyway. This leads to a lower approximation error between the unsparsified and

sparsified Laplacians at the cost of slightly increased bandwidth (on average, 7 instead of 5, for

a 9-point Laplacian). As seen in Section 7.4, ABF performs extremely well on homogenous and

close-to-homogenous problems.

The ABF coarsening scheme is fixed in nature. There are two drawbacks to a fixed coarsen-

ing/sparsification scheme: it restricts the use of the preconditioner to 2D grids. Applying a

red-black coarsening to irregular grids (such as 3D surface meshes) leads to a very slow rate of

coarsening, with a resulting increase in memory and computational costs. The second draw-

back is that for inhomogenous problems, a fixed sparsification scheme can lead to very poor

approximations. We give an example of this in Section 7.3.2.

To overcome these problems, we introduce the HSC algorithm. Rather than using a fixed spar-

sification and coarsening scheme as in ABF, we adaptively select which edges to sparsify and

which nodes to select as coarse and fine variables. (This process is often called coloring [160].)

The extensions in HSC allow the ABF algorithm, which already performs well on a wide variety

of computational photography applications, to now also perform well on more inhomogeneous

problems as well as unstructured meshes. Compared to AMG and CMG, our technique does

a better job of creating a hierarchy of smaller approximate problems (because of our use of

adaptive interpolants and compensations steps), and hence has better convergence and run-time

properties.

The sparsification and coloring algorithm in HSC tries to simultaneously satisfy two somewhat

conflicting goals. The first is to produce a large number of disconnected fine variables, since the

smaller we can make the coarse system, the easier it is to solve or invert. The second is to only

105

aij

i

j

k

l

m

ajk

j

k

l

m

ajl

ajm

akl aml

(a) (b)

→

ajk

Vj=1

k m
ajl

ajm

akl aml

(c)

→

→ →

→

Vl=0

akm

Figure 7.5: (a) A fixed and, and the sparsification scheme of (b) [153] and (c) ABF. In both
these algorithms, fixed half-octave coarsening is performed. The black nodes correspond to fine
nodes, which are eliminated at each level. Red nodes correspond to coarse variables. In [153],
diagonal (geometrically longest) connections are dropped between pairs of coarse and fine nodes.
Therefore the j − l and k −m connections are dropped. In ABF only the connections between
fine nodes k − m is dropped and the weight of that edge akm is spread to the 4 edges on the
quadrilateral ajk, akl, aml, ajm. Coarse-coarse connections ajl remain unchanged.

sparsify connections that are already quite weak compared to the neighboring compensation

paths. We solve this tension by developing a greedy algorithm that visits fine and unmarked

variables and searches for connections to other variables that can be sparsified, which then

enables these variables to be also colored as fine. The exact algorithm is described in Section

Section 7.3.3. Before we get there, however, we first describe how to find good connections to

sparsify and how to compensate for such operations.

7.3.1 Matrix sparsification for the HSC preconditioner

We now explain how we avoid the growth in matrix bandwidth and increase the number of

fine variables by carefully dropping off-diagonal elements at every level of the hierarchy, before

executing the elimination. Unfortunately, eliminating a large number of off-diagonal elements

introduces approximation errors, meaning that it cannot be used for computing the exact inverse

of L. As we explained earlier, we use the approximated inverse for matrix preconditioning and

accelerating different iterative solvers. In order to achieve low condition numbers, we need to

keep the sparsified matrix ‘close’ to the original Laplacian. In this section we explain how we

carefully chose the off-diagonals to drop from L to produce L̃ based on its effect on the condition

number κ(LL̃−1). Let us first define more precisely what we mean by dropping connections in

the matrix.

There are two properties that we need to preserve when sparsifying a matrix. We need to preserve

its nature as a Laplacian matrix so that the following levels of the hierarchy are constructed in

the same manner. To preserve its symmetry when setting Lij to zero we also set Lji to zero.

However this alone does not preserve the type of the problem, for example, in the case of data-less

problems, where ui = 0, the row and column sums of L are zero. Setting off-diagonals elements

106

to zero results in a matrix with positive row and column sums which corresponds to a problem

with data terms.

We avoid this problem by replacing Lii by Lii+Lij and Ljj by Ljj+Lij when we drop the i, j

element. From now on, we interchangeably say that we drop Lij or the weight wij and in both

cases refer to the same procedure where the diagonal elements are modified.

In order to decide which off-diagonal elements are dropped, we refer to the condition described in

Section Section 2.8 which guarantees κ(LL̃−1) ≤ b/a, given lower- and upper energy bounds b and

a obeying Eq. 2.18. If the energies assigned by the sparsified matrix L̃ are close enough to those

assigned by the original matrix L, the sparsified matrix will provide a good preconditioning. As

we discussed in Section 7.2.1, the energy E(x) does not depend on the norm of the vector ‖x‖ and

hence we can restrict the discussion to unit vectors x in which case the energy function coincides

with the objective function in Eq. 7.2. Dropping a weight wij means that the energy function

ceases to account for changes between xi and xj . However, in case there is a third coordinate

k such that both wik > 0 and wjk > 0, any difference between xi and xj must be accompanied

by a difference between xi and xk or between xj and xk. Thus, for example if wij � wik, wjk,

the penalty term wij(xi − xj)2 is dominated and negligible compared to either wik(xi − xk)2

or wjk(xi − xk)2. In Appendix B we prove that in such cases of triangular connectivity, when

dropping the weakest weight, we get a = 1 and b ≤ 3 and hence κ(LL̃−1) ≤ 3.

In view of these observations and the fact that we need to remove many connections to ensure

rapid coarsening, we apply the following sparsification procedure. At each level of the hierarchy,

we search for triplets of variables that form a triangle and remove the weakest edge in each

triangle. This procedure is applied by scanning the matrix elements until no more triangles are

found.

Figure 7.4 shows the non-zero matrix bandwidth and the matrix dimension at each hierarchy level

with and without applying sparsification. In this experiment our strategy selects and eliminates

between 40% − 50% of the variables at each level and avoids a growth in bandwidth. These

actions are highly local, at the scale of three coupled variables, and hence run in time linear in

the number of variables and connections in the matrix. As we explain next, we further improve

the energy preservation by adjusting the two remaining weights of every sparsified triangle. Note

that the ABF solver always eliminates 50% of the variables at each level.

7.3.2 Compensation for ABF and HSC

When computing a single level of the hierarchy, low condition numbers are achieved even though

multiple overlapping triangle are processed and the theoretical bound becomes κ ≤ 3r where

r is a bound on the number of times the same edge participates in a triangle. However, when

applying this strategy at every hierarchy level, the sparsification errors of the different levels

accumulate. For example, there could be a vector x whose energy drops by a factor of 3 due to

the sparsification that takes place at each level. Thus, after the expected number of m = log(n)

hierarchy levels, its energy drops by a factor of 3log(n) =O(n), meaning that the condition number

107

κ(LQ−1)=O(n) where Q represents the approximate operator obtained by the entire hierarchy.

As we discussed earlier, this dependency of κ on n is observed in non-preconditioned Laplacian

matrices.

The key observation that allows us to cope with this shortcoming is the fact that at each hierarchy

level, about half the variables are eliminated and these variables define a linear subspace that

does not experience the sparsification taking place in the following levels. This means that there

is a hierarchy of subspaces that undergo a different number of sparsification steps. Similarly to

Szeliski [153], we alter the remaining matrix elements in order to compensate for the loss of those

elements dropped during sparsification. In the case of the ABF preconditioner, we follow the

same compensation as [153]. Referring to Figure 7.5, the rule for distributing the weight of a

matrix entry Ljl to it’s neighbors is:

Ljk ← Ljk + 2LjkLjl/S (7.9)

where S = Ljk + Lkl + Ljm + Llm is the sum of the edge weights adjacent to the entry Ljl. Ljk

and Lkj are set to 0. The diagonal entries Ljj , Lkk, Lll and Lmm are accordingly adjusted.

However, ABF’s sparsification and compensation scheme can lead to poor condition numbers for

highly inhomogenous problems. Consider the case when the value of |ajl| (corresponding to Ljl

in the matrix) is much larger than all of the adjacent edge values. In this case, sparsifying that

edge and the resulting compensation of the neighboring edges leads to a very poor approximation

by the sparsified matrix.

The HSC compensation formula overcomes this problem by choosing the weakest edge in each

triangle. Moreover, the compensation is based on an analysis that characterizes vectors based on

the number of sparsification steps they undergo. Thus, we both extend Szeliski’s approach to an

adaptive coarsening schemes as well as improve it by establishing the sense at which L̃ should

best approximates L.

In Appendix C, we show that the linear subspace spanned by the columns of P 1P 2..P l, which cor-

respond to the fine variables eliminated in the l-th hierarchy level, is affected by the sparsification

steps in the first l hierarchy levels. We further show that this subspace is characterized by having

low energy values, since the elimination steps that define it correspond to the minimization of the

energy over the eliminated variables. In view of this relation between the number of sparsifica-

tion steps and low-energy vectors, whenever a triangle is sparsified, we compensate by adjusting

its two remaining weights such that the triangle’s energy contribution remains unchanged over

low-energy vectors.

Assuming that wij is the weakest weight of a triangle which is set to zero, our compensation

procedure consists of finding the sparsified matrix weights w̃ik and w̃jk of L̃ that satisfy

EL(u) = wij(ui−uj)2+wik(ui−uk)2+wjk(uj−uk)2+E′

= w̃ik(ui−uk)2+w̃jk(uj−uk)2+E′ = EL̃(u),
(7.10)

108

Figure 7.6: Sparsification and Compensation in a Triangle. Left shows how the two vectors
u and v are aligned with respect to the triangle and at the right we see the sparsified and
compensated triangle weights which preserve the energy of u and v.

where u is one of the two low-energy vectors. (The same equation is defined over the second

vector v.) The scalar E′ accounts for the total cost of the rest of the energy terms in Eq. 7.2

that are unrelated to wij , wik, and wjk and can therefore be omitted from Eq. 7.10. Once this is

done, except for the i, j and k coordinates, the values of u and v cease to effect the compensation

and hence we set them to zero. Finally, since Eq. 7.10 and its counterpart for v consist only of

differences between the variables, they are invariant to the addition of any constant to ui, uj , uk

and vi, vj , vk.

These invariants leave us with only a single degree of freedom in u and v, which we need to

determine in order to model the shape of low-energy vectors at the coordinates i, j and k. We

use the following rationale to explicitly obtain these two model low-energy vectors. Consider

the scenario where wik is much greater than wjk (and wik > wij). In this case, differences

(ui − uk)2 lead to a higher energy than (ui − uj)2 and hence the former is expected to be much

lower in the case of low-energy u. Low-energy vectors will therefore attain similar values at i

and k and acquire a different values at uj . Given the invariants we discussed, this situation

can be modeled by choosing [ui, uj , uk] = [0, 1, 0]. The reverse scenario where the j-th and k-th

variables are strongly coupled and both are weakly connected to the i-th, can be modeled by the

second vector [vi, vj , vk] = [1, 0, 0]. These scenarios are often encountered in the two-dimensional

computer graphics applications that we are interested in, where the weights are determined by

pixel differences of some reference image. The two constellations result from strong edges in

the reference image that pass through the i, j, k triangle and separate its pixels into two sets of

distinct colors.

In this choice of u and v, we dismiss a third scenario, where wik ≈ wjk and both of them are

much higher than wij . This scenario is less common in the applications that we are interested in

since there is no assignment of pixel values that will lead to such weights. Furthermore, in such

situations, the cost of wij(ui − uj)2 will be penalized by either wik(ui − uk)2 or wjk(uj − uk)2

109

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

2

2 3

2

2 3

0

0 1

offset
and scale

Figure 7.7: Modeling Fourier Modes. Illustration shows how our choice of u models locally the
shape of horizonal low-frequency Fourier modes. The transposed diagram applies for v.

since both wik and wjk are assumed large. Lastly, the low-energy vectors are expected be close

to unform at such triangle and, as we shall see below, we handle these situations properly with

our current choice of u and v.

Solving Eq. 7.10 for u and its analog for v boils down to a simple and efficient update formulas

for w̃ik and w̃jk. The energy of [ui, uj , uk] = [0, 1, 0] before sparsification is given by wij + wjk.

After dropping wij , the energy becomes w̃ik and hence to preserve this energy, we need

w̃ik = wik + wij , (7.11)

and similarly, for [vi, vj , vk] = [1, 0, 0], we get

w̃jk = wjk + wij . (7.12)

This action is illustrated in Figure 7.6.

The LAMG method in [108] also corrects the matrices with respect to low-energy vectors. How-

ever, these vectors are computed globally by applying an iterative method to reduce the energy

of random vectors. In order to achieve very low-energy vectors as our analysis suggests, many

such iterations are needed for larger systems. Our method avoids this additional cost through

its simple local operation.

Data connections. The derivation of both the sparsification and compensation accounts only

for the smoothness terms in Eq. 7.2. Non-zero data terms, ui in Eq. 7.1 can be viewed as

weighting differences with auxiliary variables of fixed values, namely yi in Eq. 7.1. Since each

of these auxiliary variables is connected to only a single variable xi, it never participates in a

triangle. Hence, these connections need not be involved in any sparsification and compensation

steps. In practice, this means that the sparsification and compensation steps are applied on L

after removing its excess diagonal values so that its rows and columns become zero-sum. Once

these steps have been applied, the excess diagonal values are added back to L̃.

Homogeneous systems. In the case of homogeneous Laplacian matrices, such as the spatially

invariant Poisson used in [53, 127, 151], the eigenvectors of L are the Fourier modes [160].

110

In the case of rectangular domains the eigenvalues are given by λij = (4 − 2 cos(2πi/nx) −
2 cos(2πj/ny)) and their corresponding eigenvectors are vi,jx,y = cos(ixπ/nx) cos(iyπ/ny) where

0 = i < nx and 0 = j < ny are the wavelengths and 0 ≤ x < nx and 0 ≤ y < ny are the spatial

coordinates in which case n = nxny. The lowest eigenvalue λ00 = 0 and corresponds to the null

space of L which are the constant vectors v00
xy = 1. The next eigenvalue has a multiplicity of two

λ10 = λ01 = (2− 2 cos(2π/l)) = O(l2) = O(n) and hence the κ = O(n) that we mentioned earlier

for these matrices (the maximal eigenvalue is 4 and does not depend on n). The corresponding

modes are cos(xπ/l) and cos(yπ/l), which are two very smooth functions in space.

The two lowest energy (non-constant) eigenvectors are low-frequency horizontal and vertical

sinusoids. From the perspective of three variables forming a triangle in the grid, these functions

appear as two linear ramps. As shown in Figure 7.7, our compensation function preserves the

energy in these Fourier modes.

If we make sure that our selection of coarse and fine variables as we drop matrix elements

maintains spatial homogeneity, our construction boils down to a geometrical multigrid method

for homogenous problems.

The interpolation matrix we obtain corresponds to prolongation matrices that interpolate first or-

der polynomials exactly. It is well-known in the multigrid literature [160] that such schemes, along

with smoothing iterations (which we explain below), lead to a property known as h-independence

which means that the condition number is independent of n and hence the our scheme, along

with the GMG, achieve an optimal complexity of O(n) running time. This behavior is validated

by our experiments, which we report in Section 7.4. The CMG algorithm [83] on the other hand,

uses constant interpolation matrices as it is an agglomerative method. These matrices interpolate

only constants (zero order). As a result, the performance of CMG on homogenous problem is

quite poor, as seen in Section 7.4.

Our scheme is also important in the case of inhomogeneous problems, which often contain large

homogeneous regions, e.g., due to nearly constant regions in the reference image. In the next

section we explain how we make sure our scheme maintains spatial homogeneity in such regions.

Table 7.1 shows the effect that careful compensation has on condition numbers for homogenous

Poisson matrices of increasing size. We compare our method with a sparsification-only version,

where we drop the weakest edges in each triangle but do not perform any compensation. our

method with compensation has the property of h-independence, while without compensation,

the condition numbers increase with problem size.

In Figure 7.8, we show how the HSC algorithm works on a small sample problem, choosing weak

edges to drop and compensate. As might be intuitively expected, the low eigenvectors of this

problem lie on manifolds along the arms of the spiral. Therefore dropping connections across

the spiral arms and strengthening them along the spiral arms is the best strategy to preserve

low-frequency energies.

A natural question that arises in the use of more than 2 vectors during compensation. Instead

of leading to a simple compensation equation as in Eq. 7.11 and Eq. 7.12, compensating with

111

Problem
Size Original CN

CN with
compensation

CN with no
compensation

1024 423 1.2 1.6
4096 1676 1.2 2.4
16384 6674 1.3 3.7
65536 26629 1.4 5.6
262144 106380 1.5 8.6
1048576 452500 1.5 13

Table 7.1: Comparison of condition numbers with and without compensation. First column
gives the dimension of the homogenous Laplacian. Second column gives the unpreconditioned
condition number. Third and fourth columns give the preconditioned condition number with and
without compensation, respectively.

other vectors leads in general to a 2 × 2 least squares system. We have experimented with a

number of other vectors for the compensation. All resulted in inferior results to the scheme in

Eq. 7.11-Eq. 7.12. We believe that the reason for this is that using other vectors reduces the

accuracy of compensating for the linear ramp vectors, which tend to be the lowest frequency

vectors in Laplacians arising from natural images. This is certainly the case for homogenous

problems. Nevertheless, it may be possible to improve the accuracy of inhomogenous problems

with other vectors. We leave this for future work.

7.3.3 Coloring algorithm

With our sparsification criteria and compensation steps in place, we need to decide how to

color the original variables in the Laplacian as coarse C or fine F and how to interleave the

process of sparsification/compensation into this procedure. For the ABF algorithm, as mentioned

previously, simple red-black coloring [153] is used.

The HSC algorithm we have developed is based on the observation that we want to produce a

large number of fine variables (to create smaller problems), but that it is best to cut weak edges

to limit the growth in condition number.

Our algorithm (Algorithm 5) visits nodes in their lexicographic order (how they were given in

the original problems), ignoring nodes already marked as coarse, since we do not need to cut

connections between these nodes and their neighbors. For each unmarked or fine node, we search

its neighbors and neighbors’ neighbors, looking for triangles where an edge emanating from the

current node can be cut because it is no larger than the other edges in the triangle. When we find

such an edge, we eliminate it, compensate the other two edges in the triangle, and mark both

endpoints of the eliminated edge as fine. At the end of this procedure, we label any unmarked

variables as fine or coarse (depending on their neighbors), fix fine-fine connections by marking

one endpoint as coarse, and check for any coarse variables surrounded by coarse variables, which

can be set to fine.

An alternative compensation strategy may be to compensate all triangles that are common to an

edge, as is done in [153]. This strategy is advantageous when all triangles are similar in weight.

112

Figure 7.8: Scheme Progression. We show the connectivity graphs at each level for a highly
discontinuous EPS problem, starting from a four-point Laplacian matrix defined by the top-left
image. Red circles show fine (eliminated) variables and black show the coarse one. Green lines
show the connections kept between variables and red show the ones removed during sparsification.
The thickness of the lines indicates the corresponding strength of the weights.

However, for highly inhomogenous problems, it could lead to overcompensation of weak edges by

stronger ones, leading to a deterioration of performance. In future work, we hope to study such

compensation schemes in greater depth.

In homogeneous regions where we have additional geometric information, i.e., the (x, y) locations

of variables, we modify the above edge selection and coloring procedure to produce a regular

red/black coloring. To determine if a variable is in a homogenous region, we take the difference

between the strongest and weakest connections of the variable and divide this difference by the

strongest connection. We then find the mean of these ratios over all variables. Any variable

whose ratio is below or equal to the mean ratio is marked as geometric. When sparsifying

triangles, if all three vertices are marked as geometric, we cut the longest edge in the triangle

based on its geometric distance. We also mark vertices according to a global red/black coarsening

scheme, so that fine variables are disconnected from each other. These steps ensure that our HSC

scheme reduces to geometric multigrid for smoothly varying 2D problems. In this approach,

homogeneous regions in inhomogeneous problems are also processed using geometric coarsening.

For 3D problems, we do not perform any geometric coarsening since we do not have geometric

information.

Once the HSC preconditioner has been constructed, we use it in combination with conjugate

gradients to precondition the solution of Lx = b using the multilevel V-cycle described in Algo-

rithm 6. Algorithm 6 is a generalized description of a unified multilevel multigrid preconditioner,

incorporating diagonal preconditioning, pre-smoothing and post-smoothing steps.

113

Algorithm 5 Sparsify and color (HSC)

input: Laplacian matrix L and optionally the coordinates of the mesh vertices;
output: Fine F and coarse C variable indices and the sparsified matrix L̃,
which, according to Eq. 7.7, determine the prolongation matrix P .

1. Remove the excess diagonals from L and store them in E
2. Set all vertices as unmarked except for the first one, which we mark as fine
3. Flag variables as geometric or non-geometric
4. Cycle through vertices i in the matrix

if i is marked as coarse, skip to the next vertex
for each triangle in which vertex i participates

if all three vertices are flagged as geometric
Cut longest edge in the triangle and compensate
Mark the vertices in this triangle as coarse or fine

according to the global red/black settings
else

Cut the weakest edge in the triangle and compensate
If vertices on weakest edge are unmarked, mark them as fine

endif
Set unmarked neighbors of i as coarse

endfor
5. Set unmarked vertices that have fine neighbors to coarse, else fine
6. For any fine-fine connections, set one of the endpoints to coarse
7. Set any coarse variables connected only to coarse variables as fine.

8. Add the excess diagonal in E back to L to produce L̃

At the finest level, the current residual is computed (line 1 in Algorithm 6). This residual

is then transferred to the coarse level using the transpose of the interpolation operator P 0 at

this level. This restriction of the residual is recursively continued until the coarsest level, at

which point, the residual is exactly inverted. The resulting correction is then propagated up the

hierarchy using the interpolation operators P l at each level. The coarse-level correction gives

an (approximate) solution to the coarse variables at each level. The correction to the fine level

variables is computed using a diagonal preconditioning of only the residuals at the variables

marked as fine at each level. This is represented by the DiagPrecond function in Algorithm 6.

Together, these two steps correspond to the approximate inversion of the matrix defined in

Eq. 7.8. The accuracy of the preconditioning is further improved by the use of a single iteration

of Gauss-Seidel post-smoothing [138] at each level. This is represented by the Smooth function

call. Pre-smoothing may also be optionally added, although in our numerical experiments we do

not find it to improve performance and therefore we do not use pre-smoothing. An interesting

direction for future work is to better characterize the relationships between the sub-spaces of the

solution which are affected by diagonal preconditioning and by smoothing.

In the experiments we report in this paper, we use a single step of post-smoothing, νpost = 1,

and no pre-smoothing, νpre = 0 and a V-cycle (γ = 1) since this resulted, on average, in the

fastest running algorithms. For our smoothing algorithm, we use lexicographic-order Gauss-

Seidel. These settings were used for both the HSC and ABF preconditioners.

114

Algorithm 6 Unified multigrid/multilevel algorithm

[el] = MGCYC (l, rl, {L1 . . . Lm}, {P1 . . . Pm},m, ω, νpre, νpost, γ, d)
INPUT: Current level l, residual rl, per-level Laplacians Ll,
per-level interpolation matrices P̂l, number of levels m, damping factor ω,
pre- and post-smoothing iterations νpre and νpost, number of cycles γ,
flag for optional diagonal preconditioning d
OUTPUT: Correction at level l el

1. eprel = Smooth (0, Al, rl, ω, ν
pre) // Pre-smoothing correction

2. r̄l = rl − Lleprel // Update the residual
3. r̄l+1 = PTl r̄l // Restrict residual to coarse level
4. if l = m− 1
5. el+1 = L−1

m r̄l+1

6. else
7. el+1 = 0
8. for j = 1, . . . γ //γ = 1 is V-cycle; γ = 2 is W-cycle
9. r̂l+1 = r̄l+1 − Ll+1êl+1 // Update the residual
10. ẽl+1 = MGCYC (l + 1, r̂l+1, {L1 . . . Lm}, {P1 . . . Pm},m, ω, νpre, νpost, γ, d)
11. el+1 ← el+1 + ẽl+1 // Add up corrections over the cycles
12. endfor
13. endif
14. ecgcl = Plel+1 // Prolong coarse-grid correction
15. if (d = 1) // Optional fine-level diagonal preconditioning
16. edl = DiagPrecond(r̄l, Ll) // Precondition with inverse diagonal of Al
17. else
18. edl = 0 // No diagonal preconditioning
19. endif
20. esuml = eprel + ecgcl + edl // Add up corrections
21. el = Smooth(esuml , Ll, rl, ω, ν

post) // Post-smoothing

115

7.3.4 Updating the HSC preconditioner for diagonal shifts

In a number of applications [51] and [38], diagonally shifted versions of the original laplacian L

are considered. These perturbations result in Laplacians of the form L+tI, where I is the identity

matrix and t is a non-negative scalar. For example, in edge-preserving decomposition [51], these

perturbations give rise to a multi-scale decomposition—larger values of t correspond to coarser

scale versions of the original image. In smoothed geodesic computation on meshes, [38], the scalar

t controls the smoothness of geodesic distances on a mesh. The offset t is often not known in

advance and needs experimental determination.

In order to avoid the expensive steps of sparsification, compensation, and coloring, we developed

the following approximate method for computing a good preconditioner for L + tI given our

already constructed hierarchical preconditioner for L. We define the excess diagonal at the finest

level as E0 = tI. The finest-level Laplacian is modified from L0 to L0 +E0. The excess diagonal

for the next coarser level is then computed as E1 = P 1TE0, where P 1 is the Schur matrix at

the next level as defined in Algorithm 5. The Laplacian at level 1 is then changed from L1 to

L1 +E1. This process is continued all the way through the hierarchy, and the modified Cholesky

decomposition of the coarsest level Laplacian is also recomputed accordingly.

This update process does not require any new sparsification, compensation or Galerkin recompu-

tation of the coarse level matrices, and is hence extremely fast, typically an order of magnitude

faster than recomputing the preconditioner. This updated preconditioner is also very accurate,

usually only requiring only one extra CG iterations, as compared to using the recomputed hier-

archy for L+ tI. In Section 7.4, we give timings for an edge-preserving sharpening application on

a multi-megapixel image. In future work, we intend to better quantify bounds on the accuracy

of this updated preconditioner.

7.3.5 Efficient multilevel eigensolver

A number of applications such as mesh segmentation [107] and spectral matting [96] require the

computation of a few lowest eigenvectors of a Laplacian. In mesh segmentation, a 3D mesh is

spectrally projected onto the plane by projecting the mesh coordinates on the lowest two non-zero

eigenvectors of the mesh Laplacian. Contour analysis is then performed on the projected planar

shape (Figure 7.9). Two types of Laplacians are used in this application: a graph (homogenous)

Laplacian and a geometric Laplacian designed to enhance concavity of the resulting planar shape.

Since our hierarchy explicitly preserves low energies, a natural strategy is to use a multi scale

approach to compute the lowest eigenvectors. First, we compute the exact lowest few eigenvectors

at a coarse level (using MATLAB’s eigs function). We then interpolate these eigenvectors to the

finest level using the prolongation matrices. This interpolation already gives us a very good

approximation to the true lowest eigenvectors; where for a candidate eigenvector v, we compute

the approximate eigenvalue as λ = (v>Lv)/(v>v), and the error as ‖Lv−λv‖. To refine the vectors

further, we perform a few iterations of block Davidson smoothing [4] at the finest level. Typically,

116

Figure 7.9: Mesh Segmentation using Spectral Embedding: The 3D mesh is embedded into the
2D planar shape. Contour analysis is performed on this planar shape to determine segments in
the original mesh. The fingers of the mesh are mapped to the spiky parts of the planar graph.
Our solver is used to compute the lowest eigenvectors of the mesh Laplacian, to perform the
spectral embedding.

less than a dozen iterations of block Davidson smoothing gives us a very accurate estimation

with a relative error of 10−4. This level of accuracy suffices for most graphics applications. The

resulting multilevel eigensolver is twice as fast as MATLAB’s built-in eigensolver for meshes

with a million or more vertices, which uses the state of the art Lanczos methods to determine

eigenvectors. It also uses significantly less memory. In Section 7.4, we give timings for the

eigensolver for meshes of different sizes.

Our multilevel eigensolver algorithm is given in Algorithm 7. The algorithm starts by computing

the HSC hierarchy for the given Laplacian L (line 1). Then the exact eigenvectors are computed

at a coarser level which has 30% the number of variables as the finest level (lines 2 and 3). This

threshold of 30% was chosen heuristically and is a tradeoff between time taken at the coarsest level

and overall number of smoothing iterations. Next, the coarse-level vectors are interpolated to the

finest level using the interpolation matrices Pl computed during the preconditioner construction

(lines 4 through 9). As we proceed up the hierarchy, the vectors lose their accuracy. To recover

some of the accuracy, we perform a Rayleigh-Ritz correction at every level. The idea of the

Rayleigh-Ritz correction is briefly given as follows. Suppose we are given an orthonormal set of

vectors V which span a subspace K. The Rayleigh-Ritz procedure gives us a rotation of the set

V which is the optimal approximation to the eigenvectors of L in the subspace K. The rotation

is found by finding the eigenvectors Vr of V>LV , and then setting V ← V Vr. More details and

proofs are given in [5]. We perform the Rayleigh-Ritz procedure at every step of the hierarchy

during the coarse-to-fine prolongation of the vectors (lines 7 and 8 of Algorithm 7).

Once a candidate set of vectors V are computed from coarse-to-fine prolongation, we perform a

series of smoothing iterations to improve the accuracy of the vectors. Given a basis set V , we first

compute the residuals of the set (line 12). We check for convergence of vectors using the user-

specified tolerance Tol (line 13). If the norm of a column of R drops below Tol, the corresponding

117

vector in V is considered converged and does not change in further iterations. This is known as

deflation of the set V . If the number of converged vectors exceeds the number N , we are done

(line 13). Otherwise, the residuals are preconditioned using the HSC preconditioner (line 14)

and the set of vectors V is augmented with the preconditioned residuals W (line 16), after the

set W is orthonormalized with respect to V . To improve the accuracy, Rayleigh-Ritz rotation

is performed (lines 17 and 18). This procedure is repeated until convergence is reached. This

can cause the set V to keep increasing and greatly slow down the speed. Therefore in practice,

all methods to compute eigenvalues are restarted methods, whereby the set V is truncated to a

pre-defined maximum size to keep memory and computation costs under control. This is done by

only keeping the vectors V corresponding to the smallest Rayleigh-Ritz eigenvalues (of course,

while always keeping previously converged vectors). More details on deflation, restarting and

other techniques are given in [3].

Algorithm 7 Multilevel Eigensolver

[V,D] = EIGENSOLVER(L,N,Tol)
INPUT: Laplacian L, number of eigenvectors N , accuracy level Tol
OUTPUT: Orthogonal matrix of eigenvectors V and diagonal matrix of eigenvalues D
such that LV ≈ V D

1. [Fun Hier] = HSCSetup(L) // Set up HSC hierarchy and preconditioner
2. Choose coarse level C with 30% the number of variables as L
3. [VCDC] = eigs(Hier.LC) // Compute N exact eigenvectors at coarsest level
4. for l = C − 1, . . . 1 //Work up the levels interpolating and rotating
5. Vl = Hier.PlVl+1 // Interpolate to next level
6. Vl ← GramSchmidt(Vl) // Make Vl an orthonormal set
7. [Vr, Dr] = Ritz(Vl, Hier.Ll) // Rayleigh-Ritz rotation of Vl
8. Vl ← VlVr // Rotate vectors
9. endfor
10. V ← V1, D ← D1

11. for it = 1, . . . , P // smoothing iterations
12. R = LV − V D // Compute residual
13. Check for convergence and fix those converged; if number exceeds N quit loop
14. W = Fun(R) // Precondition the residuals
15. W ← Orthogonalize(W,V) // Orthonormalize W w.r.t V
16. V ← [V ;W] // Augment
17. [Vr, D] = Ritz(V,L) // Rayleigh-Ritz rotation of V
18. Vl ← V Vr // Rotate vectors
19. endfor

7.4 Results

In this section, we compare the performance of the ABF and HSC preconditioning schemes

against a number of other preconditioners, as well as MATLAB’s direct solver, for a range of

2D and 3D problems. We embed the different preconditioners in the preconditioned conjugate

gradient (PCG) method described in Algorithm 6 with νpre = 0, νpost = 1, and γ = 1. We

118

Figure 7.10: Independence to System Size. Left plot shows the condition number of the precon-
ditioned systems achieved by various methods with respect to the matrix dimension n. Similarly,
the right plot shows the number of CG iterations needed to achieve a fixed error or 10−4 with
each method. Both the geometric multigrid method and our preconditioners (ABF and HSC)
show invariance to scale.

implement our solvers in MATLAB with Mex acceleration.

In our experiments, we measure the convergence of a solver for Lx = b using two metrics: error

with respect to the true solution computed by a direct solver, and relative residual, given by

‖Lx− b‖/‖b‖. The relative residual is the measure used for terminating PCG iterations.

We compare the performance of our preconditioner against five other state of the art precon-

ditioners. The first is combinatorial multigrid (CMG) [83]. This is an agglomerative-based

multigrid method that clusters strongly coupled variables into a single coarse-level variable. The

interpolation operators simply copy the value of the coarse variable into all fine variables that

belong to the cluster. The second is another variant of this approach that takes the classic AMG

approach in [19] and truncates the prolongation matrix to a single variable at every row (which

makes it aggregative as well) in order to avoid the growth in the matrix bandwidth. The differ-

ence in the CMG and AMG algorithms lie in the manner in which the aggregation of variables

is performed. The third method is the lean algebraic multigrid (LAMG) [108], which was de-

scribed in Chapter 2. LAMG is also an agglomerative method. However, it uses adaptive error

smoothing to improve the quality of the interpolation matrices. Low-degree nodes are also elim-

inated at every level to improve the coarsening rate without sacrificing quality. These additional

steps, while increasing accuracy, also greatly increase the setup time for LAMG. This makes

it ill-suited for problems where the matrix is used only once for setup and solve. The fourth

is a standard geometric multigrid (GMG) method that employs second-order prolongation and

restriction matrices [160]. Except for AMG and GMG, we used code provided by the authors.

For all these methods, we compare the reduction in error with respect number of iterations and

floating-point operations (flops) and the decrease in relative residual with respect to iterations.

We also report the wall-clock running times needed to achieve a sensible accuracy threshold.

These latter (tabular) results include running time comparisons with MATLAB’s direct solver,

which is highly optimized.

119

Problem Size Direct CMG HSC LAMG AMG ABF GMG
HDR comp. 4.2M 31.1 29.8 15.3 107.4 24.5 14.8 19.9
Colorization 5.0M 118.9 19.7 12.8 129.7 26.1 12.6 27.3

EPD compress (3 scales) 4.2M 140.4 88.8 70.4 - - - -
EPD sharpen (5 scales) 4.2M 125.0 97.7 55.7 - - 75.8 -

Table 7.2: Total wall-clock time taken (Setup + Solve) in seconds for problems arising on 2D
grids. For each problem, winners are highlighted in bold. Timings within 15% of each other are
considered a tie. A ’-’ means the iterative method did not converge to the target relative residual
(10−6) within 30 CG iterations. In all cases, our HSC method is faster than the direct solver by
factors ranging from 1.2 to 9.3. Our ABF method is fastest for Laplacians that are homogenous
or close to homogenous. The first column gives the number of unknowns. Our methods perform
the best over a range of problems with different levels of continuity.

Problem Size Unpreconditioned CMG HSC LAMG AMG ABF GMG
HDR comp. 4.2M 1.7× 106 12.4 1.5 5.7 14.0 1.5 1.4
Colorization 5.0M 2.2× 107 11.6 2.2 2.0 19.9 2.3 20.8

EPD compress 4.2M 1.0× 106 9.0 5.9 - - - -
EPD sharpen 4.2M 6.7× 105 10.7 6.6 - 6.9 - -

Table 7.3: Condition numbers achieved by the solvers for different 2D problems. The third column
gives the condition number of the unpreconditioned Laplacian. The fourth column onwards list
the condition number achieved by each method for that problem. For the EPD problems, the
Laplacian at the finest level was used to compute the condition numbers. A ’-’ means that the
method did not converge for a problem.

7.4.1 2D Problems

We evaluate our algorithms on three kinds of 2D computational photography problems: homoge-

neous Poisson equations, non-homogeneous Poisson equations that arise in image colorization [97],

and those that arise in EPD problems [51].

Homogenous Poisson Problem. Homogenous Poisson matrices are used for various problems

that require the integration of a manipulated gradient image field, e.g., tone mapping [53] and

Poisson blending [127]. In Figure 7.10, we verify h-independence we discussed in 7.3.2 by tone

mapping the same image at various sizes. The plots show that both HSC and ABF, similarly

to GMG, do not depend on the problem size. There are more efficient methods for solving this

problem [50]. However, ensuring that the h-independence property holds for our technique allows

our method to scale well on problems with mixed coefficients that have large uniform regions

within them.

Edge-Preserving Decomposition and Image Colorization. In Figure 7.11 we compare

the methods on the highly irregular matrices arising from the use of EPD for dynamic range

compression and detail enhancement [51]. For image colorization, HSC and ABF perform the

best. For edge-preserving decomposition, HSC and CMG perform the best. For EPD, geometric

methods such as GMG and ABF perform poorly because they use regular subsampling grids

that fail to preserve oriented or thin regions at coarser levels. As described in Section 7.3.4, our

preconditioner can be efficiently updated for problems such as Edge-Preserving decomposition,

120

where a series of diagonally shifted Laplacians are generated.

In Table 7.2, we show the timing results for EPD compression and EPD sharpening for multiple

such shifts. Neither CMG nor the direct solver have such an update, so their performance suffers

compared to HSC. CMG is competitive with our solver for EPD-like problems if only a single

solve is required. However, for multiple solves, our performance greatly improves due to our

efficient preconditioner update. We tried the same heuristic preconditioner update for CMG,

but the resulting approximate preconditioner performed poorly for diagonal shifts, thus forcing

CMG to recompute the preconditioner for every diagonal shift.

Figure 7.11 also compares the methods on matrices arising from colorization problem [97] of a

very large image. This problem uses less irregular weights and hence the piecewise constant basis

functions that CMG use undermine its performance.

Finally, in Table 7.2, we summarize wall-clock running times of all the methods on different 2D

problems. We see that while ABF works well on homogenous problems, it often fails to converge

(in reasonable time) on more heterogenous problem such as EPD.

7.4.2 3D Meshes

We now consider applications of Laplacians arising in 3D surface mesh processing. The first

is mesh segmentation, the second is geodesic distance computation on meshes, and the third is

mesh denoising. The ABF and GMG preconditioners cannot be used in 3D problems owing to

the lack of an underlying grid structure for the regular coarsening.

Mesh Segmentation. As explained in Section 7.3.5 and shown in Figure 7.9 and Figure 7.2,

the mesh segmentation method developed in [107] uses at its core an eigensolver to compute the

three lowest eigenvectors of a Laplacian defined over the 3D mesh. Two types of Laplacians are

described in the paper: a homogenous graph Laplacian and a geometric Laplacian. In Table 7.4,

we compare the timings taken by our eigensolver (using HSC), AMG, and MATLAB’s built-in

eigensolver, eigs, to compute the three lowest eigenvectors of homogenous Laplacians defined over

3D meshes of different sizes. For larger mesh sizes, we are between two and three times faster than

MATLAB’s eigensolver. We observe similar performance for the non-homogenous Laplacians

defined in [107]. The CMG solver does not have an explicit preservation of low eigenvectors across

the hierarchy. As a result, a multi scale initialization works poorly for eigenvector computation.

Geodesic Distance Computation. In [38], a heat kernel is used to compute geodesic distance

between points on a 3D mesh. The method introduced in their paper involves the solution of two

linear systems. The Laplacians in these two systems are related to each other by a diagonal shift.

Hence, our preconditioner update scheme Section 7.3.4 helps to reduce the overall computation

time. In Table 7.5, we compare HSC and MATLAB’s direct solver on homogenous Laplacians

defined over meshes of different sizes. (AMG and CMG results are not reported, since they

failed to converge in an acceptable time.) HSC provides a significant speedup over the direct

solver. Figure 7.2 (right) shows the visualization of geodesic distances computed on the Ceasar

121

Mesh Vertices
MATLAB

eigs
AMG

(Speedup)
HSC

(Speedup)
Hand 50K 0.9 0.9 (1x) 0.9 (1x)
Lion 150K 3.9 3.0 (1.3x) 2.6 (1.5x)
Lago. 800K 27.1 16.1 (1.7x) 10 (2.7x)

Neptune 2M 60.9 35.6 (1.7x) 30.8 (2x)
Statuette 5M 154.8 82.3 (1.9x) 66.5 (2.3x)

Table 7.4:]
Wall clock time (in seconds) to compute the lowest three eigenvectors of homogenous Laplacian
defined on a 3D mesh, comparing our eigensolver, agglomerative AMG, and MATLAB’s eigs.

The speedup of our solver and AMG over the direct solver is given in parentheses.

Mesh Vertices Direct Solver

HSC Setup/Solve

(Speedup)
Lion 150K 7.5 1/0.5 (15.6x)
Lago. 800K 36.2 2.6/1.7 (21.3x)

Neptune 2M 104.4 11.3/6.2 (16.8x)
Statuette 5M 202 29.1/13.3 (15.2x)

Table 7.5:]
Wall clock time (in seconds) to compute geodesic distances on 3D meshes of different sizes. We

compare our solver and speedup over MATLAB’s direct solver. The agglomerative methods
AMG and CMG failed to converge within 50 PCG iterations to an accurate solution for these

Laplacians. The speedup ratios are given for the solve phase over the direct solver.

mesh. Here, the distances are computed from a point on Ceasar’s nose (red is closer to the

source point, blue is farther). The isolines of the resulting distance function are also shown. In

geodesic distance computation, often the distance of points to different initialization need to be

re-computed. Therefore, the solve phase is repeatedly performed with different right hand sides.

Mesh Smoothing. We perform Laplacian-based smoothing of noisy meshes, using the inverse

Euclidean distance measure between vertices , wij = ‖vi−vj‖−2, as the entries in the Laplacian.

Given the noisy vertices Vn of the original mesh, we compute smoothed vertices Vs, by solving the

smoothing equation (I+ tL)Vs = Vn. For comparison, on a mesh with 150K vertices, our method

takes less than 1 second for the solve phase, whereas the bilateral filtering approach in [58] takes

about 24 seconds on a mesh with 100K vertices (on results reported in 2003). Laplacians based

on bilateral filtering-based similarity measures may also be used for denoising. In Figure 7.12,

we give an example of mesh smoothing, and we report timing results in Table 7.6.

7.5 Discussion

We have presented two efficient and effective multi-level matrix preconditioning schemes that

apply to a large class of Laplacian matrices used in computer graphics, including inhomogeneous

computational photography problems. The second of the two schemes also works on 3-D mesh

processing problems. The new preconditioners operate in a very localized manner and avoid

the issue of growth in non-zero matrix bandwidth and hence runs in linear time. The first

122

Mesh Vertices Direct Solver

HSC Setup/Solve

(Speedup)
Lion 150K 2.5 0.7/0.9 (2.8x)
Lago. 800K 26.3 2.1/0.5 (52x)

Neptune 2M 87.1 8.2/6.7 (13x)
Statuette 5M 176.2 18.9/50.4 (3.5x)

Lucy 14M 1246 80.6/76.9 (16.2x)

Table 7.6: Wall clock time (in seconds) to to smooth noisy meshes of different sizes. We compare
our solver and speedup over MATLAB’s direct solver. The agglomerative methods AMG and
CMG failed to converge within 50 PCG iterations to an accurate solution for these inhomogenous
Laplacians. The speedup ratios are given for our solve phase over the direct solver.

scheme, ABF, use fixed coarsening and sparsification. The second scheme, HSC, adaptively

selects variables that are eliminated and the connections that are dropped and compensated,

guided by principles that aim to maximize the preconditioning effectiveness. The derivation of

HSC is based on a formal analysis that ties the algorithmic decisions with their effect over the

condition number of the preconditioned system. We derive a new compensation scheme based

on this analysis that considers the interplay between levels in the hierarchy. This compensation

helps to decouple the resulting condition number from the system size n.

The experiments we report show that our new preconditioners outperform or equal other state-

of-the-art iterative and direct methods in all scenarios, both in terms of operation count and

wall-clock time. The ability to perform well on all applications makes HSC a more useful tech-

nique than specialized solvers such as GMG, CMG, or ABF, which only work well under certain

conditions. Our performance results from our ability to reduce the condition number of highly

irregular Laplacian matrices as well as our use of geometric coarsening in homogeneous regions,

i.e., a mixed strategy well-suited for many computer graphics applications.

Our approach, like most multilvel methods, is inherently limited to Laplacian matrices that have

non-positive off-diagonals entries. As future work, we plan to generalize our approach to wider

families of matrices. We also plan to extend our approach to 3D volumetric applications in

computer graphics and simulation, and to develop parallel and GPU-based implementations of

our algorithms. Finally, we plan to study the theoretical relationship between our approach and

existing algorithms such as GMG, AMG, and CMG, to see if we can derive formal proofs on the

condition number and scaling properties of our approach.

123

Figure 7.11: Performance comparison for 2D problems with varying degrees of homogeneity: top:
HDR Compression on a 2048 × 2048 image; middle: image colorization on a 1962 × 2533 sizes
image; and Edge-Preserving Dynamic range compression on a 2048 × 2048 image (single level).
Our method consistently ranks at or near the top on all the metrics considered: error with respect
to iterations and flop count; and relative residual.

124

Figure 7.12: Example of mesh smoothing using an inhomogenous Laplacian based on an inverse
distance measure between vertices. Left: original mesh; Middle: noisy mesh; Right: denoised
mesh with our solver with smoothing parameter t = 0.1.

125

Chapter 8

Conclusions

In this thesis, we have proposed new image priors and explored their use in computational pho-

tography applications. We have developed a novel mechanism to enable low-light photography.

We have developed an extremely fast algorithm for non-blind deconvolution. One of the new

priors, based on a sparsity measure, has proved useful in regularizing blind deconvolution prob-

lems. Finally, we have developed novel preconditioners for linear systems involving Laplacians.

Such Laplacians arise in computer graphics and computational photography applications. In

developing these preconditioners, we have addressed fundamental problems of bandwidth growth

and adaptability which exist in multigrid methods.

The work we have explored can be extended in a number of future directions. Recent research

[98] has indicated that image denoising using non-parametric methods has reached near-optimal

performance. Further progress will require parametric methods and therefore more sophisticated

image priors. The spectral prior we introduced in Chapter 3 is simple and does not take into

account inter-spectral relationships beyond the correlation of edge positions. A more careful

study could result in better priors that overcomes the shortcomings we discussed in Chapter 3.

A more powerful prior would be useful in applications such as the fusion of far-IR and visible

wavelength images, which would be useful in car driver assistance systems.

The `1 / `2 prior we developed in Chapter 5 for blind deconvolution works well for indoor scenes.

However, for complex textures and outdoor scenes, this prior can often fail, as pointed out in [165].

Finding a more robust measure to distinguish blurred and sharp images remains an outstanding

problem. Such a measure would be necessary to tackle the much tougher challenge of spatially

varying deconvolution, where there are still not satisfactory solutions. A proof of optimality of

such a measure would also be of interest. Unfortunately, the proofs from the blind equalization

literature [140, 141] cannot be directly used due to their assumption on the IID nature of the

latent signal. Images do not enjoy such independence properties.

Our Laplacian preconditioners only work with M -matrices, which have negative off-diagonal

entries. Many Laplacians in computer graphics, however, result in non-M matrices. Examples of

126

these are cotangent and biharmonic Laplacians. Cotangent Laplacians arise because weights on

an edge correspond to (sums of) cotangents of angles opposite that edge. Clearly, depending on

the angles, these can be positive or negative. Biharmonic Laplacians are of the form LTL where

L is a Laplacian. These arise from reparametrization problems [122]. These are commonly used

in computer graphics and at present, only Cholesky-based direct solvers such those in MATLAB

or TAUCS [158] provide fast code to solve such problems. A preconditioner for such problems

would be of interest to the computer graphics community.

127

Appendix A

Coarse Level matrices are

Laplacian

Lemma 1. Let L be a Laplacian matrix with the following characteristics: it is symmetric,

diagonally dominant and has non-positive off-diagonals. Let C and F be disjoint variables index

sets such that no two variables in F are connected to each other in L. Then the coarse level

system L1 =LCC−LCFL−1
FFLFC is also a Laplacian matrix which shares the same properties as

L.

Proof. Since no variable in F is connected to any other variables, LFF , is a diagonal matrix with

positive diagonal entries (which was the case in L). Since the off-diagonal entries in L are all

non-positive, all the entries in LCF are also non-positive. Hence all the entries in LCFL
−1
FFLFC are

positive. The matrix LCC also has non-positive off-diagonals since it is a sub-matrix of L. Hence

all the off-diagonal values of L1 are non-positive. The diagonal elements in Laplace matrices are

greater or equal than the sum of the corresponding columns (without the diagonal elements).

Hence L−1
FFLFC consists of negative values above -1. Similarly, the row sums of −LCF is smaller

than the correspond diagonal elements in LCC . Hence, all the diagonal elements in LCFL
−1
FFLFC

(which are positive) are smaller than those in LCC and therefore the diagonal elements of L1 are

all positive.

128

Appendix B

Bounds on Energy Deviation after

Sparisification

Lemma 2. Let T be a Laplacian matrix of three variables. Let w12, w13 and w23 be −T12,−T13

and −T23 respectively, where Tij are the entries of the matrix T . Assume these weights are

positive and w12, w13 ≥ w23. The matrix T̃ produced by dropping w23 will obey

ET̃ ≤ ET ≤ bET̃ , (B.1)

with b ≤ 3, where the energies ET and ET̃ are with respect to any vector x.

Proof. The definition of ET in terms of the weights is given in Eq. C.2. ET̃ ≤ ET follows

immediately since ET̃ has one less term, w23(x2 − x3)2, than ET . Without loss of generality

let us assume ‖x‖ = 1 in which case ET̃ = w12(x2 − x1)2 + w13(x1 − x3)2. However, since

w12, w13 ≥ w23 we get ET̃ ≥ w23

(
(x2 − x1)2 + (x1 − x3)2

)
and since s2 + t2 ≥ (s+ t)2/2 for any

s and t, we get ET̃ ≥ w23(x2 − x3)2/2. Thus, 3ET̃ ≥ w23(x2 − x3)2 + ET̃ = ET and therefore

b = 3 satisfies the upper bound.

129

Appendix C

Characterization of Sparsified

Spaces and Compensation

As we explained in Section Section 7.3.2 the errors introduced by the sparsification done in each

hierarchy level can add up and hurt the preconditioning such that κ(LQ−1)=O(n) as in the case

of a non-preconditioned system.

The key observation that allows us to cope with this shortcoming is the that at each hierarchy

level about half the variables are eliminated and these variables define a linear subspace that does

not experience the sparsification taking place in the following levels. This means that there is a

hierarchy of subspaces that undergo a different number of sparsification steps. Hence we should

focus the compensation step to minimize the error due to sparsification in the subspaces that are

affected by the largest number of sparsification steps. Therefore we need to establish the sense

at which L̃ should best approximates L.

The sparsification that takes place at the finest level, over the input matrix L, is likely to affect

most of Rn. The second sparsification which takes place at the second hierarchy level operates

over the sub-matrix that corresponds to the coarse variables selected at the finest level after

nearly half of the variables were eliminated. This gives raise to two linear spaces one which is

affected by this second sparsifiication step and one which is not. To characterize these vector

spaces let us ignore the sparsification done at the finest level and consider the system resulting

after computing the first level of the hierarchy,

Lx = b ⇒ (P 1)>LP 1y1 = L1y1 = (P 1)>b, (C.1)

The solution y to this problem provides an exact solution, x = P 1y, for the original system.

However, once we sparsify L1, and get L̃1, this procedure computes an approximate solution for

x. Equivalently, the matrix P 1(L̃1)−1(P 1)> is the preconditioning matrix Q−1 that approximates

L−1in this one-level construction. As we see in (7.8), the resulting matrices L1 and L̃1 are block

diagonal, meaning that the coarse and fine coordinates of y1 = [y1
C ,y

1
F]> ∈ Rn are uncoupled.

130

Furthermore, since the sparsification at that level (producing L̃1 from L1) operates only over the

top-left block that corresponds to the coarse variables y1
C and the fine coordinates y1

F are not

affected by it. At the original coordinates x, the latter subspace is given by {x : ((P 1)−1x)C = 0}
and the one affected by the sparsification by {x : ((P 1)−1x)F = 0}. In fact, according to the

definition of an inverse matrix, these subspaces are given more explicitly by {P 1[0,y1
F]> : ∀y1

F}
and {P 1[y1

C ,0]> : ∀y1
C} respectively.

This rationale can be applied at any hierarchy level l where we get that {P 1P 2..P l[ylC ,0]> : ∀ylF}
is affected by the sparsification steps of the first l+ 1 levels (and the following levels computed),

whereas {P 1P 2..P l[0,ylF ,0]> : ∀ylF} by the sparsification of only the first l levels. In fact, by

starting this analysis from an arbitrary level l and get that {P lP l+1..P l
′
[0,yl

′

F ,0]> : ∀yl′F} are

vectors, given in the coordinates of the l-th level, that undergo the following l′ − l sparsification

steps.

This implies that in order to avoid excessive energy mismatch over vectors that undergo multiple

sparsification steps, at every hierarchy level l the compensation should improve the accuracy of

the sparsified matrix over the column vectors of P lP l+1..pm which correspond to coarser levels.

The problem is, however, that at the time we construct the l-th level, the matrix P lP l+1..Pm

is not yet defined and depends on our operations at the l-th level, including the compensation

itself. Therefore, a more qualitative description of the coarse spaces is needed.

To do so, let us still consider a single level of the hierarchy with the sparsification done at the

finest level neglected. The column vectors of P 1 which correspond to the coarse variables describe

an interpolation from the coarser system y1
C to the original grid, i.e., y1

C 7→ P 1[y1
C ,0]> ∈ Rn.

According to its definition in (7.7) , the matrix P 1 has ICC at its top-left block and hence the

coarse variables in the original grid receive the same values they have at the coarser system y1
C .

The fine variables in the original grid are also determined by y1
C and, according to (7.7), they

given by −(L−1
FFLFC)y

1
C .

On the other hand in the case of null input values and derivatives (yi, zij = 0) the energy is

related to the objective function in Eq. 7.2 by

EL(x)=F (x)/(x>x) =
∑
i∈I

(
uix

2
i + wij(xi − xj)2

)
/(x>x), (C.2)

and the two coincide on unit-norm vectors, x>x = ‖x‖2 = 1, and both are given by x>Lx.

Let us constrain the coarse coordinates of xC to be equal to y1
C and minimize the functional

with respect to the remaining variables xF . This constrained optimization is computed by

dF (x)/dxF = d(x>Lx)/dxF=0 given xC , and gives[
ICC 0

LFC LFF

]
x=

[
y1
C

0

]
⇒

xC = y1
C

LFCxC + LFFxF = 0,
(C.3)

implying that

xF = −
(
L−1
FFLFC

)
y1
C , (C.4)

131

which is what P 1y1
C produces at the fine variables of x.

Thus, P 1[y1
C ,0]> are the minimal-cost vectors given the assignment y1

C over its coarse coordinates.

If we assume no sparsification (and compensation) steps are applied throughout the hierarchy,

computing multiple elimination steps in the hierarchy is equivalent eliminating these variables

at once. Hence, P 1P 2..P l[ylC ,0]> are the minimal-cost vectors given the assignment ylC over its

coarse coordinates. However, since there are far less variables in the l-th level as l grows, this

optimization has fewer constraints and hence it is expected to achieve lower energies.

Based on this observation we associate variables of coarser levels with vectors of low energy

and focus the compensation step to preserve the energy of such vectors. As explained in Sec-

tion (7.3.2), whenever a triangle is sparsified we compensate by adjusting its two remaining

weights such that the triangle’s energy contribution remains unchanged over low-energy vectors.

This requires modeling the profile of low-energy vectors locally, over three variables in a trian-

gular connectivity but it does not requires knowing P l of coarser levels. In Section (7.3.2) we

explain how the low-energy vectors are modeled.

Finally, this reasoning did not take into account the sparsification (and compensation) applied

to the matrices; the low-energy vectors which we use in this process are predicted based on

a sparsified hierarchy. However, assuming we succeed in preserving the energy of low-energy

vectors, in each step, the predictions we make in the next level will be reasonably accurate.

132

Bibliography

[1] A. Agrawal, R. Raskar, S. Nayar, and Y. Li. Removing photography artifacts using gra-

dient projection and flash-exposure sampling. In ACM Transactions on Graphics (Proc.

SIGGRAPH), volume 24, pages 828–835, 2005.

[2] M. Aharon, M. Elad, and A. Bruckstein. The K-SVD: An algorithm for designing

of overcomplete dictionaries for sparse representation. IEEE Trans. Signal Processing,

54(11):4311–4322, November 2006.

[3] P. Arbenz, U. L. Hetmaniuk, R. B. Lehoucq, and R. S. Tuminaro. A comparison of

eigensolvers for large-scale 3d modal analysis using amg-preconditioned iterative methods.

International journal for numerical methods in engineering, 64(2):204–236, 2005.

[4] P. Arbenz, U. Hetmanuik, R. Lehoucq, and R. Tuminaro. A comparison of eigensolvers for

large-scale 3d modal analysis using amg-preconditioned iterative methods. Int. Journal for

Numerical Methods in Engg., 1, 2003.

[5] Z. Bai. Krylov subspace projection methods. http://www.cs.ucdavis.edu/~bai/

Winter09/krylov.pdf.

[6] S. Baker, R. Gross, and I. Matthews. Lucas-kanade 20 years on: A unifying framework.

International Journal of Computer Vision, 56:221–255, 2004.

[7] S. Baker, D. Scharstein, J. P. Lewis, S. Roth, M. J. Black, and R. Szeliski. A database and

evaluation methodology for optical flow. Int. J. Comput. Vision, 92:1–31, March 2011.

[8] P. Barnum, S. G. Narasimhan, and T. Kanade. Analysis of rain and snow in frequency

space. IJCV, 2008.

[9] A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear

inverse problems. In SIAM J. on Img. Sciences, pages 183–202, 2009.

[10] W. Bell, L. Olson, and J. Schroder. Pyamg: Algebraic multigrid solvers in python v2. 0,

2011. URL http://www. pyamg. org. Release, 2, 2011.

[11] E. Bennett, J. Mason, and L. McMillan. Multispectral bilateral video fusion. IEEE Trans.

Image Processing, 16(5):1185–1194, 2007.

133

http://www.cs.ucdavis.edu/~bai/Winter09/krylov.pdf
http://www.cs.ucdavis.edu/~bai/Winter09/krylov.pdf

[12] P. Bhat, C. L. Zitnick, M. Cohen, and B. Curless. Gradientshop: A gradient-domain

optimization framework for image and video filtering. ACM Trans. Graph., 29:10:1–10:14,

April 2010.

[13] J. Biemond, A. M. Tekalp, and R. L. Lagendijk. Maximum likelihood image and blur

identification: a unifying approach. Optical Engineering, 29(5):422–435, 1990.

[14] J. Bolz, I. Farmer, E. Grinspun, and P. Schröoder. Sparse matrix solvers on the gpu:

conjugate gradients and multigrid. In ACM SIGGRAPH 2003 Papers, SIGGRAPH ’03,

pages 917–924, New York, NY, USA, 2003. ACM.

[15] G. Boman, E. and B. Hendrickson. On spanning tree preconditioners. Sandia National

Labs, 2001.

[16] G. Boman, E. and B. Hendrickson. Support theory for preconditioning. SIAM J. Matrix

Anal. Appl., (3):694–717, 2003.

[17] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization and

statistical learning via the alternating direction method of multipliers. Foundations and

Trends R© in Machine Learning, 3(1):1–122, 2011.

[18] A. Brandt. Multi-level adaptive technique (mlat) for fast numerical solution to boundary

value problems. In Proc. Conf. on Numerical Methods in Fluid Mechanics, volume 18 of

Lecture Notes in Physics, pages 82–89. Springer Berlin / Heidelberg, 1973.

[19] A. Brandt. Algebraic multigrid theory: The symmetric case. Applied Mathematics and

Computation, 19(14):23 – 56, 1986.

[20] B. Brooksby, S. Srinivasan, D. Jiang, H. Dehghani, B. Pogue, K. Paulsen, J. Weaver,

C. Kogel, and S. Poplack. Spectral priors improve near-infrared diffuse tomography more

than spatial priors. Optics Letters, 30:1968–1970, 2005.

[21] A. Buades, B. Coll, and J.-M. Morel. A non-local algorithm for image denoising. In

Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society

Conference on, volume 2, pages 60–65. IEEE, 2005.

[22] J.-F. Cai, H. Ji, C. Liu, and Z. Shen. Blind motion deblurring from a single image using

sparse approximation. In Computer Vision and Pattern Recognition, 2009. CVPR 2009.

IEEE Conference on, pages 104–111. IEEE, 2009.

[23] E. Candes, J. Romberg, and T. Tao. Robust uncertainty principles: Exact signal recon-

struction from highly incomplete frequency information. IEEE Trans. Inform. Theory,

52:489–509, 2004.

[24] E. J. Candes and D. L. Donoho. New tight frames of curvelets and optimal represen-

tations of objects with piecewise c2 singularities. Communications on pure and applied

mathematics, 57(2):219–266, 2003.

[25] A. Chakrabarti, K. Hirakawa, and T. Zickler. Color constancy beyond bags of pixels. In

CVPR, pages 1–6, 2008.

134

[26] A. Chakrabarti and T. Zickler. Statistics of real-world hyperspectral images. In Computer

Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on, pages 193–200. IEEE,

2011.

[27] A. Chakrabarti and T. Zickler. Depth and deblurring from a spectrally-varying depth-of-

field. In Proc. ECCV, 2012.

[28] G. Chantas, N. Galatsanos, A. Likas, and M. Saunders. Variational bayesian image restora-

tion based on a product of t-distributions image prior. IEEE Trans. Image Process,

17(10):1795–1805, 2008.

[29] R. Chartrand. Fast algorithms for nonconvex compressive sensing: Mri reconstruction from

very few data. In IEEE International Symposium on Biomedical Imaging (ISBI), 2009.

[30] R. Chartrand and V. Staneva. Restricted isometry properties and nonconvex compressive

sensing. Inverse Problems, 24:1–14, 2008.

[31] R. Chartrand and W. Yin. Iteratively reweighted algorithms for compressive sensing. In

Acoustics, Speech and Signal Processing, 2008. ICASSP 2008. IEEE International Confer-

ence on, pages 3869–3872. IEEE, 2008.

[32] S. Cho and S. Lee. Fast motion deblurring. SIGGRAPH ASIA 2009, 28(5):article no. 145,

2009.

[33] S. Cho, J. Wang, and S. Lee. Handling outliers in non-blind image deconvolution. In

Computer Vision (ICCV), 2011 IEEE International Conference on, pages 495–502. IEEE,

2011.

[34] T. S. Cho, C. L. Zitnick, N. Joshi, S. B. Kang, R. Szeliski, and W. T. Freeman. Image

restoration by matching gradient distributions. Pattern Analysis and Machine Intelligence,

IEEE Transactions on, 34(4):683–694, 2012.

[35] J. Christian and F. Zapata. Noise Ninja, Photoshop denoising plugin. http://www.

picturecode.com/, 2008.

[36] M. Collins. Discriminative training methods for hidden markov models: Theory and ex-

periments with perceptron algorithms. In EMNLP, pages 1–8, 2002.

[37] P. L. Combettes and J.-C. Pesquet. Proximal splitting methods in signal processing. Fixed-

Point Algorithms for Inverse Problems in Science and Engineering, pages 185–212, 2011.

[38] K. Crane, C. Weischedel, and M. Wardetzky. Geodesics in Heat. ACM Transactions on

Graphics (Proc. SIGGRAPH), 31(4), July 2012.

[39] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian. Image denoising by sparse 3-

d transform-domain collaborative filtering. Image Processing, IEEE Transactions on,

16(8):2080–2095, 2007.

135

http://www.picturecode.com/
http://www.picturecode.com/

[40] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian. Image denoising by sparse 3-

d transform-domain collaborative filtering. Image Processing, IEEE Transactions on,

16(8):2080–2095, 2007.

[41] A. Danielyan, V. Katkovnik, and K. Egiazarian. Bm3d frames and variational image

deblurring. Image Processing, IEEE Transactions on, 21(4):1715–1728, 2012.

[42] I. Daubechies, R. DeVore, M. Fornasier, and C. S. Güntürk. Iteratively reweighted least

squares minimization for sparse recovery. Communications on Pure and Applied Mathe-

matics, 63(1):1–38, 2009.

[43] T. A. Davis. Direct Methods for Sparse Linear Systems. SIAM, 2006.

[44] P. E. Debevec and J. Malik. Recovering high dynamic range radiance maps from pho-

tographs. ACM Transactions on Graphics (Proc. SIGGRAPH), 31(3):369–378, 1997.

[45] B. Dong, H. Ji, J. Li, Z. Shen, and Y. Xu. Wavelet frame based blind image inpainting.

Applied and Computational Harmonic Analysis, 32(2):268–279, 2011.

[46] E. Eisemann and F. Durand. Flash photography enhancement via intrinsic relighting. In

ACM Transactions on Graphics (Proc. SIGGRAPH), volume 23, pages 673–678, 2004.

[47] M. Elad and M. Aharon. Image denoising via sparse and redundant representations over

learned dictionaries. Image Processing, IEEE Transactions on, 15(12):3736–3745, 2006.

[48] M. Everingham, L. Van Gool, C. Williams, J. Winn, and A. Zisserman. The PAS-

CAL Visual Object Classes Challenge 2011 (VOC2011) Results. http://www.pascal-

network.org/challenges/VOC/voc2011/workshop/index.html.

[49] R. Falgout and U. Yang. hypre: A library of high performance preconditioners. Computa-

tional ScienceICCS 2002, pages 632–641, 2002.

[50] Z. Farbman, R. Fattal, and D. Lischinski. Convolution pyramids. ACM Trans. Graph.,

30:175:1–175:8, December 2011.

[51] Z. Farbman, R. Fattal, D. Lischinski, and R. Szeliski. Edge-preserving decompositions

for multi-scale tone and detail manipulation. ACM Transactions on Graphics (Proc. SIG-

GRAPH), 27(3), August 2008.

[52] R. Fattal. Edge-avoiding wavelets and their applications. In ACM SIGGRAPH papers,

pages 22:1–22:10, New York, NY, USA, 2009. ACM.

[53] R. Fattal, D. Lischinski, and M. Werman. Gradient domain high dynamic range compres-

sion. ACM Transactions on Graphics, pages 249–256, 2002.

[54] R. Fergus and D. Krishnan. Methods, computer-accessible medium and systems for facili-

tating dark flash photography, July 16 2010. WO Patent 2,010,081,010.

[55] R. Fergus, B. Singh, A. Hertzmann, S. T. Roweis, and W. Freeman. Removing camera

shake from a single photograph. ACM Transactions on Graphics (Proc. SIGGRAPH),

25:787–794, 2006.

136

[56] D. Field. What is the goal of sensory coding? Neural Computation, 6:559–601, 1994.

[57] D. J. Field et al. Relations between the statistics of natural images and the response

properties of cortical cells. J. Opt. Soc. Am. A, 4(12):2379–2394, 1987.

[58] S. Fleishman, I. Drori, and D. Cohen-Or. Bilateral Mssh Denoising. ACM Transactions

on Graphics (Proc. SIGGRAPH), 22(3), 2003.

[59] K. Garg and S. Nayar. Detection and removal of rain from videos. In CVPR, pages 528–535,

2004.

[60] K. Garg and S. Nayar. When Does a Camera See Rain? In IEEE International Conference

on Computer Vision (ICCV), volume 2, pages 1067–1074, Oct 2005.

[61] D. Geman and G. Reynolds. Constrained restoration and recovery of discontinuities. PAMI,

14(3):367–383, 1992.

[62] D. Geman and C. Yang. Nonlinear image recovery with half-quadratic regularization.

PAMI, 4:932–946, 1995.

[63] A. Goldstein and R. Fattal. Blur-kernel estimation from spectral irregularities. In European

Conference on Computer Vision (ECCV), pages 622–635. Springer, 2012.

[64] T. Goldstein and S. Osher. The split bregman method for l1-regularized problems. SIAM

Journal on Imaging Sciences, 2(2):323–343, 2009.

[65] G. Golub and C. F. Van Loan. Matrix Computation, third edition. The John Hopkins

University Press, Baltimore and London, 1996.

[66] J. Gu, R. Ramamoorthi, P. Belhumeur, and S. Nayar. Removing Image Artifacts Due to

Dirty Camera Lenses and Thin Occluders. ACM Transactions on Graphics (Proceedings of

SIGGRAPH Asia), Dec 2009.

[67] A. Gupta, N. Joshi, L. Zitnick, M. Cohen, and B. Curless. Single image deblurring using

motion density functions. In ECCV ’10, 2010.

[68] S. Harmeling, M. Hirsch, and B. Schölkopf. Space-variant single-image blind deconvolution

for removing camera shake. Advances in Neural Inform. Processing Syst, 2010.

[69] M. Hirsch, C. J. Schuler, S. Harmeling, and B. Scholkopf. Fast removal of non-uniform

camera shake. In Computer Vision (ICCV), 2011 IEEE International Conference on,

pages 463–470. IEEE, 2011.

[70] P. Hoyer. Non-negative matrix factorization with sparseness constraints. JMLR, 5:1457–

1469, 2004.

[71] N. Hurley and S. Rickard. Comparing measures of sparsity. EUSIPCO, 2008.

[72] J. Jancsary, S. Nowozin, and C. Rother. Loss-specific training of non-parametric image

restoration models: A new state of the art. European Conf. Computer Vision (ECCV),

2012.

137

[73] H. Ji, J. Li, Z. Shen, and K. Wang. Image deconvolution using a characterization of sharp

images in wavelet domain. Applied and Computational Harmonic Analysis, 2011.

[74] J. Jia. Single image motion deblurring using transparency. In CVPR, 2007.

[75] J. Jiaya. Single image motion deblurring using transparency. In CVPR, pages 1–8, 2007.

[76] N. Joshi, S. B. Kang, C. L. Zitnick, and R. Szeliski. Image deblurring using inertial

measurement sensors. ACM Transactions on Graphics (TOG), 29(4):30, 2010.

[77] M. Kazhdan and H. Hoppe. Streaming multigrid for gradient-domain operations on large

images. ACM Trans. Graph., 27(3):21:1–21:10, 2008.

[78] J. A. Kelner, L. Orecchia, A. Sidford, and Z. A. Zhu. A simple, combinatorial algorithm

for solving sdd systems in nearly-linear time. arXiv preprint arXiv:1301.6628, 2013.

[79] D. Kincaid and W. Cheney. Numerical analysis: mathematics of scientific computing.

Brooks/Cole Publishing Co., Pacific Grove, CA, USA, 1991.

[80] J. T. Klosowski and S. Krishnan. Real-time image deconvolution on the gpu. In Society of

Photo-Optical Instrumentation Engineers (SPIE) Conference Series, volume 7872, page 16,

2011.

[81] I. Koutis, A. Levin, and R. Peng. Improved spectral sparsification and numerical algorithms

for sdd matrices. STACS, 2012.

[82] I. Koutis, G. L. Miller, and R. Peng. Approaching optimality for solving sdd linear systems.

Proceedings of FOCS 2010, 2010.

[83] I. Koutis, G. L. Miller, and D. Tolliver. Combinatorial preconditioners and multilevel

solvers for problems in computer vision and image processing. Computer Vision and Image

Understanding, pages 1638–1646, 2011.

[84] D. Krishnan, R. Fattal, and R. Szeliski. Efficient preconditioning of laplacian matrices for

computer graphics. ACM Transactions on Graphics (Proc. SIGGRAPH), 32(4), 2013.

[85] D. Krishnan and R. Fergus. Dark flash photography. In ACM Transactions on Graphics,

SIGGRAPH 2009 Conference Proceedings, volume 28, 2009.

[86] D. Krishnan and R. Fergus. Dark flash photography. ACM Transactions on Graphics,

SIGGRAPH 2009 Conference Proceedings, 2009.

[87] D. Krishnan and R. Fergus. Fast image deconvolution using hyper-laplacian priors. In

Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta, editors, Advances

in Neural Information Processing Systems 22, pages 1033–1041. 2009.

[88] D. Krishnan and R. Fergus. Fast image deconvolution using hyper-laplacian priors. 2009.

[89] D. Krishnan and R. Szeliski. Multigrid and multilevel preconditioners for computational

photography. ACM Transactions on Graphics (Proc. SIGGRAPH Asia), (5), 2011.

138

[90] D. Krishnan, T. Tay, and R. Fergus. Blind deconvolution using a normalized sparsity

measure. In Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference

on, pages 233–240. IEEE, 2011.

[91] D. Kundur and D. Hatzinakos. Blind image deconvolution. Signal Processing Magazine,

IEEE, 13(3):43–64, 1996.

[92] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to

document recognition. Proceedings of the IEEE, 86(11):2278–2324, November 1998.

[93] Y. LeCun, L. Bottou, G. Orr, and K. Muller. Efficient backprop. In G. Orr and M. K.,

editors, Neural Networks: Tricks of the trade. Springer, 1998.

[94] Y. LeCun, S. Chopra, R. Hadsell, M. Ranzato, and F. Huang. A tutorial on energy-based

learning. In G. Bakir, T. Hofman, B. Schölkopf, A. Smola, and B. Taskar, editors, Predicting

Structured Data. MIT Press, 2006.

[95] A. Levin. Blind motion deblurring using image statistics. In NIPS, 2006.

[96] A. Levin, R. Fergus, F. Durand, and W. Freeman. Image and depth from a conven-

tional camera with a coded aperture. ACM Transactions on Graphics (Proc. SIGGRAPH),

26(3):70, 2007.

[97] A. Levin, D. Lischinski, and Y. Weiss. Colorization using optimization. ACM Transactions

on Graphics, pages 689–694, 2004.

[98] A. Levin and B. Nadler. Natural image denoising: Optimality and inherent bounds. In

Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on, pages 2833–

2840. IEEE, 2011.

[99] A. Levin, B. Nadler, F. Durand, and W. T. Freeman. Patch complexity, finite pixel corre-

lations and optimal denoising. 2012.

[100] A. Levin and Y. Weiss. User assisted separation of reflections from a single image using a

sparsity prior. PAMI, 29(9):1647–1654, Sept 2007.

[101] A. Levin, Y. Weiss, F. Durand, and W. T. Freeman. Understanding and evaluating blind

deconvolution algorithms. In CVPR, 2009.

[102] A. Levin, Y. Weiss, F. Durand, and W. T. Freeman. Understanding and evaluating blind

deconvolution algorithms. In Extended Technical Report, 2009.

[103] A. Levin, Y. Weiss, F. Durand, and W. T. Freeman. Efficient marginal likelihood opti-

mization in blind deconvolution. In Computer Vision and Pattern Recognition (CVPR),

2011 IEEE Conference on, pages 2657–2664. IEEE, 2011.

[104] A. C. Likas and N. P. Galatsanos. A variational approach for bayesian blind image decon-

volution. Signal Processing, IEEE Transactions on, 52(8):2222–2233, 2004.

[105] R. J. Lipton, D. J. Rose, and R. E. Tarjan. Generalized nested dissection. SIAM J. Numer.

Anal., 16:346–358, 1979.

139

[106] D. Lischinski, Z. Farbman, M. Uyttendaele, and R. Szeliski. Interactive local adjustment

of tonal values. In ACM SIGGRAPH Papers, pages 646–653, New York, NY, USA, 2006.

ACM.

[107] R. Liu and H. Zhang. Mesh segmentation via spectral embedding and contour analysis.

Eurographics, 26(3), 2007.

[108] O. Livne and A. Brandt. Lean algebraic multigrid (LAMG): Fast graph laplacian solver.

arXiv:1108.0123v1, 2011.

[109] L. Lucy. An iterative technique for the rectification of observed distributions. The astro-

nomical journal, 79:745, 1974.

[110] J. Mairal, M. Elad, and G. Sapiro. Sparse representation for color image restoration. Image

Processing, IEEE Transactions on, 17(1):53–69, 2008.

[111] D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database of human segmented natural

images and its application to evaluating segmentation algorithms and measuring ecological

statistics. In Proc. 8th Int’l Conf. Computer Vision, volume 2, pages 416–423, July 2001.

[112] J. J. McAuley, T. S. Caetano, A. J. Smola, and M. O. Franz. Learning high-order MRF

priors of color images. In ICML ’06, pages 617–624, 2006.

[113] J. Miskin and D. J. MacKay. Ensemble learning for blind image separation and deconvo-

lution. 2000.

[114] J. Miskin and D. J. C. MacKay. Ensemble Learning for Blind Image Separation and

Deconvolution. In M. Girolani, editor, Adv. in Independent Component Analysis. Springer-

Verlag, 2000.

[115] A. Mohan, R. Raskar, and J. Tumblin. Agile spectrum imaging: Programmable wavelength

modulation for cameras and projectors. Computer Graphics Forum, 27(2):709–717, 2008.

[116] R. Molina, A. K. Katsaggelos, and J. Mateos. Bayesian and regularization methods for

hyperparameter estimation in image restoration. Image Processing, IEEE Transactions on,

8(2):231–246, 1999.

[117] J. Money and S. Kang. Total variation minimizing blind deconvolution with shock filter

reference. In Image and Vision Computing, number 2, pages 302–314, 2008.

[118] N. Morris, S. Avidan, W. Matusik, and H. Pfister. Statistics of infrared images. In CVPR,

pages 1–7, 2007.

[119] M. Mørup, K. H. Madsen, and L. K. Hansen. Approximate l0 constrained non-negative

matrix and tensor factorization. In ISCAS 2008 special session on Non-negative Matrix

and Tensor Factorization and Related Problems, 2008.

[120] J. D. Moulton, J. E. Dendy, Jr., and J. M. Hyman. The black box multigrid numerical

homogenization algorithm. J. Comput. Phys., 142:80–108, May 1998.

[121] R. M. Neal et al. Probabilistic inference using markov chain monte carlo methods. 1993.

140

[122] A. Nealen, T. Igarashi, O. Sorkine, and M. Alexa. Laplacian mesh optimization. In Proceed-

ings of the 4th international conference on Computer graphics and interactive techniques

in Australasia and Southeast Asia, pages 381–389. ACM, 2006.

[123] S. Osher and L. I. Rudin. Feature-oriented image enhancement using shock filters. SIAM

Journal on Numerical Analysis, 27(4):919–940, 1990.

[124] S. Osindero, M. Welling, and G. Hinton. Topographic product models applied to natural

scene statistics. Neural Computation, 1995.

[125] S. Paris and F. Durand. A fast approximation of the bilateral filter using a signal processing

approach. In ECCV, pages IV: 568–580, 2006.

[126] J. Park, M. Lee, M. D. Grossberg, and S. K. Nayar. Multispectral Imaging Using Multi-

plexed Illumination. In ICCV, pages 1–8, Oct 2007.

[127] P. Pérez, M. Gangnet, and A. Blake. Poisson image editing. ACM Transactions on Graphics

(Proc. SIGGRAPH), 22(3):313–318, 2003.

[128] G. Petschnigg, M. Agrawala, H. Hoppe, R. Szeliski, M. Cohen, and K. Toyama. Digital

photography with flash and no-flash image pairs. ACM Transactions on Graphics (Proc.

SIGGRAPH), 23(3):664–672, 2004.

[129] J. Portilla, V. Strela, M. J. Wainwright, and E. P. Simoncelli. Image denoising using a scale

mixture of Gaussians in the wavelet domain. IEEE Trans. Image Processing, 12(11):1338–

1351, November 2003.

[130] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical recipes 3rd

edition: The art of scientific computing. Cambridge University Press, 2007.

[131] A. Raj and R. Zabih. A graph-cut problem for general deconvolution problems. In CVPR,

2005.

[132] M. Ranzato and G. E. Hinton. Modeling pixel means and covariances using factored third-

order boltzmann machines. In CVPR, 2010.

[133] W. Richardson. Bayesian-based iterative method of image restoration. JOSA, 62:55–59,

1972.

[134] W. H. Richardson. Bayesian-based iterative method of image restoration. JOSA, 62(1):55–

59, 1972.

[135] B. Rorslett, 2008. http://www.naturfotograf.com/UV_flowers_list.html.

[136] S. Roth and M. J. Black. Fields of Experts: A Framework for Learning Image Priors. In

CVPR, volume 2, pages 860–867, 2005.

[137] L. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based noise removal algo-

rithms. Physica D, 60:259–268, 1992.

141

http://www.naturfotograf.com/UV_flowers_list.html

[138] Y. Saad. Iterative Methods for Sparse Linear Systems. Society for Industrial and Applied

Mathematics, second edition, 2003.

[139] U. Schmidt, K. Schelten, and S. Roth. Bayesian deblurring with integrated noise estimation.

In Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on, pages

2625–2632. IEEE, 2011.

[140] O. Shalvi and E. Weinstein. New criteria for blind deconvolution of nonminimum phase

systems (channels). Information Theory, IEEE Transactions on, 36(2):312–321, 1990.

[141] O. Shalvi and E. Weinstein. Super-exponential methods for blind deconvolution. Informa-

tion Theory, IEEE Transactions on, 39(2):504–519, 1993.

[142] Q. Shan, J. Jia, and A. Agarwala. High quality motion deblurring from a single image.

SIGGRAPH, 27, 2008.

[143] L. Shi, Y. Yu, N. Bell, and W.-W. Feng. A fast multigrid algorithm for mesh deformation.

In ACM SIGGRAPH 2006 Papers, SIGGRAPH ’06, pages 1108–1117, New York, NY,

USA, 2006. ACM.

[144] E. Simoncelli and E. H. Adelson. Noise removal via bayesian wavelet coring. In ICIP, pages

379–382, 1996.

[145] B. Singh, W. T. Freeman, and D. H. Brainard. Exploiting spatial and spectral image

regularities for color constancy. In Workshop on Statistical and Computational Theories of

Vision, 2003.

[146] A. Spielman, D. Algorithms, graph theory and linear equations in laplacian matrices.

Proceedings of the International Congress of Mathematicians (ICM), 2010.

[147] D. A. Spielman and N. Srivastava. Graph sparsification by effective resistances.

arXiv:0803.0929v4, 2009.

[148] D. A. Spielman and S.-H. Teng. Nearly-linear time algorithms for preconditioning and

solving symmetric, diagonally dominant linear systems. CoRR, abs/cs/0607105, 2006.

[149] J.-L. Starck, M. Elad, and D. L. Donoho. Image decomposition via the combination of

sparse representations and a variational approach. Image Processing, IEEE Transactions

on, 14(10):1570–1582, 2005.

[150] C. V. Stewart. Robust parameter estimation in computer vision. SIAM Reviews, 41(3):513–

537, Sept. 1999.

[151] J. Sun, J. Jia, C.-K. Tang, and H.-Y. Shum. Poisson matting. In ACM SIGGRAPH Papers,

pages 315–321, New York, NY, USA, 2004. ACM.

[152] R. Szeliski. Fast surface interpolation using hierarchical basis functions. Pattern Analysis

and Machine Intelligence, IEEE Transactions on, 12(6):513 –528, jun 1990.

[153] R. Szeliski. Locally adapted hierarchical preconditioning. Proceedings of ACM SIGGRAPH,

2006.

142

[154] Y.-W. Tai, H. Du, M. S. Brown, and S. Lin. Image/video deblurring using a hybrid camera.

In Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on,

pages 1–8. IEEE, 2008.

[155] M. F. Tappen, B. C. Russell, and W. T. Freeman. Exploiting the sparse derivative prior

for super-resolution and image demosaicing. In SCTV, 2003.

[156] J. Telleen, A. Sullivan, J. Yee, O. Wang, P. Gunawardane, I. Collins, and J. Davis. Synthetic

shutter speed imaging. Computer Graphics Forum, 26(3):591–598, Sept. 2007.

[157] TLVs. TLVs and BEIs: threshold limit values for chemical substances and physical agents.

American Conference of Governmental Industrial Hygienists, 2001.

[158] S. Toledo, D. Chen, and V. Rotkin. Taucs: A library of sparse linear solvers, 2003.

[159] C. Tomasi and R. Manduchi. Bilateral filtering for gray and color images. In ICCV, pages

839–846, 1998.

[160] U. Trottenberg, C. Oosterlee, and A. Schuller. Multigrid. Academic Press, 2001.

[161] P. Vaidya. Solving linear equations with symmetric diagonally dominant matrices by con-

structing good preconditioners. Technical report, Department of Computer Science, Uni-

versity of Illinois at Urbana-Champaign, Urbana, IL, 1990.

[162] P. Vanek. Fast multigrid solver. Applications of Mathematics, 40(1):1–20, 1995.

[163] J. Vos. Colorimetric and photometric properties of a 2-deg fundamental observer. Color

Research and Application, pages 125–128, 1978.

[164] B. A. Wandell. Foundations of Vision. Sinauer Associates., 1995.

[165] C. Wang, Y. Yue, F. Dong, Y. Tao, X. Ma, G. Clapworthy, H. Lin, and X. Ye. Nonedge-

specific adaptive scheme for highly robust blind motion deblurring of natural imagess. IEEE

TRANSACTIONS ON IMAGE PROCESSING, 22(3), 2013.

[166] O. Wang, J. Davis, E. Chuang, K. Rickard, I. amd de Mesa, and D. Chirag. Video relighting

using infrared illumination. Computer Graphics Forum, 27, 2008.

[167] Y. Wang, J. Yang, W. Yin, and Y. Zhang. A new alternating minimization algorithm for

total variation image reconstruction. SIAM J. Imaging Sciences, 1(3):248–272, 2008.

[168] M. Wardetzky, S. Mathur, F. Kalberer, and E. Grinspun. Discrete laplace operators: no

free lunch. In ACM International Conference Proceeding Series, volume 257, pages 33–37,

2007.

[169] Y. Weiss and W. T. Freeman. What makes a good model of natural images? In CVPR,

2007.

[170] E. W. Weisstein. Cubic formula. http://mathworld.wolfram.com/CubicFormula.html.

[171] E. W. Weisstein. Quartic equation. http://mathworld.wolfram.com/QuarticEquation.

html.

143

http://mathworld.wolfram.com/CubicFormula.html
http://mathworld.wolfram.com/QuarticEquation.html
http://mathworld.wolfram.com/QuarticEquation.html

[172] O. Whyte, J. Sivic, and A. Zisserman. Deblurring shaken and partially saturated images.

In Computer Vision Workshops (ICCV Workshops), 2011 IEEE International Conference

on, pages 745–752. IEEE, 2011.

[173] O. Whyte, J. Sivic, A. Zisserman, and J. Ponce. Non-uniform deblurring for shaken images.

In CVPR, 2010.

[174] N. Wiener. Extrapolation, interpolation, and smoothing of stationary time series. 1964.

[175] Wikipedia. Bayes theorem. http://en.wikipedia.org/wiki/Bayes’_theorem.

[176] Wikipedia. Central limit theorem. http://en.wikipedia.org/wiki/Central_limit_

theorem.

[177] Wikipedia. Central limit theorem. http://en.wikipedia.org/wiki/Cumulant.

[178] Wikipedia. Kurtosis. http://en.wikipedia.org/wiki/Kurtosis.

[179] S. Wright, R. Nowak, and M. Figueredo. Sparse reconstruction by separable approximation.

IEEE Trans. Signal Processing, page To appear, 2009.

[180] K. Xu, Y. Li, T. Ju, S.-M. Hu, and T.-Q. Liu. Efficient affinity-based edit propagation

using k-d tree. In ACM SIGGRAPH Asia papers, pages 118:1–118:6, New York, NY, USA,

2009. ACM.

[181] L. Xu and J. Jia. Two-phase kernel estimation for robust motion deblurring. Computer

Vision–ECCV 2010, pages 157–170, 2010.

[182] J. Yang, J. Wright, T. Huang, and Y. Ma. Image super-resolution via sparse representation.

PAMI, page To appear, 2010.

[183] W. Yin, S. Osher, D. Goldfarb, and J. Darbon. Bregman iterative algorithms for l1-

minimization with applications to compressed sensing. SIAM Journal on Imaging Sciences,

1(1):143–168, 2008.

[184] W. Yin, S. Osher, D. Goldfarb, and J. Darbon. Bregman iterative algorithms for l1-

minimization with applications to compressed sensing. SIAM J. on Img. Sciences, 1(1):143–

168, 2008.

[185] Y.-L. You and M. Kaveh. A regularization approach to joint blur identification and image

restoration. Image Processing, IEEE Transactions on, 5(3):416–428, 1996.

[186] H. Yserentant. On the multi-level splitting of finite element spaces. Numerische Mathe-

matik, 49:379–412, 1986. 10.1007/BF01389538.

[187] L. Yuan, J. Sun, L. Quan, and H.-Y. Shum. Image deblurring with blurred/noisy image

pairs. In ACM Transactions on Graphics (Proc. SIGGRAPH), volume 26, pages 1–10,

2007.

[188] P. D. Zeeuw. Matrix-dependent prolongations and restrictions in a blackbox multigrid

solver. Journal of Computational and Applied Mathematics, 33(1):1–27, 1990.

144

http://en.wikipedia.org/wiki/Bayes'_theorem
http://en.wikipedia.org/wiki/Central_limit_theorem
http://en.wikipedia.org/wiki/Central_limit_theorem
http://en.wikipedia.org/wiki/Cumulant
http://en.wikipedia.org/wiki/Kurtosis

[189] S. C. Zhu and D. Mumford. Prior learning and Gibbs reaction-diffusion. IEEE Trans.

PAMI, 19(11):1236–1250, 1997.

[190] Y. Zhu, E. Sifakis, J. Teran, and A. Brandt. An efficient multigrid method for the simulation

of high-resolution elastic solids. ACM Trans. Graph., 29:16:1–16:18, April 2010.

[191] D. Zoran and Y. Weiss. From learning models of natural image patches to whole image

restoration. In Computer Vision (ICCV), 2011 IEEE International Conference on, pages

479–486. IEEE, 2011.

145

	Introduction
	Motivation
	Summary of contributions

	Literature Survey
	Inverse problems
	Image priors
	Image denoising
	Multiple images for denoising and other applications
	Non-blind deconvolution
	Blind deconvolution
	Localized corruption removal
	Preconditioners and solvers for Laplacian matrices

	Dark Flash Photography
	Introduction
	Related work
	Dark flash hardware
	Dark flash processing
	Spectral constraints
	Spatial-spectral cost function
	Pre & post-processing

	Results
	Comparison experiments
	Fluorescence
	Photometric flash measurements

	Other applications
	Estimation of spectral reflectance
	Color-band denoising

	Discussion

	Fast Image Deconvolution Using Hyper-Laplacian Priors
	Introduction
	Algorithm
	x sub-problem
	w sub-problem
	Summary of algorithm

	Results
	Discussion

	Blind Deconvolution Using a Normalized Sparsity Measure
	Introduction
	Motivation
	Approach
	Blind Kernel Estimation
	Image recovery
	Speed and robustness
	Extension to in-plane rotation
	Extension to 3-D rotations

	Experiments
	Spatially invariant kernel
	In-Plane rotation
	3-D Rotation

	Connections with the blind equalization literature
	Discussion

	Removing Localized Corruption from Natural Images
	Introduction
	Approach
	Gaussian mixture model
	Joint sparse coding
	Neural network
	Mean-Covariance RBM

	Datasets
	Synthetic corruption
	Water droplets dataset

	Results
	Water droplet removal

	Discussion

	Efficient Preconditioning of Laplacian Matrices for Computer Graphics
	Introduction
	Mathematical background
	Laplacian matrices
	Hierarchical preconditioning

	Sparsification and coloring
	Matrix sparsification for the HSC preconditioner
	Compensation for ABF and HSC
	Coloring algorithm
	Updating the HSC preconditioner for diagonal shifts
	Efficient multilevel eigensolver

	Results
	2D Problems
	3D Meshes

	Discussion

	Conclusions
	Appendices
	Coarse Level matrices are Laplacian
	Bounds on Energy Deviation after Sparisification
	Characterization of Sparsified Spaces and Compensation

