
Topics in Formal Synthesis and Modeling

by

Uri Klein

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science

Courant Institute of Mathematical Sciences

New York University

September, 2011

Amir Pnueli

Lenore Zuck

c© Uri Klein

All Rights Reserved, 2011

In memory of Amir Pnueli

v

Acknowledgments

First and foremost, I would like to thank my advisor Amir Pnueli who introduced

me to the world of formal methods, and who inspired me with his endless optimism

and creativity. Undoubtedly, my favorite moments of the PhD were those when

we brainstormed and chatted in his office. I had the honor of being Amir’s last

student, and I am grateful for the opportunity to meet him and to work with him.

Many thanks to my advisor Lenore Zuck who picked me up after Amir’s sudden

passing away, and who helped me get back on my feet and continue working.

I would also like to thank Nir Piterman, who functioned as an unofficial research

advisor to me in the last two years, for investing many hours, from overseas, in

making sure that I do things right. I would like to express my gratitude to Kedar

Namjoshi for giving me the opportunity to experience research at Bell Labs, and

for continuing with a fruitful collaboration afterwards. Finally, thanks for all

the constructive comments and advice that I received from my other committee

members: Benjamin Goldberg, Clark Barrett and Zvi Kedem, as well as from

Patrick Cousot who also supported me with his grants.

Above all I would like to thank my family; My wife Keren and my parents who

provided all the love and support that I needed in this very long, and often quite

tough, journey. I could not have done this otherwise.

vi

Abstract

The work reported here focuses on two problems, that of synthesizing systems from

formal specifications, and that of formalizing REST – a popular web applications’

development pattern.

For the synthesis problem, we distinguish between the synchronous and the

asynchronous case. For the former, we solve a problem concerning a fundamental

flaw in specification construction in previous work. We continue with exploring

effective synthesis of asynchronous systems (programs on multi-threaded systems).

Two alternative models of asynchrony are presented, and shown to be equally

expressive for the purpose of synthesis.

REST is a software architectural style used for the design of highly scalable web

applications. Interest in REST has grown rapidly over the past decade. However,

there is also considerable confusion surrounding REST: many examples of suppos-

edly RESTful APIs violate key REST constraints. We show that the constraints of

REST and of RESTful HTTP can be precisely formulated within temporal logic.

This leads to methods for model checking and run-time verification of RESTful

behavior. We formulate several relevant verification questions and analyze their

complexity.

vii

Table of Contents

Dedication . v
Acknowledgments . vi
Abstract . vii
List of Figures . x

1 Introduction 1

2 Revisiting Synthesis of GR(1) Specifications 5
2.1 Introduction . 5
2.2 Preliminaries . 10

2.2.1 Temporal Logic and Tree-Models 10
2.2.2 Realizability of Temporal Specifications 13

2.3 The Syntactic Reduction is Incomplete 14
2.3.1 Synthesis of Reactive(1) Designs 15
2.3.2 Incompleteness . 17

2.4 Well-Separated Environments . 22
2.5 General Specifications . 28
2.6 On the Connection Between Games and Trees 32

2.6.1 Game Structures . 33
2.6.2 Realizability in Game Structures and in Tree Models 36

2.7 Conclusions . 39

3 Effective Synthesis of Asynchronous Systems from GR(1) Speci-
fications 40
3.1 Introduction . 40
3.2 Preliminaries . 44

3.2.1 Temporal Logic . 44
3.2.2 Realizability of Temporal Specifications 47
3.2.3 Structure and Notations of Specifications 51
3.2.4 The Rosner Reduction . 52

viii

3.3 Expanding the Rosner Reduction to Multiple Variables 54
3.4 A More General Asynchronous Interaction Model 65

3.4.1 A General (Multi-Core) Model 65
3.4.2 A Modified Generalized Rosner Reduction 71

3.5 Proving Unrealizability of a Specification 77
3.5.1 Over-Approximating the Kernel Formula 77
3.5.2 Applying the Unrealizability Test 81

3.6 Proving Realizability of a Specification, and Synthesis 84
3.6.1 Under-Approximating the Kernel Formula 85
3.6.2 Using the Under-Approximation, and synthesis 91
3.6.3 Applying the Realizability Test 103
3.6.4 A Possible Direction for Handling More Specifications 108

3.7 Conclusions and Future Work . 110

4 Formalization and Automated Verification of RESTful Behavior 113
4.1 Introduction . 113
4.2 REST and its Formalization . 115

4.2.1 Building Blocks for REST 115
4.2.2 Formalizing Resource-Based Applications 117
4.2.3 Formalization of RESTful Behavior 119

4.3 REST on HTTP, and Variations . 127
4.3.1 A Formal HTTP Model . 127
4.3.2 RESTful HTTP Properties 129
4.3.3 Variations on RESTful HTTP Properties 135
4.3.4 Distinguishing REST from HTTP 140

4.4 Automated Verification of RESTful Behavior 141
4.4.1 Computation Model . 142
4.4.2 Fundamental Questions . 142
4.4.3 Automata Constructions . 143
4.4.4 Model-Checking for Fixed Instances 144
4.4.5 Parameterized verification 149
4.4.6 Run-Time Monitoring . 150
4.4.7 Synthesizing Servers . 151
4.4.8 Relaxing The Atomicity of Communications 153

4.5 Related Work and Conclusions . 154

5 Summary 156

Bibliography 160

ix

List of Figures

3.1 The temporal hierarchy of properties 64
3.2 Algorithm for extracting Ta from Ts 94
3.3 The ‘real’ (R) and Ts (L) computations 97
3.4 ILTS (as an automaton) . 105

x

Chapter 1
Introduction

At the heart of the field of formal methods is the notion of formalization. By

formalizing reactive system’s behavior one could describe both what is desired

behavior, as well as what is undesired behavior. Such formal descriptions, ex-

pressed in a mathematical language, could then be used for making exact, proven,

statements about systems’ properties.

The two most common forms of such formalizations are the temporal logics

Linear Temporal Logic (ltl) [Pnu77], and Computation Tree Logic (ctl) [EC80].

Both temporal logics are extensions of classical mathematical logic, which ex-

presses relations between values of variables, to account for the dimension of time.

Therefore, these logics express relations between values of variables, over infinite

sequences of assignments to these variables. While classical mathematical logic

could express notions such as “if a then b”, temporal logics allow for the formaliza-

tion of notions such as “always a” or even “eventually, a or b”. While ltl considers

linear time and single temporal computations, and therefore could express state-

ments of the form “a since b”, ctl considers the set of all ‘possible’ futures and

could express statements such as “there exists some future where always a”. Nei-

1

ther one of these two temporal logics can express all properties that the other can.

There are other forms of formalizations (e.g., Live Sequence Charts [DH99]), but

we shall not discuss them in this dissertation.

Using a formal behavioral description, in the form of a temporal formula in

the case of temporal logics, one could pursue either one of two possible directions.

The first one is that of verification, in which an existing system’s properties are

analyzed. Such analysis would include automated, or semi-automated, method-

ologies for proving relationships between possible behaviors of said system, and

the behaviors expressed by the temporal formula. For example, one may wish to

verify whether the considered system is guaranteed to never reach some critical

state, or that it always follows some assumption. The most common automated

methodology is perhaps model checking [CGP99], which is used for verifying the

behavior of systems.

The second direction that could be pursued given a formalization of a desired

system behavior, is that of synthesis. Synthesis is, in some sense, an attempt to

identify systems that are compliant with formalizations in a direction opposite to

that of verification. While verification requires as input a system which is then

tested for compliance with a behavior expressed by a temporal formula, synthesis

is the attempt to automatically form a system that is guaranteed, by construc-

tion, to comply with said desired behavior. It is important to note that while for

the purpose of verification temporal formulae may include variables that refer to

‘internal states’ of the system that are strongly connected to its implementation

(e.g., the value of some internal counter), when used for the purpose of synthesis

such formulae are expected to present a ‘black box’ representation of a desired

system, describing only relationships between its inputs and outputs. Temporal

2

formulae that described desired systems for synthesis are called specifications.

Here, we use the formalizations of ltl and ctl to tackle both verification

and synthesis. Chapter 2 and Chapter 3 concern with synthesis, while Chapter 4

concern with formalizing some behaviors for verification.

In Chapter 2 we revisit an approach to the synthesis of synchronous systems

(e.g., hardware designs that respond to one clock) from ltl specifications that was

presented first in [PPS06], and that was widely adopted since then as a basis for

many extensions and applications. We describe and analyze cases in which that

work produces incorrect results, and suggest how to correct it. As a result, the

corrected algorithm provides a sound and complete solution for effective synthesis

of a very expressive sub-class of ltl which is called GR(1) formulae.

In Chapter 3 we actually use this corrected algorithm as one component in a

presented methodology for the synthesis of asynchronous systems (e.g., a software

thread in a multi-threaded environment that uses a scheduler as communications

via shared memory) from ltl specifications. We first describe two models of

asynchronous behavior, and then we use them to effectively reduce the problem

of synthesizing asynchronous systems to that of synthesizing synchronous systems

(both with multiple variables). The result is a sound and complete solution to the

problem of synthesizing multiple-variable asynchronous systems from ltl. After

discussing the high complexity of this theoretical solution, we follow with two

simplifications of it that produce a sound yet incomplete solution to the problem

of doing so effectively.

In Chapter 4 we develop a formalization – in ltl and ctl– of a concept that

was earlier presented only informally, i.e., in a natural language. This concept

is called REST, and is a design approach for clients-server systems that strives

3

to optimize scalability, robustness and modularity of such systems. We follow by

presenting several ways in which our formalization could be used for the purpose

of verification of such systems.

Finally, in Chapter 5, we conclude this dissertation.

4

Chapter 2
Revisiting Synthesis of GR(1)

Specifications

2.1 Introduction

One of the most ambitious and challenging problems in reactive systems con-

struction is the automatic synthesis of programs and (digital) designs from logical

specifications. First identified as Church’s problem [Chu63], several methods have

been proposed for its solution ([BL69], [Rab72]). The two prevalent approaches to

solving the synthesis problem are by reducing it to the emptiness problem of tree

automata, and viewing it as the solution of a two-player game. In these prelimi-

nary studies of the problem, the logical specification that the synthesized system

should satisfy was given as an S1S formula.

This problem has been considered again in [PR89a] in the context of synthe-

sizing reactive modules from a specification given in Linear Temporal Logic (ltl).

This followed two previous attempts ([CE81], [MW84]) to synthesize closed pro-

grams from temporal specification, which reduced the synthesis problem to satis-

5

fiability. In order to synthesize open programs, the environment should be treated

as an adversary – a case that is not reducible to satisfiability. The method pro-

posed in [PR89a] for a given ltl specification ϕ starts by constructing a Büchi

automaton Bϕ, which is then determinized into a deterministic Rabin automaton

Rϕ. This double translation may reach complexity of double exponent in the size

of ϕ. Once the Rabin automaton is obtained, the game can be solved in time nO(k),

where n is the number of states of the automaton (double exponential in the size

of ϕ) and k is the number of accepting pairs (exponential in the size of ϕ). In fact,

[PR89a] established a doubly exponential lower bound for the synthesis problem

as well as for the realizability problem. The realizability problem – whether the

specification is realizable – is to decide, for a given temporal specification, whether

there exists a system that implements it. A negative answer to this question also

rules out the manual construction of an implementation, and is not restricted to

automatic construction methods.

The high complexity established in [PR89a] caused the synthesis process to

be identified as hopelessly intractable and discouraged many practitioners from

ever attempting to use it for any sizeable system development. Yet there exist

several interesting cases where, if the specification of the design to be synthesized

is restricted to simpler automata or partial fragments of ltl, it has been shown

that the synthesis problem can be solved in polynomial time. Representative cases

are the work in [AMPS98] which presents (besides the generalization to real time)

efficient polynomial solutions (O(N2), where N is the size of the state space of

the design, which is exponential in the size of the underlying specification) to

games (and hence synthesis problems) where the acceptance condition is one of

the ltl formulae 0 p, 1 p, 01 p, or 10 p. A more recent paper is [AT04]

6

which presents efficient synthesis approaches for the ltl fragment consisting of a

Boolean combinations of formulae of the form 0 p.

The results of [AMPS98] and [AT04] were generalized in [PPS06] into the wider

class of generalized Reactivity(1) formulae (GR(1)), i.e., formulae of the form

(01 p1 ∧ · · · ∧ 01 pm) → (01 q1 ∧ · · · ∧ 01 qn). (2.1)

Following the developments in [KPP05], [PPS06] shows how synthesis problems

whose specification is a GR(1) formula can be solved in time O(N3). Furthermore,

the paper presents a (symbolic) algorithm for extracting a design (program) which

implements the specification.

It is then suggested that solving games with GR(1) winning conditions can be

used for synthesis of more general specifications. Particularly, [PPS06] suggests to

handle synthesis of ltl specifications of the form

(Ie ∧ 0 Se ∧
∧
i 01Lie)→ (Is ∧ 0 Ss ∧

∧
j 01Ljs), (2.2)

where Ie, Is, L
i
e, and Ljs are state assertions and Se and Ss characterize the tran-

sitions of the environment and the system, respectively. Specifications of the form

in Formula 2.2 are then converted to a GR(1) game with the winning condition

as in Formula 2.1. We refer to this conversion as ‘the syntactic reduction’. The

advantages of the syntactic reduction is that it leads to a simpler GR(1) game

that is more likely to be solved in practice. Also presented is an argument that

the class of formulae of the form in Formula 2.2 is sufficiently expressive to provide

complete specifications of many designs.

The work in [PPS06] has been extensively used. Its feasibility was demon-

7

strated in [BGJ+07a, BGJ+07b], which consider a design for the Advanced High-

Performance bus (AHB) that is part of the ARM’s Advanced Micro-controller Bus

Architecture (AMBA) [Ltd99] and a generalized buffer. These case studies yielded

an automaton that was then converted to a circuit that has been implemented

and tested successfully. This, in fact, is the first time that real-life blocks have

been automatically synthesized from their high-level temporal specifications. Fur-

ther applications include usage in the context of production of robot controllers

[CKGC+07, KGFP07b, KGFP07a, WTM09, WTM10b, WTM10a] and user pro-

gramming [KPP09, KS09]. So in many interesting cases, specifications of reactive

systems are in the subset of ltl handled by this technique. In such cases, in spite

of the extremely high theoretical lower bound, synthesis of reactive systems from

temporal specifications is practically feasible.

The algorithm in [PPS06] has also been extended in various ways. We mention

the work of [SSR08, SS09] that attempts to extend the fragment of ltl handled

by such techniques while still maintaining the algorithmic advantages. In [PK09],

it is used to synthesize asynchronous systems (such as software that copes with a

potentially adversarial scheduler).

Here we show that, in fact, the syntactic reduction from specifications as in

Formula 2.2 to GR(1) games checks the realizability of formulae of the format

(Ie→Is) ∧ (Ie→0(` Se→Ss)) ∧ ((Ie ∧ 0 Se)→(
∧
i 01Lie→

∧
j 01Ljs)). (2.3)

Formula 2.3 highlights the system’s obligation not to be the first to violate safety.

We prove that in cases that Formula 2.3 is realizable, then the design that realizes

it also realizes Formula 2.2 (with the same components). However, we give a

counter example, due to Roveri et al. [RBTJ06], to the other direction. Thus, the

8

syntactic reduction is not complete and may produce false negatives. In some cases

an implication as in Formula 2.2 is realizable but the use of the syntactic reduction

will declare that it is not.

We identify a condition on the specification of the environment that enables

to use the syntactic reduction without losing completeness. This condition, which

we call ‘well separation’, calls for environments that cannot be forced to violate

their specifications.1 Effectively, this condition can be checked using the solution

of GR(1) games. In order to check whether the system can force the environment

to violate its specification, a modified GR(1) game is created. In this game, the

goal of the system is to avoid infinite computations that satisfy the environment’s

specification. If the system cannot do that, then the environment is well separated.

We show that for well-separated environments the syntactic reduction is both sound

and complete (for Formula 2.2). That is, if for a well-separated environment the

syntactic reduction leads us to declare that the specification is unrealizable then

this is indeed the case.

Finally, we consider the general case of specifications that are not well sepa-

rated. We show that these types of specifications can be transformed so that the

syntactic reduction can be applied on them. The transformation includes effec-

tively a reduction of the system’s safety requirements to a liveness requirement.

The added power of the system, to violate its safety sacrificing its ability to sat-

isfy liveness, pays off only in cases where the system can force the environment to

falsify its own requirements. So finally, even for general specifications, the efficient

syntactic reduction can be used with only a small increase in complexity.

To summarize, our contributions are the following.

1 The notion of well-separation is related to closure of specifications [AL91].

9

1. Identify the incompleteness of the syntactic reduction.

2. Suggest a condition that is checkable with the same realizability techniques

and that ensures that the syntactic reduction is complete.

3. Offer a transformation of general specifications that enables to use the syn-

tactic reduction.

The rest of the chapter is organized as follows. In Section 2.2 we cover the basic

definitions about temporal logic, models, and realizability. In Section 2.3 we show

that the syntactic reduction is incomplete. In Section 2.4 we introduce the ‘well

separation’ condition and in Section 2.5 we show how to safely use the syntactic

reduction. We conclude in Section 2.7.

This chapter is based on published work; Most of what presented here was

published as a conference paper [KP11].

2.2 Preliminaries

2.2.1 Temporal Logic and Tree-Models

We describe the syntax and semantics of a general branching-time temporal logic.

This logic is an extension of ctl* ([CES86, EH86, ES84, HT87]), obtained by

admitting quantification over propositional variables.

Let AP be a set of Boolean variables. The syntax of the logic is defined

according to the following grammar.

α ::= p ‖ ¬α ‖ α ∨ α ‖ (∃p)α ‖ Eϕ

ϕ ::= α ‖ ¬ϕ ‖ ϕ ∨ ϕ ‖ 2ϕ ‖ �ϕ ‖ ` ϕ ‖ ϕUϕ

where p ∈ AP is a variable, α are state formulae, and ϕ are path formulae.

10

We use the following standard abbreviations: t for p ∨ ¬p, f for ¬t, a ∧ b for

¬(¬a ∨ ¬b), a → b for ¬a ∨ b, a = b for (a → b) ∧ (b → a), (∀p)α for ¬(∃p)(¬α),

1 a for tUa, 0 a for ¬1¬a, aWb for aU b ∨ 0 a and Aϕ for ¬E(¬ϕ). For a

set X = {x1, . . . , xk} ⊆ AP of variables, we write (∃X)α for (∃x1) · · · (∃xk)α and

similarly for (∀X)α.

The logic ltl is obtained by considering only path formulae and disallowing

the usage of the E and ∃ operators. In this chapter an ltl formula ϕ can be

identified with the ctl* formula Aϕ.

The semantics of temporal logic is given with respect to models of the form M =

〈S,R, L, s0〉, where S is a countable set of states , R ⊆ S × S is a total transition

relation, s0 ∈ S is an initial state, and L is the labeling function, assigning to each

state s ∈ S an interpretation L(s) ⊆ AP of all Boolean variables true in s. A path

in M is a maximal sequence π = (s0, s1, . . .) such that for all i ≥ 0, (si, si+1) ∈ R.

For a variable p ∈ AP , we say that a model M ′ = 〈S,R, L′, s0〉 is a p-variant of

M if for every s ∈ S and every q 6= p we have q ∈ L(s) iff q ∈ L′(s).

A model M = 〈S,R, L, s0〉 is called a tree-model , if the following conditions are

satisfied:

1. The initial state s0, called the root of M , is the unique state in S which has

no parent , i.e., no state s ∈ S, such that R(s, s0).

2. Every other state t 6= s0, has precisely one parent.

3. For every state s ∈ S, there exists a unique path leading from s0 to s.

Satisfiability of state formulae is defined with respect to a model M and a state

s as follows:

1. 〈M, s〉 |= p for a variable p ∈ AP iff L(s) assigns t to p.

11

2. 〈M, s〉 |= ¬α iff 〈M, s〉 6|= α.

3. 〈M, s〉 |= α ∨ β iff 〈M, s〉 |= α or 〈M, s〉 |= β.

4. For a variable p, 〈M, s〉 |= (∃p)α iff 〈M ′, s〉 |= p for some M ′ which is a

p-variant of M .2

5. For a path formula ϕ, 〈M, s〉 |= Eϕ iff for some infinite path π in M starting

in s, 〈M,π〉 |= ϕ.

Satisfiability of a path formula is defined with respect to a model M , an infinite

path π in M , and a location i ∈ N in π according to the following:

1. For π = (s0, . . .) and a state formula α, 〈M,π, i〉 |= α iff 〈M, si〉 |= α.

2. 〈M,π, i〉 |= ¬ϕ iff 〈M,π, i〉 6|= ϕ.

3. 〈M,π, i〉 |= ϕ ∨ ψ iff 〈M,π, i〉 |= ϕ or 〈M,π, i〉 |= ψ.

4. 〈M,π, i〉 |= 2ϕ iff 〈M,π, i+ 1〉 |= ϕ.

5. 〈M,π, i〉 |= �ϕ iff i > 0 and 〈M,π, i− 1〉 |= ϕ.

6. 〈M,π, i〉 |= ` ϕ iff for all j ≤ i we have 〈M,π, j〉 |= ϕ.

7. 〈M,π, i〉 |= ϕUψ iff for some j ≥ i, 〈M,π, j〉 |= ψ, and for all k, i ≤ k < j,

〈M,π, k〉 |= ϕ.

We say that the infinite path π = s0, s1, . . . in model M satisfies the path

formula ϕ, iff 〈M,π, 0〉 |= ϕ.

We say that the model M satisfies the state formula α, and write M |= α, iff

〈M, s0〉 |= α. A state formula α is said to be satisfiable iff for some model M ,

2 Our definition restricts the value of p in a p-variant to be fixed according to the state of M .
We use p-variants in the context of infinite trees where this is not a restriction.

12

M |= α. The formula α is valid , denoted by |= α, iff it is satisfied by every model.

In case all variables in the state formula α are quantified, the labeling of M is not

important and we may omit it.

2.2.2 Realizability of Temporal Specifications

Let X and Y be a partition of AP . A (semantic) synchronous program P from X to

Y is a function fP : (2X)+ 7→ 2Y . The intended meaning of this function is that it

represents a program with a set of Boolean inputs X, and a set of Boolean outputs

Y , such that at each step of the computation i = 0, 1, . . ., the program outputs

(assigns to Y) the value fP (a0, a1, . . . , ai), where a0, a1, . . . , ai is the sequence of

input values assumed by the variables of X over steps 0, 1, . . . , i.

A full-X-tree is a tree-model M = 〈S,R, L, ε〉, where S = (2X)∗, R = {(π, π ·

a) | π ∈ (2X)∗ and a ⊆ X}, and L(π ·a)∩X = a. Thus, a full-X-tree is a structure

whose states are named after strings of the elements of 2X . The intuition behind

a full-X-tree is that it should contain all the possible sequences of values of the

variables of X. Given a full-X-tree M , we can interpret it as a program PM ,

represented by the function fPM , such that

fPM (a0, a1, . . . , ai) = L(a0 · a1 · . . . · ai) ∩ Y. (2.4)

Dually, a program fP gives rise to the full-X-tree MP = 〈(2X)∗, RP , LP , ε〉, where

for every π ∈ (2X)∗ and a ⊆ X we have LP (π · a) = {a} ∪ fP (π · a) and LP (ε) = ∅.

We say that a program fP satisfies an ltl formula ϕ if the model MP |= A2ϕ.

Notice that ε is used as a ‘dummy’ state that collects all possible initial values of

the program in one tree.

13

Definition 2.1 (realizability). An ltl specification ϕ(X, Y) is realizable if there

exists a program P that satisfies ϕ(X, Y). Such a program P is said to be realizing

ϕ(X, Y).

The following theorem is proven in [PR89a].

Theorem 2.1 ([PR89a]). The following conditions are equivalent:

1. The specification ϕ(X, Y) is realizable.

2. The formula (∀X)(∃Y)Aϕ(X, Y) is valid.

3. The formula A2ϕ(X, Y) is satisfied by some full-X-tree.

2.3 The Syntactic Reduction is Incomplete

In [PPS06], Piterman et al. suggest an approach for synthesis of “Reactive(1)

designs”. They show how to solve a game structure (for a definition, see Subsec-

tion 2.6.1) whose winning condition is of the form of Formula 2.1 (called GR(1)

games) and how to extract a program that realizes GR(1) winning conditions. In

this chapter, we use a different, yet equivalent, set of definitions. We describe this

procedure as checking for the existence of tree-models of a specific family, called

safe-X-trees (defined in Subsection 2.3.1), that satisfy a GR(1) formula. For short,

we refer to this procedure as checking for the existence of GR(1) trees . Piterman

et al. follow by describing a syntactic reduction from the problem of synthesis of

formulae in the form of Formula 2.2 to checking for the existence of GR(1) trees (in

their terminology, solving GR(1) games). For short, we refer to this reduction as

the syntactic reduction. Here, we identify that the syntactic reduction introduces

an error and falsefully declares some specifications as unrealizable. We present the

syntactic reduction and identify the problems in it.

14

2.3.1 Synthesis of Reactive(1) Designs

Let X and Y be a partition of AP to input and output variables, respectively.

We say that variables in X are locally controlled by the environment and variables

in Y are locally controlled by the system. Consider a specification describing an

interplay between a system s and an environment e. For every α ∈ {e, s}, ϕα(X, Y)

(which is the specification that defines the allowed actions of α) is a conjunction

of:

1. Iα – a Boolean formula (equally, an assertion) over AP , describing the initial

state of α. The formula Is may refer to all variables and Ie may refer only

to the variables X;

2. 0 Sα (safety component) – a formula describing the transition relation of

α, where Sα describes the update of the locally controlled state variables

(identified by being primed , e.g., x′ for x ∈ X) as related to the current state

(unprimed, e.g., x), with the exception that s can observe X’s next values;

3. Lα (liveness component) – each Lα is a conjunction of 01 p formulae where

p is a Boolean formula.

In the case that a specification includes temporal past formulae instead of the

Boolean formulae in any of the three conjuncts mentioned above, we assume that

a pre-processing of the specification was done to translate it into another one

that has the same structure but without the use of past formulae. This can be

always achieved through the introduction of fresh Boolean variables that implement

temporal testers for past formulae [PZ08]. Therefore, without loss of generality,

we discuss in this work only such past-formulae-free specifications.

We abuse notations and write ϕα also as a triplet 〈Iα, Sα, Lα〉.

15

Here we expose the syntactic reduction using the vocabulary defined in Sec-

tion 2.2. The two approaches (games and trees) are equivalent, as it is well

known that emptiness of tree automata and solution of two-player games are inter-

reducible [Wil01]. We find that the exposition through trees makes it clear why

the syntactic reduction is incomplete. For completeness of presentation we include

in Subsection 2.6.2 a proof that the two approaches are the same.

Consider a pair of specifications ϕα(X, Y), for α ∈ {e, s}, where ϕα = Iα ∧

0 Sα ∧ Lα. We define the formula

Imp(ϕe, ϕs) :(Ie ∧ 0 Se ∧ Le)→ (Is ∧ 0 Ss ∧ Ls).

The safe-X-tree over ϕe and ϕs is a tree-model M = 〈S,R, L, ε〉, where S ⊆

(2X)∗ and R ⊆ {(π, π · a) | π ∈ (2X)∗ and a ⊆ X}. S, R and L are defined

by induction as follows. As in full-X-trees, for every π · a ∈ (2X)+ we have

L(π · a) ∩ X = a. The root ε is in S and L(ε) = ∅. For every a ⊆ X such that

a |= Ie we have a ∈ S, (ε, a) ∈ R, and L(a) |= Is. That is, only the successors of

the root ε that satisfy the initial condition of the environment are included in the

tree. Furthermore, their label has to satisfy the initial condition of the system. For

every π · a ∈ S and every b ⊆ X such that (L(π · a), b′) |= Se
3 we have π · a · b ∈ S,

(π ·a, π ·a · b) ∈ R, and furthermore (L(π ·a), (L(π ·a · b))′) |= Ss. That is, states in

the tree have only the ‘environmentally-safe’ successors according to their labeling

and their location in the tree. These ‘environmentally-safe’ successors must be

labeled in a way that satisfies the safety of the system.

The work in [PPS06] describes an algorithm for checking the existence of a safe-

X-tree (always, implicitly, over ϕe and ϕs) that satisfies specifications of the form

3b′ is the primed version of b.

16

A(Le → Ls) (as in Formula 2.1). More accurately, the algorithm computes the

set W of states that participate in some safe-X-tree and satisfy the specification

A(Le → Ls). Then, if for every a ⊆ X such that a |= Ie there exists a state π ∈ W

such that L(π) ∩ X = a and L(π) |= Is, the specification is declared realizable.

The following is stated in [PPS06] without a proof.

Conjecture 2.1. The specification Imp(ϕe, ϕs) is realizable iff there is a safe-X-

tree over ϕe and ϕs that satisfies A(Le → Ls).

2.3.2 Incompleteness

Here we show that the implication in Conjecture 2.1 holds only in one direction.

Lemma 2.1. If there is a safe-X-tree over ϕe and ϕs that satisfies A(Le → Ls)

then Imp(ϕe, ϕs) is realizable.

Proof: Given a safe-X-tree over ϕe and ϕs M that satisfies A(Le → Ls) we

construct a full-X-tree M ′ that agrees with the labeling of M on all states that

appear in M and labels other states arbitrarily.

Consider an infinite path π in M ′. If π appears also in M then π satisfies 2 Ie,

2 Is, 20 Se, and 20 Ss. By assumption, π also satisfies Le → Ls. It follows

that π satisfies Imp(ϕe, ϕs). If π does not appear also in M then either π does not

satisfy 2 Ie or π does not satisfy 20 Se. Then π vacuously satisfies Imp(ϕe, ϕs).

It thus follows from Theorem 2.1 that Imp(ϕe, ϕs) is realizable.

Roveri et al. [RBTJ06] gave the following counterexample to the other direction

of Conjecture 2.1. Consider the following specification over input Boolean variable

x and output Boolean variable y:

ϕ1 : 0 ¬x′ ∧ 01(x = y) → 0(y′ = x′) ∧ 01 y

17

The specification ϕ1 is realizable. The program that maintains y = t realizes

it since it falsifies the left-hand side of the specification. Either the environment

violates the requirement 0 ¬x′ and sets x = t infinitely often, or the environment

cannot fulfill its liveness requirement 01(x = y). Therefore, the implication

holds. On the other hand, there is no safe-X-tree that satisfies A(01(x = y)→

01 y). Indeed, the safe-X-tree restricts the labels of nodes so that in every

node (other than the root and its immediate successors) y = x = f. Thus, the

only possible safe-X-tree has exactly four infinite paths. One path for each initial

assignment for x and y, and then both x and y are always false. This tree does not

satisfy the implication A(Le → Ls). The only way for the system to realize ϕ1 is

by violating its safety component, Se. The search over safe-X-trees is too narrow,

leading to the false proclamation that the specification is unrealizable.

Another counter example is the following:

ϕ2 : ¬x ∧ 0(x′ = x) ∧ 01(x 6= y) → y ∧ 0(y′ = y) ∧ 01¬y

Again, ϕ2 is realizable. A possible implementation is a program that assigns to y

the initial value f and falsifies Is. For similar reasoning as in the previous case, the

search over safe-X-trees by using the syntactic reduction is too narrow, declaring

ϕ2 to be unrealizable.

To address this problem, the authors of [PPS06] conjectured that checking

for the existence of a safe-X-tree that satisfies A(Le → Ls) solves a different

realizability problem (the modified formula was described in [Pnu06]). Consider

two specifications ϕα(X, Y), for α ∈ {e, s}, where ϕα = Iα ∧0 Sα ∧Lα. We define

18

the formula:

Sep(ϕe, ϕs) :(Ie → Is) ∧ (Ie → 0(` Se → Ss)) ∧ ((Ie ∧ 0 Se)→ (Le → Ls)).

Intuitively, this formula requires the system to match the co-operativeness level of

the environment: if the environment satisfies its initial condition the system must

do the same; as long as the environment does not violate its safety the system

must not violate its safety; and if the environment satisfies all its requirements

(initiallity, safety, and liveness) then the system must satisfy its liveness as well.4

We formally prove the conjecture that Sep(ϕe, ϕs) corresponds to the existence of

safe-X-trees.

Theorem 2.2. The following conditions are equivalent:

1. The specification Sep(ϕe, ϕs) is realizable.

2. The formula A(Le → Ls) is satisfied by some safe-X-tree over ϕe and ϕs.

Proof: We shall prove both directions:

1 =⇒ 2: Since Sep(ϕe, ϕs) is realizable, by Theorem 2.1, there exists a full-X-tree,

M = 〈S,R, L, ε〉, that satisfies the formula A2 Sep(ϕe, ϕs). We now de-

scribe how to prune M into a safe-X-tree over ϕe and ϕs, M
′ = 〈S ′, R′, L′, ε〉,

that satisfies the formula A(Le → Ls). We define S ′ ⊆ S and for every s ∈ S ′,

L′(s) = L(s). For every {s, t} ⊆ S ′ where s 6= t, (s, t) ∈ R′ ↔ (s, t) ∈ R.

The set S ′ is defined inductively, as follows. The root ε ∈ S is in S ′ and for

every a ⊆ X such that a |= Ie we have a ∈ S ′ (otherwise, naturally, a /∈ S ′).

Since M is a full-X-tree, then for every such a, a ∈ S. For every π · a ∈ S ′

4 A similar obligation, when only safety is involved, is called strict realizability in [BGHJ09].

19

and every b ⊆ X such that (L(π · a), b′) |= Se we have π · a · b ∈ S ′. Again,

π · a · b is otherwise excluded from S ′ and, again, since M is a full-X-tree,

then for every such π · a · b, π · a · b ∈ S. We get that, indeed, S ⊆ S ′.

Since M satisfies the formula A2 Sep(ϕe, ϕs) and since M ′ is a subset of

the paths of M , we get that also M ′ satisfies the formula A2 Sep(ϕe, ϕs).

Since M ′ must satisfy (as part of Sep) the formula A2(Ie → Is), and since

for every a ∈ S ′ we have that a |= Ie, then for every a ∈ S ′ we have

that L(a) |= Is. M
′ also satisfies the second conjunct in Sep - the formula

A2(Ie → 0(` Se → Ss)). Since we know that it satisfies A2 Ie, we get

that M ′ satisfies A20(` Se → Ss). For every (s, t) ∈ R′, we have that

(L′(s), t′) |= Se and, finally, we get that M ′ satisfies A20 Ss (which means

that, for such (s, t), (L′(s), (L′(t))′) |= Ss). We get that M ′ is a safe-X-tree

over ϕe and ϕs.

As before, M ′ must satisfy the last conjunct of Sep, namely A2((Ie ∧

0 Se) → (Le → Ls)). Since M ′ is a safe-X-tree, this formula gives us that

M ′ satisfies A2(Le → Ls) which, due to the fact the the next operator (2)

has no impact on the satisfaction of liveness properties such as Le and Ls, is

logically equivalent to A(Le → Ls). Therefore, M ′ satisfies A(Le → Ls).

2 =⇒ 1: Let M = 〈S,R, L, ε〉 be a safe-X-tree over ϕe and ϕs that satisfies the

formula A(Le → Ls). We describe how to complete it into a full-X-tree

M ′ = 〈S ′, R′, L′, ε〉 that satisfies the formula A2 Sep(ϕe, ϕs). Since M ′ is a

full-X-tree, then, clearly, S ⊆ S ′. Similarly, R ⊆ R′ (both S ′ and R′ are well

defined by M ′ being a full-X-tree). We define L′(s) = L(s) for every s ∈ S.

For every t ∈ S ′ \ S we set L′(t) ∩ Y to an arbitrary value.

20

By definition, M is a sub-tree of M ′, and all of the paths of M , together

with their labels, are contained in M ′. All such paths in M ′ (paths that also

exist in M), are known to satisfy the formula Le → Ls. Therefore, they also

satisfy the formula 2(Le → Ls). These paths, as paths in a safe-X-tree over

ϕe and ϕs, are also known to satisfy the formulae 2 Ie, 2 Is, 20 Se and

20 Ss. Therefore, such paths must satisfy 2 Sep(ϕe, ϕs). It is left to show

that paths in M ′ that are not paths in M also satisfy 2 Sep(ϕe, ϕs).

Let us consider such a path π = (s0, s1, . . .) in M ′. Since it is not a path

in a safe-X-tree over ϕe and ϕs, it must either falsify the formula 2 Ie,

or have a minimal index i > 0 for which (L′(si), (L
′(si+1))

′) 6|= Se and π

falsifies the formula 20 Se. In the case that 2 Ie does not hold over π then,

trivially, 2 Sep(ϕe, ϕs) does. In the second case, since we may assume that

π satisfies the formula 2 Ie, then, by the definition of a safe-X-tree over ϕe

and ϕs, we get that s0, . . . , si is a prefix of a path in M . Therefore, as L′ is

identical to L over the prefix of π, we conclude that π satisfies the formula

2 Is and for all 1 ≤ j < i, (L′(sj), (L
′(sj+1))

′) |= Se. It follows that for

all 1 ≤ j < i we also have (L′(sj), (L
′(sj+1))

′) |= Ss. Then, π satisfies the

formula 20(` Se → Ss). Finally, since π falsifies the formula 20 Se, the

third conjunct in Sep(ϕe, ϕs) also holds.

We get that for all the paths of M ′, the formula 2 Sep(ϕe, ϕs) holds. In

other words, A2 Sep(ϕe, ϕs) is satisfied by M ′. By Theorem 2.1 we get that

Sep is realizable.

21

We emphasize that the the process for checking for the existence of GR(1) trees

correctly solves the existence problem of a safe-X-tree that satisfies formulae of

the form
∧
i∈I 01 ai →

∧
j∈J 01 bj. However, the existence of such a safe-X-

tree is equivalent to the realizability of the formula Sep(ϕe, ϕs) and not to the

realizability of Imp(ϕe, ϕs). The following specifications, obtained by re-arranging

the components of ϕ1 and ϕ2, are, unlike ϕ1 and ϕ2, unrealizable:

ϕSep
1 : 0(` ¬x′ → (y′ = x′)) ∧ (0 ¬x′ → (01(x = y)→ 01 y))

ϕSep
2 : (¬x→ y) ∧ (¬x→ 0(`(x′ = x)→ (y′ = y)))∧

((¬x ∧ 0(x′ = x))→ (01(x 6= y)→ 01¬y))

2.4 Well-Separated Environments

We show now that, in some cases, the existence of a safe-X-tree does guarantee

realizability of the implication between the specification for the environment and

the specification for the system.

Given specifications ϕα(X, Y) for α ∈ {e, s}, where ϕα = 〈Iα, Sα, Lα〉 consider

the two formulae:

Imp(ϕe, ϕs) :(Ie ∧ 0 Se ∧ Le)→ (Is ∧ 0 Ss ∧ Ls)

Sep(ϕe, ϕs) :(Ie → Is) ∧ (Ie → 0(` Se → Ss)) ∧ ((Ie ∧ 0 Se)→ (Le → Ls))

Unfortunately, Sep(ϕe, ϕs) is not a convenient formula for a specification writer.

From the proof of Lemma 2.1 it is easy to deduce that Sep(ϕe, ϕs)→ Imp(ϕe, ϕs).

Clearly, the converse does not hold. The formula Imp(ϕe, ϕs) seems more intuitive

than Sep(ϕe, ϕs) (as an assume-guarantee structure). It would be desirable to find

a way to allow developers to hold on to it while using the efficient algorithm for

checking for existence of GR(1) trees. We next identify cases for which the two

22

formulae are equi-realizable, and in which they are realized by the same programs.

Definition 2.2 (well separation). An environment e with a set of inputs X and a

set of outputs Y , which is specified by ϕe = 〈Ie, Se, Le〉, is well separated if for

every safe-X-tree M over ϕe and ϕs = 〈t,t,01 f〉, every state in M participates

in an infinite path π that satisfies 2(Ie ∧ 0 Se ∧ Le).

Intuitively, a well-separated environment is one which could always (from every

reachable state and for every system) continue with an infinite computation that

would satisfy all of its requirements. In other words, that no finite behavior of an

arbitrary system would be able to force the environment to a point from which

it cannot fulfill its own requirements. Systems interacting with a well separated

environment, would have to either comply with all of their own requirements in

order to satisfy the specification, or to force the environment to fail to comply

with the environment’s liveness.5 This is checked by removing the system’s initial

and safety restrictions (by setting them to t) and adding an impossible liveness

requirement (01 f). Thus, in order to win, the system would have to force the

environment to violate its own specification. In order for the environment to be well

separated, no system should be able to do so. When dealing with well-separated

environments, the assumption made in the syntactic reduction, which requires all

initial states and safety components of a specification to be valid in every realizing

program, is not restrictive.

Testing for Well Separation. With the specification ϕwss = 〈t,t,01 f〉, the

formula Sep(ϕe, ϕ
ws
s) becomes logically equivalent to ¬(Ie ∧ 0 Se ∧ Le). Since

5 The authors of [CHJ08] stress the importance of having realizable environment specifications.
Well separation is stronger, as it requires the environment to win from every state in every safe-
X-tree and not just from the root. Realizability of the environment is not strong enough to
ensure equivalence of Imp and Sep.

23

well-separated environments are environments that could not be forced to violate

their specification Ie ∧ 0 Se ∧ Le, it follows that for well-separated environments

the specification Sep(ϕe, ϕ
ws
s) is unrealizable. The algorithm that checks for ex-

istence of GR(1) trees identifies whether there exists a safe-X-tree that satisfies

A2 Sep(ϕe, ϕs). It does so, however, by computing the set W of states in safe-

X-trees from which the system can realize the following ltl formula.

0(` Se → Ss) ∧ ((0 Se ∧ Le)→ Ls) (2.5)

The algorithm then checks whether for every a ⊆ X such that a |= Ie there exists

a state π ∈ W such that L(π)∩X = a and L(π) |= Is. Formula 2.5, with ϕwss , be-

comes logically equivalent to ¬(0 Se ∧ Le). Since for well-separated environments

the system could never (from no state in a safe-X-tree) force the environment to

violate 0 Se∧Le, we get that not only is the specification Sep(ϕe, ϕ
ws
s) unrealizable

for well-separated environments, but, in fact, in this case the set W constructed

by the algorithm that checks for existence of GR(1) trees must be empty. Since

Sep(ϕe, ϕ
ws
s) and Imp(ϕe, ϕ

ws
s) are logically equivalent, well separation of an envi-

ronment could be tested efficiently using the syntactic reduction without worrying

about a specification’s syntax. This is done by testing for emptiness of the rele-

vant set W that is constructed for Imp(ϕe, ϕ
ws
s). There is one exception to this

procedure - in the case that Ie = f, the set W that is created while testing for

well separation might still be empty despite the fact that such environments are,

clearly, not well separated.

Theorem 2.3. Let ϕe be the specification of a well-separated environment with

a set of inputs X and a set of outputs Y . Then, for every specification ϕs and

24

program P the following conditions are equivalent:

1. The program P realizes Imp(ϕe, ϕs).

2. The program P realizes Sep(ϕe, ϕs).

Proof: By Lemma 2.1, we have 2 =⇒ 1. We prove that 1 =⇒ 2. Let ϕs =

〈Is, Ss, Ls〉 be some specification. Let M = 〈S,R, L, ε〉 be the full-X-tree that

corresponds to a program P that realizes Imp(ϕe, ϕs) (as described in Subsec-

tion 2.2.2). Then, M satisfies the formula A2 Imp(ϕe, ϕs). We show that M also

satisfies the formula A2 Sep(ϕe, ϕs).

Consider an infinite path π = s0, s1, . . . in M . By assumption, 〈M,π, 1〉 |=

Imp(ϕe, ϕs). It is either the case that π satisfies the left-hand-side of the implica-

tion or not.

• Consider the case that 〈M,π, 1〉 |= ϕe. Then, 〈M,π, 1〉 |= ϕs as well. In this

case, π satisfies every one of the conjuncts in Sep(ϕe, ϕs) and it follows that

〈M,π, 1〉 |= Sep(ϕe, ϕs).

• Consider the case that 〈M,π, 1, 〉 6|= ϕe. Then one of the following three

conditions holds.

– If 〈M,π, 1〉 6|= Ie. Then, as Ie appears on the left-hand-side of every

implication in Sep(ϕe, ϕs) we conclude that 〈M,π, 1〉 |= Sep(ϕe, ϕs).

– If 〈M,π, 1〉 |= Ie but 〈M,π, 1〉 6|= 0 Se. Let i > 0 be the minimal

location in π such that (si, s
′
i+1) 6|= Se. By the environment being well

separated, the state si in M appears on an infinite path π′ such that

〈M,π′, 1〉 |= Ie ∧ 0 Se ∧ Le. By M being a program for Imp(ϕe, ϕs)

it must be the case that 〈M,π′, 1〉 |= ϕs as well. However, π and π′

25

share the prefix s0, . . . , si. It follows that for every 1 ≤ j < i we

have (sj, s
′
j+1) |= Ss and s1 |= Is. Hence, 〈M,π, 1〉 |= Ie → Is and

〈M,π, 1〉 |= Ie → 0(` Se → Ss). As 〈M,π, 1〉 6|= 0 Se, it follows

that the last conjunct in Sep(ϕe, ϕs) holds as well. Thus, 〈M,π, 1〉 |=

Sep(ϕe, ϕs).

– If 〈M,π, 1〉 |= Ie ∧ 0 Se but 〈M,π, 1〉 6|= Le. By the environment being

well separated, every state si in π participates in a path πi such that

〈M,πi, 1〉 |= ϕe. As before, the paths πi and π share their prefix. It

follows, that it must be the case that s1 |= Is and that for every i ≥ 1 we

have (si, s
′
i+1) |= Ss. Thus, 〈M,π, 1〉 |= Ie → Is and 〈M,π, 1〉 |= Ie →

0(` Se → Ss). However, by assumption 〈M,π, 1〉 6|= Le. It follows that

〈M,π, 1〉 |= (Ie ∧0 Se ∧Le)→ Ls as the antecedent does not hold. We

conclude that 〈M,π, 1〉 |= Sep(ϕe, ϕs).

One consequence of Theorem 2.3 is that with well-separated environments,

Imp(ϕe, ϕs) and Sep(ϕe, ϕs) are equi-realizable and then there is no restriction on

using the syntactic reduction, regardless of the syntax of the specification.

The specifications on which the synthesis algorithm is demonstrated in [PPS06]

are realizable and produce, therefore, correct realizability and synthesis results.

The specifications ϕ1 and ϕ2 from Section 2.3 contain, however, environments that

are not well separated. Therefore, we cannot handle them, at least in their current

form, using the algorithm at hand.

Theorem 2.3 mentions two sets of specifications: The set of specifications with

well separated environments, and the set of specifications ϕ for which Imp(ϕe, ϕs)

26

and Sep(ϕe, ϕs) are equi-realizable (by the same programs), which we call syntac-

tically equi-realizable. While Theorem 2.3 proves that the former is a subset of the

latter, the opposite is not true. Indeed, there exist specifications Imp(ϕe, ϕs) with

environments that are not well separated which are realizable, while there exists

a safe-X-tree over ϕe and ϕs that satisfies A(Le → Ls). Such specifications fall

in the gap between the set of specifications with well separated environments, and

the set of syntactically equi-realizable specifications. One trivial example is the

following specification over output Boolean variable y (without any input variable):

ϕ3 : 0 y → 01 y

Clearly, ϕ3 contains an environment that is not well separated. Also, a safe-X-

tree over ϕ3,e = 0 y and ϕ3,s = 01 y that satisfies A(t → 01 y) exists: That

would be a tree that labels the variable y with the value y = t everywhere. For

specifications ϕ for which Imp(ϕe, ϕs) and Sep(ϕe, ϕs) are equi-realizable but ϕe is

not well separated, there exists a safe-X-tree over ϕe and ϕs that satisfies A(Le →

Ls), realizing one strategy for the system. At the same time, the system has a

(different) strategy that would cause the environment to violate its specification

ϕe. In the case of ϕ3, the first strategy would be to always assign y = t. A second

strategy would be one that, at some point, assigns y = f; This strategy cannot be

represented by a safe-X-tree over ϕ3,e and ϕ3,s.

It seems reasonable to assume that most ‘natural’ specifications that develop-

ers may (or, perhaps more accurately, should) come up with would contain well-

separated environments. The reason for this assumption is that usually a desired

implementation of a specification would not be one in which the program tries to

force the environment to become ‘stuck’ while ignoring its own (the program’s)

27

requirements, but rather one that tries to fulfill them.

2.5 General Specifications

From the results in Section 2.4 we conclude that if the environment specification

is well separated, we can use the syntactic reduction to determine realizability of

the implication of the two specifications. In this section we show a transformation

that allows to use the syntactic reduction for all specifications. Thus, specifications

that are written in the intuitive-to-design form of Imp(ϕe, ϕs) can be handled by

the same methods.

Consider two specifications ϕα(X, Y), for α ∈ {e, s} as before. We introduce

two fresh Boolean output variables tI and tS that implement temporal testers

([PZ08]) for `(�t ∨ Is) and for ` Ss, respectively, and modify the specification

ϕs as follows.

• Ĩs = (tI = Is) ∧ tS

• S̃s = (t′I = tI) ∧ (t′S = (tS ∧ Ss))

• L̃s = 01 tI ∧ 01 tS ∧ Ls

Denote ϕ̃s = 〈Ĩs, S̃s, L̃s〉. Intuitively, we remove all restrictions on the way the sys-

tem starts and on the way it updates its variables. However, the variables tI and

tS memorize whether the system violated its initial condition or its safety require-

ment. Then, the liveness requirement of the system is augmented by a requirement

to satisfy its initial condition and safety specification. Thus, the system may vio-

late its initial condition or safety component (which is now a part of its liveness)

in cases that it can force the environment to violate its own requirements. With

this new form of the specification, every tree model that satisfies the environment’s

28

initial condition and safety component, can be completed into a safe-X-tree over

ϕe and ϕ̃s.

We now show that Imp(ϕe, ϕs) and Sep(ϕe, ϕ̃s) are equi-realizable. Thus, by

using the syntactic reduction on ϕe and ϕ̃s gives the correct answer (and correct

program) for Imp(ϕe, ϕs). Formally, we have the following.

Theorem 2.4. The following conditions are equivalent:

1. The specification Imp(ϕe, ϕs) is realizable.

2. The specification Sep(ϕe, ϕ̃s) is realizable.

Furthermore, every program that realizes the one realizes the other.

To satisfy the last clause of Theorem 2.4 a program that realizes Imp(ϕe, ϕs)

should be modified so that it also generates outputs for tI and tS, and vice versa.

Proof: We shall prove both directions:

1 =⇒ 2: We show that a full-X-tree that realizes Imp(ϕe, ϕs) could be augmented

with the values of tI and tS such that it becomes a full-X-tree that realizes

Sep(ϕe, ϕs). Let M = 〈S,R, L, ε〉 be a full-X-tree that realizes Imp(ϕe, ϕs).

We construct the full-X-tree M ′ = 〈S,R, L′, ε〉. For every p ∈ X ∪Y and for

every state s in S we have p ∈ L(s) iff p ∈ L′(s). Consider a state a ⊆ X

in S. If L(a) |= Is we set tI ∈ L′(a) and for every path π ∈ (2X)+ we set

tI ∈ L′(a · π). If L(a) 6|= Is we set tI 6∈ L′(a) and for every path π ∈ (2X)+

we set tI 6∈ L′(a · π). We now add the label tS by induction. For every state

a ⊆ X in S we set tS ∈ L′(a). Consider a state a0 · . . . · an such that for

all 0 ≤ i ≤ n we have ai ⊆ X and for every state a0 · . . . · aj for j < n we

have already set whether tS is in L′(a0 · . . . · aj). If tS ∈ L′(a0 · . . . · an−1) and

29

(L(a0 · . . . · an−1), (L(a0 · . . . · an))′) |= Ss then we set tS ∈ L′(a0 · . . . · an).

Otherwise, we set tS /∈ L′(a0 · . . . · an). By construction of M ′ we have that

〈M ′, ε〉 |= A2(Ĩs ∧ 0 S̃s). All paths of M ′ must, therefore, trivially satisfy

the first two conjuncts of 2 Sep(ϕe, ϕ̃s).

We show now that all paths of M ′ satisfy the third conjunct of2 Sep(ϕe, ϕ̃s)

as well. Consider an infinite path π = a0, . . . in M ′. By choice of M , we have

〈M ′, π, 1〉 |= (ϕe → ϕs).

– If 〈M ′, π, 1〉 |= ϕe then, by assumption, 〈M ′, π, 1〉 |= ϕs. It follows that

L(a1) |= Is. Hence, for every state s in π we have tI ∈ L′(s) and,

in particular, 〈M ′, π, 1〉 |= 01 tI . It is also the case that for every

i > 0 we have (L(ai), (L(ai+1))
′) |= Ss. Hence, for every state s in

π we have tS ∈ L′(s) and in particular 〈M ′, π, 1〉 |= 01 tS. Since

〈M ′, π, 1〉 |= Ls, we finally get that 〈M ′, π, 1〉 |= L̃s and the third con-

junct of 2 Sep(ϕe, ϕ̃s) holds.

– If 〈M,π, 1〉 6|= ϕe, then the third conjunct of 2 Sep(ϕe, ϕ̃s) holds vacu-

ously: 〈M,π, 1〉 |= (Ie ∧ 0 Se) → (Le → L̃s) (since either Ie, 0 Se, or

Le is false here).

It follows that π satisfies 2 Sep(ϕe, ϕ̃s) and that, therefore, M ′ realizes

Sep(ϕe, ϕ̃s).

Since the program that corresponds to M ′ could be easily extracted, step-

by-step, from the program that corresponds to M (by evaluating the values

of tI and of tS at each step based on their previous values), we say that,

essentially, the program of M realizes both specifications.

2 =⇒ 1: Consider a full-X-tree M ′ = 〈S,R, L′, ε〉 that realizes Sep(ϕe, ϕ̃s). Con-

30

sider the tree M = 〈S,R, L, ε〉 that is obtained from M ′ by removing the

information regarding tI and tS from the labeling of M ′. We show that M

realizes Imp(ϕe, ϕs).

Consider a path π in M . If 〈M,π, 1〉 6|= ϕe then, trivially, 〈M,π, 1〉 |=

Imp(ϕe, ϕs). Consider the case that 〈M,π, 1〉 |= ϕe and consider the same

path π in M ′. By assumption, 〈M ′, π, 1〉 |= Sep(ϕe, ϕ̃s). As 〈M ′, π, 1〉 |=

Ie, it follows that 〈M ′, π, 1〉 |= Ĩs. As 〈M ′, π, 1〉 |= 0 Se, it follows that

〈M ′, π, 1〉 |= 0 S̃s. Finally, as 〈M ′, π, 1〉 |= Le, it follows that 〈M ′, π, 1〉 |=

01 tI ∧ 01 tS ∧ Ls. As π satisfies 01 tI , it must be the case that

〈M,π, 1〉 |= Is. Indeed, the value of Is is equivalent to that of tI , and tI

is either true for every state of the path or false for every state of the path.

Similarly, as π satisfies 01 tS it follows that tS is true in every state of

the path. Thus, it must be the case that 〈M,π, 1〉 |= 0 Ss. We conclude

that 〈M,π, 1〉 |= ϕs and that 〈M,π, 1〉 |= Imp(ϕe, ϕs). Finally, M realizes

Imp(ϕe, ϕs), as required.

Since the program for M is the program for M ′ modified by dropping its

assignments for tI and for tS, we could say that the two are the same.

Applying the above transformation to ϕ1 and ϕ2 from Section 2.3, we obtain

31

the following formulae:

ϕ̃1 : (t→ ((tI = t) ∧ tS)) ∧

(t→ 0(` ¬x′ → ((t′I = tI) ∧ (t′S = (tS ∧ (y′ = x′)))))) ∧

((t ∧ 0 ¬x′)→ (01(x = y)→ (01 tI ∧ 01 tS ∧ 01 y))

ϕ̃2 : (¬x→ ((tI = y) ∧ tS)) ∧

(¬x→ 0(`(x′ = x)→ ((t′I = tI) ∧ (t′S = (tS ∧ (y′ = y)))))) ∧

((¬x ∧ 0(x′ = x))→ (01(x 6= y)→ (01 tI ∧ 01 tS ∧ 01¬y)))

By Theorem 2.4 we can use the syntactic reduction to prove that ϕ̃1 and ϕ̃2 are,

indeed, realizable and the programs that realize them also realize ϕ1 and ϕ2.

One may ask why the approach advocated in this section should not be used

always, avoiding the need to test environments for well separation. The simple

answer is that the introduction of two new variables adds to the complexity of the

synthesis process. Furthermore, part of the attractiveness of using the syntactic

reduction is that including the system’s safety as part of the requirements on the

tree makes the search practically simpler.

2.6 On the Connection Between Games and Trees

In this chapter we define and prove everything in the language of tree models.

The work in [PPS06], however, is defined using game structures. In this section

we define game structures with two players - an environment and a system - and

using definitions for game winning and for winning strategies, we prove that the

two definitions are, in fact, interchangeable for our purposes.

32

2.6.1 Game Structures

We consider two-player games played between a system and an environment. The

goal of the system is to satisfy a winning condition (derived, in the context of

synthesis, from the specification) regardless of the actions of the environment.

Formally, we have the following.

Let AP be a set of Boolean variables, and let X and Y be a partition of AP

to input and output variables, respectively. A game structure G = 〈V , θe, θs, ρe,

ρs, ϕ〉 consists of the following components:

• V ⊆ 2AP is a finite set of states .

• θe ⊆ 2V is the initial set of the environment . For every D ∈ θe, if s ∈ D,

then for every t ∈ V such that t ∩ X = s ∩ X, also t ∈ D. Also, for every

two states d1, d2 ∈ D, d1 ∩X = d2 ∩X.

• θs ⊆ V is the initial set of the system.

• ρe ⊆ V × 2V is the transition relation of the environment . If (s,D) ∈ ρe,

then for every t ∈ D, and for every u ∈ V such that u ∩ X = t ∩ X, also

u ∈ D. Also, for every two states d1, d2 ∈ D, d1 ∩X = d2 ∩X.

• ρs ⊆ V × V is the transition relation of the system.

• ϕ is the winning condition for the system, given by an ltl formula.

For two states s and t of G, t is a successor of s if there exists a D ⊆ V such

that t ∈ D, (s,D) ∈ ρe, and (s, t) ∈ ρs. A play σ of G is a maximal sequence

of states σ : s1, s2, . . . satisfying initiality namely s1 ∈ θs ∩
⋃
θs, and consecution

namely, for each j ≥ 1, sj+1 is a successor of sj. A play σ of a game structure G

33

progresses in the following way: from each state s in σ, the environment chooses

a set of possible successors D ⊆ V such that (s,D) ∈ ρe, and the system follows

by choosing from this set a successor t ∈ D that also agrees with its transition

relation (i.e., (s, t) ∈ ρs). The first state in σ is chosen in a similar manner - first,

the environment chooses a set of possible initial states D ⊆ V such that D ∈ θe,

and the system follows by choosing from this set an initial state s ∈ D that also

agrees with its initial set (i.e., s ∈ θs).

A play σ is winning for the system if it is infinite and satisfies ϕ. Otherwise, σ

is winning for the environment .

A strategy for the system is a partial function f : V ∗ × 2V 7→ V such that

if σ = s0, . . . , sn is a finite prefix of a play, then for every D ⊆ V such that

(sn, D) ∈ ρe we have (sn, f(σ,D)) ∈ ρs. Similarly, for every D ⊆ V such that

D ∈ θe we have f(λ,D) ∈ θs (λ here indicates an empty sequence of states). A

play s1, s2, . . . is said to be compliant with strategy f if for all i ≥ 0 and for all

D ∈ V such that si+1 ∈ D and (si, D) ∈ ρe (D ∈ θe in the case that i = 0) we have

f((s1, . . . , si), D) = si+1. Strategy f is winning for the system if all plays which

are compliant with f are winning for the system. A game structure G is said to

be winning for the system if there exists in G a winning strategy for the system.

Dually, if a play, a strategy or a game structure is not winning for the system, it

is said to be winning for the environment .

Given a specification Imp(ϕe, ϕs), a set of input variables X and a set of output

variables Y , the syntactic reduction involves constructing a game structure G =

〈V, θe, θs, ρe, ρs, ϕ〉 as follows. As described in Subsection 2.3.1, ϕα = 〈Iα, Sα, Lα〉

for α ∈ {e, s}, where

• V = 2X∪Y . We denote states s ∈ V as a pair s = (sX ; sY), where sX ∈ 2X

34

and sY ∈ 2Y .

• θe = {{(x; 2Y)}|x ∈ 2X ;x |= Ie}. That is, for a given x ∈ 2X , {(x; 2Y)} =

{(x; y)|y ∈ 2Y }.

• θs = {(x; y)|x ∈ 2X ; y ∈ 2Y ; (x, y) |= Is}.6

• ρe = {{((x1; y), (x2; 2Y))}|x1, x2 ∈ 2X ; y ∈ 2Y ; (x1, y, x
′
2) |= Se}. That is, for

given x1, x2 ∈ 2X and y1 ∈ 2Y ,

{((x1; y1), (x2; 2Y))} = ((x1; y1), {(x2; y2)|y2 ∈ 2Y }).

• ρs = {((x1; y1), (x2; y2))|x1, x2 ∈ 2X ; y1, y2 ∈ 2Y ; (x1, y1, x
′
2, y
′
2) |= Ss}.

• ϕ = (Le → Ls). That is, the winning condition is the implication between

the liveness requirements of the two players.

To solve the game means to decide whether the game is winning for the system

or for the environment. If the environment is winning the specification is declared

unrealizable. Otherwise, if the system wins, it is declared realizable. In addition,

if the specification is realizable, a winning strategy for the system is extracted.

In the next section we show how the above definitions are, in some sense,

equivalent to the definitions for trees that were given in Section 2.3 and that

are used in the main body of the chapter. This justifies our claims regarding

6 In [PPS06], the authors defined the initial conditions, erroneously, united in a single element
of the game structure that defined a set of all the states that satisfy Ie ∧ Is. Such a definition
(which assumes only a single possible initial state per game) fails to describe the correct manner
in which plays develop, requiring the environment to make its first choice of an initial set of states
and allowing the system to choose an initial state from that set. It also ignores the possibility
that the system would win the game by the environment choosing an initial set that does not
satisfy Ie. This mistake, however, was later discovered by Piterman who corrected and replaced
it (in the authors’ implementation of their algorithm) with an initial condition requirement that
verifies that for every x ∈ 2X such that x |= Ie there exists an initial state (x; y) such that
(x, y) |= Is.

35

the work as it is presented in [PPS06]. There is a slight difference between our

definitions and the definitions there, as we choose an enumerative representation of

the games, i.e., states and transitions are declared explicitly, while [PPS06] choose a

symbolic representation, i.e., states and transitions are declared implicitly through

the variables and assertions over them.

2.6.2 Realizability in Game Structures and in Tree Models

Using the definitions from the previous section, we have the following.

Theorem 2.5. The following conditions are equivalent:

1. The game structure constructed from the specification Imp(ϕe, ϕs) is winning

for the system.

2. There exists a safe-X-tree over ϕe and ϕs that satisfies A(Le → Ls).

Proof: We shall prove both directions:

1 =⇒ 2: Let f be a winning strategy for the system in the game structure G =

〈V, θe, θs, ρe, ρs, ϕ〉 that is constructed from Imp(ϕe, ϕs). Such a strategy

exists since G is winning for the system. We describe how to construct the

safe-X-tree over ϕe and ϕs M = 〈S,R, L, ε〉 and show that it satisfies the

required formula.

We have S ⊆ (2X)∗ that is defined inductively. ε ∈ S and L(ε) = ∅. For

every a ⊆ X such that a |= Ie, we have a ∈ S and (ε, a) ∈ R. Since

{(a; 2Y)} ∈ θe, f(λ, {(a; 2Y)}) is defined and we set L(a) = f(λ, {(a; 2Y)}).

Since f(λ, {(a; 2Y)}) ∈ θs, we also know that L(a) |= Is. For every π · a ∈

S and every b ⊆ X such that (L(π · a), b′) |= Se we have π · a · b ∈ S

36

and (π · a, π · a · b) ∈ R. Let π = π1, . . . , πn (it is possible that n = 0

and π is empty). Clearly, f((L(π1), L(π1, π2), . . . , L(π), L(π · a)), {(b; 2Y)})

is defined since {((a;L(π · a)), (b; 2Y))} ∈ ρe. Thus, we set L(π · a · b) =

f((L(π1), L(π1, π2), . . . , L(π), L(π · a)), {(b; 2Y)}). Also, (L(π · a), (L(π · a ·

b))′) |= Ss as (L(π ·a), f((L(π1), L(π1, π2), . . . , L(π), L(π ·a)), {(b; 2Y)})) ∈ ρs.

By construction, M is, indeed, a safe-X-tree over ϕe and ϕs. It is left to show

that M satisfies A(Le → Ls).

By the construction of M , every infinite path π = π0, π1, π2, . . . in M corre-

sponds with a play σ = L(π1), L(π2), . . . of G that is compliant with f . Since

f is a winning strategy, we know that σ satisfies Le → Ls which gives us

that 〈M,π, 0〉 |= Le → Ls. Finally, we get that M satisfies A(Le → Ls), as

required.

2 =⇒ 1: LetM = 〈S,R, L, ε〉 be a safe-X-tree over ϕe and ϕs that satisfies A(Le →

Ls). Based on M , we define f as a strategy for the system in the game

structure G = 〈V, θe, θs, ρe, ρs, ϕ〉 that is constructed from Imp(ϕe, ϕs). We

then show that f is winning for the system.

The strategy f is defined inductively. For every D ⊆ V such that D ∈ θe

we choose some d ∈ D. We have that d ∩ X |= Ie. That is, d ∩ X ∈ S.

We e set f(λ,D) = L(d ∩ X). This is unique definition since for every

d1, d2 ∈ D, d1 ∩ X = d2 ∩ X. We know that for every a ⊆ X, where

a ∈ S, we have L(a) |= Is. Hence f(λ,D) |= Is, and therefore we know

that f(λ,D) ∈ θs. For every finite prefix of a play σ = s0, . . . , sn and for

every D ⊆ V such that (sn, D) ∈ ρe we choose some d ∈ D. Inductively,

we assume that (s0 ∩ X) · . . . · (sn ∩ X) ∈ S. Clearly, for n = 0 this holds.

We have that (L((s0 ∩ X) · . . . · (sn ∩ X)), (d ∩ X)′) |= Se. That is, (s0 ∩

37

X) · . . . · (sn ∩ X) · (d ∩ X) ∈ S. We set f(σ,D) = L((s0 ∩ X) · . . . · (sn ∩

X) · (d ∩ X)). For the same reason as before, this definition is unique. We

know that for every a ⊆ X, where (s0 ∩ X) · . . . · (sn ∩ X) · a ∈ S, we

have (L((s0 ∩ X) · . . . · (sn ∩ X)), (L((s0 ∩ X) · . . . · (sn ∩ X) · a))′) |= Ss.

Hence (L((s0 ∩X) · . . . · (sn ∩X)), (f(σ,D))′) |= Ss. Therefore we know that

(L((s0 ∩X) · . . . · (sn ∩X)), f(σ,D)) ∈ ρs. We conclude that f is, indeed, a

strategy for the system in G.

For every play σ that is compliant with f the following holds. For every prefix

σn = s0, . . . , sn, we have L((s0 ∩X) · . . . · (sn ∩X)) = sn. Since M satisfies

A(Le → Ls), every path in M satisfies this formula. In particular, the path

ε, (s0∩X), (s0∩X) · (s1∩X), . . . satisfies Le → Ls. That is, the computation

L(s0 ∩ X), L((s0 ∩ X) · (s1 ∩ X)), . . . satisfies (Le → Ls). Finally, so does

s0, s1, . . . = σ. We conclude that f is a winning strategy for the system and

that G is winning for the system.

Theorem 2.5 justifies our usage of tree models instead of game structures when

discussing the claims of [PPS06]. In particular, it proves that Conjecture 2.1 is

interchangeable with the actual (and differently phrased) claim in that paper which

states (without a proof):

Conjecture 2.2. The specification Imp(ϕe, ϕs) is realizable iff the game structure

constructed from it is winning for the system.

38

2.7 Conclusions

Following the solution to ltl realizability suggested in [PPS06], we analyzed their

syntactic reduction from ltl specifications to games. We showed when and how

the syntactic reduction could be applied to ltl specifications to produce correct

realizability results. We first presented a flaw in the syntactic reduction that may

cause it to produce false-negatives. We then proved that the syntactic reduction

solves the realizability of Sep(ϕe, ϕs) rather than that of Imp(ϕe, ϕs). We defined

the class of well-separated environments for which the syntactic reduction produces

correct realizability results and showed how to efficiently test for it. Finally, we

proposed a transformation for systems’ specifications, changing ϕs into ϕ̃s, that

guarantees that the syntactic reduction would produce correct realizability results

for all specifications without paying much in complexity.

One of the comments of users of this synthesis approach is that debugging

unrealizable specifications is very problematic. We hope that highlighting the

difference between Sep(ϕe, ϕs) and Imp(ϕe, ϕs) as well as the awareness to well-

separated environments will alleviate some of the burden on users. In general,

providing users of synthesis with helpful feedback in case of failure of synthesis as

well as how to check the correctness of the specification are interesting issues for

further research.

One question that remains open is how to identify specifications that are syn-

tactically equi-realizable.

39

Chapter 3
Effective Synthesis of Asynchronous

Systems from GR(1) Specifications

3.1 Introduction

One of the most ambitious and challenging problems in reactive systems design is

the automatic synthesis of programs from logical specifications. It was suggested

by Church [Chu63] and subsequently solved by two techniques [BL69, Rab72]. In

[PR89a] the problem was set in a modern context of synthesis of reactive systems

from Linear Temporal Logic (ltl) specifications. The synthesis algorithm converts

a ltl specification to a Büchi automaton, which is then determinized [PR89a].

This double translation may be doubly exponential in the size of ϕ. Once the

deterministic automaton is obtained, it is converted to a Rabin game that can be

solved in time nO(k), where n is the number of states of the automaton (double

exponential in ϕ) and k is a measure of topological complexity (exponential in ϕ).

This algorithm is tight as the problem is 2EXPTIME-hard [PR89a].

This unfortunate situation led to extensive research on ways to bypass the

40

complexity of synthesis (e.g., [KV05, HP06, PPS06, PP06]). The works in [PPS06]

is of particular interest to us. It achieves scalability by restricting the type of

handled specifications. This led to many applications of synthesis in various

fields [BGJ+07a, BGJ+07b, CKGC+07, KGFP07b, WTM09, WTM10b, WTM10a,

KPP09, KS09, DBPU10, DBPU11]. These results can be summarized by stating

that, in spite of the extremely high worst-case lower bound, synthesis of designs

from their temporal specifications is feasible, due to the identification of restricted

fragments of ltl which are adequate for expressing most design specifications and

admit polynomial synthesis algorithms.

These results relate to the case of synchronous synthesis, where the synthesized

system is synchronized with its environment. At every step, the environment

generates new inputs and the system senses all of them and computes a response.

This is the standard computational model for hardware designs.

Here, we are interested in synthesis of asynchronous systems. Namely, the sys-

tem may not sense all the changes in the values of its inputs, and the responses

computed by the system may become visible to the external world (including the

environment) with an arbitrary delay. Furthermore, the system accesses one vari-

able at a time while in the synchronous model all inputs are observed and all

outputs are changed in a single step. This asynchronous model is the most ap-

propriate for representing reactive software systems that communicate via shared

variables on a multi-threaded platform.

We illustrate the difference between the two types of synthesis (synchronous

and asynchronous) by the following trivial example. Consider a system with a

single input x and a single output y, both Booleans. The behavioral specification

41

is given by the temporal formula

ϕ1 :0(x↔ y)

stating that, at all computation steps, it is required that the output should equal

the input. Obviously, this specification calls for an implementation of a module

that will consistently ‘copy’ the input to the output. As usual, the synthesis

problem is to find a module such that, for all possible sequences of values appearing

on input x, will maintain the specification ϕ1.

It is not difficult to see that specification ϕ1 is synchronously realizable. That

is, there exists a synchronous module that maintains the specification ϕ1. Such a

module can be defined by having the initial condition θ : y ↔ x and the transition

relation ρ : y′ ↔ x′. This presentation is based on the notion of a Fair Discrete

System (fds) as presented, for example, in [PPS06]. (A hardware module imple-

menting this specification would ultimately amount to a wire connecting the input

to the output.)

On the other hand, the specification ϕ1 is not asynchronously realizable. That

is, there does not exist an asynchronous module such that, for all possible sequences

of x-values, it will maintain the relation x↔ y. The reason is that if x changes too

rapidly, the system cannot observe all these changes and respond quickly enough.

In particular, since in an asynchronous setting steps of the environment and of the

system interleave, there is no way (unlike in the synchronous model) that x and y

can both change in the same step.

In [PR89b], Pnueli and Rosner reduce asynchronous synthesis to synchronous

synthesis. Their technique, which we call the Rosner reduction, converts a specifi-

cation ϕ(x; y) with single input x and single output y to a specification X (x, r; y).

42

The new specification relates to an additional variable r (r being a fresh Boolean in-

put variable). They show that ϕ is asynchronously realizable iff X is synchronously

realizable and how to translate a synchronous implementation of X to an asyn-

chronous implementation of ϕ.

Our first result is an extension of the Rosner reduction to specifications with

multiple input and output variables. Pnueli and Rosner assumed that the system

alternates between reading its input and writing its output. For multiple variables,

we assume cyclic access to variables: first reading all inputs, then writing all out-

puts (each in a fixed order). We show that this interaction mode is not restrictive

as it is equivalent (with respect to synthesis) to the model in which the system

chooses its next action (whether to read or to write, and which variable).

Combined with [PR89a], the reduction from asynchronous synthesis to syn-

chronous synthesis presents a complete solution to the multiple-variables asyn-

chronous synthesis problem. Unfortunately, much like in the synchronous case,

it is not ‘effective’. Furthermore, even if ϕ is relatively simple (for example, be-

longs to the class of GR(1) formulae that is handled in [PPS06]), the formula X

is considerably more complex and requires the full treatment of [PR89a].

Consequently, the methods presented in this paper propose various ways to

approximate the expanded Rosner reduction without fully computing it. These

methods are sound but not complete. In particular, we offer approximations from

two sides as follows:

• Derive a weaker approximation X↓ by removing a quantifier within X . It can

be shown that if X is synchronously realizable then so is X↓. Equivalently,

if X↓ is synchronously unrealizable then so is X . Furthermore, unlike X ,

if ϕ belongs to the GR(1) class then so does X↓, and it could be effectively

43

analyzed using the work of [PPS06]. This shows that an effective way to check

that ϕ is asynchronously unrealizable is to check that X↓ is synchronously

unrealizable.

• Derive a stronger approximation Xψ, such that for single input specifications,

if Xψ is synchronously realizable, then so is X . We present a family of

heuristics for finding Xψ for a given specification ϕ, such that if ϕ belongs

to the GR(1) class then so does Xψ. This provides an effective way to check

that ϕ is asynchronously realizable by checking that Xψ is synchronously

realizable. We also show how the synchronous synthesis of Xψ could then be

used to extract an asynchronous implementation of ϕ.

Partial results from this work were reported in [PK09], where the approxima-

tions X↓ and Xψ were presented for the case of single input and single output

specifications. Beyond extending those results to handle multiple variables, we

also prove here some methods that were presented there as conjectures, and cor-

rect several mistakes.

3.2 Preliminaries

3.2.1 Temporal Logic

We describe the syntax and semantics of an extension of Quantified Propositional

Temporal Logic (QPTL) [SVW87]. QPTL admits quantification over variables.

We extend it by stuttering quantification, which is explained below. By abuse of

notation we use QPTL to refer to this extended logic.

Let X be a set of variables. Without loss of generality we assume that all

variables range over the same finite domain D. Let DX denote the set of functions

44

from X to D. Given, d1, d2 ∈ DX and X ′ ⊆ X we write d1 =X′ d2 if for every

x ∈ X ′ we have d1(x) = d2(x). The syntax of QPTL is defined according to the

following grammar.

τ ::= x = d, where x ∈ X and d ∈ D

ϕ ::= τ ‖ ¬ϕ ‖ ϕ ∨ ϕ ‖ 2ϕ ‖ �ϕ ‖ ϕUϕ ‖ ϕ S ϕ ‖ (∃x).ϕ ‖ (∃≈x).ϕ

where τ are atomic formulae and ϕ are QPTL formulae (formulae, for short).

We use the following standard abbreviations (here, d ∈ D, x, y ∈ X, and

ψ, ψ1, ψ2 are formulae): x 6= d for ¬(x = d), t for x = d∨ x 6= d, f for ¬t, ψ1 ∧ψ2

for ¬(¬ψ1∨¬ψ2), ψ1 → ψ2 for ¬ψ1∨ψ2, ψ1 ↔ ψ2 for (ψ1 → ψ2)∧(ψ2 → ψ1), (∀x)ψ

for ¬(∃x)(¬ψ), (∀≈x)ψ for ¬(∃≈x)(¬ψ), 1ψ for tUψ, 0 ψ for ¬1¬ψ, Qψ for

t S ψ, ` ψ for ¬Q¬ψ, ψ1Wψ2 for ψ1Uψ2∨0 ψ1, ψ1 B ψ2 for ψ1 S ψ2∨` ψ1, x =

y for
∨
d∈D(x = d∧y = d), x 6= y for ¬(x = y), x = � y for

∨
d∈D(x = d∧� y = d),

2∼ ψ for ¬�¬ψ, and ψ1 =�ψ2 for 0(ψ1 → ψ2). For a set X̂ = {x1, . . . , xk} ⊆ X

of variables, we write (∃X̂).ψ for (∃x1) · · · (∃xk).ψ and similarly for (∀X̂).ψ. By

abuse of notation, we sometimes list variables and sets, e.g., (∃X̂, y).ψ instead of

(∃X̂ ∪ {y}).ψ. Also, in case a Boolean variable, r, we write r for r = 1 and r for

r = 0.

Temporal past formulae are QPTL formulae that contain the operators S or

� (or any of the other operators that are expressed with them).

The logic ltl is obtained by disallowing the usage of the ∃ and ∃≈ operators.

When we want to stress that a formula ϕ is written over the variables in a set

X, we write ϕ(X). When the variables are partitioned to input variables (inputs,

for short) X and output variables (outputs) Y , we write ϕ(X;Y). We call such

formulae specifications. By abuse of notation, we sometimes list the variables in

45

X and Y , e.g., ϕ(x1, x2; y).

The semantics of QPTL is given with respect to computations and locations

in them. A computation σ is an infinite sequence a0, a1, . . ., where for every i ≥

0 we have ai ∈ DX . That is, a computation is an infinite sequence of value

assignments to the variables in X. A computation σ′ = a′0, a
′
1, . . . is an x-variant of

computation σ = a0, a1, . . . if for every i ≥ 0 and every y 6= x we have ai[y] = a′i[y].

The computation squeeze(σ) is obtained from σ as follows. If for all i ≥ 0 we

have ai = a0, then squeeze(σ) = σ. Otherwise, if a0 6= a1 then squeeze(σ) =

a0, squeeze(a1, a2, . . .). Finally, if a0 = a1 then squeeze(σ) = squeeze(a1, a2, . . .).

That is, by removing repeating assignments, squeeze returns a computation in

which every two adjacent assignments are different unless the computation ends

in an infinite suffix of one assignment. A computation σ′ is a stuttering variant of

σ if σ′ = ai00 , a
i1
1 , . . ., where squeeze(σ) = a0, a1, . . . and for every j ≥ 0 we have

ij ≥ 1 (here, a
ij
j stands for ij consecutive repetitions of aj). For an assignment

a ∈ XD and a variable x ∈ X we write a[x] for the value assigned to x by

a. If X = {x1, . . . , xn}, we freely use the notation (ai1 [x1], . . . , ain [xn]) for the

assignment a such that a[xj] = aij [xj].

Satisfaction of a QPTL formula ϕ over computation σ in location i ≥ 0, denoted

σ, i |= ϕ, is defined as follows:

1. For an atomic formula x = d, we have σ, i |= x = d iff ai[x] = d.

2. σ, i |= ¬ϕ iff σ, i 6|= ϕ.

3. σ, i |= ϕ ∨ ψ iff 〈σ, i |= ϕ or σ, i |= ψ.

4. σ, i |= 2ϕ iff σ, i+ 1 |= ϕ.

5. σ, i |= �ϕ iff i > 0 and σ, i− 1 |= ϕ.

46

6. σ, i |= ϕUψ iff for some j ≥ i, σ, j |= ψ, and for all k, i ≤ k < j, σ, k |= ϕ.

7. σ, i |= ϕ S ψ iff for some j ≤ i, σ, j |= ψ, and for all k, i ≥ k > j, σ, k |= ϕ.

8. For a variable x, we have σ, i |= (∃x).ϕ iff σ′, i |= ϕ for some σ′ that is an

x-variant of σ.

9. For a variable x we have σ, i |= (∃≈x).ϕ iff σ′′, i |= ϕ for some σ′′ that is a

x-variant of some stuttering variant σ′ of σ.

We say that the computation σ satisfies the formula ϕ, iff σ, 0 |= ϕ.

3.2.2 Realizability of Temporal Specifications

We distinguish between synchronous and asynchronous programs. The main dif-

ference is in initialization. A synchronous program can initialize its variables based

on the values of inputs (that it reads synchronously). An asynchronous program

initializes its variables without access to the values of inputs. Let X and Y be the

sets of input and output variables ranging over domain D.

In order to stress the different roles of the system and the environment we

specialize the notion of a computation to that of an interaction. In an interaction

we treat each assignment to X ∪ Y as different assignments to X and Y . Thus,

instead of using c ∈ DX∪Y , we use a pair (a, b), where a ∈ DX and b ∈ DY .

Formally, an interaction is σ = (a0, b0), (a1, b1), . . . ∈ (DX ×DY)ω.

Synchronous Programs A synchronous program Ps from X to Y is a function

Ps : (DX)+ 7→ DY . In every step of the computation (including the initial one)

the program reads its inputs and updates the values of all outputs (based on the

entire history). An interaction σ is called synchronous interaction of P if, at each

47

step of the interaction i = 0, 1, . . ., the program outputs (assigns to Y) the value

Ps(a0, a1, . . . , ai), i.e., bi = Ps(a0, . . . , ai). In such interactions, therefore, both the

environment that updates input values and the system that updates output values

‘act’ at each step (where the system, through the program, responds in each step

to an environment action).

A synchronous program is finite state if it can be induced by a Labeled Tran-

sition System (LTS). An LTS is T = 〈S, I, R,X, Y, L〉, where S is a finite set of

states, I ⊆ S is a set of initial states, R ⊆ S × S is a transition relation, X and

Y are disjoint sets of input and output variables, respectively, and L : S 7→ DX∪Y

is a labeling function. For a state s ∈ S and for Z ⊆ X ∪ Y , we define L(s)|Z

to be the restriction of L(s) to the variables of Z. The LTS has to be receptive,

i.e., be able to accept all inputs. Formally, for every a ∈ DX there is some s0 ∈ I

such that L(s0)|X = a. For every a ∈ DX and s ∈ S there is some sa ∈ S

such that R(s, sa) and L(sa)|X = a. The LTS T is deterministic if for every

a ∈ DX there is a unique s0 ∈ I such that L(s0)|X = a and for every a ∈ DX

and every s ∈ S there is a unique sa ∈ S such that R(s, sa) and L(sa)|X = a.

Otherwise, it is nondeterministic. A deterministic LTS T induces the synchronous

program PT : (DX)+ 7→ DY as follows. For every a ∈ DX let T (a) be the unique

state s0 ∈ I such that L(s0)|X = a. For every n > 1 and a1 . . . an ∈ (DX)+ let

T (a1, . . . , an) be the unique s ∈ S such that R(T (a1, . . . , an−1), s) and L(s)|X = an.

For every a1 . . . an ∈ (DX)+ let PT (a1, . . . , an) be the unique b ∈ DY such that

b = L(T (a1, . . . , an))|Y . We note that nondeterministic LTS do not induce pro-

grams. As nondeterministic LTS can always be pruned to deterministic LTS, we

find it acceptable to produce nondeterministic LTS as a representation of a set of

possible programs. We say that the size of T is |S|.

48

Asynchronous Programs An asynchronous program Pa from X to Y is a func-

tion Pa : (DX)∗ 7→ DY . That is, the program sets a value to its output even before

seeing the value of inputs. As before, the program receives a new set of inputs and

updates its outputs. However, the definition of an interaction takes into account

that this may not happen instantaneously.

A schedule is a pair (R,W) of sequences R = r11, . . . , r
n
1 , r

1
2, . . . , r

n
2 , . . . and

W = w1
1, . . . , w

m
1 , w

1
2, . . . , w

m
2 , . . . of reading points and writing points such that

r11 > 0 and for every i > 0 we have r1i < r2i < · · · < rni < w1
i and w1

i < w2
i < · · · <

wmi < r1i+1. It identifies the points where each of the input variables is read and

the points where each of the output variables is written. The second requirement

establishes that reading and writing points occur cyclically. When the distinction

is not important, we call reading points and writing points I\O-points.

An interaction σ is called asynchronous interaction of Pa for schedule (R,W) if

b0 = Pa(ε), and for every i > 0, every j ∈ {1, . . . ,m}, and every k, wji ≤ k < wji+1,

we have

bk[j] = Pa((ar11 [1], . . . , arn1 [n]), (ar12 [1], . . . , arn2 [n]), . . . , (ar1i [1], . . . , arni [n]))[j].

Also, for every j ∈ {1, . . . ,m} and every 0 < k < wj1, we have that bk[j] = b0[j].

In asynchronous interactions, the environment may update the input values at

each step. However, the system is only aware of the values of inputs at reading

points and responds by outputting the appropriate variables at writing points. In

particular, the system is not even aware of the amount of time that passes between

the two adjacent time points (read-read, read-write, or write-read). That is, the

output values depend only on the values of inputs in earlier reading points.

An asynchronous program is finite state if it can asynchronously induced by

an Initialized LTS (ILTS). An ILTS is T = 〈Ts, i〉, where Ts = 〈S, I, R,X, Y, L〉 is

49

an LTS, and i ∈ DY is an initial assignment. We sometimes abuse notations and

write T = 〈S, I, R,X, Y, L, i〉. Determinism is defined just as for LTS. Similarly,

given a1, . . . , an ∈ (DX)+ we define T (a1, . . . , an) as before. A deterministic ILTS

T asynchronously induces the program PT : (DX)∗ 7→ DY as follows. Let PT (ε) = i

and for every a1 . . . an ∈ (DX)+ we have PT (a1, . . . , an) as before. By choosing i

to be a unique initial assignment, we force ILTS to induce only asynchronous pro-

grams that deterministically assign a single initial value to outputs. This definition

could be expanded to allow a nondeterministic choice of initial output values (so

long as they need not depend on inputs which are unavailable), and all the results

presented in this work would still hold. For simplicity and clarity we choose the

definition above, and we leave it to readers to expand (since programs are induced

by deterministic ILTS, this choice is even more reasonable).

Definition 3.1 (realizability). A ltl specification ϕ(X;Y) is synchronously

realizable if there exists a synchronous program Ps such that all synchronous in-

teractions of Ps satisfy ϕ(X;Y). Such a program Ps is said to synchronously realize

ϕ(X;Y). Synchronous realizability is often simply shortened to realizability.

The specification ϕ(X;Y) is asynchronously realizable if there exists an

asynchronous program Pa such that all asynchronous interactions of Pa (for all

schedules) satisfy ϕ(X;Y). Such a program Pa is said to asynchronously realize

ϕ(X;Y).

Synthesis is the process of automatically constructing a program P that (syn-

chronously/asynchronously) realizes a specification ϕ(X;Y). We freely write that

an LTS realizes a specification in case that the induced program satisfies it.

The following theorem is proven in [PR89a].

Theorem 3.1 ([PR89a]). Both of the following hold:

50

1. The problem of deciding whether a specification ϕ(X;Y) is synchronously

realizable is 2EXPTIME-complete.

2. Given a synchronously realizable specification ϕ(X;Y) there exists a doubly-

exponential algorithm to construct a LTS that synchronously realizes ϕ(X;Y).

3.2.3 Structure and Notations of Specifications

In this subsection we define some normal form of specifications that we treat. Let

X and Y be disjoint sets of input and output variables, respectively. We consider

specifications that describe an interplay between a system s and an environment

e. The specification has two parts, for α ∈ {e, s}, ϕα(X, Y), which is the formula

that defines the allowed actions of α is a conjunction of:

1. Iα (initial condition) – a Boolean formula (equally, an assertion) over X ∪Y ,

describing the initial state of α. The formula Is may refer to all variables

and Ie may refer only to the variables X;

2. 0 Sα (safety component) – a formula describing the transition relation of

α, where Sα describes the update of the locally controlled state variables

(identified by being primed , e.g., x′ for x ∈ X) as related to the current state

(unprimed, e.g., x), with the exception that s can observe X’s next values;

3. Lα (liveness component) – each Lα is a conjunction of 01 p formulae where

p is a Boolean formula.

In the case that a specification includes temporal past formulae instead of the

Boolean formulae in any of the three conjuncts mentioned above, we assume that

a pre-processing of the specification was done to translate it into another one

that has the same structure but without the use of past formulae. This can be

51

always achieved through the introduction of fresh Boolean variables that implement

temporal testers for past formulae [PZ08]. Therefore, without loss of generality,

we discuss in this work only such past-formulae-free specifications.

We abuse notations and write ϕα also as a triplet 〈Iα, Sα, Lα〉.

Consider a pair of formulae ϕα(X, Y), for α ∈ {e, s}, where ϕα = Iα∧0 Sα∧Lα.

We define a structure of specification formulae:

Imp(ϕe, ϕs) :(Ie ∧ 0 Se ∧ Le)→ (Is ∧ 0 Ss ∧ Ls)

For such specifications, the winning condition is defined to be the formula Le → Ls.

ltl formulae are called Generalized Reactivity (1) (GR(1)) formulae if they

have the form

(01 p1 ∧ . . . ∧ 01 pm) → (01 q1 ∧ . . . ∧ 01 qn),

where all pi and qj are Boolean formulae. Generalized Reactivity (k) (GR(k))

formulae are conjunctions of k GR(1) formulae.

In this work, we often concentrate on specifications ϕ that have the form

Imp(ϕe, ϕs) and that their winning condition Le → Ls is in GR(1). This is due

to the fact that we propose using the algorithms described in [PP06, PPS06] that

test such specifications for synchronous realizability and synthesis.

3.2.4 The Rosner Reduction

In [PR89b], Pnueli and Rosner show how to use synchronous realizability to solve

asynchronous realizability. They define, what we call, the Rosner reduction. It

translates a specification ϕ(X;Y), where X = {x} and Y = {y} are singletons,

52

into a specification X (x, r; y) that has an additional Boolean input variable r. The

new variable r is called the Boolean scheduling variable. Intuitively, the Boolean

scheduling variable defines all possible schedules for one input-one output systems.

When it changes from zero to one it signals a reading point and when it changes

from one to zero it signals a writing point. Formally, given a specification ϕ(x; y),

the reduction defines the kernel formula X (x, r; y):

r ∧ 01 r ∧ 01 r︸ ︷︷ ︸
α(r)

→


ϕ(x; y) ∧

(r ∨� r)=�(y = � y) ∧

(∀≈x̃).[(r ∧� r)=�(x = x̃)]→ ϕ(x̃; y)


︸ ︷︷ ︸

β(x,r;y)

The new specification is an implication between α(r) and β(x, r; y). The formula

α(r) governs the behavior of r. It dictates that the first I\O-point is a reading

point (r changing from zero to one) and that there are infinitely many reading

points and infinitely many writing points. Then, β(x, r; y) includes three parts.

First, the original formula ϕ(x; y) must hold. Second, outputs behave according

to the signals given by the scheduling variable. That is, in all points that are

not writing points the value of y does not change. Third, we use the stuttering

quantification to say that if we replace all the inputs except in reading points, then

the same output still causes the original formula to be satisfied7.

The following theorem is proven in [PR89b].

Theorem 3.2 ([PR89b]). The specification ϕ(x; y) is asynchronously realizable

iff the kernel formula X (x, r; y), which is derived from ϕ(x; y) using the Ronser

7The first conjunct of β(x, r; y), ϕ(x; y), is redundant. It is a consequence of the third conjunct
which guarantees that ϕ(x̃; y) is satisfied for a set of sequences of assignments to x̃ which includes
the single sequence of assignments to x. We leave this conjunct here, as well as in similar
reductions later in this chapter, for clarity.

53

reduction, is synchronously realizable.

Furthermore, given a program Ps that synchronously realizes X (x, r; y) it can

be converted to a program Pa that asynchronously realizes ϕ(x; y) in time linear in

the number of transitions of the LTS that induces Ps.

Pnueli and Rosner also show that an extension of the realizability technique

for ltl can be used for formulae that contain ∀≈x̃ quantification of the form used

in X (x, r; y).

3.3 Expanding the Rosner Reduction to Multiple Variables

In this section we describe an expansion of the Rosner reduction to handle speci-

fications with multiple inputs and output variables. This new reduction achieves

the same desired outcome of reducing the problem of asynchronous synthesis to

that of synchronous synthesis. For this section, without loss of generality, fix an

ltl specification ϕ(X;Y), where X = {x1, . . . , xn} and Y = {y1, . . . , ym}.

We propose a family of translations (one translation for each pair (n,m)) called

the generalized Rosner reduction. These translations translate ϕ(X;Y) into a

QPTL specification X n,m(X ∪ {r};Y). The specification uses an additional input

variable r, called the scheduling variable, that ranges over {1, . . . , (n+m)}.

As in the Rosner reduction, the scheduling variable defines all reading and

writing points. Variable xi may be read by the system whenever r changes its value

to i. Variable yi may be modified whenever r changes to equal n + i. Initially,

r = n + m and it can only be cyclically incremented by 1 (hence, the variable

x1 is the first variable that is read, in the first I\O-point). Let i ⊕m 1 denote

(i mod m) + 1.

We also denote [r = (n + i)] ∧�[r 6= (n + i)] by writen(i) to indicate a state

54

that is a writing point for yi, (r = i)∧�(r 6= i) by read(i) to indicate a state that

is a reading point for xi,
∧
d∈D(z)[(z = d)↔ �(z = d)] by unchanged(z) to indicate

a state where z did not change its value (D(z) denotes the domain of variable z),

and ¬�t by first to indicate a state that is the first one in the computation. Note

that in writen(i) and in read(i) we do not demand explicitly that the scheduling

variable held in the previous state the appropriate value in its ‘cycle’. Rather, we

simply require that its previous value is different from the current one. The appro-

priate clause in our reduction, that describes the update of the scheduling variable,

guarantees that there would be only one possible assignment to this variable in the

previous state, given its current value and the fact that they differ.

The kernel formula X n,m(X ∪ {r};Y) is defined by

X n,m(X ∪ {r};Y) = αn,m(r)→ βn,m(X ∪ {r};Y)

where

αn,m(r) =

r = (n+m) ∧
n+m∧
i=1

[
(r = i)=�

[
(r = i)U [r = (i⊕n+m 1)]

]]


and βn,m(X ∪ {r};Y) is given by


ϕ(X;Y) ∧
m∧
i=1

[
[¬writen(i) ∧ ¬first]=�unchanged(yi)

]
∧

(∀≈X̃).
[n∧
i=1

[read(i)=�(xi = x̃i)]
]
→ ϕ(X̃;Y)


.

The clause first is added to avoid the following problem: due to the specific logic

55

of the clause unchanged(z), for any variable z, it always evaluates to f in the first

state, often causing the entire specification to become f. This is an unwanted

effect, and any clauses that describe a condition for some variable to not change

its value (e.g., unchanged(z)), have no importance in the first state anyway. The

Rosner reduction does not need a similar clause since its logic does not cause this

abnormality.

There is a 1-1 and onto correspondence between a sequence of assignments to r

and a schedule (R,W). That is, given a sequence of values r0, r1, . . . that satisfies

αn,m it defines the implied schedule (R,W) by the sequences

R = r11, . . . , r
n
1 , r

1
2, . . . , r

n
2 , . . . and W = w1

1, . . . , w
m
1 , w

1
2, . . . , w

m
2 , . . ., where

• rj0 is the minimal k such that rk = j and rk−1 6= j and rji+1 is the minimal k

larger than rji such that rk = j and rk−1 6= j.

• wj0 is the minimal k such that wk = n+ j and wk−1 6= n+ j and wji+1 is the

minimal k larger than wji such that wk = n+ j and wk−1 6= n+ j.

Clearly, a similar correspondence can be constructed in the other direction.

Intuitively, as r is an input variable, the program has to handle all possible

assignments to it. Then, the correspondence between a sequence of assignments

to r (that satisfies αn,m) and a schedule, explains how satisfying X n,m would be

sufficient to handle every possible schedule.

The following theorem expands Theorem 3.2 to the case of multiple-variable

specifications:

Theorem 3.3. The specification ϕ(X;Y) (|X| = n, and |Y | = m) is asyn-

chronously realizable iff the kernel formula X n,m(X ∪ {r};Y), which is derived

from ϕ(X;Y) using the generalized Ronser reduction, is synchronously realizable.

56

Furthermore, given a program Ps that synchronously realizes X n,m(X ∪{r};Y)

it can be converted to a program Pa that asynchronously realizes ϕ(X;Y) in time

linear in the number of transitions of the LTS that induces Ps, and vice versa.

Proof: For clarity, we define Dr = {1, . . . , (n+m)} (the domain of the scheduling

variable r). We also use the notation rinit = n+m for the ‘correct’ initial value of

r. We shall prove both directions constructively, by reducing each type of program

to the other:

⇐ Let X n,m(X∪{r};Y) be synchronously realized by the synchronous program

Ps : (DX ×Dr)
+ 7→ DY . We define the asynchronous program Pa : (DX)∗ 7→

DY as shown below.

Pa(ε) = Ps((arand, rinit)), where arand is some arbitrary assignment to the

inputs X. We define the function dupn,m : (DX)+ 7→ (DX)+ inductively:

For all a ∈ DX , dupn,m(a) = a1, . . . , an, an, . . . , an︸ ︷︷ ︸
m times

where for all 0 < i ≤ n,

for all j such that 0 < j ≤ i ai[j] = a[j] and for all j such that i < j ≤ n

ai[j] = arand[j]. For all k > 1 and a1, . . . , ak ∈ (DX)k, dupn,m(a1, . . . , ak) =

dupn,m(a1, . . . , ak−1), a
′1, . . . , a′n, a′n, . . . , a′n︸ ︷︷ ︸

m times

where for all 0 < i ≤ n, for all

j such that 0 < j ≤ i a′i[j] = ak[j] and for all j such that i < j ≤ n

a′i[j] = ak−1[j]. For all k > 0 let rk = r1, . . . , rk, where r1 = 1 (r1 =

rinit ⊕n+m 1), and where for all k ≥ i > 1, ri = ri−1 ⊕n+m 1. For all k > 0, if

a1, . . . , ak ∈ (DX)k we define duprn,m(a1, . . . , ak) ∈ (DX ×Dr)
(n+m)·k where

the projection of duprn,m(a1, . . . , ak) on the inputs X is dupn,m(a1, . . . , ak),

and the projection of duprn,m(a1, . . . , ak) on the scheduling variable r is

r(n+m)·k. Finally, for all k > 0 such that a1, . . . , ak ∈ (DX)k we define

Pa(a1, . . . , ak) = Ps((arand, rinit), duprn,m(a1, . . . , ak)).

57

We now show that all asynchronous interactions of Pa, for all schedules,

satisfy ϕ(X;Y), implying that ϕ(X;Y) is asynchronously realized by Pa. Let

(R,W) be a schedule, and let σ = (a0, b0), (a1, b1), . . . be an asynchronous

interaction of Pa for this schedule. Denote R = r11, . . . , r
n
1 , r

1
2, . . . , r

n
2 , . . . and

W = w1
1, . . . , w

m
1 , w

1
2, . . . , w

m
2 ,

We abuse notation and define the function dupn,m : (DX ×DY)+ 7→ (DX ×

DY)+ inductively: For all (a, b) ∈ DX ×DY ,

dupn,m((a, b)) = (a1, b0), . . . , (a
n, b0), (a

n, b1), . . . , (an, bm)

where for all 0 < i ≤ n, for all j such that 0 < j ≤ i ai[j] = a[j] and for all

j such that i < j ≤ n ai[j] = arand[j]. Also, for all 0 < i ≤ m, for all j such

that 0 < j ≤ i bi[j] = b[j] and for all j such that i < j ≤ m bi[j] = b0[j]. For

all k > 1 and (c1, d1), . . . , (ck, dk) ∈ (DX ×DY)k,

dupn,m((c1, d1), . . . , (ck, dk)) =

dupn,m

(
(c1, d1), . . . , (ck−1, dk−1)

)
,

(a1, dk−1), . . . , (a
n, dk−1), (a

n, b1), . . . , (an, bm)

where for all 0 < i ≤ n, for all j such that 0 < j ≤ i ai[j] = ck[j] and

for all j such that i < j ≤ n ai[j] = ck−1[j]. Also, for all 0 < i ≤ m, for

all j such that 0 < j ≤ i bi[j] = dk[j] and for all j such that i < j ≤ m

bi[j] = dk−1[j]. We also abuse notation by defining that for all k > 0, if

(c1, d1), . . . , (ck, dk) ∈ (DX × DY)k duprn,m((c1, d1), . . . , (ck, dk)) ∈ (DX ×

Dr×DY)(n+m)·k where the projection of duprn,m((c1, d1), . . . , (ck, dk)) on the

inputs and outputs X ∪Y is dupn,m((c1, d1), . . . , (ck, dk)), and the projection

58

of duprn,m((c1, d1), . . . , (ck, dk)) on the scheduling variable r is r(n+m)·k. We

also apply dup and dupr to infinite computations. In that case, the result

is the limit of the application of the function on all prefixes of the infinite

computation.

Consider the computation

σ′ =
(

(ar11 [1], . . . , arn1 [n]), (bw1
1
[1], . . . , bwm

1
[m])

)
,(

(ar12 [1], . . . , arn2 [n]), (bw1
2
[1], . . . , bwm

2
[m])

)
, . . .

obtained from σ by restricting attention to the values of variables to the

appropriate reading and writing points. By construction, we know that the

computation σ′′ = (arand, rinit, b0), duprn,m(σ′) is a synchronous interaction

of Ps. Therefore, σ′′, 0 |= X n,m. Since σ′′, 0 |= αn,m (due to the way duprn,m

modifies the scheduling variable), we also get that

σ′′, 0 |= (∀≈X̃).
n∧
i=1

[read(i)=�(xi = x̃i)]→ ϕ(X̃;Y). (3.1)

We now define the computation σ′′′, which is obtained from σ′′ by ‘stretching’

it so that all reading points in σ′′′ match exactly with the indices of R, and

all writing points in it match exactly with the indices of W . By ‘matching

exactly’ we mean that there are no I\O points in σ′′′ beyond those indicated

by the schedule (R,W). When we stretch σ′′, the newly added states are

copies of their predecessor (all newly added states in the middle of s, t are

duplicates of s). As a result, the first state in σ′′′ is exactly the first state

in σ′′ – (arand, rinit, b0) – and there are exactly r11 copies of it at the prefix of

σ′′′. The second state of σ′′ is duplicated to r21 − r11 copies in σ′′′, the n-th

59

state is duplicated to rn1 − rn−11 copies, the n + 1-th state is duplicated to

w1
1 − rn1 copies, the n + m-th state is duplicated to wm1 − wm−11 copies, the

n+m+ 1-th state is duplicated to r12 − wm1 copies, and so on.

From Formula 3.1, every stuttering variant of σ′′ that assigns to X̃ values

that agree with X in all reading points, satisfies ϕ(X̃;Y). This is exactly

the case of σ. Indeed, σ′′′ is a stuttering variant of σ′′ and agrees with σ on

assignments to the outputs Y and to r. It follows that if we consider the

assignment of σ to X as an assignment to X̃ added to σ′′′, we get the required

result that σ, 0 |= ϕ(X, Y) which concludes the proof of this direction.

⇒ Let ϕ(X;Y) be asynchronously realized by the asynchronous program Pa :

(DX)∗ 7→ DY . We define the synchronous program Ps : (DX ×Dr)
+ 7→ DY

as shown below.

For all k > 0 and a1, . . . , ak ∈ (DX × Dr)
k, if, denoting ri as the value of

r in ai, r1 6= rinit or that there exists some index 1 < j ≤ n such that

(rj 6= rj−1)∧ (rj 6= rj−1⊕n+m 1) holds, then Ps(a1, . . . , ak, . . .) = brand (for all

prefixes of computations with the sub-prefix a1, . . . , ak), where brand is some

arbitrary assignment to the outputs Y . From this point onwards, we handle

only elements of (DX × Dr)
k for which the above condition does not hold

and which are, therefore, ‘compliant’ with the initial condition and transition

relation implied by αn,m(r). It is worthwhile to note that monitoring this

condition could be done ‘on-line’ while Ps gets more and more inputs, without

any increase in complexity.

For all k > 0 and given a1, . . . , ak ∈ (DX × Dr)
k, we define the implied

prefixed schedule for a1, . . . , ak, (Rk,W k), to be a prefix of some sched-

60

ule implied by some extension of a1, . . . , ak to a computation that satis-

fies αn,m (i.e., the sequences Rk and W k could be extended infinitely to

such a schedule). For (Rk,W k) to be the (unique) prefixed schedule im-

plied by a1, . . . , ak, we require that |Rk| + |W k| equals the number of times

r changes its value in a1, . . . , ak. Therefore, (Rk,W k) represents exactly

all the I\O points of a1, . . . , ak. For all k > 1 and a1, . . . , ak ∈ (DX ×

Dr)
k, if (Rk,W k) is the prefixed schedule implied by a1, . . . , ak, let Rk =

r11, . . . , r
n
1 , r

1
2, . . . , r

n
2 , . . . , r

1
t , . . . , r

s
t and

W k = w1
1, . . . , w

m
1 , w

1
2, . . . , w

m
2 , . . . , w

1
p, . . . , w

q
p. Let ci (for all i) be the pro-

jection of ai on the inputs X. We define bprev(s,t) ∈ DY to be the value

assigned by Pa to the outputs at the end of the previous-to-most-recent ‘full

I\O cycle’:

bprev(s,t) = Pa((cr11 [1], . . . , crn1 [n]), (cr12 [1], . . . , crn2 [n]), . . . , (cr1g [1], . . . , crng [n]))

where if s = n then g = t − 1 and otherwise g = t − 2. We also define

blast(s,t) ∈ DY to be the value assigned by Pa to the outputs at the end of the

most recent ‘full I\O cycle’:

blast(s,t) = Pa((cr11 [1], . . . , crn1 [n]), (cr12 [1], . . . , crn2 [n]), . . . , (cr1f [1], . . . , crnf [n]))

where if s = n then f = t and otherwise f = t− 1. Note that in some cases

(when t is ‘too small’), bprev(s,t) = Pa(ε) or blast(s,t) = Pa(ε). The output of Ps,

Ps(a1, . . . , ak), should always be some combination of blast(s,t) and bprev(s,t),

based on the output variables of Y that were already updated in the most

recent ‘writing cycle’ as indicated by wqp. Hence, Ps(a1, . . . , ak) = breal(s,t,q)

61

where for all 0 < i ≤ m, if i > q then breal(s,t,q)[i] = bprev(s,t)[i], and otherwise

breal(s,t,q)[i] = blast(s,t)[i]. Note that as a result of this definition of Ps, as long

as a1, . . . , ak contains no I\O points, Ps(a1, . . . , ak) = Pa(ε). Particularly,

for all a ∈ DX ×Dr, Ps(a) = Pa(ε).

We now show that all synchronous interactions of Ps satisfy X n,m(X∪{r};Y),

implying that X n,m(X ∪ {r};Y) is synchronously realized by Ps. Let σ =

(a0, b0), (a1, b1), . . . be a synchronous interaction of Ps.

If σ, 0 6|= αn,m(r), then trivially σ, 0 |= X n,m and we are done. Otherwise,

we observe that all computations σ′ that are X̃- variants of stuttering vari-

ants of σ, in which X and X̃ agree in all reading points, are asynchronous

interactions of Pa for the schedule implied by the values of r in σ′. Hence,

by correctness of Pa, for every such σ′ it holds that σ′, 0 |= ϕ(X̃;Y). It

follows that σ, 0 |= (∀≈X̃).
∧n
i=1[read(i)=�(xi = x̃i)]→ ϕ(X̃;Y) and, partic-

ularly, also that σ, 0 |= ϕ(X;Y). By construction, σ, 0 |=
∧m
i=1[¬writen(i) ∧

¬first]=�unchanged(yi) and we finally conclude (given that σ satisfies αn,m(r)

as well as all of the three conjuncts on the right-hand-side of X n,m), that

σ, 0 |= X n,m(X ∪ {r};Y). This concludes the proof.

In principle, this theorem provides a complete solution to the problem of asyn-

chronous synthesis (with multiple inputs and outputs). Given a specification

ϕ(X;Y), we derive for it the kernel formula X n,m(X ∪ {r};Y), and then apply

the synchronous synthesis algorithms as described in [PR89a]. By Theorem 3.3 we

can deduce from that on the asynchronous realizability of ϕ(X;Y) and, if possible,

construct an asynchronously realizing program for it. However, the approach de-

62

scribed in [PR89a] requires to construct a deterministic automaton for X n,m and

then to solve parity or Rabin games of high topological complexity. In particular,

when combining determinization with the treatment of ∀≈ quantification, even rel-

atively simple specifications may lead to very complex deterministic automata and

(as a result) games that are complicated to solve.

The main culprit is the third conjunct

βn,m3 = (∀≈X̃).
[n∧
i=1

[read(i)=�(xi = x̃i)]
]
→ ϕ(X̃;Y)

which includes the universal quantification over X̃. The algorithm in [PR89b] for

handling synthesis of formulas of the form (∀≈z).ψ(z) is as follows. It starts by

constructing a nondeterministic Büchi automaton for ψ(z). Then, transitions that

factor in stuttering are added to this automaton. Finally, the information regard-

ing z is projected. It follows that even if the automaton for ψ(z) is relatively

simple, or, indeed, deterministic, the resulting automaton after this procedure is

nondeterministic to a high degree. Then, in order to use this automaton in syn-

thesis it has to be determinized. In practice, determinization has been impossible

to implement and leads to system-environment games with winning conditions

that fall very high in the reactivity hierarchy presented in Fig. 3.1. As explained

in [PP06], if a game has a winning condition that falls in the class GR(k), then

the synthesis algorithm costs O(Nk+2 · k!) time, where N is the state space of

the specification (|D||X|+|Y | in our case). The combination of determinization and

synthesis algorithms for GR(k) specifications has turned out to be impractical.

It follows that the theoretical solution suggested in [PR89b] (and extended here)

is of little practical value. In particular, the stuttering quantification over X̃ –

63

(∀≈X̃) – makes this full treatment required even in cases where ϕ(X;Y) is rela-

tively simple, for example if ϕ(X;Y) has a GR(1) winning condition as in [PPS06].

Furthermore, in order to handle the stuttering quantification all the formula has

to be handled together, making the structural treatment of simple specification

in [PPS06] impossible. It follows that unlike synchronous synthesis where GR(1)

or GR(2) specifications can be synthesized ‘effectively’ (i.e., low-order polynomial

in the size of the state space) as in [PPS06, PP06], in the case of asynchronous

synthesis there are no effective algorithms.

Reactivity

GR(k) :
k∧
i=1

(01 pi ∨10 qi)

Guarantee
1 p

Response
01 p

Persistence
10 p

Progress

Safety
0 p

Obligation
k∧
i=1

(0 pi ∨1 qi)

Figure 3.1: The temporal hierarchy of properties

64

An interesting consequence of this reduction, which is also true for the Rosner

reduction, is that any specification ϕ(X;Y) = Imp(ϕe, ϕs), where ϕs = 〈Is, Ss, Ls〉,

is asynchronously unrealizable if Is is a function of X. This is since X n,m does not

allow, let alone guarantee, that the first state in a computation is a reading point

where X = X̃.

3.4 A More General Asynchronous Interaction Model

The reader may object to the model of asynchronous interaction as over simpli-

fied. Here, we justify this model by showing that it is practically equivalent (from

a synthesis point of view) to a model that is more akin to software thread im-

plementation. Specifically, we introduce a more elaborate model of asynchronous

interaction. In this model the environment chooses the times at which the system

can read or write and the system chooses whether to read or write a variable and

which variable it wants to access. We start by formally defining this asynchronous

interaction. We then show how to solve synthesis for it and how a synthesized

solution to the first model induces a solution to the more intricate model. For

simplicity, we call our original asynchronous interaction model round robin and

the new model by demand.

For this section, without loss of generality, fix an ltl specification ϕ(X;Y),

where X = {x1, . . . , xn} and Y = {y1, . . . , ym}.

3.4.1 A General (Multi-Core) Model

Here we describe a more general model of asynchronous interaction. As mentioned,

the model allows the environment to choose the times at which the system acts.

The system chooses what kind of actions to do; Either read the value of one of the

65

input variables or write the value of one of the output variables. However, this re-

quires us to define a more elaborate model of a program. Thus, for the purposes of

this section, we define a version of a program that is tailored for by-demand asyn-

chronous interaction. In the rest of the chapter, we use the models of synchronous

and asynchronous programs, which are very similar. This decision simplifies the

transformations between a synchronous program and an asynchronous program.

A by-demand program Pb from X to Y is a function Pb : D∗ 7→ {1, . . . , n}∪(D×

{n+1, . . . , n+m}). We assume that for 0 ≤ i < m and for every d1, . . . , dm−1 ∈ D,

we have Pb(d1, . . . , di) = (d, (n + i + 1)) for some d ∈ D. That is, for a given

history of values read\written by the program (and the program should know which

variables it read\wrote) the program decides on the next variable to read\write. In

case that the decision is to write in the next I\O point, the program also chooses

the value to write. Furthermore, the program starts by writing all the output

variables according to their order y1, y2, . . . , ym.

By demand asynchronous interaction Recall that an interaction over X

and Y is σ = (a0, b0), (a1, b1), . . . ∈ (DX ×DY). An I\O-sequence is C = c0, c1, . . .

where 0 = c0 < c1 < c2, It identifies the points in which the program reads

or writes. For a sequence d1, . . . , dk ∈ D∗, we denote by t(Pb(d1, . . . , dk)) the

value j such that either Pb(d1, . . . , dk) ∈ {1, . . . , n} and Pb(d1, . . . , dk) = j or

Pb(d1, . . . , dk) ∈ D × {n + 1, . . . , n + m} and Pb(d1, . . . , dk) = (d, j). Given an

interaction σ, an I\O sequence C, and an index i ≥ 0, we define the view of Pb,

66

denoted v(Pb, σ, C, i), as follows.

v(Pb, σ, C, i) =



b0[1], . . . , b0[m] If i = 0

v(Pb, σ, C, i− 1), aci [t(Pb(v(Pb, σ, C, i− 1)))]

If i > 0 and t(Pb(v(Pb, σ, C, i− 1))) ≤ n

v(Pb, σ, C, i− 1), bci [t(Pb(v(Pb, σ, C, i− 1)))]

If i > 0 and t(Pb(v(Pb, σ, c, i− 1))) > n

Initially, the view of the program includes the values of all outputs at time zero.

The view at point ci extends the view at point ci−1 by adding the value of the

variable that the program decides to read\write based on its view at point ci−1.

The interaction σ is a by-demand asynchronous interaction of Pb for I\O se-

quence C if for every 1 ≤ j ≤ m we have Pb(b0[1], . . . , b0[j − 1]) = (b0[j], (n + j)),

and for every i > 1 and every k > 0 such that ci ≤ k < ci+1, we have

• If t(Pb(v(Pb, σ, C, i− 1))) ≤ n then for every j ∈ {1, . . . ,m} we have bk[j] =

bk−1[j].

• If t(Pb(v(Pb, σ, C, i − 1))) > n then for every j 6= t(Pb(v(Pb, σ, C, i − 1))) we

have bk[j] = bk−1[j] and for j = t(Pb(v(Pb, σ, C, i−1))) we have Pb(v(Pb, σ, c, i−

1)) = (bk[j], j).

Also, for every j ∈ {1, . . . ,m} and every 0 < k < c1, we have bk[j] = b0[j].

That is, the program starts by writing all outputs. Then, it keeps outputs

constant except at I\O points where it chooses to update a specific output.

Definition 3.2 (by-demand realizability). A ltl specification ϕ(X;Y) is by-

demand asynchronously realizable if there exists a by-demand program Pa

such that all by-demand asynchronous interactions of Pa (for all I\O-sequences)

67

satisfy ϕ(X;Y). Such a program Pa is said to by-demand asynchronously realize

ϕ(X;Y).

Theorem 3.4. Let ϕ(X;Y) be a ltl specification where |X| = n and |Y | = m.

ϕ(X;Y) is asynchronously realizable iff it is by-demand asynchronously realiz-

able.

Furthermore, given a program Pa that asynchronously realizes ϕ(X;Y), it can

be converted to a program Pb that by-demand asynchronously realizes ϕ(X;Y) in

time linear in the number of transitions of the ILTS that induces Pa, and vice

versa.

Proof: We shall prove both directions:

⇐ Let ϕ(X;Y) be by-demand asynchronously realized by the by-demand asyn-

chronous program Pb : D∗ 7→ {1, . . . , n} ∪ (D × {n + 1, . . . , n + m}). We

define the asynchronous program Pa : (DX)∗ 7→ DY as shown below.

For all k ≥ 0, a1, . . . , ak ∈ (DX)k, we define Pa(a1, . . . , ak) inductively, as

follows. We also define inductively vk ∈ D+, which holds the k-th view

of Pb that is used to define Pa. Set Pa(ε) = b0, where for all 0 < i ≤ m

Pb(b0[1], . . . , b0[i− 1]) = (b0[i], (n+ i)) (this uniquely defines b0 ∈ DY). Also,

let v0 = b0[1], . . . , b0[m]. For all k > 0, let tk = t(Pb(vk−1)). If tk ≤ n,

define Pa(a1, . . . , ak) = Pa(a1, . . . , ak−1) and let vk = vk−1, ak[tk]. If, on the

other hand, tk > n, then let Pb(vk−1) = (dk, tk) for some dk ∈ D and for

all 1 ≤ i ≤ m, if i = tk then define Pa(a1, . . . , ak)[i] = dk and otherwise

(i 6= tk) define Pa(a1, . . . , ak)[i] = Pa(a1, . . . , ak−1)[i]. Also, if tk > n then let

vk = vk−1, dk.

We now show that all asynchronous interactions of Pa, for all schedules,

68

satisfy ϕ(X;Y), implying that ϕ(X;Y) is asynchronously realized by Pa. Let

(R,W) be a schedule, and let σ = (a0, b0), (a1, b1), . . . be an asynchronous

interaction of Pa for this schedule. Denote R = r11, . . . , r
n
1 , r

1
2, . . . , r

n
2 , . . . and

W = w1
1, . . . , w

m
1 , w

1
2, . . . , w

m
2 ,

We note that σ is also a by-demand asynchronous interaction of Pb, where

the I\O points are restricted to either one reading point or one writing point

from r1i , . . . , r
n
i , w

1
i , . . . , w

m
i for every i. More formally, let C = c0, c1, . . . be

the I\O sequence that produces σ as a by-demand asynchronous interaction

of Pb. We set c0 = 0 and for all i > 0 let t(Pb(v(Pb, σ, C, i− 1))) = j, and if

j ≤ n then ci = rji and if j > n then ci = wji . Note that t(·) and v(·) above

are well defined as v(Pb, σ, C, i− 1) requires only the elements of C up to the

i− 1-th element.

As σ satisfies ϕ(X;Y) (by correctness of Pb), we are done.

⇒ Let ϕ(X;Y) be asynchronously realized by the asynchronous program Pa :

(DX)∗ 7→ DY . We define the by-demand asynchronous program Pb : D∗ 7→

{1, . . . , n}∪(D×{n+1, . . . , n+m}) as shown below. Intuitively, Pb reads and

writes the appropriate variables in a cyclical order, mimicking the behavior

of Pa.

For a sequence τ = (a1, b1), . . . , (ak, bk) ∈ (DX × DY)∗ we define the un-

winding q(τ) as the sequence of individual values for individual variables

that appear in the sequence τ . We define concurrently Pa and the func-

tion q : (DX ∪ DY)∗ 7→ D+. Let Pa(ε) = b0. Then, for all 0 ≤ i < m

let di = b0[i] and define Pb(d1, . . . , di) = (di+1, (n + i + 1)). Also define

Pb(d1, . . . , dm) = 1. Define q(ε) = d1, . . . , dm. For all τ ∈ (DX ∪ DY)∗,

69

a ∈ DX and 0 < i ≤ n let a[i] = di and define q(τ, a) = q(τ), d1, . . . , dn. In

addition, for all τ ∈ (DX∪DY)∗, a ∈ DX , b ∈ DY and 0 < i ≤ m let b[i] = di

and define q(τ, a, b) = q(τ, a), d1, . . . , dm. In general, consider k > 0 and let

Pa(a1, . . . , ak) = bk, where for all 0 < i ≤ n we have ak[i] = di and for all

n < i ≤ n + m we have bk[i − n] = di. Then, for every 0 < i < n we set

Pb(q
(

(a1, b1), . . . , (ak−1, bk−1)
)
, d1, . . . , di) = i+1, for every n ≤ i < n+m we

set Pb(q
(

(a1, b1), . . . , (ak−1, bk−1)
)
, d1, . . . , di) = (di+1, (i+ 1)), and we finally

set Pb(q
(

(a1, b1), . . . , (ak−1, bk−1)
)
, d1, . . . , dn+m) = 1.

We now show that all by-demand asynchronous interactions of Pb, for all

I\O-sequences, satisfy ϕ(X;Y), implying that ϕ(X;Y) is by-demand asyn-

chronously realized by Pb. Let C be an I\O sequences, and let the sequence

σ = (a0, b0), (a1, b1), . . . be a by-demand asynchronous interaction of Pb for

this I\O sequences. Denote C = c0, c1, c2, . . ., where c0 = 0.

We define a schedule (R,W), where R = r11, . . . , r
n
1 , r

1
2, . . . , r

n
2 , . . . and W =

w1
1, . . . , w

m
1 , w

1
2, . . . , w

m
2 , . . ., as follows. For all i > 0, consider the unique j

and 0 < k ≤ n+m such that ci = cj·(n+m)+k. If k ≤ n then define rkj+1, and

otherwise (if n < k) define wk−nj+1 . This defines (R,W) completely. We note

that σ is also an asynchronous interaction of Pa for (R,W).

As σ satisfies ϕ(X;Y) (by correctness of Pa), we are done.

From Theorem 3.4 it is clear that, despite the appearance of greater freedom

allowed by by-demand asynchronous programs in comparison with ‘regular’ (or

round-robin) asynchronous programs, the two are in fact equivalent for purposes

of synthesis. That means that one loses no generality by assuming a round-robin,

70

cyclical, pattern or I\O operations when considering asynchronous interactions.

For completeness, however, we present in Subsection 3.4.2 a reduction that is equiv-

alent to the generalized Rosner reduction and which uses by-demand asynchronous

programs, effectively reducing the problem of by-demand asynchronous synthesis

to that of synchronous synthesis.

3.4.2 A Modified Generalized Rosner Reduction

Inspired by the Rosner reduction from Subsection 3.2.4, we propose a family of

translations (one translation for each pair (n,m)) called the by-demand generalized

Rosner reduction. We translate a specification ϕ(X;Y) into a QPTL specification

Yn,m(X ∪ {c};Y ∪ {h}) that has an additional Boolean input variable c and an

additional output variable h that ranges over {1, . . . , (n + m)}. The new variable

c is called the Boolean I\O variable, and h is called the I\O-selector variable.

Similar to the role of r in the previous reduction, a change in the value of

c indicates an I\O-point. The value of h indicates the choice of which variable

to read\write. Values 1, . . . , n indicate reading and values (n + 1), . . . , (n + m)

indicate writing. We set a new value for h right after a read I\O write. Thus,

the system immediately commits to the next variable it is going to access. As h

is treated like all other outputs, the system cannot change its value when c does

not change. This corresponds to no new information being gained by the system

as long as c does not change.

In this section, we use our notations unchanged(x) to indicate a state where

variable x did not change its value, and first to indicate a state that is the first

one in the computation.

71

The kernel formula Yn,m(X ∪ {c};Y ∪ {h} is defined as follows.

Yn,m(X ∪ {c};Y ∪ {h}) = γ(c)→ δn,m(X ∪ {c};Y ∪ {h}),

where

γ(c) = c̄ ∧ 01 c ∧ 01 c̄

and δn,m(X ∪ {c};Y ∪ {h}) is given by



[(c↔ � c) ∧ ¬first]=�unchanged(h) ∧

ϕ(X;Y) ∧
m∧
i=1

{[[
(c↔ � c) ∨�[h 6= (i+ n)]

]
∧ ¬first

]
=�unchanged(yi)

}
∧

(∀≈X̃).

[
n∧
i=1

[
[¬(c↔ � c) ∧�(h = i)]=�(xi = x̃i)

]]
→ ϕ(X̃;Y)


.

The initial value of the I\O-selector variable h is selected nondeterministically.

Similar to the role of the scheduling variable in X n,m, the variables c and h in

Yn,m make explicit the decisions of the environment when to have an I\O point

for the system (c), and which variable to read\write (h).

Theorem 3.5. Let ϕ(X;Y) be a ltl specification where |X| = n and |Y | = m, and

let its kernel formulae be Yn,m(X ∪ {c};Y ∪ {h}) and X n,m(X ∪ {r};Y), derived

by the by-demand generalized Rosner reduction, and by the generalized Rosner

reduction, respectively.

The specification Yn,m(X ∪ {c};Y ∪ {h}) is synchronously realizable iff the

specification X n,m(X ∪ {r};Y) is synchronously realizable. Furthermore, given a

program PY that synchronously realizes Yn,m, it can be converted to a program PX

that synchronously realizes X n,m in time linear in the number of transitions of the

72

LTS that induces PX , and vice versa.

Proof: We shall prove both directions:

⇐ Having that X n,m(X ∪ {r};Y) is synchronously realizable, means that there

exists a program PX that synchronously realizes it. We describe the construc-

tion of another program, PY , that synchronously realizes Yn,m(X ∪ {c};Y ∪

{h}), effectively proving that it is synchronously realizable.

To do this, we need to provide a function that corresponds to PY , and that

generates assignments to Y ∪ {h}, given finite histories of assignments to

X ∪ {c}. We then need to prove that all synchronous interaction of this

program which we construct, satisfy Yn,m.

Let σX,c = σ0, σ1, . . . , σk be a finite history of assignments to X ∪ {c} for

k ≥ 0, such that for 0 ≤ i ≤ k, σi = (Xi, ci) where Xi is an assignment to

X and ci is an assignment to c. We construct the sequence of assignments

to r, ηr = r0, r1, . . . , rk, in the following way: r0 = n + m. For k ≥ i > 0, if

ci ↔ � ci−1 then ri = ri−1, otherwise ri = ri−1 ⊕n+m 1.

Let an assignment to Y ∪ {h} be a pair (Yi, hi) where Yi is an assignment

to Y and hi is an assignment to h. Similarly, an assignment to X ∪ {r} is a

pair (Xi, ri) where Xi is an assignment to X and ri is an assignment to r.

We define

PY(σX,c) =

(
PX

(
(X0, r0), (X1, r1), . . . , (Xk, rk)

)
︸ ︷︷ ︸

Yk

, rk ⊕n+m 1︸ ︷︷ ︸
hk

)

where Yk is an assignment to Y and hk is an assignment to h.

73

It is not difficult to see why any computations that would be based on a syn-

chronous interaction with PY would satisfy Yn,m. If in a particular compu-

tation µX,c the I\O variable c does not change its value infinitely often, then

Yn,m is trivially satisfied. Otherwise, by the way we construct µr (a compu-

tation for {r}), µr, 0 |= αn,m(r), and we know that µX,r,Y (using the Y values

that we output from PX) satisfies all three conjuncts of βn,m(X ∪ {r};Y).

The first one, ϕ(X;Y), appears also in Yn,m. The second one turns out to

be essentially identical to the third conjunct in δn,m, since h is identical to

r at all I\O points, and since c and r change their values always together.

The last conjuncts in both βn,m and δn,m are essentially identical for the

same reasons. The remaining conjunct in δn,m, the first one, is also satis-

fied by h starting with the value r0 ⊕n+m 1 = (n + m) ⊕n+m 1 = 1, and by

[(c↔ � c) ∧ ¬first]=�unchanged(h) holding due to the fact that we change

r iff c changes, and we change h iff r changes.

⇒ In this direction we know that there exists a program PY that synchronously

realizes Yn,m(X ∪ {c};Y ∪ {h}), and we construct a program PX that syn-

chronously realizes X n,m(X ∪ {r};Y). We use similar notations of assign-

ments and histories as in the other direction.

Let σkX,r = σ0, σ1, . . . , σk be a prefix for k ≥ 0 of a computation over the

variables inX∪{r} (we freely use similar notations for other sets of variables).

If r0 6= (n+m), or if there exists some index i > 0 such that (ri 6= ri−1)∧[ri 6=

(ri−1 ⊕n+m 1)] holds, then for all j ≥ i (for all j ≥ 0 if r0 6= (n + m)) we

define Yj = Yrand for some arbitrary Yrand ∈ DY . From this point onwards in

the construction we assume that this is not the case, and that r updates as

indicated by αn,m(r). We construct the prefixes σkc,Y,h, for all k, inductively

74

(using the initial value of h, h0, which is deterministically selected by PY):

– Let i1 be the minimal index such that ri1 changes its value to h0 (so

that ri1 = h0). We know that there exists i1 > 0 since we assume that r

changes cyclically infinitely often. Let σi1c = c0, . . . , ci1 , where c0 holds,

and for 0 < j < i1 cj holds. ci1 holds as well (ci1 = t). For 0 ≤ j ≤ i1

PY((X0, c0), . . . , (Xj, cj)) = (Yj, hj).

– Let it be the minimal index that is greater than it−1 such that rit

changes its value to hit−1 (so that rit = hit−1). We know that there

exists such it. Let σitc = σit−1
c , cit−1+1, . . . , cit , where for it−1 + 1 ≤ j < it

cj ↔ cit−1 holds. ¬(cit ↔ cit−1) holds as well. For it−1 < j ≤ it

PY((X0, c0), . . . , (Xj, cj)) = (Yj, hj).

Using the construction and definitions described above, we define

PX (σkX,r) = Yk

where Yk is an assignment to Y .

It is not difficult to see why any computations that would be based on a

synchronous interaction with PX would satisfy X n,m. If in a particular com-

putation µX,r µr, 0 6|= αn,m(r) then X n,m is trivially satisfied with Yrand.

Otherwise, we can definitely construct σkc for all k (since r changes cyclically

infinitely often, and therefore admits all of its domain values infinitely often).

Since in each iteration of σkc construction we have exactly one change of c

value, then µc, 0 |= γ(c). Since we constructed µY,h using PY , we get that

µX,c,Y,h satisfies all four conjuncts of δn,m(X ∪{c};Y ∪{h}). The second one,

ϕ(X;Y), appears also in X n,m. Noticing that the set of states in µX,c,r,Y,h

75

that satisfy (c↔ � c)∨�[h 6= (i+n)] is a super-set of the states that satisfy

¬writen(i) (for all i ∈ {1, . . . ,m}), we get that the satisfaction of the third

conjunct in δn,m guarantees the satisfaction of the second conjunct in βn,m.

Finally, since the set of states in µX,c,r,Y,h that satisfy ¬(c↔ � c)∧�(h = i)

is a sub-set of the states that satisfy read(i) (again, for all i ∈ {1, . . . ,m}),

we get that the satisfaction of the last conjunct in δn,m guarantees the satis-

faction of the last conjunct in βn,m (since there are fewer reading points in

Yn,m, then ϕ(X̃;Y) must hold for a large set of computations X̃, including

all of those that are ‘allowed’ by the clause ϕ(X̃;Y) in X n,m).

Theorem 3.6. Given a specification ϕ(X;Y) (|X| = n, and |Y | = m), the fol-

lowing conditions are equivalent:

1. ϕ(X;Y) is by-demand asynchronously realizable.

2. ϕ(X;Y) is asynchronously realizable.

3. The kernel formula Yn,m(X ∪ {c};Y ∪ {h}), which is derived from ϕ(X;Y)

using the by-demand generalized Ronser reduction, is synchronously realiz-

able.

4. The kernel formula X n,m(X ∪ {r};Y), which is derived from ϕ(X;Y) using

the generalized Ronser reduction, is synchronously realizable.

Furthermore, given a program P that realizes one of these specifications, it can

be converted to a program that realizes any of the other in time linear in the number

of transitions of the LTS/ILTS that induces P .

76

Proof: This is a direct result of Theorem 3.3, Theorem 3.4, and Theorem 3.5.

Theorem 3.6 finally confirms that both Yn,m and X n,m may be freely used to

test for any type of asynchronous realizability of ϕ(X;Y), as well as for synthesis.

From this point onward we consider only round-robin asynchronous realizability

and the reduction from ϕ(X;Y) to X n,m.

3.5 Proving Unrealizability of a Specification

In this section we show how an over-approximation of X n,m can effectively prove

that a given specification is asynchronously unrealizable.

3.5.1 Over-Approximating the Kernel Formula

Fix an ltl specification ϕ(X;Y) = Imp(ϕe, ϕs). Let X = {x1, . . . , xn}, Y =

{y1, . . . , ym}, and let r be a scheduling variable ranging over {1, . . . , (n+m)}. Let

X̃ = {x̃|x ∈ X}. We assume that r /∈ X ∪ Y and that X̃ ∩ (X ∪ Y) = ∅.

In this section, we use our notations writen(i) to indicate a state that is a

writing point for the i’th output, read(i) to indicate a state that is a reading point

for the i’th input, unchanged(x) to indicate a state where variable x did not change

its value, and first to indicate a state that is the first one in the computation.

As explained in Section 3.3, the generalized Rosner reduction, although offering

a complete solution to the asynchronous synthesis problem, often translates into a

prohibitively costly to synthesize specification due to the universal quantification

in the clause βn,m3 . If we wish to use ‘effective’ algorithms for synthesis based on

this reduction, we must find a way to avoid the size increase caused by βn,m3 .

77

Recall the generalized Rosner reduction formula X n,m(X ∪ {r};Y). As noted

in Subsection 3.2.4, the first conjunct in βn,m – ϕ(X;Y) – is a redundant one that

was left in the Rosner reduction and in its generalizations only for clarity purposes

(this conjunct follows from βn,m3). Therefore, in this section we allow ourselves to

remove ϕ(X;Y) from βn,m, leaving us with

X̃ n,m(X ∪ {r};Y) = αn,m(r)→ β̃n,m(X ∪ {r};Y)

where β̃n,m(X ∪ {r};Y) is given by


m∧
i=1

[
[¬writen(i) ∧ ¬first]=�unchanged(yi)

]
∧

(∀≈X̃).
[n∧
i=1

[read(i)=�(xi = x̃i)]
]
→ ϕ(X̃;Y)

 .

We know that X̃ n,m ↔ X n,m, and we may use them interchangeably. We still use

βn,m3 as a name for the last conjunct of βn,m and of β̃n,m

With this in mind, we define an over-approximating formula for X n,m:

X n,m

↓
(X ∪ X̃ ∪ {r};Y) = αn,m(r)→ βn,m

↓
(X ∪ X̃ ∪ {r};Y)

where βn,m
↓

(X ∪ X̃ ∪ {r};Y) is given by


m∧
i=1

[
[¬writen(i) ∧ ¬first]=�unchanged(yi)

]
∧[n∧

i=1

[read(i)=�(xi = x̃i)]
]
→ ϕ(X̃;Y)

 .

Note that X n,m

↓
is almost identical to X n,m (after removing its redundant clause),

78

except that the second clause in βn,m
↓

has no quantification (over X̃), eliminating

the source of trouble in βn,m3 . In effect, this amounts to adding X̃ to the set of input

variables. In fact, if ϕ(X;Y) has a GR(1) winning condition, then it could be easily

shown by propositional arguments8 that X n,m

↓
has a GR(1) winning condition as

well. If we can show that it is possible to deduce of synchronous unrealizability of

X n,m from that of X n,m

↓
, then we could use the effective algorithm of [PPS06] on

X n,m

↓
.

The main observation relating X n,m to X n,m

↓
is the following theorem:

Theorem 3.7. For a specification ϕ(X;Y) where |X| = n and |Y | = m, and

for a scheduling variable r ranging over {1, . . . , (n + m)}, the following holds:

If X n,m(X ∪ {r};Y) is synchronously realizable, then X n,m

↓
(X ∪ X̃ ∪ {r};Y) is

synchronously realizable. (Here, X n,m

↓
(X ∪ X̃ ∪ {r};Y) and X n,m(X ∪ {r};Y) are

the appropriate kernel formulae derived for ϕ(X;Y).)

Proof: Let Ps be a program that synchronously realizes X n,m(X ∪ {r};Y). We

shall prove that Ps also synchronously realizes X n,m

↓
(X ∪ X̃ ∪ {r};Y).

Let σ be a computation that is induced by X n,m, so that σ, 0 |= X n,m. We

would like to show that σ, 0 |= X n,m

↓
.

If σ, 0 6|= αn,m, then, trivially, σ, 0 |= X n,m

↓
. Otherwise, we know that σ satisfies

also the first conjunct in β̃n,m which appears in βn,m
↓

. To prove that σ, 0 |= X n,m

↓
,

we are left with proving that σ satisfies the last (second) conjunct in βn,m
↓

.

We also know, however, that σ satisfies the last conjunct in βn,m: σ, 0 |=

(∀≈X̃).
∧n
i=1[read(i)=�(xi = x̃i)] → ϕ(X̃;Y). Since this means that the impli-

cation that appears in this conjunct would be satisfied by any X̃-variant σ′′ of

8Roughly speaking, all elements of Xn,m↓ could be ‘absorbed’ into ϕ(X̃;Y) without increasing

the formula’s complexity in terms of the temporal hierarchy.

79

any stuttering variant σ′ of σ, we only weaken this statement by writing that

σ, 0 |=
∧n
i=1[read(i)=�(xi = x̃i)] → ϕ(X̃;Y). Since this is a weakening transition

(claiming satisfiability by σ only), it is correct. This is, however, exactly the last

conjunct in βn,m
↓

, and the proof is complete.

An important result of Theorem 3.7 is the following:

Theorem 3.8. For a specification ϕ(X;Y) where |X| = n and |Y | = m, and

for a scheduling variable r ranging over {1, . . . , (n + m)}, the following holds: If

X n,m

↓
(X∪X̃∪{r};Y) is synchronously unrealizable, then ϕ(X;Y) is asynchronously

unrealizable. (Here, X n,m

↓
(X ∪ X̃ ∪ {r};Y) is the appropriate kernel formulae

derived for ϕ(X;Y).)

Proof: This is a direct result of Theorem 3.1, Theorem 3.3 and Theorem 3.7.

Theorem 3.8 provides us with the framework for an effective way to test whether

specifications with GR(1) winning conditions are asynchronously unrealizable, as

desired. This is what justifies referring to X n,m

↓
(X ∪ X̃ ∪ {r};Y) as an over-

approximation (equivalently, weakening) of X n,m(X ∪{r};Y). Indeed, the effec-

tive algorithm of [PPS06] could be used with X n,m

↓
to test whether its underlying

specification ϕ(X;Y) is asynchronously unrealizable. The time complexity of using

this algorithm (for specifications with GR(1) winning conditions) is O(N3 ·m · n),

where N is the state space of the specification, and m and n are the number of

liveness conjuncts of the environment and system’s specifications, respectively.

Caveat: There exist specifications which the effective algorithm we propose –

as described in [PPS06] – declare synchronously unrealizable, while they are in fact

realizable. This may lead to a false classification of X n,m

↓
formulae as synchronously

80

unrealizable, and therefore to a ‘false-negative’ of declaring the underlying spec-

ification ϕ asynchronously unrealizable. Such specifications with GR(1) winning

conditions are characterized in Chapter 2, where an efficient method is described

for identifying them, as well as a method for avoiding false-negatives given such

specifications.

Note that while the methods proposed in this section are sound, they are not

complete, in the sense that a specification ϕ(X;Y) may be asynchronously unre-

alizable but the derived synchronous approximation X n,m

↓
may be synchronously

realizable.

3.5.2 Applying the Unrealizability Test

In this subsection we illustrate the application of the effective unrealizability test

based on Theorem 3.8.

We start with the ‘copy’ specification ϕ1(x; y) :0(x↔ y) which we considered

in the introduction (both x and y are Booleans, and for clarity, we do not specify

here an initial condition - x∧y). In our discussion there we claimed that this speci-

fication is asynchronously unrealizable but stated this fact with no proof. Now, we

have an adequate tool for proving that this specification is indeed asynchronously

unrealizable. Deriving the kernel formula X 1,1

↓
(x, x̃, r; y) for ϕ1(x; y), we obtain the

specification X↓〈ϕ1〉 = α1,1(r)→ β
↓
〈ϕ1〉, where β

↓
〈ϕ1〉(x, x̃, r; y) is given by

(((r 6= 2) ∨�(r 6= 1)) ∧ ¬first)=�unchanged(y) ∧

(((r = 1) ∧�(r 6= 1))=�(x↔ x̃))→ 0(x̃↔ y)

 .

We proceed to show that there can be no synchronous program that satisfies (by

controlling y) X↓〈ϕ1〉(x, x̃, r; y) for all choices of x, x̃, and r. Assume the opposite,

81

and consider a computation σ = a0, a1, . . ., such that x holds at all states, and x̃

and r = 2 hold at a state aj iff j is odd. It follows that all even indexed states

are reading points, and x = x̃ at all of these states. Consequently, and since

σ, 0 |= α1,1(r), we should have σ, 0 |= 0(y ↔ x) and σ, 0 |= 0(x̃ ↔ y). However,

this implies that x ↔ x̃ should hold at all states, which is false because x and x̃

differ at all odd-indexed states.

We conclude that the specification ϕ1(x; y) :0(x ↔ y) is asynchronously un-

realizable. Indeed, when checking synchronous realizability of the kernel formula

X 1,1

↓
(x, x̃, r; y) for ϕ1(x; y) using the algorithm of [PPS06], we get that it is unre-

alizable.

Assume that we are not ready to give up and would like to develop an asyn-

chronous system that captures some of the essential behavior of a copying module.

An informal description of such a behavior can include the following requirements:

1. Whenever x rises to 1, then sometimes later y should rise to 1.

2. Whenever x drops to 0, then sometimes later y should drop to 0.

3. Variable y should not rise to 1, unless sometimes before x was 1.

4. Variable y should not drop to 0, unless sometimes before x was 0.

A temporal formula that captures these four requirements may be given by the

following specification:

ϕ2(x; y) :

(x=�1 y) ∧ (x=�1 y)∧

(y=�y S y S x) ∧2(y=�y B y S x)


As before, both x and y are Booleans, and for clarity, we do not specify here an

initial condition - x ∧ y. The past formula y=�y S y S x states that if currently

82

y holds then this state was preceded by an interval in which y continuously held,

preceded by an interval in which y continuously held, preceded by a state at which

x held. The formula 2(y=�y B y S x) states that, starting at the second state, if

currently y holds, then this state is preceded by an interval in which y continuously

held, and which either extends to the beginning of the computation or is preceded

by an interval in which y continuously held and which is preceded by a state at

which x held.

We will now apply the unrealizability test to check whether ϕ2(x; y) is also

asynchronously unrealizable. In order to conclude that this is the case, we have to

find a computation σ = a0, a1, . . . in which x and x̃ agree infinitely often (reading

points), and where, regardless of y values, one of the following must hold: σ, 0 6|=

ϕ2(x; y) or σ, 0 6|= ϕ2(x̃; y). Assume that x holds at all states, and let x̃ hold at

state aj iff j is odd. Thus, we can take all even-indexed states to be the reading

points, and x = x̃ at all of these states. σ, 0 |= ϕ2(x; y) implies that y holds at all

states. This is since any occurrence of y at some state implies, by y=�y S y S x,

that x holds at some earlier state, which never is the case. However, in this case,

the fact that x̃ holds at state a1 entails that σ, 0 6|= ϕ2(x̃; y) because it violates

the requirement x̃=�1 y, which is part of ϕ2(x̃; y). We conclude that ϕ2(x; y) is

also asynchronously unrealizable. Again, when checking synchronous realizability

of the kernel formula X 1,1

↓
(x, x̃, r; y) for ϕ2(x; y) using the algorithm of [PPS06],

we get that it is unrealizable.

How can we weaken ϕ2(x; y) into a specification that stands a better chance

of being asynchronously realizable? Obviously, the weakness of the specification

ϕ2(x; y) is that it allows the environment to modify x too quickly without waiting

for an evidence that the system has noticed the most recent change. We can correct

83

this drawback by allowing the environment to modify x only at points in which

x ↔ y (that is, after the system had enough time to respond to a change of x).

For example, we can suggest the following ‘response’ specification:

ϕ3(x; y) :[¬(x↔ y)=�(x↔ 2x)]→



x=�1 y ∧

x=�1 y ∧

y=�y S y S x ∧

2(y=�y B y S x)


As before, both x and y are Booleans, and for clarity, we do not specify here an

initial condition - x ∧ y. Applying the unrealizability test to ϕ3(x; y), we find

that its corresponding kernel formula X 1,1

↓
(x, x̃, r; y) is synchronously realizable.

However, we cannot infer any conclusions from this, since Theorem 3.8 offers only

conclusions in the unrealizable case. In the next section, we will consider methods

that can lead to effective realizability and apply them to the specification ϕ3(x; y).

3.6 Proving Realizability of a Specification, and Synthesis

As mentioned, the formula X n,m has not led to a practical solution for asynchronous

synthesis. Here, we are interested in finding cases where synthesis can be applied

in practice by circumventing the complexity of determinization and solving of

complex parity / Rabin games. However, even when starting from a relatively

simple formula ϕ(X;Y), the third conjunct in βn,m, which includes the operator ∀≈,

forces us to use the complex synthesis algorithm in [PR89a]. Here, we concentrate

on specifications with winning conditions that fall into the class of GR(1) formulae,

as defined in Subsection 3.2.3. For such formulae we find cases in which we can

bypass the use of the third conjunct in the definition of βn,m. If successful we

84

can apply simpler synthesis algorithms, e.g., those in [PPS06]. Given the formula

ϕ(X;Y), of the required form, we aim to find a strengthening of it that will allow

to use a simpler reduction to synchronous synthesis.

3.6.1 Under-Approximating the Kernel Formula

We fix a specification ϕ(X;Y) = Imp(ϕe, ϕs) with a GR(1) winning condition,

where X = {x1, . . . , xn}, Y = {y1, . . . , ym}, and ϕe = 〈Iϕe , Sϕe , Lϕe〉. Let r be a

scheduling variable ranging over {1, . . . , (n + m)} and let X̃ = {x̃|x ∈ X}. We

define the set of declared output variables as Ỹ = {ỹ|y ∈ Y }. We assume that

r /∈ X, X̃ ∩ Y = ∅, and that Ỹ ∩X = ∅.

In this section, we use our notations writen(i) to indicate a state that is a

writing point for the i’th output, read(i) to indicate a state that is a reading point

for the i’th input, unchanged(x) to indicate a state where variable x did not change

its value, and first to indicate a state that is the first one in the computation.

We define another formula ψ(X∪{r};Y) with a GR(1) winning condition, that

strengthens ϕ(X;Y). The role of this formula, called ψ(X ∪ {r};Y) is to allow

us to form a kernel formula where we simply eliminate the ‘problematic’ clause

βn,m3 , and that also, somehow (given that it is synchronously realizable), leads to

the synthesis of a programs that satisfies ϕ. So this new specification that we

want, ψ, must be strong enough to both imply, in some sense, ϕ, and to lead to

the formation of a synchronously realizable kernel formula from which we could

extract a program for the underlying ϕ. The way to construct candidates for such

strengthening is a heuristic that is presented in Subsection 3.6.2. The algorithm

for using such a formula ψ, and the proof that it works, are presented below and

in Subsection 3.6.2.

85

ψ(X ∪ {r};Y) includes r in its outputs since it is solely designed to be ‘fitted’

into a kernel formula from which a program for ϕ(X;Y) would be extracted. Since

ψ should never be synthesized in itself, and since the scheduling variable is present

in the kernel formula, we allow ψ the maximal degree of freedom by allowing it

to refer to the scheduling variable. Beyond this degree of freedom, there is some

intuition to this choice: Since the clause that we wish to eliminate, βn,m3 , is dealing

with the requirement that ϕ(X;Y) depends only on inputs at reading points, one

possible way to make it redundant would be to make sure, explicitly in ψ, that

system’s transitions only depend on inputs in reading points. To do this, ψ must

refer to the scheduling variable. Indeed, this is exactly the approach that we take

in our heuristic to construct candidates for such ψ formulae.

Definition 3.3 (asynchronous strengthening). A specification ψ(X ∪ {r};Y) =

Imp(ψe, ψs) with a GR(1) winning condition, where ψe = 〈Iψe , Sψe , Lψe〉, is an

asynchronous strengthening of ϕ(X;Y) if the following conditions hold:

1. Iψe = Iϕe.

2. Sψe = Sϕe.

3. The following implication is valid



αn,m(r) ∧

Iψe ∧ 0 Sψe ∧

ψ(X ∪ {r};Y) ∧
n∧
i=1

[
read(i)=�(xi = x̃i)

]
∧

m∧
i=1

[
[¬writen(i) ∧ ¬first]=�unchanged(yi)

]


→ ϕ(X̃;Y).

86

Testing whether a candidate specification ψ(X ∪ {r};Y) = Imp(ψe, ψs) is an

asynchronous strengthening of ϕ(X;Y) is relatively straightforward: The first two

conditions in the definition above require identity of propositional formulae, and

the third one is ltl formula whose validity could be tested using tools such as tlv

and jtlv [PS96, PSZ10].

Given ψ(X∪{r};Y) = Imp(ψe, ψs) – an asynchronous strengthening of ϕ(X;Y)

– we define a simple kernel formula whose synchronous realizability implies in some

cases asynchronous realizability of ϕ(X;Y). This is done by under-approximating

X n,m. Formally, we have the following.

X n,m
ψ (X ∪ {r};Y ∪ Ỹ) = αn,m(r)→ βn,mψ (X ∪ {r};Y ∪ Ỹ)

where βn,mψ (X ∪ {r};Y ∪ Ỹ) is given by


declaren,m({r};Y ∪ Ỹ) ∧

ψ(X ∪ {r};Y) ∧
m∧
i=1

[
[¬writen(i) ∧ ¬first]=�unchanged(yi)

]


and where declaren,m({r};Y ∪ Ỹ) is given by


m∧
i=1

[
writen(i)=�(yi = ỹi)

]
∧[[

(r = � r) ∨
m∨
i=1

(r = (n+ i))
]

=�
[m∧
i=1

(ỹi = � ỹi)
]]

 .

The formula declaren,m ensures that the declared outputs are updated only at

reading points. Indeed, for every i, ỹi is allowed to change only when r changes

to a value in {1, . . . , n}. Furthermore, the outputs themselves copy the value of

87

the declared outputs (and only when they are allowed to change). It follows that

the system ‘ignores’ inputs that are not at reading points in its next update of

outputs.

We note that X n,m
ψ is very similar to X n,m. It replaces the third, ‘problematic’,

conjunct in βn,m – the one we named βn,m3 earlier – by handling the declared inputs

through declaren,m.

Since we later show how X n,m
ψ (X∪{r};Y ∪Ỹ) is used, in some cases, to conclude

that ϕ(X;Y) is asynchronously realizable (which, according to Theorem 3.3 means

that X n,m(X ∪ {r};Y) is synchronously realizable), we refer to X n,m
ψ as a sort of

an under-approximation (equivalently, strengthening) of X n,m.

In order to use X n,m
ψ as we intend, we need to specify some more characteristics

of specifications that would help us in specifying the class of specifications which we

have a method of synthesizing. The first definition has to do with specifications

that are unaffected by stuttering quantification. In the process of translating

synchronous to asynchronous programs (as is the case in this work, where we use

techniques to reduce one into the other) we use this characteristic to justify why

computations that were ‘good’ from the perspective of a synchronous program that

follows all inputs and all outputs, are also ‘good’ from the limited, asynchronous,

perspective of only values that appear at I\O points, and the other way around.

The second case is ‘shorter’ than the first, so in the process of comparing the two

we need to ‘stretch’ and squeeze computations (alternatively, to simply ‘stutter’),

and this is where the following definition comes handy:

Definition 3.4 (stuttering robustness). A ltl specification ξ(X;Y) is stutter-

ingly robust if for all computations σ and σ′ such that σ′ is a stuttering variant

of σ, σ, 0 |= ξ iff σ′, 0 |= ξ.

88

Stuttering robustness of a specification ϕ(X;Y) could be verified by converting

ϕ(X;Y) to a nondeterministic Büchi automaton [VW94], adding to it transitions

that capture all stuttering options [PR89b], and then checking that it does not

intersect the automaton for ¬ϕ(X;Y). Thus, the complexity of this algorithm is

that of ltl satisfiability, it is in PSPACE [VW94]. In our case, when handling ltl

specifications with GR(1) winning conditions, in many cases, all the parts of the

specifications are relatively simple invariants on the way variables can change and

it can be immediately observed that the formula is ‘stuttering free’.

Another important characteristic of specifications is memory-lessness, which

essentially expresses the notion that it would be possible to make transitions that

would not violate a specification, without knowing anything about the history of

a computation until that very current state. Such specifications would be easier

to work with in a framework where only part of the history (as in asynchronous

communications that rely on reading points) are available.

Definition 3.5 (memory-lessness). A ltl specification ϕ is memory-less if for

all computations C = c0, c1, . . . and C ′ = c′0, c
′
1, . . . such that C, 0 |= ϕ and

C ′, 0 |= ϕ, if for some i and j we have ci = c′j, then the composite computation

c0, c1, . . . , ci, c
′
j+1, c

′
j+2, . . . also satisfies ϕ.

We note that in our case, specifications of the form ϕe = (Ie, Se, Le) are always

memory-less. This is because the syntactic structure of Se is such that it forces a

relation between possible current and primed (next) states that does not further

depend on the past, and because, Le is a conjunction of properties of the form

01 p, where p is a Boolean formula. Notice that in case the initial specification

included past temporal formulae, these are embedded into the variables of the

system, and if these variables cannot be viewed by the system then they could

89

lead to a behavior that is not memory-less. This implies that in case that we

want to start from formulae that include past elements and we would like to use a

heuristic that relies on memory-lessness we would have to allow the system access

to the variables of the temporal testers ([PZ08]) for these past formulae as well.

In the general case, memory-lessness of a specification ϕ(X;Y) can be checked

by the following construction. We convert both ϕ(X;Y) and ¬ϕ(X;Y) to non-

deterministic Büchi automata N+ and N−. Then, we create a nondeterministic

Büchi automaton that runs two copies of N+ and one copy of N− simultaneously.

The two copies of N+ ‘guess’ two computations that satisfy ϕ(X;Y) and the copy

of N− checks that the two computations can be combined in a way that does not

satisfy ϕ(X;Y). Thus, the language of this product automaton would be empty

iff ϕ(X;Y) is not memory-less. It follows that memory-lessness can be checked in

PSPACE, similarly to ltl satisfiability [VW94].

One important observation about memory-lessness, is that if the specification

ϕ(X;Y) = Imp(ϕe, ϕs) has a memory-less environment ϕe, then also every asyn-

chronous strengthening of ϕ(X;Y) has a memory-less environment. This is since

memory-lessness in such a case is only dependent on the safety component of a

specification, and this element is identical in any asynchronous strengthening of

ϕ(X;Y).

Using this set of definitions, we have the following:

Theorem 3.9. Let ϕ(x;Y) = Imp(ϕe, ϕs), where ϕe = 〈Iϕe , Sϕe , Lϕe〉, be a stutter-

ingly robust specification with a GR(1) winning condition and with a memory-less

environment, where |Y | = {y1, . . . , ym} and where there is exactly one input - x.

Let r be a scheduling variable ranging over {1, . . . , (1 +m)}, and let Ỹ be declared

output variables.

90

If ψ(x, r;Y) is a stutteringly robust asynchronous strengthening of ϕ(x;Y) such

that X 1,m
ψ (x, r;Y ∪ Ỹ) is synchronously realizable, then ϕ(x;Y) is asynchronously

realizable.

Furthermore, given a program Ps that synchronously realizes X 1,m
ψ (x, r;Y ∪ Ỹ)

it can be converted to a program Pa that asynchronously realizes ϕ(x;Y) in time

linear in the number of transitions of the LTS that induces Ps.

The proof of this theorem is constructive, and is given in Subsection 3.6.2 by

presenting an algorithm for converting Ps (synchronously realizing X 1,m
ψ) into Pa

(asynchronously realizing ϕ).

In the following subsection we show how, under some restrictions, we can use

Theorem 3.9 together with the algorithm of [PPS06] for X n,m
ψ to test effectively

whether its underlying specification ϕ is asynchronously realizable (given that we

found an asynchronous strengthening ψ).

3.6.2 Using the Under-Approximation, and synthesis

By Theorem 3.9, X n,m
ψ could be used to conclude effectively asynchronous realiz-

ability of ϕ, and to build an asynchronously realizing program for it, when ϕ falls

within some restrictions (ψ is an asynchronous strengthening of ϕ). The most no-

table of these restrictions is that we consider only single-input specifications that

look like this - ϕ(x;Y) (x is a single variable). It is possible that more specifications

could be synthesized in a similar manner, but we do not handle such cases.

Since we consider here only single-input specifications, and we assume that

any past components of the specifications were eliminated in a pre-processing of

the specification, then all of the specifications that we consider have naturally

memory-less environments.

91

We use the algorithm of [PPS06] to analyze synchronous realizability of X n,m
ψ

and to synthesize specifications. This algorithm, when it synthesizes a specifica-

tion, produces a nondeterministic LTS Ts that represents a set of possible programs

for X n,m
ψ . Since when we synthesize a specification ϕ(x;Y) we are interested in a

ILTS that induces a realizing asynchronous program for it, we should start with

describing the conversion of Ts into a nondeterministic ILTS Ta that could be

determinized into a program for ϕ(x;Y).

For a LTS Ts = 〈Ss, Is, Rs, {x, r}, Y, Ls〉, state stes ∈ Ss is an eventual successor

of state st ∈ Ss if there exists m ≤ |Ss| and states {s1, . . . , sm} ⊆ Ss such that

the following hold: s1 = st and sn = stes; For all 0 < i < m, (si; si+1) ∈ Rs;

For all 0 < i < m, if L(s1)|{r} = r1 then L(si)|{r} = r1, but L(sm)|{r} 6= r1. If

L(sm)|{r} = 1 we also call stes an eventual read successor, otherwise an eventual

write successor. Note that due to the way the scheduling variable, r, updates in

asynchronous interactions, its interpretation in eventual successors of some source

state is uniquely defined by its interpretation in that source state.

Given a LTS Ts = 〈Ss, Is, Rs, {x, r}, Y, Ls〉 such that Y = {y1, . . . , ym}, that

was synthesized for the ltl formula X 1,m
ψ (x, r;Y ∪ Ỹ), we define its implied ILTS

Ta = 〈Sa, Ia, Ra, {x}, Y, La, ia〉, that we shall prove to synthesize ϕ(x;Y). We

assume that for (the unique) is ∈ Is, Ls(is)|Y = Yinit for some Yinit ∈ DY 9.

The ILTS extraction algorithm in Fig. 3.2 describes the construction of ia, Ia,

La, Sa and Ra. In the first part of the algorithm that follows its initialization,

between lines 5 and 15, all reading states reachable from Is are found, and used to

9As we already explained in Section 3.3, Is must be independent of x if X 1,m
ψ is synchronously

realizable. We further assume that it is a unique assignment due to our simplifying assumption
regarding an initial assignments in defining ILTS. The construction of Ta would be very simi-
lar if we expand the definition to account for a set of possible initial values, and the proof of
asynchronous realizability that follows would still hold. We leave it to readers to expand this
algorithm.

92

build Ia (as part of Sa). In the second part, between lines 16 and 43, the (m+1)-th

eventual successors of each reading state are added to Sa. This second part insures

that all writing states are ‘skipped’ so that Ra transitions include only transitions

between consecutive reading states.

In addition to the construction described in Fig. 3.2, we add to Sa D new ‘sink’

states sinkd (for all d ∈ D). For all d ∈ D, La(sinkd)|Y is defined arbitrarily, and

La(sinkd)|{x} = d. For all d1, d2 ∈ D, Ra(sinkd1 , sinkd2). For all d ∈ D, if there

exists no s ∈ Ia such that La(s)|{x} = d, we add to Sa and to Ia a new state id, such

that La(id)|Y is defined arbitrarily, La(id)|{x} = d, and for all d′ ∈ D, Ra(id, sinkd′).

For all s ∈ Sa and d ∈ D, if there exists no s′ ∈ Sa such that La(s
′)|{x} = d and

Ra(s, s
′), then Ra(s, sinkd). These additional states guarantee that Ta is receptive.

In the case that Ts was receptive – as it should always be – all of these additions

should be already taken care of simply by following the extraction algorithm. We

describe them here only for the purpose of expressing that the extracted ILTS

handles inputs that violate the environment’s initial condition or safety component

by continuing to a computation that would remain in sink states.

Constructively, the claim behind Theorem 3.9 is that, in some well-defined

cased, the ILTS Ts that is extracted from the LTS Ta produces induced programs

that asynchronously realize ϕ(x;Y), as intended. Notice that in the following

theorem and proof we name the scheduling variable s, and not r as in the rest of

the chapter:

Theorem 3.9 (repeated, with reference to ILTS extraction). Let ϕ(x;Y) =

Imp(ϕe, ϕs), where ϕe = 〈Iϕe , Sϕe , Lϕe〉, be a stutteringly robust specification with

a GR(1) winning condition and with a memory-less environment, where |Y | =

{y1, . . . , ym} and where there is exactly one input - x. Let s be a scheduling variable

93

Input: LTS Ts = 〈Ss, Is, Rs, {x, r}, Y, Ls〉 such that |Y | = m, and an initial outputs assignment
Yinit.

Output: The elements ia, Ia, La, Sa and Ra of the implied ILTS Ta = 〈Sa, Ia, Ra, {x}, Y, La, ia〉.
1: ia ← Yinit
2: Ia ← ∅, Sa ← ∅, Ra ← ∅
3: ST ← [EmptyStack] . a new states stack (for reachable unexplored ‘read’ states)
4: touched← ∅ . a new states set (for states that were pushed to ST)
5: for all ini ∈ Is do . find all reachable initial ‘read’ states
6: for all succ ∈ Ss s.t. succ is eventual (read) successor of ini do
7: if succ 6∈ touched then . add a new state to Ia and Sa
8: push succ to ST
9: touched← touched ∪ {succ}

10: Ia ← Ia ∪ {succ}
11: Sa ← Sa ∪ {succ}
12: La(succ)|{x} ← Ls(succ)|{x}, La(succ)|Y ← Ls(succ)|Ỹ
13: end if
14: end for
15: end for
16: while ST 6= [EmptyStack] do . explore all reachable ‘read’ states
17: st← pop ST
18: gen← {st}
19: for i = 1, . . . ,m do . find all m-th (last ‘write’) eventual successors of st
20: nextgen← ∅ . a new states set
21: for all stgen ∈ gen do . find all i-th eventual successors of st
22: for all succ ∈ Ss s.t. succ is eventual (write) successor of stgen do
23: nextgen← nextgen ∪ {succ}
24: end for
25: end for
26: gen← nextgen
27: end for
28: nextgen← ∅ . a new states set
29: for all stgen ∈ gen do . find all ’eventual read successors’ of st
30: for all succ ∈ Ss s.t. succ is eventual (read) successor of stgen do
31: nextgen← nextgen ∪ {succ}
32: end for
33: end for
34: for all stng ∈ nextgen do
35: if stng 6∈ touched then . add a new state to Sa
36: push stng to ST
37: touched← touched ∪ {stng}
38: Sa ← Sa ∪ {stng}
39: La(stng)|{x} ← Ls(stng)|{x}, La(stng)|Y ← Ls(stng)|Ỹ
40: end if
41: Ra ← Ra ∪ {(st, stng)} . add a new transition to Ra

42: end for
43: end while
44: return ia, Ia, La, Sa, Ra

Figure 3.2: Algorithm for extracting Ta from Ts

94

ranging over {1, . . . , (1 +m)}, and let Ỹ be declared outputs variables.

If ψ(x, s;Y) is a stutteringly robust asynchronous strengthening of ϕ(x;Y) such

that X 1,m
ψ (x, s;Y ∪Ỹ) is synchronously realizable and where Ts is the (nondetermin-

istic) LTS synthesized for it by the algorithm in [PPS06], then the ILTS Ta, that is

extracted from Ts, induces (after determinization) a program that asynchronously

realizes ϕ(x;Y).

Proof Sketch: The gist of this proof is that since Ts maintains ψ (on all of its

computations), by ψ being an asynchronous strengthening of ϕ, guarantees that

ϕ would be satisfied by each computation of Ts independently of the input values

that are not at reading points. Therefore, each computation of Ts corresponds with

some computations of Ta that agree with it on all values at I\O points. This is

achieved by the construction of Ta: from each reading point of Ts, it simply ‘jumps’

to any of the eventual ones, ignoring anything that happens in between, except for

producing the outputs as declared by Ỹ at the source state. The declared output

variables are exactly used to make sure that all paths in Ts that originate from

some reading state would generate identical outputs in the first ‘round’ of writing

points.

The requirement that ϕ be stutteringly robust in necessary for making sure

that not only that values of unobserved inputs do not affect satisfiability of ϕ, but

also the number of such unobserved values between reading points.

The requirement that the environment is memory-less is used when creating

the correspondence between a computation of Ts to that of Ta in order to establish

the ‘correctness’ of the latter from the former. Since only partial information is

available to the system in the asynchronous setting, memory-lessness is used to

justify that any prefix of a Ts computation that reaches some state of Ta would

95

be just as good for the generation of the future behavior of the environment. In

essence, this allows us to ‘copy-and-paste’ segments of computations of Ts in order

to construct one computation of Ta.

Finally, the limitation on ϕ having a single input comes from the requirement

that we can safely ‘copy-and-paste’ segments of computations of Ts in order to

construct one computation of Ta. Since multiple inputs may change between one

reading point (of one of them) and another (of another input), and since such

changes cannot be monitored asynchronously, our ability to safely select a direction

of the computations tree generated by Ts is very limited. It seems very reasonable

that further restrictions on the rate, of pattern, of changes allowed to inputs could

help extending this technique to multiple variables. It makes sense that every real

asynchronous system must make assumptions on the rate of change of each input

and limit the ways in which the inputs change together.

Proof: In this proof we refer to the diagram from Fig. 3.3. In this diagram,

all states have their variable assignments (labels) written on them, describing the

values of the input x, all outputs y1, . . . , yn, and the scheduler s. Only on some

states we also write the values of the declared outputs Ỹ , and to avoid clutter we

simply write them separated from the rest of the variables (by a vertical line), as

an additional value of outputs (without the ‘∼’ over them).

We work with the nondeterministic LTS (ILTS) Ts (Ta), and show that any

computation generated by any program that they could induce satisfies ϕ(x;Y).

A path is a segment of a computation. We say that a path π is safe for the

environment, if π, 0 |= Iψe ∧ 0 Sψe . (Since ψ is an asynchronous strengthening of

ϕ, this is identical to saying that π, 0 |= Iϕe ∧ 0 Sϕe .)

Since ϕ(x;Y) has a memory-less environment, and since this implies that

96

a 0
: x

0,
y1

0,
…

,y
n

0,
s=

n
+

1

b

r 0
: x

0
,y

1
0,

…
,y

n
0
,s

=
n

+
1

a

r 1
: x

1,
y1

0
,…

,y
n

0,
s=

1
a 1

: x
1
,y

1
0,

…
,y

n
0,

s=
1

|Y
1

c

a

a 1
’:

 x
1,

y1
0,

…
,y

n
0,

s=
1

|Y
1’

r 2
: x

1
’,y

1
1,

y2
0
,…

,y
n

0,
s=

2

c

a 2
’:

 x
1’,

y1
1
,y

2
0,

…
,y

n
0
,s

=
2

d

r 3
: x

1’
’,y

1
1
,y

2
1,

y3
0
,…

,y
n

0
,s

=3

d

a 3
’:

 x
1’

’,y
1

1,
y2

1,
y3

0
,…

,y
n

0,
s=

3

e…
e…

r n
+2

: x
2,

y1
1,

…
,y

n
1,

s=
1

a n
+2

’:
 x

2
,y

1
1,

…
,y

n
1,

s=
1

|Y
2
’

a n
+2

: x
2,

y1
1,

…
,y

n
1,

s=
1

|Y
2

r n
+1

: x
1*

,y
1

1
,…

,y
n

1,
s=

n
+

1
a n

+1
’:

 x
1*

,y
1

1
,…

,y
n

1,
s=

n
+

1

f
f

h
…

a 2
n+

3
: x

3,
y1

2,
…

,y
n

2,
s=

1
|Y

3

k…

m
…

r 2
n+

3
: x

3,
y1

2,
…

,y
n

2
,s

=
1

n
…

R
L

Figure 3.3: The ‘real’ (R) and Ts (L) computations

97

ψ({x, s};Y) also has a memory-less environment, we allow ourselves to simply refer

to, at times, a ‘memory-less environment’, where specifying the relevant specifica-

tion is not critical.

The computation depicted on the right of Fig. 3.3, named R, with state names

starting with the letter r, depicts the ‘real’ computation in the sense that it shows

all of the transitions of both the system and the environment, guided by one pro-

gram Pa induced by Ta (which considers, naturally, only inputs at reading points).

On the left we describe a tree of paths guided by programs induced by Ts, named

L, with state names starting with the letter a. L contains another computation

that is generated by one program induced by Ts, that is also generated by the

corresponding determinized Ta induced program Pa. Through the construction of

the computation in L, we show that R |= ϕ(x; y1, . . . , yn).

Since we identify states in R by their assignment to variables, we freely ‘borrow’

the labeling function Ls to represent their value assignments. We also compare

labeling of states from R and from L despite the fact that L labels cover Ỹ while

R labels do not, referring only to the shared labels. Finally, we compare labeling

of states by Ta and Ts, in the following way: For a state st, La(st) = Ls(st) iff

La(st)|Y = Ls(st)|Ỹ and La(st)|{x} = Ls(st)|{x}.

Let r0, with Ls(r
0) = 〈x0, s0, y01, . . . , y0n〉, also written as Ls(r

0) = 〈x0, s0, Y 0〉

(s0 = n+1), be the first state in R. If Ls(r
0) 6|= Ie, then R, 0 |= ϕ(x;Y). Otherwise,

due to the receptiveness of Ts, the state r0 is also some initial state a0 ∈ Is

(Ls(a
0) = Ls(r

0)), and, by construction, Ls(a
0) |= Iψe ∧ Iψs . Also by construction,

ia = Y 0 (since we assume a single possible initial output, if Ls(a
0) 6|= Ie then this

must be the case), and Ta outputs a ‘good’ initial value. All paths in R and in L

satisfy, therefore, Iψe ∧ Iψs .

98

If any prefix of R is not safe for the environment then, trivially, R, 0 |= ϕ(x;Y).

In the following, we assume, for completeness, that all prefixes of R are safe for

the environment.

The path of R up until the first reading point, r0 a, exists in Ts - a0 a

(since Ts, by construction, induces programs that provide outputs against any

behavior of the environment). Similarly, a state that agrees with the next state

of R, r1, on its labeling of {x, s} ∪ Y must be reachable (in one transition) from

the last state of a in Ts - a0 a a1
′

(Ls(a
1′) has some labeling for Ỹ -

Ỹ 1′ = 〈y1′1 , . . . , y1
′
n 〉). It is important to note here that both Ta and Ts might be

non-deterministic. Let a1 be some eventual successor of a0 in Ts (through the path

a0 b a1), that is also in Ta and that agrees with r1 (and with a1
′
) on the

labeling of {x, s}∪Y . By construction, both a1
′
and a1 are in Ia, and Ta has ‘good’

initial states. We assume that, in this computation, a1 was ‘chosen’. Say that a1

has the labeling of Ỹ Ỹ 1 = 〈y11, . . . , y1n〉. Let c be the path of R from r1 up until

the first writing point. Since the environment is memory-less (second assumption),

and since r1 and a1 agree on the labeling of all the variable of Sψe , the transition

from a1 to the first state of c must exist in Ts, and so are the rest of the transitions

of c.

Let r2 be the first writing state in R that immediately follows the last state of

c, where the label of y1 is changed from y01 to y11 (according to Ỹ 1, as controlled by

Ta through the selection of the eventual successor a1 of a0). Since (by assumption)

the transition in R from the last state of c to r2 is safe for the environment (note

here that Sψe is independent of Y ′ - the primed version of Y), than a transition

from the last state of c in the path a0 b a1 c in Ts, to a state that agrees

with r2 on its labeling of x, must exist. Moreover, all eventual successors of a1 in

99

Ts must label the value y11 to y1. Let a2
′

be one such eventual successor of a1 in Ts,

that agrees with r2 on its labeling of x (by the construction of Ta, that replaces its

outputs labeling with the declared outputs labeling of Ts, it must exist in a path

that is driven by Ta).

As R continues with a path that, starting from r1, writes all outputs in writing

points (r1 c r2 d r3 e . . . rn+1), for similar arguments of

memory-lessness of the environment and of agreement with the states of R on

their labeling of {x, s} ∪ Y , a similar path must exist in L - a1 c a2
′

d a3
′
 e . . . a(n+1)′ . Moreover, the following path of R that originates

in rn+1 and that continues up until, and including, the next reading point rn+2

- rn+1 rn+2, must also be duplicated in Ts - a(n+1)′ a(n+2)′ (a(n+2)′ has

some value Ỹ (n+2)′ = 〈y(n+2)′

1 , . . . , y
(n+2)′
n 〉). All states on the path from r1 to rn+1

agree with all states on the path from a1 to a(n+2)′ , respectively, on their labels of

{x, s} ∪ Y (including the ‘writing’ of the same output values at all writing points,

and ‘reading’ of the same input value at the terminating reading point).

Since the state a(n+2)′ exists in Ts then, by construction of Ta, at least one

sequence of n + 1 consecutive eventual successors from Ts that originate from

a1 (which is in Ta) would be represented in Ta through the value of La(a
1)|Y ,

‘writing’ in all writing points along the way all the values of Ỹ 1 (one-by-one), and

terminating in the state a(n+2) that agrees with r(n+2) on its labeling of {x, s}∪Y .

Say that Ls(a
(n+2))|Ỹ is the labeling Ỹ (n+2) = 〈y(n+2)

1 , . . . , y
(n+2)
n 〉.

We showed that a path that corresponds to the writing-then-reading path c

r2 d r3 e . . . rn+1 f r(n+2) of R exists in Ts and, therefore,

represented in Ta. We continue inductively to construct a computation in Ts,

called Sc, that is driven by one program induced by ta - a0 b a1 g . . .

100

a(n+2) h . . . a(2n+3) k

The key observation about Sc, other than the fact that it must exist (assuming

that R is safe for the environment), is that it agrees with R on its interpretations

of Y at all corresponding states, and that it agrees with R on its interpretations

of x at all corresponding reading states. We know that the following holds for Sc

(using Ls, and as for all Ts computations)

Sc, 0 |=



α1,m(s) ∧

Iψe ∧ 0 Sψe ∧

ψ(X ∪ {s};Y) ∧
m∧
i=1

[
[¬write1(i) ∧ ¬first]=�unchanged(yi)

]


Since ψ is an asynchronous strengthening of ϕ (specifically, due to the implication

that is in that definition), we conclude that Sc, 0 |= [read(1)=�(x = x̃)]→ ϕ(x̃;Y).

Using the observation regarding the connection between R and Sc, we conclude

that R, 0 |= [read(1)=�(x = x̃)]→ ϕ(x̃;Y) and, in particular, that R, 0 |= ϕ(x;Y).

(Actually, in the transition from Sc to R we must account for the fact that the

two computations may differ in length between every I\O point. To overcome

that we use the stuttering robustness of ϕ, ψ and the rest of the clauses from the

definitions of asynchronous strengthening.)

If ϕ(x;Y) has a GR(1) winning condition and if ψ(x, r;Y) is an asynchronous

strengthening of ϕ(x;Y), then X 1,m
ψ (x, r;Y ∪ Ỹ) has a GR(1) winning condition.

The work in [PPS06] provides a O(N3 · m · n)-time method for verifying that a

specification with a GR(1) winning condition is synchronously realizable, and for

synthesizing a synchronously realizing program. (As before, N is the state space

101

of the specification, and m and n are the number of liveness conjuncts of the

environment and system’s specifications, respectively.) Thus, we can effectively

check whether the kernel formula X 1,m
ψ is synchronously realizable. In the case

that it is, and if ϕ(x;Y) is stutteringly robust with a memory-less environment,

we can conclude, using Theorem 3.9, that ϕ(x;Y) is asynchronously realizable and

we can effectively construct an asynchronously realizing program for it.

Note that while the proposed method is sound, it is not complete, in the

sense that a specification ϕ(x;Y) may be asynchronously realizable but the de-

rived synchronous approximation for its asynchronous strengthening ψ(x, r;Y),

namely, X 1,m
ψ may be synchronously unrealizable. One possible solution to such

cases might be searching for another asynchronous strengthening.

Caveat: There exist specifications which the effective algorithm we propose

– as described in [PPS06] – declare synchronously unrealizable, while they are in

fact realizable. This may lead to a false classification of X 1,m
ψ as synchronously

unrealizable, and therefore to an inability to recognize that the underlying spec-

ification ϕ might be asynchronously realizable. Such specifications with GR(1)

winning conditions are characterized in Chapter 2, where an efficient method is

described for identifying them, as well as a method for avoiding false classifications

given such specifications.

In the context of synthesizing an asynchronously realizing program for a spec-

ification, we define the set of interface variables to be the set of variables of its

relevant asynchronous strengthening. These are the same variables of the original

specification, with the addition of the scheduling variable.

One important observation regarding the LTS Ts that was synthesized for

X 1,m
ψ (x, r;Y ∪ Ỹ), is that it contains labels for the declared outputs. These la-

102

bels are redundant since they could always be picked up from the outputs of any

m consecutive eventual write successors of any reading point (in any non-writing

point they remain unchanged). Therefore, they may be dropped from Ts. As men-

tioned in Subsection 3.2.3, in practice often specifications are written using past

formulae and we must incorporate into them temporal testers [PZ08] in order to

bring them to the Imp formula structure. In such cases, the interface variables

of the original specification would be a subset of the interface variables in the

‘translated’ structure. However, as long as the formula that is synthesized falls

within the restrictions that we define for successful synthesis, one should have no

problem expressing the resulting asynchronous program without any variables that

were added for temporal testers. Once Ts is constructed, therefore, labels for such

variables may be dropped as well.

Instead of simply dropping the not-needed labels from Ts, one beneficial pro-

cess would be to minimize Ts to represent only the perspective of the interface

variables. Minimizing Ts before the construction of Ta results in an overall shorter

construction time and, more importantly, is a smaller (and, therefore, more effi-

cient) ILTS Ta that corresponds to a program for asynchronously realizing ϕ(x;Y).

One way to perform such a minimization is by using a variant of the Myhill-Nerode

minimization for deterministic finite-state automata.

3.6.3 Applying the Realizability Test

In this subsection we illustrate the application of the effective realizability test,

and synthesis, based on Theorem 3.9.

If one wishes to use the method for verifying asynchronous realizability and for

synthesis that is proposed in this section, the first question to be answered is –

103

how can one come up with an asynchronous strengthening? One possible heuristic

that may be applied for this purpose is given by:

Heuristic 3.1. In order to derive an asynchronous strengthening ψ(X ∪ {r};Y)

for a specification ϕ(X;Y) (where |X| = n and |Y | = m and with a scheduling

variable r), replace one or more occurrences of atomic formulae of inputs, e.g.,

xi = d, by (xi = d) ∧�(r 6= i) ∧ (r = i), which means that xi = d at a reading

point.

The rationale for this heuristic is that since ψ is supposed to imply both ϕ(X;Y)

and ϕ(X̃;Y), and the only information we have about X̃ is that it agrees with X

at all reading points, it is natural to transform references to X to references to X

at a reading point.

We start with the ‘response’ specification ϕ3(x; y) = Imp(ϕ3,e, ϕ3,s). This spec-

ification has a GR(1) winning condition, it is stutteringly robust with a memory-

less environment, and therefore it is potentially a good candidate to use with

Theorem 3.9. The first step is to identify an asynchronous strengthening of it

ψ3(x, r; y) = Imp(ψ3,e, ψ3,s). Applying Heuristic 3.1 to ϕ3, we obtain the proposed

specification ψ3(x, r; y) given by

[¬(x↔ y)=�(x↔ 2x)]→



x=�1 y ∧

x=�1 y ∧

y=�y S y S [x ∧�(r = 2) ∧ (r = 1)] ∧

2{y=�y B y S [x ∧�(r = 2) ∧ (r = 1)]}


Note that the occurrences of references to x that have been replaced are the refer-

ences to x within the sub-formulae (y=�y S y S x) and 2(y=�y B y S x).

We observe that Iψ3,e = Iϕ3,e and that Sψ3,e = Sϕ3,e . To establish that ψ3 is an

104

asynchronous strengthening of ϕ3 it is left to check that the specifications satisfy

the implication that is in the definition for asynchronous strengthening. This has

been done by using the tool tlv [PS96].

Applying the synchronous realizability test of [PPS06] to the kernel formula

Xψ3(x, r; y) (derived for ψ3), the algorithm informs us that this specification is

synchronously realizable and produces a realizing LTS S3 with 30 states and 90

transitions (not including the sink state). Applying a minimization procedure to

this LTS yields a minimal LTS S ′3 with 16 states and 54 transitions. Applying the

extraction algorithm that builds the ILTS AS′3 from S ′3, yielded a nondeterministic

ILTS with all 16 states and 54 transitions. A simplified sub-ILTS of AS′3 that

provides a complete strategy for ϕ3(x; y) is presented in Fig. 3.4 as an automaton.

/y

13:(r=2)x;y1 : (r=1)x;y

/y

x

3 : (r=1)x;y9 : (r=1)x;y

5 : (r=2)x;y 7 : (r=1)x;y

6 : (r=1)x;y

8 : (r=2)x;y

x

/y

x /y

x

/y

x

/y

Figure 3.4: ILTS (as an automaton)

Note that the automaton of Fig. 3.4 has a certain degree of nondeterminism as

105

demonstrated in the exits out of state 7. At this point, it may nondeterministically

choose to output y or y. The automaton of Fig. 3.4 is a simplified version of the

sub-automaton of AS′3 . In particular, we have identified some states that have been

found to have equivalent behavior. This led to the fact that the automaton does

not contain the initial state 0 that has been identified with state 13 which is taken

to be the initial state. Also, to avoid clutter, we omitted the representation of the

sink state and all transitions entering it.

We model-checked [CGP99] and made sure that all possible computations

driven by AS′3 , and within the simplified automaton from Fig. 3.4, satisfy ϕ3(x; y)

(again, using tlv [PS96]).

To make sure that our method works also for multiple outputs, we constructed

two new specifications, ϕ4(x; y0, y1) and ϕ5(x; y0, y1, y2), that expand the logic of

the ‘response’ specification ϕ3(x; y) to two, and three, outputs, respectively. Un-

like in ϕ3(x; y), the inputs of these two new specifications are not Boolean (their

outputs, however, are). Both specifications have GR(1) winning conditions, are

stutteringly robust and have a memory-less environment. Therefore they are good

candidates to use with Theorem 3.9.

The input x in ϕ4(x; y0, y1) ranges over {0, 1, 2, 3}. It’s intended meaning is

that x = 0 is interpreted as a ‘request’ to output y1, x = 1 to output y1, x = 2 to

output y0, and x = 3 to output y0. ϕ4(x; y0, y1) = Imp(ϕ4,e, ϕ4,s), where

ϕ4,e(x; y0, y1) =



((x = 0) ∧ y1) ∨

((x = 1) ∧ y1) ∨

((x = 2) ∧ y0) ∨

((x = 3) ∧ y0)


=�2 unchanged(x)

106

and where

ϕ4,s(x; y0, y1) =



(x = 0)=�1 y1 ∧

(x = 1)=�1 y1 ∧

(x = 2)=�1 y0 ∧

(x = 3)=�1 y0 ∧

y0 =�y0 S y0 S (x = 3) ∧

y1 =�y1 S y1 S (x = 1) ∧

2[y0 =�y0 B y0 S (x = 2)] ∧

2[y1 =�y1 B y1 S (x = 0)]


(For clarity, we do not specify here an initial condition - (x = 0) ∧ y1 ∧ y2.)

An asynchronous strengthening ψ4(x, r; y0, y1) is constructed for ϕ4 using Heuris-

tic 3.1 in a similar manner to the construction of ψ3. Applying the synchronous

realizability test of [PPS06] to the kernel formula Xψ4(x, r; y0, y1) (derived for ψ4),

the algorithm informs us that this specification is synchronously realizable and

produces a realizing LTS S4 with 340 states and 1544 transitions (not including

a sink state). Applying a minimization procedure to this LTS yields a minimal

LTS S ′4 with 196 states and 1056 transitions. Applying the extraction algorithm

that builds the ILTS AS′4 from S ′4, yielded a nondeterministic ILTS that model-

checked positively to satisfy ϕ4 along all of its computations (generated through

asynchronous interactions).

The specification ϕ5(x; y0, y1, y2), that follows the exact same structure of ϕ4

with one additional output (and with an input x that ranges over a domain of size

6), was tested in the same manner and proved to be asynchronously realizable. The

LTS S5 that was constructed for its asynchronous strengthening ψ4(x, r; y0, y1, y2)

(more accurately, for the relevant kernel formula Xψ4), has 1984 states and 11768

107

transitions, and after minimization S ′5 has 1184 states and 8680 transitions. The

ILTS AS′5 from S ′5 was proven, as before, to implement an asynchronously realizing

program for ϕ5.

Clearly, the most obvious drawback of this synthesis method is the dispropor-

tionately large asynchronous programs (os ILTS) that it creates. However, in this

work we did not make any attempt at constructing efficient, or minimal, realizing

programs. Any approach to extracting deterministic sub-ILTS from these large

nondeterministic ones could help with size reduction, and beyond that would be

an issue for future work.

3.6.4 A Possible Direction for Handling More Specifications

The following theorem may provide some hint to expand our under-approximation

approach to handle more specifications:

Theorem 3.10. Let ϕ(X;Y) be a specification with a GR(1) winning condi-

tion, where |X| = n and |Y | = m, let r be a scheduling variable ranging over

{1, . . . , (n+m)}, and let Ỹ be a set of declared output variables. If ψ(X ∪ {r};Y)

is a stutteringly robust asynchronous strengthening of ϕ(X;Y), and if 0 Sψe is

also stutteringly robust, then the following implication is valid:

X n,m
ψ (X ∪ {r};Y ∪ Ỹ) ∧

Iψe ∧ 0 Sψe

→ X n,m(X ∪ {r};Y)

(X n,m
ψ (X ∪ {r};Y ∪ Ỹ) and X n,m(X ∪ {r};Y) are the appropriate kernel formulae

derived for ψ(X ∪ {r};Y) and for ϕ(X;Y), respectively.)

Proof: Let σ be some computation over the variables X ∪ {r};Y ∪ Ỹ . If σ, 0 6|=

αn,m(r), then the implication is trivially valid. Otherwise, the left-hand-side

108

of the implication guarantees all of the following (using the implication struc-

ture of X n,m
ψ): σ, 0 |= Iψe , σ, 0 |= 0 Sψe , σ, 0 |= ψ(X ∪ {r};Y), and σ, 0 |=∧m

i=1[(¬writen(i) ∧ ¬first)=�unchanged(yi)].

To reach the conclusion that σ, 0 |= X n,m(X ∪ {r};Y) is valid, the only clause

of X n,m that is left to be proven to be satisfied by σ is βn,m3 (ϕ(X;Y) is implied

by βn,m3).

Let σ′ be a stuttering variant of σ. We know that ψ and 0 Sψe are stutter-

ingly robust, by assumption, and, therefore, they are satisfied by σ′. Since writ-

ing points are transitions in which the scheduling variable r changes its value,

all writing points of σ are kept, in order, in σ′ (since the squeeze operation

never merges consecutive states that differ in any variable’s value, and since σ′

may contain only variants of squeeze(σ) that have repetitions of states with-

out additional value changes, specifically not adding new I\O-points). A sim-

ilar statement is true for points where unchanged(yi) holds, and we get that

σ′, 0 |=
∧m
i=1[(¬writen(i) ∧ ¬first)=�unchanged(yi)]. αn,m is stutteringly robust

as well, for a similar argument, and so is Iψe , as a non-temporal formula.

We know that the implication that is in the definition for asynchronous strength-

ening is valid. Particularly, it is satisfied by σ′, and by any X̃-variant of it σ′′. Since

ψ, 0 Sψe ,
∧m
i=1[(¬writen(i) ∧ ¬first)=�unchanged(yi)], α

n,m, and Iψe are all sat-

isfied by σ′, and since non of them contains any variables from X̃, they are all

satisfied also by σ′′.

So if σ′′ satisfies the entire implication from the definition for asynchronous

strengthening, and if it also satisfies all but one of the conjuncts on the left-

hand-side of that implication, then we can ‘remove’ them all and get that σ′′, 0 |=∧n
i=1[read(i)=�(xi = x̃i)].

109

This means, however, that σ, 0 |= (∀≈X̃).
∧n
i=1[read(i)=�(xi = x̃i)], which is

exactly σ, 0 |= βn,m3 as we wanted.

We provide this theorem here only since it seems reasonable that further anal-

ysis of various specifications classes may leverage it to allow for synchronous real-

izability testing of more specifications.

A careful reader might observe that had we removed from the definition of

asynchronous strengthening the requirement the ϕ and ψ have GR(1) winning

conditions, or that they are at all given in the form of Imp, we would be able to

prove a stronger version of Theorem 3.10, where synchronous realizability of X n,m
ψ

implies that of X n,m(X ∪ {r};Y). However, removing αn,m, Iψe , and Sψe from the

definition of asynchronous strengthening, and, therefore, from the application that

is included in that definition, would make it significantly more difficult to identify

‘good’ asynchronous strengthening formulae.

3.7 Conclusions and Future Work

In this chapter we considered methods for the ‘effective’ synthesis of asynchronous

systems (programs) from their temporal property specifications. The methods are

based on an expansion to the Rosner reduction which converts one specification ϕ

into another specification X , such that X is synchronously realizable iff ϕ is asyn-

chronously realizable. Roughly speaking, this reduction is based on the implicit

simulation of all possible asynchronous behaviors of ϕ within a synchronous be-

havior of X , through the addition of a scheduling variable that models all possible

context switches from the perspective of the synthesized system.

110

While the Rosner reduction handled specifications with a single input and a

single output, we presented an expansion that handles multiple-variables’ specifi-

cations – X n,m. We further presented an alternative reduction – Yn,m – and proved

that despite the fact that it appears to be less restrictive and more intuitive, it

is, in fact, just as expressive (in terms of realizability) as the first expanded Ros-

ner reduction (X n,m) that provides a canonical, easy to follow, way of describing

asynchronous interactions of a system with its environment.

This expanded reduction cannot be applied directly in an efficient way, because

the translation of ϕ into X n,m involves a special kind of existential quantification.

Handling this quantification using the usual automata theoretic approach from

[PR89a] leads to very complex algorithms even when the initial formula is relatively

simple. Consequently, we proposed a family of formulae of moderate sizes that

bound X n,m from two sides:

• In order to establish unrealizability, it is sufficient to show that the over-

approximation X n,m

↓
is unrealizable.

• In order to perform synthesis (and establish realizability) for specifications

with a single input variable (under some additional contraints), it is sufficient

to show that the under-approximation X 1,m
ψ is realizable, after identifying a

‘strengthening’ of ϕ that is called ψ.

In both cases, if ϕ belongs to the restricted class of specifications with GR(1)

winning conditions, the complexity of these two processes is polynomial and com-

parable to the tractable complexity of the synchronous synthesis case.

We believe that there is still much room to explore cases in which asynchronous

synthesis can be approximated by heuristics that perform well in practice. In

111

particular, the combination of the two requirements, that the environment has one

variable, and that this variable behaves memory-lessly, is very severe. We are still

trying to remove these restrictions or parts thereof. We believe that in many cases

the synchronous controller produced using our technique still contains the right

options for the asynchronous controller. However, we have been unable to identify

a constructive way to find these choices. Currently, any eventual read successor in

the LTS is a good one in the ILTS. It seems reasonable that, in some cases, which

are not memory-less, although an arbitrary choice is not sufficient there may be

a way to choose successors wisely (with some lookahead method) and be able to

synthesize an ILTS that would not get stuck for every environment behavior.

112

Chapter 4
Formalization and Automated

Verification of RESTful Behavior

4.1 Introduction

REST – an acronym for REpresentational State Transfer – is a software archi-

tectural style that is used for the creation of highly scalable web applications. It

was formulated by Roy Fielding in [Fie00]. The REST style provides a uniform

mechanism for access to resources, thereby simplifying the development of web

applications. Its structure ensures effective use of the Internet, in particular of

intermediaries such as caches and proxies, resulting in fast access to applications.

Over the past decade, interest in REST has increased rapidly, and it has become

the desired standard for the development of large-scale web applications. The

flip side to this is a considerable confusion over the principles of RESTful design,

which are often misunderstood and mis-applied. This results in applications that

are functionally correct, but which do not achieve the full benefits of flexibility and

scalability that are possible with REST. Fielding has criticized the design of sev-

113

eral applications which claim to be RESTful, among those are the photo-sharing

application Flickr [Fie08a] and the social networking API SocialSite [Fie08b].

The criticisms show that some of the confusion is between REST and the

Hypertext Transfer Protocol (HTTP) [FGM+99]. (Aside: Fielding is also a co-

author of the HTTP RFC.) While RESTful applications are implemented using

HTTP, not every HTTP-based application is RESTful, and not every RESTful

application must use HTTP: REST is an architectural style, while HTTP is a

networking protocol. Another common mistake is to call a application REST-

ful if it uses simpler encodings than those in the Remote Procedure Call (RPC)

based SOAP/WSDL [W3C07] mechanism. The distinction goes far beyond this

superficial difference. These and other, more subtle, confusions motivate our work.

A question which arises naturally is whether it is possible to automatically check

an application for conformance to REST. Doing so requires a precise specification

of REST. In this chapter, we address both questions. A formal characterization of

REST has benefit beyond its use in automated analysis. It should also result in

clear and effective communication about REST, and can enable deeper analysis of

this elegant and effective architectural style.

We begin by formulating RESTful behavior in a general setting. A key contri-

bution is to show that REST can be formalized within temporal logic. Two con-

straints define RESTful behavior. One, statelessness, is a branching-time property.

The other, hypertext-driven behavior, is expressible in linear temporal logic. Both

are safety properties. We then consider the common case of RESTful HTTP, and

discuss how HTTP induces variants of the temporal properties.

The temporal specifications may be applied in several ways for verifying that

a client-server application is RESTful. One is to model-check a fixed instance of

114

the application [CE81, QS82]. The parameterized model checking question is also

of much interest, as web applications typically handle a large number of clients.

These questions presume a ‘white-box’ situation, where implementation code is

available for analysis. A second group of questions concern run-time checking of

RESTful behavior, a ‘black-box’ approach, where the only observable is the client-

server communication. A third group of questions concern the synthesis of servers

which meet a specification under RESTful constraints.

We show that, for a fixed instance, model-checking statelessness can be done in

time that is linear in the size of the state-space of the instance and polynomial in

the number of resources. On the other hand, checking that an instance satisfies a

specification assuming hypertext-driven client behavior is PSPACE-complete in the

number of resources. This property can be checked at run-time, however, in time

that is polynomial in the number of clients and resources. We show decidability for

parameterized model-checking under certain assumptions; the general case remains

open.

This chapter is based on published work; Parts of what presented here were

published as a conference paper [KN11a], as well as in a technical report [KN11b].

4.2 REST and its Formalization

Our goal in the formalization is to stay as close as is possible to its description by

Fielding in [Fie00], which should be consulted for the rationale behind REST.

4.2.1 Building Blocks for REST

REST is built around a client-server model which includes intermediate compo-

nents, such as proxies and caches. An application is structured as a (conceptually)

115

single server component (server, for short) and a number of client components

(clients). All relevant communication is between a client and the server. Each

request for a service is sent by a client to the server, which may either reject the

request or perform it, returning a response in either case to the client. A server

manages access to resources. A resource is an abstract unit of information with

an intended meaning. Examples are a data file, a temporal service (e.g., ‘current

time in France’), or a collection of other resources (e.g., ‘all files in a directory’).

An entity describes the value of a resource at a given time; it can be viewed as

the state of a resource. A resource state may be constant (e.g., ‘Uri’s birth date’)

or changing (e.g., ‘current time in France’), but it must take on values which

correspond to the intended meaning of the resource. A state may contain both

uninterpreted data and links to other resources. This creates a ‘Linked Data’ view

[BHIBL08] of all the information under the control of an application. A resource

identifier (resource id, for short) is a name by which a resource is identified. The

mapping of names to resources is fixed and unique. In HTTP-based applications,

Uniform Resource Identifiers (URIs) [W3C05] are the resource identifiers. A re-

source representation is a description of the state of the resource at a given time.

A state may have multiple representations (e.g., a web page may be represented

as HTML, or by an image of its content).

A RESTful architecture has a fixed set of uniform methods. Hence, every

application following that architecture must be based on these methods, which

effectively decouples interface from implementation. In contrast, for an abstract

data type or RPC model, the method set is unconstrained. Properties of a method,

such as safety (no invocation changes server state) and idempotence (repeated

invocation does not change server state) are required to hold uniformly, i.e., for all

116

instantiations of the method.

4.2.2 Formalizing Resource-Based Applications

A resource-based application is one that is organized in terms of the previously

described building blocks, which are formally defined by a resource structure: a

tuple RS = 〈R, I,B, η, C,D,∼, OPS,RETS〉, where R is a set of resources; I is

a set of resource identifiers; B ⊆ I, is a finite set of root identifiers ; η : I 7→ R

is a naming function, mapping identifiers to resources, a partial function that is

injective on its domain; C is a set of client identifiers ; D is a set of data values,

with an equivalence relation ∼ ⊆ (D × D); OPS is a finite set of methods; and

RETS is a finite set of return codes.

For simplicity, we use a specific form of resource representation, a pair 〈ids; d〉

in 2I ×D. Here, ids is a set of resource identifiers, and d a piece of data. This ab-

stracts from HTML or XML syntax and formatting, and clearly separates resource

identifiers from data values. The relation ‘∼’ may be used to ignore irrelevant

portions of data, such as counters or timestamps. We extend it to resource repre-

sentations as 〈ids1; d1〉 ∼ 〈ids2; d2〉 iff ids1 = ids2 and d1 ∼ d2.

A client-server communication (a communication, for short) is represented by

a ‘request/response’ pair, with the syntax c::op(i, args)/rc(rvals), where: c ∈ C

is a client identifier; op ∈ OPS is a method; i ∈ I, is a target resource identifier ;

args is a finite list of arguments ; rc ∈ RETS is a return code; and rvals is a finite

list of return values. The arguments and return values are specific to the method.

Both may include resource identifiers, data values, and resource representations.

(We omit more complex data types for simplicity.)

With each communication m are associated two disjoint sets of resource iden-

117

tifiers, denoted L(m) (linked) and UL(m) (unlinked). The set L(m) describes

resources that are made known to the requesting client, and includes resource

identifiers which are returned as results in the communication, or that are created

by it. The set UL(m) are identifiers which are revoked at the client.

Given a resource structure RS, a RS-family is a collection of client and server

processes, defined over elements of RS. A RS-instance is a specific choice of clients

and a single server from a RS-family, with the processes interacting using CCS-

style synchronization [Mil89] on communications. A global state of a RS-instance

is given by a tuple with a local state for the server process and a local state for

each client process. A computation is an alternating sequence of global states and

actions, where an action is either a (synchronized) communication between a client

and the server, or an internal process transition.

Caveats: In reality, requests and responses are independent events, which allows

the processing of concurrent requests to overlap in time. The issue is discussed

further in Section 4.4, as treating it directly considerably complicates the model.

There is also an implicit assumption that methods have immediate effects. In

practice, (e.g., HTTP DELETE) a server may return a response but postpone the

effect of a request. This issue is discussed in Subsection 4.3.3.

A communication sequence σ is a (possibly infinite) sequence of communica-

tions carried out between a set of clients and the server. The projection of a

communication sequence σ on a client c, written σ|c, is the sub-sequence of σ

which contains only those communications initiated by client c. A computation of

a RS-instance induces a communication sequence given by the sequence of actions

along that computation.

It is important to distinguish between the case where a method is successfully

118

processed by the server, and where it is rejected without any server state change.

This is done by mapping return codes to the abstract values {OK,ERROR}, where

OK represents the first case and ERROR the second.

For a finite communication sequence σ, the set assoc(σ) of resource identifiers

defines those resources ‘known’ at the end of σ. For the empty communication

sequence, assoc(λ) = B. Inductively, assoc(σ;m) is (assoc(σ) ∪ L(m))\UL(m), if

m has return code OK, and it is assoc(σ), if the return code is ERROR.

For a finite computation with induced communication sequence σ, assoc(σ) and

I\assoc(σ) define the associated and dissociated resource identifiers, respectively.

We associate a partial function deref : I 7→ 2I × D with the state of the server;

deref (i), if defined, is the current representation of the resource η(i) (which must

be defined if deref (i) is defined).

4.2.3 Formalization of RESTful Behavior

For this section, fix a structure RS = 〈R, I,B, η, C,D,∼, OPS,RETS〉, and con-

sider RS-instances. The two temporal properties discussed below define whether

the behavior of an RS-instance is RESTful. It is usually more convenient to

describe the failure cases, and also more helpful for the purpose of automatic ver-

ification. In the temporal formulas, we use a modified next-time operator, X〈a〉,

where a is an action. Its semantics is defined on a sequence with atomic proposi-

tions on each state and an action label on each transition. For a sequence σ and

position i, define σ, i |= Xa(ϕ) to hold if σ, i+ 1 |= ϕ and the transition from step

i to step i+ 1 is labeled with a.

Before diving into the specifics, it is worthwhile to point out a couple of impor-

tant considerations. First, as in any formalization of a hitherto informal concept,

119

there may be subtle differences between an informal idea and its formalization;

we point out those that we are aware of. Second, a large part of the usefulness

of a formalization lies in the testability of these properties. It is helpful to make

a distinction between formal properties which can be tested given complete infor-

mation of the implementation of clients and the server (a ‘white-box’ view), and

those which can be tested only on the observable sequences of interaction between

clients and the server (a ‘black-box’ view). The first viewpoint is interesting for

model-checking; the second for run-time verification. Since we are targeting both

approaches, we present the properties from both points of view, making it clear if

one leads to a weaker test than the other. This distinction is important only for

the safety and idempotence properties.

1. Stateless behavior. In ([Fie00], Chapter 5), this property is described as

follows: “. . . each request from client to server must contain all of the informa-

tion necessary to understand the request, and cannot take advantage of any stored

context on the server.” We formalize it by requiring that the server response to

a request be functional; i.e., independent of client history or identity. (A ‘client’

should be understood to be a machine, rather than a user.) Failure of state-

lessness is shown by a finite computation followed by a two-way fork, where for

some distinct client identifiers c, d, one branch of the fork contains the com-

munication c ::op(i, a)/r1(v1), and the other branch contains the communication

d::op(i, a)/r2(v2), and either r1 6= r2, or v1 6= v2. This failure specification captures

the situation where, given an identical history, the same method carried out by

different clients has distinct results.

This is a branching-time property. The failure case is expressed as follows in

a slight modification of Computation Tree Logic (ctl) [EC80], which allows the

120

operator EX〈a〉, for an action a.

(∃c, d ∃i, op, a, r1, v1, r2, v2 : c 6= d ∧ (r1 6= r2 ∨ v1 6= v2) ∧

EF(EX〈c::op(i,a)/r1(v1)〉(true) ∧ EX〈d::op(i,a)/r2(v2)〉(true)))

The property suffices to detect the common cases of hidden per-client state.

One subtlety is that the the property is based on observable, semantic effects of a

hidden state, not its syntactic presence. Hence, it holds of a server which retains

auxiliary per-client information – such as a request counter – but does not use that

information to influence the response to a request.

The formalization is also slightly stronger than the intended informal notion of

statelessness, in the following sense. Consider a server which implements a method

as “if (client=c) then return 3 else return 4”. This has no hidden state,

yet the method has different results for distinct clients c and d, and fails the

property.

2. Hypertext-driven behavior. Informally, this property requires a client to

access a resource only by ‘navigating’ to it from a root identifier. It is also referred

to by the acronym HATEOAS, which stands for “Hypertext/Hypermedia As The

Engine Of Application State”. The failure specification is a finite computation

with induced communication sequence of the form σ; c::op(. . . , i, . . .)/rc(. . .), for

some σ, return code rc, method op, and resource identifier i among the arguments

of op, such that all of the following hold: i 6∈ assoc(σ|c), and if L is the linked set of

the last communication, then i 6∈ L. The return code and values are not important.

It suffices that the identifier i is currently not associated from the perspective of

the client c.

121

This condition can be expressed in Linear Temporal Logic (ltl) [Pnu77], most

conveniently by using past temporal operators [LPZ85] to express the condition

i 6∈ assoc(σ|c). The past-ltl formula for failure, denoted ϕHT , can be built up as

shown below.

In the following, the predicate by(m, c) is true if communication m is by client

c; OK(m) is true if m has return code OK; arg(m, i) is true if resource id i is an

argument to the request in m; Y is the 1-step predecessor operator with variant

Y〈a〉 (formally, σ, i |= Y〈a〉(ϕ) if (i ≥ 1) and σ, (i − 1) |= ϕ, and the transition

from step i to step i + 1 is labeled by a); and p S q is the ‘since’ operator which

holds if q holds in the past, and p holds since then. Precisely, σ, i |= p S q iff

(∃k : 0 ≤ k ≤ i : σ, k |= q ∧ (∀j : k < j ∧ j ≤ i : σ, j |= p)). Note that ¬Y (true)

is true only at the initial state of a sequence.

ϕHT =(∃c, i : F(access(c, i) ∧ ¬ inassoc(c, i))), where

access(c, i) =(∃m : X〈m〉(true) ∧ by(m, c) ∧ arg(m, i) ∧ i 6∈ L(m)), and

inassoc(c, i) =(¬ revoked(c, i)) S granted(c, i), where

revoked(c, i) =(∃m : Y〈m〉(true) ∧ OK(m) ∧ by(m, c) ∧ i ∈ UL(m)), and

granted(c, i) =(∃m : Y〈m〉(true) ∧ OK(m) ∧ by(m, c) ∧ i ∈ L(m)) ∨

(¬Y(true) ∧ i ∈ B)

An alternative view of this property: At the base of the hypertext-driven

behavior property is the notion that all references made by clients to resource iden-

tifiers are based on prior familiarity with those identifiers. However, the description

above does allow clients to become familiar with resource identifiers through the

122

explicit association of them (this is expressed as allowing access to a resource

identifier that is in the linked set of the communication, which could mean in

its request). This view may result in computations that, it could be argued, do

not necessarily follow the intended principles of REST. For example, it allows for

clients to ‘guess’ client identifiers that were associated by other clients. An alter-

native view of this property, therefore, would be to include in the linked sets of

methods only resource identifiers that appear in responses, effectively banning any

novel associations explicitly done by clients. Accounting in our formalism for such

an interpretation would be relatively simple, and we leave it to the readers to do

in the case that they wish to follow it.

3. Safety and idempotence. REST explicitly includes intermediaries in the

model, such as caches and proxies. It is encouraged to have methods which are uni-

formly idempotent or safe, as intermediaries can more effectively use these methods

to reduce latency or mask temporary server failures. While these properties are

not required of REST methods, they can be formalized in ltl and model-checked.

Unlike the two main properties, the formalization of safety and idempotence is

different in the white-box and black-box views.

For the black-box setting, we require the following additional constructs. We

suppose that there is a distinguished method, READ(i), where i is the target re-

source identifier. It returns either ERROR or OK(deref (i)), the representation of

the resource identified by i. The linked and unlinked sets are empty. We extend

the equivalence relation ‘∼’ is to a list of return values: for lists a and b, a ∼ b

holds if the lists have the same length and corresponding elements have the same

types and are related by ‘∼’. In the following, we also assume that one can identify

whether a communication affects a resource; this information is typically available

123

for specific instances of REST, such as RESTful HTTP.

• Safety of a method. A method is considered safe if it does not modify

resources. In the black-box view, changes to resources can be detected by

means of READ methods. A failure for the safety of method op is a finite com-

putation with communications c1::READ(i)/OK(r1) and c2::READ(i)/OK(r2)

occurring in that order, with r1 6∼ r2, where no intervening communication

modifies or dissociates the resource η(i) but includes at least one communi-

cation using op. Informally, failure of safety is signaled by a difference in the

representation of the resource identified by i before and after method op.

• Idempotence of a method. For a method to be idempotent, repeated in-

vocation should have no additional effect on resources. In the black-box view,

such changes can be detected by means of READ methods. A failure for the

idempotence of method op is a finite computation where the communications

c1::op/rc(rv1), c2::READ(i)/OK(r1), c3::op/rc(rv2), and c4::READ(i)/OK(r2)

occur in that order, r1 6∼ r2 and the communications occurring between these

distinguished ones do not dissociate i or modify the resource η(i). Informally,

the property detects failure by detecting a difference in the representation of

a resource identified by i before and after the second instance of a commu-

nication with method op.

Both black-box properties are weaker than their white-box counterparts. For

instance, it is possible that method op changes the server state of a resource –

perhaps by incrementing an auxiliary counter – but this change is not propagated

to the representation, and is hence unobservable by a READ. This violates safety

in the white box view, but not in the black-box view.

124

4.2.3.1 Naming Independence We present an interesting consequence of

the RESTful properties, which shows that the specific choice of naming function

does not matter, if client-server behaviors are hypertext-driven. To make this

precise, consider structures RS and RS ′ which are identical except for the naming

functions. The naming functions, η and η′, are required to map each base name to

the same resource. The functions induce a name correspondence: a name i in an

RS-instance corresponds to a name j in an RS ′-instance if both map to the same

resource, i.e., if η(i) = η′(j).

If clients Ci and C ′i in the hypothesis of the theorem are based on the same

program text, a sufficient condition for bisimularity up to naming is that names

are used opaquely, i.e., no constant names are present, names can only be stored

to and copied from variables, and the only relational test allowed for names is

equality of name variables.

Theorem 4.1. Consider an RS-instance M with clients C1, . . . , Ck and server

S, and an RS ′-instance M ′ with clients C ′1, . . . , C
′
k and server S ′. Suppose that,

for each i, clients Ci and C ′i are bisimular up to the naming correspondence, as

are S and S ′. Then, for each hypertext-driven computation σ of M , there is a

hypertext-driven computation σ′ of M ′ such that global states σ(i) and σ′(i) are

bisimular, for each i, and the induced communication sequences match up to the

naming correspondence.

Proof: To simplify the notation in the proof, we will assume that the naming

functions η and η′ are onto the set of resources. Since these functions are injective

on their domains, it follows that the partial function π = η′−1 ◦ η is a bijection on

the domains of η and η′ (π : I 7→ I, such that for i, j ∈ I, π(i) = j iff η(i) = η′(j)).

The function π defines the equivalence between resource identifiers (‘names’). (π

125

is extended naturally to sets of resource identifiers.)

We are given that clients Ci and C ′i are bisimular up to naming correspondence,

as are the servers S and S ′. This notion of bisimularity means that for related

states (s, s′): any internal transition s
τ−→ t has a matching transition s′

τ−→ t′

and (t, t′) are related; and that for any communication transition s
m−→ t, there is

a transition s′
m′−→ t′ such that (t, t′) are related, m and m′ have the same method

and the same return code, the ids used in the requests of m and m′ are related by

π, and further, that π(L(m)) = L(m′) and π(UL(m)) = UL(m′).

Consider two global states to be bisimular if the local components in each are

bisimular. Given a computation σ = σ0, σ1, . . . of M , we construct a compu-

tation σ′ = σ′0, σ
′
1, . . . of M ′ such that, at each position k, the global states σk

and σ′k are bisimular, and the assoc sets for each client are identical up to name

correspondence, i.e., for each i, if clients Ci and C ′i are identified by ci and c′i

(correspondingly), π(assoc(σ|ci)) = assoc(σ|c′i).

The construction is inductive: for the base case, σ′0 = σ0. Inductively, suppose

that σ′k is bisimular to σk. If σk+1 is obtained by a local transition of some process,

Ci, from σk, there is a corresponding local transition in C ′i which, when performed,

results in a state σ′k+1 that is bisimular to σk+1, and no change in assoc sets. The

other case is if σk+1 is obtained by a communication m by some process, Ci, and

S from σk. By bisimularity, there is a corresponding communication m′ from C ′i

and S ′ which, when performed, results in a state σ′k+1 that is bisimular to σk+1.

Note that the linked and unlinked sets of m and m′ are related by π. Following

the definition of assoc and the inductive hypothesis, the assoc sets are also name

equivalent for each client.

The construction ensures that, for any k, if the transition at step k in σ is by

126

client Cj and the request involves a resource id i, then step k of σ′ is by client

C ′j and uses the resource id π(i). This, together with the name-equivalence of the

assoc sets, ensures that the hypertext-driven property fails at step k of σ iff it fails

at step k of σ′.

This, together with the inductively established correspondence between the

states of σ and σ′, establishes the claim.

4.3 REST on HTTP, and Variations

In this section, we show how the property templates from Section 4.2 can be

instantiated for a concrete protocol, HTTP, which is the primary protocol used for

constructing RESTful applications. The result is a formal definition of RESTful

HTTP behavior.

4.3.1 A Formal HTTP Model

HTTP is a networking protocol for distributed, collaborative, hypermedia infor-

mation systems [FGM+99]. The bulk of the interest in REST among developers

is in the context of HTTP-based applications. We start by demonstrating how

HTTP satisfies the framework requirements described in Subsection 4.2.1.

HTTP is typically used in a client-server model. HTTP resources are uniquely

identified using their Uniform Resource Identifiers (URIs) [W3C05] (in the set I)10.

For HTTP applications, the fields of a resource representation 〈uris ∈ 2I ; d ∈ D〉

are used as follows: uris is a set of URIs, links that exist in the resource, and d is

any data, of any type, that is contained in a resource. It may include auxiliary data,

such as counters, which is relevant to server-internal processes, but has no relevance

10The set of root URIs, B, is considered as ‘common knowledge’ for each specific web applica-
tion (e.g.,‘www.thenation.com’). Usually, |B| = 1.

127

to client behavior. Such data can be elided through an appropriate definition of ‘∼’.

The HTTP RFC [FGM+99] defines nine methods. We present here the four main

methods, the remaining five have no impact on resources. To represent the HTTP

concept of subordinate resources, we use a partial mapping, S : I 7→ 2I , which

maps each resource identifier to the set of resource identifiers for its subordinate

resources, if any. We only describe successfully processed communications, which

return the abstract return code OK, all other codes map to ERROR. The main

HTTP methods, with their linked and unlinked sets, are as follows.

• GET(i)/OK(deref (i)): The method returns the current entity (resource rep-

resentation) of the resource identified by i from the server. Both L and UL

are empty.

• DELETE(i)/OK: The method dissociates the resource identifier i on the

server, resulting in deref (i) bring undefined. Here, L is empty, and UL = {i}.

The HTTP RFC actually only requires that the server ‘intends’ to dissociate

it [FGM+99]. We discuss this more complex scenario in Subsection 4.3.3.

• PUT(i, 〈uris; d〉)/OK: The method associates a resource identified by i, if it

is not already associated, and assigns a value to its corresponding entity so

that deref (i) = 〈uris; d〉. If this is a new association, then S(i) = {}. Here,

UL is empty, while L = {i}.

• POST(i, 〈uris; d〉)/OK(j): The method associates a fresh resource, which is

identified by j, and sets S(j) = {} and deref (j) = 〈uris; d〉. The resource

identified by j becomes a subordinate of the resource identified by i, and j

is added to S(i). Here, UL is empty, while L = {j}.

128

4.3.2 RESTful HTTP Properties

Using the HTTP modeling from Subsection 4.3.1, we can provide a more math-

ematical description of the properties from Subsection 4.2.3. These descriptions

could be used to construct the automata from Subsection 4.4.3. (the description

of HTTP stateless behavior could be used to refine the modified ctl formula from

Subsection 4.2.3.) Clearly, if a HTTP-based application misuses the HTTP pro-

tocol or does not follow our model from Subsection 4.3.1, the following properties

would not be useful for verifying that it is RESTful, and such a process would

have to refer to another interpretation of the REST properties described in Sub-

section 4.2.3.

1. HTTP stateless behavior. The following describe the error cases.

In each case, there exist a finite communication sequence σ, c1, c2 ∈ C, and

i ∈ I such that at the end of some finite computation that induces σ:

• There exist r1, r2 ∈ 〈2I ×D〉, and a ‘temporal fork’ inducing the communi-

cation sequences

σ; c1::GET(i)/OK(r1) and σ; c2::GET(i)/OK(r2)

such that r1 6∼ r2.

• There exist r ∈ 〈2I × D〉, j1, j2 ∈ I, and a ‘temporal fork’ inducing the

communication sequences

σ; c1::POST(i, r)/OK(j1) and σ; c2::POST(i, r)/OK(j2)

129

such that j1 6= j2.

• There exist op ∈ {GET,DELETE}, and a ‘temporal fork’ inducing the com-

munication sequences:

σ; c1::op(i)/OK(. . .) and σ; c2::op(i)/ERROR

• There exist r ∈ 〈2I × D〉, and op ∈ {PUT,POST}, and a ‘temporal fork’

inducing the communication sequences:

σ; c1::op(i, r)/OK(. . .) and σ; c2::op(i, r)/ERROR

(We mention no cases for methods DELETE or POST returning OK on both

branches of a ‘temporal fork’, since these methods include no return values that

could differ from each other.)

2. URI-driven behavior. This property, unlike the previous one, is stated in

a positive form.

For all finite communication sequences σ, c ∈ C, rc ∈ RETS, i, j, k ∈ I,

d1, d2 ∈ D, and l1, l2 ∈ 2I , and for all finite computations that induce one of the

following communications sequences

• σ; c::GET(i)/rc(. . .)

• σ; c::DELETE(i)/rc

• σ; c::POST(j, 〈l1; d1〉)/rc(. . .) where j = i or i ∈ l1

• σ; c::PUT(j, 〈l1; d1〉)/rc(. . .) where j 6= i and i ∈ l1

130

at least one of the following holds:

• i ∈ B, and nowhere in σ|c was there a communication of the form c ::

DELETE(i)/OK

• σ|c contains a communication of the form

c::GET(k)/OK(〈l2; d2〉)

where i ∈ l2, and nowhere in σ|c following this communication was there a

communication of the form c::DELETE(i)/OK

• σ|c contains a communication of the form

c::POST(k, 〈l2; d2〉)/OK(i)

where i 6∈ l2, and nowhere in σ|c following this communication was there a

communication of the form c::DELETE(i)/OK

• σ|c contains a communication of the form

c::PUT(i, 〈l2; d2〉)/OK

where i 6∈ l2, and nowhere in σ|c following this communication was there a

communication of the form c::DELETE(i)/OK

(Note that communication sequences of the form σ; c::PUT(i, . . .)/rc – for all c ∈ C

and i ∈ I – are always allowed, even in applications that satisfy this property.)

Despite the fact that this property is not described here in its negated form,

it could be translated into a monitoring automaton that identifies violating com-

131

munication sequences (the set of conditions out of which at least must hold above

could be used to calculate, in an on-going way at any given state, the set assoc

for the client. A violation may then occur for any of the three communications

specified).

An alternative view of this property: As mentioned in the general REST

description of this property in Subsection 4.2.3, an alternative reasonable inter-

pretation of it would not allow clients to explicitly initiate novel associations of

resource identifiers. In our HTTP model, as described in Subsection 4.3.1, this

is only possible through PUT requests. To account for this alternative view, the

property described above would have to include the following change: The fourth

case, that handles PUT communications, would have to make sure that even the

target resource of PUT communications was ‘known’ to the client already. For-

mally, that line in the definition would have to change to

σ; c::PUT(j, 〈l1; d1〉)/rc(. . .) where j = i and i ∈ l1

(requiring that for such communication sequences, at least one of the requirements

that follow would hold).

3. HTTP safety and idempotence. HTTP satisfies the following method-

properties, which allows it to use caching efficiently and which makes it, there-

fore, a good candidate for implementing RESTful systems (if following the HTTP

RFC [FGM+99], with methods’ behavior as modeled in Subsection 4.3.1). Us-

ing the HTTP method GET instead of the abstract method READ from Subsec-

tion 4.2.3, described here are the error cases:

• Safety of GET. There exist a finite communication sequence σ, c, c1, c2 ∈ C,

i ∈ I, r1, r2 ∈ 〈2I × D〉, and there exists a finite computation that induces

132

the following communication sequence

σ; c1::GET(i)/OK(r1);αGET; c2::GET(i)/OK(r2)

where r1 6∼ r2.

αGET represents any non-empty, finite, sequence containing at least one suc-

cessfully processed GET communication. It must not contain any communi-

cations of the forms c::DELETE(i)/OK or c::PUT(i, . . .)/OK.

• Idempotence of DELETE. There exist a finite communication sequence σ,

c, c1, c2, c3, c4 ∈ C, i, j ∈ I (i 6= j), r1, r2 ∈ 〈2I ×D〉, and there exists a finite

computation that induces the following communication sequence

σ; c1::DELETE(i)/OK;α; c2::GET(j)/OK(r1);

β; c3::DELETE(i)/OK; γ; c4::GET(j)/OK(r2)

where r1 6∼ r2. We require that in such communication sequences the fi-

nite sequences β and γ do not contain communications of the forms c ::

DELETE(j)/OK or c::PUT(j, . . .)/OK.

• Idempotence of PUT. There exist a finite communication sequence σ, client

identifiers c, c1, c2, c3, c4 ∈ C, i, j ∈ I, r, r1, r2 ∈ 〈2I ×D〉, and there exists a

finite computation that induces the following communication sequence

σ; c1::PUT(i, r)/OK;α; c2::GET(j)/OK(r1);

β; c3::PUT(i, r)/OK; γ; c4::GET(j)/OK(r2)

where r1 6∼ r2. We require that in such communication sequences the fi-

133

nite sequences β and γ do not contain communications of the forms c ::

DELETE(j)/OK or c::PUT(j, . . .)/OK.

• All of the five HTTP operators that we do not mention in this chapter are

safe (as well as idempotent).

The way in which the above method-properties should be considered, depends

on whether a HTTP-based application follows the HTTP guidelines:

• In HTTP-based applications that are known to fully implement the HTTP

RFC [FGM+99] as modeled in Subsection 4.3.1, the method-properties, as

described here, are guaranteed to hold.

Essentially, these properties provide a partial formal description for proper

behavior of HTTP-based applications. These properties might be incorpo-

rated as part of a larger set of formal properties for the purpose of automat-

ically verifying that systems follow the HTTP RFC.

• It is possible that a HTTP-based application misuses the HTTP communica-

tion protocol, but that the two REST requirements (statelessness and URI-

driven behavior) can be guaranteed to hold. It is possible also, in such cases,

to have idempotent or safe methods, but one must fall back on the general

description from Subsection 4.2.3, as the effects of the HTTP methods may

now be different from their standard effects. The effect that methods have on

resource state is needed to properly specify the allowed communications in

the failure cases (in the sub-sequences marked as αGET, α, β, or γ above). If

no information is available on the effects of methods for a given application,

only a subset of failure cases can be properly defined (for instance, those

where the sub-sequences such as α or β are empty). Given more (perhaps

134

partial) information on the effects of methods, the set of failure cases can be

enlarged appropriately. A larger set of failure cases is clearly desirable for

increasing the likelihood of identifying error cases.

4.3.3 Variations on RESTful HTTP Properties

In this section we present several common or reasonable modifications of the HTTP

model from Subsection 4.3.1. We follow by pointing out the impact of these mod-

ifications on our RESTful HTTP properties from Subsection 4.3.2.

4.3.3.1 Cascade of DELETE Methods by Subordination As mentioned

above, one side affect of the POST method is the creation of a subordination re-

lation from the target resource identifier to the newly associated one. A common

feature in many HTTP applications is the requirement that when a resource iden-

tifier is dissociated through a DELETE call, its subordinates are deleted as well

(which, in turn, may trigger more dissociations of resource identifiers with higher

degrees of subordination to the originally deleted one). In our model, this would

translate into a modification to the linked set of DELETE communications.

We define a subordination path from i to j (i, j ∈ I) to be a finite sequence of

resource identifiers, i1, i2, . . . , in, such that i1 = i, in = j, and for every 0 < t < n,

it+1 ∈ S(it) and S(it) is defined.

This variation would have the following impact on the set of RESTful HTTP

properties from Subsection 4.3.2:

• The URI-driven sequences property should be modified such that whenever

we require that there is no communication of the form c ::DELETE(i)/OK,

we would also require that there would be no communications of the form

135

c::DELETE(q)/OK, for every q ∈ I that has a subordination path from it to

i.

• Safety of GET should be modified such that αGET must not contain com-

munications of the form c :: DELETE(j)/OK, for every j ∈ I that has a

subordination path from it to i.

• Idempotence of DELETE should include two modifications:

– β and γ must not contain communications of the form c::DELETE(k)/OK,

for every k ∈ I that has a subordination path from it to j.

– In the special case that there is a subordination path from i to j, we

would expect both GET methods to return with the same error code

(ERROR in our model).

• Idempotence of PUT should be modified such that β and γ must not contain

communications of the form c::DELETE(k)/OK, for every k ∈ I that has a

subordination path from it to j.

4.3.3.2 Subordination Expressed as a Link A case to consider is that in

which subordination is expressed as a link, i.e., for every i ∈ I such that deref (i) =

〈uris; d〉, if S(i) is defined then S(i) ⊆ uris. In this case, a side effect of the

communication c ::POST(i, r)/OK(j) would be the modification of the resource

identified by i (to include j in uris).

This variation would have the following impact on the set of RESTful HTTP

properties from Subsection 4.3.2:

• Safety of GET should be modified such that αGET must not contain commu-

nications of the form c::POST(i, . . .)/OK(. . .).

136

• Idempotence of DELETE should be modified such that β and γ must not

contain communications of the form c::POST(j, . . .)/OK(. . .).

• Idempotence of PUT should be modified such that β and γ must not contain

communications of the form c::POST(j, . . .)/OK(. . .).

4.3.3.3 Background Data Modifications by the Server In some cases,

where the semantics of the domain D are such that it is is (partially or fully)

dynamic by nature, HTTP allows the server to modify the data field of resource

representations arbitrarily, in accordance with their semantics. An example is a

‘current time’ resource, whose value is updated by the server. Successive GET’s

on this resource would result in different values for the time, potentially violating

the safety property of GET. This case can be handled by a proper definition of the

data equivalence relation to ignore such changes.

4.3.3.4 Delayed Executions of Completed DELETE Communications In

the HTTP RFC ([FGM+99]) it is said that when the server successfully processes a

DELETE request it merely means that “at the time the response is given, it intends

to delete the resource or move it to an inaccessible location”.

Our interpretation of this quote from the HTTP RFC is that, instead of execut-

ing the dissociation immediately, the server only commits to doing so eventually,

i.e., after some arbitrary, yet finite, delay. This means that the single resource

identifier that is in the unlinked set of successfully processed DELETE communica-

tions is dissociated only after some arbitrary, finite, delay. One restriction that we

have on this requirement is the following: For some resource identifier i, if at any

point after a successfully processed DELETE(i) communication, but before i is dis-

sociated, the server successfully processes a communication that has i in its linked

137

set, we waive the requirement that the server dissociates i (in fact, we forbid it,

unless, naturally, a new DELETE(i) request arrives at the server). This additional

restriction is not mentioned in the HTTP RFC, but since the whole description of

DELETE is vague there, and since this interpretation is sensible, we assume it to

be true.

It is worthwhile to note here that this interpretation of DELETE means that

our inductive construction of the set assoc(σ) (for any communication sequence σ)

may no longer be helpful, due to the fact that there is no way of knowing when

unlinked resource identifiers become dissociated. In the HTTP case of DELETE,

as demonstrated below, this observation has no effect on our properties. However,

it is possible that similar delays introduced to other, non-HTTP, systems would

have to be approached differently because of their impact on the construction of

assoc(σ) (we do not consider such cases here).

This variation would have the following impact on the set of RESTful HTTP

properties from Subsection 4.3.2:

• The HTTP Statelessness property should be modified to reflect the fact that

a ‘temporal fork’ that describes two successfully processed DELETE com-

munications initiated by different clients but with the same target resource

identifier have identical effects on the system within any finite horizon. To

express this, we have the additional failure cases given below.

There exist finite communication sequences σ1, σ2, c1, c2, c3 ∈ C, and i1, i2 ∈

I such that at the end of some finite computation that induces σ1 there is a

‘temporal fork’ and along its two branches, one of the following holds:

– There exist r1, r2 ∈ 〈2I × D〉, such that the communication sequences

induced along the branches are

138

σ1; c1::DELETE(i1)/OK;σ2; c3::GET(i2)/OK(r1)

and

σ1; c2::DELETE(i1)/OK;σ2; c3::GET(i2)/OK(r2)

and r1 6∼ r2.

– There exist r ∈ 〈2I × D〉, j1, j2 ∈ I, such that the communication

sequences induced along the branches are

σ1; c1::DELETE(i1)/OK;σ2; c3::POST(i2, r)/OK(j1)

and

σ1; c2::DELETE(i1)/OK;σ2; c3::POST(i2, r)/OK(j2)

and j1 6= j2.

– There exist op ∈ {GET,DELETE}, such that the communication se-

quences induced along the branches are:

σ1; c1::DELETE(i1)/OK;σ2; c3::op(i2)/OK(. . .)

and

σ1; c2::DELETE(i1)/OK;σ2; c3::op(i2)/ERROR

– There exist r ∈ 〈2I ×D〉, and op ∈ {PUT,POST}, such that the com-

munication sequences induced along the branches are:

σ1; c1::DELETE(i1)/OK;σ2; c3::op(i2, r)/OK(. . .)

and

σ1; c2::DELETE(i1)/OK;σ2; c3::op(i2, r)/ERROR

• Safety of GET should be modified such that σ must not contain any success-

fully processed DELETE(i) communications, unless it also contains a success-

fully processed PUT(i), or a POST(. . .)/OK(i), after the latest such occur-

rence.

139

• Idempotence of DELETE should be modified such that σ and α must not

contain communications of the form c :: DELETE(j)/OK, unless they also

contain a successfully processed PUT(j), or a POST(. . .)/OK(j), after the

latest such occurrence.

• Idempotence of PUT should be modified such that σ and α must not contain

communications of the form c::DELETE(j)/OK, unless they also contain a

successfully processed PUT(j), or a POST(. . .)/OK(j), after the latest such

occurrence.

4.3.4 Distinguishing REST from HTTP

Following are some interesting hypothetical applications which clarify the differ-

ences between HTTP and REST, and which address some common misunderstand-

ings regarding RESTful HTTP.

Consider an application which uses only two HTTP methods: PUT and GET.

A client encodes methods in the uri argument of PUT(uri, junk) requests, where

junk - a resource representation - is a meaningless constant. A GET communication

is used by a client to examine the state of the server. This application is compliant

with the HTTP RFC, as there is no restriction on the PUT communications’ return

values. However, it is non-RESTful, since it would either have to include an

infinite set of root identifiers (each uri argument being one), or it would violate

the hypertext-driven behavior property. The Flickr API is non-RESTful for a

similar reason.

Consider an application which relies entirely on POST communications, and

uses a single root identifier, base, for all such communications (one may consider

B = {base}). In any POST(base, 〈base; data〉)/OK(uri) communication, clients

140

encode methods in the data field. We consider two variants:

1. The return value of an method is encoded in the newly associated URI uri,

returned as a result of POST. This is compliant with the HTTP RFC, but

it goes against the notion of dividing information into distinct resources, as

the base URI must be treated as a single resource. As there is no division

into resources (which would be created by – and used to identify – different

clients), this application is likely to violate the HTTP statelessness prop-

erty. Moreover, it is also likely to violate the resource identifier opaqueness

assumption from Subsection 4.2.3.1, as a program must interpret the URI

strings returned by POST. While the opaqueness assumption is not an es-

sential part of REST, it is important to simplify program development and

maintenance.

2. The newly associated URI uri is used to point to a resource whose repre-

sentation is the result of the method, and which is later retrieved by a GET

on the uri. This violates the HTTP RFC, which requires that the result

of POST identifies a resource with the supplied data as its representation.

As in the previous case, this application is also likely to violate the HTTP

statelessness property.

4.4 Automated Verification of RESTful Behavior

In this section, we formulate and discuss questions relevant to the automated ver-

ification of RESTful behavior. We give preliminary results and point to questions

that are still open.

141

4.4.1 Computation Model

The somewhat informal model used previously can be made precise as follows.

Client and server processes are modeled as labeled transition systems. A commu-

nication is modeled as a CCS synchronization [Mil89]. Hence, in a communication

of the form ‘request/response’, a client offers this communication at its state, the

server offers to accept it, and the two are synchronized to effect the communi-

cation. Processes may have internal actions, including internal non-determinism.

The CCS model is appealing for its simplicity but assumes atomic communication.

We formulate problems and solutions in this model. Subsequently, we discuss how

the atomicity requirement may be relaxed, which brings the analysis closer to real

implementation practice.

4.4.2 Fundamental Questions

The two properties of REST, statelessness and hypertext-driven behavior, lead to

the following key verification questions.

ST Does a client-server application M satisfy the statelessness property?

HT1 For a client-server application M , does its specification, ϕ, hold for all com-

putations where client behavior is hypertext-driven?

HT2 For a client-server application M , do all non-hypertext-driven computations

satisfy a ‘safe-behavior’ property ξ?

These fundamental questions may be asked for a program with a fixed set of

clients and resources, or in the parameterized sense. One may also ask if violations

of these properties can be detected using run-time monitors. Another interesting

142

question is whether, given an application specification, one can synthesize a server

which satisfies it (again, fixed or parameterized).

4.4.3 Automata Constructions

A nondeterministic automaton which detects a failure of the hypertext-driven be-

havior property works as follows. For a given input word, the automaton guesses

the client and resource identifier with which to instantiate the failure specification,

then keeps track of whether the resource id belongs to the current assoc for that

client. It accepts if, at some point, there is a request by the client using the re-

source id, but the id is not part of the current assoc set. Keeping track of whether

a resource id belongs to the assoc set for a client does not require computing the

assoc set. A simple two-state machine suffices, with states In(c, i) and Out(c, i). If

the current communication m is by client c and is successful, a transition is made

from In(c, i) to Out(c, i) if i ∈ UL(m), and from Out(c, i) to In(c, i) if i ∈ L(m).

Otherwise, the state is unchanged. The number of automaton states, therefore, is

polynomial in |I| and |C|.

The deterministic form of this automaton must track all clients and resource

ids simultaneously. Thus, the size of a state of the deterministic automaton is

O(|I| · |C|), and its state space is exponential: O(2|I|·|C|).

The non-deterministic automaton for the failure of safety properties guesses a

resource identifier (i), as well as identities of two clients that would send READ

requests, with which to instantiate the failure specification. It then guesses a

location of a READ(i) communication, stores its return value, and checks for a

sequence of allowed communications and with the candidate method followed by

another READ(i) communication. At this point the automaton compares the stored

143

value with the second returned one, accepting if the two are not related by ’∼’. The

size of an individual state in this automaton is, therefore, O(log(|I|) + log(|C|) +

log(|R|)), where R is the set of possible return values. The failure automaton for

idempotence has more guesses to make, but follows a similar structure.

4.4.4 Model-Checking for Fixed Instances

A fixed instance has a fixed set of resources and clients. The parameters of interest

are the sets in the underlying resource structure: the clients, C, the resource

identifiers, I, and the data domain, D.

Statelessness is expressed in a slight variant of ctl, as described previously.

(The extension does not affect model-checking complexity.) The indexed property

expands out to a propositional formula which is polynomial in the sizes of I and

D. Hence, using standard ctl model-checking algorithms [CE81, QS82], the ST

property can be verified in time linear in the overall application state space and

polynomial in the resource structure parameters.

Property HT1 can be verified as follows. A violation of HT1 is witnessed by

a computation where all clients are hypertext-driven but ϕ is false. This can be

checked using automata-theoretic model checking [VW86] by forming the product

of the application process with (1) a Büchi automaton for the negation of ϕ, and (2)

an automaton which checks that all clients follow hypertext-driven behavior. The

property is verified iff the product has an empty language. The second automaton

is the deterministic automaton from Subsection 4.4.3, with negated acceptance

condition.

Property HT2 can be verified by forming the product of the application process

with (1) a Büchi automaton for the negation of ξ, and (2) an automaton which

144

checks for failure of hypertext-driven behavior by some client. The property is

verified iff the product has an empty language. The second automaton is the

non-deterministic failure automaton from Subsection 4.4.3. The verification takes

polynomial time if the size of the application state space is polynomial in the

parameter sizes. The verification of HT1 is significantly more difficult.

Theorem 4.2. Verification of HT1 for a fixed instance is PSPACE-hard in the

number of resources. It is in PSPACE if a state of the application and of the negated

specification automaton can be described in space polynomial in the parameter sizes.

Proof Sketch: Membership in PSPACE is straightforward, by observing that the

automaton used to describe the hypertext-driven property for HT1 has a state size

which is polynomial in the the parameter sizes.

PSPACE-hardness for HT1 holds under severe restrictions: a single client, where

client, server, and negated specification automaton have a state-space with size

polynomial in the parameters’ sizes. The reduction is from the question of deciding,

given a Turing Machine (TM) M and input x, whether M accepts x within the first

|x|+ 1 tape cells, which is a PSPACE-complete problem (IN-PLACE ACCEPTANCE

in [Pap94]). The reduction uses the server state to store the TM head position,

while a TM configuration is encoded in the implicitly defined assoc set for the

client, using resources to represent tape cell contents.

Proof: In this part, we give a proof of the PSPACE-hardness of HT1.

The result is based on a reduction from the PSPACE-complete problem called

IN-PLACE ACCEPTANCE in [Pap94] (Chapter 19, Section 19.3). This is the

problem where, given a Turing Machine and an input string x, one has to determine

whether the TM accepts x without leaving the first |x|+ 1 tape cells.

145

Given a deterministic TM M and input x, we construct a server process S, a

client process C, and a collection of resources. The number of resources, as well

as the state spaces of C and S, is polynomial in the description of the TM and x.

The set of resources, and the results of methods on them is as follows

1. For each position i from 0 to |x| and each symbol a, there is a cell-value

resource named tm/head/i/value/a

2. There are two root resources : tm/head and tm/initial.

The server, S, works as follows. It keeps track of the head position, which

requires |x|+ 1 states, and responds to methods on the resources as shown below.

It is easy to check that the server is stateless in the REST sense.

The server does not keep track of the tape contents, as that would require an

exponential number of states. Instead, the tape contents are implicitly represented

at any stage by the current assoc set for the client. The computation of M on x

is simulated by a hypertext-driven computation of the client-server application.

1. GET tm/initial returns the list of resources of the form tm/head/i/value/a

representing the initial tape contents, x. This is a constant list.

2. GET tm/head returns the head position (the state of the server)

3. For PUT tm/head k, if the position k is out of bounds (i.e., less than 0 or

greater than |x|) the server enters a special REJECT state. Otherwise, the

state is changed to represent position k. The response is OK.

4. For all valid values of i and a, GET /tm/head/i/value/a and

DELETE /tm/head/i/value/a are accepted with return code OK.

146

In the description, we use resource templates explicitly for clarity and simplicity.

In no way, however, does the operation of the client depend on the particular choice

of names, since these can be replaced by URIs pointed to by tags.

The client, C, works in phases. It maintains the following invariant: for any

finite computation reaching the start of the k’th phase, if the computation is

hypertext-driven, the list of cell value resources in its assoc set is identical to the

TM configuration after k steps, and the state of the server is the head position in

that configuration. The client process uses internal non-determinism in each phase,

but the structure of a phase ensures that at the end of a phase, only one of the

non-deterministically defined runs is hypertext-driven. Thus, while the program

as a whole generates many runs, only one is hypertext-driven.

The client state includes the control state of the TM, a constant number of TM

symbols, and a constant number of integer values in the range 0 to |x|. The size of

the state space is thus polynomial in the input size. To each state is attached a con-

stant table of all value resource ids (i.e., those of the shape tm/head/i/value/a)

indexed by the pair (i, a). As this constant lookup table is built into every state,

it does not contribute to the size of the space.

The pre-phase operation of the client is to invoke GET tm/initial. The set

of cell value resources returned by the server, and made part of the client’s assoc

set, is the set corresponding to the initial TM configuration. The server state is

0. This establishes the invariant for the start of the first phase. Each phase goes

through the following steps.

1. The client halts if the TM control state is accepting. Otherwise, it continues

as follows.

2. The client does GET tm/head. The server responds with an integer i, which

147

is the current head position. This is stored at the client.

3. The client chooses a symbol non-deterministically and stores the choice. For

the choice, say a:

(a) The client obtains the stored table entry for (i, a), and invokes

GET tm/head/i/value/a.

By the invariant, the wrong choice of a — i.e., a value not in the TM

configuration at position i — forces a violation of the hypertext-driven

property, as the resource id for this invocation is not in the assoc set.

(b) The client uses the stored TM control state to compute the new value

at the i’th position, the position increment, and the new control state.

Let b be the new value and d the increment. The client issues the

request PUT tm/head (i+d), followed by DELETE tm/head/i/value/a

and then PUT tm/head/i/value/b.

The first PUT updates the head position, the second removes the URI

for (i, a) from the assoc set, and the last PUT ensures that the URI

for the pair (i, b) enters the assoc set. These actions re-establish the

invariant.

Multiple runs are generated within a phase due to the non-deterministic choice

of symbol. However, only one run (for the correct choice) is hypertext-driven.

Since hypertext-driven behavior is a safety property, all extensions of the non-

hypertext-driven runs also fail the property.

From the invariant, it follows that the TM accepts x within the first |x|+ 1 po-

sitions if, and only if, the (unique) hypertext-driven computation of the client halts

and the server never enters its REJECT state. Coupled with the PSPACE-hardness

148

of the IN-PLACE ACCEPTANCE condition, this shows that the question of de-

termining if all hypertext-driven computations satisfy a temporal property is also

PSPACE-hard, even for simple properties (in this case F(HALT) ∧ G(¬REJECT)).

4.4.5 Parameterized verification

The parameterized verification question has particular importance, as web appli-

cations usually handle a large number of clients and resources. Since statelessness

is not a given, it is necessary to assume a server which stores information about

each client, which implies that the state space of the server is also unbounded.

Nonetheless, the problem can be solved under certain assumptions.

Suppose that clients have a finite state space, X, and that the state space of

the server can be written as Y × [C → Z], where Y and Z are finite sets. Thus, a

global state of an instance with N clients is a triplet (c, a, b), where c is an array

of client states, of size N , a is the finite part of the server state, and b is an array

of N server-side entries. Assume further that on receiving a request from client

i, the server update depends only on, and may only modify, the components a

and b(i); i.e., the new entry for client i does not depend on the entries of the

other clients. Then, by a change of viewpoint, one may combine the entry b(i)

on the server with the state c(i) of client i, obtaining an equivalent application

where the new client space is X × Z, and the server space is Y . Both spaces are

now finite, although there is still an unbounded number of clients. This situation

fits the model in [GS92], where an algorithm is given for checking linear-temporal

properties. The algorithm has very high worst-case complexity, however, so it

may be more fruitful to try alternative methods, such as the method of invisible

149

invariants [PRZ01, Nam07], or methods based on upward-closed sets [ACJT96].

Several questions remain open. The modeling above implicitly assumes a

bounded set of resources and data values. Moreover, the suggested algorithm

applies only to linear-time properties and cannot, therefore, be used to check state-

lessness.

4.4.6 Run-Time Monitoring

Perhaps the most promising immediate application of the formalization is run-time

monitoring. In this setting, the client-server communications are captured by an

intermediate proxy, which passes them through analysis automata. This method

can be applied to the properties HT1 and HT2; statelessness, being a branching-

time property, cannot be checked at run-time, unless some form of backtracking

is implemented. The automata described in Subsection 4.4.4 for model-checking

HT1 and HT2 can be used for run-time verification of safety specifications. The

non-deterministic automata used for checking hypertext-driven behavior must be

determinized for run-time analysis. This can be done on the fly, as is the case

for implementations of the Unix grep command (cf. [ALSU07]). The size of the

deterministic automaton state is O(|I| · |C|), so the required storage is O(|I| · |C| ·

K), where K is the state-size of the negated specification automaton. For each

communication, the update of the automaton state requires time proportional to

the size of the state, and is hence polynomial in the resource parameters. An

alternative to run-time verification is off-line testing of a logged communication

sequence.

150

4.4.7 Synthesizing Servers

A particularly intriguing question is the possibility of synthesizing RESTful servers.

A specific question is the following: given a resource structure and a specification

ϕ, synthesize a stateless server which satisfies ϕ. We show below that, under

certain assumptions, the statelessness constraint can be dropped.

We define a server specification ϕ to be universally synthesizable if there exists

a server implementation which satisfies ϕ given any set of clients. A sufficient

condition for ϕ to be universally synthesizable is if it is insensitive to client ids and

is synthesizable for a single, arbitrary client. Insensitivity means that for every

two communication sequences σ, δ which agree up to client ids in communications,

σ |= ϕ iff δ |= ϕ.

Lemma 4.1. For any ϕ that is insensitive to client ids, ϕ is synthesizable with

client ids set {cdummy} iff ϕ is universally synthesizable.

Proof: The right-to-left direction of the proof is trivial.

For the other direction, let M be the machine synthesized for {cdummy} and

ϕ. Now consider computations of M given any set of client ids C. Let α be a

communication sequence that is induced by such a computation. We have to show

that α |= ϕ. Let β be obtained from α by replacing all client ids in α with cdummy

(note that this requires cdummy to send arbitrary request). By the synthesis process

for M , we know that β |= ϕ. As α and β agree up to client ids, and since ϕ is

insensitive to client ids, it follows that α |= ϕ.

Theorem 4.3. Consider a server temporal logic specification ϕ. The specification

ϕ is deterministically and universally synthesizable iff ST ∧ ϕ is deterministically

and universally synthesizable.

151

Proof: Clearly, one side of the proof (assuming that ST ∧ ϕ is deterministically

and universally synthesizable) is trivial.

Assuming that ϕ is deterministically and universally synthesizable, we prove

that ST ∧ ϕ is deterministically and universally synthesizable. Let M be a deter-

ministic application (server) that satisfies ϕ given any set of client identifiers C.

We construct M ′ from M such that M ′ is deterministic, stateless and satisfies ϕ.

M ′ is defined as a pipeline of components. The first component, IN , rewrites

incoming requests by (1) changing the client id of the request to a constant id,

cdummy 6∈ C, and (2) adding a fresh Unique Identifier (UID) as an additional

argument. The modified request is sent to a variant M̂ of M , which processes

the request as M would, ignoring the request UID, but that places that UID into

the response as an additional argument. The component IN uses the UIDs of

responses to direct them to the clients making the requests (after removing the

UIDs).

M ′ operates deterministically by construction. We now show that any com-

putation of a set of clients with M ′ satisfies ϕ. Consider such a computation, σ.

This induces a computation δ at the interface between IN and M̂ , where requests

and responses are rewritten as described previously. Erasing the request identi-

fiers from σ, we obtain a sequence, say γ, of M over the single client cdummy. This

satisfies ϕ by construction of M . As ϕ does not depend on request identifiers, δ

satisfies ϕ. This implies that σ satisfies ϕ, as the property is insensitive to client

identifiers.

The proof that M ′ is stateless is by contradiction. Say there exists some

finite communication sequence, σ, and two distinct client identifiers c, d ∈ C

such that M ′ generates the communication sequences σ; c :: op(i, a)/r1(v1), and

152

σ; d::op(i, a)/r2(v2), where either r1 6= r2, or v1 6= v2 (op, i, and a being elements

of the appropriate sets, and everything else being equal). By the definition of M ′,

this computation induces a computation at the inner M where the communica-

tions from c, d on the fork are rewritten to originate from cdummy, creating identical

requests. The differing responses imply that M is non-deterministic, which is a

contradiction to the assumption.

The synthesis problem for ltl specifications, assuming a bounded state-space,

was solved in [PR89b]. Implementing the intermediary adds constant complexity.

Some subsets of ltl have polynomial synthesis algorithms [PPS06, PP06].

Adding the assumption that client interactions are hypertext-driven may make

an otherwise-unsynthesizable specification synthesizable, but it may also add sig-

nificantly to the specification complexity (by expanding its representation). The

question of synthesizing unbounded state-space specifications (e.g., without limit-

ing the number of clients) is still open.

4.4.8 Relaxing The Atomicity of Communications

So far, we have assumed that communications are atomic. In real implementations,

however, a request and its response are distinct actions. This allows requests from

different clients to overlap in time. To handle this concurrency, we assume that

the server is linearizable [HW90]. Every computation produces results which are

equivalent to one where each method takes effect atomically.

Hypertext-driven behavior is formulated entirely in terms of the request and

response parameters. If clients are not allowed to issue concurrent requests, then

hypertext-driven behavior holds of a computation iff it holds of its linearization.

Assume that the service specification is also defined on communication sequences,

153

and has the same property. Then, it suffices to check properties over the linearized

subset of computations, which corresponds to the atomic communication model.

This reasoning does not apply to statelessness, which is a branching property, and

thus outside the scope of linearizability. Further work is necessary to formulate a

notion like linearizability for branching-time properties.

4.5 Related Work and Conclusions

There is surprisingly little in the literature on formal definitions and analysis of

REST. In [HG10], the authors describe a pi-calculus model of RESTful HTTP.

This model, however, comes across as a mechanism for programming a specific

type of RESTful HTTP application. The paper does not consider the general

properties of REST: statelessness and hypertext-following, nor does it describe a

methodology for checking that arbitrary implementations satisfy these properties.

There are also a number of books and expository articles on REST, but those do

not include formal specifications, nor do they consider analysis questions.

Our work appears to be – to the best of our knowledge – the first to precisely for-

mulate the key properties of REST, and to demonstrate interesting consequences,

such as naming independence and the PSPACE-hardness of verification. This work

also opens up a number of interesting questions. One is to use the formaliza-

tion as a basis to investigate questions about REST itself: for instance, how to

combine authentication with REST, and how to extend REST to executable rep-

resentations [EGST07]. We have argued that the parameterized model-checking

and synthesis questions are especially relevant for web applications using REST.

Constructing a practically usable verifier for REST properties is itself a non-trivial

task. We have experimented with simple examples verified using SPIN [Hol03]. An

154

effort to use JPF [VHB+03] to verify applications written in the JAX-RS extension

of Java was unsuccessful, however, as JPF currently lacks support for key libraries

in JAX-RS. Our current focus is on creating a run-time checker, which has the

advantage of being independent of implementation language.

To summarize, the formal modeling of REST clarifies its definition, and also

raises several challenging questions, both in modeling and in automated analysis.

155

Chapter 5
Summary

This dissertation concerns with two directions for the utilization of formalizations

in the form of temporal logics for the purpose of insuring the ‘correctness’ of

systems.

Chapter 2 and Chapter 3 presented the notion of synthesis and approached

the subjects of ‘effective’ synthesis of synchronous systems, as well as synthesis of

asynchronous synthesis with multiple variables. Chapter 4 took the other direction,

and rather than deal with synthesis presented a way to use formal expression of

desired systems’ properties for the task of verifying RESTfulness.

In Chapter 2, we described a syntactic reduction that was originally presented in

[PPS06], and the fact that it fails to present a complete solution for the problem of

synthesizing synchronous systems by generating ‘false negatives’ at times: Declar-

ing that some synchronously realizable specifications are unrealizable. We followed

by analyzing such false classifications, and proved what problem is really solved by

the syntactic reduction. We then described a class of ltl specifications that are

guaranteed to never cause the syntactic reduction to produce wrong results – those

156

that contain well-separated environments, as well as an effective algorithm for the

identification of such specifications without increasing the complexity of the overall

synthesis process. Finally, we described a complexity-preserving methodology for

the correct handling of specifications without well-separated environments, which

allows for the syntactic reduction to provide a sound and complete solution for

the problem of effective synchronous synthesis of ltl specification with GR(1)

winning conditions. Considering the class of specifications with well-separated en-

vironments, we discussed what kind of specifications could be excluded from it in

order to provide a ‘tight’ description of the problematic specifications. One inter-

esting question that arises of this work would be the identification of the exact set

of specification that cause false classification.

Chapter 3, on the other hand, concerns with the problem of synthesizing asyn-

chronous systems from ltl specifications. We start by presenting two models of

asynchronous interactions of systems with multiple inputs and outputs: by-demand

and round-robin, and continue with the more canonical one after proving that the

two are equally expressive. After presenting the Rosner reduction from [PR89b],

we expand it to the case of multiple variables, and describe the kernel formula

X n,m that is constructed from the specification ϕ and for which we prove that ϕ is

asynchronously realizable iff X n,m synchronously realizable. This result provides a

sound and complete solution for the problem of synthesizing asynchronous systems

from ltl specifications, by reducing it to the problem of synthesizing synchronous

systems that could be handled according to the algorithm provided in [PR89a].

To address the fact that handling X n,m is an extremely complex, practically

unfeasible, task, we continue by suggesting several heuristics for the effective han-

dling of it in restricted cases. We develop an over-approximation of X n,m, and an

157

under-approximation of it, that are used as two-way ‘bounds’ of it; If the former is

synchronously unrealizable, then the underlying specification ϕ is asynchronously

unrealizable and if the latter is synchronously realizable, then ϕ is asynchronously

realizable and we follow by describing an effective algorithm for synthesizing it. In

order to prove asynchronously realizability, we introduce a few constraints on ϕ,

the most notable of those are its limitation to the case of single-input systems and

the requirement of identifying for it an asynchronous strengthening ψ. Both the

over-approximation and under-approximation of X n,m could be effectively tested

for synchronous realizability, unlike X n,m, producing the desired effective solution

to the asynchronous problem.

Expanding the set of specifications that could be effectively tested for asyn-

chronous realizability would be one interesting extension of this work, as well as

the addition of methods for the minimization, and optimization, of the synthesized

systems.

Chapter 4 concerns with verification as an application of temporal logic formal-

ization, and not with synthesis. After introducing the fundamental objective of

REST, as well as the problem of its frequent misunderstanding, we described a

formal framework for the description of client-server applications, for the purpose

of formalizing REST. We followed by defining the two key REST properties –

statelessness and hypertext-driven behavior – both in temporal logic, as well as

methods properties that maximize reliance on caching – safety and idempotence.

These method properties were formalized using temporal logic as well.

We used our formalized definition to describe how to verify RESTfulness using

model-checking ([CE81, QS82]), and analyzed the complexity of such a process.

We further used our formal model to address several other useful verification tech-

158

niques, including the verification of parameterized systems and the verification of

‘black box’ systems using run-time monitoring. Finally, we proved the the task of

synthesizing stateless servers could be reduced, in linear time, to that of general

synthesis of servers.

We hope that this work would alleviate some of the challenges that developers

encounter today when trying to understand the principles of REST. Additionally,

we believe that it presents an interesting and challenging test-case for further work

in the field of verification. For one, it lays the foundations for developing efficient

tools for the ‘certification’ of systems as RESTful.

159

Bibliography

[ACJT96] P. A. Abdulla, K. Cerans, B. Jonsson, and Y. Tsay. General decid-

ability theorems for infinite-state systems. In LICS, 1996. (Cited on

page 150.)

[AL91] M. Abadi and L. Lamport. The existence of refinement mappings.

Theoretical Computer Science, 82(2):253–284, May 1991. (Cited on

page 9.)

[ALSU07] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman. Compilers:

Principles, Techniques, & Tools, Second Edition. Addison Wesley,

2007. (Cited on page 150.)

[AMPS98] E. Asarin, O. Maler, A. Pnueli, and J. Sifakis. Controller synthesis

for timed automata. In IFAC Symposium on System Structure and

Control, pages 469–474. Elsevier, 1998. (Cited on pages 6 and 7.)

[AT04] R. Alur and S. La Torre. Deterministic generators and games for

LTL fragments. ACM Trans. Comput. Log., 5(1):1–25, 2004. (Cited

on pages 6 and 7.)

160

[BGHJ09] R. Bloem, K. Greimel, T.A. Henzinger, and B. Jobstmann. Synthesiz-

ing robust systems. In Proc. 9th Intl. Conference on Formal Methods

in Computer-Aided Design (FMCAD’09), Austin, Texas, pages 85–

92, 2009. (Cited on page 19.)

[BGJ+07a] R. Bloem, S. Galler, B. Jobstmann, N. Piterman, A. Pnueli, and

M. Weiglhofer. Automatic hardware synthesis from specifications: A

case study. In Design Automation and Test in Europe, pages 1188–

1193, 2007. (Cited on pages 8 and 41.)

[BGJ+07b] R. Bloem, S. Galler, B. Jobstmann, N. Piterman, A. Pnueli, and

M. Weiglhofer. Specify, compile, run: Hardware from PSL. In 6th

International Workshop on Compiler Optimization Meets Compiler

Verification, volume 190 of Electronic Notes in Computer Science,

pages 3–16, 2007. (Cited on pages 8 and 41.)

[BHIBL08] C. Bizer, T. Heath, K. Idehen, and T. Berners-Lee. Linked data on

the web (LDOW2008). In WWW, pages 1265–1266, 2008. Talk by

Tim Berners-Lee at TED 2009: http://www.w3.org/2009/Talks/

0204-ted-tbl/. (Cited on page 116.)

[BL69] J.R. Büchi and L.H. Landweber. Solving sequential conditions by

finite-state strategies. Trans. Amer. Math. Soc., 138:295–311, 1969.

(Cited on pages 5 and 40.)

[CE81] E.M. Clarke and E.A. Emerson. Design and synthesis of synchro-

nization skeletons using branching time temporal logic. In Proc. IBM

Workshop on Logics of Programs, volume 131 of Lect. Notes in Comp.

161

http://www.w3.org/2009/Talks/0204-ted-tbl/
http://www.w3.org/2009/Talks/0204-ted-tbl/

Sci., pages 52–71. Springer-Verlag, 1981. (Cited on pages 5, 115, 144,

and 158.)

[CES86] E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic verification

of finite state concurrent systems using temporal logic specifications.

ACM Trans. Prog. Lang. Sys., 8:244–263, 1986. (Cited on page 10.)

[CGP99] E.M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT

Press, 1999. (Cited on pages 2 and 106.)

[CHJ08] K. Chatterjee, T.A. Henzinger, and B. Jobstmann. Environment as-

sumptions for synthesis. In 19th International Conference on Con-

currency Theory (CONCUR03), volume 5201 of Lect. Notes in Comp.

Sci., pages 141–161. Springer-Verlag, 2008. (Cited on page 23.)

[Chu63] A. Church. Logic, arithmetic and automata. In Proc. 1962 Int. Congr.

Math., pages 23–25, Upsala, 1963. (Cited on pages 5 and 40.)

[CKGC+07] D.C. Conner, H. Kress-Gazit, H. Choset, A. Rizzi, and G.J. Pappas.

Valet parking without a valet. In Proceedings IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems, pages 572–577.

IEEE, 2007. (Cited on pages 8 and 41.)

[DBPU10] N. D’Ippolito, V. Braberman, N. Piterman, and S. Uchitel. Synthesis

of live behavior models. In 18th International Symposium on Foun-

dations of Software Engineering, Santa Fe, NM, USA, 2010. ACM.

(Cited on page 41.)

[DBPU11] =N. D’Ippolito, V. Braberman, N. Piterman, and S. Uchitel. Synthe-

sis of live behavior models for fallible domains. In 33rd International

162

Conference on Software Engineering, Waikiki, HI, USA, May 2011.

ACM. (Cited on page 41.)

[DH99] W. Damm and D. Harel. LSC’s : Breathing life into message sequence

charts. In P.Ciancarini, A. Fantechi, and R. Gorrieri, editors, Proc.

3rd IFIP Int. Conf. on Formal Methods for Open Object-Based Dis-

tributed Systems (FMOODS’99), pages 293–312. Kluwer Academic

Publishers, 1999. (Cited on page 2.)

[EC80] E.A. Emerson and E.M. Clarke. Characterizing correctness properties

of parallel programs using fixpoints. In Proc. 7th Int. Colloq. Aut.

Lang. Prog., volume 85 of Lect. Notes in Comp. Sci., pages 169–181.

Springer-Verlag, 1980. (Cited on pages 1 and 120.)

[EGST07] J. R. Erenkrantz, M. M. Gorlick, G. Suryanarayana, and R. N. Taylor.

From representations to computations: the evolution of web architec-

tures. In ESEC/SIGSOFT FSE, pages 255–264, 2007. (Cited on

page 154.)

[EH86] E.A. Emerson and J.Y. Halpern. ‘Sometimes’ and ‘not never’ revis-

ited: On branching time versus linear time. J. ACM, 33:151–178,

1986. (Cited on page 10.)

[ES84] E.A. Emerson and A.P. Sistla. Deciding full branching time logic. Inf.

and Cont., 61:175–201, 1984. (Cited on page 10.)

[FGM+99] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach,

and T. Berners-Lee. W3C RFC 2616, June 1999. http://www.w3.

163

http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://www.w3.org/Protocols/rfc2616/rfc2616.html

org/Protocols/rfc2616/rfc2616.html. (Cited on pages 114, 127,

128, 132, 134, and 137.)

[Fie00] R. T. Fielding. Architectural Styles and the Design of Network-based

Software Architectures. PhD thesis, University of California, Irving,

2000. (Cited on pages 113, 115, and 120.)

[Fie08a] R. T. Fielding. http://roy.gbiv.com/untangled/2008/

no-rest-in-cmis#comment-697, 2008. (Cited on page 114.)

[Fie08b] R. T. Fielding. http://roy.gbiv.com/untangled/2008/

rest-apis-must-be-hypertext-driven, 2008. (Cited on page 114.)

[GS92] S.M. German and A.P. Sistla. Reasoning about systems with many

processes. J. ACM, 39:675–735, 1992. (Cited on page 149.)

[HG10] A. G. Hernández and M. N. Moreno Garćıa. A formal definition of

RESTful semantic web services. In WS-REST, pages 39–45, 2010.

(Cited on page 154.)

[Hol03] G. J. Holzmann. The SPIN Model Checker. Addison-Wesley, 2003.

Also see http://spinroot.com. (Cited on page 154.)

[HP06] T.A. Henzinger and N. Piterman. Solving games without determiniza-

tion. volume 4207 of Lect. Notes in Comp. Sci., pages 394–410.

Springer-Verlag, 2006. (Cited on page 41.)

[HT87] T. Hafer and W. Thomas. Computation tree logic CTL* and path

quantifiers in the monadic theory of the binary tree. In Proc. 14th

Int. Colloq. Aut. Lang. Prog., volume 267 of Lect. Notes in Comp.

Sci., pages 269–279. Springer-Verlag, 1987. (Cited on page 10.)

164

http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://roy.gbiv.com/untangled/2008/no-rest-in-cmis#comment-697
http://roy.gbiv.com/untangled/2008/no-rest-in-cmis#comment-697
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://spinroot.com

[HW90] M. Herlihy and J. M. Wing. Linearizability: A correctness condition

for concurrent objects. ACM Trans. Program. Lang. Syst., 12(3):463–

492, 1990. (Cited on page 153.)

[KGFP07a] H. Kress-Gazit, G.E. Fainekos, and G.J. Pappas. From structured en-

glish to robot motion. In Proceedings IEEE/RSJ International Con-

ference on Intelligent Robots and Systems, pages 2717–2722. IEEE,

2007. (Cited on page 8.)

[KGFP07b] H. Kress-Gazit, G.E. Fainekos, and G.J. Pappas. Where’s waldo?

sensor-based temporal logic motion planning. In Proc. IEEE Inter-

national Conference on Robotics and Automation, pages 3116–3121.

IEEE, 2007. (Cited on pages 8 and 41.)

[KN11a] U. Klein and K. S. Namjoshi. Formalization and Automated Verifi-

cation of RESTful Behavior. In G. Gopalakrishnan and S. Qadeer,

editors Proc. 23rd Intl. Conference on Computer Aided Verification

(CAV’11), volume 6806 of Lect. Notes in Comp. Sci., pages 541–556.

Springer-Verlag, 2011. (Cited on page 115.)

[KN11b] U. Klein and K. S. Namjoshi. Formalization and Automated Veri-

fication of RESTful Behavior. Technical report, Bell Labs; Courant

Institute of Mathematical Sciences, NYU TR2011-938, 2011. (Cited

on page 115.)

[KP11] U. Klein and A. Pnueli. Revisiting Synthesis of GR(1) Specifications.

In Hardware and Software: Verification and Testing (Proceedings of

HVC’10), volume 6504 of Lect. Notes in Comp. Sci., pages 161–181.

Springer-Verlag, 2011. (Cited on page 10.)

165

[KPP05] Y. Kesten, N. Piterman, and A. Pnueli. Bridging the gap between fair

simulation and trace inclusion. Inf. and Comp., 200(1):36–61, July

2005. (Cited on page 7.)

[KPP09] H. Kugler, C. Plock, and A. Pnueli. Controller synthesis from lsc re-

quirements. In Proc. Fundamental Approaches to Software Engineer-

ing (FASE’09), volume 5503 of Lect. Notes in Comp. Sci., Springer-

Verlag, pages 79–93, 2009. (Cited on pages 8 and 41.)

[KS09] H. Kugler and I. Segall. Compositional synthesis of reactive systems

from live sequence chart specifications. In Proc. 15th Intl. Conference

on Tools and Algorithms for the Construction and Analysis of Systems

(TACAS’04), volume 5505 of Lect. Notes in Comp. Sci., Springer-

Verlag, pages 77–91, 2009. (Cited on pages 8 and 41.)

[KV05] O. Kupferman and M.Y. Vardi. Safraless decision procedures. In Proc.

46th IEEE Symp. Found. of Comp. Sci., 2005. (Cited on page 41.)

[LPZ85] O. Lichtenstein, A. Pnueli, and L. Zuck. The glory of the past. In

Proc. Conf. Logics of Programs, volume 193 of Lect. Notes in Comp.

Sci., pages 196–218. Springer-Verlag, 1985. (Cited on page 122.)

[Ltd99] ARM Ltd. AMBA specification (rev. 2). Available from

www.arm.com, 1999. (Cited on page 8.)

[Mil89] R. Milner. Communication and Concurrency. Prentice-Hall, Engle-

wood Clifs, 1989. (Cited on pages 118 and 142.)

166

[MW84] Z. Manna and P. Wolper. Synthesis of communicating processes from

temporal logic specifications. ACM Trans. Prog. Lang. Sys., 6:68–93,

1984. (Cited on page 5.)

[Nam07] K. S. Namjoshi. Symmetry and completeness in the analysis of pa-

rameterized systems. In VMCAI, volume 4349 of LNCS, 2007. (Cited

on page 150.)

[Pap94] C. H. Papadimitriou. Computational Complexity. Addison Wesley,

1994. (Cited on page 145.)

[PK09] A. Pnueli and U. Klein. Synthesis of programs from temporal prop-

erty specifications. In Proc. 7th ACM/IEEE Intl. Conference on For-

mal Methods and Models for Codesign, pages 1–7. IEEE Press, 2009.

(Cited on pages 8 and 44.)

[Pnu77] A. Pnueli. The temporal logic of programs. In Proc. 18th IEEE Symp.

Found. of Comp. Sci., pages 46–57, 1977. (Cited on pages 1 and 122.)

[Pnu06] A. Pnueli. Verification and synthesis of reactive programs. Markto-

berdorf Summer School Lectures, August 2006. (Cited on page 18.)

[PP06] N. Piterman and A. Pnueli. Faster solution of Rabin and Streett

games. In Proc. 21st Symposium on Logic in Computer Science. IEEE,

IEEE press, 2006. (Cited on pages 41, 52, 63, 64, and 153.)

[PPS06] N. Piterman, A. Pnueli, and Y. Sa’ar. Synthesis of reactive(1) de-

signs. In Proc. 7th International Conference on Verification, Model

Checking, and Abstract Interpretation, volume 3855 of Lect. Notes in

Comp. Sci., pages 364–380. Springer-Verlag, 2006. (Cited on pages 3,

167

7, 8, 14, 16, 17, 18, 26, 32, 35, 36, 38, 39, 41, 42, 43, 44, 52, 64, 79,

80, 82, 83, 85, 91, 92, 95, 101, 102, 105, 107, 153, and 156.)

[PR89a] A. Pnueli and R. Rosner. On the synthesis of a reactive module. In

Proc. 16th ACM Symp. Princ. of Prog. Lang., pages 179–190, 1989.

(Cited on pages 5, 6, 14, 40, 43, 50, 62, 63, 84, 111, and 157.)

[PR89b] A. Pnueli and R. Rosner. On the synthesis of an asynchronous reactive

module. In Proc. 16th Int. Colloq. Aut. Lang. Prog., volume 372

of Lect. Notes in Comp. Sci., pages 652–671. Springer-Verlag, 1989.

(Cited on pages 42, 52, 53, 63, 89, 153, and 157.)

[PRZ01] A. Pnueli, S. Ruah, and L. Zuck. Automatic deductive verifica-

tion with invisible invariants. In Proc. 7th Intl. Conference on

Tools and Algorithms for the Construction and Analysis of Systems

(TACAS’01), volume 2031 of Lect. Notes in Comp. Sci., Springer-

Verlag, pages 82–97, 2001. (Cited on page 150.)

[PS96] A. Pnueli and E. Shahar. A platform for combining deductive with al-

gorithmic verification. In R. Alur and T. Henzinger, editors, Proc. 8th

Intl. Conference on Computer Aided Verification (CAV’96), volume

1102 of Lect. Notes in Comp. Sci., Springer-Verlag, pages 184–195,

1996. (Cited on pages 87, 105, and 106.)

[PSZ10] A. Pnueli, Y. Sa’ar, and L. D. Zuck. JTLV: A framework for develop-

ing verification algorithms. pages 171–174, 2010. (Cited on page 87.)

[PZ08] A. Pnueli and A. Zaks. On the merits of temporal testers. In 25

Years of Model Checking, volume 5000 of Lect. Notes in Comp. Sci.,

168

pages 172–195. Springer-Verlag, 2008. (Cited on pages 15, 28, 52, 90,

and 103.)

[QS82] J.P. Queille and J. Sifakis. Specification and verification of concurrent

systems in cesar. In M. Dezani-Ciancaglini and M. Montanari, edi-

tors, International Symposium on Programming, volume 137 of Lect.

Notes in Comp. Sci., pages 337–351. Springer-Verlag, 1982. (Cited

on pages 115, 144, and 158.)

[Rab72] M.O. Rabin. Automata on Infinite Objects and Church’s Problem, vol-

ume 13 of Regional Conference Series in Mathematics. Amer. Math.

Soc., 1972. (Cited on pages 5 and 40.)

[RBTJ06] M. Roveri, R. Bloem, A. Tschaltev, and B. Jobstmann. Personal

Communication, 2006. (Cited on pages 8 and 17.)

[SS09] S. Sohail and F. Somenzi. Safety first: A two-stage algorithm for ltl

games. In Proc. 9th Intl. Conference on Formal Methods in Computer-

Aided Design (FMCAD’09), Austin, Texas, pages 77–84. IEEE press,

2009. (Cited on page 8.)

[SSR08] S. Sohail, F. Somenzi, and K. Ravi. A hybrid algorithm for LTL

games. In Proc. of the 9th conference on Verification, Model Checking,

and Abstract Interpretation, volume 4905 of Lect. Notes in Comp.

Sci., pages 309–323. Springer-Verlag, 2008. (Cited on page 8.)

[SVW87] A.P. Sistla, M.Y. Vardi, and P. Wolper. The complementation prob-

lem for Büchi automata with application to temporal logic. Theor.

Comp. Sci., 49:217–237, 1987. (Cited on page 44.)

169

[VHB+03] W. Visser, K. Havelund, G. P. Brat, S. Park, and F. Lerda. Model

checking programs. Autom. Softw. Eng., 10(2):203–232, 2003. JPF

web page: http://babelfish.arc.nasa.gov/trac/jpf. (Cited on

page 155.)

[VW86] M.Y. Vardi and P. Wolper. An automata-theoretic approach to au-

tomatic program verification. In Proc. First IEEE Symp. Logic in

Comp. Sci., pages 332–344, 1986. (Cited on page 144.)

[VW94] M.Y. Vardi and P. Wolper. Reasoning about infinite computations.

Inf. and Cont., 115(1):1–37, 1994. (Cited on pages 89 and 90.)

[W3C05] Uniform Resource Identifier (URI): Generic Syntax. W3C RFC 3986,

2005. (Cited on pages 116 and 127.)

[W3C07] SOAP version 1.2 part 1: Messaging framework (second edi-

tion). W3C Recommendation, 2007. http://www.w3.org/TR/

soap12-part1/. (Cited on page 114.)

[Wil01] T. Wilke. Alternating tree automata, parity games, and modal µ-

calculus. Bull. Soc. Math. Belg., 8(2), May 2001. (Cited on page 16.)

[WTM09] T. Wongpiromsarn, U. Topcu, and R. M. Murray. Receding horizon

temporal logic planning for dynamical systems. In IEEE Conference

on Decision and Control, pages 5997–6004. IEEE press, 2009. (Cited

on pages 8 and 41.)

[WTM10a] T. Wongpiromsarn, U. Topcu, and R. M. Murray. Automatic syn-

thesis of robust embedded control software. In AAAI Spring Sym-

170

http://babelfish.arc.nasa.gov/trac/jpf
http://www.w3.org/TR/soap12-part1/
http://www.w3.org/TR/soap12-part1/

posium on Embedded Reasoning: Intelligence in Embedded Systems,

2010. (Cited on pages 8 and 41.)

[WTM10b] T. Wongpiromsarn, U. Topcu, and R. M. Murray. Receding horizon

control for temporal logic specifications. In Hybrid Systems: Compu-

tation and Control, Lect. Notes in Comp. Sci. Springer-Verlag, 2010.

(Cited on pages 8 and 41.)

171

	Dedication
	Acknowledgments
	Abstract
	Table of Contents
	List of Figures
	Introduction
	Revisiting Synthesis of GR(1) Specifications
	Introduction
	Preliminaries
	Temporal Logic and Tree-Models
	Realizability of Temporal Specifications

	The Syntactic Reduction is Incomplete
	Synthesis of Reactive(1) Designs
	Incompleteness

	Well-Separated Environments
	General Specifications
	On the Connection Between Games and Trees
	Game Structures
	Realizability in Game Structures and in Tree Models

	Conclusions

	Effective Synthesis of Asynchronous Systems from GR(1) Specifications
	Introduction
	Preliminaries
	Temporal Logic
	Realizability of Temporal Specifications
	Structure and Notations of Specifications
	The Rosner Reduction

	Expanding the Rosner Reduction to Multiple Variables
	A More General Asynchronous Interaction Model
	A General (Multi-Core) Model
	A Modified Generalized Rosner Reduction

	Proving Unrealizability of a Specification
	Over-Approximating the Kernel Formula
	Applying the Unrealizability Test

	Proving Realizability of a Specification, and Synthesis
	Under-Approximating the Kernel Formula
	Using the Under-Approximation, and synthesis
	Applying the Realizability Test
	A Possible Direction for Handling More Specifications

	Conclusions and Future Work

	Formalization and Automated Verification of RESTful Behavior
	Introduction
	REST and its Formalization
	Building Blocks for REST
	Formalizing Resource-Based Applications
	Formalization of RESTful Behavior

	REST on HTTP, and Variations
	A Formal HTTP Model
	RESTful HTTP Properties
	Variations on RESTful HTTP Properties
	Distinguishing REST from HTTP

	Automated Verification of RESTful Behavior
	Computation Model
	Fundamental Questions
	Automata Constructions
	Model-Checking for Fixed Instances
	Parameterized verification
	Run-Time Monitoring
	Synthesizing Servers
	Relaxing The Atomicity of Communications

	Related Work and Conclusions

	Summary
	Bibliography

